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Chapter 1

Beams and Beam Physics

In this chapter we will lay the foundations of basic concepts about beam
physics, and discuss various important mechanisms of production and accel-
eration of beams. Because of the breadth of the material and the multitude
of existing devices for each of the mechanisms, we will focus only on key con-
cepts, and introduce them through the eyes of their inventors by using their
original historical drawings, with only minor adjustments for uniformity of
style and technical clarity.

1.1 What Is Beam Physics?

The field of beam physics deals with motion of ensembles of particles
(usually charged) in electromagnetic fields. It is called beam physics due
to the fact that, in most cases, those particles have similar coordinates,
which is the rough definition of a beam. In many cases, the positions and
momenta of the particles are sufficient to describe their motion. In this
case, the particles are described by a state vector consisting of positions and
momenta

�Z = (x, px, y, py, z, pz) .

In other cases, additional coordinates may be needed; typical examples in-
clude the mass, sometimes the charge, or the spin vector and the related
magnetic moment and possibly electric moment of the particle.

An ensemble of particles with such similar coordinates is called a beam
(see Fig. 1.1), and the sub-fields concerned with the study of such beams is
called beam physics. There are other fields of physics that can be described
in very similar terms and language, some of the most notable examples being
light optics and astrodynamics. There are also other sub-fields of physics
dealing with the study of the motion of such ensembles of particles; important
examples are plasma physics and the dynamics of galaxies. These fields
are different from beam physics in that in their cases, the particles usually do
not have rather similar coordinates but occupy larger regions.

The space of state vectors �Z is often called phase space, and a coordinate
system showing �Z is often called a phase space diagram. The volume of
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x

px

�Z0

Ensemble
of particles

FIGURE 1.1: A beam — an ensemble of particles in the vicinity of a
reference particle with phase space coordinate �Z0.

the cloud of particles in phase space has a special name. It is called emit-
tance. As we shall see later, in many systems the emittance is conserved and
hence plays a special role.

Because all particles are close together, it is often useful to pick one of
these particles, typically one that is somewhere in the middle, and describe
the motion of the others relative to this reference particle. So if the
reference particle has coordinates �Z0, then the motion of the particles would
be described in the relative coordinates Δ�Z = �Z − �Z0.

In many cases, the density of particles is so low that their interaction can
be neglected or expressed by simple collective models. In other cases, it is
necessary to include the study of the self-interaction, i.e., we have to take into
account the fields due to the space charge.

If the fields are electromagnetic, then the motion is described by the Lorentz
force law, which in SI units is

d�p

dt
= q

(
�E + �v × �B

)
. (1.1)

Here �E and �B are the electric and magnetic fields, respectively. These fields
are connected to the scalar potential V and the vector potential �A via the
relations

�B = �∇× �A, �E = −∂ �A

∂t
− �∇V.

Although this may not be directly relevant in this book, we want to note here
for the sake of completeness that the equations of motion in the form of the
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Lorentz force law can also be obtained from the Lagrangian

L = −mc2
√
1− �v2

c2
+ q�v · �A− qV ; (1.2)

refer to eqs. (1.85), (1.145) in [5], and, for example, [29]. From this La-
grangian, one can also obtain a Hamiltonian of the motion in a procedure
that is standard for all Lagrangian systems. One begins by defining the canon-
ical momentum as:

�pcan =
∂L

∂�v
,

which here has the form

�pcan = γm�v + q �A = �pdyn + q �A, (1.3)

where

γ =
1√

1− �v2/c2
,

and the canonical momentum �pcan is different from the relativistic dynamical
momentum

�pdyn = γm�v. (1.4)

The Hamiltonian of the motion can then be found as

H = �pcan · �v − L.

This expression initially contains both �pcan and �v, and it is necessary to elim-
inate �v and express it in terms of �pcan. Because �pdyn = γm�v and �pdyn =

�pcan − q �A from eq. (1.3), γm�v = m�v/
√

1− �v2/c2 = �pcan − q �A, leading to

m2�v2/(1− �v2/c2) = (�pcan − q �A)2, so we find

�v = c · �pcan − q �A√(
�pcan − q �A

)2
+m2c2

= c · �pdyn√
�p2dyn +m2c2

, (1.5)

where the expression in terms of �pdyn is listed as well. Using this,
√

1− �v2/c2

in the Lagrangian L in eq. (1.2) is expressed in terms of �pcan, also in terms
of �pdyn, as

1

γ
=

√
1− �v2

c2
=

mc√(
�pcan − q �A

)2
+m2c2

=
mc√

�p2dyn +m2c2
. (1.6)

Thus, we obtain for the Hamiltonian

H = c ·
√(

�pcan − q �A
)2

+m2c2 + qV ;
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refer to eq. (1.149) in [5] for details of the derivation.

When studying the evolution of the beam from the time it is born until it is
used, there are usually four steps involved. First, there must be a way for the
production of the beam, and for the sake of efficiency if possible in such a
way that its emittance is small. Second, in most cases the energy of the beam
has to be increased; there has to be a mechanism of acceleration. Because
of the outstanding importance of this process, the whole field is often called
accelerator physics. Then it is necessary to transport the beam to where
it is being used. And finally, there is often a need for storage of the beam
for use at a later time or reuse. Lastly, often there is a need for analysis of
the beam, in particular after the beam has been used for its purpose, which
frequently is the facilitation of certain nuclear or high energy reactions. The
field of beam physics spans all these steps, and each of the steps has it own
unique problems to be solved.

1.2 Production of Beams

The mechanisms used for the production of the beam depend very much
on the particular kind of particles and the characteristics of the beam that
is needed, and they include mechanisms from a variety of different fields in-
cluding thermal, electrical, atomic, nuclear, and even high energy physics
processes. Common beams consist of electrons, protons, or H−, and some
of the beams produced through nuclear and high energy physics processes in-
clude positrons, antiprotons, pions, kaons and radioactive nuclei. Overall, due
to the diversity of the species of the particles and the required properties of
the beam, there are dozens of different ways of producing various beams. We
here restrict ourselves to some of the source types that are most commonly
used in particle accelerators and electron microscopes.

1.2.1 Electron Sources

Electrons exist in abundance in metals, and forming them into beams re-
quires their extraction from the metal, called the cathode. For this the
electrons need to overcome the potential barrier, i.e., the work function,
at the boundary between the metal and the environment. The work func-
tion usually ranges from a fraction of an electron Volt (eV) to a few electron
Volts; for comparison, the average kinetic energy of gas molecules at room
temperature amounts to approximately 1/40 eV. This can be achieved by ei-
ther supplying additional energy to the electrons so that they can leave the
material, or by lowering the work function. In the following we discuss some
common approaches based on these methods.
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FIGURE 1.2: Sketch of an early thermionic emission electron source.
(Reprinted with permission from J. R. Pierce, J. of Appl. Phys., 11:548,
1940 [57]. Copyright 1940, AIP Publishing LLC.)

The first of these processes is thermionic emission. By heating a piece
of metal to temperatures exceeding around 1000◦C, a small fraction of the
electrons will achieve energies exceeding the work function and can thus leave
the metal. This type of source is usually called the thermionic gun. Once
outside the metal, the electrons can be pulled away further by the application
of strong electric fields, the distribution of which is adjusted to achieve high
gradient and optimal focusing. An example of such a device is shown Fig. 1.2.
Here the number of electrons available is determined by the temperature of
the donor metal or cathode, and only those electrons in the tail of the Fermi-
Dirac distribution above the work function can be extracted. This process is
quantitatively described by the Richardson-Dushman equation

J =

(
4πemk2B

h3

)
T 2e−W/kBT , (1.7)

where J is the current density, e is the charge, m is the mass, kB is the
Boltzmann constant, h is the Planck constant and T is the temperature of
the cathode. It is obtained from the third law of thermodynamics and char-
acterizes an idealized situation of a sufficiently large piece of cathode material
to avoid quantum mechanical influences, and the absence of electric fields
influencing extraction.

In practice the extracted current is also greatly affected by any electric field
applied to the cathode. This is the result of the Coulomb repulsion among the
extracted electrons, where electrons extracted earlier can push those extracted
later back into the cathode. When the electric field at the surface vanishes, no
more electrons will be extracted. The relation between the maximum current
density and the applied electric field, for a parallel flat cathode and a matching
anode, is the Child-Langmuir Law

J =
4

9
ε0

(
2e

m

)1/2
V

3/2
0

d2
, (1.8)
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FIGURE 1.3: Left: Sketch of one of the earliest electron sources using
point cathodes. (From Y. Sasaki and S. Maruse, Über die Arbeitsweise und
die elektronenoptischen Eigenschaften der Spitzenkathode, in G. Möllenstedt,
H. Niehrs, and E. Ruska, eds., Physikalisch-Technischer Teil, 1:9, Springer-
Verlag, 1960, c© Springer-Verlag Berlin Heidelberg 1960 [61]. Abb. 3, “Zwei
Anordnungen der Elektrodensysteme für die Spitzenkathode.” With kind per-
mission from Springer Science and Business Media.) Right: The potential
(dashed) and the field (solid) distribution near the cathode tip.

where J is the current density, ε0 is the dielectric constant in vacuum, e is the
charge, m is the mass, V0 is the applied voltage between the cathode and the
anode, and d is the distance between the cathode and the anode. In practice
the situation is more involved, and the maximum current density is usually
the smaller of the two quantities. For flat thermionic cathodes, usually eq.
(1.7) sets the limit for the extracted current.

Due to the high operating temperature, the energy spread of the extracted
electron beam is relatively large. Nonetheless, the thermionic gun is simple
and reliable, and hence is still widely used as the source for many devices
where the large energy spread of the electrons at the cathode is not limiting
the performance of the machine. One significant example are circular electron
accelerators, where the ultimate energy spread in the beam is dominated by
other processes including synchrotron radiation discussed later.

The second process to produce electrons is field emission. In this mech-
anism, a sharp needle is brought into strong external electric fields. This
type of source is usually called the field emission gun. Because the needle
is a conductor, it acts as an equipotential surface, and thus produces very
strong electric fields near its tip. In practice the radius of curvature at the tip
often ranges from below 1 nm to nearly the range of single atoms to 1 μm,
and one locally obtains a very strong field ranging from 1 to 3 GV/m. These
strong electric fields acting near the surface lower the work function and si-
multaneously reduce the width of the potential barrier, which allows electrons
to escape through the well through quantum tunneling. All these electrons
emerge from a small area. Furthermore, due to the fact that the electrons
are diverging near the surface of the needle, the actual source is quite a bit
smaller than the emitting area. Meanwhile, for low current, their spread in
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momenta is rather small as well. Fig. 1.3 shows the basic principle.
The small emitting area imposes a severe limit on the total current ex-

tracted, but it is the standard electron source for transmission electron mi-
croscopes discussed in more detail below. Here the current need is low, but
the origination from a small area and with small energy spread amounting to
what is called high brightness is very useful. The use of sharp needles (point
filaments as they were historically called) was pioneered in the 1950s in order
to increase brightness of the electron beam in microscopes.

Particularly fruitful is combining needle geometries, resulting in an effective
lowering of the work function due to stronger electric field at surface, with
heating, which results in an increase of electrons of higher energy than the
work function that can thus traverse it. This kind of thermionic emission with
significant external field is called Schottky emission. In the 1960s, a new
generation of cathodes (mainly ZrO/W, which is a tungsten tip covered with a
thin layer of ZrO) were developed with stronger field at the surface, where field
emission plays a significant role and complements Schottky emission. This
regime is called the extended Schottky emission. This kind of emitters
are the main sources of electrons for electron microscopes. The emitters that
produce electrons through only the field emission process, called cold field
emission gun (CFEG), have been studied since the 1970s, and recently
have been able to produce high brightness beams.

The third process to produce electrons is photoemission where electrons
are produced via the photo effect. Exposing a surface to a large flux of
photons leads to some of the photons being absorbed by electrons within the
material, which consequently increase their kinetic energy. This additional
kinetic energy acts very similar to intense local heating in the thermionic gun
and leads to electrons with energies exceeding the work function and which
can consequentially escape. In certain cases photo-energized electrons can also
leave the material directly without colliding with other electrons, in a ballistic
process. In practice, photons are supplied through laser pulses, of which the
intensity, spot size and duration are relatively easy to adjust. This leads to
the photocathode gun. This approach has greatly facilitated the advance
of free electron lasers (FELs) in the last few decades and is an important
component in efforts of time-resolved spectroscopy and microscopy.

Again the extracted current is limited by the Child-Langmuir law (1.8),
despite the fact that an intense laser pulse can often produce large numbers of
electrons. Different classes of materials have been developed for the cathode,
including GaAs that has been cesiated, i.e., covered by less than a mono-layer
of cesium. This has allowed the production of electrons with energy spreads
down to fractions of 10−1 eV, which is the range of thermodynamic energies
encountered at room temperature.

Other materials such as copper are able to withstanding the harsh environ-
ment of a radio frequency (RF) gun, where very high extraction fields can
be produced that significantly exceed those of the electrostatic case. Fig. 1.4
shows the layout of an RF gun and the field distribution. It consists of roughly
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FIGURE 1.4: Layout (left) and field distribution (right) of the RF gun at
the Linac Coherent Light Source (LCLS). (From J. Arthur, et al., SLAC-R-
593, 2002 [2]. Courtesy SLAC National Accelerator Laboratory.)

1.5 cells (1.6 for this example) with the field in the two cells in opposite phase
to ensure that electrons emitted into high extracting field end up with high
energy and low emittance at the exit. In addition, materials such as cesiated
GaAs with strained lattice can also produce polarized electrons, which has
been used at SLAC National Accelerator Laboratory, California, USA, for
high energy physics experiments on the one hand and in spin polarized low
energy electron microscope (LEEM) on the other.

1.2.2 Proton Sources

In most proton accelerators, the protons are produced through stripping
the two electrons in a negative hydrogen ion H− at the entrance, mostly by
passing the ion through a thin carbon foil, although lasers have also been ex-
perimented with recently. In some applications, such as medical accelerators,
H+

2 ions instead are produced and accelerated.
Although the stripping process makes the technology a little more com-

plicated, it has one distinct advantage over injecting protons directly. For
injection into circular accelerators over many turns, the protons generated
through stripping can easily be aligned with earlier produced protons already
in the accelerator, because before stripping, both types of particles follow dif-
ferent paths due to the differing charge. As a result, the density of protons in
the beam can increase more and more over an extended injection period. On
the other hand, protons injected directly require much more care and can only
be injected with positions and directions that are different from those of other
protons already in the ring, since because of time reversal, all protons with the
same position and direction must have followed the same earlier trajectory.

The H− ions can be produced by a variety of different methods. Here, only
the surface plasma source of the magnetron type is discussed. It obtained
its name due to the fact that it is similar in configuration to the ubiquitous
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FIGURE 1.5: Drawing of a surface plasma source of the magnetron geome-
try. (From J. Ishikawa, Negative ion sources, in I. G. Brown, ed., The Physics
and Technology of Ion Sources, 2nd ed. [31]. Copyright (c) 2005 Wiley-VCH.
With permission.)

microwave source called the magnetron, which is used in common appliances
such as the microwave oven. The main process of producing the negative
hydrogen ions is through electron capture of neutral hydrogen atoms on the
cathode surface, where electrons penetrate the potential barrier through quan-
tum tunneling. The presence of the electric and magnetic field creates a dense
plasma near the surface of the cathode where ions, most of which are positive,
are produced. Those positive ions and neutral particles bombard the cathode
partially covered with cesium and H− ions are produced. The presence of ce-
sium lowers the work function and greatly increases the probability of barrier
penetration and hence H− production.

Some of the produced H− ions are neutralized shortly after production.
An electric field between the cathode and the anode is used to accelerate
the remaining H− ions towards the exit. However, electrons are accelerated
towards the anode as well. But since electrons are much lighter than the H−

ions, they are bent much more easily than the H− ions, and are absorbed by
the electron collector (Fig. 1.5).

The magnetron type of negative hydrogen ion source was first developed
in the former Soviet Union in the early 1970s and quickly spread to Europe
and the United States. It has become the main choice for high energy proton
accelerators.

1.2.3 Ion Sources

There are a large variety of different sources for ions which found applica-
tions in many fields. Presenting even a brief overview is already beyond the
scope of this book; for more comprehensive reviews, see [77, 8]. As in the
previous subsection, we limit our discussion to one important kind, which is
the electron cyclotron resonance (ECR) ion source. Fig. 1.6 shows the
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mechanism schematically. The chamber on the left holds the plasma where
ions are produced. First, the gas of the element of interest is injected to
the chamber. Collisions among the atom generates electrons and ions. The
magnetic field (see top part of Fig. 1.6) forms a magnetic mirror that con-
fines the ions and the electrons. For the example shown, this time is around
100 μs, and for more modern and advance versions for around 10 ms. High
frequency (2.45 to 28 GHz) microwaves are injected into the chamber and
electrons with rotation frequency matching that of the microwaves are accel-
erated to between 1 and 20 keV. This process of heating up the electron gas is
called electron cyclotron resonance heating. The resulting hot electrons
collide with ions and neutral atoms and generate more ions. Furthermore,
through step-by-step ionization, even multiply charged ions (e.g., Xe38+) can
be produced.

In order to produce sufficient quantities of multiply charged ions, the ion
confinement has to relatively long (∼ 10 ms). The major improvement in this
aspect is the addition of a sextupole magnet, which ensures that the magnetic
field at the center of the chamber is at the minimum, which prevents the ions
from drifting to the side wall. Another consequence of this configuration of
the magnetic field is that the surface on which electron cyclotron resonance
heating takes place is now closed, which significantly reduces hot electron
loss. This configuration of the magnetic field also makes ion production more
efficient, since electrons are confined longer and can collide with ions and
be reheated many times. The fact that the ECR ion source does not use a
cathode to generate electrons makes it a much more reliable source compared
to other varieties.

The ECR ion source was first developed in the mid-1960s and, by the mid-
1970s, many had been built around the world. It is probably the best source to
produce multiply charged ions and has become the main choice of ion sources
for nuclear physics facilities.

1.3 Acceleration of Beams

We now assume that an ensemble of particles occupying a small volume of
phase space has been created, and we thus have what is called a beam. In
many if not most of the practical cases, the energy that the beam has after
being produced by the source is not sufficient for the purpose it is to be used
for, which frequently amounts to furnishing the energy necessary for atomic,
nuclear, or particle processes of interest.

In most cases, the motion is best studied by first considering the motion
of the reference particle, and once this motion is understood satisfactorily,
to study the relative motion of the other particles. For a simple analysis
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FIGURE 1.6: Layout of the first electron cyclotron resonance (ECR) ion
source that produced multiple charged ions. (Reprinted with permission from
R. Geller, Appl. Phys. Lett., 16:401, 1970 [28]. Copyright 1970, AIP Publish-
ing LLC.)

of the relative motion, often a linear approximation with all the resulting
simplifications is possible, but frequently a full understanding of the motion
can only be achieved by considering the nonlinear effects.

Considering the special shape of the Lorentz force law (see eq. (1.1)),

since �v × �B is perpendicular to the velocity �v, it is apparent that magnetic
fields cannot be used for purposes of acceleration, which requires forces in
the direction of the particle. Thus any acceleration has to be provided by
electric fields. However, as we shall see, also magnetic fields have very good
use in particle accelerators, as they can be employed to guide the beam to
where it is needed. In particular, in the process of acceleration they are often
used to guide the beam through the same region of electric field repeatedly
and thus allow the device to maximize the use of the electric fields. Indeed,
for this purpose of guiding the beam, magnetic fields are usually even better
suited than electric fields. This is because for the high velocities that beams
usually have after even modest acceleration, the forces that can be attained
with technologically available magnetic fields far exceed those that can be
achieved with the respective electric fields.

Very generally, the amount of energy K a particle gains while traveling
from time t1 to time t2 in an electric field �E(�r, t) that depends on position
and time is given by the path integral

K = q ·
∫ t2

t1

�E(�r(t), t) · �v(t) dt,
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FIGURE 1.7: The general principle of the Cockcroft-Walton generator.
(From J. D. Cockcroft and E. T. S. Walton, Proc. Royal Soc. London, A,
136:619, 1932 [14]. With permission.)

where �r(t) is the particle’s position as a function of time and �v(t) its velocity.

In the special case that �E is time independent and hence can be written
in terms of a potential via �E = −�∇V, this path integral reduces in a natural
way to the difference in potential as

K = q · (V (�r1)− V (�r2)) .

This simple fact implies a very important consequence for the design of electric
accelerating fields: if there is to be any chance to utilize the same electric field
repeatedly for the purpose of acceleration, then the electric field has to
be time dependent, because otherwise repeated passing just results in a
periodic increase and decrease of energy. In fact, the attempt to build an
accelerator trying to increase energy repeatedly by flying through the same
time independent field is tantamount to the attempt to build a perpetual
motion machine.

1.3.1 Electrostatic Accelerators

The first class of important accelerators are those based on static electric
fields. The kind that grew directly out of the area of electric circuit is the
voltage multiplier that is now known under the name Cockcroft-Walton
generator. It consists of a simple but clever circuit made of diodes and ca-
pacitors, forming the voltage multiplier ladder. Each time a base voltage is
applied, the first capacitor is filled with charge. Each time the voltage is re-
moved, the first capacitor passes on some of its charge to the second capacitor,
which in turn feeds the third capacitor, and so on. Depending on the number
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FIGURE 1.8: Design sketch of the Van de Graaff high voltage generator.
(From R. J. Van de Graaff, US Patent 1,991,236, 1931 [18].)

of capacitors and the number of cycles applied, quite high voltages can be
obtained very easily.

For small applications it is possible to simply apply alternating current
(AC) at the feeding end. For larger applications it may require a longer
time to transfer the charges from the lower to the higher capacitors, and
the change in input voltage is achieved through mechanical switches. Fig. 1.7
illustrates “the general principle underlying the method adopted,” and is from
the original paper on the matter [14]. Many high energy proton accelerators
use Cockcroft-Walton generators as the first stage of acceleration.

Another method to obtain high voltages for electrostatic accelerators is the
Van de Graaff accelerator [20] and several similar devices derived from it are
the main representatives of the class of accelerators utilizing time independent
fields. The voltage difference that the particles travel through is obtained with
a Van de Graaff generator, which consists of an endless non conducting
belt onto which charge is sprayed from a tip via field emission, and which is
then transported to the inside of a hollow metal sphere where it is deposited.

Since any charge on a conducting object accumulate on the outside and
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FIGURE 1.9: Design sketch of the use of the Van de Graaff generator as
a particle accelerator. (From R. J. Van de Graaff, US Patent 1,991,236, 1931
[18].)

create a field-free interior, a new charge can be brought in from the belt on
the inside of the sphere without experiencing any opposing fields, and thus
large amount of charges can be accumulated on the sphere, resulting in very
high potentials. The mechanism of the Van de Graaff generator is shown in
the left part of Fig. 1.8 and the complete machine is shown in Fig. 1.9. The
sketches are from the original patent on the device [18]; see also [20].

In passing it is worthwhile to remark that while the newly added charge
does not experience a field when moving from the belt to the inside of the
sphere, it certainly experiences a field while approaching the sphere and being
attached to the belt. Thus the potential energy contained on the charged
sphere does not come for free. It is generated through the mechanical work
that is necessary to move the belt and the attached charges toward the sphere.

The charged sphere is connected to a metal enclosure containing the ion
source, thus elevating the source to the potential of the charged sphere, which
can then be utilized for the acceleration of the particles.

The main practical limitation of the Van de Graaff accelerator is the ne-
cessity to prevent sparks. This is achieved on the one hand by sheer size,
because at the same potential difference, larger size means less electric field
strength. On the other hand, it is important to inhibit the spark forma-
tion process. Microscopically, sparks form in a gas when small numbers of
charged particles have a mean free path length that is long enough so they can
attain energies sufficient to ionize other particles upon collision, resulting in
an avalanche. This can be avoided by choosing inert gases like He (helium)
or SF6 (sulfur hexafluoride), and on the other hand applying high pressure to
reduce the mean free path length.



Beams and Beam Physics 15

FIGURE 1.10: The principle of the tandem Van de Graaff accelerator.
(Reprinted from Nucl. Instrum. Methods, v. 8, R. J. Van de Graaff, Tandem
electrostatic accelerators, p. 195–202, Copyright (1960), with permission from
Elsevier [19].)

The Van de Graaff accelerator has several desirable features; for example, it
can produce a fully continuous beam (often denoted by the term “cw” for con-
tinuous wave) and at high beam current. Its main limitation is the relatively
low energies that it can produce, which seldom exceed about 20 MeV.

The tandem Van de Graaff is an efficient modification of the Van de Graaff
concept, in which both the source and the target are kept at ground potential
and which can efficiently increase the energy that can be obtained. For
this purpose, a source is chosen that produces negatively charged ions, which
are then sent through a regular Van de Graaff. At the end of the accelerat-
ing section, the ions are sent through a thin foil, in which many of them are
stripped of some of their electrons, resulting in positive ions. Because the
particles already have substantial energy when hitting the foil, often much
higher charge states can be produced than in the ion source itself. These
positive ions are then sent through a second stage Van de Graaff, which is
essentially a reversion of the first stage. At the location of the target, depend-
ing on their charge state after stripping, their energy is increased by a factor
of two or more. The mechanism of the tandem Van de Graaff accelerator is
shown in Fig. 1.10. Having very similar characteristics to the original Van de
Graaff, the energies that can be achieved in this way are in the range of up
to 60 MeV.

1.3.2 Linear Accelerators

It is an important observation that the field strength that can be obtained
in quickly oscillating (radio frequency, RF) electric fields can be sub-
stantially higher than what can be obtained statically in devices of similar
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FIGURE 1.11: Sketch of the principle of the linear accelerator of the
Wideröe type. (From R. Wideröe, Über ein neues Prinzip zur Herstellung ho-
her Spannungen, Archiv für Elektrotechnik, 21:387, 1928, c© Springer-Verlag
Berlin Heidelberg 1928 [73]. Bild 1, “Prinzip der Spannungstransformation
mit Potentialfeldern.” With kind permission from Springer Science and Busi-
ness Media.)

size. This is mostly due to reduced presence of spark formation, because the
formation of an avalanche of charged particles requires time scales that are
usually larger than the time the field is in one phase.

The use of an oscillating field, however, immediately entails that only half
of the cycle can be used for acceleration, and thus is different from static ac-
celerators, as the resulting beams always have a temporal micro-structure,
also called bunched. In practical use, usually several RF resonators are used
sequentially, each one of which accelerating the particles, and it is very impor-
tant that the phase relationship between the individual accelerating sections
is correct. This is usually achieved by applying the fields between the edges
of adjacent conducting tubes. This kind of device is called the linear accel-
erator or linac.

The concept of the earliest linacs is schematically shown in Figs. 1.11 and
1.12. From the wiring scheme, it is clear that the electric field in adjacent
gaps points to opposite directions. In order to ensure that charged particles
are accelerated in every gap, the lengths of the tubes are chosen in such a
way that the time the particles require to fly through them equals one half of
the RF period. So the length Li of the ith tube has to be chosen so that it
satisfies

Li =
1

2
viTrf,

where Trf is the period of the RF frequency. Apparently this leads to a system
of tubes of increasing length, i.e., L1 < L2 < L3 < . . . . The exact lengths
Li, of course, depend on the relationship between the kinds of particles and
the values of the accelerating voltages, and so often these designs are rather
customized geometries. Since metal wires are used to connect the tubes, the
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FIGURE 1.12: Illustration of a linear accelerator, designed by E. O.
Lawrence and H. D. Sloan. (Reprinted the middle picture of Fig. 1 with
permission from [64] as follows: D. H. Sloan and E. O. Lawrence, Phys. Rev.,
38, 2021, 1931. Copyright (1931) by the American Physical Society.)

frequency of the oscillating field is limited to below 100 MHz due to increased
radiation at high frequency. This in turn imposes an upper limit on the
velocity of the particles (β = v/c < 0.03) due to practical limit of the length
of the tubes. Meanwhile, use of wires at low frequency can significantly reduce
the size of the accelerating structure compared to a closed structure, called
RF cavity.

Another type of linac, called the Alvarez linac, developed in the late 1940s
is shown in Fig. 1.13. It uses closed structures, the RF cavities, to increase the
oscillating frequency and reduce the length of the tubes. Another difference
is that the field in adjacent gaps points to the same direction. As a result,
the length Li of the ith tube has to be chosen so that it satisfies

Li = viTrf.

Apparently, the frequency has to be at least twice of the Wideröe type to
reduce the tube length. In practice, the frequency of the Alvarez linac is
roughly an order of magnitude higher than that of the Wideröe type.

Fig. 1.13 is remarkably informative of the physics of the accelerator. The
following sentences are excerpts from the original US patent [1]. The left top
picture is “a diagram showing a normal cylindrical wave guide and the axial
electric field distribution therein.” The left bottom picture is “a diagram
showing a wave guide and the electric fields when a series of graded drift
tubes are placed therein.” The right top picture is “a diagram representing
the voltage existing across the gaps of the drift tubes.” The left picture of
the right bottom corner is “a diagrammatic longitudinal sectional view of
drift tube ends with the electric field distribution existing across the gap.”
The right picture of the right bottom corner is “a diagrammatic longitudinal
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FIGURE 1.13: Sketches illustrating the basic principles of the linear ac-
celerator of the Alvarez type. (From L. W. Alvarez, US Patent 2,545,595,
1947 [1].)

FIGURE 1.14: The structure of the RFQ, the radio-frequency quadrupole
linear accelerator. The picture shows an early example at Los Alamos Na-
tional Laboratory, New Mexico, USA. (From K. R. Crandall, et. al., in R. L.
Witkover, ed., Proc. 1979 Linac Conf., BNL-51134, 1979 [17]. Courtesy
Brookhaven National Laboratory.)

section view of drift tube ends with a focusing foil attached to one tube, and
the resulting electric field distribution.” For details regarding phase stability
(the right top picture), see Section 10.2. For details regarding transverse
focusing and defocusing, see Section 10.4.

An interesting combination of the need for bunching, accelerating and
focusing (which is discussed later in detail) is the radio frequency quadrupole
(RFQ) accelerator. Developed in the late 1960s in the former Soviet Union,
RFQs have been widely adopted as injectors for proton and ion accelerators.
Fig. 1.14 shows the structure of a RFQ accelerator. The four vanes break
the rotational symmetry and produce an electrostatic quadrupole field that
oscillates with time. The traveling particles feel the quadrupole field that
changes polarity with time and are focused in both transverse planes. The
longitudinal electric field that accelerates the charged particles is produced
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through modulation of the vanes. Similar to the drift tubes, the particles are
accelerated throughout the structure when the distance between the peak and
the neighboring valley satisfies

Li =
1

2
viTrf.

In general, linacs can provide beams of high current, and of higher en-
ergies than static accelerators, yet because of the single use of each electric
field, they are still rather expensive per MeV. Linacs are frequently used as
pre-accelerators for accelerators of higher energies. They also have the dis-
tinctive advantage that they avoid synchrotron radiation, which is often
a limiting factor in circular accelerators for light particles. This aspect is
very important for electron and positron high energy accelerators such as the
Stanford Linear Collider (SLC) at SLAC National Accelerator Laboratory,
California, USA. It is the main reason for the interest in next generation
Linear Colliders, such as plans being considered for an International Linear
Collider (ILC), where a pair of two linacs shoot electrons and positrons at
each other at very high energy.

Recently, linear accelerators have been widely used in producing a free
electron laser (FEL), whose high peak brightness and short pulse duration
has opened up unprecedented opportunities for scientific investigations. Fig.
1.15 shows the setup of the first FEL experiment. Electrons go through a
magnetic device called the undulator, which consists of alternating magnetic
poles. As a result, the trajectory of such an electron is very similar to a sine
function, causing the emitted photon field to add coherently. Together with
the large number of periods, the peak intensity of the X-ray can be orders
of magnitude higher than that from a circular accelerator (see the following
subsection). The advantage of a linac is that it can produce an electron beam
with smaller emittance and shorter pulse duration.

1.3.3 Circular Accelerators

Arguably the simplest circular accelerator is the betatron, which, besides
its practical use as a compact accelerator for lower energies, also represents
an excellent textbook style application of principles of electrodynamics. In
the case of the betatron, the orbit follows a circular shape, which is achieved
by a magnetic field. If the motion is perpendicular to the magnetic field, then
we have in SI units

mv2

ρ
= qvB, and so ρ =

mv

qB
=

p

qB
,

and so the radius of motion depends only on the momentum and charge of
the particle as well as the magnetic field. Note that the equation is correct
even in the relativistic case, if m is understood to mean the relativistic mass
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FIGURE 1.15: Sketch of the first Free Electron Laser (FEL). (Reprinted
with permission from J. M. J. Madey, J. Appl. Phys., 42:1906, 1971 [47].
Copyright 1971, AIP Publishing LLC.)

m = γ ·m0. Commonly the ratio of momentum and charge p/q is denoted by
χm and called magnetic rigidity; we apparently have

χm =
p

q
= Bρ.

Because χm = Bρ, the magnetic rigidity has the unit Tesla meter (Tm), and
is frequently simply referred to as B rho.

In the case of the betatron, both bending and acceleration come from the
same source, namely a magnetic field the strength of which increases with
time in such a way that its magnitude matches the increasing energy of the
particles to keep them at nearly constant radius, and the circular induced
electric field provides the acceleration for the particles. Fig. 1.16 shows a
sketch of the betatron [37, 38].

It is worthwhile to note that the basic idea of utilizing an electric field
produced by a changing magnetic field also occurs in an application from
daily life: certain modern cooking surfaces. In this case, the electrons that
are accelerated are not within the vacuum of a beam pipe, but merely in the
metal that constitutes the bottom of the pot used for cooking; and of course
since their mean free path is short, they do not attain high energies before
colliding with either other electrons or the lattice atoms, thus transferring
their whole kinetic energy to heat.

A quantitative understanding begins with Faraday’s law of induction, now
one of Maxwell’s equations:

�∇× �E = −∂ �B

∂t
,
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FIGURE 1.16: Illustration of the magnet of a betatron, from the original
first paper on the subject. (Reprinted Fig. 2 with permission from [37] as
follows: D. W. Kerst, Phys. Rev., 60, 47, 1941. Copyright (1941) by the
American Physical Society.)

and its integral form over a surface A with the bounding C is∮
C

�E · d�l = −
∫
A

∂ �B

∂t
· �ndS.

Using the flux of the magnetic field through the surface Φ =
∫
A
�B · �ndS,∮

C

�E · d�l = −dΦ

dt
.

Here we restrict our interest to circular orbits with a radius r, and the sur-
face A is the inside of the circle. Building the magnet rotationally symmetric
entails a rotational symmetry of the fields, which simplifies the situation to

El = − 1

2πr

dΦ

dt
= − 1

2πr
πr2

dB̄

dt
= − r

2

dB̄

dt
,

where B̄ is the average magnetic field enclosed by the orbit. Thus, by denoting
the strength of El simply by E,

E =
r

2

d|B̄|
dt

,

and below we denote |B̄| by B̄ for simplicity. Thus we obtain for the momen-
tum p = mv

d

dt
(mv) = qE = q

r

2

dB̄

dt
⇒ mv = qr

B̄

2
.

On the other hand, it is necessary that the centrifugal force on the orbit with
radius r is compensated by the Lorentz force at that radius, which requires

mv2

r
= qvB (r) ⇒ mv = qrB (r) .
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Thus, altogether we obtain the following relationship between the field B(r)
at the orbit r and the average field:

B (r) =
B̄

2
.

This equation of central importance is often called the betatron condition.
It requires a magnetic field that is stronger in the center than where the
particles move, which can be achieved by suitably shaping the poles of the
magnet.

In principle the temporal behavior of B̄ is irrelevant, and in practice one
usually tries to ramp it quickly, because the pulsed beam is only available
at the end of ramping. This is usually achieved by making the magnet part of
an LC circuit (a resonant circuit, consisting of an inductor L and a capacitor
C), which also conveniently allows the device to recover the energy stored in
the magnetic field for the next ramping. For the practical use, it is important
to try to limit Eddy currents in the iron of the magnets, and in order to
maintain the condition B (r) = B̄/2, it is important to control saturation
effects that may occur at any edges of the magnet.

The transverse confinement of the beam in the betatron is achieved through
the inhomogeneity of the outer field, through effects that will be studied in
subsequent chapters. The practical use of betatrons is nowadays mostly for
electrons, where energies of about 300 MeV have been achieved; for protons,
the values are about 50 MeV.

Also in the microtron, which was invented by V. Veksler [69], a magnet
is used to bend the particles to let them pass through the same source of
electric field repeatedly. Different from the betatron, the emphasis here lies
on the production of a continuous beam. Since this requires that the whole
acceleration process must be independent of the specific time of injection,
this entails that the magnetic field is constant in time. Thus an external
voltage source is needed; as discussed above, if it is to be used repeatedly,
it has to be a time dependent source, and in practice it is chosen to be an
RF (radio frequency) cavity. Altogether, the motion follows a sequence of
tangential circles of increasing radius that touch at the location of the RF
cavity, as shown in Fig. 1.17.

In order to synchronize the particle’s motion and the momentary direction
of the magnetic field, the revolution frequency of the RF cavity ω0 has to be
a multiple of the particle’s revolution frequency ω, which can be obtained
simply from

γm0v
2

r
= qvB ⇒ ω =

v

r
=

q

γm0
B. (1.9)

This means it has to be either the motion is such that γ = 1, which corresponds
to non-relativistic motion and hence severely limits the energy, or just enough
acceleration is provided in each turn that the revolution frequency decreases
to the next multiple of the RF frequency. So the revolution frequencies would
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FIGURE 1.17: Illustration of the first microtron. (From S. P. Kapitza,
The Microtron, Harwood Academic, London, 1978 [35]. Fig. 1.9, p. 14. With
permission: c© Taylor & Francis.)

follow the pattern

ω = ω0,
ω0

2
,
ω0

3
,
ω0

4
,
ω0

5
, . . . . (1.10)

This entails that the factor γ follows the sequence γ = γ0, 2γ0, 3γ0, 4γ0, . . . ,
which requires Δγ = 1 per turn. Since E = mc2 = γm0c

2, this means
ΔE = m0c

2, and thus the necessary energy gain per turn must equal the rest
mass energy of the particle under consideration. For electrons, this means
ΔE = 511 keV and is thus possible; for protons, ΔE = 938 MeV and this is
not easily possible within the confines of a conventional magnet.

A very important further development of the concept of a microtron is
based on the fact that if the orbits of the particles are far enough separated
so that one can apply different magnetic fields for each orbit and can even
change the shape of the orbit away from circular, then by careful choice of the
orbit lengths, it is possible to maintain the synchronicity condition (1.10)
while maintaining the freedom to have any amount of acceleration that is
convenient. This is the basic idea behind CEBAF, the Continuous Electron
Beam Accelerating Facility, at Thomas Jefferson National Accelerator Facility
(TJNAF, Jefferson Lab, JLab), Newport News, Virginia, USA.
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FIGURE 1.18: The principle of the cyclotron, with top view on the left
and side view on the right. (From E. O. Lawrence, US Patent 1,948,384, 1932
[40].)

The basic idea of the cyclotron is similar to that of the microtron, except
that the RF cavity is used more efficiently by providing acceleration twice or
even more times per turn, and the orbits roughly follow concentric circles.
The concept of the cyclotron is shown schematically in Fig. 1.18 [40].

According to eq. (1.9), the revolution frequency is

ω =
q

γm0
B, (1.11)

and the momentary radius of the orbit is

r =
p

qB
. (1.12)

This entails very similar restrictions regarding relativistic effects as in the case
of the microtron; as before, any deviation from constancy of the magnetic
field prevents continuous injection of the beam and hence leads to a non-
continuous outgoing beam. But because the orbits are nearly concentric, it is
possible to at least partly compensate the relativistic effects by increasing
B radially in such a way that the revolution frequency in eq. (1.11) stays
constant. This kind of cyclotrons is called the isochronous cyclotron. If it
is necessary to accelerate different particles in the same machine, then that
entails that the actual field profile has to be adjustable, which is usually
achieved by having one or several trim coils. The superconducting K1200
cyclotron at the National Superconducting Cyclotron Laboratory (NSCL) at
Michigan State University, Michigan, USA, allows for such corrections of the
profile of the magnetic field.
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FIGURE 1.19: The first model of an FFAG, the Fixed-Field Alternating
Gradient accelerator. (From L. W. Jones and K. M. Terwilliger, in E. Regen-
streif, ed., Proc. CERN Symp. High Energy Accelerators and Pion Physics,
CERN 56-25, 1956 [34]. Courtesy CERN.)

If continuity of the beam is not of prime importance, it is possible to make
the necessary relativistic corrections due to eq. (1.11) via a decrease of the
RF frequency during the acceleration process, which is done in the case of the
synchrocyclotron. This decrease obviously has to happen very quickly over
the few hundred turns of the particles while staying within the accelerating
structure, and thus the pulse frequency can still be rather high.

A variant of the cyclotrons that were studied intensively in the 1950s was the
fixed-field alternating gradient (FFAG) accelerator. Fig. 1.19 shows the
drawing of the first of such an accelerator built. It combines the feature of the
fixed magnetic field as in a cyclotron and the idea of alternating gradient
focusing that became widely known in the early 1950s. Although FFAG did
not flourish as a high energy accelerator, it has generated renewed interest in
the past decade as a candidate to rapidly accelerate decaying particles such
as muons and ion beams with large emittance and momentum spread.

For any accelerator, the ultimate energy limitation comes from the
strength of the magnetic field that is available as the unavoidable restric-
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FIGURE 1.20: Sketch of the Bevatron, designed to achieve “Billions of eV
Synchrotron,” at Lawrence Berkeley National Laboratory, California, USA.
(From E. J. Lofgren, in E. Regenstreif, ed., Proc. CERN Symp. High Energy
Accelerators and Pion Physics, CERN 56-25, 1956 [46]. Courtesy CERN.)

tion
p

q
= Bρ = χm. (1.13)

The range of available magnetic fields is rather limited; typical numbers are
in the range of 1–2 T for normal conducting dipole magnets, and several
times more for superconducting dipole magnets. The superconducting dipole
magnets at the Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN), near Geneva, in Switzerland and France, op-
erate reliably at 8 T. (See Table 1.1.) Looking beyond the rather stringent
requirements for particle accelerators regarding field quality over extended
regions and temporal stability, as of 2013 the highest magnetic fields that
can be achieved are about 100 T. In fact, the National High Magnetic Field
Laboratory (NHMFL), having branches at Florida State University, Univer-
sity of Florida and Los Alamos National Laboratory (LANL), USA, reached
100.75 T at the Los Alamos branch in 2012. The Dresden High Magnetic
Field Laboratory (Hochfeld-Magnetlabor Dresden, HLD) at the Helmholtz-
Zentrum Dresden-Rossendorf, Germany, reached 91.4 T in 2011, a record at
the time, and 94.2 T in 2012.

So for practical purposes, the only way to achieve high energies is to increase
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FIGURE 1.21: Layout of the Cooler Synchrotron (COSY) ring at the Insti-
tute of Nuclear Physics (IKP) at Forschungszentrum Jülich, Germany. (Cour-
tesy Forschungszentrum Jülich GmbH.)

the deflection radius ρ. This represents a significant practical limitation to
continuous beam accelerators, in which B must be time independent and
the size of the orbits increases in the acceleration process, since any region in
which the beam may come has to be covered by magnetic fields. So for really
high energies, the only realistic option is to have the particles follow the
same orbit all the time by ramping the magnetic field during acceleration,
and thus confine the region that has to be covered by the magnetic field.

Of course this ongoing adjustment of the magnetic field during the accel-
eration process according to eq. (1.13) to maintain constancy of ρ prevents
continuous injection and hence continuous beams. Furthermore, since electric
field strengths are comparatively more limited, the fields of the cavities have
to be re-utilized many thousands of times, resulting in a rather stretched-out
acceleration process, and thus a rather low repetition rate of beam pulses.

All these thoughts lead to the concept of the synchrotron, in which the
magnetic field strength is synchronized with the momentary energy or mo-
mentum of the particle so as to maintain a constant location of the reference
orbit. The first generation of synchrotrons uses inhomogeneous dipole magnet
to bend and confine the beam transversely, which is essentially the same as in
a betatron. The only difference is that the acceleration is achieved through
RF cavities. Fig. 1.20 shows an example of such a machine. The main limit of
this kind of synchrotron is that the transverse focusing force from the gradi-
ent magnet is very weak, resulting in large beam pipes and magnets. For this
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FIGURE 1.22: Layout of the Super-ACO light source storage ring at Labo-
ratoire pour l’Utilisation du Rayonnement Electromagnétique, Orsay, France.
(From M. P. Level, et. al., in Proc. PAC 1987, OSTI ID: 5125784, CONF-
870302-Vol.1, 470, 1987 [44].)

TABLE 1.1: Examples of hadron synchrotrons

Name Size (ρ) Energy (E) Particles
RHIC 500 m 250 GeV polarized p; ions
Tevatron 1 km 1 TeV p, p̄
LHC 5 km 7 TeV p; ions (2.8 TeV/n for Pb)

reason, they are called weak focusing synchrotrons. Alternating gradient
focusing offered orders of magnitude stronger focusing, much smaller beam
size and much smaller magnets. Since the mid-1950s, alternating gradient
synchrotron, also called strong focusing synchrotron, has replaced the
weak focusing synchrotrons. Nowadays, almost all high energy accelerators
are strong focusing synchrotrons. Fig. 1.21 shows one example, which is the
layout of COSY, the COoler SYnchrotron at Forschungszentrum Jülich [3].

Table 1.1 shows characteristic features of some of hadron synchrotrons.
Shown are the Relativistic Heavy Ion Collider (RHIC), at Brookhaven Na-
tional Laboratory (BNL), Upton, New York, USA, the Tevatron (1987–2011)
hosted at Fermi National Accelerator Laboratory (Fermilab, FNAL), Illinois,
USA, and the LHC with their approximate dimensions, the maximum ener-
gies (per nucleon for ions) for which they are designed, and particles to be
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FIGURE 1.23: Layout of the Advanced Light Source (ALS) at Lawrence
Berkeley National Laboratory, California, USA. (From Document Control
Center of Lawrence Berkeley National Laboratory, Print number: 22Q2593,
1989. Courtesy Lawrence Berkeley National Laboratory.)

accelerated.
The storage ring is not an accelerator in the traditional sense, since it

holds the energy of the stored beam constant; however, it does not necessarily
mean that RF cavities are not needed. In fact, due to synchrotron radiation,
all the electron and the high energy proton storage rings use RF cavities to
maintain the energy of the beam. Naturally, a synchrotron often can play the
role of a storage ring as well.

The time that the particles stay in the storage rings ranges from minutes
to days. In the case of the Tevatron, where the circumference is 6.28 km, the
time for one operation while having collisions for high energy experiments is
about 8 hours, which is 28800 sec. So the particles circulate through the ring

n =
3× 108m/ sec ·28800 sec

6.28× 103m
≈ 109 turns.

As a comparison, the operation duration without collision is more than 100
hours at the Tevatron. The LHC has similar numbers. Thus, even more so
than in the case of the synchrotron, one of the main design problems and
physically perhaps the greatest challenge is to try to ensure that particles
actually stay contained over this large number of turns. Because the motion
is nonlinear, this immediately leads to questions of nonlinear dynamics with
all their complicated and interesting aspects.

One of the applications of storage rings is the collider, where counter
rotating beams are brought to collision at various points around the ring. At
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very high energies, colliders have a significant energy advantage over fixed
target machines because a very large fraction of the beams’ energies can be
converted to reaction energy. As a detailed study of the relativistic dynamics
shows, this is not at all the case for fixed target cases; in fact, conservation
of energy and momentum severely limits the energy that can be set free.
Large scaled circular colliders are those listed in Table 1.1, and the tunnel
with circumference 27 km, hosting the LHC currently, was earlier used for
the Large Electron-Positron Collider (LEP) (e+, e−; ∼ 100 GeV, 1989–2000).
Besides the energy advantage, storage rings also have the disadvantage of the
slow ramping times typical for synchrotrons; however, once the beam is stored,
it is essentially continuous again.

But also for situations that require the beam to hit a fixed target, storage
rings often offer an advantage over the use of synchrotrons by themselves,
because it is often possible to extract the beam much more slowly than in the
case of the synchrotron, resulting in a more easily manageable duty cycle and
reducing the problem of overflowing the electronics in the detectors. In this
method of ultra-slow extraction, the nonlinear dynamics of the device is
adjusted very carefully and gently, as over time a larger and larger part of the
originally stored emittance becomes unstable. If it is possible to control the
location around the ring where the spilling occurs, then the spilled particles
can be directed toward the fixed target as needed. One storage ring where
this approach is utilized is COSY, the cooler synchrotron and storage ring, at
Forschungszentrum Jülich, Germany, shown in Fig. 1.21.

Another application of the storage ring that has become one of the most
productive tools for scientific research is the synchrotron light source.
Although not as majestic as the giant high energy colliders, there are many
synchrotron light sources throughout the world, and each facility hosts many
users from almost all disciplines of the sciences. In the light source, the probe
for the experiments is the light (from far infrared to hard X-ray) radiated
by the electrons when the orbits are bent in the ring, which is generated
through the process of synchrotron radiation. Figs. 1.22 [44] and 1.23
[42] show a couple of synchrotron light sources. As the electron mass is so
small, in principle, any bending magnet can be used to produce light due
to synchrotron radiation. But in addition, in the straight sections of a light
source ring, often wigglers and undulators, which consist of alternating
short bending magnets, are placed to produce more intense and coherent light.
In such a way, each light source ring can hold tens of light beamlines, much
more than the number of interacting locations that a high energy physics or
nuclear physics collider can have for the collider experiments.



Chapter 2

Linear Beam Optics

In the discussion of the basic physical principles of the various types of ac-
celerators, we casually neglected the fact that it is necessary to take care of
more than one particle. In fact, all the above accelerators have to be able
to simultaneously deal with an ensemble of particles with similar phase space
coordinates, which is what the sources deliver, and hence with a beam. As
outlined above, a detailed understanding of the motion of the beam requires
the study of the motion of the reference particle as well as the motion of
the relative coordinates.

In the case of accelerators, our demands on the relative motion are mostly
that the beam does not become unreasonably large, and hence that the motion
is somehow bounded within a suitable volume of phase space. While this
appears to be a modest wish for long single pass accelerators, and more so for
repetitive systems, this problem actually turns out to be rather nontrivial.

For other types of systems, more specific requirements have to be made for
the beam. For example, to maximize the number of collisions at an inter-
action region of a collider, it is important to “squeeze” together the spatial
coordinates of the beam, which under conservation of phase space volume
then requires the momentum coordinates becoming large. Devices like parti-
cle spectrographs or electron microscopes have different and often even more
involved requirements.

In all of these cases, it is important to study the relative motion carefully.
As a first step, the motion is linearized, and for higher precision, the nonlinear
effects of the motion have to be studied. Because the volume in phase space
occupied by a beam is small, these nonlinear effects are often treated in a
perturbative way, in which the first order corresponds to linear motion,
and nonlinear motion appears as higher order (see Table 2.1).

TABLE 2.1: Classification of effect

zeroth order motion of reference particle
first order linear motion
second+higher orders nonlinear motion
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FIGURE 2.1: Reference orbit, arc length s along it and local coordinates.

2.1 Coordinates and Maps

Usually when studying dynamics, the time t plays the role of the indepen-
dent variable, and we study the motion of positions �x and velocities �v or mo-
menta �p as coordinates. Using the Lagrange mechanism, it is easy to transfer
to new coordinates, in particular the coordinates that describe the relative
dynamics around the reference orbit. Furthermore, instead of using t, we
usually use the arc length s along the reference orbit as an independent
variable. Fig. 2.1 illustrates the concept.

For the understanding of the motion in relative coordinates, let us assume
we have studied and understood the motion of the reference orbit. In case
there is no field at all, this reference orbit will merely follow a straight line.
Furthermore, there are many devices used in accelerators that have fields, but
along one given straight line, all the fields vanish, and the device is lined up
in such a way that the reference particle follows this line. Another important
device uses magnetic fields, and along the reference orbit one tries to hold
the magnetic fields constant, in which case the reference orbit is circular, at
least within the element. In all other cases, it is usually necessary to describe
the reference orbit by numerically integrating the equations of motion.

We assume the position and momenta of the reference particle �rref(s), �pref(s)
are known. Here the momentum �p is the dynamical momentum as in eq.
(1.4). As a technical detail, let us also assume that for all points s, we have
�pref(s) ∦ �ezLab, i.e., the motion is never pointing vertically straight (which
for most real accelerators is no limitation whatsoever). Let furthermore rtube
be smaller than the minimum radius of curvature that the reference orbit
experiences in the section of the device that we want to study. We now
consider a “flexible tube” of radius rtube centered around the reference orbit,
and restrict the particles that we want to describe to only those within the
tube, as Fig. 2.2 illustrates the situation. Again, for practical devices this
represents hardly a limitation; for example, in the LHC (see Table 1.1), the
“tube” would be more than 2 km wide, much larger than the region required
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FIGURE 2.2: Motion of particles inside the tube with radius rtube around
the reference orbit.

by the beam particles.
For any particle within the tube, there is now a closest point on the

reference orbit; because only particles within the tube are allowed, this point
is indeed unique. Let s be the arc length at this point, and �rref(s) the position
of the reference particle on the reference orbit. Then the relative coordinates
of the point �r are obviously �r − �rref(s).

Let now �es be a unit vector in the direction of �pref. Consider now the plane
perpendicular to �es. Of all the unit vectors in this plane, let �ey be the one with
the largest vertically upward component; because in our setup �pref and hence
�es are not allowed to go vertically straight, this vector is well defined. Finally
choose a third vector �ex as �ex = �ey×�es. Because �ey has a maximum vertically
upward component, �ex has a vanishing vertical component and hence lies in
the horizontal plane.

Denote now by “x” the component of �r− �rref(s) in the direction of �ex, and
by “y” the component of �r− �rref(s) in the direction of �ey. Similarly, define px
and py to be the momentum components of �p− �pref in the directions �ex and
�ey.

Using {x, px, y, py}, the motion in the transversal plane, defined by �ex and
�ey, can be described, and it is called the transversal dynamics. However,
considering how a beam is formed as we have seen in Chapter 1, we have to
consider that the energy of a particle E in the beam can be different from
that of the reference particle Eref, even if it is only slightly so. The energy
difference of the particles as well as the geometry of the orbits also results in
the difference of the travel time t of the particles, called the time-of-flight.
Thus, the energy and the time-of-flight have to be considered when studying
the motion of a beam, and it is called the longitudinal dynamics.

As we will see later, the transversal motion and the longitudinal motion are
in general coupled, except for special cases. Altogether, we will describe the
motion of the beam in six coordinates {x, px, y, py, E, t}. The actual choice of
coordinate quantities requires a careful consideration, as it eventually deter-
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mines how widely the resulting derivations are compatible with general con-
cepts in physics and mathematics. Below, the quantities with the subscript 0
are meant to indicate the reference particle.

Before launching the motion, we denote the energy deviation of a particular
particle of interest by δ by defining

δ =
K −K0

K0
,

where K is the initial kinetic energy of the particle under consideration while
K0 is that of the reference particle. Finally, we introduce a space-like variable
l

l = κ (t− t0)

being the deviation of the time-of-flight t from that of the reference particle,
multiplied by a constant κ that has the dimension of velocity. Specifically,

κ = −v0
γ0

1 + γ0
, (2.1)

using the absolute value of the velocity of the reference particle v0 and the
associated γ0, which can be expressed as

γ0 =
1√

1− �v20/c
2
=

√
(�p0c)2 + (mc2)2

mc2
=

E0

mc2
,

by referring to eq. (1.6). The specific form of κ, especially the fractional factor
involving γ0, is important for generating what turns out to be a canonical pair
of coordinates (l, δ); the details go beyond the scope of this book, and we refer
to [5] for details.

Then we form the vector �Z of particle optical coordinates as

�Z =

⎛⎜⎜⎜⎜⎜⎜⎝
x
a = px/p0
y
b = py/p0
l = κ (t− t0)
δ = (K −K0) /K0

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.2)

where p0 is some previously chosen scaling momentum; a natural choice is
to select the momentum of the reference particle at the beginning. Likewise,
K0 is a previously chosen scaling energy, for example the kinetic energy of
the reference particle, and similarly, κ is a scaling quantity introduced in eq.
(2.1).

Note that due to the definition of �Z, the reference particle itself corresponds
to �Z = �0, and hence the vector �Z does indeed describe the relative motion.
In a seemingly simple way, most of the problems of beam physics now revolve
around the question as to how �Z evolves as a function of s.
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In light of this, the entire action of a beam physics device can now be
expressed by how it manipulates the coordinates in �Z. In fact, usually a set of
initial conditions �Z0 at position s0 uniquely determines the future evolution
and hence �Z at any later position s. While a common notion, mathematically
this determinism of classical mechanics rests on some subtle assumptions
about the details of the fields that are allowed in the motion; but further
details are beyond this book.

Assuming that indeed �Z0 at s0 uniquely determines the future evolution,
we can define a function relating the initial conditions at s0 to the conditions
at s via

�Z (s) = M (s, s0)
(
�Z (s0)

)
.

The functionM(s0, s), which formally summarizes the entire action of the sys-
tem, is of great importance for the description and analysis of beam physics
systems. It is often called the transfer function, the transfer map, or
simply the map of the system. Note that the transfer maps satisfy the rela-
tionship

M (s2, s1) ◦M (s1, s0) = M (s2, s0) , (2.3)

which merely says that transfer maps of systems can be built up from the
transfer maps of the pieces.

Since M describes the motion in relative coordinates, we always have

M(�0) = �0.

Furthermore, since by the very definition of a beam, the coordinates of �Z are
“small,” M is usually only weakly nonlinear. Because of this, its deter-
mination and analysis is very amenable to perturbative techniques. The
first step in this process is to consider only the linearization M̂ of M, the
so-called linear map. Let N = M−M̂ be the remaining purely nonlinear
part, so that we have

M =M̂ +N .

The linear map M̂ is simultaneously the most important and the easiest to
study. The treatment of the nonlinear part N is much more complicated, and
only later in the book will we address a small part of the problems associated
with its treatment. More details can be found, for example, in [5].

In the following section, we will make a short excursion to a field that at
first glance appears disconnected from beam physics, namely the field of glass
optics. However, a closer look shows that glass optics, which has existed long
before the name beam physics was introduced, certainly belongs to this field:
the ensembles of light particles or rays typically associated with questions of
glass optics form a beam not only in the conventional meaning of the word,
but also under the more formal definition.
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2.2 Glass Optics

As one may recall from a basic course in optics, a distinction is made be-
tween so-called “Gaussian optics,” which indeed turns out to just mean
linear motion, and “aberrations” that describe nonlinear effects. Optics has
developed its very own jargons and techniques, some of which are connected
to complicated geometric ideas, and in our opinion it is historically unfortu-
nate that optics has not been treated with the methods of the transfer map.
We shall remedy this situation here by simultaneously providing a short intro-
duction on Gaussian optics in an appealing and unified way, and also develop
our skills in dealing with linear maps.

For simplicity, let us restrict ourselves to systems that are rotationally sym-
metric, like most glass optical systems; it will be quite clear as we go what has
to be done to treat non-rotationally symmetric systems. In this rotationally
symmetric case, two variables are enough to study the motion; we here choose
them as the position x and the slope a of a ray. The transfer map of an optical
system then expresses how (x, a) behave as they transfer a system, and we
have (

x2

a2

)
= M

(
x1

a1

)
.

In fact, if we restrict ourselves to linear motion, then this can be expressed in
terms of a transfer matrix

M̂ =

(
(x|x) (x|a)
(a|x) (a|a)

)
.

Note that the notation for the matrix elements is such that the quantity
before the vertical line “|” describes the row, and that after the vertical
line describes the column. We remind again that knowing matrices of pieces
allows the computation of matrices of more complicated systems, which is
here achieved by mere matrix multiplication. Indeed, if M̂1 through M̂n are
the matrices for the subsystems, then because of the associativity of matrix
multiplication, we obtain for the ray after the last subsystem:(

xn+1

an+1

)
= M̂n

(
· · ·
(
M̂1

(
x1

a1

))
· · ·
)

=
(
M̂n · · · M̂1

)(x1

a1

)
.

So we have shown that the matrix of a combined system equals to product
of matrices of subsystems. Since especially on computers it is very simple
to multiply matrices, this is the method of choice for the basic design of
optical systems. In the following, we hence derive the forms of the matrices
of common optical elements.
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FIGURE 2.3: A ray passing through a drift.

2.2.1 The Drift

The simplest part of glass optical elements is a region which does not contain
any material, the drift. The final position and slope x2 and a2 after a drift
of length l can be connected very simply to the initial values x1 and a1, as
shown in Fig. 2.3

x2 = x1 + a1 · l, a2 = a1.

This obviously can be written in a matrix form as(
x2

a2

)
=

(
1 l
0 1

)(
x1

a1

)
.

For the later discussion it is important to note that the matrix ( 1 l
0 1 ) depends

only on the characteristic properties of the element, which here is the length
l. On the other hand, the vector (x1, a1) depends only on the parameters of
the ray. Altogether, a drift performs a linear transformation in x, a space.
Note that the determinant of the drift matrix is unity.

As a small exercise, let us now consider a combination of two drifts of lengths
l1 and l2. For the value of the coordinates (x3, a3) after the combination of
the two drifts, we have(

x3

a3

)
=

(
1 l2
0 1

)(
x2

a2

)
=

(
1 l2
0 1

)(
1 l1
0 1

)(
x1

a1

)
=

(
1 l1 + l2
0 1

)(
x1

a1

)
.

Here the necessary composition of maps just reduces to a common multi-
plication of transfer matrices. And the result is not surprising, the effect
of two subsequent drifts is just the same as that of a drift of the combined
length.

2.2.2 The Thin Lens

Besides empty space, glass optical devices contain lenses that change the
direction of the light ray. Here we are primarily interested in the thin lens, a
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FIGURE 2.4: A bundle of parallel rays passing through a focusing lens.

somewhat idealized device without any length, which is characterized by the
following facts that are also illustrated in Fig. 2.4.

1. Positions are not changed, but directions are changed.

2. Any bundle of parallel light is unified in one point a distance f after the
lens.

3. A ray lighting the center of the lens goes straight through.

The quantity f that describes the lens is called the focal length. Let us
now consider a ray passing through the lens. From Fig. 2.4 we find

x2 = x1, p = f · a1, x1 + a2 · f = p,

from which we infer
x2 = x1, a2 = −x1

f
+ a1.

This relationship can be written in a matrix form as(
x2

a2

)
=

(
1 0

−1/f 1

)(
x1

a1

)
. (2.4)

As in the case of the drift, the matrix ( 1 0
−1/f 1 ) depends only on the focal

length f, the characteristic property of the lens, whereas the vector (x1, a1)

depends on the ray. Note that the determinant of the matrix ( 1 0
−1/f 1 ) is

unity.
The simple thin lens we have discussed here, the so-called focusing Gaussian

lens, represents quite an approximation for several reasons. First, any real lens
performs a refraction at two different surfaces, so positions do change as one
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FIGURE 2.5: A bundle of parallel rays passing through a defocusing lens.

goes through the lens. Furthermore, for most lenses it is not really true that
parallel rays all meet at a point a distance f behind the lens. This is connected
to the fact that lenses are usually ground with spherical surfaces because
anything else is technically difficult. Furthermore, the glass has dispersion,
so different colors are affected differently. We note however that Snell’s law
still allows us to determine the true transfer map of a thick, spherical lens
in a rather straightforward way. It is important to note, however, that this
transfer map will no longer be linear.

Quite interesting is the combination of two glass lenses, which can ap-
parently be described by multiplying their matrices. Note that, always, the
matrix of the first element is on the right. We obtain(

1 0
−1/f2 1

)(
1 0

−1/f1 1

)
=

(
1 0

−1/f1 − 1/f2 1

)
.

So the combination of two lenses provides the same effect as one lens with
focus length f, where 1/f = 1/f1 + 1/f2. This is of course a famous law of
optics, the derivation of which is all but trivial in the matrix context. Indeed
the efficiency of the matrix approach becomes clear when observing how to
prove this law using the standard geometric method of optics textbooks.

In a similar way as the focusing thin lens we can also treat the defocusing
thin lens. In this case, the basic properties can be found as illustrated in Fig.
2.5.

1. Positions are not changed, but directions are changed.
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2. Any bundle of parallel light exits the lens in such a way that it appears
to come from a point a distance f in front of the lens.

3. A ray lighting the center of the lens goes straight through.

In a similar way as before, we can use basic geometry to determine the
action of the lens. From Fig. 2.5, we find

x2 = x1, p = −f · a1, p = x2 − f · a2.

Similar to before, we obtain a2 = x1/f + a1, which is in a matrix form(
x2

a2

)
=

(
1 0

1/f 1

)(
x1

a1

)
.

This is essentially the same matrix as before, except that now the sign of
the matrix element (a|x) has changed. Indeed, using the standard convention
to count defocusing lenses with a negative focal length, the matrix has even
exactly the same form as before.

2.2.3 The Thin Mirror

Besides lenses, mirrors are probably the second most important optical
device, and there are also focusing and defocusing mirrors. Different from
the lens, the reference orbit flips direction when hitting the mirror. A thin
focusing mirror is defined by what it does to an ensemble of parallel light via
three conditions, illustrated in Fig. 2.6.

1. Positions are not changed, but directions are changed.

2. Any bundle of parallel light that is reflected by the mirror will meet in
a point a distance f in front of the mirror.

3. A ray hitting the center of the mirror is reflected such that its outgoing
angle equals its incoming angle.

A similar argument as in the case of the focusing lens shows that the transfer
matrix of the focusing mirror is

M̂ =

(
1 0

−1/f 1

)
.

There is also a defocusing mirror, defined by three conditions:

1. Positions are not changed, but directions are changed.

2. Any bundle of parallel light that is reflected by the mirror seems to
emerge from a point a distance f behind the mirror.
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FIGURE 2.6: A bundle of parallel rays is reflected by the focusing mirror.

3. A ray hitting the center of the mirror is reflected such that its outgoing
angle equals its incoming angle.

A similar argument shows that also in this case, we have the transfer matrix

M̂ =

(
1 0

−1/f 1

)
,

where the convention to count the focal length f of a defocusing element
negative is used.

So apparently mathematically, lenses and mirrors behave the same, aside
from the fact that they reverse the reference orbit. The choice of which to use
in practice depends on a variety of practical factors. For situations requiring
only small apertures like in most camera lenses, glass lenses are easily made,
and have an advantage because of the straight beam path. For situations
requiring large apertures, like in big telescopes, mirrors are the primary choice
because it is much easier to manufacture and support large mirrors than large
lenses. It is also easier to produce non-spherical shapes for mirrors than for
lenses. Finally, mirrors have the additional advantage that they treat light of
different colors equally; they do not show the dispersion commonly observed
in glass lenses.

2.2.4 Liouville’s Theorem for Glass Optics

As a direct consequence of the matrix notation for glass optics introduced
above, for any combination of lenses, drifts and mirrors, we can prove a special
case of Liouville’s theorem: The volume of phase space occupied by the beam
is conserved.

Indeed, let us assume that we have an optical system consisting of n ele-
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FIGURE 2.7: Liouville’s theorem. The volume of phase space occupied by
the beam is conserved.

ments with matrices M̂i. Then we have(
xn+1

an+1

)
= M̂n

(
M̂n−1

(
· · · M̂1

(
x1

a1

)
· · ·
))

=
(
M̂n · M̂n−1 · · · M̂1

)(x1

a1

)
.

The determinants of each of the matrices M̂i are just unity, as they are all
either drifts, lenses or mirrors, so the determinant of the product is unity.
Under linear transformations, volumes in space transform with the size of the
determinant, thus the volume is indeed conserved. Fig. 2.7 illustrates this
situation.

An interesting and remarkable consequence of Liouville’s theorem is the
famous recurrence theorem of Poincaré. Let us assume we have some
motion in n-dimensional phase space and also that we know that the motion
is bounded in all phase space variables. Let us further assume that the mo-
tion obeys Liouville’s theorem, which as we shall see later is the case for all
Hamiltonian systems, and let the motion be deterministic. Then Poincaré’s
recurrence theorem states that for any given ε, the system after sufficient time
comes back to its original state within a tolerance of at most ε.

Before we sketch the proof of Poincaré’s theorem, let us illustrate some of
its consequences. Consider for example a box with classical gas particles that
are initially all located in one side of the box and kept there by a wall as
shown in Fig. 2.8. After the wall is removed, the gas particles will distribute
in the box evenly, as we expect from classical statistical mechanics, increasing
their entropy. But their phase space is bounded, as the particles cannot leave
the box, and each particle’s momentum is limited by the total heat energy
contained in the box.

So as time progresses, according to Poincaré, they will at one time in the
future just recollect on one side of the box, and by re-inserting the wall,
they will be caught again on one side, in crass contradiction to the entropy
principle.

There are many other examples. If we have a particle beam in an accelerator
that we know is stable, it will eventually come back as close as we want in
phase space, which is an effect that is actually observed somewhat routinely in
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later eventually

FIGURE 2.8: Poincaré’s recurrence theorem. After sufficient time, the
system returns close to its original state.

tracking pictures. Even for our daily life, there are important consequences.
If the universe is Hamiltonian and it does not expand indefinitely, then up to
minute details, history will keep repeating itself. So we will all be born again,
and we will all make the same mistakes all over, but since now we cannot
remember anything about our past life, also next time we will not remember
our current life.

Now let us sketch the proof of the recurrence theorem. Let an ε be given,
and consider an ε-ball with volume Vε in phase space. Consider its motion by
regular time steps Δt. Since the total available phase space volume is finite,
say Vp, after at most Vp/Vε time steps, the image of the ball must reach a
part of phase space it has touched before, i.e., it must overlap a previous
image of the ball. Let us assume this happens after N steps and the previous
image is that after n steps, with n < N. But if the images after n steps In
and after N steps IN overlap, so must the images after (n − 1) and (N − 1)
steps, respectively. And continuing backwards, so must the images after 0 and
(N − n) steps; hence, after (N − n) steps, we touch the original ε-ball again.

2.3 Special Optical Systems

In this section we want to apply the matrix techniques to the study of
certain special categories of systems. In particular, we associate certain fun-
damental properties of systems with properties of the matrix. We begin with
the imaging systems.
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FIGURE 2.9: Sketch of an imaging system.

2.3.1 Imaging (Point–to–Point, • •) Systems

Imaging systems or point–to–point systems are perhaps the most important
systems in optics, and they deserve some special attention. Suppose we study
the action of a slide projector. At one end of the projector, light is sent
through the slide. Suppose the slide shows a man wearing a gold earring.
The image of this man is to appear on the screen, and the gold earring is to
appear at one particular location. This requires that all light passing through
the golden spot on the slide and emanating in various directions has to be
re-united at one spot on the screen, as shown in Fig. 2.9.

This means that the final position of a ray is independent of its initial angle
and it only depends on the initial position. In terms of transfer matrices

M̂ =

(
(x|x) (x|a)
(a|x) (a|a)

)
,

this means that the element (x|a) has to vanish:

(x|a) = 0.

Obviously the element (x|x) also has an important interpretation: it is the
magnification of the system.

(x|x) : magnification.

Besides the case of the slide projector, many other devices use imaging.
They include the camera, the overhead projector, the eye, the photographic
microscope, the electron microscope, as well as particle spectrographs. We
will discuss in detail some such devices in Chapter 7.

It is worthwhile to study how imaging systems can be made. First, we
observe that a drift is imaging if and only if l = 0, while it is a rather boring
choice. A single lens is also always imaging as long as there are no drifts
before and after, but that is another boring choice. The first interesting
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imaging system is the DLD (drift-lens-drift) system, consisting of a drift, a
lens and another drift. The transfer matrix of the DLD system is given by

M̂ =

(
1 l2
0 1

)(
1 0

−1/f 1

)(
1 l1
0 1

)
=

(
1 l2
0 1

)(
1 l1

−1/f 1− l1/f

)
=

(
1− l2/f l1 + l2 − l1l2/f

−1/f 1− l1/f

)
.

If such a system is supposed to be imaging, we have to satisfy (x|a) = l1 +
l2 − l1l2/f = 0, which is equivalent to

1

l1
+

1

l2
=

1

f
.

This is another important result of conventional optics, which here is obtained
in an almost trivial way. If the DLD system is made to be imaging, the
magnification is given by

(x|x) = 1− l2
f

= − l2
l1
.

This principle is used in several different devices. In the slide projector,
l1 is very small and l2 is very large, thus it provides a large magnification.
Probably the most important imaging system is the eye. Here the situation
is just the opposite. l1 is large and l2 is small, allowing for large things to be
mapped on the small retina of the eye.

It is interesting to study the combination of two imaging systems:(
(x|x)2 0
(a|x)2 (a|a)2

)(
(x|x)1 0
(a|x)1 (a|a)1

)
=

(
(x|x)2(x|x)1 0

(a|x)2(x|x)1+(a|a)2(a|x)1 (a|a)2(a|a)1
)
.

(2.5)

As is to be expected, the total system is again imaging, and the magnifica-
tion is (x|x)2(x|x)1, just the product of the individual magnifications.

2.3.2 Parallel–to–Point (‖ •) Systems

As we saw above, the human eye observing a nearby object is one of the
prime examples of an imaging system. But what happens if the eye looks at
things farther and farther away, in particular at the stars, a pastime of the
human race and scientists for eternity? The length of the first drift l1 becomes
larger and larger, and for all practical purposes the light coming from one star
reaches the eye as a parallel bundle. So what the eye is to interpret now is
the angle under which the light comes in, and hence the position on the retina
should depend only on the initial angle at which the light strikes the eye, but
not on the initial position.
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FIGURE 2.10: Sketch of a parallel–to–point system.

FIGURE 2.11: Sketch of a point–to–parallel system.

This is an example of parallel–to–point systems as illustrated in Fig. 2.10.
A parallel–to–point system requires that

(x|x) = 0.

If we look at the eye as a DLD system, this requires

(x|x) = 1− l2/f = 0 =⇒ l2 = f,

while l1 is arbitrary. Thus the retina has to be exactly at the focal length;
almost as important is that the distance to the object is arbitrary since we
cannot change our distance to the stars significantly. Another important
parallel–to–point system is the photographic camera.

2.3.3 Point–to–Parallel (• ‖) Systems

Another important class of systems is the point–to–parallel systems. In
these systems, the final slope depends only on the initial position, but not on
the initial slope as illustrated in Fig. 2.11. So we have

(a|a) = 0.

Examples include the flashlight, the microscope, and laser and particle beam
transports over long distances such as those considered for the SDI Transport
(Strategic Defense Initiative) considered by the US government in the 1980s.

As an example, let us try to achieve a point–to–parallel system with a DLD
combination. We obtain

(a|a) = 1− l1/f = 0 =⇒ l1 = f,
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FIGURE 2.12: Sketch of a parallel–to–parallel system.

as we may have expected. Note that there is no condition on l2.

From the transfer matrices, it follows rather directly that the combination
of a point–to–parallel and a parallel–to–point system forms a point–to–point
system.(

0 (x|a)2
(a|x)2 (a|a)2

)(
(x|x)1 (x|a)1
(a|x)1 0

)
=

(
(x|a)2(a|x)1 0

(a|x)2(x|x)1+(a|a)2(a|x)1 (a|x)2(x|a)1
)
.

Using the relaxed eye as the parallel–to–point system, we can thus build a
microscope by placing a suitable point–to–parallel system in front of the eye.
It is interesting to see how the lengths in a point–to–parallel system have to
be chosen; by requiring (a|a) = 0, we obtain l1 = f, while l2 is arbitrary. The
first part is as expected; the latter part is fairly important for the operation of
a microscope because it allows the eye to move with respect to the microscope.

2.3.4 Parallel–to–Parallel (‖ ‖) Systems

The final important system is the parallel–to–parallel system illustrated in
Fig. 2.12. By placing it between the eye and the stars, a magnification of
angles can be achieved. This is the principle of the telescope.

The system has to be such that the final slope depends on the initial slope,
but not on the initial position, which requires

(a|x) = 0.

The magnification is given by (a|a).

(a|a) : magnification.

If we try to achieve this with a DLD system, then we have to satisfy (a|x) =
−1/f to be 0, which is impossible. This entails that a telescope has to contain
at least two lenses.

So let us consider an LDL (lens-drift-lens) system.

M̂ =

(
1 0

−1/f2 1

)(
1 l
0 1

)(
1 0

−1/f1 1

)
=

(
1− l/f1 l

−1/f2 −1/f1 + l/f1f2 1− l/f2

)
.
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And we have to satisfy

(a|x) = − 1

f2
− 1

f1
+

l

f1f2
= 0 =⇒ l = f1 + f2,

which is a well-known condition for Newtonian or Galilean telescopes. The
magnification of the telescope is given by

(a|a) = 1− l

f2
= 1− 1

f2
(f1 + f2) = −f1

f2
.

Thus, it requires f1 	 f2 to obtain large magnification. Since there is a limit
on how short f2 can be, it is thus necessary to make f1 large, which entails
what the rather large size telescopes usually have.

2.3.5 Combination Systems

Often the question arises to what extent it is possible to simultaneously
satisfy the requirements for the above systems. To some extent this is possible,
but the fact that the determinant of the total system has to be unity due to
Liouville’s theorem for glass optics imposes some restrictions.

A closer look shows that

1. • • and ‖ ‖ is possible: (x|a) = (a|x) = 0.

2. ‖ • and • ‖ is possible: (x|x) = (a|a) = 0.

All other cases are impossible because they would require a zero deter-
minant.

Another important question is what happens when two systems satisfying
certain properties are combined into one system; for example, we already saw
in eq. (2.5) that two point–to–point systems placed behind each other again
produce a point–to–point system. A more detailed analysis shows that of
the sixteen cases describing combinations of two systems, eight cases lead to
another special system

• • + • • = • • , ‖ ‖ + ‖ ‖ = ‖ ‖ ,

• • + • ‖ = • ‖ , ‖ ‖ + ‖ • = ‖ • ,

• ‖ + ‖ • = • • , ‖ • + • ‖ = ‖ ‖ ,

• ‖ + ‖ ‖ = • ‖ , ‖ • + • • = ‖ • .

The entries in the table above are easy to memorize because it contains just
those combinations for which the second symbol of the first system equals the
first symbol of the second system, and the final result is obtained by dropping
the two identical symbols. So in compact notation, we have:

If A,B,C ∈ {•, ‖ }, then AB +BC = AC.



Chapter 3

Fields, Potentials and Equations of
Motion

For the study of transfer maps of particle optical systems, first it is necessary
to undertake a classification of the possible fields that can occur. All fields
are governed by Maxwell’s equations, which in SI units have the form

div �B = 0, curl �H = �j +
∂ �D

∂t
,

div �D = ρ, curl �E = −∂ �B

∂t
. (3.1)

In the case of particle optics, we are mostly interested in cases in which
there are no sources of the fields in the region where the beam is located, so
in this region we have ρ = 0 and �j = �0. Of course any beam that is present
would represent a ρ and a �j, but these effects are usually considered separately.

In the following, we want to restrict ourselves to time independent sit-
uations, and neglect the treatment of elements with quickly varying fields
including cavities. This limitation in very good approximation also includes
slowly time varying fields like the magnetic fields that are increased during
the ramping of a synchrotron.

So, Maxwell’s equations simplify to

div �B = 0, curl �H = �0,

div �D = 0, curl �E = �0, (3.2)

where
�B = μ0

�H, �D = ε0 �E.

Because of the vanishing curl, we infer that �E and �B have scalar potentials
VE and VB such that

�E = −�∇VE , �B = −�∇VB .

Note that here even the magnetic field is described by a scalar potential,
and not by the vector potential �A that always exists. From the first and third
equations of (3.2), we infer that both scalar potentials VE and VB satisfy
Laplace’s equation, and we thus have

ΔVE = 0, ΔVB = 0.

49DOI:10.1201/b12074-3
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In order to study the solutions of Laplace’s equations for the electric and
magnetic scalar potentials, we will proceed for two special cases, each of which
will be treated in a coordinate system most suitable for the problem.

3.1 Fields with Straight Reference Orbit

The first major case of systems is those that have a straight reference orbit.
In this case, there is no need to distinguish between particle optical coordinates
and Cartesian coordinates, and in particular there is no need to transform
Laplace’s equation to a new set of coordinates. Many elements with a straight
reference orbit possess a certain rotational symmetry around the axis of
the reference orbit, and it is most advantageous to describe the potential in
cylindrical coordinates with a longitudinal z-axis that coincides with the
reference orbit.

3.1.1 Expansion in Cylindrical Coordinates

We first begin by expanding the r and φ components of the potential in Tay-
lor and Fourier series, respectively. However, the dependence on the cylindri-
cal “z” coordinate, which here coincides with the particle optical coordinate
s, is not expanded. So we have

V = V (r, φ, s) =

∞∑
k=0

∞∑
l=0

Mk,l (s) cos (lφ+ θk,l) r
k. (3.3)

In cylindrical coordinates, the Laplacian has the form

ΔV (r, φ, s) =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂φ2
+

∂2V

∂s2
,

thus Laplace’s equation is

ΔV =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂φ2
+

∂2V

∂s2
= 0.

We insert the Fourier-Taylor expansion of the potential (3.3) into each term
of the Laplacian.

r
∂V

∂r
= r

∞∑
k=1

∞∑
l=0

Mk,l(s) cos (lφ+ θk,l) kr
k−1

=

∞∑
k=1

∞∑
l=0

Mk,l(s) cos (lφ+ θk,l) kr
k,
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then the first term is

1

r

∂

∂r

(
r
∂V

∂r

)
=

1

r

∞∑
k=1

∞∑
l=0

Mk,l(s) cos (lφ+ θk,l) k
2rk−1

=

∞∑
k=0

∞∑
l=0

Mk,l(s) cos (lφ+ θk,l) k
2rk−2,

where we let the sum start at k = 0 in the last step, since there is no contri-
bution anyway because of the factor k2. The second term is

1

r2
∂2V

∂φ2
= − 1

r2

∞∑
k=0

∞∑
l=0

Mk,l(s) cos (lφ+ θk,l) l
2rk

= −
∞∑
k=0

∞∑
l=0

Mk,l(s) cos (lφ+ θk,l) l
2rk−2.

The third term is

∂2V

∂s2
=

∞∑
k=0

∞∑
l=0

M ′′
k,l(s) cos (lφ+ θk,l) r

k

=
∞∑
k=2

∞∑
l=0

M ′′
k−2,l(s) cos (lφ+ θk−2,l) r

k−2

=

∞∑
k=0

∞∑
l=0

M ′′
k−2,l(s) cos (lφ+ θk−2,l) r

k−2,

where we let the sum start at k = 2 in the second step, and, further, in the last
step, we used the convention that the coefficient Mk,l(s) vanish for negative
indices. Recognizing that all the terms have the common summations and
the factor rk−2, we obtain the Laplacian for the Fourier-Taylor expansion of
the potential (3.3) as

ΔV =

∞∑
k,l=0

[
Mk,l(s) cos (lφ+θk,l)

(
k2− l2

)
+M ′′

k−2,l(s) cos (lφ+θk−2,l)
]
rk−2.

To satisfy Laplace’s equation, we obtain a set of conditions for k, l ≥ 0,

Mk,l(s) cos (lφ+ θk,l)
(
k2 − l2

)
+M ′′

k−2,l(s) cos (lφ+ θk−2,l) = 0,

where the second term vanishes for k = 0, 1 because of the negative indices
for Mk,l.

We begin the analysis of Laplace’s equation by studying the case k = 0,
where only the first term matters. Apparently M0,0 and θ0,0 can be chosen
freely because k2 − l2 = 0 for k = l = 0. For l ≥ 1, we infer M0,l = 0.
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By induction over k, we now show that Mk,l = 0 for all cases where k < l.
Apparently the statement is true for k = 0 as we just showed. Now let us
assume that the statement is true up to k−1. If k < l, also k−2 < l, and thus
M ′′

k−2,l(s) = 0. Since k2 − l2 �= 0 and cos (lφ+ θk,l) �= 0 for some φ because
l �= 0, this requires

Mk,l(s) = 0 for k < l.

Thus the infinite matrix Mk,l is strictly lower triangular.

We now study the situation for different values of l. We first notice that for
all l, the choices of

Ml,l(s) and θl,l are free

because M ′′
l−2,l(s) = 0 by the previous observation, and k2 − l2 = 0 for k = l.

Next we observe that the value Ml+1,l(s) must vanish, because k2 − l2 �= 0,
but M ′′

l−1,l(s) = 0 because of the lower triangularity. Recursively we even
obtain that

Ml+1,l(s),Ml+3,l(s), . . . vanish.

On the other hand, for k = l+2, we obtain that θl+2,l = θl,l, and Ml+2,l(s)
is uniquely specified by Ml,l(s). Applying recursion, we see that in general

θl,l = θl+2,l = θl+4,l = . . . ,

Ml+2n,l(s) =
M

(2n)
l,l (s)∏n

ν=1

(
l2 − (l+ 2ν)

2
) . (3.4)

Let us now proceed with the physical interpretation of the result. The
number l is called the multipole order, as it describes how many oscillations
the field will experience in one 2π sweep of φ. The free term Ml,l(s) is called
the multipole strength, and the term θl,l is called the multipole phase.
Apparently, frequency l and radial power k are coupled: The lowest
order in r that appears is l, and if the multipole strength is s-dependent, also
the powers l + 2, l + 4, . . . will appear.

For a multipole of order l, the potential has a total of 2l maxima and
minima, and is so often called a 2l pole. Often Latin names are used for the
2l poles, and they are listed in Table 3.1.

In many cases it is very important to study the Cartesian (and hence also
particle optical) form of the fields of the elements. We start with the trivial
case with k = 1. In this case, the potential is V = M1,1 cos (φ+ θ1,1) r. For
θ1,1 = 0, we obtain V = M1,1 · x, which corresponds to a uniform field in
x-direction. For θ1,1 = π/2, another important sub-case, we obtain V =
−M1,1 · y, which corresponds to a uniform field in y-direction. In both of
these cases, the reference orbit is indeed a straight line only in the limit of
weak fields.
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TABLE 3.1: A list of multipoles

l Leading Term in V Name
0 M0,0(s) cos (θ0,0)
1 M1,1(s) cos ( φ+ θ1,1) r Dipole
2 M2,2(s) cos (2φ+ θ2,2) r

2 Quadrupole
3 M3,3(s) cos (3φ+ θ3,3) r

3 Sextupole/Hexapole
4 M4,4(s) cos (4φ+ θ4,4) r

4 Octupole
5 M5,5(s) cos (5φ+ θ5,5) r

5 Decapole
6 M6,6(s) cos (6φ+ θ6,6) r

6 Duodecapole

3.1.2 Quadrupole Fields

The case k = 2 leads to quadrupoles, and the potential has the form V =
M2,2 cos (2φ+ θ2,2) r

2. Particularly important in practice will be the sub-cases
θ2,2 = 0 and θ2,2 = π/2. In the first case, we have

V = M2,2 cos (2φ) r
2 = M2,2

(
cos2 φ− sin2 φ

)
r2 = M2,2

(
x2 − y2

)
,

and in the second case we have

V = M2,2 cos
(
2φ+

π

2

)
r2 = −M2,2 sin (2φ) r

2

= −M2,2 (2 sinφ cosφ) r2 = −M2,2 · 2xy.

All other angles θ2,2 lead to formulas that are more complicated; they can be
obtained from the ones here by subjecting the x, y coordinates to a suitable
rotation. This again leads to terms of purely second order.

Because the potential is quadratic, the resulting fields �E or �B are linear.
Indeed, the quadrupole is the only s-independent element that leads to
linear motion similar to that in glass optics, and thus has great importance.

In the electric case, one usually chooses θ2,2 = 0, thus having V = M2,2(x
2−

y2) and resulting in the fields

Ex = −2M2,2 · x, Ey = 2M2,2 · y.

The fields extend throughout the length of the device, and thus provide strong
focusing. Different from the case of glass optics, it turns out that the motion
cannot be rotationally symmetric anymore. If there is focusing in the
x-direction, there is defocusing in the y-direction, and vice versa. This effect,
completely due to Maxwell’s equations, turns out to be perhaps the biggest
nuisance in beam physics; i.e., if one uses piecewise s-independent particle
optical elements, the horizontal and vertical planes are always different
from each other.

To make an electrostatic device that produces a quadrupole field, it is best
to machine the electrodes along the equipotential surfaces, and utilize the fact
that if a sufficient amount of boundary information is specified, the field is
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FIGURE 3.1: Ideal electrodes of an electrostatic quadrupole.

uniquely determined, and hence must be as specified by the formula used to
determine the equipotential surfaces in the first place. So in practice, the
electrodes of an electric quadrupole often look as shown in Fig. 3.1.

In the magnetic case, one chooses θ2,2 = π/2, thus having V = −M2,2 · 2xy
and resulting in

Bx = 2M2,2 · y, By = 2M2,2 · x,
and looking at the Lorentz forces that a particle moving mostly in s-direction
experiences, we again see that if there is focusing in x-direction, there is
defocusing in y-direction and vice versa.

3.1.3 Sextupole and Higher Multipole Fields

To study higher orders in k, let us consider the case k = 3. For θ3,3 = 0, we
obtain

V = M3,3 cos (3φ) r
3 = M3,3

(
cos3 φ− 3 cosφ sin2 φ

)
r3 = M3,3

(
x3 − 3xy2

)
.

In this case, the resulting forces are quadratic, and are thus not suitable
for affecting the linear motion; but we shall see later that they are indeed
very convenient for the correction of nonlinear motion, and they even have
the nice feature of having no influence on the linear part of the motion.
Another important case for θ3,3 is θ3,3 = π/2, in which case one can perform
a similar argument and again obtain cubic dependencies on the position.

For all the higher values of l, corresponding to octupoles, decapoles,
duodecapoles, etc., the procedure is very similar. We begin with the addition
theorem for cos(lφ) or sin(lφ), and by induction we see that each consists of
terms that have a product of precisely l cosines and sines. Since each of these
terms is multiplied with rl, each cosine multiplied with one r translates into
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FIGURE 3.2: The s-dependence of the multipole strength.

an x, and each sine multiplied with one r translates into a y. The end result
is always a polynomial in x and y of exact order l.

Because of their nonlinear field dependence, these elements will prove to
have no effect on the motion up to order l−1, and thus allow us to selectively
influence the higher orders of the motion without affecting the lower orders.
And if it is the crux of particle optical motion that the horizontal and vertical
linear motion cannot be affected simultaneously, it is its blessing that the
nonlinear effects can be corrected order-by-order.

3.1.4 s–Dependent Fields

In the case where there is no s-dependence, the potential terms that we have
derived are the only ones; under the presence of s-dependence, as shown
in eq. (3.4), to the given angular dependence there are higher order terms
in r, the strengths of which are given by the s-derivatives of the multipole
strength Ml,l. The computation of their Cartesian form is very easy once the
Cartesian form of the leading term is known, because each additional term
just differs by the previous one just by the factor of r2 = (x2 + y2).

In practice, of course, s-dependence is unavoidable: the field of any particle
optical element has to begin and end somewhere, and it usually does this by
rising and falling gently with s, entailing s-dependence as seen in Fig. 3.2.
This actually entails another crux of particle optics: even the quadrupoles,
the “linear” elements, have nonlinear effects at their edges, requiring
higher order correction. The corrective elements in turn have higher order
edge effects, possibly requiring even higher order correction, etc. In practical
terms, charged particle optical systems are designed in such a way that the
effect of the higher order field is smaller than that of the lower order field,
which ensures that the iterative process converges.

Without s-dependence, the case l = 0, corresponding to full rotational
symmetry, is not very interesting since there will be no field left. This becomes
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FIGURE 3.3: Scalar potential (solid), longitudinal (dashed) and radial
(dotted) field distribution along the s-axis of a single (left) and dual (right)
step in potential of a rotationally symmetric lens.

clear if we rewrite eq. (3.4) for the case l = 0, which is

M2n,0(s) =
M

(2n)
0,0 (s)∏n

ν=1 (−1) (2ν)
2 =

M
(2n)
0,0 (s)

(n!)
2
(−4)

n . (3.5)

When M
(2n)
0,0 (s) = 0, we obtain that V = M0,0, which is independent of s and

r. If we consider s-dependence, it actually offers a remarkably useful effect.
While there is no r-dependence in the leading term, the contributions through
the derivatives of M0,0(s) entail terms with an r-dependence of the form r2,
r4, . . . . Using eq. (3.5), we obtain the Taylor expansion of the potential, which
is

V (r, s) =
∞∑
n=0

1

(n!)
2
(−4)

nM
(2n)
0,0 (s)r2n

= M0,0(s)− 1

4
M

(2)
0,0 (s)r

2 +
1

(2!)
2 · 42M

(4)
0,0 (s)r

4 − · · · . (3.6)

Of these, the r2 term will indeed produce linear, rotationally symmetric
radial fields and lead to effects similar to those in the glass lens. In practice

these fields are not very strong (proportional to M
(2)
0,0 (s), compared to M

(1)
0,0 (s)

for the longitudinal field) and restricted to regions where the potential changes
and are used in so-called weak focusing. In practice, potential changes often
occur as transitions between regions of constant potential. This can be done
as a single step as shown on the left of Fig. 3.3, or as a dual step as shown on
the right of Fig. 3.3, where the latter has the advantage that no net change
in potential occurs.

The resulting fields are given by

Es(r, s) = −M
(1)
0,0 (s) +

1

4
M

(3)
0,0 (s)r

2 − 1

(2!)
2 · 42M

(5)
0,0 (s)r

4 + · · · ,

Er(r, s) =
1

2
M

(2)
0,0 (s)r −

1

42
M

(4)
0,0 (s)r

3 + · · · .

The magnetic field components Bs(r, s), Br(r, s) take the same form. Fur-
thermore, there are usually quite large nonlinearities, and altogether these
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FIGURE 3.4: Reference orbit of a bending magnet.

devices are used mostly for low energy, small emittance beams like those
found in electron microscopes.

3.2 Fields with Planar Reference Orbit

In the case of the straight reference orbit, we saw that Maxwell’s equations
entail a very clean connection between rotational symmetry and radial po-
tential. As one may expect, in the case of a non-straight reference orbit, this
is no longer the case. In this situation, Maxwell’s equations have a rather
different but not less interesting consequence as long as we restrict ourselves
to the case in which the reference orbit stays in one plane.

3.2.1 The Laplacian in Curvilinear Coordinates

As it turns out, in this case the arguments to express the Laplacian in the
new coordinates are similar to that in cylindrical coordinates. Let us assume
that the motion of the reference particle is in a plane, and that all orbits that
are on this plane stay in it. Let R(s) be the momentary radius of curvature
as shown in Fig. 3.4.

Then we have a situation very similar to cylindrical coordinates r, φ, z
centered around the momentary origin of R(s). In fact, setting h(s) = 1/R(s),
the particle optical coordinates x, y, s correspond to the cylindrical ones in
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the following way:

z ↔ y,

r ↔ (1 + hx) · R(s),

φ ↔ s

R(s)
.

As we recall, in cylindrical coordinates the Laplacian had the form

ΔV (r, φ, z) =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r

∂

∂φ

(
1

r

∂V

∂φ

)
+

∂2V

∂z2
.

So we may expect that in particle optical coordinates, we in fact have

ΔV (x, y, s) =
1

1 + hx

∂

∂x

(
(1 + hx)

∂V

∂x

)
+

1

1 + hx

∂

∂s

(
1

1 + hx

∂V

∂s

)
+

∂2V

∂y2
.

A careful analysis based on the chain rule and determining the proper Jacobian
reveals that this is indeed the case. The calculations are rather mechanical
and not particularly interesting, but very involved [48], and we skip them for
the purposes of this discussion.

3.2.2 The Potential in Curvilinear Coordinates

For the potential, we again make an expansion in transversal coordinates,
and leave the longitudinal coordinates unexpanded. Since we are working now
with x and y, both expansions are Taylor, and we have

V = V (x, y, s) =

∞∑
k=0

∞∑
l=0

ak,l (s)
xkyl

k!l!
. (3.7)

This expansion now has to be inserted into the Laplacian in particle optical
coordinates. Besides the mere differentiation, we also have to Taylor expand
1/(1 + hx) :

1

1 + hx
= 1− (hx) + (hx)2 − (hx)3 + · · · .

After gathering terms and heavy arithmetic, and again using the convention
that coefficients with negative indices are assumed to vanish, we obtain the
recursion relation

ak,l+2 =− a′′k,l − kha′′k−1,l + kh′a′k−1,l − ak+2,l − (3k + 1)hak+1,l

− 3khak−1,l+2 − k (3k − 1)h2ak,l − 3k (k − 1)h2ak−2,l+2

− k (k − 1)2 h3ak−1,l − k (k − 1) (k − 2)h3ak−3,l+2. (3.8)

Although admittedly horrible and unpleasant, the formula apparently has the
coefficient of highest total order k + l + 2 on the left hand side, and thus
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recursively allows the calculation of coefficients. Indeed, the terms ak,0(s),
ak,1(s) can be chosen freely, and all others are uniquely determined through
them.

To study the significance of the free terms, let us consider the electric and
magnetic case separately. In the electric field, in order to ensure that orbits
that were in the plane stay there, there must not be any field components in
the y-direction in the plane corresponding to y = 0. Computing the gradient
of the potential, we have

Ex (x, y = 0) = −
∑
k

ak,0
xk−1

(k − 1)!
, Ey (x, y = 0) = −

∑
k

ak,1
xk

k!
= 0,

and looking at Ey, we conclude that ak,1 = 0 for all k. So the terms ak,0 alone
specify the field. Looking at Ex, we see that these are just the coefficients that
specify the field within the plane, and so the midplane field determines
the entire field. Furthermore, looking at the details of the recursion relation
(3.8), it becomes apparent that all second indices are either l or l + 2. This
entails that as long as ak,1 terms do not appear, also ak,3, ak,5, . . . terms do not
appear. Indeed, the resulting potential is fully symmetric around the plane,
and the resulting field lines above and below the plane are mirror images.

In the magnetic field, the argument is rather similar. Considering the
fields in the plane, we have

By (x, y = 0) = −
∑
k

ak,1
xk

k!
, Bx (x, y = 0) = −

∑
k

ak,0
xk−1

(k − 1)!
= 0.

In order for particles in the midplane to stay there, we must have that Bx

vanishes in the midplane, which entails ak,0 = 0. So in the magnetic case, the
coefficients ak,1 specify everything. These coefficients, however, again describe
the shape of the field in plane, and so again the midplane field determines
the entire field. In the magnetic case, the potential is fully antisymmetric
around the plane, and again the resulting field lines are mirror images of each
other.

To summarize the findings,

Electric field: ak,1 = 0 for all k, ak,0 specify everything.
Magnetic field: ak,0 = 0 for all k, ak,1 specify everything.

To conclude, we note that it is possible to extend the entire discussion also to
cases where the motion is not confined to a simple midplane. The derivations
connected to this most general case become exceedingly complicated [49, 48]
and go beyond what is appropriate for this book.



60 An Introduction to Beam Physics

3.3 The Equations of Motion in Curvilinear Coordinates

There are a variety of methods to derive the equations of motion in curvi-
linear coordinates with the arc length s as the independent variable. It
is conveniently done in the Lagrangian picture, in which one first expresses
Cartesian variables by curvilinear coordinates and rewrites the Lagrangian.
Then one proceeds to a Hamiltonian through a Legendre transformation in
the common way. In the Hamiltonian picture, it is then possible to perform a
change of independent variable from t to s while maintaining the Hamiltonian
structure [49].

While very illuminating, the Lagrangian-Hamiltonian mechanism is too
involved for our purposes, and we thus follow a more straightforward, clas-
sical way that leads to the same canonical equations of motion. For simplicity,
we also restrict ourselves in that the reference orbit is allowed to bend in only
one plane.

3.3.1 The Coordinate System and the Independent Variable

As a function of the arc length s, we first define the momentary curvature
of the reference orbit as h(s). If the curvature is nonzero, the radius of cur-
vature is then given by R(s) = 1/h(s). We begin by studying the bend angle
that the reference orbit experiences as we move from position s to position s̄.
We have

α =

∫
dᾱ =

∫ s̄

s

ds̄

R(s̄)
=

∫ s̄

s

h(s̄)ds̄. (3.9)

As described in eq. (1.1), in Cartesian coordinates, the equations of motion
have the Lorentz force form

d�p

dt
= �F = q

(
�E + �v × �B

)
= Ze

(
�E + �v × �B

)
,

where �E and �B are the electric and magnetic fields, �v is the velocity, and
q = Ze is the charge of the particle. Since the left hand side of the equations
of motion contain momentum, it is often useful to express the velocity in terms
of the momentum. From eq. (1.5),

�v =
d�r

dt
= c · �p√

�p2 +m2c2
,

which allows to maintain only the momentum �p in the equations of motion.
For the purpose of our derivation, we rewrite the equation as an integral

equation:

�p(s̄) = �p(s) +

∫ t(s̄)

t(s)

�F (t)dt = �p(s) +

∫ s̄

s

�F (s̄)t′ds̄,
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where we have used t′ = dt/ds̄, and it is worthwhile to remind ourselves that

the force �F (s̄) still depends on both �x and �p.

As we have progressed from s to s̄, the orientation of our locally attached
particle optical coordinate system has changed. It was rotated by the angle
α of eq. (3.9). By using the rotation matrix

R̂(s̄) =

⎛⎜⎝ cosα 0 sinα

0 1 0

− sinα 0 cosα

⎞⎟⎠ =

⎛⎜⎝ cos
∫ s̄

s h(s̄)ds̄ 0 sin
∫ s̄

s h(s̄)ds̄

0 1 0

− sin
∫ s̄

s h(s̄)ds̄ 0 cos
∫ s̄

s h(s̄)ds̄

⎞⎟⎠ ,

we have the momentum in the new rotated local coordinates �pl(s̄) = (px, py, ps)
as

�pl(s̄) = R̂(s̄) · �p(s̄)

=

⎛⎜⎝ cos
∫ s̄

s
h(s̄)ds̄ 0 sin

∫ s̄

s
h(s̄)ds̄

0 1 0

− sin
∫ s̄

s
h(s̄)ds̄ 0 cos

∫ s̄

s
h(s̄)ds̄

⎞⎟⎠ ·
(
�p(s) +

∫ s̄

s

�F (s̄)t′ds̄
)
,

where we have expressed the last line in the integral form. In order to obtain
the rate of change of the momentum �pl, we differentiate with respect to s̄.
Noting that

d

ds̄
sin

∫ s̄

s

h(s̄)ds̄ = h(s̄) cos

∫ s̄

s

h(s̄)ds̄,

d

ds̄
cos

∫ s̄

s

h(s̄)ds̄ = −h(s̄) sin

∫ s̄

s

h(s̄)ds̄,

evaluate at s̄ = s and obtain

�pl
′(s) =

[
R̂(s̄)�F (s̄)t′ + R̂′(s̄)

(
�p(s̄) +

∫ s̄

s

�F (s̄)t′ds̄
)]

s̄=s

= �F (s)t′ +

⎛⎝ 0 0 h(s)
0 0 0

−h(s) 0 0

⎞⎠ �p(s). (3.10)

Note that the first term depends on the actual forces and the factor t′ accounts
for the fact that we went to the arc length s as an independent variable.
The second term is a pseudoforce due to the fact that we are located in a
rotating frame. Indeed, for h = 0, we obtain the conventional result. We also
note in passing that if we were to allow out-of-plane motion of the reference
orbit, then the matrix R̂ would depend on two curvatures. Unfortunately, in
this case an additional complication arises from the fact that rotations around
different axes do not generally commute [49].
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s

s̄

ds

R

x dL dx

FIGURE 3.5: The curvilinear coordinates in the plane of the reference
orbit.

Next we make an observation regarding the rate of change at which dis-
tances are covered at different positions x. Looking at Fig. 3.5, we observe

dL

ds
=

R+ x

R
= 1 + hx.

Using this and the components of the momentum, we obtain

dx

ds
=

dL

ds

dx

dL
= (1 + hx)

dx

dL
= (1 + hx)

px
ps

,

dy

ds
=

dL

ds

dy

dL
= (1 + hx)

dy

dL
= (1 + hx)

py
ps

. (3.11)

For the time-of-flight, we consider the traveling distance divided by the
velocity, and we obtain

dt

ds
=

1

v

√(
dx

ds

)2

+

(
dy

ds

)2

+

(
dL

ds

)2

=
1

v
(1 + hx)

√
p2x + p2y

p2s
+ 1

=
1

v
(1 + hx)

p

ps
, (3.12)

where p =
√
p2x + p2y + p2s has been used.

Altogether, we have so far obtained the equations of motion in local coor-
dinates with s as the independent variable. From there to the particle optical
variables, only a small step is left. We remind ourselves that the particle
optical coordinates are {x, a, y, b, l, δ} as listed in Table 3.2, where p0 and
t0 are total momentum and time-of-flight of the reference particle; refer to
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TABLE 3.2: Optical coordinates

Coordinate Phase Space
x Horizontal Position
a = px/p0 Momentum Slope
y Vertical Position
b = py/p0 Momentum Slope
l = κ (t− t0) Longitudinal Time-of-Flight like Variable
δ = (K −K0) /K0 Energy Deviation

eqs. (2.1) and (2.2). Likewise, the subscript 0 will be used below to indicate
the respective quantity of the reference particle.

In order to study relativistic effects, it is advantageous to introduce the
relativistic measure η, the ratio of kinetic energy to rest mass energy

η =
K0 (1 + δ)− ZeV

mc2
= η0 (1 + δ)− ZeV

mc2
, (3.13)

where m is the rest mass. The quantity V is the change in energy that is
incurred due to the passage through electric fields; it is given by

V = −
∫

�E(x, y, s, t) · �vdt, (3.14)

where �v is the velocity, depending on position and time, of the orbit under
consideration. In case the electric fields are time independent, the quantity V
is merely the common electrostatic potential, which depends on the position
coordinates (x, y, s). For time dependent fields, the quantity V explicitly de-
pends on the specific time dependent orbit taken, which is of importance for
the study of dynamics in RF cavities as discussed in Chapter 10.

Since γmc2 represents the total energy, we have

γ =
1√

1− v2/c2
= 1 + η. (3.15)

Using these, we also have

v

c
=

√
1− 1

γ2
=

√
1− 1

(1 + η)
2 =

√
2η + η2

1 + η
=

√
η (2 + η)

1 + η
,

p

mc
=

γmv

mc
= γ

v

c
=
√
η (2 + η), and

p

v
= m (1 + η) . (3.16)

As a first step, using eq. (3.12), we express the rate of change of the particle
optical variable l = κ(t− t0) in terms of particle optical quantities:

l ′ =
dl

ds
= κ (t′ − t′0) = κ

[
1

v
(1 + hx)

p

ps
− 1

v0

]
=

[
(1 + hx)

v0
p0

p

v

p0
ps

− 1

]
κ

v0
=

[
(1 + hx)

1 + η

1 + η0

p0
ps

− 1

]
κ

v0
, (3.17)
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where the relation t′0 = 1/v0 is used because of ps0 = p0. The term p0/ps
appearing above can be expressed by the optical coordinates a and b as

p0
ps

=
p0√

p2 − p2x − p2y

=

(
p2

p20
− a2 − b2

)−1/2

=

(
η (2 + η)

η0 (2 + η0)
− a2 − b2

)−1/2

. (3.18)

Next, by applying the Lorentz force law to eq. (3.10), we obtain

d

ds

(
px
p0

,
py
p0

,
ps
p0

)
= �F (s) t′

1

p0
+

⎛⎝ 0 0 h
0 0 0

−h 0 0

⎞⎠ �p

p0

= Ze
(
�E + �v × �B

) t′

p0
+ h

(
ps
p0

, 0,−px
p0

)
. (3.19)

We here introduce the magnetic rigidity χm and the electric rigidity χe,

χm =
p

Ze
, χe =

pv

Ze
.

As we will see below, the magnetic and the electric rigidities describe directly
to what extent the magnetic and the electric fields influence the geometric
motion of the particles. The first term of eq. (3.19) can be expressed by using
χm0 and χe0 as

Ze
(
�E + �v × �B

) t′

p0
=

Ze

p0v0

(
�E + �v × �B

)
v0t

′ =
�E

χe0
v0t

′ + �v ×
�B

χm0
t′.

From eq. (3.12), the factor v0t
′ in the electric term can be written as

v0t
′ =

v0
v

(1 + hx)
p

ps
= (1 + hx)

v0
p0

p

v

p0
ps

= (1 + hx)
1 + η

1 + η0

p0
ps

.

Similarly, the factor �vt′ in the magnetic term can be written as

�vt′ =
�v

v
(1 + hx)

p

ps
=

�p

p
(1 + hx)

p

ps
= (1 + hx)

�p

p0

p0
ps

,

where �v/v = �p/p is used because of �v ‖ �p. Thus,

Ze
(
�E + �v × �B

) t′

p0
= (1 + hx)

1 + η

1 + η0

�E

χe0

p0
ps

+ (1 + hx)
�p

p0
×

�B

χm0

p0
ps

.

Continuing from eq. (3.19), we obtain

d

ds

(
px
p0

,
py
p0

,
ps
p0

)
= (1 + hx)

1 + η

1 + η0

�E

χe0

p0
ps

+ (1 + hx)
�p

p0
×

�B

χm0

p0
ps

+ h

(
ps
p0

, 0,−px
p0

)
.

(3.20)
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Finally, we consider the change of the last variable in the particle optical
coordinates, δ. Since by definition it describes the deviation of initial kinetic
energy of the particle of interest, we have

δ′ = 0. (3.21)

Note, however, that since δ describes the deviation from the kinetic energy of
the reference particle before the system, in case there is net acceleration or
deceleration along the orbits, it may be desirable to periodically absorb the
accumulated amounts in the orbit dependent path integral for V in eq. (3.14)
into the variable δ. In the case the motion was merely through a static electric
field, this will entail that δ will depend on positional variables. In the case of
full time dependence as in the motion in RF cavities discussed in Chapter 10,
after the renormalization, δ will depend on all particle optical coordinates.

3.3.2 The Equations of Motion

By observing that �p/p0 = (a, b, ps/p0), from eqs. (3.11), (3.17), (3.20) and
(3.21), we obtain the equations of motion in particle optical coordinates:

x′ = a (1 + hx)
p0
ps

,

a′ = (1 + hx)

[
1 + η

1 + η0

Ex

χe0

p0
ps

+ b
Bs

χm0

p0
ps

− By

χm0

]
+ h

ps
p0

,

y′ = b (1 + hx)
p0
ps

,

b′ = (1 + hx)

[
1 + η

1 + η0

Ey

χe0

p0
ps

+
Bx

χm0
− a

Bs

χm0

p0
ps

]
,

l ′ =
[
(1 + hx)

1 + η

1 + η0

p0
ps

− 1

]
κ

v0
,

δ′ = 0, (3.22)

where we remind ourselves of the following abbreviations from eqs. (3.13) and
(3.18),

η = η0 (1 + δ)− ZeV

mc2
,

p0
ps

=

(
η (2 + η)

η0 (2 + η0)
− a2 − b2

)−1/2

,

and eq. (2.1),

κ = −v0
γ0

1 + γ0
.

Note that the factor κ/v0 in the equation for l ′ can be expressed in terms of
η0 instead of γ0 using eq. (3.15):

κ

v0
= −1 + η0

2 + η0
.
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We observe that the horizontal (x-a) motion is affected mostly by Ex and
By, and the vertical (y-b) motion is affected mostly by Ey and Bx, and it is a
direct consequence of the Lorentz force law. When a longitudinal component
of the magnetic field Bs is present, it acts to mix the horizontal and the
vertical motions through the Bs dependent terms in a′ and b′, which is even
a linear effect. This phenomenon is readily observed in the spiral motion of
a charged particle moving through a solenoid if any transversal component of
the momentum exists, which is described by a and b in our case.

A careful analysis of the equations of motion reveals that indeed if all the
particle optical coordinates are small, so are their derivatives defined through
the equations of motion; indeed, the system is weakly nonlinear.



Chapter 4

The Linearization of the Equations
of Motion

In order to develop a matrix theory of particle optics similar to the Gaussian
theory in glass optics, we have to linearize the equations of motion. This
procedure is rather similar to other linearizations in physics; in particular,
it is very similar to the study of so-called small oscillations in mechanics.
Since the solutions of linear systems depend linearly on the initial conditions,
indeed the resulting transfer maps will be linear as needed. It is worth noting
that, although a 6 × 6 matrix is required to describe the linear motion, only
blocks of 2× 2 and 3× 3 are needed for decoupled linear motion.

We begin the actual process of linearization with the linearization of the
fields, which corresponds to quadratic potentials in eq. (3.7). We begin our
discussion with the case in which the potentials on the reference orbit vanish,
which describes the situation of electric and magnetic multipoles as well as in
deflectors. The case of electric and magnetic lenses do require the presence of
potentials on axis, and they will be discussed in detail below.

In the electric case, let us assume that there is no potential on axis, i.e.,
a0,0 = 0, and that in the midplane, we have

Ex = −Ex0 (1 + nex) .

Because of the recursion relation for fields, eq. (3.8), we obtain an out-of-plane
expansion of

Ey = Ex0(h+ ne)y,

as well as an electrostatic potential

V (x, y) = Ex0x+
1

2
Ex0(nex

2 − (h+ ne) y
2),

which is chosen in such a way as to vanish on the reference orbit.
In the magnetic case, let the midplane field be given by

By = By0(1 + nbx).

Due to the recursion relation, we must then have

Bx = By0nby.
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Before we even discuss linearization, let us consider the zeroth order of the
motion: if the system is supposed to be origin preserving, then we must have
from the equation of motion for a′ in eqs. (3.22) that

Ex0

χe0
+

By0

χm0
= h, (4.1)

which in a natural and expected way couples the constant parts of the fields
with the curvature of the reference orbit.

Now we begin our process of linearization of the equations of motion (3.22).
It is easy to see that

x′ = a, y′ = b.

We also obtain
η

η0
= 1 + δ − Ze

η0mc2
Ex0x,

and after more complicated expansions

1 + η

1 + η0
= 1 +

η0
1 + η0

δ − Ze

(1 + η0)mc2
Ex0x,

2 + η

2 + η0
= 1 +

η0
2 + η0

δ − Ze

(2 + η0)mc2
Ex0x.

Similarly, by using
√
1 + u =1 1 + u/2, 1/(1 + u) =1 1 − u for small u, we

obtain

ps
p0

=

√
η (2 + η)

η0 (2 + η0)
− a2 − b2

=1 1 +
1

2

(
1 +

η0
2 + η0

)
δ − 1

2

(
1

η0
+

1

2 + η0

)
Ze

mc2
Ex0x

=1 1 +
1 + η0
2 + η0

δ − 1 + η0
η0 (2 + η0)

Ze

mc2
Ex0x.

Note that the symbol “=1” means we are keeping terms up to first order.
After lengthy similar arguments, we also conclude

l ′ =1

[
hx− 1

(1 + η0) (2 + η0)
δ +

1

η0 (1 + η0) (2 + η0)

Ze

mc2
Ex0x

]
κ

v0

=1 −
[
h
1 + η0
2 + η0

+
1

η0 (2 + η0)
2

Ze

mc2
Ex0

]
x+

1

(2 + η0)
2 δ,

as well as

a′ =1 −
{
h2 +

Ex0

χe0
ne +

By0

χm0
nb +

[
h+

Ex0

χe0

1

(1+η0)
2

]
1 + η0

η0 (2 + η0)

Ze

mc2
Ex0

}
x

+

[
h+

Ex0

χe0

1

(1 + η0)
2

]
1 + η0
2 + η0

δ,
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where the relation (4.1) is used, and

b′ =1

[
Ex0

χe0
(h+ ne) +

By0

χm0
nb

]
y.

To summarize, we have the linearized equations of motion as a set:

x′ =1 a,

a′ =1 −
{
h2 +

Ex0

χe0
ne +

By0

χm0
nb +

[
h+

Ex0

χe0

1

(1+η0)
2

]
1 + η0

η0 (2 + η0)

Ze

mc2
Ex0

}
x

+

[
h+

Ex0

χe0

1

(1 + η0)
2

]
1 + η0
2 + η0

δ,

y′ =1 b,

b′ =1

[
Ex0

χe0
(h+ ne) +

By0

χm0
nb

]
y,

l ′ =1 −
[
h
1 + η0
2 + η0

+
1

η0 (2 + η0)
2

Ze

mc2
Ex0

]
x+

1

(2 + η0)
2 δ,

δ′ = 0. (4.2)

Now that the equations of motion have been linearized, they have to be
studied for a variety of different cases. We begin with the simplest case.

4.1 The Drift

In the case of the drift, all fields are 0, and h = 0, so the linearized equations
of motion have the form

x′ = a, a′ = 0,

y′ = b, b′ = 0,

l ′ =
1

(2 + η0)
2 δ, δ′ = 0,

where of course only the last equation is of any real interest. These equations
are trivial to integrate, and we obtain

xf = xi + aiL, af = ai,

yf = yi + biL, bf = bi,

lf =
L

(2 + η0)
2 δi + li, δf = δi,
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where L is the drift length, and they can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎝
xf

af
yf
bf
lf
δf

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 D
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
xi

ai
yi
bi
li
δi

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

D =
L

(2 + η0)
2 .

First, we observe that, as in the case of glass optics, the determinant is
unity. We also observe that the matrix can be grouped to three blocks, corre-
sponding to the x-a (horizontal), the y-b (vertical) and the l-δ (longitudinal)
motions. So, in the linear approximation, those three submotions in the drift
are decoupled, without having any mixing. This allows us to study the entire
motion in each direction conveniently independently. Later, we often study
the motion of a system in decoupled submotions.

It is worthwhile to note that, when we take account of nonlinearity, even
the drift motion is no longer simply linear, which may sound striking. This
can be seen in the equations of motion (3.22), and the nonlinear effect comes
from the factor p0/ps, which contains the second order contributions of a and
b. This effect is called the kinematic correction, and it also is responsible
for nonlinear mixing of submotions in different directions even for the drift.

4.2 The Quadrupole without Fringe Fields

More interesting is the case of the quadrupole. Since the reference orbit
goes straight, we have h = 0.

4.2.1 The Electric Quadrupole

For the electric quadrupole, from Section 3.1.2, we have

V = M2,2 cos (2φ) r
2 = M2,2

(
x2 − y2

)
,

and
Ex = −2M2,2 · x, Ey = 2M2,2 · y,

while �B = 0. If M2,2 > 0 for the positive charge beam, the field acts to
focus the beam in the horizontal (x) direction, and defocus in the vertical (y)
direction. The field description above corresponds to the case in the general
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form that the constant part Ex0 of Ex is 0 and the factor of the linear term
in x is Ex0ne = −∂Ex/∂x = 2M2,2. The equations of motion have the form

x′ = a, a′ = −2M2,2

χe0
x = −ω2x,

y′ = b, b′ =
2M2,2

χe0
y = ω2y,

l ′ =
1

(2 + η0)
2 δ, δ′ = 0,

where

ω =

√
2M2,2

χe0
.

Apparently we have sine-cosine solutions in the horizontal plane, and sinh-
cosh solutions in the vertical plane. For the quadrupole with the length L, we
have

xf = xi cosωL+ ai
sinωL

ω
, af = −ωxi sinωL+ ai cosωL,

yf = yi coshωL+ bi
sinhωL

ω
, bf = ωyi sinhωL+ bi coshωL,

lf =
L

(2 + η0)
2 δi + li, δf = δi.

This can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xf

af

yf

bf

lf

δf

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ωL) sin(ωL)/ω 0 0 0 0

−ω sin(ωL) cos(ωL) 0 0 0 0

0 0 cosh(ωL) sinh(ωL)/ω 0 0

0 0 ω sinh(ωL) cosh(ωL) 0 0

0 0 0 0 1 D

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi

ai

yi

bi

li

δi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

ω =

√
2M2,2

χe0
and D =

L

(2 + η0)
2 .

Similar to the case of the drift, the matrix can be grouped to three blocks,
namely the horizontal, the vertical and the longitudinal motions. Again, this
holds while we limit ourselves to the linearized motion. We observe that,
as in the case of glass optics, the determinant is unity. Furthermore, note
that if M2,2 < 0, ω is imaginary. In this case, the x- and y-planes exchange
their roles, the quadrupole becomes focusing in the vertical (y) direction and
defocusing in the horizontal (x) direction. To see the focusing action in the
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similar style to the matrix form of the thin glass focusing lens, eq. (2.4),
we consider a thin approximation of the quadrupole. While maintaining the
integrated field strength, that is represented by 2M2,2 · L, we make L → 0.
Then, we have(

cos(ωL) sin(ωL)/ω
−ω sin(ωL) cos(ωL)

)
→
(

1 0
− (2M2,2/χe0) · L 1

)
.

This corresponds to a thin focusing lens with the focal length f as 1/f =
(2M2,2/χe0) · L = ω2 · L.

In various cases that will be studied in the following sections, we will observe
a harmonic oscillator motion similar to the x plane motion in this section. In
such a case, if the system is short it behaves like a thin focusing lens, and the
focusing power can be obtained as 1/f = ω2 · L using the angular frequency
ω of the system, in the same way discussed here.

It is also worthwhile to briefly mention the case of fringe fields. In this case,
M2,2 changes as a function of s. The resulting ordinary differential equation
(ODE) is still linear, which entails that the result can be written in matrix
form, but in most cases is impossible to solve it analytically.

4.2.2 The Magnetic Quadrupole

In the case of the magnetic quadrupole, we have

Vb = −2M2,2x · y, Bx = 2M2,2y, By = 2M2,2x,

while �E = 0. This corresponds to the case in the general form that the constant
part By0 of By is 0 and the factor of the linear term in x is By0nb = ∂By/∂x =
2M2,2. This results in the linear equations

x′ = a, a′ = −2M2,2

χm0
x = −ω2x,

y′ = b, b′ =
2M2,2

χm0
y = ω2y,

l ′ =
1

(2 + η0)
2 δ, δ′ = 0.

Similar to the electric case, we have introduced

ω =

√
2M2,2

χm0
,

and the resulting transfer matrix is the same as in the case of the electric
quadrupole.
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FIGURE 4.1: A homogeneous magnetic dipole.

4.3 Deflectors

4.3.1 The Homogeneous Magnetic Dipole

The next particle optical element we want to study is the magnetic dipole,
consisting of a homogeneous, hence constant, magnetic field in the y-direction.
We consider that the dipole element acts to bend the reference orbit by the
bending angle φ with the bending radius R0, so the curvature is h = 1/R0.
We also note that from eq. (4.1), h = By0/χm0. In terms of the quantities
describing the linearized fields, we have

By0 = constant, nb = 0,

while �E = 0. Keeping in mind magnet design, such a field can be obtained
very schematically as shown in Fig. 4.1.

Let us now consider the equations of motion; we obtain

x′ = a, a′ = −h2x+ h
1 + η0
2 + η0

δ,

y′ = b, b′ = 0,

l ′ = −h
1 + η0
2 + η0

x+
1

(2 + η0)
2 δ, δ′ = 0.

First we observe that if we choose h = 0, we obtain a′ = 0, and we have the
same situation as in the case of a drift. But even for the case of h �= 0, the
motion of the y-direction behaves simply like a drift, and we always have

yf = yi + bi L, bf = bi,

where L is the arc length of the reference orbit in the dipole and L = R0φ.
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Next we observe that as always, δ stays constant, and hence in the equation
for a′ plays the role of a parameter, making the differential equation inhomo-
geneous. Finally we observe that since l does not couple into the horizontal
or vertical motion, we can solve the equation for l after the horizontal motion
is analyzed by a mere integration.

In order to solve the horizontal part of the motion, we first solve the ho-
mogeneous part of the differential equation, which has the form

x′ = a, a′ = −h2x,

and we obtain as a solution

xf = xi cosωL+
1

ω
ai sinωL = xi cosφ+R0ai sinφ,

af = −ωxi sinωL+ ai cosωL = − 1

R0
xi sinφ+ ai cosφ,

where we have used the angular frequency ω,

ω = h =
1

R0
.

Altogether, we have a behavior not much different from a focusing quadrupole.
In order to treat the inhomogeneity, we perform a so-called “variation of

parameters,” that is we make an ansatz of the form

x (s) = x̄i (s) cosφ+R0āi (s) sinφ = x̄i (s) cosωs+
1

ω
āi (s) sinωs,

a (s) = − 1

R0
x̄i (s) sinφ+ āi (s) cosφ = −ωx̄i (s) sinωs+ āi (s) cosωs,

where now the original parameters x̄i, āi are viewed as functions of s. Inserting
into the differential equation, we obtain the following condition:

x̄′
i (s) cosωs+

1

ω
ā′i (s) sinωs = 0,

−ωx̄′
i (s) sinωs+ ā′i (s) cosωs = Λ = h

1 + η0
2 + η0

δi,

using the abbreviation Λ for the right hand side in the second equation.
Rewriting in matrix form, this reads(

cos(ωs) sin(ωs)/ω
−ω sin(ωs) cos(ωs)

)(
x̄′
i

ā′i

)
=

(
0
Λ

)
.

Multiplying with the inverse matrix and integrating, we obtain

x̄i (s) =

∫ s

0

(
− 1

ω
sinωs

)
Λds+ xi =

1

ω2
Λ (cosωs− 1) + xi,

āi (s) =

∫ s

0

(cosωs)Λds+ ai =
1

ω
Λ sinωs+ ai.
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So the complete solution of the inhomogeneous part has the form

x (s) =

[
1

ω2
Λ (cosωs− 1) + xi

]
cosωs+

1

ω

[
1

ω
Λ sinωs+ ai

]
sinωs

= xi cosφ+
1

ω
ai sinφ+

1

ω2
Λ (1− cosφ) ,

a (s) = −ω

[
1

ω2
Λ (cosωs− 1) + xi

]
sinωs+

[
1

ω
Λ sinωs+ ai

]
cosωs

= −ωxi sinφ+ ai cosφ+
1

ω
Λ sinφ.

Thus we obtain

xf = xi cosφ+R0ai sinφ+R0 (1− cosφ)
1 + η0
2 + η0

δi,

af = − 1

R0
xi sinφ+ ai cosφ+ sinφ

1 + η0
2 + η0

δi.

Finally we have to study the case of the time-of-flight part, which as we
said before can be obtained by mere integration. We have

lf =

∫ L

0

[
−h

1 + η0
2 + η0

x+
1

(2 + η0)
2 δ

]
ds+ li

=

∫ R0φ

0

[
−1 + η0
2 + η0

1

R0
xi cos

s

R0
− 1 + η0

2 + η0
ai sin

s

R0

−
(
1− cos

s

R0

)(
1 + η0
2 + η0

)2

δi +
1

(2 + η0)
2 δi

]
ds+ li

=

[
−1 + η0
2 + η0

xi sin
s

R0
+

1 + η0
2 + η0

R0ai cos
s

R0

+

(
1 + η0
2 + η0

)2

R0

(
sin

s

R0

)
δi −

(
1 + η0
2 + η0

)2

δis+
1

(2 + η0)
2 δis

]∣∣∣∣∣
R0φ

0

+ li

=− 1 + η0
2 + η0

xi sinφ+
1 + η0
2 + η0

R0ai (cosφ− 1)

+

(
1 + η0
2 + η0

)2

R0 (sinφ) δi − η0
2 + η0

R0φδi + li.

As a result, we see that all the final coordinates indeed depend on all initial
coordinates in a linear fashion, and hence the relationship can be written in
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terms of a transfer matrix. The general shape of this matrix is now⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xf

af

yf

bf

lf

δf

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosφ R0 sinφ 0 0 0 (x|δ)
− sinφ/R0 cosφ 0 0 0 (a|δ)

0 0 1 R0φ 0 0

0 0 0 1 0 0

(l|x) (l|a) 0 0 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi

ai

yi

bi

li

δi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.3)

where R0 and φ are the bending radius and the bending angle, and the ab-
breviated matrix elements are

(x|δ) = −(l|a) = 1 + η0
2 + η0

R0 (1− cosφ) , (a|δ) = −(l|x) = 1 + η0
2 + η0

sinφ,

(l|δ) = −R0

[
η0

2 + η0
φ−

(
1 + η0
2 + η0

)2

sinφ

]
.

We observe that the determinant of the matrix is unity. Note that, while
the y-b (vertical) motion is decoupled, the x-a (horizontal) and the l-δ (lon-
gitudinal) motions are coupled. Specifically, the x-a motion depends linearly
on δ.

The homogeneous dipole magnet we have considered so far has edges that
are perpendicular to the reference orbit. So the region where the magnetic
field is active corresponds to a sector of a circle, which is the reason such a
magnet is often referred to as a sector magnet.

4.3.2 Edge Focusing

When the reference particle enters and exits a sector dipole magnet, the or-
bit travels perpendicular to the entrance and the exit edges. When the magnet
edge is not perpendicular to the reference orbit, additional focusing and de-
focusing effects act on the beam, which is called edge focusing. The angle
difference from the perpendicular sector magnet case is called the edge angle.
Edge focusing is frequently used on purpose to modify the linear properties
of the motion, or as a consequence of convenience in manufacturing since it is
particularly simple to use a rectangular shape for the magnet, which leads to
the so-called parallel-faced dipole. We now study the effects of edge focusing
using the matrix form, and compare the result with the sector dipole.

We measure the edge angle α such that the rectangular dipole would have
positive edge angles. So, when α > 0, a particle that enters or exits the
magnet at a positive x location experiences a lesser amount of the bending
magnetic field compared to the reference particle. Compared to the sector
dipole magnet, this means that the edge line tilts inward for positive x as
shown in Fig. 4.2.
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α α

FIGURE 4.2: Entrance and exit edge lines of a dipole magnet with edge
angle α.

When the edge angle α is sufficiently small, the effect can be approximated
as an impulsive effect that changes only the horizontal and the vertical angles
of the particle orbit but does not affect position nor the longitudinal motion.
The impulsive style of treating such an effect is called “kick,” and the kick
approximation is sometimes used when studying beam optical systems in lin-
ear approximations in a similar way as it is in glass optics in the use of the
thin lens.

As we will explain in the following, in the kick approximation, the effect of
the edge angle α for the homogeneous dipole magnet acts to change only a
and b via

af = ai +
xi tanα

R0
, bf = bi − yi tanα

R0
, (4.4)

where R0 is the bending radius of the homogeneous magnet, and

1

R0
=

By0

χm0
.

The same expression applies to both the entrance edge and the exit edge.
Using the abbreviation

T = tanα/R0,

the matrices of the horizontal (x) and the vertical (y) kicks by the edge angle
α are described as

M̂ ed
x =

(
1 0
T 1

)
, M̂ ed

y =

(
1 0

−T 1

)
.

Recalling the situation of thin glass lenses, when α > 0, the vertical kick
acts to focus the beam, and the horizontal kick acts to defocus. Combining
the horizontal and the vertical kicks, the effect of the edge is that of a thin
quadrupole of the strength −T, where always one of the directions experiences
focusing, and the other defocusing. When the sign of α is opposite, the effect
also becomes opposite.
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α

α

β

α

FIGURE 4.3: Mechanism of edge focusing for the horizontal plane (left)
and the vertical plane (right).

We use a geometric argument to explain the horizontal kick. For the vertical
kick, we use a step function to model By, and use Maxwell’s equation to derive
Bx which affects the vertical motion.

We have a homogeneous bending magnet with the entrance edge line tilted
by the edge angle α as shown in the left picture of Fig. 4.2. Using the standard
step function H, also often referred to as the Heaviside function, the vertical
field component By can be expressed as

By(x, y, s) = By0H(s− x tanα),

where By0 is the constant field of the main part of the dipole. The Heaviside
step function H is related to the Dirac delta function δ as

H(x) =

∫ x

−∞
δ(x̄)dx̄ =

{
1 for x > 0

0 for x < 0
,

δ(x) =

{
+∞ for x = 0

0 for x �= 0
,

∫ ε

−ε

δ(x) = 1 for any ε > 0. (4.5)

The By expressed above is of course an idealized situation. In reality there
is no magnetic field that can fulfill the above expression while satisfying
Maxwell’s equations.

Now consider a particle approaching to the entrance of the magnet paral-
lel to the reference orbit, but positioned at x. As seen in the left picture of
Fig. 4.3, the entering of this particle is delayed by the distance x tanα. In
the meantime, the reference particle travels through the magnet for this much
of arc length, experiencing a deflection angle amounting to β = x tanα/R0.
When observing the situation in the particle optical coordinates that are at-
tached to the reference particle’s motion, the particle of interest located at
the position x appears to have experienced a change in the direction of mo-
tion by +x tanα/R0. Note that the picture in Fig. 4.3 is drawn exaggerated



The Linearization of the Equations of Motion 79

to emphasize the relevant points. The same explanation applies to the situ-
ation at the exit, where the change in the traveling direction appears to be
+x tanα/R0. Thus, the formula for af in eq. (4.4) has the +xi tanα/R0 term
for both the entrance edge and the exit edge.

Next we consider the equation for b′ in the set of equations of motion (3.22),
and observe that the Bx term is the leading term to affect the vertical motion.
As seen in Fig. 4.1, there exists a non-vertical field component around the
edges of the magnet off the midplane, i.e., when y �= 0. Also, see the right
picture in Fig. 4.3. From Maxwell’s equations (3.2), we have the relation

∂Bx

∂y
=

∂By

∂x
,

and using this, we can derive Bx as

Bx(x, y, s) =

∫
∂By

∂x
dy =

∫ [
∂

∂x
By0H(s− x tanα)

]
dy

= −By0 tanαδ(s− x tanα) · y.
Thus, the equation for b′ of (3.22) becomes

b′ =
Bx

χm0
= −By0

χm0
tanαδ(s − x tanα) · y,

and in the impulsive or kick approximation we obtain

bf = bi − By0

χm0
tanα

∫
δ(s− x tanα)ds · yi = bi − tanα

R0
yi.

Now, at the exit side, having the opposite sign for the step function, By is
expressed as

By(x, y, s) = By0H(−s− x tanα),

resulting in
Bx(x, y, s) = −By0 tanαδ(−s− x tanα) · y.

And, we obtain the same result as for the entrance case, namely

bf = bi − By0

χm0
tanα

∫
δ(−s− x tanα)ds · yi = bi − tanα

R0
yi.

We note that the rise of Bx is caused by the mere tilting of the edge line;
thus a longitudinal componentBs also exists, and it can be derived in a similar
fashion. But the Bs dependent term in the b′ equation of (3.22) also depends
on a, turning it to be a nonlinear term; thus we do not consider it for this
linear kick approximation. Another note is that in the homogeneous sector
dipole magnet, Bx does not exist because α = 0.

Since the rectangular dipole is rather commonly used, it is worthwhile to
calculate the total transfer matrix of a rectangular dipole by combining the
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edge focusing and the main part of the dipole using eq. (4.3). In this case,
the edge angles of the entrance and the exit are the same, namely half of the
bending angle and thus φ/2. We study the x-a-l-δ block and the y-b block
separately. Below, the abbreviation T = tan(φ/2)/R0 is used.

First, we calculate the combination of the main part and one edge for the
x-a-l-δ block:

M̂di
x M̂ ed

x =

⎛⎜⎜⎜⎝
cosφ R0 sinφ 0 (x|δ)di

− sinφ/R0 cosφ 0 (a|δ)di
(l|x)di (l|a)di 1 (l|δ)di
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0

T 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
cosφ+ TR0 sinφ R0 sinφ 0 (x|δ)di

− sinφ/R0 + T cosφ cosφ 0 (a|δ)di
(l|x)di + T (l|a)di (l|a)di 1 (l|δ)di

0 0 0 1

⎞⎟⎟⎟⎠ ,

where the (1, 1) and the (2, 1) components of the matrix multiplication are
simplified to 1 and −T as follows.

cosφ+ TR0 sinφ = cos2
φ

2
− sin2

φ

2
+ tan

φ

2
· 2 sin φ

2
cos

φ

2
= 1,

− sinφ/R0 + T cosφ = −T

[
2 sin

φ

2
cos

φ

2

/
tan

φ

2
− cos2

φ

2
+ sin2

φ

2

]
= −T.

So, we obtain the matrix of the x block as

M̂x = M̂ ed
x M̂di

x M̂ ed
x =

⎛⎜⎜⎜⎝
1 0 0 0

T 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 R0 sinφ 0 (x|δ)di
−T cosφ 0 (a|δ)di

(l|x)di + T (l|a)di (l|a)di 1 (l|δ)di
0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 R0 sinφ 0 (x|δ)di
0 1 0 T (x|δ)di + (a|δ)di

T (l|a)di + (l|x)di (l|a)di 1 (l|δ)di
0 0 0 1

⎞⎟⎟⎟⎠ ,

where the same simplification happened for the (2, 2) component, and

(x|δ)di = 1 + η0
2 + η0

R0 (1− cosφ) ,

(l|δ)di = −R0

[
η0

2 + η0
φ−

(
1 + η0
2 + η0

)2

sinφ

]
,
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and

T (x|δ)di + (a|δ)di = − [T (l|a)di + (l|x)di]
=

1

R0
tan

φ

2

1 + η0
2 + η0

R0 (1− cosφ) +
1 + η0
2 + η0

sinφ

=
1 + η0
2 + η0

[
tan

φ

2
(1− cosφ) + sinφ

]
=

1+ η0
2 + η0

· 2 tan φ

2
.

The matrix of the y-b block is

M̂y =

(
1 0

−T 1

)(
1 R0φ

0 1

)(
1 0

−T 1

)
=

(
1− TR0φ R0φ

−T (2− TR0φ) 1− TR0φ

)
,

where

1− TR0φ = 1− φ tan
φ

2
, −T (2− TR0φ) = − 1

R0
tan

φ

2

[
2− φ tan

φ

2

]
.

In summary, we obtain⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xf

af

yf

bf

lf

δf

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 R0 sinφ 0 0 0 (x|δ)
0 1 0 0 0 (a|δ)
0 0 1− φ tan (φ/2) R0φ 0 0

0 0 (b|y) 1− φ tan (φ/2) 0 0

(l|x) (l|a) 0 0 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi

ai

yi

bi

li

δi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the abbreviated matrix elements are

(b|y) = − 1

R0
tan

φ

2

[
2− φ tan

φ

2

]
,

(x|δ) = −(l|a) = 1 + η0
2 + η0

R0 (1− cosφ) , (a|δ) = −(l|x) = 1 + η0
2 + η0

· 2 tan φ

2
,

(l|δ) = −R0

[
η0

2 + η0
φ−

(
1 + η0
2 + η0

)2

sinφ

]
.

Note that the determinant of the matrix is unity, which also can be deduced
from that the determinant of all the contributing matrices is unity.

To conclude, let us compare the characteristic effects of the rectangular
dipole and the sector dipole in the limit of small deflection angle φ. The x-a
matrix and the y-b matrix of both dipoles can then be approximated as

Sector dipole: M̂xa →
(

1 R0φ
−φ/R0 1

)
, M̂yb →

(
1 R0φ
0 1

)
,

Rectangular dipole: M̂xa →
(
1 R0φ
0 1

)
, M̂yb →

(
1 R0φ

−φ/R0 1

)
.

Thus we have the interesting effect that the characteristic behavior in the
horizontal plane and the vertical plane is exchanged.
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FIGURE 4.4: An inhomogeneous sector magnet.

4.3.3 The Inhomogeneous Sector Magnet

In the case of an inhomogeneous sector, there is a magnetic field that is
constant in s-direction, but not constant in the x-direction; rather it has the
shape

By = By0 ·
(
1− n

x

R0

)
.

From the recursion relations for the fields, we infer that the corresponding
horizontal field is

Bx = −By0 · n y

R0
.

nb in eqs. (4.2) is nb = −n/R0, and h = 1/R0. In general terms, such a field
is obtained by changing the distance between what generates the fields (coils
or iron) as a function of x, similar to what is shown in Fig. 4.4 for the case
of n > 0.

We have the linearized equations of motion as

x′ = a, a′ = −
(
h2− By0

χm0

n

R0

)
x+ h

1 + η0
2 + η0

δ = −h2(1− n)x+ h
1 + η0
2 + η0

δ,

y′ = b, b′ = −By0

χm0

n

R0
y = −h2ny,

l ′ = −h
1 + η0
2 + η0

x+
1

(2 + η0)
2 δ, δ′ = 0.

We observe that the horizontal motion is similar to the case of the homoge-
neous sector dipole, except that the strength of focusing now also depends
on n, the field inhomogeneity. Different from the homogeneous sector dipole,
there is now an effect in the vertical direction, which can be either focusing
or defocusing, depending on the sign of n.

The solution of these equations of motion proceeds in the same way as
before, first solve the homogeneous system, then address the inhomogeneity
arising from δ via variation of parameters, and finally solve for l by a mere
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integration. In horizontal and vertical directions, the homogeneous solution
corresponds to harmonic oscillators with frequencies

ωx = h
√
1− n, ωy = h

√
n.

For 0 < n < 1, the magnet is focusing in both planes. An interesting case
occurs for n = 1/2, in which case the magnet focuses x and y identically and
represents a nice equivalent of the glass lens.

The remainder of the derivation is tedious algebra, and we will only list the
result here.⎛⎜⎜⎜⎜⎜⎜⎝

xf

af
yf
bf
lf
δf

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
(x|x) (x|a) 0 0 0 (x|δ)
(a|x) (a|a) 0 0 0 (a|δ)
0 0 (y|y) (y|b) 0 0
0 0 (b|y) (b|b) 0 0

(l|x) (l|a) 0 0 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
xi

ai
yi
bi
li
δi

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.6)

where

(x|x) = (a|a) = cos
(√

1− nφ
)
,

(x|a) = R0√
1− n

sin
(√

1− nφ
)
, (a|x) = −

√
1− n

R0
sin
(√

1− nφ
)
,

(y|y) = (b|b) = cos
(√

nφ
)
,

(y|b) = R0√
n
sin
(√

nφ
)
, (b|y) = −

√
n

R0
sin
(√

nφ
)
,

(x|δ) = −(l|a) = 1 + η0
2 + η0

R0

1− n

[
1− cos

(√
1− nφ

)]
,

(a|δ) = −(l|x) = 1 + η0
2 + η0

1√
1− n

sin
(√

1− nφ
)
,

(l|δ) = −R0

(
1 + η0
2 + η0

)2{[
1

1− n
− 1

(1 + η0)
2

]
φ− 1

(1− n)3/2
sin
(√

1− nφ
)}

,

and the determinant is unity.

4.3.4 The Inhomogeneous Electric Deflector

Rather commonly known is the motion of a particle in an electric capacitor.
Neglecting fringe fields, it follows a parabola as shown in Fig. 4.5. For particle
optical purposes, such an arrangement is not particularly suitable for two
reasons. Firstly, the reference orbit has a curvature that depends on s, which
makes the differential equations non-autonomous. Secondly, the potential
along the reference orbit changes with s, which complicates the dynamics.
Both of these problems do not appear if instead of a straight capacitor, one
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FIGURE 4.5: An electric capacitor consisting of two parallel plates. The
orbit of a particle is parabolic.

FIGURE 4.6: A concentric electric deflector.

chooses a curved one in such a way that the reference orbit is concentric
together with the plates as shown in Fig. 4.6.

To obtain the linearized equations of motion for such a device, we first
observe that

Ex0

χe0
= h

while �B = 0, and using eqs. (3.16),

χe0 =
p0v0
Ze

=
1

Ze
·mc

√
η0 (2 + η0) · c

√
η0 (2 + η0)

1 + η0
=

mc2

Ze

η0 (2 + η0)

1 + η0
.

We describe the linearized electric field using the field inhomogenuity n, sim-
ilar to the magnetic case, as

Ex = −Ex0 ·
(
1− n

x

R0

)
,

hence ne in eqs. (4.2) is given by ne = −n/R0, and h = 1/R0. The linearized
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equations of motion are

x′ = a, a′ = −h2

[
2− n+

1

(1 + η0)
2

]
x+ h

[
1 +

1

(1 + η0)
2

]
1 + η0
2 + η0

δ,

y′ = b, b′ = h2 (1− n) y,

l′ = −h
1 + η0
2 + η0

[
1 +

1

(1 + η0)
2

]
x+

1

(2 + η0)
2 δ, δ′ = 0.

Since the electrostatic deflectors are used primarily for low energy electrons
and ions (usually below 100 keV) due to the difficulty of achieving high static
voltages, the particles are non-relativistic, i.e., η0 � 1. As a result, the equa-
tions of motion can be simplified to a more familiar form

x′ = a, a′ = −h2 (3− n)x+ hδ,

y′ = b, b′ = −h2 (n− 1) y, l′ = −hx+
1

4
δ, δ′ = 0.

We observe that for 1 < n < 3, both x and y planes are focusing, differ-
ent from the case of quadrupoles where always one plane defocuses; but the
amount of focusing in the x and y planes is different. Indeed, similar to the
inhomogeneous dipole magnet, the transfer matrix is⎛⎜⎜⎜⎜⎜⎜⎝

xf

af
yf
bf
lf
δf

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
(x|x) (x|a) 0 0 0 (x|δ)
(a|x) (a|a) 0 0 0 (a|δ)
0 0 (y|y) (y|b) 0 0
0 0 (b|y) (b|b) 0 0

(l|x) (l|a) 0 0 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
xi

ai
yi
bi
li
δi

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

(x|x) = (a|a) = cos
(√

3− nφ
)
,

(x|a) = R0√
3− n

sin
(√

3− nφ
)
, (a|x) = −

√
3− n

R0
sin
(√

3− nφ
)
,

(y|y) = (b|b) = cos
(√

n− 1φ
)
,

(y|b) = R0√
n− 1

sin
(√

n− 1φ
)
, (b|y) = −

√
n− 1

R0
sin
(√

n− 1φ
)
,

(x|δ) = −(l|a) = R0

3− n

[
1− cos

(√
3− nφ

)]
,

(a|δ) = −(l|x) = 1√
3− n

sin
(√

3− nφ
)
,

(l|δ) = −R0

[(
1

3− n
− 1

4

)
φ− 1

(3− n)3/2
sin
(√

3− nφ
)]

,
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FIGURE 4.7: An electric deflector with cylindrical plates.

FIGURE 4.8: An electric deflector with spherical plates.

and the determinant is unity.
So far, no assumptions have been made about the vertical shapes of the

electrodes, and in fact a variety of choices exist. Two common situations are
the cylindrical plates and the spherical plates, as shown in Fig. 4.7 and Fig.
4.8, respectively.

In the case of the cylindrical field, we have from Gauss’ law that E ∝ 1/R,
which implies the expansion

Ex = −Ex0

R0

R0 + x
=1 −Ex0

(
1− x

R0

)
,

and hence corresponds to n = 1. The transfer matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xf

af

yf

bf

lf

δf

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(
√
2φ) (R0/

√
2) sin(

√
2φ) 0 0 0 (x|δ)

−(
√
2/R0) sin(

√
2φ) cos(

√
2φ) 0 0 0 (a|δ)

0 0 1 R0φ 0 0

0 0 0 1 0 0

(l|x) (l|a) 0 0 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi

ai

yi

bi

li

δi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

(x|δ) = −(l|a) = R0

2

[
1− cos

(√
2φ
)]

, (a|δ) = −(l|x) = 1√
2
sin
(√

2φ
)
,

(l|δ) = −R0

[
1

4
φ− 1

2
√
2
sin
(√

2φ
)]

.
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For φ = π/
√
2 = 127.28◦, the deflector is imaging in the horizontal plane,

which has been used as energy spectrometers.
In the spherical case, we have E ∝ 1/R2 and thus

Ex = −Ex0

(
R0

R0 + x

)2

=1 −Ex0

(
1− 2

x

R0

)
,

and n = 2. The transfer matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xf

af

yf

bf

lf

δf

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosφ R0 sinφ 0 0 0 (x|δ)
− sinφ/R0 cosφ 0 0 0 sinφ

0 0 cosφ R0 sinφ 0 0

0 0 − sinφ/R0 cosφ 0 0

− sinφ (l|a) 0 0 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi

ai

yi

bi

li

δi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

(x|δ) = −(l|a) = R0 (1− cosφ) , (l|δ) = −R0

(
3

4
φ− sinφ

)
.

When φ = π = 180◦, this deflector forms a simultaneous image in both plane,
also known as a stigmatic image. It has been and still is widely used as
an energy spectrometer. It is also called a hemispherical analyzer, which is
the main workhorse in the field of angle-resolved photoemission spectroscopy
(ARPES).

4.4 Round Lenses

We now address the important class of so-called round lenses, which owe
their name to their rotational symmetry along the beam axis. Electric round
lenses are usually made of arrangements of rotationally symmetric metallic
plates or tubes concentric with the reference orbit, each of which is held at
a certain potential; and magnetic round lenses are usually made of solenoids
carrying current and concentric with the reference orbit.

The rotational symmetry apparently entails that any fields in x and y di-
rections are equal, and Maxwell’s equations immediately show that this can
only happen if there are also fields in the direction of the axis, which requires
that the potential changes along the reference axis. Specifically, the potential
for the rotationally symmetric case is described in eq. (3.6), and is given by

V =2 V0 (s)− 1

4
V ′′
0 (s) r2 =2 V0 (s)− 1

4
V ′′
0 (s)

(
x2 + y2

)
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up to second order in r. Therefore, the electric field, linear in x and y, is given
by

Ex =1
1

2
V ′′
0 (s)x, Ey =1

1

2
V ′′
0 (s) y, Es =1 −V ′

0 (s) ,

where Ex and Ey can also be expressed in terms of Es as

Ex =1 −1

2
E′

s (s)x, Ey =1 −1

2
E′

s (s) y.

Fully analogously, we obtain in the magnetic case that

Bx =1
1

2
V ′′
0 (s)x, By =1

1

2
V ′′
0 (s) y, Bs =1 −V ′

0 (s) ,

where Bx and By can also be expressed in terms of Bs as

Bx =1 −1

2
B′

s (s)x, By =1 −1

2
B′

s (s) y.

We note that the expansion order listed in the subscript of the equal sign
here in this section only applies to the variables r, x, y, a, b and δ, while
the dependence on s is explicitly retained and not expanded. Fig. 3.3 shows
typical resulting electric and magnetic scalar potentials as well as the resulting
radial and axial fields for such cases.

Before embarking on detailed studies of the dynamics in electrostatic and
magnetic round lenses, we illustrate one of their important characteristics. We
determine the average radial electric or magnetic field along a straight line a
fixed distance r away from the center. We perform the averaging from −S to
S where S is chosen large enough that all fields vanish at ±S. We obtain∫ S

−S

Erds =

∫ S

−S

Brds

=

∫ S

−S

1

2
V ′′
0 (s) rds =

1

2
r [V ′

0(S)− V ′
0(−S)] = 0. (4.7)

So all radial field components average out to zero. This is in stark
contrast to for example the electric and magnetic quadrupoles or the combined
function bending magnets, where the integrand of the radial field is constant
throughout the integration.

Consider now the case of a thin round lens in which a particle does not
change position much, similar to the situation in the idealized thin lens. In
this case the average in the above field integrals will be responsible for the
directional offset the particle experiences, and so this offset is zero. Thus any
focusing action the particle may experience must come through secondary
effects and is the result of a then incomplete cancellation of radial field con-
tributions. This situation is sometimes referred to as weak focusing. These
effects will be studied in detail below for both the electrostatic and magnetic
cases.
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Since the case of rotationally symmetric s-dependent potential is not cov-
ered by the assumption used for the linearized equations of motion (4.2) de-
rived in the beginning of this chapter, we go back to the general equations of
motion (3.22) in Chapter 3. In this case, h = 0, and hence the set of equations
is given by

x′ =
p0
ps

a, a′ =
1 + η

1 + η0

Ex

χe0

p0
ps

− By

χm0
+

Bs

χm0

p0
ps

b,

y′ =
p0
ps

b, b′ =
1 + η

1 + η0

Ey

χe0

p0
ps

+
Bx

χm0
− Bs

χm0

p0
ps

a,

l ′ =
(

1 + η

1 + η0

p0
ps

− 1

)
κ

v0
, δ′ = 0, (4.8)

where

η = η0 (1 + δ)− ZeV

mc2
,

p0
ps

=

(
η (2 + η)

η0 (2 + η0)
− a2 − b2

)−1/2

,

κ

v0
= −1 + η0

2 + η0
, χm0 =

p0
Ze

, χe0 =
p0v0
Ze

.

In the following subsections, we study the two important regularly employed
classes of lenses, the magnetic round lens and the electric round lens. As we
will see, different from the cases of the electric and magnetic quadrupoles,
their focusing properties arise from different mechanisms, and the magnetic
and electric round lenses require a quite different treatment.

4.4.1 The Electrostatic Round Lens

Electrostatic round lenses are arrangements of metallic electrodes with ro-
tational symmetry that act as equipotential surfaces and thus determine the
on-axis potential. Electrostatic round lenses are frequently used in electron
microscopes and also in the shaping of low-energy beams near the source. For
a rotationally symmetric electrostatic lens, we have the electric field, linear in
x and y, given as

Ex =
1

2
V ′′
0 (s)x, Ey =

1

2
V ′′
0 (s) y, Es = −V ′

0 (s) ,

and the corresponding electrostatic potential

V = V0 (s)− 1

4
V ′′
0 (s)

(
x2 + y2

)
.
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Applying these to eqs. (4.8), we have

x′ =
p0
ps

a, a′ =
1 + η

1 + η0

1

χe0

p0
ps

1

2
V ′′
0 (s)x,

y′ =
p0
ps

b, b′ =
1 + η

1 + η0

1

χe0

p0
ps

1

2
V ′′
0 (s) y,

l ′ =
(

1 + η

1 + η0

p0
ps

− 1

)
κ

v0
, δ′ = 0. (4.9)

The x-a part and the y-b part are decoupled, and they have the same form,
so we only need to study one of them.

For the further study, it is convenient to express the a′ equation above
in various ways. Using the relation p/v = m (1 + η) from eq. (3.16) and
�v/v = �p/p because of �v ‖ �p, we can write

a′ =
1 + η

1 + η0

1

χe0

p0
ps

1

2
V ′′
0 (s)x =

1

2χe0

v0
vs

V ′′
0 (s)x. (4.10)

We note that in linearization, vs, the s component of �v, equals the velocity of
the reference particle. Furthermore we observe that the focusing effect rests
on the assumption that traveling through the potential leads to appreciable
changes in velocity, which, for practically achievable voltages, limits the use of
the effect to the near non-relativistic regime. So in the following we perform
our argument in the non-relativistic limit and have

v0
vs

=

√
2K0/m√
2K(s)/m

=

√
K0√

K0 − ZeV0(s)
.

Here K(s) denotes the momentary kinetic energy of the reference particle,
which of course changes as a function of position in the lens due to the change
of V0(s), whileK0 is the constant kinetic energy of the reference particle before
the round lens.

The above differential equations are all that is needed to determine the
transfer matrix for the linearized motion of an electrostatic round lens with
a certain potential distribution V0(s). However, in the following, we try to
obtain a better understanding of the situation, and in particular we show the
reasons why these lenses are generally focusing.

4.4.1.1 Hard Edge Fringe Fields

As a first step towards understanding the behavior of electrostatic round
lenses, we discuss the fringe field effects appearing in an abrupt transition into
a region of axial field from a field-free region. In practice this situation arises
when transitioning through a hole of small aperture in a large charged metal
plate. When passing through the plate leading to the idealized hard edge at
s = 0, Es and E′

s are expressed in terms of the Heaviside step function H and
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the Dirac delta function δ defined in eqs. (4.5) via

Es(s) = E0H(s), E′
s(s) = E0δ(s),

which in terms of potentials corresponds to

V0(s) = V − sE0H(s), V ′
0(s) = −E0H(s), V ′′

0 (s) = −E0δ(s),

where we assume that the transition happens at an initial potential V, and we
use the impulsive kick approximation in a similar manner as applied to the
dipole edge focusing in Section 4.3.2. The position x is unaffected over the
infinitely short transition at s = 0, and we obtain

af = ai +
xi

2χe0

∫ 0+

0−

√
K0√

K0 − ZeV0(s)
V ′′
0 (s) ds

= ai − xi
E0

2χe0

√
K0√

K0 − ZeV
= ai + xiα

√
K0√

K0 − ZeV
,

where we use the abbreviation

α = − E0

2χe0
.

In an analogous way we can treat the transition from a region with field E0

into a field free region, and obtain

Es(s̄) = E0H(−s̄), E′
s(s̄) = −E0δ(s̄),

where the exit is at s̄ = 0, so that we obtain

af = ai + xi
E0

2χe0

√
K0√

K0 − ZeV
= ai − xiα

√
K0√

K0 − ZeV
.

To summarize, the 2× 2 transfer matrices for (x, a) at the entrance and the
exit are given as

M̂ in =

(
1 0

α
√

K0/(K0 − ZeV ) 1

)
, M̂out =

(
1 0

−α
√
K0/(K0 − ZeV ) 1

)
,

(4.11)
where α = −E0/(2χe0) is used. We emphasize that V is the momentary value
of the potential, and V appearing in M̂ in may differ from that in M̂out.

Overall we have kick effects that, similar to other fringe field cases, leave
the position unaffected, but change the directions by an amount proportional
to position. For a particle of positive charge, stepping into a positive field
from a field free region leads to a focusing effect. Changing the sign of the
field or stepping out of a positive field leads to a defocusing effect.
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4.4.1.2 The Mechanism of Focusing

We now consider in a very general manner the situation of a weak or short
electrostatic lens. We observe that in eq. (4.7), one important effect has been
neglected, namely the fact that the particle necessarily gains and loses energy
as it travels through the lens. As a matter of fact, any transverse field bends a
particle more readily when it is applied where the particle has lower velocity.

Consider a weak lens that consists of a potential that in the region from
−S to +S is first constant, then rises, then plateaus, and then falls off to its
original constant value, similar to the case shown on the right in Fig. 3.3.
Necessarily the regions of positive second derivative appear near the minima
of the potential function, while the regions of negative second derivative cor-
respond to maxima of the potential function. So while traveling through the
lens, the particle is more sensitive to the focusing fields than to the defocusing
fields; and even though the focusing and defocusing portions cancel, the net
effect is that the orbit experiences focusing. To observe this quantita-
tively, we transform the integral in eq. (4.10) via integration by parts, and
obtain

af = ai+
xi

2χe0

√
K0√

K0 − ZeV0(s)
V ′
0 (s)

∣∣∣∣∣
S

−S

− xi

4χe0

∫ S

−S

√
K0ZeV ′

0(s)

[K0 − ZeV0(s)]
3
2

V ′
0 (s) ds.

The first term vanishes, and using χe0 = p0v0/(Ze), which non-relativistically
reduces to

χe0 =
2K0

Ze
, (4.12)

the expression takes the form

af = ai − 2xi

∫ S

−S

[
K0

K0 − ZeV0(s)

] 3
2 [

V ′
0(s)

2χe0

]2
ds.

Since the integrand involves only non-negative terms, the integral itself
is non-negative; and if there is any place where the potential on axis V0(s)
actually changes, then the integral is actually positive. Thus the change of a
is negative, corresponding to focusing.

As we have seen, other than restricting ourselves to a thin or weak lens,
this result has been obtained by mere manipulations of the integral without
any assumption of the specific form of V0(s) except for its constancy at ±S.
This is actually a small example of various similar manipulations that have
been developed in the past; for example one can show the focusing property
even in the extended case [60, 67]. More impressively, conceptually similar but
practically more involved arguments can be used to prove Scherzer’s theorems
[62] about signs of higher order aberrations.

The resulting formula can be used to obtain an approximation of the focal
length of a thin or weak electrostatic lens. However, other coordinates than
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our x and a are used frequently in the electron optics community; in particular,
the coordinate x is scaled to x̃ by a factor depending on the kinetic energy of
the particle. This leads to less change in the value of the position coordinate
x̃ as we travel through a lens. This nonlinear transformation leads to the
approximation of x̃=constant being better than that of x=constant, which in
turn leads to better estimates for focal length. There is a large amount of
work on this topic, but we forgo the details and refer to some of the literature
[56, 60, 67].

4.4.1.3 The Plate Lens

We now address a particular type of lens for which it is possible to derive
the transfer matrix analytically. We consider combinations of individual plates
placed perpendicular to the optical axis, each of which has a small hole in its
center through which the beam travels. Each of these plates represents a hard
edge fringe field as discussed above.

The plates are held at different potentials and form equipotential surfaces.
Assuming that the plates extend to infinity, the electric field between two
successive plates is that of a common plate capacitor, and it points in the
direction of the reference axis.

For any electrostatic lens it is desirable that the field far away vanishes.
Compared to the case of the hard edge fringe field, this requires the use of at
least two plates. Assuming the field between the plates to be E0 and their
distance to be S, i.e.,

Es(s) =

{
E0 for 0 ≤ s ≤ S
0 for s < 0, s > S

, (4.13)

the potential at the second plate is V = −SE0, and we have the potential
function

V0(s) =

⎧⎨⎩
0 for s < 0

−sE0 for 0 ≤ s ≤ S
−SE0 for s > S

.

The effects at s = 0 and s = S are merely those of hard edge fringe fields as
discussed before. It is worthwhile to point out that if V > 0, which entails
that E0 < 0, a particle of positive charge has lower energy at the second plate,
and thus is more susceptible to the transverse electric fields there. From the
discussion of hard edge fringe fields, we know that the transverse fields in
both places are of opposite sign but identical magnitude, thus the second
field, which happens to lead to focusing, has a more significant effect.

Using eqs. (4.11), we have the transfer matrices for the kicks at s = 0 and
s = S as follows. At s = 0, we have

V0(0) = 0, K(0) = K0, ps(0) = p0 =
√
2mK0, (4.14)
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and at s = S,

V0(S) = −SE0, K(S) = K0 + ZeSE0,

ps(S) = pS =
√
2m (K0 + ZeSE0).

Thus, we obtain the transfer matrices at s = 0 and s = S as

M̂0 =

(
1 0
α 1

)
, M̂S =

(
1 0

−α(p0/pS) 1

)
, (4.15)

where again the abbreviation

α = − E0

2χe0

is used.
In order to study the two-plate lens quantitatively, we need to still determine

the transfer matrix of the space between the plates. In this region, a charged
particle experiences uniform acceleration or deceleration without change in
transverse momentum, i.e., af = ai. However, the position changes in a similar
mechanism to that of a drift, but including the effect of the change of the
kinetic energy. For the region between the electrodes, we have from the x′

equation of (4.9), and using ps(s) =
√

2m (K0 − ZeV0(s)),

Δx = xf − xi = ai

∫ S

0

p0
ps(s)

ds = ai

∫ S

0

√
K0√

K0 + ZesE0

ds

= ai
2

ZeE0

√
K0

(√
K0 + ZeSE0 −

√
K0

)
= ai

2

ZeE0

p0 (pS − p0)

2m

= aiS · 2p0
pS + p0

= aiLS ,

where the following relation is used to simplify the last step,

p2S − p20 = 2m (K(S)−K0) = 2mZeSE0, (4.16)

and the abbreviation

LS = S · 2p0
pS + p0

is used. Thus the transfer matrix of the gap between the plates is

M̂g =

(
1 S · 2p0/(pS + p0)
0 1

)
=

(
1 LS

0 1

)
. (4.17)

We note that if there is no change in the kinetic energy and thus pS = p0, this
matrix agrees with the matrix of a drift with length S. On the other hand, if
the system is accelerating, we have LS < S, while for a decelerating system,
LS > S, reflecting the behavior expected from a simple geometric analysis.
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Combining the above matrices, we construct the transfer matrix of the
electrostatic round lens with two plates as the field described in eq. (4.13).

M̂ = M̂S · M̂g · M̂0 =

(
1 0

−α(p0/pS) 1

)(
1 LS

0 1

)(
1 0
α 1

)
=

(
1 + αLS LS

α [1− (p0/pS)(1 + αLS)] 1− αLS(p0/pS)

)
.

This is a rather compact representation of the matrix. However, to more
clearly observe the influence of the defining parameters V and S, we now also
express the matrix in terms of these quantities. We note that αLS can be
expressed in terms of momenta using eqs. (4.16), (4.12) and (4.14), and we
obtain

αLS = − E0

2χe0
· S 2p0

pS + p0
= −1

2

Ze

2K0

p2S − p20
2mZe

2p0
pS + p0

=
p0 − pS
2p0

. (4.18)

Using this, the elements of M̂ can be organized as

(x|x) = 1 + αLS =
3p0 − pS

2p0
,

(a|a) = 1− αLS
p0
pS

= 1 +
pS − p0
2pS

=
3pS − p0

2pS
,

(a|x) = α

[
1− p0

pS
(1 + αLS)

]
= α

(
1− p0

pS

3p0 − pS
2p0

)
= −3α

p0 − pS
2pS

= −3α2 p0
pS

LS ,

resulting in

M̂ =

(
(3p0 − pS)/(2p0) LS

−3α2LS(p0/pS) (3pS − p0)/(2pS)

)
. (4.19)

In this representation, it is obvious that the (a|x) element is always negative,
and thus we obtain the important conclusion that the two-plate lens always
focuses.

As observed above, the simplest plate lens leading to vanishing electric fields
at far distance required two plates. However, the potential after the two-plate
lens differs from the potential before. Thus, in order to achieve identical
potential before and after the lens, which is often desirable in practice, at
least three plates are necessary. So we consider a lens that consists of three
flat electrodes as shown in Fig. 4.9, where the axial electric field Es(s) and
the potential V0(s) are given as

Es(s) =

⎧⎨⎩
E0 for − S ≤ s ≤ 0

−E0 for 0 < s ≤ S
0 for |s| > S

,
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V0(s)

s

V

−S S0

FIGURE 4.9: Layout (top) and potential profile (bottom) of the electro-
static three-plate round lens.

and

V0(s) =

⎧⎨⎩
−sE0 + V for − S ≤ s ≤ 0
sE0 + V for 0 < s ≤ S
0 for |s| > S

,

and the potential V at the middle plate is given by

V = −SE0.

We observe that we can treat this system as a combination of two of the two-
plate electrostatic round lenses already discussed. For this purpose, we first
list the momenta at the plates. At s = ±S, we have

V0(±S) = 0, K(±S) = K0, ps(±S) = p0 =
√
2mK0,

and at s = 0, we have

V0(0) = V = −SE0, K(0) = K0 + ZeSE0,

ps(0) = pm =
√
2m (K0 + ZeSE0).

For purpose of clarification we note that if V > 0 as shown in Fig. 4.9, we
have that E0 < 0 and pm < p0.

The first half of this lens is simply the two-plate lens discussed above. Thus
from eq. (4.19), the transfer matrix for the left half of the system is

M̂L =

(
(3p0 − pm)/(2p0) LS

−3α2LS(p0/pm) (3pm − p0)/(2pm)

)
,
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where

α = − E0

2χe0
, LS = S · 2p0

pm + p0
.

The second half consists of the entrance kick with the momentary momen-
tum pm, the gap of length S connecting the two momentum states pm and
p0, and the exit kick with the momentary momentum p0, with the constant
electric field −E0 in the gap. The transfer matrices of these components turn
out to be M̂S, M̂g and M̂0 from eqs. (4.15) and (4.17), respectively, where
here we use pm instead of pS . So we obtain the transfer matrix for the right
half of the system as

M̂R = M̂0 · M̂g · M̂S =

(
1 0
α 1

)(
1 LS

0 1

)(
1 0

−α(p0/pm) 1

)
=

(
1− αLS(p0/pm) LS

α [1− (p0/pm)(1 + αLS)] 1 + αLS

)
=

(
(3pm − p0)/(2pm) LS

−3α2LS(p0/pm) (3p0 − pm)/(2p0)

)
.

We observe much similarity between M̂L and M̂R; the off-diagonal elements
are the same, and the diagonal elements are merely switched. The (a|x)
element of both M̂L and M̂R is always negative, thus both of the lens halves
always focus.

Finally, the calculation of the transfer matrix of the whole lens can be
conducted, where the similarity of M̂L and M̂R helps the arithmetic in the
process. We obtain

M̂T = M̂R · M̂L =

(
(a|a)L (x|a)L
(a|x)L (x|x)L

)(
(x|x)L (x|a)L
(a|x)L (a|a)L

)
=

(
(x|x)L(a|a)L + (x|a)L(a|x)L 2(a|a)L(x|a)L

(x|x)L(a|x)L (x|x)L(a|a)L + (x|a)L(a|x)L
)

=

(
1− (3/2)(p0 − pm)2/(p0pm) LS(3pm − p0)/pm

−3α2LS(3p0 − pm)/pm 1− (3/2)(p0 − pm)2/(p0pm)

)
,

where eq. (4.18) is used to simplify the result.
We now consider the focusing property of the three-plate lens. As before,

LS > 0, but we now have the factor 3p0 − pm determining the eventual sign
of (a|x). In case the magnitude of the voltage V is small compared to the
kinetic energy of the particle, the center momentum pm is similar to p0, and
so 3p0 − pm > 0. On the other hand, in cases of extreme voltage V leading to
large acceleration and large center momentum pm, it is conceivable to achieve
pm > 3p0. In this extreme case, the three-plate lens actually defocuses.

4.4.2 The Magnetic Round Lens

Magnetic round lenses are arrangements of wires wound equidistant to the
reference orbit, either in long arrangements similar to textbook-like solenoids
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with a large region of nearly constant axial fields, or in short or “thin” ar-
rangements where the field on axis rises, reaches a peak, and then falls off
again. Thin magnetic lenses are the main staple used for focusing in electron
microscopes, while long magnetic lenses are used in various particle accelera-
tors for guiding the beam, including applications in muon ionization cooling.
We have the magnetic field, linear in x and y, given as

Bx =
1

2
V ′′
0 (s)x, By =

1

2
V ′′
0 (s) y, Bs = −V ′

0 (s) ,

which is derived from the corresponding magnetic scalar potential

V = V0 (s)− 1

4
V ′′
0 (s)

(
x2 + y2

)
.

Different from the electrostatic potential in the case of the electrostatic round
lens, the magnetic potential does not enter the equations of motion directly.
So we simplify notation by not having it appear in the equations of motion,
and rather express the fields in terms of the axial center field Bs(s) as

Bx = −1

2
B′

s(s)x, By = −1

2
B′

s(s)y, Bs = Bs(s).

Applying this to eqs. (4.8), and linearizing in the similar process for eqs.
(4.2), we obtain

x′ = a, a′ = +
Bs

χm0
b+

1

2

B′
s

χm0
y,

y′ = b, b′ = − Bs

χm0
a− 1

2

B′
s

χm0
x, l′ =

1

(2 + η0)
2 δ, δ′ = 0. (4.20)

It is immediately apparent that the motion of the two planes are coupled,
which will lead to interesting properties. The longitudinal motion to first
order is the same with that of a drift, thus

lf = Dδi + li =
L

(2 + η0)
2 δi + li, δf = δi

with length L.
To study the transversal motion, we first express the equations of motion

(4.20) in vector notation. Using

�z =

(
x
y

)
, �c =

(
a
b

)
, Ĵ =

(
0 1

−1 0

)
,

we have

�z ′ = �c, �c ′ =
Bs

χm0
Ĵ�c+

B′
s

2χm0
Ĵ�z. (4.21)
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For a particle moving parallel to the s-axis without transversal momentum,
i.e., �ci = 0, the second term in the �c ′ equation, B′

s/(2χm0)·Ĵ�z, acts to produce
a nonzero transversal momentum. Typically, the situation of B′

s �= 0 happens
in the fringe field regions near the entrance and the exit, and it is the main
reason why particles entering parallel to the s-axis will follow a transversely
rotating motion inside the magnetic round lens.

In the following, we will employ a dual approach in understanding the
motion of particles in the magnetic round lens. The quantitative approach
will be based on studying the equations of motion and solving them for certain
specific cases. But equally important is the qualitative understanding of where
the focusing effects of a magnetic round lens really come from.

4.4.2.1 Hard Edge Fringe Fields

We first discuss the fringe field effects appearing in an abrupt transition into
a region of axial field from a field-free region. In practice this situation arises
at the edge of a solenoid of very small radial aperture. We use the impulsive
kick approximation in a similar manner as applied to the dipole edge focusing
in Section 4.3.2. When entering into the solenoid of the constant field strength
B0 at the idealized hard edge at s = 0, Bs and B′

s are expressed in terms of
the Heaviside step function H and the Dirac delta function δ defined in eqs.
(4.5) via

Bs(s) = B0H(s), B′
s(s) = B0δ(s),

where the entrance lies at s = 0. Applying them to the equations of motion
(4.21), we obtain

�cf = �ci +

∫ 0+

0−

[
B0H(s̄)

χm0
Ĵ�ci +

B0δ(s̄)

2χm0
Ĵ�zi

]
ds̄ = �ci +

B0

2χm0
Ĵ�zi,

while �z is unaffected. Altogether we obtain the transformation relations be-
tween the initial conditions �zi and �ci and the final conditions �zf and �cf for
such an idealized thin edge as

�zf = �zi, �cf = �ci +
B0

2χm0
Ĵ�zi. (4.22)

At the exit the same effect happens, but with an opposite sign of B′
s, because

we now have
Bs(s̄) = B0H(−s̄), B′

s(s̄) = −B0δ(s̄)

where the exit is at s̄ = 0, so that we obtain

�zf = �zi, �cf = �ci − B0

2χm0
Ĵ�zi. (4.23)

Overall we have kick effects that similar to other fringe field cases leave the
position unaffected, but change the directions by an amount proportional to
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x
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x1 x2 x3

r1r2r3

FIGURE 4.10: Transversal motion of particles entering at positions xi

initially parallel to the reference axis in the magnetic solenoid. After crossing
the fringe fields, the particles execute rotations with radii ri equaling half of
their entrance position.

position. However, very different from the case of the electrostatic round lens,
this change in direction in itself is neither focusing nor defocusing but rather
happens in azimuthal direction, perpendicular to the radial direction.

4.4.2.2 The Mechanism of Focusing

Since the action of fringe fields in the transition into axial magnetic fields
leads to azimuthal kicks, one is led to wonder where any focusing effects may
arise from. We consider an incoming beam where all trajectories are paral-
lel to the reference axis, i.e., �ci = 0. Furthermore, because of the rotational
symmetry, it is sufficient to limit our attention to a particle starting on the hor-
izontal axis, which means �zf = �zi = (xi, 0) in eqs. (4.22). After having moved
through the fringe field, the particle has now picked up a velocity component
in the negative y direction via �cf = (B0/2χm0)Ĵ�zi = (B0/2χm0)(0,−xi).

We assume that the particle travels for a while in the constant magnetic
field B0. In this field, it performs a rotation due to the nonzero transversal
velocity picked up in the fringe field, which is vt = (B0/2χm0)xiv0. The radius
of this rotational motion is given by

r =
γmvt
ZeB0

=
γm

ZeB0
· B0

2χm0
xiv0 =

1

2
xi,

where χm0 = p0/Ze = γmv0/Ze is used. So the rotation radius is exactly half
of the radial entrance position of the particle. As it turns out, the factor of
1/2, which can be traced back to the fact that the radial derivative ∂Bx/∂x =
−1/2·B′

s(s) is only half of that in the axis direction, will be the key mechanism
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to focusing.
We illustrate the resulting motion in Fig. 4.10, which shows the resulting

transversal orbits for six particles on both sides of the origin that were initially
moving parallel to the axis of the solenoid without any transverse motion.
Each of these particles performs a circular motion with a radius that equals
half of its entrance position. In particular this entails that the particles do not
have concentric orbits like in a cyclotron, but rather that after a half period
of their oscillations, all these particles will pass through the exact center of
the device.

This observation now leads to focusing; on their path from their initial
position xi to the position x = 0 after a half period, each particle loses distance
to the axis and is thus focused.

We further observe that all particles rotate with the same angular frequency
given by

ωc =
vt
r

=
Ze

γm
B0.

This entails that all initially parallel particles reach the origin at the same
time, and also that the relative loss of distance to the axis is the same. So the
speed with which they move towards the origin is proportional to their initial
position, and it is a hallmark of thin lens focusing.

The picture suggests another interesting feature; initially axis-parallel par-
ticles that are on a common line upon entering remain on a common line,
shown dashed in Fig. 4.10, in their further motion through the region of
constant magnetic field. Elementary geometry shows that this is actually the
case: by connecting any particle in Fig. 4.10 (dot) and the corresponding
center of its orbit (cross), we can see immediately that the angle between the
dashed line and the x-axis is always half of that between the radius and the
x-axis. We further observe that when the particles reach the origin and have
performed a half revolution around their orbits, the dashed line will coincide
with the vertical axis, and thus will have performed a quarter revolution; in
fact elementary geometry shows that the dashed line performs a rotation with
one half of the rotational frequency of particles.

4.4.2.3 The Rotating Coordinate System

These observations of the idealized case now motivate the treatment of the
general case, in which fields do not jump abruptly but rather gently depend
on s. In this case the appearing momentary rotation frequencies of both the
particles as well as a possible suitable rotating coordinate system are not
constant but will change with the position s. Thus, we attempt the Ansatz of
introducing new variables �Z that describe the motion in a rotating coordinate
system via

�z(s) = R̂(θ(s)) · �Z(s), (4.24)

and we will arrive at the expected result at eqs. (4.28). Here, R̂(θ) is a
rotation matrix, and for the further discussion, the following matrix properties
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are useful:

Ĵ · Ĵ = −Î , where Î =

(
1 0
0 1

)
and Ĵ =

(
0 1

−1 0

)
,

R̂(θ) =

(
cos θ − sin θ
sin θ cos θ

)
= cos θ · Î − sin θ · Ĵ , and R̂−1(θ) = R̂(−θ),

Ĵ · R̂(θ) = R̂(θ) · Ĵ =

(
sin θ cos θ

− cos θ sin θ

)
= sin θ · Î + cos θ · Ĵ ,

dR̂(θ)

dθ
= −

(
sin θ cos θ

− cos θ sin θ

)
= −ĴR̂(θ), and

dR̂(θ)

ds
= −θ′ĴR̂(θ).

(4.25)

Similar to the definitions of �z and �c, we denote the new rotating variables �Z
and �C as

�Z =

(
X
Y

)
, �C =

(
A
B

)
,

and define �C as the first derivative of �Z with respect to s

�C(s) = �Z ′(s) =
d�Z(s)

ds
.

Note that this does not automatically entail �c = R̂ · �C. Rather, �c differs from
R̂ · �C as we will see now. By computing the derivative of eq. (4.24), we express

�c(s) in terms of R̂, �Z and �C.

�c(s) = �z ′(s) =
dR̂(θ)

ds
�Z(s) + R̂(θ)�Z ′(s) = −θ′ĴR̂(θ)�Z(s) + R̂(θ)�C(s). (4.26)

In turn, this allows us to express �C(s) in terms of �z and �c.

�C(s) = R̂−1(θ) ·
[
�c(s) + θ′ĴR̂(θ)�Z(s)

]
= R̂(−θ)�c(s) + θ′Ĵ R̂(−θ)�z(s),

where eqs. (4.24) and (4.25) are used. Next, we calculate the derivative of
�C(s), expressed in terms of �z and �c.

�C ′(s) =
dR̂(−θ)

ds
�c(s) + R̂(−θ)�c ′(s)

+ θ′′ĴR̂(−θ)�z(s) + θ′Ĵ
dR̂(−θ)

ds
�z(s) + θ′ĴR̂(−θ)�z ′(s)

=
(
θ′′Ĵ − θ′2Î

)
R̂(−θ)�z(s) + 2θ′ĴR̂(−θ)�c(s) + R̂(−θ)�c ′(s),

where the relations (4.25) and �c = �z ′ are used.



The Linearization of the Equations of Motion 103

We now insert the equation of motion (4.21) for �c ′ above, and express �C ′(s)
in terms of �Z and �C using eqs. (4.24) and (4.26).

�C ′(s) =
(
θ′′Ĵ − θ′2Î

)
R̂(−θ)�z(s) + 2θ′ĴR̂(−θ)�c(s)

+ R̂(−θ)

[
Bs

χm0
Ĵ�c(s) +

B′
s

2χm0
Ĵ�z(s)

]
=

[(
θ′′ +

B′
s

2χm0

)
Ĵ − θ′2Î

]
R̂(−θ)�z(s) +

(
2θ′ +

Bs

χm0

)
ĴR̂(−θ)�c(s)

=

[(
θ′′ +

B′
s

2χm0

)
Ĵ − θ′2Î + 2θ′

(
θ′ +

Bs

2χm0

)
Î

]
�Z(s)

+ 2

(
θ′ +

Bs

2χm0

)
Ĵ �C(s),

where the relations (4.25) are used.

The resulting equation of motion for �C looks rather complicated, but a
closer inspection shows the same factor appearing repeatedly. Indeed, if we
demand

θ′ +
Bs

2χm0
= 0,

which is equivalent to

θ(s) = −
∫ s

0

Bs(s̄)

2χm0
ds̄, (4.27)

the equation for �C ′(s) greatly simplifies to

�C ′(s) = −θ′2 �Z(s).

This means that the motions of the two coordinates of the vectors �Z and
�C fully decouple, and we hence have the following simple set of first order
differential equations to describe the motion of �Z(s) :

�Z ′(s) = �C(s), �C ′(s) = −θ′2 �Z(s) = −
(
Bs(s)

2χm0

)2

· �Z(s). (4.28)

So the motion in the rotating system is like a harmonic oscillator with
varying strength, which is given by the square of the angular frequency θ′

of the rotation of the coordinate system, which itself is proportional to the
longitudinal field Bs(s). It is a quite remarkable and yet simple result that
fully describes the linearized motion in the magnetic round lens.

We note that, as a consequence, a short magnetic solenoid is focusing,
and the focusing power is proportional to θ′2 ∝ 1/χ2

m0 ∝ 1/p20, whereas that
of a magnetic quadrupole is proportional to 1/χm0 ∝ 1/p0. Therefore the
advantage of using magnetic quadrupoles compared to magnetic round lenses
becomes more pronounced for beams of higher momentum.
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4.4.2.4 The Solenoid with Hard Edge Fringe Fields

We now study an idealized long solenoid with vanishing field outside and
with a constant interior field of

Bs(s) = B0, Bx = By = 0.

We begin the discussion with the observation that the form of the equation
of motion (4.28) entails that the quantities �Z and �C vary continuously even
when passing through a hard edge fringe field. In fact, different from the
situation for �z and �c, there are no delta functions appearing which led to the
discontinuities in eqs. (4.22) and (4.23). So in both the entrance and the exit
of the hard edge fringe field, instead of eqs. (4.22) and (4.23), we simply have

�Zf = �Zi, �Cf = �Ci. (4.29)

Assuming that the beginning edge of the solenoid is located at s = 0, we
have that

θ(s) = − B0

2χm0
s, θ′ =

dθ

ds
= − B0

2χm0
(constant).

The angular frequency θ′ is now constant on the inside, and we use the ab-
breviation

ω = − B0

2χm0
(constant).

Thus we obtain a simple harmonic oscillator solution for �Z. Using the initial
conditions �Z0 and �C0, we have

�Z(s) = cos(ωs)�Z0 +
1

ω
sin(ωs)�C0,

�C(s) = −ω sin(ωs)�Z0 + cos(ωs)�C0. (4.30)

Now this solution has to be expressed in terms of the original coordinates �z
and �c.

We begin by observing that outside the beginning of the solenoid, we simply
have

�Zi = �zi, �Ci = �ci. (4.31)

Next, because of eqs. (4.29), even just after entering the solenoid, we have
�Zi = �zi, �Ci = �ci. In the solenoid itself, the quantities �Z and �C change accord-
ing to eqs. (4.30) until the end of the solenoid is reached, where they have

the values �Z(L) and �C(L). When exiting the solenoid, �Z and �C again remain
unchanged because of eqs. (4.29). In the outside region, there is no field left,
so in eqs. (4.24) and (4.26) we have θ′ = 0, thus the transformation equations
simplify to

�z(L) = R̂(ωL) · �Z(L), �c(L) = R̂(ωL) · �C(L). (4.32)
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We now combine the various matrices and use ϕ = ωL.We obtain the result-
ing 4× 4 transfer matrix M̂out-int-in of the solenoid of length L for (x, a, y, b),
representing first entering into the solenoid, then passing through its interior,
and then exiting out of the solenoid, as a combination of eqs. (4.31), (4.30)
and (4.32):

M̂out-int-in = R̂(ϕ) · M̂HO(ϕ)

=

⎛⎜⎜⎝
cos2 ϕ sinϕ cosϕ/ω − sinϕ cosϕ − sin2 ϕ/ω

−ω sinϕ cosϕ cos2 ϕ ω sin2 ϕ − sinϕ cosϕ
sinϕ cosϕ sin2 ϕ/ω cos2 ϕ sinϕ cosϕ/ω
−ω sin2 ϕ sinϕ cosϕ −ω sinϕ cosϕ cos2 ϕ

⎞⎟⎟⎠, (4.33)

where we used the 4× 4 matrices for the harmonic oscillator solution

M̂HO(ϕ) =

⎛⎜⎜⎝
cosϕ sinϕ/ω 0 0

−ω sinϕ cosϕ 0 0
0 0 cosϕ sinϕ/ω
0 0 −ω sinϕ cosϕ

⎞⎟⎟⎠ , (4.34)

and for the rotation

R̂(ϕ) =

⎛⎜⎜⎝
cosϕ 0 − sinϕ 0
0 cosϕ 0 − sinϕ

sinϕ 0 cosϕ 0
0 sinϕ 0 cosϕ

⎞⎟⎟⎠ . (4.35)

We observe that these matrices commute, i.e., M̂HO · R̂ = R̂ · M̂HO, which
helps simplify the matrix arithmetic here and below.

We note that the matrix M̂out-int-in has unit determinant since both the
harmonic oscillator solution matrix M̂HO and the subsequent rotation R̂ do.
It is also easy to show that the longitudinal angular momentum is conserved,
because

�zf × �cf = �z(L)× �c(L) = (R̂(ωL) · �Z(L))× (R̂(ωL) · �C(L)) = �Z(L)× �C(L)

=

(
cosϕ�Zi +

1

ω
sinϕ�Ci

)
×
(
−ω sinϕ�Zi + cosϕ�Ci

)
= �Zi × �Ci

= �zi × �ci.

Now we may wonder what happens if we study the motion not only from
the field free regions before to the field free region after the solenoid. For
this purpose, we first remind ourselves of the 4 × 4 transfer matrices of the
entrance and the exit edges, which according to eqs. (4.22) and (4.23) are

M̂ in =

⎛⎜⎜⎝
1 0 0 0
0 1 −ω 0
0 0 1 0
ω 0 0 1

⎞⎟⎟⎠ , M̂out =

⎛⎜⎜⎝
1 0 0 0
0 1 ω 0
0 0 1 0

−ω 0 0 1

⎞⎟⎟⎠ .
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We observe (M̂out)−1 = M̂ in, and both of the matrices have determinant 1.

We discussed the behavior of the edges in Section 4.4.2.2, and we can now
determine the change in the longitudinal angular momentum across the edges.
At the entrance edge, using eqs. (4.22),

�zf × �cf = �zi × (�ci − ωĴ�zi) = �zi × �ci − ω�zi × (Ĵ�zi)

= �zi × �ci − ω

(
xi

yi

)
×
(

yi
−xi

)
= �zi × �ci + ω

(
x2
i + y2i

)
�es = �zi × �ci + ωr2i �es,

where �es is the longitudinal unit vector. Thus the amount of angular momen-
tum generated is ωr2i at the entrance and −ωr2i at the exit.

The transfer matrices for various situations below can be obtained by com-
bining M̂out-int-in, M̂ in, M̂out, and their inverse matrices. The transfer matrix
of the interior part is obtained by removing the entrance and the exit matrices
from M̂out-int-in as (M̂out)−1 · M̂out-int-in · (M̂ in)−1, and we obtain

M̂ int =

⎛⎜⎜⎝
1 sinϕ cosϕ/ω 0 − sin2 ϕ/ω
0 cos(2ϕ) 0 − sin(2ϕ)
0 sin2 ϕ/ω 1 sinϕ cosϕ/ω
0 sin(2ϕ) 0 cos(2ϕ)

⎞⎟⎟⎠ .

The determinant is again 1. Interestingly, the longitudinal angular momentum
is not conserved in general when going through the interior, and the amount
of the change is ω(r2f − r2i ).

When the particles start inside the solenoid and then exit, which typically
happens when the particles are “born” inside the solenoid, we obtain M̂out-int

by removing the entrance matrix from M̂out-int-in, i.e., M̂out-int-in · (M̂ in)−1,
or equivalently adding the exit matrix to M̂ int, i.e., M̂out · M̂ int, as

M̂out-int =

⎛⎜⎜⎜⎝
1 sinϕ cosϕ/ω 0 − sin2 ϕ/ω

0 cos2 ϕ ω − sinϕ cosϕ

0 sin2 ϕ/ω 1 sinϕ cosϕ/ω

−ω sinϕ cosϕ 0 cos2 ϕ

⎞⎟⎟⎟⎠ ,

which again has determinant 1. As discussed above, while M̂out-int-in conserves
the longitudinal angular momentum, M̂ in does not, thus the longitudinal an-
gular momentum changes in the process.

Finally, when the particles enter into the solenoid and remain inside, we
have M̂ int-in of the form

M̂ int-in =

⎛⎜⎜⎝
cos2 ϕ sinϕ cosϕ/ω − sinϕ cosϕ − sin2 ϕ/ω

−ω sin(2ϕ) cos(2ϕ) −ω cos(2ϕ) − sin(2ϕ)
sinϕ cosϕ sin2 ϕ/ω cos2 ϕ sinϕ cosϕ/ω
ω cos(2ϕ) sin(2ϕ) −ω sin(2ϕ) cos(2ϕ)

⎞⎟⎟⎠
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as a result of removing the exit matrix from M̂out-int-in, i.e., (M̂out)−1 ·
M̂out-int-in. Again the determinant is 1, and the longitudinal angular momen-
tum changes.

We conclude our discussion with a more detailed comparison of the treat-
ment of the solenoid with the results of the electrostatic round lenses. We
note the similarity between the solenoid including entrance and exit fringe
fields and the two-plate electrostatic lens. Indeed, the magnetic scalar poten-
tial, expressed in terms of the angle θ in eq. (4.27), has risen steadily inside
the solenoid and is reaching a plateau outside of the solenoid, just as the
electrostatic potential rose steadily between the plates of the two-plate lens.

It is thus illuminating to study the case of two solenoids of equal length and
opposite strength, which will lead to a vanishing magnetic potential change
at the end of the second solenoid, and conceptually corresponds to the elec-
trostatic three-plate lens. In that case, the fact that the potential returns to
its original constant value entailed that the particle’s energies are the same
as before. Here by virtue of eq. (4.27), we obtain that the net rotation of the
system is zero.

To be quantitative, we can obtain the transfer matrix of this system by com-
bining those of two opposite solenoids with hard edges. We remind ourselves
that the solenoid transfer matrix in eq. (4.33) was obtained as the product

M̂1 = R̂(ϕ) · M̂HO(ϕ)

of the matrices R̂(ϕ) and M̂HO(ϕ) defined in eqs. (4.35) and (4.34). So the
transfer matrix of a solenoid of opposite field is simply given by

M̂2 = R̂(−ϕ) · M̂HO(−ϕ).

Now we can use the fact that R̂(ϕ) and M̂HO(ϕ) commute as noted above,
and obtain for the combined matrix

M̂ = M̂2 · M̂1 = R̂(−ϕ) · M̂HO(−ϕ) · R̂(ϕ) · M̂HO(ϕ)

= R̂(−ϕ) · R̂(ϕ) · M̂HO(−ϕ) · M̂HO(ϕ) = M̂HO(2ϕ),

where we have used that R̂(ϕ)−1 = R̂(−ϕ) and M̂HO(−ϕ) = M̂HO(ϕ). So
indeed any rotation is removed, the x and y motion are fully decoupled, and
correspond to a simple harmonic oscillator that is equal to that of a solenoid
of twice the original length.

4.5 *Aberration Formulas

In the previous sections we have discussed in detail the linearization of the
motion in particle optical coordinates, and the resulting transfer matrices for
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common particle optical elements. However, in general the motion is not
linear, and in many situations it is important to take into account various
contributions of the nonlinear effects.

Unfortunately, as straightforward as the determination of linear transfer
matrices is in many cases, the determination of nonlinear terms, especially
those of higher order, becomes exceedingly more difficult using paper and
pencil methods. In the following we will describe a general method that
in principle allows the recursive determination of aberrations of higher and
higher orders, but which in practice quickly succumbs to a rapid increase in
complexity for higher orders.

Let us assume we are given the system described by the following ordinary
differential equation (ODE)

d

ds
�r = �f (�r, s) ,

which satisfies �f(�0, s) = �0. We perform a Taylor expansion of the right hand
side. Because the system is origin preserving, the first contribution is linear,
and altogether we have

d

ds
�r = M̂(s) · �r +

∞∑
j=2

�Nj(�r, s),

where the �Nj are polynomials of exact order j, the coefficients of which may
depend on s.

The first step in obtaining a perturbative solution of the system is a lin-
earization as in the previous sections. We have

d

ds
�r = M̂(s) · �r.

For this system, we determine a system of n independent solutions �lk (s) ,
k = 1, . . . , n, that satisfy the initial condition

�lk(0) = (0, 0, . . . , 1︸︷︷︸
kth

, . . . 0, 0)T .

We define the matrix

L̂(s) =
(
�l1 (s) ,�l2 (s) , . . . ,�ln (s)

)
,

and observe that the general solution of the linearized problem with initial
condition �ri is then given by

�r (s) = L̂(s) · �ri.
In practice, the determination of L̂ may be possible in closed form, depend-

ing on the structure of M̂, or may have to rely on numerical integration. For
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the special case that M̂ is piecewise constant, then for every such piece,
one can try the ansatz �lk = �vk · exp(ωks), which leads to the condition

ωk�vk exp(ωks) = M̂ · �vk exp(ωks),

an eigenvector problem. If M̂ has n distinct eigenvalues, we are done, and
depending on whether ωk is real or complex, the solutions can also be ex-
pressed in terms of sin, cos or sinh, cosh . In case of multiple eigenvalues,
often solutions of the form s · sin, etc., can be found.

The next step consists of an expansion of �r(s) in a Taylor polynomial

�r (s) = L̂(s) · �ri +
∞∑
j=2

�Rj (s, �ri) ,

where �Rj denotes a polynomial of exact order j in the initial conditions, the
coefficients of which may depend on s. We insert this expansion into the ODE
and obtain

d

ds
L̂(s) · �ri +

∞∑
j=2

d

ds
�Rj (s, �ri)

= M̂(s) · L̂(s) · �ri + M̂(s) ·
∞∑
j=2

�Rj (s, �ri) +

∞∑
j=2

�Qj(s, L̂, �Rk),

where �Qj ’s (j ≥ 2) are polynomials of exact order j in �r, which result from

inserting �r into �Nj ’s. This insertion leaves no linear or constant parts, which
is due to the fact that the ODE is origin preserving. This will prove crucial
later in the algorithm for the solution.

We now sort the result by order. The linear part has the form

d

ds
L̂(s) = M̂(s) · L̂(s), (4.36)

and the higher order parts, j ≥ 2, assume the form

d

ds
�Rj (s, �ri) = M̂(s)�Rj (s, �ri) + �Qj(s, L̂, �Rk), (4.37)

where �Qj contains only �Rk with k < j. So for j = 2, 3, . . . , we obtain a
triangular system of ODEs. It can be solved iteratively in an order-by-
order manner, and then each of the differential equations for �Rj contains

only lower order terms �Rk that are already known. In this way, the ODEs
decouple and become inhomogeneous.

Initially at s = 0, we have the initial condition �r(0) = �ri, and

L̂(0) = Î , �Rj (0, �r) = �0 for all j = 2, 3, . . . .
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In order to solve the inhomogeneous eq. (4.37) of order j, we first deter-
mine the homogeneous solution, and then perform a so-called variation of
parameters. The homogeneous solution is exactly the same form as for the
linearized part. To obtain the inhomogeneous solution, we make the ansatz
�Rj(s) = L̂(s) · �T (s). Then

d

ds
�Rj =

(
d

ds
L̂(s)

)
· �T (s) + L̂(s) · d

ds
�T (s) .

Using eq. (4.36), the first term in the right hand side is(
d

ds
L̂(s)

)
· �T (s) = M̂(s) · L̂(s) · �T (s) = M̂(s) · �Rj(s).

Thus, from eq. (4.37), we obtain

L̂(s) · d

ds
�T (s) = �Qj(s, L̂, �Rk),

that is

�T (s) =

∫ s

0

L̂−1(s̄) �Qj(s̄, L̂, �Rk)ds̄, (4.38)

where the choice of the lower integration boundary as 0 ensures that �T (0)

= �0, which agrees with the initial condition �Rj (0) = �0. Altogether we have

�Rj (s) = L̂(s) ·
∫ s

0

L̂−1(s̄) �Qj(s̄, L̂, �Rk)ds̄.

The integral is often referred to as the aberration integral, and the inte-
grand L̂−1 �Qj as the driving term. The complete solution then is obtained
as

�r (s) = L̂(s)�ri +
∞∑
j=2

�Rj (s) = L̂(s)�ri +
∞∑
j=2

L̂(s) ·
∫ s

0

L̂−1(s̄) �Qj(s̄, L̂, �Rk)ds̄.

So, once the linear solution is known, everything else just boils down to
quadratures. If within a piece in which it is constant, M̂(s) is diagonalizable,
the linear solutions can be written as combinations of sin, cos, sinh, cosh and
s. In other important cases where M̂(s) is singular, often a complete set of
linear solutions that are polynomials in s can be obtained.

In both of these cases, the insertion into the polynomials �Rj(s) leads to
terms that are polynomials in sin, cos, sinh, cosh and s. By expressing such
functions in terms of exponentials times powers of s, one can show that the
result of any integration can again be expressed as a polynomial of sin, cos,
sinh, cosh and s.

For practical cases, it is worthwhile to discuss the complexity of the proce-
dure. With each new order, the expansion of the ODE becomes more compli-
cated; then all previous orders have to be inserted, multiplied with the linear
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inverses, and integrated, resulting in substantially more terms than for the
previous order. Altogether, the effort increases extremely dramatically
with the order being considered, and for typical systems, it is practical only
to orders around five.

Computer codes that use the above procedure usually contain a library of
procedures that compute the aberrations for each particle optical element of
interest. The aberrations of combined systems is then determined from those
of the pieces with the help of a composition procedure. The Differential
Algebraic (DA) approach, as described in Chapter 5, allows the computation
of aberrations to any order in an elegant way without the need of explicit
formulas for aberrations.

To illustrate the method of computation of aberrations with a simple ex-
ample, let us consider the differential equations

x′ = a, a′ = −x+ kx2,

which corresponds to the horizontal motion in a quadrupole with a superim-
posed sextupole. We first perform the linearization to obtain(

x
a

)′
=

(
0 1

−1 0

)(
x
a

)
= M̂(s)

(
x
a

)
.

The linear solution then is(
xf

af

)
=

(
(x|x) (x|a)
(a|x) (a|a)

)(
xi

ai

)
=

(
cos s sin s

− sin s cos s

)(
xi

ai

)
= L̂(s)

(
xi

ai

)
. (4.39)

The next step is the expansion of the ODE, which is already done in the
given differential equations. We then insert the solution expanded up to the
second order in the initial conditions xi and ai

x(s) =(x|x)xi + (x|a)ai + (x|xx)x2
i + (x|xa)xiai + (x|aa)a2i ,

a(s) = (a|x)xi + (a|a)ai + (a|xx)x2
i + (a|xa)xiai + (a|aa)a2i ,

into the ODE, and obtain

(x|x)′xi + (x|a)′ai + (x|xx)′x2
i + (x|xa)′xiai + (x|aa)′a2i

= (a|x)xi + (a|a)ai + (a|xx)x2
i + (a|xa)xiai + (a|aa)a2i ,

and

(a|x)′xi + (a|a)′ai + (a|xx)′x2
i + (a|xa)′xiai + (a|aa)′a2i

= − [(x|x)xi + (x|a)ai + (x|xx)x2
i + (x|xa)xiai + (x|aa)a2i

]
+ k

[
(x|x)2x2

i + 2(x|x)(x|a)xiai + (x|a)2a2i + · · · ] ,
where we can ignore the higher order terms, since we are interested only in
order two.
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The second order equations then read

(x|xx)′x2
i +(x|xa)′xiai+(x|aa)′a2i = (a|xx)x2

i +(a|xa)xiai+(a|aa)a2i ,
(a|xx)′x2

i +(a|xa)′xiai+(a|aa)′a2i = −[(x|xx)x2
i +(x|xa)xiai+(x|aa)a2i ]

+ k[(x|x)2x2
i +2(x|x)(x|a)xiai+(x|a)2a2i ],

where the last line proportional to k is the inhomogeneous part �Q2, and using
eq. (4.39),

�Q2 =

(
Q2x

Q2a

)
=

(
0

k
[
cos2 s · x2

i + 2 cos s sin s · xiai + sin2 s · a2i
]) .

We make the ansatz �R2(s) = L̂(s)�T (s) :

(
(x|xx)x2

i + (x|xa)xiai + (x|aa)a2i
(a|xx)x2

i + (a|xa)xiai + (a|aa)a2i

)
=

(
cos s sin s

− sin s cos s

)
�T (s) .

From eq. (4.38),

�T (s) =

(
Tx

Ta

)
=

∫ s

0

L̂−1 �Q2ds̄ =

∫ s

0

(
cos s̄ − sin s̄
sin s̄ cos s̄

)(
0

Q2a

)
ds̄,

so

Tx =

∫ s

0

(− sin s̄ ·Q2a) ds̄

= k

∫ s

0

(− cos2 s̄ sin s̄ · x2
i − 2 cos s̄ sin2 s̄ · xiai − sin3 s̄ · a2i

)
ds̄

= k

[
1

3
(cos3 s− 1)x2

i −
2

3
sin3 s · xiai +

(
cos s− 1

3
cos3 s− 2

3

)
a2i

]
,

Ta =

∫ s

0

cos s̄ ·Q2ads̄

= k

∫ s

0

(
cos3 s̄ · x2

i + 2 cos2 s̄ sin s̄ · xiai + cos s̄ sin2 s̄ · a2i
)
ds̄

= k

[(
sin s− 1

3
sin3 s

)
x2
i −

2

3

(
cos3 s− 1

)
xiai +

1

3
sin3 s · a2i

]
.

Then we obtain �R2 (s) = L̂ (s)·�T (s) , which yields the second order elements
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of the transfer map

(x|xx) = k

(
1

3
sin2 s− 1

3
cos s+

1

3

)
,

(x|xa) = k

(
−2

3
sin s cos s+

2

3
sin s

)
,

(x|aa) = k

(
1

3
cos2 s− 2

3
cos s+

1

3

)
,

(a|xx) = k

(
2

3
sin s cos s+

1

3
sin s

)
,

(a|xa) = k

(
2

3
sin2 s− 2

3
cos2 s+

2

3
cos s

)
,

(a|aa) = k

(
−2

3
sin s cos s+

2

3
sin s

)
.

In a similar fashion, but with much more effort, one can also compute the
third and higher order terms.
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Chapter 5

Computation and Properties of
Maps

Up to now, the equations of motion have only been solved perturbatively to
the first order. Yet the knowledge of the nonlinear part of the solution is
also needed to determine precisely the performance of a device. Traditionally,
this is done analytically using perturbation theory (see Section 4.5 for more
details). In the past, a tremendous amount of knowledge about aberrations
for various kinds of devices has been accumulated. Yet this approach is far
from being systematic, making the simulation prone to errors, and it is diffi-
cult to obtain an accurate solution for a realistic device where no analytical
solution exists. In this chapter, a modern method, the Differential Algebraic
(DA) technique, for computing the transfer map to arbitrary order, will be
described. But before we embark on this task, we will first classify aberrations
that can appear in transfer maps in terms of their symmetries.

5.1 Aberrations and Symmetries

Recall that the transfer map of an optical system relates final coordinates
to initial coordinates via

�zf = M(�zi),

where �z = (x, a, y, b, l, δ). In the previous chapters, we were concerned mostly
with the linearized part of the map, which describes the major part of the
motion and which can be described by transfer matrices. The matrix elements
were denoted as (x, a), etc.

In order to study the effects of the motion very precisely, it is necessary
to also consider higher order or nonlinear effects. For this purpose we Taylor
expand the map (in a rigorous sense the question whether the map can actually
be Taylor expanded is rather nontrivial, but we ignore this here), and use
names for the coefficients similar to what we had for the linear motion. We
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write

xf =
∑(

x|xixaiayiybib lilδiδ
)
xixaiayiybib lilδiδ ,

af =
∑(

a|xixaiayiy bib lilδiδ
)
xixaiayiybib lilδiδ ,

yf =
∑(

y|xixaiayiybib lilδiδ
)
xixaiayiy bib lilδiδ ,

bf =
∑(

b|xixaiayiybib lilδiδ
)
xixaiayiy bib lilδiδ ,

lf =
∑(

l |xixaiayiybib lilδiδ
)
xixaiayiybib lilδiδ ,

δf =
∑(

δ|xixaiayiy bib lilδiδ
)
xixaiayiybib lilδiδ ,

where the sums go over all six-tuples (ix, ia, iy, ib, il, iδ); for convenience, they
are usually sorted by total order. The Taylor coefficients belonging to terms of
orders 2 or higher are usually called aberrations, as they describe corrections
to the linear part of the map that are usually small if the phase space variables
are small.

In most cases, the freedom of the aberration coefficients is severely restricted
by the presence of a variety of symmetries. First, in many cases the motion
of one of the variables does not depend on the values of some other variables.
For example, if the motion is time independent, we have

(Zj |xixaiayiybib lilδiδ ) = 0 if il �= 0,

where j = 1, . . . , 6 and Zj is defined in eq. (2.2). Furthermore, in this case
we know that the kinetic plus potential energy of the particle is conserved,
and we have that

(δ|xixaiayiybib lilδiδ ) = 0 except (δ|δ) = 1.

5.1.1 Horizontal Midplane Symmetry

This is perhaps the most important symmetry in beam physics, as it affects
almost all devices: bending elements, quadrupoles, sextupoles, higher order
multipoles, cyclotrons and all the combinations of them. It requires that the
motion of charged particles is always symmetric around the midplane (the x-z
plane), which is illustrated in Fig. 5.1.

In a system with midplane symmetry, two particles that are symmetric
about the midplane at the beginning stay symmetric throughout the system.
Suppose that a particle is launched at (xi, yi, di, ai, bi, ti). After the map M
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s

y

FIGURE 5.1: Trajectories of particles in a system with horizontal mid-
plane symmetry.

is applied, its coordinates are

xf = mx(xi, ai, yi, bi, li, δi),

af = ma(xi, ai, yi, bi, li, δi),

yf = my(xi, ai, yi, bi, li, δi),

bf = mb(xi, ai, yi, bi, li, δi),

lf = ml(xi, ai, yi, bi, li, δi),

δf = mδ(xi, ai, yi, bi, li, δi).

Under the presence of midplane symmetry, a particle that starts at

(xi,−yi, di, ai,−bi, ti)

must end at

(xf ,−yf , df , af ,−bf , tf ),

which entails that

xf = mx(xi, ai,−yi,−bi, li, δi),

af = ma(xi, ai,−yi,−bi, li, δi),

−yf = my(xi, ai,−yi,−bi, li, δi),

−bf = mb(xi, ai,−yi,−bi, li, δi),

lf = ml(xi, ai,−yi,−bi, li, δi),

δf = mδ(xi, ai,−yi,−bi, li, δi). (5.1)

Thus flipping the signs of yi, bi simultaneously flips the signs of yf , bf , but
leaves xf , af , lf , δf intact. Flipping the sign of yi, bi simultaneously produces
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a sign of (−1)iy+ib in each monomial. So iy + ib must be odd for yf , bf and
iy + ib must be even for all others. So we obtain

(
x|xixaiayiybib lilδiδ

)
= 0 for iy + ib odd,(

a|xixaiayiybib lilδiδ
)
= 0 for iy + ib odd,(

y|xixaiayiybib lilδiδ
)
= 0 for iy + ib even,(

b|xixaiayiybib lilδiδ
)
= 0 for iy + ib even,(

l|xixaiayiybib lilδiδ
)
= 0 for iy + ib odd,(

δ|xixaiayiybib lilδiδ
)
= 0 for iy + ib odd.

For the first order map, the transfer matrix, this leads to the form

M̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
(x|x) (x|a) 0 0 (x|l) (x|δ)
(a|x) (a|a) 0 0 (a|l) (a|δ)
0 0 (y|y) (y|b) 0 0
0 0 (b|y) (b|b) 0 0

(l|x) (l|a) 0 0 (l|l) (l|δ)
(δ|x) (δ|a) 0 0 (δ|l) (δ|δ)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is a form seen earlier for electrostatic and magnetic bending elements.
Altogether, the symmetry entails that to any given order, roughly half of all
aberrations vanish.

5.1.2 Double Midplane Symmetry

Several devices have a midplane symmetry not only around the horizontal
plane, but also around a vertical plane. This is the case for all electric cylin-
drically symmetric devices, as well as quadrupoles, octupoles, and in general
4k poles. In this case, in addition to the requirements we just had, we obtain
a second set in which the roles of x, a and y, b are interchanged. In this case
we obtain

(x| . . .) = 0 for iy + ib odd or ix + ia even,

(a| . . .) = 0 for iy + ib odd or ix + ia even,

(y| . . .) = 0 for iy + ib even or ix + ia odd,

(b| . . .) = 0 for iy + ib even or ix + ia odd,

(l| . . .) = 0 for iy + ib odd or ix + ia even,

(δ| . . .) = 0 for iy + ib odd or ix + ia even,
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and altogether, about three-fourths of all matrix elements vanish. To first
order, the matrix must have the special form

M̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
(x|x) (x|a) 0 0 0 0
(a|x) (a|a) 0 0 0 0
0 0 (y|y) (y|b) 0 0
0 0 (b|y) (b|b) 0 0
0 0 0 0 (l|l) (l|δ)
0 0 0 0 (δ|l) (δ|δ)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is what we observed in the case of the drift and the electric and magnetic
quadrupoles.

5.1.3 Rotational Symmetry

One special case of the double midplane symmetry that we just discussed
is the full rotational symmetry that round lenses satisfy. In this case there is
a symmetry going beyond what double midplane symmetry requires; the map
has to be invariant under a rotation in the x-y plane. Let the rotation angle
be φ. The linear transformation R(Z) = R̂ · Z is described in terms of the
matrix

R̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
cosφ 0 sinφ 0 0 0
0 cosφ 0 sinφ 0 0

− sinφ 0 cosφ 0 0 0
0 − sinφ 0 cosφ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and we must have that the transfer map satisfies

M◦R = R ◦M. (5.2)

In the variables we are currently using, the study of the influence of the
rotation on the map is somewhat cumbersome, and for this purpose it is
actually better to choose complex coordinates

z = x+ iy, w = a+ ib,

as well as their complex conjugates

z̄ = x− iy, w̄ = a− ib.

In these complex variables, the map R has the simple diagonal form

R =

⎛⎜⎜⎜⎜⎜⎜⎝
eiφ 0 0 0 0 0
0 eiφ 0 0 0 0
0 0 e−iφ 0 0 0
0 0 0 e−iφ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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and its effect in eq. (5.2) is easy to study. It turns out that in the map only
those terms that have the form

zf = zi · fz(zz̄, ww̄), wf = wi · fw(zz̄, ww̄)
are allowed to remain. In passing we note that this situation is remarkably
similar to what happens in the theory of normal forms of repetitive motion
[5].

There are two types of rotational symmetry: One is characterized by the
system being invariant under a rotation of any angle, which we call con-
tinuous rotational symmetry; the other is characterized by the system being
invariant under a fixed angle, which we refer to as discrete rotational sym-
metry. The former is widely seen in light optics where almost all glass lenses
are rotational invariant and in electron microscopes where solenoids are the
primary focusing elements. The latter is preserved in quadrupoles and all
higher multipoles.

For the analysis of both cases we proceed with the above complex coordi-
nates. After expressing x, a, y and b in terms of z, z̄, w and w̄, the transfer
map is transformed into(

zf
wf

)
=

(
xf + iyf
af + ibf

)
=

(
Fz

Fw

)
(zi, z̄i, wi, w̄i, ti, di),

where (
Fz

Fw

)
=

∑
j1j2j3j4jtjd

(
cz
cw

)
j1j2j3j4jtjd

zj1 z̄j2wj3 w̄j4 tjtdjd .

Note that besides z and w, also z̄ and w̄ will appear, contrary to the familiar
Taylor expansion of analytic functions. This is due to the fact that while the
original map may be Taylor expandable and hence analytic as a real function,
it is not necessary that the resulting complex function is analytic in the sense
of complex analysis.

Given the fact that a rotation by φ transforms z to eiφz and w to eiφw,
rotational symmetry requires that a rotation in initial coordinates results in
the same transformation in the final coordinates, i.e., zf → eiφzf , wf →
eiφwf . Inserting this yields

(j1 − j2 + j3 − j4 − 1) φ = 2πn for x, a, y, b terms,

(j1 − j2 + j3 − j4) φ = 2πn for t, d terms,

where n is an integer.
For continuous rotational symmetry, which means invariance for all φ, the

ji (i = 1, 2, 3, 4) should be independent of φ. Thus we have

j1 − j2 + j3 − j4 = 1 for zf and wf ,

j1 − j2 + j3 − j4 = 0 for tf and df ,
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TABLE 5.1:
Number of aberrations

Order j1 j2 j3 j4
1 1 0 0 0

0 0 1 0
3 2 1 0 0

2 0 0 1
0 1 2 0
0 0 2 1
1 1 1 0
1 0 1 1

which eliminate many terms. First, all terms with j1+j2+j3+j4 even vanish,
because j1 + j3 and j2 + j4 always have the same parity, which means that
j1 − j2 + j3 − j4 is also even. This implies that in rotationally symmetric
systems, all even order geometric aberrations disappear. As a summary, all
remaining z and w terms up to order 3 are shown in Table 5.1, where the
order represents the sum of the ji. To illustrate the characteristic of such a
map, let us derive the linear matrix from the conditions above. First define

(z|z) = (cz)100000, (z|w) = (cz)001000,

(w|z) = (cw)100000, (w|w) = (cw)001000.

The first order map is then given by

xf + iyf = (z|z)(xi + iyi) + (z|w) (ai + ibi),

af + ibf = (w|z)(xi + iyi) + (w|w)(ai + ibi),

which entails that the linear matrix is

M̂ =

⎛⎜⎜⎜⎝
(z|z) −�(z|z) (z|w) −�(z|w)
�(z|z) (z|z) �(z|w) (z|w)
(w|z) −�(w|z) (w|w) −�(w|w)
�(w|z) (w|z) �(w|w) (w|w)

⎞⎟⎟⎟⎠ . (5.3)

As an example, we show the second order map of a solenoid, which has rota-
tional symmetry, but exhibits a coupling between x and y, and a and b.

Table 5.2 lists the coefficients of the second order map of a solenoid, which
shows that indeed all second order geometric aberrations vanish, which is a
consequence of the rotational symmetry.

Eq. (5.3) also shows that a rotationally invariant system preserves midplane
symmetry to first order when the first order coefficients are real numbers. In
fact a simple argument shows that this is true even for higher orders. In
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TABLE 5.2: The second order map of a solenoid (Exponents in the
initial variables x, a, y, b, l, δ)

xf af yf bf lf exponents

0.999662 -0.408336e-3 -0.186647e-1 0.761884e-5 0 100000

0.799815 0.999662 -0.149334e-1 -0.186647e-1 0 010000

0.186647e-1 -0.761884e-5 0.999662 -0.408336e-3 0 001000

0.149334e-1 0.186647e-1 0.799815 0.999662 0 000100

0 0 0 0 1.000000 000010

0 0 0 0 0.163101 000001

0 0 0 0 -0.112007e-3 200000

0 0 0 0 -0.876499e-9 110000

0 0 0 0 -0.219388 020000

0 0 0 0 -0.102394e-1 011000

0 0 0 0 -0.112007e-3 002000

0 0 0 0 0.102394e-1 100100

0 0 0 0 -0.876499e-9 001100

0.370284e-3 0.223860e-3 0.102326e-1 -0.836226e-5 0 100001

-0.438474 0.370284e-3 0.163792e-1 0.102326e-1 0 010001

-0.102326e-1 0.836226e-5 0.370284e-3 0.223860e-3 0 001001

0 0 0 0 -0.219388 000200

-0.163792e-1 -0.102326e-1 -0.438474 0.370284e-3 0 000101

0 0 0 0 -0.134185 000002

complex coordinates, eqs. (5.1) are transformed to(
z̄f
w̄f

)
=

(
Fz

Fw

)
(z̄i, zi, w̄i, wi, ti, di)

⇒
(

zf
wf

)
=

(
F̄z

F̄w

)
(zi, z̄i, wi, w̄i, ti, di)

=
∑

j1j2j3j4jtjd

(
āz
āw

)
j1j2j3j4jtjd

zj1 z̄j2wj3 w̄j4tjtdjd ,

which shows that all coefficients have to be real numbers in order to preserve
midplane symmetry.

For discrete rotational symmetry, invariance occurs only when φ = 2π/k,
where k is an integer. Hence the nonzero terms satisfy

j1 − j2 + j3 − j4 − 1 = nk.

In general, a 2k-pole is invariant under rotation of φ = 2π/k. For example,
for a quadrupole, we have k = 2. Hence the nonzero terms satisfy

j1 − j2 + j3 − j4 = 2n+ 1.

Like round lenses, systems with quadrupole symmetry are also free of even
order geometric aberrations. The linear map of a quadrupole can be obtained
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from
j1 − j2 + j3 − j4 = ±1,

which is

xf + iyf = (z|z)(xi + iyi) + (z|w)(ai + ibi) + (z|z̄)(xi−iyi) + (z|w̄)(ai−ibi),

af + ibf = (w|z)(xi + iyi) + (w|w)(ai + ibi) + (w|z̄)(xi−iyi) + (w|w̄)(ai−ibi).

Since a quadrupole has midplane symmetry, all the coefficients are real num-
bers. Thus its linear matrix is⎛⎜⎜⎝

(z|z) + (z|z̄) 0 (z|w) + (z|w̄) 0
0 (z|z)− (z|z̄) 0 (z|w)− (z|w̄)

(w|z) + (w|z̄) 0 (w|w) + (w|w̄) 0
0 (w|z)− (w|z̄) 0 (w|w) − (w|w̄)

⎞⎟⎟⎠ .

For other multipoles, we have

j1 − j2 + j3 − j4 = nk + 1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
· · ·

−k + 1
1

k + 1
· · ·

k = 3, 4, . . . . (5.4)

With midplane symmetry, the linear matrix of a 2k-pole is

M̂ =

⎛⎜⎜⎝
(z|z) (z|w) 0 0
(w|z) (w|w) 0 0
0 0 (z|z) (z|w)
0 0 (w|z) (w|w)

⎞⎟⎟⎠ . (5.5)

Since the linear matrix of a 2k-pole (k ≤ 3) is just a drift, it satisfies eq. (5.5).
Eq. (5.4) shows that the geometric aberrations appear only for orders of at
least k − 1. The fact that multipoles do not have dispersion determines that
the chromatic aberrations do not appear until order k. This can be easily seen
from the equations of motion (3.22). Therefore, a 2k-pole is necessarily a drift
up to order k − 2.

A lens with rotational symmetry is frequently called a round lens. The
main examples are magnetic solenoids and electrostatic round lenses. Since
rotational symmetry is the highest degree of symmetry a lens can have, round
lenses have the fewest number of aberrations. As a result, they are widely
used in low energy electron optical devices such as electron microscopes. At
high energy, round lenses are too weak to be effective.

5.1.4 Symplectic Symmetry

Another important symmetry of the motion is due to the fact that the mo-
tion is indeed obtained as the solution of Hamiltonian differential equations.
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In this case, one can show that the Jacobian M̂ of the transfer map M, i.e.,
the matrix

M̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂M1/∂z1 ∂M1/∂z2 ∂M1/∂z3 ∂M1/∂z4 ∂M1/∂z5 ∂M1/∂z6

∂M2/∂z1 ∂M2/∂z2 ∂M2/∂z3 ∂M2/∂z4 ∂M2/∂z5 ∂M2/∂z6

∂M3/∂z1 ∂M3/∂z2 ∂M3/∂z3 ∂M3/∂z4 ∂M3/∂z5 ∂M3/∂z6

∂M4/∂z1 ∂M4/∂z2 ∂M4/∂z3 ∂M4/∂z4 ∂M4/∂z5 ∂M4/∂z6

∂M5/∂z1 ∂M5/∂z2 ∂M5/∂z3 ∂M5/∂z4 ∂M5/∂z5 ∂M5/∂z6

∂M6/∂z1 ∂M6/∂z2 ∂M6/∂z3 ∂M6/∂z4 ∂M6/∂z5 ∂M6/∂z6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

has to satisfy the condition
M̂T ĴM̂ = Ĵ , (5.6)

where Ĵ is the totally antisymmetric matrix

Ĵ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0

−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The proof of this so-called condition of symplecticity certainly goes beyond
this volume and can be found, for example, in [5]. But we can readily see
that the symplectic condition, which mixes in a very defined way the terms
∂Mi/∂zj that are themselves power series, entails a large variety of nonlinear
restrictions between the aberrations.

From eq. (5.6), we have

−ĴM̂T ĴM̂ = Î ⇒ −M̂ĴM̂T ĴM̂ = M̂ ⇒ −M̂ĴM̂T Ĵ = Î ,

hence
M̂ĴM̂T = Ĵ .

Furthermore, the inverse of a symplectic matrix always exists and can be
obtained easily with the help of eq. (5.6), as

ĴM̂T ĴM̂ = −Î ⇒
(
−ĴM̂T Ĵ

)
M̂ = Î ⇒ M̂−1 = −ĴM̂T Ĵ .

M̂−1 = −ĴM̂T Ĵ . (5.7)

And from the following simple arithmetic(
M̂−1

)T
ĴM̂−1 =

(
ĴM̂T Ĵ

)T
Ĵ
(
ĴM̂T Ĵ

)
= ĴM̂ Ĵ Ĵ ĴM̂T Ĵ

= −ĴM̂ ĴM̂T Ĵ = −Ĵ Ĵ Ĵ = Ĵ ,
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it is shown that M̂−1 is symplectic as well:(
M̂−1

)T
ĴM̂−1 = Ĵ .

Now let us obtain the determinant of M̂ following Kauderer (page 10 in
[36]). Through a series of permutations, we can rewrite Ĵ , which becomes

Ĵ =

(
0̂ Î

−Î 0̂

)
,

where Î is the n× n identity matrix. Furthermore, M̂ can be written as

M̂ =

(
Â B̂

Ĉ D̂

)
,

where Â, B̂, Ĉ and D̂ are n× n matrices. The symplectic condition becomes(
ÂT ĈT

B̂T D̂T

)(
0̂ Î

−Î 0̂

)(
Â B̂

Ĉ D̂

)
=

(
0̂ Î

−Î 0̂

)
,

which leads to the relations

−ĈT Â+ ÂT Ĉ = 0̂, −ĈT B̂ + ÂT D̂ = Î ,

−D̂T Â+ B̂T Ĉ = −Î , −D̂T B̂ + B̂T D̂ = 0̂. (5.8)

Furthermore we need one more mathematical theorem, which is

det

(
Â 0̂

Ĉ D̂

)
= det Â · det D̂ = det(ÂD̂).

Hence we have

det

(
Î −Â−1B̂

0̂ Î

)
= 1.

Using this, we obtain

det

(
Â B̂

Ĉ D̂

)
= det

(
Â B̂

Ĉ D̂

)
· det

(
Î −Â−1B̂

0̂ Î

)
= det

(
Â 0̂

Ĉ D̂ − ĈÂ−1B̂

)
= det Âdet(D̂ − ĈÂ−1B̂).

Furthermore, using the relations det Â = det ÂT , ĈÂ−1 = (ÂT )−1ĈT and
ÂT D̂ − ĈT B̂ = Î that have resulted from eq. (5.8), we obtain

det

(
Â B̂

Ĉ D̂

)
= det ÂT det

(
D̂ − (ÂT )−1ĈT B̂

)
= det

(
ÂT D̂ − ĈT B̂

)
= 1.
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One direct consequence of the symplectic condition and the resulting unity of
the Jacobian determinant is that the volume of the phase space is conserved
under Hamiltonian motion, which is known as Liouville’s theorem.

The detailed study of the relationships between matrix elements is cumber-
some and can be found in [79]. Here we will restrict our attention to what
happens in the linear case. Considering the constant part of the symplectic
condition (5.6), we observe that what contributes via the Jacobian is just
the transfer map. Let us assume no acceleration and coupling between the
transverse planes, which entails that the transfer matrix is given by

M̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
(x|x) (x|a) 0 0 0 (x|δ)
(x|a) (a|a) 0 0 0 (a|δ)
0 0 (y|y) (y|b) 0 (y|δ)
0 0 (b|y) (b|b) 0 (b|δ)

(l|x) (l|a) (l|y) (l|b) 1 (l|δ)
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎝ X̂ 0̂ D̂x

0̂ Ŷ D̂y

L̂x L̂y Ê

⎞⎟⎠ ,

where

X̂ =

(
(x|x) (x|a)
(x|a) (a|a)

)
, Ŷ =

(
(y|y) (y|b)
(b|y) (b|b)

)
, Ê =

(
1 (l|δ)
0 1

)
D̂x =

(
0 (x|δ)
0 (a|δ)

)
, D̂y =

(
0 (y|δ)
0 (b|δ)

)
,

L̂x =

(
(l|x) (l|a)
0 0

)
, L̂y =

(
(l|y) (l|b)
0 0

)
.

Plugging into the symplectic condition yields the equation

⎛⎜⎝ X̂T 0̂ L̂T
x

0̂ Ŷ T L̂T
y

D̂T
x D̂T

y ÊT

⎞⎟⎠
⎛⎜⎝ Ĵ 0̂ 0̂

0̂ Ĵ 0̂

0̂ 0̂ Ĵ

⎞⎟⎠
⎛⎜⎝ X̂ 0̂ D̂x

0̂ Ŷ D̂y

L̂x L̂y Ê

⎞⎟⎠ =

⎛⎜⎝ Ĵ 0̂ 0̂

0̂ Ĵ 0̂

0̂ 0̂ Ĵ

⎞⎟⎠ . (5.9)

The left hand side is

⎛⎜⎝ X̂T ĴX̂ + L̂T
x Ĵ L̂x L̂T

x Ĵ L̂y X̂T Ĵ D̂x + L̂T
x ĴÊ

L̂T
y Ĵ L̂x Ŷ T Ĵ Ŷ + L̂T

y Ĵ L̂y Ŷ T ĴD̂y + L̂T
y ĴÊ

D̂T
x ĴX̂ + ÊT Ĵ L̂x D̂T

y Ĵ Ŷ + ÊT Ĵ L̂y D̂T
x ĴD̂x + D̂T

y ĴD̂y + ÊT ĴÊ

⎞⎟⎠ .

After straightforward algebraic manipulation, we have for each term in the
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left hand side

X̂T ĴX̂ + L̂T
x Ĵ L̂x =

(
0 (x|x)(a|a) − (x|a)(a|x)

− [(x|x)(a|a) − (x|a)(a|x)] 0

)
,

Ŷ T ĴY + L̂T
y Ĵ L̂y =

(
0 (y|y)(b|b)− (b|y)(y|b)

− [(y|y)(b|b)− (b|y)(y|b)] 0

)
,

D̂T
x ĴD̂x + D̂T

y ĴD̂y + ÊT ĴÊ =

(
0 1

−1 0

)
,

L̂T
x Ĵ L̂y =

(
0 0
0 0

)
,

X̂T ĴD̂x + L̂T
x ĴÊ =

(
0 (l|x) + (x|x)(a|δ) − (a|x)(x|δ)
0 (l|a) + (x|a)(a|δ) − (a|a)(x|δ)

)
,

Ŷ T ĴD̂y + L̂T
y ĴÊ =

(
0 (l|y) + (y|y)(b|δ)− (b|y)(y|δ)
0 (l|b) + (y|b)(b|δ)− (b|b)(y|δ)

)
.

So, the conditions in eq. (5.9) are described as

(x|x)(a|a) − (x|a)(a|x) = 1,

(y|y)(b|b) − (b|y)(y|b) = 1,

(l|x) + (x|x)(a|δ) − (a|x)(x|δ) = 0,

(l|a) + (x|a)(a|δ) − (a|a)(x|δ) = 0,

(l|y) + (y|y)(b|δ) − (b|y)(y|δ) = 0,

(l|b) + (y|b)(b|δ) − (b|b)(y|δ) = 0. (5.10)

The first two of these are familiar and describe the fact that the volume of
phase space is preserved under the linear transformations generated by particle
optical elements. The other conditions, however, represent the connection
between longitudinal and dispersive effects. For them to be satisfied requires
the use of specific scaling factors for the variables l and δ, and they are the
reason for the specific choice of the variable κ in eq. (2.1) in Section 2.1.

Next let us study the case that coupling between horizontal and vertical
planes is present, where the Jacobian matrix M̂ is a 4× 4 symplectic matrix.
Similarly, we can divide M̂ into four blocks of 2× 2 matrices, which is

M̂ =

(
Â B̂

Ĉ D̂

)
.

Plugging into eq. (5.6), we obtain(
ÂT ĴÂ+ ĈT Ĵ Ĉ ÂT ĴB̂ + ĈT ĴD̂

B̂T ĴÂ+ D̂T Ĵ Ĉ B̂T ĴB̂ + D̂T ĴD̂

)
=

(
Ĵ 0̂

0̂ Ĵ

)
,
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which can be simplified as

det Â+ det Ĉ = 1, det B̂ + det D̂ = 1, ÂT ĴB̂ + ĈT ĴD̂ = 0̂.

In general Â, B̂, Ĉ and D̂ are not symplectic matrices. Meanwhile, from eq.
(5.7), we have

M̂−1 = −
(
Ĵ 0̂

0̂ Ĵ

)(
ÂT ĈT

B̂T D̂T

)(
Ĵ 0̂

0̂ Ĵ

)
= −

(
ĴÂT Ĵ Ĵ ĈT Ĵ

ĴB̂T Ĵ ĴD̂T Ĵ

)

=

(
Ā C̄
B̄ D̄

)
, (5.11)

where Ā is defined as
Ā = −ĴÂT Ĵ ,

and B̄, C̄ and D̄ are defined the same way. In addition, we have

Ā = −
(

0 1
−1 0

)(
a11 a21
a12 a22

)(
0 1

−1 0

)
=

(
a22 −a12

−a21 a11

)
= (det Â) · Â−1.

Since M̂−1 is symplectic, we have(
ĀT ĴĀ+ B̄T ĴB̄ ĀT Ĵ C̄ + B̄T ĴD̄

C̄T ĴĀ+ D̄T ĴB̄ C̄T Ĵ C̄ + D̄T ĴD̄

)
=

(
Ĵ 0̂

0̂ Ĵ

)
,

and hence

det Â+ det B̂ = 1, det Ĉ + det D̂ = 1, ĀT Ĵ C̄ + B̄T ĴD̄ = 0̂,

where the relation det X̄ = det X̂, (X̂ = Â, B̂, Ĉ, D̂) is used. As a result, we
obtain a set of important relations

det Â+ det B̂ = 1, det D̂ = det Â, det Ĉ = det B̂.

It is worth noting that there are only six independent constraints from the
symplectic condition for a 4× 4 matrix.

5.2 Differential Algebras

In this section we will provide an introduction to the theory of Differential
Algebras (DA) which enables the computation of transfer maps to an arbitrary
order. For reasons of brevity we only provide a limited overview [4]; a more
complete treatment can be found for example in [5]. For the sake of clarity,
we first address the simplest case of Differential Algebras, mathematically
denoted as the structure 1D1.
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5.2.1 The Structure 1D1

Consider the vector space R2 of ordered pairs (a0, a1), a0, a1 ∈ R in which
an addition and a scalar multiplication are defined in the usual way:

(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1), (5.12)

t · (a0, a1) = (t · a0, t · a1),
for a0, a1, b0, b1 ∈ R. Besides the above addition and scalar multiplication, a
multiplication between vectors is introduced in the following way:

(a0, a1) · (b0, b1) = (a0 · b0, a0 · b1 + a1 · b0), (5.13)

for a0, a1, b0, b1 ∈ R. With this definition of a vector multiplication the set of
ordered pairs becomes an algebra, denoted by 1D1.

In the same way as in the case of complex numbers, one can identify (a0, 0)
as the real number a0. Where in the complex numbers, (0, 1) was a root of
−1, here it has another interesting property:

(0, 1) · (0, 1) = (0, 0),

which follows directly from eq. (5.13). So (0, 1) is a root of 0. Such a property
suggests thinking of d = (0, 1) as something infinitely small, small enough that
its square vanishes. Because of this we call d = (0, 1) the differential unit.
The first component of the pair (a0, a1) is called the real part, and the second
component is called the differential part. Using this notation it becomes clear
that elements of 1D1 can be written as a0+a1 ·d, and multiplication amounts
to multiplying the polynomials (a0 + a1 · d) and (b0 + b1 · d) and keeping only
terms linear in d.

It is easy to verify that (1, 0) is a neutral element of multiplication, because
according to eq. (5.13)

(1, 0) · (a0, a1) = (a0, a1) · (1, 0) = (a0, a1).

It turns out that (a0, a1) has a multiplicative inverse if and only if a0 is
nonzero. In case a0 �= 0 the inverse is

(a0, a1)
−1 =

(
1

a0
,−a1

a20

)
. (5.14)

Using equations it is easy to check that in fact (a0, a1)
−1 · (a0, a1) = (1, 0).

An outstanding result of the methods of differential algebras is that dif-
ferentiation becomes an algebraic problem, and the differential part of the
difference

f(x+ d)− f(x)

equals the conventional derivative. Thus, given any differentiable function f,
we can compute its derivatives by just evaluating the formula and thus obtain

f ′(x) = D [f(x+ d)− f(x)] = D [f(x+ d)] , (5.15)
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where D denotes the differential part. In the last step use has been made of
the fact that f(x) has no differential part. Hence Differential Algebras are
useful to compute derivatives directly, without requiring an analytic formula
for the derivative and without the inaccuracies of numerical techniques.

The computation of derivatives shall be illustrated in an example using the
following function:

f(x) =
1

x+ 1/x
. (5.16)

The derivative of the function is

f ′(x) =
1/x2 − 1

(x+ 1/x)
2 .

Suppose we are interested in the value of the function and its derivative at
x = 2. We obtain

f(2) =
2

5
, f ′(2) = − 3

25
.

Now take the definition of the function f in eq. (5.16) and evaluate it at
2 + d = (2, 1). One obtains:

f [(2, 1)] =
1

(2, 1) + 1/ (2, 1)
=

1

(2, 1) + (1/2,−1/4)
=

1

(5/2, 3/4)

=
(
1/ (5/2) ,− (3/4) / (5/2)

2
)
=

(
2

5
,− 3

25

)
.

As we can see, after the evaluation of the function the real part of the result
is just the value of the function at x = 2, whereas the differential part is the
derivative of the function at x = 2.

By our choice of the starting vector (2, 1), initially the vector contains the
value I(2) of the identity function I : x → x in the first component and the
derivative of I ′(2) = 1 in the second component.

Now assume that in an intermediate step two vectors of value and deriva-
tive (g(2), g′(2)) and (h(2), h′(2)) have to be added. According to (5.12) one
obtains (g(2)+h(2), g′(2)+h′(2)). But according to the rule for the differenti-
ation of sums, this is just the value and derivative of the sum function (g+h)
at x = 2.

The same holds for the multiplication: Suppose that two vectors of value
and derivatives (g(2), g′(2)) and (h(2), h′(2)) have to be multiplied. Then
according to (5.13) one obtains (g(2) · h(2), g(2) · h′(2) + g′(2) · h(2)). But
according to the product rule, this is just the value and derivative of the
product function (g · h) at x = 2.

The evaluation of the function f at (2, 1) can now be viewed as successively
combining two intermediate functions g and h, starting with the identity func-
tion and finally arriving at f. At each intermediate step the derivative of the
intermediate function is automatically obtained as the differential part ac-
cording to the above reasoning.



Computation and Properties of Maps 131

An interesting side aspect is that with the search for a multiplicative inverse
in eq. (5.14) one has derived a rule to differentiate the function f(x) = 1/x
without explicitly using calculus rules.

After discussing the algebra 1D1 and its virtues for the computation of
derivatives, we now address the most general Differential Algebra, the struc-
ture nDv, which corresponds to the case of power series of v variables to
the nth order. It will eventually allow us to arithmetically compute partial
derivatives of functions of v variables through order n.

5.2.2 The Structure nDv

We define N(n, v) to be the number of monomials in v variables through
order n. We will show that

N(n, v) =
(n+ v)!

n!v!
= C(n+ v, v),

where C(i, j) is the familiar binomial coefficient. First note that the number
of monomials with exact order n equals N(n, v−1). This is true because each
monomial of exact order n can be written as a monomial with one variable
less times the last variable to such a power that the total power equals n.
Thus we have

N(n, v) = N(n− 1, v) +N(n, v − 1) :

the number of monomials in v variables through order n equals the number
of monomials of one order less plus the ones of exact order n. This recursive
relation is satisfied by C(n + v, v). Since also obviously C(1 + 1, 1) = 2 =
N(1, 1), the formula follows by induction.

Now assume that all these N monomials are arranged in a certain manner
order-by-order. For each monomial M we call IM the position of M according
to the ordering. Conversely, with MI we denote the Ith monomial of the
ordering. Finally, for an I with MI = xi1

1 · · ·xiv
v we define FI = i1! · · · iv!.

We now define an addition, a scalar multiplication and a vector multiplica-
tion on RN in the following way:

(a1, . . . , aN ) + (b1, . . . , bN ) = (a1 + b1, · · · , aN + bN ),

t · (a1, . . . , aN ) = (t · a1, · · · , t · aN ),

(a1, . . . , aN ) · (b1, . . . , bN ) = (c1, . . . , cN ), (5.17)

where the coefficients ci are defined as follows:

ci = Fi

∑
0≤ν,μ≤N

Mν ·Mμ=Mi

aν · bμ
Fν · Fμ

. (5.18)

To help clarify these definitions, let us look at the case of two variables
and second order. In this case, we have n = 2 and v = 2. There are N =
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C(2 + 2, 2) = 6 monomials in two variables, namely

1, x, y, xx, xy, yy. (5.19)

As an example, using the ordering in (5.19), we have Ixy = 5 and M3 = y.
Using the ordering in (5.19), we obtain for c1 through c6 in eq. (5.18):

c1 = a1 · b1,
c2 = a1 · b2 + a2 · b1,
c3 = a1 · b3 + a3 · b1,
c4 = 2 · (a1 · b4/2 + a2 · b2 + a4 · b1/2),
c5 = a1 · b5 + a2 · b3 + a3 · b2 + a5 · b1,
c6 = 2 · (a1 · b6/2 + a3 · b3 + a6 · b1/2).

On nDv we introduce a third operation ∂i :

∂ν(a1, . . . , aN ) = (c1, . . . , cN )

with

ci =

{
0 if Mi has order n,
aI(Mi·xν )

else.

So ∂ν moves the derivatives around in the vector. Suppose a vector con-
tains the derivatives of the function f, then applying ∂ν to it one obtains the
derivatives of ∂f/∂xν through one order less. With this third operation, nDv

becomes a so-called Differential Algebra (DA)[5].

While in 1D1, d = (0, 1) was an infinitely small quantity, here we have a
whole variety of infinitely small quantities that have the property that high
enough powers of them vanish. We give special names to the ones in com-
ponents I belonging to first order monomials, denoting them by dMI . In the
example of 2D2, we have dx = (0, 1, 0, 0, 0, 0) and dy = (0, 0, 1, 0, 0, 0). It then
follows that instead of eq. (5.15) we obtain

f(x+ dx, y + dy) =

(
f,

∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)
(x, y).

In the general case of v variables and order n, after evaluating f in DA one
obtains:

∂i1+i2+···+ivf

∂xi1
1 ∂xi2

2 · · ·∂xiv
v

= cI
(xi1

1 ···xiv
v )

,

where I(xi1
1 ···xiv

v ) is the index of the monomial xi1
1 · · ·xiv

v , as defined in the

beginning of the section.
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5.2.3 Functions on Differential Algebras

In this subsection we will generalize standard functions like exponentials,
logarithmic and trigonometric functions to Differential Algebras. As we will
see below, virtually all functions existing on a computer can be generalized in
a straightforward way.

We start our discussion by noting that for any Differential Algebra (DA)
vector of the form (0, a1, . . . , aN ) ∈ nDv, i.e., with a zero in the component
belonging to the zeroth order monomial, we have the following property:

(0, a1, . . . , aN )i = (0, 0, . . . , 0) for i > n, (5.20)

which follows directly from the definition of the multiplication in nDv defined
in eq. (5.17).

Let us begin our discussion of special functions with the exponential func-
tion exp(x). Assume we have to compute the exponential of a DA vector
that has already been created by previous operations. First we note that the
functional equation

exp(x+ y) = exp(x) · exp(y)
also holds for DA vectors. As we will see, this facilitates the computation of
the exponential considerably.

exp[(a0, a1, a2, . . . , aN )] = exp(a0) · exp[(0, a1, a2, . . . , aN )]

= exp(a0) ·
∞∑
i=0

(0, a1, a2, . . . , aN )i

i!
= exp(a0) ·

n∑
i=0

(0, a1, a2, . . . , aN )i

i!
.

In the last step use has been made of eq. (5.20) which entails that the
sum has to be taken only through order n and thus allows the computation
of the root in finitely many steps. Hence the evaluation of the real number
exponential exp(a0), which internally on a computer requires a power series
summation and hence cannot be done accurately, is more subtle than the rest
of the operations in Differential Algebra.

A logarithm of a DA vector exists if and only if a0 > 0. In this case one
obtains

log [(a0, a1, a2, . . . , aN)] = log

{
a0 ·

[
1 +

(
0,

a1
a0

,
a2
a0

, · · · , aN
a0

)]}
= (log(a0), 0, . . . , 0) +

∞∑
i=1

(−1)i+1 1

i

(
0,

a1
a0

,
a2
a0

, · · · , aN
a0

)i

= (log(a0), 0, . . . , 0) +

n∑
i=1

(−1)i+1 1

i

(
0,

a1
a0

,
a2
a0

, · · · , aN
a0

)i

.

Again use has been made of the fundamental property of the logarithm

log(x · y) = log(x) + log(y)
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which also holds for DA numbers and leads to simplifications by virtue of eq.
(5.20).

As the last example, we will derive a formula for the root function. Even
though there is a direct method to compute roots by solving a set of linear
equations for the coefficients of the root, we present here a technique based on
power series following an approach similar to the exponential and logarithm.
The root has the following power series expansion:

√
1 + x =

∞∑
i=0

(−1)i
1 · 3 · · · (2i− 3)

2 · 4 · · · (2i) · xi.

Using this formula and the definitions of addition and multiplication in
(5.17), one directly obtains for the square root of a DA vector:

√
(a0, a1, a2, . . . , aN ) =

√
a0 ·

√
1 +

(
0,

a1
a0

,
a2
a0

, · · · , aN
a0

)
=

√
a0 ·

∞∑
i=0

(−1)i
1 · 3 · · · (2i− 3)

2 · 4 · · · (2i) ·
(
0,

a1
a0

,
a2
a0

, · · · , aN
a0

)i

=
√
a0 ·

n∑
i=0

(−1)i
1 · 3 · · · (2i− 3)

2 · 4 · · · (2i) ·
(
0,

a1
a0

,
a2
a0

, · · · , aN
a0

)i

.

Using the addition theorems for sine and cosine, one obtains formulas with
finite sums in a quite similar way; in general, suppose a function f has an
addition theorem of the form

f(a+ b) = ga(b),

and ga(b) can be written in a power series, then by the same reasoning its
Differential Algebraic extension is computable exactly in only finitely many
steps.

In the meantime, there are numerous codes built on the ideas of Differential
Algebraic methods, including the code COSY INFINITY [7, 50].

5.3 The Computation of Transfer Maps

5.3.1 An Illustrative Example

Differential Algebras (DA) can be used very efficiently to compute the trans-
fer map of eq. (2.3) of particle optical systems in its Taylor series representa-
tion.

To illustrate this, let us start the discussion with a very simple example,
the midplane motion in a 90◦ homogeneous bending magnet. Let xi and
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R

R

R

R

xi

xf

αi

αf

(A,B)

(0, 0)

FIGURE 5.2: Motion in a 90◦ homogeneous dipole magnet. The dashed
arc is the reference orbit.

ai = sin(αi) denote the initial distance and scaled transverse momentum
relative to the reference trajectory (see Fig. 5.2). Then we are interested
in the values xf and af = sin(αf ). Since the trajectories in the magnet are
circles, we can readily read from Fig. 5.2:

A = R sin(αi) = Rai,

B = R(1− cos(αi)) + xi = R

(
1−

√
1− a2i

)
+ xi,

af = sin(αf ) = −B

R
,

xf = A−R(1− cos(αf )) = A−R
(
1−

√
1− a2f

)
.

These equations allow the computation of the final coordinates xf and af
in terms of the initial coordinates xi and ai. However, taking these equations
and performing all operations in Differential Algebra allows us to even obtain
all derivatives of xf and af with respect to xi and ai. These so obtained
derivatives, evaluated at xi = 0, ai = 0, are then the expansion coefficients
of the map in eq. (2.3). For the sake of clarity, let us explicitly show how xf

and af are computed.

Using the ordering in (5.19) and identifying the variable a with y, we obtain
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using the arithmetic defined in eqs. (5.17),

xi = (0, 1, 0, 0, 0, 0), ai = (0, 0, 1, 0, 0, 0),

A = (0, 0, R, 0, 0, 0), B = (0, 1, 0, 0, 0, R),

af =

(
0,− 1

R
, 0, 0, 0,−1

)
, xf =

(
0, 0, R,− 1

R
, 0, 0

)
. (5.21)

Comparing the obtained result with any matrix code, we find complete
agreement; as an example, the fact that the second component of xf is zero
implies that ∂xf/∂xi = 0 and hence (x|x) = 0, which is a well known property
of 90◦ bends.

In case an additional particle optical element is to follow this bending
magnet, one does not have to start all over evaluating this new element at
xi = (0, 1, 0, 0, 0, 0), ai = (0, 0, 1, 0, 0, 0), but one can start already with xf

and af of eq. (5.21). This way one can save the usually quite involved con-
catenation process and increase performance significantly.

5.3.2 Generation of Maps Using Numerical Integration

In this subsection we will address the general case in which no closed solu-
tion of the problem exists. We will see that also in this case we are actually
able to compute transfer maps of arbitrary order for arbitrary particle optical
elements. Even though we do not have analytical formulas that relate the final
coordinates to the initial coordinates, there is still a way to computationally
relate the final coordinates to the initial coordinates, by numerical integration
of the equations of motion.

In this case, the final coordinates are still computed from the initial coor-
dinates using standard arithmetic and functions; however, the relations are
more complex than in the case of the homogeneous sector. As in any conven-
tional numerical method, a numerical integrator is used to solve for the final
coordinates.

Now blindfoldedly performing all these operations in Differential Algebra
automatically leads to all desired derivatives of the transfer function, regard-
less of the form of the equations of motion. In other words, all coordinates
and fields at any step are power series instead of real numbers.

Differential Algebraic (DA) techniques have been implemented in many
programs. They allow the computation of transfer maps of elements with a
dependence on the independent variable for which an analytic solution cannot
be obtained. One example is magnets with fringing fields. Another example
is an electrostatic round lens where the electric field varies with s throughout
the entire lens. As long as the electromagnetic field can be expressed in a
differentiable function, the transfer map up to any given order can be obtained
using the DA technique.
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5.4 Manipulation of Maps

In most cases, a beam optical system consists of more than one element
and it is necessary to connect the maps of individual pieces. Often the inverse
of a map is needed. Sometimes one part of our system is the reversion of
another part; therefore, it is time saving if the map of the reversed part can
be obtained directly from that of the other part. All these map manipulations
can be done elegantly using DA techniques.

5.4.1 Composition of Maps

Whenever a system contains more than one element, which is virtually
always true, we have to deal with the composition of maps. This is the
foundation of almost all other map manipulations, as we will see later.

Let us define ◦ as the symbol for composition. Hence the map M of a
system consisting of two parts is

M = M2 ◦M1, (5.22)

where M1 and M2 are the maps of parts 1 and 2, respectively. According to
Taylor’s theorem, M2 can be expressed as the sum of a Taylor series and a
remainder:

M2 = Tn +Rn,

where Rn is of order n+1. With the assumption that M1 is origin preserving,
we have

[M]n = [M2 ◦M1]n = [(Tn +Rn) ◦M1]n = [Tn ◦M1]n + [Rn ◦M1]n

= [Tn ◦M1]n = Tn([M1]n).

Thus [M]n can be obtained by composing two polynomials, which is called
concatenation.

Concatenation is the most frequently used tool in DA calculations. It is
extremely efficient when a given optical element appears multiple times in
a system. Instead of computing the map every time it appears, the map of
the element can be applied to the system using concatenation after the first
appearance.

When the exact formula of M2 is known and it is relatively simple, eq.
(5.22) can be used directly to compute M, spending only a small fraction
of the time required for concatenation. The saving comes from the fact that
M2 is not expanded into a Taylor series. In fact, this method has been used
whenever a element is a drift or a homogeneous dipole because their maps can
be obtained from simple geometry.

Another application of the DA concatenator is the transformation of coor-
dinates among different codes for the study of the dynamics of beams. For
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instance, while many codes work in the above discussed curvilinear canonical
coordinates, other codes use the slope instead of the normalized momentum.
In certain cases, Cartesian coordinates are used, which may be a better choice
for certain elements, for example, wigglers, but are usually not very well suited
for a discussion of the properties of beamlines. The transformation of a trans-
fer map to a different set of coordinates, which can be expressed as

MT = C−1 ◦MC ◦ C,
is quite straightforward using Differential Algebra. One simply composes
the transformation formulas between the two sets of coordinates, the map in
one set of coordinates and the inverse transformation in Differential Algebra.
Thus, one automatically obtains the map of the other set of coordinates to
arbitrary orders.

5.4.2 Inversion of Maps

In this subsection, another kind of manipulation, the inversion, will be
studied. The first step of inverting a Taylor map is to invert the linear part.
If it exists, it can be done with any standard linear algebraic package. For
the nonlinear part the inversion is done in an order-by-order fashion. To the
second order we can write the map and its inverse as

M =2 M1 +M2, M−1 =2 M−1
1 +M−1

2 .

Note that the subscript denotes the order of the map. Concatenating those
two, we obtain

M◦M−1=2 (M1+M2)◦
(M−1

1 +M−1
2

)
=2 I +M2◦M−1

1 +M1◦M−1
2 =2 I,

where the term M2 ◦M−1
2 is dropped due to the fact that it contains terms

of the fourth order. As a result, the second part of the inverse is

M−1
2 =2 −M−1

1 ◦M2 ◦M−1
1 .

Now let us assume that we already inverted the map up to the (n− 1)th order;
we write the map and its inverse up to the nth order as

M =n M1 +Mn, M−1 =n M−1
1 +M−1

n .

Hence, we have

M◦M−1 =n (M1 +Mn) ◦
(M−1

1 +M−1
n

)
=n I +Mn ◦M−1

1 +M1 ◦M−1
n +Mn ◦M−1

n =n I.
Since Mn is of the second order and higher, only those terms of the order
[n/2] or lower in M−1

n contribute. The result is

M−1
n =n −M−1

1 ◦Mn ◦ (M−1
1 +M−1

m

)
,
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where m = [n/2] and m > 1. It is clear that the inverse of a Taylor map
exists as long as the inverse of its linear part exists. In later chapters, we will
encounter a number of problems that have to be solved through finding the
inverse of a map.

5.4.3 Reversion of Maps

Throughout the development of beam optical systems, mirror symmetry has
been frequently used. Recently, mirror symmetric systems are being studied
in great detail in the search for high order achromats. Among the various
symmetry arrangements, reversion is the most commonly used. For a system
which is the reversion of another one, the transfer map is the map obtained by
going through the system in the reverse direction. The reversed motion can
be described by first reversing time, i.e., switching all the signs of px and py,
then going through the inverse map, and finally re-reversing time. The time
reversal operation can be performed easily using Differential Algebra, and the
inversion of the transfer map is done as described in Section 5.4.2.

Specifically, reversion entails that, if a particle enters and exits the forward
system at an initial point (xi, ai, yi, bi, li, δi) and a final point (xf , af , yf , bf , lf ,
δf ), respectively, it will exit the reversed system at (xi,−ai, yi,−bi,−li, δi)
after entering this system at (xf ,−af , yf ,−bf ,−lf , δf ). This determines the
reversion transformation:

R̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and hence the map of a reversed system:

MR = (R̂) ◦M−1 ◦ (R̂−1).

In DA representation, MR
n is computed through concatenation, where

MR
n = (R̂) ◦M−1

n ◦ (R̂−1).

In fact, the second composition (R̂) ◦M−1
n can be done by simply changing

the signs of the rows for a, b and l.
An interesting point worth noting is that R̂ is not symplectic. In fact, it

satisfies the following relation

R̂T ĴR̂ = −Ĵ ,

which we call an anti-symplectic relation.
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Chapter 6

Linear Phase Space Motion

In this chapter, we want to study the action of transfer matrices on particles
by looking in detail to what happens to entire regions of phase space as
they are transported. This is important because the beam in an accelerator
is just such a region, and of course we want to make sure that at any time,
this region is within the beam pipe.

Let us begin by collecting several observations about two-dimensional trans-
fer maps M.

1. M preserves areas.

2. Different initial points have different final points.

3. Continuous curves stay continuous curves.

4. Closed curves stay closed curves.

5. A point inside a closed curve will stay inside of the closed curve.

Fig. 6.1 illustrates the second item, and Fig. 6.2 illustrates the other items.
The first item led us to giving a name, namely “emittance,” to the preserved

area. The last two items are particularly important, as they tell us that if we
can enclose our beam within any closed boundary curve, then it is sufficient to
study the dynamics of this boundary curve alone. It is interesting to note that
while in the two-dimensional case, closed curves always stay closed curves, it

x2

a2

x1

a1

M

M

FIGURE 6.1: Mapping of individual points in phase space.
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x2

a2

x1

a1

FIGURE 6.2: Mapping of a closed curve in phase space.

is not generally true that in higher dimensions, closed surfaces stay closed
surfaces. While this is true for linear higher-dimensional transformation, non-
linear maps can produce some holes in the surfaces through which particles
that were initially trapped inside the surface may find a way to escape, which
is a very important mechanism that can lead to instability.

If in particular M is linear, then we also have the following observations.

1. Straight lines stay straight lines.

2. Ellipses stay ellipses.

Since straight lines stay straight lines, we may manufacture such a boundary
curve as a polygon, and to study its motion it is completely sufficient to move
only the corner points. Alternatively, we may try to enclose the beam by an
ellipse. Before we follow these ideas, let us first study the action in phase
space of some simple devices.

6.1 Phase Space Action

6.1.1 Drifts and Lenses

As seen in Section 2.2, the transfer matrix of a drift is given by

M̂ =

(
1 l
0 1

)
.

This matrix leaves a constant and moves x by an amount proportional to a;
hence it performs a horizontal shearing in phase space as shown in Fig.
6.3.
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x

a

FIGURE 6.3: Action of a drift in phase space.

A lens has the transfer matrix

M̂ =

(
1 0

−1/f 1

)
,

and it leaves x invariant and changes a by a value proportional to x; hence it
performs a vertical shearing as shown in Fig. 6.4.

6.1.2 Quadrupoles and Dipoles

In the case of quadrupoles and dipoles as seen in Sections 4.2 and 4.3, the
matrices have the following form:

M̂ ∝
(

cosφ k sinφ
− (1/k) sinφ cosφ

)
.

This corresponds roughly to a rotation, except that the x and a coordinates
are also stretched or compressed; the result is a motion on an ellipse as shown
in Fig. 6.5. In fact, computing the invariant ellipse of the motion following
the procedure described in Section 8.1.2, we obtain

αi = 0, βi = k, γi =
1

k
.

Applying to eq. (6.1), we see from αi = 0 that the ellipse is even upright.
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x

a

FIGURE 6.4: Action of a thin lens in phase space.

x

a

FIGURE 6.5: Action of a quadrupole or dipole in phase space.

6.2 Polygon–like Phase Space

In order to study the motion of ensembles of particles under linear transfor-
mations, it is useful to characterize them by certain simple geometric forms
in which the particles are contained and requiring only few parameters. The
two most useful such forms are the polygon and the ellipse.

A polygon in phase space is uniquely defined by its corner points; and since
straight lines stay straight lines, it is sufficient to study just the motion of
the corner points. Fig. 6.6 shows the motion of a polygon under a linear
transformation.

Frequently a polygon with just four points is chosen; if its lines are initially
symmetrically arranged around the origin, they will stay symmetrically ar-
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x2
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M

FIGURE 6.6: Mapping of a polygon in phase space.

ranged. Furthermore, a four-point polygon with symmetry around the origin
is a parallelogram, and so parallelograms always stay parallelograms.

In many cases it is worthwhile to study how the actual beam width changes
as a function of the s-position along the beamline. The beam width is appar-
ently determined by the maximum of the horizontal positions of the corner
points. In the special case in which we consider motion through a drift, each
of the corner points moves on a straight line. Furthermore, the corner point
that is furthest out will stay furthest out until it is possibly overtaken by
another corner point; during the time it determines the beam width, it entails
that the beam width changes linearly with s. Since the outermost corner point
can change from time to time, the resulting beam width is piecewise linear
as a function of s.

6.3 Elliptic Phase Space

The other choice that is worth considering is that of an elliptic phase space
as shown in Fig. 6.7. In this case, the boundary of the phase space satisfies
the ellipse condition

γx2 + 2αxa+ βa2 = ε, (6.1)

which can be written in matrix form using a symmetric matrix as

(x, a) ·
(
γ α
α β

)
·
(
x
a

)
= ε.

For future simplicity, we denote the matrix describing the ellipse by σ̂.
We first note that there is a redundancy in the description of the ellipse:

obviously, doubling the values of α, β, γ as well as ε simultaneously leads to
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x

a

FIGURE 6.7: An ellipse in phase space.

the same ellipse. In order to eliminate this redundancy, we demand that the
determinant of the ellipse be unity, i.e.,

βγ − α2 = 1.

With this choice of the matrix, the quantity ε is a unique measure of its area,
called the emittance. The four quantities α, β, γ and ε are called the Twiss
parameters of the matrix.

Now we are ready to study the question how the phase space ellipse changes
as we pass through a system. Let M̂ be the transfer matrix of the system;
then the coordinates x1, a1 are transformed to x2, a2 via(

x2

a2

)
= M̂ ·

(
x1

a1

)
;

and we also have (
x1

a1

)
= M̂−1 ·

(
x2

a2

)
.

The new ellipse after the system characterized by M̂ must obviously satisfy

(x2, a2) · σ̂2 ·
(
x2

a2

)
= ε. (6.2)

Observe that if we demand det(σ̂2) = 1, even the measure for the occupied
area ε must be the same as before since we know the transfer map preserves
area. We recall that the old coordinates satisfy

(x1, a1) · σ̂1 ·
(
x1

a1

)
= ε.
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x0
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FIGURE 6.8: Characteristic points of an ellipse in phase space.

Expressing x1, a1 in terms of x2, a2, which is accomplished by the inverse
matrix, we obtain

(x2, a2) ·
((

M̂−1
)T

· σ̂1 · M̂−1

)
·
(
x2

a2

)
= ε. (6.3)

It is not difficult to show that (M̂−1)T · σ̂1 · M̂−1 is a symmetric matrix, thus
we conclude that the resulting object is again an ellipse. So ellipses are indeed
preserved under linear transformation. Furthermore, since the determinant of
the matrix is unity (see Section 5.1.4), such a representation of an ellipse by a
symmetric matrix of unity determinant is unique, and because eqs. (6.2) and
(6.3) hold at the same time, we must conclude that

σ̂2 =
(
M̂−1

)T
· σ̂1 · M̂−1. (6.4)

This equation describes the transformation of the ellipse in phase space
under the linear transformation.

6.3.1 The Practical Meaning of α, β and γ

As we propagate the beam through a system, the value of σ̂ changes with
s, and so do its three characteristic quantities α, β and γ. It is important to
study how the three quantities α, β and γ describe important characteristics
of the beam. Another important question relates to the shape and degree of
deformation of the ellipse. Together with the widths, this is characterized by
the points at which the ellipse intersects the axes as shown in Fig. 6.8.
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β

β β

FIGURE 6.9: Sketch of horizontal (solid) and vertical (dashed) β functions
of a beamline.

The question of axes intersection can be answered readily. In

γx2 + 2αxa+ βa2 = ε,

we just set a and x to zero, and obtain

x0 =

√
ε

γ
, a0 =

√
ε

β
.

Now we address the calculation of the maximal points xm and am, which
characterize the width as well as the maximum angle in the ellipse. To this
end, we view the elliptic shape as the contour line of a function, and remem-
ber that the gradient is always perpendicular to the contour lines. Hence
the maximum position occurs where the angular component of the gradient
vanishes, and the maximum angle occurs where the positional component of
the gradient disappears. For the function

f (x, a) = γx2 + 2αxa+ βa2,

we have
�∇f = (2γx+ 2αa, 2αx+ 2βa) ,

and we infer that for the maximum position, we must have ax = −βa, namely
a = −α/β · x. Inserting this into the ellipse yields

γx2 + 2αx

(
−α

β
x

)
+ β

(
−α

β
x

)2

= ε =⇒ (
βγ − α2

)
x2 = εβ,
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thus
xm =

√
εβ.

Because of the symmetry of the equations with respect to interchange of x
and a, we see that also

am =
√
εγ.

So the maximal width in x direction is determined by the area of phase
space ε as well as the function β. Thus, β plays an eminent role, as it im-
mediately tells the width of a beam at a given point; and plots of its value
for different positions around the accelerator are very commonly studied. An
example of such a plot showing the β functions for horizontal (x) and vertical
(y) motion of a beamline at the Advanced Light Source (ALS) at Lawrence
Berkeley National Laboratory (LBNL, LBL), California, USA, is shown in
Fig. 6.9 [54, 21].

6.3.2 The Algebraic Relations among the Twiss Parameters

In this section, we attempt to introduce concept of the phase advance,
which is the difference in phase between two points on the s-axis, and obtain
the relations among the Twiss parameters. Let M̂(s) be the transfer matrix
of a beamline, which may or may not be part of a periodic transport system,
from s1 = 0 to s2 = s. Let α, β and γ be the Twiss parameters at s1 = 0 and
α(s), β(s) and γ(s) be the ones at s2 = s. From eq. (6.4), we obtain that(

γ(s) α(s)
α(s) β(s)

)
=

((
M̂(s)

)−1
)T (

γ α
α β

)(
M̂(s)

)−1

,

or in another form(
M̂(s)

)T ( γ(s) α(s)
α(s) β(s)

)
M̂(s) =

(
γ α
α β

)
. (6.5)

On the other hand, it is straightforward to show that(√
β −α/

√
β

0 1/
√
β

)(
γ α

α β

)( √
β 0

−α/
√
β 1/

√
β

)
= Î ,

which means that the matrix

A =

( √
β 0

−α/
√
β 1/

√
β

)
transforms the ellipse into a circle. The new coordinates are sometimes called
the normal coordinates. This equation entails that(

γ α

α β

)
=

(
1/

√
β α/

√
β

0
√
β

)(
1/

√
β 0

α/
√
β

√
β

)
. (6.6)
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Plugging eq. (6.6) into eq. (6.5), we obtain

(
M̂(s)

)T ( 1/
√
β(s) α(s)/

√
β(s)

0
√

β(s)

)(
1/
√
β(s) 0

α(s)/
√

β(s)
√
β(s)

)
M̂(s)

=

(
1/

√
β α/

√
β

0
√
β

)(
1/

√
β 0

α/
√
β

√
β

)
.

Hence, we have the following relation(√
β −α/

√
β

0 1/
√
β

)(
M̂(s)

)T (1/
√
β(s) α(s)/

√
β(s)

0
√

β(s)

)

·
(

1/
√
β(s) 0

α(s)/
√

β(s)
√
β(s)

)
M̂(s)

( √
β 0

−α/
√
β 1/

√
β

)
= Î .

Defining

R̂(s) =

(
1/
√
β(s) 0

α(s)/
√

β(s)
√
β(s)

)
· M̂(s) ·

( √
β 0

−α/
√
β 1/

√
β

)
, (6.7)

we immediately have (
R̂(s)

)T
· R̂(s) = Î ,

or equivalently (
R̂(s)

)T
=
(
R̂(s)

)−1

.

The matrix R̂(s) can be expressed in the extended form

R̂(s) =

(
R11(s) R12(s)
R21(s) R22(s)

)
,

which entails that (
R̂(s)

)T
=

(
R11(s) R21(s)
R12(s) R22(s)

)
,(

R̂(s)
)−1

=

(
R22(s) −R12(s)

−R21(s) R11(s)

)
;

the latter holds due to the fact that det(R̂(s)) = 1. As a result, we have(
R11(s) R21(s)
R12(s) R22(s)

)
=

(
R22(s) −R12(s)

−R21(s) R11(s)

)
,

which leads to the relations

R11(s) = R22(s), R12(s) = −R21(s).
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Plugging them into the equation

R11(s)R22(s)−R12(s)R21(s) = 1,

we obtain

R2
11(s) +R2

12(s) = 1.

Therefore, the matrix elements can be expressed as trigonometric functions
of a single variable φ(s) and the matrix R̂(s) takes the form

R̂(s) =

(
cosφ(s) sinφ(s)

− sinφ(s) cosφ(s)

)
. (6.8)

Since R̂(0) = Î , φ(0) = 0. Plugging eq. (6.8) into eq. (6.7), we obtain the
explicit form of the transfer matrix, which is

M̂(s) =

( √
β(s) 0

−α(s)/
√

β(s) 1/
√
β(s)

)
R̂(s)

(
1/

√
β 0

α/
√
β

√
β

)

=

( √
β(s) 0

−α(s)/
√

β(s) 1/
√
β(s)

)(
cosφ(s) sinφ(s)

− sinφ(s) cosφ(s)

)(
1/

√
β 0

α/
√
β

√
β

)
(6.9)

=

(√
βs/β (cosφs+α sinφs)

√
βsβ sinφs

m21(s)
√
β/βs (cosφs−αs sinφs)

)
, (6.10)

where

m21(s) = − 1√
βsβ

[(αs−α) cosφs+(1+ααs) sinφs]

and αs, βs and φs represent α(s), β(s) and φ(s), respectively. Denoting

M̂(s) =

(
(x|x) (x|a)
(a|x) (a|a)

)
,

where each element is a function of s, it is easy to show that

tanφs =
(x|a)

β (x|x) − α (x|a)
when the values of (x|x) and (x|a) from eq. (6.10) are plugged in.

From the coordinate transformation point of view, eq. (6.9) illustrates the
relation between the physical coordinates and the normal coordinates. The
right most matrix transforms the physical coordinates into normal coordinates
where the motion in the normalized phase space is a rotation, represented by
the middle matrix. At end of the transport, the normalized coordinates are
transformed back to the physical coordinates.
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FIGURE 6.10: Transformation of an ellipse under a drift.

For many practical applications, it is useful to explicitly study the trans-
formation of the ellipse (6.4) through the influence of the matrix M̂. We first
observe that if

M̂ =

(
(x|x) (x|a)
(a|x) (a|a)

)
,

then

M̂−1 =

(
(a|a) − (x|a)
− (a|x) (x|x)

)
,

as simple arithmetic shows. So we have

σ̂2 =
(
M̂−1

)T
·
(
γ1 α1

α1 β1

)
·
(
M̂−1

)
=

(
γ2 α2

α2 β2

)
=

(
(a|a) − (a|x)

− (x|a) (x|x)
)
·
(
γ1 α1

α1 β1

)
·
(

(a|a) − (x|a)
− (a|x) (x|x)

)
.

Performing the calculations, we see first of all that α2, β2 and γ2 depend
linearly on α1, β1 and γ1, and hence the relationship can be written in
matrix form. Explicitly, we have⎛⎜⎝ β2

α2

γ2

⎞⎟⎠ =

⎛⎜⎝ (x|x)2 −2 (x|x) (x|a) (x|a)2
− (x|x) (a|x) (x|x) (a|a) + (x|a) (a|x) − (x|a) (a|a)

(a|x)2 −2 (a|x) (a|a) (a|a)2

⎞⎟⎠
⎛⎜⎝ β1

α1

γ1

⎞⎟⎠ .

(6.11)
One particularly interesting case is the one where we let an ellipse evolve
under the action of a drift, as shown in Fig. 6.10.

If we are interested in the way in which the width of the beam changes, we
must look at the function β(s). For the special case of the drift matrix with
(x|x) = (a|a) = 1, (a|x) = 0 and (x|a) = L, we have

β(L) = (x|x)2 β1 − 2 (x|x) (x|a)α1 + (x|a)2 γ1 = β1 − 2Lα1 + L2γ1

= γ1

(
L− α1

γ1

)2

− α2
1

γ1
+ β1 = γ1

(
L− α1

γ1

)2

+
1

γ1
. (6.12)
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FIGURE 6.11: Plot of the β function in a drift.

So as a function of L, β(L) changes quadratically. We also see readily that at
the point where

L =
α1

γ1
,

the beam has minimum width, and we have what is called a waist (see Fig.
6.11). On the other hand, we obtain from eq. (6.11) that

γ(L) = γ1,

which reflects the fact that the divergence of the beam is not changed in a
drift. As a result, we have

β(L) =
1

γ(L)
,

which entails that

α(L) = 0

at the waist. Meanwhile the behavior of α(L), which is

α(L) = −1

2

dβ

dL
= α1 − Lγ1,

vanishes at the waist. Finally, eq. (6.12) can be re-formulated as

β(s) = β∗ +
s2

β∗ , (6.13)

where β∗ is the value at the waist and s is the longitudinal distance from the
waist.
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6.3.3 The Differential Relations among the Twiss
Parameters

Now let us consider the case that s is small and to the first order β(s) =1

β + β
′
s, α(s) =1 α + α

′
s and φ(s) =1 φ

′
s. Similarly, the transfer matrix

becomes

M̂(s) =1

⎛⎝ 1 +
(
β

′
/2β + αφ

′
)
s βφ

′
s

− (1/β)
[
α

′
+
(
1 + α2

)
φ

′
]
s 1−

(
β

′
/2β + αφ

′
)
s

⎞⎠ , (6.14)

where each element Mij , the i, j-th element, is computed as

M11(s) =1

√
β + β′s

β

[
cos
(
φ

′
s
)
+ α sin

(
φ

′
s
)]

=1 1 +

(
β

′

2β
+ αφ

′
)
s,

M12(s) =1

√
(β + β′s)β sin

(
φ

′
s
)
=1 βφ

′
s,

M21(s) =1 −
√

1

(β + β′s)β

[
α

′
s cos

(
φ

′
s
)
+
(
1 + α

(
α+ α

′
s
))

sin
(
φ

′
s
)]

=1 − 1

β

[
α

′
+
(
1 + α2

)
φ

′]
s,

M22(s) =1

√
β

β + β′s

[
cos
(
φ

′
s
)
−
(
α+ α

′
s
)
sin
(
φ

′
s
)]

=1 1−
(
β

′

2β
+ αφ

′
)
s.

On the other hand, the transfer matrix to the first order of s can be solved
directly from the equations of motion, which is

M̂(s) =1

(
1 s

−ks 1

)
, (6.15)

where k is the focusing strength at s1 = 0. Equating the corresponding terms
in eqs. (6.14) and (6.15) yields

βφ
′
= 1,

β
′

2β
+ αφ

′
= 0, − 1

β

[
α

′
+
(
1 + α2

)
φ

′]
= −k,

which can be simplified to the familiar form

φ
′
=

1

β
,

α
′
= kβ − γ,

β
′
= −2α,

γ
′
= 2kα.
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The behavior of φ, α, β and γ are determined by the above set of differential
equations.

6.4 *Edwards-Teng Parametrization

Here we have shown an alternative way of propagating the Twiss parameters
through a beamline or a ring. The advantage is that only matrix multiplication
and inner products of vectors (rows of a matrix) are used. In the following
we will show that this way of tracking the Twiss parameters can be readily
extended to coupled x and y motions.

The approach is based on the Edwards-Teng parametrization of a four-
dimensional symplectic matrix. From the relation

M̂4 =

(
M̂ n̂

m̂ N̂

)
=

(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)(
Â 0̂

0̂ B̂

)(
Î cosϕ −D̂−1 sinϕ

D̂ sinϕ Î cosϕ

)
,

we obtain

M̂ = Â cos2 ϕ+ D̂−1B̂D̂ sin2 ϕ,

N̂ = B̂ cos2 ϕ+ D̂ÂD̂−1 sin2 ϕ,

m̂ = −
(
D̂Â− B̂D̂

)
sinϕ cosϕ,

n̂ = −
(
ÂD̂−1 − D̂−1B̂

)
sinϕ cosϕ, (6.16)

where Â, B̂ and D̂ are symplectic. It is straightforward to obtain

Â = M̂ − D̂−1m̂ tanϕ, B̂ = N̂ + D̂n̂ tanϕ.

Subtracting the second equation from the first equation of (6.16) and taking
its trace, we have

tr(M̂ − N̂) = tr
[(

Â− B̂
)
cos2 ϕ+

(
D̂−1B̂D̂ − D̂ÂD̂−1

)
sin2 ϕ

]
=
(
tr Â− tr B̂

)
cos2 ϕ+

[
tr
(
D̂−1B̂D̂

)
− tr

(
D̂ÂD̂−1

)]
sin2 ϕ

=
(
tr Â− tr B̂

) (
cos2 ϕ− sin2 ϕ

)
= 2 (cosμ1 − cosμ2) cos (2ϕ) . (6.17)

In the last step, the assumption that | tr Â| < 2 and | tr B̂| < 2 is adopted
following [25], where the matrix M̂4 is the one turn matrix of a ring. For a
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generic symplectic matrix, all the conclusions hold after replacing cosμ1 −
cosμ2 with (tr Â− tr B̂)/2. As a result, we have

cos (2ϕ) =
tr(M̂ − N̂)

2 (cosμ1 − cosμ2)
.

From the fourth equation of (6.16), on the other hand, we have

n̂ = −
(
ÂD̂−1 − D̂−1B̂

)
sinϕ cosϕ =

(
ÂĴD̂T Ĵ − ĴD̂T ĴB̂

)
sinϕ cosϕ,

and hence

Ĵ n̂T ĴT = Ĵ
(
ĴT D̂ĴÂT − B̂T ĴT D̂Ĵ

)
ĴT sinϕ cosϕ

= −
(
D̂Â−1 − B̂−1D̂

)
sinϕ cosϕ.

Adding the third equation of (6.16) on both sides, we obtain

m̂+ Ĵ n̂T ĴT = −
[
D̂
(
Â+ Â−1

)
−
(
B̂ + B̂−1

)
D̂
]
sinϕ cosϕ

= −
[
D̂(tr Â)− (tr B̂)D̂

]
sinϕ cosϕ

= − (cosμ1 − cosμ2) sin (2ϕ) D̂. (6.18)

Finally, we obtain

D̂ = − m̂+ Ĵ n̂T ĴT

(cosμ1 − cosμ2) sin (2ϕ)
.

Now, the only unknown quantity is cosμ1 − cosμ2, which can be obtained
below. From eq. (6.18), we have

det
(
m̂+ Ĵ n̂T ĴT

)
= (cosμ1 − cosμ2)

2
sin2 (2ϕ) .

Adding the square of eq. (6.17), we obtain

cosμ1 − cosμ2 =
1

2
tr(M̂ − N̂)

√√√√√1 +
det(m̂+ Ĵ n̂T ĴT )[
tr(M̂ − N̂)/2

]2 .

Now let us consider the case that M̂4 is symmetric, i.e., M̂T = M̂, N̂T = N̂
and n̂T = m̂. As a result, we have

D̂ = − m̂+ Ĵm̂ĴT

(cosμ1 − cosμ2) sin (2ϕ)
,
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and so

D̂−1 = ĴD̂T ĴT = − Ĵm̂T ĴT + Ĵ(Ĵ m̂T ĴT )ĴT

(cosμ1 − cosμ2) sin (2ϕ)

= − Ĵm̂T ĴT + m̂T

(cosμ1 − cosμ2) sin (2ϕ)
= D̂T .

Let us define

D̂ =

(
a b
c d

)
.

Since det D̂ = 1, we have

D̂−1 =

(
d −b

−c a

)
.

The relation D̂T = D̂−1 entails that d = a and c = −b. Combining with
det D̂ = 1, we obtain a2 + b2 = 1, which means that D̂ is a rotation. Further-
more, we have

D̂−1m̂ = − (Ĵm̂T ĴT + m̂T )m̂

(cosμ1 − cosμ2) sin (2ϕ)
= − (det m̂)Î + m̂T m̂

(cosμ1 − cosμ2) sin (2ϕ)
,

and

D̂n̂ = − (m̂+ Ĵm̂ĴT )m̂T

(cosμ1 − cosμ2) sin (2ϕ)
= − m̂m̂T + (det m̂)Î

(cosμ1 − cosμ2) sin (2ϕ)
.

Therefore both D̂−1m̂ and D̂n̂ are symmetric and, as a result, Â and B̂ are
symmetric as well.

6.4.1 The Algebraic Relations with Coupling

Let us start by noting that the 4× 4 matrix that describes the beam ellipse
of the coupled transverse motion is symmetric and symplectic, which is a
result of the fact that the motion of the particles is symplectic. From the
argument above, we have

M̂4 =

(
M̂ n̂

m̂ N̂

)
=

(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)(
Â 0̂

0̂ B̂

)(
Î cosϕ −D̂−1 sinϕ

D̂ sinϕ Î cosϕ

)
,

where det Â = det B̂ = det D̂ = 1. For a symmetric matrix characterizing the
four-dimensional beam ellipsoid, the parametrization can be written as

T̂ =

(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)(
T̂x 0̂

0̂ T̂y

)(
Î cosϕ −D̂−1 sinϕ

D̂ sinϕ Î cosϕ

)
,
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where T̂ T
x = T̂x, T̂

T
y = T̂y and D̂T = D̂−1. Using the relation D̂T = D̂−1, we

obtain immediately

(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)
=

(
Î cosϕ D̂T sinϕ

−D̂ sinϕ Î cosϕ

)
=

(
Î cosϕ −D̂−1 sinϕ

D̂ sinϕ Î cosϕ

)T

.

As a result, we have

T̂ =

(
Î cosϕ −D̂−1 sinϕ

D̂ sinϕ Î cosϕ

)T (
T̂x 0̂

0̂ T̂y

)(
Î cosϕ −D̂−1 sinϕ

D̂ sinϕ Î cosϕ

)
,

which means that the coordinate change that block diagonalizes T̂ in the
linear form also block diagonalizes T̂ in the bilinear form. The matrices T̂x

and T̂y can be decomposed the same way as eq. (6.6) and we obtain

(
ÂT

x 0̂

0̂ ÂT
y

)(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)T
T̂

(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)(
Âx 0̂

0̂ Ây

)
=

(
Î 0̂

0̂ Î

)
,

(6.19)
where

Âx,y =

( √
βx,y 0

−αx,y/
√
βx,y 1/

√
βx,y

)
.

Similar to eq. (6.9), this equation shows that the matrix

Â4 =

(
Î cosϕ D̂−1 sinϕ

−D̂ sinϕ Î cosϕ

)(
Âx 0̂

0̂ Ây

)

transforms the four-dimensional ellipse into two decoupled circles and the
transfer matrix can be written as

M̂4 =

(
Î cosϕ2 D̂−1

2 sinϕ2

−D̂2 sinϕ2 Î cosϕ2

)(
Âx2 0̂

0̂ Ây2

)(
R̂x 0̂

0̂ R̂y

)

·
(
Â−1

x1 0̂

0̂ Â−1
y1

)(
Î cosϕ1 −D̂−1

1 sinϕ1

D̂1 sinϕ Î cosϕ1

)
,

where

R̂x,y =

(
cosφx,y sinφx,y

− sinφx,y cosφx,y

)
.
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Similar to the two-dimensional case, we have(
Î cosϕ2 D̂−1

2 sinϕ2

−D̂2 sinϕ2 Î cosϕ2

)(
Âx2 0̂

0̂ Ây2

)

=M̂4

(
Î cosϕ1 D̂−1

1 sinϕ1

−D̂1 sinϕ Î cosϕ1

)(
Âx1 0̂

0̂ Ây1

)(
R̂−1

x 0̂

0̂ R̂−1
y

)

=

(
M̂ n̂

m̂ N̂

)(
Î cosϕ1 D̂−1

1 sinϕ1

−D̂1 sinϕ Î cosϕ1

)(
Âx1 0̂

0̂ Ây1

)(
R̂−1

x 0̂

0̂ R̂−1
y

)

=

(
M̂Âx1 cosϕ1−n̂D̂1Âx1 sinϕ1 M̂D̂−1

1 Ây1 sinϕ1+n̂Ây1 cosϕ1

m̂Âx1 cosϕ1−N̂D̂1Âx1 sinϕ1 m̂D̂−1
1 Ây1 sinϕ1+N̂Ây1 cosϕ1

)(
R̂−1

x 0̂

0̂ R̂−1
y

)
.

Defining

M̂Âx1 cosϕ1 − n̂D̂1Âx1 sinϕ1 =

(
m̃11 m̃12

m̃21 m̃22

)
,

we obtain that( √
βx2 0

−αx2/
√
βx2 1/

√
βx2

)
cosϕ2 =

(
m̃11 m̃12

m̃21 m̃22

)(
cosφx2 − sinφx2

sinφx2 cosφx2

)

=

(
m̃11 cosφx2 + m̃12 sinφx2 −m̃11 sinφx2 + m̃12 cosφx2

m̃21 cosφx2 + m̃22 sinφx2 −m̃21 sinφx2 + m̃22 cosφx2

)
. (6.20)

Similar to the two-dimensional case, we obtain the relations

tanφx2 =
m̃12

m̃11
, cosϕ2 =

√
m̃11m̃22 − m̃12m̃21,

βx2 =
m̃2

11 + m̃2
12

m̃11m̃22 − m̃12m̃21
, αx2 = −m̃21m̃11 + m̃22m̃12

m̃11m̃22 − m̃12m̃21
.

The relations in the vertical plane are the same. Note that both planes give
the same tilt angle ϕ2 due to the fact that

det
(
M̂Âx1 cosϕ1 − n̂D̂1Âx1 sinϕ1

)
= det

(
m̂D̂−1

1 Ây1 sinϕ1 + N̂Ây1 cosϕ1

)
.

The four-dimensional case reduces to the two-dimensional case when ϕ2 = 0.
At this point, the advantage of this procedure based on coordinate transfor-
mation is rather clear since it avoids the coding of complicated formulas which
are prone to errors. Instead, it divides the task into a few simple and standard
steps which are finding the normal coordinates of the initial ellipsoid, tracking
the transformation matrix to the point of interest and finding the Twiss pa-
rameters at the point of interest. With the help of the Differential Algebraic
(DA) technique, it is straightforward to include parameter dependence of the
Twiss parameters, which can introduce beating due to momentum deviation
or quadrupole errors.
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Chapter 7

Imaging Devices

In the following chapters, we will discuss what specifically has to be done to
the map of a system to make the system useful for a specific task. In many
cases, this requires that certain matrix elements vanish, or sometimes assume
specific values. The most important device is probably the imaging device,
in which final positions are independent of initial angles, as shown
schematically in Fig. 7.1. Represented in the language of the transfer map,
this entails that

(x|a) = 0, (y|b) = 0.

It is apparent the final angles af and bf are unimportant since it does not
matter at what angle the rays strike at the image position; so all terms of the
form (a| . . .) or (b| . . .) are insignificant. Additional requirements usually exist
for the various subclasses of imaging systems.

There are many types of devices that form images of charged particles. The
following are a few types that are widely used.

7.1 The Cathode Ray Tube (CRT)

The cathode ray tubes (CRT) are a class of imaging that have seen wide
use in electronic displays, such as the television tube and the oscilloscope.
As far as practical use, impact on society, and revenues are concerned, the TV

FIGURE 7.1: Sketch of an imaging system.
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tube was until recently the most important application of particle optics. In
this case, for each color an electron beam is deflected vertically and horizon-
tally by two simple magnetic deflectors in order to sweep over the screen area,
and the intensity of each beam is adjusted according to the color saturation
at the respective point. The cathode ray tubes used in the oscilloscopes use
electrostatic deflection plates to achieve high frequency. Yet the limit of a sin-
gle pair of plates is around 150 MHz, above which the single pair is replaced
with segmented pairs of plates. This type of deflector can reach a frequency of
300 MHz. To reach even higher frequency, a double helix line is used to deflect
the beam, which has reached 10 to 20 GHz. Nowadays, 33 GHz oscilloscopes
are commercially available.

At any given point on the screen, the resulting spot should not be wider
than the distance between two pixels, so whatever size the beam had initially
should not be amplified very much; so

(x|x) and (y|y)

should not be large.
The requirements for aberrations are usually benign as the phase space

volume of the beam is small. Yet those aberrations do limit performance and
over the decades various ways have been developed to minimize them. The
advent of plasma and liquid crystal displays (LCD) for TV on one hand and
digital oscilloscopes on the other has caused a precipitous decline of the use
of cathode ray tubes, which are preferred now only in specialized markets.

7.2 The Camera and the Microscope

The purpose of a camera and an electron microscope is to create an
image of an object formed by light or particle rays. The quantities

(x|x) and (y|y)

are magnifications, and in most cases it is desirable to have them equal.
The electron microscope is just a special case in which both of them are made
to be very large to increase the resolution.

If a true image is desired, it is important that the relationship between
final and initial coordinates is really linear, which requires that all higher
order position dependent matrix elements vanish, and so

(x|xx) = 0, (y|yy) = 0, (x|xxx) = 0, . . . .

In reality, of course, it is difficult to achieve this to higher orders, hence
some distortion remains. In the case of an electron microscope, this is often
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FIGURE 7.2: Curvature of the image.

not detrimental as one can retroactively correct the effects by calculation and
the resolution is not affected. The effects that appear usually have the con-
sequence that rectangles are distorted into either the shape of a pincushion
or into the shape of a barrel; these effects are due to

(x|xyy) and (y|yxx),

which entail that rays that simultaneously have x and y coordinates are either
pushed out from the center (pincushion) or pulled in (barrel). Higher order
terms in x and y produce similar effects.

There should be no effect of energy on position, so

(x|δ) = 0 and (y|δ) = 0

should be maintained. Similarly, all higher order aberrations involving δ
should vanish; if this is not the case, some color dependent blurring called
chromatic aberration may occur, in particular for larger values of x and y,
an effect that can be easily observed in the case of less expensive binoculars.

There should also be no effects of position on initial angles to higher order;
so it is necessary that

(x|aiabib) = (y|aiabib) = 0,

and since the range of accepted angles corresponding to a and b is often
rather large, to correct these terms is often very important. If any of them
prevail, they will entail a color independent fuzziness; in case the order of the
coordinates a and b is even, the fuzz will be oriented toward one side like the
coma of a comet; if the powers are odd, it will lead to a uniformly distributed
fuzziness.
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Similarly, all aberrations involving positions and angles simultaneously have
to vanish, and hence it is necessary to have

(x|xixyiyaiabib) = (y|xixyiyaiabib) = 0;

if any of them prevail, they will entail a position dependent fuzziness that
becomes stronger with an increase of the positions x and y.

Interestingly enough, all higher order aberrations depending on a and b only
linearly can be corrected by a reshaping of the focal plane; in fact, (x|xa),
etc., produce a tilt of the image, and (x|xxa), etc., produce a curvature of the
image. Fig. 7.2 shows how the matrix element (x|xxa) can be corrected by
shaping the image position parabolically.

At any given position, due to the matrix element (x|xxa), any ray with a
given a is moved up or down in proportion to a, where the amount of deflec-
tion depends quadratically on x; so the rays arrive at the x plane as shown.
However, tracing the rays backwards shows that they in fact all intersect be-
fore the plane, and the point where this happens depends quadratically on x.
In similar ways, (x|x4a), etc., can be corrected.

7.3 Spectrometers and Spectrographs

Spectrometers and spectrographs are devices for the purpose of measur-
ing momentum, energy, or mass of charged particles. Momentum spec-
trometers are mainly used in nuclear physics for the determination of the
momentum distribution of nuclear reaction products. Most of the momentum
spectrometers known are magnetic because of the fact that the energies that
need to be analyzed are too high to allow sufficient deflection by electric fields.
In addition, magnets have two more advantages. They automatically preserve
the momentum, and can be built big enough to achieve large acceptance.

The mass spectrometer is mainly used for the analysis of masses of
molecules, and they can be operated at much lower energies. They have
a long history, and their applications pervade many disciplines from physics
and chemistry to biology, environmental sciences, etc. Mass spectrometers are
also more diverse; among the major types, there are sector field, quadrupole,
accelerator, energy loss, time-of-flight, Fourier transform ion cyclotron reso-
nance and ion trap mass spectrometers.

For all the different types of spectrometers, the goal is to achieve high
resolution, and in many cases large acceptance at the same time. As
resolution improves, the need for better understanding and correction of high
order aberrations increases. In the following, the linear theory of various types
of spectrometers will be discussed, followed by the studies of aberrations and
their correction.
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FIGURE 7.3: The Browne-Buechner spectrograph.

As alluded to before, in spectrometers the final position is used as a
measure of momentum, energy, or mass of the particle. This requires that the
final position be independent of other quantities, which in particular requires
that the device be focusing such that

(x|a) = 0.

Due to Liouville’s theorem, it is impossible to obtain focusing and zero image
size simultaneously, and hence the initial spot width has to be minimized to
ensure that the final image is narrow enough. Furthermore, the dependence
on the spectroscopic quantity of interest δ, the so-called dispersion

(x|δ),
should be large. Finally, in a mass spectrometer where particles of different
energies are present, the dependence on energy (x|δ) should vanish. In the
map picture, the linear behavior is thus given by the transfer matrix of the
horizontal motion

M̂ =

⎛⎝ (x|x) 0 (x|δ)
(a|x) (a|a) (a|δ)
0 0 1

⎞⎠ . (7.1)

Let 2Di be the width of the source. From eq. (7.1), it is clear that the par-
ticles to be detected focus around a spot at (x|δ)δ with a width of |2(x|x)Di|.
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α1 α2

θ

FIGURE 7.4: Illustration of the imaging condition arising from Barber’s
rule.

Hence, the distance between the centers of particles of different energies must
be larger than the width, i.e.,

|(x|δ)δ| > |2(x|x)Di|.

This sets an upper bound for 1/δ, which we call the linear resolving power (or
linear resolution),

Rl =

(
1

δ

)
max

=

∣∣∣∣ (x|δ)
2(x|x)Di

∣∣∣∣ .
Hence in order to increase the resolution, it is necessary to increase |(x|δ)|
and/or decrease |Di|.

As an example, let us study the first broad range momentum spectrometer,
the Browne-Buechner spectrometer. It contains only a homogeneous dipole
with 90◦ bending and circular pole boundaries. The layout is depicted in Fig.
7.3, and it is applicable for particles with energies up to 25 MeV/u. As it
turns out, there is a simple condition known as Barber’s rule that assures
that the system is x-focusing. This is in fact the case whenever the source
location, the center of deflection of the magnet, and the image location lie on
a straight line, as shown in Fig. 7.4. To prove Barber’s rule, we first write
down the transfer matrix of the horizontal plane, which is

M̂x =

(
1 l2

0 1

)(
cos θ R sin θ

− (1/R) sin θ cos θ

)(
1 l1

0 1

)

=

(
cos θ − (l2/R) sin θ R sin θ + l2 cos θ

− (1/R) sin θ cos θ

)(
1 l1

0 1

)

=

(
cos θ − (l2/R) sin θ (l1 + l2) cos θ + (R − l1l2/R) sin θ

− (1/R) sin θ cos θ − (l1/R) sin θ

)
,

where the angles θ, α1 and α2 are shown in Fig. 7.4 and the quantities R,
l1 and l2 are the bending radius and the drifts before and after the dipole
magnet, respectively. Using the relations l1 = R tanα1, l2 = R tanα2 and
α1 + α2 + θ = π, as well as tanA + tanB = (1 − tanA tanB) · tan(A + B),
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TABLE 7.1: The first order map of the Browne-Buechner
spectrograph (Exponents in the initial variables x, a, y, b, l, δ)

xf af yf bf exponents

-1.000000 -1.950458 0 0 100000
0 -1.000000 0 0 010000
0 0 1.000000 0 001000
0 0 1.830747 1.000000 000100
0 0 0 0 000010
0.519441 0.506574 0 0 000001

we have

m12 = (l1 + l2) cos θ +

(
R− l1l2

R

)
sin θ

= R [(tanα1 + tanα2) cos θ + (1− tanα1 tanα2) sin θ]

= R (1− tanα1 tanα2) cos θ · [tan (α1 + α2) + tan θ]

= R (1− tanα1 tanα2) cos θ · [tan (π − θ) + tan θ] .

Because of tan (π − θ) = − tan θ, we obtain the desired result

m12 = 0.

In general, it is not hard to obtain the first order map by hand, and it is
very easy to obtain it using a computer code; the result is shown in Table 7.1.
With the typical assumption that the half width Di is 0.25 mm, the resulting
linear energy resolution is

Rl =
1

δmin
=

∣∣∣∣ (x|δ)
2(x|x)Di

∣∣∣∣ ≈ 1000.

Since all electric and magnetic devices produce nonlinear terms in the map
called aberrations, their impact on the resolution has to be studied when-
ever necessary. The nonlinear effects are very important in the case of the
momentum spectrometers due to their large angular and momentum accep-
tances. Considering the aberrations, the final width will be a new value Δxab

instead of |(x|x)Di|, which has as an upper bound

Δxab = (2|(x|x)Di|+ |(x|x2)|D2
i + |(x|xa)DiAi|+ · · · ),

where Ai is the half width of the spread in the quantity a. So, the actual
resolution Rab is

Rab =
|(x|δ)|
Δxab

.

A parameter often used as a comprehensive quality indicator for a spec-
trometer is the so-called Q value

Q =
Ω ln (pmax/pmin)

ln 2
,
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FIGURE 7.5: Sketch of a generic spectrograph consisting of a single dipole,
including rays that show the imaging condition and the dispersion of the
device.

where Ω is the nominal solid angle from which a reasonable resolution is
expected. The Q-value shows both the geometric and momentum accep-
tance of a spectrometer. For example, the Ω and pmax/pmin for the Browne-
Buechner spectrometer are 0.4 msr and 1.5, respectively. Large Ω translates
into high intensity, which is important for nuclear studies and other situa-
tions where the number of available particles are small. Large momentum
acceptance can reduce the number of exposures to cover a certain momentum
range.

As discussed before, the purpose of the spectrograph is to translate energy
information into position information, and in order to have high resolution,
the position should not depend on anything else if possible. Rays originate
from a source, travel through the spectrograph, and finally reach the screen,
as shown in Fig. 7.5.

It is possible to measure energies in terms of final positions by making the
dispersion

(x|δ)
large. In practice this requires the use of at least one bending element,
because all other elements have vanishing (x|δ). The final position should not
depend on anything else besides δ, and since it is important to be able to
accept rays covering a wide range of angles, it is necessary to have

(x|a) = (y|b) = 0.

So the spot size is limited by (x|x) = 1/(a|a), which is usually kept small,
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FIGURE 7.6: Sketch of a generic spectrograph as in the previous picture,
but now subject to aberrations up to order seven.

and the size of the object, the x size of which is usually kept in the range of
fractions of mm.

Any contribution to the final position should be due to energy, and so aber-
rations depending on initial angle should be avoided. These aberrations are
usually called spherical, since they historically first manifested themselves
from the grinding of lens surfaces as spheres, which is much easier to achieve
than other shapes. So if possible we want

(x|aa) = (x|aaa) = 0, (x|bb) = (x|abb) = 0.

These conditions are not satisfied for the simple spectrograph shown in Fig.
7.5. Rather, when they are considered, the trajectories of the rays look like in
Fig. 7.6, showing very noticeable broadening of the image due to aberrations.

The aberrations involving also x-positions are less significant as positions
are kept small. The ones involving also y positions are more important as y
is not necessarily kept small; but if (y|y) is kept large enough, particles with
significant initial y reach the focal plane with significant final y; the interplay
of (y|y) and (x|yy) then leads to a parabolic shape of the resulting image, but
the sharpness of the parabola, which determines the resolution, is unaffected
by (x|yy).

It is also important to consider aberrations involving energy. Of these, the
terms depending only on energy of the form

(x|δiδ )
do not necessarily have to be corrected as long as they are known, since they
just turn the relationship of final x and initial δ into a nonlinear one, which



170 An Introduction to Beam Physics

z

x

δ1

δ2

FIGURE 7.7: The effect of the aberration (x|aδ).

still allows an accurate measurement of δ. The most important aberrations
are usually those that involve initial angles and energies simultaneously, as
both of these can be large. Of these, the lowest order aberration (x|aδ) can
be corrected by a simple tilt of the focal plane: the final x of a particle,
which depends mostly on δ, is moved up or down linearly depending on the
value of a. As shown in Fig. 7.7, similar to before, all these rays with different
values of a go through a common point at a distance before or after the x
plane, where the effect of (x|aδ) does not manifest itself. The tilt of the focal
plane is also very clearly visible in the actual example of Fig. 7.6.

In a similar way, spectrographs can also be used to measure masses of
particles, and all previous arguments remain valid if the energy deviation δ
is replaced by the mass deviation δm. If mass resolution is to be achieved to
very high precision and the initial energy is not uniform, then in addition to
the above requirements, it is also important that the final position does not
depend on δ; this requires that

(x|δ) = 0,

while of course at the same time trying to have

(x|δm)

large. The simultaneous satisfaction of these conditions is not possible using
only magnetic devices; for low energies, it is usually achieved by combining
magnetic and electric deflectors.

7.3.1 Aberrations and Correction

For all the spectrographs mentioned above, nonlinear effects have always
been a concern for the designers. Looking back to the Browne-Buechner spec-
trograph, the linear energy resolution obtained was ∼ 1000.When aberrations
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FIGURE 7.8: A magnified drawing of the effect of the aberration (x|aδ).
(Δz, x1) is the image on the tilted focal plane caused by the term (x|aδ).

are considered, the resolution of the eighth order drops sharply to around 60,
which is far below the actually achieved resolution. This shows the importance
of the aberrations. They have to be studied carefully, and the prominent ones
have to be corrected.

Since the entrance slit Di is usually small and the solid angle large, only
the angle and dispersion aberrations are important. Both map calculations
and geometric considerations show that all the terms (x|xman) (m + n even)
vanish. Since (x|b2) is small (see Table 7.2), the only second order term
that has a strong impact is (x|aδ) which can be as large as 8 mm when a =
40 mrad and δ = 20%. In fact, this is the most important factor that causes
the decrease of the resolution. This becomes apparent when the resolution
considering (x|aδ) is calculated:

Rab =
(x|δ)

2(x|aδ)aiδ = 63.

Fortunately (x|aδ) is easy to correct, because it only causes the tilt of the
focal plane, which is illustrated in Fig. 7.8.

To prove the last statement, suppose a particle of energy K0(1 + δ) starts
from the origin with slope a0 and goes through an angle focusing system. The
final position and angle to first order are

x1 = (x|δ)δ, a1 = (a|a)a0 + (a|δ)δ,
respectively. Taking into account (x|aδ), the result becomes

x̃1 = (x|δ)δ + (x|aδ)a0δ, ã1 = (a|a)a0 + (a|δ)δ.
Consequently, the system is not focusing anymore. Now consider a second
particle of the same energy starting from the same point but with a different
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TABLE 7.2: Aberrations of the Browne-Buechner
spectrograph at the straight focal plane that are 10 μm or
larger (Parameters: xmax = 0.23 mm, amax = 40 mrad,
ymax = 1 mm, bmax = 10 mrad, δmax = 20%. Exponents:
in the initial variables x, a, y, b, l, δ)

# Coefficient Order Exponents
1 -0.2300000000000000e-3 1 1 0 0 0 0 0
2 0.1038881145421565 1 0 0 0 0 0 1
3 0.4660477149345817e-4 2 1 0 0 0 0 1
4 0.8311049163372523e-2 2 0 1 0 0 0 1
5 -0.5127000000000000e-4 2 0 0 0 2 0 0
6 -0.1025577239401090e-1 2 0 0 0 0 0 2
7 -0.6562560000000000e-4 3 0 3 0 0 0 0
8 0.3324419665349009e-3 3 0 2 0 0 0 1
9 -0.1873001321765092e-2 3 0 1 0 0 0 2

10 0.1038881145421565e-4 3 0 0 0 2 0 1
11 0.1544932687715805e-2 3 0 0 0 0 0 3
12 0.4654187531488613e-4 4 0 3 0 0 0 1
13 -0.1338622665642800e-3 4 0 2 0 0 0 2
14 0.4380445064894873e-3 4 0 1 0 0 0 3
15 -0.2577160791614789e-3 4 0 0 0 0 0 4
16 0.4622130002260186e-4 5 0 2 0 0 0 3
17 -0.9970354551245065e-4 5 0 1 0 0 0 4
18 0.4511716453676560e-4 5 0 0 0 0 0 5
19 0.2219821460952441e-4 6 0 1 0 0 0 5

angle a0 + Δa0. The differences in final position and angle between the two
particles are

Δx1 = (x|aδ)Δa0δ, Δa1 = (a|a)Δa0.

The fact that Δx1/Δa1 is independent of Δa0 indicates that particles of
energy K0(1 + δ) are focusing at

Δz = −Δx1

Δa1
= − (x|aδ)δ

(a|a) ,

which is proportional to δ. So the tilting angle is

tanψ =
Δz

x1
= − (x|aδ)

(a|a)(x|δ) ,

where ψ is the angle between the normal to the focal plane and the z-axis.

Furthermore, the correction of (x|aδ) even increases the resolution under
certain circumstances. When Δxab is smaller than the detector resolution
Δxd, Δxd becomes the limitation of the momentum resolution and is inde-
pendent of ψ. Since the distance between two peaks increases by a factor of
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TABLE 7.3: Aberrations of the Browne-Buechner
spectrograph at the tilted focal plane that are 10 μm or
larger (Parameters: xmax = 0.23 mm, amax = 40 mrad,
ymax = 1 mm, bmax = 10 mrad, δmax = 20%. Exponents:
in the initial variables x, a, y, b, l, δ)

# Coefficient Order Exponents
1 -0.2300000000000000e-3 1 1 0 0 0 0 0
2 0.1038881145421565 1 0 0 0 0 0 1
3 -0.9320954298691634e-4 2 1 0 0 0 0 1
4 -0.5127000000000000e-4 2 0 0 0 2 0 0
5 0.1079501821087351e-1 2 0 0 0 0 0 2
6 -0.6562560000000000e-4 3 0 3 0 0 0 0
7 0.3324419665349009e-3 3 0 2 0 0 0 1
8 -0.2105079060488440e-3 3 0 1 0 0 0 2
9 -0.1038881145421566e-4 3 0 0 0 2 0 1

10 0.1654199766297046e-2 3 0 0 0 0 0 3
11 -0.1329767866139604e-4 4 0 3 0 0 0 1
12 0.5138469075870278e-4 4 0 2 0 0 0 2
13 -0.2242022047923136e-4 4 0 1 0 0 0 3
14 0.1745846601755523e-3 4 0 0 0 0 0 4
15 0.1305877080464639e-4 5 0 2 0 0 0 3
16 0.2771149616039620e-4 5 0 0 0 0 0 5

1/ cosψ while Δxd remains unchanged, the resolution is

Rab =
(x|δ)

Δxd cosψ
,

which is greater than the linear resolution. Rigorous computation of the actual
resolution requires that the aberrations on the tilted focal plane be calculated.

For the Browne-Buechner spectrograph, eighth order maps of both straight
and tilted focal planes are computed. Table 7.2 shows the aberrations on the
straight focal plane, where (x|aδ) is clearly the major contributor. Table 7.3
contains the aberrations on the tilted focal plane, where (x|aδ) vanishes and
others are either reduced or unchanged. Both tables are taken from [5]. The
resolution after the cancellation of (x|aδ) bounces back to 780 (or 1560 in
momentum), which is quite close to the linear resolution. This entails that
the remaining aberrations are weak enough to be ignored at the time when it
was first designed.

When higher resolution is required, more aberrations have to be corrected.
Usually (x|a2) and (x|b2) are corrected first. Then (x|a3), (x|a2b) and (x|ab2)
are tackled. If necessary, fourth order terms like (x|a4) also have to be min-
imized. At least in one instance, eighth order terms, such as (x|a5b3), are
corrected, too. This is done in Quad-Dipole-Quad (QDQ) spectrographs. The
pole faces of the last quadrupole are shaped to produce quadrupole, sextupole,
octupole and decapole field components. Generally, corrections are done by
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placing magnetic multipoles of the same order into the system. They are ei-
ther separate adjustable multipoles or combined fixed elements to dipoles or
quadrupoles.

7.3.2 Energy Loss On–Line Isotope Separators

As part of the growing developments in the study of radioactive beams, on–
line isotope separation is more and more widely performed. As in other
mass spectrometers described above, different isotopes have to be laterally
separated. Yet they can no longer be bent by electrostatic sectors anymore
due to their high energy. Among the different methods, the energy loss method
is a very interesting one. First, particles of the right rigidity are selected by
a slit at the dispersive focal point. Second, the selected particles are sent
through an energy degrader which creates new momentum spread according
to the mass of the particles. And finally, a second slit picks up the desired
nuclei. The best spatial separation can be achieved when the whole beamline
is achromatic and the degrader preserves the achromaticity. This is due to
the fact that nuclei of the same mass but different momentum are focused at
the same spot. Hence it is important to study the transfer map of an energy
degrader and the achromatic conditions.

In most of the cases, the degrader is thin enough for us to neglect the
straggling effect from multiple scattering. So a degrader is the combination
of a drift and an energy loss, which has the first order matrix

M̂d =

⎛⎝ 1 d 0
0 1 0

(δ|x)d (δ|a)d (δ|δ)d

⎞⎠ .

Here d is the thickness of the degrader. It is easy to show that the spatial
part of M̂d can be reduced to a unity matrix. After applying a negative drift
behind the degrader, M̂d becomes

M̂d =

⎛⎝ 1 −d 0
0 1 0
0 0 1

⎞⎠⎛⎝ 1 d 0
0 1 0

(δ|x)d (δ|a)d (δ|δ)d

⎞⎠ =

⎛⎝ 1 0 0
0 1 0

(δ|x)d (δ|a)d (δ|δ)d

⎞⎠ .

For heavy ions at the intermediate energy region of ≥ 10 MeV/u, the energy
at the exit can be described with the formula

Kd = K

(
1− d

R

)1/γ

,

where K is the energy at the entrance of the degrader and R is the range.
Furthermore,

R = kA1−γKγ/Z2,
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FIGURE 7.9: Layout of an example of a fragment separator. There is
an intermediate image at the mirror symmetry plane in the middle, and the
system is achromatic.

where A is the atomic number, Z is the charge, and k and γ are constants.
Within this model, the matrix elements can be obtained as

(δ|x)d =
−1

γR0(1− d0/R0)

(
∂d

∂x

)
x=0

,

(δ|a)d = 0,

(δ|δ)d =
1

1− d0/R0
,

where d0 and R0 are values for the reference particle.
To achieve achromaticity, the system has to satisfy

(x|a) = 0 and (x|δ) = 0.

By denoting the parts before and after the degrader with subscript 1 and 2,
respectively, the achromatic conditions are obtained and they are

(x|x)2(x|a)1+(x|a)2(a|a)1+(x|δ)2{(δ|x)d(x|a)1+(δ|a)d(a|a)1} = 0,

(x|x)2(x|δ)1+(x|a)2(a|δ)1+(x|δ)2{(δ|x)d(x|δ)1+(δ|a)d(a|δ)1+(δ|δ)d} = 0.

When the previous model applies, (δ|a) vanishes. Together with the require-
ment that both parts are focusing, that is (x|a)1 = (x|a)2 = 0, the conditions
can be reduced to

(x|a)1 = (x|a)2 = 0,

D1M2 +D2{D1(δ|x)d + (δ|δ)d} = 0, (7.2)

where D = (x|δ) and M = (x|x).
An example which uses an achromatic degrader for isotope separation is

shown in Fig. 7.9. When operated on the achromatic mode, the system is
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mirror symmetric about the degrader and forms a dispersive image at that
point. The matrices of the two parts are

M̂1 =

⎛⎝ M1 0 D1

(a|x)1 1/M1 0
0 0 1

⎞⎠ , M̂2 =

⎛⎝ 1/M1 0 −D1/M1

(a|x)1 M1 −(a|x)1D1

0 0 1

⎞⎠ .

From eq. (7.2), the achromatic condition for the fragment separator is

D1(δ|x)d + (δ|δ)d = 1.

Therefore the shape of the degrader can be decided, which is a wedge with
the slope (

∂d

∂x

)
=

γd0
D1

.

It is straightforward to verify that the system with the degrader is indeed
achromatic

M̂ = M̂2 · M̂d · M̂1 =

⎛⎜⎝ (δ|δ)d 0 0

M1(a|x)1(2− (δ|x)dD1) 1 0

M1(δ|x)d 0 1

⎞⎟⎠ .

7.4 *Electron Microscopes and Their Correction

The field of electron optics is one of the oldest branches of beam physics,
which is a direct descendant of light optics. Recently, it is also one of the most
active branches due to the advancement of aberration correction in electron
microscopes. In the past decade, the TEAM project (Transmission Electron
Aberration-corrected Microscope) has been developing the next generation of
electron microscopes. Initial experiments using the latest aberration-corrected
scanning transmission electron microscope (STEM) demonstrated the scien-
tific potential of aberration-corrected electron microscopes.

Since their invention in the early 1930s, electron microscopes have been used
in various areas ranging from scientific research to industrial production, and
various different types of microscopes were developed for the specific needs
of those applications. The main variants are the transmission electron micro-
scope (TEM), the scanning transmission electron microscope (STEM), the
photoemission electron microscope (PEEM), the low energy electron micro-
scope (LEEM) and the scanning electron microscope (SEM).

Among them, TEM and STEM are used mainly to study the bulk proper-
ties of materials with electron energy ranges from 100 keV to 1 MeV. PEEM,
LEEM and SEM are used to study surface properties of materials with elec-
tron energy below 30 keV. In a PEEM, secondary electrons generated by
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ΔK/K = 0

ΔK/K > 0

ΔK/K < 0

FIGURE 7.10: Spherical (top) and chromatic (bottom) aberrations. A
Gaussian image exists at the dashed line. Higher and lower energy electrons
are represented by ΔK/K > 0 and ΔK/K < 0.

photons are imaged. In a LEEM, electrons reflected from the sample surface
are imaged. In a SEM, an electron probe the size of a few angstroms is formed
on the sample and secondary electrons are collected.

Except for LEEM, which needs a magnetic separator to separate the in-
coming and reflected electron beams, most microscopes without aberration
correction consist of so-called round lenses only. There are two types of
round lenses used in electron microscopes: the electrostatic and the magnetic
lenses. Electrostatic lenses are used in PEEMs, LEEMs and some SEMs,
whereas magnetic lenses are used in TEM and STEM where the higher
energies of the electrons make the use of electrostatic lenses impractical.

The rotational symmetry of these lenses ensures that only a small number
of aberrations remain to degrade the linear or, so-called, Gaussian image
properties. The first kind are the spherical aberrations, which lead to
a blurring of the image due to the opening angle of the electron beam at
the object. In the electrostatic case, the first relevant terms are (x, aaa)
and (y, bbb), which are equal due to the rotational symmetry, and usually
denoted by CS . There are also terms of the form (x, a5) and (y, b5) which
are denoted by C5, the significance of which is discussed below. Second and
fourth order terms and cross terms like (x, aab), etc., vanish because of the
mirror symmetry.

In the magnetic case the situation is a bit more complicated since magnetic
round lenses can rotate the image in the x − y plane. However, considering
the motion in the rotated coordinate system, it can be seen that the matter
reduces to quite the same situation as in the electrostatic case. The top picture
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of Fig. 7.10 illustrates the effect of the spherical aberration.
The second kind of aberrations are the chromatic aberrations, which

arise as a combination of the opening angle and the energy spread of the
beam. The lowest order chromatic aberration for a round lens is 2, and in
the electrostatic case has the form (x, aδ), which because of symmetry also
equals (y, bδ). These chromatic aberrations are usually denoted by CC . In the
magnetic case after transformation into the appropriate rotated coordinate
system, the situation is again the same. The effect of the chromatic aberration
is illustrated in the bottom picture of Fig. 7.10.

Even in the early days of electron microscopes, the possibility of correcting
the remaining aberrations had been contemplated. Yet the initial result of
theoretical investigation was not very encouraging. Scherzer [62] showed that,
for a round lens without reflection, the spherical and the chromatic aberrations
do not change sign, the same as the focusing force of such a lens (see Section
4.4.1).

Specifically, electrons with a larger angle are focused stronger and electrons
with higher energy are focused weaker. As a result, aberration correction
requires violation of the above assumptions, through using either multipole
elements, electron mirrors or time varying fields. Early attempts on aberra-
tion correction, between the late 1940s and the early 1990s, failed mainly due
to insurmountable technical difficulties. Hence the development of electron
microscopes up to the early 1990s follows mainly the line of aberration re-
duction through optimization of the lens design and improvement of stability.
The initial success of aberration correction came when the technology was
ready in the mid-1990s [59, 39].

7.4.1 Aberration Correction in SEM, STEM and TEM

The first successful aberration correction was reported in 1995, where the
spherical aberration CS and chromatic aberration CC were corrected in a low
voltage SEM (scanning electron microscope). The corrector consists of four
multipole elements (see Fig. 7.11), which was originally proposed in the early
1960s. The two outer elements are electrostatic multipoles and the two inner
ones are superimposed electrostatic and magnetic multipoles. The corrector
consists of two identical quadrupole doublets, where the two quadrupoles
are physically the same, excited at the same current but with opposite polarity.

Furthermore, it is arranged such that the so-called cosine-like ray of the
horizontal plane, which in conventional transfer map terminology corresponds
to the (x, x) matrix element, goes through the center of the left inner element,
while that of the vertical plane goes through the center of the right inner
element. This entails that (x|aδ) and (y|bδ) can be corrected independently
from each other.

More importantly, rays in the vertical plane coincide with those in the
horizontal plane going backwards. This layout minimizes the breaking of ro-
tational symmetry due to the introduction of multipoles. The most noticeable
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FIGURE 7.11: Cosine-like rays (left) and sine-like rays (right) of the
quadruplet corrector.

FIGURE 7.12: A quadrupole-octupole CS corrector. The rectangles rep-
resent quadrupoles and the hexagons represent octupoles.

consequence is that the terms (x|aδ) and (y|bδ) are equal, restoring the rota-
tional symmetry of the chromatic aberration. The superimposed electrostatic
and magnetic quadrupoles form first order Wien filters that can correct
chromatic aberration.

In other words, the different energy dependencies of the electrostatic and the
magnetic forces allow adjusting the chromatic aberration while maintaining
overall linear focusing. In addition, the rotational symmetry of the spherical
aberration is partially restored. Specifically, for a rotational symmetric sys-
tem, we have (x|a3) = (x|ab2) = (y|a2b) = (y|b3). For the present corrector,
the relations among the four terms are (x|a3) = (y|b3) and (x|ab2) = (y|a2b).
These relations show that two families of octupoles are needed to correct the
spherical aberration using a corrector with the same symmetry.

For this corrector, the octupole components of the inner multipoles correct
the terms (x|a3) and (y|b3), and those of the outer ones correct (x|ab2) and
(y|a2b). With CS and CC corrected, the resolution of a 1 keV SEM could
reach below 2 nm.

Meanwhile, another scheme was developed and used to successfully correct
third order spherical aberration in a 100 keV STEM where a certain combi-
nation of quadrupoles and octupoles is used. It uses a similar layout for the
quadrupoles as the CS and CC corrector above, which is shown in Fig. 7.12.
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The linear optics consists of two identical quadrupole doublets with equal
spacing between the quadrupoles and equal strength of all quadrupoles. The
two outer octupoles correct the terms (x|a3) and (y|b3), and the middle one
corrects (x|ab2) and (y|a2b). Due to the large difference in transverse position
of the horizontal and vertical rays in the outer octupoles, the two knobs are
mostly orthogonal. A resolution of 0.78 Å has been achieved using such a
corrector.

While the introduction of the CS corrector into an electron microscope
corrects the third order spherical aberration, it also generates much larger
fifth order spherical aberrations (C5) through the combination of the
objective lens and the octupoles and that among the octupoles, which becomes
the limiting factor as the resolution reaches toward 0.5 Å. The equation below
illustrates the origin of C5 through combination.(

xf

af

)
=

(
x

a+ ko2x
3

)
◦
(
(x|x) x+ (x|a) a
(a|x)x+ (a|a) a

)
◦
(
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ai + ko1x
3
i

)
=

(
(x|x) xi + (x|a) ai
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)
+

(
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i
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(
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)3)
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(
(x|x) xi + (x|a) ai
(a|x)xi + (a|a) ai

)

+

(
(x|a) ko1x3

i(
(a|a)ko1 + ko2 (x|x)3

)
x3
i + 3 (x|x)2 (x|a) ko1ko2x5

i

)
.

Since C5 is proportional to (x|a), it vanishes when (x|a) vanishes, i.e., when
the first element (right) is imaged onto the second one (left). It can be seen
from Fig. 7.12 that this condition is not met for this corrector. More recent
designs of CS correctors have taken this into account and correct C5 as well.
By adjusting the image location, the value of C5 can be varied and canceled.

In order to correct CS in a transmission electron microscope (TEM), extra
attention has to be paid to maintaining a large usable object area, the so-called
field of view. This usually requires that at least 2000 image points are well
resolved in one dimension. It turns out that the simple quadrupole-octupole
corrector shown in Figs. 7.11 and 7.12 does not meet this requirement. The
main reason is that the cosine-like ray of the objective lens, i.e., the sine-like
ray of the corrector, goes through the octupoles at large amplitude. As a
result, it is deflected by the octupoles, generating large aberrations that limit
the field of view.

The first successful corrector CS on TEM consists of two round lenses and
two sextupoles, which is shown in Fig. 7.13. The round lenses form a so-
called −I transport between the centers of the sextupoles, i.e., the linear
transfer matrix is a negative identity. It turns out that this cancels the second
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FIGURE 7.13: A sextupole CS corrector. The ellipses represent round
lenses and the rectangles represent sextupoles.

OL H1 H2L1 L2 L3 L4

FIGURE 7.14: Sine-like and cosine-like rays of a CS corrected TEM from
objective lens to the end of the corrector section. OL: objective lens, L1 to
L4 : round lenses, H1 and H2 : sextupoles.

order aberrations generated by the sextupoles as well as C5 from combination.
Furthermore, the third order spherical aberration can be corrected due to the
fact that CS from the sextupoles, which is proportional to k2s , is rotationally
symmetric and of the opposite sign of that of the round lenses.

Fig. 7.14 shows such a corrector in a TEM, together with the objective lens
and the so-called transfer lenses. Note that the cosine-like ray of the objective
lens goes through the centers of the sextupoles, hence it is unaffected by the
corrector, helping to maintain the field of view. A slightly modified version of
such a corrector has also been used to correctCS in STEM. Recently, a STEM
named TEAM 0.5 (Transmission Electron Aberration-corrected Microscope)
has achieved the resolution of 0.5 Å at 300 keV using such a corrector.

With the success of correcting the spherical aberration in TEM, scientists
and engineers in this field have set out to build a TEM that is both CS and
CC corrected. Successful as it is, the sextupole corrector is not capable of
correcting CC and it is not obvious how to modify the sextupole corrector to
include CC correction. As a result, attention has been focused on the option of
a quadrupole-octupole corrector. After many attempts, Rose [59] developed
a design which satisfied the requirement and was later adopted by the TEAM
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FIGURE 7.15: Sine-like and cosine-like rays of the TEAM corrector. El-
lipses: round transfer lenses, rectangles: multipoles. The focal length of the
middle elements is half of that of the far outer ones. The ratio of the sine-like
rays at the middle elements is 5.

OL N1 N2L1 L2 O2

FIGURE 7.16: Sine-like and cosine-like rays of the TEAMmicroscope from
objective lens (OL) to the end of the corrector section. The omitted part in
the middle is the multipole corrector shown in Fig. 7.15. L1 and L2 : adapter
lenses, O2 : octupole used to cancel (x|ab2) and (y|a2b).

project and built.

As shown in Fig. 7.15, the corrector consists of two multipole quintuplets,
each replacing one sextupole in the sextupole corrector (Fig. 7.13). The mid-
dle element of each quintuplet is a superimposed electrostatic and magnetic
multipole which is responsible for correcting the spherical and the chromatic
aberrations. Each quintuplet is mirror symmetric about its center and each
half is again mirror symmetric about its own center. Each half of the quin-
tuplet is point to parallel and parallel to point. Each quintuplet is a −I
transport. The result is the cancellation of a large number of aberrations.
Since one of the strengths of quadrupole families is a free parameter, it is
chosen such that the relative difference in the horizontal and vertical beam
width at the center of the quintuplet is large. As in the case of the sextupole
corrector for TEM (Fig. 7.14), the cosine-like ray of the objective lens is not
affected by the aberration corrector (see Fig. 7.16). The second family of
octupole can be placed either at the center of the corrector or, as shown in
Fig. 7.16, after the corrector.
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ΔK/K > 0

ΔK/K = 0

ΔK/K < 0

FIGURE 7.17: Spherical (top) and chromatic (bottom) aberrations of an
electron mirror, showing the possibility of reversing the sign of that of a regular
round lens. Vertical dashed line: Gaussian image. Higher and lower energy
electrons are represented by ΔK/K > 0 and ΔK/K < 0, respectively.

Such a corrector posed unprecedented challenges on technology in terms
of tolerance on alignment errors and power supply stability. The required
tolerance on alignment error is around 14 μm between adjacent elements,
which is difficult but achievable. For the superimposed multipole elements
which are responsible for aberration correction, the noise level of the current
and voltage supplies have to be below 1.5·10−8 (ΔI/|I|) and 4·10−8 (ΔU/|U |),
respectively. This level of stability was unheard of even a few years ago. Yet
recently, it has been possible to achieve ΔI/|I| = 8.1 · 10−9 and ΔU/|U | =
3.6 · 10−9, fulfilling the design criteria. A first test of the corrector showed
that the resolution of a TEM with this corrector reached 1 Å.

7.4.2 Aberration Correction in PEEM and LEEM

Due to the low energy of the electron beam (< 30 keV) in these devices,
so-called electrostatic lenses that use electric fields to focus the beam are
feasible. Although the multipole corrector used in low voltage SEM (scanning
electron microscope) successfully corrected the spherical and the chromatic
aberrations, it is not suited for PEEM (photoemission electron microscope)
or LEEM (low energy electron microscope) which requires large field of view.

A sophisticated multipole corrector similar to the TEAM (Transmission
Electron Aberration-corrected Microscope) corrector may be sufficient, but
as it turns out there is a much simpler alternative, namely the electrostatic
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FIGURE 7.18: Geometry of the tetrode mirror in PEEM3 at Lawrence
Berkeley National Laboratory, California, USA.

FIGURE 7.19: Layout of PEEM3. Square: beam separator, ellipses: elec-
trostatic round lenses, the mirror is on the bottom.

mirror. The reflection in the mirror makes it possible for a mirror to generate
spherical and chromatic aberrations with the opposite sign of those from the
regular round lenses.

The top picture in Fig. 7.17 shows that an electron with large initial angle
is reflected at a location where the slope of the field line is smaller than the
initial angle and can be focused less. The bottom picture shows that an
electron with higher energy penetrates deeper into the mirror, is reflected at
a location where the slope of the field line is larger than that for an electron
with design energy and, as a result, can be focused more.

Therefore, an electron mirror with a dent on the reflection electrode com-
parable to the electron beam size can form the desired field distribution for
aberration correction. Fig. 7.18 shows an example in PEEM3 at Lawrence
Berkeley National Laboratory, California, USA, which is an adaptation of the
SMART design, and the layout of PEEM3 is shown in Fig. 7.19. SMART
is a project of SpectroMicroscopy for All Relevant Techniques in Germany.
The dots behind the surface denote charge rings used for numerical simula-
tion. The first electrode from the right physically ends roughly at z = 33 mm.
There are four electrodes used to provide tuning of the focal length, the spher-
ical, and the chromatic aberrations.
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FIGURE 7.20: The beam separator of the first aberration-corrected
PEEM. The path of the reference electron is shown by the dash-dotted curve.
(From H. Rose, Geometrical Charged-Particle Optics, Springer-Verlag, Berlin,
2nd ed., 2012, c© Springer-Verlag Berlin Heidelberg 2009, 2012 [60]. Chap-
ter 9, Correction of Aberrations, Fig. 9.12, “Cross section of (a) the fourth
quarter of the beam separator showing the double symmetry of the fields and
the curved optic axis and of (b) the entire separator. The shaded areas repre-
sent the regions of the dipole field perpendicular to the pole plates. The sign
and the strength of the dipole field differ for regions with different shading;
the dash-dotted curve represents the optic axis.” With kind permission from
Springer Science and Business Media.)

Although the electron mirror itself maintains the rotational symmetry, a
magnetic beam separator is needed to guide the electron beam to the detector
downstream of the mirror, thus breaking the rotational symmetry of a con-
ventional PEEM. Consequently, the most challenging part of an aberration-
corrected PEEM/LEEM is the beam separator whose own aberrations have
to be small compared to the existing ones.

The first aberration-corrected PEEM was built at Technische Universität
Darmstadt, Germany, in the 1990s and was installed at BESSY II, the Berliner
Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung in 2001. Re-
cently it achieved a resolution of 3 nm.

Its layout is similar to that shown in Fig. 7.19 up to the exit of the beam
separator since the former has an energy filter downstream of the beam sepa-
rator. The mirror column forms a so-called −I transport, which ensures that
the cosine-like ray turns back on the axis and is unaffected, maintaining a
large field of view. The beam separator shown in Fig. 7.20 is a square magnet
with 90◦ bending and three axes of mirror symmetry (θ = 27.5◦, 45◦ and
62.5◦ for each pass). The resulting optical system is an achromat with +I
transport, i.e., its transfer matrix is an identity matrix, and it is free of all
second order geometrical aberrations.

The drawback of this separator is the difficulty in building this device to
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FIGURE 7.21: The PEEM3 beam separator. The square, the ellipses and
the rectangles represent the magnet, the electrostatic round lenses and the
electrostatic quadrupoles, respectively.

FIGURE 7.22: Sine-like, cosine-like and dispersive rays of the PEEM3
beam separator in the x-z plane (left), and in the y-z plane (right).

the tight machining tolerance and in tuning it during operation due to the
complexity and rigidness of the design. The fact that focusing is produced
primarily by the edges entails that the slope of the grooves and the details of
the field near the electron path are critical to the quality of the image.

The selection of high permeability material to fit the field distribution to
the analytical model leads to magnetic material which is very soft and thus
difficult to machine. As a result, the second project of an aberration-corrected
PEEM, built at Lawrence Berkeley National Laboratory, turned to a simpler
separator design shown in Fig. 7.21, and the rays are shown in Fig. 7.22.
Since the magnet is a simple 90◦ sector bend, round lenses, with the help
of electrostatic quadrupoles, provide the focusing. There is only one axis of
mirror (θ = 45◦) for each pass. The system is a so-called −I transport for
each pass with no zero dispersion at the end. An achromat is formed after
two passes.
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FIGURE 7.23: Aberration-corrected and energy-filtered LEEM at IBM.
Images of the sample are formed on the diagonal lines of the prisms, which are
shown by squares. (Reprinted from Ultramicroscopy, v. 110, R. M. Tromp, et.
al., A new aberration-corrected, energy-filtered LEEM / PEEM instrument.
I. Principles and design, p. 852–861, Copyright (2010), with permission from
Elsevier [68].)

Between 2007 and 2011, a third aberration-corrected PEEM/LEEM was
designed and built at IBM [68]). The layout is shown in Fig. 7.23. Magnetic
prisms are represented by squares, and electrostatic and magnetic round lenses
are represented by ellipses. Fig. 7.23 also shows cosine-like rays (drawn in dark
gray, denoted “field ray”) and sine-like rays (drawn in pale gray, denoted “axial
ray”) from the sample. The beam separator consists of two 90◦ prism arrays
and an electrostatic round lens. It restores the double mirror symmetry of
the first separator but greatly simplifies the design and manufacture by using
only commercially available components. The prism behaves like a round lens
to the first order and is mirror symmetric, which entails that the dispersive
ray forms a virtual image at the center. As a result, one round lens between
the two prisms is sufficient to make the separator an achromat and transfer
the image from the center of the first prism to that of the second one.
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Chapter 8

The Periodic Transport

In the case of the periodic transport over long distances, the desire is not
so much to give a special shape to the beam as the beam exits, but, even
much more simply, to just contain the beam. This is of key importance
in all devices in which the beam repeatedly passes through the same (or a
very similar) structure. We may wonder whether this again translates into
the requirement that a certain matrix element vanish, but as we shall see, this
is not quite the case.

Actually it is rather straightforward to formulate a necessary condition on
the linear matrix: it is not allowed to have any eigenvalue of magnitude greater
than unity. If the eigenvalue is real, the argument is simple: if this were the
case, any particle that has its coordinates lined up with the corresponding
real eigenvector will after one period end up on the same line, but all its
coordinates would have increased by a factor equal to the eigenvalue.

If on the other hand the eigenvalue is complex, there is another eigenvalue
that is conjugate and hence has the same magnitude. Similar to the eigenval-
ues, also the eigenvectors are conjugates of each other. Now simply consider
the sum of the two eigenvectors, which is real; sending this sum through the
matrix multiplies the first eigenvector by the first eigenvalue, and the second
one by the conjugate, resulting in a sum that is again real and increased in
size by the magnitudes of the eigenvalues.

In both cases, coordinates grow exponentially in time, and so eigenval-
ues that are even only a tiny amount above unity in magnitude are detrimen-
tal. Of course the nonlinear effects also influence the motion and break the
purely exponential pattern, but all experience shows that it is not possible
to correct linear instability with nonlinear means; in practice, things usually
work quite to the contrary.

8.1 The Transversal Motion

8.1.1 The Eigenvalues

Because of emittance preservation due to Liouville’s theorem, the fact that
eigenvalues greater than unity are prohibited means that, in fact, all eigen-
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FIGURE 8.1: Motion in phase space (left) and in the eigenspace (right)
when | trM | > 2.

values have to have unit magnitude. Of these, the cases +1 and −1 are
to be excluded too, since even the slightest imperfection in the machine may
otherwise lead to instability. Altogether, in a periodic system, the eigenvalues
must all be complex and of unit magnitude.

It is particularly interesting to study the special case of a matrix with
midplane symmetry. In this case, the x and y motion decouple and can be
described by individual matrices. We obtain for the eigenvalues for the 2× 2
x sub-matrix, noting that the y sub-matrix is treated similarly:

0 =
∣∣∣M̂ − λÎ

∣∣∣ = ∣∣∣∣∣ (x|x) − λ (x|a)
(a|x) (a|a)− λ

∣∣∣∣∣
= (x|x) (a|a)− (x|a) (a|x)︸ ︷︷ ︸

1

− λ [(x|x) + (a|a)] + λ2,

and so

λ1,2 =
[(x|x) + (a|a)]±

√
[(x|x) + (a|a)]2 − 4

2

=
tr M̂

2
±

√√√√( tr M̂

2

)2

− 1.

Hence to have complex eigenvalues requires the very simple condition

−2 < tr M̂ < 2.

A quick check of the four cases shows that this excludes the point–to–point
case and the parallel–to–parallel case, as in both of these, the trace just equals
two or exceeds two. The parallel–to–point or point–to–parallel case each have
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FIGURE 8.2: Relation between the phase space variables and the eigen-
vectors.

one element on the diagonal vanish, so they are permissible if the remaining
diagonal matrix element is less than two in magnitude.

We also verify that for tr M̂ �= 2, the eigenvalues form a reciprocal pair,
i.e., λ1λ2 = 1. Let us quickly revisit the case | tr M̂ | > 2, for which the
eigenvalues are real, and hence one of them is greater than unity, and as we
had already concluded, the motion is unstable. Choosing a new basis, the
so-called normal form basis, along the real eigenvectors �v1 and �v2, we have
that the repetitive motion asymptotically approaches the eigenvector �v1 with
eigenvalue greater than unity and becomes larger and larger (see the right
picture in Fig. 8.1).

A detailed analysis shows that the motion indeed follows a hyperbola;
note that λ1λ2 = 1, and that |λ1| > 1 > |λ2|. Suppose we have a general
vector expressed in the basis (�v1, �v2) as shown in Fig. 8.2 whose coordinates
are now α and β (not to be confused with the Twiss parameter), and thus

�x ≡
(
x
a

)
= α�v1 + β�v2.

Applying the transfer matrix, we have

M̂�x = αM̂�v1 + βM̂�v2 = αλ1�v1 + βλ2�v2.

In normal form coordinates, the action of the transfer map is thus given by(
αλ1

βλ2

)
=

(
λ1 0
0 λ2

)(
α
β

)
,

but since λ2 = 1/λ1, the product of the coordinates stays constant, character-
istic of the motion along a hyperbola. In Cartesian coordinates, the motion
looks more complicated as the hyperbolic structure is deformed (see the left
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FIGURE 8.3: Relation between the eigenvalues when | trM | < 2.

picture in Fig. 8.1). For practical purposes, this case is unstable and hence
useless.

Let us now consider the case | tr M̂ | < 2 in more detail. We have the
complex eigenvalues that satisfy

λ2 = λ̄1 and λ2 = λ−1
1 .

So in the complex plane, λ1 and λ2 lie on a circle and form conjugate pairs,
as shown in Fig. 8.3.

The eigenvalues can hence be written as

λ1,2 = e±iμ,

where μ is called the tune of the system, which is

μ = arccos

(
λ1 + λ2

2

)
= arccos

(
tr M̂

2

)
.

The eigenvectors �v1,2 belonging to λ1,2 also form conjugate pairs, since

M̂�v2 = M̂�v2 = λ2�v2 = λ1�v2.

Define now two new basis vectors �v+ = Re (�v1) , �v− = Im (�v1) as the real
and imaginary parts of the eigenvalues; they define what is called the normal
form basis for stable motion. So we have

�v1 = �v+ + i�v−, �v2 = �v+ − i�v−.

We now observe

M̂�v1 =λ1�v1= eiμ (�v+ + i�v−)= cosμ ·�v+−sinμ ·�v−+i (sinμ · �v+ + cosμ · �v−) ,
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FIGURE 8.4: Motion in phase space (left) and in the eigenspace (right)
when | trM | < 2.

and similarly

M̂�v2 =λ2�v2= e−iμ (�v+ − i�v−)= cosμ·�v+−sinμ·�v−−i (sinμ · �v+ + cosμ · �v−) .
Now assume we have a general vector expressed in the basis vectors �v± with

coefficients α and β, i.e., �x = α�v+ + β�v−. Then we have

M̂�x = αM̂�v+ + βM̂�v−

= αM̂
�v1 + �v2

2
+ βM̂

�v1 − �v2
2i

= α
M̂�v1 + M̂�v2

2
+ β

M̂�v1 − M̂�v2
2i

= α (cosμ · �v+ − sinμ · �v−) + β (sinμ · �v+ + cosμ · �v−)
= (α cosμ+ β sinμ)�v+ + (−α sinμ+ β cosμ)�v−.

So altogether, in normal form coordinates, we have

M̂

(
α
β

)
=

(
α cosμ+ β sinμ

−α sinμ+ β cosμ

)
=

(
cosμ sinμ

− sinμ cosμ

)(
α
β

)
,

and thus the transformation M̂ simply performs a rotation as shown in the
right picture in Fig. 8.4.

The angle of the rotation in normal form coordinates is simply equal to the
tune μ; and it is completely obvious that the motion is stable.

To obtain the motion in the original Cartesian coordinates, we have to
subject the circles to a linear transformation, which turns them into ellipses;
so the motion looks as in the left picture in Fig. 8.4. The angle by which
particles move in the original x, a coordinates is not necessarily μ anymore; but
we can conclude that indeed if we look at the average angle advance over many
turns, then this average converges to the tune μ, as at least the number of full
revolutions that were experienced must agree in both coordinate systems.
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FIGURE 8.5: Possible movement of the eigenvalues under small perturba-
tion near | trM | = 2.

It is also very illuminating to consider what happens if the system is sub-
jected to some small errors, which in reality of course always appear. If the
eigenvalues were far enough from unity, even under small errors we still have
λ1 = λ̄2 and λ1 = λ−1

2 , and while the tune μ may have changed a little, the
qualitative behavior of stability is totally unaffected. So as long as we main-
tain that | tr M̂/2| < 1 is maintained, stability prevails. If on the other hand
the perturbation is so large that this is violated, the perturbation can lead to
the loss of stability as shown in Fig. 8.5.

For the sake of completeness, let us consider further the case of | tr M̂ | = 2.
In this case, λ1,2 = 1, and

M̂ = ±Î.

This motion is stable; but under the slightest perturbation there is danger of
becoming unstable, and hence this case is practically useless.

8.1.2 The Invariant Ellipse

For many practical purposes it is particularly important to know in detail
the parameters of the ellipse that is invariant under stable linear motion. For
this purpose, let λ1,2 = e±iμ, and choose the sign of the tune μ such that
sign(μ) = sign((x|a)). We then define three parameters αi, βi and γi as

αi =
(x|x) − (a|a)

2 sinμi
, βi =

(x|a)
sinμi

, γi = − (a|x)
sinμi

. (8.1)
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As we shall prove now, these three parameters describe the invariant ellipse
via (

x
a

)T

·
(
γi αi

αi βi

)
·
(
x
a

)
= 1,

where the matrix describing the ellipse is called T̂ . To prove that T̂ is actually
invariant, we first express the transfer matrix in terms of the parameters. To
this end, we observe that since

λ1,2 =
tr M̂

2
±

√√√√(tr M̂

2

)2

− 1,

we have that

(x|x) + (a|a) = tr M̂ = λ1 + λ2 = eiμ + e−iμ = 2 cosμ.

From the definition of αi, we have (x|x) − (a|a) = 2 sinμi · αi, and hence

(x|x) = cosμi + αi sinμi, (a|a) = cosμi − αi sinμi.

On the other hand, from the definitions of βi and γi, we have

(x|a) = βi sinμi, (a|x) = −γi sinμi,

and so altogether

M̂ =

(
cosμi + αi sinμi βi sinμi

−γi sinμi cosμi − αi sinμi

)
.

Letting

Î =

(
1 0
0 1

)
, K̂ =

(
αi βi

−γi −αi

)
,

we have
M̂ = Î cosμi + K̂ sinμi.

Computing the inverse map of M̂, we find

M̂−1 = Î cosμi − K̂ sinμi,

where we used |M̂ | = 1, and as a consequence βiγi − α2
i = 1, which we infer

as follows:

1 = |M̂ | = (cosμi + αi sinμi) (cosμi − αi sinμi) + βiγi sin
2 μi

= cos2 μi +
(
βiγi − α2

i

)
sin2 μi = 1 +

(−1 + βiγi − α2
i

)
sin2 μi,

but since μi was not allowed to be zero or π because of our requirement of
stability, we must have βiγi − α2

i = 1.



196 An Introduction to Beam Physics

We now are ready to study whether indeed the ellipse defined above is
invariant under M̂. This is the case if whenever a particle satisfies the ellipse
equation (

x
a

)T

·
(
γi αi

αi βi

)
·
(
x
a

)
= 1,

their image under M̂, which is given by

M̂ ·
(
x
a

)
,

also satisfies the ellipse equation. This means that also[
M̂ ·

(
x
a

)]T
·
(
γi αi

αi βi

)
·
[
M̂ ·

(
x
a

)]
= 1.

This is the case if and only if

M̂T · T̂ · M̂ = T̂ ,

since every ellipse is described by a unique symmetric matrix and M̂T · T̂ · M̂
is indeed symmetric. In order to execute the matrix multiplications necessary,
we study various matrix products; let

Ĵ
def
=

(
0 1

−1 0

)
.

We then have

T̂ K̂ =

(
γi αi

αi βi

)(
αi βi

−γi −αi

)
=

(
0 1

−1 0

)
= Ĵ ,

K̂T T̂ = K̂T T̂ T =
(
T̂ K̂

)T
= ĴT = −Ĵ ,

K̂T Ĵ =

(
αi −γi
βi −αi

)(
0 1

−1 0

)
=

(
γi αi

αi βi

)
= T̂ .

Now we are ready to compute the product M̂T · T̂ · M̂. We obtain

M̂T · T̂ · M̂ =
(
Î cosμi + K̂T sinμi

)
T̂
(
Î cosμi + K̂ sinμi

)
=
(
Î cosμi + K̂T sinμi

)(
T̂ cosμi + Ĵ sinμi

)
= T̂ cos2 μi + Ĵ sinμi cosμi − Ĵ sinμi cosμi + T̂ sin2 μi = T̂ ,

which is indeed what we needed to prove. To conclude we remark that there
is not only one invariant ellipse, but even every ellipse that can be generated
by stretching or shrinking from the original one is invariant. So altogether, we
have a nested set of invariant ellipses, and particles will always stay contained
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FIGURE 8.6: Stable motion in phase space.

on the invariant ellipse on which they are originally lying, as shown in Fig.
8.6.

The last important question remaining in this section is to put into per-
spective the parameters of the beam α, β, γ and the parameters αi, βi, γi
describing the invariant ellipse of one turn accelerator. Are these Greek let-
ters equal, are they related, or do they have nothing to do with each other?
This is actually a question that often throws off even die-hard accelerator
physicists, and it is very much worthwhile to understand it in depth.

Regarding their origin, these two sets of parameters are actually totally
independent. In fact, one describes some property of an accelerator, and
the other describes a property of a beam; and of course we can feed any type
of beam into a given accelerator.

However, if the goal is to fill the accelerator in the most efficient way, as
it turns out this is accomplished if the beam’s Twiss parameters agree with
those of the accelerator. In this case, after one revolution the phase space will
occupy exactly the same area (although the individual particles in it are at
different positions), as shown in Fig. 8.7.

On the other hand, if one injects a beam with an ellipse that does not agree
with the invariant ellipse of the accelerator, then the repetitive behavior of
the beam ellipse shown solid in Fig. 8.8 is determined by the shaded invariant
ellipse it touches.

As we go around the repetitive system repeatedly, the beam ellipse stays
within the invariant ellipse and touches it, but, depending on the tune, will
have a different orientation. In fact, if the tune is not rational — something
desirable for stability reasons — over time even all different orientations will
occur. If we now want to operate the accelerator, we have to make sure we can
handle everything inside the invariant ellipse, leading to considerable waste
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FIGURE 8.7: Illustration of the case where the beam ellipse (dashed) and
the invariant ellipses (solid) are matched. After each revolution, the beam
ellipse is exactly reproduced.

of area.

So it is best to operate a repetitive system in such a way that the beam
ellipse is matched to the accelerator’s invariant ellipse, and to avoid mis-
matching, the so-called beating.

8.2 Dispersive Effects

8.2.1 The Periodic Solution

Let M̂ be the transfer matrix of a periodic cell,

M̂ =

⎛⎝ (x|x) (x|a) (x|δ)
(a|x) (a|a) (a|δ)
0 0 1

⎞⎠ .

The periodic solution characterized by D, D ′ satisfies⎛⎝D
D ′

1

⎞⎠ =

⎛⎝ (x|x) (x|a) (x|δ)
(a|x) (a|a) (a|δ)
0 0 1

⎞⎠⎛⎝D
D ′

1

⎞⎠ . (8.2)
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FIGURE 8.8: Behavior of a mismatched beam.

Thus (
(x|δ)
(a|δ)

)
=

(
1− (x|x) −(x|a)
−(a|x) 1− (a|a)

)(
D
D ′

)
, (8.3)(

D
D ′

)
=

(
1− (x|x) −(x|a)
−(a|x) 1− (a|a)

)−1(
(x|δ)
(a|δ)

)
,

when

det

(
1− (x|x) −(x|a)
−(a|x) 1− (a|a)

)
= 2− (x|x) − (a|a) �= 0.

Note that when tr M̂ < 2, which is satisfied if only stable motion is considered,
D, D ′ are uniquely determined.(

D
D ′

)
=

1

2− (x|x) − (a|a)
(
1− (a|a) (x|a)
(a|x) 1− (x|x)

)(
(x|δ)
(a|δ)

)
=

1

2− (x|x) − (a|a)
(
(1− (a|a))(x|δ) + (x|a)(a|δ)
(1− (x|x))(a|δ) + (a|x)(x|δ)

)
.

From the point of view of the computation, a slightly different form of the
same result helps to develop an algorithm that can be applied to arbitrary
order with the help of the Differential Algebraic (DA) technique. Eq. (8.2)
can be rewritten as⎛⎝1 0 0

0 1 0
0 0 0

⎞⎠⎛⎝D
D ′

1

⎞⎠+

⎛⎝0
0
1

⎞⎠ =

⎛⎝ (x|x) (x|a) (x|δ)
(a|x) (a|a) (a|δ)
0 0 1

⎞⎠⎛⎝D
D ′

1

⎞⎠ ,
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and hence ⎛⎝D
D ′

1

⎞⎠ =

⎛⎝ (x|x) − 1 (x|a) (x|δ)
(a|x) (a|a)− 1 (a|δ)
0 0 1

⎞⎠−1⎛⎝0
0
1

⎞⎠ .

Defining

ÎH =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ ,

we obtain the more compact form⎛⎝D
D ′

1

⎞⎠ =
(
M̂ − ÎH

)−1

⎛⎝0
0
1

⎞⎠ .

It is straightforward to generalize the above equation to the case of a nonlinear
map. Here the equation to be solved is⎛⎝ D (δ)

D ′ (δ)
δ

⎞⎠ = M◦
⎛⎝ D (δ)

D ′ (δ)
δ

⎞⎠ ,

whereD (δ) andD ′ (δ) are polynomials of δ without the constant part. Similar
to the case for the linear map, we obtain⎛⎝ D (δ)

D ′ (δ)
δ

⎞⎠ = (M−IH)−1 ◦
⎛⎝ D (δ)

D ′ (δ)
δ

⎞⎠ ,

where

IH =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝x
a
δ

⎞⎠ .

As described in Section 5.4.2, the map (M−IH)
−1

can be obtained using the
Differential Algebraic (DA) technique order-by-order up to any given order.
Thus the periodic solution of dispersion up to arbitrary order can be obtained
without loss of accuracy.

8.2.2 Chromaticity

Now let us turn our attention to the betatron tune of off-momentum par-
ticles. We know that higher momentum particles are bent less, hence focal
length of quadrupoles is longer. As a result, we expect that total phase ad-
vance decreases as momentum increases. Recall that

k =
q

p

∂By

∂x
,
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and when p = p0 + dp, we have

k =
q

p

∂By

∂x
=

q

p0

∂By

∂x

1

1 + dp/p0
=1 k0 (1− δ) ,

k0 =
q

p0

∂By

∂x
, δ =

dp

p0
.

For a small distance ds, we have

dM̂ =

(
1 0

−kds 1

)
.

And by defining

dM̂0 =

(
1 0

−k0ds 1

)
,

we have

M̂ = dM̂dM̂−1
0

(
cos(μ0) + α sin(μ0) β sin(μ0)

−γ sin(μ0) cos(μ◦)− α sin(μ◦)

)
=

(
1 0

− (k − k0) ds 1

)(
cos(μ0) + α sin(μ0) β sin(μ0)

−γ sin(μ◦) cos(μ◦)− α sin(μ◦)

)
=

(
1 0

δk0ds 1

)(
cos(μ0) + α sin(μ0) β sin(μ0)

−γ sin(μ0) cos(μ0)− α sin(μ0)

)
.

Using the normalization transformation

Â =

(
1/

√
β 0

α/
√
β

√
β

)
and Â−1 =

( √
β 0

−α/
√
β 1/

√
β

)
,

we obtain the transfer matrix in the normalized space as˜̂
M = ÂM̂Â−1

= Â

(
1 0

δk0ds 1

)
Â−1 · Â

(
cos(μ0) + α sin(μ0) β sin(μ0)

−γ sin(μ0) cos(μ0)− α sin(μ0)

)
Â−1

=

(
1 0

δβk0ds 1

)(
cos(μ0) sin(μ0)

− sin(μ0) cos(μ0)

)
=

(
cos(μ0) sin(μ0)

δβk0ds cos(μ0)− sin(μ0) cos(μ0) + δβk0ds sin(μ0)

)
,

and

cos(μ) =
1

2
tr

(˜̂
M

)
= cos(μ◦) +

1

2
δβk0ds sin(μ0),

μ = μ0 + dμ =⇒ cos(μ) = cos(μ0)− dμ sin(μ0) =⇒ dμ = −1

2
δβk0ds

=⇒ dν =
dμ

2π
= − 1

4π
δβk0ds =⇒ ξN =

dν

dp/p0
= − 1

4π

∮
β(s)k0(s)ds.
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The last step keeps only the leading order effect. The quantity ξN is called
natural chromaticity.

It will likely lead to beam loss since certain off-energy particles lie on reso-
nant tunes. To remedy this problem, it is common to use sextupoles, because
they do not affect tunes of on-momentum particles but at the same time
provide quadratic nonlinearity that can be used to compensate the natural
chromaticity. The magnetic field of a sextupole is

By = b2
(
x2 − y2

)
, Bx = 2b2xy,

where b2 = −3M3,3. Defining ks = −b2/χm0 and denoting

M̂ =

⎛⎜⎜⎝
cosμx+αxsinμx βx sinμx 0 0

−γx sinμx cosμx−αxsinμx 0 0
0 0 cosμy+αysinμy βy sinμy

0 0 −γy sinμy cosμy−αysinμy

⎞⎟⎟⎠ ,

we obtain⎛⎜⎜⎝
x1

a1
y1
b1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x

a+ ksds
(
x2 − y2

)
y

b− 2ksdsxy

⎞⎟⎟⎠ ◦

⎡⎢⎢⎣M̂
⎛⎜⎜⎝

x0

a0
y0
b0

⎞⎟⎟⎠
⎤⎥⎥⎦

=

⎛⎜⎜⎜⎝
x

a+ ksds
(
x2 − y2

)
y

b− 2ksdsxy

⎞⎟⎟⎟⎠ ◦

⎛⎜⎜⎜⎝
(cosμx+αxsinμx)x0 + (βx sinμx) a0

− (γx sinμx)x0 + (cosμx−αxsinμx) a0

(cosμy+αysinμy) y0 + (βy sinμy) b0

− (γy sinμy) y0 + (cosμy−αysinμy) b0

⎞⎟⎟⎟⎠ .

Again, to make the physical picture clearer, let us apply the normalization
transformation in four-dimensional space, which is

⎛⎜⎜⎜⎝
x̃

ã

ỹ

b̃

⎞⎟⎟⎟⎠ = Â

⎛⎜⎜⎜⎝
x

a

y

b

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1/

√
βx 0 0 0

αx/
√
βx

√
βx 0 0

0 0 1/
√
βy 0

0 0 αy/
√
βy

√
βy

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x

a

y

b

⎞⎟⎟⎟⎠ .

The inverse is

Â−1 =

⎛⎜⎜⎜⎝
√
βx 0 0 0

−αx/
√
βx 1/

√
βx 0 0

0 0
√
βy 0

0 0 −αy/
√
βy 1/

√
βy

⎞⎟⎟⎟⎠ .
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Denoting the linear normalization transformation (as opposed to the trans-
formation matrix), its inverse and the linear transfer map as

A = Â

⎛⎜⎜⎝
x
a
y
b

⎞⎟⎟⎠ , A−1 = Â−1

⎛⎜⎜⎝
x
a
y
b

⎞⎟⎟⎠ , M = M̂

⎛⎜⎜⎝
x
a
y
b

⎞⎟⎟⎠ ,

we obtain

⎛⎜⎜⎜⎝
x̃1

ã1

ỹ1

b̃1

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣A ◦

⎛⎜⎜⎜⎝
x

a+ ksds
(
x2 − y2

)
y

b− 2ksdsxy

⎞⎟⎟⎟⎠◦A−1

⎤⎥⎥⎥⎦◦[A ◦M ◦A−1
]

=

⎛⎜⎜⎜⎝
x

a+ ksds
√
βx

(
βxx

2 − βyy
2
)

y

b− 2ksds
√
βxβyxy

⎞⎟⎟⎟⎠ ◦R(μx, μy),

where

R(μx, μy) =

(
R̂ (μx) 0

0 R̂ (μy)

)⎛⎜⎜⎝
x
a
y
b

⎞⎟⎟⎠ , R̂ (μx) =

(
cosμ sinμ
− sinμ cosμ

)
.

Since the kick of a sextupole is second order in the coordinates, the off-
momentum particle has to go through it off the magnetic center in order
to affect the linear motion and hence the tune. In other words, the dispersion
has to be nonzero at the location of the sextupole to correct chromaticity.
With the presence of dispersion, the coordinates are

x → x−Dxδ, a → a−D
′
xδ,

and the normalized coordinates are

x̃ → x̃− Dxδ√
βx

, ã → ã−
√
βxD

′
xδ.
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The one turn map in the new normalized coordinates is⎛⎜⎜⎜⎜⎝
x̃1

ã1

ỹ1

b̃1

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
x+ β

− 1
2

x Dxδ

a+ β
1
2
x D

′
xδ

y

b

⎞⎟⎟⎟⎟⎠◦
⎛⎜⎜⎜⎜⎝

x

a+ ksdsβ
1
2
x

(
βxx

2 − βyy
2
)

y

b− 2ksdsβ
1
2
x βyxy

⎞⎟⎟⎟⎟⎠◦
⎛⎜⎜⎜⎜⎝
x− β

− 1
2

x Dxδ

a− β
1
2
x D

′
xδ

y

b

⎞⎟⎟⎟⎟⎠

◦

⎛⎜⎜⎜⎜⎝
x+ β

− 1
2

x Dxδ

a+ β
1
2
x D

′
xδ

y

b

⎞⎟⎟⎟⎟⎠◦R(μx, μy)◦

⎛⎜⎜⎜⎜⎝
x− β

− 1
2

x Dxδ

a− β
1
2
x D

′
xδ

y

b

⎞⎟⎟⎟⎟⎠◦
⎛⎜⎜⎜⎜⎝

x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
x

a+ ksds
√
βx

[
βx

(
x−Dxδ/

√
βx

)2 − βyy
2
]

y

b− 2ksds
√
βxβy

(
x−Dxδ/

√
βx

)
y

⎞⎟⎟⎟⎠◦R(μx, μy) ◦

⎛⎜⎜⎜⎝
x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎠ .

The reason that the constant part vanishes after the rotation is that Dx and
D

′
x are periodic solutions of the ring. Keeping only the linear part, we obtain

the transfer matrix

˜̂
M = 2δksds

⎛⎜⎜⎝
1 0 0 0

−βxDx 1 0 0
0 0 1 0
0 0 βyDx 1

⎞⎟⎟⎠ · R̂(μx, μy),

and the chromaticities due to the sextupole

ξx,s =
1

4π

∮
βx(s)Dx(s)ks(s)ds,

ξy,s = − 1

4π

∮
βy(s)Dx(s)ks(s)ds.

In summary the total chromaticities are

ξx = − 1

4π

∮
βx(s) [kx(s)−Dx(s)ks(s)] ds, (8.4)

ξy = − 1

4π

∮
βy(s) [ky(s) +Dx(s)ks(s)] ds, (8.5)

where kx(s) and ky(s) are quadrupole strength in the x and y planes along
the ring. Usually two families of sextupoles are used to correct chromaticities
in both planes. In order to make the two knobs more efficient and orthogonal,
one family is placed at locations so that βx is large and βy is small and the
other family at locations so that the opposite is true.
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Eqs. (8.4) and (8.5) are very useful for the design process to determine
where the chromaticities are generated and where the best locations are to
place the sextupoles for correction. Yet computing them together with the
higher order terms become almost trivial with the Differential Algebraic (DA)
technique. Recall that the tunes are given by

νx,y =
1

2π
arccos

(
tr M̂x,y

2

)
.

The δ dependent tunes are simply

νx,y (δ) =
1

2π
arccos

(
tr M̂x,y (δ)

2

)
,

which contain the tunes and the chromaticities to arbitrary order. For exam-
ple, νx,y are the constant part and ξx,y are the linear coefficients.

8.3 A Glimpse at Nonlinear Effects

Linear motion around a fixed point is completely classified by the two cases
we discussed previously, namely the stable or unstable case. This situation
is fundamentally different in the nonlinear case; it is in fact much
more complicated and interesting, and represents one example of the modern
research field dealing with just such questions.

While this is not at all the place to try to develop a complete understanding
of the nonlinear effects that may appear, let us spend some time to stake the
territory and make some general observations. First we may expect that as
long as the motion is close enough to the fixed point, it is dominated by
linear effects, and depending on whether we have stability or not, we see
either stable elliptic motion or unstable hyperbolic motion. While we may
expect that linearly unstable motion will in most cases also stay unstable if
we consider the nonlinear effects, linear stable motion will not usually
stay nonlinearly stable. In fact, if the amplitudes of the motion become
large, the effects of nonlinearity will become noticeable over-proportionally,
and eventually they will become dominating, in most cases leading to insta-
bility for large amplitudes.

One can then try to heuristically separate the phase space into a region that
appears stable for a reasonable number of turns, and a region that appears
unstable. According to the previous arguments, in most cases the stable
region will be near the fixed point, and the unstable region will be away from
the fixed point. The region of transition between the apparently stable and
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apparently unstable parts is usually called the dynamic aperture, and it
often looks like a deformed ellipse.

Let us now study a little what conditions seem to favor stable or unstable
motion, respectively. If we divide the phase space regions into parts in which
the nonlinear effects have a tendency to pull particles away from the origin
and those that tend to push the particles toward the origin, then we may
expect that we want to avoid situations where the particles spend too much
time in the “pull away” regions, and it is better if we sample the phase space
uniformly, and thus average out the effects as much as possible.

A nearly uniform sampling of the phase space happens if the linear tune is
not a rational multiple of 2π. On the other hand, if the tune is of the form
μi = 2πp/q, after q turns the particle will come back to where it was before
and hence can see the same effect, a situation which we call resonance; so
it is at least not a good idea to choose q too small, as repetition after large
numbers of turns is not as critical. The effect of resonances in a circular
accelerator is of great importance to its performance. Chapter 11 is dedicated
to studying this topic in detail.

We may also wonder to what extent it is possible to perform a transfor-
mation to normal form coordinates in a similar manner as in the linear case.
As it turns out, most systems cannot be brought to a normal form in which
the motion is exactly circular; the existence of such a transformation is tanta-
mount to the system being integrable, i.e., having one integral of motion per
phase space dimension. Truly integrable systems, however, are very rare. It
turns out, however, there is a powerful order-by-order iterative procedure to
turn a system into nonlinear normal form up to any given order [5]. A simple
example of this procedure is given in Section 11.4.



Chapter 9

Lattice Modules

In the design of actual devices for the manipulation of beams, it is impor-
tant to employ field arrangements that achieve the basic features of steering
the beam as a whole to its desired location, as well as keeping the beam
close together over possibly extended distances, which is achieved through
various focusing mechanisms. Thus in both single pass lines and rings, there
exist different sections that perform different functions which require differ-
ent types of lattice modules. Modern accelerators and beam transport lines
focus the beam transversely using alternate-gradient focusing, also called
strong focusing, which evolves from the so-called weak focusing used in
betatrons and early weak focusing synchrotrons. In the weak focusing ma-
chines, inhomogeneous dipoles were used to bend and transversely confine the
beam simultaneously. This is possible due to the fact that an inhomogeneous
dipole with 0 < n < 1 focuses the beam in both x and y planes.

From eq. (4.6), we have, for 0 < n < 1,

M̂x =

(
cos(

√
1− nφ)

(
ρ/

√
1− n

)
sin(

√
1− nφ)

− (√1− n/ρ
)
sin(

√
1− nφ) cos(

√
1− nφ)

)
,

M̂y =

(
cos(

√
nφ) (ρ/

√
n) sin(

√
nφ)

− (
√
n/ρ) sin(

√
nφ) cos(

√
nφ)

)
.

Yet weak focusing was eventually replaced by strong focusing because weak
focusing was too weak to confine the high energy beam. Here is an example
of the Tevatron at Fermi National Accelerator Laboratory (Fermilab, FNAL),
Illinois, USA.

B0 � 4 T, E = 103 GeV, P = 103 GeV/c.

ρ =
P

B0q
=

Pc

qB0c
� E

qB0c
� 103 × 109

4 · 3× 108
� 800 m.

For n = 1/2, we have,∣∣∣∣∂By

∂x

∣∣∣∣ = n
B0

ρ
� 1

2

4

800
= 2.5× 10−3 T/m,

ΔBy|x=5cm = 2.5× 10−3 · 5× 10−2 = 1.25× 10−4 T.

207DOI:10.1201/b12074-9
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FIGURE 9.1: Sketch of a FODO cell without bending magnets.

Yet for quadrupoles, B|x=a ∼ 1–3 T. Thus we conclude that weak focusing
at the 1 TeV of the Tevatron is four orders of magnitude weaker than strong
focusing.

9.1 The FODO Cell

The most common form of strong focusing module is the so-called FODO
cell, where two quadrupoles of opposite polarity (focusing (F) and defocus-
ing (D)) are separated by drifts or homogeneous dipole magnets (O). Due
to it simplicity, we can easily derive the transfer matrix of such a FODO
cell. To simplify matters even further, we choose the center of the defocusing
quadrupole as the start and the end of the cell and use the thin lens model of
the quadrupole. First, let us consider a FODO cell without bending magnets,
as shown in Fig. 9.1. The total transfer matrix of the horizontal plane is

M̂x =

(
1 0

1/2f2 1

)(
1 d
0 1

)(
1 0

−1/f1 1

)(
1 d
0 1

)(
1 0

1/2f2 1

)
=

[(
1 0

1/2f2 1

)(
1 d
0 1

)(
1 0

−1/2f1 1

)]
·
[(

1 0
−1/2f1 1

)(
1 d
0 1

)(
1 0

1/2f2 1

)]
=

(
1− d/2f1 d

1/2f2−1/2f1− d/4f1f2 1+ d/2f2

)(
1+ d/2f2 d

1/2f2−1/2f1− d/4f1f2 1− d/2f1

)

=

(
1− d/f1+ d/f2− d2/2f1f2 2d (1− d/2f1)

1/f2 −1/f1− d/f1f2+ d/2f2
2− d2/4f1f

2
2 1− d/f1+ d/f2− d2/2f1f2

)
.

Hence we obtain the transverse tunes, which are

cos (μx) = 1− d

f1
+

d

f2
− d2

2f1f2
, cos (μy) = 1 +

d

f1
− d

f2
− d2

2f1f2
.

Note the second equation above is obtained through interchanging f1 and f2.
The shaded area in Fig. 9.2 shows the range of f1 and f2 where motion in
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FIGURE 9.2: The “necktie” diagram showing the stability region of a
FODO cell.
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FIGURE 9.3: Sketch of a FODO cell with bending magnets.

both planes are stable, i.e., |1−d/f1+d/f2−d2/2f1f2| ≤ 1, |1+d/f1−d/f2−
d2/2f1f2| ≤ 1. Because of the shape of the region of stability, this and related
similar figures are often referred to as a necktie diagram.

When f = f1 = f2, we have

cos (μx) = cos (μy) = 1− d2

2f2
,

and the condition for stable motion is∣∣∣∣1− d2

2f2

∣∣∣∣ ≤ 1 =⇒ −1 ≤ 1− d2

2f2
≤ 1 =⇒ 0 ≤ d2

2f2
≤ 2 =⇒ f ≥ d

2
.

From the geometrical point of view, when f < d/2, the particle that is parallel
to the optical axis at the center of the defocusing quadrupole at the start of
the cell would cross the axis before the center of the defocusing quadrupole at
the end and bend further away from the axis. The transfer matrix for f = d/2
is −Î, so the maximum phase advance of a cell is π.
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Next, let us consider a FODO cell with bending magnets, as shown in
Fig. 9.3. Here we assume that the drifts between magnets are negligible.
Furthermore, the bending angle θ is small. Since l is nearly a constant, the
transfer matrix of the dipole is

M̂ =

⎛⎝ cos θ ρ sin θ ρ (1− cos θ)
− (1/ρ) sin θ cos θ sin θ

0 0 1

⎞⎠ �
⎛⎝1 l lθ/2

0 1 θ
0 0 1

⎞⎠ ,

where l = ρθ is the arc length of the dipole and θ/ρ = l/ρ2 � f {l < 2f, ρ �
f}.

Note that the factor (1 + η0) / (2 + η0) does not appear due to the fact that
dp/p0 is used. At an energy that η0 � 1, (1 + η0) / (2 + η0) ∼= 1, and the
difference between dp/p0 and dK/K0 becomes negligible. The matrix of the
cell is

M̂x =

⎛⎜⎝ 1 0 0

−1/2f 1 0

0 l 1

⎞⎟⎠
⎛⎜⎝1 l lθ/2

0 1 θ

0 0 1

⎞⎟⎠
⎛⎜⎝ 1 0 0

1/f 1 0

0 l 1

⎞⎟⎠
⎛⎜⎝ 1 l lθ/2

0 1 θ

0 0 1

⎞⎟⎠
⎛⎜⎝ 1 0 0

−1/2f 1 0

0 l 1

⎞⎟⎠
=

⎛⎜⎝ 1− l2/2f2 2l (1 + l/2f) 2lθ (1 + l/4f)

−l/2f2 + l2/4f3 1− l2/2f2 2θ
(
1− l/4f − l2/8f2

)
0 0 1

⎞⎟⎠, (9.1)

and hence we obtain

cos(μx) = 1− l2

2f2
, αx = 0, βx =

2l [1 + sin(μx/2)]

sin(μx)
.

αx = 0 =⇒ β ′
x = 0, focusing at the ends =⇒ βx = βxmax .

Note that when QF and QD (see Fig. 9.3) have the same strength, there is
symmetry between the two planes. The transfer matrix of the vertical plane
can be obtained through changing the sign of the focusing, i.e., (f− > −f).
Furthermore, the transfer matrix of the cell that starts and ends at the centers
of the defocusing quadrupoles can be obtained the same way. The results are
summarized below.

μy = μx, βymax = βzmax , βymin = βxmin =
2l [1− sin(μ/2)]

sinμ
.

Note that l/f determines μ, and l determines βmax and βmin when μ is fixed.

With the upper limit of the magnetic field B of the dipole, which give the
upper limit of θ, thus the lower limit of the number of cells, the lower limit of
the size of a ring can be obtained. (The upper limit of B is roughly 1.5 T for
warm (normal conducting) magnets and 8 T for superconducting ones.)
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Similarly, we have

Dmax =
lθ [1 + (1/2) sin(μ/2)]

sin2 (μ/2)
, Dmin =

lθ [1− (1/2) sin(μ/2)]

sin2 (μ/2)
,

D ′
F = 0, D ′

D = 0,

where the subscripts F and D denote the centers of the focusing and defocus-
ing quadrupoles, respectively. When μ = 90◦, we have

f =
l√
2
,

β
max

=
(
2 +

√
2
)
l, β

min
=
(
2−

√
2
)
l,

β
max

β
min

= 3 + 2
√
2 � 5.8,

Dmax =
1

2

(
4 +

√
2
)
lθ, Dmin =

1

2

(
4−

√
2
)
lθ.

As an example, let us consider the Main Injector FODO cell at Fermilab,
which has the parameters

l = 17.2886 m, μ =
π

2
,

β
max

=
(
2 +

√
2
)
l � 59.0 m, β

min
=
(
2−

√
2
)
l � 10.1 m,

and which is shown in Fig. 9.4 [33, 21]. The magnetic field and length at the
momentum of 8.9 GeV/c are

B = 0.102 T, lb = 6.096 m, χm = 29.69 Tm, ρ =
χm

B
= 291 m,

θ =
2lb
ρ

= 41.9 mrad (2 magnets per half cell),

Dmax =
1

2

(
4 +

√
2
)
lθ = 1.96 m, Dmin =

1

2

(
4−

√
2
)
lθ = 0.94 m.

It is worth noting that the values of β
max

and Dmax are very close to those
obtained from the exact model, which are 58.2 m and 1.95 m, respectively.
This shows that the thin lens model is rather accurate for a typical FODO
cell.

Now let us look at the size of the beam. The Fermilab Main Injector
is designed to accelerate proton and anti-proton beams of emittance up to
40π mm mrad. Following the Fermilab convention, the emittance is defined as
εN = 6εrmsβγ, (β = v/c, γ = 1/

√
1− β2), where εrms is the rms area of phase

space occupied by matched beam. The quantity εN is called the normalized
emittance. The factor βγ makes εN a constant through acceleration — note

that εN ∝ εrmsβγ ∝ βγ

√
〈x2〉 〈a2〉 − 〈xa〉2 ∝

√
〈x2〉 〈p2x〉 − 〈xpx〉2. The factor

6 means that the size is
√
6σ � 2.45σ, which contains ∼ 90% particles. As a
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β
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FIGURE 9.4: Lattice functions of a FODO cell at the Fermilab Main In-
jector.

result, we obtain

xmax = ymax =

√
β

max
εN

βγ
.

At injection, with p0 = 8.9 GeV/c, we have γ = 9.54, β = 0.994, so we
have xmax = ymax � 16 mm. For the horizontal beam size, we have to take
into account the momentum spread. We assume δp/p0 ∼ 0.3% and have
xD = Dmaxδp/p0 = 6 mm. As a result the total horizontal beam size is
xT
max =

√
x2
max + x2

D � 17 mm. So at injection, the full beam is about 34 mm
wide. At extraction, the momentum is 150 GeV/c, β � 1 and γ = 160, so
we have xmax = ymax = 4 mm. Since δp/p0 scales with γ, the momentum
spread becomes 0.02% and xD = 0.4 mm. Thus, we have xT

max � 4 mm, and
the full beam at extraction is 8 mm wide. This is called adiabatic damping.
With acceleration, all phase space variables scale the same way. As a result,
the shape of a bunch does not change. It is illuminating to compare radiation
damping and adiabatic damping. In the case of radiation damping, p0 remains
constant while px, py and δK decrease. (The radiated energy is recovered by
the radio frequency (RF) cavity.) During adiabatic damping, px, py and δK
remain unchanged, while p0 increases. Both dipole and quadrupole magnets
have to be ramped to keep the design closed orbit and tunes constant. The
stronger force results in a smaller beam.
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Finally, let us look at chromaticities for FODO cells.

ξ = − 1

4π

∮
β(s)k0(s)ds = − 1

4π
N

(
βmax

f
− βmin

f

)
= − 1

4π

N

f

(
1 + sin(

μ

2
)− 1 + sin(

μ

2
)
) 2l

sinμ

= −N

4π

4 sin(μ/2)

sinμ
2 sin(

μ

2
) = −N

π
tan(

μ

2
) = −ν

tan(μ/2)

μ/2
, (ν =

Nμ

2π
).

For the Fermilab Main Injector,

μx =
π

2
, νx = 26.425 =⇒ ξx = −33.6,

μy =
π

2
, νy = 25.415 =⇒ ξy = −32.4,

which is not far from the exact values (ξx = −33.6 and ξy = −33.9) showing
again the usefulness of the thin lens model. Without correction, and assuming
the momentum spread of ±1%, we have

Δνx = ξx
Δp

p0
= ±33.6× 0.01 = ±0.336,

Δνy = ξy
Δp

p0
= ±32.4× 0.01 = ±0.324.

Clearly, without chromaticity correction, the momentum acceptance of the
ring would be very small (probably below 0.1% due to the fact that the dis-
tance between νx and the half-integer is only 0.075). To correct chromatic-
ity, we place two sextupoles in each FODO cell, one next to the focusing
quadrupole and the other next to the defocusing quadrupole. Using the thin
lens model of the sextupoles and ignoring the distance between the sextupoles
and their adjacent quadrupoles, we obtain the total chromaticities from eqs.
(8.4) and (8.5)

ξx = − 1

4π

∮
β(s) [kx(s)−Dx(s)ks(s)] ds

= − 1

4π
N

[
βmax

(
1

f
−DmaxksF

)
+ βmin

(
− 1

f
−DminksD

)]
,

ξy = − 1

4π

∮
β(s) [kx(s) +Dx(s)ks(s)] ds

= − 1

4π
N

[
βmin

(
− 1

f
+DmaxksF

)
+ βmax

(
1

f
+DminksD

)]
,

where ksF and ksD are integrated strengths of the sextupoles next to the
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focusing and defocusing quadrupoles, respectively. When

ksF =
1

fDmax
=

sin (μ/2)

2f2θ [1 + sin(μ/2)/2]
,

ksF = − 1

fDmin
= − sin (μ/2)

2f2θ [1− sin(μ/2)/2]
,

the chromaticities are corrected. Note that the relation l = 2f sin (μ/2) is
used to obtain the above expressions.

9.1.1 The FODO Cell Based Achromat

Achromats are needed because dispersion free straight sections are needed
in both circular accelerators and beam transport lines. Achromatic sections
are also required in circular machines, where, for example, straight sections
that house injection and extraction kickers are dispersion free to make the
beam small. The straight section where RF cavities are located is also dis-
persion free. Passing a RF cavity with x-δ correlation produces coupling
between transverse and longitudinal motion, which is usually undesirable.
In the case of beam transport lines, achromatic conditions have to be met
when the matching requirement is such that the line is imaging or the line is
isochronous.

There are mainly two types of achromats, those that utilize repetitive sym-
metry and those that use mirror symmetry. Let us consider a system that
consists of n identical cells.

M̂ =

⎛⎝ (x|x) (x|a) (x|δ)
(a|x) (a|a) (a|δ)
0 0 1

⎞⎠ =

⎛⎝ R̂ �d

0 1

⎞⎠ ,

M̂2 =

⎛⎝ R̂ �d

0 1

⎞⎠⎛⎝ R̂ �d

0 1

⎞⎠ =

⎛⎝ R̂2 (R̂+ Î)�d

0 1

⎞⎠ ,

· · ·

M̂n =

⎛⎜⎝ R̂n

[
n−1∑
k=0

R̂k

]
�d

0 1

⎞⎟⎠ =

⎛⎝ R̂n (R̂n − Î)/(R̂− Î) · �d

0 1

⎞⎠ .

When R̂n = Î , i.e., μ = (m/n)2π,

M̂n =

⎛⎝ Î �0

0 1

⎞⎠ ,

which is an achromat.
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For a stable FODO cell, which is what we are interested in, we can write
the matrix R̂ explicitly, which is

R̂ =

(
cosμ+ α sinμ β sinμ

−γ sinμ cosμ− α sinμ

)
.

In the normalized space,

˜̂
R = ÂR̂Â−1 =

(
cosμ sinμ

− sinμ cosμ

)
and ˜̂

M =

(
Â 0

0 1

)(
R̂ �d

0 1

)(
Â−1 0

0 1

)
=

( ˜̂
R Â�d
0 1

)
=

( ˜̂
R �̃d
0 1

)
,

where

�̃d = Â�d =

(
d/

√
β

(αd+ βd ′) /
√
β

)
with d = (x|δ) and d ′ = (a|δ). As a result, we have

˜̂
R

k

=

(
cos (kμ) sin (kμ)

− sin (kμ) cos (kμ)

)
,

n−1∑
k=0

R̂k =

n−1∑
k=0

(
cos (kμ) sin (kμ)

− sin (kμ) cos (kμ)

)

=

n−1∑
k=0

( (
eikμ + e−ikμ

)
/2

(
eikμ − e−ikμ

)
/2i

− (eikμ − e−ikμ
)
/2i

(
eikμ + e−ikμ

)
/2

)

=

(
(A+B) /2 (A−B) /2i

− (A−B) /2i (A+B) /2

)
,

where

A =

n−1∑
k=0

eikμ =
1− einμ

1− eiμ
, B =

n−1∑
k=0

e−ikμ =
1− e−inμ

1− e−iμ
.

It is obvious that when μ = (m/n)2π, we have A = 0 and B = 0, which leads
to the achromatic condition.

Achromats of this kind have been used as the arcs of storage rings, beam-
lines and spectrometers. Examples are the 90◦ arcs of the South Hall Ring
at the MIT-Bates Linear Accelerator Center at Massachusetts Institute of
Technology, Massachusetts, USA, the 180◦ arcs of the storage ring at the
Duke Free Electron Laser Laboratory (DFELL) at Duke University, North
Carolina, USA, and the arcs of the ILC (International Linear Collider) Beam
Delivery System at SLAC National Accelerator Laboratory, California, USA.
There was a time-of-flight spectrometer built at Los Alamos National Labo-
ratory, New Mexico, USA, that consists of four identical cells with μ = 90◦.
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It turns out that this kind of system not only cancels dispersion, but also
cancels all second order geometrical aberrations. Recalling the equations of
motion (3.22), second order geometrical aberrations generated in the short
interval [s, s+ ds] can be written as

xf = xi + hdsxiai, af = ai +
∑

Ta,k,l,m,nx
k
i a

l
iy

m
i bni ,

yf = yi + hdsxibi, bf = bi +
∑

Tb,k,l,m,nx
k
i a

l
iy

m
i bni ,

where the summation
∑

is taken over k, l,m, n from 0 to 2 such that k+ l+
m+ n = 2; so in the above,∑

reads as

2∑
k,l,m,n=0

k+l+m+n=2

.

This simplified description is used in the rest of this section unless otherwise
noted. Here the linear matrix from s to s+ds has been removed by the inverse
matrix. As a result, the second order map over the interval is lumped into a
point. Applying the transformation⎛⎜⎜⎜⎝

x̃

ã

ỹ

b̃

⎞⎟⎟⎟⎠ = Â

⎛⎜⎜⎜⎝
x

a

y

b

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1/

√
βx 0 0 0

αx/
√
βx

√
βx 0 0

0 0 1/
√
βy 0

0 0 αy/
√
βy

√
βy

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x

a

y

b

⎞⎟⎟⎟⎠ ,

we obtain⎛⎜⎜⎜⎝
x̃f

ãf

ỹf

b̃f

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
x/

√
βx

(αxx+βxa)/
√
βx

y/
√
βy

(αyy+βyb)/
√
βy

⎞⎟⎟⎟⎠◦
⎛⎜⎜⎜⎝

x+ hdsxa

a+
∑

Ta,k,l,m,nx
kalymbn

y + hdsxb

b+
∑

Tb,k,l,m,nx
kalymbn

⎞⎟⎟⎟⎠◦
⎛⎜⎜⎜⎝

√
βxx̃i

(−αxx̃i+ãi)/
√
βx√

βyỹi

(−αy ỹi+ b̃i)/
√
βy

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
x̃i +

(
hds/

√
βx

)
x̃i (−αxx̃i + ãi)

ãi +
∑

T̃a,k,l,m,nx̃
k
i ã

l
iỹ

m
i b̃ni

ỹi +
(√

βxhds/βy

)
x̃i

(
−αy ỹi + b̃i

)
b̃i +

∑
T̃b,k,l,m,nx̃

k
i ã

l
iỹ

m
i b̃ni

⎞⎟⎟⎟⎟⎟⎠ ,

where T̃a,k,l,m,n and T̃b,k,l,m,n are linear combinations Ta,k,l,m,n and Tb,k,l,m,n,
each of which is multiplied by some powers of βx, βy, αx and/or αy. Now let
us consider a system that consists of n identical cells with the phase advances
μx = μy = 2π/n.

Defining

R

(
μx

μy

)
=

⎛⎝ ˜̂R (μx) 0

0
˜̂
R (μx)

⎞⎠
⎛⎜⎜⎝

x
a
y
b

⎞⎟⎟⎠ ,
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the sum of all the n kicks over the whole system is⎛⎜⎜⎜⎝
x̃f

ãf

ỹf

b̃f

⎞⎟⎟⎟⎠ =

n−1∑
m=0

R

(
(n−m)μx − φx

(n−m)μy − φy

)
◦

⎛⎜⎜⎜⎜⎝
(
hds/

√
βx

)
x (−αxx+ a)∑

T̃a,k,l,m,nx
kalymbn(√

βxhds/βy

)
x (−αyy + b)∑

T̃b,k,l,m,nx
kalymbn

⎞⎟⎟⎟⎟⎠
◦R

(
mμx + φx

mμy + φy

)

=

n−1∑
m=0

R

(−2mπ/n− φx

−2mπ/n− φy

)
◦

⎛⎜⎜⎜⎜⎝
(
hds/

√
βx

)
x (−αxx+ a)∑

T̃a,k,l,m,nx
kalymbn(√

βxhds/βy

)
x (−αyy + b)∑

T̃b,k,l,m,nx
kalymbn

⎞⎟⎟⎟⎟⎠
◦R

(
2mπ/n+ φx

2mπ/n+ φy

)
.

The last step uses the fact that nμx = nμy = 2π. Every term in the above
expression can be written in the form of

n−1∑
m=0

cosl
(
2mπ

n
+ φj

)
sin3−l

(
2mπ

n
+ φk

)
,

where l = 0, 1, 2, 3 and j, k = {x, y}. Using the relations

cosφ =
eiφ + e−iφ

2
, sinφ =

eiφ − e−iφ

2i
,

we have

n−1∑
m=0

cosl
(
2mπ

n
+ φj

)
sin3−l

(
2mπ

n
+ φk

)

=

n−1∑
m=0

[
ei(2mπ/n+φj) + e−i(2mπ/n+φj)

2

]l [
ei(2mπ/n+φj) − e−i(2mπ/n+φj)

2i

]3−l

.

Dropping the common parts in each sum, which are functions of φx and φy ,
there are only four kinds of sums

n−1∑
m=0

ei6mπ/n =
1− ein6π/n

1− ei6π/n
= 0,

n−1∑
m=0

e−i6mπ/n =
1− e−in6π/n

1− e−i6π/n
= 0,

n−1∑
m=0

ei2mπ/n =
1− ein2π/n

1− ei2π/n
= 0,

n−1∑
m=0

e−i2mπ/n =
1− e−in2π/n

1− e−i2π/n
= 0,
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when n �= 1, 3. In conclusion, for a system that consists of n identical cells
(n > 1, n �= 3) and μx = μy = 2π/n, all second order geometrical aberrations
vanish. Note that this is true even for systems without midplane symmetry.
When coupling is present, the second order kicks for x and y will become more
complicated but remain a polynomial of the second order. The transformation
to the normalized coordinates Â will be coupled as well, yet the general form
of the kicks in the normalized space remains unchanged. Therefore the same
proof holds.

Another result of such a system is that some chromatic aberrations are
canceled. Of all the remaining chromatic terms, only two are independent.
With two families of sextupoles, all second order chromatic aberrations can
be corrected. Thus we obtain a system that is free of all aberrations up to the
second order, which is called a second order achromat. From the symplectic
condition, we know that, up to the second order, the path length depends on
δ only.

Next, we are going to prove that only two independent families of chromatic
terms are left. Going back to the equations of motion, the second order
chromatic terms are

xf = xi + Tx,aδaiδ, af = ai + Ta,xδxiδ + Ta,δ2δ
2,

yf = yi + Ty,bδbi δ, bf = bi + Tb,yδ yiδ.

In the normalized space, the map becomes

⎛⎜⎜⎜⎝
x̃f

ãf

ỹf

b̃f

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

x/
√
βx

(αxx+ βxa) /
√
βx

y/
√
βy

(αyy + βyb) /
√
βy

⎞⎟⎟⎟⎠◦
⎛⎜⎜⎜⎝

x+ Tx,aδaδ

a+Ta,xδxδ + Ta,δ2δ
2

y + Ty,bδbδ

b+ Tb,yδyδ

⎞⎟⎟⎟⎠◦
⎛⎜⎜⎜⎜⎝

√
βxx̃i

(−αxx̃i + ãi) /
√
βx√

βy ỹi(
−αy ỹi + b̃i

)
/
√
βy

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
x/

√
βx

(αxx+ βxa) /
√
βx

y/
√
βy

(αyy + βyb) /
√
βy

⎞⎟⎟⎟⎠◦
⎛⎜⎜⎜⎜⎜⎝

√
βxx̃i + Tx,aδ

[
(−αxx̃i + ãi) /

√
βx

]
δ

(−αxx̃i + ãi) /
√
βx + Ta,xδ

√
βxx̃iδ + Ta,δ2δ

2√
βy ỹi + Ty,bδ

[(
−αy ỹi + b̃i

)
/
√
βy

]
δ(

−αyỹi + b̃i

)
/
√
βy + Tb,yδ

√
βy ỹiδ

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
x̃i + Tx,aδ [(−αxx̃i + ãi) /βx] δ

ãi+
[(
β2
xTa,xδ − α2

xTx,aδ

)
/βx

]
x̃iδ + (αx/βx)Tx,aδãiδ+

√
βxTa,δ2δ

2

ỹi + Ty,bδ

[(
−αyỹi + b̃i

)
/βy

]
δ

b̃i +
[(
β2
yTb,yδ − α2

yTy,bδ

)
/βy

]
ỹiδ + (αy/βy)Ty,bδ b̃iδ

⎞⎟⎟⎟⎟⎠.
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The sum over the system is⎛⎜⎜⎝
x̃f

ãf
ỹf
b̃f

⎞⎟⎟⎠ =
n−1∑
m=0

R

(−2mπ/n− φx

−2mπ/n− φy

)

◦

⎛⎜⎜⎜⎝
Tx,aδ [(−αxx+ a)/βx] δ[(

β2
xTa,xδ − α2

xTx,aδ

)
/βx

]
xδ + (αx/βx)Tx,aδaδ +

√
βx Ta,δ2δ

2

Ty,bδ [(−αyy + b)/βy] δ[(
β2
yTb,yδ − α2

yTy,bδ

)
/βy

]
yδ + (αy/βy)Ty,bδbδ

⎞⎟⎟⎟⎠
◦R

(
2mπ/n+ φx

2mπ/n+ φy

)
.

Since the x and y planes are decoupled, we can separate them. The x plane
is(
x̃f

ãf

)
=

n−1∑
m=0

(
cos (2mπ/n+ φx) − sin (2mπ/n+ φx)

sin (2mπ/n+ φx) cos (2mπ/n+ φx)

)

·
(

− (αx/βx)Tx,aδδ (1/βx)Tx,aδδ[(
β2
xTa,xδ − α2

xTx,aδ

)
/βx

]
δ (αx/βx) Tx,aδδ

)

·
(

cos (2mπ/n+ φx) sin (2mπ/n+ φx)

− sin (2mπ/n+ φx) cos (2mπ/n+ φx)

)(
x̃i

ãi

)

+

n−1∑
m=0

(
cos (2mπ/n+ φx) − sin (2mπ/n+ φx)

sin (2mπ/n+ φx) cos (2mπ/n+ φx)

)(
0√

βxTa,δ2δ
2

)
,

and the y plane is(
ỹf

b̃f

)
=

n−1∑
m=0

(
cos (2mπ/n+ φy) − sin (2mπ/n+ φy)

sin (2mπ/n+ φy) cos (2mπ/n+ φy)

)

·
(

− (αy/βy)Ty,bδδ (1/βy)Ty,bδδ[(
β2
yTb,yδ − α2

yTy,bδ

)
/βy

]
δ (αy/βy) Ty,bδδ

)

·
(

cos (2mπ/n+ φy) sin (2mπ/n+ φy)

− sin (2mπ/n+ φy) cos (2mπ/n+ φy)

)(
ỹi

b̃i

)
.

The terms
(
x|δ2) and (a|δ2) are

n−1∑
m=0

sin

(
2mπ

n
+ φx

)
=

n−1∑
m=0

ei(2mπ/n+φx) − e−i(2mπ/n+φx)

2i

=
1

2i

(
eiφx

1− ein2π/n

1− ei2π/n
− e−iφx

1− e−in2π/n

1− e−i2π/n

)
= 0,
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and

n−1∑
m=0

cos

(
2mπ

n
+ φx

)
=

n−1∑
m=0

ei(2mπ/n+φx) + e−i(2mπ/n+φx)

2

=
1

2

(
eiφx

1− ein2π/n

1− ei2π/n
+ e−iφx

1− e−in2π/n

1− e−i2π/n

)
= 0.

Every other term in the above expression can be written in the form of

n−1∑
m=0

cosl
(
2mπ

n
+ φj

)
sin2−l

(
2mπ

n
+ φj

)

=

n−1∑
m=0

[
ei(2mπ/n+φj) + e−i(2mπ/n+φj)

2

]l [
ei(2mπ/n+φj) − e−i(2mπ/n+φj)

2i

]2−l

,

where l = 0, 1, 2, 2 and j = {x, y}. Dropping the common parts in each sum,
which are functions of φj , there are only three kinds of sums

n−1∑
m=0

ei4mπ/n =
1− ein4π/n

1− ei4π/n
,

n−1∑
m=0

e−i4mπ/n =
1− e−in4π/n

1− e−i4π/n
,

n−1∑
m=0

1 = n,

where
∑n−1

m=0 e
i4mπ/n = 0 and

∑n−1
m=0 e

−i4mπ/n = 0 when n �= 2. As a result,
we have

n−1∑
m=0

cos2
(
2mπ

n
+ φj

)
=

n

2
,

n−1∑
m=0

sin2
(
2mπ

n
+ φj

)
=

n

2
,

n−1∑
m=0

sin

(
2mπ

n
+ φj

)
cos

(
2mπ

n
+ φj

)
= 0.

The remaining terms are(
x̃f

ãf

)
=

n

2

(
0 Cx

−Cx 0

)(
x̃i

ãi

)
,

(
ỹf
b̃f

)
=

n

2

(
0 Cy

−Cy 0

)(
ỹi
b̃i

)
,

where

Cx =
1

βx
Tx,aδδ − β2

xTa,xδ − α2
xTx,aδ

βx
δ, Cy =

1

βy
Ty,bδδ −

β2
yTb,yδ − α2

yTy,bδ

βy
δ,

which shows that there are only two independent terms.

It turns out that there is another way to prove this point which is probably
more elegant. We first observe that, from the equations of motion (3.22), the
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second order map of the n cell achromatic system in the normalized coordi-
nates can be written as⎛⎜⎜⎜⎝

x̃f

ãf

ỹf

b̃f

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
x̃i + T̃x,xδx̃iδ + T̃x,aδãiδ + T̃x,δ2δ

2

ãi + T̃a,xδx̃iδ + T̃a,aδãiδ + T̃a,δ2δ
2

ỹi + T̃y,yδỹiδ + T̃y,bδb̃iδ

b̃i + T̃b,yδỹiδ + T̃b,bδ b̃iδ

⎞⎟⎟⎟⎟⎠ , (9.2)

where all geometrical terms vanish. Note that midplane symmetry is obeyed.
Since the x and y planes are decoupled, let us study the x plane first. Let us
denote the second order map of the whole system

M (n) = I + T (n) ,

that of one cell is
M (1) = R (1) + T (1) ,

and that of n− 1 cells is

M (n− 1) = R (n− 1) + T (n− 1) .

Since the n cells are identical, the whole system can be viewed as either one
cell in front of n− 1 cells or vice versa. Thus the following relations hold

M (n) =2 M (n− 1) ◦M (1) =2 [R (n− 1) + T (n− 1)] ◦ [R (1) + T (1)]

=2 I +R (n− 1) ◦ T (1) + T (n− 1) ◦ R (1) ,

and

M (n) =2 M (1) ◦M (n− 1) =2 [R (1) + T (1)] ◦ [R (n− 1) + T (n− 1)]

=2 I +R (1) ◦ T (n− 1) + T (1) ◦ R (n− 1) .

Removing the first order part, we obtain

T (n) = R (n− 1) ◦ T (1) + T (n− 1) ◦ R (1) ,

and
T (n) = R (1) ◦ T (n− 1) + T (1) ◦ R (n− 1) .

Furthermore, we obtain

T (n) ◦ R (1)
−1

= R (n− 1) ◦ T (1) ◦ R (1)
−1

+ T (n− 1) ,

and
R (1)

−1 ◦ T (n) = T (n− 1) +R (1)
−1 ◦ T (1) ◦ R (n− 1) .

Using the relation R (n− 1) = R (1)−1 , we reach the following relation

T (n) ◦ R (1) = R (1) ◦ T (n) .
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Plugging in the first two components of eq. (9.2), we arrive at(
cosμx sinμx

− sinμx cosμx

)(
T̃x,δ2δ

2

T̃a,δ2δ
2

)
=

(
T̃x,δ2δ

2

T̃a,δ2δ
2

)

and(
T̃x,xδδ T̃x,aδδ

T̃a,xδδ T̃a,aδδ

)(
cosμx sinμx

− sinμx cosμx

)
=

(
cosμx sinμx

− sinμx cosμx

)(
T̃x,xδδ T̃x,aδδ

T̃a,xδδ T̃a,aδδ

)
.

For the pure chromatic terms, we have(
1− cosμx − sinμx

sinμx 1− cosμx

)(
T̃x,δ2

T̃a,δ2

)
=

(
0

0

)
.

Since, for n > 1, we have

det

(
1− cosμx − sinμx

sinμx 1− cosμx

)
= 2 (1− cosμx) �= 0,

we conclude that

T̃x,δ2 = 0, T̃a,δ2 = 0, for n > 1.

For the mixed chromatic terms, we have(
T̃x,xδ cosμx − T̃x,aδ sinμx T̃x,xδ sinμx + T̃x,aδ cosμx

T̃a,xδ cosμx − T̃a,aδ sinμx T̃a,xδ sinμx + T̃a,aδ cosμx

)

=

(
T̃x,xδ cosμx + T̃a,xδ sinμx T̃x,aδ cosμx + T̃a,aδ sinμx

−T̃x,xδ sinμx + T̃a,xδ cosμx −T̃x,aδ sinμx + T̃a,aδ cosμx

)
.

For each component, we have

−T̃x,aδ sinμx = T̃a,xδ sinμx, T̃x,xδ sinμx = T̃ a,aδ sinμx,

−T̃a,aδ sinμx = −T̃x,xδ sinμx, T̃a,xδ sinμx = −T̃x,aδ sinμx.

For n �= 2, sinμx �= 0. We have

T̃x,xδ − T̃a,aδ = 0, T̃x,aδ + T̃a,xδ = 0.

From symplectic symmetry, we have

det

(
1 + T̃x,xδδ T̃x,aδδ

T̃a,xδδ 1 + T̃a,aδδ

)
= 1
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up to the first order of δ. As a result, we have

T̃x,xδ + T̃a,aδ = 0,

which, combined with the previous result, leads to

T̃x,xδ = 0, T̃a,aδ = 0.

In the original space,(
Tx,δ2

Ta,δ2

)
= Â−1

(
T̃x,δ2

T̃a,δ2

)
=

(
0

0

)
,

and(
Tx,xδ Tx,aδ

Ta,xδ Ta,aδ

)
= Â−1

(
T̃x,xδ T̃x,aδ

T̃a,xδ T̃a,aδ

)
Â

=

( √
βx 0

−αx/
√
βx 1/

√
βx

)(
0 T̃x,aδ

−T̃x,aδ 0

)(
1/

√
βx 0

αx/
√
βx

√
βx

)

=

(
αx βx

−γx −αx

)
T̃x,aδ.

The Twiss parameters here are the periodic solution of the cell. In conclusion,
there is only one independent chromatic aberration in the x plane. The same
conclusion can be reached for the y plane following the same procedure. This
proves, from the global point of view, that only two second order chromatic
aberrations are independent.

Furthermore, it is easy to show that the remaining terms T̃x,aδ and T̃y,bδ are
simply the chromaticities. We can write the transfer matrix in the normalized
space as

M̂x =

(
1 T̃x,aδδ

−T̃x,aδδ 1

)
=

(
cos (2π) sin (2π) + T̃x,aδδ

− sin (2π)− T̃x,aδδ cos (2π)

)

=1

⎛⎝ cos
(
2π + T̃x,aδδ

)
sin
(
2π + T̃x,aδδ

)
− sin

(
2π + T̃x,aδδ

)
cos
(
2π + T̃x,aδδ

)
⎞⎠ ,

and we obtain
ξx = T̃x,aδ.

Similarly,

M̂y =1

⎛⎝ cos
(
2π + T̃y,bδδ

)
sin
(
2π + T̃y,bδδ

)
− sin

(
2π + T̃y,bδδ

)
cos
(
2π + T̃y,bδδ

)
⎞⎠ ,
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and
ξy = T̃y,bδ.

The simplest of such a second order achromat consists of four FODO cells
with μx = μy = π/2 and two families of sextupoles correcting the chromatic-
ities.

9.1.2 The Dispersion Suppressor

As it become clear shortly, an achromat of n identical cells is not optimal
in terms of minimizing Dmax. Let us consider half of an achromat,

M̂ =

(
−Î �d
0 1

)
.

For an n cell achromat, D, D ′ at the center are⎛⎝D
D ′

1

⎞⎠ =

⎛⎝−1 0 d
0 −1 d ′

0 0 1

⎞⎠⎛⎝ 0
0
1

⎞⎠ =

⎛⎝ d
d ′

1

⎞⎠ ,

whereas the periodic solution is⎛⎝D
D ′

1

⎞⎠ =

⎛⎝−1 0 d
0 −1 d ′

0 0 1

⎞⎠⎛⎝D
D ′

1

⎞⎠ .

=⇒ D =
d

2
, D ′ =

d ′

2
.

Obviously the dispersion at the center of the achromat is twice that of the
periodic solution of a cell. There is a module called dispersion suppressor
which makes the whole section an achromat while maintaining the periodic
solution in the regular cells. It takes advantage of the fact that dipoles, espe-
cially when θ is small, affect only the dispersion, not focusing. A dispersion
suppressor consists of two FODO cells which are the same as the standard
cells except for the bending angle. Two free parameters, or “knobs,” such
as the the bending angles can fulfill the two conditions needed to obtain an
achromat.

Recalling eq. (9.1), the transfer matrix of a FODO cell with bending is

M̂x =

⎛⎜⎝ 1− l2/2f2 2l (1 + l/2f) 2lθ (1 + l/4f)

−l/2f2 + l2/4f3 1− l2/2f2 2θ
(
1− l/4f − l2/8f2

)
0 0 1

⎞⎟⎠
=

⎛⎜⎝ cosμ β sinμ 2l [1 + (1/2) sin (μ/2)] θ

− (1/β) sinμ cosμ 2 [1 + (1/2) sin (μ/2)] [1− sin (μ/2)] θ

0 0 1

⎞⎟⎠ .
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For two cells of bending θ1 and θ2 per half cell, the total matrix is

M̂x =

⎛⎜⎝ cosμ β sinμ 2l [1 + (1/2) sin (μ/2)] θ2

− (1/β) sinμ cosμ 2 [1 + (1/2) sin (μ/2)] [1− sin (μ/2)] θ2

0 0 1

⎞⎟⎠
·

⎛⎜⎝ cosμ β sinμ 2l [1 + (1/2) sin (μ/2)] θ1

− (1/β) sinμ cosμ 2 [1 + (1/2) sin (μ/2)] [1− sin (μ/2)] θ1

0 0 1

⎞⎟⎠
=

⎛⎜⎝ cos (2μ) β sin (2μ) d

− (1/β) sin (2μ) cos (2μ) d ′

0 0 1

⎞⎟⎠ ,

where

d =2l

[
1 +

1

2
sin
(μ
2

)]
θ1 cosμ+ 2

[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
θ1β sinμ

+ 2l

[
1 +

1

2
sin
(μ
2

)]
θ2

=2l

[
1 +

1

2
sin
(μ
2

)]
[(2 cosμ+ 1) θ1 + θ2] ,

and

d ′ =2l

[
1 +

1

2
sin
(μ
2

)]
θ1

(
− 1

β
sinμ

)
+ 2

[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
θ1 cosμ

+ 2

[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
θ2

=− 4 sin2
(μ
2

)[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
θ1

+ 2

[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
(cosμ) θ1

+ 2

[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
θ2

=2

[
1 +

1

2
sin
(μ
2

)] [
1− sin

(μ
2

)]
[(2 cosμ− 1) θ1 + θ2] .

Note that the relation

β =
2l [1 + sin(μ/2)]

sinμ

was used during the derivations above which lead to the final forms of d and
d ′.



226 An Introduction to Beam Physics

To match a dispersion free region to a FODO cell, we have⎛⎜⎝ cos (2μ) β sin (2μ) d

− sin (2μ) /β cos (2μ) d ′

0 0 1

⎞⎟⎠
⎛⎜⎝0

0

1

⎞⎟⎠ =

⎛⎜⎝Dmax

0

1

⎞⎟⎠ ,

which leads to

(2 cosμ+ 1) θ1 + θ2 =
θ

2 sin2 (μ/2)
,

(2 cosμ− 1) θ1 + θ2 = 0.

The result is

θ1 =
θ

4 sin2 (μ/2)
, θ2 = θ − θ1.

So, we have

θ1 = θ2 =
θ

2
, for μ =

π

2
.

θ1 = θ, θ2 = 0, for μ =
π

3
.

Dispersion suppressors are widely used in high energy accelerators where
the achromatic straight section constitutes only a small portion of the ring.
Since the main part of the ring is made up of arcs, the cost-effective way to
build such a ring is to pack dipole magnets as close as possible. A FODO cell is
the best choice for this purpose. Another way to save cost is to keep the beam
pipe as small as possible, which saves not only due to smaller pipes themselves,
but also, more importantly, smaller magnets. Dispersion suppressors help to
keep beam size small by keeping the dispersion matched. In fact, there is
another parameter that plays an important role in the optimization process,
which is the length of the FODO cell. Both βmax and Dmax are proportional
to the length of the cell. A shorter cell leads to smaller beam size, but tends to
decrease the packing factor, which is the ratio of the length of total bending
over the total length of the cell.

9.2 Symmetric Achromats

Achromats based on mirror symmetry are widely used in beamlines and
accelerators, especially synchrotron light sources. One difference between a
synchrotron light source and a high energy accelerator is in the number of
experiments it supports. While a high energy accelerator usually supports
around ten fixed target experiments and a handful of collider experiments (less
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than five), a synchrotron light source usually supports tens and sometimes
more than a hundred experiments with the circumference of the ring only
a fraction of the high energy counterpart. Furthermore, insertion devices
(wigglers and undulators) have become the main source of light, as opposed
to bend magnets. These requirements result in a ring divided into many
sections (usually identical ones) with long straight sections in between where
dispersion is either zero or small. Apparently FODO cells plus dispersion
suppressors are not well suited for this kind of ring. The solution has been
mirror symmetric achromatic sections with relatively long straight sections at
the ends.

Before going into the details of the lattice modules, let us first look into
the general properties of a mirror symmetric cell. Mirror symmetry here is
referred to as the symmetry between the cell and its mirror image of the x-y
plane. In other words, a mirror symmetric cell means that the optical elements
of the cell are symmetric about the center, both in terms of geometry and the
excitation of the fields. For example, a quadrupole is mirror symmetric and
a sector bend is mirror symmetric, too. When a cell is mirror symmetric, the
map of the cell is the same as that of its mirror image. To obtain the map of
the mirror image cell, we observe that a particle that enters the mirror image
cell with (xf ,−af , yf ,−bf) exits it with (xi,−ai, yi,−bi), where (xi, ai, yi, bi)
and (xf , af , yf , bf) are the entrance and exit coordinates of the transverse
phase space of the original cell. Hence the map of the mirror image cell is

MI = R ◦M ◦R−1,

where

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x
a
y
b
l
δ

⎞⎟⎟⎟⎟⎟⎟⎠ .

For linear horizontal motion, we have

M̂ I
x =

⎛⎝1 0 0
0 −1 0
0 0 1

⎞⎠⎛⎝ (x|x) (x|a) (x|δ)
(a|x) (a|a) (a|δ)
0 0 1

⎞⎠−1⎛⎝1 0 0
0 −1 0
0 0 1

⎞⎠
=

⎛⎜⎝ (a|a) (x|a) −(a|a)(x|δ) + (x|a)(a|δ)
(a|x) (x|x) −(a|x)(x|δ) + (x|x)(a|δ)
0 0 1

⎞⎟⎠ .

Mirror symmetry entails that M̂x = M̂ I
x , which leads to

(x|x) = (a|a)
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and

(a|δ) = 1 + (x|x)
(x|a) (x|δ).

Note that the two equations from the dispersion and the dispersion prime are
not linearly independent. It is easy to verify that the transverse linear matrix
of a magnetic sector dipole satisfies the above relations. For a linearly stable
cell, i.e., |(x|x)| < 1, mirror symmetry implies that

αx =
(x|x)− (a|a)

2 sinμx
= 0,

and

D ′ =
(1− (x|x))(a|δ) + (a|x)(x|δ)

2− (x|x) − (a|a) =
1− (x|x)2 + (x|a)(a|x)
[2− (x|x) − (a|a)] (x|a) (x|δ) = 0.

Alternatively, we can also express the transfer matrix of a mirror symmetric
cell as functions of the first half of the cell. If the matrix of the first half of a
mirror symmetry cell is

M̂1
x =

⎛⎜⎝ (x|x)1 (x|a)1 (x|δ)1
(a|x)1 (a|a)1 (a|δ)1

0 0 1

⎞⎟⎠ ,

the second half is

M̂2
x =

⎛⎜⎝ (a|a)1 (x|a)1 −(a|a)1(x|δ)1 + (x|a)1(a|δ)1
(a|x)1 (x|x)1 −(a|x)1(x|δ)1 + (x|x)1(a|δ)1

0 0 1

⎞⎟⎠ .

The matrix of the whole cell is

M̂T
x = M̂ I

xM̂x

=

⎛⎜⎝ (a|a)1 (x|a)1 −(a|a)1(x|δ)1 + (x|a)1(a|δ)1
(a|x)1 (x|x)1 −(a|x)1(x|δ)1 + (x|x)1(a|δ)1

0 0 1

⎞⎟⎠
⎛⎜⎝ (x|x)1 (x|a)1 (x|δ)1

(a|x)1 (a|a)1 (a|δ)1
0 0 1

⎞⎟⎠
=

⎛⎜⎝ (x|x)1(a|a)1 + (x|a)1(a|x)1 2(x|a)1(a|a)1 2(x|a)1(a|δ)1
2(x|x)1(a|x)1 (x|x)1(a|a)1 + (x|a)1(a|x)1 2(x|x)1(a|δ)1

0 0 1

⎞⎟⎠.

In addition to the relations obtained above, this alternative expression shows
that when (a|δ)1 = 0, the cell is achromatic. Furthermore it reveals another
relation, which is

(a|δ) = (x|x)1
(x|a)1 (x|δ).
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To make the meaning of the relation clearer, let us add the drift of length L
after the cell. We obtain(

1 L

0 1

)(
(a|a)1 (x|a)1
(a|x)1 (x|x)1

)
=

(
(a|a)1 + L(a|x)1 (x|a)1 + L(x|x)1

(a|x)1 (x|x)1

)
,

and (
1 L

0 1

)(
2(x|a)1(a|δ)1
2(x|x)1(a|δ)1

)
=

(
2 [(x|a)1 + L(x|x)1] (a|δ)1

2(x|x)1(a|δ)1

)
.

When L = −(x|a)1/(x|x)1, the second half of the cell forms an image and the
dispersive ray crosses the axis. In other words, the dispersive ray behaves the
same as the axial ray from the center of the cell. The reader can check easily
that it is indeed the case for a sector bend.

9.2.1 The Double-Bend Achromat

Now let us study the simplest mirror symmetric achromat, which consists
of two bend magnets and a quadrupole in the middle. Due to the mirror
symmetry, the achromatic conditions D = D ′ = 0 at the end can be satisfied
requiring D ′ = 0 at the center.⎛⎜⎝Dc

0

1

⎞⎟⎠ =

⎛⎜⎝ 1 0 0

−1/2f 1 0

0 0 1

⎞⎟⎠
⎛⎜⎝1 L1 0

0 1 0

0 0 1

⎞⎟⎠
⎛⎜⎝ 1 L Lθ/2

0 1 θ

0 0 1

⎞⎟⎠
⎛⎜⎝0

0

1

⎞⎟⎠ ,

⎛⎜⎝Dc

0

1

⎞⎟⎠ =

⎛⎜⎝ 1 L+ L1 (L/2 + L1) θ

−1/2f 1− (L+ L1) /2f [1− (1/2f) (L/2 + L1)]θ

0 0 1

⎞⎟⎠
⎛⎜⎝0

0

1

⎞⎟⎠ .

=⇒ Dc =

(
L

2
+ L1

)
θ, f =

1

2

(
L

2
+ L1

)
.

From the discussion above, the relation f = (L/2+L1)/2 is simply the result
of the mirror symmetry. Even with a large bending angle where the exact
matrix of the bend has to be used, being achromatic always implies that the
center of the first bend is imaged to the center of the second bend. Since
f < (L+ L1) /2, it is not possible to build a FODO cell that is stable, so
a doublet or a triplet has to be used. A simple variant of the double-bend
achromat (DBA) is the triplet DBA shown in Fig. 9.5, which contains a triplet
between the bending magnets, with no quadrupoles outside.

Another type of DBA consists of two bending magnets, a focusing quadrupole
in between and a doublet outside of each bend as shown in Fig. 9.6. The cell
is symmetric about the center of QF1. Fig. 9.7 [66, 21] shows an example of
the lattice function of one example of this type of achromat.
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BB
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QDQD

FIGURE 9.5: The simplest double-bend achromat (DBA).
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FIGURE 9.6: The double-bend achromat (DBA).

9.2.2 The Triple-Bend Achromat

The fact that the center quadrupole of the DBA images the center of the
first bend to that of the second makes the DBA lattice somewhat inflexible
since the horizontal phase advance between the centers of the bends is always
around π. To overcome this shortcoming, triple-bend achromat (TBA)
lattices were developed. A TBA consists of three bending magnets, at least
two quadrupoles between them, and doublets (or triplets) outside, as shown
in Fig. 9.8. Lattice functions for a typical example of such kind of achromat
are shown in Fig. 9.9 [65, 21].

9.2.3 The Multiple-Bend Achromat

In the past two decades, the concept of multiple-bend achromat (MBA) has
been conceived of and developed to further reduce dispersion in the bending
magnets. As discussed in Section 9.2.4, this will help reduce the emittance
of the electron beam and increase the brightness of the X-ray produced from
synchrotron radiation. Fig. 9.10 shows the first MBA lattice, developed at
the MAX IV Laboratory at Lund University, Lund, Sweden. The middle
units are very similar to regular FODO cells and the end units are used as
dispersion suppressors. Recent variants increase the distance between the
outer most bending magnets and the middle ones to generate a dispersion
bump there. As a result, the strengths of the sextupoles are reduced and the
dynamic aperture is enlarged. The complexity of the lattice makes a multi-
dimensional optimization tool a necessity. In that regard, the spread of various
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β
β β

FIGURE 9.7: Lattice functions of a double-bend achromat (DBA), which
is one of the four super-periods of the storage at Center for Advanced Mi-
crostructures and Devices (CAMD) at Louisiana State University.

B BB
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FIGURE 9.8: The triple-bend achromat (TBA).

numerical algorithms in the community greatly expedited the development of
this concept.

9.2.4 The H Function

The design of such triple-bend achromats is mainly driven by the demand
for small equilibrium emittance for synchrotron light sources. Although syn-
chrotron radiation is not covered in this book, it is important to introduce the
concept of the equilibrium emittance which results from synchrotron radiation,
since it is crucial for understanding the motivation behind the development
of lattice modules for the synchrotron light sources. The main difference be-
tween electron and hadron (proton, antiproton and ion) rings is synchrotron
radiation. Since for a given bending radius the total radiated power is pro-
portional to γ4

(
γ = E/mc2

)
, synchrotron radiation becomes significant at

a much lower energy for electrons. The energy loss is compensated with RF
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β
β β

FIGURE 9.9: Lattice functions of a triple-bend achromat (TBA) of the
Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory,
California, USA.

cavities.

Since the photons are emitted into a forward pointing cone of the opening
angle 1/γ which is small for electrons of GeV level energy, all three components
of the momentum decrease at roughly the same rate. The RF cavity, on the
other hand, increases only the longitudinal momentum. As a result, transverse
momentum is damped over time.

Yet the presence of dispersion in a ring causes the emittance to grow due
to synchrotron radiation. Let us consider an off-momentum electron moving
along the closed orbit for the momentum in a dispersive region. After a photon
is emitted, the position and slope of the electron remain unchanged but the
total energy decreases. Suddenly the orbit the electron moves along is no
longer the closed orbit for it and the electron starts to oscillate around the
new closed orbit, resulting in emittance growth. The equilibrium emittance is
reached when the damping rate equals the growth rate. It turns out that, for a
ring with an identical bending field, the equilibrium emittance is proportional
to 〈H〉mag , where

H = γxD
2 + 2αxDD ′ + βxD

′ 2,

and

〈H〉mag =
1

2πρ

∫
dipole

Hds.

Note that D and D ′ are periodic solutions of the position and slope of dis-
persion. Furthermore, H is a constant outside of dipole magnets and changes
inside dipole magnets. To demonstrate this point, let us consider two points
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FIGURE 9.10: The lattice functions βx, βy and dispersion multiplied by
10 in the MAX IV multiple-bend achromat (MBA) lattice at Lund University,
Lund, Sweden. ( c© 1996 IEEE. Reprinted, with permission, from D. Einfeld,
et. al., in Proc. PAC 1995, 1, 177, 1996 [26].)

in the ring. The linear map between them is

M̂12 =

⎛⎜⎝ (x|x)12 (x|a)12 (x|δ)12
(a|x)12 (a|a)12 (a|δ)12

0 0 1

⎞⎟⎠ ,

and the dispersion of those two points are related through the relation⎛⎜⎝D2

D ′
2

1

⎞⎟⎠ =

⎛⎜⎝ (x|x)12 (x|a)12 (x|δ)12
(a|x)12 (a|a)12 (a|δ)12

0 0 1

⎞⎟⎠
⎛⎜⎝D1

D ′
1

1

⎞⎟⎠ .

Hence, we have

H2 =γ2D
2
2 + 2α2D2D

′
2 + β2D

′2
2

=(D2, D
′
2)

(
γ2 α2

α2 β2

)(
D2

D ′
2

)
=

[
(D1, D

′
1)

(
(x|x)12 (a|x)12
(x|a)12 (a|a)12

)
+ ((x|δ)12, (a|δ)12)

](
γ2 α2

α2 β2

)

·
[(

(x|x)12 (x|a)12
(a|x)12 (a|a)12

)(
D1

D ′
1

)
+

(
(x|δ)12
(a|δ)12

)]
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=(D1, D
′
1)

(
γ1 α1

α1 β1

)(
D1

D ′
1

)
+ (D1, D

′
1)

(
(x|x)12 (a|x)12
(x|a)12 (a|a)12

)(
γ2 α2

α2 β2

)(
(x|δ)12
(a|δ)12

)

+ ((x|δ)12, (a|δ)12)
(
γ2 α2

α2 β2

)(
(x|x)12 (x|a)12
(a|x)12 (a|a)12

)(
D1

D ′
1

)

+ ((x|δ)12, (a|δ)12)
(
γ2 α2

α2 β2

)(
(x|δ)12
(a|δ)12

)
.

It is clear that H2 = H1 if (x|δ)12 = (a|δ)12 = 0, which is the case for any
two points that are in the same straight section. With the expression above,
we can obtain the derivative of H with respect to s which can illustrate the
matter even clearer. When the two points are close to each other, the linear
map becomes

dM̂ =

⎛⎝ 1 ds 0
−kds 1 ds/ρ

0 0 1

⎞⎠ .

Carrying out the derivation one step further, we obtain

dH = (D1, D
′
1)

(
1 −kds
ds 1

)(
γ2 α2

α2 β2

)(
0

ds/ρ

)
+

(
0,

ds

ρ

)(
γ2 α2

α2 β2

)(
1 ds

−kds 1

)(
D1

D ′
1

)
+

(
0,

ds

ρ

)(
γ2 α2

α2 β2

)(
0

ds/ρ

)
= (D1, D

′
1)

(
1 −ds

kds 1

)(
γ1 α1

α1 β1

)(
0

ds/ρ

)
+

(
0,

ds

ρ

)(
γ1 α1

α1 β1

)(
1 kds

−ds 1

)(
D1

D ′
1

)
+

(
0,

ds

ρ

)(
γ2 α2

α2 β2

)(
0

ds/ρ

)
=1 2 (α1D1 + β1D

′
1)

ds

ρ
.

In summary, we have

H′ =
2

ρ
(α1D1 + β1D

′
1) .

In order to achieve small emittance, H has to be small, which leads to strong
quadrupoles. This in turn leads to strong sextupoles to correct chromaticities
which in general would result in strong nonlinear motion and small dynamic
aperture. TBA lattices can provide smaller dispersion and hence smaller
emittance than DBA lattices, which result in stronger sextupoles and smaller
dynamic aperture. This is one of the reasons that TBA lattices fell out of
favor in the most recent synchrotron light sources. Another reason is that,
when the achromatic condition is not strictly enforced, DBA lattices appear
to be more flexible than TBA lattices, especially when more quadrupoles are
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used. For example, the DBA lattice of the Shanghai Synchrotron Radiation
Facility (SSRF), Shanghai, China, contains two quadrupole doublets between
the bending magnets and two triplets outside. In fact, almost all synchrotron
light sources built in the past decade adopted DBA lattices.

9.3 Special Purpose Modules

9.3.1 The Low Beta Insertion

In both circular and linear colliders, the beam is focused as tightly as pos-
sible at the collision points to maximize the density of particles and hence
collision rate. The simplest low beta insertion consists of two quadrupole
doublets placed and excited symmetrically about the interaction point. The
upstream doublet is roughly a parallel–to–point system, in which an initially
nearly parallel beam is brought down to a small point and the downstream
doublet is a point–to–parallel system. In hadron colliders where the emittance
is relatively big, triplets are used to increase focusing power and reduce the
width of the beam in the quadrupoles. In addition, it provides more flexibility
for tuning.

Recall from eq. (6.13) that

β(s) = β∗ +
s2

β∗ .

Since the distance between the interaction point and the last quadrupole is
on the order of 10 m and β∗ is below 1 m, the β functions in the quadrupoles
range from hundreds m to over 1 km (see Fig. 9.11). Combined with high
gradient in the quadrupoles, the low beta insertion generates large chromatic
and geometric aberrations. In hadron colliders, due to the relatively large
emittance, the main effect of the aberrations is the additional chromaticities,
which are corrected by the sextupoles in the arcs. In addition, the large beam
size at the quadrupoles implies extra tight tolerances on multipole errors in
those quadrupoles, which, if too large, would excite undesirable resonances
causing emittance and/or beam loss. In electron-positron linear colliders,
the emittance is small and the aberrations generated by the low beta inser-
tion would cause sizable increase in beam size at the interaction point. As a
result, the matching section between the low beta section and the linear accel-
erator (linac) is rather complicated. Telescopes are used to minimize certain
aberrations and sextupoles are used to correct chromatic aberrations.
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β
β β

FIGURE 9.11: Lattice functions of a typical low beta insertion with sym-
metric quadrupole triplets. Here β∗ is 0.5 m.

9.3.2 The Chicane Bunch Compressor

A simple yet very effective and commonly used module in linac based free
electron lasers (FELs) is the so-called chicane bunch compressor. It consists
of four identical rectangular homogeneous bending magnets separated by drift
spaces, with the middle two magnets bending in the opposite direction, and
the reference orbit perpendicular to the entrance of the first and third magnets
and the exit of the second and fourth magnets (see Fig. 9.12). The whole
module ismirror symmetric about the center. Such an arrangement ensures
that the bunch compressor is achromatic to all orders and that electrons with
higher energy go through shorter paths. When a bunch of electrons enters the
compressor with a correlation between the longitudinal position and energy,
the bunch length changes at the exit of the compressor. If the slope is negative,
i.e., the electrons in the head of the bunch have lower energy, the bunch is
compressed.

Next, let us take a look at the basic optical properties of the chicane bunch
compressor. The horizontal transfer matrix of the first bend is

M̂1
x =

⎛⎝ 1 0 0
1/R0 tanφ 1 0

0 0 1

⎞⎠⎛⎝ cosφ R0 sinφ R0 (1− cosφ)
−1/R0 sinφ cosφ sinφ

0 0 1

⎞⎠
=

⎛⎝ cosφ R0 sinφ R0 (1− cosφ)
0 1/ cosφ tanφ
0 0 1

⎞⎠ .

To obtain the transfer matrix of a bend magnet with the opposite direction
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FIGURE 9.12: Layout of the chicane bunch compressor. The top/bottom
trajectories are those of particles of lower/higher momenta than the reference
trajectory in the middle.

of bending, we have to first find out the transformation between internal and
external coordinate systems. Taking into account the fact that positive x in
the internal system (away from the center of the arc of the design orbit) is
negative in the external system, the transformation is

Ŝx =

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠ .

The transformation in the vertical plane is the identity matrix. Therefore the
horizontal transfer matrix of the second bend is

M̂2
x = Ŝx

⎛⎜⎝ cosφ R0 sinφ R0 (1− cosφ)

−1/R0 sinφ cosφ sinφ

0 0 1

⎞⎟⎠
⎛⎜⎝ 1 0 0

1/R0 tanφ 1 0

0 0 1

⎞⎟⎠ Ŝ−1
x

=

⎛⎜⎝−1 0 0

0 −1 0

0 0 1

⎞⎟⎠
⎛⎜⎝1/ cosφ R0 sinφ R0 (1− cosφ)

0 cosφ sinφ

0 0 1

⎞⎟⎠
⎛⎜⎝−1 0 0

0 −1 0

0 0 1

⎞⎟⎠
=

⎛⎜⎝1/ cosφ R0 sinφ −R0 (1− cosφ)

0 cosφ − sinφ

0 0 1

⎞⎟⎠ .

The horizontal matrix of the first and the second bends separated by a drift
L1 is

M̂h
x =

⎛⎜⎝1/cosφ R0sinφ −R0(1−cosφ)

0 cosφ − sinφ

0 0 1

⎞⎟⎠
⎛⎜⎝1 L1 0

0 1 0

0 0 1

⎞⎟⎠
⎛⎜⎝cosφ R0sinφ R0(1−cosφ)

0 1/cosφ tanφ

0 0 1

⎞⎟⎠
=

⎛⎜⎝ 1 2R0 sinφ+ L1/ cos
2 φ [2R0 (1− cosφ) + L1 tanφ] / cosφ

0 1 0

0 0 1

⎞⎟⎠ .
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From the mirror symmetry of the chicane, we can conclude that the module
is achromatic. For φ � 1, the dispersion between the second and the third
bends is D = L1φ+R0φ

2. It is worth noting that the focusing in the vertical
plane is insignificant. As a result the bunch compressor is transparent in
transverse dynamics.

Finally, let us work out the path length difference between the reference
electron and one that has a different momentum p = (1 + δ) p0. Due to the
symmetry, the difference can be obtained analytically, which is

l − l0 = 4 (Rφ−R0φ0) + 2L1

(
cosφ0

cosφ
− 1

)
,

where

R = R0 (1 + δ) ,

and

sinφ =
R0

R
sinφ0 =

sinφ0

1 + δ
.

Plugging in R and φ, we have

l− l0 = 4R0

[
(1 + δ) arcsin

(
sinφ0

1 + δ

)
− φ0

]
+2L1

⎡⎣ (1 + δ) cosφ0√
(1 + δ)2 − sin2 φ0

− 1

⎤⎦ .

In order to have a better idea about the relation between l − l0 and δ, we
would like to learn how the low order terms behave. Before we proceed with
the Taylor expansion of l − l0, let us first work out that of arcsin(x0 + Δx).

Using arcsin(x
√

1− y2+y
√
1− x2) = arcsin(x)+arcsin(y) and setting x = x0,

we obtain

x0

√
1− y2 + y

√
1− x2

0 = x0 +Δx.

After straightforward algebra, we obtain

y = (x0 +Δx)
√
1− x2

0 − x0

√
1− (x0 +Δx)2.
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As a result,

arcsin (x0 +Δx)

= arcsin (x0)+arcsin

[
(x0 +Δx)

√
1− x2

0 − x0

√
1− (x0 +Δx)2

]
= arcsin (x0)+arcsin

[
(x0 +Δx)

√
1− x2

0 − x0

√
1− x2

0

√
1− 2x0Δx+Δx2

1− x2
0

]

=2 arcsin (x0)+arcsin

{
Δx
√

1−x2
0+x0

√
1−x2

0

[
2x0Δx+Δx2

2 (1−x2
0)

+
4x2

0Δx2

8 (1−x2
0)

2

]}

=2 arcsin (x0) + Δx
√
1− x2

0 +
x0

2

√
1− x2

0

[
2x0Δx+Δx2

1− x2
0

+
x2
0Δx2

(1− x2
0)

2

]

=2 arcsin (x0) +
Δx√
1− x2

0

+
x0Δx2

2 (1− x2
0)

3
2

.

To the second order, the path length difference is

l − l0 =2 4R0

[
(1 + δ) arcsin

((
1− δ + δ2

)
sinφ0

)− φ0

]
+ 2L1

[
(1 + δ) cosφ0√
cos2 φ0 + 2δ + δ2

− 1

]
=2 4R0

[
(1 + δ) arcsin

(
sinφ0 −

(
δ − δ2

)
sinφ0

)− φ0

]
+ 2L1

[
(1 + δ)√

1 + (2δ + δ2) / cos2 φ0

− 1

]

=2 4R0

{
(1 + δ)

[
φ0 −

(
δ − δ2

)
tanφ0 +

1

2
δ2 tan3 φ0

]
− φ0

}
+ 2L1

[
(1 + δ)

(
1− 1

2

2δ + δ2

cos2 φ0
+

3

8

4δ2

cos4 φ0

)
− 1

]
=2 4R0

[
(φ0 − tanφ0) δ +

1

2

(
tan3 φ0

)
δ2
]

− 2L1 tan
2 φ0

(
δ − 3

2

δ2

cos2 φ0

)
.

For φ0 � 1, only the terms of the lowest order in φ0 are important and we
obtain

l − l0 =2 −2L1φ
2
0

(
δ − 3

2
δ2
)
.

As an example, we discuss the parameters of the first bunch compressor
at the Linac Coherent Light Source (LCLS) at SLAC National Accelerator
Laboratory, California, USA, which operates at a beam energy of 250 MeV.
It is worth noting that the bend radius R0 of 2.48 m (corresponding to a
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FIGURE 9.13: Mechanism of an RF buncher cavity.

magnetic field B0 of 3.36 kG) and L1 at 2.61 m are roughly the same and
that the bend angle of φ0 = 4.62◦, which corresponds to a magnet length
Lb = 0.2 m is very small. For the term (l|δ), the contribution from the
magnets is −1.74 mm and that from the drifts is −34.07 mm. For the term
(l|δ2), the contribution from the magnets is 2.62 mm and that from the drifts
is 51.44 mm. At this energy, the electrons are relativistic enough that the
contribution from the difference in velocity is miniscule (−27 μm for (l|δ) and
40 μm for (l|δ2)).

9.3.3 Other Bunch Compressors

As shown above, chicane bunch compressors work when the higher momen-
tum particles are in the tail of a bunch. Yet higher momentum particles are
often in the head of the bunch. An important example is the DC gun, where
higher momentum particles are faster and thus arrive earlier. To compress
such bunches, one method is to configure electrostatic or magnetic fields in
such a way that the faster particles go through longer paths.

Another method is to reverse the correlation between energy and longitu-
dinal position before the bunch enters a chicane bunch compressor. This is
achieved most commonly through an RF cavity, which because of its func-
tionality is often called a buncher. It is a regular RF structure which is set
up through adjusting the phase such that the mean energy of the bunch is
unchanged. Meanwhile, the head of the bunch, where the high energy par-
ticles are, is decelerated, and the opposite happens to the tail of the bunch.
Fig. 9.13 illustrates the mechanism of a buncher. When the particles are not
highly relativistic, an RF buncher and the drift space downstream can achieve
bunch compression. This is called ballistic bunching.



Chapter 10

Synchrotron Motion

Up to now we have been primarily concerned with the motion in the trans-
verse planes. Yet, for particle accelerators, as the name implies, acceleration
is the primary interest. Therefore the motion in the longitudinal phase space
has to be understood. Although there are many different ways of accelerating
charged particles, we restrict ourselves mostly to circular accelerators (syn-
chrotrons, to be specific), where the acceleration is done using radio frequency
(RF) cavities. The only exception is the last section, where the transverse dy-
namics of RF cavities is discussed, which is of great significance mainly for
linacs.

The chapter is organized as follows. First, a section is devoted to a brief
description of a typical RF cavity used in a ring. Second, the time-of-flight
as the function of energy is derived. Next, combining the results from the
previous sections, the map of the longitudinal phase space is obtained and
the longitudinal motion is studied in detail. Last, the transverse effect of the
RF cavities is discussed briefly.

10.1 RF Fundamentals

Most RF cavities used in synchrotrons are variations of the cylindrical pill-
box cavity, which consists of two circular metallic plates of radius Rc that are
separated by the distance l and that are connected with a cylindrical mantel
of radius Rc, resulting in a geometry reminiscent of a circular pill box.

The field distribution in the interior of such a kind of a metal box can be
written in a simple analytical form. Following Wangler [70], the electromag-
netic field of such a cavity of length l and radius Rc with transverse magnetic
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FIGURE 10.1: Typical RF cavity field with fundamental mode TM010.
Radial dependence of the normalized electric field Ez(r, 0)/E0 (left) and the
normalized magnetic field Bθ(r,−1/4f)c/E0 (right) are shown as a function
of x01r/Rc.

field (mode of TMmnp) can be written as

Ez = E0Jm (kmnr) cos (mθ) cos
pπz

l
cos (ωt) ,

Er = −pπ

l

1

kmn
E0J

′
m (kmnr) cos (mθ) sin

pπz

l
cos (ωt) ,

Eθ =
pπ

l

m

k2mnr
E0Jm (kmnr) sin (mθ) sin

pπz

l
cos (ωt) ,

Bz = 0,

Br = ω
m

k2mnrc
2
E0Jm (kmnr) sin (mθ) cos

pπz

l
sin (ωt) ,

Bθ = ω
1

kmnc2
E0J

′
m (kmnr) cos (mθ) cos

pπz

l
sin (ωt) ,

where kmn = xmn/Rc and ω = c
√
k2mn + (pπ/l)2. Note that the quantity xmn

is the nth zero of the Bessel function Jm(x) (excluding the origin, n > 0).
Usually the fundamental mode of TM010 is used for accelerating charged

particles, whose field is

Ez = E0J0

(
x01r

Rc

)
cos (ωt) , Er = 0, Eθ = 0,

Bz = 0, Br = 0, Bθ = −E0

c
J1

(
x01r

Rc

)
sin (ωt) ,

where the relation J ′
0 (x) = −J1 (x) is used to obtain Bθ (see Fig. 10.1.)

Note that Bθ is proportional to E′
z with 90◦ phase lag, which is the result of

Faraday’s law and that x01 = 2.405 which, together with the design frequency,
determines the size of the cavity. Specifically, for the mode of TM010, we have

Rc =
x01c

ω
=

x01c

2πf
.
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For f = 500 MHz, Rc = 0.2295 m. In realistic cavity designs, the actual
shape of the cavity is often more spherical than cylindrical. Yet the overall
dimension is not very far from this crude estimate.

For r � Rc, which is usually where the beam is, the field can be approxi-
mated by the lowest order term of the Taylor expansion, which is

Ez =1 E0 cos (ωt) , Bθ =1 −E0

c

x01r

2Rc
sin (ωt) . (10.1)

Note that J0 (x) = 1+O
(
x2
)
and J1 (x) = x/2+O

(
x3
)
for x � 1. As a result,

the effect of Bθ is much weaker than that of Ez on the beam. Furthermore,
the focusing effect of the magnetic field is usually negligible compared to main
focusing elements, the quadrupole magnets in the ring.

To illustrate this, let us look at an example. Let us consider again the case
of a 500 MHz cavity. Assuming that E0 = 20 MV/m, which is not far from
the breakdown limit of copper at this frequency, we obtain the peak gradient
of the magnetic field, which is 0.35 T/m. Normal conducting quadrupoles, on
the other hand, can have field gradient up to 20 T/m. Furthermore, there are
usually tens to hundreds of quadrupoles with lengths between 0.2 and 1 m in
a ring, whereas there are at most a handful of cavities with lengths usually
below 0.5 m (around 0.3 m for a 500 MHz pillbox cavity). As a result, the
integrated gradient of the cavities is on the order of up to perhaps 1/1000
that of the quadrupoles.

Recently, the dipole mode (TM110) has also been used to kick the beam
transversely. The field of TM110 is

Ez = E0J1

(
x11r

Rc

)
cos θ cos (ωt) , Er = 0, Eθ = 0,

Bz = 0, Br =
E0

c

Rc

x11r
J1

(
x11r

Rc

)
sin θ sin (ωt) ,

Bθ =
E0

c

[
J0

(
x11r

Rc

)
− Rc

x11r
J1

(
x11r

Rc

)]
cos θ sin (ωt) ,

where the relation J ′
1(x) = J0(x) − J1(x)/x is used to obtain Bθ. Note

that x11 = 3.832. For the same cavity, the frequency of the TM110 mode
is x11/x01 ≈ 1.6 times that of the TM010 mode. In order to get a clearer
physical picture of the effect of the field on the beam, let us again perform
Taylor expansion around the origin and keep only the leading term. The field
is

Ez =1 E0
x11r

2Rc
cos θ cos (ωt) ,

Br =1
E0

2c
sin θ sin (ωt) , Bθ =1

E0

2c
cos θ sin (ωt) .
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Opposite to the TM010 mode, the magnetic field has a much stronger effect
on the beam. Furthermore, we have

By =1 Br sin θ +Bθ cos θ =1
E0

2c
sin (ωt) ,

which is an alternating current (AC) dipole and is best suited for kicking
the beam transversely. Again, using the example of a 500 MHz cavity and
assuming that E0 = 20 MV/m, we obtain the peak field, which is 0.033 T.
For such a cavity that is 0.3 m long and the energy of the electron beam being
1.9 GeV, the peak kick angle is

θx =
evzBy0Δt

pz
=

eE0l

2pzc
≈ 20× 106 × 0.3

2× 1.9× 109
= 1.6× 10−3.

The approximation that equates pzc to the total energy of the electron is based
on the fact that the relativistic fact γ is around 3800 and that the divergence
of the beam is usually a fraction of 1 mrad.

Now let us come back to the TM010 mode and find out the energy gain
(ΔK) per pass. To simplify the matter, let us consider a particle that moves
along the optical axis and the energy gain per pass is much smaller than its
total kinetic energy (K), which entails that the change of velocity in the cavity
is negligible. As a result, the energy gain is

ΔK = q

∫ l
2

− l
2

Ez (0, z, t (z)) dz,

where t(z) = t0 + z/v0. Here we set the origin of the z-axis at the center of
the cavity. For TM010 mode, we have

ΔK = q

∫ l
2

− l
2

E0 cos [ωt (z)] dz = q

∫ l
2

− l
2

E0 cos

[
ω

(
t0 +

z

v0

)]
dz

= qE0

∫ l
2

− l
2

cos

(
φ0 +

ωz

v0

)
dz = qE0

∫ l
2

− l
2

cos

(
φ0 +

2πz

β0λ

)
dz

= qE0l cos (φ0)
sin (πl/β0λ)

πl/β0λ
,

where λ is the wavelength of the electromagnetic field and β0 = v0/c. The sin
function in the equation above is the result of the finite length of the cavity,
which is called the transit time factor (T ). For the TM010 mode of a pillbox
cavity, the transit time factor is

T =
sin (πl/β0λ)

πl/β0λ
,

and the energy per pass is

ΔK = qE0lT cos (φ0) . (10.2)
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It is clear that the transit time factor is the ratio of the energy gain of a RF
cavity to that of a DC (direct current) gap of the same field. The relation
between the transit time factor and the length of the cavity is shown in Fig.
10.2. It is obvious that T → 1 as l → 0 which means that, for constant voltage
between the gap, the shorter the gap, the closer the energy gain to that of
the DC gap. Yet the electric field breakdown limit of the material determines
the maximum field that can be achieved, thus the energy gain is proportional
to lT, which is in turn proportional to sin(πl/β0λ). Therefore, the maximum
energy gain for the case of constant field is obtained when l = β0λ/2. For
electron storage rings such as those of the synchrotron light sources, β0 ≈ 1.
So we have l = λ/2, which corresponds to the fact that the time an electron
takes to pass through the cavity equals half of the period of the oscillation.
The transit time factor is T = 2/π = 0.637. For a 500 MHz cavity, we have
l = 0.3 m.

In addition, other issues such as RF power efficiency also have to be taken
into account. The most used parameter measuring the efficiency is called the
shunt impedance, which is defined as

Rs =
(ΔV )2

Pd
,

where
ΔV = E0lT cos (φ0) ,

which is the voltage across the accelerating gap and Pd is the power dissipated
in the wall. As a result, realistic normal conducting cavities are more or less
spherical in shape, minimizing the total surface area, with nose cones around
the beam axis to reduce the length (acceleration gap) of the cavity, maximizing
the voltage across the gap. For superconducting cavities, the dissipated power
is much smaller and hence the main goal of design optimization shifts to
minimizing the peak field on the surface for a given on-axis field to reduce the
risk of costly quench. The resulting shape is basically the bell shaped cavity,
which is preferable for other practical reasons as well.

10.2 The Phase Slip Factor

Toward the end of the previous section, we studied the energy gain per pass
of one particle. In this section, we will study the energy gain of a particle
over many passes in a circular accelerator. Since the cavity is always designed
for a given accelerator, there is at least one particle (the reference particle)
that comes back to the cavity at the same phase (synchronous phase φs)
every turn. For an arbitrary particle, it may not come back to the cavity
at the same phase since it may have different energy. Although an arbitrary
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FIGURE 10.2: Dependence of transit time factor on length of the cavity.

particle may not move along the reference orbit, which is a closed curve,
the effect of the change of arrival time due to the transverse motion tends
to average out due to betatron oscillation. This will become clearer below
when the large difference between the frequencies of the transverse oscillations
and that of the longitudinal one is shown. As a result, we only consider a
particle that moves along the close orbit of its energy. Let us consider a ring
with midplane symmetry that uses pure magnetic elements for bending and
transverse focusing. Hence eq. (3.17) can be simplified as

l ′ =
[
(1 + hxδ)

1 + η

1 + η0

p0
ps (δ)

− 1

]
κ

v0

=

[
(1 + hxδ)

1 + η

1 + η0

/√
η (2 + η)

η0 (2 + η0)
− a2δ − 1

]
κ

v0

=

[
(1 + hxδ)

(
1 +

η0
1 + η0

δ

)/√
1 + 2

1 + η0
2 + η0

δ +
η0

2 + η0
δ2 − a2δ − 1

]
κ

v0
,

where xδ and aδ are the horizontal position and momentum of the closed
orbit of an off-momentum particle. The difference in arrival time between the
reference particle is

Δt =
1

v0

C∫
0

[
(1+ hxδ)

(
1+

η0
1 + η0

δ

)/√
1+ 2

1 + η0
2 + η0

δ +
η0

2 + η0
δ2 − a2δ − 1

]
ds.
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The phase slip factor is defined as

ηph ≡ −Δt

t0δ

=
1

v0t0δ

C∫
0

[
1− (1+ hxδ)

(
1+

η0
1 + η0

δ

)/√
1+ 2

1 + η0
2 + η0

δ +
η0

2 + η0
δ2 − a2δ

]
ds

= ηph1 + ηph2 δ + · · · . (10.3)

Note that the variable δ is defined as ΔK/K0. In a pure magnetic system, mo-
mentum is the more natural variable since it scales linearly with the magnetic
field. To this end, we recall eq. (3.16) and have(

p

p0

)2

=
η (2 + η)

η0 (2 + η0)
.

Using the relations

p

p0
= 1 +

Δp

p0
≡ 1 + δp, η = η0 (1 + δ) ,

we obtain

(1 + δp)
2
= (1 + δ)

(
1 +

η0
2 + η0

δ

)
.

After a little bit of algebraic manipulations, the exact functional relation
between δ and Δp/p0 is obtained, which is

δ =
1 + η0
η0

[
−1 +

√
1 +

η0 (2 + η0)

(1 + η0)
2

(
2δp + δ2p

)]
.

As a result, the phase slip factor can be written as

ηph ≡ − Δt

t0δp

=
1

v0t0δp

C∫
0

[
1− (1+ hxδ)

√
1+

η0 (2 + η0)

(1 + η0)
2

(
2δp + δ2p

)/√
(1+ δp)

2 − a2δ

]
ds

= ηph1 + ηph2 δp + · · · . (10.4)

Taylor expanding eq. (10.4) to the leading order and taking into account the
fact that

xδ = D
Δp

p0
,

we obtain

ηph1 =
1

(1 + η0)
2 − 1

C

∫ C

0

D (s)

ρ (s)
ds =

1

γ2
0

− 1

C

∫ C

0

D (s)

ρ (s)
ds.
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The first term is phase slip due to the difference in velocity and the second
term is that from the difference in path length, which is called the first or-
der momentum compaction factor α1. Since the velocity difference is inverse
proportional to the square of γ0, it becomes smaller as the energy increases.
At the point that the two terms are equal, the phase slip factor changes sign,
which is called the transition, which is γtr = 1/

√
α1. The significance of the

transition is that the synchronous phase changes from a stable fixed point to
an unstable one or vice versa. Specifically, for energy below transition, we
have ηph1 > 0, which entails that particles with higher energy arrive earlier.
Therefore the synchronous phase is a stable fixed point when φs lies between
−π/2 and 0 (Fig. 10.3). For energy above transition, we have ηph1 < 0,
which entails that particles with higher energy arrive later. Therefore the
synchronous phase is a stable fixed point when φs lies between 0 and π/2
(Fig. 10.4). In practice, the phase of the RF cavity has to be changed quickly
from φs to −φs in order to keep the beam confined, which is called the transi-
tion jump. It is not unusual that during acceleration, most beam loss occurs
around transition jump. Figs. 10.3 and 10.4 also show that the maximum
energy width of particles confined in the longitudinal phase space increases
when the peak voltage of the RF cavity increases and/or |ηph1 | decreases.

The second order effect becomes important when the first order term is
small enough. From eq. (10.3), we can easily obtain the second order phase
slip factor. The only complication is that the second order term of δp has to
be included. To the second order the relation becomes

δ =2 −v0
κ

(
δp +

1

2

1

γ2
0

δ2p

)
.

Plugging the equations

xδ = Dδp +D2δ
2
p, aδ = D ′δp

into eq. (10.4) and expanding it to the second order, we have

ηph2 = − 1

2γ2
0

(
3− 1

γ2
0

)
− 1

C

∫ C

0

(
1

2
(D ′ (s))2 +

D2 (s)

ρ (s)
− 1

γ2
0

D (s)

ρ (s)

)
ds.

The integral form of the phase slippage factor shows clearly which quantity
contributes. For example, only dispersion in the bending magnet contributes
to ηph1 and the slope of the dispersion everywhere contributes to ηph2 . Knowl-
edge of this kind helps greatly during the design of a ring. The computation
of the phase slip factor, on the other hand, can be done through applying the
periodic solution of the dispersion function (including nonlinear terms) to the
fifth variable of the one turn map, which is

ηph = − Δt

t0δp
=

1

Cδp
Ml (xδ, aδ, δp) . (10.5)
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FIGURE 10.3: Sketch of phase stability for energy below transition, show-
ing stable and unstable motion near the fixed points φ = φs and φ = −φs,
respectively.

Again, the fifth and the sixth variables here are defined as −v0 (t− t0) and
δp. The one turn map M can be easily obtained using Differential Algebraic
(DA) technique and the periodic solution of the dispersion function up to
arbitrary orders can be obtained using the procedure of finding the parameter
dependent fixed point (see Section 8.2.1). As an example, we study in detail
the first order phase slip factor. The one turn linear matrix of the horizontal
and the longitudinal phases spaces can be written as

M̂ =

⎛⎜⎜⎝
(x|x) (x|a) 0 (x|δ)
(a|x) (a|a) 0 (a|δ)
(l|x) (l|a) 1 (l|δ)
0 0 0 1

⎞⎟⎟⎠ .

From eq. (10.5), we have

ηph1 =
1

C
[(l|x)D + (l|a)D ′ + (l|δ)] . (10.6)



250 An Introduction to Beam Physics

V, ΔEk

V, ΔEk

φ

φ

φs

-φs

π 2π 3π0

π 2π 3π0

FIGURE 10.4: Sketch of phase stability for energy above transition, show-
ing stable and unstable motion near the fixed points φ = φs and φ = −φs,
respectively.

Using the (l|x) and the (l|a) equations of (5.10) and eq. (8.3), we find that

(l|x) = (a|x)(x|δ) − (x|x)(a|δ)
= (a|x) [[1− (x|x)]D − (x|a)D ′]− (x|x) [−(a|x)D + [1− (a|a)]D ′]
= (a|x)D + [1− (x|x)]D ′, (10.7)

and

(l|a) = (a|a)(x|δ) − (x|a)(a|δ)
= (a|a) [[1− (x|x)]D − (x|a)D ′]− (x|a) [−(a|x)D + [1− (a|a)]D ′]
= − [1− (a|a)]D − (x|a)D ′. (10.8)

As result, we have

ηph1 =
1

C

{
(a|x)D2 + [(a|a)− (x|x)]DD ′ − (x|a)D ′ 2 + (l|δ)}

= − sin θ

C

(
γxD

2 + 2αxDD ′ + βxD
′ 2)+ (l|δ)

C
= − 1

C
[H sin θ − (l|δ)] .

Before finishing the section, let us find out the effect of a sextupole on
the second order phase flip factor. Let us consider a sextupole with strength
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ks = b2/Bρ. For a thin slice of it, the effect is Δa = −ksdsx
2. From eq. (11.1),

we obtain the change of the periodic solution of the second order dispersion
function at the location of the sextupole slice, which is(

ΔD2

ΔD ′
2

)
= − ksdsD

2

2 sin (πν)

(
β cos (πν)

sin (πν)− α cos (πν)

)
,

where ν = θ/2π. Plugging it into eq. (10.6) and using eqs. (10.7) and (10.8),
we obtain

Δηph2 (s) =
1

C
[(l|x)ΔD2 + (l|a)ΔD ′

2]

= − 1

C

ksdsD
2

2 sin (πν)
{[(a|x)D + (1− (x|x))D ′]β cos (πν)

− [(1− (a|a))D + (x|a)D ′] (sin (πν)− α cos (πν))} .

After straightforward algebraic and trigonometric manipulations, we arrive at
a simple result, which is

Δηph2 (s) =
1

C
ksD

3ds,

and the total change of the second order phase slip factor is

Δηph2 =
1

C

∫ C

0

ks (s)D
3ds.

Using the same method, we can easily obtain the result where both horizontal
and vertical dispersion are present but coupling is corrected. Here the kick of
the sextupole slice is (

Δa
Δb

)
= −ksds

(
x2 − y2

−2xy

)
,

and the change of the periodic solution of the second order dispersion function
at the location of the sextupole slice is(

ΔDx2

ΔD ′
x2

)
= −ksds

(
D2

x −D2
y

)
2 sin (πνx)

(
βx cos (πνx)

sin (πνx)− αx cos (πνx)

)
,(

ΔDy2

ΔD ′
y2

)
=

ksdsDxDy

sin (πνy)

(
βy cos (πνy)

sin (πνy)− αy cos (πνy)

)
.

Plugging it into the 4D version of eq. (10.6), using eqs. (10.7) and (10.8) and
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the similar relations for (l|y) and (l|b), we obtain

Δηph2 (s) =
1

C

[
(l|x)ΔDx2 + (l|a)ΔD ′

x2 + (l|y)ΔDy2 + (l|b)ΔD ′
y2

]
= − 1

C

ksds
(
D2

x −D2
y

)
2 sin (πνx)

{[(a|x)Dx + (1− (x|x))D ′
x]βx cos (πνx)

− [(1− (a|a))Dx + (x|a)D ′
x] (sin (πνx)− αx cos (πνx))}

+
1

C

ksdsDxDy

sin (πνy)

{[
(b|y)Dy + (1− (y|y))D ′

y

]
βy cos (πνy)

− [(1− (b|b))Dy + (y|b)D ′
y

]
(sin (πνy)− αy cos (πνy))

}
.

Taking into account the fact that the vertical part in the curly brackets is the
same as that of the horizontal part, we immediately arrive at the final result,
which is

Δηph2 =
1

C

∫ C

0

ks (s)
(
D3

x − 3DxD
2
y

)
ds.

10.3 Longitudinal Dynamics

Based on the previous two sections, we can construct the one turn map
with the RF cavity present. From eq. (10.2), we can write the general form
of energy gain

ΔK (r, t) = qV0 (r) cos [φ (t)] ,

where φ(t) = ωt. For the TM010 mode of a pillbox cavity, we have

V0 (r) = E0J0

(
x01r

Rc

)
LT,

where L, instead of l, is used to represent the length of the cavity to avoid
confusion. Converting to the canonical coordinates, we have

φ (l) = φ0 +
ω

κ
l,

and

δf (r, l) =
K0

K0 +ΔK (0, 0)
δi +

ΔK (r, l)−ΔK (0, 0)

K0 +ΔK (0, 0)

=
K0

K0 + qE0LT cos (φ0)
δi +

qE0LT

K0 + qE0LT cos (φ0)

·
[
J0

(
x01r

Rc

)
cos
(
φ0 +

ω

κ
l
)
− cos (φ0)

]
.
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As shown in Section 10.1, the transverse focusing is negligible. Together with
the fact that the change of velocity is insignificant, the cavity is simply a drift
space for the variable x, a, y, b and l. As a result, we can treat the cavity as
a thin slice with a kick in energy and the map of the cavity is

xf = xi, af =
p0i
p0f

ai,

yf = yi, bf =
p0i
p0f

bi, lf = li,

δf =
K0

K0 + qE0LT cos (φ0)
δi +

qE0LT

K0 + qE0LT cos (φ0)

·
[
J0

(
x01

√
x2
i + y2i

Rc

)
cos
(
φ0 +

ω

κ
li

)
− cos (φ0)

]
,

where

p0i =

√
(K0 +mc2)

2 −m2c4,

p0f =

√
(K0 + qE0LT cos (φ0) +mc2)

2 −m2c4.

Obviously, the relative transverse momentum decreases as the particles are ac-
celerated and so is the phase space volume, even though that for the variables
(x, px, y, py,−Δt,ΔK) is conserved.

It is clear that when |φ0| < π/2, the reference particle is accelerated and the
relative energy deviation of the particles at the vicinity decreases on average.
Together with the rest of the ring, we have the one turn map, which is

MT = MCAV ◦MRING.

For the most general case, x, a, y and b are functions of δ and l is a function
of x, a, y, b and δ. As a result, the cavity couples the longitudinal degree of
freedom to the transverse degrees of freedom. Yet, due to the large difference
in oscillation frequencies which will become clear soon, the coupling is much
weaker than that between the horizontal and the vertical planes. This is par-
ticularly the case when the cavity is located in a dispersion free region, where
coupling is limited to the nonlinear part of the map. In reality, it is common
practice to place cavities in dispersion free regions to achieve separation of the
longitudinal and the transverse motions. In the rest of this section, we always
assume that there is no dispersion at the location of the cavity and ignore the
chromatic terms in the nonlinear part of the transverse map (x, a, y and b).
Furthermore, we ignore the spatial dependence of the accelerating field due
to the fact that r � Rc and the difference is second order in r. Consequently,
the longitudinal degree of freedom is decoupled from the transverse degrees
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of freedom and the longitudinal map is

lf = li +Ml (δi) ,

δf =
K0

K0 + qE0LT cos (φ0)
δi +

qE0LT

K0 + qE0LT cos (φ0)

·
[
cos
(
φ0 +

ω

κ
lf

)
− cos (φ0)

]
.

Next, we keep only the linear terms in the map and solve for the oscillation
frequency. The linear map is

lf =li + (l|δ)δi,
δf =

K0

K0 + qE0LT cos (φ0)
δi

+
qE0LT

K0 + qE0LT cos (φ0)

ω

κ
(li + (l|δ)δi) sin (φ0) .

Writing in matrix form, we have(
lf

δf

)
=

(
1 (l|δ)

Mδl Mδδ

)(
li

δi

)
,

where

Mδl =
qE0LT

K0 + qE0LT cos (φ0)

ω

κ
sin (φ0) ,

Mδδ =
1

K0 + qE0LT cos (φ0)

[
K0 + qE0LT

ω

κ
(l|δ) sin (φ0)

]
.

It is easy to verify that the determinant of the matrix is

K0

K0 + qE0LT cos (φ0)
,

which entails that the motion is non-symplectic when qE0LT cos(φ0) �= 0.
Furthermore, the longitudinal emittance of the beam decreases as the beam is
accelerated. It is obvious that the same is true for the transverse emittance,
which is called adiabatic damping. By redefining the relative energy deviation
as

δ̃ =
ΔK

K0
,

we obtain the new matrix(
lf

δ̃f

)
=

(
1 (l|δ̃)

M
˜δl M

˜δ˜δ

)(
li

δ̃i

)
,



Synchrotron Motion 255

where

M
˜δl =

qE0LT

K0

ω

κ
sin (φ0) ,

M
˜δ˜δ =

1

K0

[
K0 + qE0LT

ω

κ
(l|δ̃) sin (φ0)

]
,

which is symplectic. The trace is

tr M̂ = 1 +
1

K0

[
K0 + qE0LT

ω

κ
(l|δ̃) sin (φ0)

]
= 2 +

qE0LT

K0

ω

κ
(l|δ̃) sin (φ0) .

For (l|δ̃) > 0, tr M̂ < 2 if 0 < φ0 < π; for (l|δ̃) < 0, tr M̂ < 2 if −π < φ0 < 0.
In other words, for energy below transition, the synchrotron motion is stable
if the synchronous phase φ0 ∈ (−π, 0) and, for energy above transition, the
synchronous motion is stable if φ0 ∈ (0, π). If we restrict ourselves to the case
of acceleration, the stable interval of the synchronous phase is (−π/2, 0) below
transition and (0, π/2) above transition. This is the quantitative statement
of the fact mentioned in the last section. Using the relation

tr M̂ = 2 cos (μt) ,

we have

μt = arccos

[
1− qE0LT

2K0
(−κ) (l|δ) sin (φ0)

]
.

It is worth noting that for most accelerators the relation

qE0LT

2K0
(−κ) (l|δ) sin (φ0) � 1

holds. Making use of the fact that

arccosx = arcsin
√
1− x2,

we obtain

arccos (1− x) = arcsin

√
1− (1− x)2 = arcsin

(√
2x− x2

)
=1

√
2x.

As a result, we have

μt =

√
qE0LT

K0
(−κ) (l|δ) sin (φ0) =

√
2πh (qE0LT )η

ph
1 sin (φ0)

K0
.

Note that h is the so-called harmonic number, which is the ratio of the RF
frequency to that of the revolution frequency of the ring ω0, and ηph1 is the
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first order phase slippage factor defined in eq. (10.3). The quantity μt is
called the synchrotron tune which is proportional to the square root of the
harmonic number, the accelerating voltage and the slippage factor. Usually
the slippage factor is expressed in terms of Δp/p0, as defined in eq. (10.4),
denoted here as ηp1 . Hence the relation between the two is

ηph1 =
γ0

1 + γ0
ηp1 .

Taking into account that μt is the phase advance per turn, the synchrotron
tune in terms of revolution per second can be written as

ωt =
1

t0

√
2πh (qE0LT ) η

p
1 sin (φ0)

β2
0γ0mc2

= ω0

√
h (qE0LT ) η

p
1 sin (φ0)

2πβ2
0γ0mc2

,

which is the usual form that appears in most textbooks. For a circular ac-
celerator with GeV level energy, the synchrotron tune ωt is usually between
0.1% and 1% of the revolution frequency ω0. The betatron tunes, on the other
hand, are usually between a few to a few hundred times of ω0. As a result,
the coupling between the betatron and the synchrotron motions is usually
weak. As an example, let us take a look at the storage ring of the Advanced
Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL, LBL),
California, USA, which is an electron machine that operates at the energy of
1.9 GeV. The main purpose of the RF cavity is to restore the energy loss due
to synchrotron radiation from bending magnets and insertion devices, which
is on the order of 0.5 MeV per turn per electron. The harmonic number is
328 and the slippage factor is roughly 1.4× 10−3. As a result, we have

ωt

ω0
=

√
328× 1.4× 10−3 × 0.5

2π × 3718× 0.511
= 4.4× 10−3.

Using eqs. (8.1), we obtain

αt = − qE0LT

2K0 sinμt

ω

κ
(l|δ) sin (φ0) =1

1

2
μt,

βt =
(l|δ)
sinμt

=1
(l|δ)
μt

,

γt = − qE0LT

K0 sinμt

ω

κ
sin (φ0) =1

μt

(l|δ) .

Since μt � 1, we have αt � 1. Consequently, the invariant ellipse is basically
upright. For a given longitudinal emittance εt, the maximum bunch length is

lmax = −2
v0
κ

√
βtεt =1 −2

v0
κ

√
(l|δ)εt
μt

,
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FIGURE 10.5: Phase space plots of longitudinal motion with φs = π/2
(left) and φs = π/3 (right).

and the maximum energy spread is

δmax = 2
√
γtεt =1 2

√
μtεt
(l|δ) .

Using the relation

(l|δ) = −κt0η
ph
1 =

κ2C

v0
ηp1 ,

we obtain

lmax = 2
√
Cεt

(
ηp1β

2
0γ0mc2

2πh (qE0LT ) sin (φ0)

) 1
4

,

and

δmax = −2
v0
κ

√
εt
C

(
2πh (qE0LT ) sin (φ0)

ηp1β
2
0γ0mc2

) 1
4

.

The main result is that lmax ∝ (ηp1)
1
4 if other parameters remain unchanged.

Hence, one way to reduce bunch length is to decrease the phase slippage factor.
Fig. 10.5 shows the details of the dynamics of all amplitude for φs = π/2 (left)
and φs = π/3 (right). Note that particles that are outside the stable region
(called the RF bucket) lose synchronicity with the electromagnetic field in the
RF cavity. For the case φs < π/2, those particles would not be accelerated
the same way as those inside the RF bucket and usually will be lost.

10.4 Transverse Dynamics of RF Cavities

Up to now, we have only treated the main effect of RF cavities, which is
to accelerate (or, occasionally, decelerate) charged particles. We have shown
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FIGURE 10.6: Longitudinal (solid) and transverse (dotted) field distribu-
tion along the longitudinal axis.

that, in order to accelerate the charged particles effectively, the synchronous
phase has to be a stable fixed point, limiting the synchronous phase to just
one quadrant (see Section 10.2). As shown below, this has significant effect
on the transverse dynamics of linacs. In rings, the transverse effect of RF
cavities is negligible due to the presence of magnets.

Let us start with the longitudinal distribution of the electromagnetic field
of a pillbox cavity with small holes at the center of each end, which will
be derived from Maxwell’s equations. From eq. (10.1), we can express the
longitudinal component of the electric field as

Ez (z, t) = E0 cos (ωt+ ϕ)H (z + L/2)H (L/2− z) ,

where L is the length of the cavity and H is the Heaviside step function. From
∇ · �E = 0, we obtain

1

r

∂ (rEr)

∂r
+

∂Ez

∂z
= 0.

After integration, we obtain the leading order transverse component of the
electric field, which is

Er = − r

2

∂Ez

∂z
= − r

2
E0 cos (ωt+ ϕ) [δ (z + L/2)− δ (z − L/2)] .

Fig. 10.6 shows the longitudinal dependence of Ez and Er at an instance.
From (∇× �B)z = (1/c2)(∂Ez/∂t), we obtain

1

r

∂ (rBθ)

∂r
=

1

c2
∂Ez

∂t
.

Similarly, we obtain the leading order magnetic field, which is

Bθ =
r

2c2
∂Ez

∂t
= − ωr

2c2
E0 sin (ωt+ ϕ)H (z + L/2)H (L/2− z) .

From the Lorentz force law, eq. (1.1), we obtain

dpr
dt

= q (Er − vzBθ) .
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As a result, the change in transverse momentum across the cavity is

Δpr = q

∫
dt (Er − vzBθ) = q

∫ L/2+ε

−L/2−ε

dz

(
Er

vz
−Bθ

)
= − q

2
E0

[
r1
vz1

cos (ωt1 + ϕ)− r2
vz2

cos (ωt2 + ϕ)

]
+

qω

2c2
E0

∫ L/2

−L/2

dzr (z) sin [ωt (z) + ϕ]

� − q

2c
E0

[
r1
β1

cos (ωt1 + ϕ) − r2
β2

cos (ωt2 + ϕ)

]
+

qω

2c2
E0

∫ L/2

−L/2

dzr (z) sin [ωt (z) + ϕ] , (10.9)

where r1, vz1, t1, β1 and r2, vz2, t2, β2 are values of r, vz, t, β at z = −L/2
and z = L/2, respectively. When the charged particle is non-relativistic, i.e.,
β � 1, the contribution of the magnetic field is negligible. Hence eq. (10.9)
becomes

Δpr = − q

2c
E0

[
r1
β1

cos (ωt1 + ϕ)− r2
β2

cos (ωt2 + ϕ)

]
,

where t1 = − ∫ 0

−L/2
dz/[β(z)c] and t2 =

∫ L/2

0
dz/[β(z)c]. Note that the origin

of t is set at the moment when the particle is located at the center of the
cavity. If we make one more assumption that |β2 − β1| /β(0) � 1, which
means that the energy gain (loss) through the cavity is much smaller than the
total energy of the particle, we obtain that t1 = −L/(2β0c) and t2 = L/(2β0c)
(β0 = β(0)). Consequently, we obtain

Δpr = − q

2c
E0

[
r1
β1

cos

(
ωL

2β0
− ϕ

)
− r2

β2
cos

(
ωL

2β0
+ ϕ

)]
= − q

2c
E0

[
r1
β1

cos

(
πL

β0λ
− ϕ

)
− r2

β2
cos

(
πL

β0λ
+ ϕ

)]
.

Let us take a look at drift tube linacs as described in Section 1.3.2. Phase
stability requires that −π/2 < ϕ < 0 (see Fig. 10.3). Efficient use of
energy requires that the particles are accelerated throughout the gap, i.e.,
cos (ϕ− πL/ (β0λ)) > 0 and cos (ϕ+ πL/ (β0λ)) > 0. As a result, the par-
ticle is focused at the entrance of the gap and defocused at the exit, as
shown in Fig. 1.13. Furthermore, we note that cos (ϕ− πL/ (β0λ)) > 0
entails that ϕ − πL/ (β0λ) > −π/2, which leads to πL/ (β0λ) < ϕ + π/2
and ϕ + πL/ (β0λ) < 2ϕ + π/2. If −π/2 < ϕ ≤ π/4, ϕ + πL/ (β0λ) < 0
and we obtain that cos (ϕ+ πL/ (β0λ)) > cos (ϕ− πL/ (β0λ)) . If −π/4 <
ϕ < 0, ϕ+ πL/ (β0λ) can be positive where cos (ϕ+ πL/ (β0λ)) decreases as
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ϕ+ πL/ (β0λ) increases. From the fact that∣∣∣∣ϕ+
πL

β0λ

∣∣∣∣− ∣∣∣∣ϕ− πL

β0λ

∣∣∣∣ = ϕ+
πL

β0λ
−
(

πL

β0λ
− ϕ

)
= 2ϕ < 0,

we reach the same conclusion that cos (ϕ+ πL/ (β0λ)) > cos (ϕ− πL/ (β0λ)) .
Although we have β1 < β2, yet β2/β1 is usually much smaller than cos(ϕ +
πL/(β0λ))/ cos(ϕ− πL/(β0λ)). As a result, the net effect is defocusing. The
remedy in the early dates was metal foils or grids placed on the entrance of
the drift tubes (exit of the accelerating gap) to remove the defocusing force
as shown in Fig. 1.13. Nowadays, quadrupole magnets are placed inside the
drift tubes to provide transverse focusing.

At higher energy, the particles become relativistic and the contribution of
the magnetic field has to be taken into account. Yet the matter is simplified
somewhat by the fact that the difference between β1 and β2 can be neglected.
Assuming also that r remains a constant in the cavity, we obtain

Δpr = − qr

2β0c
E0

[
cos

(
πL

β0λ
− ϕ

)
− cos

(
πL

β0λ
+ ϕ

)]
+

qωr

2c2
E0

∫ L/2

−L/2

dz sin

(
2πz

β0λ
+ ϕ

)
= − qr

β0c
E0 sin

(
πL

β0λ

)
sinϕ+

qβ0r

c
E0 sin

(
πL

β0λ

)
sinϕ

= − qrE0

β0γ2
0c

sin

(
πL

β0λ

)
sinϕ

= −πqE0TLr

β2
0γ

2
0cλ

sinϕ.

Again, for the stable phase of −π/2 < ϕ < 0, the net effect is defocusing. It
is worth noting that, for ultra-relativistic particles, this effect goes away. As
β0 → 1, the defocusing from the electric field is canceled by the focusing from
the magnetic field.



Chapter 11

*Resonances in Repetitive Systems

Unlike single pass systems, the dynamics of the beam in a repetitive system
such as a storage ring is not necessarily dominated by the largest aberrations
in the one turn transfer map. Due to the fact that particles go around many
times, the impact of those terms that are nearly in phase with the linear
motion are amplified and the dynamics is, to a large extent, shaped by
them. The motion generated by one of those terms is called a resonance. As
a result, we need a different way to evaluate the relative significance of the
aberrations that is directly suited for rings.

Since resonances appear in various physical systems, many different meth-
ods have been developed to describe this phenomenon. Here we have adopted
a method that is based on the map method that has been developed here and
does not require advanced techniques such as normal form theory as in [5].

As shown in the previous chapters, a large class of single pass systems
are imaging. Yet the entire ring cannot be imaging, since it will be linearly
unstable if |M | �= 1, where M is the magnification. Moreover, the ring is
unstable with the presence of arbitrarily small errors when |M | = 1.

11.1 Integer Resonance

In this section we will study the dynamics in a ring when one or more dipole
magnets have errors in the field. Let us first consider the case that one magnet
has a dipole error in the field, which is ΔB. Without lost of generality, we
adopt the thin lens approximation, since a thick dipole can always be cut into
a number of thin slices and the contribution of the whole is the sum of each
slice. The kick resulting from the error is ΔBl/Bρ. Thus the position and
angle after one turn is

(
x1

a1

)
=

(
0

ΔBl/Bρ

)
+ M̂

(
x0

a0

)
,
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where M̂ is the one turn map of the ideal ring and the kick happens at the
end of one turn. Similarly, the position and angle after two turns is(

x2

a2

)
=

(
0

ΔBl/Bρ

)
+ M̂

(
x1

a1

)
=

(
0

ΔBl/Bρ

)
+ M̂

(
0

ΔBl/Bρ

)
+ M̂2

(
x0

a0

)
=
(
Î + M̂

)( 0
ΔBl/Bρ

)
+ M̂2

(
x0

a0

)
.

Now let us assume(
xn−1

an−1

)
=
(
Î + M̂ + · · ·+ M̂n−2

)(
0

ΔBl/Bρ

)
+ M̂n−1

(
x0

a0

)
,

and we obtain(
xn

an

)
=

(
0

ΔBl/Bρ

)
+ M̂

(
xn−1

an−1

)
=
(
Î + M̂ + · · ·+ M̂n−1

)(
0

ΔBl/Bρ

)
+ M̂n

(
x0

a0

)
=
(
Î − M̂n

)(
Î − M̂

)−1
(

0
ΔBl/Bρ

)
+ M̂n

(
x0

a0

)
,

where(
Î − M̂n

)(
Î − M̂

)−1

=
1

2(1− cosμ)

(
1− cosnμ− α sinnμ −β sinnμ

γ sinnμ 1− cosnμ+ α sinnμ

)

·
(
1− cosμ+ α sinμ β sinμ

−γ sinμ 1− cosμ− α sinμ

)

=
sin(nμ/2)

sin(μ/2)

(
sin(nμ/2)− α cos(nμ/2) −β cos(nμ/2)

γ cos(nμ/2) sin(nμ/2) + α cos(nμ/2)

)

·
(
sin(μ/2) + α cos(μ/2) β cos(μ/2)

−γ cos(μ/2) sin(μ/2)− α cos(μ/2)

)

=
sin(nμ/2)

sin(μ/2)
M̂ (n−1)/2.

Note that

M̂ (n−1)/2 =

(
cosμ(n−1)/2 + α sinμ(n−1)/2 β sinμ(n−1)/2

−γ sinμ(n−1)/2 cosμ(n−1)/2− α sinμ(n−1)/2

)
.
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When μ → 2πk, sin(nμ/2)/ sin(μ/2) → n. The result is that the motion is
divergent in phase space and eventually the beam will be lost. In other
words, the particle is called in resonance when μ = 2πk for some k. Since
errors in dipole magnets are unavoidable, the only way to avoid this resonance
is to adjust the tune away from any integer.

In theory, the phase space coordinates become arbitrarily large only when
the tune is infinitely close to an integer. But in practice, the finite size of
the beam pipe defines a finite interval around an integer such that the beam
will be lost, which is called the stop band. In order to determine the stop
band of a given machine, the size of the beam pipe and the dipole errors of
the magnets have to be known. The source of dipole errors can be either
the field errors in the dipole magnets and dipole component generated from
misalignment of multipoles (quadrupoles, mainly, and sextupoles to a lesser
extent). Since the dipole errors act on every particle the same way, it is
sufficient to study the motion of the so-called centroid of the beam only. In a
ring, this centroid, which is called the closed orbit, is the periodic solution of
the one turn transfer map. With the presence of dipole errors, the one turn
map is not origin preserving. Because the distorted closed orbit is usually
close to the design orbit, only the linear part of the map is included in the
treatment. The periodic solution of a single error at s0 is obtained through
the equation (

x0

a0

)
=

(
0

(ΔBl) (s0) /Bρ

)
+ M̂

(
x0

a0

)
.

As a result, we have(
x0

a0

)
=
(
Î − M̂

)−1
(

0
(ΔBl) (s0) /Bρ

)
=

(ΔBl) (s0)

Bρ

1

2 sin(μ/2)

(
β cos(μ/2)

sin(μ/2)− α cos(μ/2)

)
. (11.1)

From eq. (6.10), we obtain the closed orbit at an arbitrary location s

xco(s) =
√

βs/βs0

(
cos φ̄+ α sin φ̄

)
x0 +

√
βsβs0 sin φ̄ a0

=
(ΔBl)s0

Bρ

1

2 sin(μ/2)

[√
βs/βs0

(
cos φ̄+ αs0 sin φ̄

)
βs0 cos

μ

2

+
√
βsβs0 sin φ̄

(
sin

μ

2
− αs0 cos

μ

2

)]
=

(ΔBl)s0
Bρ

cos
(
πν − φ̄

)
2 sin(μ/2)

,

where φ̄, βs, βs0, αs0 and (ΔBl)s0 represent φ(s) − φ(s0), β(s), β(s0), α(s0)
and (ΔBl) (s0) , respectively. When n dipole errors are present, the closed
orbit is

xco(s) =
1

2 sin (μ/2)

n∑
m=1

(ΔBl) (sm)

Bρ
cos [μ/2− (φ(s)− φ(sm))] .



264 An Introduction to Beam Physics

11.2 Half–Integer Resonance

In this section we study the effect of quadrupole errors. Again, let us
first assume that only one quadrupole has an error in the field gradient, which
is denoted as Δk. Without loss of generality, we assume that this quadrupole
is located at the end of a turn and that it is thin. As a result, the linear one
turn map is(

x1

a1

)
=

(
1 0

−Δkl 1

)
M̂

(
x0

a0

)
=

(
1 0

−Δkl 1

)(
cosμ+ α sinμ β sinμ

−γ sinμ cosμ− α sinμ

)(
x0

a0

)
.

In order to simplify the calculation, we adopt a new coordinate system such
that the unperturbed motion is a rotation. As a reminder of the general
theory of transformation, let us assume that a matrix Â transforms �x into �y,
i.e., �y = Â�x. Assuming another matrix M̂ is the linear one turn map in the
space of �x, which means that

�x1 = M̂�x0.

Multiplying Â to the left and inserting Â−1Â between M̂ and �x0, we obtain

Â�x1 = ÂM̂Â−1 · Â�x0,

and hence
�y1 = ÂM̂Â−1�y0.

It is straightforward to verify that

Â =

(
1/

√
β 0

α/
√
β

√
β

)

implies

ÂM̂Â−1 =

(
1/

√
β 0

α/
√
β

√
β

)(
cosμ+ α sinμ β sinμ

−γ sinμ cosμ− α sinμ

)( √
β 0

−α/
√
β 1/

√
β

)

=

(
cosμ sinμ

− sinμ cosμ

)
≡ R̂ (μ) .

The relation between the coordinate systems is(
x̃

ã

)
=

(
1/

√
β 0

α/
√
β

√
β

)(
x

a

)
.
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The one turn perturbed map in the new coordinate system is

(
x̃1

ã1

)
= Â

(
1 0

−Δkl 1

)
M̂Â−1

(
x̃0

ã0

)
= Â

(
1 0

−Δkl 1

)
Â−1 · ÂM̂Â−1

(
x̃0

ã0

)

=

(
1 0

−Kn 1

)
R̂ (μ)

(
x̃0

ã0

)
,

where ΔK above is defined as ΔK = Δklβ. After n turns, the coordinates
are (

x̃n

ãn

)
=

[(
1 0

−ΔK 1

)
R̂ (μ)

]n(
x̃0

ã0

)
.

In order to illustrate clearly the nature of the dynamics, we treat the problem
perturbatively. To the first order, the coordinates are

(
x̃n

ãn

)
=

[(
R̂ (μ)

)n
+

(
0 0

−ΔK 0

)(
R̂ (μ)

)n
+ R̂ (μ)

(
0 0

−ΔK 0

)(
R̂ (μ)

)n−1

+ · · ·+
(
R̂ (μ)

)n−1
(

0 0

−ΔK 0

)
R̂ (μ)

](
x̃0

ã0

)

=

[
R̂ (nμ)−ΔK

(
0 0

cosnμ sinnμ

)
−ΔK

n−1∑
m=1

(
sinmμ cos [(n−m)μ] sinmμ sin [(n−m)μ]

cosmμ cos [(n−m)μ] cosmμ sin [(n−m)μ]

)](
x̃0

ã0

)

=

[
R̂ (nμ)−ΔK

(
0 0

cosnμ sinnμ

)
−ΔK

2
(n− 1)

(
sinnμ − cosnμ
cosnμ sinnμ

)
−ΔK

2

(∑n−1
m=1 sin [(2m− n)μ]

∑n−1
m=1 cos [(2m− n)μ]∑n−1

m=1 cos [(2m− n)μ] −∑n−1
m=1 sin [(2m− n)μ]

)](
x̃0

ã0

)
.

In order to simplify the expression further, we take advantage of the trigono-
metrical series

n−1∑
m=0

sin (x+my) =
sin [x+ y (n− 1) /2] sin (yn/2)

sin (y/2)
,

n−1∑
m=0

cos (x+my) =
cos [x+ y (n− 1) /2] sin (yn/2)

sin (y/2)
.
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Specifically, we have

n−1∑
m=1

sin [(2m− n)μ]

=

n−1∑
m=1

sin [2 (m− 1)μ− (n− 2)μ] =

n−2∑
m=0

sin [− (n− 2)μ+ 2mμ]

=
sin [− (n− 2)μ+ 2μ (n− 2) /2] · sin [(n− 1)μ]

sinμ
= 0,

and

n−1∑
m=1

cos [(2m− n)μ]

=

n−1∑
m=1

cos [2 (m− 1)μ− (n− 2)μ] =

n−2∑
m=0

cos [− (n− 2)μ+ 2mμ]

=
cos [− (n− 2)μ+ 2μ (n− 2) /2] · sin [(n− 1)μ]

sinμ
=

sin [(n− 1)μ]

sinμ
.

Hence the final result is(
x̃n

ãn

)
=

[
R̂ (nμ)−ΔK

(
0 0

cosnμ sinnμ

)

−ΔK

2
(n− 1)

(
sinnμ − cosnμ

cosnμ sinnμ

)
− ΔK

2

sin [(n− 1)μ]

sinμ

(
0 1

1 0

)](
x̃0

ã0

)
.

When μ → 2πk or 2π(k + 1/2), sin[(n − 1)μ]/ sinμ → n − 1. Hence the
resonance is called half–integer resonance.

When the tune is a certain distance away from the half–integer, the motion
is still stable, but the invariant ellipse and the tune change. To obtain the
perturbed invariant ellipse and tune, only the one turn map is needed. From
the one turn matrix

M̂ q =

(
1 0

−Δkl 1

)(
cosμ+ α sinμ β sinμ

−γ sinμ cosμ− α sinμ

)
=

(
cosμ+ α sinμ β sinμ

−γ sinμ− (ΔK/β) (cosμ+ α sinμ) −ΔK sinμ+ cosμ− α sinμ

)
,

we obtain

2 cos (μ+Δμ) = 2 cosμ−ΔK sinμ,

cos (μ+Δμ) + (α+Δα) sin (μ+Δμ) = cosμ+ α sinμ,

(β +Δβ) sin (μ+Δμ) = β sinμ.
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As a result the changes are

Δμ = arccos

(
cosμ− ΔK

2
sinμ

)
− μ =1

−ΔK
2 sinμ

− sinμ
=1

ΔK

2
,

Δα =
cosμ+ α sinμ−cos (μ+Δμ)

sin (μ+Δμ)
− α =

(α+ΔK/2) sinμ

sinμ cos (Δμ) + cosμ sin (Δμ)
− α

=1

(
α+

ΔK

2

)(
1− ΔK

2
cotμ

)
− α =1

ΔK

2
(1− α cotμ) ,

Δβ =
β sinμ

sin (μ+Δμ)
− β =

β sinμ

sinμ cos (Δμ) + cosμ sin (Δμ)
− β

=1 β

(
1− ΔK

2
cotμ

)
− β =1 −ΔKβ

2
cotμ,

where we remind ourselves of ΔK = Δklβ. The final relations are

Δμ =1
ΔK

2
,

Δα =1
ΔK

2

sinμ− α cosμ

sinμ
,

Δβ

β
=1 −ΔK

2

cosμ

sinμ
.

It is worth noting that the invariant ellipse becomes infinitely large when
ν → k/2. Like the closed orbit, the invariant ellipse is the periodic solution.

Now let us extend the calculation to multiple errors. The one turn matrix
is

M̂ q = M̂n0

(
1 0

− (Δkl)n 1

)
· · · M̂23

(
1 0

− (Δkl)2 1

)
M̂12

(
1 0

− (Δkl)1 1

)
M̂01,

where, from eq. (6.9),

M̂ij =

( √
βj 0

−αj/
√
βj 1/

√
βj

)
R̂ (φij)

(
1/

√
βi 0

αi/
√
βi

√
βi

)
.

The factorization gives us a way to simplify the calculation by working in
the normalized space where the matrices between the kicks are rotations.
Specifically, we have

M̂ q =

( √
β0 0

−α0/
√
β0 1/

√
β0

)
· ˜̂Mq

·
(

1/
√
β0 0

α0/
√
β0

√
β0

)
,

and, denoting ΔKm = (Δkl)mβm,

˜̂
M

q

= R̂ (φn0)

(
1 0

−ΔKm 1

)
· · · · · R̂ (φ12)

(
1 0

−ΔK1 1

)
R̂ (φ01) .
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To the first order of the errors, the one turn matrix becomes

˜̂
M

q

= R̂ (μ)−
n∑

m=1

ΔKm

(
sinφm0 cosφ0m sinφm0 sinφ0m

cosφm0 cosφ0m cosφm0 sinφ0m

)

= R̂ (μ)− 1

2

n∑
m=1

ΔKm

(
sinμ − cosμ

cosμ sinμ

)
− 1

2

n∑
m=1

ΔKm

(
sin μ̃m cos μ̃m

cos μ̃m − sin μ̃m

)
,

where μ̃ denotes
μ̃m = μ− 2φ0m.

The change in tune can be obtained through the relation

cos (μ+Δμ) =
1

2
tr

(˜̂
M

q
)

= cosμ−
[
1

2

n∑
m=1

ΔKm

]
sinμ, (11.2)

which is, to the first order of Δk,

Δμ =
1

2

n∑
m=1

ΔKm.

If the change in focusing is due to the difference in momentum, this equa-
tion gives the chromaticity. Since the tune is changed due to the presence
of gradient errors, one important question is how far away it has to be from
an integer or a half–integer in order to maintain stability for a given set
of errors. This interval in the tune space that the motion is unstable is
called the stop band. Assuming that the errors are small, the stop band
Δμ is small, too. As a result, the unperturbed tune can be written as
μ = 2π (p+ ε) or μ = 2π (p+ 1/2 + ε) , where ε is small. Therefore, we
have sinμ =1 ±2πε. Plugging it into eq. (11.2), we find that the term
− [(1/2) ·∑n

m=1 ΔKm] sinμ =2 ∓πε
∑n

m=1 ΔKm, which is a second order one.
Hence we have to go one step further to include the contribution up to the
second order of Δk. The one turn matrix in the normalized space is

˜̂
M

q

=R̂ (μ)− 1

2

n∑
m=1

ΔKm

(
sinμ − cosμ
cosμ sinμ

)
− 1

2

n∑
m=1

ΔKm

(
sin μ̃ cos μ̃
cos μ̃ − sin μ̃

)

+

n∑
l,m=1,l<m

ΔKlΔKmR̂ (φm0)

(
0 0
1 0

)
R̂ (φlm)

(
0 0
1 0

)
R̂ (φl0)

=R̂ (μ)− 1

2

n∑
m=1

ΔKm

(
sinμ − cosμ
cosμ sinμ

)
− 1

2

n∑
m=1

ΔKm

(
sin μ̃ cos μ̃
cos μ̃ − sin μ̃

)

+
n∑

l,m=1,l<m

ΔKlΔKm

(
sinφm0 sinφlmcosφl0 sinφm0 sinφlm sinφl0

cosφm0 sinφlmcosφl0 cosφm0 sinφlm sinφl0

)
.
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The trace of the matrix is

tr

(˜̂
M

q
)
= 2 cosμ−

[
n∑

m=1

ΔKm

]
sinμ +

n∑
l,m=1,l<m

ΔKlΔKm sinφlm sin(μ− φlm).

To the second order, the trace is

tr

(˜̂
M

q
)

= ±2

[
1− 2π2ε2 − πε

n∑
m=1

ΔKm

]

+

n∑
l,m=1,l<m

ΔKlΔKm sinφlm sin (2πν − φlm) .

The last term can be simplified, which is

n∑
l,m=1,l<m

ΔKlΔKm sinφlm sin (2πν − φlm)

=
1

4

n∑
l,m=1

ΔKlΔKm [cos (2φlm)− 1]

=
1

4

n∑
l,m=1

ΔKlΔKm cos (2Ψl) cos (2Ψm)

+
1

4

n∑
l,m=1

ΔKlΔKm sin (2Ψl) sin (2Ψm)− 1

4

n∑
l,m=1

ΔKlΔKm

=
1

4

[
n∑

m=1

ΔKm cos (2Ψm)

]2
+

1

4

[
n∑

m=1

ΔKm sin (2Ψm)

]2
− 1

4

[
n∑

m=1

ΔKm

]2
,

where Ψm is the phase at the mth quadrupole. For the integer stop band, we
have

tr

(˜̂
M

q
)

= 2

[
1− 2π2ε2 − πε

n∑
m=1

ΔKm

]
+
1

4

[
n∑

m=1

ΔKm cos (2Ψm)

]2

+
1

4

[
n∑

m=1

ΔKm sin (2Ψm)

]2
− 1

4

[
n∑

m=1

ΔKm

]2
.

The unstable region of the tune is determined by the relation

2π2ε2 + πε

n∑
m=1

ΔKm − 1

8

[
n∑

m=1

ΔKm cos (2Ψm)

]2

+
1

8

[
n∑

m=1

ΔKm sin (2Ψm)

]2
+

1

8

[
n∑

m=1

ΔKm

]2
< 0.
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Denoting

Δμ =

√√√√[ n∑
m=1

ΔKm cos (2Ψm)

]2
+

[
n∑

m=1

ΔKm sin (2Ψm)

]2
,

we see the unstable interval of the tune is∣∣∣∣∣2πε+ 1

2

n∑
m=1

ΔKm

∣∣∣∣∣ < Δμ

2
,

and Δμ is called the integer stop band. Similar calculation shows that the
same expression also gives the half–integer stop band [16].

In order to obtain the change in the invariant ellipse, we have to go back
to the original space, where

M̂ q =

( √
β0 0

−α0/
√
β0 1/

√
β0

)
· ˜̂M q

·
(

1/
√
β0 0

α0/
√
β0

√
β0

)

=

(
cosμ+ α0 sinμ β0 sinμ

−γ0 sinμ cosμ− α0 sinμ

)
− 1

2

n∑
m=1

ΔKm

(
sinμ− α0 cosμ −β0 cosμ

γ0 cosμ sinμ+ α0 cosμ

)

− 1

2

n∑
m=1

ΔKm

(
sin μ̃+ α0 cos μ̃ β0 cos μ̃(

1− α2
0

)
cos μ̃/β0 + 2α0/β0 − sin μ̃− α0 cos μ̃

)
.

Immediately we have

cos (μ+Δμ) + (α0 +Δα) sin (μ+Δμ)

= cosμ+ α0 sinμ− 1

2

n∑
m=1

ΔKm [sinμ− α0 cosμ+ sin μ̃+ α0 cos μ̃] ,

(β0 +Δβ) sin (μ+Δμ)

= β0 sinμ− 1

2

n∑
m=1

ΔKm [−β0 cosμ+ β0 cos μ̃] .

To the first order of Δk, we have

Δα = − 1

2 sinμ

n∑
m=1

ΔKm [sin μ̃m + α0 cos μ̃m] ,

Δβ

β0
=

1

2 sinμ

n∑
m=1

ΔKm cos μ̃m,

and we remind ourselves of μ̃m = μ − 2φ0m and ΔKm = (Δkl)mβm. It is
clear that when the tune is close to the half–integer resonance, the size of the
beam becomes larger and eventually goes to infinity as the tune approaches
the half–integer.
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11.3 Linear Coupling Resonance

Linear coupling refers to mixing of linear motion between the horizontal
and vertical planes. Coupling between transversal and longitudinal motion is
present as well, but it is usually weaker. Linear coupling between transversal
planes arises from solenoids, roll of quadrupoles, vertical misalignment and
orbit offset at sextupole locations. In this section we study the effect of skew
quadrupoles, which can be present intentionally or due to the roll of normal
quadrupoles. Again, let us first assume that only one skew quadrupole is
present, which is denoted as ks. Without loss of generality, we assume that
this skew quadrupole is located at the end of a turn and that it is thin. As a
result, the linear one turn map is⎛⎜⎜⎝

x1

a1
y1
b1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
0 1 ksl 0
0 0 1 0

ksl 0 0 1

⎞⎟⎟⎠ M̂

⎛⎜⎜⎝
x0

a0
y0
b0

⎞⎟⎟⎠ ,

where

M̂ =

⎛⎜⎜⎝
cosμx+αxsinμx βx sinμx 0 0

−γx sinμx cosμx−αxsinμx 0 0
0 0 cosμy+αysinμy βy sinμy

0 0 −γy sinμy cosμy−αysinμy

⎞⎟⎟⎠ .

Applying the same coordinate transformation, we obtain the normalized co-
ordinate system, which is⎛⎜⎜⎜⎝

x̃

ã

ỹ

b̃

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1/

√
βx 0 0 0

αx/
√
βx

√
βx 0 0

0 0 1/
√
βy 0

0 0 αy/
√
βy

√
βy

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x

a

y

b

⎞⎟⎟⎟⎠ .

As a result, we have⎛⎜⎜⎜⎝
x̃1

ã1

ỹ1

b̃1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 K 0

0 0 1 0

K 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

cosμx sinμx 0 0

− sinμx cosμx 0 0

0 0 cosμy sinμy

0 0 − sinμy cosμy

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎠ ,

where K above denotes

K = ksl
√
βxβy. (11.3)
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To shorten the equations, let us use again the following symbol

R̂

(
μx

μy

)
=

⎛⎜⎜⎝
cosμx sinμx 0 0

− sinμx cosμx 0 0
0 0 cosμy sinμy

0 0 − sinμy cosμy

⎞⎟⎟⎠ .

After n turns, the coordinates are

⎛⎜⎜⎜⎝
x̃n

ãn

ỹn

b̃n

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

1 0 0 0

0 1 K 0

0 0 1 0

K 0 0 1

⎞⎟⎟⎟⎠ R̂

(
μx

μy

)⎤⎥⎥⎥⎦
n⎛⎜⎜⎜⎝

x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎠ .

To the first order, the coordinates are

⎛⎜⎜⎜⎝
x̃n

ãn

ỹn

b̃n

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣R̂
(
nμx

nμy

)
+

⎛⎜⎜⎜⎝
0 0 0 0

0 0 K 0

0 0 0 0

K 0 0 0

⎞⎟⎟⎟⎠ R̂

(
nμx

nμy

)

+ R̂

(
μx

μy

)⎛⎜⎜⎜⎝
0 0 0 0

0 0 K 0

0 0 0 0

K 0 0 0

⎞⎟⎟⎟⎠ R̂

(
(n− 1)μx

(n− 1)μy

)
+ · · ·

+R̂

(
(n− 1)μx

(n− 1)μy

)⎛⎜⎜⎜⎝
0 0 0 0

0 0 K 0

0 0 0 0

K 0 0 0

⎞⎟⎟⎟⎠R̂

(
μx

μy

)⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎠

=

⎡⎢⎢⎣R̂(nμx

nμy

)
+K

⎛⎜⎜⎝
0 0 0 0
0 0 cos(nμy) sin(nμy)
0 0 0 0

cos(nμx) sin(nμx) 0 0

⎞⎟⎟⎠

+K

n−1∑
m=1

⎛⎜⎜⎜⎜⎝
0 0

0 0
R̂UR

R̂LL

0 0

0 0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝

x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎠ ,
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where

R̂LL =

(
cos [(n−m)μx] sin (mμy) sin [(n−m)μx] sin (mμy)

cos [(n−m)μx] cos (mμy) sin [(n−m)μx] cos (mμy)

)
,

R̂UR =

(
cos [(n−m)μy] sin (mμx) sin [(n−m)μy] sin (mμx)

cos [(n−m)μy] cos (mμx) sin [(n−m)μy] cos (mμx)

)
.

The nonzero terms in the transfer matrix can be further simplified using
trigonometric relations. Therefore we have

n−1∑
m=1

cos [(n−m)μx] sin (mμy) =

n−1∑
m=0

cos [(n−m)μx] sin (mμy)

=
1

2

n−1∑
m=0

{sin [nμx −m (μx − μy)]− sin [nμx −m (μx + μy)]}

=
1

2

{
sin

[
nμx − 1

2
(n− 1) (μx − μy)

]
sin [n (μx − μy) /2]

sin [(μx − μy) /2]

− sin

[
nμx − 1

2
(n− 1) (μx + μy)

]
sin [n (μx + μy) /2]

sin [(μx + μy) /2]

}
=

1

2

{
sin

[
1

2
n (μx + μy)

]
cos

[
1

2
(μx − μy)

]
sin [n (μx − μy) /2]

sin [(μx − μy) /2]

+ cos

[
1

2
n (μx + μy)

]
sin

[
1

2
n (μx − μy)

]
− sin

[
1

2
n (μx − μy)

]
cos

[
1

2
(μx + μy)

]
sin [n (μx + μy) /2]

sin [(μx + μy) /2]

− cos

[
1

2
n (μx − μy)

]
sin

[
1

2
n (μx + μy)

]}
=

1

2

{
sin

[
1

2
n (μx + μy)

]
cos

[
1

2
(μx − μy)

]
sin [n (μx − μy) /2]

sin [(μx − μy) /2]

− sin

[
1

2
n (μx − μy)

]
cos

[
1

2
(μx + μy)

]
sin [n (μx + μy) /2]

sin [(μx + μy) /2]
− sin (nμy)

}
.

When μy → ±μx + 2πN (N is an integer), we obtain

n−1∑
m=1

cos [(n−m)μx] sin (mμy) → 1

2
(n− 1) sin (nμy) .
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Similarly, we have

n−1∑
m=1

cos [(n−m)μx] cos (mμy) =
n−1∑
m=0

cos [(n−m)μx] cos (mμy)− cos (nμx)

=
1

2

{
cos

[
1

2
n (μx + μy)

]
cos

[
1

2
(μx − μy)

]
sin [n (μx − μy) /2]

sin [(μx − μy) /2]

+ cos

[
1

2
n (μx − μy)

]
cos

[
1

2
(μx + μy)

]
sin [n (μx + μy) /2]

sin [(μx + μy) /2]

}
− cos

[
1

2
n (μx + μy)

]
cos

[
1

2
n (μx − μy)

]
,

so we obtain when μy → ±μx + 2πN,

n−1∑
m=1

cos [(n−m)μx] cos (mμy) → 1

2

{
(n− 1) cos (nμy) +

sin [(n− 1)μy]

sinμy

}
.

Furthermore, we have

n−1∑
m=1

sin [(n−m)μx] sin (mμy) =
n−1∑
m=0

sin [(n−m)μx] sin (mμy)

=
1

2

{
− cos

[
1

2
n (μx + μy)

]
cos

[
1

2
(μx − μy)

]
sin [n (μx − μy) /2]

sin [(μx − μy) /2]

+ cos

[
1

2
n (μx − μy)

]
cos

[
1

2
(μx + μy)

]
sin [n (μx + μy) /2]

sin [(μx + μy) /2]

}
,

and we obtain when μy → ±μx + 2πN,

n−1∑
m=1

sin [(n−m)μx] sin (mμy) → ∓1

2

{
(n− 1) cos (nμy)− sin [(n− 1)μy]

sinμy

}
.

Lastly, we have

n−1∑
m=1

sin [(n−m)μx] cos (mμy) =

n−1∑
m=0

sin [(n−m)μx] cos (mμy)− sin (nμx)

=
1

2

{
sin

[
1

2
n (μx + μy)

]
cos

[
1

2
(μx − μy)

]
sin [n (μx − μy) /2]

sin [(μx − μy) /2]

+ sin

[
1

2
n (μx − μy)

]
cos

[
1

2
(μx + μy)

]
sin [n (μx + μy) /2]

sin [(μx + μy) /2]
− sin (nμx)

}
,

and we obtain when μy → ±μx + 2πN,

n−1∑
m=1

sin [(n−m)μx] cos (mμy) → ±1

2
(n− 1) sin (nμy) .
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The upper right block of the matrix can be obtained by switching μy and
μy of the results above. In summary the transfer matrix at the limit of
μy → ±μx + 2πN is given as

�zn =

{
M̂1 +K

[
M̂2 +

1

2
M̂3 +

1

2
(n− 1) M̂4

]}
�z0,

where

�zn =

⎛⎜⎜⎜⎝
x̃n

ãn

ỹn

b̃n

⎞⎟⎟⎟⎠ , �z0 =

⎛⎜⎜⎜⎝
x̃0

ã0

ỹ0

b̃0

⎞⎟⎟⎟⎠ ,

M̂1 =

⎛⎜⎜⎝
cos (nμx) sin (nμx) 0 0

− sin (nμx) cos (nμx) 0 0
0 0 cos (nμy) sin (nμy)
0 0 − sin (nμy) cos (nμy)

⎞⎟⎟⎠ ,

M̂2 =

⎛⎜⎜⎝
0 0 0 0
0 0 cos (nμy) sin (nμy)
0 0 0 0

cos (nμx) sin (nμx) 0 0

⎞⎟⎟⎠ ,

M̂3 =

⎛⎜⎜⎝
0 0 0 ± sx
0 0 sx 0
0 ± sy 0 0
sy 0 0 0

⎞⎟⎟⎠ ,

M̂4 =

⎛⎜⎜⎝
0 0 sin (nμx) ∓ cos (nμx)
0 0 cos (nμx) ± sin (nμx)

sin (nμy) ∓ cos (nμy) 0 0
cos (nμy) ± sin (nμy) 0 0

⎞⎟⎟⎠ , (11.4)

and the coupling terms sx and sy above are

sx =
sin [(n− 1)μx]

sinμx
, sy =

sin [(n− 1)μy]

sinμy
,

indicating that an arbitrarily small perturbation leads to arbitrarily large
coupling between the horizontal and the vertical spaces.

Similar to the half–integer resonance, the presence of the skew quadrupole
component leads to a stop band gap in which the beam becomes unstable.
To illustrate this point, let us first work the formalism of the eigenvalues of a
4× 4 symplectic matrix.

Before we treat linear coupling, let us look at a few general properties of
symplectic matrices and their eigenvalues. Recall that the symplectic condi-
tion is

M̂T ĴM̂ = Ĵ ,
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where M̂ is a 4×4 real matrix. The eigenvalue of M̂ can be obtained through
solving

det
(
M̂ − λÎ

)
= 0. (11.5)

Since M̂ is real,

M̂�v = λ�v =⇒ M̂ †�v† = λ†�v† =⇒ M̂�v† = λ†�v†.

So λ† is also an eigenvalue of M̂ and �v† is the eigenvector. Keep in mind that

det(ÂB̂) = det(Â) det(B̂), det(ÂT ) = det(Â).

With these identities, we can transform eq. (11.5).

det
(
M̂ − λÎ

)
= 0 =⇒ det Ĵ · det(ĴM̂ − λÎ) = 0 =⇒ det(ĴM̂ − λĴ) = 0

=⇒ det M̂T · det(ĴM̂ − λĴ) = 0 =⇒ det(Ĵ − λM̂T Ĵ) = 0

=⇒ det(Î − λM̂T ) = 0 =⇒ λ2n det(λ−1Î − M̂T ) = 0

=⇒ det(M̂T − λ−1Î) = 0.

Therefore λ−1 is also an eigenvalue. Together with λ†, we reach the con-
clusion that if M̂ has an eigenvalue λ then λ†, λ−1, λ†−1 are also eigenvalues.
We know that for M̂ to be stable, |λ| has to be smaller or equal to 1 for
all eigenvalues of M̂. As a result, all eigenvalues of M̂ lie on the unit circle.
Apparently, we have, for this case, λ = λ†−1 and λ−1 = λ†.

The next question we can ask is that supposing M̂ is stable and every
eigenvalue is reasonably far away from each other, what happens when M̂
is perturbed? In terms of betatron motion, it means that μx and μy are
reasonably far away.

To frame it in a more mathematical way, we say that there is a neighborhood
around each eigenvalue so that there is only one eigenvalue in it. When M̂
is perturbed its eigenvalues will move. They may all stay on the unit circle,
or some of them may move away from it. Let us say one of them, λ, moves
away from the unit circle, then λ†−1 will also move away from it and be in
the same neighborhood that λ is in, making the total number of eigenvalues
greater than 4, which is impossible. So the conclusion is that every one of
them will stay on the unit circle (see Fig. 11.1). This is consistent with our
experience, which is that when we change quadrupole strength, μx and μy

change, but the motion is stable.
The question that relates to linear coupling is what happens if two or more

of the eigenvalues get close to each other? The answer is more complicated.
It has been proven that when two colliding eigenvalues have the same sign of
phase, motion remains stable after collision. Otherwise, instability may occur.
In other words, difference resonance μx − μy does not lead to instability, sum
resonance μx + μy does.
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FIGURE 11.1: Distinct eigenvalues around the unit circle. Small circles
show the neighborhood of each eigenvalue.

Let us focus on coupling between horizontal and vertical planes. The matrix
M̂ is a 4× 4 symplectic matrix, which we describe as

M̂ =

(
Â B̂

Ĉ D̂

)
,

where Â, B̂, Ĉ and D̂ are 2× 2 matrices. From eq. (5.11), we have

M̂−1 =

(
Ā C̄
B̄ D̄

)
,

where Ā is defined as Ā = −ĴÂT Ĵ , as well as B̄, C̄ and D̄. Let us solve for
the eigenvalue Λ of M̂ + M̂−1. Obviously Λ = λ+ 1/λ, because

M̂�v = λ�v =⇒ �v = λM̂−1�v =⇒ 1

λ
�v = M̂−1�v

=⇒
(
M̂ + M̂−1

)
�v =

(
λ+

1

λ

)
�v.

M̂ + M̂−1 =

(
Â B̂

Ĉ D̂

)
+

(
Ā C̄

B̄ D̄

)
=

(
Â+ Ā B̂ + C̄

Ĉ + B̄ D̂ + D̄

)
.

Note that

Â+ Ā =

(
a11 a12
a21 a22

)
+

(
a22 −a12

−a21 a11

)
= tr Â ·

(
1 0
0 1

)
= tr Â · Î .

Using the relation (
M̂ + M̂−1

)
=

(
tr Â · Î B̂ + C̄

Ĉ + B̄ tr D̂ · Î

)
,
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we proceed and obtain

det
(
M̂ + M̂−1 − ΛÎ

)
= det

(
(tr Â− Λ) · Î B̂ + C̄

Ĉ + B̄ (tr D̂ − Λ) · Î

)
=det

[
(tr Â−Λ)(tr D̂ −Λ)Î − (tr Â−Λ)Î(Ĉ + B̄)((tr Â−Λ)Î)−1(B̂ + C̄)

]
=det

[
(tr Â− Λ)(tr D̂ − Λ)Î − (Ĉ + B̄)(B̂ + C̄)

]
.

To find Λ, we have to solve the equation

det
[
(tr Â− Λ)(tr D̂ − Λ) · Î − (Ĉ + B̄)(B̂ + C̄)

]
= 0.

Now we have to find out what (Ĉ + B̄)(B̂ + C̄) is.

B̂ + C̄ =

(
b11 b12
b21 b22

)
+

(
c22 −c12

−c21 c11

)
=

(
b11 + c22 b12 − c12
b21 − c21 b22 + c11

)
≡
(

e f
g h

)
,

Ĉ + B̄ =

(
c11 c12
c21 c22

)
+

(
b22 −b12

−b21 b11

)
=

(
c11 + b22 c12 − b12
c21 − b21 c22 + b11

)
≡
(

h −f
−g e

)
.

We have just shown that

Ĉ + B̄ = B̂ + C̄.

Then we obtain that

(Ĉ + B̄)(B̂ + C̄) = det(Ĉ + B̄) · Î .
So the equation for solving Λ becomes

(tr Â− Λ)(tr D̂ − Λ)− det(Ĉ + B̄) = 0.

Then

Λ2 − (tr Â+ tr D̂)Λ + tr Â · tr D̂ − det(Ĉ + B̄) = 0

=⇒ Λ =
1

2
(tr Â+ tr D̂)±

√
(tr Â− tr D̂)2

4
+ det(Ĉ + B̄) . (11.6)

This is the standard result of coupled motion, where the eigenvalue of the
motion in one plane depends on the motion in the other plane and vice versa.
The main features of eq. (11.6) are that Λ+ → tr Â when tr Â � tr D̂ and
Λ+ → tr D̂ when tr Â � tr D̂; and that Λ− → tr D̂ when tr Â � tr D̂ and
Λ− → tr Â when tr Â � tr D̂.

Courant and Snyder [16] have shown that the sign of det(Ĉ+B̄) determines
the stability of the motion when tr Â � tr D̂. Specifically, when μx−μy = 2πN

(difference resonance), det(Ĉ+ B̄) is positive, Λ is real, λ is on the unit circle,
so motion is stable. When μx + μy = 2πN (sum resonance), det(Ĉ + B̄) is
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μx μy

μx

μy

FIGURE 11.2: Crossing the difference resonance. Before: μx is constant
and μy increases. After: μx and μy reverse roles. Throughout the process,
the ratio of the knobs (quadrupoles in synchrotrons) remains unchanged.

negative, Λ can be complex, λ moves away from the unit circle, so motion is
unstable.

Let us now look at the difference (μx − μy = 2πN) and sum resonance
(μx + μy = 2πN) separately. In case of difference resonance, we have

Λx − Λy = 2

√
(tr Â− tr D̂)2

4
+ det(Ĉ + B̄),

Λx = eiμx + e−iμx = 2 cosμx

=⇒ cosμx − cosμy =

√
(tr Â− tr D̂)2

4
+ det(Ĉ + B̄)

=⇒ (cosμx − cosμy)
2 =

(tr Â− tr D̂)2

4
+ det(Ĉ + B̄).

As a result, there is a minimum separation between the tunes when the
difference becomes small, as shown in Fig. 11.2. The minimum separation of
tunes can be used to determine the amount of coupling in an accelerator.

In case of sum resonance, motion becomes unstable when

(tr Â− tr D̂)2

4
< − det(Ĉ + B̄).

It is illuminating to compare the result above with that of eq. (11.4). There
both sum and difference resonances show unbounded growth in coupling, yet
only the sum resonance leads to instability in the 4D phase space.

To illustrate this, let us follow Courant and Snyder [16] and work out the
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one turn map when a skew quadrupole is present.

M̂ =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 K 0

0 0 1 0

K 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

cosμx sinμx 0 0

− sinμx cosμx 0 0

0 0 cosμy sinμy

0 0 − sinμy cosμy

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
cosμx sinμx 0 0

− sinμx cosμx K cosμy K sinμy

0 0 cosμy sinμy

K cosμx K sinμx − sinμy cosμy

⎞⎟⎟⎟⎠.
Hence

B̂ = K

(
0 0

cosμy sinμy

)
, Ĉ = K

(
0 0

cosμx sinμx

)
,

and

Ĉ + B̄ = K

[(
0 0

cosμx sinμx

)
+

(
sinμy 0

− cosμy 0

)]
=K

(
sinμy 0

cosμx− cosμy sinμx

)
.

Furthermore, we have

det(Ĉ + B̄) = K2 sinμx sinμy.

For sum resonance, we have sinμx = − sinμy and det(Ĉ+B̄) < 0. The motion
is unstable. When there are many skew quadrupole components in a ring, to
the leading order and near the sum resonance, we have

det(Ĉ + B̄) = − sin2 μ

n∑
m=1

K2
m,

where we use the abbreviation Km = (ksl)m
√
βxmβym as eq. (11.3). The

stop band is

(cosμx − cosμy)
2
< sin2 μ

n∑
m=1

K2
m,

and the full width, to the leading order, is

Δμ = 2

√√√√ n∑
m=1

K2
m.

For difference resonance, we have sinμx = sinμy and det(Ĉ + B̄) > 0. The
motion is stable and the minimum tune difference is

Δμmin =

√√√√ n∑
m=1

K2
m.
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11.4 Third–Integer Resonance

In this section we deal with the third–integer resonance, which is generated
by the sextupoles introduced into the ring to compensate for chromaticity.
Similar to the previous section, we will start with a particle with an arbitrary
position and angle and demonstrate the resonant behavior when the tune
is close to the resonance. Again, let us first consider the case that a thin
sextupole is located at the end of the ring. The one turn map is(

x1

a1

)
=

(
x

a+ ksx
2

)
◦
[
M̂

(
x0

a0

)]
=

(
x

a+ ksx
2

)
◦
[(

cosμ+ α sinμ β sinμ
−γ sinμ cosμ− α sinμ

)(
x0

a0

)]
.

In the normalized space(
x̃

ã

)
= Â

(
x

a

)
=

(
1/

√
β 0

α/
√
β

√
β

)(
x

a

)
,

the one turn map is(
x̃1

ã1

)
=

[
Â

(
x̃

ã

)]
◦
(

x̃

ã+ ksx̃
2

)
◦
[
M̂Â−1

(
x̃0

ã0

)]

=

[
Â

(
x̃

ã

)]
◦
(

x̃

ã+ ksx̃
2

)
◦
[
Â−1

(
x̃

ã

)]
◦
[
ÂM̂Â−1

(
x̃0

ã0

)]

=

(
x̃

ã+ ksβ
3
2 x̃2

)
◦
[
R̂ (μ)

(
x̃0

ã0

)]
.

The position and angle after n turns are(
x̃n

ãn

)
=

(
x̃

ã+ ksβ
3
2 x̃2

)
◦
[
R̂ (μ)

(
x̃

ã

)]
◦ · · · ◦

(
x̃

ã+ ksβ
3
2 x̃2

)
◦
[
R̂ (μ)

(
x̃0

ã0

)]
.

To the first order of ks, we obtain(
x̃n

ãn

)
=
(
R̂ (μ)

)n( x̃0

ã0

)

+

n−1∑
m=0

[(
R̂ (μ)

)m( x̃

ã

)]
◦
(

0

ksβ
3
2 x̃2

)
◦
[(

R̂ (μ)
)n−m

(
x̃0

ã0

)]
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=

(
x̃0 cos (nμ) + ã0 sin (nμ)

−x̃0 sin (nμ) + ã0 cos (nμ)

)
+ ksβ

3
2

(
0

[x̃0 cos (nμ) + ã0 sin (nμ)]
2

)

+ ksβ
3
2

n−1∑
m=1

(
{x̃0 cos [(n−m)μ] + ã0 sin [(n−m)μ]}2 sin (mμ)

{x̃0 cos [(n−m)μ] + ã0 sin [(n−m)μ]}2 cos (mμ)

)

=

(
x̃0 cos (nμ) + ã0 sin (nμ)

−x̃0 sin (nμ) + ã0 cos (nμ)

)
+ ksβ

3
2

(
0

[x̃0 cos (nμ) + ã0 sin (nμ)]
2

)

+
1

2
ksβ

3
2

(
x̃2
0 + ã20

) n−1∑
m=1

(
sin (mμ)

cos (mμ)

)

+
1

4
ksβ

3
2

(
x̃2
0 − ã20

) n−1∑
m=1

(
sin [(2n−m)μ]− sin [(2n− 3m)μ]

cos [(2n−m)μ] + cos [(2n− 3m)μ]

)

+
1

2
ksβ

3
2 x̃0ã0

n−1∑
m=1

(
cos [(2n− 3m)μ]− cos [(2n−m)μ]

sin [(2n−m)μ] + sin [(2n− 3m)μ]

)
.

Again, using the formula

n−1∑
m=0

cos (x+my) =
cos (x+ (n− 1) y/2) sin (ny/2)

sin (y/2)
, (11.7)

we obtain

n−1∑
m=1

cos (mμ) =
n−1∑
m=1

cos [μ+ (m− 1)μ] =
n−2∑
m=0

cos (μ+mμ)

=
cos [μ+ (n− 2)μ/2] sin [(n− 1)μ/2]

sin (μ/2)
=

cos (nμ/2) sin [(n− 1)μ/2]

sin (μ/2)
,

n−1∑
m=1

cos [(2n−m)μ] =

n−1∑
m=1

cos [(2n− 1)μ− (m− 1)μ]

=

n−2∑
m=0

cos [(2n− 1)μ−mμ] =
cos (3nμ/2) sin [(n− 1)μ/2]

sin (μ/2)
,

n−1∑
m=1

cos [(2n− 3m)μ] =

n−1∑
m=1

cos [(2n− 3)μ− 3 (m− 1)μ]

=

n−2∑
m=0

cos [(2n− 3)μ− 3mμ] =
cos (nμ/2) sin [3 (n− 1)μ/2]

sin (3μ/2)
.
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From eq. (11.7), we have

n−1∑
m=0

sin (x+my) =

n−1∑
m=0

cos
(
x+my − π

2

)
=

cos [x+ (n− 1) y/2− π/2] sin (ny/2)

sin (y/2)
=

sin [x+ (n− 1) y/2] sin (ny/2)

sin (y/2)
.

As a result, we obtain

n−1∑
m=1

sin (iμ) =
n−1∑
m=1

sin [μ+ (m− 1)μ] =
n−2∑
m=0

sin (μ+mμ)

=
sin (nμ/2) sin [(n− 1)μ/2]

sin (μ/2)
,

n−1∑
m=1

sin [(2n−m)μ] =

n−1∑
m=1

sin [(2n− 1)μ− (m− 1)μ]

=

n−2∑
m=0

sin [(2n− 1)μ−mμ] =
sin (3nμ/2) sin [(n− 1)μ/2]

sin (μ/2)
,

n−1∑
m=1

sin [(2n− 3m)μ] =

n−1∑
m=1

sin [(2n− 3)μ− 3 (m− 1)μ]

=

n−2∑
m=0

sin [(2n− 3)μ− 3mμ] =
sin (nμ/2) sin [3 (n− 1)μ/2]

sin (3μ/2)
.

The position and angle after n turns are(
x̃n

ãn

)
=

(
x̃0 cos (nμ) + ã0 sin (nμ)

−x̃0 sin (nμ) + ã0 cos (nμ)

)
+ ksβ

3
2

(
0

[x̃0 cos (nμ) + ã0 sin (nμ)]
2

)

+
1

2
ksβ

3
2

(
x̃2
0 + ã20

) sin [(n− 1)μ/2]

sin (μ/2)

(
sin (nμ/2)

cos (nμ/2)

)

+
1

4
ksβ

3
2

(
x̃2
0 − ã20

) sin [(n− 1)μ/2]

sin (μ/2)

(
sin (3nμ/2)

cos (3nμ/2)

)

+
1

4
ksβ

3
2

(
x̃2
0 − ã20

) sin [3 (n− 1)μ/2]

sin (3μ/2)

(
− sin (nμ/2)

cos (nμ/2)

)

+
1

2
ksβ

3
2 x̃0ã0

sin [(n− 1)μ/2]

sin (μ/2)

(
− cos (3nμ/2)

sin (3nμ/2)

)

+
1

2
ksβ

3
2 x̃0ã0

sin [3 (n− 1)μ/2]

sin (3μ/2)

(
cos (nμ/2)

sin (nμ/2)

)
,
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which shows that the position and angle become arbitrarily large when μ →
2πk or 2π(k ± 1/3).

Next, we will study the deformation of the invariant. Since the sextupole
affect only the nonlinear part of the motion, the perturbation of the invariant
is of the third order and higher. One way to obtain the new invariant is to find
a new coordinate system in which the motion is a circle. The new invariant
can be found via the relation between the new and the old coordinates. This
method is called the normal form theory. In general, there is no analytical
solution to the perturbed invariant. We can only obtain it perturbatively. In
order to demonstrate the essence of the method, the lowest order perturbation

of the invariant will be derived. Let ˜̃x and ˜̃a be the new coordinates such that,
in this coordinate system, the motion is a circle up to the second order. Since
the linear motion in the coordinate system of (x̃, ã) is already a circle, the
general form of the relation between the new and the old coordinate systems
can be written as( ˜̃x˜̃a

)
= A ◦

(
x̃

ã

)
=

(
x̃

ã

)
+

(
A11x̃

2 +A12x̃ã+A22ã
2

B11x̃
2 + B12x̃ã+B22ã

2

)
,

where A denote a second order transfer map that transforms (x, a). The
inverse, to the second order, is

(
x̃

ã

)
= A−1 ◦

( ˜̃x˜̃a
)

=

( ˜̃x˜̃a
)

−
⎛⎝A11

˜̃x2
+A12

˜̃x˜̃a+A22
˜̃a2

B11
˜̃x2

+B12
˜̃x˜̃a+B22

˜̃a2
⎞⎠ .

From the relation(
x̃1

ã1

)
=

(
x̃

ã+ ksβ
3
2 x̃2

)
◦
[
R̂ (μ)

(
x̃0

ã0

)]
,

we obtain the one turn map in the new coordinates, which is

( ˜̃x1˜̃a1
)

= A◦
(

x

a+ ksβ
3
2 x2

)
◦
(

x cosμ+ a sinμ

−x sinμ+ a cosμ

)
◦A−1 ◦

( ˜̃x0˜̃a0
)
. (11.8)

Expanding it to the second order, we have

( ˜̃x1˜̃a1
)

=

( ˜̃x0 cosμ+ ˜̃a0 sinμ
−˜̃x0 sinμ+ ˜̃a0 cosμ

)
+

(
z1x

z1a

)
+

(
z2x

z2a

)
+

(
z3x

z3a

)
,
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where

z1x = A11

(˜̃x2

0 cos
2 μ+ ˜̃x0

˜̃a0 sin (2μ) + ˜̃a20 sin2 μ)
+A12

(
−1

2
˜̃x2

0 sin (2μ) +
˜̃x0
˜̃a0 cos (2μ) + 1

2
˜̃a20 sin (2μ))

+A22

(˜̃x2

0 sin
2 μ− ˜̃x0

˜̃a0 sin (2μ) + ˜̃a20 cos2 μ) ,
z1a = B11

(˜̃x2

0 cos
2 μ+ ˜̃x0

˜̃a0 sin (2μ) + ˜̃a20 sin2 μ)
+B12

(
−1

2
˜̃x2

0 sin (2μ) +
˜̃x0
˜̃a0 cos (2μ) + 1

2
˜̃a20 sin (2μ))

+B22

(˜̃x2

0 sin
2 μ− ˜̃x0

˜̃a0 sin (2μ) + ˜̃a20 cos2 μ) ,
z2x =−

(
A11
˜̃x2

0 +A12
˜̃x0
˜̃a0 +A22

˜̃a20) cosμ−(B11
˜̃x2

0 +B12
˜̃x0
˜̃a0 +B22

˜̃a20) sinμ,
z2a =

(
A11
˜̃x2

0 +A12
˜̃x0
˜̃a0 +A22

˜̃a20) sinμ−(B11
˜̃x2

0 +B12
˜̃x0
˜̃a0 +B22

˜̃a20) cosμ,
z3x = 0,

z3a = ksβ
3
2

(˜̃x2

0 cos
2 μ+ ˜̃x0

˜̃a0 sin (2μ) + ˜̃a20 sin2 μ) .
Since the one turn map in the new coordinates is a rotation up to the second
order, we obtain the following equations

A11 cos
2 μ− 1

2
A12 sin (2μ) +A22 sin

2 μ−A11 cosμ−B11 sinμ = 0,

A11 sin (2μ) +A12 cos (2μ)−A22 sin (2μ)−A12 cosμ−B12 sinμ = 0,

A11 sin
2 μ+

1

2
A12 sin (2μ) +A22 cos

2 μ−A22 cosμ−B22 sinμ = 0,

B11 cos
2μ− 1

2
B12 sin(2μ) +B22 sin

2μ+A11 sinμ−B11 cosμ = −ksβ
3
2 cos2μ,

B11 sin(2μ)+B12 cos(2μ)−B22 sin(2μ)+A12 sinμ−B12 cosμ = −ksβ
3
2 sin(2μ),

B11 sin
2μ+

1

2
B12 sin(2μ) +B22 cos

2μ+A22 sinμ−B22 cosμ = −ksβ
3
2 sin2μ.

After tedious but straightforward algebraic and trigonometric manipulations,
the solution is obtained, which is

A11 = −ksβ
3
2
cos (μ/2) cosμ

2 sin (3μ/2)
, A12 = 0, A22 = −ksβ

3
2
cos3 (μ/2)

sin (3μ/2)
,

B11 = −1

2
ksβ

3
2 , B12 = ksβ

3
2
cos (μ/2) cosμ

sin (3μ/2)
, B22 = 0.

As a result, the transformation defines a coordinate system in which the mo-
tion is a rotation up to the second order. In other words, we have˜̃x2

+ ˜̃a2 = ε,
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which take the form(
x̃+A11x̃

2 +A22ã
2
)2

+
(
ã+B11x̃

2 +B12x̃ã
)2

= ε

in the old coordinates. Keeping only the terms up to the first order of ks, we
have

x̃2 + ã2 + 2A11x̃
3 + 2B11x̃

2ã+ 2 (A22 +B12) x̃ã
2 = ε.

Since

A22 +B12 = ksβ
3
2

[
−cos3 (μ/2)

sin (3μ/2)
+

cos (μ/2) cosμ

sin (3μ/2)

]
= ksβ

3
2
cos (μ/2)

[
cosμ− cos2 (μ/2)

]
sin (3μ/2)

= −ksβ
3
2
cos (μ/2) sin2 (μ/2)

sin (3μ/2)
= −ksβ

3
2
sin (μ/2) sinμ

2 sin (3μ/2)
,

the perturbed invariant is

x̃2 + ã2 − ksβ
3
2

[
cos (μ/2) cosμ

sin (3μ/2)
x̃3 + x̃2ã+

sin (μ/2) sinμ

sin (3μ/2)
x̃ã2
]
= ε,

or

x̃2 + ã2 − ksβ
3
2

sin (3μ/2)
x̃ [x̃ cos (μ/2) + ã sin (μ/2)] [x̃ cosμ+ ã sinμ] = ε.

Apparently the invariant diverge when μ → 2πk/3. The invariant in the above
equation is shown in Fig. 11.3, which shows the presence of the third–integer
resonance. As a comparison, the true invariant obtained through tracking
is shown in Fig. 11.4. It is clear that the invariant obtained from the first
order perturbation theory agrees with the exact invariant qualitatively but
not quantitatively.

Like the half–integer resonance, we can go one step further to include the
terms that are proportional to k2s . Again, we can attempt to find another
coordinate system in which the motion is a rotation up to k2s . But first of all,

we have to obtain the third order one turn map in the coordinates of (˜̃x, ˜̃a).
From eq. (11.8), we have, to the third order,(˜̃x1˜̃a1

)
= A◦

(
x

a+ ksβ
3
2x2

)
◦
(

x cosμ+ a sinμ

−x sinμ+ a cosμ

)
◦A−1◦

(˜̃x0˜̃a0
)

=

(
x+A11x

2 +A22a
2

a+B11x
2 +B12xa

)
◦
(

x cosμ+ a sinμ

−x sinμ+ a cosμ+ ksβ
3
2 (x cosμ+ a sinμ)

2

)

◦
⎡⎣⎛⎝ ˜̃x0 −A11

˜̃x2

0 −A22
˜̃a20˜̃a0 −B11

˜̃x2

0 −B12
˜̃x0
˜̃a0
⎞⎠+
⎛⎝2A2

11
˜̃x3

0 + 2A22B11
˜̃x2

0
˜̃a0 + A22B12

˜̃x0
˜̃a20

2A2
11
˜̃x2

0
˜̃a0 + 2A22B11

˜̃x0
˜̃a20 +A22B12

˜̃a30
⎞⎠⎤⎦.
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FIGURE 11.3: Invariant obtained through first order perturbation theory
(left) and tracking (right), with ksβ

3
2 = 1 and ν = 130/360.
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FIGURE 11.4: Invariant obtained through first order perturbation theory
(left) and tracking (right), with ksβ

3
2 = 1 and ν = 110/360.

The last line is the functionA−1 to the third order. It is straightforward to
verify that it is true using the relation B12 = −2A11. Yet A andA−1 are not
symplectic to the third order, which is easily verified using eq. (5.6). The
details of obtaining the symplectic version of AandA−1 are beyond the scope
of this book. The result is actually very simple, which is

A =

⎛⎝ x+A11x
2 +A22a

2 +A2
11
˜̃x3

0 +A22B11
˜̃x2

0
˜̃a0 −A11A22

˜̃x0
˜̃a20

a+B11x
2 − 2A11xa+A2

11
˜̃x2

0
˜̃a0 +A22B11

˜̃x0
˜̃a20 −A11A22

˜̃a30
⎞⎠ ,

A−1 =

⎛⎝ x−A11x
2 −A22a

2 +A2
11
˜̃x3

0 +A22B11
˜̃x2

0
˜̃a0 −A11A22

˜̃x0
˜̃a20

a−B11x
2 + 2A11xa+A2

11
˜̃x2

0
˜̃a0 +A22B11

˜̃x0
˜̃a20 −A11A22

˜̃a30
⎞⎠ .

Again, it is straightforward to verify the symplecticity of the above map using
eq. (5.6). Note that the third order part in A andA−1 is half of that in the
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non-symplectic version of A−1.
After a straightforward yet rather lengthy derivation, the final result is⎛⎝˜̃x1˜̃a1
⎞⎠=
⎛⎝ ˜̃x0 cosμ+ ˜̃a0 sinμ
−˜̃x0 sinμ+ ˜̃a0 cosμ

⎞⎠+
⎛⎝A111

˜̃x3

0 +A112
˜̃x2

0
˜̃a0 +A122

˜̃x0
˜̃a20 +A222

˜̃a30
B111

˜̃x3

0 +B112
˜̃x2

0
˜̃a0 +B122

˜̃x0
˜̃a20 +B222

˜̃a30
⎞⎠,

where

A111 = −k2sβ
3 cos

3 (μ/2) sinμ cos2 μ

sin (3μ/2)
,

A112 = k2sβ
3 cos

3 (μ/2) cosμ

2 sin (3μ/2)
[3 cos (2μ)− 1] ,

A122 = k2sβ
3 cos

4 (μ/2) sin (μ/2)

sin (3μ/2)
[1 + 3 cos (2μ)] ,

A222 = k2sβ
3 4 cos

5 (μ/2) sin2 (μ/2) cosμ

sin (3μ/2)
, (11.9)

and

B111 = k2sβ
3

{
4 cos5 (μ/2) sin2 (μ/2) cosμ

sin (3μ/2)
+
cos (μ/2) cos4 μ

sin (3μ/2)

}
,

B112 = k2sβ
3

{
−cos4 (μ/2) sin (μ/2)

sin (3μ/2)
[1 + 3 cos (2μ)]

+6
sin (μ/2) cos2 (μ/2) cos3 μ

sin (3μ/2)

}
,

B122 = k2sβ
3

{
cos3 (μ/2) cosμ

2 sin (3μ/2)
[3 cos (2μ)− 1]

+12
sin2 (μ/2) cos3 (μ/2) cos2 μ

sin (3μ/2)

}
,

B222 = k2sβ
3

{
cos3 (μ/2) sinμ cos2 μ

sin (3μ/2)
+
cos (μ/2) cosμ sin3 μ

sin (3μ/2)

}
. (11.10)

The next step is to find a second order transformation (in terms of ks) that
the third order map in the newest coordinates is a rotation. Unlike the first
order transformation, not all nonlinear terms in the map can be removed even
if μ does not satisfy any resonance condition (i.e., ν is irrational.). It is much
easier to illustrate this in the eigenspace of the linear map, which is complex.
Let us denote (s+, s−) as the complex coordinates which are related to the
real coordinates by the relations(

s−

s+

)
=

1√
2

(
1 i

1 −i

)( ˜̃x˜̃a
)
. (11.11)
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The inverse is ( ˜̃x˜̃a
)

=
1√
2

(
1 1

−i i

)(
s−

s+

)
. (11.12)

It is obvious, in this case, that the map in the complex coordinates is sym-
plectic as long as that in the real coordinates is, since the determinant of the
Jacobian in the complex coordinates equals that in the real coordinates, which
equals to 1. The linear one turn map in the complex coordinates is(

s−1
s+1

)
=

1

2

(
1 i

1 −i

)
R̂ (μ)

(
1 1

−i i

)(
s−0
s+0

)
=

(
e−iμ 0

0 eiμ

)(
s−0
s+0

)
. (11.13)

For the time being, let us consider the generic case that the map M contains a
linear part R and a nonlinear part S. In the complex coordinates, R is shown
above. Furthermore, let us assume that the lowest order terms in S are of
that of m. Note that if m > 2, M is the map that has been transformed
through the nonlinear normal form transformations at least once. Now let us
consider M only up to the mth order, i.e.,

Mm = R+ Sm.

Define the coordinate transformation as

Am = I + T m,

where I is the unity map and Tm contains terms of the mth order only. Hence,
to the mth order,

A−1
m = I − T m.

The normalized map, to the mth order, is

Nm =m Am ◦Mm ◦ A−1
m =m (I + T m) ◦ (R+ Sm) ◦ (I − T m)

=m (I + T m) ◦ (R+ Sm −R ◦ Tm) =m R+ Sm − (Tm ◦ R −R ◦ Tm) .

The goal is to cancel as many terms in Sm as possible. Let us evaluate the
map Tm ◦ R −R ◦ Tm, which is

Tm ◦ R−R ◦ Tm

=

m∑
k=0

[(
T−
mk (s

−)k(s+)m−k

T+
mk (s

−)k(s+)m−k

)
◦
(
e−iμs−0
eiμs+0

)
−
(
e−iμs−

eiμs+

)
◦
(
T−
mk

(
s−0
)k(

s+0
)m−k

T+
mk

(
s−0
)k(

s+0
)m−k

)]

=

m∑
k=0

(
T−
mk

(
s−0
)k (

s+0
)m−k [

eiμ(m−2k) − e−iμ
]

T+
mk

(
s−0
)k (

s+0
)m−k [

eiμ(m−2k) − eiμ
]
)
.

Apparently terms in Sm cannot be removed if the corresponding terms in the
map Tm ◦ R −R ◦ Tm are zero, and they are zero if

eiμ(m−2k) − e±iμ = 0.
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That is

eiμ(m−2k∓1) = 1,

which is fulfilled when

μ (m− 2k ∓ 1) = 2πn,

where n is an integer. Apparently, the solutions of this equation can be divided
into two classes: one that is independent of μ, which is k = (m ∓ 1)/2, and
the other that depends on μ. The solutions that depend on μ are called the
resonance conditions, which can be avoided with the choice of μ. The ones that
are independent of μ provide the terms that cannot be removed from the map
regardless of the choice of the tune. First, let us consider the case of m = 2.
Since both m and 2k are even, under no circumstance m − 2k ∓ 1 = 0. This
is consistent with the fact that a solution was found above that transforms
the second order map into a linear map. For the μ dependent solutions, it
is straightforward to verify that all six solutions are included in one simple
relation, which is 3μ = 2πn. Note that this is none other than the condition
of the third–integer resonance. Second, we consider the case of m = 3. There
are two solutions that are independent of μ, which are k = 2 for the top row
and k = 1 for the bottom row. Again, all eight solutions that are dependent
on μ are included in the expression 4μ = 2πn, which is the condition of the
fourth–integer resonance. In case of the sextupole, it drives the third–integer
resonance to the first order of ks and the fourth–integer resonance to the
second order of ks. Since we usually set the tune away from the third and
the fourth–integer resonances, we can obtain a third order map that takes the
form of

N3 =

(
e−iμs−0 + S−

32

(
s−0
)2 (

s+0
)

eiμ s+0 + S+
31

(
s−0
) (

s+0
)2
)
.

Let us focus on the new map, since we will not try to obtain the second order
distortion of the invariant. Going one step further, we have

N3 =

([
e−iμ + S−

32s
−
0 s

+
0

]
s−0[

eiμ + S+
31s

−
0 s

+
0

]
s+0

)
.

Transforming back to the real coordinates, we obtain

N3 =

( ˜̃x0 cosμ+ ˜̃a0 sinμ
−˜̃x0 sinμ+ ˜̃a0 cosμ

)
+
˜̃x2

0 +
˜̃a20

4

( (
S−
32 + S+

31

) ˜̃x0 + i
(
S−
32 − S+

31

) ˜̃a0
−i
(
S−
32 − S+

31

) ˜̃x0 +
(
S−
32 + S+

31

) ˜̃a0
)
.

(11.14)
As a result, we conclude that S−

32+S+
31 is real and S−

32−S+
31 is purely imaginary.

In order to make clear the meaning of the third order terms in N3, let us first
show that N3 is symplectic to the third order. First recall that

N3 =3 A3 ◦ A2 ◦M2 ◦ A−1
2 ◦ A−1

3 .
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Defining A23 =3 A3 ◦ A2, we have

N3 =3 A23 ◦M2 ◦ A−1
23 .

When carrying out the transformations, we usually make sure that A23 is
symplectic up to the third order. Therefore, we have

N̂3ĴN̂
T
3 =2 Â23M̂2Â

−1
23 Ĵ

(
Â23M̂2Â

−1
23

)T
=2 Â23M̂2Â

−1
23 Ĵ

(
Â−1

23

)T
M̂T

2 ÂT
23

=2 Â23M̂2ĴM̂
T
2 ÂT

23 =2 Â23ĴÂ
T
23 =2 Ĵ .

Now that we have shown that N3 is symplectic up to the third order, we
can find out the relations between the terms. The Jacobian of N3 can be
written as

N̂3 = R̂+ Ŝ3,

where

R̂ =

(
e−iμ 0

0 eiμ

)
and Ŝ3 =

(
S−
32s

−
0 s

+
0 S−

32

(
s−0
)2

S+
31

(
s+0
)2

S+
31s

−
0 s

+
0

)
.

The symplectic condition becomes(
R̂+ Ŝ3

)
Ĵ
(
R̂T + ŜT

3

)
=2 Ĵ ,

which leads to the relation

Ŝ3ĴR̂
T + R̂Ĵ ŜT

3 = 0.

Plugging in the matrices R̂ and Ŝ3, we have(
S−
32s

−
0 s

+
0 S−

32

(
s−0
)2

S+
31

(
s+0
)2

S+
31s

−
0 s

+
0

)(
0 1

−1 0

)(
e−iμ 0

0 eiμ

)

+

(
e−iμ 0

0 eiμ

)(
0 1

−1 0

)(
S−
32s

−
0 s

+
0 S+

31

(
s+0
)2

S−
32

(
s−0
)2

S+
31s

−
0 s

+
0

)
= 0,

which can be simplified to

(
S−
32e

iμ + S+
31e

−iμ
)
s−0 s

+
0

(
0 1

−1 0

)
= 0.

Defining
TS = iS−

32e
iμ,

we obtain
S−
32 = −iTSe

−iμ, S+
31 = iTSe

iμ.
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Furthermore, we obtain that

S−
32 + S+

31 = −2TS sinμ, S−
32 − S+

31 = −2iTS cosμ.

Hence we arrive at the conclusion that TS is real. Therefore, we have

N3 =

(
e−iμ

[
1− iTSs

−
0 s

+
0

]
s−0

eiμ
[
1 + iTSs

−
0 s

+
0

]
s+0

)
.

To the first order of TS, N3 can be expressed as

N3 =

(
exp

[−i
(
μ+ TSs

−
0 s

+
0

)]
s−0

exp
[

i
(
μ+ TSs

−
0 s

+
0

)]
s+0

)
.

It is clear by far that the remaining terms in the normalized mapN3 contribute
to the change of the tune only. It is worth noting that the change of the tune
is a function of the invariant, which is sometimes called the tune shift with
amplitude. Computationally, the above described procedure can be easily
carried out using the Differential Algebraic (DA) technique, which is valid for
any given order.

Now the tune shift with amplitude can be determined through the relations
between the coefficients in the real and the complex coordinates. Repeating
eq. (11.13) to the third order, using eqs. (11.11) and (11.12), we have(

s−1
s+1

)
=

1

2

(
1 i

1 −i

)(
cosμ sinμ

− sinμ cosμ

)(
1 1

−i i

)(
s−0
s+0

)

+
1

4

(
1 i

1 −i

)(
A111

(
s−0 + s+0

)3
+A112

(
s−0 + s+0

)2(−is−0 + is+0
)

B111

(
s−0 + s+0

)3
+B112

(
s−0 + s+0

)2(−is−0 + is+0
)
)

+
1

4

(
1 i

1 −i

)(
A122

(
s−0 + s+0

) (−is−0 + is+0
)2

+A222

(−is−0 + is+0
)3

B122

(
s−0 + s+0

) (−is−0 + is+0
)2

+B222

(−is−0 + is+0
)3
)

=

(
e−iμ 0

0 eiμ

)(
s−0
s+0

)

+
1

4

(
(A111+iB111)

(
s−0 +s+0

)3
+(A112+iB112)

(
s−0 +s+0

)2(−is−0 + is+0
)

(A111−iB111)
(
s−0 +s+0

)3
+(A112−iB112)

(
s−0 +s+0

)2(−is−0 + is+0
)
)

+
1

4

(
(A122+iB122)

(
s−0 +s+0

)(−is−0 +is+0
)2
+(A222+iB222)

(−is−0 +is+0
)3

(A122−iB122)
(
s−0 +s+0

)(−is−0 +is+0
)2
+(A222−iB222)

(−is−0 +is+0
)3
)
.

It is straightforward to extract the coefficients S−
32 and S+

31, which are

S−
32 =

1

4
[3 (A111+iB111)−i (A112+iB112)+(A122+iB122)−3i (A222+iB222)],

S+
31 =

1

4
[3 (A111−iB111)+i (A112−iB112)+(A122−iB122)+3i (A222−iB222)].
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Furthermore, we have

1

4

(
S−
32 + S+

31

)
=

1

8
( 3A111 +B112 +A122 + 3B222) ,

i

4

(
S−
32 − S+

31

)
=

1

8
(−3B111 +A112 −B122 + 3A222) .

From eqs. (11.9) and (11.10), we obtain

1

4

(
S−
32 + S+

31

)
=

3

8
k2sβ

3 cos (μ/2) sinμ cosμ

sin (3μ/2)
,

i

4

(
S−
32 − S+

31

)
= −3

8
k2sβ

3 cos (μ/2) cos
2 μ

sin (3μ/2)
.

As a result, eq. (11.14) becomes

N3 =

( ˜̃x0 cosμ+ ˜̃a0 sinμ
−˜̃x0 sinμ+ ˜̃a0 cosμ

)

+
3

8
k2sβ

3

(
cos (μ/2) sinμ cosμ/ sin (3μ/2)

cos (μ/2) cos2 μ/ sin (3μ/2)

)(˜̃x2

0 +
˜̃a20) ˜̃x0

+
3

8
k2sβ

3

(
− cos (μ/2) cos2 μ/ sin (3μ/2)

cos (μ/2) sinμ cosμ/ sin (3μ/2)

)(˜̃x2

0 +
˜̃a20) ˜̃a0

=

(
cosμ sinμ

− sinμ cosμ

)(˜̃x0˜̃a0
)

− 3

8
k2sβ

3 cos (μ/2) cosμ

sin (3μ/2)

(˜̃x2

0 +
˜̃a20)
(
− sinμ cosμ

− cosμ − sinμ

)(˜̃x0˜̃a0
)

=3

(
cos (μ+Δμ) sin (μ+Δμ)

− sin (μ+Δμ) cos (μ+Δμ)

)(˜̃x0˜̃a0
)
,

where Δμ = −(3/8) · k2sβ3 · (cos (μ/2) cosμ/ sin (3μ/2)) · (˜̃x2

0 +
˜̃a20). Note that

Δμ is proportional to ˜̃x2

0 + ˜̃a20, which is an invariant of motion. Note that
the distortion of the invariant of motion is proportional to k. Hence the tune
shift is small compared to the distortion of the invariant. The result is that
the third–integer resonance usually leads to arbitrary large distortion of the
invariant. For higher order resonances, the distortion is either of the same
order or smaller than the tune shift. The resonances are, therefore, confined
in the phase space.
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Solenoid, 101
Transfer Matrix, 77, 91, 105

Edwards-Teng Parametrization, 155
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Round Lens, 89

Ellipse, 144
Axis Intersection, 148
Beam, 194
Invariant, 194
Maximal
Points, 148
Width, 149

Transformation, 147, 152
Emission, 4
Emittance, 2, 4, 141, 146, 189, 231

Equilibrium, 231
Normalized, 211

Energy
Loss Separator, 174
Mass Spectrometer, 164



304 Index

Spectrometer, 87
Ensembles of Particles, 1
Epsilon

Emittance, 146
Equations of Motion, 65
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Round Lens
Electric, 91, 92
Magnetic, 101

Strong, 53, 207
Synchrotron, 28

Weak, 56, 88, 207
Synchrotron, 28

FODO Cell, 208, 214, 224, 226, 229
Stability, 209

Forschungszentrum Jülich, 27, 28, 30
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Dynamics, 205
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Liquid Crystal Display (LCD), 162
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Los Alamos National Laboratory
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Los Alamos National Laboratory
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Low
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Energy ElectronMicroscope, see

Electron, Microscope,
Low Energy

LURE, see Laboratoire pour
l’Utilisation du Rayonnement
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Magnetic
Dipole, 73, 134
Field, 2
Lens, 177
Mirror, 10
Moment, 1
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Rigidity, 20, 64
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Magnification, 44, 48, 162
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Map, see Transfer Map
Mass, 1

Spectrograph, 170
Spectrometer, 164
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MAX IV Laboratory, 230, 233
Maxwell’s Equations, 49
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Microscope, 46
Microtron, 22, 23
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Midplane

Field, 59
Symmetry, 116
Double, 118
Stable Motion, 190

Mirror, 40
Electrostatic, 184
Symmetry, 227
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Momentum, 1, 60

Acceptance, 168
Dynamical, 32
Spectrometer, 164
Browne-Buechner, 166
Q Value, 167
Resolution, 166

Multiple-Bend Achromat, see
Achromat, Multiple-Bend

Multipole Order, 52

National
High Magnetic Field Laboratory

(NHMFL), 26
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Laboratory (NSCL), 24
Natural Chromaticity, 202
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Needle, 6
Newtonian Telescope, 48
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Field Laboratory
Nonlinear Dynamics, 115, 205
Normal Form, 191, 261
Normalized Emittance, see

Emittance, Normalized
NSCL, see National Superconduct-

ing Cyclotron Laboratory
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Optics, 1, 36
Oscilloscope, 161

Packing Factor, 226
Parallel–to–Parallel, 47

Periodic Transport, 190
Parallel–to–Point, 46

Periodic Transport, 190
Parallelogram, 145
Particle Optical Coordinates, see

Coordinates,
Particle Optical

PEEM, see Electron, Microscope,
Photo Emission

PEEM3, 184, 186
Periodic

Solution, 263, 267
Transport, 189

Perpetual Motion Machine, 12
Perturbation Theory, 31, 35, 115
Phase, 261

Advance, 149
Multipole, 52
Slip Factor, 245, 247, 256
Leading Order, 247
Second Order, 248, 250

Phase Space, 1
Linear Motion, 141
Dipole, 143
Drift, 142
Ellipse, 144
Lens, 142
Polygon, 144
Quadrupole, 143

Volume, 41
Photo

Cathode, 7
Effect, 7
Emission, 7
Electron Microscope, see
Electron, Microscope,
Photo Emission

Pillbox Cavity, 241
Electromagnetic Field, 241

Field Distribution, 241
TM010, 242
TM110, 243

Pincushion Distortion, 163
Pion Source, 4
Plasma Physics, 1
Poincaré Recurrence Theorem, 42
Point Filament, 7
Point–to–Parallel, 46

Periodic Transport, 190
Point–to–Point, 44

Periodic Transport, 190
Polygon, 144
Position, 1
Positron Source, 4
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Electrostatic, 63
Pre-Accelerator, 19
Production of Beam, 4
Projector, 44
Proton Source, 8

Q Value, 167
Quad, see Quadrupole
Quadrupole, 52, 143, 173, 208, 229,

235, 271
Electric, 70
Error, 264
Magnetic, 72
Mass Spectrometer, 164
Rotational Symmetry, 122
Transfer Matrix, 70

Radio Frequency (RF), 15, 22
Cavity, 17, 22, 29, 212, 232, 241
Gun, 7, 8
Quadrupole Accelerator (RFQ),

18
Radioactive Beam, 4, 174
Rectangular Dipole, 79
Recurrence Theorem, 42, 43
Reference

Orbit, 32, 50
Particle, 2, 10, 31

Relative
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Coordinates, 31
Dynamics, 32

Relativistic Heavy Ion Collider
(RHIC), 28

Repetitive System, 261
Resolution, 164, 166

Linear, 166
Nonlinear, 167

Resolving Power, 166
Resonance, 206, 261, 263

Coupling, 271
Difference, 276, 279, 280
Half–Integer, 264, 266
Integer, 261
Sum, 276, 279, 280
Third Order
Tune Shift, 293
Tune Shift, Amplitude, 292

Third–Integer, 281
Perturbed Invariant, 286

RF, see Radio Frequency
RFQ, see Radio Frequency,

Quadrupole Accelerator
RHIC, see Relativistic Heavy Ion

Collider
Richardson-Dushman Equation, 5
Rigidity, 20, 64

Electric, 64
Magnetic, 64

Ring, see Storage Ring
Rotational Symmetry, see

Symmetry, Rotational
Round Lens, 87, 123, 177

Electric, 89
Magnetic, 97

Scalar Potential, 2, 49
Scanning Electron Microscope, see

Electron, Microscope,
Scanning

Scanning Transmission Electron
Microscope, see
Electron, Microscope,
Scanning Transmission

Schottky Emission, 7

SDI, see Strategic Defense Initiative
Sector

Field Mass Spectrometer, 164
Magnet, 76
Inhomogeneous, 82

Self Interaction, 2
SEM, see Electron, Microscope,

Scanning
Sextupole, 180, 213, 235, 271
Shanghai Synchrotron Radiation

Facility (SSRF), 235
Shearing

Horizontal, 142
Vertical, 143

Sigma
Ellipse Matrix, 145

Sine-like Ray, 178, 179
SLAC National Accelerator

Laboratory, 8, 19, 215, 239
SLC, see Stanford Linear Collider
Small Oscillation, 67
SMART, see SpectroMicroscopy for

All Relevant Techniques
Solenoid, 97, 271

Edge, 99
Rotational Symmetry, 121

Source
Electron, 4
Ion, 9, 14
Proton, 8

South Hall Ring (MIT), 215
Space Charge, 2
Spark, 14, 16
Spectrograph, 164
Spectrometer, 87, 164

Mass, 164
Momentum, 164
Resolution, 166

SpectroMicroscopy for All Relevant
Techniques Project
(SMART), 184

Spherical
Aberration, see

Aberration, Spherical
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Deflector, see
Deflector, Spherical

Lens, 39
Spin, 1
SSRF, see Shanghai Synchrotron

Radiation Facility
Stanford Linear Collider (SLC), 19
Steering, 207
STEM, see Electron, Microscope,

Scanning Transmission
Step Function, see

Heaviside Function
Stigmatic Image, 87
Stop Band, 263, 268, 275, 280

Half–Integer, 270
Integer, 269, 270

Storage Ring, 4, 27–30, 261
Strategic Defense Initiative (SDI), 46
Stripping, 8, 15
Strong Focusing, see Focusing, Strong
Sum Resonance, see Resonance, Sum
Super-ACO Ring, 28
Surface Plasma Source, 8
Symmetry, 115

Double Midplane, 118
Midplane, 116
Mirror, 227
Rotational, 50, 119, 120
Quadrupole, 122
Round Lens, 87

Symplectic, 123
Transfer Map, 116

Symplectic
Condition, 124, 126
Edwards-Teng Parametrization,

155
Symmetry, see

Symmetry, Symplectic
Synchrocyclotron, 25
Synchronicity Condition, 23
Synchrotron, 25, 27, 30, 207

Light Source, 30
Motion, 241
Radiation, 6, 19, 30, 231
Tune, 256

Tandem Van de Graaff, 15
TBA, see Achromat, Triple-Bend
TEAM, see Electron, Microscope,

Transmission, Aberration-
corrected

Telescope, 41, 47, 235
Television Tube (TV), 161
TEM, see Electron, Microscope,

Transmission
Tevatron, 28, 207
Thermionic

Emission, 5
Gun, 5

Thin
Lens, 37
Edge Focusing, 77

Mirror, 40
Third Order Resonance, see

Resonance, Third Order
Third–Integer Resonance, see

Resonance, Third Integer
Thomas Jefferson National

Accelerator Facility
(Jefferson Lab, JLab,
TJNAF), 23

Tilt of Focal Plane, 170
Time Reversal, 8
Time-of-Flight, 33

Mass Spectrometer, 164
Time-Resolved Spectroscopy, 7
TJNAF, see Thomas Jefferson

National Accelerator
Facility

Transfer Map, 35, 36, 115
Differential Algebra, 134
Symmetry, 116

Transfer Matrix, 36
Drift, 37, 70
Edge Focusing
Electrostatic Round Lens, 91
Magnetic Dipole, 77
Solenoid, 105

Electric
Deflector, Cylindrical, 86
Deflector, Inhomogeneous, 86
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Quadrupole, 71
Round Lens, 95, 97

Lens
Defocusing, 40
Drift-Lens-Drift (DLD), 45
Focusing, 38
Lens-Drift-Lens (LDL), 47

Magnetic
Dipole, Homogeneous, 76
Dipole, Inhomogeneous, 83
Dipole, Rectangular, 81
Dipole, Sector, 76
Quadrupole, 72
Round Lens, 105
Solenoid, 105

Mirror
Defocusing, 41
Focusing, 40

Transit Time Factor, 244, 245
Transition, 248

Jump, 248
Transmission Electron Aberration-

corrected Microscope, see
Electron, Microscope,
Transmission,
Aberration-corrected

Transmission ElectronMicroscope, see
Electron, Microscope,
Transmission

Transport, 4
Transversal Dynamics, 33
Triple-Bend Achromat, see

Achromat, Triple-Bend
Triplet, 229, 230, 235
Tune, 192, 193, 206, 208

Shift, 293
Amplitude, 292

Synchrotron, 256
Tungsten, 7
Tunneling, 6
TV Tube, see Television Tube
Twiss Parameter, 146

Alpha, 146
Beating, 159

Beta, 146
Function, 149

Gamma, 146

Ultra-Slow Extraction, 30
Undulator, 19, 30
Unstable Motion, 191

Perturbation, 194

Van de Graaff, R. J., 13–15
Vector Potential, 2, 49
Veksler, V., 22, 23
Velocity, 60
Voltage Multiplier, 12

Waist, 153
Walton, E. T. S., 12, 13
Weak Focusing, see Focusing, Weak
Weakly Nonlinear, 35, 66
Wideröe, R., 16
Wien Filter Quadrupole, 179
Wiggler, 30
Work Function, 4

Zirconium, 7
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