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Zusammenfassung
In dieser Arbeit entwickeln wir schnellere exakte Algorithmen (schneller be-
züglich der Worst-Case-Laufzeit) für Spezialfälle von Graphproblemen. Diese
Algorithmen beruhen größtenteils auf dynamischem Programmieren und auf
2-SAT-Programmierung. Dynamisches Programmieren beschreibt den Vorgang,
ein Problem rekursiv in Unterprobleme zu zerteilen, sodass diese Unterprobleme
gemeinsame Unterunterprobleme haben. Wenn diese Unterprobleme optimal
gelöst wurden, dann kombiniert das dynamische Programm diese Lösungen
zu einer optimalen Lösung des Ursprungsproblems. 2-SAT-Programmierung
bezeichnet den Prozess, ein Problem durch eine Menge von 2-SAT-Formeln
(aussagenlogische Formeln in konjunktiver Normalform, wobei jede Klausel aus
maximal zwei Literalen besteht) auszudrücken. Dabei müssen erfüllende Wahr-
heitswertbelegungen für eine Teilmenge der 2-SAT-Formeln zu einer Lösung
des Ursprungsproblems korrespondieren. Wenn eine 2-SAT-Formel erfüllbar ist,
dann kann eine erfüllende Wahrheitswertbelegung in Linearzeit in der Länge
der Formel berechnet werden. Wenn entsprechende 2-SAT-Formeln also in po-
lynomieller Zeit in der Eingabegröße des Ursprungsproblems erstellt werden
können, dann kann das Ursprungsproblem in polynomieller Zeit gelöst werden.
Im folgenden beschreiben wir die Hauptresultate der Arbeit.

Bei dem Diameter-Problem wird die größte Distanz zwischen zwei beliebigen
Knoten in einem gegebenen ungerichteten Graphen gesucht. Das Ergebnis (der
Durchmesser des Eingabegraphen) gehört zu den wichtigsten Parametern der
Graphanalyse. In dieser Arbeit erzielen wir sowohl positive als auch negative
Ergebnisse für Diameter. Wir konzentrieren uns dabei auf parametrisierte Al-
gorithmen für Parameterkombinationen, die in vielen praktischen Anwendungen
klein sind, und auf Parameter, die eine Distanz zur Trivialität messen.

Bei dem Problem Length-Bounded Cut geht es darum, ob es eine Kanten-
menge begrenzter Größe in einem Eingabegraphen gibt, sodass das Entfernen
dieser Kanten die Distanz zwischen zwei gegebenen Knoten auf ein gegebenes
Minimum erhöht. Wir bestätigen in dieser Arbeit eine Vermutung aus der wis-
senschaftlichen Literatur, dass Length-Bounded Cut in polynomieller Zeit in
der Eingabegröße auf Einheitsintervallgraphen (Intervallgraphen, in denen jedes
Intervall die gleiche Länge hat) gelöst werden kann. Der Algorithmus basiert
auf dynamischem Programmieren.
k-Disjoint Shortest Paths beschreibt das Problem, knotendisjunkte Pfade

zwischen k gegebenen Knotenpaaren zu suchen, sodass jeder der k Pfade ein
kürzester Pfad zwischen den jeweiligen Endknoten ist. Wir beschreiben ein
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dynamisches Programm mit einer Laufzeit nO((k+1)!) für dieses Problem, wobei n
die Anzahl der Knoten im Eingabegraphen ist. Dies zeigt, dass k-Disjoint
Shortest Paths in polynomieller Zeit für jedes konstante k gelöst werden kann,
was für über 20 Jahre ein ungelöstes Problem der algorithmischen Graphentheorie
war.

Das Problem Tree Containment fragt, ob ein gegebener phylogenetischer
Baum T in einem gegebenen phylogenetischen Netzwerk N enthalten ist. Ein
phylogenetisches Netzwerk (bzw. ein phylogenetischer Baum) ist ein gerichteter
azyklischer Graph (bzw. ein gerichteter Baum) mit genau einer Quelle, in dem
jeder Knoten höchstens eine ausgehende oder höchstens eine eingehende Kante
hat und jedes Blatt eine Beschriftung trägt. Das Problem stammt aus der
Bioinformatik aus dem Bereich der Suche nach dem Baums des Lebens (der
Geschichte der Artenbildung). Wir führen eine neue Variante des Problems ein,
die wir Soft Tree Containment nennen und die bestimmte Unsicherheits-
faktoren berücksichtigt. Wir zeigen mit Hilfe von 2-SAT-Programmierung, dass
Soft Tree Containment in polynomieller Zeit gelöst werden kann, wenn N
ein phylogenetischer Baum ist, in dem jeweils maximal zwei Blätter die gleiche
Beschriftung tragen. Wir ergänzen dieses Ergebnis mit dem Beweis, dass Soft
Tree Containment NP-schwer ist, selbst wenn N auf phylogenetische Bäume
beschränkt ist, in denen jeweils maximal drei Blätter die gleiche Beschriftung
tragen.

Abschließend betrachten wir das Problem Reachable Object. Hierbei wird
nach einer Sequenz von rationalen Tauschoperationen zwischen Agentinnen
gesucht, sodass eine bestimmte Agentin ein bestimmtes Objekt erhält. Eine
Tauschoperation ist rational, wenn beide an dem Tausch beteiligten Agentinnen
ihr neues Objekt gegenüber dem jeweiligen alten Objekt bevorzugen. Reacha-
ble Object ist eine Verallgemeinerung des bekannten und viel untersuchten
Problems Housing Market. Hierbei sind die Agentinnen in einem Graphen
angeordnet und nur benachbarte Agentinnen können Objekte miteinander tau-
schen. Wir zeigen, dass Reachable Object NP-schwer ist, selbst wenn jede
Agentin maximal drei Objekte gegenüber ihrem Startobjekt bevorzugt und dass
Reachable Object polynomzeitlösbar ist, wenn jede Agentin maximal zwei
Objekte gegenüber ihrem Startobjekt bevorzugt. Wir geben außerdem einen Po-
lynomzeitalgorithmus für den Spezialfall an, in dem der Graph der Agentinnen
ein Kreis ist. Dieser Polynomzeitalgorithmus basiert auf 2-SAT-Programmierung.
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Abstract
This thesis presents faster (in terms of worst-case running times) exact algorithms
for special cases of graph problems through dynamic programming and 2-SAT
programming. Dynamic programming describes the procedure of breaking down
a problem recursively into overlapping subproblems, that is, subproblems with
common subsubproblems. Given optimal solutions to these subproblems, the
dynamic program then combines them into an optimal solution for the original
problem. 2-SAT programming refers to the procedure of reducing a problem to
a set of 2-SAT formulas, that is, Boolean formulas in conjunctive normal form
in which each clause contains at most two literals. Computing whether such
a formula is satisfiable (and computing a satisfying truth assignment, if one
exists) takes linear time in the formula length. Hence, when satisfying truth
assignments to some 2-SAT formulas correspond to a solution of the original
problem and all formulas can be computed efficiently, that is, in polynomial
time in the input size of the original problem, then the original problem can be
solved in polynomial time. We next describe our main results.

Diameter asks for the maximal distance between any two vertices in a
given undirected graph. It is arguably among the most fundamental graph
parameters. We provide both positive and negative parameterized results for
distance-from-triviality-type parameters and parameter combinations that were
observed to be small in real-world applications.

In Length-Bounded Cut, we search for a bounded-size set of edges that
intersects all paths between two given vertices of at most some given length.
We confirm a conjecture from the literature by providing a polynomial-time
algorithm for proper interval graphs which is based on dynamic programming.
k-Disjoint Shortest Paths is the problem of finding (vertex-)disjoint paths

between given vertex terminals such that each of these paths is a shortest path
between the respective terminals. Its complexity for constant k ≥ 3 has been
an open problem for over 20 years. Using dynamic programming, we show
that k-Disjoint Shortest Paths can be solved in polynomial time for each
constant k.

The problem Tree Containment asks whether a phylogenetic tree T is
contained in a phylogenetic network N . A phylogenetic network (or tree) is a
leaf-labeled single-source directed acyclic graph (or tree) in which each vertex
has in-degree at most one or out-degree at most one. The problem stems from
computational biology in the context of the tree of life (the history of speciation).
We introduce a particular variant that resembles certain types of uncertainty in
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the input. We show that if each leaf label occurs at most twice in a phylogenetic
tree N , then the problem can be solved in polynomial time and if labels can
occur up to three times, then the problem becomes NP-hard.

Lastly, Reachable Object is the problem of deciding whether there is a
sequence of rational trades of objects among agents such that a given agent
can obtain a certain object. A rational trade is a swap of objects between two
agents where both agents profit from the swap, that is, they receive objects
they prefer over the objects they trade away. This problem can be seen as a
natural generalization of the well-known and well-studied Housing Market
problem where the agents are arranged in a graph and only neighboring agents
can trade objects. We prove a dichotomy result that states that the problem
is polynomial-time solvable if each agent prefers at most two objects over its
initially held object and it is NP-hard if each agent prefers at most three objects
over its initially held object. We also provide a polynomial-time 2-SAT program
for the case where the graph of agents is a cycle.
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Preface
This thesis contains some of the results of my research at the Technische
Universität Berlin in the Algorithmics and Computational Complexity group
headed by Prof. Rolf Niedermeier from January 2017 to September 2020. The
presented findings are partially based on published papers and partially based
on papers that are only available on the arXiv repository yet. Many of these
results were prepared in close collaboration with my coauthors. These are (in
alphabetical order) Jiehua Chen, Vincent Froese, Klaus Heeger, Dušan Knop,
Josef Malík, André Nichterlein, Malte Renken, Mathias Weller, Gerhard J.
Woeginger, and Philipp Zschoche.

In the following, I sketch the story behind the research projects corresponding
to the different chapters as well as briefly state my respective contributions.

Chapter 3. After finishing my master’s thesis late 2016 in the young field of
FPT in P and starting my PhD program in 2017, André Nichterlein (TU Berlin)
suggested to further explore this field. He asked me to choose between either
Diameter or Maximum Flow to work on next and I chose Diameter. Most
of the results featured in our conference paper ([BN19]), which I presented at
the 11th International Conference on Algorithms and Complexity (CIAC ’19)
in Rome, Italy, are based on my ideas and André Nichterlein helped polishing
both the results and the paper as a whole. An extended version featuring more
details and all proofs is available in the arXiv repository and is submitted to a
journal.

Chapter 4. From September 2018 to September 2019 Dušan Knop (Czech
Technical University in Prague) had a postdoctoral position in our group. He
suggested to study the problem Length-Bounded Cut. Initially, he was
interested in certain W[1]-hardness results and started working on it with Klaus
Heeger (TU Berlin). I joined the project soon after. During our research we
found that the computational complexity of solving Length-Bounded Cut on
interval graphs and proper interval graphs was stated as an open problem in the
literature. We showed that the problem is polynomial-time solvable on proper
interval graphs and we also proved the W[1]-hardness results that we were
initially looking for, that is, for the feedback vertex number and the combined
parameter pathwidth plus maximum degree. The polynomial-time algorithm was
mostly my contribution while the W[1]-hardness results are mostly due to Klaus

ix



Heeger. The corresponding paper ([BHK20]) was presented by Klaus Heeger at
the 31st International Symposium on Algorithms and Computation (ISAAC ’20),
which was held virtually in December 2020. An extended version is available in
the arXiv repository and is submitted to a journal.

Chapter 5. Our group holds a research retreat each year. In September 2019
at the retreat in Schloss Neuhausen (Brandenburg, Germany), André Nichterlein
suggested to study a problem variant of Disjoint Paths and Anne-Sophie
Himmel, Malte Renken, André Nichterlein, Philipp Zschoche (all TU Berlin),
and I started working on it there. During the retreat, we studied different
versions of Disjoint Paths and decided that we wanted to tackle the version
Disjoint Shortest Paths after the retreat. It was known from the literature
that this problem is NP-hard when the number k of shortest paths in the
solution is part of the input and it was posed as an open problem for over
twenty years whether there exists a polynomial-time algorithm for constant
values of k. For k = 2 an O(n8)-time algorithm was known, where n is the
number of vertices in the input graph. Between December 2019 and January
2020, William Lochet (University of Bergen) and we independently answered
the open question in the affirmative. William Lochet was the first to publish
his paper at the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’21) [Loc21]. While his algorithm has a running time of nO(k5k

), where
the Landau notation hides a constant 955 in the exponent, we have since worked
on improving the running time of our algorithm to O(k · n16k·k!+k+1). We also
proved W[1]-hardness for Disjoint Shortest Paths with respect to k. All
coauthors except for Anne-Sophie Himmel, who left academia shortly after the
retreat and has withdrawn her authorship of the corresponding paper, have
worked roughly equally on all parts of the paper. I was less involved in the
W[1]-hardness result and instead designed a dynamic program for Disjoint
Shortest Paths on directed acyclic graphs which is used as a subroutine in our
main algorithm. I presented the corresponding paper at the 48th International
Colloquium on Automata, Languages, and Programming (ICALP ’21) [Ben+21].
An extended version of the paper is available in the arXiv repository.

Chapter 6. At the retreat in April 2017 near Boiensdorf (Mecklenburg-
Vorpommern, Germany) Mathias Weller (University of Paris-Est) presented a
problem called Tree Containment that stems from computational biology.
Josef Malík (Czech Technical University in Prague), Mathias Weller, and I
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started working on it. Unfortunately, we had only limited success during the
retreat but Mathias Weller and I wanted to continue working on it after the
retreat. Josef Malík also wanted to participate further but did not have the
required time to do so. For this reason, most of the results were achieved
in equal parts by Mathias Weller and me in close collaboration. I presented
the corresponding paper ([BMW18]) at the 16th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT ’18) in June 2018 in Malmö, Sweden.
An extended version is available in the HAL repository and is accepted for
publication in the Journal of Graph Algorithms and Applications.

Chapter 7. Rolf Niedermeier presented a paper on Reachable Object at
the retreat in Darlingerode (Saxony-Anhalt, Germany) in March 2018. Jiehua
Chen (TU Vienna), Vincent Froese (TU Berlin), Gerhard J. Woeginger (RWTH
Aachen University), and I chose this problem to work on during the retreat.
We achieved a few hardness results as well as a polynomial-time algorithm
for short preference lists of all agents in close collaboration during the retreat.
However, there was an intriguing open problem left when the input graph is a
path that was described in the literature to be “at the frontier of tractability,
despite its simplicity”. Later this year, I resolved this case by providing a
polynomial-time algorithm. A very similar algorithm was in the meantime
developed independently by Sen Huang and Mingyu Xiao. We contacted the
authors and invited them to join the two papers but they declined because of
Chinese regulations. Their paper was presented at the 33rd AAAI Conference on
Artificial Intelligence (AAAI ’19) and is published in Autonomous Agents and
Multi-Agent Systems [HX20]. We since improved our algorithm to also work for
cycles but so far the paper is only available in the arXiv repository [Ben+19a].
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Chapter 1

Introduction

When confronted with a new problem, one of the first choices we face is to select
a set of tools to tackle the problem with. Sometimes, none of the tools we know
is useful for the task and we give up or we come up with a new (specialized)
tool. Most often, however, (some of) the tools we already know are useful and
our task becomes much easier once we figured out the correct tool for the job.
So how do we choose the correct tool? Do we need to try every possible tool?
Of course not. Is it up to experience to decide for the correct tool? While
experience definitely helps, there are oftentimes rules or heuristics we can follow
that guide us to the correct tool. Finding these rules and heuristics is important
as it helps us and others to save time and effort not trying the wrong tools and
not needing to collect years of experience before becoming efficient problem
solvers.

While the above holds in general, we want to focus on algorithmic problems
and exact algorithms in this thesis. The tools available for such tasks are
numerous. When considering computationally easy problems (problems in P),
we often start with greedy algorithms but also tools like divide and conquer,
dynamic programming, or modeling with a flow network come to mind. When
considering computationally hard (NP-hard) problems, then we can use some of
the previous tools or we can refer to tools like branch and bound, backtracking,
integer linear programming (ILP), modeling as a SAT problem, color-coding,
or data reduction. All of the mentioned tools are very well understood and we
know at least some rules for each of them of when to apply them. Divide and
conquer and dynamic programming for example are the first choices when a
problem can be decomposed into smaller instances of the same problem. This is
not to say, however, that we know everything about these tools already. In this
thesis, we investigate two tools in more depth. These are dynamic programming
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and 2-SAT programming. 2-SAT programming is a tool that has been used in
the literature much less than dynamic programming. For dynamic programming
we will not find additional rules for when to use it but rather some rules of how
to apply it. For 2-SAT programming, we will investigate where and how it was
used so far, develop our own experiences by applying it to two problems, and
conclude with two heuristics of when 2-SAT programming might be a good fit.

One might ask why we chose exactly these two tools. On the one hand, this
is to a certain degree up to pure chance. These tools just happened to work well
for the problems we studied in the past. On the other hand, since we worked
with these tools quite successfully, we feel confident that we can add something
to the topic.

In the following, we give an introduction to dynamic programming and 2-SAT
programming. We conclude this chapter with an overview over the results in
this thesis.

1.1 Dynamic Programming
Dynamic programming describes the procedure of recursively breaking down
a problem into smaller overlapping subproblems and computing an optimal
solution from solutions for these subproblems. Subproblems overlap if they
have common subsubproblems. The analogous technique for non-overlapping
subproblems is called divide and conquer. An example for divide and conquer is
merge-sort, where in each step the array of numbers to sort is partitioned and
independently sorted.

The term dynamic programming was coined around 1952 by Richard Bell-
man [Bel52]. Dynamic programming has since then become a staple of computer
science which is taught in countless classes and books on algorithms, applied to
computational problems such as Longest Common Subsequence, Longest
Increasing Subsequence, Maximum Weight Independent Set on trees,
and Approximate String Matching [Cor+09, Ski20]. It has been used in
numerous fields including machine learning [BNK20, BSW89], computer vi-
sion [AWJ90], computational biology [Che+01, FT97, San00], and computational
chemistry [Ari00, Gro+19]. It also had a large impact on parameterized algorith-
mics as the go-to tool for algorithms on tree decompositions of graphs [Bod88,
LZ20, Mar20].

In the following, we will first give a general structure of how to apply dynamic
programming. We then exercise a standard example for dynamic programming
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using our general structure and finally describe how this structure will guide
us throughout the first part of this thesis. Dynamic programming is most
often achieved by filling a table where each entry stores the solution to some
subproblem. There are four main questions that one should answer when
developing a dynamic program:

1. What does a table entry represent?

2. What dimension shall the table have?

3. How to compute the table entries?

4. How can the solution of the original problem can be computed once the
table is completely filled?

We present a standard dynamic program for the problem Knapsack. For this
problem, we are given a set X of n objects each with a positive integer weight
(denoted by w) and a positive integer value (denoted by v) and two integers B
and k. The question then is whether there is a subset of objects whose total
weight is at most B and whose total value is at least k. Knapsack is known to
be NP-complete but it allows for a pseudo-polynomial-time (polynomial if all
number are encoded in unary) algorithm [TM90].

Without loss of generality, let X = {o1, o2, . . . , on}. By answering the four
questions above one by one, we explain how an existing O(n ·B ·k)-time dynamic
program for Knapsack works [TM90].

1. What does a table entry represent?

Each entry in the table T represents a subproblem which is defined by a subset
of objects and two bounds 1 ≤ B′ ≤ B and 1 ≤ k′ ≤ k. The value in each entry
in T is a binary value storing whether the respective subproblem is a yes- or a
no-instance.

2. What dimension shall the table have?

Let Xi
..= {o1, o2, . . . , oi} be the set of the first i objects. The table T has

entries for each subset Xi, where i ∈ [n] and [n] ..= {1, 2, . . . , n}. Moreover,
it has an entry for each combination of a subset Xi and values 1 ≤ B′ ≤ B
and 1 ≤ k′ ≤ k. The dimension or type of T is therefore

T : [n]× [B]× [k]→ {true, false}.

3



3. How to compute each table entry?

Initially, we set

T [1, B′, k′] ..=
{︄

true, if B′ ≥ w(o1) and k′ ≤ v(o1), and
false, otherwise.

Once all entries T [i, B′, k′] for a specific i are computed, we can compute
an entry t ..= T [i + 1, B′, k′]. We do so by distinguishing between the three
cases B′ < w(oi+1), B′ = w(oi+1), and B′ > w(oi+1). If B′ < w(oi+1), then

t ..= T [i, B′, k′].

If B′ = w(oi+1), then

t ..=
{︄

true, if k′ ≤ v(oi+1) and
T [i, B′, k′], otherwise.

Finally, if B′ > w(oi+1), then

t ..=
{︄

true, if k′ ≤ v(oi+1) and
T [i, B′, k′] ∨ T [i, B′ − w(oi+1), k′ − v(oi+1)], otherwise.

The idea is the following. If there is already a solution of total weight at most B′

and total value at least k′ using only the first i objects, then this solution is
also a solution for the instance corresponding to T [i+ 1, B′, k′]. If no such
solution exists, then the “new” object oi+1 has to be part of every solution.
If B′ < w(oi+1), then no solution exists in this case. If B′ = w(oi+1), then
there is a solution (the set {oi+1}) if and only if k′ ≤ v(oi+1). If B′ > w(oi+1),
then either the set {oi+1} is a solution (if k′ ≤ v(oi+1)) or any solution set S
contains oi+1 and S′ ..= S \{oi+1} ≠ ∅ (if k′ > v(oi+1)) such that S′ is a solution
for the problem corresponding to T [i, B′ − w(oi+1), k′ − v(oi+1)].

4. How can the solution of the original problem be computed once the table
is completely filled?

If each table entry is computed correctly, then the original instance is by
definition a yes-instance if and only if T [n,B, k] = true.

4



We skip the formal proof of correctness and the analysis of the running
time [TM90].

The first part of this thesis is about dynamic programming. Therein, we study
the problems Diameter, Length-Bounded Cut, and k-Disjoint Shortest
Paths. The Diameter problem asks for the longest shortest path between
two vertices in a given graph. In Length-Bounded Cut, we are given an
undirected graph, two terminal vertices s and t, and two integers k and ℓ. The
question is whether there is a set of at most k edges such that removing those
edges yields a graph in which the distance between s and t is larger than ℓ. For
the problem k-Disjoint Shortest Paths, we are given an undirected graph
and k terminal pairs (si, ti) and the question is whether there are k disjoint
paths Pi such that Pi is a shortest path between si and ti.

These problems are in some sense very similar as all of the problems deal
with shortest paths in a given undirected graph but are also quite different from
one another: One the one hand, Diameter is polynomial-time solvable while
Length-Bounded Cut and k-Disjoint Shortest Paths are NP-hard. On
the other hand, Length-Bounded Cut is about removing (cutting) parts
from the graph while Diameter and k-Disjoint Shortest Paths are more
about routing (finding specific shortest paths in a graph). As equal and yet
different the problems are, so are the algorithms we develop for each of them.
The algorithms have in common that they are dynamic programs but they
differ in which of our four guiding questions is hardest to answer for them.
These respective questions therefore deserve additional consideration and these
considerations will guide us through the first part of the thesis. In Chapter 3,
we will study Diameter and we will encounter a dynamic program in which
the dimension of the table is quite unique as it partially depends on the optimal
solution and can therefore not be determined a priori. In Chapter 4, we study
Length-Bounded Cut. The dynamic program we develop there does not
allow to lookup the final answer in a specific table entry. Instead, the final
answer is computed by iterating over a few specific table entries. Finally, in
Chapter 5 we study k-Disjoint Shortest Paths and develop a dynamic
program for it. The question of how to compute each table entry seems very
easy to answer at first glance but it will turn out that considering it some more
and ignoring some information given to us allows for a much faster algorithm.
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1.2 2-SAT Programming
2-SAT programming1 refers to the procedure of efficiently reducing a problem to
a set of Boolean formulas in 2-CNF (conjunctive normal form with at most two
literals per clause) such that the solution for the original problem can be con-
structed from the solutions for the 2-SAT formulas (satisfying truth assignments
or the fact that formulas are unsatisfiable). The technique has been used in a
wide range of contexts, e. g. subgraph detection [HL00, Jan17], graph transforma-
tion [HHW03], matrix partiotioning [Bul+16], computational biology [EHK03,
GW09], resource allocation [HX20, MB20], and cartography [WW95]. However,
we could not find many more examples of it being used and, to the best of our
knowledge, 2-SAT programming has never been systematically analyzed as a
general technique to solve computational problems. We start such an analysis by
comparing how and when this technique was used in the literature so far. Before
we do so, we first begin with an example of how to use 2-SAT programming.

We show how to solve the following special case of Independent Set in
linear time in the input size.

Boolean Multicolored Independent Set
Input: An undirected graph G ..= (V,E) where each vertex has a color and

there are exactly two vertices of each color.
Question: Is there a colorful independent set in G, that is, is there a set

that contains exactly one vertex of each color and no two vertices in
this set share an edge in G?

Let G = (V,E) be an instance of Boolean Multicolored Independent
Set where ui and vi are the two vertices of the ith color in G. Our constructed
2-SAT program consists only of a single formula Φ which contains a variable xi
for each color. Setting xi to true corresponds to picking ui into the solution and
setting xi to false corresponds to picking vi into the solution. The formula Φ
consist of one clause for each edge {y, z} in G that evaluates to false if both y
and z are picked into the solution. Let y have the ith color and let z have
the jth color and let i ̸= j without loss of generality. We distinguish between
the four possible cases (i) y = ui and z = uj , (ii) y = ui and z = vj , (iii) y = vi
and z = uj , and (iv) y = vi and z = vj . In the first case, the clause shall
evaluate to false if and only if xi = true and xj = true. This is achieved by the
clause ¬(xi ∧ xj) ≡ (¬ xi ∨ ¬ xj). Analogously, the clauses for the other three

1We mention that this method of problem solving has been used only a few times in the
literature before. The name 2-SAT programming is not established in the literature.
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Φ = (¬ x1 ∨ ¬ x2) ∧ (¬ x1 ∨ x3) ∧
(x1 ∨ ¬ x2) ∧ (x1 ∨ x2) ∧
(x1 ∨ ¬ x3) ∧ (x2 ∨ x3)

Figure 1.1: An example instance of Boolean Multicolored Independent Set
and the 2-SAT formula Φ constructed by our 2-SAT program. The encircled vertices
form a solution and the edges are enumerated to allow easier verification of Φ. The
first edge corresponds to the first clause in Φ, the second edge to the second clause
in Φ, and so on. Note that the encircled vertices correspond to the truth assign-
ment x1 = true, x2 = false, and x3 = true. It is easy to verify that this is a satisfying
truth assignment to Φ. The encircled solution indeed is the only solution for the given
instance and the described truth assignment is the only satisfying truth assignment
for Φ.

cases are (¬ xi ∨ xj), (xi ∨ ¬ xj), and (xi ∨ xj), respectively. An example of
this construction is given in Figure 1.1. Note that the 2-SAT formula Φ can be
computed in time linear in the size of G. Since Φ can be checked for a satisfying
truth assignment in linear time (in the length of Φ which is linear in the size
of G) [APT79], the total running time is linear in the input size. It is easy
to verify that Φ is satisfied by some truth assignment if and only if the set of
vertices corresponding to this truth assignment are pairwise non-adjacent in G.
Since each such set contains exactly one vertex of each color, each solution of Φ
corresponds to a solution of Boolean Multicolored Independent Set.

We conclude this introduction to 2-SAT programming with an analysis of
how and when 2-SAT programming was used in the literature before and how
our two new results fit into this picture. The majority of results that we could
find that used 2-SAT programming ([Bul+16, EHK03, GW09, HHW03, HL00,
WW95]) used it as follows. Variables describe whether or not to pick some
element into a solution set and the clauses in each 2-SAT formula prevented
that some conflicting elements where chosen in the same solution. In the
remaining examples ([HX20, Jan17, MB20]) variables did not represent whether
or not to pick some element into a solution but rather which element is picked
into a solution (as in our example above). By exploring 2-SAT programming
more in-depth in the thesis, we hope to find some indications of when 2-SAT
programming should be considered for new (algorithmic) problems. Indeed,
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we will conclude that 2-SAT programming is promising when the considered
problem is (thought to be) polynomial-time solvable and has some independence
structure. By that, we mean that the a solution consists of some elements that
can

• be partitioned into constant-size parts and at most one element from each
part is picked into the solution, and

• a set of elements forms a solution if each pair of elements in this set can
be contained in the same solution.

In the example above, the elements were the vertices of the graph, the partition
was achieved by the colors of vertices, and a set of vertices forms a solution only
if they are pairwise non-adjacent.

We present two new examples of 2-SAT programming in the second part of
the thesis. These examples follow the distinction of 2-SAT programs stated
above. In Chapter 6, we study a problem from computational biology called
Tree Containment that asks whether a specific subtree exists in a given
directed graph. Roughly speaking, our approach is to introduce a variable for
each vertex in the input network that is set to true if the vertex belongs to the
sought subtree and to false otherwise. In Chapter 7, we investigate Reachable
Object, a problem stemming from the field of resource allocation. Therein,
agents initially own objects, have different preferences over the objects, and are
arranged in a social network. They may swap objects with one another under
certain conditions including that they must be adjacent in the social network.
The question is then whether a specific agent can obtain a given target object.
In a cycle, each object is given from the agent that initially holds it to one of
its two possible neighbors. The variables in the 2-SAT program we develop in
Chapter 7 then represent for each object to which of the two respective agents
it is swapped to.

We conclude this introduction to 2-SAT programming with describing a
similarity and a dissimilarity between the two 2-SAT programs we develop in the
thesis. They have in common that they are designed for very sparse graphs (trees
in Chapter 6 and cycles in Chapter 7) and they differ in how they generalize
to “k-SAT programs”. While the algorithm for Tree Containment does
generalize naturally to any constant k to a correct algorithm for a meaningful
problem, the same cannot be said about the algorithm for Reachable Object.
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1.3 Results
In this thesis, we design and analyze algorithms for (mostly NP-hard) graph
problems. We achieve a wide range of different results, among others, parame-
terized hardness and algorithms, polynomial-time algorithms for special cases,
and results within FPT in P, that is, parameterized algorithms and hardness
results for problems in P [GMN17]. We also resolve some open problems from
the literature.

In Chapter 3, we study the Diameter problem, which asks for the longest
shortest path between any two vertices in a given graph. This parameter was
observed to be very small in many different real-world application [LH08, Mil67,
New03] and it is often used in network analysis [AJB99, WF94]. This has led
to a wide spectrum of algorithms computing the diameter faster than the naïve
algorithm (see Zwick [Zwi01]). We add to this spectrum by providing new
parameterized algorithms for computing the diameter. On the one hand, we
study distance-from-triviality-like parameters [GHN04] and show that graphs
with small modulators to cographs, that is, small sets of vertices whose removal
yield a cograph, allow for faster diameter computations while graphs with small
modulators to bipartite graphs do not. On the other hand, we study parameter
combinations that are expected to be small in real-world applications. Here, we
show that the combined parameter h-index plus diameter allows for positive FPT-
in-P results whilst similar combinations under standard complexity assumptions
do not. The algorithms for graphs with small modulators to cographs and
for the combined parameter h-index plus diameter are both based on dynamic
programming.

In Chapter 4, we study the problem Length-Bounded Cut which arises
from the field of network flows. Given an undirected graph, two terminal
vertices s and t, and two integers k and ℓ, the question is whether there
is a set of at most k edges such that removing these edges yields a graph
in which the distance between s and t is larger than ℓ. We prove a conjec-
ture by Bazgan et al. [Baz+19] by providing a polynomial-time algorithm for
Length-Bounded Cut on proper interval graphs which is based on dynamic
programming. We also briefly investigate interval graphs and show limitations
of our approach for proper interval graphs.

In Chapter 5, we look at a long-standing open question regarding the com-
plexity of k-Disjoint Shortest Paths for constant k [Eil98, Fom+19]. In
k-Disjoint Shortest Paths, we are given an undirected graph and k terminal
pairs (si, ti), and the question is whether there are k disjoint paths Pi such
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that Pi is a shortest path between si and ti. We present an algorithm whose
running time is polynomial in the input size for each constant k. The algorithm
is based on dynamic programming and a geometric representation of the problem
that is quite intuitive yet, to the best of our knowledge, novel.

In Chapter 6, we investigate a problem variant of Tree Containment which
stems from computational biology. Given a leaf-labeled directed acyclic graph N
(called a phylogenetic network) and a leaf-labeled directed tree T , the question
in Tree Containment is whether N displays T . This is the case if N contains
a subdivision of T as a subgraph that respects leaf-labels [ISS10]. A version
of Tree Containment where N is a tree is used in the quest for finding the
“tree of life”, that is, given the current knowledge of speciation (modeled as a
directed tree N) and some new data (modeled as another (possibly smaller)
directed tree T ), the question is whether N and T are consistent. We call
the version we investigate Soft Tree Containment. It is motivated by soft
polytomies, that is, multiple speciation events whose order is unknown. Another
kind of uncertainty can be modeled by allowing N to have multiple leaves with
the same label. Our main contribution is a dichotomy result regarding the
maximal number of occurrences of a label in N . On the one hand, using 2-SAT
programming, we show that Soft Tree Containment is polynomial-time
solvable if N is a tree in which each leaf-label occurs at most twice. On the
other hand, we show that Soft Tree Containment remains NP-hard when
restricted to trees in which each leaf-label occurs at most thrice.

In Chapter 7, we study a problem called Reachable Object. Therein,
one is given a set of agents, a set of objects, a specific agent I, and a specific
object x. Each agent has strict preferences over the objects and initially owns
exactly one object. Additionally, the agents are arranged in a graph (social
network) representing which agents know each other. The question is then
whether there is a sequence of rational swaps such that agent I owns object x
in the end [GLW17]. A rational swap is a trade between two agents that know
each other such that both agents receive an object they prefer over the object
they give away. Our contribution is twofold. First, we present a dichotomy
result regarding the number of objects each agent prefers over its initially
held object. If each agent prefers at most two objects over the one it initially
holds, then Reachable Object can be solved in polynomial using dynamic
programming. The problem remains NP-hard even if each agent prefers at most
three objects over its initially held object. Second, using 2-SAT programming,
we provide a polynomial-time algorithm for Reachable Object on cycles
which is a generalization of a previous algorithm for Reachable Object on
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paths [HX20]. The original algorithm for paths answered an open problem from
the literature [GLW17].

Finally, we summarize our main results and give a broader overview over
possible avenues for further research regarding dynamic programming and 2-SAT
programming in Chapter 8.

11





Chapter 2

Preliminaries

In this chapter, we describe our notation and some general tools that will be
used in the following chapters. If a specific notion is only used in a single
chapter, then it will be introduced there. We assume familiarity with the basics
of set theory, calculus, and the description and analysis of algorithms.

2.1 Number Theory
We denote by Z ..= {. . . ,−1, 0, 1, . . .} the set of all integers, by N ..= {0, 1, 2, . . . , }
the set of all non-negative integers, and by N+ ..= N \ {0} the set of all positive
integers. We use Q ..= {p/q | p ∈ Z ∧ q ∈ N+} to denote the set of all rational
numbers and Q+

0
..= {p/q | p, q ∈ N+} to denote the set of all positive rational

numbers. The set of all real numbers is denoted by R.
For two integers a, b ∈ Z, we denote by [a, b] the integer interval between a

and b, that is, [a, b] ..= {i ∈ Z | a ≤ i ≤ b}. Analogously, we denote the
rational interval between a and b by [a, b]Q ..= {i ∈ Q | a ≤ i ≤ b}. For a > b,
let [a, b] ..= [a, b]Q ..= ∅. Finally, for a positive integer ℓ ∈ N+ we use [ℓ] as an
abbreviation for [1, ℓ] = {1, 2, . . . , ℓ}.

2.2 Graph Theory
An undirected graph G is a tuple (V,E) where V is the set of vertices or nodes
and E ⊆

(︁
V
2
)︁

is the set of edges. A directed graph is a tuple (V,A) where V is
again the set of vertices or nodes and A ⊆ {(u, v) | u ̸= v∧u, v ∈ V } is the set of
arcs. We will use n ..= |V | to denote the number of vertices, m ..= |E| (m ..= |A|)
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to denote the number of edges or arcs, and |G| ..= n+m to denote the size of G.
All graphs in this thesis are undirected unless explicitly stated otherwise.

For a vertex subset V ′ ⊆ V , we denote by G[V ′] the graph induced by V ′,
that is, the graph G[V ′] ..= (V ′, E′ ..= {{u, v} ∈ E | u, v ∈ V ′}) if G is an
undirected graph and G[V ′] ..= (V ′, A′ ..= {(u, v) ∈ A | u, v ∈ V ′}) if G
is directed. We abbreviate G − V ′ ..= G[V \ V ′]. A path P ..= (v0, . . . , vℓ)
in a directed graph is a graph with a set V (P ) ..= {v0, . . . , vℓ} of vertices
and arc set A(P ) ..= {(vi, vi+1) | 0 ≤ i < ℓ}. A path P ..= (v0, . . . , vℓ) in an
undirected graph is a graph with a set V (P ) ..= {v0, . . . , vℓ} of vertices and a
set E(P ) ..= {{vi, vi+1} | 0 ≤ i < ℓ} of edges. We say that ℓ is the length of P
and a shortest path between two vertices is a path of minimum length. We
define A(P ) to be the set of arcs {(vi−1, vi) | i ∈ [ℓ]} and A−1(P ) to be the
set of arcs {(vi, vi−1) | i ∈ [ℓ]}. Intuitively, A(P ) and A−1(P ) describe the two
directed versions of P in an undirected graph. The vertices v0 and vℓ are called
the end vertices or ends of P and are denoted by start(P ) and end(P ). We also
say that P is a path from v0 to vℓ, a path between v0 and vℓ, or a v0-vℓ-path.
When no ambiguity arises, we do not distinguish between a path and its set of
vertices. We identify specific paths by just some of their vertices, e. g. we use
the name a-b-c-path to denote a path that starts in a, then continues by some
shortest a-b-path, and ends with some shortest b-c-path.

Let v, w be two vertices in a path P . We denote by P [v, w] the sub-
path of P with end vertices v and w. For two paths P1 ..= (v0, . . . , va)
and P2 ..= (v′

0, . . . , v
′
b) with v′

0 = va or {va, v′
0} ∈ E ((va, v′

0) ∈ A), we de-
fine P1 • P2 ..= (v0, . . . , va, v

′
1, . . . , v

′
b) or P1 • P2 ..= (v0, . . . , va, v

′
0, . . . , v

′
b), re-

spectively. For two vertices u, v ∈ V , we denote with distG(u, v) the distance
between u and v in G, that is, the number of edges in a shortest path between u
and v. If G is clear from the context, then we omit the subscript. A connected
component C ⊆ V in a graph G is a maximal set of vertices such that there is a
path between each pair of vertices in C.

The degree degG(v) of a vertex v ∈ V in an undirected graph G is the number
of edges that contain v. The in-degree of a vertex v ∈ V in a directed graph is
the number of arcs of the form (u, v) for u ∈ V . A vertex with in-degree zero
is called a source. The out-degree of a vertex v ∈ V in a directed graph is the
number of arcs of the form (v, w) for w ∈ V . A vertex with out-degree zero
is called a sink. The degree of a vertex v ∈ V in a directed graph is the sum
of its in-degree and its out-degree. The neighborhood NG(v) of a vertex is the
set of all vertices that share an edge (or arc) with v in G and we use NG[v]
to denote N(v) ∪ {v}. Again, if G is clear from the context, then we omit the
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subscript. Suppressing a degree-two vertex v ∈ V in an undirected graph G
refers to the action of removing the vertex v from G and adding the edge
between v’s two neighbors u,w if it is not already contained in G. Suppressing
a vertex v ∈ V in a directed graph G = (V,A) with in-degree one and out-
degree one refers to the action of removing the vertex v from G and adding the
arc (u,w) where (u, v), (v, w) ∈ A. Again, if this arc was already present in A,
then we just remove v with its two incident arcs. Subdividing an edge {u,w}
in an undirected graph refers to the action of removing {u,w} and adding a
new vertex v and new edges {u, v} and {v, w}. Subdividing an arc (u,w) in a
directed graph refers to the action of removing the respective arc and adding a
new vertex v and new arcs (u, v) and (v, w).

We continue with some notation for directed acyclic graphs (DAGs). We call
a vertex d in a DAG G a descendant of another vertex a if there is a a-d-path
in G. Moreover, we call a an ascendant of d. For a DAG G, let <G be a
relation between vertices in G such that v <G u if and only if u is an ancestor
of v. Moreover, let u ≤G v if and only if u <G v or u = v. Let define Gv
to be the subgraph of G induced by {u | u ≤G v}. The set of least common
ancestors LCAN ({X}) of a set X of vertices contains all minima with respect
to ≤G among all vertices u of N with v ≤G u for all v ∈ X. In particular,
if G is a tree, then LCAN ({X}) contains a single vertex. If G is clear from the
context, then we may drop the subscript.

Two undirected graphs G ..= (VG, EG) and H ..= (VH , EH) are isomorphic if
there is a bijection f between VG and VH such that for any two vertices u, v ∈ VG
it holds that {u, v} ∈ EG if and only if {f(u), f(v)} ∈ EH . Analogously, two
directed graphs G ..= (VG, AG) and H ..= (VH , AH) are isomorphic if there is
a bijection f between VG and VH such that for any two vertices u, v ∈ VG it
holds that (u, v) ∈ AG if and only if (f(u), f(v)) ∈ EH . We call f the mapping
between G and H.

2.2.1 Graph Classes
A tree is a connected acyclic (directed or undirected) graph, that is, a graph in
which each pair of vertices is connected by an unique shortest path. A rooted
tree is a tree T with a designated vertex r called the root of T . The depth of
a vertex v in a rooted tree is the distance between v and r. The height of a
vertex v in a rooted tree is the maximum distance between v and a leaf ℓ in T
such that v is contained in a shortest r-ℓ-path. A forest is a graph in which
each connected component is a tree.
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Figure 2.1: An example
of an interval graph (left
side) and its interval rep-
resentation (right side).

Figure 2.2: An example of a generalized caterpillar with hair length two. The topmost
vertices form the central path and the paths below are the hairs.

A clique is a graph G = (V,E) with E = {{u, v} | u, v ∈ V }. A graph is
bipartite if its vertex set can be partitioned in two sets V1, V2 such that for
each edge {u, v} ∈ E it holds that u ∈ V1 and v ∈ V2 (or u ∈ V2 and v ∈ V1).
Analogously, a graph is k-partite if its vertex set can be partitioned into k
sets V1, V2, . . . , Vk such that it holds for each edge {u, v} ∈ E that u and v are
not contained in the same vertex set Vi.

An interval graph is a graph G = (V,E) such that each vertex v can be
represented by a rational interval [bv, fv]Q such that two vertices u,w are adjacent
in G if and only if [bu, fu]Q∩ [bw, fw]Q ̸= ∅. A proper interval graph is an interval
graph such that there are no two vertices v and w such that [bv, fv]Q ⊂ [bw, fw]R.
Equivalently, a proper interval graph can be defined as an interval graph where
each interval has length one, i. e., bv+1 = fv for each vertex v (see e. g. [BLS99]).
An example of an interval graph and its interval representation is given in
Figure 2.1. A cograph is a graph that does not contain a P4 (a path of four
vertices and three edges) as an induced subgraph. A caterpillar is a tree such
that removing all leaves yields a path (i.e, all vertices are within distance at
most one of a “central path”). A generalized caterpillar with hairs of length at
most h ≥ 1 is a tree such that removing paths of length at most h yields a path.
A generalized caterpillar with hairs of length two is shown in Figure 2.2.
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2.2.2 Graph Parameters

The maximum degree of a graph G = (V,E) is the maximum number of
incident edges to any single vertex in the graph, that is, max{deg(v) | v ∈ V }.
Analogously, the minimum degree is defined as min{deg(v) | v ∈ V } and the
average degree of a graph is 2m/n. We denote by d(G) the diameter of G, that
is, the length of the longest shortest path in G. The h-index of a graph G is the
maximum number h such that the graph contains at least h vertices of degree
at least h.

One of the most famous graph parameters is the treewidth. It is defined
through tree decompositions. A tree decomposition of a graph G = (V,E) is a
tree T = {X , E′}, where each Xi ∈ X = {X1, X2, . . . , Xℓ} is a subset of V and
the following three properties hold. First, each vertex v ∈ V is contained in at
least one Xi ∈ X . Second, for each vertex v ∈ V , the set of all Xi with v ∈ Xi

induces a connected subgraph in T . Third, for every edge {u, v} ∈ E, there is
a subset Xi that contains both u and v. The width of a tree decomposition
is max{|X| | X ∈ X}−1 and the treewidth of G is the minimum width among all
possible tree decompositions of G. The pathwidth of a graph is defined similarly
to its treewidth, but instead of tree decompositions only path decompositions
are considered, that is, the tree T is required to be a path.

The girth of a graph is the size of a smallest induced cycle in the graph (or ∞
if the graph is a forest). The bisection width of a graph G = (V,E) is defined as
the size of a smallest set E′ of edges such that V can be partitioned into two
sets V1, V2 with |V1| = |V2| (or |V1| = |V2|+ 1 if |V | is odd) such that all edges
with one end in V1 and one end in V2 is contained in E′. Bisection width is
illustrated in Figure 2.3. A dominating set in a graph is a set K of vertices such
that each vertex in the graph is contained in K or has at least one neighbor
in K. The domination number of a graph is the size of a minimum dominating
set in it. The acyclic chromatic number of a graph is the minimum number of
colors needed to color each vertex with one of the given colors such that each
subgraph induced by all vertices of one color is an independent set and each
subgraph induced by all vertices of two colors is acyclic.

Lastly, for some graph class Π, the distance to Π is the size of a minimum
set of vertices such that the graph resulting from deleting this set of vertices is
in Π. In this thesis, we will consider the distance to cographs, the distance to
bipartite graphs, and the distance to forests. The distance to bipartite graphs is
known as odd cycle transversal number and the distance to forests is known as
feedback vertex number in the literature. We will hence use these names. The
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Figure 2.3: An example of the bisection width of a graph. The edges between the
two parts are drawn using dashed lines and the bisection width is two (the number of
dashed edges).

edge-deletion distance to forests, that is, the size of a smallest set of edges such
that removing them yields a forest, is known as the feedback edge number.

2.3 Complexity Classes and Hypotheses
We assume familiarity with the basics of Turing machines and Random Access
Machines. Otherwise, we refer to Papadimitriou [Pap94]. In this thesis, we will
always analyze the running time of an algorithm in terms of Random Access
Machines. However, complexity classes are classically defined using Turing
machines.

The class P contains all decision problems (or languages) that can be decided
in polynomial time by deterministic Turing machines. The class NP contains all
decision problems that can be decided in polynomial time by non-deterministic
Turing machines.

A parameterization for a problem L is formally a pair of functions (f, g) such
that f maps each possible input I for P to some object f(I) and g maps each
such object to a non-negative integer. We use the treewidth of a graph as an
example. Here, f maps each graph to a tree decomposition of G and g measures
the width of the tree decomposition, that is, the maximum number of vertices in
any bag of the tree decomposition (minus one). A parameter is then the resulting
positive integer g(f(I)) of a parameterization. A parameterized problem is a
tuple (L, κ), where L is a language (an unparameterized decision problem) and κ
is a parameter. An instance of (L, κ) is a pair (x, k) where k = g(f(x)) for
some parameterization (f, g). For a parameterized problem L = (L, κ), the
language L̂ = {x ∈ Σ∗ | ∃k : (x, k) ∈ L} is called the unparameterized problem
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associated to L. For a broader introduction into parameterized complexity
theory, we refer the reader to the books by Cygan et al. [Cyg+15], Downey and
Fellows [DF13], Flum and Grohe [FG06], and Niedermeier [Nie06].

A problem L is fixed-parameter tractable with respect to some parameter κ if
there is an algorithm deciding whether (x, k) ∈ (L, κ) (or equivalently x ∈ L)
in f(k) · |x|O(1) time, where |x| denotes the size of x and f is some computable
function depending only on k. The class FPT contains all parameterized
problems (L, κ) where L is fixed-parameter tractable with respect to κ. The
class XP contains all parameterized problems (L, κ) such that there is an
algorithm deciding whether (x, k) ∈ (L, κ) in |x|f(k) time, where f is again
some computable function only depending on k. The class W[1] contains all
parameterized problems (L, κ), where every instance (x, k) of (L, κ) can be
transformed in f(k) · |x|O(1) time to a combinatorial circuit that has weft at
most one and constant depth for all instances, such that (x, k) ∈ (L, κ) if and
only if there is a satisfying truth assignment to the input circuit that assigns true
to exactly k inputs. The weft of a combinatorial circuit is the largest number of
logical units with unbounded fan-in on any path from an input to the output.
The depth of a combinatorial circuit is the largest number of logical units on any
path from an input to the output. Similarly to the assumption that P ̸= NP, the
assumption FPT ̸= W[1] is widely believed and is used to exclude FPT -results.
A few years ago, the topic of FPT in P [GMN17] emerged from parameterized
complexity theory. Therein, instead of designing f(k)·|x|O(1)-time algorithms for
NP-hard problems where k is some superpolynomial function, one is interested
in f(k) · |x|c-time algorithms for problems in P, where no O(|x|c)-time algorithm
is known for the unparameterized problem associated to it.

The problem k-SAT is a generalization of 2-SAT and defined as follows.

k-SAT
Input: A Boolean formula Φ in conjunctive normal form where each clause

in Φ contains at most k literals.
Question: Is Φ satisfiable?

Analogously to 2-SAT programs, we use the term k-SAT program to refer to
an algorithm that solves a problem by constructing and solving k-SAT instances
(formulas conjunctive normal form where each clause contains at most k literals).

The Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [IP01]
postulates that there is no 2o(m)-time algorithm solving the Satisfiability
problem, where m is the number of clauses. It is formalized as follows.
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Hypothesis 2.1 (Exponential-Time Hypothesis (ETH)). There is some con-
stant δ > 0 such that 3-SAT cannot be solved in O(2δn) time, where n is the
number of variables in the input formula.

It is worth noting that assuming the ETH, there is no f(k) · no(k)-time
algorithm solving Multicolored Clique problem [Che+05], where f is a
computable function and k is the solution size.

Multicolored Clique
Input: An integer k and a k-partite undirected graph G ..= (V,E) with

V ..=
⨄︁k
i=1 Vi and |Vi| = n/k for all i ∈ [k].

Question: Is there an induced clique of size at least k in G?
A stronger version of the ETH is the so-called Strong Exponential-Time

Hypothesis (SETH) [IP01]. It states the following.

Hypothesis 2.2 (Strong Exponential-Time Hypothesis (SETH)). For each δ < 1
there is an integer k such that k-SAT cannot be solved in O(2δn) time.

Let Φ be a Boolean input formula for Satisfiability. We remark that
if the SETH is true, then there is no |Φ|2−ε · |Φ|O(1)-time algorithm solving
Satisfiability [IP01].

2.4 Reductions Between Problems
A (many-one) reduction is a function R : Σ∗ → Σ∗ that transforms an in-
stance x of some problem L to an equivalent instance y of a problem L′, that
is, y ∈ L′ ⇐⇒ x ∈ L. A polynomial-time (many-one) reduction is a reduction
that can be computed in time polynomial in the input size |x|. To show that a
problem A is presumably not in P, one can reduce an NP-hard problem B to A
(written as B ≤p A). Unless P = NP, this shows that A /∈ P. A problem B
is NP-hard if for all problems in NP there is a polynomial-time reduction
to B. Famous examples of NP-hard problems are e. g. Multicolored Clique
and k-SAT [Kar75]. If B ≤p A for a NP-hard problem B, then A is also
NP-hard.

A parameterized reduction is a reduction R : Σ∗×N→ Σ∗×N that transforms
a parameterized problem L to a parameterized problem L′ in FPT -time, that
is, for each instance (x, k) of L it produces an instance (y, ℓ) of L′ such that

1. (y, ℓ) can be computed in f(k)·|x|O(1) time for some computable function f ,

20



2. (y, ℓ) ∈ L ⇐⇒ (x, k) ∈ L′, and

3. ℓ ≤ g(k) for some computable function g.

To show that some parameterized problem is presumably not in FPT , one
regularly uses the standard complexity assumption that FPT ̸= W[1] and shows
that a problem is W[1]-hard. To show W[1]-hardness for some parameterized
problem L, we use parameterized reductions from W[1]-hard problems similar to
the unparameterized setting. Probably the most famous example of a W[1]-hard
problem is Multicolored Clique parameterized by the solution size k.

Concerning FPT-in-P studies, we use the notion of General-Problem-hardness
which formalizes the types of reduction that allow us to exclude certain parame-
terized algorithms for problems in P. In a nutshell, we want to upper-bound the
parameter in the constructed instance by some constant ℓ without increasing
the running time or the instance size by too much. Since it holds for each com-
putable function f that f(ℓ) is some constant, we can then hide any dependency
on ℓ in the Landau notation.

Definition 2.1 ([Ben+19b, Definition 3.1]). Let L ⊆ Σ∗×N be a parameterized
problem, let L̂ ⊆ Σ∗ be the unparameterized decision problem associated to L,
and let g : N → N be a polynomial. We call L ℓ-General-Problem-hard(g)
(ℓ-GP-hard(g)) if there exists an algorithm A transforming any input instance x
of L̂ into a new instance (y, k) of L such that

1. A runs in O(g(|x|)) time,

2. (y, k) ∈ L ⇐⇒ x ∈ L̂,

3. k ≤ ℓ, and

4. |y| ∈ O(|x|).

We call L General-Problem-hard(g) (GP-hard(g)) if there exists an integer ℓ
such that L is ℓ-GP-hard(g). We omit the running time and call L ℓ-General-
Problem-hard (ℓ-GP-hard) if g is a linear function.

Showing GP-hardness for some parameter κ allows to lift algorithms for the
parameterized problem to the unparameterized setting as stated next. The idea
behind this statement is that assuming a parameterized problem is both ℓ-GP-
hard nc and can be solved in O(nc · f(k)) time for some computable function f
and some constant c, then we can solve the unparameterized problem associated
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to it in O(nc) time by first reducing an arbitrary input instance to an equivalent
instance in which the parameter is at most ℓ and then use the parameterized
algorithm where we can hide the dependency on the parameter in the Landau
notation.

Lemma 2.3 ([Ben+19b, Lemma 3.2]). Let g : N → N be a polynomial, and
let L ⊆ Σ∗ ×N be a parameterized problem which is GP-hard(g). Let L̂ ⊆ Σ∗ be
the unparameterized decision problem associated to L. If there is an algorithm
solving each instance (y, k) of L in f(k) · g(|y|) time, then there is an algorithm
solving each instance x of L̂ in O(g(|x|)) time.

We conclude this chapter with a simple example to illustrate Lemma 2.3.
Consider the problem of detecting whether a given undirected graph contains
a clique of size five and the parameter bisection width. By simply copying the
graph such that the resulting graph has twice as many vertices and edges, the
bisection width becomes zero as there is no edge between the two copies of the
original graph and both copies contain the same number of vertices. Moreover,
the resulting graph contains a clique of size five if and only if the original graph
contains a clique of size five. Now assume that there was an O((n+m) · f(k))-
time algorithm for this problem where k is the bisection width and f is some
computable function. Then, this would imply that we could first construct an
equivalent instance in linear time where k = 0 as described above, and then
solve this equivalent problem in f(k) · (n+m) ∈ O(n+m) time.
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Part I

Dynamic Programming
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Chapter 3

Diameter

In this chapter, we study the problem Diameter which asks for the maximum
distance between any two vertices in a given undirected graph. Regarding
dynamic programming, this chapter features a dynamic program that is note-
worthy as the solution for Diameter will not be related to any table entry but
to the final size of the table. To the best of our knowledge, this is the first time
the dimension of a dynamic program was used in this way.

Concerning the Diameter problem, many consider the diameter of a graph
among the most fundamental graph parameters [Bac+18, New03, WF94]. Most
known algorithms for determining the diameter first compute the shortest path
between each pair of vertices (All-Pairs Shortest Paths) and then return
the maximum [AVW16]. However, several more efficient algorithms have been
proposed for special cases [AVW16, BHM20, Cor+01, FP80, Gaw+21] or for
approximating the diameter [Ain+99, Bac+18, RW13, WY16].

In this chapter, we follow the FPT-in-P approach [AVW16, Ben+20, GMN17],
that is, we propose parameterized algorithms for Diameter that run faster than
known unparameterized algorithms when specific parameters are very small or
show that such algorithms refute popular complexity assumptions. In Section 3.2,
we follow the distance-from-triviality-parameterization paradigm [GHN04] aiming
to augment a folklore algorithm for Diameter on cographs such that it also
works for graphs with small modulators to cographs, that is, graphs with small
sets of vertices whose removal yields a cograph. We also analyze graphs with
small modulators to bipartite graphs. For the parameter distance k to cographs,
we provide a 2O(k)(n+m)-time algorithm. For the parameter odd cycle transversal
number k (the distance to bipartite graphs), we use our recently introduced notion
of General-Problem-hardness [Ben+19b] to show that Diameter parameterized
by k is “as hard” as the unparameterized Diameter problem. In Section 3.3,
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we investigate parameter combinations that are motivated by properties of
social networks. Social networks often have special characteristics, including the
small-world property (small diameter) and a power-law degree distribution (small
average degree and small h-index) [LH08, Mil67, New03, New10, NP03]. Since
social networks often have small diameter and small h-index, we investigate
combinations of parameters closely related to the diameter and parameters
closely related to the h-index.

The domination number d is a parameter that upper-bounds the diameter and
the acyclic chromatic number a upper-bounds the average degree and is upper-
bounded by the h-index. Hence, the standard O(n ·m)-time algorithm runs
in O(n2 · a) time. We will show that this is essentially the best one can hope for
as, assuming the SETH, we can exclude f(a, d) · (n+m)2−ε-time algorithms for
each ε > 0. Our result is based on a reduction by Roditty and Williams [RW13]
which is modified such that the acyclic chromatic number and the domination
number in the resulting graph are five and four, respectively. It is known that
a kO(1)(n+m)2−ε-time algorithm where k is the combined parameter diameter
plus maximum degree would refute the SETH [BN19]. Complementing this lower
bound, we provide an f(k)(n + m)-time algorithm where k is the combined
parameter diameter plus h-index. The maximum degree upper-bounds the h-index.

3.1 Problem Definition and Related Work
Diameter asks for the maximum distance between any two vertices in a given
undirected and connected input graph. It is formally defined as follows and
an example is given in Figure 3.1. Recall that distG(v, w) is the length of a
shortest path between v and w in G.

Diameter
Input: An undirected and connected graph G ..= (V,E).
Task: Compute the length of a longest shortest path in G, that

is, max{distG(u, v) | u, v ∈ V }.

Due to its importance, Diameter is extensively studied. Concerning worst-
case analysis, the theoretically fastest algorithms (in terms of dependence on the
number n of vertices) are based on matrix multiplication and run in O(n2.373)
time [Sei95]. In terms of the dependence on the input size n+m, the currently
fastest algorithms for All-Pairs Shortest Paths run in O(n3/2Ω(

√
logn)) time

in dense graphs [CW21] and in O(nm) time in sparse graphs, respectively.
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Figure 3.1: An undirected connected graph G = ({s, t, u, v, w}, E). The diameter of G
is 3 as distG(u, v) = 3 and distG(x, y) ≤ 3 for all x, y ∈ {s, t, u, v, w}.

The O(nm)-time algorithm performs a breadth-first search from each vertex
and algorithms for Diameter employed in practice are usually based on this ap-
proach. See e. g. Borassi et al. [Bor+15] for a recent example of such an algorithm
which also yields good performance bounds using average-case analysis [BCT17].

Concerning special graph classes, Gawrychowski et al. [Gaw+21] showed
how to solve Diameter on planar graphs in Õ(n5/3) time. Other special
cases include linear-time algorithms for outerplanar graphs [FP80] and chordal
graphs [Cor+01].

In this chapter, we follow the line of FPT in P [GMN17]. Starting FPT in P
for Diameter, Abboud et al. [AVW16] observed that, unless the SETH fails,
there is no kO(1) · (n+m)2−ε-time algorithm for Diameter for any ε > 0 if k is
the treewidth of the graph. Their corresponding reduction also shows the same
hardness result for the combined parameter h-index plus domination number and
the parameter vertex cover number. Moreover, the reduction also implies that
the SETH is refuted by any f(k)(n+m)2−ε-time algorithm for Diameter for
any computable function f and any ε > 0 when k is the distance to chordal
graphs. Evald and Dahlgaard [ED16] adapted the reduction to prove the same
for the parameter maximum degree.

Complementing the lower bound for the parameter treewidth by Abboud et al.
[AVW16], Bringmann et al. [BHM20] showed that Diameter can be solved
in 2O(k)n1+o(1) time where k is the treewidth of the graph. In the paper on
which this chapter is based, we systematically explored the parameter space
looking for parameters that allow for kO(1) · (n+m)2−ε-time algorithms [BN19].
Figure 3.2 gives an overview over the parameterized results for Diameter
and we will present in this chapter some selected results we achieved. The
following results on approximating Diameter are known. A simple breadth-
first search yields a linear-time 2-approximation. Aingworth et al. [Ain+99]
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Figure 3.2: Overview of the relation between the structural parameters and the
respective results for Diameter. An edge from a parameter α to a parameter β below
of α means that β can be upper-bounded in a polynomial (usually linear) function
in α (see also the work by Schröder [Sch19]). The three small boxes below each
parameter indicate whether there exists (from left to right) an algorithm running
in f(k)n2, f(k)(n + m)1+ε, or kO(1)(n + m)1+ε time, respectively. If a small box
is green (lighter), then a corresponding algorithm exists and the box to the left is
also green. Similarly, a red (darker) box indicates that a corresponding algorithm
would be a breakthrough. More precisely, if a middle box (right box) is red, then an
algorithm running in f(k) · (n + m)2−ε (or kO(1) · (n + m)2−ε) time refutes the SETH.
If a left box is red, then an algorithm with running time f(k)n2 implies an O(n2)-time
algorithm for Diameter in general. Hardness results for a parameter α imply the same
hardness results for the parameters below α. Similarly, algorithms for a parameter β
imply algorithms for the parameters above β. White boxes indicate open problems.

improved the approximation factor to 3/2 at the expense of the higher running
time of O(n2 log n + m

√
n log n). Roditty and Williams [RW13] showed that

approximating Diameter within a factor of 3/2− δ in O(n2−ε) for any δ, ε > 0
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time refutes the SETH. Moreover, for any ε, δ > 0 a (3/2− δ)-approximation in
O(m2−ε) time or a (5/3− δ)-approximation in O(m3/2−ε) time also refute the
SETH [Bac+18, CGR16]. On planar graphs, there is an approximation scheme
with near linear running time [WY16].

3.2 Parameters Motivated by Graph Classes
In this section, we investigate parameterizations that measure the distance to
special graph classes. We study the odd cycle transversal number (the distance
to bipartite graphs) and the distance to cographs. Roditty and Williams [RW13]
state that when computing the diameter of a graph, then distinguishing between
diameter two and diameter three is among the most difficult cases. Nonetheless,
detecting cographs (a subclass of graphs with diameter two) is easier than com-
puting the diameter. Moreover, if the graph contains only few pairs of vertices
of distance at least three, then the distance to cographs is often small. Thus,
an efficient algorithm for Diameter parameterized by the distance to cographs
might help dealing with the hard case of Diameter stated above. Besides
cographs, we study bipartite graphs as these are among the most fundamental
graph classes. Note that the lower bound of Abboud et al. [AVW16] for the
parameter vertex cover number (distance to edgeless graphs) already implies
that there is no kO(1) · (n+m)2−ε-time algorithm for k being either of the two
considered parameters as both are upper-bounded by the vertex cover number
(see Figure 3.2).

Odd Cycle Transversal. We will show that, assuming the SETH, there is
no f(k) ·(n+m)2−ε-time algorithm for the odd cycle transversal number k for any
computable function f . We do so by showing that Diameter is 4-GP-hard1 with
respect to the combined parameter odd cycle transversal number plus girth. Recall
that the girth of a graph is the size of a smallest induced cycle in the graph and
that Diameter is 4-GP-hard with respect to the parameter odd cycle transversal
number plus girth if the following holds. Each instance (G, k) of the decision

1We remark that Definition 2.1 and Lemma 2.3 are stated for decision problems while
Diameter is not a decision problem. However, the problem of deciding whether a given
undirected connected graph has diameter exactly k for some given k is a decision problem
and every algorithm for Diameter can be used to solve this decision problem with constant
overhead. We call Diameter GP-hard with respect to some parameter, when this decision
version of Diameter is GP-hard with respect to that parameter.
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Figure 3.3: Example for the construction in the proof of Proposition 3.1. The input
graph given on the left side has diameter two and the constructed graph on the right
side has diameter three. In each graph one longest shortest path is highlighted.

version of Diameter can be transformed in O(|G|) time into an instance (G′, k′)
such that the odd cycle transversal number plus girth of G′ is at most four and G′

has diameter k′ if and only if G has diameter k. Recall further that if Diameter
is 4-GP-hard with respect to some parameter ℓ, then Lemma 2.3 states the
following. If there is an algorithm solving each instance (G, k, ℓ) of the decision
version of Diameter in O(f(ℓ) · g(|G|)) time for any computable functions f
and g, then there is an algorithm that solves each instance (G′, k′) of the
unparameterized decision version of Diameter in O(g(|G′|)) time. This then
yields the following two results. First, any f(k) · n2.3-time algorithm can be
transformed into an O(n2.3)-time algorithm for Diameter (which is faster than
any known unparameterized algorithm). Second, any f(k) · (n + m)2−ε-time
algorithm would refute the SETH.

Proposition 3.1. Diameter is 4-GP-hard with respect to the combined pa-
rameter odd cycle transversal plus girth.

Proof. Let G = (V,E) be an arbitrary undirected connected input graph
with V = {v1, v2, . . . , vn}. We construct a new bipartite graph G′ = (V ′, E′),
where

V ′ ..= {ui, wi | vi ∈ V }, and

E′ ..= {{ui, wj}, {uj , wi} | {vi, vj} ∈ E} ∪ {{ui, wi} | vi ∈ V }.

An example of this construction can be seen in Figure 3.3. We will now prove
that all properties of Definition 2.1 hold. It is easy to verify that the construction
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can be computed in linear time and therefore the resulting instance is of linear
size as well. Observe that {ui | vi ∈ V } and {wi | vi ∈ V } are both independent
sets and therefore G′ is bipartite. Notice further that for any edge {vi, vj} ∈ E
there is an induced cycle in G′ containing the vertices ui, wi, uj , and wj .
Since G′ is bipartite, there is no induced cycle of length three in G′ and thus
the girth of G′ is four.

Lastly, we show that the diameter of G′ is exactly one larger than the diameter
of G. We do so by proving for each pair (vi, vj) of vertices in G that if dist(vi, vj)
is odd, then

dist(ui, wj) = dist(vi, vj) and dist(ui, uj) = dist(vi, vj) + 1,

and if dist(vi, vj) is even, then

dist(ui, uj) = dist(vi, vj) and dist(ui, wj) = dist(vi, vj) + 1.

Since dist(ui, wi) = 1 and dist(ui, wj) = dist(uj , wi), this will conclude the
proof.

In order to show that the diameter of G′ is exactly one larger than the
diameter of G, let c = dist(vi, vj) be odd and let P = (va0 , va1 , . . . , vac

) be a
shortest path from vi to vj where va0 = vi and vac

= vj . Let

P ′ = (ua0 , wa1 , ua2 , . . . , wac
)

be a path in G′. Clearly P ′ has length c and hence dist(ui, wj) ≤ c = dist(vi, vj).
It also holds that dist(ui, wj) ≥ c. To verify this, assume towards a contradiction
that there is a path P ′′ = (ub0 , wb1 , ub2 , . . . , wbc′ ) with ub0 = ui, wbc′ = wj ,
and c′ < c. Then there is a path P ′′′ = (vb0 , vb1 , . . . , vbc′ ) between vi and vj .
Note that if vbg

= vbh
for some bg < bh, then g = h and P ′′′ can be replaced by

a shorter path where the subpath P ′′′[bg+1, bh] is removed. Thus, the distance
between vi and vj is shorter than c, a contradiction.

Concerning dist(ui, uj), observe that G′ is bipartite and hence dist(ui, uj)
is even. It holds that dist(ui, uj) > c as dist(ui, uj) ≥ c for the same reason
as dist(ui, wj) ≥ c and dist(ui, uj) ̸= c as c is odd. Finally, since

P ′ • (uj) = (ua0 , wa1 , ua2 , . . . , wac
, uac

)

is a path of length c+1 between ui and uac = uj , it holds that dist(ui, uj) = c+1.
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It remains to analyze the case where the distance c = dist(vi, vj) between
two vertices in G is even. Let again P = (va0 , va1 , . . . , vac) be a shortest path
from vi to vj where va0 = vi and vac = vj . This time, let

P ′ = (ua0 , wa1 , ua2 , . . . , uac
)

be a path in G′. This shows that dist(ui, wj) ≤ dist(vi, vj). It again holds
that dist(ui, wj) ≥ c as if there would be a path P ′′ = (ub0 , wb1 , ub2 , . . . , ubc′ )
with ub0 = ui, ubc′ = uj , and c′ < c, then there would also be a shorter
path P ′′′ = (vb0 , vb1 , . . . , vbc′ ) between vi and vj . Observe that dist(ui, wj)
is odd as G′ is bipartite. Thus, dist(ui, wj) > c as dist(ui, wj) < c again
implies dist(vi, vj) < c and dist(ui, wj) ̸= c as one is odd and the other one is
even. Finally,

P ′ • (wj) = (ua0 , wa1 , ua2 , . . . , uac
, wac

)
proves that dist(ui, wj) = c+ 1 = dist(vi, vj) + 1.

Distance to cographs. We continue with the distance to cographs. A graph
is a cograph if and only if it does not contain a P4 as an induced subgraph, where
a P4 is a path on four vertices. Providing an algorithm that matches the lower
bound of Abboud et al. [AVW16], we will show that Diameter parameterized
by distance k to cographs can be solved in O(k · (n+m) + 2O(k)) time. We will
use the following lemma.

Lemma 3.2. Let G = (V,E) be a graph and let K ⊆ V a vertex subset such
that each connected component in G−K has diameter at most two. Then, the
diameter of G can be computed in O(|K| · (n+m+ 24|K|)) time.

Proof. Let G = (V,E) be the input graph, let K = {x1, x2, . . . , xk} ⊆ V be a
set of vertices such that each connected component in G has diameter at most
two and let G′ ..= G−K. We first compute the set of all connected components
of G′ and their respective diameter in linear time and store for each vertex the
information in which connected component it is contained. Note that we only
need to check for each connected component C whether C induces a clique in G′,
as otherwise C’s diameter is by assumption two. In a second step, we perform
from each vertex xi ∈ K a breadth-first search in G and store the distance
between xi and each other vertex v in a table. Since a single breadth-first search
takes O(n+m) time, this takes overall O(k · (n+m)) time.

Next we introduce some notation. The type of a vertex v ∈ V \K is a vector
of length k where the ith entry describes the distance from v to xi with the
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Figure 3.4: An example for types. The set K contains the two vertices x1 and x2 and
the connected components in G − K are depicted. The type of r is (1, 3), the type
of s is (2, 4), the type of t is (3, 4), the type of u is (1, 2), the type of v is (1, 1), and
the type of w is (2, 2).

addition that any value above three is set to four. An example is given in
Figure 3.4. We say that a type is non-empty if there is at least one vertex of this
type. We compute for each vertex v ∈ V \K its type. Additionally we store for
each non-empty type the vertices of this type. Moreover, if all vertices of this
type are in the same connected component, then we store this information, and
otherwise we store that there are at least two different connected components
containing a vertex of that type. This takes O(n · k) time and there are at
most 4k different types.

Lastly, we iterate over all of the at most 42k pairs (t1, t2) of non-empty types
(including the pairs where both types are the same) and compute the largest dis-
tance between vertices of these types. Let y, z be two vertices with type(y) = t1
and type(z) = t2 that have maximum pairwise distance. We will first discuss
how to find y and z and then show how to correctly compute their distance
in O(k) time. Once we iterated over all pairs of types and reported the maxi-
mum distance found, the diameter is either this or the largest distance from a
vertex xi ∈ K. Since we stored all of the latter distances in a table, we can also
store the maximum with only constant overhead.

To compute y and z, we consider the following two cases. If both types only
appear in the same connected component, then the distance between the two
vertices of these types is at most two. Hence, we can discard this case (one can
check in linear time whether the diameter of G is at least two). If two types
appear in different connected components, then a longest shortest path between
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vertices of the respective types contains at least one vertex in K. Observe that
since each connected component has diameter at most two, each third vertex in
any shortest path must be in K. Thus a shortest y-z–path contains at least one
vertex xi ∈ K with dist(xi, y) < 3. By definition, each vertex with the same
type as y has the same distance to xi and therefore the same distance to z
unless there is no shortest path from it to z that passes through xi, that is, it
is in the same connected component as z. Hence, we can choose two arbitrary
vertices of the respective types in different connected components. Observe that
we already precomputed for each type its vertices and whether it is represented
in multiple connected components or not. Thus, checking whether there are
two vertices of the respective type in different connected components is just
a table lookup. We can compute the distance between y and z in O(k) time
by computing minx∈K{dist(y, x) + dist(x, z)}. Observe that the shortest path
from y to z contains xi and therefore dist(y, xi) + dist(xi, z) = dist(y, z). In
this way, we can compute the diameter of G in O(k · (n+m+ 24k)) time.

Note that the algorithm described in the proof above does not verify whether K
is a vertex set such that each connected component in G − K has diameter
at most two. Indeed, even distinguishing between diameter two and three
in O(n2−ε) time for any ε > 0 would refute the SETH [AVW16]. Thus, the
above algorithm cannot efficiently verify whether the input meets the stated
conditions. Hence, when using Lemma 3.2, we need a way to ensure that each
connected component in G−K has diameter two. In cographs each connected
component has diameter two and hence we can show the following.

Proposition 3.3. Diameter can be solved in O(k · (n+m+ 216k)) time when
parameterized by the distance k to cographs.

Proof. Recall that a cograph does not contain a P4 as an induced subgraph.
Thus, any cograph has diameter at most two (but not every diameter-two
graph is a cograph, consider e. g. a cycle on five vertices). Moreover, given a
graph G, one can determine in linear time whether G is a cograph and can return
an induced P4 if this is not the case [Bre+08, CPS85]. Iteratively searching
for an induced P4, adding all four vertices of a returned P4 to a set K, and
deleting those vertices from G until it is P4-free hence computes a set K ⊆ V
with |K| ≤ 4k such that G−K is a cograph. The running time for computing K
is in O(k · (n+m)). Applying Lemma 3.2 to this set K then yields a running
time of O(|K| · (n + m + 24|K|)) ⊆ O(k · (n + m + 216k)) for computing the
diameter.
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Observe that when a minimum deletion set K to cographs is given, then we can
solve Diameter parameterized by the distance k to cographs in O(k·(n+m+24k))
time. We remark that computing the distance to cographs exactly is NP-
complete [LY80].

3.3 Parameters Motivated by Properties of
Social Networks

In this section, we study Diameter with respect to parameters that are expected
to be small in social networks. It was observed that social networks have the
small-world property and a power-law degree distribution [LH08, Mil67, New03,
New10, NP03]. The small-world property directly transfers to the diameter.
The power-law degree distribution is often captured by the h-index as only
few high-degree vertices exist in the network. Thus, we investigate parameters
related to the diameter and to the h-index. We start with some degree-based
parameters that are upper-bounded by the h-index and then continue with
parameter combinations.

Evald and Dahlgaard [ED16] showed that any f(k)(n+m)2−ε-time algorithm
for Diameter parameterized by the maximum degree k for any computable
function f refutes the SETH. Observe that 2m = n · a, where a is the average
degree and therefore the standard algorithm (run a breadth-first search from
each vertex) takes O(n · (n+m)) = O(a · n2) time. Since the average degree is
at most the maximum degree, this algorithm already matches the given lower
bound.

Observation 3.4. Diameter parameterized by average degree a is solvable
in O(a · n2) time.

We next investigate the parameter minimum degree and check whether the
average degree can be replaced by the minimum degree. Unsurprisingly, it cannot.
We show that Diameter is 2-GP-hard with respect to the combined parameter
bisection width plus minimum degree. In other words, if there is an f(b) · n2-time
algorithm, where b is the value of the combined parameter, then there is also
an O(n2)-time algorithm for Diameter. The bisection width of a graph G
is the minimum number of edges to delete from G in order to partition G
into two connected component whose number of vertices differ by at most one.
Computing the bisection width of a graph is known to be NP-hard [Bui+87].
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Figure 3.5: Example for the construction in the proof of Proposition 3.5. The input
graph given on the left side has diameter two and the constructed graph on the right
side has diameter 2 + 4 = 6. The respective longest shortest paths are highlighted.

Proposition 3.5. Diameter is 2-GP-hard with respect to the combined pa-
rameter bisection width plus minimum degree.

Proof. Let G = (V,E) be an arbitrary undirected connected input graph
with V = {v1, v2, . . . , vn} and let d be the diameter of G. We construct a
new graph G′ = (V ′, E′) with diameter d+ 4 as follows. Let

V ′ ..= {si, ti, ui | i ∈ [n]} ∪ {wi | i ∈ [3n]}, and
E′ ..= T ∪W ∪ E′′, where
T ..= {{si, ti}, {ti, ui} | i ∈ [n]},
W ..= {u1, w1} ∪ {{w1, wi} | i ∈ ([3n] \ {1})}, and
E′′ ..= {{ui, uj} | {vi, vj} ∈ E}.

An example of this construction can be seen in Figure 3.5. We will now prove
that all properties of Definition 2.1 hold. It is easy to verify that the graph G′

contains 6n vertices and 5n+m edges, and that G′ can be computed in linear
time. Notice that {si, ti, ui | i ∈ [n]} and {wi | i ∈ [3n]} are both of size 3n and
that there is only one edge ({u1, w1}) between these two sets of vertices. The
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bisection width of G′ is therefore one and the minimum degree is also one as s1
has only t1 as neighbor.

It remains to show that G′ has diameter d+4. First, notice that the subgraph
of G′ induced by {ui | i ∈ [n]} is isomorphic to G. Second, dist(si, ui) = 2 for
all i ∈ [n] and thus dist(si, sj) = dist(ui, uj) + 4 = dist(vi, vj) + 4 for all si ̸= sj .
Hence, the diameter of G′ is at least d + 4. Third, note that it holds for
all vertices x ∈ V ′ \ {si} that dist(si, x) > dist(ti, x). Lastly, observe that for
all i ∈ [3n] and all vertices x ∈ V ′ it holds that dist(wi, x) ≤ max{dist(s1, x), 4}.
Thus the longest shortest path in G′ is between two vertices si and sj and it is
of length dist(ui, uj) + 4 = dist(vi, vj) + 4 ≤ d+ 4.

We mention in passing that the constructed graph in the proof of Proposi-
tion 3.5 contains the original graph as an induced subgraph and if the original
graph is bipartite, then so is the constructed graph. Thus, first applying the
construction in the proof of Proposition 3.1 (see also Figure 3.3) and then the
construction in the proof of Proposition 3.5 (see also Figure 3.5) shows that
Diameter is GP-hard even when parameterized by the sum of girth, bisection
width, minimum degree, and odd cycle traversal.

Corollary 3.6. Diameter is 6-GP-hard with respect to the combined parameter
odd cycle traversal number plus girth plus bisection width plus minimum degree.

h-index and diameter. We next investigate the combined parameter h-
index plus diameter. The reduction by Roditty and Williams [RW13] produces
instances with constant domination number and logarithmic vertex cover number
(in the input size). Since the diameter d is linearly upper-bounded by the
domination number and the h-index is linearly upper-bounded by the vertex cover
number, any algorithm that solves Diameter parameterized by the combined
parameter (d+h) in (d+h)O(1) · (n+m)2−ϵ time disproves the SETH. We next
present the main result in this chapter, that is, an algorithm for Diameter
parameterized by h-index plus diameter that almost matches the lower bound. We
say that the running time almost matches the lower bound since its dependence
on the parameter is roughly O(hd + dh) = O(2d logh+h log d). Hence, it remains
open whether an algorithm with a running time of (n+m) · 2O(d+h) exists. We
consider the following algorithm our main result of this chapter for two reasons.
First, its running time almost matches the lower bound for the relevant special
case where the input graph has similar properties to social networks (namely
small diameter and small h-index). Second, the dynamic program we develop
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here is quite unique in the sense that the solution of the problem is not related
to some table entry but rather to the size of the table.

Theorem 3.7. Diameter parameterized by diameter d plus h-Index h is solvable
in O((n+m) · h · (hd + dh)) time.

Proof. LetG = (V,E) be an input graph for Diameter and letH = {x1, . . . , xh}
be a set of h vertices with highest degree in G. Clearly, H can be computed in
linear time. Notice that all vertices in V \H have degree at most h in G.

We will describe a two-phase algorithm based on the following idea. In the
first phase, it performs a breadth-first search from each vertex xi ∈ H, stores
the distance to each other vertex, and uses this to compute the type of each
vertex, that is, a vector containing the distances to each vertex in H. In the
second phase, the algorithm iteratively increases a value e and verifies whether
there is a pair of vertices of distance at least e+ 1 using dynamic programming.
If at any point no such pair is found, then the diameter of G is e.

The first phase is fairly straightforward. The algorithm performs a breadth-
first search from each vertex xi ∈ H and stores the distance from xi to each
vertex v in a table. We denote the maximum entry in this table by a. It then
iterates over each vertex v ∈ V \ H and computes a vector of length h with
the ith entry representing the distance from v to xi. An example of types is
depicted in Figure 3.6. The algorithm also stores the number of vertices of each
type (if there is at least one such vertex). Since the distance to any vertex is at
most d, there are at most dh different types. Let T be the set of all (non-empty)
types and for some t ∈ T let #t be the total number of vertices of type t.

For the second phase, we deploy a dynamic program that uses two tables N
and T . The table N : V ×N → 2V keeps for each vertex v and each possible
distance e track of all vertices that have distance exactly e in G′ = G−H . The
table T : V ×N × T → N stores for each vertex v, each distance e, and each
type t the number of vertices of type t that have distance at most e from v in G.
Initially e = 1, N [v, 0] = {v}, and N [v, 1] = N(v) for each vertex v. Before
we show how to initialize T , we explain the main idea behind it. Note that a
shortest path between v and a vertex w of type t either contains a vertex in H or
it is completely contained in G′. If it contains a vertex xi ∈ H , then the distance
between v and w is dist(v, xi) + dist(xi, w). Hence, assuming that a shortest
path contains a vertex in H , the distance between v and w is the minimum entry
in type(v) + type(w) = type(v) + t. We denote this minimum entry by mt(v, t).
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x1 x2 x3
H

u v w

x1 x2 x3
x1 0 1 1
x2 1 0 1
x3 1 1 0
u 1 1 2
v 1 2 1
w 2 1 1

Figure 3.6: An example of types. Each entry in the table on the right side displays the
distance between the two respective vertices. Each column is computed by a breadth-
first search from the respective vertex xi and each row is the type of the respective
vertex. The last row states for example that the distance between w and x1, x2, and x3
are 2, 1, and 1, respectively. Thus, the type of w is (2, 1, 1)T .

Since a path of length zero or one between two vertices v, w ∈ V \H cannot
contain a vertex in H, the table can be initialized by

T [v, 0, t] =
{︄

1, if type(v) = t,

0, otherwise, and
T [v, 1, t] = T [v, 0, t] + |{u ∈ N [v, e] | type(u) = t}.

The algorithm now iteratively increases e and computes N [v, e] and T [v, e, t]
for each v ∈ V \H and each t ∈ T until in one iteration T [v, e, t] = #t for all v
and all t. Once this is the case, all vertices in V \H have pairwise distance at
most e. Since we already computed the distance from each vertex xi ∈ H to
each other vertex, the maximum over all these distances and e is the diameter
of G. The recursive formulas for N and T are as follows.

N [v, e] = |(
⋃︂

u∈N [v,e−1]

N(u)) \ (N [v, e− 1] ∪N [v, e− 2])| and

T [v, e, t] =
{︄

#t, if mt(v, t) ≤ e, and
T [v, e− 1, t] + |{u ∈ N [v, e] | type(u) = t}| otherwise.

If at some iteration it holds that T [v, e, t] = #t for all vertices v and all
types t, then the algorithm terminates and returns max{e, a}. Observe that e
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is equal to the number of table entries in T divided by |V \H| · |T |. Thus, the
solution returned by the dynamic program is not depending on any value stored
within T but rather on the number of table entries in (the size of) T .

There are at most d iterations in which e is increased and table entries of N
and T are computed. Note that all values of the function mt can be precomputed
in O(|T |2 · h) ⊆ O(dh · h · n) time as |T | ≤ dh and |T | ≤ n. Note that the
computation of N closely resembles a breadth-first search in G′ and since the
maximum degree in G′ is h and the maximum depth is d, computing all entries
of N for a single vertex takes O(hd) time. To compute all entries T [v, e, t] for
all t ∈ T simultaneously, we iterate over each vertex w ∈ N [v, e] and increase
the entry T [v, e, type(w)] by one. This takes O(

∑︁d
e=1 |N [v, e]|) ⊆ O(hd) time

for each vertex. The running time of our algorithm is O(h · (n+m)) for the first
phase and O((dh · h · n) + n · hd) for the second phase. This yields an overall
running time of

O((n+m+ h) · dh + n · hd) ⊆ O((n+m) · h · (hd + dh)).

Acyclic chromatic number and domination number. Finally, we ana-
lyze the parameterized complexity of Diameter parameterized by the acyclic
chromatic number a plus domination number d. Note that this combined pa-
rameter is incomparable with the combined parameter h-index plus diameter
as the h-index upper-bounds the acyclic chromatic number but the domination
number upper-bounds the diameter. Recall that the acyclic chromatic number of a
graph G is the smallest number a such that the vertices of G can be partitioned
into a independent sets such that the induced subgraph of each combination
of two of these independent sets is acyclic. We provide a SETH-based lower
bound, adapting a reduction from Satisfiability to Diameter by Roditty
and Williams [RW13].

Proposition 3.8. There is no f(a, d) · (n + m)2−ϵ-time algorithm for any
computable function f that solves Diameter parameterized by acyclic chromatic
number a plus domination number d unless the SETH is false.

Proof. We provide a reduction from Satisfiability to Diameter where the
input instance has constant acyclic chromatic number and constant domination
number and such that an O((n+m)2−ε)-time algorithm refutes the SETH. We
note that the reduction is an extension of the construction by Roditty and
Williams [RW13, Theorem 9]. Let ϕ be a Satisfiability instance with variable
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set W and clause set C. Assume without loss of generality that |W | is even.
We construct an instance graph G = (V,E) for Diameter as follows.

Randomly partition W into two sets W1 and W2 of equal size. Add three
sets V1, V2, and B of vertices to G, where each vertex in V1 (in V2) represents
one of 2|W |/2 possible truth assignments of the variables in W1 (in W2) and each
vertex in B represents a clause in C. Clearly, |V1|+ |V2| = 2 ·2|W |/2 and |B| = |C|.
For each vi ∈ V1 and each uj ∈ B, if the truth assignment corresponding to vi
does not satisfy the clause corresponding to uj , then we add a new vertex sij
and the two edges {vi, sij} and {uj , sij} to G. We call the set of all these newly
introduced vertices S1. Now repeat the process for all vertices wi ∈ V2 and
all uj in B and call the newly introduced vertices qij . Let S2 be the set of all qij .
Finally we add four new vertices t1, t2, t3, t4 and the sets

{{t1, v} | v ∈ V1},
{{t2, s} | s ∈ S1},
{{t3, q} | q ∈ S2},
{{t4, w} | w ∈ V2},

{{t2, b}, {t3, b} | b ∈ B}, and
{{t1, t2}, {t2, t3}, {t3, t4}}

of edges to G. See Figure 3.7 for a schematic illustration of the construction.
We will first show that ϕ is satisfiable if and only if G has diameter five and

then show that the domination number and acyclic chromatic number of G are five
and four, respectively. Observe that the diameter of G is at most five since each
vertex is connected to some vertex in {t1, t2, t3, t4} and these four vertices are of
pairwise distance at most three. First assume that ϕ is satisfiable. Then, there
exists some truth assignment β of the variables such that all clauses are satisfied,
that is, the two partial truth assignments of β with respect to the variables
in W1 and W2 satisfy all clauses. Let v1 ∈ V1 and v2 ∈ V2 be the vertices
corresponding to β. Thus, for each b ∈ B we have dist(v1, b) + dist(v2, b) ≥ 5.
Observe that all paths from a vertex in V1 to a vertex in V2 that do not pass a
vertex in B pass through t2 and t3 and are hence of length at least five. Thus,
the diameter of G is dist(v1, v2) = 5.

For the reverse direction, assume that there is no satisfying truth assignment
for Φ. Then for each pair of vertices v1 ∈ V1 and v2 ∈ V2 it holds that there
is some clause in Φ that is not satisfied by either of the two partial truth
assignments corresponding to v1 and v2. Hence, the vertex uj corresponding to
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Figure 3.7: A schematic illustration of the construction in the proof of Proposition 3.8.
A vertex si,j is only connected to vi and uj and qij is only connected to wi and uj .
Note that the resulting graph has acyclic chromatic number five (the five independent
sets are V1 ∪V2, B, S1 ∪S2 ∪{t1, t4}, {t2}, and {t3} and are also represented by colors).
Moreover, the domination number of the graph is at most four as {t1, t2, t3, t4} is a
dominating set.

this clause guarantees that dist(v1, v2) ≤ dist(v1, uj) + dist(uj , v2) = 4. Next,
observe that each pair (v1, v2) of vertices where not both v1 ∈ V1 and v2 ∈ V2
(or v1 ∈ V2 and v2 ∈ V1) holds are of distance at most four as guaranteed by
the vertices t1, t2, t3, and t4. Thus, the diameter of G is four.

The domination number of G is four since {t1, t2, t3, t4} is a dominating set.
The acyclic chromatic number of G is at most five as V1 ∪ V2, {t2}, B, {t3},
and S1 ∪ S2 ∪ {t1, t4} each induce an independent set and each combination of
two of them not including S1∪S2∪{t1, t4} only induces independent sets or stars.
Moreover, note that S1 ∪ S2 ∪ {t1, t4} ∪ {t2} and S1 ∪ S2 ∪ {t1, t4} ∪ {t3} each
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only induces a star and an independent set. Lastly, S1 ∪ S2 ∪ {t1, t4} ∪ V1 ∪ V2
induces two trees of depth 2 (where t1 and t4 are the roots and S1 and S2
are the leaves) and S1 ∪ S2 ∪ {t1, t4} ∪B induces a disjoint union of stars and
isolated vertices as each vertex in S1 ∪ S2 ∪ {t1, t4} has maximum degree one
in G[B ∪ S1 ∪ S2 ∪ {t1, t4}].

Now assume that there was an f(k) ·(n+m)2−ε-time algorithm for Diameter
parameterized by domination number plus acyclic chromatic number for any
computable function f and any ε > 0. The constructed graph has O(2|W |/2 · |C|)
vertices and edges, and since f(9) is some constant, this implies an algorithm
with running time

f(9) · (2|W |/2 · |C|)2−ε

∈ O(2(|W |/2)(2−ε) · |C|(2−ε))
= O(2|W |(1−ε/2) · |C|(2−ε))
= 2|W |(1−ε′) · (|C|+ |W |)O(1) for some ε′ > 0.

Such an algorithm for Diameter would refute the SETH [RW13].

3.4 Concluding Remarks
We conclude this chapter with some possible avenues for further research
regarding Diameter. We believe that a broader reflection on the techniques we
used (e. g. dynamic programming) is better deferred to the concluding chapter of
this thesis, where we can compare the different dynamic programs we develop in
this thesis. Concerning the complexity landscape shown in Figure 3.2, only a few
open cases remain. Perhaps most interesting among them are the following two
questions. Is there a kO(1)·(n+m)1+ε- time algorithm for the distance k to interval
graphs and is there an f(d)n2-time algorithm for Diameter parameterized
by the diameter d? Our algorithms working with parameter combinations are
probably not competitive to state-of-the-art unparameterized algorithms due to
their exponential dependency on the parameter value(s) even in graphs with
properties similar to social networks and even so they cannot be improved by
much unless the SETH breaks. So the question remains whether there are
parameters k1, . . . , kℓ (that are possibly not displayed in Figure 3.2) that are
small in real-world applications and that allow for practically relevant running
times like

∏︁ℓ
i=1 ki · (n+m) or even (n+m) ·

∑︁ℓ
i=1 ki. A parameter capturing
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the special community structures of social networks [GN02] might be a good
candidate to be included in such a parameter combination.
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Chapter 4

Length-Bounded Cuts

In this chapter, we investigate, on a conceptual level, a peculiar case of how
to compute the solution for a problem, once the table of a dynamic program
is completely filled. Similarly to Chapter 3, the first important question we
have to answer is what a table entry should represent. Answering this question
requires some structural observations and is by far the most complicated part
of this chapter. However, once we have answered this question, determining the
table dimension and computing each table entry are fairly straightforward while
computing the solution from the filled table is not.

The problem we study in this chapter stems from the area of network flows.
The study of network flows and, in particular, of the Edge-Disjoint Paths
problem began in the 1950s with the work of Ford and Fulkerson [FF56] and
has since then constituted a prominent research area in graph algorithms. In
the Edge-Disjoint Paths problem, we are given an undirected graph G, two
vertices s and t, called the source and the target, and a positive integer β. The
question is whether there is a collection of at least β edge-disjoint s-t-paths in G.
It is worth pointing out that nowadays there are many more efficient algorithms
than the one by Ford and Fulkerson [FF56] for finding β edge-disjoint s-t-paths
in a given graph (see e. g. the work by Dinitz [Din06]).

A natural counterpart of Edge-Disjoint Paths is Edge Cut. Therein,
the question is whether there is a set F of at most β edges such that there
is no s-t-path in the graph after removing the edges in F . There is a strong
dual relationship between Edge-Disjoint Paths and Edge Cut in the sense
that, if both problems admit a solution for a given β, then the value of β is
optimal, that is, it is not possible to find β + 1 edge disjoint s-t-paths and
the removal of any set of β − 1 edges leaves s and t in the same connected
component. Consequently, since Edge Cut can be solved in polynomial time,
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so can Edge-Disjoint Paths. Quite naturally, there are many variants of
the above described network flow/cut problems such as e. g. multicommodity
flows, unsplittable flows, and the related cut problems (e. g. Schrijver [Sch03]
provides further examples and formal definitions). Unlike Edge-Disjoint
Paths and Edge Cut, it is not always the case that the respective flow and
the cut problem belong to the same complexity class. We investigate a variant
of Edge Cut called Length-Bounded Cut. It originates from network
design and telecommunications and Gouveia et al. [GPS08], Huygens and Ridha
Mahjoub [HR07], and Huygens et al. [Huy+07] describe further applications.
Length-Bounded Cut is an example where the cut problem is harder than
the respective flow problem. Length-Bounded Cut is NP-hard [Bai+10]
while the respective flow problem is polynomial-time solvable [MM10].

Our main contribution in this chapter is a dynamic-programming-based
polynomial-time algorithm for Length-Bounded Cut on proper interval
graphs. This confirms a conjecture by Bazgan et al. [Baz+19]. We conclude
this chapter with showing some limitations of our approach when trying to
adapt it for interval graphs. The existence of a polynomial-time algorithm for
Length-Bounded Cut on interval graphs was also posed as an open problem
by Bazgan et al. [Baz+19].

4.1 Problem Definition and Related Work
In this chapter, we study Length-Bounded Cut, which is the cut problem
related to the variant of Edge-Disjoint Paths where an additional bound λ
is given and the sought collection of s-t-paths can only contain paths of length
at most λ. This problem has been introduced by Adámek and Koubek [AK71]
and is formally defined as follows.

Length-Bounded Cut
Input: An undirected graph G ..= (V,E), two vertices s, t, and two positive

integers β, λ.
Question: Is there a subset F ⊆ E with |F | ≤ β such that there is no

s-t-path of length at most λ in G′ ..= (V,E \ F )?

An example of Length-Bounded Cut is given in Figure 4.1. For λ = |V | one
is left with the original problem Edge Cut which is polynomial-time-solvable.
Length-Bounded Cut is also solvable in polynomial time if λ ≤ 3 [MM10].
However, Baier et al. [Bai+10] showed that Length-Bounded Cut is NP-hard
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s t

Figure 4.1: An example graph. The dashed edges form a solution for Length-Bounded
Cut with β = 2 and λ = 3.

for λ = 4. The related flow problem Length-Bounded Flow, where we
restrict the flow to paths of length at most λ, can be solved in polynomial time
via a reduction to linear programming [Bai+10, KS06, MM10].

We note that the result of Baier et al. [Bai+10] in fact gives NP-hardness
for Length-Bounded Cut for each constant λ ≥ 4. Thus, in order to
obtain tractability results, one presumably has to either consider a different
parameterization or combine λ with some other parameter. Golovach and
Thilikos [GT11] first studied Length-Bounded Cut from the viewpoint of
parameterized complexity. They showed that Length-Bounded Cut is fixed-
parameter tractable for the combined parameter β + λ. It is worth noting
that the parameter β alone gives W[1]-hardness [GT11]. Later, Fluschnik
et al. [Flu+18] proved that it is unlikely that a polynomial kernel in β + λ
exists. Dvořák and Knop [DK18] considered structural parameters for Length-
Bounded Cut. They showed that it is W[1]-hard when parameterized by
the pathwidth of the input graph while it is fixed-parameter tractable when
parameterized by the treedepth of the input graph. Kolman [Kol18] gave
an O(λτ · (n + m))-time algorithm for Length-Bounded Cut, where τ is
the treewidth of G. Furthermore, Length-Bounded Cut is fixed-parameter
tractable for the parameter λ if G is planar [Kol18] (it remains NP-complete
on planar graphs [Flu+18]). Bazgan et al. [Baz+19] studied both restrictions
on special graph classes as well as structural parameterizations for Length-
Bounded Cut. They provided an XP-algorithm for the maximum degree of the
input graph G and fixed-parameter tractability for the feedback edge number.
Furthermore, they presented a polynomial-time algorithm for co-graphs while
showing NP-completeness even if the input is restricted to bipartite graphs or
split graphs. Finally, Length-Bounded Cut is W[1]-hard with respect to the
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combined parameter pathwidth and maximum degree and with respect to the
feedback vertex number [BHK20].

4.2 Polynomial-Time Algorithm for Proper
Interval Graphs

In this section, we present a polynomial-time algorithm for Length-Bounded
Cut on proper interval graphs. To this end, for each vertex v /∈ {s, t}, we define
a set of vertices that contains v and t. The algorithm for Length-Bounded
Cut on proper interval graphs is then a dynamic program that stores for each
vertex v and each possible distance d (2 ≤ d ≤ λ) the minimum size of a cut
that makes each vertex in the described set have distance at least d from s.

Recall that each vertex v in a proper interval graph can be represented by
an interval [bv, fv]Q such that two vertices u,w are adjacent in G if and only
if [bu, fu]Q ∩ [bw, fw]Q ̸= ∅ and no interval representing a vertex is properly
contained in the interval representing another vertex. Observe that we can
assume without loss of generality that bs ≤ bt as we can otherwise “mirror” the
graph by setting bv = −fv and fv = −bv for each vertex v ∈ V . It is folklore
that one can assume that |{bv | v ∈ V }| = |V |. We further assume that the
vertices in V \ {s, t} are named v1, v2, . . . , vn−2 such that bvi < bvj for all i < j.
We first show that we can safely ignore all vertices v with fv < bs or ft < bv. It
is worth noting that the following lemma holds for interval graphs and not only
for proper interval graphs.

Lemma 4.1. Let I = (G = (V,E), s, t, β, λ) be an instance of Length-
Bounded Cut where G is an interval graph and bs < bt in the interval
representation. Let L ..= {u ∈ V | fu < bs} and R ..= {u ∈ V | ft < bu}.
Then, I ′ ..= (G−(L∪R), s, t, β, λ) is an equivalent instance of Length-Bounded
Cut.

Proof. Let I, I ′, G, s, t, β, λ, L, and R be as defined above. We first show
that IL = (G−R, s, t, β, λ) is an equivalent instance. Note that s, t /∈ L ∪R and
hence IL and I ′ are instances of Length-Bounded Cut. Note further that
deleting vertices from any input graph cannot decrease the distance between any
pair of vertices and hence if I is a yes-instance, then so are IL and I ′. Hence it
remains to show that if IL is a yes-instance, then so is I.

Assume towards a contradiction that IL is a yes-instance and I is a no-instance.
Then there is a set FL of β edges in G− R such that the distance between s
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and t in GL ..= (V \ R,E \ (FL ∪ {{u, v} ∈ E | u ∈ R})) is at least λ + 1.
Since I is a no-instance, there is a path P of length at most λ between s and t
in G∗ ..= (V,E \ FL). As GL and G∗ only differ in R, each path of length at
most λ between s and t in G∗ contains at least one vertex from R. We will show
that degG(t) ≤ |FL| and hence there is an s-t-cut of size at most β in G and
thus I is a yes-instance. This contradicts the assumption that I is a no-instance
and hence finishes the proof that IL is equivalent to I.

We start by giving some basic notation for the proof to come. We use sets of
vertices that have a certain distance from s in some subgraph H of G. To this end,
we define Xp

H
..= {u ∈ V | distH(s, u) = p} for each distance p. Analogously, we

define X≤p
H

..= {u ∈ V | distH(s, u) ≤ p} and X≥p
H

..= {u ∈ V | distH(s, u) ≥ p}.
Let d ..= distG∗(s, t) and let t′ be the vertex in P with maximum bt′ . Since P

contains a vertex from R, it holds that bt′ > ft and hence t′ /∈ NG(t). Since t′
is on a shortest s-t-path in G∗ and t′ /∈ NG(t), it holds that t′ ∈ X≤d−2

G∗ . Now
consider the set K of vertices that are part of a shortest s-t′-path in G∗ and that
are neighbors of t in G. By construction K ⊆ X≤d−3

G∗ and for each y ∈ [bt, ft]Q
there is a vertex v ∈ K with y ∈ [bv, fv]Q. We next show that |FL| ≥ degG(t).
To this end, consider any vertex u ∈ NG(t). If u ∈ X≤d−2

G∗ , then it holds
that {u, t} ∈ FL. Otherwise u ∈ X≥d−1

G∗ . Observe that for each u ∈ NG(t) it
holds by definition that there is a y ∈ [bu, fu]Q ∩ [bt, ft]Q ̸= ∅ and hence there is
a vertex v ∈ K with y ∈ [bv, fv]Q and hence {u, v} ∈ E. Note that u ∈ X≥d−1

G∗

and v ∈ K ⊆ X≤d−3
G∗ . Since

distG∗(s, u) ≥ d− 1 > d− 3 + 1 ≥ distG∗(s, v) + 1,

it holds that {u, v} ∈ FL. Since {v, t} ∈ FL for all v ∈ NG(t) ∩ X≤d−2
G∗ ,

since for all v ∈ NG(t) ∩X≥d−1
G∗ there is some w ∈ K such that {v, w} ∈ FL,

and since K ∩X≥d−1
G∗ = ∅, there is a unique edge for each v ∈ NG(v) in FL.

Hence, β = |FL| ≥ degG(t) and thus there is a trivial s-t-cut of size β in G that
contains all edges incident to t. Thus, I is a yes-instance.

We conclude the proof by showing that I ′ is equivalent to IL. Note that we
consider undirected graphs and hence we can exchange the roles of s and t and
mirror the graph by setting b′

v
..= −fv and f ′

v
..= −bv for each vertex v ∈ V .

Note that all vertices in L (originally fulfilling fu < bs) now satisfy b′
u > f ′

s.
Hence, if we interchange the names of s and t, then they satisfy the condition
of R and hence we can use the argument above to show that I ′ and IL are
equivalent.
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Using Lemma 4.1, we can always assume that there is no vertex v with fv < bs
or bv > ft. We next show that if there is a solution, then there is also a solution
in which the distance from s to vj is non-decreasing in j.

Lemma 4.2. Let G = (V,E) be a proper interval graph where no vertex v
satisfies ft < bv or bs > fv and let F be a set of edges. Let d be the distance
from s to t in G′ ..= (V,E \ F ). Then, there is a set F ′ of edges with |F ′| ≤ |F |
such that distG′′(s, t) ≥ d in G′′ ..= (V,E \ F ′) and distG′′(s, vi) ≤ distG′′(s, vj)
for each vi, vj ∈ V \ {s, t} with bvi < bvj .

Proof. Let G, s, t, F,G′, and d be as defined above. The main idea of this proof
is to construct a sequence of graphs which starts with the graph G′ and ends
with the sought graph G′′. To this end, we define for each vertex v ∈ V in a
graph H = (V,EH) a specific distance DH(v). We define DH(v) to be the length
of a shortest path P = (s = u0, u1, u2, . . . , uα = v) from s to v in H such that
for all γ ∈ [α− 1] it holds that buγ

< buγ+1 . As a special case, if uα = t, then
we only require that for all γ ∈ [α− 2] it holds that buγ < buγ+1 . We call such
paths monotone, and if no monotone s-v-path exists, then we set DH(v) ..=∞.
Observe that for each graph H it holds that DH(s) = 0 and DH(v) ≥ distH(s, v).
Let G ..= {G∗ ..= (V,E∗) | E∗ ⊆ E ∧ |E∗| ≥ |E \ F |}. We present a sequence of
graphs (G′ ..= G1, G2, . . . Gk) such that

(1) Gℓ = (V,Eℓ) ∈ G for each ℓ ∈ [k],

(2) DGℓ
(t) ≤ DGℓ+1(t) for each ℓ ∈ [k − 1], and

(3) DGk
(v) ≤ DGk

(w) for all v, w ∈ V \ {s, t} with bv < bw.

Claim 4.3. If such a sequence of graphs exists, then Fk = E \Ek and G′′ := Gk
satisfy Lemma 4.2.

Proof of Claim 4.3. First, we show that distGk
(s, v) = DGk

(v) for all v. Assume
towards a contradiction that there is a vertex v ̸= t with distGk

(s, v) ̸= DGk
(v).

Consider any shortest s-v-path P in Gk. Let w be the first vertex on P with
distGk

(s, w) ̸= DGk
(w) and let w′ be its predecessor. By this definition, it holds

that distGk
(s, w′) = DGk

(w′) and bw < bw′ as otherwise distGk
(s, w) = DGk

(w).
Since DGk

(w) ≥ distGk
(w) and DGk

(w) ̸= distGk
(s, w), it follows that

DGk
(w) > distGk

(s, w) = distGk
(s, w′) + 1 = DGk

(w′) + 1,

a contradiction to (3) and bw < bw′ .
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Now assume that distGk
(s, t) ̸= DGk

(t). Let P be a shortest s-t-path in Gk.
Let v be the predecessor of t in P . We have shown that distGk

(v) = DGk
(v)

and hence distGk
(t) = distGk

(v) + 1 = DGk
(v) + 1 = DGk

(t). The last step
follows from the fact that DGk

(t) ≤ DGk
(v) + 1 as v is a neighbor of t in Gk

and the special case in the definition of D that allows to ignore bt.
The claim now easily follows. Note that (1) ensures that Gk ∈ G and

hence |Fk| ≤ F . It follows from (2) that

distGk
(s, t) = DGk

(t) ≥ DGk−1(t) ≥ . . . ≥ DG1(t) = DG′(t) ≥ distG′(s, t) ≥ d.

Finally, (3) states that for all v, w ∈ V \ {s, t} with bv < bw that

distG′′(s, v) = DG′′(v) ≤ DG′′(w) = distG′′(s, w). ⋄

We now describe how to obtain the sequence (G′ = G1, G2, . . . , Gk) of graphs.
To this end, we need a rather technical order over the graphs in G. We say
that (V,Eα) = Gα <∆ Gγ = (V,Eγ) for Gα, Gγ ∈ G if and only if

• |Eα| > |Eγ |,

• |Eα| = |Eγ | and there exists a v ∈ V \ {t} such that DGα
(v) < DGγ

(v)
and DGα(w) = DGγ (w) for all w ∈ V \ {t} with bw < bv, or

• |Eα| = |Eγ |, DGα(v) = DGγ (v) for all v ∈ V \ {t}, and DGα(t) < DGγ (t).
Notice that <∆ defines a total preorder on G, that is, the order <∆ is tran-
sitive, reflexive, and for each two graphs Gα, Gβ ∈ G with Gα ̸= Gβ it holds
that Gα <∆ Gβ or Gβ <∆ Gα.

Let Gℓ be a graph in the sequence. We will guarantee that each graph in
the sequence fulfills (1) and (2). Consequently, if Gℓ satisfies (3), then we have
found the last graph in the sequence. Otherwise, we describe how to obtain
another graph Gℓ+1 ∈ G such that (2) holds for Gℓ and Gℓ+1 and Gℓ+1 <∆ Gℓ.
Since <∆ is a total preorder, we can only build a finite sequence and hence at
some point a graph has to satisfy (3).

Since Gℓ = (V,Eℓ) does not satisfy (3), there is some minimum j such
that DGℓ

(vj) > DGℓ
(vj+1). Let

X ..= {x ∈ NG(vj+1) | (bx < bvj
∨ x = s) ∧ {vj , x} ∈ E \ Eℓ ∧ {vj+1, x} ∈ Eℓ},

Y ..= {y ∈ NG(vj) | (by > bvj+1 ∨ y = t) ∧ {vj+1, y} ∈ E \ Eℓ ∧ {vj , y} ∈ Eℓ}.
See Figure 4.2 for an example of X and Y . We distinguish between the two
cases |X| ≥ |Y | and |X| < |Y |.
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. . .

vj−4
vj−3

vj−2
vj−1

vj
vj+1
vj+2

vj+3

. . .

Figure 4.2: An example for X and Y . Red (vertical) edges are contained in E \ Eℓ.
For the sake of readability we do not depict edges in Eℓ. Note that X = {vj−2}
and Y = {vj+3}.

Case 1 (|X| ≥ |Y |): Let

Eℓ+1 ..= (Eℓ \ {{vj , y} | y ∈ Y }) ∪ {{vj , x} | x ∈ X},

and Gℓ+1 ..= (V,Eℓ+1). Since |X| ≥ |Y |, X ∩ Y = ∅, and Gℓ ∈ G, it holds
that |Eℓ+1| ≥ |Eℓ| ≥ |E \ F | and thus Gℓ+1 ∈ G. Clearly, for all v ∈ V \ {t}
with bv < bvj

, we have DGℓ+1(v) = DGℓ
(v) as Eℓ+1 and Eℓ only differ in

edges incident to vj . Let w be the predecessor of vj+1 in a shortest mono-
tone s-vj+1-path in Gℓ. Since DGℓ

(vj) > DGℓ
(vj+1) it holds that w ≠ vj

and hence bw < bvj < bvj+1 ≤ fw. Moreover, vertex w is contained in X as
otherwise DGℓ

(vj) ≤ DGℓ
(w) + 1 = DGℓ

(vj+1). Thus,

DGℓ+1(vj) = DGℓ+1(w) + 1 = DGℓ
(w) + 1 = DGℓ

(vj+1) < DGℓ
(vj)

and combined with |Eℓ+1| ≥ |Eℓ| this yields Gℓ+1 <∆ Gℓ.
It remains to show that DGℓ

(t) ≤ DGℓ+1(t). Consider a shortest mono-
tone s-t-path P in Gℓ+1. If P does not pass through vj , then it is also a
monotone s-t-path in Gℓ and hence DGℓ

(t) ≤ DGℓ+1(t). If P passes through vj ,
then let z be the successor of vj in P . Note that if z ∈ Y , then {vj+1, z} ∈ Eℓ,
and if z /∈ Y , then z = vj+1 or {vj+1, z} ∈ Eℓ as bvj

≤ bz. Hence it holds that

DGℓ
(z) ≤ DGℓ

(vj+1) + 1 = DGℓ+1(vj) + 1 = DGℓ+1(z).

Finally, let P ′ be a shortest monotone s-z-path in Gℓ and let P ′′ = P ′ • P [z, t].
Note that P ′′ is a monotone s-t-path of length at most DGℓ+1(t) in Gℓ and
thus DGℓ

(t) ≤ DGℓ+1(t).
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Case 2 (|X| < |Y |): We set

Eℓ+1 ..= (Eℓ \ {{vj+1, x} | x ∈ X}) ∪ {{vj+1, y} | y ∈ Y }.

Since |X| < |Y |, X ∩ Y = ∅, and Gℓ ∈ G, it holds that |Eℓ+1| > |Eℓ| and
therefore Gℓ+1 ∈ G and Gℓ+1 <∆ Gℓ. It remains to show DGℓ

(t) ≤ DGℓ+1(t).
Since Eℓ and Eℓ+1 only differ in edges incident to vj+1, for all v with bv < bvj

it holds that DGℓ+1(v) = DGℓ
(v). Let P be a shortest monotone s-vj+1-path

in Gℓ+1 and let w be the predecessor of vj+1 in P . By definition of Eℓ+1 it
holds that w = vj or {w, vj} ∈ Eℓ and hence DGℓ

(vj) ≤ DGℓ+1(vj+1). Let P ′

be a shortest monotone s-t-path in Gℓ+1. If P ′ does not pass through vj+1,
then it is also a monotone s-t-path in Gℓ as Eℓ and Eℓ+1 only differ in edges
incident to vj+1 and hence DGℓ

(t) ≤ DGℓ+1(t). If P ′ passes through vj+1, then
let z be the successor of vj+1 in P ′. Since only edges between vj+1 and the
vertices in Y are contained in Eℓ+1 but not in Eℓ, it holds that z ∈ Y . Hence,
it holds that {vj , z} ∈ Eℓ and thus

DGℓ
(z) ≤ DGℓ

(vj) + 1 ≤ DGℓ+1(vj+1) + 1 = DGℓ+1(z).

Finally, let P ′′ be a shortest monotone s-vj-path in Gℓ and let P ′′′ = P ′′ • P [z, t].
Since P ′′′ is a monotone s-t-path of length at most DGℓ+1(t) in Gℓ, we ob-
tain DGℓ+1(t) ≥ DGℓ

(t).
This concludes the proof as we have shown that the sought sequence of graphs

is finite and how to obtain each graph in it from the previous.

Using Lemma 4.2, we now provide the main result of this chapter, that is, a
dynamic program that solves Length-Bounded Cut on proper interval graphs
in polynomial time. The dynamic program stores for each vertex v ∈ V \ {t}
and each possible distance d the minimum size of a cut that makes each vertex u
with bu ≥ bv or u = t have distance at least d from s.

Theorem 4.4. Length-Bounded Cut can be solved in O(n2 ·m) time if the
input graph is a proper interval graph.

Proof. We prove the statement by developing a dynamic program. We first
state some general observations and derive from them the main idea behind the
dynamic program. We then show how the entries of the table of the dynamic
program are computed and how to compute the solution for Length-Bounded
Cut from the filled table. We continue with proving the correctness of our
algorithm and conclude with analyzing its running time.
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We assume that, in the input graph G ..= (V,E), there is no s-t-cut of size
at most β as this cut can be detected in O(n · m) time [FF56] and the an-
swer for Length-Bounded Cut is then always yes. Thus, degG(s) > β
and degG(t) > β as otherwise the set of edges incident to s or t are an s-t-
cut of size at most β. Furthermore, by Lemma 4.1, we can assume that there
is no vertex v with fv < bs or bv > ft. By Lemma 4.2, we can assume that
we search for a solution in which for all vi, vj ∈ V \ {s, t} with i < j it holds
that dist(s, vi) ≤ dist(s, vj). Hence, we construct a table T : V ×N→ N which
stores for each vertex vi ∈ V \ {s, t} and each possible distance 2 ≤ d ≤ λ the
minimum number of edges that have to be deleted from G′ ..= (V ′, E′) ..= G− {t}
to ensure the following. First, dist(s, vk) ≤ dist(s, vℓ) for all k ≤ ℓ ≤ i. Second,
each vertex vj ∈ V \ {s, t} with j ≥ i has distance at least d from s.

We start with showing how to initialize the table T . Note that v1, v2, . . . , vdeg(s)
are neighbors of s and vdeg(s)+1, vdeg(s)+2, . . . , vn−2 are not. Hence, to increase
the distance of each vj with j ≥ i for some given i to at least two, one has to
delete all edges between s and the vertices in {vj | i ≤ j ≤ deg(s)}. Thus, the
table is initialized with T [vi, 2] = 0 for all i > deg(s) and T [vi, 2] = deg(s)− i+1
for all i ≤ deg(s). We further initialize T [v1, d] = deg(s) for all d ≥ 3.

We next show how to compute the solution to Length-Bounded Cut
once the table T is completely filled. Since we seek a solution F such that
in H ..= (V,E \ F ) it holds that distH(s, t) > λ, each vertex u ∈ NH(t) has to
satisfy distH(s, u) ≥ λ. Note that degG(t) > β and hence there is at least one ver-
tex v ∈ NH(t). Thus, to compute the solution for Length-Bounded Cut, we it-
erate over v ∈ NG(t)\{s} and compute T [v, λ] + |{u ∈ N(t) | u = s ∨ bu < bv}|.
Note that this corresponds to the statement that each neighbor u of t in G
has distance at least λ from s or the edge {u, t} was removed. Hence, the
distance between s and t in the resulting graph is at least λ + 1. Further, if
we take the minimum value over all iterations and compare it to β, then this
solves Length-Bounded Cut.

It remains to present the recursive formula for T , to prove the correctness of
our dynamic program, and to analyze its running time. We start with showing
how to compute T . For the sake of simplicity, we also store, for each table
entry T [vi, d] with d ≥ 2, in a second table S[vi, d] the vertex vj ∈ V \{s, t} with
minimum j such that vj has distance d−1 from s in some solution corresponding
to T [vi, d]. We initialize S[vi, 2] = v1 for all vi and S[v1, d] = v1 for all d ≥ 3.
Note that S[vi, d] = v1 might not represent what we claimed if we seek to
remove the edge {s, v1}. However, in this case there is no solution as we assume
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that deg(s) > β. For increasing values of d ≥ 3, we iterate over 2 ≤ i ≤ n− 2
and compute

T [vi, d] = min
j<i
{T [vj , d− 1] + |C[S[vj , d− 1], vj , vi]}|,

S[vi, d] = vj with j = min{arg minj<i{T [vj , d− 1] + |C[S[vj , d− 1], vj , vi]|}},

where C[vh, vj , vi] is a function that represents for each triple (vh, vj , vi) of
vertices with h < j < i the set of edges between a vertex vℓ with h ≤ ℓ < j and
a vertex vr with r ≥ i. For technical reasons we exclude s and t here and hence
the formal definition is

C[vh, vj , vi] ..= {{vℓ, vr} ∈ E | h ≤ ℓ < j < i ≤ r}.

The vertex vh is used to avoid double counting.
We continue by proving that S and T store exactly what they are supposed to.

Assume towards a contradiction that there is a vertex vi and a distance d ≥ 2
such that S[vi, d] or T [vi, d] were computed incorrectly. Then there is also
a smallest d such that there is a vertex vi for which S[vi, d] or T [vi, d] are
computed incorrectly and we assume that vi is the vertex with the smallest
index i such that S[vi, d] or T [vi, d] is computed incorrectly. Since we have
already shown that the initialization for d = 2 is correct, we focus on the
case d > 2 and distinguish between the three cases that S[vi, d] was computed
incorrectly, that T [vi, d] > c, or that T [vi, d] < c, where c is the correct value
of T [vi, d].

If T [vi, d] < c, then let vj be a vertex with j < i that minimizes the
sum T [vj , d− 1] + |C[S[vj , d− 1], vj , vi]|. Since we assume that T [vj , d − 1]
is computed correctly (recall that d was chosen to be the minimum value for
which S or T was computed incorrectly), there is a set F1 of T [vj , d− 1] edges
such that in the graph H ′ ..= (V ′, E′ \ F1) it holds that distH′(s, vr) ≥ d− 1 for
all r ≥ j and distH′(s, vℓ) ≤ distH′(s, vk) for all ℓ ≤ k ≤ j. Let vh = S[vj , d− 1].
Since S[vj , d − 1] is by assumption computed correctly, it holds for all vℓ
with ℓ < h that distH′(s, vℓ) ≤ d − 3. Thus, F1 contains all edges between
vertices in {vℓ | ℓ < h} and {vr | r ≥ i}. Since C[vh, vj , vi] is the set of all
edges between vertices vℓ′ with h ≤ ℓ′ < j to vertices vr with r ≥ i, it
holds that there is no edge between a vertex of distance at most d− 2 from s
to a vertex vr with r ≥ i in H ..= (V ′, E′ \ (F1 ∪ C[vh, vj , vi])). Hence each
such vertex vr is of distance at least d from s in H. It remains to show
that distH(s, vℓ) ≤ distH(s, vk) for all ℓ ≤ k ≤ i. Note that H and H ′ only
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differ in edges in C[vh, vj , vi], that is, in edges between vertices vℓ and vr
with h ≤ ℓ ≤ j and r ≥ i. Since those vℓ have distance d− 2 and those vr have
distance at least d− 1 from s in H, it holds that distH(s, vℓ) = distH(s, vℓ) for
all ℓ ≤ i and thus also H fulfills distH(s, vℓ) ≤ distH(s, vk) for all ℓ ≤ k ≤ i.
Since T [vi, d] = |F1 ∪ C[vh, vj , vi]| and F1 ∩ C[vh, vj , vi] = ∅, it holds that

T [vi, d] = |F1|+ |C[vh, vj , vi]| = T [vj , d− 1] + |C[S[vj , d− 1], vj , vi]|,

and thus T [vi, d] ≥ c, a contradiction.
If T [vi, d] > c, then there is a cut F ′ that contains less than T [vi, d] edges

such that in the respective graph H ′ ..= (V ′, E′ \ F ′) all vertices vr with r ≥ i
have distance at least d from s and distH′(s, vk) ≤ distH′(s, vℓ) for all k ≤ ℓ ≤ i.
Then, there is a vertex vj such that vj and all vertices vr with r ≥ j have
distance at least d − 1 from s in H ′ and all vertices vℓ with ℓ < j have
distance at most d − 2 from s in H ′. Hence, F ′ has to contain all edges
in F ′′ ..= {{vℓ, vr} ∈ E | ℓ < j < i ≤ r} as otherwise a vertex vr with r ≥ i
would have distance at most d − 1 from s in H ′. Let vh ..= S[vj , d − 1]. We
partition the set F ′′ into two disjoint sets F ′′

L
..= {{vℓ, vr} ∈ E | ℓ < h < i ≤ r}

and F ′′
R

..= {{vℓ, vr} ∈ E | h ≤ ℓ < j < i ≤ r}. Let H ..= (V ′, E′ \ (F ′ \ F ′′
R)).

Notice that H and H ′ only differ in edges in F ′′
R, that is, in edges incident to

vertices vℓ and vr with h ≤ ℓ < j and r ≥ i. Since those vℓ have distance d− 2
and those vr have distance at least d−1 from s in H , the distance between s and
vertices vℓ with ℓ < j is the same in H ′ and H . Hence, distH(s, vk) ≤ distH(s, vℓ)
for all k ≤ ℓ ≤ j. Thus, it holds that T [vj , d− 1] ≤ |F ′ \ F ′′

R| as T [vj , d− 1] was
computed correctly by assumption. Note further that F ′′

R is by definition equal
to C[S[vj , d− 1], vi, vj ] and

T [vj , d− 1] + |C[vh, vj , vi]| ≥ min
j′≤i
{T [v′

j , d− 1] + |C[S[v′
j , d− 1], v′

j , vi]|}.

Thus, c = |F ′| = |F ′ \ F ′′
R| + |F ′′

R| ≥ T [vj , d − 1] + |C[vh, vj , vi]| ≥ T [vi, d], a
contradiction.

Finally, assume towards a contradiction that S[vi, d] is computed incorrectly
but T [vi, d] is computed correctly. Since T [vi, d] is computed correctly, there is
a set F ′ of T [vi, d] edges such that in H = (V ′, E′ \F ′) it holds for all k ≤ ℓ ≤ i
that distH(s, vk) ≤ distH(s, vℓ) and for all j ≥ i that distH(s, vj) ≥ d. Then,
there is a vertex vj such that dist(s, vℓ) ≤ d−2 for all ℓ < j and dist(s, vr) ≥ d−1
for all r ≥ j. Let, without loss of generality, F ′ be a set of edges such
that there is no edge set F ′′ with the same property as described above
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where the respective vertex vj′ satisfies j′ < j. Let S[vi, d] = vh. We show
that h = j. If j < h, then T [vh, d − 1] + |C[S[vh, d − 1], vh, vi]| < T [vi, d]
as otherwise h would have been chosen smaller. This, however, contradicts
the assumption that T [vi, d] is computed correctly. If j > h, then by defini-
tion, T [vi, d] = T [vh, d− 1] + |C[S[vh, d− 1], vh, vi]|. Thus, there is a set F ′′

such that |F ′′| = T [vi, d] = |F ′| and in H ′ ..= (V ′, E′ \ F ′′) it holds for
all k ≤ ℓ ≤ i that distH′(s, vk) ≤ distH′(s, vℓ). Moreover, it holds for all j ≥ i
that distH′(s, vj) ≥ d, for all ℓ < h that distH′(s, vℓ) ≤ d− 2, and for all r ≥ h
that dist(s, vr) ≥ d− 1. This contradicts the definition of F ′.

We conclude this prove with analyzing the running time of our algorithm.
We first show how to compute C[vh, vi, vj ] for all triples (vh, vj , vi) of vertices
in O(n2 ·m) time. To this end, we first compute a tables A[vj , vi], where

A[vj , vi] ..= |{{vℓ, vr} ∈ E | ℓ < j < i ≤ r}|.

Note that A can be computed in O(n2 ·m) time by iterating over all edges {vℓ, vr}
(we assume ℓ < r) and all entries in A[vj , vi] and if ℓ < j < i ≤ r, then increment
the entry. Once A is computed, we compute C[vh, vj , vi] ..= A[vj , vi]−A[vh, vi]
in constant time per table entry. Since there are O(n3) table entries, the overall
running time for this preprocessing is O(n2 ·m) (note that the input graph is a
connected interval graph and hence O(n) ⊆ O(m)).

Each table entry S[vi, d] and T [vi, d] can be computed in O(n) time by
iterating over at most n vertices and computing the sum of a table entry in T
and the size of a table entry in C, thereby keeping track of the minimum value
and which iteration led to this minimum. Since there are O(n · λ) table entries,
the overall running time is O(n2 · λ). As we may assume that λ < n (each path
has length at most n), the running time is bounded by O(n3). Lastly, computing
the solution takes O(n) time as we have to iterate over up to n neighbors vi of t
and for each we have to compute |{vℓ | ℓ < i ∧ {vℓ, t} ∈ E}|. This computation
takes constant time as we can compute the smallest index j of a vertex that is
adjacent to t in G and then compute i− j + 1. Thus, the overall running time
for our algorithm is O(n2 ·m).

The main point in the proof of Theorem 4.4 where we need to assume that
the input graph is a proper interval graph and not an interval graph is the
application of Lemma 4.2. In the following section, we will investigate problems
arising when trying to adapt Lemma 4.2 for interval graphs. Concluding this
section, we want to emphasis the way the solution is computed in the proof of
Theorem 4.4 once the tables T and S are completely filled. Rather than looking
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at a single entry or taking the maximum or minimum entry in a given column,
we iterate over all entries with d = λ in T [vi, d] and add to it the number of
neighbors vj with j < i of t. The solution is then corresponding to the minimum
such sum. This way of finding a solution goes to show that each of the four
guiding questions (even the one that looks the simplest) can have a surprising
or non-trivial answer.

4.3 Falsifying Assumptions for Interval Graphs
In this section, we discuss some problems that arise when trying to adapt the
algorithm behind Theorem 4.4 for interval graphs. The only difference between
interval graphs and proper interval graphs is that in interval graphs there can
be pairs (v, w) of vertices such that N [v] ⊂ N [w]. Intuitively, it does not seem
to make sense to remove an edge {u, v} while leaving an edge {u,w} in the
solution graph as each shortest s-t-path containing v and using the edge {u, v}
can then be replaced by a path containing w and {u,w}. This leads to the
following conjecture.

Conjecture 4.5. Let G = (V,E) be an interval graph and let F be a set of
edges. Let d be the distance from s to t in G′ = (V,E \ F ). Then, there
is a set F ′ of edges with |F ′| ≤ |F | such that for G′′ ..= (V,E \ F ′) it holds
that distG′′(s, t) ≥ d and for each v, w ∈ V \ {s, t} with N [v] ⊂ N [w] it holds
that if {u, v} ∈ F ′ for some u ∈ V , then also {u,w} ∈ F ′.

Conjecture 4.5 would be helpful to show that Lemma 4.2 also holds for
interval graphs. Unfortunately, Conjecture 4.5 is false as shown in the example
in Figure 4.3. Therein, the only solution for removing three edges deletes some
edges incident to w and one edge incident to v such that the only remaining
path between s and t passes through both v and w. A next natural conjecture
could be that a similar approach to the dynamic program behind Theorem 4.4
could still work, where we order the vertices by their b- or their f-values.

Conjecture 4.6. Let G = (V,E) be an interval graph and let F be a set of
edges. Let d be the distance from s to t in G′ ..= (V,E \ F ). Let Fb and Ff
be sets of minimum size such that Gb ..= (V,E \ Fb) and Gf ..= (V,E \ Ff) ful-
fill distGb

(s, t) ≥ d, distGf
(s, t) ≥ d, and the following. For each v, w ∈ V \ {s, t}

it holds that if bv < bw, then distGb
(s, v) ≤ distGb

(s, w). Moreover, if fv < fw,
then distGf

(s, v) ≤ distGf
(s, w). Then, |Fb | ≤ |F | or |Ff | ≤ |F |.
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Figure 4.3: An interval graph and its interval representation. The dashed edges
show the unique solution for Length-Bounded Cut with β = 3 and λ = 5. Note
that N [v] ⊂ N [w], that the edge {u, v} is dashed, and that the edge {u, w} is not.
Since the dashed edges are the only solution, Conjecture 4.5 is false.
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Figure 4.4: An interval graph and its interval representation. The dashed edge
is the unique solution for Length-Bounded Cut with β = 1 and λ = 5.
Let G′ denote the graph without the dashed edge. Note that it holds in G′

that distG′ (s, u) < distG′ (s, x) = distG′ (s, y) < distG′ (s, v) but bv < by and fu < fx.
Note further that the dashed edge is the only edge whose removal increases the distance
between s and t and hence Conjecture 4.6 is false.

Again, Conjecture 4.6 is false as shown in Figure 4.4. The idea behind this
counterexample is to include short intervals with only two neighbors that prevent
any reordering of their neighbors after the removal of some edges. This shows
that the basic idea of our algorithm for proper interval graphs cannot work for
interval graphs as we cannot order the vertices by their b- or their f-values for
the dynamic program. Moreover, note that the dashed edge in Figure 4.4 is the
only solution and that after removing this edge, the resulting graph contains
a C4 induced by the vertices u, x, v and y. Thus, we cannot even assume that
removing a solution from the input interval graph yields an interval graph. This
is in contrast to Theorem 4.4 where the graph resulting from removing a solution
from the input proper interval graph is again a proper interval graph.
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4.4 Concluding Remarks
In this chapter, we studied Length-Bounded Cut in the special case where the
input graph is a proper interval graph and showed polynomial-time solvability.
This confirms a conjecture by Bazgan et al. [Baz+19]. A natural next step is
to investigate interval graphs. We showed some limitations for adapting our
approach from proper interval graphs to interval graphs. We still conjecture that
Length-Bounded Cut on interval graphs should allow for a polynomial-time
algorithm.

Bazgan et al. [Baz+19] provide a hierarchy of parameters with known results
and open problems for Length-Bounded Cut. In the paper on which this
chapter is based, we solved some of their open problems [BHK20]. Tackling the
remaining ones is left as a challenge for future research.
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Chapter 5

Disjoint Shortest Paths

This is the final chapter in the dynamic-programming part of the thesis. With
regards to content, our main contribution in this chapter is an XP-algorithm for
the NP-hard k-Disjoint Shortest Paths problem. This is a variant of the
fundamental and well-studied combinatorial problem k-Disjoint Path. On a
conceptual level, we will complete our journey through the intricacies of dynamic
programming. For the dynamic program we develop in this chapter, there is a
very simple way of computing each table entry. However, when we consider a
natural generalization of our problem, then this way is not feasible any more.
Further investigating the generalization yields another way of computing each
table entry that will turn out to be much more efficient even for the special case
we are mainly interested in.
k-Disjoint Path describes the question of whether there are k pairwise

disjoint1 paths between vertex terminal pairs (si, ti)i∈[k] in a given undi-
rected graph G. Karp [Kar75] showed that the problem is NP-hard when k
is part of the input. On the positive side, Robertson and Seymour [RS95]
provided an algorithm running in O(n3) time for any constant k. Later,
Kawarabayashi et al. [KKR12] improved the running time to O(n2)—again
for fixed k. On directed graphs, in contrast, the problem is NP-hard even
for k = 2 [FHW80]. However, on directed acyclic graphs (DAGs), the problem
becomes again polynomial-time solvable for constant k [FHW80].

We study a variant called k-Disjoint Shortest Paths. Therein, all paths
in a sought solution have to be shortest paths between the respective terminal
pairs. This problem has applications in transportation networks, circuit layout,
and circuit routing (see e. g. the work by Kawarabayashi et al. [KKR12] and

1Here and in the following this means vertex-disjoint.
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references therein) and its complexity for constant k has been a long-standing
open problem [Eil98, Fom+19]. Very recently, Lochet [Loc21] settled this
question by showing that k-Disjoint Shortest Paths can be solved in nO

(︁
k5k

)︁
time, that is, polynomial time for every constant k. We provide a new approach
with a novel geometric perspective that simplifies many arguments and leads
to an overall streamlined algorithm with a running time of O(k · n16k·k!+k+1).
Notably, k-Disjoint Shortest Paths is W[1]-hard with respect to k and,
assuming the ETH, there is no f(k) · no(k)-time algorithm for k-Disjoint
Shortest Paths [Ben+21]. The asymptotic gap between the lower bound
of no(k) and our upper bound of nO((k+1)!) is, however, still quite large.

We formalize our novel geometric view for k-Disjoint Shortest Paths and
provide some structural observations regarding solutions to k-Disjoint Short-
est Paths in Section 5.2. In Section 5.3, we present a dynamic-programming-
based approach to solve a special case of k-Disjoint Shortest Paths. After-
wards, we provide our algorithm for the general problem that uses the dynamic
program as a subprocedure and prove our main theorem.

5.1 Problem Definition and Related Work
k-Disjoint Shortest Paths is defined as follows.
k-Disjoint Shortest Paths
Input: An undirected graph G = (V,E) and k pairs (si, ti)i∈[k] of vertices.
Question: Are there k disjoint paths Pi such that, for each i ∈ [k], Pi is a

shortest si-ti-path?

Eilam-Tzoreff [Eil98] introduced this variant of k-Disjoint Path, showed that
it is NP-hard when k is part of the input, and provided a dynamic-programming-
based O(n8)-time algorithm for 2-Disjoint Shortest Paths. This was later
improved to an O(n2m)-time algorithm [Ben+21]. The O(n8)-time algorithm
for 2-Disjoint Shortest Paths works for positive edge lengths and, recently,
Gottschau et al. [GKW19] and Kobayashi and Sako [KS19] independently ex-
tended this result by providing polynomial-time algorithms for the case where
the edge lengths are non-negative. Concerning directed graphs, Bérczi and
Kobayashi [BK17] provided a polynomial-time algorithm for positive edge
lengths for 2-Disjoint Shortest Paths. Note that setting all edge length to
zero results in 2-Disjoint Path on directed graphs, which is NP-hard [FHW80].
Extending the problem to finding two disjoint si-ti-paths of minimal total length
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(in undirected graphs), Björklund and Husfeldt [BH19] provided an O(n11)-time
randomized algorithm. Finally, Tragoudas and Varol [TV96] showed that it is
NP-hard to decide whether the number of solutions of an instance of 2-Disjoint
Paths is at least some given threshold.

5.2 A Geometric View on Shortest Paths
In this section, we delineate our geometric perspective on k-Disjoint Shortest
Paths, make some structural observations, and give a characterization of
solutions with regard to their geometry. In the following sections, we will
then use these observations to design a dynamic-programming-based algorithm
for k-Disjoint Shortest Paths. We start with some basic intuition and
a small example. In Subsection 5.2.1 we then formalize the geometry-based
ideas and provide a characterization of solutions for 2-Disjoint Shortest
Paths. In Subsection 5.2.2 we then generalize this characterization to solutions
of k-Disjoint Shortest Paths.

For the geometric representation, we define a k-dimensional vector2 #»v for
each vertex v. The ith coordinate of this vector is the distance between si
and v. An example of this vector representation is given in Figure 5.1. Note
that there can be multiple vertices with the same vector. The geometric
perspective is based on the following two observations. First, since each
path Pi = (vi0, vi1, . . . , vidi

) in the sought solution is a shortest si-ti-path, it
holds for each j ∈ [di] that dist(si, vij) = dist(si, vij−1) + 1, that is, the path Pi
is strictly monotone in the ith coordinate. We say that paths which are
strictly monotone in the ith coordinate have color i. Second, for each vertex vij
in Pi, it holds that dist(si, ti) = dist(si, vij) + dist(vij , ti). Thus, any vertex w
with dist(si, ti) ̸= dist(si, w) + dist(w, ti) cannot be part of a shortest si-ti-path.
We can formulate this into a necessary (but not sufficient) condition in terms of
our geometric perspective as follows. Consider the k-dimensional hyperrectangle
that has the vectors of si and ti as two corners and whose sides form an angle
of 45◦ with the coordinate axes. We say that this hyperrectangle is spanned
by si and ti. The (hyper)rectangle spanned by s1 and t1 in the right-hand side
of Figure 5.1 is highlighted in gray. We will prove that any vertex whose vector
is not within the area of this hyperrectangle cannot be part of a shortest si-ti-
path. Moreover, if we consider any vertex vij in Pi and the two hyperrectangles

2We use the term vector interchangeably with the point the vector is pointing to.
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Figure 5.1: Left side: A simple, undirected graph with four distinguished ver-
tices s1, s2, t1, and t2. The vectors with the distances to each si are written next to
the vertices. Two disjoint shortest paths are highlighted.
Right side: A two-dimensional coordinate system. Each vertex is represented at its
vector and edges are drawn as lines between their respective end points. When multiple
vertices share the same vector, then vertices are depicted close to their actual vector.
The rectangle spanned by s1 and t1 is drawn in gray. The two disjoint shortest paths
are again depicted. Note that the s1-t1-path is going strictly monotone to the right
and the s2-t2-path is strictly monotone going down.

spanned by vij and either si or ti, then it holds that the vector of each vertex
in Pi is contained in the area of these two hyperrectangles.

We use these two observations as follows. Assume that there is a solution (a
set of pairwise disjoint shortest si-ti-paths (Pi)i∈[k]). We will show that each
path Pi can be split into ℓi subpaths P 1

i , P
2
i , . . . , P

ℓi
i such that

1. ℓi ≤ f(k) for all i ∈ [k] and for some computable function f ,

2. the last vertex in P ji is the first vertex in P j+1
i for each i ∈ [k] and

each j ∈ [ℓ− 1], and

3. the subpaths can be partitioned such that
• subpaths in the same part of the partition share a common color and
• for two subpaths P ji and P qp in different parts of the partition, it holds

that the areas of the hyperrectangles spanned by the end vertices
of P ji and P qp , respectively, are disjoint.
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Our algorithm works in two phases. In the first phase, we guess3 the end
vertices of each of the described subpaths (we call the end vertices marbles). In
the second phase, we compute the described partition and solve k-Disjoint
Shortest Paths independently for each part of the partition. For each part of
the partition, there is a color c that all subpaths in this part have. We assume
that each subpath in this part is strictly increasing in its c-coordinates as we
can otherwise swap the two endpoints. We then ignore all edges that are not
monotone in c (the two endpoints of the edge have the same c-coordinate) and
direct the edges so that they are pointing towards the higher c-coordinate. Note
that the resulting graph is a DAG and since each subpath is strictly increasing
in its c-coordinates, the directed version of each subpath is still contained in the
constructed DAG. Hence, we can use the algorithm of Fortune et al. [FHW80]
for k-Disjoint Shortest Paths on DAGs to find pairwise disjoint shortest
subpaths. We then also present our own dynamic program for k-Disjoint
Shortest Paths on DAGs and, as Fortune et al. [FHW80] only state nO(k)

time, provide a precise running-time analysis.
We remark that Lochet [Loc21] used the same two-step approach but how

these steps are achieved is different. In particular, he does not use a geometric
view on shortest paths (as we do). As a result, even for k = 2 he can only
upper-bound the number of vertices his algorithm has to guess to ensure that no
two parts can intersect by 991 ([Loc21, Lemma 13]) while our approach produces
at most five parts. Moreover, our geometric view allows us to use a more efficient
way of splitting the paths for general k (in O((k + 1)!) parts instead of O(k5k )
as done by Lochet).

We continue with some intuition for the described subpaths and the partition
of them. We start with the two-dimensional case and distinguish between
four cases. Figure 5.2 gives an overview over these cases and the vertices (the
marbles) we guess in each case. It is easy to see that only in the case in the
top right-hand corner the areas of two subpaths intersect (the dashed line).
However, in this area both paths are strictly monotone in both coordinates.
Thus, the depicted marbles ensure in each case that a partition as described
exists.

We continue with the case where k > 2. The basic idea is to recursively
partition the paths by considering two-dimensional projections of the respective
hyperrectangles. Note that if these projections are disjoint, then also the areas

3Whenever we pretend to guess something, we mean that we iterate over all possible choices
and consider for the explanation or proof the respective correct iteration.
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Figure 5.2: The four cases for the two-dimensional projection of two paths P1 and P2.
The thick black lines represent P1 and P2 and the colored rectangles are the ones
spanned by the respective terminals and marbles. For easier distinction, we colored
everything related to the s1-t1-path red and related to the s2-t2-path blue (except
for the respective paths themselves). A black square represents a vector on which
we guessed a marble on both paths. The dashed line represents the subpaths of P1
and P2 that have a common color.
(top left-hand corner): The lines cross in one point with non-integer coordinates.
(top right-hand corner): The lines cross in at least one point with integer coordinates.
(bottom left-hand corner): The rectangles defined by si and ti intersect (in the gray
(darker) area), but the lines do not.
(bottom right-hand corner): The rectangles defined by si and ti do not intersect.

of the respective hyperrectangles are disjoint. For each pair (Pi, Pj) of paths,
we start with the orthogonal projection to the coordinates i and j. This yields
a set of marbles for Pi and Pj such that the respective subpaths either have
colors i and j or cannot interfere with the respective other path. Assume that we
guessed for each two-dimensional (i, j)-projection the intersection of Pi and Pj
in this projection. Unfortunately, we cannot partition the respective subpaths as
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stated above. Instead, we store for each subpath P ′
i of Pi the set Φ of all colors

that P ′
i has and recursively refine these subpaths until a partition as stated is

possible. Roughly speaking, we check for each pair of subpaths whether the
areas of their respective hyperrectangles intersect and if they do, then we find
a two-dimensional projection and use this to find new marbles. The resulting
subpaths are then either disjoint from the respective other path or have an
additional color. We continue this procedure until the areas of any two subpaths
with different colors are disjoint. These subpaths are then partitioned by their
respective sets of colors. Note that by construction different subpaths in one
part of the partition share a common color and the areas of the hyperrectangles
spanned by the end vertices of two subpaths in different parts of the partition
are disjoint.

In Subsection 5.2.1 we formalize the geometry-based ideas and provide a char-
acterization of solutions for 2-Disjoint Shortest Paths. In Subsection 5.2.2
we generalize this characterization to solutions of k-Disjoint Shortest Paths.

5.2.1 Two Shortest Paths

We now formalize and generalize the idea behind the geometric view (visualized
in Figures 5.1 and 5.2). We start with some notation for projections. For
any ∅ ⊂ I ⊆ [k] and any vector x ∈ Rk, we denote with xI ∈ R|I| the orthogonal
projection of x to the coordinates in I. That is, xI is the |I|-dimensional
vector obtained by deleting all dimensions in x that are not in I. We usually
drop the brackets in the exponent, thus writing e. g. (5, 6, 7, 8, 9)1,3,4 ..= (5, 7, 8)
or (5, 6, 7)2 ..= (6). Similarly, for R ⊆ Rk we define RI ..= {xI | x ∈ R} ⊆ R|I|.

We associate with each vertex v ∈ V a vector in the k-dimensional Euclidean
vector space. Formally, #»v ..= ( #»v i)i∈[k]

..= (dist(si, v))i∈[k] ∈ Nk and for U ⊆ V
we use #»

U ..= { #»u | u ∈ U} to denote the set of all vectors of vertices in U . For a
given instance of k-Disjoint Shortest Paths, one can compute the vector
of each vertex in O(km) time by performing a breadth-first-search from each
vertex si.

We use the following notations for any non-empty index set I ⊆ [k] in order
to compare vectors of vertices v, w or sets V,W of vertices:

v ≃I w ⇐⇒ ∀c ∈ I. #»v c ≃ #»wc for ≃ ∈ {<,≤,=,≥, >}, and
V ≃I W ⇐⇒ { #»v I | v ∈ V } ≃ { #»wI | w ∈W} for ≃ ∈ {⊂,⊆,=,⊇,⊃}.
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We further write x ∈I X if there is an x′ ∈ X with x′ =I x and x /∈I X
otherwise.

Lemma 5.1. For any pair of vertices v, w ∈ V , we have ∥ #»v − #»w∥∞ ≤ dist(v, w).

Proof. Let P be a shortest v-w-path. Each edge {p, q} in P fulfills ∥ #»p − #»q ∥∞ ≤ 1
as | dist(si, p)− dist(si, q)| ≤ 1 for each vertex si. Thus, by the triangle inequal-
ity, ∥ #»v − #»w∥∞ ≤

∑︁
a∈A(P ) 1 = dist(v, w).

For two vertices u,w ∈ V , let

u ⋄ w ..= {v ∈ V | dist(u, v) + dist(v, w) = dist(u,w)}

be the set of all vertices that lie on a shortest u-w-path. Similarly, for
any x, y ∈ Nk, let

x ⋄ y ..= {z ∈ Rk | ∥x− z∥∞ + ∥z − y∥∞ = ∥x− y∥∞}

be the hyperrectangle spanned by x and y (whose sides form an angle of 45◦

with the coordinate axes (see Figure 5.1)). We continue with a formal definition
of colors.

Definition 5.1. Let s, t be two vertices and let P be a shortest s-t-path. The
pair (s, t) and the path P are colored if dist(s, t) = ∥ #»s − #»

t ∥∞. Let

C(P ) ..= C(s, t) ..= {c ∈ [k] | | #»s c − #»
t
c| = ∥ #»s − #»

t ∥∞}

be the set of all colors of P . The pair (s, t) and the path P are c-colored for
each c ∈ C(s, t).

Note that this definition of a c-colored path is equivalent to saying that P is
strictly monotonous in its c-coordinates. Note further that for arbitrary u,w ∈ V
we do not always have #        »u ⋄ w ⊆ #»u ⋄ #»w, that is, the vectors of all vertices on a
shortest u-w-path are not necessarily contained in the set of vectors “spanned”
by #»u and #»w. However, this inclusion holds for colored vertex pairs as shown
next.

Lemma 5.2. Let v, w ∈ V be a b-colored pair. Then, #        »v ⋄ w ⊆ #»v ⋄ #»w.

Proof. Without loss of generality v ≤b w. Let u be an arbitrary vertex in v ⋄w.
Then, dist(v, w) = dist(v, u) + dist(u,w). Definition 5.1 and Lemma 5.1 yield

#»wb = #»v b + dist(v, w) = #»v b + dist(v, u) + dist(u,w) ≥ #»u b + dist(u,w) ≥ #»wb.
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Hence, #»u b = #»v b + dist(v, u) and #»wb = #»u b + dist(u,w). Lemma 5.1 then states
that dist(v, u) = ∥ #»v − #»u∥∞ and dist(u,w) = ∥ #»v − #»u∥∞. Hence,

∥ #»v − #»w∥∞ = dist(v, w) = dist(v, u) + dist(u,w) = ∥ #»v − #»u∥∞ + ∥ #»u − #»w∥∞.

This leads to #»u ∈ #»v ⋄ #»w and thus #        »v ⋄ w ⊆ #»v ⋄ #»w.

Throughout this chapter, we will be particularly interested in two-dimensional
projections of areas #»v ⋄ #»w for some vertices v and w. Note in this context
that ( #»v ⋄ #»w)I = #»v I ⋄ #»wI . Recall that the area defined by x ⋄ y for x, y ∈ N2

is a rectangle in the plane whose sides form an angle of 45◦ to the coordinate
axes. The following lemma lists necessary and sufficient conditions for those
rectangles to intersect.

Lemma 5.3. Let x, y, x̂, ŷ ∈ N2. Then x ⋄ y ∩ x̂ ⋄ ŷ ̸= ∅ if and only if all of the
following hold:

(i) min{x1 − x2, y1 − y2} ≤ max{x̂1 − x̂2, ŷ1 − ŷ2},

(ii) min{x̂1 − x̂2, ŷ1 − ŷ2} ≤ max{x1 − x2, y1 − y2},

(iii) min{x1 + x2, y1 + y2} ≤ max{x̂1 + x̂2, ŷ1 + ŷ2}, and

(iv) min{x̂1 + x̂2, ŷ1 + ŷ2} ≤ max{x1 + x2, y1 + y2}.

Proof. Let R1, R2 ⊆ R2 be two axis-parallel rectangles defined by the opposite
corners q, r ∈ R2 and q̂, r̂ ∈ R2. It is easy to see that R1 and R2 intersect if
and only if

a) min{q1, r1} ≤ max{q̂1, r̂1} and min{q̂1, r̂1} ≤ max{q1, r1}
(i. e., there is an overlap in the first coordinate), and

b) min{q2, r2} ≤ max{q̂2, r̂2} and min{q̂2, r̂2} ≤ max{q2, r2}
(i. e., there is an overlap in the second coordinate).

Since the intersection of two rectangles is invariant under rotation and scaling,
we simply rotate x⋄y and x̂⋄ ŷ by 45◦ (and scale it by factor

√
2) by multiplying

all vectors with the matrix
R =

[︃
1 −1
1 1

]︃
.

Now the above characterization for axis-parallel rectangles translates into the
conditions stated in the lemma.
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d1
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d4

Figure 5.3: The rectangle x ⋄ y spanned by two points x and z in two dimensions
and a point z ∈ x ⋄ y. Note that ∥y − x∥∞ is the vertical distance between x and y.
Lemma 5.4 states that d1 ≥ d2 and d3 ≥ d4.

The next lemma states that the distance between x and any z ∈ x ⋄ y where x
and y have distance |yc−xc| is at most |zc−xc|. Intuitively, this is clear as x⋄y
is a hyperrectangle whose sides form an angle of 45◦ with the coordinate axes
and hence half of its borders exactly define all points z whose distance to x is
exactly |zc − xc|. See Figure 5.3 for an illustration.

Lemma 5.4. Let b, c ∈ [k] and let x, y ∈ Nk with ∥y − x∥∞ = yc − xc. Then,
for all z ∈ x ⋄ y it holds that zc− xc ≥ |zb− xb| ≥ 0 and yc− zc ≥ |yb− zb| ≥ 0.

Proof. By assumption and the definition of x ⋄ y, it holds that

yc − xc = ∥y − x∥∞ = ∥y − z∥∞ + ∥z − x∥∞

≥ |yc − zc|+ |zc − xc| ≥ (yc − zc) + (zc − xc)
= yc − xc.

Thus, we have equality everywhere, in particular yc− zc = ∥y− z∥∞ ≥ |zb−xb|
and zc − xc = ∥z − x∥∞ ≥ |yb − zb| (as shown by the equality between the last
term in the first row and the first term in the second row).

We next formalize the lines we used in Figure 5.1 to connect the vectors
of vertices in a path. To this end, for any path P = (v1, v2, . . . , vi) we de-
fine ζ(P ) ⊂ Rk as the piecewise linear curve connecting the points of #»

P in the
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order given by P . Recall that C(P ) denotes the set of all colors a such that P
is a-colored. The next observation states that ζ(P )C(P ) is a straight line, which
is equivalent to the statement that P is strictly monotone in each coordinate
in C(P ).

Observation 5.5. Let P be a colored path. Then ζ(P )C(P ) is a straight line
segment.

Proof. Let ℓ ..= ∥ # »sP −
# »
tP ∥∞ and k′ ..= |C(P )|. The path P contains exactly ℓ

edges, each of which has an Euclidean length of at most
√
k′ in the projec-

tion ζ(P )C(P ). Thus the length of ζ(P )C(P ) is at most ℓ ·
√
k′ which is exactly

the Euclidean distance between # »sP
C(P ) and # »

tP
C(P ).

As a consequence of Observation 5.5, the intersection of two paths P,Q in the
(C(P ) ∪ C(Q))-projection is also a straight line segment with an angle of 45◦

to the coordinate axes as shown in Figure 5.1 (right side) and Figure 5.2 (top
right).

Lemma 5.6. Let P and Q be two colored paths, and C ⊆ C(P ) ∪ C(Q).
Then ζ(P )C ∩ ζ(Q)C is a (possibly empty) straight line segment.

Proof. For the sake of notation, we assume that C = [|C|]. Note that ζ(Pa)
and ζ(Pb) are piecewise linear curves. Moreover, according to Lemma 5.2 for
any two points x, y ∈ ζ(P ), it holds that ∥x− y∥∞ = |xc − yc| for all c ∈ C(P )
and ∥x′ − y′∥∞ = |x′b − y′b| for any two points x′, y′ ∈ ζ(Q) and all b ∈ C(Q).
So, for x, y ∈ Rk with xC , yC ∈ ζ(P )C ∩ ζ(Q)C , it follows that

|xc − yc| = ∥x− y∥∞ = |xb − yb|

for all c ∈ C ∩ C(P ) and all b ∈ C ∩ C(Q). Thus, C(x, y) ⊇ C and the claim
follows from Observation 5.5.

Note that even if ζ(P )C(P )∪C(Q) ∩ ζ(Q)C(P )∪C(Q) is non-empty, then it does
not need to contain points from N|C(P )∪C(Q)| as can be seen in the top left
example in Figure 5.2.

The following definition starts to formalize the notion of marbles, that is, the
special vertices in the different cases in Figure 5.2. We start with the two cases
in which the lines of P and Q cross (the upper two).
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Definition 5.2. Let P,Q be two colored paths, let b ∈ C(P ), and let c ∈ C(Q).
The paths P and Q are b, c-crossing if the intersection

X ..= ζ(P )b,c ∩ ζ(Q)b,c

is non-empty and they are b, c-non-crossing otherwise.
If #»

P
b,c
∩X ≠ ∅, then we define αb,cP (Q) and ωb,cP (Q) to be the first and last

vertex v of P with vb,c ∈ X. If #»

P
b,c
∩X only contains non-integer coordinates,

then αb,cP (Q) ..= ωb,cP (Q) ..= ⊥. We further define ∂b,cP (Q) and ϖb,c
P (Q) to be the

last vertex before and the first vertex after that intersection. If #»

P
b,c
∩X = ∅,

then αb,cP (Q) ..= ωb,cP (Q) ..= ∂b,cP (Q) ..= ϖb,c
P (Q) ..= ⊥.

Regarding notation, we will use αP instead of αb,cP (Q) (and the same for ω, ∂,
and ϖ) if b, c, and Q are clear from the context. Note that the subpaths between
the respective α- and ω-vertices are by Lemma 5.6 straight lines and {b, c}-
colored.

Observation 5.7. If P,Q are two paths with αb,cP (Q) ̸= ⊥, then

P [αb,cP (Q), ωb,cP (Q)] =b,c Q[αb,cQ (P ), ωb,cQ (P )].

In particular, both of these subpaths are b, c-colored.

It remains to consider the subpaths between s- and α-vertices and between ω-
and t-vertices. By Lemma 5.2 these have to lie in the rectangle areas

# »sP ⋄
#             »

∂b,cP (Q),
#               »

ϖb,c
P (Q) ⋄ # »

tP ,
# »sQ ⋄

#             »

∂b,cQ (P ), and
#               »

ϖb,c
Q (P ) ⋄ # »

tQ. (5.1)

Figure 5.2 (top left-hand corner and top right-right hand corner) suggests that
these areas are pairwise disjoint. We will show that this is indeed the case
and, to this end, we show the following two observations. The first one states
that the ∂-vertex on P has a b-coordinate that is at most the b-coordinate of
the ∂-vertex on Q, where b is the “original” color of P . Note that this ∂-vertex
is right before the respective α-vertex or before the single crossing point with
non-integer coordinates. Since P is strictly b-monotone, the path Q can at most
increase or decrease as fast as P from the point of intersection.

Observation 5.8. Let P,Q be two b, c-crossing paths with ∂b,cP (Q) ̸= ⊥. If P
is a subpath of a shortest sb-tb-path and Q is a subpath of a shortest sc-tc-path,
then

#             »

∂b,cP (Q)
b

≤
#             »

∂b,cQ (P )
b

and
#             »

∂b,cQ (P )
c

≤
#             »

∂b,cP (Q)
c

.
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Proof. Let z ∈ ζ(P )b,c ∩ ζ(Q)b,c have minimal b-coordinate. Note that⃦⃦⃦⃦
z −

#           »

∂P (Q)
b,c

⃦⃦⃦⃦
∞

=
⃦⃦⃦⃦
z −

#           »

∂Q(P )
b,c

⃦⃦⃦⃦
∞
,

and since ζ(P ) is strictly increasing in its b-coordinate, we can infer that

zb −
#           »

∂P (Q)
b

=
⃦⃦⃦⃦
z −

#           »

∂P (Q)
b,c

⃦⃦⃦⃦
∞

=
⃦⃦⃦⃦
z −

#           »

∂Q(P )
b,c

⃦⃦⃦⃦
∞
≥ zb −

#           »

∂Q(P )
b
.

This yields
#           »

∂P (Q)
b
≤

#           »

∂Q(P )
b

and the second inequality follows analogously.

The second observation is a simple but useful restatement of Lemma 5.1.

Observation 5.9. Let b, c ∈ [k] and let (v, w) be a b-colored pair of vertices
with v <b w. Then #»wb − #»wc ≥ #»v b − #»v c.

Proof. By Lemma 5.1, #»wc − #»v c ≤ dist(v, w) = #»wb − #»v b. A simple arithmetic
reformulation yields #»wc − #»wb ≤ #»v c − #»v b and multiplying both sides with −1
completes the proof.

We are now in the position to prove the statement that the four areas defined
in Term (5.1) are pairwise disjoint.

Lemma 5.10. Let P and Q be two b, c-crossing paths. The sets(︂
# »sP ⋄

#             »

∂b,cP (Q)
)︂b,c

,
(︂ #               »

ϖb,c
P (Q) ⋄ # »

tP

)︂b,c
,
(︂

# »sQ ⋄
#             »

∂b,cQ (P )
)︂b,c

, and
(︂ #               »

ϖb,c
Q (P ) ⋄ # »

tQ

)︂b,c
are pairwise disjoint (or undefined).

Proof. Without loss of generality, let P be b-colored, Q be c-colored, sP <b tP ,
and sQ <c tQ. Recall that sP and tP are the start and end vertices of P ,
respectively. We further assume that all above sets are defined, that is, none of
the described end points is ⊥. By Lemma 5.4, for any x ∈ # »sP ⋄

#  »

∂P and y ∈ #   »ϖP ⋄
# »
tP

it holds that x ≤ #  »

∂P
b
< #   »ϖP

b ≤ yb, and thus
(︂

# »sP ⋄
#  »

∂P

)︂b,c
∩

(︁
#   »ϖP ⋄

# »
tP

)︁b,c = ∅.

An analogous argument holds for
(︂

# »sP ⋄
#  »

∂P

)︂b,c
and

(︁
#   »ϖP ⋄

# »
tP

)︁b,c.
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We will now use Lemma 5.3 to show that
(︂

# »sP ⋄
#  »

∂P

)︂b,c
∩

(︂
# »sQ ⋄

#  »

∂Q

)︂b,c
= ∅.

Since all other remaining cases are analogous, this will conclude the proof. By
Observation 5.9, it holds that

max{ # »sP
b − # »sP

c,
#  »

∂P
b
− #  »

∂P
c
} = #  »

∂P
b
− #  »

∂P
c

and

min{ # »sQ
b − # »sQ

c,
#  »

∂Q
b
− #  »

∂Q
c
} = #  »

∂Q
b
− #  »

∂Q
c
.

Observe that #  »

∂P
b,c
̸= #  »

∂Q
b,c

as otherwise ∂P would lie on the intersection of P
and Q, a contradiction. Hence #  »

∂P
b
̸= #  »

∂Q
b

or #  »

∂P
c

≠ #  »

∂Q
c
. In the former case,

Observation 5.8 states that ∂Q >b ∂P and in the latter case it states ∂P >c ∂Q.
Hence, #  »

∂P
c

+ #  »

∂Q
b
>

#  »

∂P
b

+ #  »

∂Q
c

and thus #  »

∂P
b
− #  »

∂P
c
<

#  »

∂Q
b
− #  »

∂Q
c
.

Setting x = # »sP
b,c, y = #  »

∂P
b,c

, x̂ = # »sQ
b,c, and ŷ = #  »

∂Q
b,c

in Lemma 5.3 then

violates condition (ii) and hence
(︂

# »sP ⋄
#  »

∂P

)︂b,c
∩

(︂
# »sQ ⋄

#  »

∂Q

)︂b,c
= ∅.

We continue with the definition of marbles for the cases where the two paths P
and Q are b, c-non-crossing. Figure 5.2 shows that even in this case sP ⋄ tP
and sQ ⋄ tQ in general are not disjoint (bottom left-hand corner). Since the two
bottom cases are distinguished by the intersection of sP ⋄ tP and sQ ⋄ tQ, we
start with a definition of this intersection.

Definition 5.3. Let b, c ∈ [k]. Let P be a b-colored path and let Q be a c-colored
path. The common b, c-area of P and Q is

∆b,c(P,Q) ..= ( # »sP ⋄
# »
tP )b,c ∩ ( # »sQ ⋄

# »
tQ)b,c.

Note that if ∆b,c(P,Q) = ∅, then by Lemma 5.2, they do not share ver-
tices with common vectors and hence they do not share common vertices.
If ∆b,c(P,Q) ̸= ∅ and P and Q are b, c-crossing, then we can use Definition 5.2
to define the marbles. It hence remains to study the case where ∆b,c(P,Q) ̸= ∅
and P and Q are b, c-non-crossing. In this case we need at most one marble per
path and this marble is defined as follows.

Definition 5.4. Let P be a b-colored path, Q be a c-colored path, and let
without loss of generality be sQ <b tQ. Define

B ..= {v ∈ V | v =b sQ ∧ v <c sQ} ∪ {v ∈ V | v =b tQ ∧ v >c tQ}.
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If P ∩ B ̸= ∅, then δb,cP (Q) is the unique vertex in P ∩ B. If P ∩ B = ∅,
then δb,cP (Q) = ⊥.

Observation 5.11. δb,cP (Q) is well-defined.

Proof. Since P is strictly monotone in the b-coordinate, it can clearly con-
tain at most one point from B1 ..= {v ∈ V | v =b sQ ∧ v <c sQ} and one
from B2 ..= {v ∈ V | v =b tQ ∧ v >c tQ}. It remains to show that it cannot in-
tersect both sets. To this end, observe that Lemma 5.4 states for any b1 ∈ B1
and b2 ∈ B2 that |bc1− bc2| > |sbQ− tbQ| ≥ |sbQ− tbQ| = |bb1− bb2|, and therefore the
pair (b1, b2) is not b-colored and thus P cannot contain both b1 and b2.

We next show that if ∆b,c(P,Q) ̸= ∅ and P and Q are b, c-non-crossing, then
at least one of the vertices δb,cP (Q) or δb,cQ (P ) exists. Afterwards we will show
that these vertices guarantee that the respective new areas are disjoint.

Lemma 5.12. Let P,Q be two b, c-non-crossing paths with ∆b,c(P,Q) ̸= ∅.
Then, δb,cP (Q) ̸= ⊥ or δb,cQ (P ) ̸= ⊥.

Proof. Note that the definition of ∆b,c(P,Q) requires that without loss of
generality P is b-colored and Q is c-colored. We further assume without loss of
generality that {b, c} = [2] and that sP <b tP and sQ <c tQ.

Suppose towards a contradiction that δb,cP (Q) = δb,cQ (P ) = ⊥. Since P,Q
are b, c-non-crossing and δb,cQ (P ) = ⊥, the path Q cannot cross the curve

{x ∈ N2 | xc = sP ∧ xb < sP } ∪ ζ(P )b,c ∪ {x ∈ N2 | xc = tP ∧ xb > tP }.

Since Q cannot cross the line, it is located completely on one side of it. Assume
without loss of generality that Q (and thus in particular tQ) is located on the
side containing (0, 0), that is, for all v in P and w in Q with vb = wb it holds
that vc > wc.

Then there are three possible cases: tbQ < sbP , tbQ ∈ [sbP , tbP ], or tbQ > tbP . Note
that in the first case by Lemma 5.4 it holds for any z ∈ ∆b,c(P,Q) that

zc − tcQ ≥ zb − tbQ > zb − sbP ≥ zc − scP ,

a contradiction to z ∈ ( # »sQ ⋄
# »
tQ)b,c. In the last case, a similar argument holds

with
sbP < tbQ − zb ≤ tcQ − zc < scP − zc,
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which is a contradiction to z ∈ ( # »sP ⋄
# »
tP )b,c. It remains to analyze the case

where tbQ ∈ [sbP , tbP ]. Note that in this case there is a vertex p in P with pb = tbQ.
Hence tcQ < pc, and p ∈ {v ∈ V | v =b tQ ∧ v >c tQ}. Thus δb,cP (Q) = p ̸= ⊥, a
contradiction.

The next lemma shows that if P and Q are b, c-non-crossing, but they have
a common area ∆b,c and δb,cP (Q) ̸= ⊥, then the area between sQ and tQ is
disjoint from the two areas between sP and δb,cP (Q) and between δb,cP (Q) and tP .
Hence δb,cP (Q) is the last type of marble needed.

Lemma 5.13. Let P be a b-colored path and let Q a c-colored path such
that ∆b,c(P,Q) ̸= ⊥ and δb,cP (Q) ̸= ⊥. Then,

(︁
# »sQ ⋄

# »
tQ

)︁b,c is disjoint from
(︂

# »sP ⋄
#             »

δb,cP (Q)
)︂b,c
∪

(︂ #             »

δb,cP (Q) ⋄ # »
tP

)︂b,c
.

Proof. For the sake of readability, we use δ ..= δb,cP (Q). We will show that

(︁
# »sQ ⋄

# »
tQ

)︁b,c ∩ (︂
# »sP ⋄

#»

δ
)︂b,c

= ∅.

The proof for ( #»

δ ⋄ # »
tP )b,c is then completely analogous. Assume without loss of

generality that δ =b tQ and δ >c tQ. Notice that

max{ # »sP
b − # »sP

c,
#»

δ
b
− #»

δ
c
} Obs. 5.9= #»

δ
b
− #»

δ
c

<
# »
tQ
b − # »

tQ
c Obs. 5.9= min{ # »sQ

b − # »sQ
c,

# »
tQ
b − # »

tQ
c}.

Setting x ..= # »sP
b,c, y ..= #»

δ
b,c

, x̂ ..= # »sQ
b,c, and ŷ ..= # »

tQ
b,c in Lemma 5.3 then

yields that condition (ii) is violated and thus ( # »sP ⋄
#»

δ )b,c ∩ ( # »sQ ⋄
# »
tQ)b,c = ∅.

We are finally in the position to define the set of marbles for a pair of paths.
Afterwards we conclude this subsection with the main proposition that states
that marbles uniquely classify solutions.

Definition 5.5. Let P be a b-colored sP -tP -path and Q be a c-colored sQ-tQ-
path. The set of {b, c}-marbles of P with respect to Q is

Mb,c
P (Q) ..= {sP , tP , µb,cP (Q) | µ ∈ {α, ω, ∂,ϖ, δ}} \ {⊥}.
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The next proposition states that if there are two different solutions and in
particular two pairs (P,Q) and (P ′, Q′) of solution paths with the same marbles,
then P and Q share exactly the same vectors as P ′ and Q′ do. Recall that the
shared vectors are a straight line segment and that once their ends are fixed, we
can use the dynamic program by Fortune et al. [FHW80] to find disjoint paths
between these ends.

Proposition 5.14. Let P and P ′ be b-colored sP -tP -paths, and let Q and Q′

be c-colored sQ-tQ-paths. If Mb,c
P (Q) ⊆ P ′ and Mb,c

Q (P ) ⊆ Q′, then

{v ∈ P ′ | v ∈b,c Q′} =b,c {v ∈ P | v ∈b,c Q}.

Proof. Let R be the subpath of P that starts at αb,cP (Q) and ends at ωb,cP (Q)
(or R = ∅ if αP = ωP = ⊥). From the definition of α and ω and Lemma 5.6, it
follows that {v ∈ P | v ∈b,c Q} =b,c R. We now consider the two cases whether
or not P and Q are b, c-crossing.

If P and Q are b, c-crossing, then by definition ∂P ̸= ⊥ and ϖP ̸= ⊥. It follows
from Lemma 5.2 that the subpaths of P ′ from sP to ∂P and from ϖP to tP use
only vectors from # »sP ⋄

#  »

∂P and #   »ϖP ⋄
# »
tP , respectively. As the analogous statement

holds for the corresponding subpaths of Q′, it follows from Lemma 5.10 that all
these subpaths do not intersect in the projection to the b-c-plane. It remains to
consider the subpath from αP to ωP . If αP = ωP = ⊥, then

{v ∈ P ′ | v ∈b,c Q′} = ∅ = R = {v ∈ P | v ∈b,c Q}.

Otherwise, #»

R
b,c is by Lemma 5.6 a straight diagonal line and by Observation 5.5

so is {v ∈ P ′ | v ∈b,c Q′}. Since those two straight line segments have the same
ends, they are the same and thus {v ∈ P ′ | v ∈b,c Q′} =b,c R.

If P and Q are b, c-non-crossing, then {v ∈ P ′ | v ∈b,c Q′}b,c ⊆ ∆b,c(P,Q)
and ∅ = R. We consider the two cases ∆b,c(P,Q) = ∅ and ∆b,c(P,Q) ̸= ∅. In
the former case it holds that

{v ∈ P | v ∈b,c Q} = R = ∅ = ∆b,c(P,Q) = ∆b,c(P ′, Q′) = {v ∈ P ′ | v ∈b,c Q′}.
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In the latter case, by Lemma 5.12 there is a δb,cP (Q) ̸= ⊥ or δb,cQ (P ) ̸= ⊥. Without
loss of generality, assume that δb,cP (Q) ̸= ⊥. Then, δb,cP (Q) ∈Mb,c

P (Q) ⊆ P ′ and
by Lemma 5.13

#                                             »

{v ∈ P ′ | v ∈b,c Q′}
b,c

⊆
(︁

#   »sQ′ ⋄ #  »
tQ′

)︁b,c∩ (︂
( #   »sP ′ ⋄

#             »

δb,cP (Q))b,c ∪ (
#             »

δb,cP (Q) ⋄ #  »
tP ′)b,c

)︂
=

(︁
# »sQ ⋄

# »
tQ

)︁b,c∩ (︂
( # »sP ⋄

#             »

δb,cP (Q))b,c ∪ (
#             »

δb,cP (Q) ⋄ # »
tP )b,c

)︂
= ∅.

Thus, {v ∈ P ′ | v ∈b,c Q′} = ∅ = R = {v ∈ P | v ∈b,c Q}.

5.2.2 More than Two Shortest Paths
In the previous subsection, we looked at two shortest paths P and Q from sP
to tP and sQ and tQ, respectively. We showed that selecting at most ten vertices
from P and Q (five per path; see Definition 5.5) is sufficient to ensure that
each pair (P ′, Q′) of shortest sP -tP - and sQ-tQ-paths that also contain these
vertices (Mb,c

P (Q) and Mb,c
Q (P )) “behave” like P and Q in the sense that P ′

and Q′ intersect in the same vectors as P and Q do (see Proposition 5.14).
In this subsection, we define a set C, |C| ∈ O(k · k!), that basically ensures the
same properties for k paths. To formalize our goal for this subsection, we first
introduce the concept of avoiding paths which is a generalization of a slightly
modified version of b, c-non-crossing paths. The modification is to ignore the
ends of P and Q to ensure that we can split paths at certain vertices and still
can ensure that these different parts are avoiding.

Definition 5.6 (I-avoiding). Let ∅ ⊂ I ⊆ [k]. Two paths P and Q are I-
avoiding if p /∈I Q for each inner vertex p of P and q /∈I P for each inner
vertex q of Q. Two vertex pairs (sp, tp) and (sq, tq) are I-avoiding if

( #»sp
I ⋄ #»

tp
I) ∩ ( #»sq

I ⋄ #»
tq
I) ⊆ { #»sp

I ,
#»
tp
I} ∩ { #»sq

I ,
#»
tq
I}.

Note that being I-avoiding implies being I ′-avoiding for all I ′ ⊇ I. We use
avoiding as a shorthand for [k]-avoiding. Two paths P1 and P2 are internally
vertex-disjoint if neither of them contains an inner vertex of the other path.
Avoiding paths are clearly internally vertex-disjoint.

Observation 5.15. Let P,Q be two avoiding paths. Then P is internally
vertex-disjoint from Q.
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Moreover, for each pair of avoiding vertex pairs (s, t) and (u,w), the short-
est s-t- and u-v-paths are internally vertex-disjoint.

Lemma 5.16. Let (s, t) and (u,w) be two colored pairs of vertices. If the
pairs (s, t) and (u,w) are avoiding, then each shortest s-t-path is internally
disjoint from each shortest u-w-path.

Proof. If (s, t) and (u,w) are avoiding, then by definition and Lemma 5.2

#           »
sp ⋄ tp

I ∩ #          »
sq ⋄ tq

I ⊆ ( #»sp
I ⋄ #»

tp
I) ∩ ( #»sq

I ⋄ #»
tq
I) ⊆ { #»sp

I ,
#»
tp
I} ∩ { #»sq

I ,
#»
tq
I},

and thus each shortest s-t-path and each shortest u-w-path only intersect
in {s, t} ∩ {u,w} and are therefore internally vertex-disjoint.

With the notation of avoiding pairs, we can formulate our goal for this subsec-
tion. To this end, fix a solution P = (Pi)i∈[k] for a given instance (G, (si, ti)i∈[k])
of k-Disjoint Shortest Paths, that is, Pi is the si-ti-path in the solution.
Essentially, we want to partition the paths in P into subpaths and assign a
set Φ of labels to each subpath (Φ ⊆ [k]) such that the following two conditions
are satisfied.

(1.) Let P be a subpath with labels Φ ⊆ [k]. For each b ∈ Φ, P is b-colored.

(2.) Let P and Q be subpaths from Pi, Pj ∈ P with labels ΦP ,ΦQ ⊆ [k],
respectively. If ΦP ̸= ΦQ, then (sP , tP ) and (sQ, tQ) are avoiding.

Note that (2.) will be the central argument in our algorithm for k-Disjoint
Shortest Paths. The algorithm guesses the endpoints of these subpaths and
based on (2.) the algorithm can then compute the inner vertices of subpaths
with different label sets independently.

Note that for k = 2 the partition of P1 and P2 along the sets Mb,c
P (Q)

and Mb,c
Q (P ) satisfies the above. Each subpath of Pi, i ∈ [2], has label i. More-

over, the subpaths between the α- and ω-vertices have both labels 1 and 2.
Hence, (1.) above is satisfied. Furthermore, (2.) follows from Proposition 5.14.

We now generalize this to arbitrary constant k. The basic idea behind
defining a respective set C of marbles is depicted in Figure 5.4. Initially, each
path Pi has label i. Whenever two paths Pi and Pj in the solution intersect in
the (i, j)-projection (that is, the respective α- and ω-vertices are not ⊥), then
the subpaths P ′

i and P ′
j in the intersection get both labels i and j. If a third

path P ′ also intersects with P ′
j , then we try to use the intersections to move
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s1
P1

t1

s2
P2

t2

s3
P3

t3

ω2

1

α1 ω1

2

α2

3

α3 ω3

2

α′
1 ω′

1

3 → 2

α′
3 ω′

3

1 → 2

Figure 5.4: The three main lines represent three paths P1, P2, and P3. The small black
rectangles represent marbles on the respective path Pi and the j-colored lines above a
path indicate that Pi and Pj intersect in the (i, j)-projection, that is, they contain
vertices with vectors that are identical when projected in the (i, j)-plane. The paths P1
and P2 intersect in the (1, 2)-projection, P2 and P3 intersect in the (2, 3)-projection,
but P1 and P3 do not intersect in the (1, 3)-projection. The subpaths of P1 and P3
where they intersect with P2 in the (1, 2, 3)-projection are depicted by α′

1, ω′
1, α′

3,
and ω′

3. The colors above each subpath (and also the first number therein) represent
the labels of the respective subpath and the number (or sequence of numbers) display
the sequence that led to the respective marbles (end vertices) of this subpath.

the label i via path Pj to some subpath of P ′. Generalizing this, we consider
for each σ = (ℓ1, ℓ2, . . . , ℓh) whether label ℓ1 could be “transported” from Pℓ1

to Pℓ2 , from Pℓ2 to Pℓ3 , and so on until from Pℓh−1 to Pℓh−1 . While the idea of
transporting labels would also work with triples (transport label a via path Pb
to path Pc), we do not have any bound on the number of resulting subpaths
(as for each triple there might be many such subpaths). The reason for using
sequences is that we will show that for each σ = (ℓ1, ℓ2, . . . , ℓh) at most one
subpath of Pℓh

can receive label ℓ1 via σ.
In the following, we use set(τ) ..= {ℓ1, . . . , ℓh} to denote the set with all entries

in a sequence τ = (ℓ1, . . . , ℓh). We next define the crossing set C recursively for
each Φ ⊆ [k]. This should be seen as the set of marbles of a solution. We will
then show a result similar to Proposition 5.14 for arbitrary k that then allows
us to find the desired partition of paths.

Definition 5.7. Let (G, (si, ti)i∈[k]) be an instance of k-Disjoint Shortest
Paths and let P = (Pi)i∈[k] be a solution to this instance, that is, Pi is the
path between si and ti in the solution. For each Φ ⊆ [k] and each permuta-
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tion σ = (ℓ1, . . . , ℓ|Φ|) of Φ, we define the crossing set Cσ and the endpoints T (σ)
of intersections as follows.

• If |Φ| = 1 with σ = (i), then let Cσ ..= T (σ) ..= {si, ti}.

• If |Φ| = 2 with σ = (i, j), then let

T (σ) ..= {αi,jPj
(Pi), ωi,jPj

(Pi)} and Cσ ..=Mi,j
Pj

(Pi) \ {⊥}.

• If |Φ| ≥ 3, then let σstart ..= (ℓ1, . . . , ℓ|Φ|−1) and σend ..= (ℓ2, . . . , ℓ|Φ|).
We denote by Q the maximum common subpath of Pℓ|Φ|−1 [T (σstart)]
and Pℓ|Φ|−1 [T ((ℓ|Φ|, ℓ|Φ|−1))]. If T (σstart) = {⊥}, T (σend) = {⊥},
or V (Q) = ∅, then let T (σ) ..= Cσ ..= {⊥}. Otherwise, let

P ..= Pℓ|Φ| [T (σend)],

T (σ) ..= {αℓ1,ℓ|Φ|
P (Q), ωℓ1,ℓ|Φ|

P (Q)}, and

Cσ ..= (Mℓ1,ℓ|Φ|
P (Q) ∪Mℓ1,ℓ|Φ|

Q (P )) \ {⊥}.

The set C ..=
⋃︁
σ Cσ is the crossing set of P.

Observation 5.17. Let σ ..= (ℓ1, . . . , ℓ|Φ|) be any permutation of any Φ ⊆ [k].
If T (σ) ̸= {⊥}, then

(i) T (σ) ⊆ Pℓ|Φ| , and

(ii) T (σ) is c-colored for each c ∈ Φ.

In particular, crossing sets and endpoints are well-defined.

Proof. We prove both claims by an induction over |Φ|. For |Φ| = 1, note
that T (σ) = {sℓ1 , tℓ1}. Clearly {sℓ1 , tℓ1} ⊆ Pℓ1 as these are the ends of Pℓ1 and
the pair {sℓ1 , tℓ1} is by definition ℓ1-colored.

Now assume that both claims hold for all Φ′ with |Φ′| < |Φ|. Since T (σ) ̸= {⊥},
it holds that T (σ) = {αℓ1,ℓ|Φ|

P (Q), ωℓ1,ℓ|Φ|
P (Q)}, where

Q = Pℓ|Φ|−1 [T ((ℓ1, ℓ2, . . . , ℓ|Φ|−1))] ∩ Pℓ|Φ|−1 [T ((ℓ|Φ|, ℓ|Φ|−1))]

if |Φ| ≥ 3 and Q = Pℓ1 if |Φ| = 2. Note that V (Q) ̸= ∅ and hence if |Φ| ≥ 3, then
by induction hypothesis Q ⊆ Pℓ|Φ|−1 and Q is c-colored for each c ∈ Φ \ {ℓ|Φ|}.
If |Φ| = 2, then Q = Pℓ1 = Pℓ|Φ|−1 and Q is by definition ℓ1-colored. Thus,

T (σ) = {αℓ1,ℓ|Φ|
P (Q), ωℓ1,ℓ|Φ|

P (Q)}
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is well-defined and hence T (σ) ⊆ Pℓ|Φ| . Moreover, by Observation 5.7, it holds
that T (σ) is c-colored for each c ∈ (Φ \ {ℓ|Φ|}) ∪ {ℓ|Φ|} = Φ.

Note that Observation 5.17 states that, for each sequence σ ..= (ℓ1, ℓ2, . . . , ℓ|Φ|),
the set T (σ) describes a pair of vertices in Pℓ|Φ| . The next lemma states that
for any sequence σ′ = (ℓi, ℓi+1, . . . , ℓ|Φ|) with i ≥ 1 it holds that the subpath
of Pℓ|Φ| between the two vertices in T (σ) is a subpath of the one between the
two vertices in T (σ′), that is, if we add more entries to the front of σ′, then we
get smaller and smaller paths.

Lemma 5.18. Let σ ..= (ℓ1, ℓ2, . . . , ℓ|Φ|) be any permutation of any Φ ⊆ [k]
with |Φ| ≥ 2. If T (σ) ̸= {⊥}, then Pℓ|Φ| [T (σ)] ⊆ Pℓ|Φ| [T ((ℓ2, ℓ3, . . . , ℓ|Φ|))].

Proof. We prove the statement by a case distinction over |Φ|. If |Φ| = 2,
then the statement is trivial as T (σ) ⊆ Pℓ|Φ| by Observation 5.17 and by
Definition 5.7 T ((ℓ|Φ|)) = {sℓ|Φ| , tℓ|Φ|}. If |Φ| ≥ 3, then note that Pℓ|Φ| [T (σ)]
is by definition of α- and ω-vertices the maximal subpath P of Pℓ|Φ| such that
there is a subpath

Q ⊆ Pℓ|Φ|−1 [T ((ℓ1, ℓ2, . . . , ℓ|Φ|−1))] with P ={ℓ1,ℓ2,...,ℓ|Φ|} Q.

Analogously, Pℓ|Φ| [T ((ℓ2, ℓ3, . . . , ℓ|Φ|))] is the maximal subpath P ′ of Pℓ|Φ| such
that there is a subpath

Q′ ⊆ Pℓ|Φ|−1 [T ((ℓ2, ℓ3, . . . , ℓ|Φ|−1))] with P ′ ={ℓ2,ℓ3,...,ℓ|Φ|} Q′.

Since Q ⊆ Q′ by Definition 5.7, it also holds that P ⊆ P ′.

The next lemma states that when “transporting” the labels via a permu-
tation σ = (ℓ1, ℓ2, . . . , ℓ|Φ|), then the intersecting subpath P in the target
path Pℓ|Φ| “agrees” in all coordinates in set(σ) with the subpath Q of Pℓ|Φ|−1

where the label is transported from, that is, P =set(σ) Q.

Lemma 5.19. Let Φ ⊆ [k] with |Φ| ≥ 2. Let σ ..= (ℓ1, ℓ2, . . . , ℓ|Φ|) be any
permutation of Φ. If T (σ) ̸= {⊥}, then Pℓ|Φ| [T (σ)] =Φ Q′ for some subpath Q′

of Q ..= Pℓ|Φ|−1 [T ((ℓ1, ℓ2, . . . , ℓ|Φ|−1))] ∩ Pℓ|Φ|−1 [T ((ℓ|Φ|, ℓ|Φ|−1))].

Proof. We will again use induction over |Φ| to prove the claim. For |Φ| = 2, the
claim follows from Observation 5.7. For |Φ| ≥ 3, let σstart ..= (ℓ1, ℓ2, . . . , ℓ|Φ|−1)
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and σend ..= (ℓ2, ℓ3, . . . , ℓ|Φ|). By Lemma 5.18, Pℓ|Φ| [T (σ)] ⊆ Pℓ|Φ| [T (σend)] and
hence there is by induction hypothesis a subpath

R′ ⊆ Pℓ|Φ|−1 [T (σend)] ∩ Pℓ|Φ|−1 [T ((ℓ|Φ|, ℓ|Φ|−1))]

with Pℓ|Φ| [T (σ)] =set(σend) R′. Furthermore, by Definition 5.7 T ((ℓ1, ℓ|Φ|)) ̸= ⊥
and hence by induction hypothesis there is some subpath

Q′ ⊆ Q with Pℓh
[T (σ)] =ℓ1,ℓh Q′.

Note that R′ =ℓ|Φ| Pℓ|Φ| [T (σ)] =ℓ|Φ| Q′ and that R′ and Q′ are both subpaths
of Q. Finally, since Q ⊆ Pℓ|Φ|−1 [T ((ℓ|Φ|, ℓ|Φ|−1))] is by Observation 5.17 ℓ|Φ|-
colored and R′ =ℓ|Φ| Q′, it holds that R′ = Q′. Thus, Q′ =set(σ) Pℓ|Φ| [T (σ)],
which proves the claim.

In Subsection 5.2.1, we defined marbles, that is, specific vertices of two
paths P,Q such that when splitting P and Q at these vertices, then each
resulting subpath P ′ of P and Q′ of Q fulfill either P ′ =b,c Q′ or P ′ and Q′ are
avoiding. In this subsection, we generalized the notion of marbles to more than
two paths at the expense of restricting them to solution paths. We conclude this
subsection with the notion of marble paths, the final link between marbles and
crossing sets that will allow us to guess marbles and then compute shortest paths
between them almost independently. By that, we mean that we will define labels
for each subpath between marbles such that paths with different labels are
avoiding and paths with the same labels have a common color. Afterwards, we
will show in Section 5.3 how to compute disjoint paths between marble pairs
with a common color.
Definition 5.8. An i-marble path T is a set of vertices such that {si, ti} ⊆ T
and for each u, v ∈ T the pair (u, v) is i-colored. A segment S of an i-marble
path T is a subset of T containing two vertices denoted by start(S) and end(S)
and all vertices v ∈ T with start(S) <i v <i end(S). A segment is minimal if it
contains exactly two vertices, and it is j-colored if (start(S), end(S)) is j-colored.
A path P follows S if P is i-colored, has end vertices start(S) and end(S),
and S ⊆ V (P ). Two segments S and S′ are avoiding if each path P that
follows S and each path P ′ that follows S′ are pairwise avoiding. Two marble
paths are avoiding if all their segments are pairwise avoiding.

Before we state the main result of this section, we will prove a series of
lemmata that involve minimal segments of marble paths. The first one states
that adding more vertices to avoiding segments still results in avoiding segments.
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Lemma 5.20. Let S be a segment of an i-marble path and let U be a segment
of a j-marble path such that S and U are avoiding. Let S′ ⊇ S and U ′ ⊇ U be
two segments with

start(S′) = start(S), end(S′) = end(S),
start(U ′) = start(U), and end(U ′) = end(U).

The segments S′ and U ′ are avoiding.

Proof. Assume towards a contradiction that S′ and U ′ are not avoiding, that is,
there are minimal subsegments S∗ of S′ and U∗ of U ′ and paths P and Q such
that P follows S∗ and Q follows U∗ and P and Q are not avoiding. Let S′′ be
the minimal segment in S with

start(S′′) ≤i start(S∗) < end(S∗) ≤ end(S′′).

Note that S∗ ⊆ S′′. Analogously, let U ′′ be the minimal segment in U with

start(U ′′) ≤i start(U∗) < end(U∗) ≤ end(U ′′).

Since P follows S∗, it is i-colored and contains all vertices in S∗. Hence it
contains all vertices in S′′ ⊆ S∗ and thus follows S′′. Analogously, Q follows U ′′.
Hence S′′ and U ′′ are not avoiding and thus S and U are by definition not
avoiding, a contradiction.

The next two lemmata state that segments of marble paths P and Q defined
by vertices in M are avoiding unless the ends of the segment are between the
respective α- and ω-vertices. The first lemma states that if αa,bP (Q) = ⊥, then
the two marble paths are completely avoiding.

Lemma 5.21. Let (sP , tP ) be an a-colored pair and let {sQ, tQ} be a b-colored
pair. Let P be an a-colored sP -tP -path and let Q be a b-colored sQ-tQ-path.
If αa,bP (Q) = ⊥, then the marble paths Ma,b

P (Q) and Ma,b
Q (P ) are avoiding.

Proof. Note that since αa,bP (Q) = ⊥, it follows that {v ∈ P | v ∈a,b Q} = ∅.
Assume towards a contradiction that there are segments S of Ma,b

P (Q) and S′

ofMa,b
Q (P ) that are not avoiding. If S and S′ are not minimal, then by definition

they contain minimal subsegments that are not avoiding. Hence we can assume
without loss of generality that S and S′ are minimal.
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Let P ′ be an a-colored path that follows S and let Q′ be a b-colored path
that follows S′ such that P ′ and Q′ are not avoiding. Let further

P ′′ ..= P [sP , sP ′ ] • P ′ • P [tP ′ , tP ] and Q′′ ..= Q[sQ, sQ′ ] •Q′ •Q[tQ′ , tQ].

Note that P ′′ followsMa,b
P (Q) and thereforeMa,b

P (Q) ⊆ P ′′. Analogously,Q′′ fol-
lows Ma,b

Q (P ) and hence Ma,b
Q (P ) ⊆ Q′′. By Proposition 5.14, it holds that

{v ∈ P ′′ | v ∈a,b Q′′} = {v ∈ P | v ∈a,b Q} = ∅,

that is, P ′′ and Q′′ are avoiding. Since P ′′ and Q′′ are avoiding, so are all
subpaths of P ′′ and Q′′. Thus P ′ and Q′ are avoiding, a contradiction.

The next lemma deals with the case where αa,bP (Q) ̸= ⊥. Recall that in this
case we only consider segments that do not contain αa,bP (Q) or ωa,bP (Q).
Lemma 5.22. Let (sP , tP ) be an a-colored pair and let (sQ, tQ) be a b-colored
pair. Let P be an a-colored sP -tP -path and let Q be a b-colored sQ-tQ-path.
If αa,bP (Q) ̸= ⊥, then let S1 and S2 be segments of the marble path Ma,b

P (Q)
with start(S1) = sP , end(S1) = αa,bP (Q), start(S2) = ωa,bP (Q), and end(S2) = tP .
Let further S′ be a segment of the marble paths Ma,b

Q (P ). Then S1 and S′ are
avoiding and so are S2 and S′.
Proof. Note that αa,bP (Q) ̸= ⊥, Observation 5.7 and Lemma 5.10 imply that

{v ∈ P | v ∈a,b Q} = P [αa,bP (Q), ωa,bP (Q)].

Assume towards a contradiction that S1 and S′ are not avoiding or S2 and S′

are not avoiding. Then there are paths P1 that follows S1, P2 that follows S2
and Q′ that follows S′ such that P1 and Q′ are not avoiding or P2 and Q′ are
not avoiding. Hence there are vertices v in Q′ and w in P1 or P2 that are inner
vertices with v =a,b w. Let

P ∗ ..= P1 • P [αa,bP (Q), ωa,bP (Q)] • P2 and Q∗ ..= Q[sQ, sQ′ ] •Q′ •Q[tQ′ , tQ].

Note that P ∗ is a-colored as each of its subpaths is a-colored. Moreover, P ∗ fol-
lows Ma,b

P (Q) as it contains sP , αa,bP (Q), ωa,bP (Q), and tP . Analogously, Q∗ fol-
lows Ma,b

Q (P ). Proposition 5.14 then states that

{v ∈ P ∗ | v ∈a,b Q′} = {v ∈ P | v ∈a,b Q} = P [αa,bP (Q), ωa,bP (Q)].

Thus, w ∈ P [αa,bP (Q), ωa,bP (Q)] which is a contradiction to the assumption that w
is an interior vertex of the a-colored paths P1 or P2.
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The final lemma generalizes the two previous ones from M (comparison of
two paths) to C (sequences of paths). Unfortunately, it contains a lot of rather
tedious case distinctions. We remark that solving the respective cases is not
particularly difficult or interesting.

Lemma 5.23. Let (G, (si, ti)i∈[k]) be an instance of k-Disjoint Shortest
Paths, let P ..= (Pi)i∈[k] be a solution to this instance, and let Φ ⊆ [k].
Let σ ..= (ℓ1, ℓ2, . . . , ℓ|Φ|) be a permutation of Φ, let σstart ..= (ℓ1, ℓ2, . . . , ℓ|Φ|−1),
and let C be the crossing set of P. Let g ..= ℓ1, i ..= ℓ|Φ|−1, and j ..= ℓ|Φ|.

(i) If T (σ) = {⊥} and T (σstart) ̸= {⊥}, then the two marble paths

V (Pi[T (σstart)]) ∩ C and V (Pj) ∩ C

are avoiding.

(ii) If T (σ) = {u, v} ≠ {⊥} with u <j v, then the two marble paths

V (Pi[T (σstart)]) ∩ C and V (Pj [sj , u]) ∩ C

are avoiding and so are

V (Pi[T (σstart)]) ∩ C and V (Pj [v, tj ]) ∩ C.

Proof. We will prove both claims by induction over |Φ|.
Base case: Let |Φ| = 2 and hence g = i and Pi[T (σstart)] = Pi.

(i) Since T (σ) = {⊥}, it holds that αi,jPj
(Pi) = ⊥. By Definition 5.7, it holds

that Mi,j
Pi

(Pj) ⊆ V (Pi) ∩ C and Mi,j
Pj

(Pi) ⊆ V (Pj) ∩ C. By Lemma 5.21,
Mi,j

Pi
(Pj) and Mi,j

Pj
(Pi) are avoiding. Lemma 5.20 states V (Pi) ∩ C

and V (Pj) ∩ C are avoiding since

start(V (Pi) ∩ C) = si = start(Mi,j
Pi

(Pj)),
end(V (Pi) ∩ C) = ti = end(Mi,j

Pi
(Pj)),

start(V (Pj) ∩ C) = sj = start(Mi,j
Pj

(Pi)), and

end(V (Pj) ∩ C) = tj = end(Mi,j
Pj

(Pi)).
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(ii) Since σ = (i, j), it holds that u = αi,jPj
(Pi) and v = ωi,jPj

(Pi). By Defini-
tion 5.7, it holds that Mi,j

Pi
(Pj) ⊆ V (Pi) ∩ C and Mi,j

Pj
(Pi) ⊆ V (Pj) ∩ C.

By Lemma 5.22, Mi,j
Pi

(Pj) and {sj , u} are avoiding and so are Mi,j
Pi

(Pj)
and {v, tj}. Thus the claim again follows from Lemma 5.20 and

start(V (Pi) ∩ C) = si = start(Mi,j
Pi

(Pj)),
end(V (Pi) ∩ C) = ti = end(Mi,j

Pi
(Pj)),

start(V (Pj [sj , u]) ∩ C) = sj = start({sj , u}),
end(V (Pj [sj , u]) ∩ C) = u = end({sj , u}),

start(V (Pj [v, tj ]) ∩ C) = v = start({v, tj}), and
end(V (Pj [v, tj ]) ∩ C) = tj = end({v, tj}).

Induction step: Let |Φ| ≥ 3 and assume that the statement holds for all Φ′ ⊆ [k]
with 2 ≤ |Φ′| < |Φ|. Let σend ..= (ℓ2, ℓ3, . . . , ℓ|Φ|) and σ′ ..= (ℓ2, ℓ3, . . . , ℓ|Φ|−1).

(i) Since T (σ) = {⊥} and T (σstart) ̸= {⊥}, by Definition 5.7, there are three
possible cases:

T (σend) = {⊥},
V (Q) = V (Pi[T (σstart)]) ∩ V (Pi[T ((j, i))]) = ∅, or

αg,jPj [T (σend)](Q) = ⊥.

We will show that V (Pi[T (σstart)])∩ C and V (Pj)∩ C are avoiding in each
of the three cases.
(1) We start with the case where T (σend) = {⊥}. Since T (σstart) ̸= {⊥}

it holds by Lemma 5.18 that

∅ ≠ V (Pi[T (σstart)]) ⊆ V (Pi[T (σ′)])

and in particular, T (σ′) ̸= {⊥}. Since T (σend) = {⊥}, T (σ′) ̸= {⊥},
and σend is the permutation of a set Φ′ with |Φ′| < |Φ|, the induction
hypothesis states that

V (Pi[T (σ′)]) ∩ C and V (Pj) ∩ C

are avoiding. By definition, each subsegment of V (Pi[T (σ′)]) ∩ C is
also avoiding V (Pj) ∩ C and since V (Pi[T (σstart)]) ⊆ V (Pi[T (σ′)])
and T (σstart) ⊆ C, it holds that V (Pi[T (σstart)]) ∩ C is a subsegment
of V (Pi[T (σ′)]) ∩ C.

87



(2) We continue with the case where

V (Q) ..= V (Pi[T (σstart)]) ∩ V (Pi[T ((j, i))]) = ∅.

We consider the sequence (j, i) and the two cases T ((j, i)) = {⊥}
and T ((j, i)) ̸= {⊥}. Since |{j, i}| = 2 < |Φ|, the induction hypothesis
states that if T ((j, i)) = {⊥}, then

V (Pj) ∩ C and V (Pi) ∩ C are avoiding

and if T ((j, i)) ̸= {⊥}, then

V (Pj)∩C avoids both V (Pi[si, αi,jPi
(Pj)])∩C and V (Pi[ωi,jPi

(Pj), ti])∩C.

In the former case, since V (Pi[T (σstart)])∩C is a segment of V (Pi)∩C,
it holds by definition that V (Pi[T (σstart)]) ∩ C and V (Pj) ∩ C are
avoiding. In the latter case, since V (Q) = ∅, it holds that

V (Pi[T (σstart)]) ⊆ V (Pi[si, αi,jPi
(Pj)]) or

V (Pi[T (σstart)]) ⊆ V (Pi[ωi,jPi
(Pj), tj ]).

Since the two cases are analogous, we assume without loss of generality
the former, that is, V (Pi[T (σstart)]) ⊆ V (Pi[si, αi,jPi

(Pj)]).

Since V (Pi[si, αi,jPi
(Pj)]) ∩ C and V (Pj) ∩ C are avoiding and since

V (Pi[T (σstart)]) ∩ C ⊆ V (Pi[si, αi,jPi
(Pj)]) ∩ C,

by definition V (Pi[T (σstart)]) ∩ C and V (Pj) ∩ C are also avoiding.

(3) It remains to analyze the case where αg,jPj [T (σend)](Q) = ⊥. We as-
sume that T (σend) ̸= {⊥} and V (Q) ̸= ∅ as we can otherwise use
the proofs above. Assume towards a contradiction that V (Pj) ∩ C
and V (Pi[T (σstart)]) ∩ C are not avoiding. Then there are minimal
segments Si ⊆ V (Pi[T (σstart)]) ∩ C and Sj ⊆ V (Pj) ∩ C that are not
avoiding. We consider the two cases

Si ⊆ V (Pi[T (σstart)]) ∩ V (Pi[T ((j, i))]) = V (Q) and
Si ⊆ V (Pi[T (σstart)]) \ V (Pi[T ((j, i))]).
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Note that T ((j, i)) ⊆ C and that Si is minimal and hence this case
distinction is complete. In the latter case, note that since Si and Sj
are not avoiding, there is a path Ri that follows Si and a path Rj that
follows Sj such that {v ∈ Ri | v ∈i,j Rj} \ Si ̸= ∅. Then, it holds by
Observation 5.7 {v ∈ Pi | v ∈i,j Pj} ⊆ V (Pi[T ((j, i))]). Moreover, by
Proposition 5.14 {v ∈ Ri | v ∈i,j Rj} ⊆i,j V (Pi[T ((j, i))]). Hence

{v ∈ Ri | v ∈i,j Rj} ⊆a,b Si,

a contradiction.
If Si ⊆ V (Pi[T (σstart)])∩V (Pi[T ((j, i))]) = V (Q), then we distinguish
between the two cases

Sj ⊆ V (Pj [T (σend)]) ∩ C and Sj \ V (Pj [T (σend)]) ̸= ∅.

In the former case, it holds by Lemma 5.21 that Mg,j
Pj [T (σend)](Q)

and Mg,j
Q (Pj [T (σend)]) are avoiding. Since

Mg,j
Pj [T (σend)](Q) ⊆ V (Pj [T (σend)]) ∩ C and

Mg,j
Q (Pj [T (σend)]) ⊆ V (Q) ∩ C,

it holds that Si and Sj are avoiding, a contradiction.
Finally, it remains to analyze the case where Sj \ V (Pj [T (σend)]) ̸= ∅.
Since T (σstart) ̸= {⊥} it holds by Lemma 5.18 that

∅ ≠ V (Pi[T (σstart)]) ⊆ V (Pi[T (σ′)]).

and in particular, T (σ′) ̸= {⊥}. Since by assumption T (σend) ̸= {⊥},
the induction hypothesis states that

V (Pi[T (σ′)]) ∩ C and V (Pj [sj , start(T (σend))]) ∩ C

are avoiding and so are

V (Pi[T (σ′)]) ∩ C and V (Pj [end(T (σend)), tj ]) ∩ C.

Since, by Lemma 5.18,

Si ⊆ V (Pi[T (σstart)]) ∩ C ⊆ V (Pi[T (σ′)]) ∩ C
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and since

Sj ⊆ V (Pj [sj , start(T (σend))]) ∩ C or
Sj ⊆ V (Pj [end(T (σend)), tj ]) ∩ C

it follows that Si and Sj are avoiding, a contradiction.

(ii) In this case it holds that T (σ) = {u, v} ≠ {⊥} with u <j v and it remains
to show that

V (Pi[T (σstart)]) ∩ C and V (Pj [sj , u]) ∩ C

are avoiding and so are

V (Pi[T (σstart)]) ∩ C and V (Pj [v, tj ]) ∩ C.

Since both cases are analogous, we will only show that V (Pi[T (σstart)]) ∩ C
and V (Pj [sj , u]) ∩ C are avoiding. To this end, assume towards a contra-
diction that there are minimal segments

Si ⊆ V (Pi[T (σstart)]) ∩ C and Sj ⊆ V (Pj [sj , u]) ∩ C

that are not avoiding.
We consider the two cases Si\V (Pi[T ((j, i))]) ̸= ∅ and Si ⊆ V (Pi[T ((j, i))]).
In the former case, note that if {w, x} ..= T ((j, i)) ̸= {⊥} with w <i x,
then it holds by Lemma 5.22 that V (Pi[si, w]) ∩ C and V (Pj) ∩ C are
avoiding. If T ((j, i)) = {⊥}, then it holds by Lemma 5.21 that V (Pi) ∩ C
and V (Pj) ∩ C are avoiding. Hence in both cases Si and Sj are avoiding,
a contradiction.
Now assume that Si ⊆ V (Pi[T ((j, i))]). Since Si ⊆ V (Pi[T (σstart)]), it
holds by Lemma 5.18 that ∅ ≠ V (Pi[T (σstart)]) ⊆ V (Pi[T (σ′)]) and that

Si ⊆ V (Q) = V (Pi[T (σstart)]) ∩ V (Pi[T ((j, i))]).

Note that if in this case T (σend) = {⊥}, then by induction hypothe-
sis V (Pi[T (σ′)]) ∩ C and V (Pj) ∩ C are avoiding, and thus so are

V (Pi[T (σstart)]) ∩ C ⊇ Si and V (Pj) ∩ C ⊇ Sj ,

a contradiction.
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It remains to analyze the case where {y, z} ..= T (σend) ̸= {⊥}. We resolve
this case with a final case distinction:

Sj \ V (Pj [T (σend)]) ̸= ∅ or Sj ⊆ V (Pj [T (σend)]).

In the former case Sj ⊆ V (Pj [sj , y]) or Sj ⊆ V (Pj [z, tj ]). By Lemma 5.18,
it holds that Si ⊆ V (Pi[T (σstart)]) ⊆ V (Pi[T (σ′)]). Since by Lemma 5.22

V (Pj [sj , y]) ∩ C and V (Pi[T (σ′)]) ∩ C and
V (Pj [z, tj ]) ∩ C and V (Pi[T (σ′)]) ∩ C

are avoiding, we conclude that Si and Sj are avoiding, a contradiction.
Finally, if Sj ⊆ V (Pj [T (σend)]), then it holds by induction hypothesis and
Lemma 5.18 that

Si ⊆ V (Pi[T (σstart)])∩C ⊆ V (Pi[T (σ′)])∩C and Sj ⊆ V (Pj [T (σend)])∩C

are avoiding, a contradiction.

We conclude this section with the definition of labels of segments and the
proof that they guarantee that paths following two segments have either a
common color or are avoiding. To this end, let S = {u, v} be a segment of
an i-marble pathwith u <i v. The set of labels of S (labels[S]) is defined as

{a | ∃σ ..= (ℓ1 = a, ℓ2, . . . , ℓ|σ| = i). {α, ω} ..= T (σ) ̸= {⊥} ∧ α ≤i u <i v ≤i ω}.

Proposition 5.24. Let (G, (si, ti)i∈[k]) be an instance of k-Disjoint Shortest
Paths and let P = (Pi)i∈[k] be a solution to this instance. Let i, j ∈ [k] and
let Ti = V (Pi) ∩ C be an i-marble path and Tj ⊆ V (Pj) ∩ C be a j-marble path.
Let Si ⊆ Ti and Sj ⊆ Tj be two minimal segments. If labels[Si] ̸= labels[Sj ],
then Si and Sj are avoiding.

Proof. We start with the case where i /∈ labels[Sj ]. Then either T ((i, j)) = {⊥}
or Sj ∩ Tj [u, v] = ∅, where {u, v} ..= T ((i, j)) ̸= {⊥}. In both cases, Sj and Si
are avoiding by Lemma 5.23. The case where j /∈ labels[Si] is analogous.

It remains to consider the case where

i, j ∈ labels[Si] ∩ labels[Sj ].

Let without loss of generality be d ∈ labels[Si]\labels[Sj ]. By definition of labels,
there is a set Φ = {ℓ1, ℓ2, . . . , ℓ|Φ|} and a permutation σ = (ℓ1, ℓ2, . . . , ℓ|Φ|) of Φ
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such that ℓ1 = d, ℓ|Φ| = i, T (σ) = {α, ω} ̸= {⊥}, and Si ⊆ Pi[α, ω] ∩ C. We
consider the two cases j /∈ Φ and j ∈ Φ.

If j /∈ Φ, then let σ′ ..= (d = ℓ1, ℓ2, . . . , ℓ|Φ| = i, j) and we distinguish between
the two cases T (σ′) ̸= {⊥} and T (σ′) = {⊥}. If T (σ′) ̸= {⊥}, then by
definition of labels and since d /∈ labels[Sj ], it holds that Sj \ V (Pj [T (σ′)]) ̸= ∅.
Lemma 5.23 states that Sj and each minimal segment of V (Pi[T (σ)]) ∩ C are
avoiding. Hence, Si and Sj are avoiding as Si ⊆ V (Pi[T (σ)])∩C. If T (σ′) = {⊥},
then, by Lemma 5.23, it holds that V (Pi[T (σ)]) ∩ C and Tj ..= V (Pj) ∩ C are
avoiding. Thus by definition Si and Sj are avoiding.

It remains to consider the case where j ∈ Φ = {ℓ1, ℓ2, . . . , ℓ|Φ|}. In this
case let x ∈ [2, |Φ| − 1] such that j = ℓx and let σi ..= (d = ℓ1, ℓ2, . . . , ℓi)
for all h ∈ [x, |Φ|] (x ≤ h ≤ |Φ|). Note that σx ..= (d = ℓ1, ℓ2, . . . , ℓx = j)
and σ|Φ| = σ. Since Si ⊆ V (Pi[T (σ)]) ∩ C, it follows that T (σ) ̸= {⊥} and, by
definition of T , it holds for each h ∈ [x, |Φ|] that T (σh) ̸= {⊥}. Lemma 5.19 then
states that for each h ∈ [x, |Φ|] and each subpath Q|Φ| of Pi[T (σ|Φ|)] = Pi[T (σ)]
there is some subpath Qh of Pℓh

[T (σh)] such that Qh =set(σh) Qh−1. Let Q|Φ|
be such a path with {sQ|Φ| , tQ|Φ|} = Si. Thus,

Q|Φ| =j Q|Φ|−1 =j . . . =j Qx

and in particular {start(Si), end(Si)} ⊆j V (Pj [T (σx)]).
Since Si ⊆ V (Pi[T (σ)]) ∩ C, it holds by Lemma 5.18 that

Si ⊆ V (Pi[T (σ)]) ∩ C ⊆ V (Pi[T ((ℓx, ℓx+1, . . . , ℓ|Φ|))]) ∩ C.

Hence, it holds that {start(Si), end(Si)} is j-colored and thus it holds for each
path Qi that follows Si that Qi ⊆j V (Pj [T (σx)]). Since d ∈ labels[S′

j ] for
each S′

j ⊆ V (Pj [T (σx)]) ∩ C, d /∈ labels[Sj ], and Sj is minimal, it follows that

Sj ∩ (V (Pj [T (σx)]) ∩ C) ⊆ {start(Si), end(Si)} ∩ T (σx).

Moreover, since Pj is strictly increasing in the jth coordinate, it follows for each
path Qi that follows Si and each path Qj that follows Sj that

#           »

V (Qi)
j
∩

#           »

V (Qj)
j
⊆

#           »

V (Qi)
j
∩

#                              »

V (Pj [T (σx)])
j
⊆ ({ #   »sQi ,

#   »
tQi} ∩ { #    »sQj ,

#   »
tQj})j .

Hence, each such pair of paths is avoiding (no two inner vertices share the same
vector) and thus it holds by definition that Si and Sj are avoiding.
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5.3 An XP-Algorithm for k-Disjoint Shortest
Paths

In this section, we present our main theorem, that is, an XP-algorithm for
k-Disjoint Shortest Paths with respect to the number k of terminal pairs.
In a nutshell, we first guess all marble paths Ti and the respective ends T
corresponding to the crossing set C of some solution (if one exists). We then
compute all minimal segments of each marble path Ti, compute their respec-
tive labels, and partition the segments such that all minimal segments in the
same part of the partition are strictly monotone in a common coordinate and
two minimal segments in distinct parts of the partition are avoiding. The crucial
improvement over the algorithm by Lochet [Loc21] is that our partition is much
smaller. Afterwards, we find via dynamic programming for all segments in one
part of the partition disjoint paths that follow the respective segments.

To this end, we introduce c-layered DAGs and the problem p-Disjoint
Paths on c-layered DAGs. For a graph G with vectors #»v for all v ∈ V
(as defined in Subsection 5.2.1), the c-layered DAG Dc of G is the directed
graph Dc = (V,A), where A = {(x, y) | {x, y} ∈ E(G) ∧ #»y c − #»x c = 1}. Notice
that a path P = (v1, v2, . . . , vp) is c-colored if and only if #     »vi+1

c − #»vi
c = 1 for

all i ∈ [p− 1] or #»vi
c − #     »vi+1

c = 1 for all i ∈ [p− 1]. Let Pm = (vp, vp−1, . . . , v1)
be the mirrored path of P . Then, P is c-colored if and only if Pm is and hence if
and only if the directed path (V (P ), A(P )) or the directed path (V (P ), A(Pm))
is a path in Dc. Finally, observe that A(Pm) = A−1(P ), that is, Pm and P have
the same vertices but the edges are oppositely directed.
Observation 5.25. A path P in G is c-colored if and only if (V (P ), A(P ))
or (V (P ), A−1(P ) is a path in the c-layered DAG Dc of G.

We continue with a definition of p-Disjoint Paths on c-layered DAGs.
Here, we are given a c-layered DAG Dc and a list (si, ti)i∈[p] of (possibly
intersecting) terminal pairs. We then ask whether there are pairwise internally
vertex-disjoint si-ti-path in Dc. Formally, it is defined as follows.
p-Disjoint Paths on c-layered DAGs
Input: A c-layered DAG Dc and p pairs (si, ti)i∈[k] of vertices.
Question: Are there p internally vertex-disjoint paths Pi in Dc such that Pi

is a shortest si-ti-path for each i ∈ [p]?
With these definitions, we can state our algorithm. Algorithm 5.1 provides

pseudo-code.
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Algorithm 5.1: Our algorithm for k-Disjoint Shortest Paths.
1 function solve(G, (si, ti)i∈[k])
2 foreach guess (Ti)i∈[k], Ends of the crossing set do

/* We assume subsequently that the guesses are correct, that is, if
there is a solution P ..= (Pi)i∈[k], then Ti = V (Pi) ∩ C for
all i ∈ [k] and Ends = T . */

3 foreach i ∈ [k] do
4 Pi ← ∅ // Pi contains all segments corresponding to Di

5 foreach minimal segment S of some Ti with i ∈ [k] do
6 marks[Si]← ∅
7 foreach permutation σ = (ℓ1, ℓ2, . . . , i)

with Ends(σ) = {α, ω} ≠ {⊥}
and α ≤i start(Si) <i end(Si) ≤i ω do

8 marks[Si]← marks[Si] ∪ set(σ)
9 j ← min marks[S]

10 x← arg min{ #»v j | v ∈ {start(S), end(S)}}
11 y ← arg max{ #»v j | v ∈ {start(S), end(S)}}
12 Pj = Pj ∪ {(x, y)}
13 foreach j ∈ [k] do
14 Order Pj = ((x1, y1), (x2, y2), . . .) such that # »x1

j ≤ # »x2
j ≤ . . .

15 if all instances (Di,Pi) of |Pi|-Disjoint Paths on i-layered
DAGs are yes-instances and the combined solutions form a
solution of k-Disjoint Shortest Paths then

16 return true

17 return false

Fortune et al. [FHW80] showed that p-Disjoint Path on DAGs can be
solved in nO(p) time. Since c-layered DAGs are DAGs, we could use their
algorithm in Algorithm 5.1 and achieve a running time of nO(k!). However, to
drop the Landau notation in the exponent, we show that p-Disjoint Paths on
c-layered DAGs can be solved in O(np+1) time. Afterwards, we show that
Algorithm 5.1 is correct and runs in O(n16k+k!+k+1) time.
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The idea behind the dynamic program for p-Disjoint Paths on c-layered
DAGs is as follows. Given an i-layered DAG Di, a number p, and a set of
terminal pairs (sj , tj), j ∈ [p], where #»sj

i <
#»
tj
i and #»sj

i ≤ #»sℓ
i for all j < ℓ ∈ [p],

the dynamic program is a table T [x1, x2, . . . , xp] ∈ {true, false} that stores true
roughly if the following two criteria are fulfilled.

i) All xi, xj are pairwise different or xi ∈ {si, ti} and xj ∈ {sj , tj}, and

ii) there is a set of internally vertex-disjoint sj-xj paths.

Thus, T [t1, t2, . . . , tp] = true if and only if there is a set of internally vertex-
disjoint sj-tj-paths.

Note that if si =c sj and ti =c tj for all i, j ∈ [p], then there is a fairly
straightforward dynamic program for p-Disjoint Paths on c-layered DAGs.
Store for increasing values of d ∈ [ #»si

c,
#»
ti
c] and for each tuple (x1, x2, . . . , xp) of

vertices with #»xi
c = d for all i ∈ [p] whether there are pairwise disjoint paths

from si to xi (the paths may possibly share their end vertices si and/or ti
if xi = ti). The table corresponding to this dynamic program has O(n · np)
table entries (at most n values for d and for each d there are at most np
sequences of p vertices). Each table entry can be computed in O(np) time
by iterating over all table entries for d − 1 and (x′

1, x
′
2, . . . , x

′
p) and checking

whether (x′
1, x1), (x′

2, x2), . . . , (x′
p, xp) ∈ A. This would lead to an overall run-

ning time of O(n2p+1) for p-Disjoint Paths on c-layered DAGs. Note
further that ensuring that si =c sj and ti =c tj is not difficult either. One can
simply replace each si and ti with new terminals and add paths of according
lengths between the new and the old terminal vertices. An example of this
roughly outlined construction is given in Figure 5.5. However, there is another
dynamic program that is faster (O(np+1) time instead of O(n2p+1) time) and
that also works for general DAGs. Basically, instead of moving all xi from one
layer to the next in one step, we order them and move the xi that is first in
this ordering. This has the advantage that for computing one table entry, we
only have to consider O(n) table entries instead of O(np).

Lemma 5.26. An instance of p-Disjoint Paths on DAGs on a graph
with n vertices can be solved in O(np+1) time.

Proof. Let D = (V,A) be a DAG and let (si, ti)i∈[p] be a set of p terminal pairs.
We define V end ..=

⋃︁
i∈[p]{si, ti} to be the set of all terminals. We also choose

an arbitrary topological order of D and denote by u ≺ v that u comes before v
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Figure 5.5: Left-hand side: An example of 3-Disjoint Paths on c-layered DAGs.
The c-coordinate of vertices is illustrated by their horizontal position. The terminal
pairs are (s1, t1), (s2, t2), and (s3, t3) and s2 = s3. A solution is highlighted.
Right-hand side: An equivalent instance in which si =c sj for all i, j ∈ [p]. The
smaller vertices are the vertices that are newly introduced by the construction. The
corresponding solution is again highlighted. Note that since s2 = s3, after adding s′

2
and s′

3, the solution is not internally vertex-disjoint if s2 was not duplicated.

in this topological order. We assume without loss of generality that si ⪯ sj
for all i < j ∈ [p]. We further assume that si ⪯ ti for all i ∈ [p] as otherwise
there can be no path from si to ti and that p ≤ n as we can iterate over all
pairs (si, ti) and delete those that are connected by an arc (si, ti) ∈ A. All
remaining paths have at least one inner vertex that has to be from V \ V end

and that has to be unique for each path. Hence, if there are at least n+ 1 pairs
remaining, then the instance has no solution.

We build a table T [x1, x2, . . . , xp] ∈ {true, false} that stores true if and only
if the following three criteria are fulfilled.

i) xi ∈ V \ (V end \ {si, ti}),

ii) si ⪯ xi ⪯ ti for all xi ∈ {si, ti}, and

iii) there exist si-xi-paths such that each inner vertex of each of these paths is
in V \ V end and that each vertex in V \ V end is contained in at most one
of these paths.

If the table is completely filled, then there is a set of internally vertex-disjoint
shortest sj-tj-paths if and only if T [t1, t2, . . . , tp] = true as the first two require-
ments are trivially fulfilled. We initialize the table with T [s1, s2, . . . , sp] ..= true
as internally vertex-disjoint si-si-paths trivially exist. Moreover, for each tu-
ple (x1, . . . , xp) ∈ V p if xi ≺ si or ti ≺ xi or xi ∈ V end \ {si, ti} for at least
one i ∈ [p], then we set T [x1, . . . , xp] ..= false. Note that there are np possible
tuples and initializing each entry takes O(n) time.
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We next show how to compute the entries of T . To this end, for some
tuple (x1, x2, . . . , xp), let xℓ be a vertex such that xℓ ̸= sℓ and xi ⪯ xℓ for all xi
with i ∈ [p] and xi ̸= si. Moreover, let

N∗(xi) ..= {v | (v, xi) ∈ A ∧ v ∈ (V \ (V end \ {si})) \ {x1, . . . , xp}}.

Finally, let

T [x1, x2, . . . , xp] ..=
⋁︂

x′
ℓ
∈N∗(xℓ)

T [x1, x2, . . . , xℓ−1, x
′
ℓ, xℓ+1, . . . , xp].

We now show by induction on the sum of positions in the topological order of
all xi that T [x1, x2, . . . , xp] = true if and only if the three criteria are fulfilled.
In the base case, T [s1, s2, . . . , sp] = true, or there is some xi such that xi ≺ si
and therefore T [x1, x2, . . . , xp] = false. Note that there is no si-xi-path in the
latter case.

Now to show the statement for some table entry T [x1, x2, . . . , xp], assume
that the statement holds for all table entries T [x′

1, x
′
2, . . . , x

′
p] such that x′

i ⪯ xi
for all i ∈ [p] and x′

j ≺ xj for at least one j ∈ [p]. To this end, first assume
that T [x1, x2, . . . , xp] = true. Since T [x1, x2, . . . , xp] = true, it was not set
to false in the initialization and thus i) and ii) are satisfied. By construction,
there is an x′

ℓ ∈ N∗(xℓ) such that T [x1, x2, . . . , xℓ−1, x
′
ℓ, xℓ+1, . . . , xp] = true. By

induction hypothesis, there are internally vertex-disjoint sℓ-x′
ℓ- and sj-xj-paths

for all j ∈ [p] \ {ℓ} such that sℓ ⪯ x′
ℓ ⪯ tℓ and x′

ℓ ∈ V \ (V end \ {sℓ, tℓ}). Since
by definition of xℓ it holds that xi ≺ xℓ for all xi with i ∈ [p] and xi ̸= si,
it holds that xℓ is not contained in any of the si-xi-paths for i ∈ [p]. Hence
the sℓ-x′

ℓ-path can be extended by the edge (x′
ℓ, xℓ) and the resulting path

combined with the other si-xi-paths satisfies iii).
To show the other direction assume that x1, x2, . . . , xp satisfy i) to iii). Then

consider the sℓ-xℓ-path and the predecessor x′
ℓ of xℓ. Note that x′

ℓ exists as
otherwise xi = si for all i ∈ [p] and hence we are in the base case. By con-
struction, x′

ℓ ∈ N∗(xℓ) ⊆ V \ (V end \ {si}). Note further that x′
ℓ ≺ xℓ ⪯ tℓ,

implying x′
ℓ ̸= tℓ and hence i) is also satisfied by x′

ℓ. Further, since there
is an sℓ-x′

ℓ-path (a subpath of the sℓ-xℓ path), it holds that s ⪯ x′
ℓ ≺ xℓ ⪯ tℓ

and thus x′
ℓ also satisfies ii). Finally, iii) is also satisfied by the sℓ-x′

ℓ-subpath
combined with the other si-xi-paths. The induction hypothesis then states
that T [x1, x2, . . . , xℓ−1, x

′
ℓ, xℓ+1, . . . , xp] = true. Since x′

ℓ ∈ N∗(xℓ), it holds
that T [x1, x2, . . . , xp] = true. Thus, the statement holds for all table en-
tries T [x1, x2, . . . , xp].
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It remains to analyze the running time. There are at most np possible table
entries and computing one takes O(n) time as V end, ℓ, and N∗(xℓ) can be
computed in O(p + n) ⊆ O(n) time and iterating over at all neighbors of xℓ
takes O(n) time. Hence the overall running time is O(np+1).

After showing how to solve the subproblems, it remains to show that Algo-
rithm 5.1 is correct and to analyze its running time. We start with the analysis
of the running time.

Lemma 5.27. Algorithm 5.1 runs in O(k · n16k·k!+k+1) time.

Proof. First, observe that there are at most k · k! different permutations of
subsets of k objects as there are exactly k! permutations of exactly k objects
and each of these can be truncated at k positions to get any permutation of any
smaller (non-empty) subset of objects. Second, observe that by Definition 5.7
there are at most eight vertices guessed for each sequence σ as if δi,jP (Q) ̸= ⊥,
then αi,jP (Q) = ωi,jP (Q) = ∂i,jP (Q) = ϖi,j

P (Q) = ⊥. Hence, at most 8k ·k! vertices
need to be guessed, which requires at most n8k·k! attempts.

Next we analyze the running time of each iteration of the main foreach-loop
in Algorithm 5.1. Notice that by Definition 5.7, for each sequence σ there
are at most four vertices on a marble path Ti and that each of these vertices
increases the number of minimal segments S on Ti by at most one. Note that for
each σ the set Cσ contains vertices from at most two paths. Thus, we create at
most 8k · k! new segments overall. Since we start with k marble paths, there are
at most 8k ·k!+k minimal segments. Thus, there are at most (8k ·k!+k) · (k ·k!)
iterations of the loop in Line 7, each of which takes constant time. Each iteration
of Line 14 can be done in O(n) time using bucket sort and hence the overall
running time for all iterations is in O(n · k).

Next, there are k instances of pi-Disjoint Paths on i-layered DAGs
that are solved using Lemma 5.26, where pi ≤ 8k · k! + k for all i ∈ [k]. By
Lemma 5.26 the running time for solving one instance is O(n8k·k!+k+1) and the
running time for solving all instances is hence O(k ·n8k·k!+k+1). Lastly, we verify
in Algorithm 5.1 that the solutions found can indeed be merged into one solution
for k-Disjoint Shortest Paths. Note that we only stated the decision version
of p-Disjoint Paths on c-layered DAGs but the actual solution can be
found using a very similar algorithm where we do not only store true or false
in the table T but also some set of disjoint paths corresponding to each table
entry that stores true. Verifying a solution can for example be done in O(k · n)
time by iterating over all solution paths and verify that between each pair of
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consecutive vertices there is an edge, that all paths are shortest paths, and that
all paths are internally vertex-disjoint. This can be done by marking all inner
vertices of each path and if some vertex is already marked once and visited
again, then return false and otherwise return true. Thus the overall running
time of Algorithm 5.1 is

O(n8k·k! ·((8k ·k!+k)·(k ·k!)+n·k+k ·n8k·k!+k+1+n·k) ⊆ O(k ·n16k·k!+k+1).

For the correctness of Algorithm 5.1, we need to show that each part of
the partition of minimal segments can be solved independently. This follows
from Proposition 5.24 together with the fact that Algorithm 5.1 exhaustively
tries all possibilities for the crosssing set C. Together with Lemma 5.27, this
implies our main theorem.

Theorem 5.28. k-Disjoint Shortest Paths is solvable in O(k · n16k·k!+k+1)
time.

Proof. We use Algorithm 5.1 and focus on the correctness as the running time
is already analyzed in Lemma 5.27. If Algorithm 5.1 returns true, then Line 16
is executed and a solution is verified. It remains to show that if there is some
solution, then Algorithm 5.1 returns true. If there is some solution P = (Pi)i∈[k],
then let C be its crossing set (Definition 5.7). Then, there is some iteration of
Line 2 where all guesses are correct, that is, Ends = T and Ti = V (Pi) ∩ C. We
now consider this iteration of Line 2.

Observation 5.17 states that for each sequence σ and for each segment S
with {start(S), end(S)} = Ends(σ) = T (σ) the pair {start(S), end(S)} is c-
colored for each c ∈ set(σ). Hence the same also holds for each minimal
segment S′ ⊆ S. By Line 7, there is a solution where the shortest paths
between the endpoints of each minimal segment S are strictly c-monotone for
each c ∈ labels[S]. Note that labels[S] = marks[S] in this iteration of Line 2.
Hence each path following S is strictly c-increasing for each c ∈ marks[S] and
by Observation 5.25 this shortest path is contained in Dc. Hence we can find
some solution for each minimal segment using Lemma 5.26 such that all paths
for these minimal segments with the same marks are internally vertex-disjoint.
Since marks[S] = labels[S] for all minimal segments, by Proposition 5.24, all
shortest paths between endpoints of minimal segments with different marks are
internally vertex-disjoint. Hence, the result computed by Algorithm 5.1 is a
solution to k-Disjoint Shortest Paths and thus the algorithm returns true.
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5.4 Concluding Remarks
We provided an improved polynomial-time algorithm for k-Disjoint Shortest
Paths for constant k. However, while the running time of Algorithm 5.1
can certainly be further improved by some case distinctions and a further
refined analysis, the algorithm is still far from being practical. We believe that
Algorithm 5.1 can be improved to run in n2O(k) time. It is left open whether a
running time of nkO(1) is possible.

Concerning generalizations of k-Disjoint Shortest Paths, we believe that
Algorithm 5.1 can be modified to not only work for unit edge lengths but also for
positive integer lengths. However, the case of non-negative edge lengths seems
much more difficult as edges with length zero result in overlapping vertices in
our geometric representation. Finally, if there are no k disjoint shortest paths
for some constant k, then computing in polynomial time disjoint paths with min-
imum length is still an open problem (for k = 2 Björklund and Husfeldt [BH19]
provided an O(n11)-time randomized algorithm).
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Part II

2-SAT Programming
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Chapter 6

Tree Containment

In this chapter, we investigate a problem from computational biology. Concern-
ing 2-SAT programming, we present a general k-SAT program that shows that
a relevant special case is polynomial-time solvable as the resulting program only
contains 2-SAT formulas. Concerning problem-specific aspects, we introduce
a new variant of a well-known problem in computational biology. The new
version models a certain uncertainty regarding the history of evolution. We then
identify a relevant special case of this new variant and a natural parameter that
models the amount of uncertainty. We conclude with an equivalence between
the identified special case and k-SAT in the sense that there are reductions
from and to k-SAT, where the value of k in both reductions matches the value
of our identified parameter. This proves that the special case is polynomial-time
solvable for k ≤ 2 and NP-hard for k ≥ 3.

With the dawn of molecular biology also came the realization that evolutionary
trees, which have been widely adopted by biologists, are insufficient to describe
certain processes that have been observed in nature. In the last decade, the
idea of reticulate evolution, supporting gene flow from multiple parent species,
arose [CCR13, TR11]. Reticulate evolution is described using “phylogenetic
networks” (see the monographs by Gusfield [Gus14] and Huson et al. [HRS10]
or the formal definitions in Section 6.1). A central question when dealing
with phylogenetic networks is whether or not different phylogenetic networks
provide consistent information. The corresponding problem is known as Tree
Containment and it has been shown to be NP-hard [ISS10, Kan+08].

In real life, we cannot hope for perfectly precise evolutionary history. In
particular, speciation events (a species splitting off another) occurring in rapid
succession (only a few thousand years between speciation events) can often
not be reliably placed in the order as they occurred. Incomplete information
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about a certain set of successive speciation events is called a soft polytomy
and it is modeled by a non-binary vertex (a vertex with more than two parent
species) in a phylogenetic network. We consider the information provided by two
non-binary phylogenetic networks consistent if we can replace each non-binary
vertex by some binary tree such that the resulting binary phylogenetic networks
provide consistent information.

In Section 6.2, we present first structural results for Tree Containment
with soft polytomies. In Section 6.3, we show that if one input network is a
single-labeled phylogenetic tree and the other input network is a multi-labeled
tree (for a definition, see Section 6.1), then Tree Containment is polynomial-
time solvable if each label occurs at most twice in the multi-labeled phylogenetic
tree and NP-complete otherwise. The polynomial-time algorithm is based on
the results from Section 6.2 and 2-SAT programming.

6.1 Problem Definition and Related Work

A phylogenetic network on a set X of taxa is a rooted, single-source, directed,
and acyclic graph in which all vertices have in-degree at most one or out-degree
exactly one and each leaf v (a vertex with out-degree zero) is labeled with one
taxon x ∈ X. We also say that v has label x. By default, no label occurs
twice in a phylogenetic network, and we will make exceptions explicit by calling
phylogenetic networks multi-labeled if a label can occur more than once. We
say that it is ℓ-labeled if each label occurs at most ℓ times and if we want to
emphasize that a phylogenetic network is not multi-labeled, then we call it
single-labeled. Vertices with in-degree at least two (and out-degree one) are
called reticulations and the other vertices are called tree vertices. A phylogenetic
network without reticulations is called a phylogenetic tree and a phylogenetic
network or tree is called binary if each vertex has in-degree and out-degree
at most two. Figure 6.1 shows an example of a binary phylogenetic network
(left-hand side) and a phylogenetic tree (right-hand side).

An important task in computational biology is to check whether two models
of evolution are consistent. A relevant special case therein is whether a given
phylogenetic network is consistent with an existing tree model or not [Gam+15].
A phylogenetic network N and a phylogenetic tree T are considered consistent
if N displays T . For the definition of displaying, recall that subdividing an
arc (u, v) in a directed graph refers to removing the arc (u, v) and replacing it
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Figure 6.1: A 2-labeled phylogenetic network N (left-hand side) and a phylogenetic
tree T (right-hand side). The respective topmost vertex is the only source and is called
the root. The leaves are each labeled with one element of the set {a, b, c, d, e, f}. The
parents of the leaves d and e in the left example are the reticulations in N and all other
vertices are tree vertices. Removing the three smaller vertices (and all incident arcs)
in N on the left-hand side and subdividing each dashed arc in T on the right-hand
side once yields isomorphic1 trees. Hence, N displays T .

by a new vertex w and two new arcs (u,w) and (w, v). A subdivision of a graph
is the result of repeatedly subdividing arcs in it.

Definition 6.1. Let N be a (possibly multi-labeled) phylogenetic network and
let T be a single-labeled phylogenetic tree. Then, N firmly displays T if a
subdivision of N contains a subdivision of T as a subgraph such that leaf-labels
are respected, that is, each leaf v in T with label x is mapped to a leaf with
label x in N .

An example for Definition 6.1 is depicted in Figure 6.1. Based on this
definition, Tree Containment is defined as follows.

Tree Containment
Input: A (possibly multi-labeled) phylogenetic network N and a single-

labeled phylogenetic tree T .
Question: Does N firmly display T?

1In this chapter, isomorphic always refers to an isomorphism respecting leaf-labels, that is,
the isomorphism must map a leaf with some label λ in N to a leaf with label λ in T .
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Kanj et al. [Kan+08] showed that Tree Containment is NP-hard. Due
to its importance in the analysis of evolutionary history, there have been
several attempts to identify polynomial-time computable special cases [BS16,
FKP15, Gam+15, GDZ17, Gun18, ISS10, Kan+08, Wel18] as well as moderately
exponential-time algorithms [GLZ16, Wel18]. Since the definitions for the special
cases are rather technical and the results are not relevant for this thesis, we
do not present definitions here but only refer the reader to the works by
Fakcharoenphol et al. [FKP15] and Weller [Wel18] for an overview.

Motivated by the concept of soft polytomies, that is, incomplete knowledge
about the order of a limited set of speciation events, we consider a notion we
call soft displaying. The goal is to allow any high-degree vertex to be replaced
by any binary tree such that the resulting phylogenetic network firmly displays
the resulting phylogenetic tree. To this end, we consider arc contractions.
Contracting an arc (u, v) in a directed graph refers to the process of “merging” u
and v (and all incident arcs). Formally, vertices u and v are removed and replaced
by a new vertex w. For each vertex x other than u or v, if (x, u) or (x, v) existed
in the original graph, then the new graph contains an arc (x,w) and if (u, x)
or (v, x) existed in the original graph, then the new graph contains an arc (w, x).
A contraction of a phylogenetic network is the result of repeatedly performing
arc contractions in it. We call a binary phylogenetic network B = (VB , AB) a
binary resolution of a phylogenetic network N = (VN , AN ) if N is a contraction
of B. An example of contractions and binary resolutions is given in Figure 6.2.
We call a surjective function χ : VB → VN a contraction function of B for N if
contracting all arcs (uv) in B with χ(u) = χ(v) results in a graph isomorphic
to N . The notion of binary resolutions leads to the following definition of soft
displaying.
Definition 6.2. Let N be a (possibly multi-labeled) phylogenetic network and
let T be a single-labeled phylogenetic tree. Then, N softly displays T if there
are binary resolutions NB of N and TB of T such that NB firmly displays TB .

Note that, since each binary resolution of a binary phylogenetic network N is
a subdivision of N , it holds that the concepts of firm and soft displaying coincide
for binary phylogenetic networks. The notion of soft displaying naturally leads
to the following definition of Soft Tree Containment.

Soft Tree Containment
Input: A (possibly multi-labeled) phylogenetic network N and a single-

labeled phylogenetic tree T .
Question: Does N softly display T?
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Figure 6.2: Two phylogenetic trees B (left-hand side) and T (right-hand side). The
phylogenetic tree B is binary. Contracting the arc between the two green vertices in B
yields the green vertex in T . Analogously, exhaustively contracting any arc between
two blue vertices in B yields the blue vertex in T . Since the result of contracting these
arcs in B is isomorphic to T , the phylogenetic tree B is a binary resolution of T .

An example of Soft Tree Containment is given in Figure 6.3. Throughout
this chapter, we will mostly focus on Soft Tree Containment and for the
sake of readability, we refer to soft displaying simply as “displaying”. To the
best of our knowledge, we are the first to study Soft Tree Containment. In
this thesis, we focus on the special case where N is a multi-labeled phylogenetic
tree. This has three main reasons. First, Tree Containment is known to be
NP-hard even on binary phylogenetic networks and since Tree Containment
and Soft Tree Containment coincide for binary phylogenetic networks, Soft
Tree Containment is NP-hard on binary phylogenetic networks (that is, N is
not restricted to being a phylogenetic tree). Conversely, Tree Containment is
polynomial-time solvable when N is a phylogenetic tree [Gam+15] and hence, the
computational complexity of Soft Tree Containment on phylogenetic trees
remains unclear. Second, reticulation events are comparatively rare especially
when considering phylogenies of animals and so chances are that the input
consists of phylogenetic trees (or phylogenetic networks with few reticulations).
Hence, Soft Tree Containment on phylogenetic trees is a relevant special
case from a biological perspective. Third, each algorithm for Soft Tree
Containment on phylogenetic networks has to decide on a subgraph of N
that is a phylogenetic tree and then verify that this phylogenetic tree softly
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N

a b c a b

T
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a

Figure 6.3: An example for Soft Tree Containment. In the top left-hand corner
is a multi-labeled tree N and in the top right-hand corner is a single-labeled tree T .
In the bottom right-hand corner is a subdivision of (a binary resolution of) T and
in the bottom left-hand corner is (a subdivision of) a binary resolution of N . The
subgraph in the bottom left-hand corner consisting of all vertices except for the two
small vertices and all but the two dashed arcs is isomorphic to the phylogenetic tree
in the bottom-right hand corner. This shows that N softly displays T .

displays T . Thus, Soft Tree Containment on phylogenetic trees is a relevant
special case from an algorithmic perspective.

We conclude this section with some notation for the remainder of this chap-
ter. In a single-labeled phylogenetic network, we use leaves and labels (taxa)
interchangeably. A binary phylogenetic network B on three leaves a, b, and c
is called a triplet and we denote it by ab|c if c is a child of the root of B. In
Figure 6.1, the subtree rooted in the parent of the leaf labeled with a is the
triplet bc|a. We denote by Nv the subnetwork (or subtree) of N rooted in v,
that is, the induced subgraph containing v and all its descendants. We denote
the set of labels in a subnetwork Nv by L(Nv). Slightly abusing notation, we
use n as the maximum number of vertices in N and T .

108



Recall that we use the notation v <D u to denote that a vertex v is a
descendant of a vertex u in a directed acyclic graph (DAG) D. We use v ≤D u
to denote that v is a descendant of u in D or v = u. Moreover, recall that the
least common ancestor(s) (LCA) of a set V ′ of vertices is a set L of vertices such
that each vertex in L is an ancestor of each vertex in V ′ and no descendant of a
vertex in L is an ancestor of each vertex in V ′. In trees, the LCA of any set of
vertices is always a set containing a single vertex and for the sake of readability,
we will assume that the LCA in a tree is a single vertex.

Let N = (V,A) be a phylogenetic network. Recall that suppressing a vertex v
with one incoming arc (u, v) and one outgoing arc (v, w) refers to the procedure
of removing v and both incident arcs and adding the arc (u,w) to the graph
(if it does not already exist). For any subset U ⊆ V of vertices, we denote the
result of removing all vertices v that do not have a descendant in U by N |U ,
and N ||U is the result of suppressing all degree-two vertices in N |U . Such a
phylogenetic network N ||U can be computed in O(|U |) time [Col+00]. Moreover,
if N is a phylogenetic tree, then N |L is the smallest subtree of N containing
the vertices in L and the root of N .

If N contains a subgraph S that is isomorphic to a tree T up to subdivision
of arcs, then we simply say that N contains a subdivision of T . Slightly abusing
notation, if an isomorphism maps a vertex v in T to a vertex u in S (and thus
in N), then we do not distinguish between u and v but say that both vertices
are the same. Thus, S consists of all vertices in T and some vertices of in- and
out-degree one.

6.2 Single-labeled Trees
In this section, we will develop a characterization of when a single-labeled
phylogenetic tree softly displays another single-labeled phylogenetic tree. To
this end, all phylogenetic networks are single-labeled in this section. The
characterization will then be used in Section 6.3 to design an algorithm for Soft
Tree Containment when the input network N is a multi-labeled phylogenetic
tree.

We start with a series of basic observations regarding the concept of displaying.
First, note that a binary phylogenetic tree displays another binary phylogenetic
tree if and only if they are isomorphic up to subdivision of arcs. Hence, if a
phylogenetic tree T displays another phylogenetic tree T ′ on the same set of taxa,
then there exist binary resolutions B of T and B′ of T such that B displays B′,
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that is, B and B′ are isomorphic up to subdivision of arcs. Since isomorphism
is a symmetric relation, T ′ then also displays T .

Observation 6.1. A phylogenetic tree T displays a phylogenetic tree T ′ on the
same label-set if and only if T ′ displays T .

For binary trees and, in particular, triplets, the concept of firm displaying
is well-researched and we will use the following characterization to develop a
characterization for when a phylogenetic tree softly displays another phylogenetic
tree.

Lemma 6.2 ([Dre+12, Chapter 9.1]). Let B be a binary phylogenetic tree.
Let a, b, c ∈ L(B) be three distinct labels. Then, B firmly displays the triplet ab|c
if and only if

LCA({a, b}) <B LCA({b, c}) = LCA({a, c}).

Indeed, B is uniquely identified (up to subdivision and suppression of degree-two
vertices) by the set D of displayed triplets, that is, B is the only binary tree
displaying the triplets in D.

Based on Lemma 6.2, we can now relate the two forms of displaying for
triplets in non-binary trees. To this end, recall that in trees the LCA of a set of
vertices is uniquely determined. Moreover, it is easy to verify that if it holds
for three leaves a, b, and c in a tree T that LCAT ({a, b}) <T LCAT ({a, c}),
then LCAT ({a, c}) = LCAT ({b, c}). Lemma 6.2 and the definition of soft dis-
playing then immediately imply the following.

Observation 6.3. Let T be a tree and let a, b, c ∈ L(T ). Then,

(a) T firmly displays ab|c if and only if

LCA({a, b}) <T LCA({a, c}) = LCA({b, c}).

(b) T firmly displays ac|b or bc|a if and only if T does not softly display ab|c.

The next observation states that, in trees, an arc contraction does not change
the ancestor relation. This is important as it allows us to reason about LCAs
in binary resolutions.

Observation 6.4. Let T be a tree and let T ′ be the result of contracting any
arc in T . Let Y and Z be two sets of leaves common to T and T ′. Then,
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(a) LCAT (Y ) ≤T LCAT (Z) if and only if LCAT ′(Y ) ≤T ′ LCAT ′(Z) and

(b) if LCAT ′(Y ) <T ′ LCAT ′(Z), then LCAT (Y ) <T LCAT (Z).

Recall the example in Figure 6.2 and therein consider the contraction of
the arc between the two green vertices in B. Observation 6.4 then states
for Y ..= {f, g} and Z ..= {a, f, g} that LCAB({f, g}) ≤B LCAB({a, f, g}) if
and only if LCAT (f, g) ≤T LCAT ({a, f, g}). Note that this is indeed the case
as the LCA of {a, f, g} is in both phylogenetic trees the root and the LCA
of {f, g} is the respective (lower) green vertex.

We now give a characterization of when a phylogenetic tree softly displays an-
other phylogenetic tree. It is based on Lemma 6.2 and the following observation.
Note that if in a tree B it holds that LCA({a, b}) <B LCA({b, c}) = LCA({a, c}),
then there is no vertex v such that a, c ∈ L(v) and b /∈ L(v) as any ancestor
of LCA({a, c}) is an ancestor of LCA({a, b}) <B LCA({a, c}).

Lemma 6.5. Let N = (VN , AN ) and T = (VT , AT ) be two phylogenetic
trees on the same leaf-label set. Then, N softly displays T if and only if,
for all u ∈ VT and v ∈ VN , it holds that L(Tu) ⊆ L(Nv), L(Tu) ⊇ L(Nv),
or L(Tu) ∩ L(Nv) = ∅.

Proof. We start by showing that if N displays T , then for all u ∈ VT and v ∈ VN ,
it holds that L(Tu) ⊆ L(Nv), L(Tu) ⊇ L(Nv), or L(Tu) ∩ L(Nv) = ∅. Assume
towards a contradiction that N softly displays T but there are u ∈ VN and v ∈ VT
such that

L(Nu) ⊈ L(Tv), L(Nu) ⊉ L(Tv), and L(Nu) ∩ L(Tv) ̸= ∅.

This is equivalent to the statement that there are three taxa x, y, and z such
that

x ∈ L(Nu) \ L(Tv), y ∈ L(Nu) ∩ L(Tv), and z ∈ L(Tv) \ L(Nu).

Since each label appears only once in N and T and N softly displays T , it
holds that there are binary resolutions NB of N and TB of T such that NB

and TB are isomorphic up to subdivision of arcs. Hence, there is a vertex u′

in NB with L(NB
u′) = L(Nu) and a vertex v′ in TB with L(TBv′ ) = L(Tv).

Since x, y ∈ L(Nu) = L(NB
u′) and z /∈ L(Nu) = L(NB

u′), it holds that

LCA({x, y}) ≤NB u′ <NB LCA({y, z}) = LCA({x, z}),
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that is, NB displays xy|z. Analogously, TB displays yz|x. By Lemma 6.2, this
contradicts the fact that TB and NB are isomorphic up to subdivision of arcs.

We continue with the other direction, that is, we show that if for all ver-
tices u ∈ VT and v ∈ VN it holds that

L(Tu) ⊆ L(Nv), L(Tu) ⊇ L(Nv), or L(Tu) ∩ L(Nv) = ∅,

then N displays T . Using Lemma 6.2, we will show how to construct binary
trees BN and BT such that BN is a binary resolution of N , BT is a binary resolu-
tion of T , and both display all triplets that are firmly displayed by N or T . Since
the constructions for both trees are analogous, we only focus on BN here. Con-
sider any vertex v ∈ VN that has out-degree at least three. Then, there are three
labels a, b, and c such that LCAN ({a, b}) = LCAN ({a, c}) = LCAN ({b, c}).
Let ca, cb, cc be the three children of v in N such that a ∈ L(Nca

), b ∈ L(Ncb
),

and c ∈ L(Ncc
). We now consider the two cases whether or not

LCAT ({a, c}) = LCAT ({a, b}) = LCAT ({b, c}).

If LCAT ({a, c}) = LCAT ({a, b}) = LCAT ({b, c}), then neither N nor T displays
one of the triplets ab|c, ac|b, or bc|a. Hence we arbitrarily replace the arcs (v, cb)
and (v, cc) by a new vertex w and new arcs (v, w), (w, cb) and (w, cc). Note that
the resulting phylogenetic tree firmly displays all triplets that N firmly displayed
and the triplet bc|a. Since this procedure reduces the out-degree of one vertex
of out-degree at least three and does not introduce new vertices of out-degree
at least three, we can repeat this procedure until no vertex has out-degree at
least three any more, that is, the resulting phylogenetic tree is binary. Observe
further that BN is trivially a binary resolution of BN and therefore N softly
displays BN by definition. The construction of BT is analogous and whenever

LCAN ({a, c}) = LCAN ({a, b}) = LCAN ({b, c}) and
LCAT ({a, c}) = LCAT ({a, b}) = LCAT ({b, c}),

then we construct BT to display the same triplet as BN .
Note that since BN and BT are binary, they firmly display one of the following

three possible triplets ab|c, ac|b, or bc|a for each triple (a, b, c) of labels. By
Lemma 6.2, BN and BT are isomorphic up to subdivision of arcs as binary trees
are uniquely defined by their displayed triplets. Hence BN is a subdivision of a
binary resolution of both N and T and, as BN is binary, N softly displays T by
definition.
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We conclude this section with a helpful lemma that lists some equivalent
characterizations of soft displaying in relevant special cases. This lemma will be
used to show hardness of Soft Tree Containment in Subsection 6.3.2.

Lemma 6.6. Let T and T ′ be phylogenetic trees and let B be a binary phyloge-
netic tree, all on the same set X of labels.

(a) T softly displays the leaf-triplet ab|c if and only if

LCA({a, b}) ≤ LCA({b, c}) = LCA({a, c}).

(b) T softly displays B if and only if T softly displays all triplets that B displays
firmly.

(c) T softly displays a tree T ′ (and vice versa) if and only if there is a binary
tree B on X that is softly displayed by both T and T ′.

Proof. We prove the three statements one after another. To verify statement (a),
note that, by definition, T softly displays ab|c if and only if there is a binary
resolution TB of T displaying ab|c. By Lemma 6.2, TB firmly displays ab|c if
and only if

LCATB
({a, b}) <TB

LCATB
({a, c}) = LCATB

({b, c}).

Since TB is binary, this is equivalent to

LCATB
({a, b}) ≤TB

LCATB
({a, c}) = LCATB

({b, c}),

which by Observation 6.4 is equivalent to

LCAT ({a, b}) ≤T LCAT ({a, c}) = LCAT ({b, c}).

We next prove statement (b). To this end, first assume towards a contradiction
that T displays B but a triplet ab|c that B displays firmly is not displayed softly
by T . Then, {LCAT ({a, b}),LCAT ({a, c}),LCAT ({b, c})} has a unique mini-
mum x with respect to <T and it holds by statement (a) that x ̸= LCAT ({a, b})
(as otherwise T displays ab|c). Without loss of generality, let x = LCAT ({a, c}).
Since T has a binary resolution that is isomorphic to B up to subdivision of
arcs, it holds that T is a contraction of a subdivision of B. Hence, Observa-
tion 6.4 states that LCAB({a, c}) <TB

LCAB({a, b, c}) and thus B displays ac|b.
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Note that a binary tree cannot display ab|c and ac|b and thus we reached a
contradiction.

Now, assume towards a contradiction that T = (VT , AT ) does not softly
display B = (VB , AB) but displays all triplets that are firmly displayed by B.
Since T does not display B, there are by Lemma 6.5 vertices u ∈ VT and v ∈ VB
and labels x, y, and z such that x ∈ L(Tu) \ L(Bv), y ∈ L(Bv) \ L(Tu),
and z ∈ L(Tu) ∩ L(Bv). Thus,

LCAT ({x, z}) ≤T u <T LCAT ({x, y, z}) and
LCAB({y, z}) ≤B v <B LCAB({x, y, z}).

By statement (a), T displays xz |y and B displays yz |x. Since T displays all
triplets that B displays firmly, T displays yz|x. Again by (a), we can conclude
that LCAT ({y, z}) ≤T LCAT ({x, z}) ≤T u. Thus, y ∈ L(u), a contradiction.

It remains to show statement (c). By definition, T softly displays T ′ if and
only if there are binary resolutions B and B′ of T and T ′, respectively, such
that B firmly displays B′. If such phylogenetic trees exist, then they are by
Lemma 6.2 isomorphic up to subdivision of arcs. Thus, B is a binary resolution
of a subdivision of T ′ and the statement follows.

6.3 Multi-labeled Trees and k-SAT
In this section, we study Soft Tree Containment for multi-labeled phy-
logenetic trees. We will show a strong connection between k-SAT and Soft
Tree Containment on k-labeled phylogenetic trees in the sense that there
is a polynomial-time reductions from k-SAT to Soft Tree Containment
on k-labeled phylogenetic trees and a k-SAT program for Soft Tree Con-
tainment on k-labeled phylogenetic trees. This yields the dichotomy result that
Soft Tree Containment on k-labeled phylogenetic trees is polynomial-time
solvable if k ≤ 2 and NP-hard if k ≥ 3. We start with a characterization of when
a multi-labeled phylogenetic tree softly displays a single-labeled phylogenetic
tree T .

Lemma 6.7. Let M be a multi-labeled phylogenetic tree and let T be a single-
labeled phylogenetic tree on the same set X of labels. Then, M softly displays T
if and only if M contains (as a subgraph) a single-labeled phylogenetic tree S
on X that softly displays T .
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Proof. We will first show that if M ..= (VM , AM ) softly displays T ..= (VT , AT ),
then M contains a single-labeled phylogenetic tree S that softly displays T .
Note that, by definition, if M softly displays T , then there are binary resolu-
tions MB

..= (VB , AB) of M and TB of T and subdivisions MS
B of MB and TSB

of TB such that MS
B contains TSB as a subgraph (respecting leaf labels). Let SSB

be the subgraph of MS
B that is isomorphic to TSB . Let SB be the phylogenetic

tree that is the result of reverting all subdivisions from MB to MS
B in SSB , that

is, suppressing each vertex v that is contained in SSB but not in MB. Note
that SSB is a subdivision of SB and SB is a single-labeled subgraph of MB.
Let χ : VB → VM be the contraction function of MB for M , that is, the function
mapping each vertex u in MB to the vertex χ(u) in M that u is contracted to
when forming M . Moreover, let S be the result of contracting each arc (u, v)
in SB with χ(u) = χ(v). Note that for each vertex v in MB it holds that
all vertices u with χ(u) = χ(v) contract to a single vertex in M and hence
these vertices form, by definition of contracting functions, a weakly connected
component in MB. Further, since MB is a tree and SB is a subtree of MB, it
holds for each vertex v′ in SB that all vertices u′ with χ(u′) = χ(v′) form a
weakly connected component in SB . Thus, the phylogenetic tree S contains no
two vertices u′ and v′ with χ(u′) = χ(v′). Since M is the result of contracting
each arc (u, v) with χ(u) = χ(v) in MB , and since S is the result of contracting
each arc (u, v) with χ(u) = χ(v) in SB and since SB is a subtree of MB , it holds
that S is a subtree of M . Concluding, S is a single-labeled subtree of M , S
has a binary resolution SB , SB has a subdivision SSB , and SSB is by assumption
isomorphic to TSB . Thus, S softly displays T by definition.

It remains to show that if M contains a single-labeled subtree S which softly
displays T , then M softly displays T . If M contains a single-labeled sub-
tree S that softly displays T , then there are by definition binary resolutions SB
and TB of S and T , respectively, and subdivisions SSB of SB and TSB of TB
such that SSB and TSB are isomorphic. We will show that M softly displays T ,
that is, there is a binary resolution MB of M that has a subdivision MS

B that
contains TSB as a subgraph. First, to avoid ambiguity, we relabel each leaf
that is not contained in S such that the resulting tree M ′ is a single-labeled
tree on a set X ′ ⊇ X of labels. This allows us to again refer to leaves of M ′

in terms of labels. Note that only labels for leaves not contained in S are
different between M and M ′ and hence M ′ also contains S as a subgraph.
Let M ′

B be any binary resolution of M ′ that satisfies the following property. If
for three labels a, b, c ∈ X it holds that LCA(a, b) <SB

LCA(a, c) = LCA(b, c),
then LCA(a, b) <M ′

B
LCA(a, c) = LCA(b, c). Note that M ′

B contains a subdi-
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vision of SB as a subtree. Hence, M ′
B firmly displays TB. Finally, let MB be

the multi-labeled phylogenetic tree resulting from replacing the labels in M ′
B

with their original labels from X. Since M and M ′ only differ in these labels, it
holds that MB is a binary resolution of M . Further, since S does not contain
any of the leaves in which MB and M ′

B differ, it holds that MB contains a
subdivision of SB as a subgraph. Thus, there is a binary resolution MB of M
and MB contains a subdivision of SB as a subgraph which firmly displays T ,
that is, M softly displays T .

We will use the characterization shown in Lemma 6.7 to prove both sides
of the dichotomy result in this chapter. In Subsection 6.3.1, we present
a k-SAT program for Soft Tree Containment on k-labeled phylogenetic
trees. This implies that Soft Tree Containment is polynomial-time solvable
for 2-labeled phylogenetic trees. In Subsection 6.3.2, we complement this result
with a reduction from k-SAT to Soft Tree Containment on k-labeled
phylogenetic trees. This implies that Soft Tree Containment on k-labeled
phylogenetic trees is NP-hard for each k ≥ 3.

6.3.1 Reduction to k-SAT

In this subsection, we present a k-SAT program for Soft Tree Containment
on k-labeled phylogenetic trees. The basic idea is a bottom-up approach that
computes for each vertex u in the single-labeled phylogenetic tree T a set M(u)
of candidates. Each such candidate is a vertex v in the k-labeled phylogenetic
tree N such that the subtree Nv of N rooted in v displays Tu and for no
descendant w of v it holds that Nw displays Tu. We will later show that there
are at most k such candidates for each vertex in T . Afterwards, we will show
how to compute the set M(u) for each vertex u in T in a bottom-up manner
using k-SAT.

Note that if N displays T , then, by Lemma 6.7, N contains a single-labeled
subtree S that displays T . We call S canonical for some vertex u in T
if LCAS(L(Tu)) ∈ M(u) and canonical for T if it is canonical for all ver-
tices in T . We start by showing that softly displaying is equivalent to having
such a canonical subtree.

Lemma 6.8. A k-labeled tree N softly displays a single-labeled tree T if and
only if N has a canonical subtree for T .
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Proof. Let r be the root of T . If N ..= (VN , AN ) has a canonical subtree S
for T ..= (VT , AT ), then, by definition, S contains a vertex v such that Sv
displays Tr = T . Hence, N contains a single-labeled tree S that displays T and,
by Lemma 6.7, this shows that N displays T .

It remains to show that if N displays T , then N contains a canonical subtree S
for T . If N displays T , then N contains by Lemma 6.7 a single-labeled subtree S
that displays T . Assume towards a contradiction that S is not canonical for T .
Let u ∈ VT be a vertex for which S is not canonical but S is canonical for
all ancestors of u in T . Note that u ̸= r as S displays T = Tr by assump-
tion. Let p be the parent of u in T . Since S is canonical for p, there is a
vertex y ..= LCAS(L(Tp)) in S such that Sy displays Tp. Let S′

y
..= Sy |L(Tp),

that is, S′
y is the subtree of Sy containing all leaves in Tp and no other. By

Lemma 6.6(c), there is a binary single-labeled phylogenetic tree B on L(Tp)
which is displayed by S′

y and Tp. By Lemma 6.6(b), S′
y displays each triplet

which is firmly displayed by B. Let x ..= LCAS(L(Tu)). Since S is not canonical
for u, it holds that Sx does not display Tu or there is a descendant z of x such
that Sz displays Tu. By definition of x, for no descendant z of x the subtree Sz
can display Tu as for each such z there is a label ℓ ∈ L(Tu)\L(Sz) and therefore
no triplet containing ℓ can be displayed by Sz. Hence, Sx does not display Tu.
Recall that there is a binary phylogenetic tree B which is displayed by S′

y and Tp.
Let B′ ..= B|L(Tu) and let ab|c be any triplet that B′ displays firmly. Since B′

is a subtree of B it holds that B firmly displays ab|c. Hence, S′
y and Tp softly

display ab|c. If Tu does not display ab|c, then, by Observation 6.3(b), it firmly
displays ac|b or bc|a. Since Tu is a subtree of Tp, also Tp firmly displays ac|b
or bc|a. By Observation 6.3(b), Tp then does not display ab|c, a contradiction.
Analogously, if Sx does not display ab|c, then Sy does not display ab|c, another
contradiction. Thus, both Sx and Tu display all triplets that are displayed
by B′, and Sx therefore displays Tp by Lemma 6.6, yielding a final contradiction
to the assumption that S is not canonical for u.

As stated above, we compute M(u) for each vertex u in T in a bottom-up
fashion. We will now show that |M(u)| ≤ k for each u ∈ VT .

Lemma 6.9. Let N be a k-labeled phylogenetic tree and let T ..= (VT , AT ) be a
single-labeled phylogenetic tree. Then, it holds for each u ∈ VT that |M(u)| ≤ k.

Proof. We prove the statement by induction over the height of a vertex u in T .
If the height of u is 0, that is, u is a leaf, then M(u) contains all leaves in N
that have the same label as u. As N is k-labeled, each candidate set M(u) for a
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N

T

Figure 6.4: Two phylogenetic trees N (left-hand side) and T (right-hand side). The
vertices in T are colored and for each vertex u in T all vertices in M(u) in N are
colored with the same color as u. The ascending paths of the two red vertices in N are
drawn with bold arcs and the ascending paths of the two blue vertices are indicated
by dashed arcs.

leaf u is of size at most k. If u is not a leaf, then let c be a child of u in T and
assume that |M(c)| ≤ k. Consider any vertex v ∈M(u). Since Nv displays Tu,
there is by Lemma 6.8 a subtree Sv of Nv that is canonical for Tu. Hence, there
is a vertex w ∈M(c) in Sv, that is, Sw displays Tc and w is a candidate for c.
Note that v is the only ancestor of w in M(u) as M(u) only contains minima.
Thus, any vertex in M(u) has a unique ancestor in M(c) and since |M(c)| ≤ k,
it holds that |M(u)| ≤ k.

Note that the proof of Lemma 6.9 also states that for each vertex u in T that
is not a leaf, each child c of u in T , and each w ∈ M(c), there is at most one
ancestor v of w in N which is contained in M(u). We call the unique v-w-path
in N the ascending path of w with respect to c and we omit mentioning c if it is
clear from the context. An example of ascending paths is given in Figure 6.4. We
next present a crucial lemma about ascending paths which states that ascending
paths with respect to two vertices c1 and c2 are arc-disjoint unless c1 and c2
are siblings in T . Afterwards, we present our k-SAT program for Soft Tree
Containment on k-labeled phylogenetic trees using the notions of candidate
sets and ascending paths.

Lemma 6.10. Let N be a multi-labeled phylogenetic tree, let T be a single-
labeled phylogenetic tree, and let N display T . Let S be a canonical subtree of N
for T . Let u and v be two distinct vertices in T such that neither of them is the
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root of T and u and v are not siblings in T . Let LCAS(L(Tu)) and LCAS(L(Tv))
have ascending paths R and Q with respect to u and v, respectively. Then, R
and Q are arc-disjoint.

Proof. To prove the statement, we distinguish between the two cases where u
and v are in an ancestor-descendant relation or not. If u and v are in an ancestor-
descendant relation, then without loss of generality let u <T v. Let p be the
parent of u in T . Note that p ≤T v and hence LCAS(L(Tp)) ≤S LCAS(L(Tv)).
Thus, each vertex in the ascending path R of u is either v or a descendant of v
in T . Since the ascending path Q of v only contains v and ancestors of v in T ,
it holds that R and Q share at most one vertex (v) and no arcs.

If u and v are not in an ancestor-descendant relation in T , then assume towards
a contradiction that the ascending paths R and Q share an inner vertex z. Since z
is an ancestor of both u and v in T , it holds that L(Tu) ∪ L(Tv) ⊆ L(Tz). As u
and v are not siblings in T , one of u and v has a parent p that is not in an
ancestor-descendant relation with the other. Assume without loss of generality
that p is the parent of u. Since v and p are not in an ancestor-descendant
relation and since T is a single-labeled phylogenetic tree, it holds that

L(Tp) ∩ L(Tz) ⊇ L(Tu) ̸= ∅ and L(Tz) \ L(Tp) ⊇ L(Tv) ̸= ∅.

Since S is canonical, it holds that y ..= LCAS(L(Tp)) ∈ M(p) and, thus, the
ascending path R starts in y. As z is an inner vertex of R, it holds that z <S y,
implying

L(Tp) \ L(Tz) ̸= ∅.

Concluding, it holds that

L(Tp) ∩ L(Tz) ̸= ∅, L(Tz) \ L(Tp) ̸= ∅, and L(Tp) \ L(Tz) ̸= ∅

and, by Lemma 6.5, this contradicts the assumption that S softly display T .

We next present the idea behind the main result in this section. To this end,
let r be the root of T . Clearly, N displays T if and only if M(r) ̸= ∅. Hence,
it remains to show how to compute M(u) given M(v) for all v ≠ u in Tu. We
do so via a reduction to k-SAT that checks for each y in N whether y ∈M(u).
Therein, we have a variable xz→c for each vertex c ̸= u in Tu and z ∈ M(c)
that represents whether Sz displays Tc, where S is the canonical subtree of Ny
for Tu. The formula then checks whether these choices are consistent, that is,
if xa→w and xz→v are set to true and w is a descendant of v in T , then a is
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a descendant of z in N (or a = z). Finally, the formula checks whether these
choices satisfy Lemma 6.10. After presenting the formula, we will prove that it
is correct, that is, φy→u is satisfiable if and only if Ny displays Tu.

Construction 6.11. Construct φy→u as follows. For each v ̸= u in Tu and for
each z ∈M(v), introduce a variable xz→v. Moreover for each v ̸= u in Tu

(1) add the clause
⋁︁
z∈M(v) xz→v,

(2) for each pair z1, z2 ∈M(v) of vertices, add the clause ¬xz1→v ∨ ¬xz2→v,

(3) if the parent p of v in Tu is not u, then for all z ∈M(v) and all q ∈M(p)
with z ≰N q, add the clause ¬xz→v ∨ ¬xq→p, and

(4) for each w ̸= u in Tu that is not a sibling of v, each z1 ∈ M(v), and
each z2 ∈M(w) such that the ascending paths of z1 and z2 in Nx share an
arc, add the clause ¬xz1→v ∨ ¬xz2→w.

Note that the ascending path of z or q in (4) is not defined if v or w is a
child of u in Tu as M(u) is not defined. In this case we call the unique y-z-path
or the unique y-q-path the ascending path as we test whether y ∈M(u). We
next show that Construction 6.11 is correct. Since we use the construction
to test whether y ∈M(u) and since M(u) can, by definition, not contain two
vertices that are in an ancestor-descendant relation, we assume that φz→u is
not satisfiable for any descendant z of y in T .

Lemma 6.12. Let u be a vertex in T and let y be a vertex in N such that for
each descendant d of y in N it holds that φd→u is not satisfiable. Then, φy→u

is satisfiable if and only if Ny displays Tu.

Proof. We start by showing that if Ny displays Tu, then φy→u is satisfiable. To
this end, let S be a canonical subtree of Ny that displays Tu. Note that S exists
due to Lemma 6.8. Let β be a truth assignment for φy→u that sets each vari-
able xz→v to true if and only if z = LCAS(L(Tv)). We will show that all clauses
in Construction 6.11 are satisfied by this assignment. Note that for each v ≠ u
in T it holds that Sz displays Tv and z ∈M(v) where z ..= LCAS(L(Tv)). Hence
each clause of type (1) is satisfied by β. Moreover, since the LCA in S is unique
(as S is a tree), also all clauses of type (2) are satisfied by β.

Assume towards a contradiction that a clause of type (3) is not satisfied.
Then, there is some v with parent p in Tu such that y ≰N z for some y ∈M(v)
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and z ∈ M(p) and β(xy→v) = β(xz→p) = true. Since L(Tp) ⊇ L(Tv), it holds
that y ≤S z. Moreover, since S is a subtree of N , it holds that y ≤N z,
contradicting y ≰N z. Thus, all clauses of type (3) are satisfied.

Finally, if a clause of type (4) is not satisfied, then there are xy→v and xz→w

such that
1. v and w are not siblings in T and neither of them is the root of T ,

2. β(xy→v) = β(xz→w) = true, and

3. the ascending paths of y = LCAS(L(Tv)) and z = LCAS(L(Tw)) in Ny
share an arc.

This contradicts Lemma 6.10 and therefore all clauses of type (4) are satisfied.
Since each clause of φy→u is satisfied by β, the formula is satisfiable.

We next show that if φy→u is satisfiable, then Ny displays Tu. To this end,
let β be a satisfying truth assignment for φy→u. Let S be the subtree of Ny
that contains y and all leaves z such that β(xz→v) = true for some leaf v
in Tu (and no other leaves except for possibly y). We will show that S is
canonical for Tu. To this end, we first show that S contains each vertex z such
that β(xz→v) = true for some vertex v in Tu. Note that φy→u contains for
each v ̸= u in Tu at most one vertex z such that β(xz→v) = true as otherwise
the respective clause of type (2) was not satisfied by β. It also contains at least
one such vertex as otherwise the clause of type (1) was not satisfied. For the
sake of readability, we will denote this unique vertex z by ψ(v) for each vertex v.
As a special case, we define ψ(u) ..= y. We will show by induction over the
height of v that ψ(v) is contained in S and that Sψ(v) displays Tv. The height of
a vertex v in a tree is the maximum distance between v and a descendant of v.
If v is a leaf, then ψ(v) is by definition contained in S, and Sψ(v) displays Tv.
If v is not a leaf, then let c be a child of v in Tu. Since c has smaller height
than v in Tu, it holds by induction hypothesis that ψ(c) is contained in S.
If ψ(v) was not contained in S, then ψ(v) is not an ancestor of ψ(c). This,
however, contradicts the clause of type (3). Hence, each vertex ψ(v) for some
vertex v ̸= u in Tu is contained in S. It remains to show that Sψ(v) displays Tv.
Assume towards a contradiction that Sψ(v) does not display Tv. By Lemma 6.5,
there are vertices w in Tv and q in Sψ(v) and leaves

a ∈ L(Sq) \ L(Tw), b ∈ L(Tw) \ L(Sq), and c ∈ L(Tw) ∩ L(Sq).

On the one hand, note that a <S q and c <S q and therefore there is a highest
ancestor α of a in T with ψ(α) ≤S q and a highest ancestor γ of c in T
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with ψ(γ) ≤S q. By the definitions of α and γ, there are parents pα and pγ
of α and γ, respectively, such that ψ(pα) ̸≤S q and ψ(pγ) ̸≤S q. Hence, the
ascending paths of ψ(α) and ψ(γ), respectively, share q as an inner vertex and
the arc (pq, q) where pq is the parent of q in S. Note that q has a parent as there
is a leaf with label b that is not contained in Sq but in Sψ(v). On the other hand,
note that α <T w and γ ̸≤T w, implying that α and γ are not siblings in T ,
contradicting the assumption that all clauses of type (4) are satisfied by β.

We next show our main result in this chapter, that is, a k-SAT program for
Soft Tree Containment on k-labeled graphs for each k ≥ 2. We mention
that the program resulting from Soft Tree Containment on single-labeled
phylogenetic trees contains clauses with two literals (the clauses of types (3)
and (4) in Construction 6.11). Since 2-SAT formulas are linear-time solvable,
the following result proves that Soft Tree Containment on single-labeled
phylogenetic trees is polynomial-time solvable. In the paper on which this
chapter is based, we also present a linear-time algorithm for Soft Tree
Containment on single-labeled phylogenetic trees [BMW18].

Theorem 6.13. For each k ≥ 2, one can decide in O(n5 · k2) time whether a
k-labeled phylogenetic tree N softly displays a single-labeled phylogenetic tree T
using O(n2) queries of size O(n2 · k2) to k-SAT.

Proof. The algorithm computes for each vertex u in T at most k vertices M(u)
such that for each v ∈M(u) the subtree Nv displays Tu and for no descendant w
of v it holds that Nw displays Tu. It computes this set M(u) bottom-up for
each vertex u in T . The pseudo-code is given in Algorithm 6.1. All possible
candidates for vertices in M(u) that are found by the algorithm are compared in
Line 16 and all non-minima are removed. Hence, the set M(u) computed by the
algorithm only contains minima. Hence, it remains to show that if for a vertex v
in N it holds for no descendant w of v that Nw displays Tu, then v ∈ M(u)
if and only if Nv displays Tu. Let v be such a vertex. Note that since for no
descendant of w of v it holds that Nw displays Tu, it holds by Lemma 6.12
that φw→u is not satisfiable for any descendant w of v in N . Hence, Lemma 6.12
states that φv→u is satisfiable if and only if Nv displays Tu. Thus, it remains
to show that v ∈ M(u) if and only if φv→u is satisfiable. To this end, note
that since Nv displays Tu it also displays Tc for any descendant c of u in T .
Let c be the child of u chosen in Line 6 and let v′ ∈M(c) be a descendant of v
(or v′ = v). We now consider the iteration of Line 7 where w = v′. If v′ = v,
then the algorithm adds v to M(u). If v′ ̸= v, then note that v′ is a descendant
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Algorithm 6.1: A k-SAT program for Soft Tree Containment on
k-labeled phylogenetic trees.
Input: A k-labeled phylogenetic tree N and a single-labeled

phylogenetic tree T .
Output: true if N displays T and false otherwise.

1 r ← root of T
2 foreach vertex u in T do // in a bottom-up manner
3 M(u)← ∅
4 if u is a leaf in T then M(u)← {v ∈ N | L(v) = L(u)}
5 else
6 c← any child of u in T // c can be chosen arbitrarily
7 foreach w ∈M(u) do
8 w′ ← w
9 while w′ ̸= ⊥ do

10 construct φw′→u

11 if φw′→u is satisfiable then
12 M(u)←M(u) ∪ {w′}
13 w′ ← ⊥
14 else
15 w′ ← parent of w′ in T // If w′ = r, then w′ ← ⊥

16 if ∃a, b ∈M(u). a ≤N b then remove b from M(u)

17 if M(r) ̸= ∅ then return true
18 else return false

of v and hence φv′→u is not satisfiable. The algorithm then iteratively tries each
ancestor v∗ of v′ and checks whether φv∗→u is satisfiable. The formula φv∗→u is
not satisfiable for each descendant v∗ of v and hence eventually φv→u is tested.
By assumption, φv→u is satisfiable and hence v is added to M(u). Thus, the
set M(u) is computed correctly by Algorithm 6.1 for each vertex u in T . Finally,
observe that N displays T if and only if M(r) ̸= ∅ where r is the root of T .

It remains to analyze the number and sizes of the constructed formulas and
the running time of the algorithm. Note that all clauses of type (1) are of size
at most k and all other clauses are of size at most 2. Hence for each k ≥ 2 the
resulting formulas are k-SAT formulas. We first analyze the size of each formula.
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Note that there are O(n) clauses of type (1), O(n ·k2) clauses of type (2) and (3),
and O(n2 · k2) clauses of type (4). Since only clauses of type (1) are not of
constant size, each formula is of size O(n2 · k2).

Note that we construct at most one formula φv→u for each pair (v, u) of
vertices where v is a vertex of N and u is a vertex in T . Hence, there are
at most n2 such formulas. It remains to analyze the running time of the
algorithm (excluding the steps to solve the k-SAT formulas). The running time
is dominated by the time to construct all formulas. Since we construct O(n2)
formulas of size at most O(n2 · k2), it remains to analyze the running time to
construct each clause. Clauses of type (1) and (2) take constant time per literal.
Clauses of type (3) and (4) take O(n) time to construct. Thus, the overall
running time is O(n2 · (n2 · k2) · n) = O(n5 · k2).

A direct consequence of Theorem 6.13 is that Soft Tree Containment
on 2-labeled phylogenetic trees can be solved in O(n5) time. This is a some-
what surprising application of 2-SAT programming as it is not apparent that
the difference between 2-labeled phylogenetic trees and 3-labeled phylogenetic
trees and the difference between 3-labeled phylogenetic trees and 4-labeled
phylogenetic trees should be very dissimilar.

Corollary 6.14. It can be verified in O(n5) time whether a 2-labeled phyloge-
netic tree N softly display a single-labeled phylogenetic tree T .

We remark that this running time is not optimized and a more careful analysis
using the amortized running time leads to a cubic running time [BMW18].

6.3.2 Reduction from k-SAT
In this subsection, we supplement the result from the previous subsection in
the sense that we show that k-SAT reduces to Soft Tree Containment
on k-labeled trees. As a consequence, Soft Tree Containment is NP-hard
even when restricted to 3-labeled phylogenetic trees. To this end, we make a
slight detour and first show a reduction from k-SAT to a rather technically
looking version of Independent Set that will turn out to be equivalent to a
very natural variant of Colorful Independent Set. From this variant of
Colorful Independent Set, we will then show a reduction to Soft Tree
Containment on k-labeled trees.

The mentioned variant of Independent Set is based on the notion of A ▷◁ B
graphs. Therein, A and B are graph classes and a graph G = (V,E) is in A ▷◁ B
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if its edge set E can be partitioned into two sets E1 and E2 of edges such
that G1 ..= (V,E1) is in graph class A and G2 ..= (V,E2) is in B [BBN19].
We are interested in the case where A is the disjoint union of P3’s and B
is the disjoint union of cliques of size at most k. Disjoint unions of cliques
are also known as cluster graphs. This leads to the following special case
of Independent Set.

P3 ▷◁ Cluster Independent Set
Input: An integer ℓ and a graph G ..= (V,E) where E = E1 ⊎ E2 such

that G1 ..= (V,E1) is a collection of disjoint P3’s and G2 ..= (V,E2) is
a cluster graph in which each clique has size at most k.

Question: Does G contain an independent set of size ℓ?

Van Bevern et al. [Bev+15] showed via a reduction from 3-SAT that In-
dependent Set is NP-hard on A ▷◁ B graphs1 unless A and B only contain
cluster graphs. We modify their reduction to be able to reduce from k-SAT. The
basic idea is to represent each clause by a clique and each variable by a cycle of
even length. The largest independent set can contain at most half of the vertices
in each cycle and at most one vertex from each clique and it contains that many
vertices if and only if the k-SAT formula is satisfiable. In the following, we
denote the number of literals in a clause C by |C|. Note that we can assume
without loss of generality that each variable occurs at most once in each clause
as otherwise the clause is either trivially satisfied (if one occurrence is positive
and the other negative) or one of the literals can be removed (if both occurrences
are positive or both are negative). Moreover, we assume that each variable
occurs at least twice in the formula as we can otherwise always satisfy the clause
in which the variable occurs.

Construction 6.15. Consider an instance φ of k-SAT. Let φ have n vari-
ables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm such that each variable occurs
at least twice in φ and at most once in each clause. For each variable xi let Ji be
the list of indices of clauses that contain xi or ¬xi and let Ji[ℓ] denote the ℓth

element of this list. Construct a graph G ..= (V,E1 ⊎ E2) as follows. For each
variable xi construct a cycle Vi of 2|Ji| vertices u1

i , u
1
i , u

2
i , u

2
i , . . . , u

|Ji|
i , u

|Ji|
i

such that uki is adjacent to uki and uk+1
i for each k ∈ [|Ji| − 1] and u1

i

and u
|Ji|
i are adjacent. We call Vi a variable gadget. For each clause Cj

1We remark that A and B have to be closed under disjoint union and taking an induced
subgraph. Moreover, at least one graph in A and one graph in B has to contain an edge.
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Figure 6.5: Illustration of a small extract of the resulting graph of Construction 6.15.
The triangle in the middle is the clause gadget for a clause of size three and the two
cycles left and right are variable gadgets corresponding to variables that occur in this
clause. The thin edges are contained in E1 and the bold edges are contained in E2.

that contains variables xa1 , xa2 , . . . , xa|Cj | construct a clique that contains
vertices wa1

j , w
a2
j , . . . , w

a|Cj |

j . We call this clique a clause gadget. For each
variable xi and each ℓ ∈ [|Ji|], connect wiJi[ℓ] to uℓi if CJi[ℓ] contains xi and
to uℓi if CJi[ℓ] contains ¬xi. The edge set E1 consists of all edges between two
vertices v and w where v is contained in a vertex gadget and w is contained
in a clause gadget. Moreover, E1 contains the edge {uki , uki } for each variable
gadget Vi and each k ∈ [|Ji|]. The edge set E2 contains all constructed edges
that are not contained in E1.

See Figure 6.5 for an illustration of Construction 6.15. We show that the
graph G1 ..= (V,E1) consists only of disjoint P3’s. Note that E1 contains all
edges {uki , uki } and exactly one of the two vertices in {uki , uki } is adjacent to
a vertex in a clause gadget in G1. Since each vertex in a clause gadget has
degree exactly one in G1, this proves that G1 only consist of disjoint P3’s. Next,
observe that G2 ..= (V,E2) consists of disjoint cliques of size at most k. In each
variable gadget it contains every other edge, that is, a matching (disjoint cliques
of size two) and it contains all edges between vertices in clause gadgets which
are by definition of size at most k. We next show that Construction 6.15 is
correct.

Lemma 6.16. Let φ be an instance of k-SAT in which each variable occurs
at least twice in φ and at most once in each clause. Then, φ is satisfiable if
and only if the graph G ..= (V,E1 ⊎E2) resulting from Construction 6.15 has an
independent set of size ℓ where ℓ is the number of cliques in G2 ..= (V,E2).
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Proof. We start by showing that if G contains an independent set of size ℓ,
then φ is satisfiable. To this end, let I be an independent set of size ℓ in G.
Note that I contains exactly one vertex from each clique in G2 and therefore
for each variable gadget Vi it either contains u1

i or u1
i . By construction of Vi,

it holds that if u1
i ∈ I, then uℓi ∈ I for all ℓ ∈ [|Ji|]. Analogously, if u1

i ∈ I,
then uℓi ∈ I for all ℓ ∈ [|Ji|]. We now describe how to construct a satisfying
truth assignment for φ. For each variable xi, we set β(xi) ..= true if u1

i ∈ I
and β(xi) ..= false if u1

i ∈ I. It remains to show that this truth assignment β
satisfies all clauses in φ. To this end, consider any clause Cj . Since I contains
exactly one vertex from each clause gadget (each such gadget induces a clique
in G2), it holds that wij ∈ I for some i ∈ [|Cj |]. By construction, the variable xi
occurs in Cj (exactly once). If Cj contains the literal ¬xi, then wij is adjacent
to uhi for some h ∈ [|Ji|] and, since I is an independent set, I does not contain uhi .
Thus, u1

i ∈ I and therefore β(xi) = false and Cj is satisfied by β. If Cj contains
the literal xi, then wij is adjacent to uhi for some h ∈ [|Ji|] and analogously u1

i ∈ I.
Thus, Cj is satisfied by β as β(xi) = true. Since each clause is satisfied by β,
this concludes the first direction of the proof.

It remains to show that if φ is satisfiable, then G contains an independent
set of size k. Let β be a satisfying truth assignment for φ. We construct an
independent set I of size ℓ for G as follows. For each variable xi, if β(xi) = true,
then I contains all vertices uhi for h ∈ [|Ji|] and if β(xi) = false, then I contains
all vertices uhi for h ∈ [|Ji|]. For each clause Cj , let xi be a variable that
satisfies Cj under assignment β and let I contain wij . Observe that I is of size ℓ
as it contains exactly one vertex of each clique in G2. It remains to show that I
is indeed an independent set. Assume towards a contradiction that I was not an
independent set. Then it contains two adjacent vertices. Note that it does not
contain two adjacent vertices from variable gadgets as it contains every second
vertex from the respective cycle. It does not contain two adjacent vertices from
clause gadgets either as it contains exactly one vertex from each clause gadget
and vertices from different clause gadgets are not adjacent in G. Hence, I
contains a vertex wij from a clause gadget and a vertex v from a variable
gadget such that v and wij are adjacent. If wij ∈ I, then xi satisfies Cj by
construction, that is, β(xi) = true if Cj contains the literal xi and β(xi) = false
if Cj contains the literal ¬xi. We distinguish between the two cases where Cj
contains the literal xi or the literal ¬xi. If Cj contains the literal xi, then by
construction wij is only adjacent to vertices in the clause gadget for Cj and
to uhi for some h ∈ [|Ji|]. Since β(xi) = true, it holds that uhi ∈ I and uhi /∈ I, a
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Figure 6.6: A gadget for a P3 in Construction 6.17 where the inner vertex has a
green color (the two upper leaves) and the end vertices have red (bottom left) and
yellow color (bottom right), respectively. The triangles and squares represent leaves
of different labels. There are six different labels in this phylogenetic tree (which are
represented by a red square, a red triangle, a yellow square, a yellow triangle, a green
square, and a green triangle, respectively).

contradiction to the assumption that wij has a neighbor in I. If Cj contains ¬xi,
then by construction wij is only adjacent to vertices in the clause gadget for Cj
and to uhi for some h ∈ [|Ji|]. Since β(xi) = false, it holds that uhi /∈ I, which is
again a contradiction to the assumption that wij has a neighbor in I. Thus, I is
an independent set which concludes the proof.

Note that, by construction, the independent set has to contain exactly one
vertex from each clique in G2. This is equivalent to giving each vertex in G1 a
color that represents in which clique in G2 the vertex is contained and asking
for a colorful independent set, that is, an independent set which contains
exactly one vertex of each color. Hence, Lemma 6.16 implies that k-SAT
reduces to Colorful Independent Set on disjoint P3’s where each color
appears at most k times and no P3 contains two vertices of the same color.
We next reduce this variant of Colorful Independent Set to Soft Tree
Containment on k-labeled trees. The basic idea is to construct a gadget as
shown in Figure 6.6 for each P3 in the input graph and connect all of these
gadgets by an arbitrary binary tree whose leaves are the roots of the respective
gadgets. By Lemma 6.8, if this phylogenetic tree N displays T , then it contains
a single-labeled phylogenetic tree S that displays T . We will show that S can
contain either a leaf that represents the inner vertex in the respective P3 or only
leaves that represent end vertices of the respective P3. Hence, we can use S to
construct an independent set.

Construction 6.17. Given a vertex-colored collection G ..= (V,E) of P3’s
where each color occurs at most k times, we construct a k-labeled phylogenetic
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NN

T

Figure 6.7: Illustration of Construction 6.17.
Left: The initial instance of Colorful Independent Set on disjoint P3’s with 4
colors (red, blue, green, and yellow) where each color occurs at most thrice. The
encircled vertices represent a solution.
Right: The single-labeled phylogenetic tree T resulting from Construction 6.17.
Middle: The binary 3-labeled phylogenetic tree N resulting from Construction 6.17.
The highlighted edges represent the single-labeled subtree S of N that displays T and
that corresponds to the marked solution on the left-hand side.

tree N and a single-labeled phylogenetic tree T as follows. Both phylogenetic
networks contain two different labels i1 and i2 for each color i in G.

Construct T by first creating a star that has exactly one leaf of each color
occurring in G. Then, for each leaf x with color i, adding two new leaves labeled
with i1 and i2, respectively. Since x is not a leaf any more, its label is removed.

The k-labeled phylogenetic tree N is constructed as follows. We start with a
gadget as shown in Figure 6.6 for each P3 = (u, v, w) in the input graph where
red, green, and yellow denote the colors of u, v, and w, respectively. Therein,
a triangle of color i represents a leaf labeled with i1 and a square of color i
represents a leaf labeled with i2. Finally, add an arbitrary binary tree that has
a leaf for each P3 in G and identify each such leaf with the root of the respective
constructed gadgets.

An example of Construction 6.17 is given in Figure 6.7. We conclude this
subsection with the proof that k-SAT reduces to Soft Tree Containment
on k-labeled phylogenetic trees and a simple corollary that states NP-hardness.

Proposition 6.18. k-SAT reduces for each k to Soft Tree Containment
on binary k-labeled phylogenetic trees.
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Proof. Note that k-SAT reduces by Lemma 6.16 to Colorful Independent
Set on disjoint P3’s where each color appears at most k times. We then apply
Construction 6.17 to the constructed instance of Colorful Independent Set.
Since the resulting phylogenetic tree from Construction 6.17 is k-labeled and
binary, it remains to show that this construction is correct, that is, N displays T
if and only if the given collection G ..= (V,E) of P3’s has a colorful independent.

We first show that if N displays T , then there is a colorful independent set in G.
If N displays T , then, by Lemma 6.8, N contains a single-labeled phylogenetic
tree S that displays T . By Observation 6.1, this is equivalent to T displaying S.
Let Q be the set of vertices in G such that for each vertex v ∈ Q of color c, S
contains a vertex of color c1 in the gadget for the respective P3 that v is in.
Since S displays T , it contains a leaf with label c1 and a leaf with label c2 for
each color c. Moreover, since S is single-labeled it contains exactly one vertex
with label c1 for each color c and therefore Q is colorful, that is, it contains
exactly one vertex of each of the colors in G. Hence, it remains to show that Q
is an independent set in G. Assume towards a contradiction that Q is not an
independent set, that is, it contains two adjacent vertices u and w. Let without
loss of generality u be an inner vertex in a P3 and let c and d be the colors of u
and w respectively. Since u,w ∈ Q, it holds that S contains the leaf with label c1
and the leaf with label d1 in the same gadget. By construction, S displays the
triplet c1d1|c2 and T displays the triplet c1c2|d1 firmly. By Lemma 6.6(b), this
contradicts the fact that T displays S.

We conclude the proof by showing that if G contains a colorful independent
set I, then N displays T . To this end, let I be a colorful independent set in G.
We will show that there is a single-labeled subtree S of N that displays T . This
implies by Lemma 6.8 that N displays T . For each vertex v ∈ I of color c, let S
contain the two leaves with labels c1 and c2 in the gadget for the respective P3
that v is in. Since I is colorful, S contains exactly one leaf of each label and it
therefore remains to show that S displays T .

Assume towards a contradiction that S does not display T . This is, by
Observation 6.1, equivalent to T not displaying S. In this case, there is, by
Lemma 6.6, a triplet xy|z that is firmly displayed by S but not softly displayed
by T . By Observation 6.3(b), T then displays one of the triplets xz|y or yz|x
firmly. Let T without loss of generality display xz|y firmly. By construction
of T , it holds that y ..= c1 and z ..= c2 (or y ..= c2 and z ..= c1) for some color c.
By construction of S, it holds that the two leaves labeled with c1 and c2 in S
are in the same gadget. Hence, c1 and c2 correspond to an inner vertex in
the respective P3 as otherwise there is no label x such that S displays the
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triplet c1x |c2 (or c2x |c1). By construction, I contains the inner vertex v of
color c in the respective P3. Moreover, it holds that the leaf with label x is also
contained in the same gadget and thus I contains one of the two end vertices in
the same P3 as v, a contradiction to the fact that I is an independent set.

Since k-SAT is NP-hard for each k ≥ 3, it holds that Soft Tree Con-
tainment is NP-hard on binary k-labeled phylogenetic trees and, in particular,
when restricted to 3-labeled phylogenetic trees.

Corollary 6.19. Soft Tree Containment is NP-hard, even if the input
network N is a binary 3-labeled phylogenetic tree.

6.4 Concluding Remarks
We initiated research into a practically relevant variant of Tree Containment
handling soft polytomies. We again defer the discussion on 2-SAT programming
as a technique to the concluding chapter of this thesis and focus on Soft Tree
Containment here. We laid the mathematical foundations to dealing with soft
polytomies and showed the dichotomy result that Soft Tree Containment
on k-labeled phylogenetic trees is polynomial-time solvable if k ≤ 2 and NP-hard
if k ≥ 3. Further improving the running time of the polynomial-time algorithm
for 2-labeled phylogenetic trees (e. g. within the context of FPT in P as done
in Chapter 3) and empirically evaluating it on real-world data sets are clear
avenues for further research.

Motivated by our hardness result, the search for parameterized or approxi-
mation algorithms is another logical next step. Previous work for Tree Con-
tainment [GLZ16, Wel18] might lend promising ideas and parameterizations
to this effort.
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Chapter 7

Reachable Objects

In this chapter, we will investigate a problem from the widely-studied field
of resource allocation under preferences, having applications in areas such as
artificial intelligence and economics. Conceptually, we will develop a 2-SAT
program where the truth assignment of a variable does not represent picking
some element into a solution or not. It rather represents which of two elements
is picked into a solution. These types of 2-SAT programs are so far very rare in
the literature. We mention that the 2-SAT program we develop in this chapter
does not meaningfully generalize to a k-SAT program and therefore the 2-SAT
program is not a special case of a reduction to k-SAT. In Chapter 8, we will
analyze the structure of the problem we study here and observe which structural
elements enable 2-SAT programming. This will lead us to a rule of when 2-SAT
programming can be a promising tool for solving algorithmic problems.

Regarding resource allocation under preferences, we will investigate the
Reachable Object problem which generalizes the well-known Housing
Market problem [SS74]. In Reachable Object, agents are organized in
a graph and two agents can only swap resources if they share an edge in the
graph. This restriction models the situation where not all agents are able to
communicate and swap with each other. We start with a dichotomy result
regarding the number of objects each agent prefers over its initially held object
and continue with investigating the special case where each agent has at most
two neighbors in the graph. Using 2-SAT programming, we will show that this
special case is polynomial-time solvable. The problem remains NP-hard for the
case where each agent has at most four neighbors in the graph [SW18].

Resource allocation under preferences is a major topic in society and technol-
ogy [Wal15]. It has also proven to be a key issue in a world of limited resources
and allocating indivisible resources is well-studied in the context of multiagent
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systems [BCM16]. It has numerous applications e. g. in contexts of food-banks,
when sharing charitable donations between cities or communities, or when
allocating physical to virtual resources in virtualization technologies [BKN18].
There are several versions studied in the literature that try to optimize for
different criteria such as Pareto optimality, fairness, or social welfare [Abr+05,
Rot82, SU10].

In the field of resource allocation under preferences, one is interested in
distributing a set of (divisible or indivisible) objects among a set of agents who
value the objects differently. We focus entirely on indivisible objects here and
consider the special case where each agent initially holds exactly one object.
While a large body of research in the literature takes a centralized approach
that globally controls and reallocates an object to each agent, we pursue a
decentralized strategy where any pair of agents may locally swap objects as
long as this leads to an improvement for both of them, that is, they both
value the object they get over the one they give away [DBC15]. We are then
interested whether there is a sequence of such rational trades that leads to a
situation where a given agent obtains a given object. Other examples of recently
studied problems regarding allocations of indivisible resources under social
network constraints are envy-free allocations [Bey+19, BKN18], Pareto-optimal
allocations [IP19], and stable matchings [ABH17, AV09].

The main contribution of this chapter is a polynomial-time algorithm for
Reachable Object on cycles and the following dichotomy result. If each
agent prefers at most two other objects over the object it initially holds, then the
problem is linear-time solvable. If some agents prefer more than two objects over
their initially held object, then the problem is NP-hard. The polynomial-time
reduction in the hardness result also shows that the problem remains NP-hard
if the underlying graph is a clique, that is, all agents can pairwise swap with
one another. It might be tempting to think that the hardness then stems from
the density of the underlying graph as cycles are very sparse. This assumption
is, however, false as the problem is known to be NP-hard even when the input
graph is a tree [GLW17].

Section 7.2 is dedicated to the dichotomy result and in Section 7.3 we will
present our 2-SAT-programming-based polynomial-time algorithm for Reach-
able Object on cycles. Me mention that the positive result in the dichotomy
part is based on dynamic programming.
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7.1 Problem Definition and Related Work
Let V ..= {1, 2, . . . , n} be a set of n agents and let X ..= {x1, x2, . . . , xn} be a
set of n objects. Each agent i ∈ V has a preference list over the objects in X,
which is a strict linear order on X. This list is denoted as ≻i and we omit the
subscript i if the agent is clear from the context. For two objects xj , xℓ, the
notation xj ≻i xℓ means that agent i prefers xj over xℓ. A preference profile P
is a collection (≻i)i∈V of preference lists of the agents in V . An assignment is a
bijection σ : V → X, where each agent i is assigned exactly one object σ(i) ∈ X.
Since assignments are bijections, we will also use σ−1(xi) to denote the agent
that holds xi in assignment σ.

Let G ..= (V,E) be a graph where the set V of agents is the set of vertices.
An edge in this graph models that two agents know and trust each other enough
to swap objects. We say that an assignment σ admits a rational trade for two
agents i and j, denoted as τ = {(i, σ(i)), (j, σ(j))}, if the vertices corresponding
to i and j are adjacent in the graph ({i, j} ∈ E) and each of the two agents prefers
the other’s assigned object over its own object (σ(j) ≻i σ(i) and σ(i) ≻j σ(j)).
After performing the swap specified by τ , agent i holds object σ(j), agent j
holds object σ(i), and the other agents keep their objects. To describe this move,
we say that objects σ(i) and σ(j) are swapped over edge {i, j}. Sometimes, we
also say that object σ(i) (or σ(j)) passes through edge {i, j} or moves from
agent i to j.

A sequence of swaps is a sequence (σ0, σ1, . . . , σt) of assignments where for
each index k ∈ {0, 1, . . . , t−1} there are two agents i, j ∈ V for which σk admits
a swap τ = {(i, σk(i)), (j, σk(j)) such that

1. σk+1(i) = σk(j),

2. σk+1(j) = σk(i), and

3. σk+1(z) = σk(z) for each remaining agent z ∈ V \ {i, j}.

We call an assignment σ′ reachable from another assignment σ if there is a
sequence (σ0, σ1, . . . , σt) of swaps such that σ0 = σ and σt = σ′. We say that
an object x ∈ X is reachable for an agent i from a given initial assignment σ0 if
there is an assignment σ which is reachable from σ0 with σ(i) = x.

With these definitions at hand, we can now define the problem Reachable
Object introduced by Gourvès et al. [GLW17] which we study in this chapter.
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1

2

34

5

6

1 : x3 ≻ x4 ≻ x1 2 : x1 ≻ x3 ≻ x4 ≻ x2
3 : x1 ≻ x2 ≻ x4 ≻ x3 4 : x5 ≻ x3 ≻ x4
5 : x6 ≻ x3 ≻ x5 6 : x4 ≻ x3 ≻ x6

Figure 7.1: An example of Reachable Object. The six agents and the graph of
agents are depicted on the left-hand side. The preference lists are depicted on the right
and the initial assignment σ0 is illustrated by the boxes in the preference lists (each
agent initially holds the object that is drawn in a box in the agent’s preference list).
Since no agent will agree on receiving an object in any swap that it does not prefer
over its initially held object, these objects are for the sake of readability not depicted
in the preference lists. The agent I is agent 1 and x is the object x3. If the underlying
graph was complete, then object x3 would be reachable for agent 1 within one swap.
However, if the graph is a cycle as shown, then to reach agent 1 object x3 has to be
swapped along {2, 3} with object x2 first and then along {1, 2} with object x1. Note
that at both edges both incident agents agree to the swap as agent 3 prefers x2 over x3
and agent 2 prefers x3 over x2 and x1 over x3. Finally, agent 1 prefers x3 over x1.

Reachable Object
Input: A set V of agents, a set X of objects with |X| = |V |, a preference

profile P , an initial assignment σ0, a graph G ..= (V,E), an agent I ∈ V ,
and an object x ∈ X.

Question: Is x reachable for I from σ0?

An example of Reachable Object is given in Figure 7.1. Note that an
agent i that gives away a certain object xj during a sequence of swaps, obtains
an object it prefers over xj and hence agent i will not accept object xj in the
future.

Observation 7.1. Let ϕ ..= (σ0, σ1, . . . , σs) be a sequence of swaps, let i be an
agent and let xj be an object. If σr(i) = xj and σr+1(i) ̸= xj for some r ∈ [s−1],
then σr′(i) ̸= xj for all r′ > r.

Concerning related work, Gourvès et al. [GLW17] introduced Reachable
Object and showed that it is NP-hard on trees. Moreover, they showed
polynomial-time solvability on stars and for a special case on paths, namely
when testing whether an object is reachable for an agent positioned on an
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end vertex of the path. Huang and Xiao [HX20] generalized this special case
and showed that Reachable Object on paths is polynomial-time solvable
independently of where the target agent I is located on the path. They also
considered a version where agents can value different objects equally (that is,
the preference lists are not strict) and showed that in this case Reachable
Object remains NP-hard on paths. Saffidine and Wilczynski [SW18] studied the
parameterized complexity of Reachable Object with respect to parameters
such as the maximum degree of the input graph or the overall number of swaps
allowed in a sequence. They showed that Reachable Object remains NP-
hard even on graphs with maximum degree at most four. Further, they showed
that Reachable Object is W[1]-hard when parameterized by the length
of the minimum sequence of swaps that leads to agent I obtaining object x.
Finally, Reachable Object is NP-complete on generalized caterpillars where
each hair has length at most two and only one vertex has degree larger than
two [Ben+19a].

7.2 Length of Preference Lists
In this section, we will show a complexity dichotomy result with regard to the
maximum length of a preference list. Notice that each agent initially holds one
object and it will never obtain any object that it does not prefer over its initially
held object. Thus, we describe the preference list of an agent only up to its
initially held object. The length of the preference list of an agent is then defined
as the number of objects the agent likes at least as much as its initially held
object and the maximum length of a preference list is the length of a longest
preference list of any agent.

The parameter maximum length of a preference list is mainly motivated by the
following two scenarios. In many applications each agent only knows some of
the objects (e. g. potential buyers usually only visited five to ten houses and do
not like all of them or when ranking movies each participant has only seen some
of the available movies) and in other applications even when all alternatives are
known only a few of them are appealing (e. g. when applying for a job or when
choosing food). Notably, Saffidine and Wilczynski [SW18] suggested to study
Reachable Object with restrictions on the preference lists.

We will show in Subsection 7.2.1 that instances in which the maximum length
of a preference list is at most three can be solved in linear time. We complement
this result in Subsection 7.2.2 by showing that Reachable Object is NP-hard
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even if restricted to cases where the maximum length of a preference list is at
most four and where the underlying graph is a clique.

7.2.1 Maximum Length at Most Three
In this subsection, we provide a linear-time algorithm for Reachable Object
when the maximum length of a preference list is at most three. The main idea is
to reduce Reachable Object to computing an s-t-path in a directed graph.
Throughout this subsection, we assume that each agent i initially holds object xi.
Consider all agents that hold the given target object x during a sequence of
swaps that leads to agent I obtaining object x. All those agents except for
the agent a that initially holds x and agent I must swap their initially held
object to receive x and then receive their most preferred object for giving x
away. We call those agents x-forwarder. Concerning agent I, it might swap
its initially held object xI in order to receive x or it might first receive an
object xw and then swap xw away in order to receive x. Note that in this case
the preference list of agent I is x ≻ xw ≻ xI . Since each preference list is
of length at most three, the object xw is unique. Note that all agents that
hold object xw in the mentioned sequence of swaps except for agents I and w
must swap their initially held object to receive xw and then receive their most
preferred object for giving xw away. Analogously to x-forwarder, we call such
agents xw-forwarder. Hence, we basically just consider the case distinction
whether agent I is a w-forwarder or not and which objects agent a and w receive
in exchange for their initially held objects. We remark that there is a special
case where a is an xw-forwarder and agent w is an x-forwarder. Figure 7.2 gives
an example of Reachable Object where the maximum length of preference
lists is at most three.

Let (σ0, σ1, . . . , σt) be a sequence of swaps. To ease the reasoning, we define τi
to be the swap that transforms σi−1 into σi . Formally, τi = {(j, xp), (k, xq)}
such that

1. σi−1(j) = σi(k) = xp, and

2. σi−1(k) = σi(j) = xq.

Using this notation, we first prove a property which allows us to exclusively
focus on the objects w and x. Roughly speaking, any solution can be partitioned
into two sequences of swaps. In the first sequence, the object xw, which agent I
swaps in exchange for object x, is swapped between each two consecutive
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1

2

34

5

6

1 : x3 ≻ x4 ≻ x1 2 : x1 ≻ x4 ≻ x2
3 : x2 ≻ x4 ≻ x3 4 : x5 ≻ x3 ≻ x4
5 : x6 ≻ x3 ≻ x5 6 : x4 ≻ x3 ≻ x6

Figure 7.2: An example of Reachable Object that is a slight modification of the
example in Figure 7.1. Initially held objects are again drawn in boxes and the question
is still whether x3 is reachable for agent 1. Then, our algorithm finds the following
swap sequence for object x3 to reach agent 1: 4 ↔ 3, 3 ↔ 2, 2 ↔ 1, 4 ↔ 5, 5 ↔ 6,
6 ↔ 1, where “i ↔ j” means that agents i and j swap the objects they currently hold.
In this example each agent in {1, 2, 3} is an x4-forwarder and each agent in {4, 5, 6} is
an x3-forwarder.

assignments. In the second sequence, object x is swapped between each two
consecutive assignments. More specifically, the following lemma states that the
sequence of swaps resulting from performing all swaps that involve xw and no
other swaps leads to agent I obtaining xw.

Lemma 7.2. Let

(V ..= {1, 2, . . . , n}, X ..= {x1, x2, . . . , xn},P, σ0, G ..= (V,E), I, x)

be an instance of Reachable Object where σ0(i) = xi for all i ∈ [n] and where
the maximum length of preference lists is at most three. Let ϕ ..= (σ0, σ1, . . . , σt)
be a sequence of swaps such that σt(I) = x. Consider two objects xp and xq such
that there is a swap τr with τr = {(I, xp), (j, xq)}, that is, agent I obtains ob-
ject xq in exchange for xp during ϕ. Let T = {τi | τi = {(j, x′

p), (k, xq) ∧ i ≤ r}}
be the set of all swaps between assignments in ϕ up to assignment σr that involve
swapping xq. We denote the elements of T by τ ′

1, τ
′
2, . . . , τ

′
|T | such that swap τ ′

i

occurs before swap τ ′
j in ϕ for each i < j. Let ϕstart ..= (σ′

0, σ
′
1, . . . , σ

′
s) be the

sequence of assignments such that σ′
0

..= σ0 and σ′
i is the result of performing

swap τ ′
i in assignment τ ′

i−1. Let τ ′
i

..= {(ai−1, xq), (ai, xbi
)} for each i ∈ [s].

Then,

(i) τ ′
s = τr,

(ii) a0 = q and agent q prefers xb1 over xq,
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(iii) as = I and agent I prefers xq over its initially held object xI ,

(iv) for each z ∈ [s− 1] agent az has preference list xbz+1 ≻ xq ≻ xbz
and is

an xq-forwarder,

(v) if agent I prefers x over xq, then no agent az with z ∈ [s − 1] prefers
object x over its initially held object, and

(vi) if agent I initially holds xp, then ϕstart is a sequence of swaps such
that σ′

s(I) = xq.

Proof. We prove the individual statements one after another and we start with
statement (i). To this end, note that by definition, the last swap τr between σr−1
and σr contains (j, xq) for some agent j. Since the swaps between consecutive
assignments in ϕ′ are exactly those that involve swapping object xq, it follows
that the swap between σ′

s−1 and σ′
s must be τr and thus τ ′

s = τr and statement (i)
holds.

We continue with statement (ii). By definition, τ ′
1

..= {(a0, xq), (a1, xb1)} and
agent q initially holds object xq. By definition of rational swaps it holds that
agent a0 initially holds object xq and prefers xb1 over xq. Since each object is
unique, sind each object is only held by one agent at a time, and since both
agents a0 and q initially hold xq, it holds that a0 = q and thus statement (ii)
holds.

To show statement (iii), recall that τr = τ ′
s

..= {(as−1, xq), (as, xb1)} and
thus as = I and since τ is a rational swap, agent as has to prefer xq over xp.
Since agent as holds xp during ϕ, it holds that xp = x1 or that agent as
prefers xp over xI . In both cases it prefers x over xI and thus statement (iii)
holds.

We next prove statement (iv). Assume towards a contradiction that there is a
minimum z ∈ [s−1] such that az does not have preference list xbz+1 ≻ xq ≻ xbz

or that it is not an xq-forwarder. Observe that if z = 1, then by state-
ment (ii) az−1 = a0 = q and agent az−1 initially holds xq and otherwise,
since z is minimum, it holds that after swap τ ′

z−1 agent az−1 holds object xq.
Since τ ′

z = τk for some k, it holds that xq ≻az
xbz

and agent az swaps xbz

for xq away. By definition of τ ′
z+1, agents az and az+1 then swap xq and xbz+1

and thus xbz+1 ≻az
xq and az is an xq-forwarder, a contradiction.

We next show statement (v). Note that if agent I prefers object x over xq,
then x ̸= xq. Assume towards a contradiction that some agent az with z ∈ [s]
prefers x over xq. Note that in this case xq ≠ xbz as xbz is the object that az
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initially holds. Then by statement (iv), it holds that az only prefers xq and xbz+1

over xbz and that az obtains xbz+1 during ϕ before agent I obtains object x.
Since xq ̸= x, it holds that x = xbz+1 and since az holds its most preferred
object x, it will never trade this object away. Thus, object x cannot be obtained
by agent I during ϕ, a contradiction.

Finally, to show statement (vi), notice that by statement (i) and the definition
of τ , it holds that σ′

s(I) = xq and hence it remains to show that ϕstart is a
sequence of swaps. Assume towards a contradiction that ϕstart is not a sequence
of swaps, that is, there are two consecutive assignments σ′

i−1 and σ′
i such

that τ ′
i is not a rational swap. Since by definition τ ′

i = τk for some k, it holds
that if τ ′

i
..= {(ai−1, xq), (ai, xbi

)} is possible in the sense that ai−1 holds xq
and agent ai holds xbi

, then τ ′
i is a rational swap. Assume without loss of

generality that τ ′
i is the first swap between consecutive assignments in ϕstart

that is not possible. Then, i = 1 or τ ′
i−1 is possible. By statement (ii), in

both cases agent ai−1 holds xq in σ′
i. If i < s, then by statement (iv) agent ai

can only trade xbi
away in order to obtain xq in any trade τk between two

assignments σk−1 and σk in ϕ. Since τ ′
i = τk for some k ∈ [r], it holds that τ ′

i

is possible, a contradiction. If i = s, then by statement (iii) agent as is
agent I which initially holds by assumption xp = xbi and hence τ ′

i is possible, a
contradiction.

We next present the main algorithm of this subsection and prove that it solves
Reachable Object when the maximum length of preference lists is at most
three. Pseudo-code is given in Algorithm 7.1. The idea therein is to model
possible swaps that involve x as arcs in a directed graph. Each arc (i, j) in this
graph represents the fact that if agent i obtains object x, then it can swap it to
agent j in exchange for object xj . A directed path from the agent that initially
holds x to agent I then corresponds to a sequence of swaps such that agent I
obtains object x in the end. We then consider the third object xw /∈ {xI , x}
which appears in the preference list of I and build a similar directed graph
for xw. The directed paths from agent w to agent I in it again correspond to
sequences of swaps such that agent I obtains object xw.

Proposition 7.3. Reachable Object can be solved in linear time when the
maximum length of preference lists is at most three.

Proof. Let

(V ..= {1, 2, . . . , n}, X ..= {x1, x2, . . . , xn},P, σ0, G ..= (V,E), I, x)
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Algorithm 7.1: Algorithm for Reachable Object when the maximum
length of preference lists is at most three.
Input : A set V of agents, preference lists (≻i)i∈V of length at most

three, and a graph (V,E).
Output : true if agent I can receive object x that is initially held by

agent a and false otherwise.
1 F ← {(i, j) | {i, j} ∈ E ∧ xj ≻i x ∧ x ≻j xj}

// If agent i obtains x, then it can swap it to agent j for xj .
2 D ← (V, F )
3 if D admits a directed path P from a to I then return yes
4 if x ≻I xw ≻I xI for some xw ̸= x then
5 F1 ← {(i, j) | {i, j} ∈ E ∧ xj ≻i xw ∧ xw ≻j xj}
6 F2 ← {(i, j) | j ̸= I ∧ {i, j} ∈ E ∧ xj ≻i x ∧ x ≻j xj}
7 F3 ← {(i, I) | {i, I} ∈ E ∧ xw ≻i x}

// If i obtains object x, then it swaps it to agent I for xw.
8 D1 ← (V, F1)
9 D2 ← (V, F2 ∪ F3)

10 if D1 admits a directed path from w to I and (w, a) ∈ F2 then
// Object x is held by agent w after the first swap

11 if D2 admits a directed path from w to I then return true
12 if D1 − {a} admits a directed path from w to I then
13 if D2 admits a directed path from a to I then return true

14 return false

be an instance of Reachable Object where σ0(i) = xi for all i ∈ [n]
and where the maximum length of preference lists is at most three. Let a
be the agent that initially holds object x. We use Algorithm 7.1 to prove this
proposition. We start with showing that if object x is reachable for agent I,
then Algorithm 7.1 returns true. To this end, assume that there exists a se-
quence ϕ = (σ0, σ1, . . . , σt) of swaps such that σt(I) = x. We assume without
loss of generality that σt−1(I) ..= xb ̸= x. We then distinguish between the two
cases xb = xI and xb ̸= xI . If xb = xI , then using xp = xI and xq = x,
the sequence ϕ′ = (σ′

0, σ
′
1, . . . , σ

′
s) as defined in Lemma 7.2 is a sequence of

swaps such that σ′
0 = σ0 and σ′

s(I) = x. By Lemma 7.2(ii) to (iv), graph D as
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constructed in Line 2 must contain a path from a to I. Thus, Algorithm 7.1
returns true in Line 3.

If xb ̸= xI , then the preference list of agent I is xn ≻ xw ≻ xI and xb = xw.
Moreover, agent I obtains xw during ϕ and thus there are σr−1 and σr such
that τr = {{I, xI}, {k, xw}} for some agent k. By Lemma 7.2 (using xp = xI
and xq = xw), the sequence ϕ′ = (σ′

0, σ
′
0, . . . , σ

′
s) as defined in Lemma 7.2 is

a sequence of swaps such that σ′
0 = σ0 and σ′

s(I) = xw. Let a1, a2, . . . , as be
the agents that hold object xw during ϕ′. It follows from Lemma 7.2(iv) and
the definition of D1 in Line 8 that ϕ′ defines a directed path (a0, a1, a2, . . . , as)
with a0 = w and as = I in D1. By Lemma 7.2(v), no agent in {a2, a3, . . . , as−1}
prefers x over its initially held object. By Lemma 7.2(ii) and (iv), it holds
that τ ′

1 = {{w, xw}, {a1, xa1}}. We then distinguish between the two cases a1 = a
and a1 ̸= a. If a1 = a, then none of the agents in {a2, a3, . . . , as−1} can
be involved in a swap where x is traded. Observe that in this case con-
sidering the initial assignment σ′′

0 with σ′′
0 (I) = xw, σ′′

a = xI , σ′′
a1

= x,
and σ′′

0 (i) = σ0(i) for all other agents i is equivalent to the original instance.
Using Lemma 7.2 with xp = xw and xq = x then states that there is a se-
quence ϕ∗ = (σ∗

0 , σ
∗
0 , . . . , σ

∗
s′) of swaps with σ∗

0 = σ′′
0 and σ∗

s′(I) = x. It follows
from Lemma 7.2(iv) and the definition of D2 in Line 9 that ϕ∗ defines a directed
path (b0, b1, b2 . . . , bs′) with b0 = w and bs′ = I in D3. Thus, Algorithm 7.1
returns true in Line 11.

If a1 ̸= a, then none of the agents in {a0, a1, . . . , as−1} can be involved in a
swap where x is traded and agent a cannot receive xw during ϕ. Hence, D1−{a}
contains a directed path from w to I and D2 contains a directed path from a
to I. Thus, Algorithm 7.1 returns true in Line 13.

We next show that if the algorithm returns true, then there exists a se-
quence ϕ = (σ0, σ1, . . . , σt) of swaps such that σt(I) = x. If the algorithm re-
turns true, it does so either in Line 3, in Line 11, or in Line 13. If the algorithm
returns true in Line 3, then let (a0 ..= a, a1, . . . , at ..= I) be a directed path in D.
Let σi be an assignment such that σi(ai) ..= σi−1(ai−1), σi(ai−1) ..= σi−1(ai)
and σi(j) = σi−1(j) for all other agents j. By definition of rational trades
and D, it holds that (σ0, σ1, . . . , σt) is a sequence of swaps. Note that by
construction σi(ai) = x for all i ∈ [t] and thus σt(at) = σt(I) = x.

If the algorithm returns true in Line 11, then let (a0 ..= w, a1 ..= a, . . . , as ..= I)
be a directed path in D1 and let (b0 ..= w, b1, . . . , bt ..= I) be a directed path
in D2. Let σi be an assignment such that

1. σi(ai) ..= σi−1(ai−1) and σi(ai−1) ..= σi−1(ai) for all i ∈ [s],
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2. σs+i(bi) ..= σs+i−1(bi−1) and σs+i(bi−1) ..= σs+i−1(bi) for all i ∈ [t], and

3. σi(j) = σi−1(j) for all i ∈ [s + t] and all agents j that are not assigned
objects by the above.

By definition of rational trades and D1 and D2, it holds that (σ0, σ1, . . . , σs+t)
is a sequence of swaps. Note that by construction σs+i(bi) = x for all i ∈ [t]
and thus σs+t(bt) = σs+t(I) = x.

Finally, the case where the algorithm returns true in Line 13 is completely
analogous for the two directed paths

(a0 ..= w, a1, . . . , as ..= I) and (b0 ..= a, b1, . . . , bt ..= I).

It remains to analyze the running time. We start with constructing D ..= (V, F )
in O(n + m) time. The constructions of D1 and D2 are analogous. To con-
struct D = (V, F ), we go through each edge {i, j} in the input graph and check
in constant time whether agent i prefers xj over x and whether agent j prefers x
over xj . All remaining steps are searches for directed paths in graphs. Using
dynamic programming on the topological orders of the constructed DAGs, each
of these steps can be computed in O(n+m) time. Thus, the overall running
time is O(n+m).

7.2.2 Maximum Length at Most Four
Complementing the result from the previous subsection, we next show that
Reachable Object is already NP-hard when the maximum length of preference
lists is four even if the input graph is restricted to be a clique. The hardness
of cliques implies that the computational hardness of the problem does not
stem from restricting the possible swaps between agents by an underlying social
network. To show NP-hardness, we reduce from a restricted variant of 3-SAT.
In this variant, called 2P1N-SAT (two-positive-and-one-negative SAT), each
clause has either two or three literals, and each variable appears once as a
negative literal and either once or twice as a positive literal. 2P1N-SAT is
known to be NP-complete [Tov84].

We start with some intuition. Let

Φ ..= (V ..= {v1, . . . , vn}, C ..= {C1, . . . , Cm})

be an instance of 2P1N-SAT. The general idea of the reduction is to have a
set of agents for each variable and one agent for each literal in a clause in Φ.
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The agents representing variables can then pass objects to agents representing
an occurrence of this variable in a clause such that

1. only agents representing positive literals or only the agent that represents
the negative literal of this variable can receive these objects,

2. an agent representing a certain literal in a clause can pass the target
object x to an agent in “the next clause” if and only if it received a
respective object from one of the agents representing the respective variable,
and

3. the target object x can reach the target agent I only if it passes through
all clauses.

Before we formally describe our construction, we first introduce some notation.
For each variable vi ∈ V , let occ(i) be the number of occurrences of variable vi
(note that occ(i) ∈ {2, 3}), let ν(i) denote the index of the clause that contains
the negative literal ¬ vi, and let π1(i) and π2(i) with π1(i) < π2(i) be the
indices of the clauses that contain the positive literal vi. If occ(vi) = 2, then we
simply neglect π2(i). For a clause Cj , we denote by |Cj | the number of literals
that Cj contains. For each clause Cj ∈ C, we use an arbitrary but fixed order
of the literals in Cj to define a bijective function fj : Cj → {1, . . . , |Cj |}, which
assigns to each literal contained in Cj a distinct number from {1, 2, . . . , |Cj |}.

We next give the formal description of the construction of I. Afterwards we
show how these definitions match the intuition we gave earlier and show an
example of the construction. Afterwards, we formally prove the correctness of
the construction.

Construction 7.4. Let Φ = (V ..= {v1, . . . , vn}, C ..= {C1, . . . , Cm}) be an
instance of 2P1N-SAT. We construct an instance of Reachable Object as
follows.

Agents and objects. For each variable vi ∈ V , we define occ(i)− 1 variable
agents U1

i (and U2
i if occ(i) = 3) and occ(i)−1 objects x1

i (and x2
i if occ(i) = 3).

For each clause Cj ∈ C, we define 2|Cj | + 1 clause agents Aj , Bzj , and Dz
j ,

where z ∈ [|Cj |]. Moreover, we define 2|Cj |+ 1 objects

aj , b
1
j , b

2
j , . . . , b

|Cj |
j , d1

j , d
2
j , . . . , d

|Cj |
j .

Finally, there is a special agent I and a special object x.
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Initial assignment and graph. For each i ∈ [n] and each z ∈ [occ(i)]
agent Uzi initially holds object xocc(i)−z

i . For each j ∈ [m] and each z ∈ [|Cj |]
agent Bzj initially holds object bzi and agent Dz

j initially holds object dzi . Finally,
for each j ∈ [m − 1], agent Aj+1 initially holds object aj , agent a1 initially
holds x, and agent I initially holds am.

The graph G ..= (V,E) is complete, that is, E ..=
(︁
V
2
)︁
.

Preference lists. We next describe the preference list of each agent. Therein,
we only specify the relevant part, that is, the preference list up to the object
that the agent initially holds. We again mark the initially held object with a
box. For a given variable vi ∈ V, let j = ν(i), j′ = π1(i), and if occ(i) = 3,
then j′′ = π2(i). If occ(i) = 2, then the preference list of U1

i is

d
fj′ (vi)
j′ ≻ dfj(¬ vi)

j ≻ x1
i ,

and if occ(i) = 3, then the preference lists of U1
i and U2

i are

d
fj′ (vi)
j′ ≻ x1

i ≻ d
fj(¬ vi)
j ≻ x2

i and

d
fj′′ (vi)
j′′ ≻ x2

i ≻ x1
i , respectively.

For j ∈ [2,m], the preference list of Aj is

b1
j ≻ · · · ≻ b

|Cj |
j ≻ aj−1 .

Let for each z ∈ [occ(i)] be ℓz the index such that fj(ℓz) = z. The preference
list of Bzi is then

τ(Cj , ℓz) ≻ x ≻ aj−1 ≻ bzj ,

where

τ(Cj , ℓ) ..=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1
i , if occ(i) = 2 and ℓ = ¬ vi for some variable vi,
x2
i , if occ(i) = 3 and ℓ = ¬ vi for some variable vi,
x1
i , if ℓ = vi and j = π1(i) for some variable vi, and
x2
i , if ℓ = vi and j = π2(i) for some variable vi.

The preference list of Dz
j is

aj ≻ x ≻ τ(Cj , ℓz) ≻ dzj .
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The preference list of A1 is

b1
1 ≻ b2

1 ≻ · · · ≻ b
|C1|
1 ≻ x .

For each z ∈ [occ(i)] let ℓz be the index such that f1(ℓz) = z. The preference
lists of Bz1 and Dz

1 are

τ(C1, ℓz) ≻ x ≻ bz1 and

a1 ≻ x ≻ τ(C1, ℓz) ≻ dz1 , respectively.

Finally, the preference list of agent I is x ≻ am .

We next explain how these formal definitions follow the general idea we
started with. To this end, note that if for two agents i and j there are no
two objects xk and xℓ such that xk ≻i xℓ ≽i xi and xℓ ≻j xk ≽j xj , then by
definition of rational trades agents i and j will never swap objects. In this case,
we say that the edge {i, j} is irrelevant and ignore the edges henceforth. All
other edges are relevant and by carefully examining the preference lists of all
agents, there are only the following relevant edges.

(1) Relevant edges between clause agents representing one clause Cj are for
each z ∈ [|Cj |]

{Aj , Bzj }, {Bzj , Dz
j },

that is, all clause agents for one clause form a subdivided star.

(2) Relevant edges between clause agents representing two consecutive clauses Cj
and Cj+1 are for each z ∈ [|Cj |] and z′ ∈ [|Cj+1|]

{Dz
j , B

z′

j+1},

that is, the two vertex sets {Dz
j | 1 ≤ z ≤ |Cj |} and {Bz′

j+1 | 1 ≤ z′ ≤ |Cj+1|}
form a complete bipartite graph.

(3) Agent I is adjacent to all clause agents Dz
m for z ∈ [|Cm|]}.

(4) There are no relevant edges between variable agents except between two
agents U1

i and U2
i that represent the same variable vi with occ(i) = 3.

(5) Finally, for edges between the variable agent and clause agents, we distin-
guish for each variable vi ∈ V between occ(i) = 2 or occ(i) = 3.
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Table 7.1: The preference lists of all agents for the instance V ..= {v1, v2, v3}
and C ..= {C1 ..= (v2 ∨ v3), C2 ..= (v1 ∨ ¬ v2 ∨ ¬ v3), C3 ..= (¬ v1 ∨ v2 ∨ v3)}.

A1 : b1
1 ≻ b2

1 ≻ x A2 : b1
2 ≻ b2

2 ≻ b3
2 ≻ a1 A3 : b1

3 ≻ b2
3 ≻ b3

3 ≻ a2

B1
1 : x1

2 ≻ x ≻ b1
1 B1

2 : x1
1 ≻ x ≻ a1 ≻ b1

2 B1
3 : x1

1 ≻ x ≻ a2 ≻ b1
3

B2
1 : x1

3 ≻ x ≻ b2
1 B2

2 : x2
2 ≻ x ≻ a1 ≻ b2

2 B2
3 : x2

2 ≻ x ≻ a2 ≻ b2
3

B3
2 : x2

3 ≻ x ≻ a1 ≻ b3
2 B3

3 : x2
3 ≻ x ≻ a2 ≻ b3

3

D1
1 : a1 ≻ x ≻ x1

2 ≻ d1
1 D1

2 : a2 ≻ x ≻ x1
1 ≻ d1

2 D1
3 : a3 ≻ x ≻ x1

1 ≻ d1
3

D2
1 : a1 ≻ x ≻ x1

3 ≻ d2
1 D2

2 : a2 ≻ x ≻ x2
2 ≻ d2

2 D2
3 : a3 ≻ x ≻ x2

2 ≻ d2
3

D3
2 : a2 ≻ x ≻ x2

3 ≻ d3
2 D3

3 : a3 ≻ x ≻ x2
3 ≻ d3

3
I : x ≻ a3

U1
1 : d1

2 ≻ d1
3 ≻ x1

1 U1
2 : d1

1 ≻ x1
2 ≻ d2

2 ≻ x2
2 U1

3 : d2
1 ≻ x1

3 ≻ d3
2 ≻ x2

3

U2
2 : d2

3 ≻ x2
2 ≻ x1

2 U2
3 : d3

3 ≻ x2
3 ≻ x1

3

(a) If occ(i) = 2, then the relevant edges between the variable agent U1
i

representing vi and clause agents are

{U1
i , B

fπ1(i)(vi)
π1(i) } and {U1

i , B
fν(i)(¬ vi)
ν(i) }.

(b) If occ(i) = 3, then the relevant edges between the variable agents U1
i

and U2
i representing vi and clause agents are

{U1
i , B

fπ1(i)(vi)
π1(i) }, {U1

i , B
fν(i)(¬ vi)
ν(i) }, and {U2

i , B
fπ2(i)(vi)
π2(i) }.

We now briefly describe how a solution in the constructed instance corre-
sponds to a satisfying truth assignment of the original formula. Afterwards, we
present the formal proof. Consider Table 7.1 and Figure 7.3 for an example
of Construction 7.4, relevant edges, and how a satisfying truth assignment to
the original formula corresponds to a solution for the constructed Reachable
Object instance. Note that only agents Bzj and Dz

j for j ∈ [m] and z ∈ [|Cj |]
as well as agents I and A1 prefer object x at least as much as their initially
held object. By the analysis of relevant edges above, one can easily verify that
agent I can only receive object x if for each clause Cj at least one agent Bzj
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B1
2

B2
2

B3
2

D1
2

D2
2

D3
2

A2

U1
2 U2

2

D1
1

D2
1

B1
1

B2
1

A1

U1
1

B1
3

B2
3

B3
3

D1
3

D2
3

D3
3

A3

U1
3 U2

3

I

Figure 7.3: An example of the agents and relevant edges re-
sulting from Construction 7.4 for the instance V ..= {v1, v2, v3}
and C ..= {C1 ..= (v2 ∨ v3), C2 ..= (v1 ∨ ¬ v2 ∨ ¬ v3), C3 ..= (¬ v1 ∨ v2 ∨ v3)}. The
boxes with solid lines indicate the three clause gadgets and the three boxes with
dashed lines display the three variable gadgets. Relevant edges between variable
agents and clause agents are only drawn red for easier distinction. The preference
lists are listed in Table 7.1. Notice that setting v1 and v2 to false and v3 to true is
a satisfying truth assignment. This corresponds to the following sequence of swaps
that lets agent I obtain object x. Setting a variable that occurs thrice to true (v3
in our example) is represented by the swap of the initially held objects of the two
respective variable agents (in our case U1

3 and U2
3 swap x2

3 and x1
3). Afterwards we

decide for each clause for one literal to satisfy this clause. Since in our example C1
and C2 are only satisfied by one literal, we can only choose between ¬ v1 and v3
in C3. Let us choose v3 in C3. Next, for each clause Cj the agent Aj swaps with the
chosen B-vertex and the chosen D-vertex swaps with the respective variable agent.
In our case, A1 swaps with B2

1 , A2 swaps with B2
2 , A3 swaps with B3

3 , D2
1 swaps

with U1
3 , D2

2 swaps with U1
2 , and D3

3 swaps with U2
3 . If all clauses are satisfied, then

object x can be swapped “through all clauses”. In the sequence of swaps we described,
object x it is held by agents A1, B2

1 , D2
1, B2

2 , D2
2, B3

3 , D3
3, and I.

and Dz′

j for z, z′ ∈ [|Cj |] held object x before. For agent Dz′

j to pass object x
to agent Bzj+1, it has to receive aj in return. Since this object is initially held
by agent Aj+1 and since this agent only shares relevant edges with agents Bzj+1
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for z ∈ [|Cj+1|], this works as a selection gadget of which literal in clause Cj+1
should be satisfied. For agent Bzj+1 to then trade object x to agent Dz

j+1,
it has to receive an object representing the corresponding variable in return.
For Dz

j+1 to receive such an object, it has to receive this from an agent in
the corresponding variable gadget. If this variable only occurs twice, then the
respective object can only be given to one D-agent and this agent will never
give it away as it is its most preferred object. If the variable occurs thrice, then
the agents preference lists are constructed in a way that if either of the “positive
occurrences” are given an object representing this variable, then the “negative
occurrence” cannot be satisfied.

It remains to formally prove that Construction 7.4 is correct. This leads
to the main result of this subsection which states that Reachable Object
remains NP-hard when each preference list has length at most four and which
complements Proposition 7.3.

Proposition 7.5. Reachable Object is NP-hard even if the maximum length
of preference lists is four and the input graph is restricted to complete graphs.

Proof. Since each step in Construction 7.4 is polynomial-time computable, since
all preference lists have by construction length at most four, and since the
graph is complete, we will focus on showing that the constructed instance is
equivalent to the original instance. To this end, let Φ ..= (V, C) be an instance
of 2P1N-SAT and consider the instance of Reachable Object resulting
from Construction 7.4.

We will first show that if Φ is satisfiable, then there is a sequence of swaps
such that object x reaches I. Let β : V → {true, false} be a satisfying truth
assignment for Φ. First, for each variable vi ∈ V , if occ(i) = 3 and β(vi) = true,
then let agents U1

i and U2
i swap their initially held objects (so that U1

i and U2
i

hold x1
i and x2

i , respectively). Second, identify for each clause Cj one literal ℓj
that satisfies Cj under assignment β. Then, perform the following swaps.

1. Let agents Aj and B
fj(ℓj)
j swap their initially held objects.

2. Let agents Dfj(ℓj)
j and Uzi swap their current objects such that

(a) if ℓj = ¬ vi, then z = 1 (note that in this case agent U1
i is holding

object xocc(i)−1
i ),

(b) if ℓj = vi and j = π1(i), then z = 1 (note that in this case agent U1
i

is holding object x1
i ), and
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(c) if ℓj = vi and j = π2(i), then z = 2 (note that in this case agent U2
i

is holding object x2
i ).

After these swaps, agent Bf1(ℓ1)
1 holds object x and agent Bfj(ℓj)

j holds ob-
ject aj−1 for each j ∈ [2,m]. Moreover, for each j ∈ [m], agent Dfj(ℓj)

j holds
object τ(Cj , ℓj). Third, for each j ∈ [m− 1] iteratively perform the following
swaps.

1. Agents Bfj(ℓj)
j and D

fj(ℓj)
j swap their current objects (so that Dfj(ℓj)

j

holds object x afterwards).

2. AgentsDfj(ℓj)
j andBfj+1(ℓj+1)

j+1 swap their current objects (agent Bfj+1(ℓj+1)
j+1

holds object x afterwards).

After these swaps, agent Bfm(ℓm)
m holds object x. Finally, agent Bfm(ℓm)

m can
swap object x in exchange for object τ(Cm, ℓm) with agent Dfm(ℓm)

m who can
then swap x in exchange for object am with agent I. Thus, object x is reachable
for agent I and the constructed instance is a yes-instance.

For the other direction, assume that there is a sequence (σ0, σ1, . . . , σs) of
swaps such that σs(I) = x. We show how to construct a satisfying truth
assignment for Φ using the following claim that formalizes the idea that object x
has to pass “through all clauses”.

Claim 7.6. For each clause Cj ∈ C, there exist assignments σr and σr+1 and
a literal ℓj ∈ Cj such that

1. σr(Bfj(ℓj)
j ) = x,

2. σr(Dfj(ℓj)
j ) = τ(Cj , ℓj),

3. σr+1(Bfj(ℓj)
j ) = τ(Cj , ℓj), and

4. σr+1(Dfj(ℓj)
j ) = x.

Proof of Claim 7.6. We prove the claim by induction over j, starting with j = m.
In the initial assignment σ0, agent I holds object am. Note that I prefers only x
over its initially held object am and only the agents Dz

m with z ∈ [|Cm|] prefer x
over am. Hence, I has to swap with one of these agents to obtain x. Let ℓm be
the literal with fm(ℓm) = z. In order for agent Dz

m to obtain object x to swap it
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to I, it must hold object τ(Cm, ℓm) and swap it for x since no agent will trade x
for dzm. Observe that agent Bzm is the only agent that prefers τ(Cm, ℓm) over x
and Bzm must therefore trade object x to Dz

m in exchange for object τ(Cm, ℓm).
Thus, there are assignments σr and σr+1 such that

1. σr(Bzm) = x,

2. σr(Dz
m) = τ(Cm, ℓm),

3. σr+1(Bzm) = τ(Cm, ℓm), and

4. σr+1(Dz
m) = x.

We now show that if for some j ∈ [m− 1] there are assignments σr′ and σr′+1
and a literal ℓj+1 that fulfill the claim for clause Cj+1, then there are also
assignments σr and σr+1 and a literal ℓj that fulfill the claim for clause Cj . By
definition, agent Bfj+1(ℓj+1)

j+1 must have obtained object x at some point. Since it
prefers x only over objects aj and bfj+1(ℓj+1)

j+1 and since no agent prefers bfj+1(ℓj+1)
j+1

over x, it follows that agent Bfj+1(ℓj+1)
j+1 must have swapped object aj with some

other agent for x. Since only agents from {Dz
j | z ∈ [|Cj |]} prefer aj over x, it

follows that Bfj+1(ℓj+1)
j+1 must have swapped with some agent Dz′

j with z′ ∈ [|Cj |]
to obtain object x. Let ℓj be the literal such that fj(ℓj) = z′. Now consider how
agent Dz′

j can obtain object x. Similarly to the case with agent Dz
m, agent Dz′

j

must swap object τ(Cj , ℓj) with agent Bz′

j to obtain x as no agent prefers dz′

j

over x. Thus, there are assignments σr and σr+1 such that

1. σr(Bfj(ℓj)
j ) = x,

2. σr(Dfj(ℓj)
j ) = τ(Cj , ℓj),

3. σr+1(Bfj(ℓj)
j ) = τ(Cj , ℓj), and

4. σr+1(Dfj(ℓj)
j ) = x. ⋄

We conclude the proof by constructing a truth assignment β and show that
it satisfies Φ using Claim 7.6. Let for each variable vi ∈ V be

β(vi) ..=
{︄

false, if Dfν(i)(¬ vi)
ν(i) swapped object x with B

fν(i)(¬ vi)
ν(i)

true, otherwise.
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Assume towards a contradiction that β does not satisfy Φ, that is, there is
some clause Cj ∈ C that is not satisfied by β. By Claim 7.6, let ℓj ∈ Cj be
a literal such that Dfj(ℓj)

j swapped object x with B
fj(ℓj)
j for object τ(Cj , ℓj).

Observe that ℓj ∈ {vi,¬ vi} for some vi ∈ V. We now distinguish between
the two cases ℓj = vi and ℓj = ¬ vi. If ℓj = ¬ vi, then notice that j = ν(i)
since each variable occurs exactly once as a negative literal. Thus, Dfν(i)(¬ vi)

ν(i)

swapped object x with B
fν(i)(¬ vi)
ν(i) . By construction, β(vi) = false and thus Cj

is satisfied, a contradiction.
If ℓj = vi, then vi ∈ Cj . Since Cj is not satisfied by β, it holds that ¬ vi /∈ Cj

and β(vi) = false. It then follows from the construction of β that Dfν(i)(¬ vi)
ν(i)

swapped object x with B
fν(i)(¬ vi)
ν(i) . Note that, by the construction of the

preference lists, Bfν(i)(¬ vi)
ν(i) can only have given object τ(Cν(i),¬ vi) for x in this

trade. We will show that this contradicts the assumption that Dfj(ℓj)
j swapped

object x with B
fj(ℓj)
j for object τ(Cj , ℓj) using a case distinction over occ(i).

If occ(i) = 2, then the definition of τ yields τ(Cj , vi) = τ(Cj′ ,¬ vi) = x1
i .

Since both agents Bfj(vi)
j and Bfν(i)(¬ vi)

ν(i) prefer object x1
i the most, once one of

the two agents received it, the same object cannot be used to be swapped to the
respective other agent. Thus, not both of the constructed swaps can happen
during the sequence of swaps, a contradiction.

If occ(i) = 3, then by the definition of τ it holds that τ(Cν(i),¬ vi) = x2
i .

Since agent Dfν(i)(¬ vi)
ν(i) received object x2

i , it must have received it from agent U1
i

(as U2
i and D

fν(i)(¬ vi)
ν(i) share no relevant edge). Thus agents U1

i and U2
i did

not swap their initially held objects. We make a final case distinction on
whether j = π1(ℓj) or j = π2(ℓj). If j = π1(ℓj), then agent Dfj(ℓj)

j must have
received object x1

i from agent U1
i . If j = π2(ℓj), then agent Dfj(ℓj)

j must have
received object x2

i from agent U2
i . In both cases agents U1

i and U2
i swapped

their initially held objects, a contradiction.

This concludes the dichotomy result for the maximum length ℓ of preference
lists as Proposition 7.3 states that Reachable Object is linear-time solvable
if ℓ ≤ 3 and Proposition 7.5 complements this result by showing that Reachable
Object remains NP-hard for ℓ = 4. Note that if we replace the complete graph
in Construction 7.4 by the graph that only contains the relevant edges, then, for
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each ℓ > 4, we can simply add a new agent with an arbitrary preference list of
length ℓ that is only adjacent to agent I. This agent can never swap its initially
held object o since I does not prefer o over its initially held object. This implies
NP-hardness of Reachable Object with respect to the maximum length ℓ of
preference lists for each ℓ > 4.

7.3 Cycles
In this section, we prove that Reachable Object on n-vertex cycles is solvable
in O(n4) time. This generalizes an O(n4)-time algorithm for Reachable
Object on paths by Huang and Xiao [HX20]. The main difference between our
algorithm and the algorithm by Huang and Xiao is the fact that two objects can
only be swapped once in a path but up to twice in a cycle. The main ingredient
to overcome this obstacle is a structural observation which states that for each
solution there is a constant c such that the following holds. For all pairs (xi, xj)
of objects that are swapped twice in the solution, it holds that the two edges
over which xi and xj are swapped have distance c in the input cycle. Since
this constant c is the same for all pairs of objects, we will first determine the
value of c and then use it to check for each pair of objects whether they can be
swapped twice in a solution.

Note that we can ignore all connected components in the input instance of
Reachable Object that do not contain I and hence we may assume that the
input graph is connected. Note further that any connected graph with maximum
degree two is either a path or a cycle. Thus, our algorithm for cycles and the
algorithm for paths by Huang and Xiao [HX20] prove that Reachable Object
is polynomial-time solvable for graphs of maximum degree two. Saffidine and
Wilczynski [SW18] showed that Reachable Object remains NP-hard on
graphs of maximum degree four. The general idea for our algorithm is as follows.
Note that Observation 7.1 implies that there are only two possible paths of
agents in the graph that can hold the target object x before the target agent I
can obtain it. We will then guess1 the path of agents that hold x during a
solution (a sequence of swaps such that agent I obtains x). This will allow
us to represent a solution by selecting one object to be swapped with x over
each edge in the guessed path. An example of this is given in Figure 7.4. In
Subsection 7.3.1, we show that for each edge in this path there are at most two

1As in Chapter 5, guessing refers to the procedure of iterating over all possibilities and
considering “the correct” iteration for the proof.
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0

1

2

3

4

5
0 : x5 ≻ x4 ≻ x3 ≻ x0 1 : x3 ≻ x4 ≻ x5 ≻ x1
2 : x5 ≻ x1 ≻ x4 ≻ x2 3 : x2 ≻ x4 ≻ x3
4 : x5 ≻ x3 ≻ x4 5 : x0 ≻ x3 ≻ x5

Figure 7.4: An example of Reachable Object on a cycle. Initially held objects are
drawn in boxes and the question is whether x4 is reachable for agent 0. Note that agent 5
does not accept object x4 and hence object x4 has to pass the edges {3, 4}, {2, 3}, {1, 2},
and {0, 1} before agent 0 can obtain it. Considering the preference lists of the agents,
it is easy to verify that only object x3 can be swapped with x4 over the edges {3, 4}
and {0, 1}. Analogously, only object x2 can be swapped with x4 over the edge {2, 3}
and objects x1 and x5 are candidates for being swapped with x4 over the edge {1, 2}.
Observe that for object x5 to be swapped with x4 over the edge {1, 2}, it has to be
swapped over the edge {0, 1} which is impossible as agent 0 does not prefer any object
over x5. Hence, the only solution selects objects x1, x2, and x3 to move clockwise
and objects x0, x4, and x5 move counter-clockwise. Note that the sequence of swaps
resulting from 3 ↔ 4, 4 ↔ 5, 5 ↔ 0, 3 ↔ 2, 2 ↔ 1, 1 ↔ 0 leads to agent I obtaining x4.
Therein, “i ↔ j” means that agents i and j swap the objects they currently hold.

candidate objects that can be swapped with x over the respective edge. Finally,
in Subsection 7.3.2, we show how to partition the edges in the path such that

1. for each part of the partition there are at most two possible choices for
selecting a candidate for all edges in the respective part and

2. candidates for two different parts are either incompatible, that is, there is
no solution for the overall problem that uses the respective candidates, or
they can be combined independently of the choices of candidates for other
parts.

We conclude with the main theorem that states that Reachable Object
on cycles can be solved in O(n4) time. The respective algorithm is a 2-SAT
program with a variable for each part of the described partition. The truth
value of this variable represents the choice of candidates for each edge in the
respective part. The clauses will guarantee that no two incompatible candidates
are chosen.
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Figure 7.5: A cycle with six vertices. The part �2, 4� is colored violet (darker) and �4, 2�
is colored yellow (brighter).

We start with some notation for this section. For the sake of readability, we
assume that the graph is

G ..= (V ..= {0} ∪ [n− 1], E ..= {{i− 1, i} | i ∈ [n− 1]} ∪ {{0, n− 1}}).

Furthermore, if we refer to some agent j with j /∈ {0} ∪ [n− 1], then we mean
agent j′ with j′ ≡ j (mod n). For each object xi, we denote by A(xi) the agent
that initially holds xi, that is, σ−1

0 (xi). We assume without loss of generality
that I ..= 0 and refer to the target object as x and define k ..= A(x).

We use �i, j� to denote the set {i, i+ 1 mod n, . . . , j mod n}, that is,

�i, j� ..=
{︄

[i, j], if j ≥ i, and
[0, j] ∪ [i, n− 1] if j < i.

See Figure 7.5 for an example. Finally, we say that an object xi moves clockwise
if it is swapped from some agent i to agent i+ 1. Analogously, we say that xi
moves counter-clockwise if it swapped from some agent i to agent i − 1. By
Observation 7.1, an object moving clockwise (or counter-clockwise) once, will
only move clockwise (or counter-clockwise) in the future.

Observation 7.7. Let ϕ be a sequence of swaps and let xi be an object. If xi
is swapped during ϕ, then it either only moves clockwise or only moves counter-
clockwise during ϕ.
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Note that the object x has to move clockwise or counter-clockwise in a solution.
Our main algorithm just tries out both possibilities one after another and since
these two cases work analogously, we will only present the case where x moves
counter-clockwise here. Since x moves counter-clockwise and is initially held by
agent k ..= A(x), if there is a solution (a sequence of swaps such that agent I
obtains object x), then x is swapped over each edge in {{i − 1, i} | i ∈ [k]}.
Moreover, we can assume that x is swapped over the edge {0, 1} in the last
swap of the solution as all swaps afterwards are irrelevant. Our algorithm
guesses the object z with which object x is swapped in this last swap. Note
that there are two possibilities for x moving clockwise or counter-clockwise and
at most n possibilities for choosing z. Hence, there are O(n) iterations in our
main algorithm and we can assume that x moves counter-clockwise and that
object z is known. We will use this assumption throughout this section.

Assumption 7.8. Let I = (V,X,P, σ0, G, 0, x) with

G ..= (V ..= {0} ∪ [n− 1], E ..= {{i− 1, i} | i ∈ [n− 1]} ∪ {1, n− 1}))

be an instance of Reachable Object on cycles. If x is reachable for agent 0,
then there is a solution in which x moves counter-clockwise and in the last swap
of the solution it is swapped with object z over the edge {0, 1}.

We continue with an analysis of how often objects can be swapped in a cycle.
To this end, we first show a helpful lemma which states for two objects xi and xj
that are swapped in a sequence of swaps which other objects are swapped with
either of them before xi and xj can be swapped.

Lemma 7.9. Let xh, xi, and xj be three distinct objects. Let ϕ = (σ0, σ1, . . . , σt)
be a sequence of swaps such that xi and xj are swapped between σt−1 and σt
and xi ̸= x moves clockwise in ϕ. Let r < t − 1 such that xi and xj are not
swapped between σs−1 and σs for any s ∈ [r + 1, t − 1]. Then, object xh is
swapped with either xi or xj between σs−1 and σs for some s ∈ [r + 1, t− 1] if
and only if σ−1

r (xh) ∈ Jσ−1
r (xi), σ−1

r (xj)K.

Proof. Note that since xi and xj are swapped in ϕ and since xi moves clockwise,
it holds that xj moves counter-clockwise in ϕ. We prove the claim by induction
over |Jσ−1

r (xi), σ−1
r (xj)K|. If |Jσ−1

r (xi), σ−1
r (xj)K| = 2, then xi and xj can only

be swapped over the edge {σ−1
r (xi), σ−1

r (xj)} and hence no other object can be
swapped with either object before xi and xj are swapped. Since no object xh
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other than xi and xj fulfills σ−1
r (xh) ∈ Jσ−1

r (xi), σ−1
r (xj)K, this concludes the

base case.
Now assume the statement holds for all objects xi′ and xj′ such that xi′ moves

clockwise, xj′ moves counter-clockwise, and |JA(xi′),A(xj′)K| < |JA(xi),A(xj)K|.
Take any object xℓ such that A(xℓ) ∈ JA(xi),A(xj)K \ {xi, xj}. We assume
without loss of generality that xℓ moves counter-clockwise in ϕ as the other
case is analogous. Note that xi and xℓ are swapped in ϕ as otherwise xℓ would
always stay “between” xi and xj and hence xi and xj could not be swapped
in ϕ. By induction hypothesis, if xi and xℓ are swapped between σs−1 and σs for
some s ≥ t, then xi and xj are not swapped between σt−1 and σt, a contradiction.
Hence xi and xℓ are swapped before xi and xj are swapped, that is, there is
some s ∈ [r + 1, t− 1] such that xi and xh are swapped between σs−1 and σs.

It remains to show that no object xh with A(xh) /∈ JA(xi),A(xj)K, is swapped
with xi or xj before xi and xj are swapped. This follows from a simple
counting argument. There are |Jσ−1

r (xi), σ−1
r (xj)K| − 1 edges between σ−1

r (xi)
and σ−1

r (xj). The two objects xi and xj are swapped over one of these edges.
Over each of the other edges exactly one of the objects is swapped before xi
and xj are swapped. Thus, |Jσ−1

r (xi), σ−1
r (xj)K| − 2 objects are swapped with

either xi or xj before xi and xj are swapped. As shown above, each agent xh
with A(xh) ∈ Jσ−1

r (xi), σ−1
r (xj)K and xh /∈ {xi, xj} is swapped with xi or xj

before xi and xj are swapped. The counting argument is then completed by
observing that there are |Jσ−1

r (xi), σ−1
r (xj)K| − 2 such objects.

For an example of Lemma 7.9, recall Figure 7.4. Therein, object x3 moves
clockwise, object x0 moves counter-clockwise, and objects x4 and x5 are initially
held by agents in J3, 0K. Lemma 7.9 states that objects x4 and x5 are swapped
with x0 or x3 before objects x0 and x3 are swapped and objects x1 and x2 are
not swapped with x0 or x3 before x0 and x3 are swapped. Lemma 7.9 has three
interesting implications. First, it implies that each pair of objects is swapped
at most twice. Note that the example in Figure 7.4 shows that two objects
(x3 and x4 in the example) can be swapped twice in a cycle. To verify that
each pair of objects is swapped at most twice, consider two objects xi and xj
and the assignment σr after xi and xj are swapped for the first time over an
edge {ℓ, ℓ+ 1 mod n}. Lemma 7.9 then states that each object xh (except for xi
and xj) have to be swapped with either xi or xj before xi and xj can be swapped
for a second time. Thus, each agent has to hold xi or xj between the two swaps
of xi and xj as for each of the n− 2 objects that are swapped with xi or xj a
new agent holds xi or xj . Since after the second swap of xi and xj agent A(xi)
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has held xi and xj , it will by Assumption 7.8 and Observation 7.1 not accept
either of the objects again, so xi and xj cannot be swapped thrice in a cycle.

Corollary 7.10. Each pair of objects can be swapped at most twice in a cycle.

The second interesting implication of Lemma 7.9 is that if A(z) ∈ Jk, IK, then
each object xi with A(xi) ∈ Jk,A(z)K except for x and z is not swapped with x
or z before x and z are swapped. Moreover, no such object can be swapped
with another object that is then swapped with x or z. Notice that in this case
agent I holds object z before x and z are swapped and thus x and z are by
Observation 7.1 only swapped once. Hence, an object xi with A(xi) ∈ Jk,A(z)K
does not have to be swapped at all and thus no two objects have to be swapped
over the edge {k, k + 1}. We can therefore remove the edge from the cycle
to obtain a path and use the algorithm by Huang and Xiao [HX20]. For the
remainder of this section, we will therefore assume the following.

Assumption 7.11. A(z) ∈ [I + 1, k]

The third implication of Lemma 7.9 concerns how often an object is swapped
with x or z. Note that each object moving clockwise is swapped with x (as all
objects are swapped with x or z between the first and second swap of x and z
and an object moving clockwise can never be swapped with z). Analogously,
each object moving counter-clockwise is swapped with z. Thus, Lemma 7.9
implies the following.

Observation 7.12. Each object xi with A(xi) ∈ JA(z), kK is swapped exactly
twice with x or z and each object xj with A(xj) /∈ JA(z), kK is swapped exactly
once with x or z.

Note that for each edge e ∈ {{i− 1, i} | i ∈ [k]}, there is exactly one object
that is swapped with x over e and this object moves clockwise. Moreover, by
Observation 7.12 each object moving clockwise is swapped with x over one
of these edges. Thus, we can characterize a solution by choosing for each
edge e ∈ {{i − 1, i} | i ∈ [k]} one object to move clockwise and be swapped
with x over e.

7.3.1 Limited Number of Candidates
In this subsection, we will show that once object z is fixed, there are for each
edge e ∈ {{i− 1, i} | i ∈ [k]} at most two candidate objects c1, c2 such that x is
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swapped with either c1 or c2 over e. We start with a series of helpful lemmata
that will be used often throughout this subsection. The first lemma states that
for each pair (xi, xj) of objects and each agent ℓ, the edge where xi and xj are
swapped for the first time is the same in all sequences of swaps where xi moves
clockwise, xj moves counter-clockwise, and agent ℓ holds both xi and xj during
the sequence of swaps.

Lemma 7.13. Let xi and xj be two objects and let ℓ ∈ JA(xi),A(xj)K be an
agent. There is an edge e such that for each sequence of swaps ϕ such that xi
moves clockwise in ϕ, object xj moves counter-clockwise in ϕ, and agent ℓ holds
both xi and xj during ϕ, it holds that xi and xj are swapped over e during ϕ.
Deciding whether such an edge exists and computing it if it exists takes O(n)
time after an O(n2)-time preprocessing step.

Proof. We distinguish between the two cases xj ≻ℓ xi and xi ≻ℓ xj . Since
both cases are completely analogous, we only show the proof for the former
case. Note that agent ℓ must then first hold object xi before it holds object xj
as it would otherwise not accept object xi after already holding xj or an
object it prefers over xj . Thus, objects xi and xj must be swapped between
two agents in Jℓ,A(xj)K. Now iteratively consider the preference list of an
agent ℓ′ ∈ Jℓ,A(xj)K (starting with agent ℓ+1 mod n). If agent ℓ′ also prefers xj
over xi, then xi and xj cannot be swapped over the edge {ℓ′ − 1, ℓ′}. Hence,
agent ℓ′ must also hold object xi before it holds xj and we can continue the
argumentation until we either find an agent who prefers xi over xj or we
reach agent A(xj) and A(xj) also prefers xj over xi. If we reach agent A(xj)
and A(xj) also prefers xj over xi, then all agents in Jℓ,A(xj)K prefer xj over xi
and hence these two objects cannot be swapped between two such agents. If
agent ℓ′ prefers xi over xj , then these two objects can only be swapped over the
edge {ℓ′ − 1, ℓ′} as shown next. Assume towards a contradiction that xi and xj
were swapped over another edge {h − 1, h} where h ∈ Jℓ′ + 1,A(xj)K. Then,
agent ℓ′ has to pass object xi towards agent h before agent ℓ′ holds object xj .
This means, however, that agent ℓ′ will not accept object xj as it prefers xi
over xj . Thus, object xi cannot be passed to agent ℓ, a contradiction.

It remains to analyze the running time of the algorithm. We first describe a
simple preprocessing step that eases the computation of deciding which of two
objects an agent prefers. We define pos(i, xj) as the position of object xj in the
preference list of agent i. Note that pos can be precomputed once in O(n2) time
by iterating over the preference list of each agent. Once the preprocessing is done,
we have to (in the worst case) check for each agent ℓ′ ∈ Jℓ,A(xj)K whether they
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prefer xi over xj or not. Since this is only a check whether pos(ℓ′, xi) < pos(ℓ′, xj)
or not, the whole procedure takes O(n) time in total after preprocessing. Note
that the preprocessing can be done once and then be reused for each application
of Lemma 7.13.

Based on Lemma 7.13, we define the set of edges where two objects xi and xj
can be swapped.

Definition 7.1. Let xi and xj be two objects and let a, b be two agents such
that a ∈ JA(xi),A(xj)K and b /∈ JA(xi),A(xj)K. The first edge fea(xi, xj) is
the edge computed by Lemma 7.13 for xi, xj , and a. If this edge does not
exist, then fea(xi, xj) ..= ⊥. Let {s, s+ 1 mod n} ..= feA(xi)(xi, xj). The second
edge seb(xi, xj) is the edge computed by Lemma 7.13 for xi, xj , and b after xi
and xj have been swapped over {s, s+ 1 mod n}, that is, when agent s initially
holds xj and agent s+ 1 mod n initially holds object xi. If this edge does not
exist, then seb(xi, xj) ..= ⊥.

The second lemma states that an object can never “overtake” another object
that moves in the same direction in the cycle.

Lemma 7.14. Let xh, xi, and xj be three objects such that A(xi) ∈ Jxh, xjK.
Let ϕ = (σ0, σ1, . . . , σs) be a sequence of swaps in which the three objects move in
the same direction. For each p ∈ [s], it holds that σ−1

p (xi) ∈ Jσ−1
p (xh), σ−1

p (xj)K.

Proof. We assume that xh, xi, and xj are distinct as otherwise the state-
ment trivially holds. Assume towards a contradiction that there is some
minimal p ∈ [s] such that σ−1

p (xi) /∈ Jσ−1
p (xh), σ−1

p (xj)K. Since p is min-
imal, it holds that σ−1

p−1(xi) ∈ Jσ−1
p−1(xh), σ−1

p−1(xj)K. We now consider the
swap {(a, xc), (b, xd)} between σp−1 and σp. Since xc and xd are swapped in ϕ
they move in different directions. Let without loss of generality xp be the object
that moves in the same direction as xi, xj , and xh. If {xi, xj , xh} ∩ {xc} = ∅,
then

σ−1
p (xj) = σ−1

p−1(xj) ∈ Jσ−1
p−1(xh), σ−1

p−1(xj)K = Jσ−1
p−1(xh), σ−1

p−1(xj)K,

a contradiction. Hence, xc ∈ {xi, xj , xh}. We distinguish between the two
cases xc = xj and xc ∈ {xi, xh}. If xc = xj , then

Jσ−1
p−1(xh), σ−1

p−1(xj)K = Jσ−1
p−1(xh), σ−1

p−1(xj)K.
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Since xi, xj and xh are distinct objects, it holds that

σ−1
p−1(xj) ∈ Jσ−1

p−1(xh), σ−1
p−1(xj)K \ {σ−1

p−1(xh), σ−1
p−1(xj)}.

Thus, since each object can only move one position in each swap, it holds that

σ−1
p (xj) ∈ Jσ−1

p−1(xh), σ−1
p−1(xj)K = Jσ−1

p (xh), σ−1
p (xj)K,

which is again a contradiction. Finally, if xc ∈ {xi, xh}, then note that xd ̸= xi
as they move in different directions. Hence,

σ−1
p (xj) = σ−1

p−1(xj) ∈ Jσ−1
p−1(xh), σ−1

p−1(xj)K.
Again, since the three objects are distinct, xj held by an agent

σ−1
p−1(xj) ∈ Jσ−1

p−1(xh), σ−1
p−1(xj)K \ {σ−1

p−1(xh), σ−1
p−1(xj)}

and since in each step this interval can shrink by at most one, it follows that

σ−1
p (xj) = σ−1

p−1(xj) ∈ Jσ−1
p (xh), σ−1

p (xj)K,
a contradiction.

Finally, the third lemma states that there is a constant distance c such that
for each object xi which is swapped twice with x, the distance between the two
edges where xi is swapped with x have distance c in the input graph.
Lemma 7.15. Let ϕ be a sequence of swaps such that agent I swaps z for x
in the last swap of ϕ. Let xi be an object that moves clockwise in ϕ such
that A(xi) ∈ JA(x),A(z)K. Then, seI(x1, x) ̸= ⊥ ̸= seI(z, x). Let

{s1, s1 + 1} ..= fek(x1, x), {t1, t1 + 1} ..= seI(x1, x),
{s2, s2 + 1} ..= fek(z, x), and {t2, t2 + 1} ..= seI(z, x).

Then, it holds that s1 − t1 = s2 − t2.
Proof. This lemma almost directly follows from Lemmata 7.9 and 7.14. Assume
towards a contradiction that there is some xi that moves clockwise and swapped
twice with x in ϕ such that s1 − t1 ̸= s2 − t2. Consider the set Y of objects xj
that move clockwise in ϕ and such that A(xj) ∈ JA(z),A(xi)K (excluding xi
and z). By Lemma 7.9, s1− t1 = |Y |. Now consider the assignment σr in ϕ after
the first swap of xi and x and the set Y ′ of objects xj that move clockwise in ϕ
with σ−1

r (xj) ∈ Jσ−1
r (z), σ−1

r (xi)K. By Lemma 7.9 it holds that s2 − t2 = |Y ′|
and by Lemma 7.14 that Y = Y ′. Thus, s1 − t1 = |Y | = |Y ′| = s2 − t2, a
contradiction.
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We continue with the central definition of this subsection: the type of an
object. The type of an object is represented by the index of the edge where the
object can possibly be swapped with x for the first time. The idea behind types
is the following. We will develop a 2-SAT program to determine which objects
move clockwise in a solution. We will show that there are at most two objects
of each type an, roughly speaking, we will introduce a variable for each type
that represents which of the two objects of a type moves clockwise. We will use
Lemma 7.13 to define the type of an object xj . It only remains to find an agent
which holds each of xj and x at some point in time. If A(xj) ∈ [I, k], then ob-
ject x has to pass agent A(xj) and hence we can use this agent. If A(xj) /∈ [I, k],
then I ∈ JA(xj), kK and hence agent I has to first hold object xj before it can
receive object z and hence we can use agent I in Lemma 7.13.

Definition 7.2. The index of an edge {t − 1, t} with t ∈ [k] is t. For each
object xj with A(xj) ∈ [I, k], the type of y is the index of feA(xj)(xj , x). For
each object xj with A(xj) /∈ [I, k], the type of y is the index of feI(xj , x). If
the respective value is ⊥, then the type of xj is 0. The candidate set Cα for α
contains all objects of type α.

Figure 7.6 shows an example of types. We continue by showing that exactly
one object of each type moves clockwise in any solution. We use tz to denote
the type of z. Note that x and z have to be swapped for the first time over the
edge {tz − 1, tz}. By Lemma 7.9, for each edge

{tz, tz + 1}, {tz + 1, tz + 2}, . . . , {k − 1, k}

one object xi with A(xi) ∈ JA(z), kK has to move clockwise and be swapped
with x over the respective edge. By Definition 7.2, these objects have types

tz, tz + 1, . . . , k

and, by Observation 7.12 and Lemma 7.15, these k− tz + 1 objects are swapped
a second time with x over the edges {0, 1}, {1, 2}, . . . , {k− tz, k− tz + 1}. Hence
for each edge {k− tz + 1, k− tz + 2}, {k− tz + 2, k− tz + 3}, . . . , {tz − 2, tz − 1}
there is an object that is swapped once with x. Since the number of such objects
is (tz−1)−(k−tz+1) = 2tz−k−2, there are (2tz − k − 2) + (k − tz + 1) = tz − 1
objects that move clockwise in total in each solution where x moves counter-
clockwise and z moves clockwise. By definition of types, these have to have
types α ∈ [k − tz + 1, k].
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Figure 7.6: An example for types. The objects a, b, c, d, e, and x are placed next
to the agents that initially hold them. The numbers next to edges between I and k
depict the index of the respective edge. Objects c and e can never be swapped with x
before x reaches agent I. Thus they both have type 0. The type of object b is 2 as
objects b and x can only be swapped over the edge with index 2 for the first time if x
moves counter-clockwise. The type of a and d is 1 since if x moves counter-clockwise
and is swapped with either a or d over a different edge than {0, 1}, then agent 1 holds
the respective object before it holds x. Since agent 1 prefers either object over object x,
it would not accept x and hence there is no solution in which a or d is swapped with x
over a different edge than {0, 1}.

Observation 7.16. Let ϕ ..= (σ0, σ1, . . . , σt) be a sequence of swaps which
satisfies Assumptions 7.8 and 7.11 and such that σt(I) = x.

For each type α ∈ [k − tz + 1, k] there is exactly one object xα of type α that
moves clockwise in ϕ. All objects whose type is not in [k−tz+1, k] move counter-
clockwise in ϕ. For α ∈ [k − tz + 1, tz − 1], it holds that A(xα) /∈ JA(z), kK.
For α ∈ [tz, k], it holds that A(xα) ∈ JA(z), kK.

Using Observation 7.16, we can now formalize selections. Selections are an
equivalent way of think about Reachable Object on cycles. They characterize
which objects move clockwise and which objects move counter-clockwise.

Definition 7.3. Let λ ⊆ [k]. A set ι of objects is a selection for λ if it contains
exactly one object of each type in λ and no other objects. A set ι is a selection
if it is a selection for [k − tz + 1, k].

We will show in Subsection 7.3.2 how to test whether a given selection leads
to a solution, that is, a sequence of swaps such that agent I obtains object x.
In the remainder of this subsection, we focus on eliminating possible selections.
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Observe that if the type of an object is 0, then it cannot be swapped with x
and hence it has to be moved counter-clockwise. We will slightly misuse the
definition of types and relabel the type of any object xj to 0 if we know for some
reason that xj has to move counter-clockwise. Lemma 7.15 states a first rule
that can be used to relabel the type of an object to 0. Hence, we assume that
each object of type α ̸= 0 fulfills the conditions of Lemma 7.15. We conclude
this subsection with a proposition that identifies at most two “relevant” objects
of each type and allows us to relabel the type of all other objects of this type
to 0 (because they can not be moved clockwise in a solution). To this end, we
define the subtypes of an object. Roughly speaking, the subtype of an object xi
encodes whether xi is “closer” (counted in clockwise steps) to z than the other
object that can be considered or whether xi is “further away”. We distinguish
between objects that are possibly swapped once with x and objects that are
possibly swapped twice with x. The main idea is that if xi is not selected (it
moves counter-clockwise), then it has to be swapped with z. Thus we can use
Lemma 7.13 to compute the edge where xi and z can be swapped. We can then
check whether another object of the same type α as xi has to move clockwise in
order for xi to reach the respective edge where xi and z can be swapped. We say
that xi has subtype f if another object of type α between z and xi has to move
clockwise in order for xi to reach the specified edge. Otherwise, we say that xi
has subtype c. This characteristic is captured by the following definition.

Definition 7.4. Let xi be an object of type α ∈ [k− tz + 1, tz− 1], let xj be an
object of type β ∈ [tz + 1, k], and let tz be the type of z. If A(xi) ∈ [I,A(z)− 1],
then let e ..= feI(z, xi) and if A(xi) ∈ [k, n − 1], then let e ..= feA(xi)(z, xi).
If {a− 1, a} ..= e ̸= ⊥, then h ..= |Ja,A(y)K| − 1 is the distance between xi and z.
If α > h, then the subtype of xi is c (for closer) and if α ≤ h, then the subtype
of xi is f (for further).

Let e1 ..= feA(xj)(z, xj) and e2 ..= seI(z, xj). If {b − 1, b} ..= e1 ̸= ⊥
and {c− 1, c} ..= e2 ̸= ⊥, then h ..= |Jb,A(xj)K| − 1 is the distance between xj
and z and let h′ ..= |Jc, b − 1K| − 1. If α > tz + h and h′ = tz − 2, then the
subtype of xj is c and if α ≤ tz + h1 and h′ = tz − 2, then the subtype of xj is f .

See Figure 7.7 for an illustration of subtypes. If e = ⊥, then xi cannot move
counter-clockwise and hence we can relabel the type of all other objects of type α
to 0. Analogously, if {e1, e2} ∩ {⊥} ̸= ∅, then xj cannot move counter-clockwise
and hence we relabel the type of all other objects of type β to 0.
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Figure 7.7: An example that illustrates the main idea behind Definition 7.4 and Propo-
sition 7.18. Some objects are depicted next to the agents that initially hold them. Let
the type of y be β = 6 and assume that object y moves counter-clockwise. It therefore
has to be swapped with z at some point and since z has to pass agent A(y) to reach
agent I, we can use Lemma 7.13 to compute the edge e ..= feA(y)(z, y) where y and z
swap for the first time. Let e = {12, 13} (the red edge). The distance h computed
in Definition 7.4 is then h ..= |�13, A(y)�| − 1 = |�13, 17�| − 1 = 4 and describes the
number of edges that object y has to pass before it can be swapped with z. Note that
for each type α ≥ tz, there is an object of type α that is swapped with x twice (first
in the violet (bottom right) region between agents tz − 1 and k and, by Lemma 7.15,
a second time in the orange region (top right) between agents I and k − tz + 1). All
of these objects have to be swapped with y and, by Lemma 7.14, this has to be in
the yellow (left) region as z is swapped with y over the red edge and all other objects
have to be swapped with y on consecutive edges. Similarly, the object that is swapped
with y over the edge {15, 16} is swapped with x over the edge {3, 4}, the object that
is swapped with y over the edge {16, 17} is swapped with x over the edge {4, 5}, and
so on. Hence, the object that is swapped with y over the edge {16, 17} (the first edge
of y in counter-clockwise direction) is swapped with x over the edge {h, h + 1} = {4, 5}
(green) and is therefore of type h + 1 = 5. Since β > h, the subtype of y is f and y is
not swapped with an object of type β that is initially held by an agent in �A(z), A(y)�.
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Before we show the main proposition of this section, we prove a lemma that
characterizes the types of all objects an object moving counter-clockwise is
swapped with.

Lemma 7.17. Let xi be an object of type α and let h be the distance between xi
and z. If xi moves counter-clockwise, then

• if h ≤ k− tz, then xi is swapped with an object of each type β ∈ [tz, tz +h]
before xi is swapped with z for the first time, and

• if h > k− tz, then for each type β ∈ [tz, k] ∪ [k − tz + 1, h] it holds that xi
is swapped with an object of type β before xi is swapped with z for the first
time.

Proof. Let xi be an object of type α that moves counter-clockwise. We consider
the two cases A(xi) ∈ [I,A(z)− 1] and A(xi) ∈ [A(z), n− 1].

If A(xi) ∈ [I,A(z)− 1], then note that agent I has to hold object xi before
it can obtain z. Hence, by Lemma 7.13, objects xi and z are swapped over the
edge feI(z, xi). If A(xi) ∈ [A(z), n− 1], then note that agent A(xi) has to hold
object z before agent I can hold object z. Hence, by Lemma 7.13, objects xi
and z are swapped over the edge feA(xi)(z, xi).

If the respective edge where xi and z can swap for the first time exists, then
we denote it by {a− 1, a}. Note that the distance h between xi and z exactly
describes the number of edges in the path between A(xi) and a that xi has to
pass before it can be swapped with z. Note that each object with which xi is
swapped moves clockwise. By Lemmata 7.9 and 7.15, the object that is swapped
with xi over the edge {a, a+ 1} is swapped with x over the edge {tz, tz + 1} and
it therefore has type tz+1. Repeating this argument, the object that is swapped
with xi over the edge {a+ 1, a+ 2} is of type tz + 2 and so on until type k is
reached (after k − tz iterations). Thus, if h ≤ k − tz, then xi is swapped with
an object of each type β ∈ [tz, tz + h]. If h > k − tz, then xi is swapped with
an object of each type β ∈ [tz, k] in the first k − tz iterations. The next type
after k has then to be k − tz + 1 as the object of type k is swapped with x
also over the edge {k − tz − 2, k − tz − 1}. Thus, if h > k − tz, then xi is also
swapped with an object of each type β ∈ [k − tz + 1, h].

We conclude with the main result of this subsection. This allows us to relabel
the type of all except for two objects of some type α ̸= 0 to 0. If two objects of
type α ̸= 0 remain afterwards, then they have different subtypes.
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Proposition 7.18. Given objects x and z, there is an O(n2)-time preprocessing
that excludes all but at most two objects of each type α ≥ k− tz + 2 as potential
candidates for being swapped with x. Afterwards |Cα| ≤ 2 for all α ∈ [k−tz+1, k].

Proof. Consider a type α ≥ k − tz + 2 and all objects of type α. Compute the
subtype of each of these objects. Exactly one of them is moved clockwise and all
others have to be swapped with z at some point. Let xi be an object of type α.
We now consider the two cases α ∈ [k−tz+1, tz−1] and α ∈ [tz+1, k]. We start
with the case where α ∈ [k−tz+1, tz]. Note that in this case if A(xi) ∈ JA(z), kK
and xi moves clockwise, then, by Lemma 7.9, xi is swapped with x before x
and z are swapped. Hence, xi cannot be swapped with x for the first time
over the edge {α− 1, α}. Thus, xi cannot move clockwise and its type can be
relabeled to 0. We therefore assume that A(xi) /∈ JA(z), kK. We consider the two
cases A(xi) ∈ [I,A(z)− 1] and A(xi) ∈ [k, n− 1]. If A(xi) ∈ [I,A(z)− 1] and xi
moves counter-clockwise, then note that agent I has to hold object xi before it
can obtain x. Hence, by Lemma 7.13, objects xi and z are swapped over the
edge feI(z, xi). If A(xi) ∈ [k, n − 1], then note that agent A(xi) has to hold
object z before agent I can hold object z. Hence, by Lemma 7.13, objects xi
and z are swapped over the edge feA(xi)(z, xi). Note that if the respective edge
does not exist (the respective value is ⊥), then xi cannot move counter-clockwise
and thus all other objects of type α have to move counter-clockwise and we can
therefore relabel their type to 0. Note further that there is no solution if such
an edge does not exist for multiple objects of the same type.

If A(xi) ∈ [tz + 1, k] and xi moves clockwise, then note that A(xi) ∈ JA(z), kK
or object xi cannot be swapped twice with x before x and z are swapped
twice. Hence, A(xi) holds z during a solution and we can use Lemma 7.13 to
compute the edge feA(xi)(z, xi) where xi and z are swapped over for the first
time. Again, if the respective edge does not exist (the respective value is ⊥),
then xi cannot move counter-clockwise and thus all other objects of type α have
to move counter-clockwise and we can therefore relabel their type to 0. Moreover,
if xi and z have to be swapped a second time over the edge e′ ..= seI(z, xj).
If {b−1, b} ..= e ̸= ⊥ and {c−1, c} ..= e′ ̸= ⊥, then let h′ ..= |Jc, b−1K|−1. Note
that if h ̸= tz−1, then xi and z cannot be swapped over {b−1, b} and {c−1, c}
as there are, by Observation 7.16, exactly tz − 1 objects that move clockwise in
any solution. Hence, in this case xi has to move clockwise and we can relabel
the type of all other objects to 0.

By Lemma 7.17, object xi is swapped with an object of type α if and only
if h ≥ α, that is, if the subtype of xi is f .
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We now show that there are at most two candidates for each type α. To this
end, we iterate over all agents, starting with A(z) and iterating clockwise. If the
object that is initially held by the agent is of type α, then we add its subtype
to the end of an initially empty sequence. We then distinguish whether the
sequence is sorted, that is, it is (c, c, . . . , c, f, f, . . . , f ), or not. If the sequence
is not sorted, then for each object xi of type α, there exists an object of type α
and subtype f that starts in JA(z),A(xi)K or an object of type α and subtype c
that starts in JA(xi),A(z)K. Thus, if xi moves clockwise, then the number of
counter-clockwise steps of some other object of type α does not match the
number of swaps needed to reach the edge where the objects can be swapped
with z. Hence, no object of type α can be moved clockwise and therefore there
is no solution.

Now consider the case where the objects are sorted by their subtype. By
the same argument as above there are only two possible objects of type α that
can possibly be moved clockwise: The “last” object of subtype c and the “first”
object of subtype f . We can therefore set the type of all other objects of type α
to 0.

It remains to analyze the running time. Let nα be the number of objects of
type α. Since the subtype for each object of type α can be computed in O(n)
time, we obtain that the described preprocessing takes O(nα ·n) time for type α.
After having computed the subtype of each object of type α, we iterate over
all these objects and find in O(n) time the two specified objects or determine
that the objects are not ordered by their subtype. Hence, the overall running
time is in O(

∑︁
α>tz

(nα · n)). Note that each object (except for x) has exactly
one type and hence

∑︁
α>tz

nα < n. Thus, the overall running time is bounded
by O(

∑︁
α>tz

(nα · n)) ⊆ O(n2).

Proposition 7.18 shows that there are at most two objects of each type. In
the following, we will partition types into blocks where we will observe that
for each block there are at most two possible choices of which objects of the
respective types to move clockwise. These choices will then be used to develop
a 2-SAT program. Note that the proof of Proposition 7.18 also states that if
there are two objects of some type α ̸= 0, then one of them has subtype c and
one has subtype f . Hence, we can uniquely identify any object xi which does
not have type 0 by its type-subtype combination. For the sake of readability, we
will denote the unique object of type α and subtype c by αc. Analogously, βf is
the unique object of type β and subtype f . If an object xi is the only object of
some type α ̸= 0, then we say that αc = αf = xi.
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7.3.2 Compatibility of Solutions
So far, we have shown how to compute a set of at most two candidates to be
swapped with x over each edge which x has to pass. Recall that the main
idea of our algorithm for Reachable Object on cycles is as follows. We first
partition the edges which x has to pass such that

1. for each part of the partition there are at most two possible choices for
selecting a candidate for all edges in the respective part and

2. candidates for two different parts are either incompatible, that is, there is
no solution for the overall problem that uses the respective candidates, or
they can be combined independently of the choices of candidates for other
parts.

We then develop a 2-SAT program with a variable for each part of the described
partition and use it to compute a set of pairwise compatible candidates for each
edge. We next show how to partition types (these represent all edges that x
has to pass) such that there are only two possible selections for all types in one
part of the partition (we will call those parts blocks). Afterwards, we prove that
selections for different blocks can be picked almost independently such that a
set of pairwise compatible selections for each block can be computed by a 2-SAT
program.

Before we provide the formal definition of blocks, we first focus on objects
of type 0 and show that no object of type 0 can initially be held by an agent
“between” the two agents that initially hold the two objects of some type α ≠ 0.
Note that Proposition 7.18 states that there are at most two objects of type α
(one of subtype c and one of subtype f).
Lemma 7.19. For each object xh of type 0 and each type α ̸= 0, if there are
two objects xi and xj of type α ̸= 0, then both of them are initially held by
agents in JA(xh),A(z)K, both of them initially start in JA(z),A(xh)K, or the
type of one of these two objects can be relabeled to 0.
Proof. Assume that there is an object xh of type 0 such that there are two
objects xi and xj such that A(xi) ∈ JA(xh),A(z)K, A(xj) ∈ JA(z),A(xh)K, and
both xi and xh have type α ≠ 0. Let d be the distance between A(xh) and A(z).
By Lemma 7.17, we can compute whether xi swaps with an object of type α
before it is swapped with z. If so, then xi cannot move clockwise and hence its
type can be relabeled to 0. If not, then xj cannot move clockwise and hence its
type can be relabeled to 0.

170



· · ·
z2c3c2f4c3f4f05c5f

· · ·

Figure 7.8: An example of blocks. Only a subpath of the input cycle with the objects
initially held by the agents is depicted. The object 0 represents an object of type 0.
The blocks in this example are {1}, {2, 3, 4}, and {5}. The boxes indicate all objects
of types corresponding to each block. Note that 5c and 5f are adjacent and hence {5}
is a block as blocks are minimal. Note that {2, 3} is not a block as 4c is initially held
by an agent in JA(2c), A(3f )K. Since z is the only object of type 1, it always holds
that {1} is a block.

We assume that Lemma 7.19 has been exhaustively applied to relabel the
type of objects to 0. This will help us to define blocks. Intuitively, blocks are
sets of consecutive types α, α+ 1, . . . , β such that all objects of those types start
on a (connected) subpath of the input graph.

Definition 7.5. A block is a minimal subset B ⊆ [k − tz + 1, k] of types such
that there are two agents a and b and all objects whose type is in B are initially
held by agents in Ja, bK and all objects that are initially held by agents in Ja, bK
have a type in B.

Figure 7.8 depicts an example of blocks. Based on blocks we can state a new
rule to relabel the type of an object to 0.

Lemma 7.20. Let A = [α, β] be a block and let γ ∈ [α, β] be a type. If for
some δ ∈ [γ + 1, β] it holds that A(δc) ∈ JA(z),A(γc)K, then there is no solution
in which δc moves clockwise. If A(ϵf ) ∈ JA(z),A(γf )K for some ϵ ∈ [α, γ − 1],
then there is no solution in which γf moves clockwise.

Proof. First, assume towards a contradiction that A(δc) ∈ JA(z),A(γc)K and
that there is a solution in which δc moves clockwise. Note that by Proposi-
tion 7.18 and the definition of subtypes, it holds that A(ηc) ∈ JA(z),A(ηf )K
for each η ̸= 0. Hence, there is no object of type γ that is initially held by
an agent in JA(z),A(δc)K. Consider the solution where δc moves clockwise up
to the assignment σr after the swap of δc and x over the edge {δ − 1, δ}. By
Lemma 7.9, no object of type γ is held by an agent in Jσ−1

r (z), σ−1
r (x)K. Thus, x

cannot be swapped over the edge {γ − 1, γ}, a contradiction to the assumption
that we considered a solution.

Second, assume towards a contradiction that A(ϵf ) ∈ JA(z),A(γf )K and
there is a solution in which γf moves clockwise. Since A(ϵc) ∈ JA(z),A(ϵf )K,
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all objects of type ϵ are initially held by agents in JA(z),A(γf )K. Consider
the solution where γf moves clockwise and the assignment after γf and x are
swapped over the edge {γ − 1, γ}. By Lemma 7.9 object x was not swapped
with any object of type ϵ before it was swapped with γf . Hence, x cannot have
passed the edge {ϵ− 1, ϵ}, a contradiction to Assumption 7.8.

We henceforth assume that the type of objects satisfying Lemma 7.20 is
relabeled to 0. We will show that blocks are the partitions we are looking
for, that is, for each block A there are only two possible selections for A and
selections for different blocks can be chosen almost independently. We start
with a lemma that states that blocks define a partition of types.

Lemma 7.21. Each type η ≥ k − tz + 2 is contained in exactly one block and
all blocks can be computed in linear time.

Proof. We first show that A(z) and A(x) divide the types into two intervals.
Observe that all objects of type α ∈ [tz + 1, k] have to start in [A(z),A(x)] and
all objects of type α ∈ [k − tz + 2, tz − 1] have to be initially hold by an agent
in JA(x),A(z)K. Since z is the only object of type tz, the interval [tz, tz] is a
block and no other block can contain the type tz. We now show that blocks are a
partition of types that can be computed in linear time. We first focus on all other
types starting with types in [tz +1, k]. Consider the object (tz +1)c. This has to
be the initially “closest” non-type-0 object to agent A(z). If (tz+1)c = (tz+1)f ,
then [tz + 1, tz + 1] is a block. Otherwise, we know by Lemma 7.20 that the
next object (in clockwise steps) has to be either (tz + 2)c or (tz + 1)f . If the
object ℓf is found, where ℓ is the largest type that is so far considered in the
block, then the block [tz + 1, ℓ] is found. Notice that ℓ ≤ k and if a block is
found, then we can redo the whole process starting with the object (ℓ + 1)c
until the block [ℓ′, k] is found for some ℓ′. Starting then from agent k, we can
search for object (k − tz + 2)c and repeat the whole argumentation until a
block [ℓ′, tz − 1] is found. At this point, each type is contained in exactly one
block. Since we need only a constant amount of computation time for each
object, all blocks can be computed in linear time.

In order to prove that there are only two possible selections for each block
that can lead to a solution, we first show an intermediate lemma.

Lemma 7.22. Let A = [α, β] be a block and let ιA be a selection for A.
Let γ ∈ A be a type. If γf ∈ ιA, then δf ∈ ιA for each δ ∈ [γ, β] or ιA cannot
be part of a selection that corresponds to a solution in which x reaches I.
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Proof. We prove the statement by induction on γ. Note that if γ = β, then the
statement trivially holds. Now assume that γ < β, γf ∈ ιA, and if (γ+ 1)f ∈ ιA,
then δf ∈ ιA for each δ ∈ [γ + 1, β]. By Lemma 7.20, it holds that (γ + 1)c is
initially hold by an agent in JA(αc),A(γf )K and (γ + 1)c cannot move clockwise
since γf moves clockwise and is swapped with x over the edge {γ − 1, γ}. This
holds true as if (γ + 1)c moved clockwise, then it holds by Lemma 7.9 that x
is swapped with γf before it is swapped with (γ + 1)c. Hence, x cannot be
swapped with (γ + 1)c over the edge {γ, γ + 1} which is the type of (γ + 1)f .
Thus, object (γ + 1)c moves counter-clockwise and (γ + 1)f moves clockwise.
By induction hypothesis, δf ∈ ιA for each δ ∈ [γ, β].

Based on Lemmata 7.20 and 7.22, we can now prove that there are only two
possible selections for each block that can lead to a solution.

Lemma 7.23. Let A = [α, β] be a block. There are at most two selections
for A that can be part of a selection that corresponds to a solution in which x
reaches I. These selections can be computed in O(n · |A|) time.

Proof. We will construct two selections ι1 and ι2 for A that can be part of
a selection that corresponds to a solution in which x reaches I. We start
with αc ∈ ι1 and αf ∈ ι2. Note that by Lemma 7.22 ι2 = {αf , (α+ 1)f , . . . , βf}.
Thus it remains to show that ι1 is unique.

If αc moves clockwise, then αf has to move counter-clockwise. Using
Lemma 7.17, we can compute the number h of objects xi that are initially held
by A(xi) ∈ JA(αc),A(αf )K, that have types α+1, α+2, . . . , α+h, and that have
to move clockwise. We now switch to an arbitrary type γ as we will use the state-
ment iteratively (starting with γ = α). If γ = β, then ι1 = {αc, (α+1)c, . . . , βc}.
We therefore assume that γ < β, that γc moves clockwise, and that h objects xi
initially held by A(xi) ∈ JA(γc),A(γf )K and of types γ + 1, γ + 2, . . . , γ + h
move clockwise. We consider the two cases h = 0 and h > 0. If h = 0, then
note that, by Lemma 7.20, A((γ + 1)c) ∈ JA(γc),A(γf )K. Hence, (γ+ 1)c moves
counter-clockwise and (γ + 1)f moves clockwise. By Lemma 7.22, it holds for
each δ ∈ [γ + 1, β] that δf ∈ ιA and thus

ι1 = {αc, (α+ 1)c, . . . , γc, (γ + 1)f , (γ + 2)f , . . . , βf}.

If h > 0, then we will show that (γ + 1)c moves clockwise and hence we can
repeat the argument. Assume towards a contradiction that (γ + 1)c moves
counter-clockwise. Then (γ+1)f moves clockwise and, by Lemma 7.22, so does δf
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for each δ ∈ [γ + 1, β]. Hence, no object δc moves clockwise for δ ∈ [γ + 1, β].
Note that by definition of blocks it holds for each object xi which is initially held
by A(xi) ∈ JA(γc),A(γf )K that xi = δc for some δ ∈ [γ, β] or that xi = ηf for
some η ∈ [α, γ]. If ηf moved clockwise for some η ∈ [α, γ], then, by Lemma 7.22,
object γf also moved clockwise, a contradiction. Thus, if (γ+1)c moves counter-
clockwise, then no object xi initially held by A(xi) ∈ JA(γc),A(γf )K moves
clockwise. Thus, γc and γf cannot be swapped and x cannot reach I.

It remains to analyze the running time. Computing ι2 takes O(n) time.
Computing ι1 takes O(n) time for each γc with γ ∈ [α, β], that is, O(n · |A|) time
in total.

It is finally time to explain how to check whether a selection leads to a
solution, that is, a sequence of swaps such that agent I obtains object x. Note
that once a selection ι is fixed, Observation 7.12 states which objects are
swapped how often with x or z. We assume that no object moves after it is
swapped with x or z for the final time as these swaps are not necessary for x
reaching I. Thus, we can compute the final position of each object and also
the path P ιxi

of agents that hold each object xi during a solution corresponding
to ι. Gourvès et al. [GLW17] observed that once the path Pxi

of each object xi
is fixed, then the order in which objects are swapped is irrelevant as long as
all objects “follow” their respective paths. Thus, there is a unique set of edges
where two objects xi and xj swap in each solution in which the objects in ι
move clockwise and all other objects move counter-clockwise. We denote this
set by eιxi,xj

. An example of eιxi,xj
and Pxi

is given in Figure 7.9. It remains
to show how to compute eιxi,xj

and how to find a selection where each pair of
objects can be swapped at the respective edge. To this end, we show how to
compute eιxi,xj

from partial selections, that is, from selections for some subset λ
of types.

Lemma 7.24. Let xi be an object of type α ∈ [k − tz + 1, k], let xj be an
object of type α ∈ [k − tz + 1, k], and let xh be an object of type 0. Let A
and B be two blocks with α ∈ A and β ∈ B. Given a selection ιA for A, the
set eιxi,xh

is the same for each selection ι ⊇ ιA and can be computed in O(n)
time. Given selections ιA for A and ιB for B, the set eιxi,xj

is the same for each
selection ι ⊇ ιA ∪ ιB and can be computed in O(n) time.

Proof. We start with determining which pairs of objects are not swapped, which
pairs are swapped once and which are swapped twice. Let xp be an object
moving clockwise and let xq be an object moving counter-clockwise. We consider
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Figure 7.9: An example of Reachable Object on cycles. The objects initially held by
agent are depicted outside each vertex. If objects z and c move clockwise (ι = {c, z} is
the selection) and all other objects move counter-clockwise, then objects a and z swap
over the edge {4, 5} as z swaps with objects x and d over the edges {2, 3} and {3, 4},
respectively, and object a swaps with c over the edge {0, 5}. The path Pc for this
solution is (4, 5, 0, 1, 2) as c is initially held by agent 4, moves clockwise, and is swapped
with x over the edge {1, 2}.

the two cases A(xp) ∈ JA(z), kK and A(xp) /∈ JA(z), kK. If A(xp) ∈ JA(z), kK
and A(xq) ∈ JA(xp), kK, then xp and xq are, by Lemma 7.9, swapped once
before x and z are swapped for the first time and once afterwards. Thus,
by Corollary 7.10, they are swapped exactly twice. If A(xp) ∈ JA(z), kK
and A(xq) /∈ JA(xp), kK, then xp and xq are swapped once as z and xq are,
by Observation 7.12, swapped exactly once and we assume that no object moves
after it swapped with x or z for the final time.

If A(xp) /∈ JA(z), kK, then we distinguish between the three cases

A(xq) ∈ JA(z), kK, A(xq) ∈ Jk + 1,A(xp)K, and A(xq) ∈ JA(xp),A(z)K.

In the first case, xq is swapped twice with z and since, by Lemma 7.9, it is not
swapped with xp before it is swapped with z for the first time, it is swapped
with xp once. In the second case, xq is swapped once with z and since, by
Lemma 7.9, it is not swapped with xp before it is swapped with z for the first
time, it is not swapped with xp. In the third case, xq is swapped once with z
and, by Lemma 7.9, it is swapped with xp before it is swapped with z. Thus, in
this case xp and xq are swapped once.

We now show how to compute the set of edges where two objects can be
swapped. Note that it is enough to compute the first edge where two objects can
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be swapped as if two objects xp and xq are swapped twice, then the object moving
counter-clockwise is, by Lemma 7.9, swapped with all objects moving clockwise
before xp and xq are swapped again and there are always tz objects moving
clockwise. By definition of blocks and by Lemma 7.20, each object xa with a type
in A ..= [γ, δ] is initially held by agent A(xa) ∈ JA(γc),A(δf )K. By Lemma 7.19,
it holds for each type µ ∈ [k − tz + 1, k] that A(xh) /∈ JA(µc),A(µf )K and thus
there is some type µ′ such that A(xh) ∈ JA(µ′

f ),A((µ′ +1)c)K. We now compute
the first edge where xi and xh can be swapped if xi moves clockwise. Note
that if xi moves counter-clockwise, then it is not swapped with xh. If α ≤ µ′,
then xh is swapped once with an object of each type in [α, µ′] \ {α} before it is
swapped with xi. Hence {A(xh)− |α− µ′|,A(xh)− |α− µ′|+ 1} ∈ eιxi,xh

is the
first edge where xi and xh can be swapped. If α > µ′, then xh is first swapped
once with an object of each type µ′, µ′ − 1, . . . , k − tz + 1, k, k − 1, . . . , α + 1
before it is swapped with xi. Note that these are tz − |{i | µ′ < i < α}| objects
and therefore in this case {A(xh)− tz +α−µ′− 1,A(xh)− tz +α−µ′} ∈ eιxi,xh

is the first edge where xi and xh can be swapped.
It remains to analyze the possible edges for xi and xj . We assume without

loss of generality that xi moves clockwise and xj moves counter-clockwise,
that is, xi ∈ ιA and xj /∈ ιB. We distinguish between the two cases A = B
and A ̸= B. If A = B, then ιA = ιB and the direction of each object initially
held by agents in JA(γc),A(δf )K is known. Since the number of objects moving
clockwise is constant (and equal to tz), the number c of objects moving clockwise
in JA(xi),A(xj)K is known and the first edge where xi and xj can be swapped
is {A(xj)−c−1,A(xj)−c}. If A ̸= B, then let B ..= [ψ, χ]. Since ιB is given, the
number of objects in JA(ψc),A(xj)K moving clockwise is known. We can then
use the same argument as for xh, where µ′ = ψ− 1 (or µ′ = k if ψ = k− tz + 1).
Note that computing the unique set eιxi,xj

(or eιxi,xj
) takes O(n) time as we

only compute the type of certain objects and the number of objects of certain
types moving clockwise.

An example of the set of edges computed in Lemma 7.24 is given in Figure 7.10.
A selection ι leads to a solution if and only if for each pair (xi, xj) of objects
such that xi ∈ ι and xj /∈ ι and each edge e ∈ eιxi,xj

, the agents incident to e can
agree on swapping xi and xj . Hence, to check for a given selection ι whether it
leads to a solution, we iterate over all pairs (xi, xj) of objects such that xi ∈ ι
and xj /∈ ι and distinguish between the following three cases.

• Either xj does not have a type in [k − tz + 1, k], that is, xj = x or the
type of xj is 0,
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Figure 7.10: An example to illustrate Lemma 7.24. Depicted is a set of agents that are
arranged in a cycle. Some objects are depicted next to the vertices of the agents which
initially hold them. Notice that A = [2, 3, 4] is a block and let ιA

..= {2c, 3f , 4f } be a
selection for A. We show how to compute the edges eι

2c,4c
for each selection ι ⊃ ιA.

Since objects 3c and 2f move counter-clockwise (they are not contained in ιA), the two
objects 2c and 4c next to them have to be swapped over edge {5, 6}. Afterwards, by
Lemma 7.9, object 4c is swapped with each other object moving clockwise before it is
swapped with 2c for a second time. Since tz − 1 = 6 objects move clockwise, object 4c

moves over five edges after the first swap before it is swapped with 2c for a second
time. Thus, 2c and 4c are swapped for a second time over the edge {0, 19}.

• the types of xi and xj are in the same block, or

• the types of xi and xj are in different blocks.

The first two cases give rise to the notion of consistent selections. A selection ιA
for a block A is consistent if each object in ιA can be swapped with each object xj
that has type 0 or a type in A over the respective edges in e ∈ eιxi,xj

. Therein ι
is any selection that generalizes ιA, that is, ι ⊇ ιA. For the sake of readability,
we use CA ..=

⋃︁
α∈A Cα to denote the set of all objects of a type in A.
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Definition 7.6. Let A be a block and let ιA be a selection for A. Let xi ∈ ιA
be an object. Then, ιA is consistent if

• for any object xj of type 0 or xj ∈ CA \ ιA and

• for any edge e ∈ eιxi,xj
for any selection ι ⊇ ιA

the agents incident to e can agree on swapping xi and xj .
We call a selection inconsistent if it is not consistent. Note that a given

selection ιA for a block A can be checked for consistency in O(n2 · |A|) time by
iterating over all xi ∈ ιA and all xj ∈ X, computing the set eιxi,xj

in O(n) time,
and checking whether they can agree on the swap in constant time using the
preprocessed pos-values.

The third requirement (checking whether two objects of types in different
blocks can be swapped) gives rise to the notion of compatible selections. We say
that two selections ιA and ιB for blocks A and B are compatible, if all pairs of
objects of types in A and B, respectively, can be swapped at their respective
edges.
Definition 7.7. Let A = [α, β] and B = [γ, δ] be two blocks. Let ιA and ιB
be two selections for A and B, respectively. The selections are compatible if

• for all xi ∈ ιA and all xj ∈ CB \ ιB ,

• for all xi ∈ CA \ ιA and all xj ∈ ιB ,
and each edge e ∈ eιxi,xj

for some ι ⊇ ιA ∪ ιB , the agents incident to e can agree
on swapping xi and xj .

We say that two selections ιA and ιB are incompatible if they are not compat-
ible. Observe that given two selections ιA and ιB for blocks A and B, we can
check them for compatibility in O(|A| · |B| · n) time by iterating over all xi ∈ ιA
and all xj ∈ CB \ ιB and compute the respective set of edges in O(n) time
using Lemma 7.24. Afterwards, we iterate over all xi ∈ CA \ ιA and all xj ∈ ιB
and compute the respective set of edges. Checking whether the two agents
incident to each of the at most two edges can agree on swapping xi and xj takes
constant time as the pos-values are precomputed. It remains to find consistent
selections for each block that are pairwise compatible. We solve this problem
using 2-SAT programming. Therein, we have a variable for each block. The
truth value of each variable represents which selection for the respective block
is chosen and the clauses guarantee that no two incompatible selections are
chosen.
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Theorem 7.25. Reachable Object on cycles can be solved in O(n4) time.

Proof. We start the proof with an overview over the algorithm and an analysis
of its running time. Afterwards, we show that the algorithm is correct. For each
possible choice of object z (there are at most n many possibilities) and each of
the two possible direction we assume x to move (two possibilities) we do the
following. First, compute the type and subtype of each object. Second, compute
all blocks and use Lemma 7.23 to compute two possible selections ι1A, ι2A for each
block A in overall O(n2) time. Afterwards, check each of these selections for
consistency in overall O(n3) time and discard all inconsistent selections. Next,
compute for each pair of consistent selections for different blocks whether they
are compatible. This takes overall O(n3) time. Finally, check whether there are
pairwise compatible selections for each block using the 2-SAT program below
and return true if so.

Before we present the 2-SAT program, we first show a small preprocessing
step. If for some block A there is only one consistent selection ιA for A, then we
discard all selections that are not compatible with ιA as there is no set of pairwise
compatible and consistent selections for all blocks that do not contain ιA. Since
all remaining selections are compatible with ιA, we can ignore ιA from now on.
If this rule discards any selection, then the respective other selection for this
block is the only consistent selection for this block and hence, we repeat the
process. After at most n rounds, each of which only takes O(n) time, we arrive
at a situation where there are exactly two consistent selections for each block
and the task is to find a set of pairwise compatible selections that include a
selection for each block. We finally reduce this problem to a 2-SAT formula.

We start with a variable vB for each block B which is set to true if we select ι1A
and set to false if we select ι2A. For each pair (ιA, ιB) of incompatible selections
for different blocks A and B do the following. For the sake of simplicity, we use u
and w to denote the literals representing the selections for blocks A and B that
are incompatible. Formally, if ιA = ι1A, then u ..= vA and otherwise u ..= ¬ vA.
Analogously, if ιB = ι1B, then w ..= vB and otherwise w ..= ¬ vB. Since we
cannot select ιA and ιB at the same time (the formula cannot satisfy u and w
at the same time), we add the clause (¬ u ∨ ¬ w) to our 2-SAT formula.

Observe that if there is a set of pairwise compatible selections for each block,
then the 2-SAT formula is satisfied by the corresponding truth assignment of the
variables. Conversely, if the formula is satisfiable, then the selections for each
block corresponding to a satisfying truth assignment specify a direction for each
object. Any sequence of swaps that follows these directions will eventually lead
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to agent I obtaining object x. Since 2-SAT can be solved in linear time [APT79]
and the constructed formula has O(n2) clauses of constant size, the overall
running time for each possible choice of z and the direction of x is in O(n3).
Since there are O(n) possible choices for combinations of z and the direction
of x, the overall running time for all iterations is in O(n4).

7.4 Concluding Remarks
We investigated the computational complexity of Reachable Object with
respect to restrictions on the maximum degree of the input graph and the
maximum length of preference lists. Our work narrows the gap between known
tractable and intractable cases leading to a more comprehensive understanding
of the computational complexity of Reachable Object. In particular, we
showed a dichotomy result regarding the length of the preference lists of the
agents and showed polynomial-time solvability for Reachable Object on
graphs with maximum degree at most two (note that a graph of maximum
degree two is the disjoint union of paths and cycles and Huang and Xiao [HX20]
resolved the case of paths). Saffidine and Wilczynski [SW18, Theorem 4] showed
NP-hardness of Reachable Object on graphs of maximum degree at most
four. Hence, the computational complexity of Reachable Object on graphs
of maximum degree three remains the only open case towards a dichotomy result
with respect to the parameter maximum degree. We conjecture that this case
is NP-hard. Other interesting question regarding the maximum degree of a
graph are whether Reachable Object is polynomial-time solvable on trees
if the maximum degree is some constant and whether our running-time bound
of O(n4) for graphs of maximum degree two is tight, that is, can it be improved
to e. g. O(n3 log n) or is there some (e. g. ETH-based) lower bound?

Note that in a cycle each object can take one of two paths towards its target
object and these two paths translate to assigning each variable in our 2-SAT
program one of the two possible truth values true or false. Jansen [Jan17] used
a variant of 2-SAT where each variable can have one of N values (where N
is some constant) to show containment in P for a variant of Hitting Set.
It would be interesting to see whether there are graph classes in which each
object can take one of constantly many paths to its target object where this
generalization of 2-SAT can be used to show polynomial-time solvability.

Regarding modifications and generalizations of Reachable Object, note
that in the Housing Market problem the agents cannot only swap in pairs but
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also in trading cycles. Trading cycles quite naturally translate into hyperedges
in the input graph of Reachable Object. A set of agents can swap their
currently held objects along a trading cycle only if they share a hyperedge. This
generalization of Reachable Object seems to be a quite natural link between
Housing Market and Reachable Object and has not been studied so far.
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Chapter 8

Outlook

In this thesis, we shed some light on the computational complexity of special cases
of different graph problems using mostly dynamic and 2-SAT programming. We
conclude the thesis with a summary of our main results and a broader reflection
on what we observed and how our work can be continued. Since we already
provided directions for further research related to the problems studied in the
respective chapters, we will focus on dynamic and 2-SAT programming here.

We start with a summary of our main results. For Diameter, we presented
results within the field of FPT in P. In particular, using dynamic programming,
we showed that Diameter is solvable in O((n+m) · h · (dh + hd)) time when
parameterized by the h-index and diameter d. We further presented an O(n2 ·m)-
time algorithm for Length-Bounded Cut on proper interval graphs and proved
that k-Disjoint Shortest Paths is solvable in nO((k+1)!) time.

Using 2-SAT programming, we showed that Soft Tree Containment is
solvable in O(n5) time when the input network is a 2-labeled phylogenetic tree.
Complementing this result, we showed that Soft Tree Containment remains
NP-hard when restricted to binary 3-labeled phylogenetic trees. Finally, we
showed how to solve Reachable Object in O(n4) time on cycles and proved a
dichotomy result on arbitrary graphs parameterized by the length of the longest
preference list of an agent. If all preference lists are of length at most three,
then the problem can be solved in linear time and for lists of length at most
four it remains NP-hard.

We continue with some concluding thoughts on dynamic and 2-SAT pro-
gramming. Concerning dynamic programming, note that the three problems
we studied in the first part of this thesis were all related to shortest paths
in graphs. All three respective dynamic programs used the length of solution
paths to some extent in the representation of a table entry. For Diameter,
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one of the dimensions of the respective table measures the length of a longest
shortest path in the input graph. For Length-Bounded Cut, each table entry
represents the minimum number of edges to delete in order to increase the length
of a shortest path between the terminal s and each vertex in a given subset of
vertices including t to some given threshold. Finally, for k-Disjoint Shortest
Paths, each table entry represents whether there are disjoint paths between
terminal pairs in a directed acyclic graph. We iterate over a topological order
of this graph and hence allow for longer and longer disjoint paths. Concluding,
we observed the following heuristic for how to use dynamic programming: If
the problem is about paths in graphs, then try to design a dynamic program that
iteratively allows for longer and longer paths.

Finally, we reflect on 2-SAT programming and answer the question we started
this thesis with: When is 2-SAT programming a promising tool for solving
algorithmic problems? Let us begin with revisiting how we and other authors
used 2-SAT programming. All 2-SAT programs (including the ones from the
literature) had in common that they, to some extent, compute a solution consist-
ing of a set of pairwise compatible elements. In this thesis, these elements were
either canonical vertices (in Chapter 6) or selections for blocks (in Chapter 7).
Notice that in both cases exactly one out of at most two alternatives was chosen
in the solution. The same holds true for all 2-SAT programs that we could find
in the literature with one exception. Jansen [Jan17] used a version of 2-SAT
where each variable can have one of N possible truth values in [N ] (where N is
some constant) and a literal expresses that the truth value of a certain variable
is at least or at most some given threshold. This version of 2-SAT is known to
be polynomial-time solvable [BHM00]. Combining these insights, we present
two heuristics of when to try applying 2-SAT programming to a new problem.

1. A (polynomial-time) reduction from the considered problem to Satisfia-
bility or 3-SAT is known or easy to achieve. Observe in what special
cases the reduction yields 2-SAT formulas.

2. The considered problem is (thought to be) polynomial-time solvable and
has some independence structure, that is, a solution consists of some
elements that can

• be partitioned into constant-size parts and at most one element from
each part is picked into the solution and

• a set of elements forms a solution if each pair of elements in this set
can be contained in the same solution.
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With these heuristics at hand, we remark that we could not find any application
of 2-SAT programming in the context of scheduling. This is surprising as schedul-
ing is fundamentally about finding pairwise non-conflicting assignments of jobs
to machines and time slots. We therefore conjecture that 2-SAT programming
should be applicable in the context of scheduling quite often.

The importance of 2-SAT programming is not limited to exact polynomial-
time algorithms either. 2-SAT programming has already been used in an
approximation algorithm [WW95] and we believe that it might have further
applications, for instance in heuristics or data reductions. It might even be
useful to reduce some NP-hard problem to an exponential number of 2-SAT
formulas (or one formula of exponential size) to achieve faster exponential-time
algorithms.

Finally, there are other special cases of Satisfiability that are polynomial-
time solvable. Most notably, XOR-SAT (clauses consist of exclusive-or oper-
ations and clauses are connected by and operations) is also linear-time solv-
able [Sch78]. We could only find a single reference ([Rad+07]) where a problem
was reduced to XOR-SAT but there it was not used for a polynomial-time
algorithm. We believe that XOR-SAT programming is also worth investigating
as a potential tool for exact polynomial-time algorithms and we believe it to be
most useful for problems in which the parity of numbers is important.
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