


Motion Structures

Motion structures are simply assemblies of resistant bodies connected by 
movable joints. Unlike conventional structures, they allow large shape 
transformations to satisfy practical requirements and they can be used in

•	 shelters, emergency structures and exhibition stands,
•	 aircraft morphing wings,
•	 satellite solar panels and space antennas,
•	 morphing core materials for composites,
•	 medical implants for minimum invasive surgery.

Though traditionally the subject falls within structural engineering, motion 
structures are more closely related to mechanisms, and they draw on the 
principles of kinematic and geometrical analysis in their design. Indeed 
their design and analysis can be viewed as an extension of the theory of 
mechanisms, and can make effective use of a wealth of mathematical 
principles.
	 This book outlines the relevant underlying theory and motion structural 
concepts, and uses a number of innovative but simple structures as 
examples.
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1	 Introduction

A structure is a combination of resistant bodies made to bear loads. In 
general no internal mobility or relative motions among its members are 
allowed. However, there exists a family of unconventional structures, 
found in many places from common household items such as umbrellas 
and foldable chairs to solar panels of spacecrafts and retractable roofs, that 
are capable of large shape changes. These structures are commonly known 
as deployable structures. The purpose of adopting deployable structures is 
to have convenience in transportation or storage, but some, e.g. the retract­
able roofs, are concerned primarily with provision of instant coverage or 
shelter to create a desirable environment. In accordance with the deploy­
ment process, they fall into two categories. The first category is the deform­
able structure characterised by the fact that the overall strain energy of the 
structure varies during geometrical transformation. Typical examples 
include the inflatable structures such as balloons and cardiovascular stents, 
a type of medical device placed via minimum invasive surgery for treat­
ment of blockage in blood vessels. The other category is essentially mech­
anism. The deployment is executed by activation of one or a number of 
carefully designed internal mechanisms. Retractable roofs for sports facili­
ties and a toy called the Hoberman sphere belong to the second category.
	 This book focuses on the second category. The term Motion Structures 
is adopted to represent this branch of the deployable structure family 
owing to the existence of internal mechanisms.
	 A mechanism in machine theory, which is referred to as a conventional 
mechanism hereafter, is commonly identified as a set of moving or working 
parts used essentially as a means of transmitting motions or controlling 
movement of one part relative to another. It is often assembled from gears, 
cams and linkages, though it may also contain other specialised com­
ponents, e.g. springs, ratchets, brakes, and clutches, etc. There are close 
similarities as well as distinct differences between a motion structure and a 
conventional mechanism. First, the primary function of a motion structure 
is to have shape alteration essential to practical requirements, rather than 
transmitting or controlling motions. Second, as a structure, a motion struc­
ture is usually composed of far more parts than a conventional mechanism. 
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Third, the motion structures generally use fewer but more robust types of 
joints because of the environments in which they typically operate. More­
over, when synthesising the motion structures, the positions and orienta­
tions of the parts during the motion are far more important than other 
physical properties such as velocity and acceleration, as the cycle time of a 
motion structure is generally in a matter of minutes rather than seconds or 
less for conventional mechanisms.
	 There are two ways to synthesise motion structures. Structural engineers 
and architects, responsible for most of the motion structures for civil 
engineering applications such as retractable roofs and façades, are inclined 
to adopt concepts involving a small number of larger moving bodies whose 
motions are then synchronised by electronic means (Ishii, 2000). Each 
moving body may consist of many members but the internal relative 
motions among the members are prohibited. The reason for taking this 
approach is because of the difficulty in assembling a large number of 
members together while retaining the internal mobility. This approach 
becomes less effective when the purpose of motion structures is to achieve 
small and compact packaging size. An alternative is to select known con­
ventional mechanisms as basic building blocks and then to assemble such 
blocks together in such a way that the degrees of freedom of each mechan­
ism are retained. For example, the design of an umbrella frame can be 
regarded as a combination of a number of identical linkages, each of which 
is a supporting frame with three hinges and one slider. The sliders are then 
merged at the central pole so that the entire frame has one degree of 
freedom.
	 In the past few years, the authors have created a number of novel 
motion structures by the latter approach. Here we are to share with readers 
our experience. Almost all of the motion structures in the book are one 
degree-of-freedom assembly created by basic mechanisms such as the 
planar and spatial linkages with only hinge joints.
	 In the following pages, the reader will first encounter in Chapter 2 the 
terms and definitions in commonly used mechanism theory, mobility cri­
teria and analytical methods for synthesising mechanisms, some basic 
mechanisms and a link between mechanisms and structures. The basic 
mechanisms are then used to construct planar motion structures in Chapter 
3, followed by rings and domes in Chapter 4. Chapters 5 and 6 are about 
truly three dimensional motion structures using spatial linkages as building 
blocks. A method that uses tilings for designing the layouts of three dimen­
sional motion structures is given in Chapter 7, which ends the book.
	 The book is limited to the geometrical aspects of motion structures. In 
analysis and design synthesis, it is always assumed that the motion struc­
tures are made of rigid bodies. It should be clear that the rigid body is only 
an approximate reality in practice. This assumption reduces the motion of 
a motion structure to geometry. This is true if the bearing clearance and 
elastic deformation of members are sufficiently small. The motions of a 
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geometry concept are reproduced in the actual structure without noticeable 
error.
	 The scope of the book means that it alone is not complete in a practical 
engineering sense. To arrive at the final design of a motion structure, one 
must decide plenty of details not covered by this book. For instance, one 
must choose materials, carry out structural analysis for a series of configu­
rations subjected to the expected loadings, consider influences of dynamic 
loadings such as inertia, and decide other dimensions of the components, 
how the members are manufactured and assembled and how the motion 
structures are to be serviced including lubrication of the bearings and 
design of their clearances to ensure that the mechanism will remain 
throughout its working life strong enough and stiff enough to withstand 
all the forces it will experience.
	 The design of motion structures remains an iterative process despite the 
best efforts of the authors and many fellow engineers. However, it remains 
to be our strong belief that if the scope of motion structures is to be 
extended, engineers who create such structures must become familiar with 
theoretical methods of synthesis, with criteria which must be obeyed and 
with general principles of motion which can always provide shortcuts 
across the tedious processes of identifying a starting concept. A sound 
knowledge in mechanisms, combined with common sense and intuition, 
can contribute to the production of many more efficient motion structures.



2	 Fundamental concepts, methods 
and classification

2.1  Introduction

2.1.1  Definitions

In this book a mechanism is defined as the assembly of rigid members, also 
known as links, connected by kinematic joints. A mechanism is sometimes 
referred to as a kinematic chain as well.
	 A kinematic joint is formed by direct contact between the surfaces of two 
members. Joints are the most important aspect of a mechanism in the view of 
kinematics. They permit relative motion in some directions while constrain-
ing motion in others. The types of motion permitted are related to the number 
of degrees of freedom of the joint which is equal to the minimum number of 
independent coordinates needed to uniquely specify the position of a link 
relative to the other constrained by the joint. Reuleaux (1875) published the 
first book on theoretical kinematics of mechanisms, in which he called a kine-
matic joint a pair. He further divided joints into lower pairs and higher pairs. 
A lower pair is the one in which contact between two rigid members occurs 
at every point of one or more surface segments. A higher pair is one in which 
contact occurs only at isolated points or along line segments.
	 Due to the requirement of surface contact, there are only six fundament-
ally different types of lower pairs classified by the types of relative motions 
that they permit, all of which are listed in Table 2.1. There are, in contrast, 
an infinite number of possible higher pair geometries. A couple of exam-
ples of the higher pairs are given in Table 2.2.
	 A kinematic chain is commonly known as a linkage if it is made from a 
series of links connected by only lower pair joints. Whenever there is one 
higher pair or more, it must be called a mechanism and should not be 
placed in the linkage sub-class.

2.1.2  Mobility

The number of degrees of freedom of a mechanism is normally called the 
mobility, which is the number of inputs required to determine the position 
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of all the links, also known as outputs, with respect to a fixed reference 
frame, sometimes referred to as ground. The mechanism becomes a locked 
chain, or a conventional structure, if no mobility remains.
	 In three dimensional space, the number of degrees of freedom of a rigid 
link is six: three directional displacements and three directional rotations. 
Thus n free links will have 6n degrees of freedom. By fixing one link as 
ground, the remaining degrees of freedom are 6(n – 1). A joint with f 
degrees of freedom connecting two links reduces the total degrees of 

Table 2.1 The lower pair joints 

Joint name Letter 
symbol

Number  
of degrees 
of freedom

Typical form Sketch symbol

Revolute 
joint (hinge, 
turning pair 
or pin)

R 1

Prismatic 
joint (slider 
or sliding 
pair) 

P 1

Screw joint 
(helical joint 
or helical 
pair)

 

H 1

Cylindrical 
joint  
(cylindrical 
pair) 

C 2

Spherical 
joint (ball 
joint or 
spherical 
pair) 

S 3

Planar joint 
(planar pair)

PL 3
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freedom by 6 – f. For a mechanism composed of n links that are connected 
with a total of j joints, each of which has fi (i = 1, 2, . . ., j) degrees of 
freedom, the mobility of the linkage, m, is

, 

or

	 (2.1)

This is called the Grübler–Kutzbach mobility criterion (Hunt, 1978) or 
Kutzbach criterion.
	 Figure 2.1(a) shows a spatial linkage composed of a chain of four links 
and four joints, including one revolute joint (R), one spherical joint (S), 
one cylindrical joint (C) and one prismatic joint (P), which is commonly 
referred to as an RSCP linkage. According to Eq. (2.1), its mobility is

.

Table 2.2 Some of the higher pair joints

Joint names Number of 
degrees of 
freedom

Typical form Comments

Cylindrical 
roller

1 Roller rotates about the 
instantaneous contact line and 
does not slip on the surface.

Spatial point 
contact

5 Body can rotate about any 
axis through the contact point 
and slide in any direction in 
the tangent plane.

(a) (b)

Figure 2.1 � (a) an RSCP linkage and (b) an RSSP linkage.



Fundamental concepts    7

The output displacement at the prismatic joint is therefore uniquely 
decided by the input angle at the revolute joint.
	 Due to the fact that the Kutzbach criterion given in Eq. (2.1) considers 
only the topological information of a linkage, it can sometimes give mis-
leading results. Take the RSSP linkage in Figure 2.1(b) as an example. It 
has four links and four joints: one revolute, two spherical and one pris-
matic joint. Therefore,

.

This contradicts with the fact that there is a unique output displacement at 
the prismatic joint for any given value of the input variable at the revolute 
joint. Then, where is the second mobility? Examination of the linkage reveals 
that the coupler link that bridges two spherical joints is free to spin about 
the line through the centres of the spherical joints. Such motion, called an 
idle degree of freedom, can take place in any position of the linkage without 
affecting the real input and output relationship. So when idle degrees of 
freedom exist the Kutzbach criterion gives the result that the number of 
mobility is greater than the number of useful degrees of freedom.
	 Figure 2.2 shows a tetrahedron truss. It has a total of six rigid bars 
(links) and four spherical joints, each of which connects three bars. So n = 6 
and j = 8 because in the Kutzbach criterion a connection between a pair of 
links is counted as one joint and hence there are two joints when three 
links are connected to a spherical joint. Each spherical joint has three 
degrees of freedom. So Eq. (2.1) gives

.

Here, the six degrees of freedom refer to the rotation of each bar about its 
respective axis linking two joints, all of which are idle degrees of freedom. 
If one of six bars is taken as the ground, the entire tetrahedron truss is able 
to rotate about it.
	 In addition to idle degrees of freedom, the Kutzbach criterion may also 
yield result that the mobility is smaller than the number of actual degrees 
of freedom. This situation will be examined in detail in Section 2.3.

Figure 2.2 � A tetrahedron truss.
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	 In general, mechanisms are three dimensional. However, there are cir-
cumstances where the mechanisms, and in particular the way they are ana-
lysed, can be simplified. This leads to two specific types of mechanisms, 
namely the planar and spherical mechanisms.

2.1.3  The planar mechanisms

A planar mechanism is a mechanism such that the trajectories of all points 
on its links are parallel to a plane. The plane is known as the plane of 
motion. The only lower pair joints that are properly compatible with planar 
motion are revolute and prismatic joints. The axes of rotation of all revolute 
joints must be normal to the plane of motion and the directions of sliding of 
all prismatic joints must be parallel to the plane of motion. And only cam 
and gear pairs as higher pair joints can be applied to planar mechanisms.
	 In a plane, each free rigid body has three degrees of freedom. The 
general mobility criterion (2.1) therefore becomes

.	 (2.2)

A planar mechanism becomes a planar linkage if it contains only revolute 
and prismatic joints, which is also the focus of this book for they can be 
effectively utilised to construct large motion assemblies. Because both revo-
lute and prismatic joints have one degree of freedom, i.e. fi = 1, the mobility 
criterion of planar linkage becomes

	 (2.3)

Applying Eq. (2.3) to a simple bathroom retractable mirror, Figure 2.3, 
which has twelve links (eight bars, two vertical members and two sleeves), 
fourteen revolute joints and two prismatic joints, yields

,

Figure 2.3 � A bathroom retractable mirror.
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which corresponds to the retraction and expansion of the mirror  
frame.
	 Some planar linkages have rigid links joined together to form a single 
closed chain. In this situation, n = j, and thus at least four links (n = 4) are 
needed to achieve mobility one (m = 1) according to Eq. (2.3). When the 
four links are connected by four revolute joints (R), Figure 2.4(a), we 
obtain a planar 4R linkage, also called a four-bar linkage. Connecting four 
links with three revolute joints and one prismatic joint (P) results in a 
planar RRRP linkage, Figure 2.4(b), which is also called a slider-crank 
linkage. In both linkages, ground is counted as one link.

2.1.4  The spherical mechanisms

The spherical mechanism is a mechanism where all of the links are con-
strained to rotate about the same fixed point in space. The trajectories of 
points on the links therefore lie on concentric spheres. In general spherical 
mechanisms include not only the linkages with revolute joints and arc pris-
matic joints, but also spherical cam mechanisms and bevel gears, and 
tapered roller bearing.
	 The most useful spherical mechanism for the purpose of constructing 
large motion structures is the spherical linkage: a closed chain of links joined 
together by revolute joints whose axes meet at one point. The spherical 
linkage is much like the planar linkage for all of the revolute joint axes are 
parallel in a planar linkage, whereas in a spherical linkage they intersect at a 
point known as the concurrency point. In fact, a planar linkage can be 
deemed as a spherical linkage for which the concurrency point is at infinity.
	 There are many similarities in the properties of spherical and planar 
linkages. Due to the concurrency constraint, the number of degrees of 
freedom for a rigid body in the spherical space is three, which are rotations 
about three perpendicular axes passing the concurrency point. Therefore, 
the Kutzbach criterion has a particular form for the spherical linkage as it 
is for the planar linkage, which is

.	 (2.4)

(a) (b)

Figure 2.4 � (a) A planar 4R linkage and (b) a slider-crank linkage.
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Consequently, the simplest nontrivial spherical linkage is a four-bar spheri-
cal linkage, see Figure 2.5(a). The most convenient way to construct a 
spherical linkage is by folding a piece of card with four creases, Figure 
2.5(b): three valley creases, shown in dash lines (paper folds forward on to 
itself ) and one mountain crease, shown in solid line (paper folds away 
from itself ), that meet at a vertex. The creases act as revolute joints.

2.2  Kinematics of linkages

Kinematics studies the geometric properties of the motion of mechanisms, 
including the positions, velocities and accelerations of points on the links 
without consideration of the forces that cause the motion. A number of 
kinematic methods have been developed in the past, including the matrix 
method (Denavit and Hartenberg, 1955; Hartenberg and Denavit, 1964; 
Beggs, 1966), quaternion and duel quaternion method (Altmann, 1986; 
Kuipers, 2002; McCarthy, 1990), screw theory (Ball, 1876; McCarthy, 
1990), Lie group and Lie algebra (Varadarajan, 1974), some of which can 
be advantageous in analysing particular groups of mechanisms and in 
finding specific physical quantities. For the purpose of design shape chang-
ing assemblies it is vital to identify the positions and angular positions of 
the links in motion whereas the other physical quantities are of less 

Figure 2.5 � (a) A 4R spherical linkage and (b) an origami pattern with one 
vertex and four creases.

(a)

(b)
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interest. Hence, here we shall concentrate on the kinematic analysis 
methods that provide the essential information.

2.2.1  The vector method with complex numbers

The simplest and most effective method for the analysis of planar mechan-
isms is the vector method involving complex numbers, which was first 
introduced by Bloch (Beggs, 1966). In a planar mechanism shown in Figure 
2.6(a), let [x, y] be a fixed reference frame with its origin at one end of link 
1, Figure 2.6(b). Link 1 can be represented by a vector p1,

,

where p1 is the length of p1. This can also be written in complex polar 
form with real and imaginary parts corresponding to the Cartesian 
coordinates

,

in which j is the standard imaginary unit. The subsequent links, e.g. links 2 
and 3, can be written as

 and .

In a mechanism where one or more closed chains can be identified, around 
any closed chain with n links there must be

.	 (2.5)

Eq. (2.5) is an important vector equation called the closure equation.

(a) (b)

Figure 2.6 � (a) A planar linkage and (b) its vector representation.
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	 The closure equation is particularly useful in determining algebraically 
the relationship between the inputs and outputs. Take the four-bar linkage 
shown in Figure 2.6(b) as an example. Link 4 is chosen as ground and the 
links are represented by vectors pi (i = 1, 2, 3 and 4). The closure equation 
(2.5) is

,	 (2.6)

or

,	 (2.7)

if the links are characterised by length pi and angle with respect to x axis 
θi. The real and imaginary parts of Eq. (2.7) are

	 (2.8a)

	 (2.8b)

θ4, the angle between the ground and fixed reference frame, is known. It is 
possible to determine outputs θ2 and θ3 by solving simultaneous equations 
(2.8a) and (2.8b) if θ1 is taken as the input whose value is given.
	 It should be pointed out that the vector method using complex numbers 
is only suitable for modelling planar mechanisms. The three dimensional 
vector method can be applied to the spatial mechanism in statics and 
dynamics as well as the velocity and acceleration analysis when the posi-
tion information is given. However, the complex notations will have to 
be replaced by the quaternions or dual quaternions. The matrix method to 
be introduced next is a much simpler alternative for kinematic analysis of 
spatial mechanisms.

2.2.2  The matrix method

The matrix method appears in most textbooks on mechanisms and is 
widely adopted for analysing spatial linkages as it requests the least 
amount of background knowledge in mathematics.
	 Let [x1, y1, z1] be a fixed reference frame and let [x2, y2, z2] be a reference 
frame fixed to the moving link, see Figure 2.7. The coordinate of the point P 
on the moving link in the fixed reference frame may be obtained from its 
coordinates in the moving reference frame by a transformation of the form

,	 (2.9)

where p1 = [x1, y1, z1]T, p2 = [x2, y2, z2]T, Q is 3 × 3 matrix related to the rota-
tion angles of three axes of the moving reference frame relative to the fixed 
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reference frame, and q12 is the vector related to the translation of the origin 
of the moving reference frame relative to the fixed reference frame.
	 We can apply this transformation model to a serial chain by establishing 
a convention that defines a consistent location for the reference frame in 
each member of the chain. The transformations representing the positions 
of the joints can then be applied successfully to produce the transformation 
relating to the end members of the chain.
	 Figure 2.8 shows the important geometric features of two adjacent links 
(i – 1)i and i(i + 1). Link (i – 1)i contains two revolute joints (i – 1) and i, 
whereas link i(i + 1) has two revolute joints i and (i + 1). They are connected 
by the revolute joint i. At each joint, a coordinate system is set up in such a 
way that zi is the axis of revolute joint i, xi is the axis commonly normal to 
zi–1 which is the axis of revolute joint (i – 1), and zi, positively from joint 
(i – 1) to joint i, and yi is the third axis following the right-hand rule. In the 
coordinate system, the geometric parameters of the links are defined as 

Figure 2.7 � Vector transformation in space.

Figure 2.8 � Coordinate systems for links connected by revolute joints.
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follows. The length of link(i – 1)i, a(i–1)i, is the shortest distance between 
axes zi–1 and zi; the twist of link (i – 1)i, a(i–1)i, is the angle of rotation from 
axes zi–1 to zi positively about axis xi; and the offset of joint i, Ri, is the dis-
tance from link (i – 1)i to link i(i + 1) positively about zi. The kinematic 
parameter of the revolution of joints, the revolute variable of the linkage, 
θi, is the angle of rotation from xi–1 to xi positively about zi. Therefore, the 
rotation transfer matrix between the coordinate system of link (i – 1)i and 
that of link i(i + 1) is

,	 (2.10)

and the corresponding translation vector is

.	 (2.11)

So we have, based on Eq. (2.9),

	 (2.12)

Denavit and Hartenberg (Beggs, 1966) introduced a notation to express 
Eq. (2.12) in a single four dimensional matrix-vector expression by using 
the homogeneous coordinates,

,	 (2.13)

where

	 (2.14)

and

.	 (2.15)
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It can be shown that the transfer matrix given in Eq. (2.14) also satisfies

.	 .

(2.16)

For a closed kinematic chain consisting of n links, by repeatedly applying 
Eq. (2.13), we have p′2 = T12p′1, p′3 = T23p′2,  . . ., p′n = T(n–1)np′n–1 and 
p′1 = Tn1p′n noting that n + 1 becomes 1 for a closed chain. Combining these 
expressions together gives

,	 (2.17)

where I is a 4 × 4 unit matrix. Eq. (2.17) can be used to derive the closure 
equations of the closed kinematic chain.
	 The matrix method, like any of the other kinematic methods, takes both 
the topology and the geometry of a linkage into account. It can be used to 
determine the mobility of a linkage. If Eq. (2.17) has only one or a limited 
number of solutions, the closed chain is in fact locked. When one of the 
kinematic variables can change freely while the others are found to be 
dependent upon it algebraically by the equations in Eq. (2.17), the linkage 
has mobility one. If two free kinematic variables exist, the linkage will 
have mobility two. The number of mobility of linkages is equal to the 
number of free kinematic variables in the closure equations. Meanwhile, 
other kinematic properties of the linkages, e.g. motion trajectories, can also 
be obtained from the closure equations.
	 The matrix method is also applicable to planar linkages. In a planar 
mechanism shown in Figure 2.9, all of the z axes are parallel and both 

Figure 2.9 � A planar linkage with a local coordinate system for each link.
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twists and offsets are zero. The homogeneous coordinates can then be 
replaced by three dimensional vectors

,	 (2.18)

and the transfer matrix becomes

.	 (2.19)

We still have

.	 (2.20)

where I is now a 3 × 3 unit matrix.
	 For spherical mechanisms the lengths of all the links and offsets are 
always zero due to the fact that all the joint axes intersect at the concur-
rency point. And the links are presented by the twist between two joints 
connected to this link. Therefore, there is only rotational transformation 
and no translation transformation. Then the transfer matrix becomes

For a single closed spherical linkage, we still have

,

or

,	 (2.21)

where Qs are given in Eq. (2.10) and I is now a 3 × 3 unit matrix.
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2.3  Overconstrained linkages

2.3.1  Introduction

We have shown examples that the Kutzbach criterion may count idle 
degrees of freedom in some mechanisms. It may also give a misleading 
result, which is smaller than the real degrees of freedom of the mechan-
isms, by disregarding the geometry of an assembly. Figure 2.10(a) is a 
planar 4R linkage. According to the Kutzbach criterion (2.2),

.

If an additional rod EF is added into the linkage as Figure 2.10(b), Eq. (2.2) 
yields

.

However, if AB = CD and EF = AD = BC, ABCD and AEFD are parallelo-
grams, closure condition Eq. (2.5) is automatically met. The linkage has 
mobility one because of the special geometry it has.
	 It is important to realise that having a value less than one from the 
Kutzbach criterion does not automatically imply that the mechanism is a 
conventional structure. A mechanism can have a full range of mobility 
even though the Kutzbach criterion indicates otherwise. This type of mech-
anism is called the overconstrained mechanism. The existence of mobility 
is due to special geometry conditions that are known as the overcon-
strained conditions.
	 For a spatial closed chain where only lower pair joints are involved and 
each joint has one degree of freedom, the Kutzbach criterion becomes

	 (2.22)

(a)	 (b)

Figure 2.10 � (a) A four-bar linkage and (b) a planar overconstrained linkage.



18    Fundamental concepts

For such a chain to have mobility one (m = 1) seven links (n = 7) and seven 
joints (j = 7) are needed. Thus, any kinematic chains with fewer links and 
joints are to be either immobile or overconstrained.
	 Closed chains with seven links are less suitable as building blocks for 
motion structures just like that heptagons are hardly used in surface tiling. 
Hence, overconstrained spatial closed chains have been found to be 
particularly useful in forming large motion structures by tessellation. 
Before embarking on the task of building motion structures let us first 
survey all of the existing overconstrained linkages with emphasis on spatial 
linkages for most of the planar overconstrained linkages are variations of 
the four-bar linkage, such as the one shown in Figure 2.10(b).

2.3.2  Early examples

The first published research on overconstrained mechanisms can be traced 
back to Sarrus (1853) when he reported a six-bar mechanism capable of 
rectilinear motion, Figure 2.11. More overconstrained mechanisms fol-
lowed in the next half a century. Unfortunately most of the overcon-
strained mechanisms have rarely been used in real industrial applications 
because of the development of gears, cams and other means of transmis-
sion. But there are two exceptions, namely the double-Hooke’s-joint 
linkage and the Schatz linkage (Phillips, 1990; Baker, 2002; Lee and Dai, 
2003). The former has been widely applied as a transmission coupling, 
whereas the latter led to the Turbula machine for mixing fluids and 
powders.

2.3.3  The Bennett linkage

A chain of two or three links connected by the same number of revolute 
joints is found to be either a rigid structure or trivial mechanism when all 
three revolute axes are coplanar and intersect at a single point (Phillips, 
1990). The minimum number of links used for construction of a nontrivial 
mobile chain with revolute joints is four, and the Bennett linkage (Bennett, 

Figure 2.11 � The Sarrus linkage.
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1903) is the only 4R overconstrained linkage having the axes of four revo-
lute joints neither parallel nor concurrent (Waldron, 1968; Savage, 1972; 
Baker, 1975), see Figure 2.12. Figure 2.13 shows one of the original 
models made by Bennett. This linkage was also found independently by 
Borel (Bennett, 1914). Bennett (1914) identified the conditions for the 
linkage to have a single degree of mobility as follows.

a	 Two alternate links have the same length and the same twist, i.e.

,	 (2.23a)

,	 (2.23b)

,	 (2.23c)

.	 (2.23d)

Figure 2.12 � The Bennett linkage.

Figure 2.13 � The original model of the Bennett linkage made by Bennett.
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b	 Lengths and twists should satisfy the condition

.	 (2.24)

c	 Offsets are zero, i.e.

.	 (2.25)

The revolute variables are θi (i = 1, 2, 3 and 4). The closure equations of the 
linkage can be derived by applying the matrix method with the Denavit 
and Hartenberg notation.
	 From (2.17), we have

,

or

,	 (2.26)

where 4 × 4 matrices T12, T23, T34 as well T41 are given by Eqs (2.14) and 
(2.16), respectively.
	 Eq. (2.26) contains a total of twelve equations and four identities. 
Among them are cos θ2 = cos θ4 and sin θ2 = – sin θ4 which lead to

.	 (2.27a)

Similarly,

.	 (2.27b)

The other one is

,

which can be rewritten as

.	 (2.27c)

Eq. (2.27) are the closure equations of the Bennett linkage. Among all of 
the revolute variable θ s, only one is independent and the rest can be 
worked out from the closure equations. Consequently the linkage has a 
single mobility (Baker, 1979).



Fundamental concepts    21

	 Bennett (1914) also identified some special cases.

a	 An equilateral linkage is obtained if α + β = π and a = b. Eq. (2.27c) then 
becomes

.	 (2.28)

b	 If α = β and a = b, the four links are congruent. The motion is discon-
tinuous: θ1 = π allows any value for θ2 and θ2 = π allows any value for 
θ1.

c	 If α = β = 0, the linkage is a planar four-bar linkage.
d	 If α = 0 and β = π, the linkage becomes a 2D parallelogram.
e	 The linkage becomes a spherical 4R linkage if a = b = 0 (Phillips, 1990).

2.3.4  Linkages derived from the Bennett linkage

Attempts have also been made to build 5R or 6R three dimensional link-
ages based on the Bennett linkage. Most of the work was concentrated on 
building new mobile chains with fewer than seven links rather than explor-
ing the possibility of constructing large motion assemblies with the only 
exception of Baker and Hu’s (1986) unsuccessful attempt to connect two 
Bennett linkages, which we shall discuss in Chapter 5.
	 Goldberg (1943) arrived at the Goldberg 5R linkage by combining a 
pair of Bennett linkages in such a way that a link common to both was 
removed and a pair of adjacent links were rigidly attached to each other. 
The techniques he developed can be summarised as the summation of two 
Bennett loops to produce a 5R linkage, Figure 2.14(a), or the subtraction 
of a primary composite loop from another Bennett chain to form a synco-
pated linkage, Figure 2.14(b).
	 Prior to Goldberg, Myard (1931) produced an overconstrained 5R 
linkage as shown in Figure 2.15. It is a plane-symmetric 5R and has later 
been reclassified as a special case of the Goldberg 5R linkage, for which 
the two ‘rectangular’ Bennett chains with one pair of twists being π/2, are 
symmetrically disposed and subsequently combined. Two Bennett linkages 
are mirror images of each other where the mirror is coincident with the 
plane of symmetry of the resultant linkage (Baker, 1979). The conditions 
on its geometric parameters are as follows.

, , 

, , 	 (2.29)

.	
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(a)

Figure 2.14 � The Goldberg 5R linkages obtained by (a) summation; (b) subtraction.

An extended Myard linkage has been proposed by Chen and You (2008a) 
obtained by combining two Bennett linkages as Myard did in the creation 
of his 5R linkage. Unlike the original Myard linkage, the angle of twists in 
the extended Myard linkage, α23 and α45 are not necessary to be π/2 but 
the sum of these two twists remains to be π. And the two general Bennett 
linkages that have two equal lengths and one identical twist and one com-
plimentary twist. As a result, the extended Myard linkage does not have 
plane symmetry. Similar to the Myard linkage, the extended one is also a 
special case of the generalised Goldberg 5R linkage.
	 Goldberg (1943) also reported a family of 6R linkages which were later 
named after him. Similar to the Goldberg 5R linkage, the Goldberg 6R link-
ages are also produced by combining Bennett linkages. There are a total of 
four types of Goldberg 6R linkages, see Figure 2.16. The first Goldberg 6R 
linkage is formed by arranging three Bennett linkages in series. The first two 
Bennett linkages have a link in common, and the opposite link of one of them 
is common with a link of a third Bennett linkage. The second Goldberg 6R 



(b)

Figure 2.14  continued.

Figure 2.15 � The Myard linkage.
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linkage is the subtraction of the first Goldberg 6R linkage from another 
Bennett linkage resulting in a syncopated linkage. The third Goldberg 6R 
linkage is built by an L-shaped arrangement of three Bennett linkages. The 
last of the four types is produced by subtracting the Goldberg L-shaped 6R 
linkage from another Bennett linkage.
	 Other 6R overconstrained linkages based on the Bennett linkage also 
exist, among which the most common one is the double-Hooke’s-joint 
linkage (Baker, 2002), which we briefly touched upon earlier. It is a 6R 
linkage obtained from two spherical 4R linkages. This linkage is in fact a 
special case of the Bennett 6R hybrid linkage, which is a combination of 
two spherical 4R linkages. Two further special forms are the Bennett 
plano-spherical hybrid linkage, Figure 2.17, and the Sarrus linkage, Figure 
2.11. Wohlhart (1991) described a 6R overconstrained linkage, the synthe-
sis of which was achieved by coalescing two appropriate generalised 
Goldberg 5R linkages and removing the two common links, Figure 2.18. 

(a)

Figure 2.16 � The Goldberg 6R linkages and their construction: (a) series; (b) synco-
pated; (c) L-shaped and (d) syncopated of L-shaped.
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Chen and You (2007b) reported two types of 6R linkages, constructed 
from combination of two Goldberg 5R linkages in a matter similar to what 
Wohlhart did. If Wohlhart’s combination is referred to as a face-to-face 
combination of two Goldberg 5R linkages, Chen and You’s could be 
regarded as back-to-back as demonstrated in Figure 2.19. Mavroidis and 
Roth (1994) discovered a new overconstrained 6R linkage, the Bennett-
joint 6R linkage, as a by-product of their effort to develop a systematic 
method to deal with overconstrained linkages. And Dietmaier 6R linkage 
was discovered with the aid of a numerical method (Dietmaier, 1995). 
More generally, Waldron (1968) drew attention to a class of mobile six-
bar linkages with only lower pairs which included helical, cylinder and 
prism joints in addition to revolute joints. He suggested that any two 
single-loop linkages with a single degree of freedom could be arranged in a 

(b)

Figure 2.16 continued. 
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space to make them share a common axis, and, after this common joint 
was removed, the resulting linkage would certainly remain mobile. The 
condition for the resultant linkage to have mobility one is that the equiva-
lent screw systems of the original linkages shall intersect only in the screw 
axis of the common joint when they are placed. Waldron listed all six-bar 
linkages, which can be formed from two four-bar linkages with lower 
joints. It is obvious that the double-Hooke’s-joint linkage and the Bennett 
6R linkages that we discussed above belong to this linkage family.

(c)

Figure 2.16 continued.
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2.3.5  The Bricard linkages

Among six-bar overconstrained mechanisms with revolute joints, the most 
remarkable are the Bricard linkages. Bricard reported three different types 
of mobile 6R linkages when he was investigating octahedra (Bricard, 1897) 
and later he added three more types, namely the line-symmetric, the plane-
symmetric and the trihedral linkages (Bricard, 1927). All of the six types 
and their associated geometrical conditions are summarised as follows 
(Baker, 1980; Phillips, 1990).

(d)

Figure 2.16 continued.



28    Fundamental concepts

a	 The general line-symmetric case

, , ;

, , ;	 (2.30)

, , .

b	 The general plane-symmetric case

, , ;

, , ;	 (2.31)

, , .

Figure 2.17 � The Bennett plano-spherical hybrid linkage.

Figure 2.18 � Wohlhart’s double-Goldberg linkage.
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c	 The trihedral case

;

, ;	 (2.32)

 (i = 1, 2, ···, 6).

d	 The line-symmetric octahedral case

;	 (2.33)

.

e	 The plane-symmetric octahedral case

;

, , ,	 (2.34)

, .

Figure 2.19 � Chen and You’s double-Goldberg linkage.
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f	 The doubly collapsible octahedral case

;	 (2.35)

.

Motion sequence of the cases (a) and (b) Bricard linkages are shown in 
Figures 2.20 and 2.21, respectively. Figure 2.22 shows two models of cases 
(c) and (d).

                

Figure 2.20 � Motion sequence of a line-symmetric Bricard linkage.

	   	

	 	    

Figure 2.21 � Motion sequence of a plane-symmetric Bricard linkage.
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	 The Bricard linkages also appear in other objects or linkages. A linkage 
popularly known as the kaleidocycle is one example. A kaleidocycle is a 
three dimensional ring made from a chain of identical tetrahedra, each of 
which is linked to an adjoining one along an edge. The ring can be turned 
through its centre continuously. At least six tetrahedra are required in 
order to form a mobile closed ring (Schattschneider and Walker, 1977). In 
fact when the number of tetrahedra is six, the loop becomes a trihedral 
case of the Bricard linkage. A model is shown in Figure 2.23, which is con-
structed from a toy commonly known as Flexistar 6.1 Its geometrical prop-
erties are as follows.

,

, ,	 (2.36)

 (i = 1, 2, . . ., 6).

The other example is the Altmann 6R linkage (1954), which also turned 
out to be a special case of the line-symmetric and trihedral case Bricard 
linkage. Moreover, the Schatz linkage, reported and patented by Schatz, 
was derived from a special trihedral Bricard linkage (Phillips, 1990). The 
new 6R linkage reported by Wohlhart (1987) can be regarded as a general-
isation of the Bricard trihedral 6R linkage.

  

(a)	 (b)

Figure 2.22 � More Bricard linkages: (a) trihedral and (b) line-symmetric octahedral 
cases.



Figure 2.23 � Motion sequence of a kaleidocycle toy made of six tetrahedra.
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2.3.6  Summary

There are a total of sixteen types of spatial overconstrained linkages with 
revolution joints. A summary is given in Table 2.3. Only two of these link-
ages, namely the Bennett linkage and the Bricard linkage, can be regarded 
as completely independent, whereas the rest are combinations or deriva-
tives of the two linkages.

2.4  Mechanisms and structures

When only a unique solution exists for the closure equations (2.17), the 
closed chain has zero mobility and is in fact a conventional structure 
because none of n kinematic variables can change freely. The tetrahedron 
given in Figure 2.2 is an example.
	 Structural engineers are also interested in finding out whether an assembly 
is a structure or a mechanism. A criterion known as the Maxwell’s rule is 
used to determine whether an assembly is a structure or mechanism (Calla-
dine, 1978; Pellegrino and Calladine, 1986; Calladine and Pellegrino, 1991). 
It stipulates that a truss in space with j spherical joints requires in general n 
bars and r supports to render it stiff (or rigid) where n + r = 3j; when n + r > 3j, 
the structure would have redundant members and when n + r < 3j, the assem-
bly could be a mechanism. For trusses without ground support, r is taken as 
6 to remove the rigid body motions associated to the trusses as a whole.

Table 2.3 � Spatial overconstrained linkages with only revolute joints and their 
dependent linkages.

Number of links Linkages Dependent linkages

4 Bennett linkage —
5 Goldberg 5R linkage Bennett linkage
5 Myard linkage Bennett linkage
6 Altmann linkage Bricard linkage
6 Bennett 6R hybrid linkage Bennett linkage
6 Bennett-joint 6R linkage Bennett linkage
6 Bricard linkages —
6 Dietmaier 6R linkage Bennett linkage
6 Double-Hooke’s-joint linkage Bennett linkage
6 Goldberg 6R linkage Bennett linkage
6 Sarrus linkage Bennett linkage
6 Schatz linkage Bricard linkage
6 Waldron hybrid linkages Four-bar linkage with lower  

    joints
6 Wohlhart 6R linkage Bricard linkage
6 Wohlhart double-Goldberg  

    linkage
Bennett linkage

6 Chen & You double-
Goldberg linkage

Bennett linkage
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	 Applying the Maxwell’s rule to the tetrahedron shown in Figure 2.2 we 
have n = 6, r = 6 and j = 4. The tetrahedron truss is therefore a stiff structure 
because 3j – (n + r) = 0. Unlike the Kutzbach criterion, the Maxwell’s rule 
can disregard the idle degrees of freedom in this instance.
	 Similar to the Kutzbach criterion, the Maxwell’s rule does not take the 
geometry of the assembly into consideration. It is no surprise that it can 
also produce misleading results. To avoid that, a more thorough approach 
has to be taken.
	 Consider a truss in space with n members, r supports and j spherical 
joints. It is subjected to 3j arbitrary independent components of load applied 
at its joints, and let these be denoted by vector f. The 3j equations of equilib-
rium relate the load components to the n member forces and the r reactions; 
denote by the vector t these unknown force variables. The equilibrium equa-
tions for the original, undeformed frame may be written as

.	 (2.37)

The equilibrium matrix H has 3j rows and n + r columns.
	 Corresponding to f is the vector d of (small) nodal displacements; and 
corresponding to t is the elongation vector e considering of n bar exten-
sions and r ground displacements, all small. These quantities are related, 
for small displacements, by the kinematic relations

.	 (2.38)

The compatibility matrix C thus has n + r rows and 3j columns.
	 Vectors e and t are related by the constitutive laws of the material and 
sectional dimensions.
	 The principle of virtual work states that fTd = tTe, leading to C = HT.
	 Eqs (2.37) and (2.38) give rise to a number of possible scenarios depend-
ing on the rank of H, rH.
	 First, if 3j = n + r and rH is equal to 3j, matrix H is a non-singular square 
matrix and the following solution can be obtained

.	 (2.39)

Such an assembly is classified as statically determinate since the internal 
forces in the assembly can determine uniquely by application of the static 
equilibrium alone. In particular, if f = 0, t = 0, and consequently members 
carry no forces, the matrix C (=HT) has the same rank as H and is also 
non-singular, so Eq. (2.38) gives

.	 (2.40)

For e = 0 (the bars would have no elongations as they carry no forces), 
d = 0. The frame is therefore stiff.
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	 Next consider that matrix H of a certain frame is neither square 
(3j ≠ n + r) nor full rank (rH < 3j or rH < n + r), then let

,	 (2.41a)

.	 (2.41b)

If s > 0, then the columns of H are linearly dependent, and the equilibrium 
Eq. (2.39) will have non-zero solutions for t even if f = 0. The assembly can 
have a total of s sets of linearly independent internal forces without the 
external loading. It is therefore regarded as being statically indeterminate 
because the equations of equilibrium alone are insufficient to uniquely deter-
mine the member forces. The forces are known as the states of self-stress.
	 When m > 0 the columns of C are linearly dependent, and similarly the 
compatibility equation can have non-zero solutions for d even though e = 0. 
The assembly can have m sets of linearly independent displacements. It is 
known as being kinematically indeterminate since the displacements of the 
joints cannot be uniquely determined by the lengths of the members.
	 The static and kinematic characteristics of an assembly can be given by 
the pair s and m, both of which can either be greater than or equal to zero. 
The possibilities can be grouped into a total of four categories.

a	 the assembly is both statically and kinematically determinate. It has 
neither state of self-stress nor mechanism (s = 0, m = 0);

b	 the assembly is statically determinate and kinematically indeterminate 
frame. It has no state of self-stress but is a mechanism with mobility m 
(s = 0, m > 0);

c	 the assembly is statically indeterminate and kinematically determinate. 
It has states of self-stress and is stiff (s > 0, m = 0); and

d	 the assembly is both statically and kinematically indeterminate. It has 
states of self-stress but at the same time it is a mechanism with m 
mobilities (s > 0, m > 0).

The same classification is applicable to assemblies other than trusses. The 
common linkages surveyed in previous sections belong to (b) whereas the 
overconstrained linkages belong to (d) which become statically indetermi-
nate structures once their motion is locked. The existence of self-stress can 
be used to detect the mobility in overconstrained linkages.
	 Readers should be aware that the above linear algebraic analysis, set up 
only for the initial geometrical configuration, has its own limitations 
despite taking both geometry and topology of the assembly into account. 
The displacements may be infinitesimal, i.e. the assembly will tighten up 
after a small displacement, instead of full cycle mobility (or being truly 
mobile). The advanced materials on the topic can be found in Calladine 
(1978), Pellegrino and Calladine (1986) and Tarnai (1984, 2001).



3	 Planar double chain linkages

3.1  Scissor-like elements and their assemblies

Many readers were attracted to deployable structures by a toy known as 
the Hoberman sphere, Figure 3.1(a). The toy is a one-degree-of-freedom 
mechanism which resembles a sphere but is capable of expanding up to a 

 

Figure 3.1 � (a) Expansion sequence of the Hoberman sphere and (b) its structural 
detail.

(a)

(b)
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few times of its packaged size. The prime component of the toy is the 
scissor-like element (also referred to as a pantograph in some references), 
Figure 3.1(b), which consists of a pair of beams joined together by a pivot 
(revolute joints) so that free rotation of one beam relative to another about 
the axis of the pivot is allowed and any other relative motion of the rods is 
prevented. The scissor-like element is probably the simplest mechanism 
involving a revolute joint.
	 There are two types of scissor-like elements depending on the locations 
of the hinges and pivot on the beams that form the element. In the first 
type, Figure 3.2(a), referred to here as the conventional scissor-like 
element, the pivot and two end connectors, used for connection with 
neighbouring elements, are collinear. Therefore, the beams can be made 
from straight rods. In the second type however, the end hinges and pivot 
are non-collinear, Figure 3.2(b). Kinked beams or flat plates are therefore 
used, which gives the name: the angulated scissor-like element.

(a)	 (b)

Figure 3.2 � (a) The conventional and (b) angulated scissor-like elements.

(a)	 (b)

Figure 3.3 � (a) A mobile chain made of conventional scissor-like elements that 
spans to a curved profile; (b) a ring of zero mobility, formed by six 
identical conventional scissor-like elements.
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	 The conventional scissor-like element is quite versatile. A number of the 
elements can be placed in sequence to form a deployable assembly like that 
of the lazy tong shown in Figure 2.3. This type of assembly is also known 
as double chain because it appears like two interwoven individual chains. 
The double chain has mobility one, for the pivoting angle of one element 
acts as the input of its neighbour. Carefully designed double chain can even 
expand to a curved profile, Figure 3.3(a), but the double chain containing 
only conventional scissor-like elements should never be closed since the 
closure, i.e. the first element is connected with the last, will render it to a 
structure. To prove it, consider a ring of six (n = 6) identical conventional 
scissor-like elements shown in Figure 3.3(b). Each of the elements is made 
from two identical straight beams pivoted together and it occupies a sector 
with a subtended central angle α. There must be

.

Denote by θ the pivoting angle. It can be shown that there is a one to one 
relationship between α and θ :

.	 (3.1)

Hence, θ cannot be altered once α is known, which indicates that the ring 
has zero mobility and is in fact a structure. In other words, the conven-
tional scissor-like elements cannot be used to construct mobile planar 
closed double chains.
	 The angulated scissor-like element that Hoberman used in his sphere is 
different from the conventional one in geometry. This difference enables it 
to be used in forming planar double chains where the mobility of indi-
vidual elements is retained.
	 A typical angulated scissor-like element is shown in Figure 3.4. We shall 
now show that the angle α, subtended by the end connectors A, B, C and 

Figure 3.4 � An angulated element made of two identical angulated beams.
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D of a angulated scissor-like element, does not change when the angulated 
beams AEC and BED are rotated relative to one another if two beams are 
identical, i.e.

, 1	 (3.2)

and

.	 (3.3)

Let us draw two perpendiculars EG and EH on OD and OC, respectively. 
Considering deltoid OGEH, we have

.	 (3.4)

Because

substituting the above into Eq. (3.4) yields

.	 (3.5)

As ∠AEC is predetermined, α is a constant regardless of the rotation 
between angulated beams AEC and BED.
	 This particular geometrical feature of the angulated scissor-like elements 
enables the construction of mobile plane loops. For a total of n angulated 
scissor-like elements, each of which has a subtended central angle αi (i = 1, 
2, . . ., n), to form a mobile double chain, there must be

.	 (3.6)

The Hoberman sphere has a number of predominant planar double chains 
composed of angulated scissor-like elements placed along the great circles 
of the sphere. For each double chain Eq. (3.6) holds.
	 Eq. (3.6) concerns angles only. It alone is not enough for the loop to be 
mobile. Figure 3.5(a) shows that a double chain of six angulated scissor-
like elements, each consisting of a pair of identical beams that subtend a 
central angle of π/3. Eq. (3.6) is therefore satisfied and the lines linking two 
end connectors always remain parallel. However, there is a gap between 
the end connectors of the first and last elements. This gap may be bridged 
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at a certain pivoting angle but it reappears if the angle varies. In other 
words, even if the connectors could be connected to form a loop at a par-
ticular pivoting angle, the resulted assembly will be immobile because a 
slight change of pivoting angle will result in reappearance of the gap.
	 This problem can be solved by making use of symmetry. Figure 3.5(b) is 
a chain made of the same pairs but in an order which is different from that 
in Figure 3.5(a). The chain has two-fold symmetry and sum of the central 
angles for each quarter is π/2 so that no split occurs when four quarters are 
joined together when the pivoting angle varies. Closure of the double chain 
becomes possible. Moreover, the closed double chain has mobility one.
	 In terms of practicality, symmetry is a good way to construct a mobile 
planar double chain of angulated scissor-like elements. However, other 
more general solutions exist which are obtained by considering the geome-
try of the entire assembly using the kinematic analysis tool that was intro-
duced in Section 2.2.

3.2  Closed double chain

3.2.1  Background

The conquest of constructing mobile closed double chains dates back to 
over a century ago when Kempe (1878) first reported that under certain 
geometrical circumstances an assembly of two planar 4R linkages con-
nected together by four additional hinges could become mobile. Six classes 
of such linkages known as the Kempe linkages were discovered, one of 
which is shown in Figure 3.6. Subsequently Darboux and Fontené pro-
vided further proofs of mobility for the Kempe linkage. A summary of 
their work can be found in Baker and Yu (1983).

(a)	 (b)

Figure 3.5 � (a) A chain made from angulated elements, each subtends a constant 
central angle; (b) a mobile closed chain of angulated elements con-
structed using two-fold symmetry.
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	 The Kempe linkage displayed in Figure 3.6 can also be regarded as a 
closed double chain linkage consisting of four scissor-like elements. It com-
plies with Eq. (3.6) even though αi for each element may vary with pivot-
ing angle whereas it is constant for the elements discussed in the previous 
section. Naturally one may well ponder whether similar mobile closed 
double chains exist should the number of pairs be other than four.
	 For a planar double chain linkage consisting of n elements it will have 
3n hinges in total. According to the Kutzbach criterion for planar linkages 
consisting of only revolute joints Eq. (2.3), the degree of freedom of a 
closed double chain is

.	 (3.7)

Hence, it is overconstrained. Should a chain become mobile, the existence 
of mobility is due to the particular geometry of the linkage.
	 To facilitate a more general discussion on double chain linkages, two 
types of angulated scissor-like elements, namely the intersecting element 
and non-intersecting element, are to be considered, both of which are 
shown in Figure 3.7(a). Although a large relative rotation can transform a 
non-intersecting element to an intersecting one as far as a single element is 
concerned, this kind of motion is physically prohibited when the elements 
are connected to form a closed double chain. Figures 3.7(b) and (c) show 
two closed double chain linkages made from intersecting and non-
intersecting elements. From one of the end hinges drawing vectors continu-
ously connecting two end hinges, it can be found that the vectors pass 
through all of the beams for a five-element double chain made from only 
intersecting elements, whereas they pass through only half of the beams for 
double chains made from only non-intersecting elements. Thus, it is neces-
sary to consider the two cases separately. It turns out that their mobility 
conditions are different (Mao et al., 2009).
	 Both the conventional and angulated scissor-like elements discussed in 
the previous section belong to the intersecting element. They are of a more 
practical type in forming engineering expandable structures.

(a)	 (b)

Figure 3.6 � (a) Two four bar linkages and (b) a Kempe linkage formed by joining 
two four bar linkages.
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3.2.2  Double chains with intersecting elements

A double chain consisting of five intersecting elements prior to forming a 
closed loop is shown in Figure 3.8. Two beams in each element, Figure 3.8(a), 
can be represented by vectors pi, pi+1, qi and qi+1, respectively (i = 1, 2, . . ., 5. 
When the subscript becomes 6, it is replaced by 1). Denote by μi the inclina-
tion angle from pi to pi+1 and by νi the inclination angle from qi to qi+1. Both 
of the angles range from –π to π and they are positive clockwise.2

 The chain is constructed subjected to the following restrictions:

a	 within four neighbouring pieces, four hinges, two from each piece, 
form a parallelogram; and

b	 at both ends, AB and EF are equal and parallel; so are BC and DE, see 
Figure 3.8(b).

(a)	 (b)	 (c)

Figure 3.7 � (a) Intersecting and non-intersecting elements; (b) and (c) closed double 
chains formed by intersecting and non-intersecting elements, respectively.

(a)	 (b)	 (c)

Figure 3.8 � (a) Angulated beams forming an intersecting element; (b) a double chain 
prior to closure and (c) relations among inclination angles.
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The above restrictions are referred to as the loop parallelogram constraint 
hereafter.
	 Under the loop parallelogram constraint, the inclination angles

,	 (3.8a)

and

,	 (3.8b)

as shown in Figure 3.8(c). Moreover, vectors

.	 (3.9)

because both AC and DF are equal to p1 – q1.
	 The condition for forming a closed loop is that the end connectors A 
and D should always meet when the mechanism is activated, Figure 3.9(a), 
and therefore,

.	 (3.10)3

Now assume that the motion of the mechanism is determined by pivoting 
angle θ (–π ≤ θ ≤ π). It is the angle between vector q1 and p1 and is positive 
clockwise as shown in Figure 3.9(a).4 The vector equation (3.10) can be 
replaced by complex number notations with the real and imaginary axes 
parallel with and perpendicular to vector q1, respectively. There is

,	 (3.11)

(a)	 (b)

Figure 3.9 � (a) Five intersecting elements form a closed double chain and (b) geo-
metrical representation of its mobility conditions.
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or

.	 (3.12)

To have a mobile linkage, the above equation must be satisfied whatever θ 
is, which leads to

	 (3.13)

and

.	 (3.14)

Eqs (3.13) and (3.14) are the additional mobility conditions.
	 A close inspection of Eq. (3.13) reveals that geometrically it is equiva-
lent to vectors p1, p2, . . ., p5 forming a closed loop. Similarly, Eq. (3.14) 
suggests that vectors q1, q2, . . ., q5 also form a closed loop. Both cases are 
shown in Figure 3.9(b). Moreover, if vectors p and q form closed loops, 
change of the pivoting angle, θ, does not alter their relative positions. Only 
the vector loops as a whole will rotate by the same amount, see Figure 
3.9(b).
	 Hence, we can conclude that the conditions that ensure the formation of 
a mobile closed double chain consisting of five intersecting pairs are as 
follows.

,	 (3.15a)

and

.	 (3.15b)

The motion sequence of a model shown in Figure 3.10 illustrates the above 
proof.
	 The above derivation can be extended to double chain linkage consist-
ing of n intersecting pairs by adding or reducing items in equations. The 
mobility condition for double chains composed of intersecting pairs under 
the loop parallelogram constraint is that two vector sums of edges of the 
pieces, defined as p and q, must be zero.
	 Note that here the number of pairs, n, can be either odd or even. We 
shall explain the significance of this in the next section.



Figure 3.10 � Expansion of a double chain with five angulated elements.
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3.2.3  Double chains with non-intersecting elements

First consider a double chain linkage with four non-intersecting pairs as 
shown in Figure 3.11. The assembly is constructed so that it meets the loop 
parallelogram constraint. The loop parallelogram constraint gives

,	 (3.16a)

and

.	 (3.16b)

For the double chain shown in Figure 3.11 bringing A and D together will 
enable the double chain to be closed. Hence,

.	 (3.17)

Introducing complex number notations,

,	 (3.18)

or

.	 (3.19)

(a)	 (b)

Figure 3.11 � (a) Angulated beams forming a non-intersecting element and (b) a 
double chain linkage with four non-intersecting pairs prior to closure.
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In order for the equation to hold for any θ, both the first and second items 
must be zero. which, together with Eq. (3.16), have been found to be 
equivalent to vectors p1, p2, p3, p4 and q1, q2, q3, q4 forming closed loops, 
respectively, i.e.

,	 (3.20a)

and

,	 (3.20b)

as shown in Figure 3.12. Alteration of rotation angle θ only causes the 
rotation of the closed vector loops as a whole.
	 This proof can be easily extended to double chain with any even number 
of non-intersecting pairs.
	 Although the appearance of Eqs (3.20a) and (3.20b) is similar to what 
we obtained for the double chain with intersecting pairs, they are in fact 
different. This is due to the way the pieces were arranged under the loop 
parallelogram constraint, see Figure 3.12(a). Here p1, p2, p3 and p4 repre-
sent the lengths of opposite pieces. So do q1, q2, q3 and q4.
	 Now consider a double chain consisting of five non-intersecting pairs, see 
Figure 3.13(a). Note that, unlike the previous double chain with four non-
intersecting elements, the element on the left consists of a piece with edge 
lengths of p5 and q1 whereas the other piece has edge lengths of q5 and p1 in 
order to preserve the loop parallelogram constraint. The angles sustained by 
p5 and q1, and by q5 and p1, are represented by μ5 and ν5, respectively.
	 Plotting all of the vectors ps and then qs, under the parallelogram con-
straint, see Figure 3.13(b), we obtain

,	 (3.21a)

(a)	 (b)

Figure 3.12 � (a) Four non-intersecting elements form a closed double chain and (b) 
geometrical representation of its mobility conditions.
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and

,	 (3.21b)

in which θ is the motion angle between vectors p1 and q1.
	 Since μs and νs are constants, obviously Eqs (3.21a) and (3.21b) cannot 
be maintained unless pivoting angle θ were constant. This simply shows 
that the assembly has no mobility.
	 The same conclusion can be drawn for all of the double chains with an 
odd number of non-intersecting elements.
	 In summary, the mobility condition for a double chain linkage mode 
from non-intersecting elements subjected to the loop parallelogram con-
straint is identical to those for the double chain linkage consisting of inter-
secting elements except that the number of pairs must be even.
	 This result was first obtained by Wohlhart (2000), but here we have 
used the vector method with complex number notation to prove them.
	 In the next section, we shall extend this approach to show that it is pos-
sible to construct double chain linkages with a mixture of intersecting and 
non-intersecting pairs.

3.2.4  General double chain linkages

Now examine a double chain linkage consisting of a total of five elements: 
three intersecting elements connected with two non-intersecting ones, as 
shown in Figure 3.14(a). The loop parallelogram constraint gives

,	 (3.22a)

and

.	 (3.22b)

(a)	 (b)

Figure 3.13 � (a) A double chain linkage with five non-intersecting elements and (b) 
the vectors representing the beams and the pivoting angle.
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The conditions for it being closed loop linkage are identical to Eq. (3.10), 
i.e.

.	 (3.23)

Using the same approach utilising the complex number notation, we can 
arrive at the mobility conditions as

,	 (3.24a)

and

	 (3.24b)

as indicated in Figure 3.14(b). Hence, the double chain is mobile if Eqs 
(3.24a) and (3.24b) are satisfied.
	 Other possible combinations for double chain assembly with five pairs 
exist. For example, it can have two intersecting pairs followed by three 
non-intersecting pairs, as shown in Figure 3.15. Let us now investigate the 
mobility of this closed double chain.
	 To preserve the parallelogram constraint, the diagrams shown in Figure 
13.15(b) can be drawn. There must be

,	 (3.25a)

(a)	 (b)

Figure 3.14 � (a) A double chain with five pairs: three intersecting and two non-
intersecting pairs, and (b) geometrical representation of its mobility 
conditions.
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and

.	 (3.25b)

Using the same argument for the immobile double chain assembly consist-
ing of five non-intersecting elements, it can be concluded that this assembly 
is also immobile.
	 For all of the double chain assemblies made from five pairs, we can 
determine their mobility using the approach outlined above. The result is 
given in Table 3.1. Note that for an immobile double chain the total 
number of non-intersecting pairs is always odd regardless of the order of 
these pairs in the chain.
	 The above proofs can be extended to double chains with any number of 
intersecting and non-intersecting elements. To sum up, the mobility con-
ditions of a closed double chain linkage constructed subjected to the loop 
parallelogram constraint are as follows.

a	 the number of non-intersecting pairs must be even; and
b	 the sum of vectors p and q must be zero, respectively.

Based on the derivation, we are able to produce mobile double chains with 
both an even and odd number of intersecting scissor-like elements. It is 
particularly interesting to note that we are able to produce a mobile double 
chain consisting of three intersecting elements, see Figure 3.16.
	 The limitation of the above derivation is the imposition of the loop par-
allelogram constraint on all of the double chains. Other mobile closed 
double chains also exist, which have been briefly outlined in Section 3.1. In 

(a)	 (b)

Figure 3.15 � ( a) Double chain with five pairs: three non-intersecting pairs followed 
by two intersecting pairs, and (b) the edge vectors and the pivoting 
angle.
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Table 3.1 � Five pair double chain assemblies

Cases Mobility

5 intersecting pairs Yes
4 intersecting + 1 non-intersecting pairs No
3 intersecting + 2 non-intersecting pairs Yes
2 intersecting +1 non-intersecting + 1 intersecting +  

1 non-intersecting pairs
Yes

2 intersecting + 3 non-intersecting pairs No
1 intersecting + 4 non-intersecting pairs Yes
1 intersecting + 1 non-intersecting + 1 intersecting +  

2 non-intersecting pairs
No

5 non-intersecting pairs No

Figure 3.16 � Motion sequence of a double chain made of three intersecting pairs.
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fact Hoberman (1990, 1991) as well as You and Pellegrino (1997a) have 
discovered that, by maintaining a constant sustained angle for each scissor-
like element or for each set of elements, mobile double chains can be 
created using symmetry. No loop parallelogram constraint is forced upon 
the resulting linkages. Figure 3.5(b) shows such an example. Finding a 
general solution for those cases remains a challenge.

3.3  Supports for double chains

3.3.1  Double chains with a symmetric layout

Double chains with symmetric layout can be connected to supports that 
permit translation within the plane of symmetry. Thus, the double chain 
with two-fold symmetry, Figure 3.17, can be supported by four tracks 
along the symmetry lines. The magnitude of the edge translation is small in 
comparison with that of the inner joints, because each outer ring distorts 
less than the inner ring.
	 The second, less intuitive way of supporting the double chain is to 
connect its elements to fixed points, which allow rotation but not transla-
tion. The existence and location of such special fixed points are easiest to 
show for regular circular layouts. Figure 3.18 shows such an example in 
which each of the light grey angulated beams has a corresponding fixed 
point. To facilitate the rotation these beams must be replaced by plates, e.g. 
beams A1B1C1 and A2B2C2 are substituted by larger plates A1B1C1D1 and 
A2B2C2D2, respectively, and D1 and D2 are fixed to ground. The expansion 
sequence of the double chain is shown in Figure 3.19 from which it can be 
seen that all of the light grey beams or plates rotate whereas the other set 
of dark beams translate.
	 In fact, this is a common feature for all of the mobile double chains 
obtained in Section 3.2. The proof is given in the next section.

3.3.2  Fixed points for closed double chain

A closed double chain consisting of three intersecting elements is shown in 
Figure 3.20. The beams are represented by vectors (p1, p2), (p2, p3), (p3, p1), 
(q1, q2), (q2, q3) and (q3, q1). The chain satisfies the loop parallelogram con-
straint and therefore there are three parallelograms in the assembly. We 
have shown in the previous section that the mobility conditions for the 
assembly are that both sets of vector ps and qs must form a polygon.
	 Now assume that a set of three fixed points, Di (i = 1, 2 and 3), exist for 
beams (p1, p2), (p2, p3) and (p3, p1), respectively, and d1, d2 and d3 are 
vectors linking the fixed points D3 and D1, D1 and D2 as well as D2 and D3, 
respectively. The loop closure equations must be

,	 (3.26)



Figure 3.17 � Expansion sequence of a double chain with two-fold symmetry.
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(a)	 (b)

Figure 3.18 � (a) A double chain and (b) four beams are replaced by plates with 
fixed points.

in which i = 1, 2 and 3. When the subscript in Eq. (3.26) becomes 0, it is 
replaced by 3. Rearranging Eq. (3.26) gives

.	 (3.27)

During the motion, three parallelograms remain as parallelograms. Hence, 
if beam (p1, p2) rotates by an angle φ, the other two beams (p2, p3) and (p3, 
p1) have to rotate by the same amount in order to maintain the shape of 
the parallelograms. Similarly, the rotation of beams represented by qs 
must be the same, too, though it can have a different value, say ψ. Thus, 
using the notation of complex numbers, after rotation, the loop closure 
equation becomes

,	 (3.28)

or

.	 (3.29)

Substituting Eq. (3.27) into Eq. (3.29) yields

.	 (3.30)

Because pi ≠ 0 and φ is completely arbitrary, the possible solutions to Eq. 
(3.30) are as follows.

di = 0 and φ = ψ,	 (3.31a, b)



Figure 3.19 � Expansion sequence of a double chain with fixed points.
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or

di = pi and ψ = 0.	 (3.32a, b)

The first solution indicates that three fixed points have merged into one 
and the entire double chain is rotating about a single fixed point. Since we 
have not fixed the assembly to a stationary ground this motion is allowed.
	 The second solution provides the condition for fixed points. Eq. (3.32a) 
indicates that the fixed points form a polygon which is identical to the 
polygon formed by vectors ps. Moreover, the location of the polygon is 
not specified and it can be anywhere in the plane. The motion sequence of 
a model consisting of three intersecting elements is shown in Figure 3.21. 
While half of the beams defined by vectors ps rotate about their respective 
fixed points during motion, the other half translate without any rotation 
because of Eq. (3.32b).
	 This solution can be extended to closed loop double chain linkages con-
sisting of any number of intersecting elements. Similar solutions can be 
found for mobile double chains made of an even number of non-
intersecting elements or a combination of intersecting and non-intersecting 
elements. Using the same approach it can also be shown that half of the 
rigid beams have fixed points.

3.4  Growth of a double chain

The mobile double chains can be extended by the addition of a pair of bars 
of any length, connected to one another and to the double chain by hinges. 

(a)	 (b)

Figure 3.20 � (a) A double chain with three intersecting elements and (b) the fixing 
points and the rotations of beams.
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The resulting structure will remain mobile, like the original double chain, 
provided that the members added to it are not collinear. Repeating the 
same arrangement it can be shown that any number of pairs of bars con-
nected by hinges to the double chain will leave its mobility unchanged 
despite that the chain grows larger. This is best illustrated by the following 
example.
	 Figure 3.22(a) shows a general, small part of a double chain consisting 
of angulated elements. Additional bars are connected to its outer hinges, 
Figure 3.22(b). It is obvious that the mobility is retained because all addi-
tional members are free to rotate with respect to the original double chain. 
If the lengths of the additional bars are made such that the quadrangles 
A2A3B1B2, B2B3C2C1, etc. are parallelograms, ∠A1A2A3, ∠B1B2B3, etc. 
remain constant when the double chain is in motion. Consider, for 
example, ∠A1A2A3. Because A1A2 and A2A3 remain parallel to B0B1 and 
B1B2, respectively,

Figure 3.21 � Motion sequence of a double chain made of three intersecting 
pairs. Three of the beams rotate about their respective fixed points 
on the right.
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 = constant	 (3.33)

since ∠B0B1B2 is the kink angle of an angulated piece, which is fixed. In 
other words, no relative rotation between angulated beam A0A1A2 and the 
added bar A2A3 occurs as the chain moves. The added bar can therefore be 
bonded to the angulated beam forming a longer beam A0A1A2A3 with two 
kinks. The same applies to other beams and their respective added bars.
	 In conclusion, following the procedure given above the double closed 
chain can extended to a larger assembly. Kinked beams with single kink 
can be replaced by beams with more kinks and there is a hinge at every 
kink. The double chain grows to a multiple chain. Figure 3.23 shows two 
symmetrical mobile chains whose internal hinges form elliptical and rec-
tangular shapes, respectively. Note that portions of the second chain are 
made of conventional scissor-like elements.

3.5  Conclusions

The construction of mobile double chains and their extension, the multiple 
chains, have great potential for applications as retractable roofs. The 
ample freedom in design allows one to engineer assembly that fits the 
required space with adequate supports. When a chain is fully expanded, all 
of the beams move towards its perimeter, and when fully contracted it can 

  

(a)	 (b)

(c)

Figure 3.22 � (a) A portion of a double chain, (b) additional bars are added and (c) 
formation of multiple angulated beams.



     

     

     

Figure 3.23 � Expansion sequence of two multiple chains.



     

     

     

Figure 3.24 � Expansion sequence of two double chains in which angulated beams 
are replaced by plates. Both chains close up completely.
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span the entire inner space. In plan, these chains are formed by a series of 
continuous beams with multiple kinks, which, in practice, can be made by 
other rigid structures with span and depth to provide sufficient stiffness 
and coverage as long as all the hinges are at the right places. Kassabian et 
al. (1999), Jensen and Pellegrino (2002) and Luo et al. (2007) proposed 
methods for replacing the angulated beams with rigid plates that can 
provide complete coverage. Readers may refer to their articles for details. 
Here we show two of the assemblies devised by their approach in Figure 
3.24 where all the plates neatly meet with one another once the assemblies 
fold. Various other ways of designing plates also exist if overlapping of 
plates is allowed. This is only practical provided that the adjacent plates 
are placed at different heights to avoid physical collision of the plates 
during motion.



4	 Spatial rings and domes

4.1  Introduction

The conventional scissor-like element is one of the most popular mechan-
isms utilised to form large foldable assemblies like pop-up display stands, 
folding chairs, portable shelters and even swimming pool covers. However, 
readers should be aware that some of the assemblies are in fact deformable 
structures, as the expansion induces strain within structural components. 
They further differ from normal deformable structures in that the strain in 
these structures falls to zero in the initial folded and final expanded confi
gurations, resulting in self-locking once being completely folded or 
expanded because any shape change away from these zero-strain configu-
rations requires energy. It is difficult to find a generic design solution for 
this type of assemblies since detailed analysis at every expansion configura-
tion is required to ensure that the stress does not exceed appropriate limits. 
Examples of this group of assemblies include Zeigler’s dome (1981), struc-
tures proposed by Gantes (1991) and a swimming pool cover by Escrig et 
al. (1996).
	 The number of strain-free motion assemblies using the conventional 
scissor-like element is rather limited. Typically they are open chains, with the 
notable exception of the domes proposed by Meurant (1993) and Sánchez-
Cuenca (1996). Since we have shown in Section 3.1 that the conventional 
scissor-like element alone cannot be used to build a mobile planar closed 
chain which has mobility, the mobile assembly always takes a spatial form. 
This only becomes possible with the utilisation of the Sarrus linkage for con-
nection of planar chains of conventional scissor-like elements.
	 The Sarrus linkage (Sarrus, 1853) was the first reported spatial overcon-
strained linkage. It consists of six links, Figure 2.11 and reproduced in 
Figure 4.1, connected together by two sets of three parallel hinges. A 
simple spatial closed chain of four conventional scissor-like elements can 
be constructed as shown in Figure 4.2(a). These elements are identical and 
have pivots at the middle of the straight rods. At each of the corners of the 
assembly, the upper and lower joint pieces and four beams that are hinged 
together by them form a Sarrus linkage, which are given by their axes 1, 



Figure 4.1 � A Sarrus linkage where its axes, 1, 2, . . ., 6, are represented by 
arrows.

(a)

(b)	 (c)

Figure 4.2 � (a) A spatial closed chain consisting of four conventional scissor-like 
elements. There is a Sarrus linkage whose axes are marked as 1, 2, . . ., 6 
at each corner; (b) schematic diagram representing the top projection of 
the spatial chain; and (c) the same diagram when joint size is neglected.
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2, . . ., 6 in Figure 4.2(a). All of the connections are revolute joints and the 
chain folds to a compact bundle.
	 The chain has a total of sixteen links (n = 16), including eight joint 
pieces, and twenty revolute joints (j = 20), each of which has one degree of 
freedom (fi = 1). The mobility criterion given by Eq. (2.1) therefore yields a 
value of –10. However, as all of the scissor-like elements can have the same 
pivoting angles because of symmetry it is an overconstrained mechanism. 
Its top projection on the ground is always a rectangle as shown by the 
schematic diagram in Figure 4.2(b) in which the thick solid lines are pro-
jections of elements and little dashes represent revolute joints. Moreover, if 
the dimension of the joints is considerably smaller than that of the ele-
ments, the schematic diagram becomes that in Figure 4.2(c). Note that, 
though the joint dimensions may be neglected as far as the overall assem-
bly is concerned, they have to be taken into account at a later stage in 
order to ensure the assembly is a true mechanism.
	 The above method for construction of the spatial mobile chain can be 
extended to include more or fewer conventional scissor-like elements. For 
instance, a closed chain with three scissor-like elements of the same type 
can be made whose projection during deployment becomes equilateral tri-
angles. Using this assembly as a unit, a mobile ring assembly whose top 
projection is shown in Figure 4.3 can be built (You and Pellegrino, 1997b). 
The variation of this design is the basis for most of the pop-up stands.

4.2  Rings

4.2.1  Formation of rings

The conventional scissor-like elements can also be used to form spatial 
rings. The process is as follows. First, we build a closed chain consisting of 

Figure 4.3 � Projection of a large assembly made of conventional scissor-like 
elements. The short dashes represent mid pivots of the elements.
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na straight scissor-like elements that are made of rods of equal length 2a 
with a pivot in the middle. A similar closed chain can be formed by nb ele-
ments with rod length of 2b with again a middle pivot. Both chains are 
symmetric about the middle plane on which all middle pivots of scissor-
like elements lie. Obviously, both of the chains could become very flexible 
while na and nb are large because of the tolerance in each revolute. One 
way to stiffen the structure is to put one chain inside of the other and then 
connect them with a number of intermediate ties which are also conven-
tional scissor-like elements to form an integrated larger assembly. The 
question that remains to be answered is what the conditions are for the 
assembly to retain mobility one.
	 Name the first chain as the inner loop and the second the outer loop. 
For the inner loop, each of the scissor-like elements occupies a sector with 
a corresponding central angle

.	 (4.1)

Denote by θ the pivoting angle for elements in the inner loop and let the ele-
ments in the outer loop have the same deployment angle, see Figure 4.4(a) 
and (b). The projection lengths of the inner and outer elements, La and Lb, are

 and ,	 (4.2a, b)

respectively, whereas the heights of the elements, Ha and Hb, are

 and .	 (4.3a, b)

To effectively connect the two loops with evenly distributed sets of ele-
ments, nb should be either na or 2na. Three different ways of arranging 
these elements have been found. Figure 4.5 shows the top projection view 

(a)	 (b)	 (c)

Figure 4.4 � The conventional scissor-like elements for (a) the inner loop, (b) the 
outer loop and (c) the intermediate tie.
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of three rings, referred to as concepts A, B and C hereafter. The first two 
have nb = na and their top projections consist of na trapezia and 2na isosce-
les triangles, respectively, but for the third one, nb = 2na, and the projection 
has na trapezia and na isosceles triangles.
	 To ensure the mobility of the rings, further geometrical conditions have 
to be met, which are discussed in next section.

4.2.2  Concept A

This is the simplest of the three rings in which the inner and outer loops 
have the same number of elements and they are connected by a set of na 
intermediate ties forming a ring of na trapezia. The projection of a quarter 
of the ring is shown in Figure 4.5(a). In a single trapezium ABCD, AB and 
CD are a pair of beams of lengths 2a and 2b, respectively. BC and AD are 
the projection of the intermediate tie which is also a conventional scissor-
like element. This element consists of a pair of rods a + b, Figure 4.4(c), 
with the semi-length a near the inner loop and semi-length b near the outer 
loop so that the heights of the element are equal to Ha and Hb given in Eqs 
(4.3a) and (4.3b), respectively. This allows a connection between the inner 
and outer loops providing that the pivoting angle of the intermediate 
element is also θ. To put together a ring of na identical modules there is a 
further geometric condition, to ensure each module remains within a sector 
with a subtended central angle α. Therefore,

.	 (4.4)

Expressing AB, CD and AD in terms of the beam lengths and pivoting angle,

,  and .	 (4.5a, b, c)

(a)	 (b)	 (c)

Figure 4.5 � Projections of (a) ring concept A, (b) ring concept B and (c) ring concept 
C. Only a quarter of the rings are shown.
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Substituting the above equations into Eq. (4.4) yields

,

from which

.	 (4.6)

Ratio b/a is a constant for a given na due to Eq. (4.1).
	 Eq. (4.6) indicates that in order for the inner loop and outer loop to be 
connected with a single intermediate element shown in Figure 4.4(c), the 
ratio between the lengths of the elements forming the inner and outer loops 
must be kept constant once the number of elements and the layout of ring 
are determined.

4.2.3  Concept B

The project of this ring consists of 2na triangles. The plan view, Figure 
4.5(b), is a chain of isosceles triangles with alternate long bases, e.g. CD, 
corresponding to a pair of rods of length 2b, and short bases, e.g. AB, cor-
responding to a pair of rods of length 2a. All the intermediate scissor-like 
elements connecting the inner and outer loops are of length a + b with the 
semi-length a near the inner loop just as those for concept A. The heights 
of the intermediate elements match those of the elements in the inner and 
outer loop, hence all that remains to be done is to find the geometric con-
dition to complete the assembly. Here

	 (4.7)

and

.	 (4.8)

During motion,

,  and .	 (4.9a, b, c)
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Substituting these expressions into Eqs (4.7) and (4.8) gives two equations 
in terms of a, b and β, from which

	 (4.10)

and

.	 (4.11)

4.2.4  Concept C

This ring is made from na trapezia and na triangles arranged so that 2na 
scissor-like elements with beam length 2b form the outside of the ring, 
while only na scissor-like elements with rod length 2a form the inner loop. 
In plan view, Figure 4.5(c), this results in a chain of alternate isosceles tri-
angles and isosceles trapezia. The intermediate elements are the same type 
as those used in concepts A and B whose heights meet those of the ele-
ments to be connected.
	 It can be shown that

	 (4.12)

and

,	 (4.13)

where . Noting that

,  and ,	 (4.14a, b, c)

we have

	 (4.15)
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and

.	 (4.16)

4.2.5  Comparison

The three concepts for the mobile rings made from the conventional 
scissor-like elements lead to a family of rings1 of mobility one. All of them 
can be folded to a compact bundle when pivoting angle θ = 0 making them 
ideal for applications where compact packaging is essential. It is also 
important to note that a and b, which define the lengths of the beams, 
cannot be independently chosen as the ratio b/a is dependent upon on the 
layout of the ring and na.
	 Selection of the rings depends on the actual applications. For example, 
when the ring is for a support structure of a deployable reflector, the beams 
are likely to carry compressive forces. The most effective restraint against 
buckling is achieved for b/a ≈ 1.
	 Figure 4.6, obtained by plotting Eqs (4.6), (4.10) and (4.15) in which α 
is replaced by na from Eq. (4.1), shows that concepts A and B are almost 
equivalent in this respect, but concept C is much better for smaller na.
	 The model of Figure 4.7 was made for na = 12 and it was based on 
concept B with b/a = 1.582. Concept C gives b/a = 0.714, in which a and b 
seem to be closer. However, it requires far more joints than the other two 
concepts.

Figure 4.6 � b/a vs na.
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4.3  Domes

4.3.1  Generalised rings

A ring structure can be extended by adding more outer loops connected by 
intermediate elements. The intermediate elements between any two neigh-
bouring loops are decided using one of the concepts presented in the previ-
ous section. For instance, a ring based on concept B can be put outside of a 
ring of concept C to form a mobile assembly shown in Figure 4.8. The 

Figure 4.7 � A ring based on concept B with na = 12.

Figure 4.8 � Projection of a generalised ring obtained by having a concept B 
ring wrapped around by a concept C ring.
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profile of assembly is determined by the ratios given in Eqs (4.10) and 
(4.16). It is in general unable to form a curved dome-like profile when 
expanded because the newly created assembly is symmetric about its 
middle plane on which the middle pivots of all the scissor-like elements lie 
just like the individual rings. To form a proper dome, the outer loop must 
differ in height from the inner loop, i.e. the loops need to become higher 
and higher from the outer perimeter towards the centre. This can be 
achieved by using an alterative type of intermediate tie.

4.3.2  Alternative intermediate tie

The alternative intermediate tie, Figure 4.9(a), is made of a chain of two 
conventional scissor-like elements where HM and OJ are parallel to each 
other and so are NJ and MI. The tie has a single mobility defined by pivot-
ing angle θ : ∠ILO = ∠HKN = θ. Moreover,

 and 	 (4.17)

so that both HI and NO are parallel, and the heights of the tie are equal to 
Ha and Hb given in Eqs (4.3a) and (4.3b), respectively, allowing it to be 
connected to the elements in inner and outer loops.
	 Let MK = KJ = c. From Figure 4.9(a) the projection of the new element is

.	 (4.18)

For the layouts of concepts A, B and C, to replace the single element ties 
with the alternative one, the above projection length must be equal to AD 
in Figure 4.5, i.e.

.	 (4.19)

(a)	 (b)

Figure 4.9 � (a) A intermediate tie made of a pair of conventional scissor-like ele-
ments and (b) its variation.
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Replacing AD in Eqs (4.5c), (4.9c) and (4.14c) with the one given in Eq. 
(4.19) and then following the same subsequent derivations, we obtain

	 (4.20)

where

,	 (4.21)

,	 (4.22)

and

	 (4.23)

for layouts of concepts A, B and C, respectively.
	 Obtained from Eq. (4.20), c could be negative in which case the altern-
ative tie has the form shown in Figure 4.9(b). However, c could also be 
zero in which case the alternative tie reduces to a single scissor-like 
element. Substituting Eqs (4.21), (4.22) or (4.23) into Eq. (4.20) and 
letting c = 0, ratio b/a can be obtained which is identical to the ones given 
by Eqs (4.6), (4.10) and (4.15).
	 The above alternative tie allows both a and b being selected independ-
ently. It has yet to enable us to alter the heights of the end connectors 
because the tie remains symmetric about a horizontal line passing through 
J and M, see Figure 4.9. However, this can be done by shifting beams HM 
and MI in Figure 4.9(a) vertically, resulting in the elements shown in 
Figure 4.10(a). Note that MK and KJ become different in length after this 
action, though ∠HKN = ∠ILO = θ, both HI and NO are still parallel and 
the heights of the tie are equal to Ha and Hb given in Eqs (4.3a) and (4.3b). 
Denote MK = c′ and KJ = c′′. Eq. (4.20) becomes

.	 (4.24)

The shifting h, the difference of height of current and previous position of 
node H, or I, is
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.	 (4.25)

Therefore, from Eqs (4.24) and (4.25), c′ and c′′ can be expressed in terms 
of h and l,

.	 (4.26)

To achieve a height differentiation h at a particular expanded configuration 
when θ = θf, c′ and c′′ can be determined from Eq. (4.26). Again they can be 
negative in which case the tie appears similar to that of Figure 4.10(b).

4.3.3  Construction of domes

The alternative intermediate tie gives greater design flexibility. One can either 
select a layout among those in Figure 4.5 for a ring or combine them for a 
dome. The primary design variables for rings are na, a and b. The domes 
require two additional design variables: h, the height differentiation between 
any of two neighbouring loops, and θf, corresponded to the expanded confi­
guration at which h is achieved. All of the dimensions of the assembly can be 
obtained accordingly once those design variables are known.
	 Figure 4.11 shows the expansion sequence of a mobile frame for a dome 
obtained by combining a concept B ring with one based on concept C using a 
layout identical to that shown in Figure 4.8. From a bundle it expands to a 
dome shape. It can also be folded to flat, revealing clearly its layout.

(a)	 (b)

Figure 4.10 � (a) A intermediate tie made of a pair of conventional scissor-like ele-
ments with height shift and (b) its variation.



Figure 4.11 � Expansion sequence of a mobile dome frame.
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4.4  Other design considerations

4.4.1  Corner connectors

At the corners of either a ring or a dome, corner joint pieces are used 
where beams from the scissor-like elements in a loop and tie meet. The 
upper and lower pieces, together with beams being connected, form a 
Sarrus linkage. The derivations for both rings and domes are based on an 
implicit assumption that the links and the joints have no physical size. This 
is true if the axes of all revolute joints meet at a single point but this is not 
always possible.
	 The derivations in the previous sections can be modified to include the 
distances between the axes of end connectors of scissor-like elements and 
the point where all the axes are supposed to meet, known as the eccentrici­
ties. Take a ring based on concept A as an example. Let Λ and Δ be the 
eccentricities of corner joints pieces at outer loop and λ and Δ be those of 
pieces at inner loop, see Figure 4.12. The projection lengths given in Eq. 
(4.5) need to be modified to reflect them. Now,

,  and .

	 (4.27a, b, c)

Substituting the above expressions into Eq. (4.4) gives

,	 (4.28)

Figure 4.12 � Projection of a portion of a ring based on concept A with eccen-
tricities at the corner joint pieces. Arrows represent the axes of the 
revolute joints at the ends of scissor-like elements.
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which can be broken down into

	 (4.29)

and

.	 (4.30)

Eq. (4.29) is identical to Eq. (4.6) whereas Eq. (4.30) is the equation that 
determines the relationship among eccentricities. One possible solution to 
Eq. (4.30) is

	 (4.31)

i.e. the eccentricities are proportional to the length of the rods.

4.4.2  Diagonal ties

Rings based on concepts A and C are in general less stiff than those using 
concept B owing to the trapezia in the layout instead of triangles. However, 
it is possible to triangulate a trapezium by having an alternative intermedi-
ate tie diagonally placed. In concept A layout shown in Figure 4.5(a), for 
instance, A and C could be bridged by such a tie. The projection length of 
AC is

,	 (4.32)

in which

.	 (4.33)

The alternative intermediate tie can be designed by substituting l into Eq. 
(4.20). It forms an integrated part of the ring just like any other elements. 
The entire assembly remains mobile.



5	 Spatial motion structures based 
on the Bennett linkage

5.1  Introduction

Designing a large motion structure has different priorities from designing a 
machine. There are two keys to a successful concept. First, to identify one 
of a small number of robust and scalable building blocks made of known 
mechanisms, and, second, to develop a way by which the building blocks 
can be connected to form a large assembly while retaining the mobility of 
each mechanism.
	 Motion structures developed over the past three decades are based mostly 
on planar mechanisms, such as those introduced in Chapters 3 and 4. It is 
rare to use truly three dimensional mechanisms. The reason is primarily 
because the majority of structural engineers are less familiar with the three 
dimensional mechanisms. In this chapter, we shall introduce types of motion 
structures that are constructed by tessellation of the Bennett linkage.
	 The kinematics of Bennett linkage has been summarised in Chapter 2, 
including its geometrical features and closure equations. As a spatial four-
bar linkage, a typical Bennett linkage, Figure 5.1(a), consists of a closed 
chain of four bars which span the shortest distance between two axes of 
adjacent revolute joints. Each of the bars has lengths and twists identical 
to those of the bar which is not directly connected to it. It therefore can be 
represented schematically by a rectangle shown in Figure 5.1(b). Each side 
of the rectangle corresponds to a link; at every corner where two links 
meet is a revolute joint represented by a black dot. Twists of each link are 
given alongside the respective bars. This simplified diagram will be used 
throughout this chapter to avoid confusion in drawing real three dimen-
sional assemblies. In the next section we shall use the Bennett linkage as 
the building block to construct large motion structures.

5.2  Single-layer assembly of Bennett linkages

5.2.1  The layout

A layout of the motion structure is given in Figure 5.2(a) in which a 
number of Bennett linkages represented by large rectangles similar to that 
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shown in Figure 5.1 are connected together to form an three dimensional 
assembly (Chen and You, 2005). Each link is represented by a straight line 
and there is a revolute joint at every cross between two links to create a 
total of four revolute joints on each link. The network has many rectan-
gles; each is a 4R closed chain. So hereafter we also refer to them as 4R 
loops. In order to retain mobility, the 4R loops must be Bennett linkages 
or otherwise the assembly would be locked.
	 An enlarged portion of the layout given in Figure 5.2(a) is shown in 
Figure 5.2(b). Assume that the large rectangle ABCD has link lengths a, b 
and twists α, β. The smaller rectangles around it, numbered as Bennett 
linkages 1 to 8, will have lengths will have lengths ai, bi and twists αi, βi 
(i = 1, 2, . . ., 8), respectively.
	 Since AB, BC, CD and DA are single links, there must be

, ,

, ,	 (5.1)

, ,

, .	 (5.2)

Denote by σ, τ, υ and φ the revolute variables. For Bennett linkage 1, we have

,	 (5.3)

(a)	 (b)

Figure 5.1 � (a) A Bennett linkage and (b) its schematic diagram.
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because of Eq. (2.27c). Similarly, for Bennett linkages 2, 3 and ABCD,

,	 (5.4)

,	 (5.5)

.	 (5.6)

(a)

(b)

Figure 5.2 � Single-layer assembly of Bennett linkages. (a) A portion of the network; 
(b) enlarged connection details.
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Combining Eqs (5.3) to (5.6) gives

.	 (5.7)

This is a non-linear equation and many solutions may exist. By observa-
tion, two solutions can be immediately determined, which are

	 (5.8)

and

	 (5.9)

Similar analysis can be applied to Bennett linkages around links BC, CD 
and DA, see in Figure 5.2(a). Based on solutions (5.8) and (5.9), we can 
conclude that twists of Bennett linkages 3, 4 and 5 should therefore satisfy

 or 	 (5.10)

twists of Bennett linkages 5, 6 and 7 should satisfy

 or 	 (5.11)

and twists of Bennett linkages 7, 8 and 1 should satisfy

 or 	 (5.12)

Combining four sets of solutions Eqs (5.8) to (5.12), two common solu-
tions which enable the network in Figure 5.2(a) to become mobile, are 
obtained:

	 (5.13)

and

	 (5.14)
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Due to symmetry, Eqs (5.13) and (5.14) are essentially the same. Thus, 
only Eq. (5.13) is used in the derivation next.
	 So far, only twists of each loop have been considered. However, due to 
Eq. (2.24) the corresponding lengths of each Bennett linkage must satisfy

 (i = 1, 2, . . ., 8).	 (5.15)

A close examination of Eqs (5.13) and (5.15) reveals the order of distribu-
tion of Bennett linkages within the assembly. Diagonally from top left 
corner to bottom right, the rows of Bennett linkages can be grouped into 
two types, Figure 5.3(a). The first type consist of Bennett linkages with 

(a)

(b)

Figure 5.3 � Mobile assembly of Bennett linkages. (a) A simple case and (b) a 
more general case. The grey lines are the guidelines along which 
the Bennett linkages are of the same type.
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lengths proportional to a and b, and twists being α and β, which are 
denoted as ‘I’ in Figure 5.3(a). The second type, next to the first one, are 
made of Bennett linkages with lengths proportional to a and b, and twists 
being αi and βi or –αi and –βi, which are denoted as ‘IIi’ or ‘–IIi’ (i = 1, 3, 
5, . . .), respectively, and both αi and βi satisfy Eq. (5.15).
	 A further analysis has shown that the rows of Bennett linkages in Figure 
5.3(a) marked ‘I’ can actually have different twists from other rows where 
only one type of Bennett linkages is allowed. A more general solution is 
given in Figure 5.3(b) in which the Bennett linkages ‘I’ are replaced by ‘Ik’ 
(k = 2, 4, 6, . . .). A very interesting pattern now emerges: diagonally from 
top left to bottom right, each row of the Bennett linkages belong to the 
same type. This leads to the following important feature. If a set of straight 
and parallel guidelines are drawn diagonally from top left to bottom right, 
each of which passes through a number of revolute joints, these lines 
remain straight and parallel to each other during deployment though the 
distances between the guidelines may vary.

5.2.2  Expanded shapes

In general, the assembly shown in Figure 5.3(b) deploys into a cylindrical 
profile. Throughout deployment, the guidelines linking the respective revo-

     

(a)	 (b)

     

(c)	 (d)

Figure 5.4 � An example of single-layer network of Bennett linkages. (a) to (c) 
Deployment sequence; (d) view of cross-section of network.
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lute joints remain straight. They expand along the longitudinal direction of 
the cylinder. In the other diagonal direction, i.e. the direction from top 
right to bottom left, joints generally deploy spirally on the surface of the 
cylinder.
	 A model is shown in Figure 5.4 in which

,  (i = 1, 2, ···, 8),	 (5.16)

and

	 (5.17)

The radius of the model, which inscribes the expanded assembly, can be 
obtained geometrically. To do so, let us consider an assembly consisting of 
nine large Bennett linkages, three in a row with three rows in total, Figure 
5.5(a), where smaller intermediate Bennett linkages are not accounted for. 
The assembly satisfies Eqs (5.16) and (5.17).
	 Denote by l0 the distance between two rows along the guideline, and by r0 
the radius of the circle that inscribes the assembly of Bennett linkages, both of 
which are indicated in Figures 5.5(a) and (b). To obtain l0 and r0 we need to 
consider the geometry of a typical Bennett linkage in three dimensional space 
first. Figure 5.6(a) shows a Bennett linkage ABCD being placed on a cylindri-
cal surface in such a way that A, B, C and D are on the surface and line BD, 
colinear with a guideline, is along the longitudinal direction of the cylinder. 
The geometric parameters of Bennett linkage ABCD are

, ,  and .

(a)	 (b)

Figure 5.5 � (a) Key geometrical parameters of an assembly and (b) the cross-section 
of the expanded profile.
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Its revolute variables, θ1 and θ2 are marked in Figure 5.6(a), and are related 
by Eq. (2.27c). The cross-sectional view of the linkage on the cylinder is 
given in Figure 5.6(b), in which the angle between planes ABD and BCD is 
denoted by ξ. Take l0 as the length BD. In ΔABD,

.	 (5.18)

Denote by r0 the radius of this cylinder.

,	 (5.19)

where both AF and CE are equal and perpendicular to BD. Considering 
ΔABD or ΔCBD, we have

.	 (5.20)

Hence, from Figure 5.6(b),

.	 (5.21)

Substituting Eqs (5.20) and (5.21) into Eq. (5.19) yields

.	 (5.22)

(a)	 (b)

Figure 5.6 � The geometry of a single Bennett linkage. (a) On the surface of a cylin-
der that inscribes the linkage and (b) the cross-sectional view.
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For given α, l0/a, r0/a vs deployed angle θ1 curves can be plotted using Eqs 
(5.18) and (5.22). Figure 5.7 shows such curves for α = π/3.
	 A couple of observations can be made from the diagram. The first is 
when b/a = 1, i.e. the Bennett linkage is equilateral. The assembly folds in 
two configurations which correspond to θ1 = π, l0 = 0 and, θ1 = 0, r0 = 0, 
respectively. The deployment sequence, shown in Figure 5.8(a), starts from 
a compact bundle when r0 = 0, expands circumferentially to an intermedi-
ate arch profile and then folds flat with l0 = 0. This makes it ideal as a frame 
for expandable shelter. For assemblies made from non-equilateral Bennett 
linkages, i.e. b/a ≠ 1, when θ changes from 0 to π, l0 decreases whereas r0 
increases from 0 to a maximum value and then falls back to 0 again. This 
leads to the second notable case when the twists are set to be

	 (5.23)

The assembly resumes a completely flat profile throughout folding and 
expansion as shown in Figure 5.8(b).

(a)

(b)

Figure 5.7 � (a) l0 vs θ1 and (b) r0 /a vs θ1 curves for a set of given b/a when α = π/3.



(a)

Figure 5.8 � Motion sequence (a) an arch and (b) a grid with a flat profile.



(b)

Figure 5.8 � continued.
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	 Note that some of lengths ai, bi (i = 1, 2, . . ., 8) can be negative, which 
also lead to mobile assemblies as long as Eqs (5.1) and (5.15) are satisfied. 
Some of these assemblies exhibit rather interesting profiles. Readers may 
refer to Chen and You (2008b) for details.

5.3  Multi-layer assemblies of Bennett linkages

The assembly of Bennett linkages presented so far does not have multiple 
layers. A typical portion of single-layer assembly of Bennett linkages sur-
rounding a large Bennett linkage is redrawn as Figure 5.9(a). Again the 
twists are marked alongside the links. The guideline passes through A, E, 
G and C. In the expanded spiral profile, the top right Bennett linkage 
PVND and the bottom left Bennett linkage JBKS are roughly placed along 
the tangent of the cylindrical surface, with V and S pointing towards each 
other. The following proof shows that they can be connected by a bridging 
4R loop RSTV to form the assembly shown in Figure 5.9(b) while retain-
ing mobility.

(a)	 (b)

(c)	 (d)

Figure 5.9 � Formation of additional loops in a single-layer assembly. (a) A portion 
of a single-layer assembly; (b) formation of loop RSTV at a layer differ-
ent from loop ABCD and (c) its corresponding twists; (d) formation of 
loop EFGH and its corresponding twists.
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	 The revolute variables for each joint and twists for each segment of a 
link are given in Figure 5.9(b). Thus, the following relationships must 
hold.
	 In Bennett linkage ABCD,

;	 (5.24)

JBKS,

;	 (5.25)

PVND,

;	 (5.26)

RSTV,

.	 (5.27)

In AJTP, twists become α0 + α7, β0 + β3, and variables are π – φ, π – σ, thus,

.	 (5.28)

Similarly in RKCN with twists being α0 + α3, β0 + β7, and variables π – φ, 
π – σ,

.	 (5.29)
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From Eqs (5.24) to (5.29), the following relationships among the twists 
can be obtained:

,	 (5.30)

,	 (5.31)

	 (5.32)

and

.	 (5.33)

Two sets of solutions emerge for Eqs (5.30) to (5.33) if α, β ≠ 0 or π, which are

	 (5.34)

and

	 (5.35)

When α, β ≠ 0 or π, the assembly becomes a series of overlapped planar 
crossed isograms or planar parallelograms.
	 Denote the lengths of links for small Bennett linkages JBKS, PVND and 
RSTV as a3, b3, a7, b7 and a0, b0. Obviously, there must be

,	 (5.36)

and

, .	 (5.37)
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The solutions given in Eqs (5.34) and (5.35) indicate that, in order to 
connect the top right 4R loop PVND and the bottom left 4R loop JBKS, 
they must have either zero twists or twists identical to those of larger 4R 
loop. Both possibilities are shown in Figure 5.9(c) where twists are marked 
alongside corresponding links.
	 The connectivity of the top left 4R loop AIQE and the bottom right 4R 
loop GLCM along the other diagonal direction by an additional 4R loop 
EFGH, Figure 5.9(d), can also be examined using the similar analysis. It is 
found that connectivity is possible only in two cases. The first case is when 
loops AIQE and GLCM have the same twists as those of 4R loop ABCD, 
which are α and β. The twists of the connection 4R loop EFGH are –α and 
–β. The second case is when loops AIQE and GLCM have zero twists, i.e. 
both are planar 4R loops, and the twists of the connection 4R loop EFGH 
are α and β.
	 The above arrangements can be applied to the entire single-layer assem-
bly shown in Figure 5.3(b), a portion of which is now redrawn in Figure 
5.10(a), with the following conclusions:

(a)	 (b)

(c)	 (d)

Figure 5.10 � Construction of double-layer assembly of Bennett linkages. (a) A 
portion of single layer layout with guidelines. (b) Connections along 
the guidelines. Grey Bennett linkages are added which form the addi-
tional layer. Constructions in the other diagonal directions become 
possible provided that either (c) II3 = I4 = II5 or (d) twists of II3 and II5 
are zero. The newly added Bennett linkages are in grey and ‘0’ indi-
cates Bennett linkages with zero twists.
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a	 4R loops denoted by even number subscripts alongside the guidelines, 
e.g. I2, I4 and I6, can always be connected by additional Bennett link-
ages of the same type but at a different layer forming a double-layer 
assembly, see Figure 5.10(b);

b	 4R loops in the other diagonal direction, e.g. I1, I3, I5 and I7, can also 
be connected provided that either
•	 twists of two smaller loops must be identical to those of the larger 

loop that encircle them, e.g. to connect I3 and I5, both of them 
must be identical to I4, see Figure 5.10(c), or

•	 twists of two smaller loops are zero, e.g. to connect I3 and I5, the 
twists of I3 and I5 are 0, see Figure 5.10(d).

Note that here we say that two Bennett linkages are identical if both link-
ages have the same twists whereas the link lengths, obtainable from Eq. 
(2.24), may be different.
	 The assemblies formed using the rules above will have double layers as 
the bridging 4R loops are at a level different from that of the single-layer 
assembly.
	 The solutions for forming double-layer mobile networks can be 
extended to build multi-layer networks by repetition. For example, con-
sider a single unit shown in Figure 5.9(c), If the bridging links at the upper 
layer are extended, a larger Bennett linkage at a higher level can be con-
nected to it. The process can be repeated, resulting in the formation of a 
mobile multi-layer mast, see Figure 5.11(a). The same process can be 
applied laterally. Figure 5.11(b) shows another possible lateral arrange-
ment. Each of the 4R loops, including the ones whose sides have different 
shades, is a Bennett linkage. Figure 5.12(a) shows the deployment of a 
physical model of a multi-layer mobile assembly in which links are made 
of Al-alloy rods.

(a)	 (b)

Figure 5.11 � (a) A multi-layer mast and (b) another possible layout for assembly of 
Bennett linkages.



(a)

(b)

Figure 5.12 � (a) Deployment sequence of a multi-layer network of Bennett linkages and 
(b) an assembly extracted from the multi-layer network which illustrates 
how two Bennett linkages can be connected while retaining mobility.
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	 It is interesting to note that, if the two smallest Bennett linkages at the 
centre of the model were removed, the assembly would show the largest 
and second largest Bennett linkages connected by four smaller Bennett 
linkages on each side, Figure 5.12(b), forming a mobile assembly. This 
effectively shows that two Bennett linkages can also be connected together 
just like the connection of two planar four-bar linkages illustrated in 
Section 3.2.1. The difference is that smaller Bennett linkages have to be 
used to facilitate the connection instead of single pins in planar cases. The 
question of connecting of two Bennett linkages while retaining mobility 
was first raised by Baker and Hu (1986). A solution to this question can be 
extracted from the multi-layer assemblies just being created. Detailed proof 
can be found in Chen and You (2002) and Chen and Baker (2005).

5.4  Alternative form of Bennett linkage

5.4.1  The equilateral Bennett linkage and its alternative forms

The Bennett linkage discussed so far has its four links spanning the shortest 
distance between the axes of the neighbouring revolute joints. Although this 
enables us to uniquely describe the linkage mathematically, in a physical 
model constructed with these types of links, it is found that the linkage 
cannot be folded up completely in both directions linking two diagonal joints 
simultaneously. It duly disappoints readers who intend to build motion struc-
tures that fold to a compact bundle. However, in this section we demonstrate 
that modifications can be carried out to an equilateral Bennett linkage so that 
compact folding becomes possible (Chen and You, 2006).
	 To design for compact packaging, an equilateral Bennett linkage is 
drawn in three dimensions in Figure 5.13(a) with its joints marked with 
letters A, B, C and D, which correspond to 1, 2, 3 and 4 in Figure 5.1(a). 
So the lengths and twists of linkage satisfy

,	 (5.38)

,

,	 (5.39)

due to Eq. (2.23). This linkage is symmetric both about the plane through 
AC and perpendicular to BD and about the plane through BD and perpen-
dicular to AC even though lines AC and BD may not cross each other. The 
axes of revolute joints are marked at A, B, C and D by lines with arrows 
which give the positive directions of the axes.
	 Denote M and N as the respective middle points of BD and AC, see 
Figure 5.13(b). Obviously, ΔABD and ΔCDB are isosceles and identical 
triangles due to Eq. (5.38). So are ΔBCA and ΔDAC. These lead to the 



The Bennett linkage    95

conclusion that ΔAMC and ΔBND are both isosceles triangles. Hence MN 
is perpendicular to both AC and BD. Moreover, extensions of the axes of 
revolute joints must meet with the extension of MN at P and Q, respec-
tively, due to symmetry.
	 Consider now four alternative connection points E, F, G and H along the 
extensions of the revolute axes AP, BQ, CP and DQ, respectively, Figure 
5.13(b). To preserve symmetry, let GC = AE = c and BF = DH = d. We have

,	 (5.40a)

.	 (5.40b)

(a)	 (b)

(c)

Figure 5.13 � Equilateral Bennett linkage. Certain new lines are introduced in (a), 
(b) and (c) for derivation of compact folding and maximum expansion 
conditions.
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Substituting Eq. (5.39) into Eqs (5.40a) and (5.40b) gives

.	 (5.41)

Similarly, we can find

,	 (5.42)

which suggests that EFGH is also equilateral.
	 For any given Bennett linkage ABCD, Eqs (5.41) and (5.42) show that 
EF, FG, GH and HE have constant length provided that both c and d are 
given. They do not vary with the revolute variables θ1 or θ2. Thus, it is pos-
sible to replace EF, FG, GH and HE with bars connected by the revolute 
joints whose axes are along BF, CG, DH and AE, respectively. EFGH is 
therefore an alternative form of the Bennett linkage ABCD. For each given 
set of c and d, an alternative form for the Bennett linkage can be obtained.
	 When the linkage in the alternative form displaces, the distance between 
E and G varies. So does the distance between F and H. Assume that when 
the linkage is fully folded, deployment angles θ1 and θ2 become θ1f and θ2f, 
respectively. The condition for the most compact folding is

,	 (5.43)

indicating that physically the mechanism becomes a bundle. Eq. (5.43) can 
be written in term of c, d and the deployment angles, which is done next.
	 Consider ΔADC in Figure 5.13(b). It can be found that

.	 (5.44)

Similarly, in ΔABD, there is

,	 (5.45)

whereas in right-angled triangle ΔBCM,

.	 (5.46)

Thus, from ΔAMC,

.	 (5.47)

From quadrilateral PAMC where PA and PC are perpendicular to MA and 
MC, respectively, we have
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,	 (5.48)

because in ΔAPC,

.	 (5.49)

Comparing Eqs (5.44) with (5.49) yields

.	 (5.50)

Similarly it can be obtained that

.	 (5.51)

In ΔEPG, there is

,	 (5.52)

and similarly

.	 (5.53)

In general, ∠APC and ∠BQD cannot reach zero simultaneously. Substitut-
ing Eqs (5.52) and (5.53) into (5.43), noting that Eq. (5.43) holds only 
when the linkage is fully folded, i.e. θ1 = θ1f and θ2 = θ2f, we have

,	 (5.54a)

.	 (5.54b)

The above equations show how the values of c and d are related to the 
fully folded revolute angles θ1f and θ2f. Both values are negative, implying 
that E, F, G and H must locate within lines PA, QB, PC and QD, respec-
tively, rather than being at their extensions. In fact, c and d can be deter-
mined graphically, as Eq. (5.54) simply indicates that E and G should 
move to a single point P, and F and H to Q, if the configuration shown 
Figure 5.13(b) represents the fully folded configuration of linkage EFGH.
	 Having obtained the linkage corresponding to the most efficient folding 
configuration, what is the form of Bennett linkage that covers the largest 
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area? To answer this question, it is necessary to find out the geometrical 
condition relating to the maximum coverage.
	 Figure 5.13(c) shows the alternative form of the Bennett linkage EFGH. 
Due to symmetry, a line between E with G will intersect MN at T, and that 
between F and H will intersect MN at S. The projection of EFGH will 
cover a maximum area if

	 (5.55)

when revolute angles reach θ1e and θ2e. This implies that EFGH is com-
pletely flattened to a rhombus.
	 Again, ST can be expressed in term of c, d and deployment angles. 
Based on Eqs (5.44) and (5.46),

.	 (5.56)

Considering Eq. (5.48) gives

.

So,

.	 (5.57)

Similarly,

.	 (5.58)

Considering Eqs (5.56), (5.57) and (5.58), ST can be written as

.	 (5.59)
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When θ1 = θ1e and θ2 = θ2e

,	 (5.60)

due to Eq. (5.55).
	 Parameters c and d that satisfy Eq. (5.60) corresponded to an alternative 
form that provides maximum coverage when fully expanded.

5.4.2  Parametrical study

Parameters c and d obtained from either Eqs (5.54) or (5.60) are functions 
of the dimensional parameters of the original equilateral Bennett linkage, α 
and l, and initial and final revolute variables θ1f, θ2f, θ1e and θ2e. Bear in 
mind that only two of the four revolute variables, one for fully folded and 
the other for the extended configurations, are independent because

,	 (5.61)

due to Eq. (2.28).
	 With a set of these parameters, we are able to obtain an alternative form 
that can have both compact folding and maximum coverage. In other 
words, c and d must satisfy both Eqs (5.54) and (5.60).
	 Substituting c and d obtained from Eqs (5.54a) and (5.54b) into Eq. 
(5.60) and then considering Eq. (5.61) give

.	 (5.62)

If 0 ≤ θ1f ≤ π, then π ≤ θ1e ≤ 2π. Eq. (5.62) becomes

.	 (5.63)

Should either θ1f or θ1e be predetermined, the other can be obtained from 
Eq. (5.63).
	 Solutions to Eq. (5.63) only exist when the value of α is in the range 
between arccos(1/3) and π – arccos(1/3), i.e. 70.53° to 109.47°. Within this 
range, the relationship between θ1f and θ1e for a set of given α is shown in 
Figure 5.14. Note that in most circumstances, each θ1f corresponds to two 
values of θ1e. This means that there are two possible expanded configura-
tions in which the linkage in its alternative form can be flattened. For 
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α < arccos(1/3) or α > π – arccos(1/3), there is no pair of θ1f and θ1e satisfying 
Eq. (5.63). Therefore the linkage is incapable of being flattened despite that 
it can be folded up compactly, or vice versa.
	 The actual side length of the alternative form of the Bennett linkage, L, 
can be obtained from Figure 5.13(b) as

.	 (5.64)

Using c and d obtained from Eq. (5.54),

.	 (5.65)

Denote by δ the angle between two adjacent sides of the alternative form 
of the Bennett linkage in its flattened configuration when θ1 = θ1e and 
θ2 = θ2e. Thus, δ = ∠FGH when S and T in Figure 5.13(c) become one point. 
We have

.

Expressing FH and EG in terms of angles gives

Figure 5.14 � θ1f vs θ1e for a set of given a.
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.	 (5.66)

Similar to relationship between θ1e and θ1f, there are two values of δ for 
each θ1f.
	 The flattened configuration typically has a rhombus shape. Among all the 
rhombuses with the same side length the square has the largest area, i.e.

.	 (5.67)

Substituting Eq. (5.66) into Eq. (5.67) gives

.

	 (5.68)

Considering Eq. (5.61), Eq. (5.68) can be simplified as

.	 (5.69)

So when θ1e and θ1f satisfy both of Eqs (5.63) and (5.69), the linkage based 
on the alternative form expands to a square. Solving both equations simul-
taneously, we obtain,

,	 (5.70)

.	 (5.71)

Moreover, for any square fully deployed configuration, we always have

,	 (5.72)

due to Eqs (5.61), (5.65) and (5.70).
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	 Finally, it should be pointed out that normally, for a given α, there are 
two sets of θ1e and θ1f, in which configuration of the corresponding altern-
ative form of Bennett linkage is square. However, when

 or ,

there is only one solution,

 and .

In this case,

, .

5.5  Physical model of alternative form of Bennett linkage

According to Crawford et al. (1973), for a close loop consisting of n links 
with identical cross-section, the cross-section of the whole assembly in the 
folded configuration should be n regular polygon if it can be packaged 
most compactly. So for the alternative form of Bennett linkage, each link 
could be made of four rods with square cross-section. The cross-section of 
the folded linkage will then be a square. A model is shown in Figure 5.15, 
which is defined by three design parameters: corner angle ω, tilting angle λ 
and rod length L. The relationship linking the design parameters to the 
geometric parameters of the alternative form of the Bennett linkage is 
derived next.

Figure 5.15 � The alternative form of Bennett linkage made from square cross-
section bars in the deployed and folded configurations.
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	 Figure 5.16(a) shows an expanded linkage EFGH which is the altern-
ative form of the Bennett linkage. The linkage has reached its maximum 
expansion and thus, EFGH becomes a plane rhombus. For simplification 
in description, let us define a coordinate system where axis x passes 

(a)

(b)

Figure 5.16 � (a) The alternative form of Bennett linkage with (b) a rod of 
square cross-section used as link.
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through FH and axis y through EG. The linkage EFGH is therefore sym-
metric about both xoz and yoz planes where o is the centre of EFGH and 
axis z is perpendicular to plane xoy. Now introduce a square bar, shown 
in light grey colour in Figure 5.16(b), to replace link FG in such a way that 
one of the edges of the square bar lies along FG. The bar is terminated by 
planes GIJK and FUVW, created by slicing the bar by the plane yoz and 
xoz, respectively. This bar is one of the rods in the model shown in Figure 
5.15.
	 An enlarged diagram of bar FG is shown in Figure 5.17(a), in which GI 
and FU are the axes of the revolute joints. Plane x′o′y′ is through JV and 
parallel to plane xoy. A typical square cross-section is marked as RXYZ. 
The projection of the bar is given in Figure 5.17(b), in which X′, R′ and Z′, 

(a)

(b)

Figure 5.17 � The geometry of the square cross-section bar. (a) In 3D and (b) projec-
tion on the plane x'o'y' and the cross-section RXYZ.
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etc. represent the projection of X, R and Z on the plane x′o′y′, etc. The 
design parameters ω, λ and L are clearly shown in Figure 5.17(b).
	 Assume

.

Geometrically the following relationships can be obtained from Figure 
5.17(b).

,

,

,

,

,

,

,

,

.

So we have

,	 (5.73)

.	 (5.74)

Now draw line FM that is parallel to GI and crosses IW at M. Thus,

,

and

.	 (5.75)
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Because FM // GI and FG // MI, we have

,	 (5.76)

,	 (5.77)

and F′M′ ⊥ W′U′. Then,

,	 (5.78)

and

.	 (5.79)

Substituting Eqs (5.74), (5.76) and (5.79) into (5.75), there is

.	 (5.80)

Eq. (5.80) is the relationship between design parameters ω, λ and twist α 
of the original Bennett linkage, which is plotted in Figure 5.18 for a set of 
given α. It is interesting to note that, for 0 ≤ λ ≤ π/2 and 0 ≤ ω ≤ π/2, the 
range of α is between arccos(1/3) and π – arccos(1/3), which is the same as 
that obtained from Eq. (5.63).
	 Our next step is to obtain the relationship among λ, ω and revolute vari
ables θ1f, θ2f, θ1e and θ2e. Apply Eq. (5.48) to the expanded configuration,

.	 (5.81a)

Figure 5.18 � λ vs ω for a set of given a .
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Similarly,

.	 (5.81b)

From Figure 5.16(a),

 and .	 (5.82a, b)

From Figure 5.17(a),

,

.	 (5.83a, b)

From Eqs (5.81) to (5.83), it can be obtained that

,	 (5.84a)

and

.	 (5.84b)

When the linkage is folded up, EFGH becomes a bundle along ST, so do 
the rods with the square cross. Bar EF is shown in Figure 5.19 in with light 
grey colour.
	 Similarly to Eq. (5.81), in folded configuration, we have

,	 (5.85a)

.	 (5.85b)

From Figure 5.19,

 and .	 (5.86a, b)

From Figure 5.17(a),

,	 (5.87a)
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.	 (5.87b)

Consider Eqs (5.85), (5.86) and (5.87) together, it can be found that

,	 (5.88a)

.	 (5.88b)

The relationship among λ, ω and L/l, c/l, d/l can be obtained as follows. 
First, substitute Eq. (5.88) into Eq. (5.65). There is

.	 (5.89)

When the expended configuration of the alternative form is square, i.e.

,

Eq. (5.89) gives

,

Figure 5.19 � The alternative form of Bennett linkage with square cross-section 
bars in folded configuration.
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which is the same as Eq. (5.72).
	 Then substituting Eq. (5.88) into Eq. (5.54) yields

,	 (5.90a)

.	 (5.90b)

Figure 5.20 � Model that λ = p/6 and ω = p/4.
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Obviously, α, θ1e, θ2e, θ1f and θ2f from Eqs (5.80), (5.84) and (5.88) satisfy 
Eq. (5.62).
	 Eqs (5.80), (5.89) and (5.90) relate the geometric parameters of an 
alternative form of Bennett linkage to the design parameters, based on 
which a model consisting of four square cross-section rods can be 
installed together as shown in Figure 5.15. The linkage has mobility one 
and can be folded into a compact bundle and deployed into a rhombus. 
In practice, it is not necessary to know the characteristics of the original 
Bennett linkage l, α, and extended distance on the axes of joints c (or d). 

Figure 5.21 � Model that λ = p/4 and ω = p/3.
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The design work can be done based on the values of L, λ and ω, though 
it is much more convenient to use l, α and c (or d) when analysing the 
kinematic behaviour of the linkage such as θ1f, θ2f, θ1e and θ2e. Several 
models have been made which are shown in Figures 5.20 and 5.21 (Chen 
and You, 2007a).

5.6  Assemblies of alternative form linkages

The Bennett linkage in its alternative forms can also be used to construct 
large mobile assemblies with the same layout as that for the linkage in its 
original form.
	 The layout for a single layer assembly of Bennett linkages is shown in 
Figure 5.22, which is similar to that shown in Figure 5.3(b) but with two 
crucial modifications. First, all the large rectangles are replaced by squares, 
since the alternative forms presented in the previous section use only equi-
lateral Bennett linkages with twists being α and π – α. Second, all of the 
squares are the same size because it is likely to be preferred that the assem-
bly folds to a compact bundle with all the rods neatly packed together with 
the same height. Note that now each of the squares in the layout still rep-
resents a Bennett linkage but in its alternative form.
	 The same linkages as those shown in Figures 5.20 or 5.21 are used for the 
4R loops represented by large squares in the layout. The models in Figures 
5.20 or 5.21, have their revolute joints made from door hinges, which are 
placed at the top face of the models. The same is done to linkages in the 
layout. These linkages are to be connected to a neighbouring one at each of 
its corners according to the layout. To enable such connections, the sharp 

Figure 5.22 � Layout of a single-layer assembly consisting of equilateral Bennett 
linkages.
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corner tips of each linkage have to be removed, Figures 5.23(a) and (b). Two 
more revolute joints, placed at the rear face of the linkage, are added at each 
corner for the connection with neighbours, Figure 5.23(c). The additional 
hinges at each corner, together with original corner joints, form four revo-
lute joints of each small 4R loop in the layout, represented by small squares. 
The folding sequence of a model is given in Figure 5.24(a), accompanied by 
a close-up of the corner joints in Figure 5.24(b). This particular model 
expands to a flat profile and can be packaged to a compact bundle.
	 Assemblies that expand to a cylindrical profile can also be produced. 
Similar to the single layer assembly of the original Bennett linkages, the 
Bennett linkages along the guideline expands to a flat profile. Non-zero 
curvature is allowed only in the direction perpendicular to the guidelines. 
Figures 5.25 and 5.26 show computer simulations of the expansion of two 
models. The first model forms the top part of a hexagonal prism and the 
second forms a square prism. Details of how to design an assembly with 
cylindrical profile can be found in Chen and You (2007c) as well as Tian 
and Chen (2010).

5.7  Applications

One obvious application of the spatial assembly of Bennett linkages is as 
the frame structure of rapidly erectable shelters because of its ability to 
form a curved profile. One can take a strip out of the single-layer layout of 
Figure 5.3(b) in the direction perpendicular to the guidelines. The resulting 

(a)	 (b)	 (c)

Figure 5.23 � Modifying the Bennett linkage in its alternative form for construction 
of a flat-profile assembly. (a) A single Bennett linkage in its alternative 
form with sharp corners; (b) sharp corners removed and (c) rear view 
of the same linkage showing two additional joints for connection with 
neighbouring linkages.



(a)

  

(b)

Figure 5.24 � (a) Folding sequence of a single layer assembly of Bennett linkages in 
their alternative forms and (b) the front and rear of a corner joint.
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assembly could have a layout of Figure 5.27(a) or Figure 5.27(b). The 
selection is primarily governed by the package length if original Bennett 
linkages are used. Figure 5.27(c) is the model constructed using the layout 
of Figure 5.27(b).
	 Another issue associated with the assembly formed from the original 
Bennett linkage is the joint size which we have not considered until now. 
In the models displayed in Figures 5.6 and 5.8, all of the rods are placed 
along the links given in the layout and the revolute joint consists of a pin 

 

 

Figure 5.25 � Folding simulation of a model forming the top part of a hexa
gonal prism.

 

 

Figure 5.26 � Folding simulation of a model forming a square prism.



(a)	 (b)

(c)

Figure 5.27 � (a) and (b) Arch frames obtained by taking a strip out of a single layer 
assembly of Bennett linkages and (c) a model based on (b).
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through a pair of circular rods. Though it is effective in demonstration of 
the concept, it creates an error at the joint because the axes of the rods are 
at a distance D apart where D is the diameter of the rods, Figure 5.28(a), 
which would have rendered the model unworkable if both the rods and 
pins were sufficiently stiff. This error can be avoided by using a new type 
of joint design, Figure 5.28(b) and (c). A drawback is that the rods are 
slightly off the lines shown in the layout.
	 No such issue arises for the assembly made from Bennett linkages in 
their alternative forms as the assemblies are designed with revolute joints 
being precisely placed.

(a)

(b)

(c)

Figure 5.28 � (a) Error caused assembling straight rods with a single pin connection 
as revolute joints, (b) a new joint design that removes the error caused 
by a single pin connection and (c) a joint model using the new joint 
design.



6	 Spatial motion structures based 
on Bricard linkages

6.1  Threefold-symmetric Bricard linkages and its assemblies

The Bricard linkages reviewed in Section 2.3.5 are the only 6R overcon-
strained linkages that are not derived from 4R, 5R or other 6R linkages. 
Of a total of six types of Bricard linkages, the most suitable ones for the 
purpose of constructing motion structures is the threefold-symmetric 
Bricard linkage, obtained by combining the general plane-symmetric and 
trihedral Bricard linkages. The geometric parameters of the linkage satisfy 
the following conditions.

,

, ,	 (6.1)

 (i = 1, 2, ···, 6).

The linkage has threefold rotational symmetry and also three planes of 
symmetry, hence its name. The configuration of this linkage is shown in 
Figure 6.1. It is easy to see that threefold-symmetric Bricard linkages form 
a subset of the set of plane-symmetric Bricard linkages. If, as a further 
specialisation, π/2 is selected as the angle α, then relationships given by Eq. 
(6.1) satisfy the geometrical conditions of trihedral Bricard linkages (Baker, 
1980). Therefore, in this case, a threefold-symmetric Bricard linkage is also 
a trihedral Bricard linkage.
	 The linkage is mobile because of the plane-symmetric property guaran-
tees it. It is however yet to know whether the number of degrees of 
freedom increases with an increase in the degree of symmetry. Because of 
threefold symmetry, the six revolute variables must satisfy the following 
conditions.

,

.	 (6.2)
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Since we have a six-link, single-loop linkage (n = 6), the closure condition 
(2.17) takes the form

,	 (6.3)

or

.	 (6.4)

Considering Eqs (6.1) and (6.2), the closure equation of the threefold-
symmetric linkage can be extrapolated from Eq. (6.4), which is

	 (6.5)

Eqs (6.2) and (6.5) form a set of independent closure equations for this 6R 
linkage. For any given α (0 ≤ α ≤ π), Eq. (6.5) represents the input–output 
equation of the linkage. It is apparent that Eq. (6.5) is symmetric in θ1 and 
θ2, for the equation remains the same if these two variables are swapped. 
Therefore, one of the variables, either θ1 or θ2, can be chosen to be the 
input and the other can be obtained as the output. Figure 6.2 shows the 
input–output curve determined by Eq. (6.5). It is periodic and the periods 
for both θ1 and θ2 are 2π.
	 A number of distinctive features of the threefold-symmetric Bricard 
linkage with any twist α can be summarised from Figure 6.2. First of all, 
it shows that only one of six revolute variables can be free. Thus, in 
general, this threefold-symmetric Bricard linkage has mobility one. 
Second, the linkage with twist α behaves the same as that whose twist is 
π – α. Third, all the input–output curves pass through the points (0, 
–2π/3), (0, 2π/3), (–2π/3, 0) and (2π/3, 0), regardless of the value of α. 

Figure 6.1 � A threefold-symmetric Bricard linkage.
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This means that all of the threefold-symmetric Bricard linkages can be 
flattened to form a planar equilateral triangle whose side length is 2l. 
Additionally, when 0 ≤ α ≤ π/3 or 2π/3 < α ≤ π, the movement of the link-
ages is not continuous. It has been found by experiment that the linkage 
is physically blocked in the positions when all the links are crossed in the 
centre when either θ1 or θ2 reaches π or –π. Figure 6.3 shows two config-
urations of a model with α = π/4. The input–output curve forms a closed 
loop when π/3 ≤ α ≤ 2π/3 and thus the linkage keeps moving continuously. 
A model with α = 5π/12 is shown in Figure 6.4, with a continuous range 
of movement.
	 Now focus on a particular set of input–output curves in Figure 6.2 when 
α = π/3 or 2π/3. Both θ1 and θ2 reach π or –π simultaneously, which corres-
pond to the configurations of the most compact folding where all of the 
links fold to a bundle. On the other hand, when θ1 = 0, θ2 = 2π/3 (or –2π/3), 
or vice versa, the linkage forms a plane equilateral triangle, in accordance 
to the configuration of maximum expansion. The motion sequence of a 
model with α = π/3 is shown in Figure 6.5, which confirms the above find-
ings. Because this particular threefold-symmetric Bricard linkage with twist 
of π/3 or 2π/3 can achieve both compact folding and maximum expansion, 
it is an ideal building block for construction of large mobile assemblies, 
which will be discussed next.
	 The threefold-symmetric Bricard linkages with twist π/3 or 2π/3 have 
the same behaviour and therefore only α = π/3 is considered hereafter. This 
particular linkage can be represented by the schematic diagram shown 
in  Figure 6.6(a), in which the hinge connecting the ends of the links is 

Figure 6.2 � θ 2 versus θ1 curves for the threefold-symmetric linkage.



      

(a)	 (b)

Figure 6.3 � Motion sequence of a threefold-symmetric Bricard linkage with  
a = p /4. (a) The configuration of planar equilateral triangle and (b) the 
configuration in which the movement of linkage is physically blocked.

(a)

(b)

(c)

Figure 6.4 � Motion sequence of a threefold-symmetric Bricard linkage with  
a = 5p /12. (a) The configuration of planar equilateral triangle, (b) 
and (c) the configurations during the process of movement.
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represented by a hollow circle. When the links are extended, which will be 
the case when the linkage is connected with its neighbours, the hinges may 
appear in the middle of a link. In this circumstance the hinge is represented 
by a dot. A pair of links connected by a hinge in the middle, Figure 6.6(b), 

(a)

(b)

(c)

Figure 6.5 � Motion sequence of a threefold-symmetric Bricard linkage with  
a = p /3. The first image corresponds to the compact folding whereas 
the last is the maximum expansion.

(a)	 (b)

Figure 6.6 � (a) Schematic diagram of the threefold-symmetric Bricard linkage 
and (b) a pair of links connected by a hinge in the middle.
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is referred to as a pair of crossbars. It behaves like a pair of scissors. But it 
is different from the scissor-like elements introduced in Chapters 3 and 4 
for the axes of the end and mid hinges of a crossbar may not be parallel.
	 The basic element for building a large mobile assembly is formed by having 
three pairs of crossbars with identical length in a closed chain with a threefold-
symmetric Bricard linkage with α = π/3 at the centre. There exist two possible 
arrangements of twists for a pair of crossbars, namely types I and II as shown 
in Figures 6.7(a) and (b), in which α = π/3 and β = 2π – π/3. There are in total 
four possible combinations of three pairs of crossbars, I-I-I, I-I-II, I-II-II and II-
II-II, one of which is shown in Figure 6.7(c). It is possible to determine by 
experiments whether an assembly composed of these basic elements will retain 
the motion character of the threefold-symmetric Bricard linkage.
	 Consider a simple connection of two basic elements as shown in Figure 
6.8. The marked pair of crossbars at the centre could be either types I or 
II. Figure 6.9 is a model where the intermediate pair of crossbars is a type I 
pair. It is obvious that two elements work well together. So the arrange-
ment of type I can form a mobile assembly. In Figure 6.10, two elements 
are connected with a type II pair, but this assembly cannot be fully folded. 
The links of each side physically block each other in the folding process, 
Figure 6.10(b). As the result, we conclude that a motion structure cannot 
be connected with a type II pair. Thus, for the basic elements to be con-
nected as shown in Figure 6.8, only arrangement I-I-I can be used in order 
to retain mobility. A typical portion of such an assembly is shown in 
Figure 6.11 and a physical model in Figure 6.12.

(a)	 (b)

(c)

Figure 6.7 � Construction of a basic element. (a) Type I and (b) Type II of the 
crossbars; (c) one of the arrangements: I-I-II.



Figure 6.8 � Connectivity of two basic elements.

(a)

(b)

(c)

Figure 6.9 � Model showing connectivity of two basic elements with a type I 
pair. (a) Fully expanded, (b) during deployment and (c) close to 
being fully folded.
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	 One of the issues associated with the threefold-symmetric Bricard 
linkage with twists of π/3 or 2π/3 is the existence of bifurcation points. 
Kinematic bifurcation is a situation where the number of mobilities of a 
mechanism increases at a particular configuration.1 Here the corresponding 
configurations are at points (π, π), (π, –π), (–π, –π) and (π, –π). This can be 
seen in Figure 6.2 as the points where the input–output curves cross. In 
these configurations, the linkage folds to a bundle where all of the links are 

(a)

(b)

Figure 6.10 � Model showing connectivity of two basic elements with a type II 
pair. (a) Fully expanded and (b) during deployment.

Figure 6.11 � Portion of an assembly of threefold-symmetric Bricard linkages.
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collinear to one another. Although bifurcation exists, it does not cause any 
problem in motion because the links would have to penetrate each other in 
order to reach the bifurcated position, which is physically impossible.

6.2  Alternative forms of threefold-symmetric Bricard 
linkage

Although the original threefold-symmetric Bricard linkage can be folded 
up to a compact bundle, its realisation requires the use of the hinge design 
introduced in Section 5.7. It has been found however that alternative forms 
of this linkage also exist similar to the Bennett linkage, which allows much 
simpler connections among the links.
	 The method to indentify the alternative form of threefold-symmetric 
Bricard linkage is the same as that for the Bennett linkage. The axes of 

(a)

(b)

(c)

Figure 6.12 � Model of a motion assembly of threefold-symmetric Bricard 
linkages.
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revolute joints are extended and joints are connected with bars not perpen-
dicular to the axes, see Figure 6.13, where the solid lines present the links 
of the original linkage and the dashed lines present the bars in the altern-
ative form.
	 For simplicity, assume that symmetry is kept in the alternative form. We 
have

	 (6.6)

So all the bars of the alternative form have the same length, L, which is

.	 (6.7)

For each given set of c and d, an alternative form for the threefold-
symmetric Bricard linkage can be obtained. The most compact folding 
can be achieved if simultaneously the points A, C and E meet at a point 
while the points B, D and F also meet at another point. This means that 
physically the linkage becomes a bundle whose length is L. Denote θ1 
and θ2 in this fully folded configuration as θ1f and θ2f, respectively. On 
the other hand, when the linkage is fully expanded, points A, B, C, D, E 
and F are on the same plane, i.e. the linkage is completely flattened to 
form an equilateral hexagon. Take θ1 and θ2 in this configuration as θ1e 
and θ2e.
	 The relationship among the geometric parameters of the threefold-
symmetric Bricard linkage and the design parameters of the linkage in the 
alternative forms can be found geometrically. Several alternative forms 
have been studied. Here only two of the most interesting ones, proposed 
by Pellegrino (2002), are discussed.

Figure 6.13 � The alternative form of threefold-symmetric Bricard linkage.
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	 A reproduction of the first linkage is shown in Figure 6.14. For conven-
ience, let us call it Linkage I. The other, Linkage II, is shown in Figure 
6.15. The geometric parameters of the original threefold-symmetric Bricard 
linkage and its alternative form of both linkages are as follows (Chen et 
al., 2005).

  
(a)	 (b)

Figure 6.14 � Motion sequence of Linkage I. (a) Fully expanded configuration and 
(b) blockage occurs during folding.

  
(a)	 (b)

  
(c)	 (d)

Figure 6.15 � Motion sequence of Linkage II. (a) Fully expanded, (b) to (c) inter
mediate and (d) fully folded configurations.
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,

,  ,

, ,	 (6.8)

,

, .

The input–output curve of both linkages is plotted in Figure 6.16. When 
the models are fully expanded, they are flat, corresponding to point D 
on the curve. The completely folded position corresponds to point F on 
the curve. It is at this point that the similarity of these two linkages 
ends.
	 For Linkage I, the folding process can be traced along the input–output 
curve from D to F via B, see Figure 6.16. However, the movement of 
linkage is found to be physically blocked at point B because the ends of 
bars of each hit other, see Figure 6.14(b). This model is made from solid 
steel bars connected by brass hinges, which are fairly rigid and allow 
almost no deformation. Hence, the motion terminates at B.
	 It has been observed that the linkage did fold up if it was made from 
less rigid material such as card or weak hinges. While folding, a force has 
to be applied to linkage to enable joints to deform slightly. A model shown 
in Figure 6.17, which is made from card, demonstrates this process. After 
moving from the configuration shown in Figure 6.17(a) to that in Figure 
6.17(b) during folding, a force is applied to make the model folded to that 
in Figure 6.17(c) and then to that in Figure 6.17(d).

Figure 6.16  θ2 versus θ1 curve of the 6R linkage with twist a = p  – arctan 2.
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	 A close examination of the input–output curve reveals that, in the card 
model, the folding process corresponds to a movement from D to F′ of the 
input–output curve, instead of F, due to the fact that curve is periodic and 
θ1F 9 = 2π + θ1F, θ2F 9 = 2π + θ2F. The reason for this is that α = π – arctan2, i.e. 
116.57°, is sufficient close to 2π/3, i.e. 120°. For the 6R linkage with twist 
2π/3, the input–output curve crosses at the point θ1 = θ2 = π. Hence, when the 
force is applied to the linkage with α = π – arctan2, an imperfection is intro-
duced to the twist of the linkage which alters to 2π/3. The folding process 
reaches bifurcation point E. When the force is released, the twist of linkage 
changes back to α = π – arctan2. Accordingly, (θ1, θ2) reaches point F′.
	 Linkage II behaves differently. The folding process takes route from D 
to F via A and C. There is no blockage during deployment and the struc-
ture can be folded up completely, as shown in Figure 6.15.

6.3  Line and plane symmetric Bricard linkage and its 
alternative forms

Another Bricard linkage found to be useful in creation of motion structures 
is that with both line and plane symmetry.

     
(a)	 (b)

     
(c)	 (d)

Figure 6.17 � Card model of Linkage I. (a) At D, (b) B, (c) E and (d) F′ of the com-
patibility path.



130    The Bricard linkages

	 Figure 6.18 shows the folding sequence of a 6R foldable frame proposed 
by Pellegrino, Green, Guest and Watt (2000), whose geometry is shown in 
Figure 6.19. Six bars with square cross-section, 1-2, 2-3, 3-4, 4-5, 5-6 and 
6-1, are connected by six hinges at 1, 2, 3, 4, 5 and 6, to form a rectangu-
lar frame with a symmetric plane passing through hinges 1 and 4. Note 
that the bars are laid tilted by an angle μ, and the hinges are placed on 
either the inner or outer surface of the bars. The frame can be folded into a 
bundle. Links 12, 34, 45 and 61 have length l1, and links 23 and 56 have 
length l2. When 2l1 < l2, the frame can folded and hinges 1 and 4 are a dis-
tance apart in the folded configuration. When 2l1 = l2, the frame is a square 
and hinges 1 and 4 meet when completely folded. When 2l1 > l2, the frame 
cannot be completely folded as hinges 1 and 4 collide during folding.
	 This 6R frame is a linkage with usually one internal mobility. It is not in 
the original form of a 6R linkage because in mechanism theory, links 
always span the shortest distance between two adjacent revolute hinges, 
whereas here the physical links do not. Thus we name the frame as the 

Figure 6.18 � Folding sequence of the 6R foldable frame.

Figure 6.19 � The geometry of the 6R foldable frame.
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alternative form of the original linkage. By extending the hinge axes of the 
six-bar frame, we are able to identify the corresponding links of the ori-
ginal linkage, Figure 6.20.
	 Because of symmetry of the 6R frame, we have

.	 (6.9)

Since axes of joints 2 and 3 meet at point A and axes of joints 5 and 6 
meet at point B,

.	 (6.10)

Following the convention given by Beggs (1966), we can define axes xi and 
zi in the original 6R linkage shown in Figure 6.21. Let x3 at point A be per-
pendicular to both z2 and z3 and point out of the paper, and x6 at point B 
be perpendicular to axes z5 and z6 and also point out of the paper, as 
shown in Figure 6.21. So the twists of the linkage are

, ,	 (6.11a)

,	 (6.11b)

and offsets

 and .	 (6.12)

Figure 6.20 � The 6R frame and its original linkage.
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Comparing Eqs (6.10)–(6.12) with Eq. (2.30), it can be concluded that this 
original linkage is a line-symmetric Bricard linkage with symmetric line 
passing through the centre and perpendicular to the paper for the configu-
ration in Figure 6.21.
	 Note that, if either x3 or x6 is reversed, which is possible because they cor-
respond to zero length links, the twists α23 or α56 have to change accordingly. 
For instance, if x6 reverses its direction, Eq. (6.11b) has to be replaced by

,

which indicates that this original linkage is actually a plane-symmetric 
Bricard linkage by comparison with Eq. (2.31).
	 It is therefore concluded that the corresponding original linkage of the 
6R frame is a special Bricard linkage with two-fold symmetry. Next, we 
try to find the relationship between the geometric parameters of the ori-
ginal linkage and those of the alternative form.
	 Because of symmetry, only links 12 and 23 are studied, as shown in 
Figure 6.22 with both the original linkage and the alternative form. Let 
ED = l1 and EG = l2. We have

.

DM is the link 12 in original linkage, MA is the offset of joint 2 and 
∠FNH is the twist of link 23. So we have

Figure 6.21 � The original Bricard linkage. Note that axes x3 and x6 are not 
drawn.
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,

,	 (6.13)

.

For the 6R frame, the revolute variables of the original linkage at the fully 
expanded and fully folded configurations are

	 (6.14)

Applying the matrix method, the closure equations of this Bricard linkage 
are obtained as

,	 (6.15a)

,	 (6.15b)

Figure 6.22 � The detailed links of a six-bar frame and its original linkage.
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, , .	 (6.15c)

Figure 6.23 shows the relationship of θ2 vs θ1.
	 However, further analysis has uncovered that the linkage shown in 
Figure 6.18 always has a bifurcation point as demonstrated in Figure 6.24 
(Chen and You, 2009; Chen and Chai, 2011). For the 6R frame with 
2l1 ≤ l2 and 0 ≤ μ ≤ π/2,

always holds because of the geometric relationship given by Eq. (6.13). By 
analysing motion path, it is found that there is at least one bifurcation 
between fully expanded and folded configurations.

Figure 6.23 � The input–output curve for the Bricard linkage.

(a)	 (b)	 (c)

Figure 6.24 � The bifurcation of a model frame. (a) Bifurcation point, (b) the confi
gurations of the spherical 4R linkage in which the bottom left and top 
right corner hinges are frozen and (c) configuration similar to (b) but 
with other two hinges frozen.
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	 The bifurcation can be avoided should α23 be greater than π/2 and

.

This only becomes possible when the horizontal bars are replaced by 
inclined bars. Figure 6.25 shows such an example in which

and α12 = α45 = 3π/2, α23 = α56 = 2π/3 and α34 = α61 = π/2. As expected no bifur-
cation is detected in the model. The design retains two-fold symmetry. 
Details of the bifurcation analysis and the design involving inclined bars 
can be found in Chen and You (2009).

  

Figure 6.25 � The frame without bifurcation.



7	 Layouts of spatial motion 
structures

7.1  Tilings and patterns

One of the most important aspect in design of large spatial motion struc-
tures is the identification of a suitable layout. As demonstrated in Chapters 
5 and 6, in a chosen layout, the building blocks, often based on a known 
mechanism, are repeatedly used leading to a generic solution for a type of 
motion structure. The number of building blocks can be altered depending 
on the practical size requirement but the mobility of each block is always 
retained.
	 Since most of the building blocks, though three dimensional, can be rep-
resented by two dimensional polygons schematically, a convenient method 
for the design of layouts is to utilise a mathematical tool known as tiling, 
also frequently referred to as tessellation.
	 A plane tiling is a countable family of closed sets which cover the plane 
without gaps or overlaps. The closed sets are called tiles of the tiling. The 
layout of tiles, termed as a pattern in tiling, is a design which repeats some 
motif in a more or less systematic manner. The art of designing tilings and 
patterns is clearly extremely old and well developed (Beverley, 1999; 
Evans, 1931; Rossi, 1970). By contrast, the science of tilings and patterns, 
which means the study of their mathematical properties, is comparatively 
recent and many parts of the subject have yet to be explored in depth. The 
most methodological study of tilings and patterns can be found in Grün-
baum and Shephard (1986). Only a brief introduction is provided here.
	 In mathematics tilings by regular polygons are usually represented by 
the number of sides of the polygons around any cross point in the clock-
wise or anti-clockwise order. For instance, (36) is a tiling in which each of 
the points is surrounded by six triangles, ‘3’ is the number of the sides of a 
triangle and superscript ‘6’ is the number of triangles. Similarly, (33.42) 
means three triangles and two squares around a cross-point. And (36;32.62) 
represents a two-uniform tiling in which there are two types of points, one 
type is surrounded by six triangles whereas the other type is surrounded by 
two triangles and two hexagons. The tilings accommodating regular poly-
gons can be classified into four types: regular and uniform tilings, 
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k-uniform tilings, equitransitive and edge-transitive tilings, and tilings that 
are not edge-to-edge (Grünbaum and Shephard, 1986).
	 The only edge-to-edge monohedral tilings by regular polygons are the 
three regular tilings shown in Figure 7.1. The basic tiles are identical equi-
lateral triangles, squares and regular hexagons, respectively. There exist 
precisely eleven distinct edge-to-edge uniform tilings by more than one type 
of regular polygons such that all vertices are of the same type. They are (36), 
(34.6), (33.42), (32.4.3.4), (3.4.6.4), (3.6.3.6), (3.122), (44), (4.6.12), (4.82) 
and (63). An edge-to-edge tiling by regular polygons is called k-uniform if 
its vertices form precisely k transitivity classes with respect to the group of 
symmetries of the tilings. Denote K(k) as the number of distinct k-uniform 
tilings. K(1) = 11, K(2) = 20, K(3) = 39, K(4) = 33, K(5) = 15, K(6) = 10, K(7) = 7 
and K(k) = 0 when k ≥ 8. So the total number of distinct k-uniform tilings is 
135. These tilings can be modified into many more tilings and patterns with 
methods such as transformation of symmetry, transitivity and regularity, 
tilings that are not edge-to-edge and patterns with overlap motifs.
	 The regular and uniform tilings, though simple, can be extended by allow-
ing for each tile itself containing a pattern that differs from the polygonal 

      

(a)	         (b)

(c)

Figure 7.1 � Edge-to-edge monohedral tilings by regular polygons. (a) (36), (b) 
(44) and (c) (63) tilings.
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shape of the tile. If a building block, consisting of a single mobile element or 
a mobile assembly of a number of interconnected elements, has a planar 
schematic representation that can be inscribed by a triangular, square or 
hexagonal tile, the corresponding tiling instantly gives a suitable layout pro-
vided that the patterns within a tile can be seamlessly connected to those in 
neighbouring tiles. Figure 7.2 shows a number of possibilities. The remain-
ing task is to ensure that the kinematic requirements can be met in a particu-
lar tiling.
	 In the following sections, the above approach is to be applied to motion 
structures based on the Bennett, Myard and Bricard linkages.

  
(a)	 (b)

  
(c)	 (d)

Figure 7.2 � (a)–(g) Repeated patterns surrounded by triangular and square tiles 
in regular and uniform tilings. Some of them, e.g. (a)–(e) are in fact 
also edge-to-edge uniform tilings by more than one type of regular 
polygons
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7.2  Layouts for the Bennett linkage

7.2.1  Case I

A single Bennett linkage consisting of four links can be represented schemat
ically by a square as in Chapter 5. When it is used as a building block 
inscribed by a square of identical orientation, tiling (44) in Figure 7.1(b) 
presents the simplest way to form an assembly in which other Bennett link-
ages are connected to each of its sides completing a layout shown in Figure 
7.3(a).
	 The kinematics of the assembly can be examined by first considering 
two adjacent Bennett linkages ABCD and DCEF, Figure 7.3. Without other 

  
(e)	 (f)

  
(g)

Figure 7.2 � continued
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Bennett linkages connected to them the two together would have more 
than one degree of mobility because each can move independently. Gold-
berg (1943) found that links BC and CF could be welded together, result-
ing in the Goldberg 5R linkage. However, the same process cannot be 
repeated if other adjacent Bennett linkages are involved unless the Bennett 
linkages degenerate to planar 4R linkages. Hence, this assembly is in 
general not mobile.

7.2.2  Case II

Should the layout given in Figure 7.2(f ) be selected, the building block 
inscribed by the square tile is a Bennett linkage with extended links, Figure 
7.4(a), and if the revolute joints are kept at A, B, C and D, an assembly 

Figure 7.3 � Several Bennett linkages connected side by side.

          
(a)	 (b)

Figure 7.4 � (a) A Case II building block based on the Bennett linkage and (b) assem-
bly of the building blocks.
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can then be formed, Figure 7.4(b). Next, let us examine kinematically the 
mobility of such an assembly.
	 Let

, ,

, ,

, ,

, ,	 (7.1)

where ks is a constant with 0 < ks < 1. All of squares in Figure 7.4(b) have 
zero offsets. Hence, they satisfy the geometric conditions for the Bennett 
linkage, i.e. Eqs (2.23)–(2.25).
	 Considering Bennett linkages 1, 2, 3 and 4, there are

,	 (7.2a)

,	 (7.2b)

,	 (7.2c)

and

.	 (7.2d)

Combining Eqs (7.2a) and (7.2c), as well as (7.2b) and (7.2d), respectively, 
gives

,	 (7.3a)
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	 (7.3b)

From Eqs (7.3a) and (7.3b), we obtain that

.	 (7.3)

The solutions to Eq. (7.3) are, for any 0 ≤ α ≤ 2π and 0 ≤ β ≤ 2π,

,

,

,

,

leading to

, or , and , or .	 (7.4)

It can be concluded from Eq. (7.4) that only when α and β are 0 or π can 
the assembly based on the tiling shown in Figure 7.4(b) remain mobile. 
The Bennett linkage now degenerates to a planar 4R linkage for Bennett 
linkages with twists other than 0 or π the mobility vanishes.

7.2.3  Case III

Now modify the building block further to that shown in Figure 7.5(a), in 
which all of the links are extended at both ends. Using the pattern of 
Figure 7.2(g) produces the assembly shown in Figure 7.5(b), which is iden-
tical to the layout given in Section 5.2.1. Hence, the assembly is mobile if 
the conditions given in Section 5.2.2 are met.

7.2.4  Case IV

This is an extension of Case III. If only two corners of the Bennett linkage 
are extended, Figure 7.6(a), the assembly shown in Figure 7.6(b) can be 
obtained. Let the Bennett linkage ABCD have lengths a, b and twists α, β 
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and the interconnected Bennett linkages around it, which are marked with 
numbers 1 to 8, have lengths ai, bi and twists αi, βi (i = 1, 2, . . ., 8). It can be 
found that the mobility conditions for this assembly are as follows (Chen 
and You, 2008b).

	 (7.5a)

or

(a)

(b)

Figure 7.5 � (a) A Case III building block based on the Bennett linkage and (b) 
assembly of the building blocks.
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	 (7.5b)

Eqs (7.5a) and (7.5b) in fact correspond to two different assemblies. Eq. 
(7.5a) indicates that the guidelines are along AC direction. The large Bennett 
linkages do not overlap along the guidelines but they do along the diagonals 
parallel to BD direction. On the other hand, Eq. (7.5b) points to that the 
guidelines are along BD direction. Again the Bennett linkages overlap along 
the guidelines, but not so along the diagonals parallel to AC direction.
	 Nevertheless the lengths of each Bennett linkage in both assemblies must 
satisfy

 (i = 1, 2, . . ., 8),	 (7.6)

because of Eq. (2.24).
	 The expansion sequence of models of the two mobile assemblies in this 
case are given Figures 7.7(a) and (b), respectively.
	 Case IV assemblies can also be regarded as a special case of Case III if 
we consider that the length of a link can have negative value. Readers may 
refer to Chen and You (2008b) for detailed discussion.

    
(a)	 (b)

Figure 7.6 � (a) A Case IV building block based on the Bennett linkage and (b) 
assembly of blocks.
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7.3  Assemblies of Myard linkages

7.3.1  Building blocks

The Myard linkage (Myard, 1931; Baker, 1979) consists of five bars, one 
of which has zero length. An umbrella-shaped motion structure, Figure 
7.8, was reported consisting of a series of circumferentially connected 
Myard linkages (Briand and You, 2007). When the assembly consists of n 
identical Myard linkages, there are n joints at the centre point. Because the 
frame forms a flat polygon when fully expanded with each Myard linkage 
forming a triangle, the twist of each Myard linkage at centre must be 
α12 = π/n. The assemblies with n = 3, 4 and 6 can be represented schemati-
cally by a triangle, square and hexagon, respectively, which can be used as 

      

      

      
(a)	 (b)

Figure 7.7 � (a) Models of the Case IV assembly. The twists of the Bennett linkages 
are governed by (a) Eq. (7.5a) and (b) Eq. (7.5b), respectively.
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the building blocks to form large motion structures following (36), (44) and 
(63) tilings (Liu and Chen, 2009).

7.3.2  Case I

The building block composed of three Myard linkages with α12 = π/3 
expands to a shape that can be inscribed by a tile whose shape is an equi-
lateral triangle, Figure 7.9(a). Hence, (36) tiling can be used to obtain a 
layout. A number of the same blocks can be assembled and they are con-
nected through the continuous crossbars, Figure 7.9(b). The assembly is 
mobile because all of the Myard linkages are identical and they move syn-
chronously. The centres of the building blocks move upwards or down-
wards when the assembly is placed on a horizontal surface, that is, in 

Figure 7.8 � A schematic diagram for an umbrella-like deployable frame made 
from seven Myard linkages. Only one of the Myard linkages is 
highlighted.

(a)	 (b)

Figure 7.9 � The assembly of Myard linkages with a12 = p /3. (a) An assembly of 
three such linkages as a unit and (b) assembly with six units.
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Figure 7.9(b), O1, O3 and O5 move upwards together, whereas O2, O4 and 
O6 move downwards together.

7.3.3  Case II

Should the building block have four Myard linkages with α12 = π/4, the tile 
is a square and (44) tiling becomes a suitable layout, Figure 7.10. Again the 
building blocks are connected by extended links forming cross bars. The 
building blocks move synchronously with the centres in the squares with 
the light shade going upwards whereas those in dark shades downwards if 
the assembly is placed on a horizontal surface.

7.3.4  Case III

Six Myard linkages with α12 = π/6 can be put together to form an umbrella 
frame shown in Figure 7.11(a). However, it turned out that this assembly 
cannot be used directly as a building block with (63) tiling as we have done 
with the previous two cases because the kinematic conditions cannot be 
satisfied. Certain modification has to be made. Figure 7.11(b) is the 
umbrella assembly with six additional Myard linkages identical to those 
forming the umbrella which are joined to the umbrella by pairs of cross-
bars. The assembly still has mobility one. When centre C moves upwards 
during motion, Ci (i = 1, 2, . . ., 6) move downwards. Using this as the build-
ing block that is inscribed by a hexagonal tile and following tiling (63), 
three blocks can be assembled together, Figure 7.11(c). The resulting 
assembly is mobile but has more than one degree of mobility because three 
Myard linkages meeting at point A can move independently. In order to 

(a)	 (b)

Figure 7.10 � The assembly of Myard linkages with a12 = p /4. (a) An assembly 
of four such linkages as a unit and (b) assembly with four units.
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synchronise their motions three pairs of bars, shown in dash line in Figure 
7.11(c), are added so that there are a total of six Myard linkages around 
point A to form an umbrella frame. Now the entire assembly has mobility 
one. This construction process can be repeated to form a large motion 
structure.

(a)	 (b)

(c)

Figure 7.11 � Assembly of Myard linkage with a12 = p /6. (a) An assembly of six 
such linkages and (b) a unit and (c) assembly with three units.
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7.4  Assemblies of threefold-symmetric Bricard linkages

7.4.1  Case I

The threefold-symmetric Bricard linkage has six links of equal length. It is 
natural to use (63) tiling for the formation of motion structure.
	 Consider a portion of the assembly shown in Figure 7.12(a). Loops 1, 2 
and 3 are all made of identical threefold-symmetric Bricard linkages with 
twists of α and 2π – α alternating from one link to the other. Let

.	 (7.7)

Then for loop 2,

.	 (7.8)

Considering loop 3 gives

.	 (7.9)

Now a problem arises, as for loop 1,

,	 (7.10)

meaning that loop 1 violates the condition of the threefold-symmetric 
Bricard linkage given in Eq. (6.1). Thus, the assembly consisting of more 
than one threefold-symmetric Bricard linkage will become immobile.
	 This layout can be revived by using a 6R loop which has the same twist 
for all of the six links, either α or 2π – α for loop 1 in the centre while keep 
the rest the same. The 6R loop at 1 is in fact a very special line and plane 
symmetric Bricard linkage that has mobility two, resulting in a discontinuous 

Figure 7.12 � An assembly of threefold-symmetric Bricard linkage.
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motion. The kinematic motion requirement can now be met. However, the 
entire assembly no longer exhibits the synchronised motion common for 
assemblies of mobility one.

7.4.2  Case II

In Section 6.4 we showed that the threefold-symmetric Bricard linkage 
expands to a triangular shape shown in Figure 7.13(a). Thus, it may be 
possible to use (36) tiling to construct an assembly.
	 A typical connection of threefold-symmetric Bricard linkages in the (36) 
tiling is as shown in Figure 7.13(b) in which the central linkage shares two 
common links with each of the adjacent linkages. The projections of its 
probable expansion sequence are shown in Figures 7.13(c) and (d). It 
becomes obvious that the central linkage behaves completely differently 
from those around it. Hence, such an arrangement cannot be repeatedly 
used to construct a mobile assembly.

7.4.3  Case III

The threefold-symmetric Bricard linkage can be modified by extending the 
links into cross bars to form the building block shown in Figure 7.14 so 
that it can be tessellated by (36) tiling to make a mobile assembly, which is 
similar to that presented in Section 6.1.

(a)	 (b)

(c)	 (d)

Figure 7.13 � (a) A threefold-symmetric Bricard linkage with twists of p /3 or 
2p /3, (b) possible connections, (c) and (d) projection of probable 
deployment sequence.
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7.5  Conclusion and discussion

A tessellation method to build motion structures using repeated building 
blocks and tiling technique is presented in this chapter. It involves three 
steps: selection of suitable tilings, construction of building blocks using 
common or overconstrained mechanisms and validation of geometrical 
compatibility. The first two steps have to be taken jointly and it may pos-
sibly involve many design iterations.
	 This method has been applied to the assemblies consisting of Bennett 
linkages, Myard linkages and threefold-symmetric Bricard linkages, respec-
tively. All three regular tilings (36), (44) and (63), have been adopted and a 
number of building blocks of different types have been discussed. Some of 
the motion structures that have been described in previous chapters have 
been reconstructed by this tessellation method.
	 It should be pointed out that there are many ways of constructing build-
ing blocks, including those made from a combination of more than one 
type of three dimensional overconstrained linkages. Great care has to be 
taken in design of a building block as its motion could have profound 
influence on the overall performance of the assembly. For instance, if 
compact folding is the objective, the building blocks themselves have to 
exhibit this property. Furthermore, once a design is obtained attention has 
to be paid to the size and shape of the links and details of the joints for a 
desirable folding configuration may not be realised due to intersection of 
links.
	 Only regular and uniform tilings and edge-to-edge tilings are utilised 
here. Nevertheless this approach seems to yield useful results judging by 
the successful examples illustrated here. Readers are encouraged to explore 
other tilings and patterns that can be found from references such as Grün-
baum and Shephard (1986).

Figure 7.14 � A building block based on the threefold-symmetric Bricard linkage 
with twists of p /3 or 2p /3.
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	 Note that some of the motion structures with layouts based on tilings 
exhibit three dimensional motion and have curved profiles despite that 
tilings are essentially two dimensional. This is due to the fact that the 
building blocks are based on three dimensional mechanisms. A truly three 
dimensional layout may be obtained using the uniform polyhedra. In the 
past, Kovács et al. (2004) proposed a class of expandable polyhedral struc-
tures transforming between dodecahedron and truncated icosahedrons. 
More recently, eight threefold-symmetric Bricard linkages are connected 
with the layout of an octahedron, resulting in a spatial motion structure 
whose motion follows the transformation between octahedron and cub-
octahedron, Figure 7.15 (Cahyono and Chen, 2009). Such motion struc-
tures are likely to expand radially forming deployable cubes or spheres. It 
is much harder to retain the mobility of interlinked building blocks in a 
three dimensional layout because of the strict constraints in maintaining 
the shape of a polyhedron, which is why the number of successful exam-
ples has so far been rather limited.

      

      

Figure 7.15 � Transformation between octahedron and cub-octahedron with 
motion structures based on threefold-symmetric Bricard linkages.



Notes

2  Fundamental concepts, methods and classification

1	 Flexistar 6 is produced by the Orb Factory Ltd, Halifax, NS, Canada.

3  Planar double chain linkages

1	 In the Hoberman sphere, AE = BE. It is not always necessary
2	 Some diagrams shown in this chapter contain μ and ν which are anti-clockwise. 

They are therefore negative in value.
3	 Readers may follow a different route in writing down the vector form of the 

closure condition. However, it always ends up with Eq. (3.10) because of the 
loop parallelogram constraint.

4	 Some diagrams shown in this chapter contain θ which are anti-clockwise. It is 
therefore negative in value.

4  Spatial rings and domes

1	 Further concepts could be generated in a similar way.

6  Spatial motion structures based on Bricard linkages

1	 The increased mobility can be infinitesimal as well as finite.
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