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Preface

I organized several seminars on cryptography, the students generally reflected that
cryptography doesn’t needmuchmathematics, and computer language and computer
working environment are more important. Later, I reviewed several common cryp-
tography textbooks at home and abroad. If so, these textbooks are for engineering
students, and the purpose is to cultivate cryptographic engineers. It is my original
intention to write a textbook of theoretical cryptography for students of mathematics
department and science postgraduates, which systematically teaches the statistical
characteristics of cryptographic system, the computational complexity theory of
cryptographic algorithm and the mathematical principles behind various encryption
and decryption algorithms.

With the rapid development of the new generation of digital technology, China
has entered the era of information, network and intelligence. Cryptography is not
only the cornerstone of national security in the information age, but also a sharp
sword to protect people’s property security, personal privacy and personal dignity.
After the establishment of the first-class discipline of Cyberspace Security, China has
established the first-class discipline of security. In particular, on December 19, 2019,
China officially promulgated the code law to formulate a law for a discipline. This is
rare all over the world. Lately, the central government explicitly requests to cultivate
our own cryptography professionals. It can be seen that the discipline construction
and personnel training of cryptography have been promoted to the height of national
security, which has become amajor national strategic demand.Writing a textbook on
cryptography theory aims to cultivate our own cryptographers, which is the ultimate
reason for writing this book.

Cryptosystem is an ancient art. Since the birth of human beings, there has been
cryptosystem. For example, the means of communication used by human beings in
war, the marks and conventions used by special groups can be classified into the
category of cryptosystem art. Among them, the famous Caesar cryptosystem can be
regarded as the representative work of ancient cryptosystem. For thousands of years,
cryptosystem, as a technology, relies on personal intelligence and ingenuity. Occa-
sionally, some mathematical ideas and methods were used fragmentarily. This era of
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vi Preface

cryptographers changed fundamentally only after the great American mathematician
M. Shannon came out.

In 1948 and 1949, Shannon successively published two epoch-making papers in
the technical bulletin of Bell laboratory. In the first paper, Shannon established the
mathematical theory of communication and established the random measurement of
information by using the method of probability theory, thus laid the foundation of
modern information theory. In the second paper, Shannon established the informatics
principle of cryptography, introduced the probability and statistics principle system
of mathematics into cryptography structure and cryptanalysis, and transformed the
ancient cryptography technology from art to science. Therefore, people not only
call Shannon the father of modern information theory, but also the father of modern
cryptography.

After Shannon’s great changes from the era of cryptographer to the era of cryp-
toscience, the ancient cryptology technology ushered in the second historic leap in
1976, that is, the era of symmetric cryptography changed into the era of public key
cryptography. In 1976, two Stanford University scholars W. Diffie and M. Hellman
published a pioneering paper on asymmetric cryptography in IEEE Transactions
on Information Theory and then entered the era of public key cryptography. Public
key cryptography and mathematics are more deeply crossed and integrated, making
cryptography an inseparable branch of mathematics. The era characteristic of public
key cryptography is to change the cryptography from a few users to mass consumer
products, which greatly improves the efficiency and social value of the cryptography.
Nowadays, asymmetric cryptosystem iswidely used inmessage authentication, iden-
tity authentication, digital signature, digital currency and blockchain architecture,
which cannot be replaced by classical cryptosystem.

Based on Shannon’s information theory, this book systematically introduces the
information theory, statistical characteristics and computational complexity theory
of public key cryptography, focusing on the threemain algorithms of public key cryp-
tography, RSA, discrete logarithm and elliptic curve cryptosystem, strives to know
what it is and why it is, and lays a solid theoretical foundation for new cryptosystem
design, cryptoanalysis and attack.

Lattice theory-based cryptography is a representative technology of postquantum
cryptography, which is recognized by the academic community as being able to
resist quantum computing attacks. At present, the theory and technology of lattice
cryptography have not entered university textbooks, and various achievements and
introductions have been scattered in research papers at home and abroad in the past
two decades. The greatest feature of this book is that it systematically simplifies
and combs the theory and technology of lattice cryptography, making it a classroom
textbook for senior college students and postgraduates of cryptography, which will
play an important role in accelerating the training of modern cryptography talents in
China.

This book requires the reader to have a good foundation in algebra, number theory
and probability statistics. It is suitable for senior students majoring in mathematics,
compulsory for cryptography and science and engineering postgraduates. It can also
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be used as themain reference book for scientific researchers engaged in cryptography
research and cryptographic engineering.

The main contents of this book have been taught in the seminar. My doctoral
students Hong Ziwei, ChenMan, Xu Jie, ZhangMingpei, Associate Professor Huang
Wenlin and Dr. Tian Kun have all put forward many useful suggestions and help for
the contents of this book. In particular, ChenMan has devoted a lot of time and energy
to text printing and proofreading. Here, I would like to express my deep gratitude to
them!

Beijing, China
November 2021

Zhiyong Zheng
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Acronyms

1. [x] denotes the largest integer not greater than the real number x , �x� denotes
the smallest integer not less than the real number x , so there are

[x] ≤ x < [x] + 1, �x� − 1 < x ≤ �x�.

2. C denotes a complex field, R denotes a real number field, Q denotes a rational
number field, Fq denotes a finite field of q elements, q = pr , p is prime, Z
denotes a integer ring, Zm denotes a residue class ring of modm (m ≥ 1).

3. (a, b) denotes the greatest common divisor of two integers and sometimes a
two-dimensional vector.

4. amodn denotes the minimum nonnegative residue of the integer a modulo n,
i.e., 0 ≤ amodn < n. Sometimes it means minimum absolute residue, i.e.,
|amodn| < 1

2n.
5. Let F be a field, F[x] denotes a polynomial ring of one variable over the field

F. Sometimes the variable T is used, i.e., F[T ], where F = C,R,Q, or F = Fq

is a finite field.
6. The base of logarithm logN can be any real number b > 1. If b = 2, it is binary

logarithm, and when b = q, it is q-base logarithm. Sometimes logN also means
natural logarithm, which is determined according to the specific situation.

7. P{A} denotes the probability of occurrence of random event A.
8. If G is a group, a ∈ G is the element of the group. Then o(a) denotes the order

of a.

xi



Chapter 1
Preparatory Knowledge

Modern cryptography and information theory is a branch of mathematics which
develops rapidly. Almost all mathematical knowledge, such as algebra, geometry,
analysis, probability and statistics, has very important applications in information
theory. Especially, some modern mathematical theories, such as algebraic geometry,
elliptic curve and ergodic theory, play more and more important roles in coding and
cryptography. It can be said that information theory is the most dynamic branch of
modernmathematicswithwide application, strong intersection. This chapter requires
the reader to have a preliminary knowledge of analysis, algebra, number theory and
probability statistics.

1.1 Injective

Let σ be a mapping of two nonempty sets A to B, denoted as A
σ−→ B. Generally,

the mappings between sets can be divided into three categories: injective, surjective
and bijective.

Definition 1.1 Let σ be a mapping of two nonempty sets A → B, we define
(i) a, b ∈ A, if a �= b ⇒ σ(a) �= σ(b), call σ an injective of A → B, it is called

injective for short.
(ii) If any b ∈ B, there is a a ∈ A ⇒ σ(a) = b, call σ a surjective of A → B.
(iii) If A

σ−→ B is an injective and a surjective, call σ a bijective of A → B.
(iv) Let 1A be the identity mapping of A → A, which is defined as

1A(a) = a,∀ a ∈ A.

(v) Suppose A
σ−→ B

τ−→ C are two mappings, define the product mapping of
τ and σ , τσ : A → C , and define as

© The Author(s) 2022
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2 1 Preparatory Knowledge

τσ (a) = τ(σ (a)), ∀ a ∈ A.

Obviously, the product of two mappings has no commutativity but has the fol-
lowing associative law.

Property 1 Let A
σ−→ B

τ−→ C
δ−→ D be three mappings, then we have

(δ · τ) · σ = δ · (τ · σ). (1.1)

Proof It can be verified directly by definition.

If A
σ−→ B is a given mappings, obviously, there is

σ1A = σ, 1Bσ = σ. (1.2)

The above formula shows that identity mapping plays the role of multiplication
identity in the product of mapping.

Definition 1.2 (i) Suppose A
σ−→ B

τ−→ A are two mappings, if τσ = 1A, call τ

is a left inverse mapping of σ , σ is a right inverse mapping of τ .
(ii) Let A

σ−→ B
τ−→ A, If τσ = 1A, σ τ = 1B , call τ is an inverse mapping of σ .

Denote as τ = σ−1.

The essential properties of injective, surjective and bijective between sets are
described by the following lemma.

Lemma 1.1 (i) If A
σ−→ B has an inverse mapping B

τ−→ A, that is στ = 1B and
τσ = 1A, then τ is unique ( denote as τ = σ−1).

(ii) A
σ−→ B is an injective if and only if σ has a left inverse mapping B

τ−→ A,
that is τσ = 1A.

(iii) A
σ−→ B is an surjective if andonly ifσ hasa right inversemapping B

τ−→ A,
that is στ = 1B.

(iv) A
σ−→ B is an bijective if and only if σ has an inverse mapping τ , and τ is

unique.

Proof First of all, prove (i). Let B
τ1−→ A and B

τ2−→ A be two inverse mappings of
σ , then we have

τ1σ = 1A, τ2σ = 1A, and στ1 = 1B, σ τ2 = 1B,

From (1.2), we have

τ1 = τ11B = τ1(στ2) = (τ1σ)τ2 = 1Aτ2 = τ2,

so if σ has an inverse mapping, then the inverse mapping is unique.
To prove (ii), we note that if σ has a left inverse mapping τ , that is τσ = 1A,

then σ must be an injective, because if a, b ∈ A, a �= b, then we have σ(a) �= σ(b).
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If σ(a) = σ(b) ⇒ τ(σ (a)) = τ(σ (b)) ⇒ a = b, contradiction with a �= b. Con-
versely, if A

σ−→ B is an injective, then for the element σ(a) ∈ σ(A) in σ(A) ⊂ B,
Let τ(σ (a)) = a, For the elements in the difference set B\σ(A), arrange an image
randomly, then B

τ−→ A satisfies τσ = 1A. Similarly, we can prove (iii) and (iv),
we thus complete the proof.

In many books of information theory, we often confuse injective and bijective,
but they are two different concepts in mathematics, which needs attention.

1.2 Computational Complexity

In binary computing environment, the complexity of an algorithm is measured by
the number of bit operations. Bit, short for “Binary digit,” is the basic amount of
information, one bit represents one digit of binary system, two bits represent two
digits of binary system, so what is “bit operation”?

To understand “bit operation” accurately, we start with the b-ary expression of
real number. Let b > 1 be a positive integer, and any nonnegative real number xcan
be uniquely expanded into the following geometric series.

x =
∑

−∞<i≤k−1

dib
i

= dk−1b
k−1 + dk−2b

k−2 + · · · + d1b + d0 +
+∞∑

i=1

d−i b
−i ,

(1.3)

where ∀ di satisfies 0 ≤ di < b. So we can express x as

x = (dk−1dk−2 · · · d0d−1d−2 · · · )b, (1.4)

where (dk−1dk−2 · · · d0)b is called a b-ary integer, (0.d−1d−2 · · · )b is called a b-ary
decimal, and

x = (dk−1dk−2 · · · d0)b + (0.d−1d−2 · · · )b. (1.5)

If b = 2, then x = (dk−1dk−2 · · · d0d−1 · · · )2 is called the binary representation of x .
If b = 10, then

x = (dk−1dk−2 · · · d1d0d−1d−2 · · · )10
= dk−1dk−2 · · · d1d0.d−1d−2 · · · .

(1.6)

It is our customary decimal expression. It is worth noting that in any system, integers
and integers are one-to-one correspondence, and decimals and decimals are one-to-
one correspondence. For example, integer in decimal system corresponds to integer
in binary system, so does decimal. In other words, the real number of (0, 1) interval
on the real number axis corresponds to the decimal number of (0, 1) under the binary
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system one by one. It should be noted that we often ignore binary decimal; in fact,
it is the main technical support of various arithmetic codes, such as Shannon code.

Now let us see the b-ary expression of a positive integer n in the decimal system.
Let

n = (dk−1dk−2 · · · d1d0)b, 0 ≤ di < b, dk−1 �= 0,

k is the number of b-ary digits of n.

Lemma 1.2 The number k of b-ary digits of positive integer n can be calculated
according to the following formula:

k = [logb n] + 1, (1.7)

[x] denotes the largest integer not greater than the real number x.

Proof Because of dk−1 �= 0, there is bk−1 ≤ n < bk , that is

k − 1 ≤ logb n < k,

There’s k − 1 ≤ [logb n] on the left, [logb n] + 1 ≤ k on the right, and together
there’s

k = [logb n] + 1.

We complete the proof of Lemma 1.2.

Now let us see the addition operation in b-ary system. For simplicity, we con-
sider the addition of two positive integers in binary system. Let n = (1111000)2,
m = (11110)2, then n + m = 1111000 + 0011110 = 10010110, that is n + m =
(10010110)2. The addition of numbers on the same bit actually includes the fol-
lowing five contents (or operations).

1. Observe the numbers in the same bit and note if there are progressions in the
right bit(Every two goes into one).

2. If the upper and lower digits of the same bit are 0, and there is no progression
on the right side, the sum of the two digits is 0.

3. If both the upper and lower digits of the samedigit are 0, but there is a progression,
or if one of the two digits is 0 and the other is 1, and there is no progression, the
two digits in this digit add up to 1.

4. If two digits of the same digit have one 0, the other one is 1, and there is one
progression, or two digits are 1, and there is no progression, the result of addition
is 0, and one progression is put forward.

5. If two digits are 1 and have one progression, the sum result is 1 and one progres-
sion forward.



1.2 Computational Complexity 5

Definition 1.3 A bit operation is an addition operation on the same bit in binary
addition. Suppose A is an algorithm in binary system, we use Time(A) to represent
the number of bit operations in algorithm A, that is, Time(A) = completes the total
number of bit operations performed by algorithm A.

It is easy to deduce the number of bit operations of binary about addition and sub-
traction by definition. Let n,m be two positive integers, and their binary expression
bits are k and l respectively, then

Time(n ± m) = max{k, l}. (1.8)

In the same way, the number of bit operations required for the multiplication of B
and D in binary system is satisfied

Time(nm) ≤ (k + l) · min{k, l} ≤ 2kl. (1.9)

It is very convenient to estimate the number of bit operations by using the symbol “O ′′
commonly used in number theory. If f (x) and g(x) are two real valued functions,
g(x) > 0, suppose there are two absolute constants B andC such that when |x | > B,
we have

| f (x)| ≤ Cg(x), notes f (x) = O(g(x)).

This sign indicates that when x → ∞, the order of growth of f (x) is the same as
that of g(x). For example, let f (x) = adxd + ad−1xd−1 + · · · + a1x + a0(ad > 0),
then

f (x) = O(|x |d), or f (n) = O(nd), n ≥ 1.

For any ε > 0, there is
log n = O(nε), n ≥ 1.

From the lemmas of 1.2, (1.8) and (1.9), we have

Lemma 1.3 Let n,m be two positive integers, k and l are the bits of their binary
expression, respectively, if m ≤ n, then l ≤ k, and

Time(n ± m) = O(k) = O(log n);

Time(nm) = O(kl) = O(log n logm);

and Time(
n

m
) = O(kl) = O(log n logm).

In the above lemma, division is similar to multiplication. Next, we discuss the
number of bit operations required to convert a binary representation into a decimal
representation, and the number of bit operations required for n! to operate in binary.
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Lemma 1.4 Let k be the number of digits in binary of n, then

Time(n convert to decimal expression) = O(k2) = O(log2 n)

and
Time(n!) = O(n2k2) = O(n2 log2 n).

Proof To convert n = (dk−1dk−2 · · · d1d0)2 to decimal expression. Then divide n by
10 = (1010)2, and the remainder is 0, 1, 10, 11, 100, 101, 110, 111, 1000 or 1001, one
of these binary numbers, these ten numbers correspond to one of the numbers from 0
to 9 and are denoted as a0(0 ≤ a0 ≤ 9), put a0 as the decimal number of n. Similarly,
divide the quotient by 10 = (1010)2, and the remainder is converted into a number
from 0 to 9 as the ten digits of n in decimal system. If we go on like this, we use
division [log10 n] + 1 times, the bit operation required for each division is O(4k), so

Time(n convert to decimal expression) ≤ k · O(4k) = O(k2).

In the same way, we can prove the bit operation estimation of n!. We complete the
proof of Lemma 1.4.

Let us deduce the computational complexity of some common number theory
algorithms. Letm and n be two positive integers, then there is a nonnegative integer r
such thatm ≡ r(mod n),where 0 ≤ r < n,we call r the smallest nonnegative residue
of m under mod n, and denote as r = mmod n. If 1 ≤ m ≤ n, Euclid’s division
method is usually used to find the greatest common divisor (n,m) of n and m. If
(m, n) = 1, then there is a positive integer a such thatma ≡ 1(mod n), a is called the
multiplicative inverse of m under mod n, denote as m−1 mod n. By Bezout formula,
if (n,m) = 1, then there are integers x and y such that xm + yn = 1, we usually
use the extended Euclid algorithm to find x and y. If we find x, we actually calculate
m−1 mod n. Under the above definitions and notations, we have

Lemma 1.5 (i) Suppose m and n are two positive integers, then

Time(calculate mmod n) = O(log n · logm).

(ii) Suppose m and n are two positive integers, and m ≤ n, then

Time(calculate (n,m)) = O(log3 n).

(iii) Suppose m and n are two positive integers, and (m, n) = 1, then

Time(calculate m−1 mod n) = O(log3 max(n,m)).

(iv) Suppose n,m, b are positive integers, b < n, then

Time(bm mod n) = O(logm · log2 n).
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Proof To find the minimum nonnegative residue r of m under mod n is actually a
division with remainder!

m = kn + r, 0 ≤ r < n.

From the lemma 1.3,

Time(calculate mmod n) = O(log n · logm),

(i) holds. The Euclid algorithm used to calculate the greatest common divisor (n,m)

of n and m, in fact, it is a division of O(log n) times with remainder, so

Time(calculate (n,m)) = O(log3 n).

In Euclid algorithm, we can get x and y by pushing from bottom to top, such that
xm + yn = 1, this incremental process is called the expansion of Euclid algorithm,
therefore, if m ≤ n, then

Time(calculate m−1 mod n) = Time (calculate(n,m)) = O(log3 n).

(iv) the computational complexity of the power of an integer under mod n. the proof
method is the famous “repeated square method” . Let

m = (mk−1mk−2 · · ·m1m0)2

= m0 + 2m1 + 4m2 + · · · + 2k−1mk−1

be the binary representation of m, where mi = 0 or 1. First, let a = 1. if m0 = 1,
replace a with b, if m0 = 0, then a = 1 remains unchanged, and let b1 = b2 mod n,
this is the first square. If m1 = 1, replace a with ab1 mod n, if m1 = 0, a remains
unchanged, and let b2 = b21 mod n, this is the second square. So if we go on to the
square of j , we have

b j ≡ b2
j
(mod n).

Our calculation ends after the square of (k − 1); at this time, there is

a ≡ bm0+2m1+4m2+···+2k−1mk−1 ≡ bm(mod n).

Obviously, the number of bit operations per square is O((log n2)2) = O(log2 n).
There is a total of k square operations, k = O(logm). So (iv) holds. We have com-
pleted the proof.

Definition 1.4 If an algorithm f involves positive integers n1, n2, . . . , nr , whose
binary digits are k1, k2, . . . , kr , and there are absolute nonnegative integers d1, d2,
. . . , dr such that

Time( f ) = O(kd11 kd22 · · · kdrr ), (1.10)
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The complexity of algorithm f is called polynomial; otherwise, it is called nonpoly-
nomial.

From Lemma 1.4 , we can see that addition, subtraction, multiplication and division
between positive integers are polynomial algorithms, but n! operation is the simplest
example of nonpolynomial algorithm. If we do not need an exact value of n! and
only need an approximate value, we can get an approximate value of n! by using a
polynomial term algorithm based on Stirling formula (see Sect. 1.4 of this chapter).
In the formula (1.10), if d1 = d2 = · · · = dr = 0, the complexity of algorithm f is
constant, if d1 = d2 = · · · = dr = 1, the complexity of the algorithm f is said to
be linear (the same is true for quadratic, cubic, etc.). In order to characterize non-
polynomial algorithms, we introduce two concepts: exponential and subexponential
algorithms.

Definition 1.5 Suppose that an algorithm f involves a positive integer n, and its
binary digits are k, if

Time( f ) = O(t g(k)), (1.11)

where t is a constant greater than 1, and g(k) is a polynomial function of k and
deg g ≥ 1, then the computational complexity of f is exponential. If g(k) is not a
polynomial function, but a function smaller than a polynomial, such as e

√
k log k , then

the computational complexity of f is subexponential.

From the above definition, we can see the computational complexity of n!, let k
be the binary number of n, from 1.2, then n = O(2k), and then from 1.4,

Time(n!) = O(n2k2) = O(k222k) = O(23k),

So the computational complexity of n! in binary system is exponential. This is the
simplest example of exponential algorithm.

Bit algorithm cannot only define the computational complexity but also describe
the running speed and time complexity of computer. The so-called computer speed
refers to the total number of bits that the computer can complete in unit time (such as
a second, or 1 microsecond). Therefore, there is no difference between the compu-
tational complexity and the time complexity of an algorithm. We can use the figure
below to illustrate, suppose that a computer can complete 106 bit operations in one
second. When the binary bit of the algorithm is k = 106, the following figure lists
the running time of different computational complexity algorithms on this computer
(Table 1.1).

Note that 1year ≈ 3 × 107 seconds, the age of the universe is about 1010 years;
when the number of binary digits k is large, the algorithm with exponential or subex-
ponential computational complexity is actually impossible to complete on the com-
puter; therefore, the only way to solve the problem is to improve the speed of the
computer.

Computational complexity is often used to describe the complexity of a prob-
lem, because the computational complexity is also time complexity when the com-
puter hardware conditions (such as computing speed and storage capacity) remain
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Table 1.1 Time requirements of algorithms with different computational complexity (k = 106)

Algorithm type Complexity Number of bit
operations

Time

Constant degree O(1) 1 1 microsecond

Linear O(k) 106 1 s

Quadratic O(k2) 1012 11.6 days

Cubic O(k3) 1018 32000 years

Subexponential O(e
√
k log k) About 1.8 × 101618 6 × 101604years

Exponential O(2k) 10301030 3 × 10301016years

unchanged. At present, the complexity of algorithms is defined in a model called
Turing machine. Turing machine is a kind of finite state machine with infinite read
and write ability. If the result of each operation and the content of the next oper-
ation are uniquely determined, such Turing machine is called deterministic Turing
machine. Therefore, the determinacy of a polynomial algorithm is accomplished on
a determinate Turing machine.

Definition 1.6 If a problem can be solved by polynomial algorithm on a certain
Turingmachine, it is called a P class problem, and the P class problem is often called
an easy to handle problem. If a problem can be solved by polynomial algorithm on
an uncertain Turing machine, it is called a N P class problem.

According to the definition, the P class problem is definitely a N P class prob-
lem, because it can be solved by polynomial algorithm on deterministic Turing
machine, and it can also be solved by polynomial algorithm on nondeterministic
Turing machine. On the other hand, is the N P problem strictly larger than the P
problem? This is an open problem that has not been solved in the field of theoretical
computer. There is neither strict proof nor counterexample to show that a problem
that can be solved by polynomial on a nondeterministic Turing machine cannot be
solved by polynomial algorithm on a deterministic Turingmachine. It is widely spec-
ulated that the problem of P class and N P class is not equivalent, which is also the
cornerstone of many cryptosystems.

1.3 Jensen Inequality

A real valued function f (x) in the interval (a, b) is called a strictly convex function,
if for ∀ x1, x2 ∈ (a, b), λ1 > 0, λ2 > 0, λ1 + λ2 = 1, we have

λ1 f (x1) + λ2 f (x2) ≤ f (λ1x1 + λ2x2),

and the equation holds if and only if x1 = x2. By inductive method, we can prove
the Jensen inequality as follows.
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Lemma 1.6 If f (x) is a strictly convex function over (a, b), then for any positive
integer n > 1, any positive number λi (1 ≤ i ≤ n), λ1 + λ2 + · · · + λn = 1 and any
xi ∈ (a, b)(1 ≤ i ≤ n), we have

n∑

i=1

λi f (xi ) ≤ f (
n∑

i=1

λi xi ), (1.12)

the equation holds if and only if x1 = x2 = · · · = xn.

Proof By inductive method, the proposition holds when n = 1 and n = 2. Suppose
the proposition holds for n − 1. When n > 2, let

x ′ = λ1

λ1 + λ2
x1 + λ2

λ1 + λ2
x2,

it can be seen that x ′ ∈ (a, b) and (λ1 + λ2)x ′ = λ1x1 + λ2x2, therefore,

n∑

i=1

λi f (xi ) = λ1 f (x1) + λ2 f (x2) +
n∑

i=3

λi f (xi )

≤ (λ1 + λ2) f (x
′) +

n∑

i=3

λi f (xi )

≤ f (λ1x1 + λ2x2 + · · · + λnxn).

We have the proposition that holds for n. Thus, the inequality (1.12) holds.

From the knowledge of mathematical analysis, f (x) is called a strictly convex
function in the interval (a, b) if and only if f

′′
(x) < 0. Take f (x) = log x , then

f
′′
(x) = −1

x2 ln 2 , thus log x is a strictly convex function on the interval of (0,+∞),
from Jensen inequality, we have the following inequality.

Lemma 1.7 Let g(x) be positive function, that is g(x) > 0, then for any integers
λi (1 ≤ i ≤ n), λ1 + λ2 + · · · + λn = 1, and any a1, a2, . . . , an, we have

n∑

i=1

λi log g(ai ) ≤ log
n∑

i=1

λi g(ai ), (1.13)

the equation holds if and only if g(a1) = g(a2) = · · · = g(an).

Proof Because log x is strictly convex, let xi = g(ai ), then xi ∈ (0,+∞)(1 ≤ i ≤
n), by Jensen inequality,
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n∑

i=1

λi log g(ai ) =
n∑

i=1

λi log xi

≤ log(
n∑

i=1

λi xi )

= log(
n∑

i=1

λi g(ai )).

So the lemma holds.

A real valued function f (x) is called a strictly convex function in the interval
(a, b), if for ∀ x1, x2 ∈ (a, b), λ1 > 0, λ2 > 0, λ1 + λ2 = 1, we have

f (λ1x1 + λ2x2) ≤ λ1 f (x1) + λ2 f (x2),

and the equation holds if and only if x1 = x2. By induction, we can prove the fol-
lowing general inequality.

Lemma 1.8 If f (x) is called a strictly convex function in the interval (a, b), then
for any positive integer n ≥ 2, any positive numbers λi (1 ≤ i ≤ n), λ1 + λ2 + · · · +
λn = 1 and any xi ∈ (a, b)(1 ≤ i ≤ n), then we have

f (
n∑

i=1

λi xi ) ≤
n∑

i=1

λi f (xi ), (1.14)

the equation holds if and only if x1 = x2 = · · · = xn.

Weknow that f (x) is strictly convex in the interval (a, b) if and only if f
′′
(x) > 0.

Let f (x) = x log x , then f
′′
(x) = 1

x ln 2 > 0, when x ∈ (0,+∞). Then we have the
following logarithmic inequality.

Lemma 1.9 If a1, a2, . . . , an and b1, b2, . . . , bn are two groups of positive numbers,
then there are

n∑

i=1

ai log
ai
bi

≥ (

n∑

i=1

ai ) log

∑n
i=1 ai∑n
i=1 bi

. (1.15)

Proof Because f (x) = x log x is a strictly convex function, from 1.8, we have

f (
n∑

i=1

λi xi ) ≤
n∑

i=1

λi f (xi ),

where
∑n

i=1 λi = 1. Take λi = bi∑n
j=1 b j

, xi = ai
bi
, then
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1∑n
j=1 b j

n∑

i=1

ai log

∑n
i=1 ai∑n
i=1 bi

≤
n∑

i=1

ai∑n
j=1 b j

log
ai
bi

,

∑n
j=1 b j is deleted at the same time on both sides, then there is

(

n∑

i=1

ai ) log

∑n
i=1 ai∑n
i=1 bi

≤
n∑

i=1

ai log
ai
bi

,

thus (1.15) holds.

The above formula is called logarithm sum inequality, which is often used in
information theory.

1.4 Stirling Formula

In number theory (see reference 1’sApostol 1976), we can get the average asymptotic
formula of some arithmetic functions by using the Euler sum formula, the most
important of which is the following Stirling formula. For all real numbers x ≥ 1,
we have ∑

1≤m≤x

logm = x log x − x + O(log x), (1.16)

where the O constant is an absolute constant. Take x = n ≥ 1 as a positive integer,
then there is Stirling formula

log n! = n log n − n + O(log n). (1.17)

In number theory, the Stirling formula appears in the more precise form below,

n! ≈ √
2πn(

n

e
)n

or

lim
n→∞

n!√
2πn( ne )

n
= 1.

Lemma 1.10 Let 0 ≤ m ≤ n, n,m be nonnegative integer, and
(n
m

)
be the combina-

tion number, then (
n

m

)
≤ nn

mm(n − m)n−m
. (1.18)
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Proof

nn = (m + (n − m))n ≥
(
n

m

)
mm(n − m)n−m,

The (1.18) follows at once.

We define the binary entropy function H(x)(0 ≤ x ≤ 1) as follows.

H(x) =
{
0, if x = 0.

− x log x − (1 − x) log (1 − x), if 0 < x ≤ 1.
(1.19)

It is obvious that H(x) = H(1 − x). So we only need to consider the case of
0 ≤ x ≤ 1

2 . H(x) is the information entropy of binary information space (see the
example 3.5 in Sect. 1.1 of Chap.3), the image description is as follows (Fig. 1.1):

Lemma 1.11 Let 0 ≤ λ ≤ 1
2 , then we have

(i)
∑

0≤i≤λn

(n
i

) ≤ 2nH(λ).

(ii) log
∑

0≤i≤λn

(n
i

) ≤ nH(λ).

(iii) limn→∞ 1
n log

∑
0≤i≤λn

(n
i

) = H(λ).

Proof We first prove that (i), (i i) can be obtained directly from the logarithm of (i).

Fig. 1.1 The information
entropy of binary
information space
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1 = (λ + (1 − λ))n ≥
∑

0≤i≤λn

(
n

i

)
λi (1 − λ)n−i

=
∑

0≤i≤λn

(
n

i

)
(1 − λ)n(

λ

1 − λ
)i

≥
∑

0≤i≤λn

(
n

i

)
(1 − λ)n(

λ

1 − λ
)λn

= 2−nH(λ)
∑

0≤i≤λn

(
n

i

)
.

In order to prove that (i i i), we write m = [λn] = λn + O(1), from (i i), we have

1

n
log

∑

0≤i≤λn

(
n

i

)
≤ H(λ).

on the other hand,
1

n
log

∑

0≤i≤λn

(
n

i

)
≥ 1

n
log

(
n

m

)

= 1

n
{log n! − logm! − log(n − m)!}.

From the Stirling formula (1.17), we have

log n! − logm! − log(n − m)! = n log n − m logm − (n − m) log(n − m) + O(log n).

So there are

1

n
log

∑

0≤i≤λn

(
n

i

)
≥ log n − λ log λn − (1 − λ) log n(1 − λ) + O(

log n

n
)

= −λ log λ − (1 − λ) log(1 − λ) + O(
log n

n
)

= H(λ) + O(
log n

n
).

In the end, we have

lim
n→∞

1

n
log

∑

0≤i≤λn

(
n

i

)
= H(λ).

Lemma 1.11 holds.
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1.5 n-fold Bernoulli Experiment

In a given probability space, suppose that x is a random event and y is a random
event. We denote the probability of event x occurrence by p(x), the probability of
joint occurrence of x and y is denoted by p(xy) and the probability of occurrence of
x under the condition of event y is denoted by p(x |y), which is called conditional
probability. Obviously, there is a multiplication formula as follows:

p(xy) = p(y)p(x |y). (1.20)

Two events x and y, if p(xy) = 0, say x and y are incompatible, if p(xy) =
p(x)p(y), say two events are independent, or independent of each other.

A finite set of events {x1, x2, . . . , xn} is called complete event group, if

n∑

i=1

p(xi ) = 1, and p(xi y j ) = 0, when i �= j. (1.21)

In a complete event group, we can assume that 0 < p(xi ) ≤ 1(1 ≤ i ≤ n).

Total probability formula: If {x1, x2, . . . , xn} is a complete event group, y is any
random event, then we have

p(y) =
n∑

i=1

p(yxi ) (1.22)

and

p(y) =
n∑

i=1

p(xi )p(y|xi ). (1.23)

Lemma 1.12 Let {x1, x2, . . . , xn} is a complete event group, then the event y can
and can only occur simultaneously with a certain xi , so for any i, 1 ≤ i ≤ n, we
have the following Bayes formula:

p(xi |y) = p(xi )p(y|xi )∑n
j=1 p(x j )p(y|x j )

, 1 ≤ i ≤ n. (1.24)

Proof From the product formula (1.20), we have

p(xi y) = p(y)p(xi |y) = p(xi )p(y|xi ).

then there is

p(xi |y) = p(xi )p(y|xi )
p(y)

.

And from the total probability formula (1.23), then we can know
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p(xi |y) = p(xi )p(y|xi )∑n
j=1 p(x j )p(y|x j )

, 1 ≤ i ≤ n,

the Bayes formula (1.24) is proved.

Now we discuss the n-fold Bernoulli experiment. In statistical test, the test with
only two possible results is called Bernoulli experiment, and the experiment satisfy-
ing the following agreement is called n-fold Bernoulli experiment:

(1) There are at most two possible results in each experiment: a or ā.
(2) The probability p of occurrence of a in each test remains unchanged.
(3) Each experiment is statistically independent.
(4) A total of n experiments were carried out.

Lemma 1.13 (Bernoulli theorem) In Bernoulli experiment, the probability of event
a is p, and then in the n-fold Bernoulli experiment, the probability B(k; n, p) of a
appearing k(0 ≤ k ≤ n) times is

B(k; n, p) =
(
n

k

)
pkqn−k, q = 1 − p. (1.25)

Proof The results of the i-th Bernoulli test are recorded as xi (xi = a or ā), then
n-fold Bernoulli experiment forms the following joint event x

x = x1x2 · · · xn, xi = a or ā.

Because of the independence of the experiment, when there are exactly k xi = a, the
occurrence probability of x is

p(x) = p(x1)p(x2) · · · p(xn) = pkqn−k .

Obviously, there are exactly k joint events of xi = a, and the total number is xi = a,
so

B(k; n, p) =
(
n

k

)
pkqn−k .

Lemma 1.13 holds.

In the same way, we can calculate the probability of event a appearing at the k-th
in multiple Bernoulli experiments.

Lemma 1.14 Suppose that a and ā are two possible events in Bernoulli experiments,
then the probability of the first appearance of a in the k-th Bernoulli experiment is
pqk−1.

Proof Joint event x = x1x2 · · · xk formed by k-fold Bernoulli experiment, where
k − 1 xi = ā, and xk = a, then
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p(x) = p(x1) · · · p(xk−1)p(xk) = pqk−1.

We have completed the proof.

n-fold Bernoulli experiment is not only the most basic probability model in prob-
ability and statistics, but also a common tool in communication field. Next, we take
the error of binary channel transmission as an example to illustrate.

Example 1.1 (Error probability of binary channel) In binary channel transmission, a
codeword x of length n is a vector x = (x1, x2, . . . , xn) in n-dimensional vector space
F
n
2, where xi = 0 or 1(1 ≤ i ≤ n). For convenience, let us write x = x1x2 · · · xn .

Due to channel interference, characters 0 and 1 may have errors in transmission,
that is, 0 becomes 1, 1 becomes 0, let the error probability be p (p may be very
small), and the error probability of each transmission is constant. Under the above
assumption, the codeword x with a transmission length of n can be regarded as a
n-fold Bernoulli experiment, and the error probability B(k; n, p) of k(0 ≤ k ≤ n)

errors of x in transmission is

B(k; n, p) =
(
n

k

)
pkqn−k, q = 1 − p.

1.6 Chebyshev Inequality

We call the variable ξ defined as a real number in a probability space a random
variable. For any real number x ∈ (−∞,+∞), p(x) is defined as the probability of
the value x of the random variable ξ , i.e.,

p(x) = P{ξ = x}, (1.26)

Call p(x) the probability function of ξ . If ξ has only a finite number of values,
or countable infinite values, that is, the value space of ξ is a finite number of real
numbers, or countable infinite real numbers, then ξ is called discrete randomvariable;
otherwise, ξ is called continuous random variable. The distribution function F(x) of
a random variable ξ is defined as

F(x) = P{ξ ≤ x}, x ∈ (−∞,+∞). (1.27)

Obviously, the distribution function F(x) of ξ is defined as amonotone increasing
function on the whole real axis (−∞,+∞). And it is a right continuous function,
that is F(x0) = lim

x→x0+0
F(x). The probability distribution of a random variable ξ is

completely determined by its distribution function F(x), in fact, for any x ,

p(x) = P{ξ = x} = F(x) − F(x − 0).
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Let f (x) be a nonnegative integrable function on the real axis. And

F(x) =
x∫

−∞
f (t) dt, (1.28)

f (x) is called the density function of the random variable ξ . Obviously, the density
function satisfies:

f (x) ≥ 0, ∀x ∈ (−∞,+∞),

+∞∫

−∞
f (x) dx = 1. (1.29)

On the other hand, the function f (x) satisfying the formula (1.29) must be the den-
sity function of a random variable. Here, we introduce several common continuous
random variables and their probability distribution.

1. Uniform distribution(Equal probability distribution)
A random variable ξ is equal probability value in interval [a, b], and ξ is said to be

uniformly distributed, or it is also called a random variable of uniformly distributed,
and its density function is

f (x) =
⎧
⎨

⎩

1

b − a
, a ≤ x ≤ b.

0, otherwise.

Its distribution function F(x) is

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, when x < a.

x − a

b − a
, when a ≤ x ≤ b.

1, when x > b.

2. Exponential distribution
The density function of random variable ξ is

f (x) =
{

λe−λx , when x ≥ 0.

0, when x < 0.

where the given parameter is λ ≥ 0, and its distribution function is

F(x) =
{
1 − e−λx , when x ≥ 0.

0, when x < 0.

We call ξ an exponential distribution with parameter λ or a random variable with
exponential distribution.
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3. Normal distribution
A continuous random variable ξ whose density function f (x) is defined as:

f (x) = 1√
2πσ

e− (x−μ)2

2σ2 , x ∈ (−∞,+∞).

where μ and σ are constants, σ > 0. We say that ξ obeys the normal distribution
with parameters of μ and σ 2, and denote as ξ ∼ N

(
μ, σ 2

)
. By Possion integral,

+∞∫

−∞
e−x2 dx = √

π,

it is not hard to verify
+∞∫

−∞
f (x) dx = 1.

The distribution function F(x) of normal distribution N
(
μ, σ 2

)
is

F(x) = 1√
2πσ

x∫

−∞
e− (t−μ)2

2σ2 dt.

When μ = 0, σ = 1, N (0, 1) is called standard normal distribution.
Let us define the mathematical expectation and variance of a random variable ξ .

First, let us see the mathematical expectation of a discrete random variable .
(1) Let ξ be a discrete random variable whose value space is {x1, x2, . . . , xn, . . .}.

And let p(xi ) = P {ξ = xi }. If
+∞∑

i=1

|xi | p(xi ) < ∞,

Then the mathematical expectation E(ξ) of ξ is defined as

Eξ = E(ξ) =
+∞∑

i=1

xi p(xi ). (1.30)

(2) Let ξ be a continuous random variable and f (x) be its density function, if

+∞∫

−∞
|x | f (x)dx < +∞,
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Then the mathematical expectation E(ξ) of ξ is defined as

Eξ = E(ξ) =
+∞∫

−∞
x f (x)dx . (1.31)

(3) Let h(x) be a real valued function, then h(ξ) is also a random variable, and
h(ξ) is called a function of the random variable ξ . The mathematical expectation
E(h(ξ)) of h(ξ) is Eh(ξ).

Lemma 1.15 (1) Let ξ beadiscrete randomvariablewhose value space is {x1, x2, . . .,
xn, . . .}, if E(ξ) exists, then Eh(ξ) also exists, and

Eh(ξ) =
+∞∑

i=1

h (xi ) p(xi ).

(2) If ξ is a continuous random variable, and E(ξ) exists, then Eh(ξ) also exists,
and

Eh(ξ) =
+∞∫

−∞
h(x) f (x)dx .

Proof Let the value space of η = h(ξ) be {y1, y2, . . . , yn, . . .}, then

P
{
η = y j

} = P(

+∞⋃

i=1
h(xi )=y j

{ξ = xi }) =
+∞∑

i=1
h(xi )=y j

P {ξ = xi } .

By the definition of E(η), then

Eh(ξ) = E(η) =
+∞∑

j=1

y j P
{
η = y j

}

=
+∞∑

j=1

y j

+∞∑

i=1
h(xi )=y j

P {ξ = xi }

=
+∞∑

i=1

(

+∞∑

j=1
h(xi )=y j

y j )P {ξ = xi }

=
+∞∑

i=1

h(xi )p(xi ).

The same can be proved (2).
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The following basic properties of mathematical expectation are easy to prove.

Lemma 1.16 (1) If ξ = c is constant, then E(ξ) = c.
(2) If a and b are constants, then E(aξ + bξ) = aE(ξ) + bE(ξ).
(3) If a ≤ ξ ≤ b, then a ≤ E(ξ) ≤ b.

If the mathematical expectation E(ξ) of a random variable exists, then (ξ − Eξ)2

is also a random variable (take h(x) = (x − a)2, where a = E(ξ)), We define the
mathematical expectation Eh(ξ) of h(ξ) as the variance of ξ , denoted as D(ξ), that
is

D(ξ) = E((ξ − Eξ)2).

Denote σ = √
D(ξ) is the standard deviation of ξ . Here are some basic properties

about variance.

Lemma 1.17 (1) D(ξ) = E(ξ 2) − E2(ξ).
(2) If ξ = ais constant, then D(ξ) = 0.
(3) D(ξ + c) = D(ξ).
(4) D(cξ) = c2D(ξ).
(5) If c �= Eξ , then D(ξ) < E((ξ − c)2).

Proof (1) can be seen from the definition,

D(ξ) = E((ξ − Eξ)2)

= E(ξ 2 − 2ξEξ + E2(ξ))

= E(ξ 2) − 2(Eξ)2 + (E(ξ))2

= E(ξ 2) − (Eξ)2.

(2) is trivial. Let us prove (3). By (1),

D(ξ + c) = E((ξ + c)2) − (E(ξ + c))2

= E(ξ 2 + 2cξ + c2) − ((Eξ)2 + 2cE(ξ) + c2)

= E(ξ 2) + 2cE(ξ) + c2 − (Eξ)2 − 2cE(ξ) − c2

= E(ξ 2) − (Eξ)2 = D(ξ).

(4) can also be derived directly from (1). In fact,

D(cξ) = E(c2ξ 2) − (E(cξ))2

= c2E(ξ 2) − c2(Eξ)2

= c2D(ξ).

To prove (5), from Lemma 1.16, we notice that the mathematical expectation of
(ξ − Eξ) is 0, so if c �= E(ξ), by (3), we have
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D(ξ) = D(ξ − c) = E((ξ − c)2) − (E(ξ − c))2.

Since the last term of the above formula is not zero, we always have

D(ξ) < E((ξ − c)2).

(5) holds. This property indicates that E((ξ − c)2) reaches the minimum value
D(ξ) at c = Eξ . We have completed the proof.

Nowwegive themain results of this section; inmathematics, it is calledChebyshev
type inequality, which is essentially the so-called moment inequality, because the
mathematical expectation Eξ of a random variable ξ is the first-order origin moment
and the variance is the second-order moment.

Theorem 1.1 Let h(x) be a nonnegative real valued function of x, ξ is a random
variable, and expectation Eξ exists, then for any ε > 0, we have

P{h(ξ) ≥ ε} ≤ Eh(ξ)

ε
, (1.32)

and

P{h(ξ) > ε} <
Eh(ξ)

ε
. (1.33)

Proof We prove the theorem only for continuous random variable ξ . Let f (x) be
density function of ξ , then by Lemma 1.15,

Eh(ξ) =
+∞∫

−∞
h(x) f (x) dx

≥
∫

h(x)≥ε

h(x) f (x) dx

≥ ε

∫

h(x)≥ε

f (x) dx

= εP{h(x) ≥ ε}.

so (1.32) holds. Similarly, we can prove (1.33).

In the theorem, we can get different Chebyshev inequality by replacing h(ξ) with
ξ − Eξ .

Corollary 1.1 (Chebyshev) If the variance D(ξ) of the random variable ξ exists,
then for any ε > 0, we have

P{|ξ − Eξ | ≥ ε} ≤ D(ξ)

ε2
. (1.34)
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Proof Take h(ξ) = (ξ − Eξ)2 in Theorem 1.1, then |ξ − Eξ | ≥ ε if and only if
h(ξ) ≥ ε2, from definition, Eh(ξ) = D(ξ). thus

P{|ξ − Eξ | ≥ ε} = P{h(ξ) ≥ ε2} ≤ Eh(ξ)

ε2
.

The Corollary holds.

Corollary 1.2 (Chebyshev) Suppose that both the expected value Eξ and the vari-
ance D(ξ) of the random variable ξ exist, then for any k > 0, we have

P{|ξ − Eξ | ≥ k
√
D(ξ)} ≤ 1

k2
. (1.35)

Proof Take ε = k
√
D(ξ) in Corollary 1.1, then

P{|ξ − Eξ | ≥ k
√
D(ξ)} ≤ D(ξ)

k2D(ξ)
= 1

k2
.

Corollary 1.2 holds.

In mathematics, μ is often used as the expected value, σ = √
D(ξ)(σ ≥ 0) as the

standard deviation, that is

μ = Eξ, σ = √
D(ξ), σ ≥ 0.

Then the Chebyshev inequality in the Corollary 1.2 can be written as follows:

P{|ξ − μ| ≥ kσ } ≤ 1

k2
. (1.36)

Corollary 1.3 (Markov) If the expected value of the random variable ξ satisfying
the positive integer |ξ |k of k ≥ 1 exists, then

P{|ξ | ≥ ε} ≤ E |ξ |k
εk

.

Proof Take h(ξ) = |ξ |k in Theorem 1.1, Replace εwith εk , then theMarkov inequal-
ity is directly derived from Theorem 1.1.

Next, we introduce several common discrete random variables and their probability
distribution and calculate their expected value and variance.

Example 1.2 (Degenerate distribution)A random variable ξ takes a constant a with
probability 1, that is ξ = a, P{ξ = a} = 1, ξ is called degenerate distribution. From
Lemma 1.16, (1), Eξ = a, its variance is D(ξ) = 0.
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Example 1.3 (Two point distribution) A random variable ξ has only two values
{x1, x2}, and its probability distribution is

P{ξ = x1} = p, P{ξ = x2} = 1 − p, 0 < p < 1.

ξ is called a two-point distributionwith parameter p, and itsmathematical expectation
and variance are {

E(ξ) = x1 p + x2(1 − p),

D(ξ) = p(1 − p)(x1 − x2)
2.

Specially, take x1 = 1, x2 = 0, then the expected value and variance of the two-point
distribution are

E(ξ) = p, D(ξ) = p(1 − p).

Example 1.4 (Equal probability distribution) Let a random variable ξ have n values
{x1, x2, . . . , xn} and be equal probability distribution, that is

P{ξ = xi } = 1

n
, 1 ≤ i ≤ n.

ξ is called a equal probability distribution or uniform distribution with obeying n
points x1, x2, . . . , xn . The expected value and variance are

E(ξ) = 1

n

n∑

i=1

xi , D(ξ) = 1

n

n∑

i=1

(xi − E(ξ))2.

Example 1.5 (Binomial distribution) In the n-foldBernoulli experiment, the number
of times ξ of event a is a random variable from 0 to n. The probability distribution
is (see Bernoulli experiment)

P{ξ = k} = b(k; n, p) =
(
n

k

)
pkqn−k,

where 0 ≤ k ≤ n, p is the probability of event a occurring in each experiment. ξ is
called a binomial distribution with parameter n, p, denotes as ξ ∼ b(n, p). In fact,
b(k; n, p) is the expansion of binomial (p + q)n .

Lemma 1.18 Let ξ ∼ b(n, p), then

E(ξ) = np, D(ξ) = npq, q = 1 − p.
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Proof By definition,

E(ξ) =
n∑

k=0

kb(k; n, p) =
n∑

k=1

k

(
n

k

)
pkqn−k

= np
n∑

k=1

(
n − 1

k − 1

)
pk−1q(n−1)−(k−1)

= np
n−1∑

k=0

(
n − 1

k

)
pkqn−1−k

= np
n−1∑

k=0

b(k; n − 1, p)

= np.

Similarly, it can be calculated

E(ξ 2) =
n∑

k=0

k2b(k; n, p) = n2 p2 + npq.

thus
D(ξ) = E(ξ 2) − (E(ξ))2 = npq.

We have completes the proof.

Lemma 1.19 pn is the probability of event a in the n-fold Bernoulli experiment. If
npn → λ, then we have

lim
n→∞ b(k; n, pn) = λk

k! e
−λ.

Proof Write λn = npn , then

b(k; n, pn) =
(
n

k

)
(pn)

k(1 − pn)
n−k

= n(n − 1) · · · (n − (k − 1))

k! (
λn

n
)k(1 − λn

n
)n−k

= (λn)
k

k! (1 − 1

n
) · · · (1 − k − 1

n
)(1 − λn

n
)n−k .

Because for fixed k, there is lim
n→∞(λn)

k = λk , and

lim
n→∞(1 − λn

n
)n−k = e−λ,
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also

lim
n→∞(1 − 1

n
)(1 − 2

n
) · · · (1 − k − 1

n
) = 1.

So there are

lim
n→∞ b(k; n, pn) = λk

k! e
−λ.

So Lemma 1.19 holds.

Example 1.6 (Possion distribution) The value of discrete random variable ξ is
0, 1, . . . , n, . . ., λ ≥ 0 is a nonnegative real number, if the probability distribution
of ξ is

P{ξ = k} = p(k, λ) = λk

k! e
−λ,

ξ is called a random variable which obeys Poisson distribution. It can be proved
that the expected value and variance of Poisson distribution ξ are λ. When p is very
small, the random variable ξn of n-fold Bernoulli experiment can be considered to be
close to the Poisson distribution ξ . In this case, the probability distribution function
b(k; n, p) can be approximately replaced by the possion distribution, that is

b(k; n, p) ≈ (np)k

k! e−np.

1.7 Stochastic Process

The so-called stochastic process is to consider the statistical characteristics of a
consistent random variable {ξi }ni=1. We can describe it as a n dimensional random
vector. Let {ξi }ni=1 be n compatible random variables of a given probability space,
ξ = (ξ1, ξ2, . . . , ξn) is called an n-dimensional random vector with values in R

n in
the probability space.

A stochastic process or a n dimensional random vector ξ = (ξ1, ξ2, . . . , ξn) is
uniquely determined by the occurrence probability of the following joint events.
Let A(ξi ) ⊂ R be the value space of random variable ξi (1 ≤ i ≤ n); then for
any (x1, x2, . . . , xn) ∈ A(ξ1) × A(ξ2) × · · · × A(ξn) ⊂ R

n , the probability of occur-
rence of the following joint event is denoted as

p(x1x2 · · · xn) = p((x1, x2, . . . , xn)) = P{ξ1 = x1, ξ2 = x2, . . . , ξn = xn}.

Definition 1.7 If for any xi ∈ R(1 ≤ i ≤ n), we have

p(x1x2 · · · xn) = p(x1)p(x2) · · · p(xn).
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Called stochastic process {ξi }ni=1 is statistically independent.

Strictly speaking, each real number xi in the Definition 1.7 should belong to the
set of Borel on the line to ensure the event {ξi = xi } generated by ξi is the event in
a given probability space.

Similarly, we can define a vector function F(x1, x2, . . . , xn) in Rn as

F(x1, x2, . . . , xn) = P{ξ1 ≤ x1, ξ2 ≤ x2, . . . , ξn ≤ xn},

This is the distribution function of random vector ξ = (ξ1, ξ2, . . . , ξn). Its marginal
distribution function is

Fi (xi ) = P{ξi ≤ xi } = F(+∞,+∞, . . . , xi ,+∞, . . . ,+∞).

For the following properties of stochastic process, we do not give any proof. The
reader can find them in the classical probability theory textbook (see reference 1’s
Rényi 1970, Li 2010, Long 2020).

Lemma 1.20 (1) A stochastic process {ξi }ni=1 is statistically independent if and only
if

F(x1x2 · · · xn) = F(x1)F(x2) · · · F(xn).

(2) Suppose {ξi }ni=1 is statistically independent, for any real value function gi (x),
then {gi (ξi )}ni=1 is also statistically independent.

(3) If ξi is n random variables, then

E(ξ1 + ξ2 + · · · + ξn) = E(ξ1) + E(ξ2) + · · · + E(ξn).

(4) If {ξi }ni=1 is statistically independent, the expected value E(ξi ) of each ran-
dom variable existence, then the mathematical expectation of random variable
ξ = (ξ1, ξ2, . . . , ξn) exists, and

E(ξ) = E((ξ1, ξ2, . . . , ξn)) = E(ξ1)E(ξ2) · · · E(ξn).

Definition 1.8 Let {ξi }∞i=1 be a series of random variables, ξ is a given random
variable, if for any ξ > 0, we have

lim
n→∞ P{|ξn − ξ | > ε} = 0,

it is called {ξn} converges to ξ in probability, denoted as ξn
P−→ ξ .

Obviously, ξn
P−→ ξ if and only if for any ε > 0, there is

lim
n→∞ P{|ξn − ξ | ≤ ε} = 1.
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If the occurrence probability of an event is p, the frequency of the event in the
statistical test gradually approaches its probability p. Strict mathematical statements
and proof are attributed to the Bernoulli law of large numbers.

Theorem 1.2 (Bernoulli) Let μn be the number of occurrences of event a in the n-
fold Bernoulli experiment, it is known that the probability of occurrence of a in each
experiment is p(0 < p < 1), then the frequency {μn

n } of a converges in probability
to p, that is, for any ε > 0, there is

lim
n→∞ P{|μn

n
− p| > ε} = 0.

Proof Consider μn

n as a random variable, its expected value and variance are

E(
μn

n
) = 1

n
E(μn) = p

and

D(
μn

n
) = 1

n2
D(μn) = pq

n
, q = 1 − p.

respectively. By Chebyshev inequality (1.34), we have

P{|μn

n
− p| > ε} <

pq

nε2
.

For any given ε > 0, we have

lim
n→∞ P{|μn

n
− p| > ε} = 0.

So Bernoulli’s law of large numbers holds.

In order to better understand Bernoulli’s law of large numbers, we can use a
random process to describe it. Define

ξi =
{
1, if event a occurs in the i-th experiment.

0, if event a does not occur in the i-th experiment.

Then ξi follows a two-point distribution with parameter p (see Sect. 1.6, example
1.3), and {ξi }+∞

i=1 is an independent and identically distributed stochastic process.
Obviously,

μn =
n∑

i=1

ξi , E(ξi ) = p.
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So Bernoulli’s law of large numbers can be rewritten as follows:

lim
n→∞ P

{
|1
n

n∑

i=1

ξi − 1

n
E(

n∑

i=1

ξi )| < ε

}
= 1,

where {ξi } is a sequence of independent random variables with the same two-point
distribution of 0 − 1 with parameter p. It is not difficult to generalize this conclusion
to a more general case.

Theorem 1.3 (Chebyshev’s law of large numbers) Let {ξi }+∞
i=1 be a series of inde-

pendent random variables, their expected value E(ξi ) and variance D(ξi ) exist, and
the variance is bounded, i.e., D(ξi ) ≤ C holds for any i ≥ 1, then for any ε > 0, we
have

lim
n→∞ P{|1

n

n∑

i=1

ξi − 1

n

n∑

i=1

E(ξi )| < ε} = 1.

Proof By Chebyshev inequality,

P{|1
n

n∑

i=1

ξi − 1

n
E(

n∑

i=1

ξi )| ≥ ε}

≤ D( 1n
∑n

i=1 ξi )

ε2

= D(
∑n

i=1 ξi )

n2ε2

= 1

n2ε2

n∑

i=1

D(ξi )

≤ C

nε2
.

So there are

lim
n→∞ P{|1

n

n∑

i=1

ξi − 1

n

n∑

i=1

E(ξi )| ≥ ε} = 0.

That is, Theorem 1.3 holds.

Chebyshev’s law of large numbers is more general than Bernoulli’s law of large
numbers, it can be understood as a sequence of independent random variables {ξi },
the arithmetic mean of a random variable converges to the arithmetic mean of its
expected value in probability.

As a special case, we consider an independent identically distributed stochastic
process {ξi }. Because there is the same probability distribution, there is the same
expectation and variance.
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Corollary 1.4 Let {ξi } be an independent and identically distributed random pro-
cess, their common expectation is μ, the variance is σ 2, that is E(ξi ) = μ, D(ξi ) =
σ 2(i = 1, 2, . . .), then we have

lim
n→∞ P{|1

n

n∑

i=1

ξi − μ| < ε} = 1,

that is 1
n

∑n
i=1 ξi

P−→ μ.

In the above Corollary, the existence of variance is unnecessary, Sinchin proved
an independent and identically distributed stochastic process {ξi }, as long as the
expected value E(ξi ) = μ exists. Then 1

n

∑n
i=1 ξi converges to its expected value in

probability. This conclusion is called Sinchin’s law of large numbers.
Finally, we state the so-called Lindbergh Levy’s central limit theorem without

proof.

Theorem 1.4 (central limit theorem) Let {ξi }+∞
i=1 is an independent and identically

distributed stochastic process, the expected value is E(ξi ) = μ, the variance is
D(ξi ) = σ 2 > 0(i = 1, 2, . . .), then for any x, we have

lim
n→∞ P{

∑n
i=1 ξi − nμ

σ
√
n

≤ x} = 1√
2π

x∫

−∞
e− t2

2 dt,

That is, the sumof random variables
∑n

i=1 ξi , whose standardized variables converge
to the standard normal distribution N (0, 1) in probability.

Exercise 1 (Nie and Ding 2000)

1. Let A, B,C be three nonempty sets, A
σ−→ B is the given mapping, τ1 and τ2

are any two mappings of B → C . Prove: if σ is surjective and τ1σ = τ2σ , then
τ1 = τ2.

2. Let τ1 and τ2 be any twomappings of A → B, σ is the givenmapping of B → C .
Prove: if σ is injective and στ1 = στ2, then τ1 = τ2.

3. Let A
σ−→ B be a injective, τ : B → A is the left inverse of σ , Is the left inverse

τ of σ unique?
4. Let A

σ−→ B be a surjective, Is the right inverse of σ unique?
5. Suppose that a,m, n are integers, a ≥ 0,m ≥ 1, n ≥ 1, prove

(a2
m + 1, a2

n + 1) = 1 or 2.

Thus prove Polya theorem: there are infinitely many primes.
6. On the positive integer set, the Möbius function μ(n) is defined as
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μ(n) =

⎧
⎪⎨

⎪⎩

1, when n = 1,

0, when n contain square factor,

(−1)t , when n = p1 p2 · · · pt , piare different primes.

Prove Möbius identity

∑

d|n
μ(d) =

{
1, when n = 1,

0, when n > 1.

7. Suppose ϕ(n) is a Euler function, prove

ϕ(n) = n
∑

d|n

μ(d)

d
.

8. Let n ≥ 1 be positive integer, prove Wilson theorem:

(n − 1)! + 1 ≡ 0(mod n)

if and only if n is prime.
9. Let n and b be positive integers, n > b, prove n can be uniquely expressed as

the following b-ary number:

n = b0 + b1b + b2b
2 + · · · + br−1b

r−1,where 0 ≤ bi < b, r ≥ 1.

n = (br−1br−2 · · · b1b0)b is called the b-ary expression of n and r is called the
b-ary digit of n.

10. Let f (n) be a complex valued function on a set of positive integers, and prove
the inversion formula of Möbius:

F(n) =
∑

d|n
f (d), ∀n ≥ 1 ⇔ f (n) =

∑

d|n
μ(d)F(

n

d
), ∀n ≥ 1.

11. Prove that the following sum formula:

∑

1≤r≤n
(r,n)=1

r = nϕ(n)

2
.

12. Prove: There are infinitely many primes p satisfies p ≡ −1(mod 6).
13. Solve the congruence equation: 27x ≡ 25(mod 31).
14. Let p be a prime, n ≥ 1 be a positive integer, find the number of solutions of

quadratic congruence equation x2 ≡ 1(mod pn).
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15. In order to reduce the number of games, 20 teams were divided into two groups,
each with 10 team, find the probability that the strongest two teams will be in the
same group, and the probability of the strongest two teams in different groups.

16. (Banach question). A mathematician has two boxes of matches. Each box has N
matches. When he uses them, he takes one match from any box and calculates
the probability that one box has k Matches and the other box is empty.

17. A stick of length l can break at any two points, find the probability that the three
pieces of the stick can form a triangle.

18. There are k jars, each containing n balls, numbered from 1 to n. Now take any
ball from each jar and ask the probability of that m is the largest number in the
ball.

19. Take any three of the five numbers of 1, 2, 3, 4, 5 and arrange them from small to
large. Let X denote the number in themiddle and find the probability distribution
of X .

20. Let F(x) be a distribution function of a continuous random variable, a > 0,
prove

+∞∫

−∞
|F(x + a) − F(x)|dx = a.

21. (Generalization of Bernoulli’s law of large numbers) Let μn is the number of
occurrences of event A in the first n experiments of a series of independent
Bernoulli experiments, it is known that the probability of occurrence of event A
in the i test is pi , try to write the corresponding law of large numbers and prove
it.
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Rényi, A. (1970). Probability theory. North-Holland.
Rosen, K. H. (1984). Elementaty number theory and its applications. Addison-Wesley.
Rosen, M. H. (2002). Number theory in function fields. Springer.
Spencer, D. (1982). Computers in number theory. Computer Science Press.
VanderWalden, B. L. (1963). Algebra (I). Translated by Shisun Ding: Kencheng Zeng, Fuxin Hao,
Beijing, Science Press (in Chinese).



References 33

VanderWalden, B. L. (1976). Algebra (II). Translated by Xihua Cao: Kencheng Zeng, Fuxin Hao,
Beijing, Science Press (in Chinese).

VanLint, J. H. (1991). Introduction to coding theory. Springer.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 2
The Basis of Code Theory

The channel of information transmission is called channel for short. The commonly
used channels include cable, optical fiber, medium of radio wave transmission and
carrier line, etc., and also include tape, optical disk, etc. The channel constitutes
the physical conditions for social information to interact across space and time. In
addition, a piece of social information, such as various language information, picture
information, data information and so on, should be exchanged across time and space,
information coding is the basic technical means. What is information coding? In
short, it is the process of digitizing all kinds of social information. Digitization
is not a simple digital substitution of social information, but is full of profound
mathematical principles and beautiful mathematical technology. For example, the
source code used for data compression and storage uses the principle of probability
statistics to attach the required statistical characteristics to social information, so the
source code is also called random code. The other is the so-called channel coding,
which is used to overcome the channel interference. This kind of code is full of
beautiful algebra, geometry and various mathematical techniques in combinatorics,
in order to improve the accuracy of information transmission, so the channel coding
is also called algebraic combinatorial code. The main purpose of this chapter is to
introduce the basic knowledge of code theory for channel coding. Source coding will
be introduced in Chap. 3.

With the hardware support of channel and the software technology of information
coding, we can implement the long-distance exchange of various social information
across time and space. Taking channel coding as an example, this process can be
described as the following diagram (Fig. 2.1).

In 1948, American mathematician Shannon published his pioneering paper
“Mathematical Principles of Communication” in the technical bulletin of Bell labora-
tory, marking the advent of the era of electronic information. In this paper, Shannon
proved the existence of “good code” with the rate infinitely close to the channel
capacity and the transmission error probability arbitrarily small by using probabil-
ity theory (see Theorem in this Chap. 2.10), on the other hand, if the transmission
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https://doi.org/10.1007/978-981-19-0920-7_2

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0920-7_2&domain=pdf
https://doi.org/10.1007/978-981-19-0920-7_2


36 2 The Basis of Code Theory

Fig. 2.1 Channel Coding

error probability is arbitrarily small, the code rate (transmission efficiency) does not
exceed an upper bound (channel capacity) (see Theorem in Chap. 3). This upper
bound is called Shannon’s limit, which is regarded as the golden rule in the field of
electronic communication engineering technology.

Shannon’s theorem is an existence proof rather than a constructive proof. How
to construct the so-called good code which can not only ensure the communication
efficiency (the code rate is as large as possible), but also control the transmission error
rate is the unremitting goal after the advent of Shannon’s theory. FromHamming and
Golay to Elias, Goppa, Berrou and Turkish mathematician Arikan, from Hamming
code, Golay code to convolutional code, turbo code to polar code, over the past
decades, electronic communication has reached one peak after another, creating one
technologicalmiracle after another, until today’s 5G era. In 1969, theU.S.Mars probe
used Hadamard code to transmit image information. For the first time, mankind was
lucky to witness one beautiful picture after another in outer space, in 1971, the U.S.
Jupiter and Saturn probe used the famousGolay codeG23 to send hundreds of frames
of color photos of Jupiter and Saturn back to earth, 70years of exploration of channel
coding is a magnificent history of electronic communication.

The main purpose of this chapter is to strictly define and prove the mathematical
characteristics of general codes in theory, so as to provide a solid mathematical
foundation for further study of coding technology and cryptography. This chapter
includes Hamming distance, Lee distance, linear code, some typical good codes,
MacWilliams theorem and famous Shannon coding theorem. Master the content of
this chapter,wewill have a basic and comprehensive understanding of channel coding
theory (error correction code).

2.1 Hamming Distance

In channel coding, the alphabet usually chooses aq-element finite fieldFq , sometimes
a ring Zm , where q is the power of a prime. Let n � 1 be a positive integer, Fn

q is an
n-dimensional linear space over Fq , also called codeword space.

F
n
q = {x = (x1, x2, . . . , xn)|∀xi ∈ Fq}.
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A vector x = (x1, x2, . . . , xn) in F
n
q is called a codeword of length n. For conve-

nience, a codeword x , we write as x = x1x2 . . . xn , each xi ∈ Fq is called a character,
denoted by 0 = (0, 0, . . . , 0).

Two codewords x = x1x2 . . . xn and y = y1y2 . . . yn define the number of char-
acters whose Hamming distance is different from x and y, that is

d(x, y) = #{i |1 ≤ i ≤ n, xi �= yi }. (2.1)

Obviously 0 � d(x, y) � n is a positive integer, theweight function of a codeword
x ∈ F

n
q is defined asw(x) = d(x, 0), that is Hamming distance between x and 0. The

following properties are obvious.

Property 2.1 If x, y ∈ F
n
q , then

(i) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).
(iii) w(−x) = w(x).
(iv) d(x, y) = d(x − z, y − z), ∀ z ∈ F

n
q .

(v) d(x, y) = w(x − y).

Property (i) is called nonnegativity, property (ii) symmetry and property (iv) trans-
lation invariance. This is the basic property of distance function in mathematics, and
we can analogy with the distance between two points in plane or Euclidean space.

Lemma 2.1 Let x, y ∈ F
n
q be two codings, then

w(x ± y) � w(x) + w(y).

Proof Because w(−x) = w(x), so w(x − y) = w(x + (−y)). We can only prove
w(x + y) � w(x) + w(y). Let x = x1 . . . xn , y = y1 . . . yn , then

x + y = (x1 + y1)(x2 + y2) . . . (xn + yn).

Obviously, if xi + yi �= 0, then xi �= 0, or yi �= 0(1 � i � n). Thus w(x + y) �
w(x) + w(y).

w(x − y) = w(x + (−y)) � w(x) + w(−y) = w(x) + w(y).

We have completed the proof.

Lemma 2.2 (Trigonometric inequality) If x, y, z ∈ F
n
q are three codings, then

d(x, y) � d(x, z) + d(z, y).

Proof From 2.1, if z ∈ F
n
q , then

w(x − y) ≤ w(x − z) + w(z − y).
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Then by property (v), d(x, y) = w(x − y), we have

d(x, y) � d(x, z) + d(z, y).

The Lemma holds.

The nonnegativity, symmetry, translation invariance of Hamming distance and
trigonometric inequality described in lemma 2 together show that Hamming distance
of two codewords is equal to the distance between two points in physical space, which
is a real distance function inmathematical sense. Similarly, we can define the concept
of ball. A Hamming sphere with radius ρ centered on codeword x is defined as

Bρ(x) = {y|y ∈ F
n
q , d(x, y) � ρ}, (2.2)

where ρ is a nonnegative integer. Obviously, B0(x) = {x} contains only one code-
word.

Lemma 2.3 For any x ∈ F
n
q , 0 � ρ � n, we have

|Bρ(x)| =
ρ∑

i=0

(
n

i

)
(q − 1)i , (2.3)

where |Bρ(x)| is the number of codewords in Hamming ball Bρ(x).

Proof Let x = x1x2 . . . xn , 0 � i � ρ, i given, let

Ai = #{y ∈ F
n
q |d(y, x) = i}.

Obviously,

Ai =
(
n

i

)
(q − 1)i ,

so

|Bρ(x)| =
ρ∑

i=0

Ai =
ρ∑

i=0

(
n

i

)
(q − 1)i .

Corollary 2.1 For ∀x ∈ F
n
q , we have

|Bρ(x)| = |Bρ(0)|.

That is to say, the number of codewords in Bρ(x) is a constant which only depends
on radius ρ. This constant is usually denoted as Bρ .



2.1 Hamming Distance 39

Definition 2.1 IfC � F
n
q ,C is called a q-ary code, code for short, |C | is the number

of codewords in code C . If |C | = 1, we call C a trivial code, and all the codes we
discuss are nontrivial codes.

For a codeofC , the followingfivemathematical quantities are of basic importance.

Definition 2.2 If C is a code, define

Bit rate of C R = RC = 1

n
logq |C |

Minimum distance of C d = min{d(x, y)|x, y ∈ C, x �= y}
Minimal weight of C w = min{w(x)|x ∈ C, x �= 0}
Coverage radius of C ρ = max{min{d(x, c)|c ∈ C}|x ∈ F

n
q}

Disjoint radius of C ρ1 = max{r |0 � r � n, Br (c1) ∩ Br (c2) = φ, ∀c1, c2 ∈
C, c1 �= c2}
It is important to discuss the relationship between the above five mathematical

quantities for the study of codes. We begin by proving lemma 2.4.

Lemma 2.4 Let d be minimum distance of C, ρ1 be disjoint radius of C, then

d = 2ρ1 + 1, d = 2ρ1 + 2.

Proof We can only prove 2ρ1 + 1 � d � 2ρ1 + 2. If d � 2ρ1, then there are code-
words c1 ∈ C , c2 ∈ C , c1 �= c2 such that

d(c1, c2) � 2ρ1.

This means that c1 and c2 have at most 2ρ1 different characters. Without losing
generality, we can make the first 2ρ1 characters of c1 and c2 different, that is

{
c1 = a1a2 . . . aρ1aρ1+1 . . . a2ρ1 ∗ ∗ · · · ∗
c2 = b1b2 . . . bρ1bρ1+1 . . . b2ρ1 ∗ ∗ · · · ∗

where * represents the same character. We can put

x = a1a2 . . . aρ1bρ1+1 . . . b2ρ1 ∗ · · · ∗,

this shows that
d(x, c1) � ρ1, d(x, c2) � ρ1.

That is
x ∈ Bρ1(c1) ∩ Bρ1(c2).

It’s in contradiction with Bρ1(c1) ∩ Bρ1(c2) = φ. So we have d � 2ρ1 + 1. If d >

2ρ1 + 2 = 2(ρ1 + 1), then we can prove the following formula, which is in contra-
diction with the definition of disjoint radius ρ1.
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Bρ1+1(c1) ∩ Bρ1+1(c2) = φ, ∀c1, c2 ∈ C, c1 �= c2.

Because if the above formula does not hold, then c1, c2 ∈ C , c1 �= c2, Bρ1+1(c1)
intersects with Bρ1+1(c2), we might as well make

x ∈ Bρ1+1(c1) ∩ Bρ1+1(c2),

Then the trigonometric inequality of lemma 2.2 is derived

d(c1, c2) � d(c1, x) + d(c2, x) � 2(ρ1 + 1),

It contradicts the hypothesis of d > 2(ρ1 + 1). So we have 2ρ1 + 1 � d � 2ρ1 + 2.
The Lemma holds.

In order to discuss the geometric meaning of covering radius ρ, we consider the
set {Bρ(c)|c ∈ C} of balls on code C , if

⋃

c∈C
Bρ(c) = F

n
q ,

Then {Bρ(c)|c ∈ C} is called a cover of codeword space F
n
q .

Lemma 2.5 Let ρ be the covering radius of C, then ρ is the smallest positive integer
of {Bρ(c)|c ∈ C} covering F

n
q .

Proof By the definition of ρ, for all x ∈ F
n
q , there is

min{d(x, c)|c ∈ C} � ρ.

Therefore, when x ∈ F
n
q is given, there is a codeword c ∈ C ⇒ d(x, c) � ρ, that is

x ∈ Bρ(c), this shows that ⋃

c∈C
Bρ(c) = F

n
q .

That is, {Bρ(c)|c ∈ C} forms a cover of F
n
q . Obviously, {Bρ−1(c)|c ∈ C} can’t cover

F
n
q , because if ⋃

c∈C
Bρ−1(c) = F

n
q .

Then for any x ∈ F
n
q , ∃ c ∈ C ⇒ x ∈ Bρ−1(c), so

min{d(x, c)|c ∈ C} � ρ − 1.

Thus
ρ = max{min{d(x, c)|c ∈ C}|x ∈ F

n
q} � ρ − 1.

The contradiction indicates that ρ is the smallest positive integer. The lemma holds.
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Lemma 2.6 Let d be the minimum distance of C and ρ be the covering radius of C,
then

d � 2ρ + 1.

Proof If d > 2ρ + 1, Let c0 ∈ C be given, then we have

Bρ+1(c0) ∩ Bρ(c) = φ, ∀c ∈ C, c �= c0.

So you can choose x ∈ Bρ+1(c0), and d(x, c0) = ρ + 1, then

x /∈ Bρ(c0), x /∈ Bρ(c), ∀c ∈ C.

That is, {Bρ(c)|c ∈ C} cannot cover F
n
q , which is contrary to lemma 2.5. So we

always have d � 2ρ + 1. The Lemma holds.

Combining the above three lemmas, we can get the following simple but very impor-
tant corollaries.

Corollary 2.2 Let C ⊂ F
n
q be an arbitrary q-ary code. d, ρ, ρ1 are the minimum

distance, covering radius and disjoint radius of C respectively, then

(i) ρ1 � ρ.
(ii) If the minimum distance of C is d = 2e + 1 ⇒ e = ρ1.

Proof (i) Directly from 2ρ1 + 1 � d � 2ρ + 1, if d = 2e + 1 is odd, then by the
lemma 2.4, d = 2ρ1 + 1 = 2e + 1 ⇒ e = ρ1.

Definition 2.3 A code C , if ρ = ρ1, is called a perfect code.

Corollary 2.3 (i) The minimum distance of any perfect code C is d = 2ρ + 1.
(ii) The minimum distance of a code C is d = 2e + 1, Then C is a perfect code if

and only if ∀ x ∈ F
n
q , ∃ the only ball Be(c), c ∈ C ⇒ x ∈ Be(c).

Proof (i) can be directly launched by 2ρ1 + 1 � d � 2ρ + 1. To prove (ii), if C is
a perfect code and the minimum distance is d = 2e + 1, so we have ρ1 = ρ = e.
On the other hand, if the conditions are right, then the coverage radius of C is
ρ � e = ρ1 � ρ, so ρ1 = ρ. C is a perfect code.

In order to introduce the concept of error correcting code, we discuss the so-
called decoding principle in electronic information transmission. This principle is
commonly known as the decoding principle of “look most like”. What looks like
the most? When we transmit through the channel with interference, we receive a
codeword x ′ ∈ F

n
q , and a codeword x ∈ C . If

d(x, x ′) = min{d(c, x ′)|c ∈ C},

x is the most similar codeword to x ′ in code C . So we decode x ′ to x . If the most
similar codeword x is the only one inC , then theoretically, x ′ is the codeword received
after x transmission, so x ′ x−→ is accurate.



42 2 The Basis of Code Theory

Definition 2.4 A codeC is called e-error correcting code (e � 1). If for any x ∈ F
n
q ,

there is a c ∈ C ⇒ x ∈ Be(c), then c is unique.

An error correcting code allows transmission errors without affecting correct
decoding. For example, suppose that C is a e-error correcting code, then for any
c ∈ C , after c is transmitted through the channel with interference, the codeword we
receive is x , if an error occurs when c is transmitted with no more than e characters
at most, that is d(c, x) � e, so the most similar codeword in C must be c, so we can

decode x
decode−−−→ c correctly.

Corollary 2.4 A perfect code with minimal distance d = 2e + 1 is e-error correct-
ing code.

Proof Because the disjoint radius ρ1 of C has ρ1 = ρ = e with the covering radius
ρ. Therefore, for any received codeword x ∈ F

n
q , there exists and only exists a c ∈

C ⇒ x ∈ Be(c). That is, C is e-error correction code.

Finally, we prove the main conclusion of this section.

Theorem 2.1 The minimum distance of a code C is d = 2e + 1, then C is a perfect
code if and only if the following sphere-packing condition holds.

|C |
e∑

i=0

(
n

i

)
(q − 1)i = qn . (2.4)

Proof If the minimum distance of C is d = 2e + 1, and C is the perfect code ⇒
ρ = ρ1 = e. So ⋃

c∈C
Be(c) = F

n
q .

Then we have ∣∣∣∣∣
⋃

c∈C
Be(c)

∣∣∣∣∣ = qn,

thus

|C |Be = |C |
e∑

i=0

(
n

i

)
(q − 1)i = qn.

Conversely, the sphere-packing condition (2.4) holds. Because theminimumdistance
of C is d = 2e + 1, from corollary 2.2, we can see that ρ1 = e, so we have

⋃

c∈C
Be(c) = F

n
q .

It can be concluded that ρ � e = ρ1 � ρ, thus ρ = ρ1, C is a perfect code. The
theorem holds.
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When q = 2, the alphabet F2 is a finite field of two elements {0, 1}, at this time,
the coding is called binary code or binary code, and the transmission channel is called
binary channel. In binary channel transmission, the most important is binary entropy
function H(λ), define as

H(λ) =
{
0, when λ = 0 or λ = 1,
−λ log λ − (1 − λ) log(1 − λ), when 0 < λ < 1.

(2.5)

Obviously, H(λ) = H(1 − λ), and 0 � H(λ) � 1, H

(
1

2

)
= 1, that is λ = 1

2
reaching the maximum. For further properties of H(λ), please refer to Chap.1.

Theorem 2.2 Let C be a perfect code with minimal distance d = 2e + 1, RC is the
code rate of C, then

(i) 1 − RC = 1

n
log2

e∑
i=0

(n
i

)
� H

( e
n

)
.

(ii) When the length of codeword is n → ∞, if lim
n→∞ RC = a, then

lim
n→∞ H

( e
n

)
= 1 − a.

Proof (i) According to the sphere-packing condition, since C is the perfect code, so

|C |
e∑

i=0

(
n

i

)
= 2n.

We have
1

n
log2 |C | + 1

n
log2

e∑

i=0

(
n

i

)
= 1.

That is

1 − RC = 1

n
log2

e∑

i=0

(
n

i

)
� H

( e
n

)
,

The last inequality is derived from lemma 1.11 in the Chap. 1, so (i) holds. If there
is a limit of RC when n → ∞, again from lemma 1.11 in the Chap. 1, we have

lim
n→∞ H

( e
n

)
= 1 − lim

n→∞ RC = 1 − a.

The Theorem 2.2 holds.

Finally, we give an example of perfect code.

Example 2.1 Let n = 2e + 1 is an odd number, then the repeated code in F
n
2 is

A = {0, 1}, where 0 = 00 . . . 0, 1 = 11 · · · 1 are Perfect codes of length n.
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First, repeat code A = {0, 1} ⊂ F
n
2 contains only two codes 0 = 0 . . . 0 ∈ F

n
2, 1 =

1 . . . 1 ∈ F
n
2, because n = 2e + 1 is an odd number, so from Corollary 2.2, Disjoint

radius of A is ρ1 = e, let’s prove that the covering radius of A is ρ = ρ1 = e, for
any x ∈ F

n
2, if d(0, x) > e, that is d(0, x) ≥ e + 1, this shows that at least e + 1

characters are 1 in x = x1x2 . . . xn ∈ F
n
2 , the maximum number of e characters is 0,

thus d(1, x) ≤ e. This shows that x /∈ Be(0), then x ∈ Be(1), that is

Be(0) ∪ Be(1) = F
n
2,

so ρ ≤ e = ρ1 ≤ ρ, we have ρ = ρ1. That is A is the perfect code. Note that in this
example, e can take any positive integer, so the code rate of the repeat code has a
limit value

lim
n→∞ RA = 0,⇒ lim

n→∞ H(
e

n
) = 1.

As the end of this chapter, we discuss and define the equivalence of two codes.
Let C ⊂ F

n
q be a code of length n and Sn be a permutation group of n elements. Any

σ ∈ Sn is a n permutation, x = x1x2 . . . xn ∈ F
n
q , We define σ(x) as

σ(x) = xσ(1)xσ(2) . . . xσ(n) ∈ F
n
q , (2.6)

σ(C) = {σ(c) | c ∈ C}. (2.7)

Definition 2.5 Let C and C1 be two codes in F
n
q , if there is σ ∈ Sn ⇒ σ(C) =

C1, Call C and C1 is equivalent, denoted as C ∼ C1. Obviously, equivalence is
an equivalence relation between codes, because take σ = 1, then have C ∼ C . If
C ∼ C1, that isC1 = σ(C), then we haveC = σ−1(C1), that isC ∼ C1 ⇒ C1 ∼ C .
Similarly, if C ∼ C1, C1 ∼ C2, then C ∼ C2. Because C1 = σ(C),C2 = τ(C1) ⇒
C2 = τσ (C). Another obvious property is that the function of σ does not change the
Hamming distance between two codewords, that is, we have

d(σ (x), σ (y)) = d(x, y),∀σ ∈ Sn. (2.8)

Lemma 2.7 SupposeC ∼ C1are two equivalent codes, then they have the same code
rate, the same minimum distance, the same coverage radius and the same disjoint
radius. In particular, if C is a perfect code, then all codes C1 equivalent to C are
perfect codes.

Proof All the results of lemma can be easily proved by using equation (2.8).

2.2 Linear Code

Let C ⊂ F
n
q be a code, if C is a k-dimensional linear subspace of F

n
q , C is called a

linear code, denote as C = [n, k]. So for a linear code C , we have
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RC = 1

n
logq |C | = k

n
, minimal distance d = minimal weight w.

Let {α1, α2, . . . , αk} ⊂ C be a set of bases of linear code C , where

αi = αi1αi2 · · · αin ∈ F
n
q , 1 ≤ i ≤ k.

Definition 2.6 If {α1, α2, . . . , αk} is a set of bases of linear code C = [n, k], then
have k × n-order matrix

G =

⎡

⎢⎢⎢⎣

α1

α2
...

αk

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣

α11 α12 · · · α1n

α21 α22 · · · α2n

· · · · · · · · · · · ·
αk1 αk2 · · · αkn

⎤

⎥⎥⎦ .

Called generation matrix of C , write

G = [Ik, Ak×(n−k)], Ik is k order identity matrix.

It is called the standard form of G.

Lemma 2.8 C = [n, k] is a linear code, G is generation matrix, then

C = {aG|a ∈ F
k
q}.

Proof Because {α1, α2, . . . , αk} is a set of bases of linear code C . ∀ x ∈ C , then

x = a1α1 + a2α2 + · · · + akαk = (a1, a2, . . . , ak)

⎡

⎢⎣
α1
...

αk

⎤

⎥⎦ = a · G.

Where a = (a1, a2, . . . , ak) ∈ F
k
q , the Lemma holds.

Define the inner product in F
n
q , x = x1 . . . xn, y = y1 . . . yn ∈ F

n
q , then define <

x, y >=∑n
i=1 xi yi , if < x, y >= 0, Say x and y orthogonal, denote as x ⊥ y.

Definition 2.7 LetC = [n, k] be a linear code whose orthogonal complement space
C⊥ is

C⊥ = {y ∈ F
n
q | < x, y >= 0,∀ x ∈ C}.

Obviously, C⊥ is an [n, n − k]-linear code, and C⊥ is the dual code of C . The
generating matrix H of C⊥ is called the check matrix of C .

Lemma 2.9 C = [n, k] is a linear code, H is a check matrix, then we have
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xH ′ = 0 ⇔ x ∈ C.

Where H ′ is the transpose matrix of H.

Proof We only prove the conclusion by taking the standard form of the generating
matrix G of C . Let

G = [Ik, Ak×(n−k)] = [Ik, A], A = Ak×(n−k).

Then the check matrix of C , that is, the generating matrix of dual code C⊥ is

H = [−A′, In−k], H ′ =
[ −A
In−k

]
.

By Lemma 2.8, if x ∈ C , then ∃ a ∈ F
k
q ⇒ x = aG, thus

xH ′ = aGH ′ = a[Ik, A]
[ −A
In−k

]
= 0.

Conversely, if xH ′ = 0, because H is the generating matrix of C⊥, again by
Lemma 2.8, for ∀ y ∈ C⊥, ∃ b ∈ F

n−k
q ⇒ y = bH , thus

< x, y >= xy′ = xH ′b′ = 0 ⇒ x ∈ (C⊥)⊥ = C.

The Lemma holds.

By Lemma 2.9, ∀ x, y ∈ F
n
q , then

xH ′ = yH ′ ⇔ x − y ∈ C.

Because C is an additive subgroup of F
n
q , xH

′ is called the check value of codeword
x . Then the check values of the two codewords are equal ⇔. These two codewords
are in the same additive coset of C . The following decoding principle of linear code
is produced.

Decoding principle: If the C = [n, k] linear code is used for coding, through an
interference channel, when the received codeword is x ∈ F

n
q , then find a codeword

x0 with the least weight in the additive coset x + C of x , that is, x0 satisfies

x0 ∈ x + C, and w(x0) = min{w(α)|α ∈ x + C}.

x0 is called the leader codeword in coset x + C . We’re going to decode x into x − x0.

Lemma 2.10 If the minimum distance of linear code C = [n, k] is d = 2e + 1, then
there is at most one codeword x0 ⇒ w(x0) ≤ e in any additive coset x + C of C.
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Proof If α, β ∈ x + C , and w(α) ≤ e, w(β) ≤ e. Then α − β ∈ C . And w(α −
β) ≤ w(α) + w(β) = 2e, but minimal weight of C =Minimal distance of C =
2e + 1, so there are contradictions, thus α = β. The Lemma holds.

Corollary 2.5 For a perfect linear code C = [n, k]with minimal distance d = 2e +
1, then there exists and only exists a codeword with weight ≤ e in any additive coset
x + C of C. In other words, the leader code in any addition set is unique.

Proof x ∈ F
n
q ⇒ ∃ c ∈ C such that x ∈ Be(c), that is d(c, x) ≤ e. So w(x − c) ≤

e.But x − c ∈ x + C. The Lemma holds.

Definition 2.8 If any two column vectors of the generator matrix G of a linear code
C = [n, k] are linearly independent, C is called a projective code.

In order to discuss the true meaning of projective codes, we consider the (k − 1)-
dimensional projective space PG(k − 1, q) over Fq .

In F
k
q , any two vectors a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk), say a ∼ b, if

∃λ ∈ F
∗
q ⇒ a = λb. This is an equivalent relation onF

k
q . Obviously b ∼ 0 ⇔ b = 0,

any a ∈ F
k
q , a = {λa|λ ∈ F

∗
q}, the quotient set F

k
q/∼ is called a (k − 1)-dimensional

projective space over Fq . Denote as PG(k − 1, q), therefore

PG(k − 1, q) = F
k
q/∼ = {a|a ∈ F

k
q}.

The number of nonzero points in (k − 1)-dimensional projective space PG(k − 1, q)

is

|PG(k − 1, q)| = qk − 1

q − 1
= 1 + q + · · · + qk−1.

A linear code [n, n − k], its check matrix H is a k × n-order matrix, and any
two column vectors are linearly independent, that is H = [a1, a2, . . . , an], then
{a1, a2, . . . , an} ⊂ PG(k − 1, q) are n with different nonzeros. So the generating
matrix of an [n, k] projective code consists of n different nonzero points in projec-
tive space PG(k − 1, q). Because n ≤ |PG(k − 1, q)|, when the maximum value
is reached, i.e.

n = |PG(k − 1, q)| = qk − 1

q − 1
.

This leads to a perfect example of linear codes, called Hamming codes.

Definition 2.9 Let k > 1, n = qk−1
q−1 , a linear code C = [n, n − k] is called a Ham-

ming code if any two column vectors of the check matrix H of C are linearly inde-
pendent.

Since C is a n − k-dimensional linear subspace and C⊥ is a k-dimensional linear
subspace, its generating matrix H is a k × n-order matrix. Therefore, if any two
column vectors of H are linearly independent, they represent n different points in
projective space PG(k − 1, q). Because n = qk−1

q−1 , then the construction of Ham-
ming codes is the most possible.
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Theorem 2.3 Any Hamming code C = [n, n − k] is a perfect code, its minimum
distance is d = 3; therefore, Hamming codes are perfect 1−error correcting codes.

Proof We first prove that the minimum distance of Hamming code C is d ≥ 3. If
d ≤ 2, there is x = x1x2 . . . xn ⇒ w(x) ≤ 2, that is, there are at most two characters
xi and x j are not 0. Because the minimum distance d = minimum weight w of a
linear code.

Let H = (α1, α2, . . . , αn) be the check matrix of C . if xH ′ = 0, then

(x1, x2, . . . , xn)

⎡

⎢⎢⎢⎣

α1

α2
...

αn

⎤

⎥⎥⎥⎦ = 0.

We have αi xi + α j x j = 0, thus αi and α j are linearly related, contradiction. So
d ≥ 3, by Lemma 2.4, then the disjoint radius of C is ρ1 ≥ 1.

On the other hand, c ∈ C , by Lemma 2.3, the number of elements in ball B1(c) is

|B1(c)| = 1 + n(q − 1) = qk .

Because C is a (n − k)-dimensional linear subspace, that is |C | = qn−k , so

|
⋃

c∈C
B1(c)| = |C |qk = qn = |Fn

q |,

⇒
⋃

c∈C
B1(c) = F

n
q .

We have 1 ≤ ρ1 ≤ ρ ≤ 1 ⇒ ρ1 = ρ = 1. C is a perfect code. Its minimal distance
is d = 2ρ + 1 = 3, the Lemma holds.

Next, we discuss the weight polynomial of a linear code C and prove the famous
MacWilliams theorem.

x ∈ C = [n, k], then the value of weight function w(x) is from 0 to n, actually
w(x) = 0 ⇔ x = 0 ∈ C , w(x) = n ⇔ x = x1 . . . xn,∀ xi �= 0. So for each i, 0 ≤
i ≤ n, define

A(i) = #{x ∈ C |w(x) = i}

and weighted polynomials of C .

A(z) =
n∑

i=0

Ai z
i , z is a variable.

Obviously, for any given c ∈ C , then the number of codewords inC whose Hamming
distance to c is exactly equal to i is Ai , that is
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Ai = #{x ∈ C |d(x, c) = i}.

The codes with the above properties are called distance invariant codes; obviously,
linear codes are distance invariant codes.

The following result was proved by MacWilliams in 1963; he established the
relationship between the weight polynomials of a linear code C and its dual code
C⊥, which is the most basic achievement in code theory.

Theorem 2.4 (MacWilliams)LetC = [n, k] be a linear code overFq and theweight
polynomial be A(z), C⊥ is the dual code of C, the weight polynomial is B(z), then

B(z) = q−k(1 + (q − 1)z)n A(
1 − z

1 + (q − 1)z
).

Specially, when q = 2,

2k B(z) = (1 + z)n A(
1 − z

1 + z
).

Proof Let ψ(a) be an additive feature on Fq . ψ(a) can be constructed as follows:

ψ(a) = exp(
2π i tr(a)

p
), tr(a) : Fq → Fp.

For any c ∈ C , we define the polynomial gc(z) as

gc(z) =
∑

x∈Fn
q

zw(x)ψ(< x, c >), (2.9)

therefore, ∑

c∈C
gc(z) =

∑

x∈Fn
q

zw(x)
∑

c∈C
ψ(< x, c >), (2.10)

Let’s calculate the inner sum of (2.10). If x ∈ C⊥, then
∑

c∈C
ψ(< x, c >) = |C |.

If x /∈ C⊥, let’s prove ∑

c∈C
ψ(< x, c >) = 0. (2.11)

If x ∈ F
n
q , x /∈ C⊥, let

T (x) = {y ∈ C |< y, x >= 0} � C,



50 2 The Basis of Code Theory

so T (x) is a linear subspace of C . c ∈ C , we consider additive cosets any two code-
words c + y1 and c + y2 in this set , we have

< c + y1, x >=< c + y2, x >=< c, x > .

On the contrary, any two additive cosets c1 + T (x), c2 + T (x), if < c1, x >=<

c2, x >, then< c1 − c2, x >= 0, that is c1 − c2 ∈ T (x), so c1 + T (x) = c2 + T (x).
Therefore, the inner product of any two codewords in c + T (x) ⊂ C is the same
with x . Conversely, different additive cosets and the inner product of x are not equal.
Because x /∈ C⊥, ∃ c0 ∈ C , such that < c0, x >�= 0, let < c0, x >= a �= 0, then
< a−1c0, x >= 1, let c1 = a−1c0 ∈ C , then< c1, x >= 1. Therefore, ∀a ∈ Fq ⇒<

ac1, x >= a. < c, x > takes every element of Fq , so

∑

c∈C
ψ(< x, c >) = [C : T (x)]

∑

a∈Fq

ψ(a) = 0.

That is, (2.11) holds. From (2.10), we can get that

∑

c∈C
gc(z) = |C |

∑

x∈Fn
q

x∈C⊥

zw(x) = |C |B(z). (2.12)

Define theweight functionw(a) = 1 for a ∈ Fq , if a �= 0,w(0) = 0. For any x ∈ F
n
q ,

c ∈ C , write x = x1x2 . . . xn , c = c1c2 . . . cn , then it is defined by G, we have

gc(z) =
∑

1≤i≤n
xi∈Fq

zw(x1)+w(x2)+···+w(xn)ψ(c1x1 + · · · + cnxn)

=
n∏

i=1

∑

x∈Fq

zw(x)ψ(ci x).

(2.13)

The inner layer sum of the above formula can be calculated as

∑

x∈Fq

zw(x)ψ(ci x) =
{
1 − z, i f ci �= 0,

1 + (q − 1)z, i f ci = 0.

From (2.13), then we have

gc(z) = (1 − z)w(c)(1 + (q − 1)z)n−w(c).

Thus
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∑

c∈C
gc(z) = (1 + (q − 1)z)n

∑

c∈C
(

1 − z

1 + (q − 1)z
)w(c)

= (1 + (q − 1)z)n A(
1 − z

1 + (q − 1)z
).

Finally, from (2.12), we have

B(z) = 1

|C | (1 + (q − 1)z)n A(
1 − z

1 + (q − 1)z
)

= q−k(1 + (q − 1)z)n A(
1 − z

1 + (q − 1)z
).

We have completed the proof of the theorem.

2.3 Lee Distance

m > 1 is a positive integer,Zm a is residue class rings of modm, ifZm is the alphabet
and C ⊂ Z

n
m is the proper subset, then C is called an m-ary code. In this case,

Hamming distance is not the best tool to measure error, we substitute Lee distance
and Lee weight. Let i ∈ Zm , define Lee weight as

WL(i) = min{i,m − i}. (2.14)

Obviously,

WL(0) = 0, WL(−i) = WL(m − i) = WL(i). (2.15)

Suppose a = (a1, a2, . . . , an) = a1a2 . . . an ∈ Z
n
m , b = b1b2 . . . bn ∈ Z

n
m , define Lee

weight and Lee distance on m-ary code C as follows

⎧
⎨

⎩
WL(a) =

n∑
i=1

WL(ai )

dL(a, b) = WL(a − b).

From (2.15), we have

WL(−a) = WL(a), dL(a, b) = dL(b, a),∀ a, b ∈ Z
n
m .

Lemma 2.11 For ∀ a, b, c ∈ Z
n
m, we have the following trigonometric inequalities

dL(a, b) ≤ dL(a, c) + dL(c, b).
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Proof Suppose 0 ≤ i < m, 0 ≤ j < m, we have

WL(i + j) ≤ WL(i) + WL( j). (2.16)

Because 0 ≤ i + j ≤ m
2 , then

WL(i + j) = i + j = WL(i) + WL( j).

If m
2 < i + j < m, we discuss it in three ways,

(1) i ≤ m
2 , j ≤ m

2 , there is

WL(i + j) = m − i − j < i + j = WL(i) + WL( j).

(2) i ≤ m
2 , j > m

2 , there is

WL(i + j) = m − i − j ≤ m − j = WL( j) ≤ WL(i) + WL( j).

(3) i > m
2 , j ≤ m

2 , there is

WL(i + j) = m − i − j ≤ m − i = WL(i) ≤ WL(i) + WL( j).

So we always have (2.16), in Z
n
m , (2.16) can be extended to

WL(a + b) ≤ WL(a) + WL(b),∀ a, b ∈ Z
n
m .

So
dL(a, b) = WL(a − b) = WL((a − c) + (c − b))

≤ WL(a − c) + WL(c − b) = dL(a, c) + dL(c, b).

The Lemma holds.

Next let’s makem = 4, the alphabet isZ4, On a 4-ary code, we discuss Lee weight
and Lee distance. Suppose a ∈ Z

n
4, 0 ≤ i ≤ 3, let

ni (a) = #{ j |1 ≤ j ≤ n, a = a1a2 . . . an, a j = i}. (2.17)

ni (a) is the number of characters equal to i in codeword a. C ⊂ Z
n
4 is a 4-ary code,

the symmetric polynomial and Lee weight polynomial of C are defined as

sweC(w, x, y) =
∑

c∈C
wn0(c)xn1(c)+n3(c)yn2(c) (2.18)

and
LeeC(x, y) =

∑

c∈C
x2n−WL (c)yWL (c). (2.19)



2.3 Lee Distance 53

Lemma 2.12 Let C ⊂ Z
n
4 is a 4-ary code with codeword length of n, then the sym-

metric polynomials and Lee weight polynomials have the following relation on C,

LeeC(x, y) = sweC(x2, xy, y2).

Proof a ∈ Z
n
4, by definition

n0(a) + n1(a) + n2(a) + n3(a) = n.

Let a = a1a2 . . . an , then

WL(a) =
n∑

i=1

WL(ai ) = n1(a) + 2n2(a) + n3(a).

So
LeeC(x, y) =

∑

c∈C
x2n0(c) · (xy)n1(c)+n3(c)y2n2(c)

= sweC(x2, xy, y2).

The Lemma holds.

By using Lee weight and Lee distance, we can extend the MacWilliams theorem
to Z4 codes, we have

Theorem 2.5 Let C ⊂ Z
n
4 be a linear code and C

⊥ be its dual code, LeeC(x, y) be
a Lee weighted polynomial of C, then

LeeC⊥(x, y) = 1

|C | LeeC(x + y, x − y).

Proof Let ψ be a nontrivial characteristic of Z4, and let ψ be

ψ(i) = (
√−1)i , i = 0, 1, 2, 3.

Let f (u) be a function defined on Z
n
4, we let

g(c) =
∑

u∈Zn
4

f (u)ψ(< c, u >). (2.20)

As in Theorem 2.4, there are

∑

c∈C
g(c) = |C |

∑

u∈C⊥
f (u). (2.21)

Take
f (u) = wn0(u)xn1(u)+n3(u)yn2(u), u ∈ Z

n
4.
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Write u = u1u2 . . . un ∈ Z
n
4, then for each i, 0 ≤ i ≤ 3, we have

ni (u) = ni (u1) + ni (u2) + · · · + ni (un).

Thus

f (u) =
n∏

i=1

f (ui ).

Let c = c1c2 . . . cn ∈ Z
n
4, by (2.20),

g(c) =
n∏

i=1

(
∑

u∈Z4

f (u)ψ(< ci , u >)). (2.22)

Now we calculate the inner sum on the right side of equation (2.22).

∑

u∈Z4

f (u)ψ(< ci , u >) =

⎧
⎪⎨

⎪⎩

w + 2x + y, if ci = 0

w − y, if ci = 1 or 3

w − 2x + y, or ci = 2.

.

by (2.22),

g(c) = (w + 2x + y)n0(c)(w − y)n1(c)+n3(c)(w − 2x + y)n2(c).

So ∑

c∈C
g(c) = sweC(w + 2x + y, w − y, w − 2x + y).

by (2.21),

|C |sweC⊥(w, x, y) = sweC(w + 2x + y, w − y, w − 2x + y).

By Lemma 2.12, and replace the variable, there are

LeeC⊥(x, y) = 1

|C | LeeC(x + y, x − y).

We have completed the proof.
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2.4 Some Typical Codes

2.4.1 Hadamard Codes

In order to introduce Hadamard codes, we first define a Hadamard matrix of order
n. Let H = (ai j ), if ai j = ±1, and

HH ′ = nIn =

⎡

⎢⎢⎢⎣

n 0 · · · 0
0 n · · · 0
...

... · · · ...

0 0 · · · n

⎤

⎥⎥⎥⎦ ,

H is called a Hadamard matrix of order n. It is easy to verify that the following H2

is a Hadamard matrix of second order

H2 =
[
1 1
1 −1

]
.

In order to obtain higher-order Hadamard matrices, a useful tool is the so-called
Kronecker product. Let A = (ai j )m×m , B = (bi j )n×n , then A and B’s Kronecker
product A ⊗ B define as

A ⊗ B =

⎡

⎢⎢⎢⎣

a11B a12B · · · a1m B
a21B a22B · · · a2m B

...
... · · · ...

am1B am2B · · · amm B

⎤

⎥⎥⎥⎦ .

Obviously, A ⊗ B is a square matrix of order nm × nm. The following results are
easy to prove.

Lemma 2.13 Let A be a Hadamard matrix of order m, B be a Hadamard matrix of
order n, then A ⊗ B be a Hadamard matrix of order nm × nm.

Proof Let A = (ai j )m×m , B = (bi j )n×n , H = A ⊗ B, then
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HH ′ =

⎡

⎢⎢⎢⎣

a11B a12B · · · a1m B
a21B a22B · · · a2m B

...
... · · · ...

am1B am2B · · · amm B

⎤

⎥⎥⎥⎦ .

⎡

⎢⎢⎢⎣

a11B ′ a21B ′ · · · am1B ′
a12B ′ a22B ′ · · · am2B ′

...
... · · · ...

a1m B ′ a2m B ′ · · · amm B ′

⎤

⎥⎥⎥⎦

=
⎡

⎢⎣
c11BB ′ c12BB ′ · · · c1m BB ′

...
... · · · ...

cm1BB ′ cm2BB ′ · · · cmm BB ′

⎤

⎥⎦

=

⎡

⎢⎢⎢⎣

mnIn 0 · · · 0
0 mnIn · · · 0
...

... · · · ...

0 0 · · · mnIn

⎤

⎥⎥⎥⎦

= mnInm .

The Lemma holds.

Since H2 is a Hadamard matrix of order 2, then

H2 ⊗ H2 = H⊗2
2 , H2 ⊗ H2 ⊗ · · · ⊗ H2 = H⊗n

2

are Hadamard matrix of order 4 and order 2n respectively.
Let n be an even number and Hn be a Hadamard matrix of order n, take

α1, α2, . . . , αn as n row vectors, i.e.,

Hn =

⎡

⎢⎢⎢⎣

α1

α2
...

αn

⎤

⎥⎥⎥⎦ ,−Hn =

⎡

⎢⎢⎢⎣

−α1

−α2
...

−αn

⎤

⎥⎥⎥⎦ .

We get 2n row vectors {±α1,±α2, . . . ,±αn}, for each row vectors ±αi , we
replace the component −1 with 0, the row vector αi so permuted is denoted as
αi , −αi denote as −αi , so ±αi forms a vector of F

n
2, denote as

C = {±α1,±α2, . . . ,±αn} ⊂ F
n
2.

C is called a Hadamard code.

Theorem 2.6 The minimum distance of Hadamard code C of length n (n is an even
number) is d = n

2 .
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Proof Let Hn be a Hadamard matrix of order n, Hn =

⎡

⎢⎢⎢⎣

α1

α2
...

αn

⎤

⎥⎥⎥⎦ , Each αi is a row

vector of Hn , substituteαi
σ−→ αi , such that eachαi ⊂ F

n
2 becomeabinary codeword.

We see that this kind of permutation does not change the corresponding Hamming
distance, that is {

d(αi , α j ) = d(αi , α j )

d(−αi ,−α j ) = d(αi , α j ),

where i �= j . Let us prove that the minimum distance of C is n
2 , let a = a1a2 . . . an ,

b = b1b2 . . . bn are two different row vectors of Hadamard matrix Hn , because of

ab′ = 0 ⇒
n∑

i=1

aibi = 0.

And ai = ±1, bi = ±1. Let the number of the same character be d1 and the number
of different characters be d = d(a, b), so there are d1 − d = 0, that is d1 = d, but
d1 + d = n, so d = n

2 . The Lemma holds.

Corollary 2.6 C = {±α1,±α2, . . . ,±αn} is Hadamard code, then the Hamming
distance of any two different codewords on C is n

2 .

Proof {±α1,±α2, . . . ,±αn} s the row vector of Hadamardmatrix, let a = ±αi , b =
±α j (i �= j), then

ab′ = ±
n∑

i=1

aibi = 0 ⇒ d(a, b) = n

2
.

A code of length n, number of codewords M , minimum distance d, denoted as
(n, M, d), different from linear code [n, k] or [n, k, d], Hadamard code is

C = (n, 2n,
n

2
).

Whenn = 8,d = 4, this is an extensionofHammingcode.Whenn = 32, (32, 64, 16)
is the code used by the U.S. Mars probe in 1969 to transmit pictures taken on Mars.

2.4.2 Binary Golay Codes

In the theory and application of channel coding, binaryGolay code is themost famous
one. In order to introduce Golay code G23 completely, we first introduce the concept
of t − (m, k, λ) design.
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Let S be a set of m elements, that is |S| = m. The elements in S are called points.
Let R be the set of subsets with k elements in S, |R| = M , i.e.,

R = {B1, B2, . . . , BM }, Bi ⊂ S, |Bi | = k, 1 ≤ i ≤ M.

Element Bi in R is called block.

Definition 2.10 (S,R) is called t − (m, k, λ) design, if for any T ⊂ S, |T | = t ,
then there are exactly λ blocks B inR such that T ⊂ B. If (S,R) is a t − (m, k, λ)

design, denote as (S,R) = t − (m, k, λ). If λ = 1, then t − (m, k, 1) is called a
Steiner system.

In a t − (m, k, λ) design (S,R), we introduce its occurrence matrix. For any
a ∈ S, the characteristic function χi (a) is defined as

χi (a) =
{
1, if a ∈ Bi ,

0, if a /∈ Bi ,

write S = {a1, a2, . . . , am},R = {B1, B2, . . . , BM}, |R| = M . Matrix

A = (χ j (ai ))m×M =

⎡

⎢⎢⎢⎣

χ1(a1) χ2(a1) · · · χM(a1)
χ1(a2) χ2(a2) · · · χM(a2)

...
... · · · ...

χ1(am) χ2(am) · · · χM(am)

⎤

⎥⎥⎥⎦ ,

A is called the occurrence matrix of t − (m, k, λ) design.
Let’s now consider a concrete example, 2 − (11, 6, 3) design. Where there are

11 points in S and 6 points in R, and any two points in S have exactly three blocks
containing it.

Lemma 2.14 2 − (11, 6, 3) design is the only definite one, that is to say, let S =
{a1, a2, . . . , a11}, then there are 11 blocks in R,

R = {B1, B2, . . . , B11}.

And for any a ∈ S, exactly 6 blocks B j in R contain a.

Proof Suppose ∀ a ∈ S, there is exactly l B j containing it, because there are exactly
3 blocks in any 2 points, so there are 6l − l = 10 × 3. Then l = 6. In addition,
suppose |R| = M , because each point has exactly six blocks containing it, there is
6 × M = 11 × 6, we can get M = 11.

By Lemma 2.14, the generating matrix N of 2 − (11, 6, 3) design is an 11-order
square matrix
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N =

⎡

⎢⎢⎢⎣

χ1(a1) χ2(a1) · · · χ11(a1)
χ1(a2) χ2(a2) · · · χ11(a2)

...
... · · · ...

χ1(a11) χ2(a11) · · · χ11(a11)

⎤

⎥⎥⎥⎦ .

And every row of N has exactly six 1’s and five 0’s, and every column of N has
exactly six 1’s and five 0’s.

Lemma 2.15 Let N be the occurrence matrix of 2 − (11, 6, 3) design, then

NN ′ = 3I11 + 3J11, J11 =
⎡

⎢⎣
1 1 · · · 1
...

... · · · ...

1 1 · · · 1

⎤

⎥⎦ .

If N is regarded as a square matrix of order 11 over F2, then

NN ′ = I11 + J11.

Further rank(N ) = 10, and the solution of linear equation system XN = 0 is exactly
two repeated codewords 0 and 1(0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1)) in F

11
2 .

Proof Let NN ′ = (bi j )11×11, defined by

bi j =
11∑

k=1

χk(ai )χk(a j ).

When i �= j , bi j = 3, when i = j , bi j = 6, so we have

NN ′ = 3I11 + 3J11 ≡ I11 + J11(mod 2).

Let N (mod 2) still be N , which is a square matrix of order 11 over F2. we have

rank(N ) = rank(I11) − rank(J11) = 10.

So the solution space of XN = 0 is a one-dimensional linear subspace of F
11
2 . Since

each column vector of N has exactly six 1’s and five 0’s, then

(1, 1, . . . , 1)N = (0, 0, . . . , 0) ∈ F
11
2 .

So there are exactly two solutions for XN = 0:

x = (0, 0, . . . , 0), x = (1, 1, . . . , 1).

The Lemma holds.
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Next, let’s construct a matrix G of order 12 × 24, G = (I12, P), where

P =

⎛

⎜⎜⎜⎝

0 1 · · · 1
1

N...

1

⎞

⎟⎟⎟⎠ , and G =

⎡

⎢⎢⎢⎣

α1

α2
...

α12

⎤

⎥⎥⎥⎦ .

where αi ∈ F
24
2 is the 12 row vector of G. Obviously we have a weight function

w(α1) = 12, w(αi ) = 8, 2 ≤ i ≤ 12. (2.23)

Lemma 2.16 Let G =

⎡

⎢⎢⎢⎣

α1

α2
...

α12

⎤

⎥⎥⎥⎦, then {α1, α2, . . . , α12} ⊂ F
24
2 is a linear indepen-

dent group, and the weight of any nonzero linear combination is at least 8, that
is

w(a1α1 + a2α2 + · · · + a12α12) ≥ 8, ai not all zero. (2.24)

Proof Let’s prove that {αi }12i=1 is a set of vectors orthogonal to each other, that is,
the inner product is < αi , α j >= αiα

′
j = 0. Obviously we have

< α1, α j >= α1α
′
j = 6 ≡ 0(mod 2), j �= 1.

If i �= 1, j �= 1, i �= j , then

< αi , α j >= 1 +
11∑

k=1

χk(ai )χk(a j ) = 4 ≡ 0(mod 2).

So < αi , α j >= 0, when i �= j , that is {α1, α2, . . . , α12} is a linear independent
group of F

24
2 . If ai ∈ F2, not all zero, take a = a1a2 . . . a12, let’s prove (2.24) by

induction of w(a). If w(a) = 1, the proposition holds by (2.23). When w(a) ≥ 8,
the proposition is ordinary, for 2 ≤ w(a) ≤ 7, we can still prove

w(a1α1 + a2α2 + · · · + a12α12) ≥ 8.

So the Lemma holds.

Definition 2.11 The linear code [24, 12] generated by rowvector group {α1, α2, . . . ,

α12} of G in F
24
2 is called Golay code, denoted as G24. Remove the last component of

αi , αi → αi , then αi ∈ F
23
2 . The linear code [23, 12] generated by {α1, α2, . . . , α12}

in F
23
2 is called Golay code, denote as G23.
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Theorem 2.7 Golay code G23 is a perfect code [23, 12] with minimal distance of
d = 7.

Proof Because the minimal distance of linear codes is minimal weight, by Lemma
2.16,

w(a1α1 + a2α2 + · · · + a12α12) ≥ w(a1α1 + a2α2 + · · · + a12α12) − 1 ≥ 7.

On the one hand, w(αi ) = 8 for ∀ αi , i �= 1, so there is αi ⇒ w(αi ) = w(αi ) − 1 =
7. So the minimum distance of G23 is d = 7. On the other hand, we note that

|G23|
3∑

i=0

(
23

i

)
= 212

3∑

i=0

(
23

i

)
= 223.

By the sphere-packing condition of Theorem2.1⇒ G23 is a perfect code, the Lemma
holds.

2.4.3 3-Ary Golay Code

In order to introduce 3-ary Golay codes, we first define a Paley matrix of order q.
Let q ≥ 3 be an odd number, and define a second-order real-valued multiplication
characteristic χ(a) in the finite field Fq as

χ(a) =

⎧
⎪⎨

⎪⎩

0, if a = 0;
1, if a ∈ (F∗

q)
2;

− 1, if a /∈ (F∗
q)

2.

Obviously, χ is a character in F
∗
q . Because F

∗
q is a (q − 1)-order cyclic multiplicative

group, so we have

χ(−1) = (−1)
q−1
2 =

{
1, if q ≡ 1(mod 4);
− 1, if q ≡ 2 or 3(mod 4).

Write Fq = {a0, a1, . . . , aq−1} , where a0 = 0, then Paley matrix Sq of order q is
defined as

Sq = (χ(ai − a j ))q×q =

⎡

⎢⎢⎢⎢⎣

0 χ(−a1) χ(−a2) · · · χ(−aq−1)

χ(a1) 0 χ(a1 − a2) · · · χ(a1 − aq−1)

χ(a2) χ(a2 − a1) 0 · · · χ(a2 − aq−1)

· · · · · · · · · · · · · · ·
χ(aq−1) χ(aq−1 − a1) · · · · · · 0

⎤

⎥⎥⎥⎥⎦
.



62 2 The Basis of Code Theory

Lemma 2.17 The Paley matrix Sq of order q has the following properties:

(i) Sq Jq = Jq Sq = 0.
(ii) Sq S

′
q = q Iq − Jq .

(iii) S
′
q = (−1)

q−1
2 Sq .

Here, Iq is the unit matrix of order q and Jq is the square matrix of order q with all
elements of 1.

Proof Let Sq Jq = (bi j )q×q , then for ∀ 0 ≤ i ≤ q − 1, 0 ≤ j ≤ q − 1, there is

bi j =
q−1∑

k=0

χ(ai − ak) =
∑

c∈Fq

χ(c) = 0.

So (i) holds. To prove (ii), let Sq S′
q = (ci j )q×q , then

ci j =
q−1∑

k=0

χ(ai − ak)χ(a j − ak).

Obviously, we have

ci j =
{
q − 1, if i = j;
− 1, if i �= j.

So (ii) holds. To prove (iii), noticed that χ(−1) = (−1)
q−1
2 , so

Sq = χ(−1)S
′
q = (−1)

q−1
2 S

′
q ,

the Lemma holds.

Let q = 5, we consider the Paley matrix S5 of order 5, it has been calculated that

S5 =

⎡

⎢⎢⎢⎢⎣

0 1 −1 −1 1
1 0 1 −1 −1

−1 1 0 1 −1
−1 −1 1 0 1
1 −1 −1 1 0

⎤

⎥⎥⎥⎥⎦
.

In F
11
3 , we consider a linear code C whose generator matrix is

G =
(
I6

1 1 1 1 1
S5

)
,
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So C is a six-dimensional linear subspace in F
11
3 , that is C = [11, 6]. This code is

called 3-ary Golay code. In order to further discuss 3-ary Golay codes [11, 6], we
discuss the concept of extended codes of linear codes.

If C ⊂ F
n
q is a q-ary linear code of length n, the extension code C of C is defined

as

C = {(c1, c2, . . . , cn+1)|(c1, c2, . . . , cn) ∈ C, and
n+1∑

i=1

ci = 0}.

Obviously, C ⊂ F
n+1
q is a linear code.

Lemma 2.18 If C ⊂ F
n
q is a linear code, the generation matrix is G and the test

matrix is H, then the length of extension code C ⊂ F
n+1
q is n + 1, its generation

matrix G and test matrix H are

G = [G, β], and H =

⎛

⎜⎜⎜⎝

1 1 · · · 1

H
0
...

0

⎞

⎟⎟⎟⎠ ,

respectively. Where β is a column vector and satisfies that the sum of all column
vectors of β and G is 0. Further, let q = 2, if the minimum distance d of C is odd,
then the minimum distance of C is d + 1.

Proof The generation matrix and check matrix of C can be given directly by defi-
nition. The minimal weight w = w(c) of C can be obtained by c = c1c2 . . . cn ∈ C ,
because q = 2, so there are w ci = 1, and w is an odd number, then w �= 0, let
cn+1 = 1, then

c∗ = c1c2 . . . cn+1 ∈ C and w(c∗) = d + 1.

This is the minimal weight in C . The lemma is proved.

Consider the extension codes C = [12, 6] of 3-ary Golay code C = [11, 6], its
generating matrix is

G =

⎛

⎜⎜⎜⎝
I6

1 1 1 1 1 0

S5
−1
...

−1

⎞

⎟⎟⎟⎠ , (2.25)

Note that the sum of the components of each row vector of S5 is 0, and the inner
product of the different row vectors is - 1, and the inner product of the same row
vector is 1, so

G · G ′ = 0.

Therefore, the extended code C is a self-dual code, that is (C)⊥ = C .
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Theorem 2.8 3-ary Golay code C is a perfect linear code [11, 6], its minimum
distance is 5, so it is a 2-error correcting code.

Proof The weight of each row vector of G is 6, according to the calculation, the
weight of the linear combination of row vectors of G is 6, so the minimum distance
of extension code C is 6 ⇒ the minimum distance of C is 5. So the disjoint radius
of C is ρ1 = 2. And because

|C | = 36,
2∑

i=0

(
11

i

)
2i = 35,

then the condition of sphere packing satisfy

|C |
2∑

i=0

(
11

i

)
2i = 311.

Thus by Theorem 2.1, C is a perfect code, the Theorem holds.

Remark 2.1 It is worth noting that J.H.VanLint in 1971 (See reference 2 [24]),
A.T ietäväinen in 1973(See reference 2 [43]) independently proved that perfect
codes (nontrivial) with minimal distance greater than 3 have only 2-ary Golay codes
G23 and 3-ary Golay codes over any finite field.

2.4.4 Reed–Muller Codes

Reed and Muller proposed a class of 2-ary linear codes based on finite geometry in
1954. In order to discuss the structure and properties of these codes, we first prove
some results in number theory.

Lemma 2.19 Let p be a prime, k, n be two nonnegative integers whose p-ary is
expressed as

n =
l∑

i=0

ni p
i , k =

l∑

i=0

ki p
i .

Then (
n

k

)
≡

l∏

i=0

(
ni
ki

)
(mod p), where

(
ni
ki

)
= 0, if ki > ni .

Proof If k = 0, then ki = 0, so the above formula holds. If n = k, then ni = ki , the
above formula also holds. We might as well make 1 ≤ k < n, note the polynomial
congruence

(1 + x)p ≡ 1 + x p(mod p),
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so we have

(1 + x)n = (1 + x)
∑l

i=0 ni p
i

≡
l∏

i=0

(1 + x pi )ni (mod p),

Comparing the coefficients of the xk terms on both sides of the above formula, if
there is a k j > n j , then the xk terms do not appear on the right side of the above
formula, which means that the coefficients of the xk terms on the left side are

(
n

k

)
≡ 0(mod p).

If ki ≤ ni , ∀ 0 ≤ i ≤ l, then

(
n

k

)
≡

l∏

i=0

(
ni
ki

)
(mod p).

We complete the proof of Lemma.

Massey defined the concept of polynomial weight for the first time in 1973,
on a finite field with characteristic 2 (q = 2r ), a polynomial f (x) ∈ Fq [x], whose
Hamming weight is defined as

w( f (x)) = The number of nonzero coefficients of f (x).

Lemma 2.20 (Massey, 1973) Let f (x) =∑l
i=0 bi (x + c)i ∈ Fq [x] and bl �= 0, let

i0 be the smallest subscript i of bi �= 0, then

w( f (x)) ≥ w((x + c)i0).

Proof l = 0, then i0 = 0, the lemma holds. Let l < 2n be lemma, we consider 2n ≤
l < 2n+1, write f (x) as

f (x) =
2n−1∑

i=0

bi (x + c)i +
l∑

i=2n

bi (x + c)i

= f1(x) + (x + c)2
n
f2(x)

= f1(x) + c2
n
f2(x) + x2

n
f2(x),
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where deg f1(x) < 2n, deg f2(x) < 2n . There are two situations to discuss:

(i) If f1(x) = 0, then w( f (x)) = 2w( f2(x)). Because i0 ≥ 2n , so

w((x + c)i0) = w((x2
n + c2

n
)(x + c)i0−2n )

= 2w((x + c)i0−2n ).

From inductive hypothesis

w( f2(x)) ≥ w((x + c)i0−2n ).

So there are

w( f (x)) = 2w( f2(x)) > 2w((x + c)i0−2n ) = w((x + c)i0).

(ii) f1(x) �= 0, i1 is the subscript of f1(x), i2 is the subscript of f2(x). If the term
not 0 in f1(x) plus the corresponding term of c2

n
f2(x) becomes 0, then x2

n
f2(x)

will have corresponding terms that are not zero, so we always have

w( f (x)) ≥ w( f1(x)), w( f (x)) ≥ w( f2(x)).

If i1 < i2, then i0 = i1, from inductive hypothesis,

w( f (x)) ≥ w( f1(x)) ≥ w((x − c)i1) = w((x − c)i0).

Similarly, if i2 < i1, then i0 = i2, there is

w( f (x)) ≥ w( f2(x)) ≥ w((x − c)i2) = w((x − c)i0).

If i1 = i2 , then it can always be changed into the case of i1 �= i0, so we always
have Lemma holds.

Next, we use Massey’s method to construct Reed–Muller codes. Let m ≥ 1, F
m
2

be an m-dimensional affine space, denote as AG(m, 2), α ∈ AG(m, 2) is a point in
affine space, write α as an m-dimensional column vector, let {u0, u1, . . . , um−1} be
the standard base of F

m
2 , that is

α =

⎡

⎢⎢⎢⎣

a0
a1
...

am−1

⎤

⎥⎥⎥⎦ , u0 =

⎡

⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
, . . . , um−1 =

⎡

⎢⎢⎢⎢⎢⎣

0
0
0
...

1

⎤

⎥⎥⎥⎥⎥⎦
,

where ai = 0 or 1. Let’s establish a 1 − 1 correspondence between the points in the
integer set {0 ≤ j < 2m} and AG(m, 2). Let 0 ≤ j < 2m , then
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j =
m−1∑

i=0

ai j2
i , ai j ∈ F2.

We define

x j =
m−1∑

i=0

ai j ui =

⎡

⎢⎢⎢⎣

a0 j
a1 j
...

a(m−1) j

⎤

⎥⎥⎥⎦ ∈ F
m
2 ,

Because when j1 �= j2, there is x j1 �= x j2 , So {x j |0 ≤ j < 2m} gives all the points in
F
m
2 . Write n = 2m and consider the matrix

E = [x0, x1, . . . , xn−1] =

⎡

⎢⎢⎢⎣

a00 a01 · · · a0(n−1)

a10 a11 · · · a1(n−1)
...

... · · · ...

a(m−1)0 a(m−1)1 · · · a(m−1)(n−1)

⎤

⎥⎥⎥⎦

m×n

,

Each row vector αi = (ai0, ai1, . . . , ai(n−1))(0 ≤ i ≤ m − 1) of E is a vector of F
n
2,

which is written as

E =

⎡

⎢⎢⎢⎣

α0

α1
...

αm−1

⎤

⎥⎥⎥⎦ = (ai j )m×n(0 ≤ i < m, 0 ≤ j < 2m = n).

For each i , 0 ≤ i < m, define a linear subspace in F
m
2 ,

Bi = {x j ∈ F
m
2 |ai j = 0}.

Obviously, Bi is a linear subspace, and the additive coset of Bi is called an m − 1-
dimensional plat in F

m
2 . We consider Ai = Bi + ui ,

Ai = {x j ∈ F
m
2 |ai j = 1, 0 ≤ j < n} ⇒ |Ai | = 2m−1.

We define the characteristic function χi (α) in F
m
2 according to Ai ,

χi (α) =
{
1, if α ∈ Ai ;
0, if α /∈ Ai .

where α ∈ F
m
2 . So each row vector αi (0 ≤ i < m) in E can be expressed as

αi = (χi (x0), χi (x1), . . . , χi (xn−1)).
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For any two vectors α = (b0, b1, . . . , bn−1), β = (c0, c1, . . . , cn−1) in F
n
2, define the

product vector
αβ = (b0c0, b1c1, . . . , bn−1cn−1) ∈ F

n
2.

So for 0 ≤ i1, i2 < m, we have the product of row vectors of E

αi1αi2 = (χi1(x0)χi2(x0), χi1(x1)χi2(x1), . . . , χi1(xn−1)χi2(xn−1)).

So the j-th (0 ≤ j < 2m) component of αi1αi2 is

χi1(x j )χi2(x j ) =
{
1, if x j ∈ Ai1 ∩ Ai2;
0, if x j /∈ Ai1 ∩ Ai2 .

From the definition of Ai , obviously,

|Ai1 ∩ Ai2 | = 2m−2.

Lemma 2.21 Let i1, i2, . . . , is be the number of s(0 ≤ s < m) different indexes from
0 to m − 1, then

|Ai1 ∩ Ai2 ∩ · · · ∩ Ais | = 2m−s,

And αi1αi2 · · · αis ∈ F
n
2 has a weight function

w(αi1αi2 · · ·αis ) = 2m−s .

Proof The first conclusion is obvious. Let’s just prove the second conclusion,

α = αi1αi2 · · · αis = (xi1(x0) · · · xis (x0), xi1(x1) · · · xis (x1), . . . , xi1(xn−1) · · · xis (xn−1))

has 2m−s x j ∈ Ai1 ∩ Ai2 ∩ · · · ∩ Ais , so there are 2m−s components in α that are 1
and the others are 0, so

w(α) = w(αi1αi2 · · · αis ) = 2m−s,

the Lemma holds.

For 0 ≤ l < 2m , I (l) is defined as an indicator set,

I (l) = {i1, i2, . . . , is | l =
m−1∑

i=0

ail2
i satisfy ail = 0}.
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The following properties of the indicator set I (l) are obvious:

(i) If l1 �= l2 ⇒ I (l1) �= I (l2).
(ii)

⋃
0≤l<n I (l) = {0, 1, 2, . . . ,m − 1}.

(iii) If l = n − 1 ⇒ I (n − 1) is an empty set.

The above properties are easy to verify, such as (i i i), because l = n − 1 = 2m − 1 =
1 + 2 + · · · + 2m−1, so the subscripts i of ail = 0 don’t exist, that is I (n − 1) = ∅.

Sometimes we can write indicator sets I (l) = {i1, i2, . . . , is}l .
Lemma 2.22 Let 0 ≤ l < n = 2m, I (l) = {i1, i2, . . . , is}, re hypothesis

αi1αi2 · · · αis = (bl0, bl1, . . . , bl(n−1)) ∈ F
n
2,

then in the ring F2[x], there is

(1 + x)l =
n−1∑

j=0

bl j x
n−1− j . (2.26)

Proof For 0 ≤ j < n, write j =∑m−1
i=0 ai j2i , then

n − 1 − j =
m−1∑

i=0

ci j2
i ,where ci j = 1 − ai j .

By Lemma 2.19,
(

l

n − 1 − j

)
≡

m−1∏

i=0

(
ail
ci j

)
(mod 2).

If (
l

n − 1 − j

)
≡ 1(mod 2),

then when ail = 0, ⇒ ci j = 0 ⇒ ai j = 1, that is to say

(
l

n − 1 − j

)
≡ 1(mod 2) ⇔ ai j = 1, for ∀ i ∈ I (l).

on the other hand, from Lemma 2.21,

bl j = 1 ⇔ x j ∈ Ai1

⋂
Ai2

⋂
· · ·
⋂

Ais ⇔ ai j = 1,when i ∈ I (l).
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Compare the xn−1− j terms on both sides of formula (2.26), so we have

(1 + x)l =
n−1∑

j=0

bl j x
n−1− j .

The Lemma holds.

For any 0 ≤ l < n = 2m , we define the index set I (l) = {i1, i2, . . . , is} and the
vector in F

n
2.

Nl = αi1αi2 · · · αis .

The index set I (l) corresponding to different l is different, so the corresponding
vector Nl is different; since the index set corresponding to l = n − 1 is an empty set,
the corresponding vector Nn−1 is defined as

Nn−1 = (1, 1, . . . , 1) = e.

Let e0 = (1, 0, . . . , 0), . . . , en−1 = (0, 0, . . . , 1) be a set of standard bases of F
n
2.

Lemma 2.23 For 0 ≤ j < n, we have

e j =
m−1∏

i=0

(αi + (1 + ai j )e),

where αi is the i-th row of matrix E.

Proof For vectorα inF
n
2, its complement vectorα is defined to replace the component

of 1 in α with 0, and the component of 0 in α with 1. So there are

α + α = e = (1, 1, . . . , 1),∀ α ∈ F
n
2.

When 0 ≤ j < n is given, we define the j-th complement of row vector αi (0 ≤ i <

m) of matrix E as

αi ( j) =
{

αi , if ai j = 1;
αi , if ai j = 0.

Obviously, there is
αi + (1 + ai j )e = αi ( j),

from the definition of index set I (l), we have

αi ( j) =
{

αi , if i /∈ I ( j);
e − αi , if i ∈ I ( j).
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Now let’s calculate

m−1∏

i=0

(αi + (1 + ai j )e) =
m−1∏

i=0

αi ( j)

=
∏

i∈I ( j)
(e − αi )

∏

i /∈I ( j)
αi = b.

where b ∈ F
n
2, let b = (b0, b1, . . . , bn−1). Obviously, b j = 1. If k �= j , then

bk =
∏

i /∈I ( j)
aik ·

∏

i∈I ( j)
(1 − aik) = 0.

Thus b = e j . We have completed the proof of Lemma.

Lemma 2.24 {Nl}0≤l<n constitutes a group of bases of F
n
2 , where Nn−1 = e =

(1, 1, . . . , 1).

Proof {Nl}0≤l<n has exactly n different vectors, let’s prove that they are linearly
independent. Let

Nl = αi1αi2 · · ·αis = (bl0, bl1, . . . , bl(n−1)),

n−1∑

l=0

cl Nl = (

n−1∑

l=0

clbl0,
n−1∑

l=0

clbl1, . . . ,
n−1∑

l=0

clbl(n−1))

be a linear combination. Where c = (c0, c1, . . . , cn−1) �= 0. Because

f (x) =
n−1∑

l=0

(1 + x)l ∈ F2[x], f (x) �= 0.

By Lemma 2.22, we have

f (x) =
n−1∑

j=0

(

n−1∑

l=0

clbl j )x
n−1− j .

So if there’s a component
∑n−1

l=0 clbl j �= 0, that is {Nl}0≤l<n is a group of bases. The
Lemma holds.

Definition 2.12 Let 0 ≤ r < m, a linear code of order r łłReed–Muller code R(r,m)

be
R(r,m) = L({αi1αi2 . . . αis |0 ≤ s ≤ r}) ⊂ F

n
2,

the vector corresponding to s = 0 is e.
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Obviously, when r = 0, R(0,m) corresponds to the repeated code in F
n
2:

R(0,m) = {(0, 0, . . . , 0), (1, 1, . . . , 1)}.

For general r , 0 ≤ r < m, R(r,m) is a t-dimensional linear subspace in F
n
2, where

t =
r∑

s=0

(
m

s

)
.

Lemma 2.25 The dual code of Reed–Muller code R(r,m) of order r is R(m − r −
1,m).

Proof The dimensions of R(r,m) and R(m − r − 1,m) are

dim(R(r,m)) =
r∑

s=0

(
m

s

)

and

dim(R(m − r − 1,m)) =
m−r−1∑

s=0

(
m

s

)
.

Because
r∑

s=0

(
m

s

)
+

m−r−1∑

s=0

(
m

m − s

)

=
r∑

s=0

(
m

s

)
+

m∑

s=r+1

(
m

s

)

=
m∑

s=0

(
m

s

)
= (1 + 1)m

= 2m = n.

That is
dim(R(r,m)) + dim(R(m − r − 1,m)) = n.

Let αi1αi2 · · · αis , α j1α j2 · · ·α jt be the basis vectors of R(r,m) and R(m-r-1,m), respec-
tively. Let

α = αi1αi2 · · · αis , β = α j1α j2 · · · α jt ,

by Lemma 2.21,

w(α) = 2m−s, w(β) = 2m−t , s ≤ r < m, t ≤ m − r − 1,

because s + t < m, the product αβ = αi1αi2 · · ·αis · α j1α j2 · · ·α jt has weight
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w(αβ) = w(αi1αi2 · · · αis · α j1α j2 · · · α jt ) = 2m−(s+t),

so
< α, β >= 0,

That is, the dual code of R(r,m) is R(m − r − 1,m). The Lemma holds.

Theorem 2.9 Reed–Muller code R(r,m) of order r have minimal distance d =
2m−r , specially, when r = m − 2, R(m − 2,m) is a linear code [n, n − m − 1].
Proof From Lemma 2.21, we have

w(αi1αi2 · · ·αis ) = 2m−s,

so the minimum distance of R(r,m) is d ≤ 2m−r , on the other hand, let I1(r) be the
value of all l of corresponding {i1, i2, . . . , is} under the condition of s ≤ r , let

αi1αi2 · · · αis = (bl0, bl1, . . . , bl(n−1)),

then

f (x) =
∑

l∈I1(r)
(1 + x)l =

n−1∑

j=0

(
∑

l∈I1(r)
clbl j )x

n−1− j .

Therefore, the weight function of linear combination has the following relationship:

w(
∑

l∈I1(r)
clαi1αi2 · · ·αis ) = w( f (x)).

Define i0 as
i0 = min{l|l ∈ I1(r)}.

Obviously,
i0 = 1 + 2 + · · · + 2m−r−1 = 2m−r − 1,

from Lemma 2.20, then there is

w( f (x)) ≥ w((x + 1)i0) = i0 + 1 = 2m−r .

Because the combination numbers
(
i0
k

)
=
(
2m−r − 1

k

)
(0 ≤ k ≤ 2m−r − 1)

are all odd, this is because

i0 = 1 + 2 + · · · + 2m−r−1, k = k0 + k1 · 2 + · · · + km−r−12
m−r−1,
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∀ ki ≤ 1, so as to deduce

(
i0
k

)
≡
∏(

l

ki

)
(mod 2).

So there is (
i0
k

)
≡ 1(mod 2).

In the end, we have d = 2m−r . If let r = m − 2, then the minimum distance is 4. The
dimension of R(m − 2,m) is

t =
m−2∑

s=0

(
m

s

)
=

m∑

s=0

(
m

s

)
−
(

m

m − 1

)
−
(
m

m

)

= 2m − m − 1

= n − m − 1.

So R(m − 2,m) is a linear code [n, n − m − 1]. The theorem is proved.

Because R(m − 2,m) is in the form of linear code [n, n − k], and the minimum
distance is 4, so we consider R(m − 2,m) as a class of extended Hamming codes.
Although it is not perfect, Hamming codes are perfect linear codes.

2.5 Shannon Theorem

In the channel transmission, due to the interference of the channel, a codeword x ∈ C
cannot be decoded correctly after it is sent, the probability of this error is recorded
as p(x), which is called the error probability of codeword x . According to Hamming
distance, after code C is selected, according to the decoding principle of “look most

like”, the error probability p(x) of a codeword x
sending−→ x ′ satisfies

⎧
⎨

⎩
p(x) = 0, if d(x, x ′) ≤ ρ1 <

1

2
n;

p(x) > 0, if d(x, x ′) > ρ1.

where ρ1 is the disjoint radius of code C . Therefore, the error probability p(x) of
code word x is related to code C . The error probability of code C is

p(C) = 1

|C |
∑

x∈C
p(x).
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It is difficult to calculate the error probability of a codeword mathematically, we take
the binary channel as an example,C ⊂ F

n
2 is a binary code of length n, to calculate the

error probability p(x) of x ∈ C , we agree that the transmission error probability of
character 0 is p, p < 1

2 , that is the probability of receiving 0 as 1 after transmission,
and the probability of character 1 transmission error is also p, although the probability
of error is very low, that is, the value of p is very small, the probability of error exists
due to the interference of channel. We further agree that the error probability of
each transmission of character 0 or 1 is p, which is called memoryless channel. In
the memoryless binary channel, the transmission of a codeword x = x1x2 . . . xn ∈ C
just constitutes the n-fold Bernoulli test, this probability model provides a theoretical
basis for calculating the error probability of codeword x , let’s take 2-tuple code as
an example.

Lemma 2.26 Let An be a binary repeated code of length n, that is An = {0, 1} ⊂ F
n
2 ,

p(An) is the probability of error, then

lim
n→∞ p(An) = 0.

Proof The transmissionof codeword0 = (0, 0, . . . , 0) is regarded asn-foldBernoulli
test, the character 0 has only two results of 0 and 1 after each transmission, the prob-
ability of occurrence of 0 is q = 1 − p, and the probability of occurrence of 1 is
p < 1

2 . Let 0 ≤ k ≤ n, then the probability of 0 appearing k times is

(
n

k

)
qk pn−k .

If k > 1
2n, then there are k > 1

2n 0 characters in the received codeword after the
codeword 0 is transmitted, suppose 0 → 0, then d(0, 0) ≤ n − k < 1

2n. Because
the disjoint radius of repeat code is 1

2n, according to the decoding principle, we can
always decode 0 → 0 correctly; therefore, the error of codeword 0 = (0, 0, . . . , 0) ∈
F
n
2 occurs if and only if when k ≤ 1

2n, the error probability is

p(0) =
∑

0≤k≤ n
2

(
n

k

)
qk pn−k .

Similarly, the error probability of codeword 1 = (1, 1, . . . , 1) ∈ F
n
2 is

p(1) =
∑

0≤k≤ n
2

(
n

k

)
qk pn−k .

Therefore, the error probability of repeat code An is
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p(An) =
∑

0≤k≤ n
2

(
n

k

)
qk pn−k .

To calculate the limit value n → ∞ of the above equation, let’s see

∑

0≤k≤ n
2

(
n

k

)
<
∑

0≤k≤n

(
n

k

)
= 2n.

Because p < 1
2 , so p < q, and when k ≤ n

2 , we have

k log
q

p
≤ n

2
log

q

p
.

It can be directly proved by the above formula

qk pn−k ≤ (qp)
n
2 .

Thus
p(An) ≤ 2n(qp)

n
2 = (4qp)

n
2 .

Because when p < 1
2 ,

p2 − p + 1

4
= (p − 1

2
)2 > 0,

so

p(1 − p) = pq <
1

4
, that is 4pq < 1.

Therefore,
0 ≤ lim

n→∞ p(An) ≤ lim
n→∞(4qp)

n
2 = 0.

The Lemma holds.

Below, we assume that the channel transmission is binary memoryless symmetric
channel. Each code is binary code. The error probability of each transmission of
characters 0 and 1 is p, q = 1 − p, p < 1

2 . For given codeword length n and the
number of codewords M = Mn , we define Shannon’s probability P∗(n, Mn, p) as

P∗(n, Mn, p) = min{P(C)|C ⊂ F
n
2, |C | = Mn}.

Shannon proved the following famous theorem in 1948.

Theorem 2.10 (Shannon) In a memoryless symmetric binary channel, let 0 < λ <

1 + p log p + q log q be a given real number, Mn = 2[λn], then we have

lim
n→∞ P∗(n, Mn, p) = 0.
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In order to understand the meaning of Shannon’s theorem and prove it, we need some
auxiliary conclusions.

Lemma 2.27 0 < λ < 1 + p log p + q log q is a given real number, any binary
code C ⊂ F

n
2 , if |C | = 2[λn], then the code rate RC of C satisfies

λ − 1

n
< RC ≤ λ.

Specially, When n → ∞, the rate of C approaches λ.

Proof
|C | = 2[λn] ⇒ log2 |C | = [λn] ≤ λn.

Therefore,

RC = 1

n
log2 |C | ≤ λ.

From the properties of square bracket function,

λn < [λn] + 1,

so
λn − 1 < [λn] = log2 |C |.

There are

λ − 1

n
<

1

n
log2 |C | = RC .

The Lemma 2.27 holds.

Combining Lemma 2.27, the significance of Shannon’s theorem is that the code
rate tends to the capacity 1 − H(p) of a channel when the code length n increases
and tends to infinity, and there exists a code C whose error probability is arbitrarily
small, according to Shannon’s understanding, this kind of code is called “good code”.
Shannon first proved the existence of “good codes” under more general conditions
by probability method. Theorem 2.10 is only a special case of Shannon’s channel
coding theorem. To prove Shannon theorem, we must accurately estimate the error
probability of a given number of codewords under the principle of decoding.

Lemma 2.28 In thememoryless binary channel, let the probability of each transmis-
sion error of characters 0 and 1 be p, q = 1 − p, a codeword x = x1x2 . . . xn ∈ F

n
2

has exactlyω characters error during transmission, then for any ε > 0, let b =
√

npq
ε
,

we have
P{ω > np + b} ≤ ε.

Proof For any a codeword x = x1x2 . . . xn ∈ F
n
2, when transmitted in a memoryless

binary channel, it can be regarded as an n-fold Bernoulli test, ω with exactly ω errors
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in x can be regarded as a discrete random variable with a value of 0, 1, 2, . . . , n, the
probability of occurrence of ω is (i.e., the probability of the value ω of the random
variable ω)

b(ω, n, p) =
(
n

ω

)
pωqn−ω.

Therefore, the probability distribution of ω obeys the discrete random variable of
binomial distribution. From Lemma 1.18 of the first chapter, the expected value
E(ω) and variance D(ω) of ω are as follows:

E(ω) = np, D(ω) = npq.

From the Chebyshev inequality of corollary 1.2, for any k > 0,

P{|ω − E(ω)| ≥ k
√
D(ω)} ≤ 1

k2
.

Take k = 1√
ε
, then we have

P{w > np + b} ≤ P{|ω − np| > b} ≤ ε.

That is
P{w > np + b} ≤ ε.

The Lemma 2.28 holds.

Lemma 2.29 Take ρ = [np + b], where b =
√

np(1−p)
ε

, then

ρ

n
log

ρ

n
= p log p + O(

1√
n
),

(1 − ρ

n
) log(1 − ρ

n
) = q log q + O(

1√
n
).

Proof When ε > 0 is given, b = O(
√
n), so ρ can be rewritten as

ρ = np + O(
√
n),

ρ

n
= p + O(

1√
n
).

Thus
ρ

n
log

ρ

n
= (p + O(

1√
n
)) log(p + O(

1√
n
))

= (p + O(
1√
n
))(log p + log(1 + O(

1√
n
))).

For the real number x of |x | < 1, we have the following Taylor expansion
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log(1 + x) = x − 1

2
x2 + 1

3
x3 − 1

4
x4 . . . .

So when |x | < 1, we have
log(1 + x) = O(|x |),

thus

log(1 + O(
1√
n
)) = O(

1√
n
),

we have
ρ

n
log

ρ

n
= (p + O(

1√
n
))(log p + O(

1√
n
))

= p log p + O(
1√
n
).

Similarly, for the second asymptotic formula,

(1 − ρ

n
) log(1 − ρ

n
) = q log q + O(

1√
n
),

the Lemma 2.29 holds.

To prove Shannon theorem, we define the following auxiliary functions, and for
any two codewords x, y ∈ F

n
2, ρ ≥ 0, define

fρ(x, y) =
{
0, if d(x, y) > ρ;
1, if d(x, y) ≤ ρ.

Let C = {x1, x2, . . . , xM } ⊂ F
n
2 be a binary code of |C | = M , define

gi (y) = 1 − fρ(y, xi ) +
∑

j �=i

fρ(y, x j ).

Lemma 2.30 Assuming y ∈ F
n
2 is a given codeword, then

{
gi (y) = 0, if xi ∈ C is the only codeword so that d(y, xi ) ≤ ρ,

gi (y) ≥ 1, otherwise.

Proof If there is a unique xi ∈ C such that d(y, xi ) ≤ ρ, then fρ(y, xi ) = 1, but
fρ(y, x j ) = 0(i �= j), therefore

gi (y) = 1 − fρ(y, xi ) +
∑

j �=i

fρ(y, x j ) = 0.
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If d(y, xi ) > ρ, then fρ(y, xi ) = 0, so

gi (y) = 1 − fρ(y, xi ) +
∑

j �=i

fρ(y, x j ) = 1 +
∑

j �=i

fρ(y, x j ) ≥ 1.

If d(y, xi ) ≤ ρ, but there is at least one xk �= xi such that d(y, xk) ≤ ρ, then

gi (y) = 1 − fρ(y, xi ) +
∑

j �=i

fρ(y, x j )

= 1 +
∑

j �=i, j �=k

fρ(y, x j ) ≥ 1.

The Lemma 2.30 holds.

With the above preparation, we give the proof of Shannon’s theorem.

Proof (The proof of Theorem2.10)According to the assumptions of the theorem,we
assume that 0 < λ < 1 + p log p + q log q is a given positive real number (p < 1

2 ).

M = Mn = 2[λn], |C | = M.

Let
|C | = {x1, x2, . . . , xM } ⊂ F

n
2,

ε > 0 is any given positive number,

b =
√
npq

ε
, ρ = [pn + b].

Because of p < 1
2 , when n is sufficiently large, we have ρ = pn + O(

√
n) < 1

2n.

In order to calculate the error probability of codeword xi ∈ C , suppose xi
transmit−→ y,

if d(xi , y) ≤ ρ, and there is a unique codeword xi ∈ C such that d(y, xi ) ≤ ρ, so
according to the decoding principle of “look the most like”, xi is the most similar
codeword in C , so we can decode it correctly as y →transmit xi , in this case, the
error probability of xi is 0. Otherwise, there will be real decoding error. On the other
hand, y becomes xi , and the occurrence probability of the received codeword after
transmission is the conditional probability p = (y|xi ), so the error probability of xi
is estimated as

Pi = p(xi ) ≤
∑

y∈Fn
2

p(y|xi )gi (y)

=
∑

y∈Fn
2

p(y|xi )(1 − fρ(y, xi )) +
∑

y∈Fn
2

M∑

j=1
j �=i

p(y|xi ) fρ(y, x j ).
(2.27)
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According to the definition of fρ(y, xi ), the first term of the above formula is the
probability that the received codeword y sent by xi is not in ball Bρ(xi ), i.e.

∑

y∈Fn
2

p(y|xi )(1 − fρ(y, xi )) = P{received codewords y|y /∈ Bρ(xi )}.

Because ω = d(y, xi ) is exactly the number of ω error characters in xi → y, from
the Chebyshev inequality of Lemma 2.28, we have

P{received codewords|y /∈ Bρ(xi )} = P{ω > ρ} ≤ P{ω ≥ np + b} < ε,

from (2.27), we have

Pi = p(xi ) ≤ ε +
∑

y∈Fn
2

M∑

j=1
j �=i

p(y|xi ) fρ(y, x j ). (2.28)

Because the definition of the error probability p(C) of code C , so there is

p(C) = 1

M

M∑

i=1

p(xi ) ≤ ε + M−1
M∑

i=1

∑

y∈Fn
2

p(y|xi )
M∑

j=1
j �=i

fρ(y, x j ).

Since C is randomly selected, we can regard p(C) as a random variable, so
Shannon’s probability P ∗ (n, Mn, p) is the minimum value of p(C), so it is less
than the expected value of p(C), i.e.

P∗(n, Mn, p) ≤ E(P(C))

≤ ε + M−1
M∑

i=1

∑

y∈Fn
2

M∑

j=1
j �=i

E(p(y|xi ) · fρ(y, x j )).

When i is given, the random variables p(y|xi ) and fρ(y, x j )( j �= i) are statistically
independent, so

E(p(y|xi ) · fρ(y, x j )) = E(p(y|xi ))E( fρ(y, x j )).

So there is

P∗(n, Mn, p) ≤ ε + M−1
M∑

i=1

∑

y∈Fn
2

M∑

j=1
j �=i

E(p(y|xi ))E( fρ(y, x j )). (2.29)
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Let’s calculate the expected value of fρ(y, x j ), because y is selected in F
n
2 with equal

probability, so
E( fρ(y, x j )) =

∑

y∈Fn
2

p(y) fρ(y, x j )

= 1

2n
|Bρ(x j )|

= 1

2n
|Bρ(0)|.

So there is

P∗(n, Mn, p) = ε + M−1
M∑

i=1

∑

y∈Fn
2

E(p(y|xi ))
M∑

j=1
j �=i

E( fρ(y, x j ))

= ε + M−1
M∑

i=1

∑

y∈Fn
2

E(p(y|xi )) (M − 1)|Bρ(0)|
2n

.

(2.30)

Now let’s calculate the expected value of p(y|xi )(y fixed, xi randomly selected in
C)

E(p(y|xi )) =
M∑

i=1

p(xi )p(y|xi ) = p(y),

thus
M∑

i=1

∑

y∈Fn
2

E(p(y|xi )) =
M∑

i=1

∑

y∈Fn
2

p(y) = M.

From (2.30),

P∗(n, Mn, p) ≤ ε + M − 1

2n
|Bρ(0)|,

log2(P
∗(n, Mn, p) − ε) ≤ log2 M + log2 |Bρ(0)| − n.

That is
1

n
log2(P

∗(n, Mn, p) − ε) ≤ 1

n
log2 M + 1

n
log2 |Bρ(0)| − 1.

From Lemma 1.11 of Chap. 1,

1

n
log2 Bρ(0) = 1

n
log2

ρ∑

i=0

(
n

i

)
≤ H(

ρ

n
),
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where H(x) = −x log x − (1 − x) log(1 − x)(0 < x < 1
2 ) is the binary entropy

function, so there is

1

n
log2(P

∗(n, Mn, p) − ε) ≤ 1

n
log2 M + H(

ρ

n
) − 1.

By hypothesis M = 2[λn], ρ = [pn + b], b = O(
√
n), we have

1

n
log2(P

∗(n, Mn, p) − ε) ≤ [λn]
n

+ H(
ρ

n
) − 1

= λ + H(
ρ

n
) − 1 + O(

1

n
).

By Lemma 2.29,

H(
ρ

n
) = −(

ρ

n
log

ρ

n
+ (1 − ρ

n
) log(1 − ρ

n
))

= −(p log p + q log q + O(
1√
n
)).

So
1

n
log2(P

∗(n, Mn, p) − ε) ≤ λ − (1 + p log p + q log q) + O(
1√
n
).

By hypothesis λ < 1 + p log p + q log q, when n is sufficiently large, we have

1

n
log2(P

∗(n, Mn, p) − ε) ≤ −β(β > 0).

Therefore, 0 ≤ P∗(n, Mn, p) ≤ ε + 2−βn , take the limit n → ∞ on both sides,
finally,

lim
n→∞ P∗(n, Mn, p) = 0.

We completed the proof of the theorem.

According to Shannon, the code rate is close to a given normal number λ,

0 < λ < 1 + p log p + q log q = 1 − H(p),

the code with arbitrarily small error probability is called “good code”, we further
analyze the construction of this kind of “good code”. (Shannon only proved the
existence of “good code” in probability).

Theorem 2.11 For given λ, 0 < λ < 1 + p log p + q log q(p < 1
2 ), Mn = 2[λn], if

there is a perfect code Cn, and |Cn| = Mn, then we have

lim
n→∞ p(Cn) = 0.
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Proof If perfect code Cn exists, by Lemma 2.27,

λ − 1

n
≤ RCn ≤ λ.

Therefore, the code rate ofCn can be arbitrarily close to λ, the error probability ofCn

can be arbitrarily small, so Cn is a “good code” in the mathematical sense. To prove
Theorem 2.11, because Cn is a perfect code, the minimum distance dn is defined as

dn = 2en + 1, en <
n

2
.

Because of lim
n→∞ Rcn = λ, by Theorem 2.2, we have

lim
n→∞ H(

en
n

) = 1 − λ > H(p).

Because the binary entropy function H(x) is a monotone continuous rising function
(0 < x < 1

2 ). So we have the limit lim
n→∞

en
n , and

lim
n→∞

en
n

> p, that is
en
n

> p,When n is sufficiently large.

Now consider the error probability p(x) of codeword x = x1x2 . . . xn ∈ Cn , sinceCn

is en error correction code, so x → x ′, when d(x, x ′) ≤ en , we can always decode
correctly, at this time, the error probability of x is 0. Therefore, x transmission
error, that is, the case where x ′ cannot be decoded correctly occurs only in case
d(x ′, x) = wn > en . At this point we have(When n is sufficiently large)

wn

n
>

en
n

> p + ε, (exist a ε > 0)

So the error probability p(x) of x ∈ Cn is estimated

p(x) ≤ P{wn

n
> p + ε}

≤ P{|wn

n
− p| > ε}.

Because when n → ∞, the random variable sequence {wn} is a Bernoulli random
process (i.e., for each n, it is n-folds Bernoulli test). From theorem 1.2 in Chap. 1,
we have

lim
n→∞ p(x) ≤ lim

n→∞ P{|wn

n
− p| > ε} = 0.

For ∀ x ∈ Cn holds, so
lim
n→∞ p(Cn) = 0.
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The Theorem 2.11 holds.

From the proof of Theorems 2.10 and 2.11, it can be seen that Shannon randomly
selects a code and randomly selects a codeword, which essentially regards the input
information as a random event in a given probability space, and the transmission
process of information is essentially a random process. The fundamental difference
between Shannon and other mathematicians at the same time is that he regards
information or a code as a random variable. The mathematical model of information
transmission is a dynamic probability model rather than a static algebraic model. The
most important method to study a code naturally is probability statistics rather than
the algebraic combination method of traditional mathematics. From the perspective
of probability theory, Theorems 2.10 and 2.11 regard a code as a random variable,
but they have great particularity. The probability distribution of this random variable
obeysBernoulli binomial distribution, especially the statistical characteristics of code
rate, which are not clearly expressed. It is the core content of Shannon’s information
theory to study the relationship between random variables with general probability
distribution and codes. One of the most basic concepts is information entropy, or
code entropy. Using the concept of code entropy, the statistical characteristics of a
code are clearly displayed. Therefore, we see a basic framework and prototype of
modern information theory. In the next chapter, we explain and prove these basic
ideas and results of Shannon information theory in detail. One of the most important
results is Shannon channel coding theorem (see Theorem 3.12 in Chap. 3). Shannon
uses the probability method to prove that the so-called good code with a code rate
up to the transmission capacity and an arbitrarily small error probability exists for
the general memoryless channel (whether symmetrical or not). On the contrary, the
code rate of a code with an arbitrarily small error probability must not be greater
than the capacity of the channel. This channel capacity is called Shannon’s limit,
which has been pursued for a long time in the field of electronic communication
engineering technology. People want to find a channel coding scheme with error
probability in a controllable range (e.g., less than ε) and transmission efficiency (i.e.,
code rate) reaching Shannon’s limit. In today’s 5G era, this engineering technical
problem seems to have been overcome. Returning to theorem 2.10, we see that the
upper limit 1 − H(p) of the code rate is the channel capacity of the memoryless
symmetric binary channel (see example 2 in Sect. 8 of Chap. 3). From this example,
we can get a glimpse of Shannon’s channel coding theory.

Exercise 2

1. Please design a code of length 7, which contains 8 codewords, where the Ham-
ming distance of any two codewords is ≥ 4. The code is transmitted through
symmetric binary channel, assuming the error probability of characters 0 and 1
is p, calculate the success probability of codeword transmission.

2. Let C be a binary code of length 16, satisfy

(i) Each codeword has a weight of 6.
(i i) Any two codewords have Hamming distance of 8.
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Prove: |C | ≤ 16. Does the binary code C of |C | = 16 exist?
3. Let C be a binary code of length n and an error correcting code of one character,

prove

|C | ≤ 2n

n + 2
(n is even).

4. LetC be a binary perfect code of length n, and the minimum distance is 7. Prove:
n = 7 or n = 23.

5. Let C ⊂ F
n
q be a linear code, C = [n, k] and any k coordinates be symmetric,

prove: the minimum distance of C is d = n − k + 1.
6. SupposeC = [2k + 1, k] ⊂ F

2k+1
2 , andC ⊂ C⊥, write the difference setC⊥\C .

7. Let x = x1x2 . . . x6 ∈ F
6
2, Decide Hamming ball |B1(x)|. We can find a code

C ⊂ F
6
2? Where |C | = 9, satisfy the Hamming distance of any two different

codewords in C is ≥ 3?
8. LetC = [n, k] ⊂ F

n
q be a linear code, the generatingmatrix isG, if every column

of G is not all zero, prove

∑

x∈C
w(x) = n(q − 1)qk−1.

Where w(x) is the weight of codeword x .
9. LetC = [n, k] be a linear binary code, and there is a codewordwith oddweight in

C , prove that the codewords with even weight inC form a linear code [n, k − 1].
10. Let C be a linear binary code, the generating matrix G is

⎛

⎜⎜⎝

1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1

⎞

⎟⎟⎠ ,

Please decode the received codewords as follows: y1 = (1101011),
y2 = (0110111), y3 = (0111000).

11. Let p be a prime, is there a self-dual linear code C = [8, 4] over Fp?
12. Let Rk be the rate of binary Hamming codes, find lim

k→∞ Rk =?

13. LetC be a linear binary code, the weight distribution polynomial is A(z), finding
the weight distribution polynomial B(z) of dual code C⊥.

14. Let C = [n, k] ⊂ F
n
2, weight distribution polynomial be A(z), we use binary

symmetric channel to transmit codewords, and the error probability is p (the
error probability of characters 0 and 1), we hope that a codeword transmission
error can be detected, and calculate the probability that a codeword transmission
error will not be detected.

15. There is no linear code C = [15, 8] with minimum distance 5 over any finite
field Fq .

16. Let n = 2m , proved that Reed–Muller code R(1,m) is Hadamard code of length
n .



2.5 Shannon Theorem 87

17. Proved that ternary Golay has 132 codewords and its weight is 5. Let x be
the codeword of weight 5, consider all pairs (x, 2x), where w(x) = 5, take the
component whose coordinate component is not zero as a subset. Proved that
there are 66 such subsets and form 4 − (11, 5, 1) designs.

18. If the minimum distance d of a binary code C = (n, M, d) is even, prove that
there exists a binary code such that all its codewords have even weights.

19. Let H be a Hadamard matrix H12, define

A = H − I,G = (I, A), I is the unit matrix.

Proved thatG is the generating matrix of ternary code [24, 12] and the minimum
distance is 9.

20. Let C = [4, 2] be a ternary Hamming code. H is the check matrix of C , let I be
the unit matrix of order 4, J is a square matrix of order 4 with all elements of 1,
define

G =
[
J + I I I
0 H −H

]
,

prove that G generates a ternary code C = [12, 6] and the minimum distance
is 6.
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Chapter 3
Shannon Theory

3.1 Information Space

According to Shannon, a message x is a random event. Let p(x) be the probability
of occurrence of event x . If p(x) = 0, this event does not occur; If p(x) = 1, this
event must occur. When p(x) = 0 or p(x) = 1, information x can be called trivial
information or spam information. Therefore, the real mathematical significance of
information x lies in its uncertainty, that is 0 < p(x) < 1. Quantitative research on
the uncertainty of nontrivial information constitutes all the starting point of Shannon’s
theory; this starting point is now called information quantity or information entropy,
or entropy for short. Shannon and his colleagues at Bell laboratory considered “bit”
as the basic quantitative unit of information.What is “bit”?We can simply understand
it as the number of bits in the binary system. However, according to Shannon, the
binary system with n digits can express up to 2n numbers. From the point of view
of probability and statistics, the probability of occurrence of these 2n numbers is 1

2n .
Therefore, a bit is the amount of information contained in event x with probability 1

2 .
Taking this as the starting point, Shannon defined the self-information I (x) contained
in an information x as

I (x) = − log2 p(x). (3.1)

Therefore, one piece of information x contains I (x)-bit information,when p(x) = 1
2 ,

then I (x) = 1.Equation (3.1) is Shannon’s first extraordinary progress in information
quantification. On the other hand, with the emergence of Telegraph and telephone,
binary is widely used in the conversion and transmission of information. Therefore,
we can assert that without binary, there would be no Shannon’s theory, let alone the
current informatics and information age. The purpose of this section is to strictly
mathematically deduce and simplify the most basic and important conclusions in
Shannon’s theory. First, we start with the rationality of the definition of formula (3.1).

If I (x) is used to represent the self-information of a randomevent x , the greater the
probability of occurrence p(x), the smaller the uncertainty. Therefore, I (x) should
be a monotonic decreasing function of probability p(x). If xy is a joint event and
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is statistically independent, that is, p(xy) = p(x)p(y), then the self-information
amount is I (xy) = I (x) + I (y). Of course, the self-information amount I (x) is
nonnegative, that is I (x) ≥ 0. Shannon prove, the self-information I (x) satisfying
the above three assumptions must be

I (x) = −c log p(x),

where c is a constant. This conclusion can be derived directly from the following
mathematical theorems.

Lemma 3.1 If the real function f (x) satisfies the following conditions in interval
[1,+∞):

(i) f (x) ≥ 0,
(ii) If x < y ⇒ f (x) < f (y),
(iii) f (xy) = f (x) + f (y).

Then f (x) = c log x, where c is a constant.

Proof Repeated use condition (i i i), then there is

f (xk) = k f (x), k ≥ 1

for any positive integer k. Take x = 1, then the above formula holds if and only if
f (1) = 0. It can be seen from (i i) that f (x) > 0 when x > 1. Let x > 1, y > 1 and
k ≥ 1 given, you can always find a nonnegative integer n to satisfy

yn ≤ xk < yn+1,

Take logarithms on both sides to get

n

k
≤ log x

log y
<

n + 1

k
,

On the other hand, we have

n f (y) ≤ k f (x) < (n + 1) f (y),

thus

| f (x)
f (y)

− log x

log y
| ≤ 1

k
,

when k → ∞, we have

f (x)

f (y)
= log x

log y
, ∀ x, y ∈ (1,+∞).

Therefore,
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f (x)

log x
= f (y)

log y
= c, ∀ x, y ∈ (1,+∞).

That is f (x) = c log x . The Lemma holds.

In Lemma 3.1, let I (x) = f ( 1
p(x) ), then f (x) satisfies the condition (i), (i i) and

(i i i), thus I (x) = −c log p(x). That is (3.1) holds.
In order to introduce the definition of information space, we use X to represent a

finite set of original information, or a countable and additive information set, which
is called source state set. It can be an alphabet, a finite number of symbols or a
set of numbers. For example, 26 letters in English and 2-element finite field F2 are
commonly used source state sets. Elements in X can be called messages, events,
etc., or characters. We often use English capital letters such as X,Y, Z to represent a
source state set, and lowercase Greek letters ξ, η, . . . to represent a random variable
in a given probability space.

Definition 3.1 The value space of a random variable ξ is a source state set X ; the
probability distribution of characters on X as events is defined as

p(x) = P{ξ = x}, ∀ x ∈ X. (3.2)

We call (X, ξ) an information space in a given probability space, when the random
variable ξ is clear, we usually record the information space (X, ξ) as X . If η is another
random variable valued on X , and ξ and η obey the same probability distribution,
that is

P{ξ = x} = P{η = x}, ∀ x ∈ X.

Call two information spaces (X, ξ) = (X, η), usually recorded as X .

As can be seen from Definition 3.1, an information space X constitutes a finite
complete event group, that is, we have

∑

x∈X
p(x) = 1, 0 ≤ p(x) ≤ 1, x ∈ X. (3.3)

It should be noted that if there are two random variables ξ and η with values on X ,
when the probability distributions obeyed by ξ and η are not equal, then (X, ξ) and
(X, η) are two different information spaces; at this point, we must distinguish the
two different information spaces with X1 = (X, ξ) and X2 = (X, η).

Definition 3.2 X and Y are two source state sets, and the random variables ξ and η

are taken on X and Y , respectively; if ξ and η are compatible random variables, the
probability distribution of joint event xy(x ∈ X, y ∈ Y ) is defined as

p(xy) = P{ξ = x, η = y}, ∀ x ∈ X, y ∈ Y. (3.4)

Then, we call the joint event set
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XY = {xy|x ∈ X, y ∈ Y }

Together with the corresponding random variables ξ and η, it is called the product
space of information space (X, ξ) and (Y, η), denote as (XY, ξ, η), when ξ and η

are clear, they can be abbreviated as XY = (XY, ξ, η). If X = Y are two identical
source state sets, ξ and η have the same probability distribution, then the product
space XY is denoted as X2 and is called a power space.

Since the information space is a complete set of events, defined by the product
information space, we have the following full probability formula and probability
product formula: ⎧

⎪⎪⎨

⎪⎪⎩

∑

x∈X
p(yx) = p(y), ∀ y ∈ Y

∑

y∈Y
p(xy) = p(x), ∀ x ∈ X.

(3.5)

And
p(x)p(y|x) = p(xy), ∀ x ∈ X, y ∈ Y.

Where p(y|x) is the conditional probability of y under the condition of x .

Definition 3.3 Let X1, X2, . . . , Xn(n ≥ 2) be n source state sets, ξ1, ξ2, . . . , ξn be
n compatible random variables with values, respectively, in Xi , the probability dis-
tribution of joint event x1x2 · · · xn is

p(x1x2 · · · xn) = P{ξ1 = x1, ξ2 = x2, . . . , ξn = xn}. (3.6)

Then called
X1X2 · · · Xn = {x1x2 · · · xn|xi ∈ Xi , 1 ≤ i ≤ n}

are the product of n information spaces, especially when X1 = X2 = · · · = Xn = X ,
and each ξi has the same probability distribution on X , define Xn = X1X2 · · · Xn ,
called the n-th power space of information space X .

Let us give some classic examples of information space.

Example 3.1 (Two point information space with parameter λ) Let X = {0, 1} = F2

be a binary finite field, the random variable ξ taken on X is subject to the two-point
distribution with parameter λ, that is

{
p(0) = P{ξ = 0} = λ,

p(1) = P{ξ = 1} = 1 − λ.

where 0 < λ < 1, then (X, ξ) is called a two-point information space with parameter
λ, still denote as X .
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Example 3.2 (Equal probability information space) Let X = {x1, x2, . . . , xn} be a
source state sets, the random variable ξ on X obeys the equal probability distribution,
that is

p(x) = P{ξ = x} = 1

|X | , ∀ x ∈ X.

Then (X, ξ) is called equal probability information space, still denote as X .

Example 3.3 (Bernoulli information space) Let X0 = {0, 1} = F2. Let the random
variable ξi be the i-th Bernoulli test; therefore, {ξi }ni=1 is a set of independent and
identically distributed random variables. We let the product space

X = (X0, ξ1)(X0, ξ2) · · · (X0, ξn) = Xn
0 ⊂ F

n
2,

the power space X is called Bernoulli information space, also alled memoryless
binary information space. The probability function p(x) in X is

p(x) = p(x1x2 · · · xn) =
n∏

i=1

p(xi ), xi = 0 or 1. (3.7)

where p(0) = λ, p(1) = 1 − λ.

Example 3.4 (Degenerate information space) If X = {x}, it contains only one char-
acter. X is called a degenerate information space, or trivial information space. The
random variable ξ takes the value x of probability 1, that is P{ξ = x} = 1. At this
time, ξ is a random variable with degenerate distribution in probability.

Definition 3.4 Let X = {x1, x2, . . . , xn} be a source state sets, if X is an information
space, the information entropy H(X) of X is defined as

H(X) = −
∑

x∈X
p(x) log p(x) = −

n∑

i=1

p(xi ) log p(xi ), (3.8)

if p(xi ) = 0 in the above formula, we agreed that p(xi ) log p(xi ) = 0, the base
of logarithm can be selected arbitrarily; if the base of the logarithm is D(D ≥ 2),
then H(X) is called D-ary entropy, sometimes denote as HD(X).

Theorem 3.1 For any information space X, always have

0 ≤ H(X) ≤ log |X |. (3.9)

And H(X) = 0 if and only if X is a degenerate information space, H(X) = log |X |
if and only if X is a equal probability information space.

Proof H(X) ≥ 0 is trivial. We only prove the inequality on the right of Eq. (3.9).
Because f (x) = log x is a strictly convex real value, from the Lemma 1.7 in Chap. 1,
thake g(x) = 1

p(x) is a positive function, p(x) > 0, thus let X = {x1, x2, . . . , xm},
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H(X) =
m∑

i=1

p(xi ) log
1

p(xi )
≤ log

m∑

i=1

p(xi )

p(xi )
= logm.

The above equal sign holds if and only if p(x1) = p(x2) = · · · = p(xm) = 1
m , that

is, X is equal probability information space. If X = {x} is a degenerate infor-
mation space, because p(x) = 1, so H(X) = 0. Conversely, if H(X) = 0, let
X = {x1, x2, . . . , xm}, suppose ∃ xi ∈ X , such that 0 < p(xi ) < 1, then

0 < p(xi ) log
1

p(xi )
≤ H(X).

So there is p(xi ) = 1, but p(x j ) = 0( j �= i); at this time, X degenerates into X =
{xi }, which is a trivial information space, the Lemma holds.

An information space is a dynamic code (which changes with the change of the
randomvariable on it). For “dynamic code”, that is, the code rate of information space
X , Shannon replaces 1

n H(X)with information entropy, so information entropy H(X)

becomes the first mathematical quantity to describe dynamic code. From Theorem
3.1, when the code is degenerate, the minimum rate of a dynamic code is 0, when
the code is equal probability, the maximum rate is the rate of the usual static code.

Next, we discuss the information entropy of several typical information spaces.

Example 3.5 (i) Let X be the two-point information space of parameter λ, then

H(X) = −λ log λ − (1 − λ) log(1 − λ) = H(λ).

H(λ) we defined it in Chap. 1, it was called binary information entropy function at
that time. Now we know why it is called entropy function

(ii) X = {x} is degraded information space, then H(X) = 0.
(iii) When X is equal overview information space, then H(X) = log |X |.
Remark Most authors directly regard a random variable as an information space.
Mathematically, it is convenient to do so and call it the information measurement of
random variables. However, from the perspective of information, using the concept
of information space can better understand and simplify Shannon’s theory; the core
idea of this theory is the random measurement of information, not the information
measurement of random variables.

3.2 Joint Entropy, Conditional Entropy, Mutual
Information

Definition 3.5 Let X,Y be two information spaces, and ξ, η be random variables
with corresponding values, respectively. If ξ and η are independent randomvariables,
that is
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P{ξ = x, η = y} = P{ξ = x} · P{η = y}, ∀ x ∈ X, y ∈ Y.

X and Y are called independent information space, and the probability distribution
of joint events is

p(xy) = p(x)p(y), ∀x ∈ X, y ∈ Y.

Definition 3.6 Let X,Y be two information spaces, the information entropy H(XY )

of the product space XY is called the joint entropy of X and Y , that is

H(XY ) = −
∑

x∈X

∑

y∈Y
p(xy) log p(xy). (3.10)

The conditional entropy H(X |Y ) of X versus Y is defined as

H(X |Y ) = −
∑

x∈X

∑

y∈Y
p(xy) log p(x |y). (3.11)

Lemma 3.2 (Addition formula of entropy) For any two information spaces X and
Y , then we have

H(XY ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ).

Generally, for n information spaces X1, X2, . . . , Xn, we have

H(X1X2 · · · Xn) =
n∑

i=1

H(Xi |Xi−1Xi−2 · · · X1). (3.12)

Proof By (3.10) and probability multiplication formula,

H(XY ) = −
∑

x∈X

∑

y∈Y
p(xy) log p(xy)

= −
∑

x∈X

∑

y∈Y
p(xy)(log p(x) + log p(y|x))

= −
∑

x∈X
p(x) log p(x) + H(Y |X)

= H(X) + H(Y |X).

The same can be proved

H(XY ) = H(Y ) + H(X |Y ).

We prove (3.12) by induction, when n = 2,
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H(X1X2) = H(X1) + H(X2|X1).

The proposition is true, and for general n, we have

H(X1X2 · · · Xn) = H(X1X2 · · · Xn−1) + H(Xn|X1X2 · · · Xn−1)

=
n−1∑

i=1

H(Xi |Xi−1Xi−2 · · · X1) + H(Xn|X1X2 · · · Xn−1)

=
n∑

i=1

H(Xi |Xi−1Xi−2 · · · X1).

The Lemma 3.2 holds.

Theorem 3.2 We have
H(XY ) ≤ H(X) + H(Y ). (3.13)

If and only if X and Y are statistically independent information spaces,

H(XY ) = H(X) + H(Y ). (3.14)

Generally, we have

H(X1X2 · · · Xn) ≤ H(X1) + H(X2) + · · · + H(Xn). (3.15)

If and only if X1, X2, . . . , Xn is an independent random process,

H(X1X2 · · · Xn) = H(X1) + H(X2) + · · · + H(Xn). (3.16)

Proof By definition and Jensen inequality, we have

H(XY ) − H(X) − H(Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(x)p(y)

p(xy)

≤ log
∑

x∈X

∑

y∈Y
p(x)p(y)

= 0.

The above equal sign holds, if and only if for all x ∈ X , y ∈ Y , p(x)p(y)
p(xy) = c( where

c is a constant), thus p(x)p(y) = cp(xy). Both sides sum at the same time, we have

1 =
∑

x∈X
p(x)

∑

y∈Y
p(y) = c

∑

x∈X

∑

y∈Y
p(xy),
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thus c = 1, p(xy) = p(x)p(y). So if andonly if X andY are independent information
spaces, (3.14) holds. By induction, we have (3.15) and (3.16). Theorem 3.2 holds.

By (3.15), we have the following direct corollary; for any information space X
and n ≥ 1, we have

H(Xn) ≤ nH(X). (3.17)

Definition 3.7 Let X and Y be two information spaces, and say that X is completely
determined byY , if there is always a subset Nx ⊂ Y ofY for any given x ∈ X , satisfies

{
p(x |y) = 1, if y ∈ Nx ;
p(x |y) = 0, if y /∈ Nx .

(3.18)

With regard to conditional information entropy H(X |Y ), we have the following
two important special cases.

Lemma 3.3 (i) 0 ≤ H(X |Y ) ≤ H(X).
(ii) If the information space X is completely determined by Y , then

H(X |Y ) = 0. (3.19)

(iii) If X and Y are two separate information spaces,

H(X |Y ) = H(X). (3.20)

Proof (i) is trivial. Let us prove (3.19) first. By Definition 3.7 and (3.18), for given
x ∈ X , we have

p(xy) = p(y)p(x |y) = 0, y /∈ Nx .

Thus
H(X |Y ) = −

∑

x∈X

∑

y∈Y
p(xy) log p(x |y)

= −
∑

x∈X

∑

y∈Nx

p(xy) log p(x |y) = 0.

The proof of the formula (3.20) is obvious. Because X and Y are independent, the
conditional probability

p(x |y) = p(x), ∀ x ∈ X, y ∈ Y.

Thus
H(X |Y ) = −

∑

x∈X

∑

y∈Y
p(x)p(y) log p(x)

= −
∑

x∈X
p(x) log p(x) = H(X).
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The Lemma 3.3 holds.

Next, we define the mutual information I (X,Y ) of two information spaces X and
Y .

Definition 3.8 Let X and Y be two information spaces, and then their mutual infor-
mation I (X,Y ) is defined as

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(x |y)
p(x)

. (3.21)

From the multiplication formula of probability, for all x ∈ X, y ∈ Y ,

p(x)p(y|x) = p(y)p(x |y) = p(xy).

We have
p(x |y)
p(x)

= p(y|x)
p(y)

.

Therefore, there is a direct conclusion from the definition of mutual information
I (X,Y )

I (X,Y ) = I (Y, X).

Lemma 3.4

I (X,Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X).

Proof By definition,

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(x |y)
p(x)

=
∑

x∈X

∑

y∈Y
p(xy) log p(x |y) −

∑

x∈X

∑

y∈Y
p(xy) log p(x)

= −H(X |Y ) −
∑

x∈X
p(x) log p(x)

= H(X) − H(X |Y ).

The same can be proved

I (X,Y ) = H(Y ) − H(Y |X).

Lemma 3.5 Assuming that X and Y are two information spaces, I (X,Y ) is the
amount of mutual information, then

H(XY ) = H(X) + H(Y ) − I (X,Y ). (3.22)
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Further, we have I (X,Y ) ≥ 0, if and only if X and Y are independent, I (X,Y ) = 0.

Proof By the addition formula of Lemma 3.2,

H(XY ) = H(X) + H(Y |X)

= H(X) + H(Y ) − (H(Y ) − H(Y |X))

= H(X) + H(Y ) − I (X,Y ).

The conclusion about I (X,Y ) ≥ 0 can be deduced directly from Theorem 3.2.

Let us prove an equation about entropy commonly used in the statistical analysis
of cryptography.

Theorem 3.3 If X,Y, Z are three information spaces, then

H(XY |Z) = H(X |Z) + H(Y |X Z)

= H(Y |Z) + H(X |Y Z).
(3.23)

Proof By the definition, we have

H(XY |Z) = −
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log p(xy|z).

By probability product formula,

p(xyz) = p(z)p(xy|z) = p(xz)p(y|xz).

Thus

p(xy|z) = p(xz)p(y|xz)
p(z)

= p(x |z)p(y|xz).

So we have

H(XY |Z) = −
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log p(x |z)p(y|xz)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz)(log p(x |z) + log p(y|xz))

= −
∑

x∈X

∑

z∈Z
p(xz) log p(x |z) −

∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log p(y|xz)

= H(X |Z) + H(Y |X Z).

Similarly, the second formula can be proved.

Finally, we extend the formula (3.15) to conditional entropy.
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Lemma 3.6 Let X1, X2, . . . , Xn,Y be information spaces, then we have

H(X1X2 · · · Xn|Y ) ≤ H(X1|Y ) + · · · + H(Xn|Y ). (3.24)

Specially, when X1 = X2 = · · · = Xn = X,

H(Xn|Y ) ≤ nH(X |Y ). (3.25)

Proof We make an induction of n. The proposition is trivial when n = 1. Let the
proposition be true when n, i.e.,

H(X1X2 · · · Xn|Y ) ≤ H(X1|Y ) + · · · + H(Xn|Y ).

Then when n + 1, we let X = X1X2 · · · Xn , then

H(X1X2 · · · Xn+1|Y ) = H(XXn+1|Y )

= −
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(xzy) log p(xz|y).

From the full probability formula,

H(X |Y ) + H(Xn+1|Y ) = −
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(xzy) log p(x |y)p(z|y).

So by Jensen inequality,

H(XXn+1|Y ) − H(X |Y ) − H(Xn+1|Y )

=
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(xzy) log

p(x |y)p(z|y)
p(xz|y)

≤ log
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(y)p(x |y)p(z|y).

By product formula ∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(y)p(x |y)p(z|y)

=
∑

x∈X

∑

y∈Y
p(x |y)p(y)

=
∑

x∈X
p(x) = 1.

So by the inductive hypothesis,
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H(XXn+1|Y ) ≤ H(Xn+1|Y ) + H(X |Y )

≤ H(X1|Y ) + H(X2|Y ) + · · · + H(Xn+1|Y ).

The proposition holds for n + 1. So the Lemma holds.

3.3 Redundancy

Select a alphabet Fq or a remaining class ring Zm of module m, each element in the
alphabet is called character, and in the field of communication, alphabet is also called
source state, and character is also called transmission signal. If the length of a q-ary
code is increased, redundant transmission signals or characters will appear in each
codeword. The digital measurement of “redundant characters” is called redundancy,
which is a technical means to improve the accuracy of codeword transmission, and
redundancy is an important mathematical quantity to describe this technical means.
Therefore, we start by proving the following lemma.

Lemma 3.7 Let X,Y, Z be three information spaces, then

H(X |Y Z) ≤ H(X |Z). (3.26)

Proof By total probability formula,

H(X |Z) = −
∑

x∈X

∑

z∈Z
p(xz) log p(x |z)

= −
∑

x∈X

∑

z∈Z

∑

y∈Y
p(xyz) log p(x |z).

So
H(X |Y Z) − H(X |Z)

=
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(x |z)
p(x |zy)

≤ log
∑

x∈X

∑

y∈Y

∑

z∈Z

p(xyz)p(x |z)
p(x |zy)

= log
∑

x∈X

∑

y∈Y

∑

z∈Z
p(yz)p(x |z)

= log
∑

x∈X

∑

z∈Z
p(z)p(x |z)

= 0.

Thus H(X |Y Z) ≤ H(X |Z). The Lemma holds.



104 3 Shannon Theory

Let X be a source state set and randomly select codewords to enter the channel of
information transmission is a discrete random process. This mathematical model can
be constructed and studied on X by taking the value of a group of random variables
{ξi }i≥1. Firstly, we assume that {ξi }i≥1 obeys the same probability distribution when
taking value on X , and we get a set of information spaces {Xi }i≥1, let H0 = log |X |
be the entropy of X as the equal probability information space, for n ≥ 1, we let

Hn = H(X |Xn−1), H1 = H(X).

By Lemma 3.7, then {Hn} constitutes a number sequence with monotonic descent
and lower bound, so that its limit exists, that is

lim
n→∞ Hn = a (a ≥ 0). (3.27)

We will extend the above observation to the general case: Let {ξi }i≥1 be any set of
random variables valued on X , for any n ≥ 1, we let

Xn = (X, ξn), n ≥ 1.

Definition 3.9 A source state set X has a set of random variables {ξi }i≥1 valued on
X , then X is called a source.

(i) If {ξi }i≥1 is a group of independent and identically distributed random variables,
X is called a memoryless source.

(ii) If for any integers k, t1, t2, . . . , tk and h, random vector

(ξt1 , ξt2 , . . . , ξtk )(ξt1+h, ξt2+h, . . . , ξtk+h)

obey the same joint probability distribution, then X is called a stationary source.
(iii) If {ξi }i≥1 is a k-order Markov process, that is, for ∀ m > k ≥ 1,

p(xm |xm−1xm−2 · · · x1)
= p(xm |xm−1xm−2 · · · xm−k), ∀ x1, x2, . . . , xm ∈ X,

Then X is called k-order Markov source, specially, k = 1, i.e.,

p(xm |xm−1xm−2 · · · x1) = p(xm |xm−1), ∀ x1, x2, . . . , xm ∈ X,

call X Markov source.

The concept from information space to source changes from a single random
variable taking value on X to an infinite dimensional random vector, so that the
transmission process of code X constitutes a discrete random process. By definition,
we have
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Lemma 3.8 Let X be a source state set, and {ξi }i≥1 be a set of random variables
valued on X, we write

Xi = (X, ξi ), i ≥ 1. (3.28)

(i) If X is a memoryless source, the joint probability distribution on X satisfies

p(x1x2 · · · xn) =
n∏

i=1

p(xi ), xi ∈ Xi , n ≥ 1. (3.29)

(ii) If X is a stationary source, then for all integers t1, t2, . . . , tk(k ≥ 1) and h, there
is the following joint probability distribution,

p(xt1xt2 · · · xtk ) = p(xt1+hxt2+h · · · xtk+h), (3.30)

where xi ∈ Xi , i ≥ 1.
(iii) If X is a stationary Markov source, then the conditional probability distribution

on X satisfies for any m ≥ 1 and x1x2 · · · xm ∈ X1X2 · · · Xm, we have

p(xm |x1 · · · xm−1) = p(xm |xm−1)

= P{ξi+1 = xm |ξi = xm−1}, ∀ 1 ≤ i ≤ m − 1.
(3.31)

Proof (i) and (ii) can be derived directly from the definition. We only prove (iii). By
(ii) of the definition 3.9, for ∀ i ≥ 1, we have

P{ξi = xm−1, ξi+1 = xm} = P{ξm−1 = xm−1, ξm = xm}

and
P{ξi = xm−1} = P{ξm−1 = xm−1}.

Thus
P{ξi = xm−1}P{ξi+1 = xm |ξi = xm−1}
= P{ξm−1 = xm−1}P{ξm = xm |ξm−1 = xm−1}.

We have
P{ξi+1 = xm |ξi = xm−1} = p(xm |xm−1).

The Lemma holds.

Corollary 3.1 A memoryless source X must be a stationary source.

Proof Derived directly from Definition 3.9.

Next, we extend the limit formula in memoryless sources revealed by formula
(3.27) to general stationary sources. For this purpose, we first prove two lemmas.
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Lemma 3.9 Let { f (n)}n�1 be a sequence of real numbers, which satisfies the fol-
lowing semi countable additivity,

f (n + m) � f (n) + f (m), ∀ n � 1, m � 1.

Then lim
n→∞

1

n
f (n) exists, and

lim
n→∞

1

n
f (n) = inf

{
1

n
f (n)|n � 1

}
. (3.32)

Proof Let

δ = inf

{
1

n
f (n)|n � 1

}
, δ �= −∞.

For any ε > 0, select a sufficiently large positive integer m so that

1

m
f (m) < δ + ε

2
.

Let n = am + b, where a is an integer, 0 � b < m, by semi countable additivity, we
have

f (n) � a f (m) + (n − am) f (1).

Divide n on both sides, we have

1

n
f (n) � a

am + b
f (m) + b

am + b
f (1).

For given b, when m is large enough, we have

b f (1)

am + b
<

1

2
ε.

So there is
1

n
f (n) <

1

m
f (m) + 1

2
ε < ε + δ. (3.33)

Thus we have

δ � lim
n→∞

1

n
f (n) � lim

n→∞
1

n
f (n) < δ + ε.

So

lim
n→∞

1

n
f (n) = δ.

If δ = −∞, by (3.33),
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lim
n→∞

1

n
f (n) = −∞,

so we still have

lim
n→∞

1

n
f (n) = δ = −∞.

The Lemma holds.

Lemma 3.10 Let {an}n�1 be a sequence of real numbers, and the limit lim
n→∞ an = a,

then

lim
n→∞

1

n

n∑

i=1

ai = a.

Proof

∣∣∣∣∣
1

n

n∑

i=1

ai − a

∣∣∣∣∣ =
∣∣∣∣∣
1

n

n∑

i=1

(ai − a)

∣∣∣∣∣ � 1

n

n∑

i=1

|(ai − a)|

= 1

n

N∑

i=1

|ai − a| + 1

n

n∑

i=N+1

|ai − a|

<
1

n

N∑

i=1

|ai − a| + n − N

n
ε

<
1

n

N∑

i=1

|ai − a| + ε.

When ε > 0 is given, N is also given accordingly, the first item of the above formula
tends to 0, when n → ∞. So for any ε > 0, when n > N0,

∣∣∣∣∣
1

n

n∑

i=1

ai − a

∣∣∣∣∣ < 2ε.

Thus there is

lim
n→∞

1

n

n∑

i=1

ai = a.

The Lemma holds.

With the above preparations, we now give the main results of this section.

Theorem 3.4 Let X be any source, {ξi }i�1 is a set of random variables valued on
X. For any positive integer n � 1, let

Xn = (X, ξn), n � 1.
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Then when X is a stationary source, we have the following two limits that exist and
are equal, that is

lim
n→∞

1

n
H(X1X2 . . . Xn) = lim

n→∞ H(Xn|X1X2 . . . Xn−1).

We denote the above common limit as H∞(X).

Proof Because X is a stationary source, for any n � 1, m � 1, then the joint event
probability distribution of random vector {ξn+1, ξn+2, . . . , ξn+m} on X is equal to the
joint probability distribution of random vector (ξ1, ξ2, . . . , ξm); therefore, we have

H(X1X2 · · · Xm) = H(Xn+1Xn+2 · · · Xn+m). (3.34)

By Theorem 3.2, then

H(X1X2 · · · XnXn+1 · · · Xn+m) � H(X1 · · · Xn) + H(Xn+1 · · · Xn+m)

= H(X1 · · · Xn) + H(X1 · · · Xm).

Let f (n) = H(X1 · · · Xn), then f (n + m) � f (n) + f (m), so { f (n)}n�1 is a non-
negative real number sequence with semi countable additive property, by Lemma
3.9, we have

lim
n→∞

1

n
H(X1X2 · · · Xn) = inf

{
1

n
H(X1X2 · · · Xn)|n � 1

}
� 0.

Next, we prove that there is a second limit, that is

lim
n→∞ H(Xn|X1X2 · · · Xn−1)exist.

Firstly, we prove that the sequence is monotonically decreasing, because X is a
stationary source, so

H(X1X2 · · · Xn−1) = H(X2X3 · · · Xn)

and
H(X2X3 · · · XnXn+1) = H(X1X2 · · · Xn).

So we have
H(Xn+1|X2X3 · · · Xn) = H(Xn|X1X2 · · · Xn−1). (3.35)

By Lemma 3.7,

H(Xn+1|X1X2 · · · Xn) � H(Xn+1|X2X3 · · · Xn)

= H(Xn|X1X2 · · · Xn−1).



3.3 Redundancy 109

So {H(Xn|X1X2 · · · Xn−1)}n�1 is a monotonically decreasing sequence and has a
lower bound, so lim

n→∞ H(Xn|X1X2 · · · Xn−1) exist. Further, by the addition formula

of Lemma 3.2,

1

n
H(X1X2 · · · Xn) = 1

n

n∑

i=1

H(Xi |X1X2 · · · Xi−1).

By Lemma 3.10, finally we have

lim
n→∞

1

n
H(X1X2 · · · Xn) = lim

n→∞ H(Xn|X1X2 · · · Xn−1) = H∞(X).

We completed the proof of the Theorem.

We call H∞(X) the entropy rate of source X . obviously, there is the following
corollary.

Corollary 3.2 (i) For any stationary source X, we have

H∞(X) � H(X1) � log |X |.

(ii) If X is a memoryless source, then

H∞(X) = H(X1).

(iii) If X is a stationary Markov source, then

H∞(X) = H(X2|X1).

Proof Since {H(Xn|X1 · · · Xn−1)}n�1 is a monotonically decreasing sequence, then

H∞(X) � H(X1).

That is, (i) holds. If X is a memoryless source, then

H(X1 · · · Xn) = −
∑

x1∈X1

. . .
∑

xn∈Xn

p(x1x2 · · · xn) log p(x1x2 · · · xn)

= −
∑

x1∈X1

· · ·
∑

xn∈Xn

p(x1 . . . xn) {log p(x1) + · · · + log p(xn)}

= nH(X1).

So we have
H∞(X) = H(X1).

Similarly, we can prove (iii).
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Definition 3.10 Let X be a stationary source, we define

δ = log |X | − H∞(X), r = 1 − H∞X

log |X | , (3.36)

δ is the redundancy of information space X , and r is the relative redundancy of X .

We write

H0 = log |X |, Hn = H(Xn|X1X2 · · · Xn−1), ∀ n ≥ 1.

By Theorem 3.4, we have H∞(X) = H0 ≤ Hn , so

Hn ≥ (1 − r)H0, ∀ n ≥ 1. (3.37)

In information theory, redundancy is used to describe the effectiveness of the
information carried by the source output symbol. The smaller the redundancy, the
higher the effectiveness of the information carried by the source output symbol, and
vice versa.

3.4 Markov Chain

Let X,Y, Z be three information spaces, if there is the following conditional proba-
bility formula

p(xy|z) = p(x |z)p(y|z). (3.38)

Say that X and Y are statistically independent under the given condition of Z .

Definition 3.11 If the information space X and Y are statistically independent under
condition Z , X,Y, Z is called a Markov chain, denote as X → Z → Y .

Theorem 3.5 X → Z → Y is aMarkov chain if and only if the probability of occur-
rence of the joint event xzy is

p(xzy) = p(x)p(z|x)p(y|z), (3.39)

if and only if
p(xzy) = p(y)p(z|y)p(x |z). (3.40)

Proof If X → Z → Y is a Markov chain, then p(xy|z) = p(x |z)p(y|z), thus

p(xzy) = p(z)p(xy|z)
= p(z)p(x |z)p(y|z)
= p(x)p(z|x)p(y|z).
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Similarly,
p(xzy) = p(z)p(y|z)p(x |z)

= p(y)p(z|y)p(x |z).

That is (3.39) and (3.40) holds. Conversely, if (3.39) holds, then

p(xzy) = p(x)p(z|x)p(y|z)
= p(z)p(x |z)p(y|z).

On the other hand, the product formula

p(xzy) = p(z)p(xy|z).

So we have
p(xy|z) = p(x |z)p(y|z).

That is X → Z → Y is aMarkov chain. Similarly, if (3.40) holds, then X → Z → Y
also is a Markov chain. The Theorem holds.

According to the above Theorem, or by Definition 3.11, obviously, if X → Z →
Y is a Markov chain, then Y → Z → X is also a Markov chain.

Definition 3.12 Let U, X, Z ,Y be four information spaces, and the probability of
joint event uxzy is

p(uxzy) = p(u)p(x |u)p(z|x)p(y|z), (3.41)

Call U, X, Z ,Y a Markov chain, denote as U → X → Z → Y .

Theorem 3.6 If U → X → Z → Y is a Markov chain, then U → X → Z and
U → Z → Y are also Markov chains.

Proof Assuming that U → X → Z → Y is a Markov chain, then

p(uxzy) = p(u)p(x |u)p(z|x)p(y|z),

Both sides sum y ∈ Y at the same time, and notice that
∑

y∈Y p(y|z) = 1, then

p(uxz) = p(u)p(x |u)p(z|x).

By Theorem 3.5,U → X → Z is aMarkov chain. The left side of the above formula
can be expressed as

p(uxz) = p(ux)p(z|ux).

So we have
p(z|ux) = p(z|x).
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Because U → X → Z → Y is a Markov chain, then

p(uxzy) = p(u)p(x |u)p(z|x)p(y|z)
= p(ux)p(z|ux)p(y|z)
= p(uxz)p(y|z).

Both sides sum x ∈ X at the same time, then we have

p(uzy) = p(uz)p(y|z)
= p(u)p(z|u)p(y|z).

Thus U → Z → Y is also a Markov chain. The Theorem holds.

In the previous section, we defined the mutual information I (X,Y ) of two infor-
mation spaces X and Y as

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(xy)

p(x)p(y)
.

Now we define the mutual information I (X,Y |Z) of X and Y under condition Z as

I (X,Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(xy|z)
p(x |z)p(y|z) . (3.42)

By definition, we have
I (X,Y |Z) = I (Y, X |Z). (3.43)

I (X,Y |Z) is called the conditional mutual information of X and Y .
For conditional mutual information, we first prove the following formula.

Theorem 3.7 Let X,Y, Z be three information spaces, then

I (X,Y |Z) = H(X |Z) − H(X |Y Z) (3.44)

and
I (X,Y |Z) = H(Y |Z) − H(Y |X Z). (3.45)

Proof We only prove (3.44), the same is true for equation (3.45). Because

H(X |Z) − H(X |Y Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(x |yz)
p(x |z)

=
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(xy|z)
p(x |z)p(y|z)

= I (X,Y |Z).

So (3.44) holds.
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Corollary 3.3 We have I (X,Y |Z) ≥ 0, if and only if X → Z → Y is a Markov
chain I (X,Y |Z) = 0.

Proof By Theorem 3.7,

I (X,Y |Z) = H(X |Z) − H(X |Y Z) ≥ 0.

If X → Z → Y is a Markov chain, by (3.42),

log
p(xy|z)

p(x |z)p(y|z) = log 1 = 0,

that is I (X,Y |Z) = 0. Vice versa.

Conditional mutual information can be used to establish the addition formula of
mutual information.

Corollary 3.4 (Addition formula of mutual information) If X1, X2, . . . , Xn,Y are
information spaces, then

I (X1X2 · · · Xn,Y ) =
n∑

i=1

I (Xi ,Y |Xi−1 · · · X1). (3.46)

Specially, when n = 2, we have

I (X1X2,Y ) = I (X1,Y ) + I (X2,Y |X1). (3.47)

Proof By Lemma 3.4, we have

I (X1X2 · · · Xn,Y ) = H(X1X2 · · · Xn) − H(X1X2 · · · Xn|Y )

=
n∑

i=1

H(Xi |Xi−1 · · · X1) −
n∑

i=1

H(Xi |Xi−1 · · · X1Y ).

Again by the chain rule of conditional entropy to get

I (X1X2 · · · Xn,Y ) =
n∑

i=1

I (Xi ,Y |X1X2 · · · Xi−1).

Therefore, the corollary holds.

Finally, we use Markov chain to prove the inequality of mutual information.

Theorem 3.8 Suppose X → Z → Y is a Markov chain, then we have

I (X,Y ) ≤ I (X, Z) (3.48)
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and
I (X,Y ) ≤ I (Y, Z). (3.49)

Proof We only prove (3.48), the same is true for equation (3.49). From equation
(3.47) and corollary 3.3:

I (Y Z , X) = I (Y, X) + I (X, Z |Y ).

Thus we have
I (X,Y ) = I (X,Y Z) − I (X, Z |Y )

≤ I (X,Y Z)

= I (X, Z) + I (X,Y |Z)

= I (X, Z).

In the last step, we use the Markov chain condition, thus I (X,Y |Z) = 0. The The-
orem holds.

Theorem 3.9 (Data processing inequality)SupposeU → X → Y → V is aMarkov
chain, then we have

I (U, V ) ≤ I (X,Y ).

Proof According to the conditions, U → X → Y and U → Y → V is a Markov
chain, respectively, by Theorem 3.8,

I (U,Y ) ≤ I (X,Y )

and
I (U, V ) ≤ I (U,Y ).

Thus
I (U, V ) ≤ I (X,Y ).

The Theorem holds.

3.5 Source Coding Theorem

The information coding theory is usually divided into two parts: channel coding
and source coding. The so-called channel coding is to ensure the success rate of
decoding by increasing the length of codewords. Channel coding, also known as
error correction code, is discussed in detail in Chap. 2. Source coding is to compress
the data with redundant information to improve the success rate of decoding and
recovery after information or data is stored. Another important result of Shannon’s
theory is that there are so-called good codes in source coding, which is characterized
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by fewer codewords as much as possible. To improve the storage space efficiency,
and the error of decoding and restoration can be arbitrarily small. Source coding is
also called typical code. Shannon first proved the asymptotic bisection property of
‘block code’for memoryless source, and drew the statistical characteristics of typical
code from now on. At Shannon’s suggestion, McMillan (1953) and Breiman (1957)
also proved a similar asymptotic bisection property for stationary ergodic sources.
This is the very famous Shannon–McMillan–Breiman theorem in source coding,
which constitutes the core content of modern typical code theory. The main purpose
of this section is to strictly prove the asymptotic bisection of memoryless sources, so
as to derive the source coding theorem for data compression (see Theorem 3.10). For
the more general Shannon–McMillan–Breiman theorem, Chap. 2 of Ye Zhongxing’s
fundamentals of information theory (see Zhongxing, 2003 in reference 3) gives a
proof under the condition of stationary ergodic Markov source, interested readers
can refer to it or refer to more original documents (see McMillan, 1953; Moy, 1961;
Shannon, 1959 in reference 3).

Firstly, let X = (X, ξ) be an information space, and the entropy H(X) of X
essentially depends only on the probability function p(x)(x ∈ X) of random variable
ξ . We can define the random variable taking value on X according to p(x).

η1 = p(X), η2 = log p(X). (3.50)

The probability function is

P{η1 value x} = P{η2 value x} = p(x). (3.51)

It is easy to see the expected value of η2

−E(η2) = −E(log p(X))

= −
∑

x∈X
p(x) log p(x) = H(X). (3.52)

Therefore, we can regard the entropy H(X) of X as the mathematical expectation of
random variable log 1

p(X)
.

Lemma 3.11 Let X be a memoryless source, p(Xn) and log p(Xn) be two random
variables whose values are on the power space Xn, then − 1

n log p(Xn) converges to
H(X) according to probability, that is

−1

n
log p(Xn)

P−→ H(X).

Proof Since X is a memoryless source, {ξi }i≥1 is a group of independent and identi-
cally distributed random variables, Xi = (X, ξi )(i ≥ 1), Xn = X1X2 · · · Xn(n ≥ 1)
is a power space, then there is
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{
p(Xn) = p(X1)p(X2) · · · p(Xn)

log p(Xn) = ∑n
i=1 log p(Xi ).

Because {ξi }i≥1 is independent and identically distributed, {p(Xn)} and {log p(Xn} is
also a group of independent and identically distributed random variables. According
to Chebyshev’s law of large numbers (see Theorem 1.3 of Chap. 1),

−1

n
log p(Xn) = 1

n

n∑

i=1

log
1

p(Xi )

converges to the common expected value H(X), that is

E

(
log

1

p(Xi )

)
= E

(
log

1

p(X)

)
= H(X).

For any ε > 0, for any codeword x = x1x2 · · · xn ∈ Xn , there is

P{| − 1

n
log p(Xn) − H(X)| < ε} > 1 − ε. (3.53)

The proof is completed.

Definition 3.13 Let X be a memoryless source, power space Xn , also known as
block code,

Xn = {x = x1 · · · xn|xi ∈ X, 1 ≤ i ≤ n}, n ≥ 1. (3.54)

For any given ε > 0, n ≥ 1, we define a typical code or a typical sequence W (n)
ε in

the power space Xn as

W (n)
ε = {x = x1 · · · xn | | − 1

n
log p(x) − H(X)| < ε}. (3.55)

Because the definition, and ε > 0, n ≥ 1, we have

W (n)
ε ⊂ Xn, |Xn| = |X |n. (3.56)

Lemma 3.12 (Progressive bisection) |W (n)
ε | represents the number of codewords in

typical code W (n)
ε , then for any ε > 0, in binary channels, we have

(1 − ε)2n(H(X)−ε) ≤ |W (n)
ε | ≤ 2n(H(X)+ε). (3.57)

Proof By Lemma 3.11 and (3.53), then for any x ∈ Xn , we have

P{| − 1

n
log p(x) − H(X)| < ε} > 1 − ε.
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In other words, for all codewords x = x1x2 · · · xn ∈ W (n)
ε , we have

H(X) − ε < −1

n
log p(x) < H(X) + ε.

Equivalent in binary channel,

2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε), (3.58)

Denote the probability of occurrence of W (n)
ε as P{W (n)

ε }, then

P{W (n)
ε } = P{x ∈ Xn : x ∈ W (n)

ε } > 1 − ε.

On the other hand,
P{W (n)

ε } =
∑

x∈W (n)
ε

p(x),

by (3.58),
|W (n)

ε | · 2−n(H(X)+ε) ≤ P{W (n)
ε } ≤ 1.

So
|W (n)

ε | ≤ 2n(H(X)+ε).

Again by (3.58), there is

|W (n)
ε | · 2−n(H(X)−ε) ≥ P{W (n)

ε } > 1 − ε.

So we have
|W (n)

ε | > (1 − ε)2n(H(X)−ε).

Combined with the above inequalities on both sides, we have

(1 − ε)2n(H(X)−ε) ≤ |W (n)
ε | ≤ 2n(H(X)+ε).

We completed the proof.

By Lemma 3.12, for memoryless source X , the probability distribution p(x) of
its power space Xn is approximate to

p(x) ∼ 2−nH(X), ∀ x ∈ Xn.

The number of codewords |W (n)
ε | in typical code W (n)

ε is approximately

|W (n)
ε | ∼ 2nH(X).
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Further analysis shows that the proportion of typical code W (n)
ε in block code Xn is

very small, which can be summarized as the following Lemma.

Lemma 3.13 For a sufficiently small ε > 0 given,when X is not an equal probability
information space, we have

lim
n→∞

|W (n)
ε |

|X |n = 0.

Proof By Lemma 3.12, we have

|W (n)
ε |

|X |n ≤ 2n(H(X)+ε)

|X |n .

So
|W (n)

ε |
|X |n ≤ 2−n(log |X |−H(X)−ε).

By Theorem 3.1, since X is not an equal probability information space, when ε is
sufficient, we have

H(X) + ε < log |X |.

Therefore, when n is sufficiently large, the ratio of |W (n)
ε |

|X |n can be arbitrarily small. The
Lemma 3.13 holds.

Combining Lemmas 3.11, 3.12 and 3.13, we can describe that the typical codes
in block codes have the following statistical characteristics.

Corollary 3.5 Assuming that X is a memoryless source and the typical sequence
(or typical code) W (n)

ε in block code Xn is defined by formula (3.55), then for any
ε > 0, n ≥ 1, we have

(i) (Progressive bisection)

(1 − ε)2n(H(X)−ε) ≤ |W (n)
ε | ≤ 2n(H(X)+ε).

(ii) The occurrence probability P{W (n)
ε } of W (n)

ε is infinitely close to 1, that is

P{W (n)
ε } = P{x ∈ Xn : x ∈ W (n)

ε } > 1 − ε.

(iii) When X is not equal to almost information space, the proportion of W (n)
ε in block

code Xn is any smaller, that is,

lim
n→∞

|W (n)
ε |

|X |n = 0.

The above description of the statistical characteristics of typical codes is an impor-
tant theoretical basis for source coding or data compression. Therefore, we find an
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effective way to compress the packet code information, so that the rearranged code-
words are as few as possible, and the error probability of decoding and recovery is
as small as possible. An effective method is to divide the codeword in block code
Xn into two parts; the codeword of typical code W (n)

ε is uniformly numbered from
1 to M . That is, the codeword in W (n)

ε forms one-to-one correspondence with the
following positive integer set I ,

I = {1, 2, . . . , M}, M = |W (n)
ε |.

For codewords that do not belong to W (n)
ε , we uniformly number them as 1: Obvi-

ously, for i, i �= 1, 1 ≤ i ≤ n, there is a unique codeword x (i) ∈ W (n)
ε inW (n)

ε , so we

can accurately restore i to x (i), that is i
decode−→ x (i) is the correct decoding. For i = 1,

we will not be able to decode correctly, resulting in decoding recovery error. We
denote the code rate of the typical code W (n)

ε as 1
n logM , by Lemma 3.12,

(1 − ε)2n(H(X)−ε) ≤ M ≤ 2n(H(X)+ε).

Equivalently,

log(1 − ε) + n(H(X) − ε) ≤ logM ≤ n(H(X) + ε),

Therefore, the bit rate of typical code W (n)
ε is estimated as follows

1

n
log(1 − ε) + H(X) − ε ≤ 1

n
logM ≤ H(X) + ε, (3.59)

when 0 < ε < 1 given, we have

H(X) − ε ≤ lim
n→∞

1

n
logM ≤ H(X) + ε.

In other words, the code rate is typically close to H(X). Let us look at the decoding
error probability Pe after this number, where

Pe = P{x ∈ Xn : x /∈ W (n)
ε }.

Because

Pe + P{W (n)
ε } = 1,

According to the statistical characteristics (i i) of the typical code W (n)
ε ,

Pe = 1 − P{W (n)
ε } < ε. (3.60)
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From this, we derive the main result of this section, the so-called source coding
theorem.

Theorem 3.10 (Shannon, 1948) Assuming that X is a memoryless source, then

(i) When the code rate R = 1
n logM1 > H(X), there is an encoding with the code

rate of R, so that when n → ∞, the error probability of decoding recovery is
Pe → 0.

(ii) When the code rate R = 1
n logM1 < H(X) − δ, δ > 0 and does not change with

n → ∞, then any coding with R as the code rate has lim
n→∞ Pe = 1.

Proof The above analysis has given the proof of (i). In fact, if

R = 1

n
logM1 > H(X),

then when ε is sufficiently small, by (3.59). Typical codes in block code Xn are

R >
1

n
log |W (n)

ε |, M1 > |W (n)
ε |.

Therefore, we construct a code C ⊂ Xn , which satisfies

W (n)
ε ⊂ C, |C | = M1.

Thus, the code rate of C is just equal to R, and the decoding error probability Pe(C)

after compression coding satisfies Pe(C) < ε. Because the probability of occurrence
of C

P{C} + Pe(C) = 1.

But
P{C} ≥ P{W (n)

ε } > 1 − ε,

(i) holds. To prove (i i), we note that, ∀ x ∈ W (n)
ε , then

| − 1

n
log p(x) − H(X)| < ε.

The above formula contains ∀ x ∈ W (n)
ε ,

p(x) < 2−n(H(X)−ε).

Thus, the probability of occurrence of W (n)
ε satisfies

P{W (n)
ε } =

∑

x∈W (n)
ε

p(x) ≤ |W (n)
ε | · 2−n(H(X)−ε). (3.61)
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If we use R as the bit rate, because

R = 1

n
logM < H(X) − δ,

then we have

|W (n)
ε | < M = 2n(H(X)−δ).

By (3.61),
P{W (n)

ε } < 2−n(δ−ε), (3.62)

when 0 < ε < δ, we have

1 − Pe = P{W (n)
ε } < ε.

Thus
lim
n→∞ Pe = 1,

Thus the theorem holds.

3.6 Optimal Code Theory

Let X be a source state set, x = x1x2 · · · xn ∈ Xn be a message sequence, and x be
output as a codeword u = u1u2 · · · uk ∈ Z

k
D of length k after compression coding,

where D ≥ 1 is a positive integer, ZD is the remaining class ring of mod D, u =
u1u2 · · · uk ∈ Z

k
D is called a D- ary codeword of length k. u is decoded and translated

into message x , that is u → x . The purpose of source coding is to find a good
coding scheme to make the code rate as small as possible under the requirement of
sufficiently small decoding error. Below, we give the strict mathematical definitions
of equal length code and variable length code.

Definition 3.14 Let X be a source state set,ZD is the remaining class ring ofmod D,
n, k are positive integers. The mapping f : Xn → Z

k
D is called equal length code

coding function; Zk
D

ψ−→ Xn is called the corresponding decoding function. For
∀ x = x1 · · · xn ∈ Xn , f (x) = u = u1 · · · uk ∈ Z

k
D , u = u1 · · · uk is called a code-

word of length k.
C = { f (x) ∈ Z

k
D|x ∈ Xn}, (3.63)

call
Call C is the code coded by f , and R = k

n logD is the coding rate of f , also
known as the code rate of C . C is called equal length code; it is sometimes called a
block code with a packet length of k.
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By Definition 3.14, the error probability of an equal length code coding scheme
( f, ψ) is

Pe = P{ψ( f (x)) �= x, x ∈ Xn}. (3.64)

Let us first consider error free coding, that is Pe = 0. Obviously, Pe = 0 if and
only if f is a injection, ψ = f −1 is the left inverse mapping of f . select a coding
function f : Xn → Z

k
D as a injection if and only if |Zk

D| ≥ |Xn|, that is Dk ≥ Nn ,
where N = |X |, take logarithms on both sides,

R = k

n
logD ≥ logN = log |X |. (3.65)

Therefore, the code rate of error free compression coding f is at least log2 |X | bits
or ln |X | naits.

We consider progressive error free coding, that is, for any given ε > 0, required
decoding error probability Pe ≤ ε. ByTheorem3.10, only the code rate R ≥ H(X) is
needed. In fact, take X as an information space and encode the n-lengthen message
column x = x1x2 · · · xn ∈ Xn , if x ∈ W (n)

ε is a typical sequence (typical code), x
corresponds to a number in M = |W (n)

ε |, if x /∈ W (n)
ε , uniformly code x as 1. If the

M codewords in W (n)
ε are represented by D-ary digits, let Dk = M (the insufficient

part can be supplemented), and the code rate R is

R = 1

n
logM = k

n
log D.

Since M is approximately 2nH(X), R is approximately H(X), that is R = 1
n logM ∼

H(X). From the asymptotic bisection, the error probability of such coding is

Pe = P{x = x1 · · · xn /∈ W (n)
ε } < ε, When n is sufficiently large.

However, in practical application, n cannot increase infinitely, which requires us to
find the best coding scheme when given a finite n, so that the code rate is as close as
possible to the theoretical value H(X). However, in application, we find that equal
length code is not an efficient coding scheme, while variable length code is more
practical. For example,

Example 3.6 Let X = {1, 2, 3, 4} be an information space, and the probability dis-
tribution of random variable ξ taking value on X is

ξ ∼
(
1 2 3 4
1
2

1
4

1
8

1
8

)
.

The entropy H(X) of information space X is

H(X) = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

8
log2

1

8
− 1

8
log2

1

8
= 1.75bits.
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If equal length code is used for coding, the code length is 2, and the code is

Source letter Codeword
1 00
2 01
3 10
4 11

Then the code rate R(k = 2, n = 1) is

R = 2 log2 2 = 2 > 1.75bits.

Obviously, the use efficiency of equal length codes is not high. If the above codes
are replaced with unequal length codes, such as
Source letter Codeword

1 0
2 10
3 110
4 111

We use l(x) to represent the code length after the source letter x is encoded, then the
average code length L required for X encoding is

L =
4∑

i=1

p(xi )l(xi ) = 1

2
× 1 + 1

4
× 2 + 1

8
× 3 + 1

8
× 3 = 1.75 bits = H(X).

It can be seen that using unequal length code to compile X has higher efficiency.
This example also explains the following compression coding principle: for char-
acters with high probability of occurrence, a shorter codeword is prepared, and for
characters with low probability of occurrence, a longer codeword is prepared to
ensure that the average coding length is as small as possible.

Next, we give the mathematical definition of variable length coding. For this
purpose, let X∗ and Z

∗
D be the set of finite length sequences, respectively. That is

X∗ = ⋃
1≤k<∞ Xk .

Definition 3.15 (i) Xn f−→ Z
∗
D is called a variable length code function, if any x ∈

Xn , f (x) ∈ Z
∗
D , When x is different, the code length of f (x) is not necessarily

the same. We use l(x) to table the length of f (x), which is called the coding
length of x . C = { f (x) ∈ Z

∗
D|x ∈ Xn} is called variable length codeword set.

(ii) Let f : X∗−→Z
∗
D be a amapping, call f is a coding mapping, f (X∗) is called

a code.
(iii) f : X∗−→Z

∗
D is called a block code mapping, if there is a mapping g :

X−→Z
∗
D , so that for any x ∈ Xn(n ≥ 1), write x = x1x2 · · · xn , there is f (x) =

g(x1)g(x2) · · · g(xn).
(iv) f : X∗−→Z

∗
D is called a uniquely decodable map, if f is a block code mapping

and f is a injection.
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(v) f : X∗−→Z
∗
D is called a real-time code mapping. If f is a block code mapping,

and for any x, y ∈ X∗, f (x) and f (y) cannot be prefixes to each other.

Remark 3.1 a = a1a2 · · · an ∈ Z
n
D, b = b1b2 · · · bm ∈ Z

m
D , call codeword a the pre-

fix of b, if m ≥ n, and for any 1 ≤ i ≤ n, there is ai = bi .

Lemma 3.14 Block code mapping f : X∗−→Z
∗
D is called a uniquely decodable

mapping if and only if for ∀ n ≥ 1, Xn−→Z
∗
D, f is restricted to a injection on Xn.

Proof The necessity is obvious and the adequacy is proved. That is to prove for
∀ x = x1x2 · · · xn ∈ Xn, y = y1y2 · · · ym ∈ Xm, x �= y, there is f (x) �= f (y). Sup-
pose there is f (x) = f (y), because f is a block code mapping, there is a mapping
g : X−→Z

∗
D , we have

f (x) = g(x1)g(x2) · · · g(xn) = g(y1)g(y2) · · · g(ym) = f (y).

Then
f (xy) = g(x1)g(x2) · · · g(xn)g(y1)g(y2) · · · g(ym)

= g(y1)g(y2) · · · g(ym)g(x1)g(x2) · · · g(xn)
= f (yx).

But xy �= yx , this contradicts the fact that f is restricted to a injection on Xn+m .

Lemma 3.15 A real-time code is uniquely decodable, and vice versa.

Proof Suppose f : X∗−→Z
∗
D as an instant codemapping, and for x, y ∈ X∗, x �= y,

there is f (x) = a1a2 · · · an ∈ Z
n
D, f (y) = b1b2 · · · bm ∈ Z

m
D(m ≥ n). Because f (x)

is not a prefix of f (y), it exists i(1 ≤ i ≤ n), there is ai �= bi , thus f (x) �= f (y),
that is f is an injection. In turn, let us take a counter example,

Source letter Codeword
1 0
2 01
3 011
4 111

where X = {1, 2, 3, 4} is the information space and f : X → Z
∗
2 is a variable

length code. f (1) is the prefix of f (2), that is, f is not a real-time code map, but
obviously f is the only decodeable map. The Lemma holds.

What are the conditions for the code length of a real-time code? The following
Kraft inequality gives a satisfactory answer.

Lemma 3.16 For the uniquely decodable code C value in Z
∗
D, |C | = m, the code

lengths are l1, l2, . . . , lm, then there is the following McMillan–Kraft inequality.

m∑

i=1

D−li ≤ 1. (3.66)
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On the contrary, if li satisfies the above conditions, there is a code length set of
real-time code C such that {l1, l2, . . . , lm} is C.

Proof Consider

(
m∑

i=1

D−li )n = (D−l1 + D−l2 + · · · + D−lm

)n

,

the form of each item is D−li1−li2−···−lin = D−k , where li1 + li2 + · · · + lin = k. Sup-
pose l = max{l1, l2, . . . , lm}, then the range of k is from n to nl. Define the number
of items where Nk is D−k , then

(
m∑

i=1

D−li

)n

=
nl∑

k=n

NkD
−k .

Note that Nk can be regarded as the number of codeword sequences with a total
length of k just assembled by n codewords in C , i.e.,

Nk = |{(c1, c2, . . . , cn) | |c1c2 · · · cn| = k, ci ∈ C}|.

The codeword is still in Z∗
D , and because f : X∗−→Z

∗
D is an injection, so Nk ≤ Dk .

then we have

(
m∑

i=1

D−li

)n

=
nl∑

k=n

NkD
−k ≤

nl∑

k=n

DkD−k = nl − n + 1 ≤ nl.

If x ≥ 1, and when n Is Sufficiently Large, xn > nl. But the above formula holds for
all arbitrary n. That is

∑m
i=1 D

−li ≤ 1.
On the contrary, assuming that Kraft inequality exists, that is, there is a given

length li (1 ≤ i ≤ m) satisfying formula (3.66), now we need to construct a real-
time code with these lengths, and li (1 ≤ i ≤ m) may not be completely different.
Definition n j is the number of codewords with length j, if l = max{l1, l2, . . . , lm},
then

l∑

j=1

n j = m.

(3.66) equivalent to
l∑

j=1

n j D
− j ≤ 1.

Multiply both sides by Dl , then
∑l

j=1 n j Dl− j ≤ Dl . There is
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nl ≤ Dl − n1D
l−1 − n2D

l−2 − · · · − nl−1D,

nl−1 ≤ Dl−1 − n1D
l−2 − n2D

l−3 − · · · − nl−2D,

· · ·

n3 ≤ D3 − n1D
2 − n2D,

n2 ≤ D2 − n1D,

n1 ≤ D.

Because n1 ≤ D, we can choose these n1 codes arbitrarily, and the remaining D −
n1 codes with length 1 can be used as the prefix of other codewords. Therefore,
there are (D − n1)D options for codewords with length of 2. That is n2 ≤ D2 −
n1D. Similarly, (D − n1)D − n2 codewords can be used as prefixes of subsequent
codewords. Therefore, there are at most ((D − n1)D − n2)D options for codewords
with length of 3. That is n3 ≤ D3 − n1D2 − n2D. . . ., in this way, we can always
construct a real-time code with length {l1, l2, . . . , lm}. The Lemma holds!

Let us give an example that is not the only one that can be decoded.

Example 3.7 Let X = {1, 2, 3, 4}, ZD = F2, the coding scheme is

Source letter Codeword
1 0=f(1)
2 1=f(2)
3 00=f(3)
4 11=f(4)

Because the encoder inputs and the decoder receives continuous codeword sym-
bols, if the character received by the decoder is 001101, there may be two decoding
results, 112212 and 3412. This shows that f ∗ is not an injection, that is, the code
written by f is not uniquely decodable.

By Lemma 3.16, real-time codes or, more generally, uniquely decodable codes
must satisfy Kraft inequality. However, the variable length code compiled according
to kraft inequality is not the optimal code, because from the perspective of random
coding, an optimal code not only requires the accuracy of decoding, but also ensures
the efficiency, that is, the average random code length requires the shortest. We
summarize the strict mathematical definition of the optimal code as.

Definition 3.16 Let X = {x1, x2, . . . , xm} is an information space, a real-time code
C = { f (x1), f (x2), . . . , f (xm)} is called an optimal code if its average random code
length

L =
m∑

i=1

pi li (3.67)
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is the smallest, where pi = p(xi ) is the occurrence probability of xi and li is the code
length of xi .

For a source state set X , when its statistical characteristics are determined, that is,
after X becomes an information space, the probability distribution {p(x)|x ∈ X} is
given. Therefore, to find the optimal compression coding scheme for an information
space X is to find the optimal solution {l1, l2, . . . , lm} of (3.67) under the condition of
kraft inequality. Usually, we use the Lagrange multiplier method to find the optimal
solution. Let

J =
m∑

i=1

pi li + λ

(
m∑

i=1

D−li

)
,

Find the partial derivative of li

∂ J

∂li
= pi − λD−li log D.

Thus
D−li = pi

λ log D
.

By Kraft inequality, that is
m∑

i=1

D−li ≤ 1.

We get

1 ≥
m∑

i=1

D−li = 1

λ log D

m∑

i=1

pi ⇒ λ ≥ 1

log D
.

Thus, the optimal code length li is

li ≥ − logD pi , pi ≥ D−li . (3.68)

The corresponding optimal average code length L is

L =
m∑

i=1

pi li ≥ −
m∑

i=1

pi logD pi = HD(X). (3.69)

That is, L is the D-ary information entropy HD(X) of X . from this, we get the main
results of this section.

Theorem 3.11 The average length L of any D-ary real-time code in an information
space X shall satisfies

L ≥ HD(X).



128 3 Shannon Theory

The equal sign holds if and only if pi = D−li .

Next, we will give another proof of Theorem 3.11. Therefore, we consider that there
are two random variables ξ and η on a source state set X , and their probability
distributions are

p(x) = P{ξ = x}, q(x) = P{η = x}, ∀ x ∈ X.

The relative entropy of random variables is defined as

D(p||q) =
∑

x∈X
p(x) log

p(x)

q(x)
. (3.70)

Lemma 3.17 The relative entropy D(p||q) of two random variables on X satisfies

D(p||q) ≥ 0, and D(p||q) = 0 ⇐⇒ p(x) = q(x),∀ x ∈ X.

Proof If the real number x > 0 is expanded by the power series of ex , it can be
obtained

ex−1 = 1 + (x − 1) + 1

2
(x − 1)2 + · · · .

Thus ex−1 ≥ x , there is log x ≤ x − 1, by (3.70), then

−D(p||q) =
∑

x∈X
p(x) log

q(x)

p(x)

≤
∑

x∈X
p(x)(

q(x)

p(x)
− 1) = 0.

Thus, there is D(p||q) ≥ 0, D(p||q) = 0’s conclusion is obvious.

Proof (Another proof of theorem 3.11) Investigate L − HD(X),

L − HD(X) =
m∑

i=1

pi li −
m∑

i=1

pi logD
1

pi

= −
m∑

i=1

pi logD D−li +
m∑

i=1

pi logD pi .

(3.71)

Define

ri = D−li

c
, c =

m∑

j=1

D−li .

By Kraft inequality, we have
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c ≤ 1, and
m∑

i=1

ri = 1.

Therefore, {ri , 1 ≤ i ≤ m} is a probability distribution on X , by (3.71),

L − HD(X) = −
m∑

i=1

pi logD cri +
m∑

i=1

pi logD pi =
m∑

i=1

pi

(
logD

pi
ri

+ logD
1

c

)
.

By Lemma 3.17 and c ≤ 1, we have

L − HD(X) ≥ 0, and L = HD(X) if and only if c = 1 and ri = pi ,

that is

pi = D−li , or li = logD
1

pi
.

We complete the proof of theorem 3.11.

By Theorem 3.11, coding according to probability, then the code length of D-ary
optimal code is

li = logD
1

pi
, 1 ≤ i ≤ m.

But in general, logD
1
pi
is not an integer, we use �a� to represent the smallest integer

not less than the real number a. Take

li =
⌈
logD

1

pi

⌉
, 1 ≤ i ≤ m. (3.72)

Then
m∑

i=1

D−li ≤
m∑

i=1

D− logD
1
pi =

m∑

i=1

pi = 1.

Then the code length defined by formula (3.72) is {l1, l2, . . . , lm} and satisfies Kraft
inequality. From Lemma 3.16, we can define the corresponding real-time code.

Definition 3.17 Let X = {x1, x2, . . . , xm} be an information space, pi = p(xi ),

l( f (xi )) = li =
⌈
logD

1

pi

⌉
, 1 ≤ i ≤ m.

Then the real-time code corresponding to {l1, l2, . . . , lm} is called Shannon code.

Corollary 3.6 The code length l( f (xi )) of a Shannon code C = { f (xi )|1 ≤ i ≤ m}
satisfies
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li =
⌈
logD

1

p(xi )

⌉
, logD

1

p(xi )
≤ li < logD

1

p(xi )
+ 1 (3.73)

and
HD(X) ≤ L < HD(X) + 1.

Where L is the average code length of C.

Proof According to the definition of �a�, a ≤ �a� < a + 1, thus

logD
1

p(xi )
≤ li < logD

1

p(xi )
+ 1.

So both sides multiply by p(xi ) and sum 1 ≤ i ≤ m, then there is

m∑

i=1

p(xi ) logD
1

p(xi )
≤

m∑

i=1

p(xi )li <

m∑

i=1

p(xi )

(
logD

1

p(xi )
+ 1

)
.

That is
HD(X) ≤ L < HD(X) + 1.

The Corollary holds.

3.7 Several Examples of Compression Coding

3.7.1 Morse Codes

In variable length codes, in order to make the average code length as close to the
source entropy as possible, the code length shouldmatch the occurrence probability of
the corresponding coded characters asmuchas possible. Theprinciple of probabilistic
coding is that the characters with high occurrence probability are configured with
short codewords, and the characters with low occurrence probability are configured
with long codewords, So as to make the average code length as close to the source
entropy as possible. This idea has existed long before Shannon theory. For example,
Morse code invented in 1838 uses three symbols of dot, dash and space to encode 26
letters in English. It is expressed in binary, one dot is 10, a total of 2 bits, one dash is
1110, a total of 4 bits and the space is 000. There are three bits in total. For example,
the commonly used English letter E is represented by a dot, while the infrequently
used letter Q is represented by two dashes, one dot and one dash, which can make
the average length of the codeword of the English text shorter. However, Morse code
does not completely match the occurrence probability, so it is not the optimal code,
and it is basically not used now. The following table is the coding table of Morse
code (Fig. 3.1)
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Fig. 3.1 The coding table of
Morse code

It is worth noting that Morse code appeared as a kind of password in the early
stage, which is widely used in the transmission and storage of sensitive politics (such
as military intelligence). The early cryptosystem compilers were also manufactured
based on the principle of Morse code, which quickly mechanized the compilation
and translation of passwords. In this sense, Morse code has played an important role
in promoting the development of cryptography.
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3.7.2 Huffman Codes

Shannon, Fano and Huffman have all studied the coding methods of variable length
codes, among which Huffman codes have the highest coding efficiency. We focus on
the coding methods of Huffman binary and ternary codes.

Let X = {x1, x2, . . . , xm} be the source letter set of m symbols, arrange the m
symbols in the order of occurrence probability, take the two letters with the lowest
probability to prepare the numbers “0” and “1,” respectively, then add their proba-
bilities as a new letter and rearrange them in the order of probability with the source
letters without binary numbers. Then take the two letters with the lowest probability
to prepare the numbers “0” and “1,” respectively, add the probabilities of the two
letters as the probability of a new letter, and re queue; continue the above process
until the probability of the remaining letters is added to 1. At this time, all source
letters correspond to a string of “0” and “1,” and we get a variable length code, which
is called Huffman code. Taking X = {1, 2, 3, 4, 5} as the information space as an
example, the corresponding probability distribution is

ξ ∼
(

1 2 3 4 5
0.25 0.25 0.2 0.15 0.15

)
.

Binary information entropy H2(X) and ternary information entropy H3(X) are

H2(X) = −0.25 log2 0.25 − 0.25 log2 0.25 − 0.2 log2 0.2

− 0.15 log2 0.15 − 0.15 log2 0.15

= 2.28 bits,

H3(X) = −0.25 log3 0.25 − 0.25 log3 0.25 − 0.2 log3 0.2

− 0.15 log3 0.15 − 0.15 log3 0.15

= 1.44 bits,

respectively. The binary Huffman coding diagram of X is (Fig. 3.2).
The ternary Huffman coding diagram of X is (Fig. 3.3).
In summary, Huffman code has the following characteristics. Assuming that the

occurrence probability of the i-th source letter is pi and the corresponding code
length is li , then

Fig. 3.2 The binary
Huffman coding
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Fig. 3.3 The ternary
Huffman coding

(1) If pi > p j , then li ≤ l j , that is, the source letter with low probability has a longer
codeword;

(2) The longest two codewords have the same code length;
(3) The codeword letters of the two longest codewords are only different from the

last letter, and the front ones are the same;
(4) In real-time codes, the average code length of Huffman code is the smallest. In

this sense, Huffman code is the optimal code.

Huffman code has been applied in practice, which is mainly used in the compression
standard of fax image. However, in the actual data compression, the statistical char-
acteristics of some sources change before and after. In order to make the statistical
characteristics based on the coding adapt to the changes of the actual statistical char-
acteristics of the source, an adaptive coding technology has been developed. In each
step of coding, the coding of a new message is based on the statistical characteristics
of previous messages. For example, R. G. Gallager first proposed the step-by-step
updating technology of Huffman code in 1978, and D.E. Knuth made this technol-
ogy a practical algorithm in 1985. Adaptive Huffman coding technology requires
complex data structure and continuous updating of codeword set according to the
statistical characteristics of source, We would not go into details here.

3.7.3 Shannon–Fano Codes

Shannon–Fano code is an arithmetic code. Let X be an information space. It can be
inferred from Corollary 3.6 in the previous section that the code length of Shannon
code on X is

l(x) =
⌈
log

1

p(x)

⌉
,∀ x ∈ X.
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Here, we introduce a constructive coding method using cumulative distribution func-
tion to allocate codewords, commonly known as Shannon–Fano coding method.
Without losing generality, let each letter x in X , there is p(x) > 0, and define the
cumulative distribution function F(x) and the modified distribution function F̄(x)
as

F(x) =
∑

a≤x

p(a), F̄(x) =
∑

a<x

p(a) + 1

2
p(x), (3.74)

where X = {1, 2, . . . ,m} is a given information space. Without losing generality, let
p(1) ≤ p(2) ≤ · · · ≤ p(m).

As can be seen from the definition, if x ∈ X , then p(x) = F(x) − F(x − 1),
specially, if x, y ∈ X , then we have

F̄(x) �= F̄(y).

Sowhenwe know F̄(x), we can find the corresponding x . The basic idea of Shannon–
Fano arithmetic code is to use F̄(x) to encode x . Because F̄(x) is a real number, its
binary decimal represents the first l(x) bits, denote as {F̄(x)}l(x), there is

F̄(x) − {F̄(x)}l(x) < 2−l(x). (3.75)

Take l(x) =
⌈
log 1

p(x)

⌉
+ 1, then we have

1

2l(x)
= 1

2 · 2
⌈
log 1

p(x)

⌉ <
p(x)

2
= F̄(x) − F(x − 1), (3.76)

Now let the binary decimal of F̄(x) be expressed as

F̄(x) = 0.a1a2 · · · al(x)al(x)+1 · · · , ∀ ai ∈ F2.

Then Shannon–Fano code is

f (x) = a1a2 · · · al(x), that is x
encode−→ a1a2 · · · al(x) ∈ F

l(x)
2 . (3.77)

Lemma 3.18 The binary Shannon Fano code is a real-time code, and its average
length L is at most two bits different from the theoretical optimal value H(X).

Proof By (3.76),

2−l(x) <
1

2
p(x) = F̄(x) − F(x − 1).

Let the binary decimal of F̄(x) be expressed as

F̄(x) = 0.a1a2 · · · al(x) · · · , ∀ ai ∈ F2.
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We use [A, B] to represent a closed interval on the real axis, so

F̄(x) ∈ [0.a1a2 · · · al(x), 0.a1a2 · · · al(x) + 1

2l(x)
].

If y ∈ X , x �= y, and f (x) is the prefix of f (y), then we have

F̄(y) ∈ [0.a1a2 · · · al(x), 0.a1a2 · · · al(x) + 1

2l(x)
].

But

F̄(y) − F̄(x) ≥ 1

2
p(y) ≥ 1

2
p(x) >

1

2l(x)
,

This is contrary to the fact that F̄(x) and F̄(y) are in the same interval. Therefore, we
have f as real-time code, that is, Shannon–Fano code is real-time code. Considering
its average code length L ,

L =
∑

x∈X
p(x)l(x) =

∑

x∈X
p(x)

(⌈
log

1

p(x)

⌉
+ 1

)
<

∑

x∈X
p(x)

(
log

1

p(x)
+ 2

)
= H(X) + 2.

We complete the proof of the Lemma.

Let n ≥ 1, Xn is the power space of the information space, x = x1 · · · xn ∈ Xn

is called a message column of length n. In order to improve the coding efficiency,
it is often necessary to compress the power space Xn , which is called arithmetic
coding. Shannon–Fano code can also be used as arithmetic coding. Its basic method
is to find a fast algorithm for calculating joint probability distribution p(x1x2 · · · xn)
and cumulative distribution function F(x), and then use Shannon–Fano method to
encode x = x1 · · · xn . We will not introduce the specific details here.

3.8 Channel Coding Theorem

Let X be the input alphabet and Y the output alphabet, and let ξ and η be two random
variables with values on X and Y . The probability functions p(x) and p(y) of X and
Y and the conditional probability function p(y|x) are

p(x) = P{ξ = x}, p(y) = P{η = y}, p(y|x) = P{η = y|ξ = x}respectively.

From the full probability formula,

⎧
⎨

⎩
p(y|x) ≥ 0, ∀ x ∈ X, y ∈ Y.∑
y∈Y

p(y|x) = 1, ∀ x ∈ X. (3.78)
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If X and Y are finite sets, the conditional probability matrix T = (p(y|x))|X |×|Y | is
called the transition probability matrix from X to Y , i.e.,

T =

⎛

⎜⎜⎝

p(y1|x1) p(y2|x1) . . . p(yN |x1)
p(y1|x2) p(y2|x2) . . . p(yN |x2)

. . .

p(y1|xM) p(y2|xM) . . . p(yN |xM)

⎞

⎟⎟⎠ , (3.79)

where |X | = M , |Y | = N . By (3.78), each row of the transition probability matrix
T is added to 1.

Definition 3.18 (i) A discrete channel is composed of a finite information space X
as the input alphabet, a finite information space Y as the output alphabet, and a
transition probability matrix T from X to Y , denote that this discrete channel is
{X, T,Y }. If X = Y = Fq is q -element finite field, then {X, T,Y } is a discrete
q-ary channel. In particular, if q = 2, then {X, T,Y } is called discrete binary
channel.

(ii) If {X, T,Y } is a discrete q-ary channel and T = Iq is the q-order identity matrix,
{X, Iq ,Y } is called a noise free channel.

(iii) If {X, T,Y } is a discrete q-ary channel and T = T ′ is a q-order symmetric
matrix, {X, T,Y } is called a symmetric channel.

In discrete channel {X, T,Y }, codeword spaces Xn and Y n with length n are
defined as

Xn = {x = x1 · · · xn|xi ∈ X},Y n = {y = y1 · · · yn|yi ∈ Y }, n ≥ 1.

The probabilities of joint events x = x1 · · · xn and y = y1 · · · yn are defined as

p(x) = p(x1 · · · xn) =
n∏

i=1

p(xi ), p(y) = p(y1 · · · yn) =
n∏

i=1

p(yi ), (3.80)

then X andY becomeamemoryless source, Xn andY n are power spaces, respectively.

Definition 3.19 Discrete channel {X, T,Y } is called a memoryless channel if for
any positive integer n ≥ 1, x = x1 · · · xn ∈ Xn , y = y1 · · · yn ∈ Y n , we have

⎧
⎨

⎩
p(y|x) =

n∏
i=1

p(yi |xi ),
p(xi yi ) = p(x1y1),∀ i ≥ 1.

. (3.81)

From the joint event probability p(xi yi ) = p(x1y1) in equation (3.81), then there
is

p(yi |xi ) = p(x1)

p(xi )
p(y1|x1). (3.82)



3.8 Channel Coding Theorem 137

The above formula shows that in a memoryless channel, the conditional probability
p(yi |xi ) does not depend on yi .

Definition 3.19 is the statistical characteristic of a memoryless channel. The fol-
lowing lemma gives a mathematical characterization of a memoryless channel.

Lemma 3.19 A discrete channel {X, T,Y } is a memoryless channel if and only
if the product information space XY is a memoryless source, and a power space
(XY )n = XnY n.

Proof If XY is a memoryless source (see Definition 3.9), thn for any n ≥ 1, and
x = x1 · · · xn ∈ Xn , y = y1 · · · yn ∈ Y n , xy ∈ XnY n , there is

p(xy) = p(x1 · · · xn y1 · · · yn) = p(x1y1 · · · xn yn) =
n∏

i=1

p(xi yi ).

Thus

p(x)p(y|x) = p(x)
n∏

i=1

p(yi |xi ),

so we have

p(y|x) =
n∏

i=1

p(yi |xi ).

p(xi yi ) = p(x1y1) is given by the definition of memoryless source, so {X, T,Y } is
a memoryless channel. Conversely, if {X, T,Y } is a memoryless channel, by (3.81),
there are

p(xy) =
n∏

i=1

p(xi yi )

and p(xi yi ) = p(x1y1), then for any a = a1a2 · · · an ∈ (XY )n , where ai = xi yi , we
have

p(a) = p(x1 · · · xn y1 · · · yn) = p(xy) =
n∏

i=1

p(xi yi ) =
n∏

i=1

p(ai )

and p(ai ) = p(a1), therefore, XY is amemoryless source, that is, a group of indepen-
dent and identically distributed random vectors ξ = (ξ1, ξ2, . . . , ξn, . . .) take value
on XY , and (XY )n = XnY n is called power space. The Lemma holds.

The following lemma further characterizes the statistical characteristics of amem-
oryless channel.

Lemma 3.20 If {X, T,Y } is a discrete memoryless channel, the conditional entropy
H(Y n|Xn) and information I (Xn,Y n) of information space Xn and Y n satisfy ∀ n ≥
1,
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{
H(Y n|Xn) = nH(Y |X).

I (Xn,Y n) = nI (X,Y ).
(3.83)

Proof Because XY is a memoryless source, we have

H(XnY n) = H((XY )n) = nH(XY ) = nH(X) + nH(Y |X).

On the other hand, by the addition formula of entropy, there is

H(XnY n) = H(Xn) + H(Y n|Xn) = nH(X) + H(Y n|Xn).

The combination of the above two formulas has

H(Y n|Xn) = nH(Y |X).

According to the definition of mutual information,

I (Xn,Y n) = H(Y n) − H(Y n|Xn)

= nH(Y ) − nH(Y |X)

= n(H(Y ) − H(Y |X)) = nI (X,Y ).

The Lemma holds.

Let us define the channel capacity of a discrete channel, this concept plays an
important role in channel coding. First, we note that the joint probability distribution
p(xy) in the product space XY is uniquely determined by the probability distribution
p(x) on X and the probability transformationmatrix T , that is p(xy) = p(x)p(y|x);
therefore, the mutual information I (X,Y ) of X and Y is also uniquely determined
by p(x) and T . In fact,

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(xy)

p(x)p(y)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x)∑

x∈X
p(x)p(y|x) .

Definition 3.20 The channel capacity B of a discretememoryless channel {X, T,Y }
is defined as

B = max
p(x)

I (X,Y ), (3.84)

where formula (3.84) is the maximum of all probability distributions p(x) on X .

Lemma 3.21 The channel capacity B of a discrete memoryless channel {X, T,Y }
is estimated as follows:
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0 ≤ B ≤ min{log |X |, log |Y |}.

Proof The amount of mutual information between the two information spaces is
I (X,Y ) ≥ 0 (see Lemma 3.5), so there is B ≥ 0. By Lemma 3.4,

I (X,Y ) = H(X) − H(X |Y ) ≤ H(X) ≤ log |X |

and
I (X,Y ) = H(Y ) − H(Y |X) ≤ H(Y ) ≤ log |Y |,

so we have
0 ≤ B ≤ min{log |X |, log |Y |}.

The calculation of information capacity is a problem of solving the conditional
extremum of constrained convex function. We will not discuss it in detail here but
calculate its channel capacity for two simple channels.

Example 3.8 The channel capacity of noiseless channel {X, T,Y } is B = log |X |.
Proof Let {X, T,Y } be a noise free channel, then |X | = |Y |, and the probability
transfer matrix T is the identity matrix, so

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(y|x)
p(y)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x)

p(y)
.

Because p(y|x) = 0, if y �= x ; p(y|x) = 1, if x = y. So there is

I (X,Y ) =
∑

x∈X
p(x) log

1

p(x)
= H(X) ≤ log |X |.

Thus
B = max

p(x)
I (X,Y ) = log |X |.

Example 3.9 The channel capacity B of binary symmetric channel {X, T,Y } is

B = 1 − p log p − (1 − p) log(1 − p) = 1 − H(p),

where p < 1
2 , H(p) is the binary entropy function.

Proof In binary symmetric channel {X, T,Y }, X = Y = F2 = {0, 1}, T is a second-
order symmetric matrix
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T =
(
1 − p p
p 1 − p

)
, p < 1.

Let a be the random variable in the input space F2 and b be the random variable in the
output space F2, all of which obey the two-point distribution, and then the transfer
matrix T of the symmetric binary channel can be represented by the following clearer
schematic diagram:

{
P{b = 1|a = 0} = P{b = 0|a = 1} = p

P{b = 0|a = 0} = P{b = 1|a = 1} = 1 − p.

Calculate mutual information I (X,Y ), there is

I (X,Y ) = H(X) − H(X |Y ),

however,
H(X |Y ) =

∑

x∈F2

∑

y∈F2

p(xy) log p(x |y)

= −p log p − (1 − p) log(1 − p) = H(p).

Thus
B = max{I (X,Y )} = max{H(X) − H(p)} = 1 − H(p).

In order to state and prove the channel coding theorem, we introduce the concept
of joint typical sequence. By the Definition 3.13 of Sect. 5 this chapter, if X is a
memoryless source, for any small ε > 0 and positive integer n ≥ 1, in the power
space Xn , we define the typical sequence W (n)

ε as

W (n)
ε = {x = x1 · · · xn ∈ Xn|| − 1

n
log p(x) − H(X)| < ε}.

If {X, T,Y } is a memoryless channel, by Lemma 3.19, XY is a memoryless source,
in the power space (XY )n = XnY n , we define the joint canonical sequence W (n)

ε as
(Fig. 3.4)

W (n)
ε =

{
xy ∈ XnY n

∣∣∣| − 1

n
log p(x) − H(X)| < ε, | − 1

n
log p(y) − H(Y )| < ε,

| − 1

n
log p(xy) − H(XY )| < ε

}
. (3.85)

Lemma 3.22 (Progressive bisection) In memoryless channel {X, T,Y }, the joint
typical sequence W (n)

ε satisfies the following asymptotic bisection properties:

(i) lim
n→∞ P{xy ∈ W (n)

ε } = 1;
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Fig. 3.4 The transfer matrix

(ii) (1 − ε) 2n(H(XY )−ε) ≤ |W (n)
ε | ≤ 2n(H(XY )+ε);

(iii) If x ∈ Xn, y ∈ Y n,and p(xy) = p(x)p(y), then

(1 − ε) 2−n(I (X,Y )+3ε) ≤ P{xy ∈ W (n)
ε } ≤ 2−n(I (X,Y )−3ε).

Proof By Lemma 3.13, we have

−1

n
log p(Xn) → H(X), Convergence according to probability when n → ∞;

−1

n
log p(Y n) → H(Y ), Convergence according to probability when n → ∞;

−1

n
log p(XnY n) → H(XY ), Convergence according to probability when n → ∞.

So when ε is given, as long as n is sufficiently large, there is

P1 = P

{
| − 1

n
log p(x) − H(X)| > ε

}
<

1

3
ε,

P2 = P

{
| − 1

n
log p(y) − H(Y )| > ε

}
<

1

3
ε,

P3 = P

{
| − 1

n
log p(xy) − H(XY )| > ε

}
<

1

3
ε,

where x ∈ Xn , y ∈ Y n . Thus, it can be obtained

P
{
xy /∈ W (n)

ε

} ≤ P1 + P2 + P3 < ε.

Thus
P

{
xy ∈ W (n)

ε

}
> 1 − ε,

in other words,
lim
n→∞ P{xy ∈ W (n)

ε } = 1.

Property (i) holds. To prove (i i), let x ∈ Xn , y ∈ Y n , and xy ∈ W (n)
ε , then
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H(XY ) − ε < −1

n
log p(xy) < H(XY ) + ε.

Equivalently,
2−n(H(XY )+ε) < p(xy) < 2−n(H(XY )−ε).

By total probability formula,

1 =
∑

xy∈XnY n

p(xy) ≥
∑

xy∈W (n)
ε

p(xy) ≥ |W (n)
ε | 2−n(H(XY )+ε).

So there is
|W (n)

ε | ≤ 2n(H(XY )+ε).

On the other hand, when n is sufficiently large,

1 − ε < P{xy ∈ W (n)
ε } =

∑

xy∈W (n)
ε

p(xy)

≤ |W (n)
ε | 2−n(H(XY )−ε).

So there is
(1 − ε) 2n(H(XY )−ε) ≤ |W (n)

ε | ≤ 2n(H(XY )+ε),

property (i i) holds. Now let’s prove property (i i i). If p(xy) = p(x)p(y), then

P{xy ∈ W (n)
ε } =

∑

xy∈W (n)
ε

p(x)p(y)

≤ |W (n)
ε |2−n(H(X)−ε)2−n(H(Y )−ε)

≤ 2n(H(XY )+ε−H(X)−H(Y )+2ε)

= 2−n(I (X,Y )−3ε).

Similarity can prove its lower bound, so we have

(1 − ε) 2−n(I (X,Y )+3ε) ≤ P{xy ∈ W (n)
ε } ≤ 2−n(I (X,Y )−3ε).

We have completed the proof of Lemma.

The following lemma has important applications in proving the channel coding
theorem. In fact, the conclusion of lemma is valid in general probability space.

Lemma 3.23 In memoryless channel {X, T,Y }, if codeword y ∈ Y n is uniquely
determined by x ∈ Xn, x ′ ∈ Xn, x ′ and x are independent, y and x ′ are also inde-
pendent.
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Proof If y is uniquely determined by x , then p(x) = p(y) = p(xy), or p(y|x) = 1.
Therefore, the probability of joint event yxx ′ is

p(yxx ′) = p(xx ′) = p(x)p(x ′) = p(y)p(x ′).

on the other hand,
p(yxx ′) = p(yx ′).

Thus
p(yx ′) = p(y)p(x ′).

The Lemma holds.

In order to define the error probability of channel transmission, we first introduce
the workflow of channel coding. After source compression coding, a source message
input set is generated,

W = {1, 2, . . . , M}, M ≥ 1 is positive integers.

Injection f : W → Xn is called coding function, f encodes each input message
w ∈ W as f (w) ∈ Xn . Codeword x = f (w) ∈ Xn receives codeword y ∈ Y n after

transmission through channel {X, T,Y }, we write x T−→ y, or y = T (x). Mapping
g : Y n → W is called decoding function. Therefore, the so-called channel coding is
a pair of mapping ( f, g). Obviously,

C = f (W ) = { f (w)|w ∈ W } ⊂ Xn

is a code with length n in codeword space Xn , number of codewords is |C | = |W | =
M . C is the code of f . The code rate RC is

RC = 1

n
log |C | = 1

n
logM.

For each input message w ∈ W , if g(T ( f (w))) �= w, it is said that the channel
transmission is wrong, the transmission error probability λw is

λw = P{g(T ( f (w))) �= w}, w ∈ W. (3.86)

The transmission error probability of codeword x = f (w) ∈ C is recorded as Pe(x),
obviously, Pe(x) = λw, that is, Pe(x) is the conditional probability

Pe(x) = P{g(T (x)) �= w|x = f (w)}
= P{g(T ( f (w))) �= w} = λw.

(3.87)

We define the transmission error probability of code C = f (W ) ⊂ Xn as Pe(C),



144 3 Shannon Theory

Pe(C) = 1

M

∑

x∈C
Pe(x) = 1

M

M∑

w=1

λw. (3.88)

As before, a code C with length n and number of codewords M is recorded as
C = (n, M).

Theorem 3.12 (Shannon’s channel coding theorem, 1948) Let {X, T,Y } be a mem-
oryless channel and B be the channel capacity, then

(i) When R < B, there is a column of codes Cn = (n, 2[nR]), its transmission error
probability Pe(Cn) satisfies

lim
n→∞ Pe(Cn) = 0; (3.89)

(ii) Conversely, if the transmission error probability of code Cn = (n, 2[nR]) satisfies
Eq. (3.89), there is an absolute normal number N0, and we have the code rate
RCn of Cn satisfies

RCn ≤ B, when n ≥ N0.

If Cn = (n, 2[nR]), by Lemma 2.27 of Chap. 2,

R − 1

n
< RCn ≤ R. (3.90)

so (i) of Theorem 3.12 indicates that the code rate is sufficiently close to the channel
capacity B, the “good code” with sufficiently small transmission error probability
exists. (i i) indicates that the bit rate of the so-called good code with sufficiently small
transmission error probability does not exceed the channel capacity. Shannon’s proof
Theorem 3.12 uses random code technology; this idea of using random method to
prove deterministic results is widely used in information theory. At present, it has
more and more applications in other fields.

Proof (Proof of theorem 3.12) Firstly, the probability function p(xi ) is arbitrarily
selected on the input alphabet X , and the joint probability in power space Xn is
defined as

p(x) =
n∏

i=1

p(xi ), x = x1 · · · xn ∈ Xn, (3.91)

In this way, we get a memoryless source X and power space Xn , which consti-
tute the codeword space of channel coding. Then M = 2[nR] codewords are ran-
domly selected in Xn to obtain a random code Cn = (n, 2[nR]). In order to illus-
trate the randomness of codeword selection, we borrow the source message set
W = {1, 2, . . . , M}, where M = 2[nR]. For every message w, 1 ≤ w ≤ M , the ran-
domly generated codeword is marked as X (n)(w). So we get a random code
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Cn = {X (n)(1), X (n)(2), . . . , X (n)(M)} ⊂ Xn .

The generation probability P{Cn} of Cn is

P{Cn} =
M∏

w=1

P{X (n)(w)} =
M∏

w=1

n∏

i=1

p(xi (w)),

where X (n)(w) = x1(w)x2(w) · · · xn(w) ∈ Xn .
We take An = {Cn} as the set of all random codes Cn , which is called the random

code set. The average transmission error probability on random code set An is defined
as

P̄e(An) =
∑

Cn∈An

P{Cn}Pe(Cn). (3.92)

If you want to prove that for any ε > 0, When n is sufficiently large, P̄e(An) < ε,
then there is at least one code Cn ∈ An such that Pe(Cn) < ε, which proves the (i).
Therefore, we prove it in two steps.

(1) Principles of constructing random codes and encoding and decoding
We select each message in the source message setW = {1, 2, . . . , M} with equal

probability, that is w ∈ W , the selection probability of w is

p(w) = 1

M
= 2−[nR], w = 1, 2, . . . , M.

In this way, W becomes an equal probability information space. For each input
message w, it is randomly coded as X (n)(w) ∈ Xn , where

X (n)(w) = x1(w)x2(w) · · · xn(w) ∈ Xn.

Codeword X (n)(w) is transmitted through memoryless channel {X, T,Y } with con-
ditional probability

p(y|X (n)(w)) =
n∏

i=1

p(yi |xi (w))

received codeword y = y1y2 · · · yn ∈ Y n . The decoding principle of y is: If X (n)(w)

is the only input codeword so that X (n)(w)y is joint typical, that is X (n)(w)y ∈ W (n)
ε ,

then decode g(y) = w; if there is no such codeword X (n)(w), or there are two or
more codewords X (n)(w) and y are joint typical, y cannot be decoded correctly.

(2) Estimating the average error probability of random code set An

By (3.92) and (3.88),
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P̄e(An) =
∑

Cn∈An

P{Cn}Pe(Cn)

=
∑

Cn∈An

P{Cn} 1

M

∑

x∈Cn

Pe(x)

= 1

M

M∑

w=1

λw

∑

Cn∈An

P{Cn}

= 1

M

M∑

w=1

λw,

(3.93)

where λw is given by Eq. (3.86). Because w is input with equal probability, in
other words, w is encoded with equal probability. Therefore, the transmission error
probability λw of w does not depend on w, that is

λ1 = λ2 = · · · = λM .

By (3.93), we have P̄e(An) = λ1. To estimate λ1, we define

Ei = {y ∈ Y n|Xn(i)y ∈ W (n)
ε }, i = 1, 2, . . . , M, (3.94)

If Ec
1 = Y n\E1 is the remainder of E1, because of the decoding principle,

λ1 = P{Ec
1 ∪ E2 ∪ · · · ∪ EM} ≤ P{Ec

1} +
M∑

i=2

P{Ei }. (3.95)

By property (i) of Lemma 3.22,

lim
n→∞ P{xy /∈ W (n)

ε } = 0.

So there is
lim
n→∞ P{X (n)(1)y /∈ W (n)

ε } = 0.

Therefore, when n is sufficiently large,

P{Ec
1} < ε.

Obviously, codeword X (n)(1) and other codewords X (n)(i), (i = 2, . . . , M) are inde-
pendent of each other (see 3.91). By Lemma 3.23, y = T (X (n)(1)) and X (n)(i) (i �=
1) also are independent of each other. Then by the property (i i i) of Lemma 3.22,

P{Ei } = P{X (n)(i)y ∈ W (n)
ε } ≤ 2−n(I (X,Y )−3ε) (i �= 1).
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To sum up,

P̄e(An) =λ1 ≤ ε +
M∑

i=2

2−n(I (X,Y )−3ε)

≤ ε + 2[nR]2−n(I (X,Y )−3ε)

≤ ε + 2−n(I (X,Y )−R−3ε).

If R < I (X,Y ), then I (X,Y ) − R − 3ε > 0(when ε is sufficiently small), sowhen n
is large enough,wehave P̄e(An)<2ε.Due to the channel capacity B = max{I (X,Y )},
we can choose p(x) to make B = I (X,Y ). So when R < B, we have P̄e(An) < 2ε,
this completes the proof of (i).

To prove (i i), let’s look at a special case first. If the error probability of C =
(n, 2[nR]) is Pe(C) = 0, then the bit rate ofC is RC < B + 1

n , sowhen n is sufficiently
large, there is RC ≤ B.

In fact, because Pe(C) = 0, decoding function g : Y n → W only determines W ,
there is H(W |Y n) = 0. Because W is equal probability information space, so

H(W ) = log |W | = [nR].

Using the decomposition of mutual information, there are

I (W,Y n) = H(W ) − H(W |Y n) = H(W ) = [nR]. (3.96)

on the other hand, W → Xn → Y n forms a Markov chain, by data inequality (see
Theorem 3.8)

I (W,Y n) ≤ I (Xn,Y n).

By Lemma 3.20,

I (W,Y n) ≤ I (Xn,Y n) = nI (X,Y ) ≤ nB.

By (3.96), there is [nR] ≤ nB. Because nR − 1 < [nR] ≤ nR, so nR < nB + 1,
that is R < B + 1

n , by (3.90), we have

RC ≤ R < B + 1

n
,

thus
RC ≤ B,when n is sufficiently large.

The above formula shows that when the transmission error probability is 0, as long as
n is sufficiently large, there is RC ≤ B. Secondly, if the transmission error is allowed,
that is, the error probability of Cn is Pe(Cn) < ε, where Cn = (n, 2[nR]). Then when
n is sufficiently large, we still have RCn ≤ B.
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In order to prove the above conclusion, we note the error probability of random
code Cn is

Pe(Cn) = λw, (3.97)

where w ∈ W is any given message. When w is given, we define a random variable
ξw with a value on {0, 1} as

ξw =
{
1, if g(T ( f (w))) �= w;
0, if g(T ( f (w))) = w.

Let E = (F2, ξw) be a binary information space, by (3.97), then we have

Pe(Cn) = P{ξw = 1}.

By Theorem 3.3,
H(EW |Y n) = H(W |Y n) + H(E |WYn)

= H(E |Y n) + H(W |EYn).
(3.98)

Note that E is uniquely determined by Y n and W , so H(E |WYn) = 0, at the same
time, E is a binary information space, H(E) ≤ log 2 = 1, there is

H(E |Y n) ≤ H(E) ≤ 1.

On the other hand, the random variable ξw is only related to w ∈ W , so

H(W |EYn) = Pe(Cn) log(|W | − 1) ≤ nRPe(Cn).

By (3.98), we have
H(W |Y n) ≤ 1 + nRPe(Cn).

Because f (W ) = Xn(W ) is a function ofW , we have the following Fano inequality

H( f (W )|Y n) ≤ H(W |Y n) ≤ 1 + nRPe(Cn).

Finally,
= H(W ) = H(W |Y n) + I (W,Y n)

≤ H(W |Y n) + I ( f (W ),Y n)

≤ 1 + nRPe(Cn) + I (Xn,Y n)

≤ 1 + nRPe(Cn) + nB,

because of nR − 1 < [nR], then we have

nR < 2 + nRPe(Cn) + nB.
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Thus

RCn ≤ R < B + 2

n
+ ε,

When n is sufficiently large, we obtain RCn ≤ B, which completes the proof of the
theorem.

It can be seen from Example 3.9 that the channel capacity B = 1 − H(p) of a
binary symmetric channel. Therefore, Theorem 3.12 extends Theorem 2.10 in the
previous chapter to a more general memoryless channel; at the same time, it is also
proved that the code rate of a good code does not exceed the capacity of the channel.

Exercise 3

1. The joint probability functions of the two information spaces X and Y are as
follows:

Y X
0 1

0 1
4

1
4

1 1
12

5
12

Solve H(X), H(Y ), H(XY ), H(X |Y ), H(Y |X), and I (X,Y ).

2. Let X1, X2, X3 be three information spaces on F2, Known I (X1,

X2) = 0, I (X1, X2, X3) = 1, prove:

H(X3) = 1, and H(X1X2X3) = 2.

3. Give an example to illustrate I (X,Y |Z) ≥ I (X,Y ).
4. Can I (X,Y |Z) = 0 be derived from I (X,Y ) = 0? In turn, can I (X,Y |Z) = 0

deduce I (X,Y ) = 0? Please prove or give examples.
5. Let X,Y, Z be three information spaces, prove:

(i) H(XY |Z) ≥ H(X |Z);
(ii) I (XY, Z) ≥ I (X, Z);
(iii) H(XY Z) − H(XY ) ≤ H(X Z) − H(X);
(iv) I (X, Z |Y ) = I (Z ,Y |Z) − I (Z ,Y ) + I (X, Z).

It also explains under what conditions the equality sign holds.
6. Can I (X,Y ) = 0 deduce I (X, Z) = I (X, Z |Y )?
7. Let the information space be X = {0, 1, 2, . . .} and the value probability p(n)

of random variable ξ be

p(n) = P{ξ = n}, n = 0, 1, . . . .

Given themathematical expectation Eξ = A > 0 of ξ , find themaximumproba-
bility distribution {p(n)|n = 0, 1, . . .}of H(X) and the correspondingmaximum
information entropy.
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8. Let the information space be X = {0, 1, 2, . . .}, and take an example of the
random variable ξ taken from X , so that H(X) = ∞.

9. Let X1 = (X, ξ), X2 = (X, η) be two information spaces and ξ be a function of
η, prove H(X1) ≤ H(X2), and explain this result.

10. Let X1 = (X, ξ), X2 = (X, η) be two information spaces and η = f (ξ), prove

(i) H(X1) ≥ H(X2), give the conditions under which the equal sign holds.
(ii) H(X1|X2) ≥ H(X2|X1), give the conditions under which the equal sign

holds.

References

Bassoli, R., Marques, H., & Rodriguez, J. (2013). Network coding theory, a survey. IEEE Commun.
Surveys Tutor., 15(4), 1950–1978.

Berger, T. (1971).Rate distortion theory: a mathematical basis for data compression. Prentice-Hall.
Blahut, R. E. P. (1965). Ergodic theory and informtion. Wiley.
Chung, K. L. (1961). A note on the ergodic theorem of information theory. Addison. Math Statist.,
32, 612–614.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley.
Csiszár, I., & Körner, J. (1981). Informaton theory: Coding theorems for discrete memoryless
systems. Academic Press.

EI Gamal, A., & Kim, Y. H. (2011). Network information theory. Cambrige University Press
Fragouli, C., Le Boudec, J. Y., &Widmer, J. (2006). Network coding: An instant primer. ACMSIG-
COMM Computer Communication Review, 36, 63–68.

Gallager, R. G. (1968). Information theory and reliable communication. Wiley.
Gray, R. M. (1990). Entropy and information theory. Springer.
Guiasu, S. (1977). Inormation theory with applications. McGraw-Hill.
Ho, T., & Lun, D. Network coding: An introduction. Computer Journal.
Hu, X. H., & Ye, Z. X. (2006). Generalized quantum entropy. Journal of Mathematical Physics,
47(2), 1–7.

Ihara, S. (1993). Information theory for continuous systems. World Scientific.
Kakihara, Y. (1999). Abstract methods in information theory. World Scientific.
McMillan, B. (1953). The basic theorems of information theory. Annals of Mathematical Statistics,
24(2), 196–219.

Moy, S. C. (1961). A note on generalizations of Shannon-McMilllan theorem. Pacific Journal of
Mathematics, 11, 705–714.

Nielsen,M.A.,&Chuang, I. L. (2000).Quantumcomputationandquantum information. Cambridge
University Press.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Labs Technical Journal,
27(4), 379–423, 623–656.

Shannon, C. E. (1959). Coding theorem for a discrete source with a fidelity criterion. IRE National
Convention Record, 4, 142–163.

Shannon, C. E. (1958). Channels with side information at the transmitter. IBM Journal of Research
and Development, 2(4), 189–193.

Shannon, C. E. (1961). Two-way communication channels. Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, 1, 611–644.

Thomasian, A. J. (1960). An elementary proof of the AEP of information theory. Annals of Math-
ematical Statistics, 31(2), 452–456.

Wolfowitz, J. (1978). Coding theorems of information theory (3rd ed.). Springer-Verlag.



References 151

Ye, Z. X., & Berger, T. (1998). Information measures for discrete random fields. Science Press.
Yeung, R. W. (2002). A first course in information theory. Kluwer Academic.
Qiu, P. (2003). Information theory and coding. Higher Education Press. (in Chinese).
Qiu, P., Zhang, C., Yang, S., et al. (2012).Multi user information theory. Science Press. (in Chinese).
Ye, Z. (2003). Fundamentals of information theory. Higher Education Press. (in Chinese).
Zhang, Z., & Lin, X. (1993). Information theory and optimal coding. Shanghai Science and Tech-
nology Press. (in Chinese).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 4
Cryptosystem and Authentication System

In 1949, Shannonpublished a famous paper entitled “communication theory of secure
systems” in the technical bulletin of Bell laboratory. Based on the mathematical
theory of information established by him in 1948 (see Chap. 3), this paper makes a
comprehensive discussion on the problem of secure communication and establishes
the mathematical theory of secure communication system. It has a great impact
on the later development of cryptography. It is generally believed that Shannon
transformed cryptography from art (creative ways and methods) to science, so he is
also known as the father of modern cryptography. The main purpose of this chapter
is to introduce Shannon’s important ideas and results in cryptography theory, which
is the cornerstone of the whole modern cryptography.

4.1 Definition and Statistical Characteristics
of Cryptosystem

Let X = {a1, a2, . . . , aq} be the plaintext alphabet and a source. {ξi }∞i=1 is a set of
random variables valued on X , for any given positive integer n ≥ 1, we define the
plaintext space P as the product information space X1X2 · · · Xn , that is

P = X1X2 · · · Xn,where Xi = (X, ξi ), 1 ≤ i ≤ n.

If m = m1m2 · · ·mn ∈ P(mi ∈ Xi ), m is called a plaintext information column of
alphabet length n, or a plaintext string of length n, the joint probability p(m) is
defined as

p(m) = p(m1m2 · · ·mn) = P{ξ1 = m1, ξ2 = m2, . . . , ξn = mn}. (4.1)

© The Author(s) 2022
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Let Z = {b1, b2, . . . , bs} be the key alphabet, which is also a memoryless source
(see Definition 3.9 of Chap. 3), let {ηi }∞i=1 be a group of random variables with
independent values on Z and equal probability distribution, then for any b ∈ Z ,

p(b) = P{ηi = b} = 1

|Z | = 1

s
, ∀ i ≥ 1. (4.2)

We define the power space Zr as a key space, denoted by K , that is

K = Zr = {k = k1k2 · · · kr |ki ∈ Z , 1 ≤ i ≤ r}.

Each k = k1k2 · · · kr ∈ K is called a key of length r , and the joint probability p(k)
is

p(k) = p(k1k2 · · · kr ) =
r∏

i=1

p(ki ) = 1

|Z |r = 1

|K | . (4.3)

This shows that the r -dimensional random vector η = (η1, η2, . . . , ηr ) taking value
on the key space K is also equally almost distributed on K . Unless otherwise spec-
ified, we generally stipulate that the plaintext space P and the key space K are
independent information spaces, that is

p(mk) = p(m)p(k),∀ m ∈ P, k ∈ K . (4.4)

For every k ∈ K , k defines or controls an encryption transform Ek , denote by

E = {Ek |k ∈ K }.

E is called encryption algorithm.When k ∈ K is given, the encryption transformation
Ek acts on the plaintextm ∈ P to produce a cryptosystemtext Ek(m), each encryption
transformation Ek is an injection, and its left inverse mapping is recorded as Dk ,
which is called decryption transformation. Taking 1P as the identity transformation
of plaintext space, that is 1P(m) = m,∀ m ∈ P , then we have

DkEk = 1P , or Dk(Ek(m)) = m,∀ m ∈ P. (4.5)

Define cryptosystemtext space C as

C = {Ek(m)|m ∈ P, k ∈ K } ⊂ X1X2 · · · Xn. (4.6)

That is, cryptosystemtext space C and plaintext space P have the same alphabet and
the same letter length.

For each cryptosystemtext c ∈ C, c = Ek(m), then c is uniquely determined by
plaintextm and key k, so we can define the occurrence probability p(c) of cryptosys-
temtext c as
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p(c) = p(Ek(m)) = p(km) = p(k)p(m). (4.7)

Obviously,

∑

c∈C
p(c) =

∑

k∈K

∑

m∈P

p(km) =
∑

k∈K
p(k)

∑

m∈P

p(m) = 1,

Therefore, the cryptosystemtext space C defined by formula (4.7) is also an infor-
mation space.

When k ∈ K is given, we let

Ak = {Ek(m)|m ∈ P} ⊂ C. (4.8)

Then the encryption transformation Ek is the full mapping of P → Ak , so Ek is a 1–1
correspondence of P → Ak , and its inversemapping is the decryption transformation
Dk , that is

DkEk = 1P , EkDk = 1Ak , k ∈ K .

We denote D as all decryption transformations, that is

D = {Dk |k ∈ K }. (4.9)

D is called decryption algorithm.

Definition 4.1 Under the above provisions, R = {P,C, K , E, D} is called a cryp-
tosystem, where P,C, K is the information space, K and P are statistically inde-
pendent, E is the encryption algorithm and D is the decryption algorithm.

The statistical characteristics of a cryptosystem are attributed to the following
theorem.

Theorem 4.1 If R = {P,C, K , E, D}, then
(1) ∀ c ∈ C,we have

p(c) =
∑

k∈K
c∈Ak

p(k)p(Dk(c)). (4.10)

(2) c ∈ C,m ∈ P, then
p(c|m) =

∑

k∈K
Ek (m)=c

p(k). (4.11)

(3) c ∈ C,m ∈ P, then

p(m|c) =
p(m)

∑
k∈K

Dk (c)=m
p(k)

∑
k∈K
c∈Ak

p(k)p(Dk(c))
, (4.12)
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where Ak is given by equation (4.8).

Proof By (4.7), if c ∈ C , then

p(c) =
∑

k∈K ,m∈P
Ek (m)=c

p(km) =
∑

k∈K ,m∈P
Ek (m)=c

p(k)p(m)

=
∑

k∈K
p(k)

∑

m∈P
Ek (m)=c

p(m) =
∑

k∈K
c∈Ak

p(k)p(Dk(c)).

(1) holds. (2) is trivial. Because when m ∈ P is given, the occurrence probability
p(c|m) of cryptosystemtext c has

p(c|m) =
∑

k∈K ,
Ek (m)=c

p(k).

To prove (3), by (1.24),

p(m|c) = p(m)p(c|m)∑
m ′∈P p(m ′)p(c|m ′)

,

the items in the denominator are

∑

m ′∈P

p(m ′)p(c|m ′) =
∑

m ′∈P

p(m ′)
∑

k∈K
Ek (m ′)=c

p(k)

=
∑

k∈K
p(k)

∑

m ′∈P
Ek (m ′)=c

p(m ′)

=
∑

k∈K
c∈Ak

p(k)p(Dk(c)).

So in the end

p(m|c) =
p(m)

∑
k∈K

Ek (m)=c
p(k)

∑
k∈K
c∈Ak

p(k)p(Dk(c))
,

Theorem 4.1 holds!

By Theorem 4.1, the statistical characteristics of a cryptosystem can be summa-
rized as follows: The probability distribution of cryptosystemtext space and the con-
ditional probability distribution of plaintext about cryptosystemtext are completely
determined by the probability distribution of plaintext space and key space. That is,
anyone who knows the probability distribution of plaintext space and key space will
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know the probability distribution of cryptosystemtext and the conditional probability
distribution of plaintext about cryptosystemtext.

It is assumed that the plaintext space and the key space are statistically indepen-
dent, by (3.14) of Theorem 3.2 of Chap. 3, we have

H(PK ) = H(P) + H(K ). (4.13)

It has been previously specified that the key source alphabet Z is an equal proba-
bility information space without memory, and the probability p(k) of the key space
K = {k = k1k2 · · · kr |ki ∈ Z} is

p(k) =
r∏

i=1

p(ki ) = 1

|Z |r = 1

|K | . (4.14)

Therefore, the key space is also an equal probability information space.
From the definition of cryptosystem, when the plaintext space and key space are

given, the cryptosystemtext space is completely determined. On the contrary, when
the cryptosystemtext space and key space are known, the plaintext space is also
known, combined with Lemma 3.3 in the previous chapter, we have

Theorem 4.2 In a cryptosystem R = {P,C, K , E, D}, we have

H(P|KC) = 0, H(C |K P) = 0, H(K |PC) = 0.

Proof Weonly prove H(P|KC) = 0, similarly to H(C |K P) = 0 and H(K |PC) =
0. For given m ∈ P , let

Nm = {kc|c ∈ C, k ∈ K and Ek(m) = c}.

Thus Nm ⊂ KC , and {
p(m|kc) = 1, if kc ∈ Nm;
p(m|kc) = 0, if kc /∈ Nm .

Because assuming kc ∈ Nm is selected, then Ek(m) = c, thus m = Dk(c), m will be
determined. Conversely, if kc /∈ Nm , when the kc-joint event occurs and m cannot
occur, thus p(m|kc) = 0. By Lemma 3.3 from the previous chapter, H(P|KC) = 0,
we complete the proof of Theorem 4.2.

Corollary 4.1 In a cryptosystem R = {P,C, K , E, D}, we always have

H(P) ≤ H(C).
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Proof It is stipulated that P and K are statistically independent, so there are

H(P) = H(P|K ) = H(P|K ) + H(C |PK )

= H(PC |K )

= H(C |K ) + H(P|KC)

= H(C |K )

≤ H(C).

The Corollary holds.

The Corollary shows that the uncertainty of plaintext is less than that of cryp-
tosystemtext in cryptosystem.

4.2 Fully Confidential System

Generally speaking, the mutual information I (P,C) between plaintext space and
cryptosystemtext space (see Definition 3.8 in the previous chapter) reflects the infor-
mation of plaintext space contained in cryptosystemtext space, so I (P,C)minimiza-
tion is an important design goal of cryptosystem. If the cryptosystemtext does not
provide any information about the plaintext, or the analyst cannot obtain any infor-
mation about the plaintext by observing the cryptosystemtext, such a cryptosystem
is called completely confidential.

Definition 4.2 A cryptosystem R = {P,C, K , E, D}, if H(P|C) = H(P), or
I (P,C) = 0,R is called complete secrecy system, or unconditional secrecy system.

Theorem 4.3 For any cryptosystem R = {P,C, K , E, D}, we have

I (P,C) ≥ H(P) − H(K ). (4.15)

Proof By Theorem 4.2, we have H(P|KC) = 0, and

H(P|C) = H(P|C) + H(K |PC)

= H(PK |C)

= H(K |C) + H(P|KC).

So we have
H(P|C) = H(K |C) ≤ H(K ).

By definition,

I (P,C) = H(P) − H(P|C) ≥ H(P) − H(K ).
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So the Theorem holds.

From the previous chapter, we know the amount ofmutual information I (X,Y ) ≥
0, there is

Corollary 4.2 In a completely confidential cryptosystem R = {P,C, K , E, D},
there is always

H(P) ≤ H(K ) = log2 |K |. (4.16)

Proof Defined by R = {P,C, K , E, D} as a completely confidential system, so
I (P,C) = 0. From the above theorem, there are

H(P) − H(K ) ≤ I (P,C) = 0,

Thus there is H(P) ≤ H(K ). By (4.14), K is equipotential distribution, so there is

H(P) ≤ log2 |K |.

It can be seen from the above that the larger the scale |K | of the key space, the
better the confidentiality of the system!

Definition 4.3 A cryptosystem R = {P,C, K , E, D} is called a “one secret at a
time" system, if there is a unique key k ∈ K for a given m ∈ P and c ∈ C , such that
c = Ek(m).

As canbe seen from the abovedefinition, for givenm ∈ P , if k 
= k ′, then Ek(m) 
=
Ek ′(m). In otherwords, we only use a unique key k to encrypt the same set of plaintext
and cryptosystemtext. This is also the origin of the concept of “one secret at a time”.
Thus, for any given plaintext m ∈ P and cryptosystemtext c ∈ C , there happens to
be a unique key k ∈ K such that Ek(m) = c. Therefore, when k traverses the key
space K , m traverses the plaintext space P , and each m appears only once. Thus, for
c ∈ C , we have

p(c) =
∑

k∈K
Ek (m)=c

∑

m∈P

p(k)p(m)

=
∑

k∈K
Ek (m)=c

p(k)
∑

m∈P

p(m)

= 1

|K |
∑

m∈P

p(m) = 1

|K | .

(4.17)

That is to say, in a one-time cryptosystem, the cryptosystemtext space C is also an
equal probability information space.
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Theorem 4.4 The one-time password system is a completely confidential system.

Proof When c,m given, by (4.11),

p(c|m) =
∑

k∈K
Ek (m)=c

p(k) = 1

|K | .

By (4.12) and (4.17),

p(m|c) = p(m)∑
k∈K

Em′ (k)=c

∑
m ′∈P p(m ′)

= p(m)∑
m ′∈P p(m ′)

= p(m).

Thus
H(P|C) = −

∑

m∈P

∑

c∈C
p(mc) log2 p(m|c)

= −
∑

m∈P

∑

c∈C
p(mc) log2 p(m)

= −
∑

m∈P

p(m) log2 p(m)

= H(P).

Therefore, R = {P,C, K , E, D} is a completely confidential system.

4.3 Ideal Security System

In order to introduce Shannon’s concepts of unique solution distance and ideal cryp-
tosystem, we first consider the scenario of secret only attack. In the scenario of secret
only attack, when the cryptanalyzer intercepts cryptosystemtext c, he may decrypt c
with all decryption keys Dk to obtain

m ′ = Dk(c), k ∈ K .

Therefore, he records the keys corresponding to allmeaningfulmessagesm ′, only one
of the set of these keys is a correct key, while other incorrect keys are called pseudo
keys. A large number of cryptosystemtexts are required as samples in secret only
attacks. Therefore, we will consider the product space Pn of plaintext and cryptosys-
temtext and the joint events inCn , Pn andCn as plaintext string and cryptosystemtext
string.
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Definition 4.4 For cryptosystemtext string y ∈ Cn with given length n, let

K (y) = {k ∈ K |∃ x ∈ Pn such that Ek(x) = y}. (4.18)

Then the number of pseudo keys is |K (y)| − 1. The mathematical expectation Sn of
the pseudo key is defined as

Sn =
∑

y∈Cn

p(y)(|K (y)| − 1). (4.19)

Therefore, the mathematical expectation of pseudo key is the weighted average
of the number of pseudo keys of each cryptosystemtext string. We first prove the
following two theorems.

Theorem 4.5 If R = {P,C, K , E, D} is a cryptosystem, there are

H(K |C) = H(K ) + H(P) − H(C). (4.20)

Proof From the addition formula of information entropy (see Theorem 3.2 in the
previous chapter),

H(K PC) = H(K P) + H(C |K P) = H(KC) + H(P|KC).

By Theorem 4.2, we have

H(C |K P) = H(P|KC) = 0.

thus,
H(K P) = H(KC).

Again, from the addition formula and note that K and P are statistically independent,
so

H(K P) = H(P) + H(K |P) = H(P) + H(K )

and
H(P) + H(K ) = H(KC) = H(C) + H(K |C).

So we have
H(K |C) = H(P) + H(K ) − H(C).

The Theorem holds.

Theorem 4.6 Let R = {P,C, K , E, D} be a cryptosystem, and |C | = |P|, let r
be the redundancy of P, then the pseudo key mathematical expectation Sn of a
cryptosystemtext string with a given length of n satisfies
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Sn ≥ 2H(K )

|P|nr − 1. (4.21)

Proof From the definition and properties of product space,

Rn = {Pn,Cn, K , En, Dn}

also constitutes a cryptosystem. By Theorem 4.5, then

H(K |Cn) = H(K ) + H(Pn) − H(Cn).

By (3.9), we have
H(Cn) ≤ n log2 |C |, |C | = |P|.

Replace information space X with P , then we have

H(Pn) = H(Pn−1) + H(P|Pn−1)

= H(Pn−1) + Hn

≥ H(Pn−1) + H∞.

So we have
H(Pn) ≥ nH∞ = n(1 − r)H0 = n(1 − r) log2 |P|. (4.22)

Combined with the above formula, we have an estimate

H(K |Cn) ≥ H(K ) + n(1 − r) log2 |P| − n log2 |P|. (4.23)

Because of the definition,

H(K |Cn) = −
∑

y∈Cn

∑

k∈K
p(ky) log2 p(k|y)

= −
∑

y∈Cn

p(y)
∑

k∈K
p(k|y) log2 p(k|y)

= −
∑

y∈Cn

p(y)
∑

k∈K (y)

p(k|y) log2 p(k|y).

We get ∑

k∈K (y)

p(k|y) =
∑

k∈K
p(k) = 1.

Then by Jensen inequality,



4.3 Ideal Security System 163

H(K |Cn) ≤
∑

y∈Cn

p(y) log2 |k(y)|

≤ log2
∑

y∈Cn

p(y)|k(y)|

= log2(Sn + 1).

Finally, (4.21) can be obtained from form (4.23) to complete the proof!

When the mathematical expectation of the number of pseudo keys is greater than
0, the secret only attack cannot break the password in theory, so we define the unique
solution distance of a cryptosystem as the value of n of Sn = 0.

Definition 4.5 A cryptosystem whose unique solution distance is infinite is called
an ideal security system.

From Theorem 4.6, we can obtain an approximate value of the distance of the
unique solution.

n0 ≈ H(k)

r log2 |P| .

The unique solution distance indicates the minimum amount of cryptosystemtext
that may be decrypted successfully when an exhaustive attack is carried out. Gener-
ally speaking, the greater the unique solution distance, the better the confidentiality
of the system. However, Shannon only gives the existence of the unique solution
distance, but does not give a specific calculation program. In practice, the amount of
cryptosystemtext required to decryptosystem a cryptosystemtext is far greater than
the theoretical value of the unique solution distance.

4.4 Message Authentication

Authentication system, also known as authentication code, is an important tool to
ensure the authenticity and integrity of messages. In 1984, Simmons systematically
put forward the information theory of authentication system for the first time.He used
mathematics to study the theoretical and practical security of authentication system.
This paper puts forward the performance limit of authentication system and the
mathematical principles that should be followed in the design of authentication code.
Although Simmons’ theory is not mature and perfect, its position in authentication
system is as important as Shannon’s theory in cryptosystem, which lays a theoretical
foundation for the research of mathematical theory of authentication system.

In cryptography, authentication system includes entity authentication andmessage
authentication. We mainly discuss message authentication system. At present, there
are two main models of authentication system. One is the arbiter-free authentication
system model. In this model, the participants of the system are mainly message



164 4 Cryptosystem and Authentication System

sender, message receiver and attacker, in which the message sender and receiver trust
each other. They share the same key information; another model is the authentication
system model with arbiter. In this model, the participants of the system have arbiters
in addition to the information sender, receiver and attacker. At this time, the sender
and receiver of the message do not trust each other, but they all trust the arbiter. The
arbiter shares the key information with the sender and receiver.

An authentication systemwithout privacy and confidentiality function andwithout
arbiter is composed of four parts: a finite set S of source states, called the source set,
a finite set A of authentication tags, called the tag set, a key space composed of all
solvable keys, and an authentication rule set E = {ek(s)|k ∈ K , s ∈ S}, where for
any k ∈ K , s ∈ S, ek(s) is the authentication rule. It is a mapping of S → A.

Definition 4.6 An authentication system is T = {S, A, K , E},where S, A, K is the
information space, S is the source space or source set, A is the label space or label
set, and K is the key space, where S and K are statistically independent,

E = {ek(s)|k ∈ K , s ∈ S}.

Each ek(s) is an injection of S → A, which is called an authentication rule.

Definition 4.7 The product space SA is called the message space, and M represents
SA.

Authentication protocol: The sender and receiver of themessage use the following
protocol to transmit information. First, they secretly select and share the random
key k ∈ K ; if the sender wants to transmit an information source state s ∈ S to
the receiver, the sender calculates a = ek(s) and sends the message sa ∈ M to the
receiver. When the receiver receives message sa, he calculates a′ = ek(s) again, if
a′ = a, he confirms that the message is reliable and receives the message, otherwise
he refuses to receive the message sa.

Definition 4.8 Matrix [ek(s)]|K |×|S| is called authentication matrix. Its rows are
marked by key k ∈ K and columns by source state s ∈ S. It is a |K | × |S|-order
matrix, the element intersecting row k and column s is ek(s).

Authentication matrix is an important tool in authentication theory research. Our
detailed list is as follows:
Let K = {k1, k2, . . . , kn}, S = {s1, s2, . . . , sm}. Then the authentication matrix is an
n × m-order matrix, which is listed as follows:

⎡

⎢⎢⎢⎣

ek1(s1) ek1(s2) · · · ek1(sm)

ek2(s1) ek2(s2) · · · ek2(sm)
...

ekn (s1) ekn (s2) · · · ekn (sm)

⎤

⎥⎥⎥⎦

n×m

.



4.5 Forgery Attack 165

4.5 Forgery Attack

In the process of message authentication, the attacker is an intermediate intruder.
We usually consider two types of attacks, one is forgery attack and the other is
substitution attack, which correspond to secret only attack and plaintext attack in
cryptosystem. In forgery attack, the attacker sends message sa ∈ M in the channel
and wants the receiver to confirm that it is true and receive it; in the substitution
attack, the attacker first observes a message sa ∈ M in the channel, so he analyzes
the coding rules currently used, then he tampers themessage sa with s ′a′ ∈ M , where
s ′ 
= s, and wants the receiver to receive it as a real message.

We assume that the attacker adopts the optimal deception strategy. pd0 represents
the probability that the forgery attacker is most likely to succeed in deception, and
pd1 represents the probability that the attacker is most likely to succeed in deception.
The probability pd that the attacker is successful in deception is defined as

pd = max{pd0 , pd1}. (4.24)

Simmons’ theory is mainly to estimate the lower bound of pd , so as to provide a
theoretical basis for constructing authentication codeswith attack success probability
pd as small as possible.

First, let’s look at the definition and estimation of the maximum probability pd0
of successful deception by forgery attackers.

A = {a1, a2, . . . , ar } represents the authentication tag space. The attacker first
selects a source state s ∈ S and an authentication tag a ∈ A. Let k0 ∈ K represent
the shared key selected by the sender and receiver, if a = ek0(s), the forgery attacker
can successfully deceive the receiver.Weuse payoff (s, a) to represent the probability
that the message receiver receives sa as a true message, that is

pay off (s, a) = p(a = ek0(s)) =
∑

k∈K
ek (s)=a

p(k). (4.25)

If the attacker adopts the optimal strategy, then

pd0 = max{pay off (s, a)|s ∈ S, a ∈ A}. (4.26)

Theorem 4.7 If the scale of authentication tag space A is set to |A| = r , for any
fixed source state s ∈ S, there will always be an authentication tag a ∈ A such that

pay off (s, a) ≥ 1

r
, thus pd0 ≥ 1

r
.

Proof By the definition of pay off (s, a),
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∑

a∈A

pay off (s, a) =
∑

a∈A

∑

k∈K
ek (s)=a

p(k).

When a runs through the s column of the authentication matrix, k traverses the whole
key space, so ∑

a∈A

pay off (s, a) =
∑

k∈K
p(k) = 1.

Therefore, there is at least one a ∈ A such that

pay off (s, a) ≥ 1

|A| = 1

r
.

Theorem 4.8 Let T = {S, A, K , E} be a message authentication system,

pd0 = max{pay off (s, a)|s ∈ S, a ∈ A}

is the maximum probability of successful forgery attack, then

log2 pd0 ≥ H(K |SA) − H(K )

and

pd0 ≥ 1

2H(K )−H(K |SA)
.

Proof By definition, we know that pd0 is not less than the mathematical expectation
of pay off (s, a), that is

pd0 ≥
∑

s∈S,a∈A

p(sa)pay off (s, a).

Then by Jensen inequality, we have

log2 pd0 ≥ log2
∑

s∈S,a∈A

p(sa)pay off (s, a)

≥
∑

s∈S,a∈A

p(sa) log2 pay off (s, a).

Obviously,
pay off (s, a) = p(a|s).

Thus
p(sa) = p(s)p(a|s) = p(s)pay off (s, a). (4.27)
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So
log2 pd0 ≥

∑

s∈S

∑

a∈A

p(sa) log2 pay off (s, a)

=
∑

s∈S

∑

a∈A

p(sa) log2 p(a|s)

= −H(A|S).

Because the source space S and the key space K are statistically independent, so

H(SK ) = H(K ) + H(S).

Also, the tag space A is completely determined by the source space S and the key
space K , so

H(A|K S) = 0.

By the addition formula of information space,

H(K AS) = H(AS) + H(K |AS)

= H(S) + H(A|S) + H(K |AS).

On the other hand,

H(K AS) = H(K S) + H(A|K S)

= H(K S) = H(K ) + H(S).

On the whole, we have

−H(A|S) = H(K |AS) − H(K ).

Thus
log2 pd0 ≥ −H(A|S) = H(K |AS) − H(K ).

We completed the proof of the theorem.

M = SA is called message space, it can be seen from theorem 4.8 that the maxi-
mum success probability pd0 of forgery attack satisfies

pd0 ≥ 1

2I (K ,M)
,

where I (K , M) is the average amount of mutual information between the key space
and the information space. If the amount of mutual information I (K , M) is larger,
the probability of the most successful forgery attack is lower. On the contrary, if the
amount of mutual information is smaller, the success rate of forgery attack is higher.
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4.6 Substitute Attack

The so-called substitution attack is that the attacker first observes a message (s, a) on
the message, and then replaces (s, a) with message (s ′, a′), hoping that the receiver
will receive (s ′, a′) as a real message. Considering the maximum success probability
pd1 of substitution attack, it is more difficult than forgery attack, the main reason is
that pd1 depends on both the probability distribution of source state space S and the
probability distribution of key space K .

Let (s ′, a′) and (s, a) be two messages, where s 
= s ′. We use pay off (s ′, a′, s, a)

to express the probability that using (s ′, a′) instead of (s, a) can cheat success, then

pay off (s ′, a′, s, a) = p(a′ = ek0(s
′)|a = ek0(s)), k0 ∈ K .

The above formula represents the conditional probability of a′ = ek0(s
′) under the

condition of a = ek0(s) under the same key k0, so

pay off (s ′, a′, s, a) = p(a′ = ek0(s
′), a = ek0(s))

p(a = ek0(s))

=
∑

k∈K ,
ek0 (s

′)=a′,ek0 (s)=a
p(k)

pay off (s, a)
.

(4.28)

When the message (s, a) ∈ M is given, the attacker uses the optimal strategy to
maximize the success probability of the deceiver, so let

ps,a = max{pay off (s ′, a′, s, a)|s ′ ∈ S, s ′ 
= s, a′ ∈ A}, (4.29)

Taking ps,a as a random variable, its mathematical expectation on message set M =
SA is

pd1 ≥
∑

s∈S,a∈A

p(sa)ps,a . (4.30)

The above formula is the formal definition of pd1 , which is the weighted average of
the maximum success probability of pay off (s ′, a′, s, a) in message space M .

Like Theorem 4.7, we have

Theorem 4.9 Let T = {S, A, K , E} be an authentication code, |A| = r , then for
any given s ′ ∈ S, s ∈ S, s 
= s ′ and a ∈ A, there is a label a′ ∈ A such that

pay off (s ′, a′, s, a) ≥ 1

|A| = 1

r
.
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So we have

pd1 ≥ 1

r
.

Proof By (4.28),

∑

a′∈A

pay off (s ′, a′, s, a) = 1

pay off (s, a)

∑

a′∈A

∑

k∈K
ek (s)=a,ek (s ′)=a′

p(k)

= 1

pay off (s, a)

∑

k∈K
ek (s)=a

p(k) = 1.

So at least one a′ ∈ A such that

pay off (s ′, a′, s, a) ≥ 1

|A| = 1

r
.

By the definition of ps,a , for ∀ s ∈ S and a ∈ A, we have

ps,a ≥ 1

|A| = 1

r
.

Thus

pd1 ≥
∑

s∈S,a∈A

p(sa)ps,a ≥ 1

r

∑

a∈A

p(a) = 1

r
.

Theorem 4.10 Let T = {S, A, K , E}be anauthentication code, for any (s, a) ∈ M,
when using (s ′, a′) instead of attack, let pd1 be the mathematical expectation of ps,a
in space M, then

log2 pd1 ≥ H(K |M2) − H(K |M)

and

pd1 ≥ 1

2H(K |M)−H(K |M2)
. (4.31)

Proof By (4.29), ps,a will not be less than the mathematical expectation of pay off
(s ′, a′, s, a) on s ′ ∈ S, a′ ∈ A, that is

ps,a ≥
∑

s ′∈S,a′∈A

p(s ′a′|sa)pay off (s ′, a′, s, a).

By (4.30) and Jensen inequality, we have
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log2 pd1 ≥
∑

s∈S,a∈A

p(sa) log2 ps,a

≥
∑

s∈S,a∈A

p(sa)
∑

s ′∈S,a′∈A

p(s ′a′|sa) log2 pay off (s ′, a′, s, a)

=
∑

s∈S,a∈A

∑

s ′∈S,a′∈A

p(sas ′a′) log2 pay off (s ′, a′, s, a)

=
∑

s∈S,a∈A

∑

s ′∈S,a′∈A

p(sas ′a′) log2 p(a
′s ′|as)

= −H(M |M).

In addition,
H(KM2) = H(M |M) + H(K |M2)

= H(K |M) + H(M |KM).

So there are

−H(M |M) = H(K |M2) − H(K |M) − H(M |KM).

It can be proved that
H(M |KM) = 0.

So there are
−H(M |M) = H(K |M2) − H(K |M).

Thus
log2 pd1 ≥ H(K |M2) − H(K |M).

That is

pd1 ≥ 1

2H(K |M)−H(K |M2)
.

The Theorem holds!

Definition 4.9 An authentication code {S, A, K , E} is called perfect if

pd = 2H(K |M)−H(K ).

Theorem 4.11 Perfect certification system exists.

Proof The theorem is proved directly by the constructionmethod. First, let the source
state space be S = {0, 1}. Let N be a positive even number, and define the label space
A and the key space K as follows:

A = Z
N
2
2 = {a1a2 · · · a N

2
|ai ∈ Z2, 1 ≤ i ≤ N

2
}
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and
K = Z

N
2 = {k1k2 · · · kN |ki ∈ Z2, 1 ≤ i ≤ N }.

The authentication rule ek(s) determined by k = k1k2 · · · k N
2
k N

2 +1 · · · kN is defined
as

ek(0) = k1k2 · · · k N
2

and
ek(1) = k N

2 +1 · · · kN .

Assuming that all 2N keys k are equitably selected, so for s ∈ S and a ∈ A, we have

pay off (s, a) = p(a = ek(s)) = 2− N
2 .

So there is pd0 = 2− N
2 , similarly to pd1 = 2− N

2 , so

pd = 2− N
2 .

Easy to calculate

H(K |M) − H(K ) = N

2
− N = −H(K |M).

So
pd = 2H(K |M)−H(K ).

Therefore, {S, A, K , E} is a perfect authentication system.

4.7 Basic Algorithm

4.7.1 Affine Transformation

Encryption with matrix comes from the classical V igenère password. Let X =
{a1, a2, . . . , aN } be a plaintext alphabet of N characters, we replace the characters
in ZN and X with numerical values, where ZN is the remaining class ring of mod N .
Let P = Z

k
N be the plaintext space, x = x1x2 · · · xk ∈ P is called a plaintext unit

or a plaintext message of length k. Let Mk(ZN ) be a k-order full matrix ring over
ZN , A ∈ Mk(ZN ) is a invertible matrix of order k, b = b1b2 · · · bk ∈ Z

k
N is a given

directional quantity, each plaintext unit x = x1x2 · · · xk in P is encrypted by affine
transformation (A, b):
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⎛

⎜⎜⎜⎝

x
′
1
x

′
2
...

x
′
k

⎞

⎟⎟⎟⎠ = A

⎛

⎜⎜⎜⎝

x1
x2
...

xk

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

b1
b2
...

bk

⎞

⎟⎟⎟⎠ . (4.32)

where x = x1x2 · · · xk is clear text, x ′ = x
′
1x

′
2 · · · x ′

k is cryptosystemtext. The decryp-
tion algorithm is: ⎛

⎜⎜⎜⎝

x1
x2
...

xk

⎞

⎟⎟⎟⎠ = A−1

⎛

⎜⎜⎜⎝

x
′
1
x

′
2
...

x
′
k

⎞

⎟⎟⎟⎠ − A−1

⎛

⎜⎜⎜⎝

b1
b2
...

bk

⎞

⎟⎟⎟⎠ . (4.33)

Because affine transformation (A, b) is a 1–1 correspondence on Z
k
N −→ Z

k
N ,

its inverse transformation is (A−1,−A−1b); therefore, using affine transformation
(A, b), we obtain the so-called high-order affine cryptosystem. This cryptosystem
was first proposed by mathematician Lester hill in American Mathematics monthly
in 1929, so it is also called Hill cryptosystem.

Hill cryptosystem divides the plaintext into a group of k characters and then
encrypts each plaintext unit in turn by using k-order affine transformation (A, b) on
ZN . The advantage of this password is that it hides the statistical characteristics of a
single character (such as 26 letters in English), which can better resist the statistical
analysis of the occurrence frequency of characters, and has strong ability to resist
cryptosystemtext only attacks. However, on the basis of mastering a large amount of
plaintext, it is not difficult to find the key (A, b), so the hill password is not strong
against the attack of known plaintext.

The mathematical principles used by Hill cryptosystem are the following two
conclusions.

Lemma 4.1 The set of all k-order affine transformations on ZN is written as Gk,
that is

Gk = {(A, b)|Ais a k -order reversible square matrix, b ∈ Z
k
N }.

Then Gk forms a group under the multiplication of transformation, which is called
the k-order affine transformation group of ring ZN .

Proof Take A as the k-order identity matrix E and b = 0 as the k-dimensional zero
vector, then (E, 0) is the identity transformation of Zk

N −→ Z
k
N and the unit element

of Gk . Secondly, we look at the product of two affine transformations (A1, b1) and
(A2, b2),

(A1, b1)(A2, b2) = (A1A2, A1b2 + b1) ∈ Gk .

Obviously, the inverse transformation of (A, b) is
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(A, b)−1 = (A−1,−A−1b) ∈ Gk .

Therefore, Gk is a group. The Lemma holds.

From the above lemma, any group element (A, b) ∈ Gk of affine transformation
groupwill form aHill cryptosystem. If we select n group elements (A1, b1), (A2, b2),
. . ., (An, bn) in Gk and let

(A, b) =
n∏

i=1

(Ai , bi ).

Using (A, b) to encrypt, we get a more complex Hill cryptosystem.

Lemma 4.2 A ∈ Mk(ZN ), |A| = D is the determinant of A, then A is reversible if
and only if D and N are coprime, that is (D, N ) = 1.

Proof If (D, N ) = 1, then there is D1 such that D1D ≡ 1(mod N ), let

A∗ = D1

⎡

⎢⎢⎣

A11 A12 · · · A1k

A21 A22 · · · A2k

· · · · · · · · · · · ·
Ak1 Ak2 · · · Akk

⎤

⎥⎥⎦ , (4.34)

where A = (ai j )k×k , Ai j is the algebraic cofactor of ai j . obviously, we have

A∗A = AA∗ =

⎡

⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤

⎥⎥⎥⎦ ,

So A is reversible, A−1 = A∗. Let’s take k = 2 as an example, if |A| = D,
(D, N ) = 1,

A =
(
a b
c d

)
=⇒ A−1 =

(
D1d −D1b

−D1c D1a

)
.

Conversely, if A is reversible and A−1 is the inverse matrix, because A−1A =
AA−1 = E , we get

|AA−1| = |A||A−1| ≡ 1(mod N ).

So we have (D, N ) = 1. The Lemma holds.

If k = 1, first-order affine cryptosystem x
′ ≡ ax + b(mod N ), where (a, N ) = 1,

contains many famous classical passwords, especially when a = 1, b = 3, N = 26,
x

′ = x + 3(mod 26) is the famous Caesar code in history.
Next, we analyze the computational complexity of affine cryptography. We have

the following Lemma.
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Lemma 4.3 If A = (ai j )k×k is a k-order reversible square matrix on ZN , the bit
operation times of A−1 are estimated as follows

Time(A−1) = O(k4k! log3 N ).

Therefore, when k is a fixed constant, the algorithm for finding A−1 is polynomial.
When N is a fixed constant, the algorithm for finding A−1 is exponential. In other
words, the greater the order of the matrix, the higher the computational complexity.

Proof Because A = (ai j )k×k is reversible, then determinant

D = |A| =
∑

j1 j2··· jk
(−1)τ ( j1 j2 · · · jk)a1 j1a2 j2 · · · akjk ,

where j1 j2 · · · jk is an arrangement of 1, 2, . . . , k and τ( j1 j2 · · · jk) is the reverse
order number of the arrangement. The number of bit operations of each summation
is O(k3 log2 N ), and there are k! summation terms in total, thus

Time(D) = O(k3k! log2 N ).

By Lemma 1.5 of Chapter 1, find the multiplicative inverse of D under mod N ,
D−1 mod N = D1 is

Time(D1) = O(log3 N ).

The bit operation times of each algebraic cofactor Ai j of the adjoint matrix A∗ of
formula (4.34) is O((k − 1)3(k − 1)! log2 N ), and there are k2 algebraic cofactors,
thus

Time(A∗) = O(k4k! log2 N ).

So
Time(A−1) = O(k4k! log3 N ).

When k is constant, the algorithm for finding A−1 is polynomial. When N is constant
and k −→ ∞, it is obvious that the algorithm for finding A−1 is exponential. The
Lemma holds.

4.7.2 RSA

In 1976, two mathematicians from Stanford University, Diffie and Hellman, put
forward a new idea of cryptosystem design. In short, the encryption algorithm and
decryption algorithm are designed based on the principle of asymmetry. We can use
the following schematic diagram to illustrate
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P
f−→ C

f −1−−→ P, (4.35)

where P is the plaintext space, C is the cryptosystemtext space, f encryption algo-
rithm and f −1 decryption algorithm. If f and f −1 are the same algorithm, such as
the involution operation in binary system, or the encryption algorithm f can easily
deduce the decryption algorithm f −1. For example, the matrix encryption algorithm
mentioned in the previous section (the matrix order is very small), which is called
symmetric cryptosystem. The essence of symmetric cryptosystem is that the encryp-
tion key and decryption key have the same confidentiality importance. Diffie and
Hellman proposed that if f 
= f −1 and f are encryption algorithms that are easy
to implement, while f −1 is a decryption algorithm that is very difficult to calcu-
late, the key can be divided into encryption key and decryption key. Even if the
encryption key is made public to the public, the security of decryption key will not
be affected. This encryption algorithm f is called asymmetric or trapdoor one-way
function. The password using asymmetric f is called asymmetric password or public
key cryptosystem. Due to the bold innovation of Diffie and Hellman, cryptography
has ushered in a new era—the era of public key cryptography. Its basic feature is
that passwords change from few users to many users, which greatly improves the
efficiency and social value of passwords.

How to design asymmetric encryption algorithm? Rivest, Shamir and Adleman
jointly put forward the first secure and practical one-way encryption algorithm,which
is called RSA algorithm in academic circles. This public key cryptosystem has been
widely used in cryptographic design and has become an international standard algo-
rithm. In addition to its simplicity and practicality, its security completely depends
on the difficulty of large prime factorization of huge integers.

Let p, q be two large and relatively safe prime numbers, assume

10300 < p, q, its binary digits k > 1024bits. (4.36)

Let n = pq, ϕ(n) be an Euler function, then

ϕ(n) = (p − 1)(q − 1) = n + 1 − p − q.

Randomly select a positive integer e to satisfy

1 < e < ϕ(n), (e, ϕ(n)) = 1. (4.37)

The large prime numbers p and q and e satisfying formula (4.37) are randomly
generated. The so-called random generation is to randomly select the p, q and e
with the help of the computer random number generator (or pseudo-random number
generator), and its computational complexity is

Lemma 4.4 Randomly generated large prime number p and q, n = pq, ϕ(n) is
Euler function, 1 < e < ϕ(n), (e, ϕ(n)) = 1, then
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{
Time (select out n) = O(log4 n),

Time (find e) = O(log2 n).

Proof Use the random number generator to generate a huge integer m, such as
m > 10300, and then detect whether m,m + 1,m + 2, . . . , is a prime number. From
the prime number theorem, we know that the frequency of prime numbers adjacent
to m is about O( 1

logm ), so we only need about O(logm) tests to find the required
prime number p, by Lemma 1.5 of Chapter 1,

Time (find prime p) = O(log2 m) = O(log2 n).

Similarly,
Time (find prime q) = O(log2 n).

Because n = pq, so
Time (select out n) = O(log4 n).

n after confirmation, ϕ(n) = (p − 1)(q − 1). A positive integer a, 1 < a < ϕ(n),
is randomly generated by the random number generator, and then whether a, a +
1, a + 2, . . . and ϕ(n) are mutually prime is detected in turn. Again, according to the
prime number theorem, the frequency of the prime factor of ϕ(n) appearing in the
vicinity of a is O( 1

log a ), so we only need O(log a) tests to get the required e. Thus

Time (select out e) = O(log2 a) = O(log2 n).

The Lemma holds.

After randomly selecting p, q, n = pq, and e, because (e, ϕ(n)) = 1, then exist
d = e−1 mod ϕ(n), that is

de ≡ 1(mod ϕ(n)), 1 < d < ϕ(n). (4.38)

Definition 4.10 After randomly determining n = pq, let Pe = (n, e) be called pub-
lic key, Pd = (n, d) be called private key, or e be public key and d be private key.

By Lemma 1.5 of chapter 1, calculate the number Time(d) = O(log3 ϕ(n)) =
O(log3 n) of bit operations required for d = e−1 mod ϕ(n). By Lemma 4.4, we have

Corollary 4.3 The computational complexity of randomly generated public key
Pe = (n, e) and private key Pd = (n, d) is polynomial.

The key mathematical principle used in RSA cryptographic design is the general-
ized Euler congruence theorem. n ≥ 1 is a positive integer, (m, n) = 1, from Euler
theorem, it can be seen that

mϕ(n) ≡ 1(mod n),=⇒ mϕ(n)+1 ≡ m(mod n). (4.39)
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We will prove that under the condition that n is a positive integer without square
factor, there is formula (4.39) for all positive integers m, whether (m, n) = 1 or
(m, n) > 1.

Lemma 4.5 If n = pq is the product of two different prime numbers, then for all
positive integers m, k, there are

mkϕ(n)+1 ≡ m(mod n). (4.40)

Proof If (m, n) = 1, then by Euler Theorem,

mkϕ(n) ≡ 1(mod n),=⇒ mkϕ(n)+1 ≡ m(mod n).

We only consider the case of (m, n) > 1, because n = pq, so (m, n) = p, (m, n) =
q, or (m, n) = n. If (m, n) = n, then(4.40) holds. Might as well let (m, n) = p, then
m = pt , where 1 ≤ t < q. By Euler theorem, because (m, q) = 1, so

mϕ(q) ≡ 1(mod q),=⇒ mkϕ(q)ϕ(p) ≡ 1(mod q).

For ∀ k ≥ 1, there is
mkϕ(n) ≡ 1(mod q).

We write
mkϕ(n) = rq + 1.

Both sides are multiplied by m,

mkϕ(n)+1 = r tn + m.

The above formula contains

mkϕ(n)+1 ≡ m(mod n).

We have completed the proof of lemma.

With the above preparations, the workflow of RSA password can be divided into
the following three steps:

(1) Suppose A is a user of RSA, and A randomly generates two huge prime num-
bers p = p(A), q = q(A), n = n(A), where n = pq, ϕ(n) = (p − 1)(q − 1).
Then randomly generate positive integers e = e(A), satisfies 1 < e < ϕ(n),

(e, ϕ(n)) = 1, calculated d ≡ e−1(mod ϕ(n)), and 1 < d < ϕ(n). User A
destroys two prime numbers p and q, and only keeps three numbers n, e, d,
after publishing Pe = (n, e) as public key, he has private key Pd = (n, d) and
keeps it strictly confidential.
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(2) User B of another RSA sends encrypted information to user A using the known
public key (n, e) of user A. B selects P = Zn as the plaintext space and encrypts
each m ∈ Zn . The encryption algorithm c = f (m) is defined as

c = f (m) ≡ me(mod n), 1 ≤ c ≤ n. (4.41)

where c is cryptosystemtext.
(3) After receiving the cryptosystemtext c sent by user B, user A decrypts it with

its own private key (n, d). Decryption algorithm f −1 is defined as:

m = f −1(c) ≡ cd(mod n), 1 ≤ m ≤ n. (4.42)

User A gets the plaintext m sent by user B. so far, RSA cryptosystem completes
encryption and decryption.

The correctness and uniqueness of RSA password are guaranteed by the following
Lemma.

Lemma 4.6 The encryption algorithm f defined by equation (4.41) is a 1–1 corre-
spondence of Zn −→ Zn, and f −1 defined by equation (4.42) is the inverse mapping
of f .

Proof By Lemma 4.5, for all m ∈ Zn , k is a positive integer, then there is

mkϕ(n)+1 ≡ m(mod n).

Because of ed ≡ 1(mod ϕ(n)), we can write

ed = kϕ(n) + 1.

By (4.41), then there is

cd ≡ med ≡ mkϕ(n)+1 ≡ m(mod n).

That is to say, for all m ∈ Zn ,

f −1( f (m)) = m.

In the same way, we have

me ≡ ced ≡ ckϕ(n)+1 ≡ c(mod n).

In other words,
f ( f −1(c)) = c.

By Lemma 1.1 of Chap. 1, f is a 1–1 correspondence of Zn −→ Zn , and f f −1 =
1, f −1 f = 1. Th Lemma holds.
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Another very important application of RSA is for digital signature. From the
workflow of RSA password, it can be seen that the encryption algorithm defined in
formula (4.41) is based on the public key (nA, eA) of user A, and we denote f as
f A and the decryption algorithm defined in formula (4.42) as f −1

A . The workflow
of RSA digital signature is: User A sends his digital signature to user B, that is, A
sends an encrypted message to B. Let Pe(A) = (nA, eA) be the public key of A and
Pd(A) = (nA, dA) the private key of A. Similarly, Pe(B) = (nB, eB) is the public
key of B and Pd(B) = (nB, dB) is the private key of B. Then the digital signature
sent by user A to user B is

{
fB f −1

A (m), if nA < nB

f −1
A fB(m), if nA > nB .

(4.43)

where m ∈ ZnA is the digital signature published by user A. After receiving the
above digital signature of user A, user B adopts the following two different digital
verification according to the two cases of nA < nB and nA > nB , formula (4.43) is
the real signature of user A.

(i) If nA < nB , user B first decrypts with his private key f −1
B = (nB, dB) and then

decrypts with user A’s public key f A = (nA, eA), the verification is as follows

f A f
−1
B ( fB f −1

A (m)) = f A f
−1
A (m) = m.

(ii) If nA > nB , user B uses user A’s public key f A = (nA, eA) first, then decrypt
and verify with your own private key f −1

B = (nB, dB)

f −1
B fA( f

−1
A fB(m)) = f −1

B fB(m) = m.

The security of RSA is the difficulty of large prime factorization based on n. When
all users select the large prime numbers p and q, let n = pq, then destroy p and
q, only (n, e) and its own secret (n, d) key information are retained, even if (n, e)
is published to the public, outsiders only know n and do not know ϕ(n), so they
cannot obtain the information of private key (n, d). Because the calculation of ϕ(n)

must rely on the prime factorization of n, from the product formula of Euler, it is not
difficult to see

ϕ(n) = n
∏

p|n
(1 − 1

p
).

Becausewehave very little knowledge of primenumbers,we have not found a general
term formula to give an infinite number of prime numbers, so it is undoubtedly a
difficult problem to judge whether a huge integer n is prime, not to mention the prime
factorization of n.
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4.7.3 Discrete Logarithm

LetG be afinite group and b, y ∈ G be twogroup elements ofG, let t be theminimum
positive integer satisfying bt = 1, t is called the order of b, denote as t = o(b). If there
is one x , 1 ≤ x ≤ o(b) such that y = bx , x is called the discrete logarithm of y under
base b. Known b ∈ G, 0 ≤ x ≤ o(b), it’s easy to calculate y = bx . Conversely, for
any group element y, it is very difficult to find the discrete logarithm of y under base
b. Therefore, using discrete logarithm to encrypt has become the most mainstream
encryption algorithm in public key cryptosystem, including the famous ElGamal
cryptosystem and elliptic curve cryptosystem. ElGamal cryptosystem uses the dis-
crete logarithm on the multiplication group formed by all F∗

q of nonzero elements
in finite field Fq . Elliptic curve cryptography uses the discrete logarithm algorithm
of Mordell group on elliptic curve. Here we mainly discuss ElGamal cryptography,
and elliptic curve cryptography is discussed in Chap. 6. We first prove several basic
conclusions in finite field.

Lemma 4.7 Let Fq be a finite field of q elements and q = pn be the power of
prime p. F∗

q = Fq\{0} is all the nonzero elements in Fq , then F∗
q is a cyclic group of

order (q − 1) under multiplication, and the generating element g of F∗
q is called the

generator of finite field Fq .

Proof According to Lagrange theorem, the number of zeros of polynomials in any
field is not greater than the degree of polynomials. The finite field F∗

q is a finite group
of order (q − 1) under multiplication. To prove that F∗

q is a cyclic group, it is only
proved that for any factor d of q − 1, d|q − 1, the number of solutions of equation
xd = 1 in F

∗
q is not greater than d. This point can be deduced from Lagrange’s

theorem, because the number of zeros of polynomial xd − 1 in the whole field Fq

is not greater than d, so the number of zeros in F
∗
q is not greater than d. So F

∗
q is a

finite cyclic group. The Lemma holds.

Lemma 4.8 Let Fq be a q-element finite field, q = pn, Fp ⊂ Fq is a subfield, F∗
p <

F
∗
q is a subgroup of F∗

q , if g is the generator of F∗
q , then g′ = g

q−1
p−1 is the generator

of F∗
p.

Proof g is the generator of F∗
q , then o(g) = q − 1. Let g′ = g

q−1
p−1 , then

o(g′) = o(g)

(q − 1, q−1
p−1 )

= p − 1.

Thus (g′)p−1 = 1, that is (g′)p = g′, so g′ ∈ Fp. BecauseF∗
p is a cyclic group of order

p − 1, and o(g′) = p − 1, so F
∗
p =< g′ >, g′ is the generator of F∗

p. The Lemma
holds.

Lemma 4.9 Let Fq be a q-element finite field, q = pn, for any d|n, let
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Ad = {p(x) ∈ Fp[x]| deg p(x) = d, p(x) is an irreducible monic polynomial}

and
fd(x) =

∏

p(x)∈Ad

p(x).

Then we have
xq − x = x pn − x =

∏

d|n
fd(x). (4.44)

Proof We know
x pd − x |x pn − x ⇐⇒ d|n.

Let p(x) ∈ Ad , that is p(x) ∈ Fp[x], deg p(x) = d, p(x) is an irreducible monic
polynomial. Let α be a root of p(x), then add a finite extension field of α on Fp and
Fp(α) is a d-th finite extension on Fp. If d|n, then

Fp(α) = Fpd ⊂ Fq ,

so there is α ∈ Fq . Because the zeros of p(x) are all in Fq , so there is p(x)|xq − x .
Any p(x) in Ad has p(x)|xq − x , so

fd(x) =
∏

p(x)∈Ad

p(x), fd(x)|xq − x .

Conversely, p(x) is the first irreducible polynomial, and deg p(x) = d. If p(x)|xq −
x , then the zeros of p(x) are all in Fq . Let α be a zero point of p(x), then there is
Fp(α) ⊂ Fq , that is Fpd ⊂ Fq = Fpn , so d|n. Finally,

xq − x =
∏

d|n
fd(x).

The Lemma holds.

Lemma 4.10 Np(d) represents the number of the first irreducible polynomial with
degree d in Fp[x], then

Np(n) = 1

n

∑

d|n
μ(d)p

n
d , (4.45)

where μ is Möbius function.

Proof By Lemma 4.9 and (4.44),

xq − x = x pn − x =
∏

d|n
fd(x).



182 4 Cryptosystem and Authentication System

Comparing the degree of polynomials on both sides, there is

pn =
∑

d|n
dNp(d).

By the Möbius inverse formula,

nNp(n) =
∑

d|n
μ(d)p

n
d ,

so there is (4.45), the Lemma holds.

Corollary 4.4 If d is a prime number, the degree in Fp[x] is d and the number of
the first irreducible polynomial is 1

d (pd − p), that is

Np(d) = 1

d
(pd − p), if d is a prime number.

Proof By (4.45),

Np(d) = 1

d

∑

δ|d
μ(δ)p

d
δ

= 1

d
(pd − p).

The Corollary holds.

Based on the above basic conclusions about finite fields,we introduce twomethods
for solving discrete logarithms. The first is the Silver–Pohlig–Hellman smoothing
method, and the second is the so-called exponential integration method.

Silver–Pohlig–Hellman
Let Fq be a q-element finite field, b is the generator, that is F∗

q =< b >,

o(b) = |F∗
q | = q − 1 = pα1

1 pα2
2 · · · pαs

s , (4.46)

where pi is a different prime number. p for each prime factor of q − 1, p|q − 1, if
p is relatively “small", the positive integer q − 1 is called a smooth positive integer.
Under the condition that q − 1 is smooth, for each prime factor p, calculate all p-th
unit roots rp, j in F∗

q , where

rp, j = b
j (q−1)

p , 1 ≤ j ≤ p. (4.47)

Denote R(p) = {rp, j |1 ≤ j ≤ p} is the root of p p subunits in F
∗
q , then in F

∗
q , we

get a unit root table R.

unit root table R = {R(p1), R(p2), . . . , R(ps)}. (4.48)
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Now let’s look at the calculation method of discrete logarithm in F∗
q . Let y ∈ F

∗
q , the

discrete logarithm of y under base b ism, that is y = bm . When y and b are given, the
value of m is desired (1 ≤ m ≤ q − 1), by the prime factor decomposition of q − 1
of formula (4.46), if for each pαi

i (1 ≤ i ≤ s), the minimum nonnegative residue of
m under mod pαi

i is mi = mmod pαi
i , according to the Chinese remainder theorem,

there is a unique mmod q − 1 such that

m ≡ mi (mod(pαi
i )),∀ i, 1 ≤ i ≤ s.

Therefore, the discrete logarithm m of y is determined. Now the question is: let
pα||q − 1, we determine mmod pα . Let

mmod pα = m0 + m1 p + m2 p
2 + · · · + mα−1 p

α−1, 0 ≤ mi < p

A is the minimum nonnegative residue of m mod pα , let’s determine each mi . First,
we calculate m0. Because y = bm , so

y
q−1
p = b

m(q−1)
p = b

m0(q−1)
p .

That is, y
q−1
p is a unit root in F

∗
q , compare the unit root table R in F

∗
q , then we

have m0 = j, 1 ≤ j ≤ p, which determines m0. Next, calculate m1, let y1 = y
bm0 =

bm−m0 , therefore, the discrete logarithm of y1 is m − m0, and

m − m0 ≡ m1 p + m2 p
2 + · · · + mα−1 p

α−1(mod pα),

so

y
q−1
p2

1 = b
(m−m0)(q−1)

p2 = b
m1(q−1)

p .

in other words, y
q−1
p2

1 is a p subunit root of F∗
q , comparing the unit root table R, we

can determine m1. Continuing with this method, we can calculate m2, . . . ,mα−1 in
turn, sommod pα is calculated, then by the Chinese remainder theorem, the discrete
logarithm m of y under b is calculated.

Exponential integral method
Let Fq be the finite field of q element, q = pn , p be a relatively small prime

number, and n be a large positive integer, so that the security of q can meet certain
requirements. Let Fp be the finite field of p element, we can think of Fq as an
n-th extension field of Fp, according to the finite extension theory of the field, Fq

equivalent to (isomorphism) a quotient ring of polynomial ring Fp[T ] over Fp. Let
f (T ) ∈ Fp[T ] be the first irreducible polynomial of n degree, then

Fq = Fp[T ]/< f (T )> = {a0 + a1T + · · · + a0T
n−1|∀ ai ∈ Fp}. (4.49)
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Therefore, any element a in Fq is equivalent to a polynomial a(T ) on Fp, where
deg a(T ) ≤ n − 1. Let b ∈ Fq be the generator of Fq , b = b(T ), if a0 ∈ Fp is a
constant polynomial, a0 is called a constant in Fq .

By Lemma 4.8, the discrete logarithm of the constant in Fq can be easily deter-
mined. Let b′ ∈ Fp be the generator of F∗

p, if m
′ is the discrete logarithm of constant

a0 ∈ Fp to base b′, then by Lemma 4.8, m = m ′ q−1
p−1 is the discrete logarithm of

a0 ∈ Fq under base b. Take m ′(a0) as the discrete logarithm of a0 under base b′,
since p is small, we can easily calculate and list the discrete logarithms of all con-
stants in Fq :

L0 = {m ′(a0)
q − 1

p − 1
|a0 ∈ Fp}. (4.50)

Next, we determine the discrete logarithm of a nonconstant polynomial under base
b(T ). Let 1 < m < n, define

Lm = {p(x) ∈ Fp[x]|p(x) is monic irreducible polynomial, deg p(x) ≤ m},
(4.51)

The number of irreducible polynomials in Lm is written as hm , that is |Lm | = hm .
We first calculate the discrete exponent of irreducible polynomials in Lm .

Letb = b(T )be the generator ofF∗
q ,b(T ) ∈ Fp[T ], deg b(T ) ≤ n − 1, obviously,

when t runs through all positive integers from 1 to q − 1, bt (T ) runs through all
nonzero polynomials in Eq. (4.49). Appropriate choice t , let

bt (T ) ≡ c(T )(mod f (T )), deg c(T ) ≤ n − 1.

Such that
c(T ) = c0

∏

p(T )∈Lm

p(T )αc,p ,

denote the discrete logarithm of a(T ) under b(T ) with ind(a(T )), which can be
obtained from the above formula,

ind(c(T )) − ind(c0) ≡
∑

p(T )∈Lm

αc,pind(p(T )) (mod q − 1).

Because of ind(c(T )) = t , thus,

t − ind(c0) ≡
∑

p(T )∈Lm

αc,pind(p(T )) (mod q − 1). (4.52)

By (4.50), ind(c0) is known, therefore, the above formula is a linear equation with
hm variables ind(p(T )). By continuously selecting the appropriate t , we can obtain
hm independent linear equations, that is, the hm × hm-order matrix formed by the
coefficients of hm variables and hm linear equations is reversible undermod q − 1, by
Lemma 4.2, as long as its determinant and q − 1 are coprime. From the knowledge of
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linear algebra, we can calculate all ind(p(T )) by solving the above linear equations,
the following exponential integral table Bm is obtained,

Bm = {ind(p(T ))|p(T ) ∈ Lm}. (4.53)

With exponential integral table Bm , the discrete logarithm of any element a(T ) ∈
F

∗
q can be easily calculated. Let a1(T ) = a(T )b(T )t , select the appropriate t such

that
a1(T ) ≡ a0

∏

p(T )∈Lm

p(T )αa (mod f (T )).

Once the decomposition is established, there are

ind(a1(T )) = ind(a0) +
∑

p(T )∈Lm

αa ind(p(T )).

Thus
ind(a(T )) = ind(a1(T )) − t.

The discrete logarithm of a(T ) is obtained.

Remark 4.1 The key to the above calculation is to select an appropriate m to obtain
the exponential integral table Bm . This m cannot be too large, because hm increases
exponentially with m, for example, if m is a prime number, then by Corollary 4.4,

hm = |Lm | = 1

m
(pm − p).

When hm is too large and calculating the exponential integral table Bm , a matrix
of order hm × hm will be solved, and its computational complexity is exponential.
Obviously, m cannot be too small, the selection of m depends on p and n, when
p = 2, n = 127, m’s best choice is m = 17. Select finite field Fq , q = 2127, because
q − 1 = 2127 − 1 is a Mersenne prime. This is a popular option at present.

ElGamal cryptosystem
Using the computational complexity of discrete logarithm to design asymmetric

cryptosystem is the basic idea of ElGamal cryptosystem. Each user randomly selects
a finite field Fq , q = pn , p is a sufficiently large prime number, and then calculates
the generator g ofF∗

q , select the positive integer x randomly, 1 < x < q − 1, and cal-
culate y = gx , to get the public key Pe = (y, g, q), own private key Pd = (x, g, q).

Encryption algorithm: To send an encrypted message to user A, user B first corre-
sponds each plaintext unit of plaintext space P to an element in F∗

q , and then encrypts
each plaintext unit. Let m ∈ F

∗
q be a plaintext unit, and user B randomly selects an

integer k, 1 < k < q − 1, then, the public key (y, g, q) of user A is used to encrypt
m, and the encryption algorithm f is
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f (m) = c′,where

{
c′ = myk,

c = gk .
(4.54)

Get cryptosystemtext (c, c′).
Decryption algorithm: After receiving the cryptosystemtext (c, c′) sent by user

B, user A decrypts (c, c′) with its own private key (x, g, q), decryption algorithm
f −1 is

f −1(c′) = c′c−x . (4.55)

Lemma 4.11 The encryption algorithm f defined by Eq. (4.54) is a 1–1 correspon-
dence of F∗

q −→ F
∗
q , the inverse mapping f −1 of f is given by equation (4.55).

Proof By (4.54), c = gk, c′ = myk, then

c′c−x = mykg−kx = mgxkg−xk = m.

That is to say f −1( f (m)) = m, conversely,

c′c−x yk = c′g−xkgxk = c′.

that is f ( f −1(c′)) = c′, therefore, f is the 1–1 correspondence of F∗
q −→ F

∗
q and

the inverse mapping of f is f −1. The Lemma holds.

Finally, we discuss the computational complexity over finite fields.

Lemma 4.12 Fq is a finite field, q = pn, α, β ∈ F
∗
q , k ≥ 1 is a positive integer, then

Time(αβ) = O(log3 q),

Time(
α

β
) = O(log3 q),

Time(αk) = O(log k log3 q).

Proof Let f (x) ∈ Fp[x], deg f (x) = n, f (x) is a monic irreducible polynomial,
then

Fq = Fp[x]/< f (x)> = {a0 + a1x + · · · + an−1x
n−1|∀ ai ∈ Fp}.

Let α, β ∈ F
∗
q , then

α = a0 + a1x + · · · + an−1x
n−1, β = b0 + b1x + · · · + bn−1x

n−1.

The multiplication of two polynomials requires n2 times of mod p operation, and
the bit operation times of each mod p operation is O(log2 p), so α · β needs
O(n2 log2 p) = O(log2 q)- bit operation to get a polynomial on Fp[x]. The result-
ing polynomial is divided by f (x) to obtain a polynomial of degree ≤ n − 1, that
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is, the final result of α · β, the number of bit operations required for this operation is
O(n log3 p). Therefore,

Time(αβ) = O(log3 q + n log3 p) = O(log3 q),

the same can be estimated Time( α
β
) and Time(αk). The Lemma holds.

4.7.4 Knapsack Problem

Given a pile of items with different weights, can you put all or several of these items
into a backpack tomake it equal to a givenweight? This is a knapsack problem arising
from real life. Abstract intomathematical problems: Suppose A = {a0, a1, . . . , an−1}
are n sets of positive integers, N is a positive integer. Is N the sum of the elements
of a subset in A? Using binary system, the knapsack problem in mathematics can be
expressed as follows:

Knapsackproblem:When N and A = {a0, a1, . . . , an−1}given,where eachai ≥ 1
is a positive integer, whether there is a binary integer e = (en−1en−2 · · · e1e0)2 makes
the following formula true,

n−1∑

i=0

eiai = N , where ei = 0 or ei = 1.

If e exists, it is called knapsack problem (A, N ) solvable, denote as ψ(A, N ) = e. If
N = 0, thenψ(A, 0) = 0 (each ei = 0) is called a trivial solution. Therefore, N ≥ 1
is assumed to be a positive integer.

The above knapsack problem may have solutions, no solutions or multiple solu-
tions. It is very difficult to solve the general knapsack problem (A, N ), which belongs
to the “NP complete” problem. If the conjecture of “P 
= N P” holds, there is no gen-
eral algorithm, and its computational complexity is polynomial of n and log N . How-
ever, under some special conditions, such as the so-called super-increasing sequence,
the solution of the problemwill be very easy. Next, we introduce the polynomial solu-
tion method on the premise of super-increasing sequence.

Definition 4.11 A positive integer sequence {ai }i≥0 is called a super-increasing
sequence, if each ai (i ≥ 1) is greater than the sum of the previous i positive integers,
that is

ai >

i−1∑

j=0

a j , 1 ≤ i < ∞. (4.56)

The knapsack problem of super-increasing sequence is actually to find amonoton-
ically decreasing index sequence {ik}k≥0, where ik > ik+1, 0 ≤ ik ≤ n − 1, ∀ k ≥ 0.
First, i0 is defined as
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i0 = max{i |ai ≤ N }. (4.57)

Then consider N − ai0 = 0, then the algorithm is completed, that N = ai0 . If N −
ai0 > 0, then define

i1 = max{i |ai ≤ N − ai0}.

For any k ≥ 1, define

ik = max{i |ai ≤ N − ai0 − · · · − aik−1}. (4.58)

If the equal sign in Eq. (4.58) holds, that is aik = N − ai0 − · · · − aik−1 , then the
algorithm completes and obtains the solution N = ai0 + ai1 · · · + aik of (A, N ). If ik
does not exist, that is

N − ai0 − · · · − aik−1 < ai , ∀ i 
= i0, i1, . . . , ik−1,

call the algorithm terminated. Obvious indicators i0 > i1 > · · · > ik > · · · . Let I be
a set of some indicators, and denote the above algorithm as ψ .

Lemma 4.13 Let A = {a0, a1, . . . , an−1} be a given set of positive integers, ai (i ≥
0) is a super-increasing sequence, N is a positive integer. If there is a k ≥ 0 that
makesψ complete at k, that is aik = N − ai0 − · · · − aik−1 , then the knapsack problem
(A, N ) has a solution and the solution is

ψ(A, N ) = e = (en−1en−2 · · · e1e0)2,

where {
ei = 1, if i ∈ I,

ei = 0, if i /∈ I.

If there is a k ≥ 0, ψ that terminates at k, i.e.,

N − ai0 − · · · − aik−1 < ai ,∀ i /∈ {i0, i1, . . . , ik−1}.

Then the knapsack problem (A, N ) has no solution.

Proof If ψ is completed at k ≥ 0, then

N = ai0 + ai1 + · · · + aik , I = {i0, i1, . . . , ik},

Let ei = 1, when i ∈ I ; ei = 0, wheni /∈ I , obviously,

n−1∑

i=0

eiai = N .
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So ψ(A, N ) = e = (en−1en−2 · · · e1e0)2, if k ≥ 0 exists so that ψ terminates at k,
that is

N − ai0 − · · · − aik−1 < ai ,∀ i /∈ {i0, i1, . . . , ik−1}.

Then the knapsack problem (A, N ) has no solution. We can prove this conclusion
by means of counter-evidence. If (A, N ) has a solution, you might as well make

N = a j0 + a j1 + · · · + a jt .

Adjust the order, we can let j0 > j1 > · · · > jt . By the definition of i0, and a j0 ≤ N ,
know j0 ≤ i0, thus

N ≥ ai0 ≥ a j0 >

j0−1∑

r=0

ar ≥ a j0 + a j1 + · · · + a jt

contradict with N = a j0 + a j1 + · · · + a jt , so (A, N ) has no solution. The Lemma
holds.

MH knapsack public key encryption system
Merkle andHellman first proposed an encryptionmethod using knapsack problem

in 1978, it is the first public key encryption password. Let A = {a0, a1, . . . , an−1}
be a sequence of super-increasing positive integers, take p, b as two prime numbers
and satisfy

p >

n−1∑

i=0

ai , 1 ≤ b ≤ p − 1. (4.59)

Calculate ti ≡ bai (mod p), 0 ≤ i ≤ n − 1, then the public key is t = (t0, t1, . . . ,
tn−1), private key are A and b.

Encryption algorithm: The plaintext space P = F
n
2, for each plaintext unit m =

(m0m1 · · ·mn−1) ∈ P , encryption algorithm

c = f (m) ≡
n−1∑

i=0

timi (mod p), 0 ≤ c ≤ p, (4.60)

where c is cryptosystemtext.
Decryption algorithm: First, use the private key N ≡ b−1c(mod p), 0 ≤ N ≤

p − 1. Then use the algorithm ψ = f −1 of knapsack problem (A, N ) to solve

f −1(N ) = (m0m1 · · ·mn−1) ∈ F
n
2, (4.61)

to get plaintext m = (m0m1 · · ·mn−1).
The correctness of MH knapsack public key cryptography is attributed to the

following Lemma.
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Lemma 4.14 The encryption algorithm f defined by Eq. (4.60) is a 1–1 correspon-
dence of Fn

2 −→ Fp, its inverse mapping f −1 is given by equation (4.61).

Proof If m = 0 is the zero vector in Fn
2, then c = 0, thus N = 0. Knapsack problem

(A, 0) has a unique trivial solutionψ(A, 0) = 0 ∈ F
n
2 is a zero vector. Therefore, the

zero vector in F
n
2 is a 1–1 correspondence of the zero element in Fp. Let m 
= 0, if

N ≡ b−1c(mod p), c ≡
n−1∑

i=0

timi (mod p).

Then

N ≡
n−1∑

i=0

mib
−1ti ≡

n−1∑

i=0

miai (mod p).

By (4.59) and 0 ≤ N < p, to obtain

N =
n−1∑

i=0

miai ,=⇒ ψ(A, N ) = m = m0m1 · · ·mn−1.

So we have
f −1( f (m)) = m, ∀ m ∈ F

n
2.

Conversely, if

N =
n−1∑

i=0

miai ,

then

bN ≡
n−1∑

i=0

miaib ≡
n−1∑

i=0

mi ti (mod p).

So there is N ≡ b−1c(mod p), that is

f ( f −1(c)) = c, ∀ c ∈ Fp.

It can be seen that f is a 1–1 correspondence of Fn
2 −→ Fp and the inverse mapping

is f −1 = ψ . The Lemma holds.

It can be seen from the above discussion that if A = {a0, a1, . . . , an−1} is not a
super-increasing sequence, the decryption algorithm f −1 is a difficult problemof “NP
complete class", so the encryption and decryption algorithmdefined byMHknapsack
cryptosystem is the most typical trapdoor single function. Because of this, people
believe that MH knapsack public key cryptography is very secure for a long time.
However, in 1982, Shamir proved that a class of nonsuper-increasing sequences can
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be transformed into super-increasing sequences by a simple transformation x −→
ax modm, which can be solved by polynomial algorithm. Although this kind of
convertible nonsuper-increasing sequence knapsack problem is quite special, it is
enough to shake people’s confidence in the security of knapsack problem public key
cryptosystem. It is now generally accepted that knapsack public key cryptography is
no longer secure.

Shamir transform
Let A1 = {α0, α1, . . . , αn−1} is a super-increasing sequence of positive integers.

Randomly select four positive integers m1, a1,m2, a2, where

m1 >

n−1∑

i=0

αi , m2 > nm1, (a1,m1) = (a2,m2) = 1. (4.62)

A new positive integer sequence is defined by m1 and a1,

A2 = {ω0, ω1, . . . , ωn−1}, where ωi = a1αi modm1.

Where a1αi modm1 represents the minimum nonnegative residue of a1αi modm1,
that is

0 ≤ ωi < m1, and ωi ≡ a1αi (modm1). (4.63)

By the third sequence of positive integers is defined by m2 and a2,

A3 = {u0, u1, . . . , un−1}, ui = a2ωi modm2,

that is
0 ≤ ui < m2, ui ≡ a2ωi (modm2). (4.64)

Because {ui } is not a super-increasing sequence, if A3 is used for encryption, it
seems to be a general knapsack problem. Its difficulty will be NP complete, but
Shamir transform will prove that its decryption algorithm is polynomial.

Let x = (en−1en−2 · · · e1e0)2 ∈ F
n
2 be clear text and encrypt with A3,

c = f (x) =
n−1∑

i=0

eiui , (4.65)

get cryptosystemtext c. If decryption is required after receiving cryptosystemtext c, it
is a general knapsack problem, but the problem of using private key (b1,m1, b2,m2)

will become quite simple, where

{
0 ≤ b1 < m1, a1b1 ≡ 1(modm1)

0 ≤ b2 < m2, a2b2 ≡ 1(modm2).
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First, note the minimum nonnegative residue of b2c under modm2,

N0 = b2cmodm2 =
n−1∑

i=0

eiωi . (4.66)

Because by (4.65),

b2c ≡
n−1∑

i=0

eib2ui ≡
n−1∑

i=0

eiωi (modm2).

By the assumption m2 > nm1 of formula (4.62), and (4.63), there is

0 ≤
n−1∑

i=0

eiωi < m2.

So (4.66) holds.Then consider theminimumnonnegative residue N = b1N0 modm1(0 ≤
N < m1) of b1N0 modm1, by (4.63),

N = b1N0 ≡
n−1∑

i=0

eib1ωi ≡
n−1∑

i=0

eiαi (modm1).

So there is

N =
n−1∑

i=0

eiαi , αi ∈ A1.

Since A1 is a super-increasing sequence, the algorithm of polynomial (see Lemma
4.13), we have

ψ(A1, N ) = (en−1en−2 · · · e1e0)2 = x .

To get plaintext x .
Therefore, Shamir uses simple transformation to transform the general knapsack

problem into super-incremental knapsack problem. Although A3 is very special, we
have reason to doubt that the public key cryptography based on the general knapsack
problem solving algorithm is not as secure as people think.

Exercise 4

1. Explain the following terms. (1)One secret at a time, (2)Completely confidential
system, (3) Unique solution distance, (4) Improve the certification system.

2. Short answer:

(1) What are the advantages and disadvantages of symmetric cryptosystem and
asymmetric cryptosystem?

(2) The goal of perfecting the certification system.
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3. It is known that the plaintext is “Friday”, and the cryptosystemtext obtained
after encryption with m = 2’s Hill password is “POCFKU”, find the key of Hill
password.

4. Find the inverse matrix (mod N ) of the following matrix:

A =
[
1 3
4 3

]
mod 5, A =

[
1 3
4 3

]
mod 29,

A =
[
15 17
4 9

]
mod 26, A =

[
197 62
603 271

]
mod 841.

5. In number theory, Fibonacci number is defined as a1 = 1, a2 = 1, a3 = 2, when
n > 1, an+1 = an + an−1. Prove

[
an+1 an
an an−1

]
=

[
1 1
1 0

]n

,

and an is even if and only if 3|n. More generally, find the law of d|an .
6. Suppose N = mn, and (n,m) = 1.A second-ordermatrix A ∈ M2(ZN ) on nZN ,

can consider A ∈ M2(Zm) and A ∈ M2(Zn), let A1 and A2 represent the elements
of A in M2(Zm) and M2(Zn), then prove

(i) Mapping A
σ−→ (A1, A2) is a 1–1 correspondence between M2(ZN )

σ−→
M2(Zm) × M2(Zn).

(ii) In the corresponding σ , A is the invertible matrix (mod N ) if and only if A1

is the invertible matrix (modm) and A2 are the invertible matrix (mod n).

7. Let p be a prime, α ≥ 1, then A ∈ M2(Zpα ) is a reversible square matrix if and
only if A ∈ M2(Zp) is a reversible square matrix. By calculate, for ∀ α ≥ 1, find
the number of reversible matrices in M2(Zpα ).

8. Let ϕ(N ) be Euler function, ϕ2(N ) is the number of invertible matrices in
M2(ZN ), calculation formula forϕ2(N ): that is,write a formula forϕ2(N ) similar
to ϕ(N ). Known ϕ(N ) = N

∏
p|N (1 − 1

p ), solve ϕ2(N ) =?
9. Let ϕk(N ) be the number of k-order reversible matrices in Mk(ZN ) and give the

calculation formula of ϕk(N ).
10. According to exercise 8 and exercise 9, find the order of k-dimensional affine

transformation group G = (A, b) on ZN .
11. RSA is used for encryption, the alphabet of plaintext and cryptosystemtext

is {0, 1, 2, . . . , 39} 40 numbers, of which {0, 1, 2, . . . , 25} 26 numbers are
equivalent to English 26 letters. Blank = 26, • = 27, ? = 28, $ = 29, number
{0, 1, 2, . . . , 9} = {30, 31, . . . , 39}. Suppose all public keys nA satisfy 402 <

nA < 403. Plaintext unit m = m1m2 ∈ Z
2
40, cryptosystemtext unit c = c1c2c3 ∈

Z
3
40. For any plaintext unit, m = m1m2 corresponds to a number m240 + m1 of

ZnA , any cryptosystemtext c = c3402 + c240 + c1 ∈ ZnA .
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(i) Encryptingplaintext "SEND$7500"with public key (nA, eA)=(2047, 179).
(ii) Factor nA = 2047 to find the private key (nA, dA) =?
(iii) A password attacker can quickly find the private key dA without factoring

2047, so nA = 2047 is a pretty bad choice. Why?

12. The computer attacks the public key (nA, eA) = (536813567, 3602561) and
finds the private key dA. It shows that 29-bit nA is not safe in RSA system.

13. Assuming that the plaintext alphabet is {0, 1, . . . , 26}, and the first 26 num-
bers are 26 letters in English, blank = 26. Cryptosystemtext alphabet adds
“|" = 27 to the plaintext alphabet, a total of 28 numbers. If the plaintext unit
is m = m1m2m3 ∈ Z

3
27, Cryptosystemtext unit is c = c1c2c3 ∈ Z

3
28. Then in the

corresponding number of ZnA (see exercise 11), we need nA to meet

19683 = 273 < nA < 283 = 21952,

(i) If your decryption key is (nA, dA) = (21583, 20787), decrypt cryptosys-
temtext is “Y SN AUOZHXXH" (blank at the end).

(ii) If you know the Euler function ϕ(n) = 21280, calculate e = d−1 mod ϕ(n)

and factorize n.

14. Prove: In RSA, the 35 bit integer n = 23360947609 is a particularly bad choice.
(Hint: n = p · q factorization, the size difference between p and q remains
unchanged, and Fermat factorization can be used to attack.)

15. Let n be a square free number, and de ≡ 1(mod ϕ(n)). It is proved that there is
congruence

ade ≡ a(mod n)

for all integers a.
16. The multiplication group F

∗
181 of finite field F181 is generated by g = 2, the

discrete logarithm of 153 pairs of basis 2 is calculated by smoothing factor
method.

17. In the knapsack problem, determine whether the following sequence is an over
increasing sequence, whether the knapsack problem is solvable for a given N ,
and how many solutions there are:

(i) A = {2, 3, 7, 20, 35, 69}, N = 45;
(ii) A = {1, 2, 5, 9, 20, 49}, N = 73;

(iiii) A = {1, 3, 7, 12, 22, 45}, N = 67;
(iv) A = {2, 3, 6, 11, 21, 40}, N = 39;
(v) A = {4, 5, 10, 30, 50, 101}, N = 186.

18. If A = {ai |i = 0, 1, 2, · · · } is an over increasing sequence and a0 = 1, ai is the
smallest positive integer satisfies ai ≥ ∑i−1

j=0 a j , then ai = 2i holds for ∀ i ≥ 1.



4.7 Basic Algorithm 195

19. Let A = {a0, a1, . . . , ai , . . .} be a super-increasing sequence, where ai = 2i (i ≥
1), then for any positive integer N , Knapsack problem (A, N ) has a unique
solution.

20. Let A = {a0, a1, . . . , ai , . . .} be a super-increasing sequence, if for any positive
integer N , knapsackproblem (A, N ) always has a solution, proveai = 2i (i ≥ 1).

References

Adelman, L. M., Rivest, R. L., & Shamir, A. (1978). A method for obtaining digital signatures and
public-key crypto system. Communication of ACM, 21, 120–126.

Adleman, L. M. (1979). A subexponential algorithm for the discrete logarithm problem with appli-
cation to cryptography. In Proceedings of the 20th Annual Symposium on the Foundations of
Computer Science, pp. 55–60.

Blum, M. (2022). Coin-flipping by telephone–A protocol for solving impossible problems (pp. 133–
137). Spring-Compcan: IEEE Proceeding.

Coppersmith, D. (1984). Fast evaluation of logarithms in fields of characteristic two. IEEE Trans-
actions in Information Theory, IT-30, 587–594.

Cover, T. M. (2003). Fundamentals of information theory. Tsinghua University Press (in Chinese).
Diffie, W., & Hellman, M. E. (1976). New direction in crytography. IEEE Transactions in Informa-
tion Theory, IT-22, 644–654.

EIGamal, T. (1985).Apublic key cryptosystemand a signature schemebased on discrete logarithms.
IEEE Transactions in Information Theory, IT,314, 469–472.

Fait, A. & Shamir, A. (2022). How to prove yourself: Practical solutions to identifications and
signature problems. In A advance in Crypology-CRYPTO’86 (Vol. 263, pp. 186–194). Springer-
Verlag, LVCS.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of
NP-completeness. Freeman.

Goldreich, O. (2001). Foundation of cryptography Cambridge University Press.
Gordon, J. A. (1985). Strong prime are easy to find, advance in cryptology. In Proceedings of Euro
Crypt84 (pp. 216–223). Springer.

Hellman, M. E., &Merkle, R. C. (1978). Hiding information and signatures in trap door knapascks.
IEEE Transactions in Information Theory, IT-24, 525–530

Hellman, M. E. (1979). The mathematics of public-key cryptography. Scientific America, 241,
146–157.

Hill, L. S. (1931). Concerning certain linear transformation apparatus of cryptography. American
Math Monthly, 38, 135–154.

Kahn, D. (1967). The codebreakers, the story of secret writing. Macmillan.
Knuth, D. E. (1973). The art of computer programming. Addision-Wesley.
Koblitz, N. (1994). A course in number theory and cryptograph. Springer-Verlag.
Kranakis, E. (1986). Primality and cryptogaphy. John Wiley-Sons.
Massey, J. L. (1983). Logarithms in finite cyclic group-Cryptographic issues. In Proceedings of the
4th Benelux Symposium on Information’s Theory, pp. 17–25.

Odlyzko, A. M. (1985). Discrete logarithms in finite fields and their cryptographic significance. In:
Advance in Cryptology, Proceedings of Eurocrypt 84, pp. 224–314. Springer.

Rivest, R. L. (1985). RSA chips(past, present, and future). Advances in Cryptology, Proceedings of
Eurocrypt, 84, 159–165.

Ruggiu, G. (1985). Cryptology and complexity theories, advances in cryptology. In Proceedings of
Eurocrypt (Vol. 84, pp. 3–9), Springer

Schneier, B. (1996). Applied cryptography, John Wiley 8-sous.



196 4 Cryptosystem and Authentication System

Shamir, A. (1982). A polynomial time algorithm for breaking the basicMarkle-Hellman Cryptosys-
tem. In Proceedings of the 23rd Annual Symposium on the Foundations of Computer Science, pp.
145–152.

Shannon, C. E. (1949). Communication theory of secrecy system. The Bell System Technical Jour-
nal, 28, 656–715.

Stinson, D. R. (2003). Principles and practice of cryptography, translated by Guodeng Feng. Elec-
tronic Industry Press (in Chinese).

Trappe, W., & Washington, L. C. (2008). Cryptography and coding theory, translated by Quanlong
Wang et al., people’s Posts and Telecommunications Publishing House (in Chinese).

Wah, P., &Wang, M. Z. (1984). Realization and application of Massey-Omura lock. In Proceedings
of the International, Zürich Seminar(1984),175-182.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 5
Prime Test

In the RSA algorithm in the previous chapter, we see that the decomposition of large
prime factors constitutes the basis of RSA cryptosystem security. Theoretically, this
security should not be questioned, because there is only the definition of prime in
mathematics, and there is no general method to detect prime. The main purpose of
this chapter is to introduce some basic prime test methods, including Fermat test,
Euler test, Monte Carlo method, continued fraction method, etc., understanding the
content of this chapter requires some special number theory knowledge.

5.1 Fermat Test

According to Fermat’s congruence theorem (commonly known as Fermat’s small
theorem, which is a special case of Euler congruence theorem), if n is a prime
number, the following congruence formula holds for all integers b, (b, n) = 1,

bn−1 ≡ 1(mod n). (5.1)

The above formula is an important characteristic of prime numbers. Although n
satisfying the above formula is not necessarily prime, it can be used as an important
basis for detecting prime numbers, because we can conclude that n not satisfying the
above formula is definitely not a prime number. Using Formula (5.1) as the standard
to detect prime numbers is called Fermat test.

Definition 5.1 An odd number n, assuming that n is a compound number (not a
prime number) and there is a positive integer b, (b, n) = 1, satisfying

bn−1 ≡ 1(mod n),
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the compound number n is called a Fermat pseudo prime under base b.

The basic properties of pseudo prime numbers are discussed. Our working plat-
form is a finite Abel group Z

∗
n , define as

Z
∗
n = {ā|1 ≤ a ≤ n, (a, n) = 1}, n > 1, (5.2)

where ā is a congruence class of mod n represented by a. The multiplication of two
congruence classes is defined as ā · b̄ = āb; obviously, Z

∗
n forms an Abel group of

order ϕ(n) under multiplication, in a finite group G, the order of a group element
g ∈ G is defined as

o(g) = min{m : gm = 1, 1 ≤ m ≤ |G|}.

o(g) = 1 if and only if g is the unit element of group G. By the definition of o(g),
obviously,

gt = 1 ⇔ o(g)|t. (5.3)

The following two lemmas are the basic conclusions about the order of group element
g.

Lemma 5.1 G is a finite group, g ∈ G, k ∈ Z is an integer, then

o(gk) = o(g)

(k, o(g))
, (5.4)

where the denominator is the greatest common divisor of k and o(g).

Proof Let o(g) = m, o(gk) = t , obviously, (gk)m = 1, in particular,

g
k·m

(k,m) = 1,=⇒ t

∣
∣
∣
∣

m

(k,m)
.

On the other hand, by gkt = 1, there is m|kt , thus
m

(k,m)

∣
∣
∣
∣

k

(k,m)
t,=⇒ m

(k,m)

∣
∣
∣
∣
t.

So we have t = m
(k,m)

, the Lemma holds.

Lemma 5.2 Suppose G is a finite Abel group, a, b ∈ G, (o(a), o(b)) = 1, then

o(ab) = o(a)o(b).

Proof Let o(a) = m1, o(b) = m2, then (m1,m2) = 1. Let o(ab) = t , by (ab)m1m2 =
am1m2bm1m2 = 1, there is t |m1m2, on the other hand, (ab)t = 1, then (ab)tm1 = 1, thus
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btm1 = 1, m2|m1t , m2|t . By the same reason, there is m1|t , thus m1m2|t , t = m1m2.
The Lemma holds.

Back to the finite groupZ
∗
n , any integer a ∈ Z, (a, n) = 1, then ā ∈ Z

∗
n , we denote

o(ā)with o(a), a is called the order mod n, obviously, o(a) = o(b), if a ≡ b(mod n).
A basic problem in number theory is the existence of primitive roots of mod n.
equivalently, is Z

∗
n a cyclic group? If there is a positive integer a, (a, n) = 1, o(ā) =

|Z∗
n| = ϕ(n), then Z

∗
n is a cyclic group of order ϕ(n), so that the primitive root of

mod n exists and a is the primitive root of mod n.

Lemma 5.3 (Existence of primitive root) If and only if n = 2, 4, pα(α ≥ 1) and
a = 2pα(α ≥ 1) four cases, the primitive root of mod n exists, where p > 2 is an
odd prime.

Proof If n = 2, 4, then the lemma holds. If n = p, then Zn = Fp, Z
∗
n = F

∗
p, by

Lemma 4.7 of Chap.4, it can be seen that F
∗
p is a cyclic group of order (p − 1),

so mod p has primitive roots. Now, we need to prove for all positive integer α, the
primitive root of mod pα also exists. Therefore, let a be a primitive root of mod p,
that is, the order of a mod p is p − 1. If the order of amod pα is denoted by o(a),
then

ao(a) ≡ 1(mod pα),=⇒ ao(a) ≡ 1(mod p),

so there is p − 1|o(a). And the number of elements of Z
∗
pα is ϕ(pα) = pα−1(p − 1),

obviously, o(a)|pα−1(p − 1), thus, o(a) = pi (p − 1), 0 ≤ i ≤ α − 1.
We might as well let o(a) = p − 1, if o(a) = pi (p − 1),1 ≤ i , then replace a

with a pi . By Lemma 5.1,

o(a pi ) = pi (p − 1)

(pi , pi (p − 1))
.

Therefore, without losing generality, let o(a) = p − 1, then by Sylow theorem,when
α > 1, pα−a|ϕ(pα), there is an integer b, (b, n) = 1, b is o(n) = pα−1 in the order
of mod pα , because of (o(a), o(b)) = 1, then by Lemma 5.2, there is

o(ab) = o(a)o(b) = pα−1(p − 1) = ϕ(pα),

So the primitive root of mod pα exists.
When n = 2pα , p > 2 is odd prime, then ϕ(n) = ϕ(pα). Thus, the primitive root

a of mod pα is also an primitive root of mod 2pα . The Lemma holds.

Lemma 5.4 Let n be an odd compound number, then

(i) b ≥ 1 is a positive integer, (b, n) = 1, n is Fermat pseudo prime under base b if
and only if o(b)|n − 1.

(ii) n is Fermat pseudo prime under bases b1 and b2, then it is Fermat pseudo prime
under bases b1b2 and b1b

−1
2 , where b−1

2 is the multiplicative inverse of b2 mod n.
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(iii) If exist one b ∈ Z
∗
n does not satisfy Eq. (5.1), at least half of a, b ∈ Z

∗
n do not

satisfy Eq. (5.1).

Proof (i) and (ii) are trivial. (i) can be obtained by (5.3). And b1, b2 ∈ Z
∗
n ,

{

bn−1
1 ≡ 1(mod n), bn−1

2 ≡ 1(mod n). =⇒ (b1b2)
n−1 ≡ 1(mod n).

bn−1 ≡ 1(mod n),=⇒ (b−1)n−1 ≡ 1(mod n).

So there is (ii). To prove (iii). Let n not be Fermat pseudo prime to base b, if n is
Fermat pseudo prime to base a, then n is not Fermat pseudo prime to base ab. By
(ii), therefore, if there is a base to make n a Fermat pseudo prime number, there must
be a base to make n not a Fermat pseudo prime number, so more than half of the
base b must make n not a Fermat pseudo prime number. The Lemma holds.

By Lemma 5.3, if there is a base b so that n is not Fermat pseudo prime, detect a,
1 ≤ a ≤ n, (a, n) = 1 in sequence, whether an−1 ≡ 1(mod n); that is, there is more
than 50% chance that find the exact b such that bn−1 	≡ 1(mod n), this proves that
n is not a prime number. Is it possible that all a, 1 ≤ a ≤ n, (a, n) = 1, n is Fermat
pseudo prime to base a The answer is yes, such a number n is called Carmichael
number.

Definition 5.2 A Carmichael number n is an odd compound number, and for ∀ b ∈
Z

∗
n , there is

bn−1 ≡ 1(mod n).

For Carmichael number, we have the following engraving.

Theorem 5.1 Let n be a compound number, then

(i) If there is an integer a > 1, a2|n, then n is not a Carmichael number.
(ii) Assuming that n is a square free number, then n is a Carmichael number ⇔ for

all prime p, p|n, there is p − 1|n − 1.
(iii) A Carmichael number is the product of at least three different prime numbers.

Proof Let’s prove (i) first. Let p2|n, p be a prime number, by Lemma 5.3, mod p2

has primitive roots. Let g be an original root of mod p2, that is o(g) = p(p − 1), let

n′ =
∏

p′ |n,p′ 	=p

p′, p′ is a prime number.

According to the Chinese remainder theorem, there is a positive integer b such that

{

b ≡ g(mod p2),

b ≡ 1(mod n′).

Then b is an primitive root of mod p2, and (b, n) = 1. We assert that n to base b is
not a Fermat pseudo prime. If n to base b is a Fermat pseudo prime, then
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bn−1 ≡ 1(mod n),=⇒ bn−1 ≡ 1(mod p2),=⇒ o(b)|n − 1.

That is p(p − 1)|n − 1, but p|n is contradict with p|n − 1. So bn−1 	≡ 1(mod n), n
is not Carmichael number, (i) holds.

Now to prove (ii). If ∀ p, p|n, there is p − 1|n − 1, then ∀ b ∈ Z
∗
n ,

bn−1 = (b
n−1
p−1 )p−1 ≡ 1(mod p),∀ p|n.

Because n is a square free number, so

bn−1 ≡ 1(mod n), ∀ b ∈ Z
∗
n.

Therefore, n is the Carmichael number. Conversely, if there is a prime number p,
p|n, but p − 1 � n − 1, Let g be a primitive root of mod p, which is given by the
Chinese remainder theorem,

⎧

⎪⎨

⎪⎩

b ≡ g(mod p),

b ≡ 1

(

mod
n

p

)

.

Then (b, n) = 1, and
bp−1 ≡ gp−1 ≡ 1(mod p).

By p − 1 � n − 1, then gn−1 	≡ 1(mod p), so there is bn−1 	≡ 1(mod n), this contra-
dicts with the assumption that n is the Carmichael number. So (ii) holds.

To prove (iii), we just need to exclude that n is the product of two prime numbers.
By (ii), let n = pq, p < q, if n is a Carmichael number, then q − 1 | n − 1, but
n − 1 = p(q − 1 + 1) − 1 = p(q − 1) + p − 1, then

n − 1 ≡ p − 1(mod q − 1),

this contradicts with n − 1 ≡ 0(mod q − 1), so n = pq must not be a Carmichael
number, the Theorem holds.

Below we give some examples of Carmichael numbers, from property (ii) in
Theorem 5.1, we can easily verify whether a square free number is Carmichael
number.

Example 5.1 The following positive integers n are Carmichael numbers,

n = 1105 = 5 · 13 · 7, n = 1729 = 1 · 13 · 19, n = 2465 = 5 · 17 · 29,
n = 2821 = 7 · 13 · 31, n = 6601 = 7 · 23 · 41.

Example 5.2 The positive integer 561 = 3 · 11 · 17 is the smallest Carmichael num-
ber.
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Proof Defined by, the Carmichael number is odd and compound, so the minimum
Carmichael number is

n = 3 · p · q,where p − 1|n − 1, q − 1|n − 1, p < q is a prime.

Let p = 5, p = 7, the congruence equation

3 · p · q ≡ 1(mod q − 1), q > p

has no prime solution q, when p = 11, the above formula has a minimum solution
q = 17, so n = 3 · 11 · 17 is the smallest Carmichael number.

Example 5.3 For given prime number r ≥ 3, then the congruence equations

{

rpq ≡ 1(mod p − 1)

rpq ≡ 1(mod q − 1)

has only finite different prime solutions p,q. Let’s leave this conclusion for reflection.

5.2 Euler Test

Let p > 2 be an odd prime, Euler test uses the Euler criterion in the quadratic residue
of mod p to detect whether a positive integer n is prime. Like Fermat’s test, it is
obvious that the n that passes the test cannot be determined as prime, but the n that
fails the test is certainly not prime. We know that when the positive integers a and n
are given (n > 1), the solution of the quadratic congruence equation x2 ≡ a(mod n)

is a famous “NP complete” problem. We can’t find a general solution in an effective
time. However, in the special case where n = p > 2 is an odd prime number, we
have rich theoretical knowledge to discuss the quadratic residue of mod p, these
knowledge include the famous Gauss quadratic reciprocal law and Euler criterion,
which constitute the core knowledge system of elementary number theory. First, we
introduce Legendre sign and let p > 2 be a given odd prime number.

Z
∗
p is a (p − 1)-order cyclic group, a ∈ Z

∗
p (i.e., (a, p) = 1), we define the Leg-

endre symbolic function as

(
a

p

)

=
{

1, when x2 ≡ a(mod p) is solvable

− 1,when x2 ≡ a(mod p) is unsolvable

If (a, p) > 1, that is p | a, we let ( a
p ) = 0, for ∀ a ∈ Z, Legendre symbolic function

( a
p ) is all defined, and it is a completely integral function of Z → {1,−1, 0}.



5.2 Euler Test 203

(
ab

p

)

=
(
a

p

) (
b

p

)

,∀ a, b ∈ Z

and (
a

p

)

=
(
b

p

)

, if a ≡ b (mod p) .

If ( a
p ) = 1, then x2 ≡ a(mod p) is solvable, a is called a quadratic residue of mod p,

if ( a
p ) = −1, then x2 ≡ a(mod p) is unsolvable, a is called a quadratic nonresidue

of mod p.

Lemma 5.5 a ∈ Z, p � a, then the necessary and sufficient condition for a to be the
quadratic residue of mod p is

a
p−1
2 ≡ 1(mod p).

Proof Z
∗
p is a p − 1-order cyclic group, let g be a primitive root of mod p, that is ḡ

is the generator of Z
∗
p, that is ∀a ∈ Z, (a, p) = 1, we have

a ≡ gt(mod p), where 1 ≤ t ≤ p − 1.

Obviously, a is the quadratic residue of mod p ⇔ t is even. Therefore, if t is even,
then

a
p−1
2 ≡ g

t (p−1)
2 ≡ (g

t
2 )p−1 ≡ 1(mod p).

Conversely, if a
p−1
2 ≡ 1(mod p), then o(a) | p−1

2 , and by Lemma 5.1, can calculate

o(a) = o(gt ) = p − 1

(t, p − 1)
.

So

o(a) | p − 1

2
⇔ 2|(t, p − 1) ⇔ 2|t,

that is t is even, thus, a is a quadratic residue of mod p, the Lemma holds.

Lemma 5.6 (Euler criterion). For ∀ a ∈ Z, we have

a
p−1
2 ≡

(
a

p

)

(mod p). (5.5)

Proof If (a, p) > 1, that is p|a, the above formula holds. Might as well let p � a.
By Fermat congruence theorem a p−1 ≡ 1(mod p), there is

(a
p−1
2 + 1)(a

p−1
2 − 1) ≡ 0(mod p).
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Thus
a

p−1
2 ≡ ±1(mod p).

If a
p−1
2 ≡ 1(mod p), by Lemma 5.5, then ( a

p ) = 1. If a
p−1
2 ≡ −1(mod p), then ( a

p ) =
−1. So (5.5) holds.

Definition 5.3 Suppose n is an odd compound number, if there is an integer
b, (b, n) = 1, it satisfies

b
n−1
2 ≡

(
b

n

)

(mod n), (5.6)

Call n an Euler pseudo prime under base b. Where ( bn ) is Jacobi symbol, define as

(
b

n

)

=
(

b

p1

)α1
(

b

p2

)α2

· · ·
(

b

ps

)αs

, if n = pα1
1 · · · pαs

s . (5.7)

From the definition, we obviously have a corollary: if n is Euler pseudo prime under
basis b, then n is Fermat pseudo prime under basis b. This conclusion can be proved
by squaring both sides of Eq. (5.6) at the same time.

The following example shows that the inverse of inference is not tenable; that is,
if n is Fermat pseudo prime under basis b, but not Euler pseudo prime.

Example 5.4 n = 91 is Fermat pseudoprimeunder basisb = 3, but notEuler pseudo
prime. In fact, it’s easy to calculate 36 ≡ 1(mod 91), thus 390 ≡ 1(mod 91). From
36 ≡ 1(mod 91), we have

342 ≡ 1(mod 91),=⇒ 345 ≡ 9(mod 91).

So 91 to base 3 is not an Euler pseudo prime.

Example 5.5 n = 91 to base b = 10 is an Euler pseudo prime. Because

1045 ≡ 103 ≡ −1(mod 91),

calculate Legendre symbols

(
10

91

)

=
(

2

91

)

·
(

5

91

)

= −1,

so n = 91 to base b = 10 is an Euler pseudo prime.

From the Euler criterion of Lemma 5.6, we can easily calculate the Legendre
symbols of −1 and 2.
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Lemma 5.7 Let p > 2 be an odd prime, then we have

(−1

p

)

= (−1)
p−1
2 ,

(
2

p

)

= (−1)
1
8 (p2−1). (5.8)

Proof By Lemma 5.6,

(−1)
p−1
2 ≡

(−1

p

)

(mod p),

Since both sides of the congruence are ±1, p > 2, there is (−1
p ) = (−1)

p−1
2 . To

calculate the Legendre sign for 2, we notice that

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p − 1 ≡ (−1)1(mod p)

2 ≡ 2 · (−1)2(mod p)

p − 3 ≡ 3 · (−1)3(mod p)

...

r ≡ p − 1

2
· (−1)

p−1
2 (mod p),

where r = p−1
2 , if p−1

2 is a even; r = p − p−1
2 , if p−1

2 is an odd. There is

2 · 4 · 6 · · · (p − 1) ≡
(
p − 1

2

)

!(−1)
1
8 (p2−1)(mod p),

that is
2

p−1
2 ≡ (−1)

1
8 (p2−1)(mod p),

by Lemma 5.6,
(
2

p

)

≡ (−1)
1
8 (p2−1)(mod p),

there is (
2

p

)

= (−1)
1
8 (p2−1),

Lemma 5.7 holds.

Let ( an ) be a Jacobi symbol, defined by Eq. (5.6), then Lemma 5.7 can be extended
to Jacobi symbol.

Lemma 5.8 Let n be an odd, then we have

(−1

n

)

= (−1)
n−1
2 ,

(
2

n

)

= (−1)
1
8 (n2−1). (5.9)
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Proof The square of any odd number is congruent 1 under mod 8, that is a2 ≡
1(mod 8). Write n = a2 · p1 p2 · · · pt , where pi are different prime numbers, then

n ≡ p1 p2 · · · pt (mod 8).

Similarly, for ∀ n ∈ Z, by (5.7),

(
b

n

)

=
(

b

p1

) (
b

p2

)

· · ·
(
b

pt

)

, (5.10)

thus
(−1

n

)

=
(−1

p1

) (−1

p2

)

· · ·
(−1

pt

)

= (−1)
p1−1
2 + p2−1

2 +···+ pt−1
2 = (−1)

n−1
2 . (5.11)

The same can be proved
(
2
n

)

, the Lemma holds.

Corollary 5.1 For all odd numbers n, they are Euler pseudo prime under the base
±1.

Proof It is trivial that n to 1 is an Euler pseudo prime number, and n to −1 is an
Euler pseudo prime number, which is directly derived from Lemma 5.8.

Lemma 5.9 (Gauss. ) Let p and q be two different odd primes, then

(
q

p

) (
p

q

)

= (−1)
1
4 (p−1)(q−1).

Proof According to incomplete statistics, there are currently more than 270methods
to prove Gauss quadratic reciprocal law. In order to save space, we leave the proof
to the readers, hoping that everyone can find their favorite proof method.

Next, we discuss the computational complexity of Fermat test and Euler test.

Lemma 5.10 Let n be an odd, 1 ≤ b < n, (b, n) = 1, then

{

Time(n to base b′s Fermat test) = O(log3 n),

Time(n to base b′s Euler test) = O(log4 n).

Proof By (5.1), the Fermat test of n to base b is actually an operation of bn−1 to
mod n, by the Lemma 1.5 of Chap.1, bit operations of bn−1 mod n,

Time(bn−1 mod n) = O(log n log2 n) = O(log3 n).

Euler test of n to base b, by (5.6), the number of bit operations on the left is O(log3 n).
Find Jacobi symbol ( bn ), from Eq. (5.7) and quadratic reciprocal law, the calculation
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can be transformed into the calculation of Legendre symbol. Each reciprocal law is
actually a division, so we only consider the calculation of Legendre symbols. By
Euler criterion,

Time

(

calculate

(
b

p

))

= Time
(

b
p−1
2 mod p

)

= O(log3 n).

The number of prime factors of each n has an estimated O(log log n), so

Time

(

calculate Jacobi symbol

(
b

n

))

= O(log log n · log3 n) = O(log4 n).

We have completed the calculation of Lemma 5.10.

Solovay and Strassen proposed a probabilistic method to detect prime numbers by
Euler test in 1977. When n > 1 is an odd number, k numbers are randomly selected,
b1, b2, . . . , bk , where 1 < bi < n, (bi , n) = 1. Use Eq. (5.6) to calculate both sides
of each b in turn, and the required bit operation is O(log4 n), if both sides of Eq. (5.6)
are not equal, then n is not a prime number and the test is terminated. If k b pass the
Euler test of Eq. (5.6), then n is the probability < 1

2k of compound number, that is

P{n is not prime} ≤ 2−k .

The above formula is directly derived from Lemma 5.3. Let’s introduce a better
Miller–Rabin method than Solovay–Strassen method in a sense.

Definition 5.4 Let n be an odd compound number, write n − 1 = 2t · m, where
t ≥ 1, m is an odd. Let b ∈ Z

∗
n , if n and b satisfy one of the following conditions,

bm ≡ 1(mod n), or exists one r, 0 ≤ r < t, such that b2
rm ≡ −1(mod n). (5.12)

Then n is called a strong pseudo prime under base b.

Lemma 5.11 Suppose n ≡ 3(mod 4), then n is a strong Pseudoprime under base b
if and only if n is an Euler Pseudoprime under base b.

Proof Because n ≡ 3(mod 4), then n − 1 = 2m, that is t = 1, m = 1
2 (n − 1). By

Definition 5.4, n is a strong pseudo prime under base b if and only if

bm = b
n−1
2 ≡ ±1(mod n).

Therefore, if n is an Euler pseudo prime number under base b, the above formula
holds, so it is also a strong pseudo prime number for base b. Conversely, if the
above formula holds, because of n ≡ 3(mod 4), then 1

2 (n − 1) is an odd number, so
(−1

n ) = −1, and
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(
b

n

)

=
(
b

n

) n−1
2

≡
(

b
n−1
2

n

)

≡ b
n−1
2 (mod n).

Therefore, n to base b is Euler pseudo prime. The Lemma holds.

Below we give the main results of this section.

Theorem 5.2 Let n be an odd number, b ∈ Z
∗
n, then

(i) If n to base b is a strong pseudo prime, then n to base b is an Euler pseudo
prime.

(ii) Base b, which makes n a strong pseudo prime number, accounts for 25% of
1 ≤ b < n, (b, n) = 1 at most.

Before proving Theorem 5.2, let’s introduce Miller–Rabin’s test method, in order
to test whether a large odd number n is a prime number, we write n − 1 = 2t · m,
m is an odd number, t ≥ 1, select one b at random, 1 ≤ b < n, (b, n) = 1. We first
calculate bm mod n, if we get the result is ±1, then n passes the strong pseudo prime
test (5.12). If bm mod n 	= ±1, then we square bm mod n and find the minimum
nonnegative residue of the squared number under mod n to see if we get the result
of −1 and perform r times. If we can’t get −1, then n to base b fails to test Formula
(5.12). Therefore, it is asserted that n to base b is not a strong pseudo prime number.
If −1 is obtained by r squared, then n passes the test under base b.

In Miller–Rabin’s test, if n to base b fails to pass the test Formula (5.12), then n
must not be a prime number, if n to randomly selected k b = {b1, b2, . . . , bk} pass
the test, by property (ii) of 5.2, each bi accounts for no more than 25

P{n not prime} ≤ 1

4k
. (5.13)

Compared with the Solovay–Strassen method using Euler test, the Miller–Rabin
method using strong pseudo prime test is more powerful.

To prove 5.2, we first prove the following two lemmas.

Lemma 5.12 Let G = 〈g〉 be a finite group of order m, that is o(g) = m, then
equation xk = 1 has exactly d solutions in G, d = (k,m).

Proof x ∈ G, write x = gt , then xk = gkt = 1 ⇔ m|kt , that is m
d | kd · t , thus m

d |t , let
t = m

d · s, then when s = 1, 2, . . . , d, x = gt has exactly d solutions. The Lemma
holds.

Lemma 5.13 Let p be an odd prime number, p − 1 = 2tm ′, t ≥ 1, m ′ is prime, then

x2
rm ≡ −1(mod p),m is odd (5.14)

The number of solutions N in Z
∗
p satisfies
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N =
{

0, if r ≥ t;
2r (m,m ′), if r < t.

Proof Let g be a generator of Z
∗
p, write x = g j , 1 ≤ j ≤ p − 1, because o(g) =

p − 1, so
g

p−1
2 ≡ −1(mod p).

Thus

x2
rm ≡ −1(mod p) ⇔ 2rm j ≡ p − 1

2
(mod p − 1).

Namely,
2rm j ≡ 0(mod p − 1).

Because p − 1 = 2tm ′, the above formula is equivalent to

2rm j ≡ 2t−1m ′(mod 2tm ′). (5.15)

If r > t − 1, then the congruence has no solution to j , because m and m ′ are odd
numbers, so when r ≥ t , (5.14) is unsolvable. If r < t , let d = (m,m ′), then

(2rm, 2tm ′) = 2r d,

then Eq. (5.15) has exactly d solutions for j . Each j corresponds to one x = g j , then
the number of solutions of Eq. (5.14) to x is N = 2r d, the Lemma holds.

With the above preparation, we now give the proof of Theorem 5.2.

Proof (The proof of Theorem 5.2). Let’s first prove that (i), that is, n and b satisfy
Eq. (5.12), we want to prove that formula (5.6) is satisfied; that is, if n to base b is
a strong pseudo prime number, then n to base b is an Euler pseudo prime number,
write n − 1 = 2tm, m is prime, we prove the property (i) of Theorem 5.2 in three
cases.

(1) bm ≡ 1(mod n). In this case, it is obvious that b
n−1
2 ≡ 1(mod n). Let’s prove

( bn ) = 1, in fact,

1 =
(
1

p

)

=
(
bm

p

)

=
(
b

p

)m

= 1.

There is

b
n−1
2 ≡

(
b

n

)

≡ 1(mod n).

That is n to base b is an Euler pseudo prime number.
(2) b

n−1
2 ≡ −1(mod n). In this case, we have to prove ( bn ) = −1, let p|n be any

prime factor of n, write p − 1 = 2t1m1, where t1 ≥ 1, m1 is an odd number.
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Let’s calculate the Legendre symbol ( b
p ), in fact, t1 ≥ t , and

(
b

p

)

=
{

− 1, if t1 = t;
1, if t1 > t.

(5.16)

Because

b
n−1
2 = b2

t−1m ≡ −1(mod n),=⇒ b2
t−1mm1 ≡ −1(mod n),

by p|n, we have
b2

t−1mm1 ≡ −1(mod p). (5.17)

If t1 < t , from the above formula, there is

b2
t1m1 ≡ −1(mod p),=⇒ bp−1 ≡ −1(mod p).

This contradicts Fermat’s congruence theorem, so we always have t1 ≥ t . If
t1 = t , by (5.17), then

(
b

p

)

≡ b
p−1
2 = b2

t−1m ≡ −1(mod p).

Because if the above formula is 1, both sides will be m power at the same time,
which will contradict Formula (5.17). If t1 > t , put both sides of Eq. (5.17) to
the power of 2t1−t at the same time, then ( b

p ) = 1, so we have (5.16).
We now complete the proof of case (2) under the conclusion of Eq. (5.16), write
n = ∏

p|n p, p does not require different, define the positive integer k as

k = #{p | p|n, p − 1 = 2t1m1,m1 is odd, t1 = t}.

By (5.16), then
(
b

n

)

=
∏

(
b

p

)

= (−1)k . (5.18)

Let’s prove that k is anoddnumber, because t1 ≥ t , p − 1 = 2t1m1,n − 1 = 2tm,
under mod 2t+1, we have

p ≡
{

1(mod 2t+1), if t1 > t;
1 + 2t (mod 2t+1), if t1 = t.

Because n = 1 + 2t (mod 2t+1), so

n ≡ 1 + 2t ≡ 1 + k · 2t (mod 2t+1),
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So k must be odd, by (5.18), then ( bn ) = −1. Case (2) is proved.

(3) b2
r−1·m ≡ −1(mod n), where 1 ≤ r ≤ t , n − 1 = 2t · m.

In this case, we replace r of Eq. (5.12) with r − 1. Because r − 1 ≤ t − 1, so
b

n−1
2 ≡ 1(mod n). To prove property (i) of Theorem 5.2, we have to prove ( bn ) =

1, as in case (2), we let p|n, write p − 1 = 2t1 · m1, m1 is odd, then we have
t1 ≥ r , and

(
b

p

)

=
{

− 1, if t1 = r;
1, if t1 > r.

(5.19)

The proof of Formula (5.19) is the same as that of case (2), write n = ∏
p, p is

not required to be a different prime, define positive integer k1:

k1 = #{p | p|n, p − 1 = 2t1m1,m1 is odd, t1 = r}.

as in case (2), we have ( bn ) = (−1)k1 , similarly, under mod 2r+1, it can be proved
that k1 must be even. Thus ( bn ) = 1, we have completed all the proofs of property
(i) in Theorem 5.2.
Next, we prove property (ii) in Theorem 5.2. It is also discussed in three cases.

(1) n can be divided by a square number; that is, there is a prime number p, pα||n,
α ≥ 2.
In this case, we prove that there are at least 1

4 (n − 1) b, b ∈ Z
∗
n , n to base

b is not Fermat prime number, let alone a strong pseudo prime. First, suppose
bn−1 ≡ 1(mod n), then there is a prime p, p2|n, thus bn−1 ≡ 1(mod p2). Because
Z

∗
p2 is a p(p − 1)-order cyclic group (see Theorem 5.3), let g be a generator of

Z
∗
p2 , then

Z
∗
p2 = {g, g2, . . . , gp(p−1)}.

By Lemma 5.12, the number of b satisfying bn−1 ≡ 1(mod p2) is d,

d = (n − 1, p(p − 1)) = (n − 1, p − 1).

Because p|n, so p � n − 1, and p � d; therefore, the maximum possibility of d
is p − 1; therefore, the proportion of b in bn−1 ≡ 1(mod p2) in 1 ≤ b < n shall
not exceed

p − 1

p2 − 1
= 1

p + 1
≤ 1

4
.

Therefore, there is at most b in the proportion of 1
4 , so that n to base b is Fermat

prime, in case (1), we prove the property (ii) of Theorem 5.2.
(2) n = pq are two different prime numbers.

In this case, let p − 1 = 2t1m1, q − 1 = 2t2m2,m1,m2 to be odd.Without losing
generality, you can let t1 ≤ t2. Let b ∈ Z

∗
n , in order for n to base b to be a strong

pseudo prime number, it is necessary to satisfy
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bm ≡ 1(mod p), bm ≡ 1(mod q) (5.20)

or
b2

rm ≡ −1(mod p), b2
rm ≡ −1(mod q), 0 ≤ r < t. (5.21)

By Lemma 5.12, the number of b satisfied (5.20) is≤ (m,m1)(m,m2) ≤ m1m2.
By Lemma 5.13, for each r , 0 ≤ r < min(t1, t2) = t1, the number of b satisfy-
ing b2

rm ≡ −1(mod n) is 2r (m,m1) · 2r (m,m2) < 4rm1m2. Because n = pq,
then ϕ(n) = (p − 1)(q − 1),=⇒ n − 1 > ϕ(n) = 2t1+t2 , therefore, the propor-
tion of b of the strong pseudo prime of n to base b does not exceed

m1m2 + m1m2 + 4m1m2 + · · · + 4t1−1m1m2

2t1+t2m1m2
= 2−t1−t2

(

1 + 4t1 − 1

4 − 1

)

(5.22)
in 1 ≤ b < n, (b, n) = 1.
If t1 < t2, then the above formula shall not exceed

2−2t1−1

(
2

3
+ 4t1

3

)

≤ 2−3 · 2
3

+ 1

6
= 1

4
.

If t1 = t2, then m1 	= m2, so (m,m1) ≤ m1 and (m,m2) ≤ m2, one must be
strictly less than. The reason is that if they are equal, then m1|m, m2|m, n −
1 = 2tm,=⇒ n − 1 = 2tm = pq − 1 ≡ q − 1(modm1), thus m1|n − 1,=⇒
m1|q − 1 = 2t2m2,=⇒ m1|m2, this is a contradiction. So (m,m1) ≤ m1 and
(m,m2) ≤ m2 must have a strict less than 0. We have

(m,m1) · (m,m2) ≤ 1

3
m1m2.

If m1m2 is substituted for 1
3m1m2 in Eq. (5.22), the proportion of n to b whose

base b is a strong pseudo prime number does not exceed

1

3
2−2t1

(
2

3
+ 4t1

3

)

≤ 1

18
+ 1

9
= 1

6
<

1

4
.

We complete the proof of property (ii) of Theorem 5.2 in case (2).
(3) Finally, suppose n = p1 p2 · · · pk, k ≥ 3 is the product of different prime factors.

In this case, write pi − 1 = 2ti mi , mi as an odd number. As in case (2), with-
out losing generality, it can make t1 ≤ t j (1 ≤ j ≤ k). Similarly to the proof of
formula (5.22), the proportion of b satisfying that n is a strong pseudo prime
number for base b does not exceed
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2−t1−t2−···−tk

(

1 + 2k+1 − 1

2k − 1

)

≤ 2−kt1

(
2k − 2

2k − 1
+ 2kt1

2k − 1

)

= 2−kt1 · 2
k − 2

2k − 1
+ 1

2k − 1

≤ 2−k 2
k − 2

2k − 1
+ 1

2k − 1
= 21−k

≤ 1

4
,

because k ≥ 3, in this way, we have completed all the proofs of Theorem 5.2.

Euler test and strong pseudo prime test require some complex quadratic residual
techniques. We summarize the main conclusions of this section as follows:

(A) n to base b is a strong pseudo prime number ⇒ n to base b is an Euler pseudo
prime number ⇒ n to base b is a Fermat pseudo prime number; therefore, the
strong pseudo prime test is the best way to detect prime numbers.

(B) Although no test can successfully detect a prime number at present, the probabil-
ity detection method of strong pseudo prime number test, that is, Miller–Rabin
method, can obtain that the success probability (see (5.13)) of detecting whether
any odd number n is a prime number can be infinitely close to 1. That is

P{detect whether odd n is prime} > 1 − ε,∀ ε > 0 given.

Moreover, the computational complexity of the detection algorithm is polyno-
mial.

5.3 Monte Carlo Method

Using all the prime number test methods introduced in the previous two sections, for
a huge odd number n, even if we already know that n is not a prime number, we cannot
successfully decompose n, because the prime number test does not provide prime
factor decomposition information, A more direct method—like the sieve method—
verifies whether the prime factor of n is for prime numbers not greater than

√
n,

because a compound number n must have a prime factor p, p ≤ √
n. Selected p ≤√

n, the bit operation required to divide n by p is O(log n), there are O(
√
n

log n ) prime

numbers p ≤ √
n in total, therefore, the bit operation required for such a verification

is O(
√
n). A more effective method was proposed by J. M. Pollard in 1975. We call

it Monte Carlo method, or “rho” method.

First, find a convenient mapping f of Zn
f−→ Zn; for example, f (x) is an integer

coefficient polynomial, such as f (x) = x2 + 1; secondly, a prime number x0 is ran-
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domly generated, let x1 = f (x0), x2 = f (x1), . . ., x j+1 = f (x j )( j = 0, 1, 2, · · · ).
In these x j , we want to find two integers x j and xk , which are different elements in
Zn , but there are some factors d of n, d|n, and x j and xk are the same elements in
Zd , that is to say

x j 	≡ xk(mod n), (x j − xk, n) > 1. (5.23)

Once x j and xk are found, the algorithm is said to be completed.

Theorem 5.3 Let S be a set of r elements, let f : S → S is a mapping, x0 ∈ S,
define x j+1 = f (x j )( j = 0, 1, 2, . . .). Suppose λ is a positive real number, let l =
1 + [√2λr], then the condition x0, x1, . . . , xl is the ratio ≤ e−λ of the mapping f
of elements in different s to the initial value x0, ( f, x0), f in all mappings S and all
x0 ∈ S.

Proof The total number of mappings f from f : S → S is rr , because each x ∈ S,
we can arrange r images for it, that is, f (x) has r choices. The initial value x0 has r
choices, so the total number of ( f, x0) is rr+1. The question is which of these ( f, x0)
choices can satisfy the condition that x0, x1, . . . , xl is a different element in S. we
want to prove that the proportion of ( f, x0) satisfying the condition in rr+1 ( f, x0)
is not greater than ≤ e−λ.

When x0 ∈ S given, there are r x0 choices, then x1 = f (x0) has only r − 1 choices
and x2 = f (x1) has only r − 2 choices, this goes on until xl = f (xl−1), there are
only r − l options. The remaining x ∈ S and f can be selected arbitrarily; that is,
there are rr−l choices. Therefore, when x0 is given, there are N f to make ( f, x0)
meet the required conditions, where

N = rr−l
l

∏

j=0

(r − j).

Divide N by rr+1, and the proportion of ( f, x0) satisfying the condition is

N

rr+1
= r−l

l
∏

j=1

(r − j) =
l

∏

j=1

(

1 − j

r

)

, (5.24)

We notice that the real number x ∈ (0, 1), then log(1 − x) < −x . Take the logarithm
to the right of the above formula, then

l
∑

j=1

log

(

1 − j

r

)

< −
l

∑

j=1

j

r
= −l(l + 1)

2r
< − l2

2r
.

Because of l = 1 + [√2λr ] >
√
2λr , from the above formula,
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l
∑

j=1

log

(

1 − j

r

)

< −λ.

By (5.24), we have
N

rr+1
≤ e−λ.

We complete the proof of Theorem 5.3.

MonteCarlomethod uses a polynomial f (x) ∈ Z[x], so that n is a positive integer,
and the congruence equation of mod n is invariant to polynomial f (x), that is

a ≡ b(mod n),=⇒ f (a) ≡ f (b)(mod n). (5.25)

x0 ∈ Zn given, x j+1 = f (x j )( j = 0, 1, . . .), if you find an xk0 ∈ Zn that satisfies
xk0 ≡ x j0(mod r), where r |n, r > 1, k0 > j0. By (5.25),

f (xk0) ≡ f (x j0)(mod r),=⇒ xk0+1 ≡ x j0+1(mod r).

Thus for any k > j , if k − j = k0 − j0, there is xk ≡ x j (mod r), this proves that

a polynomial mapping Zn
f−→ Zn produces k0 different residue classes under

mod r(r |n),
{x0, x1, . . . , xk0−1}.

Therefore, there is the following Lemma 5.14.

Lemma 5.14 f (x) ∈ Z[x] is a polynomial, n > 1 is an positive integer, let x0 ∈ Zn,
x j = f (x j−1)( j = 1, 2, . . .), if k is the first subscript, there is a j , 0 ≤ j < k, such
that

(xk − x j , n) = r > 1.

Then {x0, x1, . . . , xk−1} is k different residual classes under mod r , so it is also k
different residual classes under mod n. Moreover, Monte Carlo calculation defined
by f can only produce k different residual classes.

We call the polynomial f and the initial value x0 described in Lemma 5.14 an
average mapping. When the first subscript k is very large, the amount of calculation
is very large. Here we give an improved Monte Carlo algorithm.

f (x) ∈ Z[x] given, Monte Carlo algorithm needs to continuously calculate
xk(k = 1, 2, . . .). Let 2h ≤ k < 2k+1(h ≥ 0), j = 2h − 1; that is, k is an (h + 1)-
bit number, j is the maximum h-bit number, compare xk with x j and calculate
(xk − x j , n), if (xk − x j , n) > 1, then the calculation is terminated, otherwise con-
sider k + 1.The improvedMonteCarlo algorithmonlyneeds to calculate (xk − x j , n)

once for each k , j = 2h − 1. There is no need to verify every j , 0 ≤ j < k, when k
is very large, it reduces a lot of computation, but there is a disadvantage. It may miss
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the smallest subscript k satisfying the condition, but the error is controllable. In fact,
we have the following error estimation.

Lemma 5.15 f (x) ∈ Z[x], n ≥ 1 given, x0 ∈ Zn, x j = f (x j−1)( j = 1, 2, . . .), let
k0 be the smallest subscript and satisfy (xk0 − x j0 , n) > 1, where0 ≤ j0 < k0, assum-
ing that k is the smallest positive integer satisfying (xk − x j , n) > 1 in the improved
Monte Carlo algorithm, we have k ≤ 4k0.

Proof Suppose k0 has (h + 1) bits. Let j = 2h+1 − 1, k = j + (k0 − j0). ByLemma
5.14, then

(xk0 − x j0 , n) > 1,=⇒ (xk − x j , n) > 1.

Obviously, j is the maximum number of (h + 1) bits and k is the number of (h + 2)
bits, so k is the required subscript calculated by the improvedMonte Carlo algorithm.
Obviously,

k = j + (k0 − j0) ≤ 2h+1 − 1 + 2h+1 < 4 · 2h ≤ 4k0.

Lemma 5.15 holds.

Example 5.6 Let n = 91, f (x) = x2 + 1, x0 = 1. By Monte Carlo algorithm,
then x1 = 2, x2 = 5, x3 = 26 and x4 = 40 (because262 + 1 ≡ 40(mod 91)). By the
improved Monte Carlo algorithm, only (x4 − x3, 91) needs to be detected to obtain

(x4 − x3, 91) = (14, 91) = 7.

Lemma 5.16 Let n be an odd number and a compound number, and r be a factor
of n, r |n, 1 < r <

√
n. Let f (x) ∈ Z[x], x0 ∈ Zn given, then the computational

complexity of finding r by Monte Carlo algorithm ( f, x0) is

Time(( f, x0)) = O(
√
n log3 n) bits. (5.26)

Further, there is a normal number C, so that for any positive real number λ, the
success probability of Monte Carlo algorithm ( f, x0) to find a nontrivial factor r of
n is greater than 1 − e−λ, that is

P{( f, x0)find out r |n, r > 1} ≥ 1 − e−λ. (5.27)

The number of bit calculation operations required by the algorithm that depends on
parameter λ (to ensure the success rate of the algorithm) is O(

√
λ 4
√
n log3 n).

Proof From the discussion of computational complexity in Chap. 1, finding themax-
imum common divisor of two integers and the addition, subtraction, multiplication
and division in mod n are polynomial. Let C1 satisfies

Time((y − z, n)) ≤ C1 log
3 n,where y, z ≤ n.
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C2 satisfies
Time( f (x)mod n) ≤ C2 log

3 n, x ∈ Zn.

If k0 is ( f, x0), the first subscript in the calculation satisfies (xk0 − x j0 , n) > 1, by
the improved Monte Carlo algorithm, we have (xk − x j , n) > 1, where j = 2h − 1,
2h ≤ k < 2h+1. By Lemma 5.15, k ≤ 4k. Thus

Time(found by ( f, x0) k) ≤ 4k0(C1 log
3 n + C2 log

3 n). (5.28)

Let (xk0 − x j0 , n) = r > 1, r <
√
n, by Lemma 5.14, k0 ≤ r , so

Time(find r, r |n, r <
√
n) ≤ 4

√
n(C1 log

3 n,C2 log
3 n).

Equation (5.26) proved. In the sense of probability, that is, on the premise of allowing
certain errors, Eq. (5.26) can be further improved.

Let λ > 0 be any given real number, by Lemma 5.3, ratio of k0 ≥ 1 + √
2λr

< e−λ, in other words, the probability of successfully finding r , r |n, r ≤ √
n is

P{find out r, r |n, r <
√
n} ≥ 1 − e−λ.

In order to ensure the success rate, then k0 ≤ 1 + √
2λr . By (5.28), the number of

bit operations required shall not be greater than

4(1 + √
2λr)(C1 log

3 n + C2 log
3 n) = O(

√
λ 4
√
n log3 n).

We have completed the proof of Lemma.

Remark 5.1 Abasic assumptionofMonteCarlomethod is that the integer coefficient
polynomial f can be used as an average mapping (see Lemma 5.14); this has not
yet been proved.

5.4 Fermat Decomposition and Factor Basis Method

Lemma 5.17 Suppose n is an odd number, there is a 1-1 correspondence between
factorization n = a · b(a ≥ b > 0) of n and expression n = t2 − s2 (t and s are
nonnegative integers) of n. The corresponding σ : (a, b) → (t, s) can be written as
σ((a, b)) = (t, s), where

σ((a, b)) =
(
a + b

2
,
a − b

2

)

.

Inverse mapping is
σ−1((t, s)) = (t + s, t − s).
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Proof If n = ab, because both a and b are odd, then n = ( a+b
2 )2 − ( a−b

2 )2, so define

σ((a, b)) =
(
a + b

2
,
a − b

2

)

.

Conversely, if n = t2 − s2, then n = (t + s)(t − s). So define σ−1((t, s)) = (t +
s, t − s), we prove σ−1σ = 1, σσ−1 = 1. By the definition,

⎧

⎪⎨

⎪⎩

σ−1σ((a, b)) = σ−1

(
a + b

2
,
a − b

2

)

= (a, b),

σ (σ−1((t, s))) = σ(t + s, t − s) = (t, s).

So σ is a 1-1 correspondence between the two decomposition n = ab = t2 − s2, the
Lemma holds.

The above simple lemma provides us with a method of factor decomposition,
calledFermat factor decomposition: ifn = ab,a is very close tob, thenn = ( a+b

2 )2 +
( a−b

2 )2 = t2 − s2,where s is very small and t is only a little larger than
√
n. Therefore,

starting from t = [√n] + 1, we successively detect whether t2 − n is a complete
square number. If not, we change it to t = [√n] + 2 for detection. In this way, until
t2 − n = s2, we get n = (t + s)(t − s) through Fermat factorization. This method
is effective when n = ab, a and b are very close.

Fermat factor decomposition can be further expanded into a factor-based method
to become a more effective factor decomposition method. Its basic idea is: in Fermat
factorization, t2 − n2 is required to be a complete square, which is difficult to appear
in practice, but t2 ≡ s2(mod n), t 	≡ ±s(mod n) is easy to appear. Calculate the
maximum common divisor (t + s, n) and (t − s, n), then we have factorization

n = (t + s, n)(t − s, n).

Definition 5.5 Let B be h different primes (maybe p1 = −1), B is called a factor
base. An integer b is called a B-number, if the minimum nonnegative residue of b2

under mod n can be expressed as the product of prime numbers in B, where n is the
given positive integer.

Example 5.7 Let n = 4633, B = {−1, 2, 3}, then 67, 68, 69 are all B-number,
because 672 ≡ −144(mod 4633), 682 ≡ −9(mod 4633), 692 ≡ 128(mod 4633).

If b is a B-number, b2 mod n represents the minimum nonnegative residue of b2

under mod n, by the definition,

b2 mod n =
h

∏

i=1

pαi
i , αi ≥ 0.

Let e = {e1, e2, . . . , eh} ∈ F
h
2 be an h-dimensional binary vector, define
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e j =
{

0, if α j is even;
1, if α j is odd.

1 ≤ j ≤ h.

e is called the binary vector corresponding to b if {bi } = A is a set of B-numbers. The
binary vector corresponding to each bi is denoted as ei = {ei1 , ei2 , . . . , eih }, denote
b2i mod n with ai . We have

∏

i∈A

ai =
h

∏

j=1

p
∑

i∈A αi j

j , where ai =
h

∏

j=1

p
αi j

j ,

Suppose
∑

i∈A ei = (0, 0, . . . , 0) is the zero vector in F
h
2 , then

∑

i∈A

αi j ≡ 0(mod 2),∀ 1 ≤ j ≤ h.

That is,
∏

ai is a square number. Let r j = 1
2

∑

i∈A αi j , then

∏

i∈A

ai =
⎛

⎝

h
∏

j=1

p
r j
j

⎞

⎠

2

, define c =
h

∏

j=1

p
r j
j , (5.29)

On the other hand, bi mod n represents the minimum nonnegative residue of bi under
mod n, let

b =
∏

i∈A

(bi mod n) =
∏

i∈A

δi , (5.30)

where δi = bi mod n, that is 0 ≤ δi < n, and bi ≡ δi (mod n), thus

∏

i∈A

bi ≡ b(mod n).

Because of ai = b2i mod n, that is 0 ≤ ai < n, and b2i ≡ ai (mod n). There is

∏

i∈A

b2i = b2 ≡
∏

i∈A

ai = c2(mod n).

Two different integers b and c defined by Eqs. (5.29) and (5.30) satisfy b2 ≡
c2(mod n), We write the above analysis as the following lemma.

Lemma 5.18 Let A = {b1, b2, . . . , bi , . . .} be a finite set of some B-numbers, let
ei = (ei1 , ei2 , . . . , eih ) ∈ F

h
2 be the binary vector corresponding to bi , ai = b2i mod n,

δi = bi mod n. If
∑

i∈A ei = 0 is the zero vector in F
h
2 , then

∏

i∈A ai is a square
number. Write
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ai =
h

∏

j=1

p
αi j

j ,
∏

i∈A

ai =
h

∏

j=1

p
∑

i∈A αi j

j = c2.

where

c =
h

∏

j=1

p
1
2

∑

i∈A αi j

j ,

Further let b = δ1δ2 · · · , we have b2 ≡ c2(mod n).

From the above lemma, if b2 ≡ c2(mod n), b 	≡ ±c(mod n). Then we will find
a nontrivial factor d = (b + c, n) of n. Now the question is, if b2 ≡ c2(mod n),
how likely is b 	≡ ±c(mod n)? Might as well make (b, n) = (c, n) = 1, otherwise
both sides are divided by (b, n)2: by b2 ≡ c2(mod n),=⇒ (bc−1)2 ≡ 1(mod n). The
problem is transformed into howmany solutions x are in x2 ≡ 1(mod n), 1 ≤ x < n.

Lemma 5.19 Let n beanoddnumber, then the number of solutions of x2 ≡ 1(mod n)

is 2r , where r is the number of different prime factors of n.

Proof If r = 1, then n = pα(α ≥ 1), p is an odd prime, now x2 ≡ 1(mod pα) has
two solutions x = ±1, because let g be the original root of mod pα , then x = gt (1 ≤
t ≤ pα−1(p − 1)), x2 = 1 ⇔ pα−1(p − 1)|2t . So there are only two solutions t =
1
2 p

α−1(p − 1) and t = pα−1(p − 1). So x ≡ ±1(mod pα). If n = pα1
1 · · · pαr

r , then
the number of solutions of x2 ≡ 1(mod n) deduced from the Chinese remainder
theorem is 2r . The Lemma holds!

Lemma 5.20 n is an odd number and is the product of the power of more than
two different primes, B = {p1, p2, . . . , ph} is a factor base. Randomly select two
B-numbers b and c, then b2 ≡ c2(mod n),=⇒ b ≡ ±c(mod n)’s rate is ≤ 1

2 .

Proof x2 ≡ 1(mod n) has 2r different solutions (mod n), r ≥ 2. The two solutions
corresponding to x ≡ ±1(mod n) correspond to b ≡ ±c(mod n). Thus

b2 ≡ c2(mod n),=⇒ b ≡ ±c(mod n)’s rate ≤ 2

2r
≤ 1

2
,

Lemma 5.20 holds.

According to Lemma 5.20, b and c are selected by using factor basis, if b ≡
±c(mod n), then select failure, and the probability of failure is ≤ 1

2 . If the selection
fails, select another b1 and c1, in this way, we randomly select k b and c equally
almost independently, and the probability of success of b 	≡ ±c(mod n) is

P{b2 ≡ c2(mod n), b 	≡ ±c(mod n)} ≥ 1 − 1

2k
. (5.31)

In other words, the probability of finding a nontrivial factor d = (b + c, n) of n by
using the factor base can be infinitely close to 1. Below, we systematically summarize
the factor base decomposition method as follows:



5.4 Fermat Decomposition and Factor Basis Method 221

Factor-based method
Let n be a large odd number and y be an appropriately selected integer (e.g.,

y ≤ n
1
10 ), let the factor base be

B = {−1, p | p is prime, p ≤ y}.

Select a certain number of B-number at random, A1 = {b1, b2, . . . , bN }, usually
N ≤ π(y) + 2 will meet the needs. Each bi is expressed as the product of prime
numbers in B. Calculate the corresponding binary vector ei , select a subset A ⊂ A1

in A1, such that
∑

i∈A ei = 0, bi corresponding to binary vector ei , denote as A =
{b1, b2, . . . , bi , . . .}. Let

b =
∏

i∈A

(bi mod n) =
∏

i∈A

δi , where δi = bi mod n

and

c =
∏

j∈B
p
r j
j mod n, r j = 1

2

∑

i∈A

αi j .

We have b2 ≡ c2(mod n), if b ≡ ±c(mod n), then reselect the subset A, Until finally
b 	≡ ±c(mod n), in this way, we find a nontrivial factor d|n of n, d = (b + c, n).
Therefore, there is factorization n = d · n

d .
Factor decomposition using factor-based method cannot guarantee the success

rate of 100% because b 	≡ ±c(mod n) cannot be deduced from b2 ≡ c2(mod n),
however, the success probability of factorization for large odd n can be infinitely
close to 1. Under the condition of success probability ≥ 1 − 1

2k (k is a given normal
number), the computational complexity of factorization n of by factor-based method
can be estimated as

Time(factor-based method to n factorization) = O(ec
√
log n log log n). (5.32)

The proof of Formula (5.32) is relatively complex. No detailed proof is given here.
Interested readers can refer to pages 136–141 of (Pomerance, 1982a) in reference 5.
The exact value of C in (5.32) is unknown. It is generally guessed that C = 1 + ε,
where ε > 0 is any small positive real number.

Let k be the number of bits of n, and the estimate on the right of (5.32) can be
written as O(ec

√
k log k). Therefore, the computational complexity of the factor-based

method is sub-exponential. Comparedwith theMonteCarlomethod introduced in the
previous section (see (5.31)), its computational complexity is exponential, because

O(
√
n) = O(ec1k), where c1 = 1

2
log 2.

As we all know, the security of RSA public key cryptography is based on the
prime factorization n = pq of n. Although there is no general method to factor-
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ize any large odd n, although Monte Carlo method and factor-based method are
probability calculation methods, the probability of successful factorization is very
large, The disadvantage is that their computational complexity is exponential and
sub exponential, which is the reason for choosing huge prime numbers p and q in
RSA.

5.5 Continued Fraction Method

In the factor-based method introduced in the previous section, b2 mod n can be the
residual of the minimum absolute value of b2 under mod n, that is

b2 ≡ b2 mod n(mod n), |b2 mod n| ≤ n

2
.

In this way, b2 mod n can be decomposed into the product of some smaller prime
numbers. The continued fraction method is the best method at present. How to find
the integer b, so that |b2 mod n| < 2

√
n, b2 mod n is more likely to be decomposed

into the product of some small prime numbers. First, we introduce what is continued
fraction and some basic properties.

Suppose x ∈ R is a real number, [x] is the integer part of x , and {x} is the decimal
part of x . Let a0 = [x], if {x} 	= 0, and let a1 = [ 1

{x} ], because of x = [x] + {x}, there
is

x = a0 + 1

{x} = a0 + 1

a1 + {{x}−1} .

If {{x}−1} 	= 0, write
a2 = [{{x}−1}−1],

consider
{{{x}−1}−1}−1,

So we got

x = a0 + 1

a1 + 1
a2+ 1

a3+···

.

The above formula is called the continued fraction expansion of real number x . To
save space, write x = [a0, a1, . . . , an, . . .], if and only if x is a rational number, the
continued fraction of x is expanded to be finite, denote as

x = [a0, a1, . . . , an], where an > 1.

It is called the standard expansion of rational number x .
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Definition 5.6 x = [a0, a1, . . . , an, . . .] is the continued fraction expansion of x , for
i ≥ 0, call bi

ci
= [a0, a1, . . . , ai ] the i th asymptotic fraction of x , specially,

b0
c0

= a0
1

,
b1
c1

= a1a0 + 1

a1
.

The progressive fraction bi
ci

of the real number x is a reduced fraction, that is
(bi , ci ) = 1, and has the following properties.

Lemma 5.21 x = [a0, a1, . . . , an, · · · ] is the continued fraction expansion of x, bi
ci

is the asymptotic fraction, then

(i) when i ≥ 2,
bi
ci

= aibi−1 + bi−2

aici−1 + ci−2
. (5.33)

(ii) If i ≥ 1, then
bi ci−1 − bi−1ci = (−1)i−1. (5.34)

Proof We prove that (i) by induction. Obviously, the proposition of i = 2 holds, that
is

b2
c2

= a2b1 + b0
a2c1 + c0

= a2(a1a0 + 1) + a0
a2a1 + 1

.

If the proposition holds for i , that is

bi
ci

= aibi−1 + bi−2

aici−1 + ci−2
.

Then write [a0, a1, . . . , ai , ai+1] = [a0, a1, . . . , ai + 1
ai+1

],

bi+1

ci+1
=

(

ai + 1
ai+1

)

bi−1 + bi−2
(

ai + 1
ai+1

)

ci−1 + ci−2

= ai+1bi + bi−1

ai+1ci + ci−1
.

So (i) holds.
We prove Formula (5.34) by induction, when i = 1,

b1c0 − b0c1 = a1a0 + 1 − a1a0 = 1 = (−1)0.

So when i = 1, the proposition holds, and when i , the proposition holds, that is

bici−1 − bi−1ci = (−1)i−1.
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Then
bi+1ci − bici+1 = (ai+1bi + bi−1)ci − bi (ai+1ci + ci−1)

= bi−1ci − bici−1

= (−1)i .

Lemma 5.21 holds.

Continued fractions havemany important applications in numbers, such as rational
approximation of real numbers and rational approximation of algebraic numbers.
Periodic continued fractions are an important special case in rational approximation
of algebraic numbers. x = [a0, a1, . . . , an, . . .]. If these ai occur in cycles of a certain
length, they are called periodic continued fractions. The famous Lagrange theorem
shows that the necessary and sufficient condition for the expansion of the continued
fraction of x into a periodic continued fraction is that x is a quadratic real algebraic
number. Here we do not discuss some profound properties of continued fractions,
but only prove some properties we need.

Lemma 5.22 Let x > 1 be a real number, bi
ci

(i ≥ 0) is the asymptotic fraction of x,
then

|bi 2 − x2c2i | < 2x,∀ i ≥ 0.

Proof Because x is between progressive scores bi
ci
and bi+1

ci+1
, by property (ii) of Lemma

5.21, there is ∣
∣
∣
∣

bi+1

ci+1
− bi

ci

∣
∣
∣
∣
= 1

ci ci+1
, i ≥ 0.

Thus

|bi 2 − x2c2i | = c2i

∣
∣
∣
∣
x − bi

ci

∣
∣
∣
∣

∣
∣
∣
∣
x + bi

ci

∣
∣
∣
∣

< c2i · 1

ci ci+1

(

x +
(

x + 1

ci ci+1

))

.

So

|bi 2 − x2c2i | − 2x < 2x

(

−1 + ci
ci+1

+ 1

2xc2i+1

)

< 2x

(

−1 + ci
ci+1

+ 1

ci+1

)

< 2x

(

−1 + ci+1

ci+1

)

= 0.

The Lemma holds.

Lemma 5.23 Let n be a positive integer and n not a complete square. Let { bici }i≥0

be the asymptotic fraction of the continued fraction expansion of
√
n, and b2i mod n

be the residue of the minimum absolute value of b2i under mod n, then we have
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b2i mod n < 2
√
n, ∀ i ≥ 0.

Proof By Lemma 5.22, let x = √
n, then

b2i ≡ b2i − nc2i (mod n).

Because
|b2i − nc2i | < 2

√
n,=⇒ b2i mod n < 2

√
n, ∀ i ≥ 0.

The Lemma holds.

Combining the above Lemma 5.23 with the factorization method, we obtain the
continued fraction decomposition method.

Continued fraction decomposition method:
The operations of mod n involved in this algorithm, except that it is specially

pointed out, are the minimum nonnegative residue of mod n. If n is a large odd
number, it is also a compound number, first let b−1 = b, b0 = a0 = [√n], and x0 =√
n − a0 = {√n}, calculate b20 mod n, in fact, b20 mod n = b20 − n. Second, consider

i = 1, 2, . . .. To determine bi , we proceed in several steps:

1. Let ai = [ 1
xi−1

], and xi = 1
xi−1

− ai (i ≥ 1).
2. Let bi = aibi−1 + bi−2, the minimum nonnegative residual bi mod n of bi under

mod n is still recorded as bi .
3. calculate b2i mod n.

By Lemma 5.23, b2i mod n < 2
√
n, it can be decomposed into the product of some

small prime numbers. If a prime number p appears in the decomposition of two or
more b2i mod n, or in the decomposition of an b2i mod n, p appears to an even power,
p is called a standard prime number, in other words, a standard prime p is

p|b2i mod n, p|b2j mod n, i 	= j.

Or
pα‖b2i mod n, α is even.

We choose factor base B as

B = {−1, standard prime}.

In this way, all b2i mod n are B-numbers, and the corresponding binary vector is ei .
Select a subset A = {bi },=⇒ ∑

i∈A ei = 0. Let

b =
∏

i∈A

(bi mod n) =
∏

i∈A

δi

and c = ∏

j∈B p
r j
j , where
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r j = 1

2

∑

i∈A

αi j ,∀ j ∈ B.

If b 	≡ ±c(mod n), then (b + c, n) is a nontrivial factor of n, and we obtain the
factorization of n. If b ≡ ±c(mod n), then another subset A is selected and repeated
to complete the continued fraction factorization method.

Example 5.8 The continued fraction method is used to factorize n = 9073.

Solution:We calculateai , bi and b2i mod n in turn,wherebi = (aibi−1 + bi−2)mod n,
the table is as follows:

i 0 1 2 3 4
ai 95 3 1 26 2
bi 95 286 381 1119 2619

b2i mod n −48 139 −7 87 −27

From the value of b2i mod n, we can choose the factor base B as B = {−1, 2, 3, 7}.
Then b2i mod n is the number of B-number, when i = 0, 2, 4, . . .. The corresponding
binary vector is

e0 = (1, 4, 1, 0), e2 = (1, 0, 0, 1), and e4 = (1, 0, 3, 0).

Easy to calculate e0 + e4 = (0, 0, 0, 0). Therefore, we choose

{

b = 95 · 2619 ≡ 3834mod 9073;
c = 22 · 32 = 36.

Because b2 ≡ c2(mod 9073), that is 38342 = 362(mod 9073), but 3834 	≡ ±36
(mod 9073), sowe get a nontrivial factor of n = 9073, d = (3834 + 36, 9073) = 43.
Thus 9073 = 43 · 211, the factorization of 9073 is obtained.
Exercise 5

1. p is a prime, if and only if bp−1 ≡ 1(mod p2), p2 to base b is a Fermat pseudo
prime.

2. What is the minimum pseudo prime number with Fermat pseudo prime for base
5? What is the minimum Fermat pseudo prime number for base 2?

3. n = pq, p 	= q are two primes, let d = (p − 1, q − 1), it is proved that n to base
b is Fermat pseudo prime number, if and only if bd ≡ 1(mod n), and calculate
the number of bases b.

4. If b ∈ Z
∗
n , n to base b is Fermat pseudo prime, then n to base−b and b are Fermat

pseudo prime numbers.
5. If n to base 2 is Fermat pseudo prime, then N = 2n − 1 is also Fermat pseudo

prime.
6. If n to base b is Fermat pseudo prime, and (b − 1, n) = 1, then N = bn−1

b−1 to
base b is also Fermat pseudo prime.
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7. Prove that the following integers are Carmichael numbers:

1105 = 5 · 13 · 17, 1729 = 7 · 13 · 19, 2465 = 5 · 17 · 29, 2821 = 7 · 13 · 31,
6601 = 7 · 23 · 41, 29,341 = 13 · 37 · 61, 172,081 = 7 · 13 · 31 · 61, 278,545 = 5 · 17 · 29 · 113.

8. Find all Carmichael numbers of form 3pq and all Carmichael numbers of form
5pq.

9. Prove that 561 is the minimum Carmichael number.
10. If n to base 2 is a Fermat pseudo prime, prove N = 2n − 1 is a strong pseudo

prime.
11. There are infinite Euler pseudo primes and strong pseudo primes for base 2.
12. If n to base b is a strong pseudo prime, then n to base bk is also a strong pseudo

prime for any integer k.
13. The Fermat factorization method is used to decompose the positive integer as

follows:

n = 8633, n = 809,009, n = 92,296,873, n = 88,169,891.

14. The Fermat factorization method is used to decompose the positive integer as
follows:

n = 68,987, n = 29,895,581, n = 19,578,079, n = 17,018,759.

15. Expand the rational number x = 45
89 , x = 55

89 , x = 1.13 into continued fractions.
16. Let a be a positive integer, x = [a, a, a, · · · ], calculate x =?
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Chapter 6
Elliptic Curve

In 1985, mathematician v. Miller introduced elliptic curve into cryptography for the
first time. In 1987, mathematician N. Koblitz further improved and perfectedMiller’s
work and formed the famous elliptic curve public key cryptosystem. Elliptic curve
public key cryptosystem, RSA public key cryptosystem and ElGamal public key
cryptosystem based on discrete logarithm are recognized as the three major public
key cryptosystems, which occupy the most prominent position in modern cryptogra-
phy. Compared with RSA cryptography, elliptic curve cryptography can provide the
same or higher level of security with a shorter key; compared with ElGamal cryp-
tosystem, they are based on the samemathematical principle and are essentially based
on discrete logarithm cryptosystem. ElGamal cryptosystem is based on the discrete
logarithm of multiplication group over finite field, and elliptic curve cryptosystem is
based on the discrete logarithm ofMordell group of elliptic curve over finite field, but
choosing elliptic curve hasmore flexibility than choosing finite field, so elliptic curve
cryptosystem has attracted more attention This paper systematically and comprehen-
sively introduces elliptic curve cryptography from the three aspects of cryptography
mechanism and factorization, in order to make readers better understand and master
this public key cryptography mechanism.

6.1 Basic Theory

The working platform of this chapter is a field E , especially E = R(real number
field), E = C(complex field), E = Q(rational number field) or E = Fq (Finite field
of q elements) four common fields. The characteristic χ(E) of a field E is the order
of the multiplicative unit element e of E in the additive group. That is, χ(E) = o(e)
is a prime number or ∞, specifically,
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χ(E) =
{

∞, if E = C, R, Q,

p, if E = Fq , q = pr .

Definition 6.1 (i) Suppose E is a field, the character of E χ(E) �= 2, 3, f (x) =
x3 + ax + b ∈ E[x] is a cubic polynomial and has no multiple roots in the split
field. An elliptic curve in field E refers to the set of finite points (x, y) ∈ E2 plus
infinity on the “plane,” where the finite point (x, y) satisfies

y2 = x3 + ax + b,where a ∈ E, b ∈ E given.

CE represents the elliptic curve, and “O” represents the infinity point, i.e.,

CE = {(x, y) ∈ E2|y2 = x3 + ax + b} ∪ {O}. (6.1)

(ii) If χ(E) = 2, then an elliptic curve CE on the field E with the characteristic
of 2 is defined as

CE = {(x, y) ∈ E2|y2 + y = x3 + ax + b} ∪ {O}. (6.2)

(iii) If χ(E) = 3, x3 + ax2 + bx + c ∈ E[x] has no multiple roots in the split
field, then an elliptic curve CE on E is defined as

CE = {(x, y) ∈ E2|y2 = x3 + ax2 + bx + c} ∪ {O}. (6.3)

Let F(x, y) ∈ E[x, y] be a bivariate polynomial, then F(x, y) = 0 defines an
algebraic curve C on E . (x0, y0) ∈ C is called a nonsingular point on C , if at least
one of the partial derivatives ∂F

∂x and ∂F
∂y at (x0, y0) is not 0. Ifχ(E) �= 2, 3, let f (x) =

x3 + bx + c, then thefinite points of an elliptic curve F(x, y) = y2 − f (x) = 0 on E
are nonsingular points, which is the same as that in χ(E) = 2, χ(E) = 3. Therefore,
an elliptic curve is also called a nonsingular cubic curve.

Among many profound arithmetic properties of elliptic curves, Mordell group
on elliptic curves is the most beautiful and important basic property. Firstly, we
introduce Mordell group when E = R is familiar with real number field and then
extend it to finite field.

Elliptic curve over real number field

Definition 6.2 Let E = R be real number field, CE is an elliptic curve, P and Q
are two points on CE , that is P ∈ CE , Q ∈ CE , we define addition according to the
following rules:

(1) If P = O is infinity, define that P + P = O is still infinity; that is, infinity is
the unit element of addition, and the negative element of P is −P = P = O .

(2) If P = (x, y) ∈ CE is a finite point. Define −P = (x,−y), obviously, −P ∈
CE , is the specular reflection point of point P on the xy−plane.

(3) If P, Q ∈ CE are two finite points, they have different x-coordinates (i.e.,P =
(x1, y1), Q = (x2, y2), x1 �= x2), then there is exactly a point R on the connecting
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line between P and Q on the xy−plane, which is the intersection of the connecting
line and the elliptic curve, define P + Q = −R, is the specular reflection point of
R. If Q is infinity. Then define P + O = P .

(4) If Q = −P , that is, P and Q have the same x-coordinate, and P + Q = O is
defined as infinity.

(5) If P = Q is a finite point on CE . Then the tangent of CE at P has exactly an
intersection R with CE , define P + P = −R.

We use the geometric construction method to define the addition on elliptic curve
CE , for the connection of finite points with different x-coordinates and why the
tangent at the finite point has only a unique intersection with CE , it needs strict
mathematical proof. We attribute it to the following lemma.

Lemma 6.1 Let P = (x1, y1), Q = (x2, y2) be two finite points on elliptic curve
CE , and x1 �= x2, then

(i) The line between P and Q has only a unique intersection R = (x3, y3) with
CE , satisfies R �= P, R �= Q, where

{
x3 = (

y2−y1
x2−x1

)2 − x1 − x2,

y3 = −y1 + (
y2−y1
x2−x1

)(x1 − x3).
(6.4)

(ii) Let α be the value of derivative dy
dx at point P, then the tangent of point P and

CE only have a unique intersection R = (x3, y3), R �= P, where

{
x3 = (

3x21+a
2y1

)2 − 2x1,

y3 = −y1 + (
3x21+a
2y1

)(x1 − x3).
(6.5)

Proof Let the functional equation of the connecting line between P and Q be y =
αx + β on the xy−plane, where

α = y2 − y1
x2 − x1

, β = y1 − αx1.

A point (x, αx + β) on line y = αx + β is on elliptic curve CE if and only if

(αx + β)2 = x3 + ax + b. (6.6)

Therefore, the three solutions of x3 − (αx + β)2 + ax + b = 0 are x , and each solu-
tion will produce an intersection. But we assume that P and Q are at the intersection,
so there is only the third intersection R = (x, αx + β) = (x3, αx3 + β). Because the
three solutions x1, x2, x3 of equation (6.6) satisfy the following relationship

x1 + x2 + x3 = α2.

There is
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{
x3 = (

y2−y1
x2−x1

)2 − x1 − x2,

y3 = αx3 + β = −y1 + (
y2−y1
x2−x1

)(x1 − x3).

Thus, (6.4) holds. If point Q is infinitely close to point P , the connecting line becomes
the tangent of curve CE at point P , now

α = dy

dx
|(x1,y1) = 3x21 + a

2y1
.

So the tangent has a unique intersection withCE , R �= P , R = (x3, αx3 + β), where

{
x3 = α2 − 2x1 = (

3x21+a
2y1

)2 − 2x1,

y3 = −y1 + (
3x21+a
2y1

)(x1 − x3).

(6.5) holds, So as to complete the proof of Lemma (Fig. 6.1).

Example 6.1 On the real plane, we give a specific example y2 = x3 − x to illustrate
the addition rule on this elliptic curve:

The point of CE in the left half plane is called the torsion point of CE , and the
point of C in the right half plane is called the free point of CE .

Remark 6.1 In Lemma 6.1, if P = (x1, 0), that is y1 = 0, then the only intersection
of the tangent of point P and CE is defined as the infinity point “O ′′ .

FromDefinition 6.1 and Lemma 6.1, we have the following important corollaries.

Fig. 6.1 Elliptic Curve
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Corollary 6.1 (i) All points of elliptic curve CE form an Abel group under addition,
in which the infinity point “O” is the zero element of the group. This group is called
Mordell group.

(ii) If P = (x1, y1), Q = (x2, y2) is a rational point, that is, x1, y1, x2, y2 is a
rational number, then another unique intersection R between the line between P
and Q and CE is also a rational point.

Proof (i) is directly given by Definition 6.1. Conclusion (i i) is directly derived from
Formula (6.4) and Formula (6.5) of Lemma 6.1.

Elliptic curves over rational fields
Let E = Q, then a, b, c in Definition 6.1 are rational numbers. Elliptic curves

over rational number fields are one of the most important research topics in modern
number theory. There are many important conclusions and famous number theory
problems related to them, such as the famous “BSD” conjecture, the ancient con-
gruence problem and so on. Mordell theorem is the most basic conclusion of elliptic
curves over rational fields. Since cryptography only cares about elliptic curves over
finite fields, here we briefly introduce some important results without proof.

Let CE be an elliptic curve in the field of rational numbers. From Corollary 6.1,
all points of CE form an Abel group G. In algebra, an Abel group is equivalent
to a module over an integer ring, so an Abel group is also called Z−module. The
Mordell group on elliptic curve CE is regarded as a Z−module G, according to the
decomposition theorem of modules on the principal ideal ring, a Z−module can be
decomposed into the direct sum of a twisted module and a free module. Therefore,
the Mordell group G on CE has

G = Tor(G) ⊕ Free(G).

Mordell first proved the following important conclusions. Mordell Theorem: The
Abel group G on elliptic curve CE (E = Q is a rational number field) is finitely
generated; in other words, G is a finitely generated Z-module. Therefore, Mordell
group G can be decomposed into

G = Tor(G) ⊕ Z(α1, α2, . . . , αr ).

where α1, α2, . . . , αr is a set of bases of free module Free(G) and r is the rank of
free module. The rank r is only known to be finite, but how to calculate it is a famous
number theory problem. The so-called BSD conjecture holds that r can be given by
the function value of L-function on elliptic curve, but it has not been fully proved at
present.

Another problem related to elliptic curves is the ancient congruence problem,
which can be traced back to Plato’s time in ancient Greece.

The congruent number problem: if n > 1 is a positive integer, is there a right
triangle with rational side length, and its area is exactly n?
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This problem is equivalent to the rank r > 0 of elliptic curve y2 = x3 − n2x , at
present, this problem has not been completely solved. Chinese mathematicians prof.
Tian Ye have made substantial progress in this problem.

Elliptic curves over finite fields
Let E = Fq be a q-element finite field, q = pr , and p be a prime number. Let

F(x, y) =
{
y2 − f (x), if p �= 2,

y2 + y − f (x), if p = 2.
(6.7)

where

f (x) =
{
x3 + ax + b, if p �= 2,

x3 + ax2 + bx + c, if p = 2.
a, b, c ∈ Fq . (6.8)

Then an elliptic curve CE on Fq is defined as

CE = {(x, y) ∈ F
2
q |F(x, y) = 0} ∪ {O}. (6.9)

where “O ′′ is the infinity point.
Obviously, the number of points in CE is limited, let Nq = |CE |, be called the

number of points of elliptic curve in Fq . Nq ≤ 2q + 1 is a trivial estimate, because
each x ∈ Fq has at most two y values, together with the infinity point. Themore accu-
rate estimation of Nq depends on the Riemann hypothesis on the field of univariate
algebraic functions proved by A. Weil, which is a very profound result in mathemat-
ics. A. Hasse proved the following results when F(x, y) is an elliptic curve.

Theorem 6.1 (Hasse Theorem) Let Nq be the number of elliptic curve F(x, y) = 0
at the midpoint of Fq , then we have

|Nq − (q + 1)| ≤ 2
√
q.

Proof Let χ be a quadratic real feature in Fq , that is

χ(a) =

⎧⎪⎨
⎪⎩
0, if a = 0,

1, if a = b2, b ∈ Fq ,

−1, otherwise.

By definition, it is obvious that the number of solutions of u2 = a in Fq is 1 + χ(a),
so suppose Nq is the number of solutions of elliptic curve F(x, y) = 0 in Fq , where
F(x, y) is given by Eq. (6.7), then
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Nq = 1 +
∑
x∈Fq

(1 + χ(x3 + ax + b))

= q + 1 +
∑
x∈Fq

χ(x3 + ax + b).
(6.10)

We use Fq(x) to represent the rational function field on Fq , then the univariate
algebraic function field defined by y2 = f (x) can be regarded as a quadratic finite
extension field on Fq(x). The genus d of this function field is d = 3. Hasse can
prove that the Riemann hypothesis on this special algebraic function field is true;
that is, all zeros of the corresponding Riemann ξ−function lie on the straight line of
s = 1

2 + i t . A special case of this conclusion is

|
∑
x∈Fq

χ(x3 + ax + b)| ≤ (d − 1)
√
q = 2

√
q. (6.11)

By (6.10),
|Nq − (q + 1)| ≤ 2

√
q.

We have completed the proof.

Remark 6.2 (6.11) is called the characteristic sum over a finite field, so that g(x) ∈
Fq [x] is any polynomial and χ is any nontrivial multiplication characteristic over Fq ,
according toA.Weil’s famous theorem,we have the following general characteristics
and estimates,

|
∑
x∈Fq

χ(g(x))| ≤ (deg g − 1)
√
q.

Let’s briefly introduce A. Weil’s theorem. Let Fqn be an n-th extension on Fq ,
that is n = [Fqn : Fq ]. Nqn is the number of solutions of elliptic curve F(x, y) = 0
in extended field Fqn . Zeta function Z(T,CE ) on elliptic curve CE is defined as the
formal power series of T :

Z(T ) = Z(T,CE ) = exp(
+∞∑
n=1

1

n
Nqn T n). (6.12)

where exp(a) = ea is an exponential function. A. Weil proves that Z(T ) is a rational
function, i.e.,

Z(T ) = qT 2 − αT + 1

(1 − T )(1 − qT )
. (6.13)

where α is an integer depends on elliptic curve CE . In fact, the above formula is
valid for general algebraic curves. Because of Nq = q + 1 − α, and α2 − 4q < 0
(Hasse theorem). Therefore, zeta function Z(T ) has two complex roots, that is, the
two solutions α1 and α2 of qT 2 − αT + 1 = 0, and | 1

α1
| = | 1

α2
| = √

q . This is the
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Riemann hypothesis on elliptic curves. A. Weil proved it on general algebraic curves
for the first time. See Chap. 5 of Silverman (1986 of reference 6) for the specific
proof process.

From the above a. Weil theorem, take logarithms on both sides of Eq. (6.12) and
compare the coefficients on both sides of the formal power series. Let Nqn be the
number of points of the elliptic curve in Fqn , then

|Nqn − (qn + 1)| ≤ 2q
n
2 (n ≥ 1). (6.14)

The above formula can also be derived directly from Hasse theorem.
Now let’s look at a specific elliptic curve in F2, y2 + y = x3; thus, we have a

better understanding of A.Weil’s theorem. Because F(x, y) = y2 + y − x3 = 0 has
three points in F2, the zeta function on the elliptic curve,

Z(T ) = exp(
+∞∑
n=1

Nn

n
T n)

= 2T 2 + 1

(1 − T )(1 − 2T )
.

Write 2T 2 + 1 = (1 − α1T )(1 − α2T ), where α1 = i
√
2, α2 = −i

√
2. Take loga-

rithms on both sides of the above formula and compare the coefficients of T n on both
sides,

Nn =
{
2n + 1, if n is odd,

2n + 1 − 2(−2)
n
2 , if n is even.

Where Nn represents the number of points of elliptic curve y2 + y = x3 in F2n .
Finally, the Mordell group of elliptic curve on Fq is a finite Abel group of order

Nq ; according to the classification theorem of finite Abel groups, this group can be
expressed as the direct sum of two cyclic groups, which will be further explained
when necessary.

6.2 Elliptic Curve Public Key Cryptosystem

An elliptic curve over a finite field Fq forms a finite Abel groupG, which is similar to
F

∗
q ; therefore, the elliptic curve public key cryptosystem can be constructed by using

discrete logarithm. Compared with other public key cryptosystems based on discrete
logarithm (such as ElGamal cryptosystem), elliptic curve cryptosystem has greater
flexibility, because when a huge q is selected, the working platform of ElGamal
cryptosystem has only one multiplication group F

∗
q , but multiple elliptic curves can

be defined on Fq , so there will be multiple Mordell groups to choose, and elliptic
curve cryptosystem has greater concealment and security.
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Before introducing elliptic curve cryptography, we first discuss the computational
complexity on two species group. The computational complexity of multiplication
over finite field Fq has been discussed in Chap. 4 Lemma 4.12, specially, α ∈ Fq ,
k is an integer, then T ime(αk) = O(log k log3 q). In the case of elliptic curves, the
Mordell group G is an addition operation, so that P ∈ G is a point. kP means that
the points P are added k times continuously.

Lemma 6.2 Let E = Fq be a q-element finite field, CE be an elliptic curve on Fq

defined byWeierstrass equations (6.7), (6.8) and (6.9), P ∈ G, G be aMordell group
on CE , then for any integer k,

{
T ime(kP) = O(log k log3 q), if k ≤ Nq;
T ime(kP) = O(log4 q), if k > Nq .

where Nq is the number of points of curve CE and the order of Mordell group G.

Proof Let P = (x, y), y �= 0, then P + P = (x ′, y′), where x ′ and y′ are determined
by Equation (6.5), (6.5) (addition, subtraction, multiplication, division, etc.) involved
in the formula shall not exceed 20 calculations, and the bit operation times of each
calculation is O(log3 q). By the “repeated square method,” kP can be transformed
into log k steps, thus

T ime(kP) = O(log k log3 q).

If y = 0, definedby P + P = O and “repeated squaremethod,” there isT ime(kP) =
O(log k).

If k > Nq , because Nq · P = 0, let k = s · Nq + r , 1 ≤ r ≤ Nq , thus kP = r P .
We can calculate r P . Thus

T ime(kP) = O(log Nq + log Nq log
3 q) = O(log4 q).

We use Hasse’s theorem: Nq = q + 1 + O(
√
q), there is Nq = O(q), thus

log Nq = O(log q).

Lemma 6.2 holds.

Secondly, we consider how to correspond a plaintext unit m to a point on a given
elliptic curve CE , which is a necessary premise for encryption using elliptic curve.
Unfortunately, there is no definite algorithm for polynomial bit operation, which can
correspond any huge integer m to a point on any elliptic curve. Instead, we can only
choose the probability algorithm with sufficiently low error probability to realize the
correspondence from number to point. The so-called probability algorithm does not
guarantee 100% success rate (therefore, each operation depends on your luck), but
the success probability should be large enough, that is

P{number to point correspondence} > 1 − ε, ε > 0 sufficient small.
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Next, we introduce a probabilistic algorithm to realize the correspondence from
number to point, which makes theoretical preparation for the construction of elliptic
curve cryptosystem.

Probabilistic algorithm
Treat each plaintext unit as an integer m, 0 ≤ m < M , k is an integer. Select a

finite field Fq , q = pr satisfies q > kM . We write the positive integer n from 1 to
kM as follows,

1 ≤ n ≤ kM, n = mk + j, 0 ≤ m < M, 1 ≤ j ≤ k. (6.15)

Lemma 6.3 There is a 1-1 correspondence τ between the set of integers A =
{1, 2, . . . , kM} and a subset of finite field Fq(q > kM).

Proof Because q = pr , let g(x) ∈ Fq [x] be a monic irreducible polynomial, and
deg g(x) = r − 1, from the finite extension theory of fields, Fq is isomorphic to a
quotient ring of polynomial ring Fp[x] over subfield Fp, that is

Fq
∼= Fp[x]/<g(x)> = {a0 + a1x + · · · + ar−1x

r−1|ai ∈ Fp}.

Each element α ∈ Fq uniquely corresponds to a polynomial a0 + a1x + · · · +
ar−1xr−1, we write

α = (ar−1ar−2 · · · a1a0)p,

is called the p-ary representation of α.
For every m, 0 ≤ m < M , each j , 1 ≤ j ≤ k, then it uniquely corresponds

to n = mk + j , express n as a p-ary number, if the p-ary of n is expressed as
(ar−1ar−2 · · · a1a0)p, then let τ(n) = α ∈ Fq . The uniqueness represented by p-ary,
then τ is an injection.

A′ = {τ(n)|1 ≤ n ≤ kM} ⊂ Fq .

Therefore, we establish a 1-1 correspondence τ of A → A′. The Lemma holds.

Next, for each m(0 ≤ m < M), we establish a 1-1 correspondence σ between m
and the point on elliptic curve CE . Arbitrary choice 1 ≤ j ≤ k, then n = mk + j
corresponds to an element in Fq , that is τ(n) = x j ∈ Fq . For each x j , consider the
solution of the following equation.

y2 = f (x j ) = x3j + ax j + b. (6.16)

If the above equation has a solution, let y1 be one of the solutions, then Pm =
(x j , y1) ∈ CE , we let σ(m) = Pm , the inverse mapping σ−1(Pm) of σ is

σ−1(Pm) = [τ
−1(x j ) − 1

k
]. (6.17)
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where τ is the 1-1 correspondence in lemma 6.3. Because τ−1(x j ) = mk + j , so

[τ
−1(x j ) − 1

2
] = [m + j − 1

k
] = m.

So σ−1 is exactly the inverse mapping of σ . From σ , a 1-1 correspondence between
each m and the point on the elliptic curve is established. σ is called a probabilistic
algorithm.

Lemma 6.4 Probability algorithm σ can successfully achieve probability≥ 1 − 1
2k ,

that is

P{is generated by σ and the number m corresponds to 1-1 of the point} ≥ 1 − 1

2k
.

Proof Whenm, 0 ≤ m < M given, n = mk + j , where k is any given positive inte-
ger, 1 ≤ j ≤ k. By Lemma 6.3, τ(n) = x j ∈ Fq , then the probability that f (x j ) =
x3j + ax j + b is a square number is 1

2 , in other words, the probability that equation
(6.16) has a solution in Fq is 1

2 ; therefore, the probability of no solution is also 1
2 .

We randomly and independently select j , 1 ≤ j ≤ k, the error probability of each
j (no solution in Eq. (6.16)) is 1

2 ; therefore, the error probability of k j is 1
2k . Once

Equation (6.16) has a solution, then Pm = (x j , y) ∈ CE , we can establish the 1-1
correspondence σ between m and points on CE , σ(m) = Pm . Thus

P{σ Successfully implemented} ≥ 1 − 1

2k
.

We complete the proof of lemma.

Remark 6.3 f (x j ) = x3j + ax j + b is a square number, that is, the probability that
Equation (6.16) has a solution is exactly Nq/2q, where Nq is the number of points
of CE . By Hasse’s theorem, Nq/2q is very close to 1

2 .

Definition 6.3 Let CE be an elliptic curve over a finite field Fq and B ∈ CE be a
point. For any point P on CE , if there is an integer x , such that x B = P , x is called
the discrete logarithm of P to base B.

With the above preparation, we can establish elliptic curve public key cryptosystem.
Diffie–Hellman key conversion principle
Symmetric cryptosystem, also known as classical cryptosystem or traditional

cryptosystem, is the mainstream cryptosystem before the advent of public key cryp-
tosystem. It has high efficiency because its encryption and decryption share the same
algorithm (such as DES, the data encryption standard algorithm launched by the
American Bureau of standards in 1977). When Diffie and Hellman proposed asym-
metric cryptosystem, they pointed out that symmetric cryptosystem and asymmetric
cryptosystem are not completely separated. The two cryptosystems are interrelated
and can even be used together. Diffie–Hellman key conversion principle is based on
the following mathematical principles.
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Lemma 6.5 Let p be a prime number, q = pr , Fq is a q-element finite field, Zpr is
the residual class ringmod pr , Zr

p is an n-dimensional vector space on Fp, then Fq ,
Zpr , Zr

p have 1-1 correspondence with each other.

Proof Fq is an r -th finite extension on Fp, so the additive group F
+
q of Fq is isomor-

phic with F
r
p, that is F

+
q

∼= F
r
p, therefore, there is a 1-1 correspondence between Fq

and F
r
p. Each a = (a0, a1, . . . , ar−1) ∈ F

r
p, define

σ(a) = a0 + a1 p + · · · + ar−1 p
r−1 ∈ Z

r
p.

Then σ is a surjection and a injection of F
r
p → Zpr , so σ is a 1-1 correspondence

of F
r
p → Zpr . Since there is a 1-1 correspondence between Fq and F

r
p and a 1-1

correspondence between F
r
p and Zpr , there is also a 1-1 correspondence between Fq

and Zpr , the Lemma holds.

From the above lemma, we have the following conclusions.

Lemma 6.6 Let N be a positive integer. ZN is a residue class ringmod N. Then for
any prime p, there is a finite field Fpr such that there is an injection σ of ZN → Fpr ,
this injection is also called embedded mapping.

Proof When N given, for any prime p, express N as a p-ary number, then exists a
positive integer r ≥ 1, such that pr−1 ≤ N < pr . We write

ZN = {0, 1, 2, . . . , N − 1} ⊂ {0, 1, 2, . . . , N − 1, N , . . . , pr − 1} = Zpr .

That is, ZN is regarded as a subset of Zpr . Let Zpr
σ−→ Fpr be 1-1 correspond, so σ

gives that ZN → Fpr is an injection. The Lemma holds.

From the above conclusions, we can establish Diffie–Hellman’s key conversion
principle. Because symmetric cryptographic keys are related to the numbers of ZN ,
each number in ZN can be embedded into a finite field Fq by Lemma 6.6. Therefore,
the discrete logarithm on Fq can encrypt each embedded number asymmetrically, so
that the two cryptosystems can be combined with each other.

Taking the affine cryptosystem introduced in Chap. 4 as an example, A is a k × k-
order reversible square matrix in ZN , b = (b1, b2, . . . , bk) ∈ Z

k
N is a given vector,

affine transformation f = (A, b) gives the encryption algorithm of each plaintext
unit m = m1m2 · · ·mk ∈ Z

k
N .

f (m) = c = A

⎛
⎜⎝
m1
...

mk

⎞
⎟⎠ +

⎛
⎜⎝
b1
...

bk

⎞
⎟⎠ .

Let A = (ai j )k×k , each ai j ∈ ZN . By Lemma 6.6, we can embed ai j into a finite field
Fq . ai j is encrypted again by using the discrete logarithm algorithm on Fq , so that
the two cryptosystems can be effectively combined.
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In the case of elliptic curve, we introduce the workflow of Diffie–Hellman elliptic
curve cryptography. First, the user selects a public finite fieldFq , and an elliptic curve
CE on Fq , randomly select a point P ∈ CE , let P = (x, y), then x ∈ Fq . By Lemma
6.5, x corresponds to an r -dimensional vector (a0, a1, . . . , ar−1) in F

r
p space (where

q = pr ), consider (a0, a1, . . . , ar−1) as a p-ary number, that is

(a0, a1, . . . , ar−1) → a0 + a1 p + · · · + ar−1 p
r−1.

Then (a0, a1, . . . , ar−1) can be used as the key of other cryptosystems, especially
symmetric cryptosystems.

Secondly, the user selects a common point B ∈ CE , like a finite field, as the basis
of the discrete logarithm on the Mordell group. The difference from finite field is
that the Mordell group on elliptic curve is not a cyclic group, so point B is not the
generator of Mordell group. However, we require order o(B) of B to be as large as
possible (o(B)|Nq ). When point B is selected, the working platform of elliptic curve
cryptography is actually the subgroup < B > generated by B.

In order to generate the key, each user can randomly select an integer a, whose
order is roughly the same as Nq , as their own user’s private key, a should be strictly
confidential. Calculate aB = A ∈ CE . Point A is the public key of each user. Now
each user has its own public key (A, B) and private key (a, B).

Massey–Omura elliptic curve cryptography.
In order to encrypt and send a plaintext unit m(0 ≤ m < M), m is corresponding

to the only point Pm ∈ CE on elliptic curve CE by using the probability algorithm
introduced earlier. Let N = Nq = |CE |; that is, the order of Mordell group is known.
Each user randomly selects an integer e to satisfy

1 ≤ e ≤ N , and (e, N ) = 1.

d = e−1 mod N is calculated by Euclidean rolling division method, that is

de ≡ 1(mod N ), and 1 ≤ d ≤ N .

Suppose user A wants to encrypt and send plaintext message Pm to user B, so that
(eA, dA) and (eB, dB) are the respective private keys of A and B. First, A sends a
message eAPm to B, and then B returns the message eBeAPm to A, A can calculate
the message by using the private key dA. Because N Pm = 0, dAeA ≡ 1(mod N ), so

dAeBeAPm = eB Pm .

Finally, user A sends the calculation result eB Pm to B, and user B can read the original
real message Pm of user A by using the private key dB , because dBeB ≡ 1(mod N ),
so

dBeB Pm = Pm .
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It should be noted that even if user B receives the message eAPm sent by A for the
first time, eAPm is given to user B as a point Q = eAPm on the elliptic curve. If B
does not calculate the discrete logarithm, eA and dA are not known. Although the
last user B already knows the plaintext Pm , the calculation of the discrete logarithm
of Q under base Pm is very complex. Similarly, when user A receives a reply from
user B and calculates eB Pm , he cannot know B’s private key (eB, dB).

ElGamal elliptic curve cryptography
ElGamal cryptosystem is another elliptic curve cryptosystem completely different

from Massey–Omura cryptosystem. In this system, the order N of Mordell group of
elliptic curve does not need to be known. All users jointly select a fixed finite field
Fq , an elliptic curveCE on Fq and a fixed point B ∈ CE onCE as the basis of discrete
logarithm. Each user randomly selects an integer a(0 ≤ a < Nq) as the private key,
calculates Q = aB ∈ CE and discloses it. Its workflow is as follows:

If user A wants to encrypt and send a plaintext unit Pm to user B, the public key
of A is QA = aA · B, the private key is aA, the public key of B is QB = aB · B and

the private key is aB . The encryption algorithm of A
f−→ B is

f (m) = f (Pm) = (kB, Pm + kQB) = c. (6.18)

The decryption algorithm is that user B multiplies the first number with private key
aB and then subtracts the second number. That is,

f −1(c) = Pm + kQB − aB(kB). (6.19)

Because QB = aB · B, there is

f −1(c) = Pm + kaB · B − kaB · B = Pm .

Where k is an integer randomly selected by user A. This integer k does not appear
in cryptosystemtext c and is called a layer of “ mask” added by user A to protect
plaintext Pm . In fact, the cryptosystemtext c = (A1, A2) received by user B is two
points on elliptic curve CE , where

A1 = kB, A2 = Pm + kQB = Pm + k(aB · B).

Even if the third user knows the private key aB of user B (assuming that the private
key of user B is not secure), decryption with A2 − aB · B cannot obtain plaintext
Pm , because

A2 − aB · B = Pm + kQB − aB B = Pm + k(aB · B) − aB · B �= Pm,

if k �= 1.
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The two elliptic curve cryptosystems introduced above are based on the selected
elliptic curve CE and a point B on CE as the basis of discrete logarithm. How to
randomly select CE and B needs further research.

Lemma 6.7 Let x3 + ax + b ∈ Fq [x] be a cubic polynomial, then x3 + ax + b = 0
have nomultiple roots in the split domain if and only if the discriminant 4a3 + 27b2 �=
0.

Proof This conclusion can be deduced directly from the root formula of cubic alge-
braic equation.

In order to randomly select an elliptic curve on Fq , CE is determined by equation
y2 = x3 + ax + b at χ(Fq) �= 2, 3. Randomly select three elements (x0, y0, a) in
Fq , let

b = y20 − (x30 + ax0).

Checkwhether f (x) = x3 + ax + b hasmultiple roots. FromLemma 6.7, just check
whether discriminant 4a3 + 27b2 is 0. If f (x) has no multiple roots, then select the
elliptic curve y2 = x3 + ax + b. Where (x0, y0) ∈ CE is a point on an elliptic curve.
So let B = (x0, y0) is the base of discrete logarithm. Similarly, for q = 2r or q = 3r ,
we can also randomly draw an elliptic curve CE and determine the basis B ∈ CE of
the discrete logarithm at the same time.

It should be noted that at present, no algorithm can calculate the number of points
Nq of any elliptic curve. Some special algorithms, such as schoof algorithm, are quite
complex and lengthy in practical application, although the computational complexity
is polynomial.

Now we introduce the second method of selecting elliptic curves, called mod p
method. An elliptic curve CE , if E is a number field, such as E = R, Q, C, CE

is called a global curve. We use the mod p method to convert a global curve into a
“local” curve. Firstly, a point B ∈ CE on a global curveCE andCE is selected, where
B is the group element of Mordell group, its addition order is ∞, where E = Q is
the rational number field.

CE : y2 = x3 + ax + b, a, b ∈ Q.

Let p be a prime number and coprime with the integers in the denominators of a and
b, then we obtain an elliptic curve on Fp,

CE mod p : y2 ≡ x3 + ax + b(mod p), a, b ∈ Fp.

and a point Bmod p on CE mod p, when localizing an elliptic curve, the choice of
prime p only needs to satisfy

p � aand b ’s denominator, and 4a3 + 27b2 �≡ 0(mod p).

In fact, we can ask further
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Np = |CE mod p| = prime. (6.20)

In this way, the Mordell group of CE mod p is a cyclic group, and any finite point
of CE mod p will be the generator of the group. At present, there is no deterministic
algorithm for selecting the prime number p satisfying Formula (6.20), and it is gen-
erally speculated that a probabilistic algorithm with success probability ≥ O( 1

log p )

exists.

6.3 Elliptic Curve Factorization

In 1986, mathematician H.W. Lenstra used elliptic curve to find a new method of
factor decomposition. Lenstra’s method has greater advantages than the known old
algorithms in many aspects, which is also one of the main reasons why elliptic curve
has attracted more and more attention in the field of cryptography, We first introduce
a classical factorization method called Pollard (p − 1) algorithm.

(p − 1) algorithm
Suppose n is a compound number, and p is a prime factor of n; of course, p is

unknown and needs to be further determined. If p − 1 happens to have some small
prime factors, or all prime factors of p − 1 are not too large, the essence of (p − 1)
method is to find the prime factor p with this property of n. (p − 1) method can be
completed in the following steps:

1. Let B be a positive integer. Select a positive integer k so that k is a multiple of
most positive integers smaller than B, for example, k = B!, or k can be the least
common multiple of all positive integers smaller than B.

2. Select a positive integer a to satisfy 2 ≤ a ≤ n − 2, (a, n) = 1, such as a = 2,
or a = 3, and any randomly selected positive integer.

3. Using the “repeated squaremethod” to calculate theminimumnonnegative resid-
ual ak mod n of ak under mod n.

4. The maximum common divisor d = (ak − 1, n) of ak − 1 and n is calculated
by Euclidean rolling division method.

5. If d = 1 or d = n, that is, if d is the trivial factor of n, re select a, and then repeat
steps 1–4 above.

In order to explain the working principle of (p − 1) algorithm, we further assume
that k is a multiple of all positive integers less than B, and p|n,

p − 1 =
∏

pαi
i ,where ∀ pαi

i ≤ B. (6.21)

There is p − 1|k. By Fermat congruence theorem,

a p−1 ≡ 1(mod p),=⇒ ak ≡ 1(mod p).

So p|d, where d = (ak − 1, n).
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Definition 6.4 Suppose n is a compound number, p|n. B is a sufficiently large
positive integer arbitrarily selected, and p is called B−smooth prime, if Eq. (6.21)
holds. That is, p − 1 can be decomposed into the product of prime powers less than
B.

Lemma 6.8 Suppose n is a compound number and B is a positive integer. If n has a
B−smoothing prime factor p, select k and a according to the algorithm steps 1 − 4,
then we have d = (ak − 1, n) > 1, so we have factor decomposition n = d · n

d .

Proof If p is a smoothing prime factor of n, then we have p|(ak − 1, n), thus d > 1.
The Lemma holds.

In the above algorithm, if d = (ak − 1, n) = n. That is n|ak − 1, if the algorithm
fails, we must reselect a and carry out a new round of testing.

Example 6.2 Factorization of n = 540143, if (p − 1) method is used, then choose
B = 8, k = 840, is the least common multiple of 1, 2, . . . , 8, let a = 2, calculate the
minimum nonnegative residue of 2840 under mod n,

2840 ≡ 53047(mod 540143).

Calculate (2840 − 1, n),

d = (2840 − 1, n) = (53046, 540143) = 421.

So we have factorization 540143 = 421 × 1283.

Pollard’s (p − 1) method is essentially the multiplication group of Zp, the order
of Z

∗
p cannot be divided by a huge prime number; otherwise, this method will not

work. Lenstra can overcome this disadvantage by using elliptic curves for factor
decomposition, because there aremany elliptic curves to choose from, we can always
hope that the order of Mordell group on an elliptic curve is not divided by a huge
prime number. Next, we introduce Lenstra’s method in detail. First, we discuss the
elliptic curve mod n.

The following general assumption is that n is an odd number and a compound
number, p|n (p is unknown) and p > 3. Let m be a positive integer, x1, x2 be two
rational numbers, and the denominators of x1 and x2 are mutually prime with m, so
that x1 − x2 = c

d is a reduced fraction, then define

x1 ≡ x2(modm), if m|c. (6.22)

Lemma 6.9 Suppose x1 ∈ Q is a rational number, if its denominator and m are
mutually prime, there is a unique nonnegative integer r , such that x1 ≡ r(modm).
r is called the nonnegative residue of x1 under modm, denote as r = x1 modm.

Proof Write x1 = b
a , where (a,m) = 1, x1 − x = −ax+b

a , because the congruence
equation −ax + b ≡ 0(modm) has a unique solution r , 0 ≤ r < m. So there is a
unique r such that x1 ≡ r(modm). The Lemma holds.
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In order to randomly generate an elliptic curve CE over the rational number field
Q, we randomly select three integers a, x0, y0 ∈ Z, let b = y20 − x30 − ax0 to satisfy


 = 4a2 + 27b2 �= 0, and (
, n) = 1. (6.23)

We get an elliptic curve CE : y2 = x3 + ax + b, where (x0, y0) ∈ CE . Because
a, b ∈ Z, 
 = 4a2 + 27b2 and n are coprime, then for all prime p, p|n,=⇒ 
 �≡
0(mod p). Therefore, as a cubic algebraic equation over a finite fieldFp, x3 + ax + b
has no multiple roots, so we obtain a “local” elliptic curve CE mod p, where

CE mod p : y2 ≡ x3 + ax + b(mod p). (6.24)

And a point (x0 mod p, y0 mod p) ∈ CE mod p on CE mod p, let’s write this point
on CE mod p with P , that is

P = (x0 mod p, y0 mod p) ∈ CE mod p.

Next, we want to calculate kP , like the “continuous square method” of multipli-
cation, and there is a similar continuous doubling method for addition.

Lemma 6.10 When k is a huge integer, the computational complexity of kP is

T ime(kP) = log k · T ime(P).

Proof k is expressed as a binary integer, i.e.,

k = a0 + a12 + a22
2 + · · · + am−12

m−1,∀ ai = 0 or 1.

We can double continuously, that is, 2 j P + 2 j P = 2 · 2 j P(0 ≤ j ≤ m − 2), thus
obtain kP , m is the binary digit of k, m = O(log k), there is

T ime(kP) = log k · T ime(P).

The Lemma holds.

Theorem 6.2 Let CE be an elliptic curve over the rational field Q, define the equa-
tion as y2 = x3 + ax + b, where a, b ∈ Z, and (4a3 + 27b2, n) = 1. Let P1 and P2
be two points on CE , and their denominators are coprime with n, and P1 �= −P2,
P1 + P2 ∈ CE. Let P1 + P2 = (x, y), then the necessary and sufficient condition for
the denominator of x and y to be mutually prime with n is that there is no prime
factor p|n of n, P1 mod p and P2 mod p are two points on the local curve CE mod p,

P1 mod p + P2 mod p = 0.

Proof Let P1 = (x1, y1), P2 = (x2, y2) is the two points on CE . P1 + P2 = (x, y).
If the denominators of x and y are coprime with n, we have to prove
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P1 mod p + P2 mod p �= 0,∀ p|n. (6.25)

If x1 �≡ x2(mod p), it is obvious that Formula (6.4) is true from Formula (6.25).
Might as well make x1 ≡ x2(mod p). If P1 = P2, now x1 = x2, y1 = y2, we only
need p � 2y1. If p|2y1, because the coordinates of 2P1 = (x, y) are determined by
equation (6.5), {

x = (
3x21+α

2y1
)2 − 2x1;

y = y1 − (
3x21+α

2y1
)(x1 − x).

Whereα = 3x21+a
2y1

. By p|2y1,=⇒ 3x21 + α ≡ 0(mod p). Becausen is anoddnumber,
so p|y1, we have {

x31 + ax1 + b ≡ 0(mod p);
3x21 + a ≡ 0(mod p).

That is, x1 is the root of f (x) = x3 + ax + b andderivative f ′(x) = 3x2 + a(mod p).
This is contradictory to (4a3 + 27b2, n) = 1. So you might as well let P1 �= P2, now
x1 ≡ x2(mod p), x1 �= x2(because P1 �= −P2), we can write

x2 = x1 + tpr , r ≥ 1.

The numerator and denominator of t and p aremutually prime, which can be deduced
from Formula (6.4),

y2 = y1 + spr .

On the other hand, by y22 = x32 + ax2 + b, there is

y22 = (x1 + tpr )3 + a(x1 + tpr ) + b

≡ x31 + ax1 + b + tpr (3x21 + a)(mod p)

≡ y21 + tpr (3x21 + a)(mod p).

(6.26)

But x1 ≡ x2(mod p), y1 ≡ y2(mod p), there is

P1 mod p + P2 mod p = 2P1.

The above formula is infinite if and only if y1 ≡ y2 ≡ 0(mod p). If y1 ≡ y2 ≡
0(mod p), then y22 − y21 = (y2 − y1)(y2 + y1) will be divided by pr+1. Therefore,
Equation (6.26) contains 3x21 + a ≡ 0(mod p). It’s impossible. Because x3 + ax +
b(mod p) has no multiple roots, x1 cannot be the roots of x3 + ax + b and derivative
3x2 under mod p. This proves that Formula (6.25) holds under the assumption.

Conversely, if Eq. (6.25) holds, we prove that the denominator of P1 + P2 and
n are coprime. Fixed p|n, if x1 �≡ x2(mod p), from equation (6.4), the denominator
of P1 + P2 and p are coprime. Might as well make x1 ≡ x2(mod p), then y2 ≡
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±y1(mod p). Because P1 mod p + P2 mod p �= 0, we have y2 ≡ y1 �≡ 0(mod p).
First assume P2 = P1, then Equation (6.5) and the fact of y1 �≡ 0(mod p) prove
that the denominator of P1 + P2 = 2P1 and p is coprime. Finally, let P2 �= P1, we
write x2 = x1 + tpr , (t, p) = 1, using the congruence of Formula (6.26), there are

y22 − y21
x2 − x1

≡ 3x21 + a(mod p).

Because p � y2 + y1 ≡ 2y1(mod p), so the denominator of

y22 − y21
(y2 + y1)(x2 − x1)

= y2 − y1
x2 − x1

cannot be divided by p, by (6.4), the denominator of P1 + P2 cannot be divided by
p. Since p|n is arbitrary, we complete the proof of the whole theorem.

Lenstra algorithm.
Let n be an odd compound number, we hope to find a nontrivial factor d of n, d|n,

1 < d < n, so there is factorization n = d · n
d . Previously, we have introduced the

random selection of an elliptic curve CE on rational number field Q and a point P on
CE . Lenstra’s algorithm hopes to factorize n by (CE , P). There is no doubt that the
Lenstra algorithm to be explained below is also a probability algorithm. If (CE , P)

cannot be factorized successfully, as long as the probability of failure is p < 1,
select another elliptic curve and a point above. If this continues, after randomly and
independently selecting n elliptic curves, the probability of successful factorization
of n,

P{n = d · n
d

} ≥ 1 − pn(p < 1).

When n is sufficiently large, the success probability of Lenstra algorithm can be
infinitely close to 1. Therefore, the so-called Lenstra algorithm can be simply sum-
marized as an algorithm that factorizes n by using any rational elliptic curve (CE , P),
and its failure probability is p < 1.

Let (CE , P) be a given rational elliptic curve, and B and C be the positive upper
bound of selection. Let k be divided by some small prime powers, to be exact,

k =
∏

1<l≤B

lαl , (6.27)

where αl is the largest index satisfying lαl ≤ C . Thus αl = [ logClog l ].
Next,we calculate kP(mod n), by (6.4) and (6.5), if x2 − x1 and2y1 have a rational

number whose denominator and n are not prime, for example d = (x2 − x1, n), 1 <

d < n; Then we have factorization n = d · n
d . If d = n, then re select point P on

rational elliptic curves CE and CE . By Theorem 6.2, d > 1 appears in these rational
numbers x2 − x1 and y1 if and only if there is a k1, such that
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k1 · (P mod p) = 0,∀ p|n.

From the selection of equation k in (6.27), there is a maximum probability k1|k, thus

k · (P mod p) = 0,∀ p|n.

Therefore, in Lenstra algorithm, by calculating the rational point kP , there is a great
probability that there is a certain p, p|n such that

k(P mod p) = 0, p|n, is a prime number. (6.28)

By Theorem 6.2, let P = (x1, y1), (k − 1)P = (x2, y2), thus d = (x2 − x1, n) > 1
or (2y1, n) = d ′ > 1, we obtain the nontrivial factorization of n.

From the above Lenstra algorithm, the key problem is to calculate k · P . Using
the continuous doubling method given in Lemma 6.10, we only need to calculate
2P, 2(2P), 2(4P), . . . , 2α2 P , 3(2α2 P), 3(3 · 2α2 P) · · · 3α32α2 P , this continues until
(
∏

1<l≤B l
αl )P , i.e., kP .

For the probability estimation and computational complexity ofLenstra algorithm,
see 1986 of reference 6.

Exercise 6

1. LetCE = {(x, y) ∈ C | y2 = x3 + ax + b, a, b ∈ R} is a complex elliptic curve,
then CE

⋂
R

2 is a subgroup of CE , determine all subgroups of CE whose coor-
dinates are real numbers.

2. The points of order n on complex elliptic curve and real elliptic curve are deter-
mined.

3. Take an example of a rational elliptic curve CE , there are exactly two points on
CE with order 2. Another example is that there are exactly four points on CE

with order 2.
4. Let CE is a real elliptic curve, P ∈ CE is a finite point, determine the geometric

equivalence condition of o(P) = 2, o(P) = 3, o(P) = 4.
5. Calculate the order of points on the following rational elliptic curves:

(i) P = (0, 16),CE : y2 = x3 + 256;
(i i) P = ( 12 ,

1
2 ),CE : y2 = x3 + x

4 ;
(i i i) P = (3, 8),CE : y2 = x3 − 43x + 16;
(iv) P = (0, 0),CE : y2 + y = x3 − x2.

6. Proved that the following elliptic curve has exactly q + 1 points in Fq :
(a) y2 = x3 − x , when q ≡ 3(mod 4);
(b) y2 = x3 − 1, when q ≡ 2(mod 3), q is odd;
(c) y2 + y = x3, when q ≡ 2(mod 3).

7. Let q = 2r , the elliptic curve CE on Fq be: y2 + y = x3; P = (x, y) ∈ CE ,
calculate 2P and −P . If q = 16, prove that every point on CE has order 3.

8. Please give a probabilistic algorithm to find a nonsquare number in the finite
field Fq .
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9. The deterministic algorithm can map the embedding of plaintext units to any
Fq− elliptic curve. Please give the specific algorithm process for the following
elliptic curves:
(1) CE : y2 = x3 − x , when q ≡ 3(mod 4),
(2) CE : y2 + y = x3, when q ≡ 2(mod 3).

10. Let CE be an elliptic curve on the finite field Fp, and Nr represents the number
of midpoint of CE in the finite field Fpr , then
(i) If p > 3, when r > 1, Nr is not prime.
(i i)When p = 2, 3, a counterexample is given to show that Nr is a prime number.

11. Take an example of an elliptic curve CE , which has only one point on F4, the
infinity point. Take Nr as the number of points of CE on F4r , then Nr is the
square of Mersenne prime 2r − 1.

12. Decompose n = 53467 at k = 840, a = 2 using Pollard’s (p − 1) method.
13. Let nk = 22

k + 1 be Fermat number, the following is Pepin’s method to detect
whether nk is a prime number:

(i) nk is a prime, if and only if there is an integer a, a2
2k−1 ≡ −1(mod nk).

(i i) If nk is a prime, then a ∈ Z
∗
nk over 50% has the congruence property of (i).

(i i i) When k > 1, we can always choose a = 3, 5, or a = 7.
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Chapter 7
Lattice-Based Cryptography

7.1 Geometry of Numbers

Let R
n be an n-dimensional Euclidean space and x = (x1, x2, . . . , xn) ∈ R

n be an
n-dimensional vector, x can be a rowvector or a columnvector, depending on the situ-
ation. If x ∈ Z

n , then x is called a integral point.Rm×n is allm × n-dimensionalmatri-
ces on R. x = (x1, x2, . . . , xn) ∈ R

n , y = (y1, y2, . . . , yn) ∈ R
n , define the inner

product of x and y as

〈x, y〉 =
n∑

i=1

xi yi . (7.1)

The length |x | of vector x is defined as

|x | = √〈x, x〉 =
n∑

i=1

x2i . (7.2)

λ ∈ R, then λ · x is defined as

λx = (λx1, λx2, . . . , λxn). (7.3)

If the inner product 〈x, y〉 = 0 of two vectors x and y, x and y are said to be
orthogonal, denote as x⊥y.

Lemma 7.1 Let x, y ∈ R
n, λ ∈ R is any real number, then

(i) |x | ≥ 0, |x | = 0 if and only if x = 0 is a zero vector;
(ii) |λx | = |λ||x |, ∀ x ∈ R

n, λ ∈ R;
(iii) (Trigonometric inequality) |x + y| ≤ |x | + |y|, and |x − y| ≥ ||x | − |y||;
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(iv) (Pythagorean theorem) If and only if x⊥y, we have

|x ± y|2 = |x |2 + |y|2.

Proof (i) and (ii) can be derived directly from the definition. To prove (iii), let
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R

n , by Hölder inequality:

∣∣∣∣∣

n∑

i=1

xi yi

∣∣∣∣∣ ≤
[(

n∑

i=1

x2i

)(
n∑

i=1

y2i

)] 1
2

.

So there is

|x + y|2 =
n∑

i=1

(xi + yi )
2 =

n∑

i=1

x2i + 2
n∑

i=1

xi yi +
n∑

i=1

y2i

≤
n∑

i=1

x2i + 2

∣∣∣∣∣

n∑

i=1

xi yi

∣∣∣∣∣+
n∑

i=1

y2i

≤
⎛

⎝

√√√√
n∑

i=1

x2i +
√√√√

n∑

i=1

y2i

⎞

⎠
2

= (|x | + |y|)2,

so (iii) holds. Then, by the definition of inner product,

〈x ± y, x ± y〉 = 〈x, x〉 ± 2〈x, y〉 + 〈y, y〉,

if x⊥y, then
|x ± y|2 = |x |2 + |y|2.

Conversely, if x is not orthogonal to y, then 〈x, y〉 	= 0, thus

|x ± y|2 	= |x |2 + |y|2.

Lemma 7.1 holds.

From Pythagorean theorem, for orthogonal vector x⊥y, we have the following
conclusion,

|x + y| = |x − y|, if x⊥y. (7.4)

Definition 7.1 Let R ⊂ R
n be a subset, 0 ∈ R, R is called a symmetric convex

body of R
n , if

(i) x ∈ R,⇒ −x ∈ R (Symmetry);
(ii) Let x, y ∈ R, λ ≥ 0, μ ≥ 0, and λ + μ = 1, then λx + μy ∈ R (Convexity).
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The following example is a famous example of a symmetric convex body
defined by a set of linear inequalities. Let A ∈ R

m×n be an m × n-order matrix,
c = (c1, c2, . . . , cn) ∈ R

n , and ∀ ci ≥ 0, R(A, c) is defined as the set of solu-
tions of x = (x1, x2, . . . , xn) ∈ R

n defined by the following m linear inequalities,
let A = (ai j )m×n , ∣∣∣∣∣∣

n∑

j=1

ai j x j

∣∣∣∣∣∣
≤ ci , 1 ≤ i ≤ m. (7.5)

We have

Lemma 7.2 For any A ∈ R
m×n, and any positive vector c = (c1, c2, . . . , cn) ∈ R

n,
then R(A, c) is a symmetric convex body in R

n.

Proof Obviously zero vector x = (0, 0, . . . , 0) ∈ R(A, c), and if x ∈ R(A, c) ⇒
−x ∈ R(A, c). Soweonly prove the convexity ofR(A, c). Suppose x, y ∈ R(A, c),
let

z = λx + μy, λ > 0, μ > 0, λ + μ = 1.

Then for any 1 ≤ i ≤ m, we have

|ai1z1 + ai2z2 + · · · + ainzn|
≤ λ|ai1x1 + ai2x2 + · · · + ainxn| + μ|ai1y1 + ai2y2 + · · · + ain yn|
≤ λci + μci = ci .

So there is z = λx + μy ∈ R(A, c). Thus, R(A, c) is a symmetrical convex body.
Lemma 7.2 holds.

Lemma 7.3 LetR ⊂ R
n be a symmetrical convex body, x ∈ R, then when |λ| ≤ 1,

we have λx ∈ R.

Proof By convexity, let

ρ = 1

2
(1 + λ), σ = 1

2
(1 − λ).

Then ρ ≥ 0, σ ≥ 0, and ρ + σ = 1. So there is

ρx + σ(−x) = λx ∈ R.

The Lemma holds.

Lemma 7.4 If x, y ∈ R, then λx + μy ∈ R, where λ,μ are real numbers, and
satisfies |λ| + |μ| ≤ 1.

Proof Let η1 be the sign of λ and η2 be the sign of μ, then by Lemma 7.3,
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x ′ = η1(|λ| + |μ|)x ∈ R,

y′ = η2(|λ| + |μ|)y ∈ R.

Let ρ = |λ|
|λ|+|μ| , σ = |μ|

|λ|+|μ| , then ρ + σ = 1. By definition, we have

λx + μy = ρx ′ + σ y′ ∈ R,

thus the Lemma holds. And this result is not difficult to be extended to the case of n
variables.

Lemma 7.5 (Blichfeldt) Let R ⊂ R
n be any region in R

n and V be the volume of
R. If V > 1, then there are two different vectors x ∈ R, x ′ ∈ R so that x − x ′ is an
integral point (thus a nonzero integral point).

Proof For ∀x = (x1, x2, . . . , xn) ∈ R
n , we define

[[x]] = ([x1], [x2], . . . , [xn]) ∈ Z
n (7.6)

and
[x] = (δ1, δ2, . . . , δn) ∈ Z

n, (7.7)

where [xi ] is the square bracket function of xi and δi is the nearest integer to xi .
For each integral point u ∈ Z

n , define

Ru = {x ∈ R|[[x]] = u}

and
Du = {x − u|x ∈ Ru}.

Because Ru1 ∩ Ru2 = ∅, if u1 	= u2. Thus by R = ⋃
u Ru ,

⇒ V = Vol(R) =
∑

u

Vol(Ru)

=
∑

u

Vu > 1,

where Vu = Vol(Ru). Thus Vu = Vol(Du). If Du is disjoint, then

∑

u

Vu = Vol

(
⋃

u

Du

)
⊂ [0, 1) × · · · × [0, 1).

There is ∑

u

Vu ≤ 1,
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so there is a contradiction. Therefore, there must be two different integral points
u and u′ (u 	= u′) ⇒ Du ∩ Du′ 	= 0, that is x − u = x ′ − u′ ⇒ x − x ′ = u − u′ ∈
Z
n . The Lemma holds.

Lemma 7.6 (Minkowski) LetR be a symmetric convex body, and the volume ofR

V = Vol(R) > 2n,

then R contains at least one nonzero integer point.

Proof Let
1

2
R =

{
1

2
x |x ∈ R

}
.

Thus

Vol

(
1

2
R

)
= 1

2n
V > 1,

by Lemma 7.5, there are integral points where x ′, x ′′ ∈ 1
2R ⇒ x ′ − x ′′ = u is

nonzero. We prove u ∈ R. Write x ′ = 1
2 y, x

′′ = 1
2 z, where y, z ∈ R. Then

u = 1

2
y − 1

2
z, y ∈ R, z ∈ R.

By Lemma 7.4, then u ∈ R. The Lemma holds.

Remark 7.1 The aboveMinkowski’s conclusion cannot be improved, that isV > 2n ,
it cannot be improved to V ≥ 2n . A counterexample is

R = {x ∈ R
n|x = (x1, x2, . . . , xn),∀ |xi | < 1}.

Obviously Vol(R) = 2n , but there is no nonzero integer point in ordinary R.

When Vol(R) = 2n , in order to make a symmetric convex body R still have
nonzero integral points, we need to make some supplementary constraints on R,
first, we consider the bounded region. Let R ⊂ R

n , call R bounded, if

R = {x = (x1, x2, . . . , xn) ∈ R
n||xi | ≤ B, 1 ≤ i ≤ n},

where B is a bounded constant.

Lemma 7.7 Let A∈R
n×n be a reversiblematrix, d = |det(A)| > 0, c = (c1, c2, . . . ,

cn) ∈ R
n is a positive vector, that is∀ ci > 0, then the symmetric convex bodyR(A, c)

defined by Eq. (7.5) is bounded and its volume

Vol(R(A, c)) = 2nd−1c1c2 · · · cn.



258 7 Lattice-Based Cryptography

Proof Let A = (ai j )n×n . Write Ax = y, then x = A−1y. And let A−1 = (bi j )n×n ,
then for any xi , there is

|xi | =
∣∣∣∣∣∣

n∑

j=1

bi j y j

∣∣∣∣∣∣
≤

n∑

j=1

|bi j | · c j ≤ B,

where B is a bounded constant. Therefore, R(A, c) is a bounded set. Obviously

Vol(R(A, c)) =
∫

· · ·
∫

x=(x1,x2,...,xn)∈R (A,c)

dx1dx2 · · · dxn,

do variable replacement Ax = y, then

dx = dx1 · · · dxn = 1

|det(A)|dy1dy2 · · · dyn .

Thus

Vol(R(A, c)) = 1

|det(A)|
c1∫

−c1

· · ·
cn∫

−cn

dy1dy2 · · · dyn

= 2nd−1
n∏

i=1

ci ,

Lemma 7.7 holds.

Remark 7.2 In (7.5), “≤” is changed to “<” to defineR(A, c), and the above lemma
is still holds.

Now consider the general situation, let A = (ai j )m×n . Ifm > n, and rank(A) ≥ n,
then R(A, c) defined by Eq. (7.5) is still a bounded region. Obviously if m < n, or
m = n, rank(A) < n, thenR(A, c) is an unbounded region, and V = ∞. Therefore,
we have the following Corollary.

Corollary 7.1 Let A = (ai j )m×n, m < n or m = n, det(A) = 0, then for any small
positive vector c = (c1, c2, . . . , cn), 0 < ci < ε,R(A, c) contains a nonzero integer
point. In other words, the following m inequalities

∣∣∣∣∣∣

n∑

j=1

ai j x j

∣∣∣∣∣∣
< ε, 1 ≤ i ≤ m.

There exists a nonzero integer solution x = (x1, x2, . . . , xn) ∈ Z
n.
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Proof When ε > 0 given, then Vol(R(A, c)) = ∞ > 2n . By Lemma 7.6, R(A, c)
contains at least one nonzero zero point.

Let A ∈ R
m×n be a matrix of orderm × n, c = (c1, c2, . . . , cn) ∈ R

n is a positive
vector, that is ∀ ci > 0, write A = (ai j )m×n ,R ′(A, c) is defined as the set of solutions
x = (x1, x2, . . . , xn) of the following linear inequality:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣

n∑

j=1

a1 j x j

∣∣∣∣∣∣
≤ c1,

∣∣∣∣∣∣

n∑

j=1

ai j x j

∣∣∣∣∣∣
< ci , i = 2, . . . ,m.

(7.8)

When A ∈ R
n×n is a reversible square matrix, we discuss the nonzero integral point

in symmetric convex body R ′(A, c).

Lemma 7.8 If A ∈ R
n×n is a reversible matrix and c = (c1, c2, . . . , cn) is a positive

vector, when
c1c2 · · · cn ≥ |det(A)|, (7.9)

Then R ′(A, c) contains a nonzero integer point.

Proof When c1c2 · · · cn > |det(A)|, because of

Vol(R ′(A, c)) = 2nc1c2 · · · cn
|det(A)| > 2n,

by Lemma 7.6 and 7.7, then the proposition holds, we only discuss the case when
the equal sign of formula (7.9) holds.

Let ε be any positive real number, 0 < ε < 1, then by Lemma 7.7, there is a
nonzero integral solution x (ε) = (x (ε)

1 , x (ε)
2 , . . . , x (ε)

n ) ∈ Z
n satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣

n∑

j=1

a1 j x
(ε)
j

∣∣∣∣∣∣
≤ c1 + ε ≤ c1 + 1,

∣∣∣∣∣∣

n∑

j=1

ai j x
(ε)
j

∣∣∣∣∣∣
< ci , 2 ≤ i ≤ n.

(7.10)

And there is an upper bound B independent of ε, which satisfies

|x (ε)
j | ≤ B, 1 ≤ j ≤ n.
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The integral point x (ε) satisfying the above bounded condition is finite, so there must
be a nonzero integral point x 	= 0, which holds (7.10) for any ε > 0. Let ε → 0, then
the Lemma holds.

In the following discussion, we make the following restrictions on R ⊂ R
n:

R is a symmetric convex body, R is bounded, and R is a closed subset of R
n .

(7.11)
Obviously, when A is an n-order reversible square matrix, for any positive vector
c = (c1, c2, . . . , cn),R(A, c) satisfies the above restriction (7.11), butR ′(A, c) does
not because R ′(A, c) is not closed.

Definition 7.2 IfR ⊂ R
n satisfies the restriction (7.11), then for any x ∈ R

n , define
the distance function F(x) as

F(x) = FR (x) = inf{λ|λ > 0, λ−1x ∈ R}. (7.12)

By definition, it is obvious that we have the following ordinary conclusions:

(i) F(x) = 0 ⇔ x = 0;
(ii) If A is a reversible n-order square matrix, the distance function defined by

R(A, c) is

F(x) = max
1≤i≤n

c−1
i

∣∣∣∣∣∣

n∑

j=1

ai j x j

∣∣∣∣∣∣
. (G1.12’)

Property (i) can be derived from the boundedness of R, and property (ii) can be
derived directly from the definition ofR(A, c). Laterwewill see that 0 ≤ F(x) < ∞
holds for all x ∈ R

n . The main property of distance function F(x) is the following
Lemma.

Lemma 7.9 If F(x) is a distance function defined by R satisfying the constraints,
then

(i) Let λ ≥ 0, then x ∈ λR ⇔ F(x) ≤ λ;
(ii) F(λx) = |λ|F(x) holds for all λ ∈ R, x ∈ R

n;
(iii) F(x + y) ≤ F(x) + F(y),∀ x, y ∈ R

n.

Proof Since R is closed, by the definition, F−1(x)x ∈ R. Thus, if λ ≥ F(x), by
Lemma 7.3, then

λ−1x = F(x)

λ
· F−1(x)x,

∣∣∣∣
F(x)

λ

∣∣∣∣ ≤ 1.

We have λ−1x ∈ R ⇒ x ∈ λR. Conversely, if λ < F(x) ⇒ λ−1x /∈ R. So when
x ∈ λ−R, there must be λ ≥ F(x), (i) holds.

(ii) is ordinary. Because |λ|−1F−1(x)λx ∈ R. There is

F(λx) ≤ |λ|F(x).
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Conversely, let δ = F(λx), because of δ−1λx ∈ R, you might as well let λ > 0, thus

F(x) ≤ δ

λ
=⇒ λF(x) ≤ F(λx).

So there is F(λx) = |λ|F(x), (ii) holds.
To prove (iii), we let μ1 = F(x), μ2 = F(y),=⇒ μ−1

1 x ∈ R, μ−1
2 y ∈ R. By

Lemma 7.4, we have

(μ1 + μ2)
−1(x + y) = μ1

μ1 + μ2
(μ−1

1 x) + μ2

μ1 + μ2
(μ−1

2 y) ∈ R.

Thus
F(x + y) ≤ μ1 + μ2.

The Lemma holds.

Let the volume of R ∈ R
n be V > 0, there are n linearly independent vec-

tors {α1, α2, . . . , αn} in R to form a set of bases of R
n . For any real number

μ1, μ2, . . . , μn , by Lemma 7.9, we have

F(μ1α1 + · · · + μnαn) ≤ |μ1|F(α1) + |μ2|F(α2) + · · · + |μn|F(αn)

≤ |μ1| + |μ2| + · · · + |μn|.

Because αi ∈ R ⇒ F(αi ) ≤ 1, so the above formula holds. That proves for ∀ x ∈
R

n ⇒ F(x) ≤ ∞.

Corollary 7.2 Let R ⊂ R
n meet the limiting conditions (7.11), and Vol(R) > 0,

then

(i) ∀ x ∈ R
n, there is λ such that x ∈ λR;

(ii) Let {α1, α2, . . . , αn} ⊂ R be a set of bases of R
n, then

{
n∑

i=1

μiαi ||μ1| + |μ2| + · · · + |μn| ≤ 1

}
⊂ R.

Proof Because F(x) < ∞, so by (i) of Lemma 7.9, we can directly deduce the
conclusion of (i) and (ii) given directly by Lemma 7.4.

Now let j be a subscript, and we define λ j as

λ j = min{λ ≥ 0|λR contains j linear independent integral points in R
n}, (7.13)

and λ j is called the j th continuous minimum of R. By Lemma 7.3, λR ⊂ λ′R, if
0 ≤ λ ≤ λ′. Therefore, λ increases continuously, then λR can always contain any
set of desired vectors. Therefore, the existence of λ j is proof.
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By Lemma 7.6, let V be the volume of R, then Vol(λR) = λnV , for the first
continuous minimum λ1, we have the following estimation

λn
1V ≤ 2n. (7.14)

Forλ j ( j ≥ 2), there is no explicit upper bound estimation, butwe have the following
conclusions.

Lemma 7.10 LetR ⊂ R
n be a convex body satisfying the limiting condition (7.11),

V = Vol(R), λ1, λ2, . . . , λn be n continuous minima of R, then we have

2n

n! ≤ Vλ1λ2 · · · λn ≤ 2n. (7.15)

Proof We only prove the left inequality of the above formula, and we continuously
select the linear independent whole point x (1), x (2), . . . , x ( j) such that x ( j) ∈ λ jR,
and x ( j) x (1), x (2), . . . , x ( j−1) is linearly independent. Let x ( j)=(x j1, x j2, . . . , x jn) ∈
Z
n . Because matrix A = (x ji )n×n is an integer matrix, and det(A) 	= 0, so

| det(A)| ≥ 1.

By Lemma 7.9, for any constant μ1, μ2, . . . , μn , we have

F(μ1x
(1) + μ2x

(2) + · · · + μnx
(n))

≤ |μ1|F(x (1)) + |μ2|F(x (2)) + · · · + |μn|F(x (n))

≤ |μ1|λ1 + |μ2|λ2 + · · · + |μn|λn.

Thus, if |μ1|λ1 + |μ2|λ2 + · · · + |μn|λn ≤ 1, then

μ1x
(1) + μ2x

(2) + · · · + μnx
(n) ∈ R.

So set

R1 = {μ1x
(1) + μ2x

(2) + · · · + μnx
(n)||μ1|λ1 + |μ2|λ2 + · · · + |μn|λn ≤ 1} ⊂ R.

The volume of the left setR1 is

Vol(R1) =
∫

· · ·
∫

|μ1|λ1+|μ2|λ2+···+|μn |λn≤1

dμ1dμ2 · · · dμn = 2n| det(A)|
n!λ1 · · · λn

≥ 2n

n!λ1 · · · λn
.

So there is
2n

n!λ1 · · · λn
≤ Vol(R1) ≤ Vol(R) = V .
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Therefore, the left inequality of (7.15) holds. The proof of the right inequality is
quite complex and is omitted here. Interested readers can refer to the classic works
(1963, 1971) of J. W. S. Cassels.

An important application of the above geometry of numbers is to solve the problem
of rational approximation of real numbers, which is called Diophantine approxima-
tion in classical number theory. The main conclusion of this section is the following
simultaneous rational approximation theorem of n real numbers.

Theorem 7.1 Let θ1, θ2, . . . , θn be any n real numbers, θi 	= 0, then for any positive
number N > 1, there are nonzero positive integers q and p1, p2, . . . , pn to satisfy

{
|qθi − pi | < N− 1

n , 1 ≤ i ≤ n;
|q| ≤ N .

(7.16)

Proof The proof of the theorem is a simple application of Minkowski’s linear type
theorem (seeLemma7.8). Let A ∈ R

(n+1)×(n+1) be an (n + 1)-order reversible square
matrix, defined as

A =

⎛

⎜⎜⎜⎜⎝

−1 0 · · · · · · 0 θ1
0 −1 · · · · · · 0 θ2
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 −1 θn
0 · · · · · · 0 0 −1

⎞

⎟⎟⎟⎟⎠
.

Obviously |det(A)| = 1. Let (n + 1)-dimensional positive vector c = (N− 1
n , N− 1

n ,

. . ., N− 1
n , N ), because

c1c2 · · · cncn+1 = N−1 · N = 1 ≥ |det(A)|.

So by Lemma 7.8, the symmetric convex body R ′(A, c) defined by A and c has
a nonzero integral point x = (p1, p2, . . . , pn, q) 	= 0. We prove q 	= 0. Because
x 	= 0, if q = 0, then pk 	= 0 (1 ≤ k ≤ n), therefore, the k-th inequality in Eq. (7.16)
will produce the following contradiction,

1 ≤ |qθk − pk | < N− 1
n < 1.

So q 	= 0, we complete the proof of Theorem 7.1.

Corollary 7.3 Let θ1, . . . , θn be any n real numbers, then for any ε > 0, there is
rational number pi

q (1 ≤ i ≤ n) satisfies

∣∣∣∣θi − pi
q

∣∣∣∣ <
ε

q
. (7.17)
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Proof Any ε > 0 given, let N− 1
n < ε, Formula (7.17) can be derived directly from

Theorem 7.1.

7.2 Basic Properties of Lattice

Lattice is one of the most important concepts in modern cryptography. Most of the
so-called anti-quantum computing attacks are lattice based cryptosystems. What is
a lattice? In short, a lattice is a geometry in n-dimensional Euclidean space R

n , for
example L = Z

n ⊂ R
n , then Z

n is a lattice in R
n , which is called an integer lattice

or a trivial lattice. If Z
n is rotated once, we get the concept of a general lattice in

R
n , which is a geometric description of a lattice, next, we give an algebraic precise

definition of a lattice.

Definition 7.3 Let L ⊂ R
n be a nonempty subset, which is called a lattice in R

n , if

(i) L is an additive subgroup of R
n;

(ii) There is a positive constant λ = λ(L) > 0, such that

min{|x ||x ∈ L , x 	= 0} = λ, (7.18)

λ = λ(L) is called the minimal distance of a lattice L .

By Definition 7.3, a lattice is simply a discrete additive subgroup in R
n , in which

the minimum distance λ = λ(L) is the most important mathematical quantity of the
lattice. Obviously, we have

λ = min{|x − y||x ∈ L , y ∈ L , x 	= y}, (7.19)

Equation (7.19) shows the reason why λ is called the minimal distance of a lattice.
If x ∈ L and |x | = λ, x is called the shortest vector of L .

In order to obtain a more explicit and concise mathematical expression of any
lattice, we can regard an additive subgroup as a Z-module. First, we prove that any
lattice is a finitely generated Z-module.

Lemma 7.11 Let L ⊂ R
n be a lattice and {α1, α2, . . . , αm} ⊂ L be a set of vectors

in L, then {α1, α2, . . . , αm} is linearly independent inR if and only if {α1, α2, . . . , αm}
is linearly independent in Z.

Proof If {α1, α2, . . . , αm} is linearly independent in R, it is obviously linearly inde-
pendent inZ. conversely, if {α1, α2, . . . , αm} is linearly independent inZ, that is, any
linear combination

a1α1 + · · · + amαm = 0, ai ∈ Z,

we have a1 = a2 = · · · = am = 0, then the linear combination inR is equal to 0, that
is
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θ1α1 + θ2α2 + · · · + θmαm = 0, θi ∈ R. (7.20)

We prove θ1 = θ2 = · · · = θm = 0. By Lemma 7.1, for sufficiently large N > 1,
there are positive integers q 	= 0 and p1, p2, . . . , pm such that

{
|qθi − pi | < N− 1

m , 1 ≤ i ≤ m;
q ≤ N .

By (7.20), we have

|p1α1 + · · · + pmαm | = |(qθ1 − p1)α1 + · · · + (qθm − pm)αm |
≤ N− 1

m (|α1| + · · · + |αm |)
≤ N− 1

m max
1≤i≤m

|αi |.

Let λ be the minimal distance of L and ε > 0 be a sufficiently small positive number,
we choose

N > max

{
ε−m, max

1≤i≤m

|αi |m
λm

}
,

then N− 1
m < ε, and

N− 1
m max

1≤i≤m
|αi | < λ.

Thus
|p1α1 + · · · + pmαm | < λ.

Notice that p1α1 + · · · + pmαm ∈ L , so p1α1 + · · · + pmαm = 0. Since {α1, α2,

. . . , αm} is linearly independent on Z, p1 = p2 = · · · = pm = 0 is derived. For any
i , 1 ≤ i ≤ m, we get |θi | ≤ |qθi | < N− 1

m < ε. Since ε is any small positive number,
there is θ1 = θ2 = · · · = θm = 0. This proves that {α1, α2, . . . , αm} is also linearly
independent in R. Lemma 7.11 holds.

From the above lemma, any lattice L in R
n is a finitely generated Z-module.

Let {β1, β2, . . . , βm} ⊂ L be a set of Z-bases in L , then L as the rank of Z-module
satisfies

rank(L) = m ≤ n, (7.21)

and

L =
{

m∑

i=1

aiβi |ai ∈ Z

}
. (7.22)

If {β1, β2, . . . , βm} is a Z-basis of L and each βi is regarded as a column vector,
then the matrix
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B = [β1, β2, . . . , βm] ∈ R
n×m, rank(B) = m.

Equation (7.22) can be written as

L = L(B) = {Bx |x ∈ Z
m} ⊂ R

n. (7.23)

We take L as the Z-modules, m as the rank of lattice L , B ∈ R
n×m as the generating

matrix of lattice L , and {β1, β2, . . . , βm} as a set of generating bases of L .
If {α1, α2, . . . , αm} ⊂ R

n is any m column vectors in R
n , the Gram matrix of

A = [α1, α2, . . . , αm] ∈ R
n×m , {α1, α2, . . . , αm} is defined as

T = (〈αi , α j 〉)m×m .

Obviously, we have T = A′A, where A′ is the transpose matrix of A.

Lemma 7.12 Let A ∈ R
n×m, b ∈ R

n (m ≤ n is not required), then

(i) Let x0 ∈ R
m be a solution of A′Ax = A′b, then

|Ax0 − b|2 = min
x∈Rm

|Ax − b|2.

(ii) rank(A′A) = rank(A), and homogeneous linear equations Ax = 0 and A′Ax =
0 have the same solution.

(iii) A′Ax = A′b always has a solution x ∈ R
m, andwhen rank(A) = m, the solution

is unique
x = (A′A)−1A′b.

Proof First we prove (i). Let x0 ∈ R
m satisfies A′Ax0 = A′b, then for any x ∈ R

m ,
we have

Ax − b = (Ax0 − b) + A(x − x0) = γ + γ1 ∈ R
n.

We prove that γ and γ1 are two orthogonal vectors in R
n . Because

(A(x − x0))
′(Ax0 − b)

= (x − x0)
′A′(Ax0 − b)

= (x − x0)
′(A′Ax0 − A′b) = 0.

So γ⊥γ1, by Pythagorean theorem, we have

|Ax − b|2 = |Ax0 − b|2 + |A(x − x0)|2 ≥ |Ax0 − b|2.

So (i) holds.
To prove (ii), let VA be the solution space of Ax = 0 and VA′A the solution space of

A′Ax = 0, let’s proveVA = VA′A. First, there isVA ⊂ VA′A. Conversely, let x ∈ VA′A,
that is A′Ax = 0, then
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x ′A′Ax = 0 ⇒ (Ax)′Ax = 〈Ax, Ax〉 = 0.

The above formula holds if and only if Ax = 0, so x ∈ VA. There is VA = VA′A.
Notice that {

dim VA = m − rank(A)

dim VA′A = m − rank(A′A).

So rank(A) = rank(A′A), (ii) holds. To prove (iii), b ∈ R
n given, then the rank of

the augmented matrix of linear equation system A′Ax = A′b is

rank[A′A, A′b] = rank(A′[A, b])
≤ rank(A′) = rank(A) = rank(A′A).

Therefore, the augmented matrix and the coefficient matrix have the same rank, so
the linear equations have solutions. When rank(A) = m, then rank(A′A) = m, that
is, A′A is a reversible m-order square matrix, thus

x = (A′A)−1 · A′b,=⇒ the solution is unique.

Lemma 7.12 holds!

Lemma 7.13 A ∈ R
n×m, and rank(A) = m, then A′A is a positive definite real

symmetric matrix of order m, so there is a real orthogonal matrix P ∈ R
m×m of

order m satisfies

P ′A′AP =

∣∣∣∣∣∣∣∣∣∣

δ1 · · · 0
... δ2
... · · · . . .

0 δm

∣∣∣∣∣∣∣∣∣∣

, (7.24)

where δi > 0 is the m eigenvalues of A′A.

Proof rank(A) = m ⇒ m ≤ n. Let T = A′A, then T is a symmetric matrix of order
m. Let x ∈ R

m be m arguments, quadratic form

x ′T x = x ′A′Ax = (Ax)′(Ax) = 〈Ax, Ax〉 ≥ 0.

Because rank(A) = m, the above formula if and only if when x = 0, x ′T x = 0. So
T is a positive definite matrix. From the knowledge of linear algebra, there is an
orthogonal matrix of order m, P ⇒ P ′T P is a diagonal matrix, that is

P ′T P = diag{δ1, δ2, . . . , δm}.

Because P ′T P and T have the same eigenvalue, δ1, δ2, . . . , δm is the eigenvalue of
T , and ∀ δi > 0. The Lemma holds.
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Lemma 7.12 is called the least square method in linear algebra, its significance
is to find a vector x0 with the shortest length in the set {Ax − b|x ∈ R

m} for a given
n × m-order matrix A and a given vector b ∈ R

n . Lemma 7.12 gives an effective
algorithm, that is, to solve the linear equations A′Ax = A′b, and x0 is the solution
of the equations, Lemma 7.13 is called the diagonalization of quadratic form. Now,
the main results are as follows:

Theorem 7.2 Let L ⊂ R
n be a lattice, rank(L) = m (m ≤ n), if and only if there is

a real matrix B ∈ R
n×m of order n × m, rank(B) = m, such that

L = {Bx |x ∈ Z
m} =

{
m∑

i=1

aiβi |ai ∈ Z

}
, (7.25)

where B = [β1, β2, . . . , βm], each βi ∈ R
n is a column vector.

Proof Equation (7.23) proves the necessity of the condition, and we only prove the
sufficiency of the condition. If a subset L inR

n is given byEq. (7.25), it is obvious that
L is an additive subgroup ofR

n , because anyα = Bx1, β = Bx2, where x1, x2 ∈ Z
m ,

then x = x1 − x2 ∈ Z
n , and

α − β = B(x1 − x2) = Bx ∈ L .

So we only prove the discreteness of L . Let T = B ′B, then from Lemma 7.13, T is
a positive definite real symmetric matrix, let δ1, δ2, . . . , δm be the eigenvalue of T ,
then

δ = min{δ1, δ2, . . . , δm} > 0.

We prove
min
x∈Zm

x 	=0

|Bx | ≥ √
δ > 0. (7.26)

By Lemma 7.13, there is an orthogonal matrix P of order m such that

P ′T P = diag{δ1, δ2, . . . , δm}.

For any given x ∈ Z
m , x 	= 0. We have

|Bx |2 = x ′T x = x ′P(P ′T P)P ′x ≥ δ|P ′x |2 = δ|x |2.

Because x 	= 0, then |x |2 ≥ 1, so

|Bx |2 ≥ δ, ∀ x ∈ Z
m, x 	= 0.

This shows that the distance between any two different points in L is ≥ δ > 0.
Therefore, in a sphere with 0 as the center and r as the radius, the number of points
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in L is finite. In these finite vectors, there is a α ∈ L ,⇒

|α| = min
x∈L
x 	=0

|x | = λ ≥ δ > 0.

According to the definition of lattice, L is a lattice in R
n , the Lemma holds.

It can be directly deduced from the above theorem

Corollary 7.4 Let L = L(B) ⊂ R
n be a lattice of rank(L) = m, λ be the minimum

distance of L, B ∈ R
n×m, δ be the minimum eigenvalue of B ′B, then λ ≥ √

δ.

Definition 7.4 L ⊂ R
n is a lattice, and rank(L) = n, call L is a full rank lattice of

R
n .

By Theorem 7.2, a sufficient and necessary condition for a full rank lattice with
L as R

n is the existence of a reversible square matrix B ∈ R
n×n , det(B) 	= 0, such

that

L = L(B) =
{

n∑

i=1

aiβi |ai ∈ Z, 1 ≤ i ≤ n

}
= {Bx |x ∈ Z

n}. (7.27)

If L = L(B) is a full rank lattice, define d = d(L) as

d = d(L) = |det(B)|, (7.28)

call d is the determinant of L . d = d(L) is the second most important mathematical
quantity of a lattice. The lattice we discuss below is always assumed to be a full rank
lattice.

For a lattice (full rank lattice), the generating matrix is not unique, but d = d(L)

is unique. To prove this, first define the so-called unimodular matrix. Define

SLn(Z) = {A = (ai j )n×n|ai j ∈ Z, det(A) = ±1}, (7.29)

Obviously, SLn(Z) forms a group under the multiplication of the matrix, because
the n-order identity matrix In ∈ SLn(Z), and A1 ∈ SLn(Z), A2 ∈ SLn(Z), then A =
A1A2 ∈ SLn(Z). Specially, if A ∈ SLn(Z),A = (ai j )n×n , then the inverse matrix of
A

A−1 = ±

∣∣∣∣∣∣∣∣

a∗
11 a∗

12 · · · a∗
1n

a∗
21 a∗

22 · · · a∗
2n· · · · · · · · · · · ·

a∗
n1 · · · · · · a∗

nn

∣∣∣∣∣∣∣∣
∈ SLn(Z),

where a∗
i j is the algebraic cofactor of ai j .

Lemma 7.14 L = L(B) ⊂ R
n is a lattice (full rank lattice), B1 ∈ R

n×n, then L =
L(B) = L(B1) if and only if there is a unimodularmatrixU ∈ SLn(Z) ⇒ B = B1U.
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Proof If B = B1U ,U ∈ SLn(Z), we prove L(B) = L(B1). Let α = B1x ∈ L(B1),
where x ∈ Z

n , then
α = B1x = B1UU−1x = BU−1x .

Because ofU−1x ∈ Z
n , then α ∈ L(B), that is L(B1) ⊂ L(B). Similarly, if α = Bx ,

x ∈ Z
n , then

α = Bx = B1Ux,where Ux ∈ Z
n.

Thus, α ∈ L(B1), that is L(B) = L(B1).
Conversely, if L(B) = L(B1), let B = [β1, β2, . . . , βn], B1 = [α1, α2, . . . , αn],

transition matrix
(β1, β2, . . . , βn) = (α1, α2, . . . , αn)U.

Obviously by βi ∈ L(B1)(1 ≤ i ≤ n), U is an integer matrix. and

(α1, α2, . . . , αn) = (β1, β2, . . . , βn)U1.

Because αi ∈ L(B)(1 ≤ i ≤ n), U1 also is an integer matrix. Because of

(β1, β2, . . . , βn) = (α1, α2, . . . , αn)U = (β1, β2, . . . , βn)U1U.

We have U1U = In , thus det(U ) = ±1, that is U ∈ SLn(Z), B = B1U , the Lemma
holds.

By Lemma 7.14, B, B1 are any two generating matrices of a lattice L , then

|det(B)| = |det(B1)| = d = d(L).

That is, the determinant d(L) of a lattice is an invariant.
For a lattice (full rank lattice) L ⊂ R

n , the dual lattice of L is defined as

L∗ = {α ∈ R
n|〈α, β〉 ∈ Z,∀ β ∈ L}. (7.30)

Lemma 7.15 Let L = L(B) be a lattice, then the dual lattice of L is L∗ =
L((B−1)′), that is, if B is the generating matrix of L, then (B−1)′ is the generat-
ing matrix of L∗.

Proof Let
L((B−1)′) = {(B−1)′y|y ∈ Z

n}.

any α ∈ L((B−1)′), α = (B−1)′y, y ∈ Z
n , β ∈ L , β = Bx , x ∈ Z

n , then

〈α, β〉 = α′β = y′B−1Bx = y′x ∈ Z.

Thatmeans L((B−1)′) ⊂ L∗. Conversely, any α ∈ L∗, for all β ∈ L , there is 〈α, β〉 ∈
Z. So let B = [β1, β2, . . . , βn], then
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〈
α,

n∑

i=1

xiβi

〉
=

n∑

i=1

xi 〈α, βi 〉 ∈ Z,∀ xi ∈ Z,

therefore, for each generating vector βi (1 ≤ i ≤ n), there is 〈α, βi 〉 ∈ Z. Write α =
(y1, y2, . . . , yn),

〈α, βi 〉 ∈ Z,=⇒ B ′

⎛

⎜⎝
y1
...

yn

⎞

⎟⎠ =
⎛

⎜⎝
x1
...

xn

⎞

⎟⎠ ∈ Z
n.

Thus ⎛

⎜⎝
y1
...

yn

⎞

⎟⎠ ∈ (B ′)−1

⎛

⎜⎝
x1
...

xn

⎞

⎟⎠ .

That is α ∈ L((B ′)−1). Because B · B−1 = In,=⇒ (B−1)′B ′ = In , thus (B−1)′ =
(B ′)−1. So α ∈ L((B−1)′), that is L∗ ⊂ L((B−1)′). We have L∗ = L((B−1)′). The
Lemma holds.

By Lemma 7.15, we immediately have the following corollary.

Corollary 7.5 Let L = L(B) be a full rank lattice, L∗ is the dual lattice of L, then

d(L∗) = d−1(L).

An equivalence relation inR
n can be defined by using a lattice L , for allα, β ∈ R

n ,
we define

α ≡ β(mod L) ⇐⇒ α − β ∈ L .

Obviously, this is an equivalent relation, called the congruence relation of mod L .

Definition 7.5 Let F ⊂ R
n be a subset, and call F the basic region of a lattice (full

rank lattice) L , if

(i) ∀ x ∈ R
n , there is a α ∈ F ⇒ x ≡ α(mod L),

(ii) Any α1, α2 ∈ F , then α1 	≡ α2(mod L).

By definition, the basic neighborhood of a lattice is the representative element
set of the additive quotient group R

n/L . Therefore, a basic neighborhood of any L
forms an additive group under mod L .

Lemma 7.16 Let L = L(B) be a full rank lattice, then

(i) Any two basic neighborhoods F1 and F2 of L are isomorphic additive groups
(mod L).

(ii) F = {Bx |x = (x1, x2, . . . , xn)′, and 0 ≤ xi < 1, 1 ≤ i ≤ n} is a basic neigh-
borhood of L(B).
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(iii) Vol(F) = d = d(L).

Proof (i) is trivial, because

F1
∼= R

n/L , F2
∼= R

n/L ,=⇒ F1
∼= F2.

To prove (ii), let B = [β1, β2, . . . , βn], then {β1, β2, . . . , βn} is a set of bases of R
n ,

∀ α ∈ R
n , α can be expressed as a linear combination of β1, β2, . . . , βn , that is

α =
n∑

i=1

aiβi ,∀ ai ∈ R.

Let [α]B = ∑n
i=1[ai ]βi , {α}B = α − [α]B , then {α}B can be expressed as

{α}B = B

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ ,where 0 ≤ xi < 1, 1 ≤ i ≤ n.

That is {α}B ∈ F . Because α − {α}B = [α]B ∈ L , so for any α ∈ R
n , there is a

{α}B ∈ F , such that
α ≡ {α}B(mod L).

And two points α = Bx and β = By in F , then

α − β = B(x − y) = Bz.

where z = (z1, z2, . . . , zn), |zi | < 1. So α 	≡ β(mod L), if α 	= β. So F is a basic
neighborhood of L .

Let’s prove (iii). Because all basic neighborhoods of L are isomorphic, they have
the same volume, (iii) gives a specific basic region F of L , so we can only prove
Vol(F) = d = d(L). Obviously,

Vol(F) =
∫

· · ·
∫

y=(y1,y2,...,yn)∈F
dy1dy2 · · · dyn

make variable substitution Bx = y and calculate the Jacobi of the vector value

dy1dy2 · · · dyn = d(λ)dx1 · · · dxn .
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Thus

Vol(F) =
1∫

0

· · ·
1∫

0

d(λ)dx1 · · · dxn = d(L).

We have completed the proof of Lemma 7.16.

Next, we discuss the gram Schmidt orthogonalization algorithm. If B = [β1, β2,

. . . , βn] is the generation matrix of L , {β1, β2, . . . , βn} can be transformed into a set
of orthogonal bases {β∗

1 , β
∗
2 , . . . , β

∗
n }, where β∗

1 = β1, and

β∗
i = βi −

i−1∑

j=1

〈βi , β
∗
j 〉

〈β∗
j , β

∗
j 〉

β∗
j , (7.31)

{β∗
1 , β

∗
2 , . . . , β

∗
n } is called the orthogonal basis corresponding to {β1, β2, . . . , βn}.

B∗ = [β∗
1 , . . . , β

∗
n ] is the orthogonal matrix corresponding to B. For any 1 ≤ i ≤ n,

denote ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uii = 1, ui j = 0,when j > i.

ui j = 〈βi , β
∗
i 〉

|β∗
j |2

,when 1 ≤ j ≤ i ≤ n.

U = (ui j )n×n.

(7.32)

Then U is a lower triangular matrix, and

⎛

⎜⎜⎜⎝

β1

β2
...

βn

⎞

⎟⎟⎟⎠ = U

⎛

⎜⎜⎜⎝

β∗
1

β∗
2
...

β∗
n

⎞

⎟⎟⎟⎠ . (7.33)

If both sides are transposed at the same time, there is

(β1, β2, . . . , βn) = (β∗
1 , β

∗
2 , . . . , β

∗
n )U

′. (7.34)

Therefore, U ′ is the transition matrix between two groups of bases.

Lemma 7.17 Let L = L(B) ⊂ R
n be a lattice, B = [β1, β2, . . . , βn] is the gen-

erating matrix, B∗ = [β∗
1 , β

∗
2 , . . . , β

∗
n ] is the corresponding orthogonal matrix,

d = d(L) is the determinant of L, then we have

d =
n∏

i=1

|β∗
i | ≤

n∏

i=1

|βi |. (7.35)

Proof By (7.24), we have B = B∗U , because det(U ) = 1, so
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det(B) = det(B∗).

By the definition,
d2 = det(B ′B) = det(U (B∗)′B∗U ′)

= det((B∗)′B∗)

= det(diag{|β∗
1 |2, |β∗

2 |2, . . . , |β∗
n |2}).

So there is

d =
n∏

i=1

|β∗
i |.

In order to prove the inequality on the right of Eq. (7.35), we only prove

|β∗
i | ≤ |βi |, 1 ≤ i ≤ n. (7.36)

Because βi = ∑i
j=1 ui jβ

∗
j , then

|βi |2 = 〈βi , βi 〉 =
〈

i∑

j=1

ui jβ
∗
j ,

i∑

j=1

ui jβ
∗
j

〉

=
i∑

j=1

u2i j 〈β∗
j , β

∗
j 〉

= 〈β∗
i , β

∗
i 〉 +

i−1∑

j=1

u2i j 〈β∗
j , β

∗
j 〉.

Therefore, the inequality on the right of (7.35) holds, the Lemma is proved.

Equation (7.35) is usually called Hadamard inequality, and we give another proof
here.

In order to define the concept of continuous minima on a lattice L , we record the
minimum distance on L with λ1. That is λ1 = λ(L). Another definition of λ1 is the
minimum positive real number r , so that the linear space formed by L ∩ Ball(0, r)
is a one-dimensional space, where

Ball(0, r) = {x ∈ R
n||x | ≤ r}

is a closed sphere with 0 as the center and r as the radius. The concept of n continuous
minima λ1, λ2, . . . , λn in L can be given.

Definition 7.6 Let L = L(B) ⊂ R
n be a full rank lattice, the i-th continuous mini-

mum λi is defined as

λi = λi (L) = inf{r | dim(span(L ∩ Ball(0, r))) ≥ i}.
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The following lemma is a useful lower bound estimate of the minimum distance
λ1.

Lemma 7.18 L = L(B) ⊂ R
n is a lettice (full rank lattice), B∗ = [β∗

1 , β
∗
2 , . . . , β

∗
n ]

is the corresponding orthogonal basis, then

λ1 = λ(L) ≥ min
1≤i≤n

|β∗
i |. (7.37)

Proof For ∀ x ∈ Z
n , x 	= 0, we prove

|Bx | ≥ min
1≤i≤n

|β∗
i |, x ∈ Z

n, x 	= 0.

Let x = (x1, x2, . . . , xn) 	= 0, j be the largest subscript ⇒ x j 	= 0, then

|〈Bx, β∗
j 〉| =

∣∣∣∣∣

〈
j∑

i=1

xiβ j , β
∗
j

〉∣∣∣∣∣ = |x j ||β∗
j |2.

Because when i < j ,

〈βi , β
∗
j 〉 = 0, and 〈β j , β

∗
j 〉 = 〈β∗

j , β
∗
j 〉.

On the other hand,
|〈Bx, β∗

j 〉| ≤ |Bx ||β∗
j |.

So
|Bx | ≥ |x j ||β∗

j | ≥ min
1≤i≤n

|β∗
i |.

Lemma 7.18 holds!

Corollary 7.6 The continuous minimum λ1, λ2, . . . , λn of a lattice L is reachable,
that is, it exists αi ∈ L ⇒ |αi | = λi , 1 ≤ i ≤ n.

Proof The lattice points contained in ball Ball(0, δ) with center 0 and radius
δ (δ > λi ) are finite, because in a bounded region (finite volume), if there are infinite
lattice points, there must be a convergent subsequence, but the distance between any
different two points in L is greater than or equal to λ1, which indicates that

|L ∩ Ball(0, δ)|〈∞, δ〉λi

has finite lattice points, it’s not hard for us to find α1 ∈ L ⇒ |α1| = λ1, α2 ∈ L ⇒
|α2| = λ2,…,|αn| = λn . The Corollary holds.

In Sect. 7.1, the geometry of numbers is relative to the integer lattice Z
n; next, we

extend the main results to the general full rank lattice.
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Lemma 7.19 (Compare with Lemma 7.5) L = L(B) ⊂ R
n is a lattice (full rank

lattice),R ⊂ R
n, ifVol(R) > d(L), then there are two different points inR, α ∈ R,

β ∈ R ⇒ α − β ∈ L.

Proof Let F be a basic region of L , that is

F = {Bx |x = (x1, . . . , xn), 0 ≤ |xi | < 1, 1 ≤ i ≤ n}.

Obviously, R
n can be divided into the following disjoint subsets,

R
n = ∪α∈L{α + y|y ∈ F}

= ∪α∈L{α + F}.

For a given lattice point α ∈ L , define

Rα = R ∩ {α + F} = α + Dα, Dα ⊂ F.

Therefore, R can be divided into the following disjoint subsets,

R = ∪α∈LRα,⇒ Vol(R) =
∑

α∈L
Vol(Rα) =

∑

α∈L
Vol(Dα).

If for any α, β ∈ L , α 	= β, Dα ∩ Dβ = ∅, then

Vol(R) = Vol(∪α∈L Dα) ≤ Vol(F) = d(L),

contradicts assumptions. So it must exist α, β ∈ L , α 	= β,=⇒ Dα ∩ Dβ 	= ∅. Let
x ∈ Dα ∩ Dβ , then α + x ∈ R, β + x ∈ R. And

(α + x) − (β + x) = α − β ∈ L .

The Lemma holds.

Lemma 7.20 (Comparewith 7.6) Let L be a full rank lattice,R ⊂ R
n is a symmetric

convex body. And Vol(R) > 2nd(L), then R contains a nonzero lattice point, that
is ∃ α ∈ L, α 	= 0, such that α ∈ R.

Proof Let
1

2
R = {x |2x ∈ R}.

Then

Vol

(
1

2
R

)
= 2−nVol(R) > d(L).

By 7.19, there is x ∈ 1
2R, y ∈ 1

2R,=⇒ x − y ∈ L . And because 2x ∈ R, 2y ∈ R,
R is a symmetric convex body, by Lemma 7.4,



7.2 Basic Properties of Lattice 277

1

2
(2x − 2y) = x − y ∈ R.

The Lemma holds.

Corollary 7.7 Let L be a full rank lattice, λ(L) = λ1 is the minimum distance of L.
Then

λ1 = λ(L) ≤ √
n(d(L))

1
n . (7.38)

Proof First we prove

Vol(Ball(0, r)) ≥
(

2r√
n

)n

. (7.39)

This is because Ball(0, r) contains the following cubes

{
x ∈ R

n|x = (x1, . . . , xn),∀ |xi | <
r√
n

}
⊂ Ball(0, r).

By the definition, there are no nonzero lattice points in open ball Ball(0, λ1), by
Lemma 7.20, because Ball(0, λ1) is a symmetrical convex body, there is

Vol(Ball(0, λ1)) ≤ 2nd(L).

Thus (
2λ1√
n

)n

≤ 2nd(L).

That is
λ1 ≤ √

n(d(L))
1
n .

The Corollary holds.

Combinedwith Eq. (7.37), we obtain the estimation of the upper and lower bounds
of the minimum distance of a lattice,

min
1≤i≤n

|β∗
i | ≤ λ(L) ≤ √

n(d(L))
1
n . (7.40)

Lemma 7.21 Let L ⊂ R
n be a lattice (full rank lattice), λ1, λ2, . . . , λn is the con-

tinuous minimum of L, d = d(L) is the determinant of L, then

λ1λ2 . . . λn ≤ n
n
2 d(L). (7.41)

Proof Let {α1, α2, . . . , αn} ⊂ L , and |αi | = λi is a set of bases of R
n . Let

T =
{
y ∈ R

n|
n∑

i=1

( 〈y, α∗
i 〉

λi |α∗
i |
)2

< 1

}
, (7.42)
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where {α∗
1 , α

∗
2 , . . . , α

∗
n} is the orthogonal basis corresponding to {α1, α2, . . . , αn}.

Let’s prove that T does not contain any nonzero lattice points. Let y ∈ L , y 	= 0, let
k be the largest subscript so that |y| ≥ λk , then

y ∈ Span(α∗
1 , α

∗
2 , . . . , α

∗
k ) = Span(α1, α2, . . . , αk).

Because if y is linearly independent of α1, α2, . . . , αk , then

k + 1 ≤ dim(Span(α1, α2, . . . , αk, y) ∩ Ball(0, |y|)).

λk+1 ≤ |y| is obtained from the definition of λk+1, which contradicts the definition
of k. By y ∈ Span(α1, α2, . . . , αk),

n∑

i=1

( 〈y, α∗
i 〉

λi |α∗
i |
)2

=
k∑

i=1

( 〈y, α∗
i 〉

λi |α∗
i |
)2

≥ 1

λ2
k

k∑

i=1

〈y, α∗
i 〉2

|α∗
i |2

= 1

λ2
k

|y|2 ≥ 1.

Therefore y /∈ T , by Lemma 7.20, because T is a symmetric convex body, thus

Vol(T ) ≤ 2nd.

On the other hand,

Vol(T ) =
(

n∏

i=1

λi

)
· Vol(Ball(0, 1))

≥
n∏

i=1

λi

(
2√
n

)n

.

So
n∏

i=1

λi ≤ n
n
2 d.

Lemma 7.21 holds.

The above lemma shows that the upper bound (7.38) of λ1 is valid for λi in the
sense of geometric average.

Finally, we discuss the computational difficulties on the lattice. These problems
are the main scientific basis and technical support in the design of trap gate function,
and they are also the cornerstone of the security of lattice cryptography.

1. Shortest vector problem SVP

Lattice L is a discrete geometry in R
n , we know that its minimum distance λ1 =

λ(L) is the length of the shortest vector in L . How to find its shortest vector u0 ∈ L
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for any full rank lattice L ,=⇒

|u0| = min
x∈L ,x 	=0

|x | = λ1.

It is the so-called shortest vector calculation problem. At present, there are insur-
mountable difficulties in theory and calculation, because we only know the existence
of u0, but we can’t calculate u0. Second, the current main research focuses on the
approximation of the shortest vector. The so-called shortest vector approximation is
to find a nonzero vector u ∈ L on L ,=⇒

|u| ≤ r(n)λ1, u ∈ L , u 	= 0,

where r(n) ≥ 1 is called the approximation coefficient, which only depends on the
dimension of lattice L .

In 1982, H. W. Lenstra, A. K. Lenstra and L. Lovasz creatively developed a set
of algorithms in (1982) to effectively solve the approximation problem of the short-
est vector, which is the famous LLL algorithm in lattice theory. The computational
complexity of LLL algorithm is polynomial for the whole lattice, and the approxima-
tion coefficient r(n) = 2

n−1
2 . How to improve the approximation coefficient in LLL

algorithm to the polynomial coefficient of n is the main research topic at present.
For example, Schnorr’s work in 1987 and Gama and Nguyen’s work (2008a, 2008b)
are very representative, but they are still far from the polynomial function, so the
academic circles generally speculate:

Conjecture 1: there is no polynomial algorithm that can approximate the shortest
vector so that the approximation coefficient r(n) is a polynomial function of n.

2. Closest vector problem CVP

Let L ⊂ R
n be a lattice, t ∈ R

n is an arbitrary given vector, and it is easy to prove
that there is a lattice point ut ∈ L ,=⇒

|ut − t | = min
x∈L |x − t |,

ut is called the nearest lattice point (vector) of t . When t = 0 is a zero vector, u0
is the shortest vector of L , so the adjacent vector problem is a general form of the
shortest vector problem. Similarly, we only know the existence of the adjacent vector
ut , and there is no definite algorithm to find ut instead of the approximation problem
of the adjacent vector, x ∈ L , if

|x − t | ≤ r1(n)|ut − t |,

then x is called the approximation coefficient, which is the approximation adjacent
vector of r1(n), in 1986, Babai proposed an effective algorithm to approximate the
adjacent vector in Babai (1986), and its approximation coefficient r1(n) is generally
of the same order as the approximation coefficient r(n) of the shortest vector.



280 7 Lattice-Based Cryptography

There are many other difficult computational problems on lattice, such as the
Successive Shortest vector problem, which is essentially to find a deterministic algo-
rithm to approximate each αi ∈ L , where |αi | = λi is the continuous minimum of
L . However, SVP and CVP are commonly used in lattice cryptosystem design and
analysis, and most of the research is based on the integer lattice.

7.3 Integer Lattice and q-Ary Lattice

Definition 7.7 A full rank lattice L is called an integer lattice, if L ⊂ Z
n , an integer

lattice L is called a q-ary lattice, if qZ
n ⊂ L ⊂ Z

n , where q ≥ 1 is a positive integer.

It is easy to see from the definition that a lattice L = L(B) is an integer lattice
⇔ B ∈ Z

n×n is an integer square matrix, so the determinant d = d(L) of an entire
lattice L is a positive integer.

Lemma 7.22 Let L = L(B) ⊂ Z
n be an integer lattice, d = d(L) is the determinant

of L, then dZ
n ⊂ L ⊂ Z

n, therefore, an integer lattice is always a d-ary lattice
(d = q).

Proof Let α ∈ dZ
n , let’s prove that α ∈ L , that is, α = Bx always has the solution

of the entire vector x ∈ Z
n . Let B−1 be the inverse matrix of B, then

B−1 = 1

det(B)
B∗ = 1

det(B)

⎡

⎢⎢⎣

b∗
11 b∗

12 · · · b∗
1n

b∗
21 b∗

22 · · · b∗
2n· · · · · · · · · · · ·

b∗
n1 b

∗
n2 · · · b∗

nn

⎤

⎥⎥⎦ ,

where B = (bi j )n×n , b∗
i j is the algebraic cofactor of bi j . Because B ∈ Z

n×n , so B∗ ∈
Z
n×n , thus dB−1 = ±B∗ ∈ Z

n×n , write α = dβ, then β ∈ Z
n , and

x = B−1α = dB−1β = ±B∗β ∈ Z
n.

Thus α ∈ L . That is dZ
n ⊂ L , the Lemma holds.

The following lemma is a simple conclusion in algebra. For completeness, we
prove the following.

Lemma 7.23 Let L be a q-ary lattice, Zq is the residual class rings mod q, then

(i) Z
n/qZ

n ∼= Z
n
q (additive group isomorphism).

(ii) Z
n/L ∼= Z

n
q/L/qZn (additive group isomorphism). Therefore, L/qZ

n is a linear
code on Z

n
q .

Proof α = (a1, a2, . . . , an) ∈ Z
n , β = (b1, b2, . . . , bn) ∈ Z

n , if ∀ ai ≡ bi (mod q),
we write α ≡ β(mod q). For any α ∈ Z

n , define
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ᾱ = (ā1, ā2, . . . , ān) ∈ Z
n
q ,

where āi is the minimum nonnegative residue of ai mod q, and thus, we have α ≡
ᾱ(mod q). Define mapping σ : Z

n σ−→ Z
n
q as σ(α) = ᾱ, this is a surjection, and

σ(α + β) = ᾱ + β̄ = σ(α) + σ(β).

Therefore, σ is a full group homomorphism. Obviously Kerσ = qZ
n , therefore, by

the isomorphism theorem of groups, we have

Z
n/qZ

n ∼= Z
n
q .

Because of qZ
n ⊂ L ⊂ Z

n , then by the isomorphism theorem of groups,

Z
n/L ∼= Z

n/qZ
n/L/qZ

n ∼= Z
n
q/L/qZ

n .

The Lemma holds.

Next, we will prove that Z
n/L is a finite group. Therefore, we first discuss the

elementary transformation of matrix. The so-called elementary transformation of
matrix refers to elementary row transformation and elementary column transforma-
tion, specifically refers to the following three kinds of elementary transformations:

(1) Transform two rows or two columns of matrix A:

{
σi j (A)-Transform rows i and j of A

τi j (A)-Transform columns i and j of A

(2) A row or column multiplied by −1 by A:

{
σ−i (A)-Multiply row i of A by − 1

τ−i (A)-Multiply column i of A by − 1

(3) Add the k times of a row (column) to another row (column), k ∈ R, in many
cases, we require k ∈ Z to be an integer:

{
σki+ j (A)-Add k times of row i of A to row j

τki+ j (A)-Add k times of column i of A to column j

The n-order identitymatrix is represented by In , thematrix obtained by the above ele-
mentary transformation of In is called elementarymatrix.We note that all elementary
matrices are unimodular matrices (see (7.29)), and
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⎧
⎪⎨

⎪⎩

σi j (A) = σi j (In)A, τi j (A) = Aτi j (In)

σ−i (A) = σ−i (In)A, τ−i (A) = Aτ−i (In)

σki+ j (A) = σki+ j (In)A, τki+ j (A) = Aτki+ j (In)

(7.43)

That is, elementary row transformation for A is equal to multiplying the correspond-
ing elementary matrix from the left, and elementary column transformation for A is
equal to multiplying the corresponding elementary matrix from the right.

Lemma 7.24 Let L = L(B) ⊂ Z
n be an integer lattice, then Z

n/L is a finite group,
and

|Zn/L| = d(L).

Proof According to the knowledge of linear algebra, an integer square matrix B ∈
Z
n can always be transformed into a lower triangular matrix by elementary row

transformation; that is, there is a unimodular matrix U ∈ SLn(Z), so that

UB =

⎡

⎢⎢⎣

∗ 0 · · · 0
∗ ∗ · · · 0
· · · · · · · · · · · ·
∗ ∗ · · · ∗

⎤

⎥⎥⎦ .

Then the elementary column transformation of UB can always be transformed into
an upper triangular matrix, so it is a diagonal matrix; that is, there is a unimodular
matrix U1 ∈ SLn(Z),⇒

UBU1 = diag{δ1, δ2, . . . , δn}.

where δi 	= 0, δi ∈ Z, and

d(L) = | det(UBU1)| =
n∏

i=1

|δi |.

Let L(UBU1) be an integral lattice generated by UBU1, we have quotient group
isomorphism

Z
n/L(UBU1) ∼= ⊕n

i=1Z/|δi |Z = ⊕n
i=1Z|δi |.

Thus

|Zn/L(UBU1)| =
n∏

i=1

|δi | = d(L).

Because of L(B) = L(BU1) and L(B) ∼= L(UB), Thus L(B) ∼= L(UBU1), so

|Zn/L(B)| = |Zn/L(UBU1)| = d(L).
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Lemma 7.24 holds.

An integer square matrix B = (bi j)n×n ∈ Z
n×n is called Hermite normal form

matrix, if B is an upper triangular matrix, that is bi j = 0, 1 ≤ j < i ≤ n, and

bii ≥ 1, 0 ≤ bi j < bii , 1 ≤ i < j ≤ n. (7.44)

A Hermite normal form matrix, referred to as HNF matrix.

Definition 7.8 L = L(B) ⊂ Z
n is an integer lattice, and B is theHNFmatrix, which

is called the HNF basis of L , denote as B = HNF(L).

The following lemma proves that a whole lattice has a unique HNF basis, so it is
reasonable to use HNF(L) to represent HNF basis.

Lemma 7.25 Let L ⊂ Z
n be an integer lattice, then there is a unique HNF matrix

B ⇒ L = L(B).

Proof Let L = L(A), A is the generating matrix of L , by using the elementary
column transformation, A can be transformed into an upper triangular matrix, that is

AU1 =

⎡

⎢⎢⎣

c11 c12 · · · c1n
0 c22 · · · c2n
· · · · · · · · · · · ·
0 0 · · · cnn

⎤

⎥⎥⎦ , U1 ∈ SLn(Z).

whereCii > 0, 1 ≤ i ≤ n, if AU1 is transformed continuously, there is a unimodular
matrix U2,⇒ AU1U2 = B is the HNF matrix, because L(B) = L(AU1U2), know
that L has HNF base B.

Let’s prove the uniqueness of HNF base B if there are two HNF matrices
B1,B2 ⇒ L(B1) = L(B2), then from Lemma 7.14, there is a unimodular matrix
U ∈ SLn(Z) such that B1 = B2U ; that is, the elementary column transformation
defined by formula (7.43) can be continuously implemented on B2 to obtain B1, but
for B2, any column transformation τi j ,τ−i and τki+ j is not a HNF matrix, soU = In
is a unit matrix, that is B1 = B2. The Lemma holds.

Lemma 7.26 Let L = L(B) be an integer lattice, B = (bi j )n×n is a HNF matrix,
B∗ = [β∗

1 , β
∗
2 , . . . , β

∗
n ] is the orthogonal basis corresponding to B = [β1, β2, . . . , βn],

then
B∗ = [β∗

1 , β
∗
2 , . . . , β

∗
n ] = diag{b11, b22, . . . , bnn}

is a diagonal matrix.

Proof We prove β∗
i = (0, 0, . . . , bii , 0, . . . , 0)

′
, induction of i , when i = 1, β∗

1 =
β1 = (b11, 0, . . . , 0)

′
. Thepropositionholds, if for j ≤ i , there isβ∗

j = (0, 0, . . . , b j j ,

0, . . . , 0)
′
holds, then when i + 1, by (7.31), there is
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β∗
i+1 = βi+1 −

i∑

j=1

〈βi+1, β
∗
j 〉

|β∗
j |2

β∗
j

= βi+1 −
i∑

j=1

b j (i+1)

b j j
β∗
j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(i+1)

b2(i+1)
...

bi(i+1)

b(i+1)(i+1)
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(i+1)

b2(i+1)
...

bi(i+1)

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
b(i+1)l(i+1)

...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus the proposition holds.

Next, we discuss q-ary lattices, where q ≥ 1 is a positive integer, the following
two q-ary lattices are often used in lattice cryptosystems.

Definition 7.9 Let Zq be a residue class ring mod q, A ∈ Z
n×m
q , the following two

q-ary lattices are defined as


q(A) = {y ∈ Z
m |there is x ∈ Z

n ⇒ y ≡ A
′
x(mod q)}, (7.45)

and

⊥

q (A) = {y ∈ Z
m |Ay ≡ 0(mod q)}. (7.46)

By the definition: 
q(A) ⊂ Z
m and 
⊥

q (A) ⊂ Z
m is an m-dimensional integer

lattice. And any α ∈ qZ
m , then there is x = 0 ∈ Z

m,⇒ α ≡ A
′
x(mod q), and Aα ≡

0(mod q), there is {
qZ

m ⊂ 
q(A) ⊂ Z
m

qZ
m ⊂ 
⊥

q (A) ⊂ Z
m .

That is, 
q(A) and 
⊥
q (A) are q-element lattices of dimension m.

Lemma 7.27 We have {

⊥

q (A) = q
q(A)∗


q(A) = q
⊥
q (A)∗

Proof Any α ∈ 
q(A)∗, by the definition, then

〈y, α〉 ∈ Z,∀ y ∈ 
q(A).

And
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〈y, α〉 = y
′
α ∈ Z ⇒ y

′
α ≡ 0(mod 1).

There is
y

′
qα ≡ 0(mod q),∀ y ∈ 
q(A).

Because y ∈ 
q(A), thus there is x ∈ Z
n ⇒ y ≡ A

′
x(mod q), from the above for-

mula,
x

′
Aqα ≡ 0(mod q),∀ x ∈ Z

n.

Thus
Aqα ≡ 0(mod q),⇒ qα ∈ 
⊥

q (A).

We prove
q
q(A)∗ ⊂ 
⊥

q (A).

Conversely, if y ∈ 
⊥
q (A), we have

Ay ≡ 0(mod q) ⇒ A

(
1

q
y

)
≡ 0(mod 1).

Any α ∈ 
q(A), let x ∈ Z
n , α ≡ A

′
x(mod q), then

〈
α,

1

q
y

〉
= x

′
A

(
1

q
y

)
≡ 0(mod 1),∀ x ∈ Z

n.

We have
1

q
y ∈ 
q(A)∗ ⇒ y ∈ q
q(A)∗.

That is

⊥

q (A) ⊂ q
q(A)∗.

Thus, 
⊥
q (A) = q
q(A)∗. Similarly, the second equation can be proved.

Lemma 7.28 Let q be a prime, A ∈ Z
n×m
q ,m ≥ n, and rank(A) = n, then

| det(
⊥
q (A))| = qn, (7.47)

and
| det(
q(A))| = qm−n . (7.48)

Proof In finite field Zq , rank(A) = n, then the linear equation system Ay = 0 has
exactly qm−n solutions, from which we can get

|
⊥
q (A)/qZ

m | = qm−n .
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By Lemma 7.23,
|Zm/
⊥

q (A)| = |Zm
q /
⊥

q (A)/qZ
m | = qn .

By Lemma 7.24,
| det(
⊥

q (A))| = |Zm/
⊥
q (A)| = qn .

So (7.47) holds. By Corollary 7.5 of the previous section, we have

| det(
⊥
q (A)∗)| = q−n .

By Lemma 7.27,

| det(
q(A))| = qm | det(
⊥
q (A)∗)| = qm−n .

The Lemma holds.

7.4 Reduced Basis

In lattice theory, Reduced basis and corresponding LLL algorithm are the most
important contents, which have an important impact on computational algebra, com-
putational number theory and other neighborhoods, and are recognized as one of
the most important computational methods in recent 100years. In order to introduce
Reduced basis and LLL algorithm, we recall the gram Schmidt orthogonalization
process summarized by Eqs. (7.31)–(7.34). Let {β1, β2, . . . , βn} ⊂ R

n be a set of
bases corresponding to R

n , {β∗
1 , β

∗
2 , . . . , β

∗
n } is the corresponding Gram–Schmidt

orthogonal basis, where

β∗
1 = β1, β∗

i = βi −
i−1∑

j=1

〈βi , β
∗
j 〉

〈β∗
j , β

∗
j 〉

β∗
j , 1 < i ≤ n. (7.49)

The above formula can be written as

βi =
i∑

j=1

〈βi , β
∗
j 〉

〈β∗
j , β

∗
j 〉

β∗
j , 1 ≤ i ≤ n. (7.50)

There is

Lemma 7.29 Let {β1, β2, . . . , βn} be a set of bases of R
n, {β∗

1 , β
∗
2 , . . . , β

∗
n } is the

corresponding Gram–Schmidt orthogonal basis, L(β1, β2, . . . , βk) = Span{β1, β2,

. . . , βk} is a linear subspace extended by β1, β2, . . . , βk , then
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(i)
L(β1, β2, . . . , βk) = L(β∗

1 , β
∗
2 , . . . , β

∗
k ), 1 ≤ k ≤ n. (7.51)

(ii) For 1 ≤ i ≤ n, there is

{
〈βi , β

∗
k 〉 = 0, when k > i;

〈βi , βk〉 = 〈β∗
k , β

∗
k 〉, when k = i.

(7.52)

(iii) ∀ x ∈ R
n, x = ∑n

i=1 xiβ
∗
i , then

xi = 〈x, β∗
i 〉

〈β∗
i , β

∗
i 〉

, 1 ≤ i ≤ n. (7.53)

Proof The above three properties can be derived directly from Eq. (7.49) or (7.50).

Let U = (Ui j )n×n , where

Ui j = 〈βi , β
∗
j 〉

〈β∗
j , β

∗
j 〉

,⇒ Ui j = 0, when j > i. Uii = 1. (7.54)

Therefore, U is the lower triangular matrix with element 1 on the diagonal, and

⎡

⎢⎢⎢⎣

β1

β2
...

βn

⎤

⎥⎥⎥⎦ = U

⎡

⎢⎢⎢⎣

β∗
1

β∗
2
...

β∗
n

⎤

⎥⎥⎥⎦ . (7.55)

U is called the coefficient matrix when {β1, β2, . . . , βn} is orthogonalized.
Let’s introduce the concept of orthogonal projection: suppose V ⊂ R

k ⊂ R
n(1 ≤

k ≤ n), the orthogonal complement space V⊥ of V in R
k is

V⊥ = {x ∈ R
k |〈x, α〉 = 0,∀ α ∈ V }. (7.56)

Because R
k = V ⊕ V⊥, so ∀ x ∈ R

k , the only can be expressed as

x = α + β,where α ∈ V, β ∈ V⊥.

α is called the orthogonal projection of x on subspace V , obviously |x |2 = |α|2 +
|β|2.
Lemma 7.30 Let {β1, β2, . . . , βn} be a set of bases of R

n and {β∗
1 , β

∗
2 , . . . , β

∗
n } be

the corresponding orthogonal basis, 1 ≤ k ≤ n, then β∗
k is the orthogonal projection

of βk on the orthogonal complement space V of the subspace L(β1, β2, . . . , βk−1)

of L(β1, β2, . . . , βk).



288 7 Lattice-Based Cryptography

Proof When k = 1, the proposition is trivial, if k > 1, then by Lemma 7.29,

L(β1, β2, . . . , βk−1) = L(β∗
1 , β

∗
2 , . . . , β

∗
k−1).

Therefore, the orthogonal complement space V = L(β∗
k ) of L(β1, β2, . . . , βk−1) in

L(β1, β2, . . . , βk−1, βk) is a one-dimensional space, because of

βk = β∗
k +

k−1∑

j=1

ukjβ
∗
j ,

and 〈
β∗
k ,

k−1∑

j=1

ukjβ
∗
j

〉
= 0.

So β∗
k is the orthogonal projection of βk on V . The Lemma holds.

Next, we discuss the transformation law of the corresponding orthogonal
basis when making the elementary column transformation of the base matrix
[β1, β2, . . . , βn].
Lemma 7.31 Let {β1, β2, . . . , βn} ⊂ R

n is a set of bases, {β∗
1 , β

∗
2 , . . . , β

∗
n } is the

corresponding orthogonal basis, A = (ui j )n×n is the coefficient matrix. Exchange
βk−1 with βk to get a set of bases {α1, α2, . . . , αn} of R

n, where

αk−1 = βk, αk = βk−1, αi = βi ,when i 	= k − 1, k.

Let {α∗
1 , α

∗
2 , . . . , α

∗
n} be the corresponding orthogonal basis and A1 = (vi j )n×n be

the corresponding coefficient matrix, then we have

(i) α∗
i = β∗

i , if i 	= k − 1, k.
(ii) {

α∗
k−1 = β∗

k + ukk−1β
∗
k−1

α∗
k = β∗

k−1 − vkk−1β
∗
k−1.

(iii) vi j = ui j , if 1 ≤ j < i ≤ n, and {i, j} ⋂ {k, k − 1} = ∅.
(iv) {

vik−1 = uik−1vkk−1 + uik
|β∗

k |2
|α∗

k−1|2 , i > k.

vik = uik−1 − uikukk−1, i > k.

(v) vk−1 j = ukj ,vk j = uk−1 j , 1 ≤ j < k − 1.

Proof If 1 ≤ i < k − 1, or k < i ≤ n, then the orthogonal complement space in
L(α1, α2, . . . , αi ) = L(β1, β2, · · · , βi ),

V = L⊥(α1, α2, . . . , αi−1) = L⊥(β1, β2, . . . , βi−1).
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Therefore, the orthogonal projection of α∗
i as αi = βi on V is the same as that of β∗

i
as βi on V , that is α∗

i = β∗
i (i 	= k − 1, k), (i) holds.

To prove (ii), because α∗
k−1 is the orthogonal projection of βk(= αk−1) on the

orthogonal complement space L(β∗
k−1) of L(β1, β2, . . . , βk−2), because of

β∗
k = βk −

k−1∑

j=1

ukjβ
∗
j

= βk − ukk−1β
∗
k−1 −

k−2∑

j=1

ukjβ
∗
j ,

and L(β1, β2, . . . , βk−2) = L(β∗
1 , β

∗
2 , . . . , βk−2)

∗, there is

α∗
k−1 = β∗

k + ukk−1β
∗
k−1.

Similarly, α∗
k is the orthogonal projection of β∗

k−1 on L(α∗
k−1), thus

α∗
k = β∗

k−1 − vkk−1α
∗
k−1.

where

vkk−1 = 〈β∗
k−1, α

∗
k−1〉

|α∗
k−1|2

= 〈β∗
k−1, ukk−1β

∗
k−1〉

|α∗
k−1|2

= ukk−1
|β∗

k−1|2
|α∗

k−1|2
,

thus (ii) holds. Similarly, other properties can be proved. Lemma 7.31 holds.

Lemma 7.32 Let {β1, β2, . . . , βn} be a set of bases of R
n, {β∗

1 , β
∗
2 , . . . , β

∗
n } be the

corresponding orthogonal basis, and A = (ui j )n×n be the coefficient matrix. For any
k ≥ 2, if we replace βk with βk − rβk−1 and keep the other βi unchanged (i 	= k),
we get a new set of bases.

{α1, α2, . . . , αn} = {β1, β2, . . . , βk−1, βk − rβk−1, βk+1, . . . , βn}.

Let {α∗
1 , α

∗
2 , . . . , α

∗
n} be the corresponding orthogonal basis and A1 = (vi j )n×n the

corresponding coefficient matrix, then we have

(i) α∗
i = β∗

i , ∀ 1 ≤ i ≤ n, that is, β∗
i remains unchanged.

(ii) vi j = ui j , if 1 ≤ j < i ≤ n, i 	= k.
(iii) {

vk j = ukj − ruk−1, j , if j < k − 1

vkk−1 = ukk−1 − r, if j = k − 1.
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Proof When i < k, or i > k, α∗
i = β∗

i is trivial, to prove (i), only prove when i =
k. Because α∗

k is the orthogonal projection of αk = βk − rβk−1 in the orthogonal
complement space L(α∗

k ) = L(β∗
k ) of L(β1, β2, . . . , βk−1) = L(α1, α2, . . . , αk−1),

β∗
k = βk −

k−1∑

j=1

ukjβ
∗
j

= βk − rβk−1 −
⎛

⎝
k−2∑

j=1

ukjβ
∗
j + (ukk−1 − r)β∗

k−1

⎞

⎠

= αk −
⎛

⎝
k−2∑

j=1

ukjβ
∗
j + (ukk−1 − r)β∗

k−1

⎞

⎠ .

This proves that α∗
k = β∗

k . Thus (i) holds. To prove (ii), when i 	= k, we have

vi j = 〈αi , α
∗
j 〉

|α∗
j |2

= 〈βi , β
∗
j 〉

|β∗
j |2

= ui j ,

that is (ii) holds. When i = k,

vk j = 〈αk, α
∗
j 〉

|α∗
j |2

= 〈βk − rβk−1, β
∗
j 〉

|α∗
j |2

(1 ≤ j < k ≤ n)

= 〈βk, β
∗
j 〉

|β∗
j |2

− r
〈βk−1, β

∗
j 〉

|β∗
j |2

= ukj − ruk−1 j .

The above formula holds for all 1 ≤ j ≤ k − 1, thus (iii) holds, the Lemma holds.

Next, we introduce the concept of a set of Reduced bases of R
n .

Definition 7.10 Let {β1, β2, . . . , βn} ⊂ R be a set of bases, {β∗
1 , β

∗
2 , . . . , β

∗
n } be

the corresponding orthogonal basis, A = (ui j )n×n be the coefficient matrix, and
{β1, β2, . . . , βn−1} be a set of Reduced bases of R

n , if

{
(i) |ui j | ≤ 1

2 ,∀ 1 ≤ j < i ≤ n.

(ii) |β∗
i − ukk−1β

∗
i−1|2 ≥ 3

4 |β∗
i−1|2,∀ 1 < i ≤ n.

(7.57)

A set of Reduced bases ofR
n is sometimes called Lovisz Reduced bases, which is

of great significance in lattice theory. The important result of this section is that any
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lattice L in R
n has Reduced bases, and the method to calculate the Reduced bases is

the famous LLL algorithm.

Theorem 7.3 Let L ⊂ R
n be a lattice(full rank lattice), then there is a generating

matrix B = [β1, β2, . . . , βn] of L, where {β1, β2, . . . , βn} is a Reduced basis of R
n

and will also be a Reduced basis of lattice L = L(B).

Proof Let B = [β1, β2, . . . , βn], L = L(B), first we prove

|ukk−1| ≤ 1

2
,∀ 1 ≤ k. (7.58)

If there is a k > 1, then the above formula does not hold, let r be the nearest integer
of ukk−1, obviously,

|ukk−1 − r | ≤ 1

2
.

In {β1, β2, . . . , βn}, replace βk with βk − rβk−1, thus by Lemma 7.32,

ukj → ukj − ruk−1 j , 1 ≤ j ≤ k.

Specially, when j = k − 1,
ukk−1 → ukk−1 − r,

under the new basis, all βi and ui j (1 ≤ j < i 	= k) remain unchanged, so Eq. (7.58)
holds under the new basis.

In the second step of LLL algorithm, we prove that

|β∗
k − ukk−1β

∗
k−1|2 ≥ 3

4
|β∗

k−1|2,∀ 1 < k ≤ n. (7.59)

By (7.4),
|β∗

k + ukk−1β
∗
k−1|2 = |β∗

k − ukk−1β
∗
k−1|2.

Therefore, the sign in the absolute value on the right of Eq. (7.59) can be changed
arbitrarily. If there is a k, 1 < k ≤ n such that (7.59) does not hold, that is

|β∗
k + ukk−1β

∗
k−1|2 <

3

4
|β∗

k−1|2. (7.60)

In this case, if βk and βk−1 are exchanged and the other βi remains unchanged,
there is a new set of bases {α1, α2, . . . , αn}, the corresponding orthogonal basis
{α∗

1 , α
∗
2 , . . . , α

∗
n} and the coefficient matrix A1 = (vi j )n×n , where

αi = βi (i 	= k − 1, k), αk−1 = βk, αk = βk−1.

Let’s prove that under the new base {α1, α2, . . . , αn}, there is
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|α∗
k + vkk−1α

∗
k−1|2 ≥ 3

4
|α∗

k−1|2, (7.61)

by Lemma 7.31, {
α∗
k−1 = β∗

k + ukk−1β
∗
k−1

α∗
k = β∗

k−1 − vkk−1β
∗
k−1.

By (7.60), we have

|α∗
k−1|2 <

3

4
|α∗

k + vkk−1α
∗
k−1|2.

That is

|α∗
k + vkk−1α

∗
k−1|2 >

4

3
|α∗

k−1|2 >
3

4
|α∗

k−1|2.

Thus (7.61) holds.Using the abovemethod continuously, it canbeproved that formula
(7.59) is valid for ∀ k > 1, however, when k is replaced by k − 1, the new β∗

k−1 is
replaced by

β∗
k−1 → β∗

k−1 + uk−1k−2β
∗
k−2 = β∗

k−1.

We have to prove (7.59), it remains unchanged when k − 1 is used instead of k. In
fact,

|β∗
k + ukk−1β

∗
k−1|2 = |β∗

k + ukk−1(β
∗
k−1 + uk−1k−2β

∗
k−2)|2

= |β∗
k + ukk−1β

∗
k−1|2 + |ukk−1uk−1k−2β

∗
k−2|2

≥ 3

4
(|β∗

k−1|2 + u2kk−1|uk−1k−2β
∗
k−2|2)

≥ 3

4
(|β∗

k−1|2 + |uk−1k−2β
∗
k−2|2)

= 3

4
|β∗

k−1 + uk−1k−2β
∗
k−2|2

= 3

4
|β∗

k−1|2.

Therefore, Eq. (7.59) does not changewhen the transformation of commutative vector
is carried out continuously; that is, Eq. (7.59) holds for all k, 1 < k ≤ n.

The third step of the LLL algorithm, let’s prove that

|ukj | ≤ 1

2
,∀ 1 ≤ j < k ≤ n. (7.62)

When j = k − 1, (7.58) is the (7.62). For given k, 1 < k ≤ n, if (7.62) does not hold,
let l be the largest subscript ⇒ |ukl | > 1

2 . Let r be the nearest integer to ukl , then
|ukl − r | ≤ 1

2 . Replace βk with βk − rβl , fromLemma 7.32, all β∗
i remain unchanged

and the coefficient matrix is changed to:
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{
ukj = ukj − rul j , 1 ≤ j < l

ukl = ukl − r.

While the other ui j remains unchanged, at this time,

|ukl − r | = |vkl | ≤ 1

2
.

So we have Eq. (7.62) for all 1 ≤ j < k ≤ n.
The abovematrix transformation is equivalent to multiplying a unimodular matrix

from the right, so the Reduced basis B ⇒ L = L(B) of lattice L is finally obtained.
We complete the proof of Theorem 7.3.

Lemma 7.33 Let L = L(B) be a lattice, B is a Reduced basis of L, and B∗ =
[β∗

1 , β
∗
2 , . . . , β

∗
n ] is the corresponding orthogonal basis, then for any 1 ≤ j < i ≤ n,

we have
|β∗

j |2 ≤ 2i− j |β∗
i |2.

Proof Because B = [β1, β2, . . . , βn] is a Reduced basis, then

|β∗
k + ukk−1β

∗
k−1|2 ≥ 3

4
|β∗

k−1|2.

Thus

|β∗
k + ukk−1β

∗
k−1|2 = |β∗

k |2 + u2kk−1|β∗
k−1|2 ≥ 3

4
|β∗

k−1|2.

There is

|β∗
k |2 = 3

4
|β∗

k−1|2 − u2kk−1|β∗
k−1|2

≥ 3

4
|β∗

k−1|2 − 1

4
|β∗

k−1|2

= 1

2
|β∗

k−1|2.

So when 1 ≤ j < i ≤ n given, we have

|β∗
i |2 ≥ 1

2
|β∗

i−1|2

≥ 1

4
|β∗

i−2|2

≥ · · ·
≥ 2−(i− j)|β∗

j |2,

thus
|β∗

j |2 ≤ 2i− j |β∗
i |2.
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Remark 7.3 In the definition of Reduced base, the coefficient 3
4 on the left of the

second inequality of (7.57) can be replaced by any δ, where 1
4 < δ < 1. Specially,

Babai pointed out in (1986) that the second inequality of Eq. (7.57) can be replaced
by the following weaker inequality,

|β∗
i | ≤ 1

2
|β∗

i−1|. (7.63)

Let’s discuss the computational complexity of the LLL algorithm. Let B =
{β1, β2, . . . , βn} be any set of bases, for any 0 ≤ k ≤ n, we define

d0 = 1, dk = det(〈βi , β j 〉k×k). (7.64)

If {β∗
1 , β

∗
2 , . . . , β

∗
n } is the orthogonal basis corresponding to {β1, β2, . . . , βn}, there

is obviously

dk =
k∏

i=1

|β∗
i |2, 0 < k ≤ n. (7.65)

Thus, di is a positive number, and dn = d(L)2. Let

D =
n−1∏

k=1

dk, (7.66)

We first prove that dk(0 < k ≤ n) and D have lower bounds.

Lemma 7.34 Let

m(L) = λ(L)2 = min{|x |2 : x ∈ L , x 	= 0}.

Then

dk ≥
(
3

4

) k(k−1)
2

m(L)k, 1 ≤ k ≤ n.

Proof The determinant of k-dimensional lattice Lk = L(β1, β2, . . . , βk) ⊂ R
k(1 ≤

k ≤ n) has
d2(Lk) = dk .

By the conclusion of Cassels (1971), there is a nonzero lattice point x in Lk , which
satisfies x ∈ Lk, x 	= 0, and

|x |2 ≤
(
4

3

) k−1
2

d
1
k
k . (7.67)
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Then

dk ≥
(
3

4

) k(k−1)
2

m(Lk)
k

≥
(
3

4

) k(k−1)
2

(m(L))k .

The Lemma holds.

Another important conclusion of this section is that for the integer lattice L esti-
mation, the computational complexity of the Reduced basis of the integer lattice is
obtained by using the LLL algorithm.We prove that the LLL algorithm on the integer
lattice is polynomial.

Theorem 7.4 Let L = L(B) ⊂ Z
n be an integer lattice, B = [β1, β2, . . . , βn] is the

generating matrix, suppose N satisfies

max
1≤i≤n

|βi |2 ≤ N .

Then the computational complexity of the Reduced basis of L obtained by B using
the LLL algorithm is

Time(LLL algorithm) = O(n4 log N ).

The binary digits of all integers in the LLL algorithm are O(n log N ), so the compu-
tational complexity of the LLL algorithm on the integer lattice is polynomial.

Proof By (7.36), we have
|β∗

i | ≤ |βi |, 1 ≤ i ≤ n.

where {β∗
1 , β

∗
2 , . . . , β

∗
n } is the orthogonal basis corresponding to {β1, β2, . . . , βn},

then by (7.65) and (7.66), we have

dk =
k∏

i=1

|β∗
i |2 ≤

k∏

i=1

|βi |2 ≤ Nk, 1 ≤ k ≤ n.

And
1 ≤ D ≤ N

n(n−1)
2 . (7.68)

The inequality on the left of the above formula is because of dk ∈ Z, and dk ≥ 1, by
(7.66), then D ≥ 1. Therefore, O(n) arithmetic operations are required in the first
step of the LLL algorithm, O(n3) arithmetic operations are required in the second
and third steps, and the number of bit operations per algorithm operation is ≤ Time
(calculate D), thus

Time(LLL algorithm) ≤ O(n3)Time(calculate D) = O(n4 log N ).
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Therefore, the first conclusion of Theorem 7.4 is proved. The second conclusion is
more complex, we will omit it. Interested readers can refer to the original (1982) of
A. K. Lenstra, H. W. Lenstra and L. Lovasz.

7.5 Approximation of SVP and CVP

The most important application of lattice Reduced basis and LLL algorithm is to
provide approximation algorithms for the shortest vector problem and the shortest
adjacent vector problem, and obtain some approximate results. Firstly, we prove the
following Lemma.

Lemma 7.35 Let {β1, β2, . . . , βn}beaReducedbasis of a lattice L, {β∗
1 , β

∗
2 , . . . , β

∗
n }

be the corresponding orthogonal basis, and d(L) be the determinant of L, then we
have

(i)

d(L) ≤
n∏

i=1

|βi | ≤ 2
n(n−1)

4 d(L). (7.69)

(ii)
|β1| ≤ 2

n−1
4 d(L)

1
n . (7.70)

Proof The inequality on the left of (i), called Hadamard inequality, has been given
by Lemma 7.17. The inequality on the right of (i) gives an upper bound of

∏n
i=1 |βi |,

by Lemma 7.33,
|β∗

j | ≤ 2
i− j
2 |β∗

i |, 1 ≤ j < i ≤ n. (7.71)

Thus

βi = β∗
i +

i−1∑

j=1

ui jβ
∗
j .

We get

|βi |2 = |β∗
i |2 +

i−1∑

j=1

u2i j |β∗
j |2

≤ |β∗
i |2 + 1

4

i−1∑

j=1

|β∗
j |2

≤
⎛

⎝1 + 1

4

i−1∑

j=1

2i− j

⎞

⎠ |β∗
i |2 (7.72)
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=
(
1 + 1

4
(2i − 2)

)
|β∗

i |2

≤ 2i−1|β∗
i |2.

There is
n∏

i=1

|βi |2 ≤
n∏

i=1

2i−1|β∗
i |2

= 2
∑n−1

i=0 i
n∏

i=1

|β∗
i |2

= 2
n
2 (n−1)

n∏

i=1

|β∗
i |2

= 2
n
2 (n−1)(d(L))2.

So
n∏

i=1

|βi | ≤ 2
n
4 (n−1)d(L).

We have (7.69) holds. To prove (iii), by (7.72) and (7.71), then

|β j |2 ≤ 2 j−1|β∗
j |2 ≤ 2 j−12i− j |β∗

i |2 = 2i−1|β∗
i |2. (7.73)

For all 1 ≤ j ≤ i ≤ n, especially,

|β∗
1 | ≤ 2i−1|β∗

i |2, 1 ≤ i ≤ n.

Thus

|β1|2n ≤ 2
∑n

i=0(i−1)
n∏

i=1

|β∗
i |2

= 2
n
2 (n−1)(d(L))2.

So
|β1| ≤ 2

n−1
4 d(L)

1
n .

Lemma 7.35 holds!

The following theorem shows that if {β1, β2, . . . , βn} is a set of Reduced bases
of a lattice L , then β1 is the approximation vector of the shortest vector u0 of lattice
L , and the approximation coefficient rn = 2n−1.

Theorem 7.5 Let L = L(B) ⊂ R
n be a lattice (full rank lattice), B = [β1, β2,

. . . , βn] is a set of Reduced bases of L, λ1 = λ(L) is the minimal distance of L,
then
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|β1| ≤ 2
n−1
2 λ1 = 2

n−1
2 λ(L). (7.74)

Proof We only prove that for ∀ x ∈ L , x 	= 0, there is

|β1|2 ≤ 2n−1|x |2,∀ x ∈ L , x 	= 0. (7.75)

When x ∈ L , x 	= 0 given, let

x =
n∑

i=1

riβi =
n∑

i=1

r
′
iβ

∗
i , ri ∈ Z, r

′
i ∈ R, 1 ≤ i ≤ n.

Let k be the largest subscript ⇒ rk 	= 0, thus rk = r
′
k . So

|x |2 ≥ r2k |β∗
k |2 ≥ |β∗

k |2 ≥ 21−k |β1|2. (7.76)

Thus
|β1|2 ≤ 2k−1|x |2 ≤ 2n−1|x |2, x ∈ L , x 	= 0.

That is (7.75) holds, thus Theorem 7.5 holds.

The following results show that not only the shortest vector, the whole Reduced
basis vector is the approximation vector of the Successive Shortest vector of the
lattice.

Lemma 7.36 Let L ⊂ R
n be a lattice, {β1, β2, . . . , βn} is a Reduced base of L, let

{x1, x2, . . . , xt } ⊂ L be t linearly independent lattice points, then

|β j |2 ≤ 2n−1 max{|x1|2, |x2|2, . . . , |xt |2}. (7.77)

For all 1 ≤ j ≤ t holds.

Proof Write

x j =
n∑

i=1

ri jβi , ri j ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ t.

For fixed j , let i( j) the largest positive integer i ⇒ ri j 	= 0, by (7.76), we have

|x j |2 ≥ |β∗
i( j)|2, 1 ≤ j ≤ t.

Change the order of x j to ensure i(1) ≤ i(2) ≤ · · · ≤ i(t), then j ≤ i( j), for ∀ 1 ≤
j ≤ t holds. Otherwise, the assumption that

{x1, x2, . . . , xn} ⊂ L(β1, β2, . . . , β j−1)



7.5 Approximation of SVP and CVP 299

is linearly independent of x1, x2, . . . , x j is contradictory. Thus j ≤ i( j). By (7.73)
of Lemma 7.35, then

|β j |2 ≤ 2i( j)−1|β∗
i( j)|2

≤ 2n−1|β∗
i( j)|2

≤ 2n−1|x j |2,∀ 1 ≤ j ≤ t.

Thus (7.77) holds, the Lemma holds.

Remark 7.4 We give a proof of rk = r
′
k in Theorem 7.5, because k is the largest

subscript ⇒ rk 	= 0, so

x =
k∑

i=1

riβi =
k∑

i=1

r
′
iβ

∗
i .

By (7.52) and (7.53),

r
′
k = 〈x, β∗

k 〉
|β∗

k |2
, rk = 〈x, β∗

k 〉
〈βk, β

∗
k 〉

.

Because 〈βk, β
∗
k 〉 = 〈β∗

k , β
∗
k 〉, so

r
′
k = 〈x, β∗

k 〉
〈βk, β

∗
k 〉

= rk .

In order to discuss the approximation of the Successive Shortest vector of a lattice,
let’s look at the definitions of the continuous minimum λ1, λ2, . . . , λn and the Suc-
cessive Shortest vector of a lattice, by Definition 7.6 and Corollary 7.6 in Sect. 7.2,
the continuous minimum λ1, λ2, . . . , λn of a full rank lattice is reachable, for all
1 ≤ i ≤ n, there is

|αi | = λi , αi ∈ L , 1 ≤ i ≤ n.

For a Successive Shortest vector called α1, α2, . . . , αn , |αi | is the shortest under the
condition that αi is linearly independent of {α1, α2, . . . , αi−1}.
Theorem 7.6 Let {β1, β2, . . . , βn}beaReducedbasis of lattice L, andλ1, λ2, . . . , λn

be the continuous minimum of L, then we have

|βi |2 ≤ 2n−1λi , 1 ≤ i ≤ n. (7.78)

Proof We make an induction of i . Because {β1, β2, . . . , βi } is an Reduced basis of
lattice Li in R

i , the proposition is obviously true when i = 1 (see Theorem 7.5 ). If
the proposition holds for i − 1, then by Lemma 7.36,

|β∗
i |2 ≤ 2n−1 max{λ1, λ2, . . . , λi } = 2n−1λi .

Therefore, (7.78) holds for all i . The Theorem holds.
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Next, we choose the Reduced basis to solve the shortest adjacent vector problem
(CVP). For any given t ∈ R

n , because there are only finite lattice points in one lattice
L in the Ball(t, r) with t as the center and r as the radius, there is a lattice point ut
closest to t , that is

|ut − t | = min
x∈L ,x 	=t

|x − t |. (7.79)

We use the Reduced basis to find a lattice point ω ∈ L ⇒

|ω − t | ≤ r1(n)|ut − t |, (7.80)

ω is called an approximation of the nearest lattice point ut , and r1(n) is called an
approximation coefficient. According to Babai (1986), to solve the approximation
of the nearest lattice point ut , we adopt the following two technical means:

(A) rounding off: ∀ x ∈ R
n , [β1, β2, . . . , βn] = B is a Reduced base of lattice L .

The discard vector [x]B of x is defined as follows, let

x =
n∑

i=1

xiβi , xi ∈ R,

Let δi be the nearest integer to xi , then define

[x]B =
n∑

i=1

δiβi , (7.81)

[x]B is called the discard vector of x under base B, write x = [x]B + {x}B , then

{x}B ∈
{

n∑

i=1

aiβi | − 1

2
< ai ≤ 1

2
, 1 ≤ i ≤ u

}
.

(B) Adjacent plane

LetU = ∑n−1
i=1 Rβi = L(β1, β2, . . . , βn−1) ⊂ R

n be ann − 1-dimensional subspace,
L

′ = ∑n
i=1 Zβi ⊂ L be a sublattice of L , and v ∈ L , callU + v is an affine plane of

R
n . When x ∈ R

n given, if the distance between x andU + v is the smallest,U + v

is called the nearest affine plane of x .
Let x

′
be the orthogonal projection of x in the nearest affine plane U + v, let

y ∈ L
′
be the vector closest to x − v in L

′
, and let w = y + v be the approximation

of the vector closest to x in L .
Let L(β1, β2, . . . , βn) ⊂ R

n be a lattice, {β∗
1 , β

∗
2 , . . . , β

∗
n } is the corresponding

orthogonal basis. ∀ x ∈ R
n , write x = ∑n

i=1 xiβ
∗
i , xi ∈ R

n , δi represents the nearest
integer of xi , according to the nearest planemethod,we take (see Lemma7.43 below).
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = L(β∗
1 , β

∗
2 , . . . , β

∗
n−1) = L(β1, β2, . . . , βn−1)

r = δnβn ∈ L

x
′ =

n−1∑
i=1

xiβ∗
i + δnβ

∗
n

y is a sublattice The grid point closest to x − v in L
′ =

n−1∑
i=1

Zβi

ω = y + v

(7.82)

We prove that

Theorem 7.7 Let L = L(B) ⊂ R
n be a lattice, B = [β1, β2, . . . , βn] is a Reduced

base of L, for ∀ x ∈ R
n given, the adjacent plane method produces a lattice point

ω = y + v adjacent to x in L (by (7.82)), satisfies

|w − x | ≤ 2
n
2 |ux − x |, (7.83)

where ux is given by Eq. (7.79) and further

|x − ω| ≤ 2
n
2 −1|β∗

n |. (7.84)

Proof If n = 1, then B = θ ∈ R, θ 	= 0. Let x ∈ R, x = x1θ , L = nθ , then when
n ∈ Z,

|x − nθ | = |x1θ − nθ | = |x1 − n||θ | ≥ |x1 − δ||θ |,

where δ is the nearest integer to x1, let ω = δθ , then

|x − ω| = |x1 − δ||θ | ≤ |x − nθ |, ∀ n ∈ Z.

So ω = δθ is the lattice point closest to x in L , so ω = ux ∈ L , that is

|x − ω| = |ux − x |.

Thus (7.83) holds.
Let n ≥ 2, we observe (see (7.82)), v = δnβn , x

′ = ∑n−1
i=1 xiβ∗

i + δnβ
∗
n , then

|x − x
′ | = |xn − δn||β∗

n | ≤ 1

2
|β∗

n |, (7.85)

since the distance between affine planes {u + z|z ∈ L} is at least |β∗
n |, and |x − x

′ |
is the distance between x and the nearest affine plane, there is

|x − x
′ | ≤ |ux − x |. (7.86)

Let ω = y + v = y + δnβn ∈ L , we prove that
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|x − ω|2 = |x − x
′ |2 + |x ′ − ω|2. (7.87)

Because x − x
′ = (xn − δn)β

∗
n , x

′ − ω = x
′ − v − y ∈ u, so (x − x

′
)⊥(x

′ − ω).
Therefore, by the Pythagorean theorem, (7.87) holds. By induction, we have (see
(7.79))

|x − ω|2 ≤ 1

4
(|β∗

1 |2 + |β∗
2 |2 + · · · + |β∗

n |2).

By (7.71),
|β∗

i |2 ≤ 2n−i |β∗
n |2.

Thus

|x − ω|2 ≤ 1

4
|β∗

n |2(1 + 2 + 22 + · · · + 2n−1)

= 1

4
(2n − 1)|β∗

n |2

≤ 2n−2|β∗
n |2.

There is
|x − ω| ≤ 2

n
2 −1|β∗

n |, (7.88)

that is (7.84) holds. To prove (7.83), we have two situations:
Case 1: if ux ∈ U + x ,
In this case, ux − v ∈ U ⇒ ux − v ∈ L

′
is the lattice point closest to x

′ − v in L ,
so there is

|x ′ − ω| = |x ′ − v − y| ≤ Cn−1|x ′ − ux | ≤ Cn−1|x − ux |,

where Cn = 2
n
2 . By (7.87), we have

|x − ω|2 ≤ (1 + (Cn−1)
2)

1
2 |x − u| < Cn|x − u|.

The proposition holds.
Case 2: If ux /∈ U + x , then

|x − ux | ≥ 1

2
|β∗

n |.

By (7.88), we get
|x − ω| < 2

n
2 |x − ux |.

Thus, Theorem 7.7 holds.

Comparing Theorems 7.6 and 7.7, when x = 0, the approximation coefficient
of Theorem 7.6 is 2

n−1
2 , for general x ∈ R

n , there is an additional factor
√
2 in
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the approximation coefficient. Using the rounding off technique, we can give an
approximation to adjacent vectors, another main result in this section is

Theorem 7.8 Let B = [β1, β2, . . . , βn] be a Reduced basis of L, x ∈ R
n given arbi-

trarily, ux ∈ L is the lattice point closest to x, and [x]B is given by Eq. (7.82), then
ω = [x]B ∈ L, and

|x − [x]B | ≤
(
1 + 2n

(
9

2

) n
2

)
|x − ux |. (7.89)

By Theorem 7.8, [x]B ∈ L is an approximation of the nearest lattice point ux , and

the approximation coefficient is γ1(n) = 1 + 2n
(
9
2

) n
2 , it is a little worse than the

approximation coefficients generated by adjacent planes, but the approximation vec-
tor is relatively simple. In lattice cryptosystem, [x]B as input information has higher
efficiency. To prove Theorem 7.8, we need the following Lemma.

Lemma 7.37 Let B = [β1, β2, . . . , βn] is a Reduced base of R
n, θk represents the

angle between vector βk and subspace Uk, where

Uk =
∑

i 	=k

Rβi . (7.90)

Then for each k, 1 ≤ k ≤ n, we have

sin θk ≥
(√

2

3

)n

. (7.91)

Proof 1 ≤ k ≤ n given, ∀ m ∈ Uk , we prove

|βk | ≤
(
9

2

) n
2

|m − βk |,m ∈ Uk . (7.92)

Because

sin θk = min
m∈Uk

|m − βk |
|βk | ,

so by (7.92), ⇒ (7.91), the Lemma holds. To prove (7.92), let {β∗
1 , β

∗
2 , . . . , β

∗
n } be

the orthogonal basis corresponding to the Reduced basis Reduced {β1, β2, . . . , βn},
then m ∈ Uk can express as

m =
∑

i 	=k

aiβi =
n∑

j=1

b jβ
∗
j , ai , b j ∈ R.
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Write

m = (a1, . . . , an)

⎡

⎢⎢⎢⎣

β1

β2
...

βn

⎤

⎥⎥⎥⎦ = (a1, . . . , an)U

⎡

⎢⎢⎢⎣

β∗
1

β∗
2
...

β∗
n

⎤

⎥⎥⎥⎦ .

where ak = 0, U is the transition matrix of Gram–Schmidt orthogonalization (see
(7.87)). Then for any 1 ≤ j ≤ n, 1 ≤ k ≤ n, there is

b j =
∑

i 	=k

aiui j , βk =
n∑

i=1

ukiβ
∗
i .

So

m − βk =
n∑

j=1

γ jβ
∗
j ,where γ j = b j − ukj .

Let ak = −1, then

γ j =
n∑

i=1

aiui j = a j +
n∑

i= j+1

aiui j . (7.93)

Therefore, Eq. (7.92) can be rewritten as

|βk |2 =
k∑

j=1

u2k j |β∗
j |2 ≤

(
9

2

) n
2

n∑

j=1

γ 2
j |β∗

j |2. (7.94)

Let us first prove the following assertion:

n∑

j=k

γ 2
j ≥

(
2

3

)2(n−k)

. (7.95)

If the above formula does not hold, i.e.,

n∑

j=k

γ 2
j <

(
2

3

)2(n−k)

.

Then for all j , k ≤ j ≤ n, there is

γ 2
j <

(
2

3

)2(n−k)

⇒ |γ j | <

(
2

3

)(n−k)

. (7.96)
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By (7.93), ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γn = an
γn−1 = an−1 + anunn−1

γn−2 = an−2 + an−1un−1n−2 + anunn−2

· · ·
γk = ak + ak+1uk+1k + · · · + anunk

We can prove

|a j | <

(
3

2

)n− j

·
(
2

3

)n−k

. (7.97)

Because when j = n, an = γn , (7.96) ensures that (7.97) holds. Reverse induction
of j (k ≤ j ≤ n), by (7.93),

|a j | = |γ j −
n∑

i= j+1

aiui j | ≤ |γ j | +
n∑

i= j+1

|ai |
2

<

(
2

3

)n−k

+ 1

2

n∑

i= j+1

(
3

2

)n−i (2

3

)n−k

=
(
2

3

)n−k

+ 1

2

(
2

3

)n−k n− j−1∑

i=0

(
3

2

)i

=
(
2

3

)n−k

+
(
2

3

)n−k
((

3

2

)n− j

− 1

)

=
(
3

2

)n− j (2

3

)n−k

.

Therefore, under the assumption of (7.96), we have (7.97). Take j = k in (7.97), then
|ak | < 1, but ak = −1, this contradiction shows that Formula (7.96) does not hold,
thus (7.95) holds.

We now prove Formula (7.94) to complete the proof of Lemma. By Lemma 7.33,

|β∗
k |2 ≥ 2 j−k |β∗

j |2, 1 ≤ j ≤ k ≤ n.

And
|β∗

k |2 ≤ 2 j−k |β∗
j |2, 1 ≤ k ≤ j ≤ n.

Therefore, there is an estimate on the left of Eq. (7.94)
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k∑

j=1

u2k j |β∗
j |2 ≤ |β∗

k |2
k∑

j=1

u2k j2
k− j

≤ 1

4
|β∗

k |2
k∑

j=1

2k− j

= 1

4
|β∗

k |2(2k − 1)

< 2k |β∗
k |2.

On the other hand, there is an estimate on the right of (7.94),

n∑

j=1

γ 2
j |β∗

j |2 ≥
n∑

j=k

γ 2
j |β∗

j |2

≥
n∑

j=k

γ 2
j 2

k− j |β∗
i |2

≥ 2k−n|β∗
k |2

n∑

j=k

γ 2
j

≥ 2k−n

(
2

3

)2(n−k)

|β∗
k |2

≥
(
2

9

) n
2

|β∗
k |2.

Thus (7.94) holds, we complete the proof of Lemma 7.37.

Now we give the proof of 7.8:

Proof (The proof of Theorem 7.8) Let B = {β1, β2, . . . , βn} be a Reduced basis of
lattice L = L(B), 1 ≤ k ≤ n given, Uk is a linear subspace generated by B − {βk},
by Lemma 7.37, we have

|β1| ≤
(
9

2

) n
2

|m − βk |,∀ m ∈ Uk . (7.98)

Let x ∈ R
n , ω = [x]B ∈ L , then

x − ω = x − [x]B =
n∑

i=1

ciβi , |ci | ≤ 1

2
(1 ≤ i ≤ n).

Let ux be the nearest grid point to x in L , and let
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ux − ω =
n∑

i=1

aiβi , ai ∈ Z.

We prove

|ux − ω| ≤ 2n

(
9

2

) n
2

|ux − x |. (7.99)

Might as well make ux 	= ω, and suppose

|akβk | = max
1≤ j≤n

|a jβ j | > 0.

Obviously,
|ux − ω| ≤ n|akβk |. (7.100)

On the other hand,

ux − x = (ux − ω) + (ω − x) =
n∑

i=1

(ai + ci )βi = (ak + ck)(βk − m).

where

m = − 1

ak + ck

∑

j 	=k

(a j + c j )β j ∈ Uk .

By (7.99),

|ux − x | = |ak + ck ||βk − m| ≥ 1

2

(
2

9

) n
2

|βk ||ak |.

There is

|akβk | ≤ 2

(
9

2

) n
2

|ux − x |.

So

|ux − ω| ≤ 2n

(
9

2

) n
2

|ux − x |.

That is (7.99) holds, finally,

|x − ω| ≤ |x − ux | + |ux − ω| ≤
(
1 + 2n

(
9

2

) n
2

)
|x − ux |.

We complete the proof of Theorem 7.8.
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7.6 GGH/HNF Cryptosystem

Lattice-based cryptosystem is themain research object of postquantumcryptography.
Since it was first proposed in 1996, it has only a history of more than 20years.
Among them, the representative technologies are Ajtai-Dwork cryptosystem, GGH
cryptosystem, McEliece-Niederreiter cryptosystem and NTRU cryptosystem based
on algebraic code theory. We will introduce them, respectively, below.

GGH cryptosystem is a cryptosystem based on lattice theory proposed by Gol-
dreich, Goldwasser and Halevi in 1997. It is generally considered that it is a new
public key cryptosystem to replace RSA in the postquantum cryptosystem era.

Let L ⊂ Z
n be an integer lattice, B and R are two generating matrices of L , that

is
L = L(B) = L(R).

Because there is a unique HNF base in L (see Lemma 3.4). Let B = HNF(L) be
HNF matrix, B as public key and R as private key. Let v ∈ Z

n be an integer point,
e ∈ R

n is an error vector. Let σ be a parameter vector. Take e = σ or e = −σ , they
each chose with a probability of 1

2 .
Encryption: for the plaintext v ∈ Z

n encoded and input and the error vector ran-
domly selected according to the parameter vector σ , the public key B is used for
encryption. The encryption function fB,σ is defined as

fB,σ (v, e) = Bv + e = c ∈ R
n. (7.101)

Decryption: decrypt cryptosystem text c with private key R, because c ∈ R
n ,

R = [α1, α2, . . . , αn], then c can be expressed in {α1, α2, . . . , αn} linearity,

c =
n∑

i=1

xiαi , xi ∈ R.

Let δi be the nearest integer to xi , define (see (7.81))

[c]R =
n∑

i=1

δiαi ∈ L . (7.102)

Define the decryption function as

{
f −1
B,σ (c) = B−1[c]R = v,

e = c − Bv.
(7.103)

In order to verify the correctness of decryption function f −1
B,σ , we first prove the

following simple Lemma. For any x ∈ R
n , and R = [α1, α2, . . . , αn] ∈ R

n×n is any
set of bases of R

n , if x = (a1, a2, . . . , an) ∈ R
n , γi represents the integer closest to
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ai , then define (see (7.7))

[x] = (γ1, γ2, . . . , γn) ∈ Z
n. (7.104)

Write x = ∑n
i=1 xiαi , δi is the nearest integer to xi , then define (see (7.102))

[x]R =
n∑

i=1

δiαi ∈ L(R). (7.105)

Lemma 7.38 For ∀ x ∈ R
n, R ∈ R

n×n is a set of bases of R
n, we have

[x]R = R[R−1x].

Proof Write

x =

⎡

⎢⎢⎢⎣

a1
a2
...

an

⎤

⎥⎥⎥⎦ ∈ R
n ⇒ [x] =

⎡

⎢⎢⎢⎣

δ1
δ2
...

δn

⎤

⎥⎥⎥⎦ ∈ Z
n, |ai − δi | ≤ 1

2
.

If x = ∑n
i=1 xiαi , R = [α1, α2, . . . , αn], then

x = R

⎡

⎢⎢⎢⎣

x1
x2
...

xn

⎤

⎥⎥⎥⎦ , and [x]R = R

⎡

⎢⎢⎢⎣

δ1
δ2
...

δn

⎤

⎥⎥⎥⎦ , δi is the nearest integer to xi .

Thus

R−1[x]R =

⎡

⎢⎢⎢⎣

δ1
δ2
...

δn

⎤

⎥⎥⎥⎦ = [R−1x].

Lemma 7.38 holds.

Theorem 7.9 Let L = L(R) = L(B) ⊂ Z
n be an integer lattice, B is the public

key, R is the private key, v ∈ Z
n is plaintext, e is the error vector. If and only if

[R−1e] 	= 0,
f −1
B,σ (c) 	= v.

Proof By the definition, cryptosystem text c = Bv + e = fB,σ (v, e), and

f −1
B,σ (c) ≡ B−1[c]R = B−1R[R−1c] = T [R−1c]. (7.106)
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where T = B−1R ∈ R
n×n is a unimodular matrix. Because L(B) = L(R),⇒

B = RU,U ∈ SLn(Z).

So
B−1R = UR−1R = U = T,

that is T is a unimodular matrix. By (7.106),

T [R−1c] = T [R−1(Bv + e)]
= T [R−1Bv + R−1e]
= T [T−1v + R−1e].

Because T is a unimodular matrix, v ∈ Z
n , so

[T−1v + R−1e] = T−1v + [R−1e]. (7.107)

Thus
T [R−1c] = v + T [R−1e].

That is
f −1
B,σ (c) = v + T [R−1e].

Because T is a unimodular matrix, T [R−1e] = 0 ⇔ [R−1e] = 0, so the Theorem
holds.

By Theorem 7.9, whether the GGH cryptographic mechanism is correct or not
depends entirely on whether [R−1e] is a 0 vector, that is

f −1
B,σ (c) = v ⇔ [R−1e] = 0. (7.108)

Therefore, when the private key R is given, the selection of error vector e and param-
eter vector σ becomes the key to the correctness of GGH password. Notice that
(7.106), if we decrypt with public key B, then

[B−1c] = [B−1(Bv + e)] = [v + B−1e] = v + [B−1e].

Therefore, the basic condition for the security and accuracy of GGH password is

{
[R−1e] = 0

[B−1e] 	= 0.
(7.109)

Because the public key B we choose is HNFmatrix, [B−1e] 	= 0 is easy to satisfy.
Let B = (bi j )n×n ⇒ B−1 = (ci j )n×n . Where cii = b−1

i i . Let e = (e1, e2, . . . , en),
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each ei has the same absolute value, that is |ei | = σ , σ is the parameter. Thus,
2|en| > bnn ⇒ [B−1e] 	= 0. Let’s focus on [R−1e] = 0.

∀ x = (x1, x2, . . . , xn) ∈ R
n , define the L1 norm |x |1 and L∞ norm |x |∞ of x as

|x |∞ = max
1≤i≤n

|xi |, |x |1 =
n∑

i=1

|xi |. (7.110)

Lemma 7.39 Let R ∈ R
n×n be a reversible square matrix, R−1 =

⎡

⎢⎢⎢⎣

α1

α2
...

αn

⎤

⎥⎥⎥⎦, where αi

is the row vector of R−1. e = (e1, e2, . . . , en) ∈ R
n, |ei | = σ , ∀ 1 ≤ i ≤ n, let

ρ = max
1≤i≤n

|αi |(|αi |1) (7.111)

be the maximum of the L1 norm of n row vectors of R−1, then when σ < 1
2ρ , we have

[R−1e] = 0.

Proof Suppose αi = (ci1, ci2, . . . , cin), the i-th component of R−1e can be written
as ∣∣∣∣∣

n∑

i=1

ci j e j

∣∣∣∣∣ ≤ σ

n∑

j=1

|ci j | = σ |αi |∞ ≤ σρ.

If σ < 1
2ρ , then each component of R−1e is < 1

2 , there is [R−1e] = 0.

Lemma 7.40 R ∈ R
n×n , R−1 =

⎡

⎢⎢⎢⎣

α1

α2
...

αn

⎤

⎥⎥⎥⎦, let max1≤i≤n |αi |∞ = γ√
n
, then the prob-

ability of [R−1e] 	= 0 is

P{[R−1e] 	= 0} ≤ 2n exp

(
− 1

8σ 2γ 2

)
. (7.112)

where σ is the parameter, error vector e = (e1, . . . , en), |ei | = σ .

Proof Let R−1 = (ci j )n×n , R−1e =

⎡

⎢⎢⎢⎣

a1
a2
...

an

⎤

⎥⎥⎥⎦, where ai = ∑n
j=1 ci j e j .

Because |ci j | ≤ γ√
n
, |e j | = σ , then ci j e j is in interval [− γ σ√

n
,

γ σ√
n
]; therefore, by

Hoeffding inequality, we have
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P

{
|ai | >

1

2

}
= P

⎧
⎨

⎩

∣∣∣∣∣∣

n∑

j=1

ci j e j

∣∣∣∣∣∣
>

1

2

⎫
⎬

⎭ < 2 exp

(
− 1

8σ 2γ 2

)
.

To satisfy [R−1e] 	= 0, then only one of the above conditions {|ai | > 1
2 } is true. Thus

P{[R−1e] 	= 0} = P

{
n⋃

i=1

{
|ai | >

1

2

}}

≤
n∑

i=1

P

{
|ai | >

1

2

}

< 2n exp

(
− 1

8σ 2γ 2

)
.

The Lemma holds.

Corollary 7.8 For any given ε > 0, when parameter σ satisfies

σ ≤
(

γ

√
8 log

2n

ε

)−1

⇒ P{[R−1e] 	= 0} < ε. (7.113)

In order to have a direct impression of Eq. (7.113), let’s give an example. Let n = 120,
ε = 10−5,when the elements ofmatrix R−1 = (ci j )n×n change in the interval [−4, 4],
that is −4 ≤ ci j ≤ 4, then it can be verified that the maximum L∞ norm of the row
vector of R−1 is approximately equal to 1

30×√
120

, thus γ = 1
30 , by Corollary, when

σ ≤ ( 1
30

√
8 log 240 × 105)−1 ≈ 30

11.6 ≈ 2.6, we have

P{[R−1e] 	= 0} < 10−5.

It can be seen from the above analysis that GGH cryptosystem does not effectively
solve the selection of private key R, public key B, especially parameter σ and error
vector. In 2001, Professor Micciancio of the University of California, San Diego
further improvedGGH cryptosystem by usingHNF basis and adjacent planemethod.
In order to introduce GGH/HNF cryptosystem, we review several important results
in the previous sections.

Lemma 7.41 Let L = L(B) ⊂ R
n be a lattice, B = [β1, β2, . . . , βn] is the generat-

ing base, B∗ = [β∗
1 , β

∗
2 , . . . , β

∗
n ] is the corresponding orthogonal basis, λ1 = λ(L)

is the minimum distance of L, then

(i)
λ1 = λ(L) ≥ min

1≤i≤n
|β∗

i |. (7.114)

For L = L(B), take parameter ρ = ρ(B) as
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ρ = 1

2
min
1≤i≤n

|β∗
i |. (7.115)

Then for any x ∈ R
n, there is at most one grid point

α ∈ L ⇒ |x − α| < ρ. (7.116)

(ii) Suppose L ⊂ Z
n is an integer lattice, then L has a unique HNF base B, that is

L = L(B), B = (bi j )n×n, satisfies

0 ≤ bi j < bii ,when 1 ≤ i < j ≤ n, bi j = 0,when 1 ≤ j < i ≤ n.

That is, B is an upper triangular matrix, and the corresponding orthogonal basis
B∗ of B is a diagonal matrix, that is

B∗ = diag{b11, b22, . . . , bnn}.

Proof Equation (7.114) is given by Lemma 7.18 and the property (ii) is given by
Lemma 7.26. We only prove that if there is lattice point α ∈ L ⇒ |x − α| < ρ, then
α is the only one. Let α1 ∈ L , α2 ∈ L , and

|α1 − x | < ρ, |α2 − x | < ρ ⇒ |α1 − α2| < 2ρ = min
1≤i≤n

|β∗
i | ≤ λ1.

Because α1 − α2 ∈ L , this contradicts the definition of λ1. There is α1 = α2.

In the previous section, we introduced Babai’s adjacent planemethod (see (7.82)).
The distance between two subsets A1 and A2 in R

n is defined as

|A1 − A2| = min{|x − y||x ∈ A1, y ∈ A2}.

x ∈ R
n is a vector, A ⊂ R

n is a subset, the distance between x and A is defined as

|x − A| = min{|x − y||y ∈ A}.

Suppose L ∈ R
n , B = [β1, β2, . . . , βn] is a generating base, B∗ = [β∗

1 , β
∗
2 , . . . , β

∗
n ]

is the corresponding orthogonal basis. Define subspace

{
U = L(β1, β2, . . . , βn−1) = R

n−1, L ′ = ∑n−1
i=1 Zβi is a sub-lattice.

Av = U + v, v ∈ L .

Av is called an affine plane with v as the representative element. Any x ∈ R
n , let Av

be the affine plane closest to x , that is

|x − Av| = min{|x − Aα||α ∈ L}.
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Let x ′ be the orthogonal projection of x on Av . Because x ′ − v ∈ U = R
n−1. Recur-

sively let y ∈ L ′ be the nearest lattice point to x ′ − v. Then we define the adjacent
plane operator τB of x under base B as

τB(x) = w = y + v ∈ L . (7.117)

Lemma 7.42 Under the above definition, if v1, v2 ∈ L, and Av1 	= Av2 , then

|Av1 − Av2 | ≥ |β∗
n |. (7.118)

Proof v1, v2 ∈ L , then it can be given by the linear combination of {β∗
1 , β

∗
2 , . . . , β

∗
n },

that is {
v1 = ∑n

i=1 aiβ
∗
i , where ai ∈ R, an ∈ Z.

v2 = ∑n
i=1 biβ

∗
i , where bi ∈ R, bn ∈ Z.

In order to prove the n-th component, an and bn are integers, let

v1 =
n∑

i=1

a∗
i βi , v2 =

n∑

i=1

b∗
i βi , a

∗
i , b

∗
i ∈ Z.

Therefore,

an = 〈v1, β∗
n 〉

|β∗
n |2

= 〈a∗
nβn, β

∗
n 〉

|β∗
n |2

= a∗
n ∈ Z.

The above equation uses Eq. (7.52), which can prove bn ∈ Z in the same way. By
condition v1 − v2 /∈ U , then an = bn , therefore

|Av1 − Av2 | = |an − bn||β∗
n | ≥ |β∗

n |.

We have completed the proof of Lemma.

Lemma 7.43 Under the above definitions and symbols, suppose x ∈ R
n,

x = ∑n
i=1 γiβ

∗
i , δ is the nearest integer to γn, then

(i)

v = δβn, x
′ =

n−1∑

i=1

γiβ
∗
i + δβ∗

n . (7.119)

That is, the affine plane closest to x is Aβn , the orthogonal projection of x on Av

is x ′.
(ii) Let ux ∈ L be the lattice point closest to x, then

|x − x ′| ≤ |x − ux |. (7.120)
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Proof Take v = δβn , then v ∈ L , we want to prove that the distance between x and
Av is the smallest. Because x = ∑n

i=1 γiβ
∗
i , so (see (7.119))

x − v =
n−1∑

i=1

γ ′
i β

∗
i + (γn − δ)β∗

n ,

=⇒ |x − Av| = |x − v −U | ≤ |γn − δ||β∗
n | ≤ 1

2
|β∗

n |.

Let v1 ∈ L , v − v1 /∈ U , by trigonometric inequality,

|x − Av1 | ≥ |Av1 − Av| − |x − Av| ≥ |β∗
n | − 1

2
|β∗

n | = 1

2
|β∗

n | ≥ |x − Av|.

So it is correct to take v = δβn . Secondly, we prove that the orthogonal projection x ′
of x and affine plane Av is

x ′ =
n−1∑

i=1

γiβ
∗
i + δβ∗

n .

Let’s first prove x ′ ∈ Av . Because v = δβn , and

βn =
n−1∑

i=1

ciβ
∗
i + β∗

n ⇒ δβn =
n−1∑

i=1

δciβ
∗
i + δβ∗

n = v. (7.121)

Thus

x ′ − v =
n−1∑

i=1

(γi − δci )β
∗
i ∈ U.

That is x ′ ∈ U + v = Av . And x − x ′ = δβ∗
n ⇒ (x − x ′)⊥U . Because

U
⋂

Av = ∅.

Then Av and U are two parallel planes, thus (x − x ′)⊥Av . This proves that the
orthogonal projection of x on Av is x ′, and thus (i) holds.

The proof of (ii) is direct. By the definition of x and any affine plane Aα , the
distance of α ∈ L satisfies

|x − α| ≥ |x − Aα|.

When α = v, because (x − x ′)⊥Av , thus

|x − x ′| = |x − Av| ≤ |x − Aα|,∀ α ∈ L .

Let ux ∈ L be the lattice point closest to x , then take α = ux , there is
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|x − x ′| ≤ |x − Aux | ≤ |x − ux |.

The Lemma holds.

Lemma 7.44 Let L = L(B) ⊂ R
n be a lattice, x ∈ R

n, α ∈ L. If |x − α| < ρ,
where ρ = 1

2 min{|β∗
i ||1 ≤ i ≤ n}, then the nearest plane operator τB has

τB(x) = α. (7.122)

Proof Because of
|x − Aα| ≤ |x − α| < ρ.

By Lemma 7.42, Aα is the plane Av closest to x , that is Aα = Av . And τB(x) = w =
y + v, then we have

|x − w| ≤ |x − α| < ρ. (7.123)

By Lemma 7.41, we have α = w = τB(x). The Lemma holds!

Now let’s introduce the workflow of GGH/HNF password:

1. L = L(B) = L(R) ⊂ Z
n is an integer lattice, R = [r1, r2, . . . , rn] is the private

key, B = [β1, β2, . . . , βn] is the public key, and is the HNF basis of L , where

B∗ = diag{b11, b22, . . . , bnn}.

Wechoose the private key R as a particularly goodbase, that isρ = 1
2 min{|r∗

i ||1 ≤
i ≤ n}. Specially, public key B satisfies

1

2
bii < ρ,∀ 1 ≤ i ≤ n.

2. Let v ∈ Z
n be an integer, e ∈ R

n is the error vector, satisfies |e| < ρ.
3. Encryption: after any plaintext information v ∈ Z

n and error vector e are selected,
with ρ as the parameter, the encryption function fB,ρ is defined as

fB,ρ(v, e) = Bv + e = c.

4. Decryption: We decrypt cryptosystem text c with private key R. Decryption is
transformed into

f −1
B,ρ(v, e) = B−1τR(c).

where τR is the nearest plane operator defined by R.

By Lemma 7.44, when |e| < ρ, ⇒ |c − Bv| = |e| < ρ, thus

B−1τR(c) = B−1τR(Bv + e) = B−1Bv = v. (7.124)
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This ensures the correctness of decryption.

Comparing GGH with GGH/HNF, they choose the same encryption function, but
the decryption transformation is very different. GGH adopts Babai’s rounding off
method, while GGH/HNF adopts Babai’s nearest plane method. There is a certain
difference between the two at the selection point of error vector e. The error vector
e of GGH depends on each component of parameter σ and e, and ±σ . The error
vector e of GGH/HNF depends on the parameter ρ as long as the length is less than
ρ. Therefore, GGH/HNF has greater flexibility in the selection of error vector e.

Next, we explain the reason why public key B chooses HNF basis. For any
entire lattice L = L(B) ⊂ Z

n , B∗ = [β∗
1 , β

∗
2 , . . . , β

∗
n ] is the corresponding orthog-

onal basis. Using the congruence relation mod L , we define an equivalent relation
in R

n , which is also the equivalent relation between integral points in Z
n . By Lemma

7.24, quotient group Z
n/L is a finite group, and |Zn/L| = d(L). We further give a

set of representative elements of Z
n/L . Let

F(B∗) =
{

n∑

i=1

xiβ
∗
i |0 ≤ xi < 1

}
(7.125)

be a parallelogram, it can be compared with the base area F = F(B) of R
n/L (see

Lemma 7.16).

F = F(B) =
{

n∑

i=1

xiβi |0 ≤ xi < 1

}
.

F is just a quadrilateral.

Lemma 7.45 For any integer point α ∈ Z
n, there is a unique w ∈ F(B∗) such that

α ≡ w(mod L).

Proof α ∈ Z
n is a integer point, then α can be expressed as a linear combination of

B∗, write

α =
n∑

i=1

aiβ
∗
i , ai ∈ R.

[ai ] represents the largest integer not greater than ai , Suppose

w =
n∑

i=1

aiβ
∗
i −

n∑

i=1

[ai ]βi . (7.126)

Then

α − w =
n∑

i=1

[ai ]βi ∈ L ⇒ α ≡ w(mod L).
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We prove that w ∈ F(B∗), linearly express w with the basis vector of B∗,

w =
n∑

i=1

biβ
∗
i .

We can only prove that 0 ≤ bi < 1. By (7.52), it is not difficult to have

bn = 〈w, β∗
n 〉

|β∗
n |2

= (an − [an])|β∗
n |2

|β∗
n |2

= an − [an].

Thus 0 ≤ bn < 1, It is not difficult to verify that ∀ 1 ≤ i ≤ n, we have 0 ≤ bi < 1
by induction, that is w ∈ F(B∗). To prove uniqueness. Let

w =
n∑

i=1

aiβ
∗
i ,where |ai | < 1.

We prove that if
w = 0(mod L) ⇔ w = 0. (7.127)

Write w = ∑n
i=1 biβi , then by (7.52), there is

an = 〈w, β∗
n 〉

〈β∗
n , β

∗
n 〉

= bn|β∗
n |2

|β∗
n |2

= bn .

Because ofw ∈ L and |bn| < 1 ⇒ bn = 0. It is not difficult to have b1 = b2 = · · · =
bn = 0 by induction. That is w = 0, (7.127) holds.

α ∈ Z
n , if w1 ∈ F(B∗), w2 ∈ F(B∗), α ≡ w1(mod L), α ≡ w2(mod L), then

w1 − w2 ≡ 0(mod L).

By (7.127), there is w1 = w2. As can be seen from the above, w1 ∈ F(B∗), w2 ∈
F(B∗), then when w1 	= w2, there is w1 	≡ w2(mod L), that is, the points in F(B∗)
are not congruent under mod L , the Lemma holds.

From the above lemma, any two points in parallelogram F(B∗) are not congruent
mod L , therefore, for not congruent lattice points α1, α2 ∈ L , then

{F(B∗) + α1} ∩ {F(B∗) + α2} = ∅.

Thus, R
n can be split into

R
n = ∪α∈L F(B∗) + α. (7.128)

By Lemma 7.45, any α ∈ Z
n , there exists a unique w ∈ F(B∗) ⇒ α ≡ w(mod L),

define
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w = αmod L .

Then α → αmod L gives a surjection of Z
n → Z

n ∩ F(B∗), this mapping is a 1-1
correspondence of Z

n/L → Z
n ∩ F(B∗). Because if α, β ∈ Z

n , then

{
α ≡ β(mod L) ⇒ αmod L = β mod L ∈ Z

n ∩ F(B∗)
α 	≡ β(mod L) ⇒ αmod L 	= β mod L .

By Lemma 7.24, we obviously have the following Corollary.

Corollary 7.9 If L = L(B) ⊂ Z
n is an integer lattice, then F(B∗) ∩ Z

n is a repre-
sentative element set of Z

n/L, and

|F(B∗) ∩ Z
n| = d(L). (7.129)

If B is the HNF basis of the whole lattice L , then B∗ = diag{b11, b22, . . . , bnn},
thus, parallelogram F(B∗) takes the simplest form:

F(B∗) = {(x1, x2, . . . , xn)|0 ≤ xi < bii }. (7.130)

This is a cube with a volume of d(L). Thus

Z
n/L = F(B∗) ∩ Z

n = {(x1, x2, . . . , xn)|0 ≤ xi < bii , xi ∈ Z}. (7.131)

This is another proof of Lemma 7.24.
αmod L is called the reduction vector of α under module L , for any α ∈ Z

n ,
express that the number of bits of the reduction vector αmod L is

n∑

i=1

log bii = log
∏

(bii ) = log d(L). (7.132)

To sum up, the parallelogram of the HNF basis of L has a particularly simple
geometry, which is actually a cube, which is very helpful for calculating the reduction
vector x mod L of an entire point x ∈ Z

n , the reduction vector is of great significance
in the further improvement and analysis of GGH/HNF cryptosystem. For detailed
work, please refer to D. Micciancio’s paper (Micciancio, 2001) in 2001.

7.7 NTRU Cryptosystem

NTRU cryptosystem is a new public key cryptosystem proposed in 1996 by the
number theory research unit (NTRU) composed of three digit theorists J. Hoffstein,
J. Piper and J. Silverman of Brown University in the USA. Its main feature is that
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the key generation is very simple, and the encryption and decryption algorithms are
much faster than the commonly used RSA and elliptic curve cryptography, NTRU, in
particular, can resist quantum computing attacks and is considered to be a potential
public key cryptography that can replace RSA in the postquantum cryptography era.

The essence of NTRU cryptographic design is the generalization of RSA on
polynomials, so it is called the cryptosystem based on polynomial rings. However,
NTRU can give a completely equivalent form by using the concept of q-ary lattice, so
NTRU is also a lattice based cryptosystem. For simplicity, we start with polynomial
rings.

Let Z[x] be a polynomial ring with integral coefficients and N ≥ 1 be a positive
integer. We define the polynomial quotient ring R as

R = Z[x]/〈xN − 1〉 = {a0 + a1x + · · · + aN−1x
N−1|ai ∈ Z}.

Any F(x) ∈ R, F(x) can be written as an entire vector,

F(x) =
N−1∑

i=0

Fi x
i = (F0, F1, . . . , FN−1) ∈ Z

N . (7.133)

In R, we define a new operation ⊗ called the convolution of two polynomials. Let

F(x) =
N−1∑

i=0

Fi x
i ,G(x) =

N−1∑

i=0

Gi x
i .

Define

F ⊗ G = H(x) =
N−1∑

i=0

Hi x
i = (H0, H1, . . . , HN−1).

For any k, 0 ≤ k ≤ N − 1,

Hk =
k∑

i=0

FiGk−i +
N−1∑

i=k+1

FiGN+k−i

=
∑

0≤i<N
0≤ j<N

i+ j≡k(mod N )

FiG j .
(7.134)

Lemma 7.46 Under the new multiplication, R is a commutative ring with unit ele-
ments.

Proof By (7.134),

F ⊗ G = G ⊗ F, F ⊗ (G + H) = F ⊗ G + F ⊗ H.
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So R forms a commutative ring under ⊗.
If a ∈ Z, 0 ≤ a ≤ N − 1, is a constant polynomial in R, then

a ⊗ F = aF = (aF0, aF1, . . . , aFN−1).

Therefore, R has the unit element a = 1. The Lemma holds..

Let F(x) = (F0, F1, . . . , FN−1) ∈ R. Define

F̃ = 1

N

N−1∑

i=0

Fi , is arithmetic mean of the coefficients of F. (7.135)

The L2 norm (European norm) and L∞ norm of F are defined as

{
|F |2 = (

∑N−1
i=0 (Fi − F̃)2)

1
2

|F |∞ = max0≤i≤N−1 Fi − min0≤i≤N−1 Fi .
(7.136)

Definition 7.11 Let d1, d2 be two positive integers, and d1 + d2 ≤ N , define poly-
nomial set A(d1, d2) as

A(d1, d2) = {F ∈ R|F has d1 coefficients of 1, d2 coefficients of − 1,

other coefficients are 0}. (7.137)

Lemma 7.47 Let 1 ≤ d < [ N2 ],
(i) Suppose F ∈ A(d, d − 1), then

|F |2 =
√
2d − 1 − 1

N
.

(ii) If F ∈ A(d, d), then
|F |2 = √

2d.

Proof If F ∈ A(d, d − 1), by (7.135), then F̃ = 1
N , thus

(|F |2)2 =
N−1∑

i=0

(
Fi − 1

N

)2

=
N−1∑

i=0

(
F2
i − 2

N
Fi + 1

N 2

)

= 2d − 1 − 2

N
+ 1

N
= 2d − 1 − 1

N
,

so (i) holds. If F ∈ A(d, d), then F̃ = 0, thus
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(|F |2)2 = 2d,⇒ |F |2 = √
2d.

The Lemma holds.

The parameters of NTRU cryptosystem are three positive integers, N , q, p, where
1 ≤ p < q, and (p, q) = 1, that is

parameter system = {(N , q, p)|1 ≤ p < q, and (p, q) = 1}.

When the parameter (N , q, p) is selected, we will discuss the key generation of
NTRU.

Keygeneration.EachNTRUuser selects twopolynomials f ∈ R, g ∈ R, deg f =
deg g = N − 1, as private key.Take f = ( f0, f1, . . . , fN−1), g = (g0, g1, . . . , gN−1)

as the row vector, then ( f, g) ∈ Z
2N ⊂ R2N . Where f mod q is reversible as a poly-

nomial on Zq and f mod p is reversible as a polynomial on Zp, that is ∃ Fq ∈
Zq [x], Fp ∈ Zp[x] such that

Fq ⊗ f ≡ 1(mod q), and Fp ⊗ f ≡ 1(mod p). (7.138)

When the private key ( f, g) is selected, the public key h is given by the following
formula:

h ≡ Fq ⊗ g(mod q). (7.139)

h can be regarded as a polynomial on Zq . Quotient rings Zq and Zp are

Zq = Z/qZ =
{
a ∈ Z| − q

2
≤ a <

q

2

}
.

Zp = Z/pZ =
{
a ∈ Z| − p

2
≤ a <

p

2

}
.

Encryption transformation.User B wants to useNTRU to send encrypted information
m to user A. First, the plaintext m is encoded as m ∈ R, that is m ∈ Z

N , then take
the value under mod p, that is

m ∈ Z
N
p .

Then select a polynomial φ ∈ R, degφ = N − 1 at random, then use the public key
h of user A for encryption. The encryption function σ is

σ(m) = c ≡ pφ ⊗ h + m(mod q). (7.140)

c is the cryptosystem text received by user A, c is a polynomial on Zq and a vector
in Z

N
q .
Decryption transformation. After receiving cryptosystem text c, user A decrypts

it with its own private keys f and Fp and first calculates
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a ≡ f ⊗ c(mod q). (7.141)

a as a polynomial on Zq , that is, a ∈ Z
N
q is unique. Finally, the decryption transform

σ−1 is
σ−1(c) ≡ a ⊗ Fp(mod p). (7.142)

Why is the decryption transformation correct? If the parameter selection meets

pφ ⊗ h + m ∈ Z
N
q . (7.143)

Then
c = pφ ⊗ h + m. (7.144)

Similarly, if c ⊗ f ∈ Z
N
q , then a = f ⊗ c. By (7.142),

a ⊗ Fp = Fp ⊗ f ⊗ c ≡ c = pφ ⊗ h + m(mod p).

Thus
a ⊗ Fp ≡ m(mod p).

Because m ∈ Z
N
q , so

σ−1(c) ≡ a ⊗ Fp ≡ m(mod p),⇒ σ−1(c) = m.

Therefore, the decryption transformation is correct under the conditions of (7.143)
and c ⊗ f ∈ Z

N
q .

NTRU’s encryption and decryption transformation cannot guarantee the correct
decryption of 100%. Because a is taken out as a polynomial under mod q for decryp-
tion operation (see (7.142)). To satisfy (7.144), and c ⊗ f ∈ Z

N
q , then the following

formula is necessary,

| f ⊗ c|∞ = | f ⊗ (pφ ⊗ h + m)|∞ < q. (7.145)

Therefore, as a necessary condition,when the following formula holds, (7.145) holds.

| f ⊗ m|∞ ≤ q

4
, and |pφ ⊗ g|∞ ≤ q

4
. (7.146)

Lemma 7.48 For any ε > 0, there are constants r1 and r2 > 0, depending only on ε

and N, for randomly selected polynomial F,G ∈ R, then the probability of satisfying
the following formula is ≥ 1 − ε, that is

P{r1|F |2|G|2 ≤ |F ⊗ G|∞ ≤ r2|F |2|G|2} ≥ 1 − ε.

Proof See reference Hoffstein et al. (1998) in this chapter.
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By Lemma, to satisfy (7.146), we choose three parameters d f , dg and d, where

f ∈ A(d f , d f − 1), g ∈ A(dg, dg), φ ∈ A(d, d). (7.147)

By Lemma 7.47, | f |2, |g|2 and |φ|2 are known, we choose

| f |2 · |m|2 ≈ q

4r2
, |φ|2 · |g|2 ≈ q

4pr2
. (7.148)

Then, Eq. (7.146) can be guaranteed to be true (in the sense of probability), so that
the success rate of the decryption algorithm will be greater than 1 − ε. Thus, (7.148)
becomes the main parameter selection index of NTRU.

Next, we use the concept of q-element lattice to make an equivalent description
of the above NTRU. We first discuss it from the cyclic matrix. Let T and T1 be the
following two N -order square matrices.

T =

⎛

⎜⎜⎜⎝

0 · · · 0 1
0

In−1
...

0

⎞

⎟⎟⎟⎠ , T1 =

⎛

⎜⎜⎜⎝

0
0 In−1
...

1 0 0 0

⎞

⎟⎟⎟⎠ .

Then T N = T N
1 = IN , T1 = T ′, and T1 = T−1, because T is an orthogonal matrix

⇒ T1 = T N−1,where IN is the N -th order identitymatrix, leta = (a1, a2, . . . , aN ) ∈
R

N , it is easy to verify

T ·

⎡

⎢⎢⎢⎢⎢⎣

a1
a2
a3
...

aN

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

aN
a1
a2
...

aN−1

⎤

⎥⎥⎥⎥⎥⎦
, (a1, a2, a3, . . . , aN )T1 = (aN , a1, a2, . . . , aN−1).

(7.149)

The following general assumptions a =

⎡

⎢⎢⎢⎣

a1
a2
...

aN

⎤

⎥⎥⎥⎦ ∈ R
N are the column vector. The

N -order cyclic matrix T ∗(a) generated by a is defined as

T ∗(a) = [a, Ta, T 2a, . . . , T N−1a]. (7.150)

If b = (b1, b2, . . . , bN ) ∈ R
N is a row vector, we define an N -order matrix
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T ∗
1 (b) =

⎡

⎢⎢⎢⎣

b
bT1
...

bT N−1
1

⎤

⎥⎥⎥⎦ . (7.151)

In order to distinguish in the mathematical formula, T ∗(a) and T ∗
1 (a) are some-

times written as T ∗a and T ∗
1 a or [T ∗a] and [T ∗

1 a]. Obviously, the transpose of T ∗(a)

is

(T ∗(a))′ =

⎡

⎢⎢⎢⎣

a′
a′T1

...

a′T N−1
1

⎤

⎥⎥⎥⎦ = T ∗
1 (a′). (7.152)

Equation (7.150) is column vector blocking of cyclic matrix, in order to obtain row
vector blocking of cyclic matrix. For any x ∈ (x1, . . . , xN ) ∈ R

N , we let

x = (xN , xN−1, . . . , x2, x1) ⇒ x = x .

Similarly, define column vectors x . So for any column vector a ∈ R
N , we have

T ∗(a) = [a, Ta, T 2a, . . . , T N−1a] =

⎡

⎢⎢⎢⎣

a′T1
a′T 2

1
...

a′T N
1

⎤

⎥⎥⎥⎦ . (7.153)

On the right side of (7.153) is a cyclic matrix, which is partitioned by rows. We first
prove that the transpose of the cyclic matrix is still a cyclic matrix.

Lemma 7.49 ∀ a =

⎡

⎢⎢⎢⎣

α1

α2
...

αN

⎤

⎥⎥⎥⎦ ∈ R
N , then (T ∗(a))′ = T ∗(T−1a).

Proof Let α =

⎡

⎢⎢⎢⎣

α1

α2
...

αN

⎤

⎥⎥⎥⎦ ∈ R
N , by (7.152), (T ∗(a))′ = T ∗

1 (a′), where

α′ = (α1, . . . , αN ) is the transpose of α, let

β = (α1, αN , αN−1, . . . , α2) = α′T1.

Easy to verify
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T ∗
1 (β) =

⎡

⎢⎢⎢⎣

β

βT1
...

βT N−1
1

⎤

⎥⎥⎥⎦ = T ∗(α).

There is
T ∗
1 (β) = (T ∗(β ′))′ = T ∗(α).

Because α′ = (αN , αN−1, · · · , α2, α1), and β = α′T1, so

β ′ = Tα ⇒ T−1β ′ = α ⇒ α = T−1β ′.

We let a = β ′, then
(T ∗(α))′ = T ∗(α) = T ∗(T−1α).

We have completed the proof of Lemma.

Next, we give an equivalent characterization of cyclic matrix.

Lemma 7.50 Let A = (ai j )N×N , a =

⎡

⎢⎢⎢⎣

a11
a21
...

aN1

⎤

⎥⎥⎥⎦ ∈ R
N is the first column of A, then

A = T ∗(a) is a cyclic matrix if and only if for all 1 ≤ k ≤ N, if 1 + i − j ≡
k(mod N ), then ai j = ak1.

Proof If A = T ∗(a) is a cyclic matrix, by simple observation, there is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11 = a22 = · · · = aNN = a11
a21 = a32 = · · · = aNN−1 = a21
...

a(N−1)1 = aN2

aN1 = aN1

.

Thus, 1 + i − j = k. The same applies to i < j . We have

k = N + 1 + i − j ⇒ 1 + i − j ≡ k(mod N ).

So the Lemma holds.

The following lemma characterizes the main properties of cyclic matrices.

Lemma 7.51 If a =
⎡

⎢⎣
a1
...

aN

⎤

⎥⎦ , b =
⎡

⎢⎣
b1
...

bN

⎤

⎥⎦ are two column vectors, then
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(i) T ∗(a) + T ∗(b) = T ∗(a + b).
(ii) T ∗(a) · T ∗(b) = T ∗([T ∗a] · b), and T ∗(a)T ∗(b) = T ∗(b)T ∗(a).

(iii) det(T ∗(a)) = ∏N
k=1(a1 + a2ξk + · · · + aN ξ N−1

k ). Where ξk(1 ≤ k ≤ N ) is the
root of all N-th units of 1.

(iv) If the cyclic matrix T ∗(a) is reversible, the inverse matrix is (T ∗(a))−1 = T ∗(b),
Where b is the first column of T ∗(a).

Proof (i) is trivial, because

T ∗(a) + T ∗(b) = [a + b, T (a + b), . . . , T N−1(a + b)] = T ∗(a + b).

To prove (ii), using the row vector block of cyclic matrix (see (7.153)), then

[T ∗(a)]b =

⎡

⎢⎢⎢⎣

a′T1
a′T 2

1
...

a′T N
1

⎤

⎥⎥⎥⎦ b =

⎡

⎢⎢⎢⎣

a′T1b
a′T 2

1 b
...

a′T N
1 b

⎤

⎥⎥⎥⎦ ,

and

T ∗(a) · T ∗(b) =

⎡

⎢⎢⎢⎣

a′T1
a′T 2

1
...

a′T N
1

⎤

⎥⎥⎥⎦ [b, Tb, . . . , T N−1b] = (Ai j )N×N .

where
Ai j = a′T i

1 · T j−1b = a′T N+i− j+1
1 b = a′T i+1− j

1 b.

By Lemma 7.50, then T ∗(a) · T ∗(b) = T ∗([T ∗(a)]b), so there is the first conclusion
of (ii). We notice that

Ai j = A′
i j = b′T j−1

1 T ia = b′T N−i−1+ j
1 a = b′T j−i−1

1 a.

It is easy to prove that for any row vector x and column vector y, there is x · y = x · y,
and

xT k
1 = x · T N−k

1 , 1 ≤ k ≤ N . (7.154)

Thus,
Ai j = b′T j−i−1

1 a = b′T N+i+1− j
1 a = b′T i+1− j

1 a.

This proves that T ∗(a)T ∗(b) = T ∗(b)T ∗(a); that is, the multiplication of cyclic
matrix to matrix is commutative.

To prove (iii), suppose (T ∗(a))′ = A, but det(T ∗(a)) = det((T ∗(a))′), so we just
need to calculate det(A). Make polynomial f (x) = a1 + a2x + · · · + aN xN−1, and
let
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V =

⎡

⎢⎢⎢⎢⎣

1 1 1 · · · 1
ξ1 ξ2 ξ3 · · · ξN
ξ 2
1 ξ 2

2 ξ 2
3 · · · ξ 2

N· · · · · · · · · · · · · · ·
ξ N−1
1 ξ N−1

2 ξ N−1
3 · · · ξ N−1

N

⎤

⎥⎥⎥⎥⎦
.

Then

AV =

⎡

⎢⎢⎣

f (ξ1) f (ξ2) · · · f (ξN )

ξ1 f (ξ1) ξ2 f (ξ2) · · · ξN f (ξN )

· · · · · · · · · · · ·
ξ N−1
1 f (ξ1) ξ N−1

2 f (ξ2) · · · ξ N−1
N f (ξN )

⎤

⎥⎥⎦ .

So
det(A) det(V ) = det(AV ) = f (ξ1) f (ξ2) · · · f (ξN ) det(V ).

Because ξi is different from each other, that is det(V ) 	= 0, so

det(A) = f (ξ1) f (ξ2) · · · f (ξN )

=
N∏

k=1

f (ξk)

=
N∏

k=1

(a1 + a2ξk + · · · + aN ξ N−1
k ).

Now prove (iv). Let e =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ ∈ R
N , then

T ∗(e) = [e, T e, . . . , T N−1e] = IN .

So take b ∈ R
N to satisfy

T ∗(a) · b = e ⇒ b = (T ∗(a))−1e.

Obviously, b is the first column of (T ∗(a))−1, by (ii),

T ∗(a)T ∗(b) = T ∗([T ∗(a)]b) = T ∗(e) = IN .

Thus, (T ∗(a))−1 = T ∗(b). In other words, the inverse of a reversible cyclic matrix
is also a cyclic matrix.
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Corollary 7.10 Let N be a prime, a =
⎡

⎢⎣
a1
...

aN

⎤

⎥⎦ ∈ R
n, satisfy a 	= 1, and

∑N
i=1 ai 	=

0, then the cyclic matrix T ∗(a) generated by a is a reversible square matrix.

Proof Under given conditions, we can only prove det(T ∗(a)) 	= 0. Let εk
= exp( 2π ikN ), 1 ≤ k ≤ N − 1, be N − 1 primitive unit roots of N -th( because N

is a prime), if det(T ∗(a)) = 0, because of
∑N

i=1 ai 	= 0, there must be a k, 1 ≤ k ≤
N − 1, such that

a1 + εka2 + ε2ka3 + · · · + εN−1
k aN = 0.

In other words, εk is a root of polynomialφ(x) = a1 + a2x + · · · + aN xN−1, soφ(x)
and 1 + x + · · · + xN−1 have a common root εk , therefore, the greatest common
divisor of two polynomials

(φ(x), 1 + x + · · · + xN−1) > 1.

Since 1 + x + · · · + xN−1 is a circular polynomial, it is an irreducible polynomial,
a 	= 1, contradiction shows det(T ∗(a)) 	= 0, the Corollary holds.

Next, we give an equivalent description of a lattice of NTRU by using the cyclic
matrix. Firstly, we define the linear transformation σ in the even dimensional
Euclidean space R

2N , if x and y are two column vectors, define

σ

[
x
y

]
=
[
T x
T y

]
∈ R

2N . (7.155)

Equivalently, if x ∈ R
N , y ∈ R

N are two row vectors, define

σ(x, y) = (xT1, yT1) ∈ R
2N . (7.156)

Obviously, σ defined above is a linear transformation of R
2N → R

2N .

Definition 7.12 An entire lattice L ⊂ R
2N is called a convolution q-ary lattice, if

(i) L is q-ary lattice, that is qZ
2N ⊂ L ⊂ Z

2N .
(ii) L is closed under the linear transformation σ , that is, x, y ∈ R

N is the column
vector, [

x
y

]
∈ L ⇒ σ

[
x
y

]
=
[
T x
T y

]
∈ L .

Recall that NTRU’s private key is two N − 1-degree polynomials f = ∑N−1
i=0 fi x i ,

g = ∑N−1
i=0 gi xi , and write f and g in column vector form:
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f =
⎡

⎢⎣
f0
...

fN−1

⎤

⎥⎦ ∈ Z
N , f ′ = ( f0, f1, . . . , fN−1) ∈ Z

N .

And

g =
⎡

⎢⎣
g0
...

gN−1

⎤

⎥⎦ ∈ Z
N , g′ = (g0, g1, . . . , gN−1) ∈ Z

N .

NTRU’s parameter system is N , q, p is two positive integers, N is prime, p < q,
and defines a polynomial set

Ad{p, 0,−p} = { f (x) ∈ Z
N |d + 1 coefficients of f are p,

d coefficients of f are p, others are 0}. (7.157)

Select two polynomials f, g ∈ Z
N of degree N − 1, and parameter d f are positive

integers, which meet the following restrictions.

(A) N , p, q, d f are positive integers, N is a prime, 1 < p < q, (p, q) = 1;
(B) f and g are two polynomials of degree N − 1, and the constant term of f is 1,

and
f − 1 ∈ Ad f {p, 0,−p}, g ∈ Ad f {p, 0,−p}.

(C) T ∗( f ) is reversible mod q.

The above (A)–(C) are the parameter constraints of NTRU. Obviously, under
these conditions, T ∗( f ) and T ∗(g) are reversible matrices, and

T ∗( f ) ≡ IN (mod p), T ∗(g) ≡ 0(mod p). (7.158)

After the polynomials f and g satisfying the above conditions are selected as the

private key, then

[
f
g

]
∈ Z

2N , let’s construct a minimum convolution q-ary lattice

containing

[
f
g

]
. Suppose

A = [T ∗
1 ( f ′), T ∗

1 (g′)]N×2N , and A′ =
[
T ∗( f )
T ∗(g)

]
. (7.159)

Consider A as an N × 2N -order matrix on Zq , that is A ∈ Z
N×2N
q , then by (7.45), A

defines a 2N dimensional q-ary lattice 
q(A), that is


q(A) = {y ∈ Z
2N | there is x ∈ Z

N ⇒ y ≡ A′x(mod q)}. (7.160)
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We prove that 
q(A) is a convolution q-ary lattice containing

[
f
g

]
. First, we prove

the following general identity

Lemma 7.52 Suppose a =
⎡

⎢⎣
a1
...

aN

⎤

⎥⎦ ∈ R
N , then for ∀ x ∈ R

N and 0 ≤ k ≤ N − 1,

we have
T k(T ∗(a)x) = T ∗(a)(T kx),where T 0 = IN .

Proof k = 0 is trivial, obviously, we can assume k = 1, that is

T (T ∗(a)x) = T ∗(a)(T x). (7.161)

By (7.153),

T (T ∗(a)x) = T

⎡

⎢⎢⎢⎣

a′T1x
a′T 2

1 x
...

a′T N
1 x

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

a′x
a′T1x

...

a′T N−1
1 x

⎤

⎥⎥⎥⎦ .

Because of T = T N−1
1 , then the right side of Eq. (7.161) is

T ∗(a)(T x) =

⎡

⎢⎢⎢⎣

a′T1T x
a′T 2

1 T x
...

a′T N
1 T x

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

a′x
a′T1x

...

a′T N−1
1 x

⎤

⎥⎥⎥⎦ .

So (7.161) holds, the Lemma holds.

Lemma 7.53 
q(A) is a convolution q-ary lattice, and

[
f
g

]
∈ 
q(A).

Proof By Lemma 7.27, 
q(A) is a q-ary lattice, that is qZ
2N ⊂ 
q(A) ⊂ Z

2N , we
only prove 
q(A) is closed under linear transformation σ . If y ∈ 
q(A), then there
is x ∈ Z

N ⇒ y ≡ A′x(mod q), by the definition of σ ,

σ(y) ≡
[
T (T ∗( f )x)
T (T ∗(g)x)

]
=
[
T ∗( f )T x
T ∗(g)T x

]
≡ A′T x(mod q).

Because of x ∈ Z
N ⇒ T x ∈ Z

N , thus σ(y) ∈ 
q(A). That is, 
q(A) is a con-

volution q-ary lattice, which is proved

[
f
g

]
∈ 
q(A). Let e =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ ∈ Z
N , then
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T ∗( f ) · e is the first column of T ∗( f ), that is

T ∗( f )e = f, T ∗(g)e = g.

Thus,

A′e =
[
T ∗( f )e
T ∗(g)e

]
=
[
f
g

]
∈ 
q(A).

The Lemma holds.

With the above preparation, we now introduce the equivalent form of NTRU in
lattice theory.

Public key generation. After selected private key

[
f
g

]
∈ Z

2N , NTRU’s public

key is generated as follows: Because the convolution q-ary lattice 
q(A) containing[
f
g

]
is an entire lattice, 
q(A) has a unique HNF basis H , where

H =
[
IN T ∗(h)

0 q IN

]
, h ≡ [T ∗( f )]−1g(mod q). (7.162)

By (7.48) of Lemma 7.28, the determinant d(
q(A)) of 
q(A) is

d(
q(A)) = | det(
q(A))| = q2N−N = qN .

So the diagonal elements of H are IN and q IN . By the assumption T ∗( f ) ∈ Z
N×N ,

and reversible mod q, [T ∗( f )]−1 is the inverse matrix of T ∗( f )mod q, h ∈ Z
N , its

component hi is selected between − q
2 and q

2 , that is − q
2 ≤ hi <

q
2 , such an h is the

only one that exists. It is not difficult to verify that H is an HNF matrix and the
lattice generated by H is 
q(A), so H is the HNF basis of 
q(A). H is published
as a public key.

Encryption transformation. Themessage sender encodes the plaintext asm ∈ Z
N ,

and randomly select a vector r ∈ Z
N to satisfy

m ∈ Ad f {1, 0,−1}, r ∈ Ad f {1, 0,−1}. (7.163)

That is, m has d f + 1 1, d f −1, other components are 0. Then, the plaintext m is
encrypted with the public key H of the message recipient:

c = H

[
m
r

]
≡
[
m + [T ∗(h)]r

0

]
(mod q). (7.164)

c is called cryptosystem text, the first N components are m + [T ∗(h)]r , the last N
components are 0.
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Decryption transformation. If all components ofm + [T ∗(h)]r are between inter-
vals [− q

2 ,
q
2 ), the message receiver can determine that the cryptosystem text c is

c =
[
m + [T ∗(h)]r

0

]
.

Then decrypt it with its own private key T ∗( f ),

c ≡ [T ∗( f )]m + [T ∗( f )][T ∗(h)]r(mod q)

≡ [T ∗( f )]m + [T ∗(g)]r(mod q).
(7.165)

By the definition of h, there is

[T ∗( f )]h ≡ g(mod q) ⇒ T ∗([T ∗( f )]h) ≡ T ∗(g)(mod q).

And by Lemma 7.51, there is T ∗([T ∗( f )]h) ≡ T ∗( f ) · T ∗(h), so

T ∗( f )T ∗(h) ≡ T ∗(g)(mod q).

Equation (7.165) holds.
If

[T ∗( f )]m + [T ∗(g)]r ∈
[
−q

2
,
q

2

]N
. (7.166)

So do mod p operation on [T ∗( f )]m + [T ∗(g)]r , and by (7.158), thus

([T ∗( f )]m + [T ∗(g)]r)mod p = INm + 0 · r = m. (7.167)

The correctness of decryption transformation is guaranteed.
In order to ensure that (7.167) holds, it can be seen from the above analysis that

the following conditions are necessary.

{
m + [T ∗(h)]r ∈ [− q

2 ,
q
2 ]N

[T ∗( f )]m + [T ∗(g)]r ∈ [− q
2 ,

q
2 ]N .

(7.168)

Obviously, the first condition can be derived from the second condition; that is, the
(7.168) can be derived from the (7.166). We first prove the following Lemma.

Lemma 7.54 If the parameter meets d f <
(
q
4 −1)
2p , then

[T ∗( f )]m + [T ∗(g)]r ∈
[
−q

2
,
q

2

]N
.

Proof Because all components ofm and r are ±1 or 0, therefore, we only prove that
the absolute value of the row vectors of [T ∗( f )] and [T ∗(g)] is not greater than q

2 .
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Write f ′ = ( f0, f1, . . . , fN−1), because of f0 = 1,

∣∣∣∣∣

N−1∑

i=0

fi

∣∣∣∣∣ ≤
N−1∑

i=0

| fi | = 1 + (2d f + 1)p <
q

4
.

Similarly, ∣∣∣∣∣

N−1∑

i=0

gi

∣∣∣∣∣ ≤
N−1∑

i=0

|gi | = (2d f + 1)p <
q

4
.

Thus

[T ∗( f )]m + [T ∗(g)]r ∈
[
−q

2
,
q

2

]N
.

The Lemma holds.

According to the above lemma, NTRU algorithm needs to add the following
additional conditions to ensure the correctness of decryption transformation:

(D)

d f <
(
q
4 − 1)

2p
.

To sum up, when NTRU cryptosystem satisfies the additional restrictions (A)–(D)

on the parameter system, the private key is

[
f
g

]
and the public key is HNFmatrix H ,

the encryption and decryption algorithm can be based on the algorithm introduced
above.

7.8 McEliece/Niederreiter Cryptosystem

McEliece/Niederreiter cryptosystem is a cryptosystem designed based on the asym-
metry of coding and decoding of a special class of linear codes (Goppa codes) over
a finite field. It was proposed by McEliece and Niederreiter in 1978 and 1985. It is
included in the category of postquantum cryptography. We start with cyclic codes.
Recall the concept of linear code in Chap. 2, let Fq be a q-element finite field, also
known as the alphabet, and the elements in Fq are called letters or characters. The
N -dimensional linear space F

N
q on Fq is called the codeword space of length N . Any

a vector a = (a0, a1, . . . , aN−1) ∈ F
N
q , a is called a codeword of length N , which is

usually written as a = a0a1 · · · aN−1 ∈ F
N
q , from the previous section, we have

aT1 = (a0, a1, . . . , aN−1)T1 = (aN−1, a0, a1, . . . , aN−2). (7.169)

The reverse codeword a of a codeword a = a0a1 · · · aN−1 is defined as
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a = aN−1aN−2 · · · a1a0 ∈ F
N
q . (7.170)

If C ⊂ F
N
q , and C is a k-dimensional linear subspace of F

N
q , which is called a linear

code, usually written as C = [N , k], k = 0, or k = N , [N , 0] and [N , N ] is called
trivial code, actually,

[N , 0] = {0 = 00 · · · 0}, [N , N ] = F
N
q .

The reverse order code C of code C is defined as C = {c|c ∈ C}, obviously, if
C = [N , k], then C = [N , k].
Definition 7.13 A linear code C of length N is called a cyclic code, if ∀ c ∈ C ⇒
cT1 ∈ C .

Next, we give an algebraic expression of cyclic codes using ideal theory. For
this purpose, note that Fq [x] is a univariate polynomial ring on Fq , and 〈xN − 1〉 is
the principal ideal generated by polynomial xN − 1. Write R = Fq [x]/〈xN − 1〉 as
quotient ring. If a = a0a1 · · · aN−1 ∈ F

N
q , then a(x) = a0 + a1x · · · + aN−1xN−1 ∈

R, so a → a(x) is a 1-1 correspondence of F
N
q → R and an isomorphism between

additive groups. In this correspondence, we equate codeword a with polynomial
a(x). That is a = a(x) ⇒ F

N
q = R = Fq [x]/〈xN − 1〉, and any code C ⊂ F

N
q .

C = C(x) = {c(x)|c ∈ C} ⊂ R.

That is, a code C is equivalent to a subset of Fq [x]/〈xN − 1〉. The following lemma
reveals the algebraic meaning of a cyclic code.

Lemma 7.55 C ⊂ F
N
q is a cyclic code ⇔ C(x) is an ideal in Fq [x]/〈xN − 1〉.

Proof If C(x) is an ideal of Fq [x]/〈xN − 1〉, obviously C is a linear code, for any
code c = c0c1 · · · cN−1, there is c(x) = c0 + c1x + · · · + cN−1xN−1 ∈ C(x), thus
xc(x) = cN−1 + cox + c1x2 + · · · + cN−2xN−1 ∈ C(x). So cT1 = cN−1c0c1 · · ·
cN−2 ∈ C , C is a cyclic code on Fq . Conversely, if C is a cyclic code, then cT1 ∈ C ,
thus cT k

1 ∈ C , for all 0 ≤ k ≤ N − 1 holds.Where T 0
1 = IN is the N -th order identity

matrix. Since the polynomial cT k
1 (x) corresponding to cT k

1 is

cT k
1 (x) = xkc(x). (7.171)

So ∀ g(x) ∈ R ⇒ g(x)c(x) ∈ C(x). This proves that C(x) is an ideal. The Lemma
holds.

Using the homomorphism theorem of rings, we give themathematical expressions
of all ideals in R. Letπ be the natural homomorphism ofFq [x] π−→ Fq [x]/〈xN − 1〉,
then all ideals in R correspond to all ideals containing kerπ = 〈xN − 1〉 in Fq [x]
one by one, that is
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kerπ = 〈xN − 1〉 ⊂ A ⊂ Fq [x] π−→ Fq [x]/〈xN − 1〉 = R.

Since Fq [x] is the principal ideal ring and A is an ideal of Fq [x], and 〈xN − 1〉 ⊂ A,
then

A = 〈g(x)〉,where g(x)|xN − 1. (7.172)

Therefore, all ideals in R are finite principal ideals, which can be listed as follows

{〈g(x)〉mod N − 1|g(x) divide xN − 1}.

where 〈g(x)〉mod xN − 1 represents the principal ideal generated by g(x) in R, that
is

〈g(x)〉mod xN − 1 = {g(x) f (x)|0 ≤ deg f (x) ≤ N − deg(g(x)) − 1}. (7.173)

This proves that Fq [x]/〈xN − 1〉 is a ring of principal ideals, and the number of
principal ideals is the number d + 1 of positive factors of xN − 1. The so-called
positive factor is a polynomial with the first term coefficient of 1. Therefore, the
Corollary is as follows:

Corollary 7.11 Let d be the number of positive factors of x N − 1, then the number
of cyclic codes with length N is d + 1.

A cyclic code C corresponds to an ideal C(x) = 〈g(x)〉mod xN − 1 in R, we
define

Definition 7.14 Let C be a cyclic code, if C(x) = 〈g(x)〉mod xN − 1, then g(x) is
called the generating polynomial of C , where g(x)|xN − 1.

If g(x) = xN − 1, then 〈xN − 1〉mod xN − 1 = 0, corresponding to zero ideal
in R. Thus, the corresponding cyclic code C = {0 = 00 · · · 0} is called zero code. If
g(x) = 1, then 〈g(x)〉mod xN − 1 = R. The corresponding code C = F

N
q . There-

fore, there are always two trivial cyclic codes in cyclic codes of length N , zero code
and F

N
q , which correspond to zero ideal in R and R itself, respectively.

Lemma 7.56 Let g(x)|xN − 1, g(x) be the generating polynomial of cyclic code C,
and deg g(x) = N − k, then C is [N , k] linear code, further, let g(x) = g0 + g1x +
· · · + gN−k−1xN−k−1 + gN−k x N−k , the corresponding codeword g = (g0, g1, . . . ,
gN−k, 0, 0, . . . , 0) ∈ C, then the generating matrix G of C is

G =

⎡

⎢⎢⎢⎣

g
gT1
...

gT k−1
1

⎤

⎥⎥⎥⎦

k×N

. (7.174)
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Proof Let C correspond to ideal C(x) = 〈g(x)〉mod xN − 1, then g(x), xg(x), . . .,
xk−1g(x) ∈ C(x), their corresponding codewords are {g, gT1, . . . , gT k−1

1 } ⊂ C ,
let’s prove that {g, gT1, . . . , gT k−1

1 } is a set of bases ofC . If∃ai ∈ Fq ⇒ ∑k−1
i=0 ai gT

i
1= 0, then its corresponding polynomial is 0, that is

(
k−1∑

i=0

ai gT
i
1

)
(x) =

k−1∑

i=0

ai gT
i
1 (x) =

k−1∑

i=0

ai x
i g(x) = 0.

Thus
k−1∑

i=0

ai x
i = 0 ⇒ ∀ ai = 0, 0 ≤ i ≤ k − 1.

That is, {g, gT1, . . . , gT k−1
1 } is a linear independent group in C . Further ∀c ∈ C ,

we can prove that c can be expressed linearly. suppose c ∈ C , then c(x) ∈ C(x), by
(7.174), there is f (x),

f (x) = f0 + f1x + · · · + fk−1x
k−1 ⇒ c(x) = g(x) f (x)

=
k−1∑

i=0

fi x
i g(x) ⇒ c =

k−1∑

i=0

fi gT
i
1 .

This proves that the dimension of linear subspace C is N − deg g(x) = k; that is, C
is [N , k] linear code. Its generating matrix G is

G =

⎡

⎢⎢⎢⎣

g
gT1
...

gT k−1
1

⎤

⎥⎥⎥⎦

k×N

.

The Lemma holds.

Next, we discuss the dual code of cyclic code and its check matrix.

Lemma 7.57 Let C ⊂ F
N
q be a cyclic code and g(x) be the generating polyno-

mial of g(x), deg g(x) = N − k, let g(x)h(x) = xN − 1, h(x) = h0 + h1x + · · · +
hkxk, h = (h0, h1, . . . , hk, 0, 0, · · · , 0) ∈ F

N
q is the corresponding codeword. h is

the reverse order codeword, then the check matrix of C is

H =

⎡

⎢⎢⎢⎣

h
hT1
...

hT N−k−1
1

⎤

⎥⎥⎥⎦

(N−k)×N

. (7.175)
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The dual code C⊥ of C is [N , N − k] linear code, and

C⊥ = {aH |a ∈ F
N−k
q },

h(x) is called the check polynomial of cyclic code C.

Proof By Lemma 7.56, C is a k-dimensional linear subspace, and the generat-
ing matrix G is given by (7.175). Because of g(x)h(x) = xN − 1, then there is
g(x)h(x) = 0 in ring R. Equivalently,

g0hi + g1hi−1 + · · · + gN−khi−N+k = 0,∀ 0 ≤ i ≤ N − 1.

The matrix of the above formula is expressed as GH ′ = 0, so H is the generation
matrix of dual code of C , and we have Lemma holds.

Remark 7.5 The polynomial h(x) corresponding to the reverse codeword h is

h(x) = h0x
N−1 + h1x

N−2 + · · · + hkx
N−k−1.

In general, when h(x)|xN − 1, h(x) � xN − 1, therefore, the dual code of cyclic code
is not necessarily cyclic code.

Definition 7.15 Let xN − 1 = g1(x)g2(x) · · · gt(x) be the irreducible decomposi-
tion of xN − 1 on Fq , where gi (x)(1 ≤ i ≤ t) is the irreducible polynomial with the
first term coefficient of 1 in Fq [x]. Then the cyclic code generated by gi (x) is called
the i-th maximal cyclic code in F

N
q , denote as M+

i . The cyclic code generated by
xN−1
gi (x)

is called the i-th minimal cyclic code, denote as M−
i .

Minimal cyclic codes are also called irreducible cyclic codes because they no
longer contain the nontrivial cyclic codes of F

N
q in M−

i . The irreducibility of minimal
cyclic codes can be derived from the fact that the ideal M−

i (x) in R corresponding
to M−

i is a field. We can give a proof of pure algebra.

Corollary 7.12 Let M−
i be the i-th minimal cyclic code of F

N
q (1 ≤ i ≤ t), M−

i (x)
is the ideal corresponding to M−

i in R, then M−
i (x) is a field, thus, M−

i no longer
contains any nontrivial cyclic code of F

N
q .

Proof Let g(x) = (xN − 1)/gi (x), gi (x) be an irreducible polynomial in Fq [x], by
(7.175),

M−
i (x) = g(x)Fq [x]/(xN − 1)Fq [x] ∼= Fq [x]/gi (x)Fq [x],

where g(x)Fq [x] is the principal ideal generated by g(x) in Fq [x]. Since gi (x) is an
irreducible polynomial, so M−

i (x) is a field.

Example 7.1 All cyclic codes with length of 7 are determined on binary finite field
F2.
Solve: Polynomial x7 − 1 has the following irreducible decomposition on F2
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x7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1).

Therefore, x7 − 1 has 7 positive factors on F2, by Corollary 7.11, there are 8 cyclic
codes with length of 7 on F2. Where 0 and F

7
2 are two trivial cyclic codes. There

are three maximal cyclic codes generated by g(x) = x − 1, g(x) = x3 + x + 1 and
g(x) = x3 + x2 + 1, respectively. The dimensions of the corresponding cyclic codes
are 6 dimension, 4 dimension and 4 dimension. Similarly, there are three minimal
cyclic codes, corresponding to the dimension of one and two three-dimensional cyclic
codes.

Another characterization of cyclic codes is zeroing polynomials, if xN − 1 =
g1(x) · · · gt(x), the ideal M+

i (x) in R corresponding to the maximum cyclic code
M+

i (1 ≤ i ≤ t) generated by gi (x) is

M+
i (x) = {gi (x) f (x)|0 ≤ deg f (x) ≤ N − deg gi (x) − 1}.

Let β be a root of gi (x) in the split field. Then gi (x) is the minimal polynomial of β

in Fq [x], all c(x) ∈ M+
i (x) ⇒ c(β) = 0. Therefore,

M+
i (x) = {c(x)|c(x) ∈ R, and c(β) = 0}.

Example 7.2 Suppose N = (qm − 1)/q − 1, (m, q − 1) = 1, β is an N -th primi-
tive unit root in Fqm , then the cyclic code

C = {c(x)|c(β) = 0, c(x) ∈ R}

is equivalent to Hamming code [N , N − m].
Proof Because (m, q − 1) = 1, and

N = qm−1 + qm−2 + · · · + q + 1 = (q − 1)(qm−2 + 2qm−3 + · · · + (m − 1)) + m.

So (N , q − 1) = 1. Therefore, β i(q−1) 	= 1, for 1 ≤ i ≤ N − 1, in other words, β i /∈
Fq for ∀ 1 ≤ i ≤ N − 1 holds. In Fqm , any two elements of {1, β, β2, . . . , βN−1} are
linearly independent on Fq . If each element is regarded as anm-dimensional column
vector on Fq , then the m × N -order matrix

H = [1, β, β2, . . . , βN−1]m×N

constitutes the check matrix of cyclic code C , and any two rows of H are linearly
independent on Fq , by the definition, C is [N , N − m] Hamming code.

Lemma 7.58 Let C ⊂ F
N
q be a cyclic code, C(x) ⊂ Fq [x]/〈xN − 1〉 be an ideal,

(N , q) = 1, then C(x) contains a multiplication unit element c(x) ∈ C(x) ⇒

c(x)d(x) ≡ d(x)(mod xN − 1),∀ d(x) ∈ C(x).
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The unit element c(x) in C(x) is unique.

Proof Because (N , q) = 1 ⇒ xN − 1has no double root inFq , let g(x)be the gener-
ating polynomial ofC and h(x) be the checking polynomial ofC , that is g(x)h(x) =
xN − 1. Therefore, (g(x), h(x)) = 1, and there is a(x), h(x) ∈ Fq [x],⇒

a(x)g(x) + b(x)h(x) = 1.

Let c(x) = a(x)g(x) = 1 − b(x)h(x) ∈ C(x), so for ∀ d(x) ∈ C(x), write d(x) =
g(x) f (x), thus

c(x)d(x) = a(x)g(x)g(x) f (x)

= (1 − b(x)h(x))g(x) f (x)

= g(x) f (x) − b(x)h(x)g(x) f (x).

Therefore
c(x)d(x) ≡ d(x)(mod xN − 1).

There is c(x)d(x) = d(x) in R = Fq [x]/〈xN − 1〉. That is, c(x) is the multiplication
unit element of C(x). obviously, c(x) exists only. The Lemma holds.

Definition 7.16 C ⊂ F
N
q is a cyclic code, and the multiplication unit element c(x)

in C(x) is called the idempotent element of C . If C = M−
i is the i-th minimal cyclic

code, the idempotent element ofC is called the primitive idempotent element, denote
as θi (x).

Lemma 7.59 Let C1 ⊂ F
N
q ,C2 ⊂ F

N
q are two cyclic codes, (N , q) = 1, Idempotent

elements are c1(x) c2(x), respectively, then

(i) C1
⋂

C2 is also the cyclic code of F
N
q , idempotent element is c1(x)c2(x).

(ii) C1 + C2 is also the cyclic code of F
N
q , idempotent element is c1(x) + c2(x) +

c1(x)c2(x).

Proof It is obvious that C1
⋂

C2 and C1 + C2 are cyclic codes in F
N
q , because they

correspond to ideal C1(x) and C2(x) in R, we have

C1(x) ∩ C2(x) and C1(x) + C2(x)

is still the ideal in R. Therefore, the corresponding codes C1 ∩ C2 and C1 + C2 are
still cyclic codes, and the conclusion on idempotents is not difficult to verify. The
Lemma holds.

In 1959, A. Hocquenghem and 1960, R. Bose and D. Chaudhuri independently
proposed a special class of cyclic codes, which requiredminimal distance. At present,
it is generally called BCH codes in academic circles.
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Definition 7.17 A cyclic code C ⊂ F
N
q with length N is called a δ-BCH code. If its

generating polynomial is the least common multiple of the minimal polynomial of
β, β2, . . . , βδ−1, where δ is a positive integer, β is a primitive N -th unit root. δ-BCH
code is also called BCH code with design distance of δ. If β ∈ Fqm , N = qm − 1,
such BCH codes are called primitive.

Lemma 7.60 Let d be the minimal distance of a δ-BCH code, then we have d ≥ δ.

Proof Suppose xN − 1 = (x − 1)g1(x)g2(x) · · · gt(x), β is a primitive N -th unit
root on Fq , then β is the root of a gi (x). Let deg gi (x) = m ⇒ β ∈ Fqm . Because
of [Fqm : Fq ] = m, we can think of β, β2, . . . , βδ−1 as an m-dimensional column
vector. Let H be the following m(δ − 1) × N -order matrix.

H =

⎡

⎢⎢⎢⎣

1 β β2 · · · βN−1

1 β2 β4 · · · β2(N−1)

...
...

...
. . .

...

1 βδ−1 β2(δ−1) · · · β(N−1)(δ−1)

⎤

⎥⎥⎥⎦

m(δ−1)×N

.

In fact, H is the check matrix of δ-BCH code C , that is

c ∈ C ⇐⇒ cH ′ = 0.

We prove that any (δ − 1) column vectors of H are linear independent vectors. Let
the first component of these (δ − 1) column vectors be β i1 , β i2 , . . . , β iδ−1 , where
i j ≥ 0, the corresponding determinant is Vandermonde determinant �, and

� = β i1+i2+···+iδ−1
∏

r>s

(β ir − β is ) 	= 0.

Therefore, any (δ − 1) column vectors of H are linearly independent. Thus, the
minimum distance of C is d ≥ δ.

Now, we can introduce the design principle of McEliece/Niederreiter cryptosys-
tem. Its basicmathematical idea is based on the decoding principle of error correction
code. Recall the concept of error correction code in Chap. 2, a codeC ⊂ F

N
q is called

t-error correction code (t ≥ 1 is a positive integer). If for ∀ y ∈ F
N
q , there is at most

one codeword c ∈ C ⇒ d(c, y) ≤ t, d(c, y) is the Hamming distance between c and
y. We know that if the minimum distance of a code C is d, then C is a t-error correc-
tion code, where t = ⌈

d−1
2

⌉
is the smallest integer not less than d−1

2 . Lemma 7.60
proves the existence of t-error correction codes for any positive integer t , i.e., 2t + 1-
BCH code (δ = 2t + 1), this kind of code is called Goppa code (see the next section),
which provides a theoretical basis forMcEliece/Niederreiter cryptosystem. Next, we
will introduce the working mechanism of this kind of cryptosystem in detail. First,
let’s look at the generation of key.

Private key: Select a t-error correction code C ⊂ F
N
q ,C = [N , k], H is the check

matrix of C , H is an (N − k) × N -dimensional matrix. For ∀ x ∈ F
N
q , x → xH ′ ∈
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F
N−k
q is a correspondence of Spaces F

N
q to F

N−k
q , let’s prove that this correspondence

is a single shot on a special codeword whose weight is not greater than t .

Lemma 7.61 ∀ x, y ∈ F
N
q , if x H

′ = yH ′, and w(x) ≤ t, w(y) ≤ t , then x = y.

Proof By hypothesis,

xH ′ = yH ′ ⇒ (x − y)H ′ = 0 ⇒ x − y ∈ C.

Obviously, the Hamming distance d(0, x) = w(x) ≤ t between x and 0, and the
Hamming distance d(x, x − y) between x and x − y is

d(x, x − y) = w(x − (x − y)) = w(y) ≤ t.

Because C is t-error correction code, then x − y = 0, the Lemma holds.

We use t-error correction code C and check matrix H as the private key.
Public key: In order to generate the public key, we randomly select a permutation

matrix PN×N so that IN is an N -order identity matrix, IN = [e1, e2, . . . , eN ], σ ∈ SN
is an N -ary substitution, then

P = σ(IN ) = [eσ(1), eσ(2), . . . , eσ(N )].

This kind of matrix is also called Wyel matrix. A nonsingular diagonal matrix
diag{λ1, λ2, . . . , λN }(λi ∈ Fq , λi 	= 0) can also be randomly selected, and suppose

P = σ(diag{λ1, λ2, . . . , λN }) = diag{λσ1, λσ2 , . . . , λσN }.

Let M be an (N − k) × (N − k)-order invertible matrix. The public key is the (N −
k) × N -order matrix K generated as follows,

K = PH ′M, this is N × (N − k) ordermatrix.

We take K as the public key and H , P and M as the private key.
Encryption: Let m ∈ F

N
q be a codeword, w(m) ≤ t , encrypt m as plaintext as

follows.
c = mK ∈ F

N−k
q , c is cryptosystem text.

In fact, a plaintext with length N and weight no greater than t on Fq is encrypted
into a cryptosystem text with length (N − k) on Fq through public key K .

Decrypt: After receiving cryptosystem text c, decrypt it through private keys H, P
and M .

c · M−1 = mKM−1 = mPH ′MM−1 = mPH ′.

Since mP ∈ F
N
q and m have the same root, that is
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w(m) = w(mP) ≤ t.

Using the decoding principle of error correction code: all codewords xH ′ = mPH ′
satisfying x ∈ F

N
q actually constitute an additive coset of codeC , as the leader vector

of this additive coset, mP can be obtained accurately. That is

mPH ′ decode−→ mP.

Finally, we have m = (mP) · P−1, and get plaintext.

7.9 Ajtai/Dwork Cryptosystem

By choosing an appropriate n × m-order matrix A ∈ Z
n×m
q , two m-dimensional q-

element lattices 
q(A) and 
⊥
q (A) are defined (see (7.45) and (7.46)),


q(A) = {y ∈ Z
m |∃ x ∈ Z

n ⇒ y ≡ A
′
x(mod q)}

and

⊥

q (A) = {y ∈ Z
m |Ay ≡ 0(mod q)}.

Using matrix A, an anti-collision hash function can be defined:

f A : {0, 1, . . . , d − 1}m → Z
n
q , (7.176)

where for any y ∈ {0, 1, . . . , d − 1}m , define f A(y) as

f A(y) = Ay mod q, (7.177)

If parameter d, q, n, m is satisfied

n log q < m log d ⇒ n log q

log d
< m. (7.178)

Then Hash function f A will produce collision, that is there is y, y
′ ∈ {0, 1, . . . , d −

1}m , y 	= y
′
, and f A(y) = f A(y

′
). By (7.177), we have it directly

A(y − y
′
) ≡ 0(mod q) ⇒ y − y

′ ∈ 
⊥
q (A),

this shows that the collision points y and y
′
of Hash function f A directly lead to a

shortest vector y − y
′
on q-element lattice 
⊥

q (A).
In order to obtain the anti-collision Hash function, the selection of n × m-order

matrix A is very important. First, we can select the parameter system: let d = 2,
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q = n2, n|m, and m log 2 > n log q, where n is a positive integer. In Ajtai/Dwork
cryptographic algorithm, there are two choices of parameter matrix A, one is cyclic
matrix and the other is more general ideal matrix. Their corresponding q-element
lattice 
⊥

q (A) are cyclic lattice and ideal lattice, respectively.
Cyclic lattice
Because n|m, A can be divided into m

n n × n-order cyclic matrices, that is

A = [A(1), A(2), . . . , A( m
n )], (7.179)

where α(i) ∈ Z
n
q is the n-dimensional column vector and A(i) is the cyclic matrix

generated by α(i) (see (7.149)), that is

A(i) = T ∗(α(i)) = [α(i), Tα(i), . . . , T n−1α(i)], 1 ≤ i ≤ m

n
.

A is called an n × m-dimensional generalized cyclicmatrix, and the q-element lattice
in R

m defined by A,


⊥
q (A) = {y ∈ Z

m |Ay ≡ 0(mod q)}

is called a cyclic lattice. The Ajtai/Dwork cryptosystem based on cyclic lattice can
be stated as follows:

Algorithm 1: Hash function based on cyclic lattice.
Parameter: q, n,m, d is a positive integer, n | m,m log d > n log q.
Secret key: m

n column vectors α(i) ∈ Z
n
q , 1 ≤ i ≤ m

n .
Hash function f A : {0, 1, . . . , d − 1}m −→ Z

n
q define as

f A(y) ≡ Ay(mod q),

the cyclic matrix A ∈ Z
n×m
q is given by (7.179).

We can extend the above concepts of cyclic matrix and cyclic lattice to more
general cases and obtain the concepts of ideal matrix and ideal lattice. Let h(x) be
the first integer coefficient polynomial of n degree, h(x) = xn + an−1xn−1 + · · · +
a1x + a0 ∈ Z[x], define the rotation matrix Th as

Th =

⎛

⎜⎜⎜⎝

0 · · · 0 −a0
−a1

In−1
...

−an−1

⎞

⎟⎟⎟⎠ , (7.180)

if h(x) = xn − 1 is a special polynomial, then Th = T . T is highlighted in Sect. 7.7
of this chapter. Here, we discuss the more general Th . Obviously, when the constant
term a0 	= 0, Th is a reversible n-order square matrix, and Th = det(Th) = (−1)na0.

Lemma 7.62 The characteristic polynomial of rotation matrix Th is f (λ) = h(λ).
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Proof By the definition, the characteristic polynomial f (λ) of Th is

f (λ) = det(λIn − Th)

=

∣∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0 a0

−1 λ · · · ...
...

· · · · · · · · · · · · · · ·
0 · · · · · · λ an−2

0 · · · · · · −1 an−1

∣∣∣∣∣∣∣∣∣∣∣

= 1

λ

1

λ2
· · · 1

λn−1

∣∣∣∣∣∣∣∣∣

λ 0 · · · 0 a0

0 λ · · · ... a1λ + a0
· · · · · · · · · · · · · · ·
0 · · · · · · · · · λn + an−1λ

n−1 + · · · + a1λ + a0

∣∣∣∣∣∣∣∣∣

= λn + an−1λ
n−1 + · · · + a1λ + a0 = h(λ).

Lemma 7.63 Let h(x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ Z[x], if a0 	= 0, then
the rotation matrix Th is a reversible n-order square matrix, and

T−1
h =

[−a−1
0 α In−1

−a−1
0 0

]
, α =

⎡

⎢⎢⎢⎣

a1
a2
...

an−1

⎤

⎥⎥⎥⎦ ∈ Z
n−1.

Proof By the definition of Th ,

Th ·
[−a−1

0 α In−1

−a−1
0 0

]
=
[

0 −a0
In−1 −α

] [
a−1
0 α In−1

−a−1
0 0

]

=
[
1 0
0 In−1

]
= In.

So

T−1
h =

[−a−1
0 α In−1

−a−1
0 0

]
.

For a given first polynomial h(x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ Z[x] of
degree n, let R be a residue class ring of module h(x) in Z[x], i.e.,

R = Z[x]/〈h(x)〉, (7.181)

where 〈h(x)〉 is the ideal generated by h(x) in Z[x]. Because of deg h(x) = n, then
polynomial g(x) ∈ R in R has a unique expression: g(x) = gn−1xn−1 + gn−2xn−2 +
· · · + g1x + g0 ∈ R, define mapping σ : R −→ Z

n as
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σ(g(x)) =

⎡

⎢⎢⎢⎣

g0
g1
...

gn−1

⎤

⎥⎥⎥⎦ ∈ Z
n. (7.182)

Obviously, σ is anAbel group isomorphism of R −→ Z
n . Therefore, any polynomial

g(x) in R can be regarded as an n-dimensional integer column vector.

Definition 7.18 For any n-dimensional column vector g = σ(g(x)) =

⎡

⎢⎢⎢⎣

g0
g1
...

gn−1

⎤

⎥⎥⎥⎦ ∈

Z
n in Z

n , define

T ∗
h (g) = [g, Th(g), T 2

h (g), . . . , T n−1
h (g)]n×n, (7.183)

the n-order square matrix T ∗
h (g) is called an ideal matrix generated by vector g.

Ideal matrix is a more general generalization of cyclic matrix. The former corre-
sponds to a first n-degree polynomial h(x), and the latter corresponds to a special
polynomial xn − 1.We first prove that the ideal matrix T ∗

h (g) and the rotation matrix
Th generated by any vector g ∈ Z

n are commutative under matrix multiplication.

Lemma 7.64 For any given first n-degree polynomial h(x) ∈ Z[x], and
n-dimensional column vector g ∈ Z

n, we have

Th · T ∗
h (g) = T ∗

h (g) · Th .

Proof Let h(x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ Z[x], by Lemma 7.62, the
characteristic polynomial of rotation matrix Th is h(λ), then by Hamilton–Cayley
theorem, we have

T n
h + an−1T

n−1
h + · · · + a1Th + a0 = 0, (7.184)

there is

T ∗
h (g)Th = [g, Thg, T 2

h g, . . . , T
n−1
h g]

[
0 −a0

In−1 −α

]

= [Thg, T 2
h g, . . . ,−a0g − a1Thg − · · · − an−1T

n−1
h g]

= [Thg, T 2
h g, . . . , (−a0 − a1Th − · · · − an−1T

n−1
h )g]

= [Thg, T 2
h g, . . . , T

n
h g]

= Th[g, Thg, . . . , T n−1
h g]

= Th · T ∗
h (g).
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When the monic n-degree integer coefficient polynomial h is selected, we want
to establish the corresponding relationship between the ideal and the integer lattice
L ⊂ Z

n in the quotient ring R = Z[x]/〈h(x)〉. First, we define the concept of an ideal
lattice. In short, an ideal lattice is an integer lattice generated by the ideal matrix.

Definition 7.19 Let g = (g0, g1, . . . , gn−1)
T ∈ Z

n be a given column vector and
T ∗
h (g) be the ideal matrix generated by g, and call the integer lattice L = L(T ∗

h (g))
an ideal lattice.

Our main result is the 1-1 correspondence between ideal and ideal lattice in R =
Z[x]/〈h(x)〉. This also explains the reason why L(T ∗

h (g)) is called ideal lattice.

Theorem 7.10 The principal ideal in R = Z[x]/〈h(x)〉 1-1 corresponds to the ideal
lattice in Z

n. Specifically,

(i) If N = 〈g(x)〉 is any principal ideal in R, then

σ(N ) = {σ( f )| f ∈ N } = L(T ∗
h (σ (g(x)))) = L(T ∗

h (g)).

(ii) If g = (g0, g1, . . . , gn−1)
T ∈ Z

n, T ∗
h (g) ⊂ Z

n is any ideal lattice, then

σ−1(T ∗
h (g)) = {σ−1(b)|b ∈ T ∗

h (g)} = 〈g(x)〉 ⊂ R,

where g(x) = g0 + g1x + · · · + gn−1xn−1 = σ−1(g).

Proof We first prove (i). Let g(x) = g0 + g1x + · · · + gn−1xn−1 ∈ R be a given
polynomial, N = 〈g(x)〉 ⊂ R is a principal ideal generated by g(x) in R, by (7.182),

σ(g(x)) = (g0, g1, . . . , gn−1)
T = T ∗

h (g) ·

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ ∈ L(T ∗
h (g)).

And because

xg(x) = gn−1x
n + gn−2x

n−1 + · · · + g1x
2 + g0x

= (gn−2 − gn−1an−1)x
n−1 + (gn−3 − gn−1an−2)x

n−2 + · · ·
+ (g0 − gn−1a1)x − gn−1a0,

so

σ(xg(x)) =

⎡

⎢⎢⎢⎣

−gn−1a0
g0 − gn−1a1

...

gn−2 − gn−1an−1

⎤

⎥⎥⎥⎦ = Th · g = T ∗
h (g)

⎡

⎢⎢⎢⎢⎢⎣

0
1
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
∈ L(T ∗

h (g)).
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For the same reason, for 0 ≤ k ≤ n − 1, we have

σ(xkg(x)) = T k
h · g = T ∗

h (g) ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ L(T ∗
h (g)).

Suppose f (x) ∈ N = 〈g(x)〉, then f (x) = b(x) · g(x), where b(x) = b0 + b1x +
· · · + bn−1xn−1, then we have

σ( f (x)) = σ(b(x)g(x))

=
n−1∑

k=0

bkσ(xkg(x))

= T ∗
h (g)

⎡

⎢⎢⎢⎣

b0
b1
...

bn−1

⎤

⎥⎥⎥⎦ ∈ L(T ∗
h (g)).

(7.185)

That proves
σ(x) = σ(〈g(x)〉) ⊂ L(T ∗

h (g)).

Conversely, for any lattice point α ∈ L(T ∗
h (g)), then

α = T ∗
h (g)b = T ∗

h (g)

⎡

⎢⎢⎢⎣

b0
b1
...

bn−1

⎤

⎥⎥⎥⎦ ,

since σ is 1-1 corresponds, by (7.185), then

f (x) = σ−1( f (x)) = σ−1(T ∗
h (g)b) ∈ N = 〈g(x)〉.

So we have
σ(N ) = σ(〈g(x)〉) = L(T ∗

h (g)).

(i) holds. Again, σ is 1-1 corresponds, so (ii) can be derived directly. We complete
the proof of Theorem 7.10.

The above discussion on ideal matrix and ideal lattice can be extended to a finite
field Zq , because any quotient ring Zq [x]/〈h(x)〉 on polynomial ring Zq [x] in finite
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field is a principal ideal ring. Therefore, we can establish the 1-1 correspondence
between all ideals in R = Zq [x]/〈h(x)〉 and linear codes on Zq .

Back to the Ajtai/Dwork cryptosystem, let h(x) ∈ Zq [x] be a given polynomial,
and select an n × m-dimensional matrix A ∈ Z

n×m
q as the generalized ideal matrix,

i.e.,
A = [A1, A2, . . . , Am

n
], (7.186)

where Ai (1 ≤ i ≤ m
n ) is the ideal matrix generated by g(i) ∈ Z

n
q , that is

Ai = T ∗
h (g(i)) = [g(i), Thg

(i), . . . , T n−1
h g(i)], (7.187)

we get the second algorithm of Ajtai/Dwork cryptosystem:
Algorithm 2: Hash function based on ideal lattice.
Parameter: q, n,m, d are positive integers, n|m, m log d > n log q.
Secret key: m

n column vectors g(i) ∈ Z
n
q(1 ≤ i ≤ m

n ), polynomial h(x) = xn +
an−1xn−1 + · · · + a1x + a0 ∈ Zq [x].

Hash function f A : {0, 1, . . . , d − 1}m −→ Z
n
q defined as

f A(y) ≡ Ay(mod q),

The ideal matrix A ∈ Z
n×m
q is given by Eq. (7.186).

Wewill not introduce the anti-collision performance of hash functions constructed
by cyclic lattices and ideal lattices here. Interested students can refer to the reference
Micciancio and Regev (2009) in this chapter.

Exercise 7

1. L ⊂ R
n is a lattice (full rank lattice), if L∗ is a dual lattice of L , then the integer

lattice L = Z
n is a self-dual lattice, that is (Zn)∗ = Z

n . Let L = 2Z
n , find L∗ =?

2. Is it correct that L is a self-dual lattice if and only if L = Z
n? Why?

3. Under the assumption of exercise 1, let λ1(L) be the shortest vector length of L
and λ1(L∗) be the shortest vector length of dual lattice L∗. Then

λ1(L) · λ1(L
∗) ≤ n.

4. Let λ1(L), λ2(L), . . . , λn(L) be the length of the Successive Shortest vector of
lattice L , prove

λ1(L) · λn(L
∗) ≥ 1.

5*. Let L be a lattice, B = [β1, β2, . . . , βn] is the generating matrix of L , B∗ =
[β∗

1 , β
∗
2 , . . . , β

∗
n ] is the corresponding orthogonal matrix. Prove: any lattice L

has a set of bases {β1, β2, . . . , βn}, such that

1

n
λ1(L) ≤ min{|β∗

1 |, |β∗
2 |, . . . , |β∗

n |} ≤ λ1(L).



350 7 Lattice-Based Cryptography

(Hint: use KZ basis on lattice L).
6. Under the assumption of exercise 5, let λ1(L), λ2(L), . . . , λn(L) be the contin-

uous minimum of lattice L , prove:

λ j (L) ≥ min
j≤i≤n

|β∗
i |, 1 ≤ j ≤ n.

7. For a full rank lattice L ⊂ R
n , define its coverage radius μ(L) as

μ(L) = max
x∈Rn

|x − L|.

Prove: the covering radius of any lattice L exists.
8. Prove: μ(Zn) = 1

2

√
n.

9. For any lattice L ⊂ R
n , prove: μ(L) ≥ 1

2λn(L).
10. For any lattice L ⊂ R

n , prove the following theorem:

λ1(L) · μ(L∗) ≤ n.
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