


	

Proceedings e report

54



	



	

Models and analysis  
of vocal emissions  

for biomedical applications

6th International Workshop

December 14-16, 2009 
Firenze, Italy

Edited by
Claudia Manfredi

Firenze University Press
2009



	

Cover: designed by CdC, Firenze, Italy.

© 2009 Firenze University Press

Università degli Studi di Firenze
Firenze University Press
Borgo Albizi, 28, 50122 Firenze, Italy
http://www.fupress.com/

Printed in Italy

Models and analysis of vocal emissions for biomedical applications : 
6th international workshop: December 14-16, 2009 : Firenze, Italy 
/ edited by Claudia Manfredi. -– Firenze : Firenze University Press, 
2009.
(Proceedings and report, 54)
http://digital.casalini.it/9788864530963

ISBN  978-88-6453-096-3 (online)
ISBN  978-88-6453-094-9 (print)

612.78 (ed. 20)
Voce - Patologia medica



 

this event is sponsored by: 

ente crf – Ente Cassa di Risparmio di Firenze 
http://www.entecarifi renze.it/  

cost action 2103 – European Cooperation in the fi eld of Scientifi c 
and Technical research
 http://www.cost2103.eu/

elsevier eds. – Biomedical Signal Processing and Control 
http://www.elsevier.com/locate/bspc

this event is supported by:

isca – International Speech and Communication Association
http://www.isca-speech.org/

provincia di firenze 
http://www.provincia.fi renze.it/ 

associazione italiana scienze della voce 
http://www.aisv.it/

ieee eMbs – IEEE Engineering in Medicine and Biology Society
http://www.embs.org/  

a.i.i.M.b. – Associazione Italiana di Ingegneria Medica e Biologica
http://www.aiimb.it

i.n.f.M. – Istituto Nazionale per la Fisica della Materia
http://www.infm.it

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



	



	

CONTENTS

Foreword................................................................................................................................................... xi

Special Session on Newborn Infant Cry (Chairperson and Introduction: C.A. Reyes Garcia, 
Mexico)

D. Lenti Boero, Neurofunctional Spectrographic Analysis of the Cry of Brain Injured  
Asphyxiated Infants: A Physioacoustic and Clinical Study....................................................................... 3

G. Várallyay Jr., András Illényi, Zoltán Benyó, Melody Analysis of the Newborn Infant Cries............... 7

G. Várallyay Jr., András Illényi, Zoltán Benyó, Automatic Infant Cry Detection....................................11

S. Orlandi, L. Bocchi, M. Calisti, G. Donzelli, C. Manfredi, Recovery of Oxygen Saturation  
Level in Newborns.................................................................................................................................... 15

Emotional Voice 

I. Yanushevskaya, C. Gobl, A. Ní Chasaide, Voice Parameter Dynamics in Portrayed Emotions......... 21

H.P. Espinosa, C.A. Reyes García, Detection of Negative Emotional State in Speech with Anfis  
and Genetic Algorithms........................................................................................................................... 25

N. Vanello, N. Martini, M. Milanesi, H. Keiser, M. Calisti, L. Bocchi, C. Manfredi, L. Landini, 
Evaluation of a Pitch Estimation Algorithm for Speech Emotion Recognition ...................................... 29

J. Krutišová, J. Klečková, Prosody Features Analysis............................................................................. 33

Voice Quality Assessment I and II 

J. Cai, A. Alpan, T. Dubuisson, I. Verduyckt, F. Grenez, J. Schoentgen, A Clinical  
Workstation Software for Voice Quality Assessment................................................................................ 37

M. Markaki, Y. Stylianou, Modulation Spectral Features for Objective Voice Quality Assessment:  
The Breathiness Case............................................................................................................................... 41

P. Gómez-Vilda, R. Fernández-Baíllo, V. Rodellar-Biarge, J. I. Godino-Llorente, Voice Pathology 
Grading by Gaussian Mixture Models: Study Cases............................................................................... 45

D. Krzesimowski, Z. Ciota, Estimation of Hospitalization Progress for Patients with Stroke  
with Using of Voice Analysis.................................................................................................................... 49

T. Dubuisson, T. Drugman, T. Dutoit, On the Mutual Information of Glottal Source Estimation 
Techniques for the Automatic Detection of Speech Pathologies ............................................................. 53

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.



VIII	

O. Amir, S. Ziv, N. Amir, Acoustic Analysis of Vowel Segments for Clinical Purposes:  
Preliminary Observations........................................................................................................................ 57

L.M.T. Jesus, A. Barney, P. Sá Couto, H. Vilarinho, A. Correia, Voice Quality Evaluation  
Using Cape-V and Grbas in European Portuguese................................................................................. 61

K. J. Neumann, P. H. Dejonckere, Voice Related Quality of Life in Spasmodic Dysphonia:  
a Detailed Vhi-Analysis Before and after Botulinum Treatment............................................................. 65

P.H. Dejonckere, J.P. Martens, M. Moerman, Long Term Follow-Up of Patients  
with Spasmodic Dysphonia...................................................................................................................... 67

M. Sarria-Paja, G. Castellanos-Domínguez, N. Gaviria-Gómez, Principal Component Analysis  
for Hmm-Based Pathological Voice Detection ....................................................................................... 69

R. Fernández-Baillo, P. Gómez, Identification of Functional Voice Disorders  
by Biomechanical Analysis ..................................................................................................................... 73

G. Sparacino, W. De Colle, D. De Luca, E. Arslan, Electroglottography and Microphone Signals 
Assessed by Approximate Entropy in Normal and Dysphonic Subjects................................................... 77

Special Session on Voice Modeling I (Chairperson and Introduction: H. Kawahara, Japan) 
Voice Modeling II

Hideki Kawahara, Speech Morphing Based On Biologically Relevant  
Signal Representations............................................................................................................................. 83

J. Schoentgen, F. Grenez, Tracking formants, Extra-formants and Anti-formants  
in Non-Modal Speech by Means of a Spectral Pole-Zero Model............................................................ 87

J. C. Kane, C. Gobl, Automatic Parameterisation of the Glottal waveform Combining Time 
and Frequency Domain Measures........................................................................................................... 91

S. Fraj, F. Grenez, J. Schoentgen, Synthetic Hoarse Voices: A Perceptual Evaluation .......................... 95

C. Mertens, F. Grenez, L. Crevier-Buchman, J. Schoentgen, Salience Analysis  
for Glottal Cycle Detection in Disordered Speech.................................................................................. 99

P.J. Murphy, Temporal Measures of the Initial Phase of Vocal Fold Opening  
across Different Phonation Types ......................................................................................................... 103

Y. Pantazis, M. Koutsogiannaki, Y. Stylianou, A Novel Method for the Extraction  
of Vocal Tremor...................................................................................................................................... 107

U.K. Laine, O.J. Räsänen, Indirect Estimation of Formant Frequencies through Mean Spectral 
Variance with Application to Automatic Gender Recognition................................................................111

 H. Itagaki, M. Morise, R. Nisimura, T. Irino, H. Kawahara, A Bottom-Up Procedure to Extract 
Periodicity Structure of Voiced Sounds and Its Application to Represent 
and Restoration of Pathological Voices .................................................................................................115



	 IX

G. Cantarella, G. N. Baracca, S. Forti, L. Pignataro, Acoustic/Aerodynamic Assessment of Normal  
and Dysphonic Voice ..............................................................................................................................119

Voice Images 

A. Gelzinis, A. Verikas, M. Bacauskiene, E. Vaiciukynas, E. Kelertas, V. Uloza, A. Vegiene,  
Towards Video Laryngostroboscopy-Based Automated Screening for Laryngeal Disorders................ 125

V. Osma-Ruiz, J.M. Gutiérrez-Arriola, J.I. Godino-Llorente, N. Sáenz-Lechón, R. Fraile, J.D. Arias-
Londoño, Advanced Preprocessing of Larynx Images to Improve the Segmentation of Glottal Area ...... 129

A. Serrurier, A. Barney, Articulatory Modelling of the Vocal Tract in Feeding  
from X-Ray Images................................................................................................................................. 133

H.J. Moukalled, D.D. Deliyski, R.R. Schwarz, S. Wang, Segmentation of Laryngeal  
High-Speed Videoendoscopy in Temporal Domain Using Paired Active Contours.............................. 137

M.E. Golla, D.D. Deliyski, R.F. Orlikoff, H.J. Moukalled, Objective Comparison of the 
Electroglottogram to Synchronous High-Speed Images of Vocal-Fold Contact During Vibration....... 141

Y. Yan, K. Izdebski, E. Damrose, D. Bless, Quantitative Analysis of Diplophonic Vocal  
Fold Vibratary Pattern from High-Speed Digital Imaging of Glottis.................................................... 145

J. Klečková, P. Maule, J. Polívka, V. Rohan, Experimental System for Neurological Case Studies..... 149

Devices

W. Wokurek, M. Pϋtzer, Accelleration Sensor Measurements of Subglottal Sound Pressure  
for Modal and Breathy Phonation Quality............................................................................................ 153

J.G. Šveč, H. Sramkova, S. Granqvist, Basic Requirements on Microphones  
for Voice Recordings.............................................................................................................................. 157

C. Jochum, P. Reiner, M. Hagmüller, Comparison of Excitation Signals  
for an Electronic Larynx........................................................................................................................ 161
 
C. Middag, J.P. Martens, G. Van Nuffelen, M. De Bodt, DIA: A Tool for Objective Intelligibility 
Assessment of Pathological Speech....................................................................................................... 165

Special Session on Singing voice (Chairperson and Introduction: J. Sundberg, Sweden)

F.M. Lã, J. Sundberg, Singing Voice and Pregnancy: Preliminary Results from a Case Study............. 171

D.M. Howard, J. Brereton, H. Daffern, Case Study of Voice Quality Differences  
in a Soprano Singing in Different Early Music Performance Styles .................................................... 175

R. Sisto, A. Pieroni, D. Annesi, P. Nataletti, F. Sanjust, C. Manfredi, M. Venzi, Vocal Effort  
in Singers of a National Lyric Orchestra............................................................................................... 179



X	

Obstructive Sleep Apnoea

B. Calabrese, F. Pucci, M. Sturniolo, P. Veltri, A. Gambardella, M. Cannataro, Automatic  
Detection of Obstructive Sleep Apnea Syndrome Based on Snore Signals............................................ 185

M. Calisti, L. Bocchi, C. Manfredi, I. Romagnoli, F. Gigliotti, G. Donzelli, Automatic  
Detection of Post-Apnoeic Snore Events from Home and Clinical Full Night Sleep Recordings ........ 189

Mechanical Models

B. Hüttner, A. Sutor, G. Luegmair, C. Bohr, U. Eysholdt, M. Döllinger, Analysis  
of Deformation Characteristics of Excised Human Vocal Folds by Optical Stereo-Triangulation ...... 195

A. Aalto, P. Alku, J. Malinen, A LF-Pulse from a Simple Glottal Flow Model..................................... 199

J. Horáček, S. Gráf, Mathematical Modelling of Airflow in the Glottal Region  
and Its Comparison with Experimental Data........................................................................................ 203

S. Zörner, M. Kaltenbacher, M. Döllinger, Finite Element Model of the Human Phonation Process....... 207

J. Malinen, P. Palo, Recording Speech During Mri: Part II...................................................................211

Author Index.......................................................................................................................................... 215



	

FOREWORD

It is a great pleasure for me to introduce this 6th edition of the Proceedings of the MAVEBA Workshop, 
devoted to the relevant topic of voice modelling and analysis under a biomedical perspective.

MAVEBA 2009, the 6th event of this series, celebrates ten years of scientific uninterrupted success. 
The attendance of researchers from all over the world, that has always distinguished this event, makes me 
proud and stimulates in pursuing this initiative in the future.

Since its first edition in 1999, the series of MAVEBA workshops aims to fill the gap between different 
research fields on human voice that historically developed independently from each other.  This meeting 
stimulates contacts between specialists active in clinical, research and industrial developments in the area 
of voice signal and images analysis for clinical treatment, care and rehabilitation and other biomedical 
applications, aiming at gathering together knowledge, experience and technology from researchers com-
ing from a wide range of institutions.

The MAVEBA Workshop is organised every two years in Firenze, Italy. This sixth Workshop 
offers again the participants an interdisciplinary platform for presenting and discussing new knowl-
edge in the field of models and analysis of voice signals and images, as far as both adults, singing 
and children voices are concerned, ranging from fundamental research to all kinds of biomedical 
applications and related established and advanced technologies. Modelling the normal and patho-
logical voice source and the analysis of healthy and pathological voices are among the main fields 
of research. The aim is that of extracting the main voice characteristics, together with their devia-
tion from “healthy conditions”. This needs to result in developing accurate, objective and clinically 
useful methods of investigation of voice quality in patients, and of strategies for preventing occupa-
tional voice disorders in professional speakers.

Modelling is one of the hot topics in voice analysis to which the international community devotes 
great efforts. It has strict links with other equally important fields of research such as:

diagnosis and classification of pathological voice•	
monitoring voice quality during rehabilitation•	
development of vocal prostheses and aids for disabled•	
analysis of other vocal emissions (infant cry, cough, snoring, swallowing), in neurological dysfunc-•	
tions, obstructive apnoea, asthma, etc.
protocols and reliable objective parameters form images through videolaryngoscopy, videokymog-•	
raphy, fMRI and other emerging techniques
emotional voice as related to psychological/neurological conditions, e.g. epilepsy, autism, schizo-•	
phrenia, stress etc.
interaction with hearing impairments•	
relationships among subjective-perceptive-objective voice analysis•	

From this long and non-exhaustive list, it appears that the need for interaction between different fields of 
research has become of utmost importance. The subject of voice analysis has recently gained more and more 
attention from the international community and is rapidly growing, and in the last ten years links and co-
operation among different research fields have become effective to define and set up simple and reliable tools 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.
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for voice analysis. A deeper insight into the voice production mechanism and its relevant parameters could in 
fact help clinicians in improve prevention and treatment of vocal apparatus pathologies.

The interest is also demonstrated by several initiatives that have been set up all over the world that 
focus on voice. In 2002, April 16, the American Academy of Otolaryngology--Head and Neck Surgery 
founded the World Voice Day, to encourage men and women, young and old, to assess their vocal health 
and take action to improve or maintain good voice habits. The World Voice Day is now celebrated world-
wide, jointly by the clinical and the biomedical engineering community.

Moreover, both in 2007 and in the present 2009 edition, the MAVEBA Workshop has hosted the Man-
agement Committee and Working Groups meetings of COST Action 2103 “Advanced Voice Function 
Assessment”, a 4-years lasting (2006-2010) joint initiative of speech processing teams (engineers and 
physicists) and the European Laryngological Research Group (ELRG) (laryngologists/phoneticians). A 
main objective of COST 2103 is in fact a better understanding of the relationship between biomechanical 
changes of the vocal folds and alterations of the acoustical voice signal. Modelling normal and pathologi-
cal voice source is an essential tool in this process.

We are definitely moving towards interdisciplinary research, made easier by worldwide fast commu-
nication capabilities. Thus great effort should also be directed towards setting up a common framework 
among all interested researcher and companies. This would be of great help to finalise and speed up 
research, enhance methodological results, increase and update the production of dedicated, user-friendly 
and cheap devices and, most important, sensitising people on a still underestimated subject, such as the 
prevention of vocal apparatus pathologies. 

Within this volume of Proceedings, papers range from fundamental research to development and test-
ing of software tools and measurement devices. Specifically, the volume includes three Special Sessions 
organized and given by worldwide well-known experts on: 

Newborn Infant Cry•	
Voice Modelling•	
Singing Voice•	

And other six Sessions on the following topics:
Emotional Voice•	
Voice Quality Assessment•	
Voice Images•	
Devices•	
Obstructive Sleep Apnoea•	
Mechanical Models•	

Some papers on the above mentioned topics are presented during the Workshop in the poster session.
From these papers, and those collected in Special Issues of international Journals: Medical Engineer-

ing & Physics (2002), Biomedical Signal Processing and Control (2006, 2009), Acta Acustica - Acustica 
(2006) devoted to past MAVEBA Workshops, I hope that the interested reader could find useful sugges-
tions and further spurs to carry on research in the important and increasing field of voice analysis.

Finally, I express my gratitude to the members of the organising committee, the  anonymous reviewers 
that helped in improving the quality of the papers,  the supporters and sponsors who confidentially gave 
financial contribution, the administrative staff of the Department of Electronics and Telecommunications 
that contributed to make this Workshop a successful one.  
 
Claudia Manfredi
Conference Chair  
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Abstract: The aim of this pilot study cry analysis of 

brain injured asphyxiated infants, aiming to identify 

parameters that might predict clinical oucome. Thirteen 

controls and six asphyxiated subjects with MRI evident 

lesions were included. Spectrographic analysis of 

manipulation cries showed that vibrato contours were 

significantly more frequent in the brain lesioned group 

than in the controls, and prevalent in two subjects 

whose outcome was spastic displegy and death. F° 

parameters were significantly lower in infants with 

midbrain injuries, this finding is in contrast with 

previous literature. 

Keywords : infant cry, neonatal asphyxia, brain injury, 

physioacoustic, spectrographic analysis. 

 

I. INTRODUCTION 

Neuroradiological examinations such as CT or MRI or 

cranial ultrasonography are the elective tools for early 

diagnosis of encephalopathy. There is extensive 

experimental, clinical and neuroimaging date that 

intrapartum hypoxic-ischemic insult is an important 

factor in the genesis of irreversible brain injury, 

especially in term newborns. However, if neuroradiology 

does effectively detect more evident lesions, on the other 

hand it might miss subtle and/or minimal brain lesions, 

that might be of prognostic value [1,2,3,4]. In this respect 

the spectrographic analysis of cry patterns might be a 

useful diagnostic tool in evidencing brain disorders in 

infants, and in providing a prognostic aid as was already 

found in preterm infants [1,5,6]. In fact, the 

spectrographic analysis of the cry of human infants 

affected by brain dysfunction related to neonatal 

asphyxia, congenital hypothyroidism, or neonatal 

jaundice, has demonstrated that abnormal patterns occur 

in the pitch contour and in both domains of time and 

frequency [7,8,9,10,11,12,13,14]. But, until now, few 

attempts were done in order to correlate objective, 

spectrographic and clinical results as regards as long-term 

outcome, in particular after neuroimaging became 

available to clinicians [2,4]. This is the aim of present 

study. 
 
II. METHODOS 

 

Subjects: Six male newborns affected by hypoxic-

ischemic central injury, and with MRI diagnosed brain 

damage and a control group of 13 infants (9 M; 4 F) 

matched for weight were recruited after parents’ informed 

consent in a local hospital in Milan, Italy. Within the first 

four days of life, cries were induced by manipulation 

stimuli during neurological examination performed at the 

same hour of the day (10.30 am), this eliciting context 

has the advantage of guaranteeing homogeneous state of 

arousal in all infants [2]. Cries were recorded by means of 

DAT sound recorders (Sony TCD D7 and TASCAM 

DAP1) and of a Sennheiser ME66 unidirectional 

microphone positioned between two to five cm from the 

mouth of the crying babies. 

Sound analysis: Cries were recorded along the entire 

duration, sampled at 44.100 Hz, (sample size16 bits), and 

analysed by means of Canary 1.2 mounted on Powermac 

7600 with 45 Megabytes of RAM [14] and Raven on 

MacBookPro computer. They were subdivided in six 

subsamples of four to six cry units: the first included the 

beginning, the last the end of the cry, the others were 

taken along the time axis at homogeneous intervals in 

order to guarantee a good representation of continuous 

variations [12,13]. Spectrograms were produced by 

means of the above mentioned softwares. Voicing was 

put in evidence by means of Praat. In this study we 

mostly concentrated on fundamental pitch whose 

contours were individually evaluated for melody 

characteristics (i.e. rising, rising-falling, falling, and flat 

steady contours), and vibrato (i.e. a saw-like profile) 

(Appendix 1) by two independent observers, according to 

[15], inter-observer agreement was 97%, hence only 3% 

of our cry units were discarded. Quantitative time 

parameters were measured in sec. and frequency 

parameters in Hz. by means of screen cursor. We 

analyzed a total of 334 asphyxiated infants’ cry units and 

341 control infants’ cry units. All infants entered a 

clinical follow-up and mental and motor development 

were assessed by means of Bayley scale (PDI and MDI) 

at 4
th

, 8
th

 12
th

 month of life; at that time they underwent a 

second MRI. Only data at birth and at one year results are 

reported in this study. 

 

III. RESULTS 

Weight at birth was not statistically different between 

pathological infants and controls (SPSS one-way anova, 

F 1,17 = 0.019, P = 0.892). 

Global sample analysis. 

NEUROFUNCTIONAL SPECTROGRAPHIC ANALYSIS OF THE CRY OF 

BRAIN INJURED ASPHYXIATED INFANTS: A PHYSIOACOUSTIC AND 

CLINICAL STUDY 
D. Lenti Boero MD, PhD

 

Facoltà di Psicologia. Università della Valle d’Aosta – Université de la Vallé d’Aoste. Chemin des Capucins 2A 
11010 Aosta. Italy 
d.lentiboero@univda.it 
http://www.disat.unimib.it/bioacoustics/it/ 
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Pitch contour. Asphyxiated infants had a significantly 

higher amount of voiceless and partially voiced profiles 

than the controls (GLIM chi-square = 9.286 df = 1,  

P < 0.005), (Tab. 1).  

 

Tab. 1. Voicing in normal and pathological 

subjects 

 

     

 Voiceless               

n (%) 

Partially 

voiced   

n (%) 

Voiced            

n (%) 

Total 

pathological 

subjects 

3 (1) 72 (22) 259 

(77) 

334 

normal 

subjects 

2 (1) 44 (12) 295 

(87) 

341 

 

Brain injured infants’ voiced profiles were significantly 

different from controls’ (SPSS Cross tabs, Pearson, chi-

square = 286.84, df = 6, P < 0.000), having less normal 

patterns (i.e. rising, rising-falling, falling, and flat steady 

contours): 85 (33%) and 215 (85%) respectively for brain 

injured and normal subjects (GLIM, chi-square = 148.80 

df = 1, P < 0.0001); conversely they had an higher 

amount of vibrato contour: 157 (62%) and 36 (14%), 

respectively for brain damaged and the normal subjects 

(GLIM chi-square = 127.91 df = 1, P < 0.0001), in 

addition they uniquely showed frequency jumps and 

furcated profiles. The percentage amount of biphonations 

in both group was identical: 22% (GLIM, chi-square = 

0.01, df =1, P > 0.1), we also calculated the percentage 

difference in length of biphonation over the total amount 

of voiced cries: 3% for the brain injured group and 4% 

for the controls (GLIM, chi-square = 0.3, df = 1, P > 0.1). 

Quantitave analysis. Length of wails was significantly 

shorter (F 1,552=13.51; P < 0.000) and interval between 

cries was significantly longer (F 1,417 = 7.30; P =0.007) in 

the asphyxiated group). All parameters measured on the 

fundamental were lower in the asphyxiated group, as 

show in tab. 2. 

Tab. 2. Mean Hz, SD, and ANOVA for F° and peak F of 

brain injured subjects (1
st
 column) and controls. 

MANOVA for first four parameters: Pillais trace 4,549 = 

47.09; P <0.000.  

 

 Mean SD Mean SD F df P 

Start 

F  
328.0 72.2 383.8 73.4 

80.78 

1,552 

<0.000 

Max. 

F  
432.0 76.7 517.8 73.5 

180.41 

1,552  

<0.000 

Min. 

F.  

279.8 

 
71.9 

323.9 

 
75.2 

49.39 

1,552 

<0.000 

End F  
313.8 78.5 348.3 84.8 

25.30 

1,552 

<0.000 

Peak 

F  
405.6 77.2 490.5 78.7 

156.93 

1,527 

<0.000 

dyn g 
711.8 130.2 841.7 123.0 

145.55 

1,552 

<0.000 

Individual analysis. 

We wanted to explore at the individual level if and how 

those global differences mirrored for each subjects in our 

sample. 

Pitch contour. The counting of voicing profiles at the 

individual level in the brain damaged subjects showed a 

pattern of great variation (Tab. 3). 

 

As regards as pitch contours, only Ca., the subject with  

most severe lesions vs all other brain injured subjects 

together (GLIM, chi-square = 11.341, df = 1, P < 0.001) 

had abrupt discontinuities (pitch jumps), together with an 

other subject he also had a significant higher amount of 

vibrato contours (Tab 4), Hz mean difference on F° and 

significance are shown in fig. 1, the fundamental 

frequency parameters were significantly lower in all 

subjects but in one. 

Tab. 4. Amount of melodic contours of phonated cries in 

each pathological infant vs individual control matched for 

weight  
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D
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P
 

Ca. 

11 

(8) 

5 

(3) 

31 

(21) 

99 

(68) 
102.85 1 < 0.0001 

Co. 
0 0 

4 

(19) 

17 

(81) 
17.324 1 < 0.001 

Cr. 
0 0 

2 

(40) 

3 

(60) 
0.402 1 > 0.1 

Pr. 
0 0 

9 

(43) 

12 

(57) 
0.860 1 > 0.1 

Ta. 
0 0 

13 

(62) 

8 

(38) 
2.404 1 > 0.1 

Tr. 
0 0 

26 

(59) 

18 

(41) 
2.925 1 < 0.1 

 

Hz mean difference on F° and significance are shown in 

fig. 1, the fundamental frequency parameters were 

significantly lower in all subjects but in one. Neurological 

evaluations were performed at 4
th

, 8
th

 12
th

 mouth of life, 

at that time MRI was repeated. Mental and motor 

development were assessed with Bayley scale (PDI and 

MDI). Results are shown in Tab. 5.  

 

Tab. 3. Individual voicing in brain damaged sample

Voiceless               

n (%)

Partially voiced    

n (%)

Voiced                  

n (%)

Total

Ca. 1 (1) 8 (5) 146 (94) 155

Co. 0 3 (13) 21 (88) 24

Cr. 0 7 (58) 5 (42) 12

Pr. 2 (5) 14 (37) 22 (58) 38

Ta. 0 1 (5) 21 (95) 22

Tr. 0 39 (47) 44 (95) 83

Total 3 72 259 334
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 IV. DISCUSSION 

The present pilot is one among the few studies trying to 

put together three different level of investigation (brain 

imaging, cry characteristics, and clinical evaluation) in 

order to better understand the prognostic value of infant 

cry in brain damaged infants long time after the insult 

Tab.5. Synthesis of neuroradiological, clinical and cry analysis for six asphyxiated subjects and outcome at one year. 

Asterisks show significant difference from matched subjects. Subject in the first row deceased in his first month of life.
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Ca. 41 3240 1   5 cerebral 

hemispheres, basal 

ganglia, thalamus, 

hypothalamus 

global hypertonia 

hyperexitability, 

seizures

* higher  % of 

vibrato 

contour, * 

lower F°

Co. 41 2780 5   7 thalamus global hypertonia * higher  % of brain injury dystonic

periventricular white reduced alertness vibrato contour tetraplegia

matter and poor movements* lower F°  important

seizures mental delay

Cr. 38+3 3180 3   7 cerebral cortex (right 

slight 

predominance); 

subcortical white 

matter 

mild 

hyperexitability 

* lower F° brain injury normal motor 

and mental 

dev.

Pr. 39+1 3080 1   2 periventricular white 

matter (left frontal 

region 

predominance)

mild hypertonia no difference brain injury normal motor 

and mental 

dev.

Ta. 41+5 3170 2   <5 right insulo-temporal 

region 

mild hypertonia * lower F° brain injury normal motor 

and mental 

dev.

Tr. 39 4440 4   7 periventricular white 

matter 

hypertonia 

hyperexitability, 

seizures

* lower F° brain injury normal motor 

and mental 

dev.
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(one year). At the global level our data reflect the 

findings of previous studies, were an higher amount of 

voiceless and partially voiced cries in the asphyxiated 

sample was found [7,9]. However, when we performed 

the analysis at the individual level, the most important for 

the clinician, it was found that voicing profiles were 

different among the individual brain damaged infants, 

and did not correspond to the degree of brain insult, 

indeed, the two most sever outcome (Tab. 5) had a very 

low percentage of voiceless and partially voiced cries. 

Thus voicing per se should be considered with caution as 

an indicator of brain pathology due to neonatal asphyxia. 

In accord with other authors [5,7] we found that a 

significant higher proportion of vibrato contours are well 

correlated with major negative outcome at one year (one 

fatality and one tetraplegia). In an other study (Lenti 

Boero unp.), comparing cry output from a sample of brain 

damaged infants with a sample of infants affected by 

neonatal asphyxia but without MRI evident lesions, and a 

control, it was found that vibrato contours were 

significantly more frequent in the brain damaged group 

than in controls  (X
2

1= 10.76, p < 0.025), but no difference 

was found between the asphyxiated subjects without 

lesions and the normal group (X
2

1= 1.42, p < 0.25 ns). 

Also F° pitch continuity seems to be of great importance:  

the only fatal case we had was the only one having 

important alteration in this parameter: frequency jumps 

and furcated cries (Tab. 2), this is in accord with other 

authors’ findings [5]. Interestingly, all but one brain 

damaged subjects had significantly lower F° parameters 

than matched controls, this finding is in contrast with [7]. 

A good resolution for evident brain lesions was not 

available at the time this study was performed, and this 

fact underscores the necessity of having many more 

clinically detailed cases.  
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Abstract: the melody analysis of the infant cries was 
performed manually in the past. based on subjective 
listening, only estimations could be achieved about the 
real melodies. a novel method had been introduced a 
few years ago to categorize the melody shapes. it says
that the melodies of the infant cries are combined 
from elementary units. the melody shapes can be 
classified according to the order of these elementary 
units. utilizing this automatized system authors 
showed that there are 39 different melody shapes of 
the newborn infant cries, the top 15 categories cover 
the 93% of the analyzed 580 melodies.
Keywords: newborns, infant cry, melody analysis, 
melody shape classification

I. INTRODUCTION

We meet melodies in our everyday life in different 
circumstances, e.g. the cadence of the human voice to 
express our emotions, or the voice of singing. In general 
‘melody’ means the changing of the fundamental 
frequency as a function of time. It is well worth trying
to talk about the melody of the infant cry, as it could also 
carry several information about the infant [1], [2]. Only a 
few research teams had been dealt with the analysis of the 
melodies of the infant cries, because it is hard to obtain, 
visualize and compare them. In this way most of the 
teams applied subjective, manual investigations with the 
melodies.

A quite impressive melody analysis was performed in 
Hungary by Makói et al. in 1975. They represented the 
melody contour on music paper [3] in the same way as 
Gardiner did in 1838 [4]. A fellow of their team had 
absolute pitch, she wrote down the melodies after 
listening. In 1996 Schönweiler et al. classified the melody 
shapes of crying into six categories [5], these were:
rising, falling, rising-falling, falling-rising, flat and 
glottal plosive (see Fig. 1.). However, the elements of 
these groups are quite simple and easy to use, it will be 
shown soon that there are much more categories of the 
shapes of the melodies.

In 1999 Möller and Schönweiler discussed about how 
difficult to evaluate and compare the cries of newborn 
infants [6]. They suggested investigating the complexity 
of the cries as a theoretical solution, but they couldn’t 
find a suitable method for that.

rising-falling

falling-rising

falling

flat

rising

glottal plosive

Fig. 1. The groups of the melody shapes by Schönweiler 
et al. from 1996.

Also in 1999 Michelsson and Michelsson tested the 
newborns’ crying sounds with spectrography [7]. 
Nowadays spectrography is still a general tool in the 
analysis of the infant cry. There are several physical 
attributes of the cry which can be obtained from a 
spectrogram, as length of the cry, spectral components, 
etc. Although it seems that the spectrogram doesn’t 
provide a good resolution for the analysis of the melody 
of the infant cry [8].

Wermke et al. published a study about the development 
of the melodies in 2002 [9]. They investigated the shape 
of the melody and the intensity of the cry together. The 
visualized melodies were obtained by the MDVP software 
from Kay Elemetrics Corp. They’ve found that in case of 
8-9 weeks old infants there were simple melody shapes, 
while older infants doubled or tripled these shapes. In 
2003 Rothgänger reported that there was a 20-30 Hz 
rising period in the first third of the duration of the
hunger cries followed by a 60-70 Hz falling period in the 
next two third [10].

In 2007 Várallyay has published a new idea about the 
objective analysis of the melodies of the infant cry [11],
[12]. From the classification of the melodies it was shown
that there were 77 different categories of their shapes and 
30% of the melody shapes were simple rising-falling. In 
another study from Várallyay et al. from 2007 the 
development of the melodies was investigated [13]. They 
found that in the first two months of life infants cried 
with mostly shorter, simpler melodies, while later the 
durations increased and the melody shapes got more 
complex.

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
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In this study authors will analyze the melodies of 
newborn infants to compare them with the results 
obtained from the studies above.

II. METHODS

A. Data Collection

For this study data from 73 newborns (0-6 days old) 
were collected between 2001 and 2006. There were 270
boys and 310 girls with a mean age at 3.47 days. The
recordings were made in several hospitals in Hungary.
The typical duration of the recordings was 25-30 s, the 
reason of crying was spontaneous in most cases. All the 
sound recordings were made in quiet places, but not in 
special silence rooms. There were different recording 
devices applied as minidisk recorder (SONY MZ-R55), 
digital video camera (SONY DCRTRV25), digital 
dictaphone (SONY ICD-P28) and PC sound card with 
several microphones (SONY ECMMS907, AKG D55S) 
attached. The melody is such a robust attribute of the 
crying, that it is not impressionable by the type of the 
recording device.

The digitalization of the recorded crying sounds was 
performed at 44.1 kHz or 48 kHz (depending on the
recording device), each sample was assigned to 16 bits. 
Finally, all the recorded sounds were saved onto PC as 
separate wave (.wav) files.

B. Signal Processing

Authors used MATLAB for the signal processing and 
the analysis of the recordings. The first step of the signal 
processing was to select the voiced crying sounds from 
the whole recording with the authors’ Automatic Infant
Cry Detection method [14], [15]. A total of 580 voiced 
crying sounds were obtained from the 73 infants, their
durations were typically between 0.3 and 1.6 s.

The second step was to divide these voiced sounds into 
short-time (around 50 ms), non-overlapping windows
[16]. The fundamental frequency (F0) was obtained in 
each windows with the Smoothed Spectrum Method,
which was developed especially for the F0 detection of 
the infant cry [17]. The detected consecutive F0 values 
form the melody of the voiced crying sound.

The obtained melodies were visualized with the Five 
Line Method (FLM) [18]. FLM is an objective method for
visualizing the melodies of the infant cry, similar to the 
music paper but it applies logarithmic scaling. The 
frequency values of the five lines are shown and the 
limits of the time axis are fixed. Fig. 2. shows some 
examples to the obtained melodies, visualized by the 
FLM.
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Fig. 2. Examples to the obtained melodies of cries 
represented by the Five Line Method. The method of 
preparation reminds to the music paper, in this way it is 
easier to read.

Utilizing the Five Line Method the melodies of the 
cries become more comparable. It can be easily read from 
the figures if the melody is low-pitched or high-pitched, 
short or long, simple or complex, etc.

C. Melody Analysis

After observing the shape of 580 melodies authors
established that Schönweilers’ six categories covered 
only the 70% of the melodies as there were many 
melodies having more complex shapes. For a higher 
efficiency the classification system of Várallyay from 
2007 was applied. This system is based on the 
segmentation of the melody into elementary shapes:
rising (+1), flat (0) or falling (-1), and the categories are 
defined by the order of these units. Every melody could
be described as a kind of combination of these elementary 
shapes. The names of the new categories were created 
directly from these sequences between chevrons. For 
example a rising-falling type of melody is combined from 
a rising shape (1) and a falling shape (-1), in this way 
these kind of melodies were classified to the following 
category: <1 -1>.

III. RESULTS

A total of 39 different categories were found from the 
easier ones (having only one unit) to the more complex
ones (having 3-4 units). Out of the 39 categories there 
were 15 which included the 93% of the 580 melodies. 
The distribution of these ‘top 15’ categories and the 
schemes of their shapes are shown in Table 1.

The most typical category in this classification system 
was the <1 -1> category with its 178 cases (31% of the 
melodies). There were three more main categories found: 
<-1>, <1>, and <0 -1> with their 20%, 11% and 9% rate 
of occurrence. No significant difference was found in the 
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first 6 days of life regarding to the age. In some top 
categories significant differences were found among the 
melodies regarding to the gender: <1> was 30% more 
typical for girls while <0 -1> was 60% more frequent for 
boys.

IV. DISCUSSION

The most common category was the <1 -1> which is 
equivalent to Schönweilers’ rising-falling category. At 
the 2nd, 3rd, 5th and 8th places there were the <1>, <-1>,
<0> and <-1 1> categories which ones had a 
Schönweiler-equivalent as well: rising, falling, flat and 
falling-rising. We can declare that Schönweiler et al. tried 
to find the most typical categories for the melody shapes 
of the infant cries with subjective methods and they 
reached around 70% effectiveness.

Comparing the obtained categories with the publication 
of Várallyay from 2007 authors found that the 0-6 days 
old newborns had much less melody shape types (39) 
than the group of 0-18 months old infants had (77). It 
meets the results of Wermke et al. from 2002 and 
Várallyay et al. from 2007 who stated that the melodies 
got more complex as the infants got older.

At this time the shapes of the melodies were analyzed 
while the duration, the intensity and the frequency range 
of the melodies were discarded. It is planned in a future 
work to respect other attributes as well and to merge 
some rarer groups.

V. CONCLUSION

In this study authors obtained and analyzed 580 
melodies from sound recordings from 73 newborn 
infants. Till this time the melody analysis has not been 
performed simply as it was not obvious how to handle the 
various melody shapes. A novel method had been 

developed a few years ago to categorize the shapes of the 
melodies and to (re)start the melody analysis with 
objective tools. Utilizing this automatized system authors 
showed that there were 39 different melody shapes of the 
newborn infant cries.

Authors recommend for other research teams dealing 
with the infant cry to perform objective melody analysis 
as well to increase the effectiveness of their works.
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Abstract: cry detection can be defined as a procedure 
where the voiced crying sounds are selected from the 
recording. the most difficult part of the cry detection 
is to recognize the inspiratory sounds and separate 
them from the voiced sounds. in addition, sound 
recordings may come from different places and 
recorded with several devices, in this way the method 
of the cry detection has to be universal. authors 
created the Extended Harmonic Product Spectrum
method to classify the spectral structure of a given 
signal. based on this new method authors developed 
the Automatic Infant Cry Detection (AICD) system to 
detect voiced cry sounds in any kind of recording.
Keywords: infant cry, cry detection, extended 
harmonic product spectrum

I. INTRODUCTION

Not only crying sounds can be found in a recording of 
an infant cry. For example, the infant takes an inspiration 
between two voiced crying and there can be shorter-
longer pauses as well. During these pauses the 
background noises might be heard in the recording. The 
recording device might have its own noise. The 
inspiration can be quiet or audible. It can be placed before 
or after the voiced crying sound. The infant can suspend 
the voiced sound or reduce it. The sound of crying can be 
high-pitched or low-pitched, nasal, veiled, reedy, woody, 
etc. Many further attributes could be listed in connection 
with the crying sound.

In a 60 s long recording 8-10 pieces of voiced cries can 
be found on an average. cry detection can be defined as 
a procedure where the voiced crying sounds are selected 
from the recording. As there are many different kinds of 
cries, and there might be misleading sounds in the 
recording as well (background noises, inspiratory sounds, 
etc.) the cry detection was performed manually in most of 
the research teams as [1], [2]. For example in 1982 
Hirscberg and Szende, or in 1999 Michelsson and 
Michelsson applied spectrographic analysis of the infant 
cry, and they selected the voiced crying sounds manually 
after determining a visual spectrogram from the recording 
[3], [4]. In the last decade some teams have started 
applying speech detection software, but generally these 
software can be used with limitations as the speech and 
cry signals have differences [5], [6].

The most difficult part of the cry detection is to 
recognize the inspiratory sounds and separate them from 
the voiced sounds. In addition, sound recordings may 
come from different places and recorded with several 
devices, in this way the method of the cry detection has to 
be universal. It will be shown that effective cry detection 
can be executed with limitations and considerations both 
in the time and the frequency domains.

II. METHODS

From a simplified view the goal of the speech detection 
is to detect the boundaries of each word, accordingly in 
the cry detection the start and the end points are to be 
found of each crying segments. A common attribute of 
the words that they have a relative big energy, in this way 
they can be detected by applying a well-chosen energy 
threshold [7], [8]. In case of cry recordings by seeking for 
the high energy parts not only the crying segments but 
also the inspiratory sounds, louder background noises are 
found.

To create an effective Automatic Infant Cry Detection
(AICD) system authors recommend inspecting the 
spectral content along with the energy content of the 
recordings. While the crying segments are typically 
harmonic signals (i.e. having the fundamental frequency 
and its subharmonics in the spectrum), generally the noise 
signals (e.g. the inspiratory sounds) have less regular 
spectral structure [9]. In this study the well-known Short-
Time Energy Function was applied to obtain the energy 
content of the recordings. The spectral content was 
determined with the extension of the Harmonic Product 
Spectrum (HPS) method.

A. Short-Time Energy Function

The Short-Time Energy (STE) function of an audio 
signal is defined as:

m
n mnwmx

N
E 21 (1)

where x(m) is the discrete time audio signal, n is time 
index of the short-time energy, and w(m) is a rectangle 
window, i.e.

otherwise
Nn

nw
,0

,10,1 (2)
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It provides a convenient representation of the 
amplitude variation over the time [10]. It is fact that 
values of En for the unvoiced (i.e. coughing, silence, etc.) 
components are in general significantly smaller than 
those of the voiced (i.e. the real crying) components [11].
It can be used as the measurement to distinguish audible 
sounds from silence when the signal-to-noise ratio is 
high. The loudness of the crying segments is typically 
decreasing at the end, in this way the only analysis of the 
energy content would issue in losing more quiet parts of 
the crying segments. There are also some cases when the 
start and the end are louder than the mid of the crying 
segment, in these cases the only analysis of the energy 
would issue in cutting the segment to two pieces.

Moreover a main task of the effective AICD is to find 
the voiced crying sounds and to separate the inspiratory 
sounds from them. Authors found that in many cases the 
inspiratory sounds were stuck to the voiced crying sounds 
in this way the energy function could not distinguish 
between them. A subsidiary method is needed to analyze 
the spectral content of the recordings as well to be able to 
detect and cancel the inspiratory sounds.

B. Extended Harmonic Product Spectrum

The Harmonic Product Spectrum (HPS) is a robust 
algorithm to determine the fundamental frequency of a 
multimodal signal [12]. The HPS extracts the 
fundamental frequency directly from the signal spectrum 
by decimating the input spectrum by integer factors and 
computing their product (see Fig. 1.). The input 
parameter of the HPS is N, which refers how many 
decimated spectrums to determine for the calculation. 
The primary point for choosing the value of N is the 
expected number of the subharmonics. Authors found 
that N = 9 is an optimal value for the infant cry in 
general.

| FFT |

short-time window
from the recording

/1

/2

/3

/N

Downsampling

x
HPS

HPS

F0

| FFT |

...

fF0 2F0 3F0 4F0 5F0 f

Fig. 1. Illustration of the Harmonic Product Spectrum
(HPS) method.

In 2009 Várallyay stated that the HPS may be capable 
for describing the spectral content of crying sounds [13].
To prove this statement he utilized the following: if the 
spectrum is harmonically rich, the HPS will result one 
enhanced peak at the fundamental frequency [7]. Beyond 
the position of the HPS peak, some other attributes of the 
harmonic product spectrum might be informative. It is 
worthy of note that in case of noise-like signals several 
peaks can be expected in the harmonic product spectrum, 
not only one. He defined two new parameters (Hmax and 
Fwidth) by extending the HPS to classify the regularity of 
the structure of the spectrums (regular structure means 
harmonic structure). Hmax is the intensity of the biggest 
peak in the product spectrum, Fwidth means the bandwidth 
of the product spectrum at the level of 10-4Hmax, see 
Fig. 2.

Várallyay found that:
The higher the HPS peak was, the more regular the 
structure of the original spectrum was, and vice 
versa.
The narrower the HPS bandwidth was, the more
regular the structure of the original spectrum was,
and vice versa.

C. Comparing the energy and the spectral methods

On Fig 3. the outputs of the STE and the EHPS are 
shown in case of a 12 s long recording. Every method 
gives information about the cry recording from different 
aspects. There are five voiced crying sounds in this 
recording between 0.1-1.3; 1.7-2.7; 3.1-3.8; 7.2-9.7; and 
10.2-11.6 s. The 4th has smaller amplitude than the others 
have. There are audible inspiratory sounds after the 1st,
the 2nd, the 4th and the 5th voiced crying sounds.

The Short-Time Energy Function is capable to detect 
loud voiced crying sounds, while the detection of quiet 
ones (as between 7.2 and 9.7 s) is less efficient. The Y-
axis is normalized between 0 and 1. The quiet parts of the 
recordings have small En values (<0.1) while the loud 
inspiratory sounds and crying segments have bigger En
values (>0.2).

Hmax and Fwidth obtained by the EHPS refer to the 
regularity of the spectrum of a short-time crying window. 
As the range carrier of Hmax could overstride more 
magnitude orders it is logarithmized and normalized 
between 0 and 1. Hmax is at high level (>0.8) continuously 
in case of crying segments and having significant start 

HPS

Frequency

Hmax

10 H-4
max

Fwidth

HPS

FrequencyF0

Fig. 2. The outputs of the original HPS (left) and the 
Extended HPS (right) methods.
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and end points, in this way it can be applied for automatic 
cry detection with high efficiency. Usually Fwidth has 
smaller values (<15 Hz) at the place of the crying 
segments, but it is very sensitive to the noises in the 
recording, thus its curve is less continuous.

D. Guidelines for the Automatic Infant Cry Detection

To create the Automatic Infant Cry Detection system 
authors utilized the following experiments [14]:

The voiced crying sounds have a greater duration 
than 250 ms.
The distance between the inspiratory sounds and 
the crying segments can be even less than 100 ms, 
which results that the maximum window length 
shouldn’t exceed 50 ms.
In general the energy of the voiced crying sounds 
and the inspiratory sounds is greater than the 
background noises.
The spectrum of the voiced crying sounds has
more regular structure than the inspiratory sounds 
have.
The recordings might come from different places 
and devices, in this way the energy and/or the 
spectral thresholds have to be determined 
separately for each recording,
The calculation of the energy function needs less 
time than the EHPS.

According to the results from Fig. 3., the Automatic 
Infant Cry Detection should be implemented with the 
application of Hmax obtained from the EHPS. Although 
authors recommend applying a pre-selection by the 
energy function as the first main step of the automatic 
cry detection, in this way the analysis of the spectral 

content can be focused only on these pre-selected parts. 
By using the Fwidth at the last steps of the automatic cry 
detection it is possible to recognize and separate the 
inspiratory sounds from the detected crying segments.

E. Main steps of the Automatic Infant Cry Detection

The Automatic Infant Cry Detection was implemented 
in MATLAB. To illustrate the main steps of the AICD a
short recording is shown which contains three voiced 
crying sounds (Fig. 4/A.). There are two audible 
inspiratory sounds (before the 2nd and the 3rd voiced 
crying sounds), a coughing and a sudden noise.

After the DC component extraction and normalization 
an energy threshold was determined to focus only on the 
interesting parts of the recording (Fig. 4/F.). The parts 
shorter than 200 ms were eliminated (Fig. 4/G.). The start 
and end points of the remaining signals were revised (Fig. 
4/J.) and the Fwidth was applied to find and cancel the 
inspiratory sounds which had stuck to the voiced sounds 
(Fig. 4/M.). The spectral contents of the remaining parts 
were investigated with Hmax to find the clear, voiced 
crying sounds of the recording (Fig. 4/P.)

III. RESULTS

A. Detected voiced crying sounds

With the developed AICD authors detected 2780 
voiced crying sounds from 366 recordings. The 95% of 
the detected sounds were between 0.3 and 0.2 s in point 
of their duration. The mean value of the duration of the 
voiced crying sounds was 0.79 ± 0.54 s and the median 
was 0.91 s. The total length of the recordings was 8753 s, 
while the total duration of the detected voiced crying 
sounds segments was 2535 s.

B. Exactness

To test the exactness of the developed Automatic Infant 
Cry Detection three different recordings (from different 
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places and devices) were listened and 24 voiced crying 
sounds were detected manually. The pre-selection of the 
AICD resulted 27 probable voiced crying sounds. After 
obtaining their spectral contents 23 voiced crying sounds 
were chosen by the AICD. The missing crying sound 
which was selected manually was quite hoarse, that is 
why the AICD was failed to select that sound as well.

All the detected voiced crying sounds were devoid of 
the inspiratory sounds.

Regarding to the boundaries of the detected sounds 
there were a 0.024/0.006 s difference at the start/end 
points between the manually and the automatically 
selected sounds on an average.

IV. DISCUSSION AND CONCLUSION

The recognition and the separation of the audible 
inspiratory sounds are critical tasks and specialty in the 
cry detection. These inspiratory sounds can be found both 
before and after the voiced crying sounds.

The Extended Harmonic Product Spectrum method is 
capable to classify the spectral content of cries, and to 
distinguish the crying segments from the inspiratory 
sounds as well. Hmax is at high level continuously in case 
of crying segments and having significant start and end 
points, in this way it can be applied for automatic cry 
detection with high efficiency. Authors recommend using 
the Fwidth to avoid selecting the inspiratory sounds.

Highly effective automatic cry detection can be 
accomplished in consideration of the energy content, the 
spectral content and limitations according to the 
experienced features of the infant cry. Within these 
limitations authors recommend utilizing the minimal 
duration of the crying segments, the wide range of the 
amplitude of the crying segments and the minimal 
distance between the inspiratory sounds and the crying 
segments.

The implemented Automatic Infant Cry Detection can 
be downloaded from the File Exchange at the 
MathWork’s website from December 2009 [15].
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Abstract: With the increased survival of very preterm 
infants, there is a growing concern for their 
developmental outcomes. 
infant cry characteristics reflect the development and 
possibly the integrity of the central nervous system. 
this study evaluates the distress occurring during cry 
in preterm newborn infants, as related to decrease of 
central blood oxygenation. a recording system has 
been developed, that allows synchronised, non-
invasive monitoring of blood oxygenation and audio 
recordings of newborn infant’s cry. 
in the present work we evaluate the changes in the 
oxygen saturation levels in the central nervous system 
in full term and in preterm infants, and analyze 
possible differences between the two groups of 
patients. 
 the method has been applied to preterm and full 
term newborns at the intensive care unit, a.Meyer 
children hospital, firenze, italy and at nuovo 
ospedale s.Giovanni di dio, scandicci, firenze, italy. 
results indicate that a similar decrease of central 
blood oxygenation occurs in both groups of patients, 
but the recovery time after the crying episode is more 
stable and faster in full term newborns than in 
preterm ones.  
Keywords :  oxygen saturation, preterm newborn, 
infant cry. 

 
I. INTRODUCTION 

 
With the increased survival of very preterm infants, 

there is a growing concern for their developmental and 
socio-emotional outcomes. Infant cry characteristics 
reflect the development and possibly the integrity of the 
central nervous system.  

However,  in preterm  and/or low-birth-weight infants 
it could imply an effort which may have  an  adverse  
impact  on  blood  oxygenation.  In  fact, preterm new 
born  infants have  an  impaired  auto  regulation of  the  
cerebral blood  flow  [1-4].  Irregularities  in  the blood 
flow and pressure may adversely influence the 
development of  the  child  [5-7].  Some  studies  have  
been  performed  to evaluate both  cerebral  and 
peripheral blood oxygenation  in the  newborn  by  Near  
InfraRed  Spectroscopy  (NIRS)  and pulse oximetry, also 
as linked to other techniques [1-7].  

Previous studies have shown that preterm infants and 
infants with neurological conditions have different cry 
characteristics when compared to healthy full-term 
infants. Research has been developed to study possible 
differences between full-term and preterm infants in their 
neuro-physiological maturity and the subsequent impact 
on their speech development [8]. Our previous results 
demonstrate that blood oxygenation level in preterm 
newborns is affected by stress caused by the effort 
required during crying [9-10]. These studies  indicate that 
the distress effect of  crying  seems  larger  on  central  
blood  saturation  than  on peripheral  saturation,  hence  
here  we  will  consider  only central blood saturation as 
related to cry. 

In this work, we extended previous studies to include a 
comparison of the results obtained in preterm and in full 
term infants. 
 

II. METHODS 
 

Monitoring has been performed by collecting data from 
two different sources: central blood saturation was 
measured with a NIRS device, and a microphone 
connected to a laptop has been used to record cry 
emissions.  

A unidirectional microphone (Shure SM58), equipped 
with Tascam US-144 portable audio/MIDI interface (96 
kHz/24-bit recording) has been used to record cry 
emissions. Audio recordings were stored on a multimedia 
laptop on a single channel audio track, with sampling rate 
Fs=44 kHz and 16 bit resolution. 

Central blood saturation has been measured by means 
of a NIRS device (Somasensors by INVOS 5100C 

recovery of oxyGen saturation level in neWborns  
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Somanetics Corp.), with sampling rate of 0.6 samples/sec. 
The NIRS signal is composed of up to four independent 
channels, each made up of two data, one containing the 
relative saturation of oxygen, and the other representing 
the quality of the signal, useful to detect possible artifacts 
related to patient movement or poor contact of the sensor 
with the patient.  

Specific software has been designed and implemented 
to allow synchronization of the output of the two devices 
by means of a digital connection linking the laptop with 
the output of the NIRS device. The software implements 
simultaneous recording of the audio channel trough the 
US-144 board and of the NIRS signal using a RS-232 
connection. Moreover, the software allow for basic 
management of the patient database, allowing to record 
anamnesis data and to manage multiple recording 
sessions for the same patient. The overall setup used in 
the experiments is described in Fig. 1. Fig. 2 shows the 
block diagram of the whole recording and processing 
system. 

All subjects were recorded in a quiet room, with low 
background noise and stable levels of illumination, 
according to the NIRS device requirements. Moreover, 
special care has been used to assure a good contact 
between sensors and patient’s skin thus avoiding artifacts 
caused by sudden movements. 

Each recording lasts at least 15min, in order to include 
several crying episodes, with a suitable amount of time 
both before and after each cry episode. 

A preliminary analysis of the data indicates high 
variability of the baseline oxygenation level, both in full 
term and in preterm infants. The baseline oxygenation has 
been considered equal to the average oxygenation level 
during a convenient period of time when the child was 
awake and calm. On the whole test set we observed an 
oxygenation ranging from 65% to 85%. At the same time, 
the average variation in the oxygenation level during each 
recording is approximately of the same order of 
magnitude. Therefore, in order to assess the change in the 
oxygenation level during each recording, we considered 
the difference between the oxygenation level during and 
after the crying episode and the baseline oxygenation, 
measured in the time interval just before the episode. 

As shown in our preliminary work [9], the recordings 
indicate a significant difference, in the preterm infants, of 
the oxygenation levels before the cry episode and during 
the episode. As it can be expected, the oxygenation level 

decreases during the cry, pointing out possible 
relationship between stress and cry (Fig.3). 

Starting from these results, the work has been extended 
to include a control group composed of full-term patients. 
The analysis has taken into account the recovery of 
oxygenation level when the crying episode is over and the 
infant is calm (ether awake or sleeping). 

Each recording has been manually analyzed, and three 
different crying episodes have been selected from it. 
Crying episodes have been selected of comparable length, 
and include a suitable period of rest (patient either 
sleeping or calm) both before and after the cry episode. 
Three parameters have been extracted from the 
oxygenation signal for each crying episode: the average 
saturation level before the episode (baseline level, B), the 
oxygenation level during the episode, and saturation after 
a reasonable recovery time. The baseline oxygenation 
level has been assumed equal to the average oxygenation 
over a period of 15 samples acquired before the 
beginning of cry. Then a “cry oxygenation” (C) has been 
evaluated using the average value over a time span of 18s 

  
Fig. 2 Block diagram of the system 
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Fig. 3: Plot of the oxygenation level in a sample signal 
and the corresponding audio track 
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approximately in the middle of the crying episode. A last 
reference value (R), related to the capability of the patient 
to recover the baseline oxygenation level, has been 
obtained by averaging the oxygenation level measured 
during 90s from the end of the cry episode. 

Data have been analyzed in order to compare the 
oxygen saturation in basal condition (before the crying 
episode), in case of stress (during the episode), and the 
recovery capability of the newborn (90s after the 
episode).  Comparison has been carried out, given the 
high differences in the absolute oxygenation levels, by 
comparing, on each episode, the variation of the 
oxygenation during and after the cry episode with the 
saturation before the episode: 

    C = C – B 
    O = R – B 
We also evaluated the recovery of the oxygenation 

occurred during the recovery time: 
R = R – C  

The selected parameters have been evaluated 
separately on all episodes related to full term newborns 
and to preterm ones, and t-test has been applied to assess 
their statistical significance.  
 

 
III. RESULTS 

 
The analysis has been carried out on a group of 20 

preterm and/or low weight infants and 28 full term 
infants, having a pregnancy period ranging from 23 to 42 
weeks and a weight at birth between 590g and 4250g, 
selected by physicians among patients at the Critical Care 
Unit of the Children Hospital A.Meyer, in Firenze, Italy 
and  Nuovo Ospedale S.Giovanni di Dio, Scandicci, 
Firenze, Italy.  

Full term newborns have been recorded a day after 
birth, while preterm newborns could be recorded only 20-
30 days after birth, due to their long staying in the 
incubator. 

Fig. 3 reports a sample extracted from the data set. In 
the upper part of the figure, the NIRS track is shown, 
while the bottom part of the figure shows the audio track 
acquired in the same period of time. The behavior shown 
in the figure is typical of full term newborns: during the 
cry episode, there is a clear decrease in the saturation 

level, which is promptly recovered when the crying 
episode is over. 

We obtained about 150 cry episodes, which were 
analyzed by evaluating the difference between the values 
before, during, and after the cry episode using a paired t-
test analysis. Results, summarized in Table 1, indicate 
there is a highly significant (p<<0.01) difference in the 
oxygenation level before and during the cry episode, both 
in the full term and in the preterm groups. A different 
behavior can be noticed comparing the values measured 
during the cry episode and the values after the recovery 
time: in the full term group, the t-test indicates the 
presence of a highly significant difference, while in the 
preterm group the increase is less pronounced, and is not 
statistically significant. The same result is confirmed by 
the comparison of the saturation measured before the cry 
episode and after the recovery time. This difference is 
highly significant in the preterm group, indicating that the 
oxygenation after recovery is noticeably lower than 
before the crying episode, while in the full term group the 
difference is only marginally significant (0.01 < p < 
0.05), suggesting that oxygenation has been recovered, 
although not completely. 
 

IV. CONCLUSION 
 

The results of the experiments indicate that, both in the 
full term and in the preterm infants, a significant decrease 
of the oxygenation occurs during a cry episode. However, 
the two groups behave differently during the recovery 
time after the crying episode. Full term infants can 
recover almost completely the oxygenation levels before 
cry in less the 90s, while preterm infants need a longer 
period of time to achieve a full recovery of the 
oxygenation level. 
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Abstract: This paper is concerned with voice source 

variation associated with different emotional 
portrayals of an utterance: bored, sad, happy, 
surprised, angry and neutral. The source analyses 
involved pulse-by-pulse inverse filtering to yield the 
differentiated glottal flow, and subsequent 
parameterisation of the source signal using the LF 
model. The glottal source parameters included in the 
analysis were F0, EE, RK, RG, RA, FA, OQ and RD. 
For the data set analysed, each emotion seems to have 
its own distinct pattern of source parameter settings. 
Analysis of the dynamics of the source variation 
illustrated here on the RD parameter suggests that to 
better understand source variation we need to study it 
in terms of the prosodic components of the utterance. 
 
Keywords : Voice source, dynamics, emotion 
 

 
 

I. INTRODUCTION 
 

This paper deals with voice source variation which is 
associated with different emotional portrayals of an 
utterance. Our broad concern is the study of how voice 
source parameters vary as a function of linguistic 
(prosodic and segmental) aspects of an utterance [1, 2], as 
well as how such source differences may signal affective 
states. Here we consider source variation for a single 
utterance produced by a male speaker, repeated so as to 
convey six targeted affective states: bored, sad, happy, 
surprised, angry and neutral. The sentence read by the 
speaker was ‘We were aWAY a YEAR ago’, and the 
stressed syllables are shown in capitals.  

Note that we do not claim that these represent ‘true 
emotions’ as might occur in spontaneous interactions, but 
rather the type of portrayals one might use when, for 
example, reading a bedtime story to a child. As such they 
represent ‘feigned’ emotion, but we would argue that 
such feigned emotion is not only part and parcel of 
narrative reading but is also used in discourse, e.g., when 
a mother feigns being cross to influence a child’s 
behaviour or when one feigns being calm while truly 
agitated in a stressful social encounter. In many true-life 
situations effective social interactions depend more on the 
ability to feign emotion than to reveal true underlying 
emotion. Further example of the use of feigned emotion 

in discourse is when tone-of-voice is mismatched to the 
utterance as a humorous device or to express sarcasm, 
etc. 
 

II. METHOD 
 

The source analyses used involved pulse-by-pulse 
inverse filtering to yield the differentiated glottal flow, 
and subsequent parameterisation of the source signal 
using the LF model [3]. These techniques involve a 
manual interactive analysis system and are described in 
[4], as are the source parameters. The glottal source 
parameters included in the analysis were F0, EE, RK, 
RG, RA, FA, OQ and RD. F0 is the fundamental 
frequency. EE is a measure of the strength of the main 
glottal excitation. RK is a measure of the skew of the 
glottal pulse; e.g., a higher RK value indicates a more 
symmetrical glottal pulse. RG is the glottal frequency FG 
normalised to F0, where FG is the characteristic 
frequency of the glottal pulse during the open phase. RA 
and FA are related parameters capturing spectral tilt. 
Thus, a high FA (or low RA) value indicates a source 
spectrum with relatively strong higher harmonics. OQ is 
the duration of the glottal open phase in relation to the 
duration of the whole glottal period, and is linked to the 
strength of the lowest harmonics of the source spectrum. 
RD is a global wave shape parameter, and is thought to 
be highly correlated with voice quality variation on the 
tense to lax continuum [5, 6].  

 
III. RESULTS AND DISCUSSION 

 
A. Overall vocal parameter settings 

 
Fig. 1 illustrates the global source parameter settings 

for the different affective states extending the preliminary 
analysis reported in [7]. Note that for the single utterance 
in question, depending on the emotion expressed, 81 to 
120 individual glottal pulses were analysed. Parameter 
levels are calculated as a percentage difference relative to 
the neutral, based on mean values for the entire utterance.  

The scaling allows one to see the extent to which a 
particular parameter deviates from the neutral: from -2 = 
[< -25% of neutral value set at 0] (very low) to +2 = [> 
25% of neutral value] (very high). Note also that filled 
black circles show parameters demonstrating relatively 
high dynamic variation as indicated by the mean rate of 
change (delta) values. These were obtained by calculating  
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Fig. 1. Levels for glottal parameters for different 
emotions: -2 = [< -25%] (very low), -1 = [-25%, -
5%] (lower than neutral), 0 = [-5%, 5%] (within 
the neutral range), 1 = [5%, 25%] (higher than 
neutral), 2 = [> 25%] (very high). Filled black 

circles show parameters demonstrating relatively 
high dynamic variation.  

the first order difference from the smoothed parameter 
values. The smoothing, which allowed us to decrease the 
amount of pulse-to-pulse noise while preserving the 
overall parameter dynamics, involved calculating the 
moving average of parameter values with a three pulse 
frame and a one pulse frame-shift.  

As evident in Fig. 1, the combination of parameter 
settings is different for each emotion. In these renditions, 
each emotion seems to have its own distinct pattern. 

Sad relative to neutral shows an overall pattern of 
weak glottal pulses (very low EE), very leaky, breathy 
voice quality (as suggested by the very high RA, RD and 
OQ parameters) and large attenuation of high frequency 
components in the signal (very low FA). 

Surprised shares some of these characteristics of the 
sad repetition. Although there is an indication of greater 

breathiness (rather high OQ, RD and RA values), there is 
overall less weakening of the glottal pulse excitation, or 
of the higher frequencies in the signal (more modal-like 
EE and FA values). It also has strikingly high mean F0.  

Angry and happy both show broadly opposite 
deviations from the neutral baselines, as can be deduced 
from the generally upward shift in parameter values. Note 
that happy and angry are frequently confused in 
perception experiments on vocal expression. The raised 
RG and the lowered OQ, RD and RK values suggest an 
overall more tense voice quality setting. Angry, however, 
differs here from happy in having extreme FA and F0 
values, suggesting more extreme vocal tension.  

Bored differs least from the neutral setting, showing 
mainly somewhat more strength in the higher frequencies 
(FA/RA values). 

 
B. Source dynamics 
 

As mentioned above, filled black circles in Fig. 1 
denote dynamic variation. As can be seen from the 
prevalence of such circles in the case of happy, surprised 
and angry, there is more dynamic variation in source 
parameters than for the relatively low activation states of 
sad, bored and even neutral. This seems intuitively in 
keeping with what we might expect for these more 
aroused high activation states.  

Although Fig. 1 gives some idea of the global trends 
for these different renditions of the utterance, it does not 
adequately show the considerable dynamic variation in 
source parameters in the course of the utterance. To 
illustrate this, in Fig. 2 we show the dynamic course of 
the RD parameter for these utterances (as represented by 
the smoothed parameter trajectories). Note that RD tends 
to be viewed as indicative of the tenseness/laxness of the 
voice [5, 6]. To facilitate the inspection and comparison 
of parameter trajectories, the time axis of each  
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Fig. 2. Dynamic variation of the RD parameter for 

different emotions across the utterance. 
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emotionally coloured utterance was normalised to that of 
neutral according to a number of anchor points (shown in 
Fig. 2 as vertical lines). These included utterance and 
syllable boundaries as well as midpoints of the vowels in 
the accented syllables and the approximate boundary of 
[w] and [e] in the stressed syllable WAY. The [] 
segment was excluded from the analysis as it had not 
been consistently realised as voiced across the utterances. 
For each part of the utterance between anchor points, the 
time axis was scaled to be of the same duration as the 
corresponding neutral one. As the utterances had a 
different number of pulses linear interpolation was used 
to plot all utterances to the same time axis points as the 
neutral utterance.  

Note that in Fig. 2 RD values overall are much higher 
for the sad repetition (a very lax quality) and highest 
(tense) for the angry repetition. Also evident are complex 
parameter variation over time depending on the 
segmental characteristics of the utterance (consonants 
tend to lower RD values as higher degree of constriction 
in the vocal tract have upstream influences on vocal fold 
vibration). The large differentiation among the emotions 
in the final syllable of the utterance, as well as the rapid 
increase in RD values at the end of the utterance are 
likely to be linked to the realisation differences in the 
final accent as well as to the transition into breathiness as 
the vocal folds open prepausally. This suggests that affect 
related voice differences may be strongly anchored to 
prosodically important aspects of the utterance. In the sad 
utterance, RD dips in the accented vowels of WAY and 
YEAR, indicating a less breathy quality. Across all the 
emotions looked at here there is a distinct trend for these 
vowels to be associated with relatively strong glottal 
pulses with more stable parameter settings. 

Fig. 3 provides further information on this last point. 
It shows the mean and standard deviation values of the 
RD parameter (panel A), as well as the rate of change 
(delta values) of RD in the course of the utterance, for 
each affect with an indication of the standard error (panel 
B). Note that while bored and neutral have similar means 
and standard deviations, there is overall much less 
dynamic variation of the bored RD values.  

The mean and standard deviation of parameter values 
are shown separately for the stressed and unstressed 
syllables in each affect in Fig. 3 (panel C). Similarly, in 
panel D, the mean rate of change of the RD parameter is 
shown separately for the stressed and unstressed syllables 
together with the standard error values. This illustrates 
again the point made above that for this parameter, 
although the average values do not differ greatly in the 
stressed/unstressed conditions, there is considerably more 
dynamic variation in the unstressed than in the stressed 
syllables.  
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Fig. 3. RD parameter for different emotions: A- 
mean values, B - mean delta (rate of change) 
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IV. CONCLUSION 
 

Although based on very limited sample utterances, we 
feel that a detailed study can nonetheless yield new 
insights and prompt us to look at what might be important 
in the analysis of source variation. Similarly we would 
argue that being able to analyse (and eventually hopefully 
to resynthesise) these kinds of simulated portrayed 
emotions might have many applications in the use of 
speech technology. 

This illustration highlights the need to look closely at 
the utterance internal dynamics of source variation. We 
would suggest that these dynamics will be best 
understood if studied in terms of the prosodic 
components of the utterance. Differences between 
stressed and unstressed syllables have been pointed out 
and there are indicators in the present data that 
accentuation and in particular the nucleus and the post-
nucleus material may be of particular importance. In our 
future work we hope to examine in greater detail the 
linkage between prosodic structure and voice source 
variation, as a basis for understanding how and where 
source variation may signal affect. 
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Abstract: In this work we present the design of an 
Automatic Emotion Recognizer which tries to take 
advantage of three soft computing techniques: Neural 
Networks, Fuzzy Inference Systems and Genetic 
Algorithms in order to indentify and classify emotions 
from a speech signal. The classification is done 
between two emotional states: Negative and Idle. The 
emotion recordings used for this work belongs to the 
FAU AIBO database, where children interacting with 
Sony’s pet robot Aibo were recorded. We propose and 
analyze the use of 18 acoustic features. A classification 
system based on ANFIS is implemented. Genetic 
Algorithms are used to select features and tune the 
ANFIS configuration settings. System implementation 
and some experimental results are shown. 
Keywords: Emotion recognition, ANFIS applications, 
genetic algorithms, acoustic speech features, feature 
selection 

 
I. INTRODUCTION 

 
Emotions are prominent elements always present in the 
mind of human beings. By the emotions expression 
present during oral communication useful information 
about the speaker is transmitted. This information 
complements the information contained in the explicit 
exchange of linguistic messages. For over 40 years, 
psychologists have been studying the effect of emotions 
in the speech of individuals, being Paul Ekman a pioneer 
in the study of emotions and their relation to facial 
expressions. More recently computer scientists have got 
involved in the problem of automatic emotion recognition 
and have classified emotions using pattern recognition 
techniques.  Knowing the emotional state of individuals 
offers relevant feedback information about the 
psychological state of a speaker in order to take important 
decisions on how a system’s user should be attended. For 
example, in the case of a call center that provides medical 
support where users call asking for help [1]. These users 
could present different emotions such as stress, pain, fear, 
or panic depending on the sickness or emergency they are 
experiencing. Based on the classification of emotional 
states, incoming calls could be handled differently, giving 
priority to the truly urgent; routing it to the appropriate 
medical staff member. Another application is that of an 
interactive voice response system that attends patients 
with psychological problems [2]. The system detects if 

there is some degree of depression based mainly on 
articulatory and quality features of the patient’s voice. 
The system alerts a human expert when it finds an 
alarming degree of depression. As these couple of 
applications show, automatic emotions recognition can 
improve the performance, usability and in general, the 
quality of human-computer interaction systems, client 
attention systems and other kinds of applications.  
 

II. METHODS 
 
Because fuzzy logic has shown good results in problems 
where the information is complex, for this work we chose 
ANFIS, which combines fuzzy logic and neural networks, 
to carry on the recognition of emotions from speech 
process. These techniques have been proved to behave 
well when solving complex problems. Another technique 
with good behavior in solutions search is the one known 
as Genetic Algorithms. In this work we try to take 
advantage of the capacity of ANFIS to implement non 
linear mapping from input patterns towards the 
corresponding emotional state, and the optimizing 
capability of genetic algorithms to find the best features 
subset and the best configuration parameters to create the 
most adequate ANFIS architecture. The parameters to 
optimize are: number of membership functions, type of 
input membership functions and type of output function. 

 
III. FEATURE EXTRACTION 

 
In [3] a study of the acoustic elements that determine the 
emotions in the speech is done. Three groups of features 
are proposed, namely; Utterance Timing, Utterance Pitch 
Contour, and Voice Quality. In the same work the 
findings of several authors are summarized in a table (see 
Table 1). This table shows different aspects of the voice 
qualified by means of objective measurements, like 
speech rate, and intensity, and some other subjective 
measurements that are usually determined by experts and 
not easy to calculate automatically, the quality of the 
voice for example. On the other hand, qualifying voices 
in a linguistic way, as in Table 1, is very close to the form 
in which fuzzy membership functions are assigned to 
linguistic variables, which lead us to choose a fuzzy 
classification model for this task. 
We think that the parameters in the table sum up very 
well the voice aspects that are important to find emotions.  
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In this work we propose a set of 18 characteristics 
directly related with these aspects of the voice.  
The characteristics were obtained using PRAAT [4]. 
 

 Anger Joy Sadness Fear Disgust 
Speech 

Rate 
Slightly 
faster 

Faster or 
slower 

Slightly 
slower 

Much 
faster 

Very much 
slower 

Pitch 
Average 

Very 
much 
higher 

Much 
higher 

Slightly 
lower 

Very 
much 
higher 

Very much 
lower 

Pitch 
Range 

Much 
wider 

Much 
wider 

Slightly 
narrower 

Much 
wider 

Slightly 
wider 

Intensity Higher Higher Lower Normal Lower 

Voice 
Quality 

Breathy, 
chest 
tone 

Breathy 
blaring 

Resonant Irregular 
voicing 

Grumbled, 
chest tone 

Pitch 
Changes 

Abrupt 
on 

stressed 
syllables 

Smooth 
upward 

inflections 

Downward 
inflections 

normal Wide, 
downward 
terminal 

inflections 
Articula-

tion 
Tense Normal Slurring Precise normal 

 
Table 1 Summary of human vocal emotion effects 

 
A. Utterance Timing Measures 
 
Speech Rate is the only feature of this type that we 
include in our feature set. It was calculated using the 
techniques described in [5]. There, the syllables are 
detected automatically without needing a transcription. 
For this, peaks of intensity preceded by dips are 
considered as potential syllables that in a later process are 
confirmed or discarded. After detecting syllables, the 
total sounding time for every recording is calculated. 
Finally, the speech rate for every recording is obtained 
dividing the total amount of detected syllables by the total 
sounding time of the recording. 
 
B. Utterance Pitch Contour Measures 
 
Pitch was obtained from every recording through the 
correlation method and the following statistic measures 
were calculated: Pitch Average, Pitch Range, Pitch 
Median, Pitch Standard Deviation, Minimum Pitch Point, 
and Maximum Pitch Point. 
 
C. Voice Quality Measures 
 
Voice quality is not a feature that can be calculated 
directly. In medicine there are some scales for perceptual 
measurement of the patient voice quality. One of the most 
used is the scale GRBAS. The aspects that this scale 
focuses on a voice are: ”graded”, ”rough”, ”breathy” 
”aesthenic, and strain.” These descriptors are considered 
as a benchmark for evaluating pathological voices and are 
also related to aperiodicity descriptors of the physical 
vibration of vocal cords like jitter, shimmer, tremor, 
harmonic to noise ratio, voice breaks, etc [6]. We include 
the following features as voice quality indicators: 

 
• Intensity Average: The mean of intensity contour. 
• Jitter: Average absolute difference between 

consecutive periods, divided by the average 
period. It is used to detect pitch perturbations. 

• Shimmer: Average absolute difference between 
amplitudes of consecutive periods divided by the 
average amplitude. This measure is used to 
detect intensity perturbations. Jitter and 
Shimmer are measures broadly used to detect 
pathologies in voice and to estimate its quality. 

• Number of Voice Breaks: The number of 
distances between consecutive pulses that are 
longer than 1.25 divided by the pitch floor. It 
measures how long a voice can keep phonation 
in a period of time. 

• Degree of Voice Breaks: Total duration of the 
breaks between the voiced parts of the signal, 
divided by the total duration of the analyzed part 
of the signal. 

• Harmonicity: Grade of acoustic periodicity. This 
measure is divided in Harmonics-to-noise ratio 
and Noise-to-harmonics ratio. 

• Voice Articulation: Voice articulation is the 
process by which speech organs interact to 
produce voice. In order to measure the speech 
articulation quality of a speaker it is used to 
build a Vowel Space Area analyzing the first 
two formants. In this work we could not build 
the vowel space area due to the lack of phonetic 
level labels. However we included as 
articulation indicators some statistics of the first 
two formants. The features included were: 
standard deviation of formant 1, mean of 
formant 1, standard deviation of formant 2 and 
mean of formant 2. 

 
IV. CLASSIFICATION METHODS 

 
Recently, hybrid classifiers have shown a more robust 
classification since they combine the best characteristics 
of two or more classification methods. One of those 
hybrid approaches is Adaptive Neuro-Fuzzy Inference 
System (ANFIS) which combines fuzzy logic and neural 
networks techniques. This model was chosen because of 
its capacity to extract knowledge from a database through 
neural networks and tune rules for a Fuzzy Inference 
System (FIS) automatically, in contrast to traditional FIS 
where rules are specified by a human expert. ANFIS was 
originally proposed in [7]. As an adaptive network, the 
parameters in some ANFIS nodes are adapted during 
training, in which case the node is called adaptive node. 
There are also nodes whose parameters remain 
unchanged during training, they are called fixed nodes. 
ANFIS applies two techniques in updating parameters. 
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For premise parameters that define membership 
functions, ANFIS employs gradient descent to fine-tune 
them. For consequent parameters that define the 
coefficients of each output equations, ANFIS uses the 
least squares method to identify them. This approach is 
thus called hybrid learning method since it combines 
gradient descent and the least-squares method. On the 
other hand Genetic Algorithms are a family of 
computational models inspired by evolution. These 
algorithms encode a potential solution to a specific 
problem on a simple chromosome-like data structure and 
apply recombination operators to these structures so as to 
preserve critical information. Genetic algorithms are 
often viewed as function optimizers, although the range 
of problems to which genetic algorithms have been 
applied is quite broad. In this work a Genetic Algorithm 
is applied to search the best parameters combination for 
the ANFIS architecture as well as to search the best 
feature combination. 
 

V. EMOTION CLASSIFICATION SYSTEM 
 

9,956 training features vectors were extracted from the 
FAU Aibo Emotion Corpus described in [8], one vector 
per each audio file. The features extracted are described 
in section 2. Through experimental tests it was observed 
that better classification results were reached when 
subsets of less than 5 features were used for training 
instead of the whole 18 features set. Also it was 
determined that Harmonicity and Voice Breaks features 
were not helping in any case to increase classification 
performance. So we reduced the feature set to 15 features 
and implemented a feature selection technique to find the 
combination of features that reaches the highest 
Classification performance. The feature set used to train 
the ANFIS model, as well as the ANFIS parameters 
settings, are coded in a binary chromosome in the 
following way: 4 bits to choose the first feature, 4 bits to 
choose the second feature, 4 bits to choose the third 
feature and 4 bits to choose the first fourth. 
In this way we choose between all the subsets from 1 to 4 
elements taken from 15 features. As we mentioned before 
there are several parameters to generate a FIS for ANFIS 
training: 

• Number of Membership Functions per Input: This 
is a scalar value. In this work we are using the 
same number for membership functions. 

• Type of Membership Function for each input: This 
is an array of string that specifies the name of 
the function. In our case we use the same 
membership function for each input.  

• Output membership function type: It can be linear 
or constant.  

 
These parameters are coded in the binary chromosome in 
the following way: 2 Bits to choose between 2 to 5 

membership functions, 2 Bits to choose one type of input 
function from Sigmoid, Bell Curve, Gaussian Curve and 
Two-sided Gaussian Curve and 1 Bit to choose the output 
function which can be Linear or Constant. These three 
parameters are used to Generate an initial Sugeno-type 
FIS for ANFIS training. We had 21 bits chromosomes. 
The chromosome composition is illustrated in Fig 1. 

 
Fig. 1 Chromosome composition. Feat1-4 = Feature 1-4, 

MFN = Number of Membership Functions, IFT = Type of Input 
Function, OFT = Type of Output Function. 

 
The genetic algorithm has the following configuration: 
 

• Population Type: Binary 
• Population Size: 20 
• Crossover Fraction 0.8000 
• Mutation Function: Gaussian 
• Fitness Function: Unweighted Average (UA) 

recall resulting from the ANFIS classification. 
 
 

VI. RESULTS 
 
 The final result from the genetic algorithm is the binary 
chromosome that reaches the best fitness score. In this 
case the chromosome was 0000 0100 0011 0110 01 10 0 
and is illustrated in Fig 2. This means that the best 
configuration was: 

• First Feature: No feature was selected 
• Second Feature: Feature in position 4 which is 

Intensity Average 
• Third Feature: Feature in position 3 which is Pitch 

Range 
• Fourth Feature: Feature in position 6 which is 

Shimmer 
• Number of Membership Functions: 5 
• Type of Input Functions: Bell Curve 
• Type of Output Function: Constant. 

In table 2 we can see the confusion matrix obtained from 
the classification with the best individual. 
 

 NEG IDL SUM 
NEG 761 1704 2465 
IDL 582 5210 5792 

 
Table 2 Confusion Matrix 
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To train the ANFIS model the FAU Aibo training set was 
divided using 70% as training data, 15% as checking data 
and 15% as testing data. We selected the 3 best 
individuals with the highest Unweighted Average Recall 
(UA Recall) to test them with FAU Aibo testing set. The 
predicted classes were evaluated on line through the 
INTERSPEECH 2009 Emotion Challenge System [9]. 
The other parameters for comparison are Weighted 
Average Recall (WA Recall), Weighted Average 
Precision (WA Precision) and Unweighted Average 
Precision (UA precision). Results are shown in table 3 
 

WA Recall UA Recall WA Precision UA Precision 
72.31 % 60.41 % 69.76 % 66.01 % 
72.07 % 59.90 % 69.41 % 65.58 % 
71.90 % 59.62 % 60.41 % 65.58 % 

 
Table 3 Results of the 3 best individuals found. 

 
In tables 4 and 5 we present the feature combinations and 
ANFIS settings corresponding to the results presented in 
table 3. We can see that Intensity Average was selected in 
three cases, meaning that it is an important factor to 
discriminate between the two emotional states. 
 

Feature 1 Feature 2 Feature 3 Feature 4 
- Intensity 

Average 
Pitch Range Shimmer 

Intensity 
Average 

- Formant 1 
Stdev 

- 

Formant 1 
Stdev 

Intensity 
Average 

- Maximum 
Pitch 

 
Table 4 3 best feature combinations 

 
Number  of MF Membership 

Function 
Output Function 

3 Gaussian Constant 
5 Gaussian Constant 
5 Sigmoid Constant 

 
Table 5 Results of the 3 best FIS initialization parameters 

VII. CONCLUSION 
 
We proposed some features to classify emotions in voice 
signals. These features are based on an abstraction of 
findings made by several authors. With the features 
proposed a hybrid classifier was trained, it combines 
neural networks and fuzzy logic. It was used a genetic 
algorithm to optimize the ANFIS training settings and to 
find the subset of features that provide the best 
classification results. The results indicate that the 
combination of characteristics: Intensity Average, Range 
and Pitch Shimmer, provided more information to 
discriminate between classes of Negative and IDLE 
emotions. Also we observed that both categories of 
attributes Utterance Pitch Contour Measures and Voice 
Quality Measures provide important information to 
classify emotional states in voice signal. Although the 
results were not significantly better than those presented 
as baseline it leads us to believe that all features studied 
here contain valuable information and encourage us to 
keep working on this feature set and to improve it. We 
also plan to test other classification methods based on 
fuzzy logic such as Type 2 Fuzzy Pattern Matching. 
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Abstract: the analysis of parameters extracted from 
speech data may contribute, together with other 
approaches, to the analysis and classification of a 
subject emotional status. pitch value and variability 
have been shown to carry useful information to reach 
this goal. however the non stationarity of running 
speech and the short duration of utterances represent 
a difficulty for the estimation of these parameters. in 
this work a method based on a variation of the 
sawtooth Waveform pitch estimator (sWipe') to 
estimate pitch and jitter in vowel sound, is evaluated. 
the performances of the approach are assessed on 
simulated datasets with varying signal to noise ratios 
and jitter values. issues related to data length are 
introduced and discussed through simulations. a 
comparison of the approach performances with the 
simplified inverse filtering technique (sift) is 
presented. preliminary results on vowels extracted 
from a database of emotional utterances are 
introduced. 
Keywords : pitch, jitter, swipe', emotion, vowels 

 
I. INTRODUCTION 

 
The development of automatic methods to estimate 

subjects' psychological status has drawn the attention of 
the research community. The achievement of such 
information has several positive outcomes on fields such 
as psychology, for development of tools for patients 
monitoring or for improving occupational safety. To 
reach this goal multiparametric approaches have been 
proposed as those based on the acquisition of vital signs 
related to the activity of the autonomous and the central 
nervous systems and on the analysis of speech. As 
regards the latter approach several features have been 
proposed as those based on speaking rate, spectral 
characteristics and prosody [1][2]. Pitch related variables 
have been proposed as F0 level, range, contour and jitter. 
In particular F0 mean values and variability was found to 
be larger for angry and happy speech rather than neutral 
or sad speech [1]. 

The estimation of pitch represents a challenging task in 
running speech given the short duration of sounds and 
due to the noise [3]. Moreover the non stationarity of 
speech signals requires the use of short analysis windows 

thus allowing to estimate the changes of pitch across 
time. 

In this work a method based on a variation of the 
Sawtooth Waveform Inspired Pitch Estimator, namely 
SWIPE' algorithm [5], is introduced for pitch and jitter 
estimation in vowels sounds. The approach is tested by 
using synthesized vowels and results are compared with 
those obtained by the Simplified Inverse Filtering 
Technique (SIFT) [6]. Application for classification of 
vowels as extracted by emotional utterances is 
introduced. 

 
II. METHODS 

 
Synthetic data were obtained by an autoregressive 

moving average exogenous (ARMAX) model. The 
parameters of the model were estimated from an healthy 
male /a/ vowel, with model orders for the AR, MA and X 
part equal to 16, 4 and 2 respectively. The model input 
for synthesis purposes was obtained with an impulse train 
sequence, whose distance between two successive pulses 
was modulated to produce the desired jitter. The amount 
of the imposed jitter was changed across different 
simulations ranging from a minimum of 0 to a maximum 
of 2 percent. The signal to noise ratio (SNR) of the 
simulated vowels was modified by inserting additive 
Gaussian noise at the model output. 

Real dataset consisted of vowels extracted from a 
German database of emotional utterances [7]. Ten 
different sentences are repeated by different actors and 
labelled according to perceived emotional content, 
respectively as neutral, anger, fear, joy, sadness, disgust 
and boredom. Vowels were extracted from the sentences 
according to dataset labels and segmentation provided 
with the datasets. Dataset labeling and segmentation is 
based on auditive judgement supported by visual analysis 
of oscillogram and spectrogram, as described in [7]. 

SWIPE' algorithm measures pitch by estimating 
average peak to valley distance at harmonic locations. 
This goal is achieved by comparing the spectrum of the 
signal with that of cosine based kernel functions, thus 
weighting the pitch candidate and its harmonics 
according to a 

�  

 law. This choice matches the decay 
trend of harmonics relative to vowels sounds. To avoid 
subharmoics of pitch being estimated as the real pitch, 
non prime harmonics, except the first one, are removed 

evaluation of a pitch estiMation alGorithM for speech 
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from the kernel. This algorithm uses a window size 
related to the pitch to be estimated: in particular a Hann 
window size of length T=4/f0 is chosen. We applied 
SWIPE' algorithm to a sliding window of length T 
seconds. A pitch value is estimated at every step. The 
algorithm results are evaluated for two different values of 
the window time shifts, namely T seconds, obtaining non 
overlapping windows, and T/4 seconds. This approach 
requires a two-step process, the first being a preliminary 
estimation of the pitch value. The time window length is 
then determined as T=4/(f0) where <1 is used to 
guarantee a sufficient time window length in the case of 
pitch underestimation after the first step. In this work 
=0.9 has been used. The pitch value is estimated as the 
mean value across windows. Jitter was estimated 
according to the following formula 

 

�  


  







    (1) 

 
 where Fi is the estimated pitch at the i-th window. As 

a comparison, the same procedure was applied using the 
well known SIFT algorithm [7]. SIFT algorithm is based 
on inverse filtering of the speech data, where the filter is 
obtained by inverting a low order linear predictor that 
models the vocal tract. The pitch is then estimated by 
computing the autocorrelation function of the residuals 
that are related to the exciting source of the vocal tract. 

 
III. RESULTS 

 
A. Simulated Data 
 

In Fig. 1 (upper window) the percentage error of the 
estimated pitch, with respect to actual pitch, is shown as a 
function of SNR by using the SWIPE' based approach.  

 
Figure. 1 Percentage error of estimated pitch at 100 Hz 
for different SNR values using SWIPE' and SIFT based 
approach (upper and lower window respectively). 

 

Jitter estimation results for SNR=18 dB are reported in 
Fig. 2 to Fig. 4. The mean and the standard deviation of 
the estimated jitter are shown with respect to imposed 
jitter. For each value of the imposed jitter 20 different 
data segment were analyzed, each 300 ms long. In Fig. 2 
the results obtained by using non overlapping windows 
are shown, for SWIPE' and SIFT based approach. The 
two algorithms yield similar results with small 
differences: in particular SWIPE' based approach is more 
accurate than SIFT based at lower jitter values and less 
accurate for higher jitter values. 

 

 
Figure 2 Estimated against imposed jitter, using SWIPE' 
(upper window) and SIFT (lower window) based 
approach and non overlapping windows. Total signal 
length: 300 ms. 
 

In Fig. 3 the results obtained by using overlapping 
windows are shown. In this case the estimated jitter 
standard deviation is smaller than that obtained by 
employing non overlapping windows. The mean value of 
the estimated jitter found is always monotonically 
increasing with the imposed jitter. The results obtained 
with overlapping windows are less accurate than those 
obtained with non overlapping windows, resulting in an 
underestimation of the jitter.  

 

 
Figure 3 Estimated against imposed jitter, using SWIPE' 
(upper window) and SIFT (lower window) based 
approach and T/4 overlapping windows. Total signal 
length: 300 ms. 
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In Fig. 4 the results obtained by applying the proposed 
approach to a simulated vowel, 80 ms long, are shown. 
For lower jitter values the results obtained with the 
SWIPE' based approach are slightly more accurate. For 
higher jitter values the standard deviation of the estimated 
jitter is high. In particular SWIPE' based approach results 
in a very high standard deviation with respect mean jitter 
value. 

 

 
 
Figure 4 Estimated against imposed jitter, using SWIPE' 
(upper window) and SIFT (lower window) based 
approach and T/4 overlapping windows. Total signal 
length: 80 ms. 
 

The standard deviation of the shown results is given by 
two sources, the estimation error of the algorithm and the 
trial by trial changes in the actual simulated jitter. In fact 
the jitter is simulated by imposing the standard deviation 
of the intervals between two successive pulses, given as 
input of the ARMAX model. By analyzing short duration 
windows, the actual jitter may be significantly different 
from the average jitter. The evaluation of the jitter from 
the pulse sequence used for the simulations, in fact 
resulted in standard deviation values equal to 0, 0.04, 
0.09, 0.15 and 0.22 % for average jitter equal to 0, 0.4, 
0.8, 1.2 and 1.6 % respectively. These values were 
estimated from the ARMAX input pulses using an 80 ms 
data segment and overlapping windows. In Fig. 5 the 
relationship between the expected jitter and the jitter 
estimated by the proposed approach, using SWIPE' (left) 
and SIFT (right) algorithm respectively, are shown.  

 
Figure 5 Regression model between estimated and 
expected jitter (imposed jitter=1.6%) using SWIPE' (left) 
and SIFT (right) based approaches (T/4 overlap).  

These results pertain 20 data segment, 80 ms long, 
obtained imposing jitter 1.6% (see Fig. 4). The SWIPE' 
based approach in this simulation outperforms SIFT 
based one, in estimating actual jitter. A regression model 
is estimated describing the relationship between 
estimated and expected jitter. The r2 statistic, the intercept 
and the slope for the linear regression models shown in 
the right (SWIPE' based) and the left (SIFT based) of Fig. 
5 are respectively r2=0.51, a=0.11, b=0.98 and r2=0.53, 
a=0.28, b=0.71. The significance of the regression model 
was found to be reduced for lower imposed average 
jitters, resulting in lower variance estimates.  

 
B. Real utterances 

 
Results obtained from real dataset are shown in tables 

1 and 2, for SWIPE' and SIFT based methods 
respectively. The results were obtained by applying the 
two approaches to the same vowels. Each vowel was 
extracted from a different subject. The results shown in 
Tables 1 and 2 are obtained using overlapping windows. 
Given the short time course of real utterances the 
proposed approach shows some limitations given the 
window length needed for pitch estimation. These 
preliminary results on real datasets highlight an increase 
of pitch values of vowels scored as anxiety and anger 
with respect to boredom and neutral. As regards jitter 
values an increase was observed predominantly in vowels 
scored as anger.  
 
Table 1. Pitch (p in Hz) and jitter values (%) as estimated 
from real utterances using SWIPE' and overlapping 
windows. 
Vowel Neutral Anxiety Anger Boredom 
/e/ p=136 

jitt=1 
p=170 
jitt=0.45  

p=220 
jitt=1.89  

p=132 
jitt=0.5  

/i/ p=109 
jitt=0.1  

p=144 
jitt=0.63  

p=250 
jitt=2.15  

p=118 
jitt=2.9  

/u/ p=140 
jitt=0.8  

p=250 
jitt=1.6  

p=248 
jitt=1.3  

p=113 
jitt=0.5  

/a/ p=115 
jitt=0.6  

p=125 
jitt=0.9  

p=156 
jitt=0.27  

p=140 
jitt=0.16  

 
Table 2. Pitch (p in Hz) and jitter values (%) as estimated 
from real utterances using SIFT and overlapping 
windows. 
Vowel Neutral Anxiety Anger Boredom 
/e/ p=138 

jitt=0.87 
p=170.2 
jitt=0.6  

p=217 
jitt=2.27  

p=134 
jitt=0.59  

/i/ p=110 
jitt=0.49  

p=144.8 
jitt=1.03  

p=247 
jitt=2.24  

p=117.9 
jitt=1.75  

/u/ p=140 
jitt=0.8  

p=250 
jitt=1.6  

p=248 
jitt=1.3  

p=113 
jitt=0.5  

/a/ p=115.9 
jitt=0.67  

p=123 
jitt=1.27  

p=155 
jitt=0.51  

p=141 
jitt=0.22  
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More severe problems are found using the approach 
with non overlapping windows, since the jitter estimation 
in case of low pitch short utterances may not be possible. 
The results obtained with SWIPE' and SIFT based 
approach are similar as regards pitch estimation, while 
jitter could not be estimated in most of the cases (data not 
shown). 
 

IV. DISCUSSION 
 

Pitch estimation with the proposed method was 
achieved with an error smaller than 0.2% in the worst 
case (SNR=0) and improves considerably at higher 
SNRs. The comparison with SIFT based approach 
highlights that that the latter approach offers better 
results. However comparison in a wider frequency range 
is not explored in this work. We have to stress that a 
comparison of the original SWIPE' algorithm with other 
approaches can be found in [5], while the results in this 
work are related to a different approach, described in the 
Methods section, that may take advantage of SWIPE' as 
well as other pitch estimation algorithms. Given this 
observation this work does not aim at evaluating the 
SWIPE' algorithm per se but to evaluate a SWIPE' based 
approach for pitch and jitter estimation in short time 
vowels. 

Jitter estimation resulted in an estimated mean value 
monotonically increasing with imposed jitter. The jitter 
values are underestimated and the average slope of the 
obtained results reduces in the case of overlapping 
windows. These results are in good agreement with those 
expected, given the fact that pitch is estimated by using 
4/f0 seconds long windows. This choice implies an 
average of the pitch changes across 4 glottal cycle 
repetitions resulting in a systematic underestimation of 
the real jitter value. In the case of overlapping windows 
smaller changes in pitch estimation are to be expected 
resulting in smaller value calculated as in (1). Since our 
final aim is to look at possible changes of these values 
with respect to the expressed emotions, this issue may not 
represent a limitation. Moreover by using overlapping 
windows it is possible to give an estimate of jitter value 
in shorter utterances. The need for the SWIPE' algorithm 
to have a 4 period long time window in order to have an 
optimal estimate, may impose severe limits to jitter 
estimation for short utterances characterized by a low 
pitch value. In fact for 100Hz mean pitch value, a data 
window 40 ms long is needed. In this conditions, if the 
overlapping windows approach is used, a 60 ms data 
length would allow to estimate 3 pitch values. 

By analyzing the relationship between expected and 
estimated jitter for higher values of the imposed jitter, a 
linear regression model was found to be significant or 
close to significance. This result shows that a large part of 
the jitter variance in Fig. 5 can be explained as trial by 
trial jitter variance in short simulated dataset. 

Furthermore, as it could be drawn from results in Fig. 5 
the proposed approach is more robust than expected from 
results shown in Fig. 4 in tracking jitter chnages. The 
analysis confirmed however that a significant portion of 
variance may be related to estimation error. This result 
should be taken into account when analyzing real data. 
From the results here shown, no strong significant 
differences were highlighted between the SWIPE' based 
and SIFT based approaches as regards jitter estimation. 

The preliminary results on real dataset seem to indicate 
a significant jitter difference in vowel scored as anger. 
The proposed approach could be applied only using 
overlapping windows given the short duration of 
extracted vowels. Moreover the estimation of jitter values 
for short duration, low pitch vowels may not be possible 
or it may results in bad estimates given the small number 
of pitch periods available. An analysis of the time profile 
of pitch and jitter was out of the scope of this work, that 
was motivated by the need of characterizing the approach 
on short, quasi stationary vowels. Future work should 
take into account the analysis of long sentences. However 
the interpretation of the results on real datasets may take 
into account these considerations. 
 

V. CONCLUSION 
 

The proposed approach allows estimating pitch with 
good performances. Simulated data results show that an 
index proportional to jitter value can be estimated as well, 
allowing to employ this method for classification 
purposes. Preliminary results on real dataset indicate the 
potential application to running speech albeit with some 
limitations in the case of short utterances at low pitch.  
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Abstract: prosody is a set of non-verbal features by 
which a speaker exhibits his attitude, his idea and his 
emotions. in a verbal communication it helps to 
understand one another. a production of a speech, 
and therefore also the prosodic characteristics depend 
on the physiological characteristics of a voice organ. 
these characteristics depend not only on sex or age,    
but also on the quality of a voice organ. this paper 
describes an idea to use suitable tools for storage and 
multidimensional analysis of prosody features. this 
work has been partly supported by the Ministry of 
education of the czech republic in the national 
research programme ii- project 2c06009. 

Keywords : verbal communication, multidimensional 
modeling, prosody 

I. INTRODUCTION 

A speech is a basic means and a form of human 
communication. In recognition and understanding of a 
spontaneous speech is important, what a speaker says, but 
also how he says it. People do not speak monotone word 
by word, but they use elements, that affect and accent the 
interpretation of the verbal utterance. Every speaker 
represents his attitude and his emotion, for example joy, 
anger, sadness, surprise or fear due to many variations in 
melody, intonation, pauses and accent of his speech. 

Due to these characteristics both the same speaker may 
modify the speech, although it is the same message in 
term of the semantic and syntax aspect, both semantically 
and syntactically the same speech uttered by different 
speakers shows different values of monitored 
characteristics, depending on the context of utterances, 
expressed the attitude of speaker, the environment in 
which the speech is made. The melody of speech 
expresses different emotions; intonation reveals the 
origins, geographical factors, social status of speaker, etc.  

The set of these non-verbal attributes is called prosody. 
Prosody is a natural part of the verbal communication. 
Prosodic features have a key role in a speaker 
recognition. 

The production of a speech, and therefore also the 
prosodic characteristics depend on the physiological 
characteristics of voice disorders. Speech oscillations are 
produced in the cooperation of the vocal cords, throaty 
cavity - oral and nasal, soft and hard palate, teeth and 

tongue, with the support of the lungs and respiratory 
muscles. The frequency of vocal cord oscillations F0 
characterizes the fundamental tone of a human voice and 
it is one of the fundamental prosodic characteristics. The 
frequency range F0 is affected by age, sex, but also 
depends on the sentence melody, emotion, or fatigue, and 
speaker´s health. 

A communication may be significantly affected, 
impaired or even made impossible by certain pathological 
changes of the voice organ. The changes influence the 
actual production of the voice and the voice disorders 
affect the speech. The quality of a voice organ then 
becomes one of the fundamentals affecting prosodic 
characteristics. 

 
II. METHODOS 

 
The characteristic appearance of a voice disorder is 

hoarseness. Physical fundamentals of hoarseness are 
irregular oscillations of the vocal cords and incorrect 
closing of the glottis. 

A phoniatric investigation of persons help to determine 
diagnosis and it repeats during the treatment in the pre-
defined time period. Reference values of tests are 
obtained as outputs of the investigative-diagnostic tools 
and methods that have the character of an objective 
assessment, the result of subjective-expert assessment of 
voice quality is a diagnosis. 

For another group, for example future teachers or 
singers, the voice investigation is carried out by reason of 
their professional interests. One of the methods for testing 
the state of the voice system is multi-dimensional 
analysis of the voice. The method determines numerous 
qualitative parameters of voice and compare with the 
normal, i.e., parameters measured in healthy subjects with 
normal voice. Another method is a determination of the 
Voice Range Profile, which is used to measure 
quantitative parameters of the voice. The measured 
values are subsequently stored and may be evaluated 
during the observation, therapeutics and the post-surgery 
rehabilitation. The voice profile of the patient is recorded 
before surgery and then monitored over a period usually 
two weeks, two months, six, twelve and twenty-four 
months after surgery. From the experimental point of 
view, it is important to identify what affects the reference 
values and in what reciprocal context these influences 
operate. For the purpose the records obtained in 
examinations should be appropriately categorized. 

prosody features analysis
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III. RESULTS 

The experimental data was acquired during the five 
years at the Otorhinolaryngology Clinic of the University 
Hospital in Pilsen. The set of the data includes more than 
1,600 records from the investigations of voice apparatus 
of persons of  a different age. There are about 274 men 
and 277 women monitored at different times - before the 
surgery, after the surgery of vocal cords, during the voice 
rehabilitation, some records concerning the healthy 
subjects before and during the study at the faculty of 
education. 

The concept of structure for data storage is based on 
the assumption that the doctor performs the investigation 
in defined method which commonly would result in n-
dimensional structure of  values to be evaluated and 
assessed. The current set of patients can be analyzed not 
only by sex, age representation, diagnosed disorders, but 
also by other keys, such as a period of their rehabilitation.  
In the future there are another interesting views for 
analysis, for example groups of professional speakers, or 
whether patient is a smoker or a non-smoker.  

From the standpoint of  multidimensional modeling 
terminology is the determination of dimensions. Tables of 
dimensions, together with the table of facts create the 
basis of a multidimensional schema. Dimension tables are 
expressed segmentation or categorization. There are 
measured values contained  in the table of facts, which 
are dependent on the dimensions. 

  
IV. DISCUSSION 

 
For a small data set and especially small number of 

aspects on which the data are evaluated, can be used 3D 
contingency table. Data can be presented graphically too.  

 
 
 

Fig. 1 Fundamental frequency of selected patients 

For example we can consider a sample of patients and 
measured values of their fundamental frequency.  For 
each patient we have information on sex (f, m) and 
diagnosis (dg1, dg2).  A graphic presentation of this case 
looks like a spider graph on the figure Fig. 1. 

There are more important aspects for analysis of  
measured values. Therefore in the area of multi-
dimensional and heterogeneous data is appropriate to use 
the principles of multidimensional modeling and OnLine 
Analytical Processing (OLAP) tools, which are available 
for the analytical data processing and decision support. In 
this particular case, the results of the analysis, for 
example, could contribute to design scheme of patients' 
aftercare and their rehabilitation. 
 

V. CONCLUSION 
 

Computer data processing significantly facilitates 
such like operations in which it is necessary to summarize 
the data, according to the requirements of various data 
combinations and categorization. However, it is accepted 
that information obtained by the treatment is to some 
extent subjective. The quantity of the derived information 
is dependent on the recipient, his ability to use the 
information for a future decision making. The same can 
be expected from a case of medical data, where the 
resulting information extracted from the measured values 
analyzing is supported by subjective evaluation of an 
expert, his experience and knowledge. In this area it must 
be consider that the analyzed object, every patient is to 
some extent an individual one with his unique properties. 
Therefore it is important to create certain groups or 
categories under which data could be assessed. This idea 
leads to the use of multidimensional modeling and tools 
that support an approach to answer multidimensional 
analytical queries. 
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Abstract:  this paper presents the design and 
implementation of a clinical workstation software for 
analyzing voice disorders. the software is developed 
by using Java technology and MysQl database 
system. a variety of vocal cues, e.g. jitter and shimmer, 
that describe irregularities of speech cycles in 
sustained vowels can be automatically derived by the 
system. for assessing voice disorders in connected 
speech, a vocal cue called signal-to-dysperiodicity 
ratio is evaluated by carrying out a generalized 
variogram analysis. in the development, special 
attention has been paid to software engineering 
conventions and the principles of architectural design 
of software structures to achieve good quality 
attributes such as developmental simplicity and 
modifiability. preliminary tests have shown that the 
system provides satisfactory usability and 
performance for clinical applications. 
Keywords:  pathological voice assessment, disordered 
voice analysis, software engineering, Java application 

 
I. INTRODUCTION 

 
Disordered voice timbres are usually caused by 

improper vibrations of the vocal folds, as a consequence 
of pathological changes of the larynx. Recently, voice 
disorders have been observed more frequently and more 
extensively than before because of an increasing number 
of professional voice users. Therefore, reliable and 
efficient means of evaluating pathological voice quality 
are required for the assessment and prevention of 
laryngeal problems. 

In clinical voice evaluation, acoustic assessment 
methods have been used to facilitate the clinical 
documentation of vocal problems because previous 
experiments have established that vocal cues exist that 
are clinically relevant [1, 2]. Furthermore, these acoustic-
based methods have the advantages of non-invasiveness 
and quantitativeness. In this paper, the design and 
implementation of a clinical workstation software for 
analyzing pathological voice signals are presented. A 
variety of vocal cues such as jitter, shimmer, and 
harmonics-to-noise ratios in temporal and spectral 

domains, which describe irregularities of speech cycles in 
voiced speech can be automatically obtained for sustained 
vowels by means of the system. In addition, connected 
speech quality assessment is also included. The reason is 
that in clinical practice, people consider connected speech 
to be more informative than sustained vowels. Moreover, 
the perceptual evaluation of voice quality is likely to be 
based on both connected speech and sustained vowels 
uttered by the same patient. Variogram-based analysis is 
carried out to track dysperiodicities in connected speech, 
and thus a signal-to-dysperiodicity ratio value is obtained 
as a vocal cue of voice disorders [3].  

Graphical means, e.g. spectrogram, phonetogram, and 
spider charts, are available to visualize the analysis 
results. Java technologies have been utilized to build the 
application system, mainly for the purpose of facilitating 
portability on different operating-system platforms. 
Software engineering conventions and the principles of 
architectural structures design have been used to guide 
the design and development of the system, to achieve 
developmental simplicity, modifiability, and other quality 
attributes.  
 

II. METHODS 
 
A. Disordered Voice Analysis 
 

Because of technical feasibility, voice analysis is 
usually performed by providing different vocal cues of 
voice disorders for sustained vowels only. In this clinical 
software, the voice disorder analysis is versatile in terms 
of that not only sustained vowels but also connected 
speech segments can be assessed. For sustained vowels, 
features such as mean and standard deviation of 
fundamental frequency, jitter, shimmer, and harmonics-
to-noise ratios in both time and spectral domains [4, 5] 
can be obtained to describe voice disorders.  

A technique called speech sample salience analysis [6] 
has been used to perform voice cycle detection. 
Conventional voice cycle detection relies on the selection 
of signal peaks from several candidates. The selection 
technique usually assumes that the signal peaks are 
regularly spaced in time so that they can be determined 
one by one based on an a priori estimation of the typical 
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fundamental period. This assumption does not apply to 
disordered voices, though it is valid for modal ones.  

Speech salience analysis can be performed without an a 
priori knowledge of the typical cycle length. Thus, it is 
well suited for tracking vocal cycles in pathological 
voices. For a speech signal v(n) of M samples, the 
salience S(k) of the kth sample (0 ≤ k < M) is defined as 
the length of the longest interval within which that 
sample is a maximum. Based on a sliding analysis 
window technique, which eliminates the bias related to 
the arbitrary position of the signal origin, salience 
analysis is performed sample by sample to determine a 
speech cycle sequence which minimizes the standard 
deviation of the durations of all cycle candidates. Based 
on this sequence, jitter, the vocal cue for describing the 
small random perturbation of voice cycle lengths, can be 
calculated.  

For assessing the voice quality in connected speech, the 
segmental signal-to-dysperiodicity ratio (SDR) [7, 8], 
which is based on generalized variogram analyses, is used 
to summarize vocal perturbations. For a stationary signal 
x(n), the variogram, which is defined in Eq. (1), is a  
measure of the departure from periodicity over an interval 
of length N: 

, (1) 
where the variable lag T satisfies -Tmax ≤ T ≤ -Tmin and 
Tmin ≤ T ≤ Tmax . Tmin and Tmax are, in number of samples, 
the shortest and longest acceptable glottal cycle lengths. 
They are fixed to 2.5 ms and 20 ms, respectively (i.e., 50 
Hz ≤ F0 ≤ 400 Hz).  For voiced speech sounds, the lag 
Topt , which minimizes (1), is interpreted as a multiple of 
the speech cycle length.  

Speech signals are expected to be locally stationary at 
best. A weighting coefficient can be inserted to account 
for slow changes in signal amplitude. Therefore, the 
variogram computation defined in Eq. (1) can be 
modified as follows: 

 (2) 
The coefficient  is defined so as to equalize the signal 
energies in the current and shifted analysis windows: 

TE
E     , (3) 

where E and ET are the signal energies of the current and 
the lagged frames. The frame length N and frame shift 
length are set to the value of 2.5ms, which guarantees that 
each signal frame is included exactly once in the analysis. 
The instantaneous value of the dysperiodicity is estimated 
as follows:  

1Nn0Tnxnxne opt         ),  (   )(    )(  (4) 
where Topt is equal to the lag which minimizes the 
variogram for the current frame position. For a given 
fragment of connected speech, the analysis interval is 

divided into K blocks of length M and the SDR of each 
block of length 20 ms can be computed as follows: 
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B. Software Architecture Design  
 

The objective is to develop a workstation application 
system which runs on a normal PC platform and supports 
pathological voice quality assessment. Modifiability, 
usability, and portability are the software quality 
attributes which are emphasized throughout the 
development of this system. To achieve portability, Java 
programming language and MySQL database system 
(MySQL Community Server) are selected as the 
development infrastructure because of their cross-
platform availability.  

  
Fig. 1  Module decomposition View of the System 

 
Architecture Tradeoff Analysis Method [9] is 

employed to devise the architectural structures of the 
software. To guarantee the clinical usability of the 
system, different stakeholders in the system’s 
development, including developers of disordered voice 
analysis methods, otolaryngologists, speech therapists, 
and software engineers, have been involved in designing 
the functionalities. Based on the use case views [9] which 
specify the behavior of both the system and the users, a 
module decomposition view (see Fig. 1) is determined to 
assign the functionalities to different modules of the 
system. All the functionalities of a particular data-
processing type are organized in a specific module. For 
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instance, the computation and graphical display of 
different vocal cues of voice disorder are grouped into the 
Technical Assessment Module.  

A layered architecture is adopted to allocate the 
functional modules into two tiers, shown in Fig. 2. The 
data access logic implemented by the Database Accessing 
Module is contained in a separate Data Tier which is 
dedicated to database communication. Above the tier, 
there is the Application Component Tier that packs all the 
other modules carrying out the presentation logic and 
application-relevant logic. This layered architecture 
forms the basis for the development project’s 
organization; i.e., the source code files are organized into 
packages according to the module decomposition and the 
layered architecture. The module decomposition also 
ensures that possible changes of the system are localized 
to only one or a few small modules, enabling a large part 
of the system’s modifiability.  

 
Fig. 2  Two-Tier Software Architecture 

 
C. Functionality Design 

 
The Identity Module is used to maintain the identity 

information of ORLs, speech therapists, and patients. 
Also, the information related to each clinical visit, e.g. the 
diagnosis, the type and state of the therapy, can be 
recorded by using this module. Fig. 3 shows the user 
interface for visit registration. Since a clinical assessment 
is typically performed at each clinical visit, each recorded 
voice and the relevant assessment results are uniquely 
associated with a specific visit. Therefore, the registration 
of visit information is designed as the first step which 
triggers the other events in the assessment, as well as 
creates a data slot in the database to store the visit 
information and the assessment results. To achieve 
flexible data management, a Patient Search sub-module is 
designed to enable the user to find the clinical data of 
patients by using different search conditions such as 
name, pathology, or a certain ORL.  

A specific module, the Non-Technical Assessment 
Module, is designed to facilitate the patient interview and 
perceptual voice quality evaluation, which constitutes the 
beginning of the assessment process. To inquire about the 
case history, a questionnaire format [10] has been chosen 
to perform the interview. A VHI (Voice Handicap Index) 

Questionnaire sub-module is designed to facilitate the 
assessment of the patient’s perception of discomfort, 
handicap, and distress resulting from voice difficulties. 
For singing voice and speaking voice, different sets of 
questionnaires have been designed to derive the VHI 
score. 

 

Fig. 3  User Interface for Visit Registration 
 
The Voice Processing Module enables the user to 

record patients’ voices, including sustained vowels and 
connected speech fragments, with a high quality 
microphone and a built-in sound card which performs 16 
bit, 44.1 kHz sampling. All the voice signals can be 
stored as files in WAV format. With the toolbox in this 
module, the user also can playback the recorded voice 
and view its waveform or spectrogram. Voice samples 
can be selected for subsequent computation of the vocal 
cues of voice disorder.  

All the vocal cues are computed in the Technical 
Assessment Module. For a particular voice sample, seven 
vocal cues can be computed the values of which can be 
visualized by means of spider charts. The software can 
display the spider charts for two different voice samples 
in the same axes system in an overlapped manner. Fig. 4 
depicts such an example. The spider chart of the voice 
sample for the pre-therapy assessment of a patient is 
plotted in dark color, while the spider chart of another 
voice sample related to the post-therapy assessment of the 
same patient is plotted in a bright color. By using 
overlapped spider charts, it is easy to compare the post-
therapy vocal cue values with the pre-therapy ones for a 
certain patient, and to compare the vocal cue values of 
two voices from different patients. Therefore, this kind of 
display provides a useful means of evaluating the 
effectiveness of therapy. Besides the spider chart, another 
graphical tool – the phonetogram – is implemented in the 
system to depict the dynamic ranges of both the pitch and 
the intensity of the voice. 
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Fig. 4  Overlapped Spider Charts 
 

III. RESULTS 
 

Java programming language has been used to build the 
software for the sake of its portability to embedded 
systems. MySQL Community Server has been chosen as 
the database management system because of its speed, 
flexibility and reliability. The system is organized in a 
layered structure which therefore supports the 
modifiability of the system and the work assignment in 
the development team. The ergonomic design of the 
system makes the user interface easy to use owing to the 
conventional sequencing of the tasks which clinicians are 
expected to perform when assessing laryngeal function. 
All the acoustic cues of disordered voices and the 
relevant diagrams can be generated in real-time or quasi-
real-time by the software running on a normal PC 
platform. Preliminary tests have shown that the system 
has a satisfactory usability  and  performance, though  
further clinical tests and development remain to be 
carried out to establish its suitability for pathological 
voice assessment. 
 

IV. CONCLUSION 
 
The Java-based voice assessment workstation software 

can be deployed on almost all PC platforms.  A variety of 
vocal cues of voice disorders can be provided by the 
system for both sustained vowels and connected speech 
to support the clinical voice quality assessment.  By using 

 
 
 
 
 
 
 

 
the principles and methods of architectural structures 
design in the development of the system, the quality 
attributes of the software, such as the developmental 
simplicity, modifiability, and usability can be well 
achieved. 
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Abstract: In this paper, we employ normalized modula-
tion spectral features for objective voice quality assess-
ment regarding breathiness. Modulation spectra usu-
ally produce a high-dimensionality space. For classi-
fication purposes, the size of the original space is re-
duced using Higher Order Singular Value Decomposi-
tion (SVD). Further, we select most relevant features
based on the mutual information between the degree of
breathiness and the computed features, which leads to
an adaptive to the classification task modulation spec-
tral representation. The adaptive modulation spectral
features are used as input to a Naive Bayes (NB) clas-
sifier. By combining two NB classifiers based on differ-
ent feature sets a global classification rate of 79% for
breathiness was achieved.
Keywords: Objective voice quality assessment, breath-
iness, modulation spectrum, mutual information, SVD

I. INTRODUCTION

Objective voice quality assessment has been intro-
duced to assist the perceptual evaluation of dysphonic
voice quality used by the clinicians. The most common
systems of pathological voice description refer to the de-
gree of ”hoarseness” [1]. Hoarseness is perceptually re-
lated to the noise generation during phonation. The de-
gree of voice hoarseness can be quantified according to the
GRASB (grade, roughness, asthenicity, strain and breathi-
ness) scale proposed by Hirano [1].

The definition of these quantifiable perceptual dimen-
sions (GRASB parameters) is related to a set of descriptive
parameters for acoustic phenomena. The perceived voice
abnormality is assumed to originate at the vocal source
rather than resulting from abnormalities in the vocal tract
configuration. Hence, many studies have focused on pa-
rameters such as pitch perturbation quotient (PPQ), jitter,
shimmer, harmonics to noise ratio, etc. [2, 3, 4]. Acoustic
measures that highly correlate with voice alterations can be
associated then with a classification system to provide an
automatic decision.

In this work we investigate the correlation of modu-
lation spectral features [7, 8] to the degree of breathiness

(B) of pathological voices. Dysphonic voices are charac-
terized by frequency-band dependent, time-varying ampli-
tude fluctuations [5]. Modulation spectral features can cap-
ture a class of source mechanism characteristics related to
voice qualities (glottal source differences) [5]. Breathiness
typically refers to the voice quality related to the audible
turbulence generated at the glottal level; this turbulence
acts as a noise source to the vocal tract (see [9] and ref-
erences therein). This paper pursues a previous work in
which the authors presented an automatic dysphonia recog-
nition and classification system built on modulation spec-
tral representations [10].

The paper is organized as follows: In Section II we
briefly describe the dataset, modulation spectral features
and their normalization, and the method of dimensional-
ity reduction and feature selection we use. Specifically,
the initial representation is first transformed to a lower-
dimensional domain using Higher Order SVD [11]. Pro-
jection of modulation spectral features on the principal
axes with the higher energy in each subspace results in a
compact set of features with minimum redundancy. We
further estimate the relevance of these projections to dys-
phonic voice characterization based on their mutual infor-
mation to breathiness class variable. Section III describes
the experiments we conducted on breathiness classification
using a combination of two naive bayes (NB) classifiers
based on different feature sets [13]. Finally in Section IV
we summarize features of our approach and discuss next
steps.

II. METHOD

A. Dysphonic voice corpus

We used a database provided to us by Universidad
Politécnica de Madrid, which is referred to as Prı́ncipe de
Asturias (PdA) Hospital in Alcalá de Henares of Madrid
database [14]. Similar to MEEI, PdA contains recordings
of sustained vowels (/a/) and was developed for voice func-
tion assessment purposes. The voices of 201 dysphonic
and 209 normal subjects have been classified according
to the B parameter (breathiness) of the Hirano’s GRASB
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scale. A four-point scoring system is used to rate each
subject along the B dimension: 0 denotes no breathiness, 1
means a slightly breathy voice, 2 refers to moderate breath-
iness, whereas 3 describes a severely breathy voice. For
the following experiments, we selected 200 dysphonic sub-
jects (74 men and 126 women, aged 11 to 76) affected
by nodules, polyps, oedema, etc, as well as 24 subjects
with normal voice (7 men and 17 women, aged 17 to 54).
Specifically, we used 26 dysphonic (plus 24 normal) voices
with zero breathiness, 50 voices with B = 1, 119 with
B = 2 and 3 voices with B = 3. Due to the very small
number of subjects with a breathiness rating equal to 3,
these were joined with the subjects with a rating 2 breathi-
ness.

B. Modulation Spectra

The most common modulation frequency analysis
framework [8] for a discrete signal x(n), initially employs
a short-time Fourier transform (STFT) Xk(m)

Xk(m) =

∞�

n=−∞

h(mM − n)x(n)W kn
K , (1)

k = 0, . . . , K − 1,

where WK = e−j(2π/K) and h(n) is the acoustic fre-
quency analysis window with a hop size of M samples (m
denotes time). Mel scale filtering can be employed at this
stage in order to reduce the number of frequency bands.
Subband envelope detection - defined as the magnitude
|Xk(m)| or square magnitude of the subband - and their
frequency analysis with Fourier transform are performed
next:

Xl(k, i) =

∞�

m=−∞

g(lL − m)|Xk(m)|W im
I , (2)

i = 0, . . . , I − 1,

where g(m) is the modulation frequency analysis window
and L the corresponding hop size (in samples); k and i
are referred to as the “Fourier” (or acoustic) and “modula-
tion” frequency, respectively. Tapered windows h(n) and
g(m) are used to reduce the side lobes of both frequency
estimates.

A modulation spectrogram representation then, dis-
plays modulation spectral energy |Xl(k, i)| (magnitude
of the subband envelope spectra) in the joint acous-
tic/modulation frequency plane. In order to enable cross-
database portability of the classification system, fea-
ture subband normalization has been employed according
to [15].

C. Normalized modulation spectra

The distribution of envelope amplitudes of voiced
speech has a strong exponential component. Hence we cal-

culate modulation spectra using a log transformation of the
amplitude values |Xk(m)| and subtracting their mean log
amplitude before windowing in (3):

X̂k(m) = log |Xk(m)| − log |Xk(m)| (3)

where {.} denotes the average operator over m. This
is analogous to the cepstral mean subtraction approach,
which is commonly employed to compensate for convo-
lutional noise in the case of MFCC features. Next, we nor-
malize every acoustic frequency subband with the marginal
of the modulation frequency representation:

Xl,sub(k, i) =
Xl(k, i)�
i Xl(k, i)

(4)

Previous work [15] has shown that this subband normaliza-
tion is important when there is a mismatch between train-
ing and testing conditions, or in other words, when the de-
tection system is employed in real (testing) conditions.

D. Dimensionality reduction and Feature Selection

We used a generalization of SVD to tensors referred
to as Higher Order SVD (HOSVD) [11] to reduce dimen-
sions in acoustic and modulation frequency subspaces sep-
arately. HOSVD enables the decomposition of tensor D
to its n−mode singular vectors (or, principal components).
Ordering of these n−mode singular values implies that the
“energy” of tensor D is concentrated in the singular vec-
tors with the lowest indices. Each singular matrix contain-
ing the n−mode singular vectors, can be truncated then by
setting a predetermined threshold so as to retain only the
desired number of principal axes in each mode.

Projection of modulation spectral features on the prin-
cipal axes with the higher energy in each subspace re-
sults in a compact set of features with minimum redun-
dancy. We further selected features which were more rel-
evant to the given classification task using mutual infor-
mation (MI). That is, relevance is defined as the mutual
information I(xj ; c) between feature xj and class c. Max-
imal relevance (MaxRel) feature selection criterion simply
selects the features most relevant to the target class c [12].
Through a sequential search, which does not require esti-
mation of multivariate densities, the top m features in the
descent ordering of I(xj ; c) were selected.

Fig. 1 depicts the mutual information of the original
normalized modulation spectral features for the classifi-
cation of the dysphonic phonations of the vowel /AH/ in
PdA in 3 scores of breathiness (B0, B1 and B2). Mod-
ulations localized lower than ∼ 1600 Hz on the acoustic
frequency axis seem to be more relevant; this is consistent
with previous experimental results on pathological voice
assessment where frequencies lower than 3000Hz led to
an homogeneous discrimination between voices compared
with higher frequencies [6].



	 43

Modulation frequency (Hz)

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300 400 500

800

1620

3220

6400

12500

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 1: Mutual information of the original normal-
ized modulation spectral features for the classification of
breathiness in 3 grades (B0, B1 and B2) for the dysphonic
phonations of sustained vowel /AH/ in PdA.

Mutual information to the class variable was estimated
twice: for pathological subjects only, as well as when 24
normal subjects were also included. Two different feature
sets were thus defined according to the sorted MI values.
We conducted some preliminary experiments on breathi-
ness classification using two naive bayes (NB) classifiers
built on top of these features. We used leave-one-out cross-
validation to select the top m features in every set; further
the two classifiers were combined as we describe next [13].

E. Classifiers Combination

We performed a Bayes combination of the L = 2 clas-
sifiers, D1 and D2, based on the different feature sets, ac-
cording to [13]. D1 and D2 label each data point x as
belonging to one of c = 3 classes. In our case, the number
of training data points is N = 224; from these, 50 (26 dys-
phonic plus 24 normal voices) are from ω1 (B = 0), 119
from ω2 (B = 1), and 55 from ω3 (50 subjects with B = 2
and 5 subjects with B = 3). For each classifier Di, a c× c
confusion matrix CM i is calculated by applying Di to the
training dataset. The (s, k) entry of this matrix, cmi

s,k,
denotes the number of elements of the dataset whose true
class label was ωk, and were assigned by Di to class ωs.
By Ns we denote the total number of subjects from class
ωs. Taking cmi

si,k
/Nk as an estimate of the probability

P (si|ωk), and Nk/N as an estimate of the prior probabil-
ity P (ωk) the support for class ωk is equivalent to:

µk(x) ∝
1

NL−1
k

L�

i=1

cmi
si,k. (5)

Accordingly, subject x will be assigned to class ωk if
µk(x) has the highest value.

III. RESULTS

Modulation spectra were computed in a frame-by-frame
basis using long windows in time (262 ms) which were
overlapped by 50%. We used Mel scale filtering with 53
bands while the size of the Fourier transform for the time-
domain transformation was set to 257 (up to π). Therefore,
each modulation spectrum consisted of I1 = 53 acoustic
frequencies and I2 = 257 modulation frequencies, result-
ing therefore in an 53× 257 “image” per frame. The mod-
ulation spectra computed in each frame were mean sub-
tracted and then they were stacked to produce a third order
tensor D ∈ RI1×I2×I3 , where I3 is the number of frames
in the training dataset. After applying the High Order SVD
algorithm, we kept the principal axes (PCs) of features con-
tributing more than 0.1% to the “energy” of D; i.e., the first
43 PCs in the acoustic frequency and the first 29 PCs in the
modulation frequency subspace. This resulted in a reduced
space of 43×29 = 1247 features. Next, the features which
were more correlated to the breathiness assessment were
selected using the Maximal Relevance criterion (MaxRel).
For details about the application of the MaxRel criterion
on this task please refer to [10].

Two different feature sets were defined according to the
sorted MI values. The first set included the most relevant
features when MI estimation also involved voices from
(24) normal subjects with zero breathiness. The second
feature set was selected using the dataset of dysphonic only
voices. We used leave-one-out cross validation to select
the top m features for every NB classifier built on top of
each feature set. NB classifier built on top of the m = 100
most relevant features of the first set was optimum for dis-
criminating class B = 0. For classes B = 1 and B = 2,
the optimum NB classifier was obtained by considering the
top m = 230 most relevant features of the second set. By
combining the NB classifiers based on these different fea-
ture sets [13], a global classification rate of 79.02% was
achieved. Table 1 presents the confusion matrix from the
automatic classification of the dysphonic voices into scores
of breathiness. This classification has been compared with
the original perceptual judgement in the PdA corpus. In
Table 2 the performance per breathiness score in terms of
correct classification rate is presented. We can observe that
the worse performance corresponds to the B0 class which
includes 26 dysphonic and 24 normal subjects. However,
we note that 21 out the 24 normal speakers have been cor-
rectly classified in the B0 class (corresponding to a CCR
of 87.50% for normal only voices). We conclude then that
the breathiness of dysphonic only voices has been overes-
timated in the case of the B = 0 class.
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Table 1: Confusion matrix between scores of breathiness
given by the automatic classification system (S-B0, S-B1,
S-B2) and the perceptual judgement of phonations (P-B0,
P-B1, P-B2).

P-B0 P-B1 P-B2
S-B0 33 4 0
S-B1 16 99 10
S-B2 1 16 45

Table 2: Performance per breathiness score in terms of cor-
rect classification rate (CCR %) of phonations in PdA [14].

Score 0 Score 1 Score 2 Total
66.00 83.19 81.82 79.02

IV. DISCUSSION

In this paper we have proposed a method for objective
assessment of breathy voice quality, based on modulation
spectra. We used a method for dimensionality reduction
and feature selection on a database of sustained vowels.
Using mutual information, we could locate the most rele-
vant frequency bands at the “formant zone”, i.e. lower than
3000 Hz. Based on different feature sets, two NB classi-
fiers were tested and found to be optimal in the discrimi-
nation of different classes. By combining them, a global
classification rate of 79.02% was achieved.

Future work will address additional GRASB parame-
ters using a database of reading text. We will explore the
discriminative ability of consonant classes as well in the
objective assessment of different voice qualities. In addi-
tion, benchmarking against more standard approaches like
those used for the automatic speaker recognition [6] will
be performed.
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Abstract: The purpose of the present paper is to study 
how the statistical dispersion of distortion and 
biomechanical parameters may be used in producing 
an objective evaluation of voice quality. For such, the 
behaviour of the same GMM classifiers used in the 
detection of pathology will be exploited. The work will 
show specific cases derived from a database of normal 
and pathological voice, set into contrast against a 
Universal Background Model built from the 
population of normal subjects. Results will be 
contrasted against classical subjective scoring and a 
proposal for automatic voice quality evaluation in 
terms of the most relevant parameters will also be 
discussed. 
 
Keywords:  GRBAS, Voice Pathology Grading, 
Gaussian Mixture Models 

 
I. INTRODUCTION 

 
The purpose of the present paper is to produce a score 

to grade voice pathology from unnoticed to extreme from 
the acoustic properties of the produced signal. The 
proposed score can be contrasted against subjective 
evaluations as GRBAS [2][7]. For such, the properties of 
the same GMM classifiers used in the detection of 
pathology will be exploited as described in Section II, 
devoted to discuss the materials and methods used in the 
study over a broad data collection specifically balanced 
by pathology and gender. Section III presents the results 
obtained for the proposed scoring. Section IV discusses 
the relevance of the study of a pre-post surgery case. 
Section V is devoted to present the conclusions derived 
from the study. 
 

II. MATERIALS AND METHODS 
 

The materials used in the present study consist in a set 
of 200 recordings of vowel /a/ extracted from the 
database in [8]. This data set is organized in 4 subsets 
equally balanced: MN (50 male, normophonic), MP (50 
male, pathologic), FN (50 female, normophonic), FP (50 
female, pathologic). The processing steps are as follows: 

 Produce a set of observation parameters from each 
record including jitter, shimmer, HNR, a set of 
parameters derived from glottal source spectral 
profile, a set derived from biomechanical correlates 
and another set derived from the estimation of the 
glottal source time-domain cycle [1]. The parameters 
used are described in [4] and [5]. 

 Divide the set into control (MN+FN) and control 
(MP+FP) subsets independently for the male and 
female subsets. 

 Evaluate the covariance matrices for the sets of 
normal male and female control sets. Use the matrix 
eigenvectors for principal component analysis 
transformation of the original parameter spaces to 
principal component parameters. 

 Model the principal component parameter matrices by 
a GMM system following [6] using the control 
subsets. Two Universal Background Models must be 
created: one for male and one for female subjects. 

 Produce the following estimates for each subject in 
the test sets: 
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yti, n, and Cn being respectively the principal 
component parameter vectors, the centroids of the 
Universal Background Model GMM’s and the 
Covariance Matrices of the observation sets. 

 Evaluate the pathological condition of the subject by 
estimating the odds of its membership to the 
distribution of normophonics nm as: 
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where m and f, stand for the distributions of 
normophonic male and female. The subject score is 
usually given as a Log-Likelihood Ratio of the odds: 

VOICE PATHOLOGY GRADING BY GAUSSIAN MIXTURE MODELS: 
STUDY CASES 

 
P. Gómez-Vilda1, R. Fernández-Baíllo1, V. Rodellar-Biarge1, J. I. Godino-Llorente2 

1 Grupo de Informática Aplicada al Procesado de Señal e Imagen 
Facultad de Informática, Universidad Politécnica de Madrid 

 Campus de Montegancedo, s/n, 28660 Boadilla del Monte, Madrid, Spain 
2Department of Circuits & Systems Engineering, Universidad Politécnica de Madrid,  

Ctra. de Valencia km 7, 28031, Madrid, Spain 
e-mail: pedro@pino.datsi.fi.upm.es 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.



46	

)/(log)/(log)( mntminmtmitmi pp yyy (4) 
This score is based on distance metrics as shown in 

Figure 1, and it may be used for detecting the 
pathological condition of the subject using classical 
ROC-DET procedures. Depending if (ytmi/ nm)>  or 

(ytfi/ nf)<  the voice of the subject under test is 
considered normal or pathological. As the results of the 
grading are defined by the cluster of normophonics 
expressed in the distribution-compensated distance in the 
exponent of the probability function in (3), a functional to 
estimate the pathology grade could be defined as: 

1;1
1;0

sioi

sioi
osi ;

i
osiosD  (5)   

where oi and si refer respectively to the objective and 
subjective grading scores (GO and GS) assigned to 
subject i, and Dos is the cumulative score along the set 
considered (male or female). This means that a deviation 
of 1 is considered irrelevant between both scoring signals, 
whereas larger deviations are taken into account, to cope 
with the subjectivity implicit in GRBAS. 

 

 
Figure 1.  Top: Male cluster set with joint normophonic 
and pathologic distributions. The distance to the normal 
distribution may serve as a measure of the pathology 
grade. Bottom: Idem for the female cluster set. 

The figures give an idealized idea on how each 
respective  GMM quantifies the attribution probability of 
each subject with respect to its respective control set 
(Universal Background Model) plotted in terms of the 
three principal componens for each observation set. The 
normalized distance of each subject to the respective 
GMM centroid is used as a voice quality evaluation factor 
for each individual (gi). This distance is pointed by an 
arrow for the two cases more far apart for each subset. 

 
III. RESULTS 

 
The application of the methodology described before 

to grade the 100 pathological cases formed by the 
collection of MP+FP taken from the Database MAPACI 
is given in Table 4 at the end of the paper. The confusion 
curve associated to the evaluation is given in Figure 2. 
The total results from applying the method to both 
normophonic and pathologic speakers is given in Table 1. 

 
Figure 2. Confusion curve giving the percentage of 
False Negatives and False Positives in terms of the 
normalized threshold. 
 
Table 1. Confusion matrix after grading the detection 
results for the male and female sets 

 Normophonic Pathologic 
MN+MP  0  16  
FN+FP  0  12  

It may be seen that the degree of accuracy between 
the subjective expert evaluation given by the GRBAS 
index as contrasted against the one produced by the 
automatic system is consistent with a difference of 1 step 
or less for most of the male and female cases, within 
reasonable limits (normophonic ones are all well 
classified, whereas the differences in grading for 
pathologic ones is relatively small in most of the 
discrepancies found). 

To better understand the underlying principles of the 
classification methodology proposed a contrastive 
evaluation of a pre-post-surgery case is given extending 
those presented in a previous study [3].  The recordings 
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of the pre-surgery case correspond to trace #232 whereas 
the post-surgery case (3 months later) corresponds to 
trace #732. A blind grading gives the results in Table 2. 
 
Table 2. Comparison of the proposed grading to records 
obtained from the same person before and after surgery. 
File Log Likelihood Ratio Grade 
RegVoz-232.wav -302,409187 2 
RegVoz-732.wav -87,6466868 0 

It may be seen that the results of the automatic 
evaluation are well in consonance with the physiological 
evaluation of the patient, considering that the threshold 
for Grade 0 is around -94. The parameter profiles most 
affecting the re-classification of the patient (#732) as 
normophonic after surgery are given in Table 3 in 
contrast with the same ones before surgery (#232) in 
averages and standard deviations. 
 
Table 3. Comparison between resolutive parameters 
before and after surgery for cases #232 and #732. 

Parameter Pre-
surgery 

Post-
surgery 

2. av. jitter (%) 3.80 0.35 
5. av. shimmer (%) 2.80 1.13 
8. av. HNR (%) 6.22 7.01 
18. av. 1st min. (dB) -23.22 -30.65 
19. av. 2nd max. (dB) -15.90 -27.17 
33. av. 1st min slend. (%) 14.4 14.7 
35. av. body mass (mg.) 13.4 14.3 
37. av. body stiffness (g.sec-2) 21711 16433 

38. av. body mass unb. (%) 5.93 0.44 
41. av. cover mass (mg.) 12.7 11.4 
43. av. cover stiffness (g.sec-2) 25828 13622 

44. av. cover mass unb. (%) 7.48 1.91 
2. std. jitter (%) 3.07 0.31 
5. std. shimmer (%) 1.95 0.88 
8. std. HNR (%) 1.49 0.21 
18 std. 1st min. (dB) 1.72 2.11 
19. std. 2nd max. (dB) 1.27 1.02 
33. std. 1st min. slend. (%) 1.47 1.89 
35. std. body mass (mg.) 0.66 0.007 
37. std. body stiffness (g.sec-2) 2264 130 

38. std. body mass unb. (%) 5.49 0.54 
41. std. cover mass (mg.) 0.70 0.23 
43. std. cover mass unb. (%) 5.57 1.06 
44. std. cover stiffness (g.sec-2) 6264 706 

 
IV. DISCUSSION 

 
The study of the results for the pre-post surgery case is 

very illustrative of the way in which pathology 
classification is established by the set of parameters used. 
First of all, it confirms that classical distortion parameters 
as jitter and shimmer (2,5) have a role to play in 

determining the degree of pathology. The case with HNR 
(8) may not be the same, as the definition of this 
parameter is rather controversial, and its estimation is not 
as trivial as could be assumed. The biometrical power 
spectral density of the glottal source is also sensitive to 
pathology as revealed by parameters 18 and 19, which are 
well below the reference value after surgery, revealing a 
reduction in tenseness. This is also in agreement with the 
evaluation of body and cover stiffness (37 and 43). The 
body and cover mass unbalance (38 and 44) suffer 
important reductions when comparing before and after 
surgery values. Each estimation standard deviation is also 
given in Table 3 as a validation statistics for the 
estimation of each parameter. It may be seen that this 
control parameter is much better in most post-surgery 
cases indicating the smaller dispersion range of the 
affected parameter after treatment. 
 

V. CONCLUSION 
 

The most important conclusion derived from the study 
is that the grading methodology exposed is well in 
agreement with expert judgment within a reasonable 
extension, having in mind the subjectivity implied in 
expert judgment. The second conclusion is that the 
consistency in the estimates is availed by differential pre-
post-surgery cases as the one presented. The relevance 
and reliability of the parameters used in the study is 
clearly availed by the results exposed in Table 3. The 
materials used in the study, as well as a free copy of the 
software employed in parameter extraction and contrast 
are publicly available from [8] on demand.  The next 
challenge to be faced is that of pathology classification in 
terms of parameter “color”, as well as it use in speaker 
identification and verification applications. 
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Abstract: Modern medicine calls for new diagnostic 

methods. Emphasis is placed on non-invasive 

methods. In addition, they should be characterized by 

high efficiency, which is a combination difficult to 

predict. In this area signal processing offers the 

greatest potential. It is used in many branches of 

medicine. This article presents one of the possible uses 

of signal processing, focused on the pathologies of 

voice, resulting from brain damage caused by 

vascular problems. Group of 41 patients neurology 

branch was recorded, with indications of ischaemic 

stroke, or hemorrhagic. The results clearly indicate 

the possibility of using the selected voice signal 

processing algorithms.  

Keywords :  Signal processing, voice pathology, stroke, 

vocal track filter 

 
I. INTRODUCTION 

 

Exploiting of non-invasive method for diagnosis 
purpose is frequently more popular in medical 
environment presently. Also an increasing of diagnosis 
accuracy and speed of results obtainment and simplicity 
of evaluation has been observed. Operations of these 
kinds impose miscellaneous demand in relation to length 
and qualities of samples data. Probably, non-invasiveness 
is the most desirable feature for neurologists. It results 
from serious danger of injury during invasion operations 
on most important human organ – cerebrum. That’s why 
authors have suggested considerable expansion of 
existing method of patient’s condition estimate and 
monitor hospitalization progress, on base of voice 
parameters. Existing non-invasive methods of diagnosis 
are magnetic resonance and tomography. Nevertheless, 
most often they are execute only one time, during 
acceptance of patient on ward. Besides, analyzing of 
voice is fast and convenient. 
 

II. METHODS 
 

Presently, majority applicable method does not allow 
exact results getting properly, because of susceptibility of 
algorithm on errors in progress of recording emerged, and 
come of lack or scarce correction mechanisms, which 
could be adaptable to external conditions. Besides, it 
belongs to take into consideration approximation errors. 
The simplest methods of voice quality evaluation are 

based on experienced phoniatrist opinion. The subjective 
classification of the voice requires experience and 
intuition, and cannot be applied commonly, particularly 
in comparative investigations led through the various 
medical centers. 

Objective acoustic analysis is perfect technique of 
estimate of voice quality definitely. Spectrographic, 
sonographic and the temporary analyses of the signal of 
the speech are useful in objective acoustic methods of the 
voice measure. Computer technology leaves across these 
requirements offering speed and convenience of 
computing. 

Speech signal can be regarded as a dynamic object. 
Systems that track the volatility of stocks of such plants 
make use of the linear recursive estimation. These tools 
are for tests used to evaluate both the signal input and 
output characteristics, which are the result of actions 
processing functions. There are two methods here: the 
method of least squares and the minimal-mean-square 
method. Using the first one, the average signal of N 
samples can be estimated. It can be written as: 
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That is, to present a new estimate of the average of N 
points as the sum of the old estimate, calculated on the 
basis of N-1 points, and its correction after taking into 
account the new n-th sample x(n). The adjustment is 
calculated as the weight value of the error between the 
value of a new sample, and an old estimate of a mean 
value. This pattern is the current standard in adaptive 
recursive estimation of the parameters: 
new estimate = prognoses + correction 

correction = amplification   (measurement – prognoses 

of measurement) 
where one of parameter is measured and another, related 
with it, is estimated. 

The function of the quality of least-squares estimation 
is defined as:  

)ˆ()ˆ( xHzxHzJ T −−=     (3) 
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where: z is a measured vector, x̂  is estimate of vector 

generated by physical object, and H is matrix of 
measurement system. Estimate can be appoint as: 

zHHHx TT 1)(ˆ −=     (4) 

In the case of the minimal-mean-square method 
quality function becomes: 

[ ])ˆ()ˆ( xxxxEJ T −−=     (5) 

where E[.] is the expected value in statistical terms. In 
this case, the model boils down to two equations: the 
process model and measurement model. In the case of 
estimation of power spectral density function of signals to 
the disposal are several methods. Basis, used in the study, 
is periodogram, which is the square of the module of 
discrete Fourier transform of N samples for analysed 
signal x(n), divided by N: 
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Estimators of power spectral density function in the 
majority basis of the signal on the autocorrelation 
function estimation Rxx(m) of the analysed signal x(n). In 
the case of speech, where the signal is the sum of 
sinusoidal components, and broadband white noise, part 
of their vectors depends primarily on the components of 
harmonic signals, and the other only from the noise. Their 
vectors are orthogonal and unfasten two complementary 
areas: signal and noise. For at least one known vector 
lying in the noise, you can take advantage of the fact 
ortogonality to each of the vector space of signals and 
thus set a frequency. Autocorrelation function of the 
signal can be written in the form: 
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where: k  - values of matrix of autocorrelation function, 
vk - vectors of this matrix, M - number of values of matrix 
Rxx. 
 In the classical Pisarenko method: 
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The noise has zero average and is a non-correlated 
signal, so autocorrelation function is: 

aaR syy

2σ=       (9) 

It follows that the searched vector of coefficients a is a 
vector of matrix Ryy, associated with its value s

2. 
In the investigation a method derived from Pisarenko 

- MUSIC (Multiple Signal Classification) was used. In 
this method, the frequency is estimated on the basis of 
arguments maximum of functions: 
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In addition, the calculations of spectroscopic 
estimation were carried out by Welch method. The 
analysis of variable frequency signals using non-time-
frequency representation of signals was used. Used 
Fourier transform STFT (Short-Time Fourier Transform) 
and the Wigner-Ville transform. The first can be 
interpreted as non-discredited in time and frequency 
Gabor transform. Used a description: 
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where (t) is a function of the time window of 
observation, (f) is the Fourier spectrum that acts as a 
window. 

In the case of Wigner-Ville transform should be noted 
that it perfectly reflects in the time-frequency linear 
change of frequency. By definition: 
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This representation is characterized by the highest 
concentration of energy in the time-frequency space that 
means that has the best resolution. 

In addition, in our investigation a vocal track filter 
transform is determined, witch maximum on the 
characteristics of time-frequency results from a formant 
diagram. The purpose of the designation of the 
fundamental frequency is to detect the first signal by the 
maximum value on the axis and cut the higher frequency 
harmonics. Then a maximum for each step are 
determined again in the given range. Used here with 
autocorrelation functions, which turned out to be more 
accurate than cepstral and timing method to determining 
the basic frequency. Also spectrogram of the input signal 
is appointed for power of the harmonics tracking. 

 
III. RESULTS 

 

Form of obtained speech sound is determined by 
specificity of executive voice apparatuses. Match of vocal 
strings generates sound and it subjects modulation during 
proceeding by vocal track. It depends on programming 
action of the central nervous system and the condition of 
the broadcast of stimuli in cortial-subcortial area, in the 
trunk of the cerebrum, nerves and nervous-muscular 
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synapses. That’s why authors are of an opinion that a 
large capability exists to diagnose and estimate of injury 
of cerebrum on base of analysis of patient voice. 
Additionally, it is possible to get information of progress 
of treatment in a fast and simple manner. For our study 
several patients with most commonplace injury of central 
nervous system have been included, namely strokes 
hemorrhagic and ischaemic. These patients have 
problems with speaking out, which is defined as aphasia. 
However, even at patients who are good speaking out, 
possibility of changes detection in course of chosen 
characteristics has been checked. This paper contains 
results of present evaluations, in cooperation with 
neurologists of one of hospital in Lodz. 

The investigation confirmed the usefulness of the 
signal analysis of speech in monitoring abnormalities the 
sound. The fundamental frequency was disturbed in 
almost all patients. This applies primarily to patients with 
ischaemic stroke of any cerebrum hemisphere. Patients 
with hemorrhagic stroke, and haematoma in the right 
hemisphere had little change in the fundamental 
frequency. 

 

 
Fig. 1. Fundamental frequency for patient with ischaemic 

stroke in left hemisphere in the first (top) and last 
(bottom) day of hospitalization. 

 
In some patients noted a significant increase in the 

fluctuations periodogram, with the progress of 
hospitalization. Probably this is related to the clean tone 
and the power generated by the larynx and depends on 
the vocal track in lesser extent. Interestingly, these 
changes were recorded for the case ischaemic stroke in 
left hemisphere and hematoma in the left and right 
hemisphere. 

 

 
Fig. 2. Periodogram for patient with ischaemic stroke in 

the left hemisphere in the first (top) and last (bottom) day 
of hospitalization. 

 
 In both cases, the visibility was noted significant 
differences in the characteristics of vocal track filter. In 
the first days of the charts are very flat, and differences 
appear along with the progress of treatment. Each of the 
peaks corresponds to the formant graph, which means 
that they are clearer. Here was shown also another case of 
ischaemic stroke in the left cerebral hemisphere in right-
handed person. 

 

 
Fig. 3. Vocal track filter for patient with traumatic 

haematoma in the left and right hemisphere in the first 
(top) and last (bottom) day of hospitalization. 
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For patients with ischaemic stroke in the left 

hemisphere and aphasia one noted that with the progress 
of treatment the second formant is distinguished. This is 
independent of gender. 

In addition, the Welch method of spectral estimation 
shows similar changes as the vocal track filter. In 
addition to this there is a more detailed, and thus signal 
changes can be analyzed in a more precise manner. 
Approximation should carry out, in order to remove the 
disturbance of signal and noise. 

 

 
Fig. 4. Graph of Welch estimation method for patient 

with ischaemic stroke in the left hemisphere in the first 
(top) and last (bottom) day of hospitalization. 

 
In the case of hemorrhagic stroke in the right 

hemisphere to increase the altitude of the peaks on the 
characteristics of the vocal track filter was observed. The 
changes are compatible with the emergence of a first and 
second formant. The power of the other formants 
remained unchanged. 

In right-handed person with ischaemic stroke in right 
hemisphere we also noted changes in the characteristics 
of the vocal track filter and fundamental frequency 
progress. It reflects on the first formant in terms of 
increased clarity of this formant. And in the case of the 
other formants one noted a slight decrease in their gain. 

At the same time, the results of other types of analysis 
does not give unambiguous answers to their usefulness in 
the diagnosis of disorders of speech. This may be due to 
too small amount of material inaccuracies in the test or 
imprecise calculation. In the future, it will be developed 
and tested new types of analysis on the held and the 

newly gained samples. Statistical functions will be 
designed also to computer evaluation of results. 
 

IV. CONCLUSION 
 

In accordance with mentioned limitations, using 
technique relying on more advanced signal processing for 
obtainment more precise results, we expect to open new 
capabilities in non-invasion research of patients with 
cerebrum injury with blood vessel problems. Authors 
expect, that information obtaining by using this technique 
will be helpful at diagnosis and for estimation of 
hospitalization progress for persons with mentioned 
above ailment. It can be useful supplement for 
conclusions of tomography and magnetic resonance 
images, as well as for monitoring condition of patient 
health in assigned period of time. 
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Abstract: this paper focuses on the automatic 
detection of speech pathologies by exploiting the 
estimation of the glottal source. three methods of 
estimation are compared and time and spectral 
features are extracted. the relevancy of these features 
is assessed by means of information theory-based 
measures. this allows an intuitive interpretation in 
terms of discrimination power and redundancy 
between the features. it is discussed which features 
are informative or complementary for detecting voice 
pathologies and the glottal source estimation methods 
are compared.  
Keywords:  voice pathology, Glottal source, Mutual 
information 

 
I. INTRODUCTION 

 
Perceptive evaluation performed by clinicians suffers 
from the dependency on the experience of the listener and 
the inter- and intra-judges variability. There is thus a need 
to develop objective tools. For this, a part of research in 
speech processing has focused on the detection of speech 
pathologies from audio recordings. Indeed it could be 
useful to detect disorders when perturbations are still 
weak, to prevent the degradation of the pathology, or to 
measure the voice quality before and after surgery [1]. As 
video recordings of the vocal folds show that their 
behavior is linked to the perception of different kinds of 
voice qualities, including pathologies, isolating and 
parametrizing the glottal excitation should lead to a better 
discrimination between normal and pathological voices. 
Such parametrizations of the glottal pulse have already 
been proposed both in time and frequency domains ([2], 
[3]).  

This paper pursues the work presented in [4], in 
which it was shown that features respectively extracted 
from the vocal tract and glottal contributions (estimated 
by the IAIF algorithm [5]) are synergic and can lead 
together to an efficient discrimination of voice disorders. 
The present study addresses the comparison between 
IAIF and two other methods for the same problem. As in 
[4], the performance of classification is assessed by 
computing information theory-based measures in order to 
provide an intuitive interpretation in terms of 
discrimination power, redundancy and synergy between 
the features. 

The paper is structured as follows. In Section 2, the 
different methods of glottal source estimation are 
presented. Section 3 defines the features extracted from 
the glottal source. Section 4 reviews the mutual 

information-based measures that are used in this work 
and highlights their interpretation for a classification 
problem. Experiments and results are detailed in Section 
5. It is discussed which features are informative for the 
detection of voice disorders and which ones are 
complementary. Finally Section 6 concludes. 
 

II. GLOTTAL SOURCE ESTIMATION 
 
Three methods of glottal source estimation are considered 
here: the Complex Cepstrum Decomposition (CCD) [6], 
the Iterative Adaptative Inverse Filtering (IAIF) [5] and 
the Closed Phase Inverse Filtering (CPIF) technique [7]. 
The application of these three methods on a fragment of a 
normophonic sustained vowel /a/ is presented in Fig. 1. 
 
A. Complex Cepstrum Decomposition 
 
It has been recently shown that complex cepstrum can be 
efficiently used for glottal source estimation [6].This 
method aims at separating the minimum and maximum-
phase components of the speech signal. Indeed it has 
been shown previously [8] that speech is a mixed-phase 
signal where the maximum-phase (i.e. anti-causal) 
contribution corresponds to the glottal open phase, while 
the minimum-phase component is related to the vocal 
tract transmittance (assuming an abrupt glottal return 
phase). Isolating the maximum-phase component of 
speech then provides a reliable estimation of the glottal 
source, which can be achieved by the complex cepstrum. 
 
B. Iterative Adaptative Inverse Filtering 
 
The IAIF technique [5] (publicly available in the Aparat 
Toolkit [9]) iteratively estimates the vocal tract 
contribution from the speech signal using a Discrete All 
Pole model whose order is different for the successive 
iterations. The glottal source is estimated by filtering the 
speech signal by the inverse of the filter modeling the 
contribution of the vocal tract.  
 
C. Closed Phase Inverse Filtering 
 
The CPIF technique exploits the fact that the glottal cycle 
consists of two phases, during which the vocal folds are 
respectively open and closed [7]. The key idea of this 
technique is to estimate the vocal tract transmittance 
during the closed phase, when it is assumed to be almost 
free of any excitation. Linear prediction is thus applied on 
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the speech signal during the closed phase and the glottal 
source is estimated by inverse filtering of the speech 
signal.  
 

 
Fig. 1. Comparison of the three glottal source estimations (a: CCD;  

b: IAIF; c: CPIF) for a normophonic sustained vowel. 
 

III. FEATURE EXTRACTION 
 

Features are here extracted from glottal pitch-
synchronous frames in voiced parts of speech. These 
frames are two-pitch period long, centered on the glottal 
closure instant (GCI) and weighted by a Blackman 
window. Pitch and voicing decision are computed using 
the Snack library [10] while GCIs are located according 
to the method described in [11]. 
 
A. Spectral Features 
 
The amplitude spectrum of a voiced glottal source 
generally presents a low-frequency response called 
glottal formant produced during the open phase [3]. This 
formant is here characterized both by its frequency Fg and 
bandwidth Bw.  

The spectral content of the glottal source spectrum is 
summarized by computing characteristics describing the 
repartition of its energy. The global repartition of spectral 
energy is captured in the spectral center of gravity CoG. 
A finer distribution of energy is quantified by considering 
an approach similar to [12] but using the perceptive mel 
scale. For this, the power spectral density is weighted by 
a mel-filterbank consisting on 24 triangular filters equally 
spaced along the whole mel scale. Three perceptive 
spectral balances are then computed: 
 

   (1) 

 
where PE(i) denotes the cumulated weighted power 
spectral density for the ith filter. 
 
 

B. Time Features 
 
In many studies, the glottal flow and its derivative (called 
here glottal source) have been used to characterize voice 
quality [2]. Two parameters are computed here for 
characterizing the amplitude and duration of the open 
phase of the glottal cycle. The Normalized Amplitude 
Quotient (NAQ) [2] is defined as the ratio of glottal flow 
amplitude and the minimum peak of glottal flow 
derivative, normalized by the length of the glottal cycle. 
The Quasi-Open Quotient (QOQ) [2] is defined as the 
duration during which the glottal flow is 50% above the 
minimum flow. Unlike the other parameters, NAQ and 
QOQ are computed for one glottal cycle instead of a two-
period long frame centered on the GCI. Furthermore, we 
observed in [4] that the discontinuity at the GCI is 
generally more significant in case of normal voice than in 
case of pathological voice. The minimum value at the 
GCI (minGCI) of energy-normalized glottal source 
frames is thus also considered here. 

 
IV. INFORMATION THEORY-BASED MEASURES 

 
The problem of automatic classification consists in 
finding a set of features Xi such that the uncertainty on 
the determination of classes C is reduced as much as 
possible [13]. For this, Information Theory [14] allows to 
assess the relevance of features for a given classification 
problem, by making use of the following measures 
(where p(.) denotes a probability density function): 
 

 The entropy of classes C is expressed as: 
 

(2) 
 

and can be interpreted as the amount of uncertainty on 
their determination. 
 

 The mutual information between one feature Xi and 
classes C: 

 
(3) 

 
can be viewed as the information the feature Xi conveys 
about the considered classification problem, i.e. the 
discrimination power of one individual feature. 
 

 The joint mutual information between two features 
Xi, Xj, and classes C can be expressed as: 

 
(4) 

 
and corresponds to the information that features Xi and Xj, 
when used together, bring to the classification problem. 
The last term can be written as: 



	 55

 

(5) 

 
An important remark has to be underlined about the sign 
of this term. It can be noticed from expression of   

that a positive value of  implies 
some redundancy between the features, while a negative 
value means that features present some synergy 
(depending on whether their association brings 
respectively less or more than the addition of their own 
individual information). 
 

V. EXPERIMENTS 
 

A. Database 
 
A popular database in the domain of speech pathologies 
is the MEEI Disordered Voice Database [15]. This 
database contains sustained vowels and reading text 
samples, from 53 subjects with normal voice and 657 
subjects with a large panel of pathologies. Here, all the 
sustained vowels of the MEEI Database resampled at 16 
kHz are considered. 
 
B. Mutual Information Computation 
 
To evaluate the significance of the proposed features, the 
following measures are computed: 
 

 the relative intrinsic information of one individual 
feature , i.e. the percentage of 
relevant information conveyed by the feature Xi, 

 the relative redundancy between two features 
, i.e. the percentage of their 

common relevant information, 
 the relative joint information of two features 

, i.e. the percentage of relevant 
information they convey together. 

 
For this, equations presented in Section IV are 

calculated. Probability density functions are estimated by 
a histogram approach. The number of bins is set to 50 for 
each feature dimension, which results in a trade-off 
between an adequately high number for an accurate 
estimation, while keeping sufficient samples per bin. 
Since features are extracted at the frame level, a total of 
32000 and 107000 examples is available respectively for 
normal and pathological voices. Mutual information-
based measures can then be considered as being 
accurately estimated. Class labels correspond to the 
presence or not of a voice disorder. 
 
 

C. Results 
 
The values of the measures detailed in the previous 
section for the three methods are presented in Fig. 2. For 
each table, the diagonal indicates the percentage of 
relevant information conveyed by each feature. It can be 
observed that QOQ is the most informative feature for 
CPIF and CCD methods (respectively 31.5% and 32.8%) 
while Fg is slightly more informative (25.9%) than QOQ 
in the case of IAIF method. The top-right part contains 
the values of relative joint information of two features. 
When used together, the combination of QOQ and Fg 
brings, for the three methods, the most important 
information about the classification problem, with a 
maximum value for the CPIF method (63.8%). The 
bottom-left part shows the values of relative redundancy 
between two features. For CCD and CPIF methods, Fg is 
synergic ( ) with all the features, including 
QOQ, while this latter is less synergic and in some cases 
redundant with the other features.  

The results show that applying the CCD technique 
gives generally better results than other methods in terms 
of intrinsic discrimination power. The synergy for the 
CDD technique is also the highest for most of features 
pairs. Moreover, using the combination of QOQ and Fg 
computed by CCD is the most interesting for the 
distinction between normal and pathological voices. 
Indeed, their mutual information is high, each feature 
brings its own information in the combination and is not 
redundant with the information conveyed by the other.  

For the three methods, the highest amount of 
information conveyed by the combination of two features 
is about 60%. This means that there is a need of other 
information to distinguish normal and pathological 
voices. For this, it was shown in [4] that combining only 
one vocal tract-based and one glottal feature allows 
explaining 81% of the difference between normal and 
pathological voices. 

 
VI. CONCLUSION 

 
This paper focused on the problem of automatic detection 
of voice pathologies from the speech signal. The goal was 
to compare the classification performance of the features 
extracted from the glottal source estimated by three 
different methods (CCD, IAIF, and CPIF). These features 
were assessed through mutual information-based 
measures. It turned out that CCD technique generally 
provides features that convey higher intrinsic, mutual 
information and synergy. It was also shown that the 
couple of features (QOQ, Fg) has the highest mutual 
information (63.8%) and is also characterized by a high 
synergy, meaning that their association brings more than 
the addition of their intrinsic information. 
 
 



56	

ACKNOWLEDGEMENTS 
 

The authors thank the Walloon Region, Belgium, for its 
support (grant WALEO II ECLIPSE #516009). This 
paper presents research results of the Belgian Network 
DYSCO, funded by the Interuniversity Attraction Poles 

Programme, initiated by the Belgian State, Science Policy 
Office. The scientific responsibility rests with its authors. 
Thomas Drugman is supported by the “Fonds National de 
la Recherche Scientifique” (FNRS).

 

 
 

Fig.2. Mutual information-based measures for the proposed features. On the diagonal: the relative intrinsic information. In the bottom-left part: the 
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Abstract: Sustained phonations of the vowels /a/ and /i/ 

were recorded from 89 patients with voice disorders, who 

were divided into five pathological subgroups. In 

addition, recordings were made from a control group of 

23 normophonic participants. All recordings were 

segmented into onset, steady state, and offset, and 

analyzed acoustically. Results revealed the following 

findings: 1) only minor differences were found between 

the acoustical analyses based on the steady state versus 

the entire vowel; 2) the tested acoustic measures could 

discriminate between test and control groups, but not 

among the different pathological groups; 3) the 

contribution of the data gathered from the onset and/or 

offset of the vowel did not contribute significant 

information beyond that which was provided by the 

steady state.  

Keywords: voice pathology, sustained phonation, 

acoustic analysis, vowel segment 

 

I. INTRODUCTION 

 
Acoustic analysis of voice for clinical purposes has 

become a common practice. While it is agreed that the 

selection of the stimuli (test utterance) greatly affects the 

results of the acoustic analysis [1], various acoustic 

studies have examined different test utterances. Several 

studies have performed acoustic analyses of continuous 

speech under the assumption that it better represents 

“natural” voice production and vocal dynamics. 

Therefore, continuous speech can be considered more 

likely to correlate better with perceptual evaluation of 

voice quality [2, 3, 4].  

Nonetheless, the majority of studies in the field of 

acoustic analysis of voice have examined isolated 

sustained vowels, under the assumption that they elicit a 

stationary process in the vocal folds vibration [1]. 

Because acoustic analysis of voice is, in many cases, 

based on measurements of fundamental frequency, the 

robustness of the analysis is dependent on the accuracy 

of the automatic extraction procedure of fundamental 

frequency [5]. Thus, isolated vowels are favored, since 

the extraction of fundamental frequency is more reliable 

for vowels than for speech. Whether the selection of 

sustained vowels as the test utterance is justified 

clinically, or it is merely simpler and more reliable for 

analysis, the fact is that sustained vowels are the most 

common selection for stimuli in voice analysis studies.  

Acoustic analyses of vowels are usually based on a 

segment extracted from the so-called “steady state” of the 

vowel, thus the onset and offset of the vowel are 

discarded [6]. The rationale for discarding the onset and 

offset of the vowel lays in the assumption that these 

segments do not provide crucial diagnostic information, 

or at least such information that could be identified using 

acoustic analysis. Furthermore, these segments are (by 

definition) less stationary than the steady state, and 

therefore present a challenge for automatic extraction of 

fundamental frequency.  

In contrast, a few studies have performed acoustic 

analysis on the complete vowel, without discarding the 

onset and offset from the analysis [7, 8]. These studies, 

however, did not provide the rationale for their selection 

of stimuli. Analyses of complete vowels are simpler, as 

they do not require segmentation of the vowels and 

identification of the boundaries of the steady state. In 

addition, perceptual evaluation of vowels in clinical 

setting requires the listener to evaluate all parts of the 

vowel, and not only the steady state. It was also 

suggested that valuable information on vocal folds’ 

function may be revealed in the non-stationary segments 

of the vowel [5]. Therefore, including the onset and 

offset of the vowel in the analysis is more similar to the 

natural perceptual task of evaluating voice quality of 

vowels in the clinical setting.  

It is logical to expect that values of perturbation 

parameters would be higher for complete vowels 

compared to analyses based on steady states. It is not 

clear, however, if acoustic analysis of complete vowels 

has clinical merit, and whether it could differentiate 

between pathological and healthy voices and between 

specific pathological groups. The purpose of the present 

study was, therefore, to learn whether a basic acoustic 

analysis of different segments of sustained vowels (i.e., 

onset, steady state, offset and the complete vowel) would 

yield observable differences of clinical value between 

voices of patients with different voice pathologies and 

controls. 
 II. METHODS 

 A. Subjects 

 

Two groups of subjects were included in the study. 

The first group consisted of 89 patients from the voice 

clinic in Sheba Medical center, who were diagnosed with 

different laryngeal pathologies (37 Men and 52 Women, 

mean age 43.3). The second group (control) consisted of 

23 singing students with no laryngeal pathology. All 

participants underwent a stroboscopic examination. The 

pathological group was divided into five subgroups:  

1. Benign mass lesion: nodules, polyps or cysts; 

2. Neurogenic disorders: e.g., Spasmodic disphonia, 

uni-lateral vocal fold paralysis, or paresis; 
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3. Mucosal irregularity: e.g., scarring of the epithelial 

tissue,  ectasia of vocal folds’ capillaries; 

4. Inflammations: e.g., Edema or chronic laryngitis; 

5. Functional: disordered voice with no observed 

laryngeal pathology. 

 

Eight patients were discarded from the initial pool of 

97 potential participants, due to noisy or interrupted 

recordings, or due to lack of periodicity in the voice 

signal. Table 1 summarizes the information of the 

subjects in the different study groups. 

 

Table 1 – Division of subjects into groups 

Age 

(years, SD)
GenderNGroup

35.1 (12.3)15 Women

   5 Men 

201. Mass lesion

55.5 (12.2)6 Women

59.2(10.4) 12 Men 

182. Neurogenic 

42.8  6 Women

44.8   5 Men 

113. Mucosal irr.

46.2 (15.0)10 Women

47.4   10 Men 

204. Inflammation

35.3(16.1) 15Women

   5 Men 

205. Functional

23.2   11 Women 

  12 Men

2310. Control 

 

 B. Procedure 

 

Recordings: Recordings were performed individually in a 

quiet room, using a Sennheiser PC150 headset 

microphone, connected directly to a computer soundcard, 

sampling at 48kHz, 16 bits. Each subject was instructed 

to produce sustained phonations of /a/ and /i/ for 2-5 

seconds. Each vowel was recorded six times, of which 

two were analyzed in the present study. 

 

Segmentation: All recorded vowels were divided 

manually, by an experienced clinician, into three 

segments: onset, steady state and offset. Criteria for 

determining the boundaries between segments were 

based mainly on stability of the intensity contours. For 

this purpose, the F0 contours were inspected 

simultaneously, but for most recordings they did not 

provide sufficiently clear indications to be used for 

setting boundaries. Intrajudge and interjudge reliability 

were evaluated for 20% of the data, using Pearson 

correlation. High correlation coefficient values were 

obtained for both reliability measures (0.88<r<0.99, 

p<0.0001; and 0.89<r<0.98, p<0.0001, respectively). 

It was interesting to observe that both onset and offset 

segments could be classified into three groups, based on 

the shape of the intensity contour. Onsets were either (1) 

a rapid ramp-up to the steady state; (2) a rapid ramp-up 

followed by a small decay down to steady state levels; 

(3) a segment of chaotic changes in intensity before 

stabilizing to a steady state level. The intensity of the 

offset segments presented similar patterns: (1) an abrupt 

decay; (2) a small rise before an abrupt decay; (3) a 

chaotic decay. 

 

Acoustic Analysis: All recordings were subjected to 

acoustic analysis. This analysis was performed once over 

the entire recording, and then over each of the three 

segments separately. The following seven acoustic 

features were calculated using Praat software: 

 

1) Duration, 2) Mean F0, 3) F0 std, 4) Jitt er (Local), 

5) Shimmer (Local), 6) Autocorrelation and 7) HNR. 

 

Additionally, a set of 200 acoustic features were 

calculated using ad-hoc software written in Matlab. 

These are described in detail in Kessous et al. [9]. Based 

on prior experience with this set of measures, nine were 

selected for inclusion in this study: 

 

8)  LTAS std - standard deviation, 

9)  Bark-std – Standard deviation of the mean energy of 

Bark scale spectral decomposition, 

10)  Bark-high - Ratio of mean energy in the higher half 

of spectrum versus lower half of spectrum in bark 

scale decomposition, 

11)  Bark-2/4 - Ratio of mean energy in the second 

quarter of the spectrum to the entire spectrum of 

bark scale decomposition, 

12)  Fourier-freq - Energy in the 25-50Hz band of the 

Fourier decomposition of the F0 contour, 

13)  Fourier-int - Energy in the 25-50Hz band of the 

Fourier decomposition of the intensity contour, 

14)  MicPr-freq - Regression error of a 3
rd

 order 

polynomial fit to the F0 contour, 

15)  MicPr-int - Regression error of a 3
rd

 order 

polynomial fit to the intensity contour, 

16)  Fourcin - A measure of F0 irregularity based on the 

work of Fourcin & Abbertion [10]. 

F0 contours were also calculated by Praat and 

corrected manually for octave errors by an experienced 

research assistant. Overall, these acoustic measures can 

be divided into three groups: (a) F0 based features (2, 3, 

4, 6, 12, 14, 16); (b) Intensity based features (5, 13, 15) 

and (c) spectral features (7, 8, 9, 10, 11).  

 

 

 

III. RESULTS 

MANOVA with repeated measures was applied to the 

data. In this analysis, pathology group and gender were 

defined as fixed variables, while vowel (/a/, /i/) and 

segment (onset, steady state, offset, all) were treated as 

repeated measures. 
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Table 2 summarizes the Group main effect results for 

all acoustic measures, and ad-hoc group contrasts 
 

Table 2 – Summary of MANOVA main effects for 

Group, and ad-hoc groups contrasts (groups 

are numbered based on table 1) 

Measure  Group main effect Contrasts* 

Duration F
†
=38.33,p<0.0001 10>1,2,3,4,5 

Mean F0 F
†

 =2.03, p=0.08 NA 

F0-std F
†

 =4.81, p=0.0006 10<1,2 

Jitter F
†

 =3.02, p=0.01 10<2 

Shimmer F
†

 =0.77, p=0.58 NA 

Autocorr. F
†

 =1.39, p=0.23 NA 

HNR F
†

 =4.34, p=0.0014 10<5 

LTAS-std F
†

 =8.13, p<0.0001 10<1,4,5; 2<1,5 

Bark-std F
†

 =0.84, p=0.52 NA 

Bark-high F
†

 =2.94, p=0.0164 NA 

Bark-2/4 F
†

 =0.80, p=0.52 NA 

Fourier-freq F
†

 =5.77, p<0.0001 10<1,2;  5<2 

Fourier-int F
†

 =3.58, p=0.0052 10<5 

MicPr-freq F
†

 =6.00, p<0.0001 10<1,2,3;  4<1 

MicPr-int F
†

 =10.48,p<0.0001 10<1,3,4,5; 2<1 

Fourcin F
†

 =4.03, p=0.0024 10,5<1 

(
†
df=5,92;  *adjusted p<0.05) 

 

Generally, in the parameters that yielded a significant 

Group effect, a significant contrast was found between 

one or more pathology group and the control group 

(#10). Very few significant contrasts were found among 

the five pathological groups. These contrasts were not 

consistent using the different parameters.  
 

Table 3 - Summary of MANOVA main effect for 

Segment (Ons=onset, Sts=steady state, Offs=offset, 

All=complete vowel), and ad-hoc group contrasts 

  (
†
df=3,293;  *adjusted p<0.05) 

 

Table 3 summarizes the results of the main effect for 

Segment, and post hoc significant contrasts. As can be 

seen, most parameters yielded a significant main effect 

for Segment. Nonetheless, in most cases there was no 

significant difference between the values obtained from 

the steady state (Sts) and from the complete vowel (All).  

A significant interaction between Group and Segment 

was found for nine of the parameters tested. These 

included Duration (F(15,293)=61.55, p<0.0001), Mean F0 

(F(15,293)=1.92, p=0.02), Jitter (F(15,293)=2.34, p=0.0036), 

Autocorrelation (F(15,293)=2.67, p=0.0008), HNR 

(F(15,293)=3.30, p=0.001), Bark-std (F(15,293)=4.36, 

p<0.0001), MicPr-freq (F(15,293)=2.40, p=0.0027), MicPr-

int (F(15,293)=7.01, p<0.0001) and Fourcin (F(15,293)=1.87, 

p=0.026). Table 4 presents the significant group contrasts 

within the four segment categories, only for these 

parameters. Data show that the majority of the group 

contrasts were found either in the steady state or in the 

complete vowel. Only a few group contrasts could be 

found based on the analyses of the onset and offset of the 

vowels. Similar results were found when analyses were 

based on the steady state and on the complete vowel. 

 

Table 4 – Significant group contrasts (adjusted p<0.05) 

within the four segments, for the acoustic measures 

that yielded a significant Group X Segment 

interaction (groups are numbered based on table 1) 

 

Measure Ons Sts Offs All 
Duration 

 

NA 10>1,2,3,4,

5 

NA 10>1,2,3,4,

5 

Mean F0 2>10 2>10 

3>4 

3>4 2>10 

3,10>4 

Jitter 

 

1>3,4,10 2>4,10 NA 2>4,10,5 

Autocorr. 

 

NA 4>10 5>10 4>10 

HNR 3>10 1,3,4,5>10 

3,4,5>2 

4,5>10 1,3,4,5>10 

3,5>2 

Bark-std 

 

NA NA 10>1,5 NA 

MicPr-

freq 

1>4,10 1,2>4,5,10 1>4 

2>10 

1>4,5,10 

2,3>10 

MicPr-Int 4>10 

1>5,10 

1>4,10 

5>2,4,10 

NA 1,3,4,5>10 

5,4>2;1>3,

5 

Fourcin 1>2,3,4,5,10 2>1,5,10 

3>5,10 

NA 1,3>10 

 

A significant difference between the two vowels was 

found for the following measures: Duration (F(1,95)=7.28, 

p=0.0083), Mean F0 (F(1,95)=86.18, p<0.0001), 

Autocorrelation (F(1,95)=17.66, p<0.0001), HNR 

(F(1,95)=118.28, p<0.0001), Bark-high (F(1,95)=144.41, 

p<0.0001), Bark-2/4 (F(1,95)=1169.11, p<0.0001), 

Fourier-freq (F(1,95)=4.22, p=0.04),  Fourier-int 

(F(1,95)=38.03, p<0.0001) and MicPr-int (F(1,95)=116.9, 

p<0.0001).  

Gender differences were found for the following 

measures: MeanF0 (F(1,92)=122.6, p<0.0001), Bark 2/4 

(F(1,92)=6.73, p=0.01), Fourier-freq (F(1,92)=9.18, 

p=0.0001), Fourier-int (F(1,92)=17.1, p<0.0001) and 

MicPr-freq (F(1,95)=11.66, p<0.0001). 

Measure  Segment main effect Contrasts* 

Duration F
†
=2945.53, p<0.0001 All>Sts>Ons>Offs 

Mean F0 F
†
=1.10, p=0.35 NA 

F0-std F
†

 =30.70, p<0.0001 Ons>All>Sts,Offs 

Jitter F
†

 =3.83, p<0.0001 Offs>Ons>All,Sts 

Shimmer F
†

 =47.56, p<0.0001 Offs>Ons>All,Sts 

Autocorr. F
†

 =47.90, p<0.0001 Sts,All>Offs,Ons 

HNR F
†
=80.91, p<0.0001 Sts,All>Offs,Ons 

LTAS-std F
†

 =280.7, p<0.0001 Ons>All,Sts>Offs 

Bark-std F
†
=33.00, p<0.0001 Ons,All>Offs>Sts 

Bark-high F
†
=7.13, p<0.0001 Ons>All,Sts,Offs 

Bark-2/4 F
†

 =24.25, p<0.0001 Ons>All,Sts>Offs, 

Fourier-freq F
†
=2.31, p=0.13 NA 

Fourier-int F
†
=41.28, p<0.0001 All>Sts 

MicPr-freq F
†
=36.31, p<0.0001 Ons,All>Sts,Offs 

MicPr-int F
†
=218.74, p<0.0001 All>Ons>Sts>Offs 

Fourcin F
†
=17.11, p<0.0001 Ons>Offs>All,Sts 
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IV. DISCUSSION 

 

Results demonstrate that most acoustic measures 

differentiated significantly between the control group and 

one or more of the pathological groups. However, in 

most cases, differences among the five pathological 

groups failed to reach statistical significance. This is 

reminiscent of previous studies [3, 4]. It indicates that the 

acoustic measures tested can serve as an indication of 

pathological voice, but not differentiate among 

pathologies.  

Some significant differences were found between the 

acoustic features obtained from the different vowel 

segments. For the majority of features, no significant 

differences were found between the values obtained for 

the steady-state and for the entire vowel. This can be 

interpreted as weakening the clinical justification for 

extracting the steady-state of the vowel for acoustic 

analysis, as analysis of the complete vowel provides 

similar results. 

Similar clinical contrasts (i.e., group differences) 

were obtained for analyses based on the steady state and 

on the complete vowels. On the other hand, analyses 

based on the onset and offset of the vowel revealed only 

a limited number of group contrasts. Furthermore, in 

contrast to our expectations, the analyses of the onset and 

offset did not reveal additional group differences that 

were not revealed by the analyses of the steady-state 

alone or the complete vowel. 

Apparently, the onset and offset of the vowel did not 

provide additional acoustic cues for the comparison 

among pathological groups, which could be identified 

using the acoustic measures included in the present 

study. This can be interpreted as further support for the 

use of acoustic analysis of complete vowels for clinical 

comparison between pathological groups and control, in 

a parallel manner to the use of the steady state.  

It should be noted, though, that different results might 

have been obtained if the allocation of patients to the 

pathological subgroups was done differently, or if 

additional acoustic measures had been analyzed. 

Different acoustic measures, which are specifically 

designed to examine the onset/offset of the vowel, could 

provide additional valuable clinical information that 

might assist in differentiating among pathologies. 
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Abstract: In this study, the voice quality of 40 patients 

was assessed, with the Universidade de Aveiro’s Voice 

Evaluation Protocol. The sample included 40 patients 

with a variety of clinical diagnoses. A number of 

acoustic parameter were extracted including: median 

F0, mean F0, F0 std deviation, Jitter and Shimmer 

and HNR. Analysis of the correlation between 

corresponding parameters of the CAPE-V and 

GRBAS scales was made.  The perceptual parameters 

grade (global in CAPE-V), roughness and breathiness 

were also compared individually with the objective 

acoustic parameters. 

Keywords :  Voice, assessment, acoustic parameters 

 
I. INTRODUCTION 

 

Studies in the area of voice assessment still lack 

objectivity in the description and evaluation of many 

aspects of vocal quality. In therapeutic practice in 

Portugal, the assessment of vocal pathologies is not 

uniform, because each Speech and Language Therapist 

(SLT) uses individual and diverse assessments to 

evaluate. The patient is assessed with scales that try to 

include the most important and appropriate parameters 

for each patient, based on existing protocols [1-11] which 

have normally been developed for languages other than 

European Portuguese (EP) and which, therefore, may not 

capture or account for language specific features of voice. 

Although voice quality measures using GRBAS [11] are 

normally considered to be language independent, the 

performance of this scale for assessment of EP has not, to 

date, been systematically tested.  It is not the scale we 

expect to be language dependent, but the material used to 

carry out the test (e.g., if the text is English some EP 

vowels will be missing and some non-EP vowels might 

be included). 

The aim of this project was to develop the first 

standardised and evaluated protocol for subjective voice 

assessment in EP: Universidade de Aveiro’s Voice 

Evaluation Protocol [12]. It is intended as a working tool 

for Speech and Language Therapists (SLTs), which 

brings together a range of essential information, thus 

preparing patients for a therapeutic intervention. SLTs 

involved in future studies will use the same evaluation 

instrument to acquire data that is comparable, thereby 

normalising the practice and nomenclature for this area of 

intervention and allowing also better inter-professional 

communication. A pilot study to test the reliability of the 

protocol including the analysis of inter-rater correlation, 

using a group of patients with various vocal disorders, 

has been reported elsewhere [12].  

The full voice evaluation protocol includes a wide 

range of parameters for assessing vocal function (see [12] 

for a complete description) but we concentrate here on 

parameters for subjective assessment of voice quality and 

on objective measures derived from the acoustic signal. 

Perceptual analysis of voice quality includes the 

application of an EP version of the CAPE-V [10] 

developed as part of this project and of the GRBAS [11] 

scales. The EP version of the CAPE-V [12] includes six 

new EP sentences designed to stimulate production of 

every oral vowel in EP, easy onset with /s/, voiced-only 

phonemes, hard glottal attack, nasal phonemes and 

voiceless stops, as described in [10].  

Perceptual analysis is based on sustained productions 

of /a, i, u, O/, CAPE-V sentences and reading the EP 

version of the “The North Wind and the Sun” passage, 

recently proposed as a standard text for “Advanced Voice 

Assessment” [13]. 

In our previous study [12], the reliability of the voice 

quality protocol was tested, using two independent raters, 

who evaluated, coincidentally, a group of patients who 

exhibited some change in voice quality. 

The protocol parameters severity, roughness, 

breathiness, change of loudness (CAPE-V), grade, 

breathiness and strain (GRBAS), presented high 

reliability and were highly correlated (with good inter-

rater agreement and a high value of correlation [12], 

similar results to assessments of other languages [1, 4, 

14]). Values for the overall severity and grade were 

similar to those reported in the literature. 
 

II. METHOD 
 
In this study, the voice quality of 40 patients was 

assessed, with the Universidade de Aveiro’s Voice 

Evaluation Protocol [12] (with full ethics committee 

approval). These patients had been admitted to the 

Department of Otolaryngology of the Hospital de São 

João, Porto, Portugal. The sample included several 

clinical diagnoses: nodules, polyps, hypotonia of the 
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vocal folds, Reinke’s oedema, musculo-skeletal 

syndrome and dysfunctional dysphonia. The diagnosis for 

the sample was made by an experienced SLT and an 

Otorinolaringology consultant. 

The speech tasks were recorded directly onto a PC, 

using Praat 5.1.10 [15] in a quiet environment.  

The majority of recordings used a Sony F-V220 

microphone and a SoundMAX Digital Audio internal 

soundcard (16 bits and 22050 Hz sampling frequency). A 

small number of recordings were made instead with an 

external sound card Edirol UA-25, set to 16 bits and 

44100 Hz sampling frequency, and a Sennheiser e815S 

microphone. During the recordings, the microphone was 

held on a tripod placed 25-30 degrees to the left of the 

patient's mouth, at a distance of 30-40 cm. 

Various acoustic parameters were extracted from the 

audio signal using Praat 5.1.10 [15] including: F0 Hz 

(median), F0 Hz (mean), F0 (std deviation), Jitter% (ppq5 

– five-point frequency perturbation quotient equivalent to 

MDVP’s PPQ) and Shimmer% (apq11 – eleven-point 

amplitude perturbation quotient equivalent to MDVP’s 

APQ) and HNRdB (mean Harmonics-to-Noise Ratio). 

A single sustained sample selected from each speaker’s 

productions of vowel /a/ was used to extract the acoustic 

parameters using the following criteria: one token 

“considered as perceptually closest to the subject’s 

natural voice” [16, p. 23] and produced with a 

“comfortable pitch and volume” [16, p. 23]; 100 

consecutive cycles taken 200 ms after phonation onset 

[17, p. 1261] were used for analysis. 

Analysis of the correlation between corresponding 

parameters of the CAPE-V and GRBAS scales was made.  

The perceptual parameters grade (global in CAPE-V), 

roughness and breathiness were also compared 

individually with the objective acoustic parameters. 

Acoustic parameter data and scale evaluation scores 

were compared to find statistically significant differences 

between males and females using the Mann-Whitney U 

Test. Correlation analysis (Spearman correlation test) 

between the perceptual parameters in CAPE-V and 

GRBAS scales (global in CAPE-V and grade in GRBAS, 

roughness and breathiness) were also evaluated with the 

acoustic parameters: median F0, mean F0, standard 

deviation F0, jitter ppq5, shimmer apq11, and mean 

HNR. Finally, analysis of the correlation (Spearman 

correlation test) between corresponding parameters of the 

CAPE-V and GRBAS scales was made. All statistical 

analyses were conducted using SPSS 13.0 and a p value 

of less than 0.05 was considered significant. All data 

presented are given in mean ± standard deviation (S.D.)  

 

III. RESULTS 

 

In the tables below, the variable total represents the case 

when male and female data is combined.   

Table 1 shows correlation analysis between CAPE-V 

and GRBAS scales. Statistical significances are found 

between the perceptual subscale grade from GRBAS and 

subscales global and roughness from CAPE-V, roughness 

in GRBAS and global in CAPE-V, and breathiness in 

GRBAS and in CAPE-V. The correlation values are 

good, ranging from 0.60 to 0.87, with the exception of the 

correlation value between the subscale roughness in 

GRBAS and the subscale global in CAPE-V for the total 

value. The results found for males alone can be ascribed 

to the smaller sample size. 

Table 2 presents the acoustic parameter data and scale 

evaluation scores. The sample consists of 9 males (mean 

age 56.11±3.55) and 31 females (mean age 43.29±2.36).  

Statistically significance differences between males and 

females are found in age, median F0, mean F0, jitter 

ppq5, mean HNR and in several parameters in the CAPE-

V scale (global and roughness) and in the GRBAS scale 

(grade and roughness). Such differences in the acoustic 

parameters are to be expected. The differences in scales 

can be explained due to the smaller number of males. 

Table 3 shows the correlation analysis between the 

CAPE-V and GRBAS scales with the selected acoustic 

parameters. Statistical significances are found for median 

F0 and mean F0 with the perceptual subscales global and 

roughness for CAPE-V and grade and roughness for 

GRBAS. However, the correlations are weak, with values 

ranging from -0.38 to -0.60. No significant differences 

are found when we consider either only the male sample 

or the other acoustic parameters.  

 

IV. DISCUSION AND CONCLUSIONS 

  

The two scales (GRBAS and CAPE-V) have been 

previously used simultaneously [4], with results showing 

a strong correlation between the two rating systems 

(Spearman’s correlation coefficients from ranging 0.89 to 

0.95) for:  GRBAS grade vs. CAPE-V global; GRBAS 

roughness vs. CAPE-V roughness; GRBAS breathiness 

vs. CAPE-V breathiness. Our results have also shown a 

good correlation except for roughness, because the term 

used in EP and Brazilian Portuguese for Grade is “grau 

de rouquidão”, which (see Table 1), appears to have been 

erroneously related to the CAPE-V EP term “rouquidão” 

(roughness). 

This issue will be addressed in the future with a further 

validation of the EP version of CAPE-V that will use the 

procedures presented in [18], including the production of 

a CD-ROM with voice samples to be evaluated, voices 

used for training and samples of voices that represent 

specified grades of severity.  

The lack of success in finding hypothesised 

correlations between acoustic and perceptual measures 

have long been known [19, pp. 75-80], and do not seem 

to be related to language specific characteristics, as our 

results have shown, even when we limit our set of 
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acoustic and perceptual parameters as in [20]. Different 

factors contribute to a failure to find consistent 

correlations: deficiencies in the theoretical framework; 

incoherencies in the definitions of parameters; limitations 

in estimation techniques [19, pp. 75-80]. 

Ongoing and future work will extend this study to a 

larger number of patients, especially by increasing the 

number of males analysed, so the protocol can be used 

with more confidence. The pilot protocol presented in 

[12] has a large number of parameters and it is intended 

to evaluate these further to derive, if possible, a best set 

of parameters for EP voice quality assessment.  
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Table 1. Correlation analysis between CAPE-V and 

GRBAS scales. 

 GRBAS 

CAPE-V Grade Roughness Breathiness 

Global 

Male 

Female 

Total 

Roughness 

Male 

Female 

Total 

Breathiness 

Male 

Female 

Total 

 

0.00 

0.65* 

0.60* 

 

0.23 

0.79* 

0.75* 

 

-0.18 

0.09 

0.04 

 

0.86* 

0.20 

0.42* 

 

-0.14 

0.14 

0.26 

 

0.67* 

-0.10 

0.08 

 

0.24 

0.26 

0.20 

 

-0.15 

-0.19 

-0.20 

 

0.63* 

0.87* 

0.80* 

* Spearman correlation test, statistical significance 

(p<0.05).   
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Table 2. Acoustic parameters and scale evaluation scores (Gender: Male=9, Female=31; Age: Male=56.11±3.55*, 

Female=43.29±2.36*, Total=46.18±13.62).  

Acoustic parameters Mean ± S.D. Scales Mean ± S.D. 

 

Median F0 (Hz) 

Male 

Female 

Total 

Mean F0 (Hz) 

Male 

Female 

Total 

Std Dev F0 (Hz) 

Male 

Female 

Total 

Jitter ppq5 (%) 

Male 

Female 

Total 

Shimmer apq11 (%) 

Male 

Female 

Total 

Mean HNR (dB) 

Male 

Female 

Total 

 

 

123.88±7.59* 

184.93±6.11* 

171.19±40.76 

 

124.09±7.62* 

184.86±6.10* 

171.19±40.65 

 

2.50±0.42 

2.63±0.51 

2.60±2.57 

 

0.85±0.28* 

0.34±0.04* 

0.45±0.49 

 

3.68±0.56 

2.99±0.48 

3.15±2.46 

 

12.28±1.56* 

17.88±0.84* 

16.63±5.20 

CAPE-V 

Global 

Male 

Female 

Total 

Roughness 

Male 

Female 

Total 

Breathiness 

Male 

Female 

Total  

GRBAS 

Grade 

Male 

Female 

Total 

Roughness 

Male 

Female 

Total 

Breathiness  

Male 

Female 

Total 

 

 

0.62±0.07* 

0.41±0.04* 

0.46±0.21 

 

0.63±0.04* 

0.42±0.05* 

0.46±0.24 

 

0.37±0.10 

0.36±0.04 

0.36±0.25 

 

 

2.33±0.17* 

1.55±0.15* 

1.73±0.85 

 

0.89±0.31* 

0.32±0.13* 
0.45±0.81 

 

1.22±0.32 

1.22±0.14 

1.23±0.83 

* Mann-Whitney test, statistical significance (p<0.05).   

 

Table 3. Correlation analysis between the CAPE-V and GRBAS scales with the selected acoustic parameters: median F0, 

mean F0, standard deviation F0, jitter ppq5, shimmer apq11, and mean HNR. 

 Acoustic parameters 

Scales Median F0 (Hz) Mean F0 (Hz) Std Dev F0 (Hz) Jitter ppq5 (%) Shimmer apq11 (%) Mean HNR (dB) 

CAPE-V 

Global 

Male 

Female 

Total 

Roughness 

Male 

Female 

Total 

Breathiness 

Male 

Female 

Total  

 

 

-0.08 

-0.41* 

-0.49* 

 

0.13 

-0.55* 

-0.60* 

 

0.00 

0.17 

0.12 

 

 

-0.08 

-0.39* 

-0.48* 

 

0.13 

-0.53* 

-0.58* 

 

0.00 

0.20 

0.14 

 

 

0.43 

-0.09 

0.00 

 

-0.06 

0.04 

0.03 

 

0.38 

0.04 

0.12 

 

 

0.22 

0.08 

0.20 

 

0.16 

0.19 

0.29 

 

0.10 

0.10 

0.08 

 

 

0.34 

0.00 

0.13 

 

0.26 

-0.01 

0.12 

 

0.12 

0.11 

0.10 

 

 

-0.29 

0.03 

-0.18 

 

-0.16 

-0.10 

-0.27 

 

-0.05 

0.00 

0.00 

GRBAS 

Grade 

Male 

Female 

Total 

Roughness 

Male 

Female 

Total 

Breathiness  

Male 

Female 

Total 

 

 

-0.09 

-0.52* 

-0.58* 

 

-0.26 

-0.22 

-0.38* 
 

0.29 

0.20 

0.18 

 

 

-0.09 

-0.48* 

-0.56* 

 

-0.26 

-0.24 

-0.39* 
 

0.29 

0.24 

0.20 

 

 

-0.09 

0.10 

0.09 

 

0.13 

0.02 

0.05 

 

0.03 

-0.07 

-0.05 

 

 

-0.18 

0.10 

0.17 

 

-0.21 

0.21 

0.19 

 

0.24 

0.05 

0.06 

 

 

-0.37 

-0.06 

0.02 

 

-0.16 

0.26 

0.19 

 

0.24 

0.09 

0.13 

 

 

0.00 

-0.02 

-0.18 

 

-0.19 

-0.22 

-0.30 

 

0.16 

0.03 

0.08 

* Spearman correlation test, statistical significance (p<0.05). 
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Abstract: the voice handicap index (vhi) is a 
widespread instrument for measuring the psycho-
social handicapping effect of a voice disorder over 
3 domains, the physical (p), the emotional (e) and 
the functional (f) domain. it is a disease specific 
quality of life instrument and consists of 30 
items/statements (10 in each domain), which are to 
be scored from 0 to 4 with a maximum score of 
120. the higher the score, the more there is a 
handicapping effect caused by the voice disorder. 
an abridged version (10 out of the 30 statements : 
vhi10) has been proposed and validated.  
spasmodic dysphonia (sd) patients (adductor 
type) are known to report in average extremely 
high vhi-scores. a detailed analysis is necessary 
to get better understanding of this phenomenon, 
particularly in the scope of therapy effects with 
botulinum toxin injections. 
 

I. MATERIAL AND METHODS 
 
 28 VHI forms were filled in and analyzed : 24 are 
originating from 12 patients diagnosed with adductor 
SD, and investigated (just) pre- and (a few weeks) 
post treatment. 3 patients had no post-treatment self-
evaluation. 1 patient had 2 pre- self-evaluations at 
different moments, with a time interval of several 
months. There were 9 females and 6 males. Mean age 
was 60,6 (+/- 9,3) years. 
 

II. RESULTS & DISCUSSION 
 
The average pre-therapy score is 64.17 (+/- 21.98), 
and is reduced to 48.75  (+/- 22.54) after treatment. A 
reduction of 15,41 points may be considered as 
clinically relevant for a group design. 
A paired comparison pre-/post also demonstrates a 
significant improvement in voice-related quality of 
life (p = .039). The effect size is to be considered as 
medium to large (Cohen’s d = .7). The median value 
for the VHI-score in the general population is 6 with 
an asymmetrical distribution (p 25 = 2; p75 = 12; p90 
= 23; p95 = 32.8). None of our patients originally 
scores within the p95 range of the general population, 
but 33% shift to this range after treatment. No clear 
age or gender related effect is observed. Factor and 
principal component analysis identifies clusters of 

statements, but these differ from the P, E and F 
domains as defined by the original authors. Clusters 
of statements can be ranked according to their 
sensitivity to changes induced by therapy. Scores of 
the total VHI are also correlated with those of the 
VHI10. 
 

III. CONCLUSION 
 
Patients with SD report a strong impact of their voice 
disorder on their quality of life, but VHI (and VHI10) 
are sensitive to therapeutic changes. Clustering of 
statements is possible, but these clusters differ from 
the original ‘domains’. Ranking these clusters 
according to their sensitivity to changes induced by 
therapy provides interesting insights in the 
background of self-assessment. 
 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.
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Abstract: ‘Adductor spasmodic dysphonia’ (SD) is 
a focal laryngeal dystonia mainly resulting in a 
strained voice quality with spastic voice breaks 
and frequency shifts, perturbing fluency and 
intelligibility. it is well known that sd-patients 
report unusually high scores on the vhi, as they 
experience their disease as seriously impairing  
their quality of life. the standard treatment is 
botulinum toxin (bt) injection in the 
thyroarytenoid muscles, in order to interfere with 
the perturbed sensory feedback loop of kinetic 
muscle tension regulation. the mode of action of 
this toxin is at cholinergic nerve terminals where it 
inhibits the release of acetylcholine.  however, the 
globally favourable effects are only temporary, in 
part because of the formation of remodeled 
neuromuscular junctions after a few months, but 
the botulinum injections can be repeated. there is 
a lack of information about long term effects. 
 

I. MATERIALS AND METHODS 
 
In the current study, long term evolution is analysed 
in 19 patients having been injected with BT between 
4 and 18 times over periods of 3 to 16 years. Our 
approach is based on 
(1)  a differentiated perceptual panel rating, including 
conventional and dedicated parameters 
(2)  a computerized program for signal analysis that 
is suited for  irregular voices, and that mainly deals 
with voicing and aperiodicity criteria. Material is a 
phonetically selected constantly voiced sentence. 
(3) a patient’ self evaluation on 2 visual analog 
scales: voice quality itself and social/occupational 
handicap. 
(4) a quantification of side effects : temporary 
breathiness and aspiration 
 

II. RESULTS 
 
Moments of treatment clearly determine a saw teeth 
effect in most parameters, particularly those self 
evaluated by the patient. Over time the acoustic 
parameters just before a new injection become 
significantly less deviant, without reduction of time 
delay between the injections. This differs from the 
patient’s self evaluations : the pre-treatment scores 
worsen with time, while the best scores between 
consecutive injections remain remarkably stable. 
 

III. CONCLUSION 
 
Repeated BT injections remain active even at long 
term, but Spasmodic Dysphonia cannot be cured with 
Botulinum. There seems to be an individual ceiling 
effect for the achievable functional result. Objective 
measurements demonstrate stability, even a slight 
improvement over time. Patient’s self evaluations 
worsen over time. Side effects do not grow worse. 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.
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Abstract: this paper presents a methodology for 
feature selection in dynamic problems based on the 
analysis of the variation of linear components in 
acoustic features combined with an estimation of the 
ratio between a compactness measure to the 
separation measure. the methodology is applied to 
the automatic detection of voice disorders by means of 
stochastic dynamic models; results showed a 
significant reduction in the number of features,  
96.6% of accuracy, and a 62.2% of computational cost 
reduction.  
Keywords: dynamic features, hMM, pca, feature 
selection, pathological voice, clustering.  

 
I. INTRODUCTION 

 
During phonation of sustained vowels, the normal 

voice is a regular and periodic signal; however changes in 
its waveform can be appreciated if some disorders arise. 
Moreover, the classical distortion measures based on 
fluctuations of acoustic measures may be complemented 
with dynamic features obtained from its contours, as 
pointed out by other studies [1]. One of the key properties 
that make dynamic features useful is that they consider 
changes in the temporal structure of the excitation signal. 
Short term features combined with dynamic classifiers 
(e.g. Hidden Markov Models - HMM), have been used in 
the classification of pathological voices [2]. But, it is no 
clear whether gathering of dynamic features should lead 
to an improved representation capability, and hence to 
higher performance of the dynamic classifier. Namely, in 
voice recognition where the training data are labeled, a 
projection is often required to emphasize the 
discrimination between the clusters. Therefore, a more 
detailed study should be conducted to assess the 
relevance of dynamic features that describe pathologies, 
which could be used in data analysis and evaluation to 
support diagnose by automatic dynamic classifiers. 

Performance in training of pattern recognition systems 
to detect pathologies can be increased, if proper feature 
extraction is done. Training procedures usually deal with 
a high number of features, nevertheless a high dimension 
input space means significant processing time, higher 
cost of the collected biosignal records since more 
observations are needed, and the well known curse of 
dimensionality phenomena [3]. 

The aim of this paper is to assessment an approach 
combining PCA with HMM for pathological voice 
diagnosis based on a concrete cluster validity measure. 
For this purpose, the feature selection methodology 
presented in [2], is adopted, and by incorporating both 
measures of cluster separability and cluster compactness, 
it is showed that one can provide analysis of clustering 
scatter for groups with varying populations. The method 
is tested on the voice disorders database developed by 
The Massachusetts Eye and Ear Infirmary Voice 
Laboratory (MEEIVL).  

This paper makes a contribution to the effort to make 
an automatic discrimination between pathological and 
normal voice.  

II. METHODS 
 
a.  hidden Markov Models 

Hidden Markov models are double-layer stochastic 
processes, composed of a hidden layer that controls the 
time evolution of spectral characteristics of an observable 
layer. A hidden Markov model has N distinct states and 
each state is uniquely defined by an observation (or 
output) probability density, usually a mixture Gaussian 
density (continuous case) or a discrete density (Discrete 
case), that provides a likelihood for a given vector having 
been generated by the state. The transition from a state is 
governed by the state transition probabilities and 
influenced by the current observation vector. The state 
observation and transition probabilities provide a 
probabilistic mechanism for association of a time 
sequence of vectors with a given HMM model [4].  

 
b.  principal component analysis in dynamic features  

Widely known approaches, like PCA [5,6,7] and 
sequential search methods, have been customized as 
eature selection methods for the use with a HMM 
classifier. Assuming that the input contour data are highly 
correlated, linear transformation methods such as PCA 
tries to exploit the correlation present in the data by 
projecting the data onto a new space where the axes are 
orthogonal to each other.  

Let  , 1, ,ij k k m    be the j-th dynamic feature 
belonging to i-th observation, where 1, ,j p  , 

1, ,i n  ; being n  the number of observations and p  
the number of features, which change over time k. Each 

principal coMponent analysis for hMM-based patholoGical 
voice detection  
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vector observation iξ  can be represented by a supervector 
of size 1mp : 

            T
1 1 1 2 2[ 1 , 2 , , , 1 , , , ]i i i i i i ipm m m     ξ  

The respective covariance matrix, after centering each 
one of the observation supervectors is computed as: 

0 0 T

1

1 1n
T

i i
in n

 s ξ ξ GG
 

 
       (1) 

Where G  stands for matrix 0 0 0
1 2 n   G ξ ξ ξ . In most 

cases, we are far away from computing the eigenvectors 
v  and eigenvalues   of such a huge matrix. 
Nevertheless, the rank properties of G can be used, in 
special, the one that state that TGG  has the same non-
null eigenvalues than TG G  and the advantage of 
n pm , as given in [8]: 

T ˆ ˆi iG Gv v  (2) 

 being ˆ iv  the eigenvectors of TG G , so that, ˆi iv Gv . 
Therefore, the eigenvectors corresponding to non-zero 
eigenvalues of s  are ˆ ˆ/i i iv Gv Gv . The eigenvectors 
associated with the r  largest eigenvalues of s  are 
selected as Principal Directions [9], which span an 
orthonormal basis for a subspace containing most of the 
information given by observations. Trying to reproduce 
the observation in the original space as a linear 
combination of the r  principal directions, 

0

1

ˆ
i

r
T

k k
k

w


 ξ v
 

(3) 

so, from (3) the reconstruction weights 0T
k k iw  v ξ  can be 

though as the new set of features, and taking advantage of 
the orthonormality property of the basis, observations can 
be recognized using geometric criteria to partition the 
subspace off. 
 On the other hand, this method allows identify and 
choose those dynamic features that influence the most. 
The magnitudes of the entries of the eigenvectors that 
span the representation basis, tell us the variables to be 
choose. Let ρ  be the vector expressed as; 

1

r
k kk



ρ v , so, that its larger values are the most 

significant windows from the dynamic features, this sum 
of absolute values is an approximation due to the 
equivalence of norms in finite subspaces ( 1L , and 2L ). 
Rearranging ρ  in the following manner: 

T

11 12 1 21 2 1

11 21 1

12 22 2

1 2

m m p pm

p

p

m m pm

      

  
  

  

   
 
 
  
 
 
  

ρ

Ρ

   




  


 

(4) 

it is possible to obtain the scalar 

1
ˆ , 1, ,m

j jkk
j p 


    which is the sum of the 

elements of each column j from Ρ  matrix. In 
consequence, the main assumption is that the largest 
values of ˆ j  point out to the best input attributes since 
they exhibit higher overall correlations with principal 
components. 

 
c.  definition of a clustering validity measure  
Th Given a set of n  observations in a p -dimensional 

input training space,  : 1, ,p
i R i n  x x  , the main 

goal of a partitioned clustering is to determine an 
assignment   0,1 : 1, , , 1, ,i ijb j K i n   b   , 
such that a given cost function is minimized, where 

1ijb   if observation ix  is assigned to the j-th partition, 
and 0ijb   otherwise; K  is the number of clusters (in 
this case, specified by the user). Mainly, the cost function 
is defined  ;C Kb  as a weighted average, i.e., 

      1 1
; ; ,n K

i ij i ji j
C K E d b d

 
  b x b x m , where 

  1 1
; /n n

j i ij i iji j
E b b

 
  m x b x  (named the center of 

the j-th cluster). Notation  ,i jd x x  stands for a distance 

metric between two observation vectors ix  and jx . 
Because it is a reliable metric for early stages of training, 
the most commonly used distance is the Euclidean metric, 

     ,
T

i j i j i jd   x m x m x m . Though, other 
distance measures, such as Mahalanobis, can also be used 
in the clustering criterion to take care of hyper 
ellipsoidal-shaped clusters, and which is defined as 

     1,
T

i j i j i jj
d


  x m x m x m , where 1

j

 is 

the inverse of the p p  covariance matrix of the 
observation set belonging to the jth cluster. 

The intraclass distance, denoted as i , is defined as 
overall statistical distance between the data points inside 
clusters ib : var{ ( , ),i j id  x m  

, 1, , , 1, , .j k n i K    , The overall clustering 
compactness measure is defined as  
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 max ii
 




 
(4) 

   The interclass distance, denoted as  ,i jd b b , is the 

distance between the elements in cluster ib , and those in 

cluster jb :    , min{ , : , }i j i j i i j jd d  b b x x x b x b . 
Then, overall clustering separation measure is defined as 

  
,

min ,i ji j
d


  b b

 
  (5) 

Assuming  ,i jd b b as Euclidean metric, value   
represents the minimum Euclidean distance between 
clusters. Inspired by previous definitions, the following 
goodness-of-clustering measure J  relating the cluster 
separability and cluster compactness can be used. 
Namely, the validity measure is defined as the ratio of the 
compactness measure   to the separation measure  , 
i.e., 

/J    (6) 

It is expected that clusters should be as dense as 
possible and the distance between clusters should be as 
large as possible. Therefore, the compactness measure   
is expected to be small and the separation measure   to 
be large. A bigger J  means a more compact and separate 
cluster configuration and, hence, a better validity measure 
for the clustering. 

 
c.1 estimate of clustering validity measure 

The sample estimate of the covariance matrix for the i-th 
class is given by 1

1
ˆ ( )( )i

i

n T
i j i j in j

x m x m


    , where jx  

denotes the j-th recording, im  the mean estimate, and in  
the number of patterns belonging to the i-th class.  

The pooled estimate from all classes of the within 
matrix can be obtained as, 

1
ˆi Cn

w jn j
 s , being n the 

size of the whole sample, and C  the number of classes. 
The between covariance matrix is computed as 

1
( )( )ii nn T

b j jn j
m m m m


  s , with m as the overall 

mean of the entire sample. Finally, the separability 
measure is derived from the following expression: 

/b w wJ  s s s  (7) 

It is important to note that this criteria is similar to the 
multivariate fisher score, which in the two class case is 
given by the largest eigenvalue of 1

w b
s s .  

 
III. EXPERIMENTAL SETUP 

a. database 
The Massachusetts Eye and Ear Infirmary Voice 

Laboratory (MEEIVL). 48 features were computed. 

These features correspond to 16 measures and its first and 
second derivatives. These measures are: 12 Mel 
Frequency Cepstrum Coefficients (MFCC) the 
Harmonics to Noise Ratio (HNR), the Glottal to Noise 
Excitation Ratio (GNE), the Normalized Noise Energy 
(NNE), and the Energy of the frame. A total of 48 
features were taken in account [2].  

 
b. feature selection strategy 

For each observation are taken j (j = 1, 2,…, 48) 
dynamic features. These features were selected using the 
relevance measure presented in section II, then we use the 
Eq. (7) to estimate the cluster separability, this process 
generates a curve and each point in the curve is obtained 
by a incremental representations; that is, a larger set is 
obtained by adding features to the preceding one.  

For feature selection we use the first k features, such 
that max( )kJ J  , where 1 48k  and 0 1  . In 
this case 0.99  . 

The accuracy was measured using a k-folds cross 
validation strategy. In particular, 11 folds have been used, 
splitting the 70% of the files for training the classifier, 
and the remaining 30% for validating. These sets were 
randomly chosen. 

III. RESULTS 
 

As a result of the relevance analysis carried out above, 
a set of weights for the features was obtained. Fig. 1 
shows the weights for each one of the 48 features. 

The estimated values for relevance weight of dynamic 
features shown in Fig 1 are the starting point for selection 
and subsequent reduction of features; this analysis 
showed that the most significant features are the 
instantaneous measures, without the first and second 
derivatives, since the most weighted are the first 16. 
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Fig. 1 Relevance of dynamic features. 
 
Fig. 2 shows Cluster separability vs. number of 

features, the measure is done on the original variables. It 
is possible to observe how a gradual increment of the 
number of features (which were chosen according to Fig. 
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1) reflects on increasing separation between clusters. 
Nonetheless, this behavior holds up to certain number of 
features (the most relevant features). 
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Fig. 2 Cluster separability vs. number of features. 
 
 [2] for books or book chapters [3]. Only items 

published or accepted for publication may be cited in the 
reference list.  

The accuracy results are calculated employing 
continuous HMMs and the complete set of features. 
Several values of mixtures (NG=2, NG=3, and NG=4) 
and states (S=2, S=5, and S=10) were tested. The best 
results were obtained with NS=2, and NG=3. The results 
obtained are shown in the Table 1.  

 
 
 

nG 

number of states (ns) 
3 5 10 

accuracy accuracy accuracy 
    2 94.1±1.1 94.2±2.6 84.7±3.3 

3 94.6±1.8 91.1±1.8 82.3±2.3 
4 91.5±1.8 90.4±2.8 81.0±3.0 

Table 1. Accuracy results using continuous HMMs 
 
The accuracy results are recalculated employing NS=2, 
NG=3 and applying the feature selection strategy. In the 
Table 2 we compare these results using the accuracy, the 
area under the ROC curve (AUC), the number of features 
(NF) and time per iteration in the training phase.   
 

complete feature set 
accuracy (%) auc nf time (s) 

94.6±1.8 0.9604±0.029 48 9.24 
feature selection strategy 

96.6±1.3 0.9758±0.01 19 5.75 
Table 2. Accuracy results using a feature selection strategy 

 
V. CONCLUSION 

An approach combining PCA with HMM for pathological 
voice diagnosis has been tested based on cluster validity 
measure. For this purpose, a ratio of the compactness 
measure to the separation measure is carried out. 

The proposed methodology for reducing the number of 
dynamic features in the identification of pathological 
voices proved to be useful for the experiments carried 
out. As a result was obtained an adequate performance 
while employing a considerably reduced feature set. The 
presented way of training shows that for the automatic 
detection of pathological voices is better to use a good set 
of features than a complex stochastic dynamic training 
model, because the later may have lower generalization 
capabilities. 
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abstract: present work is focused in the study of the 
functional alterations classed as hypofunctional and 
hyperfunctional, with the aim to describe the dynamic 
of the vocal folds in each of these manners of 
phonation, which allows getting accurate data to its 
discrimination from the non-pathological voices. 
preliminaries results were gotten using records from 
20 subjects with non-pathological voice and 20 with 
functional pathology (10 hypofunctional and 10 
hyperfunctional). the normal and functional 
alteration condition was based on the results obtained 
from the assessment, image and voice capture after a 
medical and acoustic study. the inclusion of the 
subjects with functional disorders inside their correct 
group was based on criterions related to the glottal 
closure and the vocal quality. the results show that 
the rate of amplitude between open/close and the 
starting point of the open phase are decisive. the data 
allow us to offer a new classification system of the 
functional voice disorders in which each group 
(hypofunctional and hiperfunctional) includes several 
subclasses, giving decisive information for the voice 
treatment.

Keywords:   voice disorders, hypofunctional, 
hyperfunctional, biomechanical analysis, Glottal 
source. 

I. INTRODUCTION 

The study of the functional disorders is one of the bigger 
difficulties found by the clinical voice analysis. Normally 
functional dysphonia is defined how that in which there is 
not organic lesion in larynx but there is a voice alteration 
affecting one of principal components of the voice: pitch, 
intensity and/or timbre. It can find many classification 
systems of the voice pathologic and all of them are 
distinguishing four principal groups: hypofunctional, 
hyperfunctional, pubertal voice and psychological 
disorders. This work will be focus in the first two.  
Hyperfunctional dysphonia is also named as Muscular 
Tension Dysphonia [1]. It is generally seen in younger to 
middle aged people with extensive voice use in stressful 
situations [1]. External features include visible and 
palpable muscular tension around the larynx. The 
tightness increases the pitch and is accompanied by an 
observable rise of the larynx in the neck. The voice 

acoustically is characterized by a pitch raised considering 
age and gender and monopitch, high energy formants, 
glottal attack, glottal fry, harshness, and a noise 
component lower. 

identification of functional voice disorders by 
bioMechanical analysis

R. Fernández-Baillo, P. Gómez, 
Laboratorio de Comunicación Oral, Universidad Politécnica de Madrid,  

Campus de Montegancedo, s/n, 28660 Boadilla del Monte, Madrid, Spain 
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Hypofunctional voice disorders are not so described and 
generally are referred in association with psychological 
factors like depression, distress, etc. Although, sometimes 
this could be true, it is important to consider 
hypofunction like a biomechanical alteration by itself. 
The voice is characterized acoustically by lower pitch, 
instability, weak formants and a noise component raised. 

According to the described above is easy to see that 
hypofunctional and hyperfunctional disorders differ in the 
biomechanical pattern used to get the glottal closure. 
Thus, the study of the dynamic of the vocal folds and 
specifically the ratio between open and close phases is a 
useful parameter which will allow us to discriminate sort 
of functional disorders. 

II. METHODOS 

This work was carried out using records from. 30 female 
subjects (Table 1) between 25 to 45 years age extracted 
from de MAPACI database [2]. Subjects were classified 
after evaluation and discussion as non-dysphonic or 
dysphonic based on videostroboscopy evidence, acoustic 
analysis, and electro-glottographic trace inspection. Later 
the functional disorders were differentiated as 
hypofunctional and hyperfunctional basing in criterions 
related with glottal closure type and acoustical features of 
the voice. 

The voice recording protocol included three utterances of 
vowel /a/ with duration not shorter than 3 sec. for each 
emission. Segments of 0.2 sec. were produced from the 
recording central parts for the analysis.  
The extraction and analysis of the glottal source and 
mucosal wave correlate in this work was done by the 
software GLOTTEX® [2]. This tool provides you all the 
singular points that can be obtained from the glottal 
source profile and that allow you to study temporal 
phases.  
The analysis of the glottal source in the time domain 
allows the evaluation of the normal or non-normal 
phonation conditions depending on the resulting profile. 
For such the following singular points during the open-
close phases of a glottal excitation with period given by T 
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international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
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have to be determined as (See Figure 1): return interval 
(Tr=tr), closed interval (Tc=to-tr), open interval (To=tcl-to)
and closing interval (Tcl=T-tcl) [3]. Also it allows 
extracted singular points related to the close-open phases. 
One of them is the point of the starting of the open phase 
(Pxo) [4]. This point is decisive to discriminate functional 
voice disorders. 

The beginning point of the open close (Px0), also we can 
refer it how the ending point of the close phase, is 
decisive for the study of the functional disorders.  
The graphic in Figure 2 represented a distribution of the 
sample, normal and functional disorder voice, based on 
the value of the Px0 (See Table 2).  It can be observed 
how the traces belonging to normal voices are grouped 
close, setting a normality threshold. 
Considering the normality threshold is possible to 
identify the pathological samples which will be those 
located outside. Generally, without organic lesion, in 
hyperfunctional voice the closure take place earlier. Thus 
all the subjects are located beneath the normal threshold. 
Hypofunctional, in same conditions, are place above the 
normal threshold, because its closure needs more time to 
be ending. 
Besides, through the distribution graphic in Figure 2, it 
can be observed how inside a same pathologic group 
there are samples nearer to the threshold than other. This 
could be suggest that through the isolated analysis of 
functional group will be possible discriminated the grade 
of pathology. 

Figure 1.  Singular points in the opening-closing phases of a 
phonation cycle according to the L-F model. 

s r Px
o

d s r Px
o

d s r Px
o

d

1 RegVoz 16 2,06  Hyper 11 RegVoz 374 2,4  Nor 21 RegVoz 11 5,17  Hypo 
2 RegVoz 32 1,84  Hyper 12 RegVoz 365 2,14  Nor 22 RegVoz 58 4,15  Hypo 
3 RegVoz 304 1,77  Hyper 13 RegVoz 332 2,29  Nor 23 RegVoz 70 4,69  Hypo 
4 RegVoz 348 1,29  Hyper 14 RegVoz 322 2,31  Nor 24 RegVoz 137 2,86  Hypo 
5 RegVoz 371 1,38  Hyper 15 RegVoz 288 2,59  Nor 25 RegVoz 142 4,08  Hypo 
6 RegVoz 395 1,24  Hyper 16 RegVoz 286 2,43  Nor 26 RegVoz 214 3,24  Hypo 
7 RegVoz 433 1,96  Hyper 17 RegVoz 180 2,54  Nor 27 RegVoz 230 2,74  Hypo 
8 RegVoz 440 1,32  Hyper 18 RegVoz 47 2,27  Nor 28 RegVoz 252 3,61  Hypo 
9 RegVoz 487 1,22  Hyper 19 RegVoz 40 2,22  Nor 29 RegVoz 275 3,38  Hypo 

10 RegVoz 540 1,32  Hyper 20 RegVoz 521 2,45  Nor 30 RegVoz 528 2,81  Hypo 

Table 1. Distribution of the sample: S (Subject Number), R (Register Number), Pxo (Point of the starting of the 
Open Phase), D (Diagnosis).

III. RESULTS

Normal Voice / Functional Voice Disorders.
Functional voice disorders are characterized by an 
alteration of the manner in which the vocal folds get a 
glottal closure, without being organic lesion. The best 
way to know how this is happening is through the 
analysis of the open-close phases from a phonation cycle. 
The temporal analysis of the glottal source profile allows 
us getting several singular points which could be useful 
for the estimation of the open-closes phases [5].  

diagnosis Means se
hypofunctional 1,48  0,32  

normal voice 2,35  0,14  

hyperfunctional 3,51  0,83  
Table 2. Means and Standard Error (SE) of the 
sample based on the value of Pxo

tr to tcl

c’
o’= Pxo

r’

c
or

TclToTc

Tr
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Figure2. Distribution of normal voice and functional disorders according to the value of Pxo.

Grade of pathology in functional alterations. The 
isolated study of each functional group allows to 
discriminate that all subjects have not the same grade of 
pathology, and therefore they should have an individually 
approach in the treatment.  Now we make a new 
distribution considering the value of Pxo and only a 
functional group, the result will be a more accurate 
distribution. In this distribution distinguishes two grades 
for each group:  

a) The functional disorders of Grade I. It could be 
considered as a particular mode of phonation, but not yet 
as pathology. Some people are characterized have a harsh 
or strained voice, others by a lightly breathiness or 
weakness voice, but neither of them are pathologic cases.  

b) The functional disorders of Grade II. It could be 
considered as a type of pathology.  Subjects with this sort 
of phonation usually derive to organic injuries. In these 
cases required an early rehabilitation treatment.  

IV. CONCLUSION

In this work the results show a clear distinguishing 
between the most of the subjects in relation to the non-
pathological or functional condition. The results show 
that the rate of amplitude between open-close and the 
starting point of the open phase are decisive. The data 
allows offer a new classification system of the functional 
voice disorders where each group of functional disorders 
(hypofunctional and hiperfunctional) including several 
subclass which are given decisive information for the 
voice treatment.

Figure 3. Distribution of the functional disorders 
according to the value of Pxo for each group. 
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Abstract: approximate entropy is a method which 
provides a model independent nonlinear measure (the 
index apen) of the “regularity” of the process 
generating a time-series. in recent years, apen has 
been vigorously employed in the study of several 
biological signals, but only a few applications in the 
analysis of vocal disorders have been proposed.  here, 
we investigate the potential usefulness of apen in the 
study of electroglottography and microphone signals 
in normal and dysphonic subjects. results show that 
statistically significant apen differences between the 
two groups can be found, more easily detectable in the 
microphone signal case. 

Keywords: chaos, time-series, signal processing, vocal 
disorders 

I. INTRODUCTION 

Voice is the main vehicle of communication among 
human beings and its analysis is crucial for the 
differential diagnosis and follow-up of several 
pathologies. The sound signal (MIC), which can be 
picked up in a straightforward fashion by a microphone, 
brings information on several aspects related to voice 
generation, from vocal fold biomechanics to aerodynamic 
variables. In a slightly more sophisticated experimental 
setting, the so-called laryngograph allows the acquisition 
of the electroglottogram (EGG) which, by measuring the 
translarynx electrical impedance variation,  permits the 
investigation of the vibration of the vocal folds.  

In order to analyze MIC and EGG signals in both 
normal and pathological states, several tools have been 
proposed. In clinical practice, in particular, approaches 
which can be traced back to linear spectral analysis are 
most commonly used, with some classical parameters, 
such as jitter (fundamental frequency variation), and 
shimmer (amplitude variation), which evaluate 
perturbation contents. Recently, the use of these 
perturbation measures has been questioned. In particular, 
it has been suggested that linear approaches cannot 
reliably analyze strongly aperiodic signals and that jitter 
and shimmer are sensitive to several experimental and 
methodological settings [1]. In fact, spectral analysis does 
not handle cycles whose timing is inherently irregular, 
which can be a common situation in voice disorders, and 
cannot easily detect changes in the pattern of the signal 
which can characterize some patho-physiological states. 

As a consequence, the use of nonlinear time series 
methods, such as correlation dimension and Lyapunov 
exponents, has been proposed for the study of vocal 
disorders [1, 2, 3]. Approaches based on the use of 
entropy measures have been also investigated [4]. These 
approaches are significantly appealing because they are 
able to condense the entire history of the signal into a 
single number, which can be relatively simple to interpret 
for clinical purposes.  

Approximate Entropy is a method developed in the 
early nineties to provide a model independent measure of 
the "regularity" of the underlying secretion process by 
calculating the logarithmic likelihood that patterns in the 
time-series that are similar remain similar on the next 
incremental comparison [5]. Notably, such a notion of 
regularity is quite different from that usually considered 
in engineering, where, for a signal, regularity is meant as 
a synonymous of smoothness. The Approximate Entropy 
algorithm summarizes the time-series into a single 
nonnegative number, ApEn: the higher is the value of 
ApEn, the more irregular is the process. Approximate 
Entropy is not intended to replace more classic 
techniques such as spectral analysis, but is 
complementary to them. In fact, Approximate Entropy 
focuses on the similarity between patterns within the 
signal, thus relaxing the spectral analysis requirement of a 
dominant set of frequencies at which some patterns 
within the time-series are repeated. 

In recent years, ApEn has been vigorously employed in 
the study of several biological signals, e.g. endocrine-
metabolic time-series, electroencephalogram, heart rate 
variability, and found capable of successfully identifying 
pathological or pre-pathological states characterized by 
an enhanced signal irregularity. A few ApEn applications 
in the analysis of vocal disorders have been also proposed 
[6, 7, 8].   

Here, we investigate the potential usefulness of ApEn 
in the study of MIC and EGG signals in normal and 
dysphonic subjects. The aim is to determine if statistically 
significant differences occur between the two groups and 
also to assess if such differences are more easily 
detectable in MIC or in EGG. 

II. METHODS 

Data Base. 60 subjects have been classified in two 
groups, normal (10 males and 10 females) and dysphonic 
(19 males and 21 females), according to the independent 

electroGlottoGraphy and Microphone siGnals assessed by 
approxiMate entropy in norMal and dysphonic subJects 
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perceptual evaluation of speech and language therapists. 
In all subjects, synchronous MIC and EGG recordings of 
the sustained Italian vowel /a/, kept at similar intensity 
and pitch for at least 4 seconds, were provided. Data 
recordings were made in a quiet room with the subject 
comfortably seated. The electroglottography system 
(Laryngograph Ltd, London, UK) employed a pair of 
electrodes attached on either side of the thyroid alae and 
held in place by a collar. The vocal signal was captured 
by a dynamic directional microphone (Prologue Shure, 
USA), placed at a constant distance of less than 5 cm 
from the mouth and at an angle of 45°.  The MIC and 
EGG signals were acquired at 50 kHz, with 16 bits of 
amplitude resolution, by a commercial software (CSL 
4300B, Kay Elemetrics, USA). In each subject, the 
middle, stationary appearing, segment of 1 s of data 
(correspondent to 50000 original samples), was 
considered for ApEn calculation. 

The ApEn index. Briefly, let {u(k)} = {u(1), u(2), ..., 
u(N)} denote the N-size time-series from which we want 
to calculate the ApEn index. Let r (a real) and m (an 
integer) be two given positive parameters. In order to 
compute ApEn, first form the sequence of vectors x(1) 
through x(N-m+1), where each x(i) is defined by 
x(i)=[u(i), u(i+1), ...., u(i+m-1)]. Vector x(i) contains m 
consecutive samples of the time-series {u(k)}, 
commencing with the i-th point. Having defined the 
distance d[x(i), x(j)] between vectors x(i) and x(j) as the 
maximum difference in their respective scalar 
components,  compute, for each i N-m+1, the number 
Ci

m(r)={number of x(j) such that d[x(i), x(j)] r}/(N-
m+1). This values measures, within a tolerance r, the 
frequency, or regularity, of patterns similar to a given 
pattern of window of length m. Next, define m(r) as the 
average value of ln Ci

m(r). Finally, define the ApEn index 
as ApEn= m(r)- m+1(r). It is possible to demonstrate 
that ApEn measures the logarithmic likelihood that runs 
of patterns that are close (within a tolerance r) for 
windows of m observations remain close for windows of 
m+1 observations. The greater the likelihood of 
remaining close (i.e. the regularity), the lower the value 
of ApEn.  

III. RESULTS

Tuning of ApEn parameters. In order to speed up 
calculations, signals were downsampled at 10KHz. 
Starting from the recommendations of the author of the 
method, who suggested to determine m such that 10m is 
of the order of the sampling points and r as a suitable 
value between 0.1 and 0.25 of the SD of the signal 
(depending on the signal-to-noise ratio), we have 
obtained the best values of m and r (m=4, and r=10% and 
20% of the signal SD, respectively for MIC and EGG) 

after retrospective analysis of the results arising from 
several trial values. Of note is that these parameters 
should be reassessed, should the original 50KHz 
sampling be considered. 

ApEn outcome. No statistically significant ApEn 
differences have been found between males and females. 
Average values (± SD) of ApEn for the MIC signals are 
0.2838 (±0.0418) and 0.4196 (±0.1662), for normal and 
dysphonic subjects, respectively. For the EGG signals, 
ApEn values are 0.1153 (±0.0525) and 0.3867 (±0.4643). 
Notably, ApEn in MIC signals is higher than in EGG 
signals, as it could be expected from the higher 
complexity of the system generating the sound signal. 
The MIC signals have ApEn values which, in both the 
groups, are significantly less dispersed (i.e. lower SD) 
than the EGG signals. Finally, even if ApEn differences 
between the two groups are statistically significant in 
both cases, the error probability using MIC (10-4) is lower 
than using EGG (10-2).

IV. DISCUSSION

ApEn is a simple, easy-to-implement, technique 
which, in the literature, was found useful in the nonlinear 
analysis of several biological signals. As stressed by the 
author of the method, ApEn is not intended to replace 
approaches resorting to spectral analysis, but is 
complementary to them. In fact, ApEn discerns changes 
in the signal behavior that are not reflected e.g. in 
changes in frequency and amplitudes of periodic 
components. Therefore, the application of ApEn to the 
study of vocal signals can deserve some consideration. 
Here, we have shown that, consistently with expectations, 
ApEn on EGG results smaller than ApEn on MIC, 
according to the fact that the laryngograph recordings are 
unaffected from the complicated mechanisms introduced 
by the vocal tract resonance, which converts the effects of 
fold vibrations into the sound delivered from the mouth. 
Also, our study shows that both EGG and MIC signals 
present average ApEn values which, in the dysphonic 
subjects, are higher than in the normal subjects. The 
difference is statistically significant with both signals, but 
seems more pronounced in the MIC case.  

V. CONCLUSION

In this work, ApEn has been assessed of potential 
usefulness in the study of EGG and MIC signals in 
normal and dysphonic subjects. In particular, ApEn 
differences between the two groups are statistically 
significant and more easily detectable in the MIC case. 

Although our analysis is preliminary and further 
studies are required to draw any conclusion on safe 
grounds, results suggest that the vocal tract plays a 
quantitatively important role in the alteration of vocal 
signals.  
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Further development of the present work should 
comprise the possible relationships between the optimal 
m and the signal sampling frequency (sampling higher 
than the 10KHz considered here could yield to a larger 
value of m) and the comparison of ApEn results with 
those of well consolidated linear approaches based on 
classic indexes such as jitter and shimmer. In fact, it is 
worthwhile reminding that ApEn does not replace 
spectral analysis techniques, but is complementary to 
them, as widely discussed by the author of the method in 
several papers e.g. in [9]. 
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SPEECH MORPHING BASED ON
BIOLOGICALLY RELEVANT SIGNAL REPRESENTATIONS

Hideki Kawahara
Auditory Media Laboratory, Faculty of Systems Engineering, Wakayama University, Wakayama, Japan

Abstract: Voice morphing based on a high fidelity
VOCODER is a unique strategy to explore attributes
which are closely related to biological states of speak-
ers. Themethod is based on a temporally stable power
spectral representation and spectral envelope recov-
ery based on a new formulation of the sampling the-
ory. The morphing algorithm itself is re-formulated to
enable extrapolation without introducing perceptual
and objective breakdown. It also extended to make
temporally-variable multi-aspect morphing possible.
GUI (graphical user interface) based tools are imple-
mented to handle complexities introduced by these
extensions. For characterizing voicing, a bottom-up
local repetition detector, a residual-based irregular-
ity detector and a group delay-based acoustic event
detector with multi-resolution analysis are prepared.

Keywords:— Spectrum, periodicity, speech percep-
tion, voicing, morphing

I. INTRODUCTION

Repetitive structures [1] play important roles in biologi-
cal systems from animal calls to voiced sounds in human
speech. However, usual short term Fourier based analy-
sis methods including cepstrum and LPC analyses, suffer
from interferences caused by this repetitive structure.
Recently, a simple method for calculating interference-
free power spectra [2] and new formulation of sam-
pling theory [3] led to an invention of a speech analysis,
modification and synthesis procedure called TANDEM-
STRAIGHT [4]. TANDEM-STRAIGHT consists of
a new bottom-up procedure to scoop all local repeti-
tive structure based on this power spectral representa-
tion. TANDEM-STRAIGHTe was also applied to extend
speech morphing procedure [5] and yielded a temporally
variable multi-aspect morphing procedure [6]. These
new set of procedures are integrated with visualization
and GUI tools [7] to provide a strong basis for investigat-
ing biomedical aspects of voice emission and perception.

Partially supported by Grants-in-Aid for Scientific Research
(A)19200017 by JSPS and CrestMuse project of JST.

II. POWER SPECTRUM OF PERIODIC SIGNALS

Assume that a repetitive signal x(t) has a fundamental
period T0 and its short term Fourier transform S(ω, t) is
calculated using a time window w(t). With a mild condi-
tions on the window function w(t), the following power
spectrum PT (ω, t) does not have temporal variations due
to periodicity (repetition).

PT (ω, t) = |S(ω, t− T0/4)|2 + |S(ω, t+ T0/4)|2. (1)

PT (ω, t) is called TANDEM spectrum afterwards. This
operation does not have impact on frequency resolution
of the original time windowing. Typical selection of the
time window is a Blackman window having its duration
set 2.5T0.

A. Periodic variations in the frequency domain

Variations of log(PT (ω, t)) in the frequency domain
is closely approximated by an additive sinusoid with a
period ω0 = 2πf0, where f0 represents fundamental
frequency (F0). It is completely eliminated applying a
frequency domain smoother that has zeros at nω0 on its
spatial frequency transfer function. The simplest one is
a rectangular smoother with ω0 for its width. Let this
smoother h1(ω;ω0). Reasonable windows convolved
with this smoother also have zeros at the same place and
can be used for the same purpose. Let’s call this F0 adap-
tively smoothes power spectrum “smoothed spectrum”
PS(ω, t).

B. Consistent sampling

Unfortunately, PS(ω, t) does not precisely agree with
Fourier transform of the (hypothetical) unit waveform
that is repeated. There are two sources of smearing for
the unit waveform. One is frequency response of the time
window and the other is the smoothing function. Con-
sistent sampling provides a way to solve this problem.
A correction digital filter Q(z) in the frequency domain
can be designed using convolution of h1(z) and W (z),
where they are h1(ω;ω0) and w(t) represented in terms
of z transform.

Q(z) =
1

a(z)
, (2)
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where a(z) is the convolution of h1(z) andW (z). Please
note that the polynomial Q(z) has infinite number of
coefficients, because a(z) is effectively a function with a
finite support. Approximation errors between harmonic
frequencies is dependent on the effective interpolating
function that is convolution of h1(z) and W (z), this
case. In other words, there is a room for improvement
in designing the smoothing function, actually a triangu-
lar function that is convolution of h1 and h1 is a better
smoother for speech sounds.

C. STRAIGHT spectrum

Taking into account of the fact that log(1 + x) ≈ x when
|x| � 1 and absolute value of coefficients of Q(z) de-
creases very rapidly, smoothed spectrum that preserves
values at harmonic frequencies PTST (ω, t) is calculated
using the following equation.

PTST (ω) = e(q̃1(L(ω−ω0)+L(ω+ω0))+q̃0L(ω)), (3)

where L(ω) ≡ log(PS(ω)) and q̃0, q̃1 are truncated and
adjusted version of the coefficients of Q(z). Please note
that variable t is not represented in this equation to make
appearance simple. Afterwards, whenever not confus-
ing, the same practice applies. This spectrum does not
have trace of periodicity while it preserves spectral val-
ues at harmonic frequencies. This spectrum is called
STRAIGHT spectrum, because it is virtually identical to
the spectrum calculated using the legacy-STRAIGHT [1].

III. LOCAL PERIODICITY DETECTOR

Since PS(ω) is the periodicity eliminated version of
PT (ω) and the effect of periodicity is multiplicative,
dividing PT (ω) by PS(ω) leaves a constant c0 and the
periodic component PC(ω).

PC(ω) =
PT (ω)
PS(ω)

− c0. (4)

Ideally, Fourier transform of PC(ω) has a unique peak
at τ = T0. However, in practice, low S/N in lower fre-
quency region and FM side-bands in F0 varying speech
(that is usually the case) direct application of Fourier
transform on PC(ω) yields erroneous and noisy results.

To investigate vocal fold vibration, it is better to select
the base-band frequency region using a frequency domain
weighting function. The frequency weighting function
can be located anywhere depending on aspects to be in-
vestigated, for example, to investigate regularity of glot-
tal closure instant, the function can be centered around
3 kHz. The weighting function for selecting base-band

region wω0,N (ω) has the following form and defined in
[−Nω0, Nω0].

wω0,N (ω) = c1 (1 + cos (πω/Nω0)) , (5)

where c1 is a normalization constant. Then, Fourier trans-
form of the windowed version of the periodic component
has a less noisy peak at τ = T0.

A(τ ;T0) =
� ∞

−∞
wω0,N (ω)PC(ω)e−jωτdω, (6)

where the assumed period is explicitly denoted in ,
A(τ ;T0). Increasing N sharpens the peak and makes
it tolerant to background noise while makes it susceptive
to FM and AM meaning that there is a trade-off relation.

The designed detector is specialized to the assumed
T0. By assuming periods T0k, (k = 1, . . . , M) system-
atically on the logarithmic lag axis, they are combined
to cover periodicity range of interest using the following
equations.

Ā(τ) = c2

M�
k=0

wLAG(τ ;T0k)A (τ ;T0k) , (7)

wLAG(τ ;T0k) = 1 + cos (π log2(βτ/T0k)) , (8)

where a constant c2 is adjusted for Ā(τ) to have a
value 1 for periodic signals. The weighting function
wLAG(τ ;T0k) defined in [−T0k < βτ < T0k] is use to
suppress spurious peaks in A(τ ;T0k) by adjusting selec-
tivity using β. Typical selection of T0k has the following
form.

T0k = TL2−k/Nc (9)

whereNc determines the number of specialized detectors
in one octave and TL represents the longest period to be
investigated.

Peaks of periodicity measure Ā(τ) represent local
repetitions of waveform using the best time-frequency
resolution in each period scale. It is a bottom-up exhaus-
tive periodicity detection system to be used to character-
ize repetitive structures in speech. Therefore, this method
is called XSX (eXcitation Structure eXtractor) [8].

IV. APERIODICITY REPRESENTATION

The XSX is able to extract several types of aperiodic-
ity such as jitter and shimmer as timing fluctuations and
amplitude fluctuations of each excitation event respec-
tively. However, there still remains other types of devi-
ations from precise repetition. Linear prediction residu-
als from around a repetition period apart (both forward
and backward), calculated on two types of time axes, are
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used to represent aperiodic component that cannot be rep-
resented by XSX. Two types of time axes are as follows.
The first one is the usual time axis. The second one is
a warped time axis that is stretched in proportion to its
instantaneous frequency corresponding to the repetition
period. This selection of the second time axis makes ap-
parent repetition period constant. The smaller residual
of these two predictions is used as an index to represent
aperiodicity in each time-frequency band region. Octave
division of frequency band is used in the current imple-
mentation with keeping the narrowest bandwidth wider
than 500 Hz.

For diagnostic applications, an acoustic event and
group delay based representation [9] is also used. How-
ever, it still is one of the future topics to integrate this
event based representation into TANDEM-STRAIGHT
and morphing system.

V. TIME-VARIABLE MULTI-ASPECT MORPHING

Speech morphing was originally designed [5] based on
linear interpolation and extrapolation of parameter val-
ues. This definition was found fragile when param-
eters are extrapolated. A new definition that enables
time-variable multi-aspect morphing was proposed by
re-defining morphing, based on linear interpolation in the
logarithm of derivative domain [6].

Using this formulation, let TAm(xA) represent a mor-
phing transformation of a parameter xA of example A
to parameter xm on the morphing axis m. A tempo-
rally variable morphing rate for the parameter rAB(t) is
defined to have the value 0 when the morphed result is
equivalent to example A and to have the value 1 when the
morphed result is equivalent to example B. A newmorph-
ing definition is introduced and described using this no-
tation.

To alleviate breakdown in explorative morphing, mor-
phing is redefined based on a logarithm of the derivative
of mapping functions. This new definition of morphing
also makes the morphing procedure simpler as follows:

TAm(xA) =
� xA

0

exp
�

log
�
dTAm(λ)

dλ

��
dλ

=
� xA

0

exp
�

(1 − rAB(λ)) log
�
dTAA(λ)

dλ

�

+ rAB(λ) log
�
dTAB(λ)

dλ

��
dλ

=
� xA

0

�
dTAB(λ)

dλ

�rAB(λ)

dλ , (10)

because logarithmic conversion of the identity mapping
vanishes. This formulation assures monotonicity of TAm

Fig. 1. Morphing procedure with a “reference” time axis
for defining temporally variable morphing rates. ΘA and
ΘB represent grouped STRAIGHT parameters of exam-
ples A and B respectively. rAB represents multi-aspect
morphing rates. ωs(t) represents morphed F0 represented
by angular instantaneous frequency.

if the coordinate conversion TAB from speaker A to B is
monotonic.

Two morphing algorithms are formulated based on
this new definition of morphing: real-time morphing and
off-line morphing. In the case of real-time morphing, the
morphing rates are incrementally supplied and used to
update morphed parameters incrementally. This formu-
lation is useful for interactive applications.

In the case of off-line morphing, the morphed time
axis, which is also the time axis for the morphed signal,
is calculated for the first time. Then, other morphed pa-
rameters are calculated using the morphing rate on this
new reference axis. This formulation is necessary for
psychophysical stimuli preparation and biomedical diag-
nostic applications. Fig. 1 illustrates the synthesis proce-
dure using these parameters and transformations.

VI. GUI TOOLS

GUI tools are equipped with analysis tools and visualiza-
tion interface. Fig. 2 shows GUI for F0 extraction. The
default F0 extractor is XSX. In other words, it is not a
mere F0 extractor. It is a visualization tool for excitation



86	

Fig. 2. GUI tool for XSX analysis. Top panel shows pe-
riodicity index for each repetition structure. The middle
panel shows extracted local repetition structure in terms
of frequency. The bottom panel shows the waveform.
The sample is /hai/ (Yes, in English) spoken with strong
anger. (In originally figure, marks are color coded in or-
der of repetition salience.)

structure analyses. 1

The middle plot of the display shows localized rep-
etitions in terms of frequency. This plot can be zoomed
both in time and frequency and can be dragged to cen-
ter interesting regions. The thick gray line (cyan in color)
represents the most salient periodicity that corresponds to
F0. Application of XSX to Noh voice analyses illustrated
interesting subharmonic structure and non-classical tran-
sition of the most salient periodicity [8].

VII. DISCUSSION

The GUI tools and underlying algorithms is designed to
promote exploratory research strategy for investigating
phenomena they are difficult to be categorized a-priori.
By using morphing to generate a set of stimulus contin-
uum combined with after effect, auditory adaptation in
voice perception was discovered [10]. In other words, a
stimulus continuum generated using morphing provides
means to objectively quantify non- or pre-categorical per-
cept and phenomena. One prospective example is evalu-
ation of healing process from vocal fold surgery.

1This visualization tool is user customizable. By adding a line for
the F0 extractor description to an extractor menu definition table and
prepare an interface function using the template file, the user created
extractor can be integrated into this GUI tool.

VIII. CONCLUSION

A temporally-variable multi-aspect morphing method
based on a temporally stable representation of periodic
signals combined with a bottom-up repetitive structure
extractor and a residual-based aperiodicity extractor are
introduced. This algorithm and a set of dedicated GUI
tools provide a strong basis for exploratory research on
biomedical aspects of voice emission and perception.
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Abstract: The presentation concerns a preliminary 

investigation of a spectral pole-zero model that is 

fitted directly to observed log-magnitude spectra. The 

parameters of pole-zero models are interpretable in 

terms of (anti-) formant frequencies and bandwidths 

that may thus be tracked over time. The speech 

corpus has comprised connected speech tokens with 

prominent formant/anti-formant pairs owing to 

hyper-nasality in many speech frames. Results show 

that the direct fitting of spectral models is feasible. 

The quality of fit of the spectral contour by a model 

transfer function is comparable to the quality of fit 

obtained via cepstral smoothing with an effective 

number of cepstral coefficients equal to the number of 

independent model parameters.  

 

Keywords: Spectral pole-zero models, formant and 

anti-formant tracking, hyper-nasality. 

 

I. INTRODUCTION 

 

Formants are the spectral effects of the resonances of 

the vocal tract. The acoustic description of a majority of 

speech sounds rests on their formant frequencies. They 

therefore play a central role in many models of speech 

production or perception in psychology, phonetics and 

phonology as well as clinical phonetics or singing. 

However, measuring formants reliably and 

automatically remains an unsolved problem at present. 

Possible reasons are that adjacent formants may fuse into 

a single spectral hump or relevant formants may be 

unobservable because the excitation signal lacks energy 

in that frequency band or because they are masked by 

neighboring anti-formants. 

Alternatively, extra formants that together with anti-

formants are the effects of side-cavities of the main vocal 

tract may appear. Extra formants may be phonetically 

relevant or not. Nasal formants and anti-formants mark 

the distinction between nasal and oral vowels in French, 

for instance.  

Automatic formant extractors rely either on peak 

picking or linear models that involve poles and zeros as 

parameters. Peak picking identifies and marks as formant 

candidates prominent spectral humps in smoothed 

spectra. Pole-zero models are fitted to recorded speech 

signal frames. Their parameters, which are complex pole 

or zero frequencies and radii, are turned into candidate 

formant or anti-formant frequencies and bandwidths. 

Generally speaking, raw formant or anti-formant 

candidates must be post-processed to smooth their 

trajectories and remove unlikely candidates or insert 

missing ones. 

 By far the most popular model is the so-called linear 

predictive model, which is an all-pole model [1]. Its 

popularity rests on the linearity and simplicity of the 

method that fits the model to observed signals. Other 

models exist that involve poles as well as zeros [2]. They 

are therefore able to discover formants as well as anti-

formants. They are used less often because they are more 

difficult to implement and the additional complexity is 

not always offset by increased reliability and validity of 

the formant and anti-formant candidates. 

 Known problems with formant extractors that rely on 

linear pole-zero models are the following [1]. (a) The 

user must fix the number of poles and zeros a priori. (b) 

Most often, the distinction between real and complex-

conjugate parameters is beyond the control of the user 

because it is made automatically (and often erroneously) 

by the method that fits the model to the speech frame. 

Real poles and zeros mimic the spectral slope that is the 

effect of the acoustic source. (c) Often, models cannot be 

mathematically guaranteed to be stable. That is, the fitted 

model may comprise resonances or anti-resonances with 

negative bandwidths, which are physically impossible. 

(d) Often, degrees of freedom of pole-zero models are 

miss-used to represent the “glottal” formant as a genuine 

formant. The glottal “formant” is a prominent hump in 

the interval from 0 to 200 Hz, which is an effect of the 

glottal source and that is observed in many speech 

spectra. (e) In high-pitched voices, harmonics are far 

apart and models may identify individual harmonics as 

formant candidates when the pole bandwidths are 

allowed to be arbitrarily small. 

 This presentation reports the development and test of 

a spectral pole-zero model the fit of which avoids 

problems (b) to (e) listed above. It is directly fitted to the 

log-magnitude spectrum. The adjustment of the 

parameters of the model rests on an all-purpose optimizer 

that enables taking hard constraints into account. 

The model is tested on a corpus of connected speech 

produced by a male French speaker [3]. Many speech 

frames of this speaker display prominent formant/anti-

formant pairs (in vowel quality [a] mostly). They have 

been assumed to be a consequence of hyper-nasality 

owing to allergy (“hay fever”). In addition, the speaker’s 
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voice has been high-pitched (> 300 Hz) and breathy in 

several frames of each speech token. These properties 

make that the corpus is suitable for testing the ability of a 

spectral pole-zero model to fit accurately the contour of 

non-modal speech frame spectra. 

 
II. METHODS 

 

A. Corpus 

 

The corpus has comprised V1V2 and V1CV3 tokens, with 

V1 and V3 designating French vowels [a][i] and [u], V2 

designating French vowels [a][i][u][e][!][o]["] and C 

French consonants [p][t][k] and [f][s][#]. The total 

number of tokens has been equal to 79, which 

corresponds to a total of 3183 analysis frames. Before 

analysis, the tokens have been down-sampled to 8 kHz. 
 
B. Model 

 

The spectral model (1) is a conventional pole-zero model 

involving M real poles, N complex-conjugate poles, K 

real zeros and L complex-conjugate zeros.  
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Symbols zk and rk   are the complex and real roots that are 

adjusted. The transfer function of (1) is calculated by 

replacing complex number z by 
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e
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between 0 and +!. 

 

C. Analysis 

 

The length of the analysis frame has been equal to 25 ms 

and the frame hop has been half a frame. Each frame has 

been multiplied by a Hamming window. The spectrum 

has been obtained via a conventional discrete Fourier 

transform [4]. Model (1) has been fitted to the log-

magnitude spectrum of each analysis frame.  

In a first experiment, the number of complex-

conjugate pole pairs of model (1) has been fixed to 5, the 

number of real poles to 2 and the number of complex-

conjugate zero pairs to 1. This choice has been based on 

the observation that the signal bandwidth has been 4 kHz 

and the log-magnitude spectra of many speech fragments 

of the corpus have been characterized by one extra 

formant and one anti-formant. The total number of 

independent model parameters has therefore been equal 

to 14 (two per complex-conjugate pole or zero pair and 

one per real pole). 

To test the validity of the fitted model, cepstrally-

estimated spectral contours have been used as a reference 

to which the model transfer functions have been 

compared. The cepstra have been obtained by means of a 

direct Fourier transform of the log-magnitude spectrum, 

followed by zeroing of the high-quefrency cepstral 

coefficients and an inverse Fourier transform [5]. 

The low-quefrency cepstral coefficients have been 

windowed by means of a half-Hamming window before 

inverse transforming. The purpose has been the removal 

of ripples in the cepstrally-estimated spectral contour 

owing to the zeroing of finite-sized cepstral coefficients. 

Slow contour ripples may indeed be mistaken for extra 

formants. 

The number of cepstral coefficients has been fixed to 

28, that is, twice the number of independent parameters 

of model (1). The aim has been to equate the effective 

number of cepstral coefficients and the number of model 

parameters. Indeed, the number of cepstral coefficients is 

assumed to be effectively halfed given that the non-

zeroed cepstral coefficients are windowed and the 

cepstral coefficients near the edge of the window do not 

contribute much to the spectral contour. 

In a second experiment, the validity of model (1) has 

been tested indirectly by fitting an all-pole model (in 

place of the pole-zero model) with the same number of 

parameters. The all-pole model is expected to fit the log-

magnitude spectra less well than the pole-zero model, 

given the observation that for that corpus many speech 

frames display at least one prominent anti-formant.  

  

D. Fitting 

 

The optimizer has been the differential evolution 

algorithm, which is a population-based, stochastic 

function minimizer [6]. Differential evolution handles 

floating-point variables directly, which here are the 

model parameters. It does not request that they are 

encoded binarily. The optimizer involves three 

parameters that must be fixed by the user and which are 

application-dependent. These parameters are the size of 

the population, the mutation factor and the recombination 

rate. The size of the population of candidate solutions has 

been fixed to 15 times the number of independent model 

parameters. The mutation factor has been fixed to 0.5 and 

the recombination rate to 1. 

  

E. Cost function 

 

To fit model (1), the optimizer has decreased the value of 

a cost function, which has been the total sum of squares 

of the sample-by-sample differences between the target 

log-magnitude spectrum and the log-magnitude transfer 

function. The averages of the log-magnitude spectrum 

and log-magnitude transfer function have been offset to 

0. 

The optimization stopped when one of the following 

criteria had been met: a) the smallest cost function value 
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in the population had decreased below a threshold; b) the 

standard deviation of the cost function values of the 

population was below a threshold so that any further 

evolution was unlikely; or c) the number of generations 

had been larger than 7000. 

 

F. Hard constraints 

 

At each generation, all individuals (i.e. arrays of model 

parameters) of the population of evolving candidate 

solutions have been tested whether they complied with a 

set of hard constraints. Solutions that did not comply 

have been discarded and replaced by new random 

candidate solutions that did. The constraints have been 

the following. Pole and zero relative frequencies have to 

be comprised between 0.02 and 0.5 and pole and zero 

radii between 0.0 and 0.96. These constraints guarantee 

stable solutions. They also strongly favor solutions that 

do not cling tightly to individual harmonics and do not 

match the glottal “formant”.  

 

G. Testing 

 

The validity of model (1) and the ability of the 

differential evolution algorithm to fit the model to log-

magnitude spectra have been tested by computing a 

relative difference (2) for each frame. 
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The target has been the observed log-magnitude 

spectrum, including noise and harmonics. The contour 

has been the transfer function of model (1) or the spectral 

contour estimated via cepstral smoothing. 

The values of relative difference (2) cannot be 

interpreted as modeling errors per se because of the 

harmonics and noise in the spectrum that are not taken 

into account by the spectral contours. The quality of fit of 

model (1) has therefore been judged indirectly by 

comparing differences (2) when the contour has been 

obtained cepstrally or by fitting log-magnitude transfer 

function (1).  When both differences are similar, one may 

conclude that model (1) and truncated cepstrum recover 

the spectral contours with equal fidelity. 

The results are reported for all analysis frames 

including or excluding silent frames that occur during 

tract closure or precede and follow speech onset and 

offset. In practice, silent frames have been weak and 

noisy. They have been removed by computing the root 

mean square amplitude of each frame and discarding 

those frames the effective amplitudes of which have been 

smaller than 10 % of the maximum frame amplitude of 

each token. 

The linear and rank correlations between fitted log-

magnitude transfer functions and cepstrally-estimated 

log-magnitude spectral contours are also reported. 

 

III. RESULTS 

 

Experiment 1 

 

Figures 1 and 2 illustrate the cepstrally-estimated and 

modeled contours for fragments [a] and [i] in token [ai]. 

Tables 1 and 2 report the quartiles of quantities 

informing about the ability of transfer function model (1) 

to represent the contours of log-magnitude spectra. Table 

1 reports these quantities for all frames, including silent 

and weak ones. Table 2 reports the same quantities when 

weak and silent frames are removed. 

The quantities reported are relative differences (2) 

between the log-magnitude spectrum and the model 

transfer function (second column) or the cepstrally-

estimated contour (third column). The linear and rank 

correlations of the fitted transfer function with the 

cepstrally-estimated spectral contour are reported in the 

fourth and fifth columns. 

Table 1 shows that relative differences (2) in percent 

are similar for the fitted pole-zero model and the 

cepstrally-estimated spectral contour. The latter appears 

to match the log-magnitude spectrum slightly better. The 

difference is 1 – 2 % in favor of the cepstrally-smoothed 

contour. This is expected because half-windowing the 

cepstral coefficients does not really half their number and 

the cepstrally-obtained contour is free to match spectral 

features such as glottal “formants”. Matching glottal 

“formants” is forbidden to model (1) because the lowest 

relative pole frequency must be " 0.02. As an example, 

the log-magnitude spectrum in Figure 1 displays a 

prominent glottal formant that is hugged by the 

cepstrally-estimated contour, but ignored by the log-

transfer function of model (1).  

The quartiles of linear and rank correlations suggest 

that cepstrally-estimated and modeled log-contours are 

similar in shape. The averages and standard deviations 

are indeed 0.97±0.02 and 0.96±0.03 for the linear and 

rank correlations respectively. 

Finally, comparing Tables 1 and 2 shows that 

discarding frames that are weak and noisy, which may be 

the case for roughly one third of the total number of 

frames, enables decreasing differences (2) by one percent 

for the modeled and cepstrally-estimated contours.  

 

Experiment 2 

 

Table 3 shows that, as expected, replacing the pole-zero 

model by an all-pole model with the same number of 

model parameters increases differences (2) between the 

log-magnitude spectrum and the log-magnitude transfer 

function (column 1). The explanation is that the all-pole 

model is not able to match prominent spectral zeros. A 

visual examination of modeled contours suggests that the 

lack of a modeled spectral zero also precludes fitting the 
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extra-formant adjacent to the anti-formant because the 

abrupt transition from spectral peak to spectral through 

cannot be tracked by means of an all-pole model even 

when excess poles are available. 

But, the increase of difference (2) is small, i.e. 

approximately 1 %. The explanation is that only a 

fraction of the speech sounds displays prominent anti-

formants. In these sounds most of the formants are 

modeled correctly, which keeps the overall error small 

even when anti-formants and extra-formants are not 

matched accurately. 

 

 
 Target vs 

Model (%) 

Target vs Smoothed 

Contour (%) 

Lin. 

corr. 

Rank 

corr. 

Min 25 23 0.60 0.55 

1. Quartile 49 48 0.97 0.95 

Median 55 54 0.98 0.97 

3. Quartile 62 60 0.99 0.98 

Max 95 94 1.00 1.00 

Table 1: Differences (2) between log-magnitude spectra and pole-zero 

modeled and cepstrally-estimated contours; linear and rank 

correlations between model log-magnitude transfer functions (1) and 

cepstrally-estimated spectral contours for all analysis frames. 

 

 

 
Figure 1: Log-magnitude spectrum of frame 10 ([a]) in [ai]. Overlaid 

are the cepstrally-estimated spectral contour (white circles) and the 

fitted transfer function of model (1) (black circles). The horizontal axis 

is the frequency ranging from 0 to 4 kHz in number of samples. The 

model-estimated formant frequencies for that frame have been equal to 

647 Hz, 1437 Hz, 2059 Hz, 2900 Hz and 3305 Hz. The anti-formant 

frequency has been equal to 2497 Hz. The anti-formant is visible at that 

frequency as a deep valley. 

 

IV. DISCUSSION AND CONCLUSION 
 

Model-based spectral contour fitting enables recovering 

parameters that have an interpretation in terms of (anti-) 

formant frequencies and bandwidths. Preliminary results 

suggest that fitting spectral models directly to log-

magnitude spectra is feasible. Direct fitting offers more 

flexibility with regard to the choice of models and 

constraints. Disadvantages are that spectral fitting via 

differential evolution is time-consuming and model poles 

or zeros may be attracted by single harmonics in high-

pitched voices, which is a known problem with this kind 

of models.  

 

 
Figure 2: Log-magnitude spectrum of frame 27 ([i]) in [ai]. Overlaid 

are the cepstrally-estimated spectral contour (white circles) and the 

fitted transfer function of model (1) (black circles). The horizontal axis 

is the frequency ranging from 0 to 4 kHz in number of samples. The 

model-estimated formant frequencies for that frame have been equal to 

312 Hz, 1873 Hz, 3102 Hz and 3376 Hz.  

 
 Target vs 

Model (%) 

Target vs Smoothed 

Contour (%) 

Lin. 

corr. 

Rank 

corr. 

Min 25 23  0.67 0.66 

1. Quartile 48 46  0.97 0.96 

Median 54 52  0.98 0.97 

3. Quartile 61 59  0.99 0.98 

Max 95 87  1.00 1.00 

Table 2: Differences (2) between log-spectra and pole-zero modeled 

and cepstrally-estimated contours; linear and rank correlations 

between model transfer functions (1) and cepstrally-estimated spectral 

contours when silent and weak analysis frames are omitted. 

 

 

 

 

 Target vs 

Model (%) 

Target vs Smoothed 

Contour (%) 

Lin. 

corr. 

Rank 

corr. 

Min 25 23 0.44 0.44 

1. Quartile 50 48 0.97 0.96 

Median 56 54 0.98 0.97 

3. Quartile 63 60 0.99 0.98 

Max 99 94 1.00 1.00 

Table 3: Differences (2) between log-spectra and all-pole modeled and 

cepstrally-estimated contours; linear and rank correlations between 

model transfer functions (1) and cepstrally-estimated spectral contours 

for all analysis frames. 
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AUTOMATIC PARAMETERISATION OF THE GLOTTAL WAVEFORM
COMBINING TIME AND FREQUENCY DOMAIN MEASURES

John C. Kane, Christer Gobl

Phonetics and Speech Laboratory, Centre for Language and Communications Studies
Trinity College Dublin

Abstract: This paper describes a new technique for auto-
matically parameterising the inverse filtered speech wave-
form by exploiting frequency domain measures and ampli-
tude measures in the time domain. The technique is moti-
vated by the difficulties posed by time domain analysis and
by the consequent risks of inconsistencies on the part of both
researchers and time based algorithms. The results demon-
strate that the system can obtain accurate measurements
on synthetic source signals. Analysis was also carried out
on short utterances of three male speakers producing tense,
modal and breathy voice qualities. Perception tests which
involved comparing different resynthesised utterances pro-
vide evidence that the new technique is at least as good as
our manual method for modal and tense voices. For breathy
voice qualities, however, the system needs further develop-
ment to include aspects like the noise component to provide
a more breathy percept.
Index Terms: voice source, parameterisation, LF model

I. Introduction
Despite the attention voice source analysis has received re-

searchers are still seeking to make improvements in terms of
accuracy and robustness of parameterisation. Many applica-
tions require very accurate and consistent characterisation of
the voice source. Recently researchers have started exploring
the possibility of including a more sophisticated source model
in HMM based speech synthesis in an attempt to reduce ‘buzzi-
ness’ [1, 2]. This is an example of one application which re-
quires high accuracy as well as consistency throughout the anal-
ysis. For the purpose of analysing subtle changes in pathologi-
cal voices accurate parameterisation is also required. Parameter
measurement by automatic algorithms, however, tends not to be
robust enough particularly across different voice qualities.

Typically the parameterisation of the voice source first re-
quires some type of inverse filtering. This source-filter decom-
position is an attempt to remove the effect of vocal tract filtering
on the voice source. This is essentially the reverse of the speech
production process, as described in [3]. It is done by getting
an estimate of the transfer function of the speaker’s vocal tract.
The speech signal is then filtered using the inverse of this trans-
fer function which produces an estimate of the speaker’s voice
source. Automatic inverse filtering systems exist (e.g., [4] or
those described in [5]), but from our experience there is high
risk of incomplete cancellation of formant oscillations. As the
purpose of the paper is to test a parameterisation system we re-
quire good estimates of the source signal and, hence, have opted
to inverse filter small amounts of speech data manually (as de-
scribed in [6]).

Once a speech signal has been inverse filtered it can then be
parameterised. This can be done by marking certain timepoints
in glottal waveform or by fitting a model to the pulse. The most
documented voice source model, and the one to be used in this
study, is Liljencrants-Fant (LF) model [7]. The LF model is a
four parameter model of differentiated glottal flow (see Fig. 1).
The shape of the model can be described using the parameters
Ra, Rk and Rg . The differentiated glottal flow is essentially
the residual after inverse filtering as the effect of lip radiation
has not been removed. The model is thought to be able to char-
acterise a wide range of phonation types, however as with any
model a certain amount of error will exist.

Figure 1: Examples of LF pulses (bottom) and corresponding
glottal pulses (top) (taken from [8])

When parameterising the source signal most methods involve
marking specific timepoints. The precise location of these time-
points can at times be quite unclear and can lead to errors as
well as inconsistencies. These difficulties are heightened in the
cases of non-modal phonations, e.g., in breathy voices, where a
timepoint, for instance the point of glottal opening, can involve
very subjective measuring.

A further difficulty with analysing and synthesising breathy
voice is that the source signal contains both a periodic voice
component and an aperiodic noise component [9]. The LF
model parameters are used to characterise only the periodic as-

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.
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pect of the voice source. If the signal is not decomposed into pe-
riodic and noise components parameter measurements may also
include the influence of the aspiration noise and, hence, may not
effectively characterise the periodic component. In this study no
noise analysis is carried out. We wish to include a noise analysis
and synthesis system, perhaps similar to that in [10], in future
algorithms.

Frequency domain analysis is thought to have a better map-
ping to the perception of speech than time domain analysis. In
the time domain even minor errors in model fitting can have
major perceptual effects. The power spectrum also bypasses
any phase distortions which can upset time domain param-
eterisation. A complete frequency domain approach would,
hence, lessen the need for high fidelity recordings which pre-
serve phase linearity, and would allow for the analysis of a far
greater range of speech data. This is a current direction of our
research and work on a full frequency domain parameterisation
system is underway. For the present study only the return phase
parameter Ra will be measured from the source spectrum.

The remaining source parameters can be calculated from am-
plitude based measures in the time domain. Such measures are
said to be more robust than marking time instances, especially
in automatic systems [11]. It is hoped that this novel combina-
tion of frequency domain measures and time based amplitude
measures can avoid some of the pitfalls of purely time point
measurements and provide a robust and automatic analysis of
the inverse filtered signal.

II. Method
This sections outlines the different methods applied in our

system in order to arrive at a full set of LF model parameters.
As the study is mainly concerned with parameterisation we have
analysed small amounts of speech data that have been carefully
inverse filtered.

A. Inverse Filtering

We have opted for a manual inverse filtering approach for
this study, as in [6]. The software first uses an linear predic-
tive coding (LPC) method for estimating formant frequencies
and bandwidths. The user then fine-tunes formant frequencies
and bandwidths manually by utilising time and frequency do-
main displays to ensure complete formant cancellation. This
fine-tuning is done for each pulse and the final output is an esti-
mation of the differentiated glottal waveform.

B. Amplitude-based measurements

The first amplitude measurement is the negative peak of the
differentiated glottal waveform, Ee. This parameter is simply
measured by the new automatic system as the maximum nega-
tive amplitude of each glottal pulse. The next parameter, which
is again straightforward to measure, is the peak positive ampli-
tude of the differentiated glottal pulse, Ei, see Fig. 1 (bottom).

The measurement of the maximum amplitude of the undif-
ferentiated flow is complicated by the occurrence of zero line
drift. The LF model is designed to have equal area above and
below the zero axis which means when you integrate, the signal
sits neatly on the zero axis, see Fig. 1, top. Real speech, how-
ever, does not maintain this exact property and as a result the
integrated waveform drifts off the zero axis, see Fig. 2 (top).

To adjust for this our system marks the major negative points
for each pulse. A line is drawn from the origin then to each of
the negative peaks, see the dashed line in Fig. 2 (top). Then at

each sampling point the distance between the dashed line and
the zero axis is added to the signal at that sampling point which
results in the signal being lifted onto the zero axis, see Fig. 2
(bottom). The system can now easily measure the maximum
amplitude of each pulse, our Up value.
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Figure 2: The integrated source waveform (top) and the same
source waveform adjusted for zero-drift (bottom)

C. Calculating Rk and Rg from amplitude measures

Aside from f0 and Ee the LF model can be described us-
ing three further shaping parameters. We use the parameters
Ra, Rk and Rg which can be calculated from time instance
measurements, as in equation 1. The positions of these time
instances can be seen in Fig. 1 (bottom).

Ra =
Ta
T0

Rk =
Tn
Tp

Rg =
T0
2Tp

(1)

The parameters Rk and Rg can also be estimated using our
three amplitude measures (Ee, Ei andUp). [12] gives a detailed
description of how voice source parameters can be arrived at
using amplitude measurements. Equation 2 shows how one can
obtain an amplitude representation for Rk and Rg , as described
in [12].
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D. Frequency domain analysis

With Rk and Rg already estimated one parameter remains to
configure the LF model. The parameter Ra characterises the re-
turn phase of the source waveform and it is, perhaps, considered
to be the most important LF parameter [13]. However, getting
accurate estimations of Ra is thought to be a challenging task
[14]. Our approach derives a value for Ra from the frequency
domain and the process is presented graphically in Fig. 3.

We define a set of possible Ra values, e.g., 1% to 20% (the
values here refer to the percentage the return phase is of the
pulse duration). The lowest is the minimum possible Ra value
and the highest is the maximum possible Ra value and 50 lin-
early spaced values in between. The system takes a section of
one pulse length from the signal and gets the spectrum (the dark
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line in Fig. 3). We then generate 50 LF pulses for each of the
Ra values but with all other parameter values remaining fixed.
Spectra are then taken of each of the pulses (the grey lines in
Fig. 3). The system then uses a Euclidean distance measure to
choose the LF configuration with the closest match to the source
signal. The Ra value used in this configuration is chosen as the
optimal value. The system then proceeds to the next pulse and
the process is repeated. This continues until the end of the sig-
nal is reached.
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Figure 3: Spectrum of a single pulse from the voice source sig-
nal (dark line). The grey lines show the range of LF configu-
rations produced and the dashed line shows closest matching
configuration.

III. Evaluation
The evaluation process for the system is two-pronged. The

first testing stage is on synthetic source pulses. The reason for
this is that the correct source parameter values are known and
the actual size of the error can be measured. The second stage
involves analysing real source signals and for this the correct pa-
rameter values are not known. To provide an evaluation for real
speech we have opted to apply the current system and the man-
ual parameterisation method, as described in [6]. The extracted
parameters for each method were then used to make resynthe-
sised utterances. The resynthesised utterances were then used
in perception tests where participants chose the stimulus which
sounded most like the original speech utterance. This prelimi-
nary evaluation should provide evidence for whether this system
provides good parameterisation for real speech. A more rigor-
ous evaluation is required and is planned for future work.

A. Recordings

Three male English speakers were recorded producing an [a]
vowel in tense, modal and breathy phonation modes. These cat-
egories of voice quality are those as described by [15] and par-
ticipants listened to samples of each phonation type and prac-
tised them several times before recording. Each utterance was
around half a second long and was recorded using a Pearl CC30
condenser microphone in a semi-anechoic room. Speech seg-
ments were digitised at 44.1 kHz, then downsampled to 10 kHz
and high pass filtered at 40 Hz. The choice of microphone and
filter ensured phase linearity was maintained. Using the method
described in [6] utterances were manually inverse filtered to
minimise errors.

B. Parameterisation

Each utterance was parameterised both using the new system
and a manual parameterisation method, described in [6]. The
manual method involves the user manually fitting the LF model
to each source pulse by varying one amplitude based and four
time based markers in an effort to achieve the optimal match.
Although the fitting is done in the time domain, a frequency
domain display is also available to the user to facilitate a more
thorough fit.

C. Synthetic source analysis

Nine synthetic source signals were generated using static pa-
rameter settings. The signals were made by constructing an LF
model with particular parameter settings and concatenating 10
identical pulses. In every signal Ee was set to 1. The values
of Ra, Rk, Rg and f0 were chosen so as to have a range of
source signals corresponding to modal, tense and breathy voice
qualities. Previous analysis of these voice qualities aided the
choice of value for the above parameters. The nine signals were
analysed using only the new parameterisation system.

D. Perception Tests

Perception tests were used as a method of comparing the pa-
rameterisation of the new automatic method with the manual
method for real speech. 18 volunteers participated in a two-part
perception test in a quiet room using high quality loudspeakers.

In test one participants were presented with 45 groups of
three stimuli. In each group the first two stimuli were resyn-
thesised versions of the original utterance, one from parameters
obtained from the automatic method and one from the manual
method. Resynthesis was carried out using a cascade formant
synthesiser. The two synthetic signals in each group used the
same f0, EE and formant frequencies and bandwidths. They
differed only in the Ra, Rk and Rg parameters which were ex-
tracted from the two methods. The third stimulus was the orig-
inal speech sound and participants had to choose which of the
synthesised sounds they deemed closest to the original. The as-
sumption here being that a closer sounding resynthesis demon-
strates more accurate voice source parameterisation.

Part 2 of the test was a standard ABX discrimination task
where the participants were presented with the two different
resynthesised utterances and then a third sound which was a
randomly chosen one of the previous two. Participants had to
choose which sound had been repeated. Again there were 45
groups of stimuli. This test was chosen to demonstrate whether
the differences in the parameter measurements by both methods
produced two differentiable sounds.

In both parts of the perception test the order of the resyn-
thesised stimuli in each group, as well as the order of the 45
groups, were randomised.

IV. Results and discussion
Table 1 summarises the testing of the parameterisation sys-

tem on the nine synthetic source signals. The mean and standard
deviation of the error (i.e. the difference between the actual
source parameter values and those extracted by the system) as
well as the range of values used are presented. Encouragingly,
the error size for all three parameters is reasonably low. This
is evidence that the amplitude based representations of Rk and
Rg can indeed provide good estimates of those parameters for a
wide range of settings. These results also demonstrate that the
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novel method of estimating Ra is effective, at least for synthetic
source pulses.

Table 1: Summary of parameterisation error for Ra, Rk and
Rg . The range of values used to generate the signals and the
mean and standard deviation of the differences between the ex-
tracted values and the actual parameter values are shown

Ra Rk Rg

Range 1.8%-7% 28%-39% 79%-137%
Mean Error 0.9% 3.9% 6.1%
St Dev of Error 0.7% 3.1% 0.4%

The results of the perception tests are presented in Table 2.
Test 1, the first row, shows the percentage of instances partic-
ipants chose the automatic method to be closer to the original
(i.e. over 50% shows preference for the automatic method while
under 50% shows preference for the manual method). Overall,
at 50.3%, we can see that participants showed no preference for
either method in terms of closeness to the original. The second
row contains the results from test 2 which show the percentage
of instances participants correctly identified the repeated syn-
thesised stimuli.

Table 2: Test 1: the percentage of instances participants be-
lieved the synthesised stimuli from the automatic method to
sound closer than the manual method to the original speech
utterance. Test 2: the percentage of correctly identified synthe-
sised stimuli

Test Modal Tense Breathy Overall

1 49.8% 61.2% 40% 50.3%
2 54.5% 66.7% 72.9% 65.1%

For modal voice qualities 54.5% for test 2 suggests that par-
ticipants were largely unable to discriminate between the two
resynthesised utterances. Test 1 results, 49.8%, show that par-
ticipants believed neither synthesised utterances to be closer
to the original. For tense voice qualities participants slightly
favoured resynthesised versions which used the new system’s
parameter values (61.2% of participants showing preference for
the automatic method) and they were reasonably able to dis-
criminate the two synthesised sounds.

Breathy voice qualities, as expected, proved more difficult
than the other voice qualities in both the inverse filtering and
parameterisation stages. It was found that participants showed
slight preference for the manual method, with 40% stating that
they preferred the automatic method. Participants also demon-
strated a reasonable ability to differentiate the two sounds, at
72.9%. It should be noted that the synthesised versions of
breathy voice qualities overall were of poorer quality than the
modal and tense versions. This suggests that the LF model alone
does not provide enough source information to convey a breathy
percept.

V. Conclusion
Overall evidence from the evaluation appears to be encour-

aging for the new system described here. Analysis of synthetic
signals confirms that Rk and Rg can be estimated with good ac-
curacy from amplitude measurements alone. The analysis also

demonstrates the effectiveness of the new method of Ra estima-
tion in the frequency domain. We hope to include this method
in our forthcoming all-frequency domain parameterisation sys-
tem.

Results from the perception tests suggest that the automatic
system is at least as effective as the manual method for modal
to tense voice qualities. This inference, however, comes solely
from the fact that resynthesised utterances were judged to sound
closer to the original speech utterances and does not rigorously
demonstrate accuracy of parameterisation.

For breathy voice qualities we hope that by implementing
analysis and synthesis of the noise component, perhaps simi-
lar to that in [10], we can provide a more perceptually breathy
sound. The issue of finding further methods of demonstrating
accuracy of parameterisation for breathy voice qualities and for
voiced speech in general requires further attention.
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Abstract: the presentation concerns the evaluation of 
a synthesizer of disordered voices. the objective is the 
perceptual assessment of the ability of the synthesizer 
to simulate disordered voice timbres. three perceptual 
experiments, based on a pairwise comparison 
paradigm, have been carried out. the first involved 
jitter, the second breathiness and the third a 
combination of both. results of the first two 
experiments show that the perceptual ranking accords 
with the synthesis parameters as well as measured 
speech jitter, speech shimmer and harmonics-to-noise 
ratios. for the third experiment, which involved jitter 
as well as additive noise, a two-dimensional 
multidimensional scaling analysis shows that for lower 
levels of additive noise, increased jitter and additive 
noise are perceived as distinct disordered voice 
timbres.  
 
Keywords: synthesis of disordered voice timbres, 
perceptual evaluation. 
 

I. INTRODUCTION 
 

The presentation concerns the evaluation of a 
synthesizer of abnormal voice timbres with respect to its 
ability to simulate hoarseness. The synthesizer, which 
includes a shaping function model [1], has been presented 
earlier [2] and its ability to mimic modal voices has been 
evaluated [3]. 

Few studies have been devoted to the perceptual 
assessment of hoarseness in synthetic disordered voices. 
One reason is the scarcity of models which enable 
simulating voice disorders. Motivations for developing 
synthesizers of disordered voices are the discovery of 
speech cues that are relevant to the perception of 
abnormal voices, the preparation of reference stimuli in 
the context of the perceptual assessment of disordered 
voices, the training of speech therapists in the auditory 
evaluation of dysphonic speakers as well as the testing of 
the reliability or validity of acoustic cues of disordered 
speech.  

The objective of this study is to evaluate the capacity 
of a synthesizer to simulate disordered voices. Increased 
jitter and additive noise are known causes of abnormal 
voice qualities. A first experiment has therefore involved 
jitter, a second additive noise and a third jitter and 
additive noise combined. For the first and second 
experiments, judges have been instructed to select the 

hoarsest stimulus within a pair in the framework of a 
pairwise comparison paradigm. For the third, they have 
been instructed to indicate whether stimuli within a pair 
have been similar or not with regard to hoarseness. 
Results for the first and second experiments enable 
ranking vowels from the less to the most hoarse and 
correlating with acoustic features. Results of the third 
experiment have been investigated in the framework of a 
multidimensional scaling analysis and the underlying 
perceptual factors interpreted in terms of synthesis 
parameters and measured acoustic cues. 
 

II. METHODS 
 
A. Synthesizer 
 

The synthesizer (Fig.1) rests on a template of the 
glottal area, which is based on nonlinear memory-less 
shaping functions that transform two driving harmonics 
into the desired glottal area [1]. The reason for opting for 
a shaping function model of the glottal area is that the 
length of a glottal area cycle and its spectral slope and 
amplitude may be controlled via the instantaneous 
frequency and amplitude of the harmonic driving 
functions.  

 
Fig.1: Block diagram of the synthesizer 

 
The synthesizer comprises, in addition, models of the 

glottal airflow and the supra and infra-glottal tracts. The 
glottal airflow depends on the glottal area, the incident 
components of the infra- and supra-glottal acoustic 
pressure waves as well as physical constants [4]. The 
incoming and outgoing components of the pressure waves 
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have been obtained via the temporal simulation of the 
acoustic wave propagation in the vocal tract.  

Trachea and vocal tract have been mimicked by 
means of a concatenation of cylindrical tubelets of 
identical length but different cross sections. Losses have 
been taken into account via models of the wall vibration, 
heat conduction and viscous friction as well as lip and 
glottal radiation.  

Several types of perturbations, such as vocal jitter [5], 
vocal tremor, additive noise, diplophonia, biphonation 
and random vibrations have been simulated and tested 
separately. The focus of this presentation is the 
assessment of synthetic disordered vowels with increased 
vocal jitter and breathiness. 
 
B. Synthesis of jitter 
 

Vocal jitter designates small random perturbations of 
the glottal cycle lengths. Here, the instantaneous 
frequencies of the harmonic driving functions have been 
perturbed by white noise . Different levels of speech 
jitter and shimmer have been obtained by changing the 
variance of the white noise given by (1). Symbol  
is the time step. 

 

        (1) 

 

 
Fig.2: Simulation of vocal jitter: instantaneous phase 

(top); glottal area function (bottom). Perturbations are 
exaggerated to increase their visibility. 

 
C. Synthesis of additive noise 
 

Additive noise is mimicked by means of Brownian 
noise, the amplitude of which is modulated via an affine 
function (2) of the rate of flow. The modulated noise is 
delayed by one millisecond and added to the airflow rate. 
Different levels of breathiness are obtained by changing 
the coefficients of affine function (2). Symbols  and 

 are coefficients that are fixed by the user. 
 
            (2) 
 
 

 
III. PERCEPTUAL EVALUATION 

 
A. Experiment 1 
 

The topic of the first experiment has been synthetic 
vocal jitter [5]. Ten vowels [a] have been simulated by 
modifying the size of the white noise perturbing the 
instantaneous frequency of the model driving functions, 
yielding different levels of speech jitter and shimmer. 
Speech shimmer has been generated from glottal jitter via 
modulation distortion in the vocal tract [6]. All the other 
parameters have been kept constant under the threshold 
of pathology. Values of jitter measured by PRAAT [7] 
have been in the interval from 0.1% to 2.4%.  

Each vowel has been one second long. A two by two 
comparison experiment has been carried out by three 
expert and seven naive listeners. Stimuli have been 
presented pairwise to each listener in a random order. The 
task has been to designate the item of each pair that was 
perceived as the hoarsest. The judges could also report 
both items as identically hoarse. Based on the judge’s 
combined comparisons, the synthetic stimuli have been 
ranked from the least to the most hoarse. 
 
B. Experiment 2 
 

The topic of the second experiment has been synthetic 
breathiness mimicked by additive noise. Ten vowels [a] 
have been simulated by varying coefficient of the 
affine function that modulates the Brownian noise, 
yielding different levels of breathiness. All the other 
parameters have been kept constant under the threshold 
of pathology. The harmonic to noise ratios measured by 
PRAAT have been in the interval from 14 to 24 dB.  

Each vowel has been one second long. A two by two 
comparison experiment has been carried out by the same 
listeners as in Experiment 1. The stimuli have been 
presented pairwise to each listener in a random order. The 
task has been to designate the item of each pair that was 
perceived as the hoarsest. The judges could also report 
both items as identically hoarse. Based on the judge’s 
combined comparisons, the synthetic stimuli have been 
ranked from the least to the most hoarse. 
 
C. Experiment 3 
 

The objective of the third experiment has been the 
investigation of perceived dissimilarities between vowels 
with different values of speech jitter and shimmer or 
breathiness. Sixteen vowels [a] have been simulated by 
changing both jitter and additive noise. The sixteen 
vowels have combined four different levels of additive 
noise and four different levels of glottal jitter (Tab. 1). 
All the other parameters have been kept constant under 
the threshold of pathology. Measurements by PRAAT 
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have shown that the least perturbed stimulus involved 
0.2% of jitter and a harmonic-to-noise ratio of 24 dB and 
the most perturbed stimulus 1.8% of jitter and a 
harmonic-to-noise ratio of 10 dB. In Tab. 1, parameters 
of additive noise refer to the coefficient Nois1 of the 
affine function that multiplies the glottal airflow. 
Coefficient has been kept constant. Glottal jitter in 
Tab.1 refers to the coefficient   

Each stimulus has been one second long. A two by 
two comparison experiment has been carried out by the 
same 10 listeners as in Experiments 1 and 2. Stimuli have 
been presented pairwise to each listener in a random 
order. The task has been to indicate whether the items of 
each pair were equally hoarse or not.  

A multidimensional scaling program PROXSCAL [8] 
has been applied to a global matrix in which each cell 
represented the number of times the two items of a vowel 
pair had been perceived as different with respect to 
hoarseness. The output of PROXSCAL is a low-
dimensional space in which the stimuli are represented as 
points. Two vowels that are perceived as similar with 
regard to hoarseness are represented by two points that 
are close, while two vowels that are perceived different in 
terms of hoarseness are represented by two points that are 
distant.  
 
Tab.1: Values of Jitter (local) and Mean Harmonics-to-

Noise ratio obtained by PRAAT in Experiment 3 for 
different combinations of parameters Pjit and Nois1. 

 

 Vowels 
 

0.10 0.15 0.20 0.35 

 

4 
Jitter (%) 0,26 0,23 0,27 0,30 

HNR (dB) 24,83 23,52 21,24 17,37 

12 
Jitter (%) 0,74 0,89 0,87 0,81 

HNR (dB) 17,90 16,90 16,37 14,47 

20 
Jitter (%) 1,26 1,18 1,39 1,29 

HNR (dB) 13,98 13,91 12,73 12,35 

28 
Jitter (%) 2,05 2,10 2,02 1,85 

HNR (dB) 10,58 10,09 10,39 10,66 
 

IV. RESULTS AND DISCUSSION 
 
A. Experiment 1 
 

Results (not reported here) show that listener’s 
responses are highly correlated (>0.9). The ranking 
obtained via perceptual two by two comparison accords 
with the measured vocal jitter (Tab.2).  

 

Tab.2: Average ranks obtained by 10 listeners when 
classifying vowels with different levels of jitter.  

Speech jitter, speech shimmer and HNR  
are measured by means of PRAAT. 

 
Glottal 
jitter 
  

0 4 8 12 16 

Speech 
jitter (%) 0.09 0.28 0.56 0.89 1.03 

Speech 
shimmer 

(%) 
1.35 1.51 2.49 3.23 4.44 

HNR 
(dB) 31.48 25.97 21.27 17.66 15.73 

Average 
ranks 0.8 1.1 1.6 2.9 4.1 

Glottal 
jitter 
  

20 24 28 32 36 

Speech 
jitter (%) 1.31 1.64 2.03 2.23 2.41 

Speech 
shimmer 

(%) 
6.22 6.05 8.30 8.25 9.12 

HNR 
(dB) 14.13 12.30 10.69 9.80 9.48 

Average 
ranks 5.4 6.5 6.5 7.1 7.9 

 
B. Experiment 2 
 

Results (not reported here) show that listener’s 
responses are highly correlated (>0.9). The ranking 
obtained via perceptual two by two comparison accords 
with the measured Harmonic-to-Noise ratios (Tab.3).  

 
Tab.3: Average ranks obtained by 10 listeners when 

classifying vowels with different levels of additive noise. 
Speech jitter, speech shimmer and HNR  

are measured by means of PRAAT. 
 

Additive 
glottal 
noise 

 

0.05 0.10 0.11 0.125 0.15 

Speech 
jitter (%) 0.36 0.32 0.32 0.38 0.32 

Speech 
shimmer 

(%) 
1.93 2.32 2.49 2.49 3.28 

HNR 
(dB) 24.59 23.68 23.33 22.20 22.19 

Average 
ranks 0.2 1.8 2.2 2.8 3.7 
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Additive 
glottal 
noise  

 

0.16 0.2 0.25 0.33 0.5 

Speech 
jitter (%) 0.35 0.34 0.32 0.37 0.37 

Speech 
shimmer 

(%) 
3.35 3.53 4.69 6.75 7.72 

HNR 
(dB) 21.17 20.47 19.06 17.16 14.74 

Average 
ranks 3.8 6.2 6.7 7.8 8.9 

 
C. Experiment 3 
 

The correlation between listener’s responses has been 
in the interval 0.60-0.85. Multidimensional scaling 
analysis of results of Experiment 3 suggests that the 
synthetic stimuli may be represented meaningfully in a 
two-dimensional space. This 2D representation shows 
that when additive noise was the highest (HNR = 10 dB), 
different levels of jitter were not perceived as separate 
qualities.  

However, for lower levels of additive noise, different 
levels of jitter and different levels of breathiness were 
perceived as distinct timbres. Continuous black lines have 
been drawn by hand to guide the reader. They suggest 
iso-additive noise curves. Alternatively, iso-glottal jitter 
lines could be obtained connecting iso-Pjit values in the 
graph. 

 
Fig.3: Multidimensional scaling analysis. The labels 

report Pjit and Nois1 parameter values. 
 

 
 
 
 

Multidimensional scaling analysis of the distances 
between listeners (instead of stimuli) does not suggest 
that the judges cluster into sub-groups (experts versus 
naives, for instance) 

 
IV. CONCLUSION 

 
Three perceptual experiments, involving synthetic 

disordered vowels, suggest that the synthesizer is able to 
simulate different disordered voice qualities. For the first 
and second experiments, the average ranks with respect to 
hoarseness evolve with the values of the synthetic 
parameters and measured speech jitter, shimmer and 
harmonics-to-noise ratio. In addition, correlations of 
listener’s responses exceed 0.9 for both experiments. 
Results of the multidimensional scaling analysis of the 
third experiment show that when additive noise is the 
highest, judges are unable to distinguish different levels 
of jitter. However, for lower levels of additive glottal 
noise, jittered and noisy stimuli are perceived as distinct 
timbres. 
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SALIENCE ANALYSIS FOR GLOTTAL CYCLE DETECTION
IN DISORDERED SPEECH
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Abstract : The presentation concerns the evalu-
ation of a temporal method for tracking cycle
lengths in voiced speech. The speech cycles are
detected via the saliences of the speech signal
samples. The method does not request that the
signal is locally periodic and the average period
length known a priori. The cycle length extraction
is applied to the analysis of dysphonic speakers
affected by amyotrophic lateral sclerosis (ALS).
Results suggest that salience analysis is able to
track reliably glottal cycles in the speech signal.
SLA speakers are characterized by higher vocal
tremor depths and tremor frequencies than nor-
mophonic speakers.
Keywords : vocal frequency, vocal tremor, speech
salience analysis

I. Introduction

In clinical applications of speech analysis, speech cycles
are detected to measure their lengths and amplitudes
with a view to investigating slow (vocal tremor) and
fast (vocal jitter and shimmer) perturbations of vocal
frequency and speech cycle amplitude. Often, such anal-
yses are frame-based and the cycle detection rests on the
iterative selection of speech signal peaks that occur in
the vicinity of the instants of maximal acoustic excita-
tion. To facilitate this selection, one often assumes that
voiced speech segments are pseudo-periodic so that the
peaks can be determined one by one on the base of a
prior estimation of the typical fundamental period. The
assumption of quasi-equal spacing is, however, valid for
modal voices only and not for pathological ones, which
may be characterized by large cycle-to-cycle fluctuations.
Cycle insertion or omission errors may therefore occur,
which bias the acoustic cues of cycle regularity.
Here, we propose to track speech cycles via a multi-

scale analysis that assigns a salience to each signal peak.
The salience of a speech signal peak designates the time
interval over which this peak is a maximum. A signal
peak is a signal sample whose left and right neighbours
are smaller. The speech cycle tracking based on peak
saliences does not rest on the assumptions that the speech

signal is locally periodic and the average period length
known a priori.

II. Method
A. Preprocessing
The speech signal has been band-pass filtered by means

of a finite response (FIR) filter with cut-off frequencies
equal to 60Hz and 1000Hz to remove low-frequency
hum, additive noise owing to turbulence as well as high-
frequency formants.
The speech signal has been upsampled to Fs =

200kHz to guarantee a precision of the peak positions
requested by the size of vocal jitter expected in modal
speech.

B. Speech sample salience analysis
The salience sf of a signal sample is defined as the

length of the longest temporal interval over which the
signal sample is a maximum. A property of the salience
is that a sample with a large salience has not necessar-
ily a large amplitude and vice versa. In voiced speech
fragments, speech cycles are often characterized by a
prominent signal peak that is the effect of the glottal
excitation. The salience of that peak is expected to be
high irrespective of the evolving signal amplitude.
Here, a salience analysis based on a sliding window is car-
ried out. The windowed salience analysis algorithm has
been presented in [1] and [2]. The window-based approach
enables decreasing boundary effects at the beginning and
end of the analysis interval and reducing computation
time. Each signal sample is thus assigned a salience, but
only the saliences of signal peaks are kept for further
processing.
Fig. 1, illustrates, for instance, the peak salience values

obtained for a fragment of vowel [a]. One observes that
the prominent signal peaks that are due to the glottal ex-
citation have a higher salience value than other secondary
peaks that are due to tract resonances.

C. Speech cycle tracking based on peak salience
For speech cycle tracking, no assumptions are made

with regard to the regularity of the cycle lengths. One
assumes that the vocal frequency is comprised between
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Fig. 1 : Example of signal sample saliences

F0min = 60Hz and F0max = 400Hz, which corresponds
to an inter-peak spacing in samples comprised between
Nmin and Nmax.
The first step consists in ranking the signal peaks

according to decreasing salience and keeping those peaks
the salience values of which are greater than or equal
to twice the length of the shortest possible cycle length
(i.e. ≥ 2Nmin). The initial number of peaks is therefore
in excess of the number of expected cycles.
The second step consists in finding several candidate

cycle length time series by means of the retained peaks
and keeping the length series that has the smallest
cycle duration perturbations. Each candidate cycle
length series is found by extracting iteratively a signal
peak sub-sequence on the base of the local inter-peak
durations and the peak salience values, assuming that
prominent speech cycle peaks owing to the glottal
excitation are characterized by large salience values. The
difference between two candidate cycle sequences consists
in two different initializations of the iterative peak search.

Fig. 2 : Initialization of cycle lengths tracking

The initialization consists in determining all candidate
inter-peaks distances at the beginning of the signal. Let
g
 the position of the first peak in the peak sequence,

with g < Nmax. Starting from g , one determines all
the distances between this peak and the next peaks.
Accounting for the range of the vocal frequency, the
search interval starts at g + Nmin − 1 and stops at
g
 + Nmax − 1. Let h be a candidate for the second
peak. The initial cycle duration then is d(g ,h ). Fig. 2,
illustrates all possible initial cycle durations. In addition,
a third peak i is required, which satisfies condition (1) :

α · d(g ,h ) < d(h ,i ) < β · d(g ,h ) , 0.5 < α < 1
β > 1.5

(1)
Assuming that the required initial distance hypotheses

have been made, a sequence is built up comprising peaks
regularly spaced in time and secondary intrusive peaks.
Peak picking is based on an heuristic similar to the one
explained in the previous paragraph. The problem is to
detect and remove intrusive peaks. Fig. 3, illustrates the
four possible situations when the algorithm deals with a
new peak i, assuming previous peaks g and h given.

Fig. 3 : Peak selection

1) In the first situation, the inter-peak durations are
quasi-identical. No peak must be removed and the
algorithm proceeds to the next peak.

2) In the second and third situations, an intrusive peak
is present. If condition (2) is met, the algorithm
must decide which peak (i or j) is intrusive.

d(i,j) < α · d(g,h) (2)

The decision is based on two factors. The first is
the spacing (3) between consecutive peaks :

δi =
d(g,h) − d(h,i)

 δj =
d(g,h) − d(h,j)

 (3)
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Fig. 4 : Fragments of vowel [a] and time cycle length series (speaker 3)

The second are the saliences sf assigned to peaks i
and j. Distances and saliences are combined in local
costs (4) :

ci =
1 + δi
sf (i)

cj =
1 + δj
sf (j)

(4)

The peak the local cost of which is minimal is kept.
If peak i is kept, peak j is omitted and the following
peak is considered. If j is kept, it becomes the
current active peak (j → i).

3) In the fourth situation, peak i is situated too far
from the previous peak. If condition (5) is met, that
situation would lead to a peak ommission error.
The sub-sequence would not be relevant. Therefore,
the extraction of the current peak sub-sequence is
canceled and a new peak sub-sequence is extracted
on the base of a new initial distance hypothesis.

d(h,i) > β · d(g,h) (5)

Several peak sub-sequences are so obtained. To deter-
mine the relevant one, the standard deviation of the inter-
peak durations is computed. The peak subsequence giving
rise to a minimal standard deviation (i.e. overall smallest
perturbations) is kept. The sample salience analysis and
the cycle detection heuristic are carried out once for each
polarity of the signal. The polarity giving the smallest
overall perturbation is retained.

D. Corpora
Cycle length time series have been obtained via speech

sample salience analysis of French vowel [a] sustained
by normophonic and dysphonic speakers. The corpus of

normophonic speakers has comprised 8 subjects for which
both the acoustic and contact microphone signals have
been recorded simultaneously. The integral and derivative
of the acoustic signal have also been obtained. The
corpus of dysphonic speakers has comprised 72 patients
with amyotrophic lateral sclerosis (ALS), a neurological
disease which affects the muscular system. These stimuli
have been recorded at the Hôpital Européen Georges
Pompidou in Paris via an acoustic microphone only.

E. Validation
The reliability of the tracking of the cycle length

time series via speech peak saliences has been tested
by means of the modal speech signals, their numerical
derivatives and integrals as well as the co-recorded throat
microphone signals. The four time series that are so ob-
tained for each speaker are expected to be quasi-identical
given that they report the same glottal cyclicity via four
different signals. The agreement between the four time
series is evaluated by means of their inter-correlation.
In addition, the low-frequency spectra of the four

time series have been obtained and inter-correlated. The
reason is that in a later experiment, the tremor frequency
is estimated based on the low-frequency spectrum ([0-
15Hz] or [3-15Hz]) of the cycle duration time series.

F. Vocal cues
One acoustic cue is the abscissa of the center of gravity

of the low-frequency spectrum of the cycle length series.
Two frequency intervals ([0-15Hz] or [3-15Hz]) have been
considered. Indeed, cardiac beat, breathing and bloodflow
are expected to influence strongly the spectrum below
3Hz. The second cue is the coefficient of variation of the
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cycle length series, which characterizes the excursion of
the cycle durations with respect to the average. These two
cues are rough estimates of respectively the modulation
frequency and the modulation depth of vocal tremor.

III. Results
A. Experiment 1
The cycle length series have been estimated for the

corpus of normophonic speakers. Visual inspection of the
cycle duration time series (Fig. 4) shows that the speech
cycles are correctly discovered. The event sequence
and signal polarity that have been retained are generally
different for the four time series. Even so, one observes a
good agreement between the four time series reporting
glottal cycle durations. In Fig. 4, one also observes a
quasi-perfect agreement between the time series that have
been obtained from the acoustic and throat microphone
signals. This is however not true in general.
Tables I(a) and I(b) show the inter-correlation co-

efficients for the length time series and low-frequency
spectra.

Table I : Inter-correlation coefficients for cycle length time
series (a) and low-frequency spectra (b) obtained
via the acoustic speech signal (1), its derivative (2)
and integral (3) as well as the throat microphone
signal (4) for each speaker i.

(a) Cycle length time series
i F0 Correlation coefficient

1-2 1-3 1-4 2-3 2-4 3-4
1 90 0.99 0.99 0.99 0.99 0.99 0.99
2 114 0.99 0.99 0.98 0.98 0.98 0.98
3 116 0.98 0.98 0.96 0.98 0.97 0.97
4 120 0.95 0.97 0.89 0.96 0.86 0.89
5 212 0.96 0.96 0.71 0.97 0.73 0.76
6 228 0.99 0.99 0.96 0.99 0.96 0.96
7 241 0.98 0.97 0.87 0.97 0.87 0.85
8 244 0.98 0.55 0.95 0.60 0.93 0.70

(b) Low-frequency spectra (0− 15Hz)
i F0 Correlation coefficient

1-2 1-3 1-4 2-3 2-4 3-4
1 90 0.99 0.99 0.99 0.99 0.99 0.99
2 114 0.99 0.99 0.99 0.99 0.99 0.99
3 116 0.99 0.99 0.99 0.99 0.99 0.99
4 120 0.99 0.99 0.99 0.99 0.98 0.99
5 212 0.99 0.99 0.98 0.99 0.98 0.98
6 228 0.99 0.99 0.97 0.99 0.97 0.97
7 241 0.99 0.99 0.99 0.99 0.99 0.99
8 244 0.99 0.99 0.99 0.99 0.99 0.99

B. Experiment 2
The cycle duration extraction has been applied to the

corpus of dysphonic speakers. In Table II one observes
that the low-frequency cycle duration perturbations are
higher for the ALS speakers. The increase of the tremor
frequency is small, however.

Table II : Estimates of the modulation frequency (center of
gravity) and modulation depth (coefficient of vari-
ation) of vocal tremor for normophonic and ALS
speakers

(a) Normophonic speakers
Center of gravity (Hz) C.V.(%)
[0− 15Hz] [3− 15Hz]

Minimum 3.88 6.67 0.53
First quartile 4.47 6.91 0.75

Median 5.03 7.27 0.81
Third quartile 5.59 7.50 0.93
Maximum 6.01 7.62 1.12

(b) ALS speakers
Center of gravity (Hz) C.V.(%)
[0− 15Hz] [3− 15Hz]

Minimum 2.97 5.97 0.75
First quartile 4.24 7.24 1.19

Median 4.64 7.69 1.69
Third quartile 5.45 8.17 2.70
Maximum 6.77 9.10 4.52

IV. Discussion and conclusion
A temporal method for the tracking of cycle lengths in

voiced speech has been proposed. It is based on the speech
sample saliences and does not request that the signal is
locally periodic and the average cycle length known a
priori. The good agreement between the four time series
that have been obtained for each speaker suggests that
salience analyses may be able to track reliably glottal
cycles in the speech signal.
One additional condition, which is not developed in the

text, is that from one cycle to the next, the maximum
salience is not reaffiliated from the main to a previously
subordinated peak or vice versa. The extraction of several
candidate cycle duration time series and the selection of
the least perturbed one is likely to discard any time series
that has been affected by peak reaffiliation. This cannot
be mathematically guaranteed however.
Salience analysis has been applied to tracking cycle

duration in the voices of dysphonic speakers affected by
a neurological disease. Results suggest that SLA speakers
are characterized by higher vocal tremor depths and
frequencies than normophonic speakers.

References
[1] C.Mertens, F.Grenez, and J.Schoentgen, “Preliminary evalua-

tion of speech sample salience analysis for speech cycle detec-
tion,” in Proceedings 3rd International Workshop on Advanced
Voice Function Assessment, Madrid, 2009, pp. 29–32.

[2] C.Mertens, F.Grenez, and J.Schoentgen, “Speech sample
salience analysis for speech cycle detection,” in Proceedings 10th
Annual Conference of the International Speech Communication
Association INTERSPEECH, Brighton, 2009.



	

 
Abstract: the present contribution introduces three 
temporal measures of vocal fold opening – as 
indicated by the time of decreasing contact of the 
vocal folds estimated from the electroglottogram 
signal. the sustained vowel [a:], produced when 
simulating the phonation types very pressed, pressed, 
neutral, strained (hyperfunctional) breathy and 
(hypofunctional) breathy, is analysed. the results 
indicate discrimination of phonation type along the 
adduction dimension for each of the measures of vocal 
fold opening duration.   
 
Keywords :  vocal fold opening, phonation type, voice 
quality, electroglottography 

 
I. INTRODUCTION 

 
Quantitative characterization of phonation type is useful 
for categorization of voice quality [1] (including 
pathological voice) and for improving naturalness in 
speech synthesis. Furthermore, studies of (indicators of) 
phonation type in conjunction with vocal loading studies, 
which document resulting pathology and/or impressions 
of vocal fatigue, may help to set guidelines for the 
avoidance of  inappropriate and potentially harmful use 
of the phonatory mechanism. 
The present contribution introduces three measurements 
of vocal fold opening as estimated via the 
electroglottogram signal (section II) and tests the 
behaviour of these indices for different phonation types 
(section III).    
 

II. METHODS 
 
A Electroglottograph 
 
The electroglottograph comprises two electrodes placed 
external to the larynx. During use a high frequency 
current passes between the electrodes and the output 
signal varies depending on the impedance of the path 
between the electrodes. As the vocal folds vibrate they 
move through levels of high impedance (open glottis) to 
low impedance (closed glottis). As the impedance 
decreases (conductance increases) with contact the 
electroglottogram (EGG) signal provides a measure of 
vocal fold contact [2] (top row Fig. 1). The 
electroglottogram provides complimentary information to 
the glottal flow waveform; the maximum in the 

electroglottogram occurs when contact is maximum 
(glottal flow is minimum or zero) while the maximum in 
the glottal flow occurs during the open phase (when the 
EGG amplitude is minimum or zero). A possible 
advantage of using the EGG signal is that it is less 
affected by supra-glottal acoustic influences, which can 
produce source–filter interaction, making glottal flow 
determination and interpretation challenging. 
 

Fig. 1 Upper row - EGG signal (neutral phonation), breathy [x-
axis indicates sample number (or time) and y-axis (arbitrary 
scale) indicates amplitude (amount of contact)] 
Lower row – 1st derivative of EGG signal (DEGG), normalized 
time of vocal fold opening (NTO) 1, 2 and 3 are shown in the 
lower row [x-axis indicates sample number (or time) and y-axis 
(arbitrary scale) indicates rate of change of contact] 
 
B Measures of Vocal Fold Opening Time  
 
Fig. 1 and Table 1 indicate how the measures cycle 
duration (and hence fundamental frequency) and the 
vocal fold opening times (NTO1, 2 and 3) are estimated. 
Comparison of vocal fold vibration images with EGG 
signals (cf. [3]) illustrates that the minimum point in the 
DEGG signal corresponds with the point of glottal 
opening. NT01 is a measure of the time of decreasing 
contact of the vocal folds from the point of maximum 
contact to the point where the glottis opens. The final 
phase of opening corresponds to where the glottis is open 
but the folds are still in contact in certain places along the 
length and depth of their structure.     
NT01 is estimated by determining the time between the 
positive peak of the EGG and the negative peak of the 
DEGG signals, per cycle and dividing by the cycle 
duration. NT02 also uses the EGG positive peak as its 
starting point and the first zero-crossing after the negative 
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peak in the DEGG signal is taken as the end of the 
contact phase. NT03 is estimated as the difference 
between these times (NTO3=NTO2-NTO1). NT01 is an 
indicator of vocal fold opening during the glottal closed 
phase while NT03 provides a measure of opening that 
takes place during the glottal open phase. NT02 provides 
a measure of vocal fold opening in its entirety as 
represented by vocal fold contact via the EGG signal (the 
EGG signal on its own does not provide detailed 
information on vocal fold characteristics during the 
advanced stages of glottal opening – during this region 
the glottal flow signal or the photoglottogram (PGG), 
which provides an approximation of the projected glottal 
area, can provide additional information).    
 
Table 1 Opening time measures estimated from the 
electroglottogram (EGG) and the first derivative of the 
electroglottogram (DEGG) signals 

 
C Recording  

 
The EGG and speech signals were recorded in a sound 
treated room in the Department of Speech 
Communication and Voice Research, University of 
Tampere, Tampere, Finland. The sustained vowel [a:] 
was phonated while simulating the phonation types very 
pressed, pressed, neutral, strained (hyperfunctional) 
breathy and (hypofunctional) breathy by a single female 
speaker experienced in portrayals of phonation type. 

Thirty cycles of a steady portion of the vowel were 
selected for analysis. 
 

 
 

Fig. 2 Electroglottogram (EGG) displays produced for the 
vowel [a:] for five phonation types: 1st row (top) - very pressed, 
2nd row - pressed, 3rd row - neutral, 4th row - strained (or 
hyperfunctional ) breathy, 5th row - (hypofunctional) breathy [x-
axis indicates sample number (or time) and y-axis (arbitrary 
scale) indicates amplitude (amount of contact)] 

 
III. RESULTS 

 
Fig. 3 shows fundamental frequency (f0) versus cycle 
number for the phonation types very pressed, pressed, 
neutral, strained (hyperfunctional) breathy and 
(hypofunctional) breathy. Fig. 4, 5 and 6 show NTO1, 2 
and 3, respectively, versus cycle number for the five 
phonation types. Average values are provided in Table 2.   

 

Measure 
Symbol 

Description of 
Measure 

Measurement Method  

T0  glottal cycle duration measured between 
positive peaks in the 
DEGG signal (points of 
glottal closure) 
 

NTO1 normalised vocal fold 
opening time 1 – 
vocal fold opening 
duration during the 
closed phase 
 

opening time 1 is 
measured from the peak in 
the EGG signal to the 
negative peak in the 
DEGG signal – dividing 
by the cycle duration 
provides the normalised 
index 
 

NTO2 normalised vocal fold 
opening time 2 – 
vocal fold 
opening duration in 
its entirety (as 
estimated 
from the EGG signal)  
 

opening time 2 is 
measured from the peak in 
the EGG signal to the next 
zero crossing of the 
DEGG signal – dividing 
by the cycle duration 
provides the  
normalised index 
 

NTO3 normalised vocal fold 
opening time 3 – 
vocal fold opening 
duration  
(as estimated from the 
EGG signal) during 
the open phase 
 

opening time 3 is the 
difference between 
NTO2 and NTO1   
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Fig. 3 Fundamental frequency (f0) for the five phonation types 
 

 
Fig. 4 Normalised time of opening 1 (NTO1) for the five 
phonation types  
 

 
Fig. 5 Normalised time of opening 2 (NTO2) for the five 
phonation types 

 Fig. 6 Normalised time of opening 3 (NTO3) for the five 
phonation types 
 
Table 2 Electroglottogram based fundamental frequency and 
glottal opening time measures averaged over 30 glottal cycles 

 
IV. Discussion 

 
Normalised time of vocal fold opening shows 
discriminatory ability of phonation type along the 
adduction dimension. Pressed voice is associated with a 
higher than normal level of adduction, while breathy 
voice is associated with an abducted vocal fold 
configuration (negative adduction) [4]. The NTO1, 2 and 
measures differentiate the data along this adduction 
dimension; the averaged data are ordered as very 
pressed>pressed>neutral>breathy. The opening times are 
greater for the adducted configuration (compared to 
neutral) as the centre of mass of each fold is closer at 
closure. Conversely the opening times are less for the 

Measure
/phonati
-on type 

Mean  
fundam
-ental 
frequen
-cy (f0) 
 

Mean 
normali-
sed time 
of 
Glottal 
opening 
1 
(nto1) 
 

Mean  
normali-
sed time 
of 
Glottal 
opening 
2 
(nto2) 

Mean  
normali-
sed time 
of 
Glottal 
opening 
3 
(nto3) 

very 
pressed 

254 0.52 0.72 0.200 

pressed  187 0.49 0.62 0.123 

neutral 178 0.40 0.48 0.084 

strained  
(hyperfu
-nctional)  
breathy 

225 0.26 0.32 0.058 

hypofun-
ctional 
breathy 

169 0.27 0.33 0.058 



106	

abducted configuration as the centre of mass of each fold 
is further apart at closure (if a closed phase exists).   
Further information regarding vocal fold opening during 
the glottal open phase can be supplied using the inverse 
filtered flow signal or the PGG signal.   
 

V. CONCLUSION 
 
The analysis of the EGG signal for the vowel [a:]  
suggests that measures of vocal fold opening time are 
useful for the discrimination of phonation types. The 
three measures of opening; the initial opening phase 
(NTO1), the entire opening phase (NT02) and the final 
phase of opening (NTO3) discriminate the data along the 
adduction dimension with values ordered as follows; very 
pressed>pressed>neutral>breathy (hyperfunctional and 
hyopfunctional). Future work will examine these and 
other glottal measures with data from a number of 
speakers in combination with additional measurement 
modalities.    
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A NOVEL METHOD FOR THE EXTRACTION OF VOCAL TREMOR
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Abstract: Vocal tremor is defined as slow modulation
of fundamental frequency or its amplitude [1, 2]. Even
though vocal tremor may be attributed to neurologi-
cal diseases, it may also be a natural stochastic mod-
ulation of voice. Many studies try to measure these
modulations assuming that they are stationary. Hence,
their analysis is limited to small intervals loosing im-
portant information about vocal tremor. We propose
a novel method for the estimation of the modulations
which is able to adapt to nonstationary environments.
The method is mainly based on an AM-FM signal de-
composition algorithm which is able to estimate the in-
stantaneous components of speech signals. Results con-
firm that the method successfully extract the modula-
tions of large speech segments and robustly estimate
the time-varying modulation frequency and the time-
varying modulation level of vocal tremor.
Keywords: Voice quality, Vocal tremor, AM-FM de-
composition

I. INTRODUCTION

Typically, tremor in phonation is defined as modula-
tions of the fundamental frequency and modulations of the
amplitude due to the inability of humans to keep constant
the tension of their vocal folds [3]. This phenomenon af-
fects the glottal cycle in voiced speech making the funda-
mental frequency and the amplitude to vary stochastically.
Vocal tremor is usually categorized into the physiological
tremor which is a slow natural modulation of glottal cycle
and the pathological tremor which is attributed to neuro-
logical diseases such as Parkinson or tremor of the limbs
[4], [2]. Most importantly, while physiological tremor
makes speech sound more natural and possibly more in-
dividual, pathological tremor may influence the quality of
patients voice, hence, may influence the ability of patient’s
communication.

Moreover, while pathological tremor is characterized
by stronger periodical patterns –a property that vibrato
singing style has, too–, physiological tremor is more
stochastic [4]. The analysis of physiological tremor is
of great importance since vocal tremor in normophonic
speakers may be an early sign of a neurological disease [5],
[6]. Thus, it is useful to develop an estimation algorithm
that is able to measure or extract the vocal tremor even for
normal voices. In the literature, acoustic analysis of tremor

is usually based on the accurate estimation of fundamental
frequency and then the characterization of the variations of
fundamental frequency [1], [2]. Modulation frequency and
modulation level are prominent attributes that are extracted
from the instantaneous fundamental frequency [1], [2].

However, there are some issues not addressed in previ-
ous studies. Indeed, many studies are intersted only for
the 1st harmonic which is related with the fundamental
frequency but not for the higher harmonics. But 1st har-
monic may be modulated by first formant which may lead
to biased results. A more serious limitation of the previous
studies is that the analyzed sustained vowel has duration
that is one to two seconds. The reason for using short du-
ration is that the modulation frequencies as well the mod-
ulation levels should be constant in order to apply classi-
cal frequency estimation analysis. This is a real drawback
since the analysis of larger segments of speech may show
interesting properties on vocal tremor [7], [8].

The objective of this paper is to present and validate a
novel method for the estimation of the vocal tremor on sus-
tained vowels uttered by normophonic subjects. The pro-
posed method assumes speech as a sum of time-varying si-
nusoids whose instantaneous amplitude and instantaneous
frequency are estimated using a recently proposed AM-FM
decomposition algorithm [9], [10]. The prime advantage of
this algorithm is its ability to demodulate multicomponent
signals (like speech) very accurately. Interestingly, any of
the instantaneous components can be used for the analysis
of vocal tremor and not only the 1st harmonic. Then, the
second step of the algorithm is to subtract from the ana-
lyzed instantaneous component the very slow modulations
(< 2Hz) in order to reveal the higher frequency modula-
tions. This is achieved by filtering the instantaneous com-
ponent using a Savinzky-Golay smoothing filter [11]. The
final step is to estimate the modulation frequency and the
modulation level which now are time-varying attributes be-
cause the modulations are primarily nonstationary. The es-
timation is performed using the same AM-FM decomposi-
tion algorithm applied for the extraction of instantaneous
components. Results on sustained vowels uttered by nor-
mophonic speakers showed that the proposed method ac-
curately estimate the instantaneous components of speech
signals and then robustly extract the time-varying modula-
tion frequency and modulation level.

The organization of the paper is as follows. Section II
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presents the tremor analysis method while in Section III
the results are shown. Finally, Section IV concludes the
paper.

II. ESTIMATION OF VOCAL TREMOR

In this paper, we will consider that speech signals can
be effectively modeled as a sum of time-varying sinusoidal
components

s(t) =

K�

k=1

ak(t)cos(φk(t)) (1)

where K is the number of components, while ak(t) and
φk(t) are the instantaneous amplitude and instantaneous
phase of the kth component, respectively. Moreover, in-
stantaneous frequency, fk(t) is defined as the first deriva-
tive over time of the instantaneous phase:

fk(t) =
1

2π

dφk(t)

dt
(2)

In order to extract the characteristics of vocal tremor,
the first crucial step is the estimation of the instantaneous
components, {ak(t), fk(t)}K

k=1 from the speech signal.
The second step is to estimate and then remove the very
slow modulation from the analyzed instantaneous compo-
nent. The third and final step is the extraction of the modu-
lation frequency and modulation level which are the vocal
tremor characteristics we are interested. We will now de-
scribe each step in details.
A. Step 1: Estimation of Instantaneous Components

The estimation of the instantaneous components is
achieved by an AM-FM decomposition algorithm recently
proposed by Pantazis et al. [9], [10]. The AM-FM de-
composition algorithm (aQHM in abbreviation) is an adap-
tive algorithm which is based on a time-varying sinusoidal
model. The sinusoidal model is called quasi-harmonic
model (QHM) and its parameters are estimated frame-by-
frame through linear Least Square method. The prominent
property of QHM is its ability to capture and then cor-
rect frequency estimation errors even if the analysis was
intended to be realized using wrong frequencies. Thus,
QHM is able to estimate the frequency mismatches and
iteratively eliminate them.

The initialization of aQHM algorithm necessitates a
rough estimate of the analysis frequencies for the first
frame. During this study, the initial frequencies were as-
signed as integer multiples of an estimated fundamental
frequency computed using the autocorrelation function of
the first frame [12]. Moreover, time resolution of aQHM
is determined by the hop-size of the algorithm while fre-
quency resolution is determined by the window type and
window length. We choose hop-size of 5ms and Ham-
ming window as window function. The window’s duration

was chosen to be three times the period of the smaller fre-
quency, i.e. three times the pitch period.

The main advantage of aQHM algorithm is its abil-
ity to adapt to the signals characteristics. Indeed, after
the first pass of the signal with QHM, an estimate for the
instantaneous frequencies and instantaneous amplitudes,
{âk(t), f̂k(t)}K

k=1, are obtained. Then, in the following
passes, aQHM algorithm adapts the QHM basis functions
using the estimated instantaneous frequencies. Thus, the
bias due to the nonstationarity of the AM-FM signal is re-
duced and more accurate estimates for the instantaneous
components are obtained. As an example, Fig. 1 shows
the five first estimated instantaneous frequencies of a sus-
tained vowel uttered by a male speaker using the aQHM
algorithm.
B. Step 2: Removal of Very Slow Modulations

After choosing which instantaneous component will be
analyzed, the second step of the analysis is to eliminate
modulations which are less than 2Hz. The removal of the
trend is necessary in order to reveal the quasi-periodical
modulations attributed to vocal tremor (compare Fig. 2a
before elimination and Fig. 3a after elimination). However,
before the removal of the trend, as a preprocessing step,
we downsample the instantaneous component to have sam-
pling frequency 1000 Hz. Indeed, since we are interested
for modulations which are less than 20Hz, the downsam-
pled instantaneous component do not miss any important
information.

The smoothing of the instantaneous component is per-
formed using the Savinzky-Golay (S-G) filter [11], [13].
S-G smoothing filter essentially performs a local polyno-
mial regression on a distribution of equally spaced points
to determine the smoothed value for each point. The main
advantage of this approach is that it tends to preserve fea-
tures of the distribution such as relative maxima, minima
and width, which are usually “flattened” by other adjacent
averaging techniques like moving averages. The order of
the local polynomial used in this study was 4 while the
frame size was set to 1s (1000 samples). Fig. 2a shows
the instantaneous component as well its smoothed version
for a sustained vowel. Fig. 2b implies that S-G filter cap-
tures the frequencies that are less than 2Hz. Then, the
smoothed instantaneous component is subtracted from the
unsmoothed in order to reveal the remaining modulations
of the component. Note that using different parameters for
the S-G filter the smoothed signal will capture more or less
of the signal’s frequencies.
C. Step 2: Extracting Vocal Tremor Characteristics

The final step is the modeling and estimation of the
remaining modulations. As already stated, these modula-
tions are nonstationary, hence, FFT-based approaches are
not appropriate for this task. We suggest modelling the re-
maining nonstationary modulations as an amplitude mod-
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ulated and frequency modulated signal. Mathematically, it
is given by

x(t) = m(t)cos(ψ(t)) (3)
where x(t) are the remaining modulations of the instan-
taneous components, m(t) is the instantaneous amplitude
which with the appropriate scaling corresponds to the mod-
ulation level, and ψ(t) corresponds to the instantaneous
phase. Once again, instantaneous frequency is given by
ζ(t) = 1

2π

dψ(t)
dt

and corresponds to the modulation fre-
quency.

aQHM algorithm is applied a second time for the es-
timation of the instantaneous components, m(t) and ζ(t).
The initial frequency of the first frame was computed by
the largest peak of the FFT of the first frame while hop-
size was set to 1ms. Hamming window was used and its
duration was set to 0.6s. Fig. 3a shows the reconstructed
signal obtained from the aQHM algorithm, while Fig. 4
shows the estimated modulation frequency and estimated
modulation level.

IIII. RESULTS

In this section, the output of the proposed method for
vocal tremor analysis is presented for normophonic speak-
ers. The method is validated on a database of normal
voices developed in our recording lab. 11 male and 5 fe-
male healthy subjects whose age varies between 23 and 45
were participated. Sustained vowels /a/, /e/, /i/, /o/ and
/ou/ have been recorded at 48kHz and then downsampled
at 16kHz. The duration of sustained vowels varies from 2s
to 8s depending primarily on the speaker.

Illustratively, Fig. 1 shows the first five harmonics ex-
tracted from sustained vowel /a/ using aQHM algorithm
(Step 1). The signal which is reconstructed from the in-
stantaneous components has signal-to-reconstruction er-
ror of about 32dB which proves that the analysis is very
accurate. For the total database, the average signal-to-
reconstruction error was more than 30dB. Fig. 1 shows
also that the modulations of higher harmonics are more ev-
ident which explains the use of normalization for the esti-
mation of modulation level.

Fig. 2 shows the instantaneous frequency of the 1st har-
monic after removing its mean value and its filtered version
using the S-G smoothing filter (Step 2). The smoothed
instantaneous component contains information about the
frequencies which are less than 2Hz. This component is
then removed in order to reveal the modulations that are
attributed to vocal tremor. Thus, the remaining compo-
nent is analyzed using aQHM algorithm (Step 3). Fig. 3
indicates that the decomposition algorithm adapts to the
nonstationary modulations of the signal. Extended tests
on the database confirmed the ability of aQHM to adapt
to the signal. The extracted time-varying modulation fre-
quency as well the extracted time-varying modulation level
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Figure 1: First five instantaneous frequencies of a normophonic
male speaker uttered the sustained vowel /a/.

are shown in Fig. 4. Modulation frequency takes values in
this example between 2Hz and 13Hz.

Table I reports the averages of fundamental frequency,
µ(f0), of mean value, µ(mf), and standard deviation,
σ(mf), of modulation frequency and of mean value,
µ(ml), and standard deviation, σ(ml), of modulation level
for male and female speakers uttering various vowels. Vi-
sual inspection shows that the standard deviation of modu-
lation frequency is higher for the male speakers while the
mean value of modulation frequency shows no tendency
between the genders.
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Figure 2: (a) First harmonic of Fig. 1 without its mean value
(continuous line) and its smoothed version (dashed line) are
shown. (b) Fourier transform of signals in (a). S-G smoothing
filter captures the frequencies that are below 2Hz.

IV. CONCLUSION & FUTURE WORK

A novel method for the acoustical analysis of vocal
tremor was presented. It is based on a AM-FM demodu-
lation algorithm which is used for the extraction of both
instantaneous amplitudes and instantaneous frequencies
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Figure 3: (a) Instantaneous component after subtracting its
smoothed version (continuous line) and the reconstruction of the
AM-FM decomposition algorithm (dashed line). (b) Fourier trans-
forms of the components in (a).
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Figure 4: (a) Modulation frequency of the signal in Fig. 3. (b)
Modulation level of the same signal. Note that neither modula-
tion frequency nor modulation level have constant values during the
phonation.

Table 1: Summary of modulation features for five vowels and
both genders.

µ(f0) µ(mf) σ(mf) µ(ml) σ(ml)
(Hz) (Hz) (Hz) (%) (%)

M
al

e

/a/ 113 4.4 1.4 0.25 0.11
/e/ 116 4.3 1.2 0.28 0.13
/i/ 119 4.1 1.3 0.25 0.11
/o/ 121 6.2 1.7 0.22 0.09
/ou/ 122 8.0 2.0 0.20 0.08

Fe
m

al
e

/a/ 233 6.6 0.9 0.36 0.14
/e/ 228 9.3 0.9 0.33 0.14
/i/ 239 3.1 0.8 0.29 0.12
/o/ 235 4.7 0.9 0.27 0.10
/ou/ 236 3.4 0.8 0.27 0.10

from the speech signal (Step 1) and the extraction of mod-
ulation frequency and modulation level from the analyzed
instantaneous component (Step 3). Results indicate that
the proposed method is cabable of handling large segments
of sustained vowels where the assumption of modulations’
stationarity is invalid and provide robust time-varying es-
timates for the modulation frequency and the modulation
level.

Finally, while the proposed method was validated only
on normophonic subjects it is of great importance to apply
and test it in pathological subjects. Future work will be
devoted on analyzing pathological vocal tremor and pos-
sibly on other applications such as the analysis of vibrato
singing style where the objective is to achieve a particular
amount of modulation frequency and/or modulation level.
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Abstract: A novel approach for estimation of speaker 

specific vocal tract properties is presented in this 

paper. Instead of using the well-known long-term 

average spectrum (LTAS) of speech, it is shown that 

the variance of the magnitude of the spectrum in each 

band is also suitable for estimation of formant 

frequencies. This representation, called mean spectral 

variance (MSV), is applied to an automatic gender 

classification task, where it is shown to achieve good 

classification accuracy in combination with the 

fundamental frequency of speech. The MSV is 

compared with LTAS and their similarities and 

differences are discussed. 

Keywords: Formant estimation, gender classification, 

long-term feature averaging 

 
I. INTRODUCTION 

 
Speaker dependent variability in vocal apparatus 

properties has a notable impact on the acoustic properties 

of speech signals. Cross-speaker variation in 

characteristic formant frequencies poses a difficult 

challenge for speech processing systems designed to 

work independently of speaker identity, while it also 

plays an important role in speaker identity detection [1] 

and gender classification (e.g., [2]).  

One possible approach for analyzing speaker and 

gender specific properties of the vocal apparatus is 

through long-term averaging of the acoustic parameters 

[3]. The long-term average spectrum (LTAS) has been 

widely studied in speaker recognition, and although its 

performance falls behind state-of-the-art Gaussian-

mixture models (GMM) using Mel-cepstral coefficients 

(MFCCs), the computational simplicity of LTAS is 

appealing for many applications [4-5]. In addition to 

LTAS, averaging of, e.g., autocorrelation-, LPC-, 

cepstral-, and reflection coefficients, have also been 

studied [6].  

However, all these studies have concentrated on the 

averaging of feature vectors per se, but none to our 

knowledge have studied modeling of feature variance in 

isolation of the spectral mean. In this paper we show that 

instead of utilizing the long-term spectrum directly, the 

spectral variability of speech signals also reflects the 

speaker and gender specific average formant structure. 

For estimation of speaker specific acoustic parameters, 

we introduce a straightforward method for estimating 

average formant frequencies (AFF) indirectly from 

continuous speech. More specifically, we show that the 

AFFs can be easily obtained by computing the mean 

spectral variance (MSV) separately for each frequency 

band during voiced speech. The basic idea behind our 

method is simple; while each formant is moving mainly 

around its mean value these movements should cause the 

largest spectral variance to occur around the mean as 

well.  

The MSV representation is compared to the well-

known LTAS, and it is shown that the methods contain 

complementary information regarding speech signals. 

The general quality and usability of the MSV method is 

assessed in a classification task where MSV templates 

and pitch of the speaker are combined as cues to perform 

automatic gender detection.  

 
II. METHODS 

 
A. Computation of mean spectral variance (MSV) 

 

The speech signal (fs = 16 kHz) is first pre-emphasized 

with a standard 1
st
 order FIR-filter. Voicing is estimated 

using standard cepstral analysis and only voiced frames 

are preserved for further analysis. The signal is then 

windowed using a 6 ms Hamming window with 2 ms 

window shifts. The small window length causes the 

absence of pitch periodicity in spectral representations 

and leads to regularly good matches between window 

position and the maximal excitation of vocal tract 

resonances during glottal closure. Spectral tilt and mean 

are removed from each frame by fitting a line to the 

spectrum and the frames are normalized into unit vectors. 

All spectral frames are collected into a spectrogram and 

the mean spectral variance for each frequency band is 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.
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computed over the entire set of frames to produce the 

MSV representation. The tilt and mean of the MSV are 

removed and then this vector is normalized to a unit 

vector. In addition to MSV, the long-term average 

spectrum (LTAS) is extracted from the speech material. 

The procedure for LTAS is identical to MSV except that 

the mean of the spectrum is taken over the spectrogram 

instead of the variance.  

Figures 1 and 2 illustrate the LTAS and MSV 

representations computed over several speakers from the 

TIMIT corpus. The average, gender specific, formant 

structure is readily seen. The AFF estimates provided by 

both methods are relatively close to each other as 

predicted. Two general observations can be made; first, 

both genders most actively utilize the frequency band of 

300-3400 Hz that was historically selected to be the band 

of analog telephone systems (see Fig. 1 bottom frame), 

and secondly, the shape of MSV between genders is very 

contrastive in the 1000-5000 Hz frequency band. 

 

B. Automatic gender detection based on formant 

structure and pitch 

 

There are notable structural differences in the vocal 

tracts for men and women, and therefore the average 

formant information can be utilized for automatic 

detection of speaker gender (e.g., [7]). In addition, vocal 

fold structure can be considered as at least partially 

independent of vocal tract length (cf., e.g., source-filter 

modeling), and it also serves as a reliable cue to gender 

identity. Therefore the mean pitch of a speaker is also 

utilized in the recognition process. 

In the training of the recognizer, MSV vectors vm and vf 

are computed across several speakers from the TIMIT 

training set (N = 560 for both genders) in order to 

estimate the average male and female spectral structures 

with formant peaks. The common mean vc=(vm+vf)/2 of 

the vectors is subtracted from both vm and vf in order to 

maximize contrast: 

! 

vg
'

= vg " vc     (1) 

Finally, the obtained templates are normalized to unit 

vectors.  

Only variation in the frequency band of 1000-5166 Hz 

is used for recognition, since it was found to lead to 

maximal performance. The use of this frequency band is 

also in line with the work of Mendoza et al. [5], who 

performed a statistical discriminant analysis of male and 

female voices and found that gender specific differences 

in LTAS are concentrated in the frequency region of 0.8 – 

5 kHz.   

 

 
Figure 1: Average LTAS (top) and MSV (bottom) 

according to gender from the TIMIT training corpus. 

 
Figure 2: Gender specific cumulative probability 

distributions for pitch (left) and MSV & LTAS (right). 

 

Once the template vectors for both genders are created, 

the training set is processed again and the distance dg 

between MSV of the analyzed utterance and the 

templates is measured by cross-correlation. Distributions 

of dg values from male utterances to the male template 

and female utterances to the female template are modeled 

as a cumulative normal distribution (fig. 2, right). Pitch is 

also modeled for both genders as two separate cumulative 

Gaussian distributions estimated from the training data 

(Fig. 2, left).  

In the classification phase, MSV is computed from the 

input utterance according to section 2.A and vector vc is 

again subtracted from the representation. The mean pitch 

of the utterance is also extracted. Ultimately, the 

probability for a gender is estimated using the trained 

probability distributions and by assuming the 

independence of probabilities: 
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! 

P(gender) = P( f
0
gender) *P(dg gender)  (2) 

 

where f0 is the mean pitch of the utterance and dg is the 

cross-correlation between the gender specific MSV 

template v’g and the MSV representation estimated from 

the utterance. When LTAS is used for comparison, the 

same training and classification procedure is used to 

obtain gender templates and respective cross-correlation 

distributions. 

 
III. RESULTS 

 

A. The templates 

 

Fig. 3 shows the obtained limited-band templates used 

for gender classification for both MSV and LTAS. The 

structure of both features clearly differentiates between 

male and female speakers. Although the behavior at 

higher frequencies is quite similar for both MSV and 

LTAS, there are notable differences in the region between 

1 and 2.5 kHz. One major difference is that the male 

LTAS contains two peaks at approximately 1300 Hz and 

2300 Hz, whereas the male MSV has only one wide peak 

in between centered around 1800 Hz. Since the range of 

male F2 is usually between 900 Hz and 2300 Hz, and F3 

receives values between 1700 Hz and 3000 Hz [7], this 

may suggest that MSV computed from sub-pitch periodic 

windows reacts more strongly to the movement of 

formants (describing their frequency range) whereas 

LTAS indicates mean formant locations. MSV peaks are 

slightly wider than LTAS peaks also at higher 

frequencies, thus supporting this assumption.  

It is also well known that active articulation mainly 

affects the three lowest formants (especially the second), 

whereas higher formants are more stationary, reacting 

relatively passively to articulatory movements. This is 

also reflected in both the LTSA and MSV templates, 

where the shape of normalized mean and variance models 

approach each other at higher frequencies.  

 
Figure 3: MSV and LTAS templates used in 

recognition. 

 

B. Baseline classification results 

 

When gender classification is evaluated with the 

TIMIT test set (56 males and 56 females, 10 utterances 

per speaker, 1120 utterances in total), a correct 

classification rate of 98.6 % is achieved (Table 1). This 

compares well with the approaches reported in the 

literature. For example, Zeng et al. [8] achieved a 98.2 % 

gender classification accuracy using a GMM based 

approach. Vergin et al. [2] achieved a classification rate 

of 85 % with a different corpus by using the average 

values of the two first formants as reference values for 

gender classification. Interestingly, they reported that no 

improvement was gained by including the higher 

formants, whereas the current approach leads to optimal 

results when the analyzed frequency region includes 

formants F2-F4 (1000 Hz – 5166 Hz) but not F1.  

 

Table 1: Gender classification results for the full 

TIMIT test set (560+560 utterances). 

gender F0+MSV F0+LTAS LTAS MSV F0 

male 99.3 98.8 82.9 85.7 98.6 

female 97.9 97.3 87.0 84.3 95.7 

mean 98.60 98.05 84.95 85.00 97.15 

 
While MSV and LTAS both carry information regarding 

gender identity, their overall effect is small compared to 

F0, which alone leads to an over 97 % classification rate.  

 
C. Feature combinations and noise  

 
To gain a better insight of feature performance in 

different signal conditions, the gender classification task 

was performed separately for each possible combination 

of the three features (F0, MSV and LTAS) using a subset 

of 300 + 300 utterances (30 + 30 speakers) from the 

TIMIT test set. Three different noise conditions were 

used: the clean signal, and SNRs of 20 dB and 10 dB 

(Table 2).  

The results indicate that MSV + F0 again yield the best 

recognition results (98.5 %), although the differences to 

LTAS + F0 and MSV + LTAS + F0 are not large. 

Although the recognition result at 10 dB SNR is still 

above 90 %, the noise robustness of this approach falls 

behind a GMM-model using F0 and RASTA-PLP 

features, where gender recognition rates of 97.9 % for an 

SNR = 20 dB and 97.5 % for an SNR = 10 dB have been 

reported [8]. The results obtained with solely LTAS are 

in line with previous gender recognition systems (e.g., 

[9], where the LTAS above 1 kHz was used for 

classification).  
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Table 2: Gender recognition results for different 

feature sets in noise (TIMIT test, 300 + 300 utterances). 
Features Male Female Mean 

Clean speech (SNR = !) 

MSV + LTAS + F0 99.1 97.0 98.05 

LTAS + F0 98.7 96.3 97.50 

MSV + F0 100.0 97.0 98.50 

MSV + LTAS 89.0 88.3 88.65 

MSV 89.7 86.7 88.20 

LTAS 87.0 85.3 86.15 

F0 99.0 93.3 96.15 

White noise (SNR = 20 dB) 

MSV + LTAS + F0 98.0 97.3 97.65 

LTAS + F0 98.0 97.0 97.50 

MSV + F0 99.0 96.0 97.50 

MSV + LTAS 91.7 83.3 87.50 

MSV 90.0 76.7 83.35 

LTAS 88.7 82.3 85.50 

F0 97.3 94.0 95.65 

White noise (SNR = 10 dB) 

MSV + LTAS + F0 86.0 97.7 91.85 

LTAS + F0 86.0 97.3 91.65 

MSV + F0 87.3 96.0 91.65 

F0 87.7 95.3 91.50 

MSV + LTAS 80.0 79.3 79.65 

MSV 78.0 72.3 75.15 

LTAS 77.7 83.3 80.50 

 

A closer error analysis revealed that while MSV and 

LTAS have a similar overall performance on clean 

speech, they do not always make errors in the same 

utterances. In 76 cases of the total 600 utterances (clean 

speech), MSV and LTAS were giving contradictory 

information, i.e., one of the two was supporting the 

wrong gender hypothesis. However, the probabilistic 

framework used in the recognition compensates for this 

by assigning small probabilities to features that do not 

match either of the models. When the SNR drops to 10 

dB, MSV performs significantly worse than LTAS, 

which is a reasonable result since white noise has a larger 

impact on the variance than the mean.  

 
IV. CONCLUSIONS 

 
A straightforward and efficient method for estimating 

the average formant frequencies (AFF) through mean 

spectral variance (MSV) from continuous speech was 

presented in this paper. As predicted, the MSV method 

provides comparable AFF estimates compared with those 

of long-term average spectrum (LTAS).  

The usefulness of this approach was demonstrated in a 

gender classification task where speaker-specific MSV-

information and pitch were combined in a straightforward 

manner as cues for gender identity. In addition, MSV was 

compared and combined with LTAS. The achieved 

gender classification rate compares well to other 

approaches reported in the literature (e.g., [2], [8]) and 

MSV performance was slightly higher than LTAS for 

clean speech. However, and as can be expected, MSV is 

not a particularly robust feature for long-term averaging 

in severe white noise. The obtained gender classification 

results are also in line with previous literature, showing 

that F0 alone is a very strong cue to gender identity in 

speech. 
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Abstract: a bottom up procedure for extracting 
repetitive structures in speech sounds has been 
developed on the basis of a temporally stable 
representation of periodic sounds (tandeM) and 
adaptive spectral smoothing (straiGht). the 
proposed method evaluates local periodic structures 
in the frequency domain to detect repetition in the 
time domain. a group of dedicated periodicity 
detectors are combined to construct the proposed 
procedure for a repetitive structure extractor called 
an excitation structure extractor (xsx). the proposed 
procedure is tested using a set of stylized test signals 
with artificial shimmer and jitter to investigate the 
applicability of such aperiodic signals. [the test 
results indicated that the proposed procedure 
outperformed in descriptive power of those complex 
excitation modes over existing f0 detectors. finally, 
the proposed procedure is applied to analyze 
pathological voice examples to investigate the 
feasibility of voice quality restoration applications. 
Keywords: periodicity extraction, fundamental 
frequency, tandeM-straiGht, xsx, aperiodicity, 
pathological voice 

I. INTRODUCTION 

Fundamental frequency (F0) extraction is essential to 
analyze speech signal processing (e.g., speech synthesis, 
speech conversion, singing synthesis, and so on). A 
majority of the conventional methods[1,2] are specialized 
for extracting a specific periodic structure represented by 
a single value (F0). However, actual vocal cord vibration 
consists of irregularities, especially in boundaries of 
voiced segments. In addition, pathological voices show 
various types of aperiodic structures even in the middle of 
voiced segments. These irregularities make conventional 
F0 extraction methods ineffective for representing and 
analyzing biological aspects of vocal cord vibration.  

A new power spectral representation[3] enabled a 
structural analysis of periodicity. This method does not 
rely on the assumption that the signal understudy has only 
one periodicity represented by F0. The proposed method 
is outlined in the next section. In this method, periodicity 
structure is represented as a collection of local maxima at 
each analysis frame[4]. Using this bottom-up procedure, 
existing local repetitions of signals are extracted without 
any prior information. 

The proposed method also provides a procedure to 
remove irregularities in pathological voices. It enables 
patients’ voices to be simulated after medial treatment. 

a bottoM-up procedure to extract periodicity structure 
of voiced sounds and its application 

to represent and restoration of patholoGical voices
Hanae Itagaki1, Masanori Morise2, Ryuichi Nisimura1, Toshio Irino1 and Hideki Kawahara1

1Wakayama University, Wakayama, Japan 
2Ritsumeikan University, Japan

II. PROPOSED METHODS 

This section briefly outlines the proposed method. 
Details can be found in the other articles. 

A temporally stable power spectral representation of 
periodic signals is yielded by averaging two power 
spectra. They are calculated using two time windows 
located a half pitch period apart. This simple procedure is 
called TANDEM.  

A power spectral envelope that does not have any trace 
of periodicity is yielded by smoothing a TANDEM 
spectrum using an F0 adaptive smoothing function. The 
simplest smoothing function for this is a rectangular 
function and the width is adjusted to F0. This is called 
STRAIGHT spectrum. 

The difference between TANDEM and STRAIGHT 
spectra is in the fine structure reflecting the signal 
periodicity. Consequently, dividing a TANDEM 
spectrum by a STRAIGHT spectrum leaves the fine 
structure. When the dominant contributing factor of the 
fine structure is periodicity due to F0, inverse Fourier 
transform shows a dominant peak at 1/F0. Figure 1 
illustrates this concept.  

Fig. 1 TANDEM spectrum and STRAIGHT spectrum 

However, there is a contradiction. TANDEM and 
STRAIGHT spectra are calculated using F0 information. 
However, F0 is the very thing we are to extract. It is 
impossible to implement TANDEM and STRAIGHT 
without F0 information in advance. One solution is to 
hypothesize a tentative F0. The designed periodicity 
detector responds best when the actual F0 coincides with 
the assumed F0. In other words, it is a dedicated 
periodicity detector for the assumed F0. 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
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There are some details of the dedicated F0 detector 
design. A weighting function must be prepared to select 
reasonable numbers of base-band harmonic components. 
This is because spectral side bands smear out harmonic 
structures when the instantaneous frequency of F0 varies 
over time. This is inevitable, because the temporal 
variation of F0 is an important carrier of prosodic 
information in speech. A raised cosine function is used to 
implement this weighting. 

The final stage is to integrate information extracted by 
a set of the dedicated detectors spanning the possible F0 
range. Currently 40Hz to 800Hz is assumed to be the 
possible F0 range.  

Information was integrated by averaging the outputs of 
dedicated F0 detectors by weighting each detector output 
using a raised cosine function centered around the 
assumed 1/F0. This structure enables bottom-up 
extraction of local periodicity. All locally periodic 
components are represented as local peaks of the 
integrated output of the final stage. Figure 2 illustrates 
conceptual architecture of the proposed periodicity 
detector, called an excitation structure extractor (XSX). 

Fig. 2 Conceptual flow diagram of XSX 

III. ANALYSIS EXAMPLES 

This section shows examples of periodicity analysis 
using artificial test signals and actual pathological voices. 
Artificial signals were used to provide clues for 

interpreting typical representations found in the real 
analysis results. 

A. Simulation results with test signals 

The behavior of XSX was investigated using 
modulated pulse trains. The first test signal simulated a 
simmer. This test signal started as a periodic pulse train 
and incrementally reduced pulse amplitude every other 
pulse. This was an AM signal with a very fast modulation 
frequency. This AM signal is shown in Fig. 3. Figure 4 
shows extraction results. The upper plot shows the 
integrated periodicity score for each maximum in each 
frame. The first five local maxima of each frame are 
shown. The score is normalized to have the value one 
when the signal is purely periodic in an analysis frame. 
The bottom plot shows the frequency of each peak. The 
size of the dots is determined on the basis of their 
periodicity score. Lager dots represent stronger 
periodicity. 

Fig. 3 Amplitude-modulated pulse trains 
 used in this simulation 

Fig. 4 Periodicity extraction results 
for AM signal using XSX 
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In the beginning, the score shows close to pure 
periodicity, and the corresponding frequency stays around 
200Hz. The periodicity score decreases in accordance 
with increase in amplitude deviation of every other pulse. 
Another periodicity that corresponds to paired pulses 
increases. It corresponds to a trajectory around 100Hz. 
The plots around 0.33s indicate that the 200Hz 
periodicity disappears there. This suggests that the paired 
pulse dominates repetitive structures. All this illustrates 
that the XSX provides rich information for investigating 
signal periodicity structure. 

The next test signal simulated jitter. This test signal 
was also started from periodic pulse train and shifted its 
periods every other cycle. The test wave is shown in Fig. 
5. The analysis results are shown in Fig. 6. This 
manipulation is FM with very fast modulation frequency. 

Fig. 5 Frequency-modulated pulse trains 
 used in this simulation 

Fig. 6 Periodicity extraction results 
for FM signal using XSX 

The periodicity score plotted in the upper panel of Fig. 
6 also shows transition from smaller periodicity unit to 

the larger unit. The initial part has 200Hz periodicity. The 
lower panel of Fig. 6 shows this 200Hz periodicity split 
into two intermittent trajectories. The higher trajectory 
corresponds to a shorter period of the paired periods. The 
lower trajectory corresponds to a longer period. It also 
shows that the paired period, which corresponds to 100Hz 
periodicity, increasingly gains a higher periodicity score. 
This indicates that the initial sub-harmonic structure takes 
over the role of the fundamental frequency.  

A series of simulations were conducted to establish an 
empirical functional relationship between the integrated 
score and probability of random fluctuation to yield the 
score. Conceptually straightforward architecture enables 
this probabilistic interpretation of analysis results. 

B. Analysis results for pathological voices 

The proposed procedure was applied to analyze 
pathological voices in a database [5]. Similar structures 
explained in the previous section were also found in 
analysis results of real voice examples.  It will be helpful 
to compare these real results with the simulation results 
for diagnosis applications. These real voice examples are 
shown in Fig. 7 (a) and Fig. 8 (a) and their analysis 
results are shown in Fig. 7 (b) and Fig. 8 (b). Figure 7 
shows the vowel /e/ and the analysis results of a female 
patient suffering from polypoid vocal cords saying it. 
Figure 8 shows the vowel /i/ and analysis results of a 
male patient suffering from larynx cancer saying it. 

Fig. 7 (a) Pathological voice example  
(Polypoid Vocal Cords) 

Fig. 7 (b) Periodicity structure extracted by XSX 
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Fig. 8 (a) Pathological voice example 
(Larynx Cancer) 

Fig. 8 (b) Periodicity structure extracted by XSX 

IV. SIMULATING HEALING PROCESS 

The proposed method provides new possibilities for 
enabling objective assessment of healing processes after 
medical treatment of pathological voices. Effects of local 
periodicity can be cancelled out by using periodicity 
adaptive smoothing procedures. AM and FM effects on 
F0 are cancelled out by averaging period lengths of every 
other period. Recovered F0 trajectory is calculated using 
the procedure mentioned above. Spectral effects are 
removed by applying an adaptive moving average using 
the period length that corresponds to the sub-harmonic 
frequency. The aperiodicity index in each time-frequency 
region can be replaced by values of normal voices. 
Applying these recovered parameters to STRAIGHT-
based synthesis procedures [3,6] enables a hypothetical 
recovered voice to be produced after the healing process 
is completed. By using this recovered voice and the 
current voice before the medical treatment as exemplar 
samples for voice morphing, generated morphing results 
provide a set of reference voices to be compared with 
voices of the patients in their healing processes. This may 
provide an objective index to represent the degree of 
healing. 

V. CONCLUSION 

A new procedure to extract local periodicity structures 
has been developed on the basis of a new power spectral 
representation. The proposed procedure produces simple 
descriptions of periodic structure relying on no strong 
assumptions. Simulation results using test signals with 
known aperiodicity and results using actual examples of 
pathological voices illustrated the usefulness of the 
proposed method. Application to objective assessment of 
healing processes is promising but it also requires further 
investigations and collaboration. 
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Abstract: Voice production is a complex 
multidimensional phenomenon resulting from the 
combination of acoustic, aerodynamic and elastic forces.  
The evaluation of voice characteristics in clinical practice 
is often based only on perceptual  and acoustic 
evaluation, but an exhaustive assessment should take into 
consideration also aerodynamic parameters. 
In this study two groups of subjects, the first one 
composed by patients affected by organic dysphonia and 
the second one by controls with normal voice,
underwent: simultaneous acoustic/aerodynamic voice 
assessment by means of EVA device (SQ-Lab, Aix-en-
Provence, F); maximum phonation time measurement; 
GIRBAS perceptual evaluation. Statistical analysis 
allowed to search for correlations between the perceptual 
voice quality grading and the recorded 
acoustic/aerodynamic parameters.

Keywords :  

I. INTRODUCTION 

The evaluation of voice characteristics in clinical 
practice is often based only on perceptual  and acoustic 
evaluation. Due to the diffusion of digital systems and 
software for voice recording and analysis, acoustic 
measurements are commonly obtained in patients 
affected by laryngeal disorders. Nevertheless there are no 
widely accepted and standardized methods; therefore 
assessing objectively vocal emission is an unsolved 
problem. 

Up to now, only a few studies have been dedicated to 
the analysis of aerodynamic parameters. Aerodynamic 
methods have been described since several decades [1-7], 
but their diffusion has been limited due to the scarcity of 
specifically designed instruments.  

Voice production is a complex multidimensional 
phenomenon resulting from the combination of acoustic, 
aerodynamic and elastic forces; it was stated by Hirano 
[2] that the glottis should be considered as an energy 
transducer which converts aerodynamic power into 
acoustic energy. Therefore an exhaustive assessment of 
vocal function should ideally take into consideration both 
aerodynamic and acoustic parameters. 

The assessment of voice should be based on objective 
measurements in order to allow a comparison of the  

results across different voice clinics and different 
therapeutic protocols. 

The goal of this study was to analyze acoustic and 
aerodynamic indexes in a group of patients affected by 
dysphonia and in a control group of subjects with normal 
voice, in order to search for the parameters which better 
correlate with the dysphonia severity and which allow  to
discriminate dysphonic vocal emissions from normal 
ones. We also looked for correlations between the
subjective parameters obtained with GRBAS Scale and 
the objective indexes acquired by the 
acoustic/aerodynamic evaluation. 

II. METHODS 

The study includes 51 patients (34 women and 17 men) 
affected by benign organic dysphonia  (22 patients with 
vocal fold polyps, 12 with cysts, 12 with Reinke’s edema, 
2 with nodules, 1 with sulcus glottidis). The control group 
is composed by 23 subjects with normal voice,
homogeneous for age and gender.  

Both the dysphonic and the normal subjects underwent  
videolaryngostroboscopy, to ascertain and obtain a 
documentation of the status of vocal folds. 

The protocol for the multidimensional voice evaluation 
consisted of maximum phonation time measurement,  the 
perceptual voice assessment by means of the GIRBAS 
Scale [8], and the acoustic/aerodynamic evaluation with 
EVA device (SQ-Lab, Aix-en-Provence, F).  

More in details:  
a) Maximum Phonation Time (MPT) 

measurement was obtained during emission of 
the vowel /a/ at a comfortable pitch and 
loudness; three consecutive trials were 
performed and we considered the best one. 

b) Perceptual voice evaluation was by means of 
the GIRBAS scale [8], which includes the six  
parameters of the grade of dysphonia (G), 
instability (I), roughness (R), breathiness (B), 
asthenia (A), and strain (S). The voice samples 
were computer recorded using a dynamic 
microphone (AKG, model C 1000 S) at a 
constant distance of five centimetres from the 
patient’s mouth during the production of a 
sustained /a/, the repetition of single words and 
sentences, and conversation. All of the voice 
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samples were subsequently evaluated by a jury 
of four experienced listeners (two voice 
therapists and two phoniatricians), and scored 
in the usual manner (0=normal; 1=slight 
disturbance; 2=moderate disturbance; 3=severe 
disturbance). The parameters G,R,B were then  
taken into consideration for statistics in this 
study.  

c) Acoustic/aerodynamic evaluation. Voice 
recordings were performed by means of the 
EVA system, which allows simultaneous 
analysis of  acoustic and aerodynamic indexes. 
A rubber mask, connected to a mouthpiece, is 
placed on the mouth of the patients strictly 
adherent to the skin in order to avoid any air 
leak. The mouthpiece contains a calibrated 
directional microphone and a grid 
pneumotachograph. The microphone and the 
aerodynamic sensor are coaxial so that voice 
sound and phonatory airflow may be recorded 
at the same time. The microphone is at the 
distance of two centimeters from the patient’s 
mouth. 

Two different tests were performed: 
1. Voice range profile: the recording is made while the 

patient pronounces a sustained /a/ at comfortable 
pitch and intensity for at least 4-5 seconds. 
Afterwards four traces are displayed on the 
computer screen: 1- sound wave form, 2 - 
intensity, 3 - fundamental frequency, 4 - airflow. 
A one-second segment is selected for analysis in 
the most stable part of the wave form. Among 
the available ones, the following acoustic 
indexes were taken into consideration: Mean 
Fundamental Frequency  (F0),  coefficient of 
variation of F0 (CV  F0), Jitter %, Shimmer %, 
Harmonics to noise ratio (HNR), Intensity 
coefficient of variation (I CV).
The considered aerodynamic indexes were:
mean oral airflow (OAF), expressed in cc per 
second; Oral airflow coefficient of variation; this 
index relativizes the OAF standard deviation to 
the mean airflow value per second; it is an 
indicator of airflow instability and, indirectly, of 
the capability to achieve and maintain glottic 
closure during phonation; Glottic leakage  (= 
Mean OAF/Mean Intensity) is expressed in 
cc/s/dB; this index evaluates the amount of air 
utilized to produce one decibel in one second; it 
estimates the efficiency of the glottis in 
transforming aerodynamic  power into acoustic 
energy.

2. Airway interrupted method  for indirect estimation of 
subglottic pressure [9] (P, in hPa), during the 
emission of a sequence of “pa”. For this test a 

pressure sensor allowed  to measure intraoral 
pressure and to derive subglottal pressure.  

The values of laryngeal resistance (LR, 
calculated as the ratio P/OAF), the Glottal 
efficiency index (GEI, calculated as the ratio 
dB/hPa) and the laryngeal efficiency (LE, 
measured as the ratio dB/(hPa·dm3/s)  have been 
derived by the EVA software. 

Statistical analysis 

Data are presented as mean ± SD. 
 Intergroup comparison was performed with the Mann-

Whitney test. Associations between parameters were 
determined by Pearson’s correlation coefficients. Two-
sided exact tests were used and p values of less than .05 
were considered significant. All statistics were calculated 
using the Statistical Package for the Social Sciences 17.0 
for Windows software package (SPSS Inc, Chicago, IL).  

III. RESULTS

Table 1 reports results of statistical analysis concerning 
13 considered acoustic/aerodynamic parameters of the 
voice and maximum phonation time (MPT). All variables 
but L.R., FO and oral airflow were significantly different 
in dysphonic subjects when compared to normal controls
(Tab. 1). 

Tab. 1 

7.33 ± 2.58 11.11 ± 3.90 <0.001

35.47 ± 26.88 127.60±146.15 <0.001

53.34 ± 31.79 77.55 ± 68.41 ns

12.14 ± 4.44 8.13 ± 2.77 <0.001

11.45 ± 5.59 18.08 ± 6.44 <0.001

163.22±46.61 163.24±48.65 ns

2.46 ± 3.26 0.74 ± 0.32 <0.001

1.26 ± 0.58 0.85 ± 0.30 0.002

2.30 ± 4.73 0.44 ± 0.24 <0.001

1.02 ± 0.90 0.30 ± 0.15 <0.001

13.13 ± 8.69 20.33 ± 3.23 <0.001

3.00 ± 2.28 1.92 ± 0.70 0.017
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225.05±179.90 150.95± 5.46 ns

7.24 ± 8.40 3.55 ± 2.14 0.048

The correlation between the grade of dysphonia 
(measured by GIRBAS scale) and the six parameters 
reported in table 2 - in particular three aerodynamic 
parameters and three acoustic ones - resulted significant. 
The values of CV FO, Jitter and Shimmer increased when 

G increased, whereas G.E.I., L.E. and HNR decreased. 
Also the correlation between G and the other variables 
was evaluated, but no significant results were found (Tab. 
2). Roughness was significantly correlated with the same 
variables and also with glottic leakage, oral airflow and 
OA CV. Breathiness, instead, was correlated with 
different variables: L.R., MPT and oral airflow; in 
particular values of airflow increased when B raised, 
while LR and MPT were inversely related to B value.
  

Tab. 2 

- 0.347 0.024 -0.374 0.018 -0.173 ns
- 0.364 0.019 -0.332 0.039 -0.316 ns
-0.095 ns 0.029 ns -0.322 0.046
-0.281 ns 0.05 ns -0.405 0.007
0.537 <0.001 0.545 <0.001 0.137 ns
0.534 <0.001 0.554 <0.001 0.174 ns

0.527 <0.001 0.590 <0.001 0.142 ns

- 0.489 <0.001 -0.559 <0.001 -0.081 ns

-0.032 ns -0.331 0.026 0.281 ns

0.00 ns -0.319 0.031 0.293 0.048

0.275 ns 0.333 0.026 -0.072 ns

IV. DISCUSSION

Our results confirm that both acoustic and aerodynamic 
parameters are useful in the assessment of dysphonia  as 
they allow to differentiate an hoarse voice from a 
“normal” one. Nevertheless overlapping between data 
obtained by the analysis of dysphonic and normal voices 
was found; this result is in agreement with the current 
literature [10-12]. In particular three aerodynamic 
parameters and three acoustic ones were significantly 
related to the degree of dysphonia as perceptually 
measured by the GRBAS scale; nine parameters were 
significantly related to roughness changes and three with 
breathiness. These data highlight that perceptual voice 
evaluation is a reliable means for voice evaluation. 

V. CONCLUSION

This study confirms the utility of both acoustic and 
aerodynamic indexes for the objective assessment of 
voice pathologies. Further work will analyze from the  

acoustic /aerodynamic point of view the outcome 
achieved by phonosurgery in patients affected by organic 
pathologies of the vocal folds.
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Abstract: This paper is concerned with kernel-based
techniques for automated categorization of laryngeal
colour image sequences obtained by video laryngostro-
boscopy. Features used to characterize a laryngeal im-
age are given by the kernel principal components com-
puted using the N -vector of the 3-D colour histogram.
The least squares support vector machine (LS-SVM)
is designed for categorizing an image sequence (video)
into the healthy, cancerous and noncancerous classes.
The kernel function employed by the LS-SVM is de-
fined over a pair of matrices, rather than over a pair
of vectors. The classification accuracy of over 85%
was obtained when testing the developed tools on data
recorded during routine laryngeal videostroboscopy.

Keywords: Larynx pathology, Image sequence, Classi-
fication, Support vector machine

I. INTRODUCTION

Video, laryngeal still images, voice signal, and patient’s
questionnaire data are considered as the main information
sources to characterize human larynx. Nowadays, auto-
mated analysis of voice is increasingly used for detecting
and screening laryngeal pathologies [1], [2], [3].

However, there were very few attempts to create systems
for automated analysis of still colour laryngeal images. Il-
gner et al. [4] proposed a CCD camera-based technique for
automated categorization of manually marked suspect le-
sions into healthy and diseased classes. The categorization
is based on textural features extracted from co-occurrence
matrices [5], [6] computed from manually marked areas of
vocal fold images. The classification accuracy of 81.4%
was reported when testing the technique on a very small
set of 35 images. A set of 785 colour laryngeal images ob-
tained by direct microlaryngoscopy has been used in stud-
ies presented in [7], [8], [9]. The classification accuracy
of over 95% was achieved when categorizing the images
into one healthy and two pathological (nodular and dif-
fuse) classes. When categorizing the same set of images
into seven classes (one healthy and six pathological), the
classification accuracy of over 80% was reported [10]. Im-
age texture, distribution of colour, and geometry of edges
of vocal folds are the types of features used for the cate-
gorization. It was found that colour is amongst the most
discriminative types of features.

This study was supported by COST Action 2103 Advanced
Voice Function Assessment.

A. Video laryngostroboscopy

Video laryngostroboscopy is used extensively for in-
specting vocal folds and in the clinical practice for diag-
nosing voice disorders [11]. Video laryngostroboscopy is
a well-established technique for measuring the glottal gap
or examining the glottic closure [12]. Videostroboscopy
is one of the standard methods used to examine moving
objects. Flashing light is used to illuminate an object in
stroboscopy. When the flashes are synchronized with the
vocal fold vibrations, a stationary view of the vocal folds
is obtained.

However, the single-flash-timing video laryngostro-
boscopy has a limitation that it is effective only when vo-
cal fold vibrations exhibit only one single fundamental fre-
quency. Multiple tones (fundamental frequencies) may be
recorded in the case of some diseases, such as polyps, nod-
ules, and cysts [13]. In such cases, a clear view of the
vibrating vocal folds can not be obtained with the single-
flash-timing video laryngostroboscopy. A multiple-flash-
timing technique of video laryngostroboscopy was pro-
posed by Deguchi et al. [13] to deal with such cases.

In [14] image sequences recorded with the stroboscopy
system have been used to measure the glottic angle and the
angular velocities of vocal fold abduction and adduction.
The authors point out that semi-automated edge tracking
would be an important improvement of the technique.

It is worth mentioning that not only edge tracking but
also other tasks usually carried out when analyzing video
data need automated or semi-automated analysis. Deci-
sion making is one of such tasks. In clinical practice, de-
cision making is quite often based on subjective evaluation
of video data. Quantitative measures of motion, colour dis-
tribution and geometry of vocal folds can provide objective
information and be useful in medical treatment planning
and greatly facilitate tracing progress over time.

The long-term goal of this work is a decision support
system to facilitate screening for laryngeal disorders. A
voice signal, sequences of colour vocal fold images ob-
tained from video laryngostroboscopy, and questionnaire
data [15] are the information sources to be used in the
analysis. This paper is concerned with automated cat-
egorization of image sequences obtained from laryngeal
videostroboscopy into a healthy class and two classes of
disorders, namely cancerous and noncancerous.

II. THE DATA

The task considered in this paper concerns automated
categorization of colour image sequences obtained from
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video laryngostroboscopy into three decision classes,
namely a healthy class and two pathological classes—
mass lesions of vocal folds. We distinguished two groups
of mass lesions of vocal folds i.e. noncancerous lesions—
nodules, polyps, papillomata, keratosis, and cysts—and
cancerous lesions—carcinoma. The diagnosis was con-
firmed by histological examination of laryngeal specimens
removed during endolaryngeal microsurgical intervention.
To illustrate the three decision classes, Fig. 1 presents ex-
amples of vocal fold images obtained by the direct micro-
laryngoscopy.

 

Fig. 1. Images from the noncancerous (left), cancerous
(middle), and healthy (right) classes.

The data have been recorded at the Department of
Otolaryngology, Kaunas University of Medicine, Lithua-
nia. The image sequences were acquired during routine
videostroboscopy, using the ”EndoSTROB” device. The
duration of one image sequence was equal to 8s. The res-
olution of 720 × 576 pixels was used to record the image
sequences. Data from 87 patients were available. Among
those, 63 patients belong to the noncancerous class, 18 to
the cancerous class and 6 to the healthy class.

III. FEATURES

Various types of features characterizing colour, texture,
and geometry of the biological structures seen in colour
images of vocal folds can be extracted [8]. Features char-
acterizing the distribution of image colour are used in this
study. The approximately uniform L∗a∗b∗ colour space
is employed to represent colours. We characterize the
colour content of an image by the probability distribution
of the colour represented by the 3–D colour histogram of
N = 4096 (16× 16× 16) bins and consider the histogram
as anN -vector. Most of bins of the histograms were empty
or almost empty. Therefore, to reduce the number of com-
ponents of the N -vector, the histograms built from a set of
training images were summed up and the N -vector com-
ponents corresponding to the bins containing less than Nα

hits in the summed histogram were left aside. Hereby,
when using Nα = 50 we were left with 918 bins—a ψ
vector of measurements with 918 components.

Having a vector of measurements ψ, the feature vector
x is computed in the following way. We assume that κ is a
kernel [16] andΦ is a mapping ofψ onto the feature space
F , such that κ(ψi,ψj) = �Φ(ψi),Φ(ψj)�, where �·, ·�

stands for the inner product. Let �Φ(ψi)

�Φ(ψi) := Φ(ψi)−
1

M

M�

i=1

Φ(ψi) (1)

withM being the number of data points. The features x are
then given by the kernel principal components computed as

projections of �Φ(ψ) onto the eigenvectors

v =

M�

i=1

αi
�Φ(ψi) (2)

of the covariance matrix Kij = ��Φ(ψi),
�Φ(ψj)�, where

the expansion coefficients αi of the eigenvector are found
from the eigenvalue problem

λα = Kα (3)

where, the solutions α are normalized by requiring
λ�α,α� = 1. Thus, the feature x is given by

x = �v, �Φ(ψ)� =

M�

i=1

αi��Φ(ψi),
�Φ(ψ)� (4)

The optimal number of components (features) used is
determined experimentally.

IV. THE CLASSIFIER

We use a support vector machine (SVM) as a classifier in
this work. Assuming that Υ(x) is the non-linear mapping
of x into the new space, the 1-norm soft margin SVM can
be constructed by solving the following problem:

min
w,b,ξ

1

2
wTw + γ

M�

i=1

ξi (5)

subject to

yi(�w,Υ(xi)�+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ...,M (6)

where w is the weight vector, yi = ±1 is the desired out-
put, M is the number of training data, �� stands for the
inner product, ξi are the slack variables, b is the threshold,
and γ is the regularization constant controlling the trade-
off between the margin and the slack variables. The dis-
criminant function for a new data point x is given by:

f(x) = H

� M�

i=1

α∗

i yjk(x,xi) + b∗
�
, (7)

where k(x,xi) stands for the kernel and the Heaviside
function H[y(x)] = −1, if y(x) ≤ 0 and H[y(x)] = 1
otherwise. The optimal values α∗

i , b
∗ of the parameters αi

and b are found during training.

A. Least squares SVM

Suykens and Vandewalle [17] have introduced a least
squares version of the SVM classifier (LS-SVM). We use
this type of SVM in this work. Parameters of the LS-SVM
are estimated by solving the following optimization prob-
lem:

min
w,b,e

1

2
wTw + γ

1

2

M�

i=1

e2i (8)

subject to

yi(�w,Υ(xi)�+ b) = 1− ei, i = 1, ...,M (9)
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The main difference between the LS-SVM and SVM is
the equality constraints (Eq.(9)) used in the LS-SVM in-
stead of unequally constraints defined by Eq.(6). Due to
the equality constraints, the optimal parameter values can
be found by solving a set of linear equations, instead of
quadratic programming applied in the case of SVM. The
solution is given by [17]

�
0 −yT

y Z+ γ−1I

� �
b

α

�
=

�
0

1

�
(10)

where Zij = yiyjκ(xi,xj), I is the identity matrix, 1 =
[11, ..., 1M ], y = [y1, ..., yM ], and α = [α1, ..., αM ].

Since an SVM is a binary classifier while the task is
to distinguish between three classes, the one-against-one
scheme is used to make the categorization in this work.

B. Kernel function

For κ(xi,xj), one usually uses the linear: xT
i xj , Gaus-

sian: exp{−||xi − xj ||
2/σ} or polynomial: (xT

i xj + 1)d

kernel. The kernel is defined over a pair of vectors.
In this work, classification is based on a set of vectors

rather than on a single vector. A sequence of images is
recorded from a patient. Each image is represented by a
feature vector. Feature vectors are then collected into a
matrix (each vector constitutes a matrix column) and used
to make a decision. Therefore, a kernel function utilized
by the LS-SVM classifier is defined over a pair of ma-
trices (A,B) rather than over a pair of vectors. A pos-
itive definite kernel of such type has been recently pro-
posed by Wolf and Shashua [18]. The authors use the
principal angles between the two column spaces defined
by the matrices (A,B) to assess the matching between the
spaces and derive a positive definite kernel based on that
concept. The ”QR” factorization of the matrices (A,B)
and the kernel Gram-Schmidt orthogonalization process
are used to derive the kernel. Applying the ”QR” factor-
ization the matrices (A,B) can be written asA = QARA

and B = QBRB , where Q is an orthonormal basis and R
is an upper-diagonal matrix of size M × M of the Gram-
Schmidt coefficients representing the columns of the orig-
inal matrix in the new basis. The principal angles cos(θi)
are given by the singular values σi of the matrix QT

AQB ,
cos(θi) = σi, i = 1, ...,M . It was shown that

κ(A,B) = det(QT
AQB)

2 =

M�

i=1

cos(θi)
2 (11)

is a positive define kernel [18]. We use this kernel in our
work. The algorithm for evaluating the kernel without ex-
plicit computation of QA and QB can be found in [18].
Only inner-products between the columns of A and the
columns of B are used.

V. EXPERIMENTAL INVESTIGATIONS

A. Experimental setup

There were 200 image frames in one image sequence.
However, only 20 image frames were used to estimate the
kernel defined over a pair of matrices. Due to the small

number of data available for the experiments, the leave-
one-out test has been used to estimate the classification ac-
curacy. The data used were normalized to zero mean and
variance one. The polynomial kernel of degree q = 2 was
used to extract the kernel principal components, while the
Gaussian kernel was used to estimate the kernel defined
over a pair of matrices. The experimental tests performed
concern the influence of the LS-SVM regularization con-
stant γ, the Gaussian kernel width parameter σ, and the
number of the kernel principal components used on the
test set data classification accuracy. The dependence of the
classification accuracy on the percentage of the data vari-
ance accounted for by the number of the kernel principal
components used was also studied.

B. Results

In Fig. 2, shown is the classification accuracy of the test
set data as a function of the number of the kernel princi-
pal components used to characterize colour of one image
frame, for given values of the regularization constant γ and
the kernel width parameter σ. As can be seen, nine princi-
pal components is the best choice.
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Fig. 2. The classification accuracy of the test set data as a
function of the number of the kernel principal components,
for given values of the regularization constant γ and the
kernel width parameter σ.

The graph presented in Fig. 3 plots the test set data clas-
sification accuracy as a function of the percentage of the
data variance accounted for by the number of the kernel
principal directions used to represent colour. As can be
seen from Fig. 3, the percentage of the data variance ac-
counted for by the optimal number of the components is
close to 90. Fig. 4 relates the test set data classification
accuracy the regularization constant γ, and the number of
the kernel principal components used to represent colour.
As can be seen from Fig. 4, a large number of principal
components significantly deteriorates the classification ac-
curacy. Fig. 5 plots the test set data classification accuracy
as a function of the regularization constant γ and the kernel
width parameter σ.

VI. CONCLUSIONS

A technique for automated categorization of laryngeal
colour image sequences obtained by video laryngostro-
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Fig. 3. The classification accuracy of the test set data as a
function of the percentage of the data variance accounted
for by the number of the kernel principal components used.

5 10 15 20
0

5
10

15
20

40

60

80

100

Number of kPC

γ

Ac
cu

ra
cy

, %

Fig. 4. The classification accuracy as a function of the reg-
ularization constant γ and the number of kernel principal
components.
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Fig. 5. The classification accuracy as a function of the reg-
ularization constant γ and the kernel width parameter σ.

boscopy was developed. The LS-SVM employed to cat-
egorize an image sequence into the healthy, cancerous and
noncancerous classes exploits a kernel function defined
over a pair of matrices, rather than over a pair of vec-
tors. The classification accuracy of over 85% was obtained
when testing the developed tools on data recorded during
routine laryngeal videostroboscopy. One can expect in-
creasing the accuracy even further by adding features of
other types. A larger database needs to be collected for the
comprehensive examination of the technique.
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Abstract: the present work describes an advanced 
method for image preprocessing to improve the 
automatic detection of the glottal space from laryngeal 
images obtained either with high speed or with 
conventional video cameras attached to a 
laryngoscope. images are filtered using an anisotropic 
diffusion technique that combines smoothing 
properties with image enhancement qualities. the 
preprocessing technique improves the performance of 
the previous system based in watershed transform 
and merging. results show that 38% of the 
mismatches in delineating the glottis are fixed or 
reduced. 111 larynx images have been segmented to 
obtain the glottal area, 11 of the 29 previous errors 
have been corrected.  
Keywords:  segmentation, preprocessing, anisotropic 
diffusion, glottis. 

I. INTRODUCTION 

Pathologies that may affect voice production are many 
and varied. However, all tend to have a common effect, 
that is, difficulties to achieve a correct vocal fold 
vibration during phonation. This usually comes with 
deficiencies in the closure of the glottis what implies 
further distortion. Analysis of these two effects, 
particularly fold vibration, is essential for otolaryngology 
physicians to diagnose laryngeal disorders.  

One of the main problems faced by specialists is the 
high speed of vocal fold movement, which makes it 
impossible for the human eye to see the vibration with 
enough accuracy.  Several systems have been developed 
over the last century to overcome this drawback: 
subjective methods as stroboscopy [1], [2] and high speed 
recordings [3], [4]; or objective techniques such as 
kymography [5], glottal area diagrams [6] and 

phonovibrography [7]. The latter are becoming 
increasingly more important because they empower the 
expert to quantify the movement in addition to visualize 
it.

All objective techniques mentioned above need an 
image processing oriented to the segmentation of the 
glottal area, either as part of its development, either to 
resolve various errors introduced during the recording, 
like movements suffered by the recording device and/or 
the patient. 

This paper describes an advanced method for image 
preprocessing to improve the automatic detection of the 
glottal space from laryngeal images obtained with the 
previous system [9] that combines several relevant 
techniques in the field of digital image processing.  

The remainder of this paper is organized as follows: in 
section II the tools used to achieve accurate detection of 
the glottal area are described including the system already 
designed and preprocessing with the anisotropic diffusion 
filter. In section III results obtained after combining the 
two methods are discussed and section IV highlights the 
main conclusions. 

II. METHODS

A. Segmentation system 

The method described in [9] allows to individualize the 
glottis in laryngeal images following the scheme 
presented in Fig. 1. The operation of each of the blocks is 
as follows: 

 
Watershed transform [10] of the gradient image: the 

first step is to convert the original image (RGB) into a 
grey scale image by means of a transformation to the YIQ 
model. The luminance component (Y) is chosen and its 
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Fig. 1 - Scheme that represents the steps followed for the segmentation of the glottal space. 
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gradient is calculated. A threshold with a value of 2 is 
applied to the gradient image (i.e. those pixels of the 
gradient image with a grey level below 2 are assigned to 
0), removing those edges that appeared due to the noise 
present in the image. After the thresholding, the 
watershed transform is applied to the resulting image, 
achieving the first region determination. 

 
JND based merging: one of the drawbacks of the 

system is that Watershed transform is very sensitive to 
noise, causing the image to be divided into multiple 
regions where there are only a few (and the delimitation 
of only one is the goal of the system). The preprocessing 
mentioned above partially alleviates the problem but 
doesn’t solve it. It is necessary to apply a subsequent 
merging to ensure the union of homogeneous regions. In 
this sense, the system presented in Fig. 1 introduces this 
block to merge the regions that are homogeneous to the 
human eye following on the basis of JND (Just 
Noticeable Difference) [11]. 

 
Surrounding regions merging: the third step consists of 

another merging process, now attempting to merge all the 
neighbours that surround a region with a lower grey level 
than all of them. Now the goal is to reduce the number of 
segmented objects by merging regions that can not 
correspond to the glottis (note that from a human 
observer’s point of view, the glottis should always be a 
dark object surrounded by a lighter area). 

 
Decision making: the last step is a classification 

process to detect the glottis among the rest of the objects 
present in the image. For this purpose, a linear predictor 
trained with the 7 invariant moments of the different 
objects is used. 

111 images are processed to segment de glottal area. 
The presented system allows the automatic detection of 
the glottis in 75% of the analyzed images. In the 
remaining 25% glottis is detected varying one threshold. 
However, in 29 images small mismatches are presented in 
delineating glottal area boundaries, such as those 
presented in Fig. 2. 

B. Preprocessing. Anisotropic Diffusion 

A preprocessing more powerful than the presented in the 
system represented by Fig. 1 can reduce the number of 
regions resulting from the division provided by the 
Watershed transform, making the subsequent merging 
process easier and improving the results. 

The image preprocessing will be then the combination 
of two processes: first the original gray scale image I will 
be smoothed without blurring the most significant edges 
with scale–spaced using anisotropic diffusion [13]; and 

afterwards a threshold is applied to the gradient image to 
eliminate the remaining insignificant edges.  

Fig. 2. Some mistakes reported by the system described 
in Fig 1. 

The first process is implemented by equation 1 applied 
iteratively to each pixel of I.
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Where:  
1. i and j are the row and column of the pixel. 
2. t is th scale-space level, that is, the iteration number. 

Then t
jiI ,  is the gray value for pixel in row i and 

column j after t iterations. 
3. is the intensity difference between the gray level 

of the pixel and that of its 4-conectivity neighbours 
(North, South, East and West) 

4. c is the conduction coefficient and depends on the 
difference of the gray level in each direction. It must 
approximate zero for large differences where it is 
probable to locate an edge and almost one for small 
differences assuming the pixels are likely to belong 
to the same region. Equation 2 presents the function 
used in this work proposed in [5] for the North 
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direction. Conduction coefficients are calculated for 
each direction and each iteration.  

2
,,1

,

K
jiIjiI

t
jiN ec

(2) 

5.  controls diffusion speed and it should be under ¼ 
for the numerical scheme to be stable.  

For each pixel (i,j) of the image, differences in the gray 
level are calculated in the four directions. Those 
differences that are high (representative of a border) will 
have a conduction coefficient equal to zero and will not 
affect the result of the iteration, while those that are small 
shall be added (or subtracted) to the value of the pixel in 
study. In this way, after the successive iterations, all of 
the pixels of the image tend to become closer to the 
similar neighbours maintaining the highest differences in 
gray level. 

As example two images of the larynx are shown in Fig. 
3: the image on the left is the result of a filtering with 
anisotropic diffusion (K=10,  =0,2 and 50 iterations); the 
image on the right is the low pass filtered version of the 
same original image. It can be observed that anisotropic 
diffusion homogenizes the different tissues of the larynx 
without damaging most significant edges, while the 
standard filter creates a blur in the image. 

Fig. 3. Example of anisotropic diffusion. Left: image 
obtained from anisotropic diffusion after 50 iterations. 

Right: low pass filtered image. 

III. RESULTS

The research was conducted in two steps: 
1. Anisotropic diffusion as described in paragraph II-B 

is added to the system presented in Section II-A and 
results are analyzed. 12 images were randomly 
chosen: in 6 of them the glottis was correctly 
segmented with the original system and the other 6 
presented some mismatches in glottal area 
delimitation.  Diffusion parameters are varied to 
finally obtained 140 combinations: 

K varies from 3 to 18 with a step of 5 
varies from 0,05 to 0,25 with a step of 0,05 

The number of iterations ranges from 5 to 65 
with a step of 10 

The four combinations that gave the best results 
were selected to carry out the next experiment. It is 
important to point out that as important as an 
improvement on a bad segmented image is that the 
correct segmentation remains unchanged.  

2. The 4 combinations selected are used to segment all 
the 111 available images. Best results are obtained 
with the following values: K=8, =0,05 and 55 
iterations. The error is removed in 14 out of 29 
images and improved in 4. However a new 
mismatch appears in 7 of the 82 images that were 
correctly segmented with the original system. The 
overall result shows improvement in 11 images 
representing a percentage of 38% of errors fixed.    

Results for the images shown in Fig. 2 are presented in 
Fig. 4. It can be observed that the glottis is detected 
without errors.  

Fig. 4. These two images presented mismatches in the 
glottal area delimitation when processed with the original 
system as shown in Fig. 2. Error has been corrected with 

the anisotropic diffusion filter. 

    Nevertheless in Fig. 5 two new errors are shown. The 
glottal area was correctly segmented with the system 
described in section II-A but it presents same mismatch 
when anisotropic diffusion is included in the system. 



132	

REFERENCES

[1] Oertel,M.J., "Über eine neue 'laryngostroboskopische' 
untersuchungsmethode des kehlkopfes," Zentralbl.f.d. 
Mediz. Wissenschaften Heft, vol. 16, pp. 81-82, 1878. 
[2] Rosen, C. A., "Stroboscopy as a research instrument: 
development of a perceptual evaluation tool," 
Laryngoscope, vol. 115, no. 3, pp. 423-428, 2005. 
[3] Schwarz, R., Hoppe, U., Schuster, M., Wurzbacher, 
T., Eysholdt, U., and Lohscheller, J., "Classification of 
unilateral vocal fold paralysis by endoscopic digital high-
speed recordings and inversion of a biomechanical 
model," IEEE Transactions on Biomedical Engineering,
vol. 53, no. 6, pp. 1099-1108, 2006. 
[4] Zhang, Y., Bieging, E., Tsui, H., and Jiang, J. J., 
"Efficient and effective extraction of vocal fold vibratory 
patterns from high-speed digital imaging," Journal of 
Voice, 2009, In press. 
[5] Wittenberg, T., Tigges, M., Mergell, P., and Eysholdt, 
U., "Functional imaging of vocal fold vibration: digital 
multislice high-speed kymography," Journal of Voice,
vol. 14, no. 3, pp. 422-442, 2000. 
[6] Yan, Y., Ahmad, K., Kunduk, M., and Bless, D., 
"Analysis of vocal-fold vibrations from high-speed 
laryngeal images using a Hilbert transform-based 
methodology," Journal of Voice, vol. 19, no. 2, pp. 161-
175, 2005. 
[7] Lohscheller, J., Eysholdt, U., Toy, H., and Dollinger, 
M., "Phonovibrography: mapping high-speed movies of 
vocal fold vibrations into 2D-diagrams for visualizing 
and analyzing the underlying laryngeal dynamics," IEEE 
Transactions on Medical Imaging, vol. 27, no. 3, pp. 300-
309, 2008. 

Fig. 5. Two images with an error when anisotropic 
diffusion is applied as a preprocessing technique. 

IV. CONCLUSIONS

Anisotropic diffusion is an image preprocessing 
method that can increase the homogeneity of areas with 
similar gray levels, while maintaining, and even 
enhancing, the edges that separate areas with abrupt 
changes. 

[8] Manfredi, C., Bocchi, L., Bianchi, S., Migali, N., and 
Cantarella, G., "Objetive vocal fold vibration assessment 
from videokymographic images," Biomedical signal 
processing and control, vol. 1, no. 2, pp. 129-136, 2006. 
[9] Osma-Ruiz, V. J., Godino-Llorente, J. I., Sáenz-
Lechón, N., and Fraile, R., "Segmentation of the glottal 
space from laryngeal images using the watershed 
transform," Computerized Medical Imaging and 
Graphics, vol. 32, no. 3, pp. 193-201, 2008. 

Anisotropic filtering has been used as a preprocessing 
step to improve the performance of a system that detect 
the glottal space from laryngeal images [9]. The main 
goal is to correct certain errors that appear in the 
delineation of the glottis. [10] Osma-Ruiz, V. J., Godino-Llorente, J. I., Sáenz-

Lechón, N., and Gómez-Vilda, P., "An improved 
watershed algorithm based on efficient computation of 
shortest paths," Pattern Recognition, vol. 40, no. 3, pp. 
1078-1090, 2007. 

   With an anisotropic diffusion filter with parameters: 
K=8, =0,55 and 55 iterations, 111 laryngeal images 
have been processed, 29 of them with previous errors in 
the delineation of the glottis.  Results after segmentation 
solve the problem in 14 cases and significantly improve 
another 4 images. On the other hand, 7 of the 82 
remaining images have an error that was not previously 
present. Given these two aspects we can conclude that the 
preprocessing method presented in this paper achieved an 
improvement of 38% over the previous system. 

[11] Shen, D. F. and Huang, M. T., "A watershed-based 
image segmentation using JND property," in Proceedings 
of IEEE ICASSP 2003, vol. 3, pp. 377-380, Apr.2003. 
[12] Duda, R. O., Hart, P. E., and Stork, D. G., Pattern 
Classification, 2 ed., Wiley-Interscience, 2001. 
[13] Perona, P. and Malik, J., "Scale-space and edge 
detection using anisotropic diffusion," IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 12, 
no. 7, pp. 629-639, 1990. 



	


        
 
     
       
 
        
     

   
      
      
      
      
  
    
    
       

       

   


      







        

   
      
   
    
     
        
      
   
      
       
      
       
        
      
         



     
        
        

        
  
      

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       
      
        
       









   

   
   
   
   
   


        

        
       
       
         
       
        


         
       



       
      
       


        
       
        



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



        



       
       


        


  


      
         

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



         




























 










         




























 














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








































 








      

         


        
     
       
   
      
        




        
      
      
       
        
    
     
  


       
        
       
       
       
       

        



    






        

 



     
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This paper introduces a method for segmention of the 
vocal-fold edges in temporal domain from laryngeal 
high-speed videoendoscopy (HSV). The method employs 
a pair of active contours (snakes), which deform within 
a series of kymographic images derived from the HSV 
data. By following a set of deformation rules, this pair 
of active contours converges to the desired boundaries 
of the glottis. The proposed method was tested on a 
dataset of 98 HSV samples, of which 96 were 
successfully segmented. The new method substantially 
outperforms existing methods. However, more precise 
analysis revealed that of the 96 successfully segmented 
HSV samples, 18 exhibited a fine error up to ±1 pixel, 
and 78 samples exhibited errors exceeding a pixel. The 
large majority of the gross errors (76%) were due to 
problems near the posterior and anterior commissures, 
which warrants further investigation for improving the 
accuracy and reliability of the method. 
Keywords: high-speed videoendoscopy, active contour 
segmentation, snakes, glottis, digital kymography 

I. INTRODUCTION 
Laryngeal high-speed videoendoscopy (HSV) contains 

unprecedented amount of information about the vibration 
of the vocal folds that is potentially clinically useful. 
However, navigating through the enormous amount of 
HSV data is difficult and impractical. In order for HSV to 
gain widespread clinical use, there is a need for image-
processing algorithms for automatic extraction of the 
relevant vocal-fold vibratory features. That is the long-
term purpose of this project. 

This problem has been investigated in recent years. 
Yan et al. developed an algorithm to segment the glottis 
from HSV data by globally thresholding pixel intensities 
on a per-frame basis [1]. Lohscheller et al. developed an 
algorithm that takes advantage of HSV's 3D structure by 
performing a modified 3D seeded region growing for 
segmentation of the glottis and post-processing for 
reconstruction of the vocal-fold boundaries [2]. However, 
such local image thresholding or region growing 
algorithms are usually sensitive to image homogeneity 
and noise. 

Active contours, or snakes, are deformable models that 
can dynamically converge towards the desired image 
features [3]. The deformation of a snake follows certain 

specified rules on the whole contour, which may make it 
more robust to image noise. A closed-loop snake has 
been used to analyze the PE-segment within HSV data 
[4]. A pair of open-curve snakes has been applied to the 
right and left vocal folds to segment the glottis from 
videokymography [5]. A HSV movie can be represented 
in temporal domain as a digital kymography (DKG) 
playback [6]. Therefore, an attractive approach for HSV-
segmentation can be achieved by segmenting the glottis 
from all spatial-temporal kymographic images of HSV. 

In this study, we employed a pair of open-curve snakes 
(right and left) on DKG images to segment the glottis, for 
which deformation rules enforce the temporal resolution 
of HSV. Fig. 1 illustrates two open-curve snakes, right 
and left, attracted to pixels with large gradient magnitude 
(aligned with the glottal boundaries), which is derived 
from DKG. In Fig. 1 (not drawn to scale) the white 
squares are the vertices, termed snaxels, which make up 
the right and left snakes. The white lines connecting the 
snaxels are spline segments. And the space between the 
vertical white lines denotes time. 

 
Fig. 1: Snakes are attracted to the pixels with large 
magnitude of gradient within a kymographic image. 

The proposed method exhibits the following merits 
over previous methods: (a) the snake convergence is 
facilitated due to the absence of complex geometries in 
kymographic images; (b) the deformation of the snakes 
can be optimized by using time-delayed discrete dynamic 
programming; (c) the temporal resolution of HSV helps 
constrain snake deformation since DKG images exhibit 
continuity along the time axis; (d) the method is robust to 
the disappearing glottis during the closing phase; (e) the 
initialization procedure is simple and scalable; and (f) the 
method segments the right and left vocal-fold edges 
concurrently, while maintaining separate left and right 
segmentation results. 

II. METHOD 

A. Snake -energy Minimization. 
Energy Minimizing Splines. A snake is a spline 
deformed in the spatial domain of a digital image in order 
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to minimize an energy functional comprised of internal 
forces derived from the snake's shape, and external forces 
derived from image features [3]. A snake is 
parameterized by the vector v(s) = [x(s),y(s)], where 
s  [0,1], and seeks to minimize the following energy 
functional [3,7]: 
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The internal force intE  acting on snake v(s) is a soft 
constraint used to make the snake's shape smooth and is 
given by: 
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Where v'(s) and v''(s) are the first and second derivatives, 
respectively;  and  are two weights used to adjust the 
snakes elasticity and rigidity, respectively, which in turn 
influences the snake's shape. The image forces imageE  
acting on the snake v(s), is a force that counter-balances 
the internal force intE , and makes the snake align with 
desirable image features. For example imageE can be: 

2|),(|))(( yxIsvEimage ,             (3) 

where I is the image gradient. By combining Eqs. (1) 
and (2) we obtain: 
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Using the calculus of variations, Eq. (4) has a numerical 
solution that can be obtained in O(n) time [3]. By using 
specialized external force fields the convergence of 
snakes using the variational calculus framework can be 
significantly improved. 
Snake Deformation Rules: In order to enhance 
convergence of the paired temporal snakes, three snake-
deformation rules are applied: (1) no closed loops are 
permitted in the right and left snakes (i.e. snaxels of right 
and left snakes are defined by the time axis of 
kymographic images and can only move up or down 
within a kymographic slice during deformation); (2) in 
the absence of glottal-edge information right and left 
snakes are attracted to each other (i.e. regions in the 
kymograms where the vocal folds are in contact); and (3) 
right and left snakes are not allowed to pass each other in 
the deformation. 
Time-delayed Discrete Dynamic Programming. The 
variational calculus framework for snake-energy 
minimization uses higher-order derivatives in order to 
approximate an energy minimizing spline from discrete 
data. Hard constraints are typically non-differentiable; as 
a consequence numerical instability occurs. In order to 

overcome the instability of variational approaches, snake 
energy is minimized using discrete dynamic 
programming [7]. 

The discretization of the internal energy term of a 
snake given in Eq. (2), yields: 
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where iv  corresponds to the thi  snaxel. By discretizing 
Eq. (4) we obtain: 
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which can be viewed as a discrete multistage decision-
making process, or better yet, a dynamic-programming 
problem [7]. 

Before dynamic programming can be applied, we 
must make the observation of a correspondence between 
minimizing the total energy measure of a snake and the 
problem of minimizing a function of the form [7]: 
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where each v is a state variable that can take m possible 
values. In the general case, 
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Now, the dynamic programming solution involves 
generating a sequence of functions of one variable, 

1
1

n
iiS  (the optimal value function), where for obtaining 

each iS  a minimization is performed over a single 
variable. For example, given the energy function shown 
in Eq. (8), with n = 4, we have: 
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And in the general case [7], 
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The discrete dynamic-programming solution for snake-
energy minimization has a O(nm2) memory requirement 
and O(nm3) theoretical complexity, where n is the total 
number of stages (number of snaxels) and m is the total 
number of decisions at a given stage (neighborhood size). 

Fig. 2 gives insight to the dynamic programming 
solution for snake-energy minimization as a pair of 
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temporal snakes deform within a glottal opening in a 
DKG image. The gray tiles of Fig. 2 represent the 
magnitude of the gradient, black tiles correspond to the 
snaxels of the right snake, black tiles with a dot 
correspond to snaxels from the left snake, and black tiles 
with a square correspond to snaxels where the right and 
left snake are overlapping. During the snake-deformation 
procedure snaxel movement is limited to a column-wise 
neighborhood, which prohibits the occurrence of closed 
loops (self intersections) in the right and left snakes and 
significantly reduces the search space needed for snake-
energy minimization. 

 
Fig. 2: Snake energy is minimized by finding the optimal 
state variable 1iv  along the direction of the column. 

B. Experimental Design. 

DKG Snake Toolbox. In order to test the new method, a 
custom software, DKG Snake Toolbox, was built. It 
allows a user to scroll through the HSV and DKG frames, 
which are dynamically linked. After the user manually 
marks the anterior and posterior commissures, an initial 
DKG image is selected at the 50% anterior-posterior 
level. Then, a snake-initialization line is placed in the 
middle of the glottis, spanning through the time axis of 
the kymogram. The right and left snakes are deformed in 
order to segment the glottis. After the result is verified, 
the remaining DKG images are automatically segmented. 

Preprocessing the HSVs. The laryngeal tissues being 
observed are covered with a superficial layer, the lamina 
propria, which is highly reflective due to hydration and/or 
mucus presence. In general, light reflections represent a 
significant problem for snakes, because they introduce 
spurious noise into the gradient maps governing the snake 
deformations. Through the duration of a HSV recording, 
glottal openings exhibit distinctly dark intensities. Pixels 
having intensity values higher than the median intensity 
value of the entire recording more than likely correspond 
to light reflections, which can be easily suppressed. 

Once light reflections have been suppressed, 
specialized gradient maps are computed. The gradient in 
the spatial domain is calculated for every frame of the 
HSV. Since the snaxels of the right and left snakes are 

restricted to column-wise neighborhoods of movement, 
calculation of the gradient is performed using only the 
rows of a given frame in order to accent the horizontal 
edge information. A custom gradient map with gradients 
normal to the right vocal-fold edge is computed for the 
right snake, and a gradient map with gradients normal to 
the left vocal-fold edge is computed for the left snake. 

Contour Embedding. In order to keep the right and left 
snakes attracted to each other in regions of the kymogram 
where the vocal folds are in contact, a new parameter, 
snake intensity (snakeInt), is devised. After each iteration 
of the dynamic programming, the right and left snakes are 
embedded in the opposing snake's edge map as a salient 
edge with intensity values between 0 and 255. This 
effectively bounds the right snake between the right 
vocal-fold edge and the left snake, and the left snake is 
bounded by the right vocal-fold edge and the right snake. 
This can prevent the right and left snakes from moving 
across one another during deformation. 

Human Data. Fourteen vocally-normal speakers (7 men 
and 7 women between 22 and 29 years of age) have been 
recorded using with a Phantom V.7.1 (Vision Research, 
Inc., Wayne, NJ) monochromatic camera (16,000 fps, 
320x320 pixels, 12-bit depth) connected to a 70  rigid 
laryngeal endoscope and a 300-W xenon light source. 
Each speaker produced the vowel /i/ in seven phonatory 
conditions, varying in register, pitch and loudness. 
Thousand-frame tokens of sustained phonation have been 
extracted from each recording to yield a total of 98 HSV 
samples. 

III. RESULTS AND DISCUSSION 

Snake Parameter Adjustment. In early works on snakes, 
the parameters  and  were shown to be sensitive 
parameters used to weight the snake model's continuity 
and rigidity, respectively. In the time-delayed discrete 
dynamic programming algorithm,  and  are not as 
sensitive as their classical counterparts [7]. For all results 
obtained in this paper, we have set  = 10 and  = 3. The 
only parameters that have been adjusted were the 
snakeInt and the column-wise neighborhood size 
(colSize). colSize and snakeInt are adjusted twice per 
recording, once in order to initialize the right and left 
snakes, and one additional time for the automated 
segmentation stage. 

Figs. 3 and 4 show the values of colSize and snakeInt 
used for the initialization and segmentation stages for 
female and male subjects, respectively. Fig. 5 provides an 
example of (A) the initial positions of the right and left 
snakes in the toolbox, (B) the deformation results for the 
initial kymogram, and (C) phases of the opening cycle 
with the deformation results (the white contours along the 
glottis) presented in the spatial domain of the HSV for a 
female subject. 
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Fig. 3: colSize and snakeInt for 49 female subjects. 

 

 
Fig. 4: colSize and snakeInt for 49 male subjects. 

 

 
Fig. 5: (A) Initialization of the right and left snakes, 
(B) deformation results of right and left snakes for the 
initial kymogram, (C) three phases of the opening cycle 
with right and left snakes presented in spatial domain. 

Validity and Reliability. From the 98 samples in the 
dataset, 96 samples were successfully segmented using 
the temporal paired snakes, and 2 presented difficulties 
due to poor lighting. That is an overall reliability of 98%, 
which is a highly-encouraging result. In all HSV samples, 
most DKG images were analyzed without gross errors, 
i.e. divergence of the snake from the correct edge by 
more than one pixel, usually due to attraction to the 
wrong nearby edge. Of the 96 successfully-segmented 
samples, 78 exhibited at least one DKG image with at 
least one gross error, 59 of which (76%) were due to a 
failure of the right and left snakes to attract to each other 
near the commissures, mainly the posterior commissure. 
Those instances can be easily corrected by introducing an 

adaptively sized column-wise neighborhood and 
appropriate pre-processing when automating the method. 
Accuracy. In all HSV samples, most DKG images 
exhibited sub-pixel accuracy of segmentation. Of the 18 
samples free of gross errors, 1 had no single DKG image 
with a snake differing from the target edge, and 17 
exhibited at least one DKG image containing an instance 
of an error up to ±1 pixel. 

IV. CONCLUSION 

The proposed paired temporal snake algorithm 
exploits the HSV temporal resolution for obtaining a 
segmentation of the glottis by following a set of snake-
deformation rules. The snake deformation strategy 
employs a dynamic programming algorithm, in which the 
optimization of the snake-energy function decreases 
monotonically with respect to the asymptotic rate of 
growth of the algorithm, and thus the global convergence 
is guaranteed. The development of the algorithm is still in 
progress, to be extended to a fully-automatic method for 
segmentation of the glottis from HSV. This algorithm is 
reliable and fast, yet highly scalable in terms of the 
degrees of parallelism that can be exploited in the future. 
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Abstract: This study investigated vocal-fold contact 
characteristics through electroglottography (EGG) 
and related them to vibratory behavior as seen 
through high-speed videoendoscopy (HSV). When 
the EGG cycle was broken down into phases, the 
contacting phase represented an increasing 
percentage of the whole cycle as the EGG signal 
moved through three registers (pulse, modal, and 
falsetto). Conversely, the decontacting phase 
corresponded to a decreasing percentage of the EGG 
cycle as it moved through the same registers. 
Furthermore, comparisons of the HSV images and 
the EGG signal indicated close relationships between 
specific EGG features and the onset of contact of the 
vocal folds, maximal contact between the vocal folds, 
and maximal loss of contact between mucus bridges. 

Keywords: Voice; Electroglottography; High-Speed 
Videoendoscopy; Vocal-Fold Vibration 

I. INTRODUCTION 

Electroglottography (EGG), a valuable tool for both 
voice researchers and clinicians, is sensitive to changes 
in vocal-fold contact area during phonation. Clinical 
observation and the application of various physical and 
mathematical models have been used to identify 
important EGG signal landmarks and relate changes in 
signal morphology to specific aspects of laryngeal 
physiology. The continued refinement and applicability 
of high-speed videoendoscopy (HSV) allows for the 
synchronization of the EGG signal with endoscopic 
images of the vocal folds. 

The purpose of this study is to investigate variations 
of specific EGG features and relate them to HSV-
observed changes in vibratory behavior. To this end, the 
following research questions are addressed: (1) Are 
the objective measures of fundamental frequency (Fo) 
consistent with the elicited samples across three 
registers (pulse, modal, falsetto)? (2) To what degree do 
five established EGG landmark features (Fig. 1) [1] 
vary as related to objective measures? (3) What are the 
relationships between the EGG markers and the 
physiology of the vocal fold movement as visible 
through HSV and digital kymography (DKG)? 

II. METHODS 

Human Data: Fourteen vocally-normal speakers 
(7 men and 7 women, between 22 and 29 years of age) 
were recorded using precisely-synchronized (  11 s) 
HSV (16,000 fps) with EGG (96,000 Hz) as they 
produced one or more trials of the vowel /i/ sustained in 
three different registers: pulse, modal, and falsetto [2]. 
After the data was collected, each HSV trial recording 
was reviewed by 2 experts who selected three 1,000-
frame segments extracted from the whole recording, 
producing 3 smaller samples. One pulse register trial 
was excluded due to significant supraglottic 
compression which precluded visualization of the true 
vocal folds. The dataset included 72 modal register 
samples, 42 pulse register samples, and 45 falsetto 
samples. All 159 samples were used in answering the 
first two research questions; however, for the third 
research question, the data set was narrowed to allow 
for adequate analysis of the large amount of data. Only 
the middle of each three samples was analyzed for each 
trial, producing 24 modal register samples, 14 pulse 
register samples, and 15 falsetto register samples, a total 
of 53 samples. 

Analysis: Using custom-designed software with a 
specialized graphic user interface, the EGG signals 
were visually aligned with DKGs taken at 5 equally-
spaced locations along the anterior-posterior axis of the 
vocal folds (Fig. 2). Based on contemporary EGG 
models [1,4], 5 EGG landmark features were identified 

 
Fig. 1: Model Waveform of the EGG. a) Red 
marker; b) Green marker (estimated); c) Purple 
marker; d) Blue marker; e) Yellow marker.  
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Fig. 2: EGG and DKG visually aligned for color-
coded tagging. 

and coded with a unique colored marker: (1) intra-cycle 
onset of contact during the increasing-contact 
(contacting) phase (red marker); (2) maximum of the 
derivative/velocity during the contacting phase (green 
marker); (3) intra-cycle EGG maximum or maximum 
contact (purple marker), (4) EGG “knee” formed during 
the decreasing-contact (decontacting) phase (blue 
marker); and (5) intra-cycle offset of contact during the 
decontacting phase (yellow marker). Using the custom 
software, each EGG sample was manually tagged for 
the 5 landmark features using this color coding system 
(Fig. 1) and a consensus of the markings was 
established. 

Once the EGG signals were tagged, the time stamps 
of all markers for each of the 5 color sets were imported 
into a custom Matlab script. First, the time stamps were 
converted into vectors of period measurements 
corresponding to each different feature (color) in every 
EGG sample. Based on period information, mean 
frequencies and first-order perturbation functions were 
computed for each feature and sample to determine the 
most stable EGG feature. 

The 5 EGG feature markers were then exported to 
another custom-designed software with a specialized 
graphic user interface, which allowed concurrent 
visualization and playback of HSV and DKG, with the 
colored EGG feature markers overlaid in both the HSV 
and DKG (Fig. 3). User-controlled interface allowed 
playback of either: HSV frames dynamically-linked to a 
time stamp on the DKG display or DKG frames 
dynamically-linked to the corresponding anterior-
posterior line. Using each frame as the base measuring 
unit, each of the 5 EGG feature markers were measured 
relative to the following 4 HSV landmark features: 
(1) first contact of the vocal folds, (2) maximum contact 
of the vocal folds, (3) complete loss of contact between 
the vocal folds, and (4) complete loss of contact of any 
mucus bridges. 

III. RESULTS 

Consistency of Fo with registers. 

Analysis of the acoustic signal determined that the Fo 
for the modal and falsetto registers fell within normal 
limits [2] for the elicited register. Moreover, the modal 
registers and falsetto registers did not overlap within or 
across sexes (Table 1). The Fo could not be calculated 
for the pulse register phonations based on the acoustic 
signal due to the aperiodicity of the samples; therefore, 
the mean frequency for each sample was computed 
based on the EGG signal. Several of the pulse register 
samples had higher frequencies than expected [2]. 
Closer visual inspection of the DKG for these samples 
revealed multiple pulses for an individual glottal cycle. 
Since the EGG signal tracks the change in contact 
between the vocal folds, it would naturally be sensitive 
to these multiple pulses. After excluding the markers 
corresponding to the repeated pulses within a glottal 
cycle as determined from DKG, the frequency of the 
glottal cycle fell within normal limits for the pulse 
register [3,5]. 

 

 
Fig. 3: HSV and DKG visually aligned with EGG markers for concurrent playback.
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Table 1: Fo (Hz) of habitual and falsetto registers. 
Register Range Male Range Female Range

Modal
90.02 Hz –
269.05 Hz

90.02 Hz –
164.45 Hz

152.29 Hz –
269.05 Hz

Falsetto
300.5 Hz –
1041.71

300.05 –
496.04 Hz

411.59 Hz –
1041.71 Hz

 

One trial (and its subsequent three samples) had a 
higher frequency of EGG cycles than expected for the 
pulse register which could not be explained by double 
or multiple pulses. Listener judgment found this trial 
consistent with pulse register phonation, and visually 
the open phase of the cycle represents less than 25% of 
the entire cycle. It is reasonable to assume that despite 
the high frequency, this trial met the characteristics of 
pulse register, and thus, the sample should be 
considered in the remaining portions of the study. It is 
likely that this sample contained elements of both pulse 
and modal register as described by Hollien, Girard, and 
Coleman [3]. 

Measuring variation of five EGG landmark features. 

Across registers perturbation values reveal significant 
trends, specifically the large degree of perturbation 
within the pulse register compared to the modal and 
falsetto registers. Table 2 records the range of 
perturbation for each register. It is likely that the higher 
perturbation levels within the pulse register were related 
to the overall aperiodicity expected for the register and 
the presence of the double and multiple pulse 
phenomena within the register, given that the secondary 
or tertiary pulses are significantly shorter than the initial 
pulse of the vibratory cycle. It was not surprising that 
the modal register demonstrated the least amount of 
perturbation due to its periodicity (relative to the pulse 
register) and consistent contact (relative to the falsetto 
register). 

Significant variability was noted within samples and 
across registers. Table 3 reports the extent of the 
variability of perturbation for each of the 5 EGG 
landmark features. For all markers variability was noted 
within the 1,000-frame samples, as demonstrated by not 
only the high mean of perturbation values, but also the 
differences between the mean and median values 
(indicating the presence of outliers within the data). The 
most variant marker was the yellow marker, whereas  
 
Table 2: Breakdown of relative perturbation range 
(%) for each register. 

Phonatory Behavior Mean (%) Median (%) 

Pulse 17.91 – 19.95 8.65 – 11.17 

Modal 0.78 – 3.38 0.50 – 3.04 

Falsetto 5.98 – 7.19 2.75 – 7.13 

Table 3: Mean (median) values of relative 
perturbation (%) for each EGG landmark feature. 
Phonatory 
Behavior 

Red 
Marker 

Green 
Marker 

Purple 
Marker 

Blue 
Marker 

Yellow 
Marker 

Pulse 19.54 
(8.65) 

19.31 
(8.97) 

19.95 
(11.17) 

17.91 
(9.71) 

19.64 
(10.61) 

Modal .82 
(.65) 

.78 
(.50) 

1.74 
(1.49) 

2.77 
(2.57) 

3.38 
(3.04) 

Falsetto 5.98 
(4.38) 

6.81 
(2.75) 

6.30 
(3.73) 

7.19 
(7.13) 

6.49 
(5.67) 

Combined 5.94  
(1.12) 

6.12 
(.83) 

6.61 
(2.34) 

7.02 
(3.41) 

7.47 
(3/91) 

 
the marker with the least overall perturbation was the 
green marker. Based on these results, the green marker 
was considered to be the most stable feature. Thus, a 
glottal cycle was defined as the distance between 
consecutive green markers. 

Since the green marker was established as the most 
consistent feature, the intra-cycle ratios of the glottal 
cycle were calculated in percent relative to the green 
marker. By doing this, the EGG landmark features 
naturally break the EGG signal into 5 phases: 

Phase 1: Red-Green—time between the red and green 
markers (onset of contact and the point of maximum velocity 
during the closing phase). 
Phase 2: Green-Purple—time between the green and purple 
markers (point of maximum velocity during the closing phase 
and the point of maximum contact between the vocal folds). 
Phase 3: Purple-Blue—time between the purple and blue 
markers (point of maximum contact between the vocal folds 
to the EGG “Knee”). 
Phase 4: Blue-Yellow—time between the blue and yellow 
markers (EGG “Knee” and the offset of contact between the 
vocal folds). 
Phase 5: Yellow-Red—time between the yellow and red 
markers (offset of contact between the vocal folds and the 
onset of contact between the vocal folds.) 

Table 4 summarizes the percentage to which each of 
these phases comprise the entire glottal cycle. The 
results indicate that, although Phase 1 comprises the 
smallest percentage of the entire glottal cycle for every 
register, there are visible trends between registers. 
Specifically, the pulse register has the shortest Phase 1 
(relative to the overall glottal cycle), followed by the 
modal register, whereas Phase 1 comprises slightly 
more of the overall glottal cycle in the falsetto register. 
This trend continues for Phase 2, so that the time 
between the onset of contact and the point at which 
maximum contact is achieved becomes a greater part of 
the overall glottal cycle as the subject’s phonation 
moves through the registers. 

Phases 3 and 4 could be grouped together to represent 
the time in which the vocal folds are losing contact. 
When viewed this way, clear trends relative to the 
register are again visible. The combination of Phases 3 
and 4 represent approximately 61% of the entire glottal 
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Table 4: Means of the intra-cycle ratios (%) for the 
5 EGG phases relative to the green marker. 

Cycle Phase All 
Registers 

Pulse 
Register 

Modal 
Register 

Falsetto 
Register 

Phase 1:  
Red-Green 3.85% 1.69% 2.97% 6.68% 

Phase 2:  
Green-Purple 9.49% 4.98% 7.41% 15.74% 

Phase 3:  
Purple-Blue 33.37% 46.51% 34.14% 23.76% 

Phase 4:  
Blue-Yellow 13.97% 14.87% 12.75% 15.39% 

Phase 5:  
Yellow-Red 39.32% 31.94% 42.73% 38.43% 

 
cycle within the pulse register, whereas the two phases 
make up approximately 46% of the cycle for the modal 
register, and approximately 37% for falsetto. These 
findings are consistent with our understanding of the 
physiology of the vocal folds and the degree of contact 
expected for each of the registers [2-4]. 

Interestingly, Phase 5 does not follow the expected 
trend for the registers. It would be reasonable to assume 
that if the yellow marker represents the offset of 
contact, and the red marker represents the onset of 
contact of the next cycle, then there should be 
maximum loss of contact between the vocal folds 
during Phase 5. It would also be reasonable to assume 
that since falsetto is thought to have the least amount of 
contact for the entire cycle then Phase 5 should 
represent the largest percentage of the entire glottal 
cycle. However, Phase 5 represents a greater portion of 
the cycle in modal register than in falsetto. 

Relationship between EGG markers and HSV 

Results indicate there is a strong relationship between 
the red and green markers (which generally fell within 
100 µs of each other) and the onset of contact between 
the vocal folds. There also appears to be a strong 
relationship between the purple marker and maximum 
contact of the vocal folds. The blue marker was 
calculated relative to both the maximum contact and the 
offset of contact between the vocal folds, and results 
indicate it is more closely related to the offset of contact 
of the vocal folds than the maximum contact between 
the vocal folds. Generally the blue marker was placed 
before the loss of contact of the vocal folds; however, 
occasionally the blue marker was placed at the loss of 
contact when a mucus bridge was present. The yellow 
marker is strongly related to the offset of contact 
between the vocal folds or the offset of contact between 
mucus bridges if present. 

IV. DISCUSSION 

Results of this study indicate that EGG signal does 
directly relate to the changing contact between the vocal 

folds. When broken down into phases, the contact 
phases (Phases 1-2: Red-Purple Marker) constitute the 
smallest percentage of the cycle in pulse register, a 
slightly larger percentage of the cycle in modal register, 
and an even greater percentage of the cycle in falsetto. 
Conversely, the loss of contact phases (Phases 3-4: 
Purple-Yellow Marker) constitutes the smallest 
percentage of the falsetto register cycle, a larger 
percentage of the modal register cycle, and the largest 
percentage of the pulse register cycle. These findings 
are consistent with current literature on the physiology 
of the vocal-fold vibration in various registers [2-5]. 

Comparison of the EGG signal and HSV recordings 
reveal that the EGG markers do closely align with the 
onset of contact, the point of maximum contact, and the 
offset of contact between mucus bridges. Also, the blue 
marker was found to be more closely related to loss of 
contact between the vocal folds–sometimes appearing at 
the point of loss of contact. Additionally, mucus bridges 
play a significant role in the morphology of the EGG 
signal at the offset of contact. 

V. CONCLUSION 

This study is unique in terms of the method’s 
accuracy and the direct linkage of an indirect measure 
of vocal-fold contact through EGG, to visual 
physiologic measures of vocal-fold contact through 
HSV. The results cross-validate several EGG features 
and pose new questions about others, especially the 
EGG knee appearing during the opening phase. 
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Abstract: This paper investigates vocal fold (vf) 
vibratory properties using quantitative analysis of 
high-speed digital imaging (hsdi) based on nyquist-
plot method derived from voicing during production 
of aberrant voice quality (vQ), clinically referred to 
as diplophonia, and defines the mechanism 
responsible for diplophonia and show how treatment 
(tx) effects this vQ and vf behavior. in particular, 
pre- and post-tx hsdi recordings of a female patient 
with muscular tension dysphonia (Mtd) were 
analyzed using new quantitative analysis system for 
hsdi that involves tracing of vf edge and generation 
of glottal waveform and vf displacement, allowing us 
to define quantitative measures of vibratory 
symmetry and synchronization of vf vibrations, with 
subsequent analyses of glottal waveforms using 
nyquist formula, to reveal vibratory pattern and 
characteristics of the vocal folds during this aberrant 
sound production, and later during normative 
phonation post tx. 

this is first ever hsdi and nyquist-plot based 
analyses of aberrant voice known as diplophonia 
derived here from vocalization of a Mtd case. the 
results reveal definitive and specific character of vf 
vibration responsible for this vQ.  

Keywords :  high-speed digital imaging, vocal-fold 
vibration, diplophonia, nyqist plot 

I. INTRODUCTION 

     Control of VF vibrations can be variably affected by 
organic and functional causation resulting in vibratory 
irregularity and deviant/aberrant acoustic product [1]. 
Such deviant vocal outputs have been analyzed in the 
past using various techniques including acoustics, 
aerodynamics and visualization, leading to improved 
understanding of how vocal fold physiology relates to the 
actual sound production and how to treat the underlying 
pathology. Usage of acoustics combined with 
visualization has been shown to provide improved 

information on the underlying pathology and underscores 
the value of multidisciplinary approach and clinical 
power [2], hence improving characterization of VF 
vibrations associated with some voice disorders, 
specifically for those that generate similar perceptual 
effects, confusing unequivocal clinical diagnosis that 
often is made by the ear alone. 
    
      To improve the analysis and to provide up-to-date 
explanation, newest visualization technique to study VF 
dynamics based on HSDI, also termed high speed 
videoendoscopy (HSV), combined with application of 
Nyquist-plot analysis [3], [4] were used here to study 
aberrant vocalization known clinically as diplophonia 
[1]. The HSDI system records images of the vocal folds 
at an acquisition rate of 2000 frames per second, fast 
enough to capture the vibration of the vocal folds in more 
details. To overcome the cumbersome subjective 
evaluation of analyzing such massive data, quantitative 
methods for HSDI-based and acoustic analyses have 
recently been developed [3-5], and were used here. These 
analyses generate comprehensive patterns of VF 
vibrations and are capable of defining the characteristics 
of the VF vibration in terms of robust, quantitative 
measures that enhance understanding of the mechanism 
of phonation not only in normative voice, but specifically 
in voice pathologies, which can not be handled easily by 
traditional stroboscopic illumination.  
      
     Phonatory VQ referred to in broad terms as 
“diplophonia, multiphonia or biphonation” is assumed to 
represent simultaneous production of at least two distinct 
tones during phonation. This pattern may be induced by 
an imbalance in bilateral tension or mass of the VF or by 
events within each VF, as evidenced in clinical cases 
representing mass, paralysis, neurological driven or 
functional dysphonias including non-true VF driven 
voice pathology. The mechanism underlying diplophonia 
has been studied by different researches using diverse 
experimental and theoretical approaches including 
biomechanical modeling, analysis of acoustic recordings 
and direct imaging of voice production. These studies 
suggest that diplophonia represents 1) an abnormal 

Quantitative analysis of diplophonic vocal fold vibratary 
pattern froM hiGh-speed diGital iMaGinG of Glottis 

Y. Yan1,2, K. Izdebski2,3, E. Damrose2, D. Bless4

1School of Engineering, Santa Clara University, Santa Clara, California, USA 
2Department of Otolaryngology, Stanford University, Stanford, California, USA 

3Pacific Voice and Speech Foundation, California, USA 
2Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 6th 
international workshop: December 14-16, 2009, ISBN  978-88-6453-094-9 (print), 978-88-6453-096-3 
(online), © 2009 Firenze University Press.



146	

glottic cycle with double or even multiple phased 
opening and closing; 2) asymmetric vibrations of the 
vocal folds, in which the left and right folds vibrate at a 
different frequency, or 3) out-of-phase vibratory pattern; 
4) within cord variability or/and 5) combinations of the 
above. In this study we aim to provide a comprehensive, 
quantitative analysis of glottal area waveform (GAW) 
derived from HSDI recordings of diplophonic phonation 
from a clinical case representing idiopathic diplophonia, 
of MTD type.   

II. METHODOS 

     Data were acquired from HSDI recordings of a female 
patient with idiopathic diplophonia of MTD type, prior to 
and following voice therapy. In this way the subject was 
serving as her own control. Post data processing involved 
automated image segmentation, detection of VF edge and 
generation of GAW and VF displacements described by 
us previously [3-5]. Of specific interest here was the 
usage of Nyquist plot based analysis of the HSDI-derived 
waveforms and associated perturbation measures [3], [4].
This technology is used to generate characteristic 
patterns of the VF vibration and to describe 
quantitatively the VF vibration in the MTD patient’s 
voicing before and after treatment.  

New measures of the VF vibration that include 
symmetry/ homogeneity, synchronization, and 
sustainability are defined. These measures along with the 
jitter metrics formed the basis of a robust quantitative 
analysis of the VF vibrations in pre- and post-Tx MTD 
voices.     Further, the analysis provided an automatic, 
robust calculation of the glottic closure characteristics 
including the open quotient (OQ), speed quotient (SQ) 
and glottal closure index. Nyquist plot based waveform 
analyses and associated perturbation measures of the 
MTD voice were shown to generate not only at-a-glance 
patterns of the spatial- and temporal characteristic but 
also quantitative measures of the VF vibrations for the 
MTD voice.  

III. RESULTS

HSDI-based quantitative analyses of the MTD voice 
demonstrated that the anterior and posterior of the VF 
undergo non-identical vibrations with distinct patterns of 
opening and closing during the diplophonic phase (Fig. 
1). In particular, the anterior and medial portions of the 
VF exhibited more obvious bi-cyclic vibratory pattern 
compared to the posterior portion of the VF (data not 
shown). In contrast, vibrations within the left-right folds 
are almost symmetrical throughout the anterior-posterior 
(A-P) locations during the diplophonic phase (data not 
shown).  
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figure 1 Normalized GAW derived from HSDI 
recordings of the MTD patient, showing a transition from 
(a), single-cyclic phase (phase I) to (b), diplophonic 
phase (phase II) 

These findings suggest that it is the non-homogeneity 
in the A-P VF vibrations, but not the asymmetry, that is 
linked to the diplophonia. Interestingly, both asymmetry 
and non-homogeneity were evaluated to exist in the VF 
vibration prior to transitioning to the diplophonic phase, 
and is characterized by glottal incompetence and a 
breathy and rough VQ. Our analyses also revealed an 
improvement in both symmetry and homogeneity of the 
VF vibration after the phase transition (during 
diplophonic phase) (data not shown).  
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figure 2 GAW Nyquist plots representing three 
consecutive time periods of HSDI recordings (0~300ms; 
300~600ms and 600~900ms) before (upper row) and 
after (lower row) Tx 
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     Results from an identical analysis of HSDI recordings 
from the same patient after voice Tx revealed a 
significant improvement in the synchronization of 
vibrations within the VF that led to almost normophonic 
GAW and Nyquist pattern (Fig. 2).  

     Further, the jitter measures were calculated and the 
results showed that post-Tx voice was significantly 
improved as evaluated by a jitter of 1.9%, as compared to  
8.8% for pre-Tx voice during phase I, or 2.2% and 2.5% 
during phase II (diplophonic phase), representing 
perturbation measures for the two respective 
simultaneous vibrations. 

IV. DISCUSSION

     Quantitative evaluation of symmetry /homogeneity of 
VF vibrations in the pre- and post-Tx MTD voice were 
performed and the results showed an overall 
improvement in the VF vibration after Tx. In particular, 
the anterior (A), medial (M) and posterior (P) portions of 
the vocal flods vibrate at the same frequency (Fo~194 
Hz) and the A-M-P vibrations are better synchronized, as 
evidenced by high correlation coefficient between the A-
P vibrations (0.6171), compared to pre-Tx results (-0.13), 
indicating complete out-of-phase vibrations in the A-P 
vocal folds. 

V. CONCLUSION

To conclude, asynchrony in VF vibration at different 
portions of the A-P axis of the vocal folds is associated 
with the diplophonia perceived in this MTD patient. 
Analyses of the HSDI recordings from the same patient 
after Tx demonstrated significant improvement in 
vibratory synchronization along the VF length, consistent 
with the subject having a normal perceptual rating after 
Tx as rated by the GRBS (G-grade, R-roughness, B-
breathiness and S-strain) scale. 
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Abstract: Diagnostics and treatment of neurological 
disorders is based on continuous evaluation of the 
amount of clinical data and their various 
characteristics. Rising of the quantity of information 
with different clinical meaning which needs to be 
assessed is connected with the development of new 
diagnostic and medical methods. To understand 
recovery processes in the brain, some researchers are 
using new graphic diagnostic methods include for 
instance perfusion computed tomography (CTP), CT 
angiography or diffusion weighted magnetic 
resonance MR DWI to better understand the human 
brain regions i.a. involved in speaking and 
understanding language. The goal is achieved in 
various projects funded by the Czech Research 
Foundation (project number 106/09/0740) and Czech 
Ministry of Education (the project number 2C06009).
Keywords:  neurology, aphasia, computed 
tomography, magnetic resonance  

I. INTRODUCTION 

A special problem are impairments of speech which 
may be congenital (e.g. the cleft lip and palate) or 
acquired by disease (e.g. cancer of the larynx). 
Impairments are, among others, treated with speech 
training by speech therapists. They score the speech 
quality subjectively according to various criteria. The 
idea is that the word accuracy (WA) of an automatic 
speech recognizer should be highly correlated with the 
human rating. Using speech samples from 
laryngectomees it is shown that the machine rating is 
about as good as the rating of human experts and can also 
be done via telephone. This opens the possibility of an 
objective and standardized rating of speech quality. 
Serious problem is some of the aphasia in the wake of 
cerebral vascular diseases (Thrombotic (Ischemic) 
Stroke, Hemorrhagic Stroke, and Cerebral Aneurysm).
Although now considered less frequent, thrombosis is 
still estimated to be the etiology of about two-thirds of all 
ischemic strokes [4]. Occlusion of a cerebral artery 
produces immediate cessation of blood flow and 
subsequent death of brain tissue (ischemic infarction) in 
the territory supplied by the involved vessel. The 
resulting neurologic defect (syndrome) reflects the
vascular territory involved. Table 1 present the most 

common aphasic syndrome associated with particular 
cerebrovascular territories. 

 The contributed paper deals with proposal and usage 
of modern database neuroinformatics information 
technologies in research, educational and clinical 
application. 

II. METHODOS 

The Content-based visual information retrieval 
(CBVIR) has been one of the most growing research area 
over the last few years. The reason is steadily increasing 
amount of multimedia, especially visual data in wide 
range of today professional activities. The extensive 
multimedia databases, often with the internet underline, 
can contain many thousands of specialized images. This 
status ask for the new methods, which help browsing 
large multimedia databases, find the right case not only 
by the simple text-based queries or matching exact 
selected field.  

Table 1 Association between Aphasic Syndromes  
and Selected Cerebrovascular Territories 

Cerebrovascular 
Territory 

Aphasic Syndrom 

Anterior Cerebral Artery 
Occlusion 

Extrasylvian motor 
aphaisa 

Posterior Cerebral Artery 
Occlusion 

Occupital alexia 

Middle Cerebral Artery 
Occlusion 

   

Total Global aphasia 
Orbitofrotal branch Broca aphasia 
Rolandic branch Broca aphasia, cortical 

dysarthreia 
Anterior parietal branch Conduction aphasia 
Posterior parietal branch Wernicke aphasia, 

extrasylvian  
sensory aphasia 

Angular branch Anomia, extrasylvian 
sensory aphasia 

Posterior temporal branch Wernicke aphasia 
Anterior temporal branch Anomia 
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 The CBVIR technics offer intelligent similarity data 
search, which can be used if the comparison among many 
cases are needed. In medical applications the recent 
diagnostic and therapy procedures usually involve work 
with the latest technical equipments and imaging devices. 

The new graphic diagnostic methods include for 
instance perfusion computed tomography (CTP), CT 
angiography or diffusion weighted magnetic resonance 
MR DWI [2]. This approach produces huge amounts of 
medical images for each patient and study case, generally 
in the international standard Digital Imaging and 
Communications in Medicine (DICOM) [1]. Images 
produced by these technics are usually stored in medical 
information systems. The CBVIR doorway should be 
helpful in the future work with this great amount of 
stored medical images for the clinical staff as well as the 
researchers and scientists.  

Figure 1: Filling system schema 

III. RESULTS

The common CBVIR system engine architecture 
contains some basic functional modules – storage and 
access methods, visual feature extraction, distance 
measures and similarity calculations and user interface 
and interaction methods. Each incoming case (image or 
array of images) is analysed, the distinguished visual 
features are extracted and are compared with the features 
of stored images. Then the retrieved images are 
presented. The visual features are classified into primitive 
features (color, grey level, shape or texture), logical 
features like an object identity and abstract features such 
as significance of scenes pictured. In the medical 
applications, the color and grey level features are often 
neglected, especially due to the lack of the contrast 
reference point in the radiology images. More frequently 
the texture and shape features are applied. The technics 
for texture identification use for instance Canny 

operators, invariant moments, scale-space filtering, Gabor 
filters, wavelets and Markov texture characteristics or 
Fourier descriptors for shape characterization. Also the 
segmentation of the incoming image into smaller parts is 
investigated.  

IV. DISCUSSION

In our contemporary research we tried to develop the 
open web-based multimedia database system of complex 
neurological information for each real medical case. This 
system will first store the medical images in DICOM 
format and more information about the current study
(Fig.1). One of the objectives is to design and set up 
CBVIR engine for our experimental database. The 
beginning basic proposal of the CBVIR in context of our 
database system is presented, the visual features are 
chosen. The retrieval engine will use comparison of 
histogram vectors and the optimal method for similarity 
calculations must be selected. The basic visual features of 
the one case´s images will be combined with the other 
information from the database, such as from the textual 
section or form section. Then the aggregate histogram 
vector will be created, stored in the database and can be 
used in the further similarity study retrieval. The 
presented concept of the CBVIR system will be used in 
future work, mainly in design process of our experimental 
database system. 

V. CONCLUSION

The contribution to the problem solution of 
consequences or mortality in the area of cerebral vascular 
diseases is expected. All data will be anonymous but 
mutual relations will be preserved.   

The project will ease work of individuals and groups 
that are interested in medical data processing.  
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ACCELLERATION SENSOR MEASUREMENTS OF

SUBGLOTTAL SOUND PRESSURE FOR MODAL AND

BREATHY PHONATION QUALITY
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Abstract: We present a non-invasive attempt

to indirectly measure the subglottal sound

pressure. This quantity opens an additional

acoustical path to observe the voiced sound

source. The subglottal sound pressure con-

tours of two phonation qualities, the modal

phonation quality and the breathy phonation

quality, are compared. The electroglotto-

graphic signal was recorded simultaneously as

a well known reference basis for physiological

details of voice production.

Keywords: accelleration sensor, subglottal

sound pressure, phonation quality

I. Introduction

The subglottal sound pressure is of interest in order
to study fine details of speech production, because the
subglottal resonances may interact with voiced sound
production, diphthongs in particular [1], [2], [3]. So
far, every attempt to place a pressure transducer in
the subglottal cavity resulted in an invasive method.
That sort of methods was ruled out in advance for
our study.
Placing a microphone as transducer at the fossa

jugularis (suprasternal notch) was repoted to yield
good agreement of the transducer signal with direct
subglottal pressure signal [4]. We decided for this
study not to measure at the fossa jugularis to avoid
a possible resonance influence from the chest that is
known by audio engineers to be in the 1 kHz region.
But the fossa jugularis is a place that is less covered
by the cables of the electroglottogram electrodes and
is likely to be investigated in the future.
The availability of micro electro mechanical sys-

tems (MEMS) to measure the accelleration, a quan-
tity that is proportional to the force moving the sen-
sor mass, led us to construct an external sensor to
track the subglottal sound pressure at the skin of the
neck. The sensor is gently pressed at the neck of the

speaker in front of the cricothyroid ligament, located
near the lower end of the larynx. The acceleration
signals are recorded and chances may not be too bad
that the tissue passes the subglottal pressure to the
sensor. Due to the mass an the compressibility of the
tissue only a (low pass) filtered version of the sub-
glottal pressure may arrive at the sensor. Moreover
we do not have a true reference signal of the subglot-
tal pressure. But we do have the electroglottographic
(EGG) signal as a phonatory reference. And when
the EGG indicates a degcreasing tissue contact of the
vocal folds, we attribute the subglottal pressure to be
the cause.

This acceleration sensor method was previously ap-
plied to measure the resonance parameters of the sub-
glottal cavity [3]. Each of our studies is used to review
and possibly improve the sensor and the eevaluation
procedure.

II. Method

A. Sensor

A three axis acceleration sensor is pressed gently
against the skin of the neck and the sensor signals
are recorded. The precise position at the neck is cru-
cial. We identified the skin over the cricothyroid lig-
ament as a potentially very good position to access
the subglottal pressure. The cricothyroid ligament is
a soft elastic tissue between the cricoid and the thy-
roid cartilage in the lower part of the larynx. It may
be localized by touching the larynx and sensing for a
small soft gap in the elsewhere hard larynx structure.

Figure 1 shows the sensor in a test environment.
The sensor currently is a cube of 1 cm edge length
containing two ADXL202E two axis micro electro me-
chanical acceleration sensors. At one side of the cube
a plastic nose of 5 mm height made out of hot glue
is attached to improve the contact to the cricothy-
roid ligament. This nose is important to avoid loss
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Figure 1: Acceleration sensor in test environment:
pressed on compressible elastic tape

of contact during speech when the larynx moves up
and down. The opposite side of the cube is glued
to a balloon inflated with air to a diameter of about
6 cm. The upper frequency limit of the accelleration
transducer is between 3 and 4 kHz.

The suspension by a hand held ballon yields more
stable results than previous attempts to attach the
sensor by a glue tape or by pressing the sensor to the
neck by the second finger. The elastic suspension of
the sensor together with the elastic and tissue (having
its own mass) is a resonatory system by its own. And
reasonable measurements of the subglottal pressure
can not be expected in the frequency range of this
resonance. The test environment shown in Figure 1
indicates a wide maximum between 100 and 200 Hz
(similar to Figures 4 and 5). By a softer and less
inflated ball the peak can be shiftet to the 100 Hz
region, but so far not further down and we currently
interprete this fact as a limit caused by the elastic
tissue and the mass of the sensor.

B. Signal processing

Each axis signals is lowpass filtered by an analog
active filter to achieve the maximum bandwidth of
3.5 kHz specified by the data sheet of the sensor. As

in a previous study [6] a 4th order Butterworth char-
acteristic is implemented by two active Sallen-Key
lowpass filter circuits. An additional 10 dB amplifier
and a line buffer prepare each channel for cable trans-
mission and for the level required by the soundcard.

During the recording session the sensor is slowly
turned relative to the movement direction of the
cricothyroid ligament by unconsciously changing the
position of the hand holding the balloon and by ver-
tical movements of the larynx. Hence no single axis
signal shows the subglottal pressure contour. A prin-
ciple component analysis of the vector signal uncovers
the direction of the strongest oscillation, and the pro-
jection of the acceleration vector signal on this direc-
tion is considered as the subglottal pressure signal.
It is labeled as main pressure component, or MPC
signal.

The two sensors are orthogonally mounted at two
sides of a cube and one axis of each points into the
same direction, to and from the neck, where the main
oscillation is expected. A simplifying assumtion of
this study is that the cube is only moved parallel and
not turned by the vibrating skin of the neck. In this
case the signals from the common axis should be ba-
sically the same. At the end of this study we dis-
covered, that some of the recordings show different
waveforms in that direction, contradicting the sim-
plifying assumtion. Hence, an advanced kinematic
model should be added in further surveys, in order
to transform the sensor acceleration measurements to
the acceleration of the skin of the neck.

C. Speech material

The accelleration sensor signals and the EGG sig-
nal were recorded simultaneously for a single male
speaker. Sustained vowels, nasals and diphthongs
were uttered with two phonation qualities: modal
and breathy. These phonation qualities are produced
with different tensions of the vocal folds in the larynx.
Breathy phonation has shorter and less complete clo-
sure phases and longer open phases compared with
modal phonation. The cavity resonance oscillations
are stronger damped when the vocal folds are open,
due to the larger wall surface of the total coupled
cavity [5]. Furthermore the center frequencies of the
coupled cavity are slightly decreased.

III. Results

The excitation signal is compared to the electroglot-
tographic signal for vowels uttered with modal and
breathy phonation quality. In Fig. 2 (modal phona-
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Figure 2: Modal phonation quality.

tion quality), the beginning of the closing phase of
each pitch cycle is displayed as a steep ascent of the
EGG contour. The ascent ends in the contact phase.
The locally maximal contact is marked by the up-
per peak. With a short delay, the first cycle of the
MPC signal starts. The opening phase increases the
damping and slightly lowers the frequency.
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Figure 3: Breathy phonation quality.

In Fig. 3, breathy phonation quality is character-
ized by shorter and less complete closure phases and
longer open phases. The longer open phase lets the
oscillation amplitude of the main pressure component
(MPC) signal descend much more compared to modal
phonation. The shorter and less complete closure
phase reduces the excitation and the amplitude of
the first cycle of the MPC signal.
Both Figures 2 and 3 clearly show oscillations, but

in spite of the elastically suspended sensor discussed
in section II./A., a short term spectrum may increase
insight. The MPC contours are quasi periodic. In
order to ignore the associated harmonic structure of
the spectrum, the analysis window is limited to the

fundamental period of each signal. A kaiser window
shape is selected to have control on the contrast be-
tween frequency resolution and spectral leakage. The
window parameter α = 4 suited both phonation qual-
ities.
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Figure 4: Spectrum of the main pressure component
(MPC) signal for modal phonation quality.

The modal recording has a lower fundamental fre-
quency and an 8 ms window is the longest that is not
dominated by a harmonic structure. Fig. 4 shows the
magnitude spectrum from 0 to 2 kHz. This frequency
range includes the regions of the first and second sub-
glottal resonance of [500 Hz-700 Hz] and [1300 Hz-
1500 Hz] respectively. It clearly shows a dominant
component slightly above 200 Hz. Very likely it cor-
responds to the oscillation that is visible in the time
domain in Fig. 2. There are peaks in the range of the
first and second subglottal resonance, but we have no
means to identify them.
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Figure 5: Spectrum of the main pressure component
(MPC) signal for breathy phonation quality.

The speech sample from the breathy voice quality
recording has a higher fundamental frequency and re-
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quires a shorter analysis window of 7 ms duration.
Now the strongest component is centered slightly be-
low 200 Hz. Again this is the excited and damped
oscillation with a period of about 5 ms that is visible
in the MPC part of Fig. 3. The subglottal resonance
may be visible in Fig. 5 but is not identified.

IV. Discussion

One intention of this study was to obtain a detailed
recording of the subglottal pressure up to 2 kHz by
pressing an accelleration sensor to the skin of the
neck. After the interpretation of modal and brathy
vowel recordings in time and short term frequency
domain we see oscillations that may be caused by a
resonant structure consisting of the balloon suspen-
sion, the sensor and the skin and subcutan tissue.
This structure has a center frequency around 200 Hz
and a bandwidth in the 100 Hz range. Attempts to
lower the resonance frequency of the suspension sen-
sor system, did not substantually decrease the center
frequency of the system including skin and subcutan
tissue.
Otherwise, this unintended oscillation is driven by

the main ‘force’ of interest, the voice source. This
cycle of glottal movements and contacts introduces
boundary conditions that influence the subglottal
pressure contour that drives our oscillation as well as
the time variant damping of that oscillation. Quan-
tities related to the temporal open quotient and the
damping that is related to the degree of opening be-
tween the vocal folds may be extracted by advanced
signal processing.
From the point of causality a conservative summary

might be the following: the sequence of opening and
closing of the vocal folds is visible to a certain extent
in the EGG waveform and our new MPC waveform
does not contradict.
Finally, since the turning movements of the sensor

do not proof to be neglectible, a kinematic model of
the sensor is required to transform the accelleration
sensor signals to the accelleration of the sensor nose
at the neck.

V. Conclusion

The present study demonstrates that a subglottal
sound pressure signal (the MPC signal) reveals the
phonation physiology of modal and breathy phona-
tion quality, similar to the electroglottographic sig-
nal. During different phases (closing phase, closed
phase, opening phase, open phase) of the glottal cy-
cle, the intensity of subglottal pressure changes due

to a different contact status of the vocal folds. The
physiologic differences cause corresponding changes
in the amplitude, frequency, and damping of the os-
cillations in the MPC signal. These observations en-
courage a further look at other phonation qualities
(e.g. hoarseness quality) for a better understanding
of the representation of the healthy and pathological
phonatory cycle in the MPC signal.
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Abstract: there is a need for specifications of 
microphone characteristics which shall be fulfilled in 
order to make the microphone acceptable for voice 
measurements. in this preliminary study we address 
the most basic parameters – the frequency response, 
the frequency range, the dynamic range, and the 
directional characteristics of the microphones. We 
argue that the frequency response of the microphones 
shall be flat (i.e., less than 2 db variation) within the 
frequency range between the lowest expected 
fundamental frequency of voice and the highest 
component of the voice spectrum of interest. the 
equivalent noise level of the microphones is 
recommended to be at least 15 db lower than the 
sound level of the softest phonations produced. the 
upper limit of the dynamic range of the microphone 
shall be the same or higher as the sound level of the 
loudest phonations. in case of directional 
microphones, their placement shall be at the distance 
that corresponds to maximally flat response of the 
microphone in order to avoid the proximity effect. if 
this distance is not known, a directional microphone is 
considered unsuitable for spl and spectral 
measurements of voice. 

Keywords : Microphones, measurement, voice 
recording, recommendations 

I. INTRODUCTION 

In voice and speech research, the purpose of the 
microphone is to convert the sound pressure signal to an 
electric signal with the same characteristics. However, 
most microphones are not developed for this purpose but 
for recording of music, performance, public address 
systems, broadcasting etc. [1;2]. Consequently, many of 
the microphones are not suited for accurate measurements 
of voice and speech. Despite of the fact that voice and 
speech measurements are carried routinely for clinical 
and research purposes, the subject of microphone 
selection has not received sufficient attention in the voice 
and speech literature. While there have been attempts to 

provide recommendations for the choice of microphones 
[3-5], so far there has been an insufficient explanation of 
the principles on which the recommendations should be 
based. As a result of this, the carried measurements often 
lack sufficient accuracy.  

The purpose of this paper is to provide guidelines for 
selecting a microphone, which is suitable for 
measurement of voice and speech. Recommendations are 
formulated that can be used for selecting the proper 
microphone for voice and speech research. This paper is 
an extract from a more elaborate paper (in preparation), 
which will provide more detailed information. 

II. METHODOS 
 
To assure accurate recording of voice and speech, we 
consider three fundamental characteristics of sound: a) 
fundamental frequency, b) timbre, i.e., the sound 
spectrum, and c) the sound pressure level (SPL). These 
three characteristics shall ideally be identical in the 
captured sound to the sound emitted by the speaker or 
singer. While the first characteristic is typically well 
captured by microphones, the accuracy of capturing the 
sound spectrum and SPL depends on the frequency 
response and dynamic range of the microphone. An 
additional factor is the noise in the room, which can also 
influence the accuracy of the measurement. Also the 
proximity effect of directional microphones is considered 
since it changes the microphone frequency response when 
the mouth-to-microphone distance is changed. 

 
 

III. RESULTS 

The following requirements can be formulated on the 
frequency range, the frequency response and the dynamic 
range of microphones intended for voice measurement 
purposes: 
- the equivalent noise level (i.e., the low dynamic limit) 
of the microphone shall be at least 15 dB below the SPL 
of the softest produced voice. Also the acoustic noise in 
the room shall be at least 15 dB below the SPL of the 
softest produced voice.  
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- the upper dynamic limit of the microphone shall be at 
least as high as the loudest produced voice level 
- the low frequency limit (-2 dB) of the microphone 
shall be lower than the lowest produced fundamental 
frequency of the voice 
- the upper frequency limit (-2 dB) of the microphone 
shall at least as high as the highest spectral frequency of 
interest. (The limit of 8 kHz is above the spectral 
maximum of most known sounds encountered in human 
speech and corresponds to the limit of laboratory standard 
microphones type LS1 according to ANSI [6]). 
- the frequency response of the microphone between 
the low and upper frequency limit shall be flat within 2 
dB 
- microphones mounted to the side of the head are 
allowed to have a gain of up to 3-5 dB in the frequency 
region above 5 kHz, due to reduced radiation of the high-
frequencies to the side 
- directional microphones should be used for SPL and 
spectral measurements only at the distance, at which their 
frequency response is flat, in order to avoid proximity 
effect. That distance should be found in microphone 
specifications. If the distance is not known, the 
microphone is not considered suitable for the SPL and 
spectral measurements of voice and speech. 
 

IV. DISCUSSION 
 
The requirements imply that different phonation tasks put 
different demands on microphones. For instance, 
measurements of voice produced at more or less 
comfortable loudness (with SPLs around 60-80 dB re 20 
µPa at 30 cm microphone distance) are less demanding 
than measurements of voice across the whole dynamic 
range (with SPLs@30 cm ranging between 40 and 130 
dB re 20 µPa). For measurements of comfortable 
phonations microphones with relatively small dynamic 
range, i.e., with equivalent noise levels smaller than 40 
dB and upper dynamic level of 90 dB may be sufficient. 
But for measurements over the whole dynamic range of 
voice, microphones with an equivalent noise level smaller 
than 25 dB and upper dynamic level above 130 dB are 
needed when they are positioned at the distance of 30 cm 
from the mouth. Head-mounted microphones are 
positioned at much closer distances to the mouth thus are 
exposed to voice SPLs about 15 dB higher than the 
microphones positioned at 30 cm. Therefore the head-
mounted microphones are expected to have an equivalent 
noise level below 40 dB and the upper level limit of at 
least 145 in order to be able to capture voice over the 
whole dynamic range. Also, the requirements imply that 
measurements of fundamental frequency perturbations 
have different demands than measurements of voice SPL 
or voice spectrum. 

A 2008 Internet survey of microphone characteristics 
revealed that many of the commonly offered microphones 

do not fulfill specifications required for measurements 
over the whole dynamic range of voice [7]. The survey 
results for the omnidirectional microphones are shown in 
Table 1 and those for the directional microphones are 
given in Table 2. In many cases the information on some 
of the microphone characteristics was not provided, 
making such microphones questionable for voice 
measurements. In some head-mounted microphones the 
upper dynamic limit was around 130 dB, which is too low 
to capture the loudest voice at the distance of 5 cm. The 
frequency response of many microphones was not 
sufficiently flat and exhibited a “presence peak”, i.e., 
level gain of up to 7 dB at frequencies around 3-10 kHz. 
In directional microphones, the reference distance for the 
flattest response was often not provided. This indicates 
that the task of selecting a microphone shall not be taken 
lightly. It is our hope that an improved knowledge on 
microphones and their characteristics will allow more 
accurate measurements of voice and speech in future. 
 

V. CONCLUSION 
 

While the specified requirements can be considered 
preliminary, they provide a basis for improvement of 
accuracy of voice measurements. Before using a 
microphone for measurement purposes it is important to 
study the microphone specifications. Most of the 
manufacturers offer these specifications at their websites. 
When the specifications are not known, the microphone 
should not be considered suitable for measurement 
purposes.  
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brand and model Type  dm 
cm  

Lnoise 
dBA 

Lmax 
 dB 

Fmin 
 Hz 

Fmax 
 kHz 

L 
dB 

Lpp 
dB 

Fpp 
kHz 

Fppmax 
 kHz 

Price 
CZK 

s :hsp 2 HM 5 28 150 20 20 2 4 3 13 13140 
s :hs 2 HM 5 26 142 20 20 N N N N 11700 
akG :hc 577 HM 5 26 133 20 20 3 2 10 15 12687 
shure :Wbh53t HM 5 35 142 20 20 N N N N 8991 
s :Mke 2-4 Goldc LPL 5 26 N 10 20 3 6 4 12 7893 
s :Mke platinum 4c LPL 5 26 140 20 20 1 4 7 12.5 7812 
s :Mke 2eW Gold LPL 5 N 142 20 20 2 6 4 12.5 5670 
sony :McM-c10 LPL 5 N N 50 15 N N N N N 
s :Mkh 800-p48 CL 30 10 136 30 20 0 7 10 30 73055 
s :Mkh 20-p48 CL 30 10 134 12 20 0 0 Flat Flat 26910 
akG :c 414 ltd CL 30 20 140 20 20 2 7 5 12 27200 
akG :c 12 vr CL 30 22 138 30 20 3 5 2.1 7 107400 
akG :c 4000 b CL 30 8 145/155 20 20 3 5 1.5 11 15171 
akG :ck 62-uls CL 30 13 140 20 20 0 2 5.2 5.2 5511 
akG :ck 92 CL 30 17 132/142 20 20 1 2 4 10 5051 
akG :perception 420 CL 30 16 135/155 20 20 2 6 5 10 7800 
b&k :4958 CL 30 28 140 10 20 1 2 4 10.5 N 
b&k :4188 CL 30 15.8 146 8 12.5 N N N N N 
b&k :4950 CL 30 15 142 8 16 0 3 5 10 N 
b&k :4942 CL 30 14.6 146 6.3 16 0.5 1.5 5 10.3 N 
b&k :4145 CL 30 10 146 3 18 1 2 0.7 10 N 
olympus:Me30W CL 30 N N 20 20 N N N N N 
shure :sM63l CL 30 N N 80 20 10 4 2 3 4941 
 
Table 1: Characteristics of some omnidirectional microphones obtained from an Internet search in 2008 (adapted from 
[6]). The colored cells mark values which were not found or which would not fulfill the recommendations for the overall 
human voice range considered here (minimum F0=50 Hz, maximum spectral frequency of interest 8 kHz, minimum SPL 
of voice 40/55 dB(A) at the distance of 30/5 cm, maximum SPL of voice 130/145 dB at the distance 30/5 cm).  
 
S = Sennheiser microphones 
B&K = Brüel&Kjaer microphones 
Type: HM=head-mounted, CL=classical, LPL=lapel 
Dir=Directionality (O=omnidirectional, D=directional) 
dm = selected distance for voice measurement (can be changed in omnidirectional microphones)  
Lnoise- equivalent noise level 
Lmax- maximum recordable level 
Fmin – low frequency limit 
Fmax – high frequency limit 

L– level variation (difference between the maximum and minimum sensitivity) in the frequency response between 70 - 
5000 Hz 
Lpp– maximum gain at the high-frequency presence peak 
Fpp– starting frequency of the presence peak (+2dB) 
Fppmax– frequency of the maximum of the presence peak 
N – value not found 
The price is in Czech crowns, the exchange rate was about 25 CZK / EUR. 
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brand and model Type dm 
cm

Lnoise 
dBA

Lmax 
dB

Fmin 
Hz

Fmax 
kHz 

L 
dB

Lpp 
dB

Fpp 
kHz

Fppmax 
kHz 

Price 
CZK 

s : hsp 4 HM 1 37 150 40 20 2 9 5 10 13140 
akG : c 520/c HM N 31 130 60 20 12 6 3 8.5 N 
shure : sM12a HM N N N 50 50 N N N N 6291 
s : Me 104 LPL N 30 N 40 20 10 6 3 10 4920 
s : Me 4-n LPL 1 N 120 40 20 12 3 8 12 1171 
sony:ecMcs10 LPL N N N 100 16 N N N N 1785 
s :Mkh 800 tWin CL N 12 134 30 50 1 5 5.5 42.5 N 
s :Mkh 800-p48 CL 1 10 136 30 20 1 5 20.5 30.5 73055 
s : Mkh 40-p48 CL N 12 134 40 20 0 0 Flat Flat N 
s : Md 441 u CL N N 135 20 20 N N N N 15217 
s : Md 421 ii CL N N N 30 17 8 8 1.1 5 21400 
s : e 914 CL N N N 30 17 10 10 1.2 5 10700 
akG :c 414 ltd CL N 19 137 20 20 N N N N 11240 
akG : c 12 vr CL N 6 152 20 20 4 5 1 13 27200 
akG : c 451 b CL N 22 128 30 20 8 10 1.5 8 107400 
akG : c 4000 b CL N 18 135 20 20 4 4 3 12 10111 
akG : c 3000 b CL N 8 145/155 20 20 7 6 3 6.5 15171 
akG : c 1000 s CL N 14 140/150 20 20 6 8 1 6.5 7133 
akG : solid tube CL 1 21 137 50 20 12 2 3 10 N 
akG :ck 61uls CL N 20 130/145 20 20 2 0 Flat Flat 25840 
akG : c 391 b CL N 13 140 20 20 0 2 10 10 5511 
akG :perception 420 CL N 17 132/142 20 20 2 2 2 10 9651 
shure : pG58 CL N 16 135/155 20 20 4 4 1.6 11 7800 
shure : sM81-lc CL N N N 60 15 7 3 1.5 3.5 1521 
audix : scx25 CL N 16 146 20 20 2 2 1 4.5 10790 
 
Table 2: Characteristics of some directional microphones obtained from an Internet search in 2008 (adapted from [6]). 
dm = distance at which the frequency response was measured (in directional microphones the frequency response 
changes when the distance of the microphone from the sound source is changed)  
The rest of the abbreviations and symbols are the same as in Table 1.  
 



	

COMPARISON OF EXCITATION SIGNALS FOR AN ELECTRONIC LARYNX

Christian Jochum, Peter Reiner and Martin Hagmüller
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Abstract: This paper deals with the sound quality
of electro-larynx devices, which is one method of
communication for people who have lost their larynx.
Current commercially available devices are character-
ized by an unnatural, mechanical sound. Assuming the
availability of a linear transducer several alternative
excitation signals are compared to the sound of a
state-of-the-art electro-larynx. The signals considered
are both physical models and waveform models. In a
listening test 10 sentences, recorded by two healthy
electro-larynx speakers using the different excitation
signals were evaluated by 20 listeners. Results suggest
that a more natural speech sound may be possible
without sacrificing intelligibility.
Keywords: Electro-Larynx, Excitation Models, Listen-
ing Test, Linear Transducer

I. INTRODUCTION

In case of laryngeal cancer at an advanced stage the
last possibility to stop further advancement of the cancer
is to remove the entire larynx. This results in the loss of
the usual voice production mechanism, based on vibration
of the vocal folds. The patients have then to rely on
a substitute voice production mechanism. One of the
methods available is the electro-larynx (EL), a hand held
device, which produces a buzz-like sound and is held
against the neck for talking. The vocal tract is excited
by this sound and can be used to shape the speech sound.
This paper will present different models which were used
for an alternative excitation signal and are evaluated with
subjective listening tests.

II. BACKGROUND AND RELATED WORK

All current EL devices use a nonlinear transducer
concept that was introduced with the first ELs by Gilbert
Wright and, later, the Aurex Corp. in the early 40s [7]. An
armature is vibrating at a set fundamental frequency (f0)
in a plunger coil and is thereby hammering against a hard
plate, just like in old doorbells. This design concept has
several shortcomings. First, there are generally significant
deficits in low-frequency energy levels (below approx.
500 Hz) [9] and there is a very high level of ambient or
self-noise which makes the speaker harder to understand.
Further, there is only little variation in the harmonic
structure of such generated speech. This is one of the
main reasons why the voice is perceived as robotic. Most
important, the shape of the source signal is determined
by the mechanical characteristics of this concept and thus
very hard to control. In [6], a linear transducer design

was proposed, which is similar to current loudspeaker
design. Such a design introduces the possibility of using
a different excitation signal than currently used for EL
devices.

III. DESCRIPTION THE EXCITATION MODELS

Both physical and waveform models have been used as
excitation models. The former model the physics of the
voice production with the vocal cords, while the later do
not care about the mechanism of voice production, but
only model the resulting waveform.

We considered two different one-mass model imple-
mentations. One approach, which also models the mucosal
wave, assumes a single mass-spring system at the entrance
of the glottis, and a transmission line that provides the
phase delay between the lower and upper part of the vocal
folds [2]. This model is called D1-model in the rest of
the paper. A second approach extends the D1 model by
learning a nonlinear mapping from a recorded excitation
signal [2], which is further called the D2-model. In both
models, jitter was implemented by varying the stiffness
factor k of the spring in the mass-spring model in every
cycle (Fig. 1).
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Fig. 1: Simulation using the D2-model and a jitter of
≈ ±1.22 Hz. The upper left panel shows the glottal flow Ug(t)
and—dashed—the lung pressure Pl(t) while the middle panel
shows the corresponding derivative U̇g(t). The right panel shows
the phase space and the bottom shows the frequency spectrum
of Ug .

As on of the waveform models, we used the R++-
model which is a computationally efficient derivative of
the Rosenberg-B-model [12]. The voice source waveform
is described with the time constants that were introduced
by the LF-model [3]. Jitter was obtained by adding
a uniformly distributed white noise component to the
fundamental period T0 (Fig. 2).

Hanquinet et al. [4] introduced a phonatory excitation
model particularly suitable for the synthesis of disordered
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Fig. 2: Simulation using the R++-model with Ee =
−5.96 m3/s2, T0 = 10 ms, ta = 109 µs, te = 7 ms, and
tp = 4.94 ms. The upper left panel shows the glottal flow
Ug while the middle panel shows the corresponding derivative
U̇g(t). Right: Phase space. Bottom: Frequency spectrum of Ug .

speech It is further called the HGS model. It utilizes
a shaping function to transform a trigonometric driving
function into a desired waveform whereby the amplitude
and the fundamental frequency of the driving function
are used to control the instantaneous frequency and the
spectral richness of the output signal independent from
each other. While the driving function is represented by
a cosine function, the shaping function is defined as an
equivalent polynomial formulation of the Fourier series,

Ug[n] ≈
1

2
a0 +

M̃
�

k=1

akAk cos(kΘn) + bkAk sin(kΘn)

(1)
which is truncated after M̃ harmonics. ak and bk are the
Fourier coefficients. Ak is used to modify the Fourier co-
efficients to influence the spectral richness of the synthetic
source signal. Jitter and micro-tremor was added using a
stochastic model for jitter [11] (Fig. 3)
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Fig. 3: Simulation of the HGS-model with f0 = 100 Hz, M =
40, b = 0.05, B = 4 Hz, and Ψ = 6 Hz. The upper left panel
shows the glottal flow Ug while the middle panel shows the
corresponding derivative U̇g(t). The right panel shows the phase
space and the bottom plot shows the frequency spectrum of Ug .

Nonlinear oscillators complete the set of source signal
models. The Van der Pol (VdP) equation is one of the
simplest auto-oscillating systems with linear restoring
force and nonlinear damping governed by a nonlinear

second order ordinary differential equation [1].

ẍ − ε
�

1 − x2
�

ẋ + ω2

0
x = 0 (2)

This model has nothing to do with modeling the human
voice, but has been included because of the aim to find a
quasi-stationary oscillation and its simple implementation
with an analog circuit. Unfortunately, the no useful quasi-
stationary oscillation pattern has been found.

Finally, the non-linear oscillator-plus-noise (O+N)
model [10] is an autonomous nonlinear deterministic
system with a system equation of y[n + 1] = f (y[n])
where y[n] represents a time-delay embedding of
the oscillators output signal. The nonlinear predictor
f( · ), which is realized in terms of nonlinear radial
basis functions (RBF) using Gaussian kernels, has its
parameters learned from a recorded speech signal. The
amplitude modulation of the noise signal is achieved by
an additional RBF network such that a[n+1] = fn (y[n]).
This models the noise signal according to the actual
oscillator state and, therefore, it can be added pitch
synchronous to the output of the oscillator (Fig. 4).

t / s

U
g

/
c
m

3
/
s

U̇
g

/
c
m

3
/
s
2

f / Hz

|U
g
|
/

d
B

Ug

U̇
g

-200 0 200

500 1000 1500 2000 2500 3000 3500 4000

0.1 0.12 0.14 0.16 0.18 0.2

0.1 0.12 0.14 0.16 0.18 0.2

-8

-6

-4

-2

0

2

4

-100

-50

0

-5

0

5

-200

0

200

Fig. 4: Simulation of the O+N-model with f0 = 91 Hz and
without jitter. The upper left panel shows the glottal flow Ug

while the middle panel shows the corresponding derivative
U̇g(t). The right panel shows the phase space and the bottom-
most shows the frequency spectrum of Ug .

For a detailed description of the models, see the corre-
sponding references.

IV. SUBJECTIVE LISTENING TEST

To generate an electro-larynx sound the excitation
signal was fed into a mini-shaker Brüel & Kjær 4810,
which was used as a linear transducer EL. The source
signal was generated with a laptop computer at a sampling
frequency of 22kHz, with an external digital to analog
converter (Edirol UA-25). The signal was fed into a
power amplifier, which drove the shaker (Fig. 5). The
shaker transfer function has been measured and the neck
transfer-function was estimated. The calculated excitation
signal was filter with the inverse of both transfer functions
to have a better approximation of the desired excitation
signal in the vocal tract. The shaker was put in a sound
attenuating box to reduce the directly radiated noise.
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Fig. 5: Block diagram of the experimental system.

In addition, a commercially available Electro-Larynx
(Servox Digital) was also used as a reference. Two
healthy, German speaking subjects were recorded in a
recording studio. Both were experienced in speaking with
an EL device. They spoke the inventory of the Olden-
burger Satztest [13], which approximates the phoneme
frequency in German language with each of the de-
scribed excitation signals including the EL device. The
speech signal was recorded with a high-quality omni-
directional head-set microphone (AKG HC 577), sampled
with 44.1kHz and recorded on the laptop computer.

In speech pathology, the RBH-Scale [8] and the
GRBAS-Scale [5] define commonly used standard meth-
ods and are both based on the judgement of subjectively
perceived hoarseness. While both of these tests would
provide us with a good estimate regarding the healthiness
of a voice, they are not particularly useful to access the
naturalness of our artificial source models.

Based on the known shortcomings of today’s ELs, we
defined five quality indicators as follows:
Spectrum, Intonation: How would you judge the natu-

ralness of the frequency spectrum (speech sound and
intonation)?

Noise: How disturbing or irritating is the direct sound of
the artificial larynx (noise, background sound)?

Listening Effort: How much effort does it take to listen
to and to understand the speaker?

Overall Quality: How would you judge the overall qual-
ity?

The 4 female and 16 male listeners were all native
German speakers. The mean age was 26.8 years varying
from 21 to 30 years. They were using high quality
headphones (Beyerdynamic DT 770 PRO) which were
attached to the same D/A converter as used above. First,
they were offered 7 pairs to get used to the material.
The listeners were allowed to adjust the volume to a
comfortable level. Then, they were asked to evaluate
seven source signals with 10 sentences each. Eight null
pairs were included to check the listener reliability. This
gives 88 pairs of EL speech for every listener using the
above questions on a category comparison scale (CCR)
(Tab. I). A short break was required in the middle of the
listening session.

V. RESULTS

One male listener was excluded because several of the
null-pairs were not correctly identified, which leaves 19
listeners for further evaluation. The pairwise comparison

Score The quality of the second token compared
to the quality of the first one is:

3: Much Better
2: Better
1: Slightly Better
0: About the Same

-1: Slightly Worse
-2: Worse
-3: Much Worse

TABLE I: Subjective opinion scale for CCR testing.

of 7 different excitation signals gives 21 comparison mean
opinion score (CMOS) results for every evaluation quality.
To increase the readability, the results are presented in
an order of preference, which is calculated by averaging
the scores of the CCR test for each method. The order
of preferences shows a ranking and the distance between
the excitation signals, but the scale does not correspond to
the CCR test. Fig. 6 shows the mean order of preference
values X̄with the 95% confidence interval CI95and the
standard deviation s.

Even though the standard deviation of the results is
high, some significant results may be derived. First, the
commercial electro-larynx device (Servox) is on the lower
end of the rating for all qualities, but the listening effort,
meaning even though it does not sound nice, it may be
the most intelligible sound source. At the end of the day,
intelligibility is what really counts, so it makes sense,
that an electro-larynx device is optimized for this quality.
Consistently low ratings have been given to the D1-model
and the VdP-Model, both for the quality and the listening
effort. Both do not incorporate jitter or use only a very
simple jitter model.

VI. CONCLUSION

We have compared seven excitation signals and eval-
uated them using a perceptual listening test. The model
which is preferred most in terms of overall quality, is
the HGS-model, which is also well rated concerning the
listening effort. One common property of the better rated
model was the incorporation of a jitter model, that makes
the speech signal sound more natural.

It has to be noted that the speech recordings were
produced by subjects with normal anatomy of the vocal
tract. Further studies would have to include laryngec-
tomized speakers. Concerning the intelligibility, dedicated
intelligibility test, such as a modified rhyme test would
be necessary to better evaluate the intelligibility. Further
work would involve generating a more natural fundamen-
tal frequency contour, as the flat pitch contour is another
main reason for the mechanical sound of an electro-larynx
device.

We can conclude, that in case a linear transducer EL
device will be available in the future, we may be able
improve the perceived quality of EL speech, without
having to reduce intelligibility.



164	

spectrum noise

listening effort overall quality

D1 D2 O+N HGS R++ VdP ServoxD1 D2 O+N HGS R++ VdP Servox

D1 D2 O+N HGS R++ VdP ServoxD1 D2 O+N HGS R++ VdP Servox

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

Fig. 6: The order of preference calculated from the CCR of 19 listening subjects. All four panels show the mean scores X̄ together
with 95% confidence interval CI95 and the standard deviation s.
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Abstract: Intelligibility is generally accepted to be a 
very relevant measure in the assessment of 
pathological speech. In clinical practice, intelligibility 
is measured using one of the many existing perceptual 
tests. These tests usually have the drawback that they 
employ unnatural speech material (e.g. nonsense 
words) and that they cannot fully exclude errors due 
to the listener's bias. This raises the need for an 
objective and automated tool to measure intelligibility.  
Here, we present the Dutch Intelligibility Assessment 
(DIA), an objective tool that aids the speech therapist 
in evaluating the intelligibility of persons with 
pathological speech.  This tool will soon be made 
publicly available.  

Keywords :  objective intelligibility assessment, 
pathological speech, speech therapy.  

I. INTRODUCTION 

Communication is getting increasingly important in 
our society. People with communication disorders often 
suffer other social discomfort as well. Therefore, follow-
up of these patients in order to improve their 
pronunciation is becoming increasingly important. An 
important measure in the assessment of communication 
efficiency is intelligibility. This is often determined in a 
perceptual way, which is subjective in nature. 
Consequently, there is a growing need for an automated, 
and thus objective method for measuring intelligibility. 

Previous software packages have been developed to 
measure intelligibility of English patients suffering from 
dysarthria [1] and [2] describes a system doing the same 
for German laryngectomees and children with cleft lip 
and/or palate.  The former is based on a measure called 
goodness of fit of the alignment between the uttered 
speech and the target speech, while the latter uses word 
accuracy rate, after doing speech recognition on the 
uttered speech. 

We present the Dutch Intelligibility Assessment (DIA), 
a tool to assist speech therapists when dealing with 
patients suffering from pathological speech, which is 
based on a novel methodology, described in [3].   The 
method underlying the DIA tool  extracts phonemic, 
phonological and context-dependent phonological 
features from automatic speech alignment on the basis of 
acoustic models that were trained on normal speech. 

Based on those features, intelligibility is predicted using a 
compact model that can be trained on pathological speech 
samples. The experimental evaluation of the system 
shows standard errors between perceived and computed 
intelligibilities lower than 8%. This is a sufficiently 
strong basis for the development of an automated version 
of the Dutch Intelligibility Assessment.  

II. THE PERCEPTUAL DIA TEST

The –initially subjective- test we have automated is the 
Dutch Intelligibility Assessment (DIA) test [4].  This test 
consists of 50 consonant-vowel-consonant (CVC) words, 
mostly nonsense but well pronounceable words.  These 
50 words are divided into three subtests: one testing the 
Dutch consonants in the initial position, one in the final 
position and the last one testing the vowels and diphtongs 
in the middle position in the word. To avoid guessing by 
the listener, there are 25 variants of each subtest, of 
which one is chosen at random for each execution of the 
test. The perceptual intelligibility score is then calculated 
as the percentage of tested phonemes which are correctly 
identified.  This test is proven to be highly reliable (an 
interrater correlation of 0.91 and an intrarater correlation 
of 0.93 [4,5]). 

III. THE COMPUTERIZED DIA TOOL

Within the framework of the SPACE1 project, this 
perceptual DIA test has been automated, as described in 
[6].   While the perceptual test only uses the 50 tested 
phonemes, the computerized version takes every 
phoneme of the 50 words into account.  All uttered 
speech is lined up against the target words using forced 
alignment of two automatic speech recognizers (ASRs).  
This results in three feature sets: phonemic features, 
phonological features and context-dependent 
phonological features.  The phonemic features describe 
how well on average the Dutch phonemes are recognized 
by the used ASRs, while the phonological features 
describe how well a phonological feature can be realized 
by the speaker.  The context-dependent phonological 
features point to transitions between two articulatory 
positions.  These feature sets are then used in a simple 
regression model to predict the intelligibility of the 
speaker.  

                                                          
1 http://www.esat.kuleuven.be/psi/spraak/projects/SPACE/
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Figure 1 Screenshot of the recording environment of the tool.  The patient is presented with a sequence of words, 
which are displayed one after the other.  These words are automatically recorded by the tool for later analysis. 

Different models have been designed: a general model, as 
well as pathology-specific models for people with hearing 
impairment, dysarthria and laryngectomy. We recently 
also added a model for children with cleft lip and palate.  
As shown in [3,6], the correlations between the computed 
intelligibility scores and the perceptual scores are about 
as high as the interrater reliability, which means the 
automated version can compete with the human judging.  
Moreover, the DIA tool could be a more objective and 
less time-consuming way for the speech therapist to 
administer the test. 

IV.  TOOL DESCRIPTION 

Our purpose was to design a user-friendly, easily 
available tool which does not require a complex setup to 
administer the test.  To use the DIA tool, the user only 
needs a PC or laptop with a web browser, a head set and 
sound card, and an up-to-date Java runtime environment.  
The tool works in a client/server environment  and can be 
used both in online or offline mode.   

Once a user has an account, patients can be added and 
edited.  As we respect the privacy of the patients, every 
user can only view recordings of its own patients.   When 
a patient is added, the user can start the test.  We advice 
to do a microphone test first, to be assured that the 
recording quality is well enough and the microphone is in 
the right position (e.g. not too close to the mouth).  When 
starting the test, a sequence of words is presented to the 
patient (Fig. 1).   Each of these is recorded as a separate 
.wav file, which is stored for subsequent analysis.

When the recording is finished, the speech therapist 
can analyze the recordings by listening to every word and 
filling in the missing phoneme (Fig. 2).  This results in a 
perceptual score and a report displaying the nature of the 
errors, e.g. wrong place/manner of articulation, as 
described in [4,5].  Every recording can be judged by 
several listeners, which can easily be added in the 
recording menu. 

In a final step, the user can also run an automatic 
analysis. This step results in an objective intelligibility  

score, as well as a number of statistics of the analysis 
(Fig. 3).  These statistics display the speech profile of the 
current patient, compared to normal speakers, as well as a 
number of well-defined pathologies. 

V. TOOL VALIDATION 

To validate the tool, a master student recorded 33 
laryngectomees, 19 hearing impaired, and 9 dysarthric 
patients. The recording settings were not always ideal and 
sometimes a lot of background noise could be noticed. 
Every patient performed the test, which was recorded 
using our DIA tool. 

Figure 2 Perceptual analysis of the recordings.  When 
clicking on the button, the corresponding .wav file is 
played, and the listener can fill in the missing part. 
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Figure 3  A part of the final report, showing the results of the automatic analysis.  Here, an overall score for the 
objective intelligibility is calculated (upper left), as well as a number of statistics, showing a.o. how the current 
patient performs with respect to a normal speaker (label “testpreker”) as well as a number of well-defined speech 
pathologies. 

Apart from the objective score calculation, the 
subjective evaluation of the speech intelligibility was 
performed by two professional listeners.    

The interrater agreement between the two listeners was 
measured using the Pearson correlation coefficient 
between their scores and reached values as high as 94%.  
The Pearson correlation between the mean of the 
listener’s scores and the objective scores reached 90%, 
which is almost as good as the interrater agreement.  

VI. FUTURE WORK 

These results are very promising and reveal that an 
objective evaluation of pathological speech can indeed be 
useful in the clinical practice.  In a next step, we will 
investigate the possibility of replacing the nonsense 
words by more natural speech such as existing words or 
even phrases.  We are also working towards a more 
profound articulatory assessment, which can then lead to 
the determination of an appropriate therapy for every 
patient.   
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during pregnancy significant changes in bodily tissues 
occur. for example, the cervix undergoes deep 
structural/biomechanical alterations due to an 
increase in concentration of progesterone. previous 
studies have found a significant correlation between 
the changes that both cervical and vocal fold smears 
undergo during the menstrual cycle, demonstrating a 
relevant hormonal influence on laryngeal tissues. it 
can be hypothesised that such tissue changes that may 
occur during pregnancy affect conditions for 
phonation with respect to e.g. vocal fold motility. to 
test this hypothesis recordings of audio, 
electrolaryngograph, oral pressure and air flow 
signals were made during pregnancy, at birth and 
after pregnancy of a semi-professional classically 
trained soprano. the tasks involved repetitions of the 
syllable [pae] while performing a diminuendo at 
various pitches, thus allowing determination of the 
lowest pressures producing vocal fold vibration and 
vocal fold contact, i.e. the phonation and contact 
threshold pressures. oral pressure during the 
occlusion for the consonant [p] was accepted as a 
measure of subglottal pressure. concentrations of sex 
female steroid hormones were measured during 
pregnancy, at birth and post-partum. results showed 
a steep decrease of concentrations of progesterone and 
oestrogens from pregnancy to post-partum conditions. 
likewise, phonation and collision thresholds 
decreased markedly at birth and post-partum, shifts 
that are in accordance with expectations based on the 
effects of sex steroid hormones on tissue viscosity and 
water retention. the results thus demonstrate an 
effect of pregnancy on the voice.  

INTRODUCTION 
Previous research has suggested that the larynx is 

subject to hormonal influence [1]. Physiological and 
acoustical changes of the female voice, such as those 
occurring during the menstrual cycle and at climacterium, 
have been reported to be associated with significant 
variations of sex steroid hormonal concentrations (i.e. 
oestrogens, progesterone and testosterone) [2-11]. 
Significant physiological and structural similarities have 
been claimed to exist between cervical and vocal fold 
mucosas. Changes in the mucosa of the cervix observed 
at the three phases of the menstrual cycle were also 

observed in the mucosa of the vocal folds due to 
variations in the female sex steroid hormonal 
concentrations [1, 2, 10].  

Like the menstrual cycle, pregnancy is also associated 
with significant hormonal changes. Elevated 
concentrations of both oestrogens and progesterone, with 
a dominant role of high concentrations of progesterone 
can be observed, especially during the third trimester of 
pregnancy [13, 14]. According to Shiff and Burn [15], 
high concentrations of oestrogens increase the viscosity 
of bodily tissues. This is caused by a shift in the solid-gel 
equilibrium of the interstitial fluid towards a more solid 
state, with a consequent water retention and oedema [15]. 
Additionally, high progesterone content has been reported 
to increase the viscosity of vocal fold glandular secretions 
[1, 2]. Thus, pregnancy can be expected to affect voice 
production in terms of changed vocal fold motility.  

Few studies have been reported concerning the effects 
of pregnancy in the voice. van Gelder (1974) reported 
vocal symptoms in pregnant singers, such as small 
submucous haemorrhages, redness and swelling of 
laryngeal tissues, which he referred to as “laryngopathia 
gravidarium” [16]. He pointed out that these symptoms 
were similar to those observed during the menstrual cycle 
in some opera singers, a condition that he named 
“laryngopathia menstrualis” [16]. A more recent study of 
the speaking voice of pregnant and non pregnant women 
assessed the incidence of vocal symptoms (e.g. 
hoarseness, vocal fatigue, and aphonia), and compared 
maximum phonation time (MPT) and voice turbulence 
index (VTI) between pregnant and post-partum 
conditions [17]. No significant differences were observed 
in the incidence of vocal symptoms between the groups. 
However, vocal fatigue seemed more prevalent in the 
pregnant women. This group also presented significant 
decrease in maximum phonation time (MPT). When 
comparing pregnancy with post-partum conditions (12-24 
hours after birth), the authors further found a significant 
increase in MPT and a decrease in voice turbulence index 
(VTI) for the post-partum condition [17]. 

With respect to the singing voice, studies of effects of 
pregnancy were mainly based on singers’ perceptions. 
Mostly, positive effects have been reported, e.g. 
improved voice quality [18].  

Previous research has suggested that both phonation 
and collision threshold pressures (PTP and CTP, 
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respectively) reflect vocal fold motility [19, 20]. The 
current investigation analyses biomechanical properties 
of the vocal fold vibration in terms of these thresholds 
pressures in a pregnant singer.  

METHOD
The subject was a healthy, non-smoker classically 

trained soprano, aged 28. Following a longitudinal study 
design, she was recorded every week, from week 28 of 
pregnancy until week 8 after birth. This yielded a total of 
21 recordings: (i) 12 during the last weeks of pregnancy 
(the Prae group of recordings); (ii) one at 48 hours after 
birth (the At recording); and (iii) 8 during the weeks 
following birth (the Post group of recordings). For 
technical reasons, one of the recordings in the Prae group 
had to be discarded.  

Furthermore, three blood samples were collected for 
each of the above recording groups: (i) one in week 29th

of pregnancy; (ii) one 48 hours after birth; and (iii) one 8 
weeks after birth. 

A combination of the Digital Laryngograph 
Microprocessor and the Glottal Enterprises MS-110 
computer interface was specially designed for the 
purposes of this study. It allows simultaneous recording 
of two AC signals and two DC signals. The audio and 
electroglottograph signals were recorded by the 
Laryngograph component. It also imported the flow and 
the oral pressure signals from the Glottal Enterprises unit, 
which were collected by means of a Rothenberg flow 
mask and a pressure transducer, respectively. The latter 
was attached to a thin plastic tube inserted into the flow 
mask, such that its end was located inside the subject’s 
lip opening at the corner of the mouth.  

All these four signals were digitized and sent over a 
USB contact into a PC provided with the Speech Studio 
software; thus, audio, EGG, subglottal pressure and 
airflow signals were obtained as separate tracks of wav 
computer files.  

Vocal tasks included six performances of a set of 
repetitions of the syllable [pae] sung as diminuendos at 
pitches A3, E4, B4 and F5. This allowed determination of 
the lowest pressures producing vocal fold vibration and 
contact vocal fold, i.e. PTP and CTP [20]. Oral pressure 
during the occlusion for the consonant [p] was accepted 
as an estimate of subglottal pressure (Psub).  

The wav files were analyzed by means of the 
SoundSwell software. PTP was calculated as the mean of 
the lowest pressure that caused phonation and the highest 
pressure that did not produce phonation as evidenced by 
the flow signal. Loss of vocal fold contact decreases the 
amplitude of the EGG signal considerably; therefore, 
CTP was calculated as the mean of the lowest pressure 
that caused vocal fold contact and the highest pressure 
that failed to produce vocal fold contact, according to the 
EGG signal amplitude. The threshold values obtained 

were averaged across the six versions produced on each 
of the four pitches.  

RESULTS 
Fig. 1 shows the concentrations of progesterone and 

oestradiol for the Prae, At and Post conditions. Results 
show the highest values for the Prae condition for both 
hormones.  

Figs. 2 and 3 compare the PTP and CTP averages with 
PTP values calculated according to Titze’s equation [19]. 
As can be seen, the values obtained from the current 
study show a dependence on fundamental frequency (F0) 
similar to that predicted by Titze’s equation. The scatter 
of the data points in the graphs reflects a considerable 
variability of the thresholds during the recorded weeks. 
Additionally, it can be observed that PTP shows a closer 
approximation to the Titze reference for the Post than for 
the Prae conditions.  

Fig.1: Subject’s progesterone and oestradiol 
concentrations for Prae, At and Post conditions. 

Fig. 2: Mean PTP for all recordings during Prae and 
Post conditions, as function of F0 compared with 
Titze’s equation (dashed curve).  

On average, CTP exceeded PTP by 40 to 50%, 
corresponding to 1 and 5 cm H2O. Mostly both thresholds 
showed similar changes from week to week, as illustrated 
in Fig. 4. 
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Fig. 3: Mean CTP for all recordings during Prae and 
Post conditions, as function of F0 compared with 
Titze’s equation (dashed curve).  

Fig. 4: Relative week-to-week variations of CTP and 
PTP. Weeks number -12 to -1 correspond to the Prae
condition; week number 0 represents the At birth 
condition; and weeks number 1 to 8 correspond to Post
birth condition. 

Fig. 5 shows the threshold values grouped Prae, At and 
Post conditions for each of the four pitches. Like the 
results obtained for hormonal concentrations, the highest 
values for both thresholds occurred for the Prae
condition, for all pitches.  

DISCUSSION 
The main question raised in this pilot investigation was 

whether sex steroid hormonal variations during 

pregnancy affect vocal folds motility. The results showed 
a clear effect of pregnancy on voice production, 
complementing previous findings [17].  

Fig. 5: Mean CTP and PTP for pitches A3, E4, B4 
and F5 for the Prae, At and Post conditions. 

It has been assumed that CTP and PTP reflect vocal 
fold motility [19, 20]. Therefore, these parameters were 
used as measurements to compare vocal fold motility 
between the last trimester of pregnancy, at birth and post-
partum. The PTP values obtained basically follow Titze’s 
equation [19] (see Fig. 1). This supports the assumption 
that the PTP data obtained yielded reliable information. 
Moreover, the CTP showed a week-to-week variation 
that, by and large, was similar to that of the PTP (see Fig. 
2). This leads to the assumption that CTP, like PTP, 
reflects vocal fold motility.  

Concerning female sex steroid hormones, results were 
in accordance with the expected pattern of highest 
concentrations of progesterone and oestrogens during 
pregnancy, followed by a sharp decrease for the At and 
Post conditions [13, 14]. Likewise, the PTP and CTP 
showed highest values for the Prae condition, followed 
by a sharp decrease to the At and Post conditions. This is 
consistent with the assumption that vocal fold motility is 
affected by variations in female sex steroid hormones.  

Substantial support for this assumption can be found in 
the field of endocrinology. Concentrations of oestrogens 
affect solid-gel equilibrium of interstitial body tissues; 
elevated concentrations swift this equilibrium towards a 
more solid state, causing an increased viscosity and 
oedema through water retention [15]. Moreover, elevated 
concentrations of progesterone have been related to an 
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increase in the viscosity of the vocal mucosal glandular 
secretions [1, 2]. Thus, one might expect that increased 
tissue viscosity, water retention, and viscosity of 
glandular mucosa secretions contribute to a decrease of 
vocal fold motility reflected in raised PTP and CTP.  

CONCLUSIONS 
This investigation has shown, for a single subject, 

considerable changes of PTP and CTP during pregnancy, 
implying effects in vocal fold motility. PTP and CTP 
shifted from high values for the Prae condition (i.e. prior 
to birth), when elevated progesterone and oestrogen 
concentrations were observed, to lower values At and 
Post conditions, when concentrations of these hormones 
were markedly reduced. The results thus demonstrate, for 
this singer, how hormonal variations during pregnancy 
affected the vocal fold motility. 
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Abstract:  
This paper considers the characteristics of three differing 
styles of singing early music, as characterized by Richard 
Bethell [1] of the National Early Music Association, UK.  
In particular, the sung outputs from a postgraduate 
soprano who was practiced in singing all three styles are 
analysed along with the output from an 
electrolaryngograph which provides data on cycle-by-
cycle fundamental variation as well as vocal fold contact 
area. The results are compared and contrasted with those 
from a group of early music and opera singers analysed 
previously. 
Keywords:  singing, voice analysis, voice acoustics, 
electrolaryngography, closed quotient, opera, early 
music. 

 
I. INTRODUCTION 

Sung performances by modern-day singers of music 
composed between approximately 1600 to 1900 (referred 
to herein as early music) can vary considerably in terms 
of technique and vocal output. Details of the exact 
techniques that would have been used by the singers of 
that period are scarce, but known major differences 
between then and now include tuning systems (non-equal 
temperament then and equal temperament now), pitch 
reference (typically higher today note-for-note based on 
A4 (440Hz) rather than A4 (415Hz), but this does depend 
on whether the musical key of the piece has been changed 
in modern editions), the size of audiences (modest then 
and much larger today), the timbre of accompanying 
instruments (today’s instruments have developed 
considerably in terms of their timbral output, tuning 
stability and overall acoustic output power) and overall 
size of performance spaces (today’s spaces are much 
larger requiring a singing technique that achieves greater 
acoustic output power). 

Singing fashion has changed over the years and the 
performance of early music has been subjected to these 
variations. Since the 1960’s revival of early music in the 
UK, many singers have become interested in performing 
early music and Potter [2, p3] notes that “One of the 
consequences of the stylistic fragmentation of classical 
music has been the proliferation of singing styles 
associated with early music”. 

There continues to be much debate about appropriate 
singing styles and techniques for the performance of early 

music today.  Recently Richard Bethell of the National 
Early Music Association, UK, [1] described three 
commonly used performance styles, the third being as yet 
less well established, that should be more widely 
considered for the performance of this repertoire. 
 

A) Operatic: Institutionally/ academically trained  
singer’s formant voice, with fairly wide continuous 
vibrato, lower larynx development (producing a rich and 
plummy sound) and capable of high volume.  

B) Early Music Mainstream. When compared to the 
operatic voice, higher larynx position (producing a 
sound midway between categories A and C), narrower 
amplitude (but more or less continuous) vibrato, and 
generally lower volume.  

C) Clear Smooth Sweet Chaste. Fairly soft, straight 
tone, without vibrato except as an ornament. Little or no 
lower larynx development, producing a sound close to 
the speaking voice 

 

An initial analysis is conducted of vibrato samples from 
each style.  An initial analysis is conducted of vibrato 
samples from each style and larynx closed quotient (the 
percentage of time for which the vocal folds remain in 
contact in each cycle) data is presented, for which 
differences have been shown for adult singers with 
training and experience [3].  

These results are compared to those obtained for 
modern-day professional singers of early music and 
professional opera singers [4] to highlight similarities and 
differences.  
 

II. METHOD 
The experiment was carried out in a performance space 

in the Music Department at the University of York, UK. 
A young professional soprano sang ‘Lascia ch’io pianga’ 
from Rinaldo by Handel accompanied by a harpsichord in 
the three different styles identified above. 

The singer was placed further away from the 
harpsichord than she would have been for a performance 
in order to keep the singer to harpsichord output ratio low 
on the audio recording, which was made with two closely 
positioned (~30cm off-axis) omnidirectional microphones 
(Sennheiser MKH20 and DPA 4060). In addition, the 
output from an electrolaryngograph was simultaneously 
recorded on an Audio Devices 744 4-channel digital 
recorder at 44.1 kHz sampling rate and 24 bit resolution. 
The harpsichord level was kept constant with the lid open 
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with the short stick for all three performances so as not to 
influence the timbral or intensity output of the singer with 
the accompaniment (Daffern et al., 2006).  

An analysis was made of the note C5 from bar 14 of the 
aria, sung to the final syllable of the word libertà in the 
three different styles. 
 

 
figure 1: Fundamental frequency contours for the final 

syllable of the word libertà (C5) from bar 14 of 
‘Lascia ch’io pianga’ from Rinaldo by Handel sung 
by a young professional soprano in the three styles A, 
B and C (see text).  

 
III. RESULTS 

Fig. 1 shows the fundamental frequency contours of the 
analysed samples in styles A, B and C respectively. There 
are clear differences between the three styles.  Style A 
(operatic) shows vibrato more or less continuously 
throughout the tone, whereas in style B (early music) a 
periodic vibrato is not apparent until nearly half-way 
through the tone.  Style C shows no discernible periodic 
vibrato, although there is some natural fluctuation in the 
sung fundamental frequency. 

There are further differences in the vibrato, when 
present, in the tones in styles A and B.  Although the rate 
of the vibrato is the same, at 6 oscillations per second for 
each style, the average peak-to-peak extent of vibrato in 
Style A (123.8 cents) was larger than that found in Style 
B (87.4 cents). 
 

 
figure 2: Fundamental frequency contours for individual 

notes sung by a professional opera singer and a 
professional Early Music singer (Data from [4]).  

 
The differences in the vibrato found here between styles 

A and B mirror those found by Daffern [4] when 
comparing opera and early music singers. Example data 
from Daffern’s study are shown in Fig. 2 for a a 
professional opera singer (adult female) and a 
professional early music singer (adult female). A 
comparison of the vibrato results of the style A sample 
here with the sample from a professional opera singer 
shown in Fig. 2, for which average peak-to-peak vibrato 
extent is 191.5 cents, indicates that the vibrato extent 
used by the current singer is not as extreme as that 
normally found in professional opera singers. Daffern 
also found for her opera singer group that they produced 
a more consistent vibrato from the very onset of the tone, 
whereas there is some delay in the onset of vibrato in 
style A produced by the singer in this study (compare 
plots in Figs. 1 and 2). 

The early music singers in Daffern’s study typically 
produced vibrato as a stylistic component in the context 
of the music, producing appropriate notes as straight 
tones with a late introduction of vibrato with an average 
peak-to-peak vibrato extent of 69.8 cents.  This is 
illustrated in the graphs below.  

The average peak to peak extent of the vibrato tones 
produced by the early music singers in Daffern’s study 
was also generally lower than observed for the opera 
singers, which is a characteristic also observed in the 
results of the current study. 

Larynx closed quotient (CQ) is measured with an 
electrolaryngograph [5] and it shows the percentage of 
each cycle for which the vocal folds are in contact. It is 
important to note that when the folds are in contact, it 
does not necessarily mean that they are closed, since they 
can be partly open. The output from the 
electrolaryngograph cannot show the difference between 
partly and fully closed.  
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figure 3: Eleven point median smoothed larynx closed 

quotient (CQ) plots against time  for the final syllable 
of the word libertà (C5) from bar 14 of ‘Lascia ch’io 
pianga’ from Rinaldo by Handel sung by a young 
professional soprano in the three styles A, B and C 
(see text).  

 

 
figure 4: Larynx closed quotient (CQ) histograms for the 

final syllable of the word libertà (C5) from bar 14 of 
‘Lascia ch’io pianga’ from Rinaldo by Handel sung 
by a young professional soprano in the three styles A, 
B and C (see text). 

 
Fig 3 shows the CQ variation with time for the sung 

notes shown in Fig. 1; these values have been 11 point 
median smoothed due to the break-up that occurs around 
the midpoint of the type C plot. It can be seen that during 
the vibrato portions of the output during the type A and 
type B productions (compare the plot with Fig. 1), the CQ 
values are closely matched. However, the type A 
performance starts with relatively high CQ values during 
the early part of the note and then drops to around 23% as 
it meets the type B CQ output. The type C plot starts 
around 30% and then rises to nearly 40% before dropping 
again towards the end of the note.  

To provide a different view of CQ values, the overall 
range of CQ values used during this note is shown in Fig 
4 in the form of a second order histogram, which serves 
to remove non smooth values [5], for each of the types A, 
B and C. It is clear that the CQ used for types B occupies 

its own range but that the CQ distributions used for types 
A and C are bimodal. The nature of this bimodality can 
be seen in the time plots (Fig. 3) for the type A output 
which starts high and then drops at the point where the 
vibrato starts (see Fig. 1). The type C version starts and 
ends around 30% and has a portion around the centre 
which is closer to 40%. 

 

 
figure 5: Sound pressure waveforms for the final 

syllable of the word libertà (C5) from bar 14 of 
‘Lascia ch’io pianga’ from Rinaldo by Handel sung 
by a young professional soprano in the three styles A, 
B and C (see text). 

 
Fig. 5 shows the acoustic pressure waveforms for the 

three types. These waveforms are plotted with the correct 
amplitudes relative to each other so that comparisons can 
be made. It can be seen that the output for type A has the 
greatest amplitude, followed by type B and then type C. 
The type C output becomes quieter during its mid 
portion, and it turns out that this is where the vocal fold 
contact variation is both quite low in amplitude  and close 
to being sinusoidal (n.b. because of the algorithm used to 
calculate CQ, a sinusoidal electrolaryngograph output 
waveform will have a value around 40%).  

 

 
figure 6: Sound pressure (uncalibrated hence no 

reference level and only dB given) output for the final 
syllable of the word libertà (C5) from bar 14 of 
‘Lascia ch’io pianga’ from Rinaldo by Handel sung 
by a young professional soprano in the three styles A, 
B and C (see text). 
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Fig. 6 shows histograms of the output sound pressure 
amplitude for each type and it can be seen that type C is 
the quietest and that type A is the loudest, with around 17 
dB difference between their modal values. The output for 
type B sits in between with its mode around 10 dB higher 
than that for type C and 7 dB lower than that for type A.. 
However, it should also be noted that the type A note is 
clearly bimodal; this occurs between the early part (soft) 
and the later part (loud) of the note (see Fig. 5). 

 
IV. DISCUSSION 

 
The differences observed between the three styles, as 

produced by the current singer, appear to reflect the 
observations made by Bethel [1] and the previous 
research conducted by Daffern [4]. Whilst Daffern found 
the vibrato rate varied within the two groups she 
compared, the extent to which the vibrato changed 
between styles A and B was not as great as Daffern found 
for the two groups overall. This is especially true of the 
peak-to-peak extent and the use of vibrato throughout 
tones as discussed above. This could be due to the 
training and age of the singer in this study, allowing for a 
freedom of vocal technique to execute the different styles 
but without the intensive opera training or regular 
specialised performance of one style, does not produce 
the characteristics to the same extent. This would also 
support the findings of Daffern which suggest that the 
early music singers and opera singers have vocal 
techniques which thrive in their own environment. 

Larynx CQ values do vary between the three types, 
indicating that CQ is available to the singer for 
modification when singing in different styles This has 
been noted previously [6] for a professional tenor singing 
in three different styles: opera, Elizabethan and 
conventional early music for which the opera CQ values 
were higher than the conventional early music which in 
turn were higher than the Elizabethan style. These 
findings support those from this singer if the Elizabethan 
style can be approximately equated to the type C style 
herein. 

 
V. CONCLUSION 

 
The singer produced three differing singing styles 

which reflected the characteristics observed by Bethell 
[1], however styles A and B did not produce differences 
in vibrato as drastic as those found by Daffern [4] for 
professional singers specializing in those styles. In 
addition, the comparative distributions of CQ values 
between the three styles for this soprano confirm those 
found for a professional tenor by Howard [6].  

Singing is a precious form of communication with 
many underlying facets. Understanding some of the 
subtleties of voice production strategies employed when 
singing in different styles will lead to a greater 

understanding and knowledge of the range of possible 
human vocal outputs and how best to achieve them in 
practice, whether pedagogically or clinically. 

Knowledge of such differences has the potential to 
influence both performance practice and vocal coaching 
for both singing and speech. It has been shown that it 
lends itself well to implementation in real-time visual 
feedback systems for voice training such as WinSingad 
[7], SingandSee [8] and VoceVista [9]. In the future, 
there is the potential for enhancing such systems with 
additional displays, thus moving such work closer to 
being more “complete” for the professional voice user.  
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Abstract: Scientific data in literature show that the 
singers of classical lyric orchestras are exposed to high 
risk of damage to the vocal apparatus due to the 
intense effort they have to face during the artistic 
performances. 
Vocal effort in a group of singers of a classical 
orchestra of a National lyric theatre is considered
here. A specific protocol of measures has been defined 
with the aim of evaluating the quality of vocal 
emissions before and after the artistic performance 
during the rehearsal of a grand opera. Voice quality 
was parametrised in terms of average pitch value, 
quality ratio, vibrato frequency and extension.   
A statistically significant difference was found 
between  the quality ratio and the standard deviation 
of the fundamental frequency F0 and of the vibrato 
extension in the exercises executed before and after 
the vocal performance. These results confirm the 
hypothesis that such parameters are related to the 
laryngeal effort. 
Keywords :  lyric singers, vocal effort, vocal quality 

I. INTRODUCTION 

New protectionist laws impose to evaluate all different 
risk factors in the workplaces. All categories of workers 
are included and, among them, workers employed in 
recreational activities and shows should be considered. In 
this context, lyric national theatres are supplying to the 
assessment of the different risk factors to which their 
employees could be exposed. 
Among such risk factors, noise and vocal effort are surely 
the most prominent. In addition, noise and vocal effort 
are often related to each other and both contribute to the 
injuries of the auditory and vocal apparatuses [1-3].  
It is well know that professional singers are exposed to 
high vocal effort due to their performances. The stress to 
which the vocal apparatus is daily exposed can produce 
long-term effects ranging from the voice quality 
degradation to severe laryngeal pathologies. Previous 
scientific studies focused on the voice fatigue in singers 
and actors on the analogy of what was known about other 
workers categories exposed to vocal effort such as 
teachers [2,3].  The first studies lead on the teachers’ 
vocal effort  focused on the fundamental frequency (F0) 
analysis, on the phonation duration and on the emitted 
average sound pressure level at a certain distance during 
the working day [4]. 

Later, other parameters were specifically studied for  
singers to assess the vocal effort such as  F0 variation,  
background noise, speech transmission index, signal to 
noise ratio, etc. [3-8]. These parameters were related to 
psychophysical evaluation subjectively reported by the 
subjects themselves [9,10].  
The methodology of the vocal effort evaluation is based 
on the use of vocal dosimeters capable of registering the 
vocal emission during the whole working day [11,12]. 
The aim of this work was to individuate objective vocal 
parameters capable of an early detection of the voice 
quality degradation induced by the effort of the artistic 
performance. The main objective is to cast a non-invasive 
test to check the status of the vocal apparatus in workers 
exposed to vocal effort due to their working activity. 
Another main objective of the study is to understand the 
mechanism of the damage process with the aim of 
elaborating a prevention strategy. 
   

II. METHODOS 

Measurements were performed in the Teatro Regio in 
Turin during an experimental campaign finalized to the 
physical risks exposure evaluation in workplaces. Seven 
volunteer female lyric singers were enrolled into the 
present study: three Soprano, two Mezzo-Soprano, two 
Contralto. The singers were asked to execute some vocal 
exercises before and after the artistic performance during 
the rehearsal of a grand opera with the aim of comparing 
the voice quality before and after the vocal effort of a 
standard working day. Sound signals were recorded with 
a microphone and a sound analyzers Symphonie (01dB) 
in the rehearsal hall. Data were analyzed by means of the 
BioVoice software tool [13], that allows the extraction of 
vocal parameters also in singers. The emission quality 
was parametrized in terms of average fundamental 
frequency (F0) value, quality ratio, vibrato frequency and 
extension [13-16].  The following protocol was adapted 
from  [10] : 
Exercise n.1: Emit  sustained  \a\, \i\, \u\ vowels for 2 or 3 
seconds with mild loudness and comfortable pitch (main 
tone of emission). Repeat 10 times without pauses, 
corresponding to a total time of about 30 s for each 
vowel.  
Exercise n.2: Repeat exercise n.1 for the vowel  \i\ with a 
very low sound intensity and moderately high pitch.
Exercise n.3: Emit vowel \i\ varying the main emission 
tone from low to high pitch at a low sound intensity 
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Exercise n.4: Emit 10 times 5 short-duration \i\ at low 
sound intensity and moderately acute pitch. 
Exercise n.5: Repeat  the first strophes of the song 
“Happy Birthday” at low sound intensity and acute pitch 
and fill out a questionnaire in which the difficulty in 
producing low intensity sounds had to be reported with 
scores from 1 (low difficulty) to 10 ( high difficulty). 
Exercise n.6: Count aloud from one to three (repeated 
three times). Fill out a questionnaire (same scores as in 
exercise 5) reporting the difficulty in producing high 
level sounds and the laryngeal perceived  discomfort. The 
subjects were also asked to specify if the discomfort was 
perceived into the larynx, outside the larynx, or in both 
districts. 
In this paper, we present preliminary results relative to 
the analysis of the vowel \a\ emission as in Exercise 1. 
Specifically, the first and the tenth emissions before and 
after the vocal performance during a chorus proof were 
analyzed. More results will be presented elsewhere.
The BioVoice tool was applied to objectively quantify 
voice quality. According to [15] the analyzed parameters 
are: F0 (pitch), vibrato rate (Vrate), vibrato extension 
(Vext), and the first five formants. Vrate and Vext 
represent respectively the number of oscillations per 
second and the oscillation amplitude of the pitch’s 
modulation in time. The standard deviation (Std) of all 
parameters was also measured. 
Moreover, the Singing Power Ratio (SPR) [15] was 
defined and measured. SPR is related to the energy 
content of the vocal formants, whose amplitude and 
frequency correspond to the resonant peaks of the power 
spectral density (PSD). In particular, in the singing voice, 
the SPR is defined as the ratio between the area under the 
curve of the PSD relative to the cluster of the first two 
formants (Area1,2) and that of cluster of the third,  fourth 
and  fifth formants (Area3,4,5): 

                            
5,4,3

2,1

Area
Area

SPR =                          (1) 

The better the singer voice quality, the more closely the 
SPR should approach the unit value. In fact, in this case, 
the singer voice can be clearly distinguishable from the 
background orchestra. 
A major difficulty in the SPR measure has been finding a 
reference “threshold frequency” that cuts the PSD 
integral into Area1,2 and Area3,4,5. Both a “static 
threshold” S0, set at 2500 Hz (i.e. midpoint between 2000 
and 3000 Hz, approximately representing the second and 
the third formant respectively), and two “dynamic 
thresholds”, Fref1 and Fref2, have been defined and tested. 
Fref1 corresponds to the local minimum of the PSD in the 
range 2 - 3 kHz, while Fref2 to the mean frequency value 
of the second and the third formant. Both dynamic 
thresholds gave approximately the same results, while S0 
gave worse results. In this paper, Fref2 has been applied 
and is named here Frefinf . Finally, an upper threshold 

Frefsup has been introduced, corresponding to the first 
frequency minimum found after the 5th formant. 

III. RESULTS AND DISCUSSION 

Some figures, relative to a soprano singer, are reported 
here, as they are illustrative of a common behavior found 
in all cases. Fig. 1 shows the evolution in time of F0 that 
appears more unstable and irregular after the vocal 
performance as a consequence of the vocal effort. 
In Fig. 2 the time evolution of vibrato is shown: the 
frequency modulation in time loses its sinusoidal 
behaviour after the vocal effort due to the performance. 
Along with the vibrato distortion, also the vocal 
intonation deteriorates and its time behaviour appears 
unstable.
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Figure 1- Pre-post performance F0 tracking 

Moreover, the vocal effort causes a deterioraration in the  
SPR, which shows an increasing trend with the phonation 
fatigue. Fig. 3 shows the PSD before (grey) and after 
(black) the vocal performance, with SPR=3.9 and 15.3 
respectively. In Fig. 3, dots correspond to the PSD 
maxima and stars to Frefinf, Frefsup as obtained with 
BioVoice. 
Finally, Figs. 4 and 5 show the signal spectrogram 
respectively before and after the vocal performance,  
pointing out a more regular behaviour of  both harmonics 
and formants before the performance. 
Though we analysed few cases, a statistical analysis was 
performed to find out possible significant differences 
between data before and after the vocal effort. Data were 
analyzed by means of a standard Student’s t-test 
(significance criterion p<0.05) for paired samples to find 
statistically significant differences between voice quality 
parameters before and after the vocal performance. In 
particular, the first and the tenth vowel \a\ emissions 
before the performance were compared respectively to 
the first and the tenth emissions after the vocal effort. A 
mean emission was defined as the average between the 
first and the tenth emission. The mean emission 
characteristics before the vocal performance were 
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compared to the characteristics of the mean emission 
after the vocal effort. As data distributions were found 
not normal, the non parametric Wilcoxon rank test was 
also applied. Results are shown in Table I. 
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Figure 2: comparison between the vibrato before (first 
emission) and after (tenth emission) the vocal effort for a 
singer. Dots and squares correspond to estimated 
maximum and minimum F0 values, respectively. 

Figure 3: comparison between the PSD before (grey line) 
and after (black line) the vocal effort. 

From the Table, the Std of F0,Vrate and Vext appears 
sensitive to the exposure to phonation fatigue, as all 
parameters show  an increasing trend. Although the 
difference between  F0 mean values before and after the 
vocal effort does not give statistical significance,  F0 
shows an increasing trend due to the exposure. 
The parameter SPR seems to be one of the most sensitive 
to the exposure to the vocal effort. The differences 
between the SPR before and after the performance are in 
fact always statistically significant if the first, the tenth or 
the average of the two last emissions are considered. The 
statistical distribution of the SPR (mean value) before and 
after the performance is shown in  Fig. 5. 
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Figure 4: Spectrogram before (top) and after (bottom) the 
vocal performance. 

As expected the parameter SPR, representing voice 
quality, deteriorates (increases) after a laryngeal sustained 
effort. Finally, notice that the parameters show a 
statistically significant difference not only between the 
exercises executed before and after the artistic proof but 
also between the first and the tenth vocal emission. 

IV. CONCLUSION

Some of the voice parameters studied in this work before 
and after the artistic performance during the rehearsal of a 
grand opera seem to be sensitive to the vocal effort of a 
typical working day. In particular, statistically significant 
differences were found between the Std of F0, Vrate and 
Vext, before and after the artistic performance. Another 
sensitive parameter is SPR, specifically implemented in 
the BioVoice tool to define the quality of sung voice. 
Future work will be devoted to enlarge the data set for a 
better statistical analysis. Our results, if confirmed, could 
in fact be useful to define an effective protocol for 
monitoring long-term adverse effects of the vocal effort 
in exposed populations. 
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Table I: Student’s t-test and Wilcoxon non-parametric 
rank test comparison between voice parameters measured 
before and after the vocal effort. 
  

T-TEST pre -post pre -post pre-post
1st emission 10th emission mean 

F0 n.s. n.s. n.s. 
Std F0 n.s. 0.037 0.055 
SPR n.s. 0.00044 0.00234
Vrate n.s. n.s. n.s. 
Std Vrate 0.01103 0.00669 0.00306
Vext n.s. n.s. n.s. 
Std Vext 0.02761 n.s. n.s. 
WILCOXON pre -post pre -post pre-post

1st emission 10th emission mean 
F0 n.s. n.s. n.s. 

Std F0 n.s. 0.01563 0.01563
SPR 0.03125 0.01563 0.01563

Vrate n.s. n.s. n.s. 
Std Vrate 0.01563 0.03552 0.01991

Vext n.s. n.s. n.s. 
Std Vext 0.01563 0.07813 0.03125

post pre

5
10

15
20

25
30

  
Figure 5: boxplot showing the mean SPR before (pre) and 
after (post) the vocal effort. 
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Abstract: obstructive sleep apnea syndrome (osas) is 
a human disease  affecting the human breathing of a 
patient while sleeping. to be studied, a patient has to 
be screened while sleeping, thus diagnosis is often 
hard and costly. polysomnography is the standard 
method for obstructive sleep apnea diagnosis. 
however it does not permit a mass screening of 
patients because it has high cost and requires long 
term monitoring. different efforts are reported in 
literature for finding new diagnostic methods 
implemented on portable devices. this paper presents 
a preliminary study for the development of a portable 
system based on snore signals acquisition and spectral 
analysis for osas identification. 
Keywords : home monitoring, osas, snore analysis. 

I. INTRODUCTION

Sleep apnea is a common disorder that affects both 
children and adults. An obstructive sleep apnea syndrome 
(OSAS) is defined as a complete cessation of airflow for 
more than 10 seconds which requires a significant 
respiratory effort to restart normal respiration. It requires 
immediate intervention to prevent it from becoming life-
threatening [1].

This disease affects a significant percentage of the 
adult population which varies according to several studies 
by 15% to 35% in men and from 5% to 20% in women. 
The most obvious complications arising from OSAS are 
diminished quality of life brought on by chronic sleep 
deprivation and cardiovascular problems.  

Currently, the ‘gold’ standard method for diagnosing 
OSAS is polysomnography (PSG) [1]. This diagnostic 
exam requires that the patients spend a full-night in 
hospital. Thus it is time consuming and high costly, 
because usually it is possible to monitor one patient for 
night for instrument. Furthermore it is labour intensive 
because the clinicians need to collect and analyze a large 
number of data (e.g. different and large signals, such as 
EEG, ECG, oxymetry, EMG, thoracic-abdominal 
movements). 

Efforts are being directed to the identification of 
alternative methods for OSAS diagnosis to permit 

clinicians to detect automatically and objectively OSAS 
events saving time and work. Snore signals have been 
investigated as an alternate diagnostic tool for the 
detection of obstructive sleep apnea [1].  

This work reports current approaches in OSAS 
diagnosis based on the analysis of snore signals and 
outlines a possible approach for developing a system for 
the automatic acquisition, analysis and classification of 
snore signals.

Although there exist some approaches to detect snore 
signals, used to discriminate OSAS patients from snorers, 
we are not aware of portable devices able to automatically 
detect apnea events and to discriminate their different sub-
types (e.g. central, peripheral and mixed apnea). 

The development of such a portable system would 
allow the diagnosis of OSAS events without using PSG 
instruments. Thus, our proposed system could be used for 
home-monitoring of suspected patients who turn to 
doctors accusing specific symptoms.  

To detect apnea events, the proposed system collects 
only snoring signals, analyzing and classifying them to 
discriminate between simple snorers and OSAS patients. 
So the clinician must not examine a full night acquisition 
but only the portions of signal characterized by apnea 
events.

The rest of the paper is organized as follows. Section II 
describes current approaches for OSAS diagnosis focusing 
on the signal processing techniques. Section III presents a 
novel approach for the analysis of snore signals. Section 
IV outlines a possible procedure to analyse data. Finally, 
section V concludes the paper and outlines future work. 

II. METHODS

The polysomnography [2] is a functional exam that 
permits the monitoring of different biological activities. 
Numerous physiological sensors are attached to the patient 
to record night-time breathing, brain activity and physical 
activity. Although the PSG is the standard approach for 
OSAS diagnosis, it requires technical expertise and is 
labour-intensive and time-consuming. Timely access is a 
problem for many patients, the majority of whom continue 
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to have undiagnosed sleep apnea. Thus, alternative 
approaches to diagnosis, such as portable monitoring, 
have been proposed as a substitute for polysomnography 
in the diagnostic assessment of patients with suspected 
sleep apnea.

Different portable PSGs are used in clinical practice as 
a first level of screening of OSAS [3]. Although portable 
PSG allows the home monitoring of patients, it is an 
invasive technique and the patient remains connected to a 
lot of sensors. Moreover, as standard PSG, also portable 
PSG produces a lot of data, which is inefficient to analyze 
if one relies on manual processing. 

Different efforts are underway to find better methods 
for diagnosing or screening of OSAS. Current alternative 
methods to PSG are: overnight oximetry, which measures 
a patient's oxygen saturations throughout the night, ECG 
or snore monitoring. Overnight oximetry is not considered 
completely adequate as a screening test, since the oxygen 
levels in the blood of many patients with OSAS do not 
provide the information needed to understand their 
condition. Thus, there is a growing interest in developing  
portable snore-based devices for OSAS monitoring.  

In [5] the development of a portable device for home 
monitoring of snoring is described. It performs detection 
and selection of the snores, while discarding any other 
events that are present in the sound recording, as cough, 
voice, and other artefacts. The device performs temporal 
analysis of signals. It detects snore events by evaluating 
signal amplitude and detects possible apnea events by 
measuring the delay between snores.  

Another portable device for snore detection is 
described in [6]. The device itself also serves as a Web 
server. Doctors and caregivers can access real-time and 
historical data via a Microsoft Internet Explorer browser 
or a remote application program for telemonitoring of 
snoring and OSAS symptoms.  

Both systems are able to detect only snore events 
through time analysis and they do not reach high success 
rate and sensitivity. They do not exploit frequency-based 
and time-frequency-based analysis. 

For the detection of OSAS events, the analysis of 
snoring signals has been performed in time or in 
frequency domain [7, 8]. In the time domain the evaluated 
parameters are duration of snores, mean value/standard 
deviation of pitch and max/average intensity sound. In the 
frequency domain the parameters of interest are 
fundamental frequency, formants, median frequency, 
central frequency and max frequency. The spectral 
parameters are extracted from the power spectrum that is 
evaluated by parametric (AR model) or non parametric 
methods (FFT, Welch periodogram) [8].  

For the discrimination between simple snorers and 
OSAS patients, it has been reported some variability 
between frequency parameters from simple snorers and 
OSAS patients [9]. This variability is evident not only in 
the segments after apnea event but also in all the snores of 
OSAS patients. It has been, also, reported variability 
relative to formants. Formants estimated for snoring 
signals coming from simple snorers show lower variance 
than those coming from OSAS patients [10].  

From a biomechanical point of view, snoring sounds 
are caused by many factors: the strength of respiratory-
related airflow, vibrations on the soft palate, the shape of 
upper airway, and the airway obstruction due to tongue 
subsidence. Moreover vibration parts are not held by some 
cartilage or bones. Thus in [11] the authors suggest to 
consider that snoring sounds are nonlinear acoustic 
vibrations caused by various factors. That makes it 
difficult to solve the unique eigenfrequency of snoring 
sounds by a traditional linear frequency analysis, generally 
adopted in [7, 8]. If such nonlinear properties can be 
extracted by some other methods and their relation to 
some degree of OSAS syndrome (e.g. Apnea/Hypopnea 
Index) is demonstrated, it would be possible to establish a 
new screening method which replaces the costly PSG. 

III. RESULTS 

Taking into account the results and approaches 
available in literature, we propose a novel signal 
processing workflow to analyze snore signals and outline 
the design of a portable device for snore analysis and 
OSAS diagnosis. 

The development of a snore-based OSAS detector 
(Fig. 1) requires a good design of the acquisition stage 
because the snoring signal acquisition is affected by 
several problems. Different types of noise can 
contaminate the signals, such as background acoustical 
noise or electromagnetic interferences [11]. Although the 
use of unidirectional microphone can improve signal 
acquisition, however, noise reduction is needed to 
eliminate interferences. Therefore to build a reliable 
system, a robust pre-processing stage before signal 
analysis to improve signal to noise ratio and to allow a 
more accurate extraction of features is needed. 

Fig. 1: Architecture of the system  

To identify the occurrence of obstructive sleep apnea, 
as discussed previously, different features can be extracted 
from time and frequency domain. We have chosen to 
identify unambiguously apnea events trough frequency 
analysis of post-apneic snore events.  
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In the following we report some first experimental 
results related to the analysis of a vocal signal acquired, in 
the polysomnographic laboratory of the Institute of 
Neurology at University Magna Graecia of Catanzaro, 
from a patient affected by a moderate sleep apnea.

The vocal signal has been acquired with a digital audio 
recorder (Micro Track II Professional Audio Recorder) 
able to register mono and stereo signals at different 
acquisition rates. In this experiment, a signal long about 1 
hour at 44 KHz has been recorded.  

In this initial stage of the analysis, we have separated 
in a manual way the snoring events from the respiratory 
ones In this phase the separation between snoring and 
respiratory events has been performed with the help of 
doctors.  

After this separation we have performed FFT analysis 
and power spectra evaluation on the selected portion of 
original signals. Figure 2 and Figure 3 reports, 
respectively, the power spectrum resulting from the 
analysis of snoring signals acquired from a patient 
affected by a moderate sleep apnea. In particular, the first 
plot is the power spectrum of a (generic) snore, whereas 
the second one represents the power spectrum of a post-
apneic snore. The two spectra show significant differences 
because the post-apneic spectrum presents a larger number 
of frequency components at higher frequencies than the 
first one. 

Fig. 2: Power spectrum of a generic snore  

Fig. 3: Power spectrum of a post-apneic snore 

IV. DISCUSSION 

The differences between the power spectra of regular 
and post-apnea snores suggests us a possible method to 
differentiate snores from post-apnea snores by comparing 
in both spectra the number of frequency components 
above a certain power threshold. 

The procedure to analyse the recorded signal has to 
extract snores, verify if they are post-apnea snores, then 
extract the characteristics of apnea events happening 
before such snores. The characteristics of such apnea 
events (e.g. number of events, duration, etc.) can be 
evaluated by the doctors to help the diagnosis of OSAS. 

The signal analysis can be implemented by using the 
following procedure described in pseudo code: 

procedure snoreAnalysis (VoiceSignal S) 
beGin
 //preprocess S to increase signal-to-noise ratio; 
 S.Preprocess (); 

 //Si is a snore identified in S 
 Snore Si;

 //apneaEvents is a list of apnea events in S 
 apneaEventsList [] apneaEvents; 

While not S.end_of_signal do { 
  // extract next snore Si from the signal S; 
  Si = S.nextSnore (); 

if (Si.getSnoreType == post_apnea)   
then { 

   // Si is a post-apnea snore type 
   //extract from S the apnea event Ai related to Si
   Ai = get_apnea_event(S, Si);
   // append Ai to a list of apnea events 
   apneaEvents.Append(); 
  }  

else {//skip Si}
 }; 
 //analyse the Apnea events  
 AnalyzeApneaEvents (apneaEvents); 
end.

V. CONCLUSION

The paper presented a first approach for the automatic 
detection and characterization of snore signals related to 
the Obstructive Sleep Apnea Syndrome.  

The proposed system is currently under development 
and a first prototype will be tested in the 
polysomnographic laboratory of the Institute of Neurology 
at University Magna Graecia of Catanzaro.  
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A first goal of the system is to extract from the signal 
only post-apnea snore events and then apnea events. The 
reduced signal will be validated by the doctors in a manual 
way avoiding the examination of all signal registrations as 
happens in present setting.  

A set of signals registered in the Institute of Neurology 
will be used to further investigate and eventually validate 
the discriminatory characteristics of the power spectra of 
apnea and post-apnea snores with respect to respiratory 
and snoring events. After validation, a next step will 
regard the automatic classification of sleep apnea. 
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Abstract: snoring is the hallmark of the obstructive 
sleep apnoea syndrome and several studies explore 
possible correlations between them. in this work an 
improved methodology with respect to [4] is proposed, 
based on a proper energy threshold applied on audio 
recordings for sound/silence detection, and on a 
feature vector of 14 elements (13 Mel frequency 
cepstral coefficient plus the number of zero 
crossings) for sound classification. this feature vector 
is obtained from a 62-elements one by applying a 
genetic algorithm, fitted to obtain the best 
classification of the training/validation sets. 
the feature vector is analyzed by means of a radial 
basis neural network to perform snore events 
identification. finally, formant frequencies and time 
analysis are also investigated to split up post-apnoeic 
snores and normal ones.  
audio data from 26 patients of different age and sex 
are used to test the methodology: 6 patients (3 male 
and 3 female) were used to train the nets (1800 snores) 
and 4 patients to validate the classification (600 
snores). on the whole dataset of patients, a sensitivity 
between 69% and 84% is obtained in the detection of 
post-apnoeic snores.  
 
Keywords: snore, neural network, Mel frequency 
cepstral coefficients, genetic algorithm, obstructive 
sleep apnoea. 

 
I. INTRODUCTION 

 
Obstructive  Sleep  Apnoea  (OSA)  is  a  pathological  
condition  where  the  upper  airways  collapse, reducing  
or  cutting  the  flow  to  the  mouth/nose.  The diagnosis 
of Obstructive Sleep Apnoea Syndrome (OSAS) is 
commonly made by means of Polysomnographic (PSG) 
examination. PSG is mainly performed in a clinical 
environment (sleep laboratories), but could also be 
performed in home environment. However, PSG 
examination is bothering for patient, unsuited for mass 
screening purposes and expensive. Hence, new, simpler 
and non-invasive methods are investigated to detect 
OSAS. At present, according to the Italian guidelines, 
OSA is detected from full-night sleep analysis 

(uninterrupted recordings lasting from 6 to 10 hours) by 
means of PSG. Such a huge amount of data implies 
several technical problems concerning acquisition, 
storage and processing of data. Hence, efforts are made in 
the scientific community to define reliable OSA 
identification techniques from the audio signal only. At 
present, processing is made over the whole signal that is 
commonly classified into three classes: snore, breath, 
silence [1] or five classes: snore, breath, silence, duvet 
noise, other noise [2]. Other works consider just temporal 
features [3].  
In  this  work  we  propose  an automatic  detection  of  
snore  events,  that  extends  the  results  obtained  in    
[4], followed  by  an  evaluation  of  the  number  of  
Apnoeas or Hypopnoea events (AHI Index) with the 
methodology proposed in [5]. Our approach allows to 
split-up snores from other sounds, without predefining 
other sound classes, thus reducing the total length of the 
signal to be processed. The method is developed under 
Matlab2007a®. Full-night audio data (26 patients) come 
both from clinical and home recordings. 
 

II. METHOD 
 
The flow chart proposed in [4] is revised here, with the 
aim of performing a faster analysis and a more careful 
sound/silence segmentation. Firstly, we evaluate the 
histogram of the audio signal energy to perform an Otsu 
thresholding [6]. This method has the advantage that it 
does not require data pre-filtering,  as  a  good  energy  
separation  between sound  and  silence  is  expected from  
our  recordings [1], even in home environment. This 
assumption has been verified with a careful setup of the 
process, both as far as the device and the environmental 
setup are concerned. Specifically, a unidirectional 
microphone has  been  used  to  perform  recordings  
connected  to  an  external  sound  card  to  reduce  noise  
artefacts of the laptop sound card. Patients were separated 
from bed partner and/or from pets, television and other 
predictable sources of noise. Moreover, the first 30 
minutes  of  each recording  were  cut  off,  to  avoid  
noise  due  to  patient’s  movements,  speaking  with  the 
clinician and similar ones. After the selection of sound 
events, a proper classification is proposed based on 
features extracted from  60  Mel  Frequency  Cepstral  

autoMatic detection of post-apnoeic snore events froM 
hoMe and clinical full niGht sleep recordinGs 
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Coefficients (MFCC) plus short term energy (STE) and 
the number of zero crossing (NZC), where: 
 

STE = log �
∑ s(i)2n

i=1
n � + k                                      (1) 

NZC =
∑ �sign�s(i + 1)� − sign(s(i))�n−1

i=1   
2                    (2)  

 
Where n=441 is the number of elements in each window, 
sign() is the sign function, s is the signal and k is a small 
constant value to avoid log(0). Mean and standard 
deviation of the MFCCs are obtained as in [4]. 
As the choice of the number of coefficients is often 
arbitrary or derived from boundary conditions, we 
performed a careful search of the most representative 
MFCCs by means of a genetic algorithm (GA), where 
each gene of a phenotype represents a MFCC. The 
population of feature vectors was processed by the neural 
network until we obtained the best fitting according to 
proper classification. Furthermore, after low-pass filtering 
the audio signal (2 kHz cut-off), the number of zero 
crossings has been used as a selection feature for 
snore/non-snore events. 
Several methods are proposed in literature to separate 
OSA events from non-OSA ones. Here we adapted the 
one proposed in [5] with the aim of identifying snore 
episodes after apnoea ones. This allows obtaining an AHI 
index related to apnoeic events only. A detailed flow 
chart of the process for the best feature vector selection is 
reported in Fig.1. 
Short term energy, number of zero crossing and MFCCs 
extraction from the signal are performed according to [4]. 
Mean (m) and standard deviation (std) of the MFCCs for 
all frames of an event are also evaluated.  
To detect starting and ending points of the event, the Otsu 
methodology [6] was iteratively applied to obtain two 
thresholds, the upper one and the lower one. The 
histogram was settled up to 2000 levels. After a first 
upper threshold detection tu, a second Otsu thresholding 
was performed from level zero to level tu, to obtain a 
lower threshold tl. When the STE of the signal overpasses 
tu, a starting point is detected, when the STE of the signal 
falls down tl, the ending point of the event is found. As in 
[4] this procedure allows to obtain two sets representing 
the starting and the ending points of the events. Filtering 
only these events instead of the whole signal greatly 
speeds up the signal processing. 
Once we have obtained all the events from the recording, 
we listened and classified the various frames as snoring 
or non-snoring frames to prepare a training set. We 
classified about 600 events from 6 patients (3 male and 3 
female) without regarding the prevalence of the 
pathology, for a total of about 1800 snoring frames and 
1500 non-snoring frames.  
At present, most of the approaches try to classify snoring 
and “other events”, e.g. mainly breath. However different 

noise events are included in “other events” that are 
difficult to classify. Hence a different approach is 
presented here, where we train the net with feature 
vectors representing only snore.  
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Hence, if a unclassified feature vector (named here void 
vector) is presented to the net, according to the similarity 
of this new feature vector to the ones presented to the net 
during the training step, snore frames can be separated 
from non-snore ones.  
In our opinion, this approach is more general as it is not 
proper to assume that cough, bed noise, breath and 
similar sounds belong to the same class, as was proposed 
in our previous work [4], though quite good results were 
obtained. 
The improvement proposed here is based on a Radial 
Basis Neural Network (RBNN) that provides, as output of 
the hidden layer, a vector D representing the distance 
between the input vector (our feature vector of 62 
elements) and the input weight matrix. For the radial 
basis neuron, the output is equal to 1 when the distance 
between the weight vector and the input vector is 0. 
Hence, the maximum value of D points out if the feature 
vector represents a snore or not. 
All the 1800 frames representing snores are used as 
training set. Then, presenting several input vectors to the 
net, and taking into account the maximum of the output 
vector, 600 frames not already presented to the net are 
used to evaluate the network. The number of correct 
classifications over the validation set of 600 frames 
represents the value of our fitting function:  
 

𝑓𝑖𝑡 = − 𝑇𝑃+𝑇𝑁
600                                                (3)                        

 
Where TP=true positive (a snore correctly recognized as 
a snore), TN=true negative (a non-snore correctly 
recognized as a non-snore). The minus sign is due to the 
fact that the most common genetic algorithm tools aim to 
minimize the fitting function. 
To perform the GA, the input vector I to the net was 
obtained as the product between the vector M of 62 
elements (30 mean values and 30 std of the MFCCs plus 
STE and NZC) and a binary feature vector called 
phenotype G that represent the elements of the vector M 
that will belong to the input vector I or not. The various 
individuals of the population for the GA are different Gs 
with different combinations. The stop condition was set at 
30 minutes of elaboration. The whole process is shown in 
Fig.1. 
After GA optimization, the resulting best feature vector 
was used to train an Optimized Radial Basis Neural 
Network (ORBN) and to test the net on the whole 
database of patients. Here “optimized net” means a net 
trained with the optimized input set.  
The snore event recognized as snore is than processed to 
identify the post-apnoeic snore event, according to [5]. 
Also, a temporal feature is taken into account, based on 
the assumption that at least 10s of silence should exist 
before the snore to satisfy the apnoea definition (air flow 
absence lasting 10s at least [7]). 

 
III. RESULTS 

 
Experiments were carried on under the same conditions 
as in [4], and with the same equipment. Mainly three 
blocks of the chain in Fig.1 affect our results: the sound 
detection from the whole recording; the snores 
recognition from the sound; the OSA-snores recognition 
from the snores. 
The first step, mainly related to the reduction in time of 
the whole recording, gives good results. As an example, 
results for 4 subjects are shown in Table 1. 
 
Table1.Examples of reduction in time of the recordings. 

patient time of whole 
recording (min) 

time of whole 
events (min) 

subject 1 572 37 
subject 2 446 47 
subject 3 592 70 
subject 4 476 31 

 
The accuracy of this step, evaluated  as the number of 
sounds detected over the total number of sounds, is about 
96,65% (ranging from 93% to 99%). This accuracy was 
computed by listening to about 1 hour of recording for 10 
patients. 
The second step was validated by listening to 50 events 
extracted from 6 different patients. As in [4], an event is 
classified as snore if there is at least one frame 
recognized as snore in the whole event. The sensitivity, 
measured as TP/(TP+FN) varied from 87,1% to 97,82% 
with a good improvement with respect to [4]. Here FN 
(false negative), represents a snore wrongly recognized as 
non-snore. 
The best phenotype was obtained running five times the 
GA, with the stop condition of 30min  running, but in all 
cases the problem was optimized after 10 generations. 
From the five best phenotypes obtained, only the 
elements common to all of them were used, thus 
discarding 6 elements. Thus, the best phenotype is 
composed by 14 elements from the 62 of the original one, 
as shown in Table 2. 
Notice that the OSA evaluation was carried on offline 
after the automatic snore extraction. Only the snores that 
follow a silence longer than 10s were analyzed. 
Finally, we extended what suggested in [5], considering 
as apnoeic snores only the snores occurring after an 
apnoea event. In this way, we notice a little increasing of 
the post apneic snore formant frequencies. 
Taking into account the difference on formant 
frequencies and the temporal consideration regarding a 
10s silence before sound, we obtained a sensitivity 
varying from 85% to 87%. 
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Table 2. Best phenotype obtained from GA 

element 
of i 

element 
of M 

Meaning 

1 M(1) Mean of 1° MFCC 
2 M(4) Std of 2° MFCC 
3 M(5) Mean of 3° MFCC 
4 M(7) Mean of 4° MFCC 
5 M(14) Std of 7° MFCC 
6 M(15) Mean of 8° MFCC 
7 M(23) Mean of 12° MFCC 
8 M(24) Std of 12° MFCC 
9 M(30) Std of 15° MFCC 

10 M(37) Mean of 19° MFCC 
11 M(42) Std of 21° MFCC 
12 M(54) Std of 27 ° MFCC 
13 M(56) Std of 28° MFCC 
14 M(61) Number of Zero Crossing 

 
 

IV. DISCUSSION 
 
The proposed sound/silence detection algorithm mainly 
fails with low intensity snores, as such events have not 
enough energy to be classified as sound signals by the 
Otsu methodology. However, as post apnoeic snore 
events are more intense than non-post apnoeic ones, this 
limitation could be acceptable. Moreover, the Otsu 
thresholding fails if very few snore events are present in 
the recording. Specifically in 2 cases out of the 26 
analyzed, manual thresholding was required, as the 
patient snored few times as compared to the length of the 
whole recording. In this case, thresholds were not 
coherent with the sound. This happened for one 
laboratory recording where some devices added a 
continuous noise during the night and for one home 
recording, where the patient snored few times over the 
whole recording (about 6 minutes out of 7 hours of 
recording). However, as Table 1 points out, the reduction 
in time could be relevant. Hence further analysis is 
required to overcome these limitations and possibly 
define a time threshold that points out  if the recording is 
acceptable or not. 
The sensitivity of the ORBN was really good, achieving 
in some case the 98% of recognition. The large variety of 
different kind of snores does not allow for a perfect 
recognition, but these first results seem quite good also as 
compared to existing literature. 
At the end of the whole chain, the post apnoeic snore 
recognition varies from 69% to 84%, using the approach 
in [5]. Actually, sound detection and sound classification 
are hold on in automatic way, while the post apnoeic 
snore is analyzed offline, with a methodology not yet 
implemented in the algorithm.  
 

V. CONCLUSION 
 
We provide a full automatic highly sensitive system for 
snore identification during sleep that takes into account 
aspects of the problem not considered in other 
approaches. The search of the most meaningful features 
that identify the snore from other sounds could be further 
explored to provide a link between snoring arousal and 
other sound features.  
A post apnoeic classification provides a first attempt to 
validate the system from data recordings for syndrome 
evaluation. However, we point out two weaknesses: first, 
the non automatic performance of the post apnoeic 
identification step and second, the used approach that 
does not perfectly fit our needs, but that was chosen for 
its easy applicability. 
Finally, larger testing is needed to further validate our 
approach and compare its capability against the 
traditional home polysomnography approach.    
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Abstract: for clinical treatment of voice disorders 
understanding of biomechanics of the voice producing 
parts in the human larynx is essential. an 
experimental setup is suggested to determine the 
deformations of the human vocal folds by inducing 
defined forces. in a static tensile test forces are 
applied to the fold of an excised human hemi-larynx. 
the resulting surface deformations of the tissue are 
detected using optical stereo-triangulation. for this 
purpose the positions of attached location markers are 
recorded by two cameras and reconstructed to three-
dimensional points. the deformations of the vocal 
folds are derived from the displacements of the 
location markers. the correlation of the magnitude of 
induced forces and the elongation of tissue were 
analyzed and are presented.  

Keywords: stereo-triangulation, vocal fold material 
parameters, hemi-larynx, vocal fold elasticity 

I. INTRODUCTION 
 

Speech is the most important factor in human 
communication. Without the ability of speech the 
interaction in everyday life is seriously handicapped. The 
basis for speech is the primary voice-signal, which is 
produced in the larynx. There, on closing the vocal folds, 
a sub-glottal pressure is built up by the air flow from the 
lungs. The accumulated air is released in form of 
periodical bursts by a wave upon the vocal fold surface, 
which stimulates the folds for oscillation.  

For clinical treatment of voice disorders the 
understanding of biomechanics of the voice producing 
parts in the human larynx is essential. Therefore we 
present an experimental setup to measure the correlation 
of applied forces and vocal fold deformations. The data is 
used to calculate material parameters as a starting point 
for creating artificial vocal folds that exhibit lifelike 
dynamics and deformation properties. These artificial 
vocal folds will be operated in a wind tunnel to analyze 
causalities in voice physiology.  

II. METHODS

analysis of deforMation characteristics of excised huMan 
vocal folds by optical stereo-trianGulation 

B. Hüttner1, A. Sutor2, G. Luegmair1, C. Bohr1, U. Eysholdt1, M. Döllinger1
1University Hospital for ENT medicine, University Hospital Erlangen, Erlangen, Germany 

2Department of Sensor Technology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

A. Experimental setup 
In the experiments, human larynges, which were 

excised from cadavers, are used. By a sagittal cut one 
side of the larynx is removed. The resulting hemi-larynx 
allows free visibility to the remaining vocal fold (Fig. 1). 
The trachea is shortened to about 2 cm and is used to 
mount the hemi-larynx over a steal-tube. During the 
experiments the hemi-larynx is fixed in such a manner 
that pulling on the vocal fold influences only the fold, 
whereas the remaining parts of the hemi-larynx stay in 
place. 30 surgical micro sutures are sewn into the 
epithelium of the exposed vocal-fold and arranged in a    
6 x 5 regular mesh. They serve as location markers. The 

sutures of the first row are either sewn into the epithelium 
or into the muscle. They additionally serve as working 
points for the induced forces. The forces are generated by 
weights and are induced over medical strands and pulleys 
into the tissue. The forces are generated by weights of 
10g, 20g, 50g and 100g and act vertically upwards. The 
pull-forces cause a deformation of the vocal fold which 
results in a displacement of the sewn location markers. 
The change in location is detected using the contact-free 
procedure of optical stereo-triangulation [1]. This 
technique allows the reconstruction of the three-
dimensional (3D) marker locations by two two-
dimensional (2D) images captured at different 
perspectives. The two images are generated by stationary 
digital cameras (1392 x 1040 pixel, 8-bit b/w) with a 
base-length of 1 m. The object-distance to the hemi-

Figure 1: Fixed human hemi-larynx as example for the 
setup. On the vocal fold the sewn location markers are 
visible. The pull-forces are induced by medical strands and
weights. 
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larynx is 1.50 m and both cameras have a focal length of 
300 mm. The cameras and the hemi-larynx are arranged 
in an isosceles triangle whereas the vocal fold presents 
the apex. The basis of the triangle is parallel to the vocal 
fold. The comparison of the 3D marker locations in 
different load-scenarios permits a precise metric 
determination of the vocal fold deformations depending 
on the induced forces. Before any force is applied to a 
vocal fold, the positions of the location markers are 
detected for reference.  

B. Camera calibration & reconstruction 
Stereo-triangulation allows the reconstruction of a 

point in the 3D Euclidian space on the basis of two 2D 
images captured at different perspectives. The 
reconstruction is divided into three steps: The calibration 
of the cameras, the detection of the location markers in 
the images and their reconstruction into 3D world-points. 
The calibration of the cameras has to be performed once 
as long as the mechanical setup of the cameras is not 
changed. For the mapping of a 3D world-point mw from 
arbitrary Euclidian coordinates into a point m in a 2D 
pixel-coordinate system the pinhole camera model is 
used. The mapping is done by performing three 
transformations, namely the extrinsic transformation, the 
perspective transformation and the intrinsic trans-
formation [2].  

1. extrinsic transformation: A 3D arbitrary world-point 
mw is transformed into a 3D point mc in a camera-fixed 
coordinate system by a rotation r and a translation t:

tmrm wc .           (1) 
2. perspective transformation: The point mc is mapped 

from three dimensions into two dimensions: 
T

p
T

cccc ][][ yxmzyxm .   (2) 
3. intrinsic transformation: Because digital cameras 

can only display discrete points, the 2D metric 
coordinates of the point mp have to be transformed into 
pixels. Furthermore, the origin of the coordinate system 
has to be adjusted to the top left corner of the image. This 
is done by the intrinsic transformation.  

The result is the mapping for the pinhole camera: 
)tm(ramam wc ,               (3) 

whereas m is the 2D image-point and mw the 3D world-
point. a is the matrix containing the intrinsic parameters 
of the camera (focal width, image center, scaling factor 
for metric- into pixel-coordinates). r and t are the 
rotation and translation of the extrinsic transformation. 
is a scaling-factor. It is necessary because all points mi

w
in 3D space that lie on a line through the camera’s 
projection center are projected onto the same image point 
m. Non-linear correction terms are considered because of 
non-ideal lens-systems [3]. The parameters of these 
corrections are summarized in the distortion vector k.

The pinhole model is calibrated according to [4]. This 
method exploits the analogy between the pinhole camera 
and the direct linear transformation (DLT). The DLT 
describes the transformation between points on a plane P1
to another plane P2 via homography h. For camera 
calibration purposes a 2D chessboard is employed. The 
corners of the squares are used as calibration points. With 
the fact that all points lie in a 2D plane in 3D space, the 
orientation of the world coordinate system can be set in 
such a manner, that one coordinate of the calibration 
points equals zero. Thus we can describe the mapping of 
the i 3D world-points in the calibration-plane into the i
2D image-points by the DLT: 

i
wi hmm ,                                  (4) 

whereas h is the above mentioned homography-matrix. 
This equation is solved by least-square solvers. As the 
coordinates of the calibration points are known with 
respect to the coordinate-center of the chessboard, it is 
not necessary to know their exact 3D coordinates in 
space. So far non-linear effects of distortion have not 
been considered. To embed them in the mapping, a non-
linear optimization is run, using the following cost-
function [1]:  

n

i

m

j

i
wiiji g

ii 1

2

21
,,,

),,(min mtrk,a,m
trka,

.     (5) 

During calibration n=10 images, each containing m=100 
calibration-points (for each camera) are used. g is the 
mapping of the i-th 3D world-point . mi,j are the 
detected points in pixel-coordinates. Equation (5) is a 
non-linear optimization problem. We apply the 
Levenberg-Marquardt algorithm to obtain the optimal 
parameters a, r, t, and k.

i
wm

Before reconstruction, the 2D marker coordinates have 
to be extracted from the images. This is done by manually 
predefining a region of interest and applying a center-of-
mass refinement of the pixel intensities.  

Knowing the camera-parameters of equation (5) and 
the positions of both cameras to each other, the detected 
points can now be reconstructed. For this purpose the line 
of sight is reconstructed using the detected image-point 
mi and the projection-center ci (i = 1, 2) of camera 1 and 
2. In the ideal case, the reconstructed 3D point is the 
intersection point of the both lines. Because of occurring 
errors in real experiments the reconstructed point has to 
be approximated as the center of the shortest distance 
between the two lines.  

III. RESULTS

A. Application 
Using the proposed method, the vocal fold of a 65 year 

old male was reconstructed and analyzed. The sutures 
were sewn into the epithelium. Fig. 2 shows exemplarily 
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Figure 2: Model of a reconstructed vocal fold surface, a) in unloaded 
state, b) in loaded sate with an attached mass of 10 g. The 30 black dots 
in the middle represent the sewn location markers, the remaining ones 
serve as attached border. The black circle (b) indicates the working 
point of the applied force.  

the reconstructed vocal fold surface. In Fig. 2a) the vocal 
fold is in an unloaded state, in 2b) it is deformed by an 
attached mass of 10 g (~ 0.1 N). The force is pulling 
vertically upward on the first marker (posterior) in the 
topmost row. The working point of the force is indicated 
by the black circle. The 30 inner black dots represent the 
3D reconstructed location markers. The boundary dots 
are extrapolated with help of the coordinates of the 
location markers in the rows and columns respectively. 
They do not change their positions during the pulling and 
therefore act as attached border for the reconstructed 
vocal fold. The surface is created by generated triangles 
that connect the reconstructed marker positions and the 
boundary points, respectively.  

Fig. 3 shows the deformation characteristics of this 
vocal fold. Plotted are the deformations of the five 
location markers in the topmost row from posterior to 
anterior. The symbols represent the deformations of the 
location marker being pulled. The curves were fitted to 
the data according to [5] by: 

.       (6) )1()( xbeaxf

In this example a maximal deformation of the epithelium 
of approximately 6 mm was measured while applying a 
mass of 100 g to the vocal fold.  

Figure 3: Deformation characteristics of the epithelium of a human 
vocal fold. The data shows a non-linear trend for weights higher 20g.  

B. Camera calibration & reconstruction 
For error estimation we have to distinguish between 

errors made during camera calibration and errors 
occurring during the process of reconstruction. In the 
calibration step of the cameras a non-linear optimization 
problem has to be minimized to obtain extrinsic and 
intrinsic parameters of the cameras (eq. 5). For this 
approximation the rear projection error (RPE) is 
minimized. The error quantifies the difference between 
the mapping of a known 3D calibration point in the 
Euclidian space with the pinhole camera model and its 
detected coordinates in the image. Table 1 presents the 
RPEs of the two cameras after calibration. In the ideal 
case the RPE is zero. The RPE was analyzed regarding 
the isotropic and the anisotropic error. All appearing 
errors are in the sub-pixel range. The errors of camera 1 
and 2 are in the same magnitude, even though the errors 
of camera 2 are somewhat higher. 

Table 1: Rear projection errors occurring in the calibration step due to 
the minimization of the non-linear optimization problems: 

error camera 1 camera 2 
longitudinal [px] 0.48 0.49 
vertical [px] 0.35 0.42 
total [px] 0.65 0.72 

The isotropic error of both cameras was in the magnitude 
of approximately 0.7 pixels. With the intercept theorem 

o
i

O
I

,                                       (7) 

whereas I and O is the size of the image and object, 
respectively, i and o is the image distance and object 
distance, respectively, and under consideration of a pixel 
size of 4.65 m we can compute that this corresponds to 
an error of approximately 54 m.  
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Because of the RPE an image-point m is not projected 
into Euclidian space along a line, but into a cone around 
this line. This imprecision of the projection requires an 
approximation of the world-point mw during the 
reconstruction procedure as mentioned above. The error 
that occurs during the approximation-process of the 3D 
point mw is quantified by the reconstruction of the images 
of 15 x 10 calibration points lying in a 2D horizontal test-
plane. The points had a distance of 100 m to each other. 
In the ideal case all reconstructed points lie in a plane 
again. After the reconstruction process, the distances of 
the 3D points were calculated. The results are presented 
in Tab. 2. There you can see the mean distances between 
the reconstructed points and the concerning standard 
deviations. x1 and x2 are the basis-vectors of the 2D 
plane. x1 is perpendicular, x2 approximately parallel to 
the image-planes of the used cameras. The isotropic mean 
of 93.9 m represents an error of 6%. The error in x2-
direction ( ~ 20%) is more than twice the error in x1-
direction (~ 8%). 

Table 2: Mean distances of the reconstructed calibration points. 

IV. DISCUSSION

A method to measure the 3D deformations of human 
vocal folds was presented. The deformation 
characteristics of the analyzed vocal folds show a 
viscoelastic behavior. In the shown example (Fig. 2) the 
epithelium of the fold behaves nearly linear for low 
forces (up to 20 g = 0.2 N). For larger forces the 
deformations fade to saturation. This trend can be 
observed for all the five analyzed location markers. 
Consequently, the trend is independent of the longitudinal 
position of the suture on the vocal fold. This observation 
corresponds to results of [5] who analyzed the 
longitudinal deformations of canine vocal folds. The data 
in [5] was also fitted using equation (6). Although the 
trend is equal for all sutures, the elasticity of the 
epithelium is decreasing from posterior to anterior what 
can be seen on the shrinking amplitude of deformation in 
Fig. 2.  

The anisotropic error in the reconstruction process is 
pointing to a systematic error during the calibration step 
of the cameras. For the mapping of the 3D calibration-
points into the 2D image points the following ideal 
conditions are assumed: The test plane is ideally planar, 
the distances between the calibration-points are exactly 
100 m and there is no error during the detection of the 
mapped calibration points. All three assumptions cannot 
be fulfilled in real experimental conditions. Zhang did 
analyze the effects of such errors in his work [6]. He 

found, that deformations of the calibration pattern 
(cylindrical or spherical) are more serious than Gaussian 
noise during the detection of the mapped 2D calibration 
points. Relying on [6], the occurring errors are results of 
a non-ideal calibration pattern and not of an imprecise 
detection of the image points.  

V. CONCLUSION 

In static pulling-experiments of human vocal folds the 
tissue-deformations were extracted and analyzed. With 
help of the presented method it could be shown that the 
epithelium obeys to a viscoelastic behavior: For low 
applied forces a linear deformation-process was observed, 
for strong pull forces the deformations were non-linear. 
The human vocal folds exhibit the same trend of 
deformation as canine vocal folds [5]. The obtained 
deformation characteristics of the human tissue will be 
used to compute the material parameters of artificial 
vocal folds [7]. Those will be used to analyze the 
dynamic behavior of vocal folds in an in vitro model.  

distance
x1 108.2 ± 13.4 m
x2 80.0 ±   9.3 m
x1, x2 93.9 ± 15.9 m
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Abstract : We discuss a novel low-order mass-

spring model of human vocal folds with in-

compressible 1D flow. Our model consists of

three subsystems: a flow model, a nonsymmet-

ric mass-spring model for the vocal folds, and

a resonator representing the vocal tract (VT).

Keywords: Glottis model, Bernoulli flow, flow

induced vibrations

I. Introduction

This study addresses a mechanical glottis simula-
tor to act as the source for the wave equation model
of vowel production, see [4]. We require a validated
glottal flow/pressure signal simulator that is compu-
tationally less demanding than Navier–Stokes and/or
elasticity equations. We also use this model for study-
ing the vocal tract feedback effect in [1] where we ob-
serve some phenomena reported in [10] and [11]. In
this paper we validate our glottis model against the
LF-signal model proposed in [3]. This is carried out
by fitting the simulated pulse to LF-pulses measured
from three different types of phonation.
Our model consists of three subsystems: a 1D

flow model; a nonsymmetric, low-order mass-spring
model for the vocal folds; and a resonator represent-
ing the vocal tract (VT), based on the Webster’s equa-
tion. These subsystems are modelled using physically
sound mathematical approximations. Firstly, we use
the Bernoulli law and the mass conservation law for
a static flow. Secondly, the flow through the glottis is
assumed to be incompressible. Obviously, the flow is
not truly static because of the moving vocal folds, and
the Webster’s equation is based on the very assump-
tion that air is compressible. In addition to these
inconsistencies between subsystems, also the glottis
geometry is extremely simplified as, e.g., in the semi-
nal work [7].

II. Mathematical model

A. Flow

We assume an incompressible 1D air flow through
the glottal opening whose velocity vo satisfies

v̇o(t) =
1

CinerhH1

�
psub −

Cg

∆W1(t)3
vo(t)

�
, (1)

motivated by the Hagen–Poiseuille law; here psub is
the subglottal pressure (subtracted by the ambient air
pressure), and h is the width of the rectangular chan-
nel. The parameter Ciner regulates the flow inertia
and Cg regulates the pressure loss in the glottis. The
glottal opening is given by ∆W1 = g + w21 − w11 at
the narrow end (i.e., towards the supraglottal cavity).
The opening at the wide end (towards the trachea) is
∆W2 = H0+w22−w12; see Fig. 1 for these and other
used symbols.
In the glottis, the flow velocity V (x, t) is assumed

to satisfy the static mass conservation law for incom-
pressible flow

H(x, t)V (x, t) = H1vo(t)

where H(x, t) is the height of the channel in the glot-
tis. In our simple geometry it is

H(x, t) = ∆W2(t)+
x

L
(∆W1(t)−∆W2(t)), x ∈ [0, L].

Now the pressure p(x, t) in the glottis is given by the
two equations above and the (static) Bernoulli law

p(x, t) +
1

2
ρV (x, t)2 = psub.

Since both vocal folds have two degrees of free-
dom, this pressure can be reduced to a force pair
(FA,1, FA,2)

T where FA,1 effects at the narrow end of
the glottis ( x = L) and FA,2 at the wide end (x = 0).
This reduction is done by using the total force and
moment balance equations

FA,1 + FA,2 = h

L�

0

(p(x, t)− psub) dx,

L ·FA,1 = h

L�

0

x(p(x, t)−psub) dx−pc ·h
H1

2

H0 − H1

2
.

The moment is evaluated with respect to point
(x, y) = (0, 0) for the lower fold and (x, y) = (0, H0)
for the upper fold.
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Evaluation of these integrals yields


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

FA,1 = 1
2ρv2

ohL
�

−
H2

1

∆W1(∆W2−∆W1)
· · · (2)

+
H2

1

(∆W1−∆W2)2
ln

�

∆W2

∆W1

��

− H1(H0−H1/2)
4L hpc,

FA,2 = 1
2ρv2

ohL
�

H2

1

∆W2(∆W2−∆W1) · · ·

−
H2

1

(∆W1−∆W2)2
ln

�

∆W2

∆W1

��

+ H1(H0−H1/2)
4L hpc.

B. Vocal folds

The vocal fold model consists of two wedge-shaped
vibrating elements that have two degrees of freedom
each (see Fig. 1). The distributed mass of these el-
ements can be reduced into three mass points which
are located so that mj1 is at x = L, mj2 at x = 0, and
mj3 at x = L/2. The elastic support of the vocal folds
is approximated by two springs at points x = aL and
x = bL. Thus the equations of motion for the vocal
folds are
�

M1Ẅ1(t) +B1Ẇ1(t) +K1W1(t) = −F (t),

M2Ẅ2(t) +B2Ẇ2(t) +K2W2(t) = F (t)
(3)

where Wj = (wj1, wj2)
T are the displacements of the

right and left endpoints of the jth fold, j = 1, 2. Here
Mj, Bj , and Kj are the mass, damping, and stiffness
matrices, respectively

Mj = P

�

mj1 +
mj3

4
mj3

4mj3

4 mj2 +
mj3

4

�

,

Bj =

�

bj1 0
0 bj2

�

,

Kj = 1
P

�

a2kj1 + b2kj2 ab(kj1 + kj2)
ab(kj1 + kj2) b2kj1 + a2kj2

�

.

(4)

The entries of these matrices are computed by means
of Lagrangian mechanics. The damping matrices Bj

are diagonal since the dampers are located at the end-
points of the vocal folds. The springs are located
symmetrically around the midpoint x = L/2, so that
a = (L/2+ l)/L and b = (L/2− l)/L. The parameter
P is used for tuning the oscillation frequency.
During the glottal open phase, the load terms of (3)

are given by F = (FA,1, FA,2)
T as given in Eq. (2).

During the glottal closed phase (∆W1 < 0), there
are no aerodynamic forces except the counter pressure
from the VT. Instead, there is a nonlinear spring force
given by the Hertz impact model for the collision of
the vocal folds (see [5]):

FH =

�

kH |∆W1|
3/2 − H0−H1/2

2L
H1

2 h · pc
H0−H1/2

2L
H1

2 h · pc

�

.

Figure 1: The geometry of the glottis model and the
symbols used

C. Vocal tract

We use Webster’s horn model resonator as an
acoustic load. The Webster’s horn equation is

Ψtt(s, t)−
c2

A(s)

∂

∂s

�

A(s)
∂Ψ(s, t)

∂s

�

= 0

where c is the sound velocity and Ψ(s, t) is a velocity
potential. Note that p = ρΨt in the VT. The param-
eter s ∈ [0, LV T ] is the distance from the narrow end
of the glottis measured along the VT centreline and
LV T is the length of the VT. The area function A(·)
is the cross-sectional area of the VT, perpendicular to
the VT centreline. It is taken from the geometry of
[Section 4, 4] corresponding [ø:].
The resonator is controlled by the flow velocity vo

from Eq. (1) through the boundary condition at the
glottis end

Ψs(0, t) = −vo(t).

The boundary condition at lips is a frequency-
independent acoustic resistance of the form

Ψt(LV T , t) + θcΨs(LV T , t) = 0

where θ is the normalised acoustic resistance (see
[Chapter 7, 8]) regarded as a tuning parameter. This
boundary condition represents flow resistance p =
θρcv where v is the flow velocity through the mouth.
The resonator exerts a counter pressure pc(t) =

ρΨt(0, t) to the vocal folds equations (3) through
Eqs. (2), thereby forming a mechanical feedback loop
between the vocal folds and the vocal tract.
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III. Numerical simulation

The equations of motion (3) are solved with the
fourth order Runge–Kutta (RK) method, and the flow
equation (1) is solved with the implicit Euler method.
The VT is discretised by the Finite Element Method
using piecewise linear elements and the physical en-
ergy norm of the Webster’s equation. The Crank–
Nicolson method is applied for temporal discretisa-
tion. Especially the FEM-solver performs faster with
a constant time step, because the state update equa-
tions are the same, and we spare one matrix inversion
on every step. Thus we keep time steps ∆T constant
except when the glottis either closes or opens.
The load force in Eq. (3) is discontinuous (in fact,

singular) when ∆W1 → 0+. The singularity is re-
moved by replacing the aerodynamic force by zero
when ∆W1 < �. Since vo is small when ∆W1 is
small, the solution is not sensitive to the choice of
� > 0. The discontinuity is dealt with by locating the
time of closure/opening by interpolation and restart-
ing computation from there, see [pp. 12-14, 1]. For
this we use the second degree interpolating polyno-
mial so that numerical error is of order O(∆T 3). Be-
cause the number of the exceptional steps (at times
of opening or closure) does not depend on ∆T , the
total error is also of order O(∆T 3). The total error of
the RK-method is of order O(∆T 4) but considering
its smaller computational burden, this interpolation
method is an appropriate way to treat the discontin-
uous load in Eq. (3).

IV. Parameter estimation and model

validation

The model parameters are listed in Table 2. When
estimating model parameters, we use three LF-pulses,
obtained by fitting the LF-waveforms to glottal flow
derivatives, estimated from natural speech using an
automatic inverse filtering method [2]. Speech data
consisted of vowels [a:] produced in breathy, normal,
and pressed phonation by a male speaker.
The damping matrix in Eq. (3) is adjusted so that

Table 1: The inertance Ciner in Eq. (1) for different
LF-pulses. The Mean error 1 is the error from the
beginning of the pulse to the peak value and Mean
error 2 from the peak value to the closure.

Breathy Normal Pressed

Ciner ( kg
m4s) 524.8 530.9 630.8

Mean error 1 (%) 2.93 1.45 2.09
Mean error 2 (%) 4.14 3.07 2.14
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Figure 2: Three LF-pulses corresponding to breathy,
normal, and pressed phonation and the corresponding
simulated pulses after parameter tuning

the vibration is stable and sustained oscillation oc-
curs. The rest of the parameters in Eqs. (2) and (3)
are from literature (see Table 2). Note that only the
relative values of parameters psub, Ciner , and Cg in
Eq. (1) matter, and increasing the subglottal pres-
sure psub only increases the height of the pulse.

If the changes in ∆W1(t) are neglected, we have
three parameters characterizing the flow pulse: the
pulse length (parameter P ), the height (parameter
psub), and the inclination (parameter Ciner). The in-
ertance Ciner and the parameter P in Eqs. (1) and (4)
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are tuned so that the pulse shape matches optimally a
measured LF-pulse. Since the measured pulse height
has no scale, the parameters psub and Cg are tuned so
that their magnitudes are realistic and the total flow
(area) of the pulse matches that of the LF-pulse.

This parameter tuning is performed so that the in-
stants of maximal flow in the measured LF-pulse and
the simulated pulse coincide. The length of the pulse
(that is, parameter P ) and the parameter Ciner are
then varied in order to minimise the squared error
of the two pulses. The measured and the simulated
pulses after parameter tuning are shown in Fig. 2.
The optimal values of Ciner are shown in Table 1.

V. Conclusions

We presented a flow mechanical glottis model to be
used as a real-time source for a VT simulator. The
model is validated against three LF-pulses that have
been estimated by parameterising glottal flow deriva-
tives, obtained by inverse filtering natural utterances.
We conclude that LF-pulses corresponding to differ-
ent types of phonation can be faithfully constructed.

It is interesting to observe how the inertance term
Ciner in Eq. (1) increases monotonically when the
phonation type changes from breathy to normal, and
then to pressed. When producing pressed voices,
speakers use a vibration mode which is characterised
by a small abduction quotient (see [pp. 260, 9]) which,
in turn, results in a flow pulse with a shorter relative
length of the closing phase. The present study indi-
cates that this phenomenon is reflected as the increase
of the parameter value Ciner .

It is worth noting that here we have only optimised

Table 2: The model parameters

Source of the value
h, H0, L, l From [6]

H1 Through condition hH1 = A(0)
psub, Cg Only the relative magnitudes of

psub, Ciner and Cg are relevant.
g Set so that glottal area matches

typical observations
mij , kij From mechanical properties of

the model presented in [6]
bij Tuned so that sustained, stable

oscillation occurs
kH From [5]

A(·), LV T From [4]
θ Tuning parameter regulating

energy dissipation in the VT
P , Ciner Optimised (see Sec. IV)

the flow parameters of Eq. (1) according to measured
data. Depending on the type of phonation, a speaker
controls not only the subglottal pressure psub but also
the mechanical properties of the vocal folds, corre-
sponding to Eq. (3). For example, the glottis barely
closes during breathy phonation, whereas the glottal
vibration patterns are similar in all of our simulations.
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Abstract: Finite element method (FEM) was used for 
numerical simulation of the airflow field in a 
simplified model of the human vocal tract for vowel 
/a:/ with prescribed periodic oscillations of the vocal 
folds. The viscous fluid is modeled by 2D compressible 
Navier-Stokes equations in Arbitrary Lagrangian-
Eulerian (ALE) formulation and considering the 
turbulence. The computed flow field pattern is 
compared with the original experimental results 
obtained by Particle Image Velocimetry (PIV) 
method.  
Keywords: FEM, compressible Navier-Stokes 
equations, ALE method, k-  turbulence model, PIV 

 
I. INTRODUCTION 

The source of the human voice originates in an energy 
transfer of the air flowing from the lungs to the energy of 
the self-oscillating vocal folds and to the acoustic energy 
of the pressure fluctuations in the glottis that propagate 
subsequently through the acoustic resonance cavities of 
the human vocal tract to the mouth. The principles of the 
physical mechanism of such energy transfer into the 
acoustic pressure disturbances are not yet properly known 
and thus the experimental as well as theoretical studies on 
the flow field in the glottal region are currently 
encountered in papers on voice production modelling (see 
e.g. [1,2]). Here, the airflow velocity field in a simplified 
physical model of the vocal tract for vowel /a:/ with 
oscillating vocal folds is studied by numerical simulations 
and compared with the original measurement performed 
by the PIV method [3,4]. The computational domain is 
identical with the model of the airways used in the 
previous experimental study. 

II. METHODS 
 

The mathematical model of the viscous flow was 
considered in the form of unsteady compressible Navier-
Stokes equations taking into account the turbulence and 
large vibration amplitude of the vocal folds. The 
numerical simulation of the unsteady 2D air flow-field in 
the glottis was performed by the finite element method  
using the ANSYS software with the FLOTRAN CFD 
code for the fluid flow modelling. The changes of the 
computational fluid domain during the prescribed 
vibrations of the vocal folds were respected by the ALE 
method. The standard k-  turbulence model was used. 

The fundamental vibration frequency, subglottal pressure 
and amplitude of the vocal folds oscillations were 
prescribed according to the parameters setting used in the 
experiment [4].  

The computational domain was meshed by 15600 
quadrilateral-shaped 2D FLUID141 elements. The 
transient analysis was performed with the time step 

t =10-5 s for 10 oscillation periods of the vocal folds. 

lips

vocal folds

t=0.0570 s

t=0.0576 s

t=0.0583 s

t=0.0595 s

t=0.0608 s

t=0.0620 s

ai
r

 
Fig. 1 Numerical simulation of the airflow– example.
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In the experiments, the airflow was coming from a 

simplified model of the trachea entering the model of the 
laryngeal part of the vocal tract with the self-oscillating 
artificial vocal folds and ending by the mouth cavity. The 
glottal region also included the ventricular folds model 
[3,4]. 

III. RESULTS 
 

We present here the results computed for the velocity 
flow-field corresponding to the measurement for the 
average value of the subglottal pressure 900 Pa, air flow 
rate 0.25 l/s, fundamental vibration frequency of the 
vocal folds 158 Hz and the maximum vibration amplitude 

vocal folds

flowt=0.0570 s

t=0.0576 s

t=0.0583 s

t=0.0589 s

t=0.0595 s

t=0.0602 s

t=0.0608 s

t=0.0620 s

t=0.0627 s

t=0.0583 s

t=0.0589 s

t=0.0614 s

 
 

Fig. 2  Numerical simulation of the airflow field velocity in the glottal region during one oscillation period. 
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of the glottis opening 2.5 mm. A complete closure of the 
glottis, as existed in the experiment, was not possible to 
model theoretically, and a very small minimum glottis 
opening (0.2 mm) was assumed. instead of the glottis 
closure. The air temperature 293.15 K, density 1.225 
kg/m3 and dynamic viscosity 15x10-6 Pa.s were 
considered in the computations.  

The computed airflow velocity field is shown in Fig. 1 
at 6 selected time instants during the oscillation period 
including the cases of maximum (67.5 m/s) and minimum 
(21.7 m/s) flow velocity in the glottis. The flow field 
pattern computed at 10 time instants over the tenth 
oscillation period is presented in the glottis region in Fig. 
2. and the computational FE mesh is shown in detail in 
Fig. 3. Fig. 4 presents the time domain simulations of the 
glottal gap together with the axial xv  and lateral yv  
components of the airflow velocities and the pressure 
drop p  on the channel axis before entering the glottal 
region and in the narrowest cross-section of the orifice at 
two selected points numbered by 1 and 2 in Fig. 3. 

The streamlines evaluated from the PIV measurement 
in the glottis near the vocal folds during one oscillation 
cycle are shown in Fig. 5. The vibrating vocal folds 
recorded by a high-speed camera are shown on the right 
snapshot margin.  

 

IV. DISCUSSION 
 
The computed results show that even if the channel 
geometry and the vocal folds motion are perfectly 
axisymmetric the flow field velocity pattern is changing 
over one oscillation period from a more symmetric (see, 
e.g., the flow field for t=0.057 s in Fig. 2) to evidently 
asymmetric flow (see, e.g., the flow for t=0.0595 s). The 
jet is flapping from a center position to the upper wall in 
the laryngeal region (see Fig. 2). This behavior resembles 
to the effect known from stationary flows called Coanda 
effect. The main air stream is changing the pattern by 
inflowing the wider part of the channel (laryngeal cavity), 

where the large scale eddies are dominant, and then after 
inflowing to the narrower part of the channel (model of 
the epilarynx) the flow becomes uniform. Such 
qualitatively similar behaviour of the flow is possible to 
see in the experimentally obtained flow patterns (see Fig. 
5).  

Small-scale vortices computed in the model of the 
ventricular folds are produced as a result of the flow 
separation on the vibrating surface of the vocal folds 
model (see Fig. 2). The asymmetry of the flow (Coanda 
effect) is also possible to see in the model of the mouth 
cavity (Fig. 1). 

Fig. 4 shows that the numerical solution becomes 
periodic after first 2 – 3 periods of the glottis gap 
oscillation. The pressure at the entrance to the glottis (in 
the node denoted by 1 in Fig. 3) is oscillating around the 
prescribed input pressure drop p =900 Pa. The 
oscillations of the lateral flow velocity vy support the 
hypothesis on existence of the Coanda effect, this flow 
velocity in the narrowest cross-section of the glottal 

 
Fig. 4 Numerical simulation of 10 gap oscillation periods, 
axial and lateral flow velocity components and pressure 
drop at the points 1 (upper panel) and 2 (lower panel). 

flow

3  2  1

vocal
fold

 
Fig. 3  Detail of the FE mesh in the glottal orifice. 
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channel (in the node denoted by 2 in Fig. 3) is ca 10 times 
smaller then the maximum axial flow velocity vx. (see 
Fig. 2). 

 
V. CONCLUSION 

 
An asymmetric jet at the glottis and the formation of 

large-scale vortices in the larynx are possible to see in the 
experiment as well as in the numerical simulations. The 
similar values of maxima and minima of the airflow 
velocities were obtained both in the experiment and in the 
numerical simulations. The results are also in a 
reasonable qualitative agreement with the measurements 
performed for a driven glottis–shaped orifice [5] and for 
airflow measured downstream of the artificial vocal folds 
but without modelling the vocal tract [6]. Further 
numerical simulations should respect the 3D effects, 
which were found important in the experiments [2-6]. 
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Abstract

The basis of the human phonation process is given by
complex interaction of air flow in the larynx together
with structural mechanics of the vocal folds. This
paper presents a numerical scheme to model the
fluid-solid interaction in the human larynx and its
resulting acoustic sound.
The scheme is utilised to simulated the phonation
process in a 2D-model. Different geometries of the
vocal folds have been used to analyse the effect on
the fluid field, the vibration of the vocal folds and
the sound generation. The results show the self
sustained oscillation of the vocal folds and resolve the
Coanda effect.
Keywords: human phonation, fluid-structure inter-
action, aeroacoustic, finite element method

I Introduction

To simulate the process of human phonation the three
physical fields fluid-, solid-mechanics and acoustics are
taken into account. Fluid flow describes the airflow
through the larynx, which brings the vocal folds to
vibrate, and in turn changes the fluid domain. Both,
fluid flow and vocal fold vibration, generate sound
which propagates through the larynx known as human
phonation. The fluid field is modelled with the in-
compressible Navier-Stokes equations. The solid field
is described by the Navier’s equation and the acoustic
sound propagation is described by the inhomogeneous
wave equation based on Lighthill’s analogy. The cou-
pling between fluid-solid and solid-acoustic is based on
continuum mechanics, while the acoustic source term
inside the fluid are computed via Lighthill’s analogy.
Each of these physical fields is discretised by the finite

element method.
Latest finite element laryngeal models have been pre-
sented by [9] and [8]. A different approach, based on
the immersed boundary method, can be found by [7].

II Methods

In the following, the relevant physical fields for the
phonation process and their coupling will shortly be
described. The arising partial differential equations
(PDEs) are all solved by applying the Finite-Element
method (FEM). For a detailed discussion we refer to
[5, 6].

II.1 Fluid mechanics

The governing set of partial differential equations for
the fluid mechanics is given by the momentum and mass
conservation

ρ
∂v
∂t

+ρ(v ·∇)v+∇p−µ∆v = 0 , (1)

∇ ·v = 0 , (2)

with v the flow velocity, ρ the fluid density, p the
hydrodynamic pressure and µ the dynamic viscosity.
The equations hold for incompressible fluids which
may be assumed due to the fact that for the consid-
ered application the Mach number is smaller than 0.3.
The computational domain of the fluid flow constantly
changes since the vocal folds move and hence define
the fluid boundary. The difficulty has been tackled
by utilising the Arbitrary-Lagrangian-Eulerian (ALE)
approach (for details see [1, 2]).
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II.2 Solid mechanics

The mechanical displacement u of the vocal folds are
modelled by Navier’s equation

∇ ·σs = ρs
∂2

∂t2u , (3)

where σs denotes the Cauchy stress tensor and ρs, the
density of the solid. Introdcuing the tensor of elasticity
[c] and tensor of linear strain [S], allows us to express
Hook’s law by

σs = [c][S] (4)

and the linear strain-displacement by

[S] = ∇symu. (5)

Substituting (4) and (5) into (3) results in the final PDE
for linear elasticity

BT [c]Bu = ρs
∂2

∂t2u (6)

with the differential operator B (here given explicitly
for the 2D plane case

B =




∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x


 . (7)

II.3 Fluid-solid interaction

The air and vocal folds share a common interface Γfs so
that the nodes for both fields must coincide, given by

xf =xs on Γfs . (8)

Fluid velocity and the first time derivative of the solid
displacement are identical since the fluid adheres at the
body resulting in the following condition

v =
∂
∂t

u on Γfs . (9)

This implies for solid mechanics the following inhomo-
geneous Neumann boundary condition

[σs] ·n = [σf] ·n on Γfs (10)

describing the equivalent of fluid stress [σf] and solid
stress [σs] in normal direction n. The fluid stresses can
be written explicitly by the hydrodynamic pressure p

and fluid velocityv as

σs = ρf

Z

Γfs

−pI ·ndx

  
pressure

(11)

+
Z

Γfs

µ

∇v+(∇v)T ·n


dx

  
shear

. (12)

Having Dirichlet boundary condition for the fluid and
Neumann boundary conditions for solid mechanics,
the fluid-solid interaction is also called Dirichlet-to-
Neumann problem.

II.4 Acoustic field

As a basis taking the equation of continuity and momen-
tum, Lighthill’s equation in pressure form is derived (for
details see [4])

1
c2
∂2 p

∂t2 −∆p = ∇ · (∇ ·T) , (13)

with c is the speed of sound and T the Lighthill tensor

Ti j = ρfviv j  
Reynolds stress

+ τi j
Viscous stress

(14)

+[(p− p0)− c2(ρf−ρ0)]δi j  
Heat conduction

. (15)

Thereby, p0 denotes the mean pressure, ρf the fluid
density and ρ0 its mean density. Viscous stress may
be neglected [4] and the heat conduction is assumed to
be zero, which leads to the following approximation of
(15)

Ti j ≈ ρfviv j. (16)

The oscillation of the vocal folds induce sound, which
is a surface coupled phenomenon. Along the moving
boundary Γfs the following relation for the mechanical
surface and the acoustic pressure needs to be fulfilled

∂
∂t

u ·n =va ·n on Γfs . (17)

Condition (17) forces that the acoustic particle velocity
va are identical to the surface velocity in normal direc-
tion. For the considered case it is assumed, that there is
no back reaction of the acoustic onto the solid. Using
the linearised Euler equation

∂
∂t

va ·n =− 1
ρf

∂
∂n

p (18)
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Figure 1: Asymmetric air flow, the jet attaches to the trachea
wall - coanda effect.

the source term in acoustic pressure formulation is

∂
∂n

p =−ρf
∂2

∂t2u ·n on Γfs. (19)

For the FE formulation and its verification we refer to
[3].

Results

The geometric setup of the vocal folds have been
adopted from the model presented in [8] and inserted
into our computational domain. A fluid pressure condi-
tion is given at inflow and outflow of the domain.
The resulting simulations shows the development of
the Coanda effect - the air jet at the glottis randomly
attaches to either side of the trachea wall, as shown
inf Fig. 1. Furthermore, the occurring fluid flow forces
realistic self-sustained vocal fold oscillation. The vibra-
tions of the vocal folds have been analysed and show for
different forms different frequencies in their movement.
An eigenfrequency analysis shows that the vibrational
frequency correlates with the first eigenfrequency of the
vocal folds. The generated sound showed dominant
peaks in the frequency domain, which vary with the
geometric form of the vocal folds.

Conclusion

A computational scheme has been presented to simulate
the human phonation process with all relevant physical
fields. To the author’s best knowledge this fully cou-
pled scheme is novel. The model is applicable for a
parameter study, to analyse the effect of different forms
of vocal folds and different pressure conditions for in
and outflow on the acoustic sound.
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RECORDING SPEECH DURING MRI: PART II

J. Malinen, P. Palo
Dept. of Mathematics and Systems Analysis, Helsinki Univ. Tech., Espoo, Finland

Abstract : We design and construct a recording
arrangement for speech during an MRI scan of
the speakers vocal tract. We concentrate on
the acoustic environment around the test sub-
ject inside the MRI machine. The data thus
obtained is used for construction and valida-
tion of a numerical model of the vocal tract.
Keywords: Speech recording, MRI, acoustic
wave guides

I. Introduction

We model vowel production by the wave equation,
see [5]. For the vocal tract, we use a boundary con-
trolled wave equation and the corresponding reso-
nance model (i.e., the Helmholtz equation) which we
solve with FEM. A similar approach has been taken
in, e.g., [9]. As a source for the wave equation, we use
a flow mechanical glottis model introduced in [1], [2].
To validate and tune the vocal tract model, we need
to extract formants and their bandwidths from speech
and singing signals. These signals must be recorded
in high quality during an MRI scan.
The present article is the latter part of a descrip-

tion of the sound recording arrangement based on an
acoustic sound collector and wave guides; see [6] for
the first part. We now concentrate on the acoustics
around the test subject inside the MRI machine in
the measurement configuration shown in Fig. 1b.
The acoustic signals are captured by the sound col-

lector, see Fig. 1a, whose position with respect to the
test subject is as in Fig. 1b. The collector is a two-
channel device that operates by the same principle as
a differential microphone. It has separate horns for
speech and noise — one on each side — that lead to
the wave guides. As explained in [6], both sound chan-
nels are acousticly transmitted by wave guides to a
microphone assembly inside a Faraday cage. Because
the noise cancellation is realized by analog electron-
ics, the de-noised signal can be fed back into subject’s
earphones without delay.
The recording equipment has been designed for

recording speech and singing signals for research pur-
poses. Further engineering effort is required to make
the device suitable for clinical practice.

(a) (b)

Figure 1: (a) The sound collector and a reflector
paraboloid suspended from a temporary measurement
suspension (shown with a cm scale ruler), (b) Mea-
surement arrangement for near field acoustics of the
sound collector

II. Challenges and solutions

A. Engineering challenges

The MRI room is a quite challenging sound record-
ing environment. There is acoustic noise of about
90 dB(SPL) during the imaging sequence. The noise
arrives to the sound collector with different delays be-
cause of multi-way propagation. A Siemens Magne-
tom Avanto 1.5 T MRI machine produces a static
1.5 T magnetic field, and an imaging sequence pro-
duces an electromagnetic field at 64 MHz with a peak
power of several kW. Because of safety and image
quality considerations, no metal or electronics can be
taken near the test subject. For speech naturality,
comfortability of the test subject is important [4].

B. Technical solutions

The sound collector is completely passive, metal
free, and without moving parts. The wave guides de-
tach from the sound collector so as not to hinder tak-
ing the subject out from the machine. The collector
is fully compatible with MR safety requirements and
does not cause any artefacts in the images. It fits on
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the head coil of a Siemens Magnetom Avanto 1.5 T
machine. The test subject lies in supine position in-
side the MRI machine. The sound collector is about
30 mm away from the lips.
The ambient noise is partly removed by the two-

channel recording arrangement (as shown in [Fig. 5,
6]), and partly by attenuation material carefully
positioned inside the MRI machine. For acoustic
impedance adjustment, both horn surfaces of the col-
lector are covered with attenuation material that also
takes care of exhalation noise.
On top of the sound collector in Fig. 1a, there is

a reflector paraboloid that widens the incoming noise
beam by shadowing it in the middle. Without such
a reflector, the noise sample gets collected in an un-
desirably narrow angle. The test subject affects the
acoustic impedance (hence, the frequency response)
of the speech channel, and the form and distance of
the paraboloid are tuned to approximate the same ef-
fect on the noise channel side. The noise cancellation
is succesful when the acoustic impedances are close to
each other.
See [6] and [8] for details of the components not

described here.

C. Measurement approximations.

To simplify analysis, we divide the acoustic space
into two parts. We regard a sphere of radius 8 cm
around the center point of the sound collector as the
near field. The characteristic curves (such as Fig. 2)
of the whole recording equipment are particularly sen-
sitive to near field phenomena. In the far field, noise
and its reflections from the MRI machine require most
attention.
To further simplify analysis, we divide the fre-

quency range according to the near field length scale:
low frequencies under 2 kHz (λ/2 > 8 cm), middle
frequency range 2 – 4.4 kHz (4 cm < λ/2 < 8 cm),
and high frequencies above 4.4 kHz (λ/2 < 4 cm). At
low frequencies, the two channel noise cancellation is
most effective when the inconvenient longitudinal res-
onances of the wave guides are properly controlled by
wave guides’ impedance terminations. At high fre-
quencies, propagation of noise can be understood by
the ray optical approximation but severe complica-
tions in active noise cancellation are caused by phase
differences due to multi-way propagation. The mid-
dle frequency range has none of the good and all of
the bad qualities. In such case, the only reasonable
solution is the placement of damping material around
the test subject, based on trial and error.
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Figure 2: Frequency responses of the speech chan-
nel (above) and the noise channel with various reflec-
tor positions (below) in mm with attenuation in dB
and frequency in Hz. Note that the amplifications of
the speech and noise channels are different to improve
readability.

III. Characteristic curves and tuning

In the measurements we have a two fold objective:
First, to understand the near field behaviour in terms
of acoustic impedances and frequency responses. Sec-
ond, to understand the constraints posed by near field
engineering on the technical solutions of the far field
problems.
To tune the equipment and to obtain necessary fre-

quency responses for sound post-processing by DSP,
we carried out several near field measurements in an
anechoic chamber from physical models, see Fig. 1b.
We return to acoustic measurements with physical
models when weeding out artefacts from acoustic data
measured from a test subject.

A. Frequency responses

The frequency responses of the speech and noise
channels are given in Fig. 2. The noise channel re-
sponse is measured with several paraboloid positions.
The frequency responses of both channels are very
similar as expected from the symmetrical construction
of the channels. This is a prerequisite for the noise
cancellation to work by analogue signal subtraction.
The data in Fig. 2 has been measured using the

experimental setting of Fig. 1b. The tip of the refer-
ence microphone probe, see Fig. 4b, is placed at the
distance of 5 mm above the surface level of the sound
collector at the center of the corresponding horn. The
frequency responses of the channels have been deter-
mined with respect to the sound pressure at these
reference points. Note that the speech channel is mea-
sured using the point source in Fig. 4a, and the noise
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Figure 3: Original and averaged (raised by 20 dB)
spectrum of a long production of recorded within
an anechoic chamber

channel using a plane wave source that resembles the
interior surface of the MRI machine.

B. Tuning the reflector paraboloid

As can be seen from Fig. 2, the paraboloid posi-
tion does not significantly affect the low frequency
response of the noise channel. Thus, the paraboloid
position and size can be optimised according to the re-
quirements of the middle frequency range 2 – 4.4 kHz
without compromising the noise cancellation proper-
ties in the low frequencies. The optimisation objec-
tives in the middle frequency range are both the in-
coming noise beam shape and noise cancellation (to
the extent it is feasible).

IV. Speech recording experiment

We recorded a full set of Finnish vowels produced
by both authors. We did not use any model of
the MRI device or its noise. The formant peaks at
0.42 kHz, 1.41 kHz, 2.09 kHz, 3.28 kHz, 4.23 kHz,
and 5.22 kHz are very clearly visible in spectrograms
even without any DSP compensation, see Fig. 3. The
glottis pulse is easily recoverable, too.
A typical MRI device produces a sparse and spiky

noise spectrum — i.e., the sound energy is restricted
to few fairly narrow frequency bands and their super-
harmonics. Given the linearity of the recording equip-
ment (the microphones are the dominating source of
nonlinearity), it is possible to separate speech from
the residual noise in frequency domain. This is car-
ried out by recording a priori noise spectrum data
when the silent test subject lies in the MRI machine
during an imaging sequence.

(a) (b)

Figure 4: (a) Acoustic point source, (b) Reference
microphone probe (right), microphone units of type
Panasonic WM-62 (middle)

V. Construction of laboratory equipment

In addition to the equipment described below, we
use a loudspeaker assembly for simulating the ambi-
ent (noise) field. Custom Matlab 7.4 code was writ-
ten to generate weighted sweeps, and to estimate and
compensate frequency responses.

A. Sound source and face model

We constructed an acoustic point source and
a natural size face model shown in Fig. 4a and Fig. 1b,
respectively. The horn of the point source can be
placed at the mouth of the face model.
A practically constant, sufficiently high amplitude

sound pressure can be obtained above 300 Hz when
the point source is fed by a properly weighted sinusoid
sweep signal. Then the virtual source point is at the
center of the exponential horn opening on the right
in Fig. 4a. Because of the dimensions of the source,
acceptable signal cannot be produced under 300 Hz.
Fortunately, the recording equipment requires little
attention at these low frequencies.
For validation, we measured the polar patterns of

the source at the distance of 35 mm from the virtual
source point with and without the face model. The
patterns are presented in Fig. 5 at frequencies 0.5, 1,
2, and 4 kHz. Even with the face model, the ampli-
tude variation stays within an acceptable 3 dB range.

B. Reference probe

In the near field measurements, even the small
∅ 9 mm reference microphone requires a special
probe to avoid considerable distortion in the results.
The probe and some microphone units are shown
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Figure 5: Polar pattern of the point source at 35 mm
with (right) and without (left) the face model for an-
gles between 0◦ and 90◦ and attenuation in dB

in Fig. 4b. The probe can be seen extending from
the lower right corner in Fig. 1b. It is 150 mm long
and of ∅ 2 mm. Its frequency response was measured
using the sound source shown in [Fig. 6, 6].

VI. Conclusions

We have described equipment and characteristic
curve measurements for a recording arrangement of
speech during an MRI scan. Up to 4.4 kHz, the pre-
sented equipment performs essentially like a pair of
microphones in dipole configuration. For a detailed
discussion, see [8].
The space around the subject in the MRI machine

contains reflecting surfaces, and the sound collector
receives strong echoes of high frequency noise in dif-
ferent phases. For this reason, the active dipole based
noise cancellation cannot be expected to work well for
frequencies over 2 kHz. Instead, passive attenuation
material must be placed inside the MRI machine. The
position of the damping material is most easily de-
termined empirically in the imaging situation, rather
than by using mathematical or physical models.
There are comparable systems that are based on

fiber optics (e.g., [3], [7]). Some of the challenges in
acoustic and optical solutions are the same, such as
the multi-way propagation of noise. Acoustic equip-
ment is larger than optical, and additional complica-
tions from various acoustic impedances require more
attention. With acoustic equipment, however, linear-
ity is always guaranteed if the microphones are used
within their operational limits; the non-microphonic
sound collector is immune to vibrations; and the
recording arrangement can be easily modified to meet
a great variety of practical situations.
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