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Introduction

In recent years, atomic physics has evolved from a branch of science in which mat-
ter is only investigated, primarily by means of spectroscopy, to a platform in which
quantum matter is synthesized in its most exotic forms. This breakthrough has been
enabled by the realization of degenerate quantum gases of neutral bosonic (Anderson
et al., 1995; Davis et al., 1995) and fermionic atoms (DeMarco and Jin, 1999), that
allow the realization of systems characterized by a high degree of tunability over sev-
eral quantum properties. Optical lattices (Bloch, 2005; Jaksch and Zoller, 2005) have
played a major role in this context, due to the possibility offered by this tool to mimic
the physics of electrons in solids in a clean environment, free from the defects of real
systems (Lewenstein et al., 2007; Bloch et al., 2012; Gross and Bloch, 2017). Optical
lattices are extremely flexible systems in which a considerable number of quantum pa-
rameters, such as the tunnelling strength, the interaction energy or the geometry, can
be directly controlled by means of a proper engineering of the optical potentials (Bloch
et al., 2008). From this prospect, optical lattices represent an ideal platform to realize
Feynman’s famous idea of a quantum simulator (Feynman, 1982) in which the Hamil-
tonian of a complex quantum system is mapped onto the Hamiltonian of the simulator,
which in turn reproduces the original dynamics of the system in a controllable way
(Buluta and Nori, 2009; Georgescu et al., 2014). This approach could overcome the
limitations imposed by actual available computer capabilities, allowing the resolution
of problems for which an excessive amount of resources would be requested, such as
the time evolution or the determination of the ground-state of quantum many-body in-
teracting systems (Trotzky et al., 2012). An interesting feature of quantum simulators
is the possibility to reproduce only a defined subset of properties of a more complex
system, realizing in this way implementations of simpler toy-model of the specific phe-
nomenon of interest. In particular, the realization of toy-models of quantum-Hall sys-
tems is a current trend in the context of quantum simulation, in which neutral ultracold
quantum gases trapped in optical lattices potentials have emerged as a promising tool
(Dalibard et al., 2011; Goldman et al., 2014; Aidelsburger et al., 2011, 2013; Struck
et al., 2012; Jiménez-García et al., 2012; Galitski and Spielman, 2013). These systems
allow both to shed light on some elusive phenomena and to access regimes of incred-
ibly high magnetic fields which are impossible to obtain in real solid-state systems,
paving the way to the observation of exotic phases of matter. This kind of investiga-
tion is strongly related to the physics of topology and topological insulator (Goldman
et al., 2016), in which the interplay between magnetic fields, spin-orbit coupling and
interactions gives rise to a series of fascinating effects (Hasan and Kane, 2010; Kane
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and Mele, 2005; Kane and Moore, 2011).
This thesis fits with this context and mainly deals with the simulation of some fun-

damental properties of quantum-Hall systems by means of fermionic Ytterbium (Yb)
atoms confined in optical lattices. Yb is an alkaline-earth-like atom with an electronic
structure analogous to the one of the elements of the second column of the periodic ta-
ble. Two-electron atoms have emerged as a promising tool in the quantum simulation
framework due to their rich internal structure which can be used to expand the range
of possibilities offered by alkali atoms, for example in the simulation of multicom-
ponent and multi-orbital Hubbard and spin models (Gorshkov et al., 2009; Cazailla
and Rey, 2014). A major property of this class of elements is the presence of elec-
tronically excited metastable levels (or clock states) characterized by lifetimes of the
order of several seconds (Porsev and Derevianko, 2003; Porsev et al., 2004) which
have enabled the realization of the most accurate atomic clocks (Hinkley et al., 2013;
Bloom et al., 2014), paving the way to a redefinition of the SI second (Derevianko and
Katori, 2011; Poli et al., 2013; Ludlow et al., 2015). Remarkably, these metastable
states generate a lot of interest also in the context of quantum simulation, where they
are treated as a second ground-state of the system. In this thesis we exploit the ability
to control this orbital degree of freedom to experimentally investigate some recently
proposed schemes of quantum simulation aimed to the realization of toy-models of
quantum-Hall systems.

We start with the demonstration (Livi et al., 2016) of the possibility to imple-
ment Spin-Orbit Coupling (SOC) with single-photon clock transitions in a system
of fermionic 173Yb atoms trapped in a one-dimensional optical lattice, using as pseu-
dospin states the fundamental level and the clock state 3P0 (Wall et al., 2016). This
orbital approach to the synthesis of SOC in ultracold gases allows us to overcome
some of the limitations imposed, for example, by Raman schemes (Lin et al., 2011),
where heating due to the presence of intermediate levels have detrimental effects in
the observation of many-body processes.

The implementation of synthetic SOC is the base for a second major experiment in
which we exploited the clock coupling to realize an artificial magnetic field for atoms
trapped in an optical lattice. The scheme that we adopted relies on the concept of syn-
thetic dimension, which is based on the interpretation of an internal degree of freedom
of the atom as an extra dimension of the system (Boada et al., 2012; Celi et al., 2014).
The combination of a real one-dimensional optical lattice with a two-site synthetic di-
mension mapped on the fundamental and clock levels of 173Yb allowed us to simulate
a two-leg hybrid ladder geometry (Livi et al., 2016). An artificial magnetic field nat-
urally arises in this hybrid 2D lattice as a consequence of the phase imprinted on the
atoms by the clock coupling between the synthetic sites. Despite the reduced geom-
etry, this system features some of the fundamental properties of larger Hall systems,
one of which is the presence of chiral currents that counter-propagate along the edges
(Hügel and Paredes, 2014). We demonstrated the possibility to induce and detect these
currents in our artificial system and characterized for the first time their strength as a
function of the synthetic flux, a result impossible to achieve in real solid-state systems
where magnetic fields of the order of several thousand of Tesla would be required.

This approach to the realization of an artificial gauge field for neutral atoms could
be virtually extended to any stable atomic degree of freedom for which a coherent cou-

12

pling can be induced. In particular, we also implemented a similar scheme mapping
the synthetic dimension on the nuclear spins of the fundamental level of 173Yb and re-
alizing the coupling by means of two-photon Raman transitions (Mancini et al., 2015).
Similar experiments have been performed with this system, in which the emergence
of chiral currents in two- and three-leg ladder geometries has been investigated.

The orbital degree of freeedom of 173Yb can also be exploited to control a new
kind of Feshbach resonance, which allows us to tune the scattering properties in a mix-
ture of atoms in different orbital states (Zhang et al., 2015; Cheng et al., 2016). The
possibility to tune interactions by means of standard Feshbach resonances (Chin et al.,
2010) lacked in two-electron atoms, due to the absence of a hyperfine structure in the
fundamental state. We instead experimentally demonstrated (Pagano et al., 2015) how
a similar mechanism is possible also for this class of elements, provided that atoms in
two different electronic states are considered. In particular, we exploited the orbital
Feshbach resonance (OrbFR) mechanism to realize a strongly interacting two-orbital
gas of 173Yb and characterized the resonance position. The interaction tunability of-
fered by OrbFRs can in future be exploited in combination with the orbital synthetic
dimension scheme to investigate the effect of interactions in Hall-like systems, which
is a currently debated topic (Barbarino et al., 2015, 2016).

The thesis is organized as follows:

• Chapter 1 introduces the fundamental properties of Ytterbium, in particular fo-
cusing the attention on the emergence of SU(N ) interactions and spin-exchange
symmetries (Gorshkov et al., 2009). This introduction is followed by a summa-
rizing description of the experimental setup in which the laser systems and the
cooling procedure which enables us to obtain a degenerate Yb gas are discussed.
Along with this description, a review of the various optical techniques that we
developed in order to manipulate and detect the orbital and spin degrees of free-
dom of Yb atoms is presented. We also briefly introduce the physics of atoms
in optical lattices and the formalism of Wannier functions, that constitute a key
ingredient for the experimental results presented throughout this work.

• In Chapter 2 the fundamental properties of quantum Hall physics are intro-
duced. This theoretical introduction mainly deals with the aspects of quantum
Hall systems that we experimentally investigate in chapters 4 and 5, which are the
presence of edge states, their connection with topology and spin-orbit coupling.
Quantum Hall theory is then reviewed from a lattice perspective, introducing
the concept of Peierls phase (Peierls, 1933) and discussing how the presence of
a magnetic field affects a ladder system or a larger 2D lattice, giving rise to the
Hofstadter spectrum (Hofstadter, 1976). The final part of the chapter is instead
devoted to a description of the various techniques developed to simulate this
kind of physics with ultracold quantum gases, with a main focus on the synthetic
dimension approach, which constitutes the core of the experimental part of this
work.

• Chapter 3 reviews some of the fundamental properties of the 1S0 → 3P0 clock
transition excitation in 173Yb. After an introduction of the fundamental physical
properties of this peculiar transition, its experimental addressing is discussed.
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Along with this description, a review of the various optical techniques that we
developed in order to manipulate and detect the orbital and spin degrees of free-
dom of Yb atoms is presented. We also briefly introduce the physics of atoms
in optical lattices and the formalism of Wannier functions, that constitute a key
ingredient for the experimental results presented throughout this work.

• In Chapter 2 the fundamental properties of quantum Hall physics are intro-
duced. This theoretical introduction mainly deals with the aspects of quantum
Hall systems that we experimentally investigate in chapters 4 and 5, which are the
presence of edge states, their connection with topology and spin-orbit coupling.
Quantum Hall theory is then reviewed from a lattice perspective, introducing
the concept of Peierls phase (Peierls, 1933) and discussing how the presence of
a magnetic field affects a ladder system or a larger 2D lattice, giving rise to the
Hofstadter spectrum (Hofstadter, 1976). The final part of the chapter is instead
devoted to a description of the various techniques developed to simulate this
kind of physics with ultracold quantum gases, with a main focus on the synthetic
dimension approach, which constitutes the core of the experimental part of this
work.

• Chapter 3 reviews some of the fundamental properties of the 1S0 → 3P0 clock
transition excitation in 173Yb. After an introduction of the fundamental physical
properties of this peculiar transition, its experimental addressing is discussed.
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Spectroscopy in the Lamb-Dicke regime (Dicke, 1953) is introduced and the
advantages of this technique in terms of spectroscopic resolution are presented,
focusing the attention on the capability of our clock laser system to enable the ob-
servation of interaction- and sideband-resolved spectra. The possibility to long-
term stabilize our clock laser on an absolute reference through a fiber link with
a metrological institute (Clivati et al., 2016) is discussed in the final part of the
chapter. Remarkably, thanks to this long-term stabilization, we have been able
to improve the absolute value of the 1S0 → 3P0 transition for 173Yb by two
orders of magnitude with respect to the value previously reported in literature
(Clivati et al., 2016). These last topics also constitute a major part of the PhD
thesis of my colleague Giacomo Cappellini (Cappellini, 2016).

• Chapter 4 reports the main experimental results of this work, in which we have
exploited the orbital degree of freedom of 173Yb for quantum simulation pur-
poses (Livi et al., 2016). The possibility to implement synthetic spin-orbit cou-
pling (SOC) between two different orbital states of 173Yb atoms trapped in opti-
cal lattices is demonstrated through spectroscopic techniques, detecting the SOC-
induced broadening of the transition spectrum (Wall et al., 2016). The realization
of an artificial magnetic field for neutral atoms with the synthetic dimension ap-
proach is then demonstrated using as an extra dimension the two long-lived elec-
tronic states of 173Yb. We have directly measured the chiral currents circulating
on the resulting two-leg ladder, probing them as a function of the synthetic flux
and comparing the results with a theoretical model. The final part of the chapter
deals, instead, with the realization of a strongly interacting 173Yb gas exploiting
the orbital Feshbach resonance mechanism. In this experiment, the enhancement
of interactions is detected observing and evaluating the hydrodynamic expansion
of the gas (Pagano et al., 2015).

• Chapter 5 reviews the complementary approach that we investigated to imple-
ment an artificial magnetic field for neutral atoms, in which the synthetic dimen-
sion is realized exploiting the nuclear-spin degree of freedom of the fundamental
level of 173Yb. Two- and three-leg ladder geometries are realized and the emer-
gence of chiral currents and skipping orbits has been observed (Mancini et al.,
2015). This topic also constitutes the main subject of the PhD thesis of my for-
mer colleague Marco Mancini (Mancini, 2016).

• Chapter 6 is instead devoted to some recent results, deviating from the main
object of this thesis, in which the properties of clock excitation in bosonic 174Yb
have been investigated (Franchi et al., 2017). By means of high-resolution spec-
troscopic measurements on particles confined in a 3D optical lattice, the scatter-
ing lengths and loss rate coefficients for atoms in different collisional channels
involving the ground level 1S0 and the metastable state 3P0 are derived. These
quantities, that at our knowledge were still unreported in literature before our
work, set important constraints for future experimental studies of two-electron
atoms for quantum-technological applications.
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Chapter 1
Making a degenerate Ytterbium gas

Ytterbium (Yb) shares with alkaline-earth metals a similar electronic configuration in
which the main features are the presence of two electrons in the outermost s shell and
a closed configuration for all the other inner shells. As for the elements of the second
group of the periodic table, the lowest-energy excited levels of Yb are determined
by excitations of one of the two external electrons that can combine either in singlet
(S = 0) or triplet (S = 1) states. In particular, the fundamental level of Yb is the
singlet state 1S0. Quantummechanics selection rules forbid dipole transitions between
singlet and triplet states since the electric dipole operator cannot change the spin of
an electron. Selection rules are however strictly observed only in lighter elements
and this is not the case of Yb. In heavier atoms the L − S coupling scheme is less
accurate since fine-structure corrections become more important as the atomic number
increases. As a consequence of this, the quantum number S is not exactly defined and
intercombination transitions between states with different spin become possible.

Among these transitions, two in particular assume an important role in the physics
of ultracold atoms. The first is the intercombination transition 1S0 → 3P1, which
is commonly employed in laser-cooling schemes. The reduction of validity of the
L − S coupling scheme in Yb is well exemplified by the linewidth of this transition
which in Yb is Γ ≃ 2π×180 kHz, a value several orders of magnitude higher than
the one found in lighter two-electron elements such as Mg (0.048 kHz) or Sr (7.4
kHz), for which fine-structure corrections are less important. The other fundamental
intercombination transition is the one connecting the ground level with the triplet state
3P0. This is a doubly forbidden transition in which in addition to the spin conservation
rule also the angular momentum conservation rule is violated. As a consequence of the
violation of two selection rules this transition is characterized by a strongly reduced
linewidth (few tens of mHz for fermionic Yb), which results in an impressive Q-factor
of the order of 1016 that makes it ideal to be exploited for the realization of atomic
clocks (Poli et al., 2013; Ludlow et al., 2015; Porsev et al., 2004). Moreover, due to
the Heisenberg uncertainty principle, the extremely precise definition of the transition
energy is accompanied by an exceptionally long lifetime of the 3P0 state (∼ 20 s in Yb)
if compared with typical atomic levels. This metastable state can somehow be treated
as a second ground state for the atomic system, a feature which paves the way for many
quantum simulation schemes (Gorshkov et al., 2009; Cazailla and Rey, 2014).

In this chapter we firstly outline the principal physical and chemical properties of
Yb, focusing the attention on the transitions employed in the context of the physics of
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174
173.939
(31.83) 0 0 105 -588.0 2386 551536050(10)

176
175.943
(12.76) 0 0 -24 -1097.3 1431 -

Table 1.1: Principal properties of the stable Yb isotopes. In order from left: mass
in atomic units (1u=1.660539040(20)×10−27 kg) and relative isotopic abundance, nu-
clear spin, nuclear magnetic moment, scattering length in the fundamental state, iso-
topic shift of the 1S0 → 1P1 calculated with respect to the 173Yb (F = 5

2 − 7
2 ) transi-

tion (νx − ν173), isotopic shift of the 1S0 → 3P1 calculated with respect to the 173Yb
(F = 5

2 − 7
2 ) transition (νx − ν173), isotopic shift of the 1S0 → 3P0 clock transition

calculated with respect to the 173Yb absolute frequency 518 294 576 845 268 (10) Hz
(Clivati et al., 2016) (νx − ν173).
References: a:(Lide, 2004), b:(Kitagawa et al., 2008), c:(Das et al., 2005), d:(Clark
et al., 1979), e:(Clivati et al., 2016).

ultracold atoms and on the collisional properties. Section 1.2 is instead dedicated to an
overview of the experimental apparatus and procedures employed in the Florence Yb
laboratory to realize a degenerate gas of Yb. Finally, in section 1.3, the fundamental
properties of atoms in optical lattices are discussed.

1.1 Fundamental properties of Ytterbium

Ytterbium, (from the name of the Ytterby village, in Sweden, where this element was
discovered), is a rare-earth metal classified in the series of Lanthanides. Its appearance
is characterized by a bright silvery luster, and a malleable and quite ductile texture.
The atomic number of Yb is Z = 70 and the configuration of the fundamental state
is [Xe]4f146s2. Natural ytterbium is a mixture of seven stable isotopes with standard
atomic weight 173.04(3) (Lide, 2004). Twenty-six other unstable isotopes are known.
Among the stable isotopes five are bosonic (168Yb, 170Yb, 172Yb, 174Yb, 176Yb) and
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Figure 1.1: Scheme of the lowest energy Yb levels. Also the repumping transitions
connecting the 3P (6s6p) multiplet with the 3D1 (5d6s) state are shown.

two are fermionic (171Yb, 173Yb). Similarly to the other two-electron elements only
the fermionic isotopes have a non-zero nuclear spin (I = 1/2 for 171Yb and I =

5/2 for 173Yb), while the bosonic isotopes are all characterized by I = 0. Despite
their chemical stability these isotopes weakly react with oxygen to form the compound
Yb2O3.

In this thesis we essentially deal with the fermionic isotope 173Yb and in minor part
with the bosonic 174Yb. The other widely used isotope in the context of atomic physics
is 171Yb, which finds application in the realization of the most accurate state-of-the-art
atomic clocks (Hinkley et al., 2013). Some fundamental properties of these and of the
other Yb stable isotopes are shown in table 1.1.

Due to the zero electronic angular momentum, the fundamental state of Yb is
strongly diamagnetic and the only contribution to the magnetic moment comes from
the nuclear spin I . In fermionic isotopes (bosonic isotopes have I = 0) this results in a
pure nuclear magnetic moment given by µ = gIµN I/ℏ where gI is the nuclear Landè
factor. As it depends only on the the nuclear magneton µN , the latter quantity is three
order of magnitude smaller than the typical magnetic moment of alkali atoms. This
strong insensitivity to magnetic fields makes the trapping and cooling of Yb impracti-
cal with pure magnetic traps, determining the necessity of an optical manipulation of
the atoms in the fundamental state. Dipole trap at 1064 nm, a wavelength widely com-
mercially available and far red-detuned with respect to all the transitions connecting
the ground state with excited levels, can be employed for this purpose. The situation
is completely different for the state 3P1, which features a non-zero electronic angu-
lar momentum, enabling the possibility of a magnetic manipulation. This property is
exploited for the realization of magneto-optical traps (MOT) in which the intercom-
bination transition 1S0 → 3P1 at 556 nm is addressed. This transition is preferred
over the strongly allowed 1S0 → 1P1 due to its lower linewidth (180 kHz vs 28 MHz)
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565.7
(
1
2
| 1
2

) 6191
(
1
2
| 3
2

)

254
(
1
2
| 1
2

) -1259745597(10)

172
171.936
(21.83) 0 0 -600 -54.7 3386 -

173
172.938
(16.13) 5/2 -0.6776 200

72
(
5
2
| 3
2

)

-841.4
(
5
2
| 5
2

)

0
(
5
2
| 7
2

)

6189
(
5
2
| 3
2

)

4698
(
5
2
| 5
2

)

0
(
5
2
| 7
2

) 0

174
173.939
(31.83) 0 0 105 -588.0 2386 551536050(10)

176
175.943
(12.76) 0 0 -24 -1097.3 1431 -

Table 1.1: Principal properties of the stable Yb isotopes. In order from left: mass
in atomic units (1u=1.660539040(20)×10−27 kg) and relative isotopic abundance, nu-
clear spin, nuclear magnetic moment, scattering length in the fundamental state, iso-
topic shift of the 1S0 → 1P1 calculated with respect to the 173Yb (F = 5

2 − 7
2 ) transi-

tion (νx − ν173), isotopic shift of the 1S0 → 3P1 calculated with respect to the 173Yb
(F = 5

2 − 7
2 ) transition (νx − ν173), isotopic shift of the 1S0 → 3P0 clock transition

calculated with respect to the 173Yb absolute frequency 518 294 576 845 268 (10) Hz
(Clivati et al., 2016) (νx − ν173).
References: a:(Lide, 2004), b:(Kitagawa et al., 2008), c:(Das et al., 2005), d:(Clark
et al., 1979), e:(Clivati et al., 2016).

ultracold atoms and on the collisional properties. Section 1.2 is instead dedicated to an
overview of the experimental apparatus and procedures employed in the Florence Yb
laboratory to realize a degenerate gas of Yb. Finally, in section 1.3, the fundamental
properties of atoms in optical lattices are discussed.

1.1 Fundamental properties of Ytterbium

Ytterbium, (from the name of the Ytterby village, in Sweden, where this element was
discovered), is a rare-earth metal classified in the series of Lanthanides. Its appearance
is characterized by a bright silvery luster, and a malleable and quite ductile texture.
The atomic number of Yb is Z = 70 and the configuration of the fundamental state
is [Xe]4f146s2. Natural ytterbium is a mixture of seven stable isotopes with standard
atomic weight 173.04(3) (Lide, 2004). Twenty-six other unstable isotopes are known.
Among the stable isotopes five are bosonic (168Yb, 170Yb, 172Yb, 174Yb, 176Yb) and
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Figure 1.1: Scheme of the lowest energy Yb levels. Also the repumping transitions
connecting the 3P (6s6p) multiplet with the 3D1 (5d6s) state are shown.

two are fermionic (171Yb, 173Yb). Similarly to the other two-electron elements only
the fermionic isotopes have a non-zero nuclear spin (I = 1/2 for 171Yb and I =

5/2 for 173Yb), while the bosonic isotopes are all characterized by I = 0. Despite
their chemical stability these isotopes weakly react with oxygen to form the compound
Yb2O3.

In this thesis we essentially deal with the fermionic isotope 173Yb and in minor part
with the bosonic 174Yb. The other widely used isotope in the context of atomic physics
is 171Yb, which finds application in the realization of the most accurate state-of-the-art
atomic clocks (Hinkley et al., 2013). Some fundamental properties of these and of the
other Yb stable isotopes are shown in table 1.1.

Due to the zero electronic angular momentum, the fundamental state of Yb is
strongly diamagnetic and the only contribution to the magnetic moment comes from
the nuclear spin I . In fermionic isotopes (bosonic isotopes have I = 0) this results in a
pure nuclear magnetic moment given by µ = gIµN I/ℏ where gI is the nuclear Landè
factor. As it depends only on the the nuclear magneton µN , the latter quantity is three
order of magnitude smaller than the typical magnetic moment of alkali atoms. This
strong insensitivity to magnetic fields makes the trapping and cooling of Yb impracti-
cal with pure magnetic traps, determining the necessity of an optical manipulation of
the atoms in the fundamental state. Dipole trap at 1064 nm, a wavelength widely com-
mercially available and far red-detuned with respect to all the transitions connecting
the ground state with excited levels, can be employed for this purpose. The situation
is completely different for the state 3P1, which features a non-zero electronic angu-
lar momentum, enabling the possibility of a magnetic manipulation. This property is
exploited for the realization of magneto-optical traps (MOT) in which the intercom-
bination transition 1S0 → 3P1 at 556 nm is addressed. This transition is preferred
over the strongly allowed 1S0 → 1P1 due to its lower linewidth (180 kHz vs 28 MHz)
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which makes it possible to achieve a lower Doppler limited temperature (Inguscio and
Fallani, 2013). The 399 nm 1S0 → 1P1 transition, due to its large linewidth, finds in-
stead application in the realization of a pre-cooling stage by means of Zeeman slower
technique.

Yb features the nice property that all the lowest energy excitations starting from
the fundamental level are in the visible spectrum, as evidenced in the energy level
scheme shown in figure 1.1 and reported in table 1.2, where the main properties of
these transitions are listed.

Transition λ [nm] Γ/(2π) Lifetime Sat. Intensity
mW cm−2

1S0 → 1P1 399.9a 28.9 MHzb 5.5 nsb 60c

1S0 → 3P0 578.4a
43.5 mHz 171Yb
38.5 mHz 173Ybd ∼ 20 s ∼ 5× 10−9

1S0 → 3P1 555.8a 180 kHzb 860 nsb 0.14c

1S0 → 3P2 507.3a
25 mHz 171Yb
22 mHz 173Ybe ∼ 30 s ∼ 2× 10−8 e

Table 1.2: Main properties of Yb lower-energy transitions. Table references:
a:(Meggers and Tech, 1978), b:(Blagoev and Komarovskii, 1994), c:(Sugawa et al.,
2013), d:(Porsev and Derevianko, 2003), e:(Yamaguchi, 2008).

1.1.1 Ground state collisional properties - SU(N ) symmetry

In the ground state of fermionic isotopes, the zero electronic angular momentum de-
termines the absence of hyperfine interaction and hence a perfect decoupling between
the nuclear spin and electronic part of the wavefunction. As a consequence of this
perfect decoupling, the s-wave scattering length for interparticle collisions in the fun-
damental state does not depend on the nuclear spin except for the restrictions imposed
by fermionic antisymmetry. This independence of the collisional properties with re-
spect to the spin projection imply that spin-changing collisions are forbidden and that
consequently, given an atomic sample composed by a spin mixture, the relative spin
populations are conserved in time. To formalize this argumentation we can consider
two atoms with angular momentum f and projections of the angular momentum on the
quantization axis m1 and m2. After a collision the two particles can be projected in a
state characterized by the spin projections m3 and m4, for which, due to the momen-
tum conservation rule, the relationm1 +m2 = m3 +m4 must hold. An interaction of
this kind can be described with the potential (Widera et al., 2006; Ho, 1998):

V (r) =

2f∑
F=0

gFPF u(r) (1.1)

where PF is the projector on the two-particle state with total spin F (being the parti-
cle spins equal to f , F can assume all even the values between 0 and 2f ), gF is the
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spin-dependent potential amplitude and u(r) is the spatial dependence of the potential,
where r is the interparticle distance1. Writing the two-particle state wavefunction as
the product of a spatial and a spin part

|ψ⟩ ≡ |ϕ0(r)⟩1|ϕ1(r)⟩2 ⊗ |f,m1; f,m2⟩ (1.2)

and decomposing the projector PF in the sum

PF =
F∑

M=−F

|F,M⟩⟨F,M |, (1.3)

where M is the projection of F on the quantization axis, we have that the collisional
mechanism that generates the atomic pairm3 andm4 starting fromm1 andm2 is pos-
sible provided that the expression

2f∑
F=0

F∑
M=−F

⟨f,m3; f,m4|F,M⟩⟨F,M |f,m1; f,m2⟩ gF (1.4)

is not vanishing, where ⟨f,mi; f,mj |F,M⟩ are Clebsch-Gordan coefficients. If the
spin-independence of the potential is assumed, all the collisional channels Fi have
identical strength and the gF ≡ g can be excluded by the sum. Using now the
completeness relation of the {F,mF } Hilbert space, the expression 1.4 reduces to
g ⟨f,m3; f,m4|f,m1; f,m2⟩ which is not vanishing only if m1 = m3 and m2 = m4,
i.e. if no spin-changing collisions occur.

This demonstration can be further formalized considering the nuclear spin permuta-
tion operators Sn

m which destroy an atom in the nuclear spin statem and create another
atom in the spin state n. It can be proved (Gorshkov et al., 2009; Cazailla and Rey,
2014) that these operators satisfy the SU(N ) algebra (where N = 2I + 1) and that
commute with the Hamiltonian describing an interacting two-electron gas, implying
the conservation of the relative spin populations. For this reason, an unpolarized six-
spin-components 173Yb gas can be treated as a gas with SU(6) symmetry. Due to spin
conservation, the dynamics of a gas with spin lower than six can be reproduced start-
ing from a 173Yb gas in which some spin components are missing. A two-spin 173Yb
mixture, for example, perfectly reproduces the dynamics of a SU(2) gas.

The argumentation carried on for the fundamental state is obviously valid also
for the clock state 3P0, which also has vanishing electronic angular momentum. In
fermionic isotopes, however, due to a small admixture of higher-lying P states with
J ̸= 0 arising from the hyperfine interaction (this mechanism is explained in detail
section 3.1) the spin independence of the scattering lengths is slightly reduced and
variation of the order of δgF /gF ∼ 10−3 are expected (Gorshkov et al., 2009). In the
fundamental state, instead, where no hyperfine mixing can be present the predicted de-
viation from a pure SU(N ) model is of the order of δgF /gF ∼ 10−9 (Gorshkov et al.,
2009).

1If, for example, the Huang-Yang pseudopotential is considered, gF = 4πℏ2aF /m, where aF is the
s-wave scattering length andm is the reduced atomic mass, and u(r) = δ(r) d

dr
(r·).
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which makes it possible to achieve a lower Doppler limited temperature (Inguscio and
Fallani, 2013). The 399 nm 1S0 → 1P1 transition, due to its large linewidth, finds in-
stead application in the realization of a pre-cooling stage by means of Zeeman slower
technique.

Yb features the nice property that all the lowest energy excitations starting from
the fundamental level are in the visible spectrum, as evidenced in the energy level
scheme shown in figure 1.1 and reported in table 1.2, where the main properties of
these transitions are listed.

Transition λ [nm] Γ/(2π) Lifetime Sat. Intensity
mW cm−2

1S0 → 1P1 399.9a 28.9 MHzb 5.5 nsb 60c

1S0 → 3P0 578.4a
43.5 mHz 171Yb
38.5 mHz 173Ybd ∼ 20 s ∼ 5× 10−9

1S0 → 3P1 555.8a 180 kHzb 860 nsb 0.14c

1S0 → 3P2 507.3a
25 mHz 171Yb
22 mHz 173Ybe ∼ 30 s ∼ 2× 10−8 e

Table 1.2: Main properties of Yb lower-energy transitions. Table references:
a:(Meggers and Tech, 1978), b:(Blagoev and Komarovskii, 1994), c:(Sugawa et al.,
2013), d:(Porsev and Derevianko, 2003), e:(Yamaguchi, 2008).

1.1.1 Ground state collisional properties - SU(N ) symmetry

In the ground state of fermionic isotopes, the zero electronic angular momentum de-
termines the absence of hyperfine interaction and hence a perfect decoupling between
the nuclear spin and electronic part of the wavefunction. As a consequence of this
perfect decoupling, the s-wave scattering length for interparticle collisions in the fun-
damental state does not depend on the nuclear spin except for the restrictions imposed
by fermionic antisymmetry. This independence of the collisional properties with re-
spect to the spin projection imply that spin-changing collisions are forbidden and that
consequently, given an atomic sample composed by a spin mixture, the relative spin
populations are conserved in time. To formalize this argumentation we can consider
two atoms with angular momentum f and projections of the angular momentum on the
quantization axis m1 and m2. After a collision the two particles can be projected in a
state characterized by the spin projections m3 and m4, for which, due to the momen-
tum conservation rule, the relationm1 +m2 = m3 +m4 must hold. An interaction of
this kind can be described with the potential (Widera et al., 2006; Ho, 1998):

V (r) =

2f∑
F=0

gFPF u(r) (1.1)

where PF is the projector on the two-particle state with total spin F (being the parti-
cle spins equal to f , F can assume all even the values between 0 and 2f ), gF is the
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spin-dependent potential amplitude and u(r) is the spatial dependence of the potential,
where r is the interparticle distance1. Writing the two-particle state wavefunction as
the product of a spatial and a spin part

|ψ⟩ ≡ |ϕ0(r)⟩1|ϕ1(r)⟩2 ⊗ |f,m1; f,m2⟩ (1.2)

and decomposing the projector PF in the sum

PF =
F∑

M=−F

|F,M⟩⟨F,M |, (1.3)

where M is the projection of F on the quantization axis, we have that the collisional
mechanism that generates the atomic pairm3 andm4 starting fromm1 andm2 is pos-
sible provided that the expression

2f∑
F=0

F∑
M=−F

⟨f,m3; f,m4|F,M⟩⟨F,M |f,m1; f,m2⟩ gF (1.4)

is not vanishing, where ⟨f,mi; f,mj |F,M⟩ are Clebsch-Gordan coefficients. If the
spin-independence of the potential is assumed, all the collisional channels Fi have
identical strength and the gF ≡ g can be excluded by the sum. Using now the
completeness relation of the {F,mF } Hilbert space, the expression 1.4 reduces to
g ⟨f,m3; f,m4|f,m1; f,m2⟩ which is not vanishing only if m1 = m3 and m2 = m4,
i.e. if no spin-changing collisions occur.

This demonstration can be further formalized considering the nuclear spin permuta-
tion operators Sn

m which destroy an atom in the nuclear spin statem and create another
atom in the spin state n. It can be proved (Gorshkov et al., 2009; Cazailla and Rey,
2014) that these operators satisfy the SU(N ) algebra (where N = 2I + 1) and that
commute with the Hamiltonian describing an interacting two-electron gas, implying
the conservation of the relative spin populations. For this reason, an unpolarized six-
spin-components 173Yb gas can be treated as a gas with SU(6) symmetry. Due to spin
conservation, the dynamics of a gas with spin lower than six can be reproduced start-
ing from a 173Yb gas in which some spin components are missing. A two-spin 173Yb
mixture, for example, perfectly reproduces the dynamics of a SU(2) gas.

The argumentation carried on for the fundamental state is obviously valid also
for the clock state 3P0, which also has vanishing electronic angular momentum. In
fermionic isotopes, however, due to a small admixture of higher-lying P states with
J ̸= 0 arising from the hyperfine interaction (this mechanism is explained in detail
section 3.1) the spin independence of the scattering lengths is slightly reduced and
variation of the order of δgF /gF ∼ 10−3 are expected (Gorshkov et al., 2009). In the
fundamental state, instead, where no hyperfine mixing can be present the predicted de-
viation from a pure SU(N ) model is of the order of δgF /gF ∼ 10−9 (Gorshkov et al.,
2009).

1If, for example, the Huang-Yang pseudopotential is considered, gF = 4πℏ2aF /m, where aF is the
s-wave scattering length andm is the reduced atomic mass, and u(r) = δ(r) d

dr
(r·).

2119



New quantum simulations with ultracold Ytterbium gases

20

1.1.2 Collisions in a 1S0 − 3P0 mixture - the exchange interaction

Up to now we have investigated only the collisional properties of fermionic atoms
all characterized by the same electronic state 1S0 or 3P0. If this constrain is relaxed
and we enable a two-orbital g − e mixture to interact, a new collisional channel opens
in which the two particles can exchange their spin. The possibility to exploit this
interaction with two-electron fermions paves the way to the quantum simulation of
quantummagnetism phenomena where the spin exchange plays a prominent role, such
as the Kondo model (Gorshkov et al., 2009). To explain how this kind of interaction
emerges in a two-orbital gas we can consider two fermionic Yb atoms with different
projections of the spin on the quantization axis (↑ and ↓) and different electronic states
1S0 = g and 3P0 = e. Due to the fermionic statistic, the two-atom wavefunction must
be antisymmetric for particle exchange and hence it can be written as

Ψ±(r1, r2) =
1

2
(|eg⟩ ± |ge⟩)� �� �

Orbital part

⊗ (| ↑↓⟩ ∓ | ↓↑⟩)� �� �
Spin part

⊗ϕ(r1)ϕ(r2)� �� �
Spatial part

= |Ψ±⟩ (1.5)

where ϕ(r) is the spatial wavefunction (assumed identical for both atoms). In a more
compact notation (where the exchange symmetry is implicit) we can write the orbital-
symmetric (spin-singlet) state |Ψ+⟩ and the orbital-antisymmetric (spin-triplet) state
|Ψ−⟩ as

|Ψ±⟩ = |eg±⟩ϕ(r1)ϕ(r2) (1.6)

in which

|eg±⟩ = 1√
2
(|g ↑, e ↓⟩ ± |g ↓, e ↑⟩) (1.7)

The states |eg±⟩ are in general characterized by different scattering lengths that we
identify as a±eg. Given the two scattering lengths, the interaction potential that describes
the scattering in the |eg±⟩ basis can be written as

Vint(r1 − r2) = g0
(
aeg+ Peg+ + aeg− Peg−

)
U(r1, r2) (1.8)

where g0 = 4πℏ2

m (m is the atomic mass), Peg+ and Peg− are respectively the projectors
on the states |eg+⟩ and |eg−⟩ and U(r1, r2) is the spatial part of the potential. The two
projectors, expressed in the compact notation 1.7, read

Peg± =
1

2


|g ↑, e ↓⟩⟨g ↑, e ↓ |+ |g ↓, e ↑⟩⟨g ↓, e ↑ |� �� �

V
± |g ↓, e ↑⟩⟨g ↑, e ↓ |+ |g ↑, e ↓⟩⟨g ↓, e ↑ |� �� �

Vex


 (1.9)

where V keeps unchanged the spin of the two particles while Vex exchange the two
spins. Given the expression above for the projectors, we have that the interaction
potential can be written as

Vint(r1 − r2) = g0

[(
aeg+ + aeg−

2

)
V +

(
aeg+ − aeg−

2

)
Vex

]
U(r1, r2). (1.10)

Thanks to the term proportional to Vex, the interaction potential Vint can connect states
in which the spin of the two particles is exchanged, such as |g ↑, e ↓⟩ and |g ↓, e ↑⟩

⟨g ↓, e ↑ |Vint|g ↑, e ↓⟩ = g0

(
aeg+ − aeg−

2

) ∫∫
dr1 dr2 ϕ(r1)2ϕ(r2)2U(r1, r2).

(1.11)
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This last relation demonstrates how spin-exchange interactions, which have no classi-
cal analogue, can affect a two-orbital - two-electron gases. The strength of the spin-
exchange depends on the scattering lengths differences δaeg = aeg+ − aeg− and van-
ishes if aeg+ = aeg− in analogy with a SU(N ) gas in which spin populations are con-
served due to the spin-independence of the scattering length. Fermionic Yb is an ideal
candidate for experiments in which spin-exchange interactions are required, due to the
large difference in the scattering properties of the states |eg±⟩ (in 173Yb, for example,
δaeg ≃ 3000 a0 (Cappellini et al., 2014)). This interaction is at the basis of the orbital
Feshbach mechanism that we experimentally investigate in section 4.3.

1.2 A quantum degenerate Yb gas

In this section we provide a summarizing description of the procedure adopted in our
experiment to achieve quantum degeneracy in a Yb ultracold gas. The starting point
of the experiment is a Yb atomic beam exiting from an oven at a temperature of the
order of ∼500 °C. After a Zeeman slowing of the atoms operated on the 1S0 → 1P1

transition at 399 nm, the particles are loaded in a magneto-optical trap (MOT) working
at the intercombination transition 1S0 → 3P1 at 556 nm. The MOT stage is followed
by the loading of the atoms in a 1064 nm in-vacuum optical resonator, where optical
dipole trapping and a first stage of evaporative cooling is performed. From the res-
onator atoms are loaded in a second 1064 nm strongly-focused trap, moving the waist
of which the particles are transferred in a 26-cm-distant glass cell. Here a final stage
of evaporative cooling is performed by means of a 1064 nm crossed dipole trap. All
the science experiments are performed inside the glass cell where several laser beams
aimed at the optical manipulation and trapping of the atoms converge. A detailed
description of this experimental sequence is provided in section 1.2.3. A brief, prelim-
inary description of the laser sources employed in the experiment, is instead reported
in section 1.2.1 and 1.2.2.

1.2.1 Resonant light laser sources

In this section we provide a short description of the laser sources employed to excite
the atomic transitions 1S0 → 1P1 at 399 nm, 1S0 → 3P1 at 556 nm, and 1S0 → 3P0 at
578 nm. As it is difficult to find commercial lasers with suitable power and spectral
characteristics in those regions of visible spectrum, we generate all the three resonant
frequencies by means of second-harmonic generation. A detailed description of the
399 nm and 556 nm laser sources can be found in (Pagano, 2015, 2011). For a complete
description of the 578 nm laser source we refer instead to references (Cappellini et al.,
2015; Cappellini, 2016, 2012).

399 nm laser source

In order to excite the 1S0 → 1P1 transition we generate 399 nm light through second-
harmonic generation. The starting point is the 798 nm light delivered by a fiber-
coupled tapered-amplifier laser-diode system TOPTICA TA PRO. The 1.1 W of 798
nm light generated by the TOPTICA laser is injected in a home-made bow-tie doubling
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1.1.2 Collisions in a 1S0 − 3P0 mixture - the exchange interaction

Up to now we have investigated only the collisional properties of fermionic atoms
all characterized by the same electronic state 1S0 or 3P0. If this constrain is relaxed
and we enable a two-orbital g − e mixture to interact, a new collisional channel opens
in which the two particles can exchange their spin. The possibility to exploit this
interaction with two-electron fermions paves the way to the quantum simulation of
quantummagnetism phenomena where the spin exchange plays a prominent role, such
as the Kondo model (Gorshkov et al., 2009). To explain how this kind of interaction
emerges in a two-orbital gas we can consider two fermionic Yb atoms with different
projections of the spin on the quantization axis (↑ and ↓) and different electronic states
1S0 = g and 3P0 = e. Due to the fermionic statistic, the two-atom wavefunction must
be antisymmetric for particle exchange and hence it can be written as
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where ϕ(r) is the spatial wavefunction (assumed identical for both atoms). In a more
compact notation (where the exchange symmetry is implicit) we can write the orbital-
symmetric (spin-singlet) state |Ψ+⟩ and the orbital-antisymmetric (spin-triplet) state
|Ψ−⟩ as

|Ψ±⟩ = |eg±⟩ϕ(r1)ϕ(r2) (1.6)

in which

|eg±⟩ = 1√
2
(|g ↑, e ↓⟩ ± |g ↓, e ↑⟩) (1.7)

The states |eg±⟩ are in general characterized by different scattering lengths that we
identify as a±eg. Given the two scattering lengths, the interaction potential that describes
the scattering in the |eg±⟩ basis can be written as

Vint(r1 − r2) = g0
(
aeg+ Peg+ + aeg− Peg−

)
U(r1, r2) (1.8)

where g0 = 4πℏ2

m (m is the atomic mass), Peg+ and Peg− are respectively the projectors
on the states |eg+⟩ and |eg−⟩ and U(r1, r2) is the spatial part of the potential. The two
projectors, expressed in the compact notation 1.7, read

Peg± =
1
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where V keeps unchanged the spin of the two particles while Vex exchange the two
spins. Given the expression above for the projectors, we have that the interaction
potential can be written as

Vint(r1 − r2) = g0

[(
aeg+ + aeg−

2

)
V +

(
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Vex

]
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Thanks to the term proportional to Vex, the interaction potential Vint can connect states
in which the spin of the two particles is exchanged, such as |g ↑, e ↓⟩ and |g ↓, e ↑⟩
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This last relation demonstrates how spin-exchange interactions, which have no classi-
cal analogue, can affect a two-orbital - two-electron gases. The strength of the spin-
exchange depends on the scattering lengths differences δaeg = aeg+ − aeg− and van-
ishes if aeg+ = aeg− in analogy with a SU(N ) gas in which spin populations are con-
served due to the spin-independence of the scattering length. Fermionic Yb is an ideal
candidate for experiments in which spin-exchange interactions are required, due to the
large difference in the scattering properties of the states |eg±⟩ (in 173Yb, for example,
δaeg ≃ 3000 a0 (Cappellini et al., 2014)). This interaction is at the basis of the orbital
Feshbach mechanism that we experimentally investigate in section 4.3.

1.2 A quantum degenerate Yb gas

In this section we provide a summarizing description of the procedure adopted in our
experiment to achieve quantum degeneracy in a Yb ultracold gas. The starting point
of the experiment is a Yb atomic beam exiting from an oven at a temperature of the
order of ∼500 °C. After a Zeeman slowing of the atoms operated on the 1S0 → 1P1

transition at 399 nm, the particles are loaded in a magneto-optical trap (MOT) working
at the intercombination transition 1S0 → 3P1 at 556 nm. The MOT stage is followed
by the loading of the atoms in a 1064 nm in-vacuum optical resonator, where optical
dipole trapping and a first stage of evaporative cooling is performed. From the res-
onator atoms are loaded in a second 1064 nm strongly-focused trap, moving the waist
of which the particles are transferred in a 26-cm-distant glass cell. Here a final stage
of evaporative cooling is performed by means of a 1064 nm crossed dipole trap. All
the science experiments are performed inside the glass cell where several laser beams
aimed at the optical manipulation and trapping of the atoms converge. A detailed
description of this experimental sequence is provided in section 1.2.3. A brief, prelim-
inary description of the laser sources employed in the experiment, is instead reported
in section 1.2.1 and 1.2.2.

1.2.1 Resonant light laser sources

In this section we provide a short description of the laser sources employed to excite
the atomic transitions 1S0 → 1P1 at 399 nm, 1S0 → 3P1 at 556 nm, and 1S0 → 3P0 at
578 nm. As it is difficult to find commercial lasers with suitable power and spectral
characteristics in those regions of visible spectrum, we generate all the three resonant
frequencies by means of second-harmonic generation. A detailed description of the
399 nm and 556 nm laser sources can be found in (Pagano, 2015, 2011). For a complete
description of the 578 nm laser source we refer instead to references (Cappellini et al.,
2015; Cappellini, 2016, 2012).

399 nm laser source

In order to excite the 1S0 → 1P1 transition we generate 399 nm light through second-
harmonic generation. The starting point is the 798 nm light delivered by a fiber-
coupled tapered-amplifier laser-diode system TOPTICA TA PRO. The 1.1 W of 798
nm light generated by the TOPTICA laser is injected in a home-made bow-tie doubling
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Figure 1.2: 556 nm and 399 nm lasers locking scheme on Yb atomic reference. The
labels on the laser beams report the shift in MHz with respect to the light exiting from
the doubling cavities (in the 556 nm setup, B and F refer, respectively, to the shifts of
the bosonic and fermionic setup. See the main text for details. All the AOMs are in
double passage.

cavity in which an LBO crystal stabilized at the temperature of 55 °C converts it into
480 mW of 399 nm radiation. The frequency of the cavity modes (the free spectral
range is 749 MHz) is stabilized on the laser light by means of the Haensch-Couillaud
technique (Hansch and Couillaud, 1980), acting on a piezo stack mounted on the back
of one cavity mirrors. The lock of the 399 nm light on the atomic line 1S0 → 1P1 is
performed simply by means of saturation spectroscopy, interrogating a collimated Yb
atomic beam along the direction orthogonal to the motion of the atoms, in such a way
to suppress the Doppler broadening. As shown in figure 1.2, the atomic beam is gen-
erated by a secondary oven identical to the main-experiment oven. Being the Doppler
broadening smaller than the linewidth, no Doppler-free technique is needed and simple
saturation spectroscopy is employed. To this purpose light is frequency-modulated by
means of an AOM (AOM1 in figure 1.2) and the classical lock-in scheme (Nagourney,
2010) is employed to generate an error signal starting from the collected fluorescence
spectrum. The lock frequency setpoint is chosen accordingly to the isotope we decide
to work with. While for 174Yb a single absorption line is present, for 173Yb we choose
to lock the light on the 1S0(F = 5/2) → 1P1(F = 7/2) transition (see table 1.1).
Due to the presence of the modulating AOM, the light coming out from the cavity is
stabilized on a frequency 740 MHz red-detuned with respect to the atomic 1S0 → 1P1

line.

556 nm laser source

As for the 1S0 → 1P1 transition, the light at 556 nm employed for the excitation of the
1S0 → 3P1 atomic line is generated by means of second-harmonic generation starting
from 1112 nm infrared light. This light is delivered by a fiber laser Menlo Systems
model ORANGE ONE and is used to pump a Lithium Tantalate (LiTaO3) doubling
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crystal placed inside a bow-tie home-made cavity. Also in this case the frequency
of the cavity modes (the FSR is 567 MHz) is locked on the laser light by means of
the Haensch-Couillaud technique and 1.05 W of frequency-doubled light are obtained
starting from 1.7 W of infrared radiation (conversion efficiency ∼ 60%). Due to the
reduced linewidth of the 1S0 → 3P1 transition, Doppler-free saturation spectroscopy is
employed to lock the laser on the atomic line. To this purpose two counter-propagating
light beams are used to interrogate the Yb atomic beam described in the previous sec-
tion and the resulting signal coming from fluorescence light is collected by a photo-
multiplier and employed to feed a standard lock-in scheme. To lock on the 174Yb
isotope the spectroscopy light is modulated by means of a 83 MHz double-passage
AOM (AOMB in figure 1.2). The lock is performed on the 1S0(J = 0) → 3P1(J = 1)

transition and in order to address only the (J = 0,mJ = 0) → (J = 1,mJ = 0) mag-
netic insensitive line, π-polarized light is used and a small magnetic field is applied. A
similar approach for the lock on the 173Yb isotope is complicated by the presence of
six absorption lines, one for each nuclear spin component, that are sensitive to fluctu-
ations of the magnetic field and worsen the SNR, contributing each to the signal with
one sixth of the total intensity. To overcome this difficulty the lock on the fermionic
isotope is performed locking the laser on the bosonic 174Yb and covering the 2386
MHz isotopic shift between 174Yb and 173Yb by frequency-shifting the spectroscopy
light with a 1850MHz resonant EOM (which in this scheme is the element employed to
frequency modulate the light) and a double passage AOM (AOMF in figure 1.2). Both
schemes stabilize the laser light at a frequency 166 MHz red-detuned with respect to
the transition employed for the MOT (that is the 1S0(F = 5/2) → 3P1(F = 7/2)

for the fermion and 1S0(J = 0) → 3P1(J = 1) for the boson). A mirror on a re-
movable magnetic mount is employed to switch between the bosonic/fermionic lock
configurations.

578 nm laser source

The 578 nm laser source that we use to excite the 1S0 → 3P0 transition is by far the
most complicated laser system present in the laboratory. Also in this case, due to the
absence of a commercially available high-power small-linewidth 578 nm laser, we
generate the light by means of second-harmonic generation, starting from the 1156 nm
infrared radiation delivered by a quantum dot laser diode. The diode is mounted in a
home-made extended cavity in Littrow configuration. The peculiarity of the system
is the presence of an intra-cavity EOM which is used for fast corrections of the laser
frequency up to 500 kHz. The 200 mW of infrared light generated by the diode are
used to inject a LiNbO3 doubling crystal placed inside a bow-tie cavity stabilized by
means of the Haensch-Couillaud method. The crystal delivers ∼50 mW of 578 nm
light which is split into two branches, one used for frequency stabilization on a high-
finesse (F ≃ 1.7× 105) ultra-low-expansion (ULE) cavity, the other to be used in the
experiment for the excitation of the 3P0 state. The lock on the ULE cavity is performed
on themode of the cavity nearest to the atomic transition (the FSR is 1.5GHz) bymeans
of the Pound-Drever-Hall technique (Black, 2001). To this purpose, as shown in figure
1.3, a double-passage AOM placed along the lock branch (AOM1 in figure 1.3) is used
to shift the frequency of the light in such a way that the frequency on the spectroscopy
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Figure 1.2: 556 nm and 399 nm lasers locking scheme on Yb atomic reference. The
labels on the laser beams report the shift in MHz with respect to the light exiting from
the doubling cavities (in the 556 nm setup, B and F refer, respectively, to the shifts of
the bosonic and fermionic setup. See the main text for details. All the AOMs are in
double passage.

cavity in which an LBO crystal stabilized at the temperature of 55 °C converts it into
480 mW of 399 nm radiation. The frequency of the cavity modes (the free spectral
range is 749 MHz) is stabilized on the laser light by means of the Haensch-Couillaud
technique (Hansch and Couillaud, 1980), acting on a piezo stack mounted on the back
of one cavity mirrors. The lock of the 399 nm light on the atomic line 1S0 → 1P1 is
performed simply by means of saturation spectroscopy, interrogating a collimated Yb
atomic beam along the direction orthogonal to the motion of the atoms, in such a way
to suppress the Doppler broadening. As shown in figure 1.2, the atomic beam is gen-
erated by a secondary oven identical to the main-experiment oven. Being the Doppler
broadening smaller than the linewidth, no Doppler-free technique is needed and simple
saturation spectroscopy is employed. To this purpose light is frequency-modulated by
means of an AOM (AOM1 in figure 1.2) and the classical lock-in scheme (Nagourney,
2010) is employed to generate an error signal starting from the collected fluorescence
spectrum. The lock frequency setpoint is chosen accordingly to the isotope we decide
to work with. While for 174Yb a single absorption line is present, for 173Yb we choose
to lock the light on the 1S0(F = 5/2) → 1P1(F = 7/2) transition (see table 1.1).
Due to the presence of the modulating AOM, the light coming out from the cavity is
stabilized on a frequency 740 MHz red-detuned with respect to the atomic 1S0 → 1P1

line.

556 nm laser source

As for the 1S0 → 1P1 transition, the light at 556 nm employed for the excitation of the
1S0 → 3P1 atomic line is generated by means of second-harmonic generation starting
from 1112 nm infrared light. This light is delivered by a fiber laser Menlo Systems
model ORANGE ONE and is used to pump a Lithium Tantalate (LiTaO3) doubling
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crystal placed inside a bow-tie home-made cavity. Also in this case the frequency
of the cavity modes (the FSR is 567 MHz) is locked on the laser light by means of
the Haensch-Couillaud technique and 1.05 W of frequency-doubled light are obtained
starting from 1.7 W of infrared radiation (conversion efficiency ∼ 60%). Due to the
reduced linewidth of the 1S0 → 3P1 transition, Doppler-free saturation spectroscopy is
employed to lock the laser on the atomic line. To this purpose two counter-propagating
light beams are used to interrogate the Yb atomic beam described in the previous sec-
tion and the resulting signal coming from fluorescence light is collected by a photo-
multiplier and employed to feed a standard lock-in scheme. To lock on the 174Yb
isotope the spectroscopy light is modulated by means of a 83 MHz double-passage
AOM (AOMB in figure 1.2). The lock is performed on the 1S0(J = 0) → 3P1(J = 1)

transition and in order to address only the (J = 0,mJ = 0) → (J = 1,mJ = 0) mag-
netic insensitive line, π-polarized light is used and a small magnetic field is applied. A
similar approach for the lock on the 173Yb isotope is complicated by the presence of
six absorption lines, one for each nuclear spin component, that are sensitive to fluctu-
ations of the magnetic field and worsen the SNR, contributing each to the signal with
one sixth of the total intensity. To overcome this difficulty the lock on the fermionic
isotope is performed locking the laser on the bosonic 174Yb and covering the 2386
MHz isotopic shift between 174Yb and 173Yb by frequency-shifting the spectroscopy
light with a 1850MHz resonant EOM (which in this scheme is the element employed to
frequency modulate the light) and a double passage AOM (AOMF in figure 1.2). Both
schemes stabilize the laser light at a frequency 166 MHz red-detuned with respect to
the transition employed for the MOT (that is the 1S0(F = 5/2) → 3P1(F = 7/2)

for the fermion and 1S0(J = 0) → 3P1(J = 1) for the boson). A mirror on a re-
movable magnetic mount is employed to switch between the bosonic/fermionic lock
configurations.

578 nm laser source

The 578 nm laser source that we use to excite the 1S0 → 3P0 transition is by far the
most complicated laser system present in the laboratory. Also in this case, due to the
absence of a commercially available high-power small-linewidth 578 nm laser, we
generate the light by means of second-harmonic generation, starting from the 1156 nm
infrared radiation delivered by a quantum dot laser diode. The diode is mounted in a
home-made extended cavity in Littrow configuration. The peculiarity of the system
is the presence of an intra-cavity EOM which is used for fast corrections of the laser
frequency up to 500 kHz. The 200 mW of infrared light generated by the diode are
used to inject a LiNbO3 doubling crystal placed inside a bow-tie cavity stabilized by
means of the Haensch-Couillaud method. The crystal delivers ∼50 mW of 578 nm
light which is split into two branches, one used for frequency stabilization on a high-
finesse (F ≃ 1.7× 105) ultra-low-expansion (ULE) cavity, the other to be used in the
experiment for the excitation of the 3P0 state. The lock on the ULE cavity is performed
on themode of the cavity nearest to the atomic transition (the FSR is 1.5GHz) bymeans
of the Pound-Drever-Hall technique (Black, 2001). To this purpose, as shown in figure
1.3, a double-passage AOM placed along the lock branch (AOM1 in figure 1.3) is used
to shift the frequency of the light in such a way that the frequency on the spectroscopy
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Figure 1.3: Conceptual scheme of the 578 nm laser setup. See the main text for details.

branch is red-shifted by 40 MHz with respect to the atomic transition. This shift is
covered by a second AOM placed on the spectroscopy branch (AOM2 in figure 1.3)
which is employed to fine-correct the laser frequency. With the lock on the ULE cavity
we obtain a final linewidth of the laser of the order of few tens of Hz on the timescale of
∼15 min. For longer times the linewidth is degraded by the ageing of the ULE cavity
glass, which determines a shift of the cavity modes of the order of 5 kHz / day, and
by long-term erratic oscillations that we attribute to uncompensated thermal effects.
This problem can be overcome with a long-term lock on a metrological reference, as
described in section 3.5.

1.2.2 Trapping laser sources

Far-red-detuned optical potentials are essential in the manipulation of alkaline-earth
and alkaline-earth-like atoms, since, as a consequence of the magnetic insensitivity of
the ground state, magnetic trapping is impossible for this class of elements. Dipole po-
tentials are a fundamental consequence of the matter-radiation interaction and emerge
due to the dipole moment p = αE induced on the atoms by the radiation’s electric
field E, where α is the atomic polarizability. Since α depends on the internal state of
the atoms, also the dipole potential will be different for different atomic internal states.
In case of red-detuned radiation and negligible saturation, the expression of the dipole
potential Udip for a multi-level atom in the internal state ν is (Grimm et al., 2000)

Uν
dip(ω, r) = −3πc2

2
I(r)

∑
n

(
1

ω3
ν,n

Γν,n βν,n

ων,n − ω

)
(1.12)

where I is the radiation intensity, ω/(2π) is its frequency, ων,n/(2π) are the frequencies
of the transitions connecting the atomic state ν with other atomic states n, Γν,n/(2π)

is the lifetime these transitions and βν,n their branching ratio.
Here we provide a short description of the 1064 nm and 759 nm laser sources

employed, respectively, to provide the light used for the evaporative cooling and for
the realization of an optical lattice in our setup. Additional information can be found
in (Pagano, 2015; Mancini, 2016).
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1064 nm laser source

We use light at 1064 nm to trap atoms in the fundamental 1S0 state. This is an an-
titrapping wavelength for the 3P0 and, consequently, cannot be employed to confine
atoms in the metastable state. Radiation at 1064 nm is generated by a Coherent Nd:Yag
Mephisto MOPA 45 laser delivering up to 45 W of light with a linewidth below 100
kHz. The infrared radiation delivered by the laser is split into three branches whose
power is controlled by means of three independent double-frequency AOMs (Frohlich
et al., 2007).

The light of the first branch is employed to inject the in-vacuum optical cavity used
for the first evaporation cooling stage inside the MOT cell. The cavity is injected with
1.8 W of radiation that are enough to produce an optical potential with a trap depth of
800 µK (see section 1.3 for further details). Light reflected from the optical cavity is
instead used to stabilize the frequency of the Mephisto laser by means of the Pound-
Drever-Hall (PDH) technique. The locking scheme employed is quite complicated and
is based on two PID servo controllers processing the slow and fast part of the PDH
signal (Pagano, 2015). The fast component of the error signal acts on the internal
piezo of the seed laser and performs fast corrections of the laser frequency. The slow
component of the error signal is instead used to control the temperature of the seed in
order to perform slow high-range frequency corrections.

The light delivered by the second of the three branches (≃ 4 W) is employed to
realize the transport beam which is used to transfer the atoms from the center of the
MOT cell to the 26-cm-distant science cell via an optical tweezers setup realized with a
focusing lens mounted on a low-vibration translation stage (see section 1.3 for further
details).

The third branch (3.5W) finally provides the light used in combination to the trans-
port beam to realize a crossed dipole trap in the center of the science cell, where the
final evaporation cooling stage is performed.

759 nm laser source

For ytterbium, 759 nm is a special wavelength that allows for the simultaneous trap-
ping of both atoms in the 1S0 and in the 3P0 states, as we will discuss in section 1.3.
We employ this radiation to realize a three dimensional optical lattice (or in some ex-
periments a 3D trap) in the center of the science cell. Light at 759 nm is generated
with a Ti:Sa laser (Coherent MBR 110) pumped with a single-mode 532 nm Coherent
Verdi V18. The 3.5 W of 759 nm light delivered by the Ti:Sa laser are split into three
branches, which are used to realize the beams of the three optical lattices. The power
of each branch is controlled by means of a double-frequency AOM. Finally, a small
portion of light is injected into a confocal cavity which is employed to monitor the
single-mode operation of the MBR.

1.2.3 Cooling procedure

At room temperature Yb is a solid with an extremely low vapor pressure. In order
to generate a reliable source of gaseous monoatomic Yb for the experiment it is thus
necessary to heat the metallic sample, increasing in this way the pressure. Ytterbium
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Figure 1.3: Conceptual scheme of the 578 nm laser setup. See the main text for details.

branch is red-shifted by 40 MHz with respect to the atomic transition. This shift is
covered by a second AOM placed on the spectroscopy branch (AOM2 in figure 1.3)
which is employed to fine-correct the laser frequency. With the lock on the ULE cavity
we obtain a final linewidth of the laser of the order of few tens of Hz on the timescale of
∼15 min. For longer times the linewidth is degraded by the ageing of the ULE cavity
glass, which determines a shift of the cavity modes of the order of 5 kHz / day, and
by long-term erratic oscillations that we attribute to uncompensated thermal effects.
This problem can be overcome with a long-term lock on a metrological reference, as
described in section 3.5.

1.2.2 Trapping laser sources

Far-red-detuned optical potentials are essential in the manipulation of alkaline-earth
and alkaline-earth-like atoms, since, as a consequence of the magnetic insensitivity of
the ground state, magnetic trapping is impossible for this class of elements. Dipole po-
tentials are a fundamental consequence of the matter-radiation interaction and emerge
due to the dipole moment p = αE induced on the atoms by the radiation’s electric
field E, where α is the atomic polarizability. Since α depends on the internal state of
the atoms, also the dipole potential will be different for different atomic internal states.
In case of red-detuned radiation and negligible saturation, the expression of the dipole
potential Udip for a multi-level atom in the internal state ν is (Grimm et al., 2000)
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where I is the radiation intensity, ω/(2π) is its frequency, ων,n/(2π) are the frequencies
of the transitions connecting the atomic state ν with other atomic states n, Γν,n/(2π)

is the lifetime these transitions and βν,n their branching ratio.
Here we provide a short description of the 1064 nm and 759 nm laser sources

employed, respectively, to provide the light used for the evaporative cooling and for
the realization of an optical lattice in our setup. Additional information can be found
in (Pagano, 2015; Mancini, 2016).
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1064 nm laser source

We use light at 1064 nm to trap atoms in the fundamental 1S0 state. This is an an-
titrapping wavelength for the 3P0 and, consequently, cannot be employed to confine
atoms in the metastable state. Radiation at 1064 nm is generated by a Coherent Nd:Yag
Mephisto MOPA 45 laser delivering up to 45 W of light with a linewidth below 100
kHz. The infrared radiation delivered by the laser is split into three branches whose
power is controlled by means of three independent double-frequency AOMs (Frohlich
et al., 2007).

The light of the first branch is employed to inject the in-vacuum optical cavity used
for the first evaporation cooling stage inside the MOT cell. The cavity is injected with
1.8 W of radiation that are enough to produce an optical potential with a trap depth of
800 µK (see section 1.3 for further details). Light reflected from the optical cavity is
instead used to stabilize the frequency of the Mephisto laser by means of the Pound-
Drever-Hall (PDH) technique. The locking scheme employed is quite complicated and
is based on two PID servo controllers processing the slow and fast part of the PDH
signal (Pagano, 2015). The fast component of the error signal acts on the internal
piezo of the seed laser and performs fast corrections of the laser frequency. The slow
component of the error signal is instead used to control the temperature of the seed in
order to perform slow high-range frequency corrections.

The light delivered by the second of the three branches (≃ 4 W) is employed to
realize the transport beam which is used to transfer the atoms from the center of the
MOT cell to the 26-cm-distant science cell via an optical tweezers setup realized with a
focusing lens mounted on a low-vibration translation stage (see section 1.3 for further
details).

The third branch (3.5W) finally provides the light used in combination to the trans-
port beam to realize a crossed dipole trap in the center of the science cell, where the
final evaporation cooling stage is performed.

759 nm laser source

For ytterbium, 759 nm is a special wavelength that allows for the simultaneous trap-
ping of both atoms in the 1S0 and in the 3P0 states, as we will discuss in section 1.3.
We employ this radiation to realize a three dimensional optical lattice (or in some ex-
periments a 3D trap) in the center of the science cell. Light at 759 nm is generated
with a Ti:Sa laser (Coherent MBR 110) pumped with a single-mode 532 nm Coherent
Verdi V18. The 3.5 W of 759 nm light delivered by the Ti:Sa laser are split into three
branches, which are used to realize the beams of the three optical lattices. The power
of each branch is controlled by means of a double-frequency AOM. Finally, a small
portion of light is injected into a confocal cavity which is employed to monitor the
single-mode operation of the MBR.

1.2.3 Cooling procedure

At room temperature Yb is a solid with an extremely low vapor pressure. In order
to generate a reliable source of gaseous monoatomic Yb for the experiment it is thus
necessary to heat the metallic sample, increasing in this way the pressure. Ytterbium
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Figure 1.4: Time-of-flight images, number of atoms and temperature of the atomic
cloud at several points of the 173Yb experimental cooling sequence. a: Atomic cloud
at the end of the single frequency MOT stage. b: Atomic cloud at the end of the
evaporation in the 1064 nm optical resonator. c: Atoms trapped in the transport beam
just after the resonator has been turned off. Atoms not trapped in the transport beam
are released by the resonator and appear as two clouds at the bottom of the image.
d: Atoms at the beginning of the transport procedure. e: Atoms after 2.7 s in the
transport beam (before moving the beam waist). The waiting time does not alter the
temperature nor the atom number. f: Fermi degenerate gas (SU(6) mixture) at the end
of the evaporation in the 1064 nm crossed trap at the center of the glass cell.

vapor is generated inside an oven heated at the temperature of 485 °C. The oven is
filled with∼15 g of Yb chunks produced by Sigma-Aldrich. According to the relation
that links the vapor pressure to the temperature for Yb (Lide, 2004)

log(P [atm]) = 9.111− 8111

T [K]
− 1.0849 log(T [K]) (1.13)

a vapor pressure of ∼0.1 Torr is expected inside the oven. The resulting Yb gas is
collimated by means of an array of 100 small tubes, 1 cm long and with an internal
diameter of 0.2 mm.

The gas exiting from the array of tubes is then decelerated from a mean velocity
of 340 m s−1 to few m s−1 by means of a 50 cm long Zeeman slower. Zeeman slow-
ing is performed exploiting the 399 nm strongly allowed 1S0 → 1P1 transition with a
983 MHz red-detuned σ− counter-propagating beam. Seven coils are disposed along
the Zeeman slower pipe in order to generate a magnetic field which keeps the atoms
resonant with the 399 nm radiation. The atoms sufficiently decelerated by the Zeeman
slower are then captured by a magneto-optical trap (MOT) operated with 556 nm light
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resonant with the 1S0 → 3P1 transition. The MOT is realized with a standard config-
uration consisting in three pairs of counter-propagating σ+/σ− beams along the three
spatial directions (Foot, 2012). Due to the narrowness of the 1S0 → 3P1 transition, the
range of atomic velocities captured by the trap is increased splitting the laser intensity
on a comb of 18 frequencies separated by 600 kHz. This multi-frequency stage lasts
for 20 s, which is the time necessary to saturate the MOT achieving a stable number of
atoms. At the end of the 20 s we end up with aboutNF = 1.5×108/NB = 1.0×109 of
173Yb/174Yb atoms trapped in the MOT, with a temperature of T ≃ 60 µK, as shown
in figure 1.4-a.

As soon as the MOT loading is completed, the in-vacuum 1064 nm optical res-
onator placed at the center of theMOT chamber is turned on with a 200 ms exponential
ramp and theMOT is switched to single-frequency operation. The resonator is a Fabry-
Perot cavity with a finesse F ≃ 1570 and a free spectral range of 1.67 GHz. Atoms
are transferred from the MOT to the center of the resonator cavity with an efficiency
≃ 80% by means of the magnetic field generated by three additional coils, exploiting
the high magnetic sensitivity of the 3P1 state. The loading in the resonator is followed
by the turning off of theMOT beams, after which a first evaporation ramp is performed
by lowering the resonator power from 1.8 W to 0.6 W with a 670 ms long exponential
ramp. As shown in figure 1.4-b, at the end of this stage we obtain a sample consisting
of about 3 × 107/5 × 108 173Yb/174Yb atoms with a temperature of 3 µK trapped in
the cavity. At this point a 70 µK deep optical trap with a waist of 30µm is generated
in the center of the resonator turning on the 1064 nm transport beam by means of a
400 ms exponential ramp. Once the resonator beam is turned off (see figures 1.4-c,d)
about 4×106/9×106 173Yb/174Yb atoms remain confined inside the trap formed by the
transport beam. Atoms are then transferred from the center of the MOT chamber to the
center of the 26.4-cm-distant glass science cell by moving the waist of the transport
beam. In order to translate the waist position, the lens that focuses the beam is moved
by means of an air-bearing translator stage AEROTECH ABL 1500b. The transport
procedure has a duration of 2.5 s, a 70% efficiency and determines an increase of the
sample temperature of only 2 µK (Livi, 2012). The alignment of the transport beam
with respect to the glass cell is shown in figure 1.5 where it is labelled as ODT1.

Once the atoms are in the center of the cell, another 1064 nm beam (ODT2 in figure
1.5) with 60 µm waist is adiabatically turned on. This beam, which propagates in a di-
rection orthogonal to the transport beam, forms with the latter a crossed optical dipole
trap where the final stage of evaporative cooling is performed. Quantum degeneracy
is reached by lowering the depth of the transport beam and of the orthogonal trapping
beam with two simultaneous exponential ramps characterized both by the same dura-
tion Tr and different decay constant τr1 and τr2, respectively for the transport and the
orthogonal beams. The optimized ramp parameters are set accordingly to the isotope
and, in the case of fermionic 173Yb, accordingly to the spin mixture we want to cool.

Fermi degeneracy for a six spin mixture of 173Yb atoms, for example, is obtained
decreasing the transport power from 3.5 W (70µK) to 30 mW and the power of the
orthogonal beam from 3 to 1 W with ramp parameters: T = 4000 ms and τr1 = τr2 =

−1000 ms. The gas obtained with this procedure is characterized by a temperature
T = 0.2TF where TF is the Fermi temperature, and a number of atomsNat ≃ 1.2×104.
The result of this procedure is shown in figure 1.4-f.
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Figure 1.4: Time-of-flight images, number of atoms and temperature of the atomic
cloud at several points of the 173Yb experimental cooling sequence. a: Atomic cloud
at the end of the single frequency MOT stage. b: Atomic cloud at the end of the
evaporation in the 1064 nm optical resonator. c: Atoms trapped in the transport beam
just after the resonator has been turned off. Atoms not trapped in the transport beam
are released by the resonator and appear as two clouds at the bottom of the image.
d: Atoms at the beginning of the transport procedure. e: Atoms after 2.7 s in the
transport beam (before moving the beam waist). The waiting time does not alter the
temperature nor the atom number. f: Fermi degenerate gas (SU(6) mixture) at the end
of the evaporation in the 1064 nm crossed trap at the center of the glass cell.

vapor is generated inside an oven heated at the temperature of 485 °C. The oven is
filled with∼15 g of Yb chunks produced by Sigma-Aldrich. According to the relation
that links the vapor pressure to the temperature for Yb (Lide, 2004)

log(P [atm]) = 9.111− 8111

T [K]
− 1.0849 log(T [K]) (1.13)

a vapor pressure of ∼0.1 Torr is expected inside the oven. The resulting Yb gas is
collimated by means of an array of 100 small tubes, 1 cm long and with an internal
diameter of 0.2 mm.

The gas exiting from the array of tubes is then decelerated from a mean velocity
of 340 m s−1 to few m s−1 by means of a 50 cm long Zeeman slower. Zeeman slow-
ing is performed exploiting the 399 nm strongly allowed 1S0 → 1P1 transition with a
983 MHz red-detuned σ− counter-propagating beam. Seven coils are disposed along
the Zeeman slower pipe in order to generate a magnetic field which keeps the atoms
resonant with the 399 nm radiation. The atoms sufficiently decelerated by the Zeeman
slower are then captured by a magneto-optical trap (MOT) operated with 556 nm light
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resonant with the 1S0 → 3P1 transition. The MOT is realized with a standard config-
uration consisting in three pairs of counter-propagating σ+/σ− beams along the three
spatial directions (Foot, 2012). Due to the narrowness of the 1S0 → 3P1 transition, the
range of atomic velocities captured by the trap is increased splitting the laser intensity
on a comb of 18 frequencies separated by 600 kHz. This multi-frequency stage lasts
for 20 s, which is the time necessary to saturate the MOT achieving a stable number of
atoms. At the end of the 20 s we end up with aboutNF = 1.5×108/NB = 1.0×109 of
173Yb/174Yb atoms trapped in the MOT, with a temperature of T ≃ 60 µK, as shown
in figure 1.4-a.

As soon as the MOT loading is completed, the in-vacuum 1064 nm optical res-
onator placed at the center of theMOT chamber is turned on with a 200 ms exponential
ramp and theMOT is switched to single-frequency operation. The resonator is a Fabry-
Perot cavity with a finesse F ≃ 1570 and a free spectral range of 1.67 GHz. Atoms
are transferred from the MOT to the center of the resonator cavity with an efficiency
≃ 80% by means of the magnetic field generated by three additional coils, exploiting
the high magnetic sensitivity of the 3P1 state. The loading in the resonator is followed
by the turning off of theMOT beams, after which a first evaporation ramp is performed
by lowering the resonator power from 1.8 W to 0.6 W with a 670 ms long exponential
ramp. As shown in figure 1.4-b, at the end of this stage we obtain a sample consisting
of about 3 × 107/5 × 108 173Yb/174Yb atoms with a temperature of 3 µK trapped in
the cavity. At this point a 70 µK deep optical trap with a waist of 30µm is generated
in the center of the resonator turning on the 1064 nm transport beam by means of a
400 ms exponential ramp. Once the resonator beam is turned off (see figures 1.4-c,d)
about 4×106/9×106 173Yb/174Yb atoms remain confined inside the trap formed by the
transport beam. Atoms are then transferred from the center of the MOT chamber to the
center of the 26.4-cm-distant glass science cell by moving the waist of the transport
beam. In order to translate the waist position, the lens that focuses the beam is moved
by means of an air-bearing translator stage AEROTECH ABL 1500b. The transport
procedure has a duration of 2.5 s, a 70% efficiency and determines an increase of the
sample temperature of only 2 µK (Livi, 2012). The alignment of the transport beam
with respect to the glass cell is shown in figure 1.5 where it is labelled as ODT1.

Once the atoms are in the center of the cell, another 1064 nm beam (ODT2 in figure
1.5) with 60 µm waist is adiabatically turned on. This beam, which propagates in a di-
rection orthogonal to the transport beam, forms with the latter a crossed optical dipole
trap where the final stage of evaporative cooling is performed. Quantum degeneracy
is reached by lowering the depth of the transport beam and of the orthogonal trapping
beam with two simultaneous exponential ramps characterized both by the same dura-
tion Tr and different decay constant τr1 and τr2, respectively for the transport and the
orthogonal beams. The optimized ramp parameters are set accordingly to the isotope
and, in the case of fermionic 173Yb, accordingly to the spin mixture we want to cool.

Fermi degeneracy for a six spin mixture of 173Yb atoms, for example, is obtained
decreasing the transport power from 3.5 W (70µK) to 30 mW and the power of the
orthogonal beam from 3 to 1 W with ramp parameters: T = 4000 ms and τr1 = τr2 =

−1000 ms. The gas obtained with this procedure is characterized by a temperature
T = 0.2TF where TF is the Fermi temperature, and a number of atomsNat ≃ 1.2×104.
The result of this procedure is shown in figure 1.4-f.
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Figure 1.5: Pictorial representation of the glass cell setup. The cell is equipped with
three coils (COIL A, B and C in figure) used to generate magnetic fields up to 170
G at the center of the cell. Coils A and B are in Helmholtz configuration. Several
lasers converge at the center of the cell, where quantum degeneracy is reached, to trap
and manipulate atoms. Among these lasers there are: the 1064 nm optical trap (ODT1

and ODT2), the three optical lattices (OL1, OL2 and OL3), the 399 nm imaging beam
(IMG), the Raman beams (R1 and R2) and the 1389 nm repump beam (REP). OP-
OSG represents instead a set of three 556 nm beams composed by the σ+/σ− pumping
beams and optical Stern-Gerlach beam. The 578 nm clock laser beam can be aligned
along several path, as discussed in section 4.2.3. Here it is represented co-aligned with
lattice OL2, a configuration often employed in the experiments described in chapter 4.

Bose-Einstein condensation of 174Yb atoms, instead, is obtained decreasing the
transport power from 3.5 W (70µK) to 30 mW and the power of the orthogonal beam
from 3 to 1 W with ramp parameters: T = 2500 ms and τr1 = τr2 = −2200 ms. In
this case the gas obtained is characterized by a condensed fraction fC ≃ 70% and a
number of atoms Nat ≃ 2.5× 104.

The optical dipole trap at the end of the evaporative cooling is characterized by
the trap frequencies ωx,y,z = {53.8(5), 99.5(5), 93.6(5)} evaluated by inducing and
detecting dipole oscillations.

Atomic population in the ground state is finally detected by means of a standard
absorption imaging technique, exploiting the cycling transition 1S0 → 1P1 (for 173Yb
F = 5/2 → F = 7/2). The imaging beam is aligned with the vertical direction, as it
shown in figure 4, where it is labelled as IMG. Additional information regarding the
imaging procedure can be found in (Pagano, 2015).
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1.2.4 Ground-state atoms - Manipulation and detection

After the transfer in the science glass cell, the optical manipulation of the six nuclear
spin states of the 173Yb ground level is the starting point for several of the subsequent
experimental sequences. These optical manipulations are performed exploiting the
1S0(F = 5/2) → 3P1(F = 7/2) transition, that due to its narrowness makes it possible
to address the six nuclear spins individually, provided the presence of a magnetic field
removing the spin degeneracy. In particular, a proper choice of the detuning of the
light with respect to the atomic transition allows us to:

• Define the number of initial spin components in the gas: SU(N ) mixtures are
prepared exploiting resonant σ+/σ− transitions connecting the states 1S0(F =

5/2,mF ) with the excited levels 3P1(F = 7/2,mF ± 1). A series of such reso-
nant light pulses is employed to optically transfer the population of the nuclear
spinmF in the statesmF +1/mF −1, respectively, if σ+/σ− transitions are used,
as it is shown in figure 1.6-a. To this purpose a 23 G magnetic field is used to
split adjacent spins in the 3P1 manifold by∆Z = 2π× 13.7MHz, in such a way
that each pumping process is characterized by a well defined frequency. Mag-
netic fields are generated by means of three coils, indicated as COIL A, B and C
in figure 1.5. Coil A and B are in Helmholtz configuration and generate fields up
to 150 G at the center of the cell. The small coil C, instead, is usually employed
to generate bias fields up to 20 G.

The preparation of SU(N ) mixtures with 2<N<5 is performed before the final
evaporative cooling stage, giving the atoms the possibility to scatter many pho-
tons and to be optically pumped without being kicked out off the trap. In order to
prepare a SU(2)mF = ±5/2mixture, for example, we start from a homogeneous
SU(6) unpolarized gas and perform two series of σ+/σ− pumping processes, the
first transferring the mF = ±1/2 spin states in the mF = ±3/2 and the second
transferring themF = ±3/2 into themF = ±5/2, as it is sketched in figure 1.6-
b. The σ+,−-polarized light necessary for the process is provided by two distinct
beams which are part of the OP-OSG beam-set in figure 1.5. A spin-polarized
gas can be prepared exploiting an additional blast pulse on one of the closed tran-
sitions 1S0(F = 5/2,mF = ±5/2) → 3P1(F = 7/2,mF = ±7/2) at the end of
the evaporation stage that kicks out the unwanted spin from the final (shallow)
trap;

• Detect the spin distribution by means of Optical Stern-Gerlach (OSG) technique
(Taie et al., 2010; Stellmer et al., 2011): Due to the magnetic insensitivity of
the Yb ground state, the standard magnetic Stern-Gerlach technique cannot be
employed to spatially resolve the six nuclear components. We instead exploit the
spin-dependent dipole force exerted by a 566MHz red-detuned beam to optically
separate the spin populations. In order to do this, a focused beam with 60µm
waist (one of the three beams which compose the OP-OSG beam-set in figure
1.5) is slightly misaligned with respect to the atomic cloud, in such a way that the
dipole force induces an acceleration on the atoms. This spin-resolved detection
is performed applying a 13 mW OSG pulse during the first 1.5 ms of time of
flight. A bias magnetic field is turned on during the detection in order to define
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Figure 1.5: Pictorial representation of the glass cell setup. The cell is equipped with
three coils (COIL A, B and C in figure) used to generate magnetic fields up to 170
G at the center of the cell. Coils A and B are in Helmholtz configuration. Several
lasers converge at the center of the cell, where quantum degeneracy is reached, to trap
and manipulate atoms. Among these lasers there are: the 1064 nm optical trap (ODT1

and ODT2), the three optical lattices (OL1, OL2 and OL3), the 399 nm imaging beam
(IMG), the Raman beams (R1 and R2) and the 1389 nm repump beam (REP). OP-
OSG represents instead a set of three 556 nm beams composed by the σ+/σ− pumping
beams and optical Stern-Gerlach beam. The 578 nm clock laser beam can be aligned
along several path, as discussed in section 4.2.3. Here it is represented co-aligned with
lattice OL2, a configuration often employed in the experiments described in chapter 4.

Bose-Einstein condensation of 174Yb atoms, instead, is obtained decreasing the
transport power from 3.5 W (70µK) to 30 mW and the power of the orthogonal beam
from 3 to 1 W with ramp parameters: T = 2500 ms and τr1 = τr2 = −2200 ms. In
this case the gas obtained is characterized by a condensed fraction fC ≃ 70% and a
number of atoms Nat ≃ 2.5× 104.

The optical dipole trap at the end of the evaporative cooling is characterized by
the trap frequencies ωx,y,z = {53.8(5), 99.5(5), 93.6(5)} evaluated by inducing and
detecting dipole oscillations.

Atomic population in the ground state is finally detected by means of a standard
absorption imaging technique, exploiting the cycling transition 1S0 → 1P1 (for 173Yb
F = 5/2 → F = 7/2). The imaging beam is aligned with the vertical direction, as it
shown in figure 4, where it is labelled as IMG. Additional information regarding the
imaging procedure can be found in (Pagano, 2015).
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1.2.4 Ground-state atoms - Manipulation and detection

After the transfer in the science glass cell, the optical manipulation of the six nuclear
spin states of the 173Yb ground level is the starting point for several of the subsequent
experimental sequences. These optical manipulations are performed exploiting the
1S0(F = 5/2) → 3P1(F = 7/2) transition, that due to its narrowness makes it possible
to address the six nuclear spins individually, provided the presence of a magnetic field
removing the spin degeneracy. In particular, a proper choice of the detuning of the
light with respect to the atomic transition allows us to:

• Define the number of initial spin components in the gas: SU(N ) mixtures are
prepared exploiting resonant σ+/σ− transitions connecting the states 1S0(F =

5/2,mF ) with the excited levels 3P1(F = 7/2,mF ± 1). A series of such reso-
nant light pulses is employed to optically transfer the population of the nuclear
spinmF in the statesmF +1/mF −1, respectively, if σ+/σ− transitions are used,
as it is shown in figure 1.6-a. To this purpose a 23 G magnetic field is used to
split adjacent spins in the 3P1 manifold by∆Z = 2π× 13.7MHz, in such a way
that each pumping process is characterized by a well defined frequency. Mag-
netic fields are generated by means of three coils, indicated as COIL A, B and C
in figure 1.5. Coil A and B are in Helmholtz configuration and generate fields up
to 150 G at the center of the cell. The small coil C, instead, is usually employed
to generate bias fields up to 20 G.

The preparation of SU(N ) mixtures with 2<N<5 is performed before the final
evaporative cooling stage, giving the atoms the possibility to scatter many pho-
tons and to be optically pumped without being kicked out off the trap. In order to
prepare a SU(2)mF = ±5/2mixture, for example, we start from a homogeneous
SU(6) unpolarized gas and perform two series of σ+/σ− pumping processes, the
first transferring the mF = ±1/2 spin states in the mF = ±3/2 and the second
transferring themF = ±3/2 into themF = ±5/2, as it is sketched in figure 1.6-
b. The σ+,−-polarized light necessary for the process is provided by two distinct
beams which are part of the OP-OSG beam-set in figure 1.5. A spin-polarized
gas can be prepared exploiting an additional blast pulse on one of the closed tran-
sitions 1S0(F = 5/2,mF = ±5/2) → 3P1(F = 7/2,mF = ±7/2) at the end of
the evaporation stage that kicks out the unwanted spin from the final (shallow)
trap;

• Detect the spin distribution by means of Optical Stern-Gerlach (OSG) technique
(Taie et al., 2010; Stellmer et al., 2011): Due to the magnetic insensitivity of
the Yb ground state, the standard magnetic Stern-Gerlach technique cannot be
employed to spatially resolve the six nuclear components. We instead exploit the
spin-dependent dipole force exerted by a 566MHz red-detuned beam to optically
separate the spin populations. In order to do this, a focused beam with 60µm
waist (one of the three beams which compose the OP-OSG beam-set in figure
1.5) is slightly misaligned with respect to the atomic cloud, in such a way that the
dipole force induces an acceleration on the atoms. This spin-resolved detection
is performed applying a 13 mW OSG pulse during the first 1.5 ms of time of
flight. A bias magnetic field is turned on during the detection in order to define
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Figure 1.6: a: Scheme of the optical pumping processes employed to generate SU(N )
spin mixtures. σ+/σ− processes indicated with a solid arrow are performed before
the final evaporation of the gas. Blast pulse indicated with a red arrow are instead
performed after the final evaporation. b: Sketch of the experimental sequence used to
generate SU(4), SU(2) mixtures or spin polarized gases starting from a SU(6) unpolar-
ized spin mixture.

a quantization axis for the nuclear spin projections. An example of SU(6) OSG
detection is reported in figure 1.7-a;

• Coherently couple the nuclear spin states: coherent transfer of population be-
tween different nuclear spin states is performed exploiting Raman transitions in
which the 3P1 manifold is used as virtual excited state. The alignment of the
two Raman beams exploited for this scope is shown in figure 1.5, where they
are labelled as R1 and R2. Section 5.1.1 is dedicated to the description of these
Raman processes;

• Perform spin-selective imaging: Exploiting a strategy similar to the optical
pumping we are able to eliminate unwanted spin populations during time of
flight, performing in this way spin-selective imaging. This technique is de-
scribed in section 5.2.1.

1.2.5 Metastable 3P0 atoms - Manipulation and detection

During this thesis we have implemented an imaging routine which enables the detec-
tion of atoms in the metastable 3P0 state. The imaging scheme is based on the dipole-
allowed 1388.8 nm transition connecting the 3P0 state with the (5d6s)3D1 with a 300
kHz natural linewidth. Once excited in the 3D1 state the atoms can decay via sponta-
neous emission in any of the three levels of the 3P manifold. However, due to the low
branching ratio towards the state 3P2 (see table 1.3), atoms essentially de-excite to the
state 3P0 (branching ratio 65%) and 3P1 (branching ratio 34%), from which they de-
cay in the fundamental state 1S0, that represents a dark state for the process. Imaging
is then performed on the ground-state population with the technique described in the
previous section. Due to the low branching ratio of the 3D1 → 3P2 decay, theoreti-
cal calculations predict that almost all the population is transferred from the metastable
state 3P0 to the fundamental level in a relatively low time (∼ 10µs) when an excitation
power of 1 mW/cm−2 is considered (Franchi, 2016).
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Figure 1.7: a: Example of OSG detection on a SU(6) 173Yb spin mixture. Spin de-
pendent force is exerted by a 556 nm beam, 566 MHz red-detuned with respect to the
MOT frequency. b: Example of simultaneous detection of atoms in the orbital states
1S0 and 3P0. Orbital dependent force is exerted by a 1064 nm beam slightly misaligned
with respect to the trap.

In order to excite the 3P0 → 3D1 transition we employ a DFB fiber-coupled laser-
diode model NLK1E5GAAA produced by NEL Laser Diodes which generates ∼20
mW at 1388.8 nm. We excite the atoms with a beam (labelled as REP in figure 1.5)
characterized by a waist of 150 µm and with a power of ∼ 10 mW, that are enough to
determine a 2 GHz power broadening of the transition. No locking is performed on the
laser frequency, which is left in free running. The complete experimental sequence em-
ployed to detect atoms in the metastable state is described at the beginning of section
6.6. We also implemented a routine to simultaneously observe atoms in the fundamen-
tal 1S0 and in the metastable 3P0 state. The scheme adopted is a sort of ”orbital optical
Stern-Gerlach” procedure in which we employ a 1064 nm beam, slightly misaligned
with respect to the atomic cloud, to spatially separate atoms in the two electronic states.

Transition
Wavelength

λ [nm]
Probability b

Γ [s−1]

Branching
Ratio

3D1 → 3P0 1388.8 1.7×106 63.8%

3D1 → 3P1 1539.1 9.5×105 35.2%

3D1 → 3P2 2092.6 2.7×104 1.0%

Table 1.3: Fundamental properties of the transitions connecting the (5d6s)3D1 state
with the (6s6p)3P manifold. Transition probabilities Γ can be calculated starting from
the reduced matrix elements of the dipole operator ⟨3D1||d̂||3PJ⟩ given in reference
(Porsev et al., 1999) with the relation Γ = ω3

J/(9πϵ0ℏc3)|⟨3D1||d̂||3PJ⟩|2 (Steck, 2007)
where ωJ/(2π) is the transition frequency. References: b: (Porsev et al., 1999).
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Figure 1.6: a: Scheme of the optical pumping processes employed to generate SU(N )
spin mixtures. σ+/σ− processes indicated with a solid arrow are performed before
the final evaporation of the gas. Blast pulse indicated with a red arrow are instead
performed after the final evaporation. b: Sketch of the experimental sequence used to
generate SU(4), SU(2) mixtures or spin polarized gases starting from a SU(6) unpolar-
ized spin mixture.

a quantization axis for the nuclear spin projections. An example of SU(6) OSG
detection is reported in figure 1.7-a;

• Coherently couple the nuclear spin states: coherent transfer of population be-
tween different nuclear spin states is performed exploiting Raman transitions in
which the 3P1 manifold is used as virtual excited state. The alignment of the
two Raman beams exploited for this scope is shown in figure 1.5, where they
are labelled as R1 and R2. Section 5.1.1 is dedicated to the description of these
Raman processes;

• Perform spin-selective imaging: Exploiting a strategy similar to the optical
pumping we are able to eliminate unwanted spin populations during time of
flight, performing in this way spin-selective imaging. This technique is de-
scribed in section 5.2.1.

1.2.5 Metastable 3P0 atoms - Manipulation and detection

During this thesis we have implemented an imaging routine which enables the detec-
tion of atoms in the metastable 3P0 state. The imaging scheme is based on the dipole-
allowed 1388.8 nm transition connecting the 3P0 state with the (5d6s)3D1 with a 300
kHz natural linewidth. Once excited in the 3D1 state the atoms can decay via sponta-
neous emission in any of the three levels of the 3P manifold. However, due to the low
branching ratio towards the state 3P2 (see table 1.3), atoms essentially de-excite to the
state 3P0 (branching ratio 65%) and 3P1 (branching ratio 34%), from which they de-
cay in the fundamental state 1S0, that represents a dark state for the process. Imaging
is then performed on the ground-state population with the technique described in the
previous section. Due to the low branching ratio of the 3D1 → 3P2 decay, theoreti-
cal calculations predict that almost all the population is transferred from the metastable
state 3P0 to the fundamental level in a relatively low time (∼ 10µs) when an excitation
power of 1 mW/cm−2 is considered (Franchi, 2016).
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Figure 1.7: a: Example of OSG detection on a SU(6) 173Yb spin mixture. Spin de-
pendent force is exerted by a 556 nm beam, 566 MHz red-detuned with respect to the
MOT frequency. b: Example of simultaneous detection of atoms in the orbital states
1S0 and 3P0. Orbital dependent force is exerted by a 1064 nm beam slightly misaligned
with respect to the trap.

In order to excite the 3P0 → 3D1 transition we employ a DFB fiber-coupled laser-
diode model NLK1E5GAAA produced by NEL Laser Diodes which generates ∼20
mW at 1388.8 nm. We excite the atoms with a beam (labelled as REP in figure 1.5)
characterized by a waist of 150 µm and with a power of ∼ 10 mW, that are enough to
determine a 2 GHz power broadening of the transition. No locking is performed on the
laser frequency, which is left in free running. The complete experimental sequence em-
ployed to detect atoms in the metastable state is described at the beginning of section
6.6. We also implemented a routine to simultaneously observe atoms in the fundamen-
tal 1S0 and in the metastable 3P0 state. The scheme adopted is a sort of ”orbital optical
Stern-Gerlach” procedure in which we employ a 1064 nm beam, slightly misaligned
with respect to the atomic cloud, to spatially separate atoms in the two electronic states.

Transition
Wavelength

λ [nm]
Probability b

Γ [s−1]

Branching
Ratio

3D1 → 3P0 1388.8 1.7×106 63.8%

3D1 → 3P1 1539.1 9.5×105 35.2%

3D1 → 3P2 2092.6 2.7×104 1.0%

Table 1.3: Fundamental properties of the transitions connecting the (5d6s)3D1 state
with the (6s6p)3P manifold. Transition probabilities Γ can be calculated starting from
the reduced matrix elements of the dipole operator ⟨3D1||d̂||3PJ⟩ given in reference
(Porsev et al., 1999) with the relation Γ = ω3

J/(9πϵ0ℏc3)|⟨3D1||d̂||3PJ⟩|2 (Steck, 2007)
where ωJ/(2π) is the transition frequency. References: b: (Porsev et al., 1999).
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This wavelength is trapping for the fundamental state and repulsive for the metastable
state, and consequently exerts opposite forces on atoms belonging to different orbital
levels. The experimental sequence developed to perform this two-orbital detection
starts shining a 1064 nm pulse during the first 3.5 ms of time of flight. The beam used
for the pulse is the 1064 nm beam orthogonal to the transport beam employed to real-
ize the crossed dipole trap in which optical evaporation is performed (ODT2 in figure
1.5). The beam is slightly misaligned during the pulse thanks to a piezoelectric mirror
which controls the pointing. After the orbital Stern-Gerlach pulse, atoms in the 3P0

state are pumped in the fundamental level with the procedure described before. Only
at this point standard 1S0 imaging is performed. A typical result of this experimental
sequence is reported in figure 1.7-b.

1.3 Optical lattices

Optical lattices provide a unique tunable platform in which neutral atoms can mimic
several features of electrons in crystalline solids. In their simplest form, optical lattices
are far-detuned spatial-periodic potentials generated by the standing wave formed by
two phase-locked counter-propagating laser beams. Considering the two beams as
planar waves with wavelength λ, the resulting potential is commonly expressed as:

VL(x) = sEr cos2(kLx) (1.14)

where kL = 2π/λ is the lattice wavenumber and the potential height is expressed as a

function of the lattice recoil energy Er =
ℏ2k2

L

2m in which m is the atomic mass. Given
the expression 1.14, the spacing between neighbouring lattice sites is d = π/kL =

λ/2. The energy spectrum can be derived starting from the resolution of the time-
independent Schroedinger equation associated to the potential VL(x), which reads

(
− ℏ2

2m

∂2

∂x2
+ sEr cos2(kLx)

)
Ψ(x) = EΨ(x) (1.15)

whose solutions are the Bloch eigenfunctions

Ψn,k(x) = eikxun,k(x) (1.16)

in which the functions un,k(x) are characterized by the lattice periodicity and k is the
lattice quasimomentum. Remarkably (Ashcroft andMermin, 1976), a similar periodic-
ity exists also in momentum space, where both the eigenfunctions and their associated
energies are invariant under translations of multiples of the reciprocal lattice vectors.
As a consequence of this translation symmetry, it is possible restrict the momentum
space analysis to the primitive cell of the reciprocal lattice, which is defined as first
Brillouin zone (FBZ). As it is shown in figure 1.8-a, the energies allowed in the FBZ
define the band structure ε(n, k) of the lattice, where n labels the band index. Exten-
sion to the 3D cubic case (figure 1.8-b) is straightforward being the problem separable.
The band dispersion depends on the strength of the lattice potential and in the limit
s ≫ 1 reduces to the band structure of a harmonic oscillator characterized by a trap-
ping frequency ν = ω/(2π) with

ω = 2
√
s
Er

ℏ
. (1.17)
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Figure 1.8: First four energy bands for a one-dimensional lattice (a) and a three-
dimensional isotropic cubic lattice (b). For the 3D case the gap between the first two
bands opens starting from s = 2.2Er.

The depth parameter s obviously depends on the AC Stark shift exerted on the atoms
by the lattice potential, which in turn is a function of the atomic polarizability αν(λ),
where ν labels the atomic quantum state. In particular, taking into account that the
peak intensity in an optical lattice is four times the intensity of each of the two beams
generating the lattice (here we suppose the two beams to have the same intensity), we
have

s =
2

ϵ0 cEr(λ)
Re[αν(λ)] I (1.18)

where I is the intensity of each of the two beams. The dependence of the lattice depth
on the atomic quantum state constitutes a limit for some applications in which two
atomic states with different polarizabilities are simultaneously confined in the lattice2.
When dealing with two-electron atoms, this state dependence of the lattice potential
may represent a serious drawback, for example in the context of atomic clocks, where
different polarizabilities of the 1S0 and 3P0 states lead to a lattice-induced shift of
the clock transition. The problem is solved realizing lattices at the so-called magic
wavelength λL for which the polarizabilities of the 1S0 = g and 3P0 = e states are
identical, that is

αg(λL) = αe(λL). (1.19)

As it can be observed in figure 1.9, Yb is characterized by several magic wavelengths in
the visible spectrum. Among these wavelengths, the only one not too near to an atomic
transition which would determine a too strong scattering of photons is λL = 759.34 nm
(Dzuba and Derevianko, 2010), that is the one commonly employed to realize optical
lattices for Yb atoms, as it is in our case.

2The lattice differential light shift can indeed be exploited in some quantum simulation schemes to lo-
calize one atomic state leaving the other delocalized, as it is needed for example in the simulation of the
Kondo lattice model (Gorshkov et al., 2009).
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This wavelength is trapping for the fundamental state and repulsive for the metastable
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levels. The experimental sequence developed to perform this two-orbital detection
starts shining a 1064 nm pulse during the first 3.5 ms of time of flight. The beam used
for the pulse is the 1064 nm beam orthogonal to the transport beam employed to real-
ize the crossed dipole trap in which optical evaporation is performed (ODT2 in figure
1.5). The beam is slightly misaligned during the pulse thanks to a piezoelectric mirror
which controls the pointing. After the orbital Stern-Gerlach pulse, atoms in the 3P0

state are pumped in the fundamental level with the procedure described before. Only
at this point standard 1S0 imaging is performed. A typical result of this experimental
sequence is reported in figure 1.7-b.

1.3 Optical lattices

Optical lattices provide a unique tunable platform in which neutral atoms can mimic
several features of electrons in crystalline solids. In their simplest form, optical lattices
are far-detuned spatial-periodic potentials generated by the standing wave formed by
two phase-locked counter-propagating laser beams. Considering the two beams as
planar waves with wavelength λ, the resulting potential is commonly expressed as:

VL(x) = sEr cos2(kLx) (1.14)

where kL = 2π/λ is the lattice wavenumber and the potential height is expressed as a

function of the lattice recoil energy Er =
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2m in which m is the atomic mass. Given
the expression 1.14, the spacing between neighbouring lattice sites is d = π/kL =

λ/2. The energy spectrum can be derived starting from the resolution of the time-
independent Schroedinger equation associated to the potential VL(x), which reads
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)
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whose solutions are the Bloch eigenfunctions

Ψn,k(x) = eikxun,k(x) (1.16)

in which the functions un,k(x) are characterized by the lattice periodicity and k is the
lattice quasimomentum. Remarkably (Ashcroft andMermin, 1976), a similar periodic-
ity exists also in momentum space, where both the eigenfunctions and their associated
energies are invariant under translations of multiples of the reciprocal lattice vectors.
As a consequence of this translation symmetry, it is possible restrict the momentum
space analysis to the primitive cell of the reciprocal lattice, which is defined as first
Brillouin zone (FBZ). As it is shown in figure 1.8-a, the energies allowed in the FBZ
define the band structure ε(n, k) of the lattice, where n labels the band index. Exten-
sion to the 3D cubic case (figure 1.8-b) is straightforward being the problem separable.
The band dispersion depends on the strength of the lattice potential and in the limit
s ≫ 1 reduces to the band structure of a harmonic oscillator characterized by a trap-
ping frequency ν = ω/(2π) with
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Figure 1.8: First four energy bands for a one-dimensional lattice (a) and a three-
dimensional isotropic cubic lattice (b). For the 3D case the gap between the first two
bands opens starting from s = 2.2Er.

The depth parameter s obviously depends on the AC Stark shift exerted on the atoms
by the lattice potential, which in turn is a function of the atomic polarizability αν(λ),
where ν labels the atomic quantum state. In particular, taking into account that the
peak intensity in an optical lattice is four times the intensity of each of the two beams
generating the lattice (here we suppose the two beams to have the same intensity), we
have

s =
2

ϵ0 cEr(λ)
Re[αν(λ)] I (1.18)

where I is the intensity of each of the two beams. The dependence of the lattice depth
on the atomic quantum state constitutes a limit for some applications in which two
atomic states with different polarizabilities are simultaneously confined in the lattice2.
When dealing with two-electron atoms, this state dependence of the lattice potential
may represent a serious drawback, for example in the context of atomic clocks, where
different polarizabilities of the 1S0 and 3P0 states lead to a lattice-induced shift of
the clock transition. The problem is solved realizing lattices at the so-called magic
wavelength λL for which the polarizabilities of the 1S0 = g and 3P0 = e states are
identical, that is

αg(λL) = αe(λL). (1.19)

As it can be observed in figure 1.9, Yb is characterized by several magic wavelengths in
the visible spectrum. Among these wavelengths, the only one not too near to an atomic
transition which would determine a too strong scattering of photons is λL = 759.34 nm
(Dzuba and Derevianko, 2010), that is the one commonly employed to realize optical
lattices for Yb atoms, as it is in our case.

2The lattice differential light shift can indeed be exploited in some quantum simulation schemes to lo-
calize one atomic state leaving the other delocalized, as it is needed for example in the simulation of the
Kondo lattice model (Gorshkov et al., 2009).
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Figure 1.9: Real part of the polarizability of the 1S0 and 3P0 levels of Yb calculated
starting from the expression 1.12. Polarizabilities are expressed in atomic units (AU).
The conversion factor between polarizability in AU and SI units is: α(SI) = 1.648 ×
10−41α(AU). A more accurate calculation performed by means of relativistic many-
body calculations can be found in (Dzuba and Derevianko, 2010) and gives for the
magic wavelength the value 759.34 nm.

1.3.1 Wannier functions and optical lattice properties

For increasing lattice depths atomic wavefunctions tend to localize in proximity of a
lattice site and their description in terms of Bloch functions is not convenient. In this
case a more appropriate formalism is given by the so calledWannier functions, which
are defined starting from the Bloch function ϕn,k(x) as

wn(x− ℓd) = A

∫

FBZ

e−i(k ℓ d+θn,k) ϕn,k(x) dk (1.20)

where ℓ is an integer, d is the lattice spacing and θn,k is a phase factor, and the integral
domain is the first Brillouin zone. In general, the phase factors θn,k are chosen in
such a way to realize the so calledmaximally localized Wannier functions (MLWF) for
which the quantity

∆x2 = ⟨wn(x)|x2|wn(x)⟩ − (⟨wn(x)|x|wn(x)⟩)2. (1.21)

is minimized (Marzari et al., 2012; Pini, 2014). MLWF form a complete set of orthogo-
nal elements, that for increasing depth of the lattice potential collapse on the harmonic
oscillator eigenfunctions in the different lattice sites.

In terms of the MLWF, we can define the two fundamental physical quantities that
characterize the physics in an optical lattice, i.e. the tunnelling strength t and the
on-site two-particles interaction energy U . In particular, the tunnelling strength for a
one-dimensional lattice is defined as

ti,j =

∫
dxw∗

n(x− xi)

(
− ℏ2

2m
∇2 + sEr cos2(kLx)

)
wn(x− xj) (1.22)
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Figure 1.10: a: Tunnelling parameter t/h for Yb atoms in the fundamental (blue
line) and in the first excited band (green line) of a one dimensional lattice oper-
ated at the magic wavelength λL = 759.34 nm. Tunnelling strength in the fun-
damental band is compared with the approximate result obtained with the formula
t = 4√

π
Er s

3/4 e−2s1/2 (Bloch et al., 2012) (blue dashed line). b: Interaction energy
in the fundamental band of a 3D isotropic optical lattice operated at the magic wave-
length λL = 759.34 nm for two 173Yb atoms (blue line) or two 174Yb atoms (green
line).

while for the interaction energy, in the limit of validity of the Hubbard-model and for
a 3D isotropic lattice, we have

U =
4πℏ2 a
m

[∫
dxw4

n(x)

]3
(1.23)

wherem is the atomic mass and a is the s-wave scattering length. For increasing a the
relation 1.23 is no longer valid and the interaction energy saturates to the gap between
the first and the second lattice band (Busch et al., 1998). Tunnelling strengths and
interaction energies for the isotopes 173Yb and 174Yb for the range of lattice depths
commonly employed in the experiment are reported in figure 1.10.

The expression of the lattice Hamiltonian in the MLWF basis takes the name of
tight binding approximation. In this basis, which is particularly convenient to solve
problems for which a momentum-state representation is difficult (as we will see in
sections 4.2.1 and 5.1.2), the one-dimensional lattice Hamiltonian reads

H = −t
∑
j

â†j âj+1 + H.c. (1.24)

where â† is the creation operator for a particle localized at site j in the lattice. Here we
have assumed that the dynamics is restricted to the fundamental band of the lattice and
that tunnelling couplings beyond nearest neighbours are suppressed (both assumptions
are reasonably well justified for a degenerate gas of atoms in optical lattices with s ≳
5).

1.3.2 Experimental implementation and procedures

In our experiment we realize a 3D cubic optical lattice at the magic wavelength
λL = 759.44 nm. The lattice is realized by means of three pairs of linearly-polarized
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body calculations can be found in (Dzuba and Derevianko, 2010) and gives for the
magic wavelength the value 759.34 nm.

1.3.1 Wannier functions and optical lattice properties

For increasing lattice depths atomic wavefunctions tend to localize in proximity of a
lattice site and their description in terms of Bloch functions is not convenient. In this
case a more appropriate formalism is given by the so calledWannier functions, which
are defined starting from the Bloch function ϕn,k(x) as

wn(x− ℓd) = A

∫

FBZ

e−i(k ℓ d+θn,k) ϕn,k(x) dk (1.20)

where ℓ is an integer, d is the lattice spacing and θn,k is a phase factor, and the integral
domain is the first Brillouin zone. In general, the phase factors θn,k are chosen in
such a way to realize the so calledmaximally localized Wannier functions (MLWF) for
which the quantity

∆x2 = ⟨wn(x)|x2|wn(x)⟩ − (⟨wn(x)|x|wn(x)⟩)2. (1.21)

is minimized (Marzari et al., 2012; Pini, 2014). MLWF form a complete set of orthogo-
nal elements, that for increasing depth of the lattice potential collapse on the harmonic
oscillator eigenfunctions in the different lattice sites.

In terms of the MLWF, we can define the two fundamental physical quantities that
characterize the physics in an optical lattice, i.e. the tunnelling strength t and the
on-site two-particles interaction energy U . In particular, the tunnelling strength for a
one-dimensional lattice is defined as
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∫
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while for the interaction energy, in the limit of validity of the Hubbard-model and for
a 3D isotropic lattice, we have

U =
4πℏ2 a
m

[∫
dxw4

n(x)

]3
(1.23)

wherem is the atomic mass and a is the s-wave scattering length. For increasing a the
relation 1.23 is no longer valid and the interaction energy saturates to the gap between
the first and the second lattice band (Busch et al., 1998). Tunnelling strengths and
interaction energies for the isotopes 173Yb and 174Yb for the range of lattice depths
commonly employed in the experiment are reported in figure 1.10.

The expression of the lattice Hamiltonian in the MLWF basis takes the name of
tight binding approximation. In this basis, which is particularly convenient to solve
problems for which a momentum-state representation is difficult (as we will see in
sections 4.2.1 and 5.1.2), the one-dimensional lattice Hamiltonian reads

H = −t
∑
j

â†j âj+1 + H.c. (1.24)

where â† is the creation operator for a particle localized at site j in the lattice. Here we
have assumed that the dynamics is restricted to the fundamental band of the lattice and
that tunnelling couplings beyond nearest neighbours are suppressed (both assumptions
are reasonably well justified for a degenerate gas of atoms in optical lattices with s ≳
5).

1.3.2 Experimental implementation and procedures

In our experiment we realize a 3D cubic optical lattice at the magic wavelength
λL = 759.44 nm. The lattice is realized by means of three pairs of linearly-polarized
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Figure 1.11: a-d: Band mapping for several fillings for a 3D lattice with depths
sx,y,z = {6, 30, 30}. On the top of each panel a sketch of the filling of the funda-
mental and first excited bands is shown. The square shape in the last panel correspond
to the FBZ (integrated along the vertical axis).

counter-propagating beams (labelled as OL1, OL2 and OL3 in figure 1.5) intersecting
at the center of the glass cell along three orthogonal directions. Two of the three lat-
tices are in the horizontal plane defined by the 1064 nm crossed dipole trap (the two
orthogonal lattices are rotated by 36° with respect to the crossed trap beams) while
the third is along the vertical direction. The beam waist at the position of the atoms
is w0 ≃ 100µm, which is sufficient to induce a s = 30 lattice depth3 with a power
of P0 ≃ 500 mW. Each of the three beam pairs is equipped with a beam sampler that
deviates part of the light on a photodiode, by means of which their power is monitored.
The photodiode signal is used to feed a PID servo controller that tunes the beam inten-
sity accordingly to an external set point by regulating the RF power of an AOM. In
most of the experiments, the atoms are loaded in the lattice at the end of the evapora-
tive cooling (after spin mixture preparation in the case of 173Yb) with a T = 150 ms
adiabatic exponential ramp characterized by a time constant τ = 20 ms. The ramp is
slow enough to avoid Landau-Zener tunnelling towards higher bands. For sufficiently
deep isotropic 3D lattices (s > 6) the lattice-induced potential is strong enough to over-
come gravity and consequently the 1064 nm trap can be turned off at the end of the
loading. The geometry of the system can be decided changing the number of lattices
confining the atoms, from 0D (employing three deep lattices) to 1D or 2D (employing
respectively two or one deep lattices, the vertical one in the latter case). All the exper-
iments described in this thesis are performed manipulating atoms trapped in an optical
lattice, both because this allows us to control the sample geometry and because of the
confinement-induced advantages of which a spectroscopy measurement can benefit,

3Calibration of the lattice depth is performed by means of the amplitude modulation method (Hundt,
2011) in which the gap∆E2 between the fundamental and the second excited lattice bands is measured by
modulating the lattice intensity at frequency fm ≃ ∆E2 and evaluating the dependence of the atom loss as
a function of fm.

38

as it is discussed in section 3.3.
The quasimomentum distribution (QD) inside the lattice can be accessed with the

band mapping technique (Greiner et al., 2001; Köhl et al., 2005) which allows map-
ping the QD into a velocity distribution, which in turn is measured through standard
absorption imaging. In order to perform band mapping, the lattices must be turned off
adiabatically with respect to the inverse of the band gap, but faster with respect to the
trap period (which never exceeds few tens of Hz). In order to perform an adiabatic
band mapping process for lattice depths spanning from s = 5 to s = 30 we turn off
the lattices with an adiabatic ramp characterized by a duration T = 1.2ms and a decay
constant τ = 0.3 ms. Band mapping results for various band fillings in a 3D lattice
with depths sx,y,z = {6, 30, 30} are shown in figure 1.11.
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of P0 ≃ 500 mW. Each of the three beam pairs is equipped with a beam sampler that
deviates part of the light on a photodiode, by means of which their power is monitored.
The photodiode signal is used to feed a PID servo controller that tunes the beam inten-
sity accordingly to an external set point by regulating the RF power of an AOM. In
most of the experiments, the atoms are loaded in the lattice at the end of the evapora-
tive cooling (after spin mixture preparation in the case of 173Yb) with a T = 150 ms
adiabatic exponential ramp characterized by a time constant τ = 20 ms. The ramp is
slow enough to avoid Landau-Zener tunnelling towards higher bands. For sufficiently
deep isotropic 3D lattices (s > 6) the lattice-induced potential is strong enough to over-
come gravity and consequently the 1064 nm trap can be turned off at the end of the
loading. The geometry of the system can be decided changing the number of lattices
confining the atoms, from 0D (employing three deep lattices) to 1D or 2D (employing
respectively two or one deep lattices, the vertical one in the latter case). All the exper-
iments described in this thesis are performed manipulating atoms trapped in an optical
lattice, both because this allows us to control the sample geometry and because of the
confinement-induced advantages of which a spectroscopy measurement can benefit,

3Calibration of the lattice depth is performed by means of the amplitude modulation method (Hundt,
2011) in which the gap∆E2 between the fundamental and the second excited lattice bands is measured by
modulating the lattice intensity at frequency fm ≃ ∆E2 and evaluating the dependence of the atom loss as
a function of fm.
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trap period (which never exceeds few tens of Hz). In order to perform an adiabatic
band mapping process for lattice depths spanning from s = 5 to s = 30 we turn off
the lattices with an adiabatic ramp characterized by a duration T = 1.2ms and a decay
constant τ = 0.3 ms. Band mapping results for various band fillings in a 3D lattice
with depths sx,y,z = {6, 30, 30} are shown in figure 1.11.
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Chapter 2
Quantum physics with real and synthetic magnetic fields

Since its first experimental observation in 1980 by von Klitzing (Klitzing et al., 1980),
the physics related to the quantum Hall effect gained crescent attention in the scientific
community, as it can be inferred by the huge number of scientists awarded with the
Nobel prize for their discoveries in this research field, from von Klitzing itself (1985),
to R. B. Laughlin, H. L. Strmer and D. C. Tsui (1998) for the fractional quantum Hall
effect, arriving to D. J. Thouless, F. D. M. Haldane and J. M. Kosterlitz (2016) for
their theoretical discoveries of topological phase transitions and topological phases
of matter. Quantum Hall states are apparently very similar to ordinary insulators in
the sense that both systems are characterized by finite energy gaps and by electrons
bound in closed orbits. As first pointed out by Halperin (Halperin, 1982), the peculiar
transport properties that characterize the quantumHall states distinguishing them from
ordinary insulators can be ascribed to the presence of some current-carrying electron
states that are localized on the boundary of the sample and extend on its perimeter.
Edge states represent a hallmark of quantum Hall physics and to their experimental
investigation by means of quantum simulation is dedicated part of the experimental
section of this thesis (see chapters 4 and 5). For this reason, the first section of this
chapter is dedicated to a very introductory discussion about the physics of edge states
and to a description of their properties. In order to provide the theoretical basis for
the experimental part of this work, in section 2.2 we investigate how the presence of
a periodic potential affects the physics of quantum Hall states, focusing in particular
the attention on the Harper-Hofstadter model (Harper, 1955). Finally in section 2.3
we discuss how the quantum Hall physics can be efficiently simulated in the ultracold
atoms platform taking advantage of several techniques developed in the last years that
make it possible to emulate the effects of magnetism with neutral particles (Gerbier
and Dalibard, 2010). We can go a step further and simulate not only the effect of
magnetism but also the space in which particles move. As we discuss in section 2.3.2
an extra dimension can be efficiently encoded in an internal degree of freedom of a
neutral particle and allow the realization of ladder geometries naturally pierced by a
synthetic flux (Celi et al., 2014). Here we provide a detailed description of this inno-
vative approach to the simulation of magnetism with neutral atoms while in sections
4.2 and 5.1.2 its experimental realization will be investigated.
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Figure 2.1: a: Semiclassically, in a quantumHall bar electrons in the bulk orbit around
fixed positions and do not carry current. At the edge, the specular reflection of the
motion result in chiral skipping orbits carrying a non zero current. b: From a quan-
tum mechanical prospect, the position and momentum of the IQHE wavefunction are
locked. The energies of wavefunctions localized near the edge (dashed red curve in
figure) are lifted due to the presence of the confining potential V (x) and this result in a
non vanishing group velocity vk = 1/ℏ ∂ϵk/∂k that has opposite sign at the two edges
of the sample.

2.1 Edge currents and edge states in a Hall bar

Edge states play a fundamental role in the description of the paradigmatic features
of many intriguing physical effects, such as the Quantum Hall Effect or the transport
properties in the class of materials known as topological insulators, just to mention
two of the most celebrated examples. From a semiclassical prospect, edge states can
be assimilated to the skipping semicircular orbits performed on the boundary of a 2D
slab by an electron gas subjected to a magnetic field B perpendicular to the slab it-
self. In such a system, as a consequence of the Lorentz force, an electron of charge
e and mass m will undergo a circular motion characterized by an angular frequency
ωc = eB/(mc). Close to the edge the charged particles do not have enough space
to complete a circle and so they are reflected by the boundary of the slab, starting a
new semicircular orbit in the same direction, as it is pictorially shown in figure 2.1-a.
Although this is a very naive model, a fundamental property of the charge transport in
this kind of systems already emerges: even in equilibrium, thanks to the skipping-orbit
motion of the particles along the boundary, each edge of the slab carries a current and
these currents are chiral, meaning that they can flow in a unique direction which is de-
termined only by the relative orientation of the magnetic field and the edge itself. This
implies that in absence of an electric field parallel to the plane of the slab, the currents
carried by opposite edges have the same magnitude but different chirality, ensuring in
this way that the total flowing current vanishes. On the other hand in the bulk of the
2D material, where the particles can complete a circular orbit, no current flow is pos-
sible. Let’s now review the same argumentation from a quantum mechanic prospect,
focusing the attention on the role played by the edge states in the Integer Quantum
Hall Effect (IQHE). We consider a slab having a finite size L along the x̂ direction and
an infinite length along ŷ pierced by a magnetic field B aligned with ẑ. If we describe
the edges of the slab with a confining potential V (x) then, in the Landau gauge, the
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Hamiltonian describing an electron in this system is

H =
1

2m

(
p2x + (py + eB x)

2
)
+ V (x). (2.1)

From the IQH theory (Yoshioka, 2002; Giuliani and Vignale, 2005; Tong, 2016; Girvin,
1999) we know that in the fundamental Landau level the eigenfunction of the 2.1 are
gaussian wavepackets characterized by a length ℓB =

√
ℏ/(eB) and having the func-

tional form

ψ(x, y) = A eikyye
− 1

2 ℓ2
B

(x−Xk)
2

(2.2)

whereA is a normalization constant andXk, the expectation value of the wavefunction
position, is Xk = −kyℓ

2
B . If now we assume V (x) to be smooth on the lengthscale

of ℓB , it is possible to Taylor-expand the potential experienced by each wavepacket
centered inXk and at the first order we thus have V (x) = V (Xk)+(∂V /∂x)|x=Xk

(x−
Xk). The effect of the linear expansion term of V (x) in the Hamiltonian 2.1 is the same
produced by an electric field aligned with the x̂ direction. We know from the IQHE
theory that this results in a drift velocity in the ŷ direction given by

vy = − 1

eB

∂V

∂x

����
x=Xk

. (2.3)

The drift velocity calculated starting from the last expression depends on the position
Xk of the wavefunction considered. In particular, since the first derivative of V (x)

changes its sign near opposite edges±L/2x̂, we will have that eigenstate localized near
the edges will experience opposite drift velocity depending on which of the two edges
is considered. One can derive the same result considering that at the edges the energy
of the wavefunction is lifted by the confining potential V (x). Since the momentum
along the ŷ direction is directly linked to the wavepacket position by the relation 2.2
we have that the group velocity vk = 1/ℏ ∂ϵk/∂k will thus acquire opposite values at
different edges as it is explained by figure 2.1-b.

The quantum approach thus leads to the same important result of the simple classi-
cal model discussed before: in a Hall bar edges carry a non zero current that is charac-
terized by a well-defined chirality. These chiral edge currents have a lot of remarkable
properties: first of all the presence of a gap between the bulk and the edge modes
prevents the disorder to admix these states with states deeper in the sample in such a
way that current might leak away from the edge. Moreover, the chiral nature of the
current guarantees that electrons cannot be reflected by an impurity, as they have to
move only in one direction, meaning that edge transport is robust against the presence
of impurities or disorder.

2.1.1 Connections with topology

Edge states are intimately related to the topological aspects of the IQHE (Hasan and
Kane, 2010; Kane and Moore, 2011; Hatsugai, 1993). QH states represent the funda-
mental example of 2D topological systems characterized by an insulating gapped bulk
and conductive gapless edges which are protected against small deformations in the
system parameters. The topological invariant associated with this kind of topological
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Figure 2.1: a: Semiclassically, in a quantumHall bar electrons in the bulk orbit around
fixed positions and do not carry current. At the edge, the specular reflection of the
motion result in chiral skipping orbits carrying a non zero current. b: From a quan-
tum mechanical prospect, the position and momentum of the IQHE wavefunction are
locked. The energies of wavefunctions localized near the edge (dashed red curve in
figure) are lifted due to the presence of the confining potential V (x) and this result in a
non vanishing group velocity vk = 1/ℏ ∂ϵk/∂k that has opposite sign at the two edges
of the sample.
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slab by an electron gas subjected to a magnetic field B perpendicular to the slab it-
self. In such a system, as a consequence of the Lorentz force, an electron of charge
e and mass m will undergo a circular motion characterized by an angular frequency
ωc = eB/(mc). Close to the edge the charged particles do not have enough space
to complete a circle and so they are reflected by the boundary of the slab, starting a
new semicircular orbit in the same direction, as it is pictorially shown in figure 2.1-a.
Although this is a very naive model, a fundamental property of the charge transport in
this kind of systems already emerges: even in equilibrium, thanks to the skipping-orbit
motion of the particles along the boundary, each edge of the slab carries a current and
these currents are chiral, meaning that they can flow in a unique direction which is de-
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The drift velocity calculated starting from the last expression depends on the position
Xk of the wavefunction considered. In particular, since the first derivative of V (x)

changes its sign near opposite edges±L/2x̂, we will have that eigenstate localized near
the edges will experience opposite drift velocity depending on which of the two edges
is considered. One can derive the same result considering that at the edges the energy
of the wavefunction is lifted by the confining potential V (x). Since the momentum
along the ŷ direction is directly linked to the wavepacket position by the relation 2.2
we have that the group velocity vk = 1/ℏ ∂ϵk/∂k will thus acquire opposite values at
different edges as it is explained by figure 2.1-b.

The quantum approach thus leads to the same important result of the simple classi-
cal model discussed before: in a Hall bar edges carry a non zero current that is charac-
terized by a well-defined chirality. These chiral edge currents have a lot of remarkable
properties: first of all the presence of a gap between the bulk and the edge modes
prevents the disorder to admix these states with states deeper in the sample in such a
way that current might leak away from the edge. Moreover, the chiral nature of the
current guarantees that electrons cannot be reflected by an impurity, as they have to
move only in one direction, meaning that edge transport is robust against the presence
of impurities or disorder.

2.1.1 Connections with topology

Edge states are intimately related to the topological aspects of the IQHE (Hasan and
Kane, 2010; Kane and Moore, 2011; Hatsugai, 1993). QH states represent the funda-
mental example of 2D topological systems characterized by an insulating gapped bulk
and conductive gapless edges which are protected against small deformations in the
system parameters. The topological invariant associated with this kind of topological
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systems is the Chern number nc which is an integer coinciding with the quantized Hall
conductance σxy in units of e2/ℏ

σxy = −e2

ℏ
nc. (2.4)

The topological nature of the Chern invariant derives from a geometric interpreta-
tion of the Hall conductance as a curvature of a two dimensional parameter space,
as pointed out in (Avron et al., 2003) and first established in a seminal paper by Thou-
less, Kohmoto, Nightingale and den Nijs (Thouless et al., 1982). Being an integer,
the value of nc cannot be changed continuously and defines an equivalence class of
gapped systems. As a result of the topological nature of the IQHE, states characterized
by different Chern numbers cannot be smoothly deformed one into the other without
closing the bulk energy gap separating the highest occupied electronic band from the
lowest empty band, in a similar way in which surfaces characterized by a different
genus cannot be deformed one into the other without the creation of one or more holes
in some points. The profound consequence of this argumentation is that at an interface
between two materials characterized by different Chern numbers, such as an IQH state
with nc1 = 1 and the vacuum with nc2 = 0, as one moves across the boundary the
gap must close and reopen again in the region characterized by a different value of the
topological invariant. As it is pictorially shown in figure 2.2-a, at the interface, where
the gap vanishes, the presence of low energy gapless electronic modes is thus expected:
these modes are nothing but the edge states introduced before.

It is evident that a link exists between the edge states, which live on the surface
of the system, and the Chern number, which is a topological property that instead
characterizes the bulk. This link is summarized by the famous argument known as bulk-
boundary correspondence (Hasan and Kane, 2010) which states that at an interface the
difference∆nc between the Chern numbers of the two adjacent materials is equal to the
difference between the number of right NR and left NL moving edge states branches
present at the interface

∆nc = NR −NL (2.5)

A deeper interpretation of the relation between the edge states and the topological
character of the IQHE has been carried out by Hatsugai (Hatsugai, 1997) but goes
beyond the scope of this work.

2.1.2 The role of Spin and Spin-orbit coupling

Up to now we have discussed only about systems in which the transport and topolog-
ical properties emerge as a consequence of the presence of an external magnetic field
which breaks the time-reversal symmetry. This constraint can be released if a differ-
ent class of materials is considered, in which the role of the magnetic field is played
by the spin-orbit coupling (SOC) (Kane and Mele, 2005; Hasan and Kane, 2010; Qi
and s. Zhang, 2010; Moore, 2010; Manoharan, 2010). SOC is a momentum-dependent
force characterized by a direction determined by the spin, acting in this way as a sort of
spin-depending magnetic field. In some materials, the presence of SOC leads to a new
kind of topological states, known as quantum spin Hall (QSH). We can imagine a QSH

44

Valence band

Conduction band

Edge states

E

kx

x

y

Vacuum nc=0

QH material nc≠0

Valence band

Conduction band

Edge states

E

kx

x

y

Vacuum 

 QSH material

a)

b)

c)

d)

spin down

spin up

Figure 2.2: a: In the integer quantum Hall effect edge states appear at the interface
between two materials characterized by a different topological invariant, the Chern
number. b: From a topological prospect, at the interface the energy gap of the two
materials must vanish and edge states emerge. c: In a quantum spin Hall system at
the boundary two counter-propagating spin currents flow. d: The spectrum associated
to this kind of materials shows at least two branches of edge states protected by the
Kramers theorem.

state as the superposition of two QH states (one for the spin-up, the other for the spin-
down electrons) characterized by an opposite direction of propagation at the edges, as it
shown in figure 2.2-c. The resulting system has an insulating bulk, as a QH state, but at
the edges, as an effect of the SOC, two spin currents propagates in opposite directions.
Since the two currents cancel each other, the total current flowing at the edges, and so
the Hall conductance, are both vanishing. As in the QH states, the QSH edge states
are protected by backscattering, meaning that an electron propagating on the boundary
cannot change its direction as the consequence of the scattering with a (non magnetic)
impurity. Differently from the QH, this property does not come out from the chiral
nature of the current (after all we have two currents propagating in opposite directions
on each edge) but is the result of a quantum destructive interference associated to the
backscattered paths. What is important in this kind of systems is the role played by
the time-reversal symmetry (TRS), which is not broken in a QSH state. As it can be
observed in the spectrum associated to a QSH state (see figure 2.2-d) TRS (which acts
swapping the spin and the momentum of a particle), connects states with spin-up and
positive momenta with states with spin-down and negative momenta. This fulfills the
requirements of the Kramers theorem which for half-integer time-reversal-symmetric
systems predicts that each energy level must be at least doubly degenerate. As an effect
of the Kramers theorem the point at k = 0where the branches for the spin-up and spin-
down particles intersect must be twofold degenerate (this is a time-reversal-invariant
momentum (TRIM) point) and a gap cannot be opened with an adiabatic deformation
of the band structure. It comes out that this property can be associated to a new kind of
topological invariant, as it was pointed out by Kane and Mele in reference (Kane and
Mele, 2005) and this eventually leads to the definition of a new kind of topological
materials, known as 2D topological insulators.
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2.2 Hall physics on a lattice

We have seen that in the continuum a 2D electron gas subjected to a strong magnetic
field exhibits a series of interesting physical properties: in particular, the presence of a
gapped bulk and the existence of conductive states at the edges lead to the quantization
of the Hall conductance and to the definition of a quantum state characterized by a
topological behaviour, the Integer Quantum Hall. Surprisingly, a similar physics holds
if a 2D lattice is superimposed to a QH state. One of the main effects induced by the
presence of a periodic potential is the splitting of the Landau levels in several subbands
the number of which depends on the flux of the magnetic field piercing each of the
lattice unit cells. Actually, when a lattice is present, two lengthscales dominate the
resulting system, one being the magnetic length ℓ =

√
eℏ/B and the other the lattice

spacing a (we suppose to deal with a square lattice). This means that if we consider
a finite-size system then the application of periodic boundary conditions will require
both the number of unit cells of the periodic potential and the number of states in each
Landau level NL = A/(2πℓ2) (where A is the area of the system), to be integers. This
leads to a redefinition of the Brillouin zone dimension and to the appearance of a less
trivial gap structure that we will investigate in section 2.2.1. A fundamental ingredient
for many schemes of quantum simulation is the presence of a periodic potential. In
section 2.2.2 we review how quantum Hall system are affected by such a potential
deriving the Harper-Hofstadter Hamiltonian. Finally, in section 2.3.2 we discuss how
quantumHall systems can be simulated in the context of ultracold atoms and introduce
the experimental techniques adopted in this thesis.

2.2.1 Magnetic Brillouin zone

The Hamiltonian describing a 2D non-interacting electron gas in an uniform magnetic
field orthogonal to the 2D plane and subjected to a periodic potential V (x, y) can be
written as

H =
1

2m
(P+ eA)2 + V (x, y) (2.6)

where e is the elctron charge and the vector potential A is a function only of the x̂− ŷ

coordinates in such a way to generate a magnetic field B = Bẑ perpendicular to the
plane of the electron gas. We assume the periodic potential to be characterized by a
unit cell having dimensions a and b respectively along the x̂ and ŷ directions, in such
a way that the corresponding Bravais lattice is defined as

R = na x̂+mb ŷ (2.7)

with n and m integers. The periodic potential is thus invariant under the application
of the operator

TR = e(i/ℏ)R·p (2.8)

which shifts the position by a vector R of the Bravais lattice. The operator TR how-
ever does not commute with the Hamiltonian 2.6 because otherwise this would imply
A(r) = A(r+R), a condition not necessarily always satisfied. Anyway, in the sym-
metric gauge (A = (B ∧ r)/2), it is possible to define a new set of translation operators
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Figure 2.3: Effect of a magnetic field on a periodic potential. a: In absence of a
magnetic field the unit cell of a 2D square lattice in real space measures a × a and
the Brillouin zone has periodicity 2π/a. b: If a magnetic field having rational flux
ϕ = 2π p/q through each lattice cell is present (ϕ = 2π/3 in figure) the periodicity of
the system changes and the resulting unit cell is q times enlarged while the Brillouin
zone reduces to 2π/(qa). Moreover, the shrinking of the Brillouin zone corresponds
to the appearance of q sub-bands in the energy spectrum.

that commute with the Hamiltonian. These newmagnetic translation operators are de-
fined as (Kohmoto, 1985; Bernevig, 2013)

T̂R = TR e(i e/ℏ) (B∧R)·r/2 (2.9)

and verify the relation [H, T̂R] = 0. Unfortunately, differently from the usual transla-
tion operators defined in 2.8, the magnetic translation operators do not commute one
with the other. In particular we have

T̂ax̂T̂bŷ = e2πiϕ T̂bŷT̂ax̂ (2.10)

where ϕ = (eB/ℏ) ab is the magnetic flux through a unit cell of the lattice. As a
consequence of the relation 2.10 it is not possible to label the eigenstates of H using
simultaneously the eigenvalues of T̂ax̂ and T̂bx̂, a requirement necessary to construct a
proper Brillouin zone. It is however possible to find a set of T̂R commuting operators
if some special values of the flux are chosen. One possibility is to choose ϕ to be an
integer in the relation 2.10: this is a trivial case since it coincides with the absence of
magnetic flux. The other possibility is to choose a rational value of the magnetic flux
ϕ = p/q with p and q co-prime integers. In this last case the commutator between T̂ax̂

and T̂bx̂ still does not vanish but on the other hand, if the operators T̂q ax̂ and T̂bx̂ are
considered, then the 2.10 becomes

T̂qax̂T̂bŷ = e2πi(eB/ℏ) qab T̂bŷT̂qax̂ = e2πi(ϕ q) T̂bŷT̂qax̂ = T̂bŷT̂qax̂ (2.11)
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2.2 Hall physics on a lattice

We have seen that in the continuum a 2D electron gas subjected to a strong magnetic
field exhibits a series of interesting physical properties: in particular, the presence of a
gapped bulk and the existence of conductive states at the edges lead to the quantization
of the Hall conductance and to the definition of a quantum state characterized by a
topological behaviour, the Integer Quantum Hall. Surprisingly, a similar physics holds
if a 2D lattice is superimposed to a QH state. One of the main effects induced by the
presence of a periodic potential is the splitting of the Landau levels in several subbands
the number of which depends on the flux of the magnetic field piercing each of the
lattice unit cells. Actually, when a lattice is present, two lengthscales dominate the
resulting system, one being the magnetic length ℓ =

√
eℏ/B and the other the lattice

spacing a (we suppose to deal with a square lattice). This means that if we consider
a finite-size system then the application of periodic boundary conditions will require
both the number of unit cells of the periodic potential and the number of states in each
Landau level NL = A/(2πℓ2) (where A is the area of the system), to be integers. This
leads to a redefinition of the Brillouin zone dimension and to the appearance of a less
trivial gap structure that we will investigate in section 2.2.1. A fundamental ingredient
for many schemes of quantum simulation is the presence of a periodic potential. In
section 2.2.2 we review how quantum Hall system are affected by such a potential
deriving the Harper-Hofstadter Hamiltonian. Finally, in section 2.3.2 we discuss how
quantumHall systems can be simulated in the context of ultracold atoms and introduce
the experimental techniques adopted in this thesis.

2.2.1 Magnetic Brillouin zone

The Hamiltonian describing a 2D non-interacting electron gas in an uniform magnetic
field orthogonal to the 2D plane and subjected to a periodic potential V (x, y) can be
written as

H =
1

2m
(P+ eA)2 + V (x, y) (2.6)

where e is the elctron charge and the vector potential A is a function only of the x̂− ŷ

coordinates in such a way to generate a magnetic field B = Bẑ perpendicular to the
plane of the electron gas. We assume the periodic potential to be characterized by a
unit cell having dimensions a and b respectively along the x̂ and ŷ directions, in such
a way that the corresponding Bravais lattice is defined as

R = na x̂+mb ŷ (2.7)

with n and m integers. The periodic potential is thus invariant under the application
of the operator

TR = e(i/ℏ)R·p (2.8)

which shifts the position by a vector R of the Bravais lattice. The operator TR how-
ever does not commute with the Hamiltonian 2.6 because otherwise this would imply
A(r) = A(r+R), a condition not necessarily always satisfied. Anyway, in the sym-
metric gauge (A = (B ∧ r)/2), it is possible to define a new set of translation operators
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Figure 2.3: Effect of a magnetic field on a periodic potential. a: In absence of a
magnetic field the unit cell of a 2D square lattice in real space measures a × a and
the Brillouin zone has periodicity 2π/a. b: If a magnetic field having rational flux
ϕ = 2π p/q through each lattice cell is present (ϕ = 2π/3 in figure) the periodicity of
the system changes and the resulting unit cell is q times enlarged while the Brillouin
zone reduces to 2π/(qa). Moreover, the shrinking of the Brillouin zone corresponds
to the appearance of q sub-bands in the energy spectrum.

that commute with the Hamiltonian. These newmagnetic translation operators are de-
fined as (Kohmoto, 1985; Bernevig, 2013)

T̂R = TR e(i e/ℏ) (B∧R)·r/2 (2.9)

and verify the relation [H, T̂R] = 0. Unfortunately, differently from the usual transla-
tion operators defined in 2.8, the magnetic translation operators do not commute one
with the other. In particular we have

T̂ax̂T̂bŷ = e2πiϕ T̂bŷT̂ax̂ (2.10)

where ϕ = (eB/ℏ) ab is the magnetic flux through a unit cell of the lattice. As a
consequence of the relation 2.10 it is not possible to label the eigenstates of H using
simultaneously the eigenvalues of T̂ax̂ and T̂bx̂, a requirement necessary to construct a
proper Brillouin zone. It is however possible to find a set of T̂R commuting operators
if some special values of the flux are chosen. One possibility is to choose ϕ to be an
integer in the relation 2.10: this is a trivial case since it coincides with the absence of
magnetic flux. The other possibility is to choose a rational value of the magnetic flux
ϕ = p/q with p and q co-prime integers. In this last case the commutator between T̂ax̂

and T̂bx̂ still does not vanish but on the other hand, if the operators T̂q ax̂ and T̂bx̂ are
considered, then the 2.10 becomes

T̂qax̂T̂bŷ = e2πi(eB/ℏ) qab T̂bŷT̂qax̂ = e2πi(ϕ q) T̂bŷT̂qax̂ = T̂bŷT̂qax̂ (2.11)
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and so [T̂qax̂, T̂bŷ] = 0. We can therefore conclude that if a q-times enlarged unit cell
having dimensions q a x̂×b ŷ is considered, then it is possible to find a set of translation
operators that commute one with the other and with the Hamiltonian, defining in this
way a set of good quantum numbers to label the eigenstates of H . This enlarged unit
cell defines a new Brillouin zone which has dimensions

− π

qa
< kx <

π

qa
− π

b
< ky <

π

b
(2.12)

that takes the name of magnetic Brillouin zone (MBZ). Since the MBZ is q-times
smaller than the Brillouin zone, if the lattice has size L1 × L2, the number of state
in each MBZ is NMBZ = L1L2/(q a b) suggesting that the resulting spectrum decom-
poses in q subbands each having NMBZ states. This result is sketched in figure 2.3-b
for a square lattice pierced by a magnetic flux per plaquette Φ = 2π/3 and compared
with the case in which a magnetic flux is not present (figure 2.3-a). Obviously one can
also view the same argumentation from the Landau levels point of view, concluding
that as a consequence of the presence of a periodic potential each Landau level splits
into q sub-levels. The implications of this result will be discussed in the following
section.

2.2.2 Tight binding model in presence of a magnetic field

Let’s now move towards the formalism typical of solid-state physics and investigate
how the presence of a magnetic field affects one of the most paradigmatic models de-
scribing particles interacting with a periodic potential: the tight binding single-particle
model. For a system of particles moving in a 2D rectangular lattice, in the second quan-
tization formalism, the non interacting tight binding Hamiltonian reads

H = −tx
∑
⟨i,j⟩

â†i+1,j âi,j − ty
∑
⟨i,j⟩

â†i,j+1âi,j + H.c. (2.13)

where tx and ty are the tunnelling energies characterizing the hopping between adja-
cent lattice sites respectively in the x̂ and ŷ directions, âi,j is the annihilator operator
for a particle localized at the site {i, j} and ⟨ ⟩ indicates a sum that runs only over the
nearest neighbour lattice sites. To understand how the Hamiltonian 2.13 is modified
in presence of a magnetic field B = ∇∧A, we must take into account the effect in-
duced by the vector potential A on a particle moving in the region of space where A
is defined. Actually, from a quantum mechanical prospect, B does not contain the full
information necessary to capture how a charged particle is influenced by the presence
of an electromagnetic field and it turns out that a description of magnetism in terms
of the vector potential A can unveil some nonclassical results, as argued by Aharonov
and Bohm in their seminal paper (Aharonov and Bohm, 1959). In particular the two
authors pointed out that the wavefunction of a particle having charge q and moving on
a path γ from point r1 to r2 in a region where the vector potential A(r) is defined, will
pick up a phase given by

ϕ(r1 → r2) =
q

ℏ

∫

γ

A(r) · dr (2.14)
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that takes the name ofAharonov-Bohm phase. It is interesting to note that also a particle
that moves in a region where B is zero but A is defined, such as the external part of an
infinite long solenoid, will experience an Aharonov-Bohm phase, despite the absence
of a non-zero magnetic field. The phase 2.14 is a geometric phase: it does not depend
on the time it takes to the particle to move from r1 to r2 nor on its velocity, but instead
depends only on the path which is followed. In particular, if a closed path is considered,
then the 2.14 becomes

ϕ(r1 → r1) =
q

ℏ

�

γ

A(r) · dr = q

ℏ

∫∫

Aγ

B(r) · d2r (2.15)

where Aγ is the area enclosed by the curve γ. In the case of a closed path a particle
will thus pick up a phase that is proportional to the magnetic field flux piercing the
loop itself. This is an interesting result because it does not depend on the particular
gauge chosen to express the vector potential A.

Coming back to our original goal keeping in mind the expressions 2.14 and 2.15,
it seems natural that the effect induced by the presence of a magnetic field can be
included in the tight binding Hamiltonian if the hopping energy t is replaced with

t → t e
−i q

ℏ
∫ r2
r1

A(r)·dr (2.16)

where r1 and r2 are the positions of two adjacent lattice sites and the path chosen for
the line integral is the shortest connecting the two points. The substitution 2.16 can
be interpreted in terms of the Aharonov-Bohm phase accumulated by a particle during
the hopping between two neighbouring lattice sites and in this context takes the name
of Peierls phase (Peierls, 1933). The expression 2.16 is valid only in the tight-binding
regime and if the cyclotron frequency associated to the magnetic field is smaller than
the energy gap between the fundamental and the first excited lattice bands (Dalibard
et al., 2011), but have also been investigated outside of these regimes (Nenciu, 1991).
For non-interacting particles, the Peierls substitution allows us to express the tight-
binding Hamiltonian in the presence of a magnetic field B = ∇∧A as

H = −tx
∑
⟨i,j⟩

e−i q
ℏ
∫ ri+1,j
ri,j

A(r)·drâ†i+1,j âi,j − ty
∑
⟨i,j⟩

e−i q
ℏ
∫ ri,j+1
ri,j

A(r)·drâ†i,j+1âi,j + H.c.

(2.17)
where ri,j indicates the position of a lattice site inside the Bravais lattice. Let’s now
suppose that the lattice is pierced by an orthogonal and uniform magnetic field B =

Bêz . In the Landau gauge, where the vector potential reads A = −Byêx, only the
hopping terms along the x̂ direction will pick up a phase factor. For this particular
case, if we assume the lattice spacing to be a along the x̂ direction and b along ŷ, the
Peierls substitution reads

t → t ei
q
ℏ
∫ ri+1,j
ri,j

By dx = t ei
q
ℏB a (jb) = t ei

q
ℏ jΦ (2.18)

where Φ = abB is the magnetic field flux through one lattice unit cell and jb is the ŷ
position of the two sites involved in the hopping dynamics. In particular, for a particle
performing a closed loop around one lattice plaquette, the total accumulated phase will
be simply given by ϕ = qΦ/ℏ, independently from the chosen gauge. Consequently,
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and so [T̂qax̂, T̂bŷ] = 0. We can therefore conclude that if a q-times enlarged unit cell
having dimensions q a x̂×b ŷ is considered, then it is possible to find a set of translation
operators that commute one with the other and with the Hamiltonian, defining in this
way a set of good quantum numbers to label the eigenstates of H . This enlarged unit
cell defines a new Brillouin zone which has dimensions

− π

qa
< kx <

π

qa
− π

b
< ky <

π

b
(2.12)
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in each MBZ is NMBZ = L1L2/(q a b) suggesting that the resulting spectrum decom-
poses in q subbands each having NMBZ states. This result is sketched in figure 2.3-b
for a square lattice pierced by a magnetic flux per plaquette Φ = 2π/3 and compared
with the case in which a magnetic flux is not present (figure 2.3-a). Obviously one can
also view the same argumentation from the Landau levels point of view, concluding
that as a consequence of the presence of a periodic potential each Landau level splits
into q sub-levels. The implications of this result will be discussed in the following
section.

2.2.2 Tight binding model in presence of a magnetic field

Let’s now move towards the formalism typical of solid-state physics and investigate
how the presence of a magnetic field affects one of the most paradigmatic models de-
scribing particles interacting with a periodic potential: the tight binding single-particle
model. For a system of particles moving in a 2D rectangular lattice, in the second quan-
tization formalism, the non interacting tight binding Hamiltonian reads

H = −tx
∑
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â†i+1,j âi,j − ty
∑
⟨i,j⟩

â†i,j+1âi,j + H.c. (2.13)

where tx and ty are the tunnelling energies characterizing the hopping between adja-
cent lattice sites respectively in the x̂ and ŷ directions, âi,j is the annihilator operator
for a particle localized at the site {i, j} and ⟨ ⟩ indicates a sum that runs only over the
nearest neighbour lattice sites. To understand how the Hamiltonian 2.13 is modified
in presence of a magnetic field B = ∇∧A, we must take into account the effect in-
duced by the vector potential A on a particle moving in the region of space where A
is defined. Actually, from a quantum mechanical prospect, B does not contain the full
information necessary to capture how a charged particle is influenced by the presence
of an electromagnetic field and it turns out that a description of magnetism in terms
of the vector potential A can unveil some nonclassical results, as argued by Aharonov
and Bohm in their seminal paper (Aharonov and Bohm, 1959). In particular the two
authors pointed out that the wavefunction of a particle having charge q and moving on
a path γ from point r1 to r2 in a region where the vector potential A(r) is defined, will
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loop itself. This is an interesting result because it does not depend on the particular
gauge chosen to express the vector potential A.
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it seems natural that the effect induced by the presence of a magnetic field can be
included in the tight binding Hamiltonian if the hopping energy t is replaced with
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the line integral is the shortest connecting the two points. The substitution 2.16 can
be interpreted in terms of the Aharonov-Bohm phase accumulated by a particle during
the hopping between two neighbouring lattice sites and in this context takes the name
of Peierls phase (Peierls, 1933). The expression 2.16 is valid only in the tight-binding
regime and if the cyclotron frequency associated to the magnetic field is smaller than
the energy gap between the fundamental and the first excited lattice bands (Dalibard
et al., 2011), but have also been investigated outside of these regimes (Nenciu, 1991).
For non-interacting particles, the Peierls substitution allows us to express the tight-
binding Hamiltonian in the presence of a magnetic field B = ∇∧A as

H = −tx
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where ri,j indicates the position of a lattice site inside the Bravais lattice. Let’s now
suppose that the lattice is pierced by an orthogonal and uniform magnetic field B =

Bêz . In the Landau gauge, where the vector potential reads A = −Byêx, only the
hopping terms along the x̂ direction will pick up a phase factor. For this particular
case, if we assume the lattice spacing to be a along the x̂ direction and b along ŷ, the
Peierls substitution reads

t → t ei
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By dx = t ei
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ℏB a (jb) = t ei
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where Φ = abB is the magnetic field flux through one lattice unit cell and jb is the ŷ
position of the two sites involved in the hopping dynamics. In particular, for a particle
performing a closed loop around one lattice plaquette, the total accumulated phase will
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Figure 2.4: Hofstadter butterfly spectrum in the presence of periodic boundary condi-
tions (a) and with open boundary conditions (d). The spectra have been evaluated on a
200× 6 2D lattice with complex tunnelling along the short dimension, solving numer-
ically the Hamiltonian 2.19 with the conditions tx = ty = t. The energy of the eigen-
states is reported as a function of the magnetic flux piercing the lattice cells. (b) and
(d) are the Hamiltonian eigenenergies for the rational flux values ϕ = 2π p/q = 2π/5

and ϕ = 2π p/q = 2π/3 respectively. Clearly q subbands appears in each spectrum
and q−1 gaps open as a consequence of the presence of the magnetic flux. In the open
boundary conditions spectra (e) and (f), evaluated for the same flux values, the gaps
close and edge states appear.

in the Landau gauge, the tight binding Hamiltonian reads

H = −tx
∑
⟨i,j⟩

e−i q
ℏ j Φ â†i+1,j âi,j − ty

∑
⟨i,j⟩

â†i,j+1âi,j +H.c. (2.19)

In momentum space, the Schroedinger equation related to the Hamiltonian 2.19
can be recasted as (Bernevig, 2013)

−2tx cos(kya+2πΦj)ψj(k)−ty(e
ikybψj+1(k)+e−ikybψj−1(k)) = E(k)ψj(k) (2.20)

and takes the name of Harper equation (Harper, 1955). If plotted as a function of the
magnetic field flux, the energy spectrum associated to the 2.20 shows a fractal struc-
ture known as Hofstadter butterfly (Hofstadter, 1976). An example of this spectrum,
evaluated diagonalizing the Hamiltonian 2.19 for a lattice having 200 × 6 sites and
periodic boundary conditions along both dimensions is reported in figure 2.4a. As we
anticipated before, for a rational value of the flux ϕ = 2π p/q, q subbands appear in
the spectrum and q − 1 gaps open. This behaviour is clear in figure 2.4-b and 2.4-c,
where the eigenvalues of the system are reported in order of increasing energy respec-
tively for ϕ = 2π/5 (q = 5) and ϕ = 2π/3 (q = 3). In the same spectrum, evaluated
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in the presence of open boundary conditions (see figure 2.4-d,e,f), the gaps close and
the magnetic subbands structure disappears. The new states that fill the gaps are edge
states that emerge naturally as a consequence of the boundary imposed to the system,
as it is expected in a quantum Hall bar.

2.2.3 Ladder systems

To clarify some of the concepts introduced in the present section, we can consider a
very simple toy model of quantum Hall physics in the presence of a periodic potential,
that is a two-leg ladder pierced by an uniform magnetic field. With the term ladder
we refer to a 2D lattice in which the number of sites along one dimension (let’s say êx)
far exceeds the number of sites along the other (êy). In particular, a two-leg ladder is
characterized by the presence of only two sites along the short dimension as it is pic-
torially represented in figure 2.5-a. As we will discuss later in this chapter, despite its
simplicity, this model is gaining attention in the framework of ultracold atoms because
of its possible applications in the context of quantum simulation (Hügel and Paredes,
2014).

Form a theoretical point of view the Hamiltonian that describes a system of non-
interacting atoms in a two leg-ladder subjected to a magnetic field flux Φ per plaquette
in the Landau gauge is

H = −tx
∑
j

(
eiΦ/2 â†j+1âj + e−iΦ/2 b̂†j+1b̂j

)
− ty

∑
j

(
â†j b̂j + H.c.

)
(2.21)

where â†j/b̂
†
j are respectively the creation operator for a particle at site j in the upper

and lower leg of the ladder, tx and ty are the tunnelling amplitude respectively along
the long and short dimension and Φ/2 is the Peierls phase associated to the magnetic
field piercing the system. Following reference (Hügel and Paredes, 2014) the same
Hamiltonian in momentum space reads

Ĥ(k) = ϵ0(k)I + ξσx + sin(Φ/2) sin(k)σz (2.22)

where ϵ0(k) = cos(Φ/2) cos(k), ξ = ty/2tx and σx,z are Pauli matrices. The presence
of the term proportional to σz in the last expression can be interpreted as an effective
spin-orbit coupling acting on the atoms confined in the lattice in which the two legs
play the role of the spin projections of an effective spin 1/2. At a fixed flux particles in
the upper leg (spin up) minimize their energy for positive values of the momentum k

while particles in the lower leg (spin down) minimize the energy for negative momenta.
This behaviour is inverted if the magnetic field flux is changed in sign as we expect
for a Hall system. The spin momentum locking induced by the magnetic field on the
eigenstates of the ladder is evidenced in the spectra reported in figure 2.5 where the
band dispersion relative to the upper leg (solid line in panel 2.5-b) and lower leg (solid
line in panel 2.5-c) are reported for the flux Φ = 0.75π and equal couplings tx = ty.
The spectra have been evaluated taking into account the simple analytical form of the
Hamiltonian wavefunctions, whose eigenvalues are given by

E±(k) = −ϵ0(k)±
√
ξ2 + sin2(Φ/2) sin2(k) (2.23)
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Figure 2.4: Hofstadter butterfly spectrum in the presence of periodic boundary condi-
tions (a) and with open boundary conditions (d). The spectra have been evaluated on a
200× 6 2D lattice with complex tunnelling along the short dimension, solving numer-
ically the Hamiltonian 2.19 with the conditions tx = ty = t. The energy of the eigen-
states is reported as a function of the magnetic flux piercing the lattice cells. (b) and
(d) are the Hamiltonian eigenenergies for the rational flux values ϕ = 2π p/q = 2π/5

and ϕ = 2π p/q = 2π/3 respectively. Clearly q subbands appears in each spectrum
and q−1 gaps open as a consequence of the presence of the magnetic flux. In the open
boundary conditions spectra (e) and (f), evaluated for the same flux values, the gaps
close and edge states appear.

in the Landau gauge, the tight binding Hamiltonian reads

H = −tx
∑
⟨i,j⟩

e−i q
ℏ j Φ â†i+1,j âi,j − ty

∑
⟨i,j⟩

â†i,j+1âi,j +H.c. (2.19)

In momentum space, the Schroedinger equation related to the Hamiltonian 2.19
can be recasted as (Bernevig, 2013)

−2tx cos(kya+2πΦj)ψj(k)−ty(e
ikybψj+1(k)+e−ikybψj−1(k)) = E(k)ψj(k) (2.20)

and takes the name of Harper equation (Harper, 1955). If plotted as a function of the
magnetic field flux, the energy spectrum associated to the 2.20 shows a fractal struc-
ture known as Hofstadter butterfly (Hofstadter, 1976). An example of this spectrum,
evaluated diagonalizing the Hamiltonian 2.19 for a lattice having 200 × 6 sites and
periodic boundary conditions along both dimensions is reported in figure 2.4a. As we
anticipated before, for a rational value of the flux ϕ = 2π p/q, q subbands appear in
the spectrum and q − 1 gaps open. This behaviour is clear in figure 2.4-b and 2.4-c,
where the eigenvalues of the system are reported in order of increasing energy respec-
tively for ϕ = 2π/5 (q = 5) and ϕ = 2π/3 (q = 3). In the same spectrum, evaluated
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in the presence of open boundary conditions (see figure 2.4-d,e,f), the gaps close and
the magnetic subbands structure disappears. The new states that fill the gaps are edge
states that emerge naturally as a consequence of the boundary imposed to the system,
as it is expected in a quantum Hall bar.

2.2.3 Ladder systems

To clarify some of the concepts introduced in the present section, we can consider a
very simple toy model of quantum Hall physics in the presence of a periodic potential,
that is a two-leg ladder pierced by an uniform magnetic field. With the term ladder
we refer to a 2D lattice in which the number of sites along one dimension (let’s say êx)
far exceeds the number of sites along the other (êy). In particular, a two-leg ladder is
characterized by the presence of only two sites along the short dimension as it is pic-
torially represented in figure 2.5-a. As we will discuss later in this chapter, despite its
simplicity, this model is gaining attention in the framework of ultracold atoms because
of its possible applications in the context of quantum simulation (Hügel and Paredes,
2014).

Form a theoretical point of view the Hamiltonian that describes a system of non-
interacting atoms in a two leg-ladder subjected to a magnetic field flux Φ per plaquette
in the Landau gauge is

H = −tx
∑
j

(
eiΦ/2 â†j+1âj + e−iΦ/2 b̂†j+1b̂j

)
− ty

∑
j

(
â†j b̂j + H.c.

)
(2.21)

where â†j/b̂
†
j are respectively the creation operator for a particle at site j in the upper

and lower leg of the ladder, tx and ty are the tunnelling amplitude respectively along
the long and short dimension and Φ/2 is the Peierls phase associated to the magnetic
field piercing the system. Following reference (Hügel and Paredes, 2014) the same
Hamiltonian in momentum space reads

Ĥ(k) = ϵ0(k)I + ξσx + sin(Φ/2) sin(k)σz (2.22)

where ϵ0(k) = cos(Φ/2) cos(k), ξ = ty/2tx and σx,z are Pauli matrices. The presence
of the term proportional to σz in the last expression can be interpreted as an effective
spin-orbit coupling acting on the atoms confined in the lattice in which the two legs
play the role of the spin projections of an effective spin 1/2. At a fixed flux particles in
the upper leg (spin up) minimize their energy for positive values of the momentum k

while particles in the lower leg (spin down) minimize the energy for negative momenta.
This behaviour is inverted if the magnetic field flux is changed in sign as we expect
for a Hall system. The spin momentum locking induced by the magnetic field on the
eigenstates of the ladder is evidenced in the spectra reported in figure 2.5 where the
band dispersion relative to the upper leg (solid line in panel 2.5-b) and lower leg (solid
line in panel 2.5-c) are reported for the flux Φ = 0.75π and equal couplings tx = ty.
The spectra have been evaluated taking into account the simple analytical form of the
Hamiltonian wavefunctions, whose eigenvalues are given by

E±(k) = −ϵ0(k)±
√

ξ2 + sin2(Φ/2) sin2(k) (2.23)
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Figure 2.5: Two-leg ladders. Sketch of a two-leg ladder pierced by an uniform mag-
netic flux in the ”unphysical” gauge (a) (complex tunnelling along the long dimension)
and in the ”physical” gauge (d) (complex tunnelling along the short dimension). b-c
spectra in the ”unphysical” gauge of the upper leg (b) and of the lower leg (c) for the
flux Φ = 0.75π: solid blue-red lines for tx = ty, dotted blue-red lines are the same
spectra in the ”physical gauge”, grey lines for ty = 0. e-f spectra in the ”physical”
gauge of the upper leg (e) and of the lower leg (f) for the flux Φ = 0.75π: solid blue-
red lines for tx = ty, grey lines for ty = 0. In b-c-e-f the intensity of the colors reflects
the squared module of the wavefunction.

while the expression of the eigenvectors in a 2D Hilbert space is

ψ±(k) =
{ξ, sin(Φ/2) sin(k)}√
ξ2 + sin2(Φ/2) sin2(k)

. (2.24)

This very simple system features some of the peculiar properties of a real quantum
Hall system on a lattice. Despite the absence of a bulk, the two spin-momentum locked
eigenvectors can be interpreted as chiral currents circulating on the border of this only-
edge system. These currents depend on the flux of the magnetic field and reverse as
the flux changes its sign.

It should be observed that the gauge chosen for the Hamiltonian 2.21 makes it
particularly easy to rewrite the problem in momentum space, but gives rise to an ”un-
physical” situation in which, in the absence of interleg coupling (ty = 0) the band
dispersions of the two legs are not symmetric with respect to the center of the Bril-
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Figure 2.6: Energy bands for (a) a two-leg ladder with 200 × 2 lattice sites (PBC
along the long dimension) pierced by a magnetic flux Φ = 2π/3 per plaquette (b) a
bigger ladder having 200 × 20 sites. The two-leg ladder bands exactly reproduce the
edge states energy of the the bigger ladder (red dashed lines). The two spectra have
been calculated diagonalizing the Hamiltonian 2.25 in the ”unphysical” gauge with the
software Mathematica.

louin zone (grey dotted lines in figures 2.5-a and 2.5-b). The ”physical” behaviour can
be recovered shifting the upper/lower leg spectrum by Φ/2 towards positive/negative
momenta (blue-red dashed lines in figure 2.5-a,b). This transformation is equivalent to
writing the Hamiltonian in a different gauge in which the complex tunnelling is along
the short dimension of the ladder, as it is pictorially represented in figure 2.5-d. In this
”physical” gauge the Hamiltonian reads

H = −tx
∑
j

(
â†j+1âj + b̂†j+1b̂j

)
− ty

∑
j

(
eijΦ â†j b̂j + H.c.

)
(2.25)

and gives rise to the spectra reported in figure 2.5-e for the upper leg (solid blue line)
and in figure 2.5-f for the lower leg (solid red line). In this gauge, in the absence of
interleg coupling, the two spectra are correctly centered in the middle of the Brillouin
zone (grey lines in figures 2.5-e,f).

Despite the impossibility to observe the Hofstadter spectrum in such a reduced-
size system, Hgel and Paredes in reference (Hügel and Paredes, 2014) point out a
remarkably interesting correspondence between the eigenstates and energy bands of
a ladder and the ones of the Hofstadter model. In particular, the authors demonstrate
that the chiral edge states and energy bands of the Hofstadter model for a rational flux
ϕ = 2π p/q per plaquette are respectively equal to the eigenstates and eigenenergies
of a (q − 1)-leg ladder with the same magnetic flux and tunnelling couplings. This
noticeable property is shown in figure 2.6-b,c where the case Φ = 2π/3 is investigated
for a two-leg ladder with 200×2 lattice sites (PBC on the long dimension) and a bigger
200× 20 ladder.
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Figure 2.5: Two-leg ladders. Sketch of a two-leg ladder pierced by an uniform mag-
netic flux in the ”unphysical” gauge (a) (complex tunnelling along the long dimension)
and in the ”physical” gauge (d) (complex tunnelling along the short dimension). b-c
spectra in the ”unphysical” gauge of the upper leg (b) and of the lower leg (c) for the
flux Φ = 0.75π: solid blue-red lines for tx = ty, dotted blue-red lines are the same
spectra in the ”physical gauge”, grey lines for ty = 0. e-f spectra in the ”physical”
gauge of the upper leg (e) and of the lower leg (f) for the flux Φ = 0.75π: solid blue-
red lines for tx = ty, grey lines for ty = 0. In b-c-e-f the intensity of the colors reflects
the squared module of the wavefunction.

while the expression of the eigenvectors in a 2D Hilbert space is

ψ±(k) =
{ξ, sin(Φ/2) sin(k)}√
ξ2 + sin2(Φ/2) sin2(k)

. (2.24)

This very simple system features some of the peculiar properties of a real quantum
Hall system on a lattice. Despite the absence of a bulk, the two spin-momentum locked
eigenvectors can be interpreted as chiral currents circulating on the border of this only-
edge system. These currents depend on the flux of the magnetic field and reverse as
the flux changes its sign.

It should be observed that the gauge chosen for the Hamiltonian 2.21 makes it
particularly easy to rewrite the problem in momentum space, but gives rise to an ”un-
physical” situation in which, in the absence of interleg coupling (ty = 0) the band
dispersions of the two legs are not symmetric with respect to the center of the Bril-
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Figure 2.6: Energy bands for (a) a two-leg ladder with 200 × 2 lattice sites (PBC
along the long dimension) pierced by a magnetic flux Φ = 2π/3 per plaquette (b) a
bigger ladder having 200 × 20 sites. The two-leg ladder bands exactly reproduce the
edge states energy of the the bigger ladder (red dashed lines). The two spectra have
been calculated diagonalizing the Hamiltonian 2.25 in the ”unphysical” gauge with the
software Mathematica.

louin zone (grey dotted lines in figures 2.5-a and 2.5-b). The ”physical” behaviour can
be recovered shifting the upper/lower leg spectrum by Φ/2 towards positive/negative
momenta (blue-red dashed lines in figure 2.5-a,b). This transformation is equivalent to
writing the Hamiltonian in a different gauge in which the complex tunnelling is along
the short dimension of the ladder, as it is pictorially represented in figure 2.5-d. In this
”physical” gauge the Hamiltonian reads

H = −tx
∑
j

(
â†j+1âj + b̂†j+1b̂j

)
− ty

∑
j

(
eijΦ â†j b̂j + H.c.

)
(2.25)

and gives rise to the spectra reported in figure 2.5-e for the upper leg (solid blue line)
and in figure 2.5-f for the lower leg (solid red line). In this gauge, in the absence of
interleg coupling, the two spectra are correctly centered in the middle of the Brillouin
zone (grey lines in figures 2.5-e,f).

Despite the impossibility to observe the Hofstadter spectrum in such a reduced-
size system, Hgel and Paredes in reference (Hügel and Paredes, 2014) point out a
remarkably interesting correspondence between the eigenstates and energy bands of
a ladder and the ones of the Hofstadter model. In particular, the authors demonstrate
that the chiral edge states and energy bands of the Hofstadter model for a rational flux
ϕ = 2π p/q per plaquette are respectively equal to the eigenstates and eigenenergies
of a (q − 1)-leg ladder with the same magnetic flux and tunnelling couplings. This
noticeable property is shown in figure 2.6-b,c where the case Φ = 2π/3 is investigated
for a two-leg ladder with 200×2 lattice sites (PBC on the long dimension) and a bigger
200× 20 ladder.
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2.3 Realization of synthetic magnetic fields with ultracold atoms

In the last two decades a lot of effort has been devoted towards the proposal and the
experimental realization of efficient techniques to use ultracold atoms to simulate the
physics of charged quantum particles interacting with an electric or magnetic field
(Lewenstein et al., 2012; Bloch et al., 2008). As it usually happens in the framework
of quantum simulation (QS), this effort is not motivated only by the necessity to shed
light on some open problems of condensed-matter physics, overcoming with the QS
the difficulties encountered in the study of complex phenomena in solid-state systems,
but it is also driven by the possibility to realize new quantum phases never observed
in nature, as well as to access regimes which are impossible to achieve in real systems.
Just to give a very simple example, the observation of the Hofstadter spectrum intro-
duced in the previous section in a real 2D crystal characterized by a lattice spacing
a = 5Åwould require a magnetic field of the order of 108 G to induce a 2π phase shift
on an electron circulating around a lattice plaquette, a value far beyond the actual tech-
nological possibilities. This precludes the investigation of the fractal structure of the
Hoftsadter butterfly in a conventional crystal and makes the experimental observation
of this iconic spectrum a prerogative of the quantum simulation.

In this prospect, ultracold atoms and especially ultracold atoms in optical lattices
offer a clean and fully tunable platform that can be potentially employed for the simu-
lation of both integer and fractional (Paredes et al., 2003) Hall-like systems, spin-orbit
coupled systems (Galitski and Spielman, 2013), topological insulators and exotic topo-
logical phases (Goldman et al., 2016) of matter not yet observed. Several schemes
have been proposed to circumvent the most evident obstacle to the QS of this kind of
physics with ultracold atoms, that is the absence of charge. Atoms are neutral parti-
cles and so the simulation of the physics of magnetism necessarily requires to mimic
the coupling between matter and the electromagnetic field gauge potential. The gen-
eral approach for the realization of these artificial gauge fields (Dalibard et al., 2011;
Dalibard, 2015; Goldman et al., 2014; Lewenstein et al., 2007) is the emulation of the
quantum mechanical effect induced by a real vector potential on a charged particle as
it moves in a region where the potential is defined, that is the Aharonov-Bohm phase.
The idea is that, if one finds a way to induce a geometric phase on a particle moving
in space, then this phase can be associated to a vector potential and eventually to the
presence of a ”synthetic” magnetic field even if the particle is neutral in charge.

Historically, the first attempts to simulate magnetism with neutral ultracold atoms
were performed with particles free to move in 3D space and were aimed at finding
a way to mimic the minimal substitution P → P − qA for a neutral particle. The
simplest way to meet this target is to exploit a rotating quantum gas observing the
formal analogy between the Coriolis force FC = 2m v∧Ω with Ω = Ωêz and the
Lorentz force FL = q v ∧ B (Cooper, 2008) whereΩ is the angular velocity vector and
v is the velocity of the particles. As pointed out in reference (Dalibard et al., 2011), the
Hamiltonian in the gas rotating frame can be recast in such a way that the momentum
term can be rewritten as

P → P−mΩ(xêy − yêx), (2.26)

which is analogous to the minimal substitution induced by the presence of the mag-
netic field qB = 2mΩ. A completely different approach to the problem is the one
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introduced by the group of I. Spielman at JQI (Lin et al., 2009a,b), where internal spin
states of bosonic 87Rb are coupled together using a pair of Raman beams. Thanks to
the Raman coupling the energy spectrum of the resulting system is characterized by
several minima (up to 3 in the F = 1 manifold) and around each minimum the energy
dispersion is approximated by

E(kx) = ℏ2(kx − kmin)
2/2m∗ (2.27)

where kmin is the momentum corresponding to one of the energy minima and m∗ is
the effective mass. Again, this last expression resembles the minimal substitution P →
P−qA and can be interpreted as a light-induced uniform vector gauge potential. Being
uniform, this vector potential is associated to a zero magnetic field. This limitation
can be overcome if the atoms are subjected to a real magnetic field gradient (Lin et al.,
2009b), making in this way the Raman detuning position dependent.

2.3.1 Gauge fields on a lattice

A lot of theoretical schemes have also been proposed for the realization of artificial
gauge fields for neutral atoms trapped in optical lattices (Dalibard et al., 2011). This
framework represents a more natural platform for the simulation of condensed-matter
systems because of the obvious analogy with the periodic potential to which electrons
in solids are subjected. Optical lattices make also easy to tune the interaction energy
between particles within the same site by simply changing the lattice depth and can so
be exploited to investigate the effect of interactions in Hall-like systems.

In the framework of optical lattices, the realization of artificial gauge fields is ac-
complished engineering an effective Peierls phase for atoms hopping between neigh-
bouring sites, in such a way that a non-zero phase shift is imprinted on the wavefunc-
tion of a particle orbiting around a lattice plaquette. This kind of implementation of an
artificial gauge field requires the realization of a complex matrix tunnelling element in
the tight-binding regime. One of the first methods proposed to accomplish this task re-
lies on the concept of laser assisted tunnelling and was proposed by Jaksch and Zoller
in 2003 (Jaksch and Zoller, 2003). In this scheme two long-lived internal states of an
atom, that we label as g and e, are trapped in two 2D state-dependent sublattices charac-
terized by the same lattice spacing d along the êx and êy directions but spatially shifted
by d/2 along êx. Each sublattice is engineered in such a way to trap only one of the two
states and repel the other, and tunnelling between adjacent sites of the same sublattice
is supposed to be completely suppressed. In such a system laser light resonant with the
g → e transition induces a hopping along the êx direction between neighbouring sites
of different sublattices and the resulting tunnelling amplitude is given by (Gerbier and
Dalibard, 2010)

txeg e
iq·rg =

ℏΩ
2

eiq·rg
∫

wg(r)eiq·rw∗
e(r− d/2 êx) dr (2.28)

where Ω and q are the laser Rabi frequency and wavevector and wg,e(r) are the Wan-
nier functions, respectively relative to a g and an e atom, that are shifted by half the
lattice spacing along the êx direction. For proper values of the laser wavevector, the
hopping term 2.28 contains an imaginary component, thus giving rise to a complex
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2.3 Realization of synthetic magnetic fields with ultracold atoms

In the last two decades a lot of effort has been devoted towards the proposal and the
experimental realization of efficient techniques to use ultracold atoms to simulate the
physics of charged quantum particles interacting with an electric or magnetic field
(Lewenstein et al., 2012; Bloch et al., 2008). As it usually happens in the framework
of quantum simulation (QS), this effort is not motivated only by the necessity to shed
light on some open problems of condensed-matter physics, overcoming with the QS
the difficulties encountered in the study of complex phenomena in solid-state systems,
but it is also driven by the possibility to realize new quantum phases never observed
in nature, as well as to access regimes which are impossible to achieve in real systems.
Just to give a very simple example, the observation of the Hofstadter spectrum intro-
duced in the previous section in a real 2D crystal characterized by a lattice spacing
a = 5Åwould require a magnetic field of the order of 108 G to induce a 2π phase shift
on an electron circulating around a lattice plaquette, a value far beyond the actual tech-
nological possibilities. This precludes the investigation of the fractal structure of the
Hoftsadter butterfly in a conventional crystal and makes the experimental observation
of this iconic spectrum a prerogative of the quantum simulation.

In this prospect, ultracold atoms and especially ultracold atoms in optical lattices
offer a clean and fully tunable platform that can be potentially employed for the simu-
lation of both integer and fractional (Paredes et al., 2003) Hall-like systems, spin-orbit
coupled systems (Galitski and Spielman, 2013), topological insulators and exotic topo-
logical phases (Goldman et al., 2016) of matter not yet observed. Several schemes
have been proposed to circumvent the most evident obstacle to the QS of this kind of
physics with ultracold atoms, that is the absence of charge. Atoms are neutral parti-
cles and so the simulation of the physics of magnetism necessarily requires to mimic
the coupling between matter and the electromagnetic field gauge potential. The gen-
eral approach for the realization of these artificial gauge fields (Dalibard et al., 2011;
Dalibard, 2015; Goldman et al., 2014; Lewenstein et al., 2007) is the emulation of the
quantum mechanical effect induced by a real vector potential on a charged particle as
it moves in a region where the potential is defined, that is the Aharonov-Bohm phase.
The idea is that, if one finds a way to induce a geometric phase on a particle moving
in space, then this phase can be associated to a vector potential and eventually to the
presence of a ”synthetic” magnetic field even if the particle is neutral in charge.

Historically, the first attempts to simulate magnetism with neutral ultracold atoms
were performed with particles free to move in 3D space and were aimed at finding
a way to mimic the minimal substitution P → P − qA for a neutral particle. The
simplest way to meet this target is to exploit a rotating quantum gas observing the
formal analogy between the Coriolis force FC = 2m v∧Ω with Ω = Ωêz and the
Lorentz force FL = q v ∧ B (Cooper, 2008) whereΩ is the angular velocity vector and
v is the velocity of the particles. As pointed out in reference (Dalibard et al., 2011), the
Hamiltonian in the gas rotating frame can be recast in such a way that the momentum
term can be rewritten as

P → P−mΩ(xêy − yêx), (2.26)

which is analogous to the minimal substitution induced by the presence of the mag-
netic field qB = 2mΩ. A completely different approach to the problem is the one
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introduced by the group of I. Spielman at JQI (Lin et al., 2009a,b), where internal spin
states of bosonic 87Rb are coupled together using a pair of Raman beams. Thanks to
the Raman coupling the energy spectrum of the resulting system is characterized by
several minima (up to 3 in the F = 1 manifold) and around each minimum the energy
dispersion is approximated by

E(kx) = ℏ2(kx − kmin)
2/2m∗ (2.27)

where kmin is the momentum corresponding to one of the energy minima and m∗ is
the effective mass. Again, this last expression resembles the minimal substitution P →
P−qA and can be interpreted as a light-induced uniform vector gauge potential. Being
uniform, this vector potential is associated to a zero magnetic field. This limitation
can be overcome if the atoms are subjected to a real magnetic field gradient (Lin et al.,
2009b), making in this way the Raman detuning position dependent.

2.3.1 Gauge fields on a lattice

A lot of theoretical schemes have also been proposed for the realization of artificial
gauge fields for neutral atoms trapped in optical lattices (Dalibard et al., 2011). This
framework represents a more natural platform for the simulation of condensed-matter
systems because of the obvious analogy with the periodic potential to which electrons
in solids are subjected. Optical lattices make also easy to tune the interaction energy
between particles within the same site by simply changing the lattice depth and can so
be exploited to investigate the effect of interactions in Hall-like systems.

In the framework of optical lattices, the realization of artificial gauge fields is ac-
complished engineering an effective Peierls phase for atoms hopping between neigh-
bouring sites, in such a way that a non-zero phase shift is imprinted on the wavefunc-
tion of a particle orbiting around a lattice plaquette. This kind of implementation of an
artificial gauge field requires the realization of a complex matrix tunnelling element in
the tight-binding regime. One of the first methods proposed to accomplish this task re-
lies on the concept of laser assisted tunnelling and was proposed by Jaksch and Zoller
in 2003 (Jaksch and Zoller, 2003). In this scheme two long-lived internal states of an
atom, that we label as g and e, are trapped in two 2D state-dependent sublattices charac-
terized by the same lattice spacing d along the êx and êy directions but spatially shifted
by d/2 along êx. Each sublattice is engineered in such a way to trap only one of the two
states and repel the other, and tunnelling between adjacent sites of the same sublattice
is supposed to be completely suppressed. In such a system laser light resonant with the
g → e transition induces a hopping along the êx direction between neighbouring sites
of different sublattices and the resulting tunnelling amplitude is given by (Gerbier and
Dalibard, 2010)

txeg e
iq·rg =

ℏΩ
2

eiq·rg
∫

wg(r)eiq·rw∗
e(r− d/2 êx) dr (2.28)

where Ω and q are the laser Rabi frequency and wavevector and wg,e(r) are the Wan-
nier functions, respectively relative to a g and an e atom, that are shifted by half the
lattice spacing along the êx direction. For proper values of the laser wavevector, the
hopping term 2.28 contains an imaginary component, thus giving rise to a complex
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matrix element and consequently to a non-zero Peierls phase. The problem related to
this approach is that the imprinted phase associated to a tunnelling event change sign
if the hopping occurs along the +êx or along the −êx directions, creating in this way
a staggered flux. Schemes to rectify the flux have been proposed (Jaksch and Zoller,
2003) but involve the presence of additional lasers (Aidelsburger et al., 2013; Kennedy
et al., 2013; Gerbier and Dalibard, 2010). Another strategy that can be employed to
realize an artificial gauge field in a lattice involves the so called Floquet engineer-
ing and it is based on a time-periodic modulation or shaking of the quantum system
(Aidelsburger et al., 2015; Fläschner et al., 2016). A possible implementation of this
scheme exploits a superlattice in which adjacent site are characterized by an energy
offset ∆ in such a way that tunnelling between them is strongly suppressed. If a mod-
ulation potential having the form V (x, t) ∼ cos(ωt+ θ(x)) with ω = ∆/ℏ is applied to
the system, then hopping between neighbouring sites can be restored and the effective
tunnelling matrix element is given by t = teff e

iθ(x) where θ(x) is the spatial phase
associated to the modulation potential. A proper choice of the modulation can thus
give rise to a Peierls phase and so to an artificial gauge field for particles trapped in
the superlattice. This strategy is to some extent more general than the laser assisted
tunneling approach previously described because it does not rely on the addressing of
the internal atomic structure to work. Heating induced by the periodic driving and ex-
citation to higher lattice bands represent anyway strong limitations to the application
of the Floquet engineering method.

2.3.2 The synthetic dimension approach

Another, more innovative approach to the realization of gauge fields for neutral atoms
in optical lattices relies on the concept of synthetic dimensions (Boada et al., 2012) and
constitutes the core of the experimental part of this thesis. By synthetic dimension we
refer to an extra dimension encoded in a non-spatial degree of freedom of the physical
system of interest. Since the idea is to emulate the physics of a particle in a real lattice,
a strong requirement is that the Hamiltonian governing the dynamics in the synthetic
dimension must be analogous to a lattice Hamiltonian. This means that the ”spatial
coordinate” in the extra dimension must be discrete and that each synthetic lattice site
must be coupled to only two other sites in a sequential way.

Before proceeding in the description of how a fictional extra dimension can be
exploited to generate an artificial gauge field, it is useful to list some of the possible
approaches investigated over the last years to realize a synthetic dimension, focusing
the attention in particular on the various methods employed to induce a coherent tun-
nelling among the synthetic lattice sites. Among the various strategies proposed to
deal with the problem of the realization of a synthetic dimension, some of the most
promising from an experimental point of view are:

• Synthetic dimension encoded in the internal spin degree of freedom of a neutral
atom: this method was proposed by A. Celi et al. in the theoretical group of
M. Lewenstein at ICFO (Celi et al., 2014) and experimentally realized in the
context of this thesis (Mancini et al., 2015) and in the group of I. Spielman at
JQI (Stuhl et al., 2015). It is based on the interpretation of the spin states of a
hyperfine level of a neutral atom as the fictitious sites of a synthetic lattice. A
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magnetic field is used to remove the degeneracy between the hyperfine sublevels
while the coherent coupling in the extra dimension is realized exploiting resonant
laser fields (Raman for example) that enable the synthetic hopping from one spin
state to a neighbouring one. If combined with a real optical lattice, this extra
dimension allows the realization of lattice systems characterized by up to four
dimensions. A drawback of this approach is constituted by the limit imposed to
the number of synthetic lattice sites by the spin degeneracy N = 2F + 1 of the
atomic hyperfine level considered. This means that, for example, up to 6 lattice
sites can be realized exploiting the ground state of 173Yb (which is characterized
by F = 5/2), while up to 10 sites can be realized with the ground state of 40K
(F = 9/2).

• Synthetic dimension encoded in the orbital degree of freedom of a neutral atom:
proposed by M. Wall et al. (Wall et al., 2016) in the theoretical group of A.
M. Rey at JILA and experimentally realized in the context of this thesis (Livi
et al., 2016) and in the group of J. Ye at JILA (Kolkowitz et al., 2017), this
method is perfectly analogous to the one previously described, with the exception
that the synthetic dimension is encoded not in the spin but in two distinct long-
lived electronic levels of the atom. These two levels can be represented, for
example, by the ground and the clock states of alkaline-earth and alkaline-earth-
like elements, such as Sr or Yb. Being the number of lattice sites along the
synthetic dimension limited to 2, thismethod allows only the realization of ladder
systems when combined with a real lattice. Differently with respect to the spin
approach, the two synthetic lattice sites are separated by an optical energy and a
clock laser is required to induce a coherent coupling between them.

• Synthetic dimension encoded in harmonic trap levels: This is an approach intro-
duced by H. M Price et al. at the INO-CNR BEC Center in Trento (Price et al.,
2017) and not yet experimentally realized. The idea is to re-interpret the stan-
dard harmonic oscillator eigenstates of a harmonic trap as lattice sites along a
synthetic dimension. The coupling between neighbouring synthetic sites is con-
trolled by the application of a time-periodic potential characterized by a modu-
lation frequency quasi-resonant with the harmonic trap levels energy difference.

• Synthetic dimension encoded in momentum states: this scheme for the realiza-
tion of a synthetic dimension for ultracold atoms has been experimentally inves-
tigated in the group of B. Gadway at the University of Illinois (An et al., 2017).
The implementation of this method relies on the laser coupling of a discrete set
of momentum states of an atomic BEC, that are interpreted as synthetic lattice
sites in an extra dimension. The coupling between different momentum states is
realized using two-photon Bragg transitions driven by two counter-propagating
laser beams. A second set of Bragg beams, characterized by a wavelength in-
commensurated with respect to the first pair of beams, allows the realization of
an additional synthetic dimension.

• Synthetic dimension in non-atomic systems: as a final point, it is interesting to
note that the concept of synthetic dimension is gaining attention also in fields
not directly related with the ultracold atoms context. In reference (Ozawa et al.,
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matrix element and consequently to a non-zero Peierls phase. The problem related to
this approach is that the imprinted phase associated to a tunnelling event change sign
if the hopping occurs along the +êx or along the −êx directions, creating in this way
a staggered flux. Schemes to rectify the flux have been proposed (Jaksch and Zoller,
2003) but involve the presence of additional lasers (Aidelsburger et al., 2013; Kennedy
et al., 2013; Gerbier and Dalibard, 2010). Another strategy that can be employed to
realize an artificial gauge field in a lattice involves the so called Floquet engineer-
ing and it is based on a time-periodic modulation or shaking of the quantum system
(Aidelsburger et al., 2015; Fläschner et al., 2016). A possible implementation of this
scheme exploits a superlattice in which adjacent site are characterized by an energy
offset ∆ in such a way that tunnelling between them is strongly suppressed. If a mod-
ulation potential having the form V (x, t) ∼ cos(ωt+ θ(x)) with ω = ∆/ℏ is applied to
the system, then hopping between neighbouring sites can be restored and the effective
tunnelling matrix element is given by t = teff e

iθ(x) where θ(x) is the spatial phase
associated to the modulation potential. A proper choice of the modulation can thus
give rise to a Peierls phase and so to an artificial gauge field for particles trapped in
the superlattice. This strategy is to some extent more general than the laser assisted
tunneling approach previously described because it does not rely on the addressing of
the internal atomic structure to work. Heating induced by the periodic driving and ex-
citation to higher lattice bands represent anyway strong limitations to the application
of the Floquet engineering method.

2.3.2 The synthetic dimension approach

Another, more innovative approach to the realization of gauge fields for neutral atoms
in optical lattices relies on the concept of synthetic dimensions (Boada et al., 2012) and
constitutes the core of the experimental part of this thesis. By synthetic dimension we
refer to an extra dimension encoded in a non-spatial degree of freedom of the physical
system of interest. Since the idea is to emulate the physics of a particle in a real lattice,
a strong requirement is that the Hamiltonian governing the dynamics in the synthetic
dimension must be analogous to a lattice Hamiltonian. This means that the ”spatial
coordinate” in the extra dimension must be discrete and that each synthetic lattice site
must be coupled to only two other sites in a sequential way.

Before proceeding in the description of how a fictional extra dimension can be
exploited to generate an artificial gauge field, it is useful to list some of the possible
approaches investigated over the last years to realize a synthetic dimension, focusing
the attention in particular on the various methods employed to induce a coherent tun-
nelling among the synthetic lattice sites. Among the various strategies proposed to
deal with the problem of the realization of a synthetic dimension, some of the most
promising from an experimental point of view are:

• Synthetic dimension encoded in the internal spin degree of freedom of a neutral
atom: this method was proposed by A. Celi et al. in the theoretical group of
M. Lewenstein at ICFO (Celi et al., 2014) and experimentally realized in the
context of this thesis (Mancini et al., 2015) and in the group of I. Spielman at
JQI (Stuhl et al., 2015). It is based on the interpretation of the spin states of a
hyperfine level of a neutral atom as the fictitious sites of a synthetic lattice. A
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magnetic field is used to remove the degeneracy between the hyperfine sublevels
while the coherent coupling in the extra dimension is realized exploiting resonant
laser fields (Raman for example) that enable the synthetic hopping from one spin
state to a neighbouring one. If combined with a real optical lattice, this extra
dimension allows the realization of lattice systems characterized by up to four
dimensions. A drawback of this approach is constituted by the limit imposed to
the number of synthetic lattice sites by the spin degeneracy N = 2F + 1 of the
atomic hyperfine level considered. This means that, for example, up to 6 lattice
sites can be realized exploiting the ground state of 173Yb (which is characterized
by F = 5/2), while up to 10 sites can be realized with the ground state of 40K
(F = 9/2).

• Synthetic dimension encoded in the orbital degree of freedom of a neutral atom:
proposed by M. Wall et al. (Wall et al., 2016) in the theoretical group of A.
M. Rey at JILA and experimentally realized in the context of this thesis (Livi
et al., 2016) and in the group of J. Ye at JILA (Kolkowitz et al., 2017), this
method is perfectly analogous to the one previously described, with the exception
that the synthetic dimension is encoded not in the spin but in two distinct long-
lived electronic levels of the atom. These two levels can be represented, for
example, by the ground and the clock states of alkaline-earth and alkaline-earth-
like elements, such as Sr or Yb. Being the number of lattice sites along the
synthetic dimension limited to 2, thismethod allows only the realization of ladder
systems when combined with a real lattice. Differently with respect to the spin
approach, the two synthetic lattice sites are separated by an optical energy and a
clock laser is required to induce a coherent coupling between them.

• Synthetic dimension encoded in harmonic trap levels: This is an approach intro-
duced by H. M Price et al. at the INO-CNR BEC Center in Trento (Price et al.,
2017) and not yet experimentally realized. The idea is to re-interpret the stan-
dard harmonic oscillator eigenstates of a harmonic trap as lattice sites along a
synthetic dimension. The coupling between neighbouring synthetic sites is con-
trolled by the application of a time-periodic potential characterized by a modu-
lation frequency quasi-resonant with the harmonic trap levels energy difference.

• Synthetic dimension encoded in momentum states: this scheme for the realiza-
tion of a synthetic dimension for ultracold atoms has been experimentally inves-
tigated in the group of B. Gadway at the University of Illinois (An et al., 2017).
The implementation of this method relies on the laser coupling of a discrete set
of momentum states of an atomic BEC, that are interpreted as synthetic lattice
sites in an extra dimension. The coupling between different momentum states is
realized using two-photon Bragg transitions driven by two counter-propagating
laser beams. A second set of Bragg beams, characterized by a wavelength in-
commensurated with respect to the first pair of beams, allows the realization of
an additional synthetic dimension.

• Synthetic dimension in non-atomic systems: as a final point, it is interesting to
note that the concept of synthetic dimension is gaining attention also in fields
not directly related with the ultracold atoms context. In reference (Ozawa et al.,
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2016) for example, the authors propose to encode an artificial dimension in the
resonant modes of a ring cavity, realizing in this way an array of syntetic lattice
sites coupled by a time-dependent modulation of the dielectric properties of the
cavity itself.

Let’s now move back to our original purpose and see how the synthetic dimension
approach can be exploited to realize an artificial gauge field for neutral atoms. We will
focus the attention only on the methods investigated in the experimental part of this
thesis (the first two of the previous list), in which the synthetic dimension is encoded in
an internal degree of freedom of a neutral atom. If combined with a one-dimensional
optical lattice the synthetic dimension gives rise to a hybrid ladder characterized by
a real and an artificial dimension, as it is represented in figure 2.7. Lattice sites posi-
tions in this hybrid ladder can be conveniently labelled as {n, j}, where n refers to the
position along the synthetic dimension while j labels the sites along the real optical
lattice. In this kind of system we have a natural tunneling matrix element t for parti-
cles hopping between neighbouring sites along the real dimension while the tunnelling
between synthetic sites is provided by means of laser radiation characterized by a Rabi
frequency Ωn that couples the synthetic site n with n+ 1. Let’s now suppose that the
wavevector of the laser radiation is aligned with the real optical lattice. In case of reso-
nant coupling the time-dependence of the radiation electric field can be eliminated by
means of a rotating wave approximation and we remain with a spatial-dependent only
phase of the field, whose value is given by

ϕ = kRx+ ϕ0 (2.29)

where kR is the wavevector of the laser radiation. The crucial detail at this point of
our description is that the wavefunction of atoms tunnelling between two sites along
the synthetic dimension will pick up a phase factor which depends on their position in
the real optical lattice, as a consequence of the complex space-dependent phase 2.29
that characterizes the electric dipole matrix element. Indeed, the tunnelling process
along the synthetic dimension is enabled only by the exchange of a photon (or more
photons if for example a Raman transition is considered) with the radiation field. An
atom located in the real lattice site j will thus pick up a phase exp(i ϕj) = exp(i kR aj),
where a is the real lattice spacing, when it absorbs a photon to hop from the hybrid lad-
der site {n, j} to {n + 1, j}. Conversely, a synthetic tunnelling event in the opposite
direction is characterized by a −ϕj phase change. If the radiation wavelength is not
an integer multiple of the real lattice spacing then exp(i ϕj) has a non vanishing imag-
inary part and can thus be interpreted as a Peierls phase associated to the synthetic
tunnelling event. In particular, if the Rabi frequency Ωn is associated to the strength
of the tunnelling, it is possible to write the synthetic matrix tunnelling element as

tsynth.
n→n+1 =

Ωn

2
ei kR aj |n+ 1⟩⟨n| = Ωn

2
eπ i kR/kL j |n+ 1⟩⟨n| = Ωn

2
e iΦ j |n+ 1⟩⟨n| (2.30)

where the dependency of the matrix element on the lattice wavevector kL has been
made explicit andΦ = π kR/kL is the synthetic Peierls phase. Following this approach
it is thus possible to realize an artificial gauge field in the Landau gauge on a hybrid
ladder. In particular, a particle orbiting around the ladder’s plaquette {j, n} → {j, n+

1} → {j−1, n+1} → {j−1, n} → {j, n}will pick up a phase shift equal toΦ j when it
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moves on the {j, n} → {j, n+1} link and−Φ(j−1)when it moves from {j−1, n+1}
to {j−1, n}, meaning that Φ is the phase associated to the artificial magnetic field flux
piercing one ladder cell. If both the coupling laser field and the real lattice are realized
in the optical domain, then Φ, depending only on the ratio kR/kL, can assume values
of the order of the unity, which are several orders of magnitude higher than the ones
achievable in real solid-state systems.

With the expression 2.30 for the tunnelling in the synthetic dimension, assuming
that atoms in the real lattice are in the tight-binding regime, the physics of the hybrid
system is well captured by the tight-binding-like Hamiltonian

Hladder =
∑
j,n

(
−t â†j+1,n − Ωn

2
eiΦ j â†j,n+1

)
âj,n + H.c. (2.31)

where j labels the spatial index, n labels the position in synthetic dimension, â†j,n is
the creation operator for a particle located in the position {j, n} in the hybrid ladder
and Ωn is the Rabi frequency associated to the tunnelling from the site n to n+1 along
the synthetic dimension.

Note that in the Hamiltonian above the phases ϕj = Φ j live on the links of the
hybrid lattice, playing the role of the spatial components of a U(1) lattice gauge field
to which the U(1) on-site gauge transformation of the field operators

âj,n → â′j,n = ei χj,n âj,n. (2.32)

is associated. The transformation above leaves the spectrum of the system invariant
but defines the new phases

ϕj → ϕj + χj,n − χj,n+1 (2.33)

for hopping processes along the synthetic dimension and ϕi = χj,n − χj+1,n for hop-
ping processes along the real dimension. Despite this redefinition, the cumulative
phase acquired by a particle that undergoes a closed loop around a plaquette of the
lattice is left invariant by the U(1) transformation and can consequently be associated
to the presence of an external static magnetic field induced by the gauge potential ex-
perienced by the atoms on the plaquette links. In what follows we will consider only
fields of this kind that must not be confused with dynamical gauge fields in which the
fields are influenced by the atomic motion.

From an experimental point of view, the synthetic dimension approach to the real-
ization of an artificial gauge field is characterized by several advantages over the other
methods described in the previous section. Among these advantages it is possible to
list:

• A strongly reduced heating of the atomic sample: no shaking lattices nor time-
modulated potential are involved in the synthetic dimension approach. The only
source of heating is the spontaneous emission from atomic levels resonant or
quasi-resonant with the laser field that provides the coupling in the synthetic di-
mension. If Raman transition are employed to generate the synthetic tunnelling
the spontaneous emission can be suppressed increasing the detuning of the Ra-
man resonancewith respect to the intermediate excited states. This is particularly
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2016) for example, the authors propose to encode an artificial dimension in the
resonant modes of a ring cavity, realizing in this way an array of syntetic lattice
sites coupled by a time-dependent modulation of the dielectric properties of the
cavity itself.

Let’s now move back to our original purpose and see how the synthetic dimension
approach can be exploited to realize an artificial gauge field for neutral atoms. We will
focus the attention only on the methods investigated in the experimental part of this
thesis (the first two of the previous list), in which the synthetic dimension is encoded in
an internal degree of freedom of a neutral atom. If combined with a one-dimensional
optical lattice the synthetic dimension gives rise to a hybrid ladder characterized by
a real and an artificial dimension, as it is represented in figure 2.7. Lattice sites posi-
tions in this hybrid ladder can be conveniently labelled as {n, j}, where n refers to the
position along the synthetic dimension while j labels the sites along the real optical
lattice. In this kind of system we have a natural tunneling matrix element t for parti-
cles hopping between neighbouring sites along the real dimension while the tunnelling
between synthetic sites is provided by means of laser radiation characterized by a Rabi
frequency Ωn that couples the synthetic site n with n+ 1. Let’s now suppose that the
wavevector of the laser radiation is aligned with the real optical lattice. In case of reso-
nant coupling the time-dependence of the radiation electric field can be eliminated by
means of a rotating wave approximation and we remain with a spatial-dependent only
phase of the field, whose value is given by

ϕ = kRx+ ϕ0 (2.29)

where kR is the wavevector of the laser radiation. The crucial detail at this point of
our description is that the wavefunction of atoms tunnelling between two sites along
the synthetic dimension will pick up a phase factor which depends on their position in
the real optical lattice, as a consequence of the complex space-dependent phase 2.29
that characterizes the electric dipole matrix element. Indeed, the tunnelling process
along the synthetic dimension is enabled only by the exchange of a photon (or more
photons if for example a Raman transition is considered) with the radiation field. An
atom located in the real lattice site j will thus pick up a phase exp(i ϕj) = exp(i kR aj),
where a is the real lattice spacing, when it absorbs a photon to hop from the hybrid lad-
der site {n, j} to {n + 1, j}. Conversely, a synthetic tunnelling event in the opposite
direction is characterized by a −ϕj phase change. If the radiation wavelength is not
an integer multiple of the real lattice spacing then exp(i ϕj) has a non vanishing imag-
inary part and can thus be interpreted as a Peierls phase associated to the synthetic
tunnelling event. In particular, if the Rabi frequency Ωn is associated to the strength
of the tunnelling, it is possible to write the synthetic matrix tunnelling element as

tsynth.
n→n+1 =

Ωn

2
ei kR aj |n+ 1⟩⟨n| = Ωn

2
eπ i kR/kL j |n+ 1⟩⟨n| = Ωn

2
e iΦ j |n+ 1⟩⟨n| (2.30)

where the dependency of the matrix element on the lattice wavevector kL has been
made explicit andΦ = π kR/kL is the synthetic Peierls phase. Following this approach
it is thus possible to realize an artificial gauge field in the Landau gauge on a hybrid
ladder. In particular, a particle orbiting around the ladder’s plaquette {j, n} → {j, n+

1} → {j−1, n+1} → {j−1, n} → {j, n}will pick up a phase shift equal toΦ j when it
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moves on the {j, n} → {j, n+1} link and−Φ(j−1)when it moves from {j−1, n+1}
to {j−1, n}, meaning that Φ is the phase associated to the artificial magnetic field flux
piercing one ladder cell. If both the coupling laser field and the real lattice are realized
in the optical domain, then Φ, depending only on the ratio kR/kL, can assume values
of the order of the unity, which are several orders of magnitude higher than the ones
achievable in real solid-state systems.

With the expression 2.30 for the tunnelling in the synthetic dimension, assuming
that atoms in the real lattice are in the tight-binding regime, the physics of the hybrid
system is well captured by the tight-binding-like Hamiltonian

Hladder =
∑
j,n

(
−t â†j+1,n − Ωn

2
eiΦ j â†j,n+1

)
âj,n + H.c. (2.31)

where j labels the spatial index, n labels the position in synthetic dimension, â†j,n is
the creation operator for a particle located in the position {j, n} in the hybrid ladder
and Ωn is the Rabi frequency associated to the tunnelling from the site n to n+1 along
the synthetic dimension.

Note that in the Hamiltonian above the phases ϕj = Φ j live on the links of the
hybrid lattice, playing the role of the spatial components of a U(1) lattice gauge field
to which the U(1) on-site gauge transformation of the field operators

âj,n → â′j,n = ei χj,n âj,n. (2.32)

is associated. The transformation above leaves the spectrum of the system invariant
but defines the new phases

ϕj → ϕj + χj,n − χj,n+1 (2.33)

for hopping processes along the synthetic dimension and ϕi = χj,n − χj+1,n for hop-
ping processes along the real dimension. Despite this redefinition, the cumulative
phase acquired by a particle that undergoes a closed loop around a plaquette of the
lattice is left invariant by the U(1) transformation and can consequently be associated
to the presence of an external static magnetic field induced by the gauge potential ex-
perienced by the atoms on the plaquette links. In what follows we will consider only
fields of this kind that must not be confused with dynamical gauge fields in which the
fields are influenced by the atomic motion.

From an experimental point of view, the synthetic dimension approach to the real-
ization of an artificial gauge field is characterized by several advantages over the other
methods described in the previous section. Among these advantages it is possible to
list:

• A strongly reduced heating of the atomic sample: no shaking lattices nor time-
modulated potential are involved in the synthetic dimension approach. The only
source of heating is the spontaneous emission from atomic levels resonant or
quasi-resonant with the laser field that provides the coupling in the synthetic di-
mension. If Raman transition are employed to generate the synthetic tunnelling
the spontaneous emission can be suppressed increasing the detuning of the Ra-
man resonancewith respect to the intermediate excited states. This is particularly
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Figure 2.7: Sketch of the synthetic ladder realized combining a one-dimensional op-
tical lattice with an internal atomic degree of freedom, such as, for example, the spin.
Laser radiation provides the synthetic coupling in the artificial dimension. Atoms tun-
nelling along the synthetic lattice pick up a phase that depends on their position in real
space, as if they are influenced by a vector potential.

convenient for two-electrons atoms as the Raman transition can be driven by us-
ing laser light at an intercombination transition (as it will be discussed with more
details in chapter 5). The heating is further reduced if the synthetic dimension is
realized exploiting two long-lived electronic levels coupled together by a clock
laser (as further discussed in the experimental chapter 4) as in this case no other
intermediate excited states are present.

• A simple experimental realization: In the simplest possible scheme only two
laser fields are required to realize the artificial gauge field: one to generate the
real one-dimensional optical lattice and another to provide the coupling in the
synthetic dimension. No superlattices or potential gradients are needed.

• An easy tunability of the synthetic magnetic flux: Since the magnetic field flux
per plaquette Φ is proportional to the momentum kR transferred by the coupling
laser field to the atoms, to change Φ it is enough to modify the angle θ at which
kR intersects kL, in such a way to have Φ = π kR/kL cos(θ).

• A uniform flux in each lattice cell: By construction, the flux in each plaquette
of the hybrid ladder is uniform and the magnetic field associated to the artificial
gauge potential always points in the same direction (orthogonal to the plane of
the ladder) for all the cells. Being not staggered, no flux rectification tecniques
are needed.

• The possibility to address individually each leg of the ladder: since in the syn-
thetic ladder each leg is encoded in a different internal degree of freedom of the
atom, by exploiting state selective imaging techniques it is possible to address
each leg individually. This for example allows a direct observation of the edges
of the system, a very hard task to achieve in all optical-lattice-based systems.

On the other hand, there are some clear drawbacks in the utilization of the synthetic
dimension approach to realize artificial gauge fields. The first and more evident has
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been already pointed out in the introduction to the method and is represented by the
limit imposed to the number of lattice sites along the synthetic dimension by the spin
degeneracy. As a matter of fact with this method only the realization of ladder-like
systems is allowed. Another drawback is represented by the experimental difficulty
that can be encountered in the engineering of tunnelling matrix elements characterized
by the same strength for all the spin-spin couplings along the synthetic dimension.
As pointed out in the Hamiltonian 2.31, the tunnelling strength Ωn in the synthetic
dimension depends on the spin state and it can result to be hard to engineer a system in
which all the couplings have the same strength. This drawback can indeed be exploited
to tune the number of synthetic lattice sites as it will be discussed in chapter 5.

As a final note, it should be observed that this approach can be extended to more
than two dimensions exploiting additional optical lattices. A 3D optical lattice com-
bined with a synthetic dimension, for example, realizes a four-dimensional system that
could allow the investigation of exotic phenomenaa, such as the 4D Hall effect (Price
et al., 2015). On the other hand, the possibility to engineer complex boundary condi-
tions along the synthetic dimension can be exploited to realize non-trivial topological
geometries (Boada et al., 2015).

2.3.3 Synthetic dimension or synthetic Spin-Orbit coupling?

In the spin ladder approach to the realization of a synthetic dimension, the tunnelling
along the extra dimension is provided by the exchange of photons with a laser radiation
field. As a matter of fact this implies that, as an atom moves along the synthetic ladder
changing its spin, it must also exchange momentum with the photons of the coupling
radiation field. Since this results in a lock of the spin to the atomic momentum, the
method described so far can also be interpreted as a way to realize synthetic spin-orbit
coupling (SOC) in ultracold quantum gases. As it has already been pointed out in
the introduction to this chapter, SOC is an intriguing phenomenon that in solid-state
systems can give rise to novel classes of materials such as topological insulators or
topological superconductors (Hasan and Kane, 2010). In condesed-matter systems
SOC originates as a consequence of the extremely high electric field (of the order of
trillions of volts per meter) present at the atomic level, a regime extremely inaccessible
in the laboratory frame. Synthetic SOC and quantum simulation with ultracold atoms
could thus provide a novel platform to study SOC-related effects in solid-state systems
(Galitski and Spielman, 2013).

To formalize how synthetic SOC emerges in an ultracold atom system we can con-
sider two spin states labelled as ↑ and ↓ in free space, coupled together by a Raman
radiation field. To flip the spin atoms must exchange a momentum equal to δk = 2k0
with the Raman field. We suppose δk to be aligned along the êx direction. Fixing
ℏ = 1, the Hamiltonian that captures the physics of this system is

H =

(
k2
x

2m − δ
2

Ω
2 e

2ik0x

Ω
2 e

−2ik0x k2
x

2m + δ
2

)
(2.34)

where kx is the atomic momentum along the êx direction, m is the atomic mass, Ω is
the Raman Rabi frequency and δ is the Raman transition detuning. The Hamiltonian
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Figure 2.7: Sketch of the synthetic ladder realized combining a one-dimensional op-
tical lattice with an internal atomic degree of freedom, such as, for example, the spin.
Laser radiation provides the synthetic coupling in the artificial dimension. Atoms tun-
nelling along the synthetic lattice pick up a phase that depends on their position in real
space, as if they are influenced by a vector potential.

convenient for two-electrons atoms as the Raman transition can be driven by us-
ing laser light at an intercombination transition (as it will be discussed with more
details in chapter 5). The heating is further reduced if the synthetic dimension is
realized exploiting two long-lived electronic levels coupled together by a clock
laser (as further discussed in the experimental chapter 4) as in this case no other
intermediate excited states are present.

• A simple experimental realization: In the simplest possible scheme only two
laser fields are required to realize the artificial gauge field: one to generate the
real one-dimensional optical lattice and another to provide the coupling in the
synthetic dimension. No superlattices or potential gradients are needed.

• An easy tunability of the synthetic magnetic flux: Since the magnetic field flux
per plaquette Φ is proportional to the momentum kR transferred by the coupling
laser field to the atoms, to change Φ it is enough to modify the angle θ at which
kR intersects kL, in such a way to have Φ = π kR/kL cos(θ).

• A uniform flux in each lattice cell: By construction, the flux in each plaquette
of the hybrid ladder is uniform and the magnetic field associated to the artificial
gauge potential always points in the same direction (orthogonal to the plane of
the ladder) for all the cells. Being not staggered, no flux rectification tecniques
are needed.

• The possibility to address individually each leg of the ladder: since in the syn-
thetic ladder each leg is encoded in a different internal degree of freedom of the
atom, by exploiting state selective imaging techniques it is possible to address
each leg individually. This for example allows a direct observation of the edges
of the system, a very hard task to achieve in all optical-lattice-based systems.

On the other hand, there are some clear drawbacks in the utilization of the synthetic
dimension approach to realize artificial gauge fields. The first and more evident has

60

been already pointed out in the introduction to the method and is represented by the
limit imposed to the number of lattice sites along the synthetic dimension by the spin
degeneracy. As a matter of fact with this method only the realization of ladder-like
systems is allowed. Another drawback is represented by the experimental difficulty
that can be encountered in the engineering of tunnelling matrix elements characterized
by the same strength for all the spin-spin couplings along the synthetic dimension.
As pointed out in the Hamiltonian 2.31, the tunnelling strength Ωn in the synthetic
dimension depends on the spin state and it can result to be hard to engineer a system in
which all the couplings have the same strength. This drawback can indeed be exploited
to tune the number of synthetic lattice sites as it will be discussed in chapter 5.

As a final note, it should be observed that this approach can be extended to more
than two dimensions exploiting additional optical lattices. A 3D optical lattice com-
bined with a synthetic dimension, for example, realizes a four-dimensional system that
could allow the investigation of exotic phenomenaa, such as the 4D Hall effect (Price
et al., 2015). On the other hand, the possibility to engineer complex boundary condi-
tions along the synthetic dimension can be exploited to realize non-trivial topological
geometries (Boada et al., 2015).

2.3.3 Synthetic dimension or synthetic Spin-Orbit coupling?

In the spin ladder approach to the realization of a synthetic dimension, the tunnelling
along the extra dimension is provided by the exchange of photons with a laser radiation
field. As a matter of fact this implies that, as an atom moves along the synthetic ladder
changing its spin, it must also exchange momentum with the photons of the coupling
radiation field. Since this results in a lock of the spin to the atomic momentum, the
method described so far can also be interpreted as a way to realize synthetic spin-orbit
coupling (SOC) in ultracold quantum gases. As it has already been pointed out in
the introduction to this chapter, SOC is an intriguing phenomenon that in solid-state
systems can give rise to novel classes of materials such as topological insulators or
topological superconductors (Hasan and Kane, 2010). In condesed-matter systems
SOC originates as a consequence of the extremely high electric field (of the order of
trillions of volts per meter) present at the atomic level, a regime extremely inaccessible
in the laboratory frame. Synthetic SOC and quantum simulation with ultracold atoms
could thus provide a novel platform to study SOC-related effects in solid-state systems
(Galitski and Spielman, 2013).

To formalize how synthetic SOC emerges in an ultracold atom system we can con-
sider two spin states labelled as ↑ and ↓ in free space, coupled together by a Raman
radiation field. To flip the spin atoms must exchange a momentum equal to δk = 2k0
with the Raman field. We suppose δk to be aligned along the êx direction. Fixing
ℏ = 1, the Hamiltonian that captures the physics of this system is

H =

(
k2
x

2m − δ
2

Ω
2 e

2ik0x

Ω
2 e

−2ik0x k2
x

2m + δ
2

)
(2.34)

where kx is the atomic momentum along the êx direction, m is the atomic mass, Ω is
the Raman Rabi frequency and δ is the Raman transition detuning. The Hamiltonian
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2.34 can be recast in a more enlightening form applying the unitary transformation
Ĥ = UHU † with U given by (Zhai, 2012)

U =

(
e−ik0x 0

0 eik0x

)
(2.35)

After the transformation 1 the Hamiltonian reads

Ĥ =

(
(kx+k0)

2

2m − δ
2

Ω
2

Ω
2

(kx−k0)
2

2m + δ
2

)
(2.36)

and can be rearranged in terms of the Pauli matrices to give

Ĥ =
(kx + k0σz)

2

2m
+

δ

2
σz +

Ω

2
σx. (2.37)

The term k0σz in the last expression can be interpreted either as a synthetic vector
potential or as the source of a synthetic SOC. This is more evident if a spin rotation
along êy is performed exchanging σx → σz and σz → −σx. As a consequence of this
transformation the Hamiltonian becomes

Ĥ =
(kx − k0σx)

2

2m
− δ

2
σx +

Ω

2
σz. (2.38)

where the kinetic term can be read as a mix of Rashba (kxσx + kyσy) and Dresselhaus
(kxσx − kyσy) SOC.

The same problem in presence of an optical lattice will be discussed in section 4.1.

1In order to transform the Hamiltonian, it must be taken into account that x and kx are operators with
commutator [x, k] = i. In general for two operatorsA andB for which the relation [A, [A,B]] = 0 holds (as
it is for x and k) we have that [f(A), B] = [A,B] ∂f

∂A
where f is a function of the operator A. This implies

that [e±ik0x, kx] = ∓k0eik0x. Accordingly to this result, the diagonal elements of the transformation
Ĥ = UHU† are given by 1

2m
e∓ik0x k2x e±ik0x ∓ δ

2
= 1

2m
(kx ± k0)2 ∓ δ

2
.
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Chapter 3
Addressing the |1S0⟩ → |3P0⟩ clock transition in 173Yb

The possibility to address the clock transition in 173Yb is a fundamental requirement
formany quantum-simulation schemes involving alkaline-earth and alkaline-earth-like
atoms Gorshkov et al. (2009). The first part of this chapter is devoted to the description
of themechanism that enables the excitation of the |1S0⟩ → |3P0⟩ clock transition in the
fermionic isotopes of this class of atoms. The fundamental properties of the transition
are then described and the techniques employed to suppress the Doppler broadening
in spectroscopic measurements are discussed. The spectroscopic capabilities of our
clock laser are then presented, evidencing in particular the possibility to resolve the
interaction peaks in a multicomponent spin gas confined in an optical lattice. The
final part of the chapter is instead devoted to the description of some high-accuracy
spectroscopic measurements enabled by the possibility to lock our clock laser on a
metrological reference. These measurements led to the determination of the absolute
frequency of the clock transition in 173Yb with an unprecedented precision.

3.1 The hyperfine mixing mechanism

In fermionic Yb, the 1S0 → 3P0 clock transition violates the selection rules imposing
that the initial and final total electronic angular momentum (respectively Ji and Jf )
must be not simultaneously vanishing and that the variation of the spin number ∆S

must be equal to zero and consequently it should not be allowed at any order. However,
as intercombination transitions characterized by ∆S ̸= 0 are allowed if the spin-orbit
interaction mixes states with different spin quantum number S, similarly, a transition
in which Ji = Jf = 0 can occur in the presence of a mechanism that mixes states with
different quantum number J . In alkaline-earth and alkaline-earth-like fermionic iso-
topes this mechanism is represented by the hyperfine interaction between the nuclear
magnetic moment I and the total electronic angular momentum J .

At the origin of the hyperfine interaction is the effect induced on the atomic nucleus
by the electromagnetic field generated by electrons belonging to incomplete shells.

In general, the hyperfine coupling Hamiltonian,Hhf , may be represented as a sum
over multipole nuclear moments M(k) of rank k combined with the electronic cou-
pling operators T (k) of the same rank so that the total interaction is rotationally and
P–invariant (Porsev and Derevianko, 2003). For states as the |3P0⟩, for which J = 0,
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Hhf can be truncated to the magnetic-dipole part and we have

Hhf = µ(1) · T (1) (3.1)

where µ is the nuclear magnetic dipole operator and T (1) is a rank one operator acting
on the electronic space. The determination of thematrix elements of the hyperfine oper-
ators T (1) requires sophisticated approaches based on many-body perturbation theory
methods and will not be discussed here. SinceHhf is a scalar quantity, it will conserve
the total angular momentum F = I + J and its projection MF on the quantization
axis. However, due to the presence of the rank one operator T (1), states with different
electronic angular momentum J can be coupled, and this, in the basis |α, J, I, F,MF ⟩,
gives rise to first order corrections to the bare atomic eigenstates having the form

|α, J, I, F,MF ⟩(1) =
∑
α′J ′

|α′, J ′, I, F,MF ⟩
⟨α′, J ′, I, F ′,M ′

F |Hhf |α, J, I, F,MF ⟩
E(α′, J ′)− E(α, J)

.

(3.2)
where α is the set of all the additional quantum numbers necessary to define the atomic
state and E(α, J) are the energies of the atomic levels. In particular, exploiting the
Wigner-Eckart theorem, it is possible to demonstrate that the correction above is pro-
portional to

⟨α′, J ′, I, F ′,M ′
F |Hhf |α, J, I, F,MF ⟩ ∝ δFF ′δMFMF ′ ⟨α′J ′||T (1)||αJ⟩ (3.3)

which evidences that Hhfs is not diagonal in J and so gives rise to eigenstates in
which J is not defined. In particular, being T an operator of rank one, the new atomic
states will be defined by a linear combination of unperturbed states characterized by
the same quantum number F and J ′ ranging from J − 1 to J + 1. As a consequence,
the metastable state |3P0⟩ will be defined by the mixing

|3P0⟩ = α|3P 0
0 ⟩+ β|3P 0

1 ⟩+ γ|1P 0
1 ⟩ (3.4)

where the superscript ”0” indicates the bare atomic eigenstates and β, γ ≪ 1. Because
of the mixing with the bare states |1P1⟩ and |3P1⟩, the metastable state 3.4 inherits
an electric-dipole coupling to the fundamental state |1S0⟩. The resulting transition
linewidth is Γ = 38.5 mHz (Porsev et al., 2004) corresponding to a lifetime of about
23 s.

Because of this extremely reduced linewidth, the saturation intensity of the transi-
tion (Foot, 2012)

Isat =
ℏω3

0Γ

12πc2
(3.5)

is characterized by the exceptionally low value Isat = 4.7 × 10−11 mW mm−2. This
means that the transition width can be easily power-broadened with relatively small
laser light intensities: just to give an example, 4 mWmm−2 of laser light intensity are
enough to obtain a 1 kHz broadening.

3.2 Magnetic properties of the transition

The presence of a non-zero nuclear moment in the fundamental |1S0⟩ = g and
metastable |3P0⟩ = e states gives rise to a magnetic substructure which is identical for
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both the two atomic levels. In 173Yb this substructure is characterized by 2F + 1 = 6

nuclear spin sublevels with the projection of the spin on the quantization axis ranging
from mF = −5/2 to mF = +5/2. The degeneracy among these sublevels can be
removed exploiting an external magnetic field which induces a Zeeman shift given by

∆Ez = gF mF µB B (3.6)

where gF is the Landé factor. Neglecting diamagnetic corrections to the nuclear mag-
netic moment (Boyd et al., 2007), the Landé factors ggF and geF (respectively for the
electronic levels g and e) are in principle identical, since for states characterized by
J = 0 the expression for gF reduces to 1

gF = −me

mp
gI (3.7)

whereme andmp are respectively the mass of the electron and the mass of the proton
and gI is the magnetic nuclear factor (gi = -0.6776 for the 173Yb). This argumentation,
however, refers to the ideal case and can be applied only to the bare |3P0⟩ state. In the
real case, the small admixture with the |3P1⟩ and |1P1⟩ that characterizes the hyperfine
mix 3.4 is enough to slightly modify the wavefunction of the bare |3P0⟩ state making
the Landé factors geF and ggF to be different. In particular. it comes out that themagnetic
sensitivity of the two states is (Porsev et al., 2004)

∆Eg/h ≃ +207.4mF B [Hz/G] (3.8)

for the ground state 2 and

∆Ee/h ≃ +320.8mF B [Hz/G] (3.9)

for the clock state, meaning that a differential Land factor δg = geF −ggF = +8.1×10−5

can be defined.
The existence of a difference in the magnetic sensitivity of the g and e levels has

an important consequence in the experimental addressing of the clock transition since
it makes possible, just exploiting an external magnetic field, to individually address
the nuclear spin sublevels of the fundamental state. For example, if π transitions
1S0(F = 5/2,mF ) → 3P0(F = 5/2,mF ) are considered, the nuclear-spin projection
is conserved and for eachmF the transition frequency is shifted by

∆Eπ(mF )/h = 113mFB [Hz/G], (3.10)

meaning that magnetic fields of fewGauss are enough to split clock lines characterized
by a typical power-broadened linewidth of the order of 100 Hz. The complete scheme
of all the possible transitions connecting the fundamental level g with the metastable
state e is reported in figure 3.1.

1If the hyperfine structure is taken into account, the Landé factor is given by (Steck, 2015) g =

gJ
F (F+1)+J(J+1)−I(I+1)

2F (F+1)
−gI

me
mp

F (F+1)+I(I+1)−J(J+1)
2F (F+1)

. This implies that for the atomic levels 1S0

and 3P0 for which J = 0, the Landé factor reduces to g = −me
mp

gI .
2For the |1S0⟩ ground state the Landé factor is exactly gF = −me/mp gi where for 173Yb (I = 5/2)

we have gI = −0.67989/I = −0.271956 (Lide, 2004) and consequently gI = 207.4 Hz/G.
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Figure 3.1: Diagram of all the possible transitions connecting the ground state |1S0⟩
magnetic sublevels with the metastable state |3P0⟩ sublevels in 173Yb. The first-order
Zeeman shifts are calculated with respect to the absolute value of the frequency tran-
sition and are reported in Hz/G.

The transition frequency is affected also by a second-order Zeeman shift∆E
(2)
z that

induces a quadratic dependence on the resonance position as a function of the external
magnetic field applied. This shift, which is spin-independent, can be expressed as

∆E(2)
z = β B2 (3.11)

with β = −0.064(2) Hz/G2 (Cappellini, 2016).

3.3 Spectroscopy of tightly-confined atoms in optical lattices

Free-space spectroscopy does not represent a suitable choice to exploit the very large
quality factor of an optical clock resonance. In free space atoms absorb light with
a frequency that depends on their velocity and on the momentum transferred by the
absorbed photon to the particles, accordingly to the relation

ωabs = ω0 + k · v+ ℏk2

2m
(3.12)

where ω0 is the absolute transition frequency, k is the photon momentum and v is the
atom velocity. The two terms k ·v and ℏk2/2m in the equation above take into account,
respectively, the frequency shift due to the Doppler effect and the recoil shift due to
the exchange of momentum with the radiation field that occurs as a consequence of
the absorption or emission of a photon by the atom.

The Doppler term leads to a broadening of the resonance width, that for a classical
gas at temperature T , is given by (Foot, 2012; Bransden and Joachain, 2003)

∆νD =

√
8 kB T ln(2)

m

1

λ0
(3.13)
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where λ0 = 2πc/ω0 is the transition wavelength. This Doppler broadening limits the
minimum width of the resonance to few kHz even in conditions of strong degeneracy
of the gas and represents usually the dominant term of broadening when a clock tran-
sition is considered. As an example, in our typical experimental conditions, for a gas
characterized by a temperature of 10 nK, we expect a Doppler broadening of 3 kHz,
a value far exceeding the contribution of power broadening, which can be reduced to
just tens of Hz employing laser intensities of the order of few µWmm−2. The various
techniques proposed to suppress Doppler broadening, such as saturation spectroscopy,
generally rely on the interrogation of the small fraction of the atomic sample satisfying
the velocity condition k ·v ≪ Γ, where Γ is the natural width of the transition, and con-
sequently lead to a reduction of the SNR. These problems are of particular relevance in
the optical clock framework where all broadenings beyond the natural linewidth lead
to a deterioration of the stability that can be achieved (Poli et al., 2013).

The most successful approach to circumvent these limitations is to perform spec-
troscopy of tightly confined atoms in the so-called Lamb-Dicke regime (Dicke, 1953).
In this configuration, if the confinement is strong enough to make the extension of
the atomic wave packet smaller than the atomic transition wavelength, then, due to
the Heisenberg’s uncertainty principle, in momentum space the spread of the atomic
wavefunction will be larger than the transition photon momentum. As a result of this,
at the leading order, the absorption of a photon will not change the motional state of
the atom in the trap and consequently both the recoil shift an Doppler broadening will
be suppressed.

To formalize this argumentation we can consider a two-level atom confined in a
harmonic potential characterized by a spacing between the energy levels ∆Eho = ℏω.
Let’s label the two levels of the atomic systemwith |g⟩ and |e⟩ and themotional states of
the atomic wavefunction inside the trap with |n⟩. If light resonant with the |g⟩ → |e⟩
transition is shined onto the atom, the probability that the absorption of a photon is
accompained by the change of the motional state from |n⟩ to |n′⟩ will be given by

Pn→n′ = |⟨e|D̂|g⟩ ⟨n′|eikR|n⟩|2 (3.14)

where D̂ is the electric dipole operator and R is the wavefunction center of mass. If R
is expressed in terms of the ladder operators â and â† of the harmonic oscillator and
only the motional part of the above expression is considered, then we have

Pn→n′ ∝ |⟨n′|eik aho(
a+a†
√

2
)|n⟩|2 = |⟨n′|eiη(a+a†)|n⟩|2 (3.15)

where aho =
√
ℏ/(mω) is the harmonic oscillator length and η = ahok/

√
2 takes

the name of Lamb-Dicke parameter. When η ≪ 1, a condition that is fulfilled if the
recoil energy Erec = ℏ2k2/(2m) associated to the absorption of a photon is much
smaller than the harmonic oscillator frequency, then the expression above can be
Taylor-expanded and at the first order, we have

Pn→n′ ∝ |⟨n′|1 + η(a+ a†)|n⟩|2 = |δn,n′ + η
√
n+ 1δn′,n+1 + η

√
nδn′,n−1|2. (3.16)

This last expression clearly shows that in the limit η ≪ 1 the most intense line in the
absorption or emission spectra is the one for which the motional state of the atomic
wavefunction is conserved, i.e. n = n′. For this particular line, which is usually
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Figure 3.1: Diagram of all the possible transitions connecting the ground state |1S0⟩
magnetic sublevels with the metastable state |3P0⟩ sublevels in 173Yb. The first-order
Zeeman shifts are calculated with respect to the absolute value of the frequency tran-
sition and are reported in Hz/G.

The transition frequency is affected also by a second-order Zeeman shift∆E
(2)
z that

induces a quadratic dependence on the resonance position as a function of the external
magnetic field applied. This shift, which is spin-independent, can be expressed as

∆E(2)
z = β B2 (3.11)

with β = −0.064(2) Hz/G2 (Cappellini, 2016).
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where ω0 is the absolute transition frequency, k is the photon momentum and v is the
atom velocity. The two terms k ·v and ℏk2/2m in the equation above take into account,
respectively, the frequency shift due to the Doppler effect and the recoil shift due to
the exchange of momentum with the radiation field that occurs as a consequence of
the absorption or emission of a photon by the atom.

The Doppler term leads to a broadening of the resonance width, that for a classical
gas at temperature T , is given by (Foot, 2012; Bransden and Joachain, 2003)
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sition is considered. As an example, in our typical experimental conditions, for a gas
characterized by a temperature of 10 nK, we expect a Doppler broadening of 3 kHz,
a value far exceeding the contribution of power broadening, which can be reduced to
just tens of Hz employing laser intensities of the order of few µWmm−2. The various
techniques proposed to suppress Doppler broadening, such as saturation spectroscopy,
generally rely on the interrogation of the small fraction of the atomic sample satisfying
the velocity condition k ·v ≪ Γ, where Γ is the natural width of the transition, and con-
sequently lead to a reduction of the SNR. These problems are of particular relevance in
the optical clock framework where all broadenings beyond the natural linewidth lead
to a deterioration of the stability that can be achieved (Poli et al., 2013).

The most successful approach to circumvent these limitations is to perform spec-
troscopy of tightly confined atoms in the so-called Lamb-Dicke regime (Dicke, 1953).
In this configuration, if the confinement is strong enough to make the extension of
the atomic wave packet smaller than the atomic transition wavelength, then, due to
the Heisenberg’s uncertainty principle, in momentum space the spread of the atomic
wavefunction will be larger than the transition photon momentum. As a result of this,
at the leading order, the absorption of a photon will not change the motional state of
the atom in the trap and consequently both the recoil shift an Doppler broadening will
be suppressed.

To formalize this argumentation we can consider a two-level atom confined in a
harmonic potential characterized by a spacing between the energy levels ∆Eho = ℏω.
Let’s label the two levels of the atomic systemwith |g⟩ and |e⟩ and themotional states of
the atomic wavefunction inside the trap with |n⟩. If light resonant with the |g⟩ → |e⟩
transition is shined onto the atom, the probability that the absorption of a photon is
accompained by the change of the motional state from |n⟩ to |n′⟩ will be given by

Pn→n′ = |⟨e|D̂|g⟩ ⟨n′|eikR|n⟩|2 (3.14)

where D̂ is the electric dipole operator and R is the wavefunction center of mass. If R
is expressed in terms of the ladder operators â and â† of the harmonic oscillator and
only the motional part of the above expression is considered, then we have
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the name of Lamb-Dicke parameter. When η ≪ 1, a condition that is fulfilled if the
recoil energy Erec = ℏ2k2/(2m) associated to the absorption of a photon is much
smaller than the harmonic oscillator frequency, then the expression above can be
Taylor-expanded and at the first order, we have
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This last expression clearly shows that in the limit η ≪ 1 the most intense line in the
absorption or emission spectra is the one for which the motional state of the atomic
wavefunction is conserved, i.e. n = n′. For this particular line, which is usually
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Figure 3.2: Pictorial representation of the sideband-resolved spectrum of a two level
atom confined in a harmonic trap in the Lamb-Dicke regime. The predicted intensity
of the sidebands with respect to the carrier is reported as a function of the Lamb-Dicke
parameter η. The energy spacing between the sidebands is the same as the spacing
between the harmonic levels of the confining potential δE = ℏω.

referred to as the carrier transition, the Doppler broadening is suppressed as well as
the recoil shift, since the exchange of photons with the radiation field does not affect
the spatial part of the atomic wavefunction.

On the other hand, transitions characterized by n′ = n+1 and n′ = n−1 are respec-
tively referred to as first blue sideband and first red sideband, and have an intensity
reduced roughly by a factor η2. These transitions are energy-shifted with respect to
the carrier respectively by±ℏω, meaning that they can be individually addressed if the
broadening of the transition is less than the energy separation between two consecutive
levels of the harmonic trap.

If the Lamb-Dicke parameter is increased, for example reducing the confinement
frequency ω, the excitation to higher sidebands with frequency shift fn→n′ = (n′ −
n)ℏω becomes possible, but these will be characterized by a transition strength which
scales as Pn→n′ ∝ (nη2)|n−n′|, as it is pictorially shown in figure 3.2. It should be
anyway observed that the excitation towards red sidebands is possible only if states
with n′ < n are available in the trap. This means that if all the atoms are in the
fundamental vibrational level, no red sidebands will be observed in the spectrum.

As a final note, it should be mentioned that the argumentation carried out up to this
point involves atoms confined in a harmonic trap. If an optical lattice is considered
as the confining potential, a reduction of the spacing between the energy levels will
occur as a consequence of the anharmonicity when levels with increasing energy are
taken into account. While this does not affect the signal of the carrier, the shape of the
sidebands will be broadened. This effect, for atoms mostly occupying the fundamental
lattice band and not-so-deep lattices, is due to the broadening of the excited bands
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Figure 3.3: Sideband-resolved spectrum of the clock transition of a spin polarized
173Yb gas trapped in a 3D lattice with a depth s ≃ 22. In the spectrum, in addition
to the carrier transition, it is possible to observe the first two lattice blue sidebands.
The absence of red sidebands implies that all the atoms occupy the fundamental lattice
band before the clock excitation. The frequency spacing between the peaks matches
the spacing between lattice bands at s = 22ER.

caused by the lattice anharmonicity which results in an increased tunnelling rate if
compared with the fundamental band.

Similarly, a broadening of the carrier can occur if the lattice is not performed at
the magic wavelength since in this configuration the carrier frequency depends on the
motional state of the atoms. Also in this case this problem does not emerge if atoms
in the fundamental vibrational state are considered.

Sideband-resolved spectra

We have thus seen that a strong confinement of the atoms can be used to circumvent
both the Doppler and recoil effects in an atomic transition. To fulfil this condition,
entering in the so-called Lamb-Dicke regime, it is necessary that the parameter

η =

√
Eabs

ℏω
(3.17)

satisfies η ≪ 1, where Eabs is the recoil energy associated to the absorption of a pho-
ton resonant with the atomic transition and ω is the harmonic frequency characterizing
the trap. In this case the confining potential is strong enough that atoms can be ex-
cited from the state |1S0⟩ = g to |3P0⟩ = e without altering the spatial component
of their wavefunction, and, for sufficiently long interrogation times, the width of this
resonance will be limited only by the natural linewidth Γ, by power broadening and
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parameter η. The energy spacing between the sidebands is the same as the spacing
between the harmonic levels of the confining potential δE = ℏω.
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the recoil shift, since the exchange of photons with the radiation field does not affect
the spatial part of the atomic wavefunction.

On the other hand, transitions characterized by n′ = n+1 and n′ = n−1 are respec-
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reduced roughly by a factor η2. These transitions are energy-shifted with respect to
the carrier respectively by±ℏω, meaning that they can be individually addressed if the
broadening of the transition is less than the energy separation between two consecutive
levels of the harmonic trap.

If the Lamb-Dicke parameter is increased, for example reducing the confinement
frequency ω, the excitation to higher sidebands with frequency shift fn→n′ = (n′ −
n)ℏω becomes possible, but these will be characterized by a transition strength which
scales as Pn→n′ ∝ (nη2)|n−n′|, as it is pictorially shown in figure 3.2. It should be
anyway observed that the excitation towards red sidebands is possible only if states
with n′ < n are available in the trap. This means that if all the atoms are in the
fundamental vibrational level, no red sidebands will be observed in the spectrum.

As a final note, it should be mentioned that the argumentation carried out up to this
point involves atoms confined in a harmonic trap. If an optical lattice is considered
as the confining potential, a reduction of the spacing between the energy levels will
occur as a consequence of the anharmonicity when levels with increasing energy are
taken into account. While this does not affect the signal of the carrier, the shape of the
sidebands will be broadened. This effect, for atoms mostly occupying the fundamental
lattice band and not-so-deep lattices, is due to the broadening of the excited bands
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Figure 3.3: Sideband-resolved spectrum of the clock transition of a spin polarized
173Yb gas trapped in a 3D lattice with a depth s ≃ 22. In the spectrum, in addition
to the carrier transition, it is possible to observe the first two lattice blue sidebands.
The absence of red sidebands implies that all the atoms occupy the fundamental lattice
band before the clock excitation. The frequency spacing between the peaks matches
the spacing between lattice bands at s = 22ER.

caused by the lattice anharmonicity which results in an increased tunnelling rate if
compared with the fundamental band.

Similarly, a broadening of the carrier can occur if the lattice is not performed at
the magic wavelength since in this configuration the carrier frequency depends on the
motional state of the atoms. Also in this case this problem does not emerge if atoms
in the fundamental vibrational state are considered.

Sideband-resolved spectra

We have thus seen that a strong confinement of the atoms can be used to circumvent
both the Doppler and recoil effects in an atomic transition. To fulfil this condition,
entering in the so-called Lamb-Dicke regime, it is necessary that the parameter

η =

√
Eabs

ℏω
(3.17)

satisfies η ≪ 1, where Eabs is the recoil energy associated to the absorption of a pho-
ton resonant with the atomic transition and ω is the harmonic frequency characterizing
the trap. In this case the confining potential is strong enough that atoms can be ex-
cited from the state |1S0⟩ = g to |3P0⟩ = e without altering the spatial component
of their wavefunction, and, for sufficiently long interrogation times, the width of this
resonance will be limited only by the natural linewidth Γ, by power broadening and
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by the linewidth of the exciting laser. In particular, since we are considering a clock
transition characterized by an extremely long lifetime (τ ≃ 23 s), in all the cases con-
sidered in this thesis the natural linewidth of the transition will always be negligible
with respect to the power broadening contribute which is given by

ΓPB = Γ

√
I

Isat
(3.18)

where Isat, the saturation intensity, is defined in section 3.1. An example of spec-
troscopy performed in these conditions is shown in figure 3.3. The spectrum has been
acquired shining a 100 ms clock laser pulse on a sample ofmF = −5/2 spin-polarized
atoms trapped in a 3D optical lattice operated at the magic wavelength. The lattice
depth is 22 Erec along all the three spatial directions, where Erec = ℏ2k2L/(2m) is
the lattice recoil energy. This depth corresponds to a harmonic confinement frequency
ω = 2

√
sErec/ℏ ≃ 2π×18.6 kHz which, considering that the recoil energy associated

to the absorption of photon at 578 nm is Eabs/h = 3.4 kHz, gives for the parameter
η the value η ≃ 0.42, ensuring in this way that spectroscopy is performed in a mildly
Lamb-Dicke regime. In this kind of measurements, the spectroscopic signal is given
by the number of atoms remaining in the g state after the clock excitation and so a dip
in the spectrum is expected for resonant laser frequencies. Three absorption lines are
visible in the spectrum: one relative to the carrier transition, labelled as (1) in figure,
and two relative to the first two blue sidebands, respectively labelled as (2) and (3).
No red sidebands are visible, a feature that indicates that atoms occupy only the first
vibrational state of the lattice. It should be observed that in the spectrum reported in the
figure, the peaks relative to the two sidebands are characterized by an area comparable
with the carrier peak while, for η = 0.42, we expect the first and second sideband sig-
nals to be, respectively, 0.18 and 0.12 times the carrier signal. This disagreement with
the theoretical prediction could be explained with the long interrogation time (100 ms)
that is more than enough for atoms excited to higher bands to tunnel towards neigh-
bouring sites, inelastically collide with other excited atoms (for example via p-wave
principal-quantum-number-changing collisions since s-wave collisions are inhibited
in a spin-polarized fermionic sample) and leave the trap due to the released kinetic
energy, increasing in this way the depletion signal.

State-dependent interaction-resolved spectra

In the previous example an atomic sample containing spin-polarized particles has been
considered. In that case, due to the fermionic nature of 173Yb, the Pauli exclusion
principle forbids the simultaneous occupation of a lattice site by two or more identical
atoms and consequently, if all the particles are in the fundamental vibrational state of
the trap, no more than one atom can occupy each lattice site. On the contrary, if a
multicomponent spin gas is considered, the occupation of a lattice site by more than
one particle is allowed, even if the atoms share the same vibrational state, provided
that their spin is different. If we focus the attention on a two-spin component gas,
we expect to observe two kinds of absorption peaks: the first due to the excitation of
atoms in single-particle-occupied lattice sites and the other given by the excitation of
two-particle states composed by two atoms interacting within the same lattice site. In

70

the latter case, even if only one of the two atoms is excited from the g to the e state, a
shifted resonance is expected in the spectrum if the interaction energy before and after
the excitation is different. In the limit of the validity of the Fermi-Hubbard model, as
we have already seen in section 1.3.1, this shift is given by

∆Uge =
4πℏ2(agg − age)

m

∫
w4(r) dr. (3.19)

where agg and age are the s-wave scattering lengths relative to the interaction of the
two particles respectively before and after the excitation, w(r) are the lattice Wannier
function andm is the atomic mass. In our specific case, if we consider only two spins
(labelled with ↑ and ↓), then the only two-particle state allowed by the antisymmetriza-
tion of the wavefunction for two atoms sharing the same vibrational level of the trap
and the same electronic level g is

|gg⟩ = |ϕgϕg⟩ ⊗
| ↑↓⟩ − | ↓↑⟩√

2
(3.20)

where ϕg defines the electronic part of the wavefunction and only the spin part is an-
tisymmetric for exchange of the two particle. The scattering length associated to two
atoms interacting in the |gg⟩ state is 199.4 a0 (Kitagawa et al., 2008), a value that is
independent on the spin thanks to the SU(N ) nature of the interactions in the 173Yb,
as we have seen in section 1.1.1. Starting from |gg⟩, if one of the two atoms is ex-
cited to the e state, the requirement that the electronic part of the wavefunction must
be symmetric for exchange of the particles does not hold any more and we can have
the spin-singlet and spin-triplet states

|eg±⟩ = 1

2
(|ϕgϕe⟩ ± |ϕeϕg⟩)⊗ (| ↑↓⟩ ∓ | ↓↑⟩) (3.21)

where the vibrational state of the two particles is supposed to be unchanged by the exci-
tation. It comes out that because of the different exchange symmetry of the electronic
wavefunctions, these two states are associated to very different molecular potentials
characterized by very different scattering lengths. The determination of the scattering
length aeg− associated to |eg−⟩ can be easily performed evaluating how the spectro-
scopic peak associated to the state shifts as a function of the magnetic field (Scazza
et al., 2014) and resulted to be

aeg− = (219.5± 2.0) a0. (3.22)

A similar measurement can not be performed for the state |eg+⟩ as a consequence
of the saturation of the interaction energy to the gap between the fundamental and the
first excited band, a situation in which the Hubbard model is no longer valid, as we
already discussed in section 1.3.1. Due to this reasons, the scattering length associated
to this state has been measured indirectly, exploiting the spin-exchange interaction
phenomenon (Cappellini et al., 2014) and the orbital Feshbach resonance mechanism
(Höfer et al., 2015) (see section 4.3) and the value calculated resulted to be aeg+ =

(3300± 300) a0 in the first case and aeg+ = 1878 a0 in the second case.
Actually it comes out that the states 3.21 are eigenstates of the two-particle system

only in the absence of an external magnetic field. If a magnetic field B = Bêz is
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by the linewidth of the exciting laser. In particular, since we are considering a clock
transition characterized by an extremely long lifetime (τ ≃ 23 s), in all the cases con-
sidered in this thesis the natural linewidth of the transition will always be negligible
with respect to the power broadening contribute which is given by

ΓPB = Γ

√
I

Isat
(3.18)

where Isat, the saturation intensity, is defined in section 3.1. An example of spec-
troscopy performed in these conditions is shown in figure 3.3. The spectrum has been
acquired shining a 100 ms clock laser pulse on a sample ofmF = −5/2 spin-polarized
atoms trapped in a 3D optical lattice operated at the magic wavelength. The lattice
depth is 22 Erec along all the three spatial directions, where Erec = ℏ2k2L/(2m) is
the lattice recoil energy. This depth corresponds to a harmonic confinement frequency
ω = 2

√
sErec/ℏ ≃ 2π×18.6 kHz which, considering that the recoil energy associated

to the absorption of photon at 578 nm is Eabs/h = 3.4 kHz, gives for the parameter
η the value η ≃ 0.42, ensuring in this way that spectroscopy is performed in a mildly
Lamb-Dicke regime. In this kind of measurements, the spectroscopic signal is given
by the number of atoms remaining in the g state after the clock excitation and so a dip
in the spectrum is expected for resonant laser frequencies. Three absorption lines are
visible in the spectrum: one relative to the carrier transition, labelled as (1) in figure,
and two relative to the first two blue sidebands, respectively labelled as (2) and (3).
No red sidebands are visible, a feature that indicates that atoms occupy only the first
vibrational state of the lattice. It should be observed that in the spectrum reported in the
figure, the peaks relative to the two sidebands are characterized by an area comparable
with the carrier peak while, for η = 0.42, we expect the first and second sideband sig-
nals to be, respectively, 0.18 and 0.12 times the carrier signal. This disagreement with
the theoretical prediction could be explained with the long interrogation time (100 ms)
that is more than enough for atoms excited to higher bands to tunnel towards neigh-
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principal-quantum-number-changing collisions since s-wave collisions are inhibited
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energy, increasing in this way the depletion signal.
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where ϕg defines the electronic part of the wavefunction and only the spin part is an-
tisymmetric for exchange of the two particle. The scattering length associated to two
atoms interacting in the |gg⟩ state is 199.4 a0 (Kitagawa et al., 2008), a value that is
independent on the spin thanks to the SU(N ) nature of the interactions in the 173Yb,
as we have seen in section 1.1.1. Starting from |gg⟩, if one of the two atoms is ex-
cited to the e state, the requirement that the electronic part of the wavefunction must
be symmetric for exchange of the particles does not hold any more and we can have
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(|ϕgϕe⟩ ± |ϕeϕg⟩)⊗ (| ↑↓⟩ ∓ | ↓↑⟩) (3.21)

where the vibrational state of the two particles is supposed to be unchanged by the exci-
tation. It comes out that because of the different exchange symmetry of the electronic
wavefunctions, these two states are associated to very different molecular potentials
characterized by very different scattering lengths. The determination of the scattering
length aeg− associated to |eg−⟩ can be easily performed evaluating how the spectro-
scopic peak associated to the state shifts as a function of the magnetic field (Scazza
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already discussed in section 1.3.1. Due to this reasons, the scattering length associated
to this state has been measured indirectly, exploiting the spin-exchange interaction
phenomenon (Cappellini et al., 2014) and the orbital Feshbach resonance mechanism
(Höfer et al., 2015) (see section 4.3) and the value calculated resulted to be aeg+ =

(3300± 300) a0 in the first case and aeg+ = 1878 a0 in the second case.
Actually it comes out that the states 3.21 are eigenstates of the two-particle system

only in the absence of an external magnetic field. If a magnetic field B = Bêz is
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Figure 3.4: Clock transition spectrum of an SU(2) 173 Yb sample (spin mF = ±5/2)
trapped in a s = 30 isotropic 3D lattice. For the identification of the peaks see the
main text.

present, the ZeemanHamiltonianHz = gαµBFzB, where gα is the Land factor relative
to the electronic state α = {g, e}, couples the two states and the new eigenstates of the
system will be given by the quantum superposition

|egL⟩ = α(B)|eg+⟩+ β(B)|eg−⟩ |egH⟩ = β(B)|eg+⟩ − α(B)|eg−⟩ (3.23)

where |egL⟩ is the state characterized by lower energy and {α(0), β(0)} = {0, 1} at
B = 0, while at very high magnetic field {α(+∞), β(+∞)} = {1/

√
2, 1/

√
2}. Finally,

if two atoms are simultaneously excited to e with the absorption of two photons, the
state

|ee⟩ = |ϕeϕe⟩ ⊗
| ↑↓⟩ − | ↓↑⟩√

2
(3.24)

can be addressed, corresponding to a scattering length (Scazza et al., 2014)

aee = (306.2) a0. (3.25)

Figure 3.4 reports a typical clock transition spectrum of a two component (mF =

±5/2) gas confined in a 3D optical lattice (s = 30) operated at the magic wavelength.
The very weak intensity of the clock laser light shined onto the sample (I = 10 µW
mm−2) strongly reduces the power broadening to few tens of Hz, allowing for the
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complete separation of the single-particle peaks from their sidebands and revealing
the two-particles interaction shifted peaks. The laser light is π-polarized and conse-
quently the spin projection of the atoms is not affected by the absorption of a photon.
The complete identification of the resonance observed in the spectrum is reported in
references (Cappellini et al., 2014; Scazza et al., 2014). The easiest peaks to identify
are the ones labelled as (1) and (5) in the figure, which are respectively relative to
the excitation of atoms with spin projection mF = −5/2 and mF = +5/2 in single-
occupied lattice sites. The distance between the two peaks depends on the external
magnetic field applied (28 G in this case) accordingly to the relation 3.10. The peaks
labelled as (2), (3) and (4) are instead relative to the excitation of two-particles states.
In particular, after spectroscopic measurements performed varying the external mag-
netic field (Cappellini et al., 2014; Scazza et al., 2014; Cappellini, 2016; Livi, 2014),
it is possible to associate resonance (3) to the excitation of the state |egL⟩, resonance
(5) to the excitation of the state |ee⟩ and finally the resonance (2) to the excitation of
a process analogous to |egL⟩ in which one of the two atoms initially occupies the first
excited lattice band. Resonance (6), instead, is the first blue sideband relative to the
mF = −5/2 single-particle peak. At small magnetic fields the state |egH⟩ ≃ |eg+⟩ is
not directly addressable starting from |gg⟩ (Cappellini, 2016) because of the Clebsch-
Gordan coefficients determining a vanishing Rabi coupling to |eg+⟩. Anyway it can
be populated exploiting the spin-exchange mechanism introduced before.

3.4 Coherent addressing of the transition

The coherent transfer of atomic population from the g to the e state is a fundamen-
tal ingredient in many quantum information and simulation protocols. The possibility
to perform sideband-resolved clock spectroscopy of atoms confined in a deep optical
lattice allows us to drive the transition between two distinct stable quantum states, sep-
arated by an optical energy, in a sort of text-book environment in which the effect
of the spontaneous emission due to the finite lifetime of the excited level can be ig-
nored. We can experimentally prove this coherent driving of the transition inducing
Rabi oscillations on the atomic sample (Inguscio and Fallani, 2013; Cohen-Tannoudji
and Guéry-Odelin, 2011). To do this we simply shine the clock light on the atoms
trapped in a 3D optical lattice and record the number of atoms in the g state as a func-
tion of the pulse duration. Figure 3.5 reports an example of Rabi oscillations relative
to a spin-polarized atomic sample in the mF = −5/2 spin state confined in a deep
s = 30Er (where Er is the recoil energy) cubic optical lattice. The Rabi frequency Ω

can be obtained with a sinusoidal fit of the experimental data (Ω = 2π×547Hz for the
dataset reported in figure). Ω represents a fundamental quantity in our experimental in-
vestigation since it provides a direct measurement of the strength of the clock coupling,
a parameter that enters in our Hamiltonian models for the simulation of a quantumHall
ladder with the synthetic dimension approach, as we have already discussed in section
2.3.2. The measurement of the Rabi frequency Ω also provides an estimation of the
power-broadened transition linewidth Γs thanks to the relation

Γs = Γ

√
1 +

2Ω2

Γ2
(3.26)
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Figure 3.4: Clock transition spectrum of an SU(2) 173 Yb sample (spin mF = ±5/2)
trapped in a s = 30 isotropic 3D lattice. For the identification of the peaks see the
main text.

present, the ZeemanHamiltonianHz = gαµBFzB, where gα is the Land factor relative
to the electronic state α = {g, e}, couples the two states and the new eigenstates of the
system will be given by the quantum superposition

|egL⟩ = α(B)|eg+⟩+ β(B)|eg−⟩ |egH⟩ = β(B)|eg+⟩ − α(B)|eg−⟩ (3.23)

where |egL⟩ is the state characterized by lower energy and {α(0), β(0)} = {0, 1} at
B = 0, while at very high magnetic field {α(+∞), β(+∞)} = {1/
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2}. Finally,
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state
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2
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can be addressed, corresponding to a scattering length (Scazza et al., 2014)

aee = (306.2) a0. (3.25)

Figure 3.4 reports a typical clock transition spectrum of a two component (mF =

±5/2) gas confined in a 3D optical lattice (s = 30) operated at the magic wavelength.
The very weak intensity of the clock laser light shined onto the sample (I = 10 µW
mm−2) strongly reduces the power broadening to few tens of Hz, allowing for the
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quently the spin projection of the atoms is not affected by the absorption of a photon.
The complete identification of the resonance observed in the spectrum is reported in
references (Cappellini et al., 2014; Scazza et al., 2014). The easiest peaks to identify
are the ones labelled as (1) and (5) in the figure, which are respectively relative to
the excitation of atoms with spin projection mF = −5/2 and mF = +5/2 in single-
occupied lattice sites. The distance between the two peaks depends on the external
magnetic field applied (28 G in this case) accordingly to the relation 3.10. The peaks
labelled as (2), (3) and (4) are instead relative to the excitation of two-particles states.
In particular, after spectroscopic measurements performed varying the external mag-
netic field (Cappellini et al., 2014; Scazza et al., 2014; Cappellini, 2016; Livi, 2014),
it is possible to associate resonance (3) to the excitation of the state |egL⟩, resonance
(5) to the excitation of the state |ee⟩ and finally the resonance (2) to the excitation of
a process analogous to |egL⟩ in which one of the two atoms initially occupies the first
excited lattice band. Resonance (6), instead, is the first blue sideband relative to the
mF = −5/2 single-particle peak. At small magnetic fields the state |egH⟩ ≃ |eg+⟩ is
not directly addressable starting from |gg⟩ (Cappellini, 2016) because of the Clebsch-
Gordan coefficients determining a vanishing Rabi coupling to |eg+⟩. Anyway it can
be populated exploiting the spin-exchange mechanism introduced before.

3.4 Coherent addressing of the transition

The coherent transfer of atomic population from the g to the e state is a fundamen-
tal ingredient in many quantum information and simulation protocols. The possibility
to perform sideband-resolved clock spectroscopy of atoms confined in a deep optical
lattice allows us to drive the transition between two distinct stable quantum states, sep-
arated by an optical energy, in a sort of text-book environment in which the effect
of the spontaneous emission due to the finite lifetime of the excited level can be ig-
nored. We can experimentally prove this coherent driving of the transition inducing
Rabi oscillations on the atomic sample (Inguscio and Fallani, 2013; Cohen-Tannoudji
and Guéry-Odelin, 2011). To do this we simply shine the clock light on the atoms
trapped in a 3D optical lattice and record the number of atoms in the g state as a func-
tion of the pulse duration. Figure 3.5 reports an example of Rabi oscillations relative
to a spin-polarized atomic sample in the mF = −5/2 spin state confined in a deep
s = 30Er (where Er is the recoil energy) cubic optical lattice. The Rabi frequency Ω

can be obtained with a sinusoidal fit of the experimental data (Ω = 2π×547Hz for the
dataset reported in figure). Ω represents a fundamental quantity in our experimental in-
vestigation since it provides a direct measurement of the strength of the clock coupling,
a parameter that enters in our Hamiltonian models for the simulation of a quantumHall
ladder with the synthetic dimension approach, as we have already discussed in section
2.3.2. The measurement of the Rabi frequency Ω also provides an estimation of the
power-broadened transition linewidth Γs thanks to the relation
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Figure 3.5: Rabi oscillation between the electronic states 1S0 and 3P0 relative to a
spin polarizedmF = −5/2 atomic sample trapped in a s = 30Er isotropic 3D optical
lattice.

where Γ is the natural linewidth. In our case we always work in the regime where
Γ ≪ Ω and consequently we can approximate Γs =

√
2Ω.

The experimental data reported in figure show a clear damping on the timescale of
15 ms. We do not have a clear explanation for this behaviour. It cannot be ascribed to
interactions-induced decoherence since we are dealing with spin-polarized fermions
confined in the fundamental vibrational level of a deep optical lattice. A possible ex-
planation of the observed decoherence can be attributed to fluctuations of the magnetic
field which in turn can induce fluctuations on the transition frequency. This attribution
is justified by the long coherence time (of the order of 100 ms, see section 6.5) that
we observe inducing clock Rabi oscillations in a bosonic sample for which the transi-
tion frequency shows a weaker dependence on the magnetic field with respect to the
fermionic case. This observation also rules out the finite linewidth of the clock laser as
the limiting factor to the observed loss of contrast. Further experimental investigation
are anyway needed to clearly identify the origin of the observed damping.

3.5 Fiber-link-enhanced spectroscopy

The 5 kHz-dayULE cavity drift discussed in section 1.2.1 strongly limits the possibility
to address the clock transition for long times, especially in conditions in which the
power broadening is strongly reduced. A 100 Hz broadened resonance, for example,
can be continuously addressed for just ∼ 30 minutes, a time sufficient to acquire only
a few tens of experimental points in the best case scenario. A linear correction on the
laser frequency can be employed to suppress the long-term effects of the ULE drift,
but it does not represent a definitive solution because of the presence of a residual non-
linear drift component that is characterized by an unpredictable time behaviour, as we
already discussed in section 1.2.1. This limitation can be overcome by referencing
our clock laser to the ultrastable optical reference at 1542 nm generated at INRiM,
the Italian metrological institute located in Turin, and transferred to LENS via a long-
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haul 642-km-long fiber link. By disciplining our clock laser on the INRiM signal
we demonstrated the possibility to transfer the frequency accuracy of a metrological
institute to a remote non-metrological laboratory, where it can be exploited to perform
science experiments without the necessity of an in-loco atomic clock (Clivati et al.,
2016). Here only a very concise description of the fiber-link infrastructure will be
given and the attention will be mainly focused on the science results that the long-term
stabilization of the clock laser has allowed. A very detailed description of the fiber-link
setup can be found in reference (Cappellini, 2016).

The ultrastable frequency reference delivered by INRiM is generated in Turin em-
ploying a 1542 nm fiber laser stabilized on a ULE cavity (Clivati et al., 2011). On
the long-term, the laser is phase-locked to a hydrogen maser referenced to a Cesium
fountain primary frequency standard with 2×10−16 relative frequency accuracy (Levi
et al., 2014). This optical reference is disseminated to LENS via a fiber link named
LIFT (Italian Link for Frequency and Time) (Levi et al., 2013; Calonico et al., 2014)
that has been implemented on a dark fiber of the Italian National Research and Edu-
cation Network administrated by the consortium GARR. A series of 9 bidirectional
amplifiers are installed along the fiber path to compensate for the signal attenuation,
for a total amplification of 165 dB. Part of the light that reaches the LENS end-point
in Florence is backreflected to Turin in order to perform fiber-noise cancellation. At
LENS the optical power of the reference laser delivered by the fiber-link is about 40
nW, a value too low to be efficiently employed to stabilize our laser and consequently
a regeneration stage is needed. For this purpose a laser module at 1542 nm, built by
Redfern Integrated Optics (RIO), is phase-locked on the reference signal and its light
is fiber-delivered to the various LENS laboratories requiring the INRiM frequency ref-
erence in a point-to-star configuration. The regenerated light is sent to our laboratory
through a 150 m long optical fiber that is not phase stabilized. This fiber introduces an
instability on the frequency of 10−15, which is beyond our stability goals and conse-
quently fiber-noise cancellation is not required. In our laboratory the incoming light is
employed to frequency-stabilize a frequency comb (Menlo Systems FC1500-250-WG)
that in this way inherits the 10−14 stability at 1 s of the reference signal. The comb pro-
vides a frequency bridge between the 1542 nm reference signal and the 1156 nm light
of the clock laser before frequency doubling. The beatnote between the clock 1156
nm light and the nearest comb tooth is measured with a Beat Detection Unit, averaged
over 20 s and compared with a setpoint frequency to obtain an error signal. This er-
ror signal is finally employed to feed a digital PI servo-controller which stabilizes the
beatnote by controlling the DDS that drives the clock laser AOM on the ULE branch.
This schememakes it possible to completely suppress the long-term fluctuations of our
clock laser, reaching a stability of 10−15 at 1000 s of interrogation time. This value
is two orders of magnitude better than the 10−13 level of fractional frequency stability
achievable with GPS-based frequency dissemination systems, which up to now repre-
sent the most widespread time and frequency reference standard for the majority of
industrial and research applications worldwide (Lombardi, 2008).

To prove the benefit deriving from the long-term stabilization of the laser we per-
formed a simple experiment in which the clock transition has been scannedmany times
over a period of several hours with and without the stabilization of the clock laser on
the 1542 nm optical reference. The spectroscopic measurement performed without
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Figure 3.5: Rabi oscillation between the electronic states 1S0 and 3P0 relative to a
spin polarizedmF = −5/2 atomic sample trapped in a s = 30Er isotropic 3D optical
lattice.

where Γ is the natural linewidth. In our case we always work in the regime where
Γ ≪ Ω and consequently we can approximate Γs =

√
2Ω.
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15 ms. We do not have a clear explanation for this behaviour. It cannot be ascribed to
interactions-induced decoherence since we are dealing with spin-polarized fermions
confined in the fundamental vibrational level of a deep optical lattice. A possible ex-
planation of the observed decoherence can be attributed to fluctuations of the magnetic
field which in turn can induce fluctuations on the transition frequency. This attribution
is justified by the long coherence time (of the order of 100 ms, see section 6.5) that
we observe inducing clock Rabi oscillations in a bosonic sample for which the transi-
tion frequency shows a weaker dependence on the magnetic field with respect to the
fermionic case. This observation also rules out the finite linewidth of the clock laser as
the limiting factor to the observed loss of contrast. Further experimental investigation
are anyway needed to clearly identify the origin of the observed damping.

3.5 Fiber-link-enhanced spectroscopy

The 5 kHz-dayULE cavity drift discussed in section 1.2.1 strongly limits the possibility
to address the clock transition for long times, especially in conditions in which the
power broadening is strongly reduced. A 100 Hz broadened resonance, for example,
can be continuously addressed for just ∼ 30 minutes, a time sufficient to acquire only
a few tens of experimental points in the best case scenario. A linear correction on the
laser frequency can be employed to suppress the long-term effects of the ULE drift,
but it does not represent a definitive solution because of the presence of a residual non-
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that in this way inherits the 10−14 stability at 1 s of the reference signal. The comb pro-
vides a frequency bridge between the 1542 nm reference signal and the 1156 nm light
of the clock laser before frequency doubling. The beatnote between the clock 1156
nm light and the nearest comb tooth is measured with a Beat Detection Unit, averaged
over 20 s and compared with a setpoint frequency to obtain an error signal. This er-
ror signal is finally employed to feed a digital PI servo-controller which stabilizes the
beatnote by controlling the DDS that drives the clock laser AOM on the ULE branch.
This schememakes it possible to completely suppress the long-term fluctuations of our
clock laser, reaching a stability of 10−15 at 1000 s of interrogation time. This value
is two orders of magnitude better than the 10−13 level of fractional frequency stability
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Figure 3.6: Clock laser spectroscopy of a spin polarized 173Yb gas confined in a 3D
(s = 30) optical lattice. a: spectroscopic measurement performed with the clock laser
not referenced to the ultrastable 1542 nm frequency reference provided by INRiM
show an apparent shift in time of the resonance position due to the aging drift of the
ULE cavity which stabilize the laser frequency. b: the stabilization of the clock laser
on the 1542 nm optical reference

any compensation of the laser drift are shown in figure 3.6-a. Here the clock transition
has been probed nine times over a period of 3.5 hours with the laser locked only to the
ULE cavity. Spectroscopy has been performed shining a 100 ms long clock pulse on a
mF = −5/2 spin-polarized 173Yb atomic sample trapped in a 3D lattice (s = 30) oper-
ated at the magic wavelength. The laser intensity is 10 µWcm−2 in such a way to limit
the power broadening to ∼50 Hz. The spectra reported in figure clearly evidence an
apparent drift of the transition frequency, that results to be shifted by 1300 Hz during
the entire duration of the experiment. Also the shape of the resonance line is affected
by the uncompensated drift: even if the power broadening did not change during the
whole experiment, resonances acquired with a scan performed with the same direc-
tion as the drift result to be broader than those acquired scanning the laser frequency
in the direction opposite to the drift. The situation completely changes if the clock
laser is stabilized on the INRiM ultrastable optical reference. The spectra acquired
taking advantage of the fiber-link infrastructure are reported in figure 3.6-b. Despite
a four-hours long interrogation time, no apparent drift of the transition frequency can
be observed in the three resonances and the linewidth always remains below 50 Hz.

In a second experiment we exploited the incredible degree of frequency stability
offered by the disciplination of our clock laser on the optical reference provided by
INRiM to measure the absolute frequency of the clock transition in 173Yb. Remark-
ably, this measurement improves the value reported in literature by two orders of mag-
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Figure 3.7: a: Long-term addressing of the clock transition (5.2 hours). The error bars
indicate the standard deviation of the mean over approximately 10 repeated measure-
ments. The lines are fits with Lorentzian functions. The zero values for the horizontal
scales are chosen arbitrarily. b: Clock transition relative to themF = ±5/2 spin state.
The mean value of center of the two resonances is used to extract the absolute value
of the clock transition. frequency (see text).

nitude (Hoyt et al., 2005). The experiment has been carried out performing clock
spectroscopy on a spin-polarized atomic sample loaded in 3D lattice operated at the
magic wavelength. The number of atoms loaded in the lattice (about 2 × 104) and
their temperature (T = 0.2TF with TF ≃ 2 kHz ×h/kB) have been chosen in order
to negligibly populate the lattice excited bands. To measure the absolute frequency of
the transition an external magnetic field has been applied in order to resolve the Zee-
man structure of the line. For π-transitions, the differential Zeeman shift of the g and
e levels determines a shift of the resonance position which is given by the expression
3.10. We exploited this Zeeman dependence of the resonance position to determine
the unbiased value of the absolute frequency. For this purpose we measured the tran-
sition frequency relative to the spin componentsmF = ±5/2, feature an opposite first
order Zeeman shift, accordingly to equation 3.10. The resonances have been probed
with 100-ms-long π-polarized light pulses with an intensity low enough to limit the
power broadening to few tens of Hz, as it is shown in figure 3.7-a. Six different scans
of the two spin transitions have been performed over a period of three months and
during each scan the acquisition has been continuously alternated between ±5/2 po-
larized samples in such a way to suppress interaction-induced shifts. The acquisition
time of the six different runs ranges from 2000 to 19000 s for a total measurement
time of 40000 s. The resulting spectra have been fitted with two lorentzian curves
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Figure 3.6: Clock laser spectroscopy of a spin polarized 173Yb gas confined in a 3D
(s = 30) optical lattice. a: spectroscopic measurement performed with the clock laser
not referenced to the ultrastable 1542 nm frequency reference provided by INRiM
show an apparent shift in time of the resonance position due to the aging drift of the
ULE cavity which stabilize the laser frequency. b: the stabilization of the clock laser
on the 1542 nm optical reference

any compensation of the laser drift are shown in figure 3.6-a. Here the clock transition
has been probed nine times over a period of 3.5 hours with the laser locked only to the
ULE cavity. Spectroscopy has been performed shining a 100 ms long clock pulse on a
mF = −5/2 spin-polarized 173Yb atomic sample trapped in a 3D lattice (s = 30) oper-
ated at the magic wavelength. The laser intensity is 10 µWcm−2 in such a way to limit
the power broadening to ∼50 Hz. The spectra reported in figure clearly evidence an
apparent drift of the transition frequency, that results to be shifted by 1300 Hz during
the entire duration of the experiment. Also the shape of the resonance line is affected
by the uncompensated drift: even if the power broadening did not change during the
whole experiment, resonances acquired with a scan performed with the same direc-
tion as the drift result to be broader than those acquired scanning the laser frequency
in the direction opposite to the drift. The situation completely changes if the clock
laser is stabilized on the INRiM ultrastable optical reference. The spectra acquired
taking advantage of the fiber-link infrastructure are reported in figure 3.6-b. Despite
a four-hours long interrogation time, no apparent drift of the transition frequency can
be observed in the three resonances and the linewidth always remains below 50 Hz.

In a second experiment we exploited the incredible degree of frequency stability
offered by the disciplination of our clock laser on the optical reference provided by
INRiM to measure the absolute frequency of the clock transition in 173Yb. Remark-
ably, this measurement improves the value reported in literature by two orders of mag-
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Figure 3.7: a: Long-term addressing of the clock transition (5.2 hours). The error bars
indicate the standard deviation of the mean over approximately 10 repeated measure-
ments. The lines are fits with Lorentzian functions. The zero values for the horizontal
scales are chosen arbitrarily. b: Clock transition relative to themF = ±5/2 spin state.
The mean value of center of the two resonances is used to extract the absolute value
of the clock transition. frequency (see text).

nitude (Hoyt et al., 2005). The experiment has been carried out performing clock
spectroscopy on a spin-polarized atomic sample loaded in 3D lattice operated at the
magic wavelength. The number of atoms loaded in the lattice (about 2 × 104) and
their temperature (T = 0.2TF with TF ≃ 2 kHz ×h/kB) have been chosen in order
to negligibly populate the lattice excited bands. To measure the absolute frequency of
the transition an external magnetic field has been applied in order to resolve the Zee-
man structure of the line. For π-transitions, the differential Zeeman shift of the g and
e levels determines a shift of the resonance position which is given by the expression
3.10. We exploited this Zeeman dependence of the resonance position to determine
the unbiased value of the absolute frequency. For this purpose we measured the tran-
sition frequency relative to the spin componentsmF = ±5/2, feature an opposite first
order Zeeman shift, accordingly to equation 3.10. The resonances have been probed
with 100-ms-long π-polarized light pulses with an intensity low enough to limit the
power broadening to few tens of Hz, as it is shown in figure 3.7-a. Six different scans
of the two spin transitions have been performed over a period of three months and
during each scan the acquisition has been continuously alternated between ±5/2 po-
larized samples in such a way to suppress interaction-induced shifts. The acquisition
time of the six different runs ranges from 2000 to 19000 s for a total measurement
time of 40000 s. The resulting spectra have been fitted with two lorentzian curves
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as it is shown in figure 3.7-b. The absolute frequency ν±5/2 relative to the spin reso-
nances can be easily evaluated thanks to the metrological chain which stabilizes the
clock laser, and from their mean value νc = (ν+5/2+ ν−5/2)/2 a first estimation of the
absolute frequency of the transition can be provided. This value has been corrected
for the shifts due to the second-order Zeeman shift (-0.59(3) Hz, corresponding to a
magnetic field B = 3.031(5) G, evaluated from the splitting between ν+5/2 and ν−5/2),
the black-body radiation (-1.24(5) Hz for a temperature of the room of 298 K) and the
gravitational redshift (2.277(5)Hz) induced by the different height on the geoid of Flo-
rence and Turin. The corrected value of the absolute frequency of the clock transition
in 173Yb that we estimate is

ν173 = 518 294 576 845 268(10) Hz, (3.27)

where the leading source of uncertainty (8 Hz) is determined by the lattice AC-Stark
shift, while the error introduced by the metrological chain is limited to 2 Hz, corre-
sponding to a relative uncertainty of 4×10−15. A detailed analysis of the uncertainties
affecting the measurement can be found in (Cappellini, 2016).
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Chapter 4
Quantum simulation with 173Yb atoms exploiting the orbital de-
gree of freedom

The ability to coherently control the optical transition that connects the ground state 1S0

with the metastable clock state 3P0 enriches the accessible Hilbert space of alkaline-
earth and alkaline-earth-like atoms with an additional degree of freedom that can be
exploited in quantum-simulation schemes as a second ground state (Gorshkov et al.,
2009; Cazailla and Rey, 2014). In recent years, due to the high degree of tunability
and flexibility offered by ultracold atomic systems, these schemes have been extended
to the theoretical and experimental investigation of topological phases of matter (Gold-
man et al., 2016). In this chapter we present a series of experiments in which we have
been able to successfully simulate some basilar properties of topological systems ex-
ploiting the orbital degree of freedom of 173Yb.

A prime element for the emergence of nontrivial topological properties is the pres-
ence of spin-orbit coupling (SOC) locking the spin of the particles to their motion
(Galitski and Spielman, 2013; Zhai, 2015). The emergence of SOC in the context of
ultracold atoms has been already investigated with alkaline elements exploiting two-
photon Raman transitions (Lin et al., 2011). In section 4.1 we demonstrate an alter-
native approach (Livi et al., 2016) in which SOC is synthesized in optical lattices by
means of the absorption of single clock-light photons eliminating a major cause of
heating that plagues the Raman implementation with alkaline fermions. The imple-
mentation of synthetic SOC is preliminary to the experiment presented in section 4.2
in which interpreting the two long-lived electronic states of 173Yb as a synthetic di-
mension (Celi et al., 2014) we have been able to simulate a two-leg ladder subjected to
a strong gauge potential, realizing a toy-model for the investigation of quantum Hall
physics with ultracold atoms. In particular, we evidenced the onset of chiral currents
circulating on the edge of the system and characterized the behaviour of the currents
as a function of the synthetic magnetic flux.

Finally, in section 4.3 we discuss how atom-atom interactions in a 1S0 − 3P0 mix-
ture can be tuned taking advantage of the orbital feshbach resonance scheme, recently
proposed in (Zhang et al., 2015) and experimentally realized in (Pagano et al., 2015;
Höfer et al., 2015).
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4.1 Synthetic Spin-Orbit Coupling

In section 2.3.3 we have already discussed how a Spin-Orbit coupling (SOC) interac-
tion can be efficiently synthesized with ultracold quantum gases exploiting an internal
degree of freedom of the atom. This scheme was first realized in alkali atoms em-
ploying two-photon Raman transitions (Lin et al., 2009a), which couple two different
hyperfine spin states of the electronic ground-state manifold with a transfer of mo-
mentum. However, the Raman approach inevitably suffers from heating mechanisms
associated to the spontaneous emission from near-resonant intermediate states (Cheuk
et al., 2012; Wang et al., 2012). While this heating does not prevent the observation
of non-interacting processes or mean-field effects, it could represent a problematic
issue for the investigation of many-body phenomena in which interactions play a fun-
damental role. As proposed in reference (Wall et al., 2016), these limitations can be
overcome if synthetic SOC is realized exploiting the long-lived electronic states of
alkaline-earth and alkaline-earth-like atoms, which can be efficiently coupled using
single-photon clock transitions, avoiding in this way the detrimental effects due to the
spontaneous emission from intermediate states. In this section we demonstrate how
this scheme can be efficiently employed to realize a synthetic SOC interaction exploit-
ing the |1S0⟩ → |3P0⟩ clock transition in ultracold 173Yb atoms confined in an optical
lattice. The first part of the section is dedicated to a theoretical description of how
SOC can be implemented and probed with atoms trapped in an optical lattice using the
technology developed in the context of optical atomic clocks, while in the last part of
the section the experimental results are presented and discussed.

4.1.1 Implementation of synthetic SOC in optical lattices

In the previous chapter (see section 3.3) we have discussed the possibility to drive an
optical transition without Doppler and recoil shifts by exploiting the confining poten-
tial provided by a deep optical lattice. This is true as long as the lattice bands can be
considered flat, in such a way that the energy of an atom does not depend on its quasi-
momentum inside the Brillouin zone. On the other hand if the lattice depth is reduced,
the energy bands become wider and the momentum transferred from the radiation field
to the atoms can result in an energy shift of the transition which can be detected if
larger than the spectroscopic resolution. Here we consider the particular case in which
a clock laser drives the transition at frequency νC = c/λC with λC = 578 nm between
the states |1S0⟩ = g and |3P0⟩ = e of 173Yb, and assume that the atoms are trapped in
a one-dimensional lattice operated at the magic wavelength λL = 2π/kL = 759 nm
for which the light shifts induced on g and e are identical. In these circumstances the
energy dispersion of the lattice bands is identical for both the ground and excited state
and the absorption of a photon connects the state |g, k⟩ with the state |e, k+ δk⟩ where
k = k̃a ∈ [−π, π) is the product of the lattice quasimomentum k̃ and the lattice spacing
a = λL/2 and

δk = π
λL

λC
(4.1)

is the momentum transferred to an atom as a consequence of the absorption of a pho-
ton, as it is shown in figure 4.1-a. The connection of states characterized by different
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Figure 4.1: a: Sketch of the energy bands induced by an optical lattice for the g (solid
blue line) and for the e electronic states (solid green line). The lattice is operated at
the magic wavelength and consequently the band dispersions are identical for both the
states. The clock transition between g and e connects states with different momentum
and can be interpreted as a SOC interaction. b: By an appropriate gauge transform (see
equation 4.3) the e band is shifted by the momentum transferred by the clock excitation
and the g → e transition can be represented as a momentum conserving process. The
example reported in figure corresponds to a 1.31π momentum shift, which is realized
in our experiment when the lattice and the clock laser are co-aligned.

quasimomentum can be interpreted as the emergence of a SOC interaction between the
two electronic states involved in the clock transition that consequently can be treated
as pseudospin projections of an effective J = 1/2 spin.

This argumentation can be formalized starting from the Hamiltonian that governs a
system of non-interacting spin 1/2 particles trapped in a one-dimensional optical lattice
potential. In rotating wave approximation, the Hamiltonian in momentum space reads

H =
∑
k,α

Eα,kn̂α,k −
∑
k

(
Ω

2
â†e,k+ϕâg,k + H.c.

)
(4.2)

where âα,k is the annihilation operator for a particle with quasimomentum k in the
electronic state α = {g, e}, n̂α,k = â†α,kâα,k is the number operator, Ω is the Rabi
frequency associated to the laser coupling, ϕ = πδk/kL and Eα,k = −2t cos(k) + δα
where t is the lattice tunnelling energy and δg,e = ±δ/2 is the laser frequency detuning
with respect to the atomic transition. If the gauge transformation

U(â) : âe,k+ϕ → âe,k (4.3)

is performed, the Hamiltonian becomes diagonal in momentum space and in the {g, e}
pseudospin basis can be written as

Ĥ =

(
−2t cos(k)− δ

2 −Ω
2

−Ω
2 −2t cos(k + ϕ) + δ

2

)
(4.4)

This gauge transformation, as it is shown in figure 4.1-b, makes it is possible to sketch
the transition as a momentum-preserving process (vertical arrow) between the g-band
and a momentum-shifted e-band, which enlights the dependence of the transition en-
ergy on the momentum state k. By summing the term t(cos(k) + cos(k + ϕ)) to the
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This argumentation can be formalized starting from the Hamiltonian that governs a
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frequency associated to the laser coupling, ϕ = πδk/kL and Eα,k = −2t cos(k) + δα
where t is the lattice tunnelling energy and δg,e = ±δ/2 is the laser frequency detuning
with respect to the atomic transition. If the gauge transformation
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the transition as a momentum-preserving process (vertical arrow) between the g-band
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Hamiltonian diagonal elements, the expression 4.4 can be explicitly written as an ef-
fective SOC interaction

Ĥ = −B(k) · S (4.5)

where B(k) = 1
2{Ω, 0, 2t(cos(k)− cos(k+ ϕ)) + δ} and S = {σx, σy, σz} is the vector

composed by the Pauli matrices.

4.1.2 Spectroscopic signatures of SOC

If the laser coupling between the g and the e states is sufficiently low, the lattice
bandwidth can exceed the power-broadened clock resonance linewidth and, conse-
quently, the clock laser can be exploited to address the band in a momentum- and
energy-selective way. If SOC is present, the clock excitation connects two momentum-
displaced lattice bands and this energy-selective addressing results in an enhanced re-
sponse at the edges of the spectrum, provided that the g band is initially completely
filled. This feature is related to the divergences in the density of states induced by the
van Hove singularities of the optical lattice (Van Hove, 1953) and can be regarded as a
spectroscopic signature of the presence of a synthetic SOC interaction, as pointed out
in reference (Wall et al., 2016).

From a theoretical point of view, the spectroscopic response S(ω) emerges as a
consequence of the convolution of the spectroscopic resolution function L(ω) and the
joint density of states ρ(ω) of the two lattice bands involved in a transition at frequency
ω, i.e.

S(ω) =
+∞∫

−∞

L(ω′ − ω) ρ(ω′) dω′. (4.6)

The joint density of states ρ(ω) can be evaluated using the relation

ρ(ω) dω = ρ(k) dk (4.7)

where ρ(k), the density of states in momentum space, is constant for a one-dimensional
lattice and consequently the expression for ρ(ω) reduces to ρ(ω) ∝ dk/ dω. To solve
this equation the relation ℏω = E0+2t(cos(k)− cos(k+ϕ))must be inverted in order
to express k as a function of ω and then derived with respect to ω. This problem can
be solved analytically and gives for ρ(ω) the expression

ρ(ω) ∝

√
1

−ℏ2ω2 + 8t2(1− cos(ϕ))
(4.8)

which is characterized by two divergences located at ω = ±t
√

8(1− cos(ϕ))/ℏ =

±4t sin(ϕ/2)/ℏ. The physical spectroscopic response can be determined convolving
the joint density of states 4.8 with a Lorentzian lineshape

L(ω) ∝ 1

Γ2/4 + ω2
(4.9)
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Figure 4.2: Spectroscopic signature of spin-orbit coupling for fixed tunnelling strength
and flux, varying the clock laser power broadening (a) and for fixed tunnelling strength
and power-broadening, varying the flux (b). All the signals are normalized.

where Γ is the instrumental resolution limit. The mathematical expressions for ρ(ω)
and L(ω) allow for an easy resolution of the integral 4.6 exploiting the residue 1 theo-
rem, which gives

S(ω) ∝ Re

[√
1

−ℏ2
(
ω + iΓ

2

)2
+ 8t2(1− cos(ϕ))

]
, (4.10)

where the real part limits the solution to the physical domain. The expected behaviour
of the evaluated spectroscopic response as a function of the lattice depth and laser
resonance broadening are reported, respectively, in figures 4.2-a and 4.2-b.

4.1.3 Experimental observation of SOC

In order to experimentally observe the spectroscopic signatures of SOC described in
the precedent subsection, we trap an ultracold spin-polarized 173Yb Fermi gas in a
one dimensional optical lattice potential V (x) = sEr cos2(kLx) operated at the magic
wavelength λL = 2π/kL = 759 nm. The lattice depth s expressed in terms of the
recoil energy Er = ℏ2k2L/2m where m is the atomic mass, determines the tunnelling
energy t between neighbouring lattice sites. An additional 1D deep lattice freezes the
atomic motion along the vertical direction, avoiding atoms falling due to the gravity
force. The total atom number is tuned around Nat = 2 × 104, in such a way that the
first lattice band is completely occupied while the population in the excited bands is
negligible. SOC is then induced shining an 800-ms-long π-polarized clock pulse at
λC = 578 nm on the atomic sample. The clock laser beam is co-aligned with the one-
dimensional lattice and, consequently, the momentum imparted to the atoms in units

1 The integral has the form
∫+∞
−∞

1
(ω−ω0)2+A2

√
1

B2−ω2 dω and features two real poles located at

ω = ±B and two complex poles located at ω = ±ω0 ± iA. The integral can be evaluated with stan-
dard complex analysis resolution methods (Ablowitz and Fokas, 2003) taking into account that the only non
vanishing residues are the one evaluated in the complex poles for which we have Res(ω = ω0 + iA) =
1

2iA
1√

B2−(ω−ω0+iA)2
.

8380



Lorenzo Francesco Livi

81

Hamiltonian diagonal elements, the expression 4.4 can be explicitly written as an ef-
fective SOC interaction
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where B(k) = 1
2{Ω, 0, 2t(cos(k)− cos(k+ ϕ)) + δ} and S = {σx, σy, σz} is the vector

composed by the Pauli matrices.
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and power-broadening, varying the flux (b). All the signals are normalized.

where Γ is the instrumental resolution limit. The mathematical expressions for ρ(ω)
and L(ω) allow for an easy resolution of the integral 4.6 exploiting the residue 1 theo-
rem, which gives

S(ω) ∝ Re

[√
1

−ℏ2
(
ω + iΓ

2

)2
+ 8t2(1− cos(ϕ))

]
, (4.10)

where the real part limits the solution to the physical domain. The expected behaviour
of the evaluated spectroscopic response as a function of the lattice depth and laser
resonance broadening are reported, respectively, in figures 4.2-a and 4.2-b.

4.1.3 Experimental observation of SOC

In order to experimentally observe the spectroscopic signatures of SOC described in
the precedent subsection, we trap an ultracold spin-polarized 173Yb Fermi gas in a
one dimensional optical lattice potential V (x) = sEr cos2(kLx) operated at the magic
wavelength λL = 2π/kL = 759 nm. The lattice depth s expressed in terms of the
recoil energy Er = ℏ2k2L/2m where m is the atomic mass, determines the tunnelling
energy t between neighbouring lattice sites. An additional 1D deep lattice freezes the
atomic motion along the vertical direction, avoiding atoms falling due to the gravity
force. The total atom number is tuned around Nat = 2 × 104, in such a way that the
first lattice band is completely occupied while the population in the excited bands is
negligible. SOC is then induced shining an 800-ms-long π-polarized clock pulse at
λC = 578 nm on the atomic sample. The clock laser beam is co-aligned with the one-
dimensional lattice and, consequently, the momentum imparted to the atoms in units

1 The integral has the form
∫+∞
−∞

1
(ω−ω0)2+A2

√
1

B2−ω2 dω and features two real poles located at

ω = ±B and two complex poles located at ω = ±ω0 ± iA. The integral can be evaluated with stan-
dard complex analysis resolution methods (Ablowitz and Fokas, 2003) taking into account that the only non
vanishing residues are the one evaluated in the complex poles for which we have Res(ω = ω0 + iA) =
1

2iA
1√

B2−(ω−ω0+iA)2
.
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Figure 4.3: Spectra of the clock transition for different lattice depths. Datasets with
s ≥ 4 have been offset vertically for the sake of presentation. The curves are the
result of a single-particle theoretical model, with vertical amplitude and offset as only
fit parameters. All the experimental spectra have been measured shining the clock
laser light along the lattice direction and using only an additional transverse (vertical)
optical lattice to hold the atoms against gravity. Spectra acquired at low lattice depth
feature an enhanced response on the edge that can be associated to a SOC interaction
induced by the clock light.

of the quasimomentum k will be ϕ = 1.31π, as derived from equation 4.1. Figure 4.3
shows a collection of clock spectra for different lattice depths, from s = 28 to s = 3,
illustrating the crossover between clock spectroscopy in the Lamb-Dicke regime at
large s to momentum-selective excitations at small s. While for high s the flatness of
the lattice energy bands results in a pure Lorentzian shape of the resonance line, for
shallow lattices the resonance acquires the ”M” shaped profile previously derived that
can be ascribed to an effective induced SOC interaction between the two electronic
states of the atoms involved in the transition. All the spectra reported in the figure
have been acquired with the clock laser disciplined to the optical frequency reference
delivered by INRiM. This is a crucial requirement for this kind of measurements since
we are observing features characterized by a width of the order of few hundreds of Hz,
a value comparable with the laser drift in the time necessary to acquire one spectrum
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(∼ 1 hour).
The width ws of the spectra reported in figure 4.3 is related to the momentum

transfer and to the tunnelling strength, beingws = 8t| sin(δk)| for a fully occupied first
lattice band. The resonances have been fitted with the mathematical model previously
introduced, which assumes the spectroscopic signal to be the convolution between
the joint density of states of the momentum-displaced g and e lattice bands and the
spectroscopic response obtained at high lattice depth, a condition for which tunnelling
is negligible. The latter response can be approximated with a Lorentzian line profile
with a half width at half maximum of 170 Hz, as derived from a fit of the measured
spectrum at s = 28. The fits, in which the only free parameters are the vertical offset
and the vertical scaling, show a remarkably good agreement with the experimental
data.

4.2 Hall physics with a synthetic two-leg ladder

As already discussed in section 2.3.2, an internal degree of freedom of a neutral atom
can be regarded as a synthetic discrete dimension. An artificial coherent coupling be-
tween these synthetic lattice sites in combination with a real one-dimensional optical
lattice gives rise to a hybrid two-dimensional ladder naturally pierced by an artificial
gauge field. In this section we demonstrate the experimental implementation of this
approach exploiting the two long-lived |1S0⟩ = g and |3P0⟩ = e electronic states of
173Yb as a synthetic dimension. Since only two sites are present in this case along the
synthetic dimension, the resulting system can be viewed as a hybrid two-leg ladder.
We investigated the equilibrium properties of this ladder system focusing the attention
on the chiral counter-propagating currents that circulate along the two edges as a con-
sequence of the presence of the artificial magnetic flux. Finally, we will discuss how
this rather simple experimental approach makes it possible to easily tune the strength
of the artificial field allowing the investigation of the behaviour of the chiral currents
as a function of the piercing synthetic flux.

4.2.1 Chiral currents

In the synthetic dimension picture the g and e electronic states of 173Yb can be treated
as a synthetic dimension with only two lattice sites, where the tunnelling is provided
by a clock laser coherently driving the g → e transition. As we have already discussed
in section 2.3.2, the phase imprinted by the laser coupling on the atomic wavefunction
can be interpreted as a Peierls phase if we imagine to combine the two-sites synthetic
dimension with a real optical lattice. In the physical gauge (see section 2.2.3) the
resulting hybrid ladder system, which is sketched in figure 4.4-a, is described by the
tight binding Hamiltonian

H = −ℏ

[(
t
∑
j,α

â†
j+1,αâj,α +

Ω

2

∑
j

eiΦ j â†
j,eâj,g + H.c.

)
+

∑
j,α

δα â†
j,αâj,α

]
(4.11)

where t is the real-lattice tunnelling energy, Ω is the Rabi frequency associated to the
tunnelling strength along the rungs of the ladder, δg,e = ±δ/2 is the laser detuning
with respect to the resonance and âj,α is the annihilation operator for a particle in
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Figure 4.3: Spectra of the clock transition for different lattice depths. Datasets with
s ≥ 4 have been offset vertically for the sake of presentation. The curves are the
result of a single-particle theoretical model, with vertical amplitude and offset as only
fit parameters. All the experimental spectra have been measured shining the clock
laser light along the lattice direction and using only an additional transverse (vertical)
optical lattice to hold the atoms against gravity. Spectra acquired at low lattice depth
feature an enhanced response on the edge that can be associated to a SOC interaction
induced by the clock light.

of the quasimomentum k will be ϕ = 1.31π, as derived from equation 4.1. Figure 4.3
shows a collection of clock spectra for different lattice depths, from s = 28 to s = 3,
illustrating the crossover between clock spectroscopy in the Lamb-Dicke regime at
large s to momentum-selective excitations at small s. While for high s the flatness of
the lattice energy bands results in a pure Lorentzian shape of the resonance line, for
shallow lattices the resonance acquires the ”M” shaped profile previously derived that
can be ascribed to an effective induced SOC interaction between the two electronic
states of the atoms involved in the transition. All the spectra reported in the figure
have been acquired with the clock laser disciplined to the optical frequency reference
delivered by INRiM. This is a crucial requirement for this kind of measurements since
we are observing features characterized by a width of the order of few hundreds of Hz,
a value comparable with the laser drift in the time necessary to acquire one spectrum
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The width ws of the spectra reported in figure 4.3 is related to the momentum

transfer and to the tunnelling strength, beingws = 8t| sin(δk)| for a fully occupied first
lattice band. The resonances have been fitted with the mathematical model previously
introduced, which assumes the spectroscopic signal to be the convolution between
the joint density of states of the momentum-displaced g and e lattice bands and the
spectroscopic response obtained at high lattice depth, a condition for which tunnelling
is negligible. The latter response can be approximated with a Lorentzian line profile
with a half width at half maximum of 170 Hz, as derived from a fit of the measured
spectrum at s = 28. The fits, in which the only free parameters are the vertical offset
and the vertical scaling, show a remarkably good agreement with the experimental
data.

4.2 Hall physics with a synthetic two-leg ladder

As already discussed in section 2.3.2, an internal degree of freedom of a neutral atom
can be regarded as a synthetic discrete dimension. An artificial coherent coupling be-
tween these synthetic lattice sites in combination with a real one-dimensional optical
lattice gives rise to a hybrid two-dimensional ladder naturally pierced by an artificial
gauge field. In this section we demonstrate the experimental implementation of this
approach exploiting the two long-lived |1S0⟩ = g and |3P0⟩ = e electronic states of
173Yb as a synthetic dimension. Since only two sites are present in this case along the
synthetic dimension, the resulting system can be viewed as a hybrid two-leg ladder.
We investigated the equilibrium properties of this ladder system focusing the attention
on the chiral counter-propagating currents that circulate along the two edges as a con-
sequence of the presence of the artificial magnetic flux. Finally, we will discuss how
this rather simple experimental approach makes it possible to easily tune the strength
of the artificial field allowing the investigation of the behaviour of the chiral currents
as a function of the piercing synthetic flux.

4.2.1 Chiral currents

In the synthetic dimension picture the g and e electronic states of 173Yb can be treated
as a synthetic dimension with only two lattice sites, where the tunnelling is provided
by a clock laser coherently driving the g → e transition. As we have already discussed
in section 2.3.2, the phase imprinted by the laser coupling on the atomic wavefunction
can be interpreted as a Peierls phase if we imagine to combine the two-sites synthetic
dimension with a real optical lattice. In the physical gauge (see section 2.2.3) the
resulting hybrid ladder system, which is sketched in figure 4.4-a, is described by the
tight binding Hamiltonian

H = −ℏ
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t
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â†
j+1,αâj,α +

Ω
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∑
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eiΦ j â†
j,eâj,g + H.c.

)
+

∑
j,α

δα â†
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where t is the real-lattice tunnelling energy, Ω is the Rabi frequency associated to the
tunnelling strength along the rungs of the ladder, δg,e = ±δ/2 is the laser detuning
with respect to the resonance and âj,α is the annihilation operator for a particle in
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Figure 4.4: a: Sketch of the two-leg hybrid ladder realized combining a shallow optical
lattice with a synthetic two-sites dimension encoded in the |1S0⟩ = g and |3P0⟩ = e

long-lived electronic states of 173Yb. b: Dressed (thick, solid) and bare energy bands
(thin, dashed) of the ladder Hamiltonian for ϕ = 1.31π and Ω = t. The color of the
thick lines reflects the state composition of the dressed bands (e: green, g: blue): the
different composition as a function of k can be interpreted as chiral currents flowing in
opposite directions along the two legs of the synthetic ladder. c: Sketch of the chiral
currents circulating along the edges of the ladder.

the electronic state α = {g, e} located in the j-th site of the real lattice. The phase
ϕ originates as a consequence of the laser coupling and in the synthetic-dimension
approach can be interpreted as the effect of an artificial magnetic flux piercing one
cell of the ladder. This flux is constant on the whole ladder and in the case in which
the coupling laser and the lattice are co-propagating its value is given by

Φ = π
kC
kL

(4.12)

where kL and kC are, respectively, the wavevector of the lattice and of the coupling
laser light. The expression 4.11 can be equivalently written in momentum space and
diagonalized thanks to the gauge transformation 4.3. The resulting gauge-transformed
Hamiltonian can be conveniently expressed in the matrix form 4.4, that allows for a
numerically simple determination of the energy spectrum and eigenstates composition.
An example of energy band dispersion associated to the transformed Hamiltonian is
reported in figure 4.4-b for a flux Φ = 1.31π in the limit of zero coupling Ω = 0

(dotted lines) and for Ω = t (thick lines). The colors of the thick lines reflect the
eigenstate composition as a mix of the ground state g (blue) and of the excited state e
(green). The dressed spectrum reported in figure clearly evidences an asymmetry in the
band dispersion associated to the two electronic states g and e, that can be attributed
to the effect of a synthetic SOC interaction. In the synthetic dimension picture this
asymmetry can be equivalently interpreted as the emergence of a chiral current that
circulates on the legs of the ladder (see figure 4.4-c), as it is expected at the boundaries
of a Hall bar pierced by a magnetic field. The following part of this section is devoted
to the experimental investigation of these currents.
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Figure 4.5: Sketch of the experimental setup used for the observation of the chiral
currents. An array of fermionic wires is realized confining the atoms by means of two
deep lattices OL1 and OL3, (not shown, in the plane orthogonal to the picture). Each
wire is a realization of a two-leg hybrid ladder in the synthetic dimension picture. The
angle θ at which the clock laser intersects the wires defines the syntehtic flux Φ.

4.2.2 Experimental observation of the chiral currents

The observation of the edge currents described so far is conceptually easy in the
synthetic-dimension approach since the two legs of the ladder are encoded in different
electronic states of the atoms, and can consequently be addressed and imaged individ-
ually. As discussed before, in an equilibrium dressed state of the ladder Hamiltonian
4.11 (or equivalently of the Hamiltonian 4.4 if the problem is solved in momentum
space) each leg (or equivalently each electronic state) is characterized by a different
momentum distribution that, due to the SOC interaction, is expected to show a net op-
posite asymmetry with respect to the center of the Brillouin zone. These asymmetric
momentum distributions imply that, at equilibrium, atoms on different legs propagate
with opposite velocities, a behaviour that can be interpreted in terms of chiral edge cur-
rents. From an experimental point of view, the procedure that we followed to induce
and observe these edge currents is reported in figure 4.6 and requires, first of all, to
load the lowest dressed state of the Hamiltonian 4.11. To accomplish this task we start
realizing by evaporative cooling in the 1064 nm optical dipole trap (see section 1.2.3
for more details) a spin-polarized (mF = −5/2) ultracold 173Yb gas with a tempera-
ture of 0.2 TF (TF ≃ 2 kHz h/kB). The number of atoms is set to be Nat ≃ 1.2× 104,
in such a way not to populate the higher dressed band of the ladder Hamiltonian 4.11.
The gas is then loaded in a 3D cubic optical lattice operated at the magic wavelength
λL = 2π/kL = 759 nm for which the light shift of the g and e states is identical. The
lattice potential is turned on with an adiabatic 150-ms-long exponential intensity ramp
and superimposed to the 1064 nm optical dipole trap. Only at the end of the intensity
ramp the dipole trap is adiabatically turned off with a 200-ms-long linear ramp, leaving
the lattice as the only confining potential. The lattice depths sx,y,z , expressed in units
of the recoil energy Er = ℏ2k2L/2m, where m is the atomic mass, are set to sx = 6
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Figure 4.4: a: Sketch of the two-leg hybrid ladder realized combining a shallow optical
lattice with a synthetic two-sites dimension encoded in the |1S0⟩ = g and |3P0⟩ = e

long-lived electronic states of 173Yb. b: Dressed (thick, solid) and bare energy bands
(thin, dashed) of the ladder Hamiltonian for ϕ = 1.31π and Ω = t. The color of the
thick lines reflects the state composition of the dressed bands (e: green, g: blue): the
different composition as a function of k can be interpreted as chiral currents flowing in
opposite directions along the two legs of the synthetic ladder. c: Sketch of the chiral
currents circulating along the edges of the ladder.

the electronic state α = {g, e} located in the j-th site of the real lattice. The phase
ϕ originates as a consequence of the laser coupling and in the synthetic-dimension
approach can be interpreted as the effect of an artificial magnetic flux piercing one
cell of the ladder. This flux is constant on the whole ladder and in the case in which
the coupling laser and the lattice are co-propagating its value is given by

Φ = π
kC
kL

(4.12)

where kL and kC are, respectively, the wavevector of the lattice and of the coupling
laser light. The expression 4.11 can be equivalently written in momentum space and
diagonalized thanks to the gauge transformation 4.3. The resulting gauge-transformed
Hamiltonian can be conveniently expressed in the matrix form 4.4, that allows for a
numerically simple determination of the energy spectrum and eigenstates composition.
An example of energy band dispersion associated to the transformed Hamiltonian is
reported in figure 4.4-b for a flux Φ = 1.31π in the limit of zero coupling Ω = 0

(dotted lines) and for Ω = t (thick lines). The colors of the thick lines reflect the
eigenstate composition as a mix of the ground state g (blue) and of the excited state e
(green). The dressed spectrum reported in figure clearly evidences an asymmetry in the
band dispersion associated to the two electronic states g and e, that can be attributed
to the effect of a synthetic SOC interaction. In the synthetic dimension picture this
asymmetry can be equivalently interpreted as the emergence of a chiral current that
circulates on the legs of the ladder (see figure 4.4-c), as it is expected at the boundaries
of a Hall bar pierced by a magnetic field. The following part of this section is devoted
to the experimental investigation of these currents.
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Figure 4.5: Sketch of the experimental setup used for the observation of the chiral
currents. An array of fermionic wires is realized confining the atoms by means of two
deep lattices OL1 and OL3, (not shown, in the plane orthogonal to the picture). Each
wire is a realization of a two-leg hybrid ladder in the synthetic dimension picture. The
angle θ at which the clock laser intersects the wires defines the syntehtic flux Φ.

4.2.2 Experimental observation of the chiral currents

The observation of the edge currents described so far is conceptually easy in the
synthetic-dimension approach since the two legs of the ladder are encoded in different
electronic states of the atoms, and can consequently be addressed and imaged individ-
ually. As discussed before, in an equilibrium dressed state of the ladder Hamiltonian
4.11 (or equivalently of the Hamiltonian 4.4 if the problem is solved in momentum
space) each leg (or equivalently each electronic state) is characterized by a different
momentum distribution that, due to the SOC interaction, is expected to show a net op-
posite asymmetry with respect to the center of the Brillouin zone. These asymmetric
momentum distributions imply that, at equilibrium, atoms on different legs propagate
with opposite velocities, a behaviour that can be interpreted in terms of chiral edge cur-
rents. From an experimental point of view, the procedure that we followed to induce
and observe these edge currents is reported in figure 4.6 and requires, first of all, to
load the lowest dressed state of the Hamiltonian 4.11. To accomplish this task we start
realizing by evaporative cooling in the 1064 nm optical dipole trap (see section 1.2.3
for more details) a spin-polarized (mF = −5/2) ultracold 173Yb gas with a tempera-
ture of 0.2 TF (TF ≃ 2 kHz h/kB). The number of atoms is set to be Nat ≃ 1.2× 104,
in such a way not to populate the higher dressed band of the ladder Hamiltonian 4.11.
The gas is then loaded in a 3D cubic optical lattice operated at the magic wavelength
λL = 2π/kL = 759 nm for which the light shift of the g and e states is identical. The
lattice potential is turned on with an adiabatic 150-ms-long exponential intensity ramp
and superimposed to the 1064 nm optical dipole trap. Only at the end of the intensity
ramp the dipole trap is adiabatically turned off with a 200-ms-long linear ramp, leaving
the lattice as the only confining potential. The lattice depths sx,y,z , expressed in units
of the recoil energy Er = ℏ2k2L/2m, where m is the atomic mass, are set to sx = 6
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Figure 4.6: Experimental sequence employed for the observation of the chiral currents.

and sy = sz = 20, in such a way that on the timescale of the experiment tunnelling is
allowed only along the êx direction, for which we have t ≃ 2π × 140 Hz. As a conse-
quence of the strong confinement along êy and êz , the system can be treated as an array
of ∼ 1000 one dimensional fermionic tubes, each of which in the synthetic-dimension
picture constitute the real dimension of a hybrid ladder.

At this point, in order to load the lowest dressed state of the ladder Hamiltonian, the
g → e coupling, that in the synthetic dimension picture plays the role of the tunnelling
along the rung of the ladder, must be switched on. To do this, a 150 G magnetic
field is turned on in order to resolve the nuclear atomic Zeeman substructure and the
578 nm π-polarized clock laser light, initially red-detuned by δi with respect to the
g(mF = −5/2) → e(mF = −5/2) transition, is shined on the atomic sample. The
clock laser detuning δ is then progressively reduced with an adiabatic frequency sweep
ramp characterized by the analytical form

δ(t) = δi − (δi − δf )

(
1− e−t/τ

1− e−T/τ

)
(4.13)

where T is the duration of the ramp and the final detuning δf is δf = 0. From a
quantum-optic prospect, the effect of the detuning ramp can be viewed as an adia-
batic transfer of the population from the south pole of the Bloch sphere, which cor-
responds to the g state, to the equator of the sphere where the quantum superposition
(|g⟩+ |e⟩)/

√
2 is realized. During the whole process the intensity of the 578 nm laser

light remains constant and the value Ω of the associated Rabi frequency at resonance
determines the parameters δ0, τ and T that we set for the detuning ramp. Note that dur-
ing this phase the disciplination of our clock laser to the INRiMmetrological reference
resulted to be absolutely necessary, since we observed that shifts of the final detuning
value of few hundreds of Hz strongly alter the strength of the chiral currents. The
value of Ω is experimentally determined performing a Rabi oscillation measurement
on a spin-polarized gas trapped in a deep 3D isotropic lattice. The measured value of
Ω is then used to find a suitable set of parameters for the detuning ramp. This is done
performing a simulation of the evolution of the system that consists in the numerical
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resolution of the Schroedinger equation

i
dΨk(t)

dt
=

(
2J cos(kd)− δ(t) Ω/2

Ω/2 2J cos(kd+Φk)

)
Ψk(t) (4.14)

where d is the lattice spacing, J is the tunnelling strength, δ(t) is the detuning ramp
4.13 and Ψk, the two-component spinor associated to the populations of the g and e

states, is initialized as Ψk(t = 0) = (1, 0), a condition that corresponds to the whole
population in the g state. The ramp parameters are chosen so that the ramp duration
does not exceed the coherence time of the laser (we set typical values of the order of
T = 15ms) and in such a way that the residual time-dependent oscillation of the g and
e populations at the end of the sweep are of the order of few percent independently
respect to the quasimomentum k. For Ω ≃ 2π × 600 Hz, for example, we found
as optimal ramp parameters δ0 = 2π × 8 kHz, T = 15 ms and τ = 4.5 ms. The
experimental verification of the adiabaticity of the dressed state loading procedure
is performed by executing a frequency-reversed-sweep ramp after the first detuning
ramp and checking that, at the end of the unloading process, the atomic population is
transferred again in the g state.

After loading the ground state of the ladder Hamiltonian the 578 nm coupling light
is suddenly turned off and the momentum distribution relative to the g state is mea-
sured with the band mapping technique described in section 1.3.2. In order to increase
the SNR, each momentum distribution is the result of the average of at least 20 images
acquired in the same experimental conditions. To this averaged momentum distribu-
tion we subtract an averaged image of the background that helps to remove residual
gradients or fringes due to imperfections of the imaging setup. At the time when these
measurements were performed an imaging system for the e state was not available and
consequently only the momentum distribution of the g leg of the ladder was observable.
An example of normalized momentum distribution relative to the g state measured af-
ter the dressed-state loading procedure (Ω = 2π × 590 Hz, ϕ = 0.58π, t = 2π × 138

Hz) is shown in figure 4.7. While along the êy direction we observe an uniform square
distribution due to the presence of the strong confinement lattices along the directions
orthogonal to the tubes, the distribution ng(k) along êx features an evident asymmetry
with respect to the center of the Brillouin zone, that we characterize with the quantity
Jg

Jg =

π∫

0

ng(k)− ng(−k) dk (4.15)

that we associate to the strength of the chiral current. In the figure the distribution
is compared with the case in which no clock laser coupling, and so no asymmetry, is
present. The value of Jg relative to the example shown in the figure is Jg = +0.080±
0.015which is in agreement with the theoretical prediction, if we assume a temperature
of the Fermi gas T = 0.6 t, as explained in detail in the following section.

A further validation of our experimental method is provided by an additional ex-
periment in which we loaded the higher dressed state of the ladder Hamiltonian 4.11.
This can be done by performing a reversed loading frequency sweep that starts blue-
detuned with respect to the resonance. The experimental result of this procedure if
shown in figure 4.8 where the g momentum distribution measured at the end of this
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and sy = sz = 20, in such a way that on the timescale of the experiment tunnelling is
allowed only along the êx direction, for which we have t ≃ 2π × 140 Hz. As a conse-
quence of the strong confinement along êy and êz , the system can be treated as an array
of ∼ 1000 one dimensional fermionic tubes, each of which in the synthetic-dimension
picture constitute the real dimension of a hybrid ladder.

At this point, in order to load the lowest dressed state of the ladder Hamiltonian, the
g → e coupling, that in the synthetic dimension picture plays the role of the tunnelling
along the rung of the ladder, must be switched on. To do this, a 150 G magnetic
field is turned on in order to resolve the nuclear atomic Zeeman substructure and the
578 nm π-polarized clock laser light, initially red-detuned by δi with respect to the
g(mF = −5/2) → e(mF = −5/2) transition, is shined on the atomic sample. The
clock laser detuning δ is then progressively reduced with an adiabatic frequency sweep
ramp characterized by the analytical form

δ(t) = δi − (δi − δf )

(
1− e−t/τ

1− e−T/τ

)
(4.13)

where T is the duration of the ramp and the final detuning δf is δf = 0. From a
quantum-optic prospect, the effect of the detuning ramp can be viewed as an adia-
batic transfer of the population from the south pole of the Bloch sphere, which cor-
responds to the g state, to the equator of the sphere where the quantum superposition
(|g⟩+ |e⟩)/

√
2 is realized. During the whole process the intensity of the 578 nm laser

light remains constant and the value Ω of the associated Rabi frequency at resonance
determines the parameters δ0, τ and T that we set for the detuning ramp. Note that dur-
ing this phase the disciplination of our clock laser to the INRiMmetrological reference
resulted to be absolutely necessary, since we observed that shifts of the final detuning
value of few hundreds of Hz strongly alter the strength of the chiral currents. The
value of Ω is experimentally determined performing a Rabi oscillation measurement
on a spin-polarized gas trapped in a deep 3D isotropic lattice. The measured value of
Ω is then used to find a suitable set of parameters for the detuning ramp. This is done
performing a simulation of the evolution of the system that consists in the numerical
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resolution of the Schroedinger equation

i
dΨk(t)

dt
=

(
2J cos(kd)− δ(t) Ω/2

Ω/2 2J cos(kd+Φk)

)
Ψk(t) (4.14)

where d is the lattice spacing, J is the tunnelling strength, δ(t) is the detuning ramp
4.13 and Ψk, the two-component spinor associated to the populations of the g and e

states, is initialized as Ψk(t = 0) = (1, 0), a condition that corresponds to the whole
population in the g state. The ramp parameters are chosen so that the ramp duration
does not exceed the coherence time of the laser (we set typical values of the order of
T = 15ms) and in such a way that the residual time-dependent oscillation of the g and
e populations at the end of the sweep are of the order of few percent independently
respect to the quasimomentum k. For Ω ≃ 2π × 600 Hz, for example, we found
as optimal ramp parameters δ0 = 2π × 8 kHz, T = 15 ms and τ = 4.5 ms. The
experimental verification of the adiabaticity of the dressed state loading procedure
is performed by executing a frequency-reversed-sweep ramp after the first detuning
ramp and checking that, at the end of the unloading process, the atomic population is
transferred again in the g state.

After loading the ground state of the ladder Hamiltonian the 578 nm coupling light
is suddenly turned off and the momentum distribution relative to the g state is mea-
sured with the band mapping technique described in section 1.3.2. In order to increase
the SNR, each momentum distribution is the result of the average of at least 20 images
acquired in the same experimental conditions. To this averaged momentum distribu-
tion we subtract an averaged image of the background that helps to remove residual
gradients or fringes due to imperfections of the imaging setup. At the time when these
measurements were performed an imaging system for the e state was not available and
consequently only the momentum distribution of the g leg of the ladder was observable.
An example of normalized momentum distribution relative to the g state measured af-
ter the dressed-state loading procedure (Ω = 2π × 590 Hz, ϕ = 0.58π, t = 2π × 138

Hz) is shown in figure 4.7. While along the êy direction we observe an uniform square
distribution due to the presence of the strong confinement lattices along the directions
orthogonal to the tubes, the distribution ng(k) along êx features an evident asymmetry
with respect to the center of the Brillouin zone, that we characterize with the quantity
Jg

Jg =

π∫

0

ng(k)− ng(−k) dk (4.15)

that we associate to the strength of the chiral current. In the figure the distribution
is compared with the case in which no clock laser coupling, and so no asymmetry, is
present. The value of Jg relative to the example shown in the figure is Jg = +0.080±
0.015which is in agreement with the theoretical prediction, if we assume a temperature
of the Fermi gas T = 0.6 t, as explained in detail in the following section.

A further validation of our experimental method is provided by an additional ex-
periment in which we loaded the higher dressed state of the ladder Hamiltonian 4.11.
This can be done by performing a reversed loading frequency sweep that starts blue-
detuned with respect to the resonance. The experimental result of this procedure if
shown in figure 4.8 where the g momentum distribution measured at the end of this
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Figure 4.7: a: Time-of-flight images of the g atoms for decoupled legs (Ω = 0, left) and
for coupled legs after adiabatic loading (Ω = 2π×590Hz,Φ = 0.58π, t = 2π×138Hz).
b: Integrated lattice momentum distribution ng(k) along the ladder direction for the
data reported in panel a. c: Asymmetry function hg(k) = ng(k)−ng(−k), evidencing
the chiral current in the presence of the flux.

reversed detuning ramp is reported for the Hamiltonian parameters Ω = 2π × 590 Hz,
ϕ = 1.31π and t = 2π × 138 Hz. We observe a distribution that features a ”hole” for
momenta near the center of the Brillouin zone that is complementary to the one relative
to the lower dressed state of the Hamiltonian, in which, on the contrary, no population
is observed for high momenta. As it can be evinced from the band dispersion reported
in the figure, this distribution is in qualitatively good agreement with the one expected
for the higher dressed state of the Hamiltonian, and consequently its observation can
be assumed as a validation of our experimental procedures. As a final note, it should
be observed that the loading of the higher dressed state is complicated by the presence
of the lattice blue sideband, that for our experimental conditions (s = 6) becomes reso-
nant with the frequency sweep as the detuning is varied from 8 kHz to 0. The excitation
of the sideband is avoided preparing the system at a higher lattice depth (s = 20) and
then decreasing the depth from s = 20 to s = 6 with an adiabatic ramp simultaneous
to the frequency sweep.
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Figure 4.8: Sketch of the ladder Hamiltonian dispersion bands for Φ = 1.31π. The
colors reflect the composition of the dressed state (blue = g, green = e). On the sides
of the dispersion spectrum the time-of-flight images of the g atoms momentum distri-
bution relative to the lower and higher dressed state of the Hamiltonian are reported
(experimental conditions: Ω = 2π × 590 Hz, Φ = 1.31π, t = 2π × 138 Hz).

4.2.3 Tuning the synthetic flux

The rather simple approach discussed so far for the implementation of a quantum sim-
ulator of the Hamiltonian 4.2 makes it particularly easy to tune the flux piercing the
ladder by just changing the angle at which the clock laser beam intersects the fermionic
wires. In particular, indicating the intersection angle with θ, we have for the synthetic
flux

Φ(θ) = π
kC
kL

cos(θ) (4.16)

where kC and κL are, respectively, the clock laser and lattice wavenumbers. This
relation implies that in our system the flux can be continuously tuned from Φ = 0 to
Φ = 1.31π. In figure 4.9-a several experimental values of the chiral current strength
J are reported as a function of the synthetic flux Φ. All the measurements have been
acquired with the experimental parameters Ω = 2π × 590 Hz and t = 2π × 138 Hz,
and the flux Φ has been tuned changing the direction of the clock beam relative to the
fermionic wires (see figure 4.9-b,c). The data clearly show an inversion of the sign of
the chiral current for Φ > π, a behaviour that, at a qualitative level, can be explained
on the basis of the symmetries of the system, since the flux per plaquette is defined
modulo 2π (J(Φ) = J(Φ+2π)) and the current changes sign when the flux is inverted
(J(Φ) = −J(−Φ)) because of its chiral nature. The experimental points are compared
with the result of a single-particle calculation based on the exact diagonalization of a
system of fermions in the two-leg ladder, showing a very good agreement.

The theoretical model that we elaborated in order to estimate the value of J as a
function of the flux Φ is based on the assumption, verified numerically (see appendix
A), that, at fixed maximum number of particles Nmax per fermionic wire, the number
of wires containing N ≤ Nmax particles is constant. The wires containing the max-
imum number of particles are located in the central region of the lattice, where the
confining harmonic potential induced by the lattice intensity profile is stronger. Tak-
ing into account our lattice geometry and considering that the number of atoms loaded
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data reported in panel a. c: Asymmetry function hg(k) = ng(k)−ng(−k), evidencing
the chiral current in the presence of the flux.

reversed detuning ramp is reported for the Hamiltonian parameters Ω = 2π × 590 Hz,
ϕ = 1.31π and t = 2π × 138 Hz. We observe a distribution that features a ”hole” for
momenta near the center of the Brillouin zone that is complementary to the one relative
to the lower dressed state of the Hamiltonian, in which, on the contrary, no population
is observed for high momenta. As it can be evinced from the band dispersion reported
in the figure, this distribution is in qualitatively good agreement with the one expected
for the higher dressed state of the Hamiltonian, and consequently its observation can
be assumed as a validation of our experimental procedures. As a final note, it should
be observed that the loading of the higher dressed state is complicated by the presence
of the lattice blue sideband, that for our experimental conditions (s = 6) becomes reso-
nant with the frequency sweep as the detuning is varied from 8 kHz to 0. The excitation
of the sideband is avoided preparing the system at a higher lattice depth (s = 20) and
then decreasing the depth from s = 20 to s = 6 with an adiabatic ramp simultaneous
to the frequency sweep.
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bution relative to the lower and higher dressed state of the Hamiltonian are reported
(experimental conditions: Ω = 2π × 590 Hz, Φ = 1.31π, t = 2π × 138 Hz).

4.2.3 Tuning the synthetic flux

The rather simple approach discussed so far for the implementation of a quantum sim-
ulator of the Hamiltonian 4.2 makes it particularly easy to tune the flux piercing the
ladder by just changing the angle at which the clock laser beam intersects the fermionic
wires. In particular, indicating the intersection angle with θ, we have for the synthetic
flux

Φ(θ) = π
kC
kL

cos(θ) (4.16)

where kC and κL are, respectively, the clock laser and lattice wavenumbers. This
relation implies that in our system the flux can be continuously tuned from Φ = 0 to
Φ = 1.31π. In figure 4.9-a several experimental values of the chiral current strength
J are reported as a function of the synthetic flux Φ. All the measurements have been
acquired with the experimental parameters Ω = 2π × 590 Hz and t = 2π × 138 Hz,
and the flux Φ has been tuned changing the direction of the clock beam relative to the
fermionic wires (see figure 4.9-b,c). The data clearly show an inversion of the sign of
the chiral current for Φ > π, a behaviour that, at a qualitative level, can be explained
on the basis of the symmetries of the system, since the flux per plaquette is defined
modulo 2π (J(Φ) = J(Φ+2π)) and the current changes sign when the flux is inverted
(J(Φ) = −J(−Φ)) because of its chiral nature. The experimental points are compared
with the result of a single-particle calculation based on the exact diagonalization of a
system of fermions in the two-leg ladder, showing a very good agreement.

The theoretical model that we elaborated in order to estimate the value of J as a
function of the flux Φ is based on the assumption, verified numerically (see appendix
A), that, at fixed maximum number of particles Nmax per fermionic wire, the number
of wires containing N ≤ Nmax particles is constant. The wires containing the max-
imum number of particles are located in the central region of the lattice, where the
confining harmonic potential induced by the lattice intensity profile is stronger. Tak-
ing into account our lattice geometry and considering that the number of atoms loaded
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Figure 4.9: a: Dependence of the chiral currents J on the flux Φ. Vertical error bars
are the standard deviation of a representative set of measurements, while horizontal
error bars arise from the uncertainty on the angle θ. The solid curve is the expecta-
tion of a theoretical single-particle model (see main text). Experimental parameters:
Ω = 2π × 590 Hz and t = 2π × 138 Hz. b: Sketch of all the directions of the clock
laser beam (d1···5) relative to the optical lattices OL1 and OL2 (red lines) employed
for the measurements reported in (a). c: Table of the synthetic fluxes realized for
the directions d1···5 reported in (b) for fermionic wires realized along OL1 - OL2. d:
Chiral currents in the absence of the lattice along the direction of the ladders. In this
”continuum” configuration, where a 2D unit cell is not defined, no inversion of J is
observed at large SOC momentum transfer δk. We note that the horizontal scales of
the two plots coincide as Φ/π = δk/kL.

in the lattice before the loading of the dressed state is Natoms ≃ 104, we estimate
Nmax = 28, which means that we expect Nw wires with 28 particles, Nw wires with
27 particles and so on down to Nw wires with 1 particle. This means that, if we indi-
cate with nN (k) the normalized momentum distribution associated to a wire with N

particles, then the overall momentum distribution will be given by

n(k) =

Nmax∑
N=1

N nN (k) (4.17)

where the multiplication factor N takes into account that wires with more particles
contribute more to the signal. The distribution n(k) is the sum of the momentum distri-
butions associated to the two legs of the ladder, ng(k) and ne(k), which have opposite
asymmetry with respect to the center of the Brillouin zone as a consequence of the ef-
fect of the SOC interaction. Here we are interested only in the determination of ng(k),
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that is our observable, for which a relation similar to the 4.17 must hold

ng(k) =

Nmax∑
N=1

N nN,g(k) (4.18)

wherenN,g(k) is theN -particles g-legmomentumdistribution. To estimatenN,g(k)we
perform an exact diagonalization of the Hamiltonian 4.11 including also the harmonic
potential that is present along the wires as a consequence of the confinement along
the orthogonal directions. This potential can be easily included in the tight-binding
Hamiltonian simply by adding a ℏ fx (j − L/2)2 â†j âj term on the diagonal elements,
where L is the number of lattice sites chosen for the calculation. The constant fx is
related to the strength of the harmonic confinement by the relation

1

2
mω2

xa
2 j2 = ℏ fx j2 (4.19)

wherem is the atomic mass, j is an integer associated to the site position in the lattice,
a is the lattice spacing and ωx/(2π) is the harmonic oscillator frequency. We experi-
mentally determined ωx = 2π×44 Hz by inducing and detecting dipole oscillations in
the experimental conditions sx = 6 and sy = sz = 20. The presence of the harmonic
potential breaks the translational invariance of the lattice and, consequently, a diagonal-
ization in momentum space is no longer possible. We have thus solved the problem in
real space considering a ladder with 100 sites along the real dimension, a number high
enough to have vanishing wavefunctions on the lattice edges thanks to the harmonic
confinement. The diagonalization of the Hamiltonian provides the set of real-space
wavefunctions ψℓ allowed for each wire and the set of the corresponding eigenener-
gies E(ℓ), that we assume to be ordered for increasing energy (E(1) < E(2) < ...).
From the ladder eigenstates we then extract the wavefunctions component relative to
the two legs that we indicate with ψℓ,α with α = g, e. A subsequent discrete Fourier
transform of the ψℓ,α provides the set of normalized momentum-space leg-dependent
wavefunction components ψk

ℓ,α.
Since we are dealing with fermionic particles, as a consequence of the Fermi-Dirac

statistics, every allowed eigenstate can be occupied by no more than two atoms with
different pseudospin. Taking into account the statistics, if we focus the attention on
the g leg and fix the temperature T of the system and the number of particles N , the
leg momentum distribution will be given by

ng,N (k) =
1

N

∑
ℓ

A
1

e(E(ℓ)−EF (N))/(kB T ) + 1
ψk
ℓ,g(k) (4.20)

where A is the normalization constant A = (
∑

ℓ e
(E(ℓ)−EF (N))/(kB T ) + 1)−1 and

EF (N), the Fermi energy, is defined as EF (N) = (E(N + 1) + E(N))/2. Once
the ng,N are determined the global momentum distribution is simply given by the sum-
mation 4.18.

The role played by the trap frequency and the temperature in the definition of the
asymmetry of the momentum distribution is shown in figure 4.10, where we report the
chirality estimated for fermionic wires with different particle number as a function of
the trap frequency (panel (a)) with the temperature fixed or as a function of the temper-
ature (panel (b)) with the trap frequency fixed. In both cases we fixed the other relevant
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in the lattice before the loading of the dressed state is Natoms ≃ 104, we estimate
Nmax = 28, which means that we expect Nw wires with 28 particles, Nw wires with
27 particles and so on down to Nw wires with 1 particle. This means that, if we indi-
cate with nN (k) the normalized momentum distribution associated to a wire with N

particles, then the overall momentum distribution will be given by

n(k) =

Nmax∑
N=1

N nN (k) (4.17)

where the multiplication factor N takes into account that wires with more particles
contribute more to the signal. The distribution n(k) is the sum of the momentum distri-
butions associated to the two legs of the ladder, ng(k) and ne(k), which have opposite
asymmetry with respect to the center of the Brillouin zone as a consequence of the ef-
fect of the SOC interaction. Here we are interested only in the determination of ng(k),
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that is our observable, for which a relation similar to the 4.17 must hold

ng(k) =

Nmax∑
N=1

N nN,g(k) (4.18)

wherenN,g(k) is theN -particles g-legmomentumdistribution. To estimatenN,g(k)we
perform an exact diagonalization of the Hamiltonian 4.11 including also the harmonic
potential that is present along the wires as a consequence of the confinement along
the orthogonal directions. This potential can be easily included in the tight-binding
Hamiltonian simply by adding a ℏ fx (j − L/2)2 â†j âj term on the diagonal elements,
where L is the number of lattice sites chosen for the calculation. The constant fx is
related to the strength of the harmonic confinement by the relation

1

2
mω2

xa
2 j2 = ℏ fx j2 (4.19)

wherem is the atomic mass, j is an integer associated to the site position in the lattice,
a is the lattice spacing and ωx/(2π) is the harmonic oscillator frequency. We experi-
mentally determined ωx = 2π×44 Hz by inducing and detecting dipole oscillations in
the experimental conditions sx = 6 and sy = sz = 20. The presence of the harmonic
potential breaks the translational invariance of the lattice and, consequently, a diagonal-
ization in momentum space is no longer possible. We have thus solved the problem in
real space considering a ladder with 100 sites along the real dimension, a number high
enough to have vanishing wavefunctions on the lattice edges thanks to the harmonic
confinement. The diagonalization of the Hamiltonian provides the set of real-space
wavefunctions ψℓ allowed for each wire and the set of the corresponding eigenener-
gies E(ℓ), that we assume to be ordered for increasing energy (E(1) < E(2) < ...).
From the ladder eigenstates we then extract the wavefunctions component relative to
the two legs that we indicate with ψℓ,α with α = g, e. A subsequent discrete Fourier
transform of the ψℓ,α provides the set of normalized momentum-space leg-dependent
wavefunction components ψk

ℓ,α.
Since we are dealing with fermionic particles, as a consequence of the Fermi-Dirac

statistics, every allowed eigenstate can be occupied by no more than two atoms with
different pseudospin. Taking into account the statistics, if we focus the attention on
the g leg and fix the temperature T of the system and the number of particles N , the
leg momentum distribution will be given by

ng,N (k) =
1

N

∑
ℓ

A
1

e(E(ℓ)−EF (N))/(kB T ) + 1
ψk
ℓ,g(k) (4.20)

where A is the normalization constant A = (
∑

ℓ e
(E(ℓ)−EF (N))/(kB T ) + 1)−1 and

EF (N), the Fermi energy, is defined as EF (N) = (E(N + 1) + E(N))/2. Once
the ng,N are determined the global momentum distribution is simply given by the sum-
mation 4.18.

The role played by the trap frequency and the temperature in the definition of the
asymmetry of the momentum distribution is shown in figure 4.10, where we report the
chirality estimated for fermionic wires with different particle number as a function of
the trap frequency (panel (a)) with the temperature fixed or as a function of the temper-
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Figure 4.10: Theoretical evaluation of a: the chirality relative to the normalized mo-
mentum distribution of a single fermionic wire as a function of the atom number and of
the trap frequency for T = 0.6t, b: the chirality relative to the normalized momentum
distribution of a single fermionic wire as a function of the atom number and of the
temperature for ωx = 2π×44 Hz. The values of t, Ω and ωx reported in the figures are
in units of 2π. c: Band dispersion relative to the lower band of the ladder Hamiltonian
for Ω = 2π × 590 Hz, t = 2π × 138 Hz, Φ = 1.31π and ωx = 0. The color intensity
reflects the probability to find a particle in the lower dressed band of the Hamiltonian.
The yellow zone denotes the states that contribute with negative chirality to the signal.

parameters of the Hamiltonian to the values adopted in the experiment: Ω = 2π× 590

Hz, t = 2π × 138 Hz and Φ = 1.31π. As a general rule, we can say that, fixed the
number of particles in the wire, the chirality decreases monotonically as the temper-
ature or the trap frequency are increased. The explanation of this behaviour is rather
simple: the higher is the temperature, the higher is the probability to occupy wires
with many particles. Wires with many particles are characterized by a momentum dis-
tribution that completely fills the Brillouin zone and, consequently, can not display
chiral behaviour. On the other hand, if the trap frequency is increased, particles will
localize at the center of the tube and their eigenstate will spread in momentum space,
suppressing the chirality. A less intuitive explanation is needed to understand why the
chirality changes sign as the particle number is increased, as it is clearly evident in
figures 4.10-a,b. This behaviour is a consequence of the energy dispersion relative to
the fundamental band of the ladder Hamiltonian, that for the experimental parameters
considered here, displays a net asymmetry with respect to the center of the Brillouin
zone, as it is shown in figure 4.10-c. Referring to the figure, fermionic particles will
initially occupy the states at lower energy, that are characterized by negative momenta.
Only when the states comprised in the yellow band are completely populated, particles
will start to occupy states with opposite chirality, reversing the asymmetry of the mo-
mentum distribution. As the particle number is further increased the band starts to be
completely full and the chirality vanishes again.

In our analysis we evaluated the g leg momentum distribution as a function of
the flux for several values of the temperature T and the resulting curves have been
compared with the experimental data. We found the best agreement for T = ℏ0.6 t/kB
where t = 2π×138Hz is the tunnelling energy. We note however, that the shape of the
curve is robust against the fine tuning of the parameters, as it is fundamentally implied
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by the symmetries of the problem. In particular, the inversion of the sign of J above π
flux is a direct consequence of the discreteness of the Harper-Hofstadter Hamiltonian.

By removing the optical lattice along êx we can synthesize a two-leg ladder in the
continuum, where a unit cell is no longer defined and the symmetries arising from the
discreteness of the system no longer hold. The measured values of J for this configu-
ration are reported in 4.9-d as a function of the transferred SOC momentum δk. In this
case we do not observe any inversion of J when δk exceeds kL (corresponding to the
π flux condition in figure 4.9-a).

4.3 Tuning the interactions in a 1S0 − 3P0 mixture

The interpretation of the experimental results reported in the previous section relies on
single-particle models in which the interparticle interactions have not been taken into
account. The interplay between magnetism and interactions is however responsible for
many intriguing phenomena, the fractional quantum Hall effect (QHE) being only the
most known example. The possibility to tune the interatomic interactions represents
consequently a great opportunity to simulate, in the ultracold atoms context, this class
of phenomena for which a solid-state implementation is not easily accessible.

In cold-atom physics, magnetic Feshbach resonances (MFR) can be regarded as the
fundamental tool that allows the control of the collisional properties of a degenerate
gas of atoms making it possible to tune the interactions and to access strongly inter-
acting regimes (Chin et al., 2010). In alkali atoms the MFR mechanism is enabled
by the presence of a J = 1/2 electronic spin which gives rise to a triplet and a sin-
glet collisional channels in the fundamental atomic state, that are in general coupled
by the hyperfine interaction. The Zeeman sensitivity of the energy levels associated
to the two channels is in general different and, consequently, a magnetic field can be
employed to tune their relative energy, eventually leading to a resonant scattering res-
onance. The presence of a fully occupied electronic shell prevents this mechanism to
work in alkaline-earth and alkaline-earth-like atoms. Interactions can still be tuned
exploiting optical Feshbach resonances, but such a scheme suffers from strong atomic
loss and heating (Ciurylo et al., 2005; Enomoto et al., 2008; Blatt et al., 2011). In these
classes of atoms however, the presence of a long-lived excited electronic state makes
it possible to control the atomic collisional properties taking advantage of a recently
proposed scheme (Zhang et al., 2015) that predicts the existence of a new class of Fesh-
bach resonances in which the orbital degree of freedom plays the role of the electronic
spin in the MFR of alkali atoms. In this section we discuss the experiment which led
to the first observation (Pagano et al., 2015) of this new kind of Feshbach resonance,
which we will refer to as orbital Feshbach resonance (OrbFR). The first part of the
section is dedicated to a brief description of the OrbFR mechanism. After this theoret-
ical introduction we will discuss the experimental realization of a strongly interacting
gas of 173Yb in which we demonstrated the existence of the predicted OrbFR investi-
gating the hydrodinamic anisotropic expansion of the gas. OrbFR with 173Yb atoms
have been investigated also at MPQ in Munich in a closely related work (Höfer et al.,
2015) where resonance properties have been characterized using cross-thermalization
techniques.
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Figure 4.10: Theoretical evaluation of a: the chirality relative to the normalized mo-
mentum distribution of a single fermionic wire as a function of the atom number and of
the trap frequency for T = 0.6t, b: the chirality relative to the normalized momentum
distribution of a single fermionic wire as a function of the atom number and of the
temperature for ωx = 2π×44 Hz. The values of t, Ω and ωx reported in the figures are
in units of 2π. c: Band dispersion relative to the lower band of the ladder Hamiltonian
for Ω = 2π × 590 Hz, t = 2π × 138 Hz, Φ = 1.31π and ωx = 0. The color intensity
reflects the probability to find a particle in the lower dressed band of the Hamiltonian.
The yellow zone denotes the states that contribute with negative chirality to the signal.

parameters of the Hamiltonian to the values adopted in the experiment: Ω = 2π× 590

Hz, t = 2π × 138 Hz and Φ = 1.31π. As a general rule, we can say that, fixed the
number of particles in the wire, the chirality decreases monotonically as the temper-
ature or the trap frequency are increased. The explanation of this behaviour is rather
simple: the higher is the temperature, the higher is the probability to occupy wires
with many particles. Wires with many particles are characterized by a momentum dis-
tribution that completely fills the Brillouin zone and, consequently, can not display
chiral behaviour. On the other hand, if the trap frequency is increased, particles will
localize at the center of the tube and their eigenstate will spread in momentum space,
suppressing the chirality. A less intuitive explanation is needed to understand why the
chirality changes sign as the particle number is increased, as it is clearly evident in
figures 4.10-a,b. This behaviour is a consequence of the energy dispersion relative to
the fundamental band of the ladder Hamiltonian, that for the experimental parameters
considered here, displays a net asymmetry with respect to the center of the Brillouin
zone, as it is shown in figure 4.10-c. Referring to the figure, fermionic particles will
initially occupy the states at lower energy, that are characterized by negative momenta.
Only when the states comprised in the yellow band are completely populated, particles
will start to occupy states with opposite chirality, reversing the asymmetry of the mo-
mentum distribution. As the particle number is further increased the band starts to be
completely full and the chirality vanishes again.

In our analysis we evaluated the g leg momentum distribution as a function of
the flux for several values of the temperature T and the resulting curves have been
compared with the experimental data. We found the best agreement for T = ℏ0.6 t/kB
where t = 2π×138Hz is the tunnelling energy. We note however, that the shape of the
curve is robust against the fine tuning of the parameters, as it is fundamentally implied
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by the symmetries of the problem. In particular, the inversion of the sign of J above π
flux is a direct consequence of the discreteness of the Harper-Hofstadter Hamiltonian.

By removing the optical lattice along êx we can synthesize a two-leg ladder in the
continuum, where a unit cell is no longer defined and the symmetries arising from the
discreteness of the system no longer hold. The measured values of J for this configu-
ration are reported in 4.9-d as a function of the transferred SOC momentum δk. In this
case we do not observe any inversion of J when δk exceeds kL (corresponding to the
π flux condition in figure 4.9-a).

4.3 Tuning the interactions in a 1S0 − 3P0 mixture

The interpretation of the experimental results reported in the previous section relies on
single-particle models in which the interparticle interactions have not been taken into
account. The interplay between magnetism and interactions is however responsible for
many intriguing phenomena, the fractional quantum Hall effect (QHE) being only the
most known example. The possibility to tune the interatomic interactions represents
consequently a great opportunity to simulate, in the ultracold atoms context, this class
of phenomena for which a solid-state implementation is not easily accessible.

In cold-atom physics, magnetic Feshbach resonances (MFR) can be regarded as the
fundamental tool that allows the control of the collisional properties of a degenerate
gas of atoms making it possible to tune the interactions and to access strongly inter-
acting regimes (Chin et al., 2010). In alkali atoms the MFR mechanism is enabled
by the presence of a J = 1/2 electronic spin which gives rise to a triplet and a sin-
glet collisional channels in the fundamental atomic state, that are in general coupled
by the hyperfine interaction. The Zeeman sensitivity of the energy levels associated
to the two channels is in general different and, consequently, a magnetic field can be
employed to tune their relative energy, eventually leading to a resonant scattering res-
onance. The presence of a fully occupied electronic shell prevents this mechanism to
work in alkaline-earth and alkaline-earth-like atoms. Interactions can still be tuned
exploiting optical Feshbach resonances, but such a scheme suffers from strong atomic
loss and heating (Ciurylo et al., 2005; Enomoto et al., 2008; Blatt et al., 2011). In these
classes of atoms however, the presence of a long-lived excited electronic state makes
it possible to control the atomic collisional properties taking advantage of a recently
proposed scheme (Zhang et al., 2015) that predicts the existence of a new class of Fesh-
bach resonances in which the orbital degree of freedom plays the role of the electronic
spin in the MFR of alkali atoms. In this section we discuss the experiment which led
to the first observation (Pagano et al., 2015) of this new kind of Feshbach resonance,
which we will refer to as orbital Feshbach resonance (OrbFR). The first part of the
section is dedicated to a brief description of the OrbFR mechanism. After this theoret-
ical introduction we will discuss the experimental realization of a strongly interacting
gas of 173Yb in which we demonstrated the existence of the predicted OrbFR investi-
gating the hydrodinamic anisotropic expansion of the gas. OrbFR with 173Yb atoms
have been investigated also at MPQ in Munich in a closely related work (Höfer et al.,
2015) where resonance properties have been characterized using cross-thermalization
techniques.
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4.3.1 Orbital Feshbach resonance mechanism

In order to understand how the OrbFR arises in alkaline-eart-like atoms we consider
two fermionic atoms characterized by different spin (↑ and ↓) and different electronic
state (|1S0⟩ = g and |3P0⟩ = e). At large interatomic separation the two atoms do not
interact and the eigenstates of the two-particles system are given by

|o⟩ = |g ↑; e ↓⟩ |c⟩ = |e ↑; g ↓⟩ (4.21)

which we name open and closed collisional channel, respectively. This nomenclature,
as in a standard MFR, is associated to the asymptotic energy Ec and Eo of the two
channels, being always Ec > Eo with Ec − Eo = δm(B) = |h δg∆mB|, where ∆m

is the difference in the nuclear spin projection of the two states, δg = 113 Hz/G for
173Yb is the differential Landé factor for the states g and e and B is the external ap-
plied magnetic field. As the interparticle distance is reduced, the interaction energy
increases and the scattering properties of the two-particles system depends on whether
the two atoms interact in a spin triplet or singlet state. In this case, as a consequence
of the antisymmetrization requirements of the two-particles fermionic wavefunction,
we have that the appropriate basis to describe the scattering between the two particles
is given by the states |eg±⟩ = 1

2 (|eg⟩ ± |ge⟩) ⊗ (| ↑↓⟩ ∓ | ↓↑⟩) that we have already
introduced in section 3.3 and that can be expressed in terms of |c⟩ and |o⟩ as

|eg+⟩ = 1√
2
(|c⟩ − |o⟩) |eg−⟩ = 1√

2
(|c⟩+ |o⟩). (4.22)

The states |eg±⟩ define two different molecular potentials to which, in 173Yb, the s-
wave scattering lengths aeg− = 219.5 a0 (Scazza et al., 2014) and aeg+ (the most
recent estimated value of which is aeg+ = 1878 a0 (Höfer et al., 2015)), are asso-
ciated. In this basis interactions are well defined by the diagonal operator Vint =∑

α=eg± |α⟩⟨α|VHY (aα), where V (aα) is theHuang-Yang pseudopotential (Huang and
Yang, 1957; Huang, 1967) associated to the scattering length aα

VHY (aα) =

(
4πℏ2

2µ
aα

)
δ(r)

∂

∂r
(r·). (4.23)

Taking into account the expressions 4.22 and 4.23, and considering the Zeeman shift
of the |c⟩ state with respect to |o⟩, the Hamiltonian that describes the two interacting
particles in the {|c⟩, |o⟩} basis reads

H =

(
− ℏ2

2µ∇
2 + δm(B) 0

0 − ℏ2

2µ∇
2

)

� �� �
free particles Hamiltonian

+

(
VHY (ad) VHY (aex)

VHY (aex) VHY (ad)

)

� �� �
interaction Hamiltonian

(4.24)

where VHY (ad) and VHY (aex) are Huang-Yang potentials associated respectively to
the direct scattering length

ad =
aeg+ + aeg−

2
(4.25)

and to the exchange scattering length

aex =
aeg+ − aeg−

2
. (4.26)
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Figure 4.11: Schematic representation of the orbital Feshbach resonance mechanism
in 173Yb. See the main text for details.

With the Hamiltonian 4.24 our scattering problem is formally equivalent to the
description of a standard two-channel MFR in alkali atoms, as it is pictorially shown
in image 4.11: we have two channels whose energy separation can be tuned with an
external magnetic field and that are coupled together by an interaction potential that
in our case is represented by the spin-exchange interaction |g ↑; e ↓⟩ → |g ↓; e ↑⟩. The
problem can be solved in the low-energy limit (Cheng et al., 2016) assuming that the
scattering energy is much smaller than the interaction energy. In this limit, adopting
standard results of the two particles scattering theory (Cohen-Tannoudji and Guéry-
Odelin, 2011), and assuming that the open channel is coupled to a bound state in the
closed channel, we can write the expression of the wavefunction of the open and closed
channels respectively as

ψo(r) =
(ao − r)

r
ψc(r) = C

e−
√

mδm(B)/ℏ2r

r
(4.27)

where ao is the scattering length associated to the two-particles interaction. To deter-
mine ao one has to solve the Schroedinger equation in the low-energy limit: H|Ψ⟩ = 0

where Ψ is the vector |Ψ⟩ = {ψc, ψo}. The equation can be easily solved for the radial
part of the two wavefunctions 4.27: |Ψr⟩ = |rΨ⟩ = {exp

(
−
√
mδm(B)/ℏ2r

)
, ao −

r} as it is shown in appendix B. From the resolution of the Schroedinger equation in
radial coordinates we obtain the scattering length

ao =
−ad +

√
mδm(B)/ℏ2(a2d − a2ex)

ad
√
mδm(B)/ℏ2 − 1

(4.28)

which clearly shows a magnetic-field dependence. The tunability of ao with the mag-
netic field is possible only thanks to the spin-exchange interaction which mixes the
open and closed channel. In absence of spin exchange aex = 0 and the value of ao
reduces to the constant value ao = ad. In particular, the scattering length 4.28 shows
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4.3.1 Orbital Feshbach resonance mechanism

In order to understand how the OrbFR arises in alkaline-eart-like atoms we consider
two fermionic atoms characterized by different spin (↑ and ↓) and different electronic
state (|1S0⟩ = g and |3P0⟩ = e). At large interatomic separation the two atoms do not
interact and the eigenstates of the two-particles system are given by

|o⟩ = |g ↑; e ↓⟩ |c⟩ = |e ↑; g ↓⟩ (4.21)

which we name open and closed collisional channel, respectively. This nomenclature,
as in a standard MFR, is associated to the asymptotic energy Ec and Eo of the two
channels, being always Ec > Eo with Ec − Eo = δm(B) = |h δg∆mB|, where ∆m

is the difference in the nuclear spin projection of the two states, δg = 113 Hz/G for
173Yb is the differential Landé factor for the states g and e and B is the external ap-
plied magnetic field. As the interparticle distance is reduced, the interaction energy
increases and the scattering properties of the two-particles system depends on whether
the two atoms interact in a spin triplet or singlet state. In this case, as a consequence
of the antisymmetrization requirements of the two-particles fermionic wavefunction,
we have that the appropriate basis to describe the scattering between the two particles
is given by the states |eg±⟩ = 1

2 (|eg⟩ ± |ge⟩) ⊗ (| ↑↓⟩ ∓ | ↓↑⟩) that we have already
introduced in section 3.3 and that can be expressed in terms of |c⟩ and |o⟩ as

|eg+⟩ = 1√
2
(|c⟩ − |o⟩) |eg−⟩ = 1√

2
(|c⟩+ |o⟩). (4.22)

The states |eg±⟩ define two different molecular potentials to which, in 173Yb, the s-
wave scattering lengths aeg− = 219.5 a0 (Scazza et al., 2014) and aeg+ (the most
recent estimated value of which is aeg+ = 1878 a0 (Höfer et al., 2015)), are asso-
ciated. In this basis interactions are well defined by the diagonal operator Vint =∑

α=eg± |α⟩⟨α|VHY (aα), where V (aα) is theHuang-Yang pseudopotential (Huang and
Yang, 1957; Huang, 1967) associated to the scattering length aα

VHY (aα) =
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Taking into account the expressions 4.22 and 4.23, and considering the Zeeman shift
of the |c⟩ state with respect to |o⟩, the Hamiltonian that describes the two interacting
particles in the {|c⟩, |o⟩} basis reads

H =
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2 + δm(B) 0
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free particles Hamiltonian
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where VHY (ad) and VHY (aex) are Huang-Yang potentials associated respectively to
the direct scattering length

ad =
aeg+ + aeg−

2
(4.25)

and to the exchange scattering length

aex =
aeg+ − aeg−

2
. (4.26)

96

g

g

e

R

closed

open
e Δµ B 

E

eg

eg

E c 

c

o
g

Figure 4.11: Schematic representation of the orbital Feshbach resonance mechanism
in 173Yb. See the main text for details.

With the Hamiltonian 4.24 our scattering problem is formally equivalent to the
description of a standard two-channel MFR in alkali atoms, as it is pictorially shown
in image 4.11: we have two channels whose energy separation can be tuned with an
external magnetic field and that are coupled together by an interaction potential that
in our case is represented by the spin-exchange interaction |g ↑; e ↓⟩ → |g ↓; e ↑⟩. The
problem can be solved in the low-energy limit (Cheng et al., 2016) assuming that the
scattering energy is much smaller than the interaction energy. In this limit, adopting
standard results of the two particles scattering theory (Cohen-Tannoudji and Guéry-
Odelin, 2011), and assuming that the open channel is coupled to a bound state in the
closed channel, we can write the expression of the wavefunction of the open and closed
channels respectively as

ψo(r) =
(ao − r)

r
ψc(r) = C

e−
√

mδm(B)/ℏ2r

r
(4.27)

where ao is the scattering length associated to the two-particles interaction. To deter-
mine ao one has to solve the Schroedinger equation in the low-energy limit: H|Ψ⟩ = 0

where Ψ is the vector |Ψ⟩ = {ψc, ψo}. The equation can be easily solved for the radial
part of the two wavefunctions 4.27: |Ψr⟩ = |rΨ⟩ = {exp

(
−
√
mδm(B)/ℏ2r

)
, ao −

r} as it is shown in appendix B. From the resolution of the Schroedinger equation in
radial coordinates we obtain the scattering length

ao =
−ad +

√
mδm(B)/ℏ2(a2d − a2ex)

ad
√

mδm(B)/ℏ2 − 1
(4.28)

which clearly shows a magnetic-field dependence. The tunability of ao with the mag-
netic field is possible only thanks to the spin-exchange interaction which mixes the
open and closed channel. In absence of spin exchange aex = 0 and the value of ao
reduces to the constant value ao = ad. In particular, the scattering length 4.28 shows
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a resonant behaviour for the magnetic field value

B =
ℏ

2πmδg ∆m a2d
. (4.29)

Finite-range corrections of the potential can be taken into account by making the sub-
stitution ad → (ad − r0) (Zhang et al., 2015), where r0 ≃ 84.8 a0 is the van der Waals
length (Zhang et al., 2015).

173Yb is a privileged isotope for the observation of OrbFR since the large value
of ad set the value of the resonance in the range of tens to few hundreds of Gauss,
depending on the difference of the spin projections∆m. This behaviour is completely
different in other alkaline-earth elements: in 87Sr, for example, the value of ad is ∼
100 a0 (Zhang et al., 2014) and magnetic fields of the order of several thousands of
Gauss are required to observe the resonance. Another interesting point is the scaling
of the resonance position with ∆m−1, which is a direct consequence of the SU(N )-
invariant behaviour of the interactions in Ytterbium, as we have seen in section 1.1.1.

4.3.2 Experimental realization of a strongly interacting 173Yb gas

In order to realize a strongly interacting gas of 173Yb atoms exploiting the OrbFR phe-
nomenon, we start preparing a spin-balanced SU(2) degenerate mixture by evaporative
cooling in the 1064 nm crossed optical dipole trap. We indicate the two nuclear spin
projections of the particles in the degenerate gas as m↑ and m↓ with m↑ > m↓. At
the end of the evaporation the gas is loaded in a second crossed dipole trap operated
at the magic wavelength λL = 2π/kL = 759 nm for which the light shifts of the g and
e electronic states are identical. The trap is realized exploiting two orthogonal laser
beams, one of which is tightly focused on the atomic sample with a 30 µm waist, re-
sulting in a cigar-shaped trap with frequencies {ωx, ωy, ωz} = 2π × {13, 188, 138} Hz.
About 30 × 104 atoms per spin component with a temperature T = 0.15TF (where
TF is the Fermi temperature) are loaded in the ”magic” trap, with a peak density of
2.3 × 1013 cm−3 at the center of the trap. The loading of the atoms in the magic trap
is followed by an adiabatic turning off of the 1064 nm ODT in such a way that the
magic trap remains the only confining potential. At this point, in order to prepare the
system in the open channel of the OrbFR, atoms in the m↓ spin state are excited to
the e state with a resonant spin-selective 578 nm clock laser pulse. The excitation is
performed applying a magnetic field in the range 70 - 150 G in order to separate the
two nuclear spin components. Additionally, a deep one-dimensional optical lattice
(s = 30Er where Er = ℏ2k2L/2m) is superimposed to the dipole trap and co-aligned
with the clock beam, in order to exploit the Lamb-Dicke regime to transfer the pop-
ulation in the e state without imparting kinetic energy to the atoms. A 0.4 ms clock
pulse duration allows us to transfer more than 80% of the atoms in the metastable state
|g ↓, e ↑⟩. Once the system has been initialized in the open channel of the resonance,
the 1D optical lattice is turned off with a 100-ms-long adiabatic exponential ramp and
the strongly interacting regime is accessed performing a fast 2-ms sweep of the mag-
netic field from the clock excitation value to the value Bf close to the magnetic field
at which the resonance is expected.

At this point, in order to prove the onset of the strongly interacting regime, we
suddenly switch off the trap and let the gas expand. The magnetic field is kept on at
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Figure 4.12: Anisotropic expansion of an interacting gas of 173Yb near an orbital Fes-
hbach resonance. The gas is initially prepared in the open channel of a spin mixture
with ∆m = 5 at a magnetic field Bi ≃ 110 G. The interacting regime is achieved
lowering the magnetic field from Bi to Bf ≃ 41 G with a 2 ms ramp. The circles
show the aspect ratio of the expanded g atomic cloud as a function of the time of flight.
The long-dashed grey line shows the behaviour expected for an ideal Fermi gas. The
short-dashed black line indicates the unit limit above which the experimental aspect
ratio gets inverted because of hydrodynamic expansion. The three images in the insets
a, b, c show the g cloud after an expansion time of 7, 16 and 28 ms.

the value Bf for the first 5 ms of the expansion, in such a way to let the atoms release
their interaction energy into kinetic energy. The whole experimental sequence is sum-
marized in image 4.13-b. We characterize the effect of the interactions by evaluating
the aspect ratio of the atomic cloud AR = Ry/Rx, where Rx and Ry are the atomic
cloud dimensions obtained as result of a Gaussian fit as a function of the expansion
time. Figure 4.12 (circles) reports the evolution of the aspect ratio of a ∆m = 5 spin
mixture at a magnetic field Bf = 41 G for expansion times ranging from 6 to 28 ms.
For expansion times greater than 18 ms we observe an inversion ofAR with the atomic
cloud changing its shape from prolate to oblate. This behaviour clearly deviates from
the one expected for a non-interacting gas (grey dashed line in figure 4.12), for which
the aspect ratio is expected to approach one for increasing expansion times (Menotti
et al., 2002). We interpret this inversion of the aspect ratio as the result of the gas
entering in a hydrodynamic regime in which the collisional rate γ is larger than the
geometric trapping frequency ω̄ = (ωx ωy ωz)

1/3, causing a faster expansion along the
tightly confined axis of the harmonic trap because of the larger density gradient. The
observation of the aspect-ratio inversion is a hallmark of hydrodynamic expansion of
the Fermi gas, which occurs in the regime of strong interactions, as observed for alkali
fermionic gases close to MFR (O’Hara et al., 2002). We have thus adopted the inver-
sion of the aspect ratio as an indicator of the strength of the interaction in the Fermi
gas and used it to characterize the OrbFR. In figure 4.13-a the aspect ratio of a spin
mixture with ∆m = 5 is reported as a function of the final magnetic field value for
an expansion time of 28 ms (circles). The experimental data show a clear resonant
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a resonant behaviour for the magnetic field value

B =
ℏ

2πmδg ∆m a2d
. (4.29)

Finite-range corrections of the potential can be taken into account by making the sub-
stitution ad → (ad − r0) (Zhang et al., 2015), where r0 ≃ 84.8 a0 is the van der Waals
length (Zhang et al., 2015).

173Yb is a privileged isotope for the observation of OrbFR since the large value
of ad set the value of the resonance in the range of tens to few hundreds of Gauss,
depending on the difference of the spin projections∆m. This behaviour is completely
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4.3.2 Experimental realization of a strongly interacting 173Yb gas

In order to realize a strongly interacting gas of 173Yb atoms exploiting the OrbFR phe-
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the 1D optical lattice is turned off with a 100-ms-long adiabatic exponential ramp and
the strongly interacting regime is accessed performing a fast 2-ms sweep of the mag-
netic field from the clock excitation value to the value Bf close to the magnetic field
at which the resonance is expected.

At this point, in order to prove the onset of the strongly interacting regime, we
suddenly switch off the trap and let the gas expand. The magnetic field is kept on at
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Figure 4.12: Anisotropic expansion of an interacting gas of 173Yb near an orbital Fes-
hbach resonance. The gas is initially prepared in the open channel of a spin mixture
with ∆m = 5 at a magnetic field Bi ≃ 110 G. The interacting regime is achieved
lowering the magnetic field from Bi to Bf ≃ 41 G with a 2 ms ramp. The circles
show the aspect ratio of the expanded g atomic cloud as a function of the time of flight.
The long-dashed grey line shows the behaviour expected for an ideal Fermi gas. The
short-dashed black line indicates the unit limit above which the experimental aspect
ratio gets inverted because of hydrodynamic expansion. The three images in the insets
a, b, c show the g cloud after an expansion time of 7, 16 and 28 ms.

the value Bf for the first 5 ms of the expansion, in such a way to let the atoms release
their interaction energy into kinetic energy. The whole experimental sequence is sum-
marized in image 4.13-b. We characterize the effect of the interactions by evaluating
the aspect ratio of the atomic cloud AR = Ry/Rx, where Rx and Ry are the atomic
cloud dimensions obtained as result of a Gaussian fit as a function of the expansion
time. Figure 4.12 (circles) reports the evolution of the aspect ratio of a ∆m = 5 spin
mixture at a magnetic field Bf = 41 G for expansion times ranging from 6 to 28 ms.
For expansion times greater than 18 ms we observe an inversion ofAR with the atomic
cloud changing its shape from prolate to oblate. This behaviour clearly deviates from
the one expected for a non-interacting gas (grey dashed line in figure 4.12), for which
the aspect ratio is expected to approach one for increasing expansion times (Menotti
et al., 2002). We interpret this inversion of the aspect ratio as the result of the gas
entering in a hydrodynamic regime in which the collisional rate γ is larger than the
geometric trapping frequency ω̄ = (ωx ωy ωz)

1/3, causing a faster expansion along the
tightly confined axis of the harmonic trap because of the larger density gradient. The
observation of the aspect-ratio inversion is a hallmark of hydrodynamic expansion of
the Fermi gas, which occurs in the regime of strong interactions, as observed for alkali
fermionic gases close to MFR (O’Hara et al., 2002). We have thus adopted the inver-
sion of the aspect ratio as an indicator of the strength of the interaction in the Fermi
gas and used it to characterize the OrbFR. In figure 4.13-a the aspect ratio of a spin
mixture with ∆m = 5 is reported as a function of the final magnetic field value for
an expansion time of 28 ms (circles). The experimental data show a clear resonant

9997



New quantum simulations with ultracold Ytterbium gases

98

Figure 4.13: a: Aspect ratio of the atomic g cloud of a e−g spin mixture with∆m = 5

after an expansion time of 28 ms as a function of the final value of the magnetic field
ramp. The expansion of a gas initially prepared in the open channel of the resonance
(circles) is comparedwith the expansion of a gas initially prepared in the closed channel
(squares) for which no resonant behaviour is observed. The solid line is a lorentzian
fit of the experimental data. b: Experimental sequence employed to realize a strongly
interacting gas exploiting an orbital Feshbach resonance and to detect the onset of the
strongly interacting regime. The times reported on the horizontal axis are expressed
in ms.

behaviour that is a signal of enhancement of the elastic collisional rate at the orbital
Feshbach resonance. By performing a Lorentzian fit (solid line in figure 4.13-a) we
estimate the maximum to be located at B = 41 ± 1 G. On the contrary, if the same
experiment is performed preparing the system in the closed channel, no resonant fea-
ture is observable and the aspect ratio always remains slightly less than one for all the
experimental accessible value of the magnetic field (yellow squares in figure 4.13-a).

A further validation of our interpretation of the experimental results is provided
by another experiment in which we have verified the correct scaling of the resonance
position as ∆m−1. The data relative to mixtures with ∆m = {2, 3, 4, 5} are reported
in figure 4.14-a. Figure 4.14-b reports the same data, where for each mixture the mag-
netic field has been rescaled by a factor ∆m/5. All the experimental data perfectly
collapse on the∆m = 5 curve, verifying the OrbFR scaling law and evidencing SU(N)
symmetry in the interactions of two-electron atoms.

4.4 Conclusions and Outlooks

In this chapter we described the experiments in which, by exploiting the orbital degree
of freedom of 173Yb, we have been able to synthesize the emergence of Spin-Orbit
Interactions using the 1S0 and 3P0 levels as pseudospin states (Livi et al., 2016), en-
gineer synthetic fermionic two-leg ladders with tunable magnetic fluxes (Livi et al.,
2016) and realize a strongly interacting regime in a 1S0 − 3P0 spin-mixture (Pagano
et al., 2015). As proposed in (Wall et al., 2016), we have detected the spin-orbit cou-
pling as a broadening in the clock transition spectrum with fiber-link-enhanced clock
spectroscopy, exploiting the possibility offered by our narrow clock laser to excite the
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Figure 4.14: Comparison between open-channel mixtures with different ∆m, plotted
as a function of the real magnetic field (textbf(a) and of a rescaled magnetic field
B̄ = B∆m/5 (b). Different colors refer to different spin states, as explained in the
legend. The collapse of the four curves onto a single one is a verification of orbital
Feshbach resonance scaling low. The inset (c) reports the centers of the four resonances
as a function of the ∆m.

lattice band in an energy-selective way. Following the scheme proposed in reference
(Celi et al., 2014), we also mapped the 1S0 and 3P0 states on an extra dimension and
directly measured the emergence of chiral edge currents in an hybrid two-leg ladder,
probing them as a function of the artificial magnetic field flux Φ per hybrid plaque-
tte, for fluxes varying in the range 0 ≤ Φ ≤ 1.31π. On the other hand, the strongly
interacting regime has been achieved exploiting the recently proposed orbital Fesh-
bach resonance scheme and probed observing the hydrodynamic expansion of the gas
(Zhang et al., 2015).

The results presented in this chapter pave the way to the realization of many ex-
perimental schemes that exploit the metastable |3P0⟩ state of two-electron atoms. In
this prospect 173Yb represents an ideal candidate because, contrary to other commonly
used alkaline-earth fermionic atoms (such as 87Sr), this isotope features a remarkably
high exchange interaction energy that constitutes a key ingredient for the investigation
of many models of quantum magnetism, such as the Kondo lattice model (Gorshkov
et al., 2009; Zhang et al., 2016). Exchange interactions, as we have discussed in the
previous section, are also at the origin of the orbital Feshbach resonance (OrbFR) phe-
nomenon that we have experimentally characterized. The observation of the OrbFR
has triggered many theoretical proposals aimed at the investigation of strongly inter-
acting regimes with two-electron atoms. Among the opportunities offered by this new
kind of Feshbach resonance there is the possibility to investigate strongly interacting
Fermi superfluids with two-electron atoms (Xu et al., 2016; He et al., 2016) or the
two-order BEC-BCS crossover (Zhang et al., 2015). As a matter of fact, a complete
experimental investigation of some basic properties of the OrbFR (such as the effective
range or and binding energy of two-body bound state), is still lacking, but theoretical
schemes to determine these parameters have been proposed (Cheng et al., 2017).

Orbital Feshbach resonances can also be employed in combination with SOC, for
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interacting regime has been achieved exploiting the recently proposed orbital Fesh-
bach resonance scheme and probed observing the hydrodynamic expansion of the gas
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The results presented in this chapter pave the way to the realization of many ex-
perimental schemes that exploit the metastable |3P0⟩ state of two-electron atoms. In
this prospect 173Yb represents an ideal candidate because, contrary to other commonly
used alkaline-earth fermionic atoms (such as 87Sr), this isotope features a remarkably
high exchange interaction energy that constitutes a key ingredient for the investigation
of many models of quantum magnetism, such as the Kondo lattice model (Gorshkov
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Fermi superfluids with two-electron atoms (Xu et al., 2016; He et al., 2016) or the
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example coupling different electronic and nuclear states with circularly polarized light.
This would enable us to control the interactions between the two internal states allow-
ing the investigation of synthetic flux ladders with tunable interleg interactions.

Finally, it is worth to mention a recent theoretical proposal (Iemini et al., 2017) in
which SOC is exploited in conjunction with the spin-exchange interaction to realize
Majorana quasiparticles as edge modes in one-dimensional cold atom gas.
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Chapter 5
Synthetic dimensions with Raman

In chapter 4 we discussed how interpreting the two long lived electronic states of 173Yb
as a two-sites synthetic dimension it is possible to realize a hybrid two-leg ladder in
which the clock laser coupling between the two atomic levels mimics the tunnelling
in a real lattice and imprints on the atoms a phase shift that can be associated to an
artificial magnetic flux piercing the ladder. In the present chapter we discuss an al-
ternative approach in which the synthetic dimension is realized exploiting the nuclear
spin states of the ground level of 173Yb and the coupling between the synthetic sites
is realixed by means of Raman transitions (Mancini et al., 2015). The first section of
the chapter is devoted to a theoretical description of this method and, in particular, to
the strategy adopted to realize a ladder with a tunable number of legs. Sections 5.2
and 5.3 are instead devoted to the experimental realization of ladders with two and
three synthetic sites, respectively. For both the configurations we discuss the onset of
chiral currents circulating on the edges of the system as a result of the presence of the
Raman-induced artificial gauge field. Some preliminary results regarding the interplay
between atom-atom interactions and chiral currents in the two-leg case are presented
in section 5.2.2. For the three-leg configuration we also performed experiments aimed
at the investigation of the dynamics of the chiral transport along the edges, that we
report in section 5.3.2.

The following sections are mainly focused on the experimental results that we ob-
tained in the framework of the synthetic dimension scheme. For an extensive charac-
terization of the Raman setup the reader is referred to the PhD thesis of my former
colleague Marco Mancini (Mancini, 2016).

5.1 Nuclear spin states as synthetic dimension of a Hall ribbon

The six nuclear spin states of the fundamental level |1S0⟩ = g of 173Yb are an ideal
candidate to realize a synthetic dimension within our system, since they are stable
states protected by SU(N ) symmetry and this implies that spin-changing collisions are
forbidden. Aswe have already discussed in section 2.3.2, the key ingredient that makes
it possible to consider this internal state as an extra dimension, is a coherent synthetic
coupling that connects the spins, mimicking the effect of the tunnelling in a real lattice.
In order to realize this coupling, we exploit a series of two-photons Raman transitions
connecting pairs of spin states and exploiting the |3P1⟩ manifold as virtual level, as it

103
100



example coupling different electronic and nuclear states with circularly polarized light.
This would enable us to control the interactions between the two internal states allow-
ing the investigation of synthetic flux ladders with tunable interleg interactions.

Finally, it is worth to mention a recent theoretical proposal (Iemini et al., 2017) in
which SOC is exploited in conjunction with the spin-exchange interaction to realize
Majorana quasiparticles as edge modes in one-dimensional cold atom gas.

102

Chapter 5
Synthetic dimensions with Raman

In chapter 4 we discussed how interpreting the two long lived electronic states of 173Yb
as a two-sites synthetic dimension it is possible to realize a hybrid two-leg ladder in
which the clock laser coupling between the two atomic levels mimics the tunnelling
in a real lattice and imprints on the atoms a phase shift that can be associated to an
artificial magnetic flux piercing the ladder. In the present chapter we discuss an al-
ternative approach in which the synthetic dimension is realized exploiting the nuclear
spin states of the ground level of 173Yb and the coupling between the synthetic sites
is realixed by means of Raman transitions (Mancini et al., 2015). The first section of
the chapter is devoted to a theoretical description of this method and, in particular, to
the strategy adopted to realize a ladder with a tunable number of legs. Sections 5.2
and 5.3 are instead devoted to the experimental realization of ladders with two and
three synthetic sites, respectively. For both the configurations we discuss the onset of
chiral currents circulating on the edges of the system as a result of the presence of the
Raman-induced artificial gauge field. Some preliminary results regarding the interplay
between atom-atom interactions and chiral currents in the two-leg case are presented
in section 5.2.2. For the three-leg configuration we also performed experiments aimed
at the investigation of the dynamics of the chiral transport along the edges, that we
report in section 5.3.2.

The following sections are mainly focused on the experimental results that we ob-
tained in the framework of the synthetic dimension scheme. For an extensive charac-
terization of the Raman setup the reader is referred to the PhD thesis of my former
colleague Marco Mancini (Mancini, 2016).

5.1 Nuclear spin states as synthetic dimension of a Hall ribbon

The six nuclear spin states of the fundamental level |1S0⟩ = g of 173Yb are an ideal
candidate to realize a synthetic dimension within our system, since they are stable
states protected by SU(N ) symmetry and this implies that spin-changing collisions are
forbidden. Aswe have already discussed in section 2.3.2, the key ingredient that makes
it possible to consider this internal state as an extra dimension, is a coherent synthetic
coupling that connects the spins, mimicking the effect of the tunnelling in a real lattice.
In order to realize this coupling, we exploit a series of two-photons Raman transitions
connecting pairs of spin states and exploiting the |3P1⟩ manifold as virtual level, as it

103
Lorenzo Francesco Livi, New quantum simulations with ultracold Ytterbium gases, © 2020 Author(s), content CC BY 4.0 International, 
metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 2612-8020 (online), ISBN 978-88-6453-
989-8 (online PDF)

http://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
http://www.fupress.com


New quantum simulations with ultracold Ytterbium gases

102

is pictorially shown in figure 5.1-a. While the mapping of the synthetic dimension on
the two long-lived electronic states of 173Yb allowed only the realization of two-leg
ladders (see section 4.2), with the nuclear spin approach we can extend the number
of sites up to six, realizing geometries more similar to a real two-dimensional lattice.
This extended ladder, which we refer to also as Hall ribbon, is naturally pierced by
an artificial magnetic field that, as in the case of the clock-laser-induced gauge field,
is related to the phase acquired by an atom that moves along the synthetic dimension
exchanging photons with the Raman field. Following exactly the same argumentation
discussed in sections 2.3.2 and 4.2.1, we can associate this artificial gauge field to a
magnetic flux piercing the plaquettes of the hybrid ladder uniformly. In particular, in
the present case, the magnetic flux per plaquette is

Φ = 2π × qRx
2kL

(5.1)

where kL is the real optical lattice wavevector and qRx is the projection of the Raman
wavevector on the lattice, that we assume to be oriented along the êx direction. To
determine qRx we have to consider the geometry of the Raman beams and their orien-
tation with respect to the optical lattice. In our setup, Raman transition are induced
exploiting two Raman beams with frequencies ω and ω + δω quasiresonant with the
|3P1⟩ level. The two beams propagate on the same plane as the horizontal lattices and
intersect one the other with an angle θ = 19°, as it is shown in figure 5.1-b (see also
figure 1.5 for more details). The resulting Raman wavevector is aligned perpendicular
to the bisector of the two beams and its value is qR = 2kR sin(θ/2)where kR = 2π/λR

with λR = 556 nm. As in the experiment discussed in section 4.2, we realize the real
dimension of the hybrid ladder confining the atoms in one-dimensional tubes oriented
along the direction êx. The strong confinement on the directions orthogonal to the
tubes is provided by two deep s = 30 optical lattices oriented along êy (OL1 in fig-
ure) and êz , while along the tubes direction a shallow lattice is present (OL2 in figure).
Considering the angle ϕ = 35° between the Raman wavevector and the shallow lattice,
we have for the synthetic flux the value

Φ = 2π × kR
kL

sin
(
θ

2

)
cos(ϕ) = 0.37π. (5.2)

Obviously, it is possible to realize the tubes also along the direction of the lattice OL1,
using the lattice OL2 to provide the strong confinement along the direction orthogonal
to the tubes. This configuration, which results in a flux Φ = 0.26π, has not been used
in the experiment described in this chapter.

5.1.1 Raman couplings in the fundamental level of 173Yb

Let’s now summarize some theoretical fundamental results concerning the Raman cou-
plings of the ground-state nuclear sublevels in 173Yb. In particular, we are interested
in the determination of the strengths of these couplings, that are given by the Rabi fre-
quencies ΩR

mg1,mg2
relative to the Raman processes connecting the nuclear sublevels

mg1 and mg2, and on the spin dependent-light shifts Vmg
induced by the Raman light.

The knowledge of these quantities is fundamental in the prospect to consider the six
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Figure 5.1: a: Scheme of the Yb levels involved in the Raman transitions. The value of
the Raman detuning is ∆ = 1.876 GHz. b: Sketch of the experimental setup showing
the relative position of the Raman beams with respect to the optical lattices and the
one dimensional fermionic tubes.

nuclear sublevels as the lattice sites of an extra dimension, since in this picture the Rabi
frequencies describe the strength of the coupling between neighbouring sites, while the
light shifts act as an offset of the site energy.

In the following discussion we will consider two Raman beams with frequencies
ω and ω + δω coupling the nuclear spins mg1 and mg2 > mg1 of the g fundamental
manifold of 173Yb. At the first order (excluding the light shifts), the frequency differ-
ence δω is given by the energy splitting between the two spin states. This splitting is
provided by the Zeeman shift determined by an external magnetic fieldB, and for two
nuclear spin states of the fundamental level is given by δω ≃ 207∆mB Hz/G where
∆m = mg2 −mg1. How large this magnetic field should be will be discussed later.

The Raman transitions exploit a Λ scheme in which the virtual levels belong to the
3P1 fine structure multiplet. The two Raman frequencies are blue-detuned by ∆ =

1.876 GHz with respect to the |1S0, F = 5
2 ⟩ → |3P1, F = 7

2 ⟩ transition also used
for the MOT. This detuning can be assumed to be the same for both the beams since
the difference between the two frequencies δω is always δω ≪ ω,∆. The value of ∆
has been chosen in order to maximize the ratio between the Raman coupling and the
inelastic scattering rate Γsc (Mancini, 2016).

Raman couplings strength

In the calculation of the Rabi couplings one has to take into account that the virtual ex-
cited state of the Raman transition is composed by the three levels of the 3P1 multiplet
characterized by Fe = { 3

2 ,
5
2 ,

7
2}. The Raman process can be divided into two virtual

single-photon transitions, one at frequency ω + δω connecting themg1 spin state with
the |Fe,me⟩ state and the other at frequency ω connecting |Fe,me⟩ with the mg2 nu-
clear spin of the fundamental level. Using standard results of the Raman theory (Steck,
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Figure 5.1: a: Scheme of the Yb levels involved in the Raman transitions. The value of
the Raman detuning is ∆ = 1.876 GHz. b: Sketch of the experimental setup showing
the relative position of the Raman beams with respect to the optical lattices and the
one dimensional fermionic tubes.

nuclear sublevels as the lattice sites of an extra dimension, since in this picture the Rabi
frequencies describe the strength of the coupling between neighbouring sites, while the
light shifts act as an offset of the site energy.

In the following discussion we will consider two Raman beams with frequencies
ω and ω + δω coupling the nuclear spins mg1 and mg2 > mg1 of the g fundamental
manifold of 173Yb. At the first order (excluding the light shifts), the frequency differ-
ence δω is given by the energy splitting between the two spin states. This splitting is
provided by the Zeeman shift determined by an external magnetic fieldB, and for two
nuclear spin states of the fundamental level is given by δω ≃ 207∆mB Hz/G where
∆m = mg2 −mg1. How large this magnetic field should be will be discussed later.

The Raman transitions exploit a Λ scheme in which the virtual levels belong to the
3P1 fine structure multiplet. The two Raman frequencies are blue-detuned by ∆ =

1.876 GHz with respect to the |1S0, F = 5
2 ⟩ → |3P1, F = 7

2 ⟩ transition also used
for the MOT. This detuning can be assumed to be the same for both the beams since
the difference between the two frequencies δω is always δω ≪ ω,∆. The value of ∆
has been chosen in order to maximize the ratio between the Raman coupling and the
inelastic scattering rate Γsc (Mancini, 2016).

Raman couplings strength

In the calculation of the Rabi couplings one has to take into account that the virtual ex-
cited state of the Raman transition is composed by the three levels of the 3P1 multiplet
characterized by Fe = { 3

2 ,
5
2 ,

7
2}. The Raman process can be divided into two virtual

single-photon transitions, one at frequency ω + δω connecting themg1 spin state with
the |Fe,me⟩ state and the other at frequency ω connecting |Fe,me⟩ with the mg2 nu-
clear spin of the fundamental level. Using standard results of the Raman theory (Steck,
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2007), the overall Rabi frequency associated to the resulting Λ process is given by

ΩR
mg1,mg2

=
∑

Fe={ 3
2 ,

5
2 ,

7
2}

∑
me

Ω1

(
mg1 → Fe,me

)
Ω2

(
Fe,me → mg2

)
2 (∆− δFe,me(B))

(5.3)

where δFe,me(B) is the magnetic-field-dependent detuning of the level |Fe,me⟩ with
respect to the magnetic-unperturbed F = 7/2 nuclear manifold and Ω1,2 are the Rabi
frequencies associated to the single-photon transitions described above, that we sup-
pose to be driven, respectively, by the higher- and lower-frequency beams. The detun-
ing δFe,me

(B) depends on the external magnetic field B applied to resolve the nuclear
structure of the fundamental state. While for the magnetic field values accessible in
the experiment (B < 200 G) the Zeeman shift of the nuclear states of the fundamental
level manifold is at most of the order of tens of kHz, the magnetic nature of the |3P1⟩
state determines shifts up to tens of MHz of the nuclear levels of the |3P1⟩ manifold.
These shifts are a non-negligible fraction of the Raman detuning∆ and, consequently,
have to be taken into account in the determination of the strength of the couplings. If
now we suppose that the intensities of the two beams are I1 and I2, and assume their
polarizations to be, respectively, q1 and q2, (where qα = 0 for fully π-polarized light
and qα = +1/− 1 for fully σ+/σ−-polarized light), then it is possible to demonstrate
that expression 5.3 becomes

ΩR
mg1,mg2

=
2
√
I1I2

ϵ0 c ℏ2
|⟨Je||d||Jg⟩|2

∑

Fe={ 3
2
, 5
2
, 7
2}

∑
me

S
(
q1,mg1, Fe,me

)
S
(
q2,mg2, Fe,me

)

2 (∆− δFe,me)

(5.4)
where |⟨Je||d||Jg⟩| is the reduced matrix element of the dipole operator and

S (q,mg, Fe,me) = (−1)Fe+Jg+I
√

(2Fe + 1) (2Jg + 1)

{
Jg Je 1

Fe Fg I

}

� �� �
6j symbol

⟨Fgmg|Feme; 1q⟩� �� �
Clebsh-Gordan

(5.5)
defines the strength of the single-photon transitions, with Fg = 5

2 , Jg = 0, Je = 1. A
further simplification can be done expressing the reduced matrix element of the dipole
operator as a function of the linewidth Γ = 2π×182 kHz of the transition (Steck, 2007)

Γ =
ω3
0

(3πc3ϵ0ℏ)
2Jg + 1

2Je + 1
|⟨Je||d||Jg⟩|2, (5.6)

where ω0/(2π) is the g → e transition frequency. The relation above, inserted in the
expression 5.4, gives for the Rabi frequency

ΩR
mg1,mg2

=
2Je + 1

2Jg + 1

3πc2Γ

2hω3
0

√
I1I2

∑

Fe={ 3
2
, 5
2
, 7
2}

∑
me

S
(
q1,mg1, Fe,me

)
S
(
q2,mg2, Fe,me

)

∆− δFe,me

(5.7)
The formula for the Rabi couplings derived above can be simplified if we take into
account that, due to the angular momentum conservation rules, a two-photon Raman
transition can connect only nuclear spins with ∆m = 1 or ∆m = 2, respectively if a
σ − π or a σ+ − σ− transition is considered.
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If we are interested only in the σ+−σ− case (as in the experiments described in this
chapter), in order to prevent spurious σ− π processes to be resonant as a consequence
of an the power broadening of the transition, we apply a strong magnetic fieldB ≃ 150

G that removes the degeneracy among the six spin states of the g manifold, causing a
splitting between neighbouring spins ∆Ez ≃ 31 kHz. This splitting is also fundamen-
tal to ensure the directionality of the Ramanmomentum transfer, that is linked to which
of the two Raman photons is absorbed or emitted. The fulfillment of this request is nec-
essary in the synthetic dimension picture, since the direction in which momentum is
transferred determines the phase associated to the synthetic gauge field induced by the
Raman light. As an example, if the two spins connected by the Raman transition are
degenerate and the process is driven with two fully σ+ and σ− polarized beams, atoms
can absorb a photon from the σ+ beam and re-emit it in the σ−, gaining momentum in
one direction, but can also do the opposite process acquiring in this way momentum
in the opposite direction. A magnetic field puts one of the two processes 2∆Ez out
of resonance, making it possible to transfer momentum always in the same direction.
The drawback of the application of a magnetic field is that the Clebsh-Gordan-induced
asymmetries in the strength of the couplings (apparent already in equation 5.5 and fur-
ther discussed below) are further enhanced, making it very difficult to connect all the
six spins with similar couplings.

Raman-induced light shifts

Also for the determination of the Raman induced light shifts, we have to take into
account that the virtual level of the transition is composed by the three levels of the
3P1 multiplet characterized by Fe = { 3

2 ,
5
2 ,

7
2}. In this case the expression of the light

shift of the nuclear levelmg of the fundamental state reduces to

Vmg =
∑
q

ℏΩ2
q

4




∑

Fe={ 3
2 ,

5
2 ,

7
2}

∑
me

��S (
q,mg, Fe,me

)
|2

∆− δFe,me


 (5.8)

where Ωq is the Rabi frequency associated to light with polarization q. It is possible
again to express the Rabi frequency as a function of the light intensity and of the tran-
sition linewidth. With these substitutions the light shift becomes

Vmg =
2Je + 1

2Jg + 1

3πc2Γ

2hω3
0

∑
q

Iq




∑

Fe={ 3
2 ,

5
2 ,

7
2}

∑
me

��S (
q,mg, Fe,me

)
|2

∆− δFe,me


 (5.9)

where Iq is the total light intensity (considering both the Raman beams) with polariza-
tion q.

5.1.2 Two- and three-leg ladders

In the ideal case one expects to have six identical couplings for all the possiblemg →
mg+1 Raman transitions and identical light shifts for all the six spins states, in such a
way to perfectly mimic the physics of a real lattice. As we have seen in the previous
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2007), the overall Rabi frequency associated to the resulting Λ process is given by
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where δFe,me(B) is the magnetic-field-dependent detuning of the level |Fe,me⟩ with
respect to the magnetic-unperturbed F = 7/2 nuclear manifold and Ω1,2 are the Rabi
frequencies associated to the single-photon transitions described above, that we sup-
pose to be driven, respectively, by the higher- and lower-frequency beams. The detun-
ing δFe,me

(B) depends on the external magnetic field B applied to resolve the nuclear
structure of the fundamental state. While for the magnetic field values accessible in
the experiment (B < 200 G) the Zeeman shift of the nuclear states of the fundamental
level manifold is at most of the order of tens of kHz, the magnetic nature of the |3P1⟩
state determines shifts up to tens of MHz of the nuclear levels of the |3P1⟩ manifold.
These shifts are a non-negligible fraction of the Raman detuning∆ and, consequently,
have to be taken into account in the determination of the strength of the couplings. If
now we suppose that the intensities of the two beams are I1 and I2, and assume their
polarizations to be, respectively, q1 and q2, (where qα = 0 for fully π-polarized light
and qα = +1/− 1 for fully σ+/σ−-polarized light), then it is possible to demonstrate
that expression 5.3 becomes
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where |⟨Je||d||Jg⟩| is the reduced matrix element of the dipole operator and

S (q,mg, Fe,me) = (−1)Fe+Jg+I
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(5.5)
defines the strength of the single-photon transitions, with Fg = 5

2 , Jg = 0, Je = 1. A
further simplification can be done expressing the reduced matrix element of the dipole
operator as a function of the linewidth Γ = 2π×182 kHz of the transition (Steck, 2007)

Γ =
ω3
0

(3πc3ϵ0ℏ)
2Jg + 1

2Je + 1
|⟨Je||d||Jg⟩|2, (5.6)

where ω0/(2π) is the g → e transition frequency. The relation above, inserted in the
expression 5.4, gives for the Rabi frequency
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The formula for the Rabi couplings derived above can be simplified if we take into
account that, due to the angular momentum conservation rules, a two-photon Raman
transition can connect only nuclear spins with ∆m = 1 or ∆m = 2, respectively if a
σ − π or a σ+ − σ− transition is considered.
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If we are interested only in the σ+−σ− case (as in the experiments described in this
chapter), in order to prevent spurious σ− π processes to be resonant as a consequence
of an the power broadening of the transition, we apply a strong magnetic fieldB ≃ 150

G that removes the degeneracy among the six spin states of the g manifold, causing a
splitting between neighbouring spins ∆Ez ≃ 31 kHz. This splitting is also fundamen-
tal to ensure the directionality of the Ramanmomentum transfer, that is linked to which
of the two Raman photons is absorbed or emitted. The fulfillment of this request is nec-
essary in the synthetic dimension picture, since the direction in which momentum is
transferred determines the phase associated to the synthetic gauge field induced by the
Raman light. As an example, if the two spins connected by the Raman transition are
degenerate and the process is driven with two fully σ+ and σ− polarized beams, atoms
can absorb a photon from the σ+ beam and re-emit it in the σ−, gaining momentum in
one direction, but can also do the opposite process acquiring in this way momentum
in the opposite direction. A magnetic field puts one of the two processes 2∆Ez out
of resonance, making it possible to transfer momentum always in the same direction.
The drawback of the application of a magnetic field is that the Clebsh-Gordan-induced
asymmetries in the strength of the couplings (apparent already in equation 5.5 and fur-
ther discussed below) are further enhanced, making it very difficult to connect all the
six spins with similar couplings.

Raman-induced light shifts

Also for the determination of the Raman induced light shifts, we have to take into
account that the virtual level of the transition is composed by the three levels of the
3P1 multiplet characterized by Fe = { 3

2 ,
5
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7
2}. In this case the expression of the light

shift of the nuclear levelmg of the fundamental state reduces to
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where Ωq is the Rabi frequency associated to light with polarization q. It is possible
again to express the Rabi frequency as a function of the light intensity and of the tran-
sition linewidth. With these substitutions the light shift becomes
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2Je + 1

2Jg + 1

3πc2Γ
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where Iq is the total light intensity (considering both the Raman beams) with polariza-
tion q.

5.1.2 Two- and three-leg ladders

In the ideal case one expects to have six identical couplings for all the possiblemg →
mg+1 Raman transitions and identical light shifts for all the six spins states, in such a
way to perfectly mimic the physics of a real lattice. As we have seen in the previous
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section, this is actually a tricky request that is impossible to fulfil (at least with only
two Raman beams) because of the spin-dependent Clebsh-Gordan relations that enter
the definition of the couplings and of the light shifts. However, these asymmetries
can be exploited to couple only a defined subset of the six spins, reducing in this way
the number of sites along the synthetic dimension and realizing ladders with a tunable
number of legs. Taking advantage of this feature, we have engineered ladders with
two and three synthetic sites. The extension of this approach to more than three sites
is obviously possible, but experimentally more difficult to implement. Probably the
best strategy to couple more than three spins is to use Raman beams with additional
frequency sidebands and/or to employ additional detuned beams to tune the light shifts
independently from the Raman couplings.

Three-leg ladders

In order to realize a three-leg ladder coupling together only three out of the six spin
states, we exploit σ+ − σ− transitions that naturally exclude three spins out of the
Raman dynamics. This means that, starting from a spin-polarized sample, only the
spins belonging to the triplet τ1 = {− 5

2 ,−
1
2 ,+

3
2} or the triplet τ2 = {− 3

2 ,+
1
2 ,+

5
2}

will be involved in the Raman dynamics. The experiments described in this chapter
always start from a mg = − 5

2 spin-polarized gas and, consequently, we can limit our
discussion to the states of the triplet τ1. Considering the basis {| − 5

2 ⟩, | −
1
2 ⟩, |+

3
2 ⟩},

after adiabatic elimination of the excited states and rotating wave approximations, the
Raman dynamics is captured by the Hamiltonian1

HR = ℏ




V1 ΩR
1 /2 0

ΩR
1 /2 V2 − δR ΩR

2 /2

0 ΩR
2 /2 V3 − 2δR


 (5.10)

where δR is the detuning with respect to the Raman transitions considering only the
Zeeman shift and neglecting the light shifts, V1, V2 and V3 are, respectively, the Raman-
induced light shifts of the states mg = −5/2, mg = −1/2 and mg = +3/2 while ΩR

1

and ΩR
2 are, respectively, the Rabi frequencies ΩR

−5/2,−1/2 and ΩR
−1/2,+3/2 introduced

before.
The three spins considered can be coupled resonantly by taking advantage of the

polarization dependence of the Raman-induced light shifts. In particular, if we set a
”uniform” linear polarization

ϵ̂3L =
1√
3
(ϵ̂+ + ϵ̂− + ϵ̂π) (5.11)

for both beams and choose a detuning δR = V2 − V1 such that the Raman light is
perfectly resonant with the transition m−5/2 → m−1/2, we have that the Hamiltonian
5.10 reduces to

HR =
ℏΩR

1

2



0 1 0

1 0 α

0 α 2β


 (5.12)

1Here we are interested in the Raman dynamics and consider only the real part of the Rabi frequencies.
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Figure 5.2: Nuclear spin states as lattice sites along a synthetic dimension. Ra-
man coupling strengths (Rabi frequencies) and light shifts for the three spins mg =

{− 5
2 ,−

1
2 ,+

3
2} involved in the Raman process for (a) the three-leg configuration and

(b) the two-leg configuration. The transition m−5/2 → m−1/2 is supposed to be per-
fectly resonant with the Raman light. The Rabi frequencies and light shifts are reported
in units of ΩR

−5/2,−1/2.

where α = 1.41 and β = 0.16. The low value of β makes reasonably equally coupled
all the three spins, since the light shifts are approximately the same for all the states.
The drawback of this method is that only 1/3 of the light intensity of each beam is
effectively used to couple the spins while the remnant part only induces light shifts. A
sketch of the three-leg couplings and light shifts is reported in figure 5.2-a.

Two-leg ladders

To further reduce the dynamics only to two spins, we can again exploit the polarization-
dependent light shifts in order to offset the m = +3/2 spin state, isolating it from the
dynamics. This can be done setting for both the beams the polarization vector

ϵ̂2L =
1√
2
(ϵ̂+ + ϵ̂−) (5.13)

that is equivalent to have horizontal polarization with respect to the vertical quantiza-
tion axis defined by the magnetic field. Again, in the condition in which the Raman
detuning makes the transition m−5/2 → m−1/2 perfectly resonant, the Hamiltonian
5.10 reduces to the matrix 5.12 with α = 1.41 and β = 2.65, as it is shown in figure
5.2-b. In this case the high value of β causes the spin m = + 3

2 to be only weakly
coupled to the other two spins and, as a matter of fact, this limits the Raman dynamics
to the spinsm = − 5

2 andm = − 1
2 .

We have also tried to add a non resonant 1 MHz detuned sideband on one of the
two Raman beams, offsetting in this way the third spin by 7ΩR

1 . This anyway did not
result in a significant change in the Raman dynamics.

Ladder Hamiltonian

After the previous discussion on the Raman couplings ΩR
α and on the light shifts Vα

that govern the dynamics in the synthetic dimension, we can write the overall ladder
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section, this is actually a tricky request that is impossible to fulfil (at least with only
two Raman beams) because of the spin-dependent Clebsh-Gordan relations that enter
the definition of the couplings and of the light shifts. However, these asymmetries
can be exploited to couple only a defined subset of the six spins, reducing in this way
the number of sites along the synthetic dimension and realizing ladders with a tunable
number of legs. Taking advantage of this feature, we have engineered ladders with
two and three synthetic sites. The extension of this approach to more than three sites
is obviously possible, but experimentally more difficult to implement. Probably the
best strategy to couple more than three spins is to use Raman beams with additional
frequency sidebands and/or to employ additional detuned beams to tune the light shifts
independently from the Raman couplings.

Three-leg ladders

In order to realize a three-leg ladder coupling together only three out of the six spin
states, we exploit σ+ − σ− transitions that naturally exclude three spins out of the
Raman dynamics. This means that, starting from a spin-polarized sample, only the
spins belonging to the triplet τ1 = {− 5
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2 spin-polarized gas and, consequently, we can limit our
discussion to the states of the triplet τ1. Considering the basis {| − 5

2 ⟩, | −
1
2 ⟩, |+

3
2 ⟩},

after adiabatic elimination of the excited states and rotating wave approximations, the
Raman dynamics is captured by the Hamiltonian1
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where δR is the detuning with respect to the Raman transitions considering only the
Zeeman shift and neglecting the light shifts, V1, V2 and V3 are, respectively, the Raman-
induced light shifts of the states mg = −5/2, mg = −1/2 and mg = +3/2 while ΩR

1

and ΩR
2 are, respectively, the Rabi frequencies ΩR

−5/2,−1/2 and ΩR
−1/2,+3/2 introduced

before.
The three spins considered can be coupled resonantly by taking advantage of the

polarization dependence of the Raman-induced light shifts. In particular, if we set a
”uniform” linear polarization

ϵ̂3L =
1√
3
(ϵ̂+ + ϵ̂− + ϵ̂π) (5.11)

for both beams and choose a detuning δR = V2 − V1 such that the Raman light is
perfectly resonant with the transition m−5/2 → m−1/2, we have that the Hamiltonian
5.10 reduces to

HR =
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1Here we are interested in the Raman dynamics and consider only the real part of the Rabi frequencies.
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(b) the two-leg configuration. The transition m−5/2 → m−1/2 is supposed to be per-
fectly resonant with the Raman light. The Rabi frequencies and light shifts are reported
in units of ΩR
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where α = 1.41 and β = 0.16. The low value of β makes reasonably equally coupled
all the three spins, since the light shifts are approximately the same for all the states.
The drawback of this method is that only 1/3 of the light intensity of each beam is
effectively used to couple the spins while the remnant part only induces light shifts. A
sketch of the three-leg couplings and light shifts is reported in figure 5.2-a.

Two-leg ladders

To further reduce the dynamics only to two spins, we can again exploit the polarization-
dependent light shifts in order to offset the m = +3/2 spin state, isolating it from the
dynamics. This can be done setting for both the beams the polarization vector

ϵ̂2L =
1√
2
(ϵ̂+ + ϵ̂−) (5.13)

that is equivalent to have horizontal polarization with respect to the vertical quantiza-
tion axis defined by the magnetic field. Again, in the condition in which the Raman
detuning makes the transition m−5/2 → m−1/2 perfectly resonant, the Hamiltonian
5.10 reduces to the matrix 5.12 with α = 1.41 and β = 2.65, as it is shown in figure
5.2-b. In this case the high value of β causes the spin m = + 3

2 to be only weakly
coupled to the other two spins and, as a matter of fact, this limits the Raman dynamics
to the spinsm = − 5

2 andm = − 1
2 .

We have also tried to add a non resonant 1 MHz detuned sideband on one of the
two Raman beams, offsetting in this way the third spin by 7ΩR

1 . This anyway did not
result in a significant change in the Raman dynamics.

Ladder Hamiltonian

After the previous discussion on the Raman couplings ΩR
α and on the light shifts Vα

that govern the dynamics in the synthetic dimension, we can write the overall ladder
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Hamiltonian as

HL = ℏ

(
N∑

j=1

3∑
α=1

[
−t(â†

j+1,αâj,α + H.c.)
]
−

N∑
j=1

2∑
α=1

[
−ΩR

α

2
eiΦ j(â†

j,α+1âj,α + H.c.)
]
+

+
N∑

j=1

3∑
α=1

[
Vα + fx

(
j − N + 1

2

)2
]
nj,α

)

(5.14)
where N is the number of sites along the real lattice, α and j are integer indexes that
identify a position respectively along the synthetic and the real dimensions, t is the
optical lattice tunnelling energy, â†j,α is the creation operator for a fermion at position
{j, α} in the hybrid lattice. In the Hamiltonian above we also take into account the
effect of the harmonic confinement induced by the transverse lattices with the quadratic
term proportional to fx, which is defined as in equation 4.19.

5.2 Two-leg ladders

5.2.1 Chiral currents

Similarly to the experiment described in section 4.2, also in this case, at equilibrium,
despite the presence of only two sites along the synthetic dimension, the two-leg ladder
configuration is supposed to support chiral currents that circulate in opposite directions
along the edges of the hybrid lattice, as investigated also in bosonic systems (Atala
et al., 2014). In order to induce and detect these currents we follow exactly the same
procedure described in section 4.2. Since the two experiments are similar the procedure
adopted in the present case will be only summarized and the attention will be focused
on the differences between the two experimental sequences. The starting point for
our experiment is a 173Yb ground-state spin-polarized degenerate Fermi gas in the
nuclear-spin levelmg = − 5

2 characterized by Nat = 1.6× 104 atoms at a temperature
T = 0.2TF (where TF is the Fermi temperature). Quantum degeneracy is achieved by
forced evaporation in the crossed optical dipole trap at 1064 nm. The atoms are then
confined in a three-dimensional cubic optical lattice operated at the wavelength λL =

759 nm. The lattices are turned on with a 150 ms adiabatic exponential intensity ramp,
after which the 1064 nm dipole trap is turned off. The three lattice depths are set to sx =

6.5 and sy = sz = 30 (where Er = h2/(2mλ2
L) where m is the atomic mass). Along

êy and êz the tunneling rates (ty,z/(2π) ≃ 1 Hz) are negligible on the timescale of the
experiment, leading to the realization of an array of≈ 1000 independent 1D fermionic
wires characterized by a longitudinal harmonic confinement with frequency ω ≃ 2π×
55 Hz. The dynamics is allowed only in the shallow lattice along direction êx where
t/(2π) ≃ 90 Hz. At this point, in order to load the fundamental dressed state of the
ladder Hamiltonian 5.14, the magnetic field is set to 152 G and the Raman coupling is
turned on with an initial detuning δin ≃ 25ΩR

1 . The detuning is subsequently reduced
performing a frequency sweep characterized by the analytical form 4.13. The detuning
at the end of the sweep is set to be δf = V2 − V1 in such a way to be in resonance with
the Raman process connecting the spinsmg = − 5

2 andmg = − 1
2 . The duration of the

sweep is tuned between 20 and 80 ms accordingly to the Rabi frequency ΩR
1 .
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Figure 5.3: Chiral dynamics on a two-leg ladder. On the left we report a pictorial
representation of the hybrid ladder in which the third spin (mg = + 3

2 ) is put out of
resonance exploiting the polarization dependence of the light shifts, excluding it from
the dynamics (see the main text for details). The panels on the right show on the top the
time-of-flight images (averaged over∼ 30 realizations) of the momentum distributions
relative to the legsmg = − 1

2 andmg = − 5
2 . From the time-of-flight images we extract

the integrated momentum distribution n(k) along êx (middle) from which we evaluate
the asymmetry function h(k) = n(k)−n(−k) (bottom). The experimental parameters
are ΩR

1 = 2π × 489 Hz, t = 2π × 134 Hz and Φ = 0.37π.

Once the dresses state is loaded, the coupling along the synthetic dimension is sud-
denly switched off and the momentum distribution of the atoms is detected exploiting
the bandmapping technique described in section 1.3. Differently from to the analogous
experiment performed exploiting the 1S0 − 3P0 electronic states as synthetic dimen-
sion, in this case the standard 1S0 imaging procedure cannot be directly exploited to
resolve the single legs of the ladder, due to the excessive linewidth of the transition
|1S0⟩ → |1P1⟩, which is not spin-selective, at least at the magnetic fields accessible in
the laboratory. In order to perform a single-site imaging along the synthetic dimension,
we use a sequence of spin-selective laser pulses (”blast” pulses), in resonance with dif-
ferent components of the narrow intercombination transition |1S0⟩ → |3P1, F = 7/2⟩,
to remove atoms in all the spin states but one. The sequence is carried out during
the first 2.5 ms of ballistic expansion, after the band mapping. At this time the (real)
magnetic field is Bblast = 15 G, leading to a Zeeman shift ∆Ez ≃ 50Γ/(2π) be-
tween adjacent spin components in the 3P1 manifold (where Γ = 2π × 182 kHz is
the natural linewidth of the transition). This separation allows us to use two oppor-
tunely detuned σ+/σ− beams to remove the unwanted spin population, without caus-
ing any heating to the selected spin state left in the expanding cloud (see (Mancini,
2016) fore more details). After ballistic expansion, absorption imaging is performed
on the dipole-allowed |1S0⟩ → |1P1⟩ transition. The asymmetries associated to the mo-
mentum distributions are then evaluated with the expression 4.15 obtaining the value
Jα that characterizes the strength of the current carried by the leg α. Figure 5.3 reports
an example of this kind of measurements for the experimental values ΩR

1 = 2π × 489

111108



Lorenzo Francesco Livi

109

Hamiltonian as

HL = ℏ

(
N∑

j=1

3∑
α=1

[
−t(â†

j+1,αâj,α + H.c.)
]
−

N∑
j=1

2∑
α=1

[
−ΩR

α

2
eiΦ j(â†

j,α+1âj,α + H.c.)
]
+

+
N∑

j=1

3∑
α=1

[
Vα + fx

(
j − N + 1

2

)2
]
nj,α

)

(5.14)
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Figure 5.3: Chiral dynamics on a two-leg ladder. On the left we report a pictorial
representation of the hybrid ladder in which the third spin (mg = + 3

2 ) is put out of
resonance exploiting the polarization dependence of the light shifts, excluding it from
the dynamics (see the main text for details). The panels on the right show on the top the
time-of-flight images (averaged over∼ 30 realizations) of the momentum distributions
relative to the legsmg = − 1

2 andmg = − 5
2 . From the time-of-flight images we extract

the integrated momentum distribution n(k) along êx (middle) from which we evaluate
the asymmetry function h(k) = n(k)−n(−k) (bottom). The experimental parameters
are ΩR

1 = 2π × 489 Hz, t = 2π × 134 Hz and Φ = 0.37π.

Once the dresses state is loaded, the coupling along the synthetic dimension is sud-
denly switched off and the momentum distribution of the atoms is detected exploiting
the bandmapping technique described in section 1.3. Differently from to the analogous
experiment performed exploiting the 1S0 − 3P0 electronic states as synthetic dimen-
sion, in this case the standard 1S0 imaging procedure cannot be directly exploited to
resolve the single legs of the ladder, due to the excessive linewidth of the transition
|1S0⟩ → |1P1⟩, which is not spin-selective, at least at the magnetic fields accessible in
the laboratory. In order to perform a single-site imaging along the synthetic dimension,
we use a sequence of spin-selective laser pulses (”blast” pulses), in resonance with dif-
ferent components of the narrow intercombination transition |1S0⟩ → |3P1, F = 7/2⟩,
to remove atoms in all the spin states but one. The sequence is carried out during
the first 2.5 ms of ballistic expansion, after the band mapping. At this time the (real)
magnetic field is Bblast = 15 G, leading to a Zeeman shift ∆Ez ≃ 50Γ/(2π) be-
tween adjacent spin components in the 3P1 manifold (where Γ = 2π × 182 kHz is
the natural linewidth of the transition). This separation allows us to use two oppor-
tunely detuned σ+/σ− beams to remove the unwanted spin population, without caus-
ing any heating to the selected spin state left in the expanding cloud (see (Mancini,
2016) fore more details). After ballistic expansion, absorption imaging is performed
on the dipole-allowed |1S0⟩ → |1P1⟩ transition. The asymmetries associated to the mo-
mentum distributions are then evaluated with the expression 4.15 obtaining the value
Jα that characterizes the strength of the current carried by the leg α. Figure 5.3 reports
an example of this kind of measurements for the experimental values ΩR
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Figure 5.4: Time-of-flight images of the momentum distribution n(k) and asymmetry
function h(k) = n(k)−n(−k) of the− 1

2 spin state in the two-leg ladder configuration
for opposite values of the effective magnetic field. The sign of the magnetic field is
changed swapping the frequency of the two Raman beams. Experimental parameters
adopted in the experiment: ΩR

1 = 2π × 394 Hz, t = 2π × 87 Hz and Φ = ±0.37π.

Hz, t = 2π × 134 Hz and Φ = 0.37π. The values of J calculated for the two legs are
in this case J−5/2 = +0.056(3) and J−1/2 = −0.060(7). These values are approxi-
mately equal in intensity and opposite in sign, providing direct evidence for presence
of chirality in the system.

The Raman approach to the realization of an artificial gauge field allows us to easily
change the sign of the flux by simply swapping the frequencies of the two beams. In
figure 5.4 we report the momentum distribution relative to the spin leg mg = − 1

2

for the two values of the synthetic flux Φ = ±0.37π and experimental parameters
ΩR

1 = 2π × 394 Hz and t = 2π × 87 Hz. The sign of the current inverts accordingly
to the inversion of the flux, providing a further validation of the interpretation of our
experimental data.

5.2.2 Interactions-induced effects on the chiral currents

Here we present some preliminary result related to the experimental investigation of
how the chiral currents described in the previous section are affected by repulsive
atom-atom interactions. These experiments are aimed at providing a groundwork for
the simulation of phenomena in which the effects induced by magnetic fields and in-
teractions on a fermionic gas are strongly intertwined, as it happens in the Fractional
Quantum Hall Effect (Barbarino et al., 2015). In this prospect the role of interactions
is also debated for the realization of robust quantum information protocols (Nayak
et al., 2008) and for its implication in the definition of topological states of matter.
For instance, in the presence of SOC, interactions are expected to give rise to frac-
tional quantum spin Hall states in which the edge currents are spin-polarized (Galitski
and Spielman, 2013). Alkaline-earth and alkaline-earth-like elements are particularly
promising candidates for this kind of experiments as they offer the possibility to en-
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Figure 5.5: Chiral currents dependence on the lattice depth sx for the experimental
parameters ΩR

1 /t = 3.7, fx = 2π× 55 Hz. The theoretical prediction based on DMRG
simulation performed by the group of R. Fazio in Pisa (b) is compared with the exper-
imental data (a).

hance the spectrum of accessible phenomena exploiting their SU(N ) symmetry, in a
configuration that is not accessible in solid-state systems. For instance, in the syn-
thetic dimension picture, atom-atom interactions will exhibit an effective long-range
character along the synthetic dimension, with atoms interacting with the same strength
independently from the ”distance” between their spin states. Interaction effects in our
particular ladder system have been extensively studied, and theoretical schemes aimed
at the investigation of the formation of helical liquids (Barbarino et al., 2015), frac-
tional charge-pumping (Taddia et al., 2017) and Laughlin-like states in bosonic and
fermionic ladders (Calvanese Strinati et al., 2017) have been proposed.

Our experiment is based on the scheme proposed in reference (Barbarino et al.,
2016) by the group of R. Fazio at Scuola Normale Superiore in Pisa, in which the
authors analyze, by means of DMRG simulations, the effect played by repulsive in-
teractions on the onset of chiral currents in a hybrid two- and three-leg Hall ribbon,
akin to the one described in this chapter. The general result showed in the reference
is that repulsive interactions are expected to significantly enhance the chiral currents
for the filling factors considered in our experiments (i.e. less than one atom per lat-
tice site and negligible population in the higher dressed band). Note, however, that in
the reference introduced above the influence of a harmonic trapping confinement and
finite-temperature effects are not taken into account.

Since the fundamental level of 173Yb is a non-magnetic state (J = 0), we cannot
take advantage of a Feshbach resonance to tune the interactions. As a matter of fact,
the only method we can adopt to change the lattice on-site interaction energy Uint, is
to tune the 3D lattice depth sα (with α = {x, y, z}), which in the tight-binding regime
is related to Uint by the relation

Uint(sx, sy, sz) = [Uint(sx)Uint(sy)Uint(sz)]
1/3 (5.15)

where

Uint(sα) =
4πas ℏ2

m

∫
w(r, sα)4 d3r (5.16)

in which as = 200 a0 (Kitagawa et al., 2008) is the scattering length associated to
scattering processes in the fundamental state of 173Yb and w(r, sα) are the three-
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Hz, t = 2π × 134 Hz and Φ = 0.37π. The values of J calculated for the two legs are
in this case J−5/2 = +0.056(3) and J−1/2 = −0.060(7). These values are approxi-
mately equal in intensity and opposite in sign, providing direct evidence for presence
of chirality in the system.

The Raman approach to the realization of an artificial gauge field allows us to easily
change the sign of the flux by simply swapping the frequencies of the two beams. In
figure 5.4 we report the momentum distribution relative to the spin leg mg = − 1
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for the two values of the synthetic flux Φ = ±0.37π and experimental parameters
ΩR

1 = 2π × 394 Hz and t = 2π × 87 Hz. The sign of the current inverts accordingly
to the inversion of the flux, providing a further validation of the interpretation of our
experimental data.

5.2.2 Interactions-induced effects on the chiral currents

Here we present some preliminary result related to the experimental investigation of
how the chiral currents described in the previous section are affected by repulsive
atom-atom interactions. These experiments are aimed at providing a groundwork for
the simulation of phenomena in which the effects induced by magnetic fields and in-
teractions on a fermionic gas are strongly intertwined, as it happens in the Fractional
Quantum Hall Effect (Barbarino et al., 2015). In this prospect the role of interactions
is also debated for the realization of robust quantum information protocols (Nayak
et al., 2008) and for its implication in the definition of topological states of matter.
For instance, in the presence of SOC, interactions are expected to give rise to frac-
tional quantum spin Hall states in which the edge currents are spin-polarized (Galitski
and Spielman, 2013). Alkaline-earth and alkaline-earth-like elements are particularly
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hance the spectrum of accessible phenomena exploiting their SU(N ) symmetry, in a
configuration that is not accessible in solid-state systems. For instance, in the syn-
thetic dimension picture, atom-atom interactions will exhibit an effective long-range
character along the synthetic dimension, with atoms interacting with the same strength
independently from the ”distance” between their spin states. Interaction effects in our
particular ladder system have been extensively studied, and theoretical schemes aimed
at the investigation of the formation of helical liquids (Barbarino et al., 2015), frac-
tional charge-pumping (Taddia et al., 2017) and Laughlin-like states in bosonic and
fermionic ladders (Calvanese Strinati et al., 2017) have been proposed.

Our experiment is based on the scheme proposed in reference (Barbarino et al.,
2016) by the group of R. Fazio at Scuola Normale Superiore in Pisa, in which the
authors analyze, by means of DMRG simulations, the effect played by repulsive in-
teractions on the onset of chiral currents in a hybrid two- and three-leg Hall ribbon,
akin to the one described in this chapter. The general result showed in the reference
is that repulsive interactions are expected to significantly enhance the chiral currents
for the filling factors considered in our experiments (i.e. less than one atom per lat-
tice site and negligible population in the higher dressed band). Note, however, that in
the reference introduced above the influence of a harmonic trapping confinement and
finite-temperature effects are not taken into account.

Since the fundamental level of 173Yb is a non-magnetic state (J = 0), we cannot
take advantage of a Feshbach resonance to tune the interactions. As a matter of fact,
the only method we can adopt to change the lattice on-site interaction energy Uint, is
to tune the 3D lattice depth sα (with α = {x, y, z}), which in the tight-binding regime
is related to Uint by the relation

Uint(sx, sy, sz) = [Uint(sx)Uint(sy)Uint(sz)]
1/3 (5.15)

where

Uint(sα) =
4πas ℏ2

m

∫
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in which as = 200 a0 (Kitagawa et al., 2008) is the scattering length associated to
scattering processes in the fundamental state of 173Yb and w(r, sα) are the three-
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dimensional lattice Wannier functions. Changing Uint by changing the lattice depth,
however, inevitably affects other parameters of the ladder Hamiltonian. In particular,
if the lattice depth sx along the direction of the tubes is changed, also the tunnelling
parameter t changes, while if we modify the transverse lattice depths sy and sz , this
affects the harmonic trap frequency fx. This issue can be overcome by taking into
account that, neglecting the interactions, the physics described by the Hamiltonian
5.14 (and in particular the strength of the chiral currents) is invariant as long as the
ratios ΩR

1 /t and fx/t are kept constant. Similarly, we expect that the effect of interac-
tions should depend on the parameter Uint/t. Keeping in mind these constraints, there
are two strategies that can be followed in order to change only the parameter Uint/t

and, thus, to observe a pure interactions-induced effect in our system: the first is to
modify the transverse confinements sy and sz compensating the resulting alteration
in fx by changing t and ΩR

1 , the other is to modify sx compensating the alteration in
t by changing the Rabi couplings and the harmonic frequency. We decided to adopt
the second strategy for two reasons: the first is that we cannot reduce the transverse
depths sy,z too much and still remain in the regime for which we can consider the
atoms confined in one-dimensional wires. The second reason is that, for the experi-
mentally accessible values of sy,z for which we are in the atomic wires regime (we
consider 20 < sy,z < 30), for a reasonable tunnelling strength along êx (let’s say
sx = 5 → t = 2π × 131 Hz) the values of Uint/t that we can explore are limited to
10.9 < Uint/t < 13.7 only. On the other hand, keeping sy = sz = 30 constant, and
changing t andΩR

1 , we can tune sx in the range 3 < sx < 12 exploring values of Uint/t

that cover over an order of magnitude. A similar strategy was employed in the first
experiments investigating the superfluid toMott-insulator transition in ultracold lattice
bosons (Greiner et al., 2002), where the different interactions regimes were studied by
changing the optical lattice depth.

We have thus decided to tune the effective atom-atom interactions changing sx. As
we have discussed above, this implies that also ΩR

1 has to be modified in order to keep
constant ΩR

1 /t. Keeping a constant value also for fx/t is however more difficult. For
example, if sx is lowered in order to decrease Uint, t increases. In order not to affect
the ratio fx/t, fx has consequently to be increased, but the only way to do this is by
increasing the transverse confinement sy,z , that in turn results in an increasing of Uint,
vanishing in this way the original purpose. For this reason we kept constant onlyΩR

1 /t,
maintaining the same trap frequency for all the explored values of t.

Figure 5.5-a reports the strength of the chiral current J measured on themg = − 1
2

leg of a two-leg ladder for sx spanning from 4 to 12 (which means 24 Hz < t/(2π) <

170 Hz) and sy = sz = 30 (which imply 6.8 < Uint/t < 98 and fx = 2π × 55 Hz).
Keeping constant ΩR

1 /t ≃ 4 we observe a clear enhancement of the chiral currents
for increasing values of s. This behaviour is opposite to the one predicted by our
colleagues in Pisa, which, by means of DMRG simulations in the same experimental
conditions, observe a suppression of the currents for increasing s, as it is shown in
figure 5.5-b. It should be observed that the suppression of the current predicted by
the DMRG model is an effect induced by the constant trap frequency (fx/t increases
for increasing sx and, as we have seen in section 4.2.1, this determines a reduction of
the chirality) while in absence of the trap the interactions are supposed to enhance the
currents (Barbarino et al., 2016).
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Figure 5.6: Chiral currents dependence on the trap frequency fx for the experimental
parameters t = 2π × 30 Hz and ΩR

1 /t = 3.7.

However, we exclude that the monotonically increasing behaviour of the current
experimentally observed is determined by an effect induced purely by the trap. This
affirmation is motivated by a second experiment in which we change only the ratio
fx/t, leaving the other parameters of the Hamiltonian (t, ΩR

1 and Uint) constant. To
do this, we do not completely turn off the 1064 nm optical dipole trap at the end of
the evaporative cooling, summing in this way its harmonic contribution to the one of
the confinement lattices. The results of this measurement are reported in figure 5.6
for the experimental values t = 2π × 30 Hz and ΩR

1 /t = 3.7, and explore the range
1.93 < fx/t < 2.42. As expected, we observe a clear suppression of the chirality for
increasing fx/t, which induces us to suppose that the effect observed in figure 5.5-a is
due to interactions or, at least, due to a combination of interactions and confinement.
To shed light on these ambiguities we also measured the lifetime of the chiral currents
in the two tunnelling configurations t1 = 2π × 101 Hz and t2 = 2π × 30 Hz keeping
in both cases ΩR

1 /t = 3.7 and fx = 2π × 55 Hz. We observe for the first case a
lifetime τ1 = (17± 6) ms while for the other case we measure τ2 = (65± 8) ms. This
seems to suggest that also the lifetime is related to the tunnelling strength or to the
Rabi frequency. As the lifetime gets comparable with the time needed to prepare the
initial state, we could attribute the small value of the currents at low sx to a decay that
starts already during the dressed-state preparation. Further experimental work has to
be carried out in order to understand what is the limiting factor to the current lifetime
(we exclude heating by the Raman beams, as the calculated single-photon scattering
rate is significantly smaller than the inverse of the experimental timescale (Mancini,
2016)). Another possibility to explain the discrepancy observed between theory and
experimental data, is that the temperature of the system T could depend on t and that
in particular T could be higher for shallower lattice. Simulations that take in account
also the temperature of the system are however needed to confirm this hypothesis.

The measurements presented in this section are very preliminary and further ex-
perimental and theoretical investigations are necessary to determine if the unexpected
behaviour that we observe is due to technical issues or to some underlying physics that
we are not considering. The limitations of this scheme, in which we can not tune the in-
teractions strength directly without affecting other parameters of the Hamiltonian, are
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dimensional lattice Wannier functions. Changing Uint by changing the lattice depth,
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170 Hz) and sy = sz = 30 (which imply 6.8 < Uint/t < 98 and fx = 2π × 55 Hz).
Keeping constant ΩR

1 /t ≃ 4 we observe a clear enhancement of the chiral currents
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Figure 5.6: Chiral currents dependence on the trap frequency fx for the experimental
parameters t = 2π × 30 Hz and ΩR

1 /t = 3.7.
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1.93 < fx/t < 2.42. As expected, we observe a clear suppression of the chirality for
increasing fx/t, which induces us to suppose that the effect observed in figure 5.5-a is
due to interactions or, at least, due to a combination of interactions and confinement.
To shed light on these ambiguities we also measured the lifetime of the chiral currents
in the two tunnelling configurations t1 = 2π × 101 Hz and t2 = 2π × 30 Hz keeping
in both cases ΩR

1 /t = 3.7 and fx = 2π × 55 Hz. We observe for the first case a
lifetime τ1 = (17± 6) ms while for the other case we measure τ2 = (65± 8) ms. This
seems to suggest that also the lifetime is related to the tunnelling strength or to the
Rabi frequency. As the lifetime gets comparable with the time needed to prepare the
initial state, we could attribute the small value of the currents at low sx to a decay that
starts already during the dressed-state preparation. Further experimental work has to
be carried out in order to understand what is the limiting factor to the current lifetime
(we exclude heating by the Raman beams, as the calculated single-photon scattering
rate is significantly smaller than the inverse of the experimental timescale (Mancini,
2016)). Another possibility to explain the discrepancy observed between theory and
experimental data, is that the temperature of the system T could depend on t and that
in particular T could be higher for shallower lattice. Simulations that take in account
also the temperature of the system are however needed to confirm this hypothesis.
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we are not considering. The limitations of this scheme, in which we can not tune the in-
teractions strength directly without affecting other parameters of the Hamiltonian, are

115113



New quantum simulations with ultracold Ytterbium gases

114

m=-1/2

m=-5/2

m=3/2

t

B

 Real dimension
j-2

j-1
j

Synthetic dimension

Ω1 eiΦjR

Φ 0

m=-5/2

m=-1/2

1 2 3-2-3 -1

0 1 2 3-2-3 -1

0 1 2 3-2-3 -1

0 1 2 3-2-3 -1

0 1 2 3-2-3 -1

0 1 2 3-2-3 -1

0

0.2

0.4

0.6
0

0.2

0.4

0.6

m=+3/2

0 1 2 3-2-3 -1

0 1 2 3-2-3 -1

0 1 2 3-2-3 -1

0.2

0.1

-0.1

-0.2

0

0

0.2

0.4

0.6

+0.079(6)

‒

+0.018(5)

x
y

x
y

x
y

0.2

0.1

-0.1

-0.2

0
0.2

0.1

-0.1

-0.2

Ω2e iΦjR

k

k

k

0.062(4)

h(
k)

n(
k)

Figure 5.7: Chiral dynamics on a three-leg ladder. On the left we report a pictorial
representation of the hybrid ladder. The panels on the right show on the top the time-of-
flight images (averaged over∼ 30 realizations) of the momentum distributions relative
to the legs mg = − 5

2 , mg = − 1
2 and mg = + 3

2 . From the time of flight images we
extract the integrated momentum distribution n(k) along êx (middle) from which we
evaluate the asymmetry function h(k) = n(k) − n(−k) (bottom). The experimental
parameters are ΩR

1 = 2π × 620 Hz, t = 2π × 94 Hz and Φ = 0.37π.

however evident and suggest to take in account other schemes, based, for example, on
a pure tuning of the interactions exploiting the orbital Feshbach resonance introduced
in section 4.3.

5.3 Three-leg ladders

5.3.1 Chiral currents

We performed also in the three-leg ladder configuration the experiment described in
section 5.2.1, again detecting the chiral currents propagating on the edges of our hybrid
lattice. A three-leg ladder represents the minimal configuration in which it is possible
to investigate both the behaviour of the edges and of the ”bulk” of the system, despite
the latter being composed only by one site along the synthetic dimension. The ex-
perimental sequence adopted for this experiment is the same employed in the two-leg
case. Figure 5.7 reports the momentum distributions of the three spin states involved
in the dynamics after the loading of the lower dressed band of the Hamiltonian for
the experimental parameters ΩR

1 = 2π × 620 Hz, t = 2π × 94 Hz and Φ = 0.37π.
As expected for a larger 2D lattice in the Hall regime, we observe two non-zero chi-
ral currents propagating along the two edges of our ribbon (J−5/2 = +0.079(6) and
J+3/2 = −0.062(4)) while the current carried by the central leg is roughly vanishing
(J−1/2 = +0.018(5)). This behavior is akin to what is expected for a fermionic sys-
tem described by the Harper-Hofstadter Hamiltonian. Bulk states exhibit only local
circulations of current, which average to zero when all the different states enclosed by
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the Fermi surface are considered. Only the edges of the system experience a nonzero
current, because there the chiral nature of the states prevents this effect from occurring.

5.3.2 Skipping orbits

The presence of a bulk has allowed the realization of a quench experiment in which we
investigated the properties of chiral transport along the edges. We started again from
a spin-polarized sample in themg = − 5

2 spin state (that corresponds to one of the two
edge legs of the hybrid lattice) trapped in one-dimensional wires. Differently from the
previous experiments, where the system was prepared adiabatically with a slow ramp
of the Raman parameters, here the Raman couplings were suddenly switched on reso-
nance, activating the complex tunnelling along the synthetic dimension. At this point
we performed two different measurements: in the first we measured by optical Stern
Gerlach detection (see section 1.2.4) the time dependence of the average magnetiza-
tion:

⟨m(τ)⟩ = −5

2
P−5/2(τ)−

1

2
P−1/2(τ) +

3

2
P+3/2(τ) (5.17)

wherePα(τ) is the population of the spin-state α after a time τ . Figure 5.8-a reports the
result of thismeasurement for the experimental parametersΩR

1 = 2π×490Hz, t = 2π×
94 Hz and Φ = 0.37π. In the second measurement, instead, we studied the evolution
of the momentum distribution n(k, τ) along êx as a function of time. The Raman
couplings induce synthetic SOC, which in turn determines an oscillating evolution of
the average center of the momentum distribution, as it is possible to observe in figure
5.8-b. These data can be used to determine the evolution of the mean position ⟨x(τ)⟩
considering along êx the band dispersion ε(k) = 2t[1− cos(kd)] where d is the lattice
spacing. Assuming the validity of the semiclassical equation of motion (Ashcroft and
Mermin, 1976), starting from the lattice band dispersion we can compute the average
velocity of the whole atomic cloud

⟨v(τ)⟩ = 1

ℏ

∫

BZ

n(k, τ)
dϵ(k′)
dk′

����
k′=k

dk =
2td

ℏ

∫

BZ

n(k, τ) sin(kd) dk (5.18)

where the integral domain is the whole Brillouin zone. Once ⟨v(τ)⟩ is known, the
average position is obtained simply integrating the velocity

⟨x(τ)⟩ =
∫ τ

0

⟨v(τ ′)⟩ dτ ′. (5.19)

We combined the experimental data relative to the averagemagnetization with the aver-
age position in the real lattice determined with the relations 5.18 and 5.19 starting from
the measured momentum distributions n(k, τ). By combining the two datasets, we
eliminate the time dependence and obtain the dynamics in the position-magnetization
plane. The resulting curve, reported in figure 5.8-c, shows a clear chiral behaviour that
is analogous to the skipping orbits truncated by the presence of the edges, executed by
an electron gas subjected to a magnetic field in a Hall bar, that we have introduced
in section 2.1. The experimental data are in good agreement with the theoretical pre-
diction (solid curve in figure 5.8-c) calculated by our colleagues Marcello Dalmonte,
Marie Rider and Peter Zoller at IQOQI in Innsbruck. In particular, the theoretical curve
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Figure 5.7: Chiral dynamics on a three-leg ladder. On the left we report a pictorial
representation of the hybrid ladder. The panels on the right show on the top the time-of-
flight images (averaged over∼ 30 realizations) of the momentum distributions relative
to the legs mg = − 5

2 , mg = − 1
2 and mg = + 3

2 . From the time of flight images we
extract the integrated momentum distribution n(k) along êx (middle) from which we
evaluate the asymmetry function h(k) = n(k) − n(−k) (bottom). The experimental
parameters are ΩR

1 = 2π × 620 Hz, t = 2π × 94 Hz and Φ = 0.37π.

however evident and suggest to take in account other schemes, based, for example, on
a pure tuning of the interactions exploiting the orbital Feshbach resonance introduced
in section 4.3.

5.3 Three-leg ladders

5.3.1 Chiral currents

We performed also in the three-leg ladder configuration the experiment described in
section 5.2.1, again detecting the chiral currents propagating on the edges of our hybrid
lattice. A three-leg ladder represents the minimal configuration in which it is possible
to investigate both the behaviour of the edges and of the ”bulk” of the system, despite
the latter being composed only by one site along the synthetic dimension. The ex-
perimental sequence adopted for this experiment is the same employed in the two-leg
case. Figure 5.7 reports the momentum distributions of the three spin states involved
in the dynamics after the loading of the lower dressed band of the Hamiltonian for
the experimental parameters ΩR

1 = 2π × 620 Hz, t = 2π × 94 Hz and Φ = 0.37π.
As expected for a larger 2D lattice in the Hall regime, we observe two non-zero chi-
ral currents propagating along the two edges of our ribbon (J−5/2 = +0.079(6) and
J+3/2 = −0.062(4)) while the current carried by the central leg is roughly vanishing
(J−1/2 = +0.018(5)). This behavior is akin to what is expected for a fermionic sys-
tem described by the Harper-Hofstadter Hamiltonian. Bulk states exhibit only local
circulations of current, which average to zero when all the different states enclosed by
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the Fermi surface are considered. Only the edges of the system experience a nonzero
current, because there the chiral nature of the states prevents this effect from occurring.

5.3.2 Skipping orbits

The presence of a bulk has allowed the realization of a quench experiment in which we
investigated the properties of chiral transport along the edges. We started again from
a spin-polarized sample in themg = − 5

2 spin state (that corresponds to one of the two
edge legs of the hybrid lattice) trapped in one-dimensional wires. Differently from the
previous experiments, where the system was prepared adiabatically with a slow ramp
of the Raman parameters, here the Raman couplings were suddenly switched on reso-
nance, activating the complex tunnelling along the synthetic dimension. At this point
we performed two different measurements: in the first we measured by optical Stern
Gerlach detection (see section 1.2.4) the time dependence of the average magnetiza-
tion:

⟨m(τ)⟩ = −5
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wherePα(τ) is the population of the spin-state α after a time τ . Figure 5.8-a reports the
result of thismeasurement for the experimental parametersΩR

1 = 2π×490Hz, t = 2π×
94 Hz and Φ = 0.37π. In the second measurement, instead, we studied the evolution
of the momentum distribution n(k, τ) along êx as a function of time. The Raman
couplings induce synthetic SOC, which in turn determines an oscillating evolution of
the average center of the momentum distribution, as it is possible to observe in figure
5.8-b. These data can be used to determine the evolution of the mean position ⟨x(τ)⟩
considering along êx the band dispersion ε(k) = 2t[1− cos(kd)] where d is the lattice
spacing. Assuming the validity of the semiclassical equation of motion (Ashcroft and
Mermin, 1976), starting from the lattice band dispersion we can compute the average
velocity of the whole atomic cloud
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where the integral domain is the whole Brillouin zone. Once ⟨v(τ)⟩ is known, the
average position is obtained simply integrating the velocity
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∫ τ
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⟨v(τ ′)⟩ dτ ′. (5.19)

We combined the experimental data relative to the averagemagnetization with the aver-
age position in the real lattice determined with the relations 5.18 and 5.19 starting from
the measured momentum distributions n(k, τ). By combining the two datasets, we
eliminate the time dependence and obtain the dynamics in the position-magnetization
plane. The resulting curve, reported in figure 5.8-c, shows a clear chiral behaviour that
is analogous to the skipping orbits truncated by the presence of the edges, executed by
an electron gas subjected to a magnetic field in a Hall bar, that we have introduced
in section 2.1. The experimental data are in good agreement with the theoretical pre-
diction (solid curve in figure 5.8-c) calculated by our colleagues Marcello Dalmonte,
Marie Rider and Peter Zoller at IQOQI in Innsbruck. In particular, the theoretical curve
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Figure 5.8: Edge cyclotron orbits. a: Time dependence of the average position ⟨m⟩ in
the synthetic direction after a quench on the synthetic tunneling. b: time dependence
of the average lattice momentum ⟨k⟩ along the êx direction. c: Average position in
m − x space evidencing the skipping-obit-like dynamics. The experimental error in-
creases monotonically with x as a consequence of the time integration 5.19. The solid
curve is the theoretical prediction elaborated by our colleagues in Innsbruck. The mis-
match between theory and experiment could possibly be ascribed to an accumulation
of integration error in the data analysis, which amplifies the effects of the assumptions
in the model (such as not accounting for interactions). The experimental parameters
employed for this experiment are: ΩR

1 = 2π× 490 Hz, t = 2π× 94 Hz and Φ = 0.37π.

is able to capture the damping of the oscillation, that can be attributed to a dephasing
effect induced by the fermionic nature of the gas and by the presence of wires with
different densities inside the sample.

5.4 Conclusions and outlooks

In the present chapter we demonstrated how exploiting the synthetic-dimension
scheme proposed in (Celi et al., 2014), we have been able to realize two- and three-
leg hybrid ladders in which the nuclear spins of the fundamental level of 173Yb play
the role of an extra dimension (Mancini et al., 2015). An artificial magnetic field or-
thogonal to the ladder is naturally induced as a consequence of the Raman couplings
connecting the spins, and realizes, in the present case, a magnetic flux Φ = 0.37π per
hybrid plaquette. The chiral behaviour of the edge states have been investigated both
observing edge currents and inducing a skipping-orbit-like dynamics in a quench ex-
periment. Finally, following the theoretical predictions of reference (Barbarino et al.,
2016), we also executed a series of groundwork measurements aimed at the investiga-
tion of the role played by interactions in the onset of chirality.

The Raman approach to the realization of hybrid lattices makes it possible to ex-
tend the synthetic dimension up to six sites when 173Yb atoms are considered, thus
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Figure 5.9: Periodic boundary conditions (PBC) in the synthetic dimension realized
(a) coupling all the six spin states with Raman transitions or (b-c) coupling only three
out of the six spin states while the others are put out of resonance. In (c) σσ clock
laser coupling (yellow line) is used in combination with the conventional Raman σπ

couplings (solid lines) to realize PBC.

allowing the investigation of both edge and bulk topological matter. It would be inter-
esting to exploit the flexibility offered by this scheme to engineer periodic boundary
conditions (PBC) along the synthetic dimension, which would enable several interest-
ing experiments starting from the observation of the bulk Hofstadter fractal spectrum.
PBC can be engineered with several schemes, involving all or a reduced subset of the
six spins, as respectively sketched in figure 5.9-a and 5.9-b. We can also imagine to re-
alize PBC combining the Raman and the clock-transition scheme described in section
4.2.1, as it is shown in figure 5.9-c. PBC would enable to realize the Laughlin pump
(Laughlin, 1981), to measure the quantization of the Hall conductivity and extract the
corresponding Chern numbers. If combined with interactions, PBC would also enable
the observation of exotic phases of matter (Barbarino et al., 2015).

Topological quantities can actually be derived also for reduced geometries, as pro-
posed in reference (Mugel et al., 2017), where the Chern number of the fundamental
and excited bands of a Hofstadter strip is derived inducing Bloch oscillations on the
long dimension of a spin ladder.

With an appropriate engineering of the complex and real couplings, it would also
be possible to realize exotic geometries (Suszalski and Zakrzewski, 2016), such as
thoroidal systems or Moebius strips (Boada et al., 2015). Remarkably, if a spin-
dependent real lattice is considered, in which different spins are trapped at different
positions, also zig-zag geometries are possible (Anisimovas et al., 2016), in which the
synthetic tunneling is accompained by a spatial displacement of the atoms.
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creases monotonically with x as a consequence of the time integration 5.19. The solid
curve is the theoretical prediction elaborated by our colleagues in Innsbruck. The mis-
match between theory and experiment could possibly be ascribed to an accumulation
of integration error in the data analysis, which amplifies the effects of the assumptions
in the model (such as not accounting for interactions). The experimental parameters
employed for this experiment are: ΩR

1 = 2π× 490 Hz, t = 2π× 94 Hz and Φ = 0.37π.
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effect induced by the fermionic nature of the gas and by the presence of wires with
different densities inside the sample.
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allowing the investigation of both edge and bulk topological matter. It would be inter-
esting to exploit the flexibility offered by this scheme to engineer periodic boundary
conditions (PBC) along the synthetic dimension, which would enable several interest-
ing experiments starting from the observation of the bulk Hofstadter fractal spectrum.
PBC can be engineered with several schemes, involving all or a reduced subset of the
six spins, as respectively sketched in figure 5.9-a and 5.9-b. We can also imagine to re-
alize PBC combining the Raman and the clock-transition scheme described in section
4.2.1, as it is shown in figure 5.9-c. PBC would enable to realize the Laughlin pump
(Laughlin, 1981), to measure the quantization of the Hall conductivity and extract the
corresponding Chern numbers. If combined with interactions, PBC would also enable
the observation of exotic phases of matter (Barbarino et al., 2015).

Topological quantities can actually be derived also for reduced geometries, as pro-
posed in reference (Mugel et al., 2017), where the Chern number of the fundamental
and excited bands of a Hofstadter strip is derived inducing Bloch oscillations on the
long dimension of a spin ladder.

With an appropriate engineering of the complex and real couplings, it would also
be possible to realize exotic geometries (Suszalski and Zakrzewski, 2016), such as
thoroidal systems or Moebius strips (Boada et al., 2015). Remarkably, if a spin-
dependent real lattice is considered, in which different spins are trapped at different
positions, also zig-zag geometries are possible (Anisimovas et al., 2016), in which the
synthetic tunneling is accompained by a spatial displacement of the atoms.

119117



Chapter 6
Clock transition spectroscopy on 174Yb

In this chapter we report on some very recent results (Franchi et al., 2017) related to
high-resolution clock spectroscopy of 174Yb bosons trapped in the lowest band of a
3D optical lattice in a Mott insulator regime. In particular, we show that addressing
the clock transition |1S0⟩ = g → |3P0⟩ = e we have been able to resolve the site oc-
cupancy of the insulator state. This approach to the investigation of the Mott insulator
regime is similar to those reported in references (Campbell et al., 2006; Kato et al.,
2016) where different radiofrequency or optical transitions are exploited. We use the
spectroscopic information to determine scattering lengths and loss rate coefficients for
collisions involving atoms in the e state, that were previously unknown, differently
from fermionic case (Cappellini et al., 2014; Scazza et al., 2014; Ludlow et al., 2011).
The knowledge of the scattering properties involving atoms in the e state is fundamen-
tal for all the applications relying on the manipulation of atoms in the metastable state
that spans from quantum simulation (Gorshkov et al., 2009) to quantum information
(Daley et al., 2008). A related series of measurements performed by Yb BEC group at
LKB (Bouganne et al., 2017) validates our experimental results.

The chapter is organized as follows: after a first introductive section in which the
physical mechanism that enables the excitation of the clock transition in 174Yb is ex-
plained, in section 6.2 we discuss the strategy employed to perform high-resolution
spectroscopy. Section 6.3 is instead devoted to a description of the measurements em-
ployed to determine the scattering lengths age and aee which characterize the s-wave
collisions, respectively, between one atom in the g and one atom in the e state or two
atoms in the e state. Our spectroscopic investigation terminates with section 6.4, in
which we present some preliminary results regarding the excitation of atoms in higher
lattice bands. The possibility to coherently excite the clock transition, a fundamental
requirement in many quantum simulation schemes, is instead discussed in section 6.5.
Finally, in section 6.6 we present the measurement of the loss rate coefficients relative
to the e− g and e− e interaction channels.

6.1 Magnetic-field-induced spectroscopy

Due to the absence of a nuclear spin, the excitation of the |1S0⟩ → |3P0⟩ clock tran-
sition through the hyperfine mixing mechanism described in section 3.1 is forbidden
for the ytterbium bosonic isotopes. For these isotopes the direct excitation of the clock
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transition is enabled by a different mixing scheme which exploits the presence of a
static external magnetic field to couple the |3P0⟩ state with the |3P1⟩ (Taichenachev
and Yudin, 2006; Ovsyannikov and Chaplygin, 2001; Barber et al., 2006) 1. As a result
of this coupling, excitation of the atoms to the |3P0⟩ state becomes possible thanks to
the weak allowed intercombination transition |1S0⟩ → |3P1⟩. To understand how this
magnetic-field-induced spectroscopy works, let’s consider the Hamiltonian describing
the interaction of a static magnetic field with one atom, which is given by

HB = µ · B (6.1)

where B is the magnetic field and µ is the atomic magnetic dipole operator. For a
magnetic field aligned with the z-axis (B = B êz) the hamiltonian 6.1 can be expressed
as

HB = µ0 B (Lz + 2Sz) (6.2)

where Lz and Sz are, respectively, the projections of the total atomic angular momen-
tum and spin operators along êz and µ0 is the Bohr magneton. As a consequence of the
presence of an external magnetic field, in the perturbation theory framework, the state
|3P0⟩ is no longer a good eigenstate of the system and at the first perturbative order the
new atomic eigenstate is expressed by (Taichenachev and Yudin, 2006)

|3P ′
0⟩ = |3P0⟩+

⟨3P0|HB |3P1⟩
∆

|3P1⟩ = |3P0⟩+
ΩB

∆
|3P1⟩ (6.3)

where ∆ = E(3P0) − E(3P1) is the energy splitting between the |3P0⟩ and the |3P1⟩
states andΩB = ⟨3P0|HB |3P1⟩ is the matrix element describing the magnetic coupling.
To evaluate ΩB it is useful to express the states |3P0⟩ and |3P1⟩ in the |L, S, Lz, Sz⟩
basis. In this basis we have

|3P0⟩ =
1√
3
(|1,−1⟩ − |0, 0⟩+ | − 1, 1⟩) (6.4)

and

|3P1⟩(mJ = 0) =
1√
2
(|1,−1⟩+ | − 1, 1⟩) (6.5)

where in the kets only the |Lz, Sz⟩ part is reported, being always |L, S⟩ = |1, 1⟩. Given
the expressions 6.4 and 6.5 we have

ΩB =

√
2

3
µ0 B. (6.6)

The non-zero magnetic coupling 6.6 implies the possibility to address the |3P ′
0⟩

state thanks to the mixing with the |3P1⟩, which, in the presence of an electric field E
resonant with the clock transition, is coupled to the ground state with a Rabi frequency
given by

ΩL = ⟨3P1|d · E|1S0⟩ (6.7)

1The excitation of the clock transition in even isotopes of alkaline-earth and alkaline-earth-like elements
is also possible exploiting multiphoton schemes (Santra et al., 2005; Hong et al., 2005) that, however, are
difficult to realize requiring the use of multiple stabilized lasers, non-linear optics and good control over
laser field intensities.
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being d the electric dipole operator. Taking into account the expression which relates
this Rabi frequency to the |3P1⟩ decay rate Γ = 2π × 180 kHz, it is possible to write
the 6.7 as (Steck, 2007)

ΩL =

√
3λ3Γ

4π2ℏc
√
I (6.8)

where λ = 556 nm and I is the intensity of the clock laser. This last expression, com-
bined with the 6.3, allows us to express the effective Rabi frequency for the excitation
of the clock transition as

Ω =
ΩL ΩB

∆
= αB[G]

√
I

[
mW
mm2

]
(6.9)

with α = 2π × 0.19. Typical experimental accessible parameters, such as I =10 mW
mm−2 and B = 100 G, result in a Rabi frequency of the order of 2π × 60 Hz. This
last expression clearly evidences how for this ”unconventional” transition we have two
tools at our disposal to tune the Rabi frequency and the linewidth of the transition, one
consisting in the intensity of the external magnetic field, and the other in the intensity
of the clock laser light.

Differently from the fermionic case, the Yb bosonic isotopes show only a quadratic
dependence of the clock transition frequency as a function of the appliedmagnetic field.
Being the ground state |3P0⟩ completely amagnetic, this quadratic Zeeman shift arises
from the corrections to the unperturbed |3P0⟩ state energy given by the Hamiltonian 6.2.
Being zero the first-order correction∆E1 = ⟨3P0|HB |3P0⟩ = 0, the leading correction
to the level energy is the second order

∆E2 =
|⟨3P1|HB |3P0⟩|2

∆
=

1

4π2

Ω2
B

∆
(6.10)

which is of the order of ∆E2 ≈ −10−2 [Hz G−2].

6.2 Clock transition spectroscopy

To address the clock transition we start preparing a BEC in a crossed dipole trap with
trapping frequencies ωx,y,z = 2π × {92.8, 72.6, 86.3} Hz via evaporative cooling. At
the end of the evaporation stage the degenerate gas, which consists of about 2 × 105

atoms, is loaded inside a 3D cubic optical lattice with depth that can be tuned up to 40
Er, beingEr the lattice recoil energy. The lattice is operated at themagicwavelength of
759.4 nm (Barber et al., 2008) in order to minimize the position dependent differential
light shift between the ground and the clock states. Once the lattice is loaded, the
crossed optical trap is adiabatically turned off and the atoms remain trapped only by
the lattice beams. Roughly half of the bosons are lost during this process and we end
up with a sample consisting of about 1.2 × 105 atoms, a number that can be easily
lowered changing the waiting time in the lattice after the optical trap has been turned
off. A waiting time of 3 s, for example, is required to remain with a sample containing
5× 104 atoms.

Clock spectroscopy is then performed shining a long 578 nm light pulse on the
sample, that results in the excitation of part of the population from the |1S0⟩ = g state
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Figure 6.1: Second order Zeeman shift of the clock transition in 174Yb. The solid line
is a fit of the experimental data with a parabolic function.

to the metastable |3P0⟩ = e. The clock beam is π-polarized and intensities up to ∼100
mW/mm2 can be reached depending onwhich specific beam path (eachwith a different
beam waist) is chosen.

To compensate for the isotopic clock shift between 173Yb and 174Yb, δν = ν173 −
ν174 = 551.54 MHz (Clivati et al., 2016), the AOM on the ULE branch of the clock
laser setup (see figure 1.3) had to be replaced. Being the isotopic shift smaller than
the ULE mode spacing, the lock is performed on the same ULE mode for both the
isotopes. No other ”hardware” operations are necessary to switch between bosonic
and fermionic clock spectroscopy. All the measurements presented in this chapter
are performed with the laser drift compensated in its linear part only, without taking
advantage of the optical-link reference provided by INRiM. This means that transitions
can be probed for relatively short times that depend on the linewidth of the transition
itself. For large power-broadened linewidths (let’s say about 1 kHz) the resonance
can be continuously addressed for up to one hour. On the other side, for linewidths
comparable with the laser width (<50 Hz), 15 min could be enough to put the laser
completely out of resonance.

In order to acquire the resonance spectra, atoms have been probed with 500 ms to 1
s long interrogation pulses. Atoms remaining in the ground state are then recorded as a
function of the laser frequency, meaning that the spectroscopic signature is a dip in the
atom number. The clock excitation is always performed in the Lamb-Dicke regime,
with isotropic lattice depths spanning from s = 15 to s = 40. Since the clock beam
path is overlapped with one of the lattice beams, to fulfil the Lamb-Dicke condition it
is enough that the lattice co-propagating with the clock beam is sufficiently deep. No
constraints on the depth are required for the other lattices.

In a first experiment, we investigated the dependence of the clock transition fre-
quency on the external applied magnetic field. We excited the transition with a 500
ms long pulse characterized by an intensity of 10 mW mm−2 in correspondence of
the atomic sample. We acquired several resonances for values of the applied magnetic
field ranging from 50 to 175 G. The centres of the resonances, reported as a function
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of the magnetic field in figure 6.1, have then been fitted with a pure parabolic function.
From the fit we obtain the quadratic Zeeman shift value δz=(-0.054 ± 0.002) Hz/G2.
This value is in good agreement with the one found by in reference (Poli et al., 2008)
that is δz = −0.062(10) Hz/G2.

All of the resonances of figure 6.1 are characterized by a width of the order of
500 Hz regardless of the different values of applied magnetic field, a feature not in
agreement with the linear scaling between the Rabi frequency and the magnetic field
of equation 6.9. This suggests the existence of a substructure hidden by the power
broadening. The investigation of this substructure is the core of the following sections.

6.3 Interaction-peaks resolved spectroscopy

Reducing the coupling to the e state by lowering the intensity of the clock laser and the
external magnetic field applied, we observe the appearance of a series of peaks that in
the previous measurements were hidden because of the excessive power broadening.
We ascribe these peaks to processes in which a single atom in a n-particles-occupied
lattice site is excited to the clock state e, a process that we represent with the |(n)g⟩ →
|(n− 1)g e⟩ notation.

Figure 6.2-a reports a typical spectrum acquired starting from a sample containing
about 5 × 104 atoms trapped in a s = 30 isotropic three-dimensional lattice. A 55
G magnetic field and a clock laser intensity of 1 mW mm−2 have been used for the
measurement. We identify the highest energy peak with the |g⟩ → |e⟩ process. This
attribution is justified by two different experiments in which the transition is probed
changing, respectively, the number of atoms in the sample and the number of multi-
particle-occupied sites in the lattice. In the first experiment (figure 6.2-c) we performed
spectroscopy starting from samples containing a different atom number. The progres-
sive reduction of the lower-energy peaks area as the atom number is lowered (and so
the mean number of particles in each lattice site is reduced), suggests that these peaks
can be ascribed to |(n)g⟩ → |(n− 1)g e⟩ processes with n > 1. On the other hand, the
area of the highest energy peak increases as the atom number is reduced, confirming
our hypothesis.

In the second experiment we shine a photoassociation (PA) pulse on the sample be-
fore performing clock spectroscopy. PA is performed using a 5-ms-long pulse having
a frequency red-detuned by 20 MHz with respect to the to the 1S0 → 3P1 intercom-
bination resonant frequency and an intensity of 3 × 10−3 W mm−2. This frequency
corresponds to the third red-detuned PA resonance starting from the single-atom res-
onant frequency, as it is reported in reference (Kim et al., 2016) and experimentally
verified in the spectrum reported in figure 6.3-a. PA associates atoms in molecules and
removes particles in multi-occupied lattice sites from the system, leaving a sample con-
taining roughly only singly-occupied sites. Starting from more than 1×105 atoms, PA
leaves in the lattice about 3×104 atoms, as it can be observed in figure 6.3-b. With
this PA light intensity, the final atom number remains constant for pulses longer than
2 ms, suggesting that we effectively obtain a sample containing only atoms in singly-
occupied sites. In the clock spectrum after PA, which is reported in figure 6.2-b, no
other peaks with the exception of the highest-energy one are present, a strong proof of
the validity of our hypothesis about the identification of the resonances observed.
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Figure 6.1: Second order Zeeman shift of the clock transition in 174Yb. The solid line
is a fit of the experimental data with a parabolic function.
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Figure 6.2: Clock spectroscopy of a 174Yb atomic sample in a 3D optical lattice. All
the images report the fraction of ground state atoms remaining after the clock excitation
pulse. a: Several equally-spaced absorption peaks are observed in a typical spectrum.
We ascribe these features to interaction energy shifts that depend on the number of
particles contained in each lattice site. b: Clock spectroscopy performed after the
application of a photoassociation pulse. PA removes atoms in multi-particle occupied
lattice sites allowing the unambiguous identification of the single particle transition
peak. c): Clock spectroscopy performed for several values of the number of atoms
contained in the sample. As the atom number is decreased, the area of the higher
energy peaks increases, a feature in agreement with the identification of the highest
energy peak with the transition in which atoms in single-particle-occupied lattice sites
are probed.

Photoassociation pulse duration [ms]
0 1 2 3 4 5 6 7

30
40
50
60
70
80

-25 -20 -15 -10 - 5 0

0
20
40
60
80
100

δ [MHz]

12
3

   

Nu
m

be
r o

f a
to

m
s [

10
3  ]

Nu
m

be
r o

f a
to

m
s [

10
3  ]a) b)

Figure 6.3: a: Photoassociation (PA) resonances spectrum as a function of the detuning
with respect to the 1S0 → 3P1 intercombination resonant frequency. The PA frequency
adopted in this work is correspondent to the peak labelled as (3) in the spectrum. b:
Number of atoms remaining in the sample as a function of the PA pulse duration. For
pulses longer than 2ms the number of remaining atoms approaches a constant non-zero
value, suggesting that no multi-particles occupied lattice sites are left.
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6.3.1 Measurement of the e-g scattering length

The identification of the various peaks observed in figure 6.2-a represents the starting
point for the determination of the scattering length aeg, whose value, at our knowledge,
was not reported in literature before.

Assuming the validity of the relation 1.23which defines the two-particle interaction
energy in the fundamental band of a 3D tight-binding lattice, the quantity δa = aeg −
agg can be directly evaluated starting from the energy separation ∆Ueg between the
peak associated to the |g⟩ → |e⟩ process with respect to the one associated with the
|gg⟩ → |ge⟩, whose value is given by

∆Ueg =
4πℏ2(aeg − agg)

m

∫
w4(r) dr. (6.11)

Since the value of agg is known to be equal to 104.9(1.5) a0 (Kitagawa et al., 2008),
being a0 the Bohr radius, once ∆Ueg is measured, aeg can be easily determined. The
values of ∆Ueg measured for several depths of the lattice and obtained as the result
of a Lorentzian fit of the resonances in the spectra, are reported in figure 6.4 (circular
points). The experimental points have been fitted with the function 6.11, leaving the
differential scattering length δa as the only free parameter. The result of the fit (solid
line) corresponds to a best-fitting value

aeg − agg = −10.19 (0.13) a0 . (6.12)

Combining this determination with the known value of agg results in a value for the
g − e scattering length

aeg = +94.7 (1.6) a0 . (6.13)

In figure 6.4we also plot the interaction shift∆Ugge of the n = 3 resonance (labeled
as (3) in figure 6.2-a) relative to the n = 1 resonance (square points). If only two-body
interactions are taken into account, the total interaction energy of three interacting
bosons should be 3Ugg if the particles are all in the g state and Ugg +2Ueg if one atom
is excited to the e state. This means that we expect the interaction energy shift to be
∆Ugge = 2(Ueg−Ugg) = 2∆Ueg, i.e. twice that measured for the n = 2 case. However,
the expected shift (solid line in figure 6.4), evaluated on the basis of the previous
determination of aeg, clearly deviates from the experimental points. We ascribe this
deviation to an additional energy correction arising from elastic three-body effective
interactions. This correction was introduced in reference (Johnson et al., 2009) for
the case of n indistinguishable interacting bosons in the lowest vibrational state of a
3D optical lattice, and was observed experimentally in references (Johnson et al., 2009;
Will et al., 2010). Following the derivation of (Johnson et al., 2009), for three particles
in the same quantum state, at the first perturbative order, this correction reads

δU3(a, s) =
β U2(a, s)

2

ℏω(s)
, (6.14)

where U2(a, s) is the two-particle interaction energy, which depends on the scattering
length a and the lattice depth s, ω(s)/(2π) is the harmonic frequency characterizing
the confinement within one lattice site and β = −1.34 is a constant. Intuitively, the
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Figure 6.2: Clock spectroscopy of a 174Yb atomic sample in a 3D optical lattice. All
the images report the fraction of ground state atoms remaining after the clock excitation
pulse. a: Several equally-spaced absorption peaks are observed in a typical spectrum.
We ascribe these features to interaction energy shifts that depend on the number of
particles contained in each lattice site. b: Clock spectroscopy performed after the
application of a photoassociation pulse. PA removes atoms in multi-particle occupied
lattice sites allowing the unambiguous identification of the single particle transition
peak. c): Clock spectroscopy performed for several values of the number of atoms
contained in the sample. As the atom number is decreased, the area of the higher
energy peaks increases, a feature in agreement with the identification of the highest
energy peak with the transition in which atoms in single-particle-occupied lattice sites
are probed.
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Figure 6.3: a: Photoassociation (PA) resonances spectrum as a function of the detuning
with respect to the 1S0 → 3P1 intercombination resonant frequency. The PA frequency
adopted in this work is correspondent to the peak labelled as (3) in the spectrum. b:
Number of atoms remaining in the sample as a function of the PA pulse duration. For
pulses longer than 2ms the number of remaining atoms approaches a constant non-zero
value, suggesting that no multi-particles occupied lattice sites are left.
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6.3.1 Measurement of the e-g scattering length

The identification of the various peaks observed in figure 6.2-a represents the starting
point for the determination of the scattering length aeg, whose value, at our knowledge,
was not reported in literature before.

Assuming the validity of the relation 1.23which defines the two-particle interaction
energy in the fundamental band of a 3D tight-binding lattice, the quantity δa = aeg −
agg can be directly evaluated starting from the energy separation ∆Ueg between the
peak associated to the |g⟩ → |e⟩ process with respect to the one associated with the
|gg⟩ → |ge⟩, whose value is given by

∆Ueg =
4πℏ2(aeg − agg)

m

∫
w4(r) dr. (6.11)

Since the value of agg is known to be equal to 104.9(1.5) a0 (Kitagawa et al., 2008),
being a0 the Bohr radius, once ∆Ueg is measured, aeg can be easily determined. The
values of ∆Ueg measured for several depths of the lattice and obtained as the result
of a Lorentzian fit of the resonances in the spectra, are reported in figure 6.4 (circular
points). The experimental points have been fitted with the function 6.11, leaving the
differential scattering length δa as the only free parameter. The result of the fit (solid
line) corresponds to a best-fitting value

aeg − agg = −10.19 (0.13) a0 . (6.12)

Combining this determination with the known value of agg results in a value for the
g − e scattering length

aeg = +94.7 (1.6) a0 . (6.13)

In figure 6.4we also plot the interaction shift∆Ugge of the n = 3 resonance (labeled
as (3) in figure 6.2-a) relative to the n = 1 resonance (square points). If only two-body
interactions are taken into account, the total interaction energy of three interacting
bosons should be 3Ugg if the particles are all in the g state and Ugg +2Ueg if one atom
is excited to the e state. This means that we expect the interaction energy shift to be
∆Ugge = 2(Ueg−Ugg) = 2∆Ueg, i.e. twice that measured for the n = 2 case. However,
the expected shift (solid line in figure 6.4), evaluated on the basis of the previous
determination of aeg, clearly deviates from the experimental points. We ascribe this
deviation to an additional energy correction arising from elastic three-body effective
interactions. This correction was introduced in reference (Johnson et al., 2009) for
the case of n indistinguishable interacting bosons in the lowest vibrational state of a
3D optical lattice, and was observed experimentally in references (Johnson et al., 2009;
Will et al., 2010). Following the derivation of (Johnson et al., 2009), for three particles
in the same quantum state, at the first perturbative order, this correction reads

δU3(a, s) =
β U2(a, s)

2

ℏω(s)
, (6.14)

where U2(a, s) is the two-particle interaction energy, which depends on the scattering
length a and the lattice depth s, ω(s)/(2π) is the harmonic frequency characterizing
the confinement within one lattice site and β = −1.34 is a constant. Intuitively, the
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Figure 6.4: Interaction energy shift of the clock transition for two interacting 174Yb
bosons (circles) and for three interacting bosons (squares) as a function of the optical
lattice depth. The lower solid curve is a fit of the experimental data with the function
6.11. The upper solid line, instead, is the energy shift expected for the three particle
peak if only two-particle interactions are taken into account. The dashed curve is a
simultaneous fit of the two experimental datasets that takes into account the three-body
interaction energy correction reported in (Johnson et al., 2009).

Figure 6.5: Ratio between the energy shift relative to the three-particles peak (|ggg⟩ →
|gge⟩ transition) and the one relative to the two-particles peak (|gg⟩ → |ge⟩ transition).
The line is the theoretical prediction evaluated using the equation 6.15.
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physical origin of this energy shift can be ascribed to a broadening of the on-site wave-
function due to repulsive interactions, which reduces the effective interaction energy
when more than two particles are confined in the same lattice site (Dutta et al., 2011;
Daley and Simon, 2014). The expression 6.14 allows us to evaluate the second-order
correction to the interaction energy for the |ggg⟩ state. For the |gge⟩ state, however, the
three interacting particles are not identical, and the theoretical approach of reference
(Johnson et al., 2009) could not be adequate. If we assume that the three-body elastic
interaction in the |gge⟩ state could still be described by equation 6.14, with an average
scattering length given by the geometric mean āgge = (aggaegaeg)

1/3 ≃ 98 a0, also the
measured |ggg⟩ → |gge⟩ interactions shifts can be used to estimate aeg. First of all, we
verify the validity of this simplified model for the interaction energy of three bosons
in different electronic states, calculating the ratio between the interaction shift relative
to three and two particles. This ratio, taking into account the relation 6.14, is given by
the expression

∆Ugge

∆Ueg
= 2 +

δU3(agg, s)− δU3(āgge, s)

Ugg(s)− Uge(s)
. (6.15)

which, evaluated as a function of the lattice depth, shows a very good agreement with
the experimental data, as it can be observed in figure 6.5.

The good agreement of our model with the measured interaction shifts allows us to
perform a combined fit of the data relative to the two- and three-particles interaction
shifts as a function of the lattice depths, leaving again the differential scattering length
δa as the only free parameter. From the fit, which gives now a very good agreement
with both datasets (dashed lines in figure 6.4), we extract the only fit parameter ∆a =

−10.08 (0.05) a0, which is consistent with the previous determination that does not rely
on the knowledge of the elastic three-body contribution.

6.3.2 Measurement of the e-e scattering length

In our spectra, an increased coupling on the clock transition reveals the presence of an
additional peak blue-shifted by ∆fee ≃ 160 Hz (for s ≃ 30) with respect to the single-
particle one, as shown in figure 6.6-a (circular points). We identify this resonance with
the two-photon process |gg⟩ → |ee⟩, which transfers two particles trapped in the same
lattice site from the |gg⟩ to the |ee⟩ state, via an intermediate |ge⟩ state.

The two-photon nature of this excitation is validated by a ”two-color” spectroscopy
experiment in which the transition is excited by a clock laser with two frequency com-
ponents f+,− = f ± δf simultaneously probing the atomic sample. The result of this
experiment, performed fixing δf = 800 Hz and scanning f , is reported in figure 6.6-a
(square points). The broad excitation profiles at the edges of the spectrum can be iden-
tified with two replicas of the single-photon absorption spectra, frequency-shifted by
+δf and−δf respectively, as expected for a single-photon excitation driven by each of
the two frequency components (the interactions sidebands are unresolved in this spec-
trum because of a larger laser intensity resulting in an increased power broadening). In
addition, we still observe a weaker resonance at the same detuning ∆fee ≃ 160 Hz as
in the single-color spectrum, which is a strong indication of its two-photon nature. The
absence of frequency shift for this resonance can be explained if we assume that a pair
of atoms in the same lattice site absorbs simultaneously two photons with frequencies
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Figure 6.4: Interaction energy shift of the clock transition for two interacting 174Yb
bosons (circles) and for three interacting bosons (squares) as a function of the optical
lattice depth. The lower solid curve is a fit of the experimental data with the function
6.11. The upper solid line, instead, is the energy shift expected for the three particle
peak if only two-particle interactions are taken into account. The dashed curve is a
simultaneous fit of the two experimental datasets that takes into account the three-body
interaction energy correction reported in (Johnson et al., 2009).

Figure 6.5: Ratio between the energy shift relative to the three-particles peak (|ggg⟩ →
|gge⟩ transition) and the one relative to the two-particles peak (|gg⟩ → |ge⟩ transition).
The line is the theoretical prediction evaluated using the equation 6.15.
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physical origin of this energy shift can be ascribed to a broadening of the on-site wave-
function due to repulsive interactions, which reduces the effective interaction energy
when more than two particles are confined in the same lattice site (Dutta et al., 2011;
Daley and Simon, 2014). The expression 6.14 allows us to evaluate the second-order
correction to the interaction energy for the |ggg⟩ state. For the |gge⟩ state, however, the
three interacting particles are not identical, and the theoretical approach of reference
(Johnson et al., 2009) could not be adequate. If we assume that the three-body elastic
interaction in the |gge⟩ state could still be described by equation 6.14, with an average
scattering length given by the geometric mean āgge = (aggaegaeg)

1/3 ≃ 98 a0, also the
measured |ggg⟩ → |gge⟩ interactions shifts can be used to estimate aeg. First of all, we
verify the validity of this simplified model for the interaction energy of three bosons
in different electronic states, calculating the ratio between the interaction shift relative
to three and two particles. This ratio, taking into account the relation 6.14, is given by
the expression

∆Ugge

∆Ueg
= 2 +

δU3(agg, s)− δU3(āgge, s)

Ugg(s)− Uge(s)
. (6.15)

which, evaluated as a function of the lattice depth, shows a very good agreement with
the experimental data, as it can be observed in figure 6.5.

The good agreement of our model with the measured interaction shifts allows us to
perform a combined fit of the data relative to the two- and three-particles interaction
shifts as a function of the lattice depths, leaving again the differential scattering length
δa as the only free parameter. From the fit, which gives now a very good agreement
with both datasets (dashed lines in figure 6.4), we extract the only fit parameter ∆a =

−10.08 (0.05) a0, which is consistent with the previous determination that does not rely
on the knowledge of the elastic three-body contribution.

6.3.2 Measurement of the e-e scattering length

In our spectra, an increased coupling on the clock transition reveals the presence of an
additional peak blue-shifted by ∆fee ≃ 160 Hz (for s ≃ 30) with respect to the single-
particle one, as shown in figure 6.6-a (circular points). We identify this resonance with
the two-photon process |gg⟩ → |ee⟩, which transfers two particles trapped in the same
lattice site from the |gg⟩ to the |ee⟩ state, via an intermediate |ge⟩ state.

The two-photon nature of this excitation is validated by a ”two-color” spectroscopy
experiment in which the transition is excited by a clock laser with two frequency com-
ponents f+,− = f ± δf simultaneously probing the atomic sample. The result of this
experiment, performed fixing δf = 800 Hz and scanning f , is reported in figure 6.6-a
(square points). The broad excitation profiles at the edges of the spectrum can be iden-
tified with two replicas of the single-photon absorption spectra, frequency-shifted by
+δf and−δf respectively, as expected for a single-photon excitation driven by each of
the two frequency components (the interactions sidebands are unresolved in this spec-
trum because of a larger laser intensity resulting in an increased power broadening). In
addition, we still observe a weaker resonance at the same detuning ∆fee ≃ 160 Hz as
in the single-color spectrum, which is a strong indication of its two-photon nature. The
absence of frequency shift for this resonance can be explained if we assume that a pair
of atoms in the same lattice site absorbs simultaneously two photons with frequencies
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Figure 6.6: a: Single-frequency (circles) and two-frequency (squares) clock spec-
troscopy of an atomic 174Yb sample trapped in a 3D optical lattice with s = 30. In
the single-color spectrum, we identify the weak resonance at positive detuning as a
signature of the two-particle/two-photon |gg⟩ → |ee⟩ process. This identification is
confirmed by the presence of a resonance having the same frequency in the two-color
spectrum taken at frequencies f−δf and f+δf (see text for more details). We note that
the two-color spectrum has been recorded at a higher laser intensity in order to make
the two-photon peak visible, causing the structure of the single-photon sidebands to
be unresolved because of power broadening. b: Pictorial representation of the energy
conservation relations involved in the |gg⟩ → |ee⟩ process which exploits the state |eg⟩
as intermediate level. In the single-color spectroscopy, two photons of equal energy
h×f0 = Eeg+(Ugg−Uee)/2 are necessary to excite the |gg⟩ → |ee⟩ transition, where
Eeg is the energy required to promote one g atom in the e state. This implies that the
measured shift of the |ee⟩ peak with respect to the single-particle one is half of the
interaction energy shift.

f + δf and f − δf each, in such a way that the total energy transferred to the system
is 2h × f (where h is the Planck constant), as in the case of a two-photon transition
occurring for a single-color excitation.

The identification of the |gg⟩ → |ee⟩ resonance allows the experimental determina-
tion of the interaction energy shift∆Uee = Uee −Ugg. Since we are now dealing with
a two-photon transition, the energy shift∆Uee is not equal to the shift of the |ee⟩ peak
with respect to the single-particle one, because in this case the energy conservation
relation Ugg +2h f0 = 2Eeg +Uee (where Eeg is the energy required to excite a single
atom to the e state) must be fulfilled. This implies that the shift that we experimentally
measure is half of the interaction shift∆Uee, as it is pictorially reported in figure 6.6-b.
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Adopting an argumentation similar to the one carried on in section 6.3.1, it is pos-
sible to link this interaction shift to the scattering length aee via the relation

∆Uee =
4πℏ2

m
(aee − agg)

∫
w4(r) dr . (6.16)

Using this equation and averaging over several spectra (both single-color and two-
color) acquired at a mean lattice depth s = 29.3(0.3), we determine the differential
scattering length

aee − agg = +21.8 (1.8) a0 . (6.17)

Combining this measurement with the known value of agg = +104.9 (1.5) a0 reported
in reference (Kitagawa et al., 2008) results in a value for the ee scattering length

aee = +126.7 (2.3) a0 . (6.18)

6.4 Spectroscopy of higher lattice bands

We extended our spectroscopic measurements with the characterization of the prop-
erties relative to the clock excitation of the atomic sample from the fundamental to
higher lattice bands. In order to do this, the frequency ν of the photon must fulfill the
energy conservation relation hν = Eg→e +Wn(s) where Eg→e is the energy required
to excite one atom from the g to the e electronic state and Wn(s) is the energy sepa-
ration between the fundamental and the n−th excited lattice bands, that depends on
the lattice depth s. Hereafter, we will identify particles in the |g⟩/|e⟩ electronic states
belonging to the n-th lattice band using the |gn⟩/|en⟩ notation.

Figure 6.7 (circular points) reports an example of spectrum in which the transition
|g0⟩ → |e1⟩ is probed. The clock excitation is performed on a sample trapped in an
anisotropic 3D lattice characterized by the depths sx,y,z = {15, 30, 15} with the clock
beam aligned along the y direction, meaning that only the blue sideband relative to
the lattice having depth sy is revealed. We identify the blue sideband with the peak
labeled as 2a in figure 6.7-a, validating this identification taking into account that its
shift with respect to peak 1 is 19.4 kHz, a value in reasonable agreement with the
frequency separation between the fundamental and the first excited lattice bands at
s = 30. An additional peak, labeled as 2b and redshifted by ∼1.9 kHz with respect
to the blue sideband, appears in the spectrum. We identify the resonance 2b with the
excitation of multiparticles-occupied lattice sites. This hypothesis is confirmed by a
second experiment (square points in figure 6.7-a), in which a photoassociation pulse
is shined on the sample before the clock spectroscopy pulse. The peak 2b completely
disappears in this second spectrum, suggesting that this feature is the result of the
excitation of atoms in multiparticles occupied lattice sites. An additional series of
measurements, in which the energy difference∆Eab of the peak 2b with respect to the
blue sideband is recorded as a function of the transverse lattice depth (sx,z) keeping
sy = 30, is shown in the inset 6.7-b. We observe a monotone increment of∆Eab as the
transverse lattice depths are increased, suggesting that the resonance 2b is associated to
an interaction peak. Yet, we have not been able to clearly identify the physical origin
of this peak and reserve its characterization to future experiments.
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Figure 6.6: a: Single-frequency (circles) and two-frequency (squares) clock spec-
troscopy of an atomic 174Yb sample trapped in a 3D optical lattice with s = 30. In
the single-color spectrum, we identify the weak resonance at positive detuning as a
signature of the two-particle/two-photon |gg⟩ → |ee⟩ process. This identification is
confirmed by the presence of a resonance having the same frequency in the two-color
spectrum taken at frequencies f−δf and f+δf (see text for more details). We note that
the two-color spectrum has been recorded at a higher laser intensity in order to make
the two-photon peak visible, causing the structure of the single-photon sidebands to
be unresolved because of power broadening. b: Pictorial representation of the energy
conservation relations involved in the |gg⟩ → |ee⟩ process which exploits the state |eg⟩
as intermediate level. In the single-color spectroscopy, two photons of equal energy
h×f0 = Eeg+(Ugg−Uee)/2 are necessary to excite the |gg⟩ → |ee⟩ transition, where
Eeg is the energy required to promote one g atom in the e state. This implies that the
measured shift of the |ee⟩ peak with respect to the single-particle one is half of the
interaction energy shift.

f + δf and f − δf each, in such a way that the total energy transferred to the system
is 2h × f (where h is the Planck constant), as in the case of a two-photon transition
occurring for a single-color excitation.

The identification of the |gg⟩ → |ee⟩ resonance allows the experimental determina-
tion of the interaction energy shift∆Uee = Uee −Ugg. Since we are now dealing with
a two-photon transition, the energy shift∆Uee is not equal to the shift of the |ee⟩ peak
with respect to the single-particle one, because in this case the energy conservation
relation Ugg +2h f0 = 2Eeg +Uee (where Eeg is the energy required to excite a single
atom to the e state) must be fulfilled. This implies that the shift that we experimentally
measure is half of the interaction shift∆Uee, as it is pictorially reported in figure 6.6-b.
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Adopting an argumentation similar to the one carried on in section 6.3.1, it is pos-
sible to link this interaction shift to the scattering length aee via the relation

∆Uee =
4πℏ2
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(aee − agg)

∫
w4(r) dr . (6.16)

Using this equation and averaging over several spectra (both single-color and two-
color) acquired at a mean lattice depth s = 29.3(0.3), we determine the differential
scattering length

aee − agg = +21.8 (1.8) a0 . (6.17)

Combining this measurement with the known value of agg = +104.9 (1.5) a0 reported
in reference (Kitagawa et al., 2008) results in a value for the ee scattering length

aee = +126.7 (2.3) a0 . (6.18)

6.4 Spectroscopy of higher lattice bands

We extended our spectroscopic measurements with the characterization of the prop-
erties relative to the clock excitation of the atomic sample from the fundamental to
higher lattice bands. In order to do this, the frequency ν of the photon must fulfill the
energy conservation relation hν = Eg→e +Wn(s) where Eg→e is the energy required
to excite one atom from the g to the e electronic state and Wn(s) is the energy sepa-
ration between the fundamental and the n−th excited lattice bands, that depends on
the lattice depth s. Hereafter, we will identify particles in the |g⟩/|e⟩ electronic states
belonging to the n-th lattice band using the |gn⟩/|en⟩ notation.

Figure 6.7 (circular points) reports an example of spectrum in which the transition
|g0⟩ → |e1⟩ is probed. The clock excitation is performed on a sample trapped in an
anisotropic 3D lattice characterized by the depths sx,y,z = {15, 30, 15} with the clock
beam aligned along the y direction, meaning that only the blue sideband relative to
the lattice having depth sy is revealed. We identify the blue sideband with the peak
labeled as 2a in figure 6.7-a, validating this identification taking into account that its
shift with respect to peak 1 is 19.4 kHz, a value in reasonable agreement with the
frequency separation between the fundamental and the first excited lattice bands at
s = 30. An additional peak, labeled as 2b and redshifted by ∼1.9 kHz with respect
to the blue sideband, appears in the spectrum. We identify the resonance 2b with the
excitation of multiparticles-occupied lattice sites. This hypothesis is confirmed by a
second experiment (square points in figure 6.7-a), in which a photoassociation pulse
is shined on the sample before the clock spectroscopy pulse. The peak 2b completely
disappears in this second spectrum, suggesting that this feature is the result of the
excitation of atoms in multiparticles occupied lattice sites. An additional series of
measurements, in which the energy difference∆Eab of the peak 2b with respect to the
blue sideband is recorded as a function of the transverse lattice depth (sx,z) keeping
sy = 30, is shown in the inset 6.7-b. We observe a monotone increment of∆Eab as the
transverse lattice depths are increased, suggesting that the resonance 2b is associated to
an interaction peak. Yet, we have not been able to clearly identify the physical origin
of this peak and reserve its characterization to future experiments.
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Figure 6.7: a: Clock spectroscopy of a 174Yb atomic sample trapped in an anisotropic
3D lattice characterized by the depths sx,y,z = {15, 30, 15} with and without a previ-
ous photoassociation pulse (respectively, square and circular points). In the spectrum
acquired without photoassociation the clock excitation, which is performed along the
y direction, reveals the presence of three main peaks: one associated to the |g0⟩ → |e0⟩
transition, labeled as (1), one relative to its blue sideband |g0⟩ → |e1⟩, labeled as (2a),
and a third peak, labeled as (2b), that we ascribe to an interband clock transition in-
volving lattice sites containing at least two particles. The multiparticle nature of the
peak (2b) is confirmed by the spectrum after photoassociation (squares), in which this
feature is not present. b: frequency shift of the peak 2b with respect to the blueside-
band as the depth of the transverse lattices sx,z is changed, keeping constant sy = 30

and the atom number in the sample. Square points are offset upward for presentation
purposes. Consider the vertical scale on the right for these points.

In a last set of experiments, reported in figure 6.8, we acquired several spectra near
the lattice first blue sideband as a function of the number of atoms in the sample, keep-
ing the lattice depths sx,y,z = {15, 30, 15} for all the measurements. As the number of
atoms is reduced, a third peak, labelled as 2c in the figure, appears between the interac-
tion peak 2b and the blue sideband 2a. A mechanism capable to explain the presence
of this third peak is the one discussed in reference (Anderlini et al., 2007), where the
authors investigate how the exchange symmetry of the wavefunction of two identi-
cal bosons having a Hilbert space characterized by two possible spin and vibrational
states leads to a spin-exchange dynamics. Adapting this work to our case, we have to
consider that, starting from two ground-state particles in the same lattice site (a state
that we can identify with |g0 g0⟩), the bosonic symmetrization rule makes it possible to
populate two states with different exchange symmetry simply exciting one of the two
atoms to the electronic e clock state. Actually, if the clock excitation transfers one of
the two atoms in the first excited lattice band, the symmetrization of the wavefunction
predicts the existence of two states, one having the vibrational and orbital parts both
symmetric and the other both antisymmetric for particles exchange. We can express
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Figure 6.8: Clock spectroscopy as a function of the atom number performed in an
anisotropic 3D lattice characterized by the depths sx,y,z = {15, 30, 15}. An additional
peak (labelled as 2c) is revealed between the peaks 2b and the blue sideband (2a) as
the atom number is reduced (see the main text for details). Frequency offsets are given
with respect to the peak 2a.

these states as

|eg±⟩ =
1

2
(|g0(x1)e1(x2)⟩ ± |g1(x1)e0(x2)⟩ ± |e0(x1)g1(x2)⟩+ |e1(x1)g0(x2)⟩)

(6.19)
where x1,2 are the position of the two atoms. These two states are formally identical to
the ones derived in section 1.1.2 for the fermionic isotope 173Yb where the role played
by the nuclear spin is now assumed by the lattice band index. It should be observed
that, while the wavefunction of the |eg+⟩ is not vanishing for x1 = x2, the one relative
to the |eg−⟩ state vanishes as the two particles overlap. This means that the two atoms
cannot interact in the |eg−⟩ state and so an energy redshift equal to Ugg with respect
to the blue sideband is expected for this state. In the experimental condition of the
spectra of figure 6.8 we have Ugg ∼ h×1.1 kHz, meaning that it is possible to identify
the peak 2c, whose distance with respect to the blue sideband is approximately 1 kHz,
with the resonance relative to the |eg−⟩ state. On the other hand, we expect for the
|eg+⟩ state an interaction shift given by

δUeg+ =
4πℏ2

2m

∫ (
agew

2
0(r)w

2
1(r)− aggw

4
0(r)

)
dr. (6.20)

where w0,1(r) are respectively the Wannier functions relative to the fundamental and
first excited lattice bands. A resonance characterized by this shift, that in our experi-
mental conditions is equal to few tens of Hz, can not be observed in the spectra reported
in figure 6.8 because of the excessive power broadening. As a final point, it should be
observed that the area relative to the peak 2c increases as the atom number is reduced,
while the area relative to the peak 2b decreases. This confirms the identification of the
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Figure 6.7: a: Clock spectroscopy of a 174Yb atomic sample trapped in an anisotropic
3D lattice characterized by the depths sx,y,z = {15, 30, 15} with and without a previ-
ous photoassociation pulse (respectively, square and circular points). In the spectrum
acquired without photoassociation the clock excitation, which is performed along the
y direction, reveals the presence of three main peaks: one associated to the |g0⟩ → |e0⟩
transition, labeled as (1), one relative to its blue sideband |g0⟩ → |e1⟩, labeled as (2a),
and a third peak, labeled as (2b), that we ascribe to an interband clock transition in-
volving lattice sites containing at least two particles. The multiparticle nature of the
peak (2b) is confirmed by the spectrum after photoassociation (squares), in which this
feature is not present. b: frequency shift of the peak 2b with respect to the blueside-
band as the depth of the transverse lattices sx,z is changed, keeping constant sy = 30

and the atom number in the sample. Square points are offset upward for presentation
purposes. Consider the vertical scale on the right for these points.

In a last set of experiments, reported in figure 6.8, we acquired several spectra near
the lattice first blue sideband as a function of the number of atoms in the sample, keep-
ing the lattice depths sx,y,z = {15, 30, 15} for all the measurements. As the number of
atoms is reduced, a third peak, labelled as 2c in the figure, appears between the interac-
tion peak 2b and the blue sideband 2a. A mechanism capable to explain the presence
of this third peak is the one discussed in reference (Anderlini et al., 2007), where the
authors investigate how the exchange symmetry of the wavefunction of two identi-
cal bosons having a Hilbert space characterized by two possible spin and vibrational
states leads to a spin-exchange dynamics. Adapting this work to our case, we have to
consider that, starting from two ground-state particles in the same lattice site (a state
that we can identify with |g0 g0⟩), the bosonic symmetrization rule makes it possible to
populate two states with different exchange symmetry simply exciting one of the two
atoms to the electronic e clock state. Actually, if the clock excitation transfers one of
the two atoms in the first excited lattice band, the symmetrization of the wavefunction
predicts the existence of two states, one having the vibrational and orbital parts both
symmetric and the other both antisymmetric for particles exchange. We can express
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Figure 6.8: Clock spectroscopy as a function of the atom number performed in an
anisotropic 3D lattice characterized by the depths sx,y,z = {15, 30, 15}. An additional
peak (labelled as 2c) is revealed between the peaks 2b and the blue sideband (2a) as
the atom number is reduced (see the main text for details). Frequency offsets are given
with respect to the peak 2a.

these states as

|eg±⟩ =
1

2
(|g0(x1)e1(x2)⟩ ± |g1(x1)e0(x2)⟩ ± |e0(x1)g1(x2)⟩+ |e1(x1)g0(x2)⟩)

(6.19)
where x1,2 are the position of the two atoms. These two states are formally identical to
the ones derived in section 1.1.2 for the fermionic isotope 173Yb where the role played
by the nuclear spin is now assumed by the lattice band index. It should be observed
that, while the wavefunction of the |eg+⟩ is not vanishing for x1 = x2, the one relative
to the |eg−⟩ state vanishes as the two particles overlap. This means that the two atoms
cannot interact in the |eg−⟩ state and so an energy redshift equal to Ugg with respect
to the blue sideband is expected for this state. In the experimental condition of the
spectra of figure 6.8 we have Ugg ∼ h×1.1 kHz, meaning that it is possible to identify
the peak 2c, whose distance with respect to the blue sideband is approximately 1 kHz,
with the resonance relative to the |eg−⟩ state. On the other hand, we expect for the
|eg+⟩ state an interaction shift given by

δUeg+ =
4πℏ2

2m

∫ (
agew

2
0(r)w

2
1(r)− aggw

4
0(r)

)
dr. (6.20)

where w0,1(r) are respectively the Wannier functions relative to the fundamental and
first excited lattice bands. A resonance characterized by this shift, that in our experi-
mental conditions is equal to few tens of Hz, can not be observed in the spectra reported
in figure 6.8 because of the excessive power broadening. As a final point, it should be
observed that the area relative to the peak 2c increases as the atom number is reduced,
while the area relative to the peak 2b decreases. This confirms the identification of the
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Figure 6.9: Rabi oscillation relative to the selective excitation of (a) the single-particle
peak, (b) the two-particles peak and (c) the three-particles peak in an atomic 174Yb sam-
ple in a 3D optical lattice. In the pictures the fraction of ground-state atoms remaining
after the clock excitation pulse is reported.

peak 2cwith a two-particles resonance and suggests that the peak 2b is related with the
excitation of states with more than two particles. A deeper investigation of the nature
of this peak is left for future works.

6.5 Coherent addressing of the transition

The possibility to resolve lattice sites containing a different number of particles gives
us the opportunity to induce Rabi oscillations separately for all the processes |(n)g⟩ →
|(n− 1)g e⟩ described in the previous sections.

An example of Rabi oscillations relative to the process in which only single oc-
cupied lattice sites are probed is reported in figure 6.9-a. The magnetic field and the
clock laser intensity adopted for the measurement are respectively 55 G and 1 mW
mm−2, while the lattice depth is set to s = 30 in all directions, meaning that we have
an energy splitting between different interaction peaks of the order of h×200 Hz. The
resulting oscillation, which is characterized by a frequency of 26.9 Hz, displays a very
long coherence time being still undamped for excitation times greater than 100 ms.

Note that at the π-pulse only a fraction of the population is transferred in the clock
state despite the excitation being resonant. This is because we are addressing only the
singly-occupied lattice sites and particles in sites with an occupation number greater
than one do not participate to the dynamics.

We also tried to selectively induce Rabi oscillations in two- and three- particles-
occupied lattice sites, that we report, respectively, in figures 6.9-b and 6.9-c. For these
processes, in the same experimental conditions, we expect to observe a Rabi frequency
greater than the one measured in the single-particle case. The reason of this behaviour
is a direct consequence of the bosonic wavefunction symmetrization. In particular, if
we consider the two-particles case, the ground state |gg⟩ is coupled by the laser light to
the state (|ge⟩+ |eg⟩)/

√
2, meaning that the Rabi frequency associated to the process
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Figure 6.10: Rabi oscillation relative to a photoassociated sample in which roughly
only single particle occupied lattice sites are present. The population remaining in
the in the g state after the coherent clock excitation is reported as a function of time
(circular points). The simultaneous imaging of atoms in the g and e states (square
points) reveals a decay in the total population of the sample which can be ascribed to
inelastic collisions between atoms in doubly occupied lattice sites not removed by the
photoassociation.

(limited to its electric-field-dependent part ΩL, see equation 6.9 ) will be

ΩL,2 =
1

ℏ
⟨gg|d · E|ge⟩+ ⟨gg|d · E|eg⟩√

2
=

√
2ΩL,1 (6.21)

where ΩL,1 is the single-particle Rabi frequency. With a similar argumentation, a Rabi
frequency ΩL,3 =

√
3ΩL,1 is expected for the three-particles case. The measured

value of the Rabi frequency for the two- and three-particles processes confirms the
theoretical predictionΩn =

√
nΩ1, being respectivelyΩ2 = 2π×36.8Hz = 0.97

√
2Ω1

and Ω3 = 2π × 45.5 Hz = 0.98
√
3Ω1. The correct experimental scaling of the Rabi

frequency with the particle number validates our interpretation of the interaction peaks
nature.

In a second experiment we have studied the Rabi dynamics relative to a photoassoci-
ated sample. Since in this case only atoms in singly-occupied lattice sites are expected
to be present, no other process with the exception of the single-particle one is probed,
even if the power broadening of the transition exceeds the interaction energy shifts. In
this way we can induce fast Rabi dynamics avoiding the loss of coherence that would
results from the simultaneous excitation of sites with a different number of particles,
that, as we discussed before, are characterized by a different Rabi frequency.

A magnetic field of 175 G and an intensity of the clock laser of 50 mW/mm−2 al-
low us to induce a Rabi oscillation which is characterized by a frequency of 208(4) Hz,
as it can be observed in figure 6.10 (circular points). At the first π pulse (∼ 2 ms) we
observe now a larger transfer of the population to the e state, as it is expected for a sam-
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Figure 6.9: Rabi oscillation relative to the selective excitation of (a) the single-particle
peak, (b) the two-particles peak and (c) the three-particles peak in an atomic 174Yb sam-
ple in a 3D optical lattice. In the pictures the fraction of ground-state atoms remaining
after the clock excitation pulse is reported.

peak 2cwith a two-particles resonance and suggests that the peak 2b is related with the
excitation of states with more than two particles. A deeper investigation of the nature
of this peak is left for future works.

6.5 Coherent addressing of the transition

The possibility to resolve lattice sites containing a different number of particles gives
us the opportunity to induce Rabi oscillations separately for all the processes |(n)g⟩ →
|(n− 1)g e⟩ described in the previous sections.

An example of Rabi oscillations relative to the process in which only single oc-
cupied lattice sites are probed is reported in figure 6.9-a. The magnetic field and the
clock laser intensity adopted for the measurement are respectively 55 G and 1 mW
mm−2, while the lattice depth is set to s = 30 in all directions, meaning that we have
an energy splitting between different interaction peaks of the order of h×200 Hz. The
resulting oscillation, which is characterized by a frequency of 26.9 Hz, displays a very
long coherence time being still undamped for excitation times greater than 100 ms.

Note that at the π-pulse only a fraction of the population is transferred in the clock
state despite the excitation being resonant. This is because we are addressing only the
singly-occupied lattice sites and particles in sites with an occupation number greater
than one do not participate to the dynamics.

We also tried to selectively induce Rabi oscillations in two- and three- particles-
occupied lattice sites, that we report, respectively, in figures 6.9-b and 6.9-c. For these
processes, in the same experimental conditions, we expect to observe a Rabi frequency
greater than the one measured in the single-particle case. The reason of this behaviour
is a direct consequence of the bosonic wavefunction symmetrization. In particular, if
we consider the two-particles case, the ground state |gg⟩ is coupled by the laser light to
the state (|ge⟩+ |eg⟩)/

√
2, meaning that the Rabi frequency associated to the process
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Figure 6.10: Rabi oscillation relative to a photoassociated sample in which roughly
only single particle occupied lattice sites are present. The population remaining in
the in the g state after the coherent clock excitation is reported as a function of time
(circular points). The simultaneous imaging of atoms in the g and e states (square
points) reveals a decay in the total population of the sample which can be ascribed to
inelastic collisions between atoms in doubly occupied lattice sites not removed by the
photoassociation.

(limited to its electric-field-dependent part ΩL, see equation 6.9 ) will be

ΩL,2 =
1

ℏ
⟨gg|d · E|ge⟩+ ⟨gg|d · E|eg⟩√

2
=

√
2ΩL,1 (6.21)

where ΩL,1 is the single-particle Rabi frequency. With a similar argumentation, a Rabi
frequency ΩL,3 =

√
3ΩL,1 is expected for the three-particles case. The measured

value of the Rabi frequency for the two- and three-particles processes confirms the
theoretical predictionΩn =

√
nΩ1, being respectivelyΩ2 = 2π×36.8Hz = 0.97

√
2Ω1

and Ω3 = 2π × 45.5 Hz = 0.98
√
3Ω1. The correct experimental scaling of the Rabi

frequency with the particle number validates our interpretation of the interaction peaks
nature.

In a second experiment we have studied the Rabi dynamics relative to a photoassoci-
ated sample. Since in this case only atoms in singly-occupied lattice sites are expected
to be present, no other process with the exception of the single-particle one is probed,
even if the power broadening of the transition exceeds the interaction energy shifts. In
this way we can induce fast Rabi dynamics avoiding the loss of coherence that would
results from the simultaneous excitation of sites with a different number of particles,
that, as we discussed before, are characterized by a different Rabi frequency.

A magnetic field of 175 G and an intensity of the clock laser of 50 mW/mm−2 al-
low us to induce a Rabi oscillation which is characterized by a frequency of 208(4) Hz,
as it can be observed in figure 6.10 (circular points). At the first π pulse (∼ 2 ms) we
observe now a larger transfer of the population to the e state, as it is expected for a sam-

135133



New quantum simulations with ultracold Ytterbium gases

134

ple containing roughly only single-particle-occupied lattice sites. At longer times the
oscillation displays an unusual behaviour characterized by an almost complete deple-
tion of the g population at the second π pulse (∼ 7 ms) accompanied by a simultaneous
reduction of the oscillation amplitude. This behaviour can not be explained with a loss
of coherence in the dynamics, since in that case we would expect to observe a smaller
depletion at the second π pulse, but, instead, it is in agreement with a reduction of
the number of atoms contained in the sample. This hypothesis is confirmed by a sec-
ond experiment (square points in figure 6.10) in which, for each time sampled in the
oscillation, we simultaneously measure the number of atoms in the g and the e state
(more details on the repump scheme and the imaging of atoms in the metastable clock
state will be given in the following section). The decay observed in the total popula-
tion (g + e atoms) can be ascribed to inelastic collisions occurring between atoms in
a small fraction of doubly-occupied lattice sites not removed by the photoassociation
and represents a hint of a fast loss rate associated to g − e or e − e collisions. Note
that the number of repumped atoms stabilizes for longer pulses, even in the incoherent
regime, validating our hypotesis. The characterization of these collisions is the core
of the following section.

6.6 Detection of state-dependent inelastic collisions

In a last set of experiments we determined the loss rate coefficients relative to the
inelastic collisions occurring in the e − g and e − e interaction channels. These ex-
periments require a measurement of the number of g and e atoms as a function of the
holding time in the optical trap after the interaction channels have been opened. While
the detection of the population in the g state is trivial, to measure the number of atoms
remaining in the e state we adopt the repumping scheme based on a 1388.8 nm laser
described in section 1.2.5. Using ∼10 mW of repumping light focused on a waist of
150 µm we are able to achieve a power-broadened linewidth of the |3P0⟩ → |3D1⟩
repump transition of the order of 2 GHz, as it is shown in figure 6.11-a. This value is
∼ 104 times greater than the natural linewidth of the transition, which is of the order of
300 kHz, meaning that the intensity of the repumping light is ∼ 108 times greater than
the saturation intensity of the transition. Moreover, this power-broadened linewidth
experimentally exceeds the daily frequency drift of the 1388.8 nm laser (which is in
free running) and, as a consequence of this, the frequency of the repumping light does
not need to be readjusted for several days. The detection of the e atoms is performed
following the procedure reported in figure 6.11-b. After turning off of optical trap,
we firstly remove the atoms in the g state using a 100 µs long pulse resonant with the
|1S0⟩ → |1P1⟩ transition. The repump light is then turned on for the whole duration
of the time of flight (TOF), which lasts for 10 ms. At the end of the TOF the fraction
of e atoms decayed in the g state thanks to the repumping procedure is recorded using
the usual g-imaging scheme. The repumping efficiency, evaluated exciting the whole
population of an atomic sample consisting only of single-particle-occupied lattice sites
to the e state with a fast (< 3 ms) π-pulse and then performing the e-imaging procedure
described above, results to be higher than 90%.
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Figure 6.11: a: Number of repumped atoms as a function of the 1388.8 nm repumping
laser detuning. From a lorentzian fit of the experimental data (solid line) we estimate a
width of the repumping transition of the order of 1.8 GHz. b: Experimental sequence
employed for the detection of the atoms in the e state. After the release of the lattice
(759 nm line) a 100 µs pulse resonant with the 1S0 → 1P1 imaging transition (399 nm
line) is used to remove atoms in the g state. The repump light is then turned on for all
the TOF time (1389 nm line). At the end of this sequence the usual imaging procedure
for atoms in the g state is performed.

6.6.1 Inelastic e− g collisions

In a first experiment, we investigate the e− g losses by loading the atomic sample in a
3D optical lattice with an average depth s ≃ 29.7. The waiting times in the trap (before
the lattice loading) and in the lattice are adjusted in order to maximize the number of
doubly-occupied sites and, at the same time, minimizing the number of sites with more
than two atoms. The atoms in the |gg⟩ state are then excited to the |eg⟩ state by means
of a 10-ms-long π-pulse of the clock laser selectively resonant with the |gg⟩ → |eg⟩
transition, and after a variable holding time in the lattice the number of atoms in the e
and in the g states is measured. The collected data are reported in figure 6.12 where
the circular and square points of panel 6.12a display, respectively, the number of atoms
in the g state with and without performing the excitation pulse to the e state, while the
circular points of panel 6.12b display the number of e atoms after the excitation pulse.
In both panels, the solid lines are exponential fits to the data as guides to the eye.

The data clearly show that atoms in the e state decay on a timescale of the order
of the second. To better understand this behavior, in figure 6.12-b we compare the
number of atoms in the e state (circles) to the difference between the number of atoms
in the g state without and with the clock laser pulse (squares). At short times, this
difference is equal to the number of atoms in the e state, as can be reasonably expected.
On longer timescales of the order of 1 s, instead, while the atoms in the e state are lost,
the difference between the g atoms without and with the excitation is approximately
constant, implying that the losses in the e state are not caused by inelastic collisions
with g atoms, otherwise this difference should have increased (the slow decrease of the
number of g atoms could be attributed to the finite single-particle lifetime of the atoms
in the lattice). The decay rate γ = 1/τ of the atoms in the e state can be estimated with
an exponential fit to the data, obtaining 0.66(0.06) s−1. This timescale is comparable
with the tunneling rate ∼ 1 Hz at the lattice depth of the experiment, suggesting that
the e atoms, initially in lattice sites with g atoms, could be lost after tunnelling to
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ple containing roughly only single-particle-occupied lattice sites. At longer times the
oscillation displays an unusual behaviour characterized by an almost complete deple-
tion of the g population at the second π pulse (∼ 7 ms) accompanied by a simultaneous
reduction of the oscillation amplitude. This behaviour can not be explained with a loss
of coherence in the dynamics, since in that case we would expect to observe a smaller
depletion at the second π pulse, but, instead, it is in agreement with a reduction of
the number of atoms contained in the sample. This hypothesis is confirmed by a sec-
ond experiment (square points in figure 6.10) in which, for each time sampled in the
oscillation, we simultaneously measure the number of atoms in the g and the e state
(more details on the repump scheme and the imaging of atoms in the metastable clock
state will be given in the following section). The decay observed in the total popula-
tion (g + e atoms) can be ascribed to inelastic collisions occurring between atoms in
a small fraction of doubly-occupied lattice sites not removed by the photoassociation
and represents a hint of a fast loss rate associated to g − e or e − e collisions. Note
that the number of repumped atoms stabilizes for longer pulses, even in the incoherent
regime, validating our hypotesis. The characterization of these collisions is the core
of the following section.

6.6 Detection of state-dependent inelastic collisions

In a last set of experiments we determined the loss rate coefficients relative to the
inelastic collisions occurring in the e − g and e − e interaction channels. These ex-
periments require a measurement of the number of g and e atoms as a function of the
holding time in the optical trap after the interaction channels have been opened. While
the detection of the population in the g state is trivial, to measure the number of atoms
remaining in the e state we adopt the repumping scheme based on a 1388.8 nm laser
described in section 1.2.5. Using ∼10 mW of repumping light focused on a waist of
150 µm we are able to achieve a power-broadened linewidth of the |3P0⟩ → |3D1⟩
repump transition of the order of 2 GHz, as it is shown in figure 6.11-a. This value is
∼ 104 times greater than the natural linewidth of the transition, which is of the order of
300 kHz, meaning that the intensity of the repumping light is ∼ 108 times greater than
the saturation intensity of the transition. Moreover, this power-broadened linewidth
experimentally exceeds the daily frequency drift of the 1388.8 nm laser (which is in
free running) and, as a consequence of this, the frequency of the repumping light does
not need to be readjusted for several days. The detection of the e atoms is performed
following the procedure reported in figure 6.11-b. After turning off of optical trap,
we firstly remove the atoms in the g state using a 100 µs long pulse resonant with the
|1S0⟩ → |1P1⟩ transition. The repump light is then turned on for the whole duration
of the time of flight (TOF), which lasts for 10 ms. At the end of the TOF the fraction
of e atoms decayed in the g state thanks to the repumping procedure is recorded using
the usual g-imaging scheme. The repumping efficiency, evaluated exciting the whole
population of an atomic sample consisting only of single-particle-occupied lattice sites
to the e state with a fast (< 3 ms) π-pulse and then performing the e-imaging procedure
described above, results to be higher than 90%.
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Figure 6.11: a: Number of repumped atoms as a function of the 1388.8 nm repumping
laser detuning. From a lorentzian fit of the experimental data (solid line) we estimate a
width of the repumping transition of the order of 1.8 GHz. b: Experimental sequence
employed for the detection of the atoms in the e state. After the release of the lattice
(759 nm line) a 100 µs pulse resonant with the 1S0 → 1P1 imaging transition (399 nm
line) is used to remove atoms in the g state. The repump light is then turned on for all
the TOF time (1389 nm line). At the end of this sequence the usual imaging procedure
for atoms in the g state is performed.

6.6.1 Inelastic e− g collisions

In a first experiment, we investigate the e− g losses by loading the atomic sample in a
3D optical lattice with an average depth s ≃ 29.7. The waiting times in the trap (before
the lattice loading) and in the lattice are adjusted in order to maximize the number of
doubly-occupied sites and, at the same time, minimizing the number of sites with more
than two atoms. The atoms in the |gg⟩ state are then excited to the |eg⟩ state by means
of a 10-ms-long π-pulse of the clock laser selectively resonant with the |gg⟩ → |eg⟩
transition, and after a variable holding time in the lattice the number of atoms in the e
and in the g states is measured. The collected data are reported in figure 6.12 where
the circular and square points of panel 6.12a display, respectively, the number of atoms
in the g state with and without performing the excitation pulse to the e state, while the
circular points of panel 6.12b display the number of e atoms after the excitation pulse.
In both panels, the solid lines are exponential fits to the data as guides to the eye.

The data clearly show that atoms in the e state decay on a timescale of the order
of the second. To better understand this behavior, in figure 6.12-b we compare the
number of atoms in the e state (circles) to the difference between the number of atoms
in the g state without and with the clock laser pulse (squares). At short times, this
difference is equal to the number of atoms in the e state, as can be reasonably expected.
On longer timescales of the order of 1 s, instead, while the atoms in the e state are lost,
the difference between the g atoms without and with the excitation is approximately
constant, implying that the losses in the e state are not caused by inelastic collisions
with g atoms, otherwise this difference should have increased (the slow decrease of the
number of g atoms could be attributed to the finite single-particle lifetime of the atoms
in the lattice). The decay rate γ = 1/τ of the atoms in the e state can be estimated with
an exponential fit to the data, obtaining 0.66(0.06) s−1. This timescale is comparable
with the tunneling rate ∼ 1 Hz at the lattice depth of the experiment, suggesting that
the e atoms, initially in lattice sites with g atoms, could be lost after tunnelling to
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Figure 6.12: Experimental characterization of the loss rates associated to inelastic e−g

collisions. Inelastic e−g collisions have been investigated by exciting atoms from the
|gg⟩ state to the |eg⟩ state by selectively addressing the |gg⟩ → |eg⟩ transition in a
3D optical lattice (s = 27.5). a: The number of atoms remaining in g after the clock
pulse (circles) is compared with the number of atoms in the absence of clock excitation
(squares) as a function of the holding time in the lattice (the slow decay of both datasets
shows the finite single-particle lifetime in the lattice). Lines are exponential fits of the
experimental data that must be intended as guides to the eye. b: The number of atoms
detected in the e state (circles) is shown as a function of the holding time in the lattice
after the excitation of the transition. This number is compared with the difference
between the number of g atoms without and with the clock excitation (squares), which
displays an approximately time-independent behavior. The solid line is an exponential
fit of the experimental data.

neighboring sites via e − e inelastic collisions. Since the timescale of the observed
losses is determined by the tunnelling time before the actual interaction events, it is
difficult to extract a reliable e− e loss rate coefficient from those data.

Nevertheless, the observed dynamics allows us to give an upper bound to the e− g

inelastic loss rate coefficient. Two-body e − g losses would be described by the rate
equation ṅg = −βegneng = −γegng, where βeg is the density-dependent loss rate
coefficient. Requesting γeg = βegne ≪ γ and determining the in-site density ne from
the calculated Wannier functions in the 3D lattice, we obtain

βeg ≪ 10−14 cm3/s . (6.22)

6.6.2 Inelastic e− e collisions

A different strategy had to be implemented for the determination of the e − e losses.
As a matter of fact, we could not coherently excite a detectable number of atoms in
the |ee⟩ state by means of π-pulses on the |gg⟩ → |ee⟩ transition, possibly due to an
insufficient broadening of the two-photon transition. We then switched to a different
geometry and loaded the atoms in a 1D vertical optical lattice at a depth s = 27.5,
obtaining an array of 2D pancakes with a radial trapping frequency ωr = 2π × 34.5

Hz. A fraction of g atoms is excited to the e state with a 10-ms-long pulse of clock
laser light directed along the pancakes plane, followed by a variable hold time in the
lattice. Finally, the number of atoms in the e and g states is measured. As shown
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Figure 6.13: Experimental characterization of the loss rates associated to inelastic e−
e collisions Number of e atoms (circles) and g atoms (squares) as a function of the
holding time in the lattice after a clock excitation pulse in an 1D lattice. The upper
line represents the mean value of g atoms, while the lower line is the result of a fit to
the e data with the model in equation (6.23), assuming the scaling in equation (6.30).

in figure 6.13, the data exhibit fast losses in the e state (circular points) on the ms
timescale, while the g population (square points) is constant (the upper solid line in
figure represents the mean of the experimental data). On this timescale, as seen in the
previous experiment, other loss channels are negligible, so, assuming only e − e two-
body inelastic scattering (that is the dominant loss mechanism observed with different
Yb and Sr isotopes, see e.g. references (Traverso et al., 2009; Scazza et al., 2014), and
attributed to principal-number-changing collisions), the losses can be modeled with
the rate equation ṅe = −βeen

2
e, where ne is the density of e atoms and whose solution

is given by

ne(t) =

(
1

ne0
− βeet

)−1

, (6.23)

where ne0 is the initial e atom density and βee is the two-body loss rate coefficient. In
order to extract a value for βee from our data, we developed a simplified theoretical
model to determine the density in the pancakes from the measured atom number.

The starting point of our model is a calculation of the atomic density in the crossed
optical dipole trap at the end of the evaporative cooling, before the loading of the 1D
optical lattice. From a bimodal fit of the time-of-flight images of the atomic cloud
at the end of evaporation, we determine the condensed fraction of the sample to be
fC3D

≃ 65% of the total atom number, while the remaining thermal fraction results
to be characterized by a temperature T3D = 60 nK. This means that we can model
the density inside the trap with the sum of a Thomas-Fermi distribution and a thermal
distribution characterized by a temperature T3D, each weighted for the corresponding
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Figure 6.12: Experimental characterization of the loss rates associated to inelastic e−g

collisions. Inelastic e−g collisions have been investigated by exciting atoms from the
|gg⟩ state to the |eg⟩ state by selectively addressing the |gg⟩ → |eg⟩ transition in a
3D optical lattice (s = 27.5). a: The number of atoms remaining in g after the clock
pulse (circles) is compared with the number of atoms in the absence of clock excitation
(squares) as a function of the holding time in the lattice (the slow decay of both datasets
shows the finite single-particle lifetime in the lattice). Lines are exponential fits of the
experimental data that must be intended as guides to the eye. b: The number of atoms
detected in the e state (circles) is shown as a function of the holding time in the lattice
after the excitation of the transition. This number is compared with the difference
between the number of g atoms without and with the clock excitation (squares), which
displays an approximately time-independent behavior. The solid line is an exponential
fit of the experimental data.

neighboring sites via e − e inelastic collisions. Since the timescale of the observed
losses is determined by the tunnelling time before the actual interaction events, it is
difficult to extract a reliable e− e loss rate coefficient from those data.

Nevertheless, the observed dynamics allows us to give an upper bound to the e− g

inelastic loss rate coefficient. Two-body e − g losses would be described by the rate
equation ṅg = −βegneng = −γegng, where βeg is the density-dependent loss rate
coefficient. Requesting γeg = βegne ≪ γ and determining the in-site density ne from
the calculated Wannier functions in the 3D lattice, we obtain

βeg ≪ 10−14 cm3/s . (6.22)

6.6.2 Inelastic e− e collisions

A different strategy had to be implemented for the determination of the e − e losses.
As a matter of fact, we could not coherently excite a detectable number of atoms in
the |ee⟩ state by means of π-pulses on the |gg⟩ → |ee⟩ transition, possibly due to an
insufficient broadening of the two-photon transition. We then switched to a different
geometry and loaded the atoms in a 1D vertical optical lattice at a depth s = 27.5,
obtaining an array of 2D pancakes with a radial trapping frequency ωr = 2π × 34.5

Hz. A fraction of g atoms is excited to the e state with a 10-ms-long pulse of clock
laser light directed along the pancakes plane, followed by a variable hold time in the
lattice. Finally, the number of atoms in the e and g states is measured. As shown
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Figure 6.13: Experimental characterization of the loss rates associated to inelastic e−
e collisions Number of e atoms (circles) and g atoms (squares) as a function of the
holding time in the lattice after a clock excitation pulse in an 1D lattice. The upper
line represents the mean value of g atoms, while the lower line is the result of a fit to
the e data with the model in equation (6.23), assuming the scaling in equation (6.30).

in figure 6.13, the data exhibit fast losses in the e state (circular points) on the ms
timescale, while the g population (square points) is constant (the upper solid line in
figure represents the mean of the experimental data). On this timescale, as seen in the
previous experiment, other loss channels are negligible, so, assuming only e − e two-
body inelastic scattering (that is the dominant loss mechanism observed with different
Yb and Sr isotopes, see e.g. references (Traverso et al., 2009; Scazza et al., 2014), and
attributed to principal-number-changing collisions), the losses can be modeled with
the rate equation ṅe = −βeen

2
e, where ne is the density of e atoms and whose solution

is given by

ne(t) =

(
1

ne0
− βeet

)−1

, (6.23)

where ne0 is the initial e atom density and βee is the two-body loss rate coefficient. In
order to extract a value for βee from our data, we developed a simplified theoretical
model to determine the density in the pancakes from the measured atom number.

The starting point of our model is a calculation of the atomic density in the crossed
optical dipole trap at the end of the evaporative cooling, before the loading of the 1D
optical lattice. From a bimodal fit of the time-of-flight images of the atomic cloud
at the end of evaporation, we determine the condensed fraction of the sample to be
fC3D

≃ 65% of the total atom number, while the remaining thermal fraction results
to be characterized by a temperature T3D = 60 nK. This means that we can model
the density inside the trap with the sum of a Thomas-Fermi distribution and a thermal
distribution characterized by a temperature T3D, each weighted for the corresponding
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population fraction. The resulting density in the trap thus will be

n3D =
fC3D
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(6.24)
where {ωx, ωy, ωz} = 2π {92.8, 72.6, 86.3} Hz are the trap frequencies, g =

4πℏ2agg/m is the interaction parameter, Nat ≃ 180 × 103 is the atom number,
ri =

√
2 kB T3D/(mωi) are the thermal distribution radii and µ3D, the chemical po-

tential, is given by (Petrov, 2003; Dalfovo et al., 1999)

µ3D =

(
15 g Nat m

3/2 ωx ωy ωz

π 29/2

)2/5

. (6.25)

Starting from the density distribution in the 3D trap we then evaluate the atom
number in each pancake assuming no population redistribution during the loading of
the lattice. In order to do this, the 3D distribution is cut along the z direction in slices
having a thickness equal to the lattice periodicity (λL/2 = 379.5 nm). As for the 3D
distribution, perform a bimodal fit of the experimental data to estimate the condensed
fraction in the pancakes to be fC1D

≃ 20%, while the temperature of the thermal part
results to be T1D ≃ 45 nK. These values are used to compute the radial density in each
pancake, that again we model as the sum of a 2D Thomas-Fermi and a 2D thermal
distributions

nrad(x, y, i) =
fC1D

g2D

(
µ2D − 1

2
mω2

r(x
2 + y2)

)
+

(1− fC3D )Ni

π r22D
e
−
(

x2+y2

r2
2D

)

(6.26)

where ωr = 2π × 34.5 Hz is the radial frequency in the pancake, r2D =√
2 kB T1D/(mω2D) is the thermal distribution radius, Ni is the atom number in the

i-th pancake and g2D = g/(
√
2π azho) is the interaction parameter in 2D, being azho

the harmonic oscillator length along the strongly confined êz direction. It should be
observed that the expression used for g2D is valid only in the limit agg ≪ azho (Petrov,
2003), a condition fulfilled with our experimental parameters being azho ≃ 998 a0 at
s = 27.5, the lattice depth at which the experiment is performed. Lastly, the 2D chem-
ical potential µ2D, can be evaluated for each pancake starting from the 2D Thomas-
fermi radius

rTF =

(
4 g2D Ni

πmωr

)1/4

(6.27)

being µ2D = 1/2mω2
r r

2
TF . The 3D density function in each pancake, n2D(x, y, z, i),

is evaluated multiplying the in-plane 2D density by the square of the fundamental state
eigenfunction of a 1D harmonic oscillator aligned along the êz direction and charac-
terized by the harmonic oscillator length azho. So, finally, we have

n2D(x, y, z, i) = nrad(x, y, i)
1√
πazho

e
− z2

(az
ho

)2 . (6.28)

For each pancake the mean density is then evaluated

n̄2D(i) =

∫
n2
2D(x, y, z, i) d3r∫

n2D(x, y, z, i) d3r
(6.29)
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and from the average of the various n̄2D(i) a mean density ng0 of the sample is ob-
tained.

We then assume a linear relation between the atom number and the density (justified
by the short timescale of the excitation with respect to the trap periods ∼ ω−1

i ), so that
the e-state density ne(t) after the clock laser excitation can be determined as

ne(t) =
ng0

Ng0
Ne(t), (6.30)

whereNe(t) is the measured number of atoms in the e state. Using this relation, we con-
vertNe(t) into a density ne(t) and fit it with equation (6.23), from which the parameter
βee can be determined from the measured atom number Ne(t) as

βee = 1.3(0.7)× 10−11 cm3 s−1, (6.31)

to which we attribute a conservative error due to the several assumptions in our theo-
retical model. The lower solid line in figure 6.13 is the result of the fit, converted back
to atom number following the scaling of equation 6.30.

6.7 Conclusions

In conclusion, we have performed high-resolution spectroscopy of a Mott insulator
of ultracold 174Yb bosons in a 3D optical lattice by exciting them on the ultranarrow
1S0 → 3P0 clock transition. The metrological character of the transition and the narrow
spectroscopic signals that we have demonstrated allow for the characterization of the
Mott insulator state and for the determination of the lattice sites occupancies.

Our spectroscopic resolution allowed us to precisely determine the scattering
lengths for e−g and e−e collisions in ultracold 174Yb atoms, that were previously un-
known. These results are important in quantum information and quantum simulation
applications, as well as for the development of optical lattice clocks based on bosonic
isotopes of two-electron atoms, where the simpler internal structure (due to the absence
of a nuclear spin) could provide advantages over the more commonly used fermionic
isotopes.

We have also detected the effect of inelastic collisions involving the atoms in
the e state. While the observed lifetimes appear to be severely limited by inelastic
e − e losses, no inelastic collisions in the e − g channel could be observed on the
timescale and with the sensitivity of our experiment. This system offers rich possi-
bilities for quantum simulation, for instance for the investigation of two-component
Bose-Hubbard models with different mobility of the species, e.g. for the study of
impurity physics (a state-dependent lattice can be used to freeze the motion of the e

atoms in such a way to inhibit inelastic losses), or for the realization of dissipative
lattice models when e− e losses are taken into account.

On a more general perspective, the spectroscopic approach that we have employed
could be extended in future works to the use of the same ultranarrow clock transition to
probe excitation spectra of more complex quantummany-body states of either bosonic
or fermionic atoms with metrological accuracy.
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population fraction. The resulting density in the trap thus will be
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where {ωx, ωy, ωz} = 2π {92.8, 72.6, 86.3} Hz are the trap frequencies, g =

4πℏ2agg/m is the interaction parameter, Nat ≃ 180 × 103 is the atom number,
ri =

√
2 kB T3D/(mωi) are the thermal distribution radii and µ3D, the chemical po-

tential, is given by (Petrov, 2003; Dalfovo et al., 1999)
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Starting from the density distribution in the 3D trap we then evaluate the atom
number in each pancake assuming no population redistribution during the loading of
the lattice. In order to do this, the 3D distribution is cut along the z direction in slices
having a thickness equal to the lattice periodicity (λL/2 = 379.5 nm). As for the 3D
distribution, perform a bimodal fit of the experimental data to estimate the condensed
fraction in the pancakes to be fC1D

≃ 20%, while the temperature of the thermal part
results to be T1D ≃ 45 nK. These values are used to compute the radial density in each
pancake, that again we model as the sum of a 2D Thomas-Fermi and a 2D thermal
distributions
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where ωr = 2π × 34.5 Hz is the radial frequency in the pancake, r2D =√
2 kB T1D/(mω2D) is the thermal distribution radius, Ni is the atom number in the

i-th pancake and g2D = g/(
√
2π azho) is the interaction parameter in 2D, being azho

the harmonic oscillator length along the strongly confined êz direction. It should be
observed that the expression used for g2D is valid only in the limit agg ≪ azho (Petrov,
2003), a condition fulfilled with our experimental parameters being azho ≃ 998 a0 at
s = 27.5, the lattice depth at which the experiment is performed. Lastly, the 2D chem-
ical potential µ2D, can be evaluated for each pancake starting from the 2D Thomas-
fermi radius

rTF =

(
4 g2D Ni

πmωr

)1/4

(6.27)

being µ2D = 1/2mω2
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2
TF . The 3D density function in each pancake, n2D(x, y, z, i),

is evaluated multiplying the in-plane 2D density by the square of the fundamental state
eigenfunction of a 1D harmonic oscillator aligned along the êz direction and charac-
terized by the harmonic oscillator length azho. So, finally, we have

n2D(x, y, z, i) = nrad(x, y, i)
1√
πazho

e
− z2

(az
ho

)2 . (6.28)

For each pancake the mean density is then evaluated

n̄2D(i) =

∫
n2
2D(x, y, z, i) d3r∫

n2D(x, y, z, i) d3r
(6.29)
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and from the average of the various n̄2D(i) a mean density ng0 of the sample is ob-
tained.

We then assume a linear relation between the atom number and the density (justified
by the short timescale of the excitation with respect to the trap periods ∼ ω−1

i ), so that
the e-state density ne(t) after the clock laser excitation can be determined as

ne(t) =
ng0

Ng0
Ne(t), (6.30)

whereNe(t) is the measured number of atoms in the e state. Using this relation, we con-
vertNe(t) into a density ne(t) and fit it with equation (6.23), from which the parameter
βee can be determined from the measured atom number Ne(t) as

βee = 1.3(0.7)× 10−11 cm3 s−1, (6.31)

to which we attribute a conservative error due to the several assumptions in our theo-
retical model. The lower solid line in figure 6.13 is the result of the fit, converted back
to atom number following the scaling of equation 6.30.

6.7 Conclusions

In conclusion, we have performed high-resolution spectroscopy of a Mott insulator
of ultracold 174Yb bosons in a 3D optical lattice by exciting them on the ultranarrow
1S0 → 3P0 clock transition. The metrological character of the transition and the narrow
spectroscopic signals that we have demonstrated allow for the characterization of the
Mott insulator state and for the determination of the lattice sites occupancies.

Our spectroscopic resolution allowed us to precisely determine the scattering
lengths for e−g and e−e collisions in ultracold 174Yb atoms, that were previously un-
known. These results are important in quantum information and quantum simulation
applications, as well as for the development of optical lattice clocks based on bosonic
isotopes of two-electron atoms, where the simpler internal structure (due to the absence
of a nuclear spin) could provide advantages over the more commonly used fermionic
isotopes.

We have also detected the effect of inelastic collisions involving the atoms in
the e state. While the observed lifetimes appear to be severely limited by inelastic
e − e losses, no inelastic collisions in the e − g channel could be observed on the
timescale and with the sensitivity of our experiment. This system offers rich possi-
bilities for quantum simulation, for instance for the investigation of two-component
Bose-Hubbard models with different mobility of the species, e.g. for the study of
impurity physics (a state-dependent lattice can be used to freeze the motion of the e

atoms in such a way to inhibit inelastic losses), or for the realization of dissipative
lattice models when e− e losses are taken into account.

On a more general perspective, the spectroscopic approach that we have employed
could be extended in future works to the use of the same ultranarrow clock transition to
probe excitation spectra of more complex quantummany-body states of either bosonic
or fermionic atoms with metrological accuracy.
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Appendix A

Number of atoms in fermionic wires

The determination of the atom-number distribution in one-dimensional fermionicwires
realized by means of the intersection of two deep orthogonal optical lattices is a prob-
lem that often emerges during this thesis. When two orthogonal optical lattices inter-
sect, several wires are formed (see figure A.1-a), the number of which depends, in first
approximation, on the waist of the lattices. The number of atoms contained in each
wire is not uniform but, instead, depends on the potential offset of the considered wire
calculated with respect to the central tube, as it is shown in figure A.1-b. This offset
arises as a consequence of the finite waist size of the two lattices forming the wires
which determines a spatial dependence of the induced dipole potential. The larger is
the value of this offset, the less is the number of particles required to fill the tube up to
the Fermi energy, which is fixed for the whole system and depends on the geometry
and the total number of particles.

Near the center of the lattice we can approximate the offset potential as a 3D har-
monic well. We want now to demonstrate that, with this assumption, the number of
tubes containing the same number of particles is uniform up to the highest number of
particles, which is reached in the central tube. To prove this we fix N0 the number of
particles in the central tube and assume the existence of a range of offset potentials
0 < V < ∆V for which tubes characterized by offsets in this range also contain N0

particles. Tubes with offsets slightly higher than ∆V reach the Fermi energy with a
particle less and consequently contain N0 − 1 atoms. Since the offset potential mono-
tonically increases with the distance from the center, all tubes with offsets in the range
∆V < V < 2∆V contain N0 − 1 particles. In the same way tubes with offsets in the
range 2∆V < V < 3∆V containN0−2 particles and so on. As shown in figure A.1-c,
this argumentation defines a central circular region (labelled as Z1 in the figure) with
radius r1 in the plane orthogonal to the tubes containing only tubes with N0 particles.
The area Z1 is enclosed in an annular region (labelled as Z2) with radius r2, containing
only tubes withN0− 1 atoms. In the same way another annular region Z3, with radius
r3, and characterized by tubes withN0−2 particles, encloses Z2. Due to the harmonic
assumption for the potential shape, the radii of neighbouring regions fulfil the relation

1

2
mω2(r2n − r2n−1) = ∆V = const. (A.1)
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Figure A.1: a: fermionic wires are realized by means of two deep optical lattices
propagating along orthogonal directions. b: the harmonic confinement induced by the
confining lattices offsets the energy of the tubes. The color of the tubes reflect the
spatial dependence of the harmonic potential strength from low (white) to high (dark).
c: in case of pure harmonic confining potential zone with the same potential difference
∆V defines annular regions (Z1, Z2, Z3) in the plane orthogonal to the tubes containing
the same number of tubes. See the text fore more details.

from which we have that the area enclosed in each region

π(r2n − r2n−1) =
2π∆V

mω2
= const. (A.2)

has a constant value. Since the area occupied by each tube depends only on the lattice
spacing and not on the position of the tube within the lattice, we have that each region
Zn, consisting of tubes with N0 − n atoms, contains the same number of tubes.

In order to determineN0 we use a numerical zero-temperature simulation in which
we model the lattice confining potential as the sum of three harmonic potentials with
frequencies determined by relation 1.17. Since during the lattice loading also the 1064
nm crossed trap in which the final evaporation is performed is present, also the har-
monic contribution of this trap is taken into account. The space comprised within
the lattice is then subdivided in cubic regions with dimensions d × d × d, where d is
the lattice spacing, and the potential energy at the center of each cubic region is then
evaluated.

In order to take into account the Fermi statistic, regions are then filled with at most
one atom starting from the one with the lowest potential energy. Regions with increas-
ing energy are then filled up to the total number of particles Nat that we determine
through time-of-flight images. The result of the simulation easily allows to determine
the number of atoms in the central tube N0.
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Appendix B
Scattering length in the open channel of an orbital Feshbach res-
onance

In order to determine the scattering length associated to the open channel of an orbital
Feshbach resonance, we start from the Hamiltonian 4.24 which describes the coupling
between closed and open channels, to which we refer, respectively, with the quantum
states |c⟩, |o⟩. In the {|c⟩, |o⟩} base the stationary Schroedinger equation associated to
the Hamiltonian is

(
− ℏ2

2µ∇
2 +∆B + V (ad) V (aex)

V (aex) − ℏ2

2µ∇
2 + V (ad)

)
Ψ = EΨ (B.1)

where µ is the reduced mass (in our case, for identical atoms, µ = m/2 with m the
atomic mass), δm(B) is the magnetic energy δm(B) = |h δg ∆mB| with δg the dif-
ferential Landé factor, ∆m the particles spin difference and B the magnetic field and
V (a) is the Huang-Yang pseudopotential

V (a) =

(
4πℏ2

µ
a

)
δ(r)

∂

∂r
(r·). (B.2)

calculated for the s-wave scattering length a. The direct and exchange scattering
lengths ad and aex are respectively defined by expressions 4.25 and 4.26.

We assume the wavefunction to be given by the expressions 4.27, which is charac-
terized by the radial part

Ψr(r) =
Ψ(r)

r
=

(
uo(r)

uc(r)

)
=

(
r − ao
C e−η r

)
(B.3)

where η =
√
µ δm(B)/ℏ2 and C is a normalization constant. In order to solve the

problem, we have to take into account that in presence of a δ potential the radial
Schroedinger equation (RSE) is modified by the presence of an extra δ(r) term appear-
ing in the definition of the Laplacian operator (Khelashvili and Nadareishvili, 2015).
In particular, in this case, the RSE reads

1

r

[
∂2u(r)

∂r2
− ℓ(ℓ+ 1)

r2
u(r)

]
− δ(r)

r2
u(r) +

2µ

ℏ2
[E − U(r)]

u(r)

r
= 0 (B.4)

where U(r) is the external potential and u(r) the radial wavefunction.
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where U(r) is the external potential and u(r) the radial wavefunction.
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In our case, solving the problem in the low-energy limit (E = 0) for swaves (ℓ = 0)
and taking into account that in spherical coordinates δ(r) = δ(r)/(4π r2), we have that
the RSE reduces to the two coupled equations




1

r

∂2uo(r)

∂r2
−

δ(r)

r2
uo(r)− ad

δ(r)

r2
∂uo(r)

∂r
− aex

δ(r)

r2
∂uc(r)

∂r
= 0

1

r

∂2uc(r)

∂r2
−

2µ

ℏ2
δm(B)uc(r)−

δ(r)

r2
uc(r)− ad

δ(r)

r2
∂uc(r)

∂r
− aex

δ(r)

r2
∂uo(r)

∂r
= 0

. (B.5)

We now multiply both equations by r2 and integrate in dr from 0 to ϵ → 0. All the
terms not containing δ(r) vanish and we end up with the system

{
uo(0) + ad u

′
o(0) + aex u

′
c(0) = 0

uc(0) + ad u
′
c(0) + aex u

′
o(0) = 0

(B.6)

in which we replace uo and uc with the expressions B.3. The value ao of the open
channel scattering length (see expression 4.28) easily follows from this substitution.
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Considerazioni conclusive

Fra gli innumerevoli versi spesi nel corso dei secoli per dipingere il cammino
dell’uomo verso la conoscenza, fra i più significativi sono sicuramente quelli che Lu-
crezio dedica al filosofo greco Epicuro1 , che il poeta descrive come il primo uomo che
ribellandosi allamiseria della condizione umana, riesce a spingersi dove nessuno prima
aveva mai osato, infrangendo le porte sbarrate dell’Universo e rivelando all’umanità
le leggi che governano la Natura, ossia ciò che può e non può essere e la ragione di ogni
cosa. Solo attraverso la conoscenza l’uomo riesce a sconfiggere la superstizione, una
vittoria che lo rende uguale al cielo. Mi piace pernsare che ancora oggi, per quanto
l’idea di fisica sia radicalmente mutata da quella di Lucrezio, l’ambizione ultima di
chiunque si occupi di scienza sia contribuire almeno di un infinitesimo al cammino
iniziato da Epicuro, spingendo l’orizzonte sempre un po’ più oltre a quelle mura fi-
ammeggianti del mondo che tanto intimorivano gli antichi. Non siamo fortunatamente
soli come il filosofo greco in questa impresa e per quanto riguarda me, gli esperimenti
che ho presentato nel corso di queste pagine non sarebbero mai stati possibili se non
come frutto della collaborazione di tutti coloro che durante il mio dottorato hanno parte-
cipato all’attività di ricerca del laboratorio 69 del dipartimento di Fisica dell’Università
di Firenze. Leonardo Fallani innanzitutto, supervisore di questa tesi e di cui ormai da
qualche anno apprezzo le straordinarie capacità, prima come insegnante e poi come
fisico. Devo soprattutto a lui il progresso della mia carriera scientifica, da studente a
(quasi) ricercatore. Jacopo Catani, anima pratica di questo gruppo di ricerca, senza le
cui conoscenze nei più disparati ambiti della tecnica poco funzionerebbe in laboratorio.
I dottorandi e poi postdoc Guido Pagano, Marco Mancini e Giacomo Cappellini, che
mi hanno insegnato come si vive in un laboratorio di fisica atomica e i cui insegnamenti
io ho contraccambiato con qualche esotica funzione di Mathematica. Lorenzo Franchi
e Daniele Tusi, ultimi dottorandi ad essere arrivati qua, e con i quali è stato un piacere
condividere le giornate di gioie e dolori della vita di laboratorio. Un ringraziamento
infine a Fabrice Gerbier dell’LKB di Parigi e Leticia Tarruell dell’ICFO di Barcellona
per l’attento lavoro di revisione di questa tesi.

1Tito Lucrezio Caro, De rerum natura, Libro I vv. 62-79
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