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1. Introduction

Starting from Natural Language text corpora, considering data that is related to the same
context, we define a process to extract the sentiment component with a numeric transformation.
Considering that the Naı̈ve Bayes model, despite is simplicity, is particularly useful in related
tasks such as spam/ham identification, we have created an improved version of Naı̈ve Bayes for
a NLP task: Threshold-based Naı̈ve Bayes Classifier (Romano et al. (2018) and Conversano et
al. (2019)).

The new version of the Naı̈ve Bayes classifier has proven to be superior to the standard
version and the other most common classifiers. In the original Naı̈ve Bayes classifier, we face
two main problems:

• A response variable is needed: we need to know a priori the “Positive” (“Negative”) label
of a consistent amount of comments in the data;

• There is some hand-work to be done: consistently reducing the dimensionality of the
problem, is a keystone for a sentiment classification task. That means to “merge words
by their meanings”, and usually it is done by hand. This leads to major problems in terms
of subjectivity while those words are merged, moreover it prevents to consistently run an
automatic program.

2. The data

For this study, we have collected two separated – but related – datasets obtained from: Book-
ing.com and TripAdvisor.com. More in detail, with an ad hoc web scraping Python program,
we have obtained from Booking.com data about:

• 619 hotels located in Sardinia
• 66,237 reviews, divided in 106,800 comments (in Italian or English): 44,509 negative +

62,291 positive
• Period: Jan 3, 2015 – May 27, 2018

Furthermore, for a comparison purpose, we have downloaded additional data from TripAd-
visor.com:

• 1,450 hotels located in Sardinia
• 39,780 reviews (in Italian or English): 879 rated 1/5 stars; 1,205 rated 2/5 stars; 2,987

rated 3/5 stars; 10,169 rated 4/5 and 24,540 rated 5/5 stars
• Period: Feb 10, 2006 – May 7, 2020

3. The framework

Considering that the downloaded raw data is certainly not immediately usable for the anal-
ysis, we start with a data cleaning process. We start with some basic filtration of the words to
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remove the meaningless ones (i.e. stopwords). Next, we convert emoticons and emoji and we
reduce words to their root or base form (i.e., “fishing,” “fished,” “fisher” are all reduced to the
stem “fish”).

We use Word Embeddings to reduce the dimensionality of text data.
We recall few fundamentals concepts and terminologies, mostly related to the lexical database

WordNet (Miller (1995)), to better understand the next steps:

• Words Embeddings: a vectorial way for representing words. “Each word is associated
with a vector in Rd , where the “meaning” of the word with respect to some task is
captured in the different dimensions of the vector, as well as in the dimensions of other
words.” Goldberg (2017)

• Synsets: a collection of words that have a similar meaning. These inbuilt vectors of words
are used to find out to which synset belongs a certain word.

• Hypernyms: These are more abstract terms concerning the name of particular synsets.
While organizing synsets in a tree-like structure based on their similarity to each other,
the hypernyms allow to categorize and group words. In fact, such a structure can be traced
all the way up to a root hypernym.

• Lemmas: A lemma is a WordNet’s version of an entry in a dictionary: A word in canon-
ical form, with a single meaning. E.g., if someone wanted to look up “mouses” in the
dictionary, the canonical form would be “mouse”, and there would be separate lemmas
for the nouns meaning “animal” and “pc component”, etc.

• Words merging by their meaning: we iterate through every word of the received text and,
for each word, we fetch the synset which it belongs to. Using the synset name, we fetch
the hypernym related to that word. Finally, the hypernym name is used to find the most
similar word, replacing the actual word in the text.

Moreover, while using the hypernyms proprieties, we adopt a newspaper pre-trained Words
Embeddings produced by Google with Word2Vec SkipGram (Mikolov et al. (2013)) for obtain-
ing the vectorial representation of all the words in the dataset (after the data cleaning process).
Finally, to finalize the “merging words by their meaning” step, we use K-Means clustering.

As a result, a λ number of clusters in produced, and the centroid-word is chosen as the word
that replaces all the other words present in a cluster. In this way the model is trained using, in
place of a general Bag-of-Words, a Bag-of-Centroids (of the clusters produced over the Word
Embeddings representation of the dataset).

The value of λ is estimated by cross validation, considering the best accuracy (or others
performance metrics) within a labelled dataset (E.g. Booking.com or TripAdvisor data).

Once the data is correctly cleaned and all the words with the same meaning are merged in a
single one, it is finally possible to compute the overall sentiment score for each observation.

For this purpose, the Lexical Database SentiWordNet (Esuli and Sebastiani (2006)) allows
us to obtain the positive as well as the negative score of a particular word. The sentiment score
(neg score−pos score) allows us to determine the polarity of each word. So, the overall score
of a specific text (i.e. a comment, a review, a tweet) is defined as the average of all the scores of
all the words included in the parsed text.

In that way, with this framework (Fig. 1) we create a temporary sentiment label while using
a simple threshold over the so produced overall score. Such a temporary label is the useful base
for training the Threshold-based Naı̈ve Bayes Classifier.
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Figure 1: General Sentiment Decomposition framework

4. Threshold-based Naı̈ve Bayes Classifier

Considering a Natural Language text corpora as a set of reviews r s.t.:

ri = commentposi ∪ commentnegi

where commentpos (commentneg) are set of words (a.k.a. comments) composed by only pos-
itive (negative) sentences, and one of them can be equal to ∅, the basic features of Threshold-
based Naı̈ve Bayes classifier applied to reviews’ content are as follows. For a specific review r
and for each word w (w ∈ Bag-of-Words), we consider the log-odds ratio of w,

LOR(w) = log

[
P (cneg|w)
P (cpos|w)

]
≈

≈ log

[
P (w|cneg)
P (w̄|cneg)

· P (w|cpos)
P (w̄|cpos)

· P (cneg)

P (cpos)

]
= . . . =

≈ presw + absw

where cpos(cneg) are the proportions of observed positive (negative) comments whilst presw
and absw are the log-likelihood ratios of the events (w ∈ r) and (w /∈ r), respectively.

While calculating those values for all the w (w ∈ Bag-of-Words) words, it is possible to
obtain an output such that reported in Table 1, where we have cpos, cneg, presw and absw for
each words in the considered Bag-of-Words.

w1 w2 w3 w4 w5 ...
P (wi|cneg) 0.011 0.026 0.002 0.003 0.003 ...
P (wi|cpos) 0.007 0.075 0.005 0.012 0.001 ...
preswi

0.411 -1.077 -1.006 -1.272 1.423 ...
abswi

-0.004 0.052 0.003 0.008 -0.002 ...

Table 1: Threshold-based Naı̈ve Bayes output
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We have then used cross-validation to estimate a parameter τ such that: c is classified as
“negative” if LOR(c) > τ or as “positive” if LOR(c) ≤ τ .

While comparing the performances on Table 2 and Table 3, we can then ensure that using the
Threshold-based Naı̈ve Bayes Classifier in this framework can definitely lead to more precise
predictions.

ME ACC TPR TNR F1 MCC BM MK
0.092 0.908 0.936 0.398 0.951 0.268 0.334 0.215

Table 2: Performance metrics obtained using the temporary sentiment label to predict the
“real” label. Notice that to estimate the temporary sentiment label only text data is used, and

the “real” label it is not provided in the training phase.

ME ACC TPR TNR F1 MCC BM MK
0.055 0.945 0.973 0.503 0.973 0.475 0.476 0.474

Table 3: Performance metrics obtained with Threshold-based Naı̈ve Bayes and 10-fold CV
while predicting the real label – trained with the temporary sentiment label

5. Conclusions

Compared to other kinds of approaches, the log-odds values obtained from the Threshold-
based Naı̈ve Bayes estimates are able to effectively classify new instances. Those values have
also a “versatile nature”, in fact they allows to produce plots like in Fig. 2a and Fig. 2b, where
customer satisfaction about different dimensions of the hotel service is observed in time.

(a) Aggregated Booking.com data (b) Aggregated TripAdvisor.com data

Figure 2: Category scores observed in time (overall sentiment in black).
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