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2Genetics at the 
Cell Level
The Human Cell Atlas

Valentina Lorenzi and Roser Vento-Tormo

UNCOVERING CELLULAR HETEROGENEITY 
IN THE HUMAN BODY

The Human Cell Atlas (HCA) is an international consortium established at the end of 2016 with the mis-
sion of mapping and characterizing all cells in the human body in terms of their distinctive patterns of gene 
expression, physiological states, and location (Rozenblatt-Rosen et al., 2017); (Regev et al., 2017) (www 
.humancellatlas .org). It is an open and collaborative initiative, bringing together experts across multiple 
disciplines, and is meant to progress in phases. Recently, the first maps focused on specific organs and 
tissues (Ordovas-Montanes et al., 2018; Vento-Tormo et al., 2018; Popescu et al., 2019; Ramachandran 
et al., 2019; Smillie et al., 2019; Stewart et al., 2019; Vieira Braga et al., 2019) have laid the foundations 
for further work aimed at completing the atlas to include at least ten billion cells that fully represent the 
world’s diversity.

The desire to comprehensively characterize and classify cells into distinct types is not new. 
Research has long been focused on cataloging cells based on their shape, location, biological function, 
and molecular components with increasing levels of detail. Only recently, however, have advances in 
single-cell genomic technologies made it possible to undertake the high-resolution, unbiased, and sys-
tematic characterization of cells in the human body which is at the heart of the HCA (Svensson, Vento-
Tormo, and Teichmann, 2018). Such revolutionary technologies allow us to profile the genome and the 
genome products—including chromatin architecture, RNA transcripts, and proteins from single cells 
(Lander, 1996).

Genomic profiling technologies have been used for many years to describe ensembles of cells in a 
tissue, called bulk tissue samples, but it was not until the beginning of the last decade that they could 
be employed in the characterization of individual cells. This represents a dramatic step forward in the 
study of cellular heterogeneity and has led to the discovery of new cell types, thus resonating with the 
HCA’s main goal of creating a comprehensive, integrated catalog of all the cell types present in the 
human body.
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From Bulk to Single Cells

No two cells in a body are exactly the same. Although the set of genetic instructions is shared across all 
the cells in an individual, the form and function of each cell, even within the same cell type, are unique. 
Such uniqueness is accomplished by finely regulating gene expression, meaning the quantity of RNAs and 
proteins that are produced from each gene in a given cell.

Traditionally, gene expression has been studied by taking thousands of cells in a tissue and treat-
ing them as a single, homogeneous entity. This approach measures the aggregated expression level 
for each gene across the population of input cells (Wang, Gerstein, and Snyder, 2009). Although very 
useful for comparing expression signatures of a tissue across different conditions, such as health and 
disease, bulk studies inevitably miss out on what makes each cell unique (Raj and van Oudenaarden, 
2008).

The last decade has witnessed the rise of new, single-cell sequencing technologies that allow research-
ers to capture the cell diversity within a tissue, a feature which is lost in bulk populations (Kulkarni et 
al., 2019). These technologies can measure the distribution of expression levels for each gene in each cell 
across a population, thus providing answers to new biological questions in which cell-specific changes in 
gene expression play a major role. The ability to discern individual cells within a tissue can, for instance, 
lead to the identification of new cell types and improve our understanding of organ development and 
homeostasis (Figure 2.1).

FIGURE 2.1 Schematic representation of the major differences between bulk and single-cell transcriptomic 
analysis. Bulk transcriptomic analysis measures the average expression for each gene across all cells in a tissue, 
making it unfit for unraveling cellular heterogeneity. In contrast, single-cell transcriptomic analysis outputs the 
gene expression profile specific to each cell, thus capturing cellular heterogeneity within a tissue.
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Finding New Cell Types

Our knowledge about the types of cells present in the human body is still limited and discovering new, 
often rare, cell types poses a significant challenge. Indeed, the rarity of these cell types makes them hard 
to identify via bulk transcriptomic technologies, whereas targeted, single-cell molecular techniques that 
interrogate gene expression of a few selected cells are also ill suited because these new cell types are, by 
definition, unknown. This is where single-cell sequencing technologies come into play, offering an unbi-
ased and novel understanding of the cellular composition of tissues.

Notably, in 2018, transcriptomic profiling of human bronchial epithelial cells with single-cell 
sequencing technologies led to the identification of a rare lung cell type that plays a major role in cystic 
fibrosis (Plasschaert et al., 2018). Named the pulmonary ionocyte, this cell type expresses high levels 
of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for a cell mem-
brane protein that allows the outward flow of chloride ions and which is mutated in patients with cystic 
fibrosis, causing pathogenic accumulation of mucus in the airways. Currently available drugs for treat-
ing cystic fibrosis are able to target specific mutated versions of the CFTR protein, and knowing which 
cells are contributing to the production of the protein could be conducive to more precise delivery of 
the treatment.

Several projects within the HCA have led to the discovery of new cell subtypes that play an 
important role during human development (Vento-Tormo et al., 2018; Popescu et al., 2019; Park et al., 
2020). A recent study profiling the uterine-placental interface at single-cell resolution identified three 
distinct subsets of decidual natural killer cells (dNK) and decidual stromal cells with potential roles in 
early pregnancy in humans (Vento-Tormo et al., 2018). The novel dNK subsets found in the tissue are 
thought to be key to maintaining the immunomodulatory environment during early pregnancy, help-
ing in the establishment of placentation through invasion of the placental trophoblast. This study has 
advanced our understanding of the uterine environment during the early stages of pregnancy and will 
have a direct impact on pregnancy-related pathologies, such as preeclampsia or fetal growth restriction 
(Figure 2.2).
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FIGURE 2.2 Single-cell profiling of the maternal–fetal interface during early pregnancy in humans has led 
to the discovery of three novel subsets of decidual natural killer cells (dNKs). Each subpopulation of dNK was 
found to have a specific function in the establishment of placentation.
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Creation of a Comprehensive Body of Knowledge

Each single-cell study carried out within the framework of the HCA initiative provides invaluable infor-
mation on how cells are organized into functional organs. However, in order to fully exploit the newly 
acquired knowledge for further basic research as well as for medical and translational purposes, it is 
necessary to integrate it into a single, coherent data resource. Moreover, having an atlas means that meta-
analyses can be performed across cells, tissues, and organs, thus gaining a comprehensive understanding 
that goes well beyond what can be gathered from the individual studies.

In more practical terms, the integrated maps of the human body in the HCA allow researchers and 
practitioners around the world to query organs, tissues, and cells to obtain information about their molecu-
lar and organizational features. The analogy used in the White Paper (Regen et al., 2018) to describe the 
purpose of the HCA is that of Google maps: the atlas allows its users to navigate the human body at vari-
ous levels of resolution to identify patterns and interactions among its fundamental elements, zooming in 
and out, depending on the research goals (Figure 2.3).

Building an integrative resource comes with its own challenges. New computational tools are being 
developed to integrate datasets from distinct batches, including technologies and protocols for process-
ing or sequencing platforms (Lopez et al., 2018; Korsunsky et al., 2019; Polański et al., 2019). In addi-
tion, data have to be released on an open-access basis to ensure its accessibility. The Data Coordination 
Platform (DCP) seeks to coordinate data accessibility through its deposition in a cloud-based platform and 
integrate it into a user-friendly portal.

FIGURE 2.3 Example of an integrated map of the human ovary. Such maps can be queried by researchers 
and practitioners at the organ, tissue, and cell levels to obtain information about the molecular and organiza-
tional features of the structure of interest.
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SINGLE-CELL RNA SEQUENCING TECHNOLOGIES

Single-cell sequencing is a relatively recent technological development which was named Method of the 
Year in 2013 by the journal Nature Methods (Nawy, 2014). The earliest single-cell sequencing method 
applicable on a large scale was transcriptome analysis via RNA-Seq (single-cell RNA sequencing, 
scRNA-seq) (Tang et al., 2009). scRNA-seq marked an enormous progression in the definition of cell 
identities because it offered a comprehensive and unbiased characterization of the cell at the molecular 
level (Trapnell, 2015).

Currently available scRNA-seq protocols are based on technologies that vary greatly in cost and 
sensitivity. Individual strengths and weaknesses of scRNA-seq protocols need to be assessed in light of 
the biological questions of interest (Papalexi and Satija, 2018). Regardless of the underlying technology, 
they all involve a workflow which can be broken down into three main steps: physical separation of the 
cells; reverse transcription and PCR amplification of the polyadenylated RNAs; and sequencing of the 
PCR products. Depending on their approach to cell isolation and transcript amplification, the technologies 
can be broadly divided into plate-based, droplet-based, and combinatorial indexing protocols. Moreover, 
scRNA-seq data can now be complemented with spatial data to study the exact location of cells within a 
tissue.

Plate-Based Protocols

The first protocols for the unbiased quantification of the transcriptome of single cells were developed in 
a single tube containing lysis buffer (Tang et al., 2009). Shortly after, multiplexing and robotics enabled 
the processing of hundreds of cells, which meant that cells could be processed in 96-well or 384-well 
plates (Baugh et al., 2001; Islam et al., 2011; Ramsköld et al., 2012; Jaitin et al., 2014; Zeisel et al., 2015). 
Whereas the first protocols isolated cells via micro-pipetting and placed them into a plate containing lysis 
buffer, it is now common to isolate them by fluorescent activated cell sorting (FACS). This method allows 
the user to isolate cells by protein surface markers selected on the basis of prior information about the cell 
type. Following lysis of the cells, conversion of RNA into cDNA and subsequent cDNA amplification are 
performed separately on each cell and the PCR products are sequenced via next-generation sequencing 
(NGS) (Figure 2.4, top panel).

One example of plate-based technology that is broadly used is Smart-Seq2 (Picelli et al., 2013, 2014). 
The advantage of this method is that it enables the quantification of full-length transcriptomes. This 
information has proven useful for the reconstruction of highly variable T- and B-cell receptors required to 
control B and T cell clonal expansion in response to antigens (Stubbington et al., 2016; Lindeman et al., 
2018). Smart-seq2 has also been used to reconstruct haplotypes of KIR (killer-cell immunoglobulin-like 
receptor), which are key receptors involved in the activation and inhibitory states of NK cells (Vento-
Tormo et al., 2018). Smart-Seq3 is a newly defined protocol that offers even greater sensitivity than its 
predecessors, enabling isoform identification (Hagemann-Jensen et al., 2020).

Droplet-Based Protocols

Instead of using wells to carry out the reverse transcription and PCR reactions, droplet-based methods, 
such as Drop-seq (Macosko et al., 2015) and InDrop (Klein et al., 2015), employ microdroplets which 
encapsulate a single cell and a gel bead covered with barcodes. After reverse transcription and amplifica-
tion, the mRNAs inside each droplet are pooled together, significantly increasing the multiplexing of the 
methodology, and sequenced in parallel via NGS. This technology has been recently adapted and com-
mercialized by 10x Genomics, increasing the accessibility of the method across the scientific community.
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FIGURE 2.4 (a) In plate-based scRNA-seq protocols, cells are physically isolated into a multi-well plate using 
a cell-sorting technique. Cell lysis, reverse transcription, and amplification are carried out separately within 
each well. (b) Droplet-based scRNA-seq protocols employ a microfluidics device that enables the formation 
of microdroplets encapsulating both a single cell and a gel bead covered with barcodes. After reverse tran-
scription and amplification, the mRNAs inside each droplet are pooled together for parallel sequencing. (c) 
Schematic representation of the principle behind combinatorial indexing protocols. Fixed cells are randomly 
split into a multi-well plate, where each well contains a unique barcode. After being labeled with the first 
barcode, the cells are pooled, shuffled, and split again randomly into the same set of wells. This so-called split-
pool cycle is iterated until the number of combinations of possible barcodes is much higher than the number 
of cells being profiled.
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In these protocols, individual barcoded gel beads and cells are flowed into a microfluidics device 
(Guo et al., 2012) where a mixture of aqueous and oil flows allows for their compartmentalization into 
a single droplet. Each barcode is composed of three segments: a PCR handle to initiate the PCR reac-
tion; a cell barcode that is unique to each bead; and a unique molecular identifier (UMI) which is differ-
ent for each cellular mRNA molecule. Cell barcodes and UMIs are generated by randomly assembling 
nucleotides. UMIs provide a means to remove PCR artifacts during the step of RNA amplification. Once 
the beads and cells are trapped in the droplets, a lysis buffer breaks the cell membrane and releases the 
mRNAs, which come into contact with the barcodes and ligate to them. This results in every mRNA mol-
ecule present inside the droplet being labeled with the same cell barcode and a different UMI. It is thus 
possible to subsequently employ massive parallel sequencing without losing the information about the cell 
of origin of each mRNA (Figure 2.4, central panel).

The main benefit of droplet-based protocols lies in the large number of cells that can be profiled in 
parallel in a single experiment, the reduction in reagent volumes, and multiplexing, which directly trans-
lates into a much lower cost per cell. On the other hand, the sensitivity is often lower than with plate-based 
methods and only one end of the transcript is sequenced. Recent studies have shown that the definition 
of cell identity is highly dependent on the number of cells sequenced (Svensson, da Veiga Beltrame, and 
Pachter, 2019). Therefore, droplet-based methods are the strategies-of-choice for studying heterogeneous 
cell populations and discovering rare cell types.

Plate-Based Combinatorial Indexing Protocols

Building upon the concept of cellular barcoding, plate-based combinatorial indexing scRNA-seq proto-
cols, such as single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) (Cao et al., 2017) and 
split-pool ligation-based transcriptome sequencing (SPLiT-seq) (Rosenberg et al., 2018) allow the profil-
ing of thousands of cells without having to physically isolate each cell. In these methods, the cells are 
fixed, and their mRNA is manipulated in situ by sequential addition of random barcodes in a combinato-
rial fashion. These strategies overcome the cell isolation inefficiency associated with the droplet-based 
methods and therefore reduce the pool of barcodes required (Figure 2.4, bottom panel).

In SPLiT-seq, formaldehyde-fixed cells are randomly split into a 96-well plate with unique barcodes 
for each well. All cells are labeled with the first barcode, and reverse transcription is carried out: at this 
stage; the chance of two cells having the same barcode is 1/96. The cells are then pooled, shuffled, and 
split again randomly into the same set of wells. After the second barcode is added, the probability that 
two cells have the same barcode is 1/9216 (96*96). This procedure can be iterated until the number of 
combinations of possible barcodes is much higher than the number of cells being profiled, and this is what 
overcomes the need for physically isolating each cell. The cells are eventually lysed, and their labeled 
cDNAs are PCR amplified and sequenced.

Droplet-Based Combinatorial Indexing Protocols

The inefficiency of droplet-based methods limits the number of cell barcodes that can be designed, and, 
consequently, limits their multiplexing capacity. On the other hand, the potential for massive-scale profil-
ing of droplet-based methods still surpasses that of plate-based methods. Newly developed, droplet-based, 
combinatorial indexing protocols, such as single-cell combinatorial fluidic indexing (scifi-RNA-seq) 
(Datlinger et al., 2019) and droplet single-cell assay for transposase-accessible chromatin using sequenc-
ing (dscATAC-seq) (Lareau et al., 2019), apply the idea behind plate-based combinatorial indexing pro-
tocols to overcome the limitation of the cell isolation inefficiency of droplet-based methods and are thus 
able to fully exploit their potential for massive-scale profiling.

In scifi-RNA-seq, permeabilized cells are first pre-indexed by reverse transcription in microwell 
plates, similarly to plate-based combinatorial indexing protocols. Then, the pre-indexed cells are pooled, 



18 Genetic Diagnostic Technologies in Reproductive Medicine 

randomly mixed, and encapsulated with a microfluidic droplet generator. The encapsulation is carried out 
such that most droplets are filled with potentially more than one cell, and, inside the droplets, the tran-
scripts are labeled with a second barcode. Because the cells are randomly mixed between the first (plate 
well) and the second (droplet) round of barcoding, the combination of the two barcodes enables the unique 
identification of individual cells. Moreover, by allowing each droplet to encapsulate multiple cells, scifi-
RNA-seq solves the cell isolation inefficiency inherent to droplet-based scRNA-seq.

The combination of both methods results in an exponential increase in the number of cells that can 
be sequenced in each reaction and a significant reduction in reagent usage and hence costs. However, the 
higher number of cells also increases sequencing demands which have not experienced the exponential 
reduction in costs observed for the reagents. Therefore, it is important to select the method of choice based 
on the user’s budget and the scientific question to address.

Integration of Sequencing and Spatial Data

Because single-cell sequencing methods require cells to be dissociated, information about the spatial 
location of each cell within the tissue of origin is inevitably lost. Knowledge of how the cells are spatially 
organized in the tissue, however, is crucial to fully understanding cellular identity. Indeed, both the “abso-
lute” location of a cell within the tissue and its relative position compared to other cells are often linked 
to the cell’s function. Combining such information with single-cell gene expression data, measured by 
RNA-seq, also allows the inference of complex interactions, such as cell-cell communication. Currently, 
scRNA-seq data can be integrated with either image-based or sequencing-based spatial data.

A commonly used image-based technique is fluorescence in situ hybridization (FISH). Originally 
designed for detecting chromosomal abnormalities in diseases, it was employed to visualize specific chro-
mosomal locations by using fluorescent oligonucleotide probes complementary to the region of interest 
(Gall and Pardue, 1969). The application of the original molecular principle to image mRNA in an intact 
tissue is known as single-molecule FISH (smFISH) and allows for the visualization of individual cells 
(including their subcellular structure) along with their spatial coordinates within the tissue (Figure 2.5, top 
panel). Spatial technologies based on smFISH vary greatly in scale, ranging from tens of imaged mRNAs/
cell, such as in RNAscope (Wang et al., 2012) and SABER-FISH (Kishi et al., 2019), to hundreds or thou-
sands of imaged mRNAs/cell via the use of imageable barcodes, such as in MERFISH (Xia et al., 2019) 
and seqFISH (Qian et al., 2020). By integrating scRNA-seq and smFISH data, it is possible to transfer 
cell-type annotations derived from gene expression measurements of the entire transcriptome to spatially 
resolved cells. Once cell types are mapped onto the tissue, the architecture of the tissue can then be recon-
structed in terms of both its overall cellular composition and the spatial relationships among cell types.

More recently, sequencing-based methods, such as the spatial transcriptomic technology (Visium) 
commercialized by 10x Genomics, allow the whole transcriptome to be mapped directly onto the tissue 
(Ståhl et al., 2016). In Visium, the tissue slide is first placed onto a chip used to measure gene expression, 
which is made up of capture areas containing thousands of barcoded spots. Each spot consists of millions 
of oligonucleotides with unique spatial barcodes. After permeabilization of the tissue, mRNAs can bind to 
the barcoded oligonucleotides on the underlying spot by diffusion. Reverse transcription is carried out and 
cDNAs are pooled and sequenced via NGS as in massive parallel scRNA-seq protocols (Figure 2.5, bot-
tom panel). Although greatly promising, the Visium technology does not reach single-cell resolution when 
measuring transcriptome-wide gene expression because the size of each spot (~50 μ) is several times the 
average size of a cell (approximately 10–50 cells/spot). To overcome this limitation, matched scRNA-seq 
from the same sample, can be used to deconvolve the Visium data from spatially resolved spots to spatially 
resolved cells (Kleshchevnikov et al., 2022; Andersson et al., 2019, 2020). More recent, sequencing-based 
spatial technologies include Slide-seq (Rodriques et al., 2019), which employs barcoded beads spatially 
indexed by SOLiD sequencing, and high-definition spatial transcriptomics (Vickovic et al., 2019), which 
uses a high-density bead array and decodes each bead’s location via rounds of hybridization with comple-
mentary, labeled, decoder oligonucleotides.
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TOWARD SINGLE-CELL REPRODUCTIVE MEDICINE

The potential applications of the HCA to both basic and translational research are limitless. By taking our 
understanding of human biology to a higher level of resolution, an atlas can help uncover the cellular basis 
of disease as well as lead to the development of improved in vitro models, revolutionizing drug testing. 
The aforementioned applications are particularly relevant in reproductive medicine, where the physiology 
of the tissues and many widespread diseases are still poorly understood. In addition, there is a need for 
better in vitro models to accelerate the process of drug development and testing (Figure 2.6).

Single-Cell Atlases of Healthy Tissue

Before we can study the cellular dysregulation brought about by disease, it is imperative to have a com-
prehensive reference map of the molecular state of the cells in the healthy human tissue. The human 
reproductive system is responsible for producing gametes and hormones and for accommodating and 
nurturing the fetus, all of which are highly regulated functions that require timely activation of distinct 
cellular phenotypes. Single-cell transcriptomics has already helped shed light on the diversity of cells 
present in the human reproductive system, including primary and secondary reproductive organs across 
various stages of development, and have hinted at the cellular mechanisms potentially underlying many 
pathological conditions.

FIGURE 2.5 (a) Schematic representation of the main steps in the workflow for Visium, as an example of 
sequencing-based spatial technologies. The tissue is first loaded onto the gene expression slide and then 
permeabilized so that all cellular mRNAs can bind to the barcoded oligonucleotides on the slide. (b) Schematic 
representation of the main steps in the workflow for imaging-based spatial technologies. Fluorescent oligo-
nucleotides are incubated with the permeabilized tissue, allowing for their hybridization with cellular mRNAs 
of interest and subsequent imaging under the microscope.
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Single-cell analyses of the neonatal, adolescent, and adult male primary reproductive organs eluci-
dated the transcriptomic and developmental stages of human spermatogenesis and investigated the cellu-
lar crosstalk between germline and somatic cells present in the testes (Guo et al., 2018; Sohni et al., 2019; 
Shami et al., 2020; Xia et al., 2020). Similarly, scRNA-seq profiling of the adult ovaries provided a map 
of the molecular signatures of the cell types in the inner and outer ovarian cortices at the different stages 
of follicular development (Fan et al., 2019; Wagner et al., 2020). Altogether, these datasets constitute an 
invaluable resource with which to dissect the potential mechanisms of male and female infertility as well 
as other pathologies associated with the reproductive system, such as cancer, and to develop new treat-
ments and assisted reproductive technologies.

Other studies include atlasing of secondary female reproductive organs, such as the endometrium 
(Suryawanshi et al., 2018; Vento-Tormo et al., 2018; Wang et al., 2018, 2020; Lucas et al., 2020) and 
the fallopian tube (Dinh et al., 2021; Hu et al., 2020). Single-cell transcriptomic analysis of endometrial 
biopsies across the menstrual cycle revealed a high degree of heterogeneity in the cellular composition 
of the tissue, with characteristic signatures for each cell type and phase of endometrial transformation 
(Suryawanshi et al., 2018; Vento-Tormo et al., 2018; Wang et al., 2018, 2020; Lucas et al., 2020). The fal-
lopian tube also undergoes structural changes in response to the menstrual cycle and is thought to harbor 
the cell-of-origin for many high-grade serous ovarian cancers (HGSOCs). Droplet-based scRNA-seq of 
fallopian tubes from healthy individuals revealed the transcriptional programs underlying different epi-
thelial cell populations (Dinh et al., 2020; Hu et al., 2020). Furthermore, computational deconvolution of 
HGSOCs based on the transcriptional signatures of the epithelial populations present in the healthy tissue 
revealed that early secretory epithelial cells from the fallopian tubes are likely to be the precursor state for 
many HGSOCs (Dinh et al., 2020; Hu et al., 2020).

Single-Cell Atlases of Disease

Disease involves the disruption of normal cellular functions and interactions. Initial efforts toward build-
ing reference single-cell maps of non-physiological conditions in the field of reproductive medicine, such 
as ovarian cancer, have already provided invaluable insights. They have helped uncover heterogeneity 
within these conditions and provided mechanistic insights into their development.

Among the plethora of malignancies affecting the ovary, HGSOC predominates in the clinical setting 
and is infamous for its high fatality rate and poor prognosis (Lisio et al., 2019). At the time of diagnosis, 

FIGURE 2.6 Areas of impact of single-cell technologies in reproductive medicine. Single-cell technologies 
have already shed light on the biological mechanisms underlying the functioning of the healthy reproductive 
system as well as several disease conditions. Moreover, they are instrumental in the development of new tools 
for testing and treating such conditions.
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one-third of patients with HGSOC present ascites, which act as a reservoir of cell types that provide a 
tumor-promoting microenvironment for cancer cells (Ahmed and Stenvers, 2013). A recent analysis of 
ascites samples from HGSOC patients, using droplet-based and plate-based scRNA-seq, resolved the 
expression profiles of cancer, immune, and stromal cells. It uncovered inter-patient and intra-patient het-
erogeneity within cancer-associated fibroblasts (CAFs) and macrophages found in ascites and suggested a 
role for JAK-STAT signaling in both malignant cells and CAFs. It also helped redefine the immunoreac-
tive and mesenchymal subtypes of HGSOCs described by The Cancer Genome Atlas (TCGA), finding 
that they are derived from macrophages and CAFs, respectively, rather than from malignant cells (Izar et 
al., 2020).

Improving In Vitro Models

Mapping the development of malignant as well as non-malignant cells is important to understanding the 
origin and progression of conditions such as HGSOCs in vivo lineage tracing experiments have provided 
invaluable insights into how cells differentiate in mice although translating these findings to humans is 
often challenging. A solution to this challenge is offered by in vitro models, which allow researchers to 
study and manipulate developmental processes. Then, scRNA-seq can be used to obtain an unbiased and 
comprehensive read-out of the changes occurring at the transcriptome level as cells develop or are per-
turbed in the dish.

Prompted by the in vivo findings about the potential role of JAK-STAT signaling in the ascites of 
HGSOC patients, Izar et al. (2020) used primary HGSOC cell lines and patient ascites-derived xenograft 
models to test the effects of JAK-STAT signaling inhibition. They performed a drug screen with com-
pounds targeting different nodes of the JAK-STAT signaling pathway and identified one compound, JSI-
124, as having potent anti-tumor activity. Taken together, the results from the in vivo and in vitro analyses 
revealed that inhibition of the JAK-STAT signaling pathway may be a therapeutic option for HGSOC 
patients (Izar et al., 2020).

Other noteworthy studies employed scRNA-seq to disentangle the heterogeneity of endometrial 
organoids (Fitzgerald et al., 2019) and cultures of primary decidualizing endometrial stromal cells (Lucas 
et al., 2020). Future quantitative comparisons of in vitro models and their corresponding in vivo single-
cell references will prove useful in improving the efficiency and accuracy of current in vitro models 
(Boretto et al., 2017; Turco et al., 2017). In addition, such comparisons will help us develop more accurate 
in vitro models that mirror the fundamental developmental events that give rise to the formation and dif-
ferentiation of reproductive organs.

CONCLUSION AND FUTURE PERSPECTIVES

While scRNA-seq remains the most widely used single-cell sequencing approach, it is now also possible 
to achieve single-cell resolution when measuring chromatin accessibility, DNA methylation, cell surface 
proteins, histone modifications, and chromosomal information (Stuart and Satija, 2019). Moreover, as 
described in this chapter, image-based and sequencing-based spatial technologies can currently be used 
to locate cells anatomically within a tissue. Integrating the aforementioned data types or simultaneously 
measuring multiple modalities is invaluable when defining cell identities. Unsurprisingly, single-cell mul-
timodal omics (i.e., a combination of distinct single-cell genomic methods) was named Method of the 
Year in 2019 (“Method of the Year 2019: Single-cell multimodal omics,” Teichmann, 2020).

Creating single-cell references of the human reproductive system that encompass information from 
multiple layers of regulation of the genome will prove crucial in further dissecting the cellular mechanisms 
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underlying both physiological and pathological conditions. Moreover, such multi-omic atlases will serve 
as a framework for the development of better in vitro models. Altogether, single-cell sequencing technolo-
gies are taking us towards a comprehensive understanding of the complexity of our body, by—to put it in 
the words of the HCA—“mapping the human body one cell at a time.”
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