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Summary 

The present doctoral dissertation focuses on the simulation of the residual stress 
state (RS) in steel weldments after their post-weld treatment with High Fre-
quency Mechanical Impact (HFMI). Main goal is the establishment of an efficient 
engineering approach, which will include straightforward simulation models 
without compromising the accuracy, in order to estimate the RS field and enable 
a future evaluation of its influence on the fatigue life of the simulated compo-
nents. The established approach should be applicable for both research and prac-
tical purposes. The Finite Element method is applied overall in the framework of 
the present study for the fulfilment of the research goal.  

Prior to the application of HFMI, significant welding residual stresses (WRS), 
which cannot be neglected, are present in the as-welded state. Although research 
on welding simulation with the FE method is ongoing since decades, the method-
ology for practical applications remains vague. Based on existing knowledge, the 
present study establishes a straightforward engineering approach that considers 
all significant aspects for the accurate estimation of the WRS, which is proven 
applicable for several materials. Subsequently, the influence of several practical 
and special aspects of welding simulation on the simulated RS such as the applied 
values for thermal expansion coefficient, welding sequence, modelling of bound-
ary conditions, phase changes, size of the modelled heat source etc. is investi-
gated with this model. Validation of the simulations is based on direct comparison 
of the simulated temperature and RS profiles with respective experimental meas-
urements found either in literature or in a completed research project. Conclu-
sions, which can act as a modelling guide for the engineering practice, are pre-
sented. The commercial general-purpose FE software ANSYS has been applied for 
all welding simulations. 

A similar approach is followed in the second part of the present research study, 
where modelling of HFMI is investigated. Once again, practical and special aspects 
of the HFMI simulation are considered. Amongst others, modelling of boundary 
conditions, density of HFMI treatment, scaling of components, applied values for 
the friction coefficient, material modelling and the influence of WRS are consid-
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ered. Calibration of applied material models is carried out based on material test-
ing from a completed research project and data from literature. Additionally, a 
series of drop tests for estimating the dynamic yielding behaviour of the investi-
gated materials under the deformation mode present during HFMI treatment, are 
implemented for the first time. The present series of numerical investigations re-
garding HFMI either confirm or reject initial assumptions and conclusions from 
previous experimental and numerical studies. Additionally, new conclusions re-
garding the necessary aspects, which have to be considered or neglected, in order 
to achieve the desired accuracy, are proposed. The commercial general-purpose 
FE software LS-DYNA has been applied for all HFMI simulations. 

Finally, recommendations for future work are presented regarding both the 
above-mentioned main parts of the present study and the numerical investiga-
tions regarding fatigue in general.  
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Kurzfassung 

Die vorliegende Dissertation befasst sich mit der numerischen Simulation der Ei-
genspannungen von Schweißverbindungen nach ihrer Behandlung mit dem hö-
herfrequenten Hämmerverfahren (HFH). Hauptziel ist die Entwicklung eines effi-
zienten Inngenieurkonzeptes, das praxisorientierte Modelle einschließt, ohne die 
Genauigkeit der Ergebnisse zu beeinträchtigen. Es soll die Bestimmung des Ein-
flusses der Eigenspannungen auf die Ermüdungsfestigkeit der simulierten Bau-
teile ermöglichen. Der entwickelte Ansatz sollte sowohl für Forschungszwecke als 
auch für praktische Zwecke anwendbar sein. In Rahmen der vorliegenden Studie 
wird die Finite-Elemente-Methode für die Erfüllung des aktuellen Forschungszie-
les angewendet. 

Die Schweißverbindungen im wie-geschweißten Zustand haben schon vor der 
Nachbehandlung signifikante Schweißeigenspannungen. Obwohl die Forschung 
zum Thema Schweißsimulation schon seit Jahrzehnten betrieben wird, bleibt die 
Methodik für ihre praktische Anwendung unklar. Basierend auf dem vorhande-
nen Wissen wird in der vorliegenden Studie ein technischer Ansatz für die genaue 
Simulation des Lichtbogenschweißens entwickelt, der alle wichtigen Aspekte für 
die genaue Schätzung der Schweißeigenspannungen berücksichtigt und erwiese-
nermaßen für mehrere Materialien anwendbar ist. Mithilfe dieses Modells wurde 
der Einfluss einiger praktischer oder spezieller Aspekte der Schweißsimulation, 
wie z.B. die verwendeten Werte des Wärmeausdehnungskoeffizienten, die 
Schweißreihenfolge, die Modellierung der Randbedingungen, die Phasenum-
wandlungen, die Abmessungen der Wärmequelle usw. auf die gerechneten Ei-
genspannungen untersucht. Die Validierung der Simulationen basiert auf einem 
direkten Vergleich der simulierten Temperaturprofile und Eigenspannungen mit 
entsprechenden experimentellen Messungen, die entweder in der Literatur oder 
in einem abgeschlossenen Forschungsprojekt gefunden wurden. Es werden 
Schlussfolgerungen präsentiert, die als Modellierungsleitfaden für die Ingenieur-
praxis dienen können. Die kommerzielle FE-Software ANSYS wurde für alle 
Schweißsimulationen angewendet.  

Ein ähnlicher Ansatz wird im zweiten Teil der vorliegenden Doktorarbeit verfolgt, 
in der die FE-Modellierung des höherfrequenten Hämmerns HFH untersucht wird. 
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Auch hier werden praktische und spezielle Aspekte der HFH-Simulation betrach-
tet. Unter anderen werden berücksichtigt: die Modellierung der Randbedingun-
gen, die Überlappung von HFH-Schlägen, die Skalierung von Bauteilen in der Si-
mulation, die angewendeten Werte für den Reibungskoeffizienten, die 
Werkstoffgesetze und der Einfluss der Schweißeigenspannungen. Die Kalibrie-
rung der verwendeten Werkstoffgesetze erfolgt mithilfe von der Werkstoffcha-
rakterisierung aus einem abgeschlossenen Projekt und von Daten aus der Litera-
tur. Darüber hinaus wurde eine Reihe von Fallversuchen für die Bestimmung der 
dynamischen Streckgrenze von den untersuchten Werkstoffen durchgeführt. Die 
aktuelle Serie von numerischen Untersuchungen des HFH bestätigt entweder o-
der widerlegt Anfangsannahmen und Schlussfolgerungen aus früheren experi-
mentellen und numerischen Untersuchungen. Zusätzlich werden neue Schlussfol-
gerungen bezüglich der notwendigen Aspekte vorgeschlagen, die zu 
berücksichtigen sind, um die gewünschte Genauigkeit zu erreichen. Die kommer-
zielle FE-Software LS-DYNA wird für alle HFH-Simulationen angewendet. 

Abschließend werden Empfehlungen für zukünftige Untersuchungen zu den oben 
genannten Hauptthemen der vorliegenden Doktorarbeit sowie zum Gebiet Ermü-
dung und FE-Simulationen im Allgemeinen gegeben.  

 



 

 

…«Κι ἂν πτωχικὴ τὴν βρῇς, ἡ Ἰθάκη δὲν σὲ γέλασε.  
Ἔτσι σοφὸς ποὺ ἔγινες, μὲ τόση πείρα,  

ἤδη θὰ τὸ κατάλαβες ᾑ Ἰθάκες τί σημαίνουν.» 

…”And if you find her poor, Ithaka won’t have fooled you.  
Wise as you will have become, so full of experience,  

you’ll have understood by then what these Ithakas mean.” 

Ἰθάκη (Ithaka) 

by C. P. Cavafy,  

translated by Edmund Keeley 

 

 

 

 

 

 

 

 

 

 

metallurgy 

From French métallurgie, from Ancient Greek μεταλλουργός  
(metallourgós, “worker in metal”), from μέταλλον (métallon, “metal”) +  

ἔργον (érgon, “work”). 
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Preface 

During my undergraduate studies at the School of Civil Engineering, at the Aristo-
tle University of Thessaloniki, I was fascinated by two subjects of structural engi-
neering, which would shape my academic future: steel structures and computa-
tional mechanics. The possibilities of the accurate design enabled by the 
mechanical properties of steel, its application on more complicated structures 
and the fact that during design of such structures, the challenge of combining 
complex scientific knowledge with practical engineering solutions arises, have 
been the reasons for concentrating on the first subject. Regarding the latter one, 
the computational mechanics, it has been from the beginning pure fascination in 
front of the capabilities, which are enabled by introduction of computers in mod-
ern engineering. Therefore, when I decided to pursue the doctoral title of engi-
neering it was the natural course of events to land on the field of simulation of 
steel structures. 

When I first met Professor Thomas Ummenhofer in June 2012 and made my in-
tentions of having a doctoral dissertation regarding numerical analysis in the field 
of steel structures known to him, he proposed the present subject. Back then, my 
knowledge on welding was restricted to design of weldments against static loads 
and the terms “post-weld treatment” and “residual stresses” were unknown to 
me. I agreed to begin my postgraduate research in Karlsruhe Institute of Technol-
ogy on this subject without imagining the very interesting journey, which was 
about to begin. Over the years, I investigated several aspects, which were not 
strictly attached to the main subject, they were not dots of a straight path, but 
small sidesteps I had to take. I strongly believe now that they helped me signifi-
cantly to better comprehend the subjects of plasticity, residual stress, metallurgy 
and fatigue amongst others. The completion of the present study broadened my 
scientific knowledge but more significantly, it reshaped my personality by increas-
ing my work ethics on a level I could not foresee.  

I would sincerely like to thank my supervisor Professor Thomas Ummenhofer for 
giving me the opportunity to work in such a challenging environment, like the KIT 
Steel and Lightweight Structures Institute - Research Centre for Steel, Wood and 
Masonry. Without his trust in me and my previous education, this dissertation 
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would not have been realized. His scientific vigour was and will always be an in-
spiration for me. His ability to lead the younger researchers with such insightful-
ness on so many different subjects of our field will always be for me a source of 
admiration, something to look up to.  

Furthermore, I would like to thank my colleagues, scientific and laboratory asso-
ciates of the KIT Steel and Lightweight Structures Institute, for the smooth coop-
eration over the years. Especially I have to mention Philipp Ladendorf for the in-
teresting scientific discussions and his input regarding material testing over the 
years, my research assistant Ioannis Savvanidis for his contribution in designing 
and setting up the drop tests of the present study and Dr. Tim Zinke for his valu-
able advice regarding the process of writing and publishing my doctoral disserta-
tion. Special thanks to Dr. Majid Farajian and Mr. Jan Schubnell for the fruitful 
collaboration in the framework of the project HFH-Simulation. Without their in-
put, the present study could not have been finalized. For their financial support 
to the same research project, which provided significant input for the present 
dissertation, I should acknowledge as well the DVS – Deutscher Verband für 
Schweißen und verwandte Verfahren and the Arbeitsgemeinschaft industrieller 
Forschungsvereinigungen "Otto von Guericke" e.V. (AiF). 

I would like to thank Professor Andreas Taras for being the second reviewer of 
the present dissertation, the time he invested for this task, his valuable remarks 
and overall for his positive feedback. I thank him as well along with Professor Pe-
ter Betsch and Professor Joachim Blaß for being members of the examining com-
mittee and for acknowledging the hard effort for completing this dissertation and 
the quality of my work.  

At this point, I would like to state explicitly my gratitude to my mentor Professor 
Peter Knoedel, a great scientist and a wonderful person, for his patience, for all 
the things he taught me and for all the memorable moments. He never stopped 
motivating me take up new challenges. He has been rigorous but just, he kindly 
pinpointed my mistakes and cheerfully congratulated my successes, always re-
specting my personality. For me he is much more than a tutor, a director or a 
colleague, he has become a heartwarming, dearest friend. For all these, Peter, 
thank you. 
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I should not forget to mention my friends Alexandros, Andreas, Georgios, Ioannis, 
Michalis, Orestes and Vasilis, with whom I lived over the last years many memo-
rable moments, which helped me going. Many special thanks to my companion 
Aikaterini, for her support and for the nice moments we had in Karlsruhe. Her 
sweet, vivid and kind personality has been a shelter in difficult moments. The 
healthy competition with her wit and scientific duality have pushed me to im-
prove myself significantly. Additionally, I would like to thank her for contributing 
to the syntax of the MATLAB code for the present study. Finally yet importantly, 
I would like to thank my parents Genovefa and Stylianos to whom I devote this 
dissertation. Without their love and support, this doctoral dissertation would not 
have been completed. I am grateful to them for showing me the joy of knowledge, 
for teaching me to choose always the hard path of virtue and for making me un-
derstand in their very own words, what the Ithacas of this world mean.  

 

Stefanos Gkatzogiannis 
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1 Introduction 

1.1 Problem Statement  

It was more than 50 years past the first patented application of welding in Russia 
at the end of the 19th century [27], when engineers started to realize the phe-
nomenon of fatigue fracture in weldments. Events like the collapses of the Point 
Pleasant Bridge in the US and the Alexander Kielland offshore platform in Norway, 
which were caused due to fatigue cracking of welded connections and led to 
losses of human lives [66], increased the awareness regarding fatigue design and 
exhibited the vulnerability of welded joints against cyclic loading1. Ever since, 
methods and recommendations regarding fatigue design ([35], [76] e.g.), steel 
quality ([29] e.g.), welding quality ([79] e.g.) and non-destructive testing ([80] 
e.g.) have been developed and activated respectively. Therewith, the fatigue life 
of steel structures can be predicted with safety, the ductile performance of the 
parent material and the welded joint are assured and joining defects can be 
avoided or detected.  

Nonetheless, welded joints remain the Achilles heel of steel structures, when 
they are subjected to fatigue loading. The fatigue strength of welds lies signifi-
cantly lower than that of parent material due to the notch effect and the respec-
tive concentration factor, the tensile welding residual stresses (WRS)2, the una-
voidable welding defects and the reduced ductility of the heat-affected zone 
(HAZ). Hence, extending fatigue life of welded joints leads to significant increase 
of a construction’s life cycle.  

Several methods have been developed in the last decades with the purpose of 
increasing fatigue life of welds, with High Frequency Mechanical Impact treat-
ment3 (HFMI) [118] being one of the most straightforward and effective (see 
[167]). It can be applied through the use of a device by the craftsman or by a robot 

                                                           
1 the problem of fatigue regarding parent (unwelded) metallic materials was already known from the 19th cen-
tury, worth mentioning are the Versailles rail accident and the work of Julius Albert and August Wöhler 

2 a list of abbreviations is given at the begining of the present dissertation at page xxxiii 

3 or Hochfrequetes Hämmerverfahren (HFH) in German 
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both during manufacturing process and on existing and new structures in the 
field. Therewith, a significant increase of fatigue strength of even more than 
100 % in some cases is possible (see [118]). The first HFMI application was de-
signed in the 70’s in the Soviet Union under the name Ultrasonic Impact Treat-
ment (UIT) [153]. Nowadays, two different types of HFMI devices are manufac-
tured in Germany, High Frequency Impact Treatment (abbreviated as HiFIT, 
described in [161] and [162]) and Pneumatic Impact Treatment (abbreviated as 
PIT or PITec, described in [98]). The principle remains the same in all cases. A pin 
made of hard steel is accelerated towards the weld toe by an appropriate mech-
anism, which differs though for each manufacturer. The weld toe is plastically de-
formed, the weld notch effect is reduced and compressive residual stresses (RS), 
which counterbalance the detrimental tensile WRS, are introduced in the treated 
area [167]. HiFIT and PITec devices are presented in Figure 14. 

  
(a) 

(b) 
Figure 1: HFMI devices manufactured in Germany: a) HiFIT (courtesy of HiFIT GmbH); (b) PITec (courtesy of PITec 
GmbH) 

The effectiveness of HFMI for the extension of fatigue life of welded joints has 
been thoroughly validated by experimental investigations in the past (see [167], 
[168], [171], [181], [182], [183] etc.). The fatigue life of HFMI-treated butt-welds 
has been proven to be higher than that of parent material in [109], [167], [168], 
[173] etc. The effectiveness of the method was also investigated for different ge-
ometries, plate thicknesses and parent material: transversal and longitudinal 
stiffeners and hollow sections of various thicknesses were tested in [33], [109], 

                                                           
4 figures of the present manuscript are referenced in the text as Figure 
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[167], [171], [175], [176] and [185]. In most cases the inverse slope m of the cal-
culated SN curve of the HFMI-treated specimens was larger than 5 [33], [167], 
[163], [171] and a clear increase of fatigue strength was documented. Tests on 
specimens made of S355, S690, S910, S1100 and S1300 ([33], [167], [168], [169], 
[171], [174], [176] etc.) have displayed a dependency of the HFMI effectiveness 
on the yield strength of the investigated material, with high strength steels dis-
playing more potential. The higher introduced compressive RS are to be ac-
counted for this increase in effectiveness. It is clear from the above, that the HFMI 
enhancement of fatigue strength depends on many parameters and respective 
factors for the consideration during the design of the increased fatigue life have 
been proposed in [119], [172].  

Extensive research on HFMI during the last two decades enabled the regulation 
of the method by the International Institute of Welding (IIW) according to [118] 
by analogy to existing recommendations for as-welded specimens (see [35], [76]). 
Influence of material nominal yield strength and fatigue loading stress ratio was 
as well taken into consideration. Nevertheless, the approach of SN curves and the 
respective proposed FAT classes in both cases are quite conservative: the 95 % 
confidence interval is proposed as the characteristic fatigue strength of each in-
vestigated notch detail. Moreover, the proposed FAT classes are calculated based 
on several test series carried out by different research groups on welded speci-
mens, which are nominally identical, but in reality can qualitatively differ signifi-
cantly from each other. This problem is thoroughly described in [38]. Although 
this approach is reasonable enough, when fatigue design recommendations for 
the practitioner have to be compiled, extracted FAT classes can be too conserva-
tive for weldments of high quality. 

Numerical modelling of HFMI could be a valuable alternative to costly fatigue 
tests. Coupled with weld simulation it could enable a safe prediction of the RS 
field, taking into consideration the various unique parameters of each investi-
gated case, such as welding parameters, notch effect, complex geometries, ma-
terial etc. The calculated WRS field should be input for an accurate calculation of 
fatigue life through simulation of RS from HFMI. Computational welding mechan-
ics (see [60], [111]) have evolved rapidly in the last decades and results with sat-
isfying precision regarding WRS and respective deformation can be extracted 
[57].  Some numerical investigations of HFMI have been carried out during the 
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last years as well, neglecting however in most cases significant effects of the pro-
cess (see, [1], [44], [68], [98], [99], [103], [142], [150], [167],  [187], etc.). For ex-
ample, precise modelling of material behaviour, as a high-speed impact event is 
simulated, movement of the HFMI pin, boundary conditions as well as WRS is re-
quired. These aspects were taken into consideration only in very recent studies, 
which were published parallel and shortly prior to the conclusion of the present 
dissertation [36], [108]. 

Objective of the present study is the establishment of a validated engineering ap-
proach for the simulation of HFMI, taking into consideration all the significant as-
pects of the process, in order to provide a robust prediction of the introduced RS. 
The developed approach should serve a dual role. It should be applicable both for 
research purpose, whereby it could be used as a tool for sensitivity analyses and 
in extension further investigation and improvement of the method, and in prac-
tice, in order achieve less conservative design. During the development of the 
presented method, all predominant factors that affect RS should be considered. 
The application of the method should be straightforward, meaning that special 
knowledge of physical metallurgy apart from the basic knowledge of material sci-
ence taught to undergraduate level of engineering would not be required, with-
out compromising though the preciseness of the results.  

1.2 Research Methodology 

The subject of the present study can be divided into two major fields, the weld 
process and the HFMI simulation. Although the main subject of the presented 
study is numerical, analytical calculations as part of the method were deployed, 
when it was considered necessary. Moreover, experimental results, which were 
extracted in the framework of the present or others studies ([3], [21], [146]) were 
used as input for the developed approach or for validation of the results. 

Several investigations regarding the first field have been presented in a series of 
previous publications by the author, which were carried out in the framework of 
the present doctoral dissertation. A straightforward, appropriate for practical ap-
plications approach for modelling the WRS was developed [92] and validated 
based on measurements found elsewhere [1], [21]. The method was extended in 
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[20], [55] and [56] for simulating various materials and used for sensitivity anal-
yses regarding parameters of material modelling [53], welding parameters [56] 
and boundary conditions [55], [57]. The model was adapted and revalidated for 
the presently investigated materials, based on measurements from the research 
project HFH-Simulation [146]. Whenever possible, values from literature were ap-
plied for common material properties. As the above-mentioned publications 
were carried out in the framework of the present doctoral dissertation, the main 
aspects of the method are thoroughly presented in this study as well, when nec-
essary. Commercial FE software ANSYS was applied for all numerical investiga-
tions of weld processes [4].  

Material data, which was used as input for the HFMI simulation, was extracted 
from drop tests. The results of the drop tests were evaluated based on appropri-
ate analytical and numerical calculations and were compared with respective ex-
perimental results for the same batches of the investigated materials from HFH-
Simulation [146]. In this case as well, values from literature were applied for com-
mon material properties, when it was considered that the preciseness would not 
be compromised. Results from a previous study, wherein the HFMI treatment of 
an unnotched plate was investigated, were used for a first step validation of the 
developed HFMI modelling approach [44]. After the HFMI simulation model was 
validated, it was coupled with the welding simulation model and the results were 
once again validated based on the measurements from the research project HFH-
Simulation [146]. During the development and validation of the present ap-
proach, significant conclusions regarding practical aspects of the HFMI simulation 
were drawn. Material modelling, definition of boundary conditions, simulation of 
real scale fatigue tests and modelling techniques regarding the motion of HFMI 
pin were investigated amongst others. The commercial FE software LS-DYNA was 
applied for all numerical investigations of the HFMI treatment [114].  

As it was mentioned above, the developed approach should be appropriate for 
both research and practical applications. Therefore, an appropriate balance be-
tween preciseness and computational effort should be held at all times. Ultimate 
objective of the present study was to enable a safe prediction of the RS in the 
areas of the components, which are susceptible to fatigue cracking i.e. the near-
surface region of the heat-affected zone, in order to allow for a safe estimation 
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of fatigue life. An empirical thumb rule of a deviation equal to ± 10 % of the in-
vestigated material’s yield stress or smaller between simulated and measured RS 
at these areas of the components was considered sufficient and feasible for the 
targeted engineering application and was fulfilled in most of the investigated 
cases. 

1.3 High Performance Computing 

The high performance research computer ForHLR I of the Steinbuch Centre for 
Computing at the Karlsruhe Institute of Technology was applied for carrying out 
the numerical investigations of the present doctoral dissertation. In the case of 
the welding simulations in ANSYS [4], a fat node was used for Parallel Processing 
with 16 processors. Initial memory request was set to 500 GB in each case. To 
give an example, the duration of simulating a 1000 mm x 370 mm x 10 mm, 4-
pass fillet weld, meshed with 175827 nodes and 160296 elements using these 
computing resources was in real time 97 hours 45 min and 34 seconds. In the case 
of the HFMI simulation, 16 nodes with 16 processors each were applied with Mas-
sive Parallel Processing (MPP). For simulating the 3-pass treatment of a compo-
nent with dimensions of 20 mm x 20 mm x 10 mm, meshed with 195640 nodes 
and 208022 elements, 7 hours 21 minutes and 52 seconds elapsed. Deployment 
of up to 512 processors in total was the upper limit regarding HFMI simulations, 
due to the available number of LS-DYNA licenses [113]. 

1.4 Outline of the Present Dissertation 

The present dissertation is organised in 7 chapters, the present introductory one 
and seven more. In the 2nd chapter, a thorough review of the theoretical back-
ground for the present analytical and numerical investigations is made. The ana-
lytical investigations were carried out in order to evaluate the above-described 
drop tests. The theoretical background of all numerical investigations, which are 
necessary for the calculation of RS from welding and HFMI is presented as well. 
The highlights of previous work by other authors and the author of the present 
dissertation are exhibited, so that a comprehensive overview of the state of the 
art regarding the present subject becomes available to the reader.  

https://www.scc.kit.edu/dienste/forhlr1.php
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In the 3rd chapter the numerical investigations regarding residual stresses from 
welding, which were carried out in the framework of the present study, are pre-
sented. Mesh and modelling restrictions are discussed. After a detailed analysis 
of the applied methodology, results regarding three different weldments are pre-
sented. A series of investigations, regarding the influence of various practical and 
special aspects of weld simulation, like boundary conditions, material modelling 
and welding parameters etc. on the modelled WRS is presented. Conclusions re-
garding the welding simulation and recommendations regarding future work are 
summarized at the end of the chapter. 

The 4th chapter reports on the experimental investigations, which were carried 
out in the framework of the present study, along with the analytical and numeri-
cal models, which were applied for the evaluation of the test results.  The test set 
up is described thoroughly and restrictions and errors that arise are reported. The 
inevitable assumptions for the simplifications of the analytical model are high-
lighted. The test results and the extracted material properties are presented and 
compared with respective results from other sources. 

In the 5th chapter, the numerical study on HFMI and the introduced RS is de-
scribed. The methodology and the results of some preliminary investigations are 
outlined. The numerical study of the HFMI treatment for two different geome-
tries is reported. Therewith, the influence of various aspects of the simulation 
process on the modelled RS are investigated, analogously to the case of WRS in 
the previous chapter. Both numerical approaches and practical aspects are dis-
cussed. Based on the present results, a review of the recommendations from pre-
vious studies is made as well. Explicit conclusions for the case of HFMI modelling 
and recommendations regarding future work are highlighted at the end of this 
chapter.  

Finally, as specific conclusions and recommendations regarding future work over 
welding and HFMI simulation are presented in the previous respective chapters, 
a general discussion regarding the present dissertation and a proposal regarding 
the implementation of the present method in a holistic numerical approach re-
garding fatigue of metals are presented in chapters 6 and 7. 
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2 Theoretical Background 

2.1 Numerical Investigations 

2.1.1 FE Simulation of Fusion Welding Residual Stresses 

Ever since De Bernandos patented the first arc weld application in 1887 [27], sev-
eral metal arc welding types have been developed [170]. Nevertheless, in most 
cases the same principle is applied: an electric arc, i.e. a flow of ions between an 
electrode and the metallic part or parts, which are to be welded, is established 
leading to rapid increase of temperature and surpassing the melting point of the 
welded material (see [97], [179]). Through cooling-down and resolidification of 
the molten material, the desired connection is achieved. During the investigation 
of the welding process, a multi-physics problem is arising, as thermal, microstruc-
tural, mechanical, and electromagnetic phenomena among others, are present. 
A thorough overview of the physics of welding, provided by Francis et al. in [51], 
is presented in Figure 2. 

Consecutive increase and decrease of temperature causes respectively the ex-
pansion and shrinkage of the material in and near the weld. Restraints from 
neighbouring unaffected material during both heating and cooling in combination 
with softening of the material due to increased temperatures introduces signifi-
cant plastic strains in the weld, which are accompanied by residual stresses. 
Based on simplified models of thermal expansion and shrinkage and material be-
haviour, theoretical profiles of WRS have been proposed in the past ([96], [139] 
etc., see Figure 3). Nonetheless, as this thermal treatment can influence signifi-
cantly the microstructural composition (phase changes, recrystallization etc.) and 
in extension the material behaviour of the welded area, the real strains and re-
sidual stresses are not always in agreement with textbook knowledge. Weld sim-
ulation with the FE method is a powerful tool that can tackle this problem, calcu-
lating shrinkage and profiles of WRS with satisfying accuracy taking into 
consideration all the predominant factors. 
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Figure 2: Multiphysics of welding - The processes and respective interactions during arc welding as presented 
by Francis et al. [51] 

 
Figure 3: Theoretical profiles of WRS found in [96]: a) Longitudinal WRS; (b) Transverse WRS, “with external 
constraint” stands for the case of clamped longitudinal sides 
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The field of computational welding mechanics has widely expanded over the last 
decades. Although the first finite element formulations regarding coupled ther-
momechanical simulations of welding were published in the ‘60s, with the inves-
tigations by Argyris et al. being the earliest known to the author of the present 
dissertation [5], it was not until the ‘80s when the conditions for the evolution of 
practical weld simulation were met. In 1984, Goldak presented his approach for 
modelling of the welding heat source [61], which is until now considered state of 
the art, while equations for prediction of microstructural transformations were 
either already available [94] etc., or were proposed around the same time [104].  
Furthermore, sufficient computational capabilities became available. Ever since, 
different approaches for simulation of welds have been proposed, using FE soft-
ware either of general purpose ([1], [11], [92] etc.) or weld-specialized ([21], [69], 
[71] etc.).  

In many cases, calculation of WRS and welding distortion has been the main sub-
ject of the proposed models. For such an engineering analysis though, it is not 
required to take into consideration all the above-mentioned phenomena. The 
thermal, the microstructural and the mechanical fields have to be modelled and 
electromagnetic, fluid flow and mass transfer effects can be neglected (see [92], 
[111], [139]). Thermal transfer is predominant, as it influences the welding resid-
ual stresses both directly by inducing thermal strains and indirectly by influencing 
the microstructural transformations and in extension the mechanical behaviour 
of the welded component. These microstructural transformations cannot be ne-
glected in most cases, as they can cause significant discrepancies to the material 
behaviour during a thermal cycle.  For instance, yielding behaviour of the mate-
rial, whose influence on the order of magnitude of the WRS is predominant, can 
radically change in the HAZ and the FZ of aluminium welds due to recrystallization 
of the microstructure [93]. Finally, the mechanical field incorporates the above-
mentioned effects in order to calculate the requested output. 

These three fields of weld simulation interact with each other as it is presented 
in Figure 4. For example, thermal behaviour influences directly the phase propor-
tions of ferritic steels, but each phase has its unique thermal properties and as a 
result, thermal behaviour changes inside a thermal cycle. Moreover, heat transfer 
material properties are influenced from the microstructure and deformation can 
cause exchange of heat energy [139]. At the same time, mechanical loading of 
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the heated areas of a component from neighbouring unheated material or ap-
plied restraints can influence microstructural behaviour, as in the case of Trans-
formation-Induced Plasticity (TRIP), which is described thoroughly in [42] and 
[67]. Nonetheless, the influence of these phenomena on calculated WRS is negli-
gible and therefore, the backwards influence of mechanical field on thermal and 
microstructural field and of microstructural on thermal are usually neglected (see 
for instance [92], [111] and [139]). Sole exception is the TRIP, whose influence on 
the WRS is non-negligible and consequently has to be taken into consideration 
[87], [92]. 

 
Figure 4: Investigated fields and respective interactions in an engineering approach for arc welding simula-
tion –  Arrows with broken and continuous contour are symbolizing the existing and the considered interac-
tions respectively 

2.1.1.1 Modelling of Thermal Field 

As already mentioned, modelling of the thermal field includes the solution of the 
heat-transfer problem. Ensuring sufficient preciseness during the calculation of 
the WRS requires accurate modelling of the heat transfer inside the component 
and use of temperature-dependent material properties. As mentioned above, the 
influence of microstructure on thermal material behaviour is neglected and ther-
mal properties of parent material are usually applied for the whole investigated 
thermal cycle [3], [21], [92]. Loading and boundary conditions of the problem are 
the heat input from the weld heat source to the weld pool and heat losses from 
the component to the environment respectively.  

Welding Heat Source 

The double ellipsoidal model of Figure 5, which was proposed by Goldak et al. in 
1984 [61] is still considered state of the art for modelling the heat input into the 
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weld pool during simulations of metal arc welds (see [28], [71], [92] etc.). It can 
be properly modified for different types of welds as well, such as in [128] for laser 
welding. The model describes the power density distribution of each point around 
the centre of a moving heat source as a function of time, and position of the point 
about the centre, by using quadrants from two different ellipsoidal sources. The 
two quadrants have common width and depth but different length in order to 
properly model the elongation of the power heat distribution rear to the centre, 
due to the movement of the heat source. The power density distribution of the 
rear and front quadrant are described respectively by the following two Equa-
tions1,2,3: 

���	 �	 �	 �� � � � �� � �� � �� �  � !" � # � �# � $%&�'()( � $%&�*(+( � $%&�,-./�01234%567(89((	 (1) 

���	 �	 �	 �� � � � �� � �: � �� �  � !; � # � �# � $%&�'()( � $%&�*(+( � $%&�,-./�01234%567(89<(= (2) 

The effective heat input rate Q is calculated as follows: 

 � � > � ? � @= (3) 

Proposed values for the weld metal arc efficiency η are given by Dupont and 
Mader in [32]. These values can differ slightly from those applied by welding en-
gineers in practice (± 5 %), as it is discussed in [57]. It was shown in [58] that this 
discrepancy causes negligible differentiation of the calculated WRS, which lies in-
side the acceptable error for practical weld simulation (± 10 % to the calculated 
WRS). 

  

                                                           
1 a list of notations is given at the begining of the present dissertation at page xxxv 

2 front quadrant in Figure 5 is the one with dimensions a, b, c1 (Equation (2)) 

3 fr and ff of Eq. (1) and (2) are according to [186] the fractions of heat deposited in the rear and front quadrant 
respectively,  with fr + ff = 2 
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Figure 5: The Goldak’s heat source model, figure found in [186] 

Heat Transfer 

Heat transfer inside the component is governed by the following transient Equa-
tion (4): 

 A � ! � BCB� � �� D BB� EF' � BCB�G D BB� EF* � BCB�G D BB� EF- � BCB�G	 (4) 

derived by combining the 1st thermodynamics law, 

 HI � � JK	 (5) 

which is a version of the law of conservation of energy adapted for thermody-
namic systems, with Fourier’s law of heat conduction, 

 � � JFLC	 (6) 

and neglecting the influence of fluid flow inside the weld pool on heat transfer. 
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Heat Losses 

Heat losses from the component to the environment through convection and ra-
diation constitute the boundary conditions of the thermal problem.  Heat loss due 
to convection and radiation are described by Newton’s law of cooling, 

 �M � N9 � �CO J C+�	 (7) 

and Stefan-Boltzmann’s law, 

 

�M � N� � �CO J C+�P	 (8) 

respectively. During the first weld-modelling applications, a temperature inde-
pendent value for the coefficient of heat losses was applied [3], [5]. In the latter 
case, a more delicate approach was followed by applying a coefficient for the ma-
terial in the FZ, accounting for radiation effects as well. In any case, the influence 
of radiation on heat losses at room temperature is negligible, but cannot be ne-
glected as it is becoming predominant at high temperatures. Therefore, its mod-
elling is necessary for precise thermal results inside and near the weld pool. New-
ton’s law of cooling, albeit is not anymore physically valid when radiation 
becomes predominant, was applied with a modified coefficient for heat losses, in 
order to account for the radiation effects as well in [5]. This approach has ever 
since provided sufficient results ([1], [44], [140], [92] e.g.). Proposed values for 
the total coefficient of heat losses hT applied instead of hC, were calculated in [1] 
based on data found in [18].  

2.1.1.2 Modelling of Microstructural Effects 

Some microstructural properties of the metallic alloys influence their macro-
scopic mechanical behaviour. Their differentiation due to rapid heating and cool-
ing inside a welding thermal cycle has to be taken into consideration during weld-
ing simulation, in order to ensure that WRS are calculated with required 
preciseness.  



2 Theoretical Background 

16 

 
Figure 6: Sensitivity analysis for the heat source parameters (N to T are different sets of heat source parameters 
a, c, fr and ff) and real temperature measurements of a thermal cycle in the HAZ during welding for HT36 steel – 
Published in [92], measurements and welding parameters were found in [3] 

Microstructural Phases of Steel 

Steel is a multi-phase solid, where each phase represents a different crystal sys-
tem of the Fe and C atoms [67]. The prevailing phase, for a plain Fe-C alloy is 
dependent on temperature and mass percentage of C, as it is displayed at the 
phase diagram of Figure 7. Each phase demonstrates different mechanical behav-
iour. In alloys, which contain more elements, the phase composition is as well 
influenced by their percentages.  

Austenitic transformation4 begins and ends during heating, when austenitization 
temperatures A1 and A3 respectively are reached. The following Equations, which 
are found in [60] and [111], were proposed respectively for the calculation of 
both temperatures, based on chemical composition of the investigated steel al-
loy:  

 MQ � RS� J QT=R � UV J Q�=W � XY D SW � ZY D Q�=W � [\ D SWT � M] D�=^K, 
(9) 

                                                           
4austenitic transformation is the transformation of another steel phase to austenite - the reversed transfor-
mations of austenite to ferrite (ferritic transformation), bainite (bainitic transformation), pearlite (pearlitic 
transformation) and the rest of the phases apart from martensite (martensitic transformation) are convention-
ally called austenitic as well (see [104]) 
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 M� � WQS J STT � �[ J Q_=S D ^^=RZY D �Q_ � U` D Q�=Q � K J ��T �UV D QQ � [\ D ST � [a J RTT � b J ^TT � Mc J QST � M] J ^TT � CY�. (10) 

 
Figure 7: Carbon steel weld: a) HAZ; b) Phase diagram (found in [96], γ stands for austenite and α for ferrite) 

Nevertheless, the information of the Fe-C diagram and the Equations (9) and (10) 
are referring to “static” theoretical values (dT/dt � 0), as they are obtained by 
respective experiments. During dynamic heating cases like welding, the bounda-
ries of the phase changes are being shifted. Leblond and Devaux observed that 
when dynamic heating takes place, a deviation between real and theoretical val-
ues of A1 and A3 temperatures is met, with the real values being higher (see 
[104]). In the case of A1 though, the increase could be considered negligible. This 
effect was named “retardation” by Leblond and Devaux and was further investi-
gated in [116] and [133]. Macedo et al. correlated the real values of A3’, herein-
after referred to as “dynamic”, with the heating rate for the investigated steel 
and A1, as it is presented in Equation (11), 

 M�� � d � efgf5h%i.; D MQ, (11) 
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where d and j are constants with proposed values of 135.6 and 0.95 [116]. Ap-
plying A3’, decouples the influence of Tmax and ta, which describes the transient 
nature of austenitic transformation. The dynamic effect is incorporated in the cal-
culation of A3’. Hence, the influence of ta for single-pass welds (single thermal 
cycle) can be neglected. 

The Fe-C phase diagram, although being inadequate to describe precisely the dy-
namic nature of microstructural transformations during welding, can act qualita-
tively and advisory. At an initial stage of a weld analysis, it can offer a first rough 
evaluation of the predominant microstructural transformations in the different 
parts of the weld, based on the locally reached maximum temperature (Tmax) dur-
ing heating. A thorough overview of the zones with different microstructure in 
and near the weld pool based on the phase diagram of FE-C is given in Figure 7. 
In the fusion zone (FZ), when the temperature exceeds the melting point (Tmelt), 
full austenitization at first and full melting later take place. Material in the HAZ 
transforms partially to austenite, away from the FZ, or even completely, closest 
the boundaries with the FZ, without exceeding the fusion temperature. Between 
the FZ and the HAZ, lies the thin zone of material, where partial melting takes 
place. The microstructure of the “parent” or “base” material (PM of BM) outside 
the HAZ, remains uninfluenced by the heat treatment.  

During cooling, the proportion of the austenitized material transforms again. 
However, the resulting microstructure deviates from the respective one in the 
phase diagram of the parent material as rapid cooling takes place after welding. 
Final microstructure after cooling can differ significantly depending on the cooling 
rate. Conventionally, the cooling time from 800 oC to 500 oC (t85) is used as index 
for the cooling rate. Rapid cooling rates (t85 < 10 s) lead to the creation of mar-
tensitic microstructure (martensitic transformation). Nevertheless, due to the 
rapid change, full transformation may not be achieved and remaining austenite 
can be met in the final microstructure. If lower cooling rates take place and cool-
ing time is in the order of magnitude of 50 s, austenite transforms to pearlite 
instead (pearlitic transformation). For slow cooling rates (t85 ≈ 100 s), austenite 
transforms to bainite or ferrite (bainitic of ferritic transformation).  For each alloy 
the exact boundaries between the various possible transformations may deviate 
from the above rough description due to the above-mentioned dependence of 
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phase transformations on chemical composition. Continuous cooling transfor-
mation (CCT) diagrams (see [147], [148], [188]) as the one presented in Figure 8, 
illustrate the influence of cooling rate on the microstructural transformations, de-
pending on the chemical composition of the parent material.  

State of the Art Models for the Simulation of Phase Changes 

Austenitic transformation, whose influence on WRS is discussed in [177], takes 
place through diffusion [67], while martensitic transformation is a non-diffusional 
thermal-driven process and takes place through rearrangement of all the atoms 
of the crystal lattice [67], [111]. The different nature of each of the two transfor-
mations dictates the use of different prediction models.  The models proposed by 
Leblond and Devaux in [8] and Koistinen and Marburger in [9] were widely applied 
in the last decades (see [74], [112], [184] etc.) for modelling austenitic and mar-
tensitic transformations respectively. The semi-empirical JMAK model developed 
by Johnson-Mehl [85], Avrami [7] and Kolmogorov [95] and the Kirkaldy model, 
which is described in [60], have been as well applied as an alternative to the Le-
blond model, for considering the several phase transformations of various metals 
(see for instance [8], [9] and [154]).  

The Leblond-Devaux model was formatted initially for two existing phases and a 
unique transformation and was then generalized for the case of n phases and 
several possible transformations, for both heating and cooling. The evolution of 
microstructure n is governed by Equation (12)  

 V
 k � Vklm�C� J Vkn�C� = (12) 

The model is based on the existence of an equivalent volume fraction of the trans-
formed phase neq, which is different at each temperature level. The model is 
based on a rational assumption: if enough time is provided, the microstructural 
transformations will end when this equivalent fraction is reached. In the case of 
austenitic transformation during heating, neq for the austenitic phase is equal to 
0 and 1 at A1 and A3 temperature respectively. Yet, calibration for each investi-
gated material is required, as θ(T) is dependent on chemical composition as well 
[104]. 
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Figure 8: CCT diagram of steel S355, found elsewhere [69]5 

On the other hand, Koistinen and Marburger proposed a straightforward model 
[94], correlating the fraction of the remaining austenite after the martensitic 
transformation with the transformation starting and the quenching temperature 
(final cooling temperature), as it can be seen in following Equation (13) 

 Vk)oO5 � $�%;=;p�p=p;�qr%gs�t uuvY�NuUO w Cm w JxTuy= (13) 

Martensite starting temperature Ms, can be either calculated analytically by Equa-
tion (14) 

 UO � _�Q J ^R^ � [ J �_ � UV J QR � XY J QR � [\ J SQ � U`	 (14) 

which is found elsewhere [60], [111], or taken directly by the respective CCT dia-
gram. 

More recent work has shown that the mechanical behaviour of a component can 
be sufficiently described by major parameters of the thermal cycles. The STAAZ 
model presented by Ossenbrick and Michailov in [134] completely overtook the 
need for transient microstructure calculation by carrying out mechanical behav-

                                                           
5 the diagram was redrawn by the author of the present dissertation in order to improve the figure quality 
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iour tests on higher temperature levels and strain rates, to characterize the ma-
terial behaviour of the different component areas (i.e. areas with different ther-
mal cycles) during a single-pass weld. A triple parameter consisting of Tmax, t85, 
and ta was proven to be sufficient to describe the material behaviour inside a 
thermal cycle. This statement is becoming easily understood, based on the above-
described influence of these three parameters. Mechanical material behaviour of 
the investigated material inside a thermal cycle for different values of this triple 
parameter were experimentally acquired. A finite element analysis was subse-
quently carried out, wherein each investigated component was divided to differ-
ent areas, as in the present approach. During simulation, each area should then 
be assigned with a respective, experimentally acquired material behaviour de-
pending on its triple parameter values. In this way, the material behaviour during 
welding could be adequately modelled. Experimental results from later work 
have shown that the method could be extendable to multi-pass welds [19] as 
well. In order to apply the STAAZ model though, there is a need to repeat the 
delicate calibration tests for every newly investigated material. 

The Gkatzogiannis – Knoedel – Ummenhofer Engineering Approach 

Alternatively to the above-mentioned methods, an engineering approach was 
proposed for the simulation of WRS in a study, which was carried out in the 
framework of the present doctoral dissertation [92]. The proposed method is in 
its original form predictive, calculating the WRS based on existing CCT diagrams. 
Theoretical A1 and A3 temperatures were calculated based on Equations (9) and 
(10) respectively. The dynamic A3’ temperature taking into consideration the re-
tardation effect was calculated based on Equation (11). During heating, the whole 
component was simulated with parent material behaviour. When Tmax was be-
tween A1 and A3’ a linear interpolation between no and complete austenitization 
was carried out, in order to calculate the percentage of austenitized fraction (see 
Figure 9). During cooling, the austenitized behaviour was assumed to behave ac-
cording to the respective CCT diagram. Several material models6 for different lev-
els of austenitization during heating and cooling paths were simulated. Each ma-
terial model was characterized by its Tmax and t85. Applying A3’ decouples the 

                                                           
6 hereinafter called Cooling Material Model (CMM) 
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influence of Tmax and ta, which describes the transient nature of austenitic trans-
formation. The dynamic effect is incorporated in the calculation of A3’. Hence, 
the influence of ta for single-pass welds (single thermal cycle) can be neglected 
and only a double parameter consisting of Tmax and t85 is applied. Each FE-element 
in the HAZ and the FZ was assigned during cooling with the closest material be-
haviour, different from that of the parent material, based on the double-param-
eter (Tmax and t85, see Figure 10). The double-parameter of each finite element of 
the model was calculated during the solution of the thermal field [92]. Precise-
ness of the method, regarding the consideration of microstructural influence, de-
pends on the number of simulated material models. 

 
Figure 9: Modelling principle of heating and cooling in the Gkatzogiannis-Knoedel-Ummenhofer engineering ap-
proach, A1 and A3 are symbolized as Ac1 and Ac3 respectively, figure found in [69] 

At each temperature level, the yield strength7 was calculated by a linear mixtures 
law (Equation (15)), which is widely applied for calculating the material parame-
ters of multi-phase solid materials (m phases) ([60], [111] etc.): 

 �z � { |�Vk � �zk�}~k�; . (15) 

                                                           
7 along the manuscript the symbol σy is applied for yield strength, although in literature the symbol  fy can be 
met as well 
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Apart from the phase fractions, influence of austenite grain size and transfor-
mation induced plasticity8 (TRIP) were investigated in [69], as theoretically they 
can have a significant effect on the calculated WRS (see [60], [111], [71] etc.). 

 
Figure 10: Application example of the proposed method: the areas of the component, with different material 
models during cooling-down: CMM4 was assigned to blue areas; CMM3 was assigned to red areas; CMM2 was 
assigned to purple areas; rest of the plate is preserving CMM1 (parent material) 

Austenite Grain Size 

Austenite grain size directly influences the yield strength of the austenitic phase. 
The austenite grain growth was analytically calculated in [92] through equations 
found in literature. Considering that Tmax is the dominant temperature during the 
austenitization time, therefore assuming T = Tmax during the austenitization time, 
Equation (16) by Lee and Lee [107] was applied, in order to calculate the austenite 
grain size as a function of austenitization time, temperature and chemical com-
position, for low alloy steels:  

                                                           
8 Transformation Induced Plasticity is defined by Fischer et al. [42] as follows “. . . significantly increased plasticity 
during a phase change. For an externally applied load for which the corresponding equivalent stress is small 
compared to the normal yield stress of the material, plastic deformation occurs . . .” 
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�)oO5 � R��RQ � $e%%��p��.&��;��.;";;��k.;PP&���.Pp&;�q���g h � �)p=";;= (16) 

Knowing the austenite grain size and using Norström’s [131] correlation of yield 
strength to the austenite grain size for austenitic steels, Gkatzogiannis et al. de-
rived a rough estimation of the austenite fraction’s yield strength as a function of 
ta [92]. The differentiation of the austenite yield strength for higher austenitiza-
tion times produced a negligible differentiation to the overall yield strength of 
the investigated material and in extension no significant effect on WRS. It was 
concluded that it can be safely neglected for the case of multi-phase steels. 

TRIP: Transformation Induced Plasticity 

Greenwood and Johnson were the first to investigate TRIP in 1965 [62]. Later on, 
TRIP was included in mathematical formulations of computational welding me-
chanics by Rammerstorfer [138], Argyris et al. [5] and Leblond [105]. The signifi-
cance of considering TRIP influence during simulation of WRS was highlighted by 
Oddy et al. in 1989 (see [132]). Around the same time, Karlsson proposed a more 
straightforward approach for taking into consideration the TRIP effect [87], which 
is applicable even to cases, when classical plasticity theory is applied and no com-
plicated mathematical formulations of material behaviour are required. Karls-
son’s proposal was the arbitrary lowering of the yield stress in the respective re-
gions of the HAZ during cooling. This approach was adopted as well by 
Gkatzogiannis et al. in [92], when martensitic transformation took place.  

 
Figure 11: The arbitrary reduction of yield strength in the respective temperature range proposed by Karlsson 
for the consideration of TRIP during welding simulation, based on a diagram from [87] 
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2.1.1.3 Modelling of Mechanical Behaviour 

Analysis Type 

Inertia effects during welding are negligible but plastic strains are introduced; 
hence, a quasi-static analysis for non-linear material is carried out for modelling 
the component’s structural behaviour. The quasi-static analysis for a system of 
finite elements is governed by the following Equation9, 10: 

  �O��� � u����= (17) 

In the case of structural analysis during welding simulation, the thermal strains 
caused by the welding thermal cycle constitute the imposed loading. They can be 
calculated with the following Equation: 

 �5� � �Ol�C� � �C J C�l:�	 (18) 

based on the FE nodal thermal history, which is previously calculated during the 
thermal transient analysis, and they are applied as structural nodal loads (see 
[92]).  

Dilatometry 

The coefficient of thermal expansion α (secant or instantaneous) is strongly de-
pendent on microstructure. According to common engineering knowledge, fer-
ritic and austenitic steels have a coefficient of thermal expansion equal to  
12·10-6 and 16·10-6 respectively at room temperature, both variating slightly de-
pending on the specific microstructure of each investigated alloy and the temper-
ature. All phases of steel apart from austenite are usually assumed to have the 
same dilatation behaviour as ferrite. When the microstructure is multiphase (m 
phases), α can be calculated by applying once again a linear mixtures law, 

                                                           
9 use of bold letters states tensor notation 

10 due to the inelastic behaviour of the material the force-displacement relation is path-dependent, thus the 
resisting force vector is an implicit function of displacement �O � �O��� and no more equal to ��, where � is 
the stiffness matrix, as in the case of elastic material behaviour 
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 �5�5�C� � �|Vk�C� � ��k�C�}~
k�; 	 (19) 

with such an approach having been adopted elsewhere (see [39], [92]). The dila-
tometric diagrams, such the one given by Ferro and Bonolo [39] (see Figure 12), 
provide a thorough overview over the microstructural and temperature depend-
ency of the dilatation behaviour. The instantaneous coefficient of thermal expan-
sion, which is equal to the slope of the dilatometric curve, changes significantly 
during heating and cooling after the completion of the respective microstructural 
transformations. During the transformations a significant jump in the diagrams is 
met, which corresponds to the volumetric changes caused by the rearrangement 
of the atoms in the crystal lattice, during changes from α-phase (ferrite) to γ-
phase (austenite) and vice versa. After completion of the phase changes a signif-
icantly different slope of the dilatometric curve is observed, during both heating 
and cooling. 

 
Figure 12: Dilatometric curves found in [39] 

Furthermore, as can be seen in Figure 12b, differentiated cooling rate influences 
the dilatation behaviour as well. As mentioned above, changing cooling rate leads 
to different phase-transformations taking place, which have different starting 
temperatures. Therefore, transition from austenitic dilation behaviour to that of 
another phase, is taking place at a different temperature range. Increasing of 
cooling rate causes the decrease of the transition temperature and vice versa. 
This is in accordance with the general form of the CCT diagrams as the one in 
Figure 8. Higher cooling rates lead to martensitic transformation, which takes 
place at lower temperatures (left side of the CCT diagram). Independently of the 
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cooling rate and in extension of the final microstructure after cooling, the behav-
iour of the material shifts back to the dilation curve of ferrite. Therewith, the 
above-mentioned assumption that all phases apart from austenite display same 
dilation behaviour with ferrite is confirmed. 

Albeit the ending point of the dilation curve is identical independently of this tran-
sition temperature range during cooling, the influence of cooling rate on WRS is 
significant. When the increase of thermal strains due to transition from austenitic 
to ferritic dilation behaviour takes place in a lower temperature range, it is ac-
companied by a higher yield strength, leading in this way into the creation of 
higher plastic strains and in extension higher WRS.  The above-statement is valid, 
only when the influence of microstructure on yield strength is negligible. Never-
theless, as the yield limit is for many alloys not only temperature-dependent but 
microstructure-dependent also, as it was described above, the interpretation of 
the influence of cooling and dilation is becoming even more complex. Under-
standing this complexity, further confirms the necessity of FE modelling of weld-
ing shrinkage and WRS. A direct modelling of the dilation behaviour of the inves-
tigated material for heating or a specific cooling rate through direct input of 
thermal strains is more straightforward than the use of the coefficient of thermal 
expansion based on Equation (19). Gkatzogiannis et al. applied Equation (19) in 
[92], in order to predict the dilation curves of their CMMs, based on the predicted 
microstructural transformations. Thermal strains as a function of temperature 
were then applied as input for the simulation.  

Rate-Independent Nonlinear Material Behaviour 

In order to calculate the plastic strains and the WRS caused by the external load-
ing, plasticity of the investigated material must be considered. The non-linear ma-
terial behaviour of steel can be simulated as bilinear, multi-linear, with Ramberg-
Osgood model [137] etc. However, as the maximal plastic strains during welding 
are usually lower than 2 % [92], a bilinear model with a tangent modulus H (slope 
of the second branch), which is selected based on the stress for this introduced 
plastic strain, can be considered sufficient for welding simulation [55]. The von-
Mises yield criterion,  

 ���� � �" J �"	 (20) 
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which is widely applied for simulating the yield behaviour for metallic compo-
nents, is applied as well during simulation of welding. Temperature-dependent 
material parameters are usually taken into consideration (see [3], [21], [28], [92] 
etc.).  

Zhu and Chao have nonetheless proven in [190] that an engineering approach, 
whereby only the predominant yield strength is considered to be temperature-
dependent, can offer results with sufficient preciseness.  Moreover, even in cases 
where more material properties were temperature-dependent, usually a thresh-
old temperature was defined, above which either stiffness was set to zero [164] 
or effects of thermal treatment were neglected [165], [52]. This threshold tem-
perature was named “cut-off” by Lindgren (Tcut). It varies from 500 °C up to 900 °C 
in [52], [164] and [165]. Preciseness was not compromised in these cases. The 
influence of defining and variating Tcut, from up to Tmelt down to 600 °C, was in-
vestigated by Tekriwal and Mazumber in [160]. It was concluded that at lowest 
Tcut a maximal overestimation of 15 % of the WRS took place. The principal of Tcut 
is thoroughly described by Goldak and Akhlaghi in [60] and Lindgren in [111]. In 
any case, it has to be considered that attaining material properties at higher tem-
peratures (>1000 °C) is subject to significant testing restrictions.  

Rate-Dependent Nonlinear Material Behaviour 

Lindgren [111] proposed that during welding simulation, when very high accuracy 
is required, strain rate dependent plasticity should be considered, without provid-
ing though any information regarding the order of magnitude of the influence on 
calculated WRS. Strain rate was introduced quite early into the formulation of 
finite element equations for modelling the thermomechanical welding process. 
Argyris et al. proposed in 1984 a viscoplastic material model, wherewith the strain 
rate dependency of the yield behaviour11 is taken into account [5]. However, prior 
to an investigation from Gkatzogiannis et al. [59], no quantified influence of strain 
rate dependency on simulated WRS was known to the author of the present 
study. In this study that was carried out in the framework of the present doctoral 
dissertation, the effect of strain rate dependency on WRS was investigated and 
quantified. Preliminary analyses showed that in the heat affected zone (HAZ) and 

                                                           
11 hereinafter called simply strain rate dependency 
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the fusion zone (FZ) of a 3-pass butt-weld, strain rates of up to 0.122 s-1 are pre-
sent. Although this value lies clearly lower than the classical dynamic cases such 
as modelling of ballistic tests (�
 � QT�u]%;� or car crash simulation (�
 �QTTu]%;), still clearly deviates from the static case (�
 � Tu]%; ). The authors ap-
plied the material model presented by Perzyna in 1966 in [136]:  

 ��= �� � � � ��*��* J Q�;�	 (21) 

which enables the consideration of strain rate dependency during implicit quasi-
static FE simulations. It is analogous to the Cowper-Symonds model [25], as it was 
presented by Jones in [86]: 

 �=�� � H � ��*��* J Q��= (22) 

It is obvious that for the uniaxial loading case, the two models are becoming 

equivalent as ��= � �=��   and consequently, the coefficients α, 1/β and γ, δ become 
respectively equal.  Table 1, which was found in [86], provides values for the Cow-
per-Symonds model, which were gathered from different sources.  

Table 1: Coefficients for Cowper-Symonds model, presented in [86]  

Material Δ  
[s-1] γ  

[-] Reference 
Mild steel 40.4 5 Cowper and Symonds [25] 

Aluminium alloy 6500 4 Bodner and Symonds [13] 

a-Titanium (Ti50A) 120 9 Symonds and Chon [156]  

Stainless steel 304 100 10 Forrestal and Sagartrz [50] 

High tensile steel 3200 5 Paik and Chung [135] 

Hardening Behaviour 

The influence of welding thermal cycles complicates the selection of appropriate 
hardening behaviour as well. Τhe zone along and near the welding line is com-
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pressed and subsequently stressed under tension by the subsequent cold mate-
rial during heating and cooling respectively. Therefore, reversed plasticity takes 
place, which in the case of multi-pass welding can constitute of more than one 
hysteresis. Selection of an appropriate hardening model for describing the plastic 
behaviour after the reversal of loading is predominant for the calculated WRS 
[111], [151]. Kinematic ([17], [28], [88], [23], [31] etc.), isotropic ([141], [15], [40], 
[70], [2], [71] etc.) and mixed hardening ([106], [126] etc.) models have been ap-
plied in the past for weld simulations. An assumption that the Bauschinger effect 
of austenitic steels is eliminated during subsequent yielding, when prior yielding 
takes place at elevated temperatures or the material is heated significantly be-
tween consecutive yielding sequences, has been validated by Mataya and Carr in 
[120]. Hence, even those materials, which exhibit an obvious Bauschinger effect 
at room temperature, are expected to behave according to isotropic hardening 
during reversed plasticity. Wohlfart et al. [178], Mullins and Gunnars [126] and 
Smith et al. [151], [152], who investigated the influence of hardening modelling 
on WRS simulation of austenitic steels, came to the conclusion that isotropic 
hardening provides better agreement than kinematic. The latter two proposed as 
well to use of a mixed hardening behaviour, which was even more accurate. On 
the contrary, investigations by Gkatzogiannis et al. for ferritic multiphase [55] and 
austenitic steels [56] have shown a reversed effect, with kinetic hardening provid-
ing better agreement than isotropic. Still, the difference between isotropic and 
kinematic hardening in these investigations was inside the uncertainty bounda-
ries of the applied weld modelling approach. In all above-mentioned comparative 
investigations though, kinematic hardening under-predicted the WRS in the weld 
area in comparison with isotropic. 

Boundary Conditions 

During the structural analysis, appropriate boundary conditions have to be ap-
plied, in order to simulate the mechanical restraints of the real component in re-
ality. Components for scientific measurements are usually welded in the labora-
tory either restraint-free or clamped down. Wherever possible, symmetry 
conditions can be applied as well in order to reduce the computational time.  

According to common practice, modelling of clamping mechanisms is usually 
done by fixing the displacements of the respective nodes in all directions. None-
theless, this modelling approach may deviate from reality, whereby clamping 
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mechanisms allow small in-plane displacements to take place. On the other hand, 
carrying out a restraint-free implicit analysis leads to numerical instabilities (un-
derdetermined static system). These two modelling challenges were discussed by 
Gkatzogiannis et al. in [55], who proposed the use of linear spring elements for 
modelling both cases and investigated the effect of boundary conditions on the 
calculated WRS. Different setups, using either “soft” or “hard” linear spring ele-
ments for modelling of restraint-free and clamped components respectively, 
were applied. A similar approach for modelling a free plate was applied earlier by 
Caron et al. in [21] and Gkatzogiannis et al. in [92]. The terms “soft” and “hard” 
exhibit the empirical nature of the method. In any case, stiffness should be re-
spectively low in the former case in order to allow an almost free movement and 
high enough in the latter case, so that only very small displacements are possible. 

 
Figure 13: Modelling of restrained-free component by using springs with low stiffness, previously presented in 
[92] 

In the case of the unrestrained plate, two spring elements in the vertical and one 
in the longitudinal direction were modelled. Displacements to the direction trans-
verse to the welding line were not restrained, as the symmetry conditions at the 
centreline of the plate constitute already the static system overdetermined in this 
direction. A stiffness value of 103 N/mm for the soft springs was proven low 
enough in order to simulate with preciseness a restraint-free component [55].  
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In the case of clamped components, the two set ups of Figure 14 and various 
values for spring stiffness were tested [55]. The blue region represents the 
clamped area. In setup (a), spring elements restrained transverse displacements 
(X-axis) of all nodes at the outer edge of the clamped area. The longitudinal dis-
placement of the upper and lower corner nodes (Y-axis) on both edges of the 
plate was fixed as well with linear spring elements. Total stiffness was equal in 
both directions. Vertical (Z-axis) displacement of all the nodes in the area was 
fixed. In setup (b), spring elements restrained displacements along X (transverse) 
whilst Y (longitudinal) and Z (vertical) displacement of the blue area were fixed. 
Values in the range of 103 up to 109 N/mm for the springs’ stiffness were tested 
for both setups. The results were compared with the case where the nodes of the 
clamped area were simply fixed to all directions and a significant increase in pre-
ciseness was met. Highest preciseness was achieved by applying setup (a) with 
spring stiffness higher than 106 N/mm.  

Still, it has to be highlighted that although the improvement in the results is clear, 
fixing of the required stiffness values and application to other cases is not viable. 
As above-described, linear springs were applied for restraining the transverse dis-
placement of all nodes along the edge of the clamped area. Therefore, the num-
ber of the restrained nodes and in extension the applied spring elements, is de-
pendent on the size of the clamped area, and the mesh density. As a result, the 
spring stiffness should be re-calibrated in each investigated case. Yet, the results 
from [55] can be applied as guidance for practical applications based on rough 
calculations and using the highest tested value of 109 N/mm, matching a spring 
density of approximately 20 x 107 (N/mm)/mm in the clamped areas, should lie 
on the safe side for similar clamping area size and mesh density. 

 
Figure 14: Investigated setups of linear spring elements for modelling the clamping mechanisms [53] 
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2.1.1.4 Surface Treatment 

Previous investigations by Shaw et al. [149] and Hensel et al. [72] have proven 
that blasting surface treatments, which are applied prior to welding as well, in-
troduce significant RS on the respective components. The following diagram, 
which was found in [149], displays the magnitude of RS caused by various treat-
ments on the surface of a mechanical component of steel 20MnCr5. It is known 
to have a nominal yield strength in the order of magnitude of 1150 MPa. If signif-
icant stresses are introduced prior to welding from these treatments, this could 
affect the final calculated WRS profile. No previous numerical investigation of 
blasting for considering the RS during a welding simulation is known to the author 
though. 

 
Figure 15: Introduced RS from various treatments on the surface of a mechanical component of steel [149] 

2.1.1.5 Specimen Cut 

Most of the fatigue testing results are extracted from small specimens, which are 
cut out of larger welded plates. A relaxation of WRS is supposed to take place 
through the cutting process. The change in WRS profile is expected to be influ-
enced from the applied technique as well.  Previous investigation carried out by 
Dattoma et al. compared numerical and experimental results regarding the influ-
ence of milling and cutting machining on the WRS of butt welds with different 
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thicknesses [26]. Although the numerical and the experimental results exhibited 
some deviation from each other, a significant WRS relaxation from both milling 
and cutting was observed. In some cases, the tensile WRS of the whole plate were 
even substituted by compressive WRS in the cut specimens as it can be seen in 
the diagrams of Figure 18.  

 
Figure 16: WRS profiles of welded plates with thickness of 8 mm, at as welded, after milling and after cutting 
states [26] 

2.1.2 FE Simulation of HFMI 

Increase of fatigue life through the HFMI treatment is affiliated with the introduc-
tion of compressive RS (CRS), the increase of local surface hardness and the 
change of the local geometry in the weld-toe, which leads to reduction of the 
notch effect [167]. These effects depend on the proportion of energy that is trans-
ferred from the HFMI pin to the treated component, through their contact sur-
face, and is transformed to plastic deformation. Plastic strains are introduced, 
which results in the creation of residual stresses around and beneath the treat-
ment area. Moreover, non-negligible inertia effects may arise due to the rapid 
introduction of plastic strains. Hence, a precise simulation of the HFMI treatment 
in the aspect of RS calculation and a safe estimation of the respective fatigue en-
hancement based on the simulation results, perquisites selection of appropriate 
analysis type and accurate modelling of the pin energy, the conditions in the con-
tact surface and  the material behaviour. 

2.1.2.1 Analysis Type for Impact Simulation 

During HFMI treatment, the deformation rate of the treated metal is significantly 
higher than in static events. Therewith, dynamic effects may arise. Different strain 
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rates require different types of analysis, as different aspects of material behav-
iour have to be taken into consideration respectively. Moradi et al. categorized 
mechanical testing based on the testing strain rate and reported on the non-neg-
ligible aspects in each case as it is shown in Table 2 [125]. These conclusions can 
be safely extrapolated for numerical investigations as well, as the same physical 
phenomena have to be simulated.  The HFMI treatment is reported to produce 
strain rates between 200 s-1 and 400 s-1 [44]. The investigated treatment lies in 
between the rapid and the impact cases, as they were presented by Moradi et al. 

Table 2: Dynamic aspects of mechanical testing, table content found in [125] 

Loading Regime Creep Static Rapid Impact Ballistic 
Typical Time  

Characteristic [s] 1k 1 20m 10m 10m 
Typical Strain rate [1/s] 1m 1 50 1k 1M 

Method of 

Engineering Creep Rate Stress 
Strain Vibration Elastic and 

Plastic Shock Wave 
Inertia Forces Ignored Ignored Considered Considered Considered 

Thermal Isothermal Isothermal Adiabatic Adiabatic Adiabatic 
General Stress Levels Low Moderate Moderate High High 

Therefore, according to initial expectations a full transient structural analysis 
should be necessary. The dynamic analysis of a finite element system, taking into 
consideration non-linear material behaviour is governed by the following equa-
tion of motion: 

 ��� uD u��
 uDu �O��� � u����= (23) 

Full transient analysis has been already applied in several cases of HFMI numerical 
investigations (see [10], [44], [45], [68], [187]). Nevertheless, Boyle et al. have 
investigated numerically shot peening in [16], the simulation of which exhibits 
many similarities with HFMI in matters of contact conditions and material behav-
iour. This previous study has proven that for impact velocity up to 200 m/s quasi-
static analysis (Eq. (17)) neglecting inertia phenomena provides results with sat-
isfying preciseness. In the case though, where increased impact velocity of 
300 m/s was applied, significant errors arose in the quasi-static analysis, due to 
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neglection of strain rate dependency and interaction of elastic stress waves. 
Quasi-static analyses of HFMI have been as well carried out in the past (see [103], 
[115], [142]). However, the results are questionable due to either lacking docu-
mentation of the applied methods or to neglection of significant aspects. 

2.1.2.2 Material Behaviour 

Rate-Dependent Nonlinear Material Behaviour 

Yield strength is predominant during HFMI simulation, like in all cases of RS cal-
culations. Le Quilliec et al. have validated with a simplified quasi-static analysis of 
a notched specimen, whereby friction and WRS were neglected, the significant 
influence of yield strength on the resulting RS profile [103]. As it is presented in 
Figure 17 the peak of the introduced compressive stresses was, as initially ex-
pected for the modelled bilinear elastic-plastic material behaviour, approximately 
equal to the nominal yield strength in each investigated case. 

 
Figure 17: Simulated RS profiles in depth direction for different yield strength values of the investigated material, 
found in [103] – Component with thickness of 12 mm 
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Still, the viscoplastic nature of yielding is becoming significant under the high 
strain rates of HFMI [44]. Jones gathered and correlated data from previous stud-
ies on the strain rate dependency of steel at different strain rates and presented 
the correlation curve of Figure 18 [86].  A rough estimation of the dynamic yield 
strength under the above-mentioned expected strain rates of HFMI based on that 
correlation exhibits an increase of more than 100 % of the yield strength. This 
differentiation of yield strength due to higher strain rates does not allow a direct 
correlation of the introduced RS with the nominal yield strength, complicating a 
straightforward calculation of fatigue enhancement in practical applications. Ac-
cording to initial expectations, neglecting the strain rate dependency of the ma-
terial during an FE simulation of HFMI could lead to erroneous results regarding 
the calculated RS profile and in extension to a non-conservative estimation of fa-
tigue life. Although it was neglected in several previous studies (see [10], [103], 
[115], [142] etc.), the necessity of material models considering strain rate de-
pendency of yielding becomes obvious. 

 
Figure 18: Correlation of static and dynamic yield stress based in experimental data from various studies carried 
out by Symonds [157], found in [86]12 

The material model described by Equation (24),  

��0���	 �
�	 �6 � �M D � � ����  � ¡Q D ¢ � £¤ � �
��
�p�¥ � ¡Q J E C J CpC~ J CpG
¦¥	 (24) 

                                                           
12 the diagram was redrawn by the author of the present dissertation in order to improve the figure quality 
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which was presented by Johnson and Cook in 1982 [84], is widely applied in vari-
ous high strain rate simulations ([46], [78], [101] etc.). Forni et al. investigated the 
strain rate dependency of structural steel S355 in a series of studies ([47], [48], 
[49]) and calibrated the Johnson-Cook material model for the investigated alloy 
based on their experimental results. The parameters calculated by Forni et al. are 
presented in Table 3. 

Table 3: Parameters of the Johnson-Cook model calibrated for S355, found in [49] 

A [MPa] B [MPa] n [-] C [-] m [-] 

448 782 0.562 0.0247 - 

In a more recent study by Cadoni et al. [20] it was further proven that for steel 
S355 a significant deviation of strain rate dependence is met in tension and com-
pression. Using the Split-Hopkinson set up, tension and compression tests at var-
ious strain rates were carried out from 5 s-1 up to 8 x 103 s-1. The results were 
compared with static tests for both loading scenarios. A significant deviation in 
the strain dependent behaviour of steel was documented for the two cases. A 
summary of the results is illustrated at Figure 19.  

 
Figure 19: Comparison between dynamic yield strength in tension and in compression, based on a diagram found 
in [20]13 

                                                           
13 the diagram was redrawn by the author of the present dissertation in order to improve the figure quality 
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Strain Rate Sensitivity 

The tests, which were carried out by Johnson and Cook in [84], did not display 
clearly if there is an interaction between strain rate dependency and tempera-
ture, or if they both influence the constitutive relation, independently from each 
other. The strain rate dependency of each investigated alloy differed from the 
others’, but was significant in any case. In more recent work and due to the evo-
lution of testing techniques, the influence of temperature on strain rate sensitiv-
ity was further validated. Strain rate sensitivity (SRS) of metals mSRS is defined by 
the following Equation,  

 §¨�¨ � £¤ e�
z© �
zª h
£¤ e�
© �
ª h = (25) 

It is an index of the strain rate dependency at each temperature level and for each 
strain rate. Gkatzogiannis et al. [59] compared results from previous studies by 
May et al. [122], Magee and Ladani [117] and Gupta et al. [65]. SRS of three dif-
ferent alloys, an Al-Mg alloy, a pure 99.5 % Al alloy (denoted as Al 99.5) and AISI 
403 stainless steel, were considered. It was concluded that SRS differs signifi-
cantly for each investigated alloy and an obvious dependence of SRS on temper-
ature was clear in all cases.  

Microstructure-Dependence of Strain Rate Sensitivity 

Significant discrepancies were observed even in the case of the two batches of 
the same AL 99.5 with different grain size, the ultra fine grained (UFG) and the 
conventional-grained (CG) (Figure 20). Even at room temperature, SRS of the two 
alloys deviates significantly. This time a further significant dependence of SRS on 
microstructure is confirmed. It is concluded that adoption of rate-dependent ma-
terial behaviour based on data for another metallic microstructure should be car-
ried out with caution, when the strain rate of an alloy is investigated.  

Consequently, further considerations regarding the strain rate dependency of the 
treated material are required in the case of HFMI. The HFMI treatment is carried 
out along the weld-toe, practically the HAZ of welded component, where the ma-
terial behaviour can deviate significantly due to transformed microstructure as it 
was described above. Extrapolation of the parent material behaviour to the HAZ 
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regarding strain rate plasticity could lead to erroneous results and a consideration 
of the altered microstructure is required.  

 
Figure 20: SRS of UFG and CG Al 99.5, m corresponds to mSRS of Equation (25), n = 1/m [117]14 

Hardening Behaviour 

Material behaviour in cases of reversed loading is expected to influence the HFMI 
simulation results, as in the case of WRS. During each impact of the HFMI pin on 
the treated material compressive and tensile stress are expected to arise beneath 
and around the contact surface respectively. Nonetheless, as the pin moves along 
the treatment line, consecutive impacts are overlapping. Therefore, areas previ-
ously deformed under tension are deformed under compression in subsequent 
impacts and vice versa.  

The hysteretic σ-ε behaviour of metals, which exhibit the Bauschinger effect, is 
described better by kinematic hardening models. Nevertheless, according to 
widely accepted engineering knowledge, it provides precise results for small 
strains only [189]. Mixed hardening has been applied instead in previous numer-
ical investigations of HFMI. Schubnell15 et al. have investigated the effectiveness 

                                                           
14 the diagram was redrawn by the author of the present dissertation in order to improve the figure quality 

15 formerly known as Foehrenbach 
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of kinematic and Chaboche-based [22] mixed hardening models during the simu-
lation of HFMI treatment of a plate from parent material in [44]. Their numerical 
results were validated based on RS-measurement. The applied Chaboche model 
provided better results near the treatment surface. Hardenacke et al. have as well 
previously discussed the influence of hardening behaviour [68]. Isotropic, com-
bined and rate-dependent hardening models produced qualitatively similar re-
sults in depth direction, but as in the case of the WRS, significant deviation to the 
magnitude of the peak residual stresses was met. Zheng et al. [189], Le Quillec et 
al. [103] and Baptista [10] applied combined, isotropic and kinematic and 
Chaboche hardening models respectively, while Yuan et al. used usual linear kin-
ematic hardening [187].  

Damping 

Apart from the deformation behaviour and constitutive law of the investigated 
material, its damping behaviour should be taken into consideration as well. Pre-
cise calculation of RS during nonlinear impact simulations, as in the case of HFMI, 
perquisites sufficient modelling of the damping behaviour of the investigated ma-
terial as well, as a portion of the kinetic energy of the pin that is transferred into 
the component is consumed by the damping mechanisms.  

Damping is somewhat an abstract concept. Microscopic mechanisms exist in 
structures, such as friction between metallic components or opening and closing 
of microcracks etc., which are responsible for the lack of perfect oscillations in 
nature. Albeit these mechanisms constitute a property of the structure, which 
depends on geometry and material, and their influence is evident even for large 
structures, a direct calculation of their magnitude based on physical characteris-
tics of the structure is not possible. Sophisticated measurements for direct esti-
mation of damping behaviour of existing components/structures are possible. 
Nevertheless, results from measurements are transferable to analysis of similar 
structures. Moreover, differentiation of damping behaviour for different levels of 
external excitation does not allow extrapolation of the damping behaviour from 
measurements of low excitation to analysis of larger excitation. On the other 
hand, measurements of energy dissipation, in the case of large excitation, which 
leads to non-linear deformation, include the plastic deformation energy and com-
plicate even more the evaluation of damping. Hence, predictive modelling of 
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damping, when appropriate measurements are not available, requires an appro-
priate idealization, which produces reasonable results.  

It has been observed that the damping behaviour of a structural system or a com-
ponent is sufficiently simulated, when it is correlated both with its mass and stiff-
ness [24]. In this sense, Rayleigh’s damping model (described thoroughly in [24]), 
which is a widely applied in numerical analysis and accounts for both mass and 
stiffness influence was proposed. It is defined as follows: 

 ! � �� � § D «� � ¬= (26) 

It was applied during a previous numerical investigation of shot peening, carried 
out by Meguid et al. [124]. After a trial and error procedure, αR and βR were set 
equal to 0.5 and 2 x 10-9 respectively. The following viscous damping model, 

 ! � S � �p �  � § � ®O � §	 (27) 

was applied instead by Kim et al. for 2D and 3D simulation of shot peening in more 
recent studies [89], [90]. Different values for ξ between 0 and 0.5 were tested. 
The resulted RS profiles were almost identical in all cases, arising questions about 
the negligibility of damping in the investigated type of simulations. A value of 0.5 
was proposed for ξ due to numerical efficiency reasons, as it led to the lowest 
computational time [89]. Such a consideration of damping, based on the model 
of Equation (27) and applying the same damping factor ξ = 0.5, was made as well 
by Yuan et al. during numerical analysis of HFMI in [187]. This has been the sole 
reference to damping in previous modelling efforts of HFMI, known to the author 
of the present study. 

An even more straightforward approach is the application of a global damping 
factor, i.e. an arbitrary definition of damping matrix C16 (Eq. (23)), which is applied 
to the response of all nodes or elements of the investigated component during a 
FE simulation [113], [114]. Such an approach is usually applied during dynamic 
simulations, where damping is not predominant for the results, but complete ne-
glection leads to numerical problems. 

                                                           
16 by giving an arbitrary value to the product ®O � S � �p �  
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2.1.2.3 Modelling of the HFMI Pin  

Material Behaviour of the HFMI Pin 

HFMI pin is manufactured by hardened high strength metallic material17. There-
fore, linear elastic deformation of the pin is expected. Nonetheless, in comparison 
to the significant plastic strains that are introduced to the treated component, 
they possibly could be considered negligible without undermining the results. In 
previous studies of HFMI the pin was simulated as elastic [10], [103], [187], or 
rigid [44], [68], [142], [189]. Previous investigation of shot peening simulation by 
Kim et al. [90] has shown that the material behaviour of the pin can significantly 
influence the calculated RS profiles. Results calculated with rigid, elastic, and elas-
tic plastic behaviour of the spherical shots were compared. The case, wherein 
plasticity was considered, presented the best agreement with RS measurements, 
as it is presented in Figure 21. Yet, during shot peening significant deformation of 
the shots is observed in reality as well, which is not the case for HFMI. Therefore, 
further investigation is required on this subject.  

Modelling the Motion of the HFMI Pin 

Two approaches can be adopted for modelling the vertical motion of the HFMI 
Pin, a displacement-based and a velocity- or acceleration-based. In the former 
one, the pin is constrained to execute a movement deforming the treated surface 
up to the defined depth. This option is more straightforward as measuring the 
depth of the real treatment groove is sufficient for the calibration of the simu-
lated pin movement, which can be carried out with usual laboratory measuring 
equipment. In previous study of the author [168], the treated area was measured 
with the optical measurement system LIMESS (Figure 22a) on several butt welds 
and fillet welds. Three arbitrary lines were selected transverse to the treatment 
surface of each measured component, as it is illustrated in Figure 22b, and a mean 
depth of 0.215 mm was documented. The measurement was basis for a displace-
ment based FE simulation of HFMI. A displacement-based approach was adopted 

                                                           
17 exact information about the pin material is not provided by the manufacturers of the HFMI device due to 
confidentiality reasons 
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as well by Le Quillec et al. [103], Zheng et al. [189]  and Mangering et al. [115], 
but strain rate dependency was neglected in all of these studies. 

 
Figure 21: Shot-peening simulation with elastic (EDS), rigid (RS) and plastic (PDS) shots compared with measured 
RS, found elsewhere [90] 

Nonetheless, the selection of displacement-based motion of the pin deviates sig-
nificantly from physical reality. Unless special measures are taken, a movement 
under steady velocity during impact and in extension a steady deformation rate 
is modelled. In reality, the pin is accelerated towards the specimen through an 
external force and its velocity is reduced as it penetrates the treated surface. 
Therefore, no steady strain rate is observed. This method is significantly model-
ler-dependent, as an arbitrary steady velocity for the pin has to be selected, which 
should produce a strain rate close to the real one.  

 
(a) 

  
(b) 

Figure 22: Measurement of the HFMI groove with the LIMESS measurement system; a) Measurement of a fillet 
weld; b) 3D depiction of the measured surface and the measurement lines 
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On the other hand, modelling a velocity-based movement of the pin lies closer to 
physical reality. The pin is accelerated from a force for a specific time and then 
the interaction of the system pin – treatment surface during impact can be ade-
quately modelled. Of course, in this case measurement of the input parameters, 
i.e. the force and the time of its application, is more complicated. Strain gauges 
were mounted on the pin and the force profile of several impacts was measured 
by Schubnell et al. [44], a technique that was previously applied by Simunek et al. 
in [150] as well. Therewith, the contact force and time could be measured. The 
force was measured for different levels of working air pressure, one of the adjust-
able settings of the PITec device. It was then correlated by means of FE analysis 
to the impact velocity, which was calculated between 2.1 m/s to 4.2 m/s. A max-
imum treatment frequency of 120 Hz and a mean travelling speed of 7 mm/s (42 
cm/min) were as well documented in [44] and [146]. Therewith, a mean traveling 
step of 0.06 mm between consecutive impacts can be assumed. It was further 
observed that the strain gauges’ indication between consecutive impacts was 
non-zero. This is attributed either to secondary impact or to reflection of stress 
waves inside the pin. In any case, these secondary force indications were ne-
glected in subsequent analysis and the pin was accelerated with a specific force 
until the impact force was achieved. The contact force was then used as valida-
tion between measurements and the FE Model.  

 
Figure 23: Measuring the contact force of the PITec device and its correlation to working frequency,  
found in [44] 

Similar measurements were carried out by Schubnel and Gkatzogiannis on a HiFIT 
device as well in the framework of HFH-Simulation [146]. A contact time between 
the accelerating device and the pin of 0.1 ms was calculated. For an impact fre-
quency range of 209 Hz to 282 Hz, a contact force of 4100 N and 5500 N was 
measured. Once again, through a correlation by means of FE analysis the contact 
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force was correlated to an impact speed of 3 m/s to 4.5 m/s respectively. A higher 
mean travelling speed of 48 mm/s (288 cm/min) was documented for HiFIT in 
comparison to the 7 mm/s (42 cm/min) of PITec. The mean travelling step be-
tween consecutive impacts is nonetheless significantly higher and equal to 
0.22 mm due to the increased frequency in this case. 

A velocity-based approach was adopted by Yan et al. [187], while the two meth-
ods were compared by Schubnell et al. [44] and Hardenacke et al. [68]. Actually, 
it was concluded by the former one that the displacement-based approach pro-
duced results showing better agreement with measured RS. The authors recom-
mend though that the displacement-based model should be applied with strain 
rate dependent material behaviour, but the applied displacement-rate of the pin, 
which would affect the rate dependent material behaviour, is not reported.  

Finally, regarding the moving velocity of the pin, a step of 0.4 mm and 0.3 mm 
was proposed in [44], [68],  and [150] and [187] respectively. Both values are 
larger than the real overlap between consecutive impacts but it was mentioned 
in the above studies that this deviation had a negligible effect on the results. In a 
more recent study [145] though, the influence of coverage has been investigated 
thoroughly. It was suggested based on RS measurements that an increased over-
lap up to a threshold value leads to a higher magnitude of transverse RS. Above 
this threshold point though, no significant change on the RS field was observed. 

Modelling of Contact Conditions 

Appropriate definition of contact conditions between the HFMI Pin and the 
treated surface is required in order to ensure a close to physical-reality simulation 
of contact problems. Contact dissipates part of the pin’s kinetic energy, prior to 
its transfer in the component in the form of stress waves.  Coulomb’s friction 
model (Eq. (28), see [114]), which is described by Equation (48)     

 :̄ � ° � �̄	 (28) 

is widely applied for metallic materials and has been applied for the simulation of 
HFMI and shot peening in the past. The coefficient μ takes various values depend-
ing on the nature of the surfaces, which slide under friction. It is usually charac-
terized as static or dynamic, when it describes the state at the beginning or during 
sliding respectively. Generic values for different surface qualities and for both 
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cases, the static and the dynamic, are proposed in [6]. A selection from the pro-
posed values is presented in Table 4. 

Table 4: Typical values of Coulomb friction for dry contact, found in [6] 

Materials Static Dynamic 

Hard steel on 
hard steel 0.78 0.42 

Mild steel on 
mild steel 0.74  0.57 

Aluminum on 
mild steel 0.61 0.47 

Aluminum on 
aluminum 1.05 0.40 

2.1.2.4 Modelling of Boundary Conditions 

As it was described above for the case of FE simulation of welding, modelling of 
restraints applied to a real component can have a significant influence on calcu-
lated RS. The influence of HFMI treatment in a component is very localized, being 
only some mm in all directions as it was shown by previous RS measurements 
[44]. One could assume that restraints, which are applied tens or hundreds of 
millimetres away from the treatment area, would have a negligible effect on the 
calculated RS, depending on the bending stiffness of the treated component as 
well. This assumption could stand, when a simulation of a larger component takes 
place.  

However, precise FE simulation of HFMI perquisites a very fine mesh, lower than 
0.1 mm as it was shown in previous analysis [168], a condition that rises signifi-
cantly the computational time. Hence, a full-scale analysis of a large component 
would not be possible in rationally short time. Only smaller components or parts 
of larger components can be modelled. In these cases, a significant effect of the 
boundary conditions could be observed. For small components, realistic model-
ling of clamping-down mechanisms or of restraint-free condition as in the case of 
welding is necessary.  For modelling parts of a larger structure, appropriate 
boundary conditions should be selected. Mechanical restraints from the wider 
areas of the larger structure to the small, simulated part should be modelled re-
alistically. Acoustic impedance of the boundaries should be nullified, in order to 
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approach the elastic stress wave propagation of the larger component. No special 
reference to the selection of appropriate boundary conditions is made in previous 
analyses of HFMI. In most cases, nodal displacements at the bottom of the inves-
tigated component were fixed to all directions without further explanation.  

2.2 Analytical Investigations for the Calculation of the 
Dynamic Yield Strength during a Spherical Impact 

Hertzian theory of elastic contact has been the basis for analytical solutions of 
impacts since its evolution more than 130 years ago [73]. In 1998, Lim and Stronge 
proposed such an analytical solution for the calculation of a rigid cylinder’s impact 
on an elastoplastic-half space [110]. In their study, this impact was analysed in 
three consecutive phases, the elastic, whereby Hertzian theory is applied, the 
elastic-plastic, whereby elastic and plastic behaviour coexist in the area beneath 
the contact and finally, the fully plastic phase. Their solution beyond yielding was 
based on the cavity model, which was initially proposed by Hill [75] and later sim-
plified by Johnson [83]. This model assumes the symmetrical expansion of a 
spherical cavity in an elastic-plastic material so that compatibility between the 
volume of displaced material and the accommodated radial elastic expansion is 
ensured during the contact.  

Classical Hertzian theory [73] refers to elastic bodies. In the present case, the im-
pacting sphere is regarded rigid (E �±). Therefore, the physical quantity defined 
by Hertz as E* and given by Equation (29),  

 
Q²³ � Q J �O��l�l"²O��l�l D Q J ���)5l"²��)5l 	 (29) 

will hereinafter be given by the following equation 

 
Q²³ � Q J ���)5l"²��)5l = (30) 

According to Hertzian theory ([73], [110]) the indentation depth of a rigid sphere 
in an elastic half space and in the elastic regime is calculated as follows: 
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 ´ � ¡W � ¯" � �Q J �"�Q� � µ � ² ¥;8&= (31) 

Under the assumptions of infinitesimal strains in the elastic regime and continu-
ous contact between the indenter and the half-space, the contact area between 
the sphere and the plate is circular and the contact force is correlated to the mean 
pressure according to the following Equation (32), 

 ¯ � # � �" � ¶~= (32) 

The contact half width α in the elastic regime and therefore during yielding as 
well, is given by Equation (33): 

 �& � u� � ¯ � µ � �Q J �"�^ � ² = (33) 

When Lim and Stronge investigated the elastic-plastic impact of the rigid cylinder 
on a half-space [110], they noticed that after the end of the indentation and un-
loading and as long as full plastification has taken place, the crater’s half width αc 
after full plastification is correlated with the contact half width at yielding accord-
ing to Equation (34), 

 �9" EQµ J Qµ�G � u�*"µ 	 (34) 

where R and R’ is the radius of curvature of the contact area prior and after un-
loading. Prior to unloading R is equal to the radius of the indenter, as full contact 
is assumed at all times. This latter equation was extracted assuming that the con-
tact width at maximum compression αc is equal to the width of the residual in-
dentation i.e. the elastic spring back is negligible, the residual indentation has a 
final curvature R’, which is slightly larger than R due to elastic recovery and finally, 
no piling up or sinking in takes place during the indentation of the plate. 

Johnson, analysing the indentation of an elastic - perfect plastic and incompress-
ible material by a rigid sphere, proposed in [83] that the average pressures pm

Y 
and pm

p at initiation of yielding and at full plastification are respectively correlated 
with the material yield stress according to the following equations: 
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 ¶~z � Q=Q � �z	 (35) 

 ¶~· � �=TRS � �z= (36) 

These empirical equations were subsequently validated for steel by numerical 
and experimental investigations (see for instance [159]). Yet, the diagram of Fig-
ure 24, found in [82], reveals that these relationships between average pressure 
and yield strength, which mark the transition from the elastic to the elastic plastic 
and from the latter one to the perfect plastic regime, are dependent on the yield 
strength itself. The provided curves are proposed for mild steel. Nevertheless, the 
bulk of the experimental results of the diagram, illustrated with circular marks, 
were deployed by a previous work of Tabor [159], whereby a steel of yield 
strength of 770 MPa was investigated. In a more recent study [81], Jackson and 
Green validated this dependency of the average pressure to yield strength on the 
yield strength itself. Five different materials with yield stress of 210 MPa, 560 
MPa, 911 MPa, 1265 MPa and 1619 MPa were investigated and the factor of 
Equation (36) was found to be 2.8, 2.6, 2.5, 2.4 and 2.3 respectively. Similar values 
are validated from the diagram of Figure 24, if a yield stress of 355 MPa is as-
sumed for the mild steel and the logarithmic axis of non-dimensional strain is ad-
justed for the increased yield stress based upon this assumption.  

Finally, Johnson [82] defined the coefficient of restitution during an impact:  

 $" � ��"�" 	 (37) 

where v and v’ are the initial and restitution velocities respectively [82]. He also 
proposed that for an inelastic impact (elastic – perfect plastic behaviour of the 
target) of a rigid sphere at moderate impact speeds (v around 5-100 m/s) it can 
be correlated to the dynamic yield limit as follows: 

 $ � �=x � ��z¸²³ �
;" � ¹QS � §O� � ��"�z¸ � µ& º

%;�= (38) 

A similar relationship had been earlier proposed by Tabor [159] as well. Equation 
(38) was extracted by Johnson from the following equation  
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based on the assumption that under dynamic events the condition pm ≈ 3·σY’ is 
still valid, when the regime of perfect plasticity is entered.  

 
Figure 24: Relationship between mean pressure pm and yield stress (marked as Y) and non-dimensional strain 
found in [82] 

Implementing the above-presented set of equations, a phenomenological esti-
mation of the dynamic yield stress during an impact of a sphere on a semi-infinite 
plate, based on measurements of either the residual trace or the rebound veloc-
ity, can be conducted. According to Johnson [82], the above-presented relation-
ships are part of the shallow indentation theory, which is valid up to impact ve-
locities of 100 m/s. Nevertheless, according to Lime and Stronge [110], as a 
discontinuity of contact half-width with increasing indentation is created at the 
transition area between elastic-plastic and fully plastic behaviour, calculations 
based on measurement of the crater should be avoided for cases were the maxi-
mum indentation δc is only slightly larger than that required for entering full plas-
ticity.  
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2.3 RS Profiles Introduced by the Impact of a Metallic 
Sphere 

Numerous previous studies investigated impact problems such as HFMI, shot 
peening or other processes that fall into the generic category of a metallic rigid 
sphere impacting on a deformable metallic plate ([16], [63], [64], [90], [130], 
[115], [124], [166] etc.). RS profiles for different sphere diameters, boundary con-
ditions, impact velocities and materials have been extracted either numerically or 
experimentally. Although the uniqueness of each investigated case has been un-
derlined above, in most cases significant qualitative similarities are met. In order 
to enable a better overview and a more straightforward validation of the results, 
representative profiles proposed by Boyce et al. [16] for an ideal impact of a me-
tallic sphere, by Guagliano [63] for shot peening and by Nitschke-Pagel et al. [130] 
for HFMI, are presented respectively in Figure 25, Figure 26 and Figure 27 below.  

Compressive stresses are met near and underneath the impact crater of all pre-
sented examples. In all these three cases and for the stresses to all directions, 
longitudinal, transversal or hoop, the peak of the compressive stresses is met un-
derneath the impact crater at a distance up to 1 to 1.5 times the crater radius. 
According to Foehrenbach et al. though [44], impact velocity should as well influ-
ence the depth of the peak. On the surface the peak of the compressive stresses 
is met at the rim of the crater. It is becoming evident by the diagrams of Figure 
26 and Figure 27 that increased intensity or impact speed and application of con-
secutive impacts introduce a shift of the RS profile without qualitatively changing 
the distribution. Similar results were presented in the majority of previous stud-
ies, which are omitted for the sake of space, either by means of experimental 
measurements or by numerical analysis. Therefore, initial expectations dictate a 
similar profile for the current investigations of HFMI, when an unnotched speci-
men of parent material is investigated.  
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Figure 25: Contour of hoop stresses predicted by a FE model by Boyce et al. [16] for the impact of a rigid sphere 
with 200 m/s (a) and 300 m/s (b) on a plate of Ti-6Al-4V alloy – Stresses and distance from crater’s centre are 
normalized to the static yield strength and the crater diameter respectively – w is the diameter of the crater18 

 
Figure 26: Measured RS introduced by shot peening for 1 to 4 impacts of 0.5 mm diameter shots and velocity of 
100 m/s, a crater diameter of 0.1 mm is calculated based on figures found in the literature source, found in [63] 

                                                           
18 the figure was partially redrawn by the author of the present dissertation in order to improve the quality 



2 Theoretical Background 

54 

Figure 27: Transverse residual stress through-depth profiles in UIT-treated fields for variating treatment 
intensity and for a pin diameter of 4.8 mm in the base material S690, crater swallower than 0.5 mm, based on 
a diagram found in [130]
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3 FE Simulation of Welding 

3.1 Methodology 

Simulations of welding, which were carried out in the framework of the present 
dissertation, were based on the above-presented theoretical background. Each 
investigated case acted as a milestone towards the completion of the present 
task, the FE simulation of welding, fulfilling the conditions that were set at the 
beginning of the present research study regarding straightforwardness and pre-
ciseness.  

Single-pass butt welds were simulated as a first step towards the development of 
the present approach due to their simple geometry and the reduced required 
modelling, as the influence of a single thermal cycle has to be considered. Valida-
tion was initially based on measurements, which were found in literature. The 
classical example presented by Anderson back in 1978 - component A - along with 
a newer study from Caron et al. - component B -  were used as reference ([3] and 
[21] respectively). These two cases were selected, due to the full documentation 
of the welding procedure along with WRS measurements provided by the au-
thors. The components were remodelled with the current approach, applying 
identical welding parameters and geometry. Some of the results were presented 
in earlier work of the author in [53], [59] and [92]. 

The results regarding component A were compared with other efforts of simulat-
ing the same component by Anderson himself [3] and Lindgren in [111] as well. 
Results from the simulation of component B were compared with the respective 
simulation carried out by Caron et al., using the specialized FE software SYSWELD 
[158]. Valuable conclusions regarding several practical aspects of weld modelling 
were drawn and applied in subsequent simulations.  

Next step was the extension of the present approach for the case of multi-pass 
welding of austenitic steels [56] and the simulation of aluminium alloys [93]. Nev-
ertheless, these investigations although relative to the filed, are only outlined and 
a detailed presentation is excluded from this dissertation, as they do not directly 
contribute to the present research goal. 
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The presented approach was finally applied, in order to simulate plates with 
transversal stiffeners (fillet welds) welded on both sides from the research project 
HFH-Simulation [146], wherein RS measurements were carried out in as-welded 
and HFMI-treated state (see [146]). Goal was the calculation of the WRS field so 
that it could be applied as input for the subsequent HFMI simulation.  

Although modifications based on the available information and improvements in 
modelling were carried out after each investigation, the backbone of the ap-
proach remained unaltered, as it was initially presented in [92]. The physics fields 
and the predominant interactions that are presented in Figure 4 were taken into 
consideration. FE commercial software ANSYS was applied for all weld simula-
tions. 

3.1.1 Thermal Transient Analysis 

A transient thermal analysis was initially carried out in order to calculate the ther-
mal history of each node, based on Equation (4). ANSYS 8-node solid finite ele-
ments SOLID70, which allow the simulation of heat conductivity and heat gener-
ation, were applied [4]. The element temperature is calculated at each time step 
based on its shape functions, from the temperatures of its nodes (see Appendix 
B). 

Goldak’s heat source was applied, using an algorithm, which was provided by the 
company CADFEM. It was applied in such a way, that the centre of the source was 
moving at each solution step along the welding line, for a distance equal to the 
welding speed multiplied by the time between the consecutive solution steps. 
Power of the heat source is calculated according to Equation (3). Values for the 
coefficient of heat source η proposed by Dupont et al. were applied based on the 
investigated weld type (see [32]), unless otherwise stated below. Heat losses 
were simulated according to Equation (7), using a common coefficient for heat 
losses hT, as described above. Values for the coefficient were found in [140] and 
they are presented in Table 5. Thermal material properties were assumed inde-
pendent of the microstructural transformations in all cases. Therefore, thermal 
properties of the parent material were applied in the thermal transient analysis. 
Ambient temperature was assumed equal to 20 °C in all cases. In each solution 
step, information regarding elements whose temperature was exceeding the 
melting point was documented. After completion of the transient solution the 
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double parameter (Tmax, t85) of each element in the HAZ and FZ was calculated 
based on the temperature history of its nodes.  

Table 5: Applied values for the total coefficient of heat losses, found in [140] 

Temperature [oC] 20 100 450 850 1550 2350 3000 10000 

hT [W/(m2 · K)] 4.7 22.8 48.2 117.9 396.9 1082.3 2032.9 58214.0 

3.1.2 Microstructural Modelling 

Microstructural modelling was carried out based on the approach presented in 
[92] and described in the theoretical background. A bilinear elastic – plastic ma-
terial behaviour was assumed in most cases, unless otherwise referred. Parent 
material properties for the butt welds were taken from literature, while for the 
transversal stiffeners respective measurements were carried out in the frame-
work of the project HFH-Simulation [146]. A1 and A3’ were calculated using Equa-
tions (9) and (10), (11) based on the chemical composition of each investigated 
alloy. Bilinear elastic – plastic CMMs were built for different levels of Tmax and for 
different cooling rates t85. The former influenced the austenitization percentage 
and the later the final transformed microstructure, which unless otherwise 
stated, was calculated from appropriate CCT diagrams found in literature. The 
dilation behaviour and yield strength of the CMMs was calculated by applying 
linear mixtures law, with Equations (15) and (19) respectively. Yield strength of 
the individual phases was found in [74]. Unless otherwise mentioned, coefficient 
of thermal expansion of austenite and the rest of the phases was assumed equal 
to 16 x 10-6 and 12 x 10-6 respectively and tangent modulus H was assumed same 
for all phases. Whenever necessary, TRIP was taken into consideration according 
to Karlsson’s approach, as it was described earlier.  

3.1.3 Static Structural Analysis 

A quasi-static structural analysis (see Equation (17)) was carried out based on the 
thermal history of the nodes, which was calculated during the transient thermal 
analysis. ANSYS 8-node solid finite elements SOLID185, which have stiffness and 
allow simulation of stress and thermal loading, were applied for this analysis. The 
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respective shape functions are provided in Appendix B. Same mesh from the tran-
sient thermal analysis was used, changing only the element type and retaining 
previous geometry.  

In each solution step, thermal strains were applied as loading according to Equa-
tion (18) based on the temperature history of the thermal simulation. During 
heating, parent material parameters were assumed along the whole investigated 
component. When Tmax of each element was reached, a CMM was assigned to it. 
Assignment was carried out by selecting through appropriate algorithm the CMM 
with values of the double parameter closest to the calculated ones of the element 
(Tmax and t85), by means of linear interpolation. At each load step, the elements 
whose temperature exceeded the melting point were deactivated, leading to 
erasure of previous strain history. The elements were reactivated when their 
temperature reached the solidus point once again. Therewith, the addition of the 
filler material and its influence on the WRS could be simulated. Von Mises flow 
rule was applied (Equation (17)). 

Table 6: Applied values for the individual microstructural phases of steel, found in [74]  

Temperature  

[⁰C] 

Static Yield Strength [MPa] 

Ferrite and 
Perlite Bainite Martensite Austenite 

1500 5 5 5 5 

1205 11 5 14 12 

877 57 29 78 49 

812 79 42 120 62 

713 86 73 264 81 

420 218 237 783 136 

200 285 271 880 200 

20 431 277 1008 245 
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3.2 Single-pass Butt Welds 

3.2.1 Investigated Components 

Anderson presented in [3] the investigation of the single-pass submerged arc 
welded1 component, which is illustrated in Figure 28 (component A). The X-
grooved butt weld of Swedish structural steel HT36 with dimensions of 2000 mm 
x 500 mm x 25 mm was welded with an electric power of 98 kW and a welding 
speed of 25 mm/s (150 cm/min; 3.92 kJ/mm gross heat input). The geometry of 
the cross section is presented in Figure 29. 

 
Figure 28: Component A previously investigated in [3], dimensions are given in mm – Four clampers were applied 
on each side, the applied symmetry condition is presented as well 

Caron et al. investigated in [21] a single-pass V-grooved butt weld of steel S355 
[29], which is presented in Figure 30 (component B). The component with dimen-
sions of 500 mm x 200 mm x 5 mm was welded with an electric power of 7.934 
kW and a welding speed of 6.7 mm/s (40 cm/min; 1.18 kJ/mm gross heat input).  

  

                                                           
1 three electrodes welding consecutively, one behind another 
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Figure 29: Cross section of component A, dimensions are given in mm – The applied symmetry condition is 
presented as well2 

 
Figure 30: Component B previously investigated in [21], dimensions are given in mm – No restraints during 
welding, the applied symmetry condition is presented as well  

 
Figure 31: Cross section of component B, dimensions are given in mm – The applied symmetry condition is 
presented as well 

                                                           
2 the component was X-grooved as it would be welded with 3 passes of a single electrode – with the applied 
submerged arc welding technique with 3 electrodes welding consecutively, one behind another, it was possible 
to weld with a single-pass the middle and upper seam, the final geometry of the weld section area is illustrated 
better bellow (see Figure 35), more information is provided in [3] 
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3.2.2 Material Modelling 

3.2.2.1 HT36 

Applied parent material properties of steel HT36 were provided by Andersson in 
his original study [3]. They are presented in Table 7. The chemical composition of 
HT36 and the results from the analytical calculation of the austenitization tem-
peratures A1, A3 and A3’ are presented in Table 8. CMMs were built based on the 
CCT diagram of HT36, which is presented in Figure 32, and the material properties 
of the individual phases (see Table 6). For the simulation of component A, 6 CCMs 
were built, with each CCM being characterized by one pair of Tmax and t85 (see 
Table 9). Exemplary, evolution of chemical composition and the respective me-
chanical behaviour of CMM 2 as a function of temperature are provided in Table 
10. For the sake of shortness, the rest of the CMMs are provided in Appendix A. 

Table 7: Temperature-dependent material parameters of HT36 found in [3]  

ρ 

[kg / m3] 

T 

[oC] 

c 

[kJ / (kg · K)] 

K 

[W / (m · K)] 

σy 

[MPa] 

E 

[GPa] 

H 

[GPa] 

7800 0 0.4 40 355 220 2.2 

 

200 0.5 40 320 200 0 

600 0.6 40 102 131 0 

700 0.9 36 84 98 0 

850 1.3 26 56 49 0 

900 0.6 26 47 32 0 

1500 0.8 33 5 0 0 

Table 8: Chemical composition of HT36 and analytically calculated temperatures of austenitization (Equations 
(9), (10), (11)) 

Chemical composition HT36 A1 
[oC] 

A3 
[oC] 

A3’ 
[oC] C Si Mn Nb 

0.13 0.2 1.57 0.024 712 801 1250 



3 FE Simulation of Welding 

62 

 
Figure 32: CCT diagram of steel HT36, from [3]3 

Table 9: Double parameter of the cooling material models for the simulation of HT36, based on the Gkatzogi-
annis Approach [92] 

CMM 2 3 4 5 6 7 

Tmax [oC] 950 1150 1350 950 1150 1350 

t85 [s] 10 10 10 35 35 35 

                                                           
3 the diagram was redrawn by the author of the present dissertation in order to improve the figure quality 
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Table 10: CMM 2 (Tmax = 950 oC, t85 = 10 s) modelled for the simulation of microstructural evolution of HT36, 
based on the Gkatzogiannis Approach [92] 

T 

 [oC] 

Microstructure σyi [MPa] σy 

[MPa] 

αse  

[-] PM AY FE, PE BA MA PM AY FE, PE BA MA 

950 63 % 37 % 0 % 0 % 0 % 53 38 38 38 38 43 18 

520 63 % 37 % 0 % 0 % 0 % 114 177 363 483 175 152 18 

320 63 % 7 % 0 % 30 % 0 % 148 206 445 569 270 313 15 

270 63 % 0 % 0 % 30 % 7 % 111 250 485 612 188 307 15 

20 63 % 0 % 0 % 30 % 7 % 200 258 490 620 350 411 15 

3.2.2.2 S355 

Temperature-dependent parent material properties of steel S355 were found in 
[34]. Values for the tangent modulus provided by Byfield et al. were adopted [19]. 
The applied material properties are presented in Table 11. The chemical compo-
sition of S355 batch, which was investigated by Caron et al. [21], and the results 
of the analytical calculation of the austenitization temperatures A1, A3 and A3’ 
are presented respectively in Table 12 and Table 13. 6 CMMs were modelled 
based on the CCT diagram of S355, which is presented in Figure 8, and the mate-
rial properties of the individual phases (see Table 6). The values of the double 
parameter Tmax and t85 characterizing each CMM are provided in Table 14. Exem-
plary, evolution of chemical composition and the respective mechanical behav-
iour of CMM 2 are provided in Table 15. For the sake of shortness, the rest of the 
CMMs are provided in Appendix A. 
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Table 11: Temperature-dependent material parameters of S355 found in [3]4 

ρ 

[kg / m3] 

T 

[oC] 

c 

[kJ / (kg · K)] 

K 

[W / (m · K)] 

σy 

[MPa] 

E 

[GPa] 

H 

[GPa] 

7800 0 0.4 54 355 220 2.2 

 

200 0.5 47 355 220 2.2 

600 0.8 40 167 65 0.3 

700 1.0 31 82 28 0 

850 1.5 27 30 17 0 

1000 0.7 27 14 9 0 

1500 0.7 27 5 9 0 

Table 12: Chemical composition of S355 batch used by Caron et al. in [21] 

C Si Mn P S Cr Mo  

0.14 0.2 0.67 0.00823 0.012 0.033 0.01  

Al Nb Ti V Cu W Ni 

0.0354 0.005 0.0023 0.00393 0.0221 0.01 0.0354 

Table 13: Calculated austenitization temperatures of S355 (Equations (9), (10), (11)) 

A1 [oC] A3 [oC] A3’ [oC] 

721 843 1035 

Table 14: Double parameter of the cooling material models, which were given into the algorithm for the simu-
lation of S355, based on the Gkatzogiannis Approach [92] 

CMM 2 3 4 5 6 7 

Tmax [oC] 826 931 1276 826 931 1276 

t85 [s] 32 32 32 85 85 85 

                                                           
4 the values of σy and E at 1500 °C were arbitrarily set equal to non-zero values due to numerical reasons 
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Table 15: CMM 2 (Tmax = 826 oC, t85 = 10 s) modelled for the simulation of microstructural evolution of S355, 
based on the Gkatzogiannis Approach [92] 

T 

[oC] 

Microstructure σyi [MPa] σy 

[MPa] 

αse  

[-] PM AY FE, PE BA MA PM AY FE, PE BA MA 

826 69 % 31 % 0 % 0 % 0 % 59 67 71 123 53 55 13 

660 69 % 31 % 0 % 0 % 0 % 91 102 196 278 116 108 13 

620 69 % 25 % 6 % 0 % 0 % 98 125 252 356 150 136 13 

480 69 % 2 % 6 % 23 % 0 % 144 190 395 517 280 299 12 

20 69 % 0 % 6 % 23 % 2 % 245 258 490 620 355 386 12 

3.2.3 Investigated Aspects 

During the simulation of components A and B for the validation of the present 
engineering approach several aspects of weld simulation were investigated. They 
are presented in Table 16. For better understanding, the full description of each 
investigated case is presented along with the respective results in the following 
chapter. 

Table 16: Matrix of the simulations – The investigated concepts and the respective components 

Investigated aspect Investigated 
components 

Results first 
published in Evaluation based on 

mesh convergence A [92] thermal analysis 

parameters of Goldak’s source A [92] thermal analysis 

coefficient of thermal losses A [92] thermal analysis 

modelling of  
clamping mechanisms A [53], present structural analysis 

modelling of a  
restraint-free component B [92], [55] structural analysis 

hardening behaviour B [55] structural analysis 

reference temperature B present structural analysis 

strain rate dependency B [59] structural analysis 

overall validation A, B [92], present thermal and  
structural analysis 
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3.2.4 Analyses and Results 

3.2.4.1 Thermal Analysis 

The results of the thermal analysis were taken into consideration for the evalua-
tion of required mesh density, assignment of dimensions to Goldak’s heat source 
and modelling of heat losses. 

Mesh Convergence Study 

A mesh convergence analysis was carried out in [92], in order to ensure mesh-
independent results. A mesh dense enough has to be applied so that the steep 
temperature gradients transverse to the FZ and in the HAZ can be calculated with 
sufficient preciseness. In order to reduce the calculation time, mesh size away 
from the FZ and HAZ, where temperature changes are not so radical, was in-
creased. Elements elongated towards the welding direction were applied. It was 
initially assumed that the mesh size in this direction is not critical; the heat source 
moves, the area to its front is melting so the thermal history up to that point is of 
low importance. It was ensured though, through an additional preliminary con-
vergence analysis with smaller length of the elements, which is not presented 
here for the sake of space, that this option was not influencing the calculated 
residual stresses. An element dimension of 5 mm was then applied in all investi-
gations of component A for the longitudinal direction. The investigated meshes 
had all the same pattern but the element mesh size was divided in each case with 
an element mesh factor, as it is presented in Table 17. Mesh CC1 is presented 
exemplary in Figure 33. 

Table 17: Tested mesh setups 

Mesh case Mesh factor Mesh size in the FZ [mm] 

C025 0.25 1.763 

CC05 0.5 0.877 

CC1 1 0.357 

CC2 2 0.141 

CC3 3 0.066 

CC4 4 0.045 
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Figure 33: Pattern of applied mesh - CC1 mesh on the cross section of component A 

The temperature profiles transverse to the moving heat source for the different 
meshes were compared in order to estimate the required mesh density. The tem-
perature profile at the middle of the weld line, when the heat source passes by 
that point, were taken into consideration. As it is presented in Figure 34 mesh 
cases C1 to C4 produced identical results. Therefore, mesh size of case C1 (0.357 
mm) was applied for further simulations of component A. The calculated ratio of 
applied mesh size in the HAZ and FZ to the width of the Goldak’s source was equal 
to 7 %. This normalized size of mesh was applied for all subsequent simulations, 
as it is rationally assumed that the required mesh density is defined by the width 
of the simulated heat source. 

 
Figure 34: Results of the convergence study 

Parameters of Goldak’s Source 

A problem that arises during the first steps of welding simulation is the assign-
ment of proper dimensions to Goldak’s heat source. The depth and width of the 
weld pool in an existing weld can be measured on macrosections. Nevertheless, 
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in cases where the simulation has to reproduce an older not fully documented 
result, or act predictively about a future welding process an uncertainty rises. 
Moreover, measuring of the front and rear length of the weld source should be 
possible only during welding and this could be challenging.  Goldak proposed in 
[61] that the a and b are equal to the width and depth of the weld pool respec-
tively. He further proposed that, in absence of experimental data, the front half-
length of his source should be assumed equal to one half of the width (cf = a) and 
the rear half-length equal to twice the width (cr = 4a). A set of arbitrary values for 
the dimensions of Goldak’s source, all selected though in the same order of mag-
nitude with the theoretical size of the weld pool, was tested on component A. 
The investigated cases along with the respective values for the parameters of 
Goldak’s source, which were considered in [92], are presented in Table 18.  

Table 18: Arbitrary selected and tested parameters for the Goldak’s source in [92] 

Cases 
cf 

[mm] 

cr 

[mm] 

a 

[mm] 

b 

[mm] 

N 7.5 15 7.5 5 

P 7.5 15 7.5 7.5 

Q 10 20 10 10 

R 5 10 5 3 

T 5 20 5 7 

The results were compared with thermocouple measurements, which were car-
ried out by Andersson (found in [3]). The location of the three thermocouples, as 
it was found in [3], is presented on the sketch of Figure 35. The temperature pro-
files at points A, B and C are presented in Figure 36, Figure 37 and Figure 38 re-
spectively. 
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Figure 35: Location of the thermocouples A, B and C5, dimensions are given in mm 

 
Figure 36: Dimensioning heat source – Simulated and measured temperature history at point A 

All models apart from Q produce similar results. Accuracy of Q case is better in 
the two points near the weld, but the respective results at point C dictate the 
exclusion of Q dimensions from consecutive analyses. Apart from that, it can be 
concluded that small variation of the weld heat source parameters (up to 50 %) 
has only a limited influence on the calculated temperature history. This validates 
the dimensioning of Goldak’s source based on the theoretical width and depth of 

                                                           
5 the thermocouples were placed at a depth of 10 mm by drilling holes to the component, see [3] 
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the weld pool, as small discrepancies in reality from the predicted size would 
cause negligible influence on the thermal results. 

 
Figure 37: Dimensioning heat source – Simulated and measured temperature history at point B 

 
Figure 38: Dimensioning heat source – Simulated and measured temperature history at point C 

Modelling of Thermal Losses 

Three models with different considerations of thermal losses were applied. In 
case BC1, similar boundary conditions as those applied in [3] were used. The area 
around the weld source was considered thermally insulated for the first 90 s. Two 
different, temperature-independent coefficients were proposed for convection 
and radiation heat losses respectively by Anderson. Still, as they are temperature-
independent, even a rough estimation with the provided values of hC and hR ex-
hibits the predominance of the convective coefficient. Hence, hR was neglected 
for BC1. Moreover, the value of 90 % proposed by Andersson for the weld arc 
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coefficient is higher than the value of 85 % proposed by Dupont for submerged 
arc welding. This lower value is tested in BC2, retaining rest of the simulation 
setup same as in BC1. In case BC3 a temperature-dependent coefficient for con-
vection and radiation heat losses found in [140] was applied. Rohr [140] com-
bined two literature sources in order to propose the specific set of values for the 
temperature-dependent coefficient of heat losses, which takes into consideration 
both convection and radiation losses. The three above-mentioned cases are pre-
sented in Table 19 and the respective results are illustrated in Figure 39 - Figure 
41. 

Table 19: Tested boundary conditions for the transient thermal analysis 

Cases Coefficient for thermal losses Coefficient of heat source 

BC1 temperature-independent, found in [3], 
radiation neglected  0.90,  proposed in [3] 

BC2 temperature-independent, found in [3], 
radiation neglected 0.85, proposed in [31] 

BC3 temperature-dependent, found in [140] 
and presented in Table 5 0.85, proposed in [31] 

The results of the simulated cases were compared with the thermocouple meas-
urements by Andersson. Cases BC2 and BC3 seem to fit better than BC1 with the 
measurements.  Nevertheless, results from these two cases do not differ with 
each other significantly. It can be safely concluded then that the selection of the 
proper weld source coefficient is more decisive for the preciseness of the thermal 
results, than the use of a temperature-dependent coefficient for heat losses 
through convection and radiation. Modelling approach of heat losses adopted in 
BC3 was finally preferred instead of BC2 for next stages of the simulation as it is 
closer to physical reality. 
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Figure 39: Modelling of thermal losses – Simulated and measured temperature history at point A 

 
Figure 40: Modelling of thermal losses – Simulated and measured temperature history at point B 

 
Figure 41: Modelling of thermal losses – Simulated and measured temperature history at point C 
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3.2.4.2 Structural Analysis 

Results of the structural analysis were applied for the validation of the method 
regarding the calculation of WRS. Therewith, various aspects of weld simulation 
and their influence on the calculated WRS were investigated. 

Overall Validation of the Simulated Welding Residual Stresses 

Contour plots of the calculated longitudinal and transverse WRS on the top of 
component A, as they were published in [92], are illustrated in Figure 42 and Fig-
ure 43 respectively. Both profiles confirm the theoretical expected distribution of 
WRS. In the longitudinal case, tensile stresses near and inside the FZ and HAZ are 
met, which are at the same order of magnitude as the local yield strength. Away 
from the weld, counterbalancing compressive WRS are met as expected. 

 
Figure 42: Contour plot of longitudinal WRS on the top side of component A, stresses are given in Pa – Initially 
published in [92] 
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In the transverse case, tensile stresses near and inside the FZ and HAZ are met as 
well, but this time the width of the tensile zone adjacent to the weld line is nar-
rower. Once again, counterbalancing compressive WRS are met away from the 
weld. 

 
Figure 43: Contour plot of transverse WRS on the top side of component A, stresses are given in Pa – Initially 
published in [92] 

The simulated distribution of longitudinal WRS at the centre of the top side of 
component A adjacent to the weld line is presented in Figure 44, along with pre-
vious numerical investigations carried out by Lindgren [111] for the same compo-
nent. The respective WRS measurements, as they were provided by Andersson 
[3], are presented as well in order to enable a direct comparison. On the bottom 
of the diagram the resulting zones of differentiated material behaviour, after 
CMM assignment took place with the applied FE algorithm, are presented.  Two 
different profiles of WRS, which were both calculated in the framework of the 
present dissertation, are presented in the diagram. The one tagged as “Gkatzogi-
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annis, 2017” is the older one and it was published in [92]. The “present” calcula-
tion is an updated solution based on the previous model, but with improved ma-
terial modelling, published in the present dissertation for the first time.

Figure 44: Validation of longitudinal WRS at the centre of the top side of component A adjacent to weld line –
Measurements found in [3] – The cross section of the component at its centre transverse to the weld line along 
with the assigned CMMs and the symmetry condition are illustrated at the bottom

Even from the first solution though, a significantly better agreement between 
measured and calculated WRS close to the weld area was observed in comparison 
to earlier studies by Lindgren [111]. On the other hand, the previous models pre-
dicted better the WRS away from the HAZ. Nonetheless, the WRS in the HAZ are 
of greatest interest for the subject of the present study. This area is susceptible 
to fatigue loading and is the one that is treated by the HFMI treatment. Still, even 
from the earlier solution (Gkatzogiannis, 2017) [92], the predominance of the 
present approach was obvious. After the refinement of material modelling, the 
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agreement of the model was further improved, and a very good agreement is met 
on the first 40 mm away from the weld centre, both in the HAZ and the FZ. A peak 
of WRS higher than 700 MPa and much higher than the nominal yield strength of 
the investigated material is met in the FZ. It is attributed to the changed micro-
structure in the respective area. Due to rapid cooling, the new microstructure has 
increased martensite percentage and thus higher yield strength.  

The calculated transverse WRS on the top and bottom sides of component A 
along with the respective measurements by Andersson are presented in Figure 
45. The agreement of the simulated WRS in this case was not as good as for the 
longitudinal. The deviation between measured and simulated WRS was signifi-
cant in the weld area. Questions arise though, regarding the measurements inside 
the FZ. Neither special information is provided by Andersson on the technique 
applied and if special precautions were taken in order to take into consideration 
the altered microstructure, nor the measurements validate the theoretical pro-
files of WRS inside the weld area (Figure 3) as WRS near zero were measured. On 
the contrary the simulated WRS validate the theoretical ones, being tensile and 
in the order of magnitude of the local yield strength.  

Nevertheless, agreement between measured and simulated WRS was not satis-
fying away from the weld, both on top and bottom of the plate, even with the 
updated material model. An assumption was stated at this point, by considering 
the influence of restraints on theoretical transverse WRS shown in Figure 3, orig-
inally found in [96]. It was regarded for the first time after this analysis that fixing 
the FE nodes for simulating the clamping mechanisms, is deviating from physical 
reality and does not allow a precise simulation of the transverse WRS. In any case, 
a less stiff restraint allowing in-plane small displacements should be considered 
instead. Much better agreement was achieved with the previous consideration 
though, when the initial model was resolved, by considering this time non-infini-
tesimal strains (large strains included), a solution that was as well published in 
[92]. The significant improvement of the solution, when this effect is taken into 
consideration, is attributed to the influence of the plate bending on the trans-
verse WRS.  
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Figure 45: Validation of transverse WRS at the centre of the top side of component A adjacent to weld line –  
(Gkatzogiannis, 2017) refers to [92] – Measurements found in [3] 

Modelling of Clamping Mechanisms 

The above-stated problem of simulating clamping mechanisms, which are not 
fully fixed supports but allow only small in-plane displacements was tackled by a 
series of consecutive simulations, which were first presented in [55]. Present ma-
terial modelling was applied for these more recent simulations. The two setups 
of linear spring elements of Figure 14 were tested for modelling the clamping 
mechanisms of component A. In the first one “B” (see Figure 14a) the transverse 
displacement of each node on the edge of the clamped areas was restrained by a 
spring (equal stiffness K for all springs). For the applied mesh density, 80 nodes 
were restrained in each clamping area (4 clampers, 320 springs in total along the 
restrained edge). The longitudinal displacement of the edge was restrained by 
four springs on its top and bottom corners. In all investigated cases, the total stiff-
ness of these four springs was equal to the total stiffness of the springs, which 
restrained the transverse displacement so that the displacements in both direc-
tions were restrained with the same total stiffness. The vertical displacement of 
the nodes on the top and bottom surface of the clamped areas was fixed. With 
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this setup of boundary conditions, small in-plane displacement of the plate in the 
clamped areas are possible, depending on the stiffness of the springs.  

In the second proposed approach “B2”, only transverse displacement of the edge 
was restrained by springs. This simplification was based on the above-mentioned 
negligible influence of modelling the clamping mechanisms on the calculated lon-
gitudinal WRS. This time, both the vertical and longitudinal displacement of the 
nodes on the upper and bottom surface of the clamped areas was fixed (see Fig-
ure 14b). Different values of stiffness were tested for both setups. They are pre-
sented in Table 20. A more recent analysis “Gkatzogiannis, 2019”, identical to the 
previously investigated case B21 with large strains being taken into consideration 
though, is presented for the first time in the present dissertation. 

Table 20: Investigated cases of stiff springs in [53] 

Cases 
K 

[N/mm] 
Spring setup 

B1 103 B 

B2 106 B 

B3 109 B 

B21 103 B2 

B22 106 B2 

The results of this series of simulations are presented in Figure 46 and Figure 47.  
As expected the influence on the longitudinal WRS is negligible. Cases B2 and B3 
along with the case, where the nodes in the clamped areas were fixed, provided 
slightly better agreement with the measured residual stresses, with this differ-
ence though, lying inside the confidence boundaries of the present approach.  
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Figure 46: Longitudinal WRS at the centre of the top side of component A adjacent to weld line –  
(Gkatzogiannis, 2017) refers to [92] –  Influence of boundary conditions 

On the other hand, a significant improvement is met regarding the transverse 
WRS, especially with the second setup of “stiff springs”. The calculated profiles of 
B21 and B22 lie quite close with the measurements outside the weld area. In the 
case Gkatzogiannis, 2019 , where both the concept of stiff springs is applied and 
large strains are included in the simulation, the agreement between measured 
and calculated transverse WRS is very good outside the weld area. The deviation 
between measured and calculated stresses inside the weld section in all cases is 
subject to the above-mentioned uncertainty regarding the profile of the meas-
ured stresses.  
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Figure 47: Transverse WRS at the centre of the top side of component A adjacent to weld line –  
(Gkatzogiannis, 2017) refers to [92] – Influence of boundary conditions 

Modelling of a Restraint-Free Component 

Simulation of the freely welded component B was achieved with the use of “soft 
springs”, meaning linear spring elements subject to Hooke’s law with relatively 
low stiffness, in comparison to the stiffness of the investigated component. The 
use of such boundary conditions was necessary, as the simulation of a restraint-
free component would lead to numerical problems. At the same time, the applied 
conditions should allow the plate to deform similarly to the real component. Two 
different values of stiffness were tested in [53] and they are presented in Table 
18. The applied set up of springs is illustrated in Figure 13.  

Table 21: Applied values of stiffness K for the simulation of soft springs in [53]   
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The results from these analyses are illustrated in Figure 48 and Figure 49. Both 
cases A1 and A2 produce identical WRS results. It is concluded that the stiffness 
of 103 N/mm is low enough to simulate a free component. In Figure 48 the calcu-
lated longitudinal WRS with the present method produce a profile that provides 
results of similar preciseness with the simulation carried out by Caron et al. [21] 
with the commercial software SYSWELD [158]. In detail, each of both simulated 
profiles lies closer to the measured stresses at different points. The fact that the 
present approach follows at least qualitatively the measured stresses near the 
weld was encouraging for the preciseness of the present apporach, in comparison 
to the simulation presented by Caron et al. [21]. Similar conclusions are drawn, 
when the respective results for the transverse WRS are compared.  Still, improve-
ment of this model was needed at that point. 

 
Figure 48: Longitudinal WRS at the centre of the top side of component B adjacent to weld line – Measurements 
found in [21] – Simulation of restraint-free conditions 
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Figure 49:  Transverse WRS at the centre of the top side of component B adjacent to weld line – Measurements 
found in [21] – Simulation of restraint-free conditions 

Hardening Behaviour 

The influence of the applied hardening model was investigated as well in [55]. It 
had already been proven in the past that an isotropic hardening behaviour is 
more appropriate for weld simulations of austenitic steels: In their case the 
Bauschinger effect is assumed to be eliminated, when the material yields at ele-
vated temperature or is heat-treated before the reversal of loading (see [178], 
[126]). Both isotropic and kinematic hardening were tested on component B. It 
was expected that the influence of the hardening behaviour on a single-pass case 
would be less profound than in multi-pass welding, where consecutive cycles of 
reversed plasticity take place.  

Indeed the difference between the two simulated profiles of longitudinal WRS is 
small. In agreement with previous studies, kinematic hardening underestimates 
the WRS in comparison with isotropic. Against initial expectations, simulation 
considering kinematic hardening provided better agreement than the one with 
isotropic hardening. Nonetheless, the deviation between the two methods was 
small and lies inside the boundaries of both the simulation and the WRS meas-
urements.  
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Figure 50: Longitudinal WRS at the centre of the top side of component A adjacent to weld line – Measurements 
found in [21] – Influence of hardening behaviour 

Reference Temperature of Resolidified Material 

Up to this point, all previous investigations of the author were assuming that dur-
ing cooling the melted material was becoming stressed under tension from the 
first moment after solidification. Due to the inactivation of the respective ele-
ments above Tmelt previous strain history was erased. As most engineering princi-
ples and laws, thermal strains are a convention describing the physical reality 
based on some reference. The concenpt of Tref is easily understood from Equation 
(18); thermal strains depend on the reference temperature, which is selected by 
the modeller. Main interest of the welding simulation lies on the WRS at room 
temperature, thus setting the reference temperature equal with the ambient is 
expected. Nevertheless, this setting leads to the above-mentioned activation of 
elements under tension and therefore compressive plastic strains are directly in-
troduced. This deviates from physical reality, as the resolidified material is virgin 
in the sense of plasticity. During its solidification, it should be stress-free. From 
that point on, tensile plastic strains are introduced during cooling, when the hot 
material shrinks and is restrained by the adjacent material. Setting the reference 
temperature Tref of the melted material equal to Tmelt is allowing for modelling 
stress-free resolidified material.  
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The influence of setting Tref = Tmelt (case “Tref”) and resetting Tref = Tambient (case “Tref 

(reversed)”) after cooling is investigated at this case and the results are presented 
in the present dissertation for the first time according to authors knowledge. The 
calculated longitudinal and transverse profiles of WRS are presented in Figure 51 
and Figure 52 respectively. An improvement to the preciseness of the calculated 
WRS is met in both cases in comparison to the case, where this influence was 
neglected. A significant deviation between the two cases for the WRS calculated 
in the weld section is met, as tensile and compressive stresses are calculated in 
the former and in the latter one respectively. The above-described uncertainty 
regarding measurements in the FZ did not allow a selection of the valid modelling 
technique based on this deviation. Regarding the rest of the measurement points, 
Tref and Tref  (reversed) show better overall agreement than each other in the case 
of transverse and longitudinal WRS respectively. Consequently, a direct interpre-
tation at that point was not possible without further analysis. Still, it is clear that 
the influence of Tref cannot be neglected. Therewith, the above-stated, required 
improvement of the model for the component B was achieved. 

 
Figure 51: Longitudinal WRS at the centre of the top side of component B adjacent to weld line –  Measurements 
found in [21] – Influence of Tref 
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Figure 52: Transverse WRS at the centre of the top side of component B adjacent to weld line – Measurements 
found in [21] – Influence of Tref 

Strain Rate Dependency 

Two different cases, VA_TM1 and VA_TM2 were investigated in [59] regarding 
the yield strength strain rate dependency of S355. Both were based on and com-
pared with the previously modelled case Tref (reversed), where rate-independent 
plasticity only was taken into consideration. Tref (Reversed) was notated as “BC” 
in this study (Basic Case). In VA_TM1, values for the coefficients of the Cowper-
Symonds model (Eq. (22)), which were proposed by Jones [86], were applied for 
a solution using the Perzyna model (Eq. (21)). This model was selected as it is 
incorporated in the applied FE software ANSYS [14] and is available for implicit 
solutions. The adoption of the coefficients of the Cowper-Symonds model for the 
Perzyna equation is valid, due to their above-mentioned equivalency.  

Still, the values for the coefficients of the strain rate hardening provided by Jones 
in [86], are given for high-strength steels in general and thus, their validity should 
be checked for each specific investigated material individually. This argument has 
increased validity, when the above-described deviating strain-dependent behav-
iour of the various alloys is considered. For this reason, during the second inves-
tigated case VA_TM2, the Perzyna model was calibrated specifically for the inves-
tigated structural steel S355 based on experimental results at higher strain rates 
and higher temperatures found in literature (see [46], [47], [48], [49] and [91]). 
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These references report on the same batch of steel S355, allowing a direct inter-
pretation. A calibration of the strain rate hardening coefficients took place for the 
case VA_TM2 at different temperature levels, using the statistics toolbox of 
MATLAB [121]. An overview of the investigated cases is presented in Table 22. 
The temperature-dependent calculated coefficients of the Perzyna model for the 
investigated case VA_TM2 are presented in Table 22. 

Table 22: Investigated case for strain rate dependency, α and β are the coefficients of Perzyna model 

Case Plasticity α β Strain rate behaviour based on Temperature     
dependency 

BC Rate independent - - - - 

VA_TM1 Perzyna 3200 0.2 [86] - 

VA_TM2 Perzyna 18.540 0.2 [46], [47], [48], [49] and [91] included 

 
Figure 53: Fitting of the Perzyna model to the experimental data found in [46], [47], [48], [49] and [91] with 
MATLAB: a) At 20 °C; b) At 400 °C; c) At 550 °C; d) At 700 °C 
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The results of the simulations BC, VA_TM1 and VA_TM2 are presented in Figure 
54 and Figure 55. The strain rate dependent models produce almost identical re-
sults, both for longitudinal and transverse WRS. A difference is met as well in both 
cases in comparison to the strain rate independent case BC. For the longitudinal 
stresses, both strain rate independent and dependent deviate equally from the 
measured WRS. In the case of the transverse stresses however, the strain rate 
independent case shows better agreement with the measurements. The fact that 
the case Tref (Reversed) was considered as BC for the present analysis, while up to 
that point it was not clear if this would be the most suitable consideration of Tref 
for subsequent analyses, can be accounted for this incompatibility. Nonetheless, 
the non-negligible difference of the results, when strain rate dependency is taken 
into account, has to be highlighted at this point. Although, in the current case 
slightly worse agreement is met, the non-negligible deviation of results shows 
that when high accuracy is required, strain rate dependency must be considered 
as it was proposed by Lindgren [111]. 

 
Figure 54: Longitudinal WRS at the centre of the top side of component B adjacent to weld line – Measurements 
found in [21] – Strain rate dependency of simulated WRS 
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Figure 55: Transverse WRS at the centre of the top side of component B adjacent to weld line –  Measurements 
found in [21] – Strain rate dependency of simulated WRS 

3.2.5 Conclusions 

A series of analyses was carried out regarding single-pass butt welds. This weld-
ment was selected, due to its simplicity for a first-step overall validation of the 
presented engineering approach and for the investigation of several practical as-
pects of weld simulation by excluding the influence of more complex geometry 
or multiple weld passes.  

The following conclusions were drawn regarding the overall evaluation of the pre-
sented approach: 

� The current approach, additionally to its straightforwardness, provides re-
sults with preciseness within the required boundaries that were set at the 
beginning of the present study. Moreover, it shows better agreement with 
respective WRS measurements in the FZ and HAZ, which are critical for the 
fatigue behaviour of the component, when compared with other numerical 
simulations found in literature. 

� The approach is straightforward. Sophisticated aspects of material science 
like phase transformations or TRIP, are taken into consideration, based on 
practical simplifications, without changing the FE formulations. The phase 
changes are predicted based on existing CCT diagrams and no numerical 
solution is required. Its straightforwardness constitutes the approach re-
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material science. The approach enables the calculation of WRS and in ex-
tension the estimation of the fatigue behaviour of a component, allowing 
for an adjustment in each investigated case of the preciseness and compu-
tational effort by increasing or decreasing the number of CMMs, which are 
modelled. 

� Although the approach was originally developed to act predictively, it can 
also be applied for existing weldments, based on destructive testing. Hard-
ness measurements on a macro-section can provide enough information 
about the yield limit of each area of the weld. Therefore, alternatively to 
the CCT diagrams the hardness measurements can provide information nec-
essary for modelling the mechanical behaviour during cooling.  

� The practical nature of the method allows its application on other materials 
as well, as it was shown for aluminium in [43], whereby different micro-
structural effects must be modelled. Appropriate assumptions also allow 
extension of the model to multi-pass welding, as it is discussed below. 

� The present method allows for flexibility. The level of preciseness depends 
on the number of cooling-down material models and can be selected by the 
modeller. Depending upon the case, further, more sophisticated modelling 
of mechanical behaviour can be deployed, like mixed-hardening constitu-
tive laws or strain rate dependent plasticity. The computational effort in-
creases at the same time.  

The following conclusions were drawn regarding specific aspects of the simula-
tion: 

� In order to provide mesh independent results, a mesh dimension in the HAZ 
and FZ transverse to the weld line equal or smaller than 7 % of the Goldak’s 
source half width is required, when first order hexahedral finite elements 
are applied. 

� When no relevant information is available, setting the width a and depth b 
of Goldak’s source equal to the theoretical width and depth of the weld 
seam provides sufficient results. In this case, forward and rear lengths are 
set as cf = 4·a and cr = a. 

� Regarding the preciseness of thermal analysis, the selection of a proper 
value for the weld source coefficient is more decisive than the use of a tem-
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perature-dependent coefficient for heat losses through convection and ra-
diation. Still, both effects should be considered for safer results, as model-
ling with a temperature-dependent coefficient lies closer to physical reality. 

� Accurate modelling of material behaviour is predominant for the improve-
ment of the preciseness, especially when the longitudinal WRS are consid-
ered.  

� Considering large strains is predominant for the precise calculation of trans-
verse WRS. 

� When a clamped-component is simulated, modelling of boundary condi-
tions with stiff springs instead of zero displacement restraints improves sig-
nificantly the preciseness of transverse WRS. This deviation validates the 
influence of external restraint on the transverse WRS as it is presented in 
Figure 3. When this modelling technique is combined with consideration of 
large strains very precise calculation of transverse WRS can be achieved. 

� B2 Setup of the stiff springs provided the best improvement in simulations 
results. Application of the springs is mesh dependent and the individual 
stiffness of the springs has to be adjusted depending on their number. A 
mesh-independent stiffness density of 20 x 107 (N/mm)/mm was applied in 
the respective areas in order to simulate each clamping mechanism. 

� Application of two soft springs in each normal direction with stiffness of 103 
N/mm or lower is appropriate for the simulation of a restraint-free compo-
nent. 

� Neglecting the Bauschinger effect by applying isotropic hardening behav-
iour leads to overestimation of the WRS in comparison to results with the 
kinematic hardening. Selection of the appropriate approach could not be 
clarified with this series of analyses. 

� Setting Tref of the inactivated elements in the FZ equal to Tmelt provides re-
sults with improved preciseness. However, it is not clear from this series of 
analyses if Tref should be reset equal to ambient after cooling. 

� Strain rate dependency should be taken into consideration, when high pre-
ciseness is required. 

The above-presented conclusions were used as a basis for the subsequent simu-
lations that were carried out in the framework of the present dissertation. 
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3.3 Further Applications of the Proposed Approach 

The present method was extended for modelling single-pass aluminium welds 
[93] and multi-pass butt welds of austenitic stainless steels [56].  

In the first case, the same method as for single-pass welds of steel was applied. 
Material models were assigned to different areas of the weld by considering this 
time the influence of heat input on recrystallization of the aluminium microstruc-
ture instead of the phase changes. This recrystallization can cause a local reduc-
tion of the yield strength for high strength aluminium alloys like in the case of EN 
AW 6060 [37]. It was proven, that due to this effect the highest WRS are met on 
the boundaries between HAZ and PM. Due to the different thermal behaviour of 
aluminium this boundaries lie further away from the weld toe in comparison to 
steel weldments. Therewith it could be interpreted, why preliminary HFMI treat-
ment on the weld toe of aluminium welds provided improvement of their fatigue 
behaviour less than expected. 

In the case of multi-pass welds, austenitic steels were modelled so that influence 
of heat input, welding direction and welding sequence could be investigated by 
excluding the influence of microstructural effects. Reduction of welding speed, 
avoidance of intermediate cooling, and antisymmetric welding sequence were 
proven, according to initial expectations, beneficial for the reduction of WRS and 
in extension for the prolongation of the fatigue life of the investigated weld-
ments. These conclusions could be very useful for the optimization of welding 
process for austenitic steels. Nevertheless, they cannot be directly adopted for 
the case multi-phase steels, where microstructural changes can influence pro-
foundly the calculated WRS. The theoretical background and modelling aspects 
for extending the present approach in the case of multi-pass welds on multi-
phase steels was discussed in [57]. 

Detailed description of these investigations is excluded from the present disser-
tation as they, although being relevant to the general subject, are not directly 
contributing to the fulfilment of the present research goal, i.e. the simulation of 
RS from welding and HFMI. Further details regarding these investigations can be 
found in the respective, given publications. 
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3.4 Fillet welds 

A series of numerical investigations was carried out in the framework of the pre-
sent dissertation, in order to calculate the WRS of the fillet welds from the re-
search project HFH-Simulation. Some of the results were carried out as part of 
the project as well, while other are published in the present dissertation for the 
first time. Goal was the precise calculation of the WRS field, which would be ap-
plied as input to the subsequent HFMI analysis. The above-mentioned conclu-
sions drawn from the former investigations on single-pass butt welds constituted 
the base for this latter simulation. Measurements of WRS, which were carried out 
in the framework of the project HFH-Simulation, are used for validation of the 
present numerical analyses. Previously unsolved issues regarding practical as-
pects of modelling were as well investigated in this series of analyses. 

3.4.1 Investigated Components 

The investigated components of the project HFH-Simulation were fillet welds of 
three different materials, namely S355 [29], S690 and S960 [30]. They consisted 
of a plate with dimensions 1000 mm x 370 mm x 10 mm and transversal stiffeners 
with dimensions 1000 mm x 50 mm x 10 mm welded on both sides. In the case of 
the S355 component, length was in reality 1350 mm. Nonetheless, a length of 
1000 mm was assumed in the numerical models for this case as well, in order to 
reduce the computational time. No influence on the calculated WRS is expected, 
as the length remains significantly larger than the width of the plate. The geome-
try of the investigated component and the weld section are illustrated in Figure 
56 and Figure 57  respectively. The real component of steel S355 is presented in 
Figure 59. It was restrained with two clampers during welding, on the side of the 
1st and 4th pass (setup of clamping mechanisms FWBC1). Applied welding se-
quence A-B-C-D is as well presented in Figure 57 . Coarse mesh was applied away 
from the weld, while finer mesh dimensions, with dimensions of 0.37 mm and 1 
mm transverse to and along the weld direction respectively, were selected for 
the FZ and the HAZ based on previous investigations.  



3.4 Fillet welds 

93 

 
Figure 56: Fillet welds of the project HFH-Simulation, two clampers were applied on the left side during welding, 
dimensions are given in mm (setup FWBC1) 

 
Figure 57: Component of the project HFH-Simulation, two clampers were applied on the left side during welding 
dimensions are given in mm (setup FWBC1) 
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Figure 58: Mesh applied for the simulations of fillet welds: a) Top view; b) Isometric view 

The component of S355, hereafter called simply FW355, was MAG-welded with 
mean electric power of 4.125 kW and welding speed of 6.5 mm/s (39 cm/min; 
0.64 kJ/mm gross heat input). FW690 and FW960 were MAG-welded with mean 
electric power of 7.293 kW and welding speed of 6.5 mm/s (39 cm/min; 1.12 
kJ/mm gross heat input). Thermocouples’ measurements were carried out in both 
cases. Welding setup of FW690 is shown in Figure 60. Three stiffeners were 

(a) 

(b) 
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welded on each side of a larger plate, which was later cut into the desired geom-
etry, as the one presented in Figure 56. The same setup was applied for the 
FW960. Both materials were welded with automated procedure by a robot-
welder, which welded simultaneously the two upper and consecutively the two 
bottom passes. Therefore, a second FE model was built, identical with the one 
presented in Figure 54 but with symmetry conditions on the middle plane of the 
stiffeners. Nevertheless, sequential welding sequence identical to that of FW355 
was as well modelled, so that the most unfavourable case, i.e. the weld toe with 
the highest tensile WRS, could be taken into consideration to the subsequent sim-
ulation of HMFI as well. As it was not documented, on which plate the WRS meas-
urements of the Project HFH-Simulation were carried out, the setup FWBC1 was 
assumed for FW690 and FW960 as well. It was decided that if no satisfying agree-
ment was achieved, further actions would be taken. WPS for all materials are pre-
sented in Appendix A. In all cases, the stiffeners were initially tack-welded on the 
plates, with full welding taking place afterwards. During the simulation, both the 
tack welding procedure and the discontinuity between the stiffener and the base 
plate were neglected, as they were rationally believed to have negligible influ-
ence on the final WRS.  

 
Figure 59: The real component of the project HFH-Simulation made of steel S355 after completion of the welding 
procedure – The clamping mechanisms are seen on the left side 
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Figure 60: Welded plates of S690 from the project HFH-Simulation 

3.4.2 WRS Measurements 

Measurements of the WRS took place in the framework of the project HFH-Sim-
ulation. The measurements were carried out by the Fraunhofer Institute for Me-
chanics of Materials (IWM)6 with an X-Ray diffractometer7 on the 1st welding pass 
of each fillet weld at the middle of the plate and transverse to the welding line. 
In the case of S355 three measurement lines, parallel to each other at a distance 
of some mm from each other (≈ 10 mm), were measured. Further details regard-
ing the measuring method can be found in [146], but they are excluded from the 
present dissertation as they exceed the boundaries of the present subject.  

The measured WRS for all three investigated materials are presented in Figure 61 
along with their confidence boundaries and the mean line for the measurements 
of S355. Despite the fact that all measurements were carried out on the 1st weld-
ing pass, they are presented schematically in such a way that the transverse WRS 
can be found on the left hand side of the diagram and the longitudinal on the 
right hand side. Against initial expectations, the transverse WRS range in all cases 
in the compressive zone and they exhibit a very strong fluctuation. A significant 
deviation of even up to 250 MPa is met between the parallel measurements of 
S355. Such a conclusion cannot be drawn for the other two steel grades due to 
the single measurements but a very irregular WRS-pattern with steep peaks and 

                                                           
6 IWM stands for „Institut für Werkstoffmechanik“, German for “Institute for Mechanics of Materials” 

7 a Stresstech G3 Diffractometer was used 
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valleys is met especially in the case of S960. On the other hand, longitudinal meas-
urements exhibit no significant fluctuation and the deviation for the measure-
ments of S355 is significantly smaller. Moreover, the longitudinal profiles are 
closer to initial expectations, as tensile WRS are met near the weld toe that move 
to the compressive area away from it. Nevertheless, it seems that the whole pro-
file is shifted downwards as the tensile and the compressive WRS have lower and 
higher magnitude than expected respectively and the width of the tensile area is 
quite narrow. 

 
Figure 61: WRS measurements from the project HFH-Simulation 

It was assumed that the rolling process of the parent plates or the shot blasting 
of the surface prior to welding should be accounted for these discrepancies of 
measured WRS. For instance, shot blasting can introduce significant compressive 
WRS (Figure 15), but also its localized mechanical effect can lead to significant 
differentiation of the RS, which could explain the present significant deviations 
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and fluctuations. A similar effect, i.e. presence of compressive stresses of the 
magnitude of 200 MPa prior to welding was attributed to hot rolling of the inves-
tigated steel plates, in a previous numerical study of HFMI [150]. In any case, the 
longitudinal measurements are considered more valid due to the absence of sig-
nificant fluctuations and the small deviation of the measurements for S355. 

3.4.3 Material Modelling 

3.4.3.1 S355 

Thermal material properties given in Table 11 were applied for steel S355. Tem-
perature-dependent mechanical properties of the investigated S355 batch were 
extracted in the framework of the project HFH-Simulation. Material characterisa-
tion was carried out from ambient up to a temperature of 560 °C. All intermediate 
values were interpolated, while for values above the investigated range an ex-
trapolation was carried out, considering as well the austenitization effect. The 
applied values are presented in Table 23. 

Table 23: Mechanical parent material properties of S355 batch used in the project HFH-Simulation [146] 

T  

[°C] 

σy 

 [MPa] 

E  

[GPa] 

H  

[GPa] 

20 400 233 2.80 

400 300 188 4.20 

500 260 162 2.30 

560 240 139 2.20 

719 167 55 1.84 

915 45 10 1 

1500 7 10 1 

3000 7 10 1 

 

The chemical composition of S355 batch and the results of the analytical calcula-
tion of the austenitization temperatures A1, A3 and A3’ are presented in Table 24 
and Table 25 respectively. Based on the results of the thermal analysis, which are 
presented below, it was considered adequate to model 4 CMMs, as the areas in 



3.4 Fillet welds 

99 

the HAZ and FZ exhibited similar t85. They were built based on the CCT diagram of 
S355, which is presented in Figure 62, and the material properties of the individ-
ual phases (see Table 6). The CCT diagram was found in [147] and was extracted 
by a batch with similar chemical composition. The values of the double parameter 
Tmax and t85 characterizing each CMM are provided in Table 26. Exemplary, evolu-
tion of phase composition and the respective mechanical behaviour of CMM 2 
are provided in Table 27. For the sake of shortness, the rest of the CMMs are 
provided in Appendix A. 

Table 24: Mean values of chemical composition for the S355 batch used in the project HFH-Simulation [146] 

C Si Mn P S Al-T B-T 

0.156 0.176 1.41 0.0125 0.0028 0.0265 0.00015 

Cr Cu Mo N Nb Ni Ti 

0.0305 0.013 0.0055 0.0067 0.015 0.0275 0.014 

Table 25: Calculated austenitization temperatures of the S355 batch used in the project HFH-Simulation [146] 

A1 [oC] A3 [oC] A3’ [oC] 

713 815 908 
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Figure 62: CCT diagram for steel S355, based on a diagram found in [147] 

Table 26: Double parameter of the cooling material models for the simulation of FW355 

CMM 2 3 4 

Tmax [oC] 779 844 910 

t85 [s] 4 4 4 

Table 27: CMM 2 (Tmax = 779 oC, t85 = 4 s) modelled for the simulation of FW355 

T 

[oC] 

Microstructure σyi [MPa] σy 

[MPa] 

αse 

[-] PM FE, PE BA MA AY PM FE, EP BA MA AY 

812 66 % 0 % 0 % 0 % 34 % 100 79 42 120 62 87 13 

713 66 % 0 % 0 % 0 % 34 % 153 86 73 264 81 128 13 

420 66 % 0 % 0 % 0 % 34 % 292 218 237 783 136 239 13 

200 66 % 0 % 0 % 31 % 3 % 353 285 271 880 200 514 12 

20 66 % 0 % 0 % 31 % 3 % 400 431 277 1008 245 586 12 
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3.4.3.2 S690 

The temperature-dependent thermal properties of S690 were found in [140] and 
they are presented in Table 28. Parent material mechanical properties at ambient 
temperature were extracted from the material characterisation of the investi-
gated batch in the framework of the project HFH-Simulation. Same values of tan-
gent modulus and analogous temperature-dependency of yield strength and 
Young’s modulus to that of S960 was assumed. The applied parameters are pre-
sented in Table 29. The chemical composition of S690 batch, which was investi-
gated in the project HFH-Simulation and the results of the analytical calculation 
of the austenitization temperatures A1, A3 and A3’ are presented in Table 30 and 
Table 31 respectively. Based on the results of the thermal analysis, which are pre-
sented below, it was considered adequate to model 4 CMMs, as the areas in the 
HAZ and FZ exhibited similar t85. They were built based on the CCT diagram of 
S690, which is presented in Figure 63 and the material properties of the individual 
phases (see Table 6). The CCT diagram was found in [12] and had comparable 
chemical composition to the present. Any effect of the high heating rate of 6000 
K/s of the experiments, from which the CCT diagram was extracted, is neglected 
in the present case.  The values of the double parameter Tmax and t85 characteriz-
ing each CMM are provided in Table 32. Exemplary, evolution of phase composi-
tion and the respective mechanical behaviour of CMM 3 are provided in Table 33. 
For the sake of shortness, the rest of the CMMs are provided in Appendix A.  

Table 28: Temperature-dependent material parameters of S690 found in [140], used in thermal analysis 

T  

[°C] 

K  

[W / (m · K)] 

T  

[°C] 

C  

[J / (kg · K)] 

T  

[⁰C] 

ρ  

[kg / m3] 

20 46.1 50 480 20 7880 

400 44.65 200 540 200 7810 

700 42.62 400 620 400 7740 

1100 32.83 700 920 700 7640 

1300 37.18 900 620 900 7620 

1387 31.71 1200 720 1200 7470 

  1381 810 1250 7440 

    1300 7420 
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Table 29: Temperature-dependent material parameters of S690 extracted in [146], used in mechanical analysis 
– Values are extrapolated for temperatures higher than 560 °C 

T  

[°C] 

σy 

 [MPa] 

E  

[GPa] 

H  

[GPa] 

20 734 203 2.33 

400 612 169 3.40 

719 150 41 1.63 

915 45 10 1 

1500 7 10 1 

3000 7 10 1 

Table 30: Mean values of chemical composition for the S690 batch used in the project HFH-Simulation 

C Si Mn P S Al V 

0.14 0.4 1.38 0.007 0.002 0.03 0.061 

Cr Cu Mo Ti Nb Ni  

0.01 0.02 0.002 0.024 0.03 0.02  

Table 31: Calculated austenitization temperatures for the simulation of FW690 

A1 [oC] A3 [oC] A3’ [oC] 

720 835 935 
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Figure 63: CCT diagram for steel S690 found in [12]8 

Table 32: Double parameter of the cooling material models for the simulation of FW690 

CMM 2 3 4 

Tmax [oC] 817 882 1208 

t85 [s] 4 4 4 

Table 33: CMM 3 (Tmax = 882 oC, t85 = 4  s) modelled for the simulation for the simulation of FW690 

T 

[oC] 

Microstructure σyi [MPa] σy 

[MPa] 

αse 

[-] PM FE, PE BA MA AY PM FE, EP BA MA AY 

850 31 % 0 % 0 % 0 % 69 % 62 61 40 73 48 53 15 

719 31 % 0 % 0 % 0 % 69 % 150 94 101 246 79 101 15 

431 31 % 0 % 0 % 0 % 69 % 594 237 332 750 134 277 15 

200 31 % 0 % 0 % 63 % 6 % 676 312 386 853 200 762 12 

20 31 % 0 % 0 % 63 % 6 % 734 472 394 977 245 861 12 

                                                           
8 the diagram was partially redrawn by the author of the present dissertation in order to improve the figure 
quality 
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3.4.3.3 S960 

Temperature-dependent thermal properties of S960 were considered identical to 
those of S690 presented in Table 28. Temperature-dependent parent material 
mechanical properties were extracted from the material characterisation of the 
investigated batch in the framework of the project HFH-Simulation. They are pre-
sented in Table 34. As in the case of S355 material characterisation took places in 
the range of 20 oC – 560 oC and the rest of the values were either inter- or extrap-
olated. 

The chemical composition of the applied S960 batch and the results of the ana-
lytical calculation of the austenitization temperatures A1, A3 and A3’ are pre-
sented in Table 35 and Table 36 respectively. It was assumed that A3’ = A3, as the 
calculated value of A3’ was lower. 4 CMMs were modelled in order to simulate 
possible softening of the martensitic microstructure of S960 through austenitiza-
tion and cooling. As no CCT diagram of S960 was found in literature, hardness 
measurements in the FZ and in the HAZ, which were carried out in the framework 
of the project HFH-Simulation, were used as input for modelling the CMMs. As is 
it shown in Figure 64 hardness of parent material, in the HAZ and in the FZ lies 
between 300 HV and 425 HV, with the highest values met in the HAZ and the 
lowest in the FZ. All values in this range indicate a very high proportion of mar-
tensite (analytical calculations with the present chemical composition result in a 
hardness of 342 HV for the martensitic microstructure). Therefore, the micro-
structural changes could have been neglected. Nevertheless, 4 CMMs were built 
in order to simulate these effects of hardening and softening in the HAZ and in 
the FZ respectively, based on the material properties of the individual phases (see 
Table 6). The values of the double parameter Tmax and t85 characterizing each 
CMM are provided in Table 37. Exemplary, evolution of phase composition and 
the respective mechanical behaviour of CMM 4 are provided in Table 38. For the 
sake of shortness, the rest of the CMMs are provided in Appendix A.  
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Table 34: Temperature-dependent material parameters of S690 extracted in [146], used in mechanical analysis 
– Values are extrapolated for temperatures higher than 915 °C 

T  

[°C] 

σy 

 [MPa] 

E  

[GPa] 

H  

[GPa] 

20 1021 203 2.33 

400 851 169 3.40 

719 208 41 1.63 

915 45 10 1 

1500 7 10 1 

3000 7 10 1 

Table 35: Mean values of chemical composition for the S960 batch used in the project HFH-Simulation 

C Si Mn P S Al V 

0.22 1.25 0.008 0.001 0.22 0.052 0.043 

Cr Cu Mo Ti Nb Ni  

0.2 0.01 0.603 0.003 0.016 0.05  

Table 36: Calculated austenitization temperatures for the simulation of FW960 

A1 [oC] A3 [oC] A3’ [oC] 

719 1013 1013 

 
Figure 64: Vickers Hardness measurements (HV) carried out on FW960 by IWM in the framework of [146]  
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Table 37: Double parameter of the cooling material models for the simulation of FW960 

CMM 2 3 4 

Tmax [oC] 866 964 1257 

t85 [s] 4 4 4 

Table 38: CMM 4 (Tmax = 1257 oC, t85 = 4 s) modelled for the simulation of FW960 

T 

[oC] 

Microstructure σyi [MPa] σy 

[MPa] 

αse 

[-] PM FE, PE BA MA AY PM FE, EP BA MA AY 

1257 0 % 0 % 0 % 0 % 100 % 5 5 5 5 5 5 16 

719 0 % 0 % 0 % 0 % 100 % 208 99 139 259 79 79 16 

431 0 % 0 % 0 % 0 % 100 % 826 251 457 787 134 134 16 

200 0 % 0 % 0 % 92 % 8% 940 331 531 895 200 839 12 

20 0 % 0 % 0 % 92 % 8% 1021 500 542 1025 245 963 12 

3.4.4 Analyses and Results 

3.4.4.1 Thermal Analysis 

Thermal analysis was carried out based on the above-presented theoretical back-
ground. Two different analyses were carried out for FW355 and for 
FW690/FW960 respectively. A single analysis was carried out for the two high 
strength steels, as they exhibit identical thermal behaviour and were welded with 
the same WPS.  

The heat source was calibrated for both analyses based on macrosections of the 
investigated fillet welds, which were taken by IWM during HFH-Simulation [146]. 
Initially, the width and depth of Goldak’s source were adapted directly to the 
measured weld pool size. The length of the forward and rear quadrant were once 
again set equal to 1 and 4 times the half width of the weld pool respectively. The 
macrosections along with the measured dimensions are displayed in Figure 65. 
The applied welding parameters are presented in Table 39. Values for the weld 
metal arc coefficient proposed by Dupont [32] were used once again. Still, initial 
thermal results have shown that this setup leads to a smaller weld pool size in the 
simulation, i.e. temperature of some elements inside and near the boundaries of 
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the FZ did not reach Tmelt. Consequently, the parameters of the heat source had 
to be recalibrated.  

Through a trial and error procedure the parameters of the Goldak’s source were 
reset so that the FZ in the simulation would match the real one and the agree-
ment of the calculated thermal profiles with the respective thermocouples’ meas-
urements, which were carried out in the framework of HFH-Simulation [146], 
would be sufficient. Finally, a common width of the weld source of 6 mm, an equal 
depth and a retained ration of 4:1:1 for the forward and rear length to the half 
width were selected. The final parameters of the heat source are presented as 
well in Table 39. The calculated FZ and the temperature distribution in the fusion 
zone at the middle of the heat source were compared with the real macrosection 
after recalibration. This comparison is illustrated in Figure 66. On the left side of 
the figure, the macrosections are presented for both materials with the bounda-
ries of the FZ being highlighted with a black line. At the middle, qualitative con-
tours of the temperature distribution are presented.  Exemplary, the quantitative 
contour for the component FW355 (mirrored) is presented in Figure 67. 

Table 39: Initial and final parameters of Goldak’s source applied for the thermal analysis 

Goldak’s Source 
Initial Setup After Calibration 

S355 S690/S960 S355 S690/S960 

a [mm] 4.85 4.94 6 6 

c [mm] 7.87 4.94 6 6 

bf [mm] 4.85 4.94 6 6 

br [mm] 19.40 19.80 24 24 

η [-] 0.85 0.85 0.85 0.85 
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Figure 65: Macrosections of the investigated fillet welds taken by IWM [146] – Measurement of the weld pool 
size 

On the right hand side of Figure 66 the FZ and the HAZ are presented, as they 
were calculated from the applied algorithm, along with the boundaries of the real 
FZ. Comparing the real and the simulated ones, a very good agreement to the 
shape and the width for both the FZ and the HAZ is met for S355. A small under-
estimation of the depth of the FZ is observed though. In the case of S690/S960 on 
the other hand the width of the source at half depth is overestimated. 

Regarding the quantitative contour of temperature in the heat source transverse 
to the centre in longitudinal direction at its centre in Figure 67, the temperatures 
at the predicted boundaries of the weld pool and in the HAZ confirm the expected 
values of Tmax. The temperature at the centre of the weld pool however, is ap-
proaching the boiling temperature of iron (≈ 2870 °C). Previous investigations on 
austenitic steels have shown that the maximum temperatures inside the weld 
pool can be higher than 3000 °C depending on the welding method and material 
[97], [179]. Albeit, in ferritic and martensitic steels maximum temperature is ex-
pected to be lower, due to the lower requested thermal input.   
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Figure 66: Macrosections of the investigated fillet welds taken by IWM [146] – Measurement of the weld pool 
size 

The above-mentioned discrepancies are assumed to be negligible regarding the 
calculation of WRS. The negligible influence of small deviation in the size of the 
heat source was proven in the previous investigations of single-pass butt welds. 
As long as the heat flux inside the component, especially from the boundaries of 
the FZ up to the PM close to HAZ, is calculated with sufficient preciseness, the 
influence of erroneous maximum temperature at the centre of the weld pool is 
considered to be negligible. In any case, during the mechanical analysis all ele-
ments are deactivated when they exceed the melting temperature, so this could 
only influence the energy input in the component. Still, very good agreement is 
met though between the calculated temperature profiles and the respective 
measurements, which were carried out by means of thermocouples. The compar-
ison for S355 and S690/S960 are presented in Figure 68 and Figure 69 respec-
tively. 
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Figure 67: Quantitative temperature contours in the weld zone – Temperatures in oC 

In both cases, Tmax is calculated with very good preciseness. Heating and cooling 
rates are slightly overestimated. In any case, the heating rate is insignificant for 
the WRS with the current modelling approach. As for the cooling rate, observing 
the CCT diagrams of Figure 62 and Figure 63 a small overestimation of 2 s of the 
cooling time leads to negligible difference in the formatted microstructure during 
cooling. The neglection of fluid flow and the respective convective heat transfer 
inside the weld pool is considered to be the reason for these negligible discrep-
ancies in the thermal analysis. 
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Figure 68: Comparison of the thermal analysis and thermocouples measurements of FW355 

 
Figure 69: Comparison of the thermal analysis and thermocouples measurements of FW960 

3.4.4.2 Structural Analysis 

Two different levels of simulation were applied out for the structural part of the 
present analysis. One using simple boundary conditions was solved in the frame-
work of HFH-Simulation and one more sophisticated based on the above-pre-
sented concept of stiff springs in the framework of the present dissertation. It 
was initially intended to upgrade the modelling approach further by considering 
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the Bauschinger effect for the material away from the weld, which is not influ-
enced severely by the thermal input, additionally to the application of stiff 
springs. Nonetheless, due to convergence difficulties, isotropic hardening behav-
iour was applied for the whole components. Furthermore and for the same rea-
son, large deformations (non-infinitesimal strains) were not considered during 
the present solution with stiff springs. The influence of Tref, the setup of the clamp-
ing mechanisms and the specimen cutting on WRS were investigated as well dur-
ing this series on analyses. The WRS measurements from HFH-Simulation were 
applied for validation. Although, measurements were carried out on the 1st pass 
and the respective numerical results were compared at first, an overall compari-
son of the results from all passes was considered valid; the discrepancies of the 
measured WRS and signs of local effects led to this decision. Hence, the WRS were 
mirrored on both sides of the WRS diagrams (left and right to the stiffener) so 
that a direct comparison of numerical results to the measurements could be en-
abled for all passes. 

Reference Temperature of Resolidified Material 

The above-stated problem of Tref had to be resolved before proceeding to further 
analyses. For this reason, the WRS, computed with and without reversal of Tref, 
were compared with the measured WRS for all three investigated components, 
FW355, FW690 and FW960. As this comparison provided similar results in all 
cases, only the results regarding S355 are presented in the current dissertation 
for the sake of space.  

The simulated longitudinal and transverse WRS for the component FW355 along 
with the respective mean of the measurements are presented in Figure 70 and 
Figure 71 respectively. The profiles of the first three passes calculated without 
reversal of Tref validate the theoretical ones, exhibiting tensile residual stresses in 
the region of the weld seam and the weld toe and passing in the compressive 
region away from them. Results are different for the WRS of the 4th pass, espe-
cially in the case of transverse stresses, due to the thermal influence of prior 
passes, an effect which will be discussed below. It has to be mentioned that the 
theoretical profiles predict a counterbalance between the tensile and the com-
pressive areas but this should stand for membrane stress profiles. As the present 
profiles are taken on the surface of a three dimensional component with non-
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negligible thickness, such equilibrium interpretations should be made on the in-
tegrated sums of forces i.e. on the whole thickness of the component. 

Figure 70: Longitudinal WRS at the centre of component FW355 – Influence of Tref

On the other hand and as in previous investigations (see Figure 51 and Figure 52), 
the model considering reversal of Tref produces diagrams with compressive 
stresses in the weld area. Although it is against engineering common knowledge, 
which dictates the presence of tensile stresses in this area, this is possible in some 
cases due to microstructural transformations [40]. Nonetheless, the agreement 
that the model with non-reversed Tref exhibits with measurements, near the weld 
toe, is very good and especially in the case of longitudinal stress, whereby the 
measurements are considered more robust. On the other hand, the calculated 
profiles of the model with reversed Tref did not seem to follow the real RS profiles. 
Hence, the model excluding reversal of Tref was selected for all subsequent simu-
lations.  The deviation between the simulated and measured WRS in the region 
away from the weld is discussed below. 
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Figure 71: Transverse WRS at the centre of component FW355 – Influence of Tref

Overall Validation

The longitudinal WRS for all three investigated components, calculated with the 
modelling approach of HFH-Simulation (tagged “HFH Sim” - fixing of the clamped 
nodes) and the current one (tagged as “present” – using stiff springs and im-
proved material modelling) are presented in Figure 72, Figure 73 and Figure 74
along with the respective measurements. Similar results are met for all materials 
and for both modelling approaches. The highest and the lowest WRS are met on 
the 1st and the 4th passes respectively. In the case of FW355, tensile stresses 
around 630 MPa clearly higher than the nominal yield strength are met on the 
weld toe of the 1st pass. They match though the order of magnitude of the higher 
yield strength in the HAZ, which is increased due to microstructural transfor-
mations. 
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attributed to the effects caused by the thermal influence of prior to consequent 
weld passes. No specifications were given regarding the intermediate tempera-
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cooling time between passes of 120 s was assumed9. At this time, temperature in 
the weld region is approximately 200 °C (see Figure 69 for example). Thus, heat 
input from the prior weld passes acts as preheating for the former ones, reducing 
in this way the introduced WRS. As no preheating is applied prior to welding, the 
first pass is cold-welded and exhibits significantly higher WRS than the rest of the 
passes as expected.  

Furthermore, as cooling time was similar for all passes, Tmax was predominant for 
the rest of them. Heat input from passes 1 and 2 acted as preheating for the 
passes 4 and 3 respectively and higher Tmax was reached. This led to assignment 
of different microstructural models to the first two and later passes. CMM 4 and 
2 were assigned to the HAZ of the 1st and 2nd passes exhibiting respectively yield 
stresses of 947 MPa and 586 MPa. CMM 3 with yield strength of 766 MPa was 
assigned to the other two instead of CMM 2. Therewith, a broader zone of high 
strength is created allowing for no sudden peak of strength on the weld toe that 
could be secondary accounted for the highest peak of WRS on the first pass. Ex-
emplary, the CCM assignment for the 1st and 4th pass of S355 is presented in Fig-
ure 75. This effect was limited for the case of the two high strength steels due to 
the homogeneity when yield strength is considered. Small changes in yield stress 
due to microstructural transformation took place. 

The influence of modelling approach for the boundary conditions on the tensile 
WRS, as expected, is limited for all three components. Application of stiff springs 
produces slightly higher WRS on the weld toe and, due to equilibrium, slightly 
lower away from it.  

                                                           
9 no documentation available, 120 s were assumed rational for practical reasons i.e. for the welder to change 
position 
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Figure 72: Longitudinal WRS at the centre of component FW355 – measured WRS from the 1st pass are mirrored 
on the right side

Figure 73: Longitudinal WRS at the centre of component FW690
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Figure 74: Longitudinal WRS at the centre of component FW960

The overall agreement of the simulated and measured longitudinal WRS on the 
1st pass is good in all cases for a region of up to 5mm away from the weld toe. In 
this region, the other simulated profiles match the measured ones as well. Away 
from this region of the 5 mm the compressive stresses introduced by the manu-
facturing processes (rolling or shot blasting) cause a significant deviation between 
simulation and measurements.
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(a) 

(b) 
Figure 75: CMM assignment for S355 (CMM 5 identical with CMM 4 but with Tref = Tmelt,  
Material 1 is PM): a) 1st pass; b) 4th pass 
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The calculated transverse WRS for all three investigated components, based on 
the simple modelling of boundary conditions applied for HFH-Simulation are pre-
sented in Figure 76, Figure 77 and Figure 78. Similar results are met once again in 
all cases. The highest WRS are met on the 1st pass and the lowest on the 4th, with 
the extreme case found in component FW355, where compressive stresses are 
calculated in the latter. The same above-described reasons for this deviation of 
longitudinal stresses should stand in this case once again.

Figure 76: Transverse WRS at the centre of component FW355

For all three materials, the magnitude of the calculated transverse WRS is smaller 
than the longitudinal. For the component FW355 the profile of the 1st pass is lying 
inside the scatter band of the measurements near the weld toe. Deviation in the 
region away from it is once again attributed to the influence of the RS introduced
by the manufacturing processes. On the contrary, the calculated transverse WRS 
for the other two components, FW690 and FW960, deviate completely from the 
measured WRS. The arbitrary assumption of FWBC1 boundary conditions for the 
components FW690 and FW960 could as well be causing this deviation10. The 
agreement of the present simulation in the case of longitudinal stress, at least at 
the area close to the weld, along with the great uncertainty of the measured WRS, 

                                                          
10 during the project HFH-Simulation it was not documented on which side of the specimens (1st and 4th pass or 
2nd and 3d pass side) the clampers were applied – FWBC1 was assumed for the rest of the simulations
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as it is exposed from the multiple measurements on S355, could as well arise
questions regarding the validity of the measured transverse WRS. 

In the case of S355, the influence of modelling approach on the transverse WRS, 
as expected, is more significant than for the longitudinal. Application of stiff 
springs produces WRS of significantly larger magnitude near the weld toe, as in 
the case of the previously investigated butt welds. For the other two materials 
negligible difference is observed. The unavoidable neglection of geometrical non-
linearities (large strains were neglected), which was previously proven predomi-
nant for the transverse WRS due to convergence problems, could be accounted 
for this. The broad scatter band of the WRS measurements for S355 and negligible 
difference between the HFH-Simulation and the present approach though, do not 
allow for exclusion of one of the two methods.

Figure 77: Transverse WRS at the centre of component FW690
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Figure 78: Transverse WRS at the centre of component FW960

Influence of Symmetric Automated Welding of High Strength Steels

The influence of welding sequence in the case of high strength steels was inves-
tigated by simulating the symmetric welding sequence, which was applied for the
real fillet welds of the project HFH-Simulation. The results were compared with 
the assumed simulated sequential welding (tagged above as present), identical 
with the real welding sequence of the specimens of S355. Identical welding pa-
rameters were applied in both cases. The longitudinal and transverse RS for the 
component of S960 simulated with the two sequences, sequential and symmet-
rical, are compared with each other and with the measured RS in Figure 88 and 
Figure 97 respectively. The two investigated sequences produce overall signifi-
cantly different WRS profiles. The symmetric setup produces significantly lower 
RS in the two upper passes, which were welded first. In the case of the transverse 
RS, similar conclusions are drawn from the comparison between the two methods 
and a significant deviation from the measured RS due to the previously stated 
reasons is once again evident. Actually, the difference between the WRS peaks 
calculated with the two sequences becomes even more significant. As sequential 
welding produces the highest peak of both longitudinal and transversal WRS, it is 
the less favourable and is adopted for all subsequent simulations. Similar results 
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were met for the components of S690 as well and they are omitted for the sake 
of space.

Figure 79: Longitudinal WRS at the centre of component FW960 – Influence of symmetric welding

Figure 80: Transverse WRS at the centre of component FW960 – Influence of symmetric welding
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Influence of Clamping Setup in the Case of Fillet Welds 

The influence of different boundary conditions in the case of fillet welds was in-
vestigated for all components based on the modelling approach from HFH-Simu-
lation. The present setup FWBC1 was compared with two alternatives. In FWBC2 
the clampers were assumed to be on the opposite side of the plate (side of the 
2nd and 3rd passes). In the case FWBC3 clampers were applied during the first two 
passes on the left side (side of 1st and 3rd passes, as it is illustrated in Figure 56) 
and during the latter two on the opposite side of 2nd and 4th passes. The same 
investigations were repeated with present modelling. As analogous results were 
calculated in all cases and with both modelling approaches, only the results re-
garding the component FW355 and calculated with the method HFH-Simulation 
are presented here. 

The longitudinal and transverse WRS calculated with each boundary condition 
setup are presented in Figure 81 and Figure 82 respectively. The influence of the 
clamping setup on the longitudinal stresses is negligible as expected. FWBC1 and 
FWBC3 produce almost identical profiles, while they exhibit slight deviations with 
the setup FWBC2. Still, these deviations are up to 50 MPa and are not found on 
the locations of peak stresses so they can safely be neglected. On the other hand 
and in the case of transverse stresses, non-negligible deviations are met. Once 
again, FWBC1 and FWBC3 setups produce almost identical profiles overlapping 
with each other, but the deviation with the case FWBC2 cannot be neglected an-
ymore. Simulation FWBC2 produces results with stress peaks of significantly 
larger magnitude, of even up to 100 MPa, in all welding passes. This setup is 
therefore considered inefficient.  

The major similarity between FWBC1 and FWBC3 that contributes to the intro-
duction of identical stress profiles is the restraining of the left side of the plate 
(side of the 1st and 4th pass) during welding of the 1st pass. As the highest stresses 
are met on this pass, the influence of the external restraints on it seems to affect 
all consecutive welding passes due to equilibrium reasons. It can be safely as-
sumed that restraining of the opposite side from the one currently under welding 
leads to less stiff restraining and in extension to lower WRS. Therewith, textbook 
knowledge regarding external restraints and their influence on transverse 
stresses is confirmed. Especially for the cold welded 1st pass, where the highest 
tensile WRS are met, this effect is predominant 
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Figure 81: Longitudinal WRS at the centre of component FW960 – Influence of clamping setup

Figure 82: Transverse WRS at the centre of component FW960 – Influence of clamping setup
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Influence of Shot Blasting prior to Welding on the RS Profile 

In order to account for the effect of preceding shot blasting on the WRS profile, a 
pseudothermal approach was proposed in [53], a study that was carried out in 
the framework of the present doctoral dissertation. As a full simulation of the 
shot blasting mechanical event would not be numerically feasible and keeping in 
mind that this would diverge from the main objective of the current work, apply-
ing a thermal load to introduce the desired compressive field was considered in-
stead. The main idea was to reverse the effect of temperature during welding. 
Instead of applying concentrated high temperature on the middle of the investi-
gated plate, a negative temperature would by introduced, using Equation (18). It 
was initially expected to be a quick and numerically efficient approach. Moreover, 
as it was described above, significant deviation was met for the compressive WRS 
measurements attributed to shot blasting. Therefore, no precise RS profile ex-
isted to be simulated.  

The first step of this side-path study was to simulate on a small component of a 
20MnCr5 steel the RS profile for shot blasting from Figure 15, as it was measured 
by Shaw et al. [149]. A rational, initial assumption was to apply a through depth 
temperature distribution, which would qualitatively follow the profile of the 
measured RS. In this case, a significant differentiation of the RS in the first 100 
μm below the surface was documented.  Consequently, a significantly fine mesh 
of 0.0025 mm was applied on the top layer and it was constantly coarsening in 
through-depth direction. The magnitude of this temperature profile was changed 
so that the influence on the RS could be documented. The results were satisfying 
in the sense that a very quick simulation method, directly applicable to the exist-
ing welding model enabled the creation of a compressive stress field on the ap-
plied area of the component. Nevertheless, due to the nonlinear nature of the 
material, the RS profile could not be simulated with preciseness.  More details 
about these preliminary analyses and the applied method are omitted for the 
sake of space and can be found in [53] 

Following, implementation of the pseudothermal loads on the fillet welds of S355 
preceding to the mechanical solution of the weld model was carried out. In this 
case, as the mesh should be common with the weld simulation, no such sophisti-
cated application of thermal loads in through-depth direction would be possible 
and therefore the minus temperature of -500 °C was applied only on the top and 
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bottom surfaces. The influence on the calculated WRS is presented for the first 
time in Figure 83 of the present study. A shift of the RS profile downwards was 
indeed documented. Nonetheless, this shift was met near the weld toe and not 
in the adjacent area, where the compressive stresses were measured. Different 
application of boundary conditions or thermal loading could lead to an improve-
ment of the results. Further analysis though was excluded, as it would surpass the 
boundaries of the present study. Moreover, the agreement of the above-pre-
sented weld simulations is very good in all cases at the regions of interest, i.e. 
near the weld toe and in the HAZ area, where the effect of shot blasting is elimi-
nated due to the thermal treatment of the material during welding. Therefore, 
further investigation was considered obsolete for the purpose of the present 
study.

Figure 83: Influence of introducing shot blasting pseudothermal modelling in the present weld simulation

Cut Specimens

Stress relaxation due to specimen cutting was simulated by deactivating all the 
elements outside the specimen contour and erasing all external restraints and 
solving one last, additional step at the end of the structural quasi-static analysis. 
Due to the non-orthogonal shape of elements in the mesh transition area a width 
of 70 mm was selected, while specimens of 50 mm were cut in HFH-Simulation. 

-400
-300
-200
-100

0
100
200
300
400
500
600

-40 -30 -20 -10 0 10 20 30 40

Tr
an

sv
er

se
 W

RS
 [M

Pa
]

Distance from the stiffener centreline [mm]

Diagrammtitel
1st pass - top side 2nd pass - top side
3d pass - bottom side 4th pass - bottom side
1st pass - top side (with SB) 2nd pass - top side (with SB)
3d pass - bottom side (with SB) 4th pass - bottom side (with SB)
1st Measurement 2nd Measurement
3d Measurement MeanMeasurement



3.4 Fillet welds 

127 

Such a scaling effect was considered negligible. Similar pattern of stress relaxation 
was met in all cases. For the sake of space, only the results for S960 and the pre-
sent modelling approach are currently presented. The contour of transverse 
stresses at the prior and the last step of the solution, showing the state of stresses 
on whole plate FW960 and on a cut specimen respectively, are presented in Fig-
ure 84 and Figure 85. A homogenous compressive stress field away from the weld 
toe is met in both cases, while tensile stress are met in both cases in the weld 
area. A significant stress relaxation is observed when the two contours are com-
pared both in the tensile and in the compressive region without any obvious qual-
itative changes.   

A better overview is possible when the profiles of longitudinal and transverse 
WRS transverse to the weld line, which are presented in Figure 86 and Figure 87 
respectively, are considered. For both profiles, transverse and longitudinal, no 
qualitative change is caused but a significant shift downwards is obvious. As ex-
pected, the relaxation for the longitudinal stresses is significant, while for the 
transverse it can be considered negligible. The stress profiles for both transverse 
and longitudinal WRS along the weld toe of the specimen’s 4th pass were as well 
considered and they are presented in Figure 88. In this case, a change to the 
shape of the WRS profile is met as well. Prior to cutting, homogenous fields are 
observed as a specimen from the middle of the plate is considered. The stress 
relaxation after cutting is however more significant on the edges of the cut spec-
imen, validating initial expectations. For the transverse WRS, a small increase is 
met at the centre of the specimen due to equilibrium reasons; the stress relaxa-
tion at the edges of the specimen is small and therefore the stress at the middle 
is slightly increased. Overall, the numerical results validate at least qualitatively 
initial expectations, still without producing compressive longitudinal stresses as 
in Figure 18. Further investigation, comparing measured and numerically calcu-
lated WRS from the same specimen are proposed. 
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Figure 84: Transverse WRS of the whole plate FW355, stresses are given in Pa – Contour of the single specimen 
is marked with black line 

 
Figure 85: Transverse WRS of the cut specimen from FW355, stresses are given in Pa – Area of deactivated 
elements are presented in grey 
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Figure 86: Stress relaxation of longitudinal WRS due to cut of specimen from component FW960 transverse to 
the weld line at the centre of the component

Figure 87: Stress relaxation of transverse WRS due to cut of specimen from component FW960 transverse to 
the weld line at the centre of the component
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Figure 88: Stress relaxation of WRS due to cut of specimen from component FW960 along the weld toe of the 
4th weld pass 

3.4.5 Conclusions 

A series of analysis was carried out regarding the WRS fillet welds with double-
sided transversal stiffeners. This geometry was selected, as it was investigated in 
the project HFH-Simulation and WRS measurements in as-welded and HFMI-
treated state were available. Hence, validation of both welding and HFMI simula-
tion could be carried out. Results of weld simulation would be the input for the 
subsequent HFMI Simulation. The previously validated engineering approach was 
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latter one was presented for the first time in this dissertation. The following con-
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� The proposed engineering approach provides good results in the case of fil-
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0
50

100
150
200
250
300
350
400
450
500
550

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

W
RS

 [M
Pa

]

Distance from the centre of the specimen [mm]

Transverse (plate)
Longitudinal (plate)
Transverse (specimen)
Longitudinal (specimen)



3.4 Fillet welds 

131 

always be considered, when these measurements are applied for the vali-
dation of numerical results, which may not be able to depict these devia-
tions. 

� The rolling and/or the shot blasting process, which is usually applied for 
cleaning of metallic surfaces prior to welding, introduced significant com-
pressive residual stresses. These influences cannot be ignored when WRS 
are simulated overall. Nevertheless, in cases where only the WRS in and 
near the weld are of great importance, this could be neglected. The effect 
of thermal treatment of welding seems to erase this effect near the weld as 
very good agreement is met for the measurements closest to the weld toe. 
Moreover, in the latter case the significantly localized effect of shot blasts 
around the area of impact should be accounted for the fact that the pre-
ciseness is not influenced by the remaining compressive stresses away from 
the weld. In the present study, where the WRS on the HFMI treatment area 
i.e. the weld toe are needed, this influence can be neglected.  

� Tref of the elements in the FZ should be equal to the melting temperature of 
the investigated material applied and should remain so after cooling.  

� Modelling approach of boundary conditions is not as predominant for the 
transverse WRS, as in the case of butt welds. This was at some point ex-
pected, as the heat input and the shrinkage of the plate takes place on the 
bottom and top of the plate outside the plate plane. Thus, the effect would 
be more mediocre than in the case of butt welds were both the restrains 
and the heat input causing the dilatation are coplanar. The effect on the 
longitudinal WRS was in any case negligible.  

� In order to minimize WRS and increase fatigue strength of a fillet weld with 
transversal stiffeners, the opposite side from the currently welded pass 
should be clamped down. For practical reasons, the side opposite to the 
cold-welded 1st pass should be restrained during welding, as in this case the 
effect is predominant. If preheating is applied, this approach is expected to 
have limited effect. 

� The present engineering approach provides sufficient results for high 
strength steels as well. 

� The proposed values for the weld metal arc efficiency found in literature 
were insufficient for the present analysis. Significant arbitrary increase of 
thermal heat input was necessary in order to calibrate the thermal analysis 
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and match the respective measurement results. This could be attributed to 
the variety of the investigated materials. 

� Symmetrical welding, i.e. simultaneous welding of the top two welding 
passes and subsequent simultaneous welding of the bottom two passes or 
vice versa, can significantly decrease the peak WRS at all weld toes and lead 
to an improved fatigue behaviour of the weldments. 

� An approach in order to simulate shot blasting by applying thermal loading 
instead of modelling the real mechanical effect was proposed. Although the 
results of preliminary analyses were satisfying, when the proposed ap-
proach was incorporated to the present weld simulation model, no signifi-
cant improvement was observed. The proposed method though, seems 
promising as it is numerically efficient and worked well for the smaller com-
ponents. A further investigation of the method was excluded as it was con-
sidered to lie outside the boundaries of the present study. 

� Influence of cutting single fatigue test specimens was investigated, validat-
ing the common engineering knowledge that stress relaxation of the longi-
tudinal WRS takes place. The results were qualitatively identical with earlier 
investigations on other specimens, but as quantitative deviation was ob-
served, further investigations are proposed for this subject. 

To summarize, sufficient results were met in most cases regarding the welding 
simulation of the fillet welds based on the precision requirements set at the be-
ginning of the present study. The calculated WRS were considered suitable to be 
applied as input for the subsequent HFMI simulation. 
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4 Drop Tests for the Calibration of HFMI 
Simulation 

4.1 Work Hypothesis 

A series of drop tests was implemented in the framework of the present doctoral 
dissertation in order to allow the reproduction of a HFMI impact under monitored 
conditions in the laboratory and therewith, enable the characterization of the in-
vestigated material’s mechanical behaviour by considering explicitly possible ir-
regularities concerning the present deformation modus. During the initial defini-
tion of the objectives, it was considered that the applied experimental procedure 
should be straightforward, reproducible and therefore would not require com-
plex experimental equipment. Main goal was the determination of the investi-
gated material’s dynamic yield strength for various strain rates inside the spec-
trum of interest, so that a calibration of the applied material model for the 
subsequent HFMI simulation could be enabled. 

4.2 Methodology 

During the drop tests, the HFMI pin should carry out a free fall and impact on a 
specimen of the investigated material with a known velocity, carrying a known 
mass. Impact velocity would be both analytically calculated and measured during 
the experiment. Analytical calculations based on Equations (31) to (38) would al-
low the calculation of the dynamic yield strength based on measurements of ei-
ther the impact crater or the restitution coefficient e respectively. During a FE 
analysis of the impact using as input the known mass and impact velocity, the 
plastic strain rate would be defined.  The obtained dynamic yield stress for the 
given strain rate would be initially validated through comparison with respective 
results from material testing under high strain rates, which was carried out in the 
framework of previous studies, found in literature (see [46], [47], [48], [86] etc.). 
The strain rate dependent material model calibrated with the results of the drop 
tests would be introduced to the simulation of HFMI. Comparison of this late FE 
model with measured profiles of residual stresses would act as a final validation 
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step. The calibration of the material model and the upon-based FE simulation are 
presented in chapter 5 with the rest of the HFMI numerical investigations. A syn-
opsis of the working steps is provided by the flowchart of Figure 89. 

 
Figure 89: Flowchart for the calibration of the strain rate dependent material behaviour through the  
implementation of the drop tests 

4.3 Investigations  

4.3.1 Experimental Setup 

The experimental setup of Figure 90 was constructed in order to fulfil the above-
described required conditions for the drop tests. A bearing structure, consisting 
of four columns connected with transverse short beams all made of wood was 
built. Four wooden beams at the bottom along with the bottom side of the  
columns formed the foundation of the structure. Austenitic steel bolts and L pro-
file connectors were applied at the joints. Steel rails were adjusted on the inner 
sides of the columns and a wooden cross, which carried steel wheels on each of 
his side, was adjusted on them. Mounting two wheels per side of the cross, one 
above each other so that they would both run simultaneously along the trail, 
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would exclude excessive rotation of the cross relative to its horizontal axis and in 
extension a non-vertical impact of the pin. A tolerance of 5 mm was selected for 
each side of the cross, between the wheels middle point and the tip of the rails’ 
cross section, so that the friction between them would be minimized, but at the 
same time derailing of the wheels would not be possible. A negligible rotation of 
± 0.5° was allowed. Therewith, it could be considered that the cross carries out a 
free, vertical fall. On the bottom side of the cross, a cylindrical sinker made of 
plain carbon steel was adjusted in order to increase the impacting mass and in 
extension the contact force. Three different sinkers, with mass of 3.06 kg, 9.42 kg 
and 14.76 kg respectively, were manufactured and could be exchanged. Finally, a 
HFMI pin was mounted on the bottom of the sinker. Therewith, an impact assem-
bly, which could land on an appropriate specimen at the end of its free fall and 
reproduce a single impact of the HFMI treatment was manufactured.  

Plates of parent material with dimensions 100 mm x 100 mm x 10 mm like the 
one of Figure 91 were tested. The upper surface of the specimens, where the 
impact would take place, was polished prior to testing so that even small craters 
would become easily apparent. During the tests the impact assembly was pulled 
up to the desired drop height with a rope and was then left to drop. It would run 
along the rails until the HFMI pin would hit the investigated specimen’s surface. 
A video-camera placed at the same plain with the specimen’s surface recorded 
the implemented impacts. Placing a ruler at a known distance behind the impact 
point enabled the measurement of the rebound distance and in extension the 
rebound velocity of the impact assembly, as the mass of the impact assembly was 
known. Four impacts on a specimen of each investigated material were carried 
out in a sufficient distance from each other so that any interaction was excluded 
(Figure 91). 
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Figure 90: Experimental setup for the implementation of drop tests 

 
Figure 91: Upper surface of investigated specimen of S355 and the craters for the four impacts 
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4.3.2 Estimation of Impact Velocity 

Impact velocity was calculated analytically based on trivial physics and was ini-
tially expected to be measured as well from the recorded video. During the ana-
lytical calculation, a comparison of the results by taking into consideration or ne-
glecting the air drag shown that this influence was negligible (0.001 m/s). A drag 
coefficient for a perfect cylinder (sinker) ignoring the influence of the rest of the 
impact assembly was considered. This negligibility during the drop meant of 
course that the drag was negligible during the rebound too, as the rebound ve-
locity is always lower. Drag was therefore neglected in the calculation of the res-
titution coefficient. In most cases, a validation of the impact velocity during the 
drop based on the video frames was against initial expectations not possible, as 
it was too high to be caught by the present video recording rate. 

4.3.3 Strain Rate Calculation through FE Analysis 

A finite element analysis of the drop tests was carried out in order to calculate 
the plastic strain rate. A strain rate independent non-linear material behaviour 
was applied. Considering the strain rate dependency of the yield strength and the 
hardening behaviour would be naturally closer to physical reality, but this would 
create an infinite loop to the flowchart of Figure 89. Overrunning this obstacle 
through an optimization process could be possible, but this would exceed the lim-
its of the present study and it was therefore excluded. The FE analysis was carried 
out based on the previously presented theoretical background and the velocity-
based modelling technique applied for HFMI, described thoroughly in the follow-
ing chapter 5. For this reason, no further information is given on the FE model at 
this point. Sole difference between the simulations of the drop tests and the HFMI 
treatment, apart from the singularity of the impact and the strain rate independ-
ent material modelling, is the additional mass of the impact assembly. The addi-
tional mass was considered to be concentrated at the centroid of the pin, a valid 
assumption for a vertical impact with negligible rotations. Additionally, the singu-
larity of the impact in these cases allowed the use of double symmetry at the 
impact point at the intersection of two orthogonal planes, whose intersecting line 
is parallel to the normal of the impact (see Figure 92). 
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During the initiation of contact, unexpectedly high equivalent von Mises and 
shear strain rates (�
εq > 105 s-1) were evident on the contact surface for a very 
short time (dt < 10-4 s). This effect was present in the case of the subsequently 
presented HFMI analysis and is attributed to numerical singularities, which arise 
due to the applied contact model. No significant influence from these singularities 
on the numerical results was evident, as it is described later in chapter 5. Still, the 
plastic strain rate was not evaluated directly after yielding, but at the point that 
a plastic spherical zone was created underneath the contact surface, as it is pre-
sented in Figure 92. At this point, the average of the maximum shear strain rate 
along the vertical line at the intersection of the two symmetry points in depth 
direction (line AB in  Figure 92b) was extracted and was the applied strain rate for 
subsequent material model calibration. Exemplary, a correlation of the impact 
velocities and the respective calculated strain rate for S355 is illustrated in Figure 
93. 

Unfortunately, there is no previous respective correlation of a spherical in-
denter’s impact speed with the plastic strain rate known to the author, which 
could act as reference for the present results. Still, in the above-mentioned study 
by Cadoni et al. [20], during Split-Hopkinson bar tests impact velocities of 9 m/s 
to 27 m/s were correlated with strain rates of 900 s¯¹ to 7000 s¯¹. Yet, contact 
between wider circular normal surfaces (diameter of 5 mm) takes place in the 
former case. On the contrary, in the case of the spherical indenter the contact 
initiates from a point and then is applied only on a significantly smaller circular 
area (< 0.5 mm for the present case). Therefore, higher strain rates can be ex-
pected in the latter one due to higher stress concentration. The present calcu-
lated strain rates, which are in the same order of magnitude with those of Cadoni 
et al. [20] but slightly higher and for lower impact values, are thus considered 
valid. 
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Figure 92: Introduction of the plastic strain spherical zone underneath the impact surface: a) Maximum von 
Mises strain rate; (b) Maximum shear strain rate  

 
Figure 93: Average plastic shear strain rate as a function of impact velocity for the drop tests on S355 
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4.3.4 Measurement of crater and restitution coefficient 

Dimensions of the impact’s crater were measured with common laboratory 
equipment (graded magnifying loop, dial gauge). Exemplary the width of a pair of 
craters was measured under a stereomicroscope (Figure 94). Similar results were 
produced in both cases with a precision of ± 10 μm.  

An action camera with a recording speed of 180 fps was applied for the measure-
ment of the restitution coefficient. For this video recording speed the impact as-
sembly at the peak of its rebound movement, where velocity is near zero, would 
travel between consecutive impacts for an assumed velocity of 0.1 m/s a distance 
smaller than 10 μm, causing a negligible error at the measurement of the rebound 
distance and in extension in the calculation of the rebound velocity. An exemplary 
set of selected frames from the tests is presented in Figure 95. Based on the prin-
ciples of trivial, Euclidean geometry the real distance was calculated based on the 
frames taken by the camera and the measured horizontal distances between the 
camera, the ruler and the specimen. 

 
Figure 94: Crater on specimen of S960 under stereomicroscope, impact speed of 3.9 m/s 
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 (a) 

(b) 

(c) 

(d) 
Figure 95: Selected frames from impact 3A: a) Impact complex still not in the frame; b) Impact assembly enters 
the frame and reaches for the target; c) Rebound peak; d) Initiation of secondary free fall 
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4.3.5 Analytical Estimation of the Dynamic Yield Limit 

The dynamic yield strength was calculated according to the initial plan, based on 
the measurement of either the impact crater with use of equations (31) - (36), or 
the restitution coefficient with the use of equation (38).  

Analytical Estimation based on the Dimensions of the Crater 

Calculating the dynamic yield stress by measuring the crater’s size is based on the 
above presented equations and the reasoning path that Lim and Stronge followed 
for the solution of a rigid cylinder impacting on an elastic-plastic half space [110]. 
Analogously to Equation (34), in the case of a spherical indenter contact-half 
width at yielding is correlated with the half width of the crater according to the 
following equation 

 �9& EQµ J Qµ�G � u�*&µ = (40) 

Contact force at yielding is calculated based on Equations (32), (33) as follows 

 z̄ � u ^ � ² � �*&� � µ � �Q J �"�	 (41) 

while stress at yielding is correlated with the contact force based on the assump-
tion of Equation (35) as follows 

 �z � T=�_Q � uE ²µ � �Q J �"�G
"& � z̄;&= (42) 

Nonetheless, this reasoning course is based on the assumptions that were stated 
by Lime and Stronge [110] for the cylindrical indenter. In the present case though, 
significant pile-up could be observed at the periphery of the crater. This led to the 
introduction of a residual crater with curvature R’ which in most cases was smaller 
than the initial curvature prior to unloading. Therewith, the requirements for the 
application of a solution analogous to that of Lime and Stronge [110] were no 
more valid. As expected, the present method yielded no rational results and 
therefore, the respective calculated dynamic yield strengths are not presented. 



4.3 Investigations 

143 

Exemplary, the results of the measurement of the crater and the calculation of 
the half contact width at yielding for S355 are given in Table 40. 

Table 40: Results of the drop tests – measurement of the craters’ dimensions 

Impact 

Impact velocity 

u 

[m/s] 

Residual inden-
tation depth 

δ 

[mm] 

Half width 

α 

[mm] 

Curvature after  
unloading 

R’ 

[mm] 

Indentation 
depth at  
yielding 

αY 

[mm] 

3A 2.1 0.82 1.45 1.28 - 

3B 3.0 0.69 1.60 1.86 0.08 

3C 3.9 1.28 1.65 1.06 - 

3D 3.9 1.34 1.63 0.96 - 

It is becoming easily apparent from the above and the comparison of R’ with R 
(1.5 mm) that the above-mentioned requirements are not met for the present 
impact speeds.  

Finally, even for the cases, whereby R’ is larger than R, like for the case 3B, the 
indentation at yielding δY is calculated to be in the order of magnitude of decades 
of micrometres. More specifically, in the case of 3B it is equal to 0.08 mm or 
0.05·R. Nonetheless, in a previous study of a spherical indentation by Yan et al. 
[180] it was shown that yielding initiates for an indenter’s radius of 0.5 mm after 
an indentation of just 49 nm. This later incompatibility further shows the unsuit-
ability of the calculation of yield limit based on the dimensions of the impact’s 
crater for the present impact velocities and for a spherical indenter. 

Calculation based on Restitution Coefficient 

The restitution coefficient e was measured based on the video recording of the 
conducted impacts. In all cases, the coefficient ranged between 35 % and 50 % 
validating the theoretical values proposed by Johnson for the present impact ve-
locities [82]. Equation (38), was proposed for the case of impacting perfect 
spheres. As in the present case additional mass is added to the impacting pin due 
to the impact assembly, the equation was transformed as follows, so that the 
mass would be excluded from the equation: 
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 $ � �=^� � �»̧�� � ²³%;" � ?�%;P u � A%;�	 (43) 

which based on the assumption for the rigidness of the pin becomes 

 $ � �=^� � �»̧�� � �Q J �"² �;" � ?�%;P u � A%;�	 (44) 

which in turn, for v = 0.3 and ρ = 7850 kg / m3, becomes 

 �»̧ � T=WT � $ � ²;" � ?�;P=u (45) 

As already mentioned above, Equation (38) was proposed by Johnson based on 
the premise that the average pressure during full plastification is equal to 3 times 
the yield stress (pm

p ≈ 3 · σY’). The sensitivity of this assumption on the yield 
strength has as well already been described and thus, a modification taking into 
consideration the changed yield stress in the case of the two high strength steels 
had to be adopted. Interpolating the values from Jackson and Green [81], Equa-
tion (45) becomes for S690 

 �»̧ � Q=T� � $ � ²;" � ?�;P	u (46) 

and for S960 

 �»̧ � Q=QT � $ � ²;" � ?�;P	u (47) 

respectively. Evaluation of the dynamic yield stress based on these equations was 
carried out for the three investigated materials. In all cases, the measured coeffi-
cient of restitution was increased by 10 %, which are the losses due to elastic 
wave propagation during a spherical indentation, according to [110]. 

Equation 44 yielded reasonable results for S355. Nonetheless, in the case of the 
two high strength steels, apart from one case, a dynamic yield lower than the 
static one was calculated. Therefore, the above-mentioned reasoning course can-
not describe phenomena, which correlate with the dynamic behaviour of these 
high strength steels in a deformation case like the present one. Consequently the 
results regarding the two high strength steels are excluded from the rest of this 
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evaluation. The calculated yield stresses for S355 are presented in Table 41, along 
with the analytically calculated impact speed and the respective strain rate, re-
ceived by the FE analysis of the drop tests.  

The calculated dynamic limit is compared with the results of the previous studies 
for the same material in the diagram of Figure 96. The results of the drop tests lie 
much closer to those of Cadoni [20] for the case of compressive loading. Strain 
rate-dependency in the case of tensile loading becomes predominant at strain 
rates of around 100 s-1, while for the compressive tests of Cadoni and the present 
drop tests significant increase of yield stress is met for strain rates higher than 
5000 s-1. Therewith, the above-stated assumption that the compressive strain 
rate sensitivity of the material is predominant for the case of spherical indenta-
tion, and in extension of the HFMI treatment, is validated. More specifically, the 
material is expected to be less strain rate sensitive during the HFMI treatment 
than the material behaviour, which was extracted from tensile tests for same 
strain rates. 

Table 41: Results of the drop tests: calculation of the dynamic yield stress based on restitution coefficient 

Impact 
v 

[m/s] 
�
 

[s-1] 
σΥ’ 

[N/mm2] 

3A 2.08 6120 647 

3B 2.99 7000 607 

3C 3.88 8990 618 

3D 3.88 8990 547 
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Figure 96: The dynamic yield strength of S355 as a function of the strain rate, results from present drop tests 
and previous studies by Foehrenbach et al. [44], Cadoni et al. [20] and Forni et al. [47]1 

4.4 Summary and Open Questions 

A series of drop tests with a spherical indenter, identical to the HFMI pin, was 
carried out on plates of the investigated materials, namely S355, S960 and S960, 
in order to estimate their dynamic yield limit. Initially, two different estimation 
methodologies were planned, based on measurement at different strain rates of 
either the crater’s dimensions or the impact’s coefficient of restitution. The for-
mer method did not produce reasonable results, as the requirements for the ap-
plication of the respective analytical equations were not fulfilled. The latter 
yielded satisfying results, which confirmed initial expectations and showed good 
agreement with previous respective results regarding the strain rate dependent, 
compressive yield behaviour of S355.  Nonetheless, even by this second estima-
tion method, no reasonable results were met for the high strength steels. It is 
assumed that certain phenomena of the dynamic behaviour of these high 
strength steels cannot be captured by the present analytical solution, even 

                                                           
1 the static value for the present drop test series (at 0.000002 s-1) is the one acquired by the respective static 
tensile test on specimens of the same material batch and is given as a reference 
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though an adjustment was proposed based on data from previous studies. In all 
cases, the strain rate was calculated by means of FE analyses for strain rate inde-
pendent yielding. As a last-step-validation of the calculated material behaviour, a 
strain rate dependent material model was calibrated and introduced to a FE 
model for the HFMI treatment of a specimen of parent material. This analysis is 
presented in the next chapter of this dissertation along with the rest of the nu-
merical investigations regarding HFMI. The applied approach shows potential for 
calibrating the material behaviour of steel for the simulation of HFMI taking into 
consideration the irregularities of material behaviour during spherical indenta-
tion. Still, many difficulties arise regarding different aspects of the present solu-
tion, which lead to discrepancies, especially for the high strength steels. 

In order to eliminate the above-mentioned difficulties and to further develop the 
present approach, the implementation of the following steps in future work, as 
they exceed the limits of the present study, is encouraged: 

� More tests and for a wider variety of impact speeds could offer a better 
overview regarding the distinctiveness of the steels with higher yield point. 
Exclusion of outliers and a better adjustment of the analytical equations 
could be enabled by a larger sample population.  

� Further validation is possible through the measurement of the residual 
stresses introduced during the drop tests on the investigated plates by X-
ray or another measurement method. The simulation of the RS field by a FE 
analysis of the drop tests, this time by considering the calibrated strain rate 
dependent material model, could enable a more robust validation.  

� The influence of the specimens’ thickness could as well be investigated. All 
the implemented analytical calculations were based on the premise that the 
deformed plate is behaving like an infinite half-space. Although in the pre-
sent case the thickness of the specimen was considered sufficiently larger 
than that of the crater’s depth (larger than 6.5 times in all cases) some ef-
fect could still be evident. Investigation of thicker and thinner plates is en-
couraged. 

Finally, it has to be underlined that the material model, which was calibrated 
by the present drop test, was subsequently introduced to a simulation of spec-
imen of parent material. In order to calibrate a model for the simulation of 
HFMI-treated weldments, specimens whose microstructure is similar to that 
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of the weldments’ HAZ should be tested. This could be enabled through an 
appropriate thermal pre-treatment of the specimens, for instance with a Glee-
ble® thermo-mechanical simulator instrument. 
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5 FE Simulation of HFMI 

5.1 Methodology 

A bottom up approach was adopted for the validation of the HFMI modelling 
methodology, as in the former case of welding simulation. Initially a simpler, un-
notched component of parent material was simulated. The results of this prelim-
inary model were compared with previous numerical studies and RS measure-
ments, which were found in literature [44], [145]. The validated model was then 
applied for evaluating the influence of different aspects of modelling and the 
treatment on the calculated RS. Conclusions regarding the scaling effect, bound-
ary conditions and modelling of material behaviour were drawn. These conclu-
sions were valuable for the subsequent series of simulation, wherein the fillet 
welds from the research project HFH-Simulation [146] were investigated, in order 
to fulfil the goal of the present study. RS measurements from HFH-Simulation 
were used for a further and final validation of the established approach. The in-
fluence of WRS from the preceding weld simulation was considered as well. After 
validation of this model, further aspects of the treatment were investigated.  

Commercial FE software LS-DYNA [113] was applied in all HFMI simulations of the 
present study. Explicit dynamic FE analysis was carried out and respective mesh 
of 8-node solid elements, hexaedra, was applied on the simulated components.  
More details regarding the FE theoretical background is given in Appendix B. As 
described above, proper modelling of the HFMI pin movement and material be-
haviour is decisive for an accurate simulation. In all investigations of the present 
study the HFMI pin was simulated as a rigid body due to its negligible deformation 
and significantly higher hardness in comparison to that of the treated surface. 
Two different diameters were considered, 3 mm and 4 mm, corresponding to the 
pin size of the HiFIT and PITec devices.  

Two different approaches were taken into consideration for simulating the move-
ment of the HFMI pin. When a displacement-based approach is considered, mass 
and inertia of the pin can be selected arbitrary, as they have no effect on the 
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calculated RS; a rigid volume is pressed upon the treatment surface with a pre-
scribed motion similarly to a punching process. On the contrary, when a force- or 
velocity-based1 approach is adopted, the mass and the inertia of the real pin has 
to be considered; an arbitrary accelerating force is applied on the pin, calibrated 
on measurements on the real device, and the resulting impact velocity is depend-
ent on these properties. When the pin hits the treatment surface, it has initial 
velocity and no further restrain on its vertical axis movement. The horizontal 
movement of the pin, along the treatment line, was modelled stepwise (displace-
ment-based) for all simulations as this has no influence on the impact and in ex-
tension to the modelled RS.  

Coulomb’s frictional contact (Eq. (28)) between the HFMI pin and the treated sur-
face is taken into consideration in all cases. Friction coefficient μ is calculated au-
tomatically by the applied Software LS-DYNA through interpolation between a 
static (μs) and a dynamic value (μd) according to the following Equation (48):  

 ° � °f D �°O J °f� � $%9¼/½2¾¿¾À4¼. (48) 

The values of 0.78 and 0.42, which were initially applied respectively for the two 
coefficients, were found in [6]. Several values can be found in literature for these 
coefficients. Although no significant influence on the introduced RS due to their 
variation was expected according to initial expectations, further lower values 
were tested, as it is described below. A damping model according to Equation (27) 
with a factor ξ initially set equal to 0.5 was applied as in previous numerical in-
vestigations of impacts ([89], [90] etc.). Flanagan-Belytschko hourglass control is 
applied in all cases for the elements inside and near the treatment area [43]. Two 
different types of this hourglass control, the classical and the exact volume inte-
gration for solid elements (see [114]), were compared with no significant devia-
tion, with the latter one though being the most stable numerically. It was there-
fore adopted for all subsequent analyses. 

Suitable modelling of material behaviour is predominant for the precise simula-
tion of HFMI, a prerequisite that becomes clear even from a preliminary literature 

                                                           
1 the velocity-based term is preferred in the present case as the pin is accelerated through the application of an 
arbitrary force until it reaches the required impact velocity, the method though is physically equivalent to a 
force-based, or an acceleration-based approach 
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review. According to initial expectations, strain rate dependency had to be taken 
into consideration otherwise erroneous results might arise. The Cowper-Symonds 
model of Equation (12) combined with a bilinear σ-ε material behaviour with kin-
ematic hardening is applied in all subsequent investigations of the present study 
for the consideration of viscous material behaviour.  

It should be highlighted at this point that during the displacement-based simula-
tions, questions regarding the application of a viscous material behaviour arise. 
Although a displacement-based simulation has been carried out in previous stud-
ies combined with strain rate dependent material behaviour ([44], [108] etc.) this 
approach should be applied cautiously. Defining an arbitrary vertical, over time 
displacement-based motion of the pin is straightforward from the modeller’s per-
spective but directly influences the strain rate, under which the treated surface is 
deformed. Hence, yielding and the introduced RS depend on this arbitrary de-
fined displacement. Unless measurements of this displacement over time during 
a real treatment are made, which would require a very elaborate experimental 
investigation, this modelling approach is invalid. If the contact duration is known, 
the assumption of a sinusoidal displacement of the pin inside this contact time 
could be valid. Nevertheless, if the contact force and in extension the impact ve-
locity are known, applying a velocity-based approach for simulations considering 
a viscous material behaviour should be preferred instead as such an approach is 
more valid and closer to physical reality.  

5.2 Convergence Analysis 

Preliminary investigations considering a single impact of a HFMI pin with a diam-
eter of 3 mm on a component of parent material made of S355 were carried out 
in order to define the maximum mesh dimensions at the contact area, which 
would produce mesh-independent results and enable at the same time a compu-
tational efficient simulation. A displacement-based vertical movement of the 
HFMI pin of 0.5 mm was considered, as in this case comparing the influence of 
different mesh sizes was the goal and not the precise simulation of the RS. The 
modelled HFMI groove was on purpose significantly higher than the real one, so 
that the selection of mesh size would be conservative. Strain rate dependent be-
haviour was taken into consideration as well, as variated yielding behaviour could 
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require different mesh size. Due to consideration of a single impact in this case, 
adoption of double symmetry was enabled.  

Four different discretization setups with element dimensions of 0.2 mm, 0.1 mm, 
0.075 mm and 0.05 mm to all directions were applied. The longitudinal RS on the 
surface from the centre of the impact and transverse to the impact crater were 
selected as an index of convergence. The results of this convergence analysis are 
given in Figure 97. It is becoming evident that the results diverge for the two first 
applied mesh sizes but converge for the latter two. Therewith, a required element 
length to pin diameter ratio of 1/40, which was proposed for the simulation of 
shot peening in [77] and [90], is validated in this case as well. More information 
on these investigations and the range of variations are not significant but can be 
found in [168]. 

 
Figure 97: Convergence study for the numerical investigation of HFMI treatment – RS after 0.01 s of simulation 
with global damping Ds = 0.5 (Ds and mesh size are marked as D and ms rspectively) 

5.3 Component of Parent material 

5.3.1.1 Investigated Component 

The specimen of parent material with dimensions 20 mm x 20 mm x 10 mm, which 
is presented in Figure 98, treated with a 4 mm diameter HFMI pin, was considered 
in a first-step validation of the applied modelling approach. An adaptive mesh 
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approach was selected in this case. At the contact area and near the surface, dis-
cretization with element size of 0.125 mm or even smaller was applied, gradually 
coarsening in depth direction. Transverse to the treatment line and 4 mm away 
from it, transition mesh was adjusted, so that coarsening in this direction could 
be fulfilled too. The applied mesh is illustrated in Figure 99. During preliminary 
investigations, the treatment begun and ended 2 mm away from the respective 
edge. Nonetheless, as a significant influence of the edges on the introduced RS 
field was obvious, this distance was increased to 5 mm leading to a reduced treat-
ment length of 10 mm. Therewith, this edge influence was successfully eliminated 
and this treatment setup was applied for all subsequent investigations of these 
specimens. 

 
Figure 98: Investigated specimen of parent material with dimensions 20 mm x 20 mm x 10 mm with a symmetry 
plane at the middle – A HFMI pin with diameter of 4 mm is considered 

Investigated geometry and material were selected in such a way that the results 
would be directly comparable to the WRS measurements carried out on identical 
real components in [44] and [145], in order to validate the applied approach.  Dur-
ing these previous studies, the WRS profiles were measured in depth direction 
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with neutron diffraction. Due to the implemented measurement technique, the 
measured RS relate with measurement gauge volumes of 0.5 mm x 0.5 mm x 0.5 
mm in the longitudinal direction and 0.5 mm x 10 mm x 0.5 mm in the transverse 
one. The measurement procedure is thoroughly described in [145]. In order to 
enable a direct comparison, averaging of the modelled RS in the depth direction 
at the integration points, which are included in the respective volume of each 
measurement, had to be carried out. Additional measurements of the transverse 
RS were carried out on the upper surface of the components with X-ray diffrac-
tion [44], [145].  

 
Figure 99: Mesh applied on the specimen of parent material 

Bilinear material behaviour was assumed for the investigated S355, S690 and 
S960. It was calibrated based on experimental data from [44] and the project 
HFH-Simulation [146]. The experimentally determined σ-ε and the respective ap-
plied bilinear models are presented in Figure 100. The viscous material model 
Cowper-Symonds (Eq. (12)) was calibrated for S355, initially based on data from 
[44] and later on the drop tests, which were presented in chapter 4 along with 
the results provided by Cadoni et al. for high strain rate compression [20]. Cali-
bration for the two high strength steels was carried out based on the data found 
in [145] and [146]. The calibrated parameters are presented in Table 42. The sta-
tistical regression results are presented in Appendix C.  
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Figure 100: Diagram of σ-ε (real) and the applied bilinear material models for the investigated material – Hollow 
symbols mark extrapolated values – BM stands for bilinear model 

Table 42: Calibration of the bilinear material behaviour and the Cowper-Symonds model  

Material σy 

[MPa] 
H 

[GPa] 
Δ  
[-] 

γ  
[-] 

Calibrated based on 

BM_S355A 355 2.2 18250 5 Gkatzogiannis et al. [48] 

BM_S355B 450 0.9 353500 5 Foehrenbach et al. [44] 

BM_S355C 450 0.9 613500 4 Drop Tests and Cadoni et al. [20] 

BM_S690 780 0.9 10360 3.4 HFH-Simulation [133] and Schubnell et al. [145] 

BM_S960 1050 1 4156 4.1 HFH-Simulation [133] and Schubnell et al. [145] 

5.3.1.2 Boundary Conditions 

The real component, which was selected for the present validation, was treated 
with a HFMI device2 in three consecutive passes with a moving speed of 24 
cm/min and a frequency of 90 Hz [44]. This treatment setup equals a travelling 
step between consecutive impacts3 of 0.044 mm. Specimens treated with a lower 

                                                           
2 a PITec device was applied in [44] 

3 hereinafter called simply travelling step 
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travelling speed of 12 cm/min4 have been measured as well in [44]. The influence 
of the differentiated, lower speed on the RS was negligible. Therefore, an analo-
gous simplification during the numerical investigation of the treatment assuming 
a larger step than the real one could be adopted, as the number of modelled im-
pacts and in extension, the travelling step directly influence the computational 
time. Of course, an upper limit to this simplification should hold. The maximum 
step between consecutive impacts, which does not affect the preciseness of the 
results, should be selected in order to produce a numerically more efficient sim-
ulation. Regarding the vertical movement of the pin, two approaches, a displace-
ment- and a velocity-based, were considered in the present investigation with 
three consecutive passes being modelled in both cases. The measured groove 
depth after each treatment pass on the real component was 0.143 mm, 0. 193 
mm and 0.223 mm respectively [44]. 

For the simulation of S355, a step of 0.4 mm between consecutive impacts was 
initially assumed, as it was proposed in [150] and later applied in [44], [68], and 
[108], in order to reduce the computational cost. In the case of the displacement-
based simulation, it was initially assumed that 0.4 mm would indeed be adequate; 
the pin movement towards the surface is prescribed and consecutive impacts 
must simply overlap sufficiently with each other geometrically so that a smooth, 
deformed groove is achieved along the treatment line. It must be underlined that 
the step of 0.4 mm was proposed in [150] for displacement-based simulations. In 
the case of velocity-based approaches though, questions arose prior to the pre-
sent series of analyses regarding the suitability of such a step size. Introducing a 
groove depth equal to the real one through the simulated pin movement was 
selected at this point as a first-step validation criterion of the model. It should be 
achieved before modelled and measured RS could be compared. 

The displacement-based vertical motion of the pin was programmed with a con-
stant speed of 0.288 m/s downwards and equal to the real groove of the treat-
ment area after each pass. The elastic spring back after removal of the pin was 
neglected for all displacement-based simulations.  The rebound speed of the pin 
was set much higher in order to reduce the computational time, based on the 
rational assumption that it has no significant influence on the calculated RS. This 

                                                           
4 travelling speed proposed by the manufacturer 
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was validated by an additional identical simulation with lower rebound speed, the 
results of which are omitted for the sake of space. In any case, sufficient time was 
provided for the elastic springback of the deformed material to take place. The 
vertical and the longitudinal displacement of the pin over time for a 3-pass dis-
placement-based simulation are presented in Figure 101. It is becoming evident 
by this diagram that the HFMI pin is displaced along the treatment line for one 
travelling step (longitudinal displacement of 0.4 mm in this case), when it is not 
in contact with the specimen (zero vertical displacement5). The longitudinal dis-
placement of the pin between the consecutive impacts is completed in the model 
in approximately 6 ms and significantly quicker than in reality (approx. 33 ms) in 
order to reduce the computational time. Once again as the pin is not in contact 
with the specimen and as long as the above-mentioned condition regarding trav-
elling step (impact density) is held this has rationally no influence on the results. 
After positioning of the pin over the next impact point, it is displaced downwards, 
towards the treated surface (vertical displacement of -0.2 mm during the first 
pass). The presented values are the initially assumed and are presented exem-
plary. They were changed in subsequent analyses as it is described below. 

                                                           
5 the displacement orthogonal to the upper surface of the treated specimen, hereinafter called simply vertical 
displacement 



5 FE Simulation of HFMI

158

Figure 101: Diagram of vertical and longitudinal displacement of the pin, for three consecutive passes during a 
displacement-based simulation

Regarding the velocity-based approach, the vertical movement of the pin was cal-
ibrated through a trial and error procedure. The concept of the velocity-based 
approach is illustrated by the diagram of Figure 102. The corresponding, resulting
impact velocity is presented in Figure 103. An arbitrary force (-1.1 kN), signifi-
cantly high so that the computational time necessary for the acceleration of the 
pin would be minimized, was applied on the pin until its velocity would reach the 
desired value (2.7 m/s). When the pin would reach the desired impact velocity, 
the accelerating force was set to zero. The acceleration of the pin through this 
accelerating force was taking place between consecutive impacts, when the pin 
was not in contact with the component. At the same time, the pin would move 
for one step along the treatment line (0.4 mm longitudinal displacement). Hence, 
when the pin was hitting the treated surface, it had the desired impact velocity,
no external force was applied vertical to its axis and no displacement along the 
treatment line would take place. Inertial properties had to be assigned to the pin, 
although it was modelled as a rigid body, as the energy that it transfers depends 
on both its velocity and mass. The mass and inertia of the real PITec pin were 
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used. The calibration process was repeated until a preciseness of ± 0.1 m/s for 
the impact velocity in each pass was met. The preciseness of the simulated impact 
velocity is becoming evident from Figure 103. Peaks at the beginning of each 
treatment pass, i.e. in the first two impacts, were excluded from this considera-
tion as the velocity there was unavoidably higher, but always having a rational 
value inside the measured range. Initially, an impact velocity of 2.7 m/s, was mod-
elled as it was proposed in the framework of HFH-Simulation for the PITec device. 
The above-described acceleration and simultaneous longitudinal displacement of 
the pin for one travelling step between consecutive impacts is becoming evident 
from the following diagram (Figure 102).  

 
Figure 102: Diagram of accelerating force and longitudinal displacement of the pin over time, for three consec-
utive passes during a velocity-based simulation 
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Figure 103: Diagram of vertical velocity of HFMI Pin for the first 0.04 s of the simulation 

5.3.1.3 Analyses with the Displacement-based Approach  

As it was described above, a displacement-based approach was initially devel-
oped and presented for the first time in [54], investigating only S355 as a first 
step. The vertical movement of the pin was calibrated based on the groove, which 
was measured on the real specimens in [168]. Material model BM_S355A was 
applied in two different simulations the 355_DB_RD and 355_DB_RI, including 
and excluding6 strain rate dependency respectively. As it was mentioned above, 
the introduction of a viscous material behaviour in a displacement-based ap-
proach is invalid without further data and it should be carried out with caution. 
Nonetheless, it was applied in the present case in order to enable a first evalua-
tion of the influence of viscosity at least qualitatively. The vertical displacement 
of the pin was carried out with a velocity of 2.7 m/s prior and during the contact 
and up to the targeted depth, so that the strain rate would be at least at same 
order of magnitude with the real one. When the results of this approach were 
published for the first time in [54], the above-mentioned averaging procedure of 
the modelled RS was not implemented. Instead, the results on the integration 
points underneath the weld toe were directly compared to the measurements. A 
significant deviation between measured and modelled RS was met. The averaged 

                                                           
6 setting coefficients Δ and γ equal to 0 
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results of the displacement-based models are presented in Figure 104 along with 
the unaveraged ones, as they were published in [54], and the measured RS. 

Both dipslacement-based approaches, 355_DB_RI and 355_DB_RD, 
underestimated the longitudinal RS near the surface, while a better agreement 
was met in the case of the transverse RS at the same region. The overall 
disagreement, even qualitatively, of the rate-indendent approach 355_DB_RI 
dictated the introduction of strain rate dependency to the subsequent analysis 
355_DB_RD. The rate-dependent model, which still underestimates the 
longitudinal RS and shows no good agremment in the first two mm below the 
surface, exhibits due to an overall shift of both RS profiles a significantly improved 
qualitative agreement with the measured RS. Therewith, the initially assumed 
significance of strain rate dependency for the HFMI simulation seems to be 
validated but further investigations were necessary at this point. Averaging of the 
numerical results did not improve their agreement with the measurements. A 
further improvement of the displacement-based approach, by assuming a 
sinuisoidal movement of the pin or considering the elastic springback of the 
treated material during calibration of the pin’s movement, was not adopted at 
this point as it was decided to apply the  more realistic velocity-based approach 
in the subsequent simulations. 
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Figure 104: WRS simulated with the displacement-based method, compared with previous numerical results 
[54] and WRS measurements found in [44] and [145] 

5.3.1.4 Analyses with the Velocity-based Approach 

Calibration based on the Introduced Groove 

During preliminary analyses with velocity-based models, significant conclusions 
were drawn regarding the step between consecutive impacts, the impact velocity 
and the material modelling, which would affect the set up of all subsequent 
analyses. A treatment with a step of 0.4 mm between consecutive impacts, an 
impact velocity of  2.7 m/s and for a considered material behaviour BM_S355, 
introduced a trace depth of just 50 % of the real one. Therewith, the unsuitability 
of a step of 0.4 mm for the case of velocity-based simulations is becoming 
evident. Simunek et al. had anyway applied this step in [150] only for displace-
ment-based simulations, wherein the pin is “punched” into the treated material, 
as it was described earlier. The adoption of this increased step was practical and 
it was implemented in other previous studies as well [44], [68], [187], with no 
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further investigation on its suitability though. Of course, in the present case a low 
impact speed could be attributed for the shallow groove as well. Given that the 
present value of 2.7 m/s lies in the boundaries of the real, measured impact speed 
and the step of 0.4 is 5 times larger than the real one, a decrease of the step to 
0.2 mm was decided for subsequent analyses. This led to the introduction of a 
deeper trace by the model, but still lower than the real one. Groove depths equal 
to 79 % and 74 % of the real one were documented for the 1st and 2nd pass re-
spectively7.  

At this point, a further decrease of the applied step was avoided as it would in-
crease significantly the computational time. Instead, an increase of the impact 
velocity to 3.79 m/s, a value that as well lies inside the measured spectrum and 
closer to the mean of the measured real impact velocities, was preferred. More-
over, new lower values for the friction coefficients μs and μd of Equation (48), 
equal to 0.3 and 0.15 respectively, were selected according to common engineer-
ing knowledge. The adopted changes led to a simulated groove depth, which lies 
much closer to the real one for all three passes of the treatment, as it can be seen 
in Table 44, where the results of these preliminary analyses are summarized. An 
acceptable deviation smaller than ± 5 % in all cases was documented. As the con-
sidered material behaviour as well influences the introduced trace, the travelling 
step of 0.2 mm and the new lower values for the friction coefficients were 
adopted for all subsequent analyses. Prior to any evaluation of RS results, the 
impact velocity would be adjusted for each material taking values from inside the 
measured spectrum, until an acceptable agreement with the real groove would 
be met. If this would not be sufficient, then the travelling step would be further 
reduced. 

                                                           
7 during the 3d pass numerical problems were met and therefore the respective results are excluded from the 
present evaluation 
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Table 43: Measured and simulated groove depth of the HFMI treatment – Travelling step in mm and impact 
velocity in m/s 

Case 
Groove depth [mm] 

1st Pass 2nd Pass 3d Pass 

measured in [44] 0.143 0.193 0.223 

simulated with  
0.4 mm - 2.72 m/s 0.072 0.093 0.106 

simulated with  
0.2 mm - 2.72 m/s 0.113 0.143 - 

simulated with  
0.2 mm – 3.68 m/s 0.148 0.184 0.217 

Influence of Simulated Material Behaviour 

Simulation of the present component for all three investigated materials S355, 
S690 and S960 based on material models BM_355, BM_690 and BM_960 were 
carried out by both considering and neglecting in all cases the strain rate depend-
ency. In the former case of S355, an elastic - perfect plastic model behaviour was 
tested as well8. The through-depth, averaged longitudinal and transverse RS for 
S355 at the centre of the HFMI groove at the middle of the component are given 
in Figure 105 and Figure 106.  Figure 107 and Figure 108 show the respective re-
sults for S690. Finally, Figure 109 and Figure 110 illustrate the respective trans-
verse and longitudinal profiles regarding S960. In all cases, the respective meas-
urements found in [145] are presented along the present simulation results. Small 
fluctuations, which are met in some simulated profiles, are attributed to the av-
eraging process of the results, without this having a significant macroscopic influ-
ence either qualitatively or on the magnitude. 

Regarding the RS of S355, all three investigated models provided qualitatively 
similar profiles. Both longitudinal and transverse RS profiles are compressive near 
the surface with a transition to the tensile area in a depth of approximately 1.5 
mm to 2 mm. Regarding the transverse RS, very good agreement with the meas-
ured profile is met on most of the measurement points in all cases apart from the 
compressive strain rate dependent model. For all models, the largest deviation 
from the measured RS is met at a depth of approximately 0.75 mm, where the 

                                                           
8 setting H = 0 for the BM_355 
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peak of both the measured and simulated compressive stresses is located. This 
deviation is slightly higher for the strain rate dependent simulation, although the 
difference can be considered negligible. On the contrary, longitudinal simulated 
RS profiles present a significant quantitative deviation with each other. The ten-
sile strain rate dependent model estimated with very good agreement the meas-
ured RS on and near the surface, but underestimated them on a depth larger than 
1 mm. On the other hand, both strain rate independent material models under-
estimated the RS near the surface. The compressive strain rate dependent model 
produces a similar profile with the tensile one, overestimating though overall the 
RS.  

The significantly better agreement of the tensile strain rate dependent material 
model for the RS near the surface, where fatigue cracks initiate, reveals the pre-
dominance of the strain rate dependency for the present simulation, verifying in 
this first-step analysis the respective initial assumption regarding its importance. 
When the material exhibits significant viscosity, the layers near the surface where 
the high strain rates are met during the impact, yield at higher stresses absorbing 
more kinetic energy and therefore, the peak of the WRS is shifted nearer to the 
surface. Therefore, the introduction of viscosity becomes necessary even for a 
qualitatively precise simulation. 

On the contrary, the higher preciseness of the tensile versus the compressive 
strain rate dependent material model, does not overthrow the assumption re-
garding the predominance of the compressive behaviour in the case of HFMI yet. 
The better agreement of the tensile model can be attributed to the fact that it 
was calibrated based on the same batch of the investigated material, applied in 
[44] as well. On the other hand, during the calibration of the compressive strain 
rate dependent material model, data from [20] for the same material but another 
batch was considered along with the results of the drop tests in order to increase 
the statistical sample. As it was discussed in [59] though, the strain rate sensitivity 
of the metallic alloys can differ significantly from a batch of a material to another. 
Therefore, no assumption regarding the predominance of the compressive be-
haviour could be made, unless more measured and simulated results from the 
same batch could be compared. 
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Figure 105: Simulated and measured transverse RS - Component of parent material S355 – (Schubnell, 2019) 
measurements were found in [44] and [145] 

 
Figure 106: Simulated and measured longitudinal RS - Component of parent material S355 – (Schubnell, 2019) 
measurements were found in [44] and [145] 
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Qualitatively similar RS profiles were measured as well in the case of the two high 
strength steels S690 and S960 (Figure 107 - Figure 110). For both longitudinal and 
transverse profiles, compressive stresses are met near the surface. Nevertheless, 
the transition point from the compressive to the tensile zone is shifted in this case 
closer to the surface and to a depth of 1 mm for both high strength steels and for 
both longitudinal and transverse RS. This is attributed to the shallower HFMI 
groove introduced in the case of the two high strength steels in comparison to 
S355. 

It is becoming evident from Figure 107 to Figure 110 that analyses with non-vis-
cous material modelling for both high strength steels exhibit very good agree-
ment with the measured profiles, while those considering viscosity tend to over-
estimate the RS contrariwise to the case of S355. The non-viscous models of S690 
predict overall the transverse RS with a deviation of 70 MPa or smaller. Only near 
the surface, a significant deviation of 200 MPa is met. In regard to the longitudinal 
profiles, very good agreement is met near the surface and up to a depth of 1.5 
mm. Overestimation of the RS is evident for a depth between 1.25 mm and 1.75 
mm. In the case of S960 similar or better agreement is met, especially for the case 
of longitudinal RS.  On the contrary, the models considering strain rate depend-
ency exhibit overall a significant deviation with the measured profiles of even 
higher than 100 % of the yield stress.  

This incompatibility contradicts the above statement regarding the predomi-
nance of strain rate dependency during HFMI simulation. Nonetheless, tensile 
only material data was used for the calibration of the present model. The earlier-
described influence of the deformation mode on the viscosity of steel and not a 
negligibility of the strain rate sensitivity could be accounted for this incompatibil-
ity. It is possible that for the high strength steels, the deviation between the ten-
sile and the compressive strain rate dependency is much more significant, with 
the later one being significantly less viscous, almost strain rate independent. 
Therewith, the non-viscous model predicts RS much closer to the measured ones. 
In other words, when the static yield strength increases the strain rate depend-
ency in compression is significantly reduced. This assumption is supported by the 
significantly better agreement of the models neglecting viscosity for both high 
strength steels and for both longitudinal and transverse RS. More experimental 
and numerical investigations in the future, which would confirm the above-stated 
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assumption, are encouraged. It is as well possible that present material modelling 
is unsuitable for the current analyses and a more elaborate approach considering 
viscosity could lead to similar or better accuracy than that of the current analyses 
with non-viscous material behaviour. 

 
Figure 107: Simulated and measured transverse RS - Component of parent material S690 – (Schubnell, 2019) 
measurements were found in [145] 

 
Figure 108: Simulated and measured longitudinal RS - Component of parent material S690 – (Schubnell, 2019) 
measurements were found in [145] 
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Figure 109: Simulated and measured transverse RS - component of parent material S960 – (Schubnell, 2019) 
measurements were found in [145] 

 
Figure 110: Simulated and measured longitudinal RS - Component of parent material S960 – (Schubnell, 2019) 
measurements were found in [145] 
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contact surface at a depth between 0.5 mm and 1 mm. In the case of the longitu-
dinal stresses, the peak stress is met on the surface though9. Such a RS distribu-
tion was not described by theoretical profiles, as in most cases they are referring 
to RS fields of simulated or measured single impacts. Qualitatively similar plots 
were met in all the investigated cases, with only the magnitude and depth of the 
peak stresses differentiating. 

With regard to the modelled treatment length of 10 mm, it is becoming evident 
in both cases that a homogenous stress field is created at the middle of the com-
ponent. As it is expected, irregularities are met only at the beginning and end of 
the treatment line, where the initial and final impacts take place. This area of non-
homogenous stress field is approximately equal to the diameter of the pin for the 
longitudinal RS and significantly smaller for the transverse ones. Moreover, sig-
nificant RS arise away from the treatment area only for a very small distance, 
which in the case of the transverse RS is once again approximately equal to the 
diameter of the pin and for the longitudinal ones significantly smaller. Addition-
ally, negligible RS are met near the bottom of the component, whereby the re-
straints are applied, or on the corners of the component, revealing that significant 
distance between them and the boundaries of the treatment line has been ap-
plied. Therefore, significant restraint or edge influence on the modelled RS is ex-
cluded. 

The above remarks validate the initial assumption that the effect of the treatment 
is significantly localised. Therewith, it can be safely suggested that the simulation 
of a treatment length of three times the diameter of the pin or longer, will pro-
duce away from the treatment start and stop areas similar RS fields inde-
pendently of the modelled treatment length. In other words, the treatment of a 
very long weld toe can be scaled down to a significantly smaller component, 
which takes into consideration the local geometry transverse to the treatment 
line. It can be as well rationally assumed that the restraints, which are applied to 
the real component under treatment away from the treatment area, have negli-
gible effect on the introduced RS profile. It has to be highlighted that the simula-
tion of the 10 mm treatment on the present 20 mm x 10 mm x 10 mm component, 

                                                           
9 confusion by a direct comparison with the previous RS profiles should be avoided as both measurements and 
simulations were referring to averaged values in the depth direction, as it has been already mentioned 
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which would last in reality 2.5 s, lasted 7 hours 40 minutes 31 seconds using 256 
processors with Massively Parallel Processing (MPP). 

(a) 

(b) 
Figure 111: Stress contour plots of the specimen of parent material after the end of the treatment for the strain 
rate dependent case, calibrated based on compressive material testing, stresses are given in MPa: a) Longitudi-
nal (Y); b) Transverse (X) 
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The significance of the above-stated conclusion regarding the scaling effect and 
the following assumption for the influence of the boundary conditions is of ut-
most significance, if it is considered that for real scale components treatment 
lengths of more than 1 m in total can be met10. As a full-scale modelling of such a 
component’s treatment would not be possible, simulation of the treatment on 
the expected location of the first fatigue crack of the HFMI-treated component 
instead, could offer a sufficient estimation of the increased fatigue life, provided 
that the above assumptions are indeed valid. Further investigation on this scaling 
effect in future work is therefore encouraged11. 

5.3.1.5 Conclusions 

The conclusions, which were drawn from the simulation of the specimens of par-
ent material, are summarized as follows: 

� During the simulation of HFMI, a mesh size of 1/40 of the pin’s diameter or 
smaller is needed in order to provide mesh independent results for the cur-
rent mesh type (linear brick solid elements). 

� A displacement-based approach for the simulation of the pin’s movement 
is proven unsuitable for high preciseness simulations of HFMI under the 
present conditions. Coupling of this approach with a strain rate dependent 
material model could provide better results, if it would be based on elabo-
rate measurements and based on the assumption of a sinusoidal movement 
of the pin. 

� A velocity-based approach for the simulation of the pin’s movement is 
proven suitable for high preciseness simulations of HFMI. Measuring of the 
HFMI pin’s contact force is straightforward and the calibration of the nu-
merical model is not complicated. Moreover, such an approach is closer to 
reality than the displacement-based one. 

� The present numerical results show satisfying agreement with the meas-
ured RS profiles. Compressive stresses are met near the surface constantly 

                                                           
10 if for example, all the weld toes of a welded structural beam are hammered 

11 efforts for analogously scaling-down the welding simulation of large components by releasing the accuracy 
requirements have been made parallel to the present study in another research project of  the KIT Steel and 
Lightweight Structures Institute [102] 
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reducing away from it until they pass to the tensile region in a depth of ap-
proximately 1.5 mm to 2 mm. In the case of the transverse residual stresses, 
a peak is met in the compressive zone below the surface at a depth of ap-
prox. 1 mm. 

� The present simulated and measured RS profiles validate the theoretical 
ones provided for spherical indentation and those of previous analyses of 
HFMI and shot peening. The peak stress though, is met significantly deeper 
in comparison to the other methods, like shot peening. This shift is at-
tributed to the repetitive treatment of the surface and the significantly 
deeper groove achieved by HFMI. 

� According to initial expectations, the strain rate dependent material mod-
elling enables a much more accurate simulation of the RS profiles for S355. 
On the contrary, the strain rate independent material models for the two 
high strength steels provided much better agreement, with the strain rate 
dependent ones overestimating the RS in all cases. It is possible that the 
significantly deviating strain rate dependence of these steels in tension and 
compression and the fact that the applied material model was calibrated 
based on tensile experimental data are causing this unexpected result. Fur-
ther investigations are proposed to validate this assumption. Of course, it 
cannot be excluded that considering a more elaborate viscous material 
model could provide better agreement. Still, the agreement of the non-vis-
cous models for the present first-step validation is satisfying in most cases. 

� It has been shown that modelling a treatment length of more than 2.5 times 
the pin diameter, can create a homogenous stress field without singularities 
at distance larger than one pin diameter away from the treatment start and 
stop locations. Negligible influence from the external restraints was ob-
served as well. The above observations support the assumption of the lo-
calized effect of the HFMI treatment and in extension the proposal that scal-
ing down during a simulation of a long treatment can offer precise results 
for a larger component.  
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5.4 Fillet Welds 

5.4.1 Investigated Component 

Final step for the validation of the present modelling approach was the simulation 
of the fillet welds, which were investigated in the research project HFH-Simula-
tion [146]. In the framework of this project, RS measurements were carried out 
for HFMI-treated components of the materials S355 and S960. Therefore, the 
same materials were investigated in this final step of the present study. The real 
components of the project were HFMI-treated at their initial, as-welded geome-
try (Figure 59, Figure 60). They were subsequently cut into smaller fatigue test 
specimens. Nonetheless, the simulation of the HFMI treatment at such scale was 
not possible due to computational restrictions. The treatment of a cut fatigue test 
specimen with length of 30 mm was modelled instead. Should the simulation pro-
vide results at the middle of the cut component, where the influence of stress 
relaxation due to cutting is negligible, comparable to the RS measurements12, 
then the above-stated assumption regarding the scaling down of the component 
would be as well validated. The specimens, on which the RS profile were meas-
ured, were cut out from the middle of the parent fillet welds. Therefore, the mod-
elled WRS from the middle of the component were introduced in the subsequent 
HFMI simulations. The investigated geometry for S355 is presented in Figure 112. 
In the case of S960, the symmetric component, which is presented in Figure 113, 
was taken into consideration.  

5.4.2 Discretization 

Discretization of the investigated component with a universal mesh size was not 
possible, as the available computational capacity would be exceeded. Therefore, 
two volumes with different mesh size were modelled for each specimen as it can 
be seen in Figure 112 and Figure 113. A volume, underneath the treatment line, 
was discretized with finer mesh according to the mesh requirements, which were 
suggested based on the investigation of parent material specimens. The rest of 
the component was discretized with coarser mesh. Compatibility equations of a 

                                                           
12 especially for the transverse RS, which are being influenced significantly less by the cutting 
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bonded surface-to-surface connection [113] were modelled on the contact sur-
faces between the two volumes. A new and final convergence study was carried 
out in order to exclude any influence of this new discretization approach on the 
calculated RS. 

 
Figure 112: Modelled geometry and the assigned mesh inside and near the treatment area, for the investigation 
of the HFMI treatment on fillet welds of S355 



5 FE Simulation of HFMI 

176 

 

 
Figure 113: Modelled geometry and assigned mesh for the investigation of the HFMI treatment on fillet welds 
of S960 
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5.4.3 Modelling of Material Behaviour 

Bilinear material behaviour with kinematic hardening and the Cowper-Symonds 
model (Eq. (12)) were once again taken into consideration for simulating respec-
tively the elastic-plastic behaviour and the strain rate dependency of the investi-
gated steels. Furthermore and in order to enable a more precise simulation, the 
differentiated microstructure of the HAZ and the FZ and their respective yield 
stress, as they were estimated during welding simulation, were introduced in the 
HFMI simulation model. The yield stress of the FZ was predicted earlier during the 
welding simulation and it was validated through the hardness measurements in 
[146]. PM yield stress was selected in all cases based on the above-presented re-
spective material parameters. The yield stress of the HAZ and its strain rate de-
pendency were explicitly calibrated through tensile tests under various strain 
rates of micro-specimens cut out from the HAZ [146]. The results of this material 
characterisation of the HAZ are presented in Table 44. The good agreement be-
tween the experimentally determined yield stress of the HAZ [146] and the re-
spective values predicted through the present FE welding simulation, which are 
as well presented in Table 4413, further supports the validity of the welding simu-
lation approach, as it was presented in chapter 4. Moreover, the fact that satisfy-
ing agreement is met for all three investigated materials reveals once again the 
robustness and versatility of the approach. The calibrated parameters of the Cow-
per-Symonds model (Eq. (12)) for the HAZ were adopted for the rest of the mate-
rial zones for all three materials with negligible expected influence on the results, 
as no significant strain rate is met in the PM and the microstructure in the FZ 
deviates slightly than that in the HAZ. H is assumed to be for all material zones 
equal to that of the parent material. The applied material parameters for the bi-
linear elastic-plastic behaviour and the Cowper-Symonds model and for all inves-
tigated materials are presented in Table 45. 

                                                           
13 although as mentioned above, only S355 and S960 were simulated, the material parameters for S690 are 
presented as well 
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Table 44: Experimental results from [133] for the dynamic yield stress of the HAZ for various strain rates and 
predicted values of the static yield stress with the FE weld modelling approach 

�
� 

[s-1] 

�z� [MPa] 

S355 S690 S690 

FE 

(static) 
786 861 981 

0.001 713 861 952 

1 856 961 1031 

50 913 1003 1247 

50 943 996 1198 

500 1165 1126 1518 

500 1200 1226 1457 

5.4.4 HFMI Treatment Setup and Boundary Conditions 

Setup of the HFMI treatment in the present simulation was based on the results 
of the investigations for the specimens of parent material, the recommendations 
of the manufacturers and the monitoring of the treatment on real specimens in 
[146]. The vertical axis of the pin was set at a 20° and 90° angle to the global 
vertical and longitudinal14 axis. The centreline normal to the pin’s upper circular 
face and coming through its centre was intersecting the weld toe at all times. 
Treatment was initially set to begin and end 5 mm away from the edges of the 
component. A local coordinate system was defined on the top circular face of the 
pin for implementing the respective boundary conditions. Initial position of the 
pin, its local coordinate system and the global one are presented in Figure 114. 

                                                           
14 axis parallel to the treatment line 
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Table 45: Calibration of the Cowper-Symonds model based on the Data from Table 44 

Material Material Zone σy [MPa] H [GPa] Δ [-] γ [-] 

S355 

PM 450 

0.9 5993 5 HAZ 713 

FZ 918 

S690 

PM 734 

0.9 11740 5 HAZ 861 

FZ 918 

S960 

PM 1050 

1.0 12830 5 HAZ 952 

FZ 963 

A velocity-based approach, as it was presented earlier for parent material speci-
mens, was applied for simulating the movement of the pin vertical to its axis. The 
accelerating force is applied this time on the Z direction of the local coordinate 
system. The impact velocity, as it was determined for each material during the 
earlier investigations of PM, was initially adopted. Nonetheless, a change in the 
introduced impact velocity or a denser overlap of consecutive impacts was ex-
pected due to the altered hardness in the HAZ or the different local geometry at 
the weld toe, so that the real groove depth could be simulated. The trace depth 
was compared with real specimens for a second-step validation in a new trial and 
error calibration round. Finally, simulation of the treatment on all four weld toes 
was not possible with the present computational capacity. It was then decided to 
model the HFMI treatment only on the weld toe, where the RS were measured in 
[146]. Otherwise, when the simulation would be carried out predictively the 
treatment on the most unfavourable weld toe in terms of fatigue strength should 
be considered. As an ideal geometry is modelled in purpose, so that the influence 
of local weld geometric irregularities and other flaws is neglected, this would be 
the one with the highest tensile WRS.  

Two pin diameters of 3 mm and 4 mm were considered in order to simulate the 
different RS profiles introduced by HiFIT and PITec [146]. Apart from the different 
pin diameter, the above-mentioned variations in frequency and contact force 
were as well taken into consideration. PITec treatment with a real average trav-
elling step of 0.08 mm between consecutive impacts, was simulated in a 3-pass 
analysis, based on the results of the specimens of PM and previous studies ([44], 
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[45], [54] etc.). The measured average step of 0.22 mm of the HiFIT treatment 
between consecutive impacts dictated the simulation of a single-pass treatment. 

(a) 

 (b) 
Figure 114: Initial position of the pin: a) Lateral view; b) Isometric view and the local and global coordinate 
systems 

According to initial expectations, the introduction of the real groove depth with 
a single treatment pass would be attributed to the higher impact velocity of the 
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HiFIT device and the smaller pin diameter. Therewith, the difference between the 
two devices was taken into consideration during the present study. 

5.4.5 Preliminary Investigations for the Simulation
 of Fillet Welds 

Although mesh size requirements regarding the contact surface were already dis-
cussed, further and more complex effects could arise due to the introduction of 
two volumes with different mesh connected with contact surfaces and the more 
complicated geometry in the case of the fillet welds. Both of these changes could 
have had a significant effect on the propagation of the stress waves inside the 
component and in extension on the final RS field. Therefore, a new round of vali-
dation was carried out for this new mesh setup, as it was mentioned above. The 
symmetric model of S960 (Figure 113) was selected for this series of preliminary 
investigations. Six models with different mean element size in the fine and the 
coarse mesh volumes and variating distance between the boundary of the HFMI 
groove and the contact surface in the PM were compared. In all cases, a relatively 
high impact velocity of 4.8 m/s was applied so that excessive deformation would 
be introduced and the results would lie on the safe side. This velocity was same 
for all models so that the introduced groove would always have the same width 
and the influence of the distance between the groove boundary and the contact 
surface could be isolated. Three different values of 2.8 mm, 4.2 mm and 5.1 mm, 
for this distance measured from the weld toe, were considered. Two different 
element sizes of 0.125 mm and 0.1 mm and of 7 mm and 3.5 mm for the fine and 
the coarse mesh volumes respectively were introduced. Strain rate dependency 
was neglected and the material parameters for elastic-plastic behaviour of the 
material zones of the S960 weldment from Table 45 were adopted. An overview 
of the investigated models is presented in Table 46. The convergence of the trans-
verse RS profile at the middle of the specimen perpendicular to the weld toe was 
adopted as the criterion for the selection of the appropriate mesh setup.  
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Table 46: Convergence analysis for the simulation of fillet welds 

Model 

Distance of the mesh  
transition surface from 

the crater’s rim 

[mm] 

Mean element size in  
the fine mesh area 

[mm] 

Mean element size outside  
the fine mesh area 

[mm] 

MS1 2.8 0.125 0.7 

MS2 4.2 0.125 0.7 

MS3 5.1 0.125 0.7 

MS4 5.1 0.1 0.7 

MS5 4.2 0.1 0.35 

MS6 5.1 0.1 0.35 

The results of this final convergence study are presented in Figure 115. MS1 pro-
duced a profile that validated the theoretical transverse RS profiles. Nonetheless, 
an obvious discontinuity at the area around the transition area was met. When 
the contact surface was shifted further away from the crater’s rim with MS2 and 
MS3 this influence became more and completely negligible respectively. Addi-
tionally, the RS profile inside and near the treatment, area changed significantly, 
with the two meshes MS2 and MS3 though, providing almost identical RS profiles 
with each other. Therefore, both distances of 4.2 mm and 5.1 mm from the weld 
toe for positioning of the mesh transition area were considered sufficient. A fur-
ther refinement of the element size in the fine mesh area of the model MS4 down 
to 0.1 mm though caused once again a significant change of the transverse RS 
profile. Moreover, a very significant stress concentration at the contact surface 
arose. As it was secured earlier that the distance between this surface and the 
crater rim is sufficiently large, the significant difference of element size on the 
two sides of this surface was accounted for this stress concentration. This dic-
tated a further reduction of the element size in the coarse mesh. That was com-
pleted in the two final models of this convergence study, MS5 and MS6, which 
provided almost identical results in the treatment zone and negligible stress con-
centration near the transition surface. MS5 and MS6 mesh setups consisted re-
spectively of 1,236,739 and 1,188,710 nodes, requiring similar CPU time for their 
complete solution. Hence, the mesh setup MS6 was selected for all subsequent 
simulations. This distance of 5.1 mm between the treatment and transition area, 
had to be held to both transverse and depth directions though. As this would lead 
to a significant increase of the total number of the elements, adaptive mesh size 
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inside the fine mesh volume was applied. Exemplary the final mesh for the simu-
lation of the FW960 fillet weld is illustrated in Figure 116. 

The above, proposed models were still marginally possible to be solved under the 
provided computational capacity. Nevertheless, increase of computational time 
due to the addition of strain rate dependency, further local mesh refinement due 
to later observations or consideration of WRS would exceed these limits. Ergo, it 
was decided to reduce the simulated component length from 30 mm down to 20 
mm. The HFMI pin would start and stop its movement 5 mm away from the re-
spective edges leading to a treatment length of 10 mm. Despite this reduction, 
the previously mentioned perquisites for scaling down, i.e. a minimum treatment 
length of 2.5 times the pin diameter and a distance of the treatment from edges 
of the components of 1 pin diameter, were met. With this length reduction and 
the above-mentioned finalized discretization setup the simulated model came up 
to a number of 1,255,205 elements for the case of FW960.  

 
Figure 115: Results of the convergence study for the simulation of fillet welds 
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Figure 116: Final mesh for the simulation of FW960 

5.4.6 Analyses and Results 

5.4.6.1 Simulation of the HFMI Groove 

Local Geometry at the Weld Toe 

During preliminary investigations of the fillet welds, which were described above, 
it was observed that under the initially modelled geometry of Figure 117a, geom-
etry and stress state of the weld toe after the treatment were unrealistic. An inner 
groove of a diameter of smaller than 0.1 mm was introduced at the bottom of the 
trace on the theoretical line of the weld toe. As it can be seen in Figure 22b, no 
such notch is met in the geometry of a real HFMI groove. This erroneous defor-
mation was attributed to the sharp geometry of the weld toe and led to the in-
troduction of an illogical, non-expected discontinuity on the stress profile trans-
verse to the treatment trace, as it is illustrated in Figure 118. The contact between 
the pin and the component initiates at the flat areas around the weld toe and as 
they are pressed downwards, the weld toe tends to uplift. Due to the modelled 
sharp notch, this effect is accounted for the introduction of this smaller groove.  
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Therefore, it was decided to alter locally the geometry by adding a small fillet 
radius of 0.1 mm and refine the mesh so that at least 3 elements are assigned 
along this fillet (Figure 117b)15. Such a local, significantly smaller than the HFMI 
groove, change of the geometry can rationally be expected to have a negligible 
influence on final RS. The implemented change led to a significant improvement 
but not a complete elimination of the described phenomena, as it can be seen in 
Figure 117b. Therefore, a further increase of the filleting radius up to 0.2 mm and 
0.5 mm was tested sequentially (Figure 117b and Figure 117c). After the latter 
change, the effect was completely eliminated. Additionally, the introduction of 
the fillets lead to a constant “normalization” of the RS profiles inside the treat-
ment trace with the calculated RS profiles gradually converge to each other, at 
least qualitatively (Figure 118). It has to be underlined that during the present 
calibration, a single-pass treatment with a pin of 3 mm diameter was modelled. 
Such an impact speed was assigned to the pin that it would just reach contact 
with the weld toe. Calibration with the above setup lies on the safe side, as an 
increase of treatment passes or of the pin’s penetration would cause a deeper 
groove and would possibly eliminate the above effect, even for the initial unfa-
vourable geometry. Ergo, a filleting radius of 0.5 mm was adopted for all subse-
quent simulations. 

  

                                                           
15 the reader should recall the fictitious 1 mm radius added to the weld toe during fracture mechanics simula-
tions with the notch stress concept, a state of the art method [155] 
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Figure 117: Initial geometry of the weld toe and the introduced HFMI groove after the 1st pass of the treatment: 
a) Without fillet; b) 0.1 mm fillet; c) 0.2 mm fillet; d) 0.5 mm fillet 

Overlap and Impact Energy 

As it was mentioned earlier, the impact velocity and travelling step of the HFMI 
pin from the investigations for parent material were applied initially in the simu-
lation of the fillet welds as well. Nevertheless, during preliminary analyses the 
boundary conditions from previous investigations were proven to lead to reduced 
penetration. Additionally to the increased hardness in the HAZ and the FZ, under 
the present geometry, contact initiates simultaneously at the two points where 
the pin’s outer surface is tangent to the plate and the weld seam. Therefore, the 
contact surface during and shortly after the initiation of the contact is double as 
in the case of the parent material, where initiation begun around the bottom 
point of the pin. Due to the presence of friction, this leads to more consumption 
of impact energy and in extension to a shallower trace. Moreover, it was noticed 
that the simulation of shallower HFMI groove introduced RS of unreasonably high 
magnitude in the treatment area. Hence, a new calibration round regarding the 
impact velocity and overlap step should take place. 
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Figure 118: Transverse RS in the HFMI crater at the middle of the component perpendicular to the treatment 

As the impact velocity applied during the simulation of the parent material was 
3.27 m/s and already close to the mean measured impact velocity for the PITec 
device, it was decided to reduce the overlap between consecutive impacts. An 
increase of the velocity was implemented only in the cases, where a strain rate 
dependent material behaviour was considered and a further decrease in travel-
ling step was no further numerically possible. Moreover, a higher impact velocity 
was selected for the cases of a 3 mm diameter pin, corresponding to the meas-
urements on the HiFIT device. Several models were solved until the HFMI setup 
parameters for the accurate modelling of the HFMI groove could be selected. An 
overview is provided in Table 47. Based on the measurements from [146] and 
[168] and the proposal of IIW Recommendations [118] that the HFMI groove of 
0.1 mm to 0.2 mm guarantees a complete treatment, introducing a trace with a 
maximum depth of 0.15 mm ± 0.025 mm was considered as a criterion for the 
selection of the appropriate boundary conditions for the specimens of S355. 
Moreover, it was considered that the vertical displacement at the weld toe should 
be at least 0.04 mm to exclude insufficient penetration, as at this point the verti-
cal displacement exhibited a local minima in all cases. In the cases of S960 though, 
shallower grooves were measured overall. Hence, these criteria were adjusted to 
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0.12 mm ± 0.025 mm and 0.01 mm respectively. Exemplary, the vertical displace-
ment inside the groove perpendicular to the treatment line for the case of a 2-
pass treatment on a S355 specimen with viscous material behaviour and for an 
impact velocity of 4.2 m/s is given in Figure 119. 

 
Figure 119: Displacement orthogonal to the upper plate surface inside the modelled HFMI groove perpendicular 
to the treatment line 

It is becoming evident from the results of Table 47 regarding S355 that a travelling 
step of 0.2 mm between consecutive impacts of a single-pass treatment leads to 
insufficient penetration of the HFMI pin and the introduction of a shallow HFMI 
groove, even though a higher impact velocity of 4.2 m/s was considered. For a 
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the parent materials, was applied, while for the latter it was increased up to 4.2 
m/s. Due to the increase of the impact velocity, only two passes were necessary 
for introducing a HFMI groove of sufficient depth. In the case of modelling the 
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-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Di
sp

la
ce

m
en

t [
m

m
]

Distance from the weld toe [mm]



5.4 Fillet Welds 

189 

in all cases, as once again a travelling step of 0.2 mm led to insufficient penetra-
tion. Impact velocity was in all cases equal to 4.2 m/s apart from the non-viscous 
model of the 3-pass treatment with a pin of 4 mm diameter. For this case, only 
two passes of treatment were necessary for the introduction of sufficient groove 
depth.  

Table 47: Tested simulation setups for modelling of the HFMI trace 

 Material  
behaviour 

Pin  
diameter  

[mm] 

Number 
of passes  

[-] 

Step 

[mm] 

Impact  
velocity 

[m/s] 

Maximum 
groove depth 

[mm] 

Vertical  
displacement 

at the weld toe 

[mm] 

S3
55

 

non-viscous 3 1 0.2 4.2 0.10 0.01 

non-viscous 3 1 0.15 4.2 0.13 0.04 

viscous 3 1 0.15 4.2 0.09 0 

viscous 3 1 0.1 4.2 0.15 0.06 

non-viscous 4 3 0.15 4.2 0.29 0.15 

non-viscous 4 3 0.15 3.5 0.19 0.06 

viscous 4 2 0.15 4.2 0.17 0.05 

 viscous 4 3 0.15 4.2 0.22 0.07 

S9
60

 

non-viscous 3 1 0.2 4.2 0.12 0.01 

non-viscous 3 1 0.1 4.2 0.13 0.04 

viscous 3 1 0.1 4.2 0.09 0.01 

non-viscous 4 3 0.1 4.2 0.25 0.08 

non-viscous 4 2 0.1 3.5  0.22 0.06 

viscous 4 3 0.2 4.2 0.11 0 

viscous 4 3 0.1 3.5  0.13 0.01 

 

It has to be underlined that for the present series of analyses, the impact velocity 
was modelled with a reduced preciseness of ± 0.25 m/s than in the case of the 
specimens of parent material. Due to the more complex local geometry at the 
weld toe and its influence on the elastic springback, calibration of the velocity-
based model with a preciseness of ± 0.1 m/s was not practical any more. Moreo-
ver, due to the same effect few individual peaks of higher impact velocity, close 
to 5.5 m/s were met inside each treatment pass (approximately 3 peaks every 
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100 impacts), which could not be completely excluded with the current modelling 
approach. This led in some cases to the introduction of locally deeper HFMI 
groove and higher magnitude of RS. These relatively small, in comparison to the 
total groove surface, areas were excluded from the averaging techniques and the 
overall evaluation of the presented FE analyses. As their effect was significantly 
local, they did not influence the global RS field. The final simulations of the RS 
fields introduced by the HFMI treatment on the investigated fillet welds were 
based on the above remarks. 

5.4.6.2 Mapping of Welding Residual Stresses 

Mapping of WRS and the respective plastic strains was carried out in ANSYS Work-
bench, based on a Profile Preserving approach, with a Triangulation Weighting 
and a Volumetric Transfer Type [4]. A suitable algorithm was written in MATLAB 
[121] in order to enable the transformation of the output from the mapping pro-
cess into LS-DYNA input code. This was necessary as due to the new fine mesh of 
the HFMI analysis large data files exceeding 10,000,000 command lines have been 
developed.  

 
Figure 120: Contour plot of transverse WRS at the beginning of the HFMI simulation – Stresses are given in MPa 

The transverse WRS contour plot at the initiation of the HFMI simulation in LS-
DYNA is illustrated in Figure 120. The respective profile at the middle of the HFMI-
treated component during the simulation initiation and after the first and second 
impacts are presented in Figure 121. After mapping of the WRS on the HFMI 
model, a slight, negligible stress relaxation was observed in most cases. This was 
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initially expected though, as an even smaller component than the cut specimen 
of chapter 3.4.4.2 is simulated in this case. Nevertheless, the relaxation is consid-
ered negligible. Moreover, by comparing the three RS profiles of Figure 121, it is 
becoming evident that a redistribution of RS takes place even after the first  HFMI 
impacts due to the propagation of elastic stress waves inside the component and 
the new equilibrium that arises after their superposition with the existing RS. 
Although the first and second impacts take place only at +0.2 mm and +0.4 mm 
after its initial position and 4.8 mm and 4.6 mm away from the line, where the RS 
of Figure 121 are evaluated their influence is becoming already evident.   

 
Figure 121: Transverse RS profiles at the middle of the component on the side of the HFMI simulated weld toe 

5.4.6.3 Simulated RS profiles 

A final series of RS simulations were carried out for the investigated fillet welds. 
As it was mentioned earlier, main goal was the validation of the present ap-
proach, for modelling RS from HFMI. In order to investigate the influence of ne-
glecting or considering the WRS and the strain-rate dependency and the signifi-
cance of simulating a realistic HFMI groove depth, more than one analyses were 
carried out for each material. The respective material parameters of Table 45 
were applied in each case. The simulated RS profiles were compared with meas-
urements, which were carried on the real fillet welds in the framework of [146]. 
Unlike the WRS measurements, which were carried out on the parent, uncut fillet 
welds, the present measurements were performed on the cut specimens of [146]. 
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Exemplary one specimen treated with a HiFIT and one with a PITec device were 
measured for each material.  

The measurements were carried on the surface and in depth direction with an X-
Ray diffractometer of the IWM and with neutron diffraction in the Helmholtz 
Zentrum (HZB), Berlin, Germany respectively. Only transverse RS were measured 
in the former one, while both transverse and longitudinal were investigated in 
the latter. Two measurements were carried out on the surface at the middle of 
the specimen and perpendicular to the HFMI treatment line, beginning from the 
centre of the HFMI groove and with a step of 0.5 mm. The collimator diameter 
was 2.0 mm. In the case of the neutron diffraction, the measurements were once 
again carried out at the middle of the component and underneath the weld toe, 
which coincided with the middle of the HFMI groove. Gauge volumes of 2 mm x 
2 mm x 2 mm and 5 mm x 2 mm x 2 mm were investigated for the longitudinal 
and transverse direction respectively. Measurements were carried out every 0.5 
mm in depth direction. The applied gauge volumes were significantly larger than 
those, which were measured earlier in [44] and [145] for the specimens of parent 
material. Once again, averaging of the results from the integration points on the 
measured surface or inside the measured gauge volumes was necessary in order 
to enable a direct comparison of simulation and measurements. More details re-
garding the present RS measurements can be found in [144] and [146].  

S355 Specimens Treated with a Pin of 3 mm Diameter 

An overview of the numerical investigations regarding the single-pass treatments 
of the S355 fillet welds with a 3 mm diameter HFMI pin is given in Table 48. Three 
analyses, A1, A2 and A3, adopting a non-viscous material behaviour were carried 
out, with the first one neglecting and the other two considering the WRS. Due to 
a larger travelling step of 0.2 mm between consecutive impacts, A2 introduced a 
HFMI groove shallower than the above-mentioned criterion of acceptance. Simi-
larly, the model A4 considering strain-rate dependency and a step of 0.15 mm led 
to the introduction of a shallow trace. An adoption of a smaller step of 0.1 mm in 
A5 produced an acceptable HFMI groove. All simulations were carried out with 
an impact velocity of 4.2 m/s. The HFMI groove in the present case had an aver-
age half width of 0.8 mm.  
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The simulated transverse RS profiles on the surface of the fillet welds and per-
pendicular to the HFMI groove are presented along with the respective measure-
ments in Figure 122. A non-negligible deviation is met between the two measure-
ment series only at a distance of 3 mm from the weld toe. The agreement on the 
rest of the measurement points is very good. They both produce qualitatively 
similar results; compressive RS are met along total measurement length and the 
peak stress is met outside the rim of the HFMI groove at a proximity of approxi-
mately 2 mm and 2.5 mm respectively. Peak stress of approximately -300 MPa is 
measured in both cases. Inside the HFMI groove though, significantly lower 
stresses are documented approaching zero at its middle.  

Nonetheless, all simulated RS profiles, which are qualitatively similar to each 
other, show a peak stress at the middle of the HFMI groove. Models A1, A2, A4 
and A5 significantly overestimate the RS inside the treatment area. They all ap-
proach the measured profile though, outside the HFMI groove. On the contrary, 
model A3, which predicted better the order of magnitude of the measured RS 
inside the HFMI groove, underestimates the RS away from the trace boundary. 
A1, A2 and A4 are expected to show a significant deviation as they respectively 
neglect the WRS and introduce a HFMI trace shallower than the real. 

Table 48: FE Analyses of the single-pass HFMI treatment on fillet welds of S355 with a pin diameter of 3 mm 

Model Material  
behaviour WRS Step  

[mm] 

Impact  
velocity  

[m/s] 

Maximum  
groove depth 

[mm] 

Vertical  
displacement  

at the weld toe 

[mm] 

A1 non-viscous neglected 0.15 4.2 0.13 0.04 

A2 non-viscous considered 0.2 4.2 0.10 0.01 

A3 non-viscous considered 0.15 4.2 0.13 0.04 

A4 viscous considered 0.15 4.2 0.09 0 

A5 viscous considered 0.1 4.2 0.15 0.06 
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Figure 122: Simulated and measured transverse RS profiles on the surface of the S355 specimen treated with a 
pin of 3 mm diameter, perpendicular to the HFMI groove – Measurements from [146] 

The simulated transverse and longitudinal RS profiles in depth direction are pre-
sented along with the respective measurements in Figure 123 and Figure 124. In 
the case of the transverse RS, analyses considering a non-viscous material model 
match qualitatively the measured profiles, being in the compressive regime near 
the surface and passing to the tensile one after a significant depth of approxi-
mately 3 mm or larger. The models considering strain-rate dependency produced 
different profiles even qualitatively. Once again, the introduced RS near the sur-
face are compressive but the transition to the tensile zone takes place at much 
smaller depth of around 1 mm to 1.5 mm. The compressive stresses near the sur-
face though have a higher magnitude, than those simulated with non-viscous ma-
terial modelling. This change due to the introduction of strain rate dependency is 
expected as the elements on the top layers, underneath the contact surface, yield 
at a higher stress. Due to the higher magnitude of compressive residual stress and 
as the energy of the system is equal with the non-viscous case, the zone of the 
compressive stresses has to become thinner so that equilibrium of the RS can be 
achieved. Therewith, the transition points shifts up. Regarding the quantitative 
agreement of numerical and experimental results, model A3, which neglects 
strain-rate dependency but considered the WRS, shows overall a very good agree-
ment with the measured RS. The highest deviation of 60 MPa, which is lower than 
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10 % of the material’s yield stress, is met near the surface. Models A1, A2 and A4 
are expected to show a significant deviation due to the above-stated reasons. The 
profile of A5 though, despite considering the WRS and introducing a realistic 
HFMI groove, still deviates significantly from the measured one. 

In the case of the longitudinal RS (Figure 124), all numerical models produce pro-
files qualitatively similar with each other and with the measured ones. In all cases, 
only compressive stresses are introduced in the first 4 mm underneath the con-
tact surface. Model A3 once again exhibits the best agreement with the measure-
ments especially near the surface. A significant deviation of 100 MPa is met only 
at a depth between 1 mm and 1.5 mm. Otherwise the deviation is considered 
overall acceptable. The rest of the profiles although less accurate than A3 deviate 
slightly from it, with each other and with the measured RS. This fact may reveal a 
smaller sensitivity of the longitudinal RS to the investigated effects in comparison 
to the transverse, especially regarding the depth of the introduced HFMI groove. 

 
Figure 123: Simulated and measured transverse RS profiles in depth direction at the weld toe of the S355 

specimen treated with a pin of 3 mm diameter, at the middle of the specimen – Measurements from [146] 
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Figure 124: Simulated and measured longitudinal RS profiles in depth direction at the weld toe of the S355 
specimen treated with a pin of 3 mm diameter, at the middle of the specimen – Measurements from [146] 

Exemplarily, the applied mesh and the longitudinal and transverse RS contours of 
the model A3 below the contact surface at a section at the middle of the investi-
gated component and perpendicular to the introduced HFMI groove are pre-
sented in Figure 125. In the case of the transverse RS the compressive zone un-
derneath and around the contact surface is becoming evident, without exhibiting 
though at any point significantly higher stresses than the rest. Overall, the com-
pressive stresses do not exceed the yield stress of the material in the treatment 
area. On the contrary, longitudinal stresses significantly higher than the yield 
strength, even higher than 1400 MPa, are met on the top layer elements under-
neath the contact surface. Nevertheless, the RS in the rest of the compressive 
zone are as well approximately equal to the real yield stress of the material in the 
HAZ. Significantly higher stresses met exclusively at the top layer of elements 
could be as well the result of the numerical modelling of contact. Away from the 
treatment zone, significant tensile stress of even up to 500 MPa are met. This 
field of tensile stresses, which is attributed to the initial WRS field, is interrupted 
by the compressive stresses introduced with HFMI. The redistribution of RS 
through the HFMI deformation in the area of the weld toe is becoming evident. 
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Figure 125: The applied mesh and RS contours of the model A3 inside and near the HFMI groove – Section at 
the middle of the investigated component – Stresses are given in MPa: a) Transverse; b) Longitudinal 
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S355 Specimens Treated with a Pin of 4 mm Diameter 

An overview of the numerical investigations regarding the treatments of the S355 
fillet welds with a 4 mm diameter HFMI pin is given in Table 49. Four models were 
solved during the present investigation, two neglecting and two considering the 
viscosity of the material. Model B1 neglected the WRS, while B3 introduced a rel-
atively deeper trace. B2 and B4 both considered the WRS and simulated the HFMI 
groove with better accuracy.  

The simulated transverse RS profiles on the surface of the fillet welds and per-
pendicular to the HFMI groove are presented along with the respective measure-
ments in Figure 126. Although a significant quantitative deviation is met between 
the two measurement series, they both produce qualitatively similar results. 
Compressive RS are met in both cases on all the measurement points and the 
peak stress is located at the boundaries of the HFMI groove at a proximity of ap-
proximately 1.5 mm from the weld toe. Peak stress of approximately -500 MPa is 
measured in both cases. Inside the HFMI groove though, a deviation of almost up 
to 300 MPa is documented.  

Table 49: FE Analyses of the HFMI treatment on fillet welds of S355 with a pin diameter of 4 mm 

Model Material  
behaviour WRS Step  

[mm] 

Impact  
velocity  

[m/s] 

Number  
of passes  

[-] 

Maximum 
groove depth 

[mm] 

Vertical  
displacement 
at the weld 

toe 

[mm] 

B1 non-viscous neglected 0.15 4.2 3 0.29 0.15 

B2 non-viscous considered 0.15 3.5 3 0.19 0.06 

B3 viscous considered 0.15 4.2 3 0.22 0.07 

B4 viscous considered 0.15 4.2 2 0.17 0.05 

On the contrary, all simulated RS profiles, which are qualitatively similar with each 
other, exhibit a peak stress at the middle of the HFMI groove. Models B1, B3 and 
B4 significantly overestimate the RS inside the treatment area. Nevertheless, as 
it can be seen from Table 47, the simulated treatment of B3 introduces a much 
deeper HFMI groove than the real one and such a significant deviation of the RS 
profile is expected. The non-viscous material model B1 predicts with very good 
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preciseness the measured RS inside the HFMI groove as it coincides with the sec-
ond measurement series. Nevertheless, as the distance from the weld toe is get-
ting larger, the model underestimates significantly the measured RS with a devi-
ation of even up to 250 MPa. The strain-rate dependent model B4 on the 
contrary, lies sufficiently close to the measured RS away from the weld toe, de-
spite the fact that the RS inside the HFMI trace are significantly overestimated.  

 
Figure 126: Simulated and measured transverse RS profiles on the surface of the S355 specimen treated with a 
pin of 4 mm diameter, perpendicular to the HFMI groove – Measurements from [146] 

The simulated transverse and longitudinal RS profiles in depth direction are pre-
sented along with the respective measurements in Figure 127 and Figure 128. In 
both cases, all simulated RS profiles match qualitatively the measured ones, being 
in the compressive regime near the surface and passing to the tensile one after a 
significant depth of approximately 3 mm. Hence, significant quantitative devia-
tions are found in most cases.  

In the case of the transverse RS (Figure 127) the non-viscous models lie closer to 
the measured profile near the surface, while those considering strain rate de-
pendency overestimated significantly the magnitude of the RS at this area. None-
theless, from a depth of 2 mm and deeper the strain-rate dependent models B3 
and B4 seem to simulate the measured RS profiles with high accuracy, modelling 
with preciseness even the transition point between the compressive and tensile 
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zones. Still, the non-viscous material models lie much closer to the measured pro-
file near the surface, overestimating the magnitude of the compressive RS at a 
larger depth. Therewith, the transition from the compressive to the tensile area 
is shifted deeper. The preciseness of the simulated transverse RS near the surface 
though, where crack initiation takes place, has to be considered as predominant 
of the appropriate modelling approach. From this point of view, the non-viscous 
model B2, which considered the WRS, exhibits the best agreement, with an over-
all deviation of up to 120 MPa or smaller. Still, the preciseness of this analysis is 
less in comparison to the above-presented case of single-pass treatment with a 
pin of 3 mm diameter simulated by model A3. 

In the case of the longitudinal RS (Figure 128) the non-viscous models underesti-
mate the compressive measured RS overall, with the largest deviation of almost 
200 MPa met for B2 near the surface. The viscous models and especially B3 pre-
dict with sufficient preciseness the RS in the 1st mm near the surface, but as well 
underestimate the RS at larger depth.  

 
Figure 127: Simulated and measured transverse RS profiles in depth direction at the weld toe of the S355 spec-
imen treated with a pin of 4 mm diameter, at the middle of the specimen – Measurements from [146] 

-800
-700
-600
-500
-400
-300
-200
-100

0
100
200
300

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Tr
an

sv
er

se
 R

S 
[M

Pa
]

Distance from surface [mm]

Measurements B1
B2 B3
B4



5.4 Fillet Welds 

201 

 
Figure 128: Simulated and measured longitudinal RS profiles in depth direction at the weld toe of the S355 
specimen treated with a pin of 4 mm diameter, at the middle of the specimen – Measurements from [146] 

Exemplary, the longitudinal and transverse RS contours of the model B2 below 
the contact surface at a section at the middle of the investigated component and 
perpendicular to the introduced HFMI groove are presented in Figure 129. In the 
case of the transverse RS the compressive zone underneath and around the con-
tact surface is becoming evident. According to initial expectations, the largest 
compressive RS are approximately 650 MPa and slightly lower than the local yield 
stress at the HAZ. They are met in an elliptical area underneath the contact sur-
face. Overall, the compressive stresses do not exceed the yield stress of the ma-
terial. Away from the treatment trace, lower tensile RS are met without signifi-
cant peaks. On the contrary, high longitudinal stresses of up to 1400 MPa are met 
on the top layer elements underneath the contact surface once again, as in the 
case of a treatment with a pin of 3 mm diameter. Nevertheless, the RS in the rest 
of the compressive zone are as well approximately equal to the real yield stress 
of the material in the HAZ. The tensile stresses away from the treatment zone 
though, are lower in this case. The more significant redistribution of RS, which is 
met in this case, is attributed to the wider HFMI groove that is introduced by the 
wider HFMI pin and the higher number of treatment passes. 
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Figure 129: RS contours of the model B2 inside and near the HFMI groove – Section at the middle of the  
investigated component, stresses are given in MPa: a) Transverse; b) Longitudinal 
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S960 Specimens Treated with a Pin of 3 mm Diameter 

An overview of the numerical investigations regarding the single-pass treatments 
of the S960 fillet welds with a 3 mm diameter HFMI pin is given in Table 50. Four 
different models were considered in the present investigation, three neglecting 
and one considering the material’s viscosity. Model C2 due to the larger assumed 
step of 0.2 mm between consecutive impacts, introduced an unrealistically shal-
low HFMI groove, while C1 neglected WRS. Therefore, these two models were 
expected to exhibit significant deviation from the measured RS. The HFMI groove 
in the present case had an average half width of 1 mm.  

The simulated transverse RS profiles on the surface of the fillet welds and per-
pendicular to the HFMI groove are presented along with the respective measure-
ments in Figure 130. A deviation of 100 MPa or less was met between the two 
measurement series for the whole measurement length, as they produce similar 
results both qualitatively and quantitatively. Compressive RS are met in both 
cases on all measurement points and the peak stress is met outside the boundary 
of the HFMI groove at a proximity of 2 mm and 3 mm from the weld toe. Peak 
stress of approximately -300 MPa is measured in both cases. Inside the HFMI 
groove though, lower stresses are documented lying close to zero at its middle.  

Simulated RS profiles C1 - C3 produce results qualitatively similar to each other 
and with the measured profiles. They all exhibited lower stress inside the HFMI 
groove and a peak stress at approximately 2.5 mm away from the weld toe. 
Model C3 approached the measured RS profile as well with high preciseness, 
showing a deviation of less than 100 MPa from the second measurement all along 
the measurement length. Models C1 and C2 as expected exhibited less accuracy 
than the model C3. Regarding the 4th carried out analysis C4, once again the in-
troduction of strain-rate dependency in the considered material model led to a 
larger deviation between measurements and simulation results and even quali-
tative discrepancies. 
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Table 50: FE Analyses of the single-pass HFMI treatment on fillet welds of S960 with a pin diameter of 3 mm 

Model Material  
behaviour WRS Step [mm] 

Impact  
Velocity  

[m/s] 

Maximum 
groove 
depth 

[mm] 

Vertical  
displace-
ment at 
the weld 

toe 

[mm] 

C1 non-viscous neglected 0.1 4.2 0.13 0.04 

C2 non-viscous considered 0.2 4.2 0.12 0.01 

C3 non-viscous considered 0.1 4.2 0.13 0.04 

C4 viscous considered 0.1 4.2 0.09 0.01 

 

 
Figure 130: Simulated and measured transverse RS profiles on the surface of the S960 specimen, perpendicular 
to the HFMI groove – Measurements from [146] 

The simulated transverse and longitudinal RS profiles in depth direction are pre-
sented along with the respective measurements in Figure 131 and Figure 132. In 
the case of the transverse RS, all numerical models produced profiles qualitatively 
similar with each other and with the measured one. According to the measure-
ments, compressive RS are met in the first 1.2 mm underneath the surface chang-
ing to tensile for larger depths. Simulated profiles tend to shift from the compres-
sive to the tensile regime at around 1.7 mm to 2 mm. Once again, analysis C3 
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considering WRS but neglecting the strain-rate dependency estimated the meas-
ured RS with satisfying preciseness. Significant deviation of 110 MPa is met only 
at a depth of 1.5 mm or at depths larger than 3 mm. Still, the agreement of the 
model with the measured stresses near the surface is very good.  

In the case of the longitudinal RS (Figure 131), all numerical models produce pro-
files qualitatively similar with each other and with the measured as well.  In all 
cases, only compressive stresses are introduced in the first 3 mm underneath the 
contact surface. As in the previous analyses series B1-B4, the numerical models 
tend to overestimate the depth of the point, where transition from compression 
to tension takes place. Still, this time the non-viscous model exhibits in the case 
of the longitudinal RS better agreement with the measurements. A significant de-
viation of 100 MPa is met only at a depth between 1.5 mm and 2.5 mm. Consid-
eration of viscosity in model C4 this time led to no overestimation of the RS near 
the surface and the analysis produced quite similar results with C3.  

 
Figure 131: Simulated and measured transverse RS profiles in depth direction at the weld toe of the S960 spec-
imen treated with a pin of 3 mm diameter, at the middle of the specimen – Measurements from [146] 
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Figure 132: Simulated and measured longitudinal RS profiles in depth direction at the weld toe of the S960 
specimen treated with a pin of 3 mm diameter, at the middle of the specimen – Measurements from [146] 

Exemplary, the longitudinal and transverse RS contours of the model C3 below 
the contact surface at a section at the middle of the investigated component and 
perpendicular to the introduced HFMI groove are presented in Figure 130. As in 
the case of the specimens of S355, the transverse RS field validates the initial ex-
pectations, with compressive stresses inside, around and underneath the HFMI 
groove, which are counterbalanced by tensile stresses further away from the con-
tact surface. Moreover, the peak of RS is met as expected at a depth of around 
0.8 mm underneath the contact surface. On the contrary, the peak of the longi-
tudinal compressive RS is met on the top layers underneath the contact surface, 
as in the previous cases. Still, higher RS are met overall in comparison to the case 
of S355 due to the higher yield stress of the material. The compressive and longi-
tudinal peak stress lie around 1000 and 1750 MPa respectively. 
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Figure 133: RS contours of the model C2 inside and near the HFMI groove – Section at the middle of the inves-
tigated component, stresses are given in MPa: a) Transverse; b) Longitudinal 
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S960 Specimens Treated with a Pin of 4 mm Diameter 

An overview of the numerical investigations regarding the single-pass treatments 
of the S960 fillet welds with a 4 mm diameter HFMI pin is given in Table 51. Four 
different models were considered in the present investigation, two neglecting 
and two considering the material’s viscosity. A larger step of 0.2 mm between 
consecutive impacts and a higher impact velocity of 4.2 m/s were adopted in 
models D1 and D3, while in D2 and D4 the respective values were 0.1 mm and 3.5 
m/s. Comparable HFMI groove depths were introduced between the models that 
considered same material behaviour (D1-D2 and D3-D4).  

Nevertheless, as it is becoming evident from Figure 134, Figure 135 and Figure 
136 no numerical model in this series simulates with desired preciseness the 
measured RS profiles. In the present investigation, all analyses agree qualitatively 
with the measured transverse profiles especially on the surface, where a peak is 
met at a distance of 3 mm from the weld toe in all cases. Regarding the longitu-
dinal RS, numerical models do not approach the measured ones not even quali-
tatively. The measured profile exhibits a convex ellipsoid shape while the simu-
lated ones a concave. Once again, numerical models overestimate the depth of 
transition from compression to tension both for longitudinal and transverse RS, 
although in this case this overestimation is more significant and almost up to 2 
mm.  

Models D1 and D3 exhibit very good quantitative agreement overall with the 
measurements on the surface (especially D1, see Figure 134) as well, excluding 
though the measurements at the middle of the groove, where a deviation of ap-
proximately 140 MPa is met. Both models predict with high accuracy the longitu-
dinal and transverse RS in the first 0.5 mm below surface but significantly deviate 
from the measured profiles on larger depths. Models D2 and D4 on the contrary, 
overestimate the compressive stress in all cases. As the agreement of all numeri-
cal models is considered non-satisfying in the present case, no contour plot is 
presented for any of the models of the current investigation.  
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Table 51: FE Analyses of the HFMI treatment on fillet welds of S960 with a pin diameter of 4 mm 

Model Material  
behaviour WRS Step 

[mm] 

Impact  
velocity  

[m/s] 

Number  
of  

passes  
[-] 

Maximum 
groove 
depth 

[mm] 

Vertical  
displacement 
at the weld 

toe 

[mm] 

D1 non- 
viscous considered 0.2 4.2 3 0.25 0.08 

D2 non- 
viscous considered 0.1 3.5 3 0.22 0.06 

D3 viscous considered 0.2 4.2 3 0.11 0.00 

D4 viscous considered 0.1 3.2 3 0.12 0.01 

 
Figure 134: Simulated and measured transverse RS profiles on the surface of the S960 specimen treated with a 
pin of 4 mm diameter, perpendicular to the HFMI groove – Measurements from [146] 
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Figure 135: Simulated and measured transverse RS profiles in depth direction at the weld toe of the S960 spec-
imen treated with a pin of 4 mm diameter, at the middle of the specimen – Measurements from [146] 

 
Figure 136: Simulated and measured longitudinal RS profiles in depth direction at the weld toe of the S355 
specimen treated with a pin of 4 mm diameter, at the middle of the specimen – Measurements from [146] 
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5.4.7 Discussion and Conclusions 

A series of numerical investigations regarding the HFMI treatment on the fatigue 
test specimens of the project HFH-Simulation [146] was carried out. The results 
of the present numerical investigations were compared with the respective meas-
urements on the real specimens of this project. The RS were measured on the 
surface, perpendicular to the HFMI groove, and in depth direction, underneath 
the weld toe, with X-ray and neutron diffraction respectively. Details regarding 
the measurement can be found in [144] and [146]. Four different specimens were 
investigated, two of S355 and two of S960. In each case, one specimen was ham-
mered with a pin of 3 mm and a single-pass treatment and one with a pin of 4 
mm and two- or three-pass treatment, each corresponding respectively to HFMI 
treatments with HiFIT [167] and PITec [44]. Representative values of impact ve-
locity taken from the measured range for each device were applied. A series of 
investigations was carried for each specimen in order to evaluate the significance 
of various aspects of the modelling approach on the preciseness of the simulated 
RS.  

The present modelling approach predicted with sufficient accuracy in most of the 
above presented cases the measured RS, when WRS were considered and viscos-
ity of the material was neglected (see models A3, B2, C3). Satisfying qualitative 
and quantitative agreement between numerically and experimentally extracted 
RS profiles in depth direction was met overall for the profiles apart from the case 
of the S960 specimen treated with a pin of 4 mm diameter. In most of the rest 
cases and especially for the first millimeters underneath the contact surface 
where fatigue cracks initiate, the deviation between measured and simulated RS 
was always lower than 10 % of the investigated materials yield stress, fulfilling in 
this case the validity criterion that was set at the beginning of the present disser-
tation.  

Regarding the RS profiles on the surface, some cases of non-negligible discrepan-
cies between measurements and FE analysis were found. This could be attributed 
to the simplified simulation of contact under the adopted Coulomb model (Eq. 
(28)), especially when it is considered that these discrepancies were met mostly 
inside the contact area. Nonetheless, this effect seems to be significantly localized 
on the contact surface and does not seem to influence the introduced RS field. 
This later statement is further supported by the above-described good agreement 
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of simulated and measured RS profiles in depth direction, which anyway depict 
better the three dimensional stress state of the RS. The measured and simulated 
RS are averaged in this case inside the three-dimensional measured gauge vol-
ume, while for surface stresses a two-dimensional averaging area is applied.  

Based on the evaluation of the above-presented investigations regarding the fillet 
welds the following conclusions can be drawn: 

� A discretization with mesh finer than 1/40 of the pin’s diameter for the pre-
sent element type and for a distance of at least 1.3 x Dpin away from the 
weld toe to all directions is necessary for the precise simulation of HFMI. If 
contact surfaces for a transition to a volume with coarser are mesh dictated 
as in the present case, the outer coarse mesh should not be larger than 3.5 
times the element size of the fine mesh. It has to be mentioned at this point, 
that small separation or penetration of the nodes on the contact surface 
between the volumes of fine and coarse mesh was observed in a few, indi-
vidual cases without having any obvious effect on the simulated RS. No 
stress concentration or discontinuity was observed when the above-men-
tioned requirements were met. A further refinement was anyway not pos-
sible in any case due to computational restrictions. 

� Modelling a travelling step of 0.2 mm between consecutive impacts, has 
been proven insufficient in the present case of a velocity-based simulation. 
Denser overlap of 0.15 mm to 0.1 mm had to be adopted depending on the 
materials parameters and the number of passes so that a realistic depth of 
the HFMI groove could be modelled under the present impact velocities. 
The reason for this discrepancy in comparison to the previously investigated 
case of parent material specimens was the local geometry of the fillet welds 
at the weld toe. The increased friction force in the current analyses due to 
the larger contact surface during the penetration of the HFMI pin to the 
treated material has to be accounted for the necessity of denser impacts. 

� For identical material modelling different pairs of impact velocity and trav-
elling step may have introduced grooves of approximately similar depths 
but the simulated transverse RS profiles deviate with each other signifi-
cantly (see for example models D1 and D2). Therefore, the density of the 
impacts exhibits a significant influence on the modelled transverse RS as it 
was proposed earlier in [145]. Hence, a limitation to the assumption of a 
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step larger than the real for the reduction of the computational time, a sim-
plification that was initially based on the experimental results from [44], is 
met as expected.  

� Comparing analyses, which assumed identical non-viscous material proper-
ties and overlap of impacts (B1 with B2 or B3 with B4 etc.), the significance 
of modelling with preciseness the depth and in extension the geometry of 
the HFMI groove, is becoming evident. When no further information is 
available, modelling a HFMI groove of 0.15 mm for S355, i.e. the mean value 
of the range (0.10 mm - 0.20 mm) proposed by IIW Recommendations for 
the quality assurance of the HFMI treatment [118], and a groove of 0.125 
mm for S960 in order to compensate for the harder material is recom-
mended for practical applications.  

� The significant deviation of the simulated RS in cases between pairs of iden-
tical models, which either neglected or considered the WRS (A1 and A3 etc.) 
and the significantly better results of the latter exhibit the significance of  
considering WRS during a HFMI simulation. Ergo, any assumption that WRS 
and the respective plastic strains are negligible in comparison to those in-
troduced by HFMI and they should not be considered during its modelling 
is not valid. 

� Similarly to the case of modelling the HFMI treatment of parent material 
specimens of S690 and S960, the consideration of the material’s viscosity in 
the present investigations led to overestimation of the compressive RS and 
a significant deviation between modelled and measured RS profiles. The 
previously stated assumption that for the high strength materials the strain 
rate dependency can be lower under the present deformation mode than 
that extracted by tensile tests at high strain rates is emphasized again at 
this point. It has to be underlined that even for the present S355 specimens, 
the higher yield stress of the HAZ was considered which is at the same order 
of magnitude with that of the parent material S690 (713 MPa and 734 MPa). 
Nonetheless, this incompatibility could be attributed to the simplicity of the 
applied Cowper-Symonds model (Eq. (12)), which only scales the yield stress 
based on the plastic strain rate and not the hardening behaviour as well. It 
is possible, that with a more elaborate material model (Chaboche model 
[22], see [143] for instance) an accurate simulation of RS with consideration 
of the materials viscocity could be possible. Still, the good agreement of the 
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current analyses considering a non-viscous model, when the impact density 
and velocity and the WRS are modelled accurately, constitutes the respec-
tive models valid and allows for the neglection of strain rate dependency, 
at least for the currently investigated materials and especially for practical 
applications. 

Based on the evaluation of the above-presented investigations, which satisfied 
the accuracy criteria of the present study and are considered valid, i.e. the non-
viscous material models with consideration of WRS and accurate simulation of 
the HFMI groove the following conclusions were drawn: 

� The RS contours bellow the HFMI groove validate the theoretical distribu-
tions. The stresses around and near the HFMI trace are compressive and 
they are counterbalanced by outer tensile stresses. The peak compressive 
transverse stresses are met in an elliptical area less than a millimetre 
deeper underneath the treatment surface and they are approximately 
equal to the yield stress of the material under treatment, i.e. the yield stress 
of the HAZ.  On the contrary, peak longitudinal RS are met on the top layer 
elements underneath the treatment surface and they are significantly 
higher than the HAZ yield stress (80 %  to 100 % higher). These peaks could 
not be depicted by the measurements in the depth direction due to the 
large gauge volumes, which were applied during measurements (2 mm x 2 
mm x 2 mm and 5 mm x 2 mm x 2 mm for longitudinal and transverse direc-
tion respectively). As the average of the RS inside these volumes is extracted 
at each measurement point, the finer fluctuations of the RS profiles that can 
be seen on the RS contour plots could not be measured. 

� The above-stated assumption regarding the scaling-down of the compo-
nent during FE simulation of the HFMI treatment and the proposed require-
ments regarding the modelled HFMI treatment length and the distance 
from the edges of the component are validated. The initial assumption that 
the local nature of the HFMI treatment allows for the precise simulation of 
the RS field of a large HFMI-treated component on a small numerical model 
stands and is proposed for practical applications. 

� The current valid models show better agreement in the case of a single-pass 
treatment than in the case of multiple treatment passes (A3, C3 vs B2), alt-
hough sufficient accuracy was met in all cases for the purpose of the present 
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study. The influence of cyclic plasticity is accounted for the reduced precise-
ness in the latter case. As it was proposed above for the consideration of 
viscosity, further improvement could be achieved by adoption of more elab-
orate material modelling such as multilinear σ-ε constitutive relation and 
mixed hardening behaviour. The last one has already been proven to pro-
vide more accurate results than kinematic hardening in previous studies 
(see [45], [127]).  

Finally, the deviation in some cases between the two series of measurements, 
which were carried out on the surface of the specimens, reveals the complexity 
of the subject of RS. These measurements, which were carried out parallel to each 
other at the centre of the specimens and only some mm away from each other 
on macroscopically identical locations, should be theoretically under the same 
stress state. Still, they exhibit deviations of up to 10 % of the materials yield limit. 
This observation on the one side validates the suitability of the thumb rule of 10 % 
agreement between measurements and FE analyses of RS as a criterion for the 
validity of the latter one. On the other side, it is becoming evident that local ef-
fects which cannot be easily included in a FE analysis, such as stress concentration 
due to local geometrical anomalies or localized changes of hardness, can have a 
small effect of this order of magnitude on the RS state. 

5.5 Summary and Open Questions Regarding HFMI 
Simulation 

A series of FE analyses regarding the HFMI treatment of parent material and 
welded specimens were carried out in the framework of the present disserta-
tion’s last chapter. In the case of parent material specimens, steels S355, S690 
and S960 were investigated. In the case of the fillet welds, only the first and the 
last ones were investigated. In both cases, measurements of RS were applied for 
the validation of the results based on the thumb rule of 10 %, as it was set at the 
beginning of the current study. Two different approaches for modelling the 
boundary conditions regarding the movement of the HFMI pin were investigated, 
a displacement- and a velocity-based. A new, more precise evaluation of a previ-
ous displacement-based study of the author have shown that this method as well 
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can provide sufficient results. Nonetheless, the velocity-based approach was pre-
ferred in most cases, as it lies closer to physical reality.  

During the validation of the present modelling approach, significant conclusions 
were drawn regarding the predominant aspects of the HFMI modelling. In most 
cases, neglecting the strain-rate dependency of the material in the FE analyses 
led to a very good agreement between modelled and measured RS profiles. In-
troducing viscosity led to increased accuracy only in the simulation of the parent 
material S355, the only case where the treated material would not be classified 
as high strength steel. On the contrary, it has been shown that during modelling 
of HFMI treatment on welded components, WRS should be considered as input 
parameter. Otherwise, significant overestimation of the compressive RS field af-
ter completion of the treatment can take place and therefore, contribute to a 
non-conservative estimation of the investigated components fatigue life. 

Further investigations on an even more elaborate material modelling, which 
could provide an even better agreement between measured and simulated RS, is 
strongly recommended in future work [143]. Finally, the present validated mod-
elling approach should be applied as a base for a sensitivity analysis regarding the 
setup parameters of the HFMI treatment such as HFMI groove depth, impact ve-
locity, travelling velocity, pin diameter, angle of application etc. in an effort to 
maximize the magnitude of the introduced compressive RS and in extension the 
positive effect of the HFMI treatment on the fatigue life of the welded compo-
nents. 
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6 Overall Discussion 

Goal of the present doctoral dissertation was the investigation of the possibilities 
regarding the estimation of RS introduced by welding and the HFMI treatment by 
means of FE analysis. Initial intention was the establishment of a validated ap-
proach, which would estimate with sufficient preciseness the RS field, taking into 
consideration all the predominant aspects that would have a significant influence. 
Nevertheless, it was considered fundamental that the established approach could 
be reproduced in practice by a structural engineer with only basic knowledge of 
material science if possible. In order to fulfil this latter condition, it was required 
by the author to investigate in depth not only practical but special aspects of the 
simulation, such as elaborate material modelling or boundary conditions model-
ling influence of numerical effects, behaviour of various materials etc.  Moreover, 
during the realization of the present dissertation, various relevant aspects regard-
ing the investigated subject came up, which were not included in the initial work-
ing plan and were necessary for the fulfilment of the research goal. It was be-
lieved though that their investigation would widen the current knowledge on the 
field of RS simulation.  

A straightforward engineering modelling approach was developed and proposed 
for the consideration of microstructural transformations during welding. Sophis-
ticated aspects of material science like phase transformations or TRIP were taken 
into consideration, based on new or existing practical solutions, without changing 
the FE formulations. The level of the method’s preciseness can be adjusted de-
pending on the accuracy desired by the modeller in each investigated case. Under 
its current form the approach provided significantly better agreement with meas-
ured RS profiles than previous models, fulfilling the set goal of the present disser-
tation. The established method can act either as a validation base for existing 
measured welds or predictively for new ones and is applicable for other materials 
as well. 

Similarly and based on the same principles regarding the applied methodology of 
the complex investigated subjects and the straightforwardness of the final estab-
lished model, an approach for the simulation of HFMI was developed as well. A 
good agreement between measured and simulated RS profiles with the present 
approach was met once again. The influence of several simulation’s aspects on 
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the modelled RS profiles was investigated and conclusions, which can act as a 
guide for practical approach, were drawn.  

For the calibration of the material models, which were applied in the numerical 
investigations, a series of drop tests was conceived and implemented for the es-
timation of the material’s behaviour under the deformation mode introduced by 
HFMI. Useful conclusions were drawn and the method seems promising, although 
difficulties regarding the evaluation of the results were encountered. 

Future work on the individual parts of the present study has been proposed in 
the respective chapters. In the next, final chapter of the current manuscript, pos-
sibilities regarding the future application of the present approach in the frame-
work of a holistic estimation of a HFMI-treated weldment’s fatigue life are dis-
cussed. 
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7 Future Work on Numerical 
Investigations and Fatigue 

If fatigue of steel and metallic components in general could be investigated in a 
holistic approach it would constitute a multidisciplinary subject. Of course, fa-
tigue tests accommodated by appropriate, modern measurements and monitor-
ing enable not only a clear overview of the total fatigue life but precise infor-
mation about the regimes of crack initiation and growth. Other than in material 
science, in civil engineering the describing models remain in most cases phenom-
enological and are calibrated based on that data. On the contrary, validated nu-
merical analyses can enable a detailed description of the physical phenomena 
themselves. Numerical investigations regarding the prediction of fatigue life can 
be tracked in studies from different subjects of modern science though. Suitable 
FE analyses can predict the crack initiation at metallic crystalline grain level and 
they are already applied in the field of material science (see [14] for instance). In 
the state-of-the-art investigations of mechanical components, a damage tolerant 
approach is adopted and an estimation of the propagation of existing fatigue 
cracks is carried out based on fracture mechanics (see for instance [123] or [129]). 
Such investigations are common in modern mechanical engineering. Auxiliary to 
this fracture mechanics models, the evolution of the WRS simulation methods in 
the last years allows for consideration of the stress fields on the investigated 
crack’s tip, which can increase significantly their preciseness. Similarly, the pre-
sent study shows that a simulation of the RS field introduced by HFMI is possible. 
Until today though, the restricted computational capacity has been the main rea-
son for breaking down the phenomena of fatigue into different regimes. Still, the 
increase in computational power will possibly allow in the upcoming years the 
synergy of the above-mentioned numerical investigations, up to the composition 
of a holistic simulation approach. Such an approach could predict the full fatigue 
life of a real scale component from the crack initiation at the grain level up to 
fracture. The use of sub-modelling techniques could further accelerate this com-
position. Therewith, an optimal design for each unique mechanical component 
against fatigue would be enabled leading to a significant upgrade of engineering 
efficiency. 
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Inspection Certificates 

S355 from project HFH-Simulation 
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S690 from project HFH-Simulation 
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S960 from project HFH-Simulation 
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Welding Procedure Specifications 

S355 from project HFH-Simulation 
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S690 – S960 from project HFH-Simulation 
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CMM 

HT36 

CMM 2 (Tmax = 950 oC, t85 = 10 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

950 63 % 37 % 0 % 0 % 0 % 53 38 38 38 38 43 18 

520 63 % 37 % 0 % 0 % 0 % 114 177 363 483 175 152 18 

320 63 % 7 % 0 % 30 % 0 % 148 206 445 569 270 313 15 

270 63 % 0 % 0 % 30 % 7 % 111 250 485 612 188 307 15 

20 63 % 0 % 0 % 30 % 7 % 200 258 490 620 350 411 15 

 

CMM 3 (Tmax = 1150 oC, t85 = 10 s) 

 Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

1150 31 % 69 % 0 % 0 % 0 % 29 14 14 14 15 25 21 

520 31 % 69 % 0 % 0 % 0 % 114 177 363 483 175 133 21 

320 31 % 14 % 0 % 55 % 0 % 148 206 445 569 270 350 16 

270 31 % 0 % 0 % 55 % 14 % 111 250 485 612 188 410 14 

20 31 % 0 % 0 % 55 % 14 % 200 258 490 620 350 465 14 

 

CMM 4 (Tmax = 1350 oC, t85 = 10 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] 
PM AY FE ,PE BA MA AY FE, PE BA MA PM 

1350 0 100 % 0 % 0 % 0 % 5 5 5 5 5 5 24 

520 0 100 % 0 % 0 % 0 % 114 177 363 483 175 114 24 

320 0 20 % 0 % 80 % 0 % 148 206 445 569 270 385 16 

270 0 0 % 0 % 80 % 20 % 111 250 485 612 188 510 14 

20 0 0 % 0 % 80 % 20 % 200 258 490 620 350 516 14 
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CMM 5 (Tmax = 950 oC, t85 = 35 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

950 63 % 37 % 0 % 0 % 0 % 53 38 38 38 38 43 18 

580 63 % 37 % 0 % 0 % 0 % 96 147 301 417 106 102 18 

560 63 % 33 % 4 % 0 % 0 % 96 157 322 439 150 133 17 

410 63 % 0 % 4 % 33 % 0 % 98 197 435 560 244 304 14 

20 63 % 0 % 4 % 33 % 0 % 200 258 490 620 350 411 15 

 

CMM 6 (Tmax = 1150 oC, t85 = 35 s) 

 Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

1150 31 % 69 % 0 % 0 % 0 % 29 14 14 14 15 25 21 

580 31 % 69 % 0 % 0 % 0 % 96 147 301 417 106 99 21 

560 31 % 61 % 8% 0 % 0 % 96 157 322 439 150 118 20 

410 31 % 0 % 8% 61 % 0 % 98 197 435 560 244 356 14 

20 31 % 0 % 8% 61 % 0 % 200 258 490 620 350 427 14 

 

CMM 7 (Tmax = 1350 oC, t85 = 35 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

1350 0 100 % 0 % 0 % 0 % 5 5 5 5 5 5 24 

580 0 100 % 0 % 0 % 0 % 96 147 301 417 106 96 24 

560 0 88% 12 % 0 % 0 % 96 157 321,6 439 150 103 23 

410 0 0 % 12 % 88% 0 % 98 1967 435 561 244 406 14 

20 0 0 % 12 % 88% 0 % 200 258 490 620 350 462 14 
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S355 of single-pass butt welds 

CMM 2 (Tmax = 826 oC, t85 = 32 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

826 69 % 31 % 0 % 0 % 0 % 59 67 71 123 53 55 13 

660 69 % 31 % 0 % 0 % 0 % 91 102 196 278 116 108 13 

620 69 % 25 % 6 % 0 % 0 % 98 125 252 356 150 136 13 

480 69 % 2 % 6 % 23 % 0 % 144 190 395 517 280 299 12 

20 69 % 0 % 6 % 23 % 2 % 245 258 490 620 355 386 12 

 

CMM 3 (Tmax = 931 oC, t85 = 32 s) 

 Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

931 37 % 63 % 0 % 0 % 0 % 40 40 40 55 30 36 15 

660 37 % 63 % 0 % 0 % 0 % 91 102 196 278 116 100 15 

620 37 % 51 % 12 % 0 % 0 % 98 125 252 356 150 121 14 

480 37 % 4 % 12 % 47 % 0 % 144 190 395 517 280 318 12 

20 37 % 0 % 12 % 47 % 4 % 245 258 490 620 355 417 12 

 

CMM 4 (Tmax = 1276 oC, t85 = 32 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] 
PM AY FE ,PE BA MA AY FE, PE BA MA PM 

1276 0 % 100 % 0 % 0 % 0 % 5 5 5 5 5 0 16 

660 0 % 100 % 0 % 0 % 0 % 91 102 196 278 116 91 16 

620 0 % 81 % 19 % 0 % 0 % 98 125 252 356 150 103 15 

480 0 % 6 % 19 % 75 % 0 % 144 190 395 517 280 341 12 

20 0 % 0 % 19 % 75 % 6 % 245 258 490 620 355 454 12 
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CMM 5 (Tmax = 826 oC, t85 = 85 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

826 67 % 33 % 0 % 0 % 0 % 59 67 71 123 64 62 13 

690 67 % 33 % 0 % 0 % 0 % 85 84 154 220 91 89 13 

660 67 % 25 % 8% 0 % 0 % 91 102 196 278 116 108 13 

620 67 % 23 % 10 % 0 % 0 % 98 125 252 356 150 136 13 

500 67 % 2 % 10 % 21 % 0 % 121 187 140 505 261 226 12 

 

CMM 6 (Tmax = 931 oC, t85 = 85 s) 

 Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM AY FE ,PE BA MA AY FE, PE BA MA PM 

931 33 % 67 % 0 % 0 % 0 % 40 40 40 55 51 44 15 

690 33 % 67 % 0 % 0 % 0 % 85 84 154 220 91 87 15 

660 33 % 51 % 16 % 0 % 0 % 91 102 196 278 116 101 14 

620 33 % 47 % 20 % 0 % 0 % 98 125 252 356 150 121 14 

500 33 % 4 % 20 % 43 % 1 % 121 187 140 505 261 191 12 

 

CMM 7 (Tmax = 1276 oC, t85 = 85 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] 
PM AY FE ,PE BA MA AY FE, PE BA MA PM 

1276 0 % 100 % 0 % 0 % 0 % 5 5 5 5 171 5 16 

690 0 % 100 % 0 % 0 % 0 % 85 84 154 220 91 85 16 

660 0 % 75 % 25 % 0 % 0 % 91 102 196 278 116 93 15 

620 0 % 69 % 31 % 0 % 0 % 98 125 252 356 150 107 15 

500 0 % 0 % 31 % 68% 1 % 121 187 140 505 261 158 12 
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S355 of project HFH-Simulation 

CMM 2 (Tmax = 812 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

812 66 % 0 % 0 % 0 % 34 % 100 79 42 120 62 87 13 

713 66 % 0 % 0 % 0 % 34 % 153 86 73 264 81 128 13 

420 66 % 0 % 0 % 0 % 34 % 292 218 237 783 136 239 13 

200 66 % 0 % 0 % 31 % 3 % 353 285 271 880 200 514 12 

20 66 % 0 % 0 % 31 % 3 % 400 431 277 1008 245 586 12 

 

CMM 3 (Tmax = 877 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

877 33 % 0 % 0 % 0 % 67 % 65 57 29 78 49 55 15 

713 33 % 0 % 0 % 0 % 67 % 153 86 73 264 81 104 15 

420 33 % 0 % 0 % 0 % 67 % 292 218 237 783 136 188 15 

200 33 % 0 % 0 % 62 % 5 % 353 285 271 880 200 670 12 

20 33 % 0 % 0 % 62 % 5 % 400 431 277 1008 245 766 12 

 

CMM 4 (Tmax = 1205 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

1205 0 % 0 % 0 % 0 % 100 % 5 5 5 5 5 5 16 

713 0 % 0 % 0 % 0 % 100 % 153 86 73 264 81 81 16 

420 0 % 0 % 0 % 0 % 100 % 292 218 237 783 136 136 16 

200 0 % 0 % 0 % 92 % 8% 353 285 271 880 200 826 12 

20 0 % 0 % 0 % 92 % 8% 400 431 277 1008 245 947 12 

 

  



Appendix A – Investigated Materials 

253 

S690 of project HFH-Simulation 

CMM 2 (Tmax = 817 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

817 63 % 0 % 0 % 0 % 37 % 97 85 58 113 61 84 13 

719 63 % 0 % 0 % 0 % 37 % 150 94 101 246 79 124 13 

431 63 % 0 % 0 % 0 % 37 % 594 237 332 750 134 424 13 

200 63 % 0 % 0 % 34 % 3 % 676 312 386 853 200 722 12 

20 63 % 0 % 0 % 34 % 3 % 734 472 394 977 245 802 12 

 

CMM 3 (Tmax = 882 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

850 31 % 0 % 0 % 0 % 69 % 62 61 40 73 48 53 15 

719 31 % 0 % 0 % 0 % 69 % 150 94 101 246 79 101 15 

431 31 % 0 % 0 % 0 % 69 % 594 237 332 750 134 277 15 

200 31 % 0 % 0 % 63 % 6 % 676 312 386 853 200 762 12 

20 31 % 0 % 0 % 63 % 6 % 734 472 394 977 245 861 12 

 

CMM 4 (Tmax = 1208 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

1208 0 % 0 % 0 % 0 % 100 % 26 12 8 13 11 11 16 

719 0 % 0 % 0 % 0 % 100 % 150 94 101 246 79 79 16 

431 0 % 0 % 0 % 0 % 100 % 594 237 332 750 134 134 16 

200 0 % 0 % 0 % 92 % 8% 676 312 386 853 200 801 12 

20 0 % 0 % 0 % 92 % 8% 734 472 394 977 245 918 12 
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S960 of project HFH-Simulation 

CMM 2 (Tmax = 866 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

866 63 % 0 % 0 % 0 % 37 % 86 71 62 87 51 73 13 

719 63 % 0 % 0 % 0 % 37 % 208 99 139 259 79 161 13 

431 63 % 0 % 0 % 0 % 37 % 826 251 457 787 134 570 13 

200 63 % 0 % 0 % 34 % 3 % 940 331 531 895 200 903 12 

20 63 % 0 % 0 % 34 % 3 % 1021 500 542 1025 245 999 12 

 

CMM 3 (Tmax = 964 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

915 31 % 0 % 0 % 0 % 69 % 42 33 24 23 33 36 15 

719 31 % 0 % 0 % 0 % 69 % 208 99 139 259 79 119 15 

431 31 % 0 % 0 % 0 % 69 % 826 251 457 787 134 349 15 

200 31 % 0 % 0 % 63 % 6 % 940 331 531 895 200 871 12 

20 31 % 0 % 0 % 63 % 6 % 1021 500 542 1025 245 981 12 

 

CMM 4 (Tmax = 1257 °C, t85 = 4 s) 

Temp 

[oC] 

microstructure σyi [MPa] σy 

[MPa] 

ase 

[-] PM FE, PE BA MA AY PM FE, PE BA MA AY 

1257 0 % 0 % 0 % 0 % 100 % 5 5 5 5 5 5 16 

719 0 % 0 % 0 % 0 % 100 % 208 99 139 259 79 79 16 

431 0 % 0 % 0 % 0 % 100 % 826 251 457 787 134 134 16 

200 0 % 0 % 0 % 92 % 8% 940 331 531 895 200 839 12 

20 0 % 0 % 0 % 92 % 8% 1021 500 542 1025 245 963 12 
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Appendix B – FE Background 

Shape Functions of Applied Finite Elements 

shape functions of ANSYS Solid70  

C � Qx � |CÁ � �Q J ]� � �Q J �� � �Q J \� D CÂ � �Q J ]� � �Q J �� � �Q J \�D CÃ � �Q J ]� � �Q J �� � �Q J \� D CÄ � �Q J ]� � �Q J �� � �Q J \�D Cq � �Q J ]� � �Q J �� � �Q J \� D C� � �Q J ]� � �Q J �� � �Q J \�D CÅ � �Q J ]� � �Q J �� � �Q J \� D C· � �Q J ]� � �Q J �� � �Q J \�} 
 

shape functions of ANSYS 
Solid185 

(analogous for LS-DYNA 8-node 
hexahedron solid elements)  

a � Qx � |aÁ � �Q J ]� � �Q J �� � �Q J \� D aÂ � �Q J ]� � �Q J �� � �Q J \�D aÃ � �Q J ]� � �Q J �� � �Q J \� D aÄ � �Q J ]� � �Q J �� � �Q J \�D aq � �Q J ]� � �Q J �� � �Q J \� D a� � �Q J ]� � �Q J �� � �Q J \�D aÅ � �Q J ]� � �Q J �� � �Q J \� D a· � �Q J ]� � �Q J �� � �Q J \�} 
� � ;� � Æ�Á � �Q J ]�Ç (analogous to u) 

v � ;� � ÆvÁ � �Q J ]�Ç (analogous to u) 
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Research goal of the present work is the establishment of an efficient engineering 
approach, which will include straightforward but accurate simulation models, in order 
to estimate the residual stress fields of welded joints introduced during welding and 
their post-weld treatment with High Frequency Hammer Peening. A future evaluation 
of the residual stress influence on the fatigue life of the simulated components is 
therewith enabled. Validation of the simulations, for which supercomputing capabilities 
are deployed, is based on direct comparison of the estimated residual stress profiles 
with respective experimental measurements. The proposed simulation approach can be 
applied both for research purposes and in engineering practice. Although the present 
subject lies on the intersection of structural engineering, material science and compu-
tational mechanics, conclusions, which can act as a modelling guide for the structural 
engineering practice, are presented as well.
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