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In this thesis we adapt fundamental parts of the Graph Minors series of Robertson 
and Seymour for the study of matching minors and investigate a connection to the 
study of directed graphs. We develope matching theoretic to established results of 
graph minor theory:
We characterise the existence of a cross over a conformal cycle by means of a to-
pological property. Furthermore, we develope a theory for perfect matching width, 
a width parameter for graphs with perfect matchings introduced by Norin. here we 
show that the disjoint alternating paths problem can be solved in polynomial time 
on graphs of bounded width. Moreover, we show that every bipartite graph with 
high perfect matching width must contain a large grid as a matching minor. Finally, 
we prove an analogue of the we known Flat Wall theorem and provide a qualitative 
description of all bipartite graphs which exclude a fixed matching minor.
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Kurzfassung

Matchingminoren sind eine Spezialisierung des herkömmlichen Minoren-
begriffs für Graphen, die die Existenz und elementare strukturelle Eigen-
schaften von perfekten Matchings erhalten. Ein Teilgraph H eines Graphen
G heißt konform, wenn G und G −H perfekte Matchings besitzen und
ein Konten von Grad genau zwei heißt bikontrahierbar. Eine Bikontrak-
tion eines bikonrahierbaren Kontens ist die Operation bei der beide, mit
dem Knoten inzidenten, Kanten gleichzeitig kontrahiert werden. Ein
Matchinminor schließlich ist ein Graph H ′, der durch eine Reihe von
Bikontraktionen aus einem konformen Subgraphen des Graphen G her-
vorgeht. Ähnlich wie reguläre Minoren gewisse Eigenschaften von Graphen
beschreiben, so können Matching Minoren Eigenschaften von Graphen
mit perfekten Matchings beschreiben.
In der vorliegenden Arbeit werden fundamentale Teile des Graphminoren-
projekts von Robertson und Seymour für das Studium von Matching
Minoren adaptiert und Verbindungen zur Strukturtheorie gerichteter
Graphen aufgezeigt. Im Einzelnen entwickeln wir matchingtheoretische
Analogismen zu etablierten Resultaten des Graphminorenprojekts wie
folgt: Wir charakterisieren die Existenz eines Kreuzes über einem konfor-
men Kreis mittels topologischer Eigenschaften und schlussfolgern, dass
das Zwei-Pfade-Problem für alternierende Pfade in bipartiten Graphen
mit perfekten Matchings in Polynomialzeit lösbar ist. Weiter entwickeln
wir eine Theorie zu perfekter Matchingweite, einem Weiteparameter für
Graphen mit perfekten Matchings, der von Norine eingeführt wurde. Hier
zeigen wir, wie sich Matchigminoren und perfekte Matchingweite zu einan-
der verhalten, wir zeigen, dass das Disjunkte Alternierende Pfade Problem
auf bipartiten Graphen mit beschränkter Weite in Polynomialzeit lösbar
ist. Weiter zeigen wir, dass jeder bipartite Graph mit hoher perfekter
Matchingweite ein großes Gitter als Matchingminor enthalten muss, was
wir dann verwenden, um zu zeigen, dass das Erkennen von bipartiten
und planaren Matchingminoren in Polynimialzeit durchführbar ist. Wir
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erweitern die Erdős-Pósa Eigenschaft für Minoren auf Matchingminoren
in bipartiten Graphen und charakterisieren so alle Klassen beschränkter
perfekter Matchingweite. Schließlich vereinen wir alle diese Ergebnisse
zu einem Analogon des Flat Wall Theorem und geben eine qualitative
Beschreibung aller bipartiter Graphen an, die, für ein festes t ∈ N, den
Kt,t als Matchingminor ausschließen.
Parallel zu diesen Ergebnissen entwickeln wir eine Theorie für unendliche
Antiketten von Butterflyminoren in gerichteten Graphen, die mit der oben
genannten Theorie für Matchingminoren korrespondiert.
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Abstract

Matching minors are a specialisation of usual graph minors which pre-
serves the existence, and the elementary structural properties of perfect
matchings. A subgraph H of a graph G is conformal if G and G − H

both have a perfect matching, and a vertex of degree exactly two is called
bicontractible. A bicontraction of a bicontractible vertex is the operation
of contracting both of its incindent edges, at the same time. Finally, a
matching minor is a graph H ′ that can be obtained by a series of bicon-
tractions from a conformal subgraph of G. Similar to how ordinary minors
capture certain structural properties of graphs, matching minors are able
to capture structural properties of graphs with perfect matchings.
In this thesis fundamental parts of the Graph Minors Project by Robertson
and Seymour are adapted for the study of matching minors and connections
to structural digraph theory are identified. To be precise, we develop
matching theoretic analogues to established results from the Graph Minors
Project as follows: We characterise the existence of a cross over conformal
cycles via topological properties and deduce that the Two-Paths-Problem
for alternating paths in bipartite graphs with perfect matchings is solvable
in polynomial time. Furthermore, we develop a theory for perfect matching
width, a width parameter for graphs with perfect matchings introduced
by Norine. Here we show how matching minors and perfect matching
width interact, we show that the Disjoint Alternating Paths Problem
can be solved in polynomial time on bipartite graphs of bounded width.
Moreover, we show that every bipartite graph of large perfect matching
width contains a large grid as a matching minor, which we then use to
show that recognising planar and bipartite graphs with perfect matchings
as matching minors is solvable in polynomial time. We extend the Erdős-
Pósa property for minors to matching minors in bipartite graphs and
thereby characterise all classes of bipartite graphs with perfect matchings
of bounded perfect matching width. Finally, we combine all of the results
above to obtain an analogue to the Flat Wall Theorem and thus give a
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qualitative description of all bipartite graphs which, for some fixed t ∈ N,
exclude Kt,t as a matching minor.
In parallel to those results we develop a theory for infinite anti chains of
butterfly minors in digraphs which corresponds to the theory of matching
minors as described above.
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Preface

A major role in the widespread interest in structural graph theory, as
popularised by Robertson and Seymour in their Graph Minors Project,
is probably played by the large area of algorithmic applications that
arose from the notion of treewidth and its dual versions. Treewidth
itself can already be used to find many, often times even straightforward,
parametrised algorithms for problems which are otherwise computationally
hard. It is hard to say what would have happened, if the Graph Minors
Project would have produced only the structural results known today, but
without most of their algorithmic application, it might be fair to think
that the influence of treewidth would not be nearly as far reaching as it is
today.
In fact, we can find an example for such a phenomenon when we consider
the directed analogue of treewidth. Directed Treewidth, as its undirected
cousin, aims to decompose a given directed graph into a tree-like shape
using small cut sets. However, the tree-like shape itself, as well as the cut
sets, are considerably less well behaved than their undirected brethren, a
fact that makes most of the proofs involved much more complicated while
simultaneously limiting the algorithmic power of directed treewidth. As a
result, considerably less attention is received even by results as strong as
the Directed Grid Theorem and thus, structural digraph theory is often
accompanied by an uncertainty about which definitions are the correct
ones to work with in the field
An even more niche topic is the field of structural matching theory,
which, as we will explain in the first part of this thesis, can be seen as
a common generalisation of both directed and signed graphs. Indeed,
while matchings and even perfect matchings find many applications in
graph theory as a whole, few of the deeper structural theorems beyond
the algorithmically important ones like the Gallai-Edmonds Structure
Theorem have found a home outside structural matching theory itself.
Even milestone breakthroughs like the resolution of the bipartite Pfaffian
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Recognition Problem appear to be relatively unknown outside of the
community, despite of its many algorithmic applications. Surely, the often
times long and complicated proofs, involving lots of case distinctions, are
one reason for this lack of interest, which can probably not be helped
without developing significantly better tools.
Another reason might be accessibility. Besides the stellar monograph by
Lovász and Plummer [LP09], there is little to no literature to be found on
the topic except for the journal articles themselves. Moreover, the book by
Lovász and Plummer has last been updated in 2009. Since then however,
we have seen a surge in new results, especially regarding the theory of
matching minors which is still in its infancy, even when compared to the
theory of butterfly minors in directed graphs. To address this problem
of accessibility, this thesis contains an extensive chapter meant as an
introduction to structural matching theory as a whole. Of course the main
focus still lies on the topics relevant to this thesis, but as our main topic
itself is the theory of matching minors, a good portion1 of what might be
considered to be the state of the art, at the time of writing, has found its
way into the first chapter. We hope that such an extended survey might
help to make the topic as a whole more accessible.

1The significantly more complicated topic of non-bipartite matching covered graphs is
only discussed sparingly, even in the introduction. This topic has many interesting
problems and techniques to offer and there sadly was no room to cram more of it
into this document. The interested reader is referred to the PhD thesis of Norine
[Nor05] and the PhD thesis of Kothari [Kot16].
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Chapter 1.

Introduction

Graph minors sit at the heart of many central problems of graph theory
including the famous Four Colour Conjecture itself. The notion of graph
minors has inspired many different research projects, among those the
Graph Minors Project by Robertson and Seymour can be seen as one of
the most influential works on graph theory to this date. In their series of
over twenty papers Robertson and Seymour have adapted and developed
numerous ideas, connecting different fields of graph theory and topology,
which lead to several powerful discoveries like the resolution of Wagner’s
Conjecture (see Theorem 2.2.12) and a first polynomial time algorithm
for the t-Disjoint Paths Problem. At the heart of this theory sits the idea
that any graph whose structure is similar to the structure of a tree is
structurally ‘simple’, while those graphs for which such a description does
not exist must contain a large planar minor. The idea of treewidth, i.e.
a measure for how ‘tree-like’ a graph is, and its dual notions, especially
the Grid Theorem (see Theorem 2.2.25), gave rise to a wide area of both
theoretical and algorithmic results.
Inspired by the overall success of graph minors as a concept, the idea of
reducing subgraphs by contracting certain areas took hold quickly and was
introduced to many different areas of graph theory. In this thesis, we are
concerned with two of these fields, namely (bipartite) graphs with perfect
matchings and directed graphs. We aim to establish a structure theory
similar to the Graph Minors Project for both, matching minors in bipartite
graphs with perfect matchings, and butterfly minors in directed graphs.
Both of these fields are not new, and especially the latter has received
a fair amount of attention in recent years. Indeed, a directed version of
treewidth, as well as a directed version of the grid theorem, based on
butterfly minors, already exist (see Section 2.3). However, the field of
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Chapter 1. Introduction

matching minors is largely underdeveloped, while the area of butterfly
minors has some unique challenges due to the increased complexity of
directed graph, as opposed to undirected graphs. This thesis seeks to
provide a unified framework for both matching minors in bipartite graphs,
and butterfly minors in directed graphs, which allows us to generalise large
parts of the Graph Minors Project to both settings, while also providing
a new approach to some of the unique challenges of the study of butterfly
minors.

The Structure of this Thesis

This thesis is split into three different parts.
i) An introductory Part I, which exists to provide context to the results

presented in this thesis and also contains a broad survey on previous
results regarding matching theory as a whole, and the theory of
matching minors, especially in bipartite graphs,

ii) a Part II, which contains the main body of work, together with
proofs and explanations of the main results, and

iii) a concluding Part III, which briefly discusses some additional direc-
tions of research and wraps up the thesis by discussing the advance-
ments made by our main results regarding some central questions
brought up at the end of Part I.

For some of our results there also exist versions which were developed for
directed graphs, these results are either directly related to our results, or
they act as analogues from other parts of structural graph theory to further
strengthen the intuition and motivation behind this thesis. Since most of
these analogues come from the already complex Graph Minors Project by
Robertson and Seymour which consists of over twenty individual papers,
we believe that it is helpful for the reader to have a small introduction to
the original concepts from graph minor theory, and then see how these
concepts were adapted for the setting of directed graphs. Hence the first
chapter of Part I gives an overview of the Graph Minors Project, and, in
its second half, provides a brief survey on the advancements of structural
digraph theory, with a focus on directed treewidth and related results.
The second chapter is a broad introduction to structural matching theory
with a strong emphasis on decomposition theorems and matching minors.
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This chapter also contains some preliminary results which are aimed
at explaining how alternating paths, and therefore in a broader sense
matching minors, are related to the different notions for describing the
structure of graphs with perfect matchings. These two early chapters exist
to give some context to the reader for the kind of results they can expect
in the second part, and what some of the difficulties encountered along
the way might be.
Part II is then made up of a series of chapters, arranged in a way such
that each chapter builds upon the findings of the previous ones as much
as possible. In Chapter 4, we obtain an analogue of the famous Two Paths
Theorem for bipartite graphs with perfect matchings, which allows us to
solve the 2-Matching Linkage Problem1 in polynomial time. Chapter 5 then
introduces perfect matching width as a variant of treewidth appropriate
for the setting of (bipartite) graphs with perfect matchings. Many different
aspects of this parameter are discussed, such as its relation to directed
treewidth, duality, and algorithmic applications. As a step further, in
Chapter 6, we show how the idea of orienting separations to identify
areas of high connectivity, better known as tangles, can be applied to
structural matching theory and we show that these ideas harmonise well
with the perfect matching width from the previous chapter. Following in
the footsteps of Robertson and Seymour, we then combine many of the
findings from previous chapters in Chapter 7, to give a rough description
of all classes of bipartite graphs with perfect matchings that exclude some
planar and bipartite matching covered graph as a matching minor. While
the results from previous chapters, except for the Two Paths Theorem,
can be obtained for the setting of directed graphs without making use of
the matching setting, in Chapter 7 we obtain, for the first time, results on
directed graphs that go beyond what was previously known. The second
part of the thesis is then completed in Chapter 8, where we combine all
previous results to obtain an approximate characterisation of bipartite
graphs with perfect matchings that exclude a complete bipartite graph as
a matching minor, which can be seen as a close relative of the Flat Wall
Theorem from the Graph Minors Project.

1This is a variant of the 2-Linkage Problem, where both paths are required to be
alternating for some perfect matching of the graph.
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Chapter 1. Introduction

Chapter 9 finally, as the only chapter of the third part, wraps up the
current state of (bipartite) matching minor theory and hints at some
possible directions of future research in this field.

Publications and Projects

The different parts and results in this thesis have, for the majority, been
part of projects that involved several co-authors and most of what can
be found here is, to this date at least, unpublished. In some instances,
only the vague idea of a project exists, but not even a manuscript hast
been written. To further complicate things, the different projects are
intertwined and for the sake of readability many results were reordered
to optimise their presentation in the context of this work. Hence, to
allow for a quick way of reference and to find out which set of co-authors
was involved in the development of a single result, we use this section to
present the different projects together with the co-authors involved. We
also introduce a small set of indicators which will pop up through the
thesis at places, where usually citations would be found. In addition to
address credit where credit is due, this hopefully also helps to underline
which results are original and which were adopted from previously existing
work by other authors.
The following is a list of all publications, preprints, or general projects
that were selected to be highlighted in this thesis. Please note that the
order is, as far as possible, chronological, and there is no intention to
value one result over another. All of these projects have been challenging
and interesting on their own and it was a great pleasure working with
everyone involved. Wherever possible, we also include, as a citation, the
version of the corresponding paper freely available on arXiv.org for better
accessibility.
Instead of a numbering system, we use a capitalised letter with a star,
from A∗ to F∗, and additionally an X∗, to mark all those results which
were not part of a specific project, but rather developed exclusively for this
thesis by the author2. For each of the projects we give a brief summary,

2It is possible that, eventually, some of the ‘miscellaneous’ results marked by X∗

will find their way into a publication other than this thesis, but currently no such
plans exist.
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and highlight the milestones achieved during the project, and hint at the
chapters and sections where most of their associated results can be found.
A∗ Project: Matching Connectivity with Archontia Giannopoulou,

Maximilian Gorsky, and Stephan Kreutzer.
Our project on matching connectivity was an initial and preliminary
dive into structural matching theory, mainly aimed at achieving a
deeper understanding of the topic, while also getting familiar with
the many different concepts. Most results here are small observations
and translations between different concepts and settings. Results
from this project can be found in Section 3.1.

B∗ Cyclewidth and the Grid Theorem for Perfect Matching
Width of Bipartite Graphs with Meike Hatzel and Roman Rabi-
novich [HRW19a, HRW19b].
This project marked the first major leap forward, as it contains
the inception of cyclewidth, a width parameter for directed graphs
that acts as a link between directed treewidth and perfect matching
width. In this paper, it is shown that the bipartite version of Norine’s
conjecture regarding grid minors for perfect matching width follows
from the Directed Grid Theorem and thus the relatively short paper
is the foundation of most of what came after. A majority of the
results from this paper can be found in Chapter 5, especially in
Section 5.3.

C∗ Braces of Perfect Matching Width 2 with Archontia Gi-
annopoulou and Meike Hatzel [GHW19].
While the discovery of cyclewidth already provided us with some nice
intuitions behind the inner workings of perfect matching width, the
parameter still seemed relatively distinct from directed treewidth.
As a result, the decision was made to investigate a class of braces of
fixed perfect matching width to get a better understanding of the
parameter. While most of the results from this preprint are centred
around the characterisation of braces of perfect matching width two
and an efficient algorithm to find a corresponding decomposition,
both of which are presented in Section 5.2, the more important
insights gained from this project were those on the general behaviour
of perfect matching width with regards to tight cut contractions and
conformal subgraphs, which can be found in Section 5.1.
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Chapter 1. Introduction

D∗ Excluding a Planar Matching Minor in Bipartite Graphs
with Archontia Giannopoulou and Stephan Kreutzer.
In B∗ it was already shown that cyclewidth and perfect match-
ing width can be seen as equivalent parameters. The step from
cyclewidth to directed treewidth however, was made using the Di-
rected Grid Theorem. While this approach yielded the desired result,
the bound it produced was less than desirable and it also did not
give any valuable insight into how it could be possible to use perfect
matching width to achieve any results beyond the grid theorem itself.
So probably the most important finding of D∗ is a relation between
the matching porosity of an edge cut in a bipartite graph and the
size of a certain kind of separator. This result allowed for much
tighter bounds on the relation between perfect matching width and
directed treewidth. It also allowed us to design an algorithm to
solve a matching version of the disjoint paths problem, test for the
existence of matching minors, and replicate a deep theorem from
the Graph Minors Project on the Erdős-Pósa property of minors for
the setting of bipartite graphs with perfect matchings. Moreover, in
this project we gained some insight into what a topological theory
of butterfly minors in digraphs might actually look like. Some parts
of this project can be found in Section 5.3 and Section 5.4, while
the entirety of Chapter 7 is also drawn from this project.

E∗ Two Disjoint Alternating Paths in Bipartite Graphs with
Perfect Matchings with Archontia Giannopoulou.
During a visit in Athens, Archontia Giannopoulou and the author
decided to start working on the next logical step for the matching
minor series, after obtaining a nice description of bipartite graphs
that exclude a planar matching minor: a version of the Flat Wall
Theorem. We had high hopes for this project, since many of the
challenges previously encountered by the first attempt at a directed
version of the Flat Wall Theorem, appeared to be easily solvable
in the setting of bipartite graphs with perfect matchings. A major
hurdle the directed version had to face was the lack of a directed
version of the Two Paths Theorem. The discovery of such a theorem,
as presented in Chapter 4, was therefore a major milestone towards
this goal.
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F∗ Project: Bidirected Graphs with Maximilian Gorsky and
Raphael Steiner.
In parallel to the discovery of a matching theoretic Two Paths Theo-
rem, Maximilian Gorsky, Raphael Steiner and the Author discovered
a way to generalise the bridge between directed and bipartite graphs
to the setting of bidirected versus general graphs with perfect match-
ings. As many of the previous advances in bipartite matching theory
were at least partially fuelled by the intuition the directed setting
could provide, this appeared to be a major leap forward. Especially
once we discovered how to generalise the notion of non-evenness to
bidirected graphs while preserving its equivalence to being Pfaffian.
This result is presented in Section 3.3. While the project still is in
its infancy, some preliminary results have already been achieved and
some of the major challenges have been identified. We discuss the
topic in more depth in Section 3.4 and Section 9.2.

G∗ A Weak Structure Theorem for Bipartite Graphs with
Perfect Matchings with Archontia Giannopoulou.
Finally, in what was probably the most challenging bit of research
throughout all results gathered here, we were able to combine all
previous results and the insight gained from the directed setting, to
give an approximate description of all bipartite graphs with perfect
matchings that exclude a complete bipartite graph of fixed size
as a matching minor. This final result, which can be seen as a
generalisation of the famous result on Pfaffian bipartite graphs by
McCuaig et al., can be found in Chapter 8.

The idea how to encode a Pfaffian orientation in a bidirected graph to
generalise the notion of being non-even has to be credited to Raphael
Steiner and thus the authors contribution to Theorem 3.3.15 is only minor.
This however is the only exception, for all other results found in this work
and marked by one of the indicators above, including X∗, the author is
responsible for the majority of the conceptual work and also played a
major role in working out the details of the proofs. Especially the original
ideas for proofs involving matching theory and the interaction between
digraphs and bipartite graphs with perfect matchings, as well as all results
marked with X∗, are due to the authors work and the contribution of
co-authors was usually in form of discussions to refine certain details and
clarify definitions or formulations.
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Chapter 2.

General Background

This thesis aims to generalise several concepts developed for general
undirected graphs to the setting of graphs with perfect matchings. We
introduce the fundamental concepts of matching theory in Chapter 3
and also give a brief overview on a partial history of the field. Before
that however, we need to introduce the blueprints most of the ideas
presented in this thesis are build upon. That is, we introduce some
general terms and basic notation for graph theory in Section 2.1. Next
we give a quick summary of the Graph Minors Project and Wagner’s
conjecture in Section 2.2. Several key concepts were first introduced in,
or at least popularised through, the Graph Minors Project and thus this
is the place where we give all necessary definitions. The last piece we
need to introduce beforehand is the generalisation of structural graph
(minor) theory to the world of directed graphs, or digraphs for short, in
Section 2.3. Besides introducing basic concepts and discussing how they
differ from their undirected analogues, we also briefly touch upon the
problem that many concepts which appear indistinguishable for undirected
graphs suddenly are split into many, sometimes vastly different, concepts.
This discussion is especially important as it gives a first glimpse at the
problems one could expect when generalising further, say from digraphs to
so called bidirected graphs which we briefly discuss at the end of Chapter 3.
Please note that we introduce several different concepts in this chapter
which sometimes turn out to be equivalent, or at least closely related.
The reason why these concepts are introduced here, sometimes in great
detail, is that we aim to give generalisations of these ideas to the setting
of (bipartite) graphs with perfect matchings in later chapters.
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Chapter 2. General Background

2.1. General Graph Theory

Before we start with basic definitions in graph theory let us quickly fix
some additional, more general notation.
Given two integers i, j ∈ Z where i ≤ j, we denote by [i, j] the integer
interval, which is the set {i, i+ 1, . . . , j − 1, j} = {n | i ≤ n ≤ j, n ∈ Z}.
Given any set X we denote by 2X the power set of X, which is the set
of all subsets of X. Let X be finite and k ∈ [0, |X|], by

(︁
X
k

)︁
we denote

the set {S ⊆ X | |S| = k}, and by
(︁
X
≤k

)︁
the set {S ⊆ X | |S| ≤ k}. Let

S ⊆ X, we denote by S := X \ S the complement of S with respect to X.
In case ambiguity arises we write the host set X in the top right index
spot, that is S

X .
Most of the definitions we present here are included to fix notation and
to make this thesis as self contained as possible. For any definition not
included here, the reader is referred to the book on graph theory by Diestel
[Die12].

Definition 2.1.1 (Graph). In general a (undirected) graph is a tuple
G = (V,E), where V is some ground set and E is a multiset over

(︁
V
≤2

)︁
\{∅}.

The members of V are called the vertices, while the members of E are
called the edges of G. An edge e ∈ E with |e| = 1 is called a loop. If
e, e′ ∈ E are different instances of the same member of

(︁
V
≤2

)︁
we say that e

and e′ are parallel edges. The maximal number of different instances of
e ∈

(︁
V
≤2

)︁
that occur in E is called the multiplicity of the edge e.

A graph where V is finite is called finite, and a graph where E ⊆
(︁
V
2

)︁
is

not a multiset is called simple. If E contains an element of multiplicity
two or more, G is called a proper multigraph.
For a graph G given without explicitly stating the tuple, we denote by
V (G) the vertex set of G, and by E(G) the edge set of G.

Most graphs in this thesis are finite and simple. Indeed, whenever we
encounter a graph for which we allow parallel edges we either state this
directly, or use the term multigraph to emphasise that we are not necessarily
dealing with a simple graph.
If e ∈ E(G) is an edge of a graph G, we call the vertices v ∈ e the endpoints
of e and e and v are said to be incident. Two vertices u, v ∈ V (G) are
called adjacent if {u, v} ∈ E(G). For better readability we drop the
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2.1. General Graph Theory

set-notation for edges and usually write uv instead of {u, v}. Two distinct
edges e, f ∈ E(G) that share an endpoint are said to be adjacent. If u
and v are two adjacent vertices in G, we say that v is a neighbour of u
and by NG(u) we denote the set of all neighbours of u in G. In case the
graph G is understood from the context we sometimes drop the subscript
G and just write N(v). The degree of a vertex v, denoted by degG(v),
is the number of edges in G which are incident with v. Note that in a
simple graph this means that degG(v) = |NG(v)|. By ∆(G) we denote
the largest degree among all vertices of G, called the maximum degree,
while the minimum degree, denoted by δ(G), is defined as the smallest
degree over all vertices of G.
Let G and H be a graphs. We say that H is a subgraph of G, denoted by
H ⊆ G, if V (H) ⊆ V (G), and E(H) ⊆ E(G). Let X ⊆ V (G), we denote
by G[X] the subgraph of G induced by X, which is the graph with vertex
set X and edge set {e ∈ E(G) | e ⊆ X}.
Deleting a vertex v from G, denoted by G− v, means removing v from G

and deleting all incident edges. Formally this means G−v := G[V (G)\{v}].
If S ⊆ V (G) is a set of vertices, we write G− S for the graph obtained
from G by deleting all vertices of S. If e ∈ E(G) is an edge of G, we
denote by G − e the graph (V (G), E(G) \ {e}), and if F ⊆ E(G) is a
(multi-)set of edges, G− F is the graph obtained from deleting all edges
in F from G.
These operations can also be reversed. Let G be a graph, v /∈ V (G) a
vertex, and e ∈

(︁
V (G)
≤2

)︁
be non-empty. By G + v we denote the graph

obtained from G by adding v to the vertex set, while G+ e is the graph
obtained from G by adding the edge e. Similarly, if S is some set of
vertices and F ⊆

(︁
V (G)
≤2

)︁
\ {∅}, the graph G + S is the graph obtained

from G by adding all vertices of S, and G + F is the graph obtained
from G by adding all edges from F . So if H is another graph, we denote
by G+H, or sometime G ∪H, the graph (V (G) ∪ V (H), E(G) ∪ E(H)).
We also allow the intersection of graphs, which is defined as G ∩H :=

(V (G) ∩ V (H), E(G) ∩ E(H)).

Definition 2.1.2 (Paths and Cycles). Let G be a graph. A walk is a
sequence

T = (v0, e0, v1, e1, v2, . . . , vℓ, eℓ, vℓ+1)

13



Chapter 2. General Background

Where vi ∈ V (G) for all i ∈ [0, ℓ + 1], ei ∈ E(G) for all i ∈ [0, ℓ], and
ei = vivi+1 for all i ∈ [0, ℓ]. The vertices v0 and vℓ+1 are the endpoints
of T , the vertices v1, . . . , vℓ are said to be the internal vertices, and T is
said to be of length ℓ. A trail is called closed if v0 = vℓ+1. Although a
walk formally is not a graph, one can associate naturally the subgraph
of G with T which has vertex set {v0, . . . , vℓ+1} and edge set {e0, . . . , eℓ}.
In a slight abuse of notation we do not differentiate between the sequence
of vertices and edges, and the subgraph.
A trail is a walk W where i ̸= j implies ei ̸= ej for all i, j ∈ [0, ℓ], a closed
trail is a closed walk that is a trail. The walk T is called a path, if i ≠ j

implies vi ̸= vj for all i, j ∈ [0, ℓ+ 1]. Since every path mus also be a trail,
we sometimes abbreviate the notation for walks and give paths as only a
sequence of vertices. Moreover, we drop the comma and write

T = v0v1v2 . . . vℓvℓ+1.

A closed walk T is called a cycle, if v0 = vℓ+1, and (v0, e0, v1, e1, v2, . . . , vℓ)

and (v1, e1, v2, . . . , vℓ, eℓ, vℓ+1) are paths.

Let X,Y ⊆ V (G) be two sets of vertices. An X-Y -path is a path P

with one endpoint in X, the other endpoint in Y , and which is otherwise
disjoint from X ∪ Y .
If P1 and P2 are paths, and there exists a non-empty path Q such that
Q = P1 ∩P2 and Q contains an endpoint of P1 that is also an endpoint of
P2, we denote by P1P2 the path P1 + P2. In this context we treat edges
e ∈ E(G) as paths of length one. This means, in particular, that if P is
a path with endpoint v and e is an edge incident with v such that the
other endpoint of e does not belong to P , then Pe is also a path. Suppose
P1 and P2 are disjoint paths such that vi is an endpoint of Pi for each
i ∈ [1, 2] while v1v2 ∈ E(G), then P1P2 = P1v1v2P2 is also a path. At last
suppose we have fixed P to be an ordering of vertices as in the definition
and v = vi ∈ V (P ) is some vertex. We denote by Pv the subpath of P
starting with v0 and ending with v, while vP is the subpath of P starting
with v and ending in vℓ+1.

Definition 2.1.3 (Connected Graph). A graph G is connected, if for
every pair of distinct vertices u, v ∈ V (G) there is a path P in G with
endpoints u and v.
A component of a graph G is a maximal connected subgraph of G.
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Let k ∈ N be a positive integer. The graph G is said the be k-connected
if |V (G)| ≥ k + 1, and for every set S ⊆ V (G) with |S| ≤ k − 1, G− S is
connected.

We close this first short introduction with two version of Menger’s Theorem.

Theorem 2.1.4 (Menger’s Theorem, Local Version [Men27]). Let G be
a graph and X,Y ⊆ V (G) be two sets of vertices, then the maximum
number of pairwise disjoint X-Y -paths in G equals the minimum size of a
set S ⊆ V (G) such that every X-Y -path in G contains a vertex of S.

Theorem 2.1.5 (Menger’s Theorem, Global Version). Let G be a graph
and k ∈ N be a positive integer. Then G is k-connected if and only if
|V (G)| ≥ k+1 and every pair of vertices is joined by a family of k pairwise
internally disjoint paths.

2.2. The Graph Minors Series

The graph minors project by Robertson and Seymour is a series of twenty-
three papers1 in which the two authors develop, mostly qualitative, tech-
niques to describe graphs that exclude a fixed minor.

Definition 2.2.1 (Edge Contraction). Let G be a graph and e = uv ∈
E(G). Let

G′ := G− u− v + ve + {xve | xu ∈ E(G) or xv ∈ E(G)} ,
where ve /∈ V (G). We say that G′ is obtained from G by contraction of
the edge e.

Definition 2.2.2 (Minor). A graph H is said to be a minor of a graph
G, if H can be obtained from G by a sequence of edge deletions, vertex
deletions, and contractions.

Classes of graphs that exclude minors are deeply connected to the historic
roots of graph theory itself. The arguably most classical question in graph
theory is the so called Four Colour Theorem, which states that every
planar graph has a proper 4-colouring. Here a graph is called planar if it
can be drawn on the plane such that no edge crosses another edge or a
vertex.
1Conveniently named Graph Minors I to Graph Minors XXIII.
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Chapter 2. General Background

There exist two characterisations of planar graphs in terms of forbidden
minors. Technically Kuratowski proved a stronger version of the following
theorem using so called topological minors, while Wagner proved the
theorem presented here. However, the contribution of both authors to the
field is so significant that both should be credited.

Theorem 2.2.3 (Kuratowski-Wagner Theorem [Wag37, Kur30]). A graph
is planar if and only if it does not contain K3,3 or K5 as a minor.

K5 K3,3

Figure 2.1.: The graphs K5 and K3,3.

So excluding certain minors is directly linked to being embeddable into
some fixed surface. Another property that seems to interact, at least, with
planarity is the existence of disjoint paths connecting prescribed pairs of
vertices.

Definition 2.2.4 (Disjoint Paths and Linkedness). Let G be a graph,
k ∈ N a positive integer, and s1, . . . , sk, t1, . . . , tk ∈ V (G). The question,
whether there exist paths P1, . . . , Pk in G such that these paths are pairwise
internally disjoint, and Pi has endpoints si and ti for every i ∈ [1, k] is
called the k-disjoint paths problem.
We say that (s1, . . . , sk) and (t1, . . . , tk) are linked if the answer to the
k-disjoint path problem with input (s1, . . . , sk, t1, . . . , tk) is ‘yes’.
A graph G is said to be k-linked if the answer to every instance of the
k-disjoint paths problem in G is ‘yes’.

Definition 2.2.5 (Clique Sums and Reductions). Let G1, and G2 be
graphs, k ∈ N be a positive integer, and K be a clique of size k which
exists in both Gi. Suppose G1 ∩ G2 = K, then we say that the graph
G1+G2−F , where F ⊆ E(K), is obtained from G1 and G2 via a k-clique
sum.
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Let H ⊆ G be a subgraph of G and S ⊆ V (G) a set of k vertices such that
G − S is not connected, but there exists a component C of G − S such
that H ⊆ G[S ∪ V (C)]. We call the graph G′ obtained from G[S ∪ V (C)]

by adding the edges in {uv | u, v ∈ S} an k-reduction of G towards H.
If k ≤ 3 we say that G′ was obtained via elementary H-reduction.
Suppose there is a sequence G0 = G,G1, G2, . . . , Gℓ = G′ such that Gi is
obtained from Gi−1 via elementary H-reduction, where H ⊆ Gj for all
i ∈ [1, ℓ] and j ∈ [0, ℓ]. We say that G′ is obtained from G by H-reduction.
Sometimes we call G′ itself a H-reduction.

K4Tri G

Figure 2.2.: The planar graphs Tri (to the left) and K4 (in the middle),
and the non-planar graph G (to the right) obtained from Tri
and three copies of K4 via the clique sum operation applied
to the marked 3-clique.

We say that a cycle C is C-flat in a graph G if G can be constructed via
k-clique sums, where k ≤ 3, from graphs G1, . . . , Gℓ, where the graph Gℓ

that contains C is planar, and C bounds a face of Gℓ. Please note that
this means that Gℓ is a C-reduction of G. In the case of flat cycles, one
immediately finds a flavour of linkedness. A cycle C is said to have a
C-cross in G, if there exist distinct vertices s1, s2, t1, t2 that occur on C

in the order listed, and paths P1 and P2 such that: Both Pi are internally
vertex disjoint from C, P1 and P2 are vertex disjoint and each Pi has si
and ti as its endpoints. A classic theorem, to which we will refer as the
Two Paths Theorem, links the notions of C-flatness and C-crosses. The
theorem has been obtained in many different forms with various techniques
by a plethora of authors over time [Jun70, Sey80, Shi80, Tho80, RS90a].
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Theorem 2.2.6 (Two Paths Theorem). A cycle C in a graph G has no
C-cross in G if and only if it is C-flat in G.

Note that the Two Paths Theorem is indeed a characterisation for when
(s1, s2) and (t1, t2) are linked. To find a corresponding pair of paths, one
can simply add in the edges s1s2, s2t1, t1t2, and t2s1 which then form
a 4-cycle C′. We then can ask whether there exists a C′-reduction of G
which is planar and in which C′ bounds a face. If that is the case, the
answer is ‘no’, otherwise the answer is ‘yes’.

Theorem 2.2.7 ([Jun70, Sey80, Shi80, Tho80, RS90a]). There exists a
polynomial time algorithm for the two disjoint paths problem.

In the Two Paths Theorem we have a first example of the usefulness of
clique sums. The following can be seen as a refinement of the Kuratowski-
Wagner Theorem. For this we need another special graph. The graph M8

obtained from the cycle
(v1, e1, v2, e2, . . . , v7, e7, v8, e8, v1),

by adding the edges v1v5, v2v6, v3v7, and v4v8, is called Wagner’s graph,
see Figure 2.3.

Figure 2.3.: Wagner’s graph M8.

Theorem 2.2.8 (Wagner’s Theorem, [Wag37]). A graph G does not
contain K5 as a minor if and only if it can be obtained from planar graphs
and subgraphs of M8 by clique sums of order at most three.

There exist many examples of forbidden minors classifications of graph
classes and most of them make use of clique sums. Another property these
forbidden-minor-characterisations have in common is, that they always
forbid a finite list of minors. This phenomenon has already been observed
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by Wagner, who formulated a fundamental conjecture regarding classes
that exclude some graph as a minor.

Definition 2.2.9 (Quasiorder and Partial Order). Let X be a set and
let ≤ be a binary relation over X. We call (X,≤) a quasiorder, if it meets
the following requirements:

i) x ≤ x for all x ∈ X (reflexivity), and
ii) if x ≤ y, and y ≤ z then x ≤ z for all x, y, z ∈ X (transitivity).

If (X,≤) also satisfies
iii) if x ≤ y, and y ≤ x then x = y for all x, y ∈ X (antisymmetry),

it is called a partial order, and the set X is called a partially ordered set
or poset for short.

Definition 2.2.10 (Chains and Anti-Chains). Let (X,≤) be a quasiorder
and A ⊆ X. We call A a chain if for every choice of a, b ∈ A we have
a ≤ b or b ≤ a. If on the other hand a ̸≤ b, and b ̸≤ a for all a, b ∈ A, A is
called an anti-chain.

Definition 2.2.11 (Well-Quasiorder). Let (X,≤) be a quasiorder. We
say that (X,≤) is a well-quasiorder if all anti-chains A ⊆ X are finite.

With this we can state Wanger’s Conjecture, which since has become the
Robertson-Seymour Theorem.

Theorem 2.2.12 (Robertson-Seymour Theorem, [RS04]). The graph
minor relation on the class of all graphs is a well-quasiorder.

In the following we give a short, and therefore incomplete overview on the
different techniques and important results obtained in the Graph Minors
Project which made the proof of Wagner’s Conjecture possible. For a more
complete overview the interested reader might want to consult the survey
by Lovász [Lov06] or the more in-depth summary by Kawarabayashi and
Mohar [KM07].

2.2.1. Treewidth and Duality

The concept of clique sums seems to play an important role in graph minor
theory and thus, as a first step, one could ask the question: What can we
say about graphs that are build from graphs with few vertices via clique
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sums. The part where we ask for ‘few vertices’ is crucial as Wagner’s
Theorem already illustrates that one might get large and non-trivial classes
if one does not restrict the size of the graphs involved in building the
graphs. Say we were to construct a graph via clique sums of order at most
k−1, for some k ≥ 2, from graphs of size at most k. In case k = 2 one can
easily check that the resulting graph would be a tree. Indeed, the rough
idea of this still holds true for values of k ≥ 3 as these graphs can still
be seen as some kind of generalised tree made from slightly thicker edges.
By formalising this idea one obtains the powerful parameter of treewidth.

Definition 2.2.13 (Treewidth). Let G be a graph. A tree decomposition
of G is a tuple (T, β), where T is a tree and β : V (T )→ 2V (G) is a function,
called the bags of (T, β), such that the following properties hold:

i)
⋃︁

t∈V (T ) β(t) = V (G),
ii) for every e ∈ E(G) there exists te ∈ V (T ) such that e ⊆ β(te), and
iii) for every v ∈ V (G), the set {t ∈ V (T ) | v ∈ β(t)} induces a subtree

of T .
The width of (T, β) is defined as width((T, β)) := maxt∈V (T ) |β(t)| − 1.
The treewidth of G, denoted by tw(G), is the minimum width over all tree
decompositions of G.

Branch Decompositions

Graphs of small treewidth can be seen as graphs with ‘well behaved’
structure. That is, these graphs are, in spirit, close to trees and one can
describe them in an easy to understand way, namely using an optimal2

tree decomposition. There are several related concepts of ‘width’, one of
which we introduce here. It will play, at least conceptually, an important
role in later chapters.
A tree T is said to be cubic if every vertex of T is either of degree one,
and thus a leaf, or of degree three. By L(T ) we denote the set of leaves of
any tree T .

Definition 2.2.14 (General Branch Decomposition). Let X be a set, and
f := 2X → N be a function such that f(S) = f(S) for all S ⊆ X.

2Optimal here means a tree decomposition of minimum width.
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A f-branch decomposition for X is a tuple (T, δ) where T is a cubic tree
and δ : L(T )→ X is a bijection.
Let t1t2 ∈ E(T ) be any edge. We denote by Tti the unique component
of T − t1t2 that contains ti for both i ∈ [1, 2]. By δ(Tti) we denote the
set {δ(t) | t ∈ L(T ) ∩ V (Tti)}. Please note that, since δ is a bijection,
(δ(Tt1), δ(Tt2)) is a partition of X. For every edge e = t1t2 ∈ E(T )

we associate the bipartition (δ(Tt1), δ(Tt2)) with e and write f(e) :=

f(δ(Tt1)) = f(δ(Tt2)).
The f-width of (T, δ) is then defined as widthf (T, δ) := maxe∈E(T ) f(e),
and the f -width of X, denoted by widthf (X), is defined as the minimum
f -width over all f -branch decompositions of X.

The framework of f -branch decompositions can be used to define many
different parameters for all kinds of combinatorial structures.

Definition 2.2.15 (Branchwidth). Let G be a graph and let us define
b : 2E(G) → N as

b(F ) = |(
⋃︂
e∈F

e) ∩ (
⋃︂
e∈F

e)|.

A branch decomposition for G is a b-branch decomposition for E(G), and
the branchwidth of G, denoted by bw(G), is the b-width of E(G).

Theorem 2.2.16 ([RS91]). Let G be a graph. Then bw(G)−1 ≤ tw(G) ≤
3
2
bw(G)− 1.

Roughly speaking, Theorem 2.2.16 shows that the difference between
branchwidth and treewidth is only a qualitative one. In what follows,
we will call two parameters equivalent, if one of the parameters can be
bounded by two functions in the other parameter. Naturally one would
prefer these functions to be linear, or even just contain a small constant,
but in general we will be fine with any computable function. Many of
the results from the graph minors project and its generalisation to the
setting of digraphs include statements of this approximate nature. Indeed,
because of this one could view the graph minor theory of Robertson and
Seymour as an approximation of structure theory for graphs.
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Chapter 2. General Background

Brambles and Tangles

In a way classes of bounded branchwidth, and therefore also of bounded
treewidth, may be seen as ‘structurally simple’ graph. We discuss a bit
more what that means in Section 2.2.3. So the next natural question
to ask would be: how can we describe a graph that is not ‘structurally
simple’? To do this we would like to have some concept off structure we
can find in a graph whose treewidth is larger than a certain constant. In
this subsections and the two afterwards we explore several concepts on
how such a duality could look like and what other parameters one could
use to essentially capture the same ‘structural simplicity’ as treewidth
and branchwidth do. Please note that we do not insist on a tight duality.
In general whenever we say that two parameters are dual if they are
equivalent and one of them induces a minimisation problem, while the
other one induces a maximisation problem.
Over all, treewidth can be seen as a generalised connectivity measure
for graphs. Not only does it interact with separations, but it provides
a way to decompose a graph into small pieces. Indeed, even classical
decompositions like the block decomposition of a graph can be seen as
special versions of tree decompositions. From this point of view one could
expect to find a highly connected, in some sense, part in a graph with
high treewidth.
Let G be a graph and H1, H2 be two connected subgraphs of G. We say
that H1 and H2 touch if V (H1) ∩ V (H2) ̸= ∅, or there is an edge uv with
u ∈ V (H1) and v ∈ V (H2). A set S ⊆ V (G) is a hitting set or cover for a
family H of subgraphs of G, if V (H) ∩ S ̸= ∅ for all H ∈ H.

Definition 2.2.17 (Bramble). Let G be a graph. A bramble B =

{B1, B2, . . . , Bℓ} of G is a family of connected and pairwise touching
subgraphs Bi of G. The order of B is the size of a minimum hitting set
for B.
The bramble number, denoted by br(G), is the maximum order over all
brambles in G.

Theorem 2.2.18 ([ST93]). Let G be a graph, and k ∈ N a positive
integer. Then G contains a bramble of order k if and only if tw(G) ≥ k−1.
Hence br(G)− 1 = tw(G).
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2.2. The Graph Minors Series

So a bramble is a more abstract way to described a highly connected
subgraph of a graph G of high treewidth. There is an even more abstract
way to capture this kind of high connectivity areas in graphs, and it
directly interacts with the notion of connectivity itself.

Definition 2.2.19 (Separation). Let G be a graph. A tuple (X,Y ) is
a separation of G if X ∪ Y = V (G), and there is no path from X \ Y to
Y \X that avoids the vertices in X ∩ Y .
The set X ∩ Y is called the separator of (X,Y ), and |X ∩ Y | is the order
of the separation (X,Y ).

Note that, if (X,Y ) is a separation, then so is (Y,X). Let k ∈ N be a
positive integer. Let us denote by Sk(G) the set of all separations of order
at most k − 1 in G. An orientation of Sk(G) is a set O ⊆ Sk(G) such
that for every (X,Y ) ∈ Sk(G) exactly one of (X,Y ) and (Y,X) belongs
to O. If O is an orientation of Sk(G), and (X,Y ) ∈ O, we say that X is
the small side, while Y is the large side of (X,Y ).

Definition 2.2.20 (Tangle). Let G be a graph and k ∈ N be a positive
integer. A tangle of order k of G is an orientation T of Sk(G) such that
for every triple (X1, Y1), (X2, Y2), (X3, Y3) ∈ O we have

X1 ∪X2 ∪X3 ̸= V (G).

The tangle number of G, denoted by t(G), is the largest integer k such
that G has a tangle of order k.

Theorem 2.2.21 ([RS91]). Let G be a graph, and k ∈ N a positive
integer. Then G contains a tangle of order k if and only if tw(G) ≥ k.
Hence t(G) = tw(G).

We discuss the topic of tangles for digraphs and graphs with perfect
matchings in Chapter 6.

Cops & Robber Games in Undirected Graphs

Graph searching is an area of graph theory, where the graph itself is seen
as a network with some properties in its vertices that has to be searched
for a specific property while obeying a fixed set of rules. Many variants
of graph searching can be expressed as a combinatorial game for one or
two players on the given graph. Indeed, one of the best known category
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Chapter 2. General Background

of such games are the so called fugitive-search games, where one or more
fugitives are positioned somewhere in graph graph and are hunted by a
group of searchers, usually imagined as law enforcement. There is a wide
variety of these games, see [DKT97] for an overview, but here we are
specifically interested in those variants, that correspond to treewidth and
related parameters.
Given a graph G let us denote by 2G the family of all subgraphs of G.
Definition 2.2.22 (Cops & Robber Game). Let G be a graph. A play of
the cops & robber game on G is a sequence

(C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ)

such that the following requirements are met:
i) Ci ⊆ V (G), and Ri is a component of G− Ci for all i ∈ [0, ℓ], and
ii) (V (Ri−1) ∩ V (Ri)) \ (Ci−1 ∩ Ci) ̸= ∅ for all i ∈ [1, ℓ].

We call a tuple of the form (Ci, Ri) a position, where Ci is the cop-position
while Ri is the robber position.
A cop-strategy is a function c : 2V (G) × 2G → 2V (G) that assigns to every
position a new cop-position. Similarly, a robber-strategy is a function
r : 2V (G) × 2V (G) × 2G → 2G that assigns to every tuple of the form
(Ci, Ci+1, Ri), where (Ci, Ri) is a position and Ci+1 is a new cop position,
a subgraph Ri+1 of G such that (Ci, Ri), (Ci+1, Ri+1) is a play.
A play (C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ) is consistent with a
cop-strategy c if c(Ci, Ri) = Ci+1 for all i ∈ [0, ℓ−1]. The play is consistent
with a robber strategy r if r(Ci, Ci+1, Ri) = Ri+1 for every i ∈ [0, ℓ− 1].
A cop-strategy c is winning if for every robber strategy r, for every
maximal play that is consistent with c and r there exists an integer
i ∈ N such that Ri ⊆ Ci ∩ Ci+1. Let k ∈ N. A robber-strategy r

is winning against k cops if for every cop strategy c, and every play
(C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ) that is consistent with c and
r we have

i) |Ci| ≤ k for all i ∈ [0, ℓ], and
ii) c is not winning.

The cop number of a graph G, denoted by cops(G), is the smallest integer
k such that there is no robber-strategy which is winning against k cops.

The idea behind these kinds of games is that the robber tries to escape
the grasp of the police for as long as possible, always using paths that are
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2.2. The Graph Minors Series

not currently blocked by cops. Let (Ci−1, Ri−1) be some position. The
game is played as follows: The cops announce their next position, say Ci

and remove all cops from the graph that do not occupy vertices from Ci.
Then the robber announces her new component Ri which is reachable
from her current position Ri−1 via a path in G− (Ci−1 ∩Ci). Afterwards
cops are placed on all vertices from Ci \ Ci−1.
One might want to impose additional rules on the game to make it more
interesting. The most commonly used additional rules are:

i) Invisibility : That is, the robber is invisible and the cops must decide
on their next position without knowing the current position of the
robber. If we want the robber to be invisible, we add iv to the
subscript of the cop number, so we write copsiv(G).

ii) Inertness : Here the robber is inert which means, she always occupies
a vertex and does not move until the cops threaten to occupy her
vertex. If we want the robber to be inert, we add in to the subscript
of the cop number, so we write copsin(G).

iii) Robber-Monotone: A cop-strategy c is robber-monotone if for every
play (C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ) that is consistent
with c we have Ri+1 ⊆ Ri for all i ∈ [1, ℓ− 1]. If we want the cops
to play robber-monotone, we add rm to the subscript of the cop
number, so we write copsrm(G).

iv) Cop-Monotone: A cop-strategy c is cop-monotone if for every play
(C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ) that is consistent with
c we have (Ci+1 \Ci) ∩

⋃︁i
j=0 Cj = ∅ for all i ∈ [1, ℓ− 1]. If we want

the cops to play cop-monotone, we add cm to the subscript of the
cop number, so we write copscm(G).

A cop-strategy that is neither cop- nor robber-monotone is called non-
monotone.
In the undirected case, many of these variants turn out to be indistin-
guishable from one-another.

Theorem 2.2.23 ([ST93, DKT97, Bod98]). Let G be a graph. Then
tw(G) + 1 = cops(G) = copsrm(G) = copscm(G) = copsiv,in(G) =

copsiv,in,cm(G).

We will revisit cops & robber games in the setting of digraphs, where the
above equalities break down into several incomparable parameters.
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Chapter 2. General Background

Grids and Walls

We close this section on treewidth and duality with the arguably most im-
portant and powerful of all duality theorems that are known for treewidth.
So far, all witnesses or obstructions to small treewidth we have seen were
relatively abstract. Winning strategies for the robber or tangles of high
order guarantee that the treewidth cannot be small, but they do not
immediately yield consequence for the structure of the graph G in the
sense of subgraphs or minors. Brambles an the other hand give at least
some intuition on the connectivity one should be able to find in a small
graph of high treewidth. But brambles also remain relatively abstract
and do not give us a canonical type of subgraph or minor one could be
guaranteed to see in a graph of high treewidth.

Definition 2.2.24 (Grid). Let k, t ∈ N be positive integers. The k×t-grid
is the graph with vertex set

{vi,j | i ∈ [1, k], j ∈ [1, t]} ,
and edge set
{vi1,j1vi2,j2 | i1 = i2 and |j1 − j2| = 1, or j1 = j2 and |i1 − i2| = 1} .

The vertices v1,1, v1,t, vk,1, and vk,t are called the corners of the k× t-grid.

Theorem 2.2.25 (Grid Theorem, [RS86b]). There exists a function
gundir : N → N such that for every k ∈ N and every graph G we have
tw(G) ≤ gundir(k), or G contains the k × k-grid as a minor.

The function gundir started out as something highly exponential, but was
eventually brought down to a function polynomial in k [CC16]. This
polynomial has since been further improved to O(k9 poly log k) [CT19].
While the Grid Theorem guarantees us a very structured minor, we would
like to go one step further. Let G be a graph and uv = e ∈ E(G) be some
edge. Let G′ := G− e+ uxv where x /∈ V (G). We say that G′ is obtained
from G by subdivision of e. Any graph H that can be obtained from G

by a sequence of edge-subdivisions is called a subdivision of G.

Lemma 2.2.26 (folklore). Let H be a graph with ∆(H) ≤ 3. Then
any graph G contains a subdivision of H as a subgraph if and only if it
contains H as a minor.
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2.2. The Graph Minors Series

In light of the above theorem one only needs to replace the grid in the
Grid Theorem with a subcubic graph with similar properties to obtain a
theorem that guarantees the existence of a highly structured subgraph in
every graph of high treewidth.

Definition 2.2.27 (Wall). Let k ∈ N be some positive integer. An
elementary k-wall is obtained from the k × 2k-grid by deleting all edges
with endpoints v2i−1,2j−1 and v2i−1,2j for all i ∈ [1,

⌊︁
k
2

⌋︁
] and j ∈ [1, k],

and all edges with endpoints v2i,2j and v2i,2j+1 for all i ∈ [1,
⌊︁
k
2

⌋︁
] and

j ∈ [1, k], and then deleting the two resulting vertices of degree one.
A subdivision of an elementary k-wall is called a k-wall.

Figure 2.4.: An elementary 5-wall.

Since the transition between a k × k-grid and a
⌊︁
k
2

⌋︁
-wall is only a factor

of two, we may, essentially, use the same function as in the grid theorem
to state its wall-variant.

Corollary 2.2.28 (Wall Theorem). There exists a function gundir : N→
N such that for every k ∈ N and every graph G we have tw(G) ≤
gundir(2k), or G contains a k-wall as a subgraph.

2.2.2. Graphs Excluding a Minor

With treewidth and its many dual concepts, especially the Grid Theorem,
we now have a way to distinguish between ‘structurally simple’ graphs and
those that are more complicated, i.e. those which contain large k-walls.
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Excluding a Planar Graph

Let us fix some planar graph H and try to describe the structure of all
graphs which exclude H as a minor. For this, a simple observation is
almost enough.

Lemma 2.2.29 ([RST94]). Let H be a graph with |V (G)|+2|E(H)| ≤ n

for some positive integer n ∈ N. Then H is a minor of the 2n× 2n-grid.

This means, that by excluding H as a minor, we also exclude all grid of
large enough size as minors as well. Indeed this means that any class of
graphs that excludes a planar minor must be of bounded treewidth.

Theorem 2.2.30 ([RS86b]). A proper minor closed class G of graphs is
of bounded treewidth3 if and only if G excludes a planar graph as a minor.

So if bounded treewidth means ‘structurally simple’ as we have assumed
throughout these subsections, we may now say that a class of graph is
‘structurally simple’ if and only if it excludes a planar minor. Since every
planar graph H is a minor of some grid, grids of much larger size must
actually contain several vertex disjoint subgraphs which have H as a minor.
This observation lead to another property closely tied to treewidth and
being planar.

Definition 2.2.31 (Erdős-Pósa-Property for Minors). Let H be a graph.
We say that H has the Erdős-Pósa-property for minors if there exists a
function fH : N → N such that for every k ∈ N, every graph G either
contains k pairwise vertex disjoint subgraphs all of which have a minor
isomorphic to H, or there exists a set S ⊆ V (G) with |S| ≤ fH(k) such
that G− S does not have a minor isomorphic to H.

Theorem 2.2.32 ([RS86b]). Let H be a graph. Then H has the Erdős-
Pósa-property for minors of and only if it is planar.

Erdős-Pósa-type results have received a lot of attention over the years.
The name itself stems from the original result by Erős and Pósa [EP65]
which stated the existence of a function f : N → N such that for every
k, every graph G either contains k pairwise disjoint cycles, or has a set
3This means there is some constant cG such that every graph G ∈ G satisfies

tw(G) ≤ cG .
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S ⊆ V (G) of size |S| ≤ f(k) such that G− S has no cycle. Indeed, this
original result can be seen as the special case of Theorem 2.2.32 where
H = K3. Moreover, this duality of either finding many disjoint objects or
a small hitting set for all of them can be seen as a hypergraph-version of
the duality between matching and vertex cover as introduced in Chapter 3.

The Weak Structure Theorem

Whenever we exclude a planar graph H as a minor we end up with a class
of graphs of bounded treewidth. What can we say if we exclude some
complete graph Kt, t ∈ N and t ≥ 5? The case t = 5 is solved exactly by
Wagner’s Theorem, that is any K5-free graph can be built up from planar
graphs and M8 by small order clique sums. In particular this means that,
in case a K5-minor free graph G has large treewidth, one of the planar
graphs it is created from must also have large treewidth. This means,
in such a G we can find a subgraph G′ which is planar, witnesses high
treewidth, and the rest of G is ‘attached’ to G′ by means of small order
clique sums. Recall our definition of C-flatness. One could say, that the
graph G′ is ‘flat’ in G. In this subsection we present the next iterative step
towards an approximate structure theory of graphs excluding some minor:
an approximate characterisation of graphs excluding Kt as a minor.

Definition 2.2.33 (Flatness). Let G be a graph and H be a planar graph
with outer face D. We say that H is flat in G, if there exists a separation
(X,Y ) such that X ∩ Y ⊆ V (D), H ⊆ G[Y ], and there is an H-reduction
G′ of G[Y ] such that

i) D ⊆ G′,
ii) G′ is planar, and
iii) D bounds a face of G′.

Notice that, if G has a Kt-minor, there exist pairwise disjoint sets
X1, . . . , Xt ⊆ V (G) such that G[Xt] is connected and for every pair
Xi, Xj , i ̸= j, there is an edge uiuj ∈ E(G) with ui ∈ Xi and uj ∈ Xj .
We say that the X1, . . . , Xt form a model of Kt in G. Let W be some
k-wall for k ≥ t with horizontal paths P1, P2, . . . , Pk, and vertical paths
Q1, Q2, . . . , Qk. We say that a model of a Kt-minor is grasped by W if for
every Xh there are distinct indices i1, . . . , it ∈ [1, k], and j1, . . . , jt ∈ [1, k]

such that V (Piℓ ∩Qjℓ) ⊆ Xh for all ℓ ∈ [1, t].
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The following theorem was first obtained in [RS95], but there it was stated
in a slightly weaker form and the bounds were not given explicitly. So
we credit Kawarabayashi et al. [KTW18] for simplifying the proof and
providing explicit bounds.

Theorem 2.2.34 (Flat Wall Theorem, [RS95, KTW18]). Let r, t ∈ N be
positive integers, R = 49152t24(40t2 + r), and G be a graph. Then the
following is true: If W is an R-wall in G, then either

i) G has a Kt-minor grasped by W , or
ii) there exists a set A ⊆ V (G) with |A| ≤ 12288t24 and an r-wall

W ′ ⊆W −A such that W ′ is flat in G−A.

Indeed, one can take the Flat Wall Theorem and obtain an almost-
characterisation of all graphs G that exclude Kt as a minor.

Theorem 2.2.35 (Weak Structure Theorem4, [KTW18]). Let r, t ∈ N

be positive integers, R = 49152t24(40t2 + r), and G be a graph. If G has
no Kt-minor, then for every R-wall W in G there exists a set A ⊆ V (G)

with |A| ≤ 12288t24 and an r-wall W ′ ⊆ W − A such that W ′ is flat in
G−A. Conversely, if t ≥ 2, r ≥ 80t12, and for every R-wall W in G there
is a set A ⊆ V (G) of size at most 12288t24 and an r-wall W ′ ⊆ W − A

which is flat in G−A, then G has no Kt′ -minor, where t′ = 2R2.

Beyond the Flat Wall

The Flat Wall Theorem was only an intermediate, although important,
point towards the proof of Wagner’s Conjecture. The structural contri-
butions that play a role for the content of this thesis have already been
presented in the previous subsections, hence we only give a brief summary
of the remaining steps in the story of the graph minors project.
A consequence of Theorem 2.2.30 is, that any anti-chain for the graph
minor relation that contains a planar graph must be finite [RS86b]. The
next step would be to lift the Kuratowski-Wanger theorem to surfaces of
arbitrary genus. In [RS90b] it was shown that for any surface Σ the class of
graphs G which has a crossing-free embedding on Σ can be described by a

4Traditionally the Flat Wall Theorem and the Weak Structure Theorem are used
synonymous, but since there are two slightly different statements it might make
sense to differentiate between the two.
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finite set of forbidden minors. For the final part of the graph minors project
several ingredients were necessary. The first one being tree decompositions
of small adhesion. That is a tree decomposition where the intersection
of neighbouring bags is of bounded size, but not necessarily the bags
themselves. These small sized adhesion sets, which may be seen as small
separators in the graph, correspond to the areas where G is constructed
as a clique sum of several smaller graphs. Next consider the set A from
the Flat Wall Theorem. These sets are called apex sets and make up the
second ingredient. So after constructing a graph G by means of clique
sums from smaller graphs, one is allowed to add a small number of apex
vertices which might be connected to the whole graph. Now consider the
actual building blocks, so those graphs which are glued together by clique
sums. Clearly we may assume that those are not of small treewidth as
otherwise we could decompose them further. They might also not (yet) fit
onto some surface of bounded genus. That is because they might contain
subgraphs of high genus which overall do not contribute too much to the
structure of the graph. These subgraphs are called vortices or fringes.
When removing these fringes we are left with graphs of bounded genus in
every bag of our generalised tree decomposition. As it turns out, that is
all one needs to approximate the class of graphs which excludes a fixed
graph H as a minor [RS99] in a meaningful way.

2.2.3. Algorithmic Properties, Disjoint Paths, and Minor Testing

The discovery of treewidth has created a huge area of research in the algo-
rithmic community. Especially in the area of fixed parameter tractability
[DF12] treewidth found a broad variety of applications. The importance
of treewidth was drastically raised by the fact that finding a good tree
decomposition itself is tractable on graphs of bounded treewidth [Ree92].
The value of tree decompositions for these fields is that they enable the
generalisation of dynamic programming algorithms for trees to graphs
of bounded treewidth which are much richer classes of graphs. Indeed
model checking for monadic second order formulas on graphs turned out
to be fixed-parameter tractable on graphs of bounded treewidth [Cou90].
These kinds of applications however appear to be out of reach for the
generalisations of treewidth this thesis deals with. However, besides this
broad spectrum of applications for treewidth, the graph minors project
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has some deep algorithmic implications itself. In fact, one of the earliest
applications of treewidth was an algorithm that solves the disjoint paths
problem on a graph of treewidth at most k in polynomial time [RS86a].
From Theorem 2.2.30 it immediately follows that deciding whether a graph
G contains a graph H as a minor is polynomial time solvable, for fixed
H, if H is planar. The algorithm basically goes like this: If the treewidth
of G is large, so large in fact that G contains a grid-minor which itself
contains H as a minor, then the answer is ‘yes’. Otherwise the treewidth
of G is bounded by a constant only depending on H and now one can use
the disjoint paths algorithm for graphs of bounded treewidth to either
construct a minor model of H in G, or refute the existence of one.
In [RS95] this approach was generalised to its full potential as follows:

i) If G has bounded treewidth, say bounded in some function depending
on two integers t and r, then one can use dynamic programming on
a bounded width tree decomposition of G to solve the disjoint paths
problem for a fixed number of paths.

ii) If G has a Kt, for t large enough, as a minor, then the model of Kt

can be used to route our paths and we can decide the disjoint paths
problem quickly.

iii) If none of the first two properties hold that means that we must
find a flat wall W of size r in G by the Flat Wall Theorem. If r is
chosen to be large enough it can be shown that removing a vertex
from the middle of W does not change the outcome of the disjoint
paths problem. Hence we can shrink the graph and reiterate the
whole process.

This process eventually terminates and thereby solves the disjoint paths
problem for a fixed number of paths in polynomial time. Indeed, using
this approach Robertson and Seymour proved the following theorem.

Theorem 2.2.36 ([RS95]). For every graph H there exists a polyno-
mial time algorithm that decides whether a given graph G has a minor
isomorphic to H.

2.3. Structural Digraph Theory

While for undirected graphs definitions for concepts like minors and con-
nectivity appear relatively straight forward, directed graphs, or digraphs,
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are a their own beast. As for the undirected case this is a brief and
incomplete introduction, for a more in-depth explanation and missing
definitions please consult [BJG18].

Definition 2.3.1 (Digraph). A digraph is a tuple D = (V,E), where V

is a set, called the vertices, and E is a multiset over V 2, the members
of E are called the edges5. In case the tuple is not explicitly stated we
denote the vertex-set of D by V (D) and the edge-set by E(D). Given
e = (u, v) ∈ E we call u the tail of e, while v is its head. For any e ∈ E

we denote its tail by tail(e) and its head by head(e).
An edge e ∈ E with head(e) = tail(e) is called a loop and two distinct
edges e, e′ ∈ E with head(e) = head(e′) and tail(e) = tail(e′) are said to
be parallel. A digraph without parallel edges or loops is called simple.
Two edges (u, v) and (v, u) form a digon. A simple digraph without digons
is called an oriented graph.
Given a digraph D, we denote by un(D) the underlying undirected graph
of D, which is the graph with vertex set V (D) and edge (multi-)set
{uv | (u, v) ∈ E(D)}.
The digraph D is said to be finite if V (D) is finite.

In most cases our digraphs are simple, so if not stated explicitly our
digraphs do not have parallel edges or loops. Moreover, we also usually
assume un(D) to be a simple graph. That means even if D contains digons
we identify parallel edges and treat un(D) as a simple graph, except when
stated otherwise. All digraphs we consider in this thesis are finite.

Definition 2.3.2 (In- and Out-Neighbourhood). Let D be a digraph
and v ∈ V (D). The out-neighbourhood of v is the set N out

D (v) :=

{u ∈ V (D) | (v, u) ∈ E(D)}, while the in-neighbourhood of v is defined as
the set N in

D(v) := {u ∈ V (D) | (u, v) ∈ E(D)}.
An edge e is said to be outgoing or emanating from v if tail(e) = v, and it
is said to be incoming to v if head(e) = v. The in-degree of v, denoted by
deginD(v), is the number of edges that are incoming to v in D, while the
out-degree of v, denoted by degoutD (V ), is the number of edges emanating
from v in D. The total degree of a vertex v, denoted by degD(v), is the
sum of its out- and its in-degree.
5The more traditional approach is to call directed edges arcs and to denote the arc

set by A(D).
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Every digraph D can be made into an undirected graph by simply ‘for-
getting’ the orientation of the edges. There is also a way to interpret any
undirected graph as a digraph.

Definition 2.3.3 (Biorientation). Let G be a graph. The digraph
↔
G := (V (G), {(u, v), (v, u) | uv ∈ E(G)})

is called the biorientation of G.
A digraph D for which a graph G exists with D =

↔
G is called a bioriented

graph or symmetric digraph.

Two families of bioriented graphs are of particular interest for us. Those
are the bioriented cycles, or bicycles,

↔
Ck where k ∈ N, k ≥ 2. If k is

odd,
↔
Ck is called an odd bicycle, otherwise it is an even bicycle. For any

t ∈ N the digraph
↔
Kt is called a complete digraph or clique of order t. See

Figure 2.5 for an illustration.

↔
C4

↔
K6

↔
C5

Figure 2.5.: The digraphs
↔
K6,

↔
C4, and

↔
C5.

Definition 2.3.4 (Paths and Cycles). Let D be a digraph. A sequence
T = (v0, e0, v1, e1, . . . , vℓ, eℓ, vℓ+1)

is a directed walk if un(T ) is a walk, and ei = (vi, vi+1) for all i ∈ [0, ℓ].
We say that T starts on v0 and ends of vℓ+1. It is closed if un(T ) is closed.
Moreover, T is a directed trail if it is a directed walk and un(T ) is a trail,
and T is a directed path if it is a directed walk and un(T ) is a path.
At last, T is a directed cycle if it is a directed walk and un(T ) is a cycle.

As in the undirected case we identify the sequence and the corresponding
subgraph. Moreover, in case the edges are uniquely determined by the
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vertices we omit them. We also adapt the notation of combining paths
and starting or ending paths at intermediate vertices from the undirected
setting.
In (undirected) graphs we only know one notion of connectivity. For
digraphs however, there are two different notions, namely weak and strong
connectivity.

Definition 2.3.5 (Weak Connectivity). Let D be a digraph. We say that
D is weakly connected if un(D) is connected. A digraph that is not weakly
connected is called disconnected.

Definition 2.3.6 (Complementary Pair of Directed Paths). Let D be
a digraph, and u, v ∈ V (D) be two distinct vertices. A pair (P1, P2) of
directed paths is an complementary pair of directed paths connecting u

and v if P1 starts on u and ends on v, while P2 starts on v and ends on u.

Definition 2.3.7 (Strong Connectivity). Let D be a digraph. We say
that D is strongly connected if every pair of vertices is connected by a
complementary pair of paths within D.
A maximal strongly connected subgraph of D is called a strong component
of D.
Let k ∈ N be a positive integer. We say that D is strongly k-connected if
|V (D)| ≥ k + 1, and D − S is strongly connected for all S ⊆ V (D) with
|S| ≤ k − 1.

Both versions of Menger’s Theorem as stated in the section on undirected
graphs are true for digraphs. Let D be a digraph and X,Y ⊆ V (D). A
directed X-Y -path is a directed path that starts on a vertex from X and
ends on a vertex from Y .

Theorem 2.3.8 (Direct Menger’s Theorem, Local Version [Men27]). Let
D be a digraph and X,Y ⊆ V (D) be two sets of vertices, then the
maximum number of pairwise disjoint directed X-Y -paths in D equals
the minimum size of a set S ⊆ V (G) such that every directed X-Y -path
in D contains a vertex of S.

Theorem 2.3.9 (Directed Menger’s Theorem, Global Version). Let D be
a graph and k ∈ N be a positive integer. Then D is strongly k-connected if
and only if |V (D)| ≥ k+1 and for every pair of vertices u, v ∈ V (D) there
exists a family of k pairwise internally disjoint directed {u}-{v}-paths.
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Note that just by destroying strong connectivity, or more generally, all
X-Y -paths in a digraph D, one does not necessarily render D disconnected.
Let D be a digraph and D be the set of all strong components of D. For
any choice of C1, C2 ∈ D we write C1 ≤top C2 if either C1 = C2, or there
exists a directed V (C1)-V (C2)-path in D. Then (D,≤top) is a partial
order, usually called the topological ordering of D.
A digraph T without any directed cycle is called a directed acyclic graph
or DAG for short. Note that the digraph obtained from D by contracting
every C ∈ D into a single vertex is in fact a DAG.
The last remaining fundamental concept we need to introduce here is a
notion of minors for digraphs. There exist several different definitions of
minors for digraphs which are pairwise incomparable and their usefulness
usually depends on the setting. The version of directed minors we are
interested in here is the one called butterfly minor.

Definition 2.3.10 (Butterfly Minor). Let D be a digraph and (u, v) ∈
E(D). The edge (u, v) is butterfly contractible if N out

D (u) = {v}, or
N in

D(v) = {u}.
Suppose (u, v) is butterfly contractible and let

D′ := D − u− v + x+ {(w, x) | (w, u) ∈ E(D) or (w, v) ∈ E(D)}
+ {(x,w) | (u,w) ∈ E(D) or (v, w) ∈ E(D)} ,

where x /∈ V (D). We say that D′ is obtained from D by butterfly
contraction of (u, v).
A digraph H is a butterfly minor of D if it can be obtained from D by a
sequence of edge-deletions, vertex-deletions, and butterfly contractions.

The idea behind butterfly contractions is, that any directed cycle in D

that does not use (u, v) still is a directed cycle of D′, while any directed
cycle of D which uses (u, v) can still be obtained from a directed cycle
of D′ which contains the vertex x. Moreover, every directed cycle of D′

belongs to one of the above categories. In particular this means that two
distinct vertices of D, belonging to different strong components of D, can
never become strongly connected by means of butterfly contractions.

2.3.1. Generalising Treewidth

When considering digraphs we are suddenly confronted with two different
notions of connectivity, namely weak and strong connectivity. It is not
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immediately clear if a directed version of treewidth should focus on one
these two connectivity parameters or try to involve both at the same
time. Indeed, it is not clear whether it is even possible to consider weak
connectivity and still obtain a parameter that is fundamentally ‘directed’
in the sense that it differs from the treewidth of the underlying undirected
graph in a meaningful way. Several attempts have been made to obtain a
generalisation of treewidth in the digraphic world and most of them can,
at least qualitatively, be described using directed versions of the cops &
robber game.

Directed Cops & Robber Games

Generally speaking, directed versions of the cops & robber game can be
defined in the same way as they are defined for undirected graphs. The
only difference we make here is the introduction of a movement mode for
the robber, i.e. we add different rules how the new robber position Ri may
be chosen.

Definition 2.3.11 (Reachability). Let D be a digraph and u ∈ V (D)

be any vertex. We say that u reaches another vertex v ∈ V (D) if either
u = v or there exists a directed path P starting on u and ending in v in D.
By ReachesD(u) we denote the set of all vertices of D which are reached
by u.
If X ⊆ V (D), we write ReachesD(X) for

⋃︁
x∈X ReachesD(x).

Definition 2.3.12 (Directed Cops & Robber Game). Let D be a digraph.
A play of the cops & robber game on D is a sequence

(C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ)

such that Ci ⊆ V (D), and Ri is a strong component of D − Ci for all
i ∈ [0, ℓ], and one of the following conditions is met:

i) In D−(Ci−1∩Ci) there exists a strong component R with V (Ri−1)∪
V (Ri) ⊆ V (R) (strong game), or

ii) V (Ri) ⊆ ReachesD−(Ci−1∩Ci)(V (Ri−1)) (weak game).
Every other definition regarding strategies, winning, monotonicity, in-
ertness, and invisibility can be directly lifted from the definitions for
undirected graphs.
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To define the cop-number of a digraph D we need to specify which of
the two movement modes we allow for our robber. In case we consider
the strong game we add s to the subscript, so we write copss(D) for the
smallest integer k such that there is no robber-strategy which is winning
against k cops in the strong game. Similarly, when considering the weak
game we add w to the subscript.

Suppose D is a DAG. Notice that in the strong game the robber can never
leave its original strong component, which is a single vertex, and thus a
single cop suffices to catch her, even if she is invisible. In the weak game
the robber can escape from her current position, say the vertex v, to some
out-neighbour of v. However, since D has no directed cycle, eventually
she is forced to enter a sink vertex, that is a vertex with out-degree zero,
from which she cannot escape further. Therefore, even in the weak game
one cop suffices to eventually catch her. A valid strategy for any possible
definition of the game, even against an invisible robber while having to
play a monotone strategy, would be to consider a linearisation of the
topological order on the vertex set of D. Now let the single cop simply
move from smallest to largest vertex in this order and note that the robber
can never enter a vertex which is smaller than her current position in this
linear order.
This means that no variant of the cops & robber game as defined above is
able to capture the complexity of DAGs. Hence weak connectivity plays
only a minor role, if any, in these kinds of games.
To illustrate the complexity that arises from these different versions of the
cops & robber game we first introduce the arguably most successful width
parameter that can be seen as a generalisation of treewidth to digraphs. In
Section 2.3.4 we add some honourable mentions of other width parameters
and briefly summarise the current state of interconnectedness between
these parameters and the different cops & robber games. It is worth
mentioning that this landscape is vastly different from a unifying result
such as Theorem 2.2.23.

2.3.2. Directed Treewidth and Duality

The, at least structurally, most successful directed version of treewidth
[JRST01] was defined with computability in mind. That is, the authors
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were looking for a way to generalise the idea of tree decompositions
alongside with obstructions like brambles which enable a constant factor
approximation of treewidth in polynomial time if the treewidth is fixed.
In particular, the authors were looking for a parameter satisfying the
following bullet points:

i) The new parameter should serve as a corner point for the study of
butterfly minors,

ii) it should be useful for proving theorems in structural digraph theory,
iii) it should have algorithmic applications, i.e. some otherwise compu-

tationally hard problems should be tractable on digraphs where the
new parameter is bounded, and

iv) it should potentially be useful in practical applications.

v1 v2

v3v4

v5

v6
v7

v8

v9

v12 v11

v10

v1, v2

v3 v7

v8

v6

v4 v5

v12

v11
v10

v9

v7 v1, v2, v7

v2, v7

v7, v8

v3 v3, v7

v7

v12 v12
v12

Figure 2.6.: An example digraph D (left) and a directed tree decomposition
of width two for D (right).

These are some of the properties that make treewidth such a successful
graph parameter [RS86b, AP89, KBVH01].
Let D be a digraph and X ⊆ V (D). A directed walk W is a directed
X-walk if it starts and ends in X, and contains a vertex of V (D −X).

Definition 2.3.13 (Strong and Weak Guarding). Let D be a digraph
and X,Y ⊆ V (D). We say that Y strongly guards X if every directed
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X-walk in D contains a vertex of Y . The set Y weakly guards X if every
directed X-V (D −X)-path contains a vertex of Y .

An arborescence is a digraph T⃗ obtained from a tree T by selecting a root
r ∈ V (T ) and orienting all edges of T away from r. If e is a directed edge
and v is an endpoint of e we write v ∼ e.

Definition 2.3.14 (Directed Treewidth). Let D be a digraph. A directed
tree decomposition for D is a tuple (T, β, γ) where T is an arborescence,
β : V (T )→ 2V (D) is a function that partitions V (D), into sets called the
bags6, and γ : E(T )→ 2V (D) is a function, giving us sets called the guards,
satisfying the following requirement:

For every (d, t) ∈ E(T ), γ(d, t) strongly guards β(Tt) :=⋃︁
t′∈V (Tt)

β(t′).
Here Tt denotes the subarboresence of T with root t. For every t ∈ V (T )

let Γ(t) := β(t) ∪
⋃︁

t∼e γ(e). The width of (T, β, γ) is defined as
width(T, β, γ) := max

t∈V (T )
|Γ(t)| − 1.

The directed treewidth of D, denoted by dtw(D), is the minimum width
over all directed tree decompositions for D.

We sometimes use a slightly relaxed version of directed tree decompositions.
A tuple (T, β, γ) is a relaxed directed tree decomposition for a digraph D

if it satisfies the definition of a directed tree decomposition for D with
the exception that β(t) = ∅ is allowed for t ∈ V (T ).

Theorem 2.3.15 ([JRST01]). Let D be a digraph and k ∈ N. If
dtw(D) ≤ k then copss(D) ≤ k + 1, and copss(D) ≤ k then dtw(D) ≤
3k − 2.

Indeed, from the proof of Theorem 2.3.15 one can obtain the following
corollary.

Corollary 2.3.16 ([JRST01]). Let D be a digraph. Then copss(D) ≤
copss,rm(D) ≤ 3 copss(D)− 1.

So, while we might need some additional cops for a robber-monotone
strategy, the so called monotonicity costs for robber-monotonicity for the
6This means {β(t) | t ∈ V (T )} is a partition of V (D) into non-empty sets.
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strong directed cops & robber game are bounded by a factor of 3. As
mentioned earlier, these kinds of approximate results are unavoidable
and are usually regarded as ‘good enough’, especially in the setting of
digraphs. What might be surprising is that the step from robber- to
cop-monotonicity comes with potentially unbounded monotonicity costs.

Theorem 2.3.17 ([KKRS14]). For every k ∈ N, k ≥ 3, there exists a
digraph Dk such that copss(Dk) ≤ 4 and copss,cm(Dk) ≥ k.

Another observation that poses an inconvenience for directed treewidth
is the fact, that it is not monotone under the butterfly minor relation.
That is, there exist digraphs whose directed treewidth increases after the
butterfly contraction of certain edges [Adl07]. Still one can show that the
directed treewidth cannot be increased arbitrarily by means of butterfly
contractions. A proof of this can be found in Section 5.3.
On the positive side, there exists an efficient algorithm to obtain a directed
tree decomposition of bounded width for digraphs of bounded directed
treewidth.
A directed tree decomposition (T, β, γ) for a digraph D is nice if for every
(t′, t) ∈ E(T ),

i) β(Tt) induces a strong component of D − γ(t′, t), and
ii) γ(t′, t) ∩ β(Tt) = ∅.

Theorem 2.3.18 ([CLMS19]). Let D be a digraph, k ∈ N, and dtw(D) ≤
k. There exists an algorithm with running time 2O(k log k)nO(1) that
computes a nice directed tree-decomposition of width at most 3k − 2 for
D.

Please note that the notion of nice directed tree decompositions, together
with Theorem 2.3.18 allows to quickly confirm how Corollary 2.3.16 can
be proven.
An essential part in the study of tree decompositions and their interaction
with graph minor theory in general is played by the existence of obstruc-
tions, i.e. substructures one is guaranteed to find in every graph of high
treewidth.

Definition 2.3.19 (Directed Bramble). Let D be a digraph. A directed
bramble in D is a family B of strongly connected subgraphs of D such
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that for every pair B1, B2 ∈ B, either V (B1) ∩ V (B2) ̸= ∅, or there exist
edges (u1, v2), (u2, v1) ∈ E(D) with ui, vi ∈ V (Bi) for both i ∈ [1, 2].
A cover or hitting set for B is a set S ⊆ V (D) such that S ∩ V (D) ̸= ∅
for all B ∈ B.
The order of B is the minimum size of a hitting set for B. The directed
bramble number of a digraph D, denoted by dbr(D), is the maximum
order of a bramble in D.

Theorem 2.3.20 ([KO14]). Let D be a digraph. Then dbr(D) ≤
dtw(D) ≤ 6 dbr(D) + 1.

Finally, there exists a directed analogue of the grid theorem for directed
treewidth.

Definition 2.3.21 (Cylindrical Grid). Let k ∈ N be a positive integer.
The cylindrical grid of order k is the digraph obtained from the cycles
C1, . . . Ck, with

Ci = (vi0, e
i
0, v

i
1, e

i
1, . . . , e

i
2k−3, v

i
2k−2, e

i
ek−2, v

i
2k−1, e

i
2k−1, v

i
0)

for each i ∈ [1, k], by adding the directed paths
Pi = v12iv

2
2i . . . v

k−1
2i vk2i, and

Qi = v12i+1v
2
2i+1 . . . v

k−1
2i+1v

k
2i+1

for every i ∈ [0, k − 1].

Figure 2.7.: The cylindrical grid of order 4.

42



2.3. Structural Digraph Theory

Theorem 2.3.22 (Directed Grid Theorem, [KK15]). There exists a
function gdir : N→ N such that for every k ∈ N and every digraph D we
have dtw(D) ≤ gdir(k), or D contains the cylindrical grid of order k as a
butterfly minor.

The definition of subdivisions can be generalised seamlessly from the
undirected setting to digraphs. As before, one can observe that for
digraphs D of maximum total-degree at most three there is no difference
between containing a subdivision of D and having D as a butterfly minor.

Lemma 2.3.23 ([AKKW16]). Let D and H be digraphs where H has
maximum total-degree at most three. Then D contains a subdivision of
H if and only if D has a butterfly minor isomorphic to H.

Definition 2.3.24 (Cylindrical Wall). Let k ∈ N be a positive integer.
An elementary cylindrical k-wall W is the digraph obtained from the
cylindrical grid G of order 2k by deleting the edges (v2j2i , v

2j
2i+1) and

(v2j+1
2i+1 , v

2j+1
2i+2 ) for every i ∈ [0, 2k − 1] and every j ∈ [0, k − 1].

A cylindrical k-wall is a subdivision of W .

Figure 2.8.: The elementary cylindrical 3-wall.

As in the undirected case, we can translate the Directed Grid Theorem
into a Directed Wall Theorem by simply doubling the necessary quantities.
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Since this is just a linear factor we may assume gdir to already incorporate
this factor.

Corollary 2.3.25 (Directed Wall Theorem). There exists a function
gdir : N → N such that for every k ∈ N and every digraph D we have
dtw(D) ≤ gdir(2k), or D contains a cylindrical k-wall.

2.3.3. Disjoint Paths and Butterfly Minor Testing

Although directed treewidth is not exactly monotone under the butterfly
minor relation, the existence of Theorem 2.3.22 means that it still is
probably the right parameter for the study of butterfly minors. But what
about its algorithmic value? A big issue, which we will address in slightly
more detail in Section 2.3.5, with most directed width measures that
somehow correspond to directed cop & robber games as introduced above
is, that they cannot deal with DAGs. Indeed, most of these measures
are some small constant, 0 or 1 in many cases, on DAGs no matter how
complicated they are. The whole depth of this problem becomes apparent
as soon as one realises that for any graph G there exists a DAG T such
that G = un(T ). To see this consider any undirected graph G and take
any linear ordering π on V (G). On any edge uv ∈ E(G) we can now
impose a direction based on π. Simply replace uv by (u, v) if and only
if π(u) ≤ π(v), and (v, u) otherwise. By doing so, no directed edge can
ever have its head appear before its tail with respect to π, and thus the
resulting digraph D does not have a single directed cycle.
There are two major points attached to these observations:

i) If a problem is tractable on digraphs of bounded directed treewidth,
it is necessarily tractable on DAGs.

ii) Many problems are hard on DAGs.
Hence it makes sense to focus on problems that are, at least in some sense,
tractable on DAGs, but which still are hard on general digraphs.

Disjoint Paths

An important consequence of the graph minors project is Theorem 2.2.36
that was made possible by the findings from [RS95] which allowed for a
polynomial time algorithm for the disjoint paths problem.
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Definition 2.3.26 (Disjoint Paths and Linkedness). Let D be a digraph,
k ∈ N a positive integer, and s1, . . . , sk, t1, . . . , tk ∈ V (D). The question
whether there exist directed paths P1, . . . , Pk in G such that these paths
are pairwise internally disjoint, and Pi starts on si and ends ti for every
i ∈ [1, k] is called the directed k-disjoint paths problem.
We say that (s1, . . . , sk) and (t1, . . . , tk) are linked if the answer to the
directed k-disjoint path problem with input (s1, . . . , sk, t1, . . . , tk) is ‘yes’.
A digraph D is said to be k-linked if the answer to every instance of the
directed k-disjoint paths problem in D is ‘yes’.

While the case k = 2 in undirected graphs can be solved by a polynomial
time algorithm based on Theorem 2.2.6, for digraphs the case is vastly
different.

Theorem 2.3.27 ([FHW80]). The Directed 2-Disjoint Paths Problem is
NP-complete.

In particular this means that a characterisation such as Theorem 2.2.6
is probably7 impossible. For DAGs however, there exists an analogue of
the Two Paths Theorem [Tho85]. And in general, if we fix the number of
terminal pairs t to be constant, there exists a polynomial time algorithm
for the directed t-disjoint paths problem on DAGs [FHW80]. Hence one
could expect the directed disjoint paths problem to be tractable, for a
fixed number of paths, on digraphs of bounded directed treewidth. Indeed,
in the original paper which introduced directed treewidth, an algorithm
was given to solve the directed disjoint paths problem.

Theorem 2.3.28 ([JRST01]). Let D be a digraph, and t, k ∈ N be two
positive integers such that dtw(D) ≤ k. There exists an algorithm that
decides the directed t-disjoint paths on D in time |V (D)|O(t+k).

Minor Testing and the Erdős-Pósa-Property for Butterfly Minors

With the disjoint paths problem being tractable on digraphs of bounded
directed treewidth, one can now also decide for a fixed digraph H, whether
any digraph D with dtw(D) ≤ k has a butterfly minor isomorphic to D.

7Under the assumption P ̸= NP.
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Theorem 2.3.29 ([AKKW16]). Let D and H be digraphs and k ∈ N an
integer such that dtw(D) ≤ k. There exists an algorithm that decides in
time |V (D)|O(|V (H)|2+k) whether D has a butterfly minor isomorphic to
H.

Similar to the undirected case, one can also ask for a generalisation of the
Erdős-Pósa-property of directed cycles [RRST96] to butterfly minors.

Definition 2.3.30 (The Erdős-Pósa Property for Butterfly Minors). Let
H be a digraph. We say that H has the Erdős-Pósa property for butterfly
minors if there exists a function f : N→ N such that for every digraph D

and every k ∈ N either D contains k pairwise vertex disjoint subgraphs,
all of which have a butterfly minor isomorphic to H, or there exists a set
S ⊆ V (D) with |S| ≤ f(k) such that D−S does not have H as a butterfly
minor.

It was originally expected by the community that it would turn out that
all planar digraphs have the Erdős-Pósa property for butterfly minors.
However,there exist planar digraphs which are not butterfly minors of any
cylindrical grid. This observation is crucial as the approach to proving the
Erdős-Pósa property for butterfly minors for a given digraph H is two-fold,
as it is in the undirected case: If the directed treewidth is bounded by a
function depending on H, then one can use a directed tree decomposition
of small width to either find the desired subgraphs, or the set S which
eliminates all occurrences of H as a butterfly minor. If however the
directed treewidth is to large, the only thing one can guarantee is a large
cylindrical grid butterfly minor. But in case H is a butterfly minor of the
cylindrical grid of any order, then we do not have any tool that provides
us with either a small hitting set, or many disjoint butterfly minor models
of H.
Indeed, as it turns out, being a butterfly minor of the cylindrical grid is
exactly what determines the Erdős-Pósa property for butterfly minors.

Theorem 2.3.31 ([AKKW16]). Let H be a digraph. Then H has the
Erdős-Pósa property for butterfly minors if and only if there exists k ∈ N

such that H is a butterfly minor of the cylindrical grid of order k.

We discuss the topological reasons behind this outcome in more detail in
Section 7.2.
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2.3.4. Other Directed Width Parameters

As announced above we briefly introduce other attempts at generalising
the concept of treewidth to the world of digraphs by utilising cops &
robber games. Both concepts we introduce here also come with their
own decompositions, but since we only mention them to illustrate the
surprising diversity in parameters and the problems arising from this
diversity we remain within the realm of cops & robbers.
Before we begin, note that any winning strategy for the weak variant of
the directed cops & robber game also gives a winning strategy for the
strong variant with the same additional rules. Indeed this means that we
obtain the following hierarchy between the different cop numbers on a
digraph D:

copss(D) ≤ copsw(D) ≤ copsw,rm(D)

≤ copsw,cm(D) ≤ copsw,in,iv,cm(D)

In particular, by Theorem 2.3.15, this means that if any of these numbers is
bounded then so is the directed treewidth of D. Hence, by Theorem 2.3.28,
the directed t-disjoint paths problem for fixed t can be solved in polynomial
time on any digraph for which at least one of these numbers is bounded.

Definition 2.3.32 (DAG-width, [BDH+12]). Let D be a digraph and
k ∈ N. Then D is said to have DAG-width at most k if and only if
copsw,cm(D) ≤ k.

An interesting open problem is the question whether there is a function
f : N → N such that copsw,cm(D) ≤ f(copsw(D)). We have seen that
such a function does not exist for the strong variant, but for the weak
game it might still be true. What is known however is, that DAG-width
and directed treewidth are only related in one direction.

Theorem 2.3.33 ([BDH+12]). For every k ∈ N there exists a digraph
Dk with dtw(Dk) = 1 and k ≤ copsw(Dk) ≤ copsw,cm(Dk).

As a second example let us consider the weak variant of the directed cops
& robber game where the robber is inert and invisible.

Definition 2.3.34 (Kelly-width, [HK08]). Let D be a digraph and k ∈ N.
Then D is said to have Kelly-width at most k if and only if copsw,in,iv(D) ≤
k.
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The same family of examples which shows that there exist digraphs
of constant directed treewidth and unbounded DAG-width also works
for Kelly-width. Whether Kelly-width and DAG-width can be seen as
equivalent is another open question in this area.

2.3.5. On the Algorithmic Power of Directed Width Measures

Besides directed treewidth, DAG-width and Kelly-width there are several
other directed width measures such as directed pathwidth [Bar06], cycle
rank [Coh68]8, and DAG-depth [GHK+14]. But none of these concepts
seem to perform anywhere near as good as treewidth for undirected graphs.
Indeed, with the exception of some specialised problems, for most of these
parameters the directed t-disjoint paths problem appears to be the only
one which stays consistently tractable on classes where any of the above
parameters is bounded.
An interesting turn in this story is provided by parameters which do not
aim to translate treewidth like properties to digraphs, but take a more
density based approach. For clique width [CER93], which can be defined
for directed graphs in the same way it is defined for undirected graphs,
there is even an analogue of the powerful algorithmic meta theorem for
treewidth [Cou97]. When considering the more restrictive parameter
called directed modular width, many otherwise hard problems appear to
became somewhat tame even on digraphs [SW20].
In their work on algorithmic meta arguments regarding directed width
measures, Ganian et al. [GHK+16] introduce a concept to capture the
algorithmic abilities of a directed width parameter and reach the con-
clusion that no directed width measure that is closed under subgraphs
and reversing subdivisions can be a powerful tool in terms of algorithmic
application. This means that there exists some kind of dichotomy between
those graph parameters which are ‘algorithmically useful’ and those which
are ‘structurally meaningful’ in the sense of, for example, the theory of
butterfly minors.

8Oddly enough, the discovery of cycle rank predates even the undirected width
measures.
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Chapter 3.

An Introduction to Matching Theory

Before we begin with our introduction to matching theory let us formally
introduce the object of interest itself.

Definition 3.0.1 (Matching). Let G be a graph and F ⊆ E(G) be a set
of edges. The set F is called a matching if the edges in F are pairwise
disjoint, i.e. no two edges in F share a common endpoint. By V (F ) we
denote the vertex set obtained by the union over all edges in F and a
vertex v ∈ V (G) is matched by F if v ∈ V (F ).
A matching M is perfect if it matches all vertices of G. The set of all
perfect matching of G is denoted by M(G).

Since this thesis is mainly oriented towards the structural part of matching
theory, and even within the structural part our topics are relatively
specialised, we can only give a rough overview over an ever expanding
field with many different facets. In fact, matching theory as a topic has
grown so large that one can find whole monographs on the topic. For
many of the topics and results this chapter touches upon the interested
reader is therefore referred to the book ‘Matching Theory’ by Lovász and
Plummer [LP09] for a deeper discussion and related material. Especially
algorithmic aspects of matching theory will be neglected by us, so anyone
particularly interested in practical application will find this book to be
an enlightening read. Still, in our introduction and every once in a while
throughout the thesis we will dabble in some algorithmic application -
however, the applicability of our findings to the ‘real world’ might still be
debatable.
Matching problems come in numerous forms and there are many known
examples like the assignment of jobs to, preferably, the most capable
employee, the distribution of a limited set of antibiotic drugs to a number
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of patients such that no patient is allergic to the drug which is assigned
to them, or even just the problem of finding a suitable place to sit at the
table for all of your guests for the occasional board game night. Indeed,
every injective mapping between any two sets is a special case of the
maximum cardinality matching which asks for the largest, in terms of
edges it contains, matching F one can find in a given graph G.

Definition 3.0.2 (Maximum Matching). Let G be a graph. A matching
F ⊆ E(G) is a maximum matching of G if for all matchings M ⊆ E(G)

we have |M | ≤ |F |. The size of a maximum matching in G is the matching
number of G, denoted by ν(G).

Once the idea of some kind of optimality, in our case the maximum
number of edges one can fit into a matching, has taken hold, the realm
of mathematical programming, in particular linear programming, has
gotten close. For an introduction to this topic we recommend the book
on combinatorial optimisation by Schrijver [Sch03]. For any optimisation
problem that can be formulated as the maximisation of some linear function
under the restriction of a set of linear inequalities one can find a dual
minimisation problem.

Definition 3.0.3 (Vertex Cover). Let G be a graph and F ⊆ V (G) a set
of vertices. An edge e ∈ E(G) is said to be covered by F , if F contains at
least one endpoint of e. The set F is called a vertex cover if every edge of
G is covered by F .
A vertex cover F is a minimum vertex cover of G if for all vertex covers
N ⊆ V (G) we have |F | ≤ |N |. The size of a minimum vertex cover in G

is the vertex cover number of G, denoted by τ(G).

Suppose a graph G contains a matching M of size k, then any vertex cover
of G must contain at least k vertices since no vertex can cover two edges
from M . Thus we have

ν(G) ≤ τ(G).

However, if M is a maximum matching of G, then no edge of G can be
completely disjoint from V (M). Therefore V (M) is a vertex cover of G
and we obtain a second inequality, namely

τ(G) ≤ 2ν(G).

So the size of a maximum matching in a graph G and the size of a minimum
vertex cover are closely tied to one another. Indeed, in the language of
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Figure 3.1.: A graph G with a maximum matching (on the left) and a
minimum vertex cover (on the right).

linear programming these two problems are said to be dual. Taking a step
back from our, probably a bit restricted, notion of matchings and vertex
covers, we can reformulate the same notion in the much more general
setting of hypergraphs. A hypergraph is a straightforward generalisation
of our notion of graphs by simply allowing any subset of the vertices as
edges, sometimes called hyperedges, instead of just allowing edges to be
sets of cardinality two. For an introduction to hypergraph theory the
reader is referred to the book by Berge [Ber84].

Definition 3.0.4 (Hypergraph). A hypergraph H is a tuple H = (V,E)

where V is a finite set and E ⊆ 2V . We write V (H) = V and E(H) = E

as we do for graphs. The set V is the set of vertices and E is the set of
edges. The rank of H, denoted by r(H), is the largest cardinality among
all edges in E.
A set F ⊆ E(H) is called a matching if its members are pairwise disjoint.
We denote the size of a maximum matching in H by ν(H).
A set F ⊆ V (H) is called a vertex cover if F is a hitting set for E(H).
We denote the size of a minimum vertex cover in H by τ(H).

Observe that the notion of matchings and vertex covers in hypergraphs are
straightforward generalisations of matchings and vertex covers in graphs.
Moreover, please note that the factor 2 from the duality of maximum
matching and minimum vertex cover in graphs G is nothing more that
the rank of G. So, by using the same arguments, one can obtain a more
general duality for maximum matching and minimum vertex cover in
hypergraphs H:

ν(H) ≤ τ(H) ≤ r(H)ν(H).
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Hypergraphs are capable of modelling a wide range of combinatorial
objects and problems, and generally the problems of finding maximum
matchings and minimum vertex covers, oftentimes at least approximations
of those, have become known as packing and covering problems. The
intuition here is that a maximum matching can be seen as the objective to
pack as many objects, represented by the hyperedges of the corresponding
hypergraph H, as possible into some kind of combinatorial structure. The
covering part is the same as the covering that occurs in vertex covers: we
want to find a hitting set for all occurrences of the objects we previously
wanted to pack. Famous examples of these kinds of packing and covering
problems include Menger’s Theorem Theorem 2.1.4 and a wide range of
Erdős-Pósa-type results [EP65, RST94, AKKW16]. We revisit the latter
in Chapter 7. The theme of duality itself, i.e. if we cannot minimise a
certain quantity we necessarily find an object of certain size that acts as
some kind of witness to the quantity not being small, will come up at
several points and with several faces in the following chapters.

Organisation The goal of this chapter is to motivate the development
of a matching theoretic structure theory for graphs while also introducing
the important notions on which this thesis is built. We start, in Section 3.1,
with a brief motivation for the structural study of graphs with perfect
matchings and an overview on the development so far, always with the
focus on the kind of structure theory we are after. Section 3.2 then lays the
foundation of arguably the most prominent application of theoretic results
for this thesis, namely a close connection between the structural properties
of digraphs and bipartite graphs with perfect matchings. We then specialise
further and dedicate Section 3.3 to the introduction of Pólya’s Permanent
Problem, the question of the number of perfect matchings in a graph
and a first structure theorem beyond those from Section 3.1. At last,
Section 3.4 is a discussion on the differences between bipartite graphs
and non-bipartite graphs and tries to shed some light on the much more
complex structure we find in non-bipartite graphs with perfect matchings.

3.1. General Matching Theoretic Background

The first goal of this section is to establish a structure theory for general
graphs that shows that we already understand a lot about how maximum
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matchings are arranged within graphs. This theory consists mainly of two
parts, an understanding of how maximum matchings in bipartite graphs
work and a decomposition of a given graph G into several parts, one of
them being a subgraph of G with a perfect matching. This decomposition,
and its existence, has become known as the Gallai-Edmonds Structure
Theorem. Before we move on to this theorem, however, we first need to
explore the world of bipartite graphs and their matching related properties
a bit.

Definition 3.1.1 (Bipartite Graph). A graph B is called bipartite if
there exists a partition V1, V2, called the colour classes or bipartition, of
its vertex set, such that every edge of B has exactly one endpoint in each
Vi, i ∈ [1, 2].

Wherever possible we use the letter ‘B’ to denote a bipartite graph to
avoid ambiguity1 Please note that the bipartition V1, V2 of a bipartite
graph B is unique if B is connected. Whenever a bipartite graph occurs
and we do not state otherwise, we assume the two colour classes to be
given implicitly. For each i ∈ [1, 2] we denote the vertices of Vi in B by
Vi(B). In some cases, and by slightly abusing the notation, we use V1 and
V2 as if those where more abstract sets from which all vertices of bipartite
graphs come. The vertices in V1 are said to be black, while those in V2 are
white. This choice of colours2 is for purely practical reasons as we stick to
this convention in all figures where bipartite graphs might occur.
Bipartite graphs are of particular importance in matching theory as they
naturally occur as the class of graphs where the duality of maximum
matching and minimum vertex cover is tight. The minmax theorem of
König is probably the single most important result in all of matching
theory and, in some sense, it outshines even the Gallai-Edmonds Structure
Theorem and Tutte’s Theorem which we present later in this section.

Theorem 3.1.2 (König’s Minmax Theorem). A graph G is bipartite if
and only if

ν(G′) = τ(G′)

for all subgraphs G′ ⊆ G.
1This is not always possible, especially when dealing with many different bipartite

graphs at the same time different names are necessary.
2Or non-colours to be exact.
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A proof of Theorem 3.1.2 appears in [LP09] where it can be found on page
4 as Theorem 1.1.1. The fact that this is the first theorem to appear in the
book on matching theory by Lovász and Plummer can and should be seen
as a strong indicator for its fundamentality. Please note that generally
only the ‘if’ part of this theorem is stated as ‘Königs Theorem’, the ‘only
if’ part, however, immediately arises from the observation that a graph is
bipartite if and only if it is free of odd cycles and the fact that any odd
cycle violates the equality of vertex cover and matching number.
The next two results are equally strong, in fact equivalent, to Königs
Minmax Theorem, but a bit more technical to state.
Let B be a bipartite graph, i, j ∈ [1, 2] distinct, and X ⊆ Vi. A matching
F ⊆ E(B) is said to match Vi into Vj if every vertex of Vi is matched by
F . The deficiency of X is the quantity

defB(X) = def(X) = |X| − |NB(X)|,
and the surplus of X, denoted by surB(X) = sur(X), is defined to be the
value − defB(X).

Theorem 3.1.3 (Hall’s Theorem, [Hal09]). Let B be a bipartite graph,
and i, j ∈ [1, 2] distinct. Then B has a matching of Vi into Vj if and only
if sur(X) ≥ 0 for all X ⊆ Vi.

The connection between positive deficiency and the existence of matchings
fully matching one of the two colour classes was discovered even earlier
by Frobenius and finds its expression in the famous Marriage Theorem.

Theorem 3.1.4 (Frobenius’ Marriage Theorem, [Fro17]). A bipartite
graph B has a perfect matching if and only if |V1| = |V2| and for each
X ⊆ V1, sur(X) ≥ 0.

At the point in time Frobenius published his findings, many results,
especially on matching theory and bipartite graphs, were formulated in
terms of matrices and their determinants. The deep connection between
this subworld of linear algebra and matching theory is bound to show up
again in more detail in Section 3.3. Theorems 3.1.2 to 3.1.4 might appear
to be relatively niche as they only talk about the class of bipartite graphs
which is widely regarded as well understood and tame. However, all three
theorems can be seen to be pairwise equivalent and, in particular, they are
equivalent to Menger’s Theorem Theorem 2.1.4 and the famous Max-Flow
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Min-Cut Theorem by Ford and Fulkerson [FJF15]. The proof of these
equivalences is left to the reader.
Gallai [Gal63, Gal64] and Edmonds [Edm65] independently proved that
there is a canonical, that is in some sense unique, decomposition of the
vertex set of any graph G that fully grasps the structure of all maximum
matchings in G.
A graph G is called factor critical if G− v has a perfect matching for all
v ∈ V (G). A matching F of G is called near perfect if it matches all but
one vertex of G.
Let us denote by comp(G) the set of all connected components of the
graph G. If X ⊆ V (G) is a set of vertices, we denote by compG(X) the
set comp(G[X]).
For the statement of the Gallai-Edmonds Structure Theorem we need to
define three sets. Let G be any graph, then we denote by

i) D(G) the set of all vertices of G which are not matched by at least
one maximum matching of G,

ii) A(G) the set of vertices from V (G) \D(G) which have neighbours
in D(G), and

iii) C(G) the set V (G) \ (D(G) ∪A(G)).

Theorem 3.1.5 (Gallai-Edmonds Structure Theorem, [Gal63, Gal64,
Edm65]). Let G be a graph with the sets D(G), A(G), and C(G) as
defined above, then:

i) the components of G[D(G)] are factor critical,
ii) G[C(G)] has a perfect matching,
iii) if B is the bipartite graph with bipartition A(G) and compG(D(G))

such that a vertex v ∈ A(G) is adjacent to a component K ∈
compG(D(G)) if and only if v has a neighbour in K, then B has a
matching of A(G) into compG(D(G)),

iv) if M is any maximum matching of G, it contains a perfect matching of
G[C(G)], a near perfect matching for every K ∈ compG(D(G)), and
it matches all vertices in A(G) with vertices from distinct members
of compG(D(G)), and

v) ν(G) = 1
2
(|V (G)| − | compG(D(G))|+ |A(G)|).

Let us discuss some of the immediate consequences of the Gallai-Edmonds
Structure Theorem and what we mean when we say it is canonical. This
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C(G)

A(G)

D(G)

Figure 3.2.: The Gallai-Edmonds decomposition of a graph G with a
maximum matching M .

discussion is taken from [LP09], where the interested reader can find some
additional points. We say that a bipartite graph B has positive surplus
(for Vi) if there exists i ∈ [1, 2] such that minX⊆Vi surB(X) ≥ 1.

(1) If G has no perfect matching, then every edge incident with a vertex
of D(G) lies in some maximum matching of G. Moreover, no edge
with one endpoint in A(G) and the other one in A(G) ∪ C(G) can
belong to any maximum matching of G.

(2) If G is factor critical, then D(G) = V (G) and thus the other two
sets are empty.

(3) If G has a perfect matching on the other hand, C(G) = V (G) and
the other two sets are empty.

(4) In case B is a bipartite graph with i, j ∈ [1, 2] distinct such that B

has positive surplus for Vi, we obtain A(G) = Vi and D(G) = Vj .
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This means that we are faced with three trivial cases for the Gallai-
Edmonds Structure Theorem, namely graphs with perfect matchings,
factor critical graphs and bipartite graphs of positive surplus. However,
if we consider the following construction and the corresponding theorem,
one obtains a good idea of why these three cases might be of interest.
Let B be a bipartite graph with i, j ∈ [1, 2] distinct such that B has
positive surplus for Vi. For every v ∈ Vj let Gv be any factor critical
graph and let H be a graph with a perfect matching. We may now
construct a graph G as follows:

i) V (G) := V (H) ∪ Vi ∪
⋃︁

v∈Vj
Gv,

ii) keep all edges of H and all Gv, v ∈ Vj ,
iii) for every edge uv ∈ E(B) with u ∈ Vi select an arbitrary vertex

v′ ∈ V (Gv) and introduce the edge uv′, and finally
iv) introduce edges within Vi and between V (H) and Vi arbitrarily.

Note that, by constructing G this way, the three sets from the Gallai-
Edmonds Structure Theorem are D(G) =

⋃︁
v∈Vj

V (Gv), A(G) = Vi, and
C(G) = V (H). Furthermore (see [LP09] page 99, Theorem 3.2.3) every
graph G can be constructed this way and the graphs H, B, and Gv for
v ∈ Vj are uniquely determined by G.
In some sense this construction is a flavour of things to come and also
hints at the greater perspective, as also the notion of treewidth yields a
canonical decomposition of graphs that was, eventually, generalised to
a canonical way to construct any graph G that excludes some minor as
described in Section 2.2.
Hence in order to describe all graphs in terms of the structure of their
maximum matchings it suffices, in some sense, to only focus on graphs
with perfect matchings, factor critical graphs, and bipartite graphs with
positive surplus. For a discussion on the latter two we refer to [LP09] as
this thesis is mainly concerned with the structure of graphs with perfect
matchings.

3.1.1. Fundamental Decompositions

As demonstrated above, to reach a good understanding of the structure
of graphs from the perspective of their maximum matchings, to which we
will refer to as matching structure from here on, it is desirable to further
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investigate the structure of graphs with perfect matchings. A key role
in the study of graphs with perfect matchings plays the so called Tutte
Formula which can be seen as a generalisation of the Marriage Theorem
to general graphs.
Given a graph G, a component K of G is said to be odd if |V (K)| is odd.
By codd(G) we denote the number of odd components in G.

Theorem 3.1.6 (Tutte’s Theorem, [Tut47]). A graph G has a perfect
matching if and only if codd(G− S) ≤ |S| for all S ⊆ V (G).

For the study of graphs in, for example, the context of graph minors, it
often suffices to restrict the discussion to connected graphs. The notion of
connectivity, however, does not necessarily suffice to capture the structure
of a graph with a perfect matching, or more general, to capture the
structure of the perfect matchings within a graph G.
An edge e of a graph G is called admissible if there exists a maximum
matching M ∈ M(G) such that e ∈ M . We denote the set of all non-
admissible edges of G by Eno(G).

Definition 3.1.7 (Elementary and Matching Covered). A graph G is
called elementary if G− Eno(G) is connected, G is matching covered if it
is connected and Eno(G) = ∅.

Let G be any graph with a perfect matching and consider G−Eno(G), then
every component of G−Eno(G) must be matching covered (elementary)3.
We call the components of G− Eno(G) the elementary components of G
and denote the set comp(G − Eno(G)) by E(G). See Figure 3.3 for an
illustration of a connected graph with a perfect matching and distinct
elementary components.
In Section 3.1.1 we describe the structure that arises from the elementary
components within a graph. We do this in a very general setting that
allows us to handle bipartite and non-bipartite graphs within the same
framework. This general approach comes at the price of high technicality,
which we will not go into to much detail about, however, the interested
reader may consult the papers we cite, especially those by Kita who
3The term ‘matching covered’ is only slightly stronger than the term ‘elementary’, in

fact in most cases these two properties are indistinguishable, especially in bipartite
graphs. Sometimes the term ‘factor-components’ is used, but we try to not digress
to much into general factor theory, thus this term is avoided here.
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A

B

C

Figure 3.3.: A graph G with a perfect matching M , three different elemen-
tary components (black and bold edges), A, B and C, and
grey edges, that do not belong to the cover graph. The edge
in A is not contained in an alternating cycle with any of the
other edges of M . Within the non-trivial elementary compo-
nents B and C, any edge of M can be replaced. Replaced
means that there is another perfect matching of the graph
not containing e, but not touching the matchings within the
other elementary components.

contributed a lot to the unification of concepts, especially those discussed
in Section 3.1.1. Section 3.1.1 is the first time we encounter a way to
generate all matching covered graphs, which is then taken one step further
by explaining how non-bipartite elementary graphs can be generated from
bipartite matching covered graphs and non-bipartite matching covered
graphs with additional structure. All of these notions are then unified
in terms of the tight cut decomposition which can be understood as the
matching theoretic version of the decomposition of graphs into their
2-connected components, sometimes called blocks.

The Canonical Partition

Let G be any non-bipartite graph and F ⊆ E(G) be a matching, the defect
of F is the number of vertices of G which are not matched by F , i.e. the
number |V (G) \V (F )|. We may now define the deficiency of any graph to
be def(G) := |V (G)|− 2ν(G). Hence def(G) is the number of vertices that
are left unmatched by a maximum matching. Note that, by our previous
discussion, this definition would in fact produce the sum of the deficiencies
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obtained from the two different colour classes of a bipartite graph B. The
notion of deficiency gives rise to the Berge Formula.

Theorem 3.1.8 (Berge Formula, [Ber58]). Let G be a graph. Then
def(G) = max {codd(G− S)− |S| | S ⊆ V (G)} .

Definition 3.1.9 (Barrier). Let G be a graph. A barrier is a set S ⊆ V (G)

such that codd(G− S) = |S|+ def(G).

The importance of barriers can be illustrated best by the following conse-
quence of Tutte’s Theorem:

Corollary 3.1.10 (folklore). Let G be a graph with a perfect matching.
An edge e ∈ E(G) is admissible if and only if there does not exist a barrier
S of G such that e ⊆ S.

Indeed, since we are concerned with graphs with perfect matchings in
this thesis, for our purposes it suffices to say, a set S ⊆ V (G) is a barrier
if codd(G− S) = |S|. Please note that this observation also shows that,
in case G has a perfect matching, one could also use Tutte’s Theorem
to define barriers. Moreover, with this, barriers are also well defined for
bipartite graphs with perfect matchings. Revisiting the Gallai-Edmonds
Structure Theorem, we may restate it as follows:

Theorem 3.1.11 (Gallai-Edmonds Structure Theorem, restated). Let G

be a graph, then
i) A(G) is a barrier such that compG(D(G)) are exactly the odd

components of G−A(G),
ii) each odd component of G−A(G) is factor critical, and
iii) every edge with one endpoint in A(G) and one endpoint in D(G) is

admissible, while no edge with one endpoint in A(G) and the other
endpoint in A(G) ∪ C(G) is admissible.

The original idea of a canonical partition by Lovász [Lov72] was to consider
an elementary graph G and its set B of maximal barriers. However, our
goal is to use the barriers to give a more general structure, even for graphs
with perfect matchings that are not elementary. Thus we use the work
of Kita, who introduced a slight generalisation of the original canonical
partition. Indeed, Kita’s definitions are also applicable for graphs without
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perfect matchings, but in this context we are not interested in those any
longer, hence we simply omit this part of her definition.

Definition 3.1.12 (Canonical Partition). Let G be a graph and let u, v ∈
V (G). We say u ∼G v if u and v are identical, or there exists an elementary
component K ∈ E(G) with u, v ∈ V (K), and def(G− u− v) > 0.

Theorem 3.1.13 ([Kit12]). For every graph G, ∼G is an equivalence
relation.

Let us denote the family of equivalence classes determined by ∼G by B(G).
This family is called the Kotzig-Lovász-decomposition of G as tribute to
Kotzig and Lovász, who showed that for any elementary graph G, ∼G is
exactly the family of its maximal barriers4. Indeed, every S ∈ B(G) must
be a maximal barrier of some elementary component of G. Moreover,
if K is an elementary component of G and G has a perfect matching,
then BG(K) := {S | S ∈ B(G), and S ⊆ V (K)} is exactly the family of
maximal barriers of K and it partitions V (K).
An exercise from [LP09] states that a matching covered graph B is bipartite
if and only if B(B) consists of exactly two classes. Indeed, one can even
show B(B) = {V1, V2}. For non-bipartite graphs this picture is way
different. Let us introduce the main concept that later distinguishes
bipartite and non-bipartite graphs.

Definition 3.1.14 (Bicritical). Let G be a graph and n ∈ N a positive
integer. Then G is called n-bicritical (or bicritical in case n = 1) if
|V (G)| ≥ 2n, and G − S has a perfect matching for every set S ⊆ G of
size 2i for some i ∈ [0, n].

Note that this means that any n-bicritical graph G is also bicritical.
Moreover, every bicritical graph G is necessarily connected. To see this
suppose G has two distinct components K1 and K2. Since G has a perfect
matching, each Ki must have an even number of vertices and thus, if we
were to delete one vertex from each Ki, each of them would have an odd
number of vertices, making the existence of a perfect matching impossible.
Besides bipartite graphs, bicritical graphs pose the other class of graphs
whose Kotzig-Lovász-decomposition is trivial.

4Hence the ‘B’ in B(G)
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Theorem 3.1.15 ([LP09]). Let G be a graph, then the following state-
ments are equivalent.

i) G is bicritical.
ii) G is matching covered and every element of B(G) contains a single

vertex.
iii) If S ⊆ V (G) and |S| ≥ 2 then codd(G− S) ≤ |S| − 2.

In Section 3.1.1 we show how Lovász and Plummer used B(G) to construct
any elementary graph by using only bipartite matching covered graphs
and bicritical graphs. This construction can be seen as the next step in
the refinement of the construction of general graphs we obtained from the
Gallai-Edmonds Structure Theorem.

The Generalised Dulmange-Mendelsohn Decomposition

Before we go on to the construction of matching covered graphs, we need
to establish a relation between the elementary components of a graph with
a perfect matching to keep progressing from the most general structure
one can find to the next step of refinement.
Let G be any graph and X ⊆ V (G), by G/X we denote the graph obtained
from G by contracting X into a single vertex and deleting parallel edges.
Let G be a graph with a perfect matching. A set X is called a blanket if
it is the disjoint union of vertex sets of some elementary components of G.
For any two elementary components K1,K2 ∈ E(G) we write K1 ⊴ K2

if there exists a blanket X ⊆ V (G) with V (K1) ∪ V (K2) ⊆ X such that
G[X]/V (K1) is factor critical.

Theorem 3.1.16 ([Kit12]). Let G be a graph with a perfect matching.
Then ⊴ is a partial order over E(G).

Let K ∈ E(G) be some elementary component of the graph G which has a
perfect matching. We denote by UG(K) ⊆ E(G) the set of all strict upper
bounds of K with respect to ⊴, while V (UG(K)) denotes the union of
the vertex sets of the elementary components in UG(K). An important
property of the relation ⊴ is that whenever we consider an elementary
component K, each component of G[V (UG(K))] attaches to a unique
barrier of K. One could say that the elementary components in UG(K)

are arranged in a complicated, tower-like structure above K. Because of
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this observation, Kita proposed the name basilica decomposition for the
structure solidified with the following theorem. The basilica structure,
including the naming pattern, is based on the earlier work of Kotzig and
Lovász on the so called ‘Cathedral Structure’.

Theorem 3.1.17 (Basilica Theorem, [Kit12]). Let G be a graph with a
perfect matching, and let K ∈ E(G) be an elementary component of G.
Then for every component H of G[V (UG(K))], there exists S ∈ BG(K)

such that NG(H) ∩ V (K) ⊆ S.

In light of the basilica theorem we may now reverse the direction and
associate with every maximal barrier S of an elementary component K

of G the set UG(S) of elementary components that are contained in a
component H of G[V (UG(K))] with NG(H) ∩ V (K) ⊆ S. The set UG(S)
is called the tower over S. Let U⊤

G (S) := V (UG(K)) \ V (UG(S)), this is
known as the court of S. Indeed, U⊤

G (S) contains the vertex sets of exactly
those components of G[V (UG(K))] which do not attach to S. Hence
U⊤

G (S) is the collection of all towers over K that are not based on S.

Definition 3.1.18 (Kita-Component). A Kita-component of a graph G

with a perfect matching is a subgraph of the form G[S ∪ UG(S)], where
S ∈ B(G). We say that S is the base of G[S ∪ UG(S)]. If C is a Kita-
component of G, we denote by baseG(C) ∈ B(G) the base of C, and, given
some S ∈ B(G), we write comp(S) for the Kita-component with base S.
We write K(G) for the set of all Kita-components of G.

For the next step we need the abstract notion of a partially ordered set
(or poset) with a transitive forbidden relation.

Definition 3.1.19 (Poset with Transitive Forbidden Relation (TFR
poset)). Let X be a set an ⪯ be a partial order over X. Let ⌣ be a
binary relation over X such that,

i) for each x, y, z ∈ X if x ⪯ y and y ⌣ z, then x ⌣ z (transitivity)
ii) for each x ∈ X, we have x ̸⌣ x (non-reflexivity), and
iii) for all x, y ∈ X, if x ⌣ y, then y ⌣ x (symmetry).

We call this poset endowed with the binary relation ⌣ a poset with
transitive forbidden relation of TFR poset for short. If for any x, y ∈ X

we have x ⌣ y, we say (x, y) is forbidden, or x and y form a forbidden
pair.
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Now we just have to pick up the pieces we prepared so far to form a TFR
poset for any graph G with a perfect matching. To do this we need to
define two binary relations, one of them being the partial order and the
other one the transitive forbidden relation.

Definition 3.1.20 (The Kita-Relation). Let us first define an auxiliary
relation ⪯◦, the relation ⪯ itself is then derived from ⪯◦.
Let G be a graph with a perfect matching and let K1,K2 ∈ K(G). We
set K1 ⪯◦ K2 if K1 = K2 or if NG(U

⊤
G (baseG(K

1))) ∩ baseG(K
2) ̸= ∅.

We then write K1 ⪯ K2 for any two Kita-components K1,K2 ∈ K(G)

if there exist C1, . . . , Ck ∈ K(G) with k ≥ 1 such that baseG(C1) =

baseG(K
1), baseG(Ck) = baseG(K

2), and Ci ⪯◦ Ci+1 for all i ∈ [1, k− 1].

So we have K1 ⪯◦ K2 if the court of baseG(K1) contains the tower over
baseG(K

2). Moreover, if K1,K2,K3 all are Kita-components of G with
K1 ⪯◦ K2 ⪯◦ K3, then we can reach K3 from K1 by entering a tower from
the court of baseG(K1), climbing into the tower over baseG(K

2), taking
the stairs of this tower down to its base and then entering a tower of the
court of baseG(K2) which eventually leads to the tower over baseG(K

3).
Hence, if K1 ⪯ K2, we can reach the base of K2 from the base of K1 by
a sequence of ‘climbing a tower of the court of some base’ and ‘entering
the tower over some other base and taking the stairs down until the base
is reached’. Indeed, this intuition is backed up by some auxiliary results
regarding certain paths between towers, bases and towers from the court
of those bases.

Definition 3.1.21 (Forbidden Courts). The strategy to define the transi-
tive forbidden relation ⌣ is similar to before, we first define an auxiliary
relation ⌣◦.
Let G be a graph with a perfect matching and let K1,K2 ∈ K(G). We
set K1 ⌣◦ K2 if baseG(K2) ⊆ V (K1) \ baseG(K1).
We then write K1 ⌣ K2 for any two Kita-components K1,K2 ∈ K(G) if
there exists K′ ∈ K(G) with K1 ⪯ K′ and K′ ⌣◦ K2.

To stick with the image of an escheresque basilica with many towers, the
forbidden relation means that, although we could also reach the base
of towers that sprout off from towers of our court, we should not do so.
Instead, whenever one climbs down some stairs one should always leave
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their current tower and go on to a completely new one. One could also
imagine these towers to be connected by small bridges and a court can
only be entered safely if no guard was alerted by us climbing up the
corresponding tower5.

Theorem 3.1.22 ([Kit18]). For any graph G with a perfect matching,
the triple (K(G),⪯,⌣) is a TFR poset.

The TFR poset (K(G),⪯,⌣) is in fact uniquely determined by G and it
describes exactly the interaction between the maximal barriers of different
elementary components of G. In the original paper, the canonical structure
described by (K(G),⪯,⌣) is called the generalised Dulmage-Mendelsohn
decomposition of G. This name comes from a far simpler description of
the interaction between the colour classes, which again are the maximal
barriers, of the elementary components of bipartite graphs with perfect
matchings.
The original Dulmage-Mendelsohn decomposition can be defined in the
style of Kita as follows.

Definition 3.1.23 (Dulmage-Mendelsohn Decomposition). Let B be a
bipartite graph with a perfect matching, and i ∈ [1, 2].
For any two elementary components K1,K2 ∈ E(B) we set K1 ≤◦

i K2 if
K1 = K2, or there exists an edge with one endpoint in Vi ∩ E(K2) and
the other one in E(K1) \ Vi.
We then write K1 ≤i K2 for any two elementary components of B if
there exist H1, . . . , Hk ∈ E(B), k ≥ 1, such that H1 = K1, Hk = K2, and
Hj ≤◦

i Hj+1 for all j ∈ [1, k − 1].

In particular, this means K1 ≤1 K2 if and only if K2 ≤2 K1. This
relation, in a way, resembles the topological ordering of strong components
of digraphs, as in every step we leave a component going from Vi to Vj ,
inside the component we pass over to Vi again and may now move to the
next component.

Theorem 3.1.24 (Dulmage-Mendelsohn Decomposition, [DM58, DM59,
DM63]). Let B be a bipartite graph with a perfect matching. Then for
any i ∈ [1, 2], the binary relation ≤i is a partial order over E(B).
5There seems to be a quite dramatic reason behind this. Perhaps you are imprisoned

in this basilica and need to confuse the guards to escape, or something even more
sinister is going on!
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When studying bipartite graphs one can observe that for any two elemen-
tary components K1,K2 ∈ E(B) of a bipartite graph B with a perfect
matching we have BB(K

1) =
{︁
V1 ∩ V (K1), V2 ∩ V (K1)

}︁
, and K1 ̸⊴ K2

and K2 ̸⊴ K1. Hence bipartite graphs are those whose basilica structure is
degenerate. This observation ties in nicely with our findings from previous
subsections.
For any bipartite graph B with a perfect matching and any i ∈ [1, 2] we
define Ki(B) := {K ∈ K(B) | baseB(K) ⊆ Vi} to be exactly those courts
whose base belongs to Vi. Let us define the mapping dmi : E(B) →
Ki(B) as dmi(K) := comp(V (K) ∩ Vi). So we map every elementary K

component of B to the Kita-component with base V (K)∩Vi. Observe that
now K1 ≤i K

2 holds if and only if dmi(K
1) ⪯ dmi(K

2). Consequently,
the generalised Dulmage-Mendelsohn decomposition indeed generalises
the Dulmage-Mendelsohn decomposition for bipartite graphs.

Constructing Non-Bipartite Elementary Graphs

Recall the construction procedure of general graphs implied by the Gallai-
Edmonds Structure Theorem. Here we were able to reduce every graph to
building blocks from just three different classes of graphs, namely factor-
critical graphs, bipartite graphs with positive surplus, and graphs with
perfect matchings. The generalised Dulmage-Mendelsohn decomposition
together with Corollary 3.1.10 provides us with a good understanding
of how graphs with perfect matchings can be decomposed into their
elementary components and how those are created from matching covered
graphs.
In this intermediate step we want to recapture the spirit of the construction
procedure obtained from the Gallai-Edmonds Structure Theorem.
Let G be an elementary non-bipartite graph and S ∈ B(G) be a maximal
barrier.
Please note that, since G is elementary and S is a maximal barrier, G−S

does not have a component with an even number of vertices. This can
be seen easily by observing that every perfect matching of G must match
one vertex of each odd component of G − S to a vertex of S. Since
|S| = codd(G− S) by definition of a barrier, no vertex of S can ever be
matched to a vertex of a potential even sized component under any perfect
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matching of G. Hence if G− S has a component K′ with an even number
of vertices, then no edge linking a vertex of K′ to S can be admissible
and thus E − Eno(G) cannot be connected.
Corollary 3.1.10 tells us that any edge with both endpoints in S is non-
admissible, so let us ignore those edges for now and call the set of such
edges ES for later use. Let us construct a bipartite graph BG,S based on
S as follows:

i) For every K ∈ comp(G−S) introduce the vertex vK and let V1 := S,
V2 := {vK | K ∈ comp(G− S)}. We set V (BG,S) := V1 ∪ V2.

ii) For every s ∈ S and K ∈ comp(G− S) introduce the edge svK to
BG,S if and only if NG(S) ∩ V (K) ̸= ∅.

Since every edge in BG,S has one endpoint in V1 and the other in V2, it
is a bipartite graph. Moreover, BG,S is matching covered if and only if
BG,S + ES is elementary.
So when considering a maximal barrier S of G we are able to create a
uniquely determined bipartite graph representing the connections of S
to the rest of the graph. What we lose here, however, is the information
on which vertices of K exactly have neighbours in S. To model this
relation we construct a second auxiliary graph KG,S,K by simply deleting
all vertices of G that do not belong to K or S, then deleting the edges
in ES , and finally by identifying S into a single vertex vS . It follows
immediately from Tutte’s Theorem that KG,S,K has a perfect matching.
In some sense, the graphs BG,S and KG,S,K , K ∈ comp(G − S) encode
how the perfect matchings of G interact with S and the components of
G − S. Indeed, these reduced graphs inherit a lot of structure from G

itself.

Theorem 3.1.25 ([LP09]). Let G be an elementary and non-bipartite
graph, S ∈ B(G) with |S| ≥ 2, and let K ∈ comp(G− S). Then

i) the bipartite graph BG,S is matching covered,
ii) the graph KG,S,K is elementary, and
iii) B(KG,S,K) = {{vS}} ∪ {T ∩ V (K) ̸= ∅ | T ∈ B(G)}.

In some sense, the bipartite graph BG,S acts as some kind of ‘frame’6 for
the assembly of the KG,S,K and thus the recovery of the original graph G.
This process can even be iterated for every K ∈ comp(G− S) for which
6Some might say as a ‘brace’.

67



Chapter 3. An Introduction to Matching Theory

KG,S,K is not bicritical and hence has a maximal barrier with at least
two vertices, and thus we obtain a decomposition procedure for G into
a collection of bipartite and matching covered graphs and a collection of
bicritical graphs. This procedure is called the bicritical decomposition of
G.
By reversing the process described in Theorem 3.1.25, one obtains a
construction method similar to the one that uses the Gallai-Edmonds
Structure Theorem to generate all graphs.

Definition 3.1.26 (Frame Construction). Let G0 be a matching covered
bipartite graph with more than two vertices, and suppose we are given for
each vertex w ∈ V2 an elementary graph Gw with the property that there
exists {vw} ∈ B(Gw) with degGw

(vw) = degG0
(w).

For each w ∈ V2 let A(w) = NG0(w) and B(w) = NGw (vw).
Now for each w ∈ V2 do the following:

i) add Gw to G0 and delete w and vw, and
ii) add edges between A(w) and B(w) such that every vertex of A(w)∪

B(w) is incident to at least one new edge.
Finally add edges with both endpoints in V1 arbitrarily.

We close this part with the theorem which solidifies the Frame Construction
as a way to obtain all elementary graphs.

Theorem 3.1.27 (Frame Construction Theorem, [LP09]). A graph is
elementary if and only if it can be built from matching covered bipartite
graphs and bicritical graphs by iterating the Frame Construction.

Alternating Paths and Ear-Decompositions

With the generalised Dulmage-Mendelsohn decomposition we have a
canonical way to describe the interactions of elementary components
within the same graph with a perfect matching. We have also seen how
to construct elementary graphs from bipartite matching covered graphs
and bicritical (and thus non-bipartite and matching covered) graphs.
The next natural step is to further investigate the structure within such
an elementary component. Hence from here on out we will mostly be
concerned with matching covered or at least elementary graphs. An
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important tool in matching theory, especially of bipartite graphs with
perfect matchings, are alternating paths.

Definition 3.1.28 (Alternating Paths and Cycles). Let G be a graph
and F a matching in G. A path P is said to be F -alternating, if there
exists a subset S of the endpoints of P such that F contains a perfect
matching of P − S. The path P is alternating if there is a maximum
matching M of G such that P is M -alternating.
A cycle C is said to be F -alternating if F contains a perfect matching of
C. The cycle C is said to be alternating if G has a maximum matching
M for which C is M -alternating.

We are particularly interested in a certain kind of alternating paths.
Before we dive deeper into the classical topic of ear-decompositions, let us
introduce a notion of connectivity that is suitable for graphs with perfect
matchings and, at least for bipartite graphs, equivalent to some classical
measures of connectivity in graphs with perfect matchings. From here
onward we are interested in a theory and in operations that preserve the
property of our graphs to have perfect matchings. To do this, we have to
restrict notions like subgraphs and vertex sets to respect the existence of
perfect matchings in a meaningful way.

Definition 3.1.29 (Conformal Sets and Subgraphs). Let G be a graph
with a perfect matching M . A set X ⊆ V (G) is said to be conformal if
G−X has a perfect matching, it is M -conformal if M contains a perfect
matching of G−X. A subgraph H ⊆ G is conformal if V (H) is conformal
and H itself has a perfect matching. We say that H is M-conformal if
V (H) is M -conformal and M contains a perfect matching of H. If M is a
matching and H some graph such that M ∩ E(H) is a perfect matching
of H, then we call M a perfect matching7 of H.

Please note that a cycle C is alternating in a graph G with a perfect
matching if and only if it is conformal. Hence with regards to cycles these
two terms are interchangeable, with alternating being the notion most
commonly used in the literature. However, since most of our results will be
formulated in terms of conformal subgraphs, it is oftentimes convenient to
7This is purely for convenience as we work with M-conformal subgraphs on many

occasions and this slight alteration in terminology allows us to spare some annoying
notation.
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not use two different notions and talk about conformal cycles. Moreover,
if C is M -conformal, then C must be of even length and E(C) \M is also
a perfect matching of C.

Definition 3.1.30 (Symmetric Difference). Let X and Y be two sets.
We denote the symmetric difference of X and Y by

X∆Y := (X \ Y ) ∪ (Y \X).

So if C is an M -conformal cycle where M is a perfect matching of G,
then M∆E(C) is again a perfect matching of G. We call this operation
of obtaining a new perfect matching from exchanging the edges along an
M -conformal cycle the switching of M along C.

Definition 3.1.31 (Internally Conformal Paths). Let G be a graph with
a perfect matching M . An alternating path P with endpoints u and v is
called internally M-conformal if it has at least one edge, and P − u− v

is an M -conformal subgraph of G. In case E(P ) ⊆ M we say that P is
M -trivial. A path P is said to be internally conformal if it is internally M ′-
conformal for some perfect matching M ′ of G. Finally, an M -conformal
path is M-covered if for every edge e ∈ E(P ) \M there exists a perfect
matching Me ∈M(G) with e ∈Me.

Let us make some preliminary observations on the inner workings of an
elementary graph. Let G be a graph and F ⊆ E(G) be a set of edges. By
G[F ] we denote the subgraph of G that is induced by the edge set F , i.e.
the graph with vertex set V (F ) and edge set F .

Observation 3.1.32 (folklore). Let G be a graph with two perfect
matchings M1 and M2. Then every component of G[M1 ∪M2] is either
isomorphic to K2, or an even cycle.

Proof. Since every vertex of G is incident with exactly one edge from Mi

for each i ∈ [1, 2], no vertex in G[M1 ∪M2] has degree 0 or more than two.
Hence every component of G[M1 ∪M2] must either be a path or a cycle.
If it is a cycle, then this cycle clearly must alternate between edges of M1

and edges of M2. So suppose there is a path P which is a component of
G[M1∪M2]. Let x be an endpoint of P and let e be the edge of P incident
with y. In case e ∈M1 ∩M2, P must be isomorphic to K2 and thus we
are done. So suppose there is i ∈ [1, 2] such that e belongs exclusively to
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Mi. This, however, means that x must be matched by an edge e′ of Mj ,
j ∈ [1, 2] \ {i}. Then e′ must be an edge of G[M1 ∪M2], contradicting x

being an endpoint of a path-component of G[M1 ∪M2].

Observation 3.1.32 has a deep implication on the structure of perfect
matchings in a graph G, namely that every perfect matching of G can be
transformed into any other perfect matching of G by simply switching
the first matching along some cycles. The best possible way to go from
one perfect matching to another is an important topic in the theory
of reconfigurations of combinatorial structures (see [BBH+19] for more
information on this area). This observation has an immediate consequence
on the connectivity and the structure of elementary graphs.

Observation 3.1.33 (folklore). Let G be a elementary graph with a
perfect matching M and an edge e ∈M . Then for every perfect matching
N of G with e /∈ N there exists an N -conformal cycle C with e ∈ E(C).

Proof. By Observation 3.1.32 the graph G[M ∪ N ] consists purely of
components that are isomorphic to K2 or an even cycle. As e ∈M \N , e
must be an edge of G[M ∪N ] but cannot be contained in a component
which is isomorphic to K2, as both endpoints of e must be matched by N .
Hence the component of G[M ∪N ] that contains e is the desired cycle.

With this we are ready to prove a first observation on how alternating
paths are responsible for a graph G being elementary.

Lemma 3.1.34 (A∗). Let G be a graph with a perfect matching M .
Then G is elementary if and only if for every vertex v ∈ V (G) and every
edge xy ∈M there exists z ∈ {x, y} such that there is an M -covered path
with endpoints v and z in G.

Proof. First, assume that such a path exists for every choice of v and
e = xy. Since these paths are covered, they also exist in G− Eno(G) and
thus for every vertex w we have a path from v to w in G−Eno(G). Hence
G− Eno(G) is connected and so G is elementary.
Now for the reverse direction, let us assume that G is elementary and let
v ∈ V (G) and xy ∈M be fixed. If v ∈ e = xy, we have an M -trivial path
with endpoints v and z ∈ e and are done, Thus we may assume v /∈ e.
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Towards a contradiction, let us choose v and e to minimise the distance
from v to an endpoint of e in G−Eno(G) such that there is no M -covered
path with endpoints v and z ∈ e in G. Without loss of generality, we may
assume x to be an endpoint of e in minimal distance to v in G− Eno(G).
Let P ′ be a shortest x-v-path in G − Eno(G). Clearly, P ′ exists since
G is elementary. Now let w be the neighbour of x on P ′ and e′ ∈ M

the edge matching w. If e′ = vw, we can find an M -conformal cycle
containing xy, xw, and vw by Observation 3.1.32 and thus the subpath
of this cycle starting in v and ending on e while avoiding w is our desired
path. Moreover, by choice of x we also have e′ ̸= e.
Since the distance between v and w is strictly smaller than the distance
between v and x, there exists an M -covered path P with endpoints v and
z′ ∈ e′ in G. By Observation 3.1.32 there exists an M -conformal cycle
C containing e′ and xw, and thus C must also contain e. Observe that,
if Q is a component of C ∩ P , it is an M -alternating path starting and
ending with an edge of M . Moreover, for every u ∈ V (C) \ e there is an
M -covered path with endpoints u and z′′ ∈ e in C. Let t′ ∈ V (C ∩ P ) be
the vertex with the smallest distance to v along P and let t′t ∈M be the
edge of M matching t′. Then t′t is an edge of C and the M -covered path
P ′′ with endpoints t and z′′′ ∈ e on C cannot contain t′. Now Pt′tP ′′ is a
covered M -covered path with endpoints v and z′′′ ∈ e in G.

While M -covered paths are a nice way to describe the overall connectivity
of elementary graphs, they do not fully capture the kind of connectivity
based on cycles which is hinted at by Observation 3.1.33. To better
replicate this ‘cyclical’ part, we ask for internally M -conformal paths
between any two edges of M such that both paths together cover all four
endpoints of the two edges. It turns out that this gives rise to a kind of
connectivity that allows us to fully focus on a single perfect matching,
that is, we do not require our paths to be M -covered any more.

Definition 3.1.35 (M -Complementary Pairs of Paths). Let G be a
graph with a perfect matching M , and let e1 = u1u2, e2 = v1v2 ∈M be
two distinct edges. A pair (P1, P2) of internally M -conformal paths8 is
said to be an e1-e2-M-complementary pair of paths if there exist distinct

8The two paths P1 and P2 do not need to be disjoint.
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i, j ∈ [1, 2] such that P1 has u1 and vi as its endpoints, while P2 has u2

and vj as its endpoints.
Let P1 and P2 be two internally M -conformal paths, then (P1, P2) is an
M -complementary pair of paths if e1 and e2 are the two edges of M that
match the endpoints of P1 and (P1, P2) is an e1-e2-M -complementary pair
of paths.

Definition 3.1.36 (Matching Connected). Let G be a graph with a perfect
matching M . Two edges e1, e2 ∈ M are said to be matching connected if
either e1 = e2 or there exists an e1-e2-M -complementary pair of paths
(P1, P2) in G such that for every choice of distinct e′1, e′2 ∈ E(P1∪P2)∩M

there exists an e′1-e′2-M -complementary pair of paths in G. If e1, e2 ∈ M

are matching connected, we write e1 ∼M e2. A graph G is said to be
matching connected if there exists a perfect matching M of G such that
the edges of M are pairwise matching connected.

This last part might seem fairly technical, but it is necessary, as there
exist non-elementary graphs with perfect matchings and pairs of matching
edges that are connected via a complementary pair of paths, see for
Figure 3.4 for a small example. However, as we discuss in Section 3.4,
these examples must be non-bipartite and thus, if we were only interested
in bipartite graphs, it would suffice to define the matching connectivity of
two matching edges purely by the existence of a complementary pair of
paths.

e1 e2

Figure 3.4.: A non-bipartite graph G with a perfect matching M and two
matching edges e1 and e2 joined by a complementary pair
of paths such that e1 and e2 belong to different elementary
components of G.

In greater context, we claim that the binary relation of matching con-
nectivity partitions the vertex set of any given graph G with a perfect
matching into the vertex sets of its elementary components. Hence our
goal is to prove the following theorem.
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Theorem 3.1.37. Let G be a graph with a perfect matching M . Then
∼M is an equivalence relation on M .

To prove Theorem 3.1.37 we first need a way to handle the possible types
of intersection the two paths in an M -complementary pair can have. These
intersections are best described using a sense of direction. So if we are
given two edges e1, e2 ∈ M together with an e1-e2-M -complementary
pair of paths (P1, P2), we implicitly treat the two paths P1 and P2 to
be oriented away from their respective endpoint on e1 and towards their
respective endpoint in e2.
With respect to their orientation, there are two possible ways P1 and P2

can intersect. Either they are both directed in the same way and thus
align for a short section, or they are oriented in opposing directions and
collide. Formally, we call every maximal subpath I of P1 ∩ P2 an overlap
of P1 and P2. An overlap I of P1 and P2 in which the two paths align is
called an alignment and similarly an overlap I of P1 and P2 in which they
collide is called a collision. See Figure 3.5 for an illustration.

collisionalignment

Figure 3.5.: A complementary pair of paths together with their implicit
orientations and the two possible ways of intersections.

Every overlap I of P1 and P2 splits both P1 and P2 into two parts. Given
an overlap I of P1 and P2, we denote by sI ∈ V (I) the endpoint of I that
we meet first when we traverse P1 starting from u1, and by tI the other
endpoint of I.
Observe that the paths P1sI and tIP1 are internally M -conformal paths.
For P2 our notation will differ depending on the type of overlap we have
in I. If I is an alignment, P2 is split into the paths P2sI , I, and tIP2,
similar to P1. However, if I is a collision P2 will be split into P2tI , I, and
sIP2.
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If I is an alignment of P1 and P2 such that P1sI and tIP2 collide, I is a
trap. See Figure 3.6 for an illustration.

e1 P1sI I

P2sI

tIP1

tIP2

e2

sI tI

Figure 3.6.: A trap.

Lemma 3.1.38 (A∗). Let G be a graph with a perfect matching
M , e1, e2 ∈ M a pair of matching edges and (P1, P2) an e1-e2-M -
complementary pair of paths. If I ′ is an alignment of P1 and P2 that
is not a trap, then there exists an alignment I of P1 and P2 such that
V (P1sI) ∩ V (tIP2) = ∅.

Proof. Let I ′ be an alignment of P1 and P2 that is not a trap. If V (P1sI′)∩
V (tI′P2) = ∅ the assertion holds with I = I ′, so we may assume the
contrary. Since I ′ is not a trap, every overlap of P1sI′ and tI′P2 is an
alignment. Let I1, . . . , Ik be these alignments ordered by their appearance
along P2. So tIkP2 and P1sI′ do not overlap since otherwise they would
do so in an alignment Ik+1, which does not exist. Therefore, in particular
V (P1sIk ) ∩ V (tIkP2) = ∅ and with I = Ik we are done.

Lemma 3.1.39 (A∗). Let G be a graph with a perfect matching
M , e1, e2 ∈ M a pair of matching edges and (P1, P2) an e1-e2-M -
complementary pair of paths such that P1 has endpoints u1 and u2 while
P2 has endpoints v1 and v2. If P1 and P2 have an alignment that is not
a trap, there exists an internally M -conformal path P ⊆ P1 ∪ P2 with
endpoints u1 and v2.

Proof. By Lemma 3.1.38 the existence of an alignment that is not a trap
implies the existence of an alignment I such that V (P1sI) ∩ V (tIP2) = ∅.
The path I is M -conformal while the paths P1sI and tIP2 are internally
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M -conformal, hence P1sI + I + tIP2 is the desired internally M -conformal
path.

So as long as we have a single alignment that is not a trap we can
choose which endpoint of e2 we want to connect to u1 via an internally
M -conformal path. The next lemma will handle the case where every
alignment is a trap. In particular, this includes the case where there is no
alignment at all.

Lemma 3.1.40 (A∗). Let G be a graph with a perfect matching
M , e1, e2 ∈ M a pair of matching edges and (P1, P2) an e1-e2-M -
complementary pair of paths such that P1 has endpoints u1 and u2 while
P2 has endpoints v1 and v2. If all alignments of P1 and P2 are traps, then
there exists an M -covered path with endpoints u1 and z ∈ e2.

Proof. First of all, note that the case where P1 and P2 are disjoint and
thus do not overlap at all is trivial since in this case P1e1P2e2 forms an
M -alternating cycle and so both P1 and P2 are covered. Hence we may
assume that P1 and P2 overlap.
Let e1, e2 ∈M together with (P1, P2) be chosen such that |V (P1)|+|V (P2)|
is minimum and there does not exist an M -covered path with endpoints
u1 and z ∈ e2. Now let e3 ∈ E(P1) ∩ E(P2) ∩M be the first edge of P1,
with respect to the orientation of P1, that belongs to P2. Let u3 be the
first vertex of e3 along P1 and v3 be its other endpoint.
Suppose e3 belongs to an alignment A of P1 and P2. Then P1sA is
internally disjoint from P2 and therefore completely disjoint from tAP2

and thus A is not a trap, contradicting our assumption. So e3 belongs
to a collision. Let P ′

1 := P1u3 and P ′′
1 := v3P1 = P1 − P ′

1. Then P ′
1 and

P ′′
1 are internally M -conformal paths, and, as we have seen before, P ′

1 is
internally disjoint from P2. Similarly, e3 splits P2 into the two internally
M -conformal paths P ′′

2 := u3P2 and P ′
2 := P2v3. By construction, P ′

1 and
P ′
2 are disjoint, and so C := P ′

1e1P
′
2e3 is an M -conformal cycle. Hence

both P ′
1 and P ′

2 are covered. Hence neither P ′′
1 nor P ′′

2 can be covered.
Moreover, notice that P ′′

1 and P ′′
2 cannot be disjoint since otherwise, by

the same arguments as for P ′
1 and P ′

2, they would be covered. Thus P ′′
1
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and P ′′
2 must overlap again. Since both are strict subpaths of P1 and P2

respectively, we obtain the following inequality.
|V (P ′′

1 )|+ |V (P ′′
2 )| < |V (P1)|+ |V (P2)|

Additionally, with P ′
1 being disjoint from P ′′

2 , any alignment of P ′′
1 and

P ′′
2 that is not a trap is also an alignment of P1 and P2 that is not a

trap. Therefore (P ′′
1 , P

′′
2 ) is an e3-e2-M -complementary pair of paths such

that every alignment is a trap. Thus, from the choice of e1 and e2, we
obtain the existence of an M -covered path P starting on v3 and ending
on a vertex of e2, say w. Let x be the unique vertex of V (C)∩ V (P ) such
that xP is internally vertex disjoint from P ′

1 and P ′
2. The edge e4 of M

matching x is contained in C and has a vertex y as its other endpoint.
Now either e1 = e4 or there exists an M -covered path P ′ with endpoints
y and z′ ∈ e1 within C. In the first case, P itself is an M -covered path
joining an endpoint of e1 to an endpoint of e2, and in the second case,
P ′ + xy + P is such a path. Thus e1 and e2 must be contained in the
same elementary component and so, by Lemma 3.1.34, there must exist
an M -covered path with endpoints u1 and z′′ ∈ e2.

As a last step towards Theorem 3.1.37 we show that for any two edges
e1, e2 ∈ M , e1 ∼M e2 is equivalent to e1 and e2 belonging to the same
elementary component. Since {V (K) | K ∈ E(G)} is a partition of the
vertex set of G, it also induces a partition of the edges in M and thus
Theorem 3.1.37 follows from this last lemma.

Lemma 3.1.41 (A∗). Let G be a graph with a perfect matching M and
let e1, e2 ∈M , then e1 ∼M e2 if and only if e1 and e2 belong to the same
elementary component of G.

Proof. First assume G to be elementary and let e1 = u1v1 and e2 =

u2v2 be any two distinct edges from M . For e1 = e2 the claim follows
immediately. Hence we may assume e1 ̸= e2. By Lemma 3.1.34 there is
an M -covered path P1 with endpoints u1 and z1 ∈ e2 in G. Without loss
of generality let z1 = u2. By Lemma 3.1.34 there also exists an M -covered
path P2 with endpoints v1 and z2 ∈ e2. If z2 = v2 we have found our
complementary pair, so suppose z2 = u2. Now Lemma 3.1.34 guarantees
the existence of an M -covered path P3 with endpoints v2 and z3 ∈ e1 in G.
By our previous assumptions v1 cannot be an endpoint of P3 and thus u1
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must be one. In this case, however, (P2, P3) is an e1-e2-M -complementary
pair. Moreover, since e1 and e2 were chosen arbitrarily, we are able to
find such a pair of paths between any distinct two edges of M and thus
our claim follows.
For the converse direction, suppose that there are distinct elementary
components K1,K2 ∈ E(G) with ei ∈ E(Ki) ∩ M for both i ∈ [1, 2]

such that e1 ∼M e2. Let (P1, P2) be an e1-e2-M -complementary pair of
paths that witnesses e1 ∼M e2. With this we can find a pair of edges
e′1 = u′

1v
′
1, e

′
2 = u′

2v
′
2 ∈M ∩ E(P1 ∪ P2) such that e′ = v′1u

′
2 ∈ E(G), but

e′1 and e′2 belong to different elementary components of G. Then e′ = v′1u
′
2

is not admissible in G. In what follows, we show that the edge e′ cannot
exist.
With e1 ∼M e2 and e′1, e

′
2 ∈ E(P1 ∪ P2) ∩M there must exist an e′1-e′2-

M -complementary pair (P ′
1, P

′
2) of paths by definition of ∼M . Suppose

there is i ∈ [1, 2] such that P ′
i has endpoints u′

1 and v′2. Then P ′
1v

′
2u

′
2v

′
1u

′
1

is an M -conformal cycle containing the edge e′ which therefore must be
admissible. As this is a contradiction, we may assume P ′

1 to have the
endpoints u′

1 and u′
2, while P ′

2 has endpoints v′1 and v′2. Indeed, we may
also assume for P ′

1 and P ′
2 to intersect since otherwise, they would form

an M -conformal cycle that contains edges with endpoints in different
elementary components. But since every M -conformal cycle must be
contained in a single elementary component of G, this is impossible.
First suppose P ′

1 and P ′
2 have an alignment that is not a trap, then, by

Lemma 3.1.39 there exists an internally M -conformal path P ⊆ P ′
1 ∪ P ′

2

with endpoints v′1 and u′
2. Since this path P would again form an M -

conformal cycle with e′1, e
′
2, and e′, we may assume that every alignment

of P ′
1 and P ′

2 is a trap. Under this assumption, however, Lemma 3.1.40
implies the existence of an M -covered path P ′ linking an endpoint of e′1
to an endpoint of e′2. Any M -covered path must also exist in G−Eno(G),
and thus e′1 and e′2 cannot belong to different elementary components
of G. Hence a non-admissible edge e′ ∈ E(P1 ∪ P2) with endpoints in
distinct elementary components cannot exist in G, and therefore e1 and
e2 must belong to the same elementary component.

In our proofs towards Theorem 3.1.37, we used certain properties of M -
alternating paths in graphs with perfect matchings. Indeed, whenever two
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M -alternating paths meet such that their union contains an M -conformal
cycle C, we may switch M along this cycle C to obtain a new perfect
matching N together with two N -alternating paths that intersect slightly
less then before. This relatively simple observation yields a general and
very powerful tool for bipartite graphs in particular.

Lemma 3.1.42 (Bipartite Untangling Lemma, [McC01]). Let G be a
bipartite graph with a perfect matching M and a1, a2 ∈ V1 and b1b1 ∈ V2

four distinct vertices in G. Let further P1 and P2 be two internally M -
conformal paths such that Pi has endpoints ai and bi. Then there exists a
perfect matching M ′ ∈M(G) together with two internally M ′-conformal
paths P ′

1 and P ′
2 such that:

i) P ′
i has endpoints ai and bi for both i ∈ {1, 2},

ii) P ′
1 + P ′

2 is a subgraph of P1 + P2,
iii) M \ E(P1 + P2) = M ′ \ E(P1 + P2), and
iv) either P ′

1 ∩ P ′
2 is an M ′-conformal path or P ′

1 and P ′
2 are disjoint.

For non-bipartite graphs it is not always possible to completely untangle
two internally M -conformal paths, as their intersections may be much
more complicated. Indeed certain kinds of alignments and collisions are
simply not possible in bipartite graphs, as those could create odd cycles.
For a precise definition of the possible types of intersections in general
graphs the interested reader should consult the PhD thesis of Norine
[Nor05], where a precise description of these kinds of intersections can be
found as Theorem 2.3.4 on page 25. While ∼M partitions the vertex set
of any graph with a perfect matching into its elementary components and
therefore can be seen as a canonical way to decompose a graph, it does
not tell us how to construct matching covered graphs in the first place.
To close this gap we start with a generation process for matching covered
bipartite graphs which begins, in essence, from an even cycle and then
iteratively proceeds by adding alternating paths to the already created
portion of the graph.

Definition 3.1.43 (Single Ear). Let G be a graph with a perfect matching.
A single ear is a path P of odd length such that all internal vertices, if
there are any, of P have degree two in G. Let M be a perfect matching
of G. The path P is a single M -ear if it is internally M -conformal and a
single ear.
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Theorem 3.1.44 (Theorem 4.1.6 in [LP09]). Given any bipartite match-
ing covered graph B, there exists a sequence B1 ⊂ B2 ⊂ · · · ⊂ Bt of
matching covered conformal subgraphs of B, such that B1 = K2, Bt = B,
and Bi+1 is obtained from Bi by adding a single ear of Bi+1 for all
i ∈ [1, t− 1].

A sequence as in the above theorem is called a bipartite ear-decomposition.
The bipartite part here is important, as such an ear-decomposition cannot
exist for non-bipartite graphs. Indeed, even K4 does not have such an
ear decomposition. The reason for this is as follows: In each possible ear
decomposition, B2 is an even cycle, as it is obtained from adding a path of
odd length to the endpoints of K2. Hence B2 is bipartite. Suppose there
exists some i ≥ 3 such that Bi is non-bipartite, but Bi−1 is. Then the
single ear, let it be P , we added to Bi−1 must have created a cycle of odd
length. The only way possible to do this is to attach both endpoints of P to
vertices from the same colour class, say Vj of Bi−1. Say, for simplicity, P
was just an edge (the more general case follows along the same reasoning),
then P would be an edge with both endpoints in Vj , which is a maximal
barrier of Bi−1. Hence by Corollary 3.1.10 the single edge of P is not
admissible, thereby rendering Bi, although it is elementary, not matching
covered. This means that there is some inherent hurdle which must be
overcome to go from bipartite to non-bipartite in a way that preserves
being matching covered.
If we were, however, to add two edges e1 and e2 at once to a bipartite
matching covered graph B such that ei has both endpoints in Vi for each
i ∈ [1, 2], the result would be a non-bipartite graph that is matching
covered. This observation leads to the following definition:

Definition 3.1.45 (Double Ear). Let G be a graph with a perfect
matching. A double ear is a pair of disjoint paths P1 and P2 such that Pi

is a single ear of G for both i ∈ [1, 2].
An ear of G is either a single ear, or a double ear of G.

Definition 3.1.46 (Ear-Decomposition). An ear-decomposition of a
matching covered graph G is a sequence

G1 ⊂ G2 ⊂ · · · ⊂ Gt

of matching covered conformal subgraphs of G such that G1 = K2, Gt = G,
and Gi is the union of Gi−1 and an ear (single or double) of Gi+1.

80



3.1. General Matching Theoretic Background

With the introduction of double ears, the barrier between bipartite and
non-bipartite could finally be breached.

Theorem 3.1.47 (Two-Ear Theorem, [LP09]). Every matching covered
graph has an ear-decomposition.

A subtheme of this chapter is the search for canonical decompositions.
While the Two-Ear Theorem provides a nice way to generate all matching
covered graphs, a result by Carvalho and Lucchesi [CL96] implies that every
matching covered graph G has at least ∆(G)! many ear-decompositions.
Let G be some non-bipartite matching covered graph and G1 ⊂ G2 ⊂
· · · ⊂ Gt be an ear-decomposition of G that uses a minimum amount of
double ears. Clearly there must exist some i ∈ [1, t− 1] such that Gi+1

is obtained from Gi by adding a double ear, since otherwise G would be
bipartite. Let i ∈ [1, t− 1] be chosen to be minimal with respect to this
property. Then Gj is a bipartite graph for all j ∈ [1, i]. Moreover, if
Gi+1 is bipartite, then Gi+1 could also be obtained from Gi by adding
two single ears consecutively, therefore contradicting our choice for the
ear-decomposition. Hence Gj is non-bipartite for all j ∈ [i + 1, t]. To
describe the next step we need to slightly generalise our idea of subgraphs
and introduce a way to subdivide edges without rendering a graph G void
of perfect matchings.

Definition 3.1.48 (Bisubdivision). Let G be a matching covered graph
and e ∈ E(G). We call the operation that replaces e by a path of length
three, i.e. subdivides e with two vertices, bisubdividing the edge e. A
matching covered graph H is a bisubdivision of G if there exists a sequence

H1, H2, . . . , Ht

Such that H1 = G, Ht = H, and Hi is obtained from Hi−1 by bisubdivid-
ing an edge for all i ∈ [2, t].

Let us further assume that G1 ⊂ G2 ⊂ · · · ⊂ Gt is an ear-decomposition
of G that minimises the number of double ear additions and also adds a
double ear as soon as possible, that is it minimises the value of i from
above. By definition we have G1 = K2 and G2 is a cycle of even length.
Suppose G3 is obtained from G2 by adding a double ear. The discussion
above shows that G3 is non-bipartite and, moreover, one can check that
G3 must now be a bisubdivision of K4. In case G4 is the first graph in
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the sequence obtained by adding a double ear, then G4 can be seen to be
a bisubdivision of the triangular prism C6.

Figure 3.7.: The triangular prism C6.

Let us call an ear decomposition G1 ⊂ G2 ⊂ · · · ⊂ Gt canonical if either
G is bipartite, G3 is a bisubdivision of K4, or G4 is a bisubdivision of C6.
Please note that the term canonical here is a bit misleading since still every
matching covered graph might have many canonical ear-decompositions.
However, canonical ear decompositions have proven to be a powerful tool,
especially in the study of non-bipartite matching covered graphs. Indeed,
a fundamental theorem by Lovász [Lov83] proves that every matching
covered graph has such a decomposition.

Theorem 3.1.49 (Canonical Ear-Decomposition Theorem, [Lov83]). Ev-
ery matching covered graph G has a canonical ear-decomposition.

The Tight Cut Decomposition

While ear-decompositions already yield quite some descriptive power, the
story does not end here. The Canonical Ear-Decomposition Theorem
provides us with a way to construct every matching covered graph by
iteratively adding paths, but, apart from the differentiation between
bipartite and non-bipartite, it does not provide us with further restrictions
on the structure of these graphs. In particular, ear-decompositions have
two drawbacks, the first one being that the property of being bicritical
does not seem to be tied directly to ear-decompositions. The second one
is that we might end up with bisubdivisions of matching covered graphs.
While this is not a problem immediately, it is easy to see that identifying
two vertices with a common neighbour of degree two within a matching
covered graph preserves the property of being matching covered. Hence
whenever we have a bisubdivided matching covered graph G one can
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obtain a smaller such graph by essentially reversing the bisubdivisions
without losing too much information on the structural properties of G.
This second part is further explored in detail in Section 3.1.4. However,
there is a greater unified approach to decomposing matching covered
graphs which, in a way, can be seen as a generalisation of the Frame
Construction Theorem.

Definition 3.1.50 (Edge Cut). Let G be a graph and X ⊆ V (G). The
set ∂G(X) = ∂(X) =

{︁
xy ∈ E(G) | x ∈ X, y ∈ X

}︁
is called the edge cut,

or just cut, around the set X. The sets X and X are known as the shores
of the cut ∂G(X). A set F ⊆ E(G) is called a cut in G if there exists a
set X ⊆ V (G) such that F = ∂G(X)

Definition 3.1.51 (Generalised Tight Cut). Let G be a graph with a
perfect matching, k ∈ N a positive integer, and X ⊆ V (G). The edge cut
∂G(X) is k-tight if |∂G(X) ∩M | = k for all M ∈ M(G). If ∂G(X) is a
k-tight cut, we say that X induces a k-tight cut. A k-tight cut is trivial if
|X| = k or |X| = k. A cut ∂G(X) is called a tight cut if it is 1-tight, and
a tight cut is trivial if it is a trivial 1-tight cut.

In this section we are exclusively interested in tight cuts, but eventually we
will see that the concept of tight cuts and the decomposition of matching
covered graphs they provide, can be seen as a highly specialised version
of a much more general concept. The whole generality of k-tight cuts
is explored in Chapter 6. As a first observation, note that any k-tight
cut ∂G(X) must satisfy that |X|, |X| and k all share the same parity.
This can be seen by considering a perfect matching M of our graph G.
When deleting V (∂G(X) ∩M) from G, M \ ∂G(X) must still be a perfect
matching of G−V (∂G(X)∩M). Indeed, every edge in M \∂G(X) has both
endpoints either in X \ V (∂G(X) ∩M) or in X \ V (∂G(X) ∩M). Hence
both of these sets are of even cardinality. Moreover, since we have deleted
exactly k vertices from every shore, the parity of all three quantities must
be the same.
Tight cuts were first studied for their helpful properties regarding the per-
fect matching polytope9 of a graph G. These polytopes can be decomposed
along tight cuts into smaller polytopes with a richer structure. Using tight
9The polytope obtained from the convex combinations of the 0-1-vectors of R|E(G)|

that encode the perfect matchings of G.
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cuts enabled Lovász to find a formula for the dimension of the perfect
matching polytope of any given graph G [Lov87]. This decomposition into
smaller polytopes can also be expressed purely in a graph theoretic sense.

Definition 3.1.52 (Tight Cut Contraction). Let G be a matching covered
graph, and X ⊆ V (G) such that X induces a tight cut. We call the graphs
GX := G/X and GX/X := G/X the tight cut contractions of G at X.
In case we want to specify the name of the contraction vertex, i.e. the
vertex X (or X respectively) is contracted into, we write G/(X→v). If
F ⊆ E(G) is a tight cut with shores X and Y , then GX and GY are
referred to as the two F -contractions of G.

Lemma 3.1.53 (folklore). Let G be a matching covered graph and
X ⊆ V (G) a set that induces a tight cut in G. Then GX := G/(X→v) is
matching covered.

Proof. To see this, let e ∈ E(GX) be any edge. Then one of two cases
can occur: either e is incident with v or it is not. In the later case e is
also an edge of G and thus, since G is matching covered, there exists a
perfect matching Me ∈M(G) with e ∈Me. Let e′ ∈Me ∩ ∂G(X) be the
unique edge of Me in the tight cut induced by X and let u be the endpoint
of e′ that belongs to X. Then u ∈ V (GX) and uv ∈ E(GX). Moreover,
E(GX) ∩Me is a matching of GX that matches all vertices except u and
v. Hence (E(GX) ∩Me) ∪ {uv} is a perfect matching of GX . Similarly,
suppose e is incident with v and let u be its other endpoint. Then in G

there exists e′ ∈ ∂G(X) incident with u and a perfect matching Me′ of
G with e′ ∈ Me′ . Note that every vertex of X \ {u} is matched by an
edge of Me′ with both endpoints in X. Hence (Me′ ∩E(GX)) ∪ {uv} is a
perfect matching of G that contains e. Also note that GX must also be
connected and thus GX is matching covered.

Definition 3.1.54 (Residual Matching). Let G be a graph with a perfect
matching M and X ⊆ V (G) be a set of vertices that induces a tight cut.
Let GX := G/(X→ vX), and let u be the unique vertex of X which is
incident with the edge of M in ∂G(X). We call the perfect matching
M |GX

:= (M ∩ E(G[X])) ∪ {uvX} the residual of M in GX .

A second and similarly fundamental property of tight cuts is their sub-
modularity. Two cuts ∂G(X) and ∂G(Y ), where X,Y ⊆ V (G) and G is
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matching covered, are said to be laminar if X ⊆ Y , X ⊆ Y , X ⊆ Y , or
X ⊆ Y . Otherwise ∂G(X) and ∂G(Y ) are said to cross.
An equivalent way to define the notions of crossing and being laminar
is via intersections of sets rather than set containment. The corners or
quadrants of the two cuts ∂G(X) and ∂G(Y ) are the sets

X ∩ Y, X ∩ Y , X ∩ Y , and X ∩ Y .

The two cuts can be seen to cross if and only if all four quadrants are
non-empty. The corner pairs X ∩ Y and X ∩ Y as well as X ∩ Y and
X ∩ Y are said to be opposing.

Lemma 3.1.55 ([Lov87]). Let G be a matching covered graph and
X,Y ⊆ V (G) sets that induce tight cuts in G. Then, if |X ∩ Y | is odd,
∂G(X ∩ Y ) and ∂G(X ∩ Y ) are tight cuts, otherwise ∂G(X ∩ Y ) and
∂G(X ∩ Y ) are tight. Moreover, between the two opposing quadrants of
∂G(X) and ∂G(Y ) which do not induce a tight cut there is no edge in G.

In bipartite graphs k-tight cuts have a specific structure to them which
allows for a generalisation of Lemma 3.1.55.

Definition 3.1.56 (Minority and Majority). Let B be a bipartite graph,
and X ⊆ V (G). If |X∩V1| = |X∩V2| we say that X is balanced, otherwise
it is unbalanced. Suppose X is unbalanced, then there are i, j ∈ [1, 2], and
k ∈ N such that |X ∩ Vi| = |X ∩ Vj |+ k. In this case we call X ∩ Vi the
majority of X, denoted by Maj(X), and X ∩ Vj is the minority, denoted
by Min(X). We say that k is the imbalance of X, and in general we set

imbalance(X) :=

{︄
0, if X is balanced, or
k, if the imbalance of X is k.

Lemma 3.1.57 (X∗). Let B be a bipartite matching covered graph with
a perfect matching, k ∈ N a positive integer, and X ⊆ V (B) a set of
vertices that induce a k-tight cut. Then there exist k1, k2 ∈ N such that
for every perfect matching M ∈ M(B) there are exactly ki vertices of
X ∩ Vi which are matched by edges of ∂B(X) ∩M for both i ∈ [1, 2].

Proof. Let M be some perfect matching of B and for both i ∈ [1, 2], let
ki be the number of vertices in X ∩ Vi which are matched by edges of
∂B(X) ∩ Vi. Then every other edge of M either has both or no endpoint
in X. Hence there is a number n ∈ N of edges of M with both endpoints
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in X such that |X| = k1 + k2 +2n. Now suppose, towards a contradiction,
there exist k′

1, k
′
2 ∈ N together with a perfect matching M ′ ∈M(B) such

that for each i ∈ [1, 2], k′
i is the number of vertices of X ∩ Vi that are

matched by edges of ∂B(X), and k′
1 ≠ k1, which also implies k′

2 ≠ k2.
By the same arguments as before, there exists a number n′ such that
|X| = k′

1 + k′
2 + 2n′. Indeed, we have |X ∩ Vi| = ki + n = k′

i + n′ for
both i ∈ [1, 2]. Without loss of generality, let us assume k′

1 > k1. Then
n′ < n since k1 + n = k′

1 + n′. But since ∂B(X) is k-tight, we have
k1 + k2 = k = k′

1 + k′
2. Hence
|X| = k + 2n > k + 2n′ = |X|,

which is impossible and thus our claim must hold.

The following can be seen as a generalisation of an observation first made
by Lovász (see the proof of Lemma 1.4 in [Lov87]).

Lemma 3.1.58 (X∗). Let B be a bipartite matching covered graph,
k ∈ N a positive integer, and X ⊆ V (G) a set of imbalance k. Then
∂B(X) is k-tight if and only if NB(Min(X)) ⊆ Maj(X).

Proof. Let us first assume X induces a k-tight cut and suppose there is
some edge e ∈ ∂B(X) such that e has an endpoint in Min(X). As G is
matching covered there exists Me ∈M(B) such that e ∈Me. Now there
are |Min(X)| − 1 many vertices of the minority left which can be matched
by Me to vertices of the majority of X. Hence at least k + 1 vertices of
Maj(X) cannot be matched by Me with vertices inside X. This however
means that |∂B(X) ∩Me| ≥ k + 2, contradicting the assumption that X

induces a k-tight cut.
For the reverse direction, let us assume NB(Min(X)) ⊆ Maj(X). Then for
every M ∈M(B), every vertex of Min(X) must be matched with a vertex
of Maj(X), therefore leaving exactly imbalance(X) = k vertices of Maj(X)

which must be matched via edges of ∂B(X). Therefore |∂B(X) ∩M | = k

for all M ∈M(B).

To see that the above lemma does indeed yield a characterisation of tight
cuts in bipartite graphs, simply observe that any set X that induces a tight
cut must be of odd cardinality, hence it necessarily must be imbalanced.
We call a k-tight cut in a bipartite graph whose shores have an imbalance
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of order k a proper k-tight cut. If ∂G(X) is a proper k-tight cut for some
k we say that ∂G(X) is a generalised tight cut.

Lemma 3.1.59 (X∗). Let B be a bipartite graph with a perfect matching,
k1, k2 ∈ N two positive integers, and X1, X2 ⊆ V (G) two sets such that,
for each i ∈ [1, 2], Xi induces a proper ki-tight cut, and for some j ∈ [1, 2]

we have Maj(X1) ∪Maj(X2) ⊆ Vj . Then there exist k′
1, k

′
2 ∈ N such that

X1 ∩X2 induces a proper k′
1-tight cut, X1 ∩X2 induces a proper k′

2-tight
cut, and k1 + k2 = k′

1 + k′
2.

Proof. First consider X1 ∩X2. We claim that any edge in ∂B(X1 ∩X2)

must be incident with a vertex of Maj(X1) ∩Maj(X2). Suppose this is
not the case, and let e ∈ ∂B(X1 ∩X2) be an edge that witnesses this fact.
Then e is incident with a vertex of Min(X1) ∩Min(X2). Let i ∈ [1, 2] be
chosen such that the other endpoint of e lies in Xi. Such an i must exist as
otherwise both endpoints of e would lie in X1∩X2. However, with this the
existence of e contradicts Lemma 3.1.58. Hence our claim follows. Now let
M ∈M(B) be any perfect matching of B and let k′

1 := |∂B(X1∩X2)∩M |.
Then, since all edges of ∂B(X1 ∩X2) ∩M must be incident with vertices
of Maj(X1) ∩Maj(X2), it follows that X1 ∩X2 has an imbalance of order
k′
1. This together with the first claim and Lemma 3.1.58 implies that

X1 ∩X2 induces a proper k′
1-tight cut.

The case for X1 ∩X2 can be made with similar arguments. Here we first
observe that every edge in ∂B(X1 ∩X2) must be incident to a vertex from
Maj(X1) ∪Maj(X2), and thus all of these edges attach to vertices from
one colour class in X1 ∩X2. Hence if we consider the perfect matching
M from before and let k′

2 be the number of edges M has in ∂B(X1 ∩X2),
we observe that X1 ∩X2 induces a proper k′

2-tight cut.
At last, note that any edge from M ∩ (∂B(X1 ∩X2)∪ ∂B(X1 ∩X2)) must
also appear in one of ∂B(X1) or ∂B(X2). Moreover, an edge appears in
both ∂B(X1) and ∂B(X2) if and only if it also appears in ∂B(X1 ∩X2)

and ∂B(X1 ∩X2) and thus k1 + k2 = k′
1 + k′

2.

The possibility of generalising the notion of tight cuts to the notion of
proper k-tight cuts while preserving the submodularity is a crucial tool
for matching theory of bipartite graphs, which we revisit in Chapter 6. In
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Section 3.4 we show that such a generalisation cannot exist in non-bipartite
graphs.
Let us come back to matching covered graphs with tight cuts, more
precisely, let us assume G to be a matching covered graph with a non-
trivial tight cut induced by the set X ⊆ V (G). Consider the graph
GX := G/(X → v) and let Y ⊆ GX be a non-trivial tight cut in GX

such that v ∈ Y . Observe that (Y \ {v}) ∪ X must then also induce a
non-trivial tight cut in G, and, moreover, this tight cut is laminar with
the one induced by X. With this observation, it becomes apparent that
we can turn the construction of tight cut contractions into a procedure.

Definition 3.1.60 (Tight Cut Decomposition). Let G be a matching
covered graph. We iteratively construct a tree T as follows: First, let T

consist of only one vertex, say t0 and let us associate G0 = G with t0.
Then select a set X ⊆ V (G) that induces a non-trivial tight cut in G and
let GX , GX be its two tight cut contractions. We introduce t1,1 and t1,2
together with the edges t0t1,i, i ∈ [1, 2] to our tree T and associate10 with
each of the two tight cut contractions exactly one of the two new vertices.
Suppose now that we have constructed a binary tree T with root t0 such
that each pair of successors of an inner vertex t of T are associated with
the two tight cut contractions obtained from the graph associated with
t by using a single non-trivial tight cut. If there exists a leaf ℓ whose
associated matching covered graph still has a non-trivial tight cut, we
construct the two tight cut contractions from it, add two new successors
to ℓ and associate each of the two newly obtained tight cut contractions
with exactly one of the two new successors of ℓ.
At some point, this procedure stops, and we obtain a tree T as above such
that each leaf of T is associated with a matching covered graph without
any non-trivial tight cuts, Let G be the family of all graphs associated
with the leaves of T . Here we explicitly allow for G to be a multiset.
Then G is a tight cut decomposition of G. We call the tree T a tight cut
decomposition tree of G. Moreover, there is a family T of pairwise laminar
non-trivial tight cuts of G such that each member of T can be associated
with an inner vertex of T .

10Formally this is a bijection between the vertices of T and a family of graphs.
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Let F1 and F2 be two multisets of graphs. We say that F1 and F2 are
isomorphic if there exists a bijection f : F1 → F2 such that for every
F ∈ F1, F and f(F ) are isomorphic.
Let T be the family of pairwise laminar non-trivial tight cuts of G as
above. Then T must be a maximal such family since otherwise we could
find some leaf of the tight cut decomposition tree T whose associated
graph still has a non-trivial tight cut. A fundamental result by Lovász
shows that the tight cut decomposition G itself is independent of the
choice of a maximal family of pairwise laminar and non-trivial tight cuts
in G. Hence the tight cut decomposition is indeed canonical.

Theorem 3.1.61 ([Lov87]). Let G be a matching covered graph, then
any two tight cut decompositions of G are isomorphic.

Let G be a matching covered graph, S ∈ B(G) a maximal barrier of G as
well as K be an odd component of G− S. Then every perfect matching
of G contains exactly one edge that has an endpoint in S and the other
one in K. Hence V (K) induces a non-trivial tight cut. Note that the two
tight cut contractions are graphs that occur in the frame construction.
This means that the tight cut decomposition is in fact a refinement, since
it is canonical and also decomposes bipartite graphs, of the decomposition
associated with the frame construction.
A natural next step is to further investigate the structure of those graphs
whose tight cut decomposition is trivial, i.e. matching covered graphs
where every tight cut is trivial.

Definition 3.1.62 (Brace and Brick). Let G be a matching covered
graph without a non-trivial tight cut. If G is bipartite it is called a brace,
otherwise it is called a brick.

3.1.2. Braces and Bipartite Graphs

By Theorem 3.1.61 every matching covered graph can be decomposed
into a unique11 list of bricks and braces. Indeed, from Lemma 3.1.58 it
follows that any tight cut contraction of a bipartite graph must itself be
bipartite. To see this observe that the contraction vertex v can be coloured
by the colour of the majority of the set from whose contraction v was
11Up to isomorphisms.
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obtained. So while every non-bipartite matching covered graph that is not
bicritical must necessarily have at least one brace, no bipartite matching
covered graph has a brick. For a better understanding, especially of
bipartite graphs with perfect matchings, it is therefore desirable to further
investigate the structure of braces. For this, the concept of matching
extendibility12 is crucial.

Definition 3.1.63. Let G be a graph with a perfect matching and
F ⊆ E(G) a matching. We say that F is extendible if there exists
M ∈M(G) such that F ⊆M .
For any positive integer k ∈ N, G is said to be k-extendible if it is
connected, has at least 2k + 2 vertices, and every matching of size k in G

is extendible.

In particular, this means that any connected graph with a perfect matching
may be regarded as 0-extendible.
Before we start with a brief discussion of the properties of k-extendible
graphs in general, note that any 1-extendible graph is matching covered13.
The notion of 2-extendibility is especially relevant for this subsection as
illustrated by the following theorems.

Theorem 3.1.64 ([Plu80]). Any 2-extendible graph is either a brace or
a brick.

For bipartite graphs the reverse of Theorem 3.1.64 is true as well.

Theorem 3.1.65 ([LP09]). A bipartite graph B is a brace if and only if
it is either isomorphic to C4, or it is 2-extendible.

The case of C4 is a bit special. Clearly, every matching of size two in C4

can be extended to, and is in fact, a perfect matching. However, it has
fewer vertices and lower connectivity than any other brace and therefore
it is usually excluded. In some cases, C4 is not even regarded as a brace
at all. In this work, we count it as a brace, but not as 2-extendible. This
is similar to K2, which is commonly regarded as a block14, but not as

12In the literature this is sometimes referred to as ‘extendability’.
13Sometimes 1-extendibility and matching covered are used as synonyms in the

literature.
14A block is a connected graph without a cut vertex.
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2-connected, while every block besides K2 is necessarily 2-connected. The
comparison to k-connectivity is probably the best way to understand the
tight cut decomposition and the structure of braces. To further illustrate
this, we first present some general statements on extendibility and then
concentrate more on properties unique to bipartite graphs.

Theorem 3.1.66 ([Plu80]). Let k ∈ N be a positive integer. Then every
k-extendible graph is also (k − 1)-extendible.

Theorem 3.1.67 ([Plu80]). Let k ∈ N be a positive integer. Then every
k-extendible graph is (k + 1)-connected.

To fully stress the comparison to k-connectivity we started earlier, let us
generalise the concept of matching connectivity.

Definition 3.1.68 (Matching k-Connectivity). Let k ∈ N be a positive
integer. A graph G is said to be matching k-connected if it has a perfect
matching, |V (G)| ≥ 2k + 2, and for every conformal set S ⊆ V (G), which
is M -conformal for some M ∈M(G), with |S| ≤ 2k−2, G−S is matching
connected.

The notion of matching connectivity itself is indistinguishable from the no-
tion of a graph being elementary, so one could call matching k-connectivity
‘k-elementarity’ instead. However, there is a direct link to how connectivity
in (directed) graphs works which matching k-connectivity resembles in a
nice way. Hence we think calling the concept ‘connectivity’ is justified.
The following theorem is a collection of several different characterisations
of k-extendibility in bipartite graphs.

Theorem 3.1.69 ([Plu86, AHLS03]). Let B be a bipartite graph and
k ∈ N a positive integer. The following statements are equivalent.

i) B is k-extendible.
ii) |V1| = |V2|, and for all non-empty S ⊆ V1, |NB(S)| ≥ |S|+ k.
iii) For all sets S1 ⊆ V1 and S2 ⊆ V2 with |S1| = |S2| ≤ k the graph

B − S1 − S2 has a perfect matching.
iv) B is matching k-connected.
v) There is a perfect matching M ∈M(B) such that for every v1 ∈ V1,

every v2 ∈ V2 there are k pairwise internally disjoint internally
M -conformal paths with endpoints v1 and v2.
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vi) For every perfect matching M ∈M(B), every v1 ∈ V1, every v2 ∈ V2

there are k pairwise internally disjoint internally M -conformal paths
with endpoints v1 and v2.

While ii) can be seen as a generalisation of Hall’s Theorem, iii) is, in a way,
an even stronger version of matching k-connectivity. The statements iv)
and v) can be seen as matching theoretic versions of Menger’s Theorem.
We present both versions here to emphasise that having this property for
one perfect matching already implies the property for all of them. This is
a phenomenon we will encounter again in later chapters, and thankfully
so, as this allows to fix a single perfect matching for a proof instead of
having to consider many different matchings individually.
So, in some sense, one could say that braces are the matching 2-connected
building blocks of bipartite matching covered graphs, similarly to how
blocks make up any connected graph. Indeed, the decomposition of any
connected graph into its blocks is canonical in the sense that the list of
blocks is unique, and the corresponding decomposition has a tree structure
just like the tight cut decomposition has for matching covered graphs.
So far we know how to construct any graph from just three families of
graphs, one of them being those with a perfect matching. We then discov-
ered how to obtain graphs with perfect matchings from their elementary
components and how to obtain those from the frame construction or via an
ear-decomposition. Using the tight cut decomposition, we can decompose
bipartite elementary graphs further into their braces. A natural question
would be whether there is a way to generate all braces. To do this, let us
revisit a classical result by Tutte. Let v be some vertex of a graph G, and
let {Y1, Y2} be a partition of NG(v) into two non-empty sets. Let

G′ := (G− v) + x1x2 + {xiyi | yi ∈ Yi where i ∈ [1, 2]} ,
such that x1, x2 /∈ V (G). We say that G′ is obtained from G by simple
expansion. If a graph H is obtained from a graph G by simple expansion
and δ(H) ≥ 3, then H is obtained from G by 3-expansion. For k ≥ 3 the
wheel Wk is the graph obtained from a cycle of length k by introducing a
single new vertex, and joining this vertex to all vertices of the cycle.

Theorem 3.1.70 ([Tut61]). A simple graph is 3-connected if and only
if it can be obtained from a wheel by a sequence of edge additions and
3-expansions.
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This theorem is especially beautiful, as it shows that any 3-connected
graph can be traced back to a single infinite family of graphs from which
all others originate. We close this subsection with a surprisingly similar
result for braces.

Definition 3.1.71 (Bipartite Expansion). Let B be a bipartite graph
with δ(B) ≥ 2, let x ∈ V (B) be any vertex, and {Y1, Y2} be a bipartition
of NB(x) into two non-empty sets. Let

B′ := (B − x) + x1vx2 + {xiyi | yi ∈ Yi where i ∈ [1, 2]} ,
where x1, v, x2 /∈ V (B). We say that B′ is obtained from B by bipartite
expansion of x (to x1vx2).

Definition 3.1.72 (Bipartite Augmentation). Let B be a bipartite graph
with δ(B) ≥ 2.

i) Let v1 ∈ V1, v2 ∈ V2 be two non-adjacent vertices from different
colour classes. We say that the graph B′ := B + v1v2 is obtained
from B by type I bipartite augmentation.

ii) Let i ∈ [1, 2], x, u ∈ Vi be two distinct vertices and B′ be obtained
from B by bipartite expansion of x to x1vx2. If δ(B′+uv) ≥ 3 we say
that B′ + uv is obtained from B by type II bipartite augmentation.

iii) Let i, j ∈ [1, 2] be distinct, x ∈ Vi, y ∈ Vj be non-adjacent, and B′

be obtained from B by bipartite expansion of x to x1ux2 and y to
y1vy2. If δ(B′ + uv) ≥ 3 we say that B′ + uv is obtained from B by
type III bipartite augmentation.

iv) Let i, j ∈ [1, 2] be distinct, x ∈ Vi, y ∈ Vj be adjacent, and B′ be
obtained from B by bipartite expansion of x to x1ux2 and y to
y1vy2. If δ(B′ + uv) ≥ 3 we say that B′ + uv is obtained from B by
type IV bipartite augmentation.

If B′ is obtained from B by type i bipartite augmentation for i ∈
{I, II, III, IV }, it is obtained from B by bipartite augmentation.

Clearly, bipartite augmentations are more complex than edge addition and
3-expansion. In some sense, this increase in complexity is to be expected
and will be encountered wherever we aim to generalise some concept from
(undirected) structural graph theory to matching theory in the following
chapters. Similar to the more complicated generation rules, our graph
families from which we start the generation process are more complex as
well.
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Definition 3.1.73 (McCuaig Braces). An odd möbius ladder of order
k ≥ 1 is the graph M4k+2 obtained from the cycle

(v10 , v
2
0 , v

1
1 , v

2
1 , v

1
2 , . . . , v

2
2k−1, v

1
2k, v

2
2k, v

1
0)

by adding the edges v1i v
2
k+i ( mod 2k+1), for all i ∈ [0, 2k].

An even prism of order k ≥ 1 is the graph P4(k+1) obtained from the
cycles

(u1
0, u

2
0, u

1
1, . . . , u

2
2k, u

1
2k+1, u

2
2k+1, u

1
0), and

(v20 , v
1
0 , v

2
1 , v

1
1 , v

2
2 , . . . , v

1
2k, v

2
2k+1, v

1
2k+1, v

2
0)

by adding the edges u1
i v

2
i and u2

i v
1
i for all i ∈ [0, 2k + 1].

A biwheel of order k ≥ 1 is the graph B2k+6 obtained from the cycle
(v10 , v

2
0 , v

1
1 , . . . , v

2
2k+4, v

1
2k+3, v

2
2k+3, v

1
0)

and the vertices u1, u2 by adding the edges u1v2i , and u2v1i for all i ∈
[0, 2k + 3].
Every graph that is isomorphic to an odd möbius ladder, an even prism,
or a biwheel is called a McCuaig brace. See Figure 3.8 for an illustration.

Theorem 3.1.74 (Brace Generation Theorem, [McC01]). A graph G

is a brace if and only if it can be obtained from a McCuaig brace by a
sequence of bipartite augmentations.

3.1.3. Bricks and Non-Bipartite Graphs

Theorem 3.1.74 and Theorem 3.1.65 give us precise descriptions of bipar-
tite graphs without non-trivial tight cuts. Moreover, with Theorem 3.1.69
we have a pretty powerful description of the inner workings of braces, espe-
cially in terms of internally M -conformal paths. However, in the presence
of bicriticality, a property no bipartite graph can have15, extendibility
becomes a property that is slightly too strong. To characterise bricks,
i.e. non-bipartite graphs without non-trivial tight cuts, one needs some
additional tools, as the reverse of Theorem 3.1.64 is not true in general. As
an example consider the triangular prism C6. This graph does not contain
a non-trivial tight cut, but it is also not 2-extendible. See Figure 3.9 for a
matching of size two in C6 which is not extendible.

15Technically K2 is an exception, but usually we assume that our graphs have more
than two vertices.
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Odd Möbius Ladders

M6 M10 M14

· · ·

Even Prisms

P8 P12 P16

· · ·

Biwheels

B8 B10 B12

· · ·

Figure 3.8.: The three infinite families of McCuaig braces.
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While bipartite matching covered graphs are one of the two types of
building blocks for general elementary graphs in the frame construction,
bicritical graphs form the other type. Still, bicritical graphs may contain
non-trivial tight cuts, but as it turns out, they are almost free from these
cuts. In their studies of the dimension of the perfect matching polytope
Edmonds, Pulleyblank, and Lovász proved the following fundamental
statement, which they state as the most challenging part of their work.

Theorem 3.1.75 (Tight Cut Lemma, [EPL82]). A graph G is a brick if
and only if it is 3-connected and bicritical.

This means we only have to add the additional requirement of G being
3-connected in order to get rid of all non-trivial tight cuts. Let G be
some matching covered graph and S = {s1, s2} ⊆ V (G) a set of size two
which is not a barrier such that G − S is not connected. Please note
that we will always find such a set in a bicritical graph that is not a
brick. Let K be a component of G − S. Since G is matching covered
and S is not a barrier, G + s1s2 would also be matching covered and
thus G − S has a perfect matching. This implies that K has even size,
hence V (K) ∪ {s1} is odd and, moreover, any perfect matching of G can
have at most two edges in ∂G(V (K) ∪ {s1}). However, with V (K) ∪ {s1}
being odd, no perfect matching can have an even number of edges in
the cut, hence ∂G(V (K) ∪ {s1}) is a non-trivial tight cut. Such a cut is
called a 2-separation cut. Together with the cuts that arise from maximal
barriers that contain at least two vertices, which are called barrier cuts,
2-separation cuts form the family of so called ELP-cuts. In a bicritical
graph G every barrier is trivial and thus if G has an ELP-cut it must be
a 2-separation cut. The following theorem illustrates the key role of this
observation for the Tight Cut Lemma.

Figure 3.9.: The triangular prism C6 with a non-extendible matching of
size two.
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Theorem 3.1.76 (ELP Theorem, [CLM18]). If a matching covered graph
G has a non-trivial tight cut, then it has a non-trivial ELP-cut.

Theorem 3.1.67 provides an alternative proof for the fact that every brace
is 3-connected.
Let us further investigate the notions of extendibility and bicriticality in
non-bipartite graphs. There exists a generalisation of Tutte’s Theorem
on the existence of perfect matchings in a graph to the extendibility of
matchings.

Theorem 3.1.77 ([Yu93]). Let k ∈ N be a positive integer. A graph G

is k-extendible if and only if for all S ⊆ V (G)

i) codd(G− S) ≤ |S| and
ii) codd(G− S) = |S| − 2h for h ∈ [0, k − 1] implies ν(G[S]) ≤ h.

It is straight forward to see that any k-bicritical graph is also k-extendible.
By Theorems 3.1.64 and 3.1.75 we also know that every 2-extendible
non-bipartite graph must be 1-bicritical. This observation can actually be
generalised for arbitrary k.

Theorem 3.1.78 ([LY98, Fav00]). Let k ∈ N be a positive integer. Every
non-bipartite 2k-extendible graph is k-bicritical.

One could ask the question whether the notion of matching k-connectivity
yields tighter results here, as it seems to lie somewhere between extend-
ability and bicriticality. However, one can easily find examples for graphs
with an arbitrarily large gap between the two parameters extendibility
and matching connectivity, which implies, by Theorem 3.1.78, that the
gap between matching connectivity and bicriticality can also be arbitrarily
high. For k ∈ N, k ≥ 2, let Gk be the graph consisting of a clique of size
k + 2 together with a stable set of size k such that every possible edge
between the clique and the stable set exists. If we delete any two vertices of
Gk that are contained in the clique, say x and y, then Gk−x−y−Eno(G)

is isomorphic to the complete bipartite graph Kk,k which, although too
small to be k-extendible, has the property that any matching of size at
most k can be extended to a perfect matching. Hence Gk is indeed match-
ing covered. This implies that Gk − V (F ) is matching connected for all
matchings F that contain at most one edge of the clique. On the other side,
if K is the clique of size k+2 in Gk, then codd(Gk −V (K)) = |V (K)| − 2,
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but K contains a matching of size 2. Thus no two disjoint edges of K
can be contained in the same perfect matching of Gk and so Gk is not
2-extendible. This also means that any conformal set S of size at most
2(k − 1), which is M -conformal for some perfect matching M ∈ M(G),
contains at least 1

2
(|S| − 2) vertices from the stable set and thus there

exists a matching F of size 1
2
|S| with V (F ) = S and F contains at most

one edge with both endpoints in K. Hence Gk is matching k-connected.
Still, this observation does not mean that there is no way to capture,
at least approximately, the structure of highly bicritical graphs using
some notion of connectivity based on alternating paths. For this, we
need a classical result by Berge which, in some sense, illustrates the deep
connection between matching theory and flow theory.
Let G be a graph, F ⊆ E(G) be a matching and P be a path in G. The
path P is F -augmenting if it is F alternating and none of its endpoints is
matched by F .

Theorem 3.1.79 (Augmenting Path Lemma, [Ber57]). Let F be a match-
ing in a graph G, then F is a maximum matching if and only if there
exists no F -augmenting path in G.

Lemma 3.1.80 (A∗). A graph G is bicritical if and only if it has a perfect
matching and for every M ∈M(G) and all pairs of vertices x, y ∈ V (G)

there is an internally M -conformal path with endpoints x and y.

Proof. Let us assume that G is bicritical, M ∈ M(G), and x, y ∈ V (G)

such that x ̸= y. If xy ∈ M , then M \ {xy} is a perfect matching of
G − x − y and xy is an internally M -conformal path connecting x and
y. Hence we may further assume xy /∈M . So let x′, y′ ∈ V (G) such that
xx′, yy′ ∈ M . Since G is bicritical, G − x′ − y′ has a perfect matching
which, in particular, has size |M |− 1. Moreover, M ′ := M \ {xx′, yy′} is a
matching of G of size |M |−2. So M ′ is not a maximum matching of G and
therefore Theorem 3.1.79 guarantees the existence of an M ′-augmenting
path P in G− x′ − y′. Additionally, the endpoints of P must be x and
y since these are the only two vertices of G− x′ − y′ not covered by M ′.
Since P is M ′-alternating by definition, it is internally M -conformal in G

and thus we have found our path.
For the reverse direction, let us assume that there is an internally M -
conformal path between any pair of vertices and for every M ∈M(G). Now
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consider the vertex pair x, y ∈ V (G) and any perfect matching M ∈M(G).
Again either xy ∈M and we are done, or there are x′, y′ ∈ V (G) \ {x, y}
such that xx′, yy′ ∈ M . In the later case let P be an internally M -
conformal path with endpoints x′ and y′. Then P is an M \ {xx′, yy′}-
augmenting path in G − x − y. Since M \ {xx′, yy′} has size |M | − 2

this means by Theorem 3.1.79 that there is a matching of size |M | − 1 in
G− x− y implying that G− x− y has a perfect matching. Since x and y

were arbitrary, this means that G is bicritical.

The property of having an internally M -conformal path joining any two
vertices of G is, similar to bicriticality, inherently non-bipartite, as this
implies, among other things, that between any two vertices there is a path
of odd length. In bipartite graphs, no two vertices from the same colour
class can be linked by such a path.
So while the concept of matching k-connectivity does not seem strong
enough to capture the structure of internally conformal paths in non-
bipartite graphs, maybe a stronger version fits better into this setting.

Definition 3.1.81 (Strong Matching Connectivity). We call a graph G

strongly matching connected, if it has a perfect matching and for every pair
of vertices x, y ∈ V (G) and every perfect matching M ∈M(G) there exists
an internally M -conformal path with endpoints x and y in G. Moreover,
for every positive k ∈ N, G is said to be strongly matching k-connected if
G− S is strongly matching connected for every conformal set S ⊆ V (G)

with |S| ≤ 2k − 2 that is M -conformal for some M ∈M(G).

Since in bipartite graphs matching connectivity and extendibility are
closely related, it would be nice if we could show at least some link between
extendibility and strong matching connectivity in the non-bipartite world.
To this end we introduce the following to lemmas.

Lemma 3.1.82 (A∗). Let G be an elementary graph and k ≥ 2. Then
G− Eno(G) is k-extendible if and only if G− V (S)− Eno(G− V (S)) =

G− Eno(G)− V (S) for all matchings S ⊆ E(G) of size at most k − 1.

Proof. Assume that G− Eno(G) is k-extendible and let S ⊆ E(G) be a
matching of size 1 ≤ k′ ≤ k − 1. By Theorem 3.1.66 G is k′-extendible
and so there is a perfect matching containing S, hence V (S) is conformal.
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Moreover, let e be any edge of G − Eno(G) − V (S), then S ∪ {e} is a
matching of size k′ + 1 ≤ k and thus there is a perfect matching Me of G
containing S ∪ e. Hence Me \ S is a perfect matching of G− V (S) and so
E(G− V (S)) = G− Eno(G)− V (S).
For the reverse direction, let F ⊆ E(G− Eno(G)) be a matching of size
k and e ∈ F be any edge. Then S := F \ {e} is a matching of size k − 1

and by our assumption e ∈ E(G− V (S)) \ Eno(G− V (S)). Hence there
must be a perfect matching Me of G− V (S) containing e and so Me ∪ S

is a perfect matching of G. Consequently, for every matching of size k in
G−Eno(G) there is a perfect matching containing it, and thus G−Eno(G)

is k-extendible.

Lemma 3.1.83 (A∗). A graph G is k-extendible for k ≥ 2 if and only if
G− x− y is (k − 1)-extendible for every xy ∈ E(G).

Proof. With G being n-extendible, we know that any edge xy of G is
contained in a perfect matching, thus Lemma 3.1.82 yields G− x− y −
Eno(G− x− y) = G−Eno(G)− x− y. Now, if G−Eno(G)− x− y is not
(k − 1)-extendible, there is a matching F of size k − 1 in G− x− y that
cannot be extended to a perfect matching of G − x − y. But F ∪ {xy}
forms a matching of size k in G which must be contained in a perfect
matching M and clearly M contains a perfect matching of G − x − y,
which is a contradiction.
For the reverse, suppose G − x − y is (k − 1)-extendible for every edge
xy ∈ E(G). Let F be a matching of size k containing xy, then F \ {xy}
is a matching of size k − 1 of G− x− y and thus contained in a perfect
matching M of G− x− y. Then M ∪ {xy} is a perfect matching of G and
so G is k-extendible.

The gap between (weak) matching connectivity and extendibility can be
arbitrarily high as we have discussed. This is no longer true once we
consider strong matching connectivity.

Lemma 3.1.84 (A∗). Let G be a strongly matching k-connected graph
for some positive integer k ∈ N. Then G is k-extendible.

Proof. We prove the assertion by induction over k. For k = 1 the
claim follows immediately from Lemma 3.1.80. So let k ≥ 2. Invoking
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Lemma 3.1.80 yields that G still is bicritical. Hence every edge xy ∈ E(G)

is contained in a perfect matching, and so G− x− y is matching (k − 1)-
connected. Now, by induction G− x− y is (k − 1)-extendible and since
the choice of xy was arbitrary, we are done by Lemma 3.1.83.

We have seen that extendibility does not seem to capture exactly the
essentials of the structure of non-bipartite matching covered graphs. Still,
matching connectivity is closely tied to extendibility. By definition however,
it seems natural to expect a similar relation between matching connectivity
and higher order bicriticality.

Lemma 3.1.85 (A∗). Let G be a k-bicritical graph with k ≥ 1, then G

is strongly matching k-connected.

Proof. Let S ⊆ V (G) be an M -conformal set for some M ∈M(G) of size
at most 2k − 2, then G− S is still bicritical and thus, by Lemma 3.1.80
it is matching connected. Since the choices of M and S were arbitrary,
the claim follows immediately from the definition of strong matching
k-connectivity.

In light of Theorem 3.1.78, we are now able to reverse Lemma 3.1.85 to
obtain at least a qualitative relation between strong matching connectivity
and bicriticality. It is not known whether this bound can be improved.

Theorem 3.1.86 (A∗). Let k ∈ N be a positive integer and G a graph.
If G is k-bicritical, then G is strongly matching k-connected, and, if G is
strongly matching 2k-connected, G is k-bicritical.

We have seen how the structure of internally M -conformal paths con-
tributes to the structure of bricks. Not much is known beyond the results
we presented in this section, and there appears to exist no concept that
nicely captures the connectivity properties of bricks. We close this section
with a non-bipartite analogue of Theorem 3.1.74 which, as expected, is
even more complicated than the bipartite version.
For bricks there exists one exceptional graph: The Petersen graph as
defined in Figure 3.10.
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Figure 3.10.: The Petersen graph.

While any brace can be generated from the McCuaig braces by using
bipartite augmentations, the Petersen graph seems to be the sole outstand-
ing brick which cannot be fit into such a framework. For non-Petersen
bricks, i.e. bricks that are not isomorphic to the Petersen graph, one can
formulate the following generation rules.

Definition 3.1.87 (Expansion). Let G be a graph with δ(G) ≥ 2, let
x ∈ V (G) be any vertex, and {Y1, Y2} be a bipartition of NG(x) into two
non-empty sets. Let

G′ := (G− x) + x1vx2 + {xiyi | y − I ∈ Yi where i ∈ [1, 2]} ,
where x1, x2, v /∈ V (G). We say that G′ is obtained from G by expansion
of x (to x1vx2).

Please note that the only difference between an expansion and a bipartite
expansion is that we allow G to be non-bipartite here.

Definition 3.1.88 (Augmentation). Let G be a graph with δ(G) ≥ 2.
i) Let x, y ∈ V (G) be non-adjacent vertices. We say that the graph

G′ := G+ xy is obtained from G by type I augmentation.
ii) Let x, u ∈ V (G) be two distinct and non-adjacent vertices and G′

be obtained from G by expansion of x to x1vx2. If δ(G′ + uv) ≥ 3,
we say that G′ + uv is obtained from G by type II augmentation.

iii) Let x, u ∈ V (G) be two adjacent vertices and G′ be obtained from G

by expansion of x to x1vx2. If δ(G′ + uv) ≥ 3, we say that G′ + uv

is obtained from G by type III augmentation.
iv) Let x, y ∈ V (G) be two distinct and non-adjacent vertices, and G′

be obtained from G by expansion of x to x1ux2, and y to y1vy2. If
δ(G′ + uv) ≥ 3, we say that G′ + uv is obtained from G by type IV
augmentation.
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v) Let x, y ∈ V (G) be two adjacent vertices, and G′ be obtained from
G by expansion of x to x1ux2, and y to y1vy2. If δ(G′ + uv) ≥ 3,
we say that G′ + uv is obtained from G by type V augmentation.

If G′ is obtained from G by type i augmentation for some i ∈
{I, II, III, IV, V }, it is obtained from G by augmentation.

These rules for augmentation come from an analysis of the different cases
in the original proofs, as those are worded not for generating bricks but
to reduce them to bricks from one of the following five infinite families.

Definition 3.1.89 (Norine-Thomas Bricks). An odd wheel of order k ≥ 1

is the graph W2k+2 obtained from a cycle C2k+1 of length 2k+1 by adding
a single vertex and joining it to all vertices of C2k+1.
An odd prism of order k ≥ 1 is the graph P4k+2 obtained from the cycles

(u0, u1, . . . , u2k−1, u2k, u0), and

(v0, v1, . . . , v2k−1, v2k, v0)

by adding the edges uivi for all i ∈ [0, 2k].
An even möbius ladder of order k ≥ 1 is the graph M4k obtained from the
cycle

(v0, v1, v2, . . . , v4k−2, v4k−1, v0)

by adding the edges viv2k+i for all i ∈ [0, 2k − 1].
A diamond of order k ≥ 1 is the graph D2k+4 obtained from the path

v1v2v3 . . . v2k+1v2k+2,

and the vertices u1, u2 by adding the edges u1v2k+2, u2v1, and ujui for
all j ∈ [1, 2] and all i ∈ [1, 2k + 2] for which i ≡ jmod2.
A staircase of order k ≥ 1 is the graph S2k+4 obtained from the cycle

(v0, v1, v2, . . . , v2k−2, v2k−1, v0)

and the vertices u1, u2 by adding the edges u1u2, u1v0, u1v1, u2vk+1,
u2vk+2, and viv2k+3−i for all i ∈ [2, k]. If k is even, S2k+4 is called an odd
staircase, otherwise it is an even staircase.
Every graph that is isomorphic to an odd wheel, an odd prism, an even
möbis ladder, a diamond, or a staircase is called a Norine-Thomas brick.
See Figure 3.11 for an illustration.

Theorem 3.1.90 (Brick Generation Theorem, [NT07]). A graph G is a
brick if and only if it is isomorphic to the Petersen graph, or it can be
obtained from a Norine-Thomas brick by a sequence of augmentations.
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3.1.4. Matching Minors

So far we have seen several concepts of identifying sets of vertices into a
single vertex or contracting sets of vertices, that all play a role in matching
theory. What we have not seen is a precise concept of a minor that fits
into the setting of graphs with perfect matchings and, hopefully, unifies at
least a majority of the different notions of contraction. The closest we have
come so far to such a definition is in terms of conformal bisubdivisions.
However, bisubdivisions more closely resemble the notion of topological
minors or subdivisions of graphs. While this is already a powerful concept
it might prove to be not general enough in a broader setting.
What do we need to define a concept of matching minors, and what do
we expect from such a definition? We want a concept that generalises our
already established notion of conformal subgraphs, it should generalise
the idea of conformal bisubdivisions, and it should at least interact with
the notion of tight cut contractions. Moreover, a definition of minor
should immediately yield a minor-version of the Brace and the Brick
Generation Theorem in the same way that Theorem 3.1.70 implies that
every 3-connected graph contains a wheel as a minor. To ensure this, our
operation should reverse both the process of bisubdividing an edge and
also the operation of expanding a vertex.

Definition 3.1.91 (Bicontraction). Let G be a graph with a perfect
matching and v ∈ V (G) a vertex of degree two with NG(v) = {v1, v2}.
Let

G′ := G− {v1, v, v2}+ u+ {uw | w ∈ NG−v(v1) ∪NG−v(v2)} ,
where u /∈ V (G). We say that G′ is obtained from G by bicontracting v.

Let G be a graph with a perfect matching and v ∈ V (G) be a vertex of
degree two. Then NG(v)∪{v} is an odd set where every perfect matching
of G must match v to exactly one of its two neighbours. So if G has at
least six vertices, ∂G(NG(v) ∪ {v}) is a non-trivial tight cut in G. Note
that the contraction of its complement always yields C4. Therefore, as
intended, the notion of bicontracting can be seen as a special case of
tight cut contractions. Moreover, bicontraction indeed serves as a reverse
operation to bisubdividing an edge, as this produces two vertices of degree
two, and expanding a vertex, since this produces at least one vertex of
degree two.
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Odd Wheels

W3 W5 W7

· · ·

Even Möbius Ladders

M4 M8 M12

· · ·

Odd Prisms

P6 P10 P14

· · ·

Diamonds

D6 D8 D10

· · ·

Staircases

S6 S8 S10

· · ·

Figure 3.11.: The five infinite families of Norine-Thomas bricks.
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Definition 3.1.92 (Matching Minor). Let G and H be graphs with
perfect matchings. We say that H is a matching minor of G if H can be
obtained from a conformal subgraph of G by a sequence of bicontractions.
Let M be a perfect matching of G, if H can be obtained from an M -
conformal subgraph of G by a sequence of bicontractions we say that H

is an M-minor of G.
The graph G is said to be H-free if it does not contain H as a matching
minor.

Although the idea of matching minors already occurs in the work of Mc-
Cuaig [McC01], the term itself stems from the work of Norine and Thomas
on bricks [NT07]. From the Brace Generation Theorem of McCuaig and
the Brick Generation Theorem of Norine and Thomas, it follows now that
every brace has a matching minor that is isomorphic to a McCuaig brace,
and every brick is either isomorphic to the Petersen graph or contains
a matching minor isomorphic to a Norine-Thomas brick. Indeed, the
findings of Lovász in his research on ear-decompositions of non-bipartite
matching covered graphs yield the following theorem.

Theorem 3.1.93 ([LP09]). Every brick has a conformal bisubdivision of
(and therefore a matching minor isomorphic to) K4 = W4 or C6 = P6.

A similar statement, but of course with different graphs, can be proven
regarding braces.

Theorem 3.1.94. Every brace has a conformal bisubdivision of (and
therefore a matching minor isomorphic to) the cube P8 or K3,3 = M6.

An important property of any viable minor operation is transitivity. This
was first mentioned in a paper of Lucchesi et al. [LdCM15] which aimed
at a more unified framework for the Brace Generation Theorem.

Lemma 3.1.95 (Transitivity of Matching Minors, [LdCM15]). Let G be
a matching covered graph and let H be a matching minor of G. Then any
matching minor of H is also a matching minor of G.

Let G and H be matching covered graphs. It is easy to see that H has
to be a matching minor of G if G contains a conformal bisubdivision
of H. However, it is not necessarily true that G contains a conformal
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bisubdivision of H if it has H as a matching minor. Similar to topological
and (general) minors in undirected graphs, the reverse is a question of
vertex degrees in H.

Lemma 3.1.96 ([LDCKM18]). Let G and H be matching covered graphs
such that ∆(H) = 3. Then G contains a conformal bisubdivision of H if
and only if it contains H as a matching minor.

For bipartite graphs one can actually show that matching minors are
enough to capture the whole concept of tight cut contractions. This is a
property that cannot be generalised to non-bipartite graphs.

Lemma 3.1.97 ([LdCM15]). Let B be a bipartite matching covered
graph, X ⊆ V (B) a set that induces a tight cut, and B′ := B/(X→ v).
Then B′ is a matching minor of B.

Corollary 3.1.98 ([LdCM15]). Let B be a bipartite matching covered
graph. Then every brace of B is a matching minor of B.

Moreover, and this is probably the most important property of matching
minors in bipartite graphs, if a bipartite graph B has some brace H as a
matching minor, then this property is reflected by at least one brace of B.
This means that brace matching minors cannot vanish during the tight
cut decomposition procedure.

Lemma 3.1.99 ([LdCM15]). Let B be a bipartite matching covered
graph. A brace H is a matching minor of B if and only if it is a matching
minor of some brace of B.

While a generalisation of the above lemma to non-bipartite graphs is
generally not possible, there is a small special case for which tight cut
contractions still preserve the existence of matching minors that are bricks.

Theorem 3.1.100 (Cubic Brick Theorem, [KM16]). Let G be a matching
covered graph, H be a cubic brick, and X ⊆ V (G) a set that induces a
tight cut in G. Then G contains a conformal bisubdivision of H if and
only if one of G/(X→v) or G/(X→v) contains a conformal bisubdivision
of H.

To speak about matching minors in a more formal way, we introduce
the concept of models for matching minors. Models, or embeddings, for
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matching minors have already been used and discussed in [RST99] and
[NT07] and the definitions we give here are similar to those of Norine and
Thomas. Some parts of these definitions, however, have been changed to
better suit our needs in the chapters to come and therefore we provide
the necessary proofs.
Let T ′ be a tree and let T be obtained from T ′ by subdividing every edge
an odd number of times. Then V (T ′) ⊆ V (T ). The vertices of T that
belong to T ′ are called old, and the vertices in V (T ) \ V (T ′) are called
new. We say that T is a barycentric tree.

Definition 3.1.101 (Matching Minor Model). Let G and H be graphs
with perfect matchings. An embedding or matching minor model of H in
G is a mapping

µ : V (H) ∪ E(H)→ {F | F ⊆ G} ,
such that the following requirements are met for all v, v′ ∈ V (H) and
e, e′ ∈ E(H):

i) µ(v) is a barycentric subtree in G,
ii) if v ̸= v′, then µ(v) and µ(v′) are vertex disjoint,
iii) µ(e) is an odd path with no internal vertex in any µ(v), and if e′ ̸= e,

then µ(e) and µ(e′) are internally vertex disjoint,
iv) if e = u1u2, then the ends of µ(e) can be labelled by x1, x2 such

that xi is an old vertex of µ(ui),
v) if v has degree one, then µ(v) is exactly one vertex, and
vi) G− µ(H) has a perfect matching, where

µ(H ′) :=
⋃︁

x∈V (H′)∪E(H′) µ(x) for every subgraph H ′ of H.
If µ is a matching minor model of H in G we write µ : H → G.

While we slightly changed the definition here, the next lemma follows
immediately from a result of [NT07] and thus we omit the proof.

Lemma 3.1.102 ([NT07]). Let G and H be graphs with perfect matchings.
There exists a matching minor model µ : H → G if and only if H is
isomorphic to a matching minor of G.

Lemma 3.1.103 (D∗). Let H and G be graphs and µ : H → G be an
embedding of H into G. Then H has a perfect matching if and only if
µ(H) has a perfect matching.

108



3.1. General Matching Theoretic Background

Proof. Suppose H has a perfect matching. We prove our claim by induc-
tion on the number c of bicontractions that have to be applied to µ(H) in
order to obtain a graph isomorphic to H. For c = 0 this implies µ(H) = H

and H has a perfect matching.
So let c ≥ 1. Starting with µ(H) let b1, . . . , bc be the bicontractions that
need to be applied and Hi be the graph obtained from µ(H) by only ap-
plying the bicontractions b1, . . . , bi. Furthermore, let those bicontractions
be ordered in such a way that Hc = H and H0 = µ(H), where H0 is the
uncontracted graph and moreover Hi is obtained from Hi−1 by applying
exactly one bicontraction.
Hence H1 is a matching minor of G that also contains H as a matching
minor and H can be obtained from H1 by applying b2, . . . , bc, which are
c− 1 bicontractions, let µ1 be a corresponding matching model of H in
H1, then µ1(H) = H1. By our induction hypothesis, H1 has a perfect
matching. The transition from µ(H) to H1 is done by applying b1 to
µ(H). Let v0 be the vertex in µ(H) that is to be bicontracted by b1, and
let v1, v2 be its two unique neighbours, and let v be the new vertex in H1

after the bicontraction. Since H1 has a perfect matching, there is some
vertex x ∈ V (H1) ∩ V (µ(H)) such that xv is a perfect matching edge in
H1. Therefore, there must be vi with i ∈ {1, 2}, say i = 1, such that
xv1 is an edge of µ(H) by the definition of matching models. Let M be
some perfect matching of H1 containing xv, then M \ {xv} is a perfect
matching of µ(H)− x− v0 − v1 − v2. Let M ′ := (M ∪ {xv1, v0v2}) \ {xv},
then M ′ is a perfect matching of µ(H).
The reverse direction follows along similar lines and is therefore omitted.

If µ : H → G is a matching minor model of a matching covered graph
H in G, then both G − µ(H) and µ(H) have a perfect matching. Let
M be a perfect matching of G such that M ∩ E(G− µ(H)) is a perfect
matching of G− µ(H) and M ′ := M ∩ E(µ(H)) is a perfect matching of
µ(H). Then there is a perfect matching of H that ‘mimics’ the structure
of M ′ in µ(H). In the following, we explain what we mean with the word
‘mimics’.

Lemma 3.1.104 (D∗). Let G and H be graphs with perfect matchings,
µ : H → G, and M a perfect matching of µ(H). Then for every u ∈ V (H),
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there is a unique vertex v ∈ NH(u) such that µ(uv) is an M -conformal
path and for all other edges e ∈ E(H) incident with u their respective
model µ(e) is internally M -conformal.

Proof. Let e ∈ E(H) be any edge, then µ(e) is a path of odd length
where every inner vertex has degree two in µ(H). Thus for every perfect
matching M ′ of µ(H), µ(e) either is an internally M ′-conformal path, i.
e. M ′ contains a perfect matching of µ(e) without its endpoints, or M ′

contains a perfect matching of µ(e).
For any vertex u ∈ V (H) let us call t ∈ V (µ(u)) exposed if the edge of M
covering t is not an edge of the barycentric tree µ(u). Please note that
for every exposed vertex t of µ(u) there must be an edge e ∈ E(H) such
that t is an endpoint of µ(e) and the edge of M covering t is an edge of
µ(e). Moreover, in this case µ(e) cannot be internally M -conformal and
thus must be M -conformal by the observation above. Hence the other
endpoint of µ(e), which is a vertex of µ(v) for some v ∈ V (H), must
also be exposed. These observations immediately imply that any exposed
vertex in µ(u) must be an old vertex.
Next, observe that every path P in µ(u) that connects two old vertices
and otherwise consists only of new vertices is of even length. Similar to
our observation for µ(e), every inner vertex of P must be covered by an
edge of E(P ) ∩M . Hence there exists exactly one vertex of P that is not
covered by an edge of E(P ) ∩M .
So in order to prove our claim, we have to show that for every u ∈ V (H)

there is exactly one exposed vertex in µ(u). To do this, we generalise the
observation on the even paths within µ(u) we made above. Let T = µ(u)

be a barycentric tree and let O be the set of old vertices of T . Moreover,
let T ′ be the tree with V (T ′) = O from which T was constructed by
subdividing every edge an odd number of times. Then any two old vertices
that are adjacent in T ′ are linked by a path of even length in T . Hence in
a proper 2-colouring of T , all vertices of O receive the same colour. Now
let e ∈ E(T ′) be any edge and Pe the corresponding path in T , moreover
let P := Pe − O. Then P is a path of even length as well and thus in a
proper 2-colouring of T its endpoints receive the same colour. With P

being of even length, it has an odd number of vertices, say 2k + 1, and
thus in a proper 2-colouring of T , P has k + 1 vertices whose colour is
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different from the colour of the old vertices and k vertices with the same
colour as the old vertices, combining this with our observation above that
in each Pe exactly one vertex is not covered by an edge of E(Pe) ∩M .
This yields that in total |O| − |E(T ′)| = 1 vertices of T must be exposed
by every perfect matching of µ(u).

In the situation of Lemma 3.1.104 let M be a perfect matching of µ(H),
then for every u ∈ V (H) there is a unique vertex v ∈ V (H) such that
µ(uv) is M -conformal. Let

M |H := {uv ∈ E(H) | µ(uv) is M -conformal} ,
then M |H is a perfect matching of H. In a slight extension of our definition
of residual matching we call M |H the M -residual matching of H. Moreover,
we call a matching minor model µ : H → G an M-model of H in G if
µ(H) is M -conformal. With this, we obtain the following corollary.

Corollary 3.1.105 (D∗). Let G and H be graphs with perfect matchings
and M a perfect matching of G. Then H is isomorphic to an M -minor of
G if and only if there exists an M -model µM : H → G in G.

3.2. Perfect Matchings, Digraphs, and Bidirected Graphs

It often suffices to fix a single perfect matching M of a graph G and
describe its structural properties through the lens of M . Not only can
this approach lead to a simplification of the matter at hand or at least
the notation, but it can also allow for deeper insight, especially for the
application of different branches of structural graph theory.

Definition 3.2.1 (Bidirected Graph). A bidirected graph (G, σ) is a graph
G with vertex set V (G), edge (multi-)set E(G), a corresponding set of
half-edges

E(G) := {(u, e), (v, e) | e = uv ∈ E(G)} ,
and a signing σ : E(G)→ {+,−} of the half-edges.

Two distinct edges e and e′, both with endpoints u and v, are said to be
parallel if σ(u, e) = σ(u, e′)16 and σ(v, e) = σ(v, e′). We call (G, σ) simple

16Formally we would need to write σ((u, e)), but we drop the extra set of parenthesis
for better readability.
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if it has no loops and no parallel edges. In particular, this means that
the edge multiplicity of G for a simple bidirected graph (G, σ) is at most
4. An edge e = uv ∈ E(G) is called introverted if σ(u, e) = σ(v, e) = +,
extroverted if σ(u, e) = σ(v, e) = −, and normal otherwise. A natural
operation for bidirected graphs is the change of the signs of all half-edges
incident with a single vertex.

Definition 3.2.2 (Switching). Let (G, σ) be a bidirected graph and
v ∈ V (G) a vertex. Let furthermore

σ′(u, e) :=

⎧⎪⎨⎪⎩
σ(u, e), u ̸= v,

−, σ(u, e) = +, u = v, and
+, σ(u, e) = −, u = v.

We say that (G, σ′) is obtained from (G, σ) by switching at the vertex v.
Two bidirected graphs (G, σ) and (G, σ′) are said to be switching equivalent
if (G, σ′) can be obtained from (G, σ) by a sequence of switchings.

Definition 3.2.3 (Digraphic Bidirected Graph). A bidirected graph
(G, σ) is called a digraph if all of its edges are normal, it is called digraphic
if it is switching equivalent to a digraph.

The idea here is simply that one can obtain an actual digraph from any
bidirected graph (G, σ) by orienting each edge e = uv away from the half
edge (u, e) with positive sign and towards the half-edge (v, e) with negative
sign. Clearly the orientation from + to − is arbitrary and may also be
chosen to be exactly the other way around, but for sake of consistency
we fix the first of these two options. Indeed, in most places throughout
this thesis we drop the rather unwieldy notation of bidirected graphs and
use standard digraph notation instead whenever we are working with a
digraph.
Let G be a graph with a perfect matching M . A map ζ : V (G)→ {+,−}
is called an M -signing of G if for every edge uv ∈M we have ζ(u) ̸= ζ(v).
An M -singing is proper if it is a proper 2-colouring17 of G, i.e. if no two
adjacent vertices are assigned the same colour by ζ. Note that a graph G

has a proper M -signing if and only if it is bipartite.

17Here we interpret + and − as colours.
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Given a bipartite graph B with a perfect matching M , we denote by ζB
the M -singing obtained by letting ζB(u) := + if and only if u ∈ V1. Please
note that ζB is indeed independent of the choice of M .

Definition 3.2.4 (General Bidirection). Let G be a simple graph with
a perfect matching M , and let ζ be an M -signing of G. Consider the
bidirected graph D±(G,M, ζ) := (G′, σ) with

E(G′) := {{e, f} ∈

(︄
M

2

)︄
|there is g ∈ E(G) s.t. e ∩ g ̸= ∅ ̸= g ∩ f},

V (G′) := M,

E(G′) :=
{︁
(f, e) | f ∈M, e ∈ E(G′), and e ∩ f ̸= ∅

}︁
, and

σ(f, e) := ζ(v), where v is the endpoint e and f have in common,
the M-bidirection under ζ.

A normal edge
from u to v.

A normal edge
from v to u.

An introverted edge
between u and v.

An extroverted edge
between u and v.

u

v

u

v

u

v

u

v

Figure 3.12.: The four different types of edges in a bidirected graph.

For better readability let us introduce the following convention for edges
in figures: Each half edge will either be displayed solid, which means its
sign is +, or it will be dotted, indicating that its label is −. To make it
easier to distinguish the two half edges of an edge, we place a small gray
dot between them. See Figure 3.12 for a depiction of the different types
of edges.
This convention deviates a bit from the literature as usually a negatively
signed half edge is marked with an arrow head that points away from the
endpoint of the half edge, while a positively signed half edge is marked
by an arrow head that points towards its endpoint. An illustration of a
general M -birection can be found in Figure 3.13.
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Since most of the time we work on bipartite graphs, it is convenient to
have a short hand for the M -bidirection under ζB for any bipartite graph
B.

Figure 3.13.: Left: A graph G with a perfect matching M and an M -
signing ζ, where − is associated with the solid vertices, while
+ is the sign of the empty vertices. Right: The arising general
M -bidirection D±(G,M, ζ).

Definition 3.2.5 (M -Direction). Let B be a bipartite graph with a
perfect matching M . The M-direction of B is the digraph D(B,M) :=

D±(B,M, ζB).

In Figure 3.14 we give an example of the M -direction.
Observe that any two M -signings of a graph G can be translated into
one another by iteratively flipping the colourings of the two endpoints
of one edge of M at a time. This process can be seen to be equivalent
to switching signs at vertices of the M -bidirection of G. So even if there
are many different possible M -signings for a single perfect matching M

of a single graph G, all M -bidirections obtained from them are in fact
switching equivalent. Moreover, given any bidirected graph (G, σ), the
process can be reversed.

Definition 3.2.6 (Split). Let (G, σ) be a bidirected graph G. We define
S(G, σ) to be the graph G′ for which a perfect matching M and an
M -signing ζ exist such that D±(G

′,M, ζ) = (G, σ).
If D is a digraph, then S(D) is the bipartite graph B that has a perfect
matching M for which D(B,M) = D.

Consequently, every graph G with at least one perfect matching naturally
corresponds to a family of bidirected graphs (or digraphs in case G is
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bipartite). In what follows, we briefly explain some initial consequences
of this correspondence (mostly) for bipartite graphs which we build upon
in Part II. The general case of non-bipartite graphs and thus of general
bidirected graphs is much more complicated and only few successful
ventures into the topic have been made so far.

Figure 3.14.: Left: A bipartite graph B with a perfect matching M . Right:
The arising M -direction D(B,M).

Extendiblity, Strong Connectivity, and Directed Separations

To successfully operate on M -bidirections (G, σ) and the corresponding
graph H with the perfect matching M , we need to be able to translate
fundamental parts of the structure of H induced by M and the structure
of (G, σ) into one another. For an initial intuition, let us consider paths,
cycles, and subgraphs.
Subgraphs might be the easiest. Simply observe that for any (G′, σ),
where G′ ⊆ G, S(G′) must be an M -conformal subgraph of H.

Definition 3.2.7 (Directed Paths and Cycles). Let (G, σ) be a bidirected
graph. A path v1e1v2e2, . . . , eℓ−1vℓ is called directed if for all i ∈ [2, ℓ− 1]

we have σ(vi, ei−1) ̸= σ(vi, ei).
A cycle (v0, e0, v1, e1, . . . , eℓ−1, vℓ, eℓ, v0) is directed if every subpath of the
cycle is a directed path.

First of all, these definitions correspond to the definitions of directed paths
and cycles in digraphs since here we always enter a vertex via an incoming
edge, so via the sign +, and leave a vertex via an emanating edge, so
via the sign −. Second, if we interpret every vertex of the bidirected
graph (G, σ) as an edge of the perfect matching M , then this definition
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requires us to always traverse an edge of M before we are allowed to use
an edge that does not belong to M . From this observation, it follows that
every internally M -conformal path in a graph H with a perfect matching
M and some M -signing ζ naturally corresponds to a directed path in
D±(H,M, ζ) and vice versa. Similarly, one can observe that a cycle C in
D±(H,M, ζ) is directed if and only if S(C) is an M -conformal cycle in
H. For an example see Figure 3.15. The M -signing in the figure is not a
proper 2-colouring of the cycle, note that by swapping the colours of the
endpoints at two of the M -edges one can obtain such a proper 2-colouring
and thus transform the generalised M -direction into a digraph.

Figure 3.15.: Left: An M -conformal cycle C with an M -signing ζ, where
we associate with − the solid vertices, while + is the sign
of the empty vertices. Right: The general M -direction
D±(C,M, ζ).

The matter of connectivity on general bidirected graphs is a complicated
one. Indeed, there exist several papers (see for example [AFN96, Kit17])
that propose a definition of a generalisation of strong connectivity to the
setting of bidirected graphs. Because of this, from here on we will consider
only bipartite graphs, as for those some consensus exists.
Recall that a directed graph D is strongly connected if and only if any
pair of vertices is joined by a pair of directed paths, i.e. if every vertex v

can reach every vertex u via a directed path starting in v and ending in
u. Moreover, these paths exist inside strong components, and thus if we
fix any pair of vertices u and v and a pair P1, P2 of directed paths such
that P1 starts at u and ends in v while P2 starts at v and ends in u, one
can see that P1 and P2 correspond to a complementary pair of internally
M -conformal paths in S(D) where M is the perfect matching of B such
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that D(B,M) = D. Moreover, this complementary pair of paths meets
the requirements of our definition of matching connectivity. Indeed, a
classical result in structural matching theory links strong connectivity
in digraphs and extendibility in bipartite graphs with perfect matchings.
The following statement is folklore (a proof can be found in [ZL10], but
the result was already known by [RST99]).

Theorem 3.2.8. Let B be a bipartite graph with a perfect matching M

and k ∈ N be a positive integer. Then B is k-extendible if and only if
D(B,M) is strongly k-connected.

When examining the construction of D(B,M) more closely, one may also
note that the Dulmage-Mendelsohn ordering ≤2 actually corresponds to
the so called topological ordering of strong components of a digraph. Here
we write K1 ≤top K2 for strong components K1 and K2 of D(B,M) if
there is a directed path starting in K1 and ending in K2.

Definition 3.2.9 (Directed Separation). Let D be a digraph. A tuple
(X,Y ) is a directed separation of D if there is no directed path starting in
X \ Y , ending in X \ Y , and avoiding X ∩ Y while X ∪ Y = V (D). The
set X ∩ Y is called the separator of (X,Y ), and the number |X ∩ Y | is
called the order of the directed separation, it is denoted by ord(X,Y ).
A directed separation (X,Y ) is called trivial if X \ Y = ∅ or Y \X = ∅.
Two directed separations (A,B) and (C,D) are said to cross if the following
sets all are non-empty:

A ∩ C, B ∩D, (A ∩D) \ (B ∩ C), and (B ∩ C) \ (A ∩D).

If (A,B) and (C,D) do not cross, they are called laminar.

Definition 3.2.10 (The Split of a Directed Separation). Let B be a
bipartite graph with a perfect matching M , D := D(B,M), and (X,Y )

be a directed separation in D. We denote by S(X,Y ) the split of (X,Y ),
which is defined as the vertex set

S(X,Y ) := V (S(D[X \ Y ])) ∪ (V (S(D[X ∩ Y ])) ∩ V1).

Lemma 3.2.11 (X∗). Let B be a bipartite graph with a perfect matching
M , D := D(B,M), and (X,Y ) be a directed separation of order k ≥ 1 in D.
Then S(X,Y ) induces a proper k-tight cut in B and Maj(S(X,Y )) ⊆ V1.
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Proof. First, observe Maj(S(X,Y )) ⊆ V1. This follows immediately from
the fact that V (S(D[X \ Y ])) is balanced, and |X ∩ Y | = k ≥ 1. Next,
suppose there is an edge uv ∈ E(B) with u ∈ S(X,Y ) ∩ V2 and v ∈
S(X,Y ). Then u is not an endpoint of any edge corresponding to a vertex
in X ∩ Y and neither is v since v ∈ V1. Let eu, ev ∈ M such that ex
matches x ∈ {u, v}. Then (ev, eu) is a directed edge in D whose head lies
in X \ Y and whose tail belongs to Y \X, contradicting (X,Y ) to be a
directed separation. Hence by Lemma 3.1.58 S(X,Y ) induces a proper
k-tight cut.

The process of splitting a directed separation can also be reversed.

Definition 3.2.12 (The M -Direction of a k-Tight Cut). Let B be a
bipartite graph with a perfect matching M and X ⊆ V (G) induce a
proper k-tight cut such that Maj(X) ⊆ V1. We denote by D(X,M) the
tuple (Y1, Y2), where

Y1 := V (D(B[X ∪ V (M ∩ ∂B(X))],M))

Y2 := V (D(B[X ∪ V (M ∩ ∂B(X))],M)).

Lemma 3.2.13 (X∗). Let B be a bipartite graph with a perfect matching
M and X ⊆ V (G) induce a proper k-tight cut such that Maj(X) ⊆ V1.
Then D(X,M) = (Y1, Y2) is a directed separation of order k.

Proof. Since X and X partition the vertex set of B, any edge of M that
does not belong to ∂B(X) is either completely contained in X or its
complement. Therefore we get |Y1 ∩ Y2| = |∂B(X) ∩M | = k. So all that
remains is to show that (Y1, Y2) is indeed a directed separation. To this
end, suppose there is a directed edge (e1, e2) ∈ E(D) with e1 ∈ Y2 \ Y1

and e2 ∈ Y1 \ Y1. Then (e1, e2) corresponds to an edge uv in B with
u ∈ X ∩ V2 and v ∈ X ∩ V1. This, however, contradicts Lemma 3.1.58
since X induces a proper k-tight cut with Maj(X) ⊆ V1. Hence (Y1, Y2)

must be a directed separation of order k.

Matching Minors and Butterfly Minors

In the previous paragraph, we have seen that any proper k-tight cut in
a bipartite graph with a perfect matching M naturally corresponds to a
directed separation of order k in D(B,M) and vice versa. This implies in
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particular that B has a non-trivial tight cut if and only if D(B,M) has a
directed separation (X,Y ) of order 1 where X \ Y ̸= ∅, and Y \X ̸= ∅.
Having observed this, it seems straight forward to transport the idea of
tight cut contraction into the world of digraphs.

Definition 3.2.14 (Directed Tight Cut Contraction). Let D be a digraph,
and (X,Y ) be a non-trivial directed separation of order 1 in D. Let
{v} = X ∩ Y , we set

D/(X→vX) :=D −X + vX + {(y, vX) | (y, v) ∈ E(D) and y ∈ Y }
+ {(vX , y) | (x, y) ∈ E(D), x ∈ X, and y ∈ Y } , and

D/(Y →vY ) :=D − Y + vY + {(vY , x) | (v, x) ∈ E(D) and x ∈ X}
+ {(x, vY ) | (x, y) ∈ E(D), x ∈ X, and y ∈ Y } .

The two digraphs DX := D/(X→vX) and DY := D/(Y →vY ) are called
the (X,Y )-contractions of D.

Let B be a bipartite graph with a perfect matching M and X ⊆ V (B) be
a set that induces a non-trivial tight cut in B. Let BX := B/(X→ vX)

and BX := B/(X→vX) be the two tight cut contractions obtained from
∂B(X). Notice that D(BX ,M |BX ) and D(BX ,M |B

X
) are isomorphic

to the two D(X,M)-contractions of D(B,M). Moreover, the reverse is
also true, so the splits of the two (X,Y )-contractions of some digraph D,
where (X,Y ) is a non-trivial directed separation of order 1, are isomorphic
to the two tight cut contractions obtained from S(X,Y ) in S(D). Also
notice that, by Theorem 3.2.8, if D is strongly connected, then its (X,Y )-
contractions are strongly connected as well. At last, two tight cuts ∂B(Z1),
∂B(Z2) are laminar if and only if D(Z1,M) and D(Z2,M) are laminar.
This allows us to transport the whole concept of tight cut decompositions
to the world of digraphs.

Definition 3.2.15 (Directed Tight Cut Decomposition). Let D be a
strongly connected digraph. We iteratively construct a tree T as follows.
First let T consist of only one vertex, say t0 and let us associate D0 = D

with t0. Then select a non-trivial directed separation (X,Y ) of order
1 in D and let DX , DY be its two (X,Y )-contractions. We introduce
t1,1 and t1,2 together with the edges t0t1,i, i ∈ [1, 2] to our tree T and
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associate18 with each of the two (X,Y )-contractions exactly one of the
two new vertices.
Suppose now that we have constructed a binary tree T with root t0 such
that each pair of successors of an inner vertex t of T are associated with
the two S-contractions obtained from the digraph associated with t by
using a single non-trivial directed separation S of order 1. If there exists a
leaf ℓ whose associated matching covered graph still has a non-trivial tight
cut, we construct the two S-contractions from it, add two new successors
to ℓ, and associate each of the two newly obtained S-contractions with
exactly one of the two new successors of ℓ.
At some point, this procedure stops and we obtain a tree T as above such
that each leaf of T is associated with a strongly connected digraph without
any non-trivial directed separations of order 1. Let D be the family of all
digraphs associated with the leaves of T . Here we explicitly allow for D
to be a multiset. Then D is a directed tight cut decomposition of D. We
call the tree T a tight cut decomposition tree of D. Moreover, there is a
family T of pairwise laminar non-trivial directed separations of order 1 of
D such that each member of T can be associated with an inner vertex of
T .

Let D1 and D2 be two multisets of digraphs. We say that D1 and D2

are isomorphic if there exists a bijection f : D1 → D2 such that for all
D ∈ D1, D and f(D) are isomorphic.
The following theorem follows immediately from Theorem 3.1.61 by ap-
plying the observations above.

Theorem 3.2.16 (X∗). Let D be a strongly connected digraph. Then
any two directed tight cut decompositions of D are isomorphic.

This means that any strongly connected digraph D can be decomposed
into a unique list of strongly 2-connected19 digraphs and, possibly, some
copies of

↔
K2, called the dibraces of D. A natural question to ask is whether

a directed analogue of the Brace Generation Theorem exists. Indeed, in
[McC01] McCuaig claims to have found this analogue, but the manuscript
mentioned there has not been published or made available anywhere since.

18Formally this is a bijection between the vertices of T and a family of digraphs.
19Since braces are 2-extendible.
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What is known about this connection of digraphs and bipartite match-
ing covered graphs is that the notion of butterfly minors in digraphs is
compatible with bipartite matching minors.

Lemma 3.2.17 ([McC00]). Let B and H be bipartite matching covered
graphs. Then H is a matching minor of G if and only if there exist perfect
matchings M ∈M(G) and M ′ ∈M(H) such that D(H,M ′) is a butterfly
minor of D(G,M).

From this, one can immediately derive directed analogues of Lemma 3.1.97
and Corollary 3.1.98.

Corollary 3.2.18. Let D be a strongly connected digraph, (X,Y ) be
non-trivial directed separation of order 1, and D′ := D/(X→ v). Then
D′ is a butterfly minor of D.

Corollary 3.2.19. Let D be a strongly connected digraph. Then every
dibrace of D is a butterfly minor of D.

So in some sense, butterfly minors in digraphs and matching minors in
bipartite graphs with perfect matchings can be seen as the same thing.
There appears, however, to be a major difference between the concepts.
The butterfly minor relation, although it is a quasi-order of the class of all
digraphs, is not a well-quasi order [Liu20]. Even when restricted to only
strongly connected digraphs, or even strongly 2-connected digraphs, there
exist infinite anti-chains, see Figure 3.17 for an example. For matching
minors on bipartite matching covered graphs however, no such antichain is
known. Moreover, there exist results (see Section 3.3 for more information)
which are able to characterise non-trivial classes of bipartite matching
covered graphs by excluding a finite number of graphs as matching minors.
The major difference between matching minors and butterfly minors is
that butterfly minors can be modelled more precisely as M -minors. Note
that a digraph D is a butterfly minor of D(B,M) if and only if S(D) is
an M -minor of B. Hence when working with the butterfly-minor relation,
the perfect matching is fixed and one is only allowed to take M -conformal
subgraphs. For matching minors on the other hand, the existence of
a perfect matching is enough. Indeed, there is an interesting result by
McCuaig regarding this phenomenon.
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Lemma 3.2.20 ([McC04]). Let B be a bipartite graph with a perfect
matching M and K3,3 as a matching minor. Then B contains an odd
möbius ladder, not necessarily of order 1, as an M -minor.

Lemma 3.2.20 is best possible. The existence of a K3,3-matching minor
does not guarantee that K3,3 is an M -minor of B for every M ∈M(B). In
the original version of Lemma 3.2.20, McCuaig even formulated a possible
reason for this. He proved that the bisubdivisions of the rungs, i.e. the
edges of M4k+2 that do not belong to the Hamilton cycle used in its
construction, are M -conformal paths in the M -conformal bisubdivision he
finds. Let D and J be two digraphs. If J is not a butterfly minor of D,
but S(J) is a matching minor of S(D), does D still contain some butterfly
minor that witnesses this fact? Or in other words: How can we generalise
Lemma 3.2.20 to arbitrary bipartite and matching covered graphs? The
digraph J is a proper butterfly minor of the digraph D if J is a butterfly
minor of D and J ̸∼= D. We say that D is J-minimal if S(D) contains
S(J) as a matching minor, but for every proper butterfly minor D′ of D,
S(D′) is S(J)-free.

Definition 3.2.21 (Canonical Anti-Chain). Let D be a digraph. The
family

A(D) :=
{︁
D′ | D′ is a D-minimal digraph

}︁
is called the canonical anti-chain based on D.

Lemma 3.2.22 (X∗). Let D be a digraph. Then A(D) is an anti-chain
for the butterfly minor relation.

Proof. Suppose A(D) is not an anti-chain for the butterfly minor relation.
Then there must exist D1 and D2 in A(D) such that D1 is a butterfly
minor of D2. Indeed, D1 must be a proper butterfly minor of D2, as
otherwise the two digraphs would be isomorphic. Since by definition
S(D1) contains S(D) as a matching minor, D2 cannot be D-minimal,
which contradicts D2 ∈ A(D). Hence A(D) must be an anti-chain for the
butterfly minor relation.

Whether A(D) is finite or not appears to be unclear. There exist examples
for which it is finite, the Heawood-digraph F7 in Figure 3.16 for example.
For other digraphs, like

↔
C3 on the other hand, A(

↔
C3) is infinite, see

Figure 3.17 for an illustration.
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Figure 3.16.: The digraph F7.

Definition 3.2.23 (Matching Equivalent). Two digraphs D1 and D2 are
said to be matching equivalent if S(D1) and S(D2) are isomorphic.
Given a digraph D, we denote by M(D) the family of all digraphs that
are matching equivalent to D.

Lemma 3.2.24 (X∗). Let D be a digraph. Then M(D) ⊆ A(D).

Proof. First note that there cannot be a pair of distinct digraphs D1, D2 ∈
M(D) such that D1 is a proper butterfly minor of D2. If this were the
case, then S(D1) would be a proper matching minor of S(D2), but by
definition S(D1) and S(D2) must be isomorphic. Hence M(D) forms an
anti-chain for the butterfly minor relation. Moreover, any proper butterfly
minor D′ of some digraph in M(D) must satisfy that S(D′) is S(D)-free
and thus the claim follows.

At last let us prove that excluding S(D) as a matching minor is the same
as excluding every digraph in A(D) as a butterfly minor.

. . .

Figure 3.17.: The anti-chain A(
↔
C3).
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Lemma 3.2.25 (X∗). Let H and D be digraphs. Then D contains
a butterfly minor from A(H) if and only if S(D) contains S(H) as a
matching minor.

Proof. Suppose D contains a butterfly minor from A(H), say J , Then
by Lemma 3.2.17 S(D) must contain S(J) as a matching minor, and by
definition of A(H), S(J) must contain S(H) as a matching minor. For
the reverse, assume S(D) contains S(H) as a matching minor. Then
let J be an H-minimal butterfly minor of D. Clearly, J must exist and
J ∈ A(H).

3.3. Pólya’s Permanent Problem and Pfaffian Graphs

Counting the number of perfect matchings in a graph is known to be
#P-complete20, as it is polynomial time equivalent to computing the
permanent of a square matrix [Val79]. This holds true even in the case
of bipartite graphs. Pólya [Pól13] asked whether, given a square matrix
A, it is possible to change the signs of some entries of A to obtain a new
matrix B such that the determinant of B equals the permanent of A. The
question, what properties the matrix A should have such that Pólya’s
approach can be used became known as Pólya’s Permanent Problem and
was later shown to have many different, but equivalent, formulations.
We are particularly interested in three of these formulations. For an
overview on even more equivalent formulations and proofs of all of these
equivalences consult the outstanding work by McCuaig [McC04] or the
survey by Thomas [Tho06].

Definition 3.3.1 (Pfaffian Orientation). Let G be a graph. A digraph
→
G

is called an orientation of G if the underlying undirected multigraph of
→
G

is simple and isomorphic to G.

An orientation
→
G is Pfaffian if G has at least one perfect matching, and

every conformal cycle C of G has an odd number of directed edges in
→
G

going in one direction around C and an odd number of directed edges
going in the other direction. We say that the cycle C is oddly oriented.

20A complexity class containing the counting problems associated with decision
problems in NP.
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A graph that has a Pfaffian orientation is called Pfaffian. See Figure 3.18
for an illustration of a Pfaffian orientation.

Figure 3.18.: A Pfaffian orientation of the cube.

A nice property of Pfaffian orientations is that is suffices to fix a single
perfect matching M and only consider the M -conformal cycles to ensure
some orientation

→
G is indeed Pfaffian.

Theorem 3.3.2 ([LP09]). Let G be graph with a perfect matching M .

Then an orientation
→
G of G is Pfaffian if and only if every M -conformal

cycle in G is oddly oriented.

Definition 3.3.3 (Non-Even Weighting of a Digraph). Let D be a digraph.
A weighting w : E(D)→ F2 is called non-even if for every directed cycle
C in D we have ∑︂

e∈E(C)

w(e) ≡ 1 (mod2).

A digraph is said to be non-even if it has a non-even weighting.

The property of being non-even was first discussed in a slightly different
manner. Instead of asking for such a weighting, one could ask: Does a
given digraph D have the property that any possible subdivision of D

contains a directed cycle of even length? Digraphs with this property were
called even, and one can check that a digraph is not even (or non-even) if
and only if it has a non-even weighting. The last important contribution is
the theorem of Little [Lit75], which characterises bipartite Pfaffian graphs
by excluding the single graph K3,3 as a matching minor. Please note that
Pólya’s Permanent Problem is indeed equivalent to recognising any of the
graph classes below.

125



Chapter 3. An Introduction to Matching Theory

Theorem 3.3.4 ([Lit75, ST87, McC04]). Let B be a bipartite graph with
a perfect matching M . The following statements are equivalent.

i) B is Pfaffian.
ii) B does not contain K3,3 as a matching minor.
iii) D(B,M) is non-even.
iv) D(B,M) does not contain an odd bicycle as a butterfly minor.

Here the relation between forbidding a single matching minor, namely K3,3

in the bipartite setting, and forbidding the infinite antichain A(D(K3,3,M))

in the directed setting comes up as one of the challenges for the proof of
Theorem 3.3.4. Since K3,3 is a brace, one can apply Lemma 3.1.99 and
obtain the following theorem in the bipartite case from the one above.
The general proof, however, is much more involved.

Theorem 3.3.5 ([VY89]). Let G be a matching covered graph, X ⊆ V (G)

be a set that induces a non-trivial tight cut, and G1, G2 be the two graphs
obtained by the tight cut contractions of X and X in G respectively. Then
G is Pfaffian if and only if G1 and G2 are Pfaffian.

For the case of bipartite graphs this means one may reduce the problem
of describing general bipartite Pfaffian graphs to finding a good character-
isation for Pfaffian braces. The term ‘good’ plays an important role here.
With ‘good’, we mean a characterisation that also provides an algorithm
which can recognise a Pfaffian brace in polynomial time. Sadly, none of
the characterisations from Theorem 3.3.4 yields such an algorithm, at least
not immediately. Eventually, the discovery of a concept akin to clique
sums but more suited for the context of graphs with perfect matchings
brought with it the first polynomial time algorithm to actually solve the
Pfaffian recognition problem for braces.

Definition 3.3.6 (4-Cycle Sum and Trisum). For every i ∈ {1, 2, 3} let
Gi be a bipartite graph with a perfect matching and Ci be a conformal
cycle of length four in Gi. A 4-cycle-sum of G1 and G2 at C1 and C2

is a graph G′ obtained by identifying C1 and C2 into the cycle C′ and
possibly forgetting some of its edges.
If a bipartite graph G′′ is a 4-cycle-sum of G′ and some bipartite and
matching covered graph G3 at C′ and C3, then G′′ is called a trisum of
G1, G2 and G3.
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The significance of the trisum-operation is that, besides one small excep-
tion, it provides a way to combine braces into larger braces.
Let T10 be the 4-cycle-sum of three K3,3 at a 4-cycle C such that no edge
of C is in E(T10).

Lemma 3.3.7 ([McC04]). Let k ≥ 3, and let B,B1, . . . , Bk be bipartite
graphs such that B is not isomorphic to T10. Suppose B is a 4-cycle-sum
of B1, . . . , Bn at the 4-cycle C, then G is a brace if and only if B1, . . . , Bn

are braces.

The Heawood graph is the bipartite graph associated with the incidence
matrix of the Fano plane, see Figure 3.19 for an illustration. Including
one exception in form of the Heawood graph, the structure theorem for
Pfaffian braces bears a striking resemblance to Wagner’s characterisation
of K5 minor free graphs [Wag37].

Figure 3.19.: The Heawood graph H14.

Theorem 3.3.8 ([McC04, RST99]). A brace is Pfaffian if and only if it
either is isomorphic to the Heawood graph or it can be obtained from
planar braces by repeated application of the trisum operation.

As an immediate corollary, one obtains the following bound on the number
of edges in a Pfaffian brace.

Corollary 3.3.9 ([Tho06]). If B is a Pfaffian brace, then |E(B)| ≤
2|V (B)| − 4.

Corollary 3.3.10 ([McC04, RST99]). There exists an algorithm that
decides, given a brace B as input, whether B is Pfaffian in time O(|V (B)|3).
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Non-Bipartite Pfaffian Graphs and Non-Even Bidirected Graphs

With Theorem 3.3.8 the Pfaffian recognition problem was solved for the
case of bipartite graphs and thus a solution to Pólya’s Permanent Problem
has been found. However, this does not conclude the story. Pfaffian
orientations are defined for all graphs with perfect matchings, not just for
bipartite ones, and even on non-bipartite graphs a Pfaffian orientation
may be used to compute the number of perfect matchings [Tho06].
In general the property of being Pfaffian seems at least somewhat connected
to planarity, as the following classic result by Kasteleyn illustrates.

Theorem 3.3.11 ([Kas67]). Every planar graph with a perfect matching
is Pfaffian.

Beyond this, some characterisations exist, but only for restricted classes
of non-bipartite graphs (see for example [FL01, DCLM12]). This work
is mainly focused on bipartite graphs and the interaction of graphs with
perfect matchings and bidirected graphs and thus we do not go into too
much detail here. Instead, we propose a possible generalisation of the
notion of non-even to the more general setting of bidirected graphs.

Definition 3.3.12 (Consistent Weighting). Let (G, σ) be a bidirected
graph. A weighting w : E(G)→ [0, 1] of the half-edges of (G, σ) is called
consistent if for every edge e = uv ∈ E(G), we have w(u, e) = w(v, e) if e
is a normal edge, and w(u, e) ̸= w(v, e) if e is introverted or extroverted.

Definition 3.3.13 (Non-Even Bidirected Graph). A bidirected graph
(G, σ) is called even if, for every consistent weighting w of the half-edges of
(G, σ), there exists a directed cycle C = (v0, e0, v1, e1, . . . , eℓ−1, vℓ, eℓ, v0)

in (G, σ) such that
ℓ∑︂

i=0

w(vi, ei) ≡ 0 (mod2).

Equivalently, a bidirected graph (G, σ) is non-even if there exists a consis-
tent weighting w of the half-edges of (G, σ) such that for every directed
cycle C = (v0, e0, v1, e1, . . . , eℓ−1, vℓ, eℓ, v0) in (G, σ) we have

ℓ∑︂
i=0

w(vi, ei) ≡ 1 (mod2).

Such a weighting w is called non-even.
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It should be noted that the parity of
∑︁ℓ

i=0 w(vi, ei) is indepen-
dent of the choice of traversal around the directed cycle C =

(v0, e0, v1, e1, . . . , eℓ−1, vℓ, eℓ, v0), and therefore, the above is a valid defi-
nition. From now on, we will call w2(C) :=

∑︁ℓ
i=0 w(vi, ei) mod 2 ∈ [0, 1]

the parity-weight of the directed cycle C.

Lemma 3.3.14 (F∗). Let (G, σ) be a bidirected graph with a con-
sistent weighting w of its half-edges. For any directed cycle C =

(v0, e0, v1, e1, . . . , eℓ−1, vℓ, eℓ, v0) we have
ℓ∑︂

i=0

w(vi, ei) ≡
ℓ∑︂

i=0

w(vi, ei mod (ℓ+1))(mod2).

Proof. Let I1 ⊆ [0, ℓ] be the indices of the normal edges ei ∈
E(C) and let I2 := [0, ℓ] \ I1. Clearly, we have

∑︁
i∈I1

w(vi, ei) =∑︁
i∈I1

w(vi, ei mod (ℓ+1)), due to the consistency of w. Therefore it remains
to be shown that

∑︁
i∈I2

w(vi, ei) ≡
∑︁

i∈I2
w(vi, ei mod (ℓ+1))(mod2). We

observe that in C, due to it being directed, the number of half-edges with
the sign + must equal the number of half-edges with the sign −. This leads
us to the conclusion that there exists a bijection between the extroverted
edges ei, with i ∈ I2, such that σ(vi, ei) = α and the introverted edges ej ,
with j ∈ I2 and i ̸= j, such that σ(vi, ei) = −α. Therefore |I2| is even. The
consistency of w thus lets us conclude that

∑︁
i∈I2

w(vi, ei) ≡ 1(mod2) if
and only if

∑︁
i∈I2

w(vi, ei mod (ℓ+1)) ≡ 1(mod2).

Theorem 3.3.15 (F∗). Let H be a graph with a perfect matching M

and an M -signing ζ and let (G, σ) := D±(H,M, ζ) be its M -bidirection.
Then H is Pfaffian if and only if (G, σ) is non-even.

Proof. By Theorem 3.3.2, it suffices to show equivalence of the following
two statements:
(A) There is an orientation

→
H of H such that every M -conformal cycle

in H is oddly oriented.
(B) There is a non-even weighting w of the half-edges of (G, σ).

Let us assume (A) holds and suppose we are given an orientation
→
H of

G such that every alternating cycle is oddly oriented. Since reorienting
all edges incident to one vertex in an orientation of H maintains the
property that every M -conformal cycle is oddly oriented, we may assume
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without loss of generality that for every matching edge v1v2 ∈ M , we
have (v1, v2) ∈ E(

→
H) if and only if ζ(v1) = + and ζ(v2) = −. We now

define a weighting w of E(G) as follows: Given an edge e ∈ E(G) incident

to a vertex v ∈ V (G), let e⃗ ∈ E(
→
H) be the corresponding oriented edge

in
→
H and m ∈ M the matching-edge corresponding to v. We now set

w(v, e) := 1 if and only if either e⃗ has its tail on the +-vertex of m or
its head on the −-vertex of m. In every other case we set w(v, e) := 0.
From the relation of ζ and σ it directly follows that w is a consistent
weighting of E(G). Now let C = (v0, e0, v1, e1, . . . , eℓ−1, vℓ, eℓ, v0) be a
directed cycle in (G, σ). Then by assumption, the M -conformal cycle in
→
H corresponding to C is oddly oriented. For each i ∈ [0, ℓ] let mi = aibi
be the matching-edge in M corresponding to vi such that ζ(ai) = +, and
ζ(bi) = −. For every edge ei = vivi+1 mod (ℓ+1) with i ∈ [0, ℓ] on C let

e⃗i ∈ E(
→
H) be the corresponding non-matching edge in

→
H. Let us now

count the contribution of the subpath miai+1 of the M -conformal cycle in
H to the number of forward-edges in the orientation

→
H when traversing

the matching cycle in the cyclical order such that we first visit m0, m1, . . .,
mℓ, m0. A case distinction shows that this contribution is 1 if w(vi, ei) = 1

and 0 or 2 otherwise. This shows that the parity of
∑︁ℓ

i=0 w(vi, ei) equals
the parity of the number of forward-edges on the M -conformal matching
cycle corresponding to C in

→
H. Hence this number has to be odd, and

therefore w is an odd weighting of the half-edges of (G, σ) certifying that
(G, σ) is non-even, and so (B) has been proven.
For the reverse direction, let us assume we are given an odd weighting
w of the half-edges of (G, σ). We then define an orientation

→
H of H as

follows: If m = ab ∈ M such that ζ(a) = + and ζ(b) = −, then we

let (a, b) ∈ E(
→
H). For every non-matching edge xy ∈ E(H) \M with

endpoints in the matching-edges m1 = a1b1 and m2 = a2b2 such that
ζ(a1) = ζ(a2) = +, ζ(b1) = ζ(b2) = −, we orient xy from x to y if and
only if either w(u, uv) = 1 and x = a1, or w(u, uv) = 0 and x = a2. Here,
u and v denote the vertices in G obtained by contracting m1 and m2.
For every M -conformal cycle in H using matching-edges m0,m1, . . . ,mℓ,
if (v0, e0, v1, e1, v2, . . . , eℓ−1, vℓ, eℓ, v0) is the corresponding directed cycle
in (G, σ) such that vi is the obtained from the contraction of mi, the
number of forward-edges on this M -conformal cycle when traversing the
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matching-edges in circular order m0,m1,m2, . . . ,mℓ,m0 is congruent to
the value of

∑︁ℓ
i=0 w(vi, ei) modulo 2, and this has to be odd since w is

non-even. Hence every M -conformal cycle in H has an odd number of
forward- and backward edges according to the orientation

→
H, and (B) is

satisfied.

Hence a valid strategy to solve the problem of recognising Pfaffian graphs
in polynomial time, if this is possible, could be to focus on the slightly less
complex bidirected graphs. Note that bidirected graphs are a common
generalisation of both directed graphs and so called signed graphs, which
are undirected graphs with a signing of their edges. With bidirected graphs
being such a general concept, they are by no means easy to understand.
The advantage, at least in some points, over general graphs with perfect
matchings, is that we focus on a single perfect matching instead of possibly
all of them.

3.4. Differences between Bipartite and Non-Bipartite
Graphs

There seems to exist a fundamental difference between bipartite graphs
with perfect matchings and non-bipartite graphs with perfect matchings.
This difference has become apparent throughout the previous sections and
usually manifests in the fact that one needs much more notation and more
delicate definitions to describe properties of matchings in non-bipartite
graphs. But how can we quantify these differences and is there a reason
why proving anything for the non-bipartite case appears to be much more
difficult?

i) The existence of a perfect matching in a bipartite graph can be
characterised by Hall’s Theorem, while general graphs need the more
complicated Theorem 3.1.6 by Tutte.

ii) Inspecting Tutte’s Theorem closely, one realises that the concept of
(maximal) barriers can, in some sense, be seen as a generalisation of
the two colour classes in bipartite graphs. While maximal barriers
still partition the graph as seen in Theorem 3.1.13, there is no longer
a bound on their total number and their interaction can be much
more complicated.
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iii) The increased complexity of the interaction between maximal barri-
ers can be seen in the difference between the Dulmage-Mendelsohn
decomposition, which induces a partial order on the elementary
components of a bipartite graph with a perfect matching, and the
generalised Dulmage-Mendelsohn decomposition, which makes it
much harder to obtain a relation between elementary components
themselves.

iv) Being matching covered can be related to the concept of matching
connectivity. This connectivity parameter, however, has an almost
unnatural (or at least very technical) part in its definition, which
is completely unnecessary for bipartite graphs as one can see in
Theorem 3.2.8 and the definition of strong connectivity.

v) The problem of matching connectivity from above ties into the
hurdles of ear-decompositions. Here there is a strict line that has
to be crossed to go from bipartite to non-bipartite, and once it is
crossed it cannot be reversed.

vi) For bipartite graphs, especially braces, there exist many equivalent
concepts as seen in Theorem 3.1.69 which all boil down to the idea
of k-extendibility. Indeed, 2-extendibility is exactly the same as
the absence of non-trivial tight cuts, and this concept can even be
generalised, ultimately giving rise to a matching version of Menger’s
Theorem. In non-bipartite graphs however, one needs bicriticality
and connectivity to get rid of non-trivial tight cuts, k-extendibility
and higher order bicriticality do not interact tightly, and it is not
clear at all whether there exists a good generalisation of tight cuts.

Overall, best exemplified by ear-decompositions and the difference between
braces and bricks, there appears to be a strict dichotomy between the
nicely behaved bipartite graphs and the much more complicated non-
bipartite graphs. Another good example of this dichotomy is the case of
Pfaffian graphs. The problem of recognising a bipartite Pfaffian graph is
equivalent to many different problems, even reaching into linear algebra
[McC04], while for the general problem not many equivalent versions are
known.
Indeed, there is some evidence that even matching minors, which are one
of the most powerful concepts available for matching theory so far, might
not yield a good way to deal with general Pfaffian graphs. Furthermore,
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there even exists an infinite anti-chain for the matching minor relation
which consists entirely of non-bipartite non-Pfaffian graphs [NT08]. For
bipartite graphs it is not known whether there exists any anti-chain of
matching covered graphs for the matching minor relation at all.
Especially the problem of infinite matching minor anti-chains might be
explainable by looking at the different behaviour of internally M -conformal
paths in non-bipartite graphs. There exist two useful tools regarding these
paths in the bipartite setting, namely Lemma 3.1.42, and Corollary 3.1.98.
While for the first, a generalisation to non-bipartite graphs is known, but
it is much more complicated and has several possible outcomes, the second
one does not have a non-bipartite counterpart at all.
From what we have seen in Section 3.2, many of the differences be-
tween bipartite and non-bipartite graphs carry over to differences between
digraphs and non-digraphic bidirected graphs. Using the setting of bidi-
rected graphs, we provide some intuition to why dealing with internally
M -conformal paths, and therefore dealing with matching minors, in non-
bipartite graphs might be so much more difficult. To do so, we transform
our bidirected graphs even further.

Definition 3.4.1 (2-Edge Coloured Graph). A tuple (G,χ) where G

is a graph and χ : E(G) → {+,−} is a function that assigns a colour21

to every edge of G, is called a 2-edge coloured graph. A path P in a
2-edge coloured graph (G,χ) is alternating if {e ∈ E(P ) | χ(e) = +} and
{e ∈ E(P ) | χ(e) = −} form two matchings of P .

Notice that for every introverted or extroverted edge in a bidirected graph
(G, σ), one can replace the signing of its two half edges by a single sign, or
colour, of the whole edge. If e ∈ E(G) is a normal edge however, one can
just subdivide it, replacing it with two new edges, where one represents
the +-half edge of e and the other one represents the −-half edge of e. By
doing so, all directed paths and cycles are preserved, but now we obtained
a bidirected graph without normal edges. Hence the above procedure can
be applied to all edges.

Definition 3.4.2. Let (G, σ) be a bidirected graph. We denote by
(GS , σS) the bidirected graph obtained from (G, σ) by replacing every
21Here we use signs, but this is only for our convenience, in general any two distin-

guishable objects work just fine.
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edge e = uv ∈ E(G) with σ(u, e) = +, σ(v, e) = − by a directed path
(u, ux, x, xv, v), where we set σS(u, u) := +, σS(x, ux) := +, σS(x, xv) :=

−, and σS(v, xv) := −, while setting σS(z, f) := σ(z, f) for all other
half-edges (z, f) of G.

By treating σS as a singing, or colouring, of the edges instead of the half
edges as described above, we obtain a 2-edge colour graph (GS , σS) for
every bidirected graph (G, σ) there is. Moreover, as discussed before, there
is a correspondence between the alternating paths and cycles of (GS , σS),
and the directed paths and cycles of (G, σ).

Definition 3.4.3 (Edge Coloured k-Disjoint Alternating s-t-Paths Prob-
lem). Let k ∈ N be some positive integer. The edge coloured k-disjoint
alternating paths problem is the decision problem, given a 2-edge coloured
graph (G,χ) and vertices s, t ∈ V (G), whether there exist k pairwise
internally disjoint alternating paths in (G,χ) with endpoints s and t.

Theorem 3.4.4 ([ADF+08]). The edge coloured 2-disjoint alternating
s-t-paths problem is NP-complete.

Using our construction from above, one can reach the following conclusion.

Definition 3.4.5 (Bidirected k-Disjoint s-t-Paths Problem). Let k ∈ N

be some positive integer. The bidirected k-disjoint s-t-paths problem is the
decision problem, given a bidirected graph (G, σ) and vertices s, t ∈ V (G),
whether there exist k pairwise internally disjoint directed paths in (G, σ)

with endpoints s and t.

Corollary 3.4.6 (F∗). The bidirected 2-disjoint s-t-paths problem is
NP-complete.

One can see Theorem 3.4.4 as the continuation of a trend. In undirected
graphs, finding the maximum number of pairwise internally disjoint paths
between two vertices is polynomial time solvable, a fact that follows
from Menger’s Theorem. Additionally, even deciding the k-disjoint paths
problem is solvable in polynomial time if k is fixed. On digraphs, Menger’s
Theorem does still hold, but the directed 2-disjoint paths problem is
already NP-complete as seen in Theorem 2.3.27. With Corollary 3.4.6 and
Theorem 2.3.27 it follows that both problems are NP-complete for general
bidirected graphs. So with the next step of generalisation from directed
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to bidirected graphs, one even loses Menger’s Theorem. Indeed, a tight
result like Menger’s Theorem seems to be unlikely for directed paths in
bidirected graphs. What still could exist is some kind of approximative
version of Menger’s Theorem, either in the form of Erdős-Pósa-type results,
still using disjoint paths but with a possibly worse function bounding the
size of a hitting set, or in form of a relaxed version of disjointness like a
bound on the number of paths any vertex is allowed to appear in.
The (possible) lack of a Menger-type theorem for bidirected graphs poses
a huge problem for extensions of digraph structure theory to bidirected
graphs, as especially the proof of the Directed Grid Theorem relies heavily
on Menger’s Theorem.

3.5. A List of Open Questions

We have touched upon many different aspects of structural matching
theory in the previous sections. The area is relatively new, and many
questions are still wide open. In this last section of the chapter, we collect
some of these open questions, for some of which this thesis makes an effort
towards a possible solution.
We start with possibly the biggest open question in matching theory:

Question 3.5.1 (The Pfaffian Recognition Problem). Is there a poly-
nomial time algorithm that decides for any given graph G whether it is
Pfaffian?

For bipartite graphs, the Pfaffian recognition problem is known to be in P,
and by Theorem 3.3.4 the problem of deciding whether a bipartite graph
with a perfect matching has K3,3 as a matching minor is therefore also in
P. This, however, is the only non-trivial22 graph for which the complexity
of the matching minor question is known.

Question 3.5.2 ((Bipartite) Matching Minor Recognition Problem). Let
H be a (bipartite) graph with a perfect matching. Is there a polynomial
time algorithm that decides, given a fixed (bipartite) graph G with a
perfect matching, whether G has H as a matching minor?

22Short cycles and paths can be detected easily.
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The reason why this question might make sense only in the setting of
bipartite graphs is Corollary 3.4.6. So one could conjecture that the
matching minor recognition problem for non-bipartite graphs is NP-hard.
In undirected graphs, testing for a (rooted) minor and solving the k-disjoint
paths problem go hand in hand, so it might make sense to consider a
matching version. Here we restrict our attention to the bipartite case, but
the general problem is also still wide open.

Definition 3.5.3 (The Bipartite k-Disjoint Alternating Paths Problem).
Let B be a bipartite graph with a perfect matching, k ∈ N a positive
integer, and s1, . . . , st ∈ V1, t1, . . . , tk ∈ V2. The question whether there
exists a perfect matching M of B and internally M -conformal paths
P1, . . . , Pk in B which are pairwise internally disjoint and for all i ∈ [1, k],
Pi has endpoints si and ti is called the bipartite k-disjoint alternating
paths problem (k-DAPP).

Question 3.5.4. Let k ∈ N be a positive integer. Is there a polynomial
time algorithm that solves k-DAPP on bipartite graphs?

Please note that in case we were to ask for a fixed perfect matching M of
B, whether there are internally M -conformal paths P1, . . . , Pk as required
in k-DAPP, the problem is equivalent to the directed k-disjoint paths
problem and therefore NP-complete by Theorem 2.3.27. By also being able
to change the perfect matching however, the complexity may be different.
Besides testing for a specific matching minor in a bipartite graph, one
could also ask for another generalisation of Theorem 3.3.4, namely the
structure of bipartite graphs that exclude Kt,t for any t as a matching
minor.

Question 3.5.5. What is the structure of bipartite matching covered
graphs that exclude Kt,t as a matching minor for some fixed t ∈ N?

. . .

Figure 3.20.: An infinite anti-chain for the matching minor relation of
bipartite graphs with prefect matchings.
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It is not hard to construct examples of infinite anti-chains of matching
minors in bipartite graphs. These anti-chains, however, also have the
property that every single member has a unique perfect matching as
illustrated in Figure 3.20.
Moreover, all known classes of bipartite graphs with perfect matchings
which can be characterised by forbidden matching minors can also be
characterised by a finite family of those. The forbidden matching minors
usually are braces and thus we reach our final open question.

Question 3.5.6 (Brace Anti-Chains). Is there an infinite anti-chain for
the matching minor relation consisting only of braces?
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Chapter 4.

The Two Paths Theorem

The Two Paths Theorem is an important corner stone of the Graph Minors
Project as it represents the link between topological graph theory and
the exclusion of a minor, and solving the disjoint paths problem. As a
first step to finding, at least partial, answers to the questions asked in
Section 3.5 it is therefore a good idea to ask for a matching theoretic
analogue of the Two Paths Theorem and whether such an analogue can be
used to obtain a polynomial time algorithm. For such a theorem, we first
need to decide whether we are interested in ’crosses’ over any cycle, of
whether conformal cycles suffice. There is a short argument for the later.

Lemma 4.0.1 ([McC04]). Let B be a bipartite and planar matching
covered graph, then every facial cycle of B is conformal.

If we are interested in a statement like the one of Theorem 2.2.6, then
we would expect the cycle which does not have a cross to bound a face
in some kind of reduction of the original graph. If this is the case, then
Lemma 4.0.1 implies that our cycle is conformal. Indeed, if our cycle
is conformal in the end, our reductions should not have changed this
and thus it should have been conformal even before applying any sort of
reduction. Hence it makes sense to only consider ‘crosses’ over conformal
cycles.
Next we need a notion of reduction that is appropriate for the setting of
bipartite graphs with perfect matchings. We have already seen the use
of the 4-cycle sum in the characterisation of bipartite Pfaffian graphs in
Theorem 3.3.4. This sum operation appears to replicate small order clique
sums as it preserves the existence of a matching minor which is a brace
without introducing new and more complicated ones. At least to a certain
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extend. In light of auxiliary results like Lemma 3.3.7 it also seems natural
to only consider ‘crosses’ over conformal cycles in braces.
The last piece we need is the definition of a ’cross’ itself.
Let B be a bipartite graph with a perfect matching M and let C be
a conformal cycle in B. Let P be an M -alternating path in B. If P

is internally M -conformal we say that P is of type 1, if M is a perfect
matching of P , we say P is of type 2, and otherwise exactly one of the
end-edges of P must belong to M , in this case P is of type 3.

Definition 4.0.2 (Matching Cross). Let B be a bipartite graph with a
perfect matching M and let C be a conformal cycle in B. The cycle C is
said to have a matching cross if there exists a perfect matching M and
vertices s1, s2, t1, t2, called the pegs of the cross, that appear on C in the
order listed such that there exist paths P1 and P2 satisfying the following
properties:

• for each i ∈ [1, 2], Pi has endpoints si and ti and is otherwise disjoint
from C,

• P1 and P2 are M -alternating, and
• P1 and P2 are vertex disjoint.

A matching cross over a conformal cycle C is said to be strong if it also
meets the following requirements:

• |V1 ∩ {s1, s2, t1, t2} | = |V2 ∩ {s1, s2, t1, t2} |, and
• P1 and P2 are of the same type

In case C has a matching cross with paths P1 and P2 such that C+P1+P2

is a conformal subgraph of B we say that C has a conformal cross.

Please note that any path of type 1 or 2 must be of odd length and every
path of type 3 is of even length. Hence the two paths of a conformal cross
are either both of type 1 or 2, or both of type 3. Moreover, if exactly
one of the two paths is of type 2, then this path together with one of the
two subpaths of C connecting its endpoints forms an alternating cycle.
By switching the perfect matching along this cycle we arrive at a perfect
matching for which both paths are of the same type. Therefore, if we are
faced with a conformal cross we may assume this cross to be strong.

Definition 4.0.3. Let B be a brace and C a conformal cycle in B. A
brace H is called a first order C-reduction of B, if there exist braces H,
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B1, B2, and a 4-cycle K such that B is a trisum of H, B1, and B2 at K,
there exists i ∈ [1, 2] such that V (C) ∩ V (K) ⊆ Vi, and C ⊆ H. A brace
Hℓ is called a C-reduction of B if there is a sequence of braces H1, . . . , Hℓ

such that B = H1 and Hi+1 is a first order C-reduction of Hi for all
i ∈ [1, ℓ− 1].

We can now state the main result of this chapter, a Two Paths Theorem
for braces.

Theorem 4.0.4 (E∗). Let B be a brace and C a conformal cycle in B,
then C has no matching cross in B if and only if B is Pfaffian and there
exists a planar C-reduction of B in which C bounds a face.

Some of the intermediate results that lead to Theorem 4.0.4 can be used
to solve a slightly altered version of 2-DAPP.

Definition 4.0.5 (The (Bipartite) k-Matching Linkage Problem). Let B

be a bipartite graph with a perfect matching, k ∈ N a positive integer, and
let s1, . . . , sk ∈ V1 as well as t1, . . . , tk ∈ V2 be 2k pairwise distinct vertices
in B. A matching linkage in B for the terminals s1, . . . , sk, t1, . . . , tk is
a perfect matching M and a collection P1, . . . , Pk of pairwise disjoint
and internally M -conformal paths such that Pi has endpoints si and
ti for each i ∈ [1, k]. The (bipartite) k-Matching Linkage Problem (k-
MLP) is the question whether, given tuples (s1, . . . , sk) and (t1, . . . , tk)

of vertices as above, there exists a matching linkage for the terminals
s1, . . . , sk, t1, . . . , tk in B.

Please note that one can always turn an instance of k-DAPP into poly-
nomially many instances of k-MLP by replacing vertices which appear
several times as a terminal with a selection of their distance-2-neighbours1.
Hence k-DAPP and k-MLP are polynomial time equivalent, the difference
is that k-MLP can be easier to work with since the possibility of several
terminals being the same vertex does not have to be taken into account.

Theorem 4.0.6 (E∗). Let B be a bipartite graph with a perfect matching,
and let s1, s2 ∈ V1 as well as t1, t2 ∈ V2 be four distinct vertices. There
exists an algorithm that decides 2-MLP for the terminals s1, s2, t1, t2 in
time O(|V (B)|5).
1If G is a graph and v ∈ V (G), then a distance 2-neighbour of v is a vertex from

NG(NG(v)) \ (NG(v) ∪ {v}).
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Chapter 4. The Two Paths Theorem

Recall that, in case we slightly alter the problem and instead ask for a
solution of the 2-MLP for a fixed perfect matching, we obtain a problem
equivalent to the directed 2-disjoint paths problem. This means that the
additional freedom of being able to choose our perfect matching instead to
being bound to a specific one makes the difference2 between containment
in P and being NP-hard.

Organisation of the Chapter and Proof of Theorem 4.0.4 Our proof of
Theorem 4.0.4 can be broken down into two essential pieces. The first is
Proposition 4.0.7 which characterises the existence of matching crosses
over conformal cycles in Pfaffian braces. Section 4.3 is dedicated to its
proof, but the planar case, which is handled in Section 4.1, plays a major
role.

Proposition 4.0.7 (E∗). Let B be a Pfaffian brace and C a conformal
cycle in B. Then there is no matching cross over C in B if and only if
there exists a planar C-reduction of B in which C bounds a face.

The second part is Proposition 4.0.8, which guarantees conformal crosses
over 4-cycles in non-Pfaffian braces, this proposition is proved in Sec-
tion 4.4.

Proposition 4.0.8 (E∗). Let B be a non-Pfaffian brace and C a 4-cycle
in B, then there exists a conformal bisubdivision of K3,3 with C as a
subgraph.

In Section 4.2, we establish some preliminary results which are needed for
both the Pfaffian and the non-Pfaffian case, especially regarding paths
and matching crosses over 4-cycles. An important role, in order to bridge
between the existence of matching crosses and Proposition 4.0.8 is held
by the following lemma.

Lemma 4.0.9 (E∗). Let B be a brace and C a 4-cycle in B, then there is
a conformal cross over C in B if and only if C is contained in a conformal
bisubdivision of K3,3.

As a last piece, we need to be able to make use of strong matching
crosses over certain conformal cycles to find (not necessarily strong)
2That is, under the assumption P ̸= NP.
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matching crosses more easily. This is especially useful when paired with
Proposition 4.0.8 but also finds applications in other places within this
chapter.

Lemma 4.0.10 (E∗). Let B be a brace and C a conformal cycle. If C′

is a conformal cycle such that there exists an edge e with both endpoints
on C with C′ ⊆ C + e, and there is a perfect matching M of B and
M -alternating paths L and R that form a matching cross over C′, then
there exists a matching cross over C in B that does not use e.

Proof. Since C′ ⊆ C + e, C′ − e forms a subpath of C, hence the order of
the endpoints of L and R on C is the same as the order of these vertices on
C′. So in case L and R are internally disjoint from C, they immediately
form a matching cross over C as well. Suppose exactly one of these paths,
say L, intersects C. Let vR and wR be the endpoints of R and v1, w1 be
the endpoints of L. Then let x1 be the last vertex of L on C we encounter
when traversing along L starting with v1 such that x1 is separated from
w1 on C by v2 and w2. Next let x2 be the first vertex of L that lies on
C we encounter after x1. Then x2 must belong to the same component
of C − v2 − w2 as w1 and thus x1 and x2 are separated on C by v2 and
w2. Since L and R are disjoint and M -alternating, so are x1Lx2 and R

and thus we have found a matching cross over C. So now assume that
also R intersects C. In this case, let y1 be the last vertex we encounter
when traversing along R starting in v2 such that y1 and w2 belong to
different components of C − x1 − x2. Then let y2 be the first vertex of C
we encounter on R after y1. By choice of y1, y1 and y2 must belong to
different components of C − x1 − x2 and y1Ry2 is internally disjoint from
C. Hence x1Lx2 and y1Ry2 form a matching cross over C. Moreover,
since e is not contained in either L or R, we have found a matching cross
over C which does not contain e.

The four results above combined yield a short proof of Theorem 4.0.4.

Proof of Theorem 4.0.4. Let B be a brace and C a conformal cycle in B.
Suppose B is Pfaffian, then Proposition 4.0.7 immediately yields both
directions of our claim. Hence we may assume B to be non-Pfaffian.
If C is a 4-cycle, then Proposition 4.0.8 guarantees the existence of a
conformal cross over C in B. So we may assume C to have length at least
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Chapter 4. The Two Paths Theorem

six. Let P be a subpath of C of length three, so P consists of exactly
four vertices, two of each colour class. Let a ∈ V1 and b ∈ V2 be the
endpoints of P . If the edge ab does not exist in B we introduce it, please
note that introducing an edge does not change the status of B being a
brace, nor can B + ab be Pfaffian if B is not. Hence C′ := P + ab is a
4-cycle in B + ab such that C′ ⊆ C + ab. By Proposition 4.0.8 there is a
conformal bisubdivision L of K3,3 in B+ab that has C′ as a subgraph. By
Lemma 4.0.9 there is a conformal cross over C′. Please note that, with L

being a bisubdivision of K3,3, we may choose a perfect matching M of B
such that L is M -conformal and ab /∈M . An application of Lemma 4.0.10
now yields a matching cross over C in B + ab that does not contain ab.
With ab /∈M this means that there is a matching cross over C in B.

With Theorem 4.0.4, we have a tool that can help us to obtain an algo-
rithmic solution of 2-MLP. In fact, it is Proposition 4.0.8, which provides
the important insight. Theorem 2.2.6 can be used to solve the 2-Linkage
Problem by introducing a small local construction. In Section 4.5, we
describe how a similar construction can be used for the 2-MLP.

4.1. Matching Crosses in Planar Braces

In this section we establish the base case of Theorem 4.0.4 in form of an
exact characterisation of the existence of matching crosses over conformal
cycles in planar braces.

Proposition 4.1.1 (E∗). Let B be a brace and C a conformal cycle in
B, then there exists a strong matching cross over C in B if and only if C
does not bound a face.

Since every matching cross over C in B also is an ordinary3 C-cross, the
existence of such a cross immediately certifies that it is impossible to draw
B such that C bounds a face. We call a cycle C in a planar graph B

separating if B cannot be drawn in a way such that C bounds a face. So
we only need to show the reverse direction.
Since every brace is 3-connected by Theorems 3.1.65 and 3.1.67, we can rely
on the uniqueness of plane embeddings for 3-connected graphs [Whi92].
3Ordinary here means a standard undirected cross in the sense of Theorem 2.2.6.
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4.1. Matching Crosses in Planar Braces

Let B be a brace and C a conformal and separating cycle in B. Then by
Whitney’s Theorem [Whi92] the interior and the exterior of C are the same
in every drawing of B (up to the choice of the outer face). In what follows,
we always assume B to come with a fixed drawing to avoid ambiguity. We
denote the subgraph of B induced by the interior of C together with C

itself by Bint
C and the subgraph of B induced by the exterior of C together

with C is denoted by Bout
C . In both graphs C bounds a face and, since C

is conformal, both graphs have a perfect matching.

Lemma 4.1.2 (E∗). Let B be a planar brace and C a conformal and
separating cycle in B, then Bint

C and Bout
C are matching covered.

Proof. It suffices to show the claim for one of the two graphs. Moreover, by
Theorem 3.1.69 it suffices to show for a single perfect matching M , that any
pair a ∈ V1, b ∈ V2 of vertices is linked by an internally M -conformal path.
So let us fix a perfect matching M for which C is M -conformal. Since B is
a brace, given a ∈ V1(B

int
C ) and b ∈ V2(B

int
C ), Theorem 3.1.69 guarantees

the existence of two internally disjoint and internally M -conformal paths
P1, P2 from a to b. If one of these paths is disjoint from C, there is
nothing to show. Hence we may assume that both meet C and, by a
similar argument, both of them need to contain an edge of Bout

C − E(C).
Let b1 be the first vertex of P1 on C when traversing P1 from a towards
b and let a1 be the last vertex of P1 on C. Then a1 and b1 separate
C into two paths, one of them being M -conformal, let P ′ be this path.
Moreover, P1b1 and a1P1 are internally M -conformal, and all three paths
are contained in Bint

C . Hence P1b1P
′a1P1 is an internally M -conformal

a-b-path in Bint
C , and we are done.

Lemma 4.1.3 (E∗). Let B be a planar brace, C be a conformal and
separating cycle in B such that B′ ∈

{︁
Bint

C , Bout
C

}︁
is not a brace, and

∂B′(X) be a non-trivial tight cut in B′. Then |X ∩ V (C)| ≥ 3 and
|X ∩ V (C)| ≥ 3.

Proof. Suppose |X ∩ V (C)| ≤ 1. By symmetry, it suffices to treat this
case. With Lemma 3.1.58 we know that the minority of X has no edge
to a vertex of X, without loss of generality let us assume the majority
of ∂B(X) to be in V1. If V (C) ∩X = ∅, then clearly ∂B(X) must be a
non-trivial tight cut in B, which is impossible. Hence there must exist a
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unique vertex a ∈ V (C) ∩X. Moreover, since this vertex has neighbours
in C which do not belong to X, a ∈ V1. But also in this case ∂B(X) is
non-trivially tight in B and the claim follows.

Corollary 4.1.4 (E∗). Let B be a planar brace, C a conformal and
separating 4-cycle in B, then Bint

C and Bout
C are braces.

Please note that lemmata 4.1.2 and 4.1.3 and Corollary 4.1.4 can be ex-
tended to non-planar braces as well. The general version of Corollary 4.1.4
is due to McCuaig.

Lemma 4.1.5 ([McC04]). Let B1 and B2 be bipartite graphs with a
common 4-cycle C and otherwise disjoint. If B1 +B2 is a brace, then so
are B1 and B2.

The next lemma is a slightly restated version of Lemma 46 from [McC04]
which can be derived with the methods presented there.

Lemma 4.1.6 ([McC04]). Let B be a planar brace, C a facial cycle of B,
M a perfect matching of B for which C is M -conformal, and a ∈ V1(C),
b ∈ V2(C) two vertices with ab /∈ E(C). Then there exists an internally
M -conformal a-b-path P in B which is internally disjoint from C.

As a special case, we first assume that we are interested in a (strong)
matching cross over some separating cycle C in a planar brace B where
both Bint

C and Bout
C are braces. We also need some deeper insight in how

conformal bisubdivisions of K3,3 and the cube can appear in braces with
respect to cycles of length four.

Lemma 4.1.7 ([McC04]). Let B be a brace and C a 4-cycle such that
B − V (C) is connected, let uv ∈ E(C) and x, y ∈ V (B) \ V (C) such that
ux, vy ∈ E(B). Then B contains a conformal bisubdivision of the cube
with C + ux+ vy as a subgraph, or B contains a conformal bisubdivision
of K3,3 with C as a subgraph.

The following is a slight weakening of the lemma above.

Corollary 4.1.8 ([McC04]). Let B be a brace and C a 4-cycle such that
B − V (C) is connected, then B contains a conformal bisubdivision of the
cube or K3,3 with C as a subgraph.
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4.1. Matching Crosses in Planar Braces

Please note that a version of Corollary 4.1.8 can be found in [RST99],
where the containment of a 4-cycle in a conformal bisubdivision of the
cube is referred to as being ’fat’ while being a subgraph of some conformal
bisubdivision of K3,3 is called having a ’C-cross’. Sadly these two are not
mutually exclusive as one can see in the example in Figure 4.1. However,
there is a deeper connection between the existence of matching crosses,
especially conformal ones, and the existence of conformal bisubdivisions
of K3,3 when it comes to 4-cycles. We revisit this topic in Section 4.2.

Figure 4.1.: From left to right: K3,3, the cube, and a brace with a 4-cycle
(the marked one) which is contained in both, a conformal
bisubdivision of K3,3 and a conformal bisubdivision of the
cube. Please note that one could get rid of the fact that
the marked cycle is separating by adding additional edges
between vertices from different colour classes.

Lemma 4.1.9 (E∗). Let B be a planar brace and C a conformal and
separating cycle in B such that Bint

C and Bout
C both are braces. Then

there exists a strong matching cross over C in B.

Proof. First, assume C to have at least length 6. In this case, we can
select a perfect matching M of B such that C is M -conformal, which in
turn implies that M contains perfect matchings Mint and Mout of Bint

C

and Bout
C respectively. Now select vertices s1, s2, t1, and t2 such that

they appear on C in the order listed where s1, s2 ∈ V1, and t1, t2 ∈ V2.
According to Lemma 4.1.6, we may choose an internally M -conformal
s1-t1-path P1 in Bint

C and an internally M -conformal s2-t2-path P2 in Bout
C

such that each of the Pi is internally disjoint from C. Then P1 and P2

form a C-cross in B, and we are done.
What remains is the case where C = (s1, t1, s2, t2) is a 4-cycle. By calling
upon Corollary 4.1.8 we can find a conformal bisubdivision of the cube
in each of the two braces such that each of these cubes contains C as a
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subgraph. Let H1 be a conformal bisubdivision of the cube in Bint
C and let

H2 be a conformal bisubdivision of the cube in Bout
C . One can easily see,

that H := H1 +H2 is a conformal subgraph of B. We can now use H to
find the required matching cross over C, as illustrated in Figure 4.2.

Figure 4.2.: The conformal subgraph H in the proof of Lemma 4.1.9
together with a strong matching cross over the separating
4-cycle C.

Lemma 4.1.10 (E∗). Let B be a bipartite matching covered graph, M
a perfect matching of B, e = ab ∈ M with a ∈ V1, b ∈ V2, X ⊆ V1 \ {a}
and Y ⊆ V2 \ {b} such that every internally M -conformal X-Y -path in B

contains e. Then there exists a tight cut ∂B(Z) in B with X ⊆ Z, Y ⊆ Z,
and e ∈ ∂B(Z).

Proof. By assumption, there is no internally M -conformal X-Y -path in
B − a− b and thus no vertex of X can share an elementary component
with a vertex of Y . Since, by definition, each elementary component
would be matching covered and thus, Theorem 3.1.69 would guarantee
the existence of such a path. Let Up(X) be the set of all vertices w of
B − a− b such that there exist elementary components KX and Kw with
KX ≤2 Kw where KX contains a vertex of X and w ∈ V (Kw). Then
Y ∩ Up(X) = ∅. Moreover, there is no V1(Up(X))-V2(Up(X))-path in
B−a− b at all. Hence in B Up(X)∪{b} is a set of odd cardinality, where
no vertex of V1 has a neighbour outside of it and the difference between the
number of V1-vertices and the number of V1-vertices is exactly one. So by
Lemma 3.1.58 ∂B(Up(X)∪ {b}) is a tight cut with Y ⊆ Up(X) ∪ {b}.
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Together with the upcoming lemma, Corollary 4.1.4 and Lemma 4.1.9
imply Proposition 4.1.1.

Lemma 4.1.11 (E∗). Let B be a planar brace, C a conformal and
separating cycle in B such that B′ ∈

{︁
Bint

C , Bout
C

}︁
is not a brace. Then

there exists a strong matching cross over C in B.

Proof. By Corollary 4.1.4 we may assume |V (C)| ≥ 6. Let ∂B′(X) be a
non-trivial tight cut in B′ maximising |X|. Without loss of generality
let us assume the majority of X to be in V1. With Lemma 4.1.3 and
the fact that for every selection of three distinct edges of C, at least two
of them belong to a common perfect matching, one can see that ∂B′(X)

separates C into two non-trivial paths Q1 and Q2 such that V (Q1) ⊆ X

and V (Q2) ⊆ X. Let a1, a2 ∈ X ∩ V1 be the endpoints of Q2 and let
b1, b2 ∈ X ∩ V2 be the endpoints of Q1 such that aibi ∈ E(C) for both
i ∈ [1, 2]. Next let M be a perfect matching such that C is M -conformal
and a2b2 ∈ M , moreover let a′

1b1, a1b
′
1 ∈ M . Since the majority of X

is in V1, there cannot exist an internally M -conformal path starting at
some vertex of V1 ∩ X and ending in a vertex of V2 ∩ X that avoids
a2b2. However, with B being a brace and Theorem 3.1.69 there must be
two internally disjoint and internally M -conformal a′

1-x-paths for every
x ∈ X ∩ V2 and one of them must avoid a2b2. Let us choose bX ∈ V2 ∩X

such that there exists an internally M -conformal path P from a′
1 to bX

with the following properties:
• aX is the last vertex of V (C) ∩X along P starting in a′

1, and
• V (P ) ∩ V (Q2) = {bX}.

Then aX ∈ V1 and P1 := aXP is an internally M -conformal path which is
internally disjoint from C. Moreover, V (P1) ∩ V (B′) = V (P1) ∩ V (C) =

{aX , bX}. Let Q3 be the component of Q1 − aX containing b1, let Y be
the component of C − aX − bX containing Q3 and at last let Y denote
the other component of C − aX − bX . Let e ∈ M be the edge covering
bX . What follows is a case distinction on the existence of some internally
M -conformal path from Y ∩ V1 to Y ∩ V2.
Case 1: There exists an internally M -conformal path P ′ from Y ∩ V1 to
Y ∩ V2 that avoids e.
If this is the case, let bY be the first vertex of Y encountered while
traversing along P ′ starting in Y ∩ V1. Then let aY be the last vertex of
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P ′ in Y ∩ V1 encountered before bY . Now P2 := aY P ′bY is an internally
M -conformal path with no inner vertex on C that is disjoint from P1.
Moreover, the vertices aY , aX , bY , and bX appear on C in the order listed
and thus P1 and P2 form a strong matching cross over C in B.
Case 2: All internally M -conformal (Y ∩ V1)-(Y ∩ V2)-paths contain e.
Then the deletion of both endpoints of e in B′ leaves at least two elementary
components, some containing vertices of Y ∩ V1 and some of the others
containing vertices of Y ∩V2 but never both. Thus, by Lemma 4.1.10, there
exists a tight cut ∂B′(Z) with Y ∩ V1 ⊆ Z, Y ∩ V2 ⊆ Z, and e ∈ ∂B(Z).
Indeed, the majority of Z must be in V2. Since X is odd, one of the two
sets X ∩ Z and X \ Z must be odd and therefore, by Lemma 3.1.55, one
of these sets defines a tight cut in B′. Clearly a2, bX ∈ X ∩ Z and thus
|X ∩ Z| > 1. Since ∂B(Z) cannot contain more than two edges of C and
by choice of ∂B(X) there cannot be a non-trivial tight cut ∂B(X

′) with
X ′ ⊂ X in B′, hence X \ Z = {a1} and a1bX ∈M .
With an argument similar to the one in Case 1 one can see that, in case
there exists an internally M -conformal (Y ∩ V1)-(Y ∩ V2)-path avoiding
the edge e′ ∈M covering aX , we are done again. So we may also assume
that e′ meets all internally M -conformal (Y ∩ V1)-(Y ∩ V2)-paths. Then,
with arguments as before, one derives the existence of a non-trivial tight
cut ∂B′(Z′) such that a1 ∈ Z′ and Y ∩ B ⊆ Z′. In the end we arrive at
the conclusion that X ∩ Z′ = {a2} and e′ ∈ ∂B′(Z′).
Moreover, this means that there is neither an internally M -conformal
(Y ∩ V1)-(Y ∩ V2)-path, nor an internally M -conformal (Y ∩ V1)-(Y ∩ V2)-
path in B′ after deleting the four vertices in S := e ∪ e′. Hence there
cannot be any Y -Y -path in B′ − S. This means there must be a face C′

of B′ containing both aX and bX that is distinct from C. Since B itself is
a brace, there must be an internally M -conformal path P ′

1 from Y ∩ V1 to
Y ∩V2 that avoids e′ and this path may be chosen to be internally disjoint
from B′. In particular, we may choose the endpoints of P ′

1 to be disjoint
from one of the two paths of C′, say R, connecting aX and bX . This is due
to the fact that every internal vertex of a path in C ∩C′ must be of degree
two in B′, B′ ̸= C, and aXbX /∈ E(C). Since B′ is matching covered by
Lemma 4.1.2, Lemma 4.0.1 guarantees the existence of a perfect matching
M ′ of B′ for which C′ is M ′-conformal. Let us choose M ′ such that R is
an internally M ′-conformal path and let P ′

2 be an internally M ′-conformal
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subpath of R with both endpoints on C and otherwise disjoint from C.
All of these choices are possible since aX and bX belong to different colour
classes of B′. At last let us set M ′′ := M ′ ∪ (M \ E(B′)). Since B′ is
an M -conformal subgraph of B, M ′′ is a perfect matching of B, and by
construction, both P ′

1 and P ′
2 are internally M ′′-conformal paths. Now

P ′
1 and P ′

2 form a strong matching cross over C in B.

Proof of Proposition 4.1.1. Let C be a conformal cycle in a planar brace.
If C does not bound a face, it is separating and thus lemmata 4.1.9
and 4.1.11 guarantee the existence of a strong matching cross over C in
B. For the reverse suppose there exists a strong matching cross over C

in B, then exactly one path of the cross must lie in the interior of C for
every plane embedding of B. Hence C does not bound a face in any plane
embedding of B.

4.2. Paths and Matching Crosses through 4-Cycle Sums

Cycles of length four play a key role in many aspects of bipartite matching
theory as we have seen in Theorem 3.3.8. In particular, the 4-cycle sum
operation and the fact, that no perfect matching M for which an M -
conformal matching cross over C4 exists can contain a perfect matching
of C4 itself are things to be considered. While tight cut contractions only
preserve special types of matching crosses4, at some point they are not
applicable any more to further decompose a given graph. In the spirit
of the Two Paths Theorem, we want to decompose our graph further
while maintaining a fixed subgraph, in most cases the conformal cycle for
which we seek a matching cross. This section, and the following one, exist
to describe exactly the interaction between conformal cycles, matching
crosses over these cycles, 4-cycle sums, and matching crosses over 4-cycles
in both Pfaffian braces which are non-planar and in non-Pfaffian braces.
A brace B is a maximal 4-cycle sum at the 4-cycle C of the braces
B1, . . . , Bℓ, ℓ ≥ 3, if there do not exist braces H1, . . . , Hn, n > ℓ such that
B is a 4-cycle sum of H1, . . . , Hm at C.

4It is possible to lose a matching cross if for example the tight cut separates the
endpoints of both paths of the cross, in both tight cut contractions, what remains
of the paths is now a set of two paths with a common endpoint.
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Lemma 4.2.1 (E∗). Let B be a Pfaffian brace, n ≥ 3, B1, . . . , Bℓ braces
such that B is a maximal 4-cycle sum of B1, . . . , Bℓ at the 4-cycle C =

(a1, b1, a2, b2) and let M be a perfect matching of B1. Then for every
choice of x ∈ {a1, a2} and y ∈ {b1, b2} there exists a perfect matching
M ′ of B such that M \ E(C) ⊆ M ′ and there are paths P1 and P2 in
B − V (B1 − V (C)) where

• P1 has endpoints x and y, while P2 connects {a1, a2} \ {x} to
{b1, b2} \ {y},

• P1 and P2 are disjoint, and
• P1 + P2 + {e ∈M ′ | e ∩ V (C) ̸= ∅} is an M ′-conformal subgraph of
B.

Proof. By Corollary 4.1.8 for every i ∈ [2, ℓ] C is contained in a conformal
bisubdivision of the cube, or of K3,3. Since B is Pfaffian, Theorem 3.3.4
implies that the later can never be true and thus for every j ∈ [2, ℓ], C
is contained in a conformal bisubdivision H of the cube in Bj . As H is
conformal in Bj , every perfect matching of H can be combined with a
perfect matching of Bj − V (H) to a perfect matching of Bj . In general,
let MH be a perfect matching of H such that for every e ∈ E(C) ∩MH

both endpoints of e are covered by edges of M \E(C) and a vertex of C is
covered by a non-E(C)-edge in MH if and only if it is covered by an edge
of M ∩E(C). Moreover, let Mj be a perfect matching of Bj − V (H), and
for each i ∈ 2, ℓ \ {j} let Mi be a perfect matching of Bi − V (C). The
matching Mi clearly exists since the Bi are braces, and therefore they are
2-extendible. Then (M \E(C)) ∪ (MH \E(C)) ∪

⋃︁n
i=1,i ̸=j Mi is a perfect

matching of B. Hence it suffices to show that, for any M we are given,
we can choose the matching Mj such that we are able to find the desired
paths within H. What follows is a discussion of these paths depending on
the number of edges in M ∩ E(C). We present these matchings together
with the paths in figures 4.3 and 4.4. As H is a bisubdivision of the cube,
each perfect matching of H mirrors a perfect matching M ′

H of the cube
in the sense that a bisubdivided edge of the cube is MH -conformal if and
only if the corresponding edge of the cube belongs to M ′

H .

Lemma 4.2.2 (E∗). Let B be a brace and C a 4-cycle in B as well as P1,
P2 two paths that form a conformal cross over C. Then for every e ∈ C,
C + P1 + P2 has a perfect matching Me such that {e} = Me ∩ E(C).
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C
a1

b1

b2

a2

Figure 4.3.: A perfect matching MH of H where all four vertices of C are
matched to vertices of H − V (C). Two paths, as requested
by the assertion of Lemma 4.2.1, are marked.

C
a1

b1

b2

a2

C
a1

b1

b2

a2

C
a1

b1

b2

a2

C
a1

b1

b2

a2

Figure 4.4.: A bisubdivision of the cube together with a perfect matching.
Two paths, as requested by the assertion of Lemma 4.2.1, are
marked. All other cases, in particular the ones regarding to
the exact identity of e, can be derived from this by symmetry.

Proof. By definition, since P1 and P2 form a conformal cross over C, there
is a perfect matching M of H := C + P1 + P2. Since C is a 4-cycle, P1

and P2 each must connect two vertices of the same colour on C and thus
M must contain exactly one edge, say e′, of C since the cross is conformal,
hence Me′ := M . Let e ∈ E(C)\{e′} be another edge of C. If e and e′ are
disjoint, then P1 + P2 + e+ e′ is an M -conformal cycle which contains all
edges of Me′ and thus, Me := E(P1+P2+e+e′)\Me′ is a perfect matching
containing e. Otherwise, e and e′ share exactly one endpoint and e is
incident with an endpoint of Pi for some i ∈ [1, 2]. Then Pi+e+e′ is an Me′ -
conformal cycle and thus Me := (Me′ \E(Pi+e+e′))∪(E(Pi+e+e′)\Me′)

is a perfect matching as required.

A last and essential tool before we dive into the more specific cases of
Pfaffian and non-Pfaffian braces is the observation on conformal crosses
over 4-cycles in form of Lemma 4.0.9.
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C

Figure 4.5.: A bisubdivision of K3,3 together with a perfect matching M
and two disjoint M -alternating paths that form a conformal
cross over the 4-cycle C.

Proof of Lemma 4.0.9. First, assume that there exists a conformal bisub-
division H of K3,3 that has C as a subgraph. Then we may choose a
perfect matching M of B such that it contains a perfect matching of H
as seen in Figure 4.5. The conformal cross over C is also presented in the
same figure.
For the reverse let M be a perfect matching of B and P1, P2 two M -
alternating paths that form an M -conformal cross over C. Since both, P1

and P2, must be of even length, they contain at least one inner vertex
v1 and v2 respectively. Moreover, no endpoint of P1 belongs to the same
colour class of an endpoint of P2, and thus v1 and v2 can be chosen such
that they belong to different colour classes, and, for each i, the colour
class of vi is different from the colour class of the endpoints of Pi. Let
e ∈ M ∩E(C) be the unique edge of C that belongs to M . With B being
a brace and Theorem 3.1.69 there must exist an internally M -conformal
v1-v2 path Q that avoids e. For each i ∈ [1, 2] let xi be the endpoint of Pi

that is not incident with e. We claim that Q contains a subpath R which
is internally disjoint from P1 and P2, and for each i ∈ [1, 2] an endpoint of
R is an inner vertex of Pi. Let u1 be the last vertex of Q when traversing
along Q starting in v1, which belongs to P1. Then, as P1 is M -alternating
and the only vertex of P1 not covered by M within the path belongs to e,
u1 must be incident to an edge of M ∩ E(P1), and thus P1u1 is of even
length. Hence u1 and v1 belong to the same colour class of B, which
is different from the colour of x1. Clearly, u1Q still contains an inner
vertex of P2, let u2 be the first vertex of P2 we encounter when traversing
along u1Q starting in u1. By the same arguments as above, the edge of
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M that covers u2 must belong to P2 and thus u2 and v2 have the same
colour, which is different from v2. Consequently, u2 ̸= v2 and R := u1Qu2

is an internally M -conformal path as required. Since R is internally M -
conformal and C + P1 + P2 is M -conformal, H := C + P1 + P2 + R is
also M -conformal. Moreover, for each i ∈ [1, 2], the vertex ui divides Pi

into two subpaths, and as ui has a different colour than any of the two
endpoints of Pi, both of these paths must be of odd length. Hence H is a
conformal bisubdivision of K3,3 in B.

4.3. Matching Crosses in Pfaffian Braces

To proceed towards the proof of Theorem 4.0.4, we need to describe how
the structure of Pfaffian braces, especially the non-planar Pfaffian braces
we obtain via the trisum operation from Theorem 3.3.8 by using planar
braces as the base building blocks, behave regarding the existence of
matching crosses. The purpose of this section is to establish the Pfaffian
part of Theorem 4.0.4 in the form of Proposition 4.0.7. In what follows we
are concerned with Pfaffian braces that are not planar. By Theorem 3.3.8
there is a single exception to the Pfaffian braces constructed from planar
braces by the trisum operation, namely the Heawood graph. While
the Heawood graph does not contain a single 4-cycle, in order to prove
Proposition 4.0.7, we have to discuss its cycles.

Lemma 4.3.1 (E∗). Let C be a conformal cycle of the Heawood graph
H14, then there exists a conformal cross over C in H14.

Proof. It is known that the Heawood graph has, up to automorphisms,
exactly one perfect matching, as, for example, the complement of every
perfect matching of H14 is a Hamilton cycle. See [AAF+04] for a discussion
on the matter. Moreover, no conformal cycle in H14 is of a length that is a
multiple of four, for more details on that please consult [McC00]. Indeed,
for every fixed length ℓ of a conformal cycle in H14 it suffices to find a
cross for one of them, as, again, the graph is highly symmetric. Hence in
order to prove the assertion, it suffices to fix a perfect matching and check
conformal cycles of length 14, 10, and 6. This is done in Figure 4.6.

Let us first observe that the 4-cycle itself, on which a trisum operation
has been performed, must have a strong matching cross.
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Figure 4.6.: The Heawood graph H14 together with a perfect matching
and the three, up to symmetry, different conformal cycles in
H14. For each of these cycles, we provide a conformal cross.

Lemma 4.3.2 (E∗). Let B be a Pfaffian brace that is not the Heawood
graph, ℓ ≥ 3, B1, . . . , Bℓ braces such that B is a maximal 4-cycle sum of
B1, . . . , Bℓ at the 4-cycle C = (a1, b1, a2, b2). Then for any choice of two
distinct values i, j ∈ [1, ℓ] and any choice of x ∈ {a1, a2} and y ∈ {b1, b2},
there is a strong matching cross over C with paths P1 and P2 in Bi +Bj

such that the Pi are M -alternating for some perfect matching M of B for
which x and y are the two vertices of C which are covered by edges of
M ∩ (E(P1) ∪ E(P2) ∪ E(C)).

Proof. The lemma is almost identical to Lemma 4.1.9. In both Bi and
Bj there exists a conformal bisubdivision of the cube which has C as a
subgraph by Corollary 4.1.8 since B cannot contain a conformal bisubdi-
vision of K3,3. Hence Bi +Bj contains a conformal bisubdivision of the
graph H12, which is obtained by identifying two cubes on one 4-cycle. See
Figure 4.2 for an illustration of a bisubdivision of H12. The figure also
shows perfect matchings of the respective conformal bisubdivision one can
find, together with two paths that make up a strong matching cross as
desired. The exact matching cross depending on the choices of x and y

can be obtained from the paths illustrated in Figure 4.2 by symmetry.
By adjusting the perfect matching such that exactly the requested edges
belong to M , our proof is complete.

Lemma 4.3.3 (E∗). Let B be a Pfaffian brace, ℓ ≥ 3, B1, . . . , Bℓ braces
such that B is a maximal 4-cycle sum of B1, . . . , Bℓ at the 4-cycle C and
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let C′ be a conformal cycle in B1 that also exists in B such that C′ ∩ C

is a non-trivial path. Then there is a strong matching cross over C′ in B.

Proof. Since C ∩ C′ is a non-trivial path, let us call it K, the two cycles
share at least two vertices, and K contains at least one vertex of every
colour class.
Let us first assume, K has length one. Let M be a perfect matching of
B1 such that C′ is M -conformal and M contains as many edges of C as
possible. Let a ∈ V1 and b ∈ V2 be the two vertices of C − V (K). We
divide this case into two subcases, one, where C is M -conformal as well
and the second, where for every possible choice of M we have ab /∈M .
So first let us assume ab ∈ M . Then, since B1 is a brace and by The-
orem 3.1.69, there exists an internally M -conformal path L′ with a as
one endpoint and a vertex b′ of V2(C

′) as its other endpoints such that
L′ is internally disjoint from C′ and avoids K. Similarly, there is an
internally M -conformal path R′ with endpoints b and a′ ∈ V1(C

′) \ V (K).
By Lemma 3.1.42 there exists a perfect matching M ′ which coincides with
M everywhere outside of L′ +R′ together with internally M ′-conformal
paths L and R linking a and b′, and b and a′ respectively such that either
L and R are disjoint, or L∩R is an M ′-conformal path. In the later case,
ab together with the a-b-subpath of L+R forms an M ′-conformal cycle
O. In a slight abuse of notation let us adjust M ′5 in these cases to be the
perfect matching M ′∆E(O). Let u and v be the endpoints of L ∩R such
that u appears on L before v when traversing along L starting from a. We
also might have to adjust our definition of L and R slightly, depending on
the way, L and R currently connect to C′. In case we adjust the perfect
matching, we also adjust L to be the M ′-alternating path LuR, while R

is adjusted to be the path RvL.
In either case, we can now use Lemma 4.3.2 to find a perfect matching M ′′

of B such that E(M ′) \ E(C) ⊆ M ′′ together with two M ′′-alternating
paths P1 and P2 such that these paths are disjoint and are completely
contained in B − V (B1 − V (C)). Indeed, P1 and P2 can be chosen such
that P1L and P2R form a strong matching cross over C′ in B as illustrated
in Figure 4.7.

5We still keep the name ’M ′’ for better readability
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C

C′

a b

a′
b′

C

C′

a b

a′
b′

v

u

C

C′

a b

a′ b′

C

C′

a b

a′ b′

u v

Figure 4.7.: The four different ways to obtain a strong matching cross
over C′ in the first subcase of the first case in the proof of
Lemma 4.3.3.

So now let us assume ab /∈ M . Then there exist vertices x, y ∈ V (B) \
(V (C)∪V (C′)) such that ax, by ∈ M . Let P be an internally M -conformal
path connecting x to some vertex a′ of V1(C

′) such that P is internally
disjoint from C′ and avoids K. Similarly we choose Q to be an internally
M -conformal path connecting y to some vertex b′ ∈ V2(C

′) while avoiding
K and being internally disjoint from C′. Suppose one of the two paths
contains the initial matching edge of the other. Since these cases are
symmetric, it suffices to consider one of them, so let us assume P contains
by. Then Py is an internally M -conformal path that is disjoint from C′

and does not meet K at all. Hence Pyba is an M -conformal cycle and thus
M∆E(Pyba) is a perfect matching of B1 for which C′ +K is conformal.
Since we ruled this possibility out by the first case this cannot happen,
and thus P does not contain by, and neither does Q contain the edge ax.
By calling upon Lemma 3.1.42 again, we find a perfect matching M ′ and
paths L′ and R′ such that L′ ∩ R′ is either empty or an M ′-conformal
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C

C′

a b

a′ b′

x y
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a′ b′
x yu v

C

C′

a b

a′
b′

x y

C

C′

a b

a′
b′

x yu v

Figure 4.8.: The four different ways to obtain a strong matching cross
over C′ in the second subcase of the first case in the proof of
Lemma 4.3.3.

path, M ′ equals M outside of axP and byQ, and R and L connect {a, b}
to {a′, b′} while being internally disjoint from C′ and avoiding K. If case
L′ ∩R′ is empty let L := L′ and R := R′. Otherwise, let u and v be the
endpoints of L′ ∩R′ such that u is the first vertex of R′ one encounters
when traversing L′ starting in a. Then ab together with the unique a-b-
subpath of L′ +R′ forms an M ′-conformal cycle O. By adjusting M ′ to
be the perfect matching M ′∆E(O) and setting L := L′uR′, R := R′vL′

we have found two disjoint M ′-alternating paths that can be extended
to form a strong matching cross over C′ in B by using Lemma 4.3.2 as
before. Please note that this step might alter the perfect matching M ′

again with regards to the edges of C. See Figure 4.8 for an illustration of
the cases that might arise.
So now let us assume K to be of length two. In this case, there is a unique
vertex u ∈ V (C) that does not belong to C′. For this case, let us choose
M to be a perfect matching of B1 for which C is M -conformal. Since
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C

C′

C

C′

Figure 4.9.: Strong matching crosses over C′ in the second and third case
in the proof of Lemma 4.3.3.

B is a brace, by Theorem 3.1.69, there exists an internally M -conformal
path P connecting v to a vertex of C′ while avoiding any vertex in V (K).
We then use Lemma 4.3.2 to find paths L′ and R together with a perfect
matching M ′ of B such that L := L′P and R form a strong matching
cross over C′ as illustrated in Figure 4.9.
At last, consider the case where K contains all of C. Here Lemma 4.3.2
yields the strong matching cross over C′ in B immediately.

The above lemma illustrates why we cannot allow to always reduce a brace
along a 4-cycle sum. In some cases, even the small separator given by the
4-cycle is enough to provide a matching cross. The following lemmas aim
to make this observation more general and exact.

Lemma 4.3.4 (E∗). Let B be a Pfaffian brace, ℓ ≥ 3, B1, . . . , Bℓ braces
such that B is a maximal 4-cycle sum of B1, . . . , Bℓ at the 4-cycle C

and let C′ be a conformal cycle in B1 that also exists in B such that
|V (C′) ∩ V (C)| ≥ 2 and V (C) ∩ V (C′) contains vertices of both colour
classes, then there is a matching cross over C′ in B.

Proof. We divide this proof into three cases.
1: |V (C) ∩ V (C′)| = 2 and the vertices in V (C) ∩ V (C′) are adjacent

on C.
2: |V (C) ∩ V (C′)| = 3.
3: |V (C) ∩ V (C′)| = 4.
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Case 1: |V (C)∩V (C′)| = 2 and the vertices in V (C)∩V (C′) are adjacent
on C.
In this case, let x and y be the two adjacent vertices of C belong to
C′. In case xy ∈ E(C′), we are done immediately by Lemma 4.3.3. If
xy /∈ E(C′), then x and y divide C′ into two paths of odd length, say
P1 and P2, both with endpoints x and y. If M is a perfect matching of
B such that C′ is M -conformal, then exactly one of the two paths, say
P1 is also M -conformal and thus P1 + xy is an M -conformal cycle as
well. By Lemma 4.3.3 P1 + xy has a strong matching cross and thus, by
Lemma 4.0.10, C′ must have a matching cross in B.
Case 2: |V (C) ∩ V (C′)| = 3.
In case C∩C′ is a subpath of C′, we are done immediately by Lemma 4.3.3.
Hence we may assume that this is not the case. Next, suppose C′ contains
exactly one edge of C and there is xy ∈ E(C) such that x, y ∈ V (C′),
but xy /∈ E(C′). Let z be the remaining vertex of C on C′, then x and y

separate C′ into two paths, where one of them, say P , does not contain
z. We may choose a perfect matching M of B such that P is internally
M -conformal. Then K := C′ − P + xy is also an M -conformal cycle,
and by our assumption, K ∩ C is a subpath of C. Hence we may apply
Lemma 4.3.3 together with Lemma 4.0.10 to obtain a matching cross over
C′. At last assume that C′ does not contain an edge of C. If we call the
vertices of C on C′ x, y, and z again such that x and z belong to the
same colour class, we again find the path P avoiding z but connecting x

and y as before. But we also find a path Q ⊆ C′ that connects z and y

and avoids x. By choosing a perfect matching M of B such that C′ is
M -conformal and Q is internally M -conformal, we have found a perfect
matching for which K′ := C′ − Q + yz is an M -conformal cycle. For
this cycle, we find a matching cross as discussed above, and by applying
Lemma 4.0.10 again, we obtain a matching cross for C′ as well.
Case 3: |V (C) ∩ V (C′)| = 4.
Let C = (a1, b1, a2, b2). If the vertices of C appear on C′ in the same
order as they do on C, we can use Lemma 4.3.2 to find a strong matching
cross over C whose paths are internally disjoint from B1. Hence we have
found a strong matching cross over C′ in B.
Hence the vertices of C do not appear on C′ in the order listed. The
only way this is possible is, if they appear on C′ in the order a1, a2, b1,
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b2, or a1, a2, b2, b1. In both cases we can use Lemma 4.2.1 to obtain a
perfect matching M of B and internally M -conformal paths P1 and P2

which are internally disjoint from B1 such that P1 connects a1 and b1
while P2 connects a2 and b2 in case the order of appearance is a1, a2, b1,
b2. Otherwise, P1 and P2 may be chosen such that P1 connects a1 and
b2 while P2 connects a2 and b1. Either way, the two paths form a strong
matching cross over C′ in B.

Let B be a Pfaffian brace, C a 4-cycle in B such that B − C is not
connected, and C′ be any conformal cycle in B. Suppose there is a
matching cross over C′ in B such that at least one of the paths of this
cross uses C and extends into another component of B − C. Let B′ be
a brace with C′ ⊆ B′ such that B is made from a set of Pfaffian braces
including B′ via a 4-cycle sum at C. Then some information on the
matching cross over C′ in B should also exist in B′. Our goal is to use
this information to show that even B′ cannot be planar while C′ bounds
a face.
Let B be a Pfaffian brace, C a 4-cycle in B, M a perfect matching and C′

a conformal cycle in B. A tuple (P1, P2, Q,M) is a diffuse C′-M -precross
through C if P1, P2 and Q are pairwise disjoint, internally disjoint from
C′, all are M -alternating paths6, and for each i ∈ [1, 2], Pi is a V (C′)-
V (C)-path such that the endpoints of the Pi on C′ belong to different
components of C′ − V (Q). Additionally, we require among the endpoints
of the Pi on C at least one of each colour class to be covered by an edge of
E(C) ∩M . A diffuse C′-M -precross through C is daring if the endpoints
of the Pi on C belong to the same colour class.

Lemma 4.3.5 (E∗). Let B be a Pfaffian brace, ℓ ≥ 3, B1, . . . , Bℓ braces
such that B is a maximal 4-cycle sum of B1, . . . , Bℓ at the 4-cycle C and
let C′ be a conformal cycle in B1 that also exists in B. If there is a diffuse
C′-M1-precross H through C in B1, for some perfect matching M1 of B1,
which is not daring, then there are matching crosses over C′ in B1 and B.

Proof. Let H = (P1, P2, Q,M1). Since H is not daring, we may apply
Lemma 4.2.1 to find a perfect matching M of B with M1 \ E(C) ⊆ M

together with a path R in Bj for some j ∈ [2, ℓ] such that P1RP−1
2 is

6In particular, P1 and P2 are allowed to be single vertices of C′.
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M -alternating and disjoint from Q. Note that such a matching exists
in particular because either C is M -conformal, or the edge connecting
the endpoints of the Pi on C must belong to M . Hence in this case we
have found our matching cross over C′ in B. Since R is a subpath of an
M -alternating path, it itself is M -alternating. Moreover, with H not being
daring, the endpoints of R belong to different colour classes, and thus R is
either M -conformal or internally M -conformal. Either way, the endpoints,
let us call them x and y, are adjacent on C and there exists a perfect
matching M ′ of B1 such that E(B1 − V (C)) ∩M ⊆ M ′ and xy ∈ M ′ if
and only if R is M -conformal. Hence P1xyP

−1
2 is an M ′-alternating path

which forms, together with Q, a matching cross over C′ in B1.

Hence diffuse precrosses can always be extended to actual crosses if they
are not daring. Next we inspect daring precrosses more closely. Let B be
a Pfaffian brace, C a 4-cycle in B, M a perfect matching and C′ an M -
conformal cycle in B. A diffuse C′-M -precross through C (P1, P2, Q,M)

is successful if it is daring, and either P1 is internally M -conformal while
P2 is M -conformal or P1 and P2 are both of even length, and the endpoint
of P1 on C′ is covered by an edge of E(P1)∩M if and only if the endpoint
of P2 on C′ is not covered by an edge of E(P2) ∩M .

Lemma 4.3.6 (E∗). Let B be a Pfaffian brace, ℓ ≥ 3, B1, . . . , Bℓ braces
such that B is a maximal 4-cycle sum of B1, . . . , Bℓ at the 4-cycle C and
let C′ be a conformal cycle in B1 that also exists in B such that there is
i ∈ [1, 2] with V (C) ∩ V (C′) ⊆ Vi. Then there is a matching cross over
C′ in B if and only if one of the following is true

i) there is a matching cross over C′ in B1,
ii) there is a perfect matching M1 of B1 such that there exists a diffuse

C′-M1-precross through C, which is successful.

Proof. Let us first prove that in case one of our conditions holds true we
find a matching cross over C′ in B. First let L and R be the two paths of a
matching cross over C′ in B1 and let M be a perfect matching such that L
and R are M -alternating. If L and R also exist in B, we are done. So let us
assume exactly one of them, say L, contains an edge of C which does not
exist in B, note that this is the only possibility why L is not an alternating
path in B. Let us traverse along L starting in one of its endpoints, and
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let x be the first vertex of C we encounter, while y is the last vertex of C
on L. In case xy ∈ E(C), we either have xy ∈M , or xy /∈M , but xLy is
M -conformal, hence xLyx is an M -conformal cycle, and we can adjust M

to include the edge xy. Then, after possibly adjusting the matching as
above, (Lx, yL,R,M) is a diffuse C′-M -precross through C which is not
daring. Hence we are done by Lemma 4.3.5. So we may assume x and y

not to be adjacent on C and thus they belong to the same colour class.
In this case, xLy is an M -alternating path of even length and thus can
neither be internally M -conformal, nor M -conformal. However, since L

contains an edge of C, there must be a vertex z ∈ V (C) \ {x, y} such that
one of the edges xz, yz belongs to L. Without loss of generality let us
assume xz ∈ E(L). In case xz ∈M , (Lx, yL,R,M) is a successful diffuse
C′-M -precross through C and we are done by Lemma 4.3.5. So assume
xz /∈M . Then zLy must be an M -conformal path, and thus zLyz is an
M -conformal cycle. Hence we may adjust M such that yz ∈M and again
(Lx, yL,R,M) is a successful diffuse C′-M -precross through C and we are
done by Lemma 4.3.5. Hence we may now assume L and R to contain
an edge of C each. Since C only has four vertices, this means there is a
unique edge xLyL ∈ E(L)∩E(C) and a unique edge xRyR ∈ E(R)∩E(C).
Now Lemma 4.2.1 provides us with the two paths in B2 that are necessary
to be combined with LxL, yLL and RxR, yRR respectively in order to
obtain a strong matching cross over C′ in B.
So now we have to show that the existence of a matching cross in B

implies the existence of one of the two structures above. Let R and L

be two M -alternating paths for some perfect matching M that form a
matching cross over C′. If neither L nor R contains a vertex of C, L and
R must be completely contained in B1 and thus form a strong matching
cross over C′ in B1 as well. So let us assume that exactly one of the two
paths contains a vertex of C and further assume, without loss of generality,
that L is that path. In case L contains exactly one vertex of C, it cannot
contain any vertex of Bi − V (C) for any i ∈ [2, ℓ] since C separates the
Bj from each other. Hence in this case, L and R again also exist in B1.
So assume that L contains exactly two vertices of C, say v and w. Then
either vw ∈ E(C), or v and w belong to the same colour class. In the first
case, either vw ∈ E(L), or vLwv is an M -conformal cycle, and we may
adjust M such that LvwL is M -alternating. In any case, after possibly
adjusting M , LvwL and R form a matching cross over C′ in B1 for some
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perfect matching M1 where vw ∈M1 if and only if vLw is M -conformal.
In the second case, vLw must be of even length. In case exactly one of Lv
and wL is of even length, there must be a vertex u ∈ V (C) \ {v, w} such
that u is not covered by an edge of M ∩ E(B1), or vLw = vuw. Then we
may choose a perfect matching M1 of B1 such that M1 \ E(C) ⊆M and
LvuwL is an M1 alternating path of the same type as L in B1. Hence
there is a matching cross over C′ in B1. Thus we may assume Lv and wL

to either both be of odd or both be of even length. In total, this means
that L is of even length. Hence, by choosing M1 as before, (Lv,wL,R,M1)

is a successful diffuse C′-M1-precross over C′ in B1. In case L contains
more than two vertices of C, let v be the first vertex of C on L and w be
the last one. Let Q be a shortest v-w-path on C, then Q and vLw are of
the same parity, and we can choose a perfect matching M1 such that both
R and LvQwL are M1 alternating in B1, thus forming a matching cross
over C′ in B1.
With this, we may now assume that both L and R contain vertices of
C. If R contains exactly one vertex of C and the edge of M covering
this vertex belongs to B1, this case can be handled the same way as the
cases where R does not contain any vertex of C. If, on the other hand, R
contains exactly one vertex of C and the edge of M covering this vertex
does not belong to B1 this means this vertex of C is an endpoint of R and
thus belongs to C′. Let us assume that both L and R contain exactly one
vertex of C each and the edges of M covering these vertices do not belong
to B1. This means that these endpoints of L and R on C must belong
to the same colour class by our assumption and thus no edge of M that
covers a vertex of C can belong to B1. But then we may choose a perfect
matching M1 of B1 such that M ∩ E(B1) ⊆M1 and C is M1-conformal,
and then L and R sill are M1-alternating paths in B1. Hence we have
found a matching cross over C′ in B1. Now assume that L contains more
than one vertex of C, while R still contains exactly one vertex, say u, of
C for which the edge of M covering it does not belong to B1. Let x be
the first vertex of L on C and y be the last vertex. Then xLy is of even
length if and only if x and y belong to the same colour class. Suppose
this is the case, then for one z ∈ {x, y} the edge of M covering z cannot
belong to B1 since u cannot belong to the same colour class as x and y.
Hence there exists a perfect matching M1 of B1 with M ∩ E(B1) ⊆ M1

and zu ∈M1 and therefore (xL, yL,R,M1) is a successful C′-M1-precross
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through C in B1. Otherwise, x and y belong to different colour classes
and thus xLy is either M -conformal or internally M -conformal. In the
first case, xLyx is an M -conformal cycle, and we can adjust M such that
xy ∈ M , in the second case, LxyL already is an M -alternating path.
Hence there is a perfect matching M1 of B1 such that R and LxyL form
a matching cross over C′ in B1. Thus we may assume both L and R to
contain exactly two vertices of C each. Let vX , wX be the two vertices
of V C ∩ V (X) for each X ∈ {L,R}. In case vL and wL are adjacent on
C, then so are vR and wR, and we can choose a perfect matching M1

such that vXwX ∈M1 if and only if vXXwX is an M -conformal path and
M1 \ E(C) ⊆ M . Then LvLwLL and RvRwRR form a matching cross
over C′ in B1. In case vL and wL belong to the same colour class, then
so must vR and wR. In this case, vLLwL and vRRwR form a matching
cross over C in B and since these paths are alternating, each of them
must contain an edge of M . Moreover, we can change M to a perfect
matching M ′ such that M ′ coincides with M on E(Bi) \ E(C) for all
i ∈ [2, ℓ], and C + vLLwL + vRRwR is M ′-conformal. Indeed this means
that vLLwL and vRRwR form a conformal cross over C in B and thus, by
Lemma 4.0.9 and Theorem 3.3.4, B cannot be Pfaffian which contradicts
our assumption.

A graph that plays a huge role in non-planar Pfaffian graphs that are not
the Heawood graph is the Rotunda. The Rotunda is the graph obtained by
performing the 4-cycle sum operation on three cubes at a single common
4-cycle C and then forgetting all edges of C. An important observation is
the non-planarity of the Rotunda.

Observation 4.3.7. The Rotunda is not planar.

From Theorem 3.3.8 and Corollary 4.1.8 one can derive the following.

Corollary 4.3.8. Let B,B1, . . . , Bℓ, ℓ ≥ 3, be braces such that B is
Pfaffian and a 4-cycle sum of B1, . . . , Bℓ at a 4-cycle C. Then B contains
a conformal bisubdivision of the Rotunda.

Lemma 4.3.9 (E∗). Let B,B1, . . . , Bℓ, ℓ ≥ 3, be braces such that B

is Pfaffian and a maximal 4-cycle sum of B1, . . . , Bℓ at the 4-cycle C.
Moreover, let C′ be a conformal cycle in B1 that also exists in B. If
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Figure 4.10.: The smallest bipartite and non-planar Pfaffian graph that is
not isomorphic to the Heawood graph: The Rotunda.

V (C) ∩ V (C′) contains a vertex of each colour class, every C′-reduction
of B to some brace H is not planar.

Proof. Let B be a minimal counterexample to the assertion, that is, the
claim holds for every C′-reduction of any C′-reduction of B. Let K be a 4-
cycle and H1, . . . , Hm, m ≥ 3, be braces such that B is a maximal 4-cycle
sum of H1, . . . , Hm at K with C′ ⊆ Hh for some h ∈ [1,m]. Moreover, let
K be chosen such that V (K) ∩ V (C′) contains vertices from at most one
colour class of B, then C ̸= K and C contains at least one vertex of C′

which does not belong to K. Hence |V (K) ∩ V (C)| ≤ 3

Let us first observe that for any choice of Z ∈ {C,K}, B +E(Z) still is a
Pfaffian brace as this does not change B being a maximal 4-cycle sum of the
braces associated with Z at the 4-cycle Z, and by Theorem 3.3.8 all of these
braces are Pfaffian. Indeed, we claim that B′ := B + E(C) is a maximal
4-cycle sum of H ′

1, . . . , H
′
m, where H ′

i := Hi+{xy ∈ E(C) | x, y ∈ V (Hi)},
at the 4-cycle K. Suppose K does not separate C, i.e. V (C)\V (K) belongs
to a unique component of B′−V (K), there is a unique i ∈ [1,m] such that
V (C) ⊆ V (Hi) and in this case our claim holds true. Indeed that means
if |V (C)∩V (K)| ≤ 1 or |V (C)∩V (K)| = 3 the claim follows immediately
as in those cases K does not separate vertices of C. So let us assume
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|V (K) ∩ V (C)| = 2 and K separates C. Let {a1, a2} = V (C) ∩ V (K),
note that the ai belong to the same colour class, say V1, of B. Let
{b1, b2} := V (C) \ V (K) and let {c1, c2} := V (K) \ V (C). Without loss
of generality let us assume b1 ∈ V (H ′

1) and b2 ∈ V (H ′
2). As m ≥ 3,

there is also some H ′
3. For each i ∈ [1, 2] let Li be the 4-cycle in H ′

i with
vertex set {a1, a2, ci, bi}. By Lemma 4.1.7 and Theorem 3.3.8, since B′

is Pfaffian, in H ′
1 there is a conformal bisubdivision R1 of the cube that

contains L1 + a2c2 as a subgraph. Similarly, in H ′
2 there is a conformal

bisubdivision R2 of the cube which contains L2 + a1c1 as a subgraph.
Moreover, H ′

3 has a conformal bisubdivision R3 of the cube with K as a
subgraph. For each i ∈ [1, 3] let R′

i be obtained from Ri by removing all
inner vertices of the paths that correspond to a bisubdivided edge of K.
Then let R := R′

1 +R′
2 +R′

3. By construction R is a conformal subgraph
of B′ and C ⊆ R. Careful inspection reveals, that there is a conformal
cross over C in R, see Figure 4.11, and thus, by Lemma 4.0.9 there must
be a conformal bisubdivision of K3,3 in B′. As B′ is Pfaffian, this is a
contradiction, and thus K can never separate C.

b1

b2

a2

a1

c2

c1

Figure 4.11.: The graph R from the proof of Lemma 4.3.9 with the 4-cycle
C as a subgraph and a conformal cross over C.
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Consequently the graph B′′ := B′ + E(K) is Pfaffian and thus, with the
same arguments as above, B′′ is a 4-cycle sum of B′

1, . . . , B
′
ℓ at C, where

B′
i := Bi + {xy ∈ E(K) | x, y ∈ V (Bi)} for all i ∈ [1, ℓ]. Indeed, from the

discussion above one can derive that there are i ∈ [1, ℓ] and j ∈ [1,m]

such that
⋃︁

k∈[1,m]\{j} V (H ′
k) ⊆ V (Bi). If i ̸= 1, then, as C′ ⊆ Hh, we

must have j = h and H ′
h still contains all Bk for k ∈ [1, ℓ] \ {i}, as well as

a C-reduction of Bi. So we may assume i = 1. By assumption, we have
that V (C)∩V (C′) contains a vertex of each colour class of B and thus, in
this case,

⋃︁
k∈[2,ℓ] V (B′

k) ⊆ V (H ′
h) implying that H ′

h is a 4-cycle sum of
at least 3 braces at the cycle C. Consequently, by Corollary 4.3.8, in both
cases H ′

h contains a conformal bisubdivision of the Rotunda and thus is
not planar. This contradicts B being a minimal counterexample and thus
completes our proof.

We can now combine the above lemma with our previous observation on
precrosses to rule out any planar C′-reductions if there exists a diffuse
C′-M -precross though a 4-cycle C which shares vertices of at most one
colour class with C′.

Lemma 4.3.10 (E∗). Let B be a Pfaffian brace, M a perfect matching of
B, C a 4-cycle, and C′ a conformal cycle for which V (C)∩V (C′) contains
vertices from at most one colour class of B such that there exists a diffuse
C′-M -precross through C in B, then there does not exist a C-reduction
of B to a brace H such that H is planar and C bounds a face of H.

Proof. Let Q be the path of our C′-M -precross through C and let P1, P2

be the two paths connecting C′ to C such that their endpoints belong to
different components of C − V (Q).
Suppose there is a 4-cycle K in B such that B is a maximal 4-cycle sum
of the braces H1, . . . , Hm, m ≥ 3 at K, H1 is a non-trivial C′-reduction
of H, and V (C) ⊆ H1. Then there is a diffuse C′-M ′-precross through
C in H1 for some perfect matching M ′, or there is at most one path
W ∈ {P1, P2, Q} such that V (W ) ∩

⋃︁m
i=2 V (Hi) \ V (K) ̸= ∅.

Suppose there are two paths W1,W2 ∈ {P1, P2, Q} such that V (Wk) ∩⋃︁m
i=2 V (Hi)\V (K) ̸= ∅ for both k ∈ [1, 2]. Then let W ′

k be the subpath of
Wk in

∑︁m
i=2 Hi. If one of the W ′

k is of even length, then so is the other one.
Indeed, if both are of even length, then each of them must have an edge
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incident to one of its endpoints in
∑︁m

i=2 Hi that belongs to M . Moreover,
as H1 is a C′-reduction and therefore V (K) ∩ V (C′) contains vertices
from at most one colour class of B, the edges of M that are incident to
the other endpoints of the W ′

k must belong to H1. Hence there exists
h ∈ [2,m] such that W ′

1 and W ′
2 belong to Hh and, in Hh these paths

form a conformal cross over K. Consequently, by Lemma 4.0.9, Hh has
a conformal bisubdivision of K3,3 which, by Theorem 3.3.8, contradicts
B being Pfaffian. Hence the W ′

k are of odd length and thus are either
internally M -conformal or M -conformal. In either case, for each k ∈ [1, 2]

the endpoints uk, vk of W ′
k are adjacent on K and there exists a perfect

matching M ′
1 of H1 with M ′

1 \ E(C) ⊆ M and ukvk ∈ M ′
1 if and only if

W ′
k is M -conformal. Thus there is a diffuse C′-M ′-precross through C in

H1.
If there is a path W ∈ {P1, P2, Q} such that V (W )∩

⋃︁m
i=2 V (Hi)\V (K) ̸=

∅, then either the endpoints of W ′, which is the subpath of W starting on
the first vertex of K and ending on the last vertex of K when traversing
along W , are adjacent on K, or at most one vertex of V (K) \ V (W )

belongs to another path from {P1, P2, Q} \ {W}. As we have seen above,
no path besides W may leave H1 through K, hence all edges of the other
paths in {P1, P2, Q} \ {W} belong to H1. This is particularly true for
the edges of M on these paths. Indeed, this means that all four vertices
of K must be matched inside H1 by M . However, W ′ is a path of even
length and therefore must contain an edge of M that covers one of its
endpoints. By definition and our assumption that W ′ contains exactly
two vertices of K, which are of the same colour, no edge of W ′ belongs to
H1, which is impossible. A set S of vertices with |S ∩ V1| = |S ∩ V2| = 2

is called splitting if there exist braces L1, . . . , Lq, q ≥ 3, such that B is a
4-cycle sum of L1, . . . , Lq at a 4-cycle with vertex set S. Let us call a set
S ⊆ V (B) with |S ∩ V1| = |S ∩ V2| = 2 well behaved, if B is a maximal
4-cycle sum of the braces H1, . . . , Hm, m ≥ 3 at the 4-cycle K′ with vertex
set S, H1 is a non-trivial C′-reduction of H, and V (C) ⊆ H1, or S is not
splitting. Let H ′ be a C′-reduction of B such that no splitting set S in
H ′ is well behaved and let K1, . . . ,Kℓ be the 4-cycles used to reduce B

to H ′. Let the Ki be numbered in the order in which the Ki were used
to construct a non-trivial C′-reduction of B to some brace Ji in order to
eventually reach H ′. We claim that either H ′ is non-planar, or C′ does not
bound a face of H ′. Since B is Pfaffian and contains a 4-cycle it cannot

172



4.3. Matching Crosses in Pfaffian Braces

be isomorphic to the Heawood graph. Suppose H ′ still has a splitting set,
then, by Corollary 4.3.8, H ′ is non-planar. Hence we may assume H ′ to
be planar for the sake of this claim. Next we iteratively construct paths
Ri

Q, Ri
P1

, and Ri
P2

such that for each W ∈ {P1, P2, Q}, Ri
W is a path in Ji

and all three paths are disjoint. For each W ∈ {P1, P2, Q} let R1
W := W .

The construction is pretty straight forward. Suppose in Ji, i ∈ [1, ℓ− 1],
the subpath of Ri

W starting with its first vertex, ui
W , on Ki+1 and ending

on its last vertex, viW , has edges that do not belong to Ji+1. Then either
ui
W and viW are adjacent and we can set Ri+1

W := Ri
Wui

W viWRi
W , or they

are not adjacent, in which case we have seen that there is a path U of
length two on Ki such that Ri+1

W := Ri
Wui

WUviWRi
W is a path and disjoint

from the other two paths. If Ri
W has no such subpath we simply set

Ri+1
W := Ri

W . Then the paths Rℓ
W , for W ∈ {P1, P2, Q}, are pairwise

disjoint paths in H ′ such that Rℓ
Q has both endpoints on C′ and Rℓ

P1
and

Rℓ
P2

connect C′ to C. Moreover, the endpoints of Rℓ
P1

and Rℓ
P2

on C′

belong to different components of C′ − V (Rℓ
Q). As all three paths are

internally disjoint from C, we can now connect Rℓ
P1

and Rℓ
P2

on C in order
to create an ordinary cross7. However, this means that C′ cannot bound
a face of H ′ by Theorem 2.2.6. To finalise the proof we have to show
that, in case H ′ is non-planar, we still cannot find a planar C′-reduction
of H ′ such that C′ bounds a face. For this note that, by Lemma 4.3.9,
no splitting set S can contain vertices of C′ from more than one colour
class, or otherwise, the claim would follow immediately. Observe that
every splitting set S in H ′ in this case must separate C from C′. Clearly
P1 and P2 are separated by S. If also Q is separated by S, we have found
two disjoint alternating paths that connect C′ to S and that belong to
a matching cross over C′. Suppose the two disjoint subpaths of Q that
link C′ to S both have their endpoints in S in the same colour class.
Then, if we were to complete this matching cross we would, in particular,
obtain a conformal cross over a 4-cycle with vertex set S. As S is splitting
and B Pfaffian, by Lemma 4.0.9 this is impossible. Hence, if CS is the
4-cycle with vertex set S and H ′′ is the C′-reduction of H ′ at S, we either
find a matching cross over C′, again implying that H ′′ is not planar, as
otherwise, we would be done or find a diffuse C′-M ′-precross through CS .

7Ordinary in this context means that our paths are not necessarily alternating for
any perfect matching.
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Hence, in either case, we simply re-enter a previously discussed case and
thus our proof is complete.

Observation 4.3.11 (E∗). Let B be a brace and C a conformal cycle in
B. If B is planar there does not exist a C-reduction of B.

Proof. We prove a stronger result, namely, that a planar brace cannot be
a maximal 4-cycle sum of three or more braces. Since B is planar, it is
Pfaffian and thus does not contain conformal bisubdivisions of K3,3. Let us
assume B is a maximal 4-cycle sum of the braces B1, . . . , Bℓ, ℓ ≥ 3, at the
4-cycle C. Then the claim follows immediately from Corollary 4.3.8.

With this, everything is in place to prove Proposition 4.0.7.

Proof of Proposition 4.0.7. Let B be a minimal counterexample to the
forward direction of the assertion. So let us assume that B is Pfaffian, there
is a conformal cycle C in B which has no cross, but every C-reduction of
B to a brace H is either non-planar or C bounds no face of H. Indeed,
we may assume that B is not isomorphic to the Heawood graph since
every conformal cycle here has a matching cross Lemma 4.3.1. However,
in every C-reduction of B, our assertion holds. We claim that this means
there is no C-reduction of B.
Suppose there was one and let H be a C-reduction of B. By the minimality
of B this means that either H has a C-reduction to some brace H ′ such
that C bounds a face of H ′ or there is a matching cross over C in H. In
the first case, there exists a C-reduction of B to H ′ and thus we have
a contradiction to B being a counterexample. So we may consider the
second case and assume that there is a matching cross over C in H. Let B
be a maximal 4-cycle sum of the braces H,B1, . . . , Bℓ, ℓ ≥ 2 at the 4-cycle
C′. Then, since there is a matching cross over C in H, lemmata 4.3.4
and 4.3.6 imply that there also must exist a matching cross over C in B

which again is a contradiction.
Suppose B is planar. By Proposition 4.1.1, this means that C must
either bound a face of B or have a strong matching cross in B. Since
neither is correct by our assumption, B cannot be planar. So B is neither
planar nor does there exist a C-reduction. According to Theorem 3.3.8
B must either be isomorphic to the Heawood graph or be a maximal
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4-cycle sum at some 4-cycle K of Pfaffian braces H1, . . . , Hm, m ≥ 3. The
first case is impossible by assumption. If V (K) ∩ V (C) contains vertices
from at most one colour class of B, there would be a C-reduction in B

which we already ruled out, hence we must have |V (K) ∩ V (C)| ≥ 2 and
V (K) ∩ V (C) contains a vertex of each of the two colour classes. Then
Lemma 4.3.4 implies the existence of a matching cross over C in B. So, in
either case, we reach a contradiction which means that there is no minimal
counterexample and thus our proof is complete.
For the reverse let B be a minimal counterexample to the assertion such
that B is Pfaffian, there is a conformal cycle C in B which has a matching
cross, but there is a C-reduction of B to H such that H is planar and
C bounds a face. First, suppose H is isomorphic to B. Then, since C

bounds a face of B, Proposition 4.1.1 implies that there cannot be a
matching cross over C in B. Consequently, B is non-planar. Since there
is a C-reduction of B, B is not the Heawood graph. Let K be a 4-cycle
such that B is a 4-cycle sum of the braces B1, . . . , Bℓ at K where H is
a C-reduction of B1. With H being a C-reduction of B, this must exist.
Thus, as B is a minimal counterexample and H is planar such that C

bounds a face, there is no matching cross over C in B1.
Since B1 is a C-reduction of B, V (K) ∩ V (C) cannot contain vertices
from both colour classes of B. Moreover, with B being Pfaffian, by
Theorem 3.3.8, none of the Bi can have a conformal bisubdivision of K3,3.
Hence, by Lemma 4.3.6, there exists a perfect matching M1 of B1 such
that there is a diffuse C-M1-precross through K which is daring. However,
in this case, Lemma 4.3.10 tells us that no C-reduction of B1 can be
planar such that C bounds a face. As we assumed H to be a C-reduction
of B1, this is a contradiction.

4.4. Matching Crosses in Non-Pfaffian Braces

With Proposition 4.0.7, we already have one half of Theorem 4.0.4. To
prove the non-Pfaffian part of our main result, we essentially need to
strengthen Corollary 4.1.8 in the form of Proposition 4.0.8.
In light of Lemma 4.0.9, this means that every 4-cycle in a non-Pfaffian
brace has a conformal cross. As a first step, we need to establish that we
can always find a perfect matching M in a non-Pfaffian brace such that
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a prescribed 4-cycle C is M -conformal and there exists an M -conformal
bisubdivision of K3,3 in B. To do this, we make use of a helpful lemma of
McCuaig once more.
Recall the definition of the odd möbius ladders. For a möbius ladder
M4k+2 with k ≥ 2 we call an edge e a rung if it lies on two 4-cycles.
The rungs of a M4k+2 bisubdivision are the paths that correspond to the
bisubdivided rungs of the Möbius ladder. The base cycle of M4k+2 is the
Hamiltoncycle C that consists entirely of non-rung edges. The base cycle
of a M4k+2 bisubdivision is the cycle that consists entirely of the paths
corresponding to the non-rung edges of M4k+2.
We make use of the original, and slightly stronger, statement of
Lemma 3.2.20.

Lemma 4.4.1 ([McC04]). Let B be a bipartite graph with a conformal
bisubdivision of K3,3 and M a perfect matching of B, then B contains an
M -conformal bisubdivision L of M4k+2 for some k ≥ 1. Furthermore, the
rungs of L are M -conformal in case k ≥ 2.

Lemma 4.4.2 (E∗). Let B be a non-Pfaffian brace and C a 4-cycle in B,
then there exists a perfect matching M of B such that C is M -conformal
and B has an M -conformal bisubdivision of K3,3.

Proof. Let M ′ be any perfect matching of B for which C is M ′-conformal.
By Lemma 4.4.1 there exists an M ′-conformal bisubdivision L of M4k+2

for some k ≥ 1. In case k = 1 we are done, so assume k ≥ 2. Let us
choose M ′ such that k is as small as possible. We call a path P in L a
bisubdivided edge if P corresponds to an edge of M4k+2. Note that since
C is M ′-conformal, it contains exactly two edges of M ′. Moreover, since
L is M ′-conformal, if L contains a vertex x of C, then it also contains
the vertex y of C with xy ∈ M . Indeed, if a bisubdivided edge P of L
contains a vertex x of C, then either x is an endpoint of P , or P contains
the vertex y of C with xy ∈ M . Let {e1, e2} = E(C) ∩M and let P1,
P2 be the subdivided edges of L such that ej ∈ E(Pj) if ej ∈ E(L). If
ej /∈ E(L) for some j, let Pj be chosen arbitrarily. In case P1 = P2 let us
choose P2 to be any non-P1-rung of L instead. We show that there exists
a perfect matching N of L such that M ∩ (E(P1) ∪ E(P2)) ⊆ N and L

contains an N -conformal bisubdivision L′ of M4(k−1)+2 such that P1 and
P2 are subdivided edges of L′. Since M := (M ′ \ E(L)) ∪N is a perfect
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matching of B for which C is M -conformal, this is a contradiction to the
choice of M ′, and thus we must have had k = 1 in the first place.
Let xj , yj be the endpoints of Pj .
In case P1 and P2 are both rungs, we may assume that x1, x2, y1, y2
appear on C′ in the order listed, and x1 ∈ V1. Then C′ is divided
into four internally disjoint paths Q1, . . . , Q4 such that Q1 connects x1

to x2, Q2 connects x2 to y1, and so forth. Moreover, every rung of L

that has an endpoint on Q1 also has an endpoint of Q3, similarly for
Q2 and Q4. Let us call the number of rungs that are different from
P1 and P2 and have an endpoint on Qj , the length of Qj . With i ≥ 2

at least one of Q1 and Q2 has length at least two. Without loss of
generality let us assume this to be true for Q1 and thus also for Q3. Let
R1 and R2 be two rungs whose endpoints on Q1 are internal vertices of
Q1 and consecutive, i.e. no other rung has an endpoint on the subpath
of Q1 connecting R1 to R2. Let Q′

1 be this subpath and let Q′
3 be the

corresponding subpath of Q3. Then, since R1 and R2 are M ′-conformal
by Lemma 4.4.1, K := R1Q

′
1R2Q

′
2 is an M ′-conformal cycle. Let N :=

((M ∩E(L)) \ (E(K) \M))∪ ((E(K)) \ (M ∩E(L))), then R1 and R2 are
internally N -conformal. Let L′ be the N -conformal subgraph of L obtained
by deleting all inner vertices of R1 and R2. Then L′ is a bisubdivision of
M4(k−1)+2 as required.
Now suppose, without loss of generality, that P1 is not a rung of L, but
P2 is. Then one of x1 and y1 is an endpoint of a bisubdivided edge Q of
L such that Q ̸= P1 and Q is not a rung, but no rung of L which shares
an endpoint of Q is P2. Let R1 and R2 be those rungs and let Q′ be the
subdivided edge of L that connects the other two endpoints of R1 and
R2. Not K := QR1Q

′R2 is an M ′-conformal cycle that does not contain a
vertex of C. We set N := ((M∩E(L))\(E(K)\M))∪((E(K))\(M∩E(L)))

and define L′ as the subgraph of L we obtain by deleting the inner vertices
of R1 and R2. Then L′ is again a bisubdivision of M4(k−1)+2 as required.
If both P1 and P2 are subpaths of C′ we can again find some vertex
z ∈ {x1, x2, y2, y2} such that z is an endpoint of a bisubdivided edge Q

that is a subpath of C′ and different from P1 and P2. Let R1 and R2 be
the two rungs that share endpoints with Q and let Q′ be the bisubdivided
edge of L that connects the other two endpoints of R1 and R2. Note that
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z can be chosen such that Q′ is also different from P1 and P2. We define
K, N , and L′ as above, and thus the proof is complete.

So for every 4-cycle C in a non-Pfaffian brace there is a perfect matching M

such that C is M -conformal and there exists an M -conformal bisubdivision
of K3,3 in B. The next step is to show that we may assume V (C) to be a
subset of the vertices of this bisubdivision.

Lemma 4.4.3 (E∗). Let B be a non-Pfaffian brace and C a 4-cycle in B,
then there exists a perfect matching M of B such that C is M -conformal
and there is an M -conformal bisubdivision L of K3,3 with V (C) ⊆ V (L).

Proof. By Lemma 4.4.2 there exist a perfect matching M ′ and an M ′-
conformal bisubdivision L′ of K3,3 in B such that C is M ′ conformal. In
case V (C) ⊆ V (L′) we are done. Next suppose L′ contains exactly one
of the two edges in M ′ ∩ E(C), let xy be this edge. Then C contains
an internally M ′-conformal path P with V (P ) = V (C) with endpoints
x and y. Let M := M ′∆E(C), then P is M -conformal and by replacing
xy in L′ with P we obtain an M -conformal bisubdivision L of K3,3 as
desired. So from now on, we may assume C and L′ to be vertex disjoint.
Let ab ∈ E(C) \M ′. By using Theorem 3.1.69 and Lemma 3.1.42, we can
find two internally M ′-conformal paths Pa and Pb such that each Px has
x ∈ {a, b} as an endpoint, has its other endpoint on L′ and is otherwise
disjoint from L′ and C. Moreover, Pa and Pb are either disjoint, or Pa∩Pb

is an M ′-conformal path. What follows is a case distinction on how Pa

and Pb connect C to L′. For each x ∈ {a, b} let sx be the endpoint of
Px on L′, and let U be the M ′-conformal path of length four on C with
endpoints a and b.
Case 1: Pa and Pb are disjoint and there exists a bisubdivided edge Q of
L′ containing both sa and sb.
Since L′ is an M ′-conformal bisubdivision of K3,3 and sa and sb belong to
different colour classes, we can choose M ′ such that the subpath connecting
sa to sb on Q is internally M ′-conformal. Then we can simply replace Q

by PaUPb in order to obtain L as desired.
Case 2: Pa ∩Pb is an M ′-conformal path, and there exists a bisubdivided
edge Q of L′ containing both sa and sb.
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Since L′ is an M ′-conformal bisubdivision of K3,3 and sa and sb belong
to different colour classes, we can choose M ′ such that the subpath R

connecting sa to sb on Q is internally M ′-conformal. Let W be the
internally M ′-conformal subpath of Pa + Pb with endpoints sa and sb,
then we can replace Q by W in order to obtain a new M ′-conformal
bisubdivision L′′ of K3,3 which meets exactly the requirements of the
previous case. So by reapplying the arguments from above we can find a
conformal bisubdivision L of K3,3 as desired.
Case 3: Pa and Pb are disjoint, and there exist bisubdivided edges Qa

and Qb of L′ that share exactly one endpoint such that each Qx contains
sx for x ∈ {a, b}.
Let z be the common endpoint of Qa and Qb and let us assume, without
loss of generality, that z belongs to the same colour class as sa. We
may choose M ′ such that Qa is M ′-conformal. Let R1 be the subpath
of Qa that connects the non-z-endpoint of Qa to sa, then R1 is also M ′-
conformal. Let u be the non-z-endpoint of Qb and v be the non-z-endpoint
of the third bisubdivided edge Q′ of L′ that has z as an endpoint. Let
R2 := saQazQ

′v, as well as R3, be the path PaUPbsbQbu. Now R2 and
R3 are internally M ′-conformal and by replacing Qa, Qb and Q′ with R1,
R2 and R3 we have found our desired M ′-conformal bisubdivision of K3,3.
Case 4: Pa ∩ Pb is an M ′-conformal path, and there exist bisubdivided
edges Qa and Qb of L′ that share exactly one endpoint such that each Qx

contains sx for x ∈ {a, b}.
Let W be the internally M ′-conformal subpath of Pa + Pb with endpoints
sa and sb. Let z be the common endpoint of Qa and Qb and let us assume,
without loss of generality, that z belongs to the same colour class as
sa. We may choose M ′ such that Qa is M ′-conformal. Let R1 be the
subpath of Qa that connects the non-z-endpoint of Qa to sa, then R1

is also M ′-conformal. Let u be the non-z-endpoint of Qb and v be the
non-z-endpoint of the third bisubdivided edge Q′ of L′ that has z as an
endpoint. Let R2 := saQazQ

′v as well as R3 be the path WQbu. Now R2

and R3 are internally M ′-conformal and by replacing Qa, Qb and Q′ with
R1, R2 and R3 we have found an M ′-conformal bisubdivision L′′ of K3,3

together with two disjoint internally M ′-conformal paths, each linking a
vertex of {a, b} to a common bisubdivided edge of L′′. Hence by recurring
to the first case, we can finish the argument.
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Case 5: Pa and Pb are disjoint and there exist bisubdivided edges Qa and
Qb of L′ that vertex disjoint such that each Qx contains sx for x ∈ {a, b}.
Let Q be the unique bisubdivided edge of L′ that shares an endpoint,
say va, with Qa and an endpoint, let us call it vb, with Qb such that
for each x ∈ {a, b}, vx and x belong to the same colour class of B. For
each x ∈ {a, b} let Fx be the bisubdivided edge of L′ with endpoint
vx that is neither Q nor Qx. Moreover, let Rx

1 be the subpath of Qx

connecting sx to the non-vx-endpoint of Qx. Since L′ is an M ′-conformal
bisubdivision of K3,3, we may choose M ′ such that Qa and Qb both are
M ′-conformal. Then Ra

1 and Rb
1 are M ′-conformal as well. For each

x ∈ {a, b} let Rx
2 := sxQxvxFx and let R be the path PaUPb. Then let L

be the graph obtained from L′ by replacing Qa, Fa, Q, Qb, and Fb with
the Rx

i , i ∈ [1, 2], x ∈ {a, b}, and R. It is straight forward to check that L

is an M ′-conformal bisubdivision of K3,3 as required by the assertion.
Case 6: Pa ∩ Pb is an M ′-conformal path and there exist bisubdivided
edges Qa and Qb of L′ that vertex disjoint such that each Qx contains sx
for x ∈ {a, b}.
As before with the even numbered cases let W be the internally M ′-
conformal subpath of Pa+Pb with endpoints sa and sb. We then repeat the
construction from Case 5 in order to obtain an M ′-conformal bisubdivision
L′′ of K3,3 together with two disjoint internally M ′-conformal paths that
meet the requirements of the first case. By reapplying the arguments
of the first case, we finally obtain L as desired, and thus our proof is
complete.

Having established Lemma 4.4.3, the next step on the agenda is to analyse
how the edges of E(C) ∩M can occur in the M -conformal bisubdivision
L of K3,3. The goal is to identify the cases where we immediately find a
conformal cross over C, and which cases cannot occur in the first place.
Let B be a non-Pfaffian brace, C a 4-cycle in B and M a perfect matching
of B such that there exists an M -conformal bisubdivision L of K3,3 in B for
which V (C) ⊆ V (L). Let {ab, a′b′} = E(C) ∩M such that a, a′ ∈ V1 and
let P,Q be two odd length M -alternating paths where each X ∈ {P,Q}
has endpoints aX , bX such that aX ∈ V1. We say that e ∈ {ab, a′b′} occurs
on P , if e ∈ E(P ) and it occurs in reverse on P if P − e consists of two
paths of even length. Please note that in case both of ab and a′b′ occur
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on P such that exactly one of them occurs in reverse, then no perfect
matching M ′ for which P is M ′-conformal or internally M ′-conformal can
contain both edges. To see this simply observe that an edge occurring
in reverse on an M -alternating path P belongs to M if and only if P is
M -conformal.

Observation 4.4.4 (E∗). Let B be a non-Pfaffian brace, C a 4-cycle in
B and M a perfect matching of B such that there exists an M -conformal
bisubdivision L of K3,3 in B for which V (C) ⊆ V (L). Let {ab, a′b′} =
E(C) ∩M such that a, a′ ∈ V1 and let P be a bisubdivided edge of L. If
both ab and a′b′ occur on P , then either both or none of them occurs in
reverse.

If P and Q have a common endpoint z and are otherwise disjoint, we say
that ab and a′b′ are split over P and Q if exactly one of ab and a′b′ occurs
on P and the other one occurs on Q. They are said to be split nicely if the
shortest {a, b}-{a′, b′}-subpath R of PzQ has even length, and z ∈ V (R)

does not share the colour of the endpoints of R. In case R is even, and z

belongs to the same colour class as the two endpoints of R we say ab and
a′b′ are split completely over P and Q. Please note that, if ab and a′b′

are split completely over P and Q, then each of the two edges occurs in
reverse on its respective path. Moreover, by the discussion above, P and
Q would need both be M -conformal in order to guarantee ab, a′b′ ∈ M .
Hence they can never be split completely over two bisubdivided edges of
L that share an endpoint.

Observation 4.4.5 (E∗). Let B be a non-Pfaffian brace, C a 4-cycle
in B, and M a perfect matching of B such that there exists an M -
conformal bisubdivision L of K3,3 in B for which V (C) ⊆ V (L). Let
{ab, a′b′} = E(C)∩M such that a, a′ ∈ V1 and let P,Q be two bisubdivided
edges of L sharing a single endpoint. If ab and a′b′ are split over P and
Q, then they are not completely split.

Lemma 4.4.6 (E∗). Let B be a non-Pfaffian brace, C a 4-cycle in B

and M a perfect matching of B such that there exists an M -conformal
bisubdivision L of K3,3 in B for which V (C) ⊆ V (L). Let {ab, a′b′} =
E(C) ∩M such that a, a′ ∈ V1 and let P,Q be two bisubdivided edges of
L such that ab occurs on P and a′b′ occurs on Q. If P and Q are disjoint,
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or ab and a′b′ are split nicely over P and Q, there exist paths R1 and R2

in L that form a conformal cross over C.

ba

a′

b′
C

ba

a′
b′

C

ba

b′a′

C

ab

b′a′

C

Figure 4.12.: The conformal crosses over the 4-cycle C in a bisubdivision
of K3,3 from Lemma 4.4.6.

Proof. The proof is essentially another case distinction over the following
cases:

i) ab and a′b′ are nicely split over P and Q,
ii) P and Q are disjoint and neither ab nor a′b′ occurs in reverse on its

respective path,
iii) P and Q are disjoint and, without loss of generality, a′b′ occurs in

reverse on Q, and
iv) P and Q are disjoint and both, ab and a′b′, occur in reverse on their

respective path.
The perfect matchings of L together with the paths R1 and R2 are
illustrated in Figure 4.12. Please note that the copies of K3,3 depicted
in the figure are in fact bisubdivisions. Where necessary, additional
subdivision vertices are drawn, but in general, the edges depicted in a light
grey may be subdivided an arbitrary, but even, number of times. If in order
to depict the respective perfect matching, a bisubdivided edge is marked
and bold, this means that the respective path is M -conformal, while
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an unmarked bisubdivided edge represents an internally M -conformal
path.

ordered

C

C

a b′ a′b

a b′ a′b

reversed

C

C

b a′ b′a

b a′ b′a

split

C

C

ab

ab

a′
b′

a′
b′

Figure 4.13.: The three possible configurations how the edges ab and a′b′

may occur in a bisubdivision of K3,3 without immediately
yielding a conformal cross over C. The second line of figures
shows how these cases can be reduced.

If we can find a conformal bisubdivision of K3,3 that fits one of the cases
in Lemma 4.4.6, we are done immediately. Hence what remains is a
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discussion of the three cases which are still left. In Figure 4.13, these
cases are illustrated. In two of the three cases, the edges ab and a′b′ occur
on a single subdivided edge of L, while in the last case, the split case, ab
and a′b′ are split over two subdivided edges in such a way that exactly
one of ab and a′b′ occurs in reverse on its respective path. In each of the
three cases, we can use an edge e ∈ E(C) \ {ab, a′b′} in order to further
reduce L and make sure that we always find a conformal bisubdivision
of K3,3 which contains at least three edges of C. Let B be a brace, C a
4-cycle, M a perfect matching of B such that C is M -conformal and L an
M -conformal bisubdivision of K3,3 that contains the vertices of C. We
say that L splits C if the way the vertices of C are distributed over the
bisubdivided edges of L as they are in the split case in Figure 4.13. As an
intermediate step, we want to show that we can always find a bisubdivision
of K3,3 that splits C. Suppose ab and a′b′ occur on a single subdivided
edge P of L as in the ordered or the reversed case from Figure 4.13. Let
u ∈ Vi be an endpoint of P and let Y be the bisubdivided claw with centre
u in L consisting of the three bisubdivided edges P , Q1, and Q2 of L that
have u as an endpoint. Let T be the shortest u-V (C)-subpath of P . If
there exists an internally M -conformal path R that is internally disjoint
from L such that R has an endpoint in V3−i(T ) and its other endpoint
lies in Vi(L− Y ) we say that L has a Vi-jump over C.

Lemma 4.4.7 (E∗). Let B be a brace, M a perfect matching of B,
H ⊆ B an M -conformal and matching covered subgraph, and X ⊆ V (H)

such that ∂H(X) is a non-trivial tight cut in H. Then there exists an
internally M -conformal path P in B such that P is internally disjoint
from H and has its endpoints in the minorities of X and V (H) \X.

Proof. The claim follows immediately from Theorem 3.1.69. With B being
a brace it is 2-extendible. Let e be the unique edge of M in ∂H(X). Then
there must be an internally M -conformal Min(X)-Min(Y )-path P in B

that avoids e. If we choose P to be as short as possible, it cannot contain
any vertex of Min(X) ∪Min(Y ) as an inner vertex. Moreover, since H is
M -conformal, no vertex of H can be an inner vertex of P .

Lemma 4.4.8 (E∗). Let B be a non-Pfaffian brace and C a 4-cycle in
B such that there is no conformal cross over C in B. Then there exists
a perfect matching M of B such that C is M -conformal and there is an
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M -conformal bisubdivision L of K3,3 such that L splits C, or L has a
V1-jump over C.

Proof. By lemmata 4.4.3 and 4.4.6 and the discussion above we know that
there are a perfect matching M of B such that C is M -conformal and an
M -conformal bisubdivision L of K3,3 that contains the vertices of C such
that the way the vertices of C occur in L corresponds to one of the three
cases depicted in Figure 4.13. If L splits C we are done already, so let
us assume that there is a bisubdivided edge P of L such that the edges
ab, a′b ∈ E(C) ∩ M occur on P as in the ordered or the reversed case
from Figure 4.13. Let u ∈ V1 be an endpoint of P . Consider the three
bisubdivided edges P , Q1, and Q2 of L that have u as an endpoint. Let us
choose L such that the tuple (|E(P )|, |E(Q1)∪E(Q2)|) is lexicographically
minimised. For each Z ∈ {P,Q1, Q2} let vZ ∈ V2 be the endpoint of Z
different from u and let Y := (V (P ) ∪ V (Q1) ∪ V (Q2)) \ {vP , vQ1 , vQ2}.
Now every component of L[Y ] − u is a path of odd length and thus
|V1 ∩ Y | − |V2 ∩ Y | = 1, moreover, no vertex of Y ∩ V2 has a neighbour in
L− Y within L and |Y ∩ V (C)| ≥ 3. Hence ∂L(Y ) defines a non-trivial
tight cut in L. For an illustration, see Figure 4.14.

CP

Q2Q1

vP u

vQ2vQ1

a b a′ b′

Figure 4.14.: The non-trivial tight cut around the bisubdivided claw cen-
tred at u in the proof of Lemma 4.4.8

By Lemma 4.4.7 there exists an internally M -conformal path F in B such
that

• F has an endpoint in V2 ∩ Y ,
• the other endpoint of F lies in V1(L) \ Y , and
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• F is internally disjoint from L.
Please note that we may change the perfect matching M within the M -
conformal subgraph L of B at will, without changing the fact that F is
an internally M -conformal path with the properties listed above.
Let y be the endpoint of F in Y and let x be its other endpoint as well as
Px be the subdivided edge of L that contains x in case x is a vertex of
degree two in L. What follows is a discussion on the possible positions
of x and y in L. For an illustrative overview on the different cases that
might appear consult Figure 4.15. Let TV1 be the shortest subpath of P
with one endpoint in V (C) and u as its other endpoint. Similarly, let TV2

be the shortest subpath of P with one endpoint in V (C) and vP as its
other endpoint. At last, let w1 and w2 be the two degree three vertices
in V1(L) that are different from u, let w1 be the endpoint of Px that lies
in V1. Given any two vertices v1, v2 of degree three in L that belong to
different colour classes let us denote by Ev1v2 = Ev2v1 the subdivided
edge of L with endpoints v1 and v2.
Case 1: y ∈ V (TV2 − C)

Suppose Px contains the vertex vP , let W be the third bisubdivided edge
with endpoint vP . Then choose M such that both P and Px are internally
M -conformal. Now we may replace the three subdivided edges of L with
vP as an endpoint by the following three M -alternating paths in order to
obtain an M -conformal bisubdivision L′ of K3,3, where the subdivided
edge P ′ that contains V (C) is strictly shorter than P , thereby violating
the minimal choice of L. We set P ′ := yPu and the other paths are
yPvPW and yFxPxw1

So we may assume Px does not contain vP which means that there is
i ∈ [1, 2] such that Px has vQi as an endpoint. We now aim for a
bisubdivision L′ of K3,3 in which both x and y are vertices of degree three.
As before, the bisubdivided edge of L′ that contains V (C) will be shorter
than P and thus provide a contradiction. We now replace the paths P , Px,
EvPw1 , EvPw2 , and Ew1vQ3−i

by the paths yPu, F , yPvPEvPw2 , xPxvQi ,
and xPxw1Ew1vQ3−i

to obtain the graph L′. Since L is a bisubdivision
of K3,3, we may choose M such that L′ is M -conformal and thus we are
done with this case.
Case 2: y ∈ V (TAV − 1− C)

In this case F is a V1-jump over C and thus we are done immediately.
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CP

Q2Q1

P gets shortened

vP u

vQ2vQ1

F
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Q2Q1
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vP u

vQ2vQ1

F
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CP

Q2Q1

The new K3,3
subdivision splits C

vP u

vQ2vQ1

F

CP
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CP

Q2Q1
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vP u

vQ2vQ1

F
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Q2Q1
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vP u

vQ2vQ1

F

Figure 4.15.: Examples of the cases occuring in the proof of Lemma 4.4.8

Case 3: y ∈ V (C)

In essence, we can repeat the construction from the first case to obtain an
M -conformal bisubdivision L′ of K3,3. Since y ∈ V (C) we end up with
some L′ in which the edges ab and a′b′ occur on two different subdivided
edges that share the endpoint y. Thus L′ splits C and we can close this
case.
Case 4: y /∈ V (Px)

We may assume y ∈ V (Q1) as y ∈ V (Q2) can be handled analogously.
Instead of P as in the first case we reduce the length of Q1 while main-
taining the lengths of P and Q2 in order to obtain a contradiction. The
main idea of the construction, however, remains the same as in the first
case and thus we omit the exact construction here. In Figure 4.15, the
possible ways to obtain the new K3,3-bisubdivision L′ are illustrated.
Combining all of these cases, this means that ∂L(Y ) cannot be a non-
trivial tight cut. Since otherwise we are either done since we find a path
F that allows us to change L into L′ which splits C, or F is a V1-jump
over C. However, by construction |V (C)∩ Y | ≥ 3 and |V (L) \ Y | ≥ 3 and
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thus this is impossible. It follows that L itself must already split C and
so we are done.

Lemma 4.4.9 (E∗). Let B be a non-Pfaffian brace and C a 4-cycle in
B such that there is no conformal cross over C in B. If there exists a
perfect matching M of B such that C is M -conformal and there is an
M -conformal bisubdivision L of K3,3 that has a V1-jump over C, then
there exists a perfect matching M ′ of B such that C is M ′-conformal and
there is an M ′-conformal bisubdivision L′ of K3,3 that either splits C, or
has both, a V1-jump and a V2-jump over C.

Proof. The proof is a slight alteration of the proof of the previous lemma.
Since L has an V1-jump over C, there exists a bisubdivided edge P of L
such that V (C) ⊆ V (P ). Let u ∈ V1 and v ∈ V2 be the endpoints of P . Let
a1, a2, b1, and b2 be the four degree three vertices of L aside from u and v

such that a1, a2 ∈ V1. Now let Y := V (P−u)∪V (Eva1−a1)∪V (Eva2−a2).
By the same arguments as in the previous lemma, ∂L(Y ) must be a non-
trivial tight cut. Similar to before we choose L such that the tuple
(|E(P )|, |E(Eva1) ∪ E(Eva2)|) is lexicographically minimised. By using
the same case distinction as in the proof of Lemma 4.4.8 we either reach
a contradiction, find a conformal K3,3-bisubdivision L′ that splits C, or
the path F yielded by Lemma 4.4.7 is a V2-jump over C in L. The
major difference between this lemma and Lemma 4.4.8 is, that we have to
maintain the existence of a V1-jump over C. In the technique from the
proof of the previous lemma, there are two possible ways, the existence
of an V1-jump over C in the newly constructed K3,3-bisubdivision L′ is
threatened8. Let R be an V1-jump over C for L.
The easier to handle case is the one in which the newly found path F in
Case 4 of the case distinction intersects R. However, since R and F are
internally M -conformal, let z be the first vertex of R on F , then Rz still
is internally M -conformal, and thus in this case, L′ still has a V1-jump
over C.
The more complicated case is a subcase of Case 1. Let TV1 be the shortest
subpath of P with one endpoint in V (C) and u as its other endpoint.
Similarly, let TV2 be the shortest subpath of P with one endpoint in
V (C) and v as its other endpoint. If F has its endpoint in Y on the
8Note that in case L′ splits C we are done.
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subpath of TV1 that connects V (C) to R, then no subpath of R can be a
V1-jump over C for L′. However, in this case, we have found a conformal
K3,3-bisubdivision where the path in which both M -edges of C occur is
shorter than in L. Among those bisubdivisions choose L′ to be one that
lexicographically minimises (|E(P ′)|, |E(Eu′b′1

) ∪ E(Eu′b′2
)|), where the

vertices marked with a ′ are those of L′ that naturally correspond to the
vertices of L. similarly we define P ′. By reapplying the case distinction
of Lemma 4.4.8 to L′ we either find a K3,3-bisubdivision L′′ that splits
C, of we find a new V1-jump over C for L′ which would contradict our
choice of L in the first place since |E(P ′)| < |E(P )|. Hence if we cannot
find a conformal K3,3-bisubdivision that splits C, we always find one that
has both, a V1-jump and a V2-jump over C.

Lemma 4.4.10 (E∗). Let B be a non-Pfaffian brace and C a 4-cycle in
B such that there is no conformal cross over C in B. Then there exists
a perfect matching M of B such that C is M -conformal and there is an
M -conformal bisubdivision L of K3,3 that splits C.

Proof. By Lemma 4.4.8 we either find a conformal bisubdivision L′ of
K3,3 that splits C, in which case we are done, or we find one with a
V1-jump over C. Then Lemma 4.4.9 might again yield the existence of a
conformal bisubdivision L of K3,3 that splits C if it does not we find M

and L such that L has a V1-jump RV1 and a V2-jump RV2 over C. Let P

be the bisubdivided edge of L that contains the vertices of C. We may
assume L to be a conformal K3,3-bisubdivision that minimises the length
of P among all conformal bisubdivisions of K3,3 for which ab and a′b′

occur on a single bisubdivided edge P . By Lemma 3.1.42 we may assume
that RV1 and RV2 are either disjoint, or RV1 ∩ RV2 is an M -conformal
path. For each X ∈ {V1, V2} let vX be the endpoint of RX that does not
belong to the bisubdivided edge P . We have to consider the cases how
vV1 and vV2 occur on the bisubdivided edges of L and for each of these
cases we need to look at RV1 and RV2 being disjoint or meeting in an
M -conformal path. Let u ∈ V1 and v ∈ V2 be the endpoints of P and let
a1, a2 ∈ V1, b1, b2 ∈ V2 be the remaining four vertices of degree three in L.
Then RV1 cannot have an endpoint on Eub1 or Eub2 , while RV2 cannot
have an endpoint on Eva1 or Eva2 . Our goal is to show that RV1 and RV2

can be used to produce a contradiction to the choice of L with respect to
the minimality of P .

189



Chapter 4. The Two Paths Theorem

Let us first consider the cases where at least one of RV1 and RV2 has
an endpoint on one of the Eubi or Evai . By symmetry, we just need to
consider the case where RV1 meets Eva1 and RV2 meets Eub1 , and the case
where RV1 meets Eva1 while RV2 meets an arbitrary other bisubdivided
edge of L, say Ea1b1 . Please note that in all of these cases, it does not
play a role whether ab and a′b′ occur in reverse on P or not. Hence we
only treat the case where ab and a′b′ are not reversed. In Figure 4.16 we
give exemplary constructions of a new conformal K3,3-bisubdivision L′

which still has a bisubdivided edge P ′ containing ab and a′b′, but with
|E(P ′)| < |E(P )| this contradicts the choice of L.

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

Figure 4.16.: The construction of the new conformal K3,3-bisubdivision
in the first case of the proof of Lemma 4.4.10.

For the next case we assume vV1 and vV2 to be vertices of a common
bisubdivided edge Q of L. According to the previous discussion, Q cannot
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share an endpoint with P and by symmetry, it suffices to only consider
one possible choice for Q, so let Q := Ea2b1 . The path Q is split into
three, possibly trivial, subpaths by the vertices vV1 and vV2 . Since Q is of
odd length, either zero or exactly two of these subpaths are of even length,
and these are exactly the two cases we need to distinguish. Figure 4.17
shows how to construct the new conformal K3,3-bisubdivision L′ which
yields the desired contradiction.

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

Figure 4.17.: The construction of the new conformal K3,3-bisubdivision
in the second case of the proof of Lemma 4.4.10.

For the last case, we may assume vV1 and vV2 to belong to different
bisubdivided edges Q1 and Q2 such that neither Qi shares an endpoint
with P . Here we need to distinguish between Q1 and Q2 sharing an
endpoint and being disjoint. Figure 4.18 illustrates the construction of L′.
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b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

b1

uv

a2

b2 a1

C

Figure 4.18.: The construction of the new conformal K3,3-bisubdivision
in the third case of the proof of Lemma 4.4.10.

So whenever we find both a V1-jump and a V2-jump in L, we are able
to find a conformal bisubdivision L′ of K3,3 with a bisubdivided edge P ′

that contains all of C but is shorter than P in the previous bisubdivision.
Thus by choosing L with minimal P , we still find a non-trivial tight cut
as in the proofs of lemmata 4.4.8 and 4.4.9, but neither of these tight cuts
may yield a V1-jump. Hence we must be able to construct a conformal
bisubdivision of K3,3 that splits C.

With this we are ready to close this section with the proof of Proposi-
tion 4.0.8.

Proof of Proposition 4.0.8. Suppose B is a counterexample, so there exists
a 4-cycle C in B such that C is not a subgraph of a conformal K3,3-
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bisubdivision. By Lemma 4.0.9 this means that there is no conformal
cross over C in B and thus, by Lemma 4.4.10 there exists a conformal
bisubdivision L of K3,3 that splits C. As we have seen in Figure 4.13
we may choose L such that one of the degree three vertices in L belongs
to C, let us call that vertex u. Let P1, P2, and P3 be the bisubdivided
edges of L that have u as an endpoint and let vi be the other endpoint
of Pi for all i ∈ [1, 3]. Let Y :=

⋃︁3
i=1 V (Pi − vi) and let us choose L

among all conformal bisubdivisions of K3,3 in B that split C to be one
where |Y | is minimal. As L splits C we still have |Y ∩ V (C)| ≥ 3 and
|V (L) \ Y | ≥ 3 and thus Y is, as we have seen before, a non-trivial tight
cut whose majority is exactly the colour class u belongs to. Without loss
of generality let us assume the minority of Y to be in V1. Observe that
C ∩ L forms an M -conformal path that must contain internal vertices
of two different bisubdivided edges of L. By Lemma 4.4.7 there must
exist an internally M -conformal path F that has one endpoint in Y ∩ V1

and the other one in V2(L − Y ) such that F is internally disjoint from
L. Recall the constructions illustrated in Figure 4.15 and suppose the
endpoint of F in Y is an interior vertex of C ∩ Y . If this is the case,
we find a conformal bisubdivision L′ of K3,3 in which ab and a′b′ belong
to two different bisubdivided edges which do not share an endpoint. By
Lemma 4.4.6 this means we find a conformal bisubdivision of K3,3 which
contains C as a subgraph, contradicting B being a counterexample. Hence
F cannot contain an inner vertex of C ∩ L. But in this case, we can
find a conformal K3,3-bisubdivision L′ that splits C such that Y ′, which
is defined for L′ in the same way as Y is defined for L, contains fewer
vertices than Y which contradicts our choice of L. So either way we
reach a contradiction and thus there cannot be a counterexample to our
claim.

4.5. An Algorithm for 2-MLP

To obtain an algorithmic solution for 2-MLP, we use Proposition 4.0.8
together with Corollary 3.3.10. On a high level, we run into the following
problems: First, we do not know for which perfect matching M of B we
might be able to find a solution for 2-MLP and since there is a potentially
exponential number of perfect matchings in B it clearly does not suffice
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to simply test all of them. Indeed, such an approach is doomed from
the beginning since trying to solve 2-MLP for a fixed perfect matching
is equivalent to the 2-DLP. So we take a slightly different approach. Let
a1, a2, b1, b2 be the four vertices of an instance of 2-MLP. Let |V (B)| = n,
then B contains n

2
vertices of each colour. For each x ∈ {a1, a2, b1, b2} we

may choose from among the n
2

vertices of the opposite colour in order to
find a neighbour that might be matched to x by some perfect matching of
B. In total this means there are at most

2

(︄
n
2

2

)︄
= 2

n
2
(n
2
− 1)

2
∈ O(n2)

many choices of edges that might cover our four terminal vertices in a
perfect matching of B. Let F ⊆ E(B) be a set of at most four edges such
that each vertex from among a1, a2, b1, and b2 is covered by an edge of
F . Next we need to decide whether F is contained in a perfect matching
of B, which can be done by the Hopcroft-Karp algorithm in time O(n

5
2 )

[HK73]. In case such a perfect matching exists, we then alter the graph
B locally which takes up constant time. The main concern of this section
is to introduce this local construction and to show that the existence
of a conformal cross over a well-chosen 4-cycle certifies the existence of
the desired linkage in a way that makes use of the matching edges in F .
The key to deciding whether a conformal cross over our 4-cycle exists
is Proposition 4.0.8 in combination with Corollary 3.3.10. In total, this
approach decides 2-MLP in time O(n5).
Let B be a bipartite graph with a perfect matching, F ⊆ E(B) and
X ⊆ V (B). The set F is said to be an X-cover, if every edge in F

contains a vertex of X and every vertex in X is covered by an edge of F .
If F is an extendible set of edges in B and M is a perfect matching B with
F ⊆M , M is said to extend F . From the discussion above it is clear that
there are O(|V (B)|2) many X-covers in B for any set X ⊆ V (B) with
|X ∩ V1| = |X ∩ V2| = 2. Given distinct vertices a1, a2 ∈ V1, b1, b2 ∈ V2,
and an extendible {a1, a2, b1, b2}-cover F ⊆ E(B) we say that B is an F -
instance of 2-MLP for (a1, a2) and (b1, b2) if there exists a perfect matching
M of B that extends F such that there are two disjoint internally M -
conformal paths P1 and P2 such that Pi has endpoints ai and bi for each
i ∈ [1, 2].
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Definition 4.5.1. Let B be a bipartite graph with a perfect matching,
a1, a2 ∈ V1 and b1, b2 ∈ V2 four distinct vertices of B, and F an extendible
{a1, a2, b1, b2}-cover of size four. Let ua2, vb1 ∈ F . We define the following
transformation of B with respect to F , (a1, a2), and (b1, b2).

B3(B,F, {a1, a2, b1, b2}) := B − u− v + a2b1

F3(B,F, {a1, a2, b1, b2}) := (F \ {ua2, vb1}) ∪ {a2b1}

Lemma 4.5.2 (E∗). Let B be a bipartite graph with a perfect match-
ing, a1, a2 ∈ V1 and b1, b2 ∈ V2 four distinct vertices of B, and F an
extendible {a1, a2, b1, b2}-cover of size four. Then B is an F -instance of
2-MLP for (a1, a2) and (b1, b2) if and only if B3(B,F, {a1, a2, b1, b2}) is a
F3(B,F, {a1, a2, b1, b2})-instance of 2-MLP for (a1, a2) and (b1, b2).

Proof. If B is an F -instance of 2-MLP for (a1, a2) and (b1, b2) there is
a perfect matching M that extends F such that there exist disjoint and
internally M -conformal paths P1 and P2 where Pi has endpoints ai and bi
for each i ∈ [1, 2]. Let ua2, vb1 ∈ F , then {u, v}∩(V (P1)∪V (P2)) = ∅. Let
us add the edges uv and a2b1 to B, then C := ua2b1vu is an M -conformal
4-cycle in B. We set M ′ := (M ′ \E(C)) ∪ {uv, a2b1}, then P1 and P2 are
internally M ′-conformal paths that still exist in B3(B,F, {a1, a2, b1, b2})
and M ′ \ {uv} is a perfect matching of B3(B,F, {a1, a2, b1, b2}) that
extends F3(B,F, {a1, a2, b1, b2}). Hence B3(B,F, {a1, a2, b1, b2}) is a
F3(B,F, {a1, a2, b1, b2})-instance of 2-MLP for (a1, a2) and (b1, b2).
Now assume that B3(B,F, {a1, a2, b1, b2}) is a F3(B,F, {a1, a2, b1, b2})-
instance of 2-MLP for (a1, a2) and (b1, b2). As before let M be a perfect
matching extending F3(B,F, {a1, a2, b1, b2}) and let P1, P2 be the corre-
sponding internally M -conformal paths. Let ua2, vb1 ∈ F , then M ∪ {uv}
is a perfect matching of B + a2b1 + uv and C := ua2b1vu is an M ∪ {uv}-
conformal 4-cycle in B+a2b1+uv. We set M ′ := (M ′ \E(C))∪{ua2, vb1},
then P1 and P2 are internally M ′-conformal paths in B + a2b1 + uv that
still exist in B and M ′ is also a perfect matching of B. Thus B is an
F -instance of 2-MLP for (a1, a2) and (b1, b2).

Definition 4.5.3. Let B be a bipartite graph with a perfect matching,
a1, a2 ∈ V1 and b1, b2 ∈ V2 four distinct vertices of B, S := {a1, a2, b1, b2},
and F an extendible S-cover of size at least three such that a2b1 ∈ F if and
only if |F | = 3. Let ua1, vb2 ∈ F . We define the following transformation
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of B with respect to F , (a1, a2), and (b1, b2). If |F | = 3 use the following
construction:

B2(B,F, S) := B − u− v + a1b2

F2(B,F, S) := (F \ {ua1, vb2}) ∪ {a1b2}
Otherwise, we can first obtain an instance where our extendible cover has
size three as required:

B2(B,F, S) := B2(B3(B,F, S),F3(B,F, S), S)

F2(B,F, S) := F2(B3(B,F, S),F3(B,F, S), S)

Lemma 4.5.4 (E∗). Let B be a bipartite graph with a perfect matching,
a1, a2 ∈ V1 and b1, b2 ∈ V2 four distinct vertices of B, S := {a1, a2, b1, b2},
and F an extendible S-cover of size at least three. Then B is an F -
instance of 2-MLP for (a1, a2) and (b1, b2) if and only if B2(B,F, S) is a
F2(B,F, S)-instance of 2-MLP for (a1, a2) and (b1, b2).

Proof. We only have to consider the case |F | = 3, since the case |F | = 4

follows, by Lemma 4.5.2, with the same arguments.
If B is an F -instance of 2-MLP for (a1, a2) and (b1, b2) there is a perfect
matching M that extends F such that there exist disjoint and internally
M -conformal paths P1 and P2 where Pi has endpoints ai and bi for each
i ∈ [1, 2]. Let ua1, vb2 ∈ F , then {u, v} ∩ (V (P1) ∪ V (P2)) = ∅. Let us
add the edges uv and a1b2 to B, then C := ua1b2vu is an M -conformal
4-cycle in B. We set M ′ := (M ′ \E(C)) ∪ {uv, a1b2}, then P1 and P2 are
internally M ′-conformal paths that still exist in B2(B,F, S) and M ′ \{uv}
is a perfect matching of B2(B,F, S) that extends F2(B,F, S). Hence
B2(B,F, S) is a F2(B,F, S)-instance of 2-MLP for (a1, a2) and (b1, b2).
Now assume that B2(B,F, S) is a F2(B,F, S)-instance of 2-MLP for (a1, a2)

and (b1, b2). As before let M be a perfect matching extending F2(B,F, S)

and let P1, P2 be the corresponding internally M -conformal paths. Let
ua1, vb2 ∈ F , then M ∪ {uv} is a perfect matching of B + a1b2 + uv

and C := ua1b2vu is an M ∪ {uv}-conformal 4-cycle in B + a1b2 + uv.
We set M ′ := (M ′ \ E(C)) ∪ {ua1, vb2}, then P1 and P2 are internally
M ′-conformal paths in B + a1b2 + uv that still exist in B and M ′ is also
a perfect matching of B. Thus B is an F -instance of 2-MLP for (a1, a2)

and (b1, b2).
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Definition 4.5.5. Let B be a bipartite graph with a perfect matching,
a1, a2 ∈ V1 and b1, b2 ∈ V2 four distinct vertices of B, S := {a1, a2, b1, b2},
and F an extendible S-cover such that a2b1 ∈ F if and only if |F | ≤ 3.
We define the following transformation of B with respect to F , (a1, a2),
and (b1, b2). If |F | = 2, and therefore F = {a1b2, a2b1}, use the following
construction: Let x, y be two distinct vertices that do not belong to B.

B(B,F, S) := B + x+ y + {xy, xb1, xb2, ya1, ya2}
Otherwise, we can first obtain an instance where our extendible cover has
size two as required above:

B(B,F, S) := B(B2(B,F, S),F2(B,F, S), S)

In either case let Cycle(B,F, S) be the 4-cycle a1yxb2.

Lemma 4.5.6 (E∗). Let B be a bipartite graph with a perfect matching,
a1, a2 ∈ V1 and b1, b2 ∈ V2 four distinct vertices of B, S := {a1, a2, b1, b2},
and F an extendible S-cover such that a2b1 ∈ F if and only if |F | ≤ 3.
Then B is an F -instance of 2-MLP for (a1, a2) and (b1, b2) if and only if
there exists a conformal cross over Cycle(B,F, S) in B(B,F, S).

Proof. In case |F | ≥ 3 we may replace B and F by B2(B,F, S) and
F2(B,F, S) without influencing the fact whether B is an F -instance of
2-MLP for (a1, a2) and (b1, b2) by Lemma 4.5.4. Hence, without loss of
generality, we may assume |F | = 2.
If B is an F -instance of 2-MLP for (a1, a2) and (b1, b2) there is a perfect
matching M that extends F such that there exist disjoint and internally
M -conformal paths P1 and P2 where Pi has endpoints ai and bi for each
i ∈ [1, 2]. Then M ′ := M ∪ {xy} is a perfect matching of B(B,F, S) and
P1, P2 are internally M ′-conformal paths in B(B,F, S) that, in particular,
avoid the vertices x and y. Hence H := P1 + P2 + B(B,F, S)[S ∪ {x, y}]
is an M ′-conformal subgraph of B(B,F, S). It is straightforward to see
that H is indeed a bisubdivision of K3,3 that contains Cycle(B,F, S) as a
subgraph, see Figure 4.19 for an illustration. By Lemma 4.0.9 this means
that there is a conformal cross over Cycle(B,F, S) in B(B,F, S) and thus
we are done with the forward direction.
For the reverse direction let P1 and P2 be the two alternating paths that
form the conformal cross over Cycle(B,F, S) in B(B,F, S) such that P1

has a1 as an endpoint while P2 as b2 as an endpoint. Then, in particular,
P1 and P2 are of even length. Since x and y both are of degree exactly

197



Chapter 4. The Two Paths Theorem

a1 a2

y

x

b2 b1

P1

P2

C(B,F, S)

Figure 4.19.: A conformal bisubdivision of K3,3 containing the 4-cycle
Cycle(B,F, S).

three in B(B,F, S), P1 + P2 must contain all neighbours of x and y

and thus S ⊆ V (P1 + P2). Since P1 and P2 form a conformal cross
over Cycle(B,F, S), H := Cycle(B,F, S) + P1 + P2 + a2b1 is a conformal
subgraph of B(B,F, S). Indeed, H is a bisubdivision of K3,3 and thus there
exists a perfect matching M of B(B,F, S) such that a1b2, xy, a2b1 ∈ M

and H is M -conformal. Let P ′
1 := a1P1b1 and P ′

2 := b2P2a2, then the P ′
i

are disjoint and internally M ′-conformal paths. Moreover, M ′ \ {xy} is
a perfect matching of B that extends F , and thus B is a F -instance of
2-MLP for (a1, a2) and (b1, b2).

Our goal is to reduce 2-MLP to the detection of Pfaffian braces. For this
we need to make sure that, in case we are dealing with a ’Yes’-instance,
the bisubdivision of K3,3 cannot vanish somehow.

Lemma 4.5.7 (E∗). Let B be a bipartite matching covered graph, ∂B(X)

a non-trivial tight cut in B, and M a perfect matching in B. If P is
an internally M -conformal path with both endpoints in X but E(P ) ∩
∂B(X) ̸= ∅, then E(P ) ∩ ∂B(X) ∩M ̸= ∅ and |E(P ) ∩ ∂B(X)| = 2.

Proof. Let a ∈ V1 and b ∈ V2 be the two endpoints of P and let us
traverse P from a towards b. Let e1 be the first edge of E(P ) ∩ ∂B(X)

we encounter this way and let e2 be the second edge. Moreover let xi be
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the endpoint of ei in X and suppose {e1, e2} ∩M = ∅. By choice of e1
and e2 the path x1Px2 lies completely in X and is M -conformal. Thus
x1Px2 must be of odd length and therefore x1 and x2 must be of different
colour. Hence both X ∩ V1 and X ∩ V2 must have a neighbour in X, this,
however, contradicts Lemma 3.1.58, and thus one of the two edges must
be an edge of M .
Suppose P has more than two edges in ∂B(X). If the majority of X is in
V1, then the second endpoint, say y2, of e1 must be a vertex of V1 as well
and e2 ∈M . In this case let a′ := y2. If on the other hand the majority
of X is in V2, then y2 ∈ V2 and thus e1 ∈M implying e2 /∈M . Hence y2
must be covered by an edge e′ ∈M ∩ E(P ) with second endpoint a′. In
either case, a′P is an internally M -conformal path with both endpoints
in X and an edge in ∂B(X). By the arguments above, this means that
E(a′P )∩ ∂B(X)∩M ̸= ∅, but this means |M ∩ ∂B(X)| ≥ 2 contradicting
∂B(X) being a tight cut. Hence |E(P ) ∩ ∂B(X)| = 2.

Lemma 4.5.8 (E∗). Let B be a bipartite graph with a perfect matching
and H ⊆ B a conformal subgraph B such that V1(H) = {a1, a2, y},
V2(H) = {b1, b2, x}, E(H) = {a1b2, a2b1, xy, a1x, a2x, b1y, b2y}, and
degB(x) = degB(y) = 3. Let C := a1xyb2a1, then there is a confor-
mal cross over C in B if and only if B has a brace J such that H ⊆ J and
J is not Pfaffian.

Proof. Let S := {a1, a2, b2, b2}. Suppose there is a conformal cross over
C in B. This case starts out similar to the reverse direction of the
previous lemma. Let P1 and P2 be the two alternating paths that form
the conformal cross over C in B such that P1 has a1 as an endpoint while
P2 as b2 as an endpoint. Then, in particular, P1 and P2 are of even length.
Since x and y both are of degree exactly three in B by our assumption,
P1 + P2 must contain all neighbours of x and y and thus S ⊆ V (P1 + P2).
Since P1 and P2 form a conformal cross over C, H ′ := C + P1 + P2 + a2b1
is a conformal subgraph of B. Indeed, H ′ is a bisubdivision of K3,3

Let us choose B to be a minimal counterexample. In case B is brace, it
must be non-Pfaffian since it contains a conformal bisubdivision of K3,3

and thus we are done. Hence we may assume that there is a non-trivial
tight cut ∂B(X) in B. If X, or X, is disjoint from H ′, one of the two tight
cut contractions of ∂B(X), let us call it B′, still contains H ′ as a conformal
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subgraph and by choice of B, the assertion holds true for B′ and we find
a brace J of B′ as desired. By Theorem 3.1.61, this means that J is a
brace of B and thus B cannot be a counterexample. Hence both X and
X must contain vertices of H ′. Observe that ∂H′(X) is also a tight cut of
H ′. Now H ′ has exactly one K3,3 and, possibly, a bunch of C4 as its list
of braces. Moreover, the brace J ′ of H ′ that is isomorphic to K3,3 must
contain all six degree three vertices of H ′, or remainders of them. Indeed,
this means that either X or X contains at least five vertices of H. By
Lemma 4.5.7 this means that at most one of the two paths P1 and P2 may
have an edge in ∂B(X). If none of the two paths has an edge in ∂B(X),
then one of the two tight cut contractions of ∂B(X) contains all of H ′ as
a conformal subgraph, contradicting B being a minimal counterexample
as before. Hence we may assume E(P1) ∩ ∂B(X) ̸= ∅. First, assume
|E(P1) ∩ ∂B(X)| ≥ 2. We claim that both endpoints of P1 belong to
one of the two shores, say X and |E(P1) ∩ ∂B(X)| = 2. To see this let
Q1, . . . , Qℓ, ℓ ≥ 2 be the components of P1−∂B(X) with vertex sets in X.
By Lemma 3.1.58 each Qj must have both endpoints in the same colour
class and thus is of even length. Thus for each Qj there exists an edge in
M ∩∂B(X)∩E(P1) covering an endpoint of Qj . Consequently, with ℓ ≥ 2

this contradicts ∂B(X) being tight. Hence |E(P1)∩ ∂B(X)| ≥ 2. However,
if P1 would have an endpoint in both X and X, then |∂B(X)| would be
odd. Also note that in case both endpoints of P1 are in X, then all of H
must be in X since otherwise, we could choose a perfect matching of H ′

with at least two edges in ∂B(X). Hence after contracting the shore that
does not contain an endpoint of P1, we obtain a matching covered graph
that contains a conformal K3,3-bisubdivision with H as a subgraph. In
case |E(P1) ∩ ∂B(X)| = 1 exactly one endpoint of P1 must be contained
in, say, X, while the rest of H belongs to X. Again, after contracting
the shore that does not contain an endpoint of P1 we obtain a matching
covered graph that contains a conformal K3,3-bisubdivision with H as a
subgraph. Hence in neither case B can be a minimal counterexample, and
thus no such B can exist.
The reverse follows among similar lines. If there is a non-Pfaffian brace
J of B such that H ⊆ J , then, by Proposition 4.0.8 there must be a
conformal bisubdivision L of K3,3 in J that contains C as a subgraph.
Indeed, as we have seen before, we can choose L such that H ⊆ L and
thus there must be a conformal bisubdivision L′ of K3,3 in B such that
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H ⊆ L′. According to Lemma 4.0.9, this means that there is a conformal
cross over C in B.

Lemma 4.5.9 ([RST99]). There exists an algorithm that, given a bipartite
and matching covered graph B as input, computes a list of all braces of
B in time O(|V (B)||E(B)|).

Proof of Theorem 4.0.6. Let B be a bipartite graph with a perfect match-
ing and S := {a1, a2, b1, b2} be the set of terminals we received as input
for the 2-MLP. By the discussion at the start of this section we only have
to check for each of the at most |V (B)|2 S-covers F whether they are
extendible and whether B is an F -instance of 2-MLP for (a1, a2) and
(b1, b2). To check whether F is extendable we have to check whether
B−V (F ) has a perfect matching which can be done by the Hopcroft-Karp
algorithm in time O(n

5
2 ) [HK73]. So we may assume F to be extendible.

In case F = {a1b1, a2b2} we can stop immediately and return the answer
’Yes’.
If |F ∩ {a1b1, a2b2} | = 1 we can reduce the problem of finding our 2-
linkage to the reachability problem in digraphs as follows. Without loss
of generality let us assume a1a2 ∈ F and let M be a perfect matching of
B that extends F . Moreover, let ea ∈ M be the edge covering a2 while
eb is the edge of M covering b2. Let D := D(B,M) be the M -direction
of B, let v be the vertex corresponding to a1b2, let s be be the vertex
corresponding to ea, and let t be the vertex corresponding to eb. Then
there exists a perfect matching M ′ of B that extends F such that there is
an internally M ′-conformal path with endpoints a2 and b2 in B − a1 − b1
if and only if there is an internally M -conformal path P with endpoints
a2 and b2 in B − a1 − b1 by Theorem 3.1.69. Finally, such a path exists if
and only if there is a directed s-t-path in D − v.
Hence we may assume F ∩ {a1b1, a2b2} = ∅. So, by Lemma 4.5.6 we
can translate the problem into the decision problem, whether there is a
conformal cross over the 4-cycle Cycle(B,F, S) in B(B,F, S). Let H be
the subgraph of B(B,F, S) induced by S∪{x, y}, then Lemma 4.5.8 allows
us to return ’Yes’ if and only if B(B,F, S) has a non-Pfaffian brace J with
H ⊆ J . Lemma 4.5.9 finds all braces of B(B,F, S) in time O(|V (B)|3)
and if there is a brace J with H ⊆ J we can use Corollary 3.3.10 to decide
in time O(|V (B)|3) whether J is Pfaffian.
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Chapter 5.

Perfect Matching Width

At the heart of the Graph Minors Project sits the idea of decomposing a
graph in a tree-like fashion. While towards the end of this series of papers
the building blocks become more and more abstract, a first step towards
such a decomposition was the idea of treewidth. We briefly discussed in
Chapter 2 that graphs of small treewidth can be regarded as ‘structurally
simple’ and treewidth itself serves two main purposes:
It captures the structure of graphs of small treewidth with high accuracy
and acts as a foundation to solve related algorithmic problems like the
disjoint paths problem and minor testing.
On graphs of high treewidth it gives a rough approximation on the structure
of the graph, if it excludes some minor, in the form of the Grid Theorem
and, later on, the Flat Wall Theorem.
In this chapter we explore a potential analogue of treewidth for graphs with
perfect matchings. This analogue is designed to capture the structure of
a graph with regards to its perfect matchings and thus it can be expected
to be incomparable with treewidth itself. We dive deeper into the topic of
comparing treewidth and our matching version of treewidth in Section 5.5.

5.1. Introducing Perfect Matching Width

Norine and Thomas found an infinite anti-chain of minimally non-Pfaffian
bricks [NT08] which forced their study of Pfaffian orientations for general
graphs to a momentary halt. It took several years from the first discovery
of the unique excluded matching minor for Pfaffian bipartite graphs [Lit75]
to the solution of the corresponding recognition problem [RST99] which,
as we have seen in Chapter 4, appears to have deep connections to the
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study of matching minors as a whole. If non-bipartite Pfaffian graphs
cannot be described by a finite number of forbidden matching minors, then
either the notion of matching minors itself is not suitable, or at least not
strong enough, or some other way has to be found to solve the problem.
In [NT08] the authors discuss some additional operations one could add
to taking conformal subgraphs and bicontracting vertices of degree two to
create a stronger and possible more suitable version of minors (see also
[Tho06] for more information).
As a slightly different approach, Norine proposed a parameter inspired by
treewidth which, in some sense, may be seen as a possible generalisation
of the tight cut decomposition.

Definition 5.1.1 (Matching Porosity). Let G be a graph with a perfect
matching and X ⊆ V (G) a set of vertices. The matching porosity of the
cut around X in G is the value

mp(∂G(X)) := max
M∈M(G)

|M ∩ ∂G(X)|.

Note that the function mp is symmetric, so mp(∂G(X)) = mp(∂G(X)).
This means, matching porosity fits into the mould of general branch
decompositions.

Definition 5.1.2 (Perfect Matching Width). Let G be a graph with
a perfect matching. A perfect matching decomposition of G is a mp-
branch decomposition (T, δ) over V (G) where T is a cubic tree and
δ : L(T )→ V (G) is a bijection.
The width of a perfect matching decomposition (T, δ) is defined as its
mp-width, and the perfect matching width of G, denoted by pmw(G), is
the minimum width over all perfect matching decompositions for G.

For an example of a perfect matching decomposition consider Figure 5.1.
The bipartite graph in our example is of perfect matching width 2 and the
decomposition tree contains exactly three edges inducing cuts of matching
porosity 1.
In [Nor05] Norine proposed an algorithm that asks for a graph G with
a perfect matching and a matching decomposition (T, δ) of width k and
tests in time |V (G)|O(k) whether G is Pfaffian. In fact, Norine’s algorithm
is not exclusively designed to work on perfect matching decompositions
as introduced above, but it can be used for any tree like decomposition
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Figure 5.1.: A bipartite matching covered graph B of perfect matching
width 2 together with an optimal perfect matching decom-
position. The marked edges form a perfect matching of B
and the edges e1, e2, and e3 of the decomposition tree induce
non-trivial tight cuts.

of subgraphs of G, separated by cuts of small matching porosity, as long
as it is guaranteed that each of these subgraphs can be made Pfaffian by
deleting a small set of vertices. This general approach strongly resembles
the more abstract decompositions presented in the later papers of the
Graph Minors Project. Norine conjectured, that the analogy to treewidth
does not stop there, in fact he proposed the following conjecture:

Conjecture 5.1.3 (Norine’s Matching Grid Conjecture, [Nor05]). There
exists a function g : N → N such that for every k ∈ N, and every graph
G with a perfect matching either pmw(G) ≤ g(k), or G contains the
2k × 2k-grid as a matching minor.

To solve this conjecture, there are some immediate questions that need
answers:

i) How does perfect matching width interact with tight cut contractions
and matching minors?

ii) Does matching porosity and thus perfect matching width capture,
in some sense, the matching related connectivity of a graph?
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iii) Is there a connection between matching porosity and some sense of
separation in matching covered graphs?

The reason why the later two questions are relevant is that in both
the undirected and the directed version of treewidth, the key role in
proving the (Directed) Grid Theorem was played by obstructions such
as tangles and brambles and not so much by treewidth itself. Especially
the existence of large families of pairwise disjoint paths and therefore
Menger’s Theorem were of great importance to these proofs. As we have
discussed in Section 3.4, for non-bipartite graphs this is a problem as the
matching version of disjoint s-t-paths is NP-complete.
Please note that Norine’s algorithm requires a perfect matching decompo-
sition of small width to be given as input, so another open problem for
this approach would be:

iv) Is it possible to compute a perfect matching decomposition of (rea-
sonably) small width in polynomial time on graphs of small perfect
matching width?

Bicontracting a vertex of degree two preserves the parity of distances
between vertices in the graph. That means, if Conjecture 5.1.3 is true,
any non-bipartite graph of large perfect matching width must contain a
conformal and bipartite subgraph which still is of relatively large perfect
matching width. This is an immediate consequence of Lemma 3.1.102.
Hence we propose the following strategy towards the solution of Conjec-
ture 5.1.3.

i) Solve Conjecture 5.1.3 for bipartite graphs, and then
ii) show that there is a function g : N→ N such that for every k ∈ N,

and every graph G with a perfect matching either pmw(G) ≤ g(k), or
G contains a conformal and bipartite subgraph H with pmw(H) ≥ k.

Conjecture 5.1.3 then follows from the combination of steps (i) and (ii).
In this chapter we are mainly concerned with step (i) and thus we stick
to the case of bipartite graphs.
Please note that the notion of subgraph might not be strong enough.
Indeed, in non-bipartite matching covered graphs there exists another
possible generalisation of tight cuts, called separating cuts (see for example
[CL00]). It might be possible that one needs to first refine the non-bipartite
graph before the non-bipartite subgraph H as above can be found. Still,
if this is necessary and cannot be avoided, this should yield a family of
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graphs with large perfect matching width, where no matching model of
the 2k × 2k-grid can be found. By Lemma 3.1.102 this would mean that
Conjecture 5.1.3 must be further refined.

5.1.1. Basic Properties of Perfect Matching Width

As a first step let us investigate the basic properties of perfect matching
width as a parameter and establish some useful tools we might need later.
Let G be some graph with a perfect matching, and X ⊆ V (G). If we select
a single vertex v ∈ X, then any perfect matching M of G either matches
v with a vertex inside of X, or with a vertex in X. If v is matched with
a vertex in X, then |∂G(X \ {v}) ∩M | = |∂G(X) ∩M | − 1. Otherwise
we have |∂G(X \ {v}) ∩M | = |∂G(X) ∩M |+ 1. This means, by moving
around a single vertex, the matching porosity of the cuts involved cannot
change by more than one.

Observation 5.1.4 (B∗). Let G be a graph with a perfect matching,
X ⊆ V (G), and v ∈ X. Then mp(∂G(X)) − 1 ≤ mp(∂G(X \ {v})) ≤
mp(∂G(X)) + 1.

The trees of perfect matching decompositions, as for many branch decom-
positions are cubic, or at least subcubic1. Just considering the possible
structures of the trees themselves can be a useful tool when dealing with
this kind of decompositions.

Definition 5.1.5 (Spine and Odd Edges). Let T be a cubic tree. The
spine of T is defined as spine(T ) := T − L(T ).
The edges in E(T )\E(spine(T )) are called trivial. An edge e ∈ E(spine(T ))

is even, if the two trees of T − e contain an even number of leaves of T
each and it is odd otherwise.

Note that, if T is the cubic tree of a perfect matching decomposition of
some graph G with a perfect matching, then T has an even number of
leaves as G has an even number of vertices. This implies that in T a
non-trivial edge e is odd if and only if the two trees of T − e contain an
odd number of leaves of T each.

1Which means that vertices of degree two are allowed.
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The following is a collection of several useful observations on cubic trees
with an even number of leaves.

Observation 5.1.6 (C∗). Let T be a cubic tree with |L(T )| = ℓ even.
Then the following statements are true.

i) |V (T )| = 2ℓ− 2,
ii) spine(T ) has an even number of vertices,
iii) spine(T ) has an even number of vertices of degree 2, and
iv) e ∈ E(spine(T )) is an odd edge of T if and only if the two trees of

spine(T )− e contain an even number of vertices each.

If T is a cubic tree, then spine(T ) is a subcubic tree. There is a close
correspondence between the occurrence of odd edges in T and vertices of
degree 2 in spine(T ).

Lemma 5.1.7 (C∗). Let T be a cubic tree with an even number of leaves.
i) If degv(spine(T )) = 1, then v is not incident with an odd edge of T .
ii) If degv(spine(T )) = 2, then v is incident with exactly one odd edge

of T .
iii) If degv(spine(T )) = 3, then v is either incident with exactly two odd

edges of T or with none.

Proof. If v is of degree 1 in the spine of T , it is adjacent with exactly two
leaves of T and thus, by definition, the unique edge incident with v in
spine(T ) cannot be odd.
Let v be a vertex of degree 2 in spine(T ) and e1, e2 the two edges incident
with v in the spine. In T itself v is incident with a third edge e3 whose other
endpoint is a leaf of T . Let ki be the number of leaves of T contained in the
component of T − ei that does not contain v. Then |L(T )| = k1 + k2 + k3
and k3 = 1. Since the total number of leaves is even and k3 is odd, exactly
one of k1 and k2 is odd as well. Thus, exactly one of the two edges e1 and
e2 is an odd edge of T .
At last we consider a degree 3 vertex v in spine(T ). Let e1, e2, e3 be the
three edges of the spine incident with v and let ki be the number of leaves
of T contained in the component of T−ei. In this case |L(T )| = k1+k2+k3
and thus neither all three, nor just one of them can be odd.
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Corollary 5.1.8 (C∗). Let T be a cubic tree with an even number of
leaves. Then spine(T ) is cubic if and only if T has no odd edges.

Let T ′ be the subgraph of T induced by its odd edges. Then no vertex
of T ′ can have degree three as there does not exist a vertex in T which
is incident with three odd edges. Therefore every component of T ′ must
be a path and the endpoints of these paths are exactly the degree two
vertices of spine(T ).

Corollary 5.1.9 (C∗). Let T be a cubic tree with an even number of
leaves and EO ⊂ E(T ) the set of odd edges of T . Then T [EO] is a
collection of pairwise disjoint paths. Moreover, the set of endpoints of
these paths is exactly the set of degree 2 vertices in spine(T ).

What exactly is the interaction between the odd edges of T and perfect
matching decompositions based on T? As a first step, we investigate
the influence of the existence of odd edges in the cubic tree of a perfect
matching decomposition (T, δ) on the parity of the width of (T, δ).

Lemma 5.1.10 (C∗). Let G be a matching covered graph and X ⊆ V (G).
Then mp(∂G(X)) is odd if and only if |X| is odd.

Proof. Let M ∈M(G) be a perfect matching of G that maximises ∂G(X)

and let k := |M ∩ ∂G(X)|. Then G[X] − V (∂G(X) ∩M) has a perfect
matching and therefore an even number of vertices, say n. So in total
|X| = n+ k. Hence |X| ≡ k (mod2) and the claim follows.

Perfect matching width measures, in some sense, the complexity of the
interaction of all perfect matchings of a given graph G. We have seen
before that sometimes it might be useful to focus on a single perfect
matching M , for example to call upon the structure of the M -bidirection
of G. A natural question to ask would be, whether we can specialise any
given perfect matching decomposition with respect to a single perfect
matching M without changing the width of the decomposition too much.
Let us consider the cut ∂G(X) of matching porosity k in G. Then there are
at most k vertices in X that are incident with edges in M ∩∂G(X). Hence
we have to move at most k vertices from one shore to the other in order
to obtain a new cut where both shores are M -conformal. This, together
with Observation 5.1.4, immediately yields the following observation.
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Observation 5.1.11 (B∗). Let G be a graph with a perfect matching,
X ⊆ V (G) and M ∈M(G). Then there is an M -conformal set X ′ ⊆ V (G)

such that
i) X ⊆ X ′,
ii) |X ′| ≤ |X|+mp(∂G(X)), and
iii) mp(∂G(X

′)) ≤ 2mp(∂G(X)).

One way to utilise this observation and to customise the notion of perfect
matching width with regards to a single perfect matching M could be to
require that any inner edge of the decomposition induces a bipartition of
the vertex set of the decomposed graph G into two M -conformal sets.

Definition 5.1.12 (M -Perfect Matching Width). Let G be a graph with
a perfect matching M . An M -decomposition of G is a perfect matching
decomposition (T, δ) such that for every t1t2 ∈ E(spine(T )) the sets δ(Tt1)

and δ(Tt2) are M -conformal. The M-perfect matching width, denoted by
M - pmw(G), is defined as the minimum width over all M -decompositions
of G.

Theorem 5.1.13 (B∗). Let G be a graph with a perfect matching M .
Then, pmw(G) ≤M - pmw(G) ≤ 2 pmw(G).

Proof. Clearly pmw(G) ≤M - pmw(G) as every M -decomposition is also
a perfect matching decomposition.
Hence we only need to prove M -pmw(G) ≤ 2 pmw(G). Let (T, δ) be
a perfect matching decomposition of G of minimum width. Now let
X ⊆ V (G) such that for all e ∈M we have |e ∩X| = 1. For every x ∈ X

denote by xM the vertex from X with xxM ∈M and let X ′ ⊆ X be the
set of vertices x ∈ X such that the path from δ−1(x) to δ−1(xM ) in T

contains an inner edge (i.e. an edge not incident with a leaf).
Now we construct a new decomposition (T ′, δ′). We remove δ−1(xM ) and
add two new leaves to the vertex δ−1(x) in T ′. The deletion of δ−1(xM )

left a vertex of degree two, in order to maintain a cubic tree we contract
one of the two edges incident with said degree two vertex. Now δ−1(x)

has two new neighbours a and b which we map to the vertices xM and x

respectively via δ′. Thus the vertex δ−1(x) has become an inner vertex of
T ′.
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The only additional inner edges in T ′ are those where the corresponding
cut separates a pair of leaves mapped to a matching edge of M containing
a vertex in X ′ from the rest of the graph. So these induce cuts of matching
porosity at most two and M -conformal shores.
Consider an inner edge e of T and the two shores X and X it induces.
The edges of M that have vertices in both shores are at most pmw(G)

many. Therefore by Observation 5.1.4 the porosity of the induced cut has
at most doubled.

Note that the proof of Theorem 5.1.13 gives a procedure that can be
performed in polynomial time to obtain from any perfect matching de-
composition (T, δ) of a graph G, an M -decomposition of width at most
2width(T, δ).

Tight Cut Contractions and Matching Minors

A fundamental question is, whether we can bound the perfect matching
width of some tight cut contraction or matching minor H of a graph G

with a perfect matching in terms of pmw(G). Using the findings from
above we can now investigate this topic. We start with an inequality in
the other direction, showing that the perfect matching width of a graph G

cannot be larger than the perfect matching width of its bricks and braces.

Proposition 5.1.14 (C∗). Let G be a graph with a perfect matching.
Then

pmw(G) ≤ max
H brick or
brace of G

pmw(H).

Proof. Let L be a maximal family of pairwise laminar tight cuts of G and
let H1, . . . , Ht be the bricks and braces of G. For all i ∈ [1, t] let (Ti, δi) be
an optimal perfect matching decomposition of Hi and let ki := pmw(Hi).
We say that Hi and Hj are adjacent in L if there is a tight cut ∂G(Z) ∈ L
such that vZ ∈ V (Hi) and vZ ∈ V (Hj) where vZ and vZ are the two
contraction vertices of ∂G(Z). As the cuts in L are pairwise laminar,
the adjacency structure of the bricks and braces obtained by the above
definition is a tree F . So every vertex of F corresponds to a brick or brace
of G together with an optimal perfect matching decomposition and if two
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vertices in F are adjacent, then the corresponding bricks or braces are
separated by exactly one cut of L.
We are going to iteratively construct a perfect matching decomposition
of G by merging the (Ti, δi). To this end, we slightly relax our definition
of the tree F and simply assume that any vertex of F corresponds to a
matching covered graph H together with an optimal perfect matching
decomposition of H and two vertices x and y of F are adjacent if there is
a tight cut ∂G(Z) ∈ L such that vZ is a vertex of the graph associated
with x, while vZ is a vertex of the graph associated with y.
Let x be a leaf of F and y the neighbour of x. Then, let H be the
matching covered graph corresponding to x and J the matching covered
graph corresponding to y. By definition of F , there is a tight cut ∂G(Z)

such that vZ ∈ V (H) and vZ ∈ V (J). Let (TH , δH) be the decomposition
of H associated with x and (TJ , δJ ) the decomposition of J associated with
y. Within these decompositions there is an edge eH ∈ E(TH) incident with
the leaf that is mapped to vZ and analogously there is an edge eJ ∈ E(TJ )

to the leaf mapped to vZ . Let H ′ be obtained from J by reversing the
tight cut contraction of vZ . By our choices this means, that H ′ contains a
tight cut ∂H′(Z′) such that the two tight cut contractions are exactly H

and J . In order to construct a perfect matching decomposition (TH′ , δH′)

of H ′, we create a new tree TH′ from TH and TJ by identifying the edges
eH and eJ as the new edge eH,J . In addition we define the new mapping
without vZ and vZ as follows.

δH′ : L(TH′)→ V (H ′), δH′(v) :=

{︄
δH(v), v ∈ V (H) \ {vZ}
δJ(v), v ∈ V (J) \ {vZ}

As ∂H′(Z) is a tight cut, ∂H′(eH,J) has matching porosity one. Let
e ∈ E(TH′) \ {eH,J}. Suppose, there is a perfect matching M ∈ M(H ′)

such that |∂H′(e) ∩ M | ≥ max {pmw(H), pmw(J)} + 1. Without loss
of generality, assume that e ∈ E(TH). Then, by construction of TH′

there is exactly one shore of ∂H′(e), say X, that contains the vertices
of J . Again, since ∂H′(Z) is tight, there is exactly one edge of M with
exactly one endpoint in V (J) \ {vZ}, let v be its endpoint in V (H) \ {vZ}.
Now, consider M ′ := (M ∩ E(H)) ∪ {vvZ} and note that M ′ is a perfect
matching of H. Moreover, |M ′ ∩ ∂H(e)| = |∂H(e) ∩M | ≥ pmw(H) + 1.
This yields a contradiction to the definition of perfect matching width.
Hence, mp(∂H′(e)) ≤ max {pmw(H), pmw(J)} for all e ∈ E(TH′). Now,
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we can delete x from F and associate H ′ with y. This yields a new tree
F ′, which is smaller than F and still meets all of our assumptions. Hence,
we can continue the process until the new tree F ′ does not contain any
edges. At this point the graph associated with the sole vertex of F ′ will
be G itself, so we have constructed a decomposition for G with perfect
matching width at most the maximum over the decompositions we started
with.

Before we continue towards bounding the perfect matching width of
matching minors, we have to discuss conformal subgraphs. These provide
a lower bound on the perfect matching width of a graph and therefore
are a first step in that direction. Let T be a subcubic tree. We can
obtain a cubic tree T ′ from T by iteratively choosing a degree two vertex
and contracting one of its two incident edges. The tree T ′ is, up to
isomorphism, uniquely determined by T and we call T ′ the tree obtained
by trimming T . Note that L(T ) = L(T ′).

Lemma 5.1.15 (C∗). Let G be a graph with a perfect matching and
H ⊆ G a conformal subgraph of G. Then pmw(H) ≤ pmw(G).

Proof. Let (T, δ) be an optimal perfect matching decomposition of G and
LH := {ℓ ∈ L(T ) | δ(ℓ) ∈ V (G) \ V (H)} .

Then, T − LH is a subcubic tree. Now, remove from T − LH iteratively
all vertices that became leaves and thus are not mapped to any vertex by
δ. We call the resulting tree T ′′. Let T ′ be the tree obtained by trimming
T ′′. We define δ′ : L(T ′) → V (H) by restricting δ to L(T ′) and claim
that (T ′, δ′) is a perfect matching decomposition of H of width at most
pmw(G).
Suppose, there is an edge e ∈ E(T ′) that corresponds to a cut ∂H(X ′) in H

and a perfect matching M ′ ∈M(H) such that |∂H(X ′)∩M ′| ≥ pmw(G)+

1. Then, by construction e ∈ E(T ) and thus e corresponds to a cut ∂G(X)

in G as well. Moreover, X ′ ⊆ X and V (H) \X ′ ⊆ V (G) \X. Since H is
a conformal subgraph of G, there is a perfect matching M ∈M(G) with
M ′ ⊆ M and thus |∂G(X) ∩M | ≥ |∂G(X

′) ∩M | ≥ pmw(G) + 1. Hence,
width(T, δ) ≥ pmw(G) + 1 which contradicts (T, δ) to be an optimal
perfect matching decomposition of G.
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Let G be a graph with a perfect matching M and consider an M -
decomposition (T, δ) of width k ∈ N. Handling a single tight cut con-
traction suffices, since the M -decompositions we obtain for the two tight
cut contractions can be seen to be M ′-decompositions again where M ′

is the restriction of M to the two contractions. This allows us to apply
induction and reduce the initial matching covered graph G all the way
down to its bricks and braces.
Key to obtaining an M -decomposition for a tight cut contraction of G
from an M -decomposition (T, δ) of G is the decision where in the trimmed
version of the decomposition tree to attach a new leaf for the contraction
vertex. If there is an edge in T that separates the vast majority of the
vertices of one of the tight cut shores from the vertices of the other, this
decision is not too complicated to make. But if such an edge does not
exists, or in other words (T, δ) does not distinguish between the two shores
of our tight cut, it is much harder to decide. In Proposition 5.1.14 we
have seen that there always exist perfect matching decompositions with
edges reflecting the tight cuts. However, these decompositions are not
necessarily optimal and at this point we are not able to provide a bound
on the approximation they provide.
Our decision on the decomposition to place the contraction vertex is based
on some implications of Lemma 5.1.10. If ∂G(Z) is a non-trivial tight cut
of G, then |Z| is odd and thus for all X ⊆ V (G) the cut ∂G(X) of G has
exactly one shore that contains an odd number of vertices of Z. If |X|
is even, this shore also contains an odd number of vertices of Z. This
observation leads us to the following lemma.
Note that any cut induced by an inner edge of an M -decomposition is
even, since both shores are M -conformal.

Lemma 5.1.16 (C∗). Let G be a matching covered graph, X ⊆ V (G) be
even, and ∂G(Z) a non-trivial tight cut of G, as well as vZ the contraction
vertex in GZ := G/(Z→vZ). If |X ∩ Z| is odd, then mp(∂GZ ((X \ Z) ∪
{vZ})) ≤ mp(∂G(X)).

Proof. Suppose mp(∂G(X)) < mp(∂GZ ((X \ Z) ∪ {vZ})). Let M ′ ∈
M(GZ) be a perfect matching maximising ∂GZ ((X \ Z) ∪ {vZ}). Then
M ′ contains exactly one edge incident with vZ . Thus, by assumption,
mp(∂GZ ((X \ Z) ∪ {vZ})) = mp(∂G(X)) + 1. Since ∂G(X) is of even
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porosity, mp(∂GZ ((X \ Z) ∪ {vZ})) is odd. But with |X ∩ Z| being odd,
|(X∩Z)∪{vZ} |must be even. This is a contradiction to Lemma 5.1.10.

If (T, δ) is an M -decomposition of G, then, as we have seen in the proof of
Lemma 5.1.16, the only cuts whose matching porosity can exceed the width
of (T, δ) by placing the contraction vertex and ‘keeping’ the rest of the
decomposition as it is, are those of matching porosity exactly width(T, δ).
For each of those cuts we need to indicate which of its two shores contains
an odd number of vertices of a tight cut shore. To this end, we define the
following orientation of the edges of T . Our definition does not require
(T, δ) to be an M -decomposition. However, in case it is, we are able to
make further observations
Let G be a matching covered graph, ∂G(Z) a non-trivial tight cut of G and
(T, δ) a perfect matching decomposition of G. We define the Z-orientation
TZ⃗ of T as the orientation of the edges of T , such that for every edge
t1t2 ∈ E(spine(T )), (t1, t2) ∈ E(TZ⃗) if and only if |δ(Tt2) ∩ Z| is odd.
Additionally, every edge tℓ ∈ E(T ), where ℓ is a leaf, is oriented away
from ℓ, that is (ℓ, t) ∈ E(TZ⃗). Note that the Z-orientation of the edge
t1t2 is well defined since |Z| is odd (see Figure 5.2 for an example). If
there is a vertex t ∈ V (TZ⃗) such that at least two of its incident edges are
outgoing edges, we call t an inconsistency.
The idea is that TZ⃗ should tell us where to put the contraction vertex in
order to obtain a decomposition of the tight cut contraction of G obtained
by contracting Z. However, this only works if TZ has no inconsistencies.

Lemma 5.1.17 (C∗). Let G be a matching covered graph, ∂G(Z) be a
non-trivial tight cut in G and (T, δ) a perfect matching decomposition of
G. If TZ⃗ has an inconsistency t ∈ V (TZ⃗), then all three edges incident
with t are outgoing.

Proof. Let t ∈ V (TZ⃗) be an inconsistency of TZ⃗ with incident edges e1, e2
and e3 such that Ti is the component of T − ei that does not contain t for
every i ∈ [1, 3]. Suppose e1 and e2 are outgoing edges and e3 is incoming
for t.
Then, by the definition of TZ⃗ , the following holds:

i) |δ(T1 + T2) ∩ Z| is odd and |δ(T3) ∩ Z| is even,
ii) |δ(T1) ∩ Z| is odd and |δ(T2 + T3) ∩ Z| is even, and
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Figure 5.2.: A matching covered graph G with a non-trivial tight cut
∂G(Z), a perfect matching M , and an M -decomposition (T, δ)
of width four. The arrows in T are the edges forming the
Z-orientation of T , note that it is free of inconsistencies and
has a unique sink s.

iii) |δ(T2) ∩ Z| is odd and |δ(T1 + T3) ∩ Z| is even.
Since T1, T2 and T3 are pairwise disjoint, these statements are clearly
contradictory and thus, e3 cannot be an incoming edge of t.

If a Z-orientation does not have any inconsistencies, there exists a unique
sink vertex s in TZ⃗ . Additionally, s is adjacent to a leaf t ∈ V (T ) and
δ(t) ∈ Z (see Lemma 5.1.18).
So, to obtain a perfect matching decomposition of the tight cut contraction
obtained from G by contracting Z into a single vertex vZ , we forget all
vertices of Z, delete the corresponding leaves from T (except for t) and
map t to the contraction vertex vZ . Finally, we trim this new tree. Not
only does this yield a perfect matching decomposition, the width of this
new decomposition is at most the width of the original decomposition. If
our decomposition was an M -decomposition in the first place, the result
is even stronger.

Lemma 5.1.18 (C∗). Let G be a matching covered graph with a per-
fect matching M , ∂G(Z) a non-trivial tight cut in G, and (T, δ) an M -
decomposition of G. Then, TZ⃗ is free of inconsistencies and has a unique
sink that is adjacent to two leaves.
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Proof. As Z induces a non-trivial tight cut, there is a unique edge xy ∈M

with x ∈ Z and y ∈ Z. All other vertices of Z are matched within Z.
In the M -decomposition (T, δ) for every t1t2 ∈ E(T − L(T )) the unique
subtree Tti with |δ(Tti) ∩ Z| being odd is exactly the one that contains
x. Therefore, in TZ⃗ every inner edge is oriented towards the subtree that
contains x and thus there cannot be an inconsistency, as δ is a bijection
and the tree containing x is well defined for every inner edge.
Moreover, let t ∈ V (TZ⃗) such that t is adjacent to two leaves ℓ1 and
ℓ2 where δ(ℓ1) = x. Note that the number of leaves of T equals the
number of vertices of G, which is always even. Then, for every vertex
t′ ∈ V (TZ⃗) \ {t, ℓ1, ℓ2} there is a directed path in TZ⃗ from t′ to t. By the
definition of Z-orientations, (ℓ1, t), (ℓ2, t) ∈ E(TZ⃗) which implies that t is
a sink of TZ⃗ and no vertex apart from t can be a sink.

Note that, in the proof above, δ(ℓ2) = y and thus, in the decomposition for
the tight cut contraction we construct from (T, δ), the contraction vertex
and y are again siblings. So, if we start out with an M -decomposition of a
matching covered graph G, then the Z-orientations of said decomposition
behave exactly as intended. This allows us to obtain new decompositions
for tight cut contractions of somewhat controlled width and thus yields
the main result of this section.

Proposition 5.1.19 (C∗). Let G be a matching covered graph, ∂G(Z) a
non-trivial tight cut in G, M ∈ M(G), and (T, δ) an M -decomposition
of G of width k. Moreover, let GZ := G/(Z→ vZ). Then, there is an
M |GZ -decomposition of GZ of width at most k.

Proof. We consider the Z-orientation TZ⃗ of T . By Lemma 5.1.18, TZ⃗ is
free of inconsistencies and has a unique sink s. Moreover, as we have
seen, s is adjacent to two leaves tx and ty of T such that δ(tx) = x ∈ Z,
δ(ty) = y ∈ Z and xy ∈M is the unique edge of M in ∂G(Z).
We construct a perfect matching decomposition (T ′, δ′) for GZ . To this end,
let LZ :=

{︁
t ∈ L(T ) | δ(t) ∈ Z \ {y}

}︁
and T ′ be the cubic tree obtained

from T −LZ by trimming. Then L(T ′) = L(T )\LZ and for every t ∈ L(T ′)

and every inner edge t1t2 ∈ E(T ′), t is a leaf of the tree T ′
ti if and only if

t is a leaf of the subtree Tti . Therefore, every bipartition of L(T ) induced
by an inner edge of T ′ is also induced by an edge in T .
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To obtain δ′ from δ we do not change anything for Z but just replace y

by vZ . So for all t ∈ L(T ′) let

δ′(t) :=

{︄
vZ , if δ(t) = y, and
δ(t), otherwise.

The restriction M |GZ of M to GZ contains all edges with both endpoints
in Z and additionally the edge xvZ , so by construction, (T ′, δ′) it is an
M |GZ -decomposition of GZ .
Now, let t1t2 ∈ E(T ′) be an inner edge and ∂G(t1t2) the cut induced by
t1t2 in G via (T, δ). Then, ∂G(t1t2) has a unique shore Y ⊆ V (G) that
contains y and, as (T, δ) is an M -decomposition, |Y | is even. Moreover,
the cut ∂GZ (t1t2) induced by t1t2 in GZ via (T ′, δ′) has a shore Y ′ =

(Y \ Z) ∪ {vZ}. As |Y ∩ Z| is odd by choice of Y , Lemma 5.1.16 gives us
mp(∂GZ (Y

′)) ≤ mp(∂G(Y )) ≤ k and thus concludes the proof.

Since Proposition 5.1.19 provides an M |GZ -decomposition of the tight cut
contraction GZ , we can now choose a new tight cut in GZ and continue
with a new iteration of the tight cut decomposition procedure. So finally,
we reach decompositions of the bricks and braces of G whose width is still
bounded by the width of the original M -decomposition of G. By then
applying Theorem 5.1.13 we obtain the following corollary.

Corollary 5.1.20 (C∗). Let G be a graph with a perfect matching and
H a brick or brace of G. Then pmw(H) ≤ 2 pmw(G).

By iteratively contracting tight cuts we cannot significantly increase the
perfect matching width. As bicontractions are a special case of tight cut
contractions and by Lemma 5.1.15 the width of a conformal subgraph of
G is bounded by the width of G itself, we obtain a similar corollary for
the matching minors of G.

Corollary 5.1.21 (C∗). Let G be a graph with a perfect matching and
H be a matching minor of G. Then pmw(H) ≤ 2 pmw(G).

Moreover, if we consider the M -width of a matching covered graph G, we
obtain an even stronger result which concludes this section.

Corollary 5.1.22 (C∗). Let G be a graph with a perfect matching M , and
H a brick, brace or a matching minor obtained by a series of bicontractions
from an M -conformal subgraph of G. Then M |H - pmw(H) ≤M - pmw(G).
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5.2. Braces of Perfect Matching Width 2

The only matching covered graph of perfect matching width one is K2.
Apart from this every perfect matching decomposition of a matching
covered graph contains a vertex that is adjacent to two leaves (which, by
definition, are mapped to two distinct vertices of G) and, as G is matching
covered, there is a perfect matching which does not match these vertices
with each other. Therefore, the cut in G induced by the non-leaf edge
of said vertex in the decomposition has matching porosity two. So two
is a natural lower bound on the perfect matching width of braces. One
approach to width parameters can be to investigate the structure of of
graphs of small width. Since by Proposition 5.1.14 the perfect matching
width of a graph is bounded from above by the width of its bricks and
braces, studying the structure of braces of perfect matching width two
appears to be a good starting point towards a better understanding of
the parameter itself. We present two possible characterisations of perfect
matching width two braces, one in terms of edge-maximal graphs similar
to the k-tree characterisation of treewidth k graphs (see [Arn85] for an
overview on this topic) and the other one in terms of elimination orderings,
which again resembles similar results on treewidth.
We start out with some core observations on the type of decomposition
trees we have to expect for braces of perfect matching width two.

Lemma 5.2.1 (C∗). Let G be a brick or brace of perfect matching width
two and (T, δ) be an optimal perfect matching decomposition. Then,
spine(T ) is cubic.

Proof. By Corollary 5.1.8, it suffices to show that T is free of odd edges.
Suppose T has an odd edge t1t2, then Xi := δ(Tti) contains an odd number
of vertices for i ∈ [1, 2]. Then Lemma 5.1.10 implies that mp(∂G(X1)) is
odd. As the width of (T, δ) is 2 and t1t2 is an inner edge of T , |X1| ≥ 3,
|X2| ≥ 3 and mp(∂G(X1)) = 1. Thus ∂G(X1) must be a non-trivial tight
cut of G contradicting G being a brick or a brace.

If G is a graph with a perfect matching and X ⊆ V (B) is a set such that
mp(∂G(X)) = 2, then for every perfect matching M of G we must have
|∂G(X)| ∈ {0, 2}. Since we are interested in braces, it seems natural to ask
for the structure of non-trivial cuts in highly extendible bipartite graphs
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as one might find some connection to proper k-tight cuts and the relation
between minority and majority as seen in Lemma 3.1.58.

Lemma 5.2.2 (X∗). Let k ∈ N be a positive integer, B be a k-extendible
and bipartite graph, and X ⊆ V (G) such that mp(∂B(X)) = k and
k + 2 ≤ |X| ≤ |V (B)| − (k + 2). Then imbalance(X) = k.

Proof. Any perfect matching can have at most |Min(X)| many edges in X

and thus imbalance(X) ≤ mp(∂B(X)) = k. Moreover, by Lemma 5.1.10
k ≡ |X| ≡ imbalance(X) (mod2). We set k′ := imbalance(X) ≤ k − 2.
Without loss of generality we may assume Maj(X) ⊆ V2. We consider
two special subgraphs of B. Let B1 := B[Min(X)∪ (V2 \Maj(X))] be the
bipartite graph on exactly the edges of ∂B(X) with endpoints in Min(X)

and B2 := B[(V1 \Min(X)) ∪Maj(X)] the graph an the remaining edges
of ∂B(X). Suppose ν(B1) ≥ k−k′

2
+ 1 and let F be a matching of size

k−k′

2
+ 1 in B1. Now |F | ≤ k and so, by Theorem 3.1.69, there is a

perfect matching MF of B with F ⊆ MF . As mp(∂B(X)) = k, at most
k− k−k′

2
−1 = k+k′

2
−1 edges of MF ∩∂B(X) have an endpoint in Maj(X).

Thus we obtain

|Maj(X) \ V (∂B(X) ∩MF )| ≥ |Maj(X)| − k + k′

2
+ 1

= |Maj(X)| − k

2
− k′

2
+ 1

= |Min(X)|+ k′ − k

2
− k′

2
+ 1

> |Min(X)| − k − k′

2
− 1

≥ |Min(X) \ V (∂B(X) ∩MF )|.
And so imbalance(X \ V (∂B(X) ∩MF )) ≥ 1 contradicting MF being a
perfect matching, thus implying ν(B1) ≤ k−k′

2
. With similar arguments

on B2 we obtain ν(B2) ≤ k+k′

2
.

Now, since ν(B1) = τ(B1) and ν(B1) = τ(B1) by König’s Theorem, we
can find a set T ⊆ V (B) of size at most k−k′

2
+ k+k′

2
= k such that

T ∩ e ̸= ∅ for all e ∈ ∂B(X). We assumed k + 2 ≤ |X| ≤ |V (B)| − k − 2

and so both X \ T and X \ T are non-empty. Hence T is a separator of
order at most k contradicting Theorem 3.1.67 and thus we must have
imbalance(X) = k.
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For braces of perfect matching width two, the important case is k = 2 in
Lemma 5.2.2. Using this we can now prove that there are no degree-3-
vertices in the spine of the spine of a width-2-decomposition of a brace.
This means that any optimal perfect matching decomposition of a brace
B with pmw(B) = 2 has a linear structure.

Proposition 5.2.3 (C∗). Let B be a brace of perfect matching width
two and (T, δ) a perfect matching decomposition of minimum width for
B. Then, spine(spine(T )) is a path.

Proof. Suppose there is a vertex t ∈ V (spine(spine(T ))) with three neigh-
bours t1, t2 and t3. By Lemma 5.2.1, spine(T ) is cubic and so every ti is
adjacent to exactly two vertices of the spine of T apart from t. Moreover,
each of these neighbours again has exactly two neighbours distinct from
ti in T . Let Ti be the component of T − tti for i ∈ [1, 3] that does not
contain t and let Xi := δ(Ti). The above observations imply |Xi| ≥ 4 for
all i ∈ [1, 3]. As T is free of odd edges by Corollary 5.1.8 and Lemma 5.2.1,
mp(Xi) = 2 and so Lemma 5.2.2 yields imbalance(Xi) = 2.
Without loss of generality we can assume that two of the three sets have
an excess in V1 while the last one, say X3, has an excess in V2. This holds
as the case where the excesses of all three sets are of the same colour
implies imbalance(V (B)) = 6, a direct contradiction to the existence of
a perfect matching in B. However, even under this assumption we still
obtain |V1| = |V2| + 2 and thus, V (G) is not balanced. Since B has a
perfect matching, this is impossible and thus, spine(spine(T )) cannot have
a vertex of degree three.

Lemma 5.2.2 establishes the distribution of the two colours V1 and V2 in
any set of matching porosity k of sufficient size in a k-extendible brace.
Suppose we have a k-extendible brace for k ≥ 2 that has a perfect matching
decomposition (T, δ) such that spine(spine(T )) is a path. Next we observe
how these nested sets of matching porosity k behave. More precisely,
suppose we are given two edges ex and ey of spine(spine(T )) and shores
X and Y of their cuts ∂B(ex) and ∂B(ey) respectively, if X ⊆ Y , then the
majority of X is the majority of Y .

Lemma 5.2.4 (X∗). Let k ≥ 2 be an integer and B be a k-extendible
bipartite graph with |V (B)| ≥ 2k + 4, such that there exists perfect

221



Chapter 5. Perfect Matching Width

matching decomposition (T, δ) of width k for B with spine(spine(T )) being
a path. Furthermore let e1, e2 be two adjacent edges of spine(spine(T ))
such that ∂B(ei) has a shore Xi with X1 ⊆ X2 and mp(∂B(X1)) =

mp(∂B(X2)) = k. Then |X1 ∩ Vi|+ 1 = |X2 ∩ Vi| for both i ∈ [1, 2].

Proof. First of all note that |X2| − |X1| = 2 since spine(spine(T )) is a
path and the parity of the sets must be preserved by Lemma 5.1.10.
Now suppose |X1 ∩ V1|+ 2 = |X2 ∩ V1| which implies X2 \X1 ⊆ V1. By
Lemma 5.2.2 we know that imbalance(Xi) = mp(∂B(Xi)) = k, or |Xi| = k,
or |Xi| = k for both i ∈ [1, 2]. As mp(∂B(X2)) = k we may rule out
|X1| = k, similarly we obtain |X2| ≥ k+2. Suppose imbalance(X1) ≤ k−2
and |X1| = k. If |X2| = k, then |V (B)| = |X1|+ 2 + |X2| = 2k + 2 which
contradicts |V (B)| ≥ 2k+4. So imbalance(X2) = k. As imbalance(X1) ≤
k − 2 and |X2| = |X1| + 2 it follows that imbalance(X1) = k − 2 and
Maj(X1) ⊆ V1. From this observation we also get Maj(X2) ⊆ V1. We
consider the bipartite graphs B1 := B[Maj(X2) ∪Maj(X2)] and B2 :=

B[Min(X2) ∪Min(X2)] where the edge set of B1 consists exactly of those
edges in ∂B(X2) incident with vertices from Maj(X2) and the edge set
of B1 consists of the remaining edges in the cut. Under our current
assumptions we have |Min(X2)| = |Min(X1)| = 2 and thus ν(B2) ≤ 2.
Suppose there is a matching F of size two in B2. Then, by Theorem 3.1.66,
F is extendible and thus B has a perfect matching MF containing F . But
now X2 \ V (F ) still has k vertices of V1 and no vertex of V2 left and thus
|MF ∩ ∂B(X2)| = |X2| = k + 2 which is a contradiction. So ν(B2) ≤ 1.
With this we can also conclude ν(B1) ≤ k − 1 since a matching of size
k in B1 would force the existence of a matching of size two in B1 with
another application of the k-extendibility of B. Now we can find a vertex
cover in B1 ∪ B2 of size k and so we can hit all edges in ∂B(X2) with
at most k vertices. By our assumptions |X2| = k + 2 and |X2| ≥ k + 2

and thus we have found a separator of order k in B which contradicts
Theorem 3.1.67. So if |X1| = k, then imbalance(X1) = k and thus
X1 is monochromatic, moreover, as imbalance(X2) = k, X2 \ X1 must
contain vertices from both colour classes. So we can assume |X1| ≥ k + 2.
Then by Lemma 5.2.2 imbalance(X1) = k. If |X2| ≥ k + 2 we have
imbalance(X1) = imbalance(X2) and the assertion follows. So suppose
|X2| = k. But then |X1| = k + 2 and from the arguments above we can
derive that X2 is monochromatic, again implying the assertion.
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For k = 2 in the above lemma, the two extreme cases, namely |X| = 4

and |X| = |V (B)| − 4 play an important role. In case that |X| = 4,
Lemma 5.2.2 requires X to contain exactly one vertex of one of the two
colour classes and three vertices of the other. The case |X| = |V (B)| − 4

is similar as |X| = 4. Hence in the first case B[X] is a claw2, and in the
second case B[X] is a claw.
In general, whenever we have two consecutive cuts with both shores bigger
than k + 2 in a perfect matching decomposition (T, δ) of a k-extendable
brace where spine(spine(T )) is a path, the two laminar shores differ by
exactly one vertex from each colour class and thus, for general k we can
expect to find a star with k+1 leaves at both ‘ends’ of the decomposition.

Lemma 5.2.5 (X∗). Let k ≥ 2 be an integer and B be a k-extendible
bipartite graph with |V (B)| ≥ 2k + 4, such that there exists a perfect
matching decomposition (T, δ) of width k for B with spine(spine(T )) being
a path. Then T contains two edges e1 and e2 where ∂B(ei) has a shore
Xi of size k + 2 satisfying the following conditions.

i) e1 = e2 if and only if |V (B)| = 2k + 4,
ii) X1 ∩X2 = ∅,
iii) if Maj(X1) ⊆ V1, then Min(X2) ⊆ V1 and vice versa, and
iv) B[Xi] is a star such that its central vertex has no neighbour in Xi

for both i ∈ [1, 2].

Proof. Let ps and pt be the two endpoints of the path spine(spine(T )).
We order the edges of spine(spine(T )) according to their appearance when
traversing along spine(spine(T )) from ps to pt. So E(spine(spine(T ))) =

{e′1, . . . , e′ℓ} where ps is incident with e′1 and pt is incident with e′ℓ. Let
j ∈ [1, ℓ] be the smallest number such that mp(∂B(e

′
j)) = k and let

X ′
1 := δ(T1) where T1 is the subtree of T − e′j containing ps. We claim

that |X ′
1| = k and X ′

1 ⊆ Vi for some i ∈ [1, 2].
Suppose |X ′

1| ≥ k + 2. Note that |X ′
1| = k + 1 is impossible due to

Lemma 5.1.10. Then by Lemma 5.2.2 we must have imbalance(X ′
1) = k.

Consider the shore X ′′
1 of ∂B(e

′
j−1) with X ′′

1 ⊆ X ′
1. By choice of j,

mp(∂B(e
′
j−1)) ≤ k − 1 and thus imbalance(X ′′

1 ) ≤ k − 1. Still |X ′′
1 | ≥ k

since |X ′
1| − |X ′′

1 | ≤ 2 and as mp(∂B(X
′
1)) = k, |X ′′

1 | ≥ k. If ∂B(X
′′
1 )

were to contain a matching F of size k, then mp(∂B(X
′′
1 )) = k since F

2The graph K1,3 is called a claw.
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would be extendible. So ∂B(X ′′
1 ) cannot contain a matching of size k and

thus, by König’s Theorem, there exists a set S ⊆ V (B) of size at most
k − 1 covering all edges in ∂B(X

′′
1 ). This however would be a separator

of size k − 1 in B, contradicting Theorem 3.1.67. Either way we reach a
contradiction.
Thus |X ′

1| = k. Now let e1 := e′j+1 and X1 be the shore of ∂B(e1)

containing X ′
1. Then |X1| ∈ [k+ 1, k+ 2] and so by Lemma 5.1.10 |X1| =

k + 2. We also obtain mp(∂B(X1)) = k = imbalance(X1). Moreover, by
Lemma 5.2.4, |(X1 \X ′

1) ∩ V1| = |(X1 \X ′
1) ∩ V2| = 1. Thus our claim

holds true and X ′
1 ⊆ Vi for some i ∈ [1, 2], without loss of generality we

assume i = 1.
Now let b ∈ X1 be the sole vertex of V2 ∩ X1. If b has a neighbour
a ∈ X1, then ab must be contained in a perfect matching of B and thus
mp(∂B(X1)) = k + 2 which is impossible. Therefore NB(b) ⊆ X1 and as
B is (k + 1)-connected, NB(b) = X1 \ {b}. Hence B[X1] is a star.
In order to obtain e2 and X2 let j′ ∈ [1, ℓ] be the largest number such that
mp(∂B(ej′)) = k and then let e2 := e′j−1 and X2 be the shore of ∂B(e2)

disjoint from X1. By evoking arguments analogous to the discussion of
X1 one can reach the conclusion that B[X2] is again a star whose centre
has no neighbour in X2, and |X2| = k + 2.
Now, since |X1| = |X2| = k+2 and by choice of e1 and e2 we have e1 = e2
if and only if X1 ∪X2 = V (B) which concludes the proof.

Let B be a k-extendible brace, where k ≥ 2, that has a perfect matching
decomposition (T, δ) of width k for B such that spine(spine(T )) is a path.
Starting with the outermost shores of cuts we found in the previous lemma,
we can show that the whole decomposition (T, δ) has a special structure.
We are going to do this by induction and the following lemma works as
the base.

Lemma 5.2.6 (X∗). Let k ≥ 2 be an integer and B be a k-extendible
bipartite graph with |V (B)| ≥ 2k + 6, such that there exists perfect
matching decomposition (T, δ) of width k for B with spine(spine(T ))

being a path. Let e1 be an edge of spine(spine(T )) such that ∂B(e1) has a
shore X1 with |X1| = k + 2, mp(∂B(X1)) = k, and B[X1] is a star whose
central vertex has no neighbour in X1. Then there exists an edge e ∈ E(T )

incident with e1 where ∂B(e) has a shore X ⊆ V (B) satisfying

224



5.2. Braces of Perfect Matching Width 2

i) X1 ⊆ X,
ii) |X| = k + 4, and
iii) NB(Min(X)) ⊆ Maj(X).

Proof. Since |V (B)| ≥ 2k + 6 we can definitely find an edge e ∈
spine(spine(T )) such that ∂B(e) has a shore X with X1 ⊆ X. Moreover,
as G is k-extendible and (T, δ) is of width k we must have mp(∂B(X)) = k

as otherwise we could find a small separator in B. So with Lemma 5.1.10
we obtain |X| = |X1| + 2 = k + 4. Additionally, with Lemma 5.2.4 it
follows that X differs from X1 by exactly one vertex of each colour.
Without loss of generality we can assume Min(X) ⊆ V1. There is a
unique vertex a1 ∈ X1 ∩ V1 and a unique vertex a ∈ (X \X1) ∩ V1. By
Lemma 5.2.5 a1 does not have a neighbour in X1. Now suppose a has a
neighbour b ∈ X. Then there is a perfect matching M of G containing ab,
but then M ∩ ∂B(X) must also contain edges for the k + 1 other vertices
of X that cannot be matched to a1 and so mp(∂B(X)) ≥ k+2. Therefore
NB(Min(X)) ⊆ X and we are done.

Proposition 5.2.7 (X∗). Let k ≥ 2 be an integer and B be a k-extendible
bipartite graph such that there exists perfect matching decomposition
(T, δ) of width k for B with spine(spine(T )) being a path. Then for all
e ∈ spine(spine(T )) with mp(∂B(e)) = k, any shore X of ∂B(e) satisfies

i) imbalance(X) = k, and
ii) NB(Min(X)) ⊆ X.

Proof. By Lemma 5.2.5 there are edges e1, e2 ∈ spine(spine(T )) with
shores X1, X2 ⊆ V (B) of their corresponding cuts such that

• imbalance(Xi) = k,
• NB(Min(Xi)) ⊆ Xi,
• |Xi| = k + 2, and
• X1 ∩X2 = ∅

for both i ∈ [1, 2]. If |V (B)| = 2k+4, then, again by Lemma 5.2.5, e1 = e2
and this is the only edge we have to consider, so here we are done.
So we can assume B to have at least 2k + 6 vertices. Let P ′ ⊆
spine(spine(T )) be the unique path with e1 and e2 as its two end-edges
and let P be the path obtained from P ′ by deleting its endpoints. Now
E(P ) is exactly the set of edges of spine(spine(T )) apart from e1 and
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e2, that induce cuts of matching porosity k. Note that E(P ) ̸= ∅ since
|V (G)| ≥ 2k + 6. For all e ∈ E(P ) let Xe be the shore of ∂B(e) with
X1 ⊆ Xe.
We show the assertion by induction over ℓ where |Xe| = k + 2 + 2ℓ. The
case ℓ = 1 follows directly from Lemma 5.2.6 and corresponds to the edge
of P sharing an endpoint of e1. So now let e ∈ E(P ) be any edge that
does not share an endpoint with e1. By definition P shares an endpoint t

with e1 and so there is an edge e′ ∈ E(P ) that shares an endpoint with e

and is closer to t than e. Now |Xe| = |Xe′ |+2 by Lemma 5.2.4 and by our
induction hypothesis imbalance(Xe′) = k and NB(Min(Xe′)) ⊆ Xe. From
Lemma 5.2.4 we also get that the difference between Xe and Xe′ is exactly
one vertex of every colour, so there is a unique vertex a in (Xe \Xe′)∩V1.
Let us assume without loss of generality that Min(Xe) ⊆ V1 and suppose
a has a neighbour b in Xe. Then there is a perfect matching M of B

containing ab and M ∩ ∂B(Xe) must contain at least k + 2 edges since
Min(Xe′) ⊆ V1 follows from our assumption. Thus NB(Min(Xe)) ⊆ Xe

and we are done.

By applying the above findings to braces of perfect matching width two,
we obtain the following.

Corollary 5.2.8 (C∗). Let B be a brace of perfect matching width
two, (T, δ) be an optimal perfect matching decomposition of G, e ∈
E(spine(spine(T ))) and X a shore of ∂B(e). Then no vertex of the minority
of X has a neighbour in X.

So, given a perfect matching decomposition (T, δ) of width two for a brace
B we know that spine(spine(T )) is a path and one of its endpoints can be
identified with a claw in B. Moreover, if the central vertex of said claw is
a vertex of V1, then spine(spine(T )) induces a linear ordering of V1 which
is uniquely determined by (T, δ) except for the order of the last three
vertices. Let a ∈ V1 be any vertex in V1 and Xa ⊆ V1 be the set of vertices
smaller or equal to a in the ordering induced by (T, δ), then Corollary 5.2.8
together with Lemma 5.2.2 implies |Xa|+2 = |NB(Xa)|. Inspired by this
observation, we present a definition for elimination orderings in bipartite
matching covered graphs.

Definition 5.2.9 (Matching Elimination Width). Let B be a bipartite
matching covered graph and Λ(Vi) be the set of all linear orderings of
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Vi for i ∈ [1, 2]. Let λ ∈ Λ(Vi). For every v ∈ Vi we define the set of
reachable vertices in V3−i as

Reach[B, λ, v] := NB(Prec[B, λ, v]), where

Prec[B, λ, v] :=
{︁
v′ ∈ Vi | λ(v′) ≤ λ(v)

}︁
.

We also call these the reachability-set and the predecessor-set respectively.
The width of such an ordering is given by

width(λ) := max
v∈Vi

(|Reach[B, λ, v]| − |Prec[B, λ, v]|).

Now the matching elimination width of B (with respect to Vi) is defined
as

meowi(B) := min
λ∈Λ(Vi)

width(λ).

Please note that by Theorem 3.1.69 |Reach[B, λ, v]| − |Prec[B, λ, v]| ≥ 0

for all λ ∈ Λ(Vi) and all v ∈ Vi. Moreover, if v is not the largest vertex of
λ, then |Reach[B, λ, v]| − |Prec[B, λ, v]| ≥ 1 as B is matching covered.
What follows is a characterisation of braces of perfect matching width
two in terms of their matching elimination width. To be more precise,
we show that an ordering of the vertices in V1 of width two can be used
to construct a perfect matching decomposition (T, δ) of width two such
that spine(spine(T )) is a path. Also, any linear ordering of V1 obtained
from such a path in a perfect matching decomposition (T, δ) of width two
provides an ordering of V1 of width two.

Theorem 5.2.10 (C∗). Let B be a brace on at least 6 vertices. Then
pmw(B) = 2 if and only if meow1(B) = 2.

Proof. First, let (T, δ) be a perfect matching decomposition for B of width
two. Then, by Proposition 5.2.3, spine(spine(T )) is a path. Let n := |V1|,
then |V (B)| = 2n and T has 2n leaves. So by Observation 5.1.6, spine(T )

has 2n− 2 vertices and as spine(T ) has a leaf for every two vertices of B,
|L(spine(T ))| = n.
Thus, spine(spine(T )) has n − 2 vertices, let t1, . . . , tn−2 be its vertices
ordered by occurrence and t1 being the endpoint that, by Lemma 5.2.5,
corresponds to a claw in B whose central vertex is v1 ∈ V1. We define
a bijective function λ−1 : [1, n]→ V1 whose inverse provides the desired
ordering. We set λ−1(1) := v1.
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For each i ∈ [1, n− 3] let Xi := δ(Ti) where Ti is the subtree of T − titi+1

that contains t1. By our definition of v1 and t1, X1 ∩ V1 = {v1}. Now,
consider i ∈ [2, n− 3]. Clearly Xj ⊆ Xi for all j < i and by Lemma 5.2.4,
Xi \Xi−1 contains exactly two vertices, one being ui ∈ V2 and the other
one being vi ∈ V1. Set λ−1(i) := vi. At last let {vn−2, vn−1, vn} =

Xn−3 ∩V1 where the order of these three vertices is chosen arbitrarily and
set λ−1(j) := vj for all j ∈ [n− 2, n].
Now, λ = (λ−1)−1 is a linear ordering of V1. Note that meow1(G) ≥ 2

due to Theorem 3.1.69. Hence it is only left to show that width(λ) = 2.
Let v ∈ V1 be chosen arbitrarily. If v ∈ {vn−2, vn−1, vn} we have
nothing to show, so suppose v = vi for some i ∈ [1, n − 3]. Then,
Reach[B, λ, v] = Xi ∩ V2 and Prec[B, λ, v] = Xi ∩ V1 = {v1, . . . , vi}.
Lemma 5.2.2 yields imbalance(Xi) = 2 and as {v1} is the minority of
X1, we obtain that V1 contains the minority of Xi from Lemma 5.2.4.
Therefore, |Reach[B, λ, v]−Prec[B, λ, v]| = 2. As i was chosen arbitrarily,
width(λ) = 2 and thus meow1(G) = 2.
Second, for the reverse direction, let λ be a linear ordering of V1 of
width two, and let n := |V1|. Since B is a brace, |Reach[B, λ, v]| −
|Prec[B, λ, v]| ≥ 2 for all v ∈ V1 with λ(v) ≤ n−2. Let X1 := {v1}∪NB(v1)

and for all i ∈ [1, n − 3] let Xi := Xi−1 ∪ {vi} ∪ NB(vi) and then let
Xn−2 := Xn−3 ∪ {vn−2, vn−1, vn} ∪NB({vn−2, vn−1, vn}). We claim that
mp(∂B(Xi)) = 2 for all i ∈ [1, n − 2] and |Xj | − |Xj−1| = 2 for all
j ∈ [2, n− 2] as well as |X1| = |Xn−2 \Xn−3| = 4.
By construction, for all i ∈ [1, n − 2], NB(V1 ∩ Xi) ⊆ Xi and thus
mp(∂B(Xi)) = |Xi| − 2|V1 ∩Xi| = |V2 ∩Xi| − |V1 ∩Xi| = 2, where the
last equality follows from the width of λ. Now, consider j ∈ [1, n − 3].
By definition, |Xj ∩ V1| − |Xj−1 ∩ V1| = 1 and, as we have seen above,
|V2∩Xj |−|V1∩Xj | = |V2∩Xj−1|−|V1∩Xj−1| hence, |Xj ∩V2|−|Xj−1∩
V2| = 1 as well. At last, clearly |X1| = 4 by definition and the width of λ.
Moreover |V2∩Xj |− |V1∩Xj | = 2 and thus |Xn−3∩V2|− |Xn−3∩V1| = 2

implying |Xn−3 ∩ V2| = n− 1, so |Xn−2| = 4.
We now use the Xi to construct a perfect matching decomposition of
width two for B. The idea is simple, we introduce a path on n− 2 vertices
t1, . . . , tn−2 and identify Xi with ti for all i. We construct a tree T by
first, introducing two new leaf neighbours for t1 and tn−2 and one new leaf
neighbour for each tj with j ∈ [2, n− 3] and second, introducing two leaf
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neighbours again for every leaf added in the first step. This results in the
two endpoints of our original path being identified with four new leaves
each, while every internal vertex of the path is identified with two leaves of
the new tree T . We start creating δ by mapping the four leaves identified
with t1 to the vertices of X1 and the four leaves identified with tn−2 to
the vertices of Xn−3. By our observations above, for each j ∈ [2, n− 3],
|Xj | − |Xj−1| = 2 and so for each such j we can map the two leaves of T
identified with tj to the two vertices in Xj \Xj−1. The result is a perfect
matching decomposition (T, δ) of B and, since mp(∂B(Xi)) = 2 for all
i ∈ [1, n− 2], it is of width two. This completes our proof.

Let B be a brace of perfect matching width two and λ a linear ordering
of V1 such that width(λ) = 2. Suppose for some v ∈ V1 there is a
u ∈ Reach[B, λ, v] with uv /∈ E(B), then λ is also a width-2-ordering of
B + uv. Using this observation, we can add edges to our brace until we
reach a brace B′ such that meow1(B

′ + uv) > meow1(B
′) = 2 for every

edge uv with v ∈ V1, u ∈ V2 and uv /∈ E(B′).
By following this idea of constructing an edge-maximal brace of perfect
matching width two we obtain a special kind of bipartite graphs. We
call a brace Ln = B a bipartite ladder of order n if V1 = {v1, . . . , vn},
V2 = {u1, . . . , un} and E(B) = E1 ∪ E2 ∪ E3 where

i) E1 := {viuj | for all 1 ≤ j ≤ i ≤ n},
ii) E2 := {viui+1 | for all 1 ≤ i ≤ n− 1}, and
iii) E3 := {viui+2 | for all 1 ≤ i ≤ n− 2}.

The graphs L1, which is a single edge and L2 which is isomorphic to C4

are not very interesting due to their size. For n ≥ 3 however these graphs
grow more complex, see Figure 5.3 for an illustration on L3, L4 and L5.
The following corollary is a nice consequence of Theorem 3.1.69.

Corollary 5.2.11 (C∗). Let B be a brace and v1 ∈ V1, v2 ∈ V2 such that
v1v2 /∈ E(B). Then B + v1v2 is a brace.

This corollary allows the construction of edge-maximal braces of width two
we are aiming for. We conclude this section with a second characterisation
of perfect matching width two braces, this time in terms of edge-maximal
supergraphs.
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L3 = K3,3

u1 u2 u3

v1 v2 v3

L4

u1 u2 u3 u4

v1 v2 v3 v4

L5

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 5.3.: The bipartite ladders of order 3, 4, and 5.
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Theorem 5.2.12 (C∗). Let B be brace with |V1| = n. Then, pmw(B) = 2

if and only if B ⊆ Ln.

Proof. We start by proving that every conformal subgraph of Ln is of
perfect matching width 2 or isomorphic to K2. To do so, by Lemma 5.1.15,
it suffices to show pmw(Ln) = 2 for all n ∈ N with n ≥ 2. The definition
of Ln directly provides an ordering λ of V1 = {v1, . . . , vn} with λ(vi) =

i. We prove that width(λ) = 2. Let i ∈ [1, n − 3] be arbitrary. By
definition, NLn(vi) = {u1, . . . , ui+2} ⊆ Reach[B, λ, vi]. Moreover, as
NLn(vj) ⊆ NLn(vi) for all j ≤ i, NLn(vi) = Reach[B, λ, vi]. Therefore,
|Reach[B, λ, vi]| − |Prec[B, λ, vi]| = 2 for all i ∈ [1, n − 2] and thus,
width(λ) = 2. By Theorem 5.2.10 the assertion follows.
Now, let B be a brace of perfect matching width two. Then, there is an
ordering λ of V1 of width two by Theorem 5.2.10. Let us number the
vertices of V1 according to λ, so for all i ∈ [1, n] let vi := λ−1(i). We
construct a numbering of the vertices in V2 as follows. Let NB(v1) =

{u1, u2, u3} be numbered arbitrarily. The size of the neighbourhood of
a1 follows immediately from the width of λ and the fact that B is a
brace. Now, as a consequence of Lemma 5.2.4, for every i ∈ [1, n − 2],
Reach[B, λ, vi] \ Reach[B, λ, vi−1] contains exactly one vertex, which is
in V2. Let ui+2 be this vertex. Now, NB(vi) ⊆ Reach[B, λ, vi] for all
i ∈ [1, n] and thus B does not contain an edge that does not obey the
definition of a bipartite ladder with respect to the orderings of V1 and V2

as obtained above. If there are indices i ∈ [1, n] and j ∈ [1, n] such that
viuj /∈ E(B), but j ≤ i+ 2, then we simply add the edge viuj to B. By
Corollary 5.2.11 B + viuj is still a brace and by choice of i and j, adding
this edge does not change the predecessor- and reachability-sets of any
vertices in V1, hence λ is still an ordering of width two for G+ viuj . Thus,
we can keep adding edges in this fashion until we do not find such a pair
of indices any more. In that case let B′ be the newly obtained brace. By
construction, B′ is isomorphic to Ln and thus B is a conformal subgraph
of Ln.

5.2.1. Computing Perfect Matching Decompositions of Width 2

The complexity of recognising bipartite graphs of perfect matching width
at most k and to construct a bounded width decomposition as a witness,
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plays a major part in the question whether perfect matching width can
be used for algorithmic applications at all. In this section we establish
a polynomial time algorithm to compute an optimal perfect matching
decomposition of a brace of perfect matching width two.
In order to achieve this, we use the fact that, due to Theorem 5.2.10,
we can find a matching elimination ordering if B has perfect matching
width two. Key to the construction of this ordering is Lemma 5.2.5,
which tells us that we have to start with a vertex that, together with its
neighbourhood, induces a claw, which means a vertex of degree three. So
in particular any bipartite matching covered graph that does not have a
degree three vertex can be ruled out as a candidate for perfect matching
width two. Next, we use Corollary 5.2.8 and Lemma 5.2.4, so in each
step after choosing the claw we have to choose one additional vertex such
that its neighbourhood contains at most one vertex that is not already in
the neighbourhood of the previously chosen vertices. If at some point we
are not able to find another vertex meeting these requirements, we either
chose the wrong claw and have to start over, or pmw(B) ≥ 3. Certainly
there are only so many different degree three vertices in B and so we can
simply try them all.

Lemma 5.2.13 (C∗). Let B be a brace. Then Algorithm 1 computes an
ordering λ of width two from input B and 1 if and only if pmw(B) = 2.

Proof. First, suppose Algorithm 1 returns an ordering λ for the input B

and 1. Then, we can consider the sets Prec[B, λ, v] and Reach[B, λ, v].
Proving |Reach[B, λ, λ−1(j)]|−|Prec[B, λ, λ−1(j)]| ≤ 2 for all j ∈ [1, |V1|]
by induction shows width(λ) = 2, as 2 ≤ width(λ) since B is a brace. If
j ∈ {1, |V1| − 1, |V1|}, there is nothing to show. So, suppose j ∈ [2, |V1|−3]

and let v := λ−1(j). That is, v is chosen in the iteration for i = j in step 9.
Let Pv and Uv be the sets P and U during this step of the algorithm. The
set Pv contains all vertices that were previously chosen by Algorithm 1 and
thus are smaller than v with respect to λ. Hence Prec[B, λ, v] = Pv ∪ {v}
and Prec[B, λ, λ−1(j − 1)] = Pv. With v being chosen at step j, we know
|NB(v) \NB(Pv)| ≤ 1. Therefore,

|Reach[B, λ, v]| − |Prec[B, λ, v]| =|NB(Pv ∪ {v})| − |Pv ∪ {v} |
≤|NB(Pv)|+ 1− (|Pv|+ 1)

≤|Pv|+ 3− (|Pv|+ 1) = 2.
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Hence, by Theorem 5.2.10, width(λ) = 2 and therefore pmw(B) = 2.
Second, suppose pmw(B) = 2. By Theorem 5.2.10, there exists an ordering
σ of V1 with width(σ) = 2. We have already seen that, if Algorithm 1
returns an ordering λ, it will be of width two. So what remains to show is
that the algorithm returns an ordering.
Suppose it does not. Let v1 := λ−1(1). Since Algorithm 1 only terminates
without returning an ordering when it looped through all elements for
the choice in step 3, it reaches the point where it chooses v1. Now,
Algorithm 1 can choose the next element in step 10 fulfilling the demand
in step 11 according to the ordering λ. Since it does not end up returning
an ordering it eventually differs from any optimal ordering and then
reaches the point k ∈ [2, |V1|] at which there is no element to choose in
step 10 fulfilling the demand in step 11. Let v1 . . . , vk be elements of
V1 that Algorithm 1 ordered this way so far before it gets stuck. Let σ

be chosen among all width-two-orderings of V1 maximising j ∈ [1, k − 1]

such that σ−1(i) = vi for all 1 ≤ i < j and σ−1(j) ̸= vj . We refer to the
elements after vj in σ by yh := σ−1(h) for all h ∈ [j + 1, |V1|]. By the
definition of the algorithm, |NB(vj) \ NB(v1, . . . , vj−1)| ≤ 1. Let σ′ be
the ordering obtained from σ by inserting vj at the position j instead of
its position j + x in σ. So σ′ contains the elements of V1 in the order
v1, . . . , vj , yj+1, . . . , yj+x−1, yj+x+1, . . . , y|V1|.
Suppose, width(σ′) ≥ 3. There is a vertex yh′ with h′ ∈ [j + 1, j + x− 1]

such that
|Reach[B, σ′, yh′ ]| − |Prec[B, σ′, yh′ ]| ≥ 3.

But |Prec[B, σ′, yh′ ]| = |Prec[B, σ, yh′ ]|+ 1 and with
|NB(vj) \NB(v1, . . . , vj−1)| ≤ 1

we obtain |Reach[B, σ′, yh′ ]| ≤ |Reach[B, σ, yh′ ]|+ 1. Thus,
|Reach[B, σ, yh′ ]| − |Prec[B, σ, yh′ ]| ≥ 3,

which contradicts σ being of width two. Hence width(σ′) = 2. However,
this is a contradiction to the choice of σ as σ′ now coincides on the first j

positions with the choice of Algorithm 1. Thus, the algorithm does not
get stuck once it chose the right claw and therefore, Algorithm 1 returns
an ordering.

So Algorithm 1 produces an elimination ordering of width two if and only if
the brace B that was given as input is of perfect matching width two. We
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just have to translate this ordering into a perfect matching decomposition
and are done. In the second part of the proof of Theorem 5.2.10 a
procedure is given to obtain a perfect matching decomposition of B from
a matching elimination ordering of width two. Since all sets necessary for
the construction of this decomposition can be computed from the ordering
by iterating over edges and vertices of B at most once, this procedure can
be done in polynomial time and thus, we obtain the following result which
concludes this section.

Theorem 5.2.14 (C∗). Let B be a brace. There is a polynomial time
algorithm that computes a perfect matching decomposition of width two
if and only if pmw(B) = 2.

Algorithm 1 Compute Width-Two-Ordering

1: procedure order(brace B, i ∈ [1, 2])
2: λ−1 ← ∅
3: for all v ∈ Vi do
4: λ−1 ← ∅
5: if |NB(v)| = 3 then
6: λ−1(1)← v

7: U ← Vi \ {v}
8: P ← {v}
9: for all i ∈ [2, |Vi|] do

10: for all v′ ∈ U do
11: if |NB(v

′) \NB(P )| ≤ 1 then
12: λ−1(i)← v′

13: P ← P ∪ {v′}
14: U ← U \ {v′}
15: break
16: if λ−1(i) = ∅ then
17: break
18: if λ−1(|Vi|) ̸= ∅ then return λ

19: return pmw(B) ≥ 3.
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5.2.2. Bipartite Matching Covered Graphs of M-Width 2

Section 5.2 provides a complete characterisation of braces of perfect
matching width two. However, we are not able to lift this result to all
bipartite matching covered graphs, since we do not know whether the
braces of a matching covered bipartite graph of perfect matching width
two are also of perfect matching width two themselves. To be more precise,
for a matching covered bipartite graph B with pmw(B) = 2, the best
we know about any brace H of it is pmw(H) ∈ [2, 4] by Corollary 5.1.20.
We can however consider the M -perfect matching width instead since
here Proposition 5.1.19 implies that pmw(B) bounds pmw(H). Indeed,
by Corollary 5.1.22, B has M -width two if and only if all of its braces H

have M |H -width two.
In this section we present a full characterisation of the braces of M -width
two and thus, provide a description of all matching covered bipartite
graphs that have a perfect matching M such that their M -width is 2.
Key to this characterisation is the observation that, given a brace B,
2 ≤ pmw(B) ≤ M - pmw(B) for all M ∈ M(B). So, if M - pmw(B) = 2

for some M , then any optimal M -decomposition of B will also be an
optimal perfect matching decomposition of G. Therefore we can apply
the results from Section 5.2. This immediately implies a rather strict
bound on the number of vertices, which in turn narrows down the braces
of M -width two to exactly two, namely K3,3 and C4.

Proposition 5.2.15 (C∗). Let B be a brace, then the following statements
are equivalent.

i) M - pmw(B) = 2 for an M ∈M(B),
ii) M - pmw(B) = 2 for all M ∈M(B), and
iii) B is isomorphic to C4 or K3,3.

Proof. In order to prove this statement, we first deduce item iii) from
item i) and then observe that we can find the same type of decomposition
for every M ∈M(B) which then implies item ii).
Let B be a brace and M ∈ M(B) such that M - pmw(B) = 2, then
pmw(B) = 2 as well. Let (T, δ) be an optimal M -decomposition for
B, then it also is an optimal perfect matching decomposition of B.
Now suppose |V (B)| ≥ 8. Then by Lemma 5.2.5, there is an edge
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Chapter 5. Perfect Matching Width

e ∈ E(spine(spine(T ))) such that ∂B(e) has a shore X of size 4 that in-
duces a claw in B. In particular, imbalance(X) = 2 and thus X is not M -
cornformal. This is a contradiction to the definition of M -decompositions
as e is an inner edge of T . So |V (G)| ≤ 6. On at most 6 vertices there are
only two braces: C4 and K3,3.

a

b c

d
a

c

b

d

Figure 5.4.: The brace C4 together with a perfect matching M and an
M -decomposition (T, δ) of width two.

First, consider C4. Let M ∈ M(C4) be a perfect matching. Then,
V (C4) = {a, b, c, d} and without loss of generality M = {ad, bc}. As C4 is
a cycle, the only other perfect matching of C4 is E(C4) \M = {ab, cd}.
We construct a perfect matching decomposition (T, δ) as follows. Take two
vertices t1 and t2 joined by an edge. We create a cubic tree T by adding
two leaves t1i and t2i as new neighbours to each of the ti for i ∈ [1, 2].
Then, let δ(t11) := a, δ(t21) := d, δ(t12) := b and δ(t22) := c (see Figure 5.4).
Now, (T, δ) is an M -decomposition of C4 and the matching porosity of
every cut induced by an edge of T is either one or two. Note that for the
other perfect matching of C4 we just have to adapt the mapping δ such
that for each i ∈ [1, 2] the leaves t1i and t2i are mapped to the endpoints
of the same edge and thus M - pmw(C4) = 2 for all M ∈ M(C4).
Second consider K3,3 and let V1 = {a, b, c} and V2 = {d, e, f} and
M = {af, be, cd} a perfect matching of K3,3. We again construct an
M -decomposition (T, δ) of our brace. This time consider a claw on the
vertices {t, t1, t2, t3} such that t is the central vertex. For each i ∈ [1, 3]

we introduce two new neighbours t1i and t2i to ti which will be the leaves
of our cubic tree T . Then let δ(t11) := a and δ(t21) := f . For the remaining
two edges of M proceed analogously by choosing an i ∈ [2, 3] for each
of the remaining edges and then mapping the leaves t1i and t2i to the
endpoints of the chosen edge. Now, (T, δ) is an M -decomposition of K3,3
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a b c

def

a

f

c

d

b e

Figure 5.5.: The brace K3,3 together with a perfect matching M and an
M -decomposition (T, δ) of width two.

and for every inner edge e of T the cut induced by e has a shore of size
two, hence width(T, δ) = 2 (see Figure 5.5 for an illustration). Again, we
can adapt the same strategy for every perfect matching M ′ ∈ M(B) and
thus M - pmw(B) = 2 for all M ∈ M(B).
We have seen that for each of the braces C4 and K3,3 the M -width
equals two for all perfect matchings M . So, in particular there exists
such a matching and thus, item ii) implies item i) again and the proof is
complete.

With Proposition 5.2.15 we are able to deduce a similar theorem for general
bipartite matching covered graphs of M -width two.

Theorem 5.2.16 (C∗). Let B be a bipartite matching covered graph,
then the following statements are equivalent.

i) M - pmw(B) = 2 for an M ∈ M(B),
ii) M - pmw(B) = 2 for all M ∈ M(B), and
iii) Every brace of B is either isomorphic to C4 or to K3,3.

Proof. By Theorem 3.1.61, every two tight cut decomposition procedures
of a matching covered graph produce the same list of bricks and braces.
This implies that any two maximal families of pairwise laminar non-trivial
tight cuts in a matching covered graph have the same size. We are going
to use this observation as a tool for induction.
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Let B be a bipartite matching covered graph and FB a maximal family
of pairwise laminar tight cuts in B. We prove the equivalence of items i)
to iii) by induction over |FB |.
The base case with |FB | = 0 is the case where B is a brace and thus
follows from Proposition 5.2.15.
Assume |FB | ≥ 1 and let ∂B(Z) be any non-trivial tight cut in FB . Let
BZ := B/(Z→vZ), and BZ := B/(Z→vZ). By induction hypothesis, the
three statements are equivalent for both BZ and BZ .
Assume M - pmw(B) = 2 for an M ∈ M(B) (item i)), then by Corol-
lary 5.1.22 M |BZ -pmw(BZ) = M |B

Z
-pmw(BZ) = 2 and thus, the braces

of both BZ and BZ are isomorphic to C4 or K3,3. Since the braces of B
are exactly the union of the braces of BZ and BZ , item iii) holds for B as
well.
Next, assume that item iii) holds for B. Pick any matching M ′ ∈M(B),
then by induction hypothesis M ′|BZ -pmw(BZ) = M ′|B

Z
-pmw(BZ) = 2.

Let eZ ∈M ′|BZ and eZ ∈M ′|B
Z

be the two edges covering vZ and vZ in
the respective contractions for the respective reductions of M ′. Let uX

be the endpoint of eX that is not vX for both X ∈
{︁
Z,Z

}︁
. Moreover, let

(TX , δX) be an optimal M ′|X -decomposition of BX for both X ∈
{︁
Z,Z

}︁
.

In TZ there is a vertex tZ that is adjacent to the two leaves of TZ that
are mapped to vZ and uZ , let tZ be chosen analogously. Observe, that
M ′ = ((M ′|BZ ∪ M ′|B

Z
) \ {eZ , eZ}) ∪ {uZuZ}. We construct an M ′-

decomposition (T ′, δ′) as follows. Let T ′
X be obtained from TX be deleting

the two leaves adjacent to tX for both X ∈
{︁
Z,Z

}︁
. Then, let T ′′ be

the tree obtained from T ′
Z and T ′

Z
by identifying tZ and tZ , call the new

vertex t. At last, let T ′ be the tree obtained from T ′′ by adding a new
vertex t′, the edge tt′ and two new leaves t1 and t2 adjacent to the new
vertex t′. Then, T ′ is a cubic tree and |L(T ′)| = |V (B)|. In the next step
we define δ′ : L(T ′)→ V (B) as follows:

δ′(ℓ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δZ(ℓ), if ℓ ∈ L(TZ) \

{︁
δ−1
Z (vZ)

}︁
,

δZ(ℓ), if ℓ ∈ L(TZ) \
{︂
δ−1

Z
(vZ)

}︂
,

uZ , if ℓ = t1, and
uZ , if ℓ = t2.

Now, (T ′, δ′) is an M ′-decomposition of B. Moreover, let e ∈ E(T ′)

be an inner edge of T ′, then either e is an inner edge of TZ or TZ and
by construction of T ′ and the fact that ∂B(Z) is tight, mp(∂B(e)) = 2,
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or e = tt′. In the later case, ∂B(e) has a shore of size two and thus
mp(∂B(e)) = 2. Therefore, width(T ′, δ′) = 2 and so M ′-pmw(B) = 2 for
all M ′ ∈M(B), that is item ii) holds. Since item ii) implies item i), we
are done.

So, in order to recognise a bipartite matching covered graph B of M -width
two, one just needs to check whether B has a brace not isomorphic to
C4 or K3,3. Lovász has shown that the tight cut decomposition of a
matching covered graph can be computed in polynomial time (see [Lov87])
and thus, Theorem 5.2.16 implies a polynomial recognition algorithm
for bipartite matching covered graphs of M -width two. Moreover, the
proof of Theorem 5.2.16 is constructive and can be used to obtain an
M -decomposition of width two for any M ∈ M(B), given a bipartite
matching covered graph B of M -width two, from the decompositions
of its braces. As these braces are only C4 and K3,3, whose optimal M -
decompositions are given in the proof of Proposition 5.2.15, we obtain the
following corollary.

Corollary 5.2.17 (C∗). Let B be a bipartite matching covered graph
and M ∈ M(B). Then, we can compute in polynomial time either an
M -decomposition of width two, or a brace of B that is neither isomorphic
to C4, nor to K3,3.

5.2.3. Linear Perfect Matching Width

We have seen that for any brace B of perfect matching width two an
optimal perfect matching decomposition (T, δ) has a particular shape,
namely spine(spine(T )) is a path. Moreover, by applying Lemma 3.1.58
we can see that any cut induced by an edge of spine(spine(T )) is indeed
a 2-tight cut. At the core of our characterisation of braces of perfect
matching width two sits Proposition 5.2.7 which is in fact not limited
to the case k = 2, it only needs the brace under consideration to be
k-extendible and to have a decomposition whose spine of the spine is a
path.
In Chapter 2 we discussed several versions of the cops & robber game for
undirected graphs and digraphs. Some possible combinations were left
out here. On undirected graphs, when considering just the non-monotone
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game with an invisible robber, one obtains a width parameter that is
very similar to treewidth, with one major difference: The decomposition
resembles a path instead of a tree. Consequently, the width parameter
is called pathwidth. Similarly one can consider the weak variant of the
directed cops & robber game and make the robber invisible. This time
the outcome is a parameter similar to DAG-width with the difference,
that the decomposition resembles a directed path and so the parameter
is called directed pathwidth. Notice that the game equivalent to directed
pathwidth is the weak variant, while the game for directed treewidth is
the strong variant. So what about the strong variant of the directed cops
& robber game where the robber is invisible? Apart from the following
conjecture, there does seem to exist much research on the topic.

Conjecture 5.2.18 (Barát’s Conjecture, [Bar06]). There exists a constant
c ∈ R such that for all digraphs D

c · copsw,iv(D) ≤ copss,iv(D) ≤ copsw,iv(D).

No type of bound seems to be known so far. Similar to how the two
directed parameters differ, we now define two ‘linear’ or ‘pathlike’ variants
of perfect matchings width inspired by our results on braces of perfect
matching width two.

Definition 5.2.19 (Linear Perfect Matching Width). Let G be a graph
with a perfect matching. A perfect matching decomposition (T, δ) of G is
said to be linear if spine(spine(T )) is a path. The linear perfect matching
width of G, denoted by lpmw(G), is defined as the minimum width over
all linear perfect matching decompositions of G.

Definition 5.2.20 (Strict Linear Perfect Matching Width). Let B be a
bipartite graph with a perfect matching. A linear perfect matching decom-
position (T, δ) of G is said to be strict if for all e ∈ E(spine(spine(T )))

the cut ∂B(e) is a generalised tight cut. The strict linear perfect matching
width of B, denoted by slpmw(G), is defined as the minimum width over
all strict perfect matching decompositions of B.

We briefly revisit the idea of strict linear perfect matching width in Sec-
tion 5.3 and Chapter 6. For now let us close this section with another open
problem. For bipartite graphs lpmw(B) ≤ slpmw(B) follows immediately.
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5.3. Duality and Directed Treewidth

Question 5.2.21. Is there a function f : N→ N such that slpmw(B) ≤
f(lpmw(B)) for all bipartite graphs B with perfect matchings?

In the following section we will see that a positive answer to Conjec-
ture 5.2.18 implies a positive answer for Question 5.2.21, while the reverse
is true only if f is a linear function.

5.3. Duality and Directed Treewidth

We have seen in Section 3.2 that there is a close connection between
bipartite graphs with perfect matchings and digraphs. Knowing about
this connection, Norine wrote in his thesis, that the bipartite version of
Conjecture 5.1.3 should follow from the Directed Grid Theorem. However,
at first glance there does not seem to be a straightforward connection
between directed treewidth and perfect matching width. In some special
cases we can already draw such a connection. For braces of perfect match-
ing width two, Lemma 3.2.13 provides a direct translation of an optimal
perfect matching decomposition into a directed path decomposition. But
generally we cannot expect the cuts that show up in perfect matching
decompositions to be generalised tight cuts. Hence, to draw the connection
between directed treewidth and perfect matching width we need a more
general approach to translate cuts of bounded matching porosity into
some kind of separation in an M -direction.

5.3.1. Edge Cuts and Separators

Inspecting the guard sets of a directed tree decomposition more closely
reveals that guards are also not supposed to block all directed paths that
go in one direction. Instead, the guards are meant to make sure that no
strong component of D avoids the guards and contains vertices from below
and above the guarded edge in the directed tree decomposition. So one
could say that we only need to destroy the matching connectivity between
the two shores of a bounded matching porosity cut in B by deleting a
conformal set of small size.
So, given a cut ∂B(X) in a bipartite graph B with a perfect matching
M we are interested in a set F ⊆M that meets all M -conformal cycles
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Chapter 5. Perfect Matching Width

with vertices in X and X, and whose size is bounded in some function of
mp(∂B(X)).

Definition 5.3.1 (Guarding Set). Let B be a bipartite graph with a
perfect matching M , and X ⊆ V (B). An M -conformal cycle C is said
to cross the cut ∂B(X) if E(C) ∩ ∂B(X) ̸= ∅. A set F ⊆ M is a hitting
set for a family C of M -conformal cycles if F ∩ E(C) ̸= ∅ for all C ∈ C.
Moreover, F is called a guard for ∂B(X) if ∂B(X) ∩M ⊆ F and F is a
hitting set for the family of all M -conformal cycles that cross ∂B(X).

This section is dedicated to the proof of the following theorem.

Theorem 5.3.2 (D∗). Let B be a bipartite graph with a perfect matching
M , and X ⊆ V (B) a set of vertices with mp(∂B(X)) = k, then there
exists a guard F ⊆M of ∂B(X) with |F | ≤ 2k + k2.

We do this by establishing a sequence of small lemmas regarding a con-
struction we present and refine in what follows.

Lemma 5.3.3 (D∗). Let B be a bipartite graph with a perfect matching
M , and X ⊆ V (B). If F ⊆M is a guard for ∂B(X), then no elementary
component of B − V (F ) can contain vertices of both X \ V (F ) and of
X \ V (F ).

Proof. Suppose there exists an elementary component K with vertices in
both X \ V (F ) and X \ V (F ). Then K must have at least four vertices
since otherwise, K would be isomorphic to K2 and its single edge would
have to be an edge of M ∩ ∂B(X) ⊆ F . Now let e ∈ E(K) ∩ ∂B(X) be
an edge of K (and observe that, by definition, e /∈M). Also, let M ′ be a
perfect matching of K containing e. Since F ⊆M and K is an elementary
component of B − V (F ), MK := M ∩ E(K) is a perfect matching of K.
Moreover, e /∈MK . If we consider the subgraph K′ of K consisting solely
of the edges of M ′ and MK , every component either is an M -conformal
cycle, or isomorphic to K2. Since e /∈MK , the endpoints of e are covered
by distinct edges of M , and thus the component of K′ containing e must
be an M -conformal cycle that crosses ∂B(X) and avoids F . However, such
a cycle cannot exist by definition.

An important observation one can make in the proof of the lemma above
is that, if one were to delete the vertices of a set F ⊆M and there still
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is an elementary component with vertices on both sides of ∂B(X), then
there exists a cycle C that is M -conformal in B, which still has edges in
∂B(X). That means, if F = ∂B(X), then there exists the perfect matching
M ′ := M∆E(C) with |∂B(X) ∩M ′| ≥ |∂B(X) ∩M |+ 2. We make this
observation more exact in the following lemma.

Lemma 5.3.4 (D∗). Let B be a bipartite graph with a perfect matching
M , X ⊆ V (B) such that mp(∂B(X)) = k, and |M ∩ ∂B(X)| = k. Then
M ∩ ∂B(X) is a guard for ∂B(X).

Proof. Suppose there is an M -conformal cycle C avoiding F := M∩∂B(X)

but crossing ∂B(X). Let W := E(C) ∩ ∂B(X), then clearly W ∩M = ∅.
However, since C avoids F we can define a new perfect matching M ′ of
B as M ′ := M∆E(C). Then W ∪ F ⊆M ′ and thus |M ′ ∩ ∂B(X)| > k =

mp(∂B(X)) which is a contradiction. Hence no M -alternating cycle that
crosses ∂B(X) can avoid F .

For the next part, we need some additional notation. Let B be a bipartite
graph with a perfect matching M , X ⊆ V (B) be an M -conformal set
of vertices and M ′ ̸= M another perfect matching of B. Then let us
denote for every W ⊆M ′ by FM′,M (W ) the set of edges of M that match
the vertices in V (W ). Note that |FM′,M (W )| ≤ 2|W |. Let H be an
elementary component of B −W , the M-box of H is the set □H,M :=

V (H) \ V (FM′,M (W )).
The following observation is an immediate consequence of the definition
of ≤2, Theorem 3.1.24, and V (W ) ⊆ V (FM′,M (W )).

Observation 5.3.5 (D∗). Let B be a bipartite graph with perfect match-
ings M and M ′, let W ⊆M ′ and H1 and H2 be two distinct elementary
components of B − V (W ). Then, if H1 ≤2 H2, there is no internally
M -conformal path P in B − V (FM′,M (W )) such that P starts in a vertex
of V2 ∩□H1,M , ends in a vertex of V1 ∩□H2,M , and is otherwise disjoint
from □H1,M ∪□H2,M .

We fix the following for the upcoming lemmata.
Let B be a bipartite graph with a perfect matching M . Let X ⊆ V (B) be
an M -conformal set and let M ′ be a perfect matching with |∂B(X)∩M ′| =
mp(∂B(X)) = k as well as W := ∂B(X) ∩M ′. Let λ be a linearisation of

243



Chapter 5. Perfect Matching Width

the partial order ≤2 of elementary components of B − V (W ) and let us
number the elementary components H1, . . . , Hℓ of B − V (W ) such that
λ(Hi) = i for all i ∈ [1, ℓ].
A set I ⊆ [1, ℓ] is a dangerous configuration if there exists an M -conformal
cycle C of B − V (FM′,M (W )) such that

i) V (C) ⊆
⋃︁

i∈I □Hi,M ,
ii) □Hi,M ∩ V (C) ̸= ∅ for all i ∈ I, and
iii) there are i, j ∈ I such that □Hi,M ⊆ X and □Hj ,M ⊆ X.

If I is a dangerous configuration, we call iI := max I the endpoint of I,
the cycle C is a base cycle of I.

Lemma 5.3.6 (D∗). Let B′ := B − V (FM′,M (W )). There exists an
M -conformal cycle C in B′ that crosses ∂B′(X \ V (FM′,M (W ))) if and
only if there exists a dangerous configuration I with C as a base cycle.

Proof. The reverse direction follows immediately from the definition of
dangerous configurations. If I is dangerous with base cycle C, then C

contains vertices of both X and X and thus crosses ∂B′(X\V (FM′,M (W ))).
Hence it suffices to prove the forward direction. So let C be an M -
conformal cycle in B′ that crosses ∂B′(X \ V (FM′,M (W ))). Now let
I := {i ∈ [1, ℓ] | □Hi,M ∩ V (C) ̸= ∅}. Then V (C) ⊆

⋃︁
i∈I □Hi,M and

clearly, the second requirement is met by the definition of I. At last
we know that C crosses ∂B′(X \ V (FM′,M (W ))). By lemmata 5.3.3
and 5.3.4 there cannot exist j ∈ [1, ℓ] such that V (Hj) ∩ X ̸= ∅ and
V (Hj) ∩X ̸= ∅ at the same time. Hence there must be i, j ∈ I such that
□Hi,M ⊆ V (Hi) ⊆ X and □Hj ,M ⊆ V (Hj) ⊆ X.

In the fixed setting we are working on, let i ∈ [1, ℓ − 1] be any number.
We associate a specific edge cut in B with i and λ as follows:

∂λ(Hi) := ∂B(

i⋃︂
j=1

V (Hj) ∪ V1(W )).

Lemma 5.3.7 (D∗). For all i ∈ [1, ℓ− 1] and all perfect matchings M ′′

of B, we have |∂λ(Hi) ∩M ′′| = k.

Proof. Let i ∈ [1, ℓ−1] be arbitrary. By definition of the partial order ≤2 of
the Hj no vertex v ∈

⋃︁i
j=1 V2(Hj) can have a neighbour in

⋃︁ℓ
j=i+1 V (Hj).
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So the only neighbours v can have outside of
⋃︁i

j=1 V (Hj) must be vertices
of V1(W ). Hence every perfect matching M ′′ of B must match v to a
vertex within

⋃︁i
j=1 V (Hj) ∪ V1(W ) and thus it must have exactly

|
i⋃︂

j=1

V1(Hj) ∪ V1(W )| − |
i⋃︂

j=1

V2(Hj)| = |V1(W )| = k

many edges in ∂λ(Hi).

Lemma 5.3.8 (D∗). Let I ⊆ [1, ℓ] be a dangerous configuration and let
C be a base cycle of I. Moreover, let i := min I and i ≤ j < iI , then
∂λ(Hj) ∩ E(C) ∩M ̸= ∅.

Proof. Clearly, with C being a cycle, |E(C) ∩ ∂λ(Hj)| ≥ 2. Now suppose
∂λ(Hj) ∩ E(C) ∩M = ∅ and let e1, e2 ∈ E(C) ∩ ∂λ(Hj) be two distinct
edges with ep = upvp such that vp ∈

⋃︁j
j′=1 V (H ′

j) ∪ V1(W ) for each
p ∈ [1, 2]. Let us further choose e1 and e2 such that there is a subpath
P of C from v1 to v2 that avoids u1 and u2 and does not contain an
edge of ∂λ(Hj). To find P move along C starting in v1 and away from u1

until the first time we reach an endpoint of another edge in ∂λ(Hj), this
will be v2. By our assumption {e1, e2} ∩M = ∅ and thus, with C being
M -conformal, E(P )∩M must be a perfect matching of P . Hence P must
have an even number of vertices in particular and thus is of odd length.
But by Observation 5.3.5 v1, v2 ∈ V1 and thus P is an odd length path
joining two vertices of V1. With B being bipartite this is impossible and
our claim follows.

We are finally ready to prove the main result of this section.

Proof of Theorem 5.3.2. First let F−1 := M ∩ ∂B(X), B0 := B − V (F−1),
X0 := X \ V (F−1), and M0 := M \ F−1. Clearly, every M0 conformal
cycle in B0 is also an M -conformal cycle in B that avoids F−1. Each such
cycle that crosses ∂B0(X0) also crosses ∂B(X), and every conformal set
in B0 is also conformal in B. Moreover, mp(∂B0(X0)) = k0 := k − |F−1|
and X0 is M0-conformal. Now let M ′ be a perfect matching of B0

with |M ′ ∩ ∂B0(X0)| = k0 and let F0 := FM′,M0
(∂B0(X0) ∩M ′). Then

|F0| ≤ 2k0 since every edge of F0 covers an endpoint of an edge in
∂B0(X0) ∩M ′ and there are 2k0 such endpoints.
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Let λ be a linearisation of the partial order ≤2 of the elementary compo-
nents of B0−V (∂B0(X0)∩M ′). Let us number the elementary components
of B0−V (∂B0(X0)∩M ′) H1, . . . , Hℓ such that λ(Hi) = i for all elementary
components. We can now choose i1 ∈ [1, ℓ] to be the smallest number
such that there is a dangerous configuration I1 with i1 = iI1 . Then for
every dangerous configuration I with the smallest element i ≤ i1 we must
have iI ≥ i1. Hence each base cycle of such a configuration must have
an edge in F1 := (∂λ(Hi1−1) ∩M0) ∪ (∂λ(Hi1) ∩M0) by Lemma 5.3.8.
Indeed, every M0-conformal cycle that crosses ∂B0(X0), avoids F0, and
has vertices in

⋃︁i1
j=1 □Hj ,M0 is met by F1 by Lemma 5.3.6. Moreover, by

Lemma 5.3.7 we have |F1| ≤ 2k0.
Now suppose the sets F1, . . . , Fp−1 ⊆ M0 with |Fj | ≤ 2k0 for all j ∈
[1, p − 1] have already been constructed together with pairwise disjoint
dangerous configurations I1, . . . , Ip−1. Moreover let us assume that 1 ≤
j < j′ ≤ p − 1 implies iIj < h where h is the smallest member of Ij′

and
⋃︁p−1

j=1 Fj meets all base cycles of dangerous configurations I for which
some i′′ ∈ I exists with i′′ < iIp−1 . Let ip ∈ [ip−1 + 1, ℓ] be the smallest
number such that there is a dangerous configuration Ip with base cycle C

that avoids
⋃︁p−1

j=1 Fj . This means Ip must be disjoint from
⋃︁p−1

j=1 Ij . Let
Fp := (∂λ(Hip−1) ∩M0) ∪ (∂λ(Hip) ∩M0). By lemmata 5.3.6 and 5.3.8,⋃︁p

j=1 Fj meets all ∂B0(X0) crossing M0-conformal cycles that avoid F0

and have a vertex in
⋃︁ip

j=1 □Hj ,M0 . With Lemma 5.3.7 we also have
|Fp| ≤ 2k0.
With B being finite and thus ℓ being a natural number there must be
some q such that we cannot find an iq+1 as above. Suppose q > k0

2
.

Clearly every Ij , j ∈ [1, q] has a base cycle Cj that is M0 conformal and
crosses ∂B0(X0). However, with X0 being M0-conformal, Cj must have
at least two edges in ∂B0(X0) that do not belong to M0. Since I1, . . . , Iq
are pairwise disjoint, also the C1, . . . , Cq are also pairwise disjoint. So we
construct the following perfect matching of B0:

M ′′ := M0∆

q⋃︂
j=1

E(Cj).

Then |∂B0(X0) ∩M ′′| ≥
∑︁q

j=1 |∂B0(X0) ∩ E(Cj) \M0| ≥ 2q > 2 k0
2

=

mp(∂B0(X0)) which is impossible. Hence our process must stop after
q ≤

⌊︁
k0
2

⌋︁
many steps.
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In total we get a set F := F−1 ∪F0 ∪
⋃︁q

j=1 Fj that meets all M -conformal
cycles crossing ∂B(X) and satisfying ∂B(X) ∩M ⊆ F . So F is a guard of
∂B(X). Moreover, we have

|F | ≤ |F−1|+ |F0|+
q∑︂

j=1

|Fj |

≤ k − k0 + 2k0 +
k0
2
2k0

≤ k + k0 + k2
0

≤ 2k + k2.

5.3.2. Cyclewidth and Directed Branchwidth

How can we translate results on matching porosity into the setting of
digraphs using our notion of M -directions? To answer this question
let us consider some graph G with a perfect matching M . Note that
G is not necessarily bipartite as this general idea can be applied to
any graph with a perfect matching. Now let X ⊆ V (G) be an M -
conformal set with mp(∂G(X)) = k for some k ∈ N. Since X is M -
conformal, ∂G(X) ∩M = ∅. Let M ′ ∈M(G) be a perfect matching with
|M ′ ∩ ∂G(X)| = k and consider the graph G′ := G[M ′ ∪M ] that only
consists of edges from M ′ ∪M . By Observation 3.1.32 every component
of G′ either is an M -M ′-conformal cycle or isomorphic to K2. Moreover,
no edge of M ′ ∩ ∂G(X) can belong to a component isomorphic to K2 in
G′ and thus each of these edges must be contained in an M -M ′-conformal
cycle. Let C be the collection of all components of G′ that have an edge
in ∂G(X). Then we have

⋃︁
C∈C E(C) ∩ ∂G(X) ⊆ M ′ and in particular

|
⋃︁

C∈C E(C) ∩ ∂G(X)| = k. Hence if the matching porosity of ∂G(X) is k

we find a family of pairwise disjoint M -conformal cycles in G that share
k edges with ∂G(X) in total. Now let Y ⊆ V (G) be another M -conformal
set, and let C be a family of pairwise disjoint M -conformal cycles in G.
Suppose |

⋃︁
C∈C E(C) ∩ ∂G(Y )| = k′ for some k′ ∈ N. Let us denote by

E(C) the set
⋃︁

C∈C E(C), and let M ′′ := M∆E(C). Then M ′′ is a perfect
matching of G and |∂G(Y ) ∩M ′′| = k′ which implies mp(∂G(Y )) ≥ k′.
So if we can find a family of pairwise disjoint M -conformal cycles in G,
then the number of edges this family has in our cut is a lower bound
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on its matching porosity. Let ζ be an M -signing of G, then there is a
bijection between the M -conformal cycles in G and the directed cycles in
D±(G,M, ζ). This leads us to the following definitions and observation.

Definition 5.3.9 (Cycle Porosity). Let (G, σ) be a bidirected graph, and
X ⊆ V (G). The cycle porosity of the cut ∂G(X) is defined as

cp(∂G(X)) := max
C family of

pairwise disjoint
directed cycles

|E(C) ∩ ∂G(X)|.

In a slight abuse of notation, we use cycle porosity also for digraphs as
those are a special case of bidirected graphs. Let G be a graph with a
perfect matching M , and X ⊆ V (G) be an M -conformal set. We denote
by M(X) the set of edges of M with both endpoints in X.

Observation 5.3.10 (X∗). Let G be a graph with a perfect matching M ,
X ⊆ V (G) be an M -conformal set, and ζ be an M -signing of G. Then
mp(∂G(X)) = cp(∂D±(G,M,ζ)(M(X))).

Similar to our definition of perfect matching width we can now use cycle
porosity to define a branchwidth parameter for bidirected graphs.

Definition 5.3.11 (Cycle Width). Let (G, σ) be a bidirected graph. A
cycle decomposition of (G, σ) is a cp-branch decomposition (T, δ) over
V (G) where T is a cubic tree and δ : L(T )→ V (G) is a bijection.
The width of a cycle decomposition (T, δ) is defined as half3 of its cp-width,
and the cycle width of (G, σ), denoted by cycw(G, σ), is the minimum
width over all cycle decompositions for (G, σ).

Please note that the cycle porosity of a cut is preserved under switchings.
As before, in a slight abuse of notation, we may use cycle width directly
on digraphs instead of digraphic bidirected graphs.
Our goal is to use the idea of cycle width to deduce the bipartite version
of Conjecture 5.1.3 from the Directed Grid Theorem. In a first step we
establish a relation between the cycle width of digraphs and directed
treewidth.

Theorem 5.3.12 (D∗). Let D be a digraph. Then cycw(D) − 1 ≤
dtw(D) ≤ 18 cycw(D)2 + 36 cycw(D) + 9.
3Note that the cycle porosity of any cut is even, we add the factor 1

2 to the definition
to be more in line with other width parameters by allowing any value from N.
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Then we establish a connection between the perfect matching width of a
graph G with a perfect matching M and its M -bidirections.

Theorem 5.3.13 (X∗). Let G be a graph with a perfect matching M

and an M -signing ζ. Then 1
2
pmw(G) ≤ cycw(D±(G,M, ζ)) ≤ pmw(G).

The bipartite version of Conjecture 5.1.3 then follows from the Directed
Grid Theorem with an application of Lemma 3.2.17.

Cycle Width and Directed Treewidth To establish Theorem 5.3.12 we
need to show two directions. First we prove that cycle width is bounded
from above by a function in the directed treewidth. For this, we construct a
cycle decomposition from a directed tree decomposition in two steps. First,
we push all vertices contained in bags of inner vertices of the arborescence
into leaf bags. Second, we transform the result into a cubic tree.

Definition 5.3.14 (Leaf Directed Tree Decomposition). A relaxed di-
rected tree decomposition (T, β, γ) of a digraph D is called a leaf directed
tree decomposition if β(t) = ∅ for all t ∈ V (T ) \ L(T ).

So first, we show that a directed tree decomposition can be turned into a
leaf decomposition without changing its width.

Lemma 5.3.15 (B∗). Let (T, β, γ) be a directed tree decomposition of a
digraph D. There is a linear time algorithm that computes a leaf directed
tree decomposition of D of the same width.

Proof. For every inner vertex t ∈ V (T ) such that β(t) ̸= ∅ we add a new
leaf t′ adjacent to t (and no other vertices of T ) and thus obtain a new tree
T ′. The new bags are defined by β′ := V (T ′)→ 2V (D) with β′(t) := β(t)

for t ∈ L(T ), and β′(t) := ∅ and β′(t′) := β(t) for t ∈ V (T ) \ L(T ). The
new guards are defined by

γ′(e) :=

{︄
γ(e), if e ∈ E(T )

β(t′), if e = (t, t′) for some t ∈ V (T ) \ L(T ), and t′ ∈ L(T )

We prove that (T ′, β′, γ′) is a relaxed directed tree decomposition. The
bags given by β′ still provide a near partition of V (D). For all edges
e = (t, t′) ∈ E(T ) it is still the case that γ(e) strongly guards β(T ′

t′) and
for the new edges this condition is obvious. Finally, if Γ′ is defined for
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(T ′, β′, γ′) as Γ for (T, β, γ), then Γ′(t) = Γ(t) for all t ∈ V (T ) and for
all t′ we have Γ′(t′) ⊆ Γ(t). Hence, the width of the decomposition did
not change. Note that the new decomposition can be computed in linear
time.

So whenever we are given a directed tree decomposition of a digraph D,
we can manipulate it such that exactly the leaf-bags are non-empty. This
is still not enough since a cycle decomposition requires every leaf to be
mapped to exactly one vertex, meaning that every bag has to be of size
at most one, and also the decomposition tree itself has to be cubic. The
following lemma shows how a leaf directed tree decomposition can be
further manipulated to meet the above requirements, again in polynomial
time and without changing the width. We call a (relaxed) directed tree
decomposition cubic (subcubic) if the underlying tree of its arborescence
is cubic (subcubic).

Lemma 5.3.16 (B∗). Let D be a digraph and k ∈ N. If the directed
treewidth of is at most k, then there is a cubic leaf directed tree decompo-
sition of width k for D.

Proof. Let D be a digraph and (T ′′, β′′, γ′′) a directed tree decomposition
of width k. Then, due to Lemma 5.3.15, there exists a leaf directed tree
decomposition (T, β, γ) of D of the same width. Algorithm 2 takes this as
input and transforms it into a subcubic leaf directed tree decomposition
(T ′, β′, γ′).
The resulting tree T ′ is subcubic and only the leaf bags contain vertices.
Now we want to check whether the output of the algorithm again yields a
proper directed tree decomposition of the desired width.
In the first part we split the bag of each leaf up into bags of single vertices
which are added as new children. We show that such a split of a leaf ℓ
does not destroy the properties of the directed tree decomposition. The
new vertices ℓv obtain bags of size one. The new edge (ℓ, ℓv) obtains the
guard β(ℓ) ∪ γ(x, ℓv).
Due to |β(ℓ) ∪ γ(x, ℓv) ∪ {v} | = |β(ℓ) ∪ γ(x, ℓ)| ≤ k + 1, the width of the
new decomposition is still at most k.
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Algorithm 2 cubify a leaf decomposition

1: procedure cubify((T, β, γ))
2: T ′ ← T , β′ ← β, γ′ ← γ
3: for all ℓ ∈ L(T ) do
4: x← parent of ℓ
5: for all v ∈ β(ℓ) do
6: introduce new vertex ℓv
7: T ′ ← T ′ + (ℓ, ℓv)
8: β′(ℓv)← {v}
9: γ′(ℓ, ℓv)← β(ℓ) ∪ γ(x, ℓ)

10: β′(ℓ)← ∅
11: while T ′ not subcubic do
12: let t ∈ V (T ) with degD(t) = d+ 1 > 3
13: x← parent of t
14: let c1, . . . , cd be the children of t in topological order of their

bags
15: introduce new vertices t1, . . . , td−1 with empty bags
16: T ′ ← T ′ − t + {t1, . . . , td−1} + {(ti, ci) | i ∈ [1, d− 1]} +
{(ti, ti+1) | i ∈ [1, d− 2]}+ (td−1, cd) + (x, t1)

17: γ′(ti, ci)← γ(t, ci) for all i ∈ [1, d− 1]
18: γ′(td−1, cd)← γ(t, cd)
19: γ′(ti, ti+1), γ

′(x, t1)← γ(x, t)

20: return (T ′, β′, γ′)

The guard of the edge going to ℓv contains v, therefore every walk in D

starting and ending at v intersects the guard. So after the first part of
the algorithm (T ′, β′, γ′) is still a proper directed tree decomposition.
In the second part we split high degree vertices into paths. For every
vertex t of (total) degree d + 1 > 3 we introduce d − 1 new vertices
t1, . . . , td−1. Let c1, . . . , cd be the children of t. We can assume without
loss of generality that the children are ordered by the topological order
of their bags. That is if i < j, then every path from β(Tcj ) to β(Tci)

intersects Γ(v). The subtrees rooted at the children stay intact and are
attached differently to the subtree above T −Tt. To do this we first remove
t from T obtaining subtrees Tr containing the root and the parent x of
t as a leaf, and Tci for every child of t. We now add the new vertices as
follows. The former parent x builds a path with the new vertices ti in
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increasing order. Then every ti is mapped to the corresponding ci, leaving
cd which is also mapped to td−1, which only has two neighbours so far,
since its the last on the path.
For all the subtrees that stay the same during the construction it is clear
that no walk can leave them and come back without intersecting a guard.
But we introduce new subtrees that contain several child-subtrees of t.
Let T ′

ti be such a subtree. Assume there is a walk W in D starting and
ending in β(Tti) containing a vertex from β(T −Tti) but no vertex of γ(t),
which is the guard for the edge towards ti. There are two possibilities.
Either W contains a vertex of T ′ − Tt1 = T − Tt, which directly yields
a contradiction to (T, β, γ) being a proper directed tree decomposition.
Or W contains a vertex from β(Ttj ) for some j < i. But this would
imply that there is a path from β(Tci) to β(Tcj ), which contradicts the
topological ordering.
Thus, the output of the algorithm is again a proper directed tree decom-
position.

So given a directed tree decomposition of a digraph D, we can transform
it into a subcubic leaf directed tree decomposition (T, β, γ) of D in linear
time without changing its width. It remains to show that if we forget
about the orientation of the edges of the arborescence T , (T, β) defines a
cycle decomposition of bounded width.

Proposition 5.3.17 (B∗). Let D be a digraph. Then cycw(D) ≤
dtw(D) + 1 and a cycle decomposition of D of width at most k can
be computed from a directed tree decomposition of D of width k in
polynomial time.

Proof. Let k := dtw(D). Due to Lemma 5.3.16 there exists a subcubic
leaf directed tree decomposition (T, β, γ) of D of width k such that every
leaf bag contains at most one vertex. We want to show that (T, β) yields
a cycle decomposition of width at most k + 1. The function β already
provides a bijection between L(T ) and V (D). So next we show that every
edge e ∈ E(T ) satisfies cp(∂D(e)) ≤ 2|γ(e)|. Afterwards we make the
subcubic decomposition cubic.
Let C be a minimal family of pairwise disjoint directed cycles in D and let
e ∈ E(T ). We show that |∂D(e)∩E(C)| ≤ 2|γ(e)|. Let X1, X2 ⊆ V (D) be
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the two shores of the cut ∂D(e) such that X1 = β(T ′) where T ′ ⊆ T is the
subtree of T not containing the root. Furthermore, let Y1 ⊆ V (C) ∩X1

be the vertices of the cycles in C incident with an edge of ∂D(e) ∩ E(C).
Let W be the collection of directed walks Wv,w from a vertex v ∈ Y1 to
some w ∈ Y1 such that

i) Wv,w is a subwalk of some cycle in C, and
ii) ∅ ̸= V (Wv1) \ {v1, v2} ⊆ X2.

In other words, W is the set of walks (paths or cycles) starting in some
v ∈ Y1 and going along the cycle in C that contains v and ending in the
first vertex in X1 after leaving it from v1. Clearly, the walks in W are not
necessarily vertex disjoint as the paths may share common endpoints in
Y1.
Let W1,W2 ∈ W be two walks with V (W1) ∩ V (W2) ̸= ∅, then there
is a cycle C ∈ C such that both W1 and W2 are subwalks of C. Hence
|V (W1) ∩ V (W2)| ≤ 2. As γ(e) is a guard in the relaxed directed tree
decomposition, it must contain a vertex of every walk in W. Every vertex
can guard at most two paths, hence cp(∂D(e)) = |W| ≤ 2|γ(e)| ≤ 2(k+1).
Now note that there still might be vertices of degree two in T . Since they
are not leaves, β does not map them to any vertex of V (G). Therefore,
the two edges incident to a vertex of degree two induce the same cut and
we can contract one of them to reduce the number of vertices of degree
two. Let (T ′, β) be the decomposition obtained in this way, then (T ′, β)

is cubic and all cuts induced by edges still have porosity at most 2k + 2.
Thus, (T ′, β) is a cycle decomposition for D of width at most k + 1.

An interesting property of cycle width, especially in comparison with
directed treewidth, is that it is monotone under butterfly minors. This
means in particular that one can expect to find nice characterisations for
the class of digraphs of cycle width at most k at least for small values of
k.

Theorem 5.3.18 (B∗). Let D be a digraph and D′ a butterfly minor of
D. Then cycw(D′) ≤ cycw(D).

Proof. We first note that the cycle width is closed under taking subgraphs.
To see this let D′ ⊆ D be a subgraph of D and (T, φ) a cycle decomposition
of D. We delete every leaf that corresponds to a vertex in V (D) \
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V (D′) and eliminate vertices of degree two if needed as in the proof of
Proposition 5.3.17 to obtain a new cycle decomposition (T ′, φ′) of D′

whose maximal cycle porosity is at most the maximal cycle porosity of
T, φ. So cycw(D′) ≤ cycw(D).
Next, we want to show that butterfly contracting an edge in D does not
increase the cycle width. Let D′ := D/e for some edge e = (u, v) ∈ E(D).
Since e is butterfly contractible it is the only outgoing edge from u or the
only ingoing edge of v. We assume the former case first. Note that every
cycle containing u also contains v.
We obtain (T ′, φ′) from (T, φ) by deleting the leaf ℓ of T mapped to u and
contracting one of the two edges in T incident with the unique neighbour
of ℓ in T in order to obtain the cubic tree T ′. Let xu,v be the contraction
vertex, we set ϕ′(ϕ−1(v)) := xu,v while leaving the mapping of the other
leaves intact.
All cuts in the decomposition for which u and v lie on the same shore do
not change their porosity. So consider a cut ∂D(X), v ∈ X, induced by
(T, φ) that separates u and v, then (T ′, φ′) induces a cut ∂D/e(X

′) where
X ′ = (X \ {v}) ∪ {xu,v} and V (D/e) \X ′ = V (D) \ (X ∪ {u}).
Suppose there is a family of pairwise disjoint directed cycles C in D

that contains a cycle C with u ∈ V (C) and satisfies |∂D(X) ∩ E(C)| =
cp(∂D(X)) as well as ∂D(X) ∩ E(C) ̸= ∅. Let C′ be the cycle in D/e

obtained from C after the contraction of e.
Let C′ be a family of directed cycles in D/e. At most one cycle C contains
xu,v. If C also exists in D, then C′ is a family of cycles in D as well.
Otherwise, as (u, v) is the only edge leaving u, the predecessor of xu,c on
C has an edge to u in D. Thus we can construct a cycle C′ in D from C

by replacing the edge (y, xu,v) by a path yuv. Then C′ crosses ∂D(X) at
least as often as C and the number of edges of (C \ (C)) ∪ {C′} in the cut
is at least as high as the number of edges of C in ∂D(X).
For handling the case that the edge e is the only ingoing edge of v, we
claim that the cycle width does not change if we reverse all directions
of the edges in the graph. Our claim holds, since we still get exactly
the same cycles just with reversed direction and they still cross the same
cuts. Therefore the decomposition stays exactly the same with the same
porosities for all cuts. By these arguments cycw(D′) ≤ cycw(D) holds for
every butterfly minor D′ of D.
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With this we have established one of the two inequalities from Theo-
rem 5.3.12. For the reverse we need a way to show that any digraph of
bounded cycle width also has bounded directed treewidth. To achieve this
goal we utilise Theorem 5.3.2 and the cops & robber game.

Lemma 5.3.19 (D∗). Let D be a digraph and X ⊆ V (D). If cp(∂D(X)) =

k, then there is a hitting set of size at most 2k2 +4k for all directed cycles
crossing ∂D(X).

Proof. With D being a digraph there exists a bipartite graph B and a
perfect matching M such that D = D(B,M). For every v ∈ V (D) let
us identify the edge ev ∈M that uniquely corresponds to v in B. Then
X naturally corresponds to the set Y := V ({ev | v ∈ X}) ⊆ V (B). By
calling upon Theorem 5.3.2, it now suffices to show mp(∂B(Y )) ≤ 2k in
order to prove our claim. In fact mp(∂B(Y )) = 2k follows immediately
from Observation 5.3.10 and thus we are done.

Please note that the proofs of Theorem 5.3.2 and Lemma 5.3.19 are
constructive in the sense that the construction of the separators and the
digraphs Di can be done in polynomial time. This yields the following
algorithmic result.

Corollary 5.3.20 (D∗). Let D be a digraph and X ⊆ V (D). There exists
a polynomial time algorithm that finds a hitting set S for all directed
cycles that cross ∂D(X) of size at most 2 cp(∂D(X))2 + 4 cp(∂D(X)).

To show that there exists an upper bound of directed tree width in terms
of cycle width as desired we introduce an intermediate width parameter
which bridges the gap between directed tree width and cycle width.

Definition 5.3.21 (Thickness). Let (G, σ) be a bidirected graph and
X ⊆ V (G). The thickness of X, denoted by thick(X), is the size of a
minimum hitting set for all directed cycles on (G, σ) that cross ∂G(X).

Definition 5.3.22 (Bidirected branchwidth). Let (G, σ) be a bidirected
graph. A bidirected branch decomposition of (G, σ) is a thick-branch
decomposition (T, δ) over V (G) where T is a cubic tree and δ : L(T ) →
V (G) is a bijection.
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The width of a bidirected branch decomposition (T, δ) is defined as its thick-
width, and the bidirected branchwidth of (G, σ), denoted by bbw(G, σ), is
the minimum width over all bidirected branch decompositions for (G, σ).
Let D be a digraph. A directed branch decomposition of D is a bidirected
branch decomposition of D and the directed branchwidth of D, denoted
by dbw(D), is defined as its bidirected branchwidth.

If k cops have a winning strategy in the strong variant of the directed
cops and robber game, then Theorem 2.3.15 implies that the directed
treewidth cannot be larger than 3k − 2. We show that a directed branch
decomposition of small width can be used to find a winning strategy for a
bounded number of cops.

Lemma 5.3.23 (D∗). If D is a digraph with a directed branch decompo-
sition of width k, then copss(D) ≤ 3k.

Proof. We may assume D to be strongly connected. Let (T, δ) be a
directed branch decomposition of width k for D and let ℓ ∈ V (T ) be an
arbitrary leaf with neighbour t0 in T . Then thick(ℓt0) = 1 since δ(ℓ) hits
all directed cycles containing δ(ℓ). For every edge e ∈ E(T ) let us denote
by Se a minimum hitting set for the directed cycles crossing e. Since
width((T, δ)) = k we know |Se| ≤ k for all e ∈ E(T ).
Now let us place a cop on δ(ℓ) as well as on every vertex in⋃︁

t∈NT (t0)\{ℓ} St0t and denote by X0 the set of all vertices occupied by
cops this way. In total, we now have placed at most 3k cops. For every
t ∈ NT (t0)\{ℓ} let Tt be the subtree of T−t0t containing t, then no strong
component of D −X0 can contain vertices from δ(Tt) and δ(Tt′) simulta-
neously, if t ̸= t′ ∈ NT (t0) \ {ℓ}. Hence there must be a t ∈ NT (t0) \ {ℓ}
such that the robber has chosen a strong component of D−X0 contained
in δ(Tt). We now derive a new cop-position X1 :=

⋃︁
dt∈E(T ) Sdt. Since

St0t ⊆ X0 ∩X1, the robber cannot leave δ(Tt). We set t1 := t.
Now suppose we are in the following position: There is an edge ti−1ti,
the current cop position Xi =

⋃︁
tit′∈E(T ) Stit′ , and the robber component

Ri is contained in δ(Tti). By definition of Xi there cannot be distinct
t, t′ ∈ NT (ti) \ {ti−1} such that Ri has vertices of both δ(Tt) and δ(Tt′),
so we may assume Ri ⊆ δ(Tt). We set ti+1 := t. If ti+1 is a leaf of T ,
we set Xi+1 := Stiti+1 ∪ {δ(ti+1)}. Since Stiti+1 ⊆ Xi ∩Xi+1 the robber

256



5.3. Duality and Directed Treewidth

cannot leave δ(ti+1) and thus we have captured her. Otherwise ti+1 is not
a leaf and we set Xi+1 :=

⋃︁
ti+1t′∈E(T ) Sti+1t′ . With Xi+1 being the new

cop position and Stiti+1 ⊆ Xi ∩ Xi+1 the new robber component Ri+1

must be contained in δ(Tt′) for some t′ ∈ NT (ti+1) \ {ti}. Thus we can
continue with the process. Since T is finite, we will eventually catch the
robber, and by definition, we have |Xi| ≤ 3k for all i.

In light of Lemma 5.3.16 it is straight forward to see dbw(D)−1 ≤ dtw(D).
Thus by combining lemmata 5.3.16 and 5.3.23 and Theorem 2.3.15 one
obtains the following relation between directed branchwidth and directed
treewidth.

Proposition 5.3.24 (D∗). Let D be a digraph. Then 1
9
dtw(D)− 1 ≤

dbw(D) ≤ dtw(D) + 1.

With Lemma 5.3.19 at our disposal the following corollary is straight
forward to prove.

Corollary 5.3.25 (D∗). Let D be a digraph with cycw(D) = k, then
dbw(D) ≤ 2k2 + 4k.

Combining propositions 5.3.17 and 5.3.24 and Corollary 5.3.25 now yields
Theorem 5.3.12.

Cycle Width and Perfect Matching Width Towards a proof of The-
orem 5.3.13 we aim to utilise Observation 5.3.10. Since the latter is a
statement on M -conformal sets it makes sense to also bring back our
findings on M -width, especially Theorem 5.1.13. The following lemma
connects the M -width of G and the cycle width of any M -bidirection of
G.

Lemma 5.3.26 (X∗). Let G be a graph with a perfect matching M , and
let ζ be an M -signing of G. Then M - pmw(G) = 2 cycw(D±(G,M, ζ)).

Proof. We first prove that M -pmw(G) ≥ 2 cycw(D±(G,M, ζ)). Assume
M - pmw(G) = k for some k ∈ N. Then there is a perfect matching
decomposition (T, δ) of width k such that all shores of the cuts induced
by inner edges are M -conformal. We will construct a cycle decomposition
(T ′, φ) of (H,σ) := D±(G,M, ζ) from the perfect matching decomposition
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(T, δ). In (T, δ) the leaves containing two vertices matched by M share a
neighbour. We define T ′ := T − L(T ). Recall that matching edges become
vertices in D±(G,M, ζ). For xy ∈M let txy be the common neighbour of
δ−1(x) and δ−1(y). We define φ(txy) := xy.
Now assume this decomposition has an edge e ∈ T ′ that induces a cut
∂H(X) of cycle porosity more than 2k. Then by Observation 5.3.10
we must have mp(∂G(e)) > 2k as well, contradicting our assumption.
Therefore (T ′, φ) is a cycle decomposition of (H,σ) of width at most k.
Now we prove that M - pmw(G) ≤ 2 cycw(H,σ). Let cycw(H,σ) = k for
some k ∈ N. Then there is a cycle decomposition (T, φ) of (H,σ) with
width k. We will construct a perfect matching decomposition (T ′, δ) of G
from the cycle decomposition. The construction mirrors the first part of
the proof. For every leaf in T we introduce two new child vertices that are
mapped to the two endpoints of the matching edge which is contracted into
a vertex of (H,σ). Formally, V (T ′) := V (T ) ∪ {ti | t ∈ L(T ), i ∈ {ℓ, r}}
and E(T ′) := E(T ) ∪ {tti | t ∈ L(T ), i ∈ {ℓ, r}}, where all tr and tℓ are
new vertices. Now for all t ∈ L(T ), if φ(t) is the vertex xy ∈M of H, then
δ(tℓ) := x and δ(tr) := y. Since now all pairs of vertices that are matched
by M have a common parent vertex in T ′, the shores of the cuts induced
by inner edges are M -conformal. Therefore the width of (T ′, δ) yields an
upper bound on M - pmw(G) and by Observation 5.3.10 this upper bound
is exactly 2k as desired.

Theorem 5.3.13 now follows by applying Theorem 5.1.13 to Lemma 5.3.26.
Indeed, for bipartite graphs and digraphs we obtain the following relation
between perfect matching width and directed tree width.

Theorem 5.3.27 (X∗). Let B be a bipartite graph with a perfect matching
M . Then

pmw(B)− 1 ≤ dtw(D(B,M)) ≤ 72 pmw(B)2 + 144 pmw(B) + 9.

5.3.3. The Bipartite Matching Grid Theorem

With Theorem 5.3.27 finally all pieces are in place to prove the bipartite
version of Conjecture 5.1.3. To do this let us first define a variant of the
grid we are looking for in the conjecture.
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5.3. Duality and Directed Treewidth

Definition 5.3.28 (Cylindrical Matching Grid). The cylindrical matching
grid CGk of order k is defined as follows. Let C1, . . . , Ck be k vertex
disjoint cycles of length 4k. For every i ∈ [1, k] let Ci = (vi1, v

i
2, . . . , v

i
4k),

V i
1 :=

{︁
vij | j ∈ {1, 3, 5, . . . , 4k − 1}

}︁
, V i

2 := V (Ci) \ V i
1 , and Mi :={︁

vijv
i
j+1 | vij ∈ V i

1

}︁
. Then CGk is the graph obtained from the union

of the Ci by adding{︂
vijv

i+1
j+1 | i ∈ [1, k − 1] and j ∈ {1, 5, 9, . . . , 4k − 3}

}︂
, and{︂

vijv
i−1
j+1 | i ∈ [2, k] and j ∈ {3, 7, 11, . . . , 4k − 1}

}︂
to the edge set. We call M :=

⋃︁k
i=1 Mi the canonical matching of CGk.

See Figure 5.6 for an illustration.

Figure 5.6.: The cylindrical matching grid of order 4 with the canonical
matching on the left and an internal quadrangulation on the
right.

Let k ∈ N be some positive integer and M be the canonical perfect
matching of CGk. The reason why we call M the canonical matching
becomes apparent when considering the M -direction of CGk. By choice
of M , each of the k concentric cycles Ci, i ∈ [1, k], becomes a directed
cycle of length 2k in D(CGk,M) and all of these cycles go in the same
direction in a planar embedding of D(CGk,M). Moreover, there exist 2k

pairwise disjoint paths that alternate between going from C1 to Ck and
reverse, these become directed paths in D(CGk,M). Overall this means
D(CGk,M) is exactly the cylindrical grid of order k from the Directed
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Grid Theorem. Hence CGk is exactly the split of the cylindrical grid of
order k.

Theorem 5.3.29 (B∗). There exists a function gcyl : N→ N such that
for every k ∈ N and every bipartite graph B with a perfect matching M

either pmw(B) ≤ gcyl(k) or B contains CGk as an M -minor such that
M |CGk is the canonical matching of CGk.

Proof. We set gcyl(k) := 2gdir(k) + 2 and assume pmw(B) > gcyl(k). By
Theorem 5.3.27 this means

dtw(D(B,M)) >
1

2
gcyl(k)− 1 = gdir(k).

By Theorem 2.3.22, contains the cylindrical grid of order k as a butterfly
minor. Hence by Lemma 3.2.17, B must contain CGk as an M -minor and,
moreover, M |CGk must be the canonical matching of CGk.

While Theorem 5.3.29 is already a powerful theorem, we are not quite
there with our proof of the bipartite part of Conjecture 5.1.3. The next
step towards the conjecture is to further refine our cylinder from above.
Let CGk be the cylindrical matching grid of order k. The canonical
internal quadrangulation CG□

k of CGk is defined as the graph obtained
from the cylindrical grid by adding the following edges.

{︂
vijv

i+1
j+1 | i ∈ [1, k − 1] and j ∈ {2, 4, . . . , 4k}

}︂
See Figure 5.6 for an illustration.

Lemma 5.3.30 (D∗). Let k ∈ N be a positive integer. The cylindrical
matching grid CG3k contains CG□

k as a matching minor.

Proof. We describe how to create a model µ : CG□
k → CG3k.

First let i ∈ {3ℓ− 1 | 1 ≤ ℓ ≤ k} and j ∈ [1, k], we define models for four
vertices ai

j,down, bij,up, ai
j,up, and bij,down. See Figure 5.7 for an illustration

on how the models of these vertices will be arranged in CG3k.
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5.3. Duality and Directed Treewidth

Figure 5.7.: The canonical internal quadrangulation of CG4 as a matching
minor of CG12.
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µ(ai
j,down) :=(vi1+12(j−1), v

i
2+12(j−1), v

i
3+12(j−1))

∪ (vi−1
3+12(j−1), v

i−1
4+12(j−1), v

i
3+12(j−1))

µ(bij,up) :=(vi4+12(j−1), v
i
5+12(j−1), v

i
6+12(j−1))

∪ (vi4+12(j−1), v
i+1
3+12(j−1), v

i+1
4+12(j−1))

µ(ai
j,up) :=(vi7+12(j−1), v

i
8+12(j−1), v

i
9+12(j−1))

∪ (vi9+12(j−1), v
i+1
10+12(j−1), v

i+1
9+12(j−1))

µ(bij,down) :=(vi10+12(j−1), v
i
11+12(j−1), v

i
12+12(j−1))

∪ (vi−1
10+12(j−1), v

i−1
9+12(j−1), v

i−1
10+12(j−1))

As a next step we add models for the edges of the concentric cycles of
CG□

k , here we identify bi0,down with bik,down and vi0 with vi12k.

µ(bij−1,downa
i
j,down) :=vi12+12(j−2)v

i
1+12(j−1)

µ(ai
j,downb

i
j,up) :=vi3+12(j−1)v

i
4+12(j−1)

µ(bij,upa
i
j,up) :=vi6+12(j−1)v

i
7+12(j−1)

µ(ai
j,upb

i
j,down) :=vi9+12(j−1)v

i
10+12(j−1)

This in particular means that Ci ⊆ µ(CG□
k ) for all i ∈ {3ℓ− 1 | ℓ ∈ [1, k]}.

Next we connect the cycles, so let i ∈ {3ℓ− 1 | ℓ ∈ [1, k − 1]}.

µ(bij,upa
i+3
j,down) :=vi+1

4+12(j−1)v
i+2
3+12(j−1)

µ(ai
j,upb

i+3
j,down) :=vi+1

9+12(j−1)v
i+2
10+12(j−1)

Compare figures 5.7 and 5.8 to see how our model µ so far describes CGk

as a matching minor of CG3k.
In the next step we describe how to build the models for the new edges that
we need to add to our CGk to form the canonical inner quadrangulation.
We identify bi0,down and bik,down.

µ(bij,upa
i+3
j,up) :=

(vi+1
4+12(j−1), . . . , v

i+1
8+12(j−1), v

i+2
7+12(j−1), v

i+2
8+12(j−1), v

i+3
7+12(j−1))

µ(bij−1,downa
i+3
j,down) :=

(vi12+12(j−2), v
i+1
11+12(j−2), v

i+1
12+12(j−2), v

i+2
11+12(j−2), . . . , v

i+2
3+12(j−1))
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For an illustration compare Figure 5.9. Moreover, from the construction, it
is clear that the model of every edge of CG□

k is an internally M -conformal
path, where M is the canonical matching of CG3k. Also, the model of
every vertex is a barycentric tree with exactly one exposed vertex. So in
total µ is a matching minor model of CG□

k in CG3k.

vi+4
10+12(j−1)

vi+2
10+12(j−1)

vi+1
10+12(j−1)

vi−1
10+12(j−1)

vi+4
9+12(j−1)

vi+2
9+12(j−1)

vi+1
9+12(j−1)

vi−1
9+12(j−1)

bi+3
j,down

bij,down

ai+3
j,up

ai
j,up

vi+4
4+12(j−1)

vi+2
4+12(j−1)

vi+1
4+12(j−1)

vi−1
4+12(j−1)

vi+4
3+12(j−1)

vi+2
3+12(j−1)

vi+1
3+12(j−1)

vi−1
3+12(j−1)

bi+3
j,up

bij,up

ai+3
j,down

ai
j,down

Figure 5.8.: The situation of the up- and down- vertices in the model of
CG□

k and the models of the edges of its CGk-subgraph.

vi+3
7+12(j−1)

µ(ai+3
j,up) µ(ai+3

j,down)

vi+2
8+12(j−1)

vi+2
7+12(j−1) vi+2

3+12(j−1) vi+2
1+12(j−1) vi+2

11+12(j−2)

vi+2
2+12(j−1) vi+2

12+12(j−2)

vi+1
12+12(j−2)vi+1

8+12(j−1)

vi+1
6+12(j−1)

vi+1
7+12(j−1) vi+1

5+12(j−1)

vi+1
11+12(j−2)

vi12+12(j−2)µ(bij,up)

µ(bi(j−1),down)

Figure 5.9.: The models for the new edges forming the inner quadrangula-
tion of CGk.
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At last we find the 2k × 2k-grid as a matching minor in an inner quadrag-
ulation of a cylindrical matching grid of appropriate size.

Lemma 5.3.31. If k ∈ N is even, CG□
k contains the k × k-grid as a

matching minor.

Proof. Let M be the canonical perfect matching of CG□
k and let V1, V2

be the two colour classes of CK□
k such that v11 ∈ V1. We create a new

perfect matching M ′ for CG□
k by “switching” M along every second of the

concentric cycles. Formally let

M ′ := (M \
k⋃︂

i=2, even

E(Ci)) ∪
k⋃︂

i=2, even

(E(Ci) \M).

In the following, we describe how to construct a matching minor model of
the k × k-grid iteratively from a C4 in CG□

k by extending the model by
small building blocks. A piece is one of the following three configurations:

• A base piece Bi,j starting on the vertex vij ∈ V2. It consists of the
two paths

(vij , v
i
j+1, v

i
j+2, v

i
j+3, v

i
j+4) and

(vi+1
j+1, v

i+1
j+2, v

i+1
j+3, v

i+1
j+4, v

i+1
j+5)

together with the edges vijv
i+1
j+1, v

i
j+3v

i+1
j+4, and vij+4v

i+1
j+5.

• A width piece Wi,j starting on the vertex vij ∈ V1. It consists of the
three paths

(vij , v
i
j+1, v

i
j+2, v

i
j+3, v

i
j+4),

(vi+1
j+1, v

i+1
j+2, v

i+1
j+3, v

i+1
j+4, v

i+1
j+5), and

(vi+2
j+2, v

i+2
j+3, v

i+2
j+4, v

i+2
j+5, v

i+2
j+6)

together with the edges vijv
i+1
j+1, vij+1v

i+1
j+2, vij+4v

i+1
j+5, vi+1

j+1v
i+2
j+2,

vi+1
j+4v

i+2
j+5, and vi+1

j+5v
i+2
j+6.

• And a height piece Hi,j starting on the vertex vij ∈ V2. It consists
of the three paths

(vij , v
i
j+1, v

i
j+2, v

i
j+3, v

i
j+4, v

i
j+5, v

i
j+6, v

i
j+7),

(vi+1
j+1, v

i+1
j+2, v

i+1
j+3, v

i+1
j+4, v

i+1
j+5, v

i+1
j+6, v

i+1
j+7, v

i+1
j+8), and

(vi+2
j+4, v

i+2
j+5, v

i+2
j+6, v

i+2
j+7, v

i+2
j+8, v

i+2
j+9)

together with the edges vijv
i+1
j+1, vij+3v

i+1
j+4, vij+4v

i+1
j+5, vij+7v

i+1
j+8,

vi+1
j+3v

i+2
j+4, v

i+1
j+4v

i+2
j+5, v

i+1
j+7v

i+2
j+8, and vi+1

j+8v
i+2
j+9.
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As a first step, we show how to create a model of the 4× 4-grid from a
specific C4 in CG□

4 , see Figure 5.10 for an illustration.

Figure 5.10.: A model of the 4×4-grid in CG□
4 (on the left) and a close-up

of the model (on the right), in which the white vertices of
degree two that should be bicontracted are encircled.

Let us choose as the C4 the one induced by
{︁
v11 , v

1
2 , v

2
2 , v

2
3

}︁
. Then take

the height piece H2,2 and the base piece B1,2 and let G4 be the graph
obtained by the union of H2,2, B1,2, and the C4 chosen above. The vertex
vij with the largest j in G4 is v411 and thus, since each Ci has 16 vertices,
none of the horizontal paths in G4 closes a cycle. More over, if we now
bicontract the vertices v14 , v24 , v34 , v28 , v38 , and v48 , we obtain exactly the
4× 4-grid. Note that, by construction, G4 is in fact M ′-conformal in CG□

4

and thus we have found our desired matching minor.
So now assume that for some even k we have already constructed an M ′-
conformal graph Gk in CG□

k+2 by using our pieces and starting with the
C4 on the vertices

{︁
v11 , v

1
2 , v

2
2 , v

2
3

}︁
. In the last step of this proof, we show

how to extend Gk to Gk+2, a bisubdivision of the (k + 2)× (k + 2)-grid.
Let k = 2z, we add the following pieces:

• the base piece B1,4z−6 and the height piece H2(z−1),4z−6,
• for every i ∈ [1, z − 2] the width piece W2i,4(z+i)−7, and
• for every j ∈ [1, z − 2] the width piece W2z−2,4(z+j)−3.
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Since Gk is M ′-conformal, the graph Gk+2 obtained by adding the above
pieces still is M ′-conformal by construction. Consider the set

Sk+2 :=
{︁
v1i | j ∈ [3, k + 2], i odd

}︁
∪
{︂
vj12 | j ∈ [2, k + 2], j even

}︂
,

Every vertex in Sk+2 has degree two in Gk+2 and thus is bicontractible.
Bicontracting all vertices in Sk+2 yields the desired (k+2)-(k+2)-grid.

We are finally ready to prove our grid theorem for bipartite graphs with
perfect matchings.

Theorem 5.3.32 (D∗). There exists a function gm : N→ N such that for
every k ∈ N and every bipartite graph B with a perfect matching either
pmw(B) ≤ gcyl(k) or B contains the 2k × 2k-grid as a matching minor.

Proof. We set gm(k) := gcyl(6k) for every k ∈ N. Suppose pmw(B) >

gm(k). Then by Theorem 5.3.29, B contains CG6k as a matching minor.
Using Lemma 5.3.30 yields that B contains CG□

2k as a matching minor,
and finally Lemma 5.3.31 lets us find the 2k×2k-grid as a matching minor
within CG□

2k. This completes the proof.

5.4. The Disjoint Paths Problem on Bipartite Graphs of
Bounded Width

The most prominent algorithmic application of directed treewidth is an
XP-algorithm for the directed k-disjoint paths problem. One way of
generalising this algorithm to perfect matching width and bipartite graphs
with perfect matchings would be to test for every M ∈ M(B) whether
the desired paths exist. By Theorem 5.3.27 each of these instances would
have bounded directed treewidth and thus the above algorithm would
be applicable. The problem with this idea is that there might be an
exponential number of perfect matchings in B, so this approach is not
sufficient to solve the bipartite k-DAPP. To cope with this, we present
an approach in this section that incorporates the issue of considering all
perfect matchings of B into a dynamic programming algorithm inspired
by the one from [JRST01] .

Theorem 5.4.1 (D∗). Let B be a bipartite graph with a perfect matching,
k ∈ N a positive integer and I a family of k terminal pairs. There exists
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an algorithm that decides in time |V (B)|O(k+pmw(B)2) the k-DAPP with
input I on B.

By utilising Theorem 5.4.1, we are able to give at least a partial solution
to the open problem of matching minor containment in the form of a
parametrised algorithm for bipartite graphs of bounded perfect matching
width.

Theorem 5.4.2 (D∗). Let H be a fixed bipartite matching covered
graph and B a bipartite graph with a perfect matching. There exists
an algorithm with running time |V (B)|O(|V (H)|2+pmw(B)2) that decides
whether B contains H as a matching minor.

Let B be a bipartite graph with a perfect matching and I =

{(s1, t1), . . . , (sk, tk)} a family of terminal pairs. Let M be a perfect
matching of B and P = {P1, . . . , Pk} a family of internally disjoint and
internally M -conformal paths in B such that Pi has endpoints si and ti
for every i ∈ [1, k]. We call (M,P) a solution for I. Let W ⊆ E(B) be a
matching. A solution (M,P) for I in B extends W if W ⊆M and every
terminal is matched by some edge in W .
A problem that needs to be addressed before we go any further is that
our terminals are not necessarily distinct. In some cases this might lead
to problems for the way our algorithm works. Before we continue, let us
discuss how we get around this issue. Notice the following: Let x ∈ V (B),
be a vertex that occurs in at least one pair of I and let us denote the
total number of occurrences of x as a terminal by multi(a). Then in
every solution (M,P), every path P ∈ P that connects x to some other
terminal must end in an edge that is not contained in M and connects x

to some neighbour x′ of x. Moreover, the edge of M covering x cannot
be contained in any P ∈ P. Hence we may pick a collection of multi(x)

many neighbours of x, select an extendible matching W ′ that covers
the selected vertices, but not x, and now for each of these edges pick
the endpoint not adjacent to x. Each of these picked vertices belong to
the same colour class as x. For our graph B let V ′

1 ⊆ V1 \ {s1, . . . , sk}
and V ′

2 ⊆ V2 \ {t1, . . . , tk} be selections of such vertices together with
the extendible set of all matching edges W ′ covering these new vertices.
Note that W ′ must be chosen such that W ∪W ′ is extendible. For every
(si, ti) ∈ I now select a vertex s′i ∈ V ′

1 and t′i ∈ V ′
2 that is a neighbour of

267



Chapter 5. Perfect Matching Width

si, ti respectively. Then we have formed a distinct family I′ of k terminal
pairs and therefore we may now consider an instance of the bipartite
k-matching linkage problem instead.
Let us now formalise the above discussion. Given a family of terminal
pairs I = {(s1, t1), . . . , (sk, tk)} and an extendible set W such that all
terminals are matched by W and every edge of W matches a terminal, we
call a pair (I′,W ′) a (I,W )-proxy if

i) I′ = {(s′1, t′1), . . . , (s′k, t′k)} is a family of k terminal pairs where
si ̸= sj and ti ̸= tj for every choice of distinct values for i, j ∈ [1, k]

(we call such a family distinct),
ii) W ′ ∪W is extendible, every terminal of I′ is matched by some edge

of W ′, every edge of W ′ matches a terminal of I′, and W ∩W ′ = ∅,
and

iii) for every i ∈ [1, k], if s′iv ∈ W ′, then v is a neighbour of si and if
vt′i ∈W ′, then v is a neighbour of ti.

It might happen, that si and ti of the original instance are already
adjacent, in such cases, we might have to consider additional cases of
smaller instances, where the edge siti is already one of the paths in a
possible solution. Indeed, without loss of generality, we may always assume
siti to be part of our solution and thus the terminal pair (si, ti) does not
need to be considered. Hence we may assume all terminal pairs to be
non-adjacent.
A perfect matching decomposition (T, δ) is safe for W and I if every
W -extending solution P for I satisfies the following inequality for every
e ∈ E(T ):

|∂B(e) ∩
⋃︂

P∈P

E(P )| ≤ 2width(T, δ).

The high level strategy of our algorithm is as follows:
• We choose an extendible matching W ⊆ E(B) of size at most 2k

such that all terminals of I are covered.
• Next choose a (I,W )-proxy (I′,W ′).
• Then we compute a perfect matching decomposition (T, δ) for B −
V (W ) that is safe for (I′,W ′) and its width is bounded in a function
of pmw(B) and k.

• We apply dynamic programming on (T, δ) in order to either find a
solution that extends W ′ or refute the existence of such a solution.
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• Finally, if for some W and some (I,W )-proxy we find a solution we
extend it to a solution for I and W and return “Yes”, otherwise we
return “No”.

Let |V (B)| = n. If f1(pmw(B), k, n) describes the time needed to compute
(T, δ) and f2(pmw(B), k, n) describes the time necessary for the dynamic
programming on (T, δ), the overall running time of our algorithm can then
be expressed by O(n2k · n4k · f1(pmw(B), k, n) · f2(pmw(B), k, n)) where
the constants only depend on k and pmw(B).
Once the functions f1 and f2 are established, Theorem 5.4.1 follows as
an immediate consequence of the high-level approach described above.
Indeed, please note that, by slightly modifying the proofs below, one can
obtain the following more general result:

Corollary 5.4.3 (D∗). Let B be a bipartite graph with a perfect match-
ing, k ∈ N an integer, I a family of k terminal pairs, and F ⊆ E(B)

an extendible set. There exists an algorithm that decides in time
|V (B)|O(k+pmw(B))2 whether there exists an F -extending solution for
I or not.

As an immediate consequence, if D = D(B,M) is some digraph, by
choosing F = M Corollary 5.4.3 together with Theorem 5.3.27 implies
the original result on the directed disjoint path problem for digraphs of
bounded directed treewidth in [JRST01].

5.4.1. Computing a Perfect Matching Decomposition

Some preliminary results are needed. For one, we need to be able to check
for given W ⊆ E(B) whether there exists a perfect matching extending
W . This boils down to checking if B−V (W ) has a perfect matching. And
second, we must be able to compute a perfect matching decomposition of
bounded width.
The first problem can be solved in polynomial time by Edmonds’ famous
Blossom Algorithm [Edm65], or, since we work on bipartite graphs, by the
Hungarian Method [Kuh55], so this part will not be much of a concern to
us.
For the second part, we make use of Theorem 2.3.18.
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Let B be a bipartite graph with a perfect matching M and D := D(B,M).
In light of Theorem 2.3.18, it would be enough to compute a perfect
matching decomposition of bounded width for B from a directed tree
decomposition of bounded width for D which we already know how to do
in polynomial time by Proposition 5.3.17 and the proof of Lemma 5.3.26.
We would like to maintain a bit of this niceness in the perfect matching
decomposition we produce.
Let B be a bipartite graph with a perfect matching. A perfect matching
decomposition (T, δ) of width w is nice if T is rooted at some vertex
r ∈ V (T ) and

i) V (T − r) can be partitioned into four sets of vertices:
• The leaves, L(T ), which are the vertices of degree one.
• The basic vertices, basic(T ), which are those vertices t ∈ V (T )

whose successors are leaves of T .
• The joins, join(T ), which are the vertices t ∈ V (T ) with two

distinct successors t1 and t2 such that there is no edge from
V2 ∩ δ(Tt1) to V1 ∩ δ(Tt2), and B[δ(Tt1)] is elementary.

• The guards, guard(T ), which are the vertices t ∈ V (T ) satisfy-
ing one of the following properties:

• |δ(Tt)| ≤ 2k and δ(Tt) is conformal (Type 1), or
• t has two distinct successors t1 and t2 such that t1 is a

guard of Type 1 and t2 either is a join, or B[δ(Tt2)] is
conformal and elementary. (Type 2)

ii) if r is not a leaf of T for every successor t of r one of the following
holds:

• t is a guard of Type 1, or
• t either is a join, or B[δ(Tt)] is conformal and elementary, and

the successors of r of this type can be sorted as t1, . . . , th, h ≤ 3

such that if 1 ≤ i < j ≤ h, then there is no edge from V1 ∩ δ(Ttj ) to
V2 ∩ δ(Tti).

Given a distinct set I of terminal pairs for the k-DAPP on B and an
extendible set W ⊆ E(B) matching all terminals such that if e ∈W , then
an endpoint of e is a terminal, we call a perfect matching decomposition
(T, δ) a (I,W )-decomposition for B, if it is nice and safe for I and W .
In the following we describe how to obtain a (I,W )-decomposition for a
bipartite graph B with a perfect matching. As a base of our algorithm,
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we are going to use Theorem 2.3.18 and then manipulate the obtained
decomposition in order to create a nice perfect matching decomposition. A
tuple (T, β, γ) is called a proto-directed tree decomposition for the digraph
D if it satisfies all the conditions of a directed tree decomposition except
that we allow empty bags and still every vertex of D must be contained
in exactly one bag of (T, β, γ).
A proto-directed tree decomposition (T, β, γ) of width w for a digraph D

is prepared if
i) T is subcubic,
ii) if t ∈ V (T ) has a unique successor t′, then β(Tt′) induces a strong

component of D − γ(t, t′) or contains at most w + 1 vertices, and
iii) if t ∈ V (T ) has two distinct successors t1 and t2, then

• β(Tt1) either contains at most w + 1 vertices and β(Tt2) also
either has at most w+1 vertices or induces a strongly connected
subgraph of D − γ(t, t2), or

• β(Tt1) induces a strongly connected subgraph of D − γ(t, t1)

and there is no directed edge with tail in β(Tt2) and head in
β(Tt1) in D.

Lemma 5.4.4 (D∗). Let D be a digraph and dtw(D) ≤ w. There exists
an algorithm with running time 2O(w logw)nO(1) that computes a prepared
proto-directed tree-decomposition of width at most 3w − 2 for D.

Proof. Let (T0, γ0, β0) be the nice directed tree-decomposition obtained
via the algorithm in Theorem 2.3.18. Let us call a proto-directed tree-
decomposition where every vertex of degree at most three satisfies the
axioms of a prepared proto-directed tree decomposition and every other
vertex satisfies the axioms of a nice directed tree decomposition almost
prepared. Clearly (T0, γ0, β0) is almost prepared. Now let (Tj , γj , βj) be
an almost prepared proto-directed tree-decomposition.
Pick any vertex t ∈ V (T ) of degree more than three and let t1, . . . , tℓ be
its successors. Then βj(Tj,ti) induces a strong component of D − γj(t, ti)

for all i ∈ [1, ℓ]. Indeed, βj(Tj,ti) induces a strong component of D−Γj(t)

for all i ∈ [1, ℓ], without loss of generality let us assume that the ti are
numbered in such a way that for all 1 ≤ i < k ≤ ℓ there is no directed edge
with tail in βj(Tj,tk ) and head in βj(Tj,ti). We define a proto-directed tree
decomposition (Tj+1, βj+1, γj+1) as follows. Let Tj+1 be the arborescence
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obtained from Tj by introducing a new vertex t′, the edge (t, t′) and
replacing (t, ti) by (t′, ti) for all i ∈ [2, ℓ]. Then βj+1(t

′′) := βj(t
′′) for

all t′′ ∈ V (Tj) and βj+1(t
′) := ∅. Moreover, let γj+1(e) := γj(e) for

all e ∈ E(Tj) \ {(t, t2), . . . , (t, tℓ)}, γj+1(t, t
′) := γj(d, t) ∪ βj(t), where

(d, t) is the unique ingoing edge at t in Tj , and γj+1(t
′, ti) := γj(t, ti)

for all i ∈ [2, ℓ]. Clearly width(Tj+1, βj+1, γj+1) ≤ width(Tj , βj , γj), so
we just need to show that (Tj+1, γj+1, βj+1) is indeed a proto-directed
tree decomposition. To be more precise, we only need to show that
γj+1(t, t

′) is a valid guard for βj+1(Tj+1,t′). Let P be any directed walk
starting and ending on a vertex of βj+1(Tj+1,t′) while containing a vertex
of D − βj+1(Tj+1,t′). If P lies in βj+1(Tj+1,t), then P must contain a
vertex of βj+1(t) since there is no edge from βj+1(Tj+1,t′) to βj+1(Tj+1,t1)

by construction. So if P avoids βj+1(t), then P must contain a vertex of
D − βj+1(Tj+1,t) and thus, it must contain a vertex of γj+1(d, t).
Then (Ti+1, γi+1, βi+1) is almost prepared and has less vertices of degree
at least four that (Ti, γi, βi). In fact, after at most |V (T0)| steps we have
obtained a prepared proto-directed tree decomposition.

Given a bipartite graph B with a perfect matching, I =

{(s1, t1), . . . , (sk, sk)} a distinct family of terminal pairs, and an ex-
tendible W ⊆ E(B) matching all terminals, we call a set F ⊆

(︁
V (B)

2

)︁
a W -completion, if for every W -extending solution (M,P), the graph
induced by the edge set
(F ∪W ∪

⋃︂
P∈P

E(P )) \ {xy ∈W | x = si and y = ti for some i ∈ [1, k]}

consists exclusively of M -alternating cycles. Please note that, by definition,
|F | ≤ k for all W -completing F .

Lemma 5.4.5 (D∗). Let B be a bipartite graph with a perfect matching,
I = {(s1, t1), . . . , (sk, tk)} a family of distinct terminal pairs, and W ⊆
E(B) an extendible set covering all terminals such that if e ∈ W , then
an endpoint of e is a terminal. Then a W -completion F can be found in
linear time.

Proof. We obtain F as follows: Initialise F and U with ∅. Pick some
si ∈ V (I) \ U and add it to U , let e ∈ W be the edge of W covering si
and let x be its other endpoint. Next we have to consider several cases.
If x = ti we just add ti to U and continue with a new si′ ∈ V (I) \ U , in
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this case nothing else must be done. If x = tj for some j ∈ [1, k] \ {i}
add sj and tj to U , select the edge e ∈W to be the edge covering sj , let
x be its other endpoint. In case sj was already in U before, it must be
equal to the original si′ this cycle of the process was started with. Then
every W -extending solution clearly closes an alternating cycle and we may
proceed with a new si ∈ V (I) \ U . Otherwise reiterate the process with
sj in the role of si, in this case, we are still within the same cycle. And at
last, if x /∈ V (I) we may consider ti and the edge e′ ∈W covering ti, let
y be its other endpoint.
The process here is rather similar to what came before. Clearly y ≠ si
and, moreover, y /∈ U . If however y = sj for some i ∈ [1, k] \ {i}, then
add sj and tj to U , set e′ ∈ W to be the edge covering tj and reiterate
the process with tj in the role of ti. If, on the other hand, y /∈ V (I), let
si′ be the vertex this cycle was started with. Now any solution, together
with the edges of W , produces a path P ′ with endpoints x and y that
can be made into an alternating cycle by adding the edge xy to B if
it does not already exist. Hence we add xy to F and proceed with the
next si ∈ V (I) \ U . Once U = V (I) our set F is W -completing by the
discussion above.

Adding a W -completion F to our graph B should not change its perfect
matching width by too much.
Observation 5.4.6. Let D be a digraph and F ⊆ E(D) a set of edges
not in D. Then dtw(D + F ) ≤ dtw(D) + |F |.

Proof. Let (T, β, γ) be a directed tree decomposition for D of optimal
width and let S ⊆ V (D) be the set of tails of the edges in F . Now add
S to every guard of (T, β, γ). Clearly this increases the width of our
decomposition by at most |S| ≤ |F | and the result is a directed tree
decomposition for D + F .

Lemma 5.4.7 (D∗). Let B be a bipartite graph, I =

{(s1, t1), . . . , (sk, tk)} a distinct family of terminal pairs, and W ⊆ E(B)

an extendible set covering all terminals such that if e ∈ W , then an
endpoint of e is a terminal. Let pmw(B) ≤ w and n := |V (B)|. There
exists an algorithm with running time 2O((w2+k) log(w2+k))nO(1) that
produces a (I,W )-decomposition of width at most 432w2+864w+22+6k

for B.
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Proof. Let us first compute a perfect matching M extending W and a
W -completing set F . Clearly both can be done in polynomial time. Now
let D := D(B,M), D′ := D(B + F,M), and F ′ := E(D′) \ E(D). Then
F ′ corresponds to the edges in F added to B. By Theorem 5.3.27 we
obtain dtw(D) ≤ 72 pmw(B)2 + 144 pmw(B) + 9. With Observation 5.4.6
this means dtw(D + F ) ≤ 72 pmw(B)2 + 144 pmw(B) + 9 + k. Observe
that D + F ′ = D′. Now let (T, β, γ) be the prepared proto-directed tree
decomposition of width at most 216w2 + 432w + 10 + 3k obtained from
Lemma 5.4.4.
In the next step, we show how to obtain a nice perfect matching decom-
position for B + F from (T, β, γ). First of all, since D′ = D(B + F,M),
every vertex v of D′ corresponds to an edge ev of M , let us denote the
endpoint of ev in V1 by av and the other endpoint by bv. Since T is an
arborescence, it already is rooted at some vertex, say r. In what follows,
we explain how to manipulate this tree T and how we define a bijection
δ′ step by step in order to create a cycle decomposition for D′ of bounded
width. This cycle decomposition is then translated into a perfect matching
decomposition with the required properties.
Let t ∈ V (T ) be any vertex with β(t) ̸= ∅ and let d be its predecessor.
We only discuss the case in which t is not the root, but the other case can
be solved in a similar way. There are three possible cases, depending on
the number of successors t has in T .
Case 1: Vertex t is a leaf in T .
In this case, let us construct a rooted cubic tree T ′ with root t and
otherwise disjoint from T such that T ′ has exactly |β(t)| many leaves.
Add T ′ to T and extend the bijection δ′ such that the restriction of δ′

to the leaves of T ′ is a bijection between said leaves and β(t). Then
the edge (d, t) induces an edge cut ∂D(X) with X = β(t), and thus
cp(∂D(X)) ≤ |β(t)| ≤ 216w2 + 432w + 11 + 3k and every edge of T ′

induces an edge cut with even smaller cycle porosity. Mark every non-leaf
vertex in T ′ as a guard. This mark does not hold a special significance for
this decomposition, but will be used in the second half of this proof to
show that we can construct a nice perfect matching decomposition.
Case 2: Vertex t has a unique successor d′ in T .
Let T ′ be a rooted cubic tree with root t′, completely disjoint from T and
exactly |β(t)| leaves, add T ′ to T together with the edge (t, t′) and extend
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δ′ for the leaves of T ′ as above. With the same arguments we obtain
bounds on the cycle porosity of every edge of T ′ and the edge (t, t′). Mark
every non-leaf vertex in T ′ as a guard.
Case 3: Vertex t has two successors in T .
Here we first subdivide the edge (d, t), i.e. we replace it by the directed
path (d, t′, t) where t′ is a vertex newly introduced to T . Then we create a
rooted cubic tree T ′ with exactly |β(t)| leaves, rooted at t′′ that is disjoint
from the modified tree T and introduce the edge (t′, t′′). Afterwards, we
extend δ′ to the leaves of T ′ as before and again obtain bounds on the
cycle porosity of the edge cuts induced by the edges of T ′ and (t′, t′′).
Mark t′ and every non-leaf vertex in T ′ as guards.
Let (T ′, δ′) be the cycle decomposition for D′ obtained by applying the
above constructions to all vertices of (T, β, γ) with non-empty bags. Since
(T, β, γ) was a proto-directed tree decomposition of width at most 216w2+

432w + 10 + 3k it is straight forward to prove that all edges of T ′ that
were not discussed in the construction induce, with respect to δ′, edge
cuts of cycle porosity at most 432w2 + 864w + 22 + 6k in D′. Hence
width(T ′, δ′) ≤ 432w2 + 864w + 22 + 6k.
Now let us create a new rooted tree T ′′ from T ′ by introducing for every
leaf t of T ′ two new successors tV1 and tV2 and defining δ(tV1) := aδ′−1(t)

and δ(tV2) := bδ′−1(t). The result is a perfect matching decomposition
(T ′′, δ) for B+F . The bound width(t, δ) ≤ 432w2+864w+22+6k follows
from Observation 5.3.10.
Additionally, since we started out with a prepared proto-directed tree
decomposition, it is relatively straight forward to check that (T ′′, δ) is nice.
For the sake of completion we discuss this in the following paragraph.
Let t ∈ V (T ′′) be any non-root vertex.
Case A: Vertex t is a leaf.
Here we are done immediately since t ∈ L(T ′′).
Case B: Vertex t is adjacent to a leaf.
In this case, by construction of T ′′ from T ′, t must have exactly two
successor which both are leaves and thus t ∈ basic(T ′′).
Case C: Vertex t is not adjacent to a leaf, but has been marked as a
guard in the construction of (T ′, δ′).
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First let us assume t ∈ V (T ), in this case, t must have been a leaf of T
and thus β(t) directly corresponds to δ(T ′′

t ) and t is indeed a guard of
T ′′. Otherwise, t must have been introduced during the construction of
T ′ from T and thus there must be a vertex d ∈ V (T ) with β(d) ̸= ∅ that
is responsible for the introduction of t. In case d has a unique successor in
T , t belongs to the newly introduced rooted cubic tree and thus δ(T ′′

t ) has
at most 2w vertices and is conformal. Thus t is indeed a guard. Hence
we may assume d to have two successors in T . Then we subdivided the
incoming edge at d with a new vertex, say d′ and added a rooted cubic
tree R with root d′′ as a new successor of d′. If t ∈ V (R) we are done by
the same argument as above. If t = d′, then the successors of d′ are d and
d′′. We have already seen that d′′ is a guard of T and since (T, β, γ) is a
prepared proto-directed tree decomposition, d must be a join as d has two
successors t1 and t2 satisfying the appropriate requirements.
Case D: Vertex t is a vertex of the original T but has not been marked
as a guard during the construction of T ′.
This means in particular that t is not a leaf of T and does not have a
unique successor. Indeed, in this case, t must have exactly two successors
t1 and t2. We may assume t1 and t2 to be ordered such that there is no
edge from β(Tt2) to β(Tt1). Let t′1 and t′2 be the two successors of t in
T ′′, then it follows that there is no edge from V2 ∩ δ(T ′′

t2) to V1 ∩ δ(T ′′
t1).

Moreover, with the same argument β(Tt1) is strongly connected and thus
δ(T ′′

t1) is elementary. Hence t is a join.
This completes the argument and thus (T ′′, δ) is nice. What is left to show
is that (T ′′, δ) is safe for I and W . Note that the width of (T ′′, δ) cannot
increase by deleting F and thus it also is a perfect matching decomposition
for B with the same bound on its width.
We claim that (T ′′, δ) is safe for W and I. Suppose there exists a solution
M ′,P and an edge e ∈ E(T ′′) such that

|∂B(e) ∩
⋃︂

P∈P

E(P )| > 864w2 + 1728w + 44 + 12k.

With F being W -completing, F ∪W ∪
⋃︁

P∈P E(P ) induces a family C
of pairwise disjoint M ′-conformal cycles in B + F . Then let C′ be the
collection of all cycles in C with edges in ∂B(e). Let E(C′) :=

⋃︁
C∈C′ E(C).

Since width(T ′′, δ) ≤ 432w2+864w+22+6k, at most 432w2+864w+22+6k

of the edges in E(C′) ∩ ∂B(e) can belong to M ′. Hence |(E(C) ∩ ∂B(e)) \
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M ′| > 432w2 + 864w + 22 + 6k. Consider the perfect matching M ′′ :=

M ′∆E(C′) of B + F . Note that this is the point where we need I to be a
distinct family. Then |∂B(e)∩M ′′| > 432w2+864w+22+6k contradicting
our assumption. So our claim follows.

Note that in case t = 0, Lemma 5.4.7 implies the existence of an FPT-
approximation algorithm that produces a nice perfect matching decompo-
sition for bipartite graphs B with a perfect matching.

5.4.2. The Dynamic Programming for Bipartite k-DAPP

With Lemma 5.4.7 we have fixed
f1(pmw(B), k, |V (B)|) := 2O((pmw(B)2+k) log(pmw(B)2+k))|V (B)|O(1),

so from now on we will only be concerned with the dynamic programming
on (I,W )-decompositions.
In most parts, we lean on the algorithm for the directed disjoint paths
problem developed by Johnson et al. for digraphs of bounded directed
treewidth [JRST01]. However, we face several challenges here. The first
one is that we cannot assume that there is no perfect matching M for
which some internally M -conformal path P exists with |∂B(e) ∩ E(P )| ≫
2width(T, δ). The only thing we can be sure of is that no such path can
be part of our solution. Second, while we are exclusively interested in
perfect matchings of B that extend W , there might still be an exponential
number of them, and thus we must store additional information in order
to cope with this fact.
Let B be a bipartite graph with a perfect matching, I a distinct family of k
terminal pairs for the k-DAPP in B, W ⊆ E(B) an extendible set matching
all terminals such that if e ∈W , then an endpoint of e is a terminal, and
F a W -completion. A subgraph L of B is called a linkage if there exists a
perfect matching M and a family of pairwise internally disjoint internally
M -conformal paths P such that L =

⋃︁
P∈P P , and L has exactly |P|

components. A linkage L is a (I,W )-linkage if there exists a solution
(M,P) for I in B extending W such that L =

⋃︁
P∈P P . Please note that

for a (I,W )-linkage L the corresponding W -extending solution (M,P) is
uniquely determined apart from the edges of M ∩ (E(B) \

⋃︁
P∈P E(P )).

A part of L is a subgraph L′ ⊆ L such that some path P ∈ P exists with
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L′ ⊆ P . Let X ⊆ V (B), a part of L in X is a component of L[X ∩ V (L)],
we denote the set of all parts of L in X by partsL(X).
We say that a linkage L in G is (k, w)-limited in X and G, for some integer
w, if for every set Y ⊆ X with mp(∂B(Y )) ≤ w we have | partsL(Y )| ≤
k + w.

Lemma 5.4.8 (D∗). Let B be a bipartite graph with a perfect matching,
I a distinct family of k terminal pairs, W ⊆ E(B) an extendible set
covering all terminals such that if e ∈ W , then an endpoint of e is a
terminal, and F a W -completion. Let X ⊆ V (B) and L a (I,W )-linkage
in B as well as w a positive integer, then L is (k, w)-limited in X and
B + F .

Proof. The proof is similar to the safety-part in the proof of Lemma 5.4.7.
Let Y ⊆ X be any set with mp(∂B+F (Y )) ≤ w and suppose | partsL(Y )| ≥
k + w + 1. Let L′ be any component of L and consider ℓ′ := |∂B+F (Y ) ∩
E(L′)|. If ℓ′ ≥ 1, then⌈︃

ℓ′

2

⌉︃
≤ | partsL′(Y )| ≤ 1 +

ℓ′

2
.

Hence we obtain the following:
k + w + 1 ≤ | partsL(Y )| =

∑︂
L′ component of L

| partsL′(Y )|

≤
∑︂

L′ component of L

1 +
|∂B+F (Y ) ∩ E(L′)|

2

= k +
|∂B+F (Y ) ∩ E(L)|

2
Therefore 2w + 2 ≤ |∂B+F (Y ) ∩ E(L)| and thus, with F being W -
completing, there must exist a W -extending perfect matching M of B

such that L is a family of internally M -conformal paths and thus, L+ F

is a family of M -alternating cycles. Hence there exists a perfect matching
of B + F with at least 2w + 2 edges in ∂B+F (Y ) contradicting the choice
of Y .

Since we will be working on a (I,W )-decomposition of bounded width,
from now on the case where linkages are not (k, w)-limited will be ignored,
as it wont occur in our algorithm.
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Let B be a bipartite graph with a perfect matching, W ⊆ E(B) an
extendible set, k, w ∈ N two integers, X ⊆ V (B), and U ⊆ ∂B(X) a set
such that W ∪U is extendible and W ∩ ∂B(X) ⊆ U . A (k, w)-U -itinerary
for X is a mapping fU that assigns every tuple (ℓ,J , J), where

• ℓ ∈ [1, |X|] is an integer,
• J is a distinct family of j ∈ [0, k+w] terminal pairs from X\V (U\J),

and
• J ⊆ E(B) is a matching covering all terminals of J and every edge

of J covers some terminal of J such that W ∪ U ∪ J is extendible,
and J ∩ ∂B(X) = U ∩ ∂B(X),

a value 0 or 1 such that the following is guaranteed:
i) If fU (ℓ,J , J) = 0, then there exists no (J , J)-linkage L in B[X \

V (U \ J)] with |V (L)| = ℓ such that a J-extending solution M,Q
exists with W ∪ J ∪ U ⊆M , which is (k, w)-limited in X.

ii) If fU (ℓ,J , J) = 1, then there exists a (J , J)-linkage L in B[X \
V (U \ J)] with |V (L)| = ℓ such that a J-extending solution M,Q
exists with W ∪ J ∪ U ⊆M .

Lemma 5.4.9 (D∗). Let B be a bipartite graph with a perfect matching,
W ⊆ E(B) an extendible set, and k, w ∈ N two integers. Furthermore let
X,Y ⊆ V (B) be two disjoint subsets such that there is no edge between
V1 ∩ Y and V2 ∩ X and let U ⊆ ∂B(X ∪ Y ) be an extendible set with
W ∩ ∂B(X ∪ Y ) ⊆ U . Assume that for every Z ∈ {X,Y } and every
extendible UZ ⊆ ∂B(Z) with |UZ | ≤ w and W ∩ ∂B(Z) ⊆ UZ we are
given a (k, w)-UZ-itinerary fZ

UZ
. Then there exists an algorithm with

running time O((k + w)!(2k + 3w)4(k+w)|X ∪ Y |4k+12w+2) that produces
a (k, w)-U -itinerary for X ∪ Y .

Proof. Let ℓ ∈ [1, |X∪Y |] and j ∈ [0, k+w], let J = {(s1, t1), . . . , (sj , tj)}
be a distinct set of j ∈ [0, k + w] terminal pairs in X ∪ Y and J ⊆ E(B)

an extendible set such that every edge in J covers a terminal of J and
every terminal is covered by some edge in J . We need to choose some
additional sets of edges before we can start, in order to determine the
value of fU (ℓ,J , J). We iterate over all choices of sets R, H, RX , and
RY satisfying the following requirements.

i) R ⊆ ∂B(X) ∩ ∂B(Y ) such that
• W ∩ ∂B(X) ∩ ∂B(Y ) ⊆ R,
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• |(U ∩ ∂B(X)) ∪R| ≤ w and |(U ∩ ∂B(Y )) ∪R| ≤ w, and
• W ∪ U ∪ J ∪R is extendible.

ii) H ⊆ ∂B(X) ∩ ∂B(Y ) such that
• H is a matching of size at most w,
• no edge of H is incident with an edge of U ∪R, and
• the set of endpoints of the edges in H in Z ∈ {X,Y } is denoted

by ZH .
iii) For Z ∈ {X,Y }, RZ ⊆ E(B[Z]) such that

• every vertex in ZH is covered by some edge of RZ ,
• every edge of RZ covers a vertex in ZH , and
• W ∪ U ∪ J ∪R ∪RZ is extendible.

In what follows let R, H, and the RZ be fixed. For Z ∈ {X,Y } let
UZ := R ∪ (U ∩ ∂B(Z)) and note that, by choice and our assumption,
we are given a (k, w)-UZ-itinerary fZ

UZ
for Z. Let us denote the set of

endpoints in V2 of the edges in RX by V2,RX and the set of endpoints
in V1 of the edges in RY by V1,RY . There may exist some paths that
belong to a linkage we are interested in which start in a vertex of V1 ∩ Y

and end in a vertex of V2 ∩X. However, each such path must necessarily
use an edge of R and in total, since we are still only interested in (k, w)-
limited linkages, we cannot cross the cut between X and Y too often.
Still, we need to address this problem by possibly considering additional
terminals not belonging to those we were given by J . We approach the
problem of merging the two itineraries with respect to the chosen sets
above by constructing an auxiliary digraph DW,U,X,Y [J , J, R,H,RX , RY ]

of constant size.
For the vertices of DW,U,X,Y [J , J, R,H,RX , RY ] we define the following
sets:
VX := {si ∈ X | i ∈ [1, j]} ∪ {ti ∈ X | i ∈ [1, j]} ∪ V2,RX ∪ {ve | e ∈ R}
VY := {si ∈ Y | i ∈ [1, j]} ∪ {ti ∈ Y | i ∈ [1, j]} ∪ V1,RY ∪ {ve | e ∈ R} .

And for the edges let
EX := {(si, v) | si ∈ VX and v ∈ V2,RX } ∪ {(ve, ti) | ti ∈ VX and e ∈ R}

∪ {(ve, u) | e ∈ R and u ∈ V2,RX } , and

EY := {(si, ve) | si ∈ VY and e ∈ R} ∪ {(v, ti) | ti ∈ VY and v ∈ V1,RY }
∪ {(u, ve) | e ∈ R and u ∈ V1,RY } .
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Then
DW,U,X,Y [J , J, R,H,RX , RY ] := (VX , EX) ∪ (VY , EY )

+ {(u, v) | uw ∈ RX , wz ∈ H, and zv ∈ RY } .
Let L be a directed J -linkage in DW,U,X,Y [J , J, R,H,RX , RY ] such that
L has at most t+ w components in (VZ , EZ) for both Z ∈ {X,Y }. Then
from L we can derive two instances of the linkage problem for the matching
case, one in B[X] and the other in B[Y ], namely JL,X := E(L)∩EX and
JL,Y := E(L) ∩ EY . Additionally we define for Z ∈ {X,Y }

UL,Z :=(∂B(Z) ∩ U) ∪R, and

JL,Z := {e ∈ J | e ∈ E(B[Z]) ∪ ∂B(Z)}
∪ {e ∈ RZ | e covers a terminal in JL,Z} .

If there now exist integers ℓ1 and ℓ2 with ℓ = ℓ1 + ℓ2 such that
fX
UL,X

(ℓ1,JL,X , JL,X) = fY
UL,Y

(ℓ1,JL,Y , JL,Y ) = 1,

the two solutions in B[X] and B[Y ] can be combined and we may set
fU (ℓ,J , J) := 1.
In total, since we iterate over all possible choices and combinations, this
process correctly computes a (k +w)-U -itinerary for X ∪ Y . The running
time follows from the number of possible choices we need to consider
and the size and construction of DW,U,X,Y [J , J, R,H,RX , RY ]. Please
note that the bound given in the statement of the lemma is probably not
optimal, but it suffices for our purposes.

Lemma 5.4.9 describes how to merge partial solutions at join-vertices of
a (I,W )-decomposition, once a set U has been fixed. The next lemma
addresses the same problem at guard-vertices. Indeed for our purposes, it
suffices to only consider guard- and join-vertices in a bottom-up fashion
in order to find the desired solution.

Lemma 5.4.10 (D∗). Let B be a bipartite graph with a perfect matching,
W ⊆ E(B) an extendible set, and k, w ∈ N two integers. Furthermore
let X,Y ⊆ V (B) be two disjoint subsets such that mp(∂B(X)) ≤ w and
|Y | ≤ w, and let U ⊆ ∂B(X∪Y ) be an extendible set with W∩∂B(X∪Y ) ⊆
U . Assume that for every extendible UX ⊆ ∂B(X) with |UX | ≤ w and
W ∩ ∂B(X) ⊆ UX we are given a (k, w)-UX -itinerary fX

UX
. Then there

exists an algorithm with running time O((w + k)!w
1
2
w(|X|+w)4k+10w+2)

that produces a (k, w)-U -itinerary for X ∪ Y .
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Proof. Let ℓ ∈ [1, |X ∪ Y |], j ∈ [0, k + w], and J = {(s1, t1), . . . , (sj , tj)}
be a distinct set of j ∈ [0, k + w] terminal pairs in X ∪ Y and J ⊆ E(B)

an extendible set such that every edge in J covers a terminal of J and
every terminal is covered by some edge in J . Next we iterate over all
possible choices for the sets R, H, and RX defined analogously to those
in the proof of Lemma 5.4.9. Additionally, we iterate over all possible
choices of W ∪ U ∪ J ∪R ∪RX -extending perfect matchings MJ,R,RX of
the graph BY := B[Y ∪ V (W ) ∪ V (U) ∪ V (J) ∪ V (R) ∪ V (RX)]. Since
|Y | ≤ w there are at most w

w
2 such perfect matchings of BY . We need six

additional vertex sets in order to construct another auxiliary digraph that
will be used similarly to the one in Lemma 5.4.9. However, since we do
not know which colour the endpoints of an edge in ∂B(X) ∩ ∂B(Y ) have,
with respect to the shore we are interested in, the construction is slightly
more complicated.

i) V1,R :=
⋃︁

e∈R e ∩ V1 ∩X

ii) V2,R :=
⋃︁

e∈R e ∩ V2 ∩X

iii) V1,H :=
⋃︁

e∈RX
e ∩ V1 \

⋃︁
e∈H e

iv) V2,H :=
⋃︁

e∈RX
e ∩ V2 \

⋃︁
e∈H e

v) V1,X := {si ∈ X | (si, ti) ∈ J }
vi) V2,X := {ti ∈ X | (si, ti) ∈ J }

As a first component we need the digraph D1 := D(BY ,MJ,R,RX ). Second
let
VX :=

{︁
u′ | u ∈ V1,R ∪ V1,H ∪ V1,X

}︁
∪
{︁
v′ | v ∈ V2,R ∪ V2,H ∪ V2,X

}︁
,

EX :=
{︁
(u′, v′) | u ∈ V1,R ∪ V1,H ∪ V1,X and v ∈ V2,R ∪ V2,H ∪ V2,X

}︁
, and

E′ :=
{︁
(u′, ve) | u ∈ V1,H ∪ V1,R, u ∈ e ∈ R ∪RX , and ve ∈ V (D1)

}︁
∪
{︁
(ve, v

′) | v ∈ V2,H ∪ V2,R, v ∈ e ∈ R ∪RX , and ve ∈ V (D1)
}︁
.

In total these definitions give rise to the digraph
DW,U,X,Y [J , J, R,H,RX ,MJ,R,RX ] :=(VX , EX) ∪D1 + E′.

Now let
J ′ := {(ui, wi) | ui = si if si ∈ Y, else, ui = s′i;

wi = ti if ti ∈ Y else, wi = t′i}.
For every e ∈ J we identify any endpoint of J that is a terminal of
J ′ with the vertex ve ∈ V (D1). Then, by construction, every solution
P, M for J ′, W in B[X ∪ Y ] such that M extends MJ,R,RX naturally
corresponds to a family of pairwise internally disjoint directed paths in
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DW,U,X,Y [J , J, R,H,RX ,MJ,R,RX ] that links J ′. On the other hand, let
P be a family of pairwise internally disjoint directed paths linking J ′,
such that the following requirements are met:

i) Let Q :=
⋃︁

P∈P P , then the total number, over all paths P ∈
P, of subgraphs of Q that are a maximal directed subpaths of
P [VX ∪ {ve | e ∈ RX}] does not exceed k + w.

ii) If v ∈ V (P ) such that v = ve for some e ∈ MJ,R,RX and there is
some u′ ∈ VX such that u ∈ e, then u′ does not occur in any other
path of P. Similarly, if u′ ∈ V (P )∩VX such that some e ∈MJ,R,RX

exists with u ∈ e, then ve does not occur in any path of P besides
possibly P .

Let P ′ be a subgraph of Q that is a maximal directed subpath of P [VX ∪
{ve | e ∈ RX}] for some P ∈ P and let u′

P ′ be the starting point of P and
v′P ′ its end. We define a terminal pair (u, v) in B[X] as follows:

• If uP ′ ∈ V1,R ∪ V1,H ∪ V1,X set u := uP ′ , otherwise there must be
some e ∈ RX such that u′

P ′ = ve. In this case let ue be the endpoint
of e in V1 and set u := ue.

• Similarly, if vP ′ ∈ V2,R ∪ V2,H ∪ V2,X set v = vP ′ , otherwise there
must be some e ∈ RX such that v′P ′ = ve. In this case let u′

e be the
endpoint of e in V2 and set v := u′

e.
Let JP be the collection of all terminal pairs (u, v) defined as above. Then
no vertex of X occurs in two different terminal pairs of JP and every
terminal is covered by an edge of J ∪RX . We define two additional sets
as before:

UP,X :=(∂B(X) ∩ U) ∪R, and

JP,X := {e ∈ J | e ∈ E(B[X]) ∪ ∂B(X)}
∪ {e ∈ RX | e covers a terminal in JL,X} .

If there now exist integers ℓ1 and ℓ2 with ℓ = ℓ1 + ℓ2 such that
ℓ2 = 2|V (Q) ∩ {ve | e ∈MJ,R,RX \RX} |, and fX

UP,X
(ℓ1,JP , JP,X) = 1,

We can combine the parts of P in D1[{ve | e ∈MJ,R,RX \RX}] and a
solution for JP to obtain a solution for X ∪ Y and U . Hence we may set
fU (ℓ,J , J) := 1. By iterating over all possible choices for the various sets
we are sure to produce a complete (k, w)-U -itinerary for X ∪ Y .
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Using lemmata 5.4.9 and 5.4.10, we are now able to merge partial solutions
at all join- and guard vertices. For basic vertices obtaining partial solutions
is straight forward, since we may only choose the edges of the perfect
matchings covering the two singular vertices that lie in the two subtrees
beneath. In order to obtain a (k, w)-U -itinerary for every possible U , we
just have to call the corresponding merge operation for every possible
choice of U . At any given time there are O(|V (B)|w) such choices, which
overall implies the following:

Corollary 5.4.11 (D∗). Let B be a bipartite graph with a perfect
matching, I a distinct set of k terminal pairs, W an extendible set covering
all terminals such that every edge in W covers a terminal and (T, δ) a
(I,W )-decomposition of width w for B. There exists an algorithm that
decides in time O(|V (B)|4k+13w+3) whether there exists a solution for I,
W or not.

Corollary 5.4.11, together with the approximation factor for our (I,W )-
decomposition from Lemma 5.4.7, fixes
f2(pmw(B), k, |V (B)|) := O(|V (B)|5616 pmw(B)+11232 pmw(B)2+189+73k).

Together with our previous results this completes the proof of Theo-
rem 5.4.1.

Deciding Matching Minor Containment The importance of the disjoint
paths problem in the Graph Minors series by Robertson and Seymour is
due to the fact that checking for minor containment can be reduced to
certain instances of the disjoint paths problem. For bipartite graphs with
perfect matchings, this is also true.

Proof of Theorem 5.4.2. By Corollary 3.1.105, if H is a matching minor
of B, then there exists a perfect matching M of B such that there exists
an M -model of H in B. Every vertex v ∈ V (H) is represented by a
barycentric tree in B, and it is not hard to see that we may always choose
such a barycentric tree such that the number of vertices of degree at least
3 is at most degH(v). Let µ : H → B be such a model. By Lemma 3.1.104
we may further assume that M corresponds to a perfect matching MH of
H and µ(uv) is internally M -conformal if and only if uv /∈MH . Moreover,
if uv ∈MH , then µ(uv) is M conformal. Hence for every v, it suffices to
guess the at most degH(v) many edges of M and ask for pairwise internally
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disjoint internally M -conformal paths connecting them in an appropriate
way. Additionally, we need an internally M -conformal path representing
every uv ∈ E(H) \MH and for each of those, we need to find an edge
of M for each of the two endpoints. Since we also guessed the edges of
M covering the only vertex of µ(x) not covered by E(µ(x)) ∩M for both
x ∈ {u, v} if uv ∈ MH , the endpoints of these two edges, not belonging
to their respective vertex models must also be linked by paths. Since it
is not feasible to check for M -models of H for every perfect matching M

of B, we instead check all possible choices of extendible sets F of size at
most 2|E(H)| +

∑︁
v∈V (H) degH(v) = 4|E(H)|. In fact, since we also do

not know which edge of our set F belongs to the model of which vertex or
edge of H, we also need to try all possible configurations. But this only
worsens our running time by a factor depending exclusively on the size of
F . Hence in total we need to call the algorithm from Theorem 5.4.1 at
most O(|V (B)|4|E(H)|) times with k ≤ 4|E(H)| ≤ 4|V (H)|2, and thus our
claim follows.

5.5. Perfect Matching Width and Treewidth

A natural question for any new width parameter is how it compares to
other, already known parameters. We have already seen a way to relate
the perfect matching width of bipartite graphs and directed treewidth.
However, to apply our findings the graph itself has to be transformed. In
the first part of this short section we discuss the relation between the
(undirected) treewidth of G and its perfect matching width. To do this we
use a parameter introduced by Vatshelle [Vat12] which is already known
to be equivalent to treewidth but is much closer to perfect matching width
in spirit.

Definition 5.5.1 (Maximum Matching on Edge Cuts). Let G be a graph
and X ⊆ V (G). We denote by mm(X) the number ν(G[∂G(X)]) which is
the maximum number of pairwise disjoint edges in ∂G(X).

Definition 5.5.2 (Maximum Matching Width). Let G be a graph. A
maximum matching decomposition of G is an mm-branch decomposition
(T, δ) over V (G) where T is a cubic tree and δ : L(T )→ V (G) is a bijection.
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The width of a maximum matching decomposition (T, δ) is defined as its
mm-width, and the maximum matching width of G, denoted by mmw(G),
is the minimum width over all maximum matching decompositions for G.

Theorem 5.5.3 ([Vat12, JST18]). Let G be a graph. Then mmw(G) ≤
tw(G) + 1 ≤ 3mmw(G).

With this it is straight forward to bound the perfect matching width of a
graph G with a perfect matching in terms of its treewidth.

Proposition 5.5.4 (X∗). Let G be a graph with a perfect matching.
Then pmw(G) ≤ tw(G) + 1.

Proof. By Theorem 5.5.3 we have mmw(G) ≤ tw(G) + 1, so there exists a
maximum matching decomposition (T, δ) for G of width at most tw(G)+1.
Now let M be any perfect matching of G and t1t2 ∈ E(T ). Note that
M ∩ ∂G(δ(Tt1)) is a matching, hence |M ∩ ∂G(δ(Tt1))| ≤ mm(δ(Tt1)) ≤
tw(G)+1. Indeed, as M was chosen arbitrarily we have mp(∂G(δ(Tt1))) ≤
tw(G) + 1 and thus the mp-width of (T, δ) is at most tw(G) + 1 and our
claim follows.

While treewidth gives us an upper bound on the perfect matching width
of G, the reverse is not true in general. With these findings we close this
chapter.

Proposition 5.5.5 (X∗). For every k ∈ N with k ≥ 2 there exists a brace
Bk with pmw(Bk) = 2 and tw(Bk) ≥ k.

Proof. First note that for every t ∈ N, tw(Kt+1) = t. So if we can show
that Bk contains Kk+1 as a minor we have proven tw(Bk) ≥ k. Let
Bk be the bipartite ladder Lk of order k. Then, by Theorem 5.2.12,
pmw(Bk) = 2 for all k. Now let k ≥ 2 be chosen arbitrarily. We choose
the perfect matching M := {uivi | i ∈ [1, k]}. By definition of Lk we know
uivj for every i ∈ [1, k] and every j ∈ [i, k], so by contracting all edges in
M we obtain a graph on k vertices with

(︁
k
2

)︁
edges. So Bk/M is isomorphic

to Kk+1 and we are done.

286



Chapter 6.

Tangles and a Unified Decomposition

In the Graph Minor Project, tangles are introduced as a concept dual to
treewidth. That is, tangles can be seen as ‘areas of high connectivity’, or
better, areas which cannot be cut through with small separators. Conse-
quently, a graph with a large tangle cannot be of high treewidth, since
a tree decomposition of small width would require to cut through the
respective ‘area of high connectivity’ identified by the tangle. This base
idea helped to expand the idea of bounded width tree decompositions to
tree decompositions where only the size of the intersection between neigh-
bouring bags is bounded, while the bags themselves might be large, but
we can make some statements of their general structure. In Theorem 2.2.8
we have seen an example of such a decomposition. Here the intersections
of neighbouring bags, sometimes called the adhesion sets, have size at
most three, and the bags either contain M8 or planar graphs of arbitrary
size.
In this chapter we show how tangles can be generalised to bipartite
graphs with perfect matchings. Essentially this can be done by applying
a sequence of lemmas to the directed counterparts of these concepts. Still,
there is some deeper insight that can be gained from considering the setting
of bipartite graphs with perfect matchings over the setting of digraphs.
To give a better intuition on how the interplay of directed separations
and general tight cuts functions with regards to width parameters, in
Section 6.1 we adapt the proofs of Erde [Erd20] to introduce the notion
of ‘blockages’ as a concept dual to strict linear perfect matching width.
In Section 6.3 we show how to directly use the directed counterparts to
obtain a notion of tangles dual to perfect matching width. This chapter’s
main theorem states that the tangle number of a bipartite matching
covered graph B and the tangle number of any M -direction of B are at
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most a small constant factor apart. More specifically, every tangle in an
M -direction induces a tangle of at least half the order in B and every
tangle in B induces a tangle in every M -direction of B whose order only
differs by a small constant factor.

6.1. Blockages and Strict Linear Perfect Matching Width

Strict linear perfect matching width already yields relatively structured
decompositions, but for our purposes this is not enough. Let B be a
bipartite graph with a perfect matching and X,Y ⊆ V (B) two sets that
induce generalised tight cuts. In the following we say that X and Y

cross if ∂B(X) and ∂B(Y ) cross. They are said to be laminar if X ⊆ Y ,
X ⊆ Y , Y ⊆ X, or Y ⊆ X. Note that, in case X and Y cross and
Maj(X) ∪ Maj(Y ) ⊆ Vi for some i ∈ [1, 2], the two sets X ∩ Y and
X ∪ Y induce generalised tight cuts as well. The matter becomes more
complicated once Maj(X) ∪Maj(Y ) ̸⊆ Vi for any i ∈ [1, 2]. So we would
like to have a guarantee that once we have fixed i ∈ [1, 2] all pairwise
laminar sets that occur as shores of the cuts induced by the edges of the
spine of the spine of a linear decomposition have the same majority. This
leads to a more refined version of strict linear perfect matching width.

Definition 6.1.1 (Ordered Linear Perfect Matching Width). Let B be a
bipartite graph with a perfect matching. A linear perfect matching decom-
position (T, δ) of G is said to be ordered if for all e ∈ E(spine(spine(T )))

the cut ∂B(e) is a generalised tight cut and for all edges t1t2, t2t3 ∈
E(spine(spine(T ))) we have Maj(δ(Tt1)) ⊆ Maj(δ(Tt2)) where Tti is the
component of T − titi+1 that contains ti for both i ∈ [1, 2]. The ordered
linear perfect matching width of B, denoted by olpmw(G), is defined as
the minimum width over all strict perfect matching decompositions of B.

It is straight forward to check that slpmw(B) ≤ olpmw(B) for all bipartite
graphs with perfect matchings. The following subsection is concerned with
establishing an upper bound on olpmw(B) in terms of the strict linear
perfect matching width of B.
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6.1.1. Ordered Linear Perfect Matching Width

First we introduce an abstraction of linear perfect matching decompositions
based on the work of Erde [Erd20] and Diestel and Oum [DO17, Die18,
DO19].

Definition 6.1.2 (The Family of Generalised Tight Cuts). Let B be a
bipartite matching covered graph. We denote by T (B) the family of all
sets X ⊆ V (B) that induce a generalised tight cut. For i ∈ [1, 2], T i(B)

is the family of all sets X ⊆ V (B) that induce a generalised tight cut
and satisfy Maj(X) ⊆ Vi. Let k ∈ N, then Tk(B) is the family of sets
X ⊆ V (B) with mp(∂B(X)) ≤ k, and T i

k (B) ⊆ Tk(B) contains exactly
those X from Tk(B) whose majority belongs to Vi.

Definition 6.1.3 (T -Paths). Let B be a bipartite matching covered graph
and T ′ ⊆ T (B). A T ′-path is a tuple (P, α) where P = (t0, t1, . . . , tp+1)

is a path and α : E(P ) → T ′ such that for all i ∈ [0, p − 1] we have
α(titi+1) ⊆ α(ti+1ti+2).
If T ′ ⊆ T i(B) for some i ∈ [1, 2] we say that (P, α) is ordered.
The width of a T ′-path (P, α), denoted by width(P, α), is the largest
integer k ∈ N such that there exists i ∈ [0, p] for which α(titi+1) induces
a proper k-tight cut.
For every i ∈ [0, p] let Xi := α(titi+1), and let us denote by T [P, α] the
collection of all Xi. The internal accuracy of (P, α) is defined as

int-acc(P, α) := max {|Xi+1 \Xi| − 1 | i ∈ [0, p− 1]} ,
while its accuracy is the value
acc(P, α) := max(

{︁
|X0| −mp(∂B(X0)) + 1, |Xp−1| −mp(∂B(Xp)) + 1

}︁
∪ {int-acc(P, α)})

The T ′-path (P, α) is almost accurate if int-acc(P, α) ≤ 1. Similarly, it is
accurate if acc(P, α) = 1.

Note that in case (P, α) is an accurate T (B)-path, X0 and Xp are
monochromatic.

Lemma 6.1.4 (X∗). Let B a bipartite matching covered graph with
at least six vertices. Then slpmw(B) ≤ k if and only if there exists an
accurate T (B)-path of width at most k.
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Proof. Let (T, δ) be a strict linear perfect matching decomposition (T, δ)

for B where every e ∈ E(spine(spine(T ))) induces a cut of matching
porosity at most k, and let P ′ := spine(spine(T )). Moreover, let q + 2

be the number of vertices in P ′ and P ′ = (t0, t1, . . . , tq+1). For each
i ∈ [0, q] let Ti be the subtree of T − titi+1 that contains ti. We set
α′(titi+1) := δ(Ti) for every i ∈ [0, q]. Since (T, δ) is a strict linear
perfect matching decomposition, ∂B(e) is a generalised tight cut for every
e ∈ E(P ′) and thus α(e) ∈ T (B) for every e ∈ E(P ′). Notice that for
every i ∈ [0, q − 1] we have |δ(Ti+1 \ δ(Ti))| ≤ 2 since (T, δ) is a linear
perfect matching decomposition. Additionally note that every cut induced
by an edge of T has matching porosity at most k. Hence (P ′, α′) is an
almost accurate T (B)-path of width at most k. Now consider the sets X0

and Xq for (P ′, α′). Both of them have size at most four. In case both
are monochromatic we have |Xi| −mp(∂B(Xi))+ 1 = 1 for each i ∈ {1, q}
and thus (P ′, α′) is accurate and we are done. Suppose this is not the case.
Let i ∈ {1, q} be chosen such that Xi is not monochromatic. We claim
that B[Xi] is a subgraph of a claw. Suppose it is not, then Xi must have
two vertices from each colour class. Since Xi induces a generalised tight
cut this means that ∂B(Xi) = ∅. But with |Xi| ≤ 4 and |V (B)| ≥ 6 and B

being connected this is impossible and our claim follows. Let vi ∈ Xi be
the unique minority vertex in Xi and ui ∈ Xi \{vi} be any other vertex. If
X0 is not monochromatic we introduce the vertex t−1 and the edge t−1t0
to P ′ and define the set X−1 := X0 \ {v0, u0}. Additionally, if Xq is not
monochromatic we introduce the vertex tq+2 and the edge tq+1tq+2 to P ′

and define the set Xq+1 := Xq we then delete vq and uq from Xq. Let P be
the resulting path and α obtained by augmenting α′ with α(t−1t0) := X−1

in case X0 is not monochromatic, and α(tq+1tq+2) := Xq+1 in case Xq is
not monochromatic. The resulting (P, α) is now an accurate T (B)-path
of width at most k as desired.
For the reverse let (P, α) be an accurate T (B)-path of width at most
k. We consider the sets Xi ∈ T [P, α]. We are going to iteratively grow
P = (t0, t1, . . . , tp+1) into a cubic tree T and define δ : L(T )→ V (B) on its
leaves. Please note that we may assume the Xi to be distinct as otherwise
we simply shorten P and remove the duplicates.
First consider X0. As X0 is monochromatic we may proceed as follows:
Let P0 be a path on |X0| − 1 vertices such that P0 and P share exactly
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the vertex t0. For every internal vertex t ∈ V (P0) add a vertex dt and
the edge tdt. Add the vertex d0 and the edge t0d0. At last let t′ be the
other endpoint of P0. We add two vertices d1 and d2 and the edges t′d1,
t′d2. The result is a subcubic tree, call it T ′

0, with exactly |X0| leaves. We
define δ to be a bijection between the leaves of T ′

0 and X0. At last let T0

be the tree obtained from P by adding T ′
0.

Let, for some i ∈ [0, p− 1], Ti be the tree grown from P so far such that δ

covers all vertices in Xi. Suppose i is chosen maximal with this property.
Then, as (P, α) is accurate, |Xi+1 \Xi| ≤ 2. In case Xi+1 \Xi = {v} we
introduce a new vertex d as a leaf adjacent to ti+1 and map d via δ to v.
Otherwise Xi+1 = {v1, v2} and we first introduce a new neighbour d for
ti+1 and then add leaves d1 and d2 adjacent to d. Set δ(di) := vi for both
i ∈ [1, 2]. Let Ti+1 be the newly constructed tree.
Finally we need to consider Xp which again is monochromatic. Here we
may proceed analogously to X0 and finally obtain a linear perfect matching
decomposition (T, δ) for B. Moreover, every edge e of spine(spine(T )) is an
edge of P , P0, or the path Pp obtained for Xp, and the cut induced by this
edge equals the cut induced by α(e), or one of its shores is monochromatic
and of size at most k. Hence the strictness of (T, δ) follows from (P, α)

being a T (B)-path. Similarly, every e ∈ E(spine(spine(T ))) must induce
a cut of matching porosity at most k by the width of (P, α).

If we require both the strict linear perfect matching decomposition and
the T (B)-path to be ordered, following the arguments in the proof of
Lemma 6.1.4 we also obtain the next result.

Lemma 6.1.5 (X∗). Let B a bipartite matching covered graph on at least
six vertices. Then olpmw(B) ≤ k if and only if there exists an ordered
and accurate T (B)-path of width at most k.

Let us examine accurate T (B)-paths that are not ordered more closely.
Let P be a path, we say that the edges e, e′ ∈ E(P ) are consecutive if
they share exactly one endpoint.

Lemma 6.1.6 (X∗). Let B be a matching covered bipartite graph and
(P, α) an accurate T (B)-path of width k and e, e′ ∈ E(P ) be consecutive
edges such that α(e) ⊆ α(e′), and Maj(α(e)) ⊆ Min(α(e′)) ⊆ Vi for some
i ∈ [1, 2]. Then α(e) induces a tight cut.
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Proof. Without loss of generality let us assume Maj(α(e)) ⊆ V1. Let
Xf := α(f) for both f ∈ {e, e′}. We first examine Y := Xe′ \Xe.
Suppose there exists some v ∈ Y ∩ V1, then v ∈ Min(Xe) and by
Lemma 3.1.58 v cannot have a neighbour in Xe. Since v ∈ Min(Xe′), all
neighbours of v must be in Y . As |Y | ≤ 2 since (P, α) is accurate this
means that v has at most one neighbour which is impossible with B being
matching covered and Theorem 3.1.67. So Y ⊆ V2. Moreover, notice that
by Lemma 3.1.58 no vertex of Xe can have a neighbour in Xe′ .
Suppose there is a perfect matching M of B with |M ∩ ∂B(Xe)| ≥ 2.
Since |Y | ≤ 2, NB(Xe ∩ V1) ⊆ Xe′ , and NB(Min(Xe)) ⊆ Xe we also know
|M ∩ ∂B(Xe)| ≤ 2. So we may assume that equality holds. In this case
however M ∩ ∂B(Xe′) = 0 and thus Xe′ is balanced. This means Xe′ is
empty which contradicts the definition of accurate T (B)-paths. Hence
|M ∩ ∂B(Xe)| = 1. Consequently, |Xe| is odd and thus it induces a tight
cut.

We need a special operation on T (B)-paths to transform any accurate
T (B)-path into an ordered one. The idea here is to ‘flip’ a segment for
which the sets mapped by α have an undesired majority. If Maj(X) ⊆ V2,
then Maj(X) ⊆ V1 while ∂B(X) = ∂B(X). So hopefully our flipping
operation does not change the width too much.
Let B be a matching covered bipartite graph and (P, α) be a T (B)-path.
Moreover, let Q be a subpath of P . The flip of Q in (P, α) is the T (B)-
path (P, α′) obtained as follows. Let Q = (q0, q1, . . . , qp+1), and let Xi

be the set α(qiqi+1) for every i ∈ [0, p], and X−1 := ∅. Finally let e0
be the edge of P , if it exists, incident with q0 but not with q1. We set
Y−1 := α(e0) and in case e0 does not exist we set Y−1 := ∅. For every
e ∈ E(P ) \ E(Q) we set α′(e) := α(e), and for every i ∈ [0, p] we set
Yi := Yi−1 ∪ (Xp−i \Xp−1−i). Then α′(qiqi+1) := Yi for all i ∈ [0, p].

Theorem 6.1.7 (X∗). Let B be a bipartite matching covered graph.
Then slpmw(B) ≤ olpmw(B) ≤ slpmw(B) + 2.

Proof. By Lemma 6.1.4 there exists an accurate T (B)-path (P, α) of
width slpmw(B). Let e0 ∈ E(P ) be an end-edge of P such that α(e0)

contains at most four vertices. Without loss of generality let us assume
Maj(α(e0)) ⊆ V1. We call a subpath Q = (q0, q1, . . . , qp+1) of P a segment
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if it is a maximal subpath of P where Maj(α(qiqi+1)) ⊆ V2 for every
i ∈ [0, p − 2] and Maj(α(qpqp+1)) ⊆ V1. By eQ we denote the unique
edge of P incident with q0 but not with q1. Note that eQ must exist
and with YQ := α(eQ) we have Maj(YQ) ⊆ V1 by the maximality of Q.
For any edge e ∈ E(P ) we say that e is right of Q if it belongs to the
component of P − qpqp+1 that does not contain eQ, and it is left of Q

if e ∈ E(P ) \ E(Q) and e is not right of Q. If P has no segment, it is
already an ordered T (B)-path, so we may assume that P has at least
one segment. In this case let Q be the segment of P closest to e0 and let
(P, α′) be the flip of Q in (P, α). Note that for every edge e ∈ E(P ) right
of Q we have α′(e) = α(e). Hence it suffices to show that α′(qiqi+1) is a
generalised tight cut of matching porosity at most slpmw(B) + 2 and that
(P, α′) has less segments than (P, α). The claim then follows from the
fact that we did not change any cut that was not induced by an edge of
Q and that any two segments of (P, α) have disjoint edge sets. Consider
the set Y0 = α(eQ) ∪ (Xp \Xp−1). Since Maj(Xp−1) ⊆ Min(Xp) ⊆ V2, by
Lemma 6.1.6 we know that Xp−1 induces a tight cut. Moreover, from
the proof of Lemma 6.1.6 we can deduce that Xp \Xp−1 ⊆ V1. Hence Y0

induces a generalised tight cut, Maj(Y0) ⊆ V1, and, as |Xp \Xp−1| ≤ 2 and
mp(∂B(α(eQ))) ≤ slpmw(B), we have mp(∂B(Y0)) ≤ slpmw(B) + 2. Let
i ∈ [1, p] and assume that for every j ∈ [0, i− 1], Yj induces a generalised
tight cut, Maj(Yj) ⊆ V1, and mp(∂B(Yj)) ≤ slpmw(B) + 2. If i = p then
Yi = Xp and since, by the definition of segments, Maj(Xp) and Xp is a
set that belongs to an accurate T (B)-path of width slpmw(B) our claim
follows. Consequently we may assume i ≤ p− 1. Since Xp−1−i induces a
generalised tight cut and Maj(Xp−1−i) ⊆ V2 we know Maj(Xp−1−i) ⊆ V1.
Moreover, with Xp inducing a tight cut and having its majority in V1

we know that Maj(Xp−1−i \ Xp) ⊆ V1. To see this consider the graph
B/(Xp→v) and the set (Xp−1−i \Xp) ∪ {v}. Next we need to show that
NB(Yi ∩ V2) ⊆ Yi. Let u ∈ Yi ∩ V2 be a vertex with a neighbour v in
Yi. Then u ∈ Yi \ α(eQ). Let j ∈ [0, i] be the smallest number such that
u ∈ Yj . As Xp has its majority in V1 and induces a tight cut, v must
belong to Xp−1−j \ α(eQ). But then there is a vertex in the minority of
Xp−1−j with a neighbour in Xp−1−j contradicting the fact that Xp−1−j

induces a generalised tight cut and Lemma 3.1.58. Hence Yi induces a
generalised tight cut in B.
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So it is left to show mp(∂B(Yi)) ≤ slpmw(B) + 2. Note that ∂B(Yi) ⊆
∂B(α(eQ)) ∪ ∂B(Xp) ∪ ∂B(Xp−1−i). As ∂B(α(eQ)) and ∂B(Xp−1−i) both
must be tight cuts by Lemma 6.1.6, and mp(∂B(Xp−1−i)) ≤ slpmw(B), no
perfect matching can have more than slpmw(B) + 2 edges in ∂B(α(eQ))∪
∂B(Xp)∪∂B(Xp−1−i). Therefore mp(∂B(Yi)) ≤ slpmw(B)+2 and we are
done. Our claim follows by induction. Clearly in (P, α′) no segment can
contain an edge of Q or left of Q. Hence every edge that belongs to such
a segment must lie right of Q and must also be a segment of (P, α). Thus
we have reduced the number of segments and the assertion follows.

Shifting T -Paths As we have seen in the previous subsection, strict
linear perfect matching width and ordered linear perfect matching width
differ only by a small additive constant. Hence any notion that is dual
to ordered linear perfect matching width must also be dual to the less
restrictive strict variant. The next step towards such a dual notion is to
adapt some of the tools from [Erd20] for the matching setting. Let B be
a matching covered bipartite graph and (P, α) be an ordered T (B)-path
with edges e0 and ep such that α(e0) ⊆ α(e0). We say that e0 is the initial
edge and X0 := α(ep) is the initial set, while ep is the terminal edge and
Xp := α(ep) is the terminal set of (P, α). Let P = (t0, . . . , tp+1). We fix
our notation from earlier and set Xi := α(titi+1) for all i ∈ [0, p]. Suppose
Maj(X0) ⊆ V2, then Maj(Xp) ⊆ V1. Hence by ‘reversing’ the path P

and replacing every set Xi with its complement we obtain a new ordered
T (B)-path (P, α′) of the same width and accuracy where Maj(X ′

0) ⊆ V1.
This means we may always assume Maj(X0) ⊆ V1 when we consider an
ordered T (B)-path.

Definition 6.1.8 (Up- and Down-Shifts). Let (P, α) be as above and
i ∈ [0, p] as well as Y ∈ T (B) with Xi ⊆ Y and Maj(Y ) ⊆ V1. The
up-shift of (P, α) onto Y at Xi is the T (B)-path (P ′, α′) where P ′ = tiP

and α′(tjtj+1) := Xj ∪ Y for all j ∈ [i, p]. By Lemma 3.1.59 it follows
immediately that (P ′, α′) is an ordered T (B)-path. Moreover, Y is the
initial set of (P ′, α′). Next let i ∈ [0, p] and Y ⊆ T (B) such that Y ⊆ Xi

and Maj(Y ) ⊆ V1. We define the down-shift of (P, α) onto Y at Xi as
the T (B)-path (P ′, α) where P ′ := Pti+1 and α′(tjtj+1) := Y ∩Xj for all
j ∈ [0, i+ 1]. Again it is straightforward to see that (P ′, α′) is an ordered
T (B)-path with terminal set Y .
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If (P, α) is a T (B)-path of width k, then it is in fact a Tk(B)-path. Let
(P ′, α′) be an up- or down-shift of (P, α). While (P ′, α′) still is a T (B)-
path, it is not necessarily still a Tk(B)-path as the matching porosity of
some of the induced cuts might increase. Still if X,Y ∈ T (B) satisfy
Maj(X) ∪Maj(Y ) ⊆ Vi for some i ∈ [1, 2], Lemma 3.1.59 provides the
following equality:

mp(∂B(X)) + mp(∂B(Y )) = mp(∂B(X ∩ Y )) + mp(∂B(X ∪ Y )).

From now an, if we are given two sets X,Y ∈ T (B) we say that X and Y

are aligned if Maj(X) ∪Maj(Y ) ⊆ Vi for some i ∈ [1, 2]. Note that, if C
and D are aligned we implicitly mean C,D ∈ T (B).
Let X,Y ∈ T (B) be aligned with X ⊆ Y , we set
sep(X,Y ) := min {mp(∂B(Z)) | X ⊆ Z ⊆ Y and X,Y , and Z are aligned} .
We say that a set Z ⊆ V (B) is up-linked to X ∈ T (B) if X and Z

are aligned, X ⊆ Z, and mp(∂B(Z)) = sep(X,Z). A set Z ⊆ V (B)

is down-linked to X ∈ T (B) if X and Z are aligned, Z ⊆ X, and
mp(∂B(Z)) = sep(Z,X).

Lemma 6.1.9 (X∗, see Lemma 10 from [Erd20]). Let B be a bipartite
matching covered graph and (P, α) a Tk(B)-path with P = (t0, . . . , tp+1).
If Z ∈ T (B) is up-linked to Xi for some i ∈ [0, p], then the up-shift of
(P, α) onto Z at Xi is a Tk(B)-path, and if Z is down-linked to Xi for
some i ∈ [0, p], then the down-shift of (P, α) onto Z at Xi is a Tk(B)-path

Proof. We only consider the first case as the second one follows along
similar lines. So let (P ′, α′) be the up-shift of (P, α) onto Z at Xi. We
already know that (P ′, α′) is a T (B)-path, hence it suffices to show
width(P ′, α′) ≤ width(P, α) ≤ k. Since Z is up-linked to Xi we know
mp(∂B(Z)) ≤ mp(∂B(Xi)). Let j ∈ [i, p], we aim to prove mp(∂B(Z ∪
Xj)) ≤ width(P, α). Note that with Xi ⊆ Xj and Xi ⊆ Z we have
Xi ⊆ Xj ∩Z ⊆ Z. Consequently, since Z is up-linked to Xi, mp(∂B(Xj ∩
Z)) ≥ mp(∂B(Z)) and thus, by Lemma 3.1.59, we must have

mp(∂B(Xj ∪ Z)) ≤ mp(∂B(Xj)) ≤ width(P, α) ≤ k.

As j was chosen arbitrarily the claim follows.

So the width of a T (B)-path can be preserved by certain shifts, but what
about its accuracy or at least its internal accuracy? Indeed, since every
up- or down shift of a T (B)-path onto some set Z has Z as its initial or

295



Chapter 6. Tangles and a Unified Decomposition

terminal set, and, as Z can be of arbitrary size, we will probably not be
able to preserve the accuracy. So let us settle for the internal accuracy.

Lemma 6.1.10 (X∗, see Lemma 11 from [Erd20]). Let B be a bipartite
matching covered graph and (P, α) a Tk(B)-path with P = (t0, . . . , tp+1).
If Z ∈ T (B) is up-linked to Xi for some i ∈ [0, p], then the up-shift
of (P, α) onto Z at Xi is of the same internal accuracy as (P, α), and
|Xp ∪ Z| ≤ |Xp|.
Similarly, if Z is down-linked to Xi for some i ∈ [0, p], then the down-shift
of (P, α) onto Z at Xi is of the same internal accuracy as (P, α), and
|X0 ∩ Z| ≤ |X0|.

Proof. As we did for Lemma 6.1.9, we only prove the first part of the
assertion as the second one can be derived analogously. Let (P ′, α′)

be the up-shift of (P, α) onto Z at Xi, then P ′ = tiP . The bound
|Xp ∪ Z| ≤ |Xp| on the terminal set follows immediately, so we only have
to show |(Xj+1 ∪ Z) \ (Xj ∪ Z)| ≤ |Xj+1 \Xj | for all j ∈ [i, p]. Clearly
this is true and thus we are done.

6.1.2. ω-Blockages and Tk-Paths of Accuracy ω

For T (B)-paths we are suddenly confronted with two parameters one might
strife to optimise: the width and the accuracy. The width describes the
bound on the matching porosity of the cuts involved, while the accuracy
describes how large the ‘chunks’ of our graph B are that are separated
by those cuts. In an ordered perfect matching decomposition of optimal
width both of these parameters need to be minimised. The version of
blockages we present in this subsection, derived from the definition of
diblockages in [Erd20], aims to act as a general concept of duality for both
of these parameters.
In the most general sense, a tangle is an orientation of the ‘separations’
in some abstract system of separations. That is, each separation has two
sides, one from which it points away – commonly called the small side –
and one it points towards – which then is called the large side. In our
case the ‘separations’ are generalised tight cuts which can be represented
by the sets in T (B).
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Definition 6.1.11 (Orientations of Generalised Tight Cuts). Let B be
a matching covered bipartite graph and k ∈ N be a positive integer. A
partial orientation of Tk(B) is a set O ⊆ Tk(B) such that if X ∈ O, then
X /∈ O. If X ∈ O, we call X the small side of ∂B(X).
A partial orientation O of Tk(B) is an orientation if for every X ∈ Tk(B)

we either have X ∈ O or X ∈ O.
Given a partial orientation P of Tk(B) we write TP for the set

Tk(B,P) :=
{︁
X ∈ Tk(B) | neither X ∈ P, nor X ∈ P

}︁
.

To be able to work with orientations of Tk(B) in a meaningful way we
need to impose some additional requirements.

Definition 6.1.12 (Consistent Orientations). Let B be a matching
covered bipartite graph, k ∈ N be a positive integer, and P a partial
orientation of Tk(B). We say that P is consistent if X ∈ P and Y ∈ Tk(B)

such that X and Y are aligned and Y ⊆ X implies Y ∈ P.

Note that our definition of consistency also implies that in case X ∈ P

and Y ∈ Tk(B) such that X and Y are aligned and X ⊆ Y , then Y ∈ P.
At last let P be a partial orientation of Tk(B). An orientation O of Tk(B)

extends P if P ⊆ O. Let ω ∈ N be a positive integer. We fix a root for
our orientations in the sense that we require all generalised tight cuts with
an almost trivial, with respect to ω, shore to be oriented away from said
shore.

Rω := {X ∈ Tk(G) | |X| ≤ ω +mp(∂B(X)− 1)} .
To make sure Rω is well defined as a partial orientation of Tk(B), we
require our bipartite matching covered graph B to have at least 2ω + 2k

vertices.

Definition 6.1.13 (ω-Blockage). Let ω, k ∈ N be two positive integers,
and let B be a matching covered bipartite graph with |V (B)| ≥ 2ω + 2k.
An ω-blockage of order k is an orientation B of Tk(B) such that

i) B extends Rω,
ii) B is consistent, and
iii) if X,Y ∈ B such that X and Y are aligned, and X ⊆ Y , then
|X ∩ Y | ≥ ω + 2.
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A 1-blockage of order k is called a blockage of order k. The blockage
number of a bipartite matching covered graph B, denoted by block(B), is
the largest integer k such that B has a blockage of order k.

Our goal is to show a duality between the existence of an ordered Tk(B)-
path of accuracy ω and that of an ω-blockage of order k. For this we
need one additional definition to bridge between Tk(B)-paths that respect
certain partial orientations of Tk(B) and ω-blockages.
Let P be a partial orientation of Tk(B) and ω ∈ N a positive integer.
We say that a Tk(B)-path (P, α) with P = (t0, t1, . . . , tp+1) is (ω,P)-
admissible if

i) (P, α) is ordered,
ii) int-acc(P, α) ≤ ω,
iii) X0 ∈ P ∪Rω, and
iv) Xp ∈ P ∪Rω.

Note that an (ω,Rω)-admissible Tk(B)-path (P, α) must be of accuracy
at most ω.

Theorem 6.1.14 (X∗, see Theorem 12, [Erd20]). Let k, ω ∈ N be positive
integers, and B be a matching covered bipartite graph on at least 2ω+2k

vertices. Then exactly one of the following holds:
i) either B has an ordered Tk(B)-path of accuracy ω, or
ii) there exists an ω-blockage of Tk(B).

Proof. As in the proof of Theorem 12 from [Erd20] we prove a slightly
stronger statement. We show that for every consistent partial orientation
P of Tk(B) which extends Rω exactly one of the following holds:

• either there exists an (ω,P)-admissible Tk(B)-path, or
• there is an ω-blockage of Tk(B) which extends P.

Since an (ω,Rω)-admissible Tk(B)-path (P, α) must be of accuracy at
most ω the statement of the theorem follows from our new claim.
We start out by showing that both statements cannot be true at the
same time. Towards a contradiction let us assume that there exists an
(ω,P)-admissible Tk(B)-path (P, α) with P = (t0, t1, . . . , tp+1), and an ω-
blockage B extending P. As B extends P and (P, α) is (ω,P)-admissible,
we have X0, Xp ∈ P ∪ Rω ⊆ B. Let i ∈ [1, p] be chosen maximal with
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the property Xi ∈ B, then we must have i ≤ p − 1 as Xp /∈ B. Hence
Xi+1 ∈ B and since Xi ⊆ Xi+1 we must have

|Xi+1 \Xi| = |Xi ∩Xi+1| = |Xi ∩Xi+1| ≥ ω + 2.

This however means int-acc(P, α) ≥ ω + 1, contradicting our assumption
that (P, α) is (ω,P)-admissible.
We prove the claim by induction on |Tk(B,P)|. So first let us assume
|Tk(B,P)| = 0. In this case P is a consistent orientation of Tk(B) and thus
if it is an ω-blockage of Tk(B) we are done. Consequently we may assume
P to not be an ω-blockage. Since Rω ⊆ R there must exist X,Y ∈ P

with X and Y being aligned, X ⊆ Y , and |Y \X| = |X ∩ Y | ≤ ω+1. Let
P = (t0, t1, t2), α(t0t1) := X, and α(t1t2) := Y , then (P, α) is indeed an
(ω,P)-admissible path and we are done.
Therefore we may assume |Tk(B,P)| ≥ 1. Let us also assume that there
is no ω-blockage B of Tk(B) that extends P. Now there must exist
some A ∈ Tk(B) such that neither A ∈ P nor A ∈ P. Let us choose
C1, C2 ∈ Tk(B,P) such that A,C1, and C2 are pairwise aligned, C1 ⊆ A

is minimal, and C2 ⊇ A is maximal.
Let P1 := P ∪ {C1}, and P2 := P ∪

{︁
C2

}︁
, then Pi must be a consistent

partial orientation of Tk(B) for both i ∈ [1, 2]. Indeed, by the minimality
of C1 we know that any D ∈ Tk(B) which is aligned with C1 and satisfies
D ⊂ C1 must either belong to P, or D belongs to P. Since C1 ∈ Tk(B,P)

and C1 ⊂ D, the consistency of P implies D /∈ P and thus D ∈ P. Hence
P1 is consistent. With an analogous argument one can deduce D ∈ P

for all D ∈ Tk(B) which are aligned with C2 and satisfy C2 ⊂ D. With
this also the consistency of P2 is assured. So we may apply our induction
hypothesis to both P1 and P2 as |Tk(B,Pi)| = |Tk(B,P)| − 1 for both
i ∈ [1, 2].
Every ω-blockage of Tk(B) that extends Pi for some i ∈ [1, 2] also extends
P and thus we may assume that there is an (ω,Pi)-admissible Tk(B)-path
(Pi, αi) for each i ∈ [1, 2]. If any of these also is (ω,P)-admissible we are
done immediately, so suppose neither of them is. The only way this is
possible however is if C1 is the initial set of (P1, α1), and C2 is the terminal
set of (P2, α2). The only other option would be that C1 is the terminal
set of (P1, α1) which, by the (ω,P1)-admissibility of (P1, α), would imply
C1 ∈ P1∪Rω contradicting the definition of partial orientations. A similar
argument can be made for C2. Let Z ∈ T (B) be chosen to be aligned
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with C1 and C2 such that C1 ⊆ Z ⊆ C2, and mp(∂B(Z)) = sep(C1, C2).
Then Z is up-linked to C1 and down-linked to C2.
Let (P ′

1, α
′
1) be the up-shift of (P1, α1) onto Z at C1, and (P ′

2, α
′
2) be the

down-shift of (P2, α2) onto Z at C2. Consequently, Z is the initial set of
(P ′

1, α
′
1) and the terminal set of (P ′

2, α
′
2). Let P ′

i = (ti0, t
i
1, . . . , t

i
pi+1) for

both i. We create a new path

P̂ := (t20, t
2
1, . . . , t

2
p2 = t10, t

2
p2+1 = t11, t

1
2, . . . , t

1
p1+1),

and for each e ∈ E(P̂ ) we set

α̂(e) :=

{︄
α2(e), if e ∈ E(P2), or
α1(e), otherwise.

Note that by this construction we have E(P1) ∩ E(P2) ∩ E(P̂ ) =

(t2p2 t
2
p2+1) =

{︁
t10t

1
1

}︁
, α1(t

1
0t

1
1) = Z = α2(t

2
p2 t

2
p2+1), and α̂(t2p2 t

2
p2+1) = Z

as well.
We claim that (P̂ , α̂) is an (ω,P)-admissible Tk(B)-path. Each (Pi, αi) is
an ordered Tk(B)-path and since Z is up-linked to C1 and down-linked to
C2, so is (P̂ , α̂) by Lemma 6.1.9. For each i ∈ [1, 2] and j ∈ [0, pi] let us
identify by Xi

j the set αi(t
i
jt

i
j+1). Since each (Pi, αi) is (ω,Pi)-admissible

we have |Xi
j+1 \Xi

j | ≤ ω + 1 for every i ∈ [1, 2] and j ∈ [0, pi − 1]. Hence
by Lemma 6.1.10 we obtain int-acc(P̂ , α̂) ≤ ω.
So we are left with checking the initial set X̂0 := X2

0 ∩Z and the terminal
set X̂ p̂ := X1

p1 ∪ Z of (P̂ , α̂). Note that X2
0 ∈ P ∪ Rω since (P2, α2) is

(ω,P2)-admissible. Then, as X2
0 ∩ Z ⊆ X2

0 we must also have X̂0 ∈ P.
Similarly we have X1

p1 ∈ P and with X1
p1 ⊆ X1

p1 ∪ Z it follows that

X̂ p̂ ⊆ X1
p1 which implies X̂ p̂ ∈ P by the consistency of P.

By setting ω := 1 we can combine Theorem 6.1.14 and Lemma 6.1.5 to
obtain the following duality theorem on ordered linear perfect matching
width.

Theorem 6.1.15 (X∗). Let k ∈ N be a positive integer, and B be a
bipartite matching covered graph with at least 2k + 2 vertices. Then
olpmw(B) ≤ k if and only if B has no blockage of order k.
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6.2. Generalised Tight Cuts and Directed Separations

6.2. Generalised Tight Cuts and Directed Separations

While some of the analogues are not necessarily straight forward to find,
in general our definition of ω-blockages and the proofs towards Theo-
rems 6.1.14 and 6.1.15 come from Erde’s investigation of directed path-
width. His ω-diblockages however are orientations of directed separations
in digraphs rather than generalised tight cuts. By using lemmata 3.2.11
and 3.2.13 we are able switch back and forth between these two concepts,
so an interesting question to ask would be:
Is there a direct way to obtain Theorem 6.1.15 from the findings of Erde
[Erd20]?

Diblockages Indeed, if there is a way this would also immediately give
a link between olpmw(B) and the directed pathwidth of an M -direction
of B. Let us first introduce some of the notation of Erde for the setting
of digraphs.
Let D be a digraph and (A,B), (E,F ) be two directed separations in D.
We write (A,B) ≤ (E,F ) if A ⊆ E and B ⊇ F . Note that the symbol
‘≤’ encodes a more restricted version of two directed separations being
laminar. Let us denote by S⃗(D) the set of all directed separations in D,
and for k ∈ N let S⃗k(D) be the set of all directed separations1 in D that
are of order at most k.
While for generalised tight cuts we were able to only consider one of
the two shores and therefore identify the generalised tight cut and its
small or big side by a single set, the same is no longer true for directed
separations in digraphs. Several different notations have been proposed
to handle the problem of orienting a directed separation, which is already
implicitly oriented by the direction the edges are allowed to bypass the
separator. For our purposes it suffices to stick to Erde’s notation. That is,
an orientation of some set S ⊆ S⃗(D) will be defined as a bipartitioned set
O = O+ ∪O− where the membership of S ∈ S to O+ or O− determines
which of the two entries is considered to be the ‘large’ side of S.

1Actually, Erde defined S⃗k(D) to be the set of directed separations of order at most
k − 1 to be more in line with the definition of directed pathwidth where 1 is
subtracted from copsw,iv(D). However, our definition works better in the context
of this thesis.
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Definition 6.2.1 (Orientation of Directed Separations). Let D be a
digraph and k ∈ N. A partial orientation of S⃗k(D) is a pair P = (P+,P−)

of disjoint subsets of S⃗k(D).
A partial orientation O = (O+,O−) is an orientation of S⃗k(D) if O+ ∪
O− = S⃗k(D).
We say that a partial orientation P = (P+,P−) of S⃗k(D) is consistent if
it satisfies the following two requirements:

i) if (A,B) ∈ P+ and (A,B) ≥ (E,F ) ∈ S⃗k(D), then (E,F ) ∈ P+,
and

ii) if (A,B) ∈ P− and (A,B) ≤ (E,F ) ∈ S⃗k(D), then (E,F ) ∈ P−.

As a first step let us prove that the notions of partial orientations, orien-
tations, and consistency are preserved by taking the split of a digraph D

and taking the M -direction of a bipartite graph B.

Lemma 6.2.2 (X∗). Let k ∈ N be a positive integer, B be a matching
covered bipartite graph with a perfect matching M , and let D := D(B,M).
Then
{X ∈ Tk(B) | Maj(X) ⊆ V1} =

{︂
D(E,F,M) | (E,F ) ∈ S⃗k(D)

}︂
, and

S⃗k(D) = {S(X) | X ∈ Tk(B) and Maj(X) ⊆ V1} .

Proof. Let (E,F ) be a directed separation of order at most k in D.
Then, by Lemma 3.2.11 X := S(E,F ) is a generalised tight cut
with mp(∂B(X)) = |E ∩ F | ≤ k and Maj(X) ⊆ V1. Hence X ∈
{X ∈ Tk(B) | Maj(X) ⊆ V1}. On the other hand let X ∈ Tk(B) such
that Maj(X) ⊆ V1, then (E,F ) := D(X,M) is a directed separation of
order mp(∂B(X)) by Lemma 3.2.13.

Lemma 6.2.3 (X∗). Let k ∈ N be a positive integer, B be a matching
covered bipartite graph with a perfect matching M , and let D := D(B,M).
Moreover, let P1 ⊆ Tk(B) and P2 = (P+

2 ,P
−
2 ) where P+

2 and P−
2 are

disjoint subsets of S⃗k(D). At last let
P′

1 := (P′+
1 ,P′−

1 ) where

P′+
1 := {D(X,M) | X ∈ P1 and Maj(X) ⊆ V1} ,

P′−
1 :=

{︁
D(X,M) | X ∈ P1 and Maj(X) ⊆ V2

}︁
, and

P′
2 :=

{︂
S(E,F ),S(G,H) | (E,F ) ∈ P+

2 and (G,H) ∈ P−
2

}︂
.
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Then the following statements are true:
i) P1 is a partial orientation of Tk(B) if and only if P′

1 is a partial
orientation of S⃗k(D).

ii) P1 is an orientation of Tk(B) if and only if P′
1 is an orientation of

S⃗k(D).
iii) P1 is a consistent partial orientation of Tk(B) if and only if P′

1 is a
consistent partial orientation of S⃗k(D).

iv) P2 is a partial orientation of S⃗k(D) if and only if P′
2 is a partial

orientation of Tk(B).
v) P2 is an orientation of S⃗k(D) if and only if P′

2 is an orientation of
Tk(B).

vi) P2 is a consistent partial orientation of S⃗k(D) if and only if P′
2 is a

consistent partial orientation of Tk(B).

Proof. We only show the first three equivalences, the last three, so (iv) to
(vi), follow along similar arguments by applying Lemma 6.2.2.
Towards (i) let us first assume P1 to be a partial orientation of Tk(B). Note
that P′+

1 ∪P′−
1 ⊆ S⃗k(D) follows from Lemma 6.2.2. Suppose there exists

some (X,Y ) ∈ P′+
1 ∩P′−

1 . Then we must have Maj(S(X,Y )) ⊆ V1 and
thus S(X,Y ) ∈ P1, but also Maj(S(X,Y )) ⊆ V2 and thus S(X,Y ) ∈ P1.
This however contradicts our assumption that P1 is a partial orientation
of Tk(B).
For the reverse we assume P′

1 to be a partial orientation of S⃗k(D). Again
by Lemma 6.2.2 we know that P1 ⊆ Tk(B). Suppose there exists X ∈
Tk(B) with X,X ∈ P1. Without loss of generality we may assume
Maj(X) ⊆ V1 and then D(X,M) ∈ P′+

1 . As Maj(X) ⊆ V2 we must
have D(X,M) = D(X,M) ∈ P−

1 which again contradicts our assumption.
Thus P1 must be a partial orientation of Tk(B).
The equivalence (ii) follows immediately from (i) and Lemma 6.2.2.
Towards (iii) we know by (i) that both P1 and P′

1 are partial orientation
of their respective sets of separations. Hence all we need to show is
the consistency. Let us first assume P1 to be consistent. Consider
(E,F ) ∈ P′+

1 and (G,H) ∈ S⃗k(D) and let us assume (E,F ) ≥ (G,H). In
this case we have G ⊆ E and thus S(G,H) ⊆ S(E,F ). As S(E,F ) ∈ P1

and P1 is consistent we must have S(G,H) ∈ P1 as well. Consequently
we find (G,H) ∈ P′+

1 . So now consider (E,F ) ∈ P′−
1 and (E,F ) ≤
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(G,H) ∈ S⃗k(D). Then E ⊆ G implying S(E,F ) ⊆ S(G,H) and therefore
S(E,F ) ⊇ S(G,H). As S(E,F ) ∈ P1 we must, by consistency, also have
S(G,H) ∈ P1 and thus (G,H) ∈ P′−

1 . Therefore P′
1 is consistent.

For the reverse let us now assume P′
1 to be consistent and let X,Y ∈ Tk(B)

be aligned with X ⊆ Y and Y ∈ P1. Suppose Maj(Y ) ⊆ V1, then
D(X,M) ≤ D(Y,M) and D(Y,M) ∈ P′+

1 . As P′
1 is consistent this

means D(X,M) ∈ P′
1 as well. So we may assume Maj(Y ) ⊆ V1 which

means D(Y ,M) ∈ P′−
1 . Moreover, as Y ⊆ X we also have D(Y ,M) ≤

D(X,M) and therefore D(X,M) ∈ P′−
1 . Hence X ∈ P1 and thus P1 is

consistent.

Our condition for ω-blockages of Tk(B) requires the intersection of two
large sides to still be somewhat big. But in the original definition regarding
Theorem 2.2.21 instead of the large sides, the interaction of the small sides
mattered. Next we are interested in how exactly these two conditions
relate for the case of two separations that meet the requirements of
blockages. To fully illustrate these requirements, let us first introduce ω-
diblockages. Similar to the matching setting we require a certain minimal
set of orientations. More precisely, if one of the two parts in a directed
separation is too small we want this side to be the small side in every
orientation. Let ω, k ∈ N be two positive integers with ω ≥ k. We define
Rω = (R+

ω ,R
−
ω ) by

R+
ω :=

{︂
(E,F ) ∈ S⃗k(D) | |E| ≤ ω

}︂
R−

ω :=
{︂
(E,F ) ∈ S⃗k(D) | |F | ≤ ω

}︂
.

Similar to before, we need to require our digraph D to have a minimum
number of vertices, this time at least 2ω − k + 2, to ensure R+

ω ∩R−
ω = ∅.

As before, an orientation O = (O+,O−) of S⃗k(D) extends a partial
orientation P = (P+,P−) of S⃗k(D) if P+ ⊆ O+ and P− ⊆ O−.

Definition 6.2.4 (ω-Diblockage). Let ω, k ∈ N be two positive integers
satisfying ω ≥ k, and D be a digraph with at least 2ω − k + 2 vertices.
An ω-diblockage of S⃗k(D) is an orientation O = (O+,O−) of S⃗k(D) such
that

i) O extends Rω,
ii) O is consistent, and
iii) if (E,F ) ∈ O+ and (E,F ) ≤ (G,H) ∈ O−, then |F ∩G| ≥ ω + 1.
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In case ω = k, we call O a diblockage of order k. We denote by block(D)

the largest integer k such that D has a diblockage of order k.

So next let us imagine that instead of the large sides we are interested in
the interaction of the small sides. For this let P = (P+,P−) be a partial
orientation of S⃗k(D) and let (E,F ) ∈ P+ ∪P−. We denote the small side
of (E,F ) as

small(E,F ) :=

{︄
E, (E,F ) ∈ P+

F, (E,F ) ∈ P− ,

while the large side of (E,F ) is denoted by

large(E,F ) :=

{︄
E, (E,F ) ∈ P−

F, (E,F ) ∈ P+ .

Definition 6.2.5 (Diclogging). Let k ∈ N be a positive integer and D

be a digraph. An orientation O = (O+,O−) of S⃗k(D) is a diclogging of
order k if for all laminar separations (E,F ), (G,H) ∈ O+ ∪O− we have
small(E,F ) ∪ small(G,H) ̸= V (D). We denote by clogg(D) the largest
integer k such that D has a diclogging of order k.

Lemma 6.2.6 (X∗). Let k ∈ N be a positive integer, D be a digraph,
and O = (O+,O−) be a diclogging of order k. Then O extends Rk and is
consistent.

Proof. For the consistency let (E,F ) ∈ O+, and (E,F ) ≥ (G,H) ∈ S⃗k(D).
Suppose (G,H) ∈ O−. By definition of ‘≤’ we have G ⊆ E and F ⊆ H

and thus E∪H = V (D) contradicting our definition of order k dicloggings.
Hence we must have (G,H) ∈ O+.
Similarly let (E,F ) ∈ O− and (E,F ) ≤ (G,H) ∈ S⃗k(D), and suppose
(G,H) ∈ O+. By definition we have E ⊆ G and H ⊆ F and thus
F ∪G = V (D). Consequently we must have (G,H) ∈ O−.
So O is indeed consistent. What is left is to show that it also extends Rk.
Let (E,F ) ∈ R+

k and suppose (E,F ) ∈ O−. As by definition we must have
|E| ≤ k, (E, V (D)) ∈ S⃗k(D). Moreover, F ≤ V (D) and thus (E, V (D)) ≤
(E,F ). Note that (E, V (D)) ∈ O− is impossible as (E, V (D)) ≤ (E, V (D))

and small((E, V (D))) = V (D). Hence we must have (E, V (D)) ∈ O+

which in turn means small(E, V (D)) ∪ small(E,F ) = E ∪ F = V (D).
Consequently (E,F ) ∈ O− is impossible and we must have R+

k ⊆ O+.
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With similar arguments one can see R−
k ⊆ O− and thus O indeed extends

Rk.

Next let us relate the existence of a diblockage and the existence of a
diclogging of D.

Lemma 6.2.7 (X∗). Let k ∈ N be a positive integer, D be a digraph,
and B = (B+,B−) be a diblockage of order k. Then O = (B+ ∩
S⃗⌊ k2 ⌋(D),B− ∩ S⃗⌊ k2 ⌋(D)) is a diclogging of order

⌊︁
k
2

⌋︁
.

Proof. Let (E,F ), (G,H) ∈ S⃗⌊ k2 ⌋(D) be two directed separations with
(E,F ) ≤ (G,H). We have to show that small(E,F )∪small(G,H) ̸= V (D).
To do this, we consider the possible cases in which direction (E,F ) and
(G,H) can be oriented.
First assume (G,H) ∈ B+, then, by consistency of B, we must also
have (E,F ) ∈ B+. So small(E,F ) ∪ small(G,H) = E ∪ G = G. Note
that in case G = V (D) we would necessarily have |H| ≤ k and thus
(G,H) ∈ R−

k ⊆ B−. Hence G ̸= V (D).
A similar argument can be made if (E,F ) ∈ B− and thus we may assume
(E,F ) ∈ B+ and (G,H) ∈ B−. Hence we must have |F ∩G| ≥ k+1 since
B is a diblockage of order k. If the small sides, E and H, were to cover
the whole digraph we would have (F \E)∩ (G \H) = ∅. For this however
consider

|(F \ E) ∩ (G \H)| ≥ |F ∩G| − |E ∩ F | − |G ∩H|

≥ k + 1−
⌊︃
k

2

⌋︃
−
⌊︃
k

2

⌋︃
≥ k + 1− k

≥ 1.

Therefore O is in fact a diclogging of order
⌊︁
k
2

⌋︁
.

Lemma 6.2.8 (X∗). Let k ∈ N be a positive integer, D be a digraph,
and O = (O+,O−) be a diclogging of order k. Then O is a diblockage of
order k.

Proof. Let (E,F ), (G,H) ∈ S⃗k(D) be chosen such that (E,F ) ∈ O+,
(G,H) ∈ O−, and (E,F ) ≤ (G,H). Suppose |F ∩ G| ≤ k. Then, since
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E ⊆ G and H ⊆ F we have E ∩ F ⊆ F ∩G and we have G ∩H ⊆ F ∩G.
Hence (G,F ) ∈ S⃗k(D). Moreover (E,F ) ≤ (G,F ) ≤ (G,H) and (G,F ) ∈
O+ ∪O−. Suppose G = small(G,F ), then G ∪H = V (D) contradicting
O to be a diclogging since H = small(G,H). Hence we may assume
small(G,F ) = F , but with small(E,F ) = E we have E ∪ F = V (D) for
two small sides. Thus both orientations of (G,F ) are impossible and
therefore |F ∩G| ≥ k + 1. Hence O is indeed a diblockage of order k by
Lemma 6.2.6.

Corollary 6.2.9 (X∗). Let D be a digraph. Then clogg(D) ≤ block(D) ≤
2 clogg(D).

Blockages The previous paragraph introduced the directed analogue
of blockages together with a variant that considers the small sides rather
than the large sides of the separation. In a second step we establish
a similar link between small and large sides for the matching setting.
However, we need to translate the idea of ‘two small sides spanning the
whole graph’ into the setting of perfect matchings. Here, since we deal
with edges cuts instead of separations and, in some way, with matching
edges instead of vertices, instead of covering the whole graph with a set
of vertices it might be more natural to ask for the edges of any perfect
matching to have at least one endpoint in one of the small sides. This
translates into the following definition.
Let G be a graph with a perfect matching M , and let X ⊆ V (G). We
denote by MG(X) the set M ∩ E(G[X]).

Definition 6.2.10 (Clogging). Let k ∈ N be a positive integer and B

be a matching covered bipartite graph. An orientation O of Tk(B) is a
clogging of order k if for all sets X,Y ∈ O with ∂B(X) and ∂B(Y ) being
laminar, and all perfect matchings M ∈M(B) we have

((∂B(X) ∪ ∂B(Y )) ∩M) ∪MB(X ∪ Y ) ̸= M.

We denote by clogg(B) the largest integer k such that B has a clogging
of order k.

Similar to the undirected case we first have to show that any clogging of
order k is consistent and extends Rk, then, in a second step, we show how
to translate between a clogging of B and a diclogging of an M -direction
of B.
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Lemma 6.2.11 (X∗). Let k ∈ N be a positive integer, B a matching
covered bipartite graph, and O a clogging of order k. Then O extends Rk

and is consistent.

Proof. For the consistency let X ∈ O and Y ∈ Tk(B) such that X and
Y are aligned and Y ⊆ X. Suppose Y ∈ O. Since Y ⊆ X we have
X ∪ Y = V (B) and thus MB(X ∪ Y ) = M for all perfect matchings M of
B. As this clearly contradicts the definition of a clogging we must have
Y ∈ O and thus O is consistent.
Next let X ∈ Tk(B) such that |X| ≤ mp(∂B(X)) and suppose X ∈ O.
There must exist a perfect matching M with an edge e ∈M such that e ⊆
X since otherwise we would have an immediate contradiction. Consider
Y := X ∩V1. Since |X| ≤ mp(∂B(X)) ≤ k we have |Y | = mp(∂B(Y )) ≤ k

and Y ∈ Tk(B). Suppose Y ∈ O, then (M ′∩∂B(Y ))∪M ′
B(Y ) = M ′ for all

M ′ ∈M(B). Hence we may assume Y ∈ O. However, E(B[X]) ⊆ ∂B(Y )

and thus (M ′∩ (∂B(Y )∪∂B(X)))∪M ′
B(X ∪Y ) = M ′ for all M ′ ∈M(B).

So O must extend Rk.

Proposition 6.2.12 (X∗). Let B be a matching covered bipartite graph.
Then clogg(B) ≤ block(B) ≤ 2 clogg(B).

Proof. We start by showing that every blockage contains a clogging of at
least half its order. Let k := block(B), let B be a blockage of order k for
B, and let X,Y ∈ T⌊ k2 ⌋(B) such that X and Y are aligned and X ⊆ Y .
We discuss all possible orientations of X and Y .
First assume Y ∈ B. By Lemma 6.2.11 B is consistent and thus this
means X ∈ B as well. Then (M ∩(∂B(X))∪∂B(Y ))∪MB(X∪Y ) = (M ∩
∂B(Y ))∪MB(Y ) for all M ∈M(B). Suppose (M ′∩∂B(Y ))∪M ′

B(Y ) = M ′

for some M ′ ∈ M(B), then |Y | ≤
⌊︁
k
2

⌋︁
. Moreover, by Lemma 3.1.58

there must exist i ∈ [1, 2] such that Y ⊆ Vi. Hence |Y | ≤ mp(∂B(Y ))

and as B is consistent by Lemma 6.2.11 we must have Y ∈ B. Hence
M ′ ∩ ∂B(Y ) ∪M ′

B(Y ) ̸= M ′ for all M ′ ∈M(B).
Next assume X ∈ B. Since X ⊆ Y we have Y ⊆ X and because X and Y

are aligned, so are Y and X. Hence this case is analogue to the previous
one and thus we may close it.
Therefore we may assume X,Y ∈ B and thus |X ∩ Y | ≥ 3 as B is
a blockage. Now suppose there is some M ∈ M(G) such that (M ∩
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(∂B(X)∪ ∂B(Y )))∪MB(X ∪ Y ) = M . Without loss of generality we may
assume Maj(X) ⊆ V1. Now we consider two cases, namely X ∩Y ∩V2 = ∅
and X ∩ Y ∩ V2 ̸= ∅.
First assume X ∩ Y ∩ V2 = ∅ and let a ∈ X ∩ Y be any vertex. By
Lemma 3.1.58 for every vertex in X∩Y there must be an edge in ∂B(Y )∩M
that matches it and thus |X ∩ Y | ≤

⌊︁
k
2

⌋︁
. Let X ∩ Y = {a1, . . . , aℓ}, and

consider Zi := Y \ {ai+1, . . . , aℓ} for all i ∈ [1, ℓ− 1]. Then X ⊂ Zi ⊂ Y ,
and Zi is aligned with X and Y . Moreover, mp(∂B(Zi)) ≤ mp(∂B(X)) +

mp(∂B(Y ))− 1 and NB(Zi ∩V2) = NB(X ∩V2) ⊆ Zi and thus Zi ∈ Tk(B)

for all i ∈ [1, ℓ− 1]. We show by induction on ℓ− i that Zi ∈ B. Suppose
Zℓ−1 ∈ B, then |Zℓ−1 ∩ Y | = | {aℓ} | = 1 < 3 which contradicts the fact
that B is a blockage. Hence Zℓ−1 ∈ B. Let i ∈ [1, ℓ− 2], then Zi+1 ∈ B

by induction, and |Zi ∩ Zi+1| = | {ai+1} | = 1 < 3, hence Zi ∈ B. In
particular this means Z1 ∈ B. Now consider |X ∩ Z1| = | {a1} | = 1 < 3.
With this we must have X ∈ B which contradicts our assumption. Hence
(M ∩ (∂B(X) ∪ ∂B(Y ))) ∪MB(C ∪ Y ) ̸= M for all M ∈M(G).
So next assume X ∩ Y ∩ V2 ̸= ∅. As before we know that every vertex
of X ∩ V2 must be matched by an edge of M ∩ (∂B(X) ∪ ∂B(Y )), thus
|X ∩Y | ≤ k. Let X ∩Y ∩V1 = {a1, . . . , ap}, X ∩Y ∩V2 = {ap+1, . . . , aq},
and for every i ∈ [1, q − 1] let Zi := Y \ {ai+1, . . . , aq}. Note that
Zi ∈ Tk(B) for every i ∈ [1, q − 1] as before. Suppose Zp−1 ∈ B, then
we are in the situation of the previous case with the sets X and Zp−1

and reach a contradiction. So we may assume Zp−1 ∈ B. Next we show
that Zj ∈ B for all j ∈ [p, q − 1] by induction on q − j. This is done as
before: in case Zq−1 ∈ B we would have |Zq−1 ∩ Y | = | {aq} | = 1 < 3

and thus Zq−1 ∈ B. So we may assume j ∈ [p, q− 2] and Zj+1 ∈ B and a
similar argument shows that Zj ∈ B as well. Finally this means Zp−1 ∈ B

and Zp ∈ B. But |Zp−1 ∩ Zp| = | {ap} | = 1 < 3 which contradicts the
assumption that B is a blockage of order k. Consequently we again have
M ∩ (∂B(X) ∪ ∂B(Y )) ∪MB(X ∪ Y ) ̸= M for all M ∈ M(G) and with
that we may close the case.
For the other inequality let us assume O is a clogging of order k for B.
By Lemma 6.2.11 O is consistent and extends Rk. Let X,Y ∈ O be
chosen such that X and Y are aligned, and X ⊆ Y . We need to show that
|X ∩ Y | ≥ 3. Suppose |X ∩ Y | ≤ 2. Since O is a clogging we know that
MB(X ∩ Y ) ̸= ∅ for any perfect matching M of B and by our previous
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assumption there exists a unique edge ab ∈M such that X ∩ Y = {a, b}.
Let us assume without loss of generality that Maj(X) ⊆ V1 and b ∈ V2.
Since B is matching covered, b must have another neighbour besides a,
let c be such a neighbour of b. Then c /∈ X since Maj(Y ) ⊆ V1 and
thus, by Lemma 3.1.58, every neighbour of b must be in Y . Moreover,
Y ∩ X = {a, b}. Let M ′ be a perfect matching of B with bc ∈ M ′.
There must exist some vertex d in B such that ad ∈M ′ and d /∈ X ∩ Y .
This however means (M ′ ∩ (∂B(X) ∪ ∂B(Y ))) ∪M ′

B(X ∪ Y ) = M ′ which
contradicts O being a clogging. Hence we must have |X ∩ Y | ≥ 3 and
thus O is a blockage.

Translating Cloggings and Dicloggings For the next step let us first
generalise our notions of splits and M -directions of directed separations
and generalised tight cuts to orientations. Let k ∈ N be a positive
integer, D a strongly connected digraph, B a matching covered bipartite
graph, O1 = (O+

1 ,O
−
1 ) an orientation of S⃗k(D), and O2 an orientation of

Tk(B). Let p ∈ [1, k] be an integer, we denote by O1|p the suborientation
(O+

1 ∩ S⃗p(D),O−
1 ∩ S⃗p(D)), and by O2|p the suborientation O2 ∩ Tp(B).

The split of O1 is an orientation of Tk(S(D)) defined as follows:

S(O1) :=
{︁
S(E,F ) | (E,F ) ∈ O+

1

}︁
∪
{︂
S(E,F ) | (E,F ) ∈ O−

1

}︂
.

The M -direction of O2 is an orientation of S⃗k(D(B,M)) defined as follows:
D(O2,M) := (D(O2,M)+,D(O2,M)−), where

D(O2,M)+ := {D(X,M) | X ∈ O2 and Maj(X) ⊆ V1} , and

D(O2,M)− :=
{︁
D(X,M) | X ∈ O2 and Maj(X) ⊆ V2

}︁
.

Note that S(D(O2,M)) = O2 and D(S(O1),M
′) = O1 where M ′ is the

perfect matching of S(D) for which D(S(D),M ′) = D. Towards the main
result of this section we prove that the M -direction of an order k clogging
is a diclogging of the same order in the M -direction of B. For this we first
need to show that the property of being laminar is preserved by these
operations.

Lemma 6.2.13 (X∗). Let k ∈ N be a positive integer, B a matching
covered bipartite graph with a perfect matching M , D := D(B,M), and
X,Y ∈ Tk(B) two aligned sets with Maj(X) ⊆ V1. Then D(X,M) and
D(Y,M) are laminar if and only if X and Y are, moreover D(X,M) ≤
D(Y,M) if and only if X ⊆ Y .
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6.2. Generalised Tight Cuts and Directed Separations

Proof. For each Z ∈ {X,Y } let (EZ , FZ) := D(Z,M).
Let us first assume X and Y are laminar. We show the claim via a case
distinction over which of the four sets X ∩ Y , X ∩ Y , X ∩ Y , and X ∩ Y

is empty.
Case X ∩ Y = ∅: This means (M ∩ (∂B(X)∪ ∂B(Y )))∪MB(X ∪ Y ) = ∅.
Since X and Y are aligned and their majority lies in V1, we immediately
obtain EX ∩ EY = ∅.
Case X ∩ Y = ∅: Then in particular (M ∩ ∂B(X ∩ Y ))∪MB(X ∪ Y ) = ∅
and thus EX ∩ FY ⊆ FX ∩ EY . This is due to the fact that every edge of
M in (EX ∩ FY )∩ (FX ∩EY ) is an edge with one endpoint in X ∩ Y and
the other one in X ∩Y . Consequently we have (EX ∩FY )\ (FX ∩EY ) = ∅
and thus are done.
Case X ∩ Y = ∅: By applying the arguments from the previous case we
get (FX ∩ EY ) \ (EX ∩ FY ) = ∅.
Case X ∩Y = ∅: This case is completely analogue to the case X ∩Y = ∅.
The reverse direction can be seen by analogue arguments along a similar
case distinction and thus we omit it here. In particular one can observe
that from X ⊆ Y it follows immediately that (M ∩ ∂B(X)) ∪MB(X) ⊆
(M∩∂B(Y ))∪MB(Y ) and (M∩∂B(Y ))∪MB(Y ) ⊆ (M∩∂B(X))∪MB(X),
and thus (EX , FX) ≤ (EY , FY ). Again the reverse direction can be seen
analogously.

Lemma 6.2.14 (X∗). Let k ∈ N be a positive integer, B a matching
covered bipartite graph with a perfect matching M , D := D(B,M), and
O a clogging of Tk(B). Then D(O,M) is a diclogging of S⃗k(D).

Proof. First note that {D(X,M) | X ∈ Tk(B) and Maj(X) ⊆ V1} =

S⃗k(D) by lemmata 3.2.11 and 3.2.13. Hence D(O,M) is indeed an orien-
tation of S⃗k(D) as we have seen in Lemma 6.2.3.
Now let (E,F ), (G,H) ∈ D(O,M)+ ∪ D(O,M)− be two laminar separa-
tions and note that S(E,F ) and S(G,H) must induce laminar cuts in
B by Lemma 6.2.13. We consider the possible cases of how these are
oriented.
Case (E,F ), (G,H) ∈ D(O,M)+: Then S(E,F ),S(G,H) ∈ O and thus
(M∩∂B(S(E,F )))∪MB(S(E,F ))∪(M∩∂B(S(G,H)))∪MB(S(G,H)) ̸=
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M and therefore there must be some e ∈ M such that e /∈ E ∩ G.
Consequently E ∩G ̸= V (D).
Case (E,F ) ∈ D(O,M)+, (G,H) ∈ D(O,M)−: Here we have
S(E,F ),S(G,H) ∈ O and thus (M ∩ ∂B(S(E,F ))) ∪ MB(S(E,F )) ∪
(M ∩ ∂B(S(G,H))) ∪MB(S(G,H)) ̸= M and therefore there must be
some e ∈M such that e /∈ E ∩H. Consequently E ∩H ̸= V (D).
Case (E,F ) ∈ D(O,M)−, (G,H) ∈ D(O,M)+: Then
S(E,F ),S(G,H) ∈ O and thus (M ∩ ∂B(S(E,F ))) ∪ MB(S(E,F )) ∪
(M ∩ ∂B(S(G,H))) ∪MB(S(G,H)) ̸= M and therefore there must be
some e ∈M such that e /∈ F ∩G. Consequently F ∩G ̸= V (D).
Case (E,F ), (G,H) ∈ D(O,M)−: Then S(E,F ),S(G,H) ∈ O and thus
(M∩∂B(S(E,F )))∪MB(S(E,F ))∪(M∩∂B(S(G,H)))∪MB(S(G,H)) ̸=
M and therefore there must be some e ∈ M such that e /∈ F ∩ H.
Consequently F ∩H ̸= V (D). And thus D(O,M) is indeed a diclogging
of S⃗k(D).

Reversing Lemma 6.2.14 sadly is not as straight forward. The problem
here is that from O being a diclogging of some M -direction D of B we
know that two small sides of laminar separations cannot cover all of D
and thus not all edges of M . However, there might still exist another
perfect matching M ′ of B for which this is not true. To make sure that
all perfect matchings of B are satisfied we have to pay a small constant
factor in our translation.

Lemma 6.2.15 (X∗). Let k ∈ N be a positive integer, B a matching
covered bipartite graph with a perfect matching M , D := D(B,M), and
O = (O+,O−) a diclogging of S⃗k(D). Then S(O|⌊ k2 ⌋) is a clogging of
T⌊ k2 ⌋(B).

Proof. Let X,Y ∈ S(O|⌊ k2 ⌋) be two sets such that ∂B(X) and ∂B(Y ) are
laminar. Without loss of generality let us assume Maj(X) ⊆ V1. Since O is
a diclogging of S⃗k(D) we know ((∂B(X)∪∂B(Y ))∩M)∪MB(X∪Y ) ̸= M .
Suppose there is M ′ ∈M(B) such that ((∂B(X)∪∂B(Y ))∩M ′)∪M ′

B(X∪
Y ) ∩M ′ = M ′. Then M ′

B(X ∩ Y ) = ∅, but since M has an edge in
B[X ∩ Y ] we know X ∩ Y ∩ Vi ̸= ∅ for both i ∈ [1, 2]. From this we
can deduce that neither X ⊆ Y nor Y ⊆ X since in both cases the
edge cut around the larger set would contain edges of M ′ incident with
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vertices of both colour classes in X ∩ Y which contradicts Lemma 3.1.58.
Hence either X ⊆ Y or X ⊆ Y . It suffices to only consider the second
case as the first one can be resolved analogously. Let X ∩ Y ∩ V1 =

{a1, . . . , ap}, and X ∩ Y ∩ V2 = {ap+1, . . . , aq}. For every i ∈ [1, q − 1]

let Zi := X ∪ {a1, . . . , ai} and note that Zi ∈ Tk(B) for all i ∈ Zi.
Moreover, Maj(Zi) ⊆ V1 for all i ∈ [1, p] and thus D(Zi,M) ∈ S⃗k(D).
Indeed, D(X,M) ≤ D(Zi,M) ≤ D(Zi+1,M) for all i ∈ [1, p − 1]. We
also set Z0 := X and Zq := Y . First assume Maj(Y ) ⊆ V1. Then also
Maj(Zi) ⊆ V1 for all i ∈ [p, q − 1] and thus D(Zi,M) ∈ S⃗k(D), and
D(X,M) ≤ D(Zi,M) ≤ D(Zi+1,M) for all i ∈ [p, q − 2]. Let i ∈ [0, q] be
the largest integer such that Zi ∈ S(O), and let j := i+ 1 which implies
Zj ∈ S(O). Since X = Z0, Y = Zq ∈ S(O), i and j are well defined. Then
we have |Zi ∩ Zj | = | {aj} | = 1 and, moreover, for every perfect matching
M ′′ ∈ M(B) we have (M ′′ ∩ (∂B(Zi) ∪ ∂B(Zj))) ∪M ′′

B(Zi ∪ Zj) = M ′′.
This means D(Zi,M) ≤ D(Zj ,M), D(Zi,M) ∈ O−, D(Zj ,M) ∈ O+,
and small(D(Zi,M)) ∪ small(D(Zj ,M)) = M = V (D). As this is a
contradiction to O being an order k diclogging we may close this case.
Next assume Maj(Y ) ⊆ V2. Suppose there exists some a ∈ X ∩ Y ∩ V1.
Then a cannot have a neighbour in X and also it cannot have a neighbour
in Y by Lemma 3.1.58. Hence a perfect matching such as M ′ cannot exist.
So we may assume X ∩ Y ∩ V1 = ∅. Consequently, M ′′

B(X ∩ Y ) = ∅ for all
M ′′ ∈M(B) including M . As this contradicts our assumption above this
case cannot occur and we are done.

In total we obtain the following two corollaries.

Corollary 6.2.16 (X∗). Let B be a bipartite matching covered graph with
a perfect matching M . Then clogg(B) ≤ clogg(D(B,M)) ≤ 2 clogg(B).

Corollary 6.2.17 (X∗). Let B be a bipartite matching covered graph with
a perfect matching M . Then 1

2
block(B) ≤ block(D(B,M)) ≤ 2 block(B).

Please note that the bounds in Corollary 6.2.17 are probably not tight.
When inspecting ordered linear perfect matching decompositions more
closely one can observe that these can be translated into a directed path
decomposition of almost the same width immediately. Similarly, any
directed path decomposition can be transformed into an ordered linear
perfect matching decomposition of almost the same width. Indeed, with
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‘almost the same width’ we mean that these two parameters only differ by
a small additive constant.

6.3. Tangles and a Unified Width Measure

In the previous sections we were almost exclusively concerned with ori-
entations of directed separations and generalised tight cuts that form
dual notions to ‘linear’ width parameters. However, in light of the bigger
picture, it would be nice to have a matching theoretic analogue of The-
orem 2.2.21 that allows us to decompose a bipartite matching covered
graph in a tree like fashion while identifying and possibly distinguishing
the different areas of ‘high connectivity’. To do this, we take a slightly
different approach.
First we introduce our notion of tangles for bipartite matching covered
graphs. Then we compare it with the notion of directed tangles from
[GKK+20] and show that similar methods as in the case of cloggings can
be used to create a tangle from a directed tangle and vice versa. In a third
step we apply some of the results of [GKK+20] to immediately deduce a
duality result and obtain the aforementioned decomposition.

Matching Tangles We start with a definition of tangles appropriate
for the setting of bipartite matching covered graphs.

Definition 6.3.1 (Tangle). Let k ∈ N be a positive integer and B be a
matching covered bipartite graph. An orientation O of Tk(B) is a tangle
of order k if for all sets X,Y, Z ∈ O, and all perfect matchings M ∈M(B)

we have
((∂B(X) ∪ ∂B(Y ) ∪ ∂B(Z)) ∩M) ∪MB(X ∪ Y ∪ Z) ̸= M.

We denote by tangle(B) the largest integer k such that B has a tangle of
order k.

We denote by Tangles(B) the family of all tangles of B. Let k ∈ N

be a positive integer and T ⊆ Tangles(B). We denote by T|k the set
{T|k | T ∈ T}, where T|k := {X ∈ T | mp(∂B(X)) ≤ k}.

Definition 6.3.2 (Distinguishing Tangles). Let B be a matching covered
graph and T,T′ ∈ Tangles(B).
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A set X ∈ Ttangle(B)(B) distinguishes T and T′ if X ∈ T\T′ or X ∈ T′ \T.
We say that T and T′ are indistinguishable if T ⊆ T′ or T′ ⊆ T. Otherwise
they are distinguishable. We say that X is a (T,T′)-distinguisher if it
distinguishes T and T′, and the order of a (T,T′)-distinguisher X is
mp(∂B(X)).
We say that T and T′ are h-distinguishable, for some h ∈ N, if there is
a set X ∈ Th(B) that distinguishes T and T′. Moreover, T and T′ are
h-indistinguishable if no set in Th(B) distinguishes T and T′.

Let T ⊆ Tangles(B). Our goal is to show that for every such T we can
find a decomposition of B that arranges the vertices of B in a tree, while
distinguishing, in some sense, all tangles in T. For this we have to overcome
several hurdles. First we need to show that the existence of high order
tangles is indeed dual to B having small perfect matching width. Second,
our notion of perfect matching decompositions is not ideal to describe the
tree structures that arise from families of tangles, so we need a notion of
decomposition that is slightly more relaxed. At last we need to bring the
concepts of tree-like decompositions of B and tangles together into one
unified decomposition. To do this, as mentioned above, we make use of the
fact that recently such a goal was achieved for digraphs with regards to
directed treewidth by Giannopoulou et al. in [GKK+20]. So our approach
is similar to the one for cloggings: we simply show that tangles and their
directed cousins can be translated into one another by paying only a small
factor. Before we start our discussion with a more appropriate way of
decomposing graphs with perfect matchings, we need some preliminary
observations.
Let T be a tangle in a bipartite graph with a perfect matching. Note that
the definition of tangles does not require the three sets to be pairwise
distinct, hence it follows for every pair X,Y ∈ T that

((∂B(X) ∪ ∂B(Y )) ∩M) ∪MB(X ∪ Y ) ̸= M.

From this we may immediately derive the following:

Observation 6.3.3 (X∗). Let B be a bipartite graph with a perfect
matching and T a tangle in B. Then T is a clogging in B.

Indeed, by Lemma 6.2.11 this means that every tangle must be consistent.
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Observation 6.3.4 (X∗). Let k ∈ N be a positive integer, B be a
bipartite graph with a perfect matching, and T a tangle of Tk(B). Then
T is consistent and T extends Rk.

Another Width Parameter for Graphs with Perfect Matchings An
important example of tangles in a bipartite matching covered graph B are
the braces of B which are not C4 or K3,3. Let J be a brace of B, then
every tight cut of B has a shore that contains at least |V (J)| − 1 vertices
of J . Consider T1(B) and define an orientation O such that X ∈ O if and
only if X ∈ T1(B), and |X ∩V (J)| ≤ 1. Since J is neither C4, nor K3,3, J
has at least eight vertices and thus for any three sets X,Y, Z ∈ O we have
MB(X ∪ Y ∪ Z) ̸= ∅ for every M ∈ M(B). Hence O is indeed a tangle
in B. So every brace J of B, that is not C4 or K3,3, defines a tangle of
T1(B). Similarly, one can observe that every tangle of T1(B) produces
a brace of B. Please note the similarity between this observation and
Theorem 5.2.16. However, if we consider a tight cut decomposition of B
with its tree structure, then some of the braces we encounter possibly need
more than three tight cut contractions. Hence the tree that corresponds to
this tight cut decomposition has vertices of degree larger than three. This
means that cubic trees, and thus perfect matching decompositions, might
not necessarily be the best possible choice to describe and distinguish
the tangles in B. Towards a decomposition of B that interacts with its
tangles in a structured way, we use this subsection to introduce a width
parameter whose decomposition resembles more closely the properties of
a (directed) tree decomposition, allows any tree as its decomposition tree,
and still is equivalent to perfect matching width.
If e is a (directed) edge and v a vertex, we write v ∼ e if v is an endpoint
of e.

Definition 6.3.5 (Matching Treewidth). Let G be a graph with a perfect
matching. A matching tree decomposition of G is a tuple (T, β) such
that T is a tree, and β : V (T ) → 2V (G), where β(t) is called a bag, and
{β(t) | t ∈ V (T )} is a near partition2.
For every edge t1t2 ∈ E(T ) we write Tti for the component of T − t1t2
that contains ti for i ∈ [1, 2]. We write β(Tti) for the set

⋃︁
t∈V (Tti

) β(t).

2That is, any two distinct bags are disjoint and we allow empty bags.
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Then ∂B(β(Tt1)) = ∂B(β(Tt2)) and thus, we may identify this edge cut
with the edge t1t2. Thus we may write ∂B(t1t2) := ∂B(β(Tt1)).
For every M ∈M(G) we define the M-bags βM derived from β as

βM (t) := MB(β(t)) ∪
⋃︂

t∼e∈E(T )

(∂B(e) ∩M).

The M-width of (T, β) is now defined as

M -width(T, β) := max
t∈V (T )

|βM (t)|,

while the width of (T, β) is defined as

width(T, β) := max
M∈M(G)

M -width(T, β).

The edge width of (T, β) is maxe∈E(T ) mp(∂B(e)).
Finally we define the matching treewidth of G, denoted by mtw(G), as the
minimum width over all matching tree decompositions of G.

Please note that every matching covered graph G has a matching tree
decomposition (T, β) of edge width one, such that for every e ∈ E(T ),
∂B(e) is a non-trivial tight cut, and the graph obtained by contracting the
shore of every ∂B(e) that does not contain β(t) for every y ∼ e ∈ E(T ) and
a fixed t ∈ V (T ) is a brace or brick of G. Indeed, this means the tight cut
decomposition of G can be represented by a matching tree decomposition
of bounded width.
Let us relate perfect matching width and matching treewidth.

Theorem 6.3.6 (X∗). Let G be a graph with a perfect matching. Then
pmw(G) ≤ mtw(G) ≤ 3

2
pmw(G).

Proof. Let (T, δ) be a perfect matching decomposition of G of minimum
width. We simply define β(t) := {δ(t)} for all leaves t of T and set β(t) := ∅
for all inner vertices of T . Then (T, β) is a matching tree decomposition
of G.
Let ℓ ∈ L(T ) be any leaf, then |β(ℓ)| = 1 and thus δ(ℓ) must be matched
by an edge of ∂G(β(ℓ)), and thus |βM (ℓ)| = 1 for all M ∈M(G). Now let
t ∈ V (T ) be an internal vertex of T , and let e1, e3, e3 ∈ E(T ) be the three
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incident edges at t. Note that β(t) = ∅ and thus βM (t) =
⋃︁3

i=1 ∂G(ei).
Moreover, for every e ∈ ∂G(ei) for some i ∈ [1, 2] there is j ∈ [1, 3] \ {i}
such that e ∈ ∂G(ej). Hence

|βM (t)| ≤ 3

2

3∑︂
i=1

|∂B(ei) ∩M | ≤ 3

2
pmw(G),

and thus width(T, β) ≤ 3
2
width(T, δ) = 3

2
pmw(G).

Now, to prove pmw(G) ≤ mtw(G) let (T, β) be a matching tree decompo-
sition for G of minimum width. First note that mp(∂G(β(t))) ≤ mtw(G)

for every t ∈ V (T ). In general, T is not a cubic tree, so first let us show
that we can transform (T, β) into a matching tree decomposition (T ′, β′)

of the same width where T ′ is subcubic. We do this by induction over
n = | spine(T )| − | {t ∈ V (T ) | degT (t) ≥ 4} |. Suppose n = 0, then every
inner vertex of T must have degree at least four. Let t ∈ V (spine(T ))

be any vertex and t1, . . . , tp be its neighbours where p ≥ 4. We intro-
duce a path Pt = (d1, . . . , dp−2) such that V (Pt) ∩ V (T ) = ∅, and set
β′(d1) := β(t), and β′(di) = ∅ for all i ∈ [2, p− 2]. Then we introduce the
edges t1d1, t1d2, tp−1dp−2, tpdp−2, and tjpj−1 for all j ∈ [3, p − 2], and
finally we delete the vertex t. Let (T ′, β′) be the resulting decomposition,
where β′ is defined as β on all vertices that do not belong to Pt. Then ∂G(e)

has not changed for all e ∈ E(T ′) ∩ E(T ). Moreover, ∂B(tidj) = ∂B(tit)

for all i ∈ [1, p] and j chosen accordingly. So we only need to show
|βM (di)| ≤ mtw(G) for all i ∈ [1, p − 2]. For every M and every edge
e ∈ E(Pt) we have ∂G(e) ∩M ⊆ βM (t), and thus for every d ∈ V (Pt) we
have β′

M (d) ⊆ βM (t). Hence our claim follows. So we may assume n ≥ 1.
By picking any vertex t ∈ V (T ) with degree at least four and applying
the same construction as above we obtain a decomposition (T ′, β′) of the
same width with | spine(T ′)| − | {t ∈ V (T ′) | degT ′(t) ≥ 4} | = n+ 1 and
thus we may assume that, for our decomposition (T, β), T is indeed a
subcubic tree.
Next we want to push all vertices from the bags in (T, β) to the leaves of
T and make sure that every leaf-bag contains exactly one vertex. Note
that we may assume β(ℓ) ̸= ∅ for every ℓ ∈ L(T ).
In a first step we make sure that exactly the leaf-bags are non-empty. Let
t ∈ V (T ) be any vertex with a non-empty bag that is not a leaf. If t

has only two neighbours we introduce the vertex d0 adjacent to t and set
β′(t) = ∅, β′(d0) = β(t). By arguments similar to those above one can see

318



6.3. Tangles and a Unified Width Measure

that this does not change the width of the decomposition. Assume t has
three distinct neighbours t1, t2, t3. Then introduce d′, d′′, and d0 with the
edges d′d′′ and d′′d0, introduce the edges t1d

′, t2d′, and t3d
′′, and delete

t. We set β′(d0) := β(t), and β′(d′) = β′(d′′) := ∅. It again is straight
forward to check that the resulting decomposition has still width mtw(G).
By iterating over all internal vertices of T we make sure that all internal
bags are empty.
So we may assume that for our optimal decomposition (T, β), the tree
T is subcubic and all internal bags are empty. Suppose T has a vertex t

of degree two, then β(t) = ∅ as t is not a leaf and thus we may contract
one of its incident edges to remove the degree two vertex. Hence we may
assume that T is cubic.
At last, for every ℓ ∈ L(T ) let Lℓ be a cubic tree with |β(ℓ)|+1 leaves such
that ℓ is a leaf of Lℓ. Then add all Lℓ to T . Let δ be a bijection between⋃︁

ℓ∈L(T )(L(Lℓ) \ {ℓ}) and V (G) such that for every ℓ ∈ L(T ), δ|L(Lℓ−ℓ) is a
bijection between L(Lℓ − ℓ) and β(ℓ). Let (T ′, δ) be the resulting perfect
matching decomposition of G. Note that mp(∂G(e)) ≤ mtw(G) for all
edges e ∈ E(T ′) ∩ E(T ). Let M be a perfect matching of G, ℓ ∈ L(T ),
and e ∈ E(Lℓ). Then we must have ∂G(e) ∩M ⊆ βM (ℓ) ≤ mtw(G) and
thus width(T ′, δ) ≤ mtw(G).

Hence for bipartite graphs we may apply Theorem 5.3.27 to obtain the
following.

Corollary 6.3.7 (X∗). Let B be a bipartite graph with a perfect matching
M . Then

2

3
mtw(B)− 1 ≤ dtw(D(B,M)) ≤ 72mtw(B)2 + 144mtw(B) + 9.

6.3.1. Applying Structural Digraph Theory

In what follows we introduce the necessary definitions for the directed
version of tangles and their corresponding decompositions. We show how
‘ditangles’ and tangles of bipartite graphs with perfect matchings are
related by generalising the proof we used to translate between cloggings
and dicloggings, and finally deduce the desired results from their directed
counterparts.

319
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Definition 6.3.8 (Ditangle). Let D be a digraph and k ∈ N be a positive
integer. An orientation O = (O+,O−) of S⃗k(D) is a ditangle of order k if
for all S1, S2, S3 ∈ O+ ∪O− we have

small(S1) ∪ small(S2) ∪ small(S3) ̸= V (D).

We denote by tangle(D) the largest integer h ∈ N such that D has a
ditangle of order h.

By combining several known inequalities regarding dual concepts of di-
rected treewidth one can obtain a duality theorem for directed treewidth
and the existence of ditangles.

Theorem 6.3.9 ([GKK+20]). Let D be a digraph. Then 1
18

dtw(D)−1 ≤
tangle(D) ≤ dtw(D) + 1.

Of Tangles and Ditangles To relate tangles and ditangles, and therefore
obtain a duality result for tangles and perfect matching width (matching
treewidth) we need to be able to translate between ditangles and tangles.

Lemma 6.3.10 (X∗). Let B be a bipartite graph with a perfect matching
M , k ∈ N be a positive integer, and T a tangle of order k in B. Then
D(T,M) is a ditangle of order k in D(B,M).

Proof. Let S1, S2, S3 ∈ D(T,M)+ ∪ D(T,M)− and suppose small(S1) ∪
small(S2) ∪ small(S3) = V (D(B,M)) = M . For each i ∈ [1, 3] let Xi ∈ T

such that D(Xi,M) = Si in case Maj(Xi) ⊆ V1, and D(Xi,M) = Si

otherwise. Then we must have
3⋃︂

i=1

MB(Xi) ∪ ∂B(Xi) ∩M =

3⋃︂
i=1

small(Si) = V (D(B,M)) = M.

This however contradicts our assumption that T is a tangle in B and thus
we must have small(S1) ∪ small(S2) ∪ small(S3) ̸= V (D(B,M)) for all
choices of S1, S2, S3. Hence D(T,M) is a ditangle of order k in D(B,M).

Lemma 6.3.11 (X∗). Let B be a bipartite graph with a perfect matching
M , D := D(B,M), k ∈ N a positive integer, and T = (T+,T−) a ditangle
of order k in D. Then S(T|⌊ k3 ⌋) is a tangle of order

⌊︁
k
3

⌋︁
in B.
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6.3. Tangles and a Unified Width Measure

Proof. Let X1, X2, X3 ∈ S(T|⌊ k3 ⌋). Towards a contradiction we suppose

there exists N ∈M(B) such that
⋃︁3

i=1 NB(Xi) ∪ ∂B(Xi) ∩N = N . For
each i ∈ [1, 3] let Si := D(Xi,M) in case Maj(Xi) ⊆ V1, otherwise let
Si := D(Xi,M). Moreover, for every i ∈ [1, 3] let Si = (Gi, Hi).
First let us assume Xi ⊆ Vj for one j ∈ [1, 2] and all i ∈ [1, 3].
Then we must have that |X1 ∪X2 ∪X3| ≤ k and X1 ∪X2 ∪X3 ⊆
V3−j . This however means that |

⋃︁3
i=1 small(Si)| ≤ k. Hence S :=

(V (D),
⋃︁3

i=1 small(Si)) ∈ R−
k ⊆ T− by Lemma 6.2.6 and the fact

that T must also be a diclogging of order k. Without loss of gener-
ality let us assume j = 1, the other case follows analogously. Then
we know small(Si) = Gi for all i ∈ [1, 3]. As Si ∈ S⃗⌊ k3 ⌋(D) we

know that (Gp ∪ Gq, Hp ∩ Hq) ∈ S⃗k(D) for all p, q ∈ [1, 3]. Suppose
(Gp ∪ Gq, Hp ∩ Hq) ∈ T−, then small(Gp ∪ Gq, Hp ∩ Hq) = Hp ∩ Hq

and thus we would have with Gp ∪ Gq ∪ Hp ∩ Hq = V (D) three small
sides that cover all of D. As T is a ditangle this is impossible and thus
(Gp ∪Gq, Hp ∩Hq) ∈ T+ for all p, q ∈ [1, 3]. Hence G1 ∪G2 and G3 each
are a small side of some directed separation in T. We also know from
our discussion above that G1 ∪G1 ∪G3 is a small side of some directed
separation in T. All three of these sets together however make V (D)

which again contradicts T being a ditangle. Hence there must exist some
h ∈ [1, 3] such that Maj(Xh)∪Maj(Xi) ̸⊆ Vj for every i ∈ [1, 3] \ {h} and
every j ∈ [1, 2].
Without loss of generality let us assume Maj(X1) ⊆ V1 and Maj(X2) ∪
Maj(X3) ⊆ V2. Now X1 ∪X2 ∪X3 contains at most

⌊︁
k
3

⌋︁
vertices from V2

and at most
⌊︁
2k
3

⌋︁
vertices from V1. Let X1 ∪X2 ∪X3 ∩V1 = {a1, . . . , ap}

and X1 ∪X2 ∪X3 ∩ V2 = {ap+1, . . . , aq} where p ≤
⌊︁
2k
3

⌋︁
and q ≤ k.

Let h ∈ [1, p] be the largest integer such that (E1, F1) := D(X1 ∪
{a1, . . . , ah} ,M) ∈ T+. Suppose h ≤ p − 1. Then let (E2, F2) :=

D(X1 ∪ {a1, . . . , ah+1} ,M), and (E3, F3) := D({ah+1} ,M). By construc-
tion we know (Ei, Fi) ∈ S⃗k(D), small(E1, F1) = E1, small(E2, F2) = F2,
and small(E3, F3) = E3. Moreover E1 ⊆ F2 ∪ E3 and thus M = V (D) =

E1 ∪ F2 ∪ E3. Since this is impossible with T being a ditangle of or-
der k, we must have h = p. Note that (X1 ∪ {a1, . . . , ap}) ∪X2 ∪X3 =

{ap+1, . . . , aq} ⊆ V2. Hence for every perfect matching N ∈ M(B) we
have NB((X1 ∪ {a1, . . . , ap}) ∪X2 ∪X3) ∪N ∩ ∂B({ap+1, . . . , aq}) = N .
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Chapter 6. Tangles and a Unified Decomposition

This means, as small(Si) = Hi for i ∈ [2, 3], that E1 ∪H2 ∪H3 = V (D)

and thus we have reached a contradiction.
Therefore we obtain

⋃︁3
i=1 NB(Xi) ∪ ∂B(Xi) ∩N ̸= N for all N ∈M(B)

and thus S(T|⌊ k3 ⌋) is a tangle in B.

So to summarize our findings we may combine the two lemmas above.

Theorem 6.3.12 (X∗). Let B be a bipartite graph with a perfect matching
M . Then tangle(B) ≤ tangle(D(B,M)) ≤ 3 tangle(B)

In light of Theorem 6.3.9 this also shows that tangles are indeed related
to perfect matching width.

Tree Labellings The next step towards an actual tangle-based structure
theorem for bipartite graphs with perfect matchings is to establish a way
to describe any given set of tangles in a tree like way.

Definition 6.3.13 (Distinguishing Ditangles). Let D be a digraph and
T = (T+,T−), T′ = (T′+,T′−) be tangles in D. We say that T and T′

indistinguishable if T+ ⊆ T′+ and T− ⊆ T′−, or T′+ ⊆ T+ and T′− ⊆ T−.
A directed separation S ∈ S⃗tangle(D)(D) distinguishes T and T′, or is a
(T,T′)-distinguisher if S ∈ T+ ∩ T′− or S ∈ T− ∩ T′+. The order of a
(T,T′)-distinguisher S = (X,Y ) is |X ∩ Y |. We say that T and T′ are
h-distinguishable for some h ∈ N, if there is a (T,T′)-distinguisher of
order h. We also say that T and T′ are h-indistinguishable if there is no
(T,T′)-distinguisher in S⃗h(D).
Finally let S and P be sets of ditangles in D, then a (S,P)-distinguisher
is a separation S ∈ S⃗tangle(D)(D) such that S is a (S,P)-distinguisher for
every choice of S ∈ S and P ∈ P.

In general, the separations induced by the edges of a directed tree de-
composition are not directed separations. Indeed, there exist examples
that show that such separations are impossible to achieve within some
bound of directed treewidth in some classes of digraphs. Hence, to obtain
a decomposition of a digraph D that reflects the tangles of D and, at
least somehow, the structure captured by a directed tree decomposition,
some intermediate steps are necessary. A first one is to find some tree-like
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6.3. Tangles and a Unified Width Measure

representation of a set of ditangles D in D. This is done via so called
tree-labellings.

Definition 6.3.14 (Ditangle Tree-Labelling). Let D be a digraph and F
be a family of ditangles in D. A F-tree-labelling is a triple (T, β, γ), where
T is a tree, and β : V (T )→ F and γ : E(T )→ S⃗tangle(D)(D) are functions
such that

i) β is a bijection,
ii) if t, t′ ∈ V (T ) are distinct and P is the unique path in

T between t and t′, then for every edge e ∈ E(P ) with
ord(γ(e)) = mine′∈E(P ) ord(γ(e

′)), the separation γ(e) is a
(β(t), β(t′))-distinguisher of minimum order, and

iii) for every e = t1t2 ∈ E(T ) there are di ∈ V (Tti) for both i ∈ [1, 2]

such that γ(e) is a (β(d1), β(d2))-distinguisher of minimum order.

Theorem 6.3.15 ([GKK+20]). Let D be a digraph and F be a family
of pairwise distinguishable ditangles in D. Then there exists an F-tree-
labelling.

We can now define a matching theoretic version of tree-labellings and
then combine Lemma 6.3.10 and Theorem 6.3.15 to obtain a version of
Theorem 6.3.15 appropriate for bipartite graphs with perfect matchings.

Definition 6.3.16 (Tangle Tree-Labelling). Let B be a bipartite graph
with a perfect matching and F be a family of tangles in B. A F-tree-
labelling is a triple (T, β, γ), where T is a tree, and β : V (T ) → F and
γ : E(T )→ S⃗tangle(B)(B) are functions such that

i) β is a bijection,
ii) if t, t′ ∈ V (T ) are distinct and P is the unique path in T be-

tween t and t′, then for every edge e ∈ E(P ) with mp(∂B(γ(e))) =

mine′∈E(P ) mp(∂B(γ(e′))), the set γ(e) is a (β(t), β(t′))-distinguisher
of minimum order, and

iii) for every e = t1t2 ∈ E(T ) there are di ∈ V (Tti) for both i ∈ [1, 2]

such that γ(e) is a (β(d1), β(d2))-distinguisher of minimum order.

Proposition 6.3.17 (X∗). Let B be a bipartite graph with a perfect
matching and F be a family of pairwise distinguishable tangles in B. Then
there exists an F-tree-labelling.
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Proof. Let M ∈ M(B) be any perfect matching and D := D(B,M).
Moreover, let

Q :=
{︁
D(T,M) = (D(T,M)+,D(T,M)−) | T ∈ F

}︁
.

Then by Lemma 6.3.10, Q is a family of ditangles in D. Suppose there are
O1,O2 ∈ Q such that O1 and O2 are distinct and yet indistinguishable.
Without loss of generality let us assume O+

1 ⊆ O+
2 and O−

1 ⊆ O−
2 . This

however means that there are T1,T2 ∈ F such that D(Ti,M) = Oi for
both i ∈ [1, 2]. Moreover, we must have T1 ⊆ T2 and thus we found
two tangles in F that are indistinguishable. As this would contradict
our choice of F, the ditangles in Q must be pairwise distinguishable. By
Theorem 6.3.15 there exists a Q-tree-labelling (T, β, γ). Note that for
every T ∈ Q, S(T) ∈ F. For every t ∈ V (T ) let β′(t) : S(β(t)), and for
every e ∈ E(T ) let γ′(e) := S(γ(e)). It is straight forward to see that
(T, β′, γ′) is an F-tree-labelling.

A Tangle-Tree Decomposition Let B be a bipartite graph with a
perfect matching and F be a family of pairwise distinguishable tangles
in B. As mentioned above, one cannot expect to find an F-tree-labelling
where all corresponding cuts are pairwise laminar. What we can, however,
is finding a matching tree decomposition (T, β) of bounded edge-width,
whose decomposition tree resembles an F-tree-labelling. Moreover, let us
suppose that k bounds the maximum matching porosity of a cut induced
by some set in some tangle in F. If there exists a function f : N→ N that
bounds the edge width of this matching tree decomposition we aim for
by f(k), then Theorem 5.3.2 guarantees us that we can find, for every
edge e ∈ E(T ) and every perfect matching M ∈ M(B), a set F ⊆M of
size at most f(k)2 + 2f(k) + k that guards the cut induced by e, and
contains all edges M has in the generalised tight cut associated with e in
the F-tree-labelling.

Definition 6.3.18 (Tangle Tree Decomposition). Let B be a bipartite
graph with a perfect matching, and let T be a family of pairwise distin-
guishable tangles in B. A matching tree decomposition for T is a tuple
(T, β, γ, τ), where T is a tree, τ is an injective map from T to V (T ),
γ : E(T )→ T (B), and β : V (T )→ 2V (B), such that

i) T ′ := T [{τ(T) | T ∈ T}] is a subtree of T , and (T ′, τ, γ|E(T ′)) is a
T-tree-labelling,
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6.3. Tangles and a Unified Width Measure

ii) (T, β) is a matching tree decomposition of B, and
iii) for all e ∈ E(T ), ∂B(e) and ∂B(γ(e)) are laminar.

We say that (T, β, γ, τ) extends the F-tree-labelling (T ′, τ, γ|E(T ′)). The
edge-width of (T, β, γ, τ) is the edge-width of (T, β). Let f : N → N be
any function. The edge-width of (T, β, γ, τ ) is f -bounded in (T ′, τ, γ|E(T ′))

if mp(∂B(e)) ≤ f(mp(∂B(γ(e)))) for all e ∈ E(T ′).
A tangle tree decomposition for B is a matching tree decomposition for
some family F of tangles in B.

Note that the cuts ∂B(e) induced by the edges of T in the definition above
are indeed pairwise laminar. So in some sense the structure above can be
understood as a way to slightly ‘nudge’ the generalised tight cuts that
distinguish our tangles in such a way that we obtain a laminar family of
cuts that roughly described the tree like structure of the areas of ‘high
connectivity’3. The price we pay for this ‘nudging’ is that the resulting
cuts are no longer generalised tight cuts. Still, since each cut ∂B(e) is
laminar with the generalised tight cut associated with e via γ it is possible
to select any tangle T ∈ T and orient all edges of T towards the unique
side that either contains the large side of γ(e), or that does not contain
its small side. Hence in a way, a tangle tree decomposition for a bipartite
graph with a perfect matching can be seen as an approximation of its
actual tangle structure where we allow any edge cut of bounded matching
porosity instead of just generalised tight cuts.
We will show the following theorem for bipartite graphs with perfect
matchings.

Theorem 6.3.19 (X∗). Let B be a bipartite graph with a perfect match-
ing.

i) Let k ∈ N be a positive integer and let T be a family of pairwise
distinguishable tangles of order at least k in B. Then there exists a
matching tree decomposition for T|k of edge-width at most 2k2 +4k.
More precisely, every F|k-tree-labelling can be extended to a match-
ing tree decomposition of edge-width at most 2k2 + 4k.

ii) Let F be a family of pairwise distinguishable tangles in B. Then for
every F-tree-labelling L there exists a matching tree decomposition
that extends L and whose edge width is 2k2 + 4k-bounded in L.

3If ‘connectivity’ is the right term for the matching setting.
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As before, most of the proof of Theorem 6.3.19 consists of a translation
between the setting of digraphs and the setting of bipartite graphs with
prefect matchings. To achieve this we first need the corresponding notions
for digraphs.

Definition 6.3.20 (Ditangle Tree Decomposition). Let D be a digraph,
and T be a family of pairwise distinguishable ditangles in D. A directed
tree decomposition for T is a tuple D = (T, β, γ, τ, ω), where T is an
arborescence, τ is an injective map from T to V (T ), β : V (T ) → 2V (D),
γ : E(T )→ S⃗(D), and ω : E(T )→ 2V (D), such that

i) T ′ := un(T [{τ(T) | T ∈ T}]) is a subtree of un(T ), and L :=

(T ′, τ, γ|V (T ′)) is a T-tree-labelling,
ii) (T, β, ω) is a directed tree decomposition of D, and
iii) for all e ∈ E(T ) let (Ge, He) := γ(e), then Ge ∩He ⊆ ω(e).

We say that D extends L. The edge-width of D is maxe∈E(T ) |ω(e)|. We say
that the edge-width of D is f -bounded in L for some function F : N→ N

if |ω(e)| ≤ f(|γ(e)|) for all e ∈ E(T ′) and, furthermore, if e = (s, t) ∈
E(T ) \ E(T [V (T ′)]) then there is an edge e′ = (s, s′) ∈ T [V (T ′)] with
|ω(e)| < |ω(e′)|.
A ditangle tree decomposition of D is a directed tree decomposition for
some family F of pairwise distinguishable ditangles.

Theorem 6.3.21 ([GKK+20]). Let D be a digraph.
i) Let k ∈ N be a positive integer and let T be a family of pairwise

distinguishable ditangles of order at least k in D. Then there exists
a directed tree decomposition for T|k of edge-width at most k2 + 2k.
More precisely, every F|k-tree-labelling can be extended to a directed
tree decomposition of edge-width at most k2 + 2k.

ii) Let F be a family of pairwise distinguishable ditangles in D. Then
for every F-tree-labelling L there exists a directed tree decomposition
that extends L and whose edge width is k2 + 2k-bounded in L.

By closely inspecting the proof of Theorem 6.3.21 one can obtain the
following strengthening of the second result.

Lemma 6.3.22 ([GKK+20]). Let D be a digraph, T a family of pairwise
distinguishable ditangles in D, (T ′, τ, γ′) a F-tree-labelling. Then there
exists a directed tree decomposition (T, β, γ, τ, ω) for T that extends
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(T ′, τ, γ′) and whose edge-width is k2 +2k-bounded in (T ′, τ, γ′) such that
for every e = (s, t) ∈ E(T ) with γ(e) = (X1, X2) there is i ∈ [1, 2] with
β(Tt) ⊆ Xi.

Proof of Theorem 6.3.19. Since the first statement of the theorem follows
immediately from the second one, it suffices to only prove (ii). So let B

be a bipartite graph with a perfect matching M , and let T of pairwise
distinguishable tangles in B. Similar to the proof of Proposition 6.3.17
we consider the digraph D := D(B,M) together with the family Q :=

{D(T,M) | T ∈ T} of pairwise distinguishable ditangles.
Let (T ′, τ, γ′) be T-tree-labelling. At least one such tree-labelling must
exist by Proposition 6.3.17, and by setting τ ′(t) := D(τ(t),M) and γ′′(e) :=

D(γ′(e),M) for all t ∈ V (T ′) and e ∈ E(T ′) we obtain an F-tree-labelling
(T ′, τ ′, γ′′).
Now we may use Lemma 6.3.22 on (T ′, τ ′, γ′′) to obtain a directed tree
decomposition (T, β′, γ′′′, τ ′′, ω′) for F whose edge-width is k2+2k-bounded
in (T ′, τ ′, γ′′) such that for every e = (s, t) ∈ E(T ) with γ′′′(e) = (X1, X2)

there is i ∈ [1, 2] with β′(Tt) ⊆ Xi. Let h ∈ N be the smallest integer
such that ord(S) ≤ h for all T = (T+,T−) ∈ F and all S ∈ T+ ∪ T−.
Notice that, since |ω′(e)| ≤ h2 +2h, the cycle porosity of β′(Tt) is at most
2h2 + 4h for every e = (s, t) ∈ E(T ). That is, because by the definition of
directed tree decompositions, every directed walk that leaves β′(Tt) and
then re-enters β′(Tt) must contain a vertex of ω′(e).
Now let us consider (un(T ), β, γ, τ ), where τ is as above, β(t) := V (β′(t)) ⊆
M , and γ(e) := S(γ′′′(e)). Then is it straight forward to check that
(un(T ), β, γ, τ) is a matching tree decomposition extending (T ′, γ′, τ)

whose edge width is 2k2 + 4k-bounded in (T ′, γ′, τ).

Similar to our findings in Section 6.2, the bounds obtained via the strategy
of translating results from digraph theory to the setting of bipartite graphs
with perfect matchings are probably not optimal. Indeed, it is possible
that a closer examination of tangle tree decompositions might also help
to improve the bounds for their digraphic analogues. However, when
one does not care to much about the optimality of bounds, this chapter
illustrates the ease with which structural findings from one setting can be
translated into similar results in the other setting. Indeed, it is probably
possible to obtain a ditangle tree decomposition for any M -direction of B
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just from one tangle tree decomposition of B. In this sense, the notion of
tangles appears to provide a unified way to describe the regions of high
connectivity in any M -direction of B.
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Chapter 7.

Excluding a Planar Matching Minor

So far we have investigated the properties of bipartite graphs with bounded
perfect matching width as well as several dual notions. A natural next
step in our pursuit of a matching theoretic minor theory would be to start
describing the structure of classes of bipartite graphs that are defined by
excluding a single matching covered bipartite graph as a matching minor
by means of perfect matching width and its dual notions.
For any class of graphs C let us denote the class of graphs consisting of all
graphs, that do not have any graph from C as a minor, by Forbidden(C).
The first description of the class Forbidden(T ), where T is a forest, was
given in the first issue of the Graph Minors Project [RS83] which states that
there exists a function f : N→ N such that every graph G ∈ Forbidden(T )

has pathwidth at most f(|V (T )|). We already stated a more general
version of this in the form of Theorem 2.2.30. In this chapter we present
a matching theoretic version of Theorem 2.2.30. For this we need two
basic ingredients: On one side Theorem 5.3.32 provides us with large grid
matching minors whenever the perfect matching width of a graph becomes
too large. So if, on the other side, we have a matching theoretic analogue
of Lemma 2.2.29 we will be able to prove the following theorem.

Theorem 7.0.1 (D∗). A proper matching minor closed class G of bipartite
matching covered graphs has bounded perfect matching width if and only
if it excludes a planar bipartite matching covered graph.

In Section 7.1 we present a proof of Theorem 7.0.1 based on the afore-
mentioned matching theoretic analogue of Lemma 2.2.29. An important
application of these findings in the Graph Minors Project was the char-
acterisation of all graphs that have the Erdős-Pósa property for minors.
In Section 7.3 we generalise this approach to show a similar result for
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matching minors in bipartite graphs. We show that every bipartite and
planar matching covered graph has the matching Erdős-Pósa property for
matching minors by adapting techniques from the original proofs for the
setting of matching covered bipartite graphs. For the reverse however, the
nature of the matching Erdős-Pósa property prevents us from doing the
same. Instead, in Section 7.2 we use our insight on infinite anti-chains
of butterfly minors gained from matching minors to present a version of
Theorem 2.3.31 that interacts with anti-chains instead of a single graph.
A nice pay off from this approach allows us to replace ‘butterfly minor of
the cylindrical grid’ by a purely topological condition.

7.1. Planar Matching Covered Graphs in Grids

As explained above, the most important part towards Theorem 7.0.1 after
the grid theorem itself is a matching theoretic version of Lemma 2.2.29.
To achieve this goal, we make use of the iterative construction for bipartite
matching covered graphs in the form of an ear decomposition as in Theo-
rem 3.1.44. For this Please note that any ear we add to our graph is in fact
an internally M -conformal path for some perfect matching M . Moreover,
one can observe that any bipartite matching covered graph B has an ear
decomposition and a perfect matching M , such that the conformal cycle
B2 obtained from K2 by adding the first ear is M -conformal in B, and
every Bi obtained from adding an additional ear P has the property that
P is internally M -conformal.
Additionally, in case B is bipartite, matching covered, and planar, we can
choose an ear decomposition as above in such a way that Bi+1 can be
drawn in the plane and the newly added ear is part of the boundary of a
face.

Theorem 7.1.1 (D∗). For every planar bipartite matching covered graph
H there exists a number ωH such that H is a matching minor of the
cylindrical matching grid of order ωH .

Proof. Let B be a bipartite, matching covered and planar graph. Moreover,
for any even k, let M be the residual perfect matching obtained by the
strategy for finding the k×k-grid as a matching minor of CG□

k as described
in the proof of Lemma 5.3.31.
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We prove the claim by induction on the number of ears in an ear decompo-
sition of B and strengthen it in the sense that we claim that there always
exists an M -conformal matching minor model. As a base consider a single
cycle of even length ℓ. Clearly each such cycle is actually contained as
an M -conformal bisubdivision in the ℓ′ × ℓ′-grid, where ℓ′ is the smallest
natural number satisfying ℓ

2
≤ ℓ′. So let K2 = B1 ⊂ B2 ⊂ · · · ⊂ Bt be an

ear decomposition of B. By the induction hypothesis, there exists an even
number ωBt−1 such that Bt−1 is a matching minor of the ωBt−1 × ωBt−1 -
grid. Let µ′ be an M -conformal matching minor model of Bt−1 in said
grid. Let P be the ear that, added to Bt−1, creates Bt = B. Then
the canonical embedding of the grid in the plane induces an embedding
of µ′(Bt−1) in the plane and there exists a face f of said drawing that
corresponds to the face of Bt−1 in which P must be placed. Since P is
non-empty, f must have more than four vertices, and thus there must
exist a C4 in the interior of f in the grid. Moreover, since µ′(Bt−1) is
M -conformal, there must exist such a C4, say C, that does not contain a
single edge of M .
We now draw two orthogonal lines through the centre of C, ℓ1 in parallel
to the columns of our grid and ℓ2 in parallel to the rows of the grid.
Each of the two ℓi can now be associated with an edge cut of the grid,
containing only edges not in M . Together ℓ1 and ℓ2 partition the grid
into four quadrants, see Figure 7.1 for an illustration. Let us say that the
shores of ℓ1 are X1 ∪X2 ⊆ V (B) and Y1 ∪ Y2 ⊆ V (B), while the shores
of ℓ2 are X1 ∪ Y1 and X2 ∪ Y2. Please note that each of the Xi and Yi is
M -conformal. Moreover, let us fix X1 to be the top left quadrant and Y2

to be the bottom right one.
Now let H ′ be the (ωBt−1 + p)× (ωBt−1 + p)-grid where p = |V (P )|, note
that p is even, and let us map the vertices of the Xi and Yi to the four
corners of H ′, let X ′

i and Y ′
i be the corresponding vertex sets in H ′, let

h be said mapping. Let us furthermore extend M to the corresponding
perfect matching of H ′. In order to extend µ′ to a model of Bt−1 in
H ′ we need to replace the edges in the two cuts ℓ1 and ℓ2 by internally
M -conformal paths connecting X1 with X2 and Y1 with Y2. In case
µ′ uses two vertical edges incident with the two endpoints of an edge
of M , this might not be possible. To deal with this problem we apply
a further blow-up to H ′, namely we double its width. Let H be the
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(ωBt−1 + p)× (3ωBt−1 + p− 4)-grid obtained from H ′ as follows. First, let
x ∈ N be the number of columns in H ′[X1]. Then let ZX be the p×x-grid
made up of the vertices in the columns of H ′ that connect h(X1) and
h(X2). Let ZY be defined analogously, see Figure 7.1 for an illustration.

Figure 7.1.: Expanding a grid together with a model of an even cycle to
add an ear. The small marked C4 is replaced by a large grid
which then is extended to make a new quadratic grid. Then
the old model is extended by routing through the new part
and lastly the ear is routed through the newly added central
grid.

For every W ∈ {X,Y } take H ′
W := H ′[W1 ∪WW ∪W2], then subdivide

every horizontal edge and complete each thereby newly created column to a
path. For every vi,j of H ′

W , 1 ≤ i ≤ ωBt−1 + p, 1 ≤ j ≤ x− 1, we thereby
created two new vertices v1i,j and v2i,j subdividing the edge vi,jvi,j+1.
Similarly for every 1 ≤ i ≤ ωBt−1+p and every x+p+1 ≤ j ≤ ωBt−1+p−1.
Let us again adapt M to be the canonical extension of the perfect matching
we used for H ′.
We now describe how to extend µ′ to H. Let v ∈ V (Bt−1)

and ui′,j′ ∈ V (µ′(v)), then let h(ui′,j′) = vi,j . Every edge
ui′′,j′ui′,j′ ∈ E(µ′(v)) with i′′ ∈ {i′ − 1, i′ + 1} is replaced by the edge
h(ui′′,j′)h(ui′,j′). We extend the model of v by the path (vi,j , v

1
i,j , v

2
i,j)
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if j ∈
{︁
n | 1 ≤ n ≤ x− 1, or x+ p+ 1 ≤ n ≤ ωBt−1 + p− 1

}︁
, and every

edge ui′,j′ui′,j′+1 ∈ E(µ′(v)) \ ℓ1 is replaced by the edge v2i,jh(ui′,j′+1).
If there is an edge ab ∈ E(µ′(v)) ∩ ℓ1, we replace this edge by the
horizontal and internally M -conformal h(a)-h(b)-path in H. At last, an
edge ab ∈ E(µ′(v)) ∩ ℓ2 is replaced by a vertical h(a)-h(b)-path in H.
This path has to use vertices from at most two columns and may go to
the left (in decreasing j direction) if and only if h(a) and h(b) are in the
column x or ωBt−1 + p.
Now let uw ∈ E(Bt−1). If ui′j′ui′,j′+1 ∈ E(µ(uw)) \ ℓ1, then let vi,j :=

h(ui′j′) and we replace the edge by the path (vi,j , v
1
i,j , v

2
i,j , vi,j+1) where

vi,j+1 = h(ui′,j′+1). Edges ui′j′ui′,j′+1 ∈ E(µ(uw)) ∩ ℓ1 are replaced by
the unique internally M -conformal horizontal h(ui′,j′)-h(ui′,j′+1)-path in
H. An edge ab ∈ E(µ′(uw)) ∩ ℓ2 is replaced by a vertical h(a)-h(b)-path
in H. This path has to use vertices from at most two columns and may
go to the left (in decreasing j direction) if and only if h(a) and h(b) are
in the column x or ωBt−1 + p. At last, a vertical edge ab ∈ E(µ(uw)) \ ℓ2
will simply be replaced by h(a)h(b).
In total let µ′′ be the matching minor model of Bt−1 constructed following
the rules above. It is straight forward to check that µ′′(Bt−1) is M -
conformal.
By construction there exists a p × p-grid F in the face f ′ of µ′′(Bt−1)

corresponding to the face f we chose in µ′(Bt−1). As a last step, we have
to add an internally M -conformal path P to our matching minor model
in order to form a matching minor model µ of B. Let a, b ∈ V (Bt−1) be
the endpoints of P , then both µ′′(a) and µ′′(b) must have an old vertex
on f ′. After possibly stretching the model of f ′ a bit we can find disjoint
internally M -conformal paths from a and b to F , let a′ and b′ be their
respective endpoints. Since F is a p×p-grid we can easily find an internally
M -conformal a′-b′-path P ′ within F . This path P ′ together with µ′′ forms
our desired matching minor model µ of B in H. At last note that H is a
conformal subgraph of the (3ωBt−1 + p− 4)× (3ωBt−1 + p− 4)-grid and
thus we are done.

Please note that the function given in the proof above is exponential in
the number of vertices of G and thus probably far from optimal. We
immediately obtain an approximate description of the bipartite matching
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covered graphs that exclude a planar and bipartite matching covered
graph H as a matching minor as stated in Theorem 7.0.1.
From Theorem 7.0.1 and Theorem 5.4.2 we can now also obtain a first
positive algorithmic result regarding the complexity of matching minor
testing in bipartite graphs with perfect matchings.

Corollary 7.1.2 (D∗). Let H be a bipartite, planar, and matching
covered graph and B a bipartite graph with a perfect matching. There
exists a constant c = c(H) and an algorithm with running time O(|V (B)|c)
that decides whether B contains H as a matching minor.

7.2. Digraphs and Erdős-Pósa for Butterfly Minor
Anti-Chains

Let us consider the more restrictive setting of digraphs. Here some inter-
esting phenomena occur regarding the Erdős-Pósa property for butterfly
minors and topological studies in general. As we have seen in Section 2.3.3,
a strongly connected digraph H has the Erdős-Pósa property for butterfly
minors if and only if it is a butterfly minor of the cylindrical grid. In some
sense this is already a topological requirement as ‘being a cylindrical grid
minor’ can be seen as some notion of embeddability in a very specialised
surface. Moreover, planarity is indeed a necessary requirement for any
strongly connected digraph H to be a minor of the cylindrical grid. But,
as we will see in Chapter 8, the reverse is far away from being true. A
remarkably simple example of a strongly connected planar digraph which
is not a grid minor is the digraph depicted in Figure 7.2. The reason
that this particular digraph is not contained in the cylindrical grid as a
butterfly minor is, that in every planar embedding, the two concentric
cycles, as depicted in the figure, must be oriented in opposing directions.
A close inspection of the cylindrical grid reveals that there cannot be two
such directed cycles.
Indeed, when inspecting the cylindrical grid more carefully one can observe
that it has a planar embedding that has additional properties on top of
just being planar.
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Figure 7.2.: A strongly connected and planar digraph that is not a but-
terfly minor of the cylindrical grid.

7.2.1. The Strong Genus of Digraphs

Let us first continue to talk about planar embeddings and a connection
between embeddability of digraphs in the plane and planar bipartite
graphs. Consider the cylindrical grid D of any order together with a
planar embedding. Now zoom in on any vertex v and inspect an open
disc ζ with v at its centre such that ζ does not contain any other vertex
of D. Note that we can draw a curve γ through v connecting two points
of the boundary of ζ such that every incoming edge of D incident with v

lies on one side of γ, while every edge emanating from v lies on the other
side of γ. Moreover, note that, by the definition of butterfly minors, every
butterfly minor of D must also have a plane embedding with this property.
With this we may rule out any planar digraph which does not have such
an embedding as a candidate for being a butterfly minor of the cylindrical
grid. See Figure 7.3 for a strongly connected planar digraph which does
not have such an embedding. Moreover, notice that this particular digraph
has exactly two butterfly contractible edges and by contracting both of
them one obtains

↔
K3.

Let us formally introduce this concept. The definitions given here only
scratch the surface of topological graph theory, see [Sta78, Arc96] for
broader introduction and an overview of the topic.
Let G be a graph or digraph. Then G corresponds to a topological space
called the geometric realisation of G. In this space the vertices are distinct
points and the edges are subspaces homeomorphic to the closed interval
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Figure 7.3.: A strongly connected and planar digraph that has no strong
embedding.

[0, 1] over the real numbers1 joining their endpoints. An embedding of G
into some topological space X is a homeomorphism between the geometric
realisation of G and a subspace of X. In a slight abuse of notation we
use G for both the graph G and its geometric realisation. A surface is a
compact Hausdorff topological space which is locally isomorphic to R2.
There are two ways to construct these surfaces; either take a sphere and
attach n ∈ N handles to it, or take a sphere and attach m ∈ N crosscaps.
Let us denote by Σn the surfaces of the first kind and by Σ̃m the surfaces
of the second kind.

Theorem 7.2.1 ([Bra21]). The surfaces in {Σn | n ∈ N} and{︂
Σ̃M | m ∈ N, m ≥ 1

}︂
are pairwise non-homeomorphic and every surface

is homeomorphic to a member of one of these two families.

A surface Σ is orientable and of orientable genus n if it is homeomorphic
to Σn, similarly, Σ is non-orientable and of non orientable genus m if it is
homeomorphic to Σ̃m.
A 2-cell embedding or map of a (di)graph G is an embedding in which
every face is homeomorphic to an open disk. The genus of a (di)graph G

is the smallest integer g ∈ N such that G can be embedded in Σg, and
its non-orientable genus is the smallest integer g′ ∈ N such that G can
be embedded in Σ̃g′ . The Euler genus of G, denoted by genus(G), is the
smallest integer h ∈ N such that G can be embedded in Σh

2
or Σ̃h.

Let G be a (di)graph embedded in a surface Σ, v ∈ V (G) a vertex and
ζ ⊆ Σ an open disc centred at v such that every edge of G incident with
1In this instance we do not use our definition of [0, 1] as the set {0, 1}.
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v contains exactly one point from the boundary β of ζ. Let F ⊆ E(G) be
the edges incident with v and {F1, F2} be a bipartition of F . For each
f ∈ F let pf ∈ β be the point that f has on the boundary of ζ. We say
that (F1, F2) is a butterfly in ζ if there exists a curve γ through v in Σ

with both endpoints, x and y on β such that we can number the two
internally disjoint curves β1 ⊆ β and β2 ⊆ β with endpoints x and y to
obtain {pf | f ∈ Fi} ⊆ βi for both i ∈ [1, 2].

Definition 7.2.2 (Strong Embedding). Let D be a digraph and Σ be a
surface. An embedding µ : D → Σ of D into Σ is strong if for every vertex
v ∈ V (D) there exist rv ∈ R and an open disc ζ ⊆ Σ of radius rv centred
at v such

({(u, v) | (u, v) ∈ E(D)} , {(v, u) | (v, u) ∈ E(D)})
is a butterfly in ζ.
The smallest integer h ∈ N such that D can be strongly embedded in Σh

2

or Σ̃h is called the strong genus of D. We denote the strong genus of D
by sgenus(D). If sgenus(D) = 0, D is said to be strongly planar.

Note that the strong genus of a digraph D is closed under vertex and edge
deletion. Moreover, let e = (u, v) be a butterfly contractible edge of D
and assume D is strongly embedded into some surface Σ. By definition of
butterfly minors (u, v) is the only outgoing edge of u, or the only incoming
edge at v. In both cases, after adjusting the embedding of D into Σ for the
digraph D′ obtained from D by contracting e, the incoming and outgoing
edges of the contraction vertex w still form a butterfly in some open disc
in Σ centred at w. Hence we have the following observation.

Observation 7.2.3 (X∗). Let D be a digraph and D′ be a butterfly
minor of D, then sgenus(D′) ≤ sgenus(D).

As seen in Figure 7.3 we have genus(D) ≤ sgenus(D), but the reverse is not
true. In fact, in Chapter 8 we will see that there does not exist a function
f : N→ N such that sgenus(D) ≤ f(genus(D)). The combination of these
observations illustrates that the topology associated with butterfly minors
should in fact consider the strong genus rather than the Euler genus of D.
Indeed, the strong genus of digraphs is closely linked to the Euler genus
of their splits.
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Proposition 7.2.4 (X∗). Let B be a bipartite graph with a perfect
matching M and D := D(G,M). Then genus(B) = sgenus(D).

Proof. First let g := genus(B) and consider an embedding of B into a
surface Σ such that Σ = Σ2g if B has an embedding in Σ2g, and Σ = Σ̃g

otherwise. Now contract the edges of M and let ab ∈ M be any edge.
Note that we may find an open disc ζ ⊆ Σ and a curve γ through a such
that {{ab} , {ax | ax ∈ E(B − b)}} is a butterfly in ζ. Indeed, the same
holds true if we swap a and b. Hence after contracting ab into the vertex
vab, {{vabx | ax ∈ E(B − b)} , {vabx | bx ∈ E(B − a)}} is a butterfly in ζ

and thus D has a strong embedding in Σ.
For the reverse let h := sgenus(B) and consider a strong embedding of
D into a surface Σ such that Σ = Σ2h if D has a strong embedding in
Σ2h, and Σ = Σ̃h otherwise. Consider S(D) and let M be the perfect
matching of S(D) such that D is the M -direction of S(D). Adapt the
embedding of D in Σ for S(D) by placing the two endpoints of each edge
in M as close together as possible. Let v ∈ V (D) be any vertex and
ev = ab ∈ M the corresponding matching edge in S(D) with a ∈ V1.
Since, in our embedding of D in Σ, the out- and incoming edges at every
vertexv ∈ V (D) form a butterfly, this butterfly induces a bipartition of
the edges of S(D) incident with the endpoints of ev that resembles this
butterfly. Hence the edge ab can be added to the embedding without
producing a crossing.

Hence we obtain the following immediate corollary which was implicitly
stated in [RST99, GT11].

Corollary 7.2.5 ([RST99, GT11]). A digraph D is strongly planar if
and only if S(D) is planar.

In light of Corollary 7.2.5 it comes at no surprise that there exists a deep
connection between strongly planar digraphs and non-even digraphs. To
state the corresponding result we need a digraphic version of the trisum
operation.

Definition 7.2.6 (Small-Cycle-Sum). Let D0 be a digraph, let u, v ∈
V (D0), and let (u, v), (v, u) ∈ E(D0). Let D1 and D2 be such that
D1 ∪D2 = D0, V (D1) ∩ V (D2) = {u, v}, V (D1) \ V (D2) ̸= ∅, V (D2) \
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Figure 7.4.: The subgraphs necessary for the small-cycle-sum operation.

V (D1) ̸= ∅, and E(D1) ∩ E(D2). Let D be obtained from D0 by deleting
some (possibly neither) of the edges (u, v), (v, u). We say that D is a
2-sum of D1 and D2.
Let D0 be a digraph, let u, v, w ∈ V (D0) and (u, v), (w, v), (w, u) ∈ E(D0),
and assume that D0 has a directed cycle containing the edge (w, v),
but not the vertex u. Let D1 and D′

2 be such that D1 ∪ D′
2 ̸= D0,

V (D1)∩V (D′
2) = {u, v, w}, V (D1) \V (D′

2) ̸= ∅, V (D′
2) \V (D1) ̸= ∅, and

E(D1)∩E(D′
2) = {(u, v), (w, v), (w, u)}. Let D′

2 have no edge with tail v,
and no edge with head w and note that this means that (w, v) is butterfly
contractible in D′

2, let D2 be the digraph obtained from D′
2 by contracting

(w, v). Let D be obtained from D0 by deleting some (possible none) of
the edges (u, v), (w, v), (w, u). We say that D is a 3-sum of D1 and D2.
Let D0 be a digraph, let x, y, u, v ∈ V (D0) as well as
(x, y), (x, v), (u, y), (u, v), and assume that D0 has a directed cycle contain-
ing precisely two of the edges (x, y), (x, v), (u, y), (u, v). Let D1 and D′

2 be
such that D1∪D′

2 = D0, V (D1)∩V (D′
2) = {x, y, u, v}, V (D1)\V (D′

2) ̸= ∅,
V (D′

2) \ V (D1) ̸= ∅, and E(D1) ∩ E(D′
2) = {(x, y), (x, v), (u, y), (u, v)}.

Let D′
2 have no edge with tail y or v, and no edge with head x or u

and note that this means that the edges (x, y) and (u, v) are butterfly
contractible. Let D2 be the digraph obtained from D′

2 by contracting the
edges (x, y) and (u, v). Finally, let D be obtained from D0 by deleting
some (possible none) of the edges (x, y), (x, v), (u, y), (u, v). We say that
D is a 4-sum of D1 and D2.
We say that a digraph D is a small cycle sum of two digraphs D1 and D2

if it is an i-sum of D1 and D2 for some i ∈ [1, 3].

Theorem 7.2.7 ([RST99]). Let D be a strongly 2-connected digraph.
Then D is non-even if and only if it can be obtained from a family
of strongly 2-connected strongly planar digraphs and F7 by repeated
applications of the small-cycle-sum operation.
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Indeed, since S(D) is isomorphic to an odd Möbius ladder for every

D ∈ A(
↔
K3), Theorem 3.3.4 allows us to understand Theorem 7.2.7, at

least in some sense, as a digraphic version of Wagner’s characterisation
of K5-minor free graphs, where

↔
K3 takes on the role of K5. A natural

question to ask would be, whether one can also find a digraphic version
of Wagner’s Theorem on planar graphs. To obtain a theorem resembling
Theorem 2.2.3 we first need to have a look at the case of bipartite graphs
with perfect matchings. One direction of the following theorem was proven
in [RST99]. The reverse follows from Theorem 3.3.4 and Corollary 4.3.8.

Theorem 7.2.8 ([RST99]). A brace B is planar if and only if it does not
contain K3,3, the Heawood graph, and the Rotunda as a matching minor.

Figure 7.5.: The Rotunda R with a perfect matching M , and the M -
direction R⃗ = D(R,M) on the right.

By applying Lemma 3.2.25 and Proposition 7.2.4 to Theorem 7.2.8 we
obtain the following characterisation of strongly 2-connected strongly
planar digraphs.

Proposition 7.2.9 (X∗). Let D be a strongly 2-connected digraph. Then
D is strongly planar if and only if it does not contain a digraph from
A(

↔
K3), A(R⃗), as defined in Figure 7.5, and A(F7) as a butterfly minor.

Interestingly, A(
↔
K3) consists completely of planar digraphs, while A(R⃗)

contains planar and non-planar digraphs. All of these characterisations
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heavily rely on 2-extendibility or strong 2-connectivity to make the trisum
or small-cycle-sum operation work. Still one should expect that there is a
characterisation of all planar matching covered graphs, and therefore all
strongly connected strongly planar digraphs in terms of matching minors
or butterfly minors respectively. The most promising way to achieve such
a characterisation is probably to consider the setting of bipartite graphs
with perfect matchings and then use Lemma 3.2.25 and Proposition 7.2.4
as we did above.

Strongly Planar Digraphs and Butterfly Minors of the Cylindrical Grid
While the cylindrical grid generally is not strongly 2-connected, it can be
observed, as described above, to be strongly planar. Still strong planarity
does not seem to be enough as the digraph in Figure 7.2 is also strongly
planar2 but not a butterfly minor of the cylindrical grid. To get closer to
a digraphic analogue of Lemma 2.2.29 we will use Theorem 7.1.1 and the
notion of canonical anti-chains.

Theorem 7.2.10 (X∗). Let D be a strongly connected digraph. Then D

is strongly planar if and only if A(D) contains a butterfly minor of the
cylindrical grid.

Proof. Let us assume D to be strongly planar. Then B := S(D) is planar
and matching covered. By Theorem 7.1.1 B is a matching minor of the
ωB × ωB-grid. The ωB × ωB-grid however is a matching minor of CG3ωB

by Lemmata 5.3.30 and 5.3.31. Let G be the cylindrical grid of order
3ωB , then S(G) = CG3ωB and thus, by Lemma 3.2.25 G must contain a
butterfly minor H which is a member of A(D).
For the reverse direction let us assume there is H ∈ A(D) such that H

is a butterfly minor of the cylindrical grid. That means for some k ∈ N,
the cylindrical grid of order k, let us call it G, contains H as a butterfly
minor. By Lemma 3.2.17 this means that S(G) = CGk contains S(H) as
a matching minor. As S(D) is a matching minor of S(H) and S(H) is a
matching minor of a planar graph, S(D) must be planar and therefore D

is strongly planar.

2In fact every subcubic digraph that is planar is necessarily strongly planar.
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There is an immediate consequence of Theorem 7.2.10 which we state
without proof. A proof for the matching theoretic analogue can be found
in Section 7.3.

Corollary 7.2.11 (X∗). Let D be a proper butterfly minor closed class
of digraphs. Then D has bounded directed treewidth if and only if there
exists a strongly connected strongly planar digraph H such that no member
of D contains a digraph from A(H) as a butterfly minor.

7.2.2. Erdős-Pósa for Anti-Chains

With Theorem 7.2.10 we have an exact description of all strongly connected
digraphs D for which A(D) contains a butterfly minor of the cylindrical
grid. Moreover, since recognising strongly planar digraphs is equivalent
to recognising planar bipartite graphs with perfect matchings, we can
recognise these digraphs in polynomial time. Let us define a generalised
version of the Erdős-Pósa property for digraphs based on canonical anti-
chains.

Definition 7.2.12 (Generalised Erdős-Pósa Property for Butterfly Mi-
nors). Let H be a strongly connected digraph. We say that H has the
generalised Erdős-Pósa property for digraphs if there exists a function
f : N→ N such that for every k ∈ N, every digraph D either contains k

pairwise disjoint subgraphs such that each of them has a butterfly minor
isomorphic to some member of A(H), or there exists a set S ⊆ V (D) with
|S| ≤ f(k) such that D − S does not contain a digraph from A(H) as a
butterfly minor.

Our digraphic analogue of Theorem 2.2.32 is as follows. In the forward
direction of the proof we use a generalised argument similar to the one
used to proof the forward direction of Theorem 2.3.31, while for the reverse
we also adapt the strategy from [AKKW16], this time we stick even closer
to the original.

Theorem 7.2.13 (X∗). A strongly connected digraph D has the gener-
alised Erdős-Pósa property for butterfly minors if and only if D is strongly
planar.
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Proof. Given a strongly connected strongly planar digraph D let us denote
by ωD the smallest integer w such that A(D) contains a butterfly minor
of the cylindrical grid of order w. Note that for any positive integer
k ∈ N the cylindrical grid of order kωD contains k pairwise vertex disjoint
subgraphs, all of which contain a digraph from A(D) as a matching minor.
Let us recursively define the function fD : N → N for the generalised
Erdős-Pósa property, where fD(0) := 0, and for k ≥ 1 let

fD(k) := fD(k − 1) + gdir(kωD) + 1.

Now if dtw(D) ≥ gdir(kωD) + 1, then by Theorem 2.3.22 D contains the
cylindrical grid of order kωD as a butterfly minor and thus, as discussed
above, D contains k pairwise disjoint subgraphs, each of which contain a
digraph from A(D) as a butterfly minor. So we may assume D to have a
directed tree decomposition (T, β, γ) of width at most gdir(kωD). Let us
choose t ∈ V (T ) such that D[β(Tt)] contains a butterfly minor isomorphic
to some member of A(D), but for all t′ ∈ V (Tt) with t ̸= t′, D[β(Tt′)]

does not contain any digraph from A(D) as a butterfly minor. If no such t

exists, D does not contain a digraph from A(D) as a butterfly minor and
thus we are done immediately. Indeed, we may use this case as the base
case k = 0 of our induction. Hence we may assume k ≥ 1 and thus t exists.
Then |β(t)| ≤ dtw(D) + 1 ≤ gdir(kωD) + 1 and every butterfly minor of
D[β(t)] that belongs to A(D) must contain a vertex of β(t). By induction
we either find k − 1 pairwise vertex disjoint subgraph of D − β(Tt) all of
which have a member A(D) as a butterfly minor, or there is a set S′ of
vertices with |S′| ≤ fD(k − 1) such that D − β(t)− S′ has no member of
A(D) has a butterfly minor. In the first case, all k−1 subgraphs are vertex
disjoint from D[β(Tt)] and thus we are done. Otherwise |β(t)∪S| ≤ fD(k),
and we are also done. Therefore every strongly connected strongly planar
digraph D has the generalised Erdős-Pósa property for butterfly minors.
For the reverse direction let H be a strongly connected digraph which is
not strongly planar. For each k ∈ N, k ≥ 1, we construct a digraph DH,k

which contains no two disjoint subgraphs that have a digraph from A(H)

as a butterfly minor, but where one must delete at least k vertices to
remove all occurrences of members of A(H) as butterfly minors in DH,k.
Since k is arbitrary, this proves that no non-strongly planar digraph can
have the generalised Erdős-Pósa property for butterfly minors. Let Gk be
the cylindrical grid of order k and let C1 be the outer-most of its concentric

343



Chapter 7. Excluding a Planar Matching Minor

cycles. Let us select e1 = (v11 , v
1
2), e2 = (v13 , v

1
4), . . . , (v12k−1, v

1
2k) ∈ E(C1),

where we identify v12k and v10 . Then let e = (u, v) ∈ E(H) be an arbitrary
edge. We introduce k pairwise vertex disjoint copies H1, . . . , Hk of H

and denote the copy of (u, v) in Hi by (ui, vi) for all i ∈ [1, k]. Then
DH,k is defined as the digraph obtained by deleting the edges (ui, vi) for
every i ∈ [1, k] and introducing the edges (ui, v

1
2i) and (v12i−1, vi) for each

i ∈ [1, k]. Again we identify v12k and v10 . See Figure 7.6 for an illustration

H1H2

H3 H4

Figure 7.6.: A sketch of the construction of DH,4 in the proof of Theo-
rem 7.2.13.

First notice that any strongly connected subgraph K of DH,k such that
K has a butterfly minor among A(H) would need to contain a path from
v12i to v12i−1. To see this observe that any strongly connected subgraph
K′ of DH,k without such a path would either be a proper subgraph of
Hi for some i ∈ [1, k] and as |V (J)| ≥ |V (H)| and |E(J)| ≥ |E(H)| for
all J ∈ A(H) K′ could not have a butterfly minor among A(H), or K′

would be a subgraph of Gk. But since H is strongly planar, A(H) cannot
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contain a butterfly minor of the cylindrical grid by Theorem 7.2.10. Let
P be a path from v12i to v12i−1 as mentioned above. Note that for every
j ∈ [1, k]\{i}, DH,k−P does not contain a path from v12j to v12j−1. Hence
DH,k −P does not have a butterfly minor among the graphs in A(H) and
thus DH,k cannot have two vertex disjoint subgraphs which each contain
a butterfly minor from A(H). On the other hand, let S ⊆ V (DH,k) be
a set of at most k − 1 vertices. Then there must be some i ∈ [1, k] such
that S does not contain a vertex from Hi, and there is a directed path Q

from v12i to v12i−1 in Gk. Hence Hi + (ui, v
1
2i) +Q+ (v12i−1, vi)− (ui, vi) is

a subgraph of DH,k − S and it contains H as a butterfly minor and our
proof is complete.

So while we now have a proof of Theorem 7.2.13 and a topological char-
acterisation of all strongly connected digraphs that have the generalised
Erdős-Pósa property for butterfly minors, it is not yet clear whether this
result can be turned into an algorithm. If the directed treewidth of our
input digraph D is larger than fH(k), which we can test in polynomial
time by Theorem 2.3.18, we are done. Even though we do not exactly
know how to construct the models within the cylindrical grid. But if the
directed treewidth of D is smaller, we need to find the subtree Tt. To
do so we would need to check for butterfly minor containment of some
member of A(H). By Theorem 2.3.29, if we fix a member J ∈ A(H) we
can test in polynomial time whether D contains J as a butterfly minor,
but since A(H) is potentially infinite this approach is not feasible.
However, in this second case we know that pmw(S(D)) is at most fH(k)

by Theorem 5.3.27 and thus we can use Theorem 5.4.2 on any subgraph
of D to check whether its split contains S(H) as a matching minor. By
using Lemma 3.2.25 and iteratively reducing butterfly minors, we are able
to find the desired vertex disjoint subgraphs that contain butterfly minors
from A(H), in polynomial time. Since the cylindrical grid of order ωH

has directed treewidth ωH and thus its split has perfect matching width
ωH we can also use this approach to find k pairwise disjoint subgraphs of
the cylindrical grid of order kωH , all of which contain a member of A(H)

as a butterfly minor. This leads to the following corollaries.

Corollary 7.2.14 (X∗). Let H be a strongly connected strongly planar
digraph. There exists a constant ωH ∈ N and an algorithm with running
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time |V (D)|O(|V (H)|2+ω2
H ) that decides whether D contains a digraph from

A(H) as a butterfly minor.

Corollary 7.2.15 (X∗). Let H be a strongly connected strongly planar
digraph and k ∈ N be a positive integer. There exists a constant ωH ∈ N

and an algorithm with running time |V (D)|O(|V (H)|2+k2ω2
H ) that either

finds k pairwise vertex disjoint subgraphs of D, each of which contain
a digraph from A(H) as a butterfly minor, or a set S ⊆ V (D) with
|S| ≤ fH(k) such that D − S has no butterfly minor isomorphic to a
member of A(H).

7.3. Matching Minors and the Erdős-Pósa Property

The primary goal of this chapter was the establishment of a matching
theoretic analogue of Theorem 2.2.32. A first step towards this goal is of
course a definition of the matching theoretic Erdős-Pósa property.

Definition 7.3.1 ((Bipartite) Erdős-Pósa Property for Matching Minors).
A (bipartite) matching covered graph H has the (bipartite) Erdős-Pósa
property for matching minors if there exists a function εH : N→ N such
that for every k ∈ N any given (bipartite) matching covered graph G

with a perfect matching M ∈M(G) has k-pairwise disjoint M -conformal
subgraphs, all of which contain H as a matching minor, or there exists an
M -conformal set SH ⊆ V (G) with |SH | ≤ εH(k) such that G− SH does
not have H as a matching minor.

Please note that there is a subtle difference between the generalised
Erdős-Pósa property for butterfly minors and the Erdős-Pósa property
for matching minors. That is, in the directed case we are asking for some
kind of hitting set for all subgraphs that contain a butterfly minor from
the canonical anti-chain. In the matching setting however, deleting a
conformal set in a graph with a perfect matching changes the perfect
matchings themselves. So here is possible that G − S still contains a
subgraph that is a matching minor model of H, but the subgraph itself
might not be conformal in G − S any more. This property renders the
matching version a bit more tricky to handle and marks the biggest novelty
in the proof below.
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A first step is to lift Theorem 7.1.1 to not only provide us with one H

minor for some planar, bipartite and matching covered graph, but with
k disjoint models. To see this simply observe that CG2k has a perfect
matching M and two vertex disjoint M -models of CGk.

Corollary 7.3.2 (D∗). For every planar bipartite matching covered graph
H there exists a number ωH,k and a perfect matching M of the cylindrical
matching grid of order ωH,k such that CGωH,k contains k pairwise vertex
disjoint M -models of H.

For the remainder of this section let H be a fixed planar, bipartite, and
matching covered graph. We define fH := N→ N recursively as follows:

fH(k) := fH(k − 1) + 3(4gcyl(ωH,k) + 2gcyl(ωH,k)
2).

Proposition 7.3.3 (D∗). Every planar bipartite matching covered graph
H has the bipartite Erdős-Pósa property for matching minors.

Proof. We prove the claim by induction on k. For k ≤ 1 there is nothing
to show and thus we may assume k ≥ 2. Let B be any bipartite graph with
a perfect matching. If pmw(B) > gcyl(ωH,k), we are done immediately by
the choice of ωH,k and Theorem 5.3.29. Thus we may assume pmw(B) ≤
gcyl(ωH,k). In this case let M be a perfect matching of B and (T, δ) be an
M -decomposition of minimum width for B. Then width(T, δ) ≤ 2 pmw(B)

by Theorem 5.1.13. Note that B[δ(t)] is an M -conformal subgraph of B
for all inner edges e ∈ E(T ). We may assume that B contains a matching
minor isomorphic to H since otherwise we would be done.
Now we replace some edges of T by directed edges with the colours blue
and red. Let t1t2 ∈ E(T ) and if i ∈ [1, 2], let j ∈ [1, 2] \ {i}. If for some
i ∈ [1, 2] the graph B[δ(Ti)] contains a matching minor model of H that
is conformal in B, delete t1t2 and proceed as follows:

• If B[δ(Ti)] has a matching minor isomorphic to H, introduce the
blue edge (tj , ti).

• If the blue edge (tj , ti) does not exist, but B[δ(Ti)] contains a
matching minor model of H that is conformal in B, introduce the
red edge (tj , ti).

Afterwards every edge of T either still exists, is replaced by a single
directed edge, two directed edges of the same colour, or two directed
edges of different colour. Please note that, if (t1, t2) is a red edge and
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BH ⊆ B[δ(T2)] a matching minor model of H that is conformal in B,
then ∂B(t1t2) ∩M ′ ̸= ∅ for all perfect matchings M ′ of B for which BH

is M ′-conformal. Moreover, at least one such perfect matching M ′ must
exist.
Now, if the edge (t1, t2) exists and t1 has another neighbour, say t3, then
(t3, t1) must also exist. Moreover, if (t1, t2) is blue, then (t3, t1) must also
be blue. If (t1, t2) is red, then the colour of (t3, t1) is not determined by
the colour of (t1, t2).
By Theorem 5.3.2 for every e ∈ E(T ) we can find a set F ⊆ M with
|F | < 4gcyl(ωH,k) + 2gcyl(ωH,k)

2 that is a guard for ∂B(e). Let Fe denote
such a guarding set for every e ∈ E(T ).
Suppose there exist t1, t2 ∈ V (T ) such that both edges, (t1, t2) and (t2, t1),
exist and both are blue. In this case Ft1t2 is a guarding set for ∂B(t1t2)

and for both i ∈ {1, 2}, Bi := B[δ(Ti)] have a matching minor isomorphic
to H. Hence we may apply our induction hypothesis to both Bi and are
done.
Now suppose there exist t1, t2 ∈ V (T ) such that both edges, (t1, t2) and
(t2, t1), exist and both are red. If M ′ is a perfect matching of B such
that some B[δ(Ti)] contains an M ′-conformal matching minor model
of H, then M ′ ∩ ∂B(t1t2) ̸= ∅. However, since Ft1t2 is a guarding set,
M ′′ ∩ ∂B−V (Ft1t2

)(δ(t1t2) \ V (Ft1t2)) = ∅ for all perfect matchings of
B−V (Ft1t2). Thus B−Ft1t2 does not have a matching minor isomorphic
to H and we are done.
So we may assume that no edge of T is replaced by a monochromatic
digon. In this case, there must be a vertex t ∈ V (T ) such that t has no
outgoing blue edge. Let e1, e2, and e3 be the edges incident with t in T .
Then every matching minor model of H in B must either contain an edge
of some ∂B(ei), and thus must contain a conformal cycle crossing ∂B(ei),
or every perfect matching M ′ for which such a model is M ′-conformal,
has an edge in ∂B(ei). In either case, F := Fe1 ∪ Fe2 ∪ Fe3 meets every
M -conformal cycle that crosses ∂B(ei) for all i ∈ [1, 3]. Hence in B−V (F )

no matching minor model of H exists. By setting εH(k) := 2fH(k) our
proof is complete.

Additionally, Corollary 7.1.2 provides us with the necessary tool to obtain
an algorithmic version of Proposition 7.3.3.
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Corollary 7.3.4 (D∗). Let H be a bipartite, planar, and matching
covered graph, B a bipartite graph with a perfect matching, and k ≥ 1 a
positive integer. There exist constants c1 = c1(H, k), c2 = c2(H, k) and
an algorithm with running time O(V (B)c1) that either finds a perfect
matching M of B and k pairwise vertex disjoint M -models of H in B, or
a conformal set S ⊆ V (B) of size at most c2 such that B − S does not
have H as a matching minor.

As pointed out above, the matching version of the Erdős-Pósa property
for minors does not necessarily ask for a hitting set as sometimes deleting
a certain conformal set of vertices might destroy some perfect matchings
in B and thereby render existing matching minor models non-conformal
any more without actually hitting them. Due to this it is not obvious
whether the standard approach to proving Theorem 2.2.32 can be applied
for the reverse of Proposition 7.3.3. Instead we take a detour by utilising
our findings in Section 7.2.2.

Theorem 7.3.5 (X∗). Let H be a matching covered bipartite graph. The
following statements are equivalent:

i) H has the Erdős-Pósa property for matching minors
ii) D(H,M) has the generalised Erdős-Pósa property for butterfly mi-

nors for some M ∈M(H), and
iii) D(H,M) has the generalised Erdős-Pósa property for butterfly mi-

nors for every M ∈M(H).

Proof. To prove the assertion we take the following route: First we show
that (i) implies (ii), then we deduce (iii) from (ii), and finally we show
that (iii) implies (i) which completes the proof.
So let us assume H has the Erdős-Pósa property for matching minors and
let εH : N → N be the associated function. Let us choose MH ∈ M(H)

and set DH := D(H,MH). Then let D be any digraph, B := S(D) and
M ∈ M(B) such that D = D(B,M). Notice that D has k pairwise
disjoint subgraphs, all of which contain some member of A(DH) as a
butterfly minor, if and only if B has k pairwise disjoint M -conformal
subgraphs all of which contain H as a matching minor. So in case D does
not have k pairwise disjoint such digraphs, there must be an M -conformal
set SH ⊆ V (B) with |SH | ≤ εH(k) such that B − SH does not contain
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H as a matching minor. Let F := M ∩ E(B[SH ]). Then, as SH is M -
conformal, we have |F | ≤ 1

2
εH(k), and by Lemma 3.2.25 D − F does not

contain any digraph from A(DH) as a butterfly minor. As our choice of D
was arbitrary, we may set fDH

:= 1
2
εH and thus DH has the generalised

Erdős-Pósa property for butterfly minors.
Now let us assume there is MH ∈ M(H) such that DH := D(H,MH)

has the generalised Erdős-Pósa property for butterfly minors. Let M ′
H ∈

M(H) \ {MH} and D′
H := D(H,M ′

H). Since the generalised Erdős-Pósa
property for butterfly minors only cares about A(DH) and not necessarily
about DH itself, it suffices to show A(DH) = A(D′

H). Consider a digraph
J ∈ A(D′

H). Then every proper butterfly minor J ′ of J has the property
that S(J ′) does not contain H as a matching minor, while S(J) does
contain H as a matching minor. Therefore, J must be DH -minimal
and thus J ∈ A(DH). With the same argument one can also obtain
A(DH) ⊆ A(D′

H) and our claim follows.
So at last we may assume D(H,MH) has the generalised Erdős-Pósa
property for butterfly minors for every MH ∈ M(H) and let us fix any
MH ∈ M(H). Let DH := D(H,MH), and let fDH : N → N be the
function associated with the generalised Erdős-Pósa property for butterfly
minors of DH . Let B be any bipartite graph with a perfect matching M .
As before, B contains k pairwise disjoint M -conformal subgraph, all of
which have H as a matching minor, if and only if D := D(B,M) contains
k pairwise disjoint subgraphs, all of which have a butterfly minor from
A(DH). So in case B does not have k such M -conformal subgraphs, then
D does not have k such subgraphs either and thus there must exist a set
SH ⊆ V (D) with |SH | ≤ fDH (k) such that D − SH does not have any
butterfly minor isomorphic to a member of A(DH). Note that SH ⊆M

and thus |V (SH)| ≤ 2fDH (k), and V (SH) is an M -conformal set of vertices
in B. Moreover, by Lemma 3.2.25 we know that B − V (SH) does not
have H as a matching minor. So by setting εH := 2fDH we have found a
function that witnesses the Erdős-Pósa property for matching minors of
H.

Now Theorem 7.3.5 allows us to use Theorem 7.2.13 in order to obtain the
reverse direction of Proposition 7.3.3 and thus give a complete characteri-
sation of all bipartite matching covered graphs that have the Erdős-Pósa
property for matching minors. For this simply note that, if a bipartite
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and matching covered graph H has the Erdős-Pósa property for matching
minors by Theorem 7.3.5, every M -direction D of H, where M ∈M(H),
has the generalised Erdős-Pósa property for butterfly minors. This how-
ever means that, by Theorem 7.2.13, D must be strongly planar, and thus,
by Proposition 7.2.4, H must be planar. Hence we may close this chapter
by stating the following theorem.

Theorem 7.3.6 (X∗). Let H be a bipartite and matching covered graph.
Then H has the Erdős-Pósa property for matching minors if and only if it
is planar.
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Chapter 8.

A Weak Structure Theorem

Bipartite matching covered graphs of small perfect matching width can
be considered to be relatively well described by their perfect matching
decompositions. As we have seen in Corollary 5.1.21, a matching minor
of a bipartite graph of perfect matching width k cannot have perfect
matching width more than 2k. Moreover, on such a graph B we are able
to solve the t-disjoint alternating paths problem in polynomial time by
Theorem 5.4.1, and we are even able to determine, for a fixed bipartite
matching covered graph H, whether B does contain H as a matching
minor or not by Theorem 5.4.2. If the perfect matching width of B

exceeds a certain value Theorem 5.3.29 yields the existence of a large
planar matching minor. Indeed, even the areas that contain large grid
matching minors or other matching minors of large perfect matching width
can be arranged in a tree-like fashion, as seen in Theorem 6.3.19. By
studying Theorem 5.3.29 more closely, one can obtain an approximate
characterisation of all bipartite graphs with perfect matchings that exclude
some bipartite, planar, and matching covered graph H as a matching
minor, as stated in Theorem 7.0.1. Most of these results are obtained
by a mixture of, sometimes previously established, results in structural
digraph theory, such as Theorem 2.3.22 and Lemma 6.3.22, and the
higher flexibility of the matching setting which essentially allows to change
between equivalent digraphs whenever need arises. This second part has
already produced some additional insight into the overall structure of
digraphs, in particular when it comes to digraphs that exclude certain
anti-chains of butterfly minors. As an example recall Theorem 7.3.5
which highlights the close relation between structural matching theory
and structural digraph theory.
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In most of the cases so far, we were concerned with the exclusion of
some bipartite, planar, and matching covered graph H. But what can we
say if H is not planar? This is largely where the input from structural
digraph theory ceases to provide a deeper understanding, and where the
direction of structural insight is indeed reversed. When excluding a single
non-planar bipartite and matching covered graph as a matching minor,
the structure that arises from excluding K3,3 is probably the one that is
best understood. Indeed, K3,3 plays a major role in the bipartite Pfaffian
recognition problem and several (computationally) equivalent problems on
digraphs, as we described in Section 3.3. With Theorem 3.3.8 we have an
example of a structure theorem that comes as close to similar results for
(ordinary) minors, such as Wagner’s Theorem on K5-minor free graphs,
as it might be possible within the realm of bipartite graphs with perfect
matchings. Curiously, it was the discovery of Theorem 3.3.8 that lead to the
first structure theorem of digraphs that exclude some strongly connected
digraphs as a butterfly minor in form of Theorem 7.2.7. To this date, all
known characterisations of classes of digraphs excluding some strongly
connected butterfly minor are based on matching theory, and most proofs
rely heavily on the matching theoretic machinery developed to deal with
matching minors. One might ask what the reason for this could be, and
the answer appears to be relatively straightforward: By Theorem 2.3.27
the 2-disjoint paths problem for digraphs is NP-complete, and thus it is
unlikely that there is a directed version of the characterisation of ‘flatness’
as one can find in the form of Theorem 2.2.6. However, with Theorem 4.0.4,
we have found a matching theoretic analogue, and especially by exploiting
our finding on the existence of conformal bisubdivisions of K3,3, we
were able to turn this into the algorithmic counterpart Theorem 4.0.6
of Theorem 2.2.7. This means that whatever it is that is responsible for
the problems one encounters when trying to work with butterfly minors
on digraphs directly, this reason vanishes once one invokes the matching
setting. Let H be some digraph. With the observation that a digraph
D excludes the entire anti-chain A(H) as butterfly minors if and only if
S(D) does not contain S(H) as a matching minor, we have the perfect
tool to synthesize a combined structure theory for digraphs and bipartite
graphs with perfect matchings.
In this chapter, we combine all previous results into an approximate
description of those bipartite graphs that exclude Kt,t as a matching
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minor for some t ∈ N similar to Theorem 2.2.34 and Theorem 2.2.35. To
do this, we once more combine the more structured digraphic setting, and
make use of previously obtained results. This time we apply some lemmas
used to prove a directed version of the Flat Wall Theorem and the increased
flexibility of the matching setting to avoid the structural problems implied
be results like Theorem 2.3.27. An important ingredient towards such
a theorem is a notion of ‘flatness’ appropriate for the matching setting.
Theorem 4.0.4 already hints at a possible notion of flatness, but the
reductions used there are already too specialised. Indeed, not all crosses
over conformal cycles are of a form that can be used to create larger
matching minors. So Theorem 3.3.8 in its more general form might be a
better tool for us.
Let B be a Pfaffian brace and H be a planar brace. We say that H is a
summand of B if there exist planar braces H1, . . . , Hℓ such that B can be
constructed from the Hi by repeated applications of the trisum operation,
and H = H1.
In contrast to the undirected setting, where it makes sense to speak about
subgraphs as a means of reductions, in the setting of graphs with perfect
matchings, we sometimes will have to perform tight cut contractions.
Let B and H be bipartite graphs with a perfect matching such that H

has a single brace J that is not isomorphic to C4. We say that H is a
J-expansion. A brace G of B is said to be a host of H if G contains a
conformal subgraph H ′ that is a J-expansion and can be obtained from
H by repeated applications of tight cut contractions. The graph H ′ is
called the remnant of H.
It makes sense for us to work with a cylindrical grid/wall rather than a
square one. However, the only problem this brings is that any cylindrical
wall has two faces which might be considered the natural ‘outer face’.
Indeed, we would like the inner-most and the outer-most cycle of the
cylindrical wall to both bound faces in an appropriate reduction.
Let B, H, and J be bipartite graphs with perfect matchings such that H

and J are conformal subgraphs of B. We say that H is J-bound if there
exists a subgraph K of B − J that is the union of elementary components
of B − J such that K ∪ J is matching covered, and H is a conformal
subgraph of K ∪ J . The graph K ∪ J is called a J-base of H in B.
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Definition 8.0.1 (P -Flatness). Let B be a bipartite graph with a perfect
matching, and let H be a planar matching covered graph that is a J-
expansion of some planar brace J . Moreover, let P be a collection of
pairwise vertex disjoint faces of H such that P is a conformal subgraph of
H. At last, let A ⊆ V (B) be a conformal set. Then H is P -flat in B with
respect to A if

i) H is a conformal subgraph of B′ := B −A,
ii) some P -base of H in B′ has a Pfaffian brace B′′ that is a host of H,

and
iii) B′′ has a summand G that contains a remnant H ′ of H such that

every remnant of a face from P within H ′ bounds a face of G.

The set A in the definition above is the apex set, similar to the one
which occurs in the version of flatness used for the original Flat Wall
Theorem. The set P takes on two roles at once, it mimics the separator
of the separation (X,Y ) in the original definition and also allows us to
essentially prescribe which faces of H should take the role of the outer
face. Since we do not require B − A to be a brace or even matching
covered, we need to remove all non-admissible edges and just take the
matching covered subgraph that contains H. This is modelled by selecting
a certain P -base of H in B′. Now that we have reduced B − A to a
matching covered graph B′′′, we must go one step further and get rid of
the non-trivial tight cuts of B′′′. This is done by selecting B′′ to be a
host of H in B′′′. By requiring B′′ to be Pfaffian, we ready ourselves for
the final reduction. Indeed, since we insist G to be a summand of B′′ this
means B′′ cannot be isomorphic to the Heawood graph by Theorem 3.3.8.
Since G is a summand of B′′, it must be a planar brace. To get to this
point, some tight cut contractions could have been necessary, and thus we
are only able to talk about a remnant H ′ of H, but since H was chosen
to be a J-expansion of some planar brace J , this remnant is well defined.
Similarly, the tight cut contractions could have shrunken some of the faces
that were selected to form P , but we can still make out their remnants
and thus (iii) resembles the third requirement of the original definition.
Next, we need a definition for our wall itself. Note that the cylindrical
matching grid CGk is already a cubic planar graph, and thus every
bipartite graph with a perfect matching that has CGk as a matching
minor must also contain a conformal bisubdivision of CGk. However, we
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need a slightly more restricted version of the cylindrical matching grid,
since we want to apply some results that were originally proven for the
cylindrical k-wall. Let M be the canonical matching of CG2k, then CG2k

contains an M -conformal subgraph H such that D(H,M) is a cylindrical
k-wall, and the split of a cylindrical k-wall clearly contains CGk as a
matching minor. Hence this restriction only costs us a factor of two in
the function for the cylindrical grid.

Definition 8.0.2 (Matching Wall). Let k ∈ N be a positive integer. The
elementary matching k-wall with its canonical matching M is defined to be
the bipartite graph W with perfect matching M such that D(W,M) is the
elementary cylindrical k-wall. A matching k-wall W ′ is a bisubdivision of
the elementary matching k-wall, and a perfect matching M ′ is its canonical
matching if D(W ′,M ′) is a cylindrical k-wall.
The perimeter of W ′, denoted by Per(W ′), is the union of the outer-most
and the inner-most M ′-conformal cycle of W ′.

Lemma 8.0.3 (G∗). There exists a function wm : N→ N such that for
every k ∈ N and every bipartite graph with a perfect matching M it holds
that, if pmw(B) > wm(k), then B contains a matching k-wall W as an
M -conformal subgraph such that M |W is the canonical matching of W .

Consider the matching grid CGk, and let X be a set that induces a
non-trivial tight cut in CGk. Notice that this means that either X or X

must induce a subpath of length three on either the outer-most or the
inner-most cycle of CGk. This means there exists a unique brace Jk of
CGk that is not isomorphic to C4. Now let W be a matching k-wall, then
W contains CGk as a subgraph, indeed, W contains a matching model of
CGk that contains all of W . Hence W is a Jk-expansion.
Let k, t ∈ N be positive integers and B be a bipartite graph with a
conformal matching k-wall W , and let H be some bipartite matching
covered graph. Let M be a perfect matching of B. We say that W

M-grasps an H-matching minor if there exists a matching minor model
µ : H → B such that µ(H) is M -conformal, and for every e ∈ E(H)∩M |H
the M -conformal path µ(e) is completely contained in W . We say that
W grasps an H-matching minor if there exists a perfect matching M of
B such that W M -grasps H.
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With this, we are ready to state our matching theoretic version of the
Flat Wall Theorem.

Theorem 8.0.4 (G∗). Let r, t ∈ N be positive integers. There exist
functions α : N → N and ρ : N ×N → N such that for every bipartite
graph B with a perfect matching M the following is true: If W is an M -
conformal matching ρ(t, r)-wall in B such that M ∩E(W ) is the canonical
matching of W , then either

i) B has a Kt,t-matching minor1 grasped by W , or
ii) there exist an M -conformal set A ⊆ V (B) with |A| ≤ α(t) and

an M -conformal matching r-wall W ′ ⊆ W − A such that W ′ is
Per(W ′)-flat in B with respect to A.

In the following, we sometimes say that a conformal matching k-wall W
is flat in B, if k is large enough and the second part of the theorem above
holds true for W .

A Weak Structure Theorem With Theorem 8.0.4 at hand, we can
give an approximate characterisation of all bipartite graphs with perfect
matchings that exclude Kt,t as a matching minor for some t ∈ N. This
weak structure theorem is similar to Theorem 2.2.34 and in some sense
can be seen as a generalisation of Theorem 3.3.8 in conjunction with
Theorem 3.3.4.

Theorem 8.0.5 (G∗). Let r, t ∈ N be positive integers, α and ρ be the
two functions from Theorem 8.0.4, and B be a bipartite graph with a
perfect matching.

• If B has no Kt,t-matching minor, then for every conformal matching
ρ(t, r)-wall W in B and every perfect matching M of B such that
M ∩ E(W ) is the canonical matching of W , there exist an M -
conformal set A ⊆ V (B) with |A| ≤ α(t) and an M -conformal
matching r-wall W ′ ⊆ W − A such that W ′ is Per(W ′)-flat in B

with respect to A.
• Conversely, if t ≥ 2 and r ≥

√︁
2α(t), and for every conformal

matching ρ(r, t)-wall W in B and every perfect matching M of B
such that M ∩ E(W ) is the canonical perfect matching of W , there

1Please note that this matching minor is not necessarily M-conformal.

358



exist an M -conformal set A ⊆ V (B) with |A| ≤ α(t) and an M -
conformal matching r-wall W ′ ⊆W−A such that W ′ is Per(W ′)-flat
in B with respect to A, then B has no matching minor isomorphic
to Kt′,t′ , where t′ = 16ρ(t, r)2.

Proof. The first part of the theorem follows immediately from Theo-
rem 8.0.4, since in case B does not have Kt,t as a matching minor, the
first part of Theorem 8.0.4 can never be true and thus every matching
ρ(t, r)-wall must be flat in B.
For the reverse, note that an elementary matching ρ(t, r)-wall has ex-
actly 16ρ(t, r)2 vertices. Now suppose B has a matching minor model
µ : Kt′,t′ → B. Then there exists a perfect matching M such that µ

is M -conformal. Indeed, Kt′,t′ contains an M |Kt′,t′ -conformal elemen-
tary matching ρ(t, r)-wall, and thus µ(Kt′,t′) contains an M -conformal
matching ρ(t, r)-wall W . Indeed, for every vertex w of degree three in W

there exists a unique vertex uw ∈ V (Kt′,t′) such that w ∈ V (µ(uw)), and
in case w ̸= w′ are both vertices of degree three in W , then uw ̸= uw′ .
Moreover, if P is a path in W whose endpoints w and w′ have degree
three in W and all internal vertices are vertices of degree two in W , then
V (P ) ⊆ V (µ(uw)) ∪ V (µ(uw′)).
By assumption there exist an M -conformal set A ⊆ V (B) and an M -
conformal matching r-wall W ′ ⊆ W such that W ′ is Per(W ′)-flat in B

with respect to A. Now W ′ has 16r2 many vertices of degree three in W ′,
16r of which lie on Per(W ′). Since r ≥

√︁
2α(t), we have at least 32α(t)

many such degree three vertices. Thus, with |A| ≤ α(t) and t ≥ 2, there
exist w1, . . . , w6 ∈ V (W ′ − Per(W ′)) such that V (µ(uwi)) ∩A = ∅ for all
i ∈ [1, 6]. This, however, means that for every Per(W ′)-base H of W ′,
every brace J of H that is a host of W ′ must contain K3,3 as a matching
minor and therefore no such J can be Pfaffian by Theorem 3.3.4. Hence
W ′ cannot be Per(W ′)-flat in B with respect to A and we have reached a
contradiction.

Organisation What remains is to prove Theorem 8.0.4. Our proof
and the remainder of the chapter are organised as follows. In the current
section we introduce the Directed Flat Wall Theorem as proposed in
[GKKK20], we discuss the merits and the demerits of this theorem, and
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explain in more detail what challenges [GKKK20] faced and how they
were handled.
The next three sections are dedicated to the proof of Theorem 8.0.4. Here
we follow the known proofs of the (Directed) Flat Wall Theorem with
some slight alterations. Specifically, given a bipartite graph B with a
perfect matching M and a large M -conformal matching wall W we show
that

i) If there are many pairwise disjoint internally M -conformal paths
that are internally disjoint from W and have both of their endpoints
in W but they are far apart from each other in W , we find Kt,t

as an M -minor grasped by W . This is done in Section 8.1 and we
essentially adapt the tools introduced in [GKKK20] to achieve this.

ii) The second part consists of two steps at once, both of which can
be solved by the same technique, but since they are still slightly
different, we explain both:

a) In case there are many pairwise disjoint internally M -conformal
paths that are internally disjoint from W and have both of
their endpoints in W and close together in W but not in the
same cell, we can find many pairwise disjoint matching minor
models of K3,3, and those can be used to construct a matching
minor model of Kt,t which is grasped by W .

b) Finally, we know that every internally M -conformal path that
is internally disjoint from W must have both endpoints on
the same cell of W . Hence we may associate with every cell
of W a bipartite matching covered graph that is otherwise
disconnected from W . If many of these cells are, essentially
non-Pfaffian, we can again find many pairwise disjoint models
of K3,3 which then can be used to construct a matching minor
model of Kt,t that is grasped by W .

While the second and third steps are relatively similar to the proof of
the undirected Flat Wall Theorem, they differ vastly from their directed
analogues. Both steps, (ii) and (iii), are discussed in Section 8.3. The
actual proof of Theorem 8.0.4 and thus the combination of all three steps
is then done in Section 8.4.
We close this chapter with Section 8.5, where we use the established tools
to give analogues of Theorem 8.0.4 and Theorem 8.0.5 for digraphs, where
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Kt,t is replaced by A(
↔
Kt), and the matching minor relation is replaced by

the butterfly minor relation. We also use an old result of Thomassen to
prove a new duality theorem for undirected treewidth.

The Directed Flat Wall Theorem Before we dive into the steps necessary
to prove Theorem 8.0.4, let us quickly discuss the current state of art in
terms of structure theorems for digraphs that exclude

↔
Kt as a butterfly

minor. Clearly, the main difficulty one faces in the case of digraphs is
the lack of a Two Paths Theorem and therefore the lack of an actual
description of ‘flatness’ that resembles the flatness of undirected graphs.
Instead, Giannopoulou et al. proposed the following relaxation of flatness.
Let W be a cylindrical k-wall, for some k ∈ N, with C1 as its inner-most
cycle and Ck as its outer-most cycle. The perimeter of W , denoted by
Per(W ), is C1 ∪ Ck.

Definition 8.0.6 (Almost-Flatness). Let D be a digraph and A ⊆ V (D)

be a set of vertices. Let d, t ≥ 1 be integers and let W ⊆ D − A be a
cylindrical wall. We say that W is almost flat in D − A with directed
treewidth bounded by d if the following holds.

i) There is a separation (X,Y ) of D2 such that X ∩ Y = A ∪ Per(W ),
W − Per(W ) ⊆ Y , and every vertex in Y reaches a vertex of W −
Per(W ) or is reachable from it.

ii) For every path Q in D−A that is internally disjoint from W−Per(W ),
such that Q has end endpoint in W − Per(W ) and the other in W

there is a cell C of W such that the boundary of C contains both
endpoints of Q. Furthermore, for every cell C of W , if Z is the set
of vertices of a path P in D − A with both endpoints on C and
internally disjoint from W , then the components of Z[ ], which are
called extensions, have directed treewidth at most d.

iii) If T is a tile W of width five and c1, c2 are its two upper corners
from left to right and d1, d2 are its two lower corners from left to
right, then there are no two disjoint paths P1, P2 in D−A−(W −T )

connecting c1 to d2 and c2 to d2.

2Note that (X,Y ) is indeed a separation, that is no edge of D has one endpoint in
X \ Y and the other in Y \ X. We emphasise this since we are in a digraph and
(X,Y ) could also denote a directed separation - which it does not here.
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If W has at most t rows whose tiles do not satisfy property iii), but W

satisfies properties i) and ii) then we say that W is t-barely flat.

The idea behind bounding the directed tree width of the extensions is
that Theorem 2.3.28 gives at least some handle on the existence of disjoint
paths that use the extensions.
A tournament of size t is an orientation of the complete graph Kt, that is,
a tournament is a subgraph of

↔
Kt obtained by deleting exactly one of the

two edges (u, v) and (v, u) for every pair u, v ∈ V (
↔
Kt) of vertices.

There exist two versions of the Directed Flat Wall Theorem as proposed in
[GKKK20]. The weaker version, in the sense that it excludes a tournament

of size t as a butterfly minor instead of
↔
Kt, roughly says that either the

directed treewidth of D is bounded, or there exists a cylindrical k-wall
W in a digraph D such that one can either find a tournament of size t

as a butterfly minor grasped by W , or there exists a set A ⊆ V (D) of
bounded size and a reasonably big cylindrical wall W ′ ⊆W −A such that
W ′ has the following properties:

i) D−A−Per(W ) has a unique strong component K such that W ′ ⊆
Per(W ) ∪K, and

ii) W ′ is almost flat in D −A.
This structure theorem for digraphs excluding tournament butterfly minors
has, in some sense, an even weaker sibling. In [Erd20], Erde proved that
every digraph of large enough directed pathwidth, depending on some
integer t, must contain every arborescence on t vertices as a butterfly
minor. Both of these theorems are able to grasp some of the underlying
structure of the digraphs that force their respective parameters to be large,
but in both cases the butterfly minors they obtain are not necessarily
strongly connected. When concerned with strongly connected butterfly
minors, additional compromises are necessary.

Theorem 8.0.7 (Directed Flat Wall Theorem, [GKKK20]). There exist
functions a : N → N, b : N → N, and d : N ×N → N such that for all
integers t, r ∈ N and every digraph D one of the following is true:

i) dtw(D) ≤ d(t, r),

ii) D contains
↔
Kt as a butterfly minor, or
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8.1. Describing and Subdividing a Wall

iii) there exist a set A ⊆ V (D) with |A| ≤ a(t) and a cylindrical r-wall
W ⊆ D−A which is b(t)-barely flat in G−D with directed treewidth
bounded by d(r, t).

The nature of the definition of being almost flat or b-barely flat, namely the
part where the directed treewidth of the extensions needs to be bounded,
greatly reduces the power of the Directed Flat Wall Theorem. Indeed,
while the Flat Wall Theorem and Theorem 8.0.4 claim the existence of
flat walls within every large enough wall, Theorem 8.0.7 can only ensure
the existence of a somewhat-flat wall somewhere in the graph. This means
that Theorem 8.0.7 in its current form cannot be used to obtain a directed
analogue of the Weak Structure Theorem, a shortcoming which can be
fixed by dropping the requirement for the extensions having bounded
directed treewidth and thereby further weakening the theorem.
Still, apart from possible improvements on the functions a, b, and d,
Theorem 8.0.7 is probably best possible for the purpose of capturing the
structure of digraphs that exclude exactly

↔
Kt as a butterfly minor. De-

pending on the application however, it might be necessary to acknowledge
that just excluding

↔
Kt as a butterfly minor still allows for other members

of A(
↔
Kt) to be butterfly minors of D. Especially for topology this means

that, by Proposition 7.2.4, Theorem 8.0.7 is not fit to capture the structure
of digraphs of bounded strong genus.

8.1. Describing and Subdividing a Wall

Generally speaking, a jump is a path (undirected, directed, or internally
M -conformal) that starts and ends on different vertices of a wall W

(undirected, directed or matching), and whose endpoints belong to different
cells of W . With cell we generally mean a face of the wall that is not
bounded by a cycle of its perimeter. A jump is said to be long if its
endpoints are relatively far apart from each other.
Let W be a matching wall with canonical matching M in a bipartite graph
B. The goal of this section is to show that the existence of many pairwise
disjoint long jumps that start from different cells implies the existence
of a Kt,t M -minor which is grasped by W . Notice that, by definition,
D(W,M) is a cylindrical wall of the same order. Indeed, there exist many
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internally M -conformal paths that are long jumps over W in B if and
only if there exist many directed paths that are long jumps over D(W,M)

in D(B,M). Moreover, if we find
↔
Kt as a butterfly minor in D(B,M),

then B contains Kt,t as an M -minor as a consequence of Lemma 3.2.17.
These observations allow us to use some of the tools developed in
[GKKK20] in the directed setting to quickly obtain our desired result for
the matching setting.

Definitions from the Directed Flat Wall Theorem To state one of the
main tools we need from [GKKK20], we have to introduce some of the
definitions and notation from the proof of the Directed Flat Wall Theorem.
An important part of these definitions is a parametrisation of the cylindrical
wall W that makes handling the large families of disjoint paths one needs
to route through W a bit more approachable. An advantage, to some
degree, of introducing the directed counterpart of this parametrisation
first is, that we can lean on it when we need to introduce the matching
theoretic analogues.

Q1 Q2 Q3 Q4

P 1
1

P 2
1

P 1
2

P 2
2

P 1
3

P 2
3

P 1
4

P 2
4

Figure 8.1.: The elementary cylindrical 4-wall. The thick edges of the
cycles Q1 and Q4 mark its perimeter.

Suppose P = {P1, . . . , Pk} is a family of pairwise disjoint directed paths,
and Q is a directed path that meets all paths in P such that Pi ∩Q is a
directed path.
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8.1. Describing and Subdividing a Wall

• We say that the paths P1, . . . , Pk appear in this order on Q if for
all i ∈ [1, k − 1], Pi ∩Q occurs on Q strictly before Pi+1 ∩Q with
respect to the orientation of Q.

• In this case, for i, j ∈ [1, k] with i < j, we denote by Q[Pi, . . . , Pj ]

the minimal directed subpath of Q containing all vertices of Q ∩ Pℓ

for ℓ ∈ [i, j].
It is convenient for us to imagine cylindrical walls, and similarly, as we will
see later, their matching theoretic analogues, as illustrated in Figure 8.1.
So we think of the concentric cycles as paths from the top to the bottom
with an additional edge from the lowest row back to the top. The directed
paths that alternately go in and out of the wall are then seen as the
horizontal paths. Since the underlying undirected graph is planar and 3-
connected, similar to other arguments before, Whitney’s Theorem ensures
a unique planar embedding. In particular, we will refer to the faces of the
embedding as the faces of the graph itself. A face that is bounded by a
cycle that is not the perimeter is called a cell of the wall.

Definition 8.1.1 (Vertical and Horizontal Paths). Let k ∈ N be a positive
integer and W be a cylindrical k-wall.
We denote the vertical paths of W by Q1, . . . , Qk, ordered from left to
right. Let

{︁
P i
j | i ∈ [1, 2], j ∈ [1, k]

}︁
be the horizontal directed paths such

that the paths P 1
j , j ∈ [1, k], are oriented from left to right and the paths

P 2
j , j ∈ [1, k], are oriented from right to left such that P i

j is above P i′

j′

whenever j < j′ and P 1
j is above P 2

j for all j ∈ [1, k]. The top line is P 1
1 .

By P̂ j we denote the disjoint union of P 1
j and P 2

j for all j ∈ [1, k].
Two horizontal paths P i

j and P i′

j′ are consecutive if i ̸= i′, and j′ ∈
[j− 1, j+1] or if P i

j +P i′

j′ = P̂ j . A family P ⊆
{︁
P i
j | i ∈ [1, 2], j ∈ [1, k]

}︁
is said to be consecutive if there do not exist paths P1, P2 ∈ P, and
P3 ∈

{︁
P i
j | i ∈ [1, 2], j ∈ [1, k]

}︁
\ P such that there is no directed path

from P1 to P2 in W − P3. We extend our notation for P i
j [Qp, . . . , Qq]

for p < q in the natural way for P[Qp, . . . , Qq] and, in a slight abuse of
notation, identify P̂ i and

{︁
P 1
i , P

2
i

}︁
.

For more convenience we write “Let W = (Q1, . . . , Qk, P̂ 1, . . . , P̂ k) be a
cylindrical k-wall.” to fix the embedding and naming of the vertical cycles
and horizontal paths as explained above and depicted in Figure 8.1 for
the case k = 4.
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Definition 8.1.2 (W -Distance). Let k ∈ N be a positive integer and
W = (Q1, . . . , Qk, P̂ 1, . . . , P̂ k) be a cylindrical k-wall. Given two vertices
u, v ∈ V (W ), we say that they have W -distance at least i if there exist i

distinct vertical or i distinct horizontal paths whose removal separates u

and v in W .

Definition 8.1.3 (Slice). Let k ∈ N be a positive integer and
W = (Q1, . . . , Qk, P̂ 1, . . . , P̂ k) be a cylindrical k-wall. A slice W ′

of W is a cylindrical wall containing the vertical paths Qi, . . . , Qi+ℓ

for all i ∈ [1, k] and some ℓ ∈ [1, k − i], and the horizontal paths
P 1
1 [Qi, . . . , Qi+ℓ], . . . , P

2
k [Qi, . . . , Qi+ℓ]. We say that W ′ is the slice of

W between Qi and Qi+ℓ and that it is of width ℓ+ 1.

Definition 8.1.4 (Strip). Let k ∈ N be a positive integer and W =

(Q1, . . . , Qk, P̂ 1, . . . , P̂ k) be a cylindrical k-wall. A strip of height j− i+1

between i and j of W is the subgraph of W induced by the horizontal
paths P̂ i, . . . , P̂ j for some i < j ∈ [1, k] and the subpaths Qℓ[P̂ i, . . . , P̂ j ]

for ℓ ∈ [1, k].

Definition 8.1.5 (Tiles). Let k ∈ N be a positive integer and W =

(Q1, . . . , Qk, P̂ 1, . . . , P̂ k) be a cylindrical k-wall. Let i, j ∈ [1, k] and
d ∈ N be positive integers. The tile T of W at (i, j) of width d is defined
as the subgraph of W induced by⋃︂

ℓ∈[i,i+2d+1]

Qℓ[P̂ j , . . . , P̂ j+2d+1] ∪
⋃︂

ℓ∈[j,j+2d+1]

P̂ ℓ[Qi, . . . , Qi+2d+1].

We call i the column index of the tile, j the row index of the tile, and
say that the j-th row has a tile T if the row index of T is j. To make the
notation a bit more compact we write Ti,j,d for the tile of W at (i, j) of
width w.
Since W is a cylindrical wall, there exist subgraphs of W that technically
also form tiles, but that do not necessarily fit into our parametrisation
of W . To overcome this, we agree for ℓ > k to set Pℓ := P((ℓ−1) mod k)+1.
This means that tiles that start near the bottom are allowed to continue at
the top. Indeed, the notions of top and bottom are only present because
of the way we parametrised the wall, and thus even those tiles are well
defined.
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8.1. Describing and Subdividing a Wall

The perimeter of the tile T is T ∩ (Qi ∪ Qi+2d+1 ∪ P 1
j ∪ P 2

j+2d+1). We
call Qi the left path of the perimeter, Qi+2d+1 its right path, P 1

j the upper
path of the perimeter, and finally P 2

j+2d+1 is its lower path.
The corners of a tile are the vertices a, b, c, d ∈ V (T ) where a, the upper
left corner, is the common starting point of T ∩ Qi and T ∩ P 1

j , b, the
upper right corner, is the end of T ∩P 1

j and the starting point of Qi+2d+1,
c, the lower left corner, is the common end of T ∩ Qi and T ∩ P 2

j+2d+1,
finally d, the lower right corner, is the end of T ∩Qi+2d+1 and the starting
point of T ∩ P 2

j+2d+1.
The centre of T is the boundary of the unique cell CT of W whose
boundary consists of vertices from Qi+d+1, Qi+d+2, P 2

j+d+1, and P 1
j+d+2.

All vertices of T which are not in the centre and not on the perimeter of
T are called internal. See Figure 8.2 for an illustration of a tile.

Please note that by this definition, only cells that lie between P 1
i and P 2

i

for some i ∈ [1, k] can be centre of a tile. However, if we were to take the
mirror image of our currently fixed embedding along a straight vertical
line between Q⌊ k2 ⌋ and Q⌊ k2 ⌋+1, we obtain a new embedding for which

we then can reapply our parametrisation. By doing so, every path P 1
i

now becomes a path P 2
i′ , and P 2

i becomes P 1
i′′ for i, i′, i′′ ∈ [1, k]. This

means that we can define for every cell F of W a tile TF such that F is
the centre of TF . The notion of tiles allows us to add another layer of
parametrisation on top of a cylindrical wall. In some sense a tile can be
seen as a generalisation of a cell that also contains a small acyclic wall
inside to allow for additional routing. The next few definitions are used
to add further details to how our walls are divided into different regions
and how tiles are used to achieve this additional layer of parametrisation.

Definition 8.1.6 (Triadic Partitions). Let k ∈ N be a positive integer
and W = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) be a cylindrical 3k-wall. The triadic
partition of W is the tuple

W = (W,k,W1,W2,W3,W
1,W 2,W 3)

such that for each i ∈ [1, 3], Wi denotes the slice of W between Qk(i−1)+1

and Qik, and W i denotes the strip of W between the rows k(i − 1) + 1

and ik.

Definition 8.1.7 (Tiling). Let k ∈ N be a positive integer and W =

(Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) be a cylindrical 3k-wall with its triadic partition
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Figure 8.2.: The tile T at (2, 2) of width 2 in a cylindrical 8-wall. The
green cell is the centre, the red paths are the perimeter of
T , and the vertices that belong to T , but neither to the red
paths, nor the green cell, are the internal vertices of T .

W = (W,k,W1,W2,W3,W
1,W 2,W 3). A tiling is a family of pairwise

disjoint tiles T . Let W ′ be a slice of W , we say that T covers W ′ if every
vertex v ∈ V (W ′) with degW (v) = 3 is contained in some tile of T . The
tiling T is said to cover W if it covers W2. In most places we will use
the following family of tilings: Let fw : N → N be some function, t ∈ N a
positive integer, and ξ, ξ′ ∈ [1, fw(t) + 1]. We define the column function
c : N → N and the row function r : N → N as follows3:

c(p) := (k + 2− ξ) + (p− 1)(2fw(t) + 1), and

r(q) := ξ′ + (q − 1)(2fw(t) + 1).

We can now define our standard tiling for fixed fw, ξ, and ξ′.

TW,k,fw(t),ξ,ξ′ := {Tc(p),r(q),fw(t) | p ∈ [1,

⌈︃
k + ξ − 1

2fw(t) + 1

⌉︃
+ 1],

q ∈ [1,

⌈︃
3k − ξ′ − 1

2fw(t) + 1

⌉︃
+ 1]}

Note that every tiling TW,k,fw(t).ξ,ξ′ covers W. Moreover, every cell of W2

that lies between the two paths of P̂ i for some i ∈ [1, 3k] is the centre of
3Please note that c and r do also depend on fw, ξ, ξ′, and k. However, it is more

convenient to make these dependencies implicit.
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some tile T ′ of some tiling T ′ ∈ TW,k,fw(t).ξ,ξ′ . Hence if we perform the
mirror-image operation as described after the definition of tiles, we are
able to find in total 2(fw(t) + 1)2 many tilings that cover W2, such that
every cell of W2 is the centre of some tile in one of these tilings.
We will use tilings in several different ways, and sometimes it is necessary
to ‘zoom out’ of our current wall, i.e. to forget about some of the horizontal
paths and vertical cycles in order to obtain a more streamlined version of
our wall.

Definition 8.1.8 (Walls from a Tiling). Let k, d ∈ N be positive integers,
W = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) be a cylindrical 3k-wall with its triadic
partition W = (W,k,W1,W2,W3,W

1,W 2,W 3), and T be a tiling of
width d that covers W2. Moreover, let ˜︂W be the some slice of W2 and
let IQ be the largest set of integers such that Qi contains vertices of
a tile from T which intersects ˜︂W for every i ∈ IQ. Let ˜︂W (T ) be the
union of the cycles Qi, i ∈ IQ, and the paths P i

j [{Qh | h ∈ IQ}] for every
(j, i) ∈ [1, 3k]× [1, 2]. We call ˜︂W (T ) the extension of ˜︂W that covers T .
Now, let {C1, . . . , C4} be a four colouring of T and i ∈ [1, 4] be a fixed
colour. Then let JQ ⊆ [1, 3k] be the largest set of integers such that for all
j ∈ JQ the vertical cycle Qj of ˜︂W (T ) does not contain a vertex of some
tile from Ci. Similarly, let JP ⊆ [1, 3k] be the largest set of integers such
that for every j ∈ JP , none of the two paths from P̂ j contains a vertex of
a tile from Ci.
By ˜︂W [T , i] we denote the subgraph of W induced by the union of the
cycles Qi, i ∈ JQ, and the paths P i

j [{Qh | h ∈ JQ}] for every (j, i) ∈ JP .
We say that ˜︂W [T , i] is the ith T -slice of ˜︂W .

Note that in ˜︂W [T , i], we essentially cut out the tiles of Ci. This operation
gives us a slice W ′ of some cylindrical wall for which the perimeter of every
tile in Ci has become the perimeter of some cell. Next, we are going to
find a tiling of W ′ such that every tile of Ci that belongs to ˜︂W is captured
by the centre of some tile in the new tiling.

Definition 8.1.9 (Tier II Tiling). Let t, k, k′ ∈ N be positive integers
and f : N → N be some function where k ≥ k′. Let W be a cylindrical
3k-wall with its triadic partition W = (W,k,W1,W2,W3,W

1,W 2,W 3),
and T = TW,k,f,ξ,ξ′ for some ξ, ξ′ ∈ [1, f(t) + 1], as well as {C1, . . . , C4} be
a four colouring of T and i ∈ [1, 4] be a fixed colour. Moreover, let ˜︂W
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be a slice of W2 of width k′ such that no tile of Ci contains a vertex of
Per(˜︂W ) and ˜︁T be the collection of all tiles from T that contain a vertex
of ˜︂W .
The tier II tiling for ˜︂W and i obtained from T is defined as the unique
tiling (T , i, f)II[˜︂W ] of width f of ˜︂W [T , i] such that every T ∈ Ci ∩ ˜︁T is in
the interior of the centre of some tile in (T , i, f)II[˜︂W ].

Since every tile in T consists of 2f(t) + 2 path pairs, (T , i, f)II[˜︂W ] is well
defined and does in fact cover all of ˜︂W [T , i, f ].
At last, we need to introduce the notion of a wall grasping a butterfly
minor. Let D and H be digraphs, and let W be a cylindrical wall in D. Let
B = S(D), and M be the perfect matching of B such that D(B,M) = D.
We say that W grasps an H-butterfly minor of D if S(W ) M -grasps a
S(H)-matching minor of B.

8.2. Step 1: Remove Long Jumps

As explained in the introduction of this chapter, there are two main steps
to the proof of Theorem 8.0.4. This section is dedicated to prove that we
can find

↔
Kt as a butterfly minor grasped by our cylindrical wall, or we

find a vertex set A of bounded size and a large slice W ′ of our cylindrical
wall such that there is no long jump over W ′ in D −A.

Long Jumps in Cylindrical Walls and
↔
Kt-Butterfly Minors While

Theorem 8.0.7 could supply us with an intermediate wall which we could
then refine further, we aim for a more self-contained proof wherever
possible and feasible. To accomplish this goal, we will use a single lemma
from the original proof of Theorem 8.0.7, namely Lemma 8.2.2, together
with a result on paths leaving and re-entering a fixed set of vertices.
Indeed, it is necessary to further refine Lemma 8.2.2 for it to fit into the
framework of our proof. We start by introducing the preliminary results.
Let D be a digraph and X ⊆ V (D). A directed X-path is a directed path
P of length at least one that has both endpoints in X but is otherwise
disjoint from X.

Theorem 8.2.1 ([GKKK20]). Let D be a digraph and X ⊆ V (D). For
all positive k ∈ N, there are k pairwise vertex disjoint directed X-paths
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in D, or there exists a set S ⊆ V (D) of size at most 2k such that every
directed X-path in D contains a vertex of S.
Furthermore, there is a polynomial time algorithm which, given a digraph
D and a set X ⊆ V (D) as input, outputs k pairwise disjoint directed
X-paths, or a set S ⊆ V (D) of size at most 2k as above.

Let k, w ∈ N be positive integers, W be a cylindrical k-wall and W ′

be a slice of W . A directed V (W ′)-path P is called a jump over W ′ if
E(P ) ∩ E(W ′) = ∅. We say that a directed V (W ′)-path P is a w-long
jump over W ′ if for all ξ, ξ′ ∈ [1, w + 1] the endpoints of P belong to
distinct tiles T1 and T2 of the tiling TW,k,w,ξ,ξ′ .

Lemma 8.2.2 ([GKKK20]). There exist functions fw : N→ N, fP : N→
N, and fW : N→ N such that for every t ∈ N the following holds: Let

• D be a digraph,
• W be a cylindrical 3k-wall with k ≥ fW (t) in D,
• W = (W,k,W1,W2,W3,W

1,W 2,W 3) be the triadic partition of W ,
and

• T = TW,k,fw(t).ξ,ξ′ for some ξ, ξ′ ∈ [1, fw(t) + 1].
If there exists a subfamily T ′ of T and a family J of pairwise disjoint
directed paths in D with the following properties:

i) Every member of J is internally disjoint from W but has both
endpoints on W ,

ii) |T ′| = |J | = fP (t),
iii) for every Tc(p),r(q),fw(t) ̸= Tc(p′),r(q′),fw(t) ∈ T ′ we have

max {|p− p′|, |q − q′|} ≥ 2,
iv) there exists a bijection start : T ′ → J (end: T ′ → J ) such that the

starting point (endpoint) of the path start(T ) (end(T )) belongs to
the centre of T ,

v) V (start(T )) ∩ V (T ′) (V (end(T )) ∩ V (T ′)) contains exactly the end-
point of start(T ) (end(T )) where V (T ′) =

⋃︁
T ′∈T ′ V (T ′), and finally

vi) the endpoints (starting points) of the paths in J are of mutual
W -distance at least 4.

Then D has a
↔
Kt-butterfly minor grasped by W .
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By using the bounds obtained from the proofs in [GKKK20], we get the
following rough estimates for the functions fw, fP , and fW :

i) fw(t) = 28t10,
ii) fP (t) = 27t8, and
iii) fW (t) = 232+t30 .

Refining Lemma 8.2.2 Lemma 8.2.2 is already a powerful tool. However,
it is not straightforward how to obtain the apex set A just from its
application. Hence in the following, we aim for further refinement and the
existence of the set A.
Let fw : N → N be some function, t, k ∈ N two positive
integers, and ξ, ξ′ ∈ [1, fw(t) + 1]. Moreover, let W =

(Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) be a cylindrical 3k-wall with its triadic partition
W = (W,k,W1,W2,W3,W

1,W 2,W 3) and T = TW,k,fw(t),ξ,ξ′ . A colour-
ing of T is a partition of T into four classes, namely C1, C2, C3, and C4 as fol-
lows: For every i ∈

[︂
1,
⌈︂

k+ξ−1
2fw(t)+1

⌉︂
+ 1
]︂

and every j ∈
[︂
1,
⌈︂

3k−ξ′−1
2fw(t)+1

⌉︂
+ 1
]︂

we assign to Tc(i),r(j),fw(t) the colour (i mod 2) + 2(j mod 2) + 1. This
means that tiles where c(i) and r(j) are even get colour 1, the tiles where
r(j) is even but c(i) is odd get 3, and so on. Hence every column is
two-chromatic, every row is so as well, and between each pair of tiles
from the same colour that share a row or a column, there is a tile of
a different colour that separates those tiles in their respective row or
column. Additionally, if T is some tile, then the eight tiles surrounding T

are all of different colour than T itself.

Definition 8.2.3 (Auxiliary Digraph Type I). Let t, k, k′, w ∈ N be
positive integers such that k ≥ k′ ≥ 2fW (t) + 4fP (t)(2w + 1), w ≥
2fw(t), and ξ, ξ′ ∈ [1, w + 1]. Let D be a digraph containing a cylindrical
3k-wall W = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) with its triadic partition W =

(W,k,W1,W2,W3,W
1,W 2,W 3), and a tiling T = TW,k,w,ξ,ξ′ . Let i ∈

[1, 4], {C1, . . . , C4} be a four colouring of T and W ′ ⊆ W be a slice of
width k′ of W2. At last, let us denote by T ′ the family of tiles from T
that share a vertex with W ′. Similarly let C′i := T ′ ∩ Ci. Then D1

i (W
′) is

the digraph obtained from D by performing the following construction
steps for every T ∈ C′i:

i) add new vertices xin
T and xout

T ,
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ii) for every vertex u in the centre of T introduce the edges (u, xin
T ) and

(xout
T , u), and then

iii) delete all internal vertices of T .

We also need the following result: Let D be a digraph and X,Y ⊆ V (D).
A half-integral X-Y -linkage of order k is a family P of directed X-Y -paths
such that every vertex of D is contained in at most two paths from P. By
V (P) we denote the set

⋃︁
P∈P V (P ).

Theorem 8.2.4 ([GKKK20]). Let k ∈ N be a positive integer, D be a
digraph, and X,Y ⊆ V (D). If P is a half-integral X-Y -linkage of order
2k in D, then there exists a family J of pairwise disjoint X-Y -paths such
that V (J ) ⊆ V (P).

Lemma 8.2.5 (G∗). Let t, k, k′, w ∈ N be positive integers such
that k ≥ k′ ≥ 2fW (t) + 216fP (t) + 2, w ≥ 2fw(t) + 27fP (t), and
ξ, ξ′ ∈ [1, w + 1]. Let D be a digraph containing a cylindrical 3k-
wall W = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) with its triadic partition W =

(W,k,W1,W2,W3,W
1,W 2,W 3), and a tiling T = TW,k,w,ξ,ξ′ . Let

i ∈ [1, 4], {C1, . . . , C4} be a four colouring of T and W ′ ⊆ W be a slice
of width k′ of W2. Now let T ′ be the family of all tiles of T that are
completely contained in W ′ and let ˜︂W be the smallest slice of W that
contains all tiles from T ′.
Consider the auxiliary digraph of type I D1

i (˜︂W ) and let C′i be as in the
definition of D1

i (˜︂W ). Define the sets
Xout

I :=
{︁
xout
T | T ∈ C′i

}︁
, and

X in
I :=

{︂
xin
T | T ∈ C′i

}︂
.

Additionally, we construct the set YI as follows: Let Q and Q′ be the two
cycles of Per(W2). For every j ∈

[︁
1, 3k

4

]︁
, YI contains exactly one vertex of

Q ∩ P 1
4j , Q ∩ P 2

4j+2, Q′ ∩ P 1
4j , and Q′ ∩ P 2

4j+2 each.
If there exists a family L of pairwise disjoint directed paths with |L| =
27fP (t) such that either

• L is a family of directed Xout
I -YI-paths, or

• L is a family of directed YI-X in
I -paths,

then D has a
↔
Kt-butterfly minor grasped by W .
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Proof. The proof is divided into several steps and we start with a brief
outline. Our goal is to construct a cylindrical wall U ⊆ W of sufficient
size, together with a family of fP (t) directed U -paths that meet the
requirements of Lemma 8.2.2. If we are able to do this, then Lemma 8.2.2
yields the desired outcome.
Without loss of generality, let us assume L is a family of directed Xout

I -YI-
paths. The other case can be seen using similar arguments. Let L and
P be directed paths. We say that P is a long jump of L if P is a w-long
jump over W and P ⊆ L. We also say that P is a jump of L if P is a
directed W -path. Towards our goal, we first show that we can use L to
construct a half-integral Xout

I -YI-linking L1 such that
i) |L1| = 27fP (t),
ii) there exists a family F ⊆ T ′ with |F| ≤ 27fP (t), and
iii) for every L ∈ L1, every endpoint u of a jump of L with u ∈ V (˜︂W )

belongs to a tile from C′i ∪ F .
Once this is achieved, we use Theorem 8.2.4 to obtain a family L2 of pair-
wise disjoint directed Xout

I -YI-paths of size 26fP (t) from L1. Afterwards,
we remove the cycles and paths of ˜︂W that meet tiles from F and obtain a
new slice ˜︂W ′ of some cylindrical wall. For this slice, we construct a tiling
and a tier II tiling as well as a half-integral linking L4 of size 26fP (t) from
L3 that connects the centres of some tiles in the tier II tiling to vertices
of ˜︂W ′ such that their endpoints are mutually far enough apart and every
path in L4 is internally disjoint from the new wall. Another application
of Theorem 8.2.4 then yields the family of long jumps necessary for an
application of Lemma 8.2.2.
We start out with the construction of L1 and F . For this, let L′ := L,
L1 := ∅, and F := ∅. As long as L′ is non-empty, perform the following
actions:
Select some path L ∈ L. In case L is internally disjoint from ˜︂W , add L

to L1 and remove it from L′. Otherwise let sL be its starting point and
let vL be the first vertex of L, when traversing along L starting from sL,
that belongs to ˜︂W , but not to a tile from C′i.

i) If vL does not belong to a tile from F , let T ∈ T \ Ci be the tile
that contains vL and add T to F . Let R be a shortest directed path
from vL to YI in W such that R avoids all vertices of W that are
contained in two different paths of L1 and that is internally disjoint
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from LvL. Now add LvLR to L1 and remove L from L′. Note that
such a path R must exist since the paths in L are pairwise disjoint,
we never used T for such a re-routing before, and w and k′ are
chosen sufficiently large in proportion to 27fP (t). Also note that
the path R is exactly the part, where we might go from integral
to half-integral, but since our paths were pairwise disjoint to begin
with, we can be sure that R does never meet a vertex contained in
two distinct paths.

ii) So now suppose vL belongs to a tile T from F . Let us follow along
vLL until the first time we encounter a vertex uL for which one of
the following is true:

a) uL belongs to a tile T from T \ (Ci ∪ F), or
b) every internal vertex of uL belongs to W −˜︂W or to some tile

from Ci ∪ F .
If a) is the case, repeat the instruction from i) but replace vL by uL.
In this case T is added to F . Otherwise b) must hold and here we
may simply remove L from L′ and add it to L1.

Now for every L ∈ L we added at most one tile to F and thus |F| ≤ |L|.
Moreover, from the construction it is clear that L1 is indeed a half-integral
linkage from Xout

I to YI. Also, please note that we may assume that every
L meets each tile in F in at most 27fP (t) + 1 horizontal path pairs and
vertical cycles, since otherwise one could find a short cut through W itself.
Next, we may apply Theorem 8.2.4 to obtain a family L2 of pairwise
disjoint directed Xout

I -YI-paths with V (L2) ⊆ V (L1) and |L2| = 26fP (t).
This completes the second step.
For the third step, let us consider W ′′ := ˜︂W [T , i] together with the
tiling T ′′ := (T , i, f)II[˜︂W ] and a four-colouring

{︂˜︁C1, . . . , ˜︁C4}︂. Note that
by choice of k′ this means that W ′′ is a slice of width k′′ ≥ 1fW (t) +

27fP (t)(2w+1)+1 of some cylindrical 3k′′-wall that is completely contained
in W . For each L ∈ L2 let T 1

L ∈ Ci such that the starting point sL of L
belongs to T 1

L. Let K1
L ∈ T ′′ be the tile whose centre is the perimeter of

T 1
L. Choose any vertex s′L of degree three in W ′′ that is not contained in

any path of L2, and let RL be a directed path from sL to s′L within T 1
L.

Let L′
3 be the resulting, and potentially now again half-integral, family of

directed paths. Now there must exist j ∈ [1, 4] such that at least 24fP (t)

of the paths from L′
3 start at the centre of a tile from ˜︁Cj . Let L′′

3 ⊆ L′
3 be
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a family of exactly 24fP (t) such paths. Next let us consider the family
F . Let W ′′′ be the subgraph of W ′′ induced by all vertical cycles and
horizontal path pairs in W ′′ that do not contain a vertex of some tile
in F that belongs to a path in L′′

3 . Since |F| ≤ 27fP (t) and each tile in
F meets a path in L′′

3 in at most 27fP (t) + 1 such cycles and pairs of
horizontal paths, it follows that W ′′′ is a slice of width k′′′ ≥ fW (t) + 2

of some cylindrical 3k′′′wall W ∗ ⊆W . Moreover, W ∗ can be partitioned
into three slices of width k′′′ as in its triadic partition, such that W ′′′

is the slice in the middle. Let us rename the paths and cycles of W ∗

such that W ∗ = (Q∗
1, . . . , Q

∗
3k′′′ , P ∗̂

1, . . . , P
∗̂
3k′′′), and we construct the

set Y ∗ as follows: Let Q∗ and ′Q∗ be the two cycles of Per(W ′′′). For
every j ∈

[︂
1, 3k′′′

4

]︂
, Y ∗ contains exactly one vertex of Q∗∩P ∗1

4j , Q∩P ∗2
4j+2,

′Q∗ ∩ P ∗1
4j , and ′Q∗ ∩ P ∗2

4j+2 each. Let L ∈ L′′
3 be any path and tL be the

first vertex after its starting point L shares with either W ′′′ or W ∗ −W ′′′.
In case tL ∈ V (W ′′′), simply add LtL to L′′′

3 . Otherwise, let bL be the
endpoint of L in W ∗ −W ′′′. Then we can find a path RL in W from bL
to a vertex t∗L of Y ∗ such that t∗L is of W ∗-distance at least 4 to every
endpoint of every path already in L′′′

3 , RL is internally disjoint from L,
and RL does not contain a vertex that is contained in two distinct paths
from L′′′

3 . Add LRL to L′′′
3 . Finally, L′′′

3 is a half-integral linkage from the
set starting points S∗ of the paths in L′′

3 to Y ∗ of size 24fP (t), and thus by
Theorem 8.2.4 we can find a family L4 of pairwise disjoint directed paths
from S∗ to Y ∗ with V (L4) ⊆ V (L′′′

3 ) that is of size 23fP (t). It follows
that all paths in L4 are internally disjoint from W ′′′. This concludes the
fourth step.
Let us consider the tiles of ˜︁Ci whose centres contain a vertex of S∗. Since
W ′′′ might be a proper subgraph of W ′′, T ′′ is not necessarily a tiling of
W ′′′. Each such tile T , however, contains a tile T ′ of width fw(t) with
the same centre. Since T can be surrounded by at most 8 tiles from F
in W ′, we may find among the 23fP (t) many tiles T ′ a family J of fP (t)
tiles that are pairwise disjoint and thus, since they all are constrcuted
from the family ˜︁Ci, they meet the distance requirements of the tiles in
Lemma 8.2.2. Hence we may apply Lemma 8.2.2 and obtain a

↔
Kt-butterfly

minor grasped by W ∗. Moreover, since W ∗ ⊆W , this completes the proof
of our lemma.
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With this we are able to handle all long jumps that attach to tiles of
different colour. Using a second auxiliary digraph, we find a similar way
to handle those long jumps over W that attach to tiles of the same colour
by using Theorem 8.2.1.

Definition 8.2.6 (Auxiliary Digraph Type II). Let t, k, k′, w ∈ N

be positive integers such that k ≥ k′ ≥ 2fW (t), w ≥ 2fw(t), and
ξ, ξ′ ∈ [1, w + 1]. Let D be a digraph containing a cylindrical 3k-
wall W = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k) with its triadic partition W =

(W,k,W1,W2,W3,W
1,W 2,W 3), and a tiling T = TW,k,w,ξ,ξ′ . Let

i ∈ [1, 4], {C1, . . . , C4} be a four colouring of T and W ′ ⊆W be a slice of
width k′ of W2 such that no tile of Ci contains a vertex of the perimeter
of W ′. Then D2

i (W
′) is the digraph obtained from D by performing the

following construction steps:
for every T ∈ Ci, such that T contains a vertex of W ′, we do the following:

i) add a new vertex xT , and
ii) for every vertex v that belongs to the interior or the centre of T ,

introduce the edges (xT , v) and (v, xT ).
Once this is done, delete all vertices of W ′ that do not belong to tiles of
C′i Let Xi

II be the collection of all newly introduced vertices xT .

Lemma 8.2.7 (G∗). Let t, k, k′, w ∈ N be positive integers, and ξ, ξ′ ∈
[1, w + 1] where w ≥ 2fw(t). Let D be a digraph containing a cylindrical
3k-wall W0 = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k), where k ≥ k′ ≥ 4fW (t)2, with
its triadic partition W = (W0, k,W1,W2,W3,W

1,W 2,W 3), a slice W ⊆
W2 of width k′, a tiling T = TW,k,w,ξ,ξ′ , a four colouring {C1, . . . , C4}, and
a fixed colour i ∈ [1, 4].

Then D has a
↔
Kt-butterfly minor grasped by W0, or there exists a set

Z2
i,ξ,ξ′ ⊆ T with |Z2

i,ξ,ξ′ | ≤ 8fP (t) and a set Z2
i,ξ,ξ′ ⊆ V (D −W ) with

|Z2
i,ξ,ξ′ | ≤ 8fP (t) such that every directed V (W0)-path P in D − Z2

i,ξ,ξ′

whose endpoints belong to different tiles of Ci contains a vertex of some
tile in Z2

i,ξ,ξ′ .

Proof. Let W ′ be the largest slice of W such that no tile of Ci contains
a vertex of Per(W ′). Let us consider the auxiliary digraph D2

i (W
′) with

the set Xi
II of newly added vertices. By applying Theorem 8.2.1 to the set

Xi
II in D2

i (W
′), we either find a set Z of size at most 8fP (t) that hits all
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directed Xi
II-paths, or there exists a family J ′ of 4fP (t) pairwise disjoint

directed Xi
II-paths in D2

i (W
′).

Let us assume the latter. Then, by construction of D2
i (W

′), no path in
J ′ contains a vertex of W2. Back in the digraph D, let us consider the
tier II tiling T ′′ := (T , i, w)II[W

′] of width w of W ′′ := W ′[T , i]. Notice
that, by choice of k, W ′′ still contains a cylindrical fW (t)-wall W ′′′ such
that the perimeter of every tile T ∈ Ci, for which xT is an endpoint of
some path in J ′, bounds a cell of W ′′′. Let T ′′ be a tiling of W ′′′ such
that the perimeter of every T ∈ Ci, for which xT is an endpoint of a path
in J ′, is the centre of some tile in T ′′. We now consider a four colouring
{C′1, . . . , C′4} of T ′′. Then there must exist j ∈ [1, 4] and a family J ′′ of
size fP (t) such that the starting points of every path in J ′′ belongs to a
tile of Ci whose perimeter is the centre of a tile in C′j . For every J ′′ ∈ J ′′

let T1, T2 ∈ Ci be the two tiles such that J ′ is a directed xT1 -xT2 -path. We
can now find a directed path J that starts on the perimeter of of T1, ends
on the perimeter of T2, and is internally disjoint from W ′′′. Hence we find
a family J of pairwise disjoint directed W ′′′-paths whose endpoints all
lie on the centres of distinct tiles of T ′′ and that all start at the centres
of tiles from C′j . So we may apply Lemma 8.2.2 to find a

↔
Kt-butterfly

minor grasped by W ′′′. Moreover, with W ′′′ ⊆W ⊆W0, we have found
a

↔
Kt-butterfly minor grasped by W0. Therefore we may assume that we

find a set Z of size at most 8fP (t) that hits all directed Xi
II-paths. Let

Z2
i,ξ,ξ′ := Z ∩ V (D), and Z2

i,ξ,ξ′ := {T ∈ T | xT ∈ Z}. Since |Z| ≤ 2fP (t),
the bounds on the two sets follow immediately. Moreover, since Z meets
every directed Xi

II-path in D′, every directed path with endpoints in
distinct tiles of Ci which is otherwise disjoint from W0 must contain a
vertex from Z2

i,ξ,ξ′ or meet a tile from Z2
i,ξ,ξ′ .

8.3. Step 2: Crosses and Bipartite Non-Pfaffian Graphs

In the previous section, we have taken care of long jumps over our wall.
The proofs presented there are closely related to those necessary for the
Directed Flat Wall Theorem. This section is dedicated to the second
step: removing local crosses from our wall. Since the lack of a Two Paths
Theorem for digraphs makes dealing with crosses pretty difficult, this
second part differs wildly from the directed case.
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While most of the routing necessary for the results in this chapter will
happen in the digraphic setting mostly for convenience, matching theory
will come in at several places. The two most common techniques we are
going to apply are changing the digraph we are working on by ‘flipping’
the perfect matching along some directed cycles and tight cut contractions
to remove large quantities of the (di)graphs we work on without changing
their overall structure in an intrusive way. An important part of this
technique is the fact that we can use the ‘flipping’ of the perfect matching
along a directed cycle to essentially4 reverse its direction. Let us briefly
investigate the operation of switching the perfect matching M along a
horizontal cycle of a matching wall and its effect on the resulting M ′-
direction. Let k ∈ N be a positive integer and W be a cylindrical 4k wall,
as well as W ′ be a slice of width 2k of W . Let us number the vertical
cycles W ′ inherits from W as Q1, . . . , Q2k and let us write P̂ 1, . . . , P̂ 4k

for the subpaths of the vertical paths of W that still are present in W ′.
Then BW ′ := S(W ′) is a slice of width k of a matching 2k-wall, and we
may assume M to be its canonical matching. Hence D(BW ′ ,M) = W ′.
For each i ∈ [1, 2k] let Ci be the M -conformal cycle of BW ′ such that
D(Ci,M) = Qi.
We define the mixed matching of BW ′ , denoted by Mix(W ′), as

Mix(W ′) := M∆
⋃︂

i∈[1,2k]
i odd

E(Ci).

Thus Mix(W ′) is obtained from M by switching M along every second
vertical cycle starting with the first. Let us denote by ab(W ′) the digraph
D(BW ′ ,Mix(W ′)). We say that a(W ′) and b(W ′) are the twin walls of
W ′ as illustrated in Figure 8.3.
For the construction of a(W ′) and b(W ′), W ′ must necessarily be of even
width. However, ab(W ′) can be constructed for any slice, so in slight abuse
of notation we will use ab(W ′) to describe the digraph obtained from
S(W ′) by switching the canonical matching along every second vertical
cycle starting with the first.
Note that ab(W ′) contains two cylindrical k-walls, one using the now
flipped versions of the odd Qi, denoted by a(W ′), and the other using
the still intact even Qi, which is denoted by b(W ′). Moreover, if we

4Note that the operation does more to the digraph than ‘just’ reversing the direction
of a cycle, it also affects all paths that enter or leave the cycle.
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A slice W of width 4

of a cylindrical 8-wall.
B := S(W ) with the canonical matching M .

B with the mixed matching Mix(W ). ab(W ) and the twin walls of W .

Figure 8.3.: The ‘flipping’ of a cylindrical 4-wall into two overlapping
cylindrical 2-walls that are oppositely oriented.
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start out with our embedding of W and keep this embedding during all
transformations, the vertical cycles of a(W ′) go towards the top, while
the vertical cycles of b(W ′) still go to the bottom. See Figure 8.3 for an
illustration. Moreover, every path connecting one of the vertical cycles
of c(W ′) to another one, for some c ∈ {a, b}, must necessarily visit all
vertical cycles of its twin that lie in between.
This construction allows us to move up- and downwards almost arbitrarily
in a sufficiently large wall. This is an advantage which we already used in
the proof of Theorem 7.1.1. In a slice W ′ of the cylindrical wall, every
directed cycle must visit all of the vertical paths, but in ab(W ′) we are able
to find directed cycles locally, which means there are strongly connected
subgraphs of ab(W ′) which lie within some tiles of W ′.

Non-Pfaffian Cells and Tiles Both techniques, changing the perfect
matching and tight cut contractions, are of immediate importance for the
first step towards controlling the crossings over our wall.
Let w ∈ N be some positive integer. In the following we will say that a
slice W ′ of some cylindrical wall W in some digraph D is clean if there is
no w-long jump over W ′ in D. We say that the slice W ′ is proper if it
does not contain the perimeter of W .
A first step is to localise crossings to be able to use them for routing.
Ideally, we want our crossings to occur ‘over’, or, more precisely, within the
‘attachment’ of a single cell in our wall. However, this is not necessarily
possible, as there might still exist short jumps even over a clean slice. So
instead, we consider crossings over tiles and then use a tier II tiling to
force these crossings into a single cell. For this, we need the following:

• We need a proper definition of an ‘attachment’,
• there needs to be a way to use crossings, or in other words conformal

bisubdivisions of K3,3 as seen in Proposition 4.0.8, even if these are
not M -conformal, and

• we need to show that the existence of a short jump with both
endpoints in a tile immediately forces the existence of a conformal
K3,3 subdivision within the attachment of the tile.

It is important to note that, since we are interested in conformal bisubdi-
visions of K3,3, it suffices to work on a brace. We require some additional
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observations on matching walls in bipartite graphs with perfect matchings
and their braces.

Lemma 8.3.1 (G∗). Let k ∈ N be positive integer with k ≥ 2, W be a
matching k + 2-wall with canonical matching M , Gk be a subdivision the
cylindrical grid of order k, and W ′ be the unique proper slice of width k

of W . Then the following statements are true:
i) W is an expansion of a brace J ,
ii) J contains a remnant H of W ′, and
iii) H is a cubic graph that is an expansion of S(Gk).

Proof. We start by proving that W has a unique brace that is not iso-
morphic to C4. To do this, let X ⊆ V (W ) be any set that induces a
non-trivial tight cut in W . Moreover, let us assume that X contains more
degree-3-vertices of W than X, while, in case both shores contain the
same number of such vertices, let X be chosen arbitrarily. Note that X

cannot contain vertices from two distinct vertical cycles of W , since we
may switch their matchings independently and thus could always force
at least two matching edges to lie in ∂W (X). Similarly, for every pair P1,
P2 of horizontal paths, we can always find an M -conformal cycle C in
W that contains both P1 and P2. Hence X cannot contain vertices from
both P1 and P2, as otherwise it would either contain vertices from two
distinct vertical cycles, or we could switch the matching along C to force
at least two edges of the new matching into ∂W (X). Hence W [X] must
be one of three things:

i) an induced subpath of some vertical cycle of W ,
ii) an induced subpath of some horizontal path of W , or
iii) a subdivided star that contains exactly one degree-3-vertex s of W

and s lies at the centre of the star.
In the first two cases, contracting X clearly results in a cycle of even
length and thus all of its braces are isomorphic to C4. In the last case
observe that, in order for X to induce a tight cut, the leaf vertices of the
star must all have the same colour by Lemma 3.1.58 and thus, since we
are forced to have an imbalance of exactly one, the centre of the star must
be part of the majority as well.
So when contracting X, this case yields a bisubdivision of the graph in
Figure 8.4. It is straightforward to see that every brace of this graph
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Figure 8.4.: The tight cut contraction of a star.

must be isomorphic to C4. As we have seen, one of the two tight cut
contractions of any chosen non-trivial tight cut in W yields only braces
which are isomorphic to C4. We have also seen that no such shore can
contain more then one degree-3-vertex of W , and thus the other shore
must still contain a remnant of some brace J which contains all other
degree-3-vertices. Hence W contains a brace J which has at least as many
degree-3-vertices as W has, and this brace J must be unique. Our claim
now follows from Theorem 3.1.61.
Next, observe that there are exactly two vertical cycles C1 and C2 in W

which contain degree-3-vertices that are linked by paths of even length
along Ci, whose internal vertices are all of degree two in W . These two
cycles are in fact exactly those which form the perimeter of W . Hence
the second and third point from the assertion follow immediately.

Definition 8.3.2 (Attachment). Let B be a bipartite graph with a perfect
matching M , D := D(B,M), and W be a proper slice of some cylindrical
wall W ′ in D. Let B′ be a host of S(W ′) in B, and let ˜︂W be the remnant
of S(W ) in B′.
Now let H ⊆ B and M ′ ∈ M(B) be chosen such that

i) S(W ) is M ′-conformal in B,
ii) E(B − S(W ′)) ∩M ′ ⊆ M , and
iii) H is an induced M ′-conformal subgraph of S(W ′) such that its outer

face, i.e. the face of H that contains S(W ′) − H in the canonical
embedding of S(W ), is an M ′-conformal cycle.

Let H ′ be the remnant of H in B′. The attachment of H over W in B,
denoted by AttB,S(W )(H), is the elementary component of B′ − (˜︂W −H ′)

that contains the outer face of H ′.

Let W be a matching wall and H be an induced M ′-conformal subgraph
of W whose outer face is an M -conformal cycle C where M ′ ∈ M(W ).
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Then C is conformal and separating in W and thus, by Lemma 4.1.2,
H is matching covered. That means, for every H ⊆ W for which an
attachment exists, we know that H ′, as in the definition above, belongs
to this attachment.
Since we are interested in tilings and their centres especially, we need to
show that the attachment of a cell and the attachment of a tile are well
defined objects. Moreover, we would like to know that the attachment of
a tile contains the attachment of its centre. To this end, we introduce the
following two lemmas.

Lemma 8.3.3 (G∗). Let h, k, w ∈ N be positive integers and W be a
proper slice of width k of some matching h-wall where h ≥ k + 2. Let M

be the canonical matching of W and T = TW,k,w,ξ,ξ′ for ξ, ξ′ ∈ [1, w + 1].
At last let T ∈ T be any tile that is completely contained in W and let Q

be the vertical cycle of W that contains the leftmost part of Per(T ). Then
MT := M∆E(Q) is a perfect matching of W such that Per(T ) contains
an MT -conformal cycle CT and T − (Per(T )− CT ) is an MT -conformal
matching covered subgraph of W whose outer face is bounded by CT .

Figure 8.5.: The tile T in the MT -direction of W .
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Proof. To see that the statement is true, observe that the boundary of T
consists of a cycle and two vertices, one of them being the starting vertex
s of the subpath of the upper path in Per(T ), and the other one being the
endpoint t of the subpath of the lower path in Per(T ). By definition, Q is
the left path of Per(T ) and L := Q∩Per(T ). Then both s and t belong to
L. See Figure 8.2 for an illustration. Now consider L′ := L−s−t and note
that S(L′) contains exactly two vertices which do not belong to the unique
cycle of S(Per(T )). Let P be the path obtained from S(L′) by removing
these two vertices. Since we removed both endpoints of an M -conformal
path, where M is the canonical matching of W , the result is an internally
M -conformal path. Let C be the unique cycle of S(Per(T )), then, as
Per(T )−Q is a directed path, C − P is another internally M -conformal
path. Now consider the perfect matching MT . Then every internally
M -conformal subpath of Q has now become an MT -conformal path. So
now C − P is internally MT -conformal, while P is MT -conformal. Hence
C is MT -conformal as required. See Figure 8.5 for an illustration.

Observation 8.3.4 (G∗). Let h, k, w ∈ N be positive integers and W be
a proper slice of width k of some matching h-wall where h ≥ k + 2. Let
M be the canonical matching of W , and let C be a cell of W . Then C is
a conformal cycle of W .

Proof. As W is a slice of a matching wall, it is planar and matching
covered. Since C bounds a face of W , our claim follows immediately from
Lemma 4.0.1.

Hence the attachments of tiles and their centres are indeed well defined.
Next, we want to see that the attachment of the centre of a tile is contained
in the attachment of the tile itself.

Lemma 8.3.5 (G∗). Let h, k, w ∈ N be positive integers and W be a
proper and clean slice of width k of some matching h-wall in a bipartite
matching covered graph B, where h ≥ k+2. Let M be a perfect matching
of W that contains the canonical matching of W and T = TW,k,w,ξ,ξ′

for ξ, ξ′ ∈ [1, w + 1]. At last let T ∈ T be any tile that is completely
contained in W , and let CT be the cycle that bounds the centre of T .
Then AttB,W (CT ) ⊆ AttB,W (T ).
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A tile T in the

MT -direction of W .
S(T )

S(T ) with the

perfect matching M∗
T .

D(S(T ),M∗
T )

Figure 8.6.: The tile T in the M∗
T -direction of W and its split.

Proof. By Lemma 8.3.3 we already know that T is an MT -conformal and
matching covered subgraph of W . As CT bounds a face of T , which
is matching covered, Lemma 4.0.1 still guarantees us the existence of a
perfect matching M∗

T of B such that T and CT are M∗
T -conformal and the

M∗
T -direction of T is strongly connected. Let A∗

T be the M∗
T -direction of

the attachment of T , while A∗
CT

is the M∗
T -direction of the attachment of

CT . Then for every vertex v from A∗
CT

there exists a directed path from v

to D(CT ,M
∗
T ) and a directed path from D(CT ,M

∗
T ) to v, since A∗

CT
must

be strongly connected by the definition of attachments. See Figure 8.6
for an example of the construction of M∗

T . This, however, means that
S(D(T,M∗

T ) ∪A∗
CT

) must be matching covered. Let B′ be the host of W
in B, and let ˜︂W , ˜︁T be the remnants of W and T in B′. Then AttB,W (CT )
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must be contained in the elementary component of B′ − (˜︂W − ˜︁T ) that
contains ˜︁T and thus we are done.

Suppose CT is the centre of some tile T in a slice W as above. If
AttB,W (CT ) is non-Pfaffian it must contain a conformal bisubdivision
of K3,3. However, to be able to use Proposition 4.0.8 and Lemma 4.0.9,
we need to show that these conformal bisubdivisions of K3,3 cannot be
separated from the remnant ˜︁T of T by a non-trivial tight cut in AttB,W (T ).

Lemma 8.3.6 (G∗). Let h, k, w ∈ N be positive integers and W be a
proper and clean slice of width k of some matching h-wall in a bipartite
matching covered graph B, where h ≥ k+2. Let M be a perfect matching
of W that contains the canonical matching of W and T = TW,k,w,ξ,ξ′

for ξ, ξ′ ∈ [1, w + 1]. At last, let T ∈ T be any tile that is completely
contained in W , and let CT be the cycle that bounds the centre of T .
Then every non-trivial tight cut in AttB,W (T ) has a shore X such that
V (AttB,W (CT )) ⊆ X, and AttB,W (T )/(X→ vX) has a brace that is the
host of T in AttB,W (T ).

Proof. Let B′ be the host of W in B and let ˜︂W , ˜︁T , and ˜︂CT be the
remnants of W , T , and CT in B′ respectively. Now let A := AttB,W (T )

and consider a non-trivial tight cut ∂A(X) in A. Note that neither X nor
X can contain vertices purely from A− ˜︁T , since otherwise ∂B′(X) would
be a non-trivial tight cut in B′. Indeed, X or X must contain vertices of
the remnant of Per(T ) in B′. Suppose X is that shore. Let us call a cell of
T an inner cell if it does not contain vertices of the perimeter of T . If X
contains vertices of the remnant of an inner cell of T , then there exist two
disjoint conformal cycles of T , both of which have remnants in B′ with
edges in ∂B′(X), and thus ∂B(X) cannot be a tight cut. At last, suppose
X contains vertices of AttB,W (CT ), then we may find an MT -conformal
cycle C′ in AttB,W (CT ) that contains vertices of ˜︂CT and vertices of X,
but which is disjoint from the remnant of Per(T ). This again yields a
contradiction to ∂B′(X) being tight and thus our claim follows.

The last remaining piece before we can attempt to create the desired
crossings is: What if the attachment of every cell is Pfaffian, but there
still is a short jump with both endpoints in the interior of T?
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Lemma 8.3.7 (G∗). Let h, k, w ∈ N be positive integers and W be a
proper and clean slice of width k of some matching h-wall in a bipartite
matching covered graph B, where h ≥ k + 2 and w ≥ 2. Let M be a
perfect matching of W that contains the canonical matching of W and
T = TW,k,w,ξ,ξ′ for ξ, ξ′ ∈ [1, w + 1]. At last, let T ∈ T be any tile that
is completely contained in W and J be a short jump in D(B,M) over
D(W,M) with both endpoints in the interior of D(T,M). Then, if B′

is the host of W in T and ˜︁T is the remnant of T in B′, T ′ contains a
conformal bisubdivision H of K3,3 such that all six degree-3-vertices of H
belong to ˜︁T .

Proof. Consider the perfect matching ˜︂M := MT | ˜︁T of ˜︁T . First of all
note that, since J is a short jump in D(B,M) over D(W,M), and by
Lemma 8.3.1 all faces of W are preserved in ˜︂W , which is the remnant
of W in B′, it corresponds to an internally ˜︂M -conformal path ˜︁J with
endpoints a1 ∈ V1 ∩ V ( ˜︁T ) and b′1 ∈ V2 ∩ V ( ˜︁T ) such that a1 and b′1 do not
belong to the same face of ˜︁T , and ˜︁J is internally disjoint from ˜︁T . Let a′

1

and b1 be chosen such that a1b1, a
′
1b

′
1 ∈ ˜︂M . Since ˜︁T is matching covered

there exist a2 ∈ V2 ∩ V (Per( ˜︁T )) and b3 ∈ V1 ∩ V (Per( ˜︁T )) such that
i) a2b2, a3b3 ∈ ˜︂M are distinct,
ii) the internally ˜︂M -conformal subpath P1 of Per( ˜︁T ) with endpoints a2

and b3 is non-trivial, and
iii) P2 := Per( ˜︁T )−P1 is as short as possible such that there exist disjoint

internally ˜︂M -conformal paths La, Lb where La connects b1 to a2

and Lb connects a′
1 to b3.

Now, since w ≥ 2, there exist b4 and a5 on P1 such that the path R

connecting b4 and a5 in P1 is ˜︂M -conformal, and there are internally˜︂M -conformal and disjoint paths Qa and Qb in ˜︁T that satisfy:
i) Qa connects a1 and b4,
ii) Qb connects b1 and a5, and
iii) Qa and Qb avoid La and Lb.

By the choices of these paths, we have found in total nine pairwise
internally disjoint paths such that

• a1 and b1 are joined by a ˜︂M -conformal path; that is the edge a1b1,
• a2 and b3 are joined by a ˜︂M -conformal path; namely the path P2

together with the edges a2b2 and b3a3,
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• a5 and b4 are joined by the ˜︂M -conformal path R,
• a1 is joined by the internally ˜︂M -conformal path ˜︁Jb′1a′

1Lb to b3 and
by the internally ˜︂M -conformal path Qa to b4,

• b1 is joined by the internally ˜︂M -conformal path La to a2, and by
Qb to a5, and

• a5 is joined to b3 by an internally ˜︂M -conformal subpath of P1,
while b4 and a2 are joined by the remaining internally ˜︂M -conformal
subpath of P1 that does not contain a5.

Hence overall, we obtain an ˜︂M -conformal bisubdivision of K3,3. See
Figure 8.7 for an illustration.
Another, less constructive, way to see that there must exist a conformal
K3,3 bisubdivision is to observe that ˜︁T together with ˜︁J is matching
covered and non-planar. Moreover, similar to the proofs of Lemma 8.3.1
and Lemma 8.3.6, any non-trivial tight cut must either sit within a
bisubdivided edge of T , form a star around a vertex of degree at least
three, or consist entirely of internal vertices of ˜︁J . Hence ˜︁T ∪ ˜︁J is an
expansion of a non-planar brace B′′ that closely resembles ˜︁T with a single
short jump over it. Thus B′′ is not the Heawood graph and therefore it
must contain a conformal bisubdivision of K3,3 by Theorem 3.3.8.

A Tier II Cross By now we know that non-Pfaffian attachments of cells
and short jumps force conformal K3,3-bisubdivisions to exist. Next we
show how to use this knowledge to create a perfect matching M ′ such that
the M ′-direction of our digraph contains two crossing paths within the
centre of a tile. More precisely, we show how to create a cross over a single
tile and then place a tier II tile around it to obtain a tile with a cross in
its centre. Hence it suffices to show that we can locally manipulate the
perfect matching of the attachment of a cell in order to create a cross over
the cell, if we know that the attachment of the centre contains a structure
similar to a tile itself.
Given the centre C of a tile T in a matching wall W with canonical
matching M , we are particularly interested in the following four vertices:
There are exactly two vertical cycles of W that meet C, let us call them
Qj and Qj+1, where Qj lies left of Qj+1 in the canonical embedding. Let
Ui := Qi ∩ C for each i ∈ [j, j + 1]. Then Uj is M -conformal, while Uj+1
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Figure 8.7.: An MT -conformal bisubdivision of K3,3 constructed using a
short jump.

is internally M -conformal. Each of the Ui has exactly one endpoint in the
upper path of C and one endpoint in the lower path of C. Moreover, let

• b1T ∈ V2 be the endpoint of Uj on the upper path of C,
• a2

T ∈ V1 be the endpoint of Uj on the lower path of C,
• a1

T ∈ V1 be the endpoint of Uj+1 on the upper path of C, and
• b2T ∈ V2 be the endpoint of Uj+1 on the lower path of C.

Additionally there exist c1T and c2T on Uj+1 such that a1
T c

2
T ∈ M , and

b2T c
1
T ∈ M . From the definition it follows that c1T , c

2
T /∈ V (C).

We say that a tile T is non-Pfaffian if either the attachment of the centre
of T is a non-Pfaffian bipartite graph, or there exists a short jump over
W with both endpoints on the interior of T .

Lemma 8.3.8 (G∗). Let h, k, w ∈ N be positive integers and W be a
proper and clean slice of width k of some matching h-wall in a bipartite
matching covered graph B, where h ≥ k+2. Let M be a perfect matching
of W that contains the canonical matching of W and T = TW,k,w,ξ,ξ′ for
ξ, ξ′ ∈ [1, w + 1] with a four colouring {C1, . . . , C4}, and for some i ∈ [1, 4]

let W ′ := W [T , i]. Consider (T , i, w)II[W ] and let us select T ∈ Ci as well
as T ′ ∈ (T , i, w)II[W

′] such that the centre of T ′ contains T in its interior
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in the canonical embedding of W . Let C be the cycle of B that is the
centre of T ′ and let IT ′ be the union of C and the component of W − C

that contains T . For i ∈ [1, 2] let ai
T ′ and biT ′ be defined as above.

If T is non-Pfaffian, there exist a perfect matching NT of B such that
{e ∈M | e ∩ V (W − IT ′) ̸= ∅} ⊆ NT , and there exist vertex disjoint paths
R1 and R2 in B such that

i) R1 and R2 are internally vertex disjoint from W ′,
ii) R1 and R2 are fully contained in AttB,W ′(T ′)

iii) both paths are NT -alternating,
iv) R1 has endpoints a1

T ′ and a2
T ′ and the edge of R1 that is incident

with a2
T ′ lies in NT , and

v) R2 has endpoints b1T ′ and b2T ′ and the edge of R2 that is incident
with b2T ′ lies in NT .

Proof. By Lemma 8.3.3 we know that IT ′ is matching covered. Moreover,
since T is a conformal subgraph of IT ′ , we must also have AttB,W (T ) ⊆
AttB,W ′(T ′). Therefore AttB,W ′(T ′) is non-Pfaffian as well.
Let us add the edges ai

T ′b
j
T ′ to AttB,W ′(T ′) for all i, j ∈ [1, 2] and let G

be the resulting bipartite graph. By Theorem 3.1.69, G is still matching
covered.
We claim that the host B′ of IT ′ in G is also non-Pfaffian, and that it
contains four distinct vertices, each of them representing a vertex from{︁
a1
T ′ , a2

T ′ , b1T ′ , b2T ′
}︁

in the following sense: We say that a vertex u of B′

represents a vertex v of IT ′ if u, v ∈ Vi for some i ∈ [1, 2], and there exists
a tight cut ∂B(X) in G such that v ∈ X and u is the vertex of B′ obtained
from contracting X.
Note that in this case, every edge e incident with u in B′ can be replaced
by a path Pv, which has exactly one endpoint outside of X, in G that
shares the same properties regarding any perfect matching M ′ of G as e

does regarding the remainder of M ′ in B′. That is, if e ∈M ′|B′ , then Pv

is M ′-conformal, and otherwise Pv is internally M ′-conformal.
Towards the validity of our claim first let C′ be the centre of T and suppose
AttB,W (C′) is non-Pfaffian. In this case observe that IT ′ indeed meets all
requirements of a tile in W and thus we may call upon Lemma 8.3.6 to
see that B′ must be non-Pfaffian. If the attachment of the centre of T is
Pfaffian, there must exist a short jump J over W with both endpoints in
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T . Then, by Lemma 8.3.7 and its proof, one can see that IT ′ ∪ J contains
a conformal bisubdivision of K3,3 that contains the cycle C. Hence again
B′ is non-Pfaffian.
Similar to the proof of Lemma 8.3.6 one can observe that every non-
trivial tight cut in IT ′ must either be a cut around a bisubdivided claw,
or along a bisubdivided edge of W . Moreover, in AttB,W ′(T ′) the only
non-trivial tight cuts can occur on the outer face of T ′ since any other
non-trivial tight cut would correspond to a non-trivial tight cut in the
brace that was used to construct AttB,W ′(T ′). Note that every pair
among the four vertices

{︁
a1
T ′ , a2

T ′ , b1T ′ , b2T ′
}︁

can be separated on C by two
degree-3-vertices of IT ′ which are not in

{︁
a1
T ′ , a2

T ′ , b1T ′ , b2T ′
}︁
. Additionally,

for each i ∈ [1, 2], the two vertices in
{︁
a1
T ′ , a2

T ′ , b1T ′ , b2T ′
}︁
∩ Vi can be

separated by
{︁
a1
T ′ , a2

T ′ , b1T ′ , b2T ′
}︁
∩ V3−i on C. Hence we may assume for

each x ∈
{︁
a1
T ′ , a2

T ′ , b1T ′ , b2T ′
}︁

to have a vertex ux ∈ V (B′) that represents
x and that all of these vertices are pairwise distinct.
By our addition of the fresh edges to obtain G, we now have the edges
ai
T ′b

j
T ′ in B+ for all i, j ∈ [1, 2]. Let Ĉ be the four-cycle consisting exactly

of these four edges, and let B+ be the resulting graph. By Theorem 3.1.69,
B+ is still a brace. Hence we may use Proposition 4.0.8 to find a conformal
bisubdivision H of K3,3 in B+ that contains Ĉ as a subgraph. Let N ′′ be
the perfect matching of H that contains the edge ua1

T ′
ub2

T ′
but not the

edge ua2
T ′
ub1

T ′
. As H is a bisubdivision of a brace and Ĉ is a subgraph of

H, N ′′ must exist. Now let N ′ be a perfect matching of B+ that contains
N ′′. As H is a bisubdivision of K3,3 there exist paths R′

1 and R′
2 with

the following properties in H:
i) R′

1 and R′
2 are vertex disjoint and N ′ alternating,

ii) R′
1 has endpoints ua1

T ′
and ua2

T ′
, and the edge of R′

1 that is incident

with a2
T ′ lies in N ′, and

iii) R′
2 has endpoints ub1

T ′
and ba2

T ′
, and the edge of R′

2 that is incident

with b2T ′ lies in N ′.
Let N be a perfect matching of AttB,W ′(T ′) + Ĉ such that N ′ = N |B′′ .
The paths R′

1 and R′
2 can now be extended to the desired paths R1 and

R2 in AttB,W ′(T ′) + Ĉ.

392



8.3. Step 2: Crosses and Bipartite Non-Pfaffian Graphs

Note that the only edge of N that is not an edge of B is a1
T ′b2T ′ . Also the

only edges of E(W ′) ∩M with exactly one endpoint in IT ′ are the two
edges a1

T ′c2T ′ and b2T ′c1T ′ . Hence
NT := (M \N) ∩ E(W ′) ∪ (N \

{︁
a1
T ′b2T ′

}︁
)

is a perfect matching of B with properties as required by the assertion.
In particular, since the subpath of C that is parallel to the edge a1

T ′b2T ′ is
internally M -conformal, every edge of M ∩W − IT ′ belongs to NT .

Figure 8.8.: The NT -direction of the tile T ′, the cross obtained through
Lemma 8.3.8, and two paths through the tile that use the
cross. Note that we cannot guarantee anything specific about
the matching within IT ′ besides to the matching edges that
leave IT ′ and the crossing itself.

While we cannot really control how the perfect matching NT changes the
structure of IT ′ in the NT -direction of B compared to its M -direction,
we still know that most of our cylindrical wall is intact. Indeed, by our
choices of the four vertices which are connected via the paths R1 and R2

and the fact that c2T ∈ V2 and c1T ∈ V1, we may follow along two parallel
vertical cycles from the top of T ′, then move towards its centre, enter
the two NT -directions of R1 and R2, and switch between the two cycles.
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See Figure 8.8 for an illustration. This means that we are able to switch
the relative position of two disjoint paths that are routed through our
cylindrical wall given that these paths enter T ′ from the top. This means
that, given enough such tiles T ′ that are mutually far enough apart within
W , we are able to re-order any given family of pairwise disjoint paths
in any order we see fit. Of course within a cylindrical wall any directed
path is only ever allowed to go left, right or downwards, but we may take
some slice free of crossings and switch the perfect matching M along all
vertical cycles of this slice. By doing so we create a perfect matching M ′,
where we can have a large family of pairwise disjoint paths move ‘upwards
within W ’ without changing their relative positions to one another.
With this we have established all tools necessary for our proof of Theo-
rem 8.0.4.

8.4. Proof of the Bipartite Flat Wall Theorem for
Matching Minors

This section is entirely dedicated to the proof of Theorem 8.0.4. The proof
goes through several phases and establishes a few subclaims along the way
as follows:
• In the beginning we have a large matching wall W with its canonical

matching M of B. From here on we mostly work in the digraphic
setting and consider the cylindrical wall U0 := D(W,M) in D =

D(B,M). Note that, by Lemma 3.2.17, the existence of a
↔
Kt-

butterfly minor grasped by U0 in D can be seen to imply the existence
of a Kt,t-matching minor grasped by W in B.
Phase I
Phase I is an iterative process consisting of two steps which are
applied to a slice Ui of U0, where Ui is the end result of the ith
round of Phase I:

Step I Here we simultaneously apply Lemma 8.2.5 for both parametri-
sations of U0, every tiling defined by choices of ξ, ξ′ ∈ [1, w+1],

and every colour class. This either results in a
↔
Kt-butterfly

minor grasped by U0, or in bounded size sets F ′
i and F ′

i which
are a set of vertices and a set of tiles respectively. The tiles
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in F ′
i are considered marked. We then find a large slice U ′

i of
Ui−1 without vertices of marked tiles.

Step II Next we apply Lemma 8.2.7 for all four colours of every tiling
defined by ξ, ξ′ ∈ [1, w+1] and again either find a

↔
Kt-butterfly

minor grasped by U0, or in bounded size sets F ′′
i and F ′′

i , which
are a set of vertices and a set of tiles respectively. We then
find a slice Ui of U ′

i of appropriate size that does not contain
vertices of a marked tile.

So at the end of Phase I we have found bounded size sets FI and FI

of vertices and tiles respectively which are now considered marked,
and we have found a large slice UI of U0 which is free of marked
vertices and tiles.
• We can now show that there either exists a

↔
Kt-butterfly minor

grasped by U0, or there is no long jump over UI in D − FI . This
is due to the fact that each long jump over UI must meet some
marked tiles of U0. However, the number of pairwise distinct such
tiles grows with every round and thus, after a certain threshold of
such tiles has been surpassed, we can find many pairwise disjoint
long jumps over U0 within a single long jump over UI , which implies
the existence of a large clique butterfly minor.
Phase II
Now we know that only short jumps can exist over UI in D − FI .
We divide UI into O(t2) slices, each of which can be partitioned into
three appropriately sized slices. Then either one of these middle
slices is already flat with respect to its perimeter, or we may apply
Lemma 8.3.8 to locally change the perfect matching of a single tile
for each of these middle slices and therefore we find O(t2) disjoint
crosses that are relatively far apart from each other. These can then
be used to create

↔
Kt.

So in Phase II we either find the flat wall as desired, or
↔
Kt in the M ′-

direction of our graph, where M ′ is the perfect matching obtained by
creating the crossings through Lemma 8.3.8 and switching M along some
of the vertical cycles of UI . Phase II will be the only time we make active
use of the matching setting.
Throughout the proof we will collect tiles from different tilings. In general
we will say that a tile is marked if it either contains a vertex of some
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separator obtained from Theorem 2.3.8 and Lemma 8.2.5, or through
Lemma 8.2.7, or one of these separators contains the fresh vertex created
for it in the construction of some auxiliary graph (type I or II). This
means that the overall number of tiles that are marked exceeds the size
of the sets Fi, still the number of columns that can contain marked tiles
is bounded, which is enough for our purposes. A vertex of U is said to
be marked if it belongs to a separator obtained from Theorem 2.3.8 and
Lemma 8.2.5, or through Lemma 8.2.7. In each of the steps we introduce
families of marked tiles and vertices and a slice of U is said to be clear if
it does not contain vertices that are marked.

Proof of Theorem 8.0.4. Let r, t ∈ N be positive integers, B be a bi-
partite graph with a perfect matching M , D := D(B,M), and W be
an M -conformal matching ρ(t, r)-wall, where ρ(t, r) will be determined
throughout the proof. To do this we will introduce a constant di for each
step, for which we will make more and more assumptions in the form of
lower bounds. Let U := D(W,M) be the M -direction of W , then U is a
cylindrical ρ(t, r)-wall in D.

Let us assume ρ(t, r) ≥ 3d1.

Then let U be the cylindrical 3d1-wall U = (Q1, . . . , Q3k, P̂ 1, . . . , P̂ 3k)

with its triadic partition U = (U, d1, ˜︁U1, ˜︁U2, ˜︁U3, ˜︁U1, ˜︁U2, ˜︁U3). Throughout
the proof let us fix

w := 2fw(t) + 27fP (t).

Recall that we may use Lemma 3.2.17 to transform a
↔
Kt-butterfly minor

grasped by U in D into a Kt,t-matching minor grasped by W in B.
Hence, whenever we find such a butterfly minor in D we may consider the
corresponding case to be closed.

Phase I Phase I is divided into 211+8fP (t)fP (t) rounds, each of
which produces a slice Ui of U0 := ˜︁U2 which is clean with respect to all
tiles that have not been marked up to this point. We also obtain sets
Fi ⊆ V (D −

⋃︁i−1
j=1 Fj) and Fi of marked vertices and tiles respectively for

each round i ∈ [1, 211+8fP (t)fP (t)], and in each round i we will work on
the digraph Di := Di−1−Fi. In this context, whenever we ask for a clean
slice of the current slice Ui−1 or U ′

i we ask for a slice U ′ such that there
do not exist ξ, ξ′ ∈ [1, w + 1] whose corresponding tiling of U0 has a tile
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T , that is marked or contains a vertex of any separator set found so far,
which satisfies V (T ) ∩ V (U ′) ̸= ∅.
Each round is divided into two steps, Step I and Step II. Let i ∈
[1, 211+8fP (t)fP (t)]. From the previous round or the initial state, we
may assume to have obtained the following sets and graphs, which serve
as the input for round i:

• FI,i−1 ⊆ V (D) such that |FI,i−1| ≤ (i−1)(211(w+1)2fP (t)+25(w+

1)2fP (t)),
• Di−1 := D − FI,i−1,
• FI,i−1 ⊆

⋃︁
ξ,ξ′∈[1,w+1]TU0,d1,w,ξ,ξ′

of size at most (i − 1)(211(w +

1)2fP (t) + 25(w + 1)2fP (t)), and
• a slice Ui−1 of U0 of width ((212(w+1)3fP (t)+1)(26(w+1)3fP (t)+

1))2
11+8fP (t)fP (t)−i+1d2 that is clean with respect to FI,i−1 and

FI,i−1 such that, in case i − 1 ≥ 1, every long jump over Ui−1

in Di−1 contains a vertex of some tile in FI,j \ FI,j−1 for every
j ∈ [1, i− 1].

For i = 1 the inputs are the graphs D0 := D, U0, and two empty sets.
After round i is complete we require the following sets and graphs as its
output :

• FI,i ⊆ V (D) such that |FI,i| ≤ i(211(w+1)2fP (t)+25(w+1)2fP (t)),
• Di := D − FI,i,
• FI,i ⊆

⋃︁
ξ,ξ′∈[1,w+1]TU0,d1,w,ξ,ξ′

of size at most i(211(w + 1)2fP (t) +

25(w + 1)2fP (t)), and
• a slice Ui of U0 of width ((212(w + 1)3fP (t) + 1)(26(w + 1)3fP (t) +

1))2
11+8fP (t)fP (t)−id2 that is clean with respect to FI,i and FI,i such

that every long jump over Ui in Di contains a vertex of some tile in
FI,j \ FI,j−1 for every j ∈ [1, i].

To be able to find a slice of width d2 in the end we therefore must fix
d1 ≥ ((212(w + 1)3fP (t) + 1)(26(w + 1)3fP (t) + 1))2

11+8fP (t)fP (t)d2,

and we further assume d2 ≥ 216fW (t)2 to make sure we can apply
Lemma 8.2.5 and Lemma 8.2.7 in every round. Note that this is not
our final lower bound on d2, just an intermediate assumption.
Next we describe the steps we perform in every round. Let i ∈
[1, 211+8fP (t)fP (t)] and suppose we are given sets FI,i−1, FI,i−1 and graphs
Di−1, Ui−1 as required by the input conditions for round i.
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Step I : Let ki := ((212(w + 1)3fP (t) + 1)(26(w + 1)3fP (t) +

1))2
11+8fP (t)fP (t)−i+1d2. For each of the two possible parametrisa-

tions of U , we consider for every possible choice of ξ, ξ′ ∈ [1, w + 1], the
tiling T := TUi−1,ki,w,ξ,ξ′ together with its four colouring {C1, . . . , C4}.
For each j ∈ [1, 4] we consider the smallest slice U ′ of U that contains all
vertices which belong to some tile of T . Consider the auxiliary digraph
D1

j (U
′) of type I obtained from Di−1 and define the sets

Xout
I :=

{︁
xout
T | T ∈ Cj

}︁
, and

X in
I :=

{︂
xin
T | T ∈ Cj

}︂
.

Additionally we construct the set YI as follows: Let Q and Q′ be the two
cycles of Per(U0). For every j ∈

[︁
1, 3d1

4

]︁
, YI contains exactly one vertex

of Q ∩ P 1
4j , Q ∩ P 2

4j+2, Q′ ∩ P 1
4j , and Q′ ∩ P 2

4j+2 each. Then remove all
vertices of YI that do not belong to Di−1. Note that, by choice of d1 and
the bound on FI,i−1, this does not decrease the size of YI dramatically.
Then, if there is a family of 27fP (t) pairwise disjoint directed Xout

I -YI-paths

in D1
j (U

′), Lemma 8.2.5 provides us with the existence of a
↔
Kt-butterfly

minor grasped by U and we are done. So we may assume that there does
not exist such a family and thus we may find a set Z1 ⊆ V (D1

j (U
′)) of

size at most 27fP (t) that meets all such paths by Theorem 2.3.8. With a

similar argument, we either find a
↔
Kt-butterfly minor grasped by U , or a

set Z2 ⊆ V (D1
j (U

′)) of size at most 27fP (t) that meets all directed YI-X in
I -

paths in D1
j (U

′). Let π ∈ [1, 2] indicate which of the two parametrisations
of U we are currently considering. Then we can define the following two
sets:

Zπ,ξ,ξ′,j :=(Z1 ∪ Z2) ∩ V (D), and

Zπ,ξ,ξ′,j :=
{︂
T ∈ T | (V (T ) ∪

{︂
xout
T , xin

T

}︂
) ∩ (Z1 ∪ Z2) ̸= ∅

}︂
.

Note that max {|Zπ,ξ,ξ′,j |, |Zπ,ξ,ξ′,j |} ≤ 28fP (t).

If we do not find a
↔
Kt-butterfly minor grasped by U at any point, the sets

Zπ,ξ,ξ′,j and Zπ,ξ,ξ′,j are well defined for every possible choice of π ∈ [1, 2],
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ξ, ξ′ ∈ [1, w + 1], and j ∈ [1, 4]. We collect these sets into the following to
sets, which make up the first step towards the output of round i:

F ′
I,i :=

⋃︂
π∈[1,2]

⋃︂
ξ,ξ′∈[1,w+1]

⋃︂
j∈[1,4]

Zπ,ξ,ξ′,j , and

F ′
I,i :=

⋃︂
π∈[1,2]

⋃︂
ξ,ξ′∈[1,w+1]

⋃︂
j∈[1,4]

Zπ,ξ,ξ′,j .

Consequently we have that max
{︁
|F ′

I,i|, |F ′
I,i|
}︁
≤ 211(w + 1)2fP (t).

We may now find a clear slice U ′
i ⊆ Ui−1 of width (212(w + 1)3fP (t) +

1)2
11+8fP (t)fP (t)−i(26(w + 1)3fP (t) + 1)2

11+8fP (t)fP (t)−i+1d2 which does
not contain a marked vertex. Note that we lose the additional factor
of 2(w + 1) since we remove whole tiles of width w from Ui−1. Let
D′

i := Di−1 − F ′
I,i. This concludes Step I of round i.

Claim 1. Every long jump J over U ′
i in D′

i whose endpoints belong to
tiles of different colour contains a vertex of a tile from FI,j \ FI,j−1 for
every j ∈ [1, i− 1], and it contains a vertex of a tile from F ′

I,i.

Proof of Claim 1: Suppose J is also a long jump over Ui−1 in Di−1, then,
as J still exists in D′

I,i, the tile in whose centre J starts, or the tile in
whose centre J ends for some choices of π ∈ [1, 2], ξ, ξ′ ∈ [1, w + 1], and
j ∈ [1, 4], must be marked and therefore cannot belong to U ′

i .
Hence J must contain some vertex of Ui−1 as an internal vertex. Let Ts

be the tile of U ′
i in whose centre J starts, and let T be the first tile from

the same tiling of Ui−1, that J meets after Ts. Let J ′ be the shortest
subpath of J with endpoints in Ts and T . Then J ′ is a long jump over
Ui−1 in Di−1. Therefore, by our assumptions on the input of the ith
round of Phase I, the first part of our claim is satisfied. Moreover, if T
has a different colour than Ts, T must be marked. So suppose T has the
same colour as Ts. Nonetheless, since Ts and the tile Tt which contains
the endpoint of J in the current tiling have different colours, J contains a
directed subpath J ′′ which is a long jump over Ui−1 and attaches to tiles
of different colour. Hence our claim follows. ■

With this we are ready for Step II of round i.
Step II : For this step let ki := (212(w+1)3fP (t)+1)2

11+8fP (t)fP (t)−i(26(w+

1)3fP (t) + 1)2
11+8fP (t)fP (t)−i+1d2. We are mainly concerned with the

digraph D′
i. In Step II it suffices to fix one parametrisation of U since the
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construction of the type II auxiliary digraph leaves the complete interior
of same-colour-tiles intact instead of only their centres. For every pair of
ξ, ξ′ ∈ [1, w + 1] let us consider the tiling T := TU′

i ,ki,w,ξ,ξ′ together with
its four colouring {C1, . . . , C4}. Then, for every j ∈ [1, 4] we call upon

Lemma 8.2.7 which either provides us with a
↔
Kt-butterfly minor grasped

by U , and therefore closes the proof, or it produces two sets
Z2

ξ,ξ′,j ⊆V (D′
i) of size at most 23fP (t), and

Z2
ξ,ξ′,j ⊆T of size at most 23fP (t),

such that every directed V (U ′
i)-path whose endpoints belong to different

tiles of Cj , contains a vertex of some tile in Z2
ξ,ξ′,j . This allows us to form

the sets for the second step of round i:
F ′′
I,i :=

⋃︂
ξ,ξ′∈[1,w+1]

⋃︂
j∈[1,4]

Z2
ξ,ξ′,j , and

F ′′
I,i :=

⋃︂
ξ,ξ′∈[1,w+1]

⋃︂
j∈[1,4]

Z2
ξ,ξ′,j .

As a result we obtain max
{︁
|F ′′

I,i|, |F ′′
I,i|
}︁
≤ 25(w + 1)2fP (t), and we are

able to produce the two sets which will be passed on to the next round.
FI,i :=F ′

I,i ∪ F ′′
I,i ∪ FI,i−1, and

FI,i :=F ′
I,i ∪ F ′′

I,i ∪ FI,i−1.

The bounds on FI,i and FI,i follow immediately from the bounds on F ′
I,i

and F ′′
I,i, F ′

I,i and F ′′
I,i, and the assumptions on the input of round i

respectively.
The pigeon hole principle allows us to find a clear slice Ui ⊆ U ′

i of width
((212(w+1)3fP (t)+1)(26(w+1)3fP (t)+1))2

11+8fP (t)fP (t)−id2 which does
not contain a marked vertex. Similar to Step I, we lose the additional
factor of 2(w + 1) since we remove whole tiles of width w from U ′

i . Let
Di := D′

i − F ′′
I,i. This concludes Step II of round i.

Claim 2. Every long jump over Ui in Di contains a vertex of some tile
in FI,j \ FI,j−1 for every j ∈ [1, i].

Proof of Claim 2: Let J be a long jump over Ui in Di, and let T be a
tiling of U0 defined by w and some ξ, ξ′ ∈ [1, w + 1] such that J starts
at the centre of some tile Ts ∈ T . Suppose all tiles of T which contain
vertices of J belong to the same colour. Then J must have existed during
the corresponding part of Step II of round i and thus either Ts or Tt ∈ T ,
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which is the tile that contains the endpoint of J , must have been marked.
Therefore J must contain at least one tile of a colour different from the
one of Ts. Moreover, we may assume Ts and Tt to be of the same colour
as otherwise we would be done by Claim 1. Next suppose J is also a long
jump over Ui−1, then again J would have been considered during Step II
as a long jump connecting two tiles of the same colour and thus Ts or Tt

would have been marked. Therefore J must contain a vertex of some tile
from Ui−1. Let J ′ be a shortest subpath from Ts to some tile T of Ui−1,
then J ′ is a long jump over Ui−1 and thus J contains a vertex of some tile
of FI,j \ FI,j−1 for every j ∈ [1, i − 1] by our assumptions on the input
of round i. If T has a different colour than Ts, then T would have been
marked in Step I of round i, and if T shares the colour of Ts it must have
been marked in Step II of round i. Either way our claim follows. ■

From Claim 2 it follows that we satisfy all requirements for the output of
round i and thus round i is complete. We continue until we finish round
i = 211+8fP (t)fP (t) and obtain the following four objects as its output:

• a slice UI := U211+8fP (t)fP (t) of width d2,

• a set A := FI,211+8fP (t)fP (t) of size at most t28260+210t8 ,
• a digraph DI := D211+8fP (t)fP (t) = D −A, and
• a sequence FI,1 ⊆ FI,2 ⊆ · · · ⊆ FI,211+8fP (t)fP (t) such that every

long jump over UI in DI contains a vertex of some tile in FI,i\FI,i−1

for every i ∈ [1, 211+8fP (t)fP (t)].
This brings us to the final claim of Phase I.

Claim 3. If there is a long jump over UI in DI , then there is a
↔
Kt-butterfly

minor grasped by U in D.

Proof of Claim 3: Let J be a long jump over UI in DI . We fix a
parametrisation of U , ξ, ξ′ ∈ [1, w+1], and c ∈ [1, 4] such that there exists
a tile Ts ∈ T := TU0,d1,w,ξ,ξ′ of colour c whose centre contains the starting
point of J . Let Tt ∈ T be the tile that contains the endpoint of J . As J

is a long jump, note that Ts ̸= Tt.
We now create a family L0 of 29+8fP (t)fP (t) pairwise disjoint subpaths of
J with the following properties:

i) for every L ∈ L0, let TL,1 and TL,2 be the tiles of T that contain
the starting point sL and the endpoint tL of L respectively, then
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there exist distinct iL,1, iL,2 ∈ [1, 211+8fP (t)fP (t)] such that sL is a
vertex of a tile from FI,iL,1 \ FI,iL,1−1, and tL is a vertex of some
tile in FI,iL,2 \ FI,iL,2−1, and

ii) if L,L′ ∈ L0 are distinct, then {iL,1, iL,2} ∩ {iL′,1, iL′,2} = ∅.
Let us initialise I0 := [1, 211+8fP (t)fP (t)] and for every subset I′ ⊆ I0,
we define the family FI′ :=

⋃︁
i∈I′ FI,i \ FI,i−1. Please note that every

internal vertex of J that belongs to U must belong to some tile from
FI,211+8fP (t)fP (t), since otherwise we could find a directed path from the
centre of Ts to the perimeter of U0 contradicting the construction in Step
I of Phase I, or we would have a directed path between two tiles of the
same colour, where both of them are unmarked. This second outcome
contradicts the construction in Step II of Phase I.
Consider the shortest subpath of J that shares its starting point with
J and is a long jump over U . Let TL1,1 be the tile of T where this
path ends and let sL1 be the first vertex of J for which its successor
along J does not belong to TL1,1. Note that there exists iL1,1 ∈ I0 such
that TL1,1 ∈ FI,iL1,1 \ FI,iL1,1−1 by the discussion above. Let L1 be
the shortest subpath of J that starts in sL1 and ends in a vertex tL1

for which iL1,2 ∈ I0 \ {iL1,1} exists such that tL1 belongs to a tile from
FI,iL1,2 \FI,iL1,2−1. Let TL1,2 be the tile of T that contains tL1 . We add
L1 to L0 and set I1 := I0 \ {iL1,1, iL1,2}. By our choice of iL1,1 and iL1,2,
the path tL1J still contains a vertex of a tile from FI,j \ FI,j−1 for every
j ∈ I1.
Now let q ∈ [2, 29+8fP (t)fP (t)] and assume that the paths L1, . . . , Lq−1

together with the tiles, indices and the set Iq−1 have already been con-
structed. Follow along J , starting from tLq−1 , until the next time we
encounter the last vertex sLq of some tile from FIq−1 before J leaves said
tile again. Let TLq ,1 ∈ T be the tile that contains sLq , and let iLq ,1 ∈ Iq−1

be the integer such that sLq belongs to a tile of FI,iLq,q \ FI,iLq,q−1.
Then let Lq be the shortest subpath of J that starts in sLq and ends
in a vertex tLq which belongs to a tile from FI,iLq,2 \ FI,iLq,2−1, where
iLq ,2 ∈ Iq−1 \ {iL−q,1}. We choose TLq ,2 ∈ T to be the tile that contains
tLq and set Iq := Iq−1 \

{︁
iLq ,1, iLq ,2

}︁
. As before notice that tLqJ still

contains a vertex from some tile in FI,j \ FI,j−1 for every j ∈ Iq. Add Lq

to L0.
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With every iteration we remove exactly two members from I and, as
|I| = 211+8fP (t)fP (t), this means that by the time we reach some q

for which Iq = ∅, we have indeed constructed 210+8fP (t)fP (t) paths as
required.
Now there must exist c′ ∈ [1, 4] and a family L1 ⊆ L0 of size 28+8fP (t)fP (t)

such that each path L ∈ L1 has at least one endpoint in Cc′ . And, in an
immediate second step, we can find a family L2 ⊆ L1 of size 27+8fP (t)fP (t)

such that every path in L2 starts in a tile of Cc′ , or every path in L2 ends
in a tile of Cc′ . Without loss of generality we may assume that every
path in L2 starts in a tile of Cc′ since the other case follows with similar
arguments.
Let ˜︁U ′ be the smallest slice of U that contains all tiles from Cc′ , but no
tile from Cc′ meets the perimeter of ˜︁U . Then let ˜︁T := (T , c′, w)II[˜︁U ′] be
the tier II tiling of ˜︁U := ˜︁U ′[T , c′, w]. Since the paths in L2 are pairwise
disjoint, we can extend each L ∈ L2 such that it starts on the centre of
the tile of ˜︁T which encloses its endpoint in U , while making sure that the
resulting family of paths is still at least half-integral. Similarly, wherever
necessary, we may extend the paths through U such that each of them
also ends in a tile of ˜︁T . Indeed, we can even guarantee that the endpoints
of the resulting paths are mutually at ˜︁U -distance at least 4. Let L3 be
the resulting half integral linkage.

Next consider the four colouring
{︂ ˜︁C1, . . . , ˜︁C4}︂ of ˜︁T . Then there exists˜︁c ∈ [1, 4] and a family L4 ⊆ L3 of size 25+8fP (t)fP (t) such that every

path in L4 starts at the centre of some tile from C˜︁c. It follows from the
construction of L0 that no two paths in L4 start in the same tile.
By a similar argument, there exists a family L5 ⊆ L4 of size 24+8fP (t)fP (t)

such that either none, or all paths in L5 end in tiles of ˜︁C˜︁c.
In the first case we can extend every path in L5 towards the perimeter of˜︁U such that the resulting family L6 of paths remains at worst half-integral,
and the endpoints of the resulting paths are mutually at ˜︁U -distance at least
4. Now Theorem 8.2.4 provides us with a family L7 of size 23+8fP (t)fP (t)

such that V (L7) ⊆ V (L6), and the paths in L7 are pairwise vertex disjoint.

Hence Lemma 8.2.5 yields the existence of a
↔
Kt-butterfly minor grasped

by ˜︁U and our claim follows.
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In the second case we consider two subcases. Let X be the family of all
tiles of ˜︁T \ ˜︁C˜︁c which contain an internal vertex of some path in L5 but no
endpoint of any path in L5.
Suppose |X | ≥ 28fP (t) and recall that, if L and P are directed paths, we
say that P is a long jump of L if P is a w-long jump over U and P ⊆ L.
We also say that P is a jump of L, if P is a directed V (U)-path. Then we
can use the technique from the first part of the proof of Lemma 8.2.5 to
construct a half-integral family L6 such that

i) |L6| = 24+8fP (t)fP (t), and
ii) for every L ∈ L6, every endpoint u of a jump of L with u ∈ V (˜︁U)

belongs to a tile from ˜︁C˜︁c ∪ X .
We can then apply Theorem 8.2.4 to obtain a family L7 of size
23+8fP (t)fP (t) with V (L7) ⊆ V (L6) such that the paths in L7 are pair-
wise disjoint and link the same two sets of vertices as the paths in L6 do.
Finally Lemma 8.2.5 yields the existence of a

↔
Kt-butterfly minor grasped

by U .
So we may assume |X | < 28fP (t). In this case, we may find a subwall˜︁U ′ of ˜︁U of order d1 − 28fP (t)(2w + 1) that does not contain a vertex of
any tile in X by removing, for every tile T ∈ X , all edges and vertices
of the horizontal cycles and vertical paths of T , which are not used by
other cycles or paths. For each tile we remove during this procedure,
we remove a row and a column of tiles and thereby might reduce the
number of distinct tiles which contain starting vertices of paths in L5

by a factor of 1
2
. However, since |X | < 28fP (t), we can still find, after

potentially expanding the start and end sections of some paths to again
reach the slightly shifted perimeters of their tiles, a half-integral family
L6 of size 24fP (t) of paths that start and end in tiles of ˜︁C˜︁c and that are
otherwise disjoint from ˜︁U ′. By using Theorem 8.2.4 we can transform this
family into an integral family L7 of size 23fP (t) and thus an application

of Lemma 8.2.7 yields a
↔
Kt-butterfly minor grasped by U . ■

Concluding Phase I, Claim 3 either yields a
↔
Kt-butterfly minor grasped by

U and therefore closes the case, or UI is in fact clean, meaning that UI has
no long jump in DI . The set A is a set of vertices of D which means that
it can be seen as a set of edges from M in B. Hence we may treat A as an
M -conformal set of vertices in B of size at most t28261+210t8 . Consequently
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we may bound the function α from the statement of Theorem 8.0.4 as
follows:

α(t) ≤ t28261+210t8 .

Phase II Until now all of our efforts were focused on the removal of long
jumps, so the only jumps that remain must be short, i.e. their endpoints
in UI must have UI -distance at most w − 1. To meet the requirements
from Phase I and have enough space left in UI , let us make the following
assumption:

d2 ≥ t4(r + 232+t30).

Let us partition UI into 2t4 many slices as follows: First we can partition
UI into t4 slices Si of width r + 232+t30 . Each Si is then partitioned into
a slice Hi of width r + 215+t30 that contains the left perimeter cycle of
the of Si, and a slice Gi of width 231+t30 containing the right cycle of the
perimeter of Si. For every i ∈ [1, t4] we may now further partition Hi.
Let Ni,L ⊆ Hi be the slice of width 230+t30 containing the left cycle of
Per(Hi), let Ni,R be the slice of width 230+t30 containing the right cycle
of Per(Hi), and let Ni := Hi−NL,i−NR,i be the remaining slice of width
r.

Claim 4. If for all i ∈ [1, t4] the slice S(Ni) is not Per(S(Ni))-flat in B

with respect to A, then there exists a Kt,t-matching minor grasped by W

in B.

Proof of Claim 4: To start, notice that, since UI is clean in DI , every
internally M -conformal path in B −A whose endpoints belong to S(UI)

and which is internally disjoint from S(UI) must correspond to a short
jump over UI in DI . The goal of this proof is to adjust the perfect
matching M of B in such a way that the M ′-direction of the new perfect
matching M ′ yields the desired

↔
Kt-butterfly minor.

The Model of
↔
Kt: Let us describe how the construction of the

↔
Kt-butterfly

minor works. We utilise essentially the same construction that was used
in [GKKK20] to obtain Lemma 8.2.2.
Consider the slice ˜︁U1 of width d1 from the triadic partition of U . Partition˜︁U1 into t+1 slices of equal width named U ′

1, . . . , U
′
t+1. The first t of these

slices will hold the roots of the t vertices of
↔
Kt, where the root of the

405



Chapter 8. A Weak Structure Theorem

ith vertex will be contained in U ′
i . The root of the ith vertex will be a

path Vi, subpath of some horizontal path of W ′
i from left to right, with t

incoming edges eij and t outgoing edges f i
j in such a way that

• the edges eij and f i
j , j ∈ [1, t − 1], belong to vertical cycles of Ui,

i ∈ [1, t],
• the heads of ei1, ei2, . . . , eit appear in the order listed when traversing

along Vi,
• the tails of f i

1, f
i
2, . . . , f

i
t appear in the order listed when traversing

along Vi, and
• the head of eit appears on Vi before the tail of f i

1 when traversing
along Vi.

We also require the slices U ′
i to appear in the order U ′

1, U
′
2, . . . , U

′
t from

left to right, and that all Vi belong to the same horizontal path. If we are
able to find a family of pairwise disjoint paths, internally disjoint from
the roots, such that for every pair of distinct i, j ∈ [1, t] the head of f i

j

is linked to the tail of eji , then the union of these paths together with

the roots can be seen to form a butterfly minor model of
↔
Kt. Indeed,

each root can be contracted into a single vertex by the butterfly minor
relation. If we do this for each of the t roots, then the resulting digraph is
a subdivision of

↔
Kt. For an illustration of a root see Figure 8.9.

ei1 ei2 ei3 ei4

f i
1 f i

2 f i
3 f i

4

Figure 8.9.: The the root of the model of the ith vertex of
↔
K4.

Recall that a tile T of a matching wall W ′ is non-Pfaffian if either the
attachment of the centre of T is a non-Pfaffian bipartite graph, or there
exists a short jump over W ′ with both endpoints on the interior of T .
For every i ∈ [1, t4], let N ′

i be the slice of width 4w + 2 + r of Hi, such
that N ′

i − Ni consists of exactly two components which both are slices
of width 2w + 1. Since S(Ni) is not Per(S(Ni))-flat in B with respect to
A, there must exist ξ, ξ′ and tiling T = TN′

i ,4w+2+r,w,ξ,ξ′ containing a tile
Ti such that S(Ti) is non-Pfaffian in B − A. Note that the centre of Ti
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must lie within Ni, since otherwise we either could choose a different Ti,
or S(Ni) would be Per(S(Ti))-flat in B with respect to A.
We may adjust the parametrisation of U and its embedding, such that
the top most strip of height 16fP (t) + 2w does not contain a vertex of Ti

for any i ∈ [1, t4]. This is to make sure that the top most strip of height
8fP (t) is not used by any of the preliminary constructions below and can

therefore later be used to construct our
↔
Kt-butterfly minor.

Let U ′′
I be the subgraph of UI obtained as the union of all vertical cycles

and horizontal paths of UI which do not contain vertices of the Ti. Note
that the resulting graph is again a slice of some wall. Then we may find
a tile T ′

i of width w in U ′′
I for every i ∈ [1, t4], such that the interior of

the centre of T ′
i in UI contains the entire tile Ti. Observe that, since the

centres of the Ti lie within the Ni, the T ′
i are completely contained in the

N ′
i respectively. Let si,L be the top left, and si,R be the top right vertex

of the perimeter of T ′
i as well as ti,L be the bottom left and ti,R be the

bottom right vertex of the perimeter of T ′
i . By Lemma 8.3.8 we can find

a perfect matching Mi of S(N ′
i) ∪ AttB−A,S(UI )(Ti) such that

• after slightly re-routing the horizontal paths of U ′′
I in

D(S(DI),M∆Mi), U ′′
I still exists, and

• there are paths vertex disjoint directed paths Li and Ri such that
• Li starts in si,L and ends in ti,R,
• Ri starts in si,R and ends in ti,L, and
• Li and Ri are vertex disjoint from U ′′

I −D(S(T ′
i ),Mi).

Note that for i ̸= j ∈ [1, t4], we know that Mi and Mj are disjoint.
Moreover, S(N ′

i) ∪ AttB−A,S(UI )(Ti) and S(N ′
j) ∪ AttB−A,S(UI )(Tj) must

be disjoint since otherwise we could find an internally M -conformal path
P starting in S(Ti) and ending in S(Tj) which is internally disjoint from
S(UI). In DI such a path P would correspond to a long jump over UI by
the construction of Hi and Hj , but by our assumption, there cannot exist
such a long jump. Let M ′ := M∆

⋃︁t4

i=1 Mi and D′
II := D(S(DI),M

′).
Hence we can find a slice U ′

II corresponding to the construction of U ′′
I

for all i ∈ [1, t4] simultaneously in D′
II , and the paths Li, Ri exist for all

i ∈ [1, t4] such that for all i ̸= j ∈ [1, t4], Li and Ri are disjoint from Lj

and Rj .
For every i ∈ [1, t4], let M ′

i be the perfect matching of S(Gi) obtained
by switching M along all horizontal cycles of S(Gi). At last let M ′′ be
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the perfect matching of S(U ′
t+1) obtained by switching M along all of

its horizontal cycles. Then we may set MII := M ′∆(
⋃︁t4

i=1 M
′
i ∪M ′′) and

consider DII := D(B,MII). Let UII be the union of U − UI , the slices
of UII that correspond to the Mi-directions of the Hi together with the
paths Ri and Li, and the MII -directions of the Gi. Note that UII is
indeed a subgraph of DII that closely resembles a cylindrical wall, with
a few holes, t4 pairs of crosses over small areas over the wall, and some
sections, corresponding the the Gi, in which the vertical cycles are oriented
upwards instead of downwards. See Figure 8.10 for a rough sketch of the
digraph UII .

Figure 8.10.: A sketch of the digraph UII with its crosses, the top strip of
bounded height we aim to keep unused, and the section of
the left slice which is used for the roots of

↔
Kt (highlighted

in red).

As the final step of the proof we construct a
↔
Kt-butterfly minor grasped

by UII in DII . Since S(DII) = B, Lemma 3.2.17 can then be applied to
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8.4. Proof of the Bipartite Flat Wall Theorem for Matching Minors

find a Kt,t-matching minor grasped by W in B, which will conclude the
proof of our claim.

Let us position the roots of the vertices for our
↔
Kt on the path P 1

3
2
d1

. For

each pair (i, j) ∈ [1, t]2, we will construct a path Ji,j starting at the head
of f j

i and eventually ending at the tail of eij . Since the roots are ordered
from left to right, we start out with a family of disjoint paths in UII which
are ordered from left to right as

J1,1, J1,2, . . . , J2,1, . . . , Jt−1,t, Jt,1, . . . , Jt,t

while moving downwards in the current embedding of UII . We grow
the paths Ji,j until each of them ends on some P 1

h1(i,j)
where h1(i, j) >

h1(i
′, j′), if (i, j) is lexicographically smaller than (i′, j′). Then we grow

the paths along their respective P 1
h1(i,j)

, until each of them ends on a
switched vertical cycle Qh2(i,j) of U ′

t+1 where h2(i, j) > h2(i
′, j′), whenever

(i, j) is lexicographically smaller then h2(i, j). Afterwards we move each
path along its respective horizontal cycle upwards, until each Ji,j reaches
some P 1

h3(i,j)
, where h3(i

′, j′) < h3(i, j), if Ji,j is further to the right than
Ji′,j′ while moving upwards, and each P 1

h3(i,j)
is above the top path of T ′

1,
while avoiding the top strip of height 4fP (t). This is possible by the choice
of our parametrisation. Next move each Ji,j towards the right along its
P 1
h3(i,j)

until the following requirements are met:
• the path J1,1 ends on a horizontal cycle of NL,1, which lies left of
T ′
1,

• the two paths J1,2 and J1,3 meet exactly the two horizontal cycles
of N ′

1 which contain the tail of L1 and R1 respectively, and
• the paths J1,4, . . . , Jt,t end on horizontal cycles of NR,1 such that
Ji,j ends on a cycle left of the cycle on which Ji′,j′ ends, if Ji,j

passes T ′
1 below Ji′,j′ .

Now, by growing the paths downwards, we may route J1,2 and J1,3 through
the paths L1 and R1, thereby swapping their relative positions within the
whole path family. We may then either grow the paths further downwards
and then go right again, or use the switched horizontal cycles of G1, to
grow them back upwards within UII . Either way, we are able to route
the now neighbouring paths J1,2 and J1,4 (or J2,1 in case t = 3) through
T ′
2. Since we have t4 such crosses in total, we may repeat this process
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until, after passing through T ′
t4 , the paths are in the following order when

moving downwards in our current embedding of UII :
J1,1, J2,1, J3,1, . . . , Jt,1, J1,2, . . . , Jt,2, . . . , J1,t, . . . , Jt,t.

We can now use Gt4 to route all of these paths upwards and finally use
the top strip of height 4fP (t), which we kept untouched so far, to route
the paths back to the roots of our vertices. With the changed order we
are no able to grow each path Ji,j such that it indeed ends on the tail of
ej,i, while making sure that our paths stay pairwise vertex disjoint. Hence

we have found a
↔
Kt-butterfly minor as desired and the proof of our claim

is complete. ■

From Claim 4 it follows that, in case all t4 slices S(Ni) are not Per(S(Ni))-
flat in B with respect to A, then there exists a Kt,t-matching minor grasped
by W in B. In this case we are done and thus we may assume that there
exists some i ∈ [1, t4] such that S(Ni) is indeed Per(S(Ni))-flat in B with
respect to A. Since Ni is of width r, S(Ni) contains a conformal matching
r-wall ˜︂W such that Per(˜︂W ) = Per(S(Ni)) and thus our proof is complete.
At last let us combine all assumptions on the dj to obtain the following
bound on ρ(t, r):

ρ(t, r) ≤ (2140t76)2
10t8+212(r + 232+t30).

Please note that many of the exponential parts of the bounds in α and ρ

are due to specific difficulties encountered in the digraphic setting. Indeed,
even the exponential lower bound on fW necessary for Lemma 8.2.2 can
probably be made polynomial by simply diving deeper into the increased
freedom provided by the possibility of switching perfect matchings along
directed cycles. At this point it is not clear whether the exponential part
of Phase II in the proof of Theorem 8.0.4 can also be made polynomial.
To do this, it is probably necessary to develop a technique for removing
long jumps that does not rely on tilings.

8.5. Applications to Structural (Di)Graph Theory

In this section we explore the digraphic version of Theorem 8.0.4 as an
alternative to Theorem 8.0.7. We believe that the results of the following
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two subsections further strengthen the importance of strong planarity and
the strong genus of digraphs for structural digraph theory.
Indeed, an important result from the findings in this section will be the
following.

Theorem 8.5.1 (G∗). Let D be a strongly connected digraph. Then
A(D) contains a planar digraph.

From this we can deduce that first for every g there exists a planar digraph
of strong genus g, and second, that the notion of planarity in the theory
of butterfly minors is probably not strong enough to play a role similar to
the one planarity plays in undirected graph minor theory.

8.5.1. Another Flat Wall Theorem for Digraphs

An advantage of relying heavily on the digraphic setting for the proof of
Theorem 8.0.4 is that we may first select a perfect matching M of our
choosing and then just have to consider those M -conformal matching
walls which have M as their canonical matching, and only M -conformal
sets as our apex set. This means, we can directly translate our matching
version of the flat wall theorem into the digraphic setting. To achieve this,
two main factors need to be recalled.
First of all, what does it mean for a digraph D, if S(D) excludes Kt,t

as a matching minor, and similarly, what does it mean if S(D) does
contain Kt,t as a matching minor. In Section 3.2 we gave a preliminary
answer to these questions in form of Lemma 3.2.25. So S(D) excludes
Kt,t as a matching minor if and only if D excludes the entire anti-chain

A(
↔
Kt) as butterfly minors. Consequently, any result we can deduce from

Theorem 8.0.4 will be a new result for the digraphic setting, distinct from
Theorem 8.0.7 which explicitly does not take into account anti-chains of
the butterfly minor relation. It also means that any digraphic analogue of
Theorem 8.0.4 is a natural continuation of our findings from Chapter 7 such
as Corollary 7.2.11 and Theorem 7.2.13, which act as natural counterparts
to the respective results in the undirected setting.
Second is the question how to translate our notion of flatness to the
digraphic setting. Since we have already seen the equivalence between the
contraction of directed separations of order one and strongly 2-connected di-
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graphs with tight cut contractions and braces, by recalling Theorem 7.2.13
and the small-cycle-sum operation we can deduce working analogues of
the definitions necessary for H-flatness in bipartite graphs with perfect
matchings.
Let D be a strongly 2-connected non-even digraph and let H be a strongly
2-connected strongly planar digraph. We say that H is a summand of D
if there exist strongly planar strongly 2-connected digraphs H1, . . . , Hℓ

such that D can be constructed from the Hi by means of small-cycle-sums,
where H = H1.
Let D and H be digraphs such that H has exactly one dibrace5 J which
is not isomorphic to

↔
K2. We say that H is a J-expansion. A dibrace G

of D is said to be a host of H, if G contains a subgraph H ′ that is a
J-expansion and can be obtained from H by means of directed tight cut
contractions. The digraph H ′ is called the remnant of H.
Let D, H, and J be digraphs such that H and J are subgraphs of D.
We say that H is J-bound if there exists a subgraph K of D − J that
is the union of strong components of D − J such that K ∪ J is strongly
connected and H is a subgraph of K ∪ J . The digraph K ∪ J is called a
J-base of H in D.

Definition 8.5.2 (P -Flatness for Digraphs). Let D be a digraph and H

be a strongly planar and strongly connected digraph that is a J-expansion
of some strongly planar and strongly 2-connected digraph J . Moreover,
let P be a collection of pairwise vertex disjoint faces of H which each are
bound by a directed cycle. At last, let A ⊆ V (D) be a set of vertices.
Then H is P -flat in D with respect to A if

i) H is a subgraph of D′ := D −A,
ii) some P -base of H in D′ has a non-even dibrace D′′ that is a host

of H, and
iii) D′′ has a summand G that contains the remnant H ′ of H, such that

every remnant of a face from P bounds a face of G.

This allows us to formulate the anti-chain version of the directed flat wall
theorem.

5Recall that a dibrace of a digraph is a strongly 2-connected butterfly minor that
can be obtained purely by means of directed tight cut contractions.
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Theorem 8.5.3 (G∗). Let r, t ∈ N be positive integers. There exist
functions α⃗ : N→ N and ρ⃗ : N×N→ N such that for every digraph the
following is true: If W is a cylindrical ρ⃗(t, r)-wall in D, then either

i) There exists H ∈ A(
↔
Kt) such that D has an H-butterfly minor

grasped by W , or
ii) there exists a set A ⊆ V (D) with |A| ≤ α⃗(t) and a cylindrical r-wall

W ′ ⊆W −A such that W ′ is Per(W ′)-flat in D with respect to A.

Proof. The theorem follows almost immediately from Theorem 8.0.4. Let
D be a digraph, t, r ∈ N be positive integers, and W be a cylindri-
cal ρ(t, r)-wall in D. Moreover, consider B := S(D) together with the
perfect matching M for which D(B,M) = D holds. Then S(W ) is an
M -conformal matching ρ(t, r)-wall such that M contains the canonical
matching of S(W ). So Theorem 8.0.4 leaves us with two cases. In the first
case we find a Kt,t-matching minor in B grasped by S(W ). It follows from

Section 3.2 that this implies the existence of some H ∈ A(
↔
Kt), such that

D contains an H-butterfly minor grasped by W . Otherwise there exist
an M -conformal set A′ ⊆ V (B) of size at most α(t) and an M -conformal
matching r-wall U ′ ⊆ S(W ), such that U ′ is Per(U ′)-flat in B with respect
to A′. Since there is a bijection between the non-trivial tight cuts in B

and the non-trivial directed separations of order one in D, we can choose
A to be the set of all edges of M with both endpoints in A′, and our claim
follows.

Whilst a directed version of Theorem 8.0.4 can be obtained with a rela-
tively straight forward argument, it is not clear whether one can adapt
Theorem 8.0.5 into the digraphic setting. This is because the reverse di-
rection of Theorem 8.0.5 requires an assumption on all perfect matchings,
while in D we, a priori at least, can only talk about the unique perfect
matching M which is used to obtain D from S(D) as its M -direction.
Hence for a weak structure theorem for digraphs similar to Theorem 8.0.5
one first needs to find a way to express the structure of all perfect matching
of S(D) in a concise way by just considering D. One direction this might
go could be expanding Theorem 8.5.3 to all members of A(W ), where W

is a cylindrical ρ⃗(t, r)-wall.

413



Chapter 8. A Weak Structure Theorem

8.5.2. An Application to Treewidth of Undirected Graphs

Before the resolution of the Pfaffian Recognition Problem by McCuaig et
al. only partial results were known. Among these is a result on symmetric
digraphs6 by Thomassen. This result shows an interesting feature of
symmetric non-even digraphs.

Definition 8.5.4 (C4-Cockade). A graph G is a C4-cockade if it can be
constructed by means of 2-clique sums from a number of disjoint copies of
C4, see Figure 8.11 for some examples. A graph is a partial C4-cockade if
it is a subgraph of a C4-cockade.

Theorem 8.5.5 ([Tho86]). A symmetric digraph
↔
G is non-even if and

only if G is a partial C4-cockade.

Figure 8.11.: Examples of C4-cockades taken from [Tho86].

An immediate and easy to check corollary is the following:

Corollary 8.5.6 (G∗). Let G be a graph. If G is a partial C4-cockade,
then tw(G) ≤ 2.

By combining Theorem 8.5.5 with Corollary 8.5.6, Theorem 3.3.4, and
Theorem 5.3.27 one obtains the following interesting relation between the
existence of K3,3 in S(

↔
G) and tw(G).

Corollary 8.5.7 (G∗). Let G be a graph. If S(
↔
G) contains K3,3 as a

matching minor then tw(G) ≥ 2, and if tw(G) ≥ 3, then S(
↔
G) contains

K3,3 as a matching minor.

6Recall that a digraph is symmetric if it can be obtained from an undirected graph
by replacing every undirected edge by a digon.
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So the existence of K3,3 as a matching minor in S(
↔
G) is closely linked to

the treewidth of G. The main result of this subsection is the following
generalisation of Corollary 8.5.7.

Theorem 8.5.8 (G∗). There exists a function f : N→ N such that for
every t ∈ N and every graph G the following two statements hold:

i) If S(
↔
G) contains Kt,t as a matching minor, then tw(G) ≥ 1

2
t − 1,

and
ii) if tw(G) ≥ f(t), then S(

↔
G) contains Kt,t as a matching minor.

Towards Theorem 8.5.8 and Theorem 8.5.1 we start by showing that any
large enough wall W contains Kt,t as a matching minor in S(

↔
W ). Since,

by Corollary 2.2.28, every graph of large enough treewidth contains a
large wall, Theorem 8.5.8 follows almost immediately. Similarly, as W is
a planar graph,

↔
W is a planar digraph and with Kt,t being a matching

minor of S(
↔
Kt,t), Lemma 3.2.25 implies that

↔
W must contain a member

of A(
↔
Kt) as a butterfly minor. Since all butterfly minors of

↔
W must be

planar, Theorem 8.5.1 follows.

Lemma 8.5.9 (G∗). There exists a function f0 : N → N such that for

every t ∈ N, and every f0(t)-wall W , S(
↔
W ) contains Kt,t as a matching

minor.

Proof. First observe that every k-wall Wk has treewidth at least k. To
see this, we may construct a bramble of order k + 1 as follows: Let P be
the right most path from top to bottom that contains two hub-vertices
of every row of Wk except for the bottom one, from which it is disjoint.
Next let B be the bottom row. At last, for each row i except the bottom
one let Ti be the ith row except for the last two vertices together with
the ith column, from left to right. Then each Ti has an edge to P and
intersects B and each other Tj . However, no vertex is contained in more
than two of these subgraphs, and P is disjoint from all of them. So a
minimum hitting set for all of these subgraphs must contain a vertex from
every row of Wk and an additional vertex to cover P which makes in total
k + 1 vertices.
Moreover, note that this is also a directed bramble in

↔
WK , hence

dtw(
↔
Wk) ≥ k by Theorem 2.3.20. Consequently, for every t ∈ N, we
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are guaranteed by Corollary 2.3.25 that every gdir(2t)-wall W satisfies

that
↔
W contains a cylindrical t-wall.

Now let W be a gdir(2ρ(t, 2))-wall. Then, as discussed above,
↔
W contains

a cylindrical ρ(t, 2)-wall U as a subgraph.

Suppose S(
↔
W ) does not contain Kt,t as a matching minor. Let B := S(

↔
W ),

and let M be the perfect matching of B such that D(B,M) =
↔
W . Then

S(U) is an M -conformal subgraph of B. By Theorem 8.0.4 there must
exist an M -conformal set A ⊆ M of size at most α(t), such that B −M

contains an M -conformal matching 2-wall U ′ ⊆ U which is Per(U ′)-flat in
B with respect to A. Let B′′ be the Pfaffian brace that is the host of U ′

in a Per(U ′)-base of B −A.
Note that being a brace means being strongly 2-connected in the setting
of digraphs, which translates to 2-connectivity in the setting of undirected
graphs. Moreover, a directed tight cut contraction in a symmetric digraphs
is isomorphic to deleting all non-separator vertices of one of the shores.
Hence un(D(B′′,M)) is an actual subgraph of W . Let us call this subgraph
H. For H we have the following informations:

i) H contains un(D(U ′,M)) as a subgraph, and

ii)
↔
H is non-even by Theorem 3.3.4.

Figure 8.12.: An elementary cylindrical 2-wall as a subgraph of a symmet-
ric digraph

↔
G (left) and a bramble of order 4 in G (right).

Consider Figure 8.12. Here we depict a cylindrical 2-wall Q as a subgraph
of a symmetric digraph (on the left), and its underlying undirected graph
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(on the right). We consider the following family of subgraphs of Q: Let v1
be a hub-vertex, i.e. a vertex of degree 3 in Q, on the outer cycle C′ of Q,
then let P be a shortest subpath of the outer cycle of Q such that one
endpoint of P is a neighbour of v1 and the other endpoint is a hub-vertex
of Q. Next let L := C′ − v1 − P , and at last let C := Q − v1 − P − L.
The result are four pairwise disjoint connected subgraphs, one of them
only consisting of v1, of Q that are pairwise joined by an edge. Hence the
collection of these four subgraphs forms a bramble of order four, implying
tw(H) ≥ 3. By Corollary 8.5.7 this is a contradiction to

↔
H being non-even

and therefore this contradicts Theorem 8.0.4 or S(
↔
W ) contains Kt,t as

a matching minor. Thus we may assume the latter and the proof is
complete.

As discussed above, Theorem 8.5.1 follows immediately. Hence all that is
left to do is to prove Theorem 8.5.8, this concludes the chapter.

Proof of Theorem 8.5.8. First suppose S(
↔
G) contains Kt,t as a matching

minor. Then, by Corollary 5.1.21 we have pmw(S(
↔
G)) ≥ 1

2
t which in turn

implies, by Theorem 5.3.27, that dtw(
↔
G) ≥ 1

2
t− 1. Since dtw(

↔
G) = tw(G)

the first part of our claim follows.
For the second part let f0 be the function from Lemma 8.5.9, and let
f(t) := gundir(2f0(t)). Then, by Corollary 2.2.28, G contains an f0(t)-wall

as a subgraph, and by Lemma 8.5.9 this means that S(
↔
G) must contain

Kt,t as a matching minor.
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Chapter 9.

Concluding Remarks

While the main focus of Part II was on the establishment of a matching
minor theory for bipartite graphs, our research into the topic raised other
interesting questions, which are not directly linked to a general matching
minor theory for bipartite graphs, or go beyond the bipartite setting.
In this chapter we introduce one additional field of research regarding
bipartite graphs in the form of a generalisation of the chromatic number
in Section 9.1, and state a conjecture relating the ‘matching chromatic
number’ and the existence of certain matching minors for bipartite graphs.
Arguably the biggest question in structural matching theory right now is
the complexity of the general Pfaffian recognition problem, or, to be more
precise, its non-bipartite variant. In Section 5.1 we mentioned Norine’s
Pfaffian recognition algorithm for matching covered graphs of bounded
perfect matching width. While the algorithm itself is polynomial, with the
width of the perfect matching decomposition as a parameter, it still needs
a bounded width decomposition as an input. One approach to tackle this
more general problem could be to invoke the setting of bidirected graphs.
As we have seen in Section 3.4, the bidirected setting and the non-bipartite
setting of graphs with perfect matchings have many problems that make
the application of established tools for minor theory hard, if not impossible.
In Section 9.2 we try to explain the problems we encountered during our
attempts at generalising directed treewidth to bidirected graphs.
By revisiting our list of questions from Section 3.5 and collecting the
(partial) answers we were able to give in the previous chapters, we close
this chapter with Section 9.3.
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9.1. The Matching Chromatic Number

Let G be a graph. A vertex colouring of G is a function c : V (G) → N,
it is a k-colouring for some integer k, if its image in N has size at most
k. A k-colouring of G is proper, if for all uv ∈ E(G) we have c(u) ̸= c(v).
The chromatic number of G, denoted by χ(G), is the smallest integer k

such that G has a proper k-colouring.
The study of the chromatic number and related problems, such as the
famous Four Colour Problem, i.e. the question whether the chromatic
number of a planar graph is at most four, is arguably one of the most
prominent fields in graph theory. Indeed, the Four Colour Problem is
closely tied into the study of planar graphs and thus, in light of Theo-
rem 2.2.3 and Theorem 2.2.8, which were at least partially inspired by the
Four Colour Problem, it can be seen as an important part of the origins
of Graph Minor Theory as a whole. There exists a vast generalisation of
the Four Colour Problem, which eventually became a theorem [AH76], in
terms of the existence of complete minors known as Hadwiger’s Conjecture.

Conjecture 9.1.1 (Hadwiger’s Conjecture, [Had43]). Every graph G

with χ(G) ≥ t has Kt as a minor.

For t ∈ [1, 6] Hadwiger’s Conjecture is known to be true [Wag37, Had43,
RST93], while for t ≥ 7 only approximative and probabilistic results are
known.
There exists a natural generalisation of the chromatic number to digraphs.
A vertex colouring of a digraph D is a function c : N → N, it is a k-
colouring for some integer k if its image in N has size at most k. A
k-colouring of D is proper, if every directed cycle C in D contains two
vertices u and v with c(u) ̸= c(v). The dichromatic number of D, denoted
by χ⃗(D), is the smallest integer k such that D has a proper k-colouring.
As a directed version of the Four Colour Theorem, the Two Colour
Conjecture posed by Erdős and Neumann-Lara and independently by
Skrekovski still stands open.

Conjecture 9.1.2 (Two Colour Conjecture, [BFJ+04, NL82]). Every
oriented planar graph D satisfies χ⃗(D) ≤ 2.

While the Two Colour Conjecture itself is exclusively concerned with
oriented graphs, and therefore explicitly does not care about butterfly
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minors, as those quickly yield digraphs with digons, recently Steiner,
Garlet Milani, and the author were able to give a characterisation of of
the class F2 defined as follows:
Let k ∈ N be an integer, then Fk is the largest class of digraphs such that
for all D ∈ Fk we have

i) χ⃗(D) ≤ k, and
ii) every butterfly minor of D belongs to Fk.

Theorem 9.1.3 ([MSW19]). The class F2 is exactly the class of non-even
digraphs.

In light of Theorem 3.3.4 and Lemma 3.2.25, and by considering Hadwiger’s
Conjecture, an interesting reformulation of Theorem 9.1.3 is the following:

Theorem 9.1.4 (Theorem 9.1.3 reformulated). The class F2 is exactly

the class of digraphs excluding A(
↔
K3) as butterfly minors.

The resemblance of Hadwiger’s Conjecture in the statement of Theo-
rem 9.1.4 is further emphasised by the following, more general, result.

Theorem 9.1.5 ([ACH+16, GSS20]). There exists a function c : N→ N

such that every digraph D with χ⃗(D) ≥ c(t) contains
↔
Kt as a subdivision.

However, the bound on c(t) is roughly O(4t
2

) and thus far from the almost
linear bound currently known for Hadwiger’s Conjecture. When consider-
ing butterfly minors instead of subdivision, the bound can be improved to
t8t [Ste20]. One reason for this large bound can possibly be found in only

considering
↔
Kt itself instead of its canonical anti-chain. We conclude this

section by introducing our matching variant of the dichromatic number
and stating a version of Hadwiger’s Conjecture appropriate for the setting
of bipartite graphs with perfect matchings.

Definition 9.1.6 (Matching Chromatic Number). Let G be a matching
covered graph and M ∈ M(G). An M-colouring of G is a function
c : M → N, it is a k-M -colouring if its image in N has size at most k. An
M -K-colouring of G is proper if every M -conformal cycle C in G contains
two edges e1, e2 ∈ E(C) ∩M such that c(e1) ̸= c(e2).
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The M-chromatic number of G, denoted by χ(G,M), is the smallest
integer k such that G has a k-colouring. The matching chromatic number
of G is then defined as

χM(G) := max
M∈M(G)

χ(G,M).

Hence we may apply Theorem 3.3.4 and Theorem 9.1.3 to obtain the
following two theorems.

Theorem 9.1.7 ([MSW19]). Every bipartite Pfaffian graph B satisfies
χM(B) ≤ 2.

Theorem 9.1.8 ([MSW19]). Every planar and bipartite graph B with a
perfect matching satisfies χM(B) ≤ 2.

While Theorem 9.1.7 implies that every bipartite matching covered graph
with matching chromatic number at least 3 must contain K3,3 as a match-
ing minor, Theorem 9.1.8 can be seen as a matching theoretic analogue to
the Four Colour Theorem itself. Hence we conjecture the following:

Conjecture 9.1.9 ([MSW19]). Every bipartite and matching covered
graph B with χM(B) ≥ t contains Kt,t as a matching minor.

An immediate question that might arise is, whether Conjecture 9.1.9
implies, or is implied by Hadwiger’s Conjecture. Regarding Theorem 8.5.8,
and especially Theorem 8.5.1, a connection between the two conjectures,
however, appears to be unlikely.

9.2. Beyond Bipartite: Bidirected Graphs

Large parts of the matching minor theory for bipartite graphs with perfect
matchings we established in part II are influenced or even directly derived
from structural digraph theory. Interestingly, not many cases are known
where it was the other way around, that is, where structural matching
theory was used to obtain a result on digraphs. While such results definitely
exist, see for example Theorem 7.2.7 from [RST99], or Theorem 7.2.13
and Theorem 8.5.3, they are rare and usually occur as a way to circumvent
the problem of dealing with infinite anti-chains for butterfly minors. One
reason for this phenomenon may be that it is usually easier to use the
well established theory of digraphs to think about situations of bipartite
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graphs with a fixed perfect matching. Only where the interactions between
several perfect matchings play a major role, the digraphic setting itself
can be too restrictive to deal with the issues that occur. As an example
for a situation where the interaction between different perfect matchings
of the same bipartite graph played a major role recall Lemma 5.3.19.
Indeed, the intuition for the matching setting one can get from digraphs
is so strong that even Theorem 7.2.7, while the theoreom itself is proven
almost exclusively in terms of perfect matchings in bipartite graphs, was
inspired by earlier works on digraphs such as [ST87]. Especially when it
comes to width measures, different but equivalent concepts can be more
useful than the actual decomposition itself depending on the problem
at hand. Notions like brambles, the cops & robber game, and others
can be defined in the matching setting as well, but they appear as much
more intuitive when used for digraphs. Computationally the directed
setting is especially relevant since the only algorithm for computing a
small width perfect matching decomposition for a bipartite graph we cur-
rently know, apart from braces of perfect matching width two, essentially
computes a directed tree decomposition and then transforms this into a
cycle decomposition.
Arguably one of the biggest open problems presented throughout this
thesis is Conjecture 5.1.3. At the beginning of Chapter 5 we proposed the
following strategy towards solving Conjecture 5.1.3.

i) Solve Conjecture 5.1.3 for bipartite graphs, and then
ii) show that there is a function g : N→ N such that for every k ∈ N,

and every graph G with a perfect matching either pmw(G) ≤ g(k), or
G contains a conformal and bipartite subgraph H with pmw(H) ≥ k.

What is remarkable about this approach and our contribution to its success
so far is, that the first part, i.e. the bipartite case, follows almost directly
from Theorem 2.3.22. So here the slight simplification provided by the
M -direction of bipartite graphs appears to provide the key advantage.
Therefore it might not be too far fetched to consider the more general case
of bidirected graphs as a similar tool for handling the case of non-bipartite
graphs with perfect matchings since many concepts we mostly used in
the bipartite setting so far are preserved by the M -bidirection. Recall
that Theorem 5.3.13 holds for bipartite and non-bipartite graphs alike. In
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light of Theorem 5.3.13 we may restate the approach to the solution of
Conjecture 5.1.3 as follows:

i) Theorem 2.3.22 and Theorem 5.3.13 yield a grid theorem for digraphs
of large cycle width.

ii) Show that there is a function g′ : N→ N such that for every k ∈ N,
and every bidirected graph (G, σ) with cycw(G, σ) > g′(k), (G, σ)

contains a digraphic subgraph (H,σ) such that cycw(H,σ) ≥ k.
While this must not be true for Conjecture 5.1.3 to hold, as technically it
is a stronger statement to ask every perfect matching of S(G, σ) to witness
high perfect matching width the same way, results like Theorem 5.1.13
let it appear at least somewhat plausible. Moreover, results like Theo-
rem 3.3.15 give another strong incentive to at least try to pursue a better
understanding of structural bidirected graph theory.
In this section we will probably not take big steps towards the resolution
of the problem above, instead we try to give a rough overview about the
current state of the, relatively unknown, field of structural bidirected graph
theory. We introduce some of the more established notions and compare
them with our findings from structural matching theory, to highlight some
of the challenges one has to face to make any significant progress in this
area, at least when moving towards a resolution of the above problem or
the general recognition problem for non-even bidirected graphs is the goal.

9.2.1. Different Notions of ‘Strong Connectivity’

In Section 3.2 we already hinted at the more than complex landscape of
different notions of connectivity for bidirected graphs. Similar to how
digraphs can be seen as a generalised version of undirected graphs, and how
this generalisation gives rise to the difference between weak connectivity
and strong connectivity, the step from digraphs to bidirected graphs is a
similarly strong generalisation. So it can be expected that there are several
descriptions of strong connectivity in digraphs, which become pairwise
distinct once the step to bidirected graphs is made.
The basis for the different notions of strong connectivity in bidirected
graphs lies in the difference between directed walks, trails and paths. In
an undirected graph G there is a walk connecting two vertices u and v if
and only if they are joined by a trail which is true if and only if they are
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joined by a path. In a digraph D however, direction must also play a role.
Still there exists a directed walk from u to v if and only if there exists a
directed trail from u to v, which in turn is true if and only if there is a
directed path from u to v. These equivalences are no longer true once we
consider bidirected paths in general.
Let us first recall the definition of directed walks, trails, and paths in
bidirected graphs.

Definition 9.2.1 (Directed Walks, Trails, and Paths). Let (G, σ) be a
bidirected graph, and let

J = (v0, e1, v1, e2, . . . , vℓ−1, eℓ, vℓ)

be a sequence where vi ∈ V (G) for all i ∈ [0, ℓ], and ej ∈ E(G) for
all j ∈ [1, ℓ]. We say that J is directed if for all i ∈ [2, ℓ] we have
σ(vi, ei−1) ̸= σ(vi, ei). We mostly adapt terminology from the undirected
case. So v0 and vℓ are the endpoints of J , for j ∈ [2, ℓ− 1] the vj are the
internal vertices of J , ℓ is its length, and it is called a walk if it is a walk
in G, a trail if it is a trail in G, and a path if it is a path in G.
An internal vertex vi of J whose incident half-edges are of opposite sign
is said to be consistent in J .
In case J is directed, and vℓ = vℓ−1, J is called a sling around v0 in case
J is a cycle in G. If additionally σ(vℓ, eℓ−1) ̸= σ(vℓ, e0), we say that J

is a closed directed walk, closed directed trail, or directed cycle, if J is a
closed walk, closed trail, or cycle in G respectively.
If J is a walk (trail, path, sling) and σ(v0, e1) = α, σ(vℓ, eℓ) = β we say
that J is an (α, β)-walk (trail, path, sling) respectively.

Let W = (v0, e1, v1, e2, . . . , vℓ−1, eℓ, vℓ) be a trail from v0 to vℓ. We
denote by W−1 the reversed trail (vℓ, eℓ, vℓ−1, . . . , e2, ev1, e1, v0). If
W is a path and vi ∈ V (W ) is a vertex of the path we de-
note by viW the subpath of W starting at vi and ending in vℓ,
while Wvi denotes the subpath of W starting in v0 and ending
in vi. Moreover, if W ′ = (v′0, e

′
1, v

′
1, e

′
2, . . . , v

′
ℓ′−1, e

′
ℓ′ , v

′
ℓ′) such that

vi = v′i and viW
′ − vi is disjoint from Wvi, we denote the path

(v0, e1, v1, e2, . . . , ei−1, vi, e
′
i, . . . , v

′
ℓ′−1, e

′
ℓ′ , v

′
ℓ′) by WviW

′.
As mentioned above, in bidirected graphs we cannot generally expect the
existence of a directed trail or path purely because there exists a directed
walk or trail from one vertex to another. In Figure 9.1 one can find two
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small examples to illustrate the phenomenon. Essentially, the requirement
of the signs for two consecutive half edges, both incident with the same
vertex, to be of opposing signs might stop us from following along a path
directly. However, slings around internal vertices of a path that is not
directed might allow us to make use of the paths as a walk or trail.

x

y

x y

Figure 9.1.: Two bidirected graphs illustrating that two vertices (x and y)
can be connected via a directed walk without being connected
by a directed trail (on the left), and also two vertices may be
connected by a directed trail while not being connected by a
directed path (on the right).

In digraphs, strong connectivity can be defined via walks, trails, or paths
equivalently. From our observations above, however, it becomes apparent
that in general bidirected graphs we might get three completely different
notions of connectivity.

Definition 9.2.2 (Strong Connectivity (Walks)). Let (G, σ) be a bidi-
rected graph. Two vertices u, v ∈ V (G) are strongly connected by a walk
if there exist directed walks W1 and W2 in (G, σ) such that W1 and W2

have u and v as their endpoints, and, if exi is the edge of Wi incident with
x ∈ [u, v], then σ(e1x) ̸= σ(e2x).

Theorem 9.2.3 ([AFN96]). The binary relation defined by the property
of being strongly connected by a walk is an equivalence relation.

The advantages of walks as the basis of strong connectivity is, that any
two directed walks that share an endpoint over which they have different
signs, can be combined to form a new directed walk. This allows for
great flexibility and gives rise to a nice overall structure in which the
equivalence classes, or strong walk components of a bidirected graph (G, σ)

are organised. Indeed, while it is impossible to fully retain the poset
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structure of strong components in digraphs, it was shown in [AFN96] that
the strong walk components of a bidirected graph form a structure called
a signed poset, see [Rei93] for more information on the topic.
For our purpose, however, walks are not restrictive enough. We are
interested in a notion of connectivity that interacts well with cycle width,
but there exist strongly walk connected bidirected graphs that do not
contain a single directed cycle.
Another way to state that a digraph D is strongly connected is to say that
every edge of D belongs to a directed cycle and D is weakly connected. If
we exchange ‘cycle’ with ‘closed trail’ we obtain the notion of closed trail
connectivity.

Definition 9.2.4 (Closed Trail Connectivity). A bidirected graph (G, σ)

is closed trail connected if G is connected, and for every edge e ∈ E(G)

there exists a closed directed trail T in (G, σ) with e ∈ E(T ).

Definition 9.2.5 (Strong Connectivity (Trails)). Let (G, σ) be a bidi-
rected graph and u, v ∈ V (G). We say that u and v are strongly connected
by trails if there exist trails T1 and T2 from u to v such that T1 is a (+, α)-
trail, and T2 is a (−,−α)-trail for some α ∈ {+,−}.

Theorem 9.2.6 ([Kit17]). A bidirected graph (G, σ) is closed trail con-
nected if and only if every pair of its vertices is strongly connected by
trails. Moreover, the binary relation defined by the property of being
strongly connected by a trail is an equivalence relation.

While the components defined by Theorem 9.2.6 in the natural way are
no longer necessarily organised in a (signed) poset structure, there are
still some interesting and non-trivial observations to be made. Similar to
barriers in non-bipartite graphs with perfect matchings, the absence of
directed (α, α)-trails between distinct vertices within a single component
provides a partition of its vertex set [Kit17]. However, if we wanted to
obtain a notion of strong connectivity for bidirected graphs that mirrors
matching connectivity in the same way as it does in digraphs, we need to
start considering directed paths and cycles.
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9.2.2. Strongly Connected Bidirected Graphs

Let (G, σ) be a bidirected graph. We say that (G, σ) is weakly connected,
if G is connected.
A pair of directed paths P+ and P− from u to v is called a complementary
pair for u and v if P+ is a (+, α)-path, P− is an (−,−α)-path where
α ∈ {+,−}.

Definition 9.2.7 (Strong Connectivity). A bidirected graph (G, σ) is
strongly connected, or strong, if for every pair of distinct vertices u, v ∈
V (G) there exists a complementary pair of paths (P+, P−) joining u and
v such that any pair of vertices u′, v′ ∈ V (P+) ∪ V (P−) is joined by a
complementary pair of paths. A strong component of (G, σ) is a maximal
subgraph (H,σ) such that H is strongly connected.

Please note that this means that for any pair of vertices u, v ∈ V (H)

there must be a complementary pair of paths joining u and v that lies
completely within H.
The last part of this definition is essential as there might exist vertices
joined by a complementary pair of paths such that there is an internal
vertex of (at least) one of the paths that does not have a complementary
pair of paths to either of them. See Figure 9.2 for an example. This
is undesirable as we would like our path pairs to exist within strong
components and not having to rely on vertices outside.

x y

Figure 9.2.: Two vertices x and y joined by a complementary pair of paths
while not being strongly connected.

At last we call u and v truly connected if for every possible choice of
α, β ∈ {+,−} there exists a directed (α, β)-path from u to v. If all
vertices of (G, σ) are pairwise truly connected, (G, σ) is said to be truly
connected.
The main goal of this subsection is to establish the following theorem as a
bidirected analogue of Theorem 3.1.37.
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Theorem 9.2.8 (F∗). Let (G, σ) be a bidirected graph. Strong connec-
tivity defines an equivalence relation on V (G).

The overall strategy of the proof is the same as for its matching theoretic
analogue. Indeed, once the next result has been established, the corre-
spondence between directed cycles in an M -bidirection of a graph G with
a perfect matching, and the M -conformal cycles in G yields Theorem 9.2.8
as a corollary.

Definition 9.2.9 (Circular Connectivity). Let (G, σ) be a bidirected
graph. An edge e ∈ E(G) is called circular if there exists a directed cycle
C in (G, σ) with e ∈ E(C). The set of circular edges of (G, σ) is denoted by
⟳G,σ and we set ̸⟳G,σ:= E(G)\ ⟳G,σ. We set cov(G, σ) := (G− ̸⟳G,σ, σ)

and call cov(G, σ) the cover graph of (G, σ). The bidirected graph (G, σ)

is said to be circularly connected if cov(G, σ) is weakly connected, and any
component of cov(G, σ) is a circular component of (G, σ). We call (G, σ)

totally cyclic if ̸⟳G,σ= ∅, and circular if it is totally cyclic and weakly
connected.

A directed (α, β)-path is said to be circular if all of its edges are circular.
For a path P with endpoints u and v and an internal vertex w ∈ V (P ) we
denote the edge of P incident with w that is closest to x ∈ {u, v} by ePw,x.
For w ∈ {u, v} we write ePw for the unique edge on P incident with w.

Lemma 9.2.10 (F∗). A bidirected graph (G, σ) is circularly connected if
and only if for every pair u, v ∈ V (G) and every α ∈ {+,−} there exists
some β ∈ {+,−} such that there is a circular (α, β)-path from u to v.

Proof. The reverse direction follows immediately from the fact that any
circular path in (G, σ) is a path in cov(G, σ), implying that cov(G, σ) must
be connected.
For the forward direction we can assume (G, σ) to be circular. Towards
a contradiction choose u, v ∈ V (G) and α ∈ {+,−} such that u and
v are in minimum distance to each other in (G, σ) with respect to the
absence of any circular (α, β)-path from u to v for all β ∈ {+,−}. Let
P ′ be any shortest u-v-path in (G, σ) and let w ∈ V (P ′) such that
P ′ − v = P ′w. Hence vw ∈ E(G). Moreover, by choice of P ′, we have
dist((G, σ), u, w) < dist((G, σ), u, v) and thus there is some γ ∈ {+,−}
such that a circular (α, γ)-path P from u to w exists. Clearly v cannot
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be a vertex of P since otherwise we would have a circular path from u to
v starting with the sign α. Moreover, σ(w, vw) = −γ would imply that
we could just add the edge vw to P and, since vw ∈⟳G,σ, we again would
have found a circular path from u to v starting on α. Since vw is circular,
there must exist a directed cycle C containing vw. Let x ∈ V (C) ∩ V (P )

be the vertex of C closest to u along P . Then C contains two circular
x-v-paths P+ and P−, where the sign of the first edge of Pε is ε for both
ε ∈ {+,−}. Px must be internally disjoint from C. Should u = x then
this would mean that we have found our circular path in Pα. Otherwise let
δ := σ(x, ePx

x ), then PxP−δ is again a circular path from u to v starting
on the sign α. Hence the pair u, v cannot exist in the first place and we
are done.

Observe that the required change of the sign at every internal vertex
of a directed path or cycle simulates us moving through the contracted
matching edge of the split. When entering a vertex with sign α in a
bidirected graph, that means we enter the corresponding matching edge
via its unique endpoint which got assigned the sign α. Since in a directed
path we are only allowed to leave via a half edge with the opposite sign,
so −α, in the split we must necessarily traverse the matching edge itself
to reach its other endpoint before we can move on. This observation
means that Lemma 9.2.10 is indeed equivalent to Lemma 3.1.34 and thus a
bidirected graph is circularly connected if and only if its split is elementary.
Hence Theorem 9.2.8 is in fact equivalent to Theorem 3.1.37 which can
be seen by translating back and forth between complementary pairs of
directed paths in a bidirected graph (G, σ), and the complementary pairs
of internally M -conformal paths in its split.

9.2.3. Bidirected Treewidth

As mentioned at the beginning of this section, structural digraph the-
ory plays a huge role in the advancement of bipartite matching minor
theory. From an algorithmic point of view, especially directed treewidth
contributes a lot to this. So one could expect a similar route for the more
general bidirected graphs. In this section we explore one possible, and
relatively straight forward way to lift the notion of directed treewidth to
the bidirected world.
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Johnson et al. explained their main points that make a useful width
parameter in [JRST01] based on what they had observed to be the most
desirable features of treewidth. They state that the reasons behind the
widespread attention treewidth had received can be condensed into the
following four points:

i) Treewidth had served as a cornerstone of Graph Minors Theory,
ii) it can be used to prove theorems in structural graph theory,
iii) it has many algorithmic applications due to the fact that many

NP-hard problems become tractible on graphs of bounded treewidth,
and

iv) it has been successfully used in practical application.
They then introduce their notion of directed treewidth and try to give
example results that should establish directed treewidth to be similarly
powerful in the directed setting. Their reasoning was build upon the
following points:

i) Directed treewidth corresponds to a directed version of the cops &
robber game and there exist dual notions for directed treewidth that
give insight to the structure of digraphs of large directed treewidth,

ii) directed treewidth can be approximated within a linear factor in
polynomial time on digraphs of bounded directed treewidth, and

iii) the t-disjoint paths problem can be solved in polynomial time on
digraphs of bounded directed treewidth.

In Part II we have demonstrated that perfect matching width also satisfies
these requirements of a ‘good’ width parameter. Indeed, many, if not all,
of the desirable properties of perfect matching width are closely linked to
its relation with cycle width for digraphs and the usefulness of directed
treewidth.
So far we were not able to find a notion of a ‘bidirected treewidth’ which
corresponds to cycle width in the same way as directed treewidth does.
We expect that it is possible to generalise the dynamic programming from
Section 5.4 to cycle width, which thereby would give a second interesting
algorithmic application to the notion, but still the problem of computing
a bounded width decomposition remains unsolved. Hence, instead of
doing that, we generalise directed treewidth to a, hopefully, appropriate
way and show that there exists a version of the cops & robber game our
bidirected treewidth corresponds to. We also show that there exists an

433



Chapter 9. Concluding Remarks

XP-approximation algorithm for a bounded width decomposition. Finally
we end this section with a short discussion on why directed treewidth does
not appear, at least a priori, to be equivalent to cycle width.
Let us start by introducing our version of the bidirected cops & robber
game.

Definition 9.2.11 (Bidirected Cops & Robber Game). Let (G, σ) be a
digraph. A play of the cops & robber game on (G, σ) is a sequence

(C0, R0), (C1, R1), . . . , (Cℓ−1, Rℓ−1), (Cℓ, Rℓ)

such that Ci ⊆ V (G), Ri is a strong component of (G − Ci, σ) for all
i ∈ [0, ℓ], and in (G− (Ci−1 ∩ Ci), σ) there exists a strong component R

with V (Ri−1) ∪ V (Ri) ⊆ V (R) .
Every other definition regarding strategies, winning, monotonicity, in-
ertness, and invisibility can be directly lifted from the definitions for
undirected graphs.
The cop number of (G, σ), denoted by cops(G, σ), is the smallest integer
k such that there is a winning strategy for k cops in the bidirected cops
& robber game.

To relate a winning strategy of k cops, or the lack thereof, to any kind of
decomposition we need a more structural way to describe the existence
of a winning strategy for the robber. Usually this is done by so called
havens.

Definition 9.2.12 (Bidirected Haven). Let (G, σ) be a bidirected graph,
k ∈ N, and h :

(︁
V (G)
≤k

)︁
→ 2V (G). The function h is called a bidirected haven

of order k or bidirected k-haven if for all S ∈
(︁
V (G)
≤k

)︁
we have:

i) h(S) is a strong component of (G− S, σ), and
ii) h(S) ⊆ h(S′) for all S′ ⊆ S.

Lemma 9.2.13 (F∗). Let k ∈ N be a positive integer and (G, σ) be
a strongly connected bidirected graph. Then the robber has a winning
strategy for the relaxed cops & robber game on (G, σ) against k cops if
and only if there exists a haven of order k for (G, σ).

Proof. Let w be a winning strategy for the robber against k cops in the
bidirected cops & robber game. Since the robber wins if she is never
caught we may assume that w(C1, C2, R1) = w(C3, C2, R2) for all possible

434



9.2. Beyond Bipartite: Bidirected Graphs

choices of C1, C2, C3 ∈
(︁
V (G)
≤k

)︁
. This means that the robber only ever

cares about the new cop position. For every S ∈
(︁
V (G)
≤k

)︁
let HS be the

component appropriate for the version of cops & robber we are playing.
So HS is exactly the strong component w(S) of (G− S, σ). Note that for
every choice of C1, C2 ∈

(︁
V (G)
≤k

)︁
we must have that HC2 ⊆ HC1∩C2 . Hence

w already describes a bidirected haven of order k.
So we only need to show that we may assume w(S) to be a strong
component of (G− S, σ) (a), and that our assumption from above (b) is
also possible without loss of generality. Note that (a) holds immediately
by definition. For (b) let us define h(S) := w(∅, S, (G, σ)). We claim that
h encodes a winning strategy against k cops in the following sense. If
C1 and C2 are two consecutive cop positions and we start out on h(C1),
then we first move to h(C1 ∩ C2), and then to h(C2). For this assume w

to be as close as possible to the strategy obtained from h as described
above. To see that we may move from h(C1) to h(C1 ∩ C2) suppose
after (C1, h(C1)) the cops announce C1 ∩ C2 as their new position. Then
w(C1, C1∩C2, h(C1)) = w(∅, C1∩C2, (G, σ)) as otherwise we could change
the definition of w(∅, C1 ∩ C2, (G, σ)) to meet this equality and therefore
contradict our choice of w. Similarly we must have w(C1 ∩C2, C2, h(C1 ∩
C2)) = w(∅, C2, (G, σ)) and our claim follows.
For the reverse define a strategy w for the robber from the bidirected
haven h as described above. Note that by definition of bidirected havens
this means that the robber can answer every cop-position for at most k

cops with a new component that is reachable from her current one and
thus she can never be caught.

We also need to describe a certain kind of linkedness of vertex sets in
(G, σ). Since there is probably no bidirected version of Menger’s Theorem
we aim to describe this notion of linkedness in the sense that the vertices
of our highly linked set cannot be spread somewhat evenly over many
different strong components by deleting only a few number of vertices.

Definition 9.2.14 (k-Bilinked Set). Let k ∈ N be a positive integer and
(G, σ) be a bidirected graph. A set X ⊆ V (G) is called k-bilinked if for
every S ∈

(︁
V (G)
≤k

)︁
there exists a strong component H of (G − S, σ) such

that |V (H) ∩X| > |X|
2

.
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Lemma 9.2.15 (F∗). Let k ∈ N be a positive integer, (G, σ) be a strongly
connected bidirected graph, and X ⊆ V (G). If X is a k-bilinked set, then
(G, σ) has a haven of order k.

Proof. For each S ∈
(︁
V (G)
≤k

)︁
let us denote by HS the strong component

of (G − S, σ) that contains more than half of X. Note that for every
S′ ⊆ S we must have HS ⊆ HS′ since strong components behave in a
monotone way under taking subgraphs. That is, every strong component
of (G − S, σ) must be contained in a strong component of (G − S′, σ).
Now let us define h(S) := HS for every S ∈

(︁
V (G)
≤k

)︁
. By our observation

above it is straight forward to see that h is indeed a bidirected haven of
order k.

We are ready to introduce our notion of bidirected treewidth. Together
with the base definitions we define ‘nice’ versions of the corresponding de-
composition that essentially represent robber monotone winning strategies
for the cops. We show that the existence of a bounded width decom-
position implies the existence of a winning strategy for the cops in the
corresponding variant of the cops & robber game. Moreover, we show
that the absence of a haven implies the existence of a nice decomposition
of bounded width. For this we adapt the proof of Johnson et al. for the
directed setting in [JRST01]. This proof also yields an XP-algorithm to
compute this nice decomposition and thus allows us to approximate a
small width decomposition in polynomial time for bidirected graphs of
bounded bidirected treewidth.

Definition 9.2.16 (Biguard). Let (G, σ) be a bidirected graph and
X,Y ⊆ V (G). The set Y is said to be a biguard of X if every directed
cycle that has an edge in ∂G(X) contains a vertex of Y .

Definition 9.2.17 (Bidirected Treewidth). Let (G, σ) be a bidirected
graph. A bidirected tree decomposition for (G, σ) is a tuple (T, β, γ)

where T is an arborescence, β : V (T ) → 2V (G) is a function such that
{β(t) | t ∈ V (T )} is a near partition1 of V (G), and γ : E(T ) → 2V (G) is
another function satisfying the following requirement:

For every (d, t) ∈ E(T ), γ(d, t) is a biguard of β(Tt) :=⋃︁
t′∈V (Tt)

β(t′).

1Recall that this means we allow β(t) to be empty.
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Where Tt denotes the subarborescence of T with root t. For every t ∈ V (T )

we call β(t) the bag of t and for every e ∈ E(T ), γ(e) is the guard at e.
For every t ∈ V (T ) let Γ(t) := β(t) ∪

⋃︁
t∼e γ(e). The width of (T, β, γ) is

defined as
width(T, β, γ) := max

t∈V (T )
|Γ(t)| − 1.

The bidirected treewidth of (G, σ), denoted by btw(G, σ) is the minimum
width over all bidirected tree decompositions for (G, σ).

Note that, since for bidirected treewidth we are only interested in strong
connectivity and edges that are contained in directed cycles, it follows im-
mediately that the bidirected treewidth of a bidirected graph (G, σ) equals
the maximum bidirected treewidth of its strong components. Moreover, if
(G, σ) is strongly connected, then btw(G, σ) = btw(cov(G, σ)). Therefore,
from now on it suffices to consider circular bidirected graphs.
Let (G, σ) be a circular bidirected graph. A relaxed bidirected tree
decomposition (T, β, γ) for D is nice if for every edge (d, t) the set β(Tt)

is strongly connected in (G− γ(d, t), σ) and β(Tt) ∩ γ(d, t).

Lemma 9.2.18 (F∗). Let k ∈ N be an integer, (G, σ) be a bidirected
graph, and (T, β, γ) be a bidirected tree decomposition of width k for
(G, σ). Then there exists a winning strategy for k+1 cops in the (relaxed)
cops & robber2 game on (G, σ).

Proof. Let r ∈ V (T ) be the root of T and let d1, . . . , dℓ be its children.
Then we set C1 := Γ(r) to be the first cop position. Note that for every
strong component H of (G− Γ(r), σ) there exists a unique i ∈ [1, ℓ] such
that V (H) ⊆ β(Tdi) since γ(r, dj) meets all directed cycle that cross over
∂G(β(Tdj )) for every j ∈ [1, ℓ].
Therefore there exists a unique integer i ∈ [1, ℓ] such that the robber
position R1 is contained in β(Tdi), and the robber cannot leave β(Tdi).
Now suppose there exists t ∈ V (T ) with children t1, . . . , tq such that in
round h the cop position is Γ(t) and the robber position Rh is contained in
tj for some j ∈ [1, q]. Then γ(t, tj) ⊆ Γ(t)∩Γ(tj). Let us set Ch+1 := Γ(tj).
Then the robber cannot leave β(Ttj ) and must choose her next position
Rh+1 such that there is some child d′ of tj with Rh+1 ⊆ β(T ′

d). Since G

2The non-relaxed version of the game is its strong version.
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and T are finite, eventually the vertex d′ chosen by the robber is a leaf of
T . At this point, the cops will capture her with their next move and thus,
as by width(T, β, γ) = k we never used more than k + 1 cops, we have a
winning strategy for k + 1 cops.

As an immediate consequence of Lemma 9.2.18 we obtain the following.

Corollary 9.2.19 (F∗). Let k ∈ N be a positive integer and (G, σ) be a
bidirected graph. If (G, σ) contains a k-bilinked set or a bidirected haven
of order k, then its bidirected treewidth is at least k.

Proof. By Lemma 9.2.15 the existence of a k-bilinked set implies the
existence of a bidirected haven of order k. So we may assume that
there is such a haven. Then Lemma 9.2.13 guarantees us a winning
strategy for the robber against k cops. Thus the existence of a bidirected
tree decomposition for (G, σ) of width at most k − 1 would contradict
Lemma 9.2.18.

With this we are ready to prove that the absence of a high order bidirected
haven implies bounded bidirected treewidth.

Theorem 9.2.20 (F∗). Let (G, σ) be a circular bidirected graph and
k ∈ N be a positive integer. Then either (G, σ) has a nice bidirected tree
decomposition of width at most 3k + 2, or it contains a bidirected haven
of order k.

Proof. We prove this claim by iteratively constructing a bidirected tree
decomposition where we maintain several invariants for all non-leaf vertices
of this decomposition. The claim is then proven by induction over the
total number of vertices contained in leaf-bags that do not meet the
requirements of our invariant.
Let us choose a bidirected tree decomposition (T, β, γ) for (G, σ) satisfying
the following three conditions:

i) |Γ(t)| ≤ 3k + 3 for all t ∈ V (T ) that are not leaves of T ,
ii) |γ(e)| ≤ 2k + 1 for every e ∈ E(T ), and
iii) (T, β, γ) is nice.
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Such a decomposition does exist since we may select a trivial arborescence
T with a single vertex r and set β(r) := V (G). Treat this initial step as
the start of our induction.
For this initial step note that, in case V (G) is k-bilinked we would have a
bidirected haven of order k by Lemma 9.2.15 and thus we would be done.
Hence we may assume that there exists a set S ∈

(︁
V (G)

k

)︁
such that no

strong component of (G− S, σ) contains more than half of the vertices in
G. For every strong component K of (G−S, σ) introduce a vertex dK and
the edge (r, dK). Now set β(r) := S, β(dK) := V (K), and γ(r, dK) := S.
Note that the result is indeed a nice bidirected tree decomposition with
the desired properties.
Now let (T, β, γ) be a bidirected tree decomposition for (G, σ) satisfying
the three conditions such that T has at least two vertices. In case we
have |Γ(t)| ≤ 3k + 2 for all vertices t ∈ V (T ) we are done. So we may
assume that there exists a leaf t ∈ V (T ) with incoming edge e such that
|Γ(t)| > 3k + 2, but still |γ(e)| ≤ 2k + 1.
If γ(e) is k-bilinked, then, by Lemma 9.2.15, we have a haven of order k

and are done. Hence we can find a set S′ ∈
(︁
V (G)
≤k

)︁
such that every strong

component of (G− S′, σ) contains at most k vertices of γ(e).
Let u be some vertex of β(Tt) and let S := S′ ∪ {u}, then |S| ≤ k + 1.
Furthermore, let us set β(t) := S ∩ β(Tt).
Now iterate over all strong components K of G− S, σ that contain vertices
of β(Tt). Let K be such a component and let FK := V (K) ∩ γ(e). We
claim that every strong component K′ ⊆ K of (G− S − FK , σ) is either
completely contained in β(Tt) or disjoint from it. To see this note that
every directed cycle of (G− S, σ) with vertices in K that contains edges
of ∂G(β(Tt)) must be met by a vertex of γ(e), and, moreover, each such
cycle must be completely contained in K by Lemma 9.2.10.
So for every strong component K of (G−S, σ), and every strong component
K′ of (G− S − FK , σ) such that K′ ⊆ K ∩ β(Tt) introduce a new child
dK′ of t together with the edge (t, dK′). We set β(dK′) := V (K′), and
γ(e) := S ∪ FK . Since |FK | ≤

⌊︁
1
2
|γ(e)|

⌋︁
≤ k we have |S ∪ FK | ≤ 2k + 1.

Hence the result is again a nice bidirected tree decomposition meeting all
of our requirements. Moreover, as u does not belong to any K′ constructed
as above, the total number of vertices contained in leaf-bags that do not
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meet the requirements of our invariant has been reduced by at least one.
Therefore our inductive step is complete and the claim follows.

Thus bidirected treewidth appears to be a meaningful parameter for
bidirected graphs that, as one can see from the cops & robber game,
strictly generalises directed treewidth, while being essentially the same
parameter on digraphs. In the following and last subsection we discuss,
why bidirected treewidth might possibly not be equivalent to cycle width.

9.2.4. Barriers, Strong Components, and Cycle Porosity

To fully explain the problems one faces when confronted with the more
complicated structure of strong components and separators in bidirected
graphs as opposed to digraphs, we need to find adequate translations of
certain concepts from structural matching theory to the bigraphic world.
A major difference between digraphs and general bidirected graphs is the
following: Let D be a strongly connected digraph and let P be a directed
path with distinct endpoints, both of which belong to D, but no internal
vertex of P is a vertex of D. Then D + P must necessarily be strongly
connected, since D must contain a directed path Q from the head of P
to its tail and thus P + Q is a directed cycle. In a strongly connected
bidirected graph (G, σ), we also know that for every vertex u ∈ V (G),
every α ∈ {+,−}, and every vertex v ∈ V (G− u) there exists a directed
(α, β)-path from u to v for some β ∈ {+,−}. However, since (G, σ) is not
necessarily digraphic, β might not always be the sign we desire in any
given situation. In fact, if we were to add a directed (−α, β)-path P from
u to v to (G, σ) such that no internal vertex of P belongs to G, then it is
entirely possible that there does not exist a directed (α,−β)-path from u

to v and thus (G+ P, σ) is not necessarily strongly connected.

The Inner Structure of a Bidirected Graph The aim of this paragraph
is to establish a decomposition of the vertex set of a strong bidirected
graph into something we call barriers, resembling the barriers from match-
ing theory. The matching theoretic counterpart of these barriers can
be utilised to prove a bidirected analogue of the frame construction of
Theorem 3.1.27 which shows that any bidirected graph can be build from
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strongly connected digraphic bidirected graphs and bidirected graphs that
are truly connected.
Let (G, σ) be a bidirected graph, u, v ∈ V (G) and α ∈ {+,−}, we define
the following binary relation. Let us write u

α↔ v if and only if u = v, or
u and v belong to the same strong component of (G, σ) and there is no
(α, α)-path from u to v in (G, σ).
The following result is similar to Theorem 5.4 from [Kit17] and provides a
key piece for our theory. The difference between our result and the one of
Kita lies in the definition of strong connectivity the two results are based
on. While strong connectivity divides the vertices of a bidirected graph
into its strong components, every strong component itself has a more
refined internal structure which, in some sense, can be seen as classes of
lesser connectivity.

Proposition 9.2.21 (F∗). Let (G, σ) be a bidirected graph and α ∈
{+,−}, then α↔ is an equivalence over V (G).

Proof. Reflexivity and symmetry are immediate from the definition. Let
u, v, w ∈ V (G) be three distinct vertices such that u

α↔ v and v
α↔ w and

suppose there exists a directed (α, α)-path P from u to w. By definition
of α↔ all three vertices, u, v, and w, belong to the same strong component
of (G, σ). Thus there exists a directed (α,−α)-path P ′ from v to u. If
P and P ′ only meet in u, P ′uP is a directed (α, α) path from v to w

which is impossible. Next suppose w ∈ V (P ′), in this case let β ∈ {+,−}
such that P ′w is a directed (α, β)-path. By assumption β ≠ α and thus
β = −α. Hence we can always find x ∈ {u,w} such that P ′ is (or contains)
a directed (α,−α)-path P ′′ from v to x with V (P ′′) ∩ ({u, v} \ {x}) = ∅
and V (P ) ∩ V (P ′′) ̸= ∅. Without loss of generality let us assume x = u.
With the same arguments as before we immediately reach a contradiction
if P ′′ is internally vertex disjoint from P . Let y ∈ V (P ′′) ∩ V (P ) be the
first vertex of P we meet when traversing along P ′′ starting on v. Note
that y = v is explicitly allowed. Moreover, let eu be the edge on P incident
with y that is closer to u on P and let ew be the other edge of P incident
with y. Then σ(y, eu) ̸= σ(y, ew) and thus there exists z ∈ {u,w} such
that α = σ(ez). Now let P z be the subpath of P with endpoints y and
z, then P ′′yP z is a directed (α, α)-path from v to z. Such a path cannot
exist and thus P itself cannot exist, completing our proof.
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For α ∈ {+,−} we denote the set of equivalence classes of α↔ in (G, σ) by
Kα(G, σ). We establish some basic results on the interaction of K+(G, σ)

and K−(G, σ).

Lemma 9.2.22 (F∗). Let (G, σ) be a circular bidirected graph, α ∈
{+,−}, A ∈ Kα(G, σ), and u ∈ V (G) \ A. If there is some v ∈ A such
that there is no directed (α,−α)-path from v to u, then there exists no
directed (α,−α)-path from A to u.

Proof. Suppose towards a contradiction there exist v, w ∈ A such that
there is no directed (α,−α)-path from v to u, but there exists a directed
(α,−α)-path P from w to u. With (G, σ) being strong and u /∈ A there
exists a directed (α, α)-path P ′ from v to u. If P and P ′ are disjoint except
for u, P ′P is a directed (α, α)-path connecting v and w, contradicting
v, w ∈ A. So let y be the first vertex of P that appears on P ′ when
traversed from v to u. If y = w, then the last edge of P ′y must have
the sign −α over y and thus P ′yP is a directed (α,−α)-path from v to
u which cannot exist. Let ev be the edge of P ′y incident with y, ew the
edge of P incident with y closest to w on P , and eu the other edge of P
incident with y. Then σ(y, ew) ̸= σ(y, eu) and, since there cannot be a
directed (α, α)-path from v to w, σ(y, ew) = σ(y, ev). Hence P ′yP is a
directed (α,−α)-path from v to u which is a contradiction.

For any bidirected graph (G, σ), α ∈ {+,−} and A ∈ Kα(G, σ), let Bα(A)

be the set of all vertices u ∈ V (G) such that u and A belong to the same
strong component of (G, σ) and there exists no directed (α,−α)-path from
A to u. The next observation follows immediately from the definition.

Observation 9.2.23 (F∗). Let (G, σ) be a bidirected graph, α ∈ {+,−},
and A ∈ Kα(G, σ), then A ∩ Bα(A) = ∅.

Lemma 9.2.24 (F∗). Let (G, σ) be a bidirected graph, α ∈ {+,−}, and
A ∈ Kα(G, σ) such that Bα(A) ̸= ∅, then Bα(A) ∈ K−α(G, σ).

Proof. This proof consists of two parts. First we prove that there is no
directed (−α,−α)-path between any two vertices of Bα(A) and second we
show that for every vertex u ∈ Bα(A) and every v ∈ V (D) \ Bα(A) there
exists a directed (−α,−α)-path connecting u and v.
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Let u,w ∈ Bα(A) and suppose there exists a directed (−α,−α)-path P

from u to w. Moreover let v ∈ A, then there exists a directed (α, α)-path
P ′ from v to w. If P and P ′ are disjoint except for w, P ′P is a directed
(α,−α)-path from v to u which cannot exist. Now let y be the first vertex
of P that appears on P ′ when traversed from v to w. If y = u then
the sign of the last edge of P ′y over y must be α and thus P ′yP is a
directed (α,−α)-path from v to w, contradicting the definition of Bα(A).
Let ev be the edge of P ′y incident with y, ew the edge of P incident
with y closest to w on P , and eu the other edge of P incident with y.
Then σ(y, ew) ̸= σ(y, eu) and thus there must exist x ∈ {u,w} such that
σ(y, ev) ̸= σ(y, ex). Let P x be the subpath of P from y to x, then P ′yP x

is a directed (α,−α)-path from v to x. Since the existence of such a path
is a contradiction we are done with the first part.
Now let u ∈ Bα(A), v ∈ A, and w be a vertex in the same strong
component of (G, σ) such that w /∈ A ∪ Bα(A). Suppose there exists no
directed (−α,−α)-path connecting u and w. Since w /∈ Bα(A) we may
choose v such that there exists a directed (α,−α)-path P from v to w.
Moreover, with u and w being strongly connected, but not by a directed
(−α,−α)-path, there must exist a directed (−α, α)-path P ′ from u to w.
If P and P ′ are disjoint except for w, PwP ′ is a directed (α,−α)-path
from v to u and thus cannot exist. Now let y be the first vertex of P that
appears on P ′ when traversed from u to w. If y = v, then the sign of the
last edge of P ′ over y must be −α and so P ′yP is a directed (−α,−α)-path
connecting u and w contradicting our assumption. Let eu be the edge of
P ′y incident with y, ev the edge of P incident with y that is closest to v

on P and ew the other edge of P incident with y. Then σ(y, ev) ̸= σ(y, ew)

and either possibility for σ(y, eu) yields a contradiction.

Corollary 9.2.25 (F∗). Let (G, σ) be a bidirected graph, α ∈ {+,−},
and A ∈ Kα(G, σ) such that Bα(A) ̸= ∅, then B−α(Bα(A)) = A.

Let S be any set and X := {X1, . . . , Xℓ} a family of subsets of S. We
call X a near partition of S if its members are pairwise disjoint and
S =

⋃︁
X∈X X. Please note that this allows ∅ ∈ X in contrast to the

definition of partition.
A signed partition of a set U is a family S of tuples (X,Y ) consisting of
subsets X,Y ⊆ U such that
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i) X ∩ Y = ∅ for all (X,Y ) ∈ S, and
ii) {X | (X,Y ) ∈ S} and {Y | (X,Y ) ∈ S} both form near partitions

of U .
In particular this means that for every element u ∈ U there exist unique
and distinct tuples (X+, Y +), (X−, Y −) ∈ S such that u ∈ X+ ∩ Y −.

So +↔ and −↔ together induce a signed partition on the vertex set of (G, σ).
This particular signed partition is called the Kita-decomposition K(G,α).

K(G, σ) :=
{︁
(A,B+(A)) | A ∈ K+(G, σ)

}︁
∪
{︁
(∅, B) | B ∈ K−(G, σ) and B−(B) = ∅

}︁
We call an element of K(G, σ) a barrier.
Strong digraphic bidirected graphs can be characterised by the fact that
their barriers take a very particular form.

Observation 9.2.26 (F∗). A circular bidirected graph (G, σ) is digraphic
if and only if |K(G, σ)| = 2.

Bidirected Treewidth and Cycle Width Let D be a digraph, S ⊆ V (G)

a set of vertices, and K be a strong component of D − S. Then, by the
discussion at the start of the subsection and our findings in the proof of
Proposition 5.3.17 it follows that cp(∂D(V (K))) ≤ 2|S|.
Now let (G, σ) be a bidirected graph, S ⊆ V (G) a set of vertices, and K

be a strong component of (G− S, σ). If there exists a directed path P of
length at least three in (G− S, σ) which is internally disjoint from K, but
has both endpoints in K, then both endpoints must belong to the same
barrier of K since otherwise there would exist a directed path within K

which could close a directed cycle, thereby contradicting K being a strong
component. So far we could not find a reason why the number of pairwise
vertex disjoint such ‘ear-paths’ should be bounded and thus it is far from
obvious whether there exists a relation between |S| and cp(∂G(V (K))).
What can be said however is, that if there exists a function g′ : N→ N

such that every bidirected graph (G, σ) with cycw(G, σ) ≥ g′(k) contains
a digraphic subgraph of cyclewidth at least k, then this subgraph must
also have bidirected treewidth dependent on k. Therefore, it would follow,
that the bidirected treewidth of a bidirected graph is bounded from below
by a function of its cycle width.
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Suppose there would also exist a generalisation of Theorem 5.3.2 for
non-bipartite graphs, then one could use a strategy similar to the one
for Corollary 5.3.25 to show that the cop number of a bidirected graph
is bounded in a function of its cycle width. By Theorem 9.2.20 it would
follow that bidirected treewidth is also bounded from above in a function
of cycle width.
However, it is not clear whether a generalisation of Theorem 5.3.2 can exist,
since the current proof relies heavily on properties specific to bipartite
graphs. Either way, it appears that our knowledge of bidirected graphs in
general is by far not deep enough to allow for an immediately successful
approach towards the resolution of Conjecture 5.1.3. Nevertheless, it
might be desirable to have a more thorough investigation of the structural
properties of bidirected graphs, as they might still yield some additional
insight to non-bipartite graphs with perfect matchings, and they also
appear to be of independent interest.

9.3. Regarding Our List of Open Questions

In Section 3.5 we asked five questions as the main motivation for the
research presented in this thesis. To conclude the last chapter, we revisit
these five questions and gather our findings, summarising if and what
progress has been made.

Question 3.5.1: The Pfaffian Recognition Problem The bipartite version
of the Pfaffian recognition problem has been solved by McCuaig et al. in
form of their structural characterisation of Pfaffian braces in Theorem 3.3.4.
This solution, especially the use of four-cycle-sums as a matching version
of clique sums appears to be an integral part of bipartite matching minor
theory over all. As evidence for the importance of Theorem 3.3.4 recall our
solution to the Two Paths Problem for bipartite matching covered graphs in
Chapter 4, all key results such as the characterisation of the existence of a
matching cross over a conformal cycle in Theorem 4.0.4, the fact that every
four-cycle in a non-Pfaffian brace is contained in a conformal bisubdivision
of K3,3 as found in Proposition 4.0.8, and finally the algorithmic solution
to the 2-MLP in Theorem 4.0.6 draw their power from Theorem 3.3.4.
Indeed, one could think of all of these results as natural extensions of
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Theorem 3.3.4, especially as there appears to be an important difference in
quality between matching crosses over conformal cycles in Pfaffian braces,
and those matching crosses in non-Pfaffian braces we are guaranteed by
Lemma 4.0.10. Especially Lemma 4.0.9, which characterises the existence
of conformal crosses, i.e. the kind of crosses which can actually be used
for some sort of routing via internally M -conformal paths, underlines
the significance of Pfaffian graphs and their structural properties. This
significance is further elevated in Theorem 8.0.4 and Theorem 8.0.5 as
it appears, that even excluding Kt,t for t ≥ 4 as a matching minor is, at
least locally, only a matter of adding a bounded size apex set to a Pfaffian
graph.
The fact that all of these concepts and results interact so tightly with
the structure of bipartite Pfaffian braces and the solution to certain
routing problems casts some shadow of doubt over the general Pfaffian
Recognition Problem. While in bipartite graphs 2-MLP is a problem in P,
in non-bipartite graphs even deciding whether there exist two internally
disjoint alternating paths between two fixed vertices, a problem that is
handled by Menger’s Theorem in the bipartite case, has been observed to
be computationally hard in Corollary 3.4.6, at least when being fixed to a
single perfect matching.
In the bipartite case we have seen that there is a huge gap between
the complexity of 2-MLP and the same question for a single perfect
matching. So it might still be true that the problem, whether there is
a perfect matching such that we can find the two disjoint paths in the
non-bipartite setting is polynomial time solvable, proving this however
might be extremely tricky and it seems to be unlikely that the tools known
so far are enough to achieve a solution of the problem.
In Section 9.2 we made another attempt, following the route suggested by
Norine, and took upon investigating the structural properties of general
graphs with perfect matchings in a broader sense. However, first of all
it appears to be unclear whether the setting of bidirected graphs yields
enough insight to the problems to be of any use, and second, we might
encounter a similar problem as pointed out above: what if ‘there exists
a perfect matching such that...’, and ‘for all perfect matchings it holds
that...’ lie further apart from each other than in the bipartite setting?
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Over all, our understanding of the bipartite case of the Pfaffian Recognition
Problem appears to have increased, while for the general version only new
question marks seem to have appeared on the roadmap.

Question 3.5.2: The (Bipartite) Matching Minor Recognition Problem
At the beginning of the research towards this thesis only one algorithmic
result regarding the testing for matching minor containment was known,
namely Theorem 3.3.4 which implies Corollary 3.3.10. It can therefore be
seen as a major leap forward that testing of matching minor containment
for any fixed bipartite matching covered graph H in bipartite graphs
with perfect matchings of bounded perfect matching width turns out to
be polynomial time solvable as of Theorem 5.4.2. Indeed, by using our
findings from Chapter 7 we were able to push our algorithm further and,
by Corollary 7.1.2, add the whole class of planar, bipartite, and matching
covered graphs to the list of graphs for which testing for matching minor
containment in bipartite graphs with perfect matchings is possible in
polynomial time.
For (ordinary) minors, the big break through that eventually lead to a
polynomial time algorithm to test for the containment of a fixed minor H

in Theorem 2.2.36 was the the resolution of the t-Disjoint Paths Problem
for undirected graphs. To be more precise, Robertson and Seymour proved
that there exists an algorithm whose exponential part in the running time
solely depends on t and not on the size of the input graph. As explained
in Section 2.2.3, essential for this algorithm was the discovery of the Flat
Wall Theorem. In light of Theorem 8.0.4, a similar result for bipartite
graphs with perfect matchings does not seem to be that far out of reach.
This brings us to the next question:

Question 3.5.4: The Bipartite t-Disjoint Alternating Paths Problem
The minor-testing algorithm of Robertson and Seymour, as well as Theo-
rem 5.4.2 illustrate that testing for minors or matching minors can be seen
as a special case of the version of the disjoint paths problem appropriate
for the respective setting. Routing problems on their own are also among
the more prominent applications of graph theory.
As mentioned in the beginning of Chapter 4, the generally hard Directed
t-Disjoint Paths Problem can be seen as a specialised version of the
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Bipartite t-Disjoint Alternating Paths Problem. A solution to t-MLP
might therefore also yield a way to tackle a relaxed version of the Directed
t-Disjoint Paths Problem. In light of results like the NP-hardness of
the Directed 2-Disjoint Paths Problem as, seen in Theorem 2.3.27, it
is therefore also mildly surprising that a theorem like Theorem 4.0.6 is
possible. This result especially also raises the hope to find a general
solution of the Bipartite t-DAPP, possibly similar to the solution for the
t-DPP as found in the Matching Minor Project. For this, three different
building blocks are necessary:

i) Solve the bipartite t-DAPP on bipartite graphs with perfect match-
ings of bounded perfect matching width,

ii) show that there is a function f : N → N such that the Bipartite
t-DAPP becomes trivial if the input graph B contains Kf(t),f(t) as
a matching minor, and lastly

iii) use Theorem 8.0.4 to either solve the problem on bipartite graphs
with large perfect matching width, or find a way to reduce the total
number of vertices in such a graph, while preserving the possible
existence of a solution to the given instance.

With Theorem 5.4.1, part (i) has already been taken care of. Towards
part (ii), the importance of Lemma 4.0.9 for the solution of the 2-MLP
might be an appropriate starting point for further research into this topic.
At last, the mere existence of Theorem 8.0.4 gives a lot of hope towards a
possible algorithm for the general problem. The main challenge here would
be to ensure that removing a small number of vertices from within a flat
matching wall does not change the overall matching structure of the given
graph too much, as the flexibility of changing perfect matchings appears
to make the difference between Theorem 2.3.27 and Theorem 4.0.6. A
good starting point for the general problem could be to consider only
planar bipartite and matching covered graphs. There already exists an
algorithm [Sch94, CMPP13] for the Directed t-DPP on planar digraphs,
this algorithm however appears to not be straightforward adaptable as it
only considers one fixed perfect matching, and the total number of perfect
matchings in a graph can be exponential. Hence even for the planar case,
new techniques are required. Overall, however, a positive solution for the
Biparite t-DAPP seems to be far more in reach than a solution to the
general Pfaffian Recognition Problem.
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Question 3.5.5: The Structure of Bipartite Matching Covered Graphs
Excluding Kt,t This question seems to have been answered in the most
general way possible by Theorem 8.0.4 and Theorem 8.0.5. Of course the
bounds found for the theorem in Chapter 8 are far from optimal or even
desirable but this might be due to our heavy reliance on structural digraph
theory. It is highly possible that we can find better bounds, or slightly
different but still similarly strong theorems by putting more emphasis on
the structure of the bipartite matching covered graph itself. Two other
theorems that might require some optimisation are Theorem 5.3.29 which,
again, makes heavy use of its digraphic counterpart, and Theorem 7.1.1
which also has an exponential bound by the way our proof works.
Apart from these optimisation problems, we can now replace Question 3.5.5
with another, more refined, question as follows:

Question 9.3.1. Let H be a brace. What is the structure of bipartite
matching covered graphs that exclude H as a matching minor?

For K3,3 this question was answered by Theorem 3.3.4. Moreover, in
case H is planar, Theorem 7.0.1 provides a nice answer. But beyond this,
Theorem 8.0.5 can only provide an incomplete picture and more research
is necessary.

Question 3.5.6: Matching Minor Anti-Chains of Braces Our last
question, which likely is also the deepest one, is also the one we have found
the least answers to. While the findings of [RS86b] enabled Robertson and
Seymour to show that any anti-chain for the graph minor relation that
contains a planar graph must be finite. With Theorem 7.0.1 at hand, our
hopes were high to replicate this success with regards to Question 3.5.6
and planar braces. However, we quickly discovered that the established
methods for handling this kind of problems seemed not fit, or at least not
strong enough, to handle the case of bipartite matching covered graphs.
One reason for this might be found in the tight cut contraction, which
replaces the otherwise relatively easy to handle cut vertices. Another
problem might be the existence of many edges connecting the vertices
of one colour class in a set of vertices to another set of vertices without
increasing the ‘connectivity’ in a meaningful way. Moving forward, finding
answers to this question will probably be the greatest challenge apart
from generalisations of the questions above to the non-bipartite setting.
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