Simula SpringerBriefs on Computing 11

Ahmed Elmokashfi - Olav Lysne - Valeriya Naumova
Editors

Smittestopp - A Case
Study on Digital
Contact Tracing

OPEN ACCESS &) springer

Simula SpringerBriefs on Computing

Volume 11

Editor-in-Chief

Aslak Tveito, Simula Research Laboratory, Fornebu, Norway

Series Editors
Are Magnus Bruaset, Simula Research Laboratory, Fornebu, Norway

Kimberly Claffy, San Diego Supercomputer Center, CAIDA, University of
California, San Diego, San Diego, CA, USA

Magne Jargensen, Software Engineering, Simula Research Laboratory, Fornebu,
Norway

Olav Lysne, Simula Research Laboratory, Fornebu, Norway

Andrew McCulloch, Bioengineering 0412, University of California, San Diego, La
Jolla, CA, USA

Fabian Theis, Institute of Computational Biology, Helmholtz Zentrum Miinchen,
Neuherberg, Germany

Karen Willcox, Department of Aeronautics & Astronautics, Massachusetts Institute
of Technology, Cambridge, MA, USA

Andreas Zeller, Saarbriicken, Germany

Springer and Simula have launched a new book series, Simula SpringerBriefs on
Computing, which aims to provide introductions to select research in computing.
The series presents both a state-of-the-art disciplinary overview and raises essential
critical questions in the field. Published by SpringerOpen, all Simula SpringerBriefs
on Computing are open access, allowing for faster sharing and wider dissemination
of knowledge.

Simula Research Laboratory is a leading Norwegian research organization which
specializes in computing. The book series will provide introductory volumes on the
main topics within Simula’s expertise, including communications technology,
software engineering and scientific computing.

By publishing the Simula SpringerBriefs on Computing, Simula Research
Laboratory acts on its mandate of emphasizing research education. Books in this
series are published only by invitation from a member of the editorial board.

More information about this series at https://link.springer.com/bookseries/13548

https://link.springer.com/bookseries/13548

Ahmed Elmokashfi ¢ Olav Lysne ¢ Valeriya Naumova
Editors

Smittestopp — A Case Study
on Digital Contact Tracing

@ Springer

Editors

Ahmed Elmokashfi Olav Lysne

SimulaMet SimulaMet

OsloMet — Oslo Metropolitan University OsloMet — Oslo Metropolitan University
Oslo, Norway Oslo, Norway

Valeriya Naumova
Simula Consulting
Oslo, Norway

ISSN 2512-1677 ISSN 2512-1685 (electronic)
Simula SpringerBriefs on Computing
ISBN 978-3-031-05465-5 ISBN 978-3-031-05466-2 (eBook)

https://doi.org/10.1007/978-3-031-05466-2
Mathematics Subject Classification (2020): 92-XX, 94-XX

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-05466-2
http://creativecommons.org/licenses/by/4.0/

Series Foreword

Dear reader,

Our aim with the series Simula SpringerBriefs on Computing is to provide compact
introductions to selected fields of computing. Entering a new field of research can be
quite demanding for graduate students, postdocs, and experienced researchers alike:
the process often involves reading hundreds of papers, and the methods, results and
notation styles used often vary considerably, which makes for a time-consuming
and potentially frustrating experience. The briefs in this series are meant to ease the
process by introducing and explaining important concepts and theories in a relatively
narrow field, and by posing critical questions on the fundamentals of that field. A
typical brief in this series should be around 100 pages and should be well suited as
material for a research seminar in a well-defined and limited area of computing.

We have decided to publish all items in this series under the SpringerOpen
framework, as this will allow authors to use the series to publish an initial version of
their manuscript that could subsequently evolve into a full-scale book on a broader
theme. Since the briefs are freely available online, the authors will not receive any
direct income from the sales; however, remuneration is provided for every completed
manuscript. Briefs are written on the basis of an invitation from a member of the
editorial board. Suggestions for possible topics are most welcome and can be sent to
mailto:aslak @simula.noaslak @simula.no.

January 2016 Prof. Aslak Tveito
CEO

Dr. Martin Peters
Executive Editor Mathematics
Springer Heidelberg, Germany

Preface

“Today, the Government launches the
strongest and most intrusive
restrictions ever imposed in Norway
during peacetime."

Prime Minister Erna Solberg, 12
March 2020

A few hours after the prime minister’s dramatic announcement, we addressed the
Norwegian Institute of Public Health (NIPH) and offered our services. The day after,
we were asked to develop a system based on mobile phones that could help trace the
contacts of individuals infected by the coronavirus. The background of the request
from NIPH was a very recent scientific paper subsequently published in the journal
Science. ! In short, it stated that, by using a reasonably efficient tracing system, the
effect of the pandemic on society could be significantly reduced. The development
of a system started the same evening and continued with 12- to 18-hour workdays
for five weeks. The system was then launched by the prime minister and was quickly
downloaded by about one-third of the population 16 years old and above. Privacy
concerns and a major drop in infections resulted in halting the system about two
months after it was launched.

This aim of this issue of the Simula SpringerBriefs on Computing is to describe
in detail how the tracing system was built from a technical perspective. At the start
of the project, time was of the essence and no one had ever built such a system. All
technical issues within the project, therefore, had to be resolved, and as quickly as
humanly possible. The present text describes these solutions. Our aim is to document
what was done to be better prepared should a similar situation arise.

In Norway and in most parts of the Western world, contact tracing systems stirred
up heated debate on privacy issues, and most countries ended up using systems based
on a solution developed by Apple and Google. That system was strong in terms of
privacy, but gave no information to the health authorities that could help support

! Ferretti, Luca, et al. "Quantifying SARS-CoV-2 transmission suggests epidemic control with
digital contact tracing." Science 368.6491 (2020).

VII

VIII Preface

tracing the infection. In the end, these systems turned out to have very limited value
from a public health perspective. The overall societal costs of applying a reduced
system, in terms of deaths and lockdowns, are by now an open question. The decision
to use the Apple/Google tool was enforced by Apple and Google through their control
over the two main smartphone operating systems, leaving the health authorities little
choice.? Whether such decisions should be made by technology companies or public
health authorities is another open question.

By now, many contact tracing solutions have been developed, and it is our im-
pression that, for these solutions, there is a constant trade-off between privacy and
efficiency in the present state of knowledge. We can therefore develop systems of
great efficiency and low privacy, or the other way around. Clearly, what we want is a
system with great privacy and great efficiency, but, as far as we know, such a solution
has not been developed or suggested in the growing literature on this topic. Our aim
here is not to argue that our system (Smittestopp) achieved the right balance. It did
not. Rather, our aim is to explain what we did and offer it to the scientific community
so that others can improve both the efficiency and privacy of future solutions.

Oslo, Norway, September 2021,

Professor Aslak Tveito Professor Olav Lysne
CEO of Simula Research Laboratory Director of Simula Metropolitan
Center for Digital Engineering

Research Professor Ahmed Elmokashfi ~ Dr. Valeriya Naumova
Simula Metropolitan Center for Director OF Simula Consulting
Digital Engineering

2 Mark Scott, Elisa Braun, Janosch Delcker, and Vincent Manancourt, "How Google
and Apple outflanked governments in the race to build coronavirus apps.” Politico, May
2020, https://www.politico.eu/article/google-apple-coronavirus-app-privacy-
uk-france-germany/.

https://www.politico.eu/article/google-apple-coronavirus-app-privacy-uk-france-germany/
https://www.politico.eu/article/google-apple-coronavirus-app-privacy-uk-france-germany/

Contents

1 Imtroduction.............. i
Ahmed Flmokashfi, Olav Lysne, and Valeriya Naumova
1.1 Background
1.2 Timeline....... ... e
1.3 Design choiCesiiiiiiiinniiiiiii ...
1.4 Team and project managementc..oveeuneennn..
1.5 Smittestopp rollout
1.6 BoOK Organization.uuuiiiiiiiiinneeennnnn...
Referenceso

2 Smittestopp for Android andiOS

Per Magne Florvaag, Henrik Aasen Kjeldsberg, and Sebastian Kenji
Mitusch

2.1 IntroducCtiont
2.2 Related apps for digital contact tracing
2.3 App user interface and functionality
2.4 System architecture and dataflow
25 Applifecycle ...
2.5.1 Android
2.5.2 A0S
2.6 DesignchoiCesuuiiiiiii i
2.6.1 Storage and SECUTitYcovvirneiinneennnenn..
2.6.2 Location SEIVICES.uuuuneeeminnneeennnnnn..
2.6.3 BluetoothLow Energy
2.7 TeStNG ..ottt
2.8 Conclusions and lessons learned
Referencesot
3 SmittestoppBackend

Cise Midoglu, Benjamin Ragan-Kelley, Sven-Arne Reinemo, Jon Jahren
and Pél Halvorsen

Contents

3.1 Introduction...............iiii i 30
3.2 Technical implementation, 31
3.2.1 Required functionalities 32
3.2.2 Backend componentsiiiiiiii.... 34
3.2.3 Interactions with the mobileapp 40
324 Cloud Operationsoeeuneuuneennnennnenn. 43
3.2.5 Interactions with web applications 45
3.3 Experience: Challenges and lessons learned 47
3.3.1 Distributed versus centralised architecture 47
3322 Data proCessSingoeeuutnnet i 49
3.3.3 Cloud optimiSationsoveeuneernnennnnnn. 56
3.3.4 Ethical, privacy and security aspects.................. 57
34 Summary and conClusions 60
References 60
Smittestopp analytics: Analysis of positiondata.................. 63

Vajira Thambawita, Steven A. Hicks, Ewan Jaouen, Pal Halvorsen, and
Michael A. Riegler

4.1 IntroduCtioneiiiiiiiiiiiiiiiia 64
4.2 Trajectory pre-proCesSing.uueeeuuunneeeennnnneennn 66
4.2.1 Trajectories with a fixed length of GPS data points 67
4.2.2 Trajectories with fixed time intervals 67
4.2.3 Trajectories based on trips and stop points 68
4.3 Predicting the mode of transport 68
4.4 Map matching and map visualization 70
44.1 Extract POIs from dilated areas 71
4.4.2 Obtaining contacted POIs with points................. 72
4.4.3 Relation between POIs and transport modes 73
444 QueryingPOIs. ..., 75
4.4.5 Accuracy of the identified POIs 76
4.5 Challenges, experiences, and lessons learned 77
4.6 Ethical considerationsiiiiiiiiiiiia.. 77
4.7 Summary and conclusionst 78
References 78
Using Bluetooth for contact tracing 81
Ahmed Elmokashfi and Amund Kvalbein
5.1 Collecting Bluetooth data from iOS and Android devices 81
5.2 Challenges in distance estimation using Bluetooth 82
5.3 Controlled experiments to aid distance classification 84
5.3.1 April 2020 signal strength measurements.............. 84
5.3.2 August 2020 extended RSSI experiments 86
5.3.3 The effect of the txPower parameter 88
5.4 Identifying and classifying contacts 89
54.1 CONtaCt EVENLS . . ot v ettt et et 89

5.4.2 Validation of Smittestopp contacts 93

Contents

5.5 Related worko
5.6 Lessonslearned.
Referencest

6 Digital tracing, validation, and reporting
Ahmed Elmokashfi, Simon Funke, Timo Klock, Miroslav Kuchta,
Valeriya Naumova, and Julie Uv
6.1 Manual versus digital Tracing i,
6.2 The type of information necessary to validate a digital tracing

tool and prove its usefulness for epidemiologists/researchers
6.3 Obtaining the information: Design principles and the
implementation of digital contact tracing
6.3.1 Shared components between GPS and BT data
6.3.2 BT dataprocessingoeuoveiuneiunnennnann.
6.3.3 GPSdataprocessingoiiiiiiiiiin...
6.3.4 Contact tracing reportsc.uuuueeeeennnn ..
6.4 Smittestopp testing and validation
6.4.1 Pre-launch testing i,
6.4.2 Real-life validation in testing municipalities
6.4.3 Controlled testing under real-life and lab conditions.
6.5 Lessons Learned and conclusion.
References

7 Data aggregation and anonymization for mathematical modeling
and epidemiological studies,
Are Magnus Bruaset, Glenn Terje Lines and Joakim Sundnes
7.1 Introduction............... .o
7.2 Datarequirements and privacyooiiiiiiiiin...

7.2.1 Privacy-preserving techniques
7.3 Geographical units and points of interest
7.4 Data analysis and preliminary results
7.4.1 Mapping GPS events to BSUs and POIs...............
7.5 Distributed data aggregation
7.5.1 Computational challenges...........................
7.5.2 Improving scalability through massive parallelism
7.5.3 Local data aggregation on the phone
7.54 Improved privacy..........oeeuieiiineiineenneenn..
7.6 Conclusions and lessons learned
References

l‘)
Chapter 1 Cpdatos.
Introduction

Ahmed FElmokashfi, Olav Lysne, and Valeriya Naumova

1.1 Background

In the early months of 2020, a new virus began to spread in societies around the
world. This virus, named SARS-CoV-2 or simply coronavirus, caused a disease
called COVID-19 that had a deadly outcome in a disturbingly high fraction of cases.
The elderly and those with an underlying chronic disease seemed to be particu-
larly vulnerable [3]. Some months into 2020, the disease was classified as a global
pandemic.

Diverse measures were taken in countries around the world to control the spread
of the virus. These measures varied from nonintrusive advice on social distancing
and hygiene to actual curfews where people were not allowed to leave their homes
other than for strictly necessary errands.

Isolating infected individuals, identifying those with whom they have been in
close contact, and asking them to isolate as well has emerged as a key strategy
to break the chains of transmission of COVID-19. A process known as contact
tracing is followed to identify close contacts. This process helped in slowing the
SARS outbreak in early 2000 and is routinely used to break the transmission chains
of sexually transmitted diseases. Conventional contact tracing is a largely manual
process in which contact tracers interview infected individuals. It therefore scales

A. Elmokashfi

The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engi-
neering,

e-mail: ahmed@simula.no

O. Lysne

The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engi-
neering,

e-mail: Olav.lysne@simula.no

V. Naumova
Department of Machine Intelligence, Simula Metropolitan Center for Digital Engineering,
Simula Consulting AS, e-mail: valeriya@simula.no

© The Author(s) 2022 1
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2 1

mailto:ahmed@simula.no
mailto:.Olav.lysne@simula.no
mailto:valeriya@simula.no
https://doi.org/10.1007/978-3-031-05466-2_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_1&domain=pdf

2 Elmokashfi et al.

poorly if the number of cases increases rapidly. It also misses unknown contacts, for
example, encounters on public transportation.

One thing that distinguishes this pandemic from those of the past, however, is that
most people, most of the time, are carrying powerful computing and communication
devices in the form of mobile phones. These phones are expected to be equipped with
Global Positioning System (GPS) functionality that could track their movements,
Bluetooth functionality that could be leveraged to detect their proximity to other
phones, and an Internet connection that could be used to transmit detection data to
health authorities. Exploiting this already deployed technology to control the disease
was therefore was an obvious path to explore.

In March 2020, a preprint of a research paper by recognized epidemiologists
from the University of Oxford was circulated among health authorities in Europe.
The paper’s main conclusion was that, if the latency of tracing and quarantining the
contacts of an infected person was reduced from days to hours, this by itself could
suffice to stop the spread of the disease[4]. This reduction in latency is exactly what
can be expected from introducing electronic contact tracing by the use of mobile
phones.

From early March, development teams in many European countries tried to build
an app-based contact tracing system. Their approaches varied, but the common
denominator was that they all were attempting to use the Bluetooth technology that
was deployed in phone models carried by most individuals, to detect when two
people were physically sufficiently close to each other for a sufficiently long time for
the transmission of the virus to take place.

Making Bluetooth work this way, however, was a nontrivial task. Bluetooth was
not developed for this purpose and, at the outset there was no knowledge on the
extent to which this would actually be possible, or how this would play out in the
complex dynamics of human interaction and behaviour.

This book describes the Norwegian system for contact tracing that was developed
in March and early April 2020. The system was deployed after five weeks of devel-
opment and was active for a little more than two months, when a drop in infection
levels in Norway and privacy concerns led to shutting it down.

The intention of this book is twofold. First, it reports on the design choices made in
the development phase. Second, as one of the only systems in the world that collected
population data into a central database and which was used for an entire population,
we can share experience on how the design choices impacted the system’s operation.
By sharing lessons learned and the challenges faced during the development and
deployment of the technology, we hope that this book can be a valuable guide for
experts from different domains, such as big data collection and analysis, application
development, and deployment in a national population, as well as digital tracing.

1 Introduction 3

1.2 Timeline

When Norway closed down society on 12 March to stop the spread of COVID-19,
several countries in Europe had already started to develop a contact tracing app. The
Norwegian Institute of Public Health (NIPH) contacted Simula Research Laboratory
and requested that we put aside other priorities and start the development of an app
as quickly as possible. Given the severity of the situation, we agreed to do so. A
development team was put together, and the development started on 13 March.

After initial considerations, the Norwegian authorities decided that the app should
serve two purposes. The first purpose was to automate contact tracing, to start the
quarantining of potentially infected people as efficiently and early as possible. The
second purpose of the app was to collect information on Norwegian population’s
movements and interactions. This information was to be used at an aggregate level
for the evaluation of shutdown measures implemented by the government to stop
the pandemic. Aggregated and anonymized data was also to be kept for research
purposes in preparation for future pandemics. A separate regulation for limiting the
use of the collected data was passed in Parliament.

At the outset of this project, knowledge and research on the use of mobile phones
for contact tracing was extremely scarce. A string of technical challenges therefore
needed to be addressed. What the challenges were and how they were solved are
discussed in the different chapters of this book.

The app we developed was named Smittestopp’. It was launched after a short and
intense development phase that lasted five weeks, and, in the first few days after the
launch, 1.5 million downloads of the app were registered. After two weeks of data
collection, field tests of the system were started in three municipalities. At that time,
however, the infection rate in Norway had dropped to almost zero. Field tests and
validation of the system on real infected persons were therefore not possible.

The speed at which this system was developed must be considered in light of the
sense of national crisis that reigned, both in the government and in the population
at large. In a normal situation, such rapid development and deployment would be
neither possible nor recommendable. A normal timeline for the development of such
a product should be measured in months rather than weeks, and the time required by
similar developments in other countries support this view.

On 10 April, Apple and Google announced that they were collaborating on creat-
ing an application programming interface (API) for contact tracing that would work
seamlessly on both iOS and Android [2]. This was a very important development for
several reasons. First, these two companies develop the two operating systems that
are in use on almost all mobile phones in Norway. Integration of contact tracing into
the operating system was therefore a very interesting prospect. Second, this new API
promised efficient contact tracing without central data collection, and it therefore

! This term can be somewhat inaccurately translated as ’stop of infection’. Note that Smittestopp
was later replaced by a GAEN based app that was also called Smittestopp. The two apps are not
related.

4 Elmokashfi et al.

appeared to have a far better privacy profile than any of the apps based on central
storage that were being developed in Europe at the time.

The announcement from Apple and Google came six days before the planned
launch of Smittestopp. Norwegian authorities still chose to launch the app as planned,
for two reasons. The main reason was that a system based on the API from Apple and
Google was at least two months away. In mid-April, the death rate due to infection
was still high, and the main sentiment was there was no time to lose. The second
reason was that the Norwegian authorities had decided that they needed data from
the app to support their decision making regarding measures to shut down society.
Google and Apple were very clear that any app based on their API could not send
information to national authorities.

A few weeks after the launch of Smittestopp, the infection rate in Norway dropped
to almost zero. The reduced need for the collection of data to control a pandemic,
together with the advent of a more privacy-friendly technology in the form of Google
and Apple’s API, made the national authorities shut down Smittestopp after a little
more than two months of operation.

At the time of this writing, most countries in Europe have terminated their own
development of third-party contact tracing apps. The international community has
converged on the use of Apple and Google’s API. Still, in this book, we choose to
tell the detailed story of the development of our third-party app. Our main reason for
doing so is that we do not think that this is the last pandemic we will see. Furthermore,
we do not think that the collaboration between Apple and Google is the final word
with respect to digital contact tracing.

We firmly believe that, in the coming years, digital contact tracing should be an
active research field, so that we are technologically better prepared next time. The
outcome of such research will decide whether the mobile phone is a good platform
for such tracing or if cheap and mass-produced specifically tailored hardware can
be developed. Further outcomes of such research should be more accurate contract
tracing algorithms and protocols with better privacy protection and that still give
national authorities access to valuable anonymous information on how individuals,
families, societies, and subcultures react to different pandemic control measures. We
see this book as a major contribution to the literature on this topic.

1.3 Design choices

As discussed above, the design and development of the Smittestopp system took
place in March and April 2020, immediately after the lockdown of Norwegian society.
During the development phase, the Smittestopp team had to make a number of design
choices to deliver the health authorities’ requirements and handle the limitations that
iOS imposes on the use of Bluetooth by apps running in the background, that is,
apps that are launched and left running. The two key design choices were the use of
centralized storage and the collection of GPS data.

1 Introduction 5

The centralized storage of Bluetooth information offers a global view of contacts
that helps in accommodating the inability of sleeping iPhones to detect neighbours.
The Google/Apple Exposure Notifications (GAEN) API, which is now widely used
by contact tracing apps, solves this problem in a decentralized manner. A recently
published report containing a systematic comparison of a GAEN-based app and a
Bluetooth-only Smittestopp app shows that, with centralized storage, Smittestopp
can achieve the same level of utility as the GAEN-based app [1].

Despite the current consensus that contact tracing can be conducted on the basis of
Bluetooth data alone, the second purpose of the intrinsic aggregation of descriptions
of population mobility is to gain some level of access to the phones’ locations
over time, which necessitates the collection of GPS data. In addition, the health
authorities wanted to leverage GPS data to contextualize contacts, to avoid false
alarms that could lead to quarantining individuals that were not at any risk.

1.4 Team and project management

The project essentially consisted of two parallel projects, that is, one at NIPH 2 and
one at Simula. NIPH’s project focused on defining the requirements for harmonizing
digital and manual contact tracing in an epidemiologically meaningful way, inte-
grating with COVID testing databases, developing a system to inform app users who
have been in close proximity to an infected individual, handling legal matters, as well
as handling media and outreach. Simula’s project focused mainly on developing the
app, the backend needed for data storage, as well as developing the necessary analysis
algorithms and tools. Several parties and companies were involved besides NIPH
and Simula, including the Norwegian Directorate of eHealth, the Norwegian Health
Network (NHN), and Microsoft. Furthermore, consultancy services were purchased
from Scienta AS, Shortcut AS and Expert Analytics AS. Key people from NIPH and
Simula met daily, including weekends, to discuss progress.
The project at Simula was split into three main teams:

1. The app team, which was responsible for developing and testing the app. This
team comprised two sub-teams, for Android and iOS.

2. The backend team, which was responsible for designing and implementing the
backend and implementing various APIs to facilitate communications between
the phones and the backend. The task of designing the backend was a collaborative
task, with contributions from NHN, Microsoft, and Simula. Microsoft helped by
guiding Simula through Azure’s capabilities, configuring the registration service,
and implementing and managing the database. NHN was responsible for resource
management and access control.

3. The analytics team, which had a set of broad responsibilities that included devel-
oping algorithms for estimating and contextualizing proximity and close contacts
using GPS and Bluetooth, working closely with NIPH to tune and determine

2 NIPH is called Folkhelseinstituttet in Norwegian.

6 Elmokashfi et al.

how digital contact tracing could be used, developing systems for preparing and
sharing contact tracing results with NIPH, and producing aggregate statistics at
the national level.

In addition to these teams, two smaller teams provided communication and admin-
istrative support and coordinated security with NIPH. Overall, 22 Simula employees
were involved in this effort. Each team had a number of daily meetings besides one
general project meeting. All the development work was carried out at home during
the lockdown period, where all meetings were virtual.

1.5 Smittestopp rollout

Smittestopp was launched on 16 April. The user registration service was over-
whelmed on the day of the launch, which resulted in many users failing to complete
their registration. In collaboration with Microsoft, a quick fix that significantly im-
proved the system’s scalability was deployed the next day. Between the launch and
suspension dates, there were seven Smittstopp updates, three of them major releases.
These updates enhanced various aspects, including power consumption, accessibil-
ity, and security. The most notable update was rolled out on 4 May, and it significantly
improved the scanning of nearby Bluetooth devices on iOS.

Figure 1.1 plots the cumulative number of app downloads during Smittestopp’s
lifetime. The number of downloads climbed quickly, reaching 1.3 million on the
second day after the launch. It then increased slowly to reach a maximum of 1.58
million on 2 June. The figure also shows that the number of downloads increased at

B Android @ iOS A Total

2000000

[72]
T
‘_.g 1500000 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA_A_A
c
3
(]
T 1000000
[
o
S
2

500000
£ g IS O S S O S I
=]
=z

19/04/2020 03/05/2020 17/05/2020 31/05/2020
Date

Fig. 1.1: The cumulative number of app downloads.

1 Introduction 7

a much slower pace after the initial surge. This is expected, since there was no active
campaign to encourage more users to download the app beyond the prime minister’s
appeal on the launch date.

Two-thirds of the downloads were by iOS devices. This was unexpected, given the
state of the smartphone market in Norway. Through private communications with
mobile network operators, we know that iPhones had a smartphone market share
of about 55%, and Android phones had the rest. We cannot explain the difference
without controlling for other factors, such as user age and location. Unfortunately,
this could not be done, since Smittestopp has been halted indefinitely. However,
understanding the causes of this difference could prove useful when releasing the
next contact tracing application. Note that the cumulative downloads could include
users who downloaded the app several times on the same phone. We do not know
exactly the fraction of such downloads.

The total number of downloads gives an idea of the adoption of the app; however,
the number of users who uploaded tracking data paints a better picture of the app’s
usage. Figure 1.2 depicts the number of unique users who uploaded data per day. This
number was around 800,000 in the first three days, and then exhibited a decreasing
trend, dropping to 450,000 by 4 June. Note that there is no one-to-one mapping
between the largest number of daily users and the total number of users. Overall,
about 1.2 million devices uploaded data during Smittestopp’s lifetime. The number
of unique users, however, could be slightly lower than 1.2 million, because some
users might have completely reinstalled the app when updating to a new version.
This would result in the same users having several identifiers and thus appearing as
more than one user. We expect this fraction to be small, though. The gap between
the number of downloads and the number of users, that is, approximately 300,000,

B Android @ iOS A Total

1000000
750000

500000

- M""‘"""ﬂlﬁm‘-‘m“..m
0

19-Apr 3-May 17-May 31-May

Users

Date

Fig. 1.2: Number of active users per day.

8 Elmokashfi et al.

can have a number of reasons. First, a user might have updated the app several times,
which translates into multiple downloads but not multiple users. Second, some
users attempted to download the app several times on the launch date, due to the
overloaded registration service. This translates to multiple downloads, but eventually
only one of these downloads counting as a user. Finally, a fraction of users could
have downloaded the app and removed it before it had uploaded any data. Bearing
all these factors in mind, we believe that the number of users who downloaded and
used Smittestopp was between 1 million and 1.2 million. In other words, between
23% and 27% of the Norwegian population older than 16 years downloaded and
used Smittestopp. 3

The loss of users was not uniform across the two platforms. One-third of iOS
users were lost, compared to over two-thirds of Android users. We believe that this
large difference can be blamed on the app resulting in higher battery consumption
on Android. Optimizing the Android app proved difficult, due the great diversity in
both vendors and devices. Accordingly, many users decided to uninstall the app to
extend their battery life. In addition, many Android phones suspend apps that are not
frequently used and consume large amounts of power, assuming that these apps are
misbehaving and unnecessary.

These numbers show that Smittestopp was highly adopted in the beginning and
continued to have a nontrivial level of adoption by the time it was shut down, that
is, over 10% of the population. In the remainder of this book, we will go into more
detail about Smittestopp and present its various components.

1.6 Book organization

The remainder of this book is divided into six standalone chapters. Chapter 2 provides
an overview of the Smittestopp app for iOS and Android devices. The backend of the
app is presented in Chapter 3. The scope of the analytic work is covered in Chapters
4 to 6. The processing of the GPS data is presented in Chapter 4, while Chapter 5
discusses how Bluetooth measurements are used to estimate the proximity of phones
to each other. Chapter 6 discusses the validation of the technology and its use for
digital contact tracing. Finally, Chapter 7 describes the mechanism and tools for the
aggregation and anonymization of the movement data collected by the app.

References

[1] Sammenligning av alternative lgsninger for digital smittesporing, Simula Re-
search Laboratory, 2020, 2020. https://www.simula.no/sites/default/
files/sammenligning_alternative_digital_smittesporing.pdf.

3 The app was restricted to ages 16 and above.

https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf

1 Introduction 9

[2] Apple and Google. Apple and google partner on covid-19 contact tracing tech-
nology. https://www.apple.com/newsroom/2020/04/apple-and-google-partner-
on-covid-19-contact-tracing-technology/, Last visited July 2020, 2020.

[3] R.-H. Du, L.-R. Liang, C.-Q. Yang, W. Wang, T.-Z. Cao, M. Li, G.-Y. Guo,
J. Du, C.-L. Zheng, Q. Zhu, et al. Predictors of mortality for patients with covid-
19 pneumonia caused by sars-cov-2: a prospective cohort study. European
Respiratory Journal, 55(5), 2020.

[4] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dérner,
M. Parker, D. Bonsall, and C. Fraser. Quantifying SARS-CoV-2 transmission
suggests epidemic control with digital contact tracing. Science, 368(6491), 2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.apple.com/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/
https://www.apple.com/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/
http://creativecommons.org/licenses/by/4.0/

l‘)
Chapter 2 sy
Smittestopp for Android and iOS

Per Magne Florvaag, Henrik Aasen Kjeldsberg, and Sebastian Kenji Mitusch

Abstract Contact tracing is currently a manual and laborious task that requires
individuals to recall their interactions with people many days in the past. As a
remedy, phones can be used to play a significant role in the response to the COVID-19
pandemic, by easing the burden of healthcare staff. Through novel and sophisticated
technology, apps can be used to track infected people, issue quarantine guidelines,
and provide the latest news to the public. Along with general public measures,
apps can contribute significantly to keeping infection levels low. Generally, digital
contract tracing can identify and warn people who may be at risk of being infected
because they were in close physical proximity of someone who later tested positive
for COVID-19.

2.1 Introduction

Our contact tracing app Smittestopp was released on 16 April 2020 on the Google
Play store and Apple’s App Store, and later for the Huawei AppGallery. The app sup-
ported Android 5.0+ and iOS 12.0+ and required users to register with a Norwegian
phone number.

P.M. Florvaag

Department of Computational Physiology, Simula Research Laboratory,
Simula Consulting AS and Pacertool AS

e-mail: permagne@simula.no

H.A. Kjeldsberg
Department of Computational Physiology, Simula Research Laboratory,
e-mail: henriakj@simula.no

S.K. Mitusch
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory,
e-mail: sebastian@simula.no

© The Author(s) 2022 11
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2 2

mailto:permagne@simula.no
mailto:henriakj@simula.no
mailto:sebastian@simula.no
https://doi.org/10.1007/978-3-031-05466-2_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_2&domain=pdf

12 Florvaag et al.

To facilitate digital contact tracing, the apps had to collect information that could
reveal the proximity between two devices running the app. If the devices are con-
sidered sufficiently close to each other, beyond a given threshold, and one (or both)
of the users are later confirmed to be infected by COVID-19, the counterpart would
be notified that they could be infected as well. The location data provided by Global
Positioning System (GPS) can be used to match the locations of two users, but it
is too coarse to distinguish distances to a precision of 2 metres, especially in cities
and inside buildings. To counter this problem, Bluetooth data were supplied and
combined with location data. Bluetooth signals fade rapidly over short distances,
and one can semi-reliably determine distances with a precision of 2 metres.

GPS data are, however, very useful for the second purpose of the app: to gather
anonymized movement patterns for epidemiological research. Specifically, the loca-
tion data were intended to be used to evaluate the effect of social distancing measures
imposed by the government.

For effective contact tracing, the app would need to run continuously in the
background, even through phone reboots and app terminations. However, most users
of such an app would open it once and then rarely or never open it again. As we will
elaborate in this chapter, this proved to be a challenging aspect, especially for the
iOS version of the app. More surprisingly, background location permissions would
be essential for the life cycle of the app on iOS.

2.2 Related apps for digital contact tracing

Before the development of Smittestopp began, no digital contact tracing app had
ever been released in a Western country. Although China had deployed apps to
combat COVID-19, these apps functioned by showing the user’s health status based
on an algorithm that accounted for the user’s travel history. Checkpoints were placed
around China where a certain health status was required to pass through, such as
when entering a metro station [28].

On 20 March 2020, Singapore released their digital contact tracing app TraceTo-
gether [24]. TraceTogether gathers Bluetooth proximity data and stores them locally
on the phone. The app fetches temporary identifiers from a central server and trans-
mits these over Bluetooth. At the same time, the app builds a log of temporary
identifiers it obtains from other devices in proximity. This contact log is then kept
locally on the phone. When users tests positive for COVID-19, they can voluntarily
share this contact log with the health authorities, who will then notify the other
users. As other Bluetooth-based contact tracing apps on iOS, TraceTogether did not
function properly in the background. Thus, iOS users were asked to use the app as
a screen saver when not using the phone, ensuring that the app remained open and
Bluetooth would work correctly [1].

On 22 March, Israel released their app HaMagen [23], which gathers location data
through GPS (later versions also incorporate Bluetooth data). These data are stored
locally on the phone until the user is diagnosed with COVID-19. Infected individuals

2 Smittestopp for Android and i0S 13

can choose to upload these data so that other phones can download and compare
these with their locally stored location history. The user is notified by the app if
there is a match, but, to preserve privacy, the health authorities are not automatically
notified.

The United Kingdom was initially developing a centralized contact tracing app
using Bluetooth, but abandoned it in May, after reports that the background problems
on iOS led to only a 4% detection rate between two iPhones that were asleep [18].
However, the importance of the 4% detection rate could have been overstated, since
the quantity of contacts where both iPhones are asleep account for only a small per-
centage of overall contacts [19]. Instead, the UK government decided to switch to the
Google/Apple Exposure Notifications (GAEN) application programming interface
(API).

The GAEN API [26] is an API implemented by Google and Apple for both
the Android and iOS operating systems. GAEN is similar to the Decentralized
Privacy-Preserving Proximity Tracing (DP-3T) protocol [27], using only Bluetooth
for proximity detection and storing all contact logs locally. However, a key difference
between the two implementations is that the GAEN key matching occurs at the OS
level, whereas that of the DP-3T protocol occurs at the app level. A GAEN app
generates an identifier roughly every 15 minutes and transmits it over Bluetooth.
When users test positive for COVID-19, they can choose to upload a log of the
temporary keys they generated so that these can be downloaded by other users and
matched against their locally stored contact logs. GAEN is currently the de facto
standard framework for exposure notification.

2.3 App user interface and functionality

Smittestopp’s user interface (UI) is mainly divided into four processes, or views.
When the user starts Smittestopp for the first time, they are directed through the
onboarding process. The onboarding process for both the Android and iOS apps is
shown sequentially through the screenshots in Figure 2.1. The top row shows the
process for Android, while the bottom one shows it for iOS. The onboarding is key
to understanding Smittestopp, explaining the main purposes of the app, as shown in
the first two panels (columns) of Figure 2.1. Furthermore, the onboarding presents
the privacy policy, which the user is required to accept to continue using the app,
shown in the third panel of Figure 2.1. Similarly, the user is required to verify that
they are above the age of 16, a requirement for using Smittestopp, as shown in the
fourth panel of Figure 2.1. In the iOS version, as shown in panel five of Figure 2.1,
the onboarding page allows the user to authorize Smittestopp to collect Bluetooth
and location service data. The user is given an authorization prompt in both versions
of the app after login. Finally, the user is directed to the login services, provided
by the Microsoft Authentication Library [22]. The login service requires users to
input a Norwegian phone number and to authenticate themselves by replying with a
confirmation code sent by SMS.

14 Florvaag et al.

Your contribution About the Smittestopp Privacy Date of birth Receive messages
counts contact tracing app

Your contribution About the Privacy Date of birth Permissions
counts Smittestopp contact
tracing app

Fig. 2.1: Screenshots from Smittestopp’s onboarding process. The top and bottom
panels represent the onboarding flow in the Android and iOS versions of Smittestopp,
respectively. Each flow involves up to six steps. Note that the Android version does
not include the Permissions page.

O —T O —T .. - Frrrrn o
App status op status Bl Settings Information about the
PP 3 coranavirus and digital Information about
e =il ey coronavirus and
s e - S digital taols

-

@

(a) The monitoring view. (b) The settings view. (c) The info view.

Fig. 2.2: The three view components after a successful login: monitoring, settings,
and info. For all three images, the left and right screenshots represent the Android
and i0S versions of Smittestopp, respectively.

After successfully logging in through Microsoft’s service, the user is presented
with the monitoring page, as shown in Figure 2.2a. The monitoring page serves
as an overview of the app’s status, which is either enabled, partly enabled, or
disabled, although the wording can vary between apps. In Figure 2.2a, the app is

2 Smittestopp for Android and i0S 15

fully enabled, implying the collection of both Bluetooth and location service data
has been authorized and is activated.

In contrast, when partly enabled, that is, when either Bluetooth or location ser-
vices are disabled, a button prompting the user to toggle the respective setting is
shown. However, the collection of either data type will still contribute to the app’s
purposes, although the precision could be affected. Finally, if the monitoring shows
the disabled status, then both Bluetooth and location services have been deactivated,
either through the app’s settings or through the phone’s settings.

The supplementary view components consist of the settings and info views, shown
in Figures 2.2b and 2.2c, respectively. The settings page displays the phone number
with which the app was registered and the ability to log out, which temporarily
halts the data collection. The user can also toggle the information that is collected.
Customer support information is presented in the next settings panel, including a
link to Helsenorge.no and its support phone number. In this panel, the user can
also erase all the data collected by Smittestopp thus far. Finally, the Info view, shown
in Figure 2.2¢c, displays helpful links related to Smittestopp, data collection, and
general information about COVID-19.

2.4 System architecture and data flow

Legend / Smittestopp App \

| wiew Component | Gnboarding ™ { Backend \
Senvice /" Microsoft Azure

Login
/ Smittestopp App N 1 y |-

T v - B
Monitoring Monitoring -
Location Location - S —
Biuetooth Bluetooth Local

Storage Uploader

Central < u Central |
] loT Hub
Peripheral Peripheral

Heartbeat Heartbeat = \ /
) N /

Fig. 2.3: High-level schematic of Smittestopp showing the main components and
how they interact with the backend, through Microsoft services here, and with
other devices where Smittestopp is installed. The backend consists of Azure Active
Directory Business-to-Consumer (Azure AD B2C) and the Azure Internet of Things
(IoT) Hub, which connects to the cloud.

Il

A software architecture establishes the fundamental structure of a software system
and displays how a collection of components accomplishes a specific task or function.

16 Florvaag et al.

The main functions of Smittestopp are to aggregate location and Bluetooth data, with
minor functions, such as the logging of events and heartbeat monitoring. The main
components are presented in Figure 2.3, which is a high-level schematic overview
of the process flow in Smittestopp. Although there are minor technical differences
between the Android and iOS apps, the main components and data processing in
Smittestopp are covered by the schematic.

Starting with their onboarding, users proceed through a login service provided
by Azure AD B2C. The users input their Norwegian phone number and receive an
access token from Azure AD B2C that is used to authenticate the user for Azure
IoT Hub. The IoT hub responds with an authentication key and a Universally Unique
Identifier (UUID), which are stored locally on the user’s device. The authentication
key is used to generate temporary authentication tokens for sending messages to the
IoT hub. These messages are sent over HTTPS, with a payload as described below,
in addition to the device’s UUID.

After successfully logging in, the user is presented with the monitoring view
component. Here, three main data types are actively collected and uploaded to the
IoT hub, assuming full authorization to location services (GPS) and Bluetooth Low
Evergy (BLE). All three events include five common fields, along with the event
data, as shown in the following JavaScript Object Notation (JSON) message format
example.

{
"appVersion": "1.1.0",
"model": " iPhone 10,5",
"events": [EventDatal],
"platform": "ios",
"osVersion": "13.4.1",
"jailbroken": false

b

The jailbroken flag was added to filter out data collection from rooted and jail-
broken devices. We attempt to identify jailbroken or rooted devices by checking if
the app can edit certain system files or if the system contains files associated with
jailbroken/rooted devices. Furthermore, events is a list of either GPS, Bluetooth, or
heartbeat events, but never a combination thereof.

GPS data are collected on a regular basis, although the uploading frequency
and data precision can vary, depending on the user’s activity. For GPS events, the
following example message format shows the structure of the IoT hub telemetry
message sent from the app to the cloud, including the common fields addressed
above.

{

"timeFrom": "2020-04-30T12:38:30Z2",
"timeTo": "2020-04-30T12:38:30Z",
"latitude": 61.93372532454498,
"longitude": 10.728583389659596,

2 Smittestopp for Android and i0S 17

"accuracy": 65.0,
"speed": 2.10,
"altitude": 71.1960678100586,
"altitudeAccuracy": 10.0
h;

Newly collected GPS data are aggregated with previous GPS events for the pe-
riod lasting from timeFrom to timeTo. The current location is determined by the
latitude and longitude coordinates, along with the altitude above sea level,
measured in metres. The accuracy and the altitudeAccuracy are measures of
the location and altitude accuracy, respectively. In addition, the measured speed of
the device, in metres per second, is registered [14, 8].

Devices that support BLE, particularly Android and iOS devices, can act as a
peripheral device and a central device, as explained further in Section 2.6.3. As
illustrated in Figure 2.3, a device acting as a central device can be detected by pe-
ripheral devices, which triggers an exchange of UUIDs between the devices involved.
In the initial release of Smittestopp, devices used static UUIDs. However, the use of
static UUIDs can expose user devices to tracking by scanners configured to detect
Smittestopp UUIDs. As a remedy, rotating UUIDs can be used, an improvement
that was later implemented and tested but never released to the public, because
Smittestopp was abruptly halted. To link the BLE information to GPS data, the BLE
data are aggregated with the last known GPS positions, saved in the location field,
as shown in the following message format representing a BLE event.

{

"deviceId": "123456789abcd",

"rssi": -90,

"txPower": 12,

"time": "2020-04-30T12:38:30Z",

"location": {
"latitude": 61.93372532454498,
"longitude": 10.728583389659596,
"accuracy": 65.0,
"timestamp": "2020-04-30T12:35:302"

}

The contact timestamp is registered in the time field, along with the UUID,
deviceld, of the discovered device. Here, rssi represents the signal strength that
the central device receives, while txPower represents the transmission power of the
peripheral device.

The third and final event consists of heartbeat messages, a custom message used
to determine a device’s authorization of location services. The heartbeat message
can also determine that the app is still installed and running on a device. A heartbeat
event is sent once every 24 hours to the IoT hub, and it includes information on which

18 Florvaag et al.

kind of data collection is enabled on the device, as shown in the following message
format.

{

"timestamp": "2020-04-30T12:38:30Z2",
"state": 0

}

Here, the timestamp is updated when the message is uploaded, and the integer value
of state is set to one of four values.

Smittestopp is also connected to Azure App Center for logging purposes [20].
Note that the App Center is used by the app in parallel to the main app services,
thus running independently of the Smittestopp backend. Mainly errors and warnings
are logged and uploaded to the App Center, including information about failed
authorization, database errors, and failed requests and responses related to event
uploading. In addition, the operating system, mobile operator, version number, and
phone model is added to the App Center payload, used to improve the quality of
the collected data by distinguishing different phone models and operating systems.
Azure App Center does not store any personal information or link the collected data
to a user [21]. It is important to emphasize that the information collected by App
Center was only used to identify problems with certain phone models or operating
systems.

2.5 App life cycle

Whether running on the iOS or Android operating system, every mobile app passes
through multiple states throughout its runtime, known as the app’s life cycle. Of the
different states an app can transition through, we mainly focus on those when the app
is running in the background, since most users of Smittestopp rarely opened the app.
Users bring apps to the foreground to interact with them. Consequently, such apps
will be prioritized when it comes to accessing systems resources. In contrast, apps in
the background are not visible to users. An app goes into the background if has been
stopped or has entered a suspended state. Most apps are usually in a background or
suspended state, to save as much power as possible. Optimally, the app does as little
work as possible, preferably nothing when off-screen. There are also intermediate
states, when the app’s state changes from the foreground to the background and vice
versa, but these are not our focus here.

2.5.1 Android

Smittestopp supports Android 5.0+ and controls its life cycle through different
activities, as shown in Figure 2.4. The different activities describe the actions that

2 Smittestopp for Android and iOS 19

Launch

Created

—> Started

Resumed

Paused

—{ Stopped ‘

r

‘ Destroyed ‘

Fig. 2.4: A state diagram that describes the transitions between the states for the
Android life cycle.

users can perform to make the app enter different life cycle states. An Android
app cycles between the four following life cycle states: active, paused, stopped, and
terminated [16]. The states are entered through different activities, which we describe
next.

The app becomes active by going through the three activities create, start, and
resume. When the user opens an app, the create activity is triggered. The app
continues by executing the start activity. In this phase, the activity is still not rendered,
but is about to become visible to the user. The final phase of being active involves
the app entering the resume activity, where the app is finally visible to the user and
becomes interactive.

At this point the app can be paused, stopped, or terminated. In the paused state,
the app can still be visible to the user, but the user cannot interact with it. This state
can be entered when the app is no longer in focus or before transitioning to the
stopped or terminated state. The app enters the stopped state when it is not visible
to the user, which can happen if a new activity is started or the current one is being
terminated. Although the app is still active in the background, Android Runtime can

20 Florvaag et al.

terminate the app in case of scarce resources. Finally, if the app is terminated, it will
destroy the current instance of the activity to save memory.

Considering that most apps are usually not active, we used a designated back-
ground service in Android that allows the app to execute events in the background,
as well as showing a constant notification.

2.5.2 i0S

Smittestopp supports iOS 12.0+ and uses
app delegate objects to manage the app’s _
shared behaviours [9]. Generally, an iOS ‘ Not running <

app can enter one of five states that con- \ /

stitute the app life cycle: terminated, inac- l

tive, active, background, and suspended, as
shown in Figure 2.5. For the sake of com-
pleteness, we describe here the five states l

before focusing, in the next section, on the T
main challenges faced by iOS apps when Active
they run in the background. An app in the
terminated state has either not been started
yet or has been closed by the user or the
system. As soon as the user enters the app,
the enters an intermediate state where it is l T
inactive. In the inactive state, the app’s Ul is) _
not visible to the user and does not receive ‘] |
or send any events. The inactive state is also
entered every time the app transitions to a
different state.

When the app is fully loaded, the app
enters the active state. In the active state,
the app is fully functional and visible to the
user and the user can interact with the UI. Additionally, the app can both send and
receive events if this is part of the its functionality. When the user exits the app, it
transitions from the active state to the inactive state before reaching the background
state. Similarly, when reopening, the app will transition from the background state to
the inactive state before eventually becoming active. The background state is usually
only a temporary state in which the app’s code is still executed, meaning that events
can be sent and the app works in the background, although the UI is not visible to
the user. After being in the background state for a short time, the app will enter the
suspended state. The time it takes before the app transitions from the background
state to the suspended state can vary, since this state can be extended, if needed,
by the app. Most apps are automatically suspended by the system after entering the
background state. In this state, the app does not execute code, but it is still saved in

—» Inactive | e—

— Background -

Fig. 2.5: A state diagram describing
the transitions between the states for
the 108 life cycle.

2 Smittestopp for Android and i0S 21

the iPhone’s memory without affecting the battery life. In case the system runs low
on memory, a suspended app can automatically be terminated by the system. An app
can also enter the terminated state if it is manually terminated by the user.

2.6 Design choices

In this section, we discuss the various design choices that we made when developing
the Smittestopp app. Section 2.6.1 gives a short description of how data are stored
locally on the device and the security measures implemented for this storage. Battery
usage is a prominent issue for a continuously running app such as Smittestopp,
especially considering that it provides no immediate and obvious benefit to the user.
Most of the battery drain was caused by location tracking, and details on how this was
handled are provided in Section 2.6.2.Finally, Section 2.6.3 describes how proximity
detection over Bluetooth was implemented.

2.6.1 Storage and security

Local storage consists of two different systems. One system is for preference data,
such as the phone number, consent to the privacy policy, and the login token. The
other system is a local encrypted SQLite database for measurement data, such as
location and Bluetooth encounters. Preference data are stored in UserDefaults and
the Keychain [7] on iOS, and in SharedPreferences and Keystore [13] on Android.
Keychain and Keystore are used to store sensitive information such as the phone
number, the login token, and the encryption key for the local SQLite database.

The local database system choice was SQLite [25] because it is an embedded
database with easily accessible libraries. On Android, SQLite is part of the AndroidX
library [15]. On iOS, an open source library was used [12]. The database consists of
two tables, one for GPS data and one for BLE data. As the data are being uploaded,
they are marked for deletion and, upon successful upload, the marked data are deleted.
Since the location and proximity data can persist on a phone for hours before they
are successfully uploaded, it is important that they are stored as securely as possible.
This entails the entire database being encrypted using a key that is generated and
stored on the device in Keychain (iOS) or Keystore (Android). Although someone
with full access to the phone could theoretically access the encryption key, this
database encryption provides a basic level of security.

22 Florvaag et al.

2.6.2 Location services

The collection of location data in Smittestopp is performed for two purposes: for dig-
ital contact tracing in combination with BLE event data and for gathering movement
patterns in the population for epidemiological research, to understand the effective-
ness of recommended public measures. By default, both the Android and iOS apps
fetch location data at regular intervals, merging similar location data points to avoid
sending too much data. However, the continuous tracking of location services was
one of the main power usages of Smittestopp, as reflected in the number of reviews
on both Apple’s App Store and the Google Play store complaining about the app’s
impact on battery life.To address the high power consumption, Smittestopp would
change the accuracy of the GPS data adaptively.

While, on Android, only the intervals at which location data were retrieved was
tweaked, the i0S version of Smittestopp combined multiple different features of the
CoreLocation [2] framework. By default, the app uses the standard CoreLocation
location updates with the highest possible precision. If the GPS data show the same
position, or roughly the same within a threshold dependent on the GPS accuracy, for
more than five minutes, high precision location updates are disabled and, instead,
region monitoring [10] is used. Region monitoring, also known as geofencing, con-
structs a circular region around a position with a given radius and tracks if the user
moves outside the region. The region is defined as a circle with a 40-metre radius
around the last known position. iOS then alerts the app once the device moves outside
the region and stays outside for at least 20 seconds.

When an iOS user grants Smittestopp permission to fetch location data in the back-
ground, the i0OS app can run continuously in the background state, never moving to
suspended state. The standard location updates [4] in the CoreLocation framework
prevent the app from being suspended when moving to the background. However,
turning off standard location updates would mean the app will be suspended. Thus,
when switching to region monitoring, standard location updates are not turned off,
but the accuracy is significantly lowered and the filter for how far apart each update
needs to be is significantly increased. This means the app remains enabled but there
will be no standard location updates, which prevents the app from moving to the
suspended state.

Apart from the suspended state, the terminated state could also be a problem for
Smittestopp on i0S. The app could enter the terminated state if the user manually
terminated the app, which, one can imagine, is a very normal occurrence; however,
when the user moves outside the currently monitored region, the app is launched
automatically by the operating system [5]. In addition, a CoreLocation feature
called significant location updates [4], which provides updates if the device moves
by roughly 500 metres or more, is always enabled. Region monitoring and significant
location updates in conjunction meant that, after app termination, the app would
relaunch and continue as normal if the device moved 40 to 500 metres from its last
known position.

Although the app could run continuously in the background, on iOS, this was en-
tirely dependent on the user granting full background location permissions. Without

2 Smittestopp for Android and i0S 23

those permissions, the app would not be able to gather location data in the back-
ground and would almost entirely rely on Bluetooth to wake the app. Because the
Bluetooth background mode does not work after app termination and most users
will not regularly launch the app, the iOS version of Smittestopp was extremely
reliant on full location permissions for long-term consistency. This point was made
tougher by iOS 13, which does not allow for background location permissions to
be asked directly. Instead, one can only ask for permissions when the app is in use,
and the user would later, at the discretion of the operating system, be prompted for
background location permissions. This made it difficult to communicate to users
what permissions they should grant, and the released version of Smittestopp did not
attempt to convey the importance of background location permissions.

2.6.3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) communication consists of two devices: one device
advertising its presence and the other scanning for advertising BLE devices. BLE
advertisement packets usually contain one or more UUIDs that inform the scanning
devices of the types of services supported by the device in question. Such a UUID
is referred to as a service UUID. The Smittestopp app advertises and scans for a
service UUID specific to the app, providing a way for the scanning device to detect
devices in its proximity. While BLE supports attaching some (limited size) data
to the advertisement packet, there is limited support for accessing these data on
i0S devices. Specifically, the data are not accessible when the scanning device has
Smittestopp running in the background, and not in the foreground. Thus, Smittestopp
instead connects to the advertising device when the app-specific service UUID is
present. These connections are short-lived, since the scanning device only requests
a device identifier from the advertising device and disconnects as soon as this has
been received.

Running BLE in the background on an iOS app is supported through background
modes, but the app will be suspended after a few seconds in the background. It will
then transition from the suspended to the background mode every time a relevant
BLE service UUID is found in a received advertisement packet or when a device
connects. The app will then have approximately 30 seconds in the background state
before it is suspended again.

Additionally, when the iOS app is in the background, the advertisement packet
for the app changes to a proprietary format in which service UUIDs are found in
the so-called overflow area [11]. The overflow area is a 128-bit array, and each
service UUID corresponds to exactly one of the bits being set to one. When an iOS
device scans for a specific service UUID, it will match advertisements where the
corresponding bit is set to one. Of course, service UUIDs can be 128-bit numbers,
for a many-to-one mapping from a service UUID. Thus, there is a possibility that
a false positive can be detected if a device advertises a service UUID that has the

24 Florvaag et al.

same corresponding overflow area bit. For more information on the overflow area,
see the notes by Rossum [29] and Young [30].

While the BLE stack in iOS has a built-in system for handling the overflow adver-
tisement format, an Android device does not know how to translate service UUIDs
to their corresponding bit. To do so, the Android implementation of Smittestopp,
in addition to scanning for the normal app-specific service UUID, also scans for
packets with the corresponding bit set to one. Since the code for mapping service
UUIDs to a bit is not public, the bit is found by scanning the BLE advertisement
packets that the iOS app transmits in the background. This is possible because the
corresponding bit is always the same for a specific service UUID.

The difficulties with BLE on iOS while the app is in the background are not only
limited to the advertisement packets. When the scanning app is in the background,
i0S will not relay any overflow advertisement packets detected to the app. Thus, while
in the background state, an iOS app will not be able to detect other backgrounded iOS
apps. While the app will function fine between iOS and Android devices, detection
between two backgrounded iOS apps will not work. Furthermore, more than half of
the phone users in Norway use an iPhone. Because the average user will have the
app almost exclusively in the background state, this was a major problem and one of
the main topics in meetings with collaborating countries.

In early April, two weeks before the app would eventually launch, we discovered
a way to partially circumvent this limitation. Using the iBeacon feature [6], found
in the CoreLocation [2] framework, the operating system will continue to relay
overflow advertisement packets to the app, even in the background. Specifically, by
ranging for iBeacons [3], a method that allows one to determine the proximity of
other devices with iBeacon, the app can continue to receive overflow advertisements
while the device screen is on. The iBeacons for which the app scans do not have to
be present at all. The app can scan for a random iBeacon UUID. However, if the
device screen is off, this method will not help the app detect BLE advertisements.
Notably, whether the device is locked or not does not matter, as long as the screen is
on. This means that if, for example, the phone is locked but receives a notification,
it will light up and the app will receive BLE advertisements until the screen goes
black again. With this workaround, it is possible to detect all encounters where at
least one phone is in use. This method is also briefly mentioned by Young [30].

Although ranging for an iBeacon would help with BLE detection, a major concern
was the impact on battery life. Hence, we aimed to minimize the time the app spends
ranging for an iBeacon. The documented iOS app API from Apple does not include
a way to detect whether the phone screen is on or off. Therefore, the app potentially
ranges for an iBeacon when it has no effect, negatively impacting the battery life for
no benefit. However, using an undocumented API, we can register callbacks that are
invoked when the screen is turned off or on. The use of such undocumented APIs
usually means that the app will be rejected in the App Store review process, and Apple
made no exception for Smittestopp regarding this matter. Thus, the Smittestopp app
ended up ranging for an iBeacon every five minutes for 10 seconds, regardless of
whether the screen is on or off.

2 Smittestopp for Android and i0S 25

Ranging for iBeacons requires location permissions on iOS, even when only used
to improve BLE background consistency. Additionally, to turn iBeacons on and off
while in the background, the app must not be in a suspended state and must have
background location permissions. From the user’s perspective, requiring location
permissions to improve BLE capabilities is not intuitive. Communicating the need
for location permissions is therefore a significant challenge for an app using this
workaround.

2.7 Testing

Smittestopp’s codebase was tested using unit tests for the functionality, UI, and snap-
shot tests [17] to test the UI. The UI tests simulate interactions with the UI and check
for the expected behaviour. Meanwhile, Snapshot tests compare old screenshots of
the UI to the current UI, to ensure that no unintended changes occur.

2.8 Conclusions and lessons learned

Designing an app that runs almost exclusively in the background is much more
straightforward on Android than on iOS. To conserve battery life, most iOS apps
are not allowed to execute code when they are backgrounded, and, even if an app
asks for time in the background, the iOS system will only rarely or even never grant
background execution time if the app is rarely used.

Furthermore, the i0OS system limits the functionality of BLE in the background.
This limitation can be partially alleviated by background location permissions, but
the user must explicitly grant these. This is perhaps a good thing from a privacy
perspective, since it makes it difficult for apps to implement tracking mechanisms
over BLE. However, it was one of the main challenges for countries implementing
BLE contact tracing apps.

References

[1] G.T. Agency. 6 things about OpenTrace, the open-source code published by the
TraceTogether team. https://www.tech.gov.sg/media/technews/six-
things-about-opentrace\#6-last-but-not-least-an-extra-
step-for-ios-users, 2020 (accessed October 26, 2020).

[2] Apple Developer Documentation. Core Location. https://developer.
apple.com/documentation/corelocation/, 2020 (accessed October 26,
2020).

https://www.tech.gov.sg/media/technews/six-things-about-opentrace\#6-last-but-not-least-an-extra-step-for-ios-users
https://www.tech.gov.sg/media/technews/six-things-about-opentrace\#6-last-but-not-least-an-extra-step-for-ios-users
https://www.tech.gov.sg/media/technews/six-things-about-opentrace\#6-last-but-not-least-an-extra-step-for-ios-users
https://developer.apple.com/documentation/corelocation/
https://developer.apple.com/documentation/corelocation/

26

(3]

[4]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

Florvaag et al.

Apple Developer Documentation. Determining the Proximity to an iBeacon De-
vice. https://developer.apple.com/documentation/corelocation/
determining_the_proximity_to_an_ibeacon_device, 2020 (accessed
October 26, 2020).

Apple Developer Documentation. Getting the User’s Location.
https://developer.apple.com/documentation/corelocation/
getting_the_user_s_location, 2020 (accessed October 26, 2020).
Apple Developer Documentation. Handling Location Events in the
Background. https://developer.apple.com/documentation/
corelocation/getting_the_user_s_location/handling_
location_events_in_the_background, 2020 (accessed October 26,
2020).

Apple Developer Documentation. iBeacon. https://developer.apple.
com/ibeacon/, 2020 (accessed October 26, 2020).

Apple Developer Documentation. Keychain Services. https://developer.
apple.com/documentation/security/keychain_services, 2020 (ac-
cessed October 26, 2020).

Apple Developer Documentation. Location Services. https://developer.
apple.com/documentation/corelocation/cllocationmanager, 2020
(accessed October 26, 2020).

Apple Developer Documentation. Managing Your App’s Life Cy-
cle. https://developer.apple.com/documentation/uikit/app_and_
environment/managing_your_app_s_life_cycle, 2020 (accessed Octo-
ber 26, 2020).

Apple Developer Documentation. Monitoring the User’s Proximity to
Geographic Regions. https://developer.apple.com/documentation/
corelocation/monitoring_the_user_s_proximity_to_geographic_
regions, 2020 (accessed October 26, 2020).

Apple Developer Documentation. startAdvertising(_:). https:
//developer.apple.com/documentation/corebluetooth/
cbperipheralmanager/1393252-startadvertising, 2020 (accessed
October 26, 2020).

S. Celis. A type-safe, Swift-language layer over SQLite3. https://github.
com/stephencelis/SQLite.swift, 2020 (accessed October 26, 2020).

A. Developers. Android keystore system. https://developer.android.
com/training/articles/keystore, 2020 (accessed October 26, 2020).
A. Developers. Android location services. https://developer.android.
com/reference/android/location/Location, 2020 (accessed October
26, 2020).

A. Developers. Sqlite. https://developer.android.com/jetpack/
androidx/releases/sqlite, 2020 (accessed October 26, 2020).

A. Developers. Understand the Activity Lifecycle. https://developer.
android.com/guide/components/activities/activity-1lifecycle,
2020 (accessed October 26, 2020).

https://developer.apple.com/documentation/corelocation/determining_the_proximity_to_an_ibeacon_device
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location/handling_location_events_in_the_background
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location/handling_location_events_in_the_background
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location/handling_location_events_in_the_background
https://developer.apple.com/ibeacon/
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/corelocation/cllocationmanager
https://developer.apple.com/ibeacon/
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/corelocation/cllocationmanager
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising
https://github.com/stephencelis/SQLite.swift
https://github.com/stephencelis/SQLite.swift
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
https://developer.android.com/jetpack/androidx/releases/sqlite
https://developer.android.com/jetpack/androidx/releases/sqlite
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.apple.com/documentation/corelocation/determining_the_proximity_to_an_ibeacon_device

2 Smittestopp for Android and i0S 27

[17] Github. Delightful Swift snapshot testing. https://github.com/
pointfreeco/swift-snapshot-testing, 2020 (accessed October 23,
2020).

[18] L. Kelion. Coronavirus: England’s contact-tracing app gets green light
for trial. https://www.bbc.com/news/technology-53753678, 2020 (ac-
cessed October 23, 2020).

[19] L. Kelion. Coronavirus: Ireland set to launch contact-trace app. https://
www.bbc.com/news/technology-53137816, 2021 (accessed February 18,
2021).

[20] Microsoft Azure. Visual Studio App Center. https://azure.microsoft.
com/en-us/services/app-center, 2020 (accessed October 26, 2020).

[21] Microsoft Azure. Visual Studio App Center. https://docs.microsoft.
com/en-us/appcenter/gdpr/faq\#data-use, 2021 (accessed February
25,2021).

[22] Microsoft Azure. Microsoft ~ Authentication Library (MSAL).
https://docs.microsoft.com/en-us/azure/active-directory/
develop/msal-overview, 2021 (accessed February 26, 2021).

[23] 1. M. of Health. HaMagen. https://govextra.gov.il/ministry-of-
health/hamagen-app/download-en/, 2020 (accessed October 23, 2020).

[24] G. of Singapore. TraceTogether. https://www.tracetogether.gov.sg/,
2020 (accessed October 26, 2020).

[25] SQLite. SQLite Home Page. https://www.sqlite.org/, 2020 (accessed
October 26, 2020).

[26] P.-P. C. Tracing. Apple and Google. https://covidl9.apple.com/
contacttracing, 2020 (accessed October 26, 2020).

[27] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized privacy-
preserving proximity tracing. arXiv preprint arXiv:2005.12273, 2020.

[28] J. Utzerath, R. Bird, and G. Cheng. Contact tracing apps in China, Hong
Kong, Singapore and South Korea. https://www.lexology.com/library/
detail.aspx?g=99dca469-455d-4f7a-b025-00bf1d10£f£f6b, 2020 (ac-
cessed October 23, 2020).

[29] A. van Rossum. Smartphone localization. https://github.com/
crownstone/bluenet-ios-basic-localization/blob/master/
BROADCASTING_AS_BEACON.md, 2020 (accessed October 26, 2020).

[30] D.G. Young. Hacking The Overflow Area. http://www.davidgyoungtech.
com/2020/05/07 /hacking-the-overflow-area, 2020 (accessed October
26, 2020).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://www.davidgyoungtech.com/2020/05/07/hacking-the-overflow-area
http://www.davidgyoungtech.com/2020/05/07/hacking-the-overflow-area
https://github.com/pointfreeco/swift-snapshot-testing
https://github.com/pointfreeco/swift-snapshot-testing
https://www.bbc.com/news/technology-53753678
https://www.bbc.com/news/technology-53137816
https://www.bbc.com/news/technology-53137816
https://azure.microsoft.com/en-us/services/app-center
https://azure.microsoft.com/en-us/services/app-center
https://docs.microsoft.com/en-us/appcenter/gdpr/faq\#data-use
https://docs.microsoft.com/en-us/appcenter/gdpr/faq\#data-use
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://govextra.gov.il/ministry-of-health/hamagen-app/download-en/
https://govextra.gov.il/ministry-of-health/hamagen-app/download-en/
https://www.tracetogether.gov.sg/
https://www.sqlite.org/
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://www.lexology.com/library/detail.aspx?g=99dca469-455d-4f7a-b025-00bf1d10ff6b
https://www.lexology.com/library/detail.aspx?g=99dca469-455d-4f7a-b025-00bf1d10ff6b
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md

®
Chapter 3 sy
Smittestopp Backend

Cise Midoglu, Benjamin Ragan-Kelley, Sven-Arne Reinemo, Jon Jahren and Pél
Halvorsen

Abstract An efficient backend solution is of great importance for any large-scale
system, and Smittestopp is no exception. The Smittestopp backend comprises various
components for user and device registration, mobile app data ingestion, database and
cloud operations, and web interface support. This chapter describes our journey from
a vague idea to a deployed system. We provide an overview of the system internals
and design iterations and discuss the challenges that we faced during the development
process, along with the lessons learned. The Smittestopp backend handled around
1.5 million registered devices and provided various insights and analyses before
being discontinued a few months after its launch.

C. Midoglu
Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,
e-mail: cise@simula.no

B. Ragan-Kelley
Department of Numerical Analysis and Scientific Computing, Simula
e-mail: benjaminrk@simula.no

S.A. Reinemo
Simula Metropolitan Center for Digital Engineering,
e-mail: svenar@simula.no

J. Jahren
Microsoft, Norway,
e-mail: Jon.Jahren@microsoft.com

P. Halvorsen

Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,
Department of Computer Science, Oslo Metropolitan University,

Department of Informatics, University of Oslo

e-mail: paalh@simula.no

© The Author(s) 2022 29
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2 3

mailto:cise@simula.no
mailto:benjaminrk@simula.no
mailto:svenar@simula.no
mailto:Jon.Jahren@microsoft.com
mailto:paalh@simula.no
https://doi.org/10.1007/978-3-031-05466-2_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_3&domain=pdf

30 Midoglu et al.

3.1 Introduction

The COVID-19 pandemic struck Europe very hard in the spring of 2020. In Norway,
manual tracing was successfully used to identify and quarantine close contacts of
confirmed cases to some extent, helping reduce the spread of the disease. However,
since manual tracing is slow and not necessarily comprehensive in terms of the list
of contacts, as well as hard to scale, implementation of a national digital contact
tracing solution was considered.

Collaboration between Norwegian Institute of Public Health (NIPH) and Sim-
ula Research Laboratory (Simula) was set up to develop an efficient and scalable
digital contact tracking solution. On the frontend, this solution would correspond
to a mobile application (from here on, referred to as “mobile app" or “app") that
could be installed on end user devices such as smartphones and wearables, run in the
background without requiring any user interactions after registration, and continu-
ously collect information about the device’s own location as well as other devices in
close proximity, using Global Positioning System (GPS) and Bluetooth (BT). Data
from the mobile app would be collected centrally on the backend and analysed with
an automated pipeline, allowing for the rapid generation of risk reports for every
confirmed case. The complete system was named “Smittestopp".

The Smittestopp backend is one of the most crucial parts of the larger Smittestopp
system, presented in Figure 3.1. It enables the ingestion and storage of data from
the Smittestopp mobile app [15], which is detailed in Chapter 2, handles database
and cloud operations for the automated processing and aggregation of these data by
the Smittestopp analytics pipeline, which is detailed in Chapters 4 through 7, and
interfaces with web applications, which were themselves outside the scope of the
project on the Simula side.

End Users

T T

-

T

Backend

Mobile

App
FHI / Municipality

End Users

Fig. 3.1: Overview of the Smittestopp system, where coloured components indicate
the scope of the technical solution developed by Simula. The focus of this chapter is
in green.

Web J
Applications

App
Interactions

@
8
35 2
Eg =2
Uﬂ_
o

Interactions

User
Support

Testing

.

The Smittestopp project had two main goals:

* An automatic solution for contact tracing and notification (Varslingslgsning)
with a centralised architecture, for detecting those who have been in contact with

3 Smittestopp Backend 31

infected individuals. Support for an automated analytics pipeline, detecting and
tracing contacts between devices that have the mobile app installed.

* A solution for aggregated statistics (Kunnskapsinnhenting) that generates in-
formation on when and where contacts occured, how many people had encoun-
ters, and so on. Functionality was to be developed for tracing the spread of the
pandemic throughout the country following national measures, via anonymised
aggregations at the population level.

In this chapter, we give an overview of the backend solution put in place to address
and support these goals. Overall, the technical requirements from the Smittestopp
backend included both functional requirements for meeting the analytics needs and
nonfunctional requirements for fast and efficient data management, as well as for
protecting personal information. The development of the Smittestopp mobile app and
the analytics pipeline were covered in separate work packages and are elaborated
upon in different chapters of this book, namely, Chapters 2 and 6, respectively.

The remainder of this chapter is organised as follows: In Section 3.2, we describe
the technical implementation of the backend solution, including the architecture,
components, and end-to-end operations. In Section 3.3, we discuss how the imple-
mentation evolved over the course of five weeks, while being used nationally by
up to 1.5 million people, and we describe our experiences and lessons learned. We
conclude the chapter in Section 3.4. Readers who are interested in the technical de-
tails of our implementation are encouraged to continue reading through Section 3.2,
whereas readers who would like to focus on our lessons learned and discussions
can skip ahead to Section 3.3. The contents of Sections 3.2 and 3.3 can be studied
independently from one another.

3.2 Technical implementation

In this section, we provide a detailed description of the architecture, design, and
implementation of the Smittestopp backend, insofar as it was within the scope of the
project on the Simula side. We elaborate on the Smittestopp backend in the follow-
ing manner: In Section 3.2.1, we reiterate the designated high level functionalities
required for the overall system. In Section 3.2.2, we provide a technical description
of the components and technologies that are employed in the Smittestopp backend
to support these functionalities. In Sections 3.2.3 to 3.2.5, we describe the role
played by the Smittestopp backend in delivering data from the mobile app to the web
applications in a usable manner, in line with the stated goals.

More specifically, in Section 3.2.3, we describe the first stage, denoted as app
interactions in Figure 3.1. This comprises a set of functions ranging from device
registration and deletion to authorisation, data upload, the handling of incoming
data with possible errors, and the transfer of data to the second phase of cloud-
based operations. In Section 3.2.4, we describe these cloud-based operations in
detail, including data ingestion and storage and running the analytics pipeline. In
Section 3.2.5, we elaborate on the higher-level services that the Smittestopp backend

32 Midoglu et al.

provides to connected web applications in the form of the collection of endpoint
queries. Further documentation related to the architecture and operations of the
Smittestopp backend, please refer to the Smittestopp source code [21].

3.2.1 Required functionalities

3.2.1.1 Contact tracing and notification

One of the main goals of the Smittestopp system was to provide a centralised
functionality for notifying people, in case they have been in contact with an infected
individual. This is achieved through the use of an automated analytics pipeline
detecting and tracing contacts between all devices that have the mobile app installed.

Summarised in Figure 3.2, the functionality works as follows: authorised accounts
can use a web application to make queries such as list all close contacts of the user
identified by phone number X, starting from a given date T, covering the past 14
days, where the threshold for a close contact is less than 2m for longer than 15
minutes. The query is serviced by the backend, and a response in the form of a report
generated by the analytics pipeline is fed back to the web application.

See Section 3.2.5.1 for more details about the service we implemented to fulfil
this functionality, and Chapters 4 through 6 for more details about the detection and
reporting of contacts.

Y I ™
Smittestopp

"

Application
Response: contact report for user X _ NIPH / M""'”Fa"ty/

N _/ N S

-

Query: user X, date, other parameters I (1

Analytics
Pipeline

Fig. 3.2: High-level overview of the contact tracing functionality of the system,
where coloured components indicate the scope of the backend solution.

3.2.1.2 Aggregated statistics

The second goal of the Smittestopp system was to provide additional information to
support the tracing the of the spread of the pandemic throughout the country, espe-
cially following national measures. These are in the form of anonymised aggregations
at the population level.

Summarised in Figure 3.3, the functionality works as follows: authorised accounts
can use a web application to make queries such as list the number of contacts that

3 Smittestopp Backend 33

have taken place in a specific Point of Interest (POI) (e.g. grocery stores), in a specific
municipality (e.g. Oslo), on a given date 7T, with an hourly granularity. The query
is serviced by the backend and an anonymised aggregate response, generated by the
analytics pipeline, is fed back to the web application. The Points of Interest (POls)
can be any supported item, ranging from healthcare or education facilities to arts,
entertainment, and culture or sports or commercial and residential areas [30]. The
location of interest can be specified as a county (fylke), municipality (kommune),
district (bydel), or basic statistical unit (grunnkrets)!, or custom defined as an area
polygon.

It should be noted here that only the NIPH and the government will have the
clearance to run an aggregate statistics query. There are also constraints against
running aggregate statistics in sparse spatiotemporal contexts, which carry the risk
of revealing individual insights.

See Section 3.2.5.2 for more details about the service we implemented to fulfil
this functionality, and Chapter 7 for more details about data aggregation and statistics
(including privacy preserving techniques and anonymity).

Smittestopp
Backend

Query: PQls, date, other parameters

Analytics

NIPH / Municipality
Pipeline . —

Response: aggregate statistics

_/ - _/

Fig. 3.3: High-level overview of the system’s aggregated statistics functionality,
where coloured components indicate the scope of the backend solution.

3.2.1.3 User data access

Additional functionality required of Smittestopp for transparency and privacy pro-
tection purposes was end user access to their own data. Support for this functionality
was in the process of being developed.

Summarised in Figure 3.4, the functionality works as follows: any registered end
user account can log in to https://helsenorge.no and browse all their GPS-
based location data stored in the Smittestopp backend by date and time by using an
Application Programming Interface (API) call. Users can also request an access log
showing the details of all persons who have viewed their data including the legal
means for doing so.

! For a full list of area identifiers in Norway, see [1, 26].

https://helsenorge.no

34 Midoglu et al.

It should be noted here that only individual users will have the clearance to run
this query, and they will only be able to retrieve their own data. Access to user data
in this form and granularity is not available through any other service.

See Section 3.2.5.3 for more details about the service we began implementing to
fulfil this functionality.

) o
Smittestopp
Backend
Query: user X, credentials
Web

™y Application

sSaL . .
Erelers F Respense: all data pertaining to user X

N S

End User X

Fig. 3.4: High-level overview of the system’s user data access functionality, where
coloured components indicate the scope of the backend solution.

3.2.2 Backend components

Figure 3.5 presents an overview of the Smittestopp backend architecture, consisting
of three main parts: (1) interactions with the Smittestopp mobile app, (2) cloud
operations hosted on Microsoft Azure [10], and (3) interactions with a number of
web applications maintained by NIPH and Helsenorge. Below, we provide a technical
description of these components.

Note on sandboxing: To support the continuous development and testing of
the Smittestopp backend solution, including after the national launch, and in a
privacy-preserving manner, all Azure cloud resources (1 — 8) were duplicated into
what are called development (dev) and production (prod) environments. These
environments have different access rights, with corresponding mobile app versions
targeting different registration services, and two completely different data sets being
collected. The data in dev, incidentally much smaller in amount than in prod, are
from informed volunteer testers, do not require anonymised processing, and can be
used for research purposes. In addition to NIPH and Norwegian Health Network
(NHN) [16] personnel, we recruited volunteers from Simula, along with any of their
friends and family members who wanted to support the efforts, through internal
campaigns (company-wide announcements) to contribute to the development process
by testing different versions of the Smittestopp mobile app on their mobile devices.
The valuable efforts from these volunteers complemented the more controlled testing
approaches undertaken by the testing team (see Figure 3.1).

Note on performance monitoring: All backend components were instrumented
with a monitoring tool called Azure Log Analytics [7]. This service is essentially in
place for auditing (who accessed what, when, and why), troubleshooting, security

3 Smittestopp Backend

Mobile Application

Onboarding

- Registration, SMS
verification with 2FA

https

Cloud Operations

Active Directory B2C

-SMS

35

Web Applications

Varslingslgsning

ion service
- Public REST interface
- Phone number DB

- Access log
- Queries

Innsyn

- Managed DB

- Raw data from devices Stored procedures

> v) J v 1 - Individual access
By Device to own data
= Reglstration Deletion Query Service Analytics
% Service (AKS) Service (AKS) (AKS) Service (AKS)
a
e "\ | hitps % - Device ID
Data Upload 3 - Providss key Kubernetes Cluster
Regular uploads of 4 7
- Regular uploads of
collected data (KA
Analytics VMs
N 2 Kunnskaps
saLite IoT Hub - Automatized pipeline innhenting
; - Restricted access
- Local storage for - Import service - Aggregated
collected data https | _ public REST interface statition
Data Collector t 4 5
_GPS data Data Lake SQL Database OSM VMs
Bl D - Nominatim server
- Overpass server

Fig. 3.5: Overview of the Smittestopp backend architecture. Coloured components
indicate the scope of the technical solution developed by Simula.

monitoring, and performance monitoring purposes. The log analytics instance col-
lects data from all Azure services, which is stored in a storage container designated
by the account holder. Throughout Smittestopp’s run, the log analytics instance was
accessible only by NHN, and the developers and personnel to whom it explicitly
extended access.

3.2.2.1 Active directory B2C

Azure Active Directory B2C (Azure AD B2C) provides Business-to-Consumer
(B2C) identities as a service, where the customers can use their preferred social,
enterprise, or local account identities to gain single sign-on access to applications
and the APIs. It is a Customer Identity Access Management (CLAM) solution capable
of supporting millions of users and billions of authentications per day. It takes care of
the scaling and safety of the authentication platform, monitoring and automatically
handling threats such as Denial of Service (DoS), password spraying, and brute force
attacks [13].

All Azure services employed by the Smittestopp backend use the AD B2C en-
terprise identity service to provide single sign-on and multi-factor authentication.
The component is denoted by the number 1 in Figure 3.5. We detail the use of
Azure AD B2C in the context of cloud operations in Section 3.2.4.

36 Midoglu et al.

3.2.2.2 IoT hub

Azure Internet of Things (IoT) Hub is a managed service hosted in the cloud that acts
as a central message hub for bidirectional communication between IoT applications
and the devices it manages. Virtually any device can be connected to IoT Hub. IoT
Hub supports communications both from the device to the cloud and from the cloud
to the device, as well as file uploads from devices, and request-response methods to
control the devices from the cloud. IoT Hub monitoring allows the tracking of events
such as device creations, device failures, and device connections [4].

The Smittestopp backend uses the Azure IoT Hub as a central cloud hosted
solution for communication with Smittestopp mobile app clients, and the IoT Hub
device registry as the identity provider for each mobile app instance. The component
is denoted by the number 2 in Figure 3.5. We detail the use of IoT Hub in the context
of the interactions with the Smittestopp mobile app in Section 3.2.3.

3.2.2.3 Data lake

Azure Data Lake Storage is a hyperscale repository for big data analytics workloads
and a Hadoop Distributed File System (HDFS) for the cloud. It builds upon all
features of Azure Blob Storage and adds a hierarchical namespace for efficient data
access across large volumes of files. It imposes no fixed limits on file or account
size. Azure Data Lake Storage uses Azure Active Directory (AD) for authentication
and protects folders and files using Access Control Lists (ACLs). It allows for
unstructured and structured data in their native formats and is tuned for massive
throughput on large amounts of files [9].

GPS and BT data uploaded by Smittestopp mobile app clients to the Smittestopp
backend passes through the Azure IoT Hub, and from there it is written in batches
to a secure blob container in Azure Data Lake Storage Gen2. For troubleshooting
purposes, an instance of Azure Search service was also created on top of the Azure
Data Lake Storage container, which was designed to facilitate quick searches for
event data belonging to a specific device. This component is denoted by the number
3 in Figure 3.5. We detail the use of Azure Data Lake in the context of cloud
operations in Section 3.2.4.

3.2.2.4 SQL database

Azure SQL Database is based on SQL server database engine architecture that is
adjusted for the cloud environment in order to ensure availability even in cases of
infrastructure failure. The hyperscale service tier in is the newest service tier in the
virtual core-based (vCore-based) purchasing model. It is a highly scalable storage
and compute performance tier that leverages the Azure architecture to scale out
storage and compute resources. The Azure SQL Database Hyperscale can scale up
to a database of 100 TB, run on up to 80 vCores, and have up to five mirrored readable

3 Smittestopp Backend 37

replicas. With replicas configured, the uptime SLA for the service is guaranteed at
99, 99% [8].

The Smittestopp backend uses an Azure SQL Database Hyperscale instance for
most of its data analysis operations. This component is denoted by the number 4 in
Figure 3.5. Data are ingested into the SQL Database from files in the Azure Data
Lake. A major benefit of the hyperscale tier is that it has very short operational delays
for reconfigurations and database restores, typically within 10 minutes, regardless
of database size. SQL Database Hyperscale also supports index partitioning and
compressed columnstore indexes, which provide an estimated compression of 10X
on average, with a performance optimisation benefit as well. At peak usage, the
Smittestopp database ran on 80 vCores with one readable replica and a database of
4 — 5 TB (compressed).

The Smittestopp database was completely locked down to allow access only to
essential Azure services and application servers. All access was monitored by audit
logs, and services only had access to the SQL functions they needed, besides two
users with administrative access for deployment purposes, controlled by NHN. The
component is denoted by the number 4 in Figure 3.5. We further elaborate on the
use of the SQL Database in Section 3.2.4.

3.2.2.5 Data factory

Azure Data Factory is the main managed service in Azure for batch ingestion,
and has a graphical interface for designing complex data flows and monitoring job
executions [14].

The Smittestopp backend orchestrates data movement and performs data wran-
gling using Azure Data Factory. It uses Data Factory for loading data from Data Lake
into Azure SQL Database, in addition to executing SQL stored procedures that per-
form additional data preparations after each batch ingestion. The data is not actually
moved through the Data Factory service, which only executes commands against the
underlying services. Azure Data Factory allows past jobs to be re-executed at the
task level, which was an advantage for Smittestopp, since the system was not moni-
tored 24 /7. Data Factory jobs are run periodically, typically every hour. The service
resides between the components denoted by the numbers 3 and 4 in Figure 3.5.

3.2.2.6 Stream analytics

Azure Stream Analytics is a serverless scalable Complex Event Processing (CEP)
engine by Microsoft that enables users to develop and run real-time analytics on
multiple streams of data from sources such as devices, sensors, web sites, social
media, and other applications [12].

Within Smittestopp, the Azure Stream Analytics service was used initially to
process incoming events from IoT Hub as data arrived, performing basic validation,
filtration and pre-processing and continuously pushing data to the SQL Database.

38 Midoglu et al.

The service was used during the first week of the launch, after which a decision was
made to move to a batch ingestion process via Azure Data Lake Storage instead. The
Stream Analytics job was abandoned after the Azure Data Factory jobs were running
reliably. The switch took approximately one to two weeks and was accomplished with
no downtime. The main reason for the switch was to improve the troubleshooting
and end-to-end tracking of individual device events, which proved difficult with the
Azure Stream Analytics service. We further detail the use of Stream Analytics in the
context of cloud operations in Section 3.2.4 and discuss challenges related to data
import, processing, and filtering in Section 3.3.

3.2.2.7 OSM VMs

Map matching involves combining GPS data with metadata from publicly available
maps, in order to understand the kind of an environment in which a contact occured
(e.g. inside a building, on public transportation, inside a private vehicle, outside),
since this could impact the risk level of the contact, as well as the POIs around the
contact (e.g. schools, grocery stores, public parks), which could allow for a more
informed tracing of the performance of anti-pandemic measures. For the map match-
ing purposes of the Smittestopp analytics pipeline (see Chapter 4 for details), we
considered Google Maps [25], Azure Maps [6], and Open Street Maps (OSM) [19],
before OSM was selected based on performance, metadata availability, and privacy
requirements.

The Smittestopp backend hosts two OSM servers in each environment, (prod
and dev). The OSM servers in the prod environment are only reachable from
analytics Virtual Machines (VMs) in the prod environment. The servers in the
prod environment use HTTPS. The corresponding Transport Layer Security (TLS)
certificates contain only the names, and not specific IP addresses. This allows for
future changes of the addresses.

* OSM Nominatim: This API is a tool to search OSM data by name and ad-
dress (geocoding) and to generate synthetic addresses of OSM points (reverse
geocoding) [28].

* OSM Overpass: This is a read-only API that serves up custom selected parts of
the OSM map data. It acts as a database over the web: the client sends a query to
the API and receives back the data set that corresponds to the query [29].

This component is denoted by the number 5 in Figure 3.5. We further elaborate
on the use of the OSM servers in Section 3.2.4.

3.2.2.8 Analytics VMs

The Smittestopp backend hosts two VMs (Linux and Windows) in each environment,
to support the development and execution of the Smittestopp analytics pipeline
(Chapters 4 through 7). These machines have access to the SQL Database and

3 Smittestopp Backend 39

the OSM VMs and are used to run the pipeline. The analytics VMs in the prod
environment have restricted access. The component is denoted by the number 6 in
Figure 3.5. We further elaborate on the use of the analytics VMs in Section 3.2.4.

3.2.2.9 Kubernetes cluster

Azure Kubernetes Service (AKS) is a cloud hosted service that manages Kubernetes
and provides capabilities such as health monitoring, maintenance, and provision-
ing [5]. The Smittestopp backend uses an Azure Kubernetes cluster for hosting
application services, where the following four dockerised services are deployed to
AKS:

* Device Registration Service: This service handles device registration and con-
sent revocation requests from the mobile app. Also shown are the clients for
communicating with the following external services:

— Microsoft Graph API (access point for information about Azure AD users)
— IoT Hub (access point for information about devices)
— SQL Database (GPS and BT data)

* Deletion service: This service is responsible for deleting data that is old or
associated with users who have revoked their consent.

* Query service: This service handles requests from NIPH and Helsenorge. It
uses Redis to queue analysis jobs that are processed by the analysis image when
requested by NIPH.

* Analytics service: This service is responsible for identifying potential contacts
between an infected individual and other application users over the time span
requested by NIPH. The analysis service communicates with the other services
through reads and writes to a Redis database.

The component is denoted by the number 7 in Figure 3.5. Relevant services are
detailed in Sections 3.2.3, 3.2.4, and 3.2.5.

3.2.2.10 API endpoints

The Smittestopp backend serves three groups of endpoints, one for each of the
following clients:

* Smittestopp mobile app
* NIPH web application
* Helsenorge web application

All Hypertext Transfer Protocol (HTTP) endpoints are managed in Azure API
Management (APIM), which is configured via Terraform [3]. The details of the
authentication processes vary with the endpoints that are called by the different
clients. The mobile app endpoints are behind a Web Application Firewall (WAF),

40 Midoglu et al.

whereas the NIPH and Helsenorge endpoints are accessed directly in APIM (due to
a lack of support for SSL client authorisation in WAF). A service prefix is added in
APIM, namely, /fhi or /onboarding. Table 3.1 presents the list of endpoints. The

APIM instances are denoted by the number 8 in Figure 3.5.

Type Endpoint Description
authentication The app authenticates with a JavaScript Object No-
tation (JSON) web token from Azure AD B2C.

App Other endpoints authenticate with Hash-based
Message Authentication Code (HMAC) signatures
using the IoT Hub device ID and signing key.

register new device Registers a new device with IoT Hub and associates
it with an existing user profile.

revoke consent Revokes permissions granted by a user. All data
associated with the user will be deleted.

request pin Returns Personal Identification Number (PIN)
codes for the given user.

update birth year Updates the registered birth year for the given user.

request new bluetooth |Allocates and returns 10 new IDs for use as BT

contact ids contact IDs.

lookup phone number Requests contact tracing analysis to be performed
for the given phone number.

FHI lookup result Checks results from the contact tracing analysis for
a given phone number. Returns results (200 OK)
if the analysis is ready, or a not finished message
(202 Accepted otherwise).

access log Returns the access log for a given user.

egress Returns the GPS events for a given user in a given
time frame.

lookup deleted numbers |Takes a list of phone numbers and returns the num-
bers not registered in the database.

access log Returns the access log for a given user.

Helsenorge egress Returns the GPS events for a given user in a given
time frame.

revoke consent Revokes permissions granted by a user. All data
associated with the user will be deleted.

Table 3.1: Smittestopp API endpoints.

3.2.3 Interactions with the mobile app

We now refer to the left part of Figure 3.5, which consists of the interactions between
the Smittestopp backend and the Smittestopp mobile app. The components that are
involved are numbered as 1 (AD B2C), 2 (IoT Hub), 7 (AKS), and 8 (APIM).

3 Smittestopp Backend 41

3.2.3.1 Key concepts

The key concepts for the interactions of the backend with the mobile app are as
follows:

* A device is an instance of the Smittestopp mobile app that has a device ID in
Azure IoT Hub and a phone number registered in Azure AD B2C.

* A user is defined as a phone number and can be tied to multiple devices.

* Onboarding is the process of guiding a new user through the registration process.
This includes information about the Smittestopp mobile app, approval of the
privacy policy, and entering the required information for registration.

* Registration is the process of signing up for Smittestopp using the mobile app.
This process includes providing and verifying a phone number using a text mes-
sage and providing and confirming the year of birth. The registration is described
in more detail in Section 3.2.3.2.

* Authentication is the process of authenticating a user against one of the end-
points provided by the backend. In the Smittestopp mobile app, authentication is
performed when registering a new user, logging in a previously registered user,
and when revoking consent.

* Deletion is the process of revoking consent for the collection of data and deleting
any stored information about the user. In addition to automatic deletion, manual
deletion can be undertaken by the user, either in the mobile app or in the web
application through the user data access service (Innsyn).

3.2.3.2 Registration

Following mobile app installation, users are prompted to undertake SMS verification.
Users are onboarded by registering their phone number and authenticating their
identities with a B2C login in the app. User profiles and corresponding devices are
managed by Azure AD B2C and IoT Hub, respectively.

User accounts live in Azure AD B2C, a different tenant from the main deployment
for dev and prod. This is where phone numbers (as users) and device IDs (as groups)
and their associations (group membership) are recorded. The B2C HTML templates
are uploaded with Terraform. The B2C custom policy files, which specify how
apps can be authenticated, are uploaded via the Azure B2C Identity Experience
Framework. The policy files are different for dev and prod (only in some allowed
URLSs and tenant IDs) and are uploaded via the upload custom policy link on the
Identify Experience Framework page. Login is disabled for prod.

3.2.3.3 Data upload

After registration with a phone number and SMS verification, the user receives a
unique ConnectionDeviceID from the Azure IoT Hub registry. This ID is later

42 Midoglu et al.

used to identify the user whenever data are uploaded, and it identifies data from a
specific user in the database. When the mobile app uploads data, it identifies itself
using the ConnectionDeviceID and then sends the payload, which consists of a
JSON document with GPS and BT events to the IoT Hub HTTP endpoint.

3.2.3.4 Deletion

The Smittestopp privacy policy indicates that databases that contain private infor-
mation, such as phone numbers and GPS (location) data, must be deletable upon
request by end users. The policy for deletion can be summarised as follows:

1. All GPS (location) and BT (contact) data will be deleted automatically, 30 days
after upload.

2. A user can ask for their data to be deleted at any time.

3. A user who is inactive for more than seven days will be deleted, including all of
the user’s data.

Deletion according to item 1 is performed by a stored procedure in the SQL
Database that runs every night and deletes all data older than 30 days and any other
data marked for deletion.

User-initiated deletion according to item 2 is slightly more complex, since it
involves deletion from both the B2C and SQL Database. When the user presses the
Delete button in the mobile app, the user’s device IDs are immediately dissociated
from the user’s phone number, the user’s phone number is deleted from AD B2C, and
all device IDs are marked for deletion in AD B2C. These device IDs are immediately
unregistered from IoT Hub. At this point, the user’s GPS and BT data still remain
in the SQL Database, but cannot be linked to a phone number and thus cannot be
returned via the internal or external APIs, which operate solely based on phone
numbers (Varslingslgsning, Innsyn). The remaining data will be deleted as part of
the nightly run of the stored procedure in SQL. To avoid the delayed import of data
associated with deleted device IDs, after a device ID has been shown to have no data
in the SQL Database for multiple days, it is finally removed from AD B2C.

Deletion according to item 3 is the most complex, since IoT Hub does not reliably
provide information about the last activity from a device. This issue is resolved by
checking the last time a user wrote data in the SQL Database and marking the user
for deletion if the user has not written data in the last seven days. This procedure was
later updated by introducing a heartbeat from the mobile app to the backend, which
can be used to check the time of last activity.

The SQL Database (but not B2C) is backed up using standard cloud database
backup strategies. According to item 1, backups must expire in at most 30 days.
Data deleted according to items 2 or 3 are not deleted immediately from backups.
However, the phone numbers are not backed up and cannot be restored, only anony-
mous device ID data can, which cannot be extracted from the system except by the
database administrators. No database backup restoration occurs during Smittestopp’s
operation, but the described protection against delayed import also protects against

3 Smittestopp Backend 43

temporarily restoring data from backups. If a backup restores data from a deleted
device ID, the deletion procedure will still be running and it will be deleted again
upon the next deletion procedure, within 24 hours. This means that, to preserve the
deletion policy, database backups older than the deletion recheck window (between
two and seven days, according to the configuration) cannot be restored. In summary,

1. Previously deleted data restored from a backup can never be accessed via APIs
because it cannot be reassociated with a phone number.

2. Previously deleted data will be deleted again immediately upon the next nightly
deletion procedure, since the device ID will still be registered for deletion.

3.2.4 Cloud operations

We now refer to the central part of Figure 3.5, consisting of the Smittestopp backend
operations taking place in the Azure cloud. Core components 2 — 7 are involved.

3.2.4.1 Data ingest and storage

Data ingest and storage refers to the operations of components 2 and 3, where the data
uploaded by mobile app clients are ingested by the Smittestopp backend. Mobile app
clients send event data to the public IoT Hub endpoint, authenticating by certificate.
Event data in IoT Hub is considered a Message, and IoT Hub adds to each message
payload a section with IoT Hub metadata, including the ConnectionDeviceID
which identifies each unique device and will be used in the database will be used as
the device identifier across event data. Event messages are of two types, GPS or BT,
with each message containing an array of multiple events.

IoT Hub is configured with four partitions that split incoming data into four
parallel flows and a message routing rule that writes all incoming messages into
10 MB uncompressed chunks to Azure Data Lake Storage. In addition, for the first
weeks, a streaming endpoint was configured in IoT Hub to which Azure Stream
Analytics subscribed for real-time events, which was later abandoned for a pure Data
Lake Storage—oriented architecture (see Section 3.2.2.6 for details).?

In the Azure Data Lake, filenames are created according to the pattern
yyyy/mm/dd/hh/yyyy-mm-dd-hh-mm-partitionID. json, where each file cor-
responds to one 10MB chunk. This naming scheme supports up to four files per
minute when including a partitionID from zero to three. If the injection rate leads
to the creation of more than four files per minute, a sequence number is added to the

2 Stream Analytics was configured with an input from IoT Hub and outputs for each staging
table in the SQL Database. The Stream Analytics Query Language (SAQL) query undertaking the
transformation from input to output, mapped each field from the input JSON to the output database
table columns, validating the datatype, length, and filters for special characters. In addition, it
performed a streaming aggregation on each event array using the GetArrayElement function
within the execution context of the defined time window.

44 Midoglu et al.
filename. Data Lake is configured to delete data older than seven days. At peak load,
the Smittestopp data lake had up to about 1, 500 individual 10 MB files an hour.
3.2.4.2 SQL database operations

Schema: Table 3.2 presents a list of tables common for the dev and prod environ-
ments.

Table Description

dbo.agg_gpsevents Aggregated table

dbo.btevents BT pairing events

dbo.dluserdatastaging|Device information

dbo.gpsevents GPS events

dbo.grunnkrets Geospatial lookups using the geography datatype

dbo.uuid_activity For tracking users who were inactive for 7+ days

dbo.uuid_id Supporting table for Universally Uniql%e Identifier (UUID) <->
internal ID mapping

Table 3.2: Smittestopp main SQL database tables.

Import: Every hour, Azure Data Factory triggers an import job that imports data
from Azure Data Lake to the SQL Database. This job is set up as a pipeline with the
following steps:

1. Four parallel tasks (ADSLIMPORTER) import files from each of the four partitions
from the last hour into the table DLUSERDATASTAGING in the SQL Database.
The import procedure extracts UUID, platform, appversion, osversion and
model from the JSON document and stores them in individual columns. The
event payload is stored as an unprocessed JSON in a separate column. The name
of the source file is included in the table so that all data can be traced back to the
file of origin. Each tasks is authenticated using SQL stored credentials mapped
to an Azure service principal with the exact permissions to execute the import task.

2. When ADSLIMPORTER is done, another two parallel tasks start. These are the
BTIMPORTER and GPSIMPORTER procedures for importing BT and GPS events, re-
spectively. These procedures process the information imported by ADSLIMPORTER
in Step 1, as follows:

a. GPSIMPORTER imports all the GPS data from the unprocessed JSON column
to the GPSEVENTS table.

b. BTIMPORTER updates the UUID_ID table so that UUIDs are mapped to internal
keys and imports all the BT data from the unprocessed JSON column to the
BTEVENTS table. Then it updates the UUID_ACTIVITY table, which stores the

3 Smittestopp Backend 45

time of last activity for all UUIDs. This is used by the deletion routines to
delete data from devices that have been inactive for more than seven days.

3. The last step is the execution of the AGGREGATOR procedure to populate the
AGG_GPSEVENTS table according to the following criteria:

a. Downsample the GPS events to only include one GPS event every 10 seconds
for each UUID.

b. Execute the STWITHIN procedure to carry out a geospatial lookup of the correct
grunnkrets? for each GPS event.

¢. Round all GPS coordinates to two decimal places (both latitude and longitude).

d. Remove duplicates.

Procedures and functions: The SQL Database has stored procedures and func-
tions for managing access to user data. These allow database users (e.g. AKS) to
retrieve processed versions of the raw data, since the database tables cannot be
queried directly.

3.2.4.3 Analytics pipeline

The Smittestopp analytics pipeline is executed by running the Dockerised analytics
service deployed on AKS (component 7 in Figure 3.5).

Configuration: The list of configurations for the pipeline can be passed as a
JSON file to the Docker container, or as environment variables. For instance, the
Smittestopp backend has support for setting OSM endpoints using environment vari-
ables (CORONA_OVERPASS_ENDPOINT and CORONA_NOMINATIM_ENDPOINT). DNS
names, instead of IP addresses are used.

Database access: Credentials for connecting to the SQL Database are provided
as configuration parameters. Since the database can be accessed only from within
a VPN, the analytics service can only be run from within the Smittestopp cloud
infrastructure (e.g. Analytics VMs, denoted by 6 in Figure 3.5). Data in the SQL
Database can only be accessed through predefined procedures and functions, as
described in Section 3.2.4.2.

More details about the Smittestopp analytics pipeline are provided in Chapters 4
through 7.

3.2.5 Interactions with web applications

The general goals of the Smittestopp system listed in Section 3.1 and the particular
functionalities required of the Smittestopp backend listed in Section 3.2.1 result
in three services that access the Smittestopp APIs: contact tracing and notification

3 The grunnkrets is the basic statistical unit defined by Statistics Norway [26].

46 Midoglu et al.

(Varslingslgsning), aggregated statistics (Kunnskapsinnhenting), and user data ac-
cess (Innsyn). These services are described below, while the APIs endpoints are
listed in Section 3.2.2.10.

3.2.5.1 Contact tracing and notification service (Varslingslgsning)

Contact tracing with Smittestopp is performed by NIPH rather than by individuals,
as is the case for solutions based on Google/Apple Exposure Notifications (GAEN).
With Smittestopp, an employee at NIPH regularly receives a list of infected in-
dividuals from the Norwegian Surveillance System for Communicable Diseases
(MSIS), which includes their name, Social Security number, and phone number. The
Smittestopp API (see Section 3.2.2.10) is then used to look up close contacts for
each individual, based on the phone number provided. The lookup process works as
follows:

1. NIPH makes a call to the 1lookup phone number endpoint with the phone
number of a person who has tested positive for COVID-19 as input.

2. Based on the request, an analysis job is scheduled by creating a record in a Redis
database.

3. A link to an endpoint for receiving the result is returned to the caller. This
endpoint is called by the NIPH web application until it receives response 200,
which indicates that the request is complete.

4. The analytics service picks jobs from the queue in the Redis database and performs
a contact analysis.

5. When the analytics job is complete, the result (list of contacts) is stored in JSON
format in the Redis object under the result key.

6. The analysis report is returned to the NIPH web application (see Step 3). From
the report, NIPH can notify those who are likely to have been in contact with the
infected individual during the period specified in the request.

The actual notification of those who have been in close contact with an infected
individual is carried out manually, where a human verifies that all the data are correct
and then sends a text message to everyone who have been exposed to infection.
The text message warns about potential infection and informs the individual about
recommended steps for testing. The long-term plan was to eliminate the manual
steps and automate lookup and notification, but this work was never completed. This
service does not have any publicly exposed endpoints.

3.2.5.2 Aggregated statistics service (Kunnskapsinnhenting)

To support mathematical modelling and epidemiological studies, a service for ex-
tracting statistics regarding the pandemic from the Smittestopp data was in devel-
opment, but never fully implemented. The idea was to provide statistics based on
the collected data, such as where infections are occurring (e.g. regions of Norway,

3 Smittestopp Backend 47

different POIs, home vs. work), the current infection rate (increasing, constant, or
decreasing), and the average number of close contacts per person. See Chapter 7 for
more details.

3.2.5.3 User data access service (Innsyn)

For Smittestopp to be compliant with the General Data Protection Regulation
(GDPR), it must provide a way for individuals to access any of their personal data
used in any way by the system. Therefore, a right of access service is a mandatory
part of the Smittestopp architecture. This is implemented as a web service where
Smittestopp users can log in and browse all of their GPS-based location data stored
in Smittestopp by date and time, using the egress call (see Section 3.2.2.10). Fur-
thermore, users can request the access log showing the details of all persons who
have viewed their data, including the legal means for doing so. The service was
part of Helsenorge.no and users where authenticated using ID-porten, a com-
mon login solution for public services in Norway. The right of access service, as
described above, was never fully operational due to performance issues. An asyn-
chronous solution where a user requests data for later delivery was planned but never
implemented.

3.3 Experience: Challenges and lessons learned

In this section, we focus on our experiences with the development and implementation
of the Smittestopp backend solution, and describe our lessons learned, along with
general insights.

3.3.1 Distributed versus centralised architecture

As indicated in Section 3.1, the Smittestopp backend had a design requirement to
run in a centralised manner, relying on cloud components and operations such as
a centrally managed data storage, server-side execution of an automated analytics
pipeline, and the externally triggered generation of contact and statistics reports by
public authorities. This requirement was in line with the intended twofold purpose
of the overall system, that is, simultaneous contact tracing and aggregated statistics
generation.

During the project’s development and launch, as well as after its recall, there
were many discussions, both internal and external, regarding the viability of a dis-
tributed solution (as opposed to a centralised one). Shortly before the launch of the
Smittestopp system, the GAEN initiative demonstrated that a distributed, purely BT-

48 Midoglu et al.

based approach could be used for individualised contact tracing, potentially serving
as a more privacy-preserving and secure alternative to centralised solutions.

However, with respect to the requirements mentioned in Section 3.1, storing data
only locally on end user devices, in a fully distributed system, could be highly
impractical for a number of reasons. Including concerns regarding the data volume,
processing time, and network transactions, two fundamental global challenges were
identified: the impossibility of listing second-level contacts and the impossibility of
generating nationwide aggregated statistics.

In a distributed scheme, an end user device can, based on its location, create a
list of devices with which it has had direct contact (along with the corresponding
location of each contact). However, listing second-level contacts would require more
information located on other devices. Second, generating aggregated statistics based
on queries such as ‘list all contacts that have happened yesterday at shopping mall
X’ would be a huge and costly operation, requiring communication with all active
devices in the system and requesting information on whether they were in the given
location at the given time. Therefore, after evaluating these challenges together with
the initial system requirements and the need for fast deployment, the Smittestopp
backend development was continued in pursuit of a centralised solution.

The security and privacy assessments regarding a centralised solution were also
supported by the Ministry of Health and Care Services [17], and it was pointed out
that the management of personal information was subject to Personvernforordningen
articles 6 and 9, such that the overall gain from the system outweighed the potential
privacy concerns.

Considering other contact tracing solutions, we see that, as of May 2020, 16
countries [18] had launched or had in development a system based on a centralised
approach, including COVIDSafe (Australia), StopCovid (France), Trace Together
(Singapore), and HaMagen (Israel), whereas 25 countries used systems based on a
decentralised approach, including COVID Alert (Canada), Ketju (Finland), Corona-
Warn-App (Germany), and NHS COVID-19 App (UK).# With the launch of GAEN,
many countries decided to abandon their own solutions in favour of a GAEN-based
approach. For several countries, such as the United Kingdom, this meant switching
from a centralised to a decentralised solution.

In Norway, discussions were held regarding the adoption of a GAEN-based ap-
proach for contact tracing, along with the development a separate solution for gen-
erating nationwide aggregated statistics, thereby splitting the desired functionalities
into two distinct systems [20, 2].

Mobile apps for digital contact tracing have also been discussed in the previ-
ous chapter, under Section 2.2. We discuss privacy- and security-related aspects in
Section 3.3.4.

4 For a comprehensive list of contact tracing solutions around the globe, readers are referred to [22].

3 Smittestopp Backend 49

3.3.2 Data processing

As described in Section 3.2.1, multiple functionalities were required from the
Smittestopp backend with respect to data processing. Each of these imposed dif-
ferent demands on the backend solution and gave rise to various challenges. Below,
we focus on the functionalities addressed by the contact tracing and notification ser-
vice (Varslingslgsning) and the aggregated statistics service (Kunnskapsinnhenting)
as particular examples and discuss some of the data processing challenges we have
addressed, along with our experiences.

Functionality 1 (contact tracing using GPS data): The first functionality aims
to find those who have potentially been in contact with infected individuals, thus
having a risk of being infected themselves. Assuming accurate GPS positions, finding
who has been in contact with whom at any given point is supposedly an easy task.
The task translates to finding the trajectory of an infected individual and then finding
others whose trajectories intersected with this trajectory, that is, those who were at
the same location at the same point in time. As shown in Figure 3.6, this means
following the red trajectory (infected person) and finding all positions where it
intersects with another trajectory, within an allowed distance threshold, such as the
blue trajectory (of other person). A very simplified pseudocode, checking everything
in a straightforward manner and aiming to solve the intersection problem solely by
an SQL query is shown in Figure 3.7, where infected and others represent tables
including GPS data.

Trajeé:(ory of infex':'fed person

Trajectory of other person

Allowed distance between locations

Position of infected
*" person at time X

Fig. 3.6: Identifying GPS intersections: for every point on the trajectory of the
infected person, find the matching positions of other persons within a distance
(radius) X. Map from https://www.norgeskart.no.

Functionality 2 (deriving aggregated statistics): The second functionality aims
at generating overall population statistics on how people move and how the disease

https://www.norgeskart.no

50 Midoglu et al.

SELECT (relevant information from) others
FROM infected JOIN others ON
infected.id = <ID of infected person> AND
infected.id != others.id AND
WHERE
infected.location WITHIN (others.location + <allowed distance>) AND
infected.time BETWEEN <date_from> AND <date_to> AND
others.time BETWEEN <date_from> AND <date_to> AND
infected.time OVERLAP others.time

Fig. 3.7: Simplified query to find GPS intersections, given the ID of infected
person, a threshold for the allowed distance, and a time range in the form of
date_from and data_to.

spreads. As an example of aggregated statistics, let us assume that we need to find all
encounters that happened within a given area, defined by a polygon, corresponding
to a Norwegian geographical area unit called grunnkrets (the basic statistical unit
in Norway, providing a stable and coherent geographical identification). To give an
idea of the complexity involved, Figure 3.8 shows how the city of Oslo is divided
into delbydeler, the statistical unit above the grunnkrets, each consisting of several
grunnkretser. In total, there are about 14,000 grunnkretser in Norway. Thus, for
each grunnkrets, we should be able to find all BT pairings that happened within the
polygon defining this area and can match the time of the contact to the requested
time interval (Figure 3.9).

Overview of challenges: Given the simplicity of the pseudocode in Figures 3.7
and 3.9, the above functionalities can intuitively be deemed relatively easy to com-
pute. However, various challenges and complicating factors arise, even in the dev
database containing a few hundred thousand entries, which is very small compared
to the prod database in the actual production system containing millions of data
records. Below, we discuss these challenges and complicating factors.

3.3.2.1 Date ranges and columnstore storage

The Smittestopp database contains entries from a relatively long time interval
(30 days, after the implementation of periodic data deletion as described in Sec-
tion 3.2.3.4). Storing large amounts of data in one big table generally constitutes an
overhead, and, depending on how the data are stored, one might also need to access
a large number of disk blocks. However, searching for data within a limited period
requires us to access only a small portion of the entries. Bearing in mind that contact
tracing typically requires going back only a few days (14 or, more commonly, seven
days) and that our queries usually have a granularity of days, we implemented an
optimisation in the form of columnstore storage, to increase efficiency. Columnstore
indexing provides the physical storage of data that is already grouped by day. The
speed of our queries can thus be increased.

3 Smittestopp Backend 51

Fig. 3.8: Norway has many grunnkretser. The image above shows how Oslo alone
is divided into delbydeler, each consisting of multiple grunnkretser (map from
https://no.wikipedia.org/wiki/Delbydeler_i_Oslo).

SELECT (encounter data from both tables)
FROM gps-events a JOIN bt-events b ON

a.uuid = b.uuid AND

b.pairedtime BETWEEN a.timefrom AND a.timeto
WHERE

a.location WITHIN <polygon>

b.pairedtime BETWEEN <date_from> AND <date_to>

Fig. 3.9: Simplified query combining GPS and BT data to find all encounters inside
a polygon within a time range given by date_from and date_to.

3.3.2.2 Inaccurate GPS measurements

As a technology, GPS itself has limited accuracy [24]. This is further complicated by
variations in the location accuracy as reported by different end user device platform

https://no.wikipedia.org/wiki/Delbydeler_i_Oslo

52 Midoglu et al.

and models (see Section 2.6.2 for a discussion of location services in Android and
i0S). Thus, we cannot test for exact position matches in our queries and must allow
for slack. This is shown in Figure 3.6, where we search for a match within a certain
diameter around a given point. Overall, not being able to check for position equality
but, rather, for inclusion within a given area, our queries become more complex.

3.3.2.3 Timestamp matching

Clock synchronisation: In a perfect world, all devices would keep the exact same
time. However, in practice, different clocks can be off by up to several seconds, which
must be considered when we query for matching timestamps. Thus, matching the
time between two entries translates to checking whether their timestamps overlap by
more than a certain threshold.

Encounter duration: From a contact tracing viewpoint, an encounter must exceed
a certain duration threshold to be counted as a valid contact. For GPS data, this
threshold was defined as 15 minutes, meaning that an additional check had to be
performed to see if the sum of the individual encounters between devices D1 and
D2 lasted more than this threshold, before declaring that D1 and D2 had a contact.

Timestamps from location entries: A challenge related to timekeeping in terms
of the GPS entries is that the Smittestopp mobile app can only register GPS location
information (latitude and longitude) in the form of events with timefromand timeto
fields, which are not necessarily the same at all times. When calculating encounter
durations, the following approach is taken. A contact is reported only if the total
encounter duration exceeds the threshold mentioned above.

* Ifadevice is staying in the same place, and the Smittestopp mobile app is reading
many GPS events with the same location but different timestamps, the app itself
will merge the records, keeping the location and the timefrom timestamp from
the first data record and the timeto timestamp from the last data record in the
series. Thus, the difference between the timeto and timefrom fields can be used
to indicate the total time the device has spent in the given location and can be
directly added to the total encounter duration.

 Ifthe device is moving, the GPS events read by the app will have timefrom=timeto,
with different locations indicated by consecutive records. Thus, if a device is mov-
ing through points P1 and P2, which are identified as part of an intersecting path
(two devices are moving together on this path), the time between the timefrom
timestamp of point P1 and the timefrom timestamp of the consecutive point P2
can be added to the total encounter duration.

3.3.2.4 Calculating speed and distance

From an analytics perspective, trajectory calculation also involves determining
the mode of transport for nonstationary devices (see Chapter 4 for details on the

3 Smittestopp Backend 53

Smittestopp analytics pipeline). However, in order to establish a mode of transport,
information about the speed is necessary. Various reports indicate that the estimated
speed reported by the built-in GPS of end user devices such as smartphones, tablets,
and smartwatches are highly inaccurate. Therefore, we needed to calculate the speed
of the moving devices ourselves, based on the location and timestamps indicated by
consecutive GPS records (using the 1ag function).

3.3.2.5 Calculating distance on a sphere

Due to the curvature of the earth, using the Pythagorean theorem [31] to calculate
the distance between two pairs of coordinates is not 100% accurate. As a remedy,
the Haversine distance [27] can be used to find the great circle distance between
two points on a sphere, given their longitudes and latitudes. However, computing the
Haversine distance is a complex and costly operation. In the Smittestopp backend,
we implemented a simplified version of this distance as a trade-off between accuracy
and processing costs. The simplification produces minimal errors, since, for our use
case, the distances involved are relatively short.

Given that the diameter of the Earth is 12, 742, 016 metres, the distance between
two points can be calculated as follows:
distance between points A (@LatA, @LongA) and B (@LatB, @LongB) =

12742016 * asin(min(sqrt((sin(radians(@LatB - @LatA)/2)

* sin(radians(@LatB - @LatA)/2)

+ cos(radians(@LatA))

* cos(radians(@LatB))

* sin(radians(@LongB - @LongA)/2)
* sin(radians(@LongB - @LongA)/2)))))

This trade-off formula provides sufficiently accurate distances, but it is a question
of whether the computation is still overkill. Most of the distances we calculate are
rather short (with only a small error due to the Earth’s curvature), and the accuracy of
the GPS records themselves are also questionable. Thus, in a future system similar to
Smittestopp, the differences between a plain Pythagorean calculation and a Haversine
calculation, in terms of accuracy versus computing costs, should be investigated more
closely.

3.3.2.6 Location pre-filtering

To reduce the number of entries in the JOIN operation when we search for matches
within an area, we can pre-filter entries, that is, group them per unit bounding box
of 1 kilometre, with respect to their latitude and longitude.

The distance between two consecutive degrees of latitude is constant (111.045
kilometres everywhere on Earth):

latitude between <latitude>+ (1 / 111.045)

The distance between two consecutive degrees of longitude is not constant (the
distances are smaller the further away they are from the equator):

54 Midoglu et al.

longitude between <longitude>+ (1 / (111.045 * cos(radians(latitude)))

3.3.2.7 Trajectory segmentation

Taking into account all the features of our database, it was clear from the start that the
queries from Figures 3.7 and 3.9 might not be straightforward. However, tuning such
queries on the dev database is still possible with return times in seconds or minutes,
that is, seemingly within the operational thresholds of a normal web application.
On the other hand, going from the dev database to the prod database (number of
database records on the order of one hundred million, versus the meagre one hundred
thousand in dev) leads to new challenges.

On the largest instance on Azure, with 80 vCores, such queries took days to finish,
such that we could not depend on the database to run queries that were too complex
over too large a time span over too large a geographical area. This demonstrated the
need for a distributed computing approach, where we would divide our tasks into
smaller subtasks, and assign these to different processors or machines.

After several optimisations were tested, the final deployed solution would divide
auser’s trajectory into smaller segments of geographical areas (bounding boxes) and
time intervals, as depicted in Figure 3.10. To offload the database server, user data
from these bounding boxes and time intervals would be sent to the analytics pipeline
(described in Chapter 6) for further fine-grained processing.

3.3.2.8 Data sanity checks

Importing data from millions of devices outside one’s control naturally resulted
in a certain number of invalid data samples in our database. Among the samples
collected, we observed both erroneous timestamps (date and/or time) and erroneous
GPS locations. For instance, numerous records had timestamps indicating dates long
before or after the period the Smittestopp system had been running. There could
have been several reasons for this, but since we had no way of knowing the correct
timestamps, such records were removed. Additionally, we also observed anomalous
latitude and longitude values, where devices known to be in Norway had sent GPS
records indicating locations far outside the country. Again, there could have been
different reasons, such as hardware or operating system problems, GPS jammers in
certain areas, and so forth. Nevertheless, these records were also removed from the
database. To handle such cases, data sanity checks during data import were used,
and sanity check operations were added to the mobile app at a later stage, to avoid
sending erroneous data in the first place.

3 Smittestopp Backend 55

T e

s
T

i
b
\JEsst
"
|

(b) Dividing the trajectory into multiple smaller segments, greatly reducing the search area, with a
shorter, distinct time interval for each segment.

Fig. 3.10: Sample search area when an infected individual travels from Drammen to
Lillestrgm.

3.3.2.9 Database schema updates

To optimise certain data operations and calculations that were run multiple times
within the analytics pipeline, we traded off storage for faster data analysis. For
instance, we introduced the notion of precalculated values during the data import
stage. For a given device, these include the speed and distance between the current
and previous locations, as well as an associated grunnkrets for every GPS entry,
depending on the latitude and longitude. To store these values, database tables were
augmented with additional columns and new tables were constructed to optimise
operations for various specialised queries — to a large degree breaking traditional
database normalisation rules, but yielding considerable gains in terms of processing
speed.

56 Midoglu et al.

3.3.2.10 Moving operations to end user devices

Another way of distributing the processing load is to move some of the pre-
calculations and data sanity checks to the end user devices, which collectively
constitute a far more powerful computing source than any of our machines in Azure
(which were 1.5 million multi-core devices). For example, a device’s speed and
distance between two points could easily be added to the computation in the mobile
app before data are sent to the IoT Hub, avoiding frequently repeated and computa-
tionally expensive operations on the server side. The same could be done with data
sanity checks. In the final stages of the project, with the system being shut down,
these tasks were delayed and now remain as future suggestions.

3.3.2.11 Manual versus automatic tracing

There is no doubt that digital solutions allowing for the automatic and large-scale
execution of certain analyses can greatly assist organisations such as NIPH with
their efforts in contact tracing. However, it is important to note that the quality of an
analysis is never better than the dataset on which it is based. In the previous sections,
we pointed out several sources for low-quality data, including but not limited to
timestamp errors or inaccuracy in GPS and BT samples. Some of the challenges
associated with low-quality data can be alleviated with certain system optimisations,
and some cannot. Therefore, the analyses from systems such as Smittestopp should
not be assumed to be completely error-free. There is also a greater, more fundamental
challenge for such solutions: people can turn off their devices or disable contact
tracing apps, meaning there are no data at all.

There were several occasions during the testing period when Simula was informed
by NIPH that the automatic system had detected more encounters than the manual
tracing process, which was encouraging. However, digital contact tracing solutions
should not be perceived as complete alternatives for replacing manual procedures,
but, rather, as supplementary mechanisms to support the existing systems. For a
more detailed discussion of digital versus manual tracing, see Chapter 6.

3.3.3 Cloud optimisations

Some of the challenges we faced through the development of the Smittestopp backend
concern the efficient use of the cloud components described in Section 3.2.2. Below,
we provide examples for two such aspects.

3 Smittestopp Backend 57

3.3.3.1 Handling data import

As mentioned in Section 3.2.4.1, the Azure Stream Analytics service was used in
the first weeks of development for processing incoming events, for basic validation,
filtration, and pre-processing, and for pushing data to the SQL Database. The service
was later abandoned for a pure Data Lake Storage—oriented architecture with batch
ingestion.

One of the biggest challenges causing this change was that the Smittestopp mobile
app instances on some smartphones were sending the same event data over and over
again, while others were sending data at very high frequencies (up to one event per
second), which needed to be filtered out early in the data processing pipeline.> These
filters required database lookups that are better to implement in set-oriented batch
processes. The shift from the Azure Stream Analytics service also improved the
troubleshooting and end-to-end tracking of individual device events overall.

3.3.3.2 Managing load on components

One example related to managing the operational load on the backend components
was the need to optimise the use of the OSM servers and, more specifically, to
prevent the Overpass API from becoming a bottleneck during the execution of the
Smittestopp analytics pipeline.

The background to this problem is that we were seeing a bottleneck in the calls
to this server while querying POIs for a given trajectory. The initial implementation
tried to utilise the server better by sending many small requests in parallel, but this
was perceived as causing a bottleneck. To address this problem, we introduced an
alternative code path in the analytics service (AKS) that tries to exploit the fact that
the bounding boxes for the points along a trajectory will have considerable overlap.
This way, for a typical trajectory, the number of requests were reduced to one. Further
work would still be needed to handle very long trajectories.

3.3.4 Ethical, privacy and security aspects

The use of GPS and BT data in association with user IDs carries the risk of revealing
personal information. However, one of the goals of the Smittestopp backend is to
inform persons if they have been in contact with an infected individual, necessitating
an ID in one form or another to be stored in the system. Therefore, a number of
measures were implemented in the Smittestopp backend to make the system as

5 On the mobile app side, bugs in the development of the software could lead to the same data
being sent over and over again, whereas the frequency of sending data had inherent limitations and
differences with respect to different platforms (Android vs. iOS). From an analytics perspective,
it was also a matter of discussion zow the local data on the smartphones should be pre-processed
before being sent to the database in the backend.

58 Midoglu et al.

secure and privacy preserving as possible. In this section, we elaborate on some of
these measures and associated challenges.

3.3.4.1 Overview of security measures

The Smittestopp backend relies on the Microsoft Azure cloud infrastructure at an
enterprise service tier, thereby inheriting all generic security measures available for
business solutions. All Azure services employed by the Smittestopp backend use the
Azure AD B2C enterprise identity service to provide single sign-on and multi-factor
authentication.

Data in transit: The Smittestopp backend uses encrypted communications in
all mobile app and web interactions (see Sections 3.2.3 and 3.2.5), firewalls in
authentication processes and hidden APIs (see Section 3.2.2.10), and HTTPS access
to all servers with TLS certificates (see Section 3.2.2.7).

Data at rest: All storage in Azure SQL Database, storage containers, and so on, as
well as the respective backups are secured with encryption at rest, and the encryption
keys are stored in the customer key vault service. The backend also employs multilevel
access, limited user groups (depending on the level of authorisation), and cross-
organisation data splitting (according to the scope of authority).

3.3.4.2 Data anonymisation

Data anonymisation refers to the removal of personally identifiable information from
data sets, so that the individuals the data describes remain anonymous [23]. Within
the Smittestopp system, all operations after the registration are based on devices (not
users) and are undertaken through the use of non—human-readable UUIDs.

In the Smittestopp backend, with the exception of AD (component 1 in Figure 3.5),
none of the components use any identifier that can be associated with an individual
or phone number. All data operations within the backend (components 2 — 8 in
Figure 3.5, including IoT Hub, Data Lake, and SQL Database) use the device handle
UUID, as mentioned above. AD lookups in the prod environment are subject to
extremely tight restrictions and strict auditing, with no more than two people in the
entire project having access to the directory.

Although it is not possible to run a completely privacy-preserving operation
within the centralised confines of our operation (see Sections 3.1 and 3.2.1 to review
the design specifications, and Section 3.3.1 for a general discussion of centralised vs.
distributed architectures), a certain level of privacy has been ensured in this regard.
We refer readers to Chapter 7 for a detailed discussion of anonymity within the
context of aggregated statistics.

3 Smittestopp Backend 59

3.3.4.3 Data storage

From the start of the project, it was a priority that the physical storage of any user data
associated with Smittestopp complied with the jurisdiction of the European GDPR.
In this regard, all Smittestopp backend components resided in Europe since the first
day. Major components such as Data Lake and SQL Database were located in Norway
from the beginning. However, at the time we went into production, Microsoft’s data
centre in Norway had just recently opened, and a number of Azure services were
not yet available in Norway. Some components, such as the IoTHub and Stream
Analytics engine, were located in the Northern Europe data centre (Ireland) for a few
weeks. Afterwards, in the second phase, the backend was reconfigured, and most of
the services were relocated to Norway. During the reconfiguration, we also scrapped
Stream Analytics and moved to a data load from file approach, as mentioned in
Sections 3.2.2.6 and 3.3.3.1.

3.3.4.4 Data access

Access to the Smittestopp backend operates on a component level, with only a handful
of people having access to critical components such as Data Lake and SQL Database
(notwithstanding the differentiation between the dev and prod environments). All
access to customer assets in the Azure subscription were controlled and audited by
NHN.

Access by Microsoft: The Data Processing Agreement (DPA) between Microsoft
and NHN is the judicial framework that Microsoft depends on with respect to
GDPR [11]. According to this agreement, Microsoft is contractually obligated to
provide sufficient guarantees to meet key requirements of GDPR.

Access by developers: Access to any services related to data storage and data
processing were granted to vetted developers by NHN on a subscription basis.
Developer access was granted to a limited number of Simula and NIPH personnel.

3.3.4.5 Bluetooth IDs

A weakness in the first release of Smittestopp was the use of static client IDs for
tracing BT pairings. The client ID is exchanged with another instance of Smittestopp
when two devices are within BT range of each other. With static IDs, it is possible
to non-continuously track users through BT beacons, placed at strategic locations,
that scan for the presence of specific IDs. To avoid this type of tracking, the client
ID should change over time, which can be achieved by rotating IDs. Therefore, an
endpoint (see Section 3.2.2.10) for providing rotating client IDs was implemented,
and support for rotating client IDs was added to the mobile app. Using this endpoint,
the mobile app can request a set of random client IDs and use each ID for a period
before it is changed. When the mobile app runs out of IDs, it requests a new set of

60 Midoglu et al.

IDs from the backend. This feature was implemented and tested, but never released
to the general public.

3.3.4.6 Research and development data

The acquisition of data to use for research and development is often challenging
in situations involving personal information. According to the sandbox approach
described in Section 3.2, we maintained two instances of the backend system, namely,
the dev and prod environments. Here, the prod environment was completely out of
reach for the majority of the team, and data collected in the dev database, contributed
by the informed volunteers from Simula and NIPH, were available for development
purposes. Although this helped us build our algorithms and prototypes, the fact
that we were never able to test at the real scale remained a challenge. Nevertheless,
this was an important measure to protect the production user data from potentially
unstable development versions of the services and functions.

3.4 Summary and conclusions

In this chapter, we presented an overview of the Smittestopp backend solution,
elaborating on its purpose, design, implementation, and operations. We traced the
evolution of the solution over time as a response to project goals and requirements,
reflected upon various aspects of performance, and, finally, touched upon the open
challenges that can hopefully motivate future work. The overall Smittestopp system
was deployed for public use in only about give weeks, reaching a record 1.5 million
registrations in a short time and collecting hundreds of millions of data records.
Despite the issues and challenges that still remain to be open, we hope that our
experiences and insights can support future projects of a similar nature, by allowing
other teams to learn from our mistakes and use our preliminary results.

References

[1] Vilni Verner Holst Bloch (Statistisk Sestralbyrd). Standard for delomrade- og
grunnkretsinndeling. https://www.ssb.no/klass/klassifikasjoner/
1(inNorwegian), accessedFebruary2021.

[2] Simula Research Laboratory and Simula Metropolitan. Sammenligning
av alternative lgsninger for digital smittesporing. https://www.simula.
no/sites/default/files/sammenligning_alternative_digital_
smittesporing.pdf(inNorwegian), accessedFebruary2021.

[3] Microsoft. API management. https://azure.microsoft.com/en-us/
services/api-management/, accessedFebruary2021.

https://www.ssb.no/klass/klassifikasjoner/1(inNorwegian)
https://www.ssb.no/klass/klassifikasjoner/1(inNorwegian)
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf(inNorwegian)
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf(inNorwegian)
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf(inNorwegian)
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/

3 Smittestopp Backend 61

[4] Microsoft. Azure IoT Hub documentation. https://docs.microsoft.com/
en-us/azure/iot-hub/, accessedFebruary2021.

[5] Microsoft. Azure Kubernetes Service (AKS). https://
azure.microsoft.com/en-us/services/kubernetes-service/
,accessedFebruary2021.

[6] Microsoft. Azure Maps. https://azure.microsoft.com/en-us/
services/azure-maps/,accessedFebruary2021.

[7] Microsoft. Azure Monitor. https://azure.microsoft.com/en-us/
services/monitor/,accessedFebruary2021.

[8] Microsoft. Hyperscale service tier. https://docs.microsoft.
com/en-us/azure/azure-sql/database/service-tier-
hyperscale, accessedFebruary2021.

[9] Microsoft. Introduction to Azure Data Lake Storage Gen2.
https://docs.microsoft.com/en-us/azure/storage/blobs/data-
lake-storage-introduction, accessedFebruary2021.

[10] Microsoft. Microsoft Azure. https://azure.microsoft.com/en-us/
,accessedFebruary2021.

[11] Microsoft. Microsoft’'s GDPR Commitments to Customers of our Generally
Available Enterprise Software Products. https://docs.microsoft.com/
en-us/legal/gdpr, accessedFebruary2021.

[12] Microsoft. Welcome to Azure Stream Analytics. https:
//docs.microsoft.com/en-us/azure/stream-analytics/stream-
analytics-introduction, accessedFebruary2021.

[13] Microsoft. What is Azure Active Directory B2C? https:
//docs.microsoft.com/en-us/azure/active-directory-
b2c/overview, accessedFebruary2021.

[14] Microsoft. What is Azure Data Factory? https://docs.microsoft.com/
en-us/azure/data-factory/introduction, accessedFebruary2021.

[15] Helse Norge. Smittestopp. https://helsenorge.no/smittestopp,
accessedSeptember2020.

[16] norskhelsenett. Nasjonale e-helselgsninger. https://www.nhn.no/
,accessedFebruary2021.

[17] Helse og omsorgsdepartementet. Forskrift om digital smittesporing og epi-
demikontroll i anledning utbrudd av Covid-19. https://www.regjeringen.
no/contentassets/116076d9a39b473a97d97474048e1£fb0/kgl. -
res.-27.-mars-digital-smittesporing.pdf(inNorwegian)
,accessedFebruary2021.

[18] Patrick Howell O’Neill, Tate Ryan-Mosley, and Bobbie Johnson. A
flood of coronavirus apps are tracking us. Now it’s time to keep track
of them. https://www.technologyreview.com/2020/05/07/1000961/
launching-mittr-covid-tracing-tracker, accessedFebruary2021.

[19] OpenStreetMap. Welcome to OpenStreetMap! https://www.
openstreetmap.org/,accessedFebruary2021.

https://docs.microsoft.com/en-us/azure/iot-hub/en-us/azure/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/en-us/azure/iot-hub/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/azure-maps/
https://azure.microsoft.com/en-us/services/azure-maps/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/legal/gdpr
https://docs.microsoft.com/en-us/legal/gdpr
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/active-directory-b2c/overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/overview
https://docs.microsoft.com/en-us/azure/data-factory/introduction
https://docs.microsoft.com/en-us/azure/data-factory/introduction
https://helsenorge.no/smittestopp
https://www.nhn.no/
https://www.regjeringen.no/contentassets/116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-digital-smittesporing.pdf(inNorwegian)
https://www.regjeringen.no/contentassets/116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-digital-smittesporing.pdf(inNorwegian)
https://www.regjeringen.no/contentassets/116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-digital-smittesporing.pdf(inNorwegian)
https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker
https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker
https://www.openstreetmap.org/
https://www.openstreetmap.org/

62 Midoglu et al.

[20] Simula. En ny runde med digital smittesporing? https://www.simula.
no/news/en-ny-runde-med-digital-smittesporing(inNorwegian)
,accessedFebruary2021.

[21] Simula. Smittestopp backend. https://github.com/simula/corona/
tree/master/backend/doc(authorizationrequiredforaccess)
,accessedFebruary2021.

[22] Wikipedia. COVID-19 apps. https://en.wikipedia.org/wiki/COVID-
19_apps, accessedFebruary2021.

[23] Wikipedia. Data anonymization. https://en.wikipedia.org/wiki/
Data_anonymization, accessedFebruary2021.

[24] Wikipedia. Global positioning system. https://en.wikipedia.org/wiki/
Global_Positioning_System, accessedFebruary2021.

[25] Wikipedia. Google Maps. https://en.wikipedia.org/wiki/Google_
Maps, accessedFebruary2021.

[26] Wikipedia. Grunnkretser i Norge. https://no.wikipedia.org/wiki/
Grunnkretser_i_Norge, accessedFebruary2021.

[27] Wikipedia. = Haversine formula. https://en.wikipedia.org/wiki/
Haversine_formula, accessedFebruary2021.

[28] Wikipedia. = Nominatim. https://wiki.openstreetmap.org/wiki/
Nominatim, accessedFebruary2021.

[29] Wikipedia. Overpass API. https://wiki.openstreetmap.org/wiki/
Overpass_API, accessedFebruary2021.

[30] Wikipedia. Point of interest. https://en.wikipedia.org/wiki/Point_
of_interest, accessedFebruary2021.

[31] Wikipedia. Pythagorean theorem. https://en.wikipedia.org/wiki/
Pythagorean_theorem, accessedFebruary2021.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
https://www.simula.no/news/en-ny-runde-med-digital-smittesporing(inNorwegian)
https://github.com/simula/corona/tree/master/backend/doc(authorizationrequiredforaccess)
https://en.wikipedia.org/wiki/COVID-19_apps
https://en.wikipedia.org/wiki/COVID-19_apps
https://en.wikipedia.org/wiki/Data_anonymization
https://en.wikipedia.org/wiki/Data_anonymization
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Google_Maps
https://en.wikipedia.org/wiki/Google_Maps
https://no.wikipedia.org/wiki/Grunnkretser_i_Norge
https://no.wikipedia.org/wiki/Grunnkretser_i_Norge
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://wiki.openstreetmap.org/wiki/Nominatim
https://wiki.openstreetmap.org/wiki/Nominatim
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://en.wikipedia.org/wiki/Point_of_interest
https://en.wikipedia.org/wiki/Point_of_interest
https://en.wikipedia.org/wiki/Pythagorean_theorem
https://en.wikipedia.org/wiki/Pythagorean_theorem
https://www.simula.no/news/en-ny-runde-med-digital-smittesporing(inNorwegian)
https://github.com/simula/corona/tree/master/backend/doc(authorizationrequiredforaccess)

l‘)
Chapter 4 e
Smittestopp analytics: Analysis of position data

Vajira Thambawita, Steven A. Hicks, Ewan Jaouen, Pal Halvorsen, and Michael A.
Riegler

Abstract Contact tracing applications generally rely on Bluetooth data. This type
of data works well to determine whether a contact occurred (smartphones were
close to each other) but cannot offer the contextual information GPS data can offer.
Did the contact happen on a bus? In a building? And of which type? Are some
places recurrent contact locations? By answering such questions, GPS data can help
develop more accurate and better-informed contact tracing applications. This chapter
describes the ideas and approaches implemented for GPS data within the Smittestopp
contact tracing application. We will present the pipeline used and the contribution of
GPS data for contextual information, using inferred transport modes and surrounding
POIs, showcasing the opportunities in the use of GPS information. Finally, we discuss
ethical and privacy considerations, as well as some lessons learned.

V. Thambawita
Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,
e-mail: vajira@simula.no

S. A. Hicks
Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,
e-mail: steven@simula.no

E. Jaouen
Department of Machine Intelligence, Simula Metropolitan Center for Digital Engineering,
e-mail: ewan@simula.no

P. Halvorsen

Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,
Department of Computer Science, Oslo Metropolitan University,

Department of Informatics, University of Oslo

e-mail: paalh@simula.no

M. Riegler

Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,
Department of Computer Science, UiT The Arctic University of Norway

e-mail: michael@simula.no

© The Author(s) 2022 63
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2_4

mailto:vajira@simula.no
mailto:steven@simula.no
mailto:ewan@simula.no
mailto:paalh@simula.no
mailto:michael@simula.no
https://doi.org/10.1007/978-3-031-05466-2_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_4&domain=pdf

64 Thambawita et al.

Fig. 4.1: Examples of map prototypes used during the development process. We can
see different metadata plotted, such as pathways, buildings, and GPS data points.
To create the maps, we used the Kepler library (kepler.gl). Maps created for this
pipeline were only used for development and not provided in the final build, due to
resource consumption and privacy concerns.

4.1 Introduction

One of the information sources that Smittestopp was supposed to rely on for contact
tracing was the position data collected from people’s smartphones. Such position
data can help determine if people crossed paths and can provide information about
the places they visited, such as if someone was in a store or used public transport.
Position data, often also referred to as Global Positioning System (GPS) data, usually
consist of the position as a longitude and a latitude, as well as a timestamp. Suppose
the position data are collected via smartphones. In that case, one can also obtain
additional information, such as speed (from one GPS data point to the next), altitude,
and accuracy (an approximation of how accurate the obtained position data might
be). On the other hand, some GPS data sets contain manually collected data, such as
transport modes. For example, the GeoLife GPS Trajectories [11] data set contains
annotated trajectories, with labels for the transportation mode (bus, train, walking,
and car), latitude, longitude, altitude, and timestamp.

To render raw position data usable for tasks such as contact tracing, pre-processing
and pre-analysis are required. First, one needs to extract trajectories from the raw
GPS data. These trajectories can be used to find possible intersections and travel
paths, among other things. Trajectories and GPS point data are essential for map
matching, that is, to connect the GPS information to information obtained from a
map. For example, was a person at a bus stop waiting for a bus, was a person in a store,
did people walk together, and so on. In addition to map matching and trajectories,
identifying a contact also requires analysing which mode of transportation was used
(walking, driving, biking, public transportation, etc.) [7]. Moreover, necessary but
straightforward pre-processing methods such as bounding box and polygon creation
based on GPS points are required. One final challenge that needs to be addressed is
that the amount of GPS data is usually massive, with huge numbers of data points
(also depending on the granularity of time). Thus, one needs efficient methods to

4 Smittestopp analytics: Analysis of position data 65

Input data from user
- GPS(long,lat)
- Timestamp (from, to)

- Speed
- Accuracy (speed and GPS)
- Altitude \/
Bounding box ¥ Trajectory preprocessing
- Bounding box or polygon around - Calculate trajectories from the raw GPS
trajectory data
Input: Trajectories Input: Data per user per time x
- Methods - Methods
- Calculate bounding box around - Trajectories with fixed length
trajectory (bottom left x1,y1, top - Trajectories with fixed time
right x2,y2,) (h,m,s) .
- Calculate polygon around - Trajectories from stop points
trajectory v and transport modes

Map matching Stop point and mode of transportation

- Calculate points on the map close to GPS - Calculate stop points and mode of transport
coordinate for a given trajectory or GPS point
Input: Data per user per time x Input: Data per user per time x
- Methods
- Buildings (polygons) - Methods
- Bus, tram, subway, train stop - Detect stop point (list of GPS
(polygons) coordinates around the stop point)
- Point of interest (long-lat or - Detect mode of transport (walking,
polygons) driving[bus, tram, subway, car],
- In building (frequency) plane)

Fig. 4.2: Overview of Smittestopp’s GPS analysis pipeline. Raw GPS data are first
transformed into trajectories and then combined with metadata from public maps
and classified into different transport modes. The processed and enriched data are
then used in the contact tracing algorithm.

process the data, especially if nationwide contact tracing is a final goal. Figure 4.1
shows some of the maps used during the development process. The maps contain
different types of information, including possible walk paths (left), buildings and
GPS data points, (middle), and a more detailed view of certain buildings that shows
metadata information such as the name of the school (last).

Based on these general requirements for GPS data analysis, several main objec-
tives arose that needed to be addressed to make the position data useful and usable
for the Smittestopp application. These are as follows:

» Trajectory pre-processing.
* Stop point and mode of transport detection.
* Map matching and map visualization.

Figure 4.2 depicts the complete pipeline for the GPS analytics part of Smittestopp.
The whole pipeline is implemented in Python and uses different libraries. Details
about the libraries used are provided in the respective sections. The pipeline starts
with the user data queried from the database. The data can be queried by user, groups

66 Thambawita et al.

of users, or geographical area. Once the raw GPS data are in the pipeline, they pass
through the different building blocks.

Trajectory pre-processing: In this part of the pipeline, the raw GPS data are
transformed into trajectories. The transformation depends on the selected method
(fixed length, time interval, or stop and transport mode).

Stop point and mode of transport detection: The stop point and transport mode
part is responsible for detecting whether a person has stopped (e.g. at a bus stop)
and the mode of transport (walking, driving, etc.).

Map matching and map visualization: The map matching and visualization part
connects the GPS trajectories and point data to meta-information obtained from
public maps, including methods to create bounding boxes and polygons for the
trajectories for GPS points.

In the following sections, we describe these different components in more detail.

4.2 Trajectory pre-processing

A GPS trajectory is a collection of GPS points describing an object’s movement
along a specific path. No clear definition is available on how long a trajectory is
and what it should contain, and these often depend on the use case. For example,
in an application used to track running, different trajectories could be segments of
1 kilometre or specific times, such as a new trajectory every 10 minutes. Another
approach could involve a new trajectory for every trip, resulting in a collection of
runs. For Smittestopp, we experimented with different ways of creating trajectories
from GPS data. The experiments were inspired by related work by [9, 8, 12, 4].
Unlike the related work, we did not have labelled data for our trajectories, so we
decided to develop methods that could work unsupervised. The main goal was to
keep the methods simple, understandable, and explainable.

From the raw GPS data, we extracted GPS trajectories that could then be used in
other analysis steps, such as to find intersections, points of interest (POIs), visited
buildings, travel paths, and so forth. Looking at existing systems and the literature,
we saw no clear way to extract trajectories that worked the best, but there were
different suggestions. For our pipeline, we decided on three different methods:

1. Trajectories with a fixed length of GPS data points.
2. Trajectories with fixed time intervals (hours, minutes, seconds).
3. Trajectories obtained from stop points and transport modes.

The input data for the trajectory pre-processing are GPS data obtained from smart-
phones per user per time or region. The outputs are the trajectories per user, as a
collection of GPS data points.

4 Smittestopp analytics: Analysis of position data 67

Fig. 4.3: Comparison of changes in a fixed number of GPS points. The green box
shows 12 fast-moving GPS points and the red box shows 12 slow-moving GPS points.

4.2.1 Trajectories with a fixed length of GPS data points

In this approach, we divide a long series of GPS data points into trajectories based
on a given fixed length. Here, the fixed length is the number of GPS points to be
extracted as a single trajectory. Simplicity in handling and processing the trajectories
are the main advantages of this method. However, this method’s main drawback is
that some subtrajectories cover small geographical areas, while others cover large
ones. For example, a number N of GPS points for a walking trajectory can be within
1 kilometre, while the same number of GPS points for the trajectory of a fast car can
cover around 10 kilometres. To understand this phenomenon, see the illustrations in
Figure 4.3. Therefore, when analysing POIs around a trajectory, a large geographical
area causes problems in extracting a large amount of additional metadata.

4.2.2 Trajectories with fixed time intervals

In this method, we use predefined time intervals, such as two hours, one hour, half an
hour, a minute, and a second to create trajectories. These time intervals are calculated
using timestamps, which are part of the metadata of each GPS point collected by
the mobile application. The main advantage of this method is its ability to find
trajectories for a given time interval. However, similar to the method of extracting
a fixed number of points, the resulting trajectories can have an area so large that
extracting metadata from the map servers would be too computationally expensive.
This function works as a support function to extract POIs from long trajectories,
because extracting POIs around a long trajectory is time and resource intensive. The
pseudocode of this function is presented in Algorithm 1.

68 Thambawita et al.

Algorithm 1: Extracting trajectories with fixed time intervals

Data: GPSData — A series of GPS points of a trajectory
Result: A list of subtrajectories

timeMode « SelectTimeMode from (2H, H, HAH, M, S) ;
timeModelnSeconds < convert timeMode to seconds ;
dividedTimestamp «— GPSdata[timestamp] / timeModeInSeconds ;
uniqueTimestamp «— FindUniqueValues(dividedTimestamp) ;

for timestamp; € uniqueTimestamp do
subTrajectory « GPSdata[timestamp == timestamp;] ;
Append subTrajectory to Result ;

end

4.2.3 Trajectories based on trips and stop points

A natural way of thinking about a trajectory is in terms of different modes of transport.
This approach splits a long GPS trajectory into smaller chunk-based trips and stop
points. In this case, a trip is defined as moving some distance over some time, such
as a person driving to work or walking a dog. Stop points are points where a person
is still for a longer period within a predefined radius. The approach is based on the
work of Cich et al. [2]. The advantage of this method is that we obtain a clean set
of trajectories pertaining to either stop points or trips that can be further classified
into a mode of transport. A disadvantage of this method is that we must ensure
that the trajectories obtained are stable enough to detect stop points properly and to
distinguish between different trips. Furthermore, this method produces trajectories
of various lengths. For example, the trajectory of a person going to the post box
would be much shorter than that of a person walking to work.

4.3 Predicting the mode of transport

Even if the physical distance between two people is close enough for infection, it
does not necessarily mean they were in contact. For example, one person could be
driving a car, while the other one is running on the sidewalk. Furthermore, two
people can be a safe distance apart but sitting on the same bus, raising the likelihood
of infection. Therefore, it was important to assign a mode of transport to the GPS
trajectories generated by the users. For this purpose, we defined seven different types
of transport modes: being still, walking, running, on a bus, in a car, on a train, and on
a plane (see Table 4.1). These categories were selected based on the most common
forms of transportation in Oslo, Norway.

4 Smittestopp analytics: Analysis of position data 69

Since we were, for the most part, interested in determining whether or not two
people were in direct contact with each other, we generalized these groups further to
only include still, on foot, and in a vehicle The group still covers the case in which
a person is standing still, or, in other words, has no speed; on foot encompasses all
instances of a person moving on foot, such as walking, jogging, or running; and
in a vehicle contains all cases in which a person is in a vehicle, including seated
inside a car, bus, tram, train, or airplane. Despite being a less precise estimation of
the transport mode than in using the seven categories above, these categories still
achieved our target of being able to more accurately differentiate between in-person
contacts. For example, if contact between individuals is determined, but one is on
foot while the other is in a vehicle, we can rule out the possibility of infection. As
development continued, we planned to gradually increase the level of precision of
the predicted modes of transport, but this was not achieved before the project was
shut down.

Research on deriving transport modes from GPS data relies mostly on supervised
learning methods that use a large training data set of labelled trajectories to learn the
nuances between the different modes of transport automatically (eg, [10, 13, 6, 3]).
Since we did not have access to an extensive training data set or time to collect one,
we had to settle for a simpler approach using heuristics. We decided to use the speed
of a given GPS point to predict its transport mode. This means that we assigned
a mode of transport for each point in a given trajectory. Initially, we planned to
assign one transport mode per GPS trajectory, but we found that giving each point a
transport mode would provide greater flexibility further down the pipeline.

There were two advantages to this method. First, speed was calculated on the
smartphones, such that we obtained this information for free, without the need for
any additional computations. Second, assigning a transport mode for each point gave
us more flexibility in comparing contacts at specific periods of time. The lookup
table used to determine transport modes is shown in Table 4.1, where we also show
the conjectured speed of the more precise modes of transport. These speed values
were selected by taking the average speed of the transport mode in question and
adding a small upper buffer to allow for some variability. Since the accuracy of the
collected GPS points varied, the assigned transport modes underwent cleaning and
post-processing. This involved looking at the individual points within a given time
frame and assigning all points within that frame to the majority transport mode.

The evaluation was carried out by comparing the predicted transport modes
against a set of manually annotated points collected by members of the development
team. Overall, we had approximately 35 test cases for evaluation, all from Simula
employees who gave explicit permission to use their data for testing purposes. Each
entry consisted of a start time, an end time, and a mode of transport for that duration.
The results were evaluated against this test data set continuously through a series
of unit tests that ran every time the analytics pipeline was started. Furthermore, we
performed a qualitative evaluation of the predicted transport modes using interactive
maps generated by kepler.gl.! Based on this visual analysis, we made specific changes

1 See https://kepler.gl/.

https://kepler.gl/

70 Thambawita et al.

to the transport mode prediction algorithm, such as the speed thresholds used for
the individual transport modes and fixing bugs that were not caught by the unit
tests. Despite being very useful in creating a more robust and stable transport mode
prediction approach, we had to be careful when making changes, since we were
using a small subset of data that might not have represented the overall population.
It is important to note that these interactive maps were only used in the development
phase of Smittestopp, and not in production.

Mode of Transport Minimum Speed Maximum Speed

(km/h) (km/h)
Standing Still - 1
Walking 1 6
Running 6 14
Car | Bus | Tram | Train 14 80
Car | Train 80 150
Train 150 220
Plane 220 -
Standing Still - 1
Running 1 14
In a Vehicle | Public Transportation 14 -

Table 4.1: The lookup table used to determine the transport modes for a given GPS
point. The upper half of the table shows the more precise modes of transport, while
the lower half shows the modes of transport used in the final version of Smittestopp.

4.4 Map matching and map visualization

Map matching involves combining GPS data with metadata from publicly avail-
able maps. For the Smittestopp project, we tested Google Maps, Azure Maps, and
OpenStreetMap?2. Based on the performance we needed and the amount of metadata
available for Norway, we decided to use OpenStreetMap. The methods implemented
were partially inspired by other work (a good overview can be found in [1]). Never-
theless, we basically started from scratch, to develop methods specifically designed
for contact tracing that could provide the information needed and, at the same time,
respect the privacy of users. More details on the OpenStreetMap backend we used
to query the information are available in the part describing the backend.

Our goal for the map matching was to understand whether a contact had occurred
in a closed environment (e.g. a building or a bus), since this could impact the risk
level. Contacts are split into three categories: inside, which can be inside a given
building or a vehicle or public transportation, outside, and uncertain, when we lack

2 See https://www.openstreetmap.org.

https://www.openstreetmap.org

4 Smittestopp analytics: Analysis of position data 71

@ Bounding box 1

Fig. 4.4: A comparison of two bounding boxes and the areas they cover. Note the
differences between the green and red boxes, which both cover the area corresponding
to two GPS points.

relevant information or when the data are inconsistent (e.g. one person is detected
as being in a car while the other is walking).

4.4.1 Extract POIs from dilated areas

Our main goal is to find POIs around the given trajectories that are associated with
positive cases or identified as a trajectory to be analysed. Initially, we considered
bounding boxes around trajectories as an area around which to extract POIs. However,
the bounding boxes cover a large geographical space than we wanted to analyse to
find POIs. The maximum number of unnecessary POI extractions arises when two
GPS coordinates are located at two ends of a bounding box’s diagonal. Figure 4.4
illustrates this phenomenon. Therefore, we were looking for alternatives, such as
extracting POIs using dilated areas.

The main purpose of extracting POIs using a dilated area is to minimize the
number of POIs returned for a given trajectory. In this method, we replace the
bounding box with a narrowed polygon. The polygon’s width (the maximum distance
to the polygon boundary from a given point) is defined as an input parameter (a given
fixed value). A sample trajectory, a corresponding dilated area, and the extracted POIs
within the area are illustrated in Figures 4.5a, 4.5b, and 4.5c, respectively.

72 Thambawita et al.

(a) Trajectory. (b) Dilated area. (c) Extracted POIs.

Fig. 4.5: An example of a trajectory and its POI extractions using a dilated area.

4.4.2 Obtaining contacted POIs with points

Identifying POIs around a specific GPS coordinate is essential when determining
the contacted POIs of a given trajectory. To extract POIs from each GPS point,
we consider a circular area around every GPS point of a trajectory, because we
did not have access to indoor positioning systems [5]. Practically, when we extract
POIs around a point using the radius of a circle, we observe several POIs per point.
However, we know that this point could only be in contact with one POI. Therefore,
there should be a reliable method to identify the most appropriate POI with a high
chance of having contacted a given point.

In this functionality, we can select two options for the value of the radius of the
circle, which will be considered the area for extracting POIs. The first option is a fixed
radius passed to the algorithm. In this case, we can carry out a heuristic analysis to
find the most suitable radius. The second option is to use the accuracy radius, which
is part of every GPS coordinate collected by our mobile application. Considering
the accuracy value (radius of the accuracy circle) as the radius to extract POIs is
logically more related to our goal than the fixed radius, because, when a mobile
phone has a poor GPS signal, the radius of the accuracy circle is bigger to extract
POIs around it. On the other hand, a large error (when the GPS signal is poor) can
lead to a large radius. Then, the POIs cannot be extracted because of there being
too much data. To overcome this problem, we defined a threshold for the maximum
radius.

Within a single circle, we can sometimes observe several POIs, as mentioned
earlier. However, we have to select one of them. We do so by maintaining a ranking
score for every POI extracted for a given trajectory. In this scoring method, we
increment a counter (starting from zero) when a POI is detected as a contacted
POI for a given GPS point. For example, assume that R GPS points intersect with
a building B. Then, the rank of building B is R. Ultimately, each and every POI

4 Smittestopp analytics: Analysis of position data 73

around a given trajectory is assigned a rank based on the number of intersected GPS
points. If we detect a single POI for a given point, we consider that POI as contacted.
If we have more than one contacted POI, we use the POI with the highest rank.
However, if we have numbers of equal rank, we select the first POI detected as the
point contacted. The pseudocode for this algorithm is given in Algorithm 2.

Algorithm 2: Obtain the POIs of contacted points.

Data: GPSData, amenities, paddings, maxPadding, columnName,
OverpassAPI
Result: OutputPerPoint, POIsInfo, POIsCount

GPSOutput «[];
POIsInfo « [];
POIsCount « [| ;

if padding is not given then
paddings « List[Minimum(accuracy, maxPadding) for all GPS records];
end

Output « CallingToOverPassServer(GPSData, amenities, paddings);
OutputPerPoint < split Output to length of GPSData;
for POIs in OutputPerPoint do
if POIs is not Null then
| append POISs to POIsInfo;
end
end

if POlIsInfo is not empty then
‘ POIsCount «— CountUniquePOIs(POIslInfo);

end

for ContactedPOI in POIInfo do
ranks « calculate ranks of ContactedPOI;
POIMaxRank « selectMax(ranks);
append POIMaxRank to POIsInfo;

end

4.4.3 Relation between POIs and transport modes

Transport modes and POIs are closely related, since both indicate whether the contact
could have happened in a closed environment. We describe this interaction in a few
points below.

First, POIs are only queried at instants when the trajectories in contact are associ-
ated with transport modes indicating that the contact could indeed have happened. In
a nutshell, we will not check whether people considered to be in a car were inside a

74 Thambawita et al.

building. More precisely, we will query POIs for trajectories satisfying the condition
that either (i) both are considered to be on foot (which covers walking and running)
or still or (ii) one of the trajectories is considered so and we do not have data for
the other (transport mode N/A). The result of querying the POIs will lead to their
classification as either outside or inside.

Second, parts of trajectories for which either (i) both are considered inside trans-
port or (ii) one of them is and we lack data for the other will be considered as inside a
transport, which means the contact will be classified as inside. Table 4.2 summarizes
how we first infer the contact transport modes from the transport modes of each
trajectory. A contact inside transport is considered to occur inside, and looking for
POIs will lead to contacts occurring either outside or inside.

Trajectory | Still On Foot Public Transport ~ Vehicle N/A
Still | Out/Inside Out/Inside Uncertain Uncertain Out/Inside
On Foot | Out/Inside Out/Inside Uncertain Uncertain ~ Out/Inside
Public Transport | Uncertain ~ Uncertain Inside Inside Inside
Vehicle | Uncertain ~ Uncertain Inside Inside Inside
N/A | Out/Inside Out/Inside Inside Inside Uncertain

Table 4.2: This table describes how the different contact modes (inside, outside, or
uncertain) are informed by the transport modes of the trajectories. For example, if
two users who meet have vehicle as the transport mode in the same location, the
contact is defined as happening inside.

We also apply a smoothing function to the trajectories’ transport modes, to detect
suspicious transport modes, which involve data we assume to be spurious and due to
incorrect transport mode attributions. More precisely, we initially compute whether
the different points of the trajectories are those for which we should query POIs
or ones judged to be inside transport. Afterwards, we smooth this prediction by
re-attributing the predicted value for points of contact whose prediction differs from
those both before and after. More specifically, we look for points of contact #; such
that contact at ¢; is considered inside a vehicle, but contacts at t;,_», t;_1, tj+1, and ;4>
(where the length of this interval is a parameter) are considered to be walking/still.
Such points, if below a certain duration threshold, are transformed into the opposite
prediction, which is, in this case, not inside transport.

Once this smoothing has been applied to the contact’s transport modes, the points
are classified as (i) inside a transport (e.g. contact happening inside a car); (ii) points
for which people are walking/still and we would like to know if they met outside or,
for example, inside a school or a shop; and (iii) points with inconsistent transport
modes, whose contact location/context will be considered uncertain.

Lastly, the radius of search of POIs depends on the transport mode detected.
The reason we generally use a nonzero radius — that is, a point need not strictly be
within a polygon, but only very close to it — is to handle GPS imprecision, which
can typically be high inside a building. On the other hand, keeping a high radius can

4 Smittestopp analytics: Analysis of position data 75

lead to trajectories on the pavement being perceived as happening in nearby shops
alongside that pavement. A compromise is to first compute a search radius based on
the GPS inaccuracy and to apply a coefficient based on the transport mode detected
(e.g. equal to 1.0 if both trajectories are still, but reduced to half if both are on foot).

4.4.4 Querying POIs

Once the transport modes are analysed, the last step of our method to obtain the
context of a contact (see Algorithm 3) is to query points of interest for parts of the
trajectories. First, we feed chunks3 of these trajectories to the functions mentioned
above that query contacted POIs. Second, we apply smoothing to these detected
points, very similarly to smoothing we applied to the transport modes. Since we use
a nonzero radius to search for POIs, the role of this filtering is to eliminate contact
points that actually might not have happened in a closed environment. Such scenarios
— isolated trajectory points being attributed to a POI for a short duration — could
involve, for example, nearby shops when walking on the pavement.

When querying POIs from OpenStreetMap Overpass, we receive specific infor-
mation with very precise names*. Therefore, we design a dictionary converting the
information detected into simple categories names (e.g. we extract the value dormi-
tory and convert it into the general term residential). We used the following list of
(generalized) POIs: hospitals, nursing homes, schools, kindergartens, universities,
bars and restaurants, sports facilities, culture and entertainment facilities, residential,
religious buildings, shops, other education facilities, other healthcare facilities, and
others.

Information returned to reports include the duration of contact within each of the
three categories (inside, outside, and uncertain), as well as the types of inside contact
(inside a mode of transport or one of the POIs following the aforementioned list)
and their respective durations. Moreover, we returned a filtered version of the POlIs,
keeping only locations above a certain duration and/or relative duration threshold.

The data obtained from the POIs are then part of the information of a given contact.
More specifically, the POIs are an attribute of the contacts, and the aforementioned
information (duration inside and outside, locations of contacts, transport modes) are
stored within dictionaries describing a contact’s properties. These dictionaries are
used to display results when executing specific code or are sent as JSON objects
to the frontend. When producing the reports, one can then retrieve the particular

3 It became progressively clear that, to handle the data we received, we had to compute the nonzero
duration of single timestamps. In other words, we interpreted the duration of the segment [#;, ¢; |
as roughly (#j41/2 — ti—1/2), With #j,12, ;-1 > defined using previous and subsequent timestamps.
This allows single timestamps to have a nonzero duration. To ensure that we are not capturing
excessively long durations (e.g. where the phone stops recording so that #;,1 > ¢;), we cut up the
trajectories into chunks of typically two hours.

4 See https://wiki.openstreetmap.org/wiki/Points_of_interest.

https://wiki.openstreetmap.org/wiki/Points_of_interest

76 Thambawita et al.

locations if contacts between two users occurred, as well as obtain a summarized
description of the most important of all the users’ contact locations.

4.4.5 Accuracy of the identified POIs

The quality evaluation of the predicted POIs was carried out using data for which we
had ground truth generated by members of the Smittestopp development team to test
different scenarios and edge cases. Thus, different parts of the code were changed
based on these tests (e.g. varying the accuracy with transport modes, asking for one
or both individuals to share a specific type of transport mode).

In their definitive form, the POIs seemed accurate and coherent with the ground
truth available. However, we have no quantitative figures to more precisely judge
their accuracy. Besides, one should bear in mind that several steps filter out potential
errors (if they account for a negligible part of the predictions). Such cleaning steps
include the generalization of the detected points of entities (a step related to privacy
concerns) into more general categories — for example, the algorithm can detect a
‘apartment’ instead of a ‘cabin’ and, since both are displayed as being ‘residential’,
the error would be invisible in the reports — as well as the filtering of POIs accounting
for a short duration and the relative duration of the contact — for example, if one
identifies a ‘shop’ for a few seconds that was not in the ground truth data, it could
be filtered out and again become invisible in the reports.

Algorithm 3: Computing POIs for a contact.

Data: Contact details, incl. locations, timestamps, accuracy. ;
Transport modes of each trajectory.
Result: POIs, duration of contact inside, outside, uncertain.

Get types of transport modes (inside transport, on foot or still, uncertain) for the contact
from each trajectory’s transport modes. ;

Get the radius of search for POIs based on transport modes and accuracy of the contact. ;

Split the contact into chunks of shorter duration (2 hours). ;

for chunk of trajectory in full trajectory do
Call ’Get POIs of contacted points’ to attribute a POI or none to each trajectory point. ;
Eliminate ‘suspicious Pols’ i.e., indices whose labels are isolated (surrounding
instants not related to the same POI) and of short duration are filtered out. ;
Keep only Pols for which the contact’s transport modes are consistent (on foot/still). ;
Extract building/Pol type and convert it into more general categories.
for label type, i.e., some Pol, inside transport, outside, uncertain do
Get the duration of contact related to that label (e.g. inside transport) by
computing the duration of consecutive indices of identical label. ;
Update the total duration of contact inside, outside, uncertain. ;
end

end

4 Smittestopp analytics: Analysis of position data 77

4.5 Challenges, experiences, and lessons learned

The treatment of GPS data led to multiple challenges, as well as being time-
consuming and resource intensive. GPS signals often being very imprecise, we
had to reconsider early plans to adapt them to typical levels of inaccuracy or issues
in the real data gathered. These issues include difficulties in determining transport
modes (since successive inaccurate positions can lead to incorrect speed computa-
tions) or POIs (forcing us to relax the strict requirement that a point must be within
a building’s OpenStreetMap polygon to be considered inside it). In addition, we
considered leveraging these very difficulties to our advantage, such as attempting
to deduce being inside from more inaccurate measurements, which did not perform
satisfactorily. Great opportunities are associated with the use of GPS data in combi-
nation with external resources such as public maps and metadata, which constitute
a powerful tool to infer much information. Many functionalities were eventually left
out, not used, or not finished before Smittestopp was shut down, including street
map analysis using pathways and distinguishing public transportation use from other
personal transportation, among many others. Proper followup studies and more de-
velopment time would be needed to observe the effects and value of such features
for contact tracing.

4.6 Ethical considerations

The use of GPS data raises many questions about data privacy. Since our analysis
can trace a person’s locations, it allows us to access much personal information.
For example, using the collected data, we can determine where a person went to
work, when the person left for the gym, and what restaurant the person went to for
dinner. Had one kept the raw information from OpenStreetMap, even more sensitive
information would have been displayed. We intended to use the minimal amount of
informative data, leaving out all that seems unnecessary or ethically questionable.
Following that principle, we returned rather general terms (e.g. the residential label
instead of an address), protecting more sensitive information (e.g. addresses, names,
and the type of apartment a person was visiting). Moreover, one should keep in mind
that the personal information mentioned is intrinsic to GPS data, in the sense that we
did not add any information sources (e.g. public telephone book entries) that would
have allowed for the easy identification of the person, simply using OpenStreetMap,
which can be accessed as soon as one acquires GPS data.

To protect privacy, we also exclusively used the data of Simula employees who
were part of the Smittestopp application development team and who agreed to being
part of the testing. Information from these test subjects and the resulting maps were
not made public or shared with anyone besides project management, and then only
during the development stage. The data collection and analysis were kept separate.
Additionally, later on, we decided to hide sensitive information by not providing
the interactive maps created for the development stage in the presentation of the

78 Thambawita et al.

results (since visualizing the movements of users further raised privacy issues), as
well as combining relevant information in summary form (e.g. communicating the
most common transport modes of a contact, rather than the transport modes for all
instances of that contact). No interactive maps were used in the production system,
but static maps were implemented within the analysis pipeline.

4.7 Summary and conclusions

We presented and discussed the GPS data analysis pipeline and methods developed
for Smittestopp. In addition, we discussed lessons learned and ethical considera-
tions. Overall, we can summarize that GPS data hold a great deal of potential for
contact tracing, especially if combined with metadata from public maps and related
databases. Nevertheless, this information can be seen as optional and might not be
relevant in determining close contacts. This information is also associated with sub-
stantial ethical and privacy-related concerns, and one needs to weigh the usefulness
and added value against these. For Smittestopp, we implemented the features that
we found most useful with the smallest privacy impact, and omitted functionalities
such as geomapping/tracking and person identification (which is possible to a certain
degree of accuracy with the data at hand, public maps, and the person’s registration
information).

References

[1] P. Chao, W. Hua, R. Mao, J. Xu, and X. Zhou. A survey and quantitative
study on map inference algorithms from gps trajectories. IEEE Transactions
on Knowledge and Data Engineering, 2020.

[2] G. Cich, L. Knapen, T. Bellemans, D. Janssens, and G. Wets. TRIP/STOP
Detection in GPS Traces to Feed Prompted Recall Survey. Procedia Computer
Science, 52:262 — 269, 2015.

[3] M. Etemad, A. S. Junior, and S. Matwin. Predicting transportation modes
of GPS trajectories using feature engineering and noise removal. CoRR,
abs/1802.10164, 2018.

[4] R. Mariescu-Istodor, A. Tabarcea, R. Saeidi, and P. Frinti. Low complexity
spatial similarity measure of gps trajectories. In WEBIST (1), pages 62—69,
2014.

[5] R. Mautz. Overview of current indoor positioning systems. Geodezija ir
Kartografija, 35(1):18-22, 2009.

[6] H. Omrani. Predicting travel mode of individuals by machine learning. Trans-
portation Research Procedia, 10:840 — 849, 2015. 18th Euro Working Group
on Transportation, EWGT 2015, 14-16 July 2015, Delft, The Netherlands.

4 Smittestopp analytics: Analysis of position data 79

[7]

[12]

[13]

A. C. Prelipcean, G. Giddfalvi, and Y. O. Susilo. Transportation mode detec-
tion — an in-depth review of applicability and reliability. Transport Reviews,
37(4):442-464, 2017.

X. Yang, K. Stewart, L. Tang, Z. Xie, and Q. Li. A review of gps trajectories
classification based on transportation mode. Sensors, 18(11):3741, 2018.

Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 6(3):1-41, 2015.

Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding Transportation
Based on GPS Data for Web Applications. ACM Trans. Web, 4(1), 2010.

Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li. Geolife GPS trajectory dataset
- User Guide, geolife gps trajectories 1.1 edition, July 2011. Geolife GPS
trajectories 1.1.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and
travel sequences from gps trajectories. In Proceedings of the 18th international
conference on World wide web, pages 791-800, 2009.

F. Zong, Y. Bai, X. Wang, Y. Yuan, and Y. He. Identifying travel mode with
GPS data using support vector machines and genetic algorithm. Information,
6(2):212-227, 2015.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

l‘)
Chapter 5 Spdates
Using Bluetooth for contact tracing

Ahmed Elmokashfi and Amund Kvalbein

Abstract Bluetooth data is used as the main method for contact tracing with
Smittestopp. When two active devices are within Bluetooth range, they will record
the ID of the paired device, along with information about the received signal quality.
In this chapter, we describe how this method is implemented in Smittestopp, and how
Bluetooth data is processed and analysed, to determine if an encounter between two
users should be considered a qualified contact with a risk of contamination. We show
that distance estimation based on Bluetooth signals is challenging due to differences
between devices, lack of information on transmit power and varying environmental
factors. Based on this experience, we propose a simple rule for identifying contacts
based on received signal strength combined with information about the operating
system type.

5.1 Collecting Bluetooth data from iOS and Android devices

Bluetooth Low Energy (BLE) is a technology for wireless communication in the 2.4
GHz ISM band, and it has been supported by most smartphones since its introduction
in 2011 [1]. BLE works over short distances (typically less than 10 metres) and with
low capacity (less than 1 Mbps). A BLE device can both advertise its presence by

A. Elmokashfi

Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineer-
ing,

e-mail: ahmed@simula.no

A. Kvalbein

Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineer-
ing,

Analysys Mason AS,

e-mail: amundk@simula.no

© The Author(s) 2022 81
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2_5

mailto:ahmed@simula.no
mailto:amundk@simula.no
https://doi.org/10.1007/978-3-031-05466-2_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_5&domain=pdf

82 Elmokashfi and Kvalbein

broadcasting a unique identifier (Universally Unique Identifier, or UUID) and scan
for the presence of a particular UUID in its proximity.

The basic idea for digital contact tracing is to exploit this ability to record when
a device with a contact tracing app installed has been in proximity of another
device [11]. We refer to such an event as a contact.

A BLE device can assume four different roles that dictate the behaviour of the
device: two roles are connection based, while the other two facilitate communication
in only one direction. A device assuming a connection-based role can act as a
peripheral or a central device. The former is an advertiser, while the latter is a
scanner. A central device scans for a particular UUID, connects to it, and can then
request extra information. A peripheral device implements a Generic Attribute Profile
(GATT) server. GATT defines the way two BLE devices can communicate back and
forth using a generic protocol called the Attribute Protocol. Devices following the
non-connectable modes act as either broadcasters (i.e. a beacon) or observers (i.e.
a scanner), without interaction with other devices. Smittestopp uses connection-
based roles, and each device acts as both a peripheral and a central. All devices
with the app installed broadcast their UUID and periodically scan for the UUIDs of
other Smittestopp devices. Along with the UUID, exchanged BLE packets include
information about the transmit power txPower. Together with the received power, or
received signal strength indicator (RSSI), this information can potentially be used
to improve distance estimates. See Chapter 2 for more details. The scan cycles for
Android and iOS devices vary:

* Android devices scan for Smittestopp UUIDs every six minutes. If a peripheral
is detected, the scan cycle will be reduced to two minutes and will remain so as
long as a peripheral is detected. The scan cycle itself lasts about 20 seconds.

* Scanning on iOS devices, however, behaves differently, depending on the state of
the app. As explained in Chapter 2, iOS imposes a number of restrictions on BLE
exchanges when the app is in the background. An app in the foreground scans
continuously for peripherals. Apps in the background, with the screen off, do not
scan but can still advertise. Finally, apps in the background while the screen is on
scan every five minutes for a period of 10 seconds.

5.2 Challenges in distance estimation using Bluetooth

To detect and classify a contact between two devices, we need an estimate of the
distance between them. Smittestopp attempts to estimate this distance based on the
measured BLE signal strength at the receiver, denoted the received signal strength
(RSS). The RSS is a function of the transmitted power, the gain/loss in the transmit-
ting and receiving antennae, and the signal attenuation (path loss) between the two
devices. A simple diagram showing the different components is shown in Figure 5.1.

The radio signal attenuates as the distance between the transmitter and receiver
increases. Attenuation can be modelled, and one of the most widely used models is
the log distance path loss model [8]:

5 Using Bluetooth for contact tracing 83

RSS(d) = RSS(do) — 10n 1og(dio), (5.1)

where RSS(d) (measured in decibel-milliwatt, or dBm) is the signal strength at
distance d, RSS(dp) is the signal strength at the reference distance dy = 1 metre, and
n is an attenuation factor that represents the environment between the two devices.
Based on this, the distance can be estimated as follows:
RSS(dg)-RSS(d)
d=10""10n . (5.2)

The BLE standard does not specify the transmit power that should be used by BLE
devices. The transmit power level is instead decided by the equipment vendor, within
the limits of regulation. The European Standards Organization ETSI allows a maxi-
mum transmit power of 10 dBm (20 dBm with adaptive frequency hopping). Some
devices allow the transmit power to be adjusted through an application programming
interface.

The transmit power is broadcast by the transmitter as part of the beacon advertising
packet structure, and is denoted as txPower. The advertised txPower is meant to
indicate RSS(dp), the received signal power at a distance of 1 metre. For Smittestopp,
we use the default transmit power levels for both iOS and Android phones. Android
allows the transmit power to be set to high or low, where the default is low.

There could, however, be a discrepancy between txPower and the actual RSS(dp),
due to loss or gain in the transmitter antenna. Similarly, the RSSI recorded at the
receiver might not be the actual RSS(d), due to unclear loss/gain in the receiving an-
tenna. These effects will depend on the antenna and make of the terminal equipment.
To account for this, several initiatives have been taken to measure the actual RSS(dp)
values for different smartphone models [4, 6]. The goal of these measurements is
to calibrate different terminals so that differences can be accounted for when trying
to estimate attenuation (as a proxy for distance) based on RSSI values. The current
form of Smittestopp does not use such calibrations.

In addition to the uncertainties related to the txPower and RSS values, distance
estimation is challenging, due to variations in the orientation of transmitters and
the environment. It is known that the orientation of a mobile handset can have a
significant impact on the measured RSSI. The presence of a human body between

TxPower Y Path loss RSSI
Receiver

Tx antenna Rx antenna
gain/loss gain/loss

Fig. 5.1: The received signal power is a function of the transmitted power, the
gain/loss in transmitting and receiving antennae, and the path loss.

84 Elmokashfi and Kvalbein

the transmitter and the receiver can reduce the signal strength. Conversely, reflections
from walls, ceilings, or floors in an indoor environment can produce a stronger signal
than what would be expected from the log distance path loss model. Given these
considerations, we do not attempt to use a formula to estimate the distance between
two handsets.

5.3 Controlled experiments to aid distance classification

Epidemiologists determine potentially contagious contacts based on the duration
two persons were in proximity to each other and the distance between them. As
explained above, it is challenging to accurately determine distance based on BLE
RSSI measurements. Instead of calculating an exact distance based on each RSSI
measurement, Smittestopp classifies a contact as very close, close, or relatively close
based on a set of RSSI measurements from a contact. The classification is discussed
in Section 5.4. Here, we describe a series of controlled experiments that were carried
out to determine suitable thresholds for the classification.

5.3.1 April 2020 signal strength measurements

Several controlled experiments were conducted with a limited set of smartphones in
April 2020. Overall, we used 26 phones, 18 of which were iOS and the remainder
Android phones, with 10 and eight unique types, respectively (see Table 5.1). These
experiments can be broadly split into scenarios in which the phones are kept at a
distance of 1 metre (very close), 2 metres (close), and farther apart (relatively close).
An overview of the scenarios in each group is given in Table 5.2.

Figure ?? shows the distribution of the RSSI values measured in the different
experiments. Experiments with the same operating system (OS) on the transmitter
side and distance class are grouped together. We do not distinguish between different
OSs on the receiver side. Table 5.3 shows the mean, median, and standard deviation
for each class of experiments. First, we observe a clear difference between measure-
ments based on the OS of the transmitting device. The measured signal strength is
normally 10-20 dB stronger from iOS devices compared to Android devices. As
discussed above, the BLE transmit power is not given by the BLE standard, but is,
instead, set by the equipment vendor. These measurements indicate that the default
transmit power is higher for iOS devices than for Android devices.

Second, we observe clear differences between measurements taken at different
distances. This is good news, since it suggests that it is possible to conduct at
least a coarse-grained distance estimation based on RSSI values. For i0OS, the mean
(median) RSSTis 17.8 dB (21 dB) higher in the experiments in the very close category
compared to the close category. For Android, the difference in means (medians) is
10.2 dB (12 dB).

5 Using Bluetooth for contact tracing

Table 5.1: The phone models that were used in the April 2020 tests.

0OS Phone model Count
i0S iPhone 5S 1
i0S iPhone 6 2
i0S iPhone 6 Plus 2
i0S iPhone 7 1
i0S iPhone 8 1
i0S iPhone 8 Plus 1
i0S iPhone X 4
i0S iPhone XS 2
i0S iPhone 11 Pro 2
i0S iPhone 11 Pro Max 2
Android| Xiaomi Mi MIX 2S 1
Android| Samsung Galaxy S5 1
Android| Samsung Galaxy S8 1
Android [Samsung Galaxy S8+| 1
Android|Samsung Galaxy S10| 1
Android| Google Pixel 3 XL 1
Android LG Nexus 5 1
Android Huawei P9 1

Table 5.2: Controlled experiments in April 2020

85

ID | Transmitting device | Class Description

1 |Android Very close Phones 1 metre apart on a table

2 |Android Very close Phones in same car while driving

3 |Android Very close Phones on same person while walking/driving
4 | Android Very close Phones on same person while walking

5 |Android Close Phones on two persons walking side by side

6 |Android Close Phones in front/back of car

7 |Android Within range Phones in adjacent rooms

8 |i0S Very close Phones 1 metre apart on a table

9 [iOS Very close Phones in same car while driving

10|i0S Very close Phones on same person while walking/driving
11[iOS Very close Phones on same person while walking

12 |i0S Close Phones on two persons walking side by side
13 [iOS Close Phones on different tables in same room
141i0S Within range Phones in adjacent rooms

Table 5.3: RSSI values for different distances and operating systems

Distance |OS

Mean Median |Std Dev

Very close [i0S

Very close|Android|-71.8 dBm|-71 dBm|8.4 dBm

-54.7dBm|-51 dBm|17.2 dBm

Close i0S

Close Android|-82.0 dBm|-83 dBm|5.6 dBm

-72.5 dBm|-72 dBm|9.9 dBm

86 Elmokashfi and Kvalbein

Third, the measurements show a significant variance in the RSSI values. This is
particularly true for the iOS very close measurements. This result indicates that the
number of samples needed to reliably classify a contact as very close or close can
sometimes be significant.

5.3.2 August 2020 extended RSSI experiments

The method for identifying and classifying contacts described in Section 5.4 was
developed based on the limited measurements discussed above. To further refine or
verify the estimates, we utilize a data set collected in August 2020. These data were
collected to assess the efficacy of Smittestopp in detecting contacts. For this purpose,
31 smartphones were spread over a large table, where they continuously gathered
RSSI data for three days. The makes and models of these phones were chosen based
on the top phones that downloaded Smittestopp. Table 5.4 presents the makes and
models of these phones. Figure 5.2 illustrates the physical setup of this experiment.
A total of 12 phones (six iOS and six Android phones) had their screen on during
the experiment. Of these, six phones (three iOS and three Android phones) had the
Smittestopp app running in the foreground.

Figure 5.3 shows the RSSI values gathered from these smartphones. Each pair of
smartphones was classified as very close or close, based on the distance between the
two phones. A phone is classified as very close if the distance from the receiver is
less than 1 metre, and as close otherwise.

0.06 .
iOS very close
0.05 iOS close
Android very close
0.04 Android close
o
q 0.03
0.02
0.01
[[[UHINGRRN

-100 -80 -60 -40 -20 0
RSSI
The probability density function (PDF) of RSSI values for different distances and OSs (April 2020)

5 Using Bluetooth for contact tracing 87

(O] Phone model Count
i0S iPhone 6s 2
i0S iPhone 8 1
iOS iPhone XS 2
i0S iPhone SE 1
i0S iPhone SE 2nd Gen 5
iO0S iPhone 11 Pro Max 2
i0S iPhone 11 1
Android| Samsung Galaxy A8 1
Android| Samsung Galaxy A10 1
Android| Samsung Galaxy AS0 2
Android| Samsung Galaxy A71 1
Android| Samsung Galaxy S9 1
Android| Samsung Galaxy S9+ 1
Android| Samsung Galaxy S10 2
Android | Samsung Galaxy S20 5G| 2
Android |Samsung Galaxy Note 10| 1
Android Google Pixel 4 1
Android LG Nexus 5 1
Android OnePlus 8 1
Android| Motorola one vision 8 1
Android Sony Xperia 1 1

Table 5.4: The phone models used in the August 2020 tests.

The results in Figure 5.3 are largely consistent with those of the April mea-
surements in Figure ??. The same distinction between iOS and Android phones is
evident, as is the difference between very close and close phones. The RSSI values
measured are, however, higher in the August experiment setup. This can be explained
by the smaller (average) distance between the smartphones, given the strict (1-metre)
criterion for including a pair of phones in the very close category.

20 cm

000000000000a0

110 cm

N N

Fig. 5.2: The August measurements were conducted with phones of different makes
spread over a table.

88 Elmokashfi and Kvalbein

5.3.3 The effect of the txPower parameter

As discussed in Section 5.2, the txPower parameter is included in the messages
that are broadcast by the BLE devices. This parameter indicates the expected signal
strength at a distance of 1 metre from the transmitter. Figures 5.4 and 5.5 show the
distribution of RSSI values for different announced txPower values for the iOS very
close and Android close groups from the August experiments.

We observe that the zxPower values vary for both the iOS and Android phones.
For the i0S phones, we observe three distinct txPower values (from different iPhone
models), while we see four distinct values for the Android phones. There are small
differences in the RSSI values measured between the different txPower values, and it
is hard to identify any systematic relation between txPower and the RSSI. The results
from the April measurements are more dispersed, but they do not provide any basis
for systematically concluding that different zxPower values result in different RSSI
observations. Based on these observations, it was decided to not include txPower in
the contact classification.

As noted above, there were several initiatives to measure the RSS from differ-
ent phone models in controlled experiments, to compensate for any differences in
equipment. The decision to not include txPower in the distance estimation process
means that we cannot utilize these efforts. This means that there is a risk that we
are not adequately capturing differences between the phone models in our contact

iOS very close
0.08 iOS close
Android very close

Android close
0.06

PDF

0.04

0.02

0.00
-120 -100 -80 -60 -40 -20 0
RSSI

Fig. 5.3: The probability density function (PDF) of RSSI values for different distances
and OSs (August 2020)

5 Using Bluetooth for contact tracing 89

classification. On the other hand, the txPower of different phone models can also be
set programmatically, which is not captured by the calibration models.

5.4 Identifying and classifying contacts

There are two main assumptions behind digital contact tracing. First, proximity events
that are observed via BLE approximate the underlying physical contact. Second, the
BLE signal strength can be used as a reliable proxy for estimating the actual distance
between the devices involved. Next, we describe how Smittestopp identifies and
describes contacts, along with verification results.

5.4.1 Contact events

An encounter between two mobile phones is a time series of discovery events.
Each point in this time series is a tuple of the encounter timestamp and connection
properties, which include the measured strength of the signal to the other mobile
phone, as well as the other mobile phone’s transmission power. In a fully distributed
system, each app keeps such a time series locally and uses it later, when identifying

0.08 — txPower=7
txPower=8
— txPower=12
0.06
TN
[m)
o 0.04
0.02
0.00 —
-100 -80 -60 -40 =20 0
RSSI

Fig. 5.4: RSSI values for the iOS very close group, split by txPower

90

Elmokashfi and Kvalbein

risky contacts.! In a centralized system, such as Smittestopp’s, all the time series
are uploaded to a central server, for further matching and processing that combine
measurements from different phones.

To identify all contacts between two apps A and B within a given time interval

[T;,T;], Smittestopp follows a two-step approach, which we illustrate in Figure 5.6
and describe as follows:

1.

L

PD

The first step combines the discovery event time series from both devices (i.e. A
discovering B, and vice versa) into contacts. The combined time series comprise
n discovery events {ey, e, €3, ..., €, }, where n = 5 in our example.

Each event e; is a tuple that consists of four values, {ts;, Phy, Ph;, rssi}, where
ts; is the timestamp of the discovery event, Ph; is the phone performing the
measurement, while Ph; is the measured phone. Finally, rssi is the measured
signal strength indicator. Smittestopp then considers e; as the beginning of a
contact and starts looping through the combined discovery time series. Two
consecutive events e; and e;y; belong to the same contact if s, — ts5; < 7.
Consecutive events spaced by more than 7 belong to different contacts. We set T
to five minutes, which allows us to identify contacts, given Smittestopp’s scanning
rate.

Recall from Section 5.1 that iOS devices scan every five minutes, while Android
devices can take up to six minutes before discovering a nearby device. A contact

0.05 — txPwr=-4
txPwr=-7
0.04 — txPwr=-11

txPwr=127

0.03
0.02
0.01
0.00
-100 -80 -60 -40 -20
RSSI

Fig. 5.5: RSSI for the Android close group, split by txPower

! For an updated list of different contact tracing apps, see https://www.technologyreview.
com/2020/05/07/1000961/1launching-mittr-covid-tracing-tracker/.

https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker/
https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing-tracker/

5 Using Bluetooth for contact tracing 91

consisting of a single discovery event is assumed to have lasted for five minutes.
This results in a time series of contacts 754 g. Each element in this time series
is a contact that is characterized by the following: 1) a start timestamp, 2) an end
timestamp, and 3) an array of RSSI measurements. Each of these measurements is
tagged with the OS of the peripheral. The OS will be used later when determining
proximity based on the measured RSSI.

2. BLE scans may not always succeed, due either to iOS limitations when the app is
in the background, radio interference and propagation anomalies, or the presence
of multiple devices in the app’s proximity, which cannot be detected in a single
scanning cycle (20 seconds). Hence, Smittestopp leverages its centralized nature
to compensate for these artefacts. Smittestopp identifies all devices that both apps
A and B have discovered within [T}, T;]. Assume that there is a third device C that
both A and B discovered during the interval of interest. Smittestopp constructs
the combined contact time series for A, C and B, C and then overlays these time

D Phone A

e, e €5 €3

e e, €3 e, eg
Tre @ *—e B — >

- 1S, — 1S3> 7>

e, € 1 €3
TSac i - .
1
i :
€)
TSsc ——el .
1
| 1
oo
S et fe—ea—fe—e——

Fig. 5.6: Discovery events from two phones are combined and grouped into contacts.

92 Elmokashfi and Kvalbein

series over each other to identify all periods where both A discovered C and B
discovered C. This results in an intersection time series, 'S4 g|c, that shows
periods when both devices were simultaneously close to a third device. The
dashed red rectangle in Figure 5.6 bounds the intersection time series. We refer
to this time series extrapolation as contact graph completion in the following.
Smittestopp next checks whether TS 4_g|c includes any contact period that is not
in T'S 4, p and updates the latter accordingly. Note that this update only shows that
A and B were close to each other, since both were close to C; it does not, however,
include direct RSST measurements between A and B.

Following the identification of all contact events, Smittestopp maps each event
to a single or multiple distance bucket(s) based on the measured RSSI values. The
controlled experiments in Section 5.3 shows differences between iOS and Android
devices, as well as differences in the measured RSSI values as a function of the dis-
tance between phones. Based on these measurements, we define a mapping between
RSSI values and the distance categories very close, close, and relatively close as
described above. Tables 5.5 and 5.6 present these mappings for the measurements
from i0OS and Android devices, respectively.

Proximity category Distance RSSI range
Very close (distance < lmetre) (0,-55]

Close Ilmetre < distance < 2metres | (=55, —65]

Relatively close |2metres < distance < Smetres|(—65,-75]

Table 5.5: Mapping RSSI to distance categories when detecting an iOS device.

Proximity category Distance RSSI range
Very close (distance < lmetre) (0,-65]

Close Ilmetre < distance < 2metres | (—65,-75]

Relatively close |2metres < distance < Smetres| (=75, —-85]

Table 5.6: Mapping RSSI to distance buckets when detecting an Android device.

The RSSI ranges in both tables are on the conservative side, which reduces the
likelihood of false positives and can increase that of false negatives. To determine the
proximity of a particular contact, we divide the contact duration into four proximity
ranges (i.e. very close, close, relatively close, and within range), depending on the
measured RSSI values. For example, a contact that lasts 7, seconds and involves M
RSSI measurements that comprise m.,, m., and m,,, measurements that fall into
the very close, close, and within range buckets, respectively, will be described with
the following array, where each element approximates the time spent in each distance
bucket: [(m,o/M)T,, (mc[M)T;,(my, | M)T,]

5 Using Bluetooth for contact tracing 93

The contacts that are identified using contact graph completion do not include
direct RSSI measurements between the devices of interest. Hence, we leverage the
devices’ RSSI measurements to a third device to approximate the distance between
them. For example, if a is very close to ¢ (i.e. within 1 metre) and b is very
close to ¢, then a and b can be at most 2 metres apart, which corresponds to
the case in which ¢ is at the midway point on a straight line between a and b.
Generally speaking, the maximum distance between a and b is given by d(a, b) =
max(d(a,c)) + max(d(b,c)). We use the maximum distance as a conservative
measure to classify contact graph completion contacts.

5.4.2 Validation of Smittestopp contacts

To assess the efficacy of Smittestopp in identifying contacts, we use the data set from
the experiment with 31 phones, which was described in Section 5.3. This test has
similarities to real-world scenarios where a large number of individuals are packed
in a limited area, for example, a crowded train or a party, although there are clearly
environmental factors in those scenarios that we do capture in this experiment. To this
end, we count how many other phones that each phone has seen for at least an hour
per day. We choose one hour as a conservative threshold at which Smittestopp will
flag a high-risk contact. Perfect identification means that each phone will discover
30 other phones. To quantify the impact of iOS limitations on discoverability, we
divide the iPhones in the stress test into three groups: iOS-A, iPhones with the app
in the foreground; i0S-B, iPhones with the screen on but the app in background; and
i0S-C, iPhones with the screen off.

Figure 5.7 shows the number of phones undiscovered by each test phone during
the first test day.? The majority of phones discovered 90% of the nearby phones (i.e.
27 other phones). iPhones discovered all the other iPhones, but failed to discover
some Android phones. Overall, some Android phones struggled with both discov-
ering other phones, as well as with being discovered. Notably, all Samsung phones
exhibited good performance. The three Android phones that struggled the most at
discovery were Sony Xperia 1, Google Pixel 4, and OnePlus 8.

Bearing in mind the fundamental limitations of Bluetooth scanning on iOS, we
note that Smittestopp performs better than expected on iPhones. Surprisingly, we also
observe little difference between the three testing modes for iPhones. A closer look
at the Android devices shows that they occasionally suffer from a corrupt Bluetooth
cache, which degrades their ability to both scan and be discovered. We believe that
this degraded performance is caused by effects unrelated to the app, such as the
underlying Bluetooth stack or the way it is managed by Android.

The high level of discoverability can be attributed to the centralized nature of
Smittestopp. Figure 5.8 shows that the number of undiscovered contacts doubles and

2 The other two test days exhibit a similar trend.

94 Elmokashfi and Kvalbein

M Android M i0S

30 —

Undetected contacts

ALY D N Yvon AN) L) o A 53 ALY D LI o A 2 O QS N KD > O o A
RO S AR S AT X A S AN N NS NI S IR IR IR IR SN
FFFFFFFEFIFEFFFLEFEFEEELE LSS ESE

P W T S

Configuration

Fig. 5.7: The number of undiscovered phones per test phone on the first test day
(i0S-A, iPhones with the app on, in the foreground; iOS-B, iPhones with screen on
but with the app in the background; and iOS-C, iPhones with the screen off).

in some cases triples or more when we do not combine time series centrally. As
expected, iPhones benefit more from the centralized architecture.

To validate Smittestopp contacts in a realistic setting, we ran a semicontrolled test
with participants carrying phones and simulating real-world contacts, such as con-
tacts in training centres, shops, cafes, and public transportation. Overall, Smittestopp
performs reasonably well. It correctly identifies 80% of high-risk contacts and is ro-
bust to overestimating risk. For more details about the semicontrolled tests and their
results, see Chapter 6. For more details about the simulated contacts, see Appendices
A and B in [7].

The relatively high accuracy of Smittestopp in both controlled and semicontrolled
settings indicates that resorting to RSSI buckets without calibration works acceptably
well, with a low number of both false positives and false negatives for high-risk
encounters.

5.5 Related work

Since its standardization a decade ago, several works have proposed using BLE
for estimating distances indoors (e.g. [10, 18, 13, 9]. These methods assume the
deployment of fixed beacons in indoor environments such as shopping centres. Users
would then leverage the signal they receive from these beacons to determine their

5 Using Bluetooth for contact tracing 95

M Android M i0S

30 —

20 +

Undetected contacts

A '5 A 5 N b o A n 6 0 A S 9 O N CITC IR
P '\«'7 We & 90‘»9(’ P f—f' (' o‘b 0‘b & o‘b @‘b @‘b @‘b @‘b @\° é\ ~b\ @0\5\ SFNPAN
@@@&&QQQQQQss&*s&&§5555@$@@$$$$

Configuration

Fig. 5.8: The number of undiscovered phones per test phone on the first test day
without contact graph completion contacts (i10S-A, iPhones with the app in the
foreground; iOS-B, iPhones with the screen on but with the app in the background;
i0OS-C, iPhones with the screen off).

position. Most previous studies have focused on improving localization accuracy and
often report error margins within 2 to 3 metres. Digital contact tracing, however, is
different, since it is not built around the presence of fixed beacons, because contacts
between people are not limited to indoor environments where such infrastructure
can be deployed. Consequently, all involved phones must be both discoverable and
be able to discover other devices in their proximity.

The recent interest in using BLE for digital tracing contacts with persons infected
with COVID-19 has prompted many to revisit the question of whether BLE can
provide an accurate estimate of distance (e.g. [15, 16, 17, 12]). These studies have
underscored the difficulty in using BLE RSSI as a reliable estimate of physical
distance. Instead, they recommend a set of guidelines (e.g. asking people to put their
phones on a table when meeting strangers) or leverage information from other sensors
in the phone to determine the context of the contact (i.e. the phone’s orientation
and placement) to reduce and control for environment-related effects. Notably, the
Google/Apple Exposure Notifications (GAEN) framework does not provide a direct
mapping between RSSI and distance [5]. Instead, it calibrates phones to control
for all device-related effects and then suggests that health authorities determine
their own distance thresholds. This task, however, has proved to be harder than
expected [3, 14, 7]. Smittestopp opts for using wider ranges to describe contacts,
which seems to provide reasonable results.

96 Elmokashfi and Kvalbein

SwissCovid is one of the contact tracing apps developed based on the GAEN
framework. Measurements have been performed to understand the relation between
the attenuation reported by SwissCovid and the actual distances between devices
[2]. These measurements are similar in nature to those reported here. The goal of
the measurements is to find suitable threshold values to determine when identified
contacts should lead to an alert. The study presents empirical data on the recall
rate (fraction of phones identified within the threshold distance) and precision rate
(fraction of identified phones that were actually within the threshold distance). The
overall insight from this study is that it is hard to find a threshold that provides both
high recall and high precision.

5.6 Lessons learned

In this chapter, we described Smittestopp’s approach to identifying contacts using
BLE. BLE signal strength is used as a proxy for distance to determine whether a
contact between two users is close enough and long enough to warrant notification.
In working with BLE contact tracing, we learned, in particular, the importance of
the following points:

* Thedistance should be classified into distance buckets (very close, close, relatively
close). A more precise distance estimate seems hardly achievable based on BLE
signal strength measurements.

* A higher RSSI sampling frequency can provide more precise estimates. A higher
number of RSSI samples will provide greater statistical significance and improve
the accuracy of contact tracing. A high sampling rate must be weighed against
the added power drain from the device.

* We believe that contextual information about the measurement situation can
help guide distance estimation or classification. Such contextual information can
include whether the phone is still or moving, whether it is held to the ear or in a
pocket, and so forth.

* BLE signal strength can be an unreliable proxy of distance. Still, the simple
approach that Smittestopp follows has yielded reasonably good results in both
controlled and real-life scenarios.

We believe that all solutions that adopt BLE for contact tracing will need to
continuously monitor and improve the mapping between the measured signal strength
and proximity. One such improvement could be to use other sensors in the phone to
provide extra data to improve BLE localization.

References

[1] Specification of the Bluetooth System, Covered Core Package, Version: 4.0;

5 Using Bluetooth for contact tracing 97

(2]

(3]

[4]

[5]
[6]

[7]

(8]

[10]

(11]

[12]

[13]

[14]

[15]

The Bluetooth Special Interest Group: Kirkland, WA, USA, 2010.
Swisscovid exposure score calculation, note = "https://github.
com/admin-ch/PT-System-Documents/blob/master/SwissCovid-
ExposureScore.pdf", year = 2020.
"https://www.thelocal.dk/20200924/what-you-need-to-know-
about-technical-error-with-denmarks-smittestop-covid-19-
app", year = 2020.

Exposure Notifications BLE calibration calculation , 2020. https:
//developers.google.com/android/exposure-notifications/ble-
attenuation-computation.

GAEN, 2020. "https://covidl9.apple.com/contacttracing".
opentrace-calibration , 2020. https://github.com/opentrace-
community/opentrace-calibration/blob/master/Trial\
%20Methodologies.md.

Sammenligning av alternative lgsninger for digital smittesporing, Simula
Research Laboratory, 2020. https://www.simula.no/sites/default/
files/sammenligning_alternative_digital_smittesporing.pdf,
2020.

J. B. Andersen, T. S. Rappaport, and S. Yoshida. Propagation measurements
and models for wireless communications channels. [EEE Communications
Magazine, 33(1):42-49, 1995.

P. Dickinson, G. Cielniak, O. Szymanezyk, and M. Mannion. Indoor posi-
tioning of shoppers using a network of bluetooth low energy beacons. In 2016
International Conference on Indoor Positioning and Indoor Navigation (IPIN),
pages 1-8. IEEE, 2016.

R. Faragher and R. Harle. Location fingerprinting with Bluetooth low energy
beacons. IEEE journal on Selected Areas in Communications, 33(11):2418—
2428, 2015.

L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dorner,
M. Parker, D. Bonsall, and C. Fraser. Quantifying SARS-CoV-2 transmission
suggests epidemic control with digital contact tracing. Science, 368(6491),
2020.

G. F. Hatke, M. Montanari, S. Appadwedula, M. Wentz, J. Meklenburg,
L. Ivers, J. Watson, and P. Fiore. Using Bluetooth Low Energy (BLE) signal
strength estimation to facilitate contact tracing for COVID-19. arXiv preprint
arXiv:2006.15711, 2020.

P. Kriz, F. Maly, and T. Kozel. Improving indoor localization using bluetooth
low energy beacons. Mobile Information Systems, 2016, 2016.

D. Leith and S. Farrell. GAEN Due Diligence: Verifying The Google/Apple
Covid Exposure Notification API. CoronaDef21, Proceedings of NDSS ‘21,
2021, 2020.

D. J. Leith and S. Farrell. Coronavirus Contact Tracing: Evaluating The Po-
tential Of Using Bluetooth Received Signal Strength For Proximity Detection.
2020.

https://github.com/admin-ch/PT-System-Documents/blob/master/SwissCovid-ExposureScore.pdf
https://github.com/admin-ch/PT-System-Documents/blob/master/SwissCovid-ExposureScore.pdf
https://github.com/admin-ch/PT-System-Documents/blob/master/SwissCovid-ExposureScore.pdf
https://www.thelocal.dk/20200924/what-you-need-to-know-about-technical-error-with-denmarks-smittestop-covid-19-app
https://www.thelocal.dk/20200924/what-you-need-to-know-about-technical-error-with-denmarks-smittestop-covid-19-app
https://www.thelocal.dk/20200924/what-you-need-to-know-about-technical-error-with-denmarks-smittestop-covid-19-app
https://developers.google.com/android/exposure-notifications/ble-attenuation-computation
https://developers.google.com/android/exposure-notifications/ble-attenuation-computation
https://developers.google.com/android/exposure-notifications/ble-attenuation-computation
https://covid19.apple.com/contacttracing
https://github.com/opentrace-community/opentrace-calibration/blob/master/Trial\%20Methodologies.md
https://github.com/opentrace-community/opentrace-calibration/blob/master/Trial\%20Methodologies.md
https://github.com/opentrace-community/opentrace-calibration/blob/master/Trial\%20Methodologies.md
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf

98 Elmokashfi and Kvalbein

[16] D. J. Leith and S. Farrell. Measurement-based evaluation of google/apple
exposure notification api for proximity detection in a commuter bus. arXiv
preprint arXiv:2006.08543, 2020.

[17] D. J. Leith and S. Farrell. Measurement-based evaluation of Google/Apple
Exposure Notification API for proximity detection in a light-rail tram. PloS
one, 15(9):e0239943, 2020.

[18] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. ElI-Sheimy. Smartphone-based indoor
localization with bluetooth low energy beacons. Sensors, 16(5):596, 2016.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

l‘)
Chapter 6 Spdates.
Digital tracing, validation, and reporting

Ahmed FElmokashfi, Simon Funke, Timo Klock, Miroslav Kuchta, Valeriya
Naumova, and Julie Uv

Abstract Manual contact tracing has been a key component in controlling the out-
break of the COVID-19 pandemic. The identification and isolation of close contacts
of confirmed cases have successfully interrupted transmission chains and reduced
the disease spread. Even though manual contact tracing has been widely used, its
practice has shown that it is slow and cannot be scaled up once the epidemic grows
beyond the early phase. In this case, digital contact tracing can play a significant role
in controlling the pandemic. In this chapter, based on our experience and lessons
learned from the Smittestopp project, we discuss the main prerequisites for the
efficient implementation and validation of digital contact tracing in a population.
Specifically, we discuss how to translate a close contact defined for manual tracing
to proximity events discovered by a phone, that is, how to define a meaningful risk

A. Elmokashfi

Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineer-
ing,

e-mail: ahmed@simula.no

S. Funke

Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory
e-mail: simon@simula.no

T. Klock
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory
e-mail: timo@simula.no

M. Kuchta
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory
e-mail: miroslav@simula.no

V. Naumova
Department of Machine Intelligence, Simula Metropolitan Center for Digital Engineering,
Simula Consulting AS, e-mail: valeriya@simula.no

J. Uv
Department of Computational Physiology, Simula Research Laboratory
e-mail: julie@simula.no

© The Author(s) 2022 99
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2_6

mailto:ahmed@simula.no
mailto:simon@simula.no
mailto:timo@simula.no
mailto:miroslav@simula.no
mailto:valeriya@simula.no
mailto:julie@simula.no
https://doi.org/10.1007/978-3-031-05466-2_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_6&domain=pdf

100 Elmokashfi et al.

score and validate the digital contact tracing. We discuss challenges related to each
step and provide solutions to some of them, even though questions still remain.

6.1 Manual versus digital Tracing

Since the beginning of the COVID-19 outbreak, contact tracing has been a key
component of response strategies in many countries. The rapid identification and
quarantine of close contacts of confirmed cases have successfully interrupted trans-
mission chains and reduced the spread of the disease. At the same time, manual
contact tracing is slow and cannot be scaled up once the epidemic grows beyond the
early phase. Some confirmed cases can also have hundreds of close contacts, as has
been reported in the news. To identify, find, and inform all of them in a short time
requires a lot of human resources and tedious manual work.

Ferretti et al. propose that digital contact tracing can play a significant role in the
control of the COVID-19 pandemic [6]. Since then, several countries have pursued
digital solutions for contact tracing using mobile phones. The central idea for digital
contact tracing is that individuals in a population install an app that recalls proximity
events with other similarly equipped users and then notifies past contacts if and
when the individual tests positive for COVID-19. Digital contact tracing does not
intend to substitute for manual contact tracing; rather, it allows for the faster and
more efficient identification/isolation of close contacts. In this chapter, we discuss
how one can correctly identify the most relevant contact events with a digital contact
tracing tool and under what circumstances digital contact tracing can be beneficial,
compared to manual contact tracing.

The overarching issue we aim to resolve here is how to map proximity events
between phones and convert them to epidemiologically meaningful levels of infection
transmission risk. To address this issue, we collaborated closely with epidemiologists
and manual contact tracing teams from the Norwegian National Institute of Public
Health (NIPH). Specifically, we studied the following questions:

* How can one translate a definition of a close contact to proximity events discovered
by a phone?

* What is a meaningful definition of a risk score to rank proximity events and
contacts?

* How can one validate the digital tracing technology in a population?

* What are the strengths and weaknesses of digital tracing compared to manual
tracing?

Manual contact tracing. According to NIPH, close contacts are all people who
have been in close contact with an individual who tested positive for COVID-19 in
the 48 hours before symptom onset and until that individual comes out of isolation.
A distinction is made between ‘household members and equivalent close contacts’
and ‘other close contacts’. The person responsible for contact tracing decides in
which category the individual belongs after assessing the infection risk. The type

6 Digital tracing, validation, and reporting 101

of followup required, including the duration of quarantine, differs depending on the
type of contact.

‘Household members or equivalent close contacts’ are those who live in the same
household, those who have had a similar close contact as someone in a household
(e.g. boyfriend/girlfriend, work colleagues in an open plan office, the same cohort
at a childcare centre or school), and those who have cared for a person confirmed to
have COVID-19 without using the recommended protective equipment. Other close
contacts are defined as follows

* Any person closer than 2 metres for more than 15 minutes continuously indoors.

* Any person closer than 2 metres for more than 15 minutes continuously, face to
face, outdoors.

* Any person who has been in direct physical contact (e.g. shaken hands).

Smittestopp as a digital contact tracing tool. The Smittestopp app was launched
on 16 April 2020 with two main objectives in mind:

1. To rapidly alert users by SMS if they have been in close contact with another app
user who was later confirmed to have COVID-19.

2. To use the anonymized data collected through Smittestopp and stored centrally to
measure the extent to which people are maintaining their distance from each other
at the population level, particularly as control measures are gradually relaxed (see
Chapter 7).

Smittestopp uses both GPS positioning and Bluetooth (BT) proximity to identify
close contacts of confirmed COVID-19 cases. Data are stored for a maximum of 30
days.

For the purpose of contact tracing, Smittestopp has been linked with the Norwe-
gian Surveillance System for Communicable Diseases (MSIS). Since COVID-19 is
a notifiable condition in Norway, all laboratory-confirmed cases are registered in the
MSIS database, which is required under the regulations on the notification system
for communicable diseases. Cases are registered in the MSIS database using the
infected individual’s national identity number, a unique identifier that is assigned to
each citizen or legal resident for life. This record can then be linked to a Smittestopp
user’s mobile number, which is available through the central Contact and Reserva-
tion Register. Only people who have downloaded the app and accepted the terms
of use will have MSIS case information linked to mobile contact information. If a
Smittestopp user tests positive for COVID-19, other Smittestopp users can be alerted
if they were in close contact with that individual in the past seven days before the
test.

In Smittestopp, BT data are primarily used to determine proximity between
phones, whereas GPS data allow for the identification of locations and the more
accurate identification of contact duration. The adapted digital definition of a contact
is any person in contact with a case with cumulative BT proximity for more than 15
minutes or at least one instance of BT proximity (i.e. that corresponds to a duration
of up to five minutes) and GPS proximity for at least 30 minutes. This definition
allows us to identify potential close contacts who were in proximity for less than 15

102 Elmokashfi et al.

minutes continuously but, for instance, multiple times over the past days, such as
when taking the same bus. At the same time, these types of contacts are completely
unnoticed or ignored in the current definition of manual tracing.

After identifying close contacts, the app associates each contact with a risk
score/category that helps separate out contacts likely to have resulted in an infection.
This scoring is necessary for reducing false alarms, which can potentially lead to
requesting healthy individuals to quarantine, or vice versa. The risk score, which has
been adapted from the literature and discussions with UK collaborators, is calculated

as .
1
/ —2 dt N
o distance

where T denotes the accumulated contact time [6, 8]. The inverse distance squared
is used to model the spread of droplets generated by coughing [4]. The formula also
indicates that the risk is high within 1 metre, where such proximity is expected to
be related to physical contact between individuals. The time component helps in
weighting the risk; that is, the longer the contact time, the higher the risk.

Another important aspect of risk scoring is the time difference between the contact
event and symptom onset. This measure is not captured directly in the risk score,
but, rather, implicitly when choosing persons to alert. Recall that Smittestopp only
alerts app users who were in close proximity to an infected user in the seven days
leading to the test day. The number of days (seven) is treated as a parameter and can
be adjusted based on new knowledge related to the disease spread.

The risk scores are calculated separately for BT and GPS contacts. Once these
risk scores are calculated, a risk category (low, medium, or high) is assigned to each
contact. If BT and GPS contacts result in different risk categories, the highest level
of risk is chosen as the ultimate risk category.

Low |Medium| High

BT |>15 min|>25 min|>40 min
data
GPS [>30 min|>60 min|>90 min
data

Table 6.1: Correspondence between risk categories and duration of contact at a
distance of 2 metres for BT data and a distance of 4 metres for GPS data.

Challenges related to digital contact tracing. From the early phase of the
Smittestopp development, we used different approaches to calibrate and validate
Smittestopp as a contact tracing tool. These include pre-launch technical validation,
comparison of manual and digital tracing in municipalities, and testing in controlled
real-life and lab scenarios (see Section 6.4).

During these efforts, it became clear that the definition of digital close contact and
risk scores had to be thoroughly tested, adjusted, and validated, due to several factors.
This was also pointed outin [6, 10]. First, digital tracing is generally a completely new
technology, developed within an extremely short period. Therefore, it still continues

6 Digital tracing, validation, and reporting 103

to lack technical and epidemiological validation and proper interpretation of the
obtained information. Specifically, as pointed out in several studies, the use of
neither BT nor GPS signals for digital contact tracing can be expected to deliver
optimal results in terms of specificity and sensitivity. For example, as also discussed
in previous chapters, the accuracy of a GPS signal is quite low (at least 5 metres),
which, by default, does not allow for close contact identification. Even though the
BT technology allows us to identify phones in close proximity, the strength of the BT
signal changes drastically from one phone to another, as well as based on the phone’s
location, such as held in a hand or in a pocket. Therefore, it is almost impossible
(and not recommended) to translate BT signal strength into the distance definition
that is used as input for risk score calculation.

Second, real-life validation of digital contact tracing is particularly challenging,
unless a large number of users in a population installs the app (see Chapter 7). In
addition, once the contacts of an infected person are identified, how can we ensure
that our risk score allows their ranking so that we can notify those who are or will
become infected (to notify and quarantine true positives), avoid failing to notify
those who are or will become sick (to avoid missing false negatives), and avoid
notifying those who are not and will not become sick (to avoid quarantining false
positives)? No system will be perfect, and it is important to find the optimal trade-off
between these outcomes in terms of the best possible control of the epidemic while
still ensuring trust in the technology.

In this chapter, we aim to answer some of the questions, discuss related challenges,
as well as share the lessons learned. The chapter is organised as follows. In Section
6.2, we discuss what type of information can be provided by a digital contact tracing
tool for its validation and to justify its usefulness for epidemiologists and manual
contact tracing teams. Section 6.3 discusses how this information can be obtained
from the digital tracing app. In Section 6.4, we discuss the testing and validation
routines used for the Smittestopp app, together with the relevant results. We conclude
the chapter with a discussion in Section 6.5.

6.2 The type of information necessary to validate a digital tracing
tool and prove its usefulness for epidemiologists/researchers

The information generated by the Smittestopp tracing tool is used in three scenarios:
first, for the internal validation of the tracing algorithms; second, to support epidemi-
ologists in the contact tracing of infected individuals; and third, to provide aggregated
contact and movement statistics at the population level to help decision makers un-
derstand the risk of future outbreaks. During the development of Smittestopp, many
discussions took place between epidemiologists, researchers, and developers to iden-
tify the type of information a tracing tool should provide to tackle these objectives.
This sections summarizes the main conclusions for the first two objectives. For the
last objective, we refer the reader to Chapter 7.

104 Elmokashfi et al.

The key information required to aid in contact tracing is the list of persons who
have been in contact with an infected individual. For each person, the system must
provide the details, such as the phone number, times, distances, and duration, of
the contact with the infected individual. In addition, it is common to present a risk
category that summarizes the overall risk of infection transmission in a simple traffic
light system (low/medium/high). The risk category allows for the rapid separation
between high-risk contacts, which might need immediate action, and medium-risk
contacts, which should be looked at in more detail. At times, there can be a high
number of contacts, making it necessary to appropriately filter out events we do
not consider to be contacts, such as contact involving short durations and/or large
distances. In these cases, a risk category provides a natural value for filtering out
nonsignificant events. In addition to this key information, the contact’s location data
can serve as a helpful tool. For instance, knowing if the contact happened inside
(within a closed environment) or outside and further being able to determine the
type of location — for example, a shop, a public transportation vehicle, or a gym
— can help epidemiologists better judge the true risk level of the affected parties.
Finally, we found that most of the data can be summarized on a daily basis to obtain
a trade-off between sufficient information and compact presentation of the data.

The purpose of internal validation is to evaluate the performance and accuracy
of the tracing app, as well as to identify weaknesses. Once a weakness has been
identified, it can be addressed and the performance of the tracing increased (e.g.
through parameter tweaking or adapted algorithms). To enable the internal validation
of the tracing algorithms, the platform must therefore provide sufficient information
about contacts, such that they can be compared to reference data. This information
can be at a more detailed level than necessary for epidemiologists. For instance, all
contact events could be shown, instead of daily aggregated data. The data collection
for the internal validation was carried out through pre-launch testing as described
in Section 6.4. From this pre-launch testing, we were able to check if the algorithm
could correctly identify when the contact happened, the duration of contact, and the
location and activity and their durations. The location and activity and their durations
were investigated using points of interest and transport modes.

6.3 Obtaining the information: Design principles and the
implementation of digital contact tracing

The workflow of the Smittestopp contact tracing pipeline mimics that of manual
contact tracing. This means that input to the pipeline involves a time window of
interest and a specific individual identifiable via the individual’s UUID, and the
output is a report summarizing the contact details with other individuals in the
population. An important security aspect is that working with the pipeline does
not require direct access to the central data storage, because the required data are
automatically queried as part of the contact tracing pipeline. In addition, the analysis

6 Digital tracing, validation, and reporting 105
Input: i pp contact Output:
UUID and time window tracing pipeline ’ BT/GPS contact report

Central data
storage:
Bluetooth

Fig. 6.1: The input to the Smittestopp contact tracing pipeline is a potentially in-
fected individual (identified by a Universally Unique Identifier, or UUID) and a time
window of interest. The pipeline returns a report summarizing all BT and/or GPS
contacts with other individuals in the population. This process thus mimics man-
ual contact tracing as performed by health authorities. The central data storage can
only be accessed from within the automated contact tracing pipeline through a set
of predefined queries, thus preventing access to the data outside of contact tracing
requests.

Central data

Data queries sGtgrsage:

pipeline code has only limited access to the GPS and BT data, through predefined
database queries. The basic workflow is detailed in Figure 6.1.

In this section, we focus on describing the contact tracing pipeline, that is, the
component in the middle of Figure 6.1. The first part details implementation aspects
that are shared for processing and analysing both BT and GPS data. However, since
the data sources naturally differ and different types of pre-processing are required, the
second and third parts describe additional details for GPS and BT data, respectively.
The final part then concerns the output of the pipeline, that is, the contact reports.

6.3.1 Shared components between GPS and BT data

Whether we work with BT or GPS data, the main data structure behind the contact
tracing pipeline is a contact graph whose nodes represent individuals and the edges
between two nodes indicate contacts between the corresponding individuals. Hypo-
thetically, it is possible to constantly maintain an updated version of such a graph
over the entire population and for a given time window, but such a strategy is not
scalable to reasonable population sizes (larger than a few thousand) and is therefore
not pursued. Instead, we compute, on demand, the subgraph of first-order neighbours
linked to a potentially infected individual and generate the contact report from the
corresponding subgraph. Guided by the number of quarantine days in Norway after
potential infection with the coronavirus, the edges in the graph are deleted after 10
days without a contact between two respective individuals. Whenever we refer to
the contact graph from now on, we mean the subgraph consisting of the first-order
neighbours linked to the input individual.

We note that, at the cost of higher computational demand, the approach can nat-
urally be extended to trace higher-order contacts of a potentially infected individual

106 Elmokashfi et al.

/ Contact graph (BT or GPS) \
Infected individual

J— Contact list
Contact 1 R
Contact 2 Contact list Contact list gz:z:zﬁ g
Contact 3 [Contact 1 | [Contact 1 | Contact 4

Contact 2
Other individual Other individual
Other individual Other individual

Contact list: list of contacts between two individuals storing cumulative contact information
Contact: consecutive contact between individuals with detailed information (duration, intensity,...)

Fig. 6.2: The data structure behind the Smittestopp contact tracing pipeline, which
is fed into the summary report generating code. A contact graph is created for each
infected individual (with the input UUID) and other users in the central data storage.
The edges of the graph contain contact list objects that store all cumulative and
detailed information about contacts between two individuals in the time window of
interest.

by computing a larger subgraph of higher-order neighbours. To facilitate quick and
efficient contact tracing, however, the entire process of on-demand report generation
should be facilitated to complete in less than an hour, using limited computational
resources. This is because digital contact tracing is most important in times of high
infection loads, when hundreds or thousands of pipeline requests can be submit-
ted each day. Furthermore, multiple requests can naturally be run in parallel, so
that the parallelization of a single request would require large amounts of overall
computational resources.

The core of the codebase consists of three classes that represent contact graphs,
contacts, and so-called contact lists (see Figure 6.2). The nodes in the contact graph
represent individuals, and the edges of the graph contain instantiations of the contact
list class. The contact list object is a list of isolated contacts between the same
two individuals that occurred over the entire time window. The representation of
contacts using isolated contact events and accumulated contact lists is convenient for
report generation, because we can attribute detailed information about each isolated
contact event (duration, intensity, location, and more) to instantiations of the contact
class, whereas contact list objects can be used to compute cumulative information
about all contacts between two individuals in the time window of interest. We note,
however, that the noisy nature of both GPS and BT data often fragments an isolated
contact between individuals into several contact events, for example, due to loss of
BT connection or GPS information, even though all segments belong to the same
consecutive contact event. We therefore use merging and interpolation procedures
to post-process contact events before deciding whether computed contact events
constitute two separate entries in a contact list or should be combined into a single

6 Digital tracing, validation, and reporting 107

entry by interpolating events. Since the processes of interpolation and merging differ
between BT and GPS data, we postpone further details to Sections 6.3.2 and 6.3.3,
respectively.

Generating the populated data structure in Figure 6.2 requires the computation
of isolated contact events based on information in the central data storage. Due to
the different nature of stored BT and GPS data, however, we face vastly different
challenges in contact computations based on the data type. We therefore postpone
the details of this issue to the next two sections.

Finally, contact summary report generation using a populated contact graph is
straightforward, because we can loop over edges to list contacts between two individ-
uals with as much information as we desire. Furthermore, it is only at this point that
we filter out certain contacts or individuals based on requirements that are specified
by epidemiologists. For instance, we can check whether the cumulative contact list
contains contacts with a distance of less than 2 metres over at least 15 minutes and
thus report only those contacts satisfying the given specifications.

6.3.2 BT data processing

Querying the central data storage of BT data with a patient UUID and a time window
results in a table of events, where each event is specified by the time coordinates
(beginning and end) and identifiers of the two devices in contact. In addition, based
on the physical proximity, d, of the devices, each event carries information about
the duration of very close (d < 2m), close 2m < d < 5m), and relatively close
(5m < d < 15m) contacts, which are relevant for determining the risk category (see
Table 6.2).

From the point of view of Section 6.3.1, a BT contact graph is straightforward
to instantiate, since the nodes and edges are readily available from the query result.
However, computing the elements of the contact list require pre-processing, which
takes into account the nature of BT event reporting, for example, fragmentation.

Figure 6.3 shows examples of the three scenarios commonly encountered in the
BT records: (i) a new BT event occurs entirely within the lifetime of a different
event, (ii) two events occur in close! succession, and (iii) the events overlap. In such
cases, it is not desirable to report the individual BT events as separate contacts (i.e.
as different items in the contact list), since this can lead to incorrect (overestimated)
risk scores. Instead, items (i) to (iii) are merged into a new event to be reported as a
contact. The closeness attributes of the new contact, in items (i) and (ii), are computed
conservatively, that is, by taking the maximum values of the parent attributes. In the
case of overlap, the duration g¢ of the child event is computed as

Ap— A Agp — A
qdc =4a A +4gB B +max(q—A q—B)A,

Ay Ap Ax’ Ap

! The temporal distance of BT events to be considered close is a parameter of the analysis pipeline
(see &t in Figure 6.3).

108 Elmokashfi et al.

where ¢q;, A;, i = A, B, are, respectively, the attribute values and durations of the
parent events, and A is the size of the overlap. We remark that the merge rules (i) to
(iii) are applied to the list of BT events until no more merging criteria are met (see
Figure 6.3 for illustration).

If the GPS data are available, the final step of BT pre-processing is the query of
GPS coordinates for each of the contacts in the contact list. The BT events can thus
be anchored in space, which is useful, for example, for visualization.

tc =1y tc =T;

\.
[Tl

Fig. 6.3: Merging of BT events. Event O (lasting from #(to Ty, with duration Ag =
Ty — to) contains event 1 and is close to event 2 (t, — Tp < d;). Event 2 overlaps
with event 3 for a time A = T, — t3. Applying the merge rules to events 0, 1,2, and 3
results in the final BT contact [z., T¢].

6.3.3 GPS data processing

GPS data serve two main purposes when performing digital contract tracing: 1)
extracting metadata, such as trajectory maps, to provide a context for a contact, and
2) identifying people who have been in contact with a confirmed case, by computing
all GPS trajectories that intersect, for example, for at least 30 minutes with the GPS
trajectory of the case. For both these tasks, the raw GPS data are too noisy and
require pre-processing, such as removing outliers and, potentially, interpolation.
The algorithm for computing all trajectory intersections must be carefully de-
signed to be computationally feasible. In particular, querying the location data of all
other users to check for possible contacts can be costly, due to the size of the data,
namely, billions of GPS data points collected within a day. We note that the related
queries can be greatly accelerated if the underlying database uses spatial indexing,
implemented, for example, as B-trees [2] or R-trees [7]. In particular, collisions
can be quickly computed using a hierarchy of bounding boxes (see Figure 6.5 for
illustration). While the SQL server used by the Smittestopp backend supports spatial
indexing, this solution was not pursued for two reasons: first, the native implemen-
tation requires two-dimensional spatial data, and, in our case, the spatiotemporal
coordinates are three dimensional. Second, in the centralized database, the depth of
the search tree to obtain leaf-node boxes of small volume is considerable. At the

6 Digital tracing, validation, and reporting 109

same time, a shallow structure means that, at the finest level, ~ 10 square kilometres
are searched for contacts.

In the absence of database spatial indexing, the contacts are instead computed
in the following hierarchical way. First, on a coarse level, potential contacts are
identified through database queries that can be executed quickly on the data storage
side. Second, on a fine level, we confir each potential contact by comparing pairs of
GPS trajectories. Our intersection algorithm consists of the following steps:

1. The GPS trajectory of the infected case for the analysis period is queried from the
database, using a single SQL statement.

2. Alist of potential intersection trajectories is computed, using coarse-level contact
computation using bounding boxes. The main idea of the algorithm is to

a. Overlay the trajectory of the case with a minimal set of bounding boxes. The
bounding boxes are constructed so that they all have roughly the same volume.
Special cases are treated, for instance, if a person travels too fast, as in an
airplane.

b. Query the database for all GPS events within that bounding box. This query
is fast because database indices are used for all query parameters, that is, the
latitude, longitude, and timestamp.

The algorithm is visualized in Figure 6.4.

3. All potential intersection trajectories are tested if they have a real intersection
with the case trajectory, by computing the distance between all trajectory pairs.
For each trajectory pair, the distance is computed for the following methods:

a. Linear interpolation of the trajectories on the union of their timestamps;

b. Splitting the trajectories into consecutive segments with no large gaps in either
time or space;

c. Comparing the trajectories on each segment to determine whether a contact
has occurred, that is, if the distance is below the predefined threshold.

Figure 6.6 shows an example of the output of this algorithm.

We note that Step 3 of the intersection algorithm described is rather nontrivial,
due to the imperfect nature of GPS data and frequent losses of GPS signals (for a
recent study of accuracy in urban areas, see, e.g. [12]). First, interpolating GPS data
onto the union of the timestamps of both trajectories must not be performed over
large gaps in either the spatial or time domain, because this quickly becomes an
extrapolation of data, rather than an interpolation. In the Smittestopp contact tracing
pipeline, we therefore introduce two parameters specifying the maximum allowed
time interpolation (with a default of one hour) and spatial interpolation (with a
default of 1 kilometre). Second, even though the GPS data recorded by mobile
phones are processed and assisted by data from cellular base stations (assisted GPS
[5]), the data still contain extreme outliers that should not be used as valid location
points. Fortunately, because of the internal processing of GPS data, mobile phones
also return an accuracy measurement with each data point, so that we can exclude
extreme outliers by omitting data whose accuracy exceeds a predefined threshold
(instances with a default of 50 metres). To facilitate both of these processing tasks, it

110 Elmokashfi et al.

1
t1

Fig. 6.4: Coarse-scale algorithm for finding all GPS trajectories that intersect with
the trajectory of a patient. The patient’s trajectory, represented by the black line with
a red cross indicating the position every X minutes, is covered by a set of latitude—
longitude—time bounding boxes of constant volume. In this case, three bounding
boxes are used, and we require latl X lonl X (2 — 1) ~ lat2 X lon2 X (13 — 12) ~
lat3 x lon3 x (¢4 — t3). One SQL query is then executed for each bounding box,
querying the GPS events within it. These queries require no geospatial indexing in
the database and are fast if the latitude—longitude—timestamp database columns are
indexed.

is convenient to implement a class representing GPS trajectories, so that processing
can logically be applied to instantiations of the trajectory class.

Finally, we stress that the processing of GPS data is a challenging task and
represents an entire research area on its own. Due to the short development time
span of the Smittestopp app, we were not able to rigorously test different processing
strategies, such as map matching techniques [3, 11], filter-based approaches [9], and
others (for areview, see, e.g. [15]). Rather, our goal was to develop a simple but robust
solution that excludes false-positive GPS contacts within a limited development time
frame.

6.3.4 Contact tracing reports

Due to the different requirements of the analysis output (see Section 6.2), the analysis
pipeline can produce two report styles:

1. Detailed style. Information is given for each contact event between two individ-
uals. This report is intended to be used for internal testing and debugging and
contains more data than are required for pure contact tracing.

2. Day-by-day style. Contacts are summarized on a daily basis, showing only infor-
mation that is relevant to contact tracing.

Both report styles give separate information on contacts detected by GPS and BT.
By default, the report uses only contact events that match the Norwegian Institute
of Public Health (NIPH) requirements, that is, with risk category ‘medium’, ‘high’,
‘gps_only’, or ‘bt_below_15_min’, as defined in Table 6.2. For debugging and in-
ternal testing, this filter can be deactivated to generate reports that show all contact

6 Digital tracing, validation, and reporting 111

3

3

[}

BB ERESEBEEBSES S

£

B BB NE8E

Fig. 6.5: On the left is a visualization of a geospatial database using R-trees as
the tree data structure (image source: Wikipedia). The panel on the right illustrates
geospatial indexing using depth 3 B-trees. Hierarchical structures allow for efficient
distance queries. For example, point P, with index (4,2, 3), is not close to Q, since
its index is (4,1, - - -), where, crucially, i # 2. Neither R-trees nor B-trees were used
by Smittestopp, since experiments showed insufficient performance for computing
trajectory intersections on large data sets. A key difference between R-/B-trees and
the method described in Figure 6.4 is that the bounding boxes in R-/B-trees are
computed on the database side, while the method described in Figure 6.4 computes
the bounding boxes dynamically or optimally for each patient’s trajectory.

events. The reports can be saved as text, in JSON format, or as HTML webpages,
with static or interactive maps and plots.

BT duration
GPS duratio <2 min > 2 min and <15 min > 15 min
high accuracy

<30 min not reported bt_below_15_min low/medium/high
> 30 min gps_only low/medium/high | low/medium/high

Table 6.2: Risk category definitions. In addition, to be included in an NIPH report,
the contact event needs to contain either 1) BT contacts with a cumulative duration
of over two minutes or 2) GPS contacts with an accuracy below 10 metres and a
cumulative duration of at least 30 minutes.

112 Elmokashfi et al.

ot
§
—

-
.
-~

Fig. 6.6: The left panel shows the GPS trajectories of two phones during a walk. The
right panel shows the identified contact points in red.

Concerning the additional risk categories gps_only and bt_below_15_min in Table
6.2, we note that, during the pre-launch testing, too few contacts were reported as
high or medium risk. We suspected that one (or both) of the boundaries in the filter
was too strict. Therefore two new categories (i.e. gps_only and bt_below_15_min)
were introduced.

The day-by-day style report provides information on the cumulative duration,
distance, and location of contacts through points of interest. Points of interest are
determined by transport modes and amenities near the contact points and can be
divided into three categories: inside (e.g. in a building or a vehicle), outside (e.g.
when walking), and uncertain (when the transport modes are inconsistent). If GPS
data are available for a given contact, a static map of contact trajectories is also
displayed. To improve privacy, the map shows no more than necessary for contact
tracing. An example of the information shown in a day-by-day style report is provided
in Figure 6.7-6.12.

The detailed style reports contain information on each individual contact event.
In addition to the information provided in the aggregated reports, the detailed style
reports show the transport modes of the users involved in the contact and the duration
of the contact spent inside and/or outside. In addition to helping determine the
location, transport modes can be used to validate an actual contact by checking if
two modes are consistent. The three transport modes are still, on foot, and vehicle.
The case of a car driving past a pedestrian would not be considered a contact, because
the transport modes would be on foot and vehicle. Detailed reports are only used for
internal testing and validation and were not sent to NIPH.

6 Digital tracing, validation, and reporting

Risk report for 4577ff0a729411ea80ead42a51fad92d3

Analysis pipeline version 1.4.0
Device info [(‘ios’, 'iPhone12.3",'0.0.4')]

Quick links:

« Contacts with b7{ff6686720711ea86d7ee3617b084b4
* Contacts with 9b55b50¢729411eaB0ead2a51fad92d3
« Contacts with a891585872cf11ea94e20edabf845fab

« Contacts with dd84433a729411ea80ead2a51fad92d3

Fig. 6.7: Header of an example report.

Daily summary
Contact on 2020-04-06

BT cumulative duration: 0:00:00
GPS cumulative duration: 3:26:23
Number of BT contacts: 0
Number of GPS contacts: 4

Points of interests: outside, residential

Fig. 6.8: Example of a detailed daily summary.

Contacts with b7ff6686720711ea86d7ee3617b084b4
Device info [(‘ios', 'iPhone101','0.0.2"), ('ios', 'iPhone10.1, '0.0.2")]
Summary information

BT cumulative risk score: 67.39
GPS Cumulative risk score: 8.87
Categorical risk: high

BT cumulative duration: 3:09:09
BT very close duration: 0:38:21
BT close duration: 1:49:33

BT relatively close duration: 0:41:15
GPS cumulative duration: 8:51:24
Number of contacts: 18

Number of days in ANY contact: 5
Number of days in GPS contact: 4
Number of days in BT contact: 4

Points of interests: bars_and_restaurants, residential, other_buildings, outside, inside_transport

Fig. 6.9: Summary information for all contacts detected with one UUID.

114 Elmokashfi et al.

Fig. 6.10: Example of a static map generated for daily summary. The green and blue
points represent user trajectories, and the red points indicate contact between users.

Distances during contacts

Duration in each distance category.

| I 0
a"° n’Q

\‘Ju}“

500 4

4001
30
200
100 4
o2

':“°\

=]

Duration (in minutes)

S

o

Fig. 6.11: Graph of the duration for different distances.

6 Digital tracing, validation, and reporting 115

Time of contacts

80

701

60 4

Distance [m]
8

Q.oh’ub ,0”"6‘ N 0% 02 0 N e N i e
7 L 2 5 328 i L
S P ¥ 28 28 o oS

Fig. 6.12: Graph of when contact events occurred and their distances.

6.4 Smittestopp testing and validation

Since digital contact tracing is an entirely novel technology, we performed testing
and validation in several phases, which allowed us to identify its strengths and
weaknesses. Specifically, we performed the following three testing/validation phases:

1.

Pre-launch testing. The goal of this study was to ensure that the solution can
discover and identify close contacts, to ensure the stability and efficiency of the
technology, and to adjust the parameters in the contact tracing algorithms.
Real-life validation with three pilot municipalities. The goal of the study was
to acquire knowledge on how the solution can assist epidemiologists and manual
contact tracers in their everyday work, to understand the challenges and benefits
related to the solution from the end user perspective, and to discover technical
limitations and outline directions for further improvement.

Controlled testing in real-life and lab conditions. The goal of the study was to
extensively validate the technical part of the solution with respect to discoverabil-
ity of true contacts (true positives) and false contacts (false positives) in real-life
scenarios, as well as in lab stress testing experiments.

In addition, we closely followed other teams worldwide in terms of their validation
efforts, so that we could modify our studies according to new findings.

Below we provide a detailed description of each of the studies, including the

scenarios and results. It is worth mentioning that some countries working on digital
tracing solutions also performed extensive testing and validation studies. Specifically,

116 Elmokashfi et al.

we analysed the results of the German [13] and Swiss [1] studies, which tested
Google/Apple Exposure Notifications in lab and real-life scenarios.

6.4.1 Pre-launch testing

Before the launch of Smittestopp on 16 April 2020, we validated the contact tracing
solution in several phases, using data from approximately 300 app testers. The main
objectives of this phase were to estimate beacon proximity/distance based on the
BT signal strength, evaluate phone discoverability via BT and evaluate the tracing
algorithms for different types of activities (e.g. walking, driving, and indoor and
outdoor activities), and understand whether GPS could be used for contact tracing
alone or only in combination with BT. The results of this validation show that the
tracing algorithm is quite accurate in identifying contacts if the data are available, but
that the contact duration reported in the app differs from the ground truth. Usually
the identified duration is slightly shorter than in reality. Additionally, the accuracy of
GPS was found to be quite low in indoor locations. However, GPS seemed to provide
accurate results for outdoor contacts. Moreover, this phase allowed us to understand
and work on challenges related to digital tracing, as well as to specify which features
could be provided to NIPH in real-life validation, as discussed above.

6.4.2 Real-life validation in testing municipalities

To validate the app as a contact tracing tool, from 27 April to 31 May, in collaboration
with NIPH, we compared the results from manual and digital contact tracing in three
municipalities. During the five-week test period, the uptake of the app in these mu-
nicipalities was around 14%. Moreover, a rather low number of new cases, only 118,
were reported during the five-week period. Of all the cases, only 31 were Smittestopp
users. In total, 60 contacts were identified by Smittestopp, of which 24 (40%) were
confirmed to be close contacts. Of these, 18 were also found through manual contact
tracing (75%), whereas six contacts were found only through Smittestopp (25%).
We also looked closely into 20 of the unconfirmed cases, identified by the app as
close contacts. It appears that nine of them took place more than 48 hours before
the onset of symptoms and were thus not considered true close contacts in manual
tracing. The app does not consider symptom onset as one of the variables and takes
into account all contacts within the past seven days, and the manual contract tracing
team can then decide which contacts to notify. Another eight identified contacts had
too little contact with the case (false positives). For the remaining three cases, it is
difficult to verify the correctness of the digital contact tracing, since, in two cases,
the phone was used by another person than the name under which it was registered
and, in one case, the individual was asymptomatic.

6 Digital tracing, validation, and reporting 117

In summary, the results of the validation demonstrate that, although Smittestopp
was able to identify both contacts already identified through manual contact tracing
and additional contacts not already known to the contact tracers, the risk score,
adapted from the United Kingdom, required a modification to represent true contacts,
since the original version was not adjusted for digital contact tracing. The results
also confirm that the added value of a contact tracing app is to identify random
contacts, that is, contacts not personally known to the case. Given the low numbers
of cases and app users, the data collected through the municipalities was too limited
to draw any further conclusions regarding the app’s effectiveness in identifying
contacts. Therefore, we performed additional controlled testing under real-life and
lab conditions to better understand the strengths and weaknesses of digital contact
tracing.

6.4.3 Controlled testing under real-life and lab conditions

In August 2020, a modified and improved version of the app was tested in two types of
experiments: a stress test lab experiment and in real-life scenarios. The improvement
involved enhancing the stability of the Android version of the app. The goal of the
stress test was to assess the ability of the solution to discover phones in proximity
when many phones are located in the same place. For more details about the test
setup and phones used, see Chapter 5. The testing in real-life scenarios aimed to
assess the ability of the solution to discover contacts that were either true positives or
false positives in scenarios such as restaurants, shopping malls, and training centres.
The detailed descriptions of the tests and their comparison with the Google/Apple
solution is available in the Simula-published report on the comparison of different
solutions for digital contact tracing (in Norwegian) [14]. In this section, we present
only the results from real-life testing. Chapter 5 contains a detailed description of
the stress test setup and results.

In the real-life scenarios, we tested the app’s ability to discover other phones in
proximity and to estimate the risk of infection if the contact was identified. In these
experiments, six participants were asked to perform standard social interactions
while using the testing phones in a common manner. The participants were split
into three groups; in each group, one participant had an Android phone and another
participant had an iOS phone. More specifically, we used the following phones:
second-generation iPhone SE (two), iPhone 11, iPhone 11 Pro Max, Huawei P30
Pro, Samsung S20 5G, Sony Xperia 1, Samsung A71, and Samsung S10. The testing
lasted around four hours, during which time the participants carried out different
social interaction activities, such as visiting a bar, a restaurant, a training centre, or
a shopping mall. Three additional phones were located in the testing areas: one with
a waitress, one with a bar attendant, and one with a receptionist. The details of the
protocol and scenarios are available in the report.?

2 See https://www.simula.no/news/en-ny-runde-med-digital-smittesporing.

https://www.simula.no/news/en-ny-runde-med-digital-smittesporing.

118 Elmokashfi et al.

The participants within each group were asked to remain at one metre of each
other. Each participant logged their travel details as well as information on where the
phone was located. We used this information, together with the detailed protocol, to
analyse the results.

Based on the protocol and the participants’ logs, 66 contacts could have been
identified by the technology, among which 26 should have been considered very
close contacts. For our technology, we define a contact as phones being in proximity
to each other (within 2 metres) for at least 10 minutes. The confusion matrix is
shown in Table 6.3. Based on the results, the app has a recall of 84.6%, a precision
of 73.3%, and an accuracy of 81.8%.

Predicted
Predicted contact
contact Real Low |High|No risk
Real Contact|No contact
contact contact
Contact 84.6% | 15.4% Low 33.3%) 0% | 66.7%
No contact 300 309 High 10% [80% | 10%
O comtac c ° No risk 0% | 0% | 100%

Table 6.3: The left panel shows the confusion matrix for the discoverability of
contacts: of 66 potential contacts, only 26 are close contacts and 40 are not a contact
according to the NIPH definition. The right panel shows the confusion matrix for
the risk identification of the contacts: of 26 real contacts, 20 are high risk and six
are low risk.

In addition to discoverability, we estimated the ability of the technology to cor-
rectly assign the risk category of each contact. For simplicity and in light of the
experiment design, we considered only two categories: low risk (all contacts within
2 metres for less than 25 minutes) and high risk (all contacts within 2 metres for
more than 25 minutes). We again used the test protocol and the participants’ logs to
assign a risk category for each contact. Of 26 real contacts, 20 are expected to be
high-risk contacts. The results are presented in Table 6.3.

6.5 Lessons Learned and conclusion

In this chapter, we discuss digital tracing technologies for the identification and
isolation of potentially close contacts of an infected individual. We show that the
technology is feasible, but the main prerequisite for its validation and success is
reasonable uptake in a population and close collaboration with epidemiologists. Is-
sues related to defining an epidemiologically meaningful ranking of contacts remain
open. We believe that a large validation trial with real-life scenarios is necessary to
find the optimal risk score function. A big challenge in the validation of the digital
tracing technology is that access to the collected data is very limited. In the case of
Smittestopp, the technology was developed using a test data set but applied to real

6 Digital tracing, validation, and reporting 119

data, which are of completely different size, with much greater variation, leading
to challenges related to computational efficiency. How to validate a digital tracing
tool efficiently while complying with privacy and security regulations is not yet fully
understood.

Our work shows that both GPS and BT data are important for obtaining a better
understanding of how digital contact tracing works and illustrates their usefulness to
epidemiologists. BT data allow proximity events to be identified, whereas GPS data
provides contextualization for the contacts found. We believe that once the digital
tracing technology is validated, GPS data can be excluded and the technology can
be based only on BT data.

References

[1] SwissCovid exposure score calculation, 11 September 2020.

[2] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Work-
shop on Data Description, Access and Control, SIGFIDET 70, page 107-141,
New York, NY, USA, 1970. Association for Computing Machinery.

[3] M. Bierlaire, J. Chen, and J. Newman. A probabilistic map matching method
for smartphone GPS data. Transportation Research Part C: Emerging Tech-
nologies, 26:78-98, 2013.

[4] L. Bourouiba, E. Dehandschoewercker, and J. W. Bush. Violent expiratory
events: on coughing and sneezing. Journal of Fluid Mechanics, 745:537-563,
2014.

[5] G. M. Djuknic and R. E. Richton. Geolocation and assisted GPS. Computer,
34(2):123-125, 2001.

[6] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dorner,
M. Parker, D. Bonsall, and C. Fraser. Quantifying SARS-CoV-2 transmission
suggests epidemic control with digital contact tracing. Science, 368(6491),
2020.

[71 A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’84, page 47-57, New York, NY, USA, 1984. Association
for Computing Machinery.

[8] R. Hinch, W. Probert, A. Nurtay, M. Kendall, C. Wymant, M. Hall, and
C. Fraser. Effective configurations of a digital contact tracing app: A re-
port to nhsx. en. In:(Apr. 2020). Available here. url: https://github. com/BDI-
pathogens/covid-19_instant_tracing/blob/master/Report, 2020.

[9] W.-C. Lee and J. Krumm. Trajectory preprocessing. In Computing with spatial
trajectories, pages 3—33. Springer, 2011.

[10] D.J. Leith and S. Farrell. Coronavirus contact tracing: Evaluating the potential
of using bluetooth received signal strength for proximity detection. 2020.

https://github.com/BDIpathogens/covid-19_instant_tracing/blob/master/Report
https://github.com/BDIpathogens/covid-19_instant_tracing/blob/master/Report

120

[11]

[12]

[13]

[14]

[15]

Elmokashfi et al.

Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for
low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPA-
TIAL international conference on advances in geographic information systems,
pages 352-361, 2009.

K. Merry and P. Bettinger. Smartphone GPS accuracy study in an urban
environment. PloS one, 14(7):e0219890, 2019.

S. Meyer, T. Windisch, N. Witt, and D. Dziebela. Google exposure notification
API testing (Germany). URL: https://github.com/corona-warn-
app/cwa-documentation/blob/master/2020_06_24_Corona_API_
measurements.pdf, June 2020.

Simula Research Laboratory and Simula Metropolitan. Sammenligning av
alternative Igsninger for digital smittesporing, 2020.

R. Wu, G. Luo, J. Shao, L. Tian, and C. Peng. Location prediction on trajectory
data: A review. Big data mining and analytics, 1(2):108-127, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
https://github.com/corona-warn-app/cwa-documentation/blob/master/2020_06_24_Corona_API_measurements.pdf
https://github.com/corona-warn-app/cwa-documentation/blob/master/2020_06_24_Corona_API_measurements.pdf
https://github.com/corona-warn-app/cwa-documentation/blob/master/2020_06_24_Corona_API_measurements.pdf

l‘)
Chapter 7 pdaies
Data aggregation and anonymization for
mathematical modeling and epidemiological
studies

Are Magnus Bruaset, Glenn Terje Lines and Joakim Sundnes

Abstract An important secondary purpose of the Smittestopp development was to
provide aggregated data sets describing mobility and social interactions in Norway’s
population. The data were to be used to monitor the effect of government regulations
and recommendations, provide input to advanced computational models to predict
the pandemic’s spread, and provide input to fundamental epidemiology research. In
this chapter we describe the challenges and technical solutions of Smittestopp’s data
aggregation, as well as preliminary results from the time period when the app was
active. We first give a detailed overview of the requirements, specifying the types of
data to be collected and the level of spatial and temporal aggregation. We then pro-
ceed to describe the concepts for anonymization via k-anonymity and e-differential
privacy (¢-DP), and the technical solutions for collecting and aggregating data from
the database. In particular, we present details of how GPS- and Bluetooth events were
mapped to geographical regions and points of interest, and the solutions employed
for efficient data retrieval and processing. The preliminary results demonstrate how
the recorded GPS- and Bluetooth events match with expected temporal and spa-
tial variations in mobility and social interactions, and indicate the usefulness of the
aggregated data as a tool for pandemic monitoring and research. One of the main crit-
icisms of Smittestopp concerns the centralized storage of individuals’ movements,
even if such data were used and presented only at an aggregated and anonymized
level. In this chapter, we also outline a completely different approach, where the
GPS data do not leave the user’s phone but are, instead, pre-processed to a much

A. M. Bruaset
Department of High performance Computing , Simula Research Laboratory,
e-mail: arem@simula.no

G. T. Lines
Department of Computational Physiology, Simula Research Laboratory
e-mail: glennli@simula.no

J. Sundnes
Department of Computational Physiology, Simula Research Laboratory
e-mail: sundnes@simula.no

© The Author(s) 2022 121
A. Elmokashfi et al. (eds.), Smittestopp — A Case Study on Digital Contact Tracing,
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2_7

mailto:arem@simula.no
mailto:glennli@simula.no
mailto:sundnes@simula.no
https://doi.org/10.1007/978-3-031-05466-2_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_7&domain=pdf

122 Bruaset et al.

higher level of privacy before being dispatched to a server-side data aggregation
algorithm. This approach, which would make the app significantly less intrusive,
is made possible by recent advances in determining close contacts from Bluetooth
data, either by a revised Smittestopp algorithm or by means of the Google/Apple
Exposure Notification framework.

7.1 Introduction

The aim of this chapter is to explain the reasoning and the strategies behind the
aggregation of Smittestopp’s data in space and time, to provide high-level information
about population dynamics and the spread of disease. For instance, this information
could shed light on understanding how, when and where close contacts occur, and
could be used to understand how imposed interventions, such as advice on social
distancing and changes to public transportation patterns, are met by the public. The
techniques described were under implementation and subject to preliminary tests
when Smittestopp’s development was put on hold. The implementation was therefore
not completed or fully deployed in Smittestopp’s production system. Based on the
gathered experiences regarding scalability, we also present ideas for a distributed
aggregation scheme. If implemented, this scheme would also provide improved
protection of app users’ privacy.

7.2 Data requirements and privacy

As described earlier, the aggregated data sets from Smittestopp were meant to serve
several purposes. First, the aggregated data from the app would provide continuous
information on movements and interactions in the population during the pandemic,
and would be used to monitor how various restrictions and government interventions
impact social interactions and, in turn, the spread of the disease. Second, it would
provide potentially valuable input to the predictive epidemiology models that inform
political decisions and healthcare planning [7]. Data from the app would provide
such information on a daily basis, unlike the three- to four-week delay between
a change in social interactions and a visible change in COVID-19 hospital cases.
This unique and detailed data would also be a resource for long-term epidemiology
research, to improve prediction and insight in preparation for future pandemics.
Finally, the aggregated data would be used to provide statistics and information to
the public, to increase knowledge and awareness in the general population. To serve
these different purposes, a requirement list was prepared by the Norwegian Institute
of Public Health (NIPH), which specified the following four aggregated data sets
with varying levels of detail.

7 Data aggregation and anonymization 123

Data set 1: Individual-based data on the movement patterns and behaviour of
app users. The first data set was to be collected for anonymized individuals, with
tables summarizing key numbers for each individual app user. The temporal resolu-
tion would be one day, while the spatial aggregation would be at the municipality
level. The municipality of Oslo is treated as a special case, with aggregation for
each district (bydel). A more detailed description of the geographical units used for
aggregation is provided in Section 7.3, below. For each municipality and each day, a
table is produced, with one row for each app user, and the following columns: travel
on foot (total in minutes); travel by vehicle (total in minutes); minutes spent in-
doors, outdoors, and in particular locations, including grocery shops, kindergartens,
schools, offices, hospitals, parks, and residences; and, finally, the total travel distance.

All individual data items would be extracted from the GPS data of the individual
app users. Anonymity and privacy would be preserved by anonymizing all app users
and ensuring that every table contains at least k rows, as described in more detail
below. For units with fewer than k app users, the aggregation would be moved to
the next level of spatial resolution, that is, from the municipality to the county level.
With a typical k value of 20, it is unlikely that this additional aggregation is needed,
since all municipalities are expected to have far more than 20 app users.

Data set 2: Location-based data set highlighting the exposure of individual lo-
cations to the population. The main purpose of the second data set is to inform
about potential disease transmission and guide government regulations and recom-
mendations. Locations of interest are extracted from OpenStreetMap (OSM), and
include hospitals, schools, shops, and bus/train stops, etc., and are stored in local files
containing a unique ID, name, municipality, type of location, position, and geometry.
The geographical data and algorithms to collect them are described in more detail
below. The resulting local database of points of interest (POIs) is combined with the
GPS data from Smittestopp to count the number of visitors to each location and the
time they spend there. As for the first data set, privacy is guarded by lumping any
location with fewer than k visits together with nearby locations of the same type.
The anonymity-preserving aggregation step is likely to be more relevant for this data
set, than for Data set 1, since many locations can have fewer than 20 visitors per day.

Data set 3: Bluetooth contacts quantifying the level of interaction in the popu-
lation. The Bluetooth contact data from Smittestopp is a unique data set for quan-
tifying contacts that could potentially transmit disease. Based on Bluetooth pairings
between phones with the Smittestopp app, we count all critical contacts, that is,
contacts with an estimated duration of more than 15 minutes and a distance of less
than 2 metres. The number of contacts is aggregated at the municipality and district
levels, with a temporal resolution of one to several hours. To normalize the data to
the number of app users, we also count the number of app users belonging to each
geographical unit on a given day:

PM,,PM,, ... PMsss,15,

124 Bruaset et al.

where PM; is the number of app users on a given day in municipality 7, for i < 355,
or in the corresponding district in Oslo when i = 356, ...,370. Similar numbers
PCy, PCs,...PC are recorded at the county level.

Data set 4: summary statistics on the number of contacts and movement pat-
terns. The final data set is intended to provide summary statistics on contacts and
movement patterns to the public. The data are aggregated from the three other data
sets into statistical indicators suitable for public use.

7.2.1 Privacy-preserving techniques

Recorded details on where individuals move around and who they meet can poten-
tially be misused in the hands of a malicious third party and therefore constitute
a significant privacy risk. This aspect of Smittestopp was a major concern for all
parties involved: the politicians mandating the Smittestopp’s development, NIPH
as the system owner, and Simula as the developer of the technology. However, in
the face of the thousands of casualties in Southern Europe, the national explosion
of COVID-19 cases when Norwegian tourists returned from winter break in the
Alps, and the potential of acutely overloading health services and running short on
medical supplies, the government found the threat of COVID-19 to outweigh the
time-limited privacy risk through Smittestopp’s implementation. The government
therefore provided the necessary legal basis [6]. The gravity of the situation and
the implicit urgency to design and implement a digital tool capable of fighting the
disease’s spread were strongly felt by all the participants in the development process.

One fundamental principle dictating the aggregation of Smittestopp data was that
no researchers or analysts are allowed direct access to the raw data. All aggregation
had to be carried out once and for all on the incoming data, typically in batches
once or twice per day, through totally automated scripts that are run inside a secure
environment in the Azure cloud. Only aggregated and anonymized information would
be made accessible for a group of authorized personnel and researchers. Moreover,
the raw data going into the aggregation pipeline had no user-specific information
attached other than a randomly assigned tag that would be unique for a user for a
short period, in order to combine data items correctly in the aggregation algorithms.
Such tags were removed in the data aggregation procedures. The details of this
architecture are discussed in Chapter 3.

Data thresholds and k-anonymity. Animmediate and simple approach to reducing
the privacy risk was to use sufficiently coarse spatial and temporal levels, such that a
large group of people map their individual actions to the same aggregated event. For
instance, although only one or two people might be waiting for a bus at the Sanatoriet
bus stop at 10:29 on a given day, there might be several tens of people waiting for
a bus somewhere in the Nordre Aker city quarter between 10:00 and 12:00 that
day. Therefore, the coarseness of the latter event shields people’s privacy more than
the first detailed event mentioned. As explained in Section 7.2, one would record

7 Data aggregation and anonymization 125

such aggregated events only if sufficiently many people (k) take part, say, k > 20.
Otherwise, the event would be blanked from the overall statistics by being labeled
“-”. The use of this type of threshold is common in statistical reviews, such as the
reports provided by Statistics Norway or similar national agencies in other countries,
or when reporting on medical trials. It is also essential to treat data outliers, either
by deleting entries with outlier values or clamping these values to the closest “safe”
values.

The threshold-based approach mentioned above, which was under implementation
for Smittestopp, is related to the concept of k-anonymity. Assume you have a data
set where each entry lists the values of some features of an individual, say, age and
nationality. If each entry in this data set is identical to k — 1 other entries in the same
data set, the data set is said to have the property of k-anonymity [8]. Clearly, any
personal identifiers such as names and ID numbers must be blanked from the data set.
Then numeric values, such as age, must be bracketed in intervals that are sufficiently
large to have at least k entries each. At the same time, non-numeric features must
also have at least k identical entries. This can be achieved by aggregating the values
into a combined value, for instance, mapping all entries with a nationality belonging
to a Nordic country to the wider characteristic of ‘Nordic’. Finally, the combinations
of all the values of the represented features — age and nationality in this case — must
have at least k entries. For instance, it is not sufficient to have at least k entries marked
as Norwegian and at least k entries belonging to the age group 20-29 years if there
is only a single Norwegian in that age group. By construction, this approach is most
relevant for low-dimensional data sets. Moreover, it might be necessary to delete
entries or add fictitious entries in order to maintain k-anonymity and simultaneously
avoid aggregation to so coarse levels of feature values that they do not carry any
useful information. Generally, the generation of a k-anonymous version of a data set
is an NP-complete problem, but there exist implementations of several approximate
algorithms designed for practical use.

Rigorous anonymization in a mathematical sense is impossible to achieve; that
is, it is impossible to guarantee that an individual cannot be identified from a data
set when this set can be combined with any other, known or unknown, data source at
some past, current, or future time. This has been demonstrated in several studies. For
instance, it is well know that k-anonymity can be compromised by data homogeneity
[2], or when there is additional information from other sources [5]. However, it is
always a question of whether the deduced information truly threatens anonymity; to
be such a threat, the data must reveal information that is not previously generally
known from any existing and available data source.

Improved protection through g-differential privacy. Despite the lack of rigorous
anonymity, it is possible to achieve reasonable levels of anonymization by careful
design, thus reducing the privacy risks to acceptable levels. When planning the data
aggregation strategies of Smittestopp, we consulted the relevant literature, as well
as experts in Norway and abroad. We also closely examined the feedback from the
panel of experts assigned with the task of evaluating Smittestopp’ technology [4].
Based on this combined input, we concluded that the two most relevant approaches

126 Bruaset et al.

to anonymization would be k-anonymity, as outlined above, and £-DP . While k-
anonymity was under implementation when Smittestopp’s development was halted,
the implementation of e-DP was at the planning stage.

The essence of e-DP is to give each individual represented in a data set as much
privacy as if that individual’s data were removed from the set. This is achieved by
injecting random noise into the data set. To illustrate the concept, consider a survey
where each individual is asked to respond yes or no to a sensitive question. Once the
true answer is given, an algorithm draws a random number between zero and one. If
this number is less than 0.5, the true answer is passed to the data set. If the value is at
or above 0.5, a second random number is drawn. If this second number is less than
0.5, the value yes is inserted into the data set, and otherwise the value no is injected.
For real applications, more sophisticated implementations would be used, and the
parameters of the algorithm would be tuned to yield a prescribed level of privacy
as indicated by the value of & [1]. This method has been developed through both
academic and industrial research. For instance, it has received substantial support
from Microsoft,! and Apple is one of the technology companies that have been
embracing e-DP as a means to protect their users’ privacy.? While promising, it is
also well known that e-DP is no magic recipe that always guarantees full privacy
[9]. In particular, its performance in terms of privacy protection depends strongly
on the choice of &, and some implementations in use have been criticized for using
overly large values. Still, e-DP remains one of the, if not the, best approach currently
available.

Implementation of £-DP in Smittestopp. Up until the decision of halting
Smittestopp’s development, considerable effort was made in optimizing the script-
based data extraction and processing, including the proper use of data thresholds
(see Section 7.5). These computationally demanding procedures had to be in place
before we could add the most sophisticated privacy protection in terms of &-DP .
Therefore, no data are available on the performance of £-DP in the Smittestopp case,
or on exactly how the data manipulation implied by e-DP would affect the quality of
the aggregated data. Similarly, the project halted before it was possible to determine
an appropriate value for £. As many other parts of Smittestopp’s development, the
work on e-DP would have been at the frontiers of research. Since the development
was halted, this research has not yet been further pursued.

1 See New differential privacy platform co-developed with Harvard’s OpenDP unlocks data while
safeguarding privacy, 24 June 2020, at https://blogs.microsoft.com/on-the-issues/
2020/06/24/differential-privacy-harvard-opendp/.

2 See Learning with Privacy at Scale, December 2017, at https://docs-assets.developer.
apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf.

https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp/
https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp/
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf

7 Data aggregation and anonymization 127

7.3 Geographical units and points of interest

All the specified data sets rely on various forms of geographical and geometrical data.
All spatial data aggregation would be performed relative to standard geographical
units, such as districts, municipalities, and counties, and the mapping of GPS events
to these units relies on their geometrical data. Similarly, the POI analysis naturally
relies on geometrical information about the POIs to map app user trajectories to
the various locations. For reasons of efficiency, the geographical data needed to be
fetched, pre-processed, and stored locally for use in the data analysis.

Norway is divided into 11 counties, which are again subdivided into munici-
palities, of which there are 356 in total. Each municipality is further divided into
parts (delomrdder, 1,558 in total) and, finally, basic statistical units (BSUs, or
grunnkretser, 14,097 in mainland Norway) at the finest level. Each geographical
unit has a unique numerical identifier, which is two digits long for the counties, with
two extra digits added for each subsequent layer. For example, the Torgalmenningen
BSU has the eight-digit ID 46010129. It belongs to the delomrdide Bergen Sentrum,
with ID 460101, the municipality of Bergen (ID 4601) and the county of Vestland
(ID 46). Oslo is treated as a special case, since it is both a county and a municipality.
Here, the municipality level is used instead to represent city districts (bydeler).

Geographical information for all these units was downloaded from the publicly
available repository geonorge.no as Geography Markup Language (GML) files. The
geometric representation used in the original format is very general and verbose and,
for efficiency, needed to be simplified, such that each unit could be represented as a
single polygon. The final result was stored locally in a JSON file for later use in the
data aggregation and analysis.

Data sets 1 and 2 specified above both rely on geographical information about
POIs. For Data set 1, we want to count the time spent by individuals in locations such
as grocery stores, schools, and parks, while Data set 2 provides a list of the same
location types and specifies their total exposure to the population. The Overpass API
to OSM provides an excellent resource for extracting such information and acts as a
database that supports queries based on polygons and bounding box data. Data are
returned in a dictionary-like format, providing for each POI a unique identifier, a
name, a type, and various relevant tags. Depending on the type of POI, geometrical
information is provided in the form of its centre coordinates, bounding box, or the
polygonal data for its boundary. With such information available, GPS trajectories
from Smittestopp can be used to estimate the number of visits and time spent at the
various POls.

There are two main ways to access and use OSM data. The first is to use the data
as an online database, which is queried whenever we need information about a POI,
thereby ensuring that the most recent information is used for all POIs. However,
such queries to the database are fairly slow, particularly queries using polygonal
data, and since the data sets include tens of thousands of POIs and are based on
the GPS trajectories of hundreds of thousands of users, basing the entire analysis
on database queries is not feasible. Furthermore, the frequency of updates in OSM
is relatively slow and, on a time scale of weeks to a few months, the information is

128 Bruaset et al.

approximately static. These considerations motivated the second approach, which is
based on batch processing OSM queries and storing the POI information locally in
a simplified format. These local files contain only essential information, that is, the
POI name, type, and geometrical information, and are used for processing the GPS
data from the app.

For the first version of the aggregation pipeline, one file was created for each POI
type, containing the name of the POI and the geometry specified by the bounding
box. The use of polygonal data would obviously allow for more accurate results, and
detailed polygonal geometries are available for most POIs. However, as discussed
above, computational efficiency was a high priority throughout the development of
the data aggregation pipeline, because of the huge volumes of data involved and
strict 24-hour processing time limit.

7.4 Data analysis and preliminary results

As described in Section 7.1, the Smittestopp app was put on hold and the collected
data deleted before the data aggregation was put into full use. Therefore, no aggre-
gated data sets were ever produced from the full-scale production database. However,
most of the algorithms for aggregation and analysis were implemented and tested on
a smaller development database, and limited trial runs were performed on the full
database in the final days before the data were deleted. In this section, we describe
some of the algorithms used and their Python implementation, as well as some
preliminary results from the initial trial runs.

Data were retrieved by accessing the SQL server via a small set of access
functions. The code below is a simple example of usage, where the function
getGPSWithinGrunnkrets is used to extract all GPS events recorded by the app
in a single day within a single BSU:

from corona.data import connect_to_azure_database
import pandas as pd

db = connect_to_azure_database()

key = "03012305"

date_from = "2020-04-27"

date_to = "2020-04-28"

query = f"select * from getGPSWithinGrunnkrets('{key}' ,\
'{date_from}', '{date_to}')"

df = pd.read_sql(query, con=db)

db.close()

Connection to the database is first established through the connect call. For efficiency
reasons and unlike in this example, the connection would typically be kept open for
multiple calls, and a new connection only created if the previous one was broken.
Data were returned as pandas frames, with one line per event. Field types varied
with the type of query issued.

Computational efficiency was an important consideration throughout the aggre-
gation pipeline’s development, and a recurring question concerned the amount of
analysis that should be performed on the server side versus the client side. One

7 Data aggregation and anonymization 129

Query times

~
1
S

102

seconds
e 5 & 4
g 3 B & &

Query time (seconds)

e

u‘)“ 10° 16! 10% 104 10% o 5 10 15 20 25 30
number of events Hours after start

Fig. 7.1: The left panel shows the time spent on data retrieval for the two data types
BT and GPS. Data are from one full day and from all the BSUs of Norway. Each
data point represents one BSU. The x-axis shows the number of matching rows in the
database. The right panel shows the query times as a function of runtime (summed
over both types). Hourly congestion is evident, as well as a 24-hour cycle.

strategy is to limit the need to move data off the server, by carrying out as much
aggregation as possible inside the SQL access functions. The other extreme would
be to extract all necessary data from the server using the simplest possible queries
and to carry out all aggregation and post-processing in Python on the client side.
Although the issue was not fully explored, our preliminary trial indicated that the
optimal solution is a balanced approach between minimizing data movement and
avoiding excessive computations on the server side. In Figure 7.1, we show the time
spent retrieving data from the server. These are data from a single day and from
all 14,097 BSUs. With the current implementation, the majority of time is spent
on data retrieval. Data size is only loosely correlated with waiting times, and some
of this can be explained by congestion on the server. The panel on the right shows
the variation in query times as a function of time. The processing times for the data
generated in a 24-hour window would easily exceed 24 hours, which is, of course, not
acceptable performance. The main reason was that the database server was unable
to keep up with the combined load of influx of new data and the high numbers of
queries generated by both the contact tracing and the data aggregation pipelines. This
problem could be alleviated by a more distributed approach, as discussed towards
the end of this chapter.

7.4.1 Mapping GPS events to BSUs and POIs

Data were to be aggregated from the smallest geographical unit, the BSU. A natural
way to perform the analysis was to loop over all 14,097 BSUs in Norway and
collect the relevant GPS and Bluetooth events based on the location coordinates.
The first method we evaluated was the query function getWithinPolygon. This

130 Bruaset et al.

Fig. 7.2: Example of a bounding box as a proxy for a polygon (the red area) failing
badly. Most of the neighbouring district (the green area) is also included.

method only worked for certain polygons, and it turned out that the query length was
limited to 4, 000 characters. Polygons with many points would exceed this limit and
cause the call to fail silently, returning zero events. The problem was circumvented
by downsampling all polygons to fewer than 150 points, which was sufficient to
stay within the maximum query length. The downsampling was performed using
Polygon.simplify from the Shapely library, which performed the downsampling
very well, and no significant accuracy was lost due to this simplification.

In the end, however, it turned out that getWithinPolygon was too slow for the
aggregation pipeline, even with the modified polygons. Instead, a simplified query
function was implemented, getWithinBB, that avoided the inside polygon test and
instead returned data points with coordinates inside a given bounding box. This
alone could not replace the more accurate polygon test, since large areas would be
erroneously included in each BSU, sometimes adding a huge amount of extra data
(see Figure 7.2 for an example).

When we used getWithinBB, the filtering was instead performed in the Python
script on the client side, again relying on the Shapely library. Specifically, we em-
ployed the contains function in the module shapely.vectorized, which could
work on a complete data set at once, and we thus avoided explicit loops on the Python
side. An example of usage is shown below.

def polygon_vectorized_filter_df(df, coords):
""" Returns subset of df that actually
belongs to the given polygon. """
polygon = shapely.Polygon(coords)
X, y = df.loc[:, 'longitude'], df.loc[:, 'latitude']
mask = shapely.vectorized.contains(polygon, x, y)
return df.loc[mask,:].copy(

This function call had a negligible computational cost, and the mapping of events to
the correct BSUs no longer represented a bottleneck. However, the solution was by
no means optimal, since large amounts of data would be moved from the server only

7 Data aggregation and anonymization 131

to be thrown away by the filtering on the client side. A further improvement was
implemented in which the data points were tagged with the correct BSUs already
upon insertion, thus avoiding the polygon test altogether at the time of query. An
example call is included in the first code segment in Section 7.4.

The core of the POI processing is similar to the mapping to BSUs and involves
computing intersections between app users’ GPS trajectories and the various POlIs.
These computations would be performed as a post-processing step applied to the
aggregated data at the BSU or municipality level. To account for the variable GPS
accuracy, we viewed each point in a user’s trajectory as a square bounding box, with
the measured coordinates in its centre and sides equal to two times the given GPS
accuracy. For reasons of efficiency, the initial version of the pipeline also represented
the POI geometries by their bounding boxes. The mapping of GPS coordinates to
POIs was then reduced to computing intersections between bounding boxes, which
involves only a comparison of (at most) four numbers and a few logical operations.
Using the full polygonal data from OSM for the POIs would obviously produce more
accurate results, but this could become a potential bottleneck when mapping tens of
thousands of POIs to the trajectories of millions of app users. The following example
function takes as input a data frame with the app user’s trajectories, a dictionary
of POIs, and the GPS accuracy in metres, and it performs a partially vectorized
computation of all the bounding box interactions.

def get_intersections_vectorized(df, poi_bbs, distanceInMeters):
contacts = []
if len(df)==0:
return contacts

lat = df.latitude.values; lon = df.longitude.values

latRadian = lat*np.pi/180

degLatKm = 110.574235

degLongKm = 110.572833 * np.cos(latRadian)

deltalat = distanceInMeters / 1000.0 / degLatKm
deltalong = distanceInMeters / 1000.0 / degLongKm
lon_min = lon - deltalong; lon_max = lon + deltalong
lat_min = lat - deltalat; lat_max = lat + deltalat

for poi in poi_bbs:
poi_lon_min = poi_bbs[poi]['minlon"]
poi_lon_max = poi_bbs[poi]['maxlon']
lon_sep = np.logical_or(lon_min>poi_lon_max, lon_max<poi_lon_min)

poi_lat_min = poi_bbs[poi]['minlat']
poi_lat_max = poi_bbs[poi]['maxlat']
lat_sep = np.logical_or(lat_min>poi_lat_max, lat_max<poi_lat_min)

intersection = np.logical_not(np.logical_or(lat_sep, lon_sep))
index = np.nonzero(intersection)[0]
contacts.append(len(index))

return contacts

This code obviously holds potential for further optimization, but it is already con-
siderably more efficient than the most basic version based on two nested loops and
polygonal data for the POIs. The non-vectorized loop over the POI dictionary might
be the most natural candidate for further refinement, but the typical POI dictionary
has only a few thousand entries, which is three to four orders of magnitude smaller

132 Bruaset et al.

Duration of GPS intervals

Number of events (millions)

0s 1s 2s 10s 60s 3m 10m 30m &0m 4h 12h

Fig. 7.3: Nearby GPS events are merged into a single event. The figure shows the
resulting distribution of event durations.

than the data frame of users’ GPS coordinates. Vectorizing the loop over coordinate
points is therefore clearly the most important improvement.

Estimating users’ dwelling location. To quantify movement patterns, we wanted
to know the BSU in which each app user lived. The basic idea was to use app
users’ nighttime locations according to the GPS position as a proxy for this. A
complicating factor was that there was often no signal in the middle of the night,
either because of signal merging (see Figure 7.3) or because, more critically, users’
phones were switched off. To address this issue, we used a criterion where the user
had to be present in the BSU both during the late evening and early morning. More
specifically, there had to be at least one GPS event between 21:00 and 2:00 and at least
one event between 4:00 and 8:00. The implementation details are shown in the code
segment below. This criterion generated a good correlation between the estimated
number of app users in a given BSU and the official population count according to
Statistics Norway. Figure 7.4 shows a scatter plot for this. For BSUs with very small
populations, overestimates can be caused by people staying overnight at a location
other than their official home address, for instance, due to changes in everyday life
caused by restricted access to offices and universities during the pandemic.

Since Python is an interpreted language, it was important to utilize precompiled
functions from the libraries as much as possible, to avoid computational bottlenecks.
Avoiding loops in Python through vectorized calls is an important technique in this
respect. The approach is illustrated by the code segment below, which implements
the algorithm outlined above for estimating the number of app users in a given BSU.

7 Data aggregation and anonymization 133

n 3 i< I} 5
bl g] 8 & 8 o
3

estimated #app users staying the night

o

0 1000 2000 3000 4000

population in grunnkrets

Fig. 7.4: This figure shows the population of the BSUs (or grunnkretser) on the
horizontal axis and the estimated number of app users on the vertical axis. The
correlation between between the two is 0.917.

df is a Pandas data frame with one line for each GPS event
T = pd.DatetimeIndex(df['timefrom'])

H will be a numpy array containing hour-part of timestamp
H = T.hour

Estimate number of dwellers for this dataframe.
True for all events after 21.00 or before 02.00:
start_blip = np.nonzero((H>21)+(H<2))

True for all events between 04.00 and 08.00:
end_blip = np.nonzero((H>4)*(H<8))

Find all users seen in the evening:

uuid_start = set(df.iloc[start_blip]['uuid'])

Find all users seen in the morning:

uuid_end = set(df.iloc[end_blip]['uuid'])

Take the intersections to find those staying the night:
dwellers = uuid_start.intersection(uuid_end)
num_dwellers = len(dwellers)

An interesting use of the dwelling location estimates is to quantify regional
differences in app uptake, computed as the ratios between the estimated numbers
of users and the population count for each municipality. A map is shown in Figure
7.5, where dark red corresponds to an uptake of 20%. The real uptake numbers are
higher, since only about 50% of the app users were captured using the criterion
above. In addition, the calculation was based on a single day of data, whereas
counting GPS events from several days would probably have captured more users. It
is still interesting to note that some of the outliers (e.g. Hol) had local outbreaks at the
time of the app’s introduction and were presumably populations with an increased
incentive to install the app.

134 Bruaset et al.

Ser-Varanger

V% Narvik
.
na
\:lefs
mso:
einkjer
Trbisdifisim
e VS e
0, o,
W‘ m’ammer 0 /n 20 A’
| 3
Bergen i i
w _ ofHE,
Stavi s"'%wefjord

';“Kn tiansand

Fig. 7.5: The map shows the app uptake in Norwegian municipalities, that is, the
numbers of app users relative to their population. The number of users is estimated
based on their nighttime location.

Movement and contact pattern using GPS and Bluetooth data. To quantify
movement during the daytime, GPS data for each BSU were aggregated into his-
tograms with a one hour resolution. To correct for differences in population and the
fact there are generally more events during daytime, each BSU was normalized to
the total number of events over the entire 24 hour period. This normalization allowed
us to identify areas that were relatively more active during certain parts of the day.
Figure 7.6 shows the activity level in Oslo between 10:00 and 14:00, showing clearly
increased daytime activity in the central regions compared to the suburbs. While this
result is not very surprising, it clearly shows how GPS-based mobility mapping can
be a valuable tool for health authorities and politicians, for instance, to evaluate the
effects of movement restrictions and recommendations on social distancing.

The potential utility of the Bluetooth contact data was demonstrated by an inter-
esting event on Friday, 5 June 2020. On this date, a large group of people gathered in
front of the National Parliament in Oslo. With media images showing a large crowd
of people standing close together, it was obvious that the event would create a local
increase in the number of close contacts. Figure 7.7 shows the number of registered
Bluetooth contacts in the relevant BSU, compared with the same data from one
week earlier. The obvious spike in the curve coincides with the time of the event and
demonstrates the ability of the Bluetooth contact data to capture events of increased
interaction.

7 Data aggregation and anonymization 135

L B
Sendre Norgbtzand

20% 50%

Fig. 7.6: Ratio of GPS events between 10:00 and 14:00 in relation to the entire day.
Red signifies high daytime activity.

7.5 Distributed data aggregation

As mentioned in Section 7.3, one particular challenge in the data aggregation is in
processing all incoming GPS events fast enough to keep up with the volume of con-

BTpairings 29. mai vs 5. juni
14000

12 000
10000
8000
6000

4000
2000 \J /\
s

—29mai 05.jun

Fig. 7.7: Number of Bluetooth contacts registered in front of the National Parliament.
The grey curve is from the day of a major demonstration, while the orange curve is
for the same weekday (Friday) one week earlier.

136 Bruaset et al.

tinuously acquired data. This processing applies to placing events in their respective
BSUs, potentially mapping these locations to coarser spatial units, identifying the
type of POI for each relevant event, and aggregating the time of each event to a time
interval of reasonable coarseness.

7.5.1 Computational challenges

The BSUs are defined by more than 14, 000 irregular polygons, while coarser spatial
units are either a cluster of neighbouring BSUs or a more complex construction that
involves dividing some BSUs, for instance, to match the border of a municipality.
In addition, there are several tens of thousands smaller polygons describing relevant
POIs such as schools, kindergartens, shopping malls, and bus stops. While POIs are
indexed by BSU identificators to reduce the workload, there is a need to perform
all these calculations for at least 1 million events received per hour. It should also
be added that these calculations would cater only for the simplest types of analysis
defined by the requirements presented in Section 7.2. These analyses would answer
simple questions regarding population dynamics, such as observing how current
pandemic interventions affect the density of people at bus stops, shopping malls, and
so forth, during the day. More advanced statistical measures, for instance, combining
location data with information about close contacts extracted from Bluetooth data
to better describe how people interact in the population, would further increase the
computational burden.

When carrying out this processing server-side, the processing time of the last
period (e.g. 24 hours) of harvested data must be significantly less than the length
of the period in order to be prepared for the next period’s batch. This time buffer is
essential to allow for unforeseen delays, such as temporary disruptions to the data
ingestion, insufficient allocation of computational resources in the cloud, or failed
computations that need to be rerun. Due to the sensitivity of the raw data gathered,
which calls for data aggregation to take place in a securely closed environment
without human interaction, there are essentially no possibilities for conducting off-
line processing or for using any trial and error approach. It must simply work, reliably
and on time.

The experience gathered in Smittestopp’s data aggregation shows that, for the
server-side processing to work, as large a portion of the processing as possible must
be batch-oriented and implemented in the actual SQL calls. The overhead of the data
selection and access is too large to allow fine-grained logic in the aggregation scripts
to repeatedly call SQL functions on smaller data chunks. Moreover, the Python-based
scripting must use vector operations as much as possible to work efficiently.

7 Data aggregation and anonymization 137

7.5.2 Improving scalability through massive parallelism

Even with clever use of Python and SQL, the computational challenge posed by
the data aggregation is large. It would scale badly when more app users are added,
unless the frequency of the data acquisition and therefore the precision of the mea-
surements are significantly reduced. From this perspective, it is natural to consider a
divide and conquer strategy by devising a method that works in a widely distributed
way. Observing that modern smartphones are essentially handheld computers with
significant computational power, it would be tempting to pool together hundreds of
thousands, or even millions, of these devices’ computational resources to become a
virtual supercomputer. In the language of high-performance computing, this would
be an example of extremely massive parallelism, although with much less commu-
nication capacity than for a real supercomputer. However, as long as each phone
computes only on data collected by that particular phone, and this computation in-
volves communication only between that phone and the cloud-based server, we have
a setup with trivial parallelism and very simple communication patterns.

Geographical units. This distributed computation could work as follows. The
Smittestopp app stores timestamped GPS coordinates frequently, as before. Using
a simple lattice grid of longitude and latitude values covering the whole country,
combined with precomputed bounding boxes for each BSU stored on the phone, it is
easy to compile a list of the relevant geographical units where the particular phone
might have been over a specific period. Let us assume that this process is carried out
once a day, at midnight, processing all GPS events recorded for the last 24 hours.
The phone then asks the server to provide the polygons for only the relevant BSUs,
and the phone can match the recorded GPS events to these polygons to accurately
identify the BSUs where the phone was during the previous period. Most people
will not move around that much on a daily basis, meaning that the data access can be
further optimized by caching the BSUs in use over a few days. Overall, this approach
is similar to level of detail algorithms for data visualization or the way Google Maps
downloads only the map data close to your actual location to save communication
bandwidth. The key is to minimize the amount of data that needs to be compared to
GPS events and the amount of communication needed to obtain the data.

Adding POIs Obviously, this approach can be used for any other definition of
geographical regions as well, so long as these regions are described by one or
more polygons, with GPS coordinates for their corners. In particular, this approach
can treat clusters of BSUs as a region, or counties and municipalities. Once the
phone has identified the actual BSUs affected, it can ask the server to provide the
polygons for all relevant POIs within these BSUs. The same type of calculation can
then be carried out based on these polygons and the recorded GPS locations. The
result will be a complete overview of how the user of the phone has been located
relative to geographical units and their POIs, thus providing the necessary contextual
information needed for data aggregation across a population of app users.

138 Bruaset et al.

7.5.3 Local data aggregation on the phone

Once the locations are provided by the means described above, the compiled in-
formation can be communicated back to the server for the population-wide data
aggregation. The most important efficiency gain has been perfectly parallel data
processing, which will scale well as the numbers of users grow, provided sufficient
capacity for data communication on the server side. However, one can do more
locally, on the phone. To preserve privacy as much as possible and to present the
aggregated data at spatial and temporal levels that match operative needs, the first
steps of data aggregation can be conducted locally, on the phone. For instance, when
the data processing identifies that the user of the phone was present at the Sanatoriet
bus stop from 10:27 to 10:34, the data can be aggregated to coarser levels in time
and space. For instance, the event could be recorded as a stay at any bus stop in BSU
4416, Akebakkeskogen, or even coarser, in the city quarter Nordre Aker. Instead of
producing the exact timing of the event, the event could be denoted as a stay between
10:00 and 12:00 with a duration of less than 15 minutes. When this aggregation is
carried out locally, on the phone, the finer details of the user’s stay and movements
that would be discarded anyway in the aggregation process do not need to leave
the phone, thus reducing the privacy risk. Once these locally aggregated data arrive
at the server and are combined with similar data from other app users, techniques
such as k-anonymity and e-DP can be applied to further strengthen the privacy of
individuals.

For the most advanced types of aggregated data listed in Section 7.2, one needs to
include the interaction between users who have been close enough for long enough
to qualify as close contacts. As explained in Chapters 5 and 6, the presence of a
close contact is stored by the Smittestopp app as Bluetooth events where two or
more phones have been in direct contact. Since these events are timestamped and
the length of each event can be computed, this information can be correlated with
the GPS events in order to tag the Bluetooth event with the appropriate location
data. Once this is done, the same procedures as described above should be able to
associate a close contact with a geographical location, or, in particular, with a POL.
One thing to bear in mind, though, is that close contacts can be one to many, and not
only one to one. It is noted that the techniques for local data aggregation described
above can also be applied to this type of data prior to communication with the server.
Typically, this would result in the coarse-grained message ‘a 15-minute or shorter
contact between two people happened at a bus stop in “Nordre Aker” between 10:00
and 12:00’.

7.5.4 Improved privacy

The above statement about improved privacy assumes that there is no need for the
actual GPS coordinates on the server side for other types of analyses. As documented
in a recently published report [3], a modified version of Smittestopp can effectively

7 Data aggregation and anonymization 139

support contact tracing based on Bluetooth data alone, without any GPS information.
Therefore, the outlined approach to distributed data aggregation could be integrated
with this revised version of Smittestopp not only to reduce computing times and im-
prove scalability, but also to achieve a higher level of privacy. The outlined approach
could also be combined with contact tracing based on Google/Apple Exposure No-
tifications (GAEN), although then as two separate apps, since GAEN prevents the
integrated use of the GPS interface, even when restricted to local processing on the
phone. It should also be noted that the distributed data aggregation outlined above
can be extended to further reduce the privacy risk by introducing privacy-preserving
algorithms on the phone, prior to sending information to the server. In particular,
one could implement a differential privacy scheme on the phone, which would be an
effective remedy for the privacy concern expressed by the committee that evaluated
the initial Smittestopp design [4]. As discussed in Section 7.2.1, this would to some
extent distort the information sent back to the server, possibly reducing the cor-
rectness of the population-wide aggregated data. Thus, one would need to tune the
parameters of the algorithm such that one introduces enough uncertainty to shield
the individual user, but not so much that it jeopardizes the quality of the aggregated
data, for instance, with respect to making informed decisions on future pandemic
interventions.

Increased transparency and user interaction. Another possibility would be to
alert the user whenever a new batch of locally aggregated data is ready for transfer
back to the server, and allow the user to review and possibly remove sensitive
events from the aggregated data set before it is dispatched. The possibility of such
user intervention would provide a very high level of transparency, and hopefully
strengthen the trust in the app. The data review process could be the user’s choice,
meaning that the user can at any time opt to (a) trust the system and not review the data,
(b) be asked to review the data within a reasonable time window before automatic
dispatch, or (c) never send data before the users provides explicit confirmation.

Potential caveats. The distributed data aggregation outlined in this section has not
been implemented, and therefore non-evident problems could arise in practical use.
However, the two main obstacles for this scheme to work are (a) the processing power
and battery capacity offered by the phone and (b) ensuring that the locally aggregated
data are sent to the server in time for further aggregation into the population-wide
data sets.

It is well known that Norway is a country with quick and wide uptake of new
technology, especially with respect to telecommunications. Therefore, a large frac-
tion of the population has access to relatively new and powerful mobile phones that
are frequently used to stream music and video or to play games. Since these appli-
cations require a certain computational power, it is reasonable to assume that most
phones could perform the necessary computations well. However, experimentation
with a wide range of phone models and versions of their operating systems would
be necessary to know this for sure.

When it comes to communication of the data back to the server in time for further
compilation, this situation is similar to what was already present with the original

140 Bruaset et al.

Smittestopp app’s communication of GPS data to the server. In fact, it would be an
improvement in terms of volume, since the aggregated data would be significantly
smaller than the raw, unpruned data. However, the timing of communications would
be crucial to ensure the availability of each phone’s contributions at the server when
the global aggregation of the current period takes place. This is a side effect of
security concerns, meaning that aggregation cannot be redone later. To reduce the
timing risk, one can tune the length of the time interval between each aggregation/-
communication step. The amount of lost data would thus probably be reduced.

7.6 Conclusions and lessons learned

In this chapter, we presented the types of data that the Smittestopp system was
expected to aggregate at the population level to meet the government’s needs for
planning and assessing pandemic interventions. This aggregation included the esti-
mation of population dynamics over time for different categories of spatial locations,
such as the density of people at shopping malls and bus stops during different
periods of the day. Moreover, we described the aggregation procedures that were
implemented before the project was halted, as well as the more advanced techniques
that were planned for subsequent inclusion. In sum, these procedures would have
provided a high level of privacy protection, based on binning spatial and temporal
information to coarse levels and combinations of k-anonymity and e-DP privacy.

Due to the volume of incoming raw data, the data aggregation would be a com-
putationally demanding task. Observing positive experiences from testing both a
Bluetooth-only version of Smittestopp and a prototype app based on the GAEN
framework, it is now clear that future implementations of a contact tracing app can
avoid the centralized storage of GPS events. In this context, we have proposed a
distributed approach to data aggregation where each phone would locally aggregate
information to coarse spatial and temporal levels before sending it to the server for
population-wide aggregation. This approach mean that GPS events would not leave
the phone. One would thus achieve improved computational scalability and one
could further protect individuals’ privacy by imposing random noise through &-DP
privacy locally, on the phone, prior to communication with the server. In addition,
one could offer user-driven audits of the information before it was dispatched.

It should be noted that, in the original situation, before June 2020, this distributed
aggregation would not have been meaningful, since the centralized storage of GPS
events was seen as necessary to meet Smittestopp’s specifications. At that time,
the Google/Apple framework was not yet available or proven, and it was unclear
whether approaches not built on that framework would need GPS information to
help fix the inherent problem of sleeping iPhones not detecting contacts. In the first
phase of the project, the exact specification of aggregated data sets to target had
not yet converged, which also called for centralized processing. With the proven
performance of Bluetooth-only contact tracing, for iPhones as well, the scenario has
significantly changed in favour of distributed data aggregation locally, on the phones.

7 Data aggregation and anonymization 141

References

[1] C.Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In S. Halevi and T. Rabin, editors, Theory of Cryptog-
raphy, pages 265-284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[2] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data
publishing: A survey of recent developments. ACM Comput. Surv., 42:1-53,
2010.

[3] S.R. Laboratory and S. Metropolitan. Sammenligning av alternative lgsninger
for digital smittesporing (in Norwegian). Technical report, 2020.

[4] J. Lilleng, O. R. Lykkebg, B. Borud, @yvind Indrebg, E. A. Arvesen, A. Slater,
and E. S. Heimark. Endelig rapport for kildekodegjennomgang av lgsning for
digital smittesporing av koronaviruset (in Norwegian). Technical report, Helse-
og omsorgsdepartementet, 2020.

[5] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. L-
diversity: Privacy beyond k-anonymity. In 22nd International Conference on
Data Engineering (ICDE’06), 2006.

[6] M. of Health and C. Services. Forskrift om digital smittes-
poring og epidemikontroll i anledning utbrudd av covid-19 (in
Norwegian). https://www.regjeringen.no/contentassets/
116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-
digital-smittesporing.pdf. (Accessed 2020-09-28).

[7]1 1. of publich health. Coronavirus modelling at the niph. https://www.
fhi.no/en/id/infectious-diseases/coronavirus/coronavirus-
modelling-at-the-niph-fhi/. (Accessed 2020-10-26).

[8] P. Samarati and L. Sweeney. Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression. Tech-
nical report, 1998.

[9] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang. Privacy loss in Apple’s
implementation of differential privacy on MacOS 10.12. CoRR, abs/1709.02753,
2017.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
https://www.regjeringen.no/contentassets/116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-digital-smittesporing.pdf
https://www.regjeringen.no/contentassets/116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-digital-smittesporing.pdf
https://www.regjeringen.no/contentassets/116076d9a39b473a97d97474048e1fb0/kgl.-res.-27.-mars-digital-smittesporing.pdf
https://www.fhi.no/en/id/infectious-diseases/coronavirus/coronavirus-modelling-at-the-niph-fhi/
https://www.fhi.no/en/id/infectious-diseases/coronavirus/coronavirus-modelling-at-the-niph-fhi/
https://www.fhi.no/en/id/infectious-diseases/coronavirus/coronavirus-modelling-at-the-niph-fhi/

	Series Foreword
	Preface
	Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Timeline
	1.3 Design choices
	1.4 Team and project management
	1.5 Smittestopp rollout
	1.6 Book organization
	References

	Chapter 2 Smittestopp for Android and iOS
	2.1 Introduction
	2.2 Related apps for digital contact tracing
	2.3 App user interface and functionality
	2.4 System architecture and data flow
	2.5 App life cycle
	2.5.1 Android
	2.5.2 iOS

	2.6 Design choices
	2.6.1 Storage and security
	2.6.2 Location services
	2.6.3 Bluetooth Low Energy

	2.7 Testing
	2.8 Conclusions and lessons learned
	References

	Chapter 3 Smittestopp Backend
	3.1 Introduction
	3.2 Technical implementation
	3.2.1 Required functionalities
	3.2.1.1 Contact tracing and notification
	3.2.1.2 Aggregated statistics
	3.2.1.3 User data access

	3.2.2 Backend components
	3.2.2.1 Active directory B2C
	3.2.2.2 IoT hub
	3.2.2.3 Data lake
	3.2.2.4 SQL database
	3.2.2.5 Data factory
	3.2.2.6 Stream analytics
	3.2.2.7 OSM VMs
	3.2.2.8 Analytics VMs
	3.2.2.9 Kubernetes cluster
	3.2.2.10 API endpoints

	3.2.3 Interactions with the mobile app
	3.2.3.1 Key concepts
	3.2.3.2 Registration
	3.2.3.3 Data upload
	3.2.3.4 Deletion

	3.2.4 Cloud operations
	3.2.4.1 Data ingest and storage
	3.2.4.2 SQL database operations
	3.2.4.3 Analytics pipeline

	3.2.5 Interactions with web applications
	3.2.5.1 Contact tracing and notification service (Varslingsløsning)
	3.2.5.2 Aggregated statistics service (Kunnskapsinnhenting)
	3.2.5.3 User data access service (Innsyn)

	3.3 Experience: Challenges and lessons learned
	3.3.1 Distributed versus centralised architecture
	3.3.2 Data processing
	3.3.2.1 Date ranges and columnstore storage
	3.3.2.2 Inaccurate GPS measurements
	3.3.2.3 Timestamp matching Clock
	3.3.2.4 Calculating speed and distance
	3.3.2.5 Calculating distance on a sphere
	3.3.2.6 Location pre-filtering
	3.3.2.7 Trajectory segmentation
	3.3.2.8 Data sanity checks
	3.3.2.9 Database schema updates
	3.3.2.10 Moving operations to end user devices
	3.3.2.11 Manual versus automatic tracing

	3.3.3 Cloud optimisations
	3.3.3.1 Handling data import
	3.3.3.2 Managing load on components

	3.3.4 Ethical, privacy and security aspects
	3.3.4.1 Overview of security measures
	3.3.4.2 Data anonymisation
	3.3.4.3 Data storage
	3.3.4.4 Data access
	3.3.4.5 Bluetooth IDs
	3.3.4.6 Research and development data

	3.4 Summary and conclusions
	References

	Chapter 4 Smittestopp analytics: Analysis of position data
	4.1 Introduction
	4.2 Trajectory pre-processing
	4.2.1 Trajectories with a fixed length of GPS data points
	4.2.2 Trajectories with fixed time intervals
	4.2.3 Trajectories based on trips and stop points

	4.3 Predicting the mode of transport
	4.4 Map matching and map visualization
	4.4.1 Extract POIs from dilated areas
	4.4.2 Obtaining contacted POIs with points
	4.4.3 Relation between POIs and transport modes
	4.4.4 Querying POIs
	4.4.5 Accuracy of the identified POIs

	4.5 Challenges, experiences, and lessons learned
	4.6 Ethical considerations
	4.7 Summary and conclusions
	References

	Chapter 5 Using Bluetooth for contact tracing

	5.1 Collecting Bluetooth data from iOS and Android devices
	5.2 Challenges in distance estimation using Bluetooth
	5.3 Controlled experiments to aid distance classification
	5.3.1 April 2020 signal strength measurements
	5.3.2 August 2020 extended RSSI experiments
	5.3.3 The effect of the txPower parameter

	5.4 Identifying and classifying contacts
	5.4.1 Contact events
	5.4.2 Validation of Smittestopp contacts

	5.5 Related work
	5.6 Lessons learned
	References

	Chapter 6 Digital tracing, validation, and reporting
	6.1 Manual versus digital Tracing
	6.2 The type of information necessary to validate a digital tracing tool and prove its usefulness for epidemiologists/researcher
	6.3 Obtaining the information: Design principles and the implementation of digital contact tracing
	6.3.1 Shared components between GPS and BT data
	6.3.2 BT data processing
	6.3.3 GPS data processing
	6.3.4 Contact tracing reports

	6.4 Smittestopp testing and validation
	6.4.1 Pre-launch testing
	6.4.2 Real-life validation in testing municipalities
	6.4.3 Controlled testing under real-life and lab conditions

	6.5 Lessons Learned and conclusion
	References

	Chapter 7 Data aggregation and anonymization for mathematical modeling and epidemiological studies
	7.1 Introduction
	7.2 Data requirements and privacy
	7.2.1 Privacy-preserving techniques

	7.3 Geographical units and points of interest
	7.4 Data analysis and preliminary results
	7.4.1 Mapping GPS events to BSUs and POIs

	7.5 Distributed data aggregation
	7.5.1 Computational challenges
	7.5.2 Improving scalability through massive parallelism
	7.5.3 Local data aggregation on the phone
	7.5.4 Improved privacy

	7.6 Conclusions and lessons learned
	References

