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1  Introduction

The basic aim of all clustering methods is to assign objects to groups (clusters) according to 
similarities in their specific characteristics. Two objects assigned to the same cluster should share 
similar specified characteristics (variables, patterns, symbols, etc.), whereas two objects allocated 
to different clusters should be less similar. Objects might be cases of either a data matrix or 
variables. For example, countries (cases) might be classified in clusters according to their values 
in selected variables. Alternatively, variables might be clustered into groups, so that cluster 1 
contains variable X1, X2, and X4, cluster 2 variables X3, X5, etc. In most applications, cases are 
clustered. Therefore, these two terms (objects, cases) will be used here synonymously.

The development of clustering methods has varied in intensity and innovation since the 
1960s when they first became popular. For example, Ward proposed his well-known minimum 
variance method in 1963. The 1970s saw a flurry of textbooks on the subject (e.g., Everitt, 
1974; Hartigan, 1974; Jardine & Sibson, 1971), which tended to focus on algorithms to gener-
ate the clusters and proposed some formal criteria to decide the number of clusters. However, 
several problems remained unsolved at the end of this first period of intensive development 
(Everitt, 1979). They included the selection of appropriate variables and appropriate cluster-
ing methods, the determination of the number of clusters, and the evaluation of the clustering 
results. A further practical problem was the limited computer capacity at the time. In the 1980s, 
with the increase in computer capacity, cluster analysis techniques were included in standard 
statistical packages.

In the 1990s, inroads were made into addressing these early problems. This period was 
marked by the development of so-called model-based and probabilistic clustering techniques 
(e.g., Fraley & Raftery, 1999; Vermunt & Magidson, 2000) on the one hand and density clus-
tering methods (Ester et al., 1996) on the other.

Today, in the early 21st century, with huge advancements in computer capacity and capability, 
elaborate and computationally intensive methods have become the norm (Wierzchoń & Kłopotek, 
2018; Zgurovsky & Zaychenko, 2020) and the literature has exploded (Murtagh, 2016). Cluster-
ing methods are available in most statistical software packages, as well as in machine-learning 
software and data-mining packages such as RapidMiner. The most comprehensive collection of 
clustering methods is available in the software package R (Leisch & Gruen, 2020).
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This article provides an overview of clustering methods and covers the following topics:

•	 Steps toward an appropriate cluster solution
•	 Clustering methods
•	 Criteria to determine the number of clusters
•	 Methods to validate cluster solutions
•	 Computer programs
•	 Application
•	 Summary and recommendations

An in-depth insight into the discussed topics is provided by the excellent handbook by Hennig 
et al. (2016) and the reader by Wierzchoń and Kłopotek (2018).

2  Steps toward an appropriate cluster solution

In order to arrive at an appropriate cluster solution, the following steps are necessary:

1.	 Selection of appropriate variables, cases, and clustering method. The selection of appropriate vari-
ables and cases is a substantive decision that depends on the research question. Sometimes 
researchers can collect variables and cases by themselves, but in many applications, the data 
already exist and the researchers merely have to select the variables. From a formal perspec-
tive, the variables should be able to differentiate between the clusters. However, whether 
this is the case can only be judged a posteriori after completing the next steps. The selec-
tion of an appropriate clustering method depends on the selected data (size, measurement 
level of variables) and the researcher’s assumption of what the cluster should look like.

2.	 Running the cluster analysis. Sometimes the selected method is not available in the research-
er’s statistical package, making it necessary for him/her to familiarize him-/herself with a 
new computer program.

3.	 Selection of one or more appropriate cluster solutions. Sometimes, only one cluster solution 
comes into consideration for subsequent steps, but very often, there is more than one 
appropriate cluster solution for further consideration.

4.	 Validation of cluster solution(s). The selected cluster solutions are validated using external and 
internal techniques. If more than one cluster solution remains after step 3, this step should 
help to make a final decision.

5.	 Final decision for a specific cluster solution. If one cluster solution meets formal and substantive 
criteria, this cluster solution is selected and the resulting classification can be used. If this is 
not the case, the researcher can return to step 1 and opt to select additional variables or to 
exclude variables, and/or to choose a different clustering method.

The application of these steps will be demonstrated in section 8.

3  Clustering methods

There are different ways to classify clustering methods (e.g., Saxena et al., 2017). One prom-
inent distinction (Saxena et  al., 2017) is between hierarchical and partitioning techniques (see 
Figure 19.1). Hierarchical methods can be further divided into divisive and agglomerative meth-
ods. Divisive hierarchical methods start with the assumption that all objects belong to one large 
cluster and divide the clusters stepwise until each object builds a distinct cluster. In contrast, 
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agglomerative hierarchical methods assign each case to a distinct cluster at the beginning and then 
combine the clusters stepwise until all cases belong to one large cluster. Partitioning techniques 
start with a given number of clusters K and assign the cases iteratively to these K clusters by 
minimizing or maximizing a certain criterion. The most popular partitioning technique is 
k-means clustering.

In order to demonstrate the logic of hierarchical methods, it is important to compute a similar-
ity or dissimilarity matrix for the cases. A large number of similarity and dissimilarity measures 
exists. They are well documented in most textbooks (e.g., Bacher et al., 2010; Everitt et al., 
2001).

For quantitative variables, product and distance measures can be distinguished. The most 
prominent product measure is Pearson’s correlation coefficient:
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Pearson’s correlation coefficient is a similarity measure. A higher value indicates a greater simi-
larity between two objects.

Prominent examples of distance measures are the Euclidean distance and the city-block dis-
tance, which can be derived from the general Minkowski metric for two cases i and j:
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Different modifications to overcome problems, like avoiding sensitivity toward outliers, 
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Figure 19.1 � Overview of clustering methods
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For p = 1  the Minkowski metric results in the city-block distance, sometimes denoted as L1 
metric, for p = 2  the Euclidean distance, also denoted as L2. Distance measures are dissimilar-
ity measures.

If the variables have another nonquantitative measurement level, distance and product meas-
ures are available, too. Especially for dichotomous variables, numerous measures have been 
developed that differ as to how the presence and absence of an attribute is evaluated. Already in 
the 1970s, Gower (1971) proposed a similarity measure for variables with mixed measurement 
levels. If cases are clustered, the measures are computed for each pair of cases in contrast to the 
usual analysis whereby the correlation coefficient is computed for pairs of variables.

An example of a dissimilarity matrix is given in Table 19.1. A higher value indicates a larger 
dissimilarity. In the example, objects 5 and 6 with a value of d 5 6 1,( ) =  have the smallest dis-
similarity; they are the most similar of the six objects. The largest dissimilarity occurs for objects 
1 and 6 ( d 1 6 44,( ) = ). These objects are the least similar of the six objects.

Agglomerative methods start with the assumption that each object/case builds a cluster. For 
n cases, there are n clusters. The algorithms search the pair of clusters with the smallest dis-
similarity and agglomerate them into one cluster. The number of clusters reduces to n−1 and 
a new dissimilarity matrix is computed; therefore, the dissimilarity between two clusters has 
to be defined (see later). Afterward, the aforementioned steps are repeated until all cases build 
one large cluster. The process is usually reported in an agglomeration schedule (see Table 19.2) 
and graphically visualized in a dendrogram (Figure 19.2). Divisive methods follow the opposite 
principle and start with one large cluster that contains all cases. This large cluster is split stepwise 
into subclusters until each case builds a cluster.

Table  19.2 reports the agglomeration schedule of single linkage for the dissimilarity matrix of 
Table 19.1. At the beginning, each object builds one cluster. C1={1}, C2={2}, . . ., C6={6}. In 

Table 19.1  Dissimilarity matrix for six objects

1 2 3 4 5 6

1 0
2 10 0
3 30 20 0
4 38 28 8 0
5 43 33 13 5 0
6 44 34 14 6 1 0

Note: Table was generated by the authors.

Table 19.2  Agglomeration schedule for dissimilarity matrix in Table 19.1

Stage Cluster combined Coefficients
(agglomeration level v

k
)

Cluster 1 Cluster 2

1 5 6 1.000
2 4 5 5.000
3 3 4 8.000
4 1 2 10.000
5 1 3 20.000

Note: The cluster analysis was performed with IBM SPSS (version 26), module CLUSTER.
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the first step, the nearest cases 5 and 6 are combined at a level of 1.0. Now we have five clusters: 
C1={1}, C2={2}, . . ., C5={5, 6}. In the next step, the cluster with case 4 and the cluster with 
case 5 (and 6, not reported) are combined at a level of 5.0, and so on. The dendrogram (Figure 19.2) 
reports the process graphically. Objects 5 and 6 are combined at a low level; the next object, 4, is 
assigned to this cluster, afterward object 3. In the next step a new cluster is formed by objects 1 and 
2, and finally the two clusters C1={3,4,5,6} and C2={1,2} are combined into one cluster. The 
length of the line where two clusters merge represents the dissimilarity that occurs after the two 
clusters are combined. It corresponds to the agglomeration level in the agglomeration schedule.

The agglomeration methods differ in how they compute the new dissimilarities after two 
clusters are combined. Three main approaches exist (Everitt et al., 2001, pp. 55–67):

•	 Single linkage. In a specific step, the new dissimilarities between a cluster k and the new 
cluster (i, j), which agglomerates clusters i and j, is computed as: d d dk ij ki kj( ) = min( , ). This 
procedure results in clustering whereby each object of a cluster has at least one nearest 
neighbor within the cluster with a dissimilarity less than/equal to the reported agglomera-
tion level vk  at a certain step. Due to this property, single linkage is also referred to as the 
nearest neighbor method. It is able to produce chains and to find outliers.

•	 Complete linkage. The new dissimilarities between a cluster k and the new cluster (i, j) are 
computed as: d d dk ij ki kj( ) = max( , ). This procedure results in a clustering where the dissimi-
larities between all objects of a cluster are less than/equal to the reported agglomeration 
level vk  at a certain step. Due to this property, complete linkage is known as the furthest 
neighbor method, because the furthest object in a cluster is a neighbor. Complete linkage 
results in very homogenous clusters. The structure of the cluster is unimportant.

•	 (Weighted) average linkage. The new dissimilarities between a cluster k and the new cluster 
(i, j) are computed as a weighted average. Different formulas are used.

The aforementioned Ward’s method can be seen as a special agglomerative method. It requires 
quantitative variables and uses squared Euclidean distance. At a certain step, those two clusters 
are combined that minimize the sum of squares within clusters.

Figure 19.2 � Dendrogram for the agglomeration schedule of Table 19.2 (result for single linkage)
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K-means methods do not require a similarity or dissimilarity matrix to be computed. Rather, 
the number of clusters and a starting configuration must be specified at the outset. The start-
ing configuration can be generated randomly or empirically with another cluster or statistical 
method. It is also possible to use results or theoretical considerations. The results may depend 
on the starting values and the ordering of the cases.

K-means clustering assigns the cases to K clusters so that the within-cluster variation 
SSE K( )  (“sum of squares of error”) is minimized:
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where
wik  = membership function ( wik = 1  if case i belongs to cluster k, else 0)
xij  = value of case i in variable l
xkj  = mean of cluster k in variable l

Table 19.3 reports the result of k-means clustering for a data set with 25 cases. In the exam-
ple, a cluster solution with three clusters was computed. The means of cluster 1 and cluster 2 
in variable x1 are similar (1.97 and 2.01). Hence, the two clusters do not differ with respect to 
x1. However, they do differ in x2. The mean of cluster 1 is 2.62, whereas cluster 2 has a mean 
of 1.27. In contrast, cluster 3 differs from cluster 1 and 2 in x1, and from cluster 1 in x2, too.

Density-based clustering (Ester et al., 1996; Schubert et al., 2017). K-means clustering tends 
to build spherical clusters (Steinley, 2016) and is sensitive to outliers (Kaufman & Rousseeuw, 
1990, p. 117) like every procedure that works with the sum of squares. Density-based cluster-
ing overcomes this problem. It can detect clusters of different shapes. It assumes that areas of 
higher and lower density exist in the data space and requires the definition of two parameters: 
the radius ε  and the number of points NPts  that should occur within the radius of objects 
that build a region with high density. Figure 19.3 reports the results of density-based clustering.

Hierarchical methods, k-means, and density-based clustering methods are all heuristic meth-
ods. They use no underlying statistical model, like a normal distribution, and hence they are 
unable to deduce model-based measures to select a specific cluster solution and to evaluate this 
solution. They usually require decisions by the user that are ambiguous. For example, DBSCAN 
requires the definition of the minimal number of cases that should belong to a cluster and is very 
sensitive to this specification. If we increase the number of points NPts in the previous example, 
more objects are labeled as outliers even if they seem to be close to a cluster.

Table 19.3  Results of k-means clustering

Cluster centers Test statistics

Cluster K SSE ETA2 PRE FMAX

Cluster 1 18.19 0.0%
1 2 3 2 8.86 51.3% 51.3% 24.24

N 6 9 10 3 4.10 77.5% 53.7% 37.81
x1 1.97 2.01 1.00 4 2.67 85.3% 34.8% 40.65
x2 2.62 1.27 1.29 5 1.69 90.7% 36.8% 48.85

6 1.39 92.4% 17.7% 45,93

Note: k-means clustering was performed with IBM SPSS (version 26), module QUICK CLUSTER, 
option UPDATE. The test statistics are computed via additional syntax. Data are generated by the authors.
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Model-based clustering methods use an underlying statistical model. They assume that a mixture of 
probability distributions underlies the analyzed data. In the case of quantitative data, a mixture of 
normal distributions is usually assumed. In model-based clustering methods the general model is:

f X K f X pK K k k
k

K

( / , ,..., , , ) ( / )θ θ θ θ θ= { } =
=

∏1 2
1

 

where
f X k/θ( )  = joint distributions of the variables X in cluster k. The distribution depends on 

the parameters θK

pk  = proportion of cluster k

If all variables are dichotomous, the latent class model evolves. If all variables are quantitative, 
we arrive at the latent profile model. Both models were proposed by Lazarsfeld and Henry (1968) 
in the 1960s. The approach includes finite mixture models (McLachlan & Peel, 2005), which 
assumes in its classical approach that the observed distribution is a mixture of K p-dimensional 
normal distributions with a mean vector µ

k
 and variance-covariance matrix ΣΣ k  (Everitt et al., 

2001, pp. 120–122). Nowadays, adequate software is available, like LatentGold (see section 7), 
and it is possible to analyze variables of a mixed measurement type.

The primary objectives in the model-based clustering method are to estimate the parameters 
θK  of the conditional distributions and the number K of the clusters. Due to the assumption 
of probability distributions, statistically based measures are available. Information measures are 
most frequently used for this purpose (see section 5).

X1

X
2

Figure 19.3 � Graphical results of DBSCAN

Note. The solution was generated with R-function HDBSCAN from the package DBSCAN. The number of points 
NPts was set to 5. The cases of cluster 1 are drawn with crosses. The cases of cluster 2 are drawn with triangles. One 
case (circle) is detected as an outlier. Even without the outlier, the K-means solution with 2 clusters would not dif-
ferentiate between the two geographic shapes.
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4  Modifications and recent developments

The methods described previously can be regarded as prototypes that have been modified in 
several ways, especially in recent years. Some of these modifications are now described:

•	 Enhanced hierarchical methods for large data sets. Hierarchical methods require the computation 
and storage of a dissimilarity matrix and therefore need considerable computer memory. 
Consequently, enhanced hierarchical methods have been developed to handle large data 
sets, like BIRCH or CURE (Saxena et al., 2017).

•	 Using other measures of central tendency instead of the mean in k-means. Clustering methods exist 
that use medians (k-median clustering, Bradley et al., 1996), modes (K-modes clustering,  
Huang, 1998), or representative data points (k-medoids clustering, Kaufman &  Rous-
seeuw, 1990, pp. 68–123) instead of means.

•	 Using other distance measures in k-means. K-means clustering uses squared Euclidean distances 
and consequently the centers are sensitive to outliers. Therefore, the use of the city-block 
distance instead of the squared Euclidean distance was proposed. For instance, k-medoids 

clustering minimizes: F K w x m
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K
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, where mkl is a representative data 
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•	 Detection and elimination of outliers. Another way to avoid dependence on outliers is to detect 
and eliminate them (Hautamäki et al., 2005). The iterative k-means procedure (Holmgren 
et al., 2020) is one example.

•	 Assignment of cases to more than one cluster. Some cases are difficult to assign to a single cluster. 
They may be located between two clusters. Hence, it may be reasonable to assign them to 
two or even more clusters. Fuzzy clustering methods (Jain & Dubes, 1988, pp. 130–133) 
are one approach that allows multiple assignment.

•	 Bayes estimation methods. In accordance with the general trend toward Bayesian statistics, 
Bayes estimation methods have been introduced for clustering techniques. One cluster 
program that has fully implemented a Bayes approach is AutoClass (Bacher et al., 2010, 
pp. 439–446).

5  Criteria to determine the number of clusters

The determination of the number of clusters is critical in clustering methods. Generally, the user 
must decide the number of clusters. Most implementations of cluster methods in software pack-
ages provide formal criteria. Some implementations have automatized the decision and propose 
a certain cluster solution. However, these suggestions depend on the specified parameters and 
if these parameters are changed, the number of cluster changes, too. Therefore, even in these 
cases, the proposed cluster solution should be validated (see the next section). It might be the 
case that a different solution is more appropriate than that proposed. Further criteria, which are 
not used in the automatic proposal, are relevant. These further criteria might be interpretability, 
comprehensibility (small number of clusters is preferred), and minimal cluster size (each cluster 
should have at least a certain number of cases).

The available formal criteria depend on the clustering methods. For hierarchical clustering 
methods the number of clusters is commonly fixed graphically. The user sets the number of 
clusters equal to the number of “hills” in the dendrogram. In Figure 19.2, two hills can be seen. 
Another graphical method is the inverse scree test (Lathrop & Williams, 1989), sometimes called 
the elbow test. Similar to explorative factor analysis, a scatter plot is generated. The number of 
clusters defines the x-axis, the value of the agglomeration schedule the y-axis (see Figure 19.4).
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The diagram is read from right to left, starting with the highest number of clusters. Moving 
left, one stops when the first break point (“elbow”) is observed. The number of clusters is set equal 
to the number of clusters where the first break point occurs. In Figure 19.4, the first break point 
occurs for five clusters. For a large data set, this procedure can result in a high number of clusters. 
In this case, one can continue and look for the next break point. In our example, five clusters 
might be acceptable and the number is not too high. The example indicates a further break point 
at three clusters. Hence, we can conclude that two cluster solutions are appropriate. Mojena (1977) 
formalized the decision based on the scree diagram. One of his criteria is to estimate a regression 
line until K clusters, to predict the value for K−1 clusters based on the results of this regression 
line and to test whether the empirical value significantly departs form the predicted value. Mojena 
proposes a threshold of 2.75 for the standardized residuals for K clusters from a regression line from 
1 to K−1 clusters. In Figure 19.4, the significant departure occurs for three clusters.

For k-means clustering, it is obvious to use the sum of squares of error and some derived meas-
ures to determine the number of clusters. For this purpose it is necessary to generate a series 
of k-means solutions. We recommend starting with one cluster as the lowest value and set the 
highest value as one that would not be expected from a substantive perspective, e.g., 10 to 20 
clusters. The decision for a cluster solution might now be based on:

•	 Explained variance (ETA
SSE

SSEK
K2

1

1= − ) : the user defines a threshold in advance, starts 

with K=1 cluster and selects the first solution with K clusters that meets this threshold.

•	 PRE statistic (PRE
SSE

SSEK
K

K

= −
−

1
1

) : the user selects the solution with K clusters if PREK  

is large and the following PRE for K+1, K+2 are small.

•	 FMAX statistic (FMAX
SSE SSE K

SSE n KK
K

K

=
−( ) −( )

−( )
1 1/

/
) : the user selects the cluster solution 

with the highest F value.

In Table 19.3, FMAX suggests a five-cluster solution, whereas we can observe a clear drop after 
three clusters for PRE (from 53.7% to 34.8%). ETA2 already reaches a high level of 77.5% for 
three clusters. Hence, it might be useful to further analyze a three- and a five-cluster solution. 
It is also possible to draw a scree diagram for the different criteria mentioned earlier. If FMAX 
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statistics are used as the y-axis, for example, the solutions with the highest peak are selected. If a 
modified method is used, alternative measures can be used. We will demonstrate the use of this 
graphical method later for information criteria.

Density-based clustering methods propose a certain number of clusters. Therefore, the user does 
not need to decide the number of clusters at first. However, s/he must test validity. One or more 
alternative solutions may be more appropriate. In addition, as already mentioned, the solution 
depends on the specified parameter.

Model-based clustering methods have the advantage that the underlying statistical probability 
model enables the deduction of formal criteria. On the one hand they make it possible to run 
chi-square-based tests, like likelihood-ratio (LR) test; on the other information criteria are 
available. In order to select a certain cluster solution, it is necessary to generate a series of pos-
sible solutions. Again, we recommend starting with K=1.

The LR test is defined as

LR K K LL LLK K, −( ) = −−1 1 , 

where
LLx  = log-likelihood function for a solution with x clusters.

The LR statistic makes it possible to test whether a solution with K clusters significantly 
improves a solution with K−1 (or K−x) clusters. Wolfe (1970) proposed a modification for the 
LR statistic. From a theoretical point of view, the LR statistic or its modification by Wolfe has 
a chi-square distribution. Results by McLachlan and Peel (2005) and McLachlan and Basford 
(2000) suggest that this is unfortunately mostly not the case. Therefore, the bootstrap method 
is recommended nowadays.

Information measures are most frequently used to decide the number of clusters. Popular 
information measures are

AIC LL mK K K= − +2 2

BIC LL m nK K K= − +2 log( )

CAIC LL m nK K K= − + +( )2 1log( )

AIC LL mK K K3 2 3= − +

where
LLK  = value of the log-likelihood function that maximizes LL w f X

i

n

i i k= ( )( )
=
∑

1

ln /θ
mk  = number of parameters that must be estimated
n  = number of cases

The underlying idea behind these measures is to correct for the fact that more clusters will 
automatically provide a better fit. Again, a scree diagram can be drawn. The most appropriate 
solution is the solution with the lowest value (inverse peak, see Figure 19.5).

An evaluation study (Fonseca & Cardoso, 2007) suggests that AIC3 performs best for categorical 
data, whereas BIC performs best for quantitative (metric) variables. AIC has a tendency to select 
too many clusters (McLachlan & Peel, 2005, p. 220). For mixed scaled variables, the integrated 
completed likelihood criterion ICL BIC−  (Biernacki et al., 2000) outperforms. It is defined as

ICL BIC BIC EN S− = + ( )2
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and additionally integrates the entropy of the probability of class membership 

EN S k i k iK
i

n

k

K

( ) ( / ) log( ( / ))= −∑∑
= =1 1

π π . 

According to McLachlan and Peel (2005, pp. 217–220) ICL BIC−  outperforms in the case 
of quantitative variables, too. Akogul and Erisoglu (2016) report that the Kullback information 
criterion (KIC) performs best for quantitative variables. KIC is defined as

KIC LL mK K K= − + +( )2 3 1

and differs from AIC3 only by adding 3. In a further paper, the authors (Akogul & Erisoglu, 
2017) propose using an analytic hierarchy process (AHP) that combines different information 
measures. This procedure is similar to the consensus method proposed in Bacher et al. (2010).

6  Criteria to validate a cluster solution

After the decision for one or more possible cluster solutions, the selected solutions must be 
evaluated or rather validated. Validation involves (Everitt et al., 2001, pp. 180–196; e.g., Jain 
& Dubes, 1988; Wierzchoń & Kłopotek, 2018):

1.	 Formal internal validation of the selected solutions. An index is computed that measures the 
homogeneity of the clusters of the different solutions. If only one solution is evaluated, 
thresholds must be defined in order to be able to judge whether the solution can be 
accepted. If more than one solution is validated, one speaks of a relative validation. In this 
case, the solutions with the highest formal validity can be selected.

2.	 Stability test. Cluster analysis requires decisions where the user is uncertain which deci-
sion is correct. These uncertain decisions should have no or only a small influence on the 
results. Therefore, this criterion is labeled also as robustness.
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Figure 19.5 �� Scree diagram generated for different information measures (results from model-based clustering)
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3.	 Interpretability. This is the most important criterion. Ideally, formal validation and the stability 
test result in a decision for a certain cluster solution. If this solution should be used for further 
analysis, the clusters must be substantively interpretable. It must be possible to give the clusters 
substantive meaningful names. Sometimes it may occur that this is not possible for all clusters.

4.	 Validation by external criteria. Interpretation very often results in the specification of hypoth-
eses about the association of one or more clusters with other variables, for example “Clus-
ter C1 is associated with variable Z.” It may also be possible that these hypotheses exist 
in advance. The researcher expects certain clusters and associations. In very rare cases, it 
might be possible to use another classification for validation. The task in this step is to test 
whether the hypotheses hold.

In the last two decades, many coefficients for formal validation have been proposed (Liu et al., 
2010; Satre-Meloy et al., 2020). One frequently used coefficient for formal validation is the sil-
houette coefficient SC. SC reports how much the objects of one cluster differ from the objects 
of the cluster that is closest to them. The SC for one object i, cluster k, and finally the cluster 
solution K is defined as

SC i
b i a i

b i a i
( ) =

( ) − ( )
( ) ( )max( , )

, SC k
n

SC i
k i

nk

( ) = ( )
=
∑1

1

 and SC K
n

n SC k
k

K

k( ) = ( )
=

∑1

1

,

where
b i( )  = average distance of object i to all objects in its nearest cluster.
a i( )  = average distance of object i to all other objects in the cluster to which object i belongs.

Different distance measures can be used and will result in different scores. If the clusters are 
well separated, SC(K) should be large. Kaufman and Rousseeuw (1990, p. 88) propose the fol-
lowing threshold values:

0.71 ≤ SC(K) ≤ 1.00 strong structure
0.51 ≤ SC(K) ≤ 0.70 reasonable structure
0.26 ≤ SC(K) ≤ 0.50 �weak structure (could be artificial,try ad-

ditional methods)
  SC(K) ≤ 0.25	   no substantial structure

A further frequently cited index is the Dunn index (Kaufman & Rousseeuw, 1990, p. 171). Similar 
to SC(K), higher values of the Dunn index indicate a better separation. Recent literature recom-
mends to use at least one of these indices to determine the number of clusters, for example by 
drawing a scree diagram for the silhouette coefficient for different cluster solutions and selecting 
the solution with the highest silhouette coefficient. Several further indices are available for this task.

In order to compare different cluster solutions, the Rand index is available (Everitt et al., 2001, 
pp. 181–183). The Rand index depends on the marginal distributions of the classification. There-
fore, the adjusted (or corrected) Rand index is recommended. It corrects for purely random agree-
ment and is able to discriminate good solutions. Thresholds are RAND > 0.7 (Frabioni & Saltstone, 
1992). For the Hubert-Arabie Adjusted Rand index, Steinley (2004) gives the following thresholds:

0.90 < adj.Rand 		  excellent recovery
0.80 < adj.Rand ≤ 0.90	 good recovery
0.65 < adj.Rand ≤ 0.80	 moderate recovery 
       adj.Rand ≤ 0.65	 poor recovery.
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7  Software

Modules in standard statistical software and special, stand-alone software programs are available 
for cluster analysis. A short and narrative overview will be provided here because the implemen-
tation and availability of a program can change during a program upgrade.

IBM SPSS (version 24.0 and above, www.ibm.com/analytics/spss-statistics-software) offers 
three procedures for clustering: agglomerative hierarchical methods, k-means clustering, and 
model-based clustering (TSC, two-step cluster). TSC is a hierarchical (divisive) model-based 
program. It starts with one cluster and splits the clusters as long as the increase in the BIC or 
AIC change falls below a certain threshold (Bacher et al., 2004). It enables users to handle outli-
ers and to analyze variables with mixed measurement levels. However, ordinal variables have to 
be treated as nominal scaled variables.

STATA (version 15 and above, www.stata.com/) offers agglomerative hierarchical methods and 
k-means and model-based clustering similar to IBM SPSS. Model-based clustering is available via 
generalized structural equation models and corresponds to the described approach. In addition, k-
median is available, as are special modules for computing the silhouette coefficients and adjusted R.

R offers the most powerful implementation for clustering methods. Leisch and Gruen (2020) 
provide an overview.

LatentGold (www.statisticalinnovations.com/latent-gold-5-1/) is a stand-alone software that 
enables model-based clustering. Variables with different measurement levels can be used. Cor-
rect standard errors are computed for complex sample designs (like multistage sampling). Bayes 
elements are integrated in order to avoid local minima and degeneration of solutions. The same 
models are available in MPLUS (www.statmodel.com/).

A comparison by Kent et al. (2014) between TSC and LatentGold favors LatentGold. This 
result corresponds to Bacher et  al. (2004). Rodriguez et  al. (2019) compare nine clustering 
methods that are implemented in R. The studied methods cover all discussed types of clusters. 
They found a small difference if the dimensionality of the data is small (Rodriguez et al., 2019).

8  Application

We reanalyze data from the Austrian Social Survey (SSÖ) from 2018 (Hadler et  al., 2019), 
which are described in more detail in Eder et al. (2020).1 The authors use this data set of 1,200 
respondents aged 18 and above to analyze their positional, moral, and emotional subjective rec-
ognition with the aim of identifying social groups that feel unrecognized. With the help of eight 
dichotomized indicator items, the authors perform model-based clustering (latent class analysis) 
and select a solution with four classes. The indicators are shown in Figure 19.6. Their analyses 
were performed with the statistical software R and the package poLCA.

The first class (cluster) is described as “almost entirely recognized,” the second class as “posi-
tionally recognized but emotionally unrecognized,” the third class as “emotionally recognized 
but positionally unrecognized,” and the fourth class as “poorly recognized.” The profile of the 
four clusters is visualized in a diagram by the authors.

The authors validated their interpretation with a multinomial logistic regression. The four 
clusters were used as dependent variables. Variables deduced from theory were used as inde-
pendent variables. The multivariate analysis confirms the interpretation.

Hence, the following criteria are fulfilled:

•	 Formal internal validity (the four-cluster solution has the lowest BIC and entropy-R-
squared is sufficient high).
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•	 Interpretability is given.
•	 Validity by external criteria is given.

Relative validity and stability were not tested. This is not necessary, especially if all or nearly all 
criteria suggest a four-cluster solution. Nonetheless, we will perform a relative internal validity 
test and test stability. For this purpose, we applied another computer program, namely Latent-
Gold 5.0, and computed up to 10 clusters. The information measures (see Table 19.4) suggest 
a four-cluster solution (BIC, CAIC) and a six-cluster solution (AIC3). Some simulation results 
(see earlier) suggest AIC3 for categorical variables. Therefore, we further analyze the four- and 
six-cluster solution to come to a final decision.

Table 19.5 reports the results of internal validity tests. The four-cluster solution results in a 
slightly higher silhouette coefficient and Dunn index than the six-cluster solution. The aver-
age weighted evidence prefers the four-cluster solution, too. According to the thresholds for 
the silhouette coefficient, this is a weak cluster solution and further tests should be conducted.

Stability was tested by varying the measurement level of the variables. The use of the non-
dichotomized indicator items defined as continuous variables leads to computational prob-
lems in LatentGold and cannot be further analyzed. Defining these indicator items as ordinal, 
the BIC suggests a seven- and the CAIC a five-cluster solution, whereas the AIC3 does not 
indicate a solution within one to 10 clusters. To remain comparable to the aforementioned 
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Table 19.5  Results of further internal validity tests

Internal validity

Cluster SC (K) DUNN AWE

4r 0.2937 0.6919 - a)

4l 0.2956 0.6891 11274.24
6r 0.2766 0.6489 - a)

6l 0.2766 0.6397 11788.93

Note: r = poLCA, l = LatentGold, SC was computed using city-block distance.

a) AWE (approximate weight of evidence, Vermunt & Magidson, 2013, p. 71) not available in poLCA. 
Calculation was done by the authors. Data are taken from Social Survey Austria 2018 (Hadler et al., 2019), 
which is freely available at AUSSDA (https://aussda.at/).

Table 19.4  LatentGold output (eight indicators, nominal scale type, missing values excluded)

Classes LL BIC(LL) AIC3(LL) CAIC(LL) Entropy-R2 a)

1 -5379.1005 10814.0638 10782.2009 10822.0638 ---
2 -5028.8155 10176.3396 10108.6309 10193.3396 0.6589
3 -4933.6455 10048.8454 9945.2910 10074.8454 0.6763

4 -4891.8868 10028.1737 9888.7735 10063.1737 0.6586

5 -4864.1043 10035.4545 9860.2085 10079.4545 0.6391

6 -4848.3874 10066.8666 9855.7749 10119.8666 0.6536

7 -4839.4093 10111.7561 9864.8186 10173.7561 0.6822
8 -4832.7305 10161.2443 9878.4611 10232.2443 0.6333
9 -4825.9397 10210.5083 9891.8793 10290.5083 0.6538
10 -4820.3521 10262.1789 9907.7041 10351.1789 0.7069

Note: a) Entropy-R2 (Vermunt & Magidson, 2013, p. 70) measures the explained variance for a cluster 
solution with K clusters. The results were generated with LatentGold version 5.0. Calculation was done by 
the authors. Data are taken from Social Survey Austria 2018 (Hadler et al., 2019), which is freely available 
at AUSSDA (https://aussda.at/).

solutions, we test the stability of four- and six-cluster solutions based on the ordinal scale type 
(see Table 19.6). All solutions seem to be somewhat stable, whereby the solutions based on the 
dichotomized indicator are very similar between poLCA and LatentGold. However, the Rand 
index and especially the adjusted Rand index indicates bigger differences between the solu-
tions based on the original ordinal indicators and the dichotomized solutions. All values for the 
four-cluster solution are above the quoted thresholds and we can regard the solutions as stable. 
For the six-cluster solution, the adjusted Rand index falls under the threshold of 0.65 and the 
recovery is poor.

Finally, we checked the interpretability of a six-cluster solution with dichotomized indi-
cators. It is possible to describe the class profiles as follows: Class 1 (40.3%): “positionally 
recognized but morally and emotionally unrecognized”; class 2 (23.4%): “almost entirely recog-
nized”; class 3 (14.6%): “positionally recognized but emotionally unrecognized”; class 4 (8.8%): 
“emotionally and morally recognized but positionally unrecognized”; class 5 (8.5%): “some-
what recognized, somewhat unrecognized”; and class 6 (4.6%): “poorly recognized.” The inter-
pretability is not as clear as that for the four-class solution, as the additional classes do not add 
substantial improvements. In summary, our additional analysis supports the authors’ decision.
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9  Summary and recommendations

In the last two decades, a large variety of cluster algorithms and criteria for selecting and validat-
ing cluster solutions have been developed. This development focuses on computer science and 
informatics. The innovations are partially used in applied science. It is difficult to predict which 
innovations will become established.

Therefore, we can recommend using only those methods that are well documented. It is 
important to read the definition and computation criteria because they may have the same name 
but in fact differ in computation method.

Among the discussed methods, we prefer – where appropriate – to use model-based meth-
ods because they have a statistical base. Exceptions are a small data set or geographical data. For 
the first case, hierarchical methods are recommended; for the second, density-based clustering 
methods can be considered.

The aforementioned innovations may help to solve some of the problems that were men-
tioned by Everitt (1979). Sometimes, the picture may become unclear when more measures are 
used. In our experience, the main reason for this unsatisfactory situation is missing substantive 
theory that enables valid variables and expected clusters to be deduced. As long as this theory is 
lacking, some cluster analysis problems will remain unsolved.

10  Appendix: data sets and syntax for examples

The used data sets and the syntax are available at doi:10.5281/zenodo.5031638 [1.8.2021].

Note
	1	 We would like to thank Robert Moosbrugger as one of the authors for his help in preparing the data 

for analysis.
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