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Preface

The goal of this book is to give an exposition of the theory of dendroidal sets and
dendroidal spaces, and its relation to topological operads and infinite loop spaces.
In the first part we have tried to give a complete treatment of the elementary theory
of dendroidal sets, emphasizing the analogies with the theory of simplicial sets. For
this reason, the reader less familiar with simplicial sets can also use this text as
an introduction to this theory by focusing on Chapters 2 and 5. The reader already
acquainted with simplicial sets can skip from Chapter 1 straight to Chapters 3, 4,
and 6 to learn about dendroidal sets. To facilitate these different ways of using this
text, there will be some measure of repetition of arguments between the simplicial
and dendroidal sections.

Dendroidal sets form an extension of the theory of simplicial sets in a very
precise sense and this extension leads to several new features. The main one is that
while simplicial sets are indexed by linear orders that do not have automorphisms,
dendroidal sets are indexed by trees and these have many automorphisms. Another
feature is that the Cartesian product on simplicial sets extends to a tensor product on
dendroidal sets, the study of which involves a careful analysis of shuffles of trees.
These two aspects explain why the theory of dendroidal sets involves quite a bit of
combinatorics. The reader will find good illustrations of this phenomenon in the
proofs of Proposition 4.26 and Lemma 6.24, for example.

While in the first part homotopical properties of simplicial and of dendroidal sets
only occur at a relatively elementary level, many readers will realize that much of
the exposition forms a preparation for the study of Quillen model category struc-
tures on the categories of simplicial and dendroidal sets. In Part II of this book we
prove the existence of several of these structures: amongst others, we establish the
Kan–Quillen model structure for simplicial sets (describing the homotopy theory of
spaces), the Joyal model structure for simplicial sets (describing the homotopy theory
of ∞-categories), and the operadic model structure for dendroidal sets (describing
the homotopy theory of ∞-operads). In Part III we develop the homotopy theory of
dendroidal spaces. We begin with two general chapters on Reedy model structures
and the theory of left Bousfield localization. Then we apply this general theory to
describe several model structures on the category of dendroidal spaces and their re-
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Preface

lation to corresponding homotopy theories of dendroidal sets. This specializes to the
equivalence between the Joyal model structure and Rezk’s theory of complete Segal
spaces in the simplicial case. Then we explore the relation between the homotopy
theories of dendroidal sets and spaces on the one hand and the homotopy theories of
topological or simplicial operads and of algebras for such operads on the other.

Our aim in this book is to give a reasonably self-contained exposition and to
clearly exhibit the parallels and differences between the simplicial and dendroidal
theories. For this reason, we also present some material (such as the fundamentals
of simplicial sets) that is already covered in earlier sources. Our exposition has been
tailored to our needs and, we feel, in several cases provides a more streamlined
presentation than is available elsewhere. At the end of each chapter we include a
short section with historical comments, indicating some of the main origins of the
material we present and providing pointers to the relevant literature.

This book develops the fundamentals of the theory of dendroidal sets and spaces.
We have not attempted to cover all of the variations and applications of that theory
occurring in the literature, but will point the reader to some further developments
and applications in the epilogue.

Our own understanding of the theory owesmuch to discussions and collaborations
with many colleagues, among whomwe would in particular like to mention Clemens
Berger, Thomas Blom, Pedro Boavida, Hongyi Chu, Denis-Charles Cisinski, Javier
Gutierrez, Rune Haugseng, Vladimir Hinich, Eric Hoffbeck, Jacob Lurie, Thomas
Nikolaus, and the second author’s (former) PhD students Miguel Barata, Matija
Basic, Giovanni Caviglia, Peter James, Andor Lukács, Joost Nuiten, and IttayWeiss.

We started writing this book in 2015 and we would like to thank the many institu-
tions that supported us during our work. A first draft of many chapters of this book
was written during our stay at the thematic program ‘Homotopy Harnessing Higher
structures’ at the Isaac Newton Institute in Cambridge in 2018.We thank the Institute
for hosting us and providing excellent working conditions. Furthermore, we thank
our various host institutions: University of Copenhagen, Harvard University, Rad-
boud University, University of Sheffield, and Utrecht University. We acknowledge
the support of the NWO through the project ‘Lie algebras and periodic spaces in ho-
motopy theory’ (with project number 016-VENI-192-186) and Moerdijk’s Spinoza
prize (with project number SPI 61-638), as well as the support of the European
Research Council through the grant ‘Chromatic homotopy theory of spaces’ (grant
number 950048).

It will be clear to the reader that we owe much to the works of Michael Boardman
and Rainer Vogt. Sadly both of them passed away during the writing of this book,
which we dedicate to their memory.
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Introduction

A simplicial set is a system of sets indexed by the natural numbers, or rather the
linear orders 0 ≤ 1 ≤ · · · ≤ n for all n ≥ 0, and maps between these corresponding
to monotone maps between linear orders. A simplicial set can be viewed as a way to
encode the construction of a topological space, the so-called geometric realization
of the simplicial set. With this realization in mind it is possible to develop much
if not all of the homotopy theory of topological spaces using simplicial sets as
models for spaces, as was convincingly shown already in the 1950s and 1960s
by the work of Kan, Curtis, Moore, May, and many others. Good expositions of
this early development are the books by May [111], Gabriel and Zisman [61], and
Lamotke [101], while the book by Goerss and Jardine [69] provides a more modern
perspective. The simplicial theory is now widely used in mathematics and plays
a central role not only in topology but also in many aspects of modern algebraic
geometry, as illustrated by Illusie [89], Friedlander [59], Artin and Mazur [6], and
more recently in the motivic homotopy theory of schemes [119].

There is a close relation between the theory of simplicial sets and that of cate-
gories. Any (‘small’) category defines a simplicial set, known as the nerve of the
category. In this way one can view a category as giving rise to a topological space,
called the classifying space of the category, simply by considering the geometric
realization of its nerve. This viewpoint leads to many useful invariants of categories
borrowed from topology, such as homotopy and cohomology groups, and has shown
to be extremely useful, for example in the development of higher K-theory initiated
by Quillen [126].

From the point of view of category theory, however, the construction of the
classifying space is quite a big step, because it forgets the direction of the arrows in the
category. As a consequence, many categories have homotopy equivalent realizations;
for example, any adjoint pair of functors gives a homotopy equivalence of classifying
spaces. The direction of arrows is still present in the simplicial set encoding the nerve
of a category. This leads to the question whether there is a more refined ‘homotopy
theory’ for simplicial sets, retaining more of the categorical properties for nerves
of categories; a homotopy theory for which an equivalence between two categories
corresponds to a new kind of homotopy equivalence between simplicial sets. Joyal
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Introduction

and Lurie have shown that it is indeed possible to develop such a more refined
homotopy theory of simplicial sets, which goes under the name of the theory of
quasi-categories or∞-categories.

Operads can be viewed as a generalization of categories. While in a category the
arrows run from a single source to a single target, in an operad an arrow – or an
operation, as one usually says in this context – runs from a finite sequence of sources
(or ‘inputs’) to a single target (or ‘output’). Thus, while the structure of composing
arrows in a category can be described by linear orders

...

0

1

n

encoding the structure of composition of an operad requires rooted trees instead of
linear orders:

f

a e
q

p

cb d

Here the first picture is to be interpreted as the category with objects 0, . . . , n
(represented by the edges) and a single morphism i → j whenever i ≤ j (with the
generating morphisms i → i + 1 indicated by the vertices in the picture). Note that
this way of using edges and vertices is dual to the more standard conventions for
picturing categories and linear orders. This switch is made in anticipation of the
kind of pictures we will draw for operads. Indeed, the second picture represents an
operad with objects (or colours) a, . . . , f and generating operations p : (b, c, d) → e
and q : (a, e) → f .

Operads initially arose in an attempt to understand the structure of iterated loop
spaces in topology and the higher associativity laws involved in the composition
of loops, or the composition of ‘loops of loops’ in double loop spaces, etc. More
explicitly, an operad describes a specific kind of algebraic structure in terms of all
the operations involved in that structure, and all the equations that hold between all
possible compositions of these operations. The algebraic structure of an n-fold loop
space can be described in a very efficient and elegant way as the structure of an
algebra over a specific operad, known as the operad of little n-cubes. This method
of studying iterated loop spaces goes back to Stasheff [135], Boardman and Vogt
[21], and May [112], and forms the origin of the theory of operads. Later it became
apparent that operads play an important role in many other parts of mathematics.
For example, the moduli spaces of surfaces with boundary form an operad playing
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Introduction

an important role in topological field theory [67]. Operads occur in geometric group
theory in the analysis of the homology of free groups using ‘outer space’ [44].
They play an essential role in the deformation theory of associative algebras and the
precise structure of the Hochschild complex controlling such deformations [100],
and in developing a general theory of Koszul duality for algebras of different kinds
[68, 65, 104].

As the theory of operads forms an obvious extension – from a single input to
multiple inputs – of the theory of categories, the theory of dendroidal sets arose in
the search for a similar extension of the theory of simplicial sets, thus completing
the square below.

categories
more inputs //

nerve
��

operads

��
simplicial sets // ?

The goal of this book is to show that such a theory indeed exists and to describe
some of its main developments. We have organized the exposition into several parts,
reflecting the relation of the theory to simplicial sets, operads, and homotopy theory
mentioned above.

In Part I, our goal is to explain in detail the basic features of the category of
dendroidal sets, emphasizing its relation to simplicial sets, operads and algebras,
but saving more advanced homotopy theoretic aspects for later. Chapter 1 reviews
the main notions in the theory of operads together with some examples. In Chapter
2 we give an introduction to the theory of simplicial sets, assuming only some
familiarity with basic categorical language (categories, functors, limits and colimits,
adjunctions, etc.). Then Chapter 3 introduces dendroidal sets and explains howmany
aspects of the theory of simplicial sets extend to dendroidal sets. Nerves of operads
are among the main examples of dendroidal sets, just like nerves of categories give
important examples of simplicial sets. The main additional feature at this stage is
that due to the existence of non-trivial automorphisms of trees, not every dendroidal
set has a well-behaved skeletal filtration in the way that any simplicial set has. This
motivates the introduction of the property of normality of a dendroidal set. This
property is defined in terms of the groups of automorphisms of trees, which are
required to act freely on a normal dendroidal set. For example, the nerve of an
operad is a normal dendroidal set precisely if the symmetric groups act freely on the
operad (one says that the operad is Σ-free). Normal dendroidal sets are much better
behaved than arbitrary ones and in particular they do have a good notion of skeletal
filtration. A useful analogy to keep in mind here is that among general dendroidal
sets the normal ones play a role similar to that of CW-complexes among topological
spaces.

In Chapters 5 and 6 we discuss fibrations of simplicial sets and of dendroidal sets.
We develop the simplicial theory first and give a detailed treatment of the notion of
Kan fibration which is central to the classical homotopy theory of simplicial sets, as
well as the weaker notions of inner, left and right fibrations which feature in the ‘cat-
egorical’ homotopy theory of simplicial sets. Chapter 6 is a mirror image of Chapter
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5, in which we treat similar classes of fibrations for the category of dendroidal sets.
While some general categorical features of the simplicial and dendroidal theories
are very similar, the two theories differ considerably in detail because of combina-
torial aspects arising from the automorphisms of trees, as well as from the fact that
the role of the Cartesian product is taken over by a more subtle tensor product of
dendroidal sets. In order to secure a solid understanding of how to work with these
tensor products we discuss these first, in Chapter 4. The organization and choice of
material in Chapters 5 and 6 is motivated to a large extent by the need to prepare
the ground for a discussion of the homotopy theory of simplicial sets and dendroidal
sets in terms of Quillen model category structures in Part II.

This second part begins with Chapter 7, giving a self-contained introduction to
the theory of model categories. Chapter 8 then establishes the two most important
examples of model structures on the category of simplicial sets, namely the Joyal (or
categorical)model structure describing the homotopy theory of∞-categories, and the
Kan–Quillenmodel structure describing the homotopy theory ofKan complexes. The
latter is one of the original examples of a model structure and much of its relevance
derives from the fact that it is, in an appropriate sense, equivalent to a certain
standard model structure on the category of topological spaces. Our construction of
thesemodel structures is somewhat different from those usually found in the literature
and stresses the elementary nature of the arguments. In Chapter 9 we generalize the
techniques of Chapter 8 to establish the operadic model structure on the category of
dendroidal sets, which describes the homotopy theory of∞-operads. We then study
two variants, namely the covariant and the Picard model structure. In a later part
of this book we will relate the first to the homotopy theory of algebras for a given
∞-operad and the second to the homotopy theory of infinite loop spaces.

In Part III of this book we develop the homotopy theory of simplicial and den-
droidal spaces, rather than sets. It starts with two chapters of a rather general nature.
Chapter 10 treats the homotopy theory of diagrams of spaces on a given small
category, paying particular attention to Reedy model structures. It includes some
applications to the theory of homotopy colimits. Chapter 11 develops a version of
left Bousfield localization appropriate for our purposes; one of the key ingredients
is a general notion of ‘mapping space’ between objects of a model category, which
relies on the construction of Reedy model structures of the preceding chapter. In
Chapter 12 we develop the notion of dendroidal Segal spaces and completion; this
extends Rezk’s theory of (simplicial) Segal spaces and provides yet another model
for the homotopy theory of ∞-operads. Chapter 13 adapts the notion of left fibra-
tion to the context of dendroidal spaces and proves that these provide a model for
the homotopy theory of algebras over an operad. In the concluding Chapter 14, we
establish an equivalence of homotopy theories between dendroidal sets (or spaces)
and simplicial (or topological) operads.

We stress once more that this book may also be used as a self-contained intro-
duction to the homotopy theory of simplicial sets. We have written Chapter 2 in
such a way that it can form an independent first introduction to the theory, followed
by Chapter 5 on fibrations and Chapter 8 in which we give an independent and
self-contained treatment of the homotopy theory of simplicial sets before extending
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it to the dendroidal context. Chapter 12 on dendroidal spaces also contains a sep-
arate Section 12.7, indicating how our results specialize to give Rezk’s theory of
(complete) Segal spaces.

How to Use This Book

This book provides a comprehensive introduction to the theory of dendroidal sets
and dendroidal spaces, but can be read in different ways, for which we outline
several paths below. In particular, we stress that this book can also be used as
a self-contained introduction to the theory of simplicial sets, including the Kan–
Quillenmodel structure (describing ‘classical’ homotopy theory) and the Joyalmodel
structure (describing the homotopy theory of∞-categories).

The first part of this book treats the basic theory of simplicial and dendroidal sets
and could be split as follows:

introduction to
simplicial sets

Chapter 2

Chapter 5

introduction to
dendroidal sets

Chapter 1

Chapter 3

Chapter 4

Chapter 6

Our exposition of the basic definitions and constructions of simplicial sets in
Chapter 2 serves as an introduction to the corresponding material for dendroidal sets
in Chapter 3. Similarly, the treatment of various Kan conditions for simplicial sets
in Chapter 5, which will be familiar to many readers, can serve as an introduction



to the similar but more complicated material for dendroidal sets in Chapter 6, as we
have indicated by the dashed arrows above. The reader will observe that some of the
results in Chapter 6 make use of those in Chapter 5.

The further parts of the book develop the homotopy theory of simplicial and
dendroidal sets (and spaces). We use the formalism of Quillen model categories,
developed in the following chapters:

introduction to
model categories

Chapter 7 Chapter 10 Chapter 11

The self-contained Chapter 7 contains basic definitions, constructions, and ex-
amples. Chapter 10 describes the homotopy theory of diagrams of spaces. Finally,
Chapter 11 treats the theory of (co)simplicial resolutions and left Bousfield localiza-
tion. The reader familiar with this material may skip these chapters and refer back
to them as needed. On the other hand, these three chapters can also be used as a
self-contained introduction to model categories, possibly supplemented by taking
examples in the context of simplicial sets or topological spaces from Chapter 8.

simplicial
homotopy theory

Chapter 8

dendroidal
homotopy theory

Chapter 9

Chapter 12

Chapters 13 – 14

xiv How to Use This Book
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The core of this book is the development of the homotopy theory of simplicial
and dendroidal objects. The reader who wishes to learn about the Joyal model
structure, but is familiar with the basics of simplicial sets and model categories, can
go straight to Chapter 8 and refer back to Chapter 5 as needed. The homotopy theory
of dendroidal sets is developed in Chapter 9. Chapter 12 develops the homotopy
theory of dendroidal spaces. Chapter 13 explains how dendroidal spaces may be
used to model algebras for operads and∞-operads. In the concluding Chapter 14 we
finally explain how dendroidal objects are models for operads.
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Part I
The Elementary Theory of Simplicial and

Dendroidal Sets



Chapter 1
Operads

The theory of operads is a convenient framework to define various types of alge-
braic structures in many different contexts. In this first chapter we will define the
notion of an operad as well as that of an algebra for an operad. We present several
well-known examples. In particular we will describe the example from which the
theory originated, namely that of the little n-cubes operad whose algebras are n-fold
loop spaces, and a variant of it, namely the Fulton–MacPherson operad built from
compactifications of configuration spaces. We present several constructions which
will play an important role in this book. Among these are the construction of the free
operad generated by a family of operations, the tensor product of two operads, and
the Boardman–Vogt resolution of a given operad, which describes the structure of
an algebra-up-to-homotopy for that operad. We would like to emphasize that these
constructions, as well as the notational conventions regarding trees, will reoccur in
many of the later chapters. For example, already in Chapter 3 the definition of a
dendroidal set uses the construction of free operads and morphisms between them,
and much later the Boardman–Vogt resolution will be the key tool to relate the
homotopy theory of operads to that of dendroidal sets. Many readers will already
be familiar with much of this material and they may wish to just glance over these
points. They will observe that for us the term operad will always mean coloured
symmetric operad.

1.1 Operads

Algebraic structures are sets or spaces equipped with specific operations. For exam-
ple, a monoid is a set M equipped with a multiplication µ : M × M → M and a unit
element e in M which can be viewed as an ‘operation with zero inputs’ (or nullary
operation) 1 = M0 → M . These operations are of course required to satisfy certain
identities. There are many operations which can be defined in terms of these two,
such as the multiplication of n elements in a specific order σ, which is a map
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4 1 Operads

Mn → M : (x1, . . . , xn) 7→ µ(xσ(1), µ(xσ(2), µ(. . . , µ(xσ(n−1), xσ(n)) . . .))).

If M has a topology, one would of course require these operations to be continuous. A
central theme in topology and geometry is the behaviour of such algebraic structures
under deformations of the space M . It turns out that a simple algebraic structure like
that of a monoid will then ‘explode’ into a structure where one still has a multipli-
cation, but one which is only associative up to a (specified) homotopy. Furthermore,
the various associativity equations one might write down (when multiplying, say,
four elements) are related by further homotopies, and so forth. One speaks of a
multiplication which is associative up to coherent homotopy. Such coherences are
expressed by infinitely many further operations and identities between them. The
notion of an operad was initially conceived in order to organize such structures in a
tractable way, by equipping the multitude of operations themselves with a geometric
structure, and has found many applications since.

Definition 1.1 An operad P consists of a set C of colours and for each n ≥ 0 and
each sequence c1, . . . , cn, c of colours a set

P(c1, . . . , cn; c)

of operations, thought of as taking n inputs of colours c1, . . . , cn respectively to an
output of colour c. Moreover, there are three kinds of structure maps:

– for each colour c a unit 1c ∈ P(c; c),
– for each permutation σ ∈ Σn a map

σ∗ : P(c1, . . . , cn; c) −→ P(cσ(1), . . . , cσ(n); c),

usually written σ∗p = p ◦ σ,
– for any sequence of colours c1, . . . , cn, c and any n-tuple of sequences di

1, . . . , d
i
ki

for i = 1, . . . , n, a composition of operations

γ : P(c1, . . . , cn; c) ×
n∏
i=1

P(di
1, . . . , d

i
ki

; ci) −→ P(d1
1, . . . , d

1
k1
, d2

1, . . . , d
n
kn

; c),

usually written γ(p, q1, . . . , qn) = p ◦ (q1, . . . , qn) or even just p(q1, . . . , qn).

Furthermore, these structure maps have to satisfy a number of axioms, which express
that composition is unital and associative, that the permutation operations σ∗ give
a right action of the symmetric groups and that this action is compatible with the
compositions γ. In detail:

– for an operation p ∈ P(c1, . . . , cn; c), we should have γ(1c, p) = p and
γ(p, 1c1, . . . , 1cn ) = p,

– for p, q1, . . . , qn as above and a further sequence of operations r i1, . . . , r
i
ki
, where

r ij has output di
j , we should have

(p(q1, . . . , qn))(r1
1 , . . . , r

n
kn
) = p(q1(r1

1 , . . . , r
1
k1
), . . . , qn(rn1 , . . . , r

n
kn
))
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– for σ, τ ∈ Σn and associated operations σ∗, τ∗ as above, we should have (στ)∗ =
τ∗σ∗,

– for p, q1, . . . , qn as before and σ ∈ Σn, τi ∈ Σki , we should have

σ∗p(τ∗σ(1)qσ(1), . . . , τ
∗
σ(n)qσ(n)) = (σ ◦ (τ1, . . . , τn))

∗(p(q1, . . . , qn)),

where σ ◦ (τ1, . . . , τn) is the element of the symmetric group on Σn
i=1ki letters

formed by letting τi permute the letters within the ith block of length ki and
letting σ permute the n different blocks. Another way of phrasing this condition
is by the following two identities:

σ∗p(qσ(1), . . . , qσ(n)) = p(q1, . . . , qn),

p(τ∗1 q1, . . . , τ
∗
nqn) = (τ1, . . . , τn)

∗(p(q1, . . . , qn)).

Here (τ1, . . . , τn) corresponds to an element of Σk1+· · ·+kn via the obvious inclusion
Σk1 × · · · × Σkn ⊆ Σk1+· · ·+kn .

Remark 1.2 Let P be an operad, p ∈ P(c1, . . . , cn; c) and q ∈ P(d1, . . . , dk ; ci) for
some 1 ≤ i ≤ n. It will be convenient to have the following notation:

p ◦i q := p(1c1, . . . , q, . . . , 1cn ).

Thus, p ◦i q is the composition of p with q in the ith variable. If c1, . . . , cn are all
distinct colours of P, we will sometimes also write p ◦ci q. It is possible to rephrase
the definition of operad in terms of the operations ◦i , instead of using the ‘total
composition’ of Definition 1.1, as we will explain in Section 1.4.

Example 1.3 (a) As said, one should think of the elements of P(c1, . . . , cn; c) as
operations, taking inputs of types c1, . . . , cn respectively to an output of type c.
Thus, a typical example of an operad can be given by taking a family of sets {Xc}c∈C
indexed by the set of colours C and setting P(c1, . . . , cn; c) to be the set of functions

p : Xc1 × · · · × Xcn −→ Xc .

The action by the symmetric groups is given by simply permuting the variables:

(p ◦ σ)(xσ(1), . . . , xσ(n)) = p(x1, . . . , xn).

Composition in P is defined as composition of functions.
(b) If the sets Xc have more structure, one can define an operad by defining the

set of operations P(c1, . . . , cn; c) to be the set of functions Xc1 × · · · × Xcn → Xc

respecting that structure, provided this condition is compatible with composition
and permutation of variables. For example, the Xc could be topological spaces and
the operations continuous functions; alternatively, the Xc could be vector spaces and
the operations multilinear maps. We are sure the reader can make this list as long as
they like.
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(c) A more ‘universal’ way of describing the type of example listed above is as
follows: if C is any symmetric monoidal category and C is a set of objects of C, then
one obtains an operad with this set of colours by defining P(c1, . . . , cn; c) to be the
set of morphisms c1 ⊗ · · · ⊗ cn → c in C. We will sometimes write C⊗ for the operad
obtained in this way, when C is the set of all objects of C (granted C is small).

Remark 1.4 (Terminology and notation) (a) If the set C of colours is a singleton
{c} there is no need to specify colours in our notation and we simply write P(n)
for P(c1, . . . , cn; c) (where the ci all coincide with c). Composition is then given by
maps

P(n) ×
n∏
i=1

P(ki) −→ P(k1 + · · · + kn)

and eachP(n) carries a rightΣn-action.We sometimes call such an operad uncoloured
or classical (the latter because the original definition of operad concerned this
uncoloured case). The operads of Definition 1.1 will sometimes be called coloured
operads for emphasis.

(b) Consider an operad P which has only unary operations, i.e., where
P(c1, . . . , cn; c) is always empty unless n = 1. The definition of operad then comes
down to that of a category with C as set of objects and P(c; d) the set of morphisms
from c to d.

(c) Combining (a) and (b), one sees that an uncoloured operad with only unary
operations is simply a monoid, i.e. a set with a unital and associative multiplication.
Thus there is a diagram of inclusions

monoids //

��

categories

��
uncoloured operads // operads,

with the understanding that we only consider small categories here, i.e. those whose
objects form a set.

(d) The definition of operad allows for P(c1, . . . , cn; c) where n = 0, which we
write as P(−; c). We will refer to its elements as constants of colour c. An operad is
called unital if for each c there is precisely one constant of colour c, i.e. if P(−; c)
is a singleton. An operad P is called open if it has no constants at all, i.e. if P(−; c)
is empty for all c. Any operad P has an interior Po, obtained by simply omitting all
constants of P. Similarly, each P has a closure cl(P), in such a way that the formation
of closures is a left adjoint to the inclusion of unital operads into all operads. We
will come back to this closure in detail later.
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Example 1.5 We list some uncoloured operads occurring frequently in the literature.
(a) The commutative operad Com is defined by

Com(n) = {∗},

i.e. Com has a unique n-ary operation for each n. In particular, it is unital.
(b) The associative operad Ass is defined by

Ass(n) = Σn,

with the following structure maps. The group Σn acts on itself on the right in the
obvious way; to define composition, we need to specify a map

γ : Σn × Σk1 × · · · × Σkn −→ Σk1+· · ·+kn .

If one thinks of the elements σ ∈ Σn and τi ∈ Σki as permutation matrices, then
γ(σ, τ1, . . . , τn) corresponds to thematrix formed by replacing the 1 in the ith column
of σ by the matrix τi . As in Definition 1.1, one can think of Σn as permuting the n
blocks of sizes k1, . . . , kn which partition k1 + . . . + kn and as Σki as permuting the
letters within the block corresponding to ki . Again, Ass is a unital operad.

(c) There is an operad Treepl which, roughly speaking, has as its n-ary operations
the set of planar rooted trees with n numbered leaves. Our conventions regarding
trees will be slightly nonstandard; we will specify them precisely in Section 1.3. For
now, here is a typical example of an element of Treepl(6):

6
5 3

2 1 4

The group Σn acts on Treepl(n) by permuting the labels on the leaves and the
composition is defined by grafting; indeed, γ(T,T1, . . . ,Tn) is given by grafting Ti
onto the leaf of T numbered i. The leaves of the resulting grafted tree have to be
labelled appropriately: if T1, . . . ,Tn have k1, . . . , kn leaves respectively, the leaves
of γ(T,T1, . . . ,Tn) corresponding to the tree Ti are now labelled k1 + . . . + ki−1 + 1
through k1 + . . . + ki−1 + ki . For example, the composition of the labelled trees

T

2 1

T1

3
1 2

T2

1 2 3 4

can be pictured as follows:
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4 5 6 7 3
1 2

One obtains a variation of this example by considering trees without a planar struc-
ture, giving an operad Tree.

Often, the sets of operations of P have more structure. A case of particular interest
to us is the following:

Definition 1.6 A topological operad is an operad P where each set of operations
P(c1, . . . , cn; c) is equipped with a topology and all the structure maps of P (i.e.
compositions and permutations) are continuous.

Remark 1.7 (a) Notice that we do not include a topology on the set of colours C in
this definition.

(b) There are of course many variations on the definition above; one can replace
the sets of operations of P by abelian groups, vector spaces, manifolds etc. More
generally, for a symmetric monoidal category V, one can define an operad in V
precisely as in Definition 1.1, but taking the P(c1, . . . , cn; c) to be objects of V
(rather than sets) and, in the definition of composition, replacing the product by the
tensor product in V. With this definition, the operads of Definition 1.1 are operads
in Sets and topological operads are operads in Top, the latter denoting the category
of topological spaces and continuous maps. We will sometimes use this terminology
to emphasize the kind of operads we consider. Later in this book we will discuss the
case where V is the category of simplicial sets.

Example 1.8 One of the most classical examples of a topological operad (and,
indeed, the motivating example for the original definition of operads) is the little d-
cubes operad Ed . Intuitively speaking, the space Ed(n) is the configuration space of
n numbered d-dimensional cubes inside the d-dimensional unit cube [0, 1]d ⊂ Rd .
The operadic composition of an operation p ∈ Ed(n) with operations q1, . . . , qn
is given by substituting the rescaled configuration qi into the ith cube of p. More
precisely, a point of Ed(n) is an n-tuple of embeddings

f1, . . . , fn : [0, 1]d → [0, 1]d

satisfying the following conditions:

(1) Each embedding fi is rectilinear, in the sense that it is itself a product of d
affine embeddings gi1, . . . g

i
d

: [0, 1] → [0, 1] (where affine means of the form
t 7→ at + b). Thus, the faces of the cube embedded by fi are all parallel to the
faces of the unit cube in Rd .

(2) The interiors of the cubes embedded by the fi are mutually disjoint.
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As an example, one can picture a typical point of E2(4) as follows:

1

2

3

4

The sets Ed(n) can be topologized as a subspace of Map([0, 1]d q · · · q
[0, 1]d, [0, 1]d), where the latter is given the compact-open topology. Composition
of operations in Ed is then formally defined simply by composing embeddings.

Example 1.9 An embedded d-dimensional cube inside [0, 1]d gives a corresponding
d + 1-cube inside [0, 1]d+1 by adding the identity map as a final coordinate. This
gives a morphisms of operads from Ed into Ed+1. With these one may form the
following colimit:

E∞(n) := lim
−−→
d

Ed(n).

The reader can verify that the spaces E∞(n) inherit the structure of an operad in their
own right. Moreover, all these spaces turn out to be contractible. Thus, from the point
of view of homotopy theory, the operad E∞ is much like the commutative operad
Com, for which each space (or set) of operations is a singleton. More precisely,
there is an evident map of operads E∞ → Com which gives homotopy equivalences
E∞(n) → Com(n) for each n. However, there is one important difference between
these two: the action of the symmetric group Σn on E∞(n) is free, whereas its action
on Com(n) is not (at least for n ≥ 2). Note also that there is a map of operads
E1 → Ass; it sends a collection of n numbered subintervals of the unit interval to
the permutation (i1, . . . , in) obtained by reading the labels of the subintervals left
to right. This map is also a homotopy equivalence E1(n) → Ass(n) for every n.
Thus one can think of the operads Ed as a family which ‘interpolates’ between the
associative and commutative operads, at least in a homotopy-theoretic sense.

To conclude this section, we observe that operads form a categoryOp in an evident
way: for two operads P and Q, a morphism ϕ : P → Q is a function f : CP → CQ
between the corresponding sets of colours and, for each sequence c1, . . . , cn, c of
colours of P, a map

ϕc1,...,cn,c : P(c1, . . . , cn; c) −→ Q( f (c1), . . . , f (cn); f (c)).

These maps should be compatible with Σn-actions, compositions and units in the
obvious way. For topological operads, one of course requires the maps ϕc1,...,cn,c to
be continuous. In general, for operads in V, they should simply be morphisms in V.
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1.2 Algebras for Operads

1.2.1 Definitions and Examples

The main role of an operad P is to define a corresponding ‘algebraic’ structure on a
set or a space. For a given (uncoloured) operad P, a P-algebra is a set A on which the
operations p ∈ P(n) act as actual functions A(p) : A×n → A, in a way compatible
with the structure of P. The general definition goes as follows:

Definition 1.10 Let P be an operad. A P-algebra A is a family of sets {Ac}c∈C
indexed by the colours of P, together with maps

P(c1, . . . , cn; c) × Ac1 × · · · × Acn −→ Ac,

written (p, a1, . . . , an) 7→ A(p)(a1, . . . , an) or simply p(a1, . . . , an). These maps
should respect the structure of P in the following sense:

– for each colour c, the unit 1c acts as an identity:

1c(a) = a for a ∈ Xc,

– for a permutation σ ∈ Σn and ai ∈ Aci for i = 1, . . . , n,

(p ◦ σ)(aσ(1), . . . , aσ(n)) = p(a1, . . . , an),

– for a composition p(q1, . . . , qn) of operations as in Definition 1.1 and aij ∈ Adi
j
for

i = 1, . . . , n and j = 1, . . . , ki ,

p(q1, . . . , qn)(a1, . . . , an) = p(q1(a1), . . . , qn(an)),

where ai is short-hand for ai1, . . . , a
i
ki
.

Remark 1.11 A more concise way of phrasing this definition is as follows. Write
Sets× for the operad formed out of the symmetric monoidal category Sets of sets
with cartesian product, as described in Remark 1.3(c). Then a P-algebra is simply a
morphism of operads A : P→ Sets×.

Definition 1.12 A morphism of P-algebras f : A→ B is a family of maps

fc : Ac −→ Bc, c ∈ C,

which are compatible with operations of P, meaning

fc(A(p)(a1, . . . , an)) = B(p)( fc1 (a1), . . . , fcn (an))

for any p ∈ P(c1, . . . , cn; c) and ai ∈ Aci , a ∈ Ac . This notion of morphism defines
a category of P-algebras for which we write AlgP.
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Remark 1.13 An analogous definition applies to a topological operadP. AP-algebra
A is now given by a family of spaces {Ac}c∈C and continuous maps

P(c1, . . . , cn; c) × Ac1 × · · · × Acn −→ Ac

satisfying the same equations as before. These algebras form a category in a similar
way, where a morphism is now given by a family of continuous maps Ac → Bc .
We will again write AlgP for this category, or AlgP(Top) if we wish to stress that
our algebras take values in topological spaces. Further on we will be especially
concerned with operads and their algebras in other categories than Sets and Top,
most notably the category sSets of simplicial sets.

Example 1.14 We will go through some of the operads listed in the previous section
and examine what kind of algebras they encode.

(a) A Com-algebra is a set A together with a map µn : A×n → A for each n ≥ 0.
One easily verifies that these µn are uniquely determined by a commutative and
associative multiplication µ2 : A×2 → A with unit µ0 : ∗ → A (where ∗ denotes
a singleton, which is the empty product of sets). If we write µ2(a, b) = ab then
µn(a1, . . . , an) is the n-fold product a1 · · · an. In other words, the category AlgCom is
the category of commutative monoids. One can of course view Com as a topological
operad, in which case Com-algebras are topological commutative monoids.

(b) An Ass-algebra is given by a set A together with maps

µn : Σn × A×n −→ A.

The rule
µn(στ, aτ(1), . . . , aτ(n)) = µn(σ, a1, . . . , an)

shows that µn is determined by µn(1,−, . . . ,−) and the rules for units and associativity
of composition then show that all the µn are completely determined in terms of
µ2(1,−,−) : A×2 → A and µ0 : ∗ → A. In this way, one checks that the category of
Ass-algebras is precisely the category of (associative) monoids.

(c) The next example lies at the heart of the theory of operads and is one of the
main motivations for their development. Consider the topological operad Ed of little
d-cubes. Let X be a topological space with basepoint x0. The loop spaceΩX of X is
the space of basepoint-preserving maps S1 → X , or equivalently the space of maps
from the interval [0, 1] to X which send the boundary ∂[0, 1] to the basepoint x0. It
is equipped with the compact-open topology. This space ΩX has a basepoint itself,
given by the constant map with value x0. The loop space construction can then be
iterated to form the d-fold loop spaceΩdX = Ω(Ωd−1X). It can be described directly
as the space of maps [0, 1]d → X which map the boundary ∂([0, 1]d) to x0. This
d-fold loop space is an Ed-algebra in a natural way. Indeed, given a configuration
F = ( f1, . . . , fn) of n little d-cubes corresponding to an element of Ed(n) and an
n-tuple of points λ1, . . . , λn ∈ Ω

dX , interpreted as maps [0, 1]d → X sending the
boundary to the basepoint, one obtains a new such map

λ = F(λ1, . . . , λn) : [0, 1]d −→ X
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by letting λ = λi f −1
i on the image of fi and λ = x0 outside of these images. It is a

fundamental result in the theory of iterated loop spaces due to Boardman–Vogt and
May that this construction can be reversed. If Y is a connected pointed space with
the structure of an Ed-algebra, then Y is equivalent to an iterated loop space ΩdX ,
in the sense that there exists a pair of morphisms of Ed-algebras

Y ←− Z −→ Ω
dX

which are both weak homotopy equivalences. This example can be extended to the
case d = ∞ to yield a corresponding recognition principle for infinite loop spaces.

(d) An algebra for the operad Treepl consists of a set A together with for each
n ≥ 0 an operation

µn : Σn × A×n −→ A,

corresponding to the tree with n leaves and one internal vertex, usually referred to
as the n-corolla. For example, for τ ∈ Σ2 the transposition, µ2(τ,−,−) corresponds
to the following planar tree:

2 1

As with the operad Ass, one verifies that the symmetry conditions completely de-
termine µn in terms of µn(1,−, . . . ,−). Moreover, the action of all other operations
of Treepl on A are determined in terms of the µn, simply because any tree can be
obtained by grafting corollas onto each other. Contrary to Ass, there are no further
relations between the µn; the operad Treepl is an example of a free operad, about
which we will say more in Section 1.5. A Tree-algebra A is a set with a similar
structure, but now there are maps

µn : A×n −→ A

which should be invariant under the action of Σn permuting the coordinates, with no
further relations between them.

The previous examples all concerned uncoloured operads.Wewill now give some
examples of algebras for operads with more colours.

Example 1.15 (a) Let C be a (small) category, viewed as an operad with only unary
operations. Then a C-algebra is nothing but a functor C → Sets. Similarly, if C is
a category enriched in the category of topological spaces (i.e. a topological operad
with only unary operations), a C-algebra is a continuous functor C → Top. More
explicitly, this is a family of spaces Ac indexed by the objects of C and continuous
maps C(c, d) × Ac → Ad satisfying the obvious functoriality condition.

(b) (Actions). Let Act be the operad with two colours a and m and operations
defined as follows:
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Act(c1, . . . , cn; d) =


∗ if d = a and ci = a for all i
∗ if d = m and ci = m for precisely one i
� otherwise

Note that there is an inclusion of the commutative operad into Act which sends the
unique colour of Com to a. An Act-algebra consists of two sets A and M , where by
the previous remark A has the structure of a commutative monoid and additionally,
for n ≥ 1, there are maps

αn : A×(n−1) × M −→ M .

Associativity of composition of the operations of Act then show that these maps give
an action of the monoid A on the set M . In particular, α1 is simply the identity and all
other αn’s are determined in terms of α2 : A×M → M and the multiplication of A.
There is a similar operad whose algebras consist of an associativemonoid A together
with a left action on a set M . We leave it to the reader to spell out its definition.

Remark 1.11 suggests a definition of P-algebra in a general symmetric monoidal
category V, rather than just Sets, which we will occasionally use:

Definition 1.16 Let P be an operad and V a symmetric monoidal category, with
associated operad V⊗ as in Example 1.3(c). Then a P-algebra in V is a morphism
of operads P→ V⊗.

As before, P-algebras in V can be organized into a category for which we write
AlgP(V).

Remark 1.17 Some care is needed if onewants to consider the analogue ofDefinition
1.16 for P a topological operad. In particular, if one wants to think of P-algebras
in Top as morphisms of operads P → Top×, one is implicitly using the existence
of a mapping space Map(X,Y ) between two topological spaces X and Y with the
universal property that

Top(A × X,Y ) ' Top(A,Map(X,Y )),

naturally in A, X and Y . Unfortunately the category of topological spaces does not
admit such a structure; to correct this, one usually works with a slight modification
of Top, often referred to as a ‘convenient category of spaces’. One possibility is to
use the category of compactly generated weak Hausdorff spaces.

Example 1.18 Let C and D be symmetric monoidal categories. Then a C⊗-algebra
in D, i.e. a morphism of operads C⊗ → D⊗, is the same thing as a lax symmetric
monoidal functor F : C→ D, meaning a functor equipped with natural maps

F(c) ⊗ F(d) −→ F(c ⊗ d) and ID → F(IC),

where IC and ID denote the tensor units of C and D respectively. Moreover, these
maps should respect the associativity, unitality and symmetry of the tensor products
of both categories.
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1.2.2 Free Algebras

Let P be an operad and let S = {Sc}c∈C be a family of sets indexed by the colours
of P. Then S generates a free P-algebra FreeP(S) defined as follows: for a colour
c, elements of FreeP(S)c are equivalence classes of sequences (p, s1, . . . , sn) where
n ≥ 0, p ∈ P(c1, . . . , cn; c) and si ∈ Sci . The equivalence relation on these sequences
is generated by

(p ◦ σ, sσ(1), . . . , sσ(n)) ∼ (p, s1, . . . , sn).

The family {FreeP(S)c}c∈C so defined has the structure of a P-algebra, simply using
the composition operation of the operad P. Indeed, if we denote the equivalence
class of (p, s1, . . . , sn) as above by p ⊗ s, then for q ∈ P(c1, . . . , ck ; c) and k such
equivalence classes pi ⊗ si in FreeP(S)ci , one has

q(p1 ⊗ s1, . . . , pk ⊗ sk) = q(p1, . . . , pk) ⊗ (s1, . . . , sk),

where (s1, . . . , sk) denotes the concatenation of the sequences s1, . . . , sk . This free
P-algebra has the usual universal property: given any P-algebra A and a family of
maps ϕc : Sc → Ac , there is a unique P-algebra map

ϕ : FreeP(S) −→ A

with the property that ϕ(1c ⊗ s) = ϕc(s) for any c ∈ C and s ∈ Sc . A more formal
way to phrase this property is as follows: write FamC for the category of families
of sets indexed by C (which is really just the product of categories

∏
c∈C Sets). The

forgetful functor
UP : AlgP −→ FamC

assigns to an algebra its underlying collection of sets. The functor FreeP : FamC →

AlgP then provides a left adjoint to UP.
The same construction applies to a topological operad P, where for a family of

spaces S one defines FreeP(S) as a quotient of∐
n≥0

∐
c1,...,cn,c

(
P(c1, . . . , cn; c) × Sc1 × · · · × Scn

)
in the same way as before, now equipping it with the quotient topology.

As a consequence of these constructions, any P-algebra A has a free resolution,
i.e. it can be written as a coequalizer

G // // F // A

where F and G are free P-algebras. Indeed, one can take

F = FreePUP(A) and G = FreePUPFreePUP(A).
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The counit of the adjunction between FreeP and UP gives a map F → A and two
different maps G→ F, which provide the maps in the diagram above.

1.2.3 Change of Operad

To conclude this sectionwe briefly discuss the effect of amap of operads ϕ : P −→ Q
on the corresponding categories of algebras. Write C (resp. D) for the set of colours
of P (resp. Q). Obviously, any Q-algebra B pulls back to a P-algebra ϕ∗B described
by

(ϕ∗B)c = Bϕ(c).

The operations of P act on ϕ∗B in the evident way, by

P(c1, . . . , cn; c) × Bϕ(c1) × · · · × Bϕ(cn)

(ϕ,id,...,id)
��

Q(ϕ(c1), . . . , ϕ(cn); ϕ(c)) × Bϕ(c1) × · · · × Bϕ(cn)

��
Bϕ(c).

This defines a functor
ϕ∗ : AlgQ −→ AlgP.

It admits a left adjoint
ϕ! : AlgP −→ AlgQ

which can be conveniently described using free resolutions. Indeed, if

FreeP(T)
//// FreeP(S) // A

is such a resolution of a P-algebra A, then ϕ! A is given by a coequalizer

FreeQ(ϕ!T)
//// FreeQ(ϕ!S) // A,

where ϕ!S is the collection defined by

(ϕ!S)d =
∐
ϕ(c)=d

Sc

and similarly for ϕ!T.
An alternative, more explicit construction mimics the construction for (left) mod-

ules over rings: if ϕ : R → S is a homomorphism of rings, then the pullback
ϕ∗ : ModS → ModR has a left adjoint ϕ!, sending an R-module M to ϕ!M = S⊗R M ,
where S is viewed as an S-R-bimodule. In the same way, for a map of operads
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ϕ : P→ Q as above, one can define the left adjoint ϕ! by

ϕ!(A) = Q ⊗P A.

Here Q ⊗P A is a quotient of the set (or space) of tuples (q, a1, . . . , an) where
q ∈ Q(ϕ(c1), . . . , ϕ(cn); d) and ai ∈ Aci . The quotient is taken by the equivalence
relation defined by(

q(ϕp1, . . . , ϕpn), a1, . . . , an
)
∼

(
q, p1(a1), . . . , pn(an)

)
.

Here q ∈ Q(ϕ(c1), . . . , ϕ(cn); d) as before and pi is an operation in P with output ci
and inputs c1

i , . . . , c
ni
i , while each ai is a sequence a1

i , . . . , a
ni
i with a j

i ∈ A
c
j
i
. (It is

of course possible to reformulate this in terms of bimodules over operads and their
tensor products, but we will not elaborate on this.)

Remark 1.19 So far we have worked almost exclusively in the context of sets or
spaces. However, as we have emphasized before, everything we do can be carried
over to a general symmetric monoidal category V, provided it has enough colimits
to carry out the constructions described above.

1.3 Trees

As should already be evident from Examples 1.5 and 1.14, trees play a fundamental
role in the theory of operads. This section serves to fix our definitions and terminology
and discuss the free operad associated with a tree.

Definition 1.20 A tree T consists of a finite setV of vertices, a nonempty finite set E
of edges, a distinguished element r ∈ E called the root, together with the following
data:

(1) A function I : E − {r} → V , which we think of as assigning to an edge e the
vertex I(e) of which it is an input.

(2) A function O : V → E , assigning to each vertex v its output edge O(v).

For each edge e other than the root r , we obtain a sequence of edges starting at e
by repeatedly applying O ◦ I. We demand that this sequence ends in the root r after
finitely many steps, for an arbitrary starting edge e.

The edges in the complement of the image of O are called the leaves of the tree
T . The vertices in the complement of the image of I are called stumps, or nullary
vertices. An outer edge is an edge that is either the root or a leaf. An inner edge is
any other edge of T , i.e., an edge in the image of O that is not the root. Such an edge
is both an output edge and an input edge of some other vertex.

When writing T for a tree, we will usually write E(T) and V(T) for its sets of
edges and vertices, respectively. The smallest possible tree consists of a single edge
and no vertices; this tree will be denoted by η. The next smallest tree consists of a
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single edge and a single vertex, pictured as:

The following is a typical picture of a tree T with E = {a, b, c, d, e, r} and
V = {t, u, v,w}:

a b

t

c d e
u v

w
r

Here I(a) = u, O(u) = c, etc. This tree has inner edges b, c and d and outer edges
a, e and r . We will always picture trees with the root at the bottom, so that in the
picture above T has root r and leaves a and e. The valence of a vertex v is the number
of its input edges, i.e., the cardinality of the set I−1{v}, so that a stump is a vertex
of valence zero. The sets E(T) and V(T) both have a natural partial ordering, where
e < f for edges e and f (or v < w for vertices v and w) if the directed path from
e (resp. v) to the root of T passes through f (resp. through w). Thus, any leaf edge
of T is minimal in this partial ordering on E(T), whereas the root edge is the unique
maximal element. A similar comment applies to vertices.

Definition 1.21 If T is a tree, then a planar structure on T is a linear ordering on the
set of input edges of every vertex of T .

It is unfortunate that any picture of a tree T automatically endows it with a planar
structure, but the reader should note that such a structure is not part of the data of T
itself. Thus, the following is a picture of the same tree as above, but corresponding
to a different planar structure:

b a

t

d e c
uv

w
r

If T is a tree, then we reserve the term subtree for a smaller tree S contained in T
that satisfies the following condition: if a vertex v of T is contained in S, then so are
all input edges of v. Thus a subtree of T is uniquely specified by listing its vertices;
conversely, a collection of vertices of T defines a subtree only if the graph consisting
of all those vertices together with the edges attached to them is connected.
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A tree T defines an operadΩ(T) in the following way. The colours ofΩ(T) are the
edges ofT . An operation p ∈ Ω(T)(c1, . . . cn; c) is a subtree ofT with leaves c1, . . . , cn
and root c. Note that for any sequence of colours c1, . . . , cn, c there is at most one such
subtree; therefore, the sets of operations ofΩ(T) are either empty or singletons. As an
example, consider the tree T pictured above. It has an operation w ∈ Ω(T)(c, d, e; r)
and an operation v ∈ Ω(T)(−; d). The composition w ◦d v ∈ Ω(T)(c, e; r) is the
operation corresponding to the subtree of T with leaves c, e and root r . Also, the
operation τ∗(w ◦d v) ∈ Ω(T)(e, c; r) corresponds to precisely the same subtree, the
only difference being that we have listed its leaves in a different order. The operad
Ω(T) is an example of a free operad (see Section 1.5). Indeed, its operations are freely
generated by the vertices of T , in the sense that any map of operads ϕ : Ω(T) → P is
uniquely determined by its effect on colours and, for every vertex v of T with inputs
c1, . . . , cn and output c, the operation ϕ(v) ∈ P(ϕ(c1), . . . , ϕ(cn); ϕ(c)). Conversely,
any assignment of a colour of P to each edge of T and a compatible assignment of
an operation of P to each vertex of T extends uniquely to a map of operads ϕ.

We already used trees in Examples 1.5 and 1.14. Let us give yet another example
of an operad defined using trees, which exploits the idea that trees parametrize the
operations of an operad and the ways in which they can be composed:

Example 1.22 There is an operad O whose algebras are uncoloured operads. Its
set of colours is the set of nonnegative integers. An operation T ∈ O(k1, . . . , kn; k)
is represented by a planar tree with k leaves and n vertices, where the leaves are
numbered 1, . . . , k and the vertices are numbered 1, . . . , n in such a way that the
vertex numbered i has ki incoming edges. Note that these edges are ordered by the
planar structure on T . More precisely, an operation is an isomorphism class of such
labelled trees, where the isomorphisms of trees involved are required to preserve
planar structures and labellings.
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For example,
2 1

3 41

2

depicts an element T ∈ O(2, 3; 4). The symmetric groups act by permuting the
labels on the vertices. The composition of operations of O is defined as follows: for
(isomorphism classes of) trees T ∈ O(k1, . . . , kn; k) and Ti ∈ O(li1, . . . , l

i
ni

; ki), the
composition γ(T,T1, . . . ,Tn) is the tree obtained by replacing the vertex labelled i
in T by the tree Ti . This tree Ti has ki numbered leaves, which we identify with the
incoming edges of the vertex labelled i in T , the leaf j of Ti being identified with the
jth incoming edge. Furthermore, the vertices of Ti , which were labelled 1 through
ki , are now relabelled k1 + · · · + ki−1 + 1 through k1 + · · · + ki . For example, take T
as pictured above and T1,T2 as follows:

1 2 1

3 2

T1 1 T2 2

1

Then γ(T,T1,T2) can be pictured as follows:

2 1 4 3

1

3

2

This example admits a straightforward variation for operads coloured by some set
C. To be precise, there exists an operad OC for which algebras are precisely C-
coloured operads. To obtain OC from the setup just described one should introduce
an additional labelling of the edges of trees by elements of C. We leave the details
to the interested reader for now, although we will return to this operad in Example
13.32.
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1.4 Alternative Definitions for Operads

In this short section we review some alternative ways of defining operads. First of all,
we discuss a ‘coordinate-free’ definition where the basic operations are not indexed
by natural numbers n and permutations, but rather by finite sets A and bijections
between them. Then wewill discuss how the axioms for compositions p◦(q1, . . . , qn)
of an n-ary operation p with operations q1, . . . , qn can alternatively be phrased in
terms of the ‘partial compositions’ p ◦i q of Remark 1.2, composing p with q in the
ith variable. The material of this section will for instance be useful in our discussion
of free operads in Section 1.5 and the Fulton–MacPherson operad in Section 1.8.

For simplicity, we begin with the case of operads whose set of colours C is
a singleton {c}. As in Remark 1.4(a), we then abbreviate the set of operations
P(c, . . . , c; c), with n input copies of c, by P(n). Our first aim is to describe a notion
of operad with sets of operations of the form P(A), for every finite set A. This will
reproduce an operad in our previous sense by setting

P(n) := P({1, . . . , n}).

To begin, write Fin� for the category of finite sets and isomorphisms between them.
Then a collection is a functor K : (Fin�)op → Sets. Thus, a collection defines for
every finite set A a corresponding set K(A), and for each bijection f : A → B a
function

f ∗ : K(B) → K(A).

In particular, any collection K gives a sequence of sets

K(n) := K({1, . . . , n})

and each K(n) carries a right action of the symmetric group

Aut({1, . . . , n}) = Σn.

Now a coordinate-free uncoloured operad is a collection P together with the follow-
ing extra structure maps:

– for each singleton A = {a} there is a unit 1a ∈ P({a}),
– for any map of finite sets ϕ : B→ A, there is a composition

P(A) ×
∏
a∈A

P(Ba) → P(B) : (p, (qa)a∈A) 7→ p ◦ (qa)a∈A,

where Ba denotes the inverse image ϕ−1(a).

The axioms to be satisfied by these structure maps are as follows:

– the elements 1a ∈ P({a}) act as two-sided units for the composition of operations,
in the same sense as before,
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– the composition is associative, in the sense that for maps C → B → A and
operations p ∈ P(A), qa ∈ Ba for a in A, and rb ∈ Cb for a ∈ A and b ∈ Ba, we
have

(p ◦ (qa)a∈A) ◦ (rb)b∈Ba = p ◦ (qa ◦ (rb)b∈Ba )a∈A,

– for p ∈ P(A), qa ∈ Ba for a in A, and each commutative square of finite sets

D B

C A

f

g

in which the horizontal arrows are bijections, we should have

g∗p ◦ ( f ∗c qg(c))c∈C = f ∗(p ◦ (qa)a∈A),

where fc : Dc → Ba is the restriction of f .

Each coordinate-free uncoloured operad P in particular defines an uncoloured
operad as in the previous section, essentially by restricting to the finite sets {1, . . . , n}
for n ≥ 0. This restriction induces an equivalence of categories between the two
different versions of the theory, simply because the full subcategory of Fin� spanned
by the sets {1, . . . , n} is a skeleton, i.e., contains one object in each isomorphism
class.

We will now explain how to modify the definitions above for the case of operads
with a set of colours C. Although this can easily be done in the same language of
finite sets (now equipped with a function to C) and isomorphisms between them, it
is convenient to shift perspective slightly and use the language of trees.

A tree with just one vertex is called a corolla. Such a tree is determined up to
isomorphism by the number of its leaves. We writeCA for a corolla with set of leaves
A:

CA

· · ·

A

Fix a set C of colours. A C-coloured corolla is a corolla CA equipped with a map
from its set of edges E(CA) toC. In other words, it is a corolla whose edges (including
the root) are coloured byC. WriteCorC for the category ofC-coloured corollas, with
maps between these being those isomorphisms of corollas CA→ CB (i.e., bijections
A→ B) compatible with the specified labellings. Then the category of C-coloured
collections is defined to be that of functors Corop

C
→ Sets. We will write CollC for

this category. Observe that if C = {c}, then the category of C-coloured collections
is clearly equivalent to the category of collections (i.e., functors (Fin�)op → Sets)
we considered above.
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With this terminology in place, we define a coordinate-free operad P with set
of colours C to be a C-coloured collection, thought of as a functor Corop

C
→ Sets,

equipped with the following additional structure:

– for each corolla C1 with a single leaf, with both its leaf and its root labelled by the
same element c ∈ C, there is a unit 1c ∈ P(C1),

– for each C-coloured corolla CA ∈ CorC and further C-coloured corollas
{CBa }a∈A, with the root of CBa labelled by the same colour as the corresponding
leaf a of CA, there is a composition

P(CA) ×
∏
a∈A

P(CBa ) → P
(
CqBa

)
: (p, (qa)a∈A) 7→ p ◦ (qa)a∈A,

whereCqBa denotes theC-coloured corolla with set of leaves
∐

a∈A Ba, labellings
of its leaves induced by those of the corollas CBa , and labelling of its root the
same as that of CA.

As before, this structure has to satisfy the evident three axioms expressing unitality,
associativity, and equivariance of these composition maps. Note that in the language
of corollas and trees, the composition maps can be pictured as ‘grafting’ the corollas
CBa onto the leaves of CA and contracting the inner edges of the resulting tree to
obtain a new corollaCqBa . As before, let us observe that each coordinate-free operad
P in particular gives an operad in the sense defined in Section 1.1. Indeed, for a tuple
of colours (c1, . . . , cn, c), one considers the corolla Cn with leaves 1, . . . , n, labels the
leaf i by the colour ci , and the root by c. Then setting P(c1, . . . , cn; c) to be the set
associated by P to this C-coloured corolla gives an operad. This process implements
an equivalence of categories between coordinate-free C-coloured operads and (or-
dinary) C-coloured operads as defined previously. We will use the notation OpC for
the category of coordinate-free C-coloured operads.

To conclude this section, we make some further remarks about the partial com-
positions of Remark 1.2. Suppose P is a coordinate-free operad with set of colours
C and consider two C-coloured corollas CA and CB such that one of the leaves ` of
CA is labelled by the same colour c as the root of CB. Then the composition maps
of P in particular induce a ‘composition along `’ map

− ◦` − : P(CA) × P(CB) → P(CA◦`B).

Here A◦`B is the set BqA−{`}. This is precisely the set of leaves of the corollaCA◦`B

obtained by graftingCB onto the leaf ` ofCA and then contracting the resulting inner
edge ` to obtain a new corolla. As in Remark 1.2, the map − ◦` − can be constructed
by inserting identity operations at all the other leaves of the corolla CA. Conversely,
the composition maps

P(CA) ×
∏
a∈A

P(CBa ) → P
(
CqBa

)
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of P can be reconstructed as an iterated application of the compositions − ◦` −,
one for each leaf ` of CA. The axioms that these composition maps have to satisfy
‘restrict’ to axioms for the partial compositions ◦` , and imposing these would give
an equivalent way of defining operads.

1.5 Free Operads

Some of the operads we have encountered (such as Ω(T) and Treepl) are free in a
precise sense. In this section we will explain this notion of freeness and give a precise
description of free operads in general. This will be important in Section 1.7, where
we discuss theW-construction, and in many places later on in this book. Throughout
this section it will be convenient to use the coordinate-free definition of operads, as
explained in the preceding section.

Let C be a fixed set of colours. Recall the notation CollC for the category of
C-coloured collections and OpC for that of (coordinate-free) C-coloured operads.
Any such operad P has an underlying collection U(P) and this defines a ‘forgetful
functor’

U : OpC → CollC .

We will now give an explicit construction of the operad F(K) freely generated by
a C-coloured collection K . This F will be a functor left adjoint to U. This means
that F(K) will be an operad having the familiar universal property; there is a map of
collections η : K → UF(K) and any map of collections ϕ : K → U(P) can uniquely
be extended to a map of operads ϕ̂ : F(K) → P, such that U(ϕ̂) ◦ η = ϕ.

To construct F(K) we will use trees with certain labellings coming from the
collection K . For aC-coloured corollaCA, the elements of F(K)(CA) are equivalence
classes of trees whose set of leaves is A and with labellings as follows. Each edge
of T is labelled by an element of C (i.e., it is coloured), with the condition that the
labellings of the root and leaves of T agree with those of the corolla CA. Then every
vertex v of T defines a coloured corolla Cv , namely by considering the input edges
and output edge of v, and such a vertex gets labelled by an element kv of K(Cv). Here
is a picture of such a tree, representing an element of F(K)(C3) with C3 a 3-corolla
with leaves labelled by the colours c, d, e and root labelled by a.

a
k

eb
l

c d

In this example k and l are elements of the collection K corresponding to the
2-corollas with colourings of their edges as indicated in the picture. The equivalence
relation we impose on such labelled trees is related to the given symmetries of
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the collection K . If T and T ′ are two such labelled trees, they represent the same
operation in F(K)(CA) if there exists an isomorphism of trees

ϕ : T −→ T ′

with the following properties:

– ϕ is the identity on the set of leaves A,
– ϕ preserves the colourings of the edges,
– for v a vertex of T and v′ = ϕ(v) the corresponding vertex of T ′, we have

kv = ϕ̄∗(kv′),

where ϕ̄ is the isomorphism of corollas Cv � Cv′ induced by ϕ.

Such an isomorphism ϕ : T → T ′, if it exists, is unique.
Observe that there is a natural notion of composition of such equivalence classes

of labelled trees, simply by grafting. Indeed, if T is a labelled tree with one of its
leaves coloured e and S another such tree with root coloured e, then one forms the
composition T ◦e S by simply grafting S onto the leaf of T labelled e and carrying
along all the labels. This grafting operation is compatible with the equivalence
relation described above. Furthermore, the tree

c

1

with unique edge labelled c acts as a unit 1c for this operation of grafting. These
operations give F(K) all the structure required of an operad.

It is not hard to verify that F(K) has the claimed universal property. First of all,
the map of collections η : K → UF(K) is defined by sending k ∈ K(CA), for some
coloured corolla CA, to the element of F(K)(CA) represented by CA itself, with its
unique vertex labelled by k.

For an operad P and a map of collections ϕ : K → U(P), one constructs a map of
operads ϕ̂ : F(K) → P by sending a tree T with vertices v labelled by elements kv
of K to the composition of the operations ϕ(kv) of P. More precisely, one combines
these operations kv using the partial composition operators − ◦e − of the previous
section, with e ranging over the inner edges of the tree T . For example, an operation
in the operad F(K) represented by the tree

a
k

b f

c d e g h
l m
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is sent by ϕ̂ to the operation (ϕ(k) ◦b ϕ(l)) ◦ f ϕ(m) = (ϕ(k) ◦ f ϕ(m)) ◦b ϕ(l) of P.
The general procedure for constructing ϕ̂ should be clear from this example.

Example 1.23 (a) Let C be a singleton {c}. Recall that in this case a collection can
equivalently be regarded as a functor from (Fin�)op to Sets. Now take K to be the
terminal collection with K(A) = ∗ for every finite set A. Then F(K) is precisely the
operad Tree of example 1.5(c). The identification of this operad as a free operad also
makes the identification of its algebras as in Example 1.14(d) an easy task.

(b) If K(A) = Aut(A) for each A, then F(K) is the operad Treepl of planar trees,
as in Example 1.5(c).

(c) Let T be a tree. As we claimed before, the operad Ω(T) of Section 1.3 is a
free operad. Indeed, let C be the set of edges of T and K the C-coloured collection
for which an element of K(CA), with CA a C-coloured corolla, is an embedding
CA→ T compatible with colourings. Note that K(CA) is either empty or a singleton,
the latter happening precisely when there exists a vertex of T for which the labellings
of its input and output edges agree with those of CA. Then F(K) is (isomorphic
to) the operad Ω(T). (Note that the collection K we just used can be interpreted
as the functor on Corop

C
, the opposite of the category of C-coloured corollas and

embeddings, ‘represented’ by the tree T .)
(d) Consider a set C and a C-coloured collection K which has only unary opera-

tions, i.e. where K(CA) is empty unless the corolla CA has precisely one leaf. Then
we may picture K as a directed graph, where the elements of C are vertices and the
elements of K are arrows. For example, the {a, b, c, d}-coloured collection

K(a; b) = { f }, K(b; c) = {g, h}

K(a; d) = {i, j}, K(d; c) = {k},

is represented by

a

b

c

d

f g

h

k
i

j

The free operad F(K) is then simply the free category on this directed graph.
(e) There is an overlap between the examples of kinds (c) and (d) in the case where

K is a linear tree, i.e., one that has only vertices of valence one. The tree pictured on
the left then corresponds to a directed graph as pictured on the right
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...

0

1

n

0

1

...

n

and interpreted as in (c) and (d) respectively these correspond to the same free
category, namely the finite linear order [n] with objects 0, . . . , n. We will try to help
the reader not to confuse these two notations.

1.6 The Tensor Product of Operads

Let P and Q be operads (either of sets or of topological spaces). The category of
P-algebras AlgP (in either sets or spaces) admits a symmetric monoidal structure,
simply by forming Cartesian products. Indeed, if A and B are P-algebras one defines
a new P-algebra A × B by considering the sets (or spaces) Ac × Bc indexed by
colours c of P and taking the products of structure maps for A and B. Therefore,
as in Definition 1.16, it makes sense to speak of Q-algebras in the category AlgP
and of course P-algebras in the category AlgQ. These form categories AlgQ(AlgP)
and AlgP(AlgQ) respectively. In this section we will define an operad P ⊗ Q, the
Boardman–Vogt tensor product of P and Q, which has the property that there are
equivalences of categories

AlgQ(AlgP) ' AlgP⊗Q ' AlgP(AlgQ).

In the case when P and Q both have a single colour, a P⊗Q-algebra is a set or space
which has both the structure of a P-algebra and a Q-algebra, in such a way that these
two structures distribute over one another. In this section we make precise what is
meant by this; see also Example 1.24.

We define P ⊗ Q in terms of generators and relations. The set of colours of this
operad is the product of the sets of colours of P and Q; if c and d are colours of
P and Q respectively, we write c ⊗ d for the corresponding colour of P ⊗ Q. The
operad P ⊗ Q is generated by the following two kinds of operation:

(a) For each operation p ∈ P(c1, . . . , cn; c) and colour d of Q, there is an operation

p ⊗ d ∈ (P ⊗ Q)(c1 ⊗ d, . . . , cn ⊗ d; c ⊗ d).

(b) For each colour c of P and operation q ∈ Q(d1, . . . , dm; d), there is an operation

c ⊗ q ∈ (P ⊗ Q)(c ⊗ d1, . . . , c ⊗ dm; c ⊗ d).
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The relations to be satisfied by these generators are the following:

(1) (p ⊗ d)(p1 ⊗ d, . . . , pn ⊗ d) = p(p1, . . . , pn) ⊗ d,
(2) (c ⊗ q)(c ⊗ q1, . . . , c ⊗ qm) = c ⊗ q(q1, . . . , qn),
(3) σ∗(p ⊗ d) = (σ∗p) ⊗ d for σ ∈ Σn,
(4) σ∗(c ⊗ q) = c ⊗ (σ∗q) for σ ∈ Σm,
(5) (p ⊗ d)(c1 ⊗ q, . . . , cn ⊗ q) = σ∗n,m

(
(c ⊗ q)(p ⊗ d1, . . . , p ⊗ dm)

)
.

Note that relations (1) and (3) express precisely the condition that for any colour
d of Q there is a map of operads −⊗ d : P→ P⊗Q. Likewise, (2) and (4) give maps
of operads c⊗− : Q→ P⊗Q for colours c of P. Relation (5) is the most interesting;
we will refer to it as the Boardman–Vogt interchange relation. The permutation
σn,m is the appropriate element of Σnm that makes sense of formula (5), i.e. the
element relating the sequences (c1 ⊗ d1, . . . , c1 ⊗ dm, . . . , cn ⊗ d1, . . . , cn ⊗ dm) and
(c1 ⊗ d1, . . . , cn ⊗ d1, . . . , c1 ⊗ dm, . . . , cn ⊗ dm).

Let us give a graphical interpretation of a small example of the interchange
relation. If p ∈ P(c1, c2, c3; c) and q ∈ Q(d1, d2; d) are operations, we can represent
the composition (p ⊗ d)(c1 ⊗ q, c2 ⊗ q, c3 ⊗ q) by the following picture:

c2 ⊗ qc1 ⊗ q c3 ⊗ q

p ⊗ d

The interchange relation says that this operation of P ⊗Q can also be represented
by applying σ∗2,3 to the following picture:

p ⊗ d2p ⊗ d1

c ⊗ q

The definition of P ⊗Q applies to operads of sets as well as to operads of spaces.
In the second case, one has to topologize the spaces of operations of P ⊗ Q as
quotients of appropriate products of spaces of operations of P and Q.

Example 1.24 (a) The tensor product Ass ⊗ Ass is naturally isomorphic to Com,
essentially by the classical Eckmann–Hilton argument. We give a graphical presen-
tation of this argument. An n-ary operation of Ass can be pictured as an n-corolla
with a labelling of its leaves by the numbers 1, . . . , n. As in the pictures above we
use black vertices for operations coming from the first factor and white vertices for
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operations coming from the second. If we do not explicitly label the leaves of a vertex
by numbers, this means the numbering agrees with the planar order of the pictured
tree. Recall that Ass is generated as an operad by a binary operation µ2 and a nullary
operation µ0. First, we show that Ass ⊗ Ass has only one operation of arity zero:

= = = = =

Here the middle equality uses the interchange relation; all other identities use the
relation that multiplying by the unit is the identity in Ass. A priori, there are two
generating binary operations for Ass ⊗ Ass; to see that these are the same, observe
the chain of equalities

= = =

1 2

1 2 1 2

1 2

For the middle equality we used the interchange relation and the fact that the two
nullary operations agree. To see that this binary operation of Ass ⊗ Ass is commu-
tative, observe that

= = =

1 2

12 21

2 1

It follows that Ass ⊗ Ass is a quotient of Ass in which the operation µ2 is forced to
be commutative; therefore Ass ⊗ Ass must be the commutative operad, since that is
the only such quotient.

(b) Recall that any double loop space Ω2X is naturally an E2-algebra. However,
it also gives rise to an E1 ⊗ E1-algebra: indeed, thinking of points of Ω2X as maps
[0, 1]×2 → X which send the boundary to the basepoint, there is a ‘vertical’ and a
‘horizontal’ composition law, makingΩ2X into an E1-algebra in two different ways.
Furthermore, these two compositions distribute over one another in the appropriate
way, so that the interchange relation is respected. In fact, there is a map of operads
E1 ⊗ E1 → E2, which Dunn proved to be a homotopy equivalence. We will have
more to say about tensor products of Ed-operads later, but for now the reader should
contrast this example with the previous one. The operads E1 and Ass are homotopy
equivalent, but the tensor products E⊗2

1 and Ass⊗2 behave very differently.
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1.7 The Boardman–Vogt Resolution of an Operad

For an operad P, we will present a ‘resolution’ by a map of operads

ε : W(P) −→ P.

The new operad W(P) has the same set of colours as P and the map ε is the identity
on colours. Thus, the induced functor

ε∗ : AlgP −→ AlgW (P)

gives any P-algebra A = {Ac}c∈C the structure of a W(P)-algebra. The idea is that
W(P)-algebras are ‘P-algebras up to coherent homotopy’. This operad W(P) will be
a topological operad, also when P itself is discrete. To illustrate what we mean let us
first consider a small example. Let T be the following tree:

a b

u

c d
v

w
e

Since the operad Ω(T) is freely generated by the vertices of T , as explained in
Example 1.23(c), a topological Ω(T)-algebra A is determined by a collection of
spaces indexed by the edges of this tree together with continuous maps

A(u) : ∗ −→ A(b),

A(v) : A(a) × A(b) −→ A(c),

A(w) : A(c) × A(d) −→ A(e).

Here ∗ denotes the singleton space. Recall that the operad Ω(T) has operations
corresponding to any subtree of T ; the corresponding multiplication maps for A are
given by appropriate compositions of the three maps above. For example, we have

A(w ◦c v) = A(w) ◦ (A(v) × idA(d)) : A(a) × A(b) × A(d) −→ A(e).

By contrast, a W(Ω(T))-algebra B will be given by a similar collection of spaces (in
particular, still indexed on the edges of T), but now equipped with maps



30 1 Operads

B(u) : ∗ −→ B(b),

B(v) : B(a) × B(b) −→ B(c),

B(w) : B(c) × B(d) −→ B(e),

B(v ◦b u) : B(a) × [0, 1] −→ B(c),

B(w ◦c v) : B(a) × B(b) × B(d) × [0, 1] −→ B(e),

B(w ◦c v ◦b u) : B(a) × B(d) × [0, 1]×2 −→ B(e),

satisfying the following conditions:

B(v ◦b u)|B(a)×{0} = B(v) ◦ (idB(a) × B(u)),

B(w ◦c v)|B(a)×B(b)×B(d)×{0} = B(w) ◦ (B(v) × idB(d))

B(w ◦c v ◦b u)|B(a)×B(d)×{0}×[0,1] = B(w ◦c v) ◦ (idB(a) × B(u)),

B(w ◦c v ◦b u)|B(a)×B(d)×[0,1]×{0} = B(w) ◦ (B(v ◦b u) × idB(c)).

In the algebra A, the multiplication map corresponding to the subtree with leaves
a, b, d and root e was simply given by composing the operations A(v) and A(w). For
the algebra B the situation is different. There is an operation

B(w ◦c v)|B(a)×B(b)×B(d)×{1} : B(a) × B(b) × B(d) −→ B(e)

which is now homotopic, rather than equal, to the map

B(w) ◦ (B(v) × idB(d)).

It is in this sense that B can be thought of as a Ω(T)-algebra ‘up to homotopy’.
We now explain theW-construction in general. Fix an operad Pwith set of colours

C. It can be an operad in sets or in topological spaces. As discussed in Section 1.5, we
can consider the underlying collection U(P) of P and the free operad FU(P) which,
by its universal property, admits a canonical map FU(P) → P. The resolution W(P)
will sit in between these by a factorization

FU(P) → W(P) ε−→ P.

For its construction, recall that elements in FU(P)(c1, . . . , cn; c) are represented by
trees T with leaves labelled by the set {c1, . . . , cn} and root by c. The edges of T
are labelled by colours in C and the vertices of T are labelled by operations of P.
Two such labelled trees represent the same point in FU(P)(c1, . . . , cn; c) if they are
related by an isomorphism of trees respecting colours and operations in the way
explained in Section 1.5.

For W(P) we will add a further labelling and more relations. The elements of
W(P)(c1, . . . , cn; c) are represented by labelled trees as for FU(P), where in addition
the edges are all given a length t ∈ [0, 1] ⊆ R. This assignment of lengths must be
such that the external edges of T , i.e. the leaves and the root, all have length 1. Two
such labelled trees with lengths represent the same operation if they are related by an
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isomorphism as for FU(P), where the isomorphism must of course respect lengths
of edges. However, there are two more relations, one concerning edges of length zero
and one related to vertices labelled by unit operations. If an edge has length zero,
then the operation in W(P) represented by that labelled tree is to be identified with
the one represented by the smaller labelled tree obtained by contracting the edge of
length zero and labelling the newly arising vertex by the appropriate composition
in P. Let us illustrate this relation by an example. Consider an operation of W(P)
represented by a labelled tree T , pictured as follows (with only a small part of the
labellings indicated):

b dc
rq s

p
a

Here p, q, r and s are labels corresponding to operations of P, whereas a, b, c
and d are colours of P. If the length assigned to the inner edge c is zero, then
the operation of W(P) represented by the above picture is to be identified with the
operation represented by the following smaller labelled tree:

b d
q s

p ◦c r
a

The other relation identifies a labelled tree where a vertex v is labelled by a unit
operation of P with the smaller labelled tree obtained by ‘erasing’ that vertex and
giving the newly arising edge as its length the maximum of the lengths of the two
edges connected to v. In a picture, consider a labelled tree (again with only part of
the labels actually indicated) as follows:

b t c
idb

b s

p

q

a

Here t and s indicate the lengths assigned to the relevant edges. The operation
represented by this labelled tree is to be identified with
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b u c
q

p
a

Here the new length u is the maximum of s and t.
Notice that this identification is compatible with the requirement that external

edges have length 1, a compatibility which becomes relevant if the vertex labelled
by a unit is attached to an external edge, e.g. near the root as in the following:

a t
p

ida

a 1
∼

a 1
p

To summarize, operations of W(P) are represented by trees whose edges have
a colour and a length and whose vertices are labelled by operations of P. The
equivalence relation on such representatives is generated by identifications of three
kinds:

(i) one related to isomorphisms of trees, respecting the labellings,
(ii) one related to edges of length zero,
(iii) one related to vertices labelled by a unit.

For a fixed tree with labelled edges, the set of operations of W(P) this tree can
represent (by adding the necessary lengths and labellings of vertices) has an evident
topology by regarding it as the product of spaces of relevant operations of P and the
cube [0, 1]in(T ), where in(T) is the set of inner edges of T . For example, for the tree
with labelled edges

a

b c

d e f

this is the space

P(b, c; a) × P(−; b) × P(d, e, f ; c) × [0, 1]×2,

the edges coloured b and c being the only internal ones. The spaces

W(P)(c1, . . . , cn; c)
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are then topologized as quotients of the disjoint union of spaces associated to trees
as above.

The composition operations of the operad W(P) are again defined by grafting,
just like for free operads. This grafting

W(P)(c1, . . . , cn; c) ×
n∏
i=1

W(P)(di
1, . . . , d

i
ki

; ci) −→ W(P)(d1
1, . . . , d

n
kn

; c)

sends operations represented by trees T, S1, . . . , Sn to the operation represented by
identifying the ith leaf of T with the root of Si and carrying along all the labels. Note
that this ith leaf has the same colour as the root of Si , as well as the same length
(namely 1). Thus, one can recognize operations in W(P) that arise as a composition
of operations represented by subtrees by looking for edges of length 1.

The reader will easily be able to check that this composition operation by grafting
is well-defined on equivalence classes, i.e. respects the relations (i)–(iii). Moreover,
the composition operation is easily seen to be continuous. The maps

FU(P) u
−→ W(P) ε−→ P

alluded to at the start of this section are defined as follows: the map u assigns to
every edge length 1 and the map ε forgets lengths and composes all the operations
which label the vertices of a tree. Equivalently, ε changes all the lengths of internal
edges to zero.

For now, we list a few more examples of operads of the form W(P) and their
algebras other than the one already described earlier in this section.

Example 1.25 (a) Let C be a category with set of objects C and view it as an operad
with unary operations only. Its algebras are then diagrams of sets or spaces indexed
by C, or in other words functors from C to the category of sets or that of spaces.
The operad W(C) has the same colours and again only unary operations. So it is
a category with the same objects as C which is enriched in topological spaces; in
other words, W(C) is a topological category. For two objects a and b, the space
of morphisms W(C)(a, b) can be described as the space of equivalence classes of
strings of the form

(a = c0
f1
−→ c1

f2
−→ · · · cn−1

fn
−→ cn = b, t1, . . . , tn−1) (∗)

where the fi are arrows inC and the ti are lengths in the unit interval [0, 1]. Intuitively,
one can think of the ti as ‘waiting times’ associated to the objects c1, . . . , cn−1
respectively, the external objects a = c0 and b = cn necessarily having waiting times
1. There are two identifications to be made: if a waiting time ti is zero, the string (∗)
is to be identified with the one where one composes fi+1 and fi:

(a = c0
f1
−→ · · · ci−1

fi+1 fi
−−−−→ ci+1

fi+2
−−−→ · · ·

fn
−→ cn = b, t1, . . . , t̂i, . . . , tn−1).
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Also, if fj is an identity arrow, then (∗) is identified with the string where fj is
deleted and one takes the maximum tj−1 ∨ tj of the relevant waiting times:

(a = c0
f1
−→ · · · cj−1 = cj

fj+1
−−−→ · · ·

fn
−→ cn = b, t1, . . . , tj−1 ∨ tj, . . . , tn−1).

Composition in this category is defined by concatenation of strings, inserting waiting
time 1 at the connecting object. Explicitly, the composition of (∗) and

(b = d0
g1
−−→ · · ·

gm
−−→ dm = e, s1, . . . , sm−1)

is

(a = c0
f1
−→ · · ·

fn
−→ cn = b = d0

g1
−−→ · · ·

gm
−−→ dm = e, t1, . . . , tn−1, 1, s1, . . . , sm−1),

where the 1 is to be thought of as the waiting time corresponding to the object b.
Let us now inspect the corresponding notion of W(C)-algebra. It is given by a

space Ac for each object c and maps corresponding to the points f ∈ W(C)(a, b) for
all a, b. If f is represented by a string of length 1, i.e. just a morphism a → b in C,
there are no waiting times and we have a map

A( f ) : Aa −→ Ab .

Next for a morphism of W(C) represented by a string of length 2,

(a = c0
f1
−→ c1

f2
−→ c2, t),

the algebra structure of A gives a map we denote by

At ( f2, f1) : Aa −→ Ab .

These maps fit together in the following way: if one of the fi is the identity, one has

At (id, f ) = A( f ) = At ( f , id).

Moreover,

A0( f2, f1) = A( f2 f1)

A1( f2, f1) = A( f2) ◦ A( f1).

Thus, the At ( f2, f1) provide a homotopy between A( f2 f1) and the composition A( f2)◦
A( f1). This shows that A is not a functor on C itself: it respects identities, but it
respects composition only up to homotopy. At the next level, for a string of the form

(a = c0
f1
−→ c1

f2
−→ c2

f3
−→ c3 = b, t1, t2)

representing a morphism in W(C), the algebra structure of A gives a map
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At1,t2 ( f3, f2, f1) : Aa −→ Ab .

In other words, we have a parametrized family of continuous maps

A−,−( f3, f2, f1) : [0, 1]×2 × Aa −→ Ab .

The identifications of strings made to form W(C) now mean that for one of the fi
equal to an identity arrow one has

At1,t2 ( f3, f2, id) = At2 ( f3, f2),

At1,t2 ( f3, id, f1) = At1∨t2 ( f3, f1),

At1,t2 (id, f2, f1) = At1 ( f2, f1)

and that when setting lengths to either 0 or 1 one has

A0,t2 ( f3, f2, f1) = At2 ( f3, f2 f1),

A1,t2 ( f3, f2, f1) = At2 ( f3, f2) ◦ A( f1),

At1,0( f3, f2, f1) = At1 ( f3 f2, f1),

At1,1( f3, f2, f1) = A( f3) ◦ At1 ( f2, f1)

which give ‘higher coherence’ conditions on the homotopies At ( f2, f1) described
above. This system of homotopies can be pictured schematically as follows:

A( f3 f2 f1) //

��

A( f3)A( f2 f1)

��
A( f3 f2)A( f1) // A( f3)A( f2)A( f1).

The algebra structure of A also gives even higher coherence conditions on these
homotopies by examining its action on strings of arbitrary length n. The entire
structure is called a homotopy-coherent diagram on the category C.

(b) The example above takes a slightly simpler form if the category C is free on a
directed graph. For later use we will make this explicit for the category [n], depicted
as

0→ 1→ · · · → n.

In this case, a morphism f : i → j in W([n]) is again an equivalence class of strings

i = i0 → i1 → · · · → ik = j

together with waiting times t1, . . . , tk−1. But in [n] there is at most one morphism
between any two objects, so an arrow i0 → i1 can only be the composition of arrows
i0 → i0 + 1→ · · · → i1 − 1→ i1, so we may as well represent f by the longer string

i = i0 → i0 + 1→ · · · → i1 → i1 + 1→ · · · → ik − 1→ ik = j
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and insert waiting time 0 on any of the intermediate objects we had to add. In this
way any morphism f of W([n]) admits a unique representative by such a string of
maximal length. The waiting times thus give identifications of morphism spaces

W([n])(i, j) =
∏
i<l< j

[0, 1] ' [0, 1]×(j−i−1)

for all 0 ≤ i ≤ j ≤ n (with the convention that [0, 1]−1 = ∗). Composition is given
by the map ∏

i<l< j

[0, 1] ×
∏
j<l<k

[0, 1] −→
∏
i<l<k

[0, 1]

which inserts 1 in the jth entry.
(c) Define an operad Ass− by setting Ass−(n) = Ass(n) for all n ≥ 1 and Ass(0) =

�, where all the relevant structuremaps are defined as those for the associative operad
Ass. We refer to Ass− as the nonunital associative operad. The operad W(Ass−) is
closely related to the operad of Stasheff polytopes. For example, the space of 3-ary
operationsW(Ass−)(3) consists of two copies of [0, 1] glued together at one endpoint
and can be pictured as follows:

The intervals correspond to the lengths assigned to the inner edges of the two
trees on the outside. When these lengths are zero, the two resulting operations are
identified in W(Ass−)(3), which is illustrated by the tree in the middle where the
inner edges have been contracted. More interestingly, the following is an illustration
of W(Ass−)(4), which arises from gluing five squares:
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The centre node corresponds to the tree with one vertex and four leaves, which
arises from each of the other trees in the picture by contracting all inner edges.

1.8 Configuration Spaces and the Fulton–MacPherson Operad

In this section we will present another important example of an operad, constructed
from configuration spaces of points in Euclidean space. In the following section we
will then explain how it is related to the operad Ed of little cubes. These two sections
mainly serve to illustrate some of the basic concepts introduced in this chapter, such
as free operads and the Boardman–Vogt resolution, and describe an example that is
central in applications of operads to be found in the literature. However, the material
of these sections is not necessary to study the theory developed in this book, so the
reader may decide to skip these sections or revisit them later.

The configuration space of n distinct points in Rd and variants of it occur fre-
quently in the literature, for example when modelling moving systems of particles,
or moduli spaces of points in algebraic geometry. This space is an open subset of
Rdn and is not compact. For example, as one lets points in a configuration converge
to each other, there exists no ‘limiting configuration’: once points collide, the result
is a configuration with strictly fewer points. One can enlarge the space of configu-
rations of n points by the so-called Fulton–MacPherson compactification. Roughly
speaking, this is a systematic way of adding ‘collisions’, but remembering the way
in which points came together: at a collision, one assigns an ‘infinitesimal’ config-
uration of the colliding points. These points themselves could also have arisen from
a collision, which is then also remembered, etc. As we will make precise below,
these Fulton–MacPherson spaces consist of such nested collisions; moreover, they
are compact and contain the original configuration space as a dense open subset.
The surprising fact is that these spaces of nested collisions have the structure of an
operad, very similar to the structure of a free operad discussed earlier.

For a fixed dimension d, there is another way of modifying the configuration
spaces of n points in Rd (for varying n) into an operad, namely by considering con-
figurations of little cubes instead. This yields the little d-cubes operad we introduced
in Example 1.8.Wewill see in the next section that there is in fact a (weak) homotopy
equivalence of operads between the Fulton–MacPherson operad and Ed .

In this section it will be convenient to work with the coordinate-free versions
of the definitions of operad and collection, as in Section 1.4. All of these will be
uncoloured. Let us fix a Euclidean space Rd , with d ≥ 0. For a finite set A, the space
of A-configurations Conf(A,Rd) is defined to be the space of injective maps

x : A→ Rd,
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topologized as a subspace of (Rd)A. A point x of Conf(A,Rd) will also be written
as a family (xa)a∈A of points satisfying xa , xa′ whenever a , a′. Notice that
Conf(A,Rd) is a contravariant functor with respect to injective maps A → B of
finite sets. In particular, the symmetric group Aut(A) of permutations of A acts on
Conf(A,Rd) from the right.

It will be convenient to identify two A-configurations if one can be obtained from
the other by translation and dilation. The group Gd = R>0 n R

d acts on a point
x ∈ Conf(A,Rd) by

((t, v) · x)a = v + t · xa .

and we will write
Cd(A) = Conf(A,Rd)/Gd

for the quotient space. Observe that the projection map π : Conf(A,Rd) → Cd(A) is
a Gd-principal bundle with contractible fibre, hence a homotopy equivalence.

From now on, we assume that the cardinality of A is at least 2. Let us call a
configuration x : A→ Rd normal if its barycentre is the origin and its diameter is 1,
meaning ∑

a

xa = 0, maxa,a′ |xa − xa′ | = 1.

Write Nd(A) ⊆ Conf(A,Rd) for the subspace of normal configurations. Any con-
figuration x can be translated to have its barycentre at the origin and then dilated
to have diameter 1. More precisely, any Gd-orbit of Conf(A,Rd) contains a unique
normal configuration. This observation provides a section s of the bundle map π as
in the following diagram:

Conf(A,Rd) Nd(A).

Cd(A)

ν

π
s

Wewill refer to ν = sπ as the normalization of configurations. Note that via s wemay
identify the spaces Cd(A) and Nd(A). This allows us to take the closure of the space
Cd(A), by which we mean the closure Nd(A) of Nd(A) inside (Rd)A. Since Nd(A)
is bounded, this closure is compact. Its points are limits of normal configurations,
where ‘collisions’ can occur. A point of Nd(A) is a function x : A → Rd which is
not necessarily injective, but still has barycentre at the origin and diameter 1. Notice
that as a functor of A, the space Nd(A) is now contravariantly functorial with respect
to arbitrary maps of finite sets (rather than just injections); for any f : A → B one
obtains a map Nd(B) → Nd(A) by precomposing a map y : B→ Rd with f and then
normalizing the resulting ‘singular’ configuration.

We will write Cd for the collection (in the sense of Section 1.4) formed by the
spaces Cd(A) where the set A is of cardinality at least 2; for smaller A the collection
Cd assigns the empty set. This convention might seem somewhat unnatural, but it
is imposed for the following reasons. First of all, further on in this section it will be
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important that we work with operads without nullary operations. Second of all, for
a singleton A = {a} the space Cd({a}) consists of a single point, so that omitting
these from our collection does not constitute any loss of information. If we were to
keep them, then in our consideration of the free operad FCd below we would have
to quotient out by the relation that the unique element of the space Cd({a}) acts as a
unit. It is more efficient to simply exclude this space to begin with, as we are doing.

The collection Cd does not form an operad, because there is no sensible way to
substitute one configuration into another. However, for configurations x ∈ Cd(A) and
y ∈ Cd(B), one can define a ‘substitution’

x ◦a y ∈ Nd(A ◦a B)

for any element a of A, which simply forgets about y and takes the value xa for
every element of B. On the other hand, if we shrink y sufficiently and move it to
have barycentre xa, we obtain an actual configuration consisting of the points xa′
for a′ , a and a shrunken copy of y centred at xa. Formally, for sufficiently small
ε > 0, we define a point x ◦a,ε y in Cd(A ◦a B) represented by

(x ◦a,ε y)i =

{
xi if i ∈ A − {a}
xa + εyi if i ∈ B.

Then the ‘collided configuration’ x ◦a y is the limit of the configurations x ◦a,ε y as
ε → 0. Our goal is now to suitably enlarge the spaces Cd(A) in such a way that the
limits of configurations x ◦a,ε y exist in them and can be used to give the resulting
collection the structure of an operad. The combinatorics of trees is precisely the right
tool to describe such ‘configurations inside larger configurations’ (cf. Remark 1.28
below).

To achieve this goal, consider the free operad FCd on the collection Cd . We
will retopologize this operad in such a way that the pair (x, y) ∈ FCd(A ◦a B)
corresponding to the grafted tree CA ◦a CB, with two vertices corresponding to CA

and CB and labels x and y respectively, is the limit of the configurations x ◦a,ε y,
viewed as elements of FCd(A ◦a B) via the embedding Cd → FCd:

ε → 0x ◦a,ε y

· · ·

x
a
y

· · ·

To this end, let us consider the free operad FCd in more detail, using the descrip-
tion given in Section 1.5. For a fixed set B, an element of FCd(B) is an equivalence
class of pairs (T, x), where B is the set of leaves of T and x is a labelling of the set of
vertices by elements in the collection Cd . To be precise, x assigns to any vertex v of
T a point xv of the space Cd(in(v)), with in(v) denoting the set of input edges of v.
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Two pairs (T, x) and (T ′, x ′) are equivalent if there exists an isomorphism α : T → T ′

of trees such that xv = α∗(xα(v)) for each vertex v of T . The topology on FCd(B) is
induced by the topology of the configuration spaces. In detail, FCd(B) falls apart as
a disjoint sum

FCd(B) =
∐
[T ]

FCd(B)T

over isomorphism classes of trees (with set of leaves B), where FCd(B)T is the
space of equivalence classes of pairs (T, x). Since there is at most one isomorphism
between two such trees T and T ′ with leaves B, we can fix a representative tree T in
an isomorphism class [T] and identify FCd(B)T as the product∏

v∈V (T )

Cd(in(v))

of configuration spaces indexed by the vertices of T . It is important to note that the
trees T featuring here have no nullary or unary vertices, since by definition the sets
Cd(A) are nonempty only when the cardinality of A is at least 2. Thus, all the trees T
that come up in the remainder of this section will have the property that each vertex
has at least two input edges.

On our way to changing the topology of FCd , consider for each finite set B of
cardinality ≥ 2 the product space

P(B) =
∏
A⊆B

Nd(A),

where the product ranges over subsets A of cardinality ≥ 2 as well. This is a compact
space, as each Nd(A) is itself compact. Using the substitution of configurations
discussed above, these spaces P(B) for all B together form an operad (if one formally
adds units for all singletons B = {b}): for sets B and D and an element b ∈ B, the
◦b-composition

− ◦b − : P(B) × P(D) → P(B ◦b D)

is defined for two points x ∈ P(B) and y ∈ P(D) and a subset A ⊆ B ◦b D by the
function

xA ◦b yA : A→ Rd

sending i ∈ A to xA(i) if i ∈ B−{b} and to yA(i) if i ∈ D (or rather the normalization
of this function, so as to get an element of Nd(A)). Now consider the map

ϕB : FCd(B) → P(B)

defined as follows. For an element of FCd(B) represented by a pair (T, x), we will
describe the component ϕB(T, x)A at a subset A ⊆ B. Write vA for the minimal
vertex of T (in the partial ordering on the set of vertices V(T)) such that for each
a ∈ A, the path from the leaf a of T to its root passes through vA. In other words, vA
is the highest possible vertex in the tree T such that all of the elements of A occur
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above the vertex vA. Write
pA : A→ in(vA)

for the map assigning to a ∈ A the input edge of vA at which the path from a down
to the root arrives at vA. The configuration xvA ∈ Cd(invA) then yields an element
p∗AxvA ∈ Nd(A) and we define

ϕB(T, x)A := p∗AxvA .

It is straightforward to check that ϕB(T, x)A only depends on the equivalence class
of (T, x), so that we indeed have a well-defined map ϕB. Moreover, these maps are
clearly continuous and define a map of operads ϕ : FCd → P. Its image thus defines
a suboperad ofP, which we denote byFMd and call theFulton–MacPherson operad:

FCd P.

FMd

ϕ

In fact, the maps ϕB : FCd(B) → P(B) are injective, so that FMd really ‘is’ the free
operad FCd , but topologized as a suboperad of P:

Proposition 1.26 For each finite set B (with at least two elements), the map
ϕB : FCd(B) → P(B) is injective. Its image FMd(B) is closed inside P(B) and
hence compact.

Proof Consider the subspace X(B) of

P(B) =
∏
A⊆B

Nd(A)

consisting of those points x which satisfy the following condition: for any subsets
A′ ⊆ A ⊆ B, either xA′ is the restriction of xA to A′ (normalized so as to get a point
in Nd(A)), or this restriction is constant. The set X(B) ⊆ P(B) is clearly closed.
Moreover, it is easy to check that the image of ϕB is contained in X(B). To check
that ϕB is injective and its image is exactly X(B), we construct an explicit inverse

ψB : X(B) → FCd(B)

as follows. Suppose ξ ∈ X(B), with components ξA for subsets A ⊆ B. We will
define ψB(ξ) by an inductive procedure. First consider ξB : B → Rd . The fibres of
this map determine a partition of B. We begin building a tree T by taking a corolla
with vertex called vB (which will serve as the root corolla) with one input edge for
each point p in the image of ξB. This image defines a configuration xvB , which will
be the label of the vertex vB. Next, for those points p for which the fibre Bp := ξ−1

B (p)
has more than one element, attach a vertex vBp on top of the edge p and an input
edge of vBp for each element q in the image of the map ξBp . We label the vertex vBp
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by the configuration that is the image of ξBp . Since each of the maps ξA : A→ Rd

has an image of diameter 1, these maps are not constant, so the cardinality of the
fibres of ξA is strictly smaller than that of A. Thus the process we are describing can
be continued and will eventually terminate to produce a tree T . The set of leaves
of this tree is exactly B and for a vertex v of T , its incoming edges are labelled by
points in Rd which form a configuration that is the label xv of the vertex v. The value
ψB is now defined to be (the equivalence class of) the pair (T, x). We leave it to the
reader to check that ψB thus defined is (as a map of sets) an inverse for the map
ϕB : FCd(B) → X(B). This proves that ϕB defines a bijection and X(B) = FMd(B)
as desired. �

As a consequence of this proposition, the space FMd(B) is a union

FMd(B) =
⋃
T

FMd(T),

where T ranges over isomorphism classes of trees T with B as set of leaves and
FMd(T) := ϕ(FCd(B)T ). The subspaces FMd(T) are disjoint, but as a topological
space FMd(B) is not the coproduct of the spaces FMd(T). (See Corollary 1.30 for a
more precise statement.) From the construction in the proof above, one reads off that
a point ξ ∈ FMd(B) belongs to FMd(T) if and only if it has the following property,
for any two subsets A′ ⊆ A ⊆ B:

ξA |A′ = ξA′ if and only if vA = vA′,

ξA |A′ is constant if and only if vA , vA′ .

(Recall that vA and vA′ are the highest vertices below A and A′ respectively. Also,
we only consider subsets A and A′ of cardinality at least 2.) A point ξ ∈ FMd(B)
potentially contains a lot of redundant information. In fact if ξ belongs to FMd(T)
then the function ξA : A → Rd factors through pA : A → in(vA), hence is the
restriction to A of ξAv where Av is the set of all leaves above vA (which is the
maximal subset A′ ⊆ B with vA′ = vA). In particular, ξ is completely determined by
the coordinates ξAv with Av ranging over such ‘maximal sets’ associated to vertices
of T . Moreover, if a, a′ ∈ Av lie over different input edges of v, then v{a,a′ } = v

so ξA |{a,a′ } is not constant. This means that the factorization of ξAv through pA is
injective, so ξAv defines a point in Cd(in(v)). So for the treeT , we have a factorization

FCd(B)T FMd(T)

∏
v∈V (T ) Cd(in(v)),

ϕ

where the slanted map is a homeomorphism and the other two are bijections, hence
also homeomorphisms. In other words, the map ϕ restricts to a homeomorphism for
each tree T . As a consequence, the operad FMd inherits the following property from
the free operad:
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Corollary 1.27 For a tree S ◦e T obtained by grafting a tree T onto the leaf e in a
tree S, the canonical map

FMd(S ◦e T) → FMd(S) × FMd(T)

is a homeomorphism.

To be clear, the map of the corollary is the one that ‘decomposes’ a labelling of
S ◦e T into the labellings of the subtrees S and T .

Remark 1.28 One can think of the space FMd(T) as that of nested sequences of
configurations, indexed by the vertices ofT . Any vertex v determines a configuration
of the set in(v) in Rd and for an input edge e of v with a vertex w attached to the top
of e, there is a further configuration of the set in(w) which we might picture as an
‘infinitesimal configuration’ around e ∈ Rd . Thus the union FMd(B) =

⋃
T FMd(T)

is, as advertised at the beginning of this section, an enlargement of the configuration
space Cd(B) in which one can take limits of configurations; collisions between points
are recorded by infinitesimal configurations around the point of collision, as features
explicitly in the proof of the following proposition.

As we already described, the space FMd(B) is a union of disjoint subspaces
FMd(T), but not topologically a disjoint union of these spaces. The following result
expresses how the distinct pieces (the strata) FMd(T) are glued together:

Proposition 1.29 Let S and T be two trees, each with B as set of leaves. Then
FMd(S) ⊆ FMd(T) if and only if T can be obtained (up to isomorphism) by con-
tracting inner edges in S.

Proof First we prove the ‘if’ direction. Reasoning by induction, it suffices to show
this implication in the case where S is obtained from T by contracting a single edge.
This means that there is a vertex v in S for which the corolla Cv at this vertex is
‘blown up’ to a subtree Tv ⊆ T with two vertices u and w, as in the following:

v
Cv

u
e

w

Tv

Since FMd(S) is a product over the vertices in S of configuration spaces, and
similarly for T , it now suffices to prove that FMd(Tv) ⊆ FMd(Cv). But a point (x, y)
in FMd(Tv) = Cd(in(v)) × Cd(in(w)) is the limit in FMd(B) of the points x ◦e,ε y in
FMd(Cv), as described in the beginning of this section.

We now deal with the ‘only if’ direction. Suppose FMd(S) ⊆ FMd(T). Consider
a point ζ ∈ FMd(S) and write it as a limit of points ξ ∈ FMd(T). Then for any
subsets A′ ⊆ A ⊆ B, if the functions ξA : A → Rd are constant on A′, the same
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is true for ζA. Thus, the nested partitions {Av} of B given by the tree T (described
above Corollary 1.27) form a refinement of the similar partitions given by the tree S.
But this means precisely that S can be obtained from T by contracting inner edges.�

Corollary 1.30 The embedding ϕ : Cd(B) → FMd(B), identifying Cd(B) with the
stratum FM(CB) corresponding to the corolla CB with leaves B, has dense image.

Thus, the space FMd(B) is a compactification of the configuration space Cd(B)
(meaning a compact space containing Cd(B) as a dense subspace), and for this
reason FMd(B) is often referred to as the Fulton–MacPherson compactification of
the configuration space Cd(B).

1.9 Configuration Spaces and the Operad of Little Cubes

The Fulton–MacPherson operad FMd introduced in the preceding section is closely
related to the operad Ed of little d-cubes from Example 1.8. Indeed, a point of the
space Ed(n) is a configuration of n little d-cubes inside the unit cube; assigning to
each little cube its barycentre constitutes a homotopy equivalence from the space
Ed(n) to the configuration space of n points in the interior of the unit d-cube, which
in turn is homeomorphic to the configuration space of n points in Rd . However,
this assignment is not a map of operads in any reasonable sense. We already saw
in the previous section that the configuration spaces themselves do not quite form
an operad; rather, one should pass to the Fulton–MacPherson compactifications. In
this section we will make the relation between the operads FMd and Ed precise by
exhibiting a zigzag of maps

FMd ← P→ Ed

each of which is a homotopy equivalence of operads, in the sense that P(n) →
FMd(n) and P(n) → Ed(n) are homotopy equivalences of spaces for each n.

The operad P we will use is essentially the Boardman–Vogt W-resolution of Ed .
To be precise, in this section we view Ed as an operad by forgetting Ed(0) and
replacing the contractible space Ed(1) by just a point, as for the Fulton–MacPherson
operad. For the Boardman–Vogt resolution W(Ed) and a finite set B, elements of
W(Ed)(B) are represented by tuples (T, p, t), where T is a tree with B as its set of
leaves, p assigns an element p(v) ∈ Ed(in(v)) to each vertex v of T , and t assigns a
length t(e) ∈ [0, 1] to each inner edge e of T . Moreover, we may assume that each
vertex of T has at least two incoming edges (as for FMd) by virtue of the ‘unit
relation’ imposed on the W-construction. If T has an edge e with length t(e) = 0,
then such a tuple is identified with a tuple (∂eT, p′, t ′), where ∂eT is obtained from
T by contracting e, the assignment t ′ is the restriction of t to the inner edges of ∂eT ,
and p′ is obtained from p by composition in the operad Ed . The composition in the
operad W(Ed) is defined by grafting of trees, assigning length 1 to the edge along
which grafting takes place. As we have seen before, there is a morphism of operads
ε : W(Ed) → Ed forgetting lengths of edges and composing all operations in a tree;
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this map is easily seen to be a homotopy equivalence via the linear homotopy that
‘contracts lengths to zero’. If we forget the topology on the operad W(Ed), then it is
the free operad on the collection of sets W◦(Ed)(B) consisting of points represented
by tuples (T, p, t) where each edge e has length t(e) < 1. Moreover, extending the
analogy with the Fulton–MacPherson operad, W(Ed)(B) decomposes into strata
W(Ed)(B)S consisting of those points (T, p, t) for which the tree ∂<1T obtained by
contracting all edges of length < 1 is isomorphic to S (by an isomorphism respecting
the leaves B).

Now for each finite set B, consider the map

ϕ = ϕB : W◦(Ed)(B) → Ed(B)

assigning to a tuple (T, p, t) the composition of the elements p(v) of the little d-cubes
operad, but rescaled by the lengths of the edges: explicitly, it is the composition of the
elements (1− t(ev))p(v)where ev is the edge immediately below v. In this definition,
we take the length of the root edge to be zero, so do not rescale the operation at the
root of T . Notice that more generally, if an edge ev has length zero then no rescaling
takes place, so that ϕ is well-defined on equivalence classes of tuples. If we compose
this map ϕB with the map

c : Ed(B) → Cd(B)

taking the centres of the cubes involved, we obtain a map

cϕB : W◦(Ed)(B) → Cd(B) ⊆ FMd(B).

These maps cϕB are obviously natural with respect to bijections between finite sets.
So, as W(Ed) is free as an operad (ignoring the topology for a moment) over the
collection of spaces W◦(Ed)(B), we obtain a map of operads (in Sets)

cϕ : W(Ed) → FMd .

It is not difficult to check that this is in fact a map of topological operads, i.e., each
cϕB is continuous. (The reason is that if the length of an edge ev below a vertex
e converges to 1, then by the rescaling factor 1 − t(ev), the configuration of the
centres of the cubes in p(v) converges to a single point, exactly as in the topology
of the Fulton–MacPherson operad.) Notice also that the map cϕ maps the stratum
W(Ed)(B)S for a tree S exactly to the stratum FMd(S) of FMd(B).

We claim that the map cϕ gives a homotopy equivalence of spaces W(Ed)(B) →
FMd(B) for each finite set B. To see this, consider the diagram

W(Ed) FMd

Ed W◦(Ed) Cd .

ε

cϕ

η cϕ
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In this diagram cϕ and ε are maps of operads, but the other arrows are merely
maps of collections. The map η identifies Ed(B) with the part of W◦(Ed)(B) given
by the corolla with B as its set of leaves. The maps in the triangle on the left are
homotopy equivalences by ‘contracting lengths of inner edges to zero’, as before.
The composition cϕη simply takes centres of cubes and is a homotopy equivalence
as well. Thus it suffices to show that the inclusion of the ‘configuration space’ Cd(B)
into its compactification FMd(B) is a homotopy equivalence for each finite set B.
Briefly said, this is the case because FMd(B) is a manifold with corners and Cd(B)
is precisely its interior. Let us take the remainder of this section to explain this point
in some more detail.

Recall that the space Cd(B) itself is a smooth manifold; indeed, it is the quotient
of Conf(B,Rd) by a free and proper action of the group R>0 ×R

d of translations and
dilations, while Conf(B,Rd) itself is simply on open submanifold of (Rd)B. Now
recall that a manifold with corners of dimension N is covered by charts of the form
(0, ε)n × [0, ε)N−n for ε > 0 and 0 ≤ n ≤ N . To exhibit such charts for FMd(B),
consider a point ξ ∈ FMd(B) lying in a stratum FMd(T) corresponding to a tree T
with set of leaves B. Then the union of the strata FMd(S), where S ranges over trees
obtained from T by contracting inner edges, is an open set in FMd(B) containing
the point ξ (cf. Proposition 1.29). We will describe a chart around ξ within this open
set, using the identifications

FMd(S) =
∏

w∈V (S)

Cd(in(w)).

So let us view ξ as a point in
∏

v∈V (T ) Cd(in(v)) and let W be an open neighbour-
hood of ξ in this product space. Choose W small enough so that there is an ε > 0
such that all the configurations ζ(v) for points ζ ∈ W have mesh at least 2ε, i.e., the
points in the configuration ζ(v) are at least a distance 2ε apart. This implies that if
in such a configuration we replace one or more points x by a configuration centred
at x with diameter < ε, the result is still a configuration of distinct points.

Now write I(T) for the set of inner edges of T and define a map

ψ : W × [0, ε)I (T ) → FMd(B)

as follows. For a point (ζ, t) with ζ ∈ W and t a sequence of lengths t(e) assigned
to inner edges of T , let St be the tree obtained by contracting all edges in T of
length > 0. Then ψ(ζ, t) will land in the stratum FMd(St ), so is given by a family
of configurations ψ(ζ, t)(w) indexed by the vertices w of St . Such a vertex w arises
as the contraction of a subtree Tw ⊆ T all of whose inner edges e have length
0 < t(e) < ε. The configuration ψ(ζ, t)(w) is obtained by iteratively substituting the
configurations ζ(v) (of diameter 1) rescaled by the lengths t(e). Before giving the
formula, let us consider a small example to illustrate the idea.
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Example 1.31 Consider the trees

S TR

x

a b c d

u

ya

b c d

e
u

v

w

a
e

f
b

c d

and a point ζ ∈ FMd(T) given by configurations ζ(u) ∈ C({a, e}), ζ(v) ∈ C({b, f }),
and ζ(w) ∈ C({c, d}). Let (t(e), t( f )) be an assignment of lengths in [0, ε) to the
inner edges of T . If t(e) = 0 < t( f ), then ψ(ζ, t) is a point in the stratum for the
tree S. It is given by the old configuration ζ(u) at the vertex u and the new three-
point configuration ψ(ζ, t)(y) at the vertex w, obtained from the configuration ζ(v)
by replacing the point ζ(v)( f ) by the tiny configuration t( f ) · ζ(w) now centred
around ζ(v)( f ). If t(e) and t( f ) are both strictly positive, then ψ(ζ, t) is a four-point
configuration in the stratum FMd(R) = Cd({a, b, c, d}). It is defined by additionally
replacing the point ζ(u)(e) by the configuration t(e) · ψ(ζ, t)(y).

In order to give a general formula for ψ(ζ, t)(w), consider the incoming edges
of w in the tree St . Since w was obtained by contracting the subtree Tw of T , these
incoming edges are exactly the leaves of Tw . For such a leaf l, the point ψ(ζ, t)(w)(l)
in Rd is the point in the configuration obtained by rescaled substitution along the
path from l down to the root of Tw . If we depict this path as

...

l

en

e1

e0

vn

v0

then ψ(ζ, t)(w)(l) is the point

ζ(v0)(e1) + t(e1)ζ(v1)(e2) + t(e1)t(e2)ζ(v2)(e3) + · · · + t(e1) · · · t(en)ζ(vn)(l).

This completes the definition of the map

ψ : W × [0, ε)I (T ) → FMd(B).

It is not difficult to check that this map is a homeomorphism onto its image. For
example, to see that it is injective, notice that we can recover the rescaling factors t(e)
from ψ(ζ, t). Indeed, ψ(ζ, t) lies in a stratum S, already telling us which of the t(e)
are nonzero. The values of these nonzero t(e) can then be read off from the diameters
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of the substituted rescaled configurations. For instance, in the first example above
where t(e) = 0 < t( f ), the configuration ψ(ζ, t)(y) of three points b, c, and d is
normalized with diameter 1, but its subconfiguration of just the points labelled c and
d has exactly diameter t( f ).

Historical Notes
The theory of operads first demonstrated its importance through the characterization
of iterated loop spaces by means of the little cubes operads, by Boardman–Vogt [21]
and May [112]. The latter reference contains the first occurrence of the definition
of an operad as we gave it. Boardman and Vogt formulated their results in terms of
the closely related notion of a ‘prop’, and also described what we have called the
‘Boardman–Vogt resolution’ and the tensor product of operads in these terms. While
operads describe general algebraic structures in terms of operations with a finite
number of inputs and one output, a prop does the same thing for a finite number of
inputs and any finite number of outputs. These props arose in the work on higher
homotopies of Adams, MacLane and others in the 1960s [107]. A precursor of the
characterization of iterated loop spaces in terms of operads is Stasheff’s charac-
terization [135] of loop spaces in terms of ‘Stasheff polytopes’, closely related to
the operad of little 1-cubes (i.e., little intervals). The compactification of the con-
figuration space in terms of trees discussed in the last section of this chapter goes
back to Fulton–MacPherson [60] and Axelrod–Singer [7]. The Fulton–MacPherson
operad was first introduced by Getzler–Jones [65]. Our description of the compact-
ification and its operad structure is based on Kontsevitch–Soibelman [100], Sinha’s
work [134] and on the PhD thesis of Dean Barber [9]. A further useful reference is
Salvatore’s work [132].

The force of the notion of operad is that it makes sense in any symmetric monoidal
category, so that operads and their algebras can easily be transported along functors
between such categories, and can be dualized to obtain ‘cooperads’. Nonetheless,
after having demonstrated their importance in topology, it took awhile before operads
and cooperads were explicitly used in other, more general categories. Decisive steps
here were taken by Getzler–Jones [65] and Ginzburg–Kapranov [68], who discussed
bar-cobar and Koszul duality for (co)operads and studied the operad structure on
moduli spaces of curves. The role of operads in deformation theory and quantization
was emphasized by Kontsevich [100]. Nowadays, operads play a crucial role in many
parts of mathematics. For more details on the history of the theory of operads, the
reader is referred to the books by Markl, Shnider, and Stasheff [110] and the book of
Loday and Vallette [104], which gives a very comprehensive treatment of operads
in the context of homological algebra.
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Chapter 2
Simplicial Sets

Simplicial sets form a very convenient tool to study the homotopy theory of topolog-
ical spaces. In this chapter we will present an introduction to the theory of simplicial
sets. We assume some basic acquaintance with the language of category theory, but
no prior knowledge of simplicial sets on the side of the reader. We present the basic
definitions and constructions, including the geometric realization of a simplicial set,
the nerve of a category, and the description of the product of two simplicial sets
in terms of shuffles. The category of simplicial sets is an example of a category of
presheaves, and we also take the opportunity to discuss Kan extensions and several
other constructions for presheaves that will be used again later in this book. The
chapter ends with some examples of other types of simplicial objects, such as bisim-
plicial sets and simplicial operads. The material in this chapter is quite classical,
and different presentations each having their own virtues can be found in the books
already mentioned in the introduction. Our particular way of selecting and present-
ing the material was mainly motivated by the need to prepare the ground for the
extension of the theory to that of dendroidal sets in the next chapter.

2.1 The Simplex Category ∆

In this section we recall the definition of the category ∆ of finite linear orders, which
lies at the basis of the theory of simplicial sets. In fact there are two equivalent
definitions of this category, a skeletal and a non-skeletal one. The skeletal category
∆ has as its objects the natural numbers, which are denoted [n] (for n ≥ 0) and are
thought of as linear orders

[n] = {0 ≤ 1 ≤ 2 ≤ · · · ≤ n}

or equivalently as free categories

[n] =
(
0→ 1→ 2→ · · · → n

)
.
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The morphisms α : [n] → [m] in ∆ are the non-decreasing functions or, from the
second perspective, functors [n] → [m].

Sometimes it is convenient to consider a larger version of ∆, whose objects are
finite non-empty linearly ordered sets and whose morphisms are non-decreasing
functions between them. The difference between the two versions will not matter
very much, but we will usually stick to the skeletal one described above for notational
convenience.

There are some morphisms in ∆ for which we introduce additional notation. First,
there is for each 0 ≤ i ≤ n the injective monotone function

δi : [n − 1] −→ [n]

which skips the value i. Also, for each 0 ≤ j ≤ n − 1 there is the surjective function

σj : [n] −→ [n − 1]

which hits the value j twice and every other value once; in other words, it is given
by σj(k) = k for k ≤ j and σ(k) = k − 1 for k > j. These morphisms are called the
elementary faces and elementary degeneracies respectively.

Note that any injective function [m] → [n] can be written as a composition
of elementary face maps (although not necessarily uniquely). Also, any surjective
function factors as a composition of elementary degeneracies. Since any morphism
[m] → [n] factors as a surjection [m] → [k] followed by an injection [k] → [n], this
shows that the elementary faces and degeneracies generate all the morphisms of ∆.
One easily figures out the relations satisfied by these generating maps. For example,
if 0 ≤ i < j ≤ n then the composition

[n − 2]
δi
−→ [n − 1]

δ j
−−→ [n]

is the injective map skipping i and j in its image, as is

[n − 2]
δ j−1
−−−→ [n − 1]

δi
−→ [n].

In other words, we have the relation
(1) δjδi = δiδj−1 for i < j.
The other relations are as follows:
(2) σiσj = σj−1σi for i < j.

(3) σiδj =


δj−1σi if i < j − 1
id if i = j − 1 or i = j
δjσi−1 if i > j .

These relations are called the cosimplicial identities. As a consequence, a functor F
from ∆ into any other category C can be specified by giving the values F([n]) for
all n ≥ 0 together with the maps F(δi) and F(σj) corresponding to the elementary
faces and degeneracies, provided that these maps satisfy the cosimplicial identities.
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The category ∆ has very few limits and colimits, but there are some which we
wish to single out. Suppose we have inclusions f : [k] → [n] and g : [k] → [m]
where f is an ‘initial segment’ and g is a ‘terminal segment’, i.e. they satisfy

f (i) = i and g(i) = i + m − k .

Then the pushout square

[k]

g

��

f // [n]

��
[m] // [n] ∪[k] [m]

exists in ∆; indeed, the bottom right corner is the linear order [m + n − k]. The
simplest example of this is the pushout square

[0]

m

��

0 // [n]

��
[m] // [m + n].

Iterating this type of pushout we can write [n] as the colimit of a diagram involving
only [0]’s and [1]’s:

[n] = [1] ∪[0] [1] ∪[0] · · · ∪[0] [1].

Here there are n copies of [1] and each [0] includes as the vertex 1 of the copy of [1]
on its left and the vertex 0 of the copy of [1] to its right.

An example of a different kind is the pushout of two surjections

[k]
p
←− [n]

q
−→ [l]

between linear orders. One can think of [k] as obtained from [n] by collapsing
certain segments to points and similarly for [l]. When one collapses both families of
(possibly overlapping) segments to points, one obtains a further quotient [m] which
is the pushout of p and q. For example, for 0 ≤ i < j < n,

[n]
σj //

σi

��

[n − 1]

σi

��
[n − 1]

σj−1
// [n − 2]

is such a pushout. These pushouts in ∆ have a special property, expressed by the
following proposition:
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Proposition 2.1 (i) In the square above with i < j there exist sections α : [n−1] →
[n] of σi and β : [n − 2] → [n − 1] of σi , which are compatible in the sense that
σjα = βσj−1.

(ii) Consider a commutative square

A

p

��

q // B

r

��
C

s
// D

in a category C, with p a split epimorphism (i.e., admitting a section) and q an
epimorphism. If there exist compatible sections α of p and β of r (in the sense
described in (i)), then the square is a pushout. In fact it is an absolute pushout,
meaning any functor from ∆ to another category sends the square to a pushout
square.

(iii) Let [k]
p
←− [n]

q
−→ [l] be surjections in ∆. The pushout

[n]

p

��

q // [l]

r

��
[k]

s
// [m]

exists in ∆ and is an absolute pushout.

Proof (i) Define α = δi : [n− 1] → [n] and β = δi : [n− 2] → [n− 1]. The equation
σjδi = δiσj−1 is one of the cosimplicial identities discussed above.

(ii) If X is an object of C and f : B → X , g : C → X are maps such that
f q = gp, then one defines a corresponding map h : D → X by h := f β. We
should check that hs = g and hr = f . The first equality is clear from f βs = f qα =
gpα = g. For the second equality, it suffices to prove hrq = f q because q is epi.
The left-hand side equals hrq = f βsp = f qαp = gpαp = gp, which equals f q by
assumption. To see that our choice of extension h : D → X is uniquely determined
by ( f , g), one observes that r is an epimorphism. The conclusion that the square is
an absolute pushout follows from the fact that our proof only uses structures (split
epis, commutative diagrams) that are preserved by any functor.

(iii) The surjections p and q can both be factored as compositions of elementary
degeneracies, so that the conclusion follows by repeatedly applying (i) and (ii). �

Finally, let us record the following two existence results:

Proposition 2.2 (i) If f : [m] → [n] is a monomorphism, then the pullback of any
morphism g : [k] → [n] along f exists, provided that the image of g intersects
the image of f nontrivially.

(ii) If f : [m] → [n] is an epimorphism, then the pushout of any morphism g : [m] →
[k] along f exists.
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Proof (i) is clear by restricting g to the preimage of f ([m]). For (ii), it suffices to
treat the case where f is an elementary degeneracy σi : [m] → [m − 1]. Then the
pushout of g is the map which collapses the interval [g(i), g(i+1)] to a single point.�

2.2 Simplicial Sets and Geometric Realization

Let E be a category. The reader should keep in mind the examples where E is the
category of sets, of topological spaces, or of groups. A simplicial object in E is a
functor

X : ∆op −→ E.

With natural transformations between such functors as morphisms, one obtains a
category of simplicial objects in E, which we denote by sE. One generally refers to
a simplicial object in Sets as a simplicial set, and similarly for simplicial spaces,
simplicial groups, simplicial schemes etc. We will soon see plenty of examples of
such simplicial objects.

In more detail, a simplicial object X in E is given by a sequence of objects
Xn := X([n]) in E (n ≥ 0), together with maps α∗ : Xn → Xm for morphisms
α : [m] → [n] in ∆. These maps should be functorial, in the sense that

id∗ = id : Xn → Xn,

(αβ)∗ = β∗α∗ : Xn → Xk for [k]
β
−→ [m]

α
−→ [n].

A morphism f between two such simplicial objects X and Y is then a sequence of
morphisms f : Xn → Yn in E compatible with all the α∗, in the sense that

fmα∗ = α∗gn

for α : [m] → [n]. When E = Sets, we will often refer to the elements of the set Xn

as the n-simplices of X .
By our description of the morphisms in ∆ in the previous section, one may

equivalently describe a simplicial object by specifying the operations α∗ only when
α is an elementary face or degeneracy. These are usually denoted

di = (δi)∗ : Xn → Xn−1 i = 0, . . . , n,
sj = (σj)

∗ : Xn−1 → Xn i = 0, . . . , n − 1.

These maps are called the face maps and degeneracy maps of the simplicial object X .
To distinguish them from the corresponding elementary face and degeneracy maps
in the category ∆, the latter are in the literature sometimes referred to as cofaces
and codegeneracies. The functoriality requirement on the α∗ is equivalent to the
requirement that the di and sj satisfy the following simplicial identities (dual to the
cosimplicial identities of the previous section):
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(i) didj = dj−1di for i < j
(ii) sj si = sisj−1 for i < j

(iii) dj si =


sidj−1 if i < j − 1
id if i = j − 1 or i = j
si−1dj if i > j .

Similarly, a collection of maps f : Xn → Yn determines a morphism of simplicial
objects if and only if it is compatible with the face and degeneracy maps, as in

fn−1di = di fn for n ≥ 0, i = 0, . . . , n,
fnsj = sj fn−1 for n ≥ 0, j = 0, . . . , n − 1.

For the remainder of this section we will focus on the category sSets of simplicial
sets. Themainmotivation for the concept of a simplicial set is to give a combinatorial
procedure for building a topological space, as we will recall below, although the uses
of simplicial sets and simplicial objects are now much more widespread.

Consider for each n ≥ 0 the standard topological n-simplex

∆
n := {(t0, . . . , tn) ∈ Rn+1 | t0 + · · · + tn = 1, ti ≥ 0 ∀i}.

∆0 ∆1 ∆2 ∆3

· · ·

This standard simplex has n + 1 vertices v0, . . . , vn, where

vi = (0, . . . , 0, 1, 0, . . . , 0)

with the 1 in the ith entry. Thus, any function of sets f : {0, . . . ,m} → {0, . . . , n}
defines an affine map

f∗ : ∆m → ∆
n

which is uniquely determined by the requirement f (vi) = v f (i). In particular, this
makes the family of standard simplices into a functor

∆
• : ∆ −→ Top.

We write ∆α as α∗ as for f above. Explicitly, for α : [m] → [n],

α∗(t0, . . . , tm) = (s0, . . . , sn) with si =
∑
α(j)=i

tj .

In particular, for an elementary face map δi : [n − 1] → [n], the map

(δi)∗ : ∆n−1 → ∆
n
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embeds ∆n−1 as the face opposite the vertex vi . More generally, for an injective map
α : [m] → [n], the correspondingmapα∗ embeds them-simplex∆m as a face of∆n of
possibly high codimension. Also, for the elementary degeneracy σj : [n] → [n− 1],
the map

(σj)∗ : ∆n → ∆
n−1

collapses ∆n onto ∆n−1 by a projection parallel to the line connecting vj and vj+1.
We will use these topological n-simplices to define for each simplicial set X its

geometric realization |X |. This is a topological space defined as a quotient of the
large disjoint sum of simplices∐

n≥0
Xn × ∆

n =
∐
n≥0

∐
x∈Xn

∆
n,

the points of which we denote by

(x, t) for x ∈ Xn, t ∈ ∆n.

This quotient is formed by making the identification

(x, α∗t) ∼ (α∗x, t)

for each morphism α : [m] → [n] of ∆ and each x ∈ Xn, t ∈ ∆m. We write x ⊗ t
for the equivalence class of a pair (x, t) ∈ Xn × ∆

n. This notation comes from the
idea that X is a ‘right module’ over ∆ and ∆• is a ‘left module’, where left and right
correspond to co- and contravariant functoriality respectively. There is a sense in
which |X | can be interpreted as a ‘tensor product’ X ⊗∆ ∆

• of such modules, but we
will not elaborate on it here.

A map f : X → Y between simplicial sets induces an obvious continuous map

| f | : |X | → |Y | : x ⊗ t 7→ f (x) ⊗ t,

where we have suppressed the subscript n on f in the expression f (x) for x ∈ Xn.
This assignment makes geometric realization into a functor

| · | : sSets −→ Top.

For a simplicial set, every n-simplex x ∈ Xn defines a map

x̂ : ∆n → |X | : t 7→ x ⊗ t .

The images of all these maps evidently cover all of |X | and we will examine more
closely how they overlap in the next section. For now, observe that by the equivalence
relation imposed to form the geometric realization, these maps respect the simplicial
structure of X , in the sense that for any α : [m] → [n] and y ∈ Xm such that α∗x = y,
the diagram
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∆m

α∗ !!

ŷ // |X |

∆n

x̂

==

commutes.
IfC• : ∆→ E is any functor, each object E ofE defines a simplicial set SingC• (E)

by the formula
SingC• (E)n = E(Cn, E),

where for α : [m] → [n] the map α∗ is defined by precomposition with Cα, the
image of α under the functor C•. This general way of constructing simplicial sets
applies in particular to the standard simplices ∆• : ∆→ Top, so that any topological
space T defines a simplicial set Sing∆• (T). It is usually more briefly denoted Sing(T)
and called the singular complex of T .

In this way we obtain a functor

Sing : Top −→ sSets

which bears a special relation to geometric realization. Indeed, a continuous map
ϕ : |X | → T of topological spaces is given by a family of continuous maps

ϕ ◦ x̂ : ∆n → |X | → T x ∈ Xn

for which each diagram of the form

∆m

α∗ !!

ϕ◦ŷ // T

∆n

ϕ◦x̂

>>

commutes. Thus, ϕ defines for each n a map of sets

ϕn : Xn → Sing(T)n : x 7→ ϕ ◦ x̂

which group together into a map of simplicial sets by the compatibility described
above. In fact, this gives a natural bijective correspondence

Top(|X |,T) ' sSets(X, Sing(T)),
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so that the singular complex functor is right adjoint to geometric realization:

| · | : sSets // Top : Sing.oo

2.3 The Geometric Realization as a Cell Complex

In this section we will examine the cellular structure of the geometric realization of a
simplicial set X . Recall that we refer to the elements of Xn as the n-simplices of X . An
n-simplex x ∈ Xn is called degenerate if it lies in the image of one of the degeneracy
operators si : Xn−1 → Xn for 0 ≤ i ≤ n − 1. Equivalently, x is degenerate if there
exists a surjection α : [n] → [m] and y ∈ Xm such that x = α∗y. In fact, by choosing
a further surjection in case y itself is degenerate, it is clearly possible to arrange
that x = β∗z for a surjection β : [n] → [k] and z a non-degenerate k-simplex of X .
Furthermore, given x ∈ Xn, this choice of (β, z) with z non-degenerate is unique.
Indeed, if (γ,w) was another such pair with γ∗w = x and w non-degenerate, one
forms the following pushout:

[n]
β //

γ

��

[k]

��
[l] // [ j].

It is an absolute pushout by Proposition 2.1 and therefore the resulting square

Xn Xk
β∗oo

Xl

γ∗

OO

Xj

OO

oo

is a pullback. Thus there is an element v ∈ Xj whose image is z (resp. w) in Xk (resp.
Xl). By the assumption that w and z are non-degenerate, this can only happen if the
maps [k] → [ j] and [l] → [ j] are identities. It follows that β = γ and z = w. The
reader should also note that any 0-simplex is non-degenerate.

Every point of |X | can be represented in the form y ⊗ s with y a non-degenerate
simplex of X . Indeed, for any x⊗ t ∈ |X |, choose y non-degenerate and α : [n] → [m]
so that x = α∗y. Then α∗ : ∆n → ∆m is surjective, so that there is an s ∈ ∆m with
α∗s = t, and x ⊗ t = y ⊗ s. This section serves to explain the much more precise
statement formulated in the theorem below. Recall that every n-simplex x ∈ Xn

determines a map x̂ : ∆n → |X |.

Theorem 2.3 Let X be a simplicial set. Its geometric realization |X | naturally has
the structure of a CW complex with precisely one closed n-cell x̂ : ∆n → |X | for
every non-degenerate n-simplex x ∈ Xn.
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We begin by describing the CW structure of the theorem in more detail. Recall
that we write x ⊗ t for the point of |X | determined by a pair (x, t) ∈ Xk ×∆

k . Denote
by |X |(n) the subspace of |X | consisting of points which can be represented as x ⊗ t
for some (x, t) ∈ Xk × ∆

k with k ≤ n. This describes a filtration of X ,

|X |(0) ⊆ |X |(1) ⊆ |X |(2) ⊆ · · · ,
⋃
n

|X |(n) = |X |,

and |X | has the weak topology with respect to these subspaces. Indeed, the latter is
clear from the definition of |X | as a quotient of qn Xn ×∆

n. This filtration will serve
as the skeletal filtration for the CW structure of |X |.

First, we claim that the space |X |(0) is discrete and is in fact given by X0 × ∆
0,

so that the elements of X0 will serve as the 0-cells of |X |. Indeed, it is clear that the
evident map X0 × ∆

0 → |X |(0) is surjective. To see that is a bijection, we should
argue that no two distinct 0-simplices of X are identified in |X |. If x, y ∈ X0, then
x ⊗ 1 and y ⊗ 1 represent the same point of |X | only if there exists z ⊗ t with z ∈ Xn

and t ∈ ∆n, together with morphisms α, β : [0] → [n] such that α∗z = x, β∗z = y

and α∗1 = β∗1 = t. The last condition immediately implies that α = β, from which
it follows that x = y. This establishes our claim.

We should show that for n ≥ 1 the space |X |(n) can be obtained from |X |(n−1) by
attaching an n-cell for each non-degenerate n-simplex if X . More precisely, consider
the square ∐

x∈nd(Xn)
∂∆n //

��

|X |(n−1)

��∐
x∈nd(Xn)

∆n {x̂ } // |X |(n),

where nd(Xn) denotes the subset of Xn consisting of non-degenerate n-simplices.
The conclusion of the theorem is clear if we can show that this square is a pushout.
Note that it is a pullback: indeed, a point x ⊗ t of |X |(n) with x ∈ nd(Xn) and
t ∈ ∆n is contained in |X |(n−1) if and only if t is contained in the boundary of ∆n.
(This conclusion would not hold if we replaced the collection of non-degenerate
n-simplices by the collection of all n-simplices.)

To see that the square is a pushout, we should argue that if x ⊗ t = y ⊗ s for points
(x, t) and (y, s) of

∐
x∈nd(Xn)

∆n, then either (x, t) = (y, s) or both (x, t) and (y, s) are
contained in

∐
x∈nd(Xn)

∂∆n. This will follow from:

Proposition 2.4 Let ξ ∈ |X |. Choose x ∈ Xn and t ∈ ∆n with ξ = x ⊗ t and with n
as small as possible. Then x is non-degenerate and if n ≥ 1 then t is contained in
the interior of ∆n. Also, the pair (x, t) representing ξ with x non-degenerate and t in
the interior of ∆n is unique.

Indeed, to conclude the theorem from this, suppose x ⊗ t = y ⊗ s, still with
x, y ∈ Xn non-degenerate as above. If both s and t are in the interior of ∆n, then the
proposition implies (x, t) = (y, s). If one of them, say t, is on the boundary of ∆n,
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then we can write x ⊗ t = z ⊗ r for z of smaller dimension k and r in the interior of
∆k , uniquely. But then s must also be on the boundary of ∆n; if it were in the interior
this would contradict the uniqueness of representatives expressed by the proposition.

Proof (of Proposition 2.4) First we show x is non-degenerate. If it were not then
there would exist a nontrivial surjection α : [n] → [m] and y ∈ Xm with α∗y = x.
But then x ⊗ t = α∗y ⊗ t = y ⊗ α∗t, contradicting the minimality of n. It is also
straightforward to see that t is in the interior of∆n (assuming n ≥ 1); indeed, if it were
on the boundary ∂∆[n] then there would exist a nontrivial injection β : [k] → [n]
such that t is in the image of β∗ : ∆k → ∆n, so we may write t = β∗s. In that case
x ⊗ t = x ⊗ β∗s = β∗x ⊗ s, which again contradicts the assumption that n is minimal.

It remains to argue that the representative pair (x, t) of the proposition is unique.
So suppose ξ = x ⊗ t = y ⊗ s where both x and y are non-degenerate and s, t are
interior points of ∆n. By the equivalence relation involved in the definition of ⊗, this
means that there is a zigzag in ∆ of the form

[n] [m1] [m2] · · · [n]

[k1] [k2] · · · [kN ]

β1α1 β2α2 βNαN

and elements (ai, ui) ∈ Xki × ∆
ki , (bi, vi) ∈ Xmi × ∆

mi for which

α∗i bi−1 = ai, (αi)∗ui = vi−1,

β∗i bi = ai, (βi)∗ui = vi .

Here we have written (x, t) = (b0, v0) and (y, s) = (bN, vN ). Since t = v0 and s = vN
are interior points, the maps α1 and βN must be surjective. We now reason by
induction on the length of the zig-zag. If N = 1, then the pushout of the surjections
[n] ← [k1] → [n] exists in ∆ and is absolute, so that X turns it into a pullback

Xl Xn

Xn Xk

γ∗

α∗1
β∗1

for the appropriate value of l ≤ n. But then there is a z ∈ Xl with γ∗z = x, meaning
that l must equal n (otherwise we reach a contradiction with the minimality of n)
and α1 = β1 = id. Thus (x, t) = (y, s). If N > 1, factor β1 as

[k1]
ε
−→ [m′1]

δ
−→ [m1]

with δ a monomorphism and ε surjective. Then one can apply the same argument as
above to the pushout of the degeneracies

[n]
α1
←−− [k1]

ε
−→ [m′1]
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and the elements (x, t) ∈ Xn × ∆
n and (δ∗b1, ε∗u1) ∈ Xm′1

× ∆m′1 to conclude that ε
must be the identity. Hence β1 = δ is a monomorphism. But then the pullback of β1
and α2 exists in ∆ (cf. Proposition 2.2(i)) and such pullbacks are easily checked to
be preserved by the functor ∆•:

[k ′1] [k2] ∆k′1 ∆k2

[k1] [m1], ∆k1 ∆m1 .

θ

η α2

θ∗

η∗ (α2)∗

β1 (β1)∗

So we can shorten the zigzag by replacing the first two spans by the single span

[n]
α1η
←−−− [k ′1]

β2θ
−−−→ [m2]

and using the element (c,w) ∈ Xk′1
× ∆k′1 , with c = η∗a1 = θ

∗a2 and w the unique
point in ∆k′1 satisfying η∗w = u1 and θ∗w = u2. This completes the inductive step.�

Thefiltration of the geometric realization |X | by subspaces |X |(n) has a counterpart
in the theory of simplicial sets, called the skeletal filtration of X . It is a fundamental
tool when one proves properties of X ‘simplex by simplex’. In fact, our filtration of
|X | above simply arises as the geometric realization of the skeletal filtration of the
simplicial set X .

We define sknX to be the simplicial subset of X generated by its simplices of
dimension at most n. In other words, it is the smallest subobject sknX ⊆ X which
contains every simplex x ∈ Xk for k ≤ n. Clearly ∪nsknX = X . The crucial property
is that sknX can be built from skn−1X by ‘cell attachments’ as follows:

Proposition 2.5 The evident square∐
x∈nd(Xn)

∂∆[n] skn−1X

∐
x∈nd(Xn)

∆[n] sknX,

is a pushout. As before, the coproduct is over the set nd(Xn) of non-degenerate
n-simplices of X .

Proof For the length of this proof we write P for the pushout in the square above and
p : P→ sknX for the evident map. We should demonstrate that P is an isomorphism
of simplicial sets.

To see that p is surjective, consider an n-simplex x ∈ Xn. Then we can write
x = α∗y for some degeneracy α : [n] → [m] and a unique non-degenerate simplex
y ∈ Xm. If m < n, then y (and hence also x) is already contained in skn−1X and hence
in the image of p. If m = n then α is the identity and x is non-degenerate, so that
x occurs in the coproduct in the lower left corner of the square of the proposition.
Again, x is therefore in the image of p.
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It remains to argue that p is injective. There are two things to check:

(a) If x ∈ nd(Xn), then the pullback of the corresponding span

∆[n]
x
−→ sknX ← skn−1X

is precisely the boundary ∂∆[n].
(b) For two distinct non-degenerate simplices x, y ∈ nd(Xn), consider the pullback

square
Q ∆[n]

∆[n] sknX .

v

w x

y

Then v and w factor through the boundary inclusion ∂∆[n] ⊆ ∆[n].

Indeed, (a) and (b) express the idea that all identifications to be made when adding
non-degenerate n-simplices to skn−1X concern only the boundary of those simplices.

Proof of (a): Say [k] α
−→ [n] is a map so that α∗x is contained in skn−1X . We

should show that α is not surjective, so that it factors through ∂∆[n]. We reason by
contradiction; suppose α is surjective. By definition of the (n − 1)-skeleton we can
write α∗x = β∗y for some non-degenerate m-simplex y ∈ Xm (with m < n) and a
surjective map β : [k] → [l]. Form the absolute pushout square

[k] [n]

[m] [l].

α

β δ

γ

Since X turns it into a pullback, there exists a z ∈ Xl with γ∗z = y and δ∗z = x.
Now, δ is surjective and x non-degenerate, so we must have that δ is the identity. But
then k = m, contradicting the fact that m < n ≤ k.
Proof of (b): Consider maps α, β : [k] → [n] so that α∗x = β∗y. We should show
that both α and β are not surjective. Factor these maps as

[k]
α−
−−→ [m1]

α+
−−→ [n], [k]

β−
−−→ [m2]

β+
−−→ [n],

with α−, β− surjective and α+, β+ injective. Now form the absolute pushout

[k] [m1]

[m2] [l].

α−

β− δ

γ
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As before it follows that there is a z ∈ Xl with (γα−)∗z = x and (δβ−)∗z = y.
The non-degeneracy of x and y then implies that all the surjections in the above
square are in fact identities. We conclude that α = α+ and β = β+ are both injective.
It remains to argue that neither can be the identity. But if one of them was, then
[k] = [n] and clearly both of them are identities. It follows that x = y, contradicting
our assumption. �

2.4 Simplicial Sets as a Category of Presheaves

For a small category C, a functor

X : Cop → Sets

is called a presheaf (of sets) onC. Together with the natural transformations between
them, these presheaves form a category which we denote by

PSh(C).

(Other common notations are SetsCop
and Ĉ.) Thus, the category sSets of simplicial

sets is the category PSh(∆) of presheaves on ∆ and as such enjoys the general
properties of such categories of presheaves. In this section we review several of
those properties which will be relevant to us.

First some notation: for a presheaf X as above and a morphism α : c → d in C,
its value under X is denoted

α∗ : X(d) → X(c).

If f : X → Y is a morphism between presheaves, consisting of a natural family
of morphisms fc : X(c) → Y (c) for c ranging through the objects of C, we often
abbreviate fc by f again if no confusion can arise.
Representable presheaves. Each object c ∈ C determines a so-called representable
presheaf y(c), defined on objects by

y(c)(d) = C(d, c)

and with the evident action of morphisms in C by precomposition. It can also be
denoted C(−, c). This construction is also functorial in c and determines a functor

y : C→ PSh(C)

called the Yoneda embedding. The basic Yoneda lemma states that for any presheaf
X there is a natural bijective correspondence between morphisms of presheaves
f : y(c) → X and elements x ∈ X(c). This correspondence is given by x = f (idc)
and f (α) = α∗x. We write x for this morphism f corresponding to x.
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Standard simplices. For the special case of simplicial sets, the representable presheaf
y([n]) is denoted by ∆[n] and referred to as the (simplicial) standard n-simplex. It
mirrors the topological n-simplex ∆n in the sense that

|∆[n]| = ∆n,

as one easily checks. TheYoneda lemmagives a correspondence between n-simplices
x ∈ Xn andmaps x : ∆[n] → X and the geometric realization of the latter is precisely
the map we denoted by x̂ : ∆n → |X | in previous sections.
Limits and colimits. Each presheaf category PSh(C) has all small limits and colimits
and these are all computed ‘pointwise’. To be precise, if

X : I → PSh(C) : i 7→ Xi

is a diagram of presheaves indexed by a small category I, then

(lim
−−→
I

Xi)(c) ' lim
−−→
I

Xi(c),

the colimit on the left being computed in PSh(C), the one on the right in Sets. The
same applies to limits. To give a simple example, the product of simplicial sets X
and Y is constructed as

(X × Y )n = Xn × Yn,

with simplicial operators (e.g. faces and degeneracies) defined componentwise, as
di(x, y) = (di x, diy), etc.

A similar observation applies to epimorphisms, monomorphisms and images: a
map f : X → Y between presheaves is epi (resp. mono) if and only if each of its
components f : X(c) → Y (c) is. For a general f : X → Y , its image f (X) ⊆ Y is
constructed as f (X)(c) = f (X(c)) for each object c of C. A monomorphism A→ Y
for which each component A(c) → Y (c) is the inclusion of a subset is referred to
as a subpresheaf of Y . Sometimes we will also use this terminology to refer to an
isomorphism class of monos A→ Y , secretly identifying them with their common
image.
Colimits of representables. Every presheaf X on a category C is canonically iso-
morphic to a colimit of representable presheaves. To see this, one first constructs the
category of elements of X , variously denoted El(X),

∫
C X or C/X in the literature.

We will use the latter notation. The objects of C/X are pairs (c, x) with c ∈ C and
x ∈ X(c). A morphism (c, x) → (d, y) is a morphism α : c → d with the property
that α∗y = x. There is an evident projection

πX : C/X → C : (c, x) 7→ c

and an isomorphism
θX : lim
−−→
C/X

y ◦ πX → X .
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This natural transformation θX is induced by the morphisms

x : y(c) → X

for (c, x) ranging over the objects of C/X .
Kan extension. The category PSh(C) is the free category with all small colimits
generated by C. What this means is that for any category E with all small colimits,
any functor F : C → E extends (uniquely up to natural isomorphism) to a functor
F! : PSh(C) → E, such that F! preserves all small colimits. To make sense of the
word ‘extends’ here, one should regard C as a subcategory of PSh(C) via the Yoneda
embedding. In other words, there is a natural isomorphism F! ◦ y ' F. Another
common notation for F! is LanyF, indicating that it is the left Kan extension of F
along y. The functor F! can be constructed explicitly by writing every presheaf as a
colimit of representables:

F!(X) = lim
−−→
C/X

F ◦ πX .

More informally, one might also write

F!(X) = lim
−−→

c∈C,x∈F(c)
F(c).

To check that F! is indeed a functor, one observes that the construction of the category
of elements is itself functorial in X . To see that F! extends F, one observes that the
category of elements C/y(c) is isomorphic to the slice category C/c. The latter has a
terminal object, namely idc , so that the colimit over this category may be computed
by evaluation at this object.

The functor F! just constructed admits a right adjoint F∗. Indeed, for E ∈ E we
simply define the presheaf F∗E by

F∗E(c) = E(F(c), E).

Functoriality of F∗ is clear; to see it is indeed right adjoint, consider a presheaf
X ∈ PSh(C) and observe the sequence of natural isomorphisms

E(F!X, E) ' lim
←−−
C/X

E(F ◦ πX, E)

' lim
←−−
C/X

F∗E ◦ πX

' lim
←−−
C/X

PSh(C)(y ◦ πX, F∗E)

' PSh(C)(X, F∗E).

Here we have applied the Yoneda lemma to go from the second to the third line.
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Geometric realization. The categoryTop of topological spaces has all small colimits.
Therefore the left Kan extension explained above applies to the functor of standard
topological simplices

∆
• : ∆→ Top.

The resulting functor from sSets to Top is precisely the geometric realization dis-
cussed in previous sections. Indeed, geometric realization preserves colimits and the
composition | · | ◦ y is (isomorphic to) the functor ∆•. Therefore geometric realiza-
tion is the left Kan extension of ∆• to the category of simplicial sets. In this specific
example, the right adjoint discussed in the previous paragraph yields the singular
complex functor

Sing : Top→ sSets.

The nerve of a category. An important construction which is analogous to the
adjoint pair | · | and Sing is the following. Consider the category Cat of small
categories. It contains the categories of partially ordered and linearly ordered sets as
full subcategories and in particular there is a fully faithful functor

ι : ∆→ Cat

sending an object [n] to the corresponding linear order (0 → 1 → · · · → n). The
left Kan extension of i defines a functor which is usually denoted τ in the literature,

τ = ι! : sSets→ Cat.

Following the general pattern explained above, this functor τ has a right adjoint
called the nerve functor and usually written

N : Cat→ sSets.

Spelling out the general formula for the right adjoint in this specific case, we see that
for a small category C, its nerve can be described as follows: the set of 0-simplices
(NC)0 is the set of objects of C and the set of n-simplices (NC)n is the set of strings
of n composable morphisms

c0
f1
−→ c1

f2
−→ · · ·

fn
−→ cn.

The simplicial operators di : (NC)n → (NC)n−1 and sj : (NC)n−1 → (NC)n can
somewhat cryptically be described by ‘di deletes ci’ and ‘sj inserts the identity
cj = cj’. To be more precise, for 0 < i < n we have:

d0(c0
f1
−→ c1

f2
−→ · · ·

fn
−→ cn) = c1

f2
−→ · · ·

fn
−→ cn,

dn(c0
f1
−→ c1

f2
−→ · · ·

fn
−→ cn) = c0

f1
−→ · · ·

fn−1
−−−→ cn−1,

di(c0
f1
−→ c1

f2
−→ · · ·

fn
−→ cn) = c0

f1
−→ · · · ci−1

fi+1◦ fi
−−−−−→ ci+1 · · ·

fn
−→ cn,

sj(c0
f1
−→ c1

f2
−→ · · ·

fn−1
−−−→ cn−1) = c0

f1
−→ · · · → cj

idc j

−−−→ cj · · ·
fn
−→ cn−1.
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One easily checks that the nerve functor N : Cat → sSets is fully faithful. In other
words, a functorC→ D is essentially the same thing as amorphism of simplicial sets
NC→ ND. An equivalent statement is that the counit τNC→ C is an isomorphism.
This can also easily be checked using the following explicit description of τ.

For a simplicial set X , the category τX has X0 as its set of objects. Any 1-simplex
f ∈ X1 defines a morphism x → y in τX , with x = d1 f and y = d0 f . These
morphisms generate all morphisms in τX , in the sense that any arrow x → y in
τX can be represented by a finite string of ‘composable’ 1-simplices ( f1, . . . , fk),
i.e. these 1-simplices satisfy d1 f1 = x, d0 fk = y and d0 fi = d1 fi+1. The relations
satisfied by these generators are of two kinds: each degenerate 1-simplex is identified
with an identity morphism in τX and each 2-simplex ξ ∈ X2 describes a composition
relation, namely

d1ξ = d0ξ ◦ d2ξ.

More graphically, the 2-simplex ξ imposes that the following be a commutative
diagram in τX:

y
d0ξ

��
x

d2ξ
??

d1ξ
// z.

One may wonder why this explicit description indeed describes τ. This can be
proved by showing directly that the functor we just described is left adjoint to the
nerve functor.

For later use, we note that the functor τ : Cat→ sSets preserves products. Indeed,
for representable simplicial sets ∆[n] and ∆[m], this follows from the chain of natural
isomorphisms

τ(∆[n] × ∆[m]) � τN(ι[n] × ι[m]) � ι[n] × ι[m].

General simplicial sets are colimits of representables and the assertion follows since
the functors involved preserve colimits in each variable separately.
The classifying space. Composing the nerve functor with geometric realization, one
recovers the well-known and important construction of a space out of a category C,
namely its classifying space, denoted

BC := |NC|.

This classifying space functor is particularly useful in relating the (co)homology of
categories to the (co)homology of spaces; in the case where C is a group G (i.e., C
has a single object and all its morphisms are isomorphisms), then the (co)homology
of G as defined by homological algebra coincides with the singular (co)homology
of its classifying space BG. This is related to the fact that the geometric realization
and singular complex functors are homotopy inverse to each other in an appropriate
sense, a fact we will discuss extensively in the second part of this book.
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Internal hom or exponential. Any presheaf category PSh(C) is cartesian closed,
meaning that for any object X ∈ PSh(C), the product functor

− × X : PSh(C) → PSh(C)

has a right adjoint. This right adjoint is referred to as the internal hom or exponential
and accordingly denoted hom(X,−) or (−)X respectively. The construction of this
adjoint can actually be viewed as another example of an adjoint pair F! and F∗

obtained by Kan extension as discussed above. Indeed, the functor − × X preserves
colimits, because the same is true in the category of sets and colimits of presheaves
are computed objectwise. So − × X is the left Kan extension of its restriction to
representables,

F : C→ PSh(C) : c 7→ y(c) × X .

Therefore the right adjoint F∗ exists and gives the exponential alluded to above. The
adjointness of these functors is the usual exponential relation

PSh(C)(Z × X,Y ) ' PSh(C)(Z,YX ).

For the special case of simplicial sets, we thus have the formula

(YX )n = sSets(∆[n] × X,Y ).

Some of the functors we have discussed in this section behave well with respect to
exponentials. For left adjoints this is rarely the case, but right adjoints are generally
better. Explicitly, consider an adjoint pair ϕ! : D � E : ϕ∗ between categories
with finite products and exponentials. Then the exponential law gives, for objects
X,Y ∈ E, a canonical map

γ : ϕ∗(YX ) → (ϕ∗Y )ϕ
∗X .

Indeed, we have natural maps

ϕ!(Z × ϕ∗X) → ϕ!(Z) × ϕ!(ϕ
∗X) → ϕ!(Z) × X .

The first one derives from the universal property of the product, the second uses the
counit of the adjoint pair (ϕ!, ϕ

∗). Write p for the composition of these two maps.
Then we can form the sequence of natural maps

D(Z, ϕ∗(YX )) ' E(ϕ!Z × X,Y )
p∗

−−→ E(ϕ!(Z × ϕ∗X),Y )

' D(Z × ϕ∗X, ϕ∗Y )
' D(Z, (ϕ∗Y )ϕ

∗X ).
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Applying this to the case Z = ϕ∗(YX ) and its identity map this gives the promised
comparison map γ. At the same time, we conclude that γ is an isomorphism for all
X,Y ∈ E if and only if p is an isomorphism for all X ∈ E and Z ∈ D. For example,
this applies to the adjoint pair τ : sSets � Cat : N . Indeed, it is straightforward to
verify that τ commutes with products. We already noted that the counit τNC→ C
is an isomorphism, so that the map p : τ(X × NC) → τX × τNC → τX × C is an
isomorphism for any simplicial set X and small category C. Thus, the nerve functor
preserves exponentials.

The case of the adjoint pair | · | and Sing is different; a similar argument to the
above would apply if Top had exponentials, if geometric realizations would preserve
products and if Sing was fully faithful. However, all three of these statements are
in general false. The first two can be corrected by replacing the category of spaces
by ‘a convenient category of spaces’, such as the category of compactly generated
weak Hausdorff spaces. Still, not much can be done about the third: for a topological
space X , the map |Sing(X)| → X is generally not a homeomorphism. It is, however,
a weak homotopy equivalence, as we shall discuss in Section 8.6. We will come back
to the relation between geometric realization and products in the next section.
Dependence onC.We include a general remark on how the presheaf categoryPSh(C)
depends on C. Consider a functor ϕ : C → D between small categories. It induces
an obvious restriction functor

ϕ∗ : PSh(D) → PSh(C), ϕ∗Y (c) = Y (ϕc).

Since colimits in presheaf categories are computed pointwise, the functor ϕ∗ pre-
serves colimits. Therefore it is the left Kan extension of its restriction to representa-
bles and by the same logic as before, it must admit a right adjoint for which we
write

ϕ∗ : PSh(C) → PSh(D), ϕ∗X(d) = PSh(C)(ϕ∗(y(d)), X).

But ϕ : C→ D also induces an obvious functor

y ◦ ϕ : C→ D→ PSh(D)

resulting in another pair of adjoint functors, which we should for now denote by
(y ◦ ϕ)! and (y ◦ ϕ)∗, in accordance with our earlier discussion of Kan extensions.
But

(y ◦ ϕ)∗ : PSh(D) → PSh(C)

is given by the formula

(y ◦ ϕ)∗Y (c) = PSh(D)((y ◦ ϕ)(c),Y ) ' Y (ϕ(c)),

the latter by the Yoneda lemma. In other words, (y ◦ ϕ)∗Y is (isomorphic to) the
presheaf ϕ∗Y consider before, so we need not distinguish between ϕ∗ and (y ◦ ϕ)∗.
Similarly, we will abbreviate the notation (y ◦ ϕ)! to ϕ!. Up to natural isomorphism
it is the unique functor

ϕ! : PSh(C) → PSh(D)
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which is left adjoint to the restriction functor ϕ∗. Also, it is up to natural isomorphism
the unique functor preserving small colimits and agreeing with ϕ on representables,
in the precise sense that there is an isomorphism ϕ!y(c) ' y(ϕc), natural in c.

As an example, consider the inclusion

ι : ∆≤n → ∆

of the full subcategory ∆≤n of ∆ on the objects [k] for k ≤ n. It gives rise to three
functors

PSh(∆≤n)

ι!
''

ι∗

77sSets,ι∗oo

with ι! and ι∗ the left and right adjoint of ι∗ respectively. For a simplicial set X , the
counit of the first and unit of the second adjunction give rise to maps

ι!ι
∗X → X → ι∗ι∗X .

The simplicial set ι!ι∗X is precisely the n-skeleton sknX discussed at the end of
Section 2.3. Dually, the simplicial set ι∗ι∗X is called the n-coskeleton of X and
usually denoted cosknX .
Constant presheaves. There is an evident notion of constant presheaf on a category
C. Indeed, the constant presheaf F with value a set S is the functor which satisfies
F(c) = S for every object c of C and which sends every morphism of C to the
identity map of S. With the notation of the previous paragraph, one can consider the
functor ϕ : C → 1, where 1 denotes the trivial category with one object and only
the identity morphism. Then under the obvious isomorphism PSh(1) � Sets, the
constant presheaf with value S is precisely ϕ∗S. The left adjoint ϕ! (resp. the right
adjoint ϕ∗) is now the functor which takes the colimit (resp. the limit) of a presheaf
F over the category Cop.

In the context of simplicial sets we introduce some terminology and notation
for this situation. We will say that a simplicial set X is discrete if it is constant as
a presheaf on ∆op. The reason for this terminology is the relation to topology; for
a space Y with the discrete topology, the singular complex Sing(Y ) is a discrete
simplicial set. The functor which assigns to a set S the corresponding discrete
simplicial set admits a left adjoint (called ϕ! in the previous paragraph) for which
we will write

π0 : sSets→ Sets.

As the notation suggests, we will refer to π0X as the set of connected components of
X . Again the reason is the analogy with topology. To be precise, π0X is exactly the
set of connected components of the geometric realization |X |. Indeed, the inclusion

dis : Sets→ CW
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which equips a set with the discrete topology (thought of as a CW-complex) admits a
left adjoint (also denoted π0), sending a CW-complex to its set of connected compo-
nents. The composition of right adjoints Sing ◦ dis sends a set to the corresponding
discrete simplicial set. Hence the composition of left adjoints π0 ◦ | · | agrees with
the functor π0 we defined above.

The interested reader may wish to verify that to compute π0X in practice, one can
simply take the coequalizer

X1 X0 π0X,
d0

d1

rather than the colimit of the entire diagram X• on ∆op.

2.5 Products of Simplicial Sets and Shuffle Maps

The goal of this section is twofold: first, we discuss the product X×Y of two simplicial
sets X andY , in particular in the case where X andY are representable. The reason for
the latter is that for simplicial sets, as for any cartesian closed category, the product
as a functor

X × − or − ×Y : sSets→ sSets

admits a right adjoint and hence preserves colimits. In other words, the product pre-
serves colimits in each variable separately. Since every simplicial set is canonically a
colimit of representables, many properties of the product can be deduced from those
of the product of two standard simplices. We will discuss these products and their
description in terms of shuffle maps in some detail, since an analysis of shuffle maps
and generalizations thereof will return at various places in this book. In the second
part of this section we examine the behaviour of the geometric realization functor
with respect to products and, more generally, finite limits.

Consider a p-simplex σ of the simplicial set ∆[n] × ∆[m], the binary product of
two standard simplices. It corresponds to a pair of maps

σ1 : ∆[p] → ∆[n], σ2 : ∆[p] → ∆[m]

or more simply a morphism (still denoted by the same symbol)

σ : [p] → [n] × [m]

in the category of partially ordered sets. We will call the simplex σ non-degenerate
if this morphism is injective. Moreover, such a simplex σ is a face of another non-
degenerate simplex τ precisely if the map of partially ordered sets σ can be extended
to an injective map τ as follows:
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[p] σ //

  

[n] × [m].

[q]

τ

::

Let us say such an injective map τ : [q] → [n] × [m] is maximal if it cannot be
factored further in this way. Such maximal simplices τ correspond precisely to the
injective maps [n + m] → [n] × [m]. Any non-degenerate simplex σ of the product
∆[n] × ∆[m] is clearly a face of some maximal non-degenerate simplex τ, although
this τ need not be unique.

An injective map τ : [n+m] → [n]× [m] of partially ordered sets can be pictured
as a staircase. The following is an example with (n,m) = (3, 2):

τ(0) τ(1)

τ(2) τ(3) τ(4)

τ(5)

Indeed, the values of τ trace out a path through the rectangle starting at τ(0) =
(0, 0) and ending at τ(n + m) = (n,m). We will refer to such a maximal injective
map τ as a shuffle of [n] and [m]. The reason for this terminology is that such
a shuffle is uniquely described by specifying the ‘steps’ in this staircase. Indeed,
observe that the staircase consists of n + m edges, of which n are horizontal and
m are vertical. Those vertical edges are specified by a strictly increasing map vτ :
{1, . . . ,m} → {1, . . . , n + m}. Equivalently, one can specify the horizontal edges
by a strictly increasing map hτ : {1, . . . , n} → {1, . . . , n + m}, whose image is the
complement of the previous map. In this sense, the staircase above corresponds to
a ‘shuffle’ of the linearly ordered sets {1, . . . , n} and {1, . . . ,m}. Observe that there
are

(n+m
n

)
such shuffles.

For later use, we note that there is a natural partial ordering on these shuffles.
Indeed, for shuffles τ1 and τ2 with associated maps

vτ1, vτ2 : {1, . . . ,m} → {1, . . . , n + m}

as above, one sets τ1 ≤ τ2 if vτ1 (i) ≤ vτ2 (i) for each 1 ≤ i ≤ m. This partial order
has a minimal and a maximal element. These are pictured below:
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τ(0)

τ(1)

τ(2)
τ(3) τ(4) τ(5)

τ(0) τ(1) τ(2) τ(3)

τ(4)

τ(5)

minimal maximal

Also, the following illustrates a typical relation between two shuffles:

τ(i)

τ(i + 1) τ(i + 2)

τ(i) τ(i + 1)

τ(i + 2)

≤

The conclusion of our discussion is that one can write

∆[n] × ∆[m] =
⋃
τ

∆[n + m],

where the union is over all monomorphisms

∆[n + m] → ∆[n] × ∆[m]

corresponding to shuffles τ. These simplices overlap in a way which is easily ex-
pressed in terms of shuffles: for two shuffles τ1 and τ2, the pullback

∆[k] //

��

∆[n + m]

τ2

��
∆[n + m]

τ1
// ∆[n] × ∆[m]

corresponds to the map of partially ordered sets σ : [k] → [n] × [m] enumerating
the common values of τ1 and τ2. It always satisfies σ(0) = (0, 0) and σ(k) = (n,m).
A typical example is as follows:
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τ1(0)

τ1(1) τ1(2)

τ1(3) τ1(4)

τ2(0)

τ2(1)
τ2(2)

τ2(3)

τ2(4)

σ(0)

σ(1) σ(2)

σ(3)

τ1 τ2

σ

The remainder of this section will concern the behaviour of the geometric realiza-
tion functor with respect to products (and more generally finite limits) of simplicial
sets. First, a remark on the kind of topological spaces we consider is in order.
As we have alluded to before, the category of topological spaces is not cartesian
closed; in particular, products of topological spaces do not in general behave well
with respect to colimits, in contrast to the case of simplicial sets. To remedy this,
one works in a ‘convenient category of spaces’. For us this will be the category
of compactly generated weak Hausdorff spaces, which includes all CW complexes
and is cartesian closed. The product of two such spaces X and Y agrees with the
usual product of topological spaces in the case that both are compact. For general
compactly generated weak Hausdorff spaces X and Y , one retopologizes the product
X ×Y with the compactly generated topology, for which a subset A is open precisely
if its intersection with every compact subset K ⊂ X ×Y is open in K . From now Top
will always refer to this category of compactly generated weak Hausdorff spaces.
Geometric realization obviously takes values in these compactly generated weak
Hausdorff spaces. Hence with this new interpretation of Top, geometric realization
is still left adjoint to the functor Sing. We will prove the following result:

Proposition 2.6 The geometric realization functor

| · | : sSets→ Top

preserves finite limits.

To prove that a functor preserves finite limits it suffices to show it preserves finite
products and equalizers. The fact that geometric realization preserves equalizers is
rather easy to show (see Lemma 2.7) and clearly it preserves the empty product,
i.e. the terminal object, because |∆[0]| ' ∆0. Lemma 2.8 will show that it preserves
binary products of simplices. From this it follows that |X ×Y | ' |X | × |Y | for general
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simplicial sets X andY ; indeed, one expresses X andY as colimits of simplices, uses
that the left adjoint functor geometric realization preserves colimits and finally the
fact that the product in (our new interpretation of) Top preserves colimits in each
variable separately. This last step is why using a convenient category of spaces is
necessary.

Lemma 2.7 The geometric realization functor preserves equalizers.

Proof If X is a simplicial set and E ⊆ X a simplicial subset, then |E | is a subcomplex
of |X |, considered as a CW complex as in Theorem 2.3. In particular, the topology
of |E | is the subspace topology inherited from |X |. Thus it suffices to show that if

E // X
f //
g

// Y

is an equalizer of simplicial sets, then the resulting diagram

|E | // |X |
| f | //
|g |

// |Y |

is an equalizer of sets. It suffices to show that if x ⊗ t is a point of |X | such that
f (x) ⊗ t = g(x) ⊗ t in |Y |, then f (x) = g(x). We may assume that x ⊗ t is in the form
described in Proposition 2.4, so that x is a non-degenerate n-simplex and t is in the
interior of ∆n when n ≥ 1. As explained at the beginning of Section 2.3, there is a
unique non-degenerate k-simplex y of Y and a surjection α : [n] → [k] such that
f (x) = α∗y. Similarly, there is a unique non-degenerate l-simplex z and a surjection
β : [n] → [l] with g(x) = β∗z. Then we have

f (x) ⊗ t = y ⊗ α∗t = z ⊗ β∗t = g(x) ⊗ t

and by the uniqueness of representatives in Proposition 2.4 this implies y = z (in
particular k = l) and α∗t = β∗t. But one easily checks that if the two surjective
maps α∗, β∗ : ∆n → ∆k agree on an interior point t, then α = β. It follows that
f (x) = α∗y = β∗z = g(x), as was to be shown. �

Lemma 2.8 The natural map

|∆[n] × ∆[m]| → |∆[n]| × |∆[m]|

is a homeomorphism.

Proof We write the points of ∆n = |∆[n]| as convex linear combinations of its
vertices:

t0v0 + · · · + tnvn,
∑
i

ti = 1, ti ≥ 0.

Similarly we denote the points of ∆m by

s0w0 + · · · + smwm.
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Then ∆n × ∆m is the space of all such pairs

(t0v0 + · · · + tnvn, s0w0 + · · · + smwm).

On the other hand, each shuffle map τ : [n + m] → [n] × [m] defines an embedding

|τ | : ∆n+m → ∆
n × ∆m

sending (r0, . . . , rn+m) to the convex combination∑
i

ri(vτ1(i), vτ2(i))

where τ1 and τ2 are the components of τ. Now |∆[n] × ∆[m]| is the colimit of these
embeddings, glued together along their intersections as discussed above. It suffices
to check that the resulting map

T :
⋃
τ

∆
n+m → ∆

n × ∆m

is a bijection, because the spaces involved are compact Hausdorff.
To see that T is injective, let τ and σ be two shuffle maps and suppose that

|τ |(r0, . . . , rn+m) = |σ |(r ′0, . . . , r
′
n+m),

so that
ri(vτ1(i),wτ2(i)) = r ′i (vσ1(i),wσ2(i))

for each i = 0, . . . , n+m. Since the vertices (vi,wj) ∈ ∆
n×∆m are linearly independent

this can only happen if ri = r ′i for all i and τ(i) = σ(i) whenever ri , 0. Let
ρ : [k] → [n + m] enumerate those i for which ri , 0. Then τ ◦ ρ = σ ◦ ρ and

|τ |(r0, . . . , rn+m) = |τ ◦ ρ|(rρ(0), . . . , rρ(k)) = |σ |(r ′0, . . . , r
′
n+m).

Therefore the points τ ⊗ (r0, . . . , rn+m) and σ ⊗ (r ′0, . . . , r
′
n+m) are already identified

in |∆[n] × ∆[m]|, proving injectivity.
To prove surjectivity of T , we should check that every point of ∆n × ∆m lies in

an n+m-simplex spanned by the vertices (vτ1(i),wτ2(i)) enumerated by a shuffle map
τ : [n + m] → [n] × [m]. We work by induction on n + m, noting that the cases
n + m ≤ 1 are trivial. Consider a point

(x, y) = (t0v0 + · · · + tnvn, s0w0 + · · · + smwm)

of ∆n × ∆m. If tn ≤ sm, we can write it as

tn(vn,wm)+ (t0v0 + · · ·+ tn−1vn−1, s0w0 + · · ·+ (sm − tn)wm) = tn(vn,wm)+ (x ′, y′).
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In this case we set τ(n + m) = (n,m) and τ(n + m − 1) = (n − 1,m). Note that if
tn = sm = 1 then (x, y) = (vn,wm), which is clearly in the image of ϕ. Therefore
assume tn < 1. The point

(x ′′, y′′) :=
1

1 − tn
(x ′, y′)

lies in the product of simplices ∆n−1 × ∆m spanned by the vertices (vi,wj) for
i = 0, . . . , n − 1 and j = 0, . . . ,m. By the inductive hypothesis there is a shuffle map
τ′ : [n+m− 1] → [n− 1] × [m] such that the image of the map |τ′ | contains (x ′, y′).
In other words, there exist coefficients ri with

∑
i ri = 1 such that

(x ′′, y′′) =
n+m−1∑
i=0

ri(vτ′1(i),wτ′2(i)).

Extend the definition of τ by τ(i) = τ′(i) for i ≤ n + m − 1. Then

(x, y) = tn(vn,wm) + (1 − tn)
n+m−1∑
i=0

ri(vτ′1(i),wτ′2(i))

=

n+m∑
i=0

r ′i (vτ1(i),wτ2(i))

with r ′i = (1 − tn)ri for i < n + m and rn+m = tn, proving that (x, y) is in the image
of ϕ. If tn > sm then one sets τ(n + m − 1) = (n,m − 1) and proceeds similarly. �

Weconclude this sectionwith awell-known consequence of the fact that geometric
realization preserves products.

Corollary 2.9 Consider functors F,G : C → D between small categories and a
natural transformation ν : F → G between them. Then ν induces a homotopy

|Nν | : ∆1 × BC→ BD

between the corresponding maps of classifying spaces.

Proof The natural transformation ν can be seen as functor

ν : (0→ 1) × C→ D,

which upon applying the nerve functor (which preserves products, being a right
adjoint) gives

Nν : ∆[1] × NC→ ND.

Applying geometric realization and using that it preserves products gives a map

|Nν | : ∆1 × BC→ BD. �
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In particular, considering the unit and counit of an adjoint pair of functors gives
the following:

Corollary 2.10 An adjoint pair of functors between categories C and D induces a
homotopy equivalence between the classifying spaces BC and BD.

2.6 Simplicial Spaces and Bisimplicial Sets

As mentioned at the start of Section 2.2, one can define simplicial objects in any
category E as functors ∆op → E. The cases where E is the category of spaces or of
simplicial sets itself frequently occur in the literature and we will need some general
facts and constructions for these.

2.6.1 Simplicial Spaces

A simplicial space is a functor X : ∆op → Top. In other words, X is a simplicial set
equipped with a topology on each Xn for which all the face maps di : Xn → Xn−1
and degeneracy maps sj : Xn−1 → Xn are continuous. With natural transformations
between them, they form a category for which we write sTop.

For example, if X is a simplicial set and T a topological space, one can define a
simplicial space X ⊗ T by setting

(X ⊗ T)n = Xn × T,

giving Xn the discrete topology and Xn ×T the product topology, while defining the
face and degeneracy maps in the obvious way.

A second example, perhaps one of the most important, is the following. If G is a
topological group, its nerve NG is naturally a simplicial space. Recall from Section
2.4 that as a simplicial set it is defined by (NG)n = Gn, which we can now equip
with the product topology. Its face and degeneracy maps are

di(g1, . . . , gn) =


(g2, . . . , gn) if i = 0,
(g1, . . . , gi+1gi, . . . , gn) if 0 < i < n,
(g0, . . . , gn−1) if i = n,

and
sj(g1, . . . , gn−1) = (g1, . . . , gj, 1, gj+1, . . . , gn−1).

For a simplicial space X one can define its geometric realization |X | by exactly the
same formula as for simplicial sets, again describing it as a quotient space of∐

n≥0
Xn × ∆

n,



78 2 Simplicial Sets

except that now each Xn is a topological space (rather than just a set). In this way
one obtains a functor

| · | : sTop→ Top,

which again preserves colimits. In the first example above, for a simplicial set X and
a topological space T , one has

|X ⊗ T | ' |X | × T .

For a topological group G as in our second example one defines

BG := |N(G)|,

the classifying space of G.
The homotopical properties of this realization functor have been widely discussed

in the literature and we will address some aspects of this in Chapter 8.

2.6.2 Bisimplicial Sets

A bisimplicial set is a simplicial object in the category of simplicial sets, i.e. a functor
X : ∆op → sSets or equivalently a functor

X : (∆ × ∆)op → Sets.

Thus, such an X is given by a collection of sets Xp,q for p, q ≥ 0 together with
‘horizontal’ and ‘vertical’ face and degeneracy maps:

Xp,q

dh
i //

dv
i

��

Xp−1,q
shj

oo

Xp,q−1.

svj

OO

These horizontal and vertical operations should satisfy the simplicial identities, while
‘horizontal’ and ‘vertical’ commute with one another. For instance,

dh
i dh

j = dh
j−1dh

i (i < j), dh
i dv

j = dv
j dh

i , etc.

Bisimplicial sets and natural transformations between them form a category denoted
bisSets. Applying the general facts about presheaf categories from Section 2.4, we
find that the diagonal functor

δ : ∆→ ∆ × ∆

induces a triple of adjoint functors
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sSets

δ!
&&

δ∗ 99bisSets.δ∗oo

The functor δ∗ is usually referred to as the diagonal and for a bisimplicial set X it
gives

(δ∗X)n = Xn,n.

The functor δ! is essentially uniquely determined by the fact that it preserves colimits
and sends representables to representables according to δ. If we write

∆[p, q] = (∆ × ∆)(−, ([p], [q]))

for the bisimplicial set represented by ([p], [q]) ∈ ∆ × ∆, then

δ!∆[n] = ∆[n, n].

Any two simplicial sets X and Y define a bisimplicial set X � Y , their external
product, by

(X � Y )p,q := Xp × Yq .

For example, the representable bisimplicial set ∆[p, q] = ∆[p] � ∆[q] is such an
external product. Notice that δ∗ maps the external product to the ordinary product,
i.e.

δ∗(X � Y ) = X × Y .

Any bisimplicial set X gives rise to two simplicial spaces, obtained by geometric
realization in the horizontal and vertical direction respectively. The horizontal one

|X |(h)q = |X•,q |

is obtained by taking the geometric realization of the qth row for each fixed q and
the vertical one

|X |(v)p = |Xp,• |

is similarly obtained by realizing the columns. One can next realize these simplicial
spaces to obtain spaces

| |X |(h)• | and | |X |(v)• |.

It is a simple and very useful observation that these two spaces are naturally home-
omorphic and furthermore coincide with a third way of ‘realizing’ X , namely by
taking the geometric realization of the diagonal. We record this result as follows:

Proposition 2.11 There are natural homeomorphisms

| |X |(h)• | ' |δ
∗X | ' | |X |(v)• |.
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Proof Observe that the three functors involved are colimit preserving functors
bisSets → Top, so it suffices to show that they are naturally isomorphic on rep-
resentables, i.e. that there are natural homeomorphisms

| |∆[p, q]|(h)• | ' |δ
∗
∆[p, q]| ' | |∆[p, q]|(v)• |.

Recall that ∆[p, q] = ∆[p] � ∆[q]. But for general simplicial sets Y and Z one has
natural identifications

|Y � Z |(v) = Y ⊗ |Z | and |Y � Z |(h) = |Y | ⊗ Z

and so by the observation at the beginning of this section also

| |Y � Z |(v) | = |Y | × |Z | and | |Y � Z |(h) | = |Y | × |Z |.

Finally, we have
|δ∗(Y � Z)| = |Y × Z | ' |Y | × |Z |

since geometric realization preserves products. We conclude by setting Y = ∆[p]
and Z = ∆[q]. �

For a bisimplicial set X we will sometimes write | |X | | for |δ∗X | and refer to it
as the geometric realization of X . The observations above are useful when studying
the classifying spaces of simplicial groups. Such a simplicial group is of course a
functor G : ∆op → Gp or equivalently a simplicial set G with a group structure on
each Gn such that the face and degeneracy maps of G are group homomorphisms
between them. Taking the nerve of each Gn (where one regards a group as a category
with one object) yields a bisimplicial set,

NGp,q = N(Gp)q = Gp × · · · × Gp︸            ︷︷            ︸
q times

and its classifying space is the geometric realization,

BG = | |NG | |.

In particular, by the proposition above, BG coincides with the classifying space of
the topological group |G |. (Note that |G | indeed inherits a group structure from G,
because geometric realization preserves products.)

2.7 Simplicial Categories and Simplicial Operads

We encountered some examples of topological categories and topological operads
in Chapter 1. These come up naturally when describing algebraic structures in
homotopy theory (e.g. the En-operads for n-fold loop spaces) and when one wishes
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to describe structures ‘up to coherent homotopy’ (by means of the W-resolution, for
example). In this section we replace topological spaces by simplicial sets and discuss
the resulting notions.

2.7.1 Internal Versus Enriched Categories and Operads

For a category E with pullbacks there is a notion of internal category in E or a
category object in E. Such an internal category C is given by two objects ob(C) and
ar(C), the ‘object of objects’ of C and the ‘object of arrows’ of C, with structure
maps for domain, codomain, identity morphisms and composition in C, together
making up a diagram in E of the form

ar(C) ×ob(C) ar(C) // ar(C) //
// ob(C)oo

satisfying the usual equations for a category. A morphism f : C→ D between two
such internal categories, also called an internal functor, consists of two morphisms
fob : ob(C) → ob(D) and far : ar(C) → ar(D) satisfying the usual equations. In this
way we obtain a category of internal categories in E.

Each such internal category C gives rise to a simplicial object NC in E, its nerve,
by means of pullbacks in E. One sets

NCn := ar(C) ×ob(C) · · · ×ob(C) ar(C)︸                               ︷︷                               ︸
n times

for n ≥ 1 and
NC0 := ob(C).

A closely related notion is that of a category enriched in E, or briefly an E-
category. An E-category C consists of a collection of objects ob(C) and for any
two objects x, y of C an object C(x, y) of E, the ‘object of arrows’ from x to y.
Furthermore, there are structure maps

C(y, z) × C(x, y) → C(x, z)

for composition and 1→ C(x, x) for identities, where 1 denotes the terminal object
of E. A morphism between such E-categories f : C → D consists of a map
f : ob(C) → ob(D) and for each x, y ∈ ob(C) a morphism C(x, y) → D( f (x), f (y))
of E, compatible with composition and identities. In this way one obtains a category
of E-categories.

As we have just described it the notion of enriched category is more restrictive
than that of internal category: if E has coproducts which distribute over products,
one can view an enriched category C as an internal category in which the object of
objects is a coproduct of copies of the terminal object indexed by the set ob(C). On
the other hand, the definition of enriched category only uses products, not pullbacks,
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and in fact makes sense if E is any monoidal category: in the definition one simply
replaces the product and terminal object by the tensor and unit of the monoidal
structure.

Exactly the same dichotomy applies to operads. For E with pullbacks, there is
a notion of internal operad P in E, given by an object of colours C and for each
n ≥ 0 an object of operations Pn. The structure maps are Pn → Cn ×C (for domain
and codomain), an action of the symmetric group Σn on Pn, and maps for unit and
composition

Pn ×Cn (Pk1 × · · · × Pkn ) → Pk1+· · ·+kn,

C → P1,

all satisfying equations we leave for the reader to spell out.
On the other hand, an operad P enriched in E (or more simply an E-operad)

consists of a set of coloursC and for each sequence of colours (c1, . . . , cn; c) an object
P(c1, . . . , cn; c) of E, all equipped with structure maps for composition, symmetries
and units, much like the definition of operad we gave in Chapter 1.

Thus, when one speaks of topological or simplicial operads or categories, it is a
priori not clear whether one is referring to the internal or the enriched notion. In this
book we will always mean the enriched notion, unless explicitly stated otherwise,
which is also fairly standard in the literature. This is consistent with our use of the
phrases topological category and topological operad in Chapter 1. Note that the
ambiguity disappears when the object of objects is the terminal object of E, as is the
case for topological or simplicial groups, monoids, or operads with a single colour.

Remark 2.12 Another valid interpretation of the phrase ‘simplicial category’ would
have it be a simplicial object in Cat. We leave it to the reader to verify that this is
essentially the same thing as a category internal to simplicial sets.

2.7.2 Simplicial Categories

According to the convention above, a simplicial category C is given by a set of
objects ob(C) and for any two x, y ∈ ob(C) a simplicial set C(x, y) of arrows from x
to y. Furthermore, there are identity elements idx ∈ C(x, x)0 and maps of simplicial
sets C(y, z) × C(x, y) → C(x, z) for composition. The equations for these structure
maps come down to the requirement that for each fixed n, one has a category Cn,
all having the same set of objects ob(C), with the face and degeneracy operators
between the various Cn being the identity on objects. With morphisms of simplicial
categories as defined above we obtain a category which we denote by sCat.

The nerve of a simplicial category gives a bisimplicial set NC with

NCp,q = N(Cp)q =
∐

x0,...,xq

Cp(x0, x1) × · · · × Cp(xq−1, xq)
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for q > 0 and
NCp,0 = ob(Cp) = ob(C),

i.e. this bisimplicial set is constant (or discrete) in its bottom row. Another relevant
construction is the following: one can take the geometric realizations |C(x, y)| of
all the objects of arrows to obtain a topological category |C|. (The reason that this
is still naturally a category is, again, that geometric realization preserves products.)
We can define the classifying space of C in the evident way and express it in the
following two ways, cf. Proposition 2.11:

BC = | |NC| | ' |N(|C|)|.

2.7.3 Boardman–Vogt Resolution

For a simplicial category C one can construct its Boardman–Vogt resolution WC
exactly as in the topological case, now using the representable 1-simplex∆[1] instead
of the topological unit interval [0, 1]. Indeed, the construction essentially only uses the
elements 0 and 1 of [0, 1] together with the supremum operation ∨ : [0, 1] × [0, 1] →
[0, 1]. These are now replaced by the vertices 0, 1 : ∆[0] → ∆[1] (which correspond
to ∂1 and ∂0 respectively) and the map

∨ : ∆[1] × ∆[1] → ∆[1]

corresponding to the map of partially ordered sets ∨ : [1] × [1] → [1] taking the
supremum of a pair. Since this is really all the structure we need, we will discuss
the W-resolution slightly more generally, with respect to an arbitrary interval object.
For us, this will be a simplicial set I together with maps

+ : ∆[0] → I and − : ∆[0] → I

and an associative operation ∨ : I × I → I for which − is a unit and + is absorbing,
in the sense that x ∨+ = + = +∨ x. One could define such intervals in more general
monoidal categories as well (and carry out much of what we do in this section), but
we will remain in the relatively explicit setting of simplicial sets. The most important
examples of intervals we have in mind are the following:

Example 2.13 (i) The representable ∆[1], with − = 0 and + = 1 and ∨ being the
supremum, as described above.

(ii) The opposite of the previous example, with again I = ∆[1] but now − = 1
and + = 0, with ∨ taking the infimum rather than supremum.

(iii) The nerve J of the ‘free isomorphism’. To be precise, write J for the category
with objects − and + together with morphisms t : − → + and s : +→ − satisfying
the relations ts = id+ and st = id−. Thus, J consists of two objects and an isomor-
phism between them. One then defines J = NJ. The geometric realization of J is
homeomorphic to the infinite-dimensional sphere. Indeed, J has two nondegenerate
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simplices of dimension n for every n ≥ 0, given by the alternating sequences sts · · ·
and tst · · · of length n. Thus, |J | has a CW structure with precisely two cells in each
dimension. It is therefore clear that |J |(0) = S0 and more generally (by induction)
one sees that |J |(n) is the n-sphere Sn with its ‘equatorial’ cell structure, i.e. the
one consisting of two closed n-cells glued along their common boundary Sn−1. One
makes J into an interval object in the same way as for ∆[1], setting − = 0 and + = 1
and taking the supremum operation. This makes the evident inclusion ∆[1] → J into
a morphism of intervals.

Let us now describe the simplicial category WC in detail. Its objects are the same
as those of C. For any two objects x, y of C we construct WC(x, y) by induction as
a filtered simplicial set,

WC(x, y)(0) ⊆ WC(x, y)(1) ⊆ · · · ,
⋃
n

WC(x, y)(n) = WC(x, y).

We start withWC(x, y)(0) := C(x, y). At each stage,WC(x, y)(n) will come equipped
with a map ∐

x1,...,xn

In × C(x, x1) × · · · × C(xn, y)
ξ (n)

−−−→ WC(x, y)(n)

which is the identity for n = 0. One constructs WC(x, y)(n) and the map ξ(n) from
WC(x, y)(n−1) and ξ(n−1) by means of the pushout square of simplicial sets

A

��

ζ // WC(x, y)(n−1)

��∐
x1,...,xn In × C(x, x1) × · · · × C(xn, y)

ξ (n)
// WC(x, y)(n).

Here A is the simplicial subset of the bottom left corner consisting of those elements
which have − in one of the n entries of In or an identity arrow of C in one of the slots
C(xi, xi+1). More explicitly, A is the coproduct of simplicial subsets of two types;
the first are of the form

I i−1 × ∆[0] × In−i × C(x, x1) × · · · × C(xn, y),

which are included by means of the map − : ∆[0] → I and which map to
WC(x, y)(n−1) by using the composition

C(xi−1, xi) × C(xi, xi+1) → C(xi−1, xi+1)

and the evident identification

I i−1 × ∆[0] × In−i ' In−1,
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and then composing these with ξ(n−1). The subsets of the second type are of the form

In × C(x, x1) × · · · × {idxi } × C(xi+1, xi+2) × · · · × C(xn, y),

which map to

In−1 × C(x, x1) × · · · × �C(xi, xi+1) × · · · × C(xn, y)

by using the map

In ' I i−1 × I2 × In−i−1 id×∨×id
−−−−−−→ I i−1 × I × In−i−1 ' In−1

and then to WC(x, y)(n−1) by composing with ξ(n−1) again.
This construction mimics the identifications made in the topological case and

gives a well-defined simplicial category WC. The composition in WC is uniquely
determined by the fact that each diagram of the form

(In ×
∏n

i=0 C(xi, xi+1)) × (Im ×
∏m

j=0 C(yj, yj+1))

��

// WC(x, y)(n) ×WC(y, z)(m)

��
In × Im ×

∏n+m+1
k=0 C(zk, zk+1)

u×id
��

WC(x, z)(n+m+1)

In+m+1 ×
∏n+m+1

k=0 C(zk, zk+1)

ξ (n+m+1)

33

commutes, where x0 = x, xn+1 = y = y0, ym+1 = z. Also, the sequence of zk’s is the
sequence x0, . . . , xn+1 = y0, . . . , ym+1 and

u : In × Im ' In × ∆[0] × Im → In × I × Im ' In+m+1

inserts + in the (n + 1)st coordinate.

2.7.4 Homotopy-Coherent Nerve

As for the topological Boardman–Vogt resolution, the case where C is the free
category

[n] = (0→ 1→ · · · → n)

(regarded as a discrete simplicial category) is much easier to describe. In this section
we take I = ∆[1] with − = 0 and + = 1, as in Example 2.13(i). Explicitly, W[n] has
the same objects as [n] and

W[n](i, j) = ∆[1]j−i−1
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for i ≤ j, with the convention that ∆[1]−1 = ∆[0]. (As before, we heuristically think
of an arrow i → j inW[n] as a sequence of waiting times on the objects i+1, . . . , j−1
in a virtual composition i → i + 1→ · · · → j − 1→ j, so there are j − i − 1 such
waiting times.) Composition

W[n](i, j) ×W[n]( j, k) → W[n](i, k)

is given by the map which inserts 1 in the appropriate slot, as in the following
diagram:

∆[1]j−i−1 × ∆[1]k−j−1

��

∆[1]j−i−1 × ∆[0] × ∆[1]k−j−1

id×∂0×id
��

∆[1]k−i−1 ∆[1]j−i−1 × ∆[1] × ∆[1]k−j−1.

This construction gives a functor

W : ∆→ sCat.

By the general procedure of left Kan extension it induces an adjoint pair

w! : sSets // sCat : w∗.oo

Explicitly, for a simplicial category C, the simplicial set w∗C is defined by

w∗Cn = Hom(W[n],C),

where Hom is the set of functors of simplicial categories. This simplicial set w∗C
is called the homotopy-coherent nerve of C. If C happens to be a discrete simplicial
category, it agreeswith the usual nerve NC. The left adjointw! is uniquely determined
(up to isomorphism) by the fact that it preserves colimits and agrees with W on
representables, i.e.

w!(∆[n]) = W[n].

In the second part of this book we will explain in what sense this adjoint pair gives an
equivalence of homotopy theories between simplicial sets and simplicial categories.

Remark 2.14 The adjoint pair (w!,w
∗) is commonly denoted (C, N) in the literature,

but we will not use this notation.

2.7.5 Simplicial Operads

Our discussion of simplicial categories has a parallel for simplicial operads. A
simplicial operadP is given by a set of coloursC and for each sequence c1, . . . , cn, c of
colours a simplicial set P(c1, . . . , cn; c), thought of as the simplicial set of operations
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from c1, . . . , cn to c. Furthermore, there are composition maps and symmetric group
actions, as well as units q ∈ P(c, c)0 for each colour c, similar to the cases of operads
in Sets and Top discussed in the first chapter. In particular, for each simplicial
degree q, there is an operad Pq in Sets with the same set of colours C and the
sets P(c1, . . . , cn; c)q as operations. Moreover, the simplicial face and degeneracy
operators give morphisms of operads Pq → Pq−1 and Pq−1 → Pq respectively. A
morphism of simplicial operads P→ Q consists of a function ϕ : C → D between
the respective sets of colours of P and Q and a family of morphisms of simplicial
sets (all denoted ϕ again)

ϕ : P(c1, . . . , cn; c) → Q(ϕ(c1), . . . , ϕ(cn); ϕ(c)),

one such for each sequence of colours c1, . . . , cn, c of P. These morphisms are
required to be compatible with composition, symmetries and units. A different way
of describing such a morphism is as a collection ϕq : Pq → Qq of morphisms of
operads in Sets, natural in q with respect to face and degeneracy operators. In this
way one obtains a category of simplicial operads, which we denote by sOp.

Since geometric realization preserves products, each such simplicial operad P
yields a topological operad with the same set of colours C and spaces of operations
|P(c1, . . . , cn; c)|. In fact, this defines a functor

| · | : sOp→ OpTop

between the categories of simplicial and topological operads. When compared to
the discussion of simplicial categories above, the parallel seems to stop here, since
we do not have a nerve functor for operads at our disposal which parallels the nerve
functor for categories. This gap will be filled in the next chapter and is in fact a major
theme of this book.

Finally, we note that any simplicial operad P of course ‘contains’ a simplicial
category j∗P with the set C as its set of objects and the simplicial sets P(c; d) as
morphisms from c to d. Conversely, any simplicial category C can be regarded as
a simplicial operad (which we denote j!C) with only unary operations, i.e. one for
which the simplicial sets j!C(c1, . . . , cn; c) are empty unless n = 1. This procedure
is easily seen to define an adjoint pair

j! : sCat // sOp : j∗.oo

2.7.6 The Barratt–Eccles Operad

In this section we discuss an important example of a simplicial operad, the so-called
Barratt–Eccles operad. As before we write Σn for the symmetric group on n letters,
for n ≥ 0. Every group G (or in fact every monoid) gives rise to a category usually
denoted EG, whose objects are the elements of G and where an arrow g → h is
an element k ∈ G with g = hk. Of course for groups this element k is unique,
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namely k = h−1g. Alternatively, viewing G as a category with one object ∗ and the
elements of G as morphisms, EG is simply the slice category G/∗. Then the identity
of the object ∗ is a terminal object of EG, so that its classifying space |N(EG)|
is contractible. Moreover G acts on EG from the left in the obvious way, using
multiplication of elements of G. Clearly this action is free.

The simplicial sets N(EΣn) fit together to form an operad with one colour, as we
will now explain. We will define the operadic composition maps by first specifying
group homomorphisms

γ : Σn × Σk1 × · · · × Σkn → Σk

for each n, k1, . . . , kn ≥ 0 and k = k1 + · · · + kn. One way to do this is to view the
elements σ ∈ Σn as permutation matrices and defining γ(σ, τ1, . . . , τn) by replacing
the 1 in the ith column (and σ(i)th row) of σ by the permutation matrix τi . Another
way is to combine the embedding

block : Σk1 × · · · × Σkn → Σk,

given by letting Σki act on the ith ‘block’ of length ki in the set {1, . . . , k}, with the
homomorphism Σn → Σk permuting the n blocks. If we write

f : {1, . . . , k} → {1, . . . , n}

for the map sending every element of the ith block to the number i, we denote this
homomorphism by f ∗ : Σn → Σk . Then the map γ can be described as a product in
the group Σk :

γ(σ, τ1, . . . , τn) = f ∗σ · block(τ1, . . . , τn)

= block(τ1, . . . , τn) · f ∗σ.

Now the maps N(Eγ) give the desired operadic composition. The action of Σn on
EΣn is as described above and one easily verifies that these are compatible with the
operadic composition in the desired way. In this way we obtain a simplicial and a
topological operad BE∆ and BETop with

BE∆(n) = N(EΣn)

BETop(n) = |N(EΣn)|

which are called the (simplicial and topological) Barratt–Eccles operad. As we
already observed, it is an operad whose spaces are contractible and have a free
Σn-action. In this respect it resembles the little disks operad E∞ of Example 1.9.
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2.7.7 The Simplicial Boardman–Vogt Resolution of an Operad

For a simplicial operad P, one can mimic the topological Boardman–Vogt resolu-
tion for topological operads (as in Section 1.7) and construct a simplicial operad
WP equipped with a map to P which is the identity on colours. The modification
to the simplicial case is done completely analogously to the W-construction for
simplicial categories of Section 2.7.3, replacing the topological unit interval by the
simplex ∆[1]. In particular, for a sequence of colours c1, . . . , cn, c the simplicial set
WP(c1, . . . , cn; c) is a quotient of a coproduct of simplicial sets WP(T ) indexed over
planar trees T with numbered leaves and edges labelled by colours of P, so that the
leaves of T are labelled by c1, . . . , cn (not necessarily in that order) and the root by
c. For such a labelled tree T , the simplicial set WP(T ) is the product∏

v∈V (T )

P(v) ×
∏

e∈in(T )
∆[1],

where v ranges over the vertices of P and e over the inner edges, while P(v) =
P(e1, . . . , en; e) with e1, . . . , en the incoming edges of v and e its outgoing edge.

We will return to this simplicial W-construction many times in this book. For
now, we note that if P has only unary operations (i.e. is a simplicial category), this
W-construction agrees with the one given in Section 2.7.3. Recall that in that case
the description of W[n] was much simpler than the general case. The same is true
for the free operads Ω(T) corresponding to trees, see Section 1.3. Recall that the
colours of Ω(T) are the edges of T and its operations are generated by the vertices
of T . The Boardman–Vogt resolution WΩ(T) has the edges of T as colours again.
For a sequence e1, . . . , en, e of such edges, the simplicial set WΩ(T)(e1, . . . , en; e)
is empty unless there exists a subtree S of T whose leaves are e1, . . . , en and whose
root is e. In this case

WΩ(T)(e1, . . . , en; e) =
∏

s∈in(S)
∆[1],

the product now ranging over the inner edges s of S. Operadic composition inWΩ(T)
is defined by grafting subtrees, now inserting length 1 for the edges along which the
grafting takes place, exactly as in the topological case.

One would hope that this construction gives rise to a ‘homotopy-coherent nerve’
for simplicial operads. This is indeed the case, once we have found a suitable context
for nerves of operads in the next chapter.
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Historical Notes

Simplicial sets were introduced as a tool to describe the homotopical properties of
topological spaces in a combinatorial way. The first definition of simplicial sets (then
called complete semi-simplicial complexes) appears in a 1950 paper of Eilenberg–
Zilber [54]. Much of the basic theory was developed soon after; Moore’s lectures in
the Séminaire Henri Cartan of 1954–1955, his overview paper [118], and the early
works of Kan [96, 97, 98] are classic references. These include the fundamentals of
homotopy theory (such as homotopy groups and fibrations) from the simplicial point
of view; much of this material will appear in Chapters 5 and 7 of this book. Standard
textbook references on simplicial sets were written in the 1960s by Gabriel–Zisman
[61], Lamotke [101], and May [111]. Another very useful survey of work from this
time is given by Curtis [47].

All of the above references focus on the application of simplicial sets to the ho-
motopy theory of topological spaces. The shift in focus to general simplicial objects
and their applications came a bit later. The application of simplicial techniques to
problems of algebra is perhaps most famously promoted in the works of Quillen
[123, 126] on the (co)homology of commutative rings and on higher algebraic K-
theory. Simplicial categories, as defined in this chapter, rose to importance in the
work of Dwyer–Kan [51, 50] from the 1980s. The more recent textbook on simpli-
cial homotopy theory by Goerss–Jardine [69] takes some of these developments into
account.

In this chapter we have also introduced the homotopy-coherent nerve, which
produces a simplicial set out of a simplicial category. This construction first arose
in the work of Vogt [139] on homotopy-coherent diagrams of spaces, building on
his earlier work on homotopy-coherent algebraic structures with Boardman [21].
Cordier [45] systematically studied the simplicial version of the homotopy-coherent
nerve and made the connection to the work of Dwyer–Kan on simplicial categories.

The Barratt–Eccles operad we described just above originates in [10].
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Chapter 3
Dendroidal Sets

In this chapter we will introduce the category of dendroidal sets, which is the main
object of study of this book. The definition of a dendroidal set mirrors that of a sim-
plicial set, except that the category ∆ is replaced by a larger category Ω of trees. The
morphisms in the latter category are the operad morphisms between the free operads
generated by these trees. The category of dendroidal sets contains the categories
of simplicial sets and of coloured operads (in Sets) as full subcategories, and the
Boardman-Vogt resolution discussed in Chapter 1 can be used to construct for each
coloured operad (in topological spaces or in simplicial sets) a homotopy-coherent
nerve which has the structure of a dendroidal set. The category of dendroidal sets
is a category of presheaves, just like that of simplicial sets, and many constructions
can be lifted from the simplicial context to the dendroidal one. At the same time
there are several important differences, some of which are caused by the fact that
unlike the category ∆, the category Ω of trees contains non-trivial automorphisms.
This leads to the introduction of normality and normalization of dendroidal sets, not
present in the simplicial theory, and a more refined notion of skeletal filtration.

3.1 Trees

We already defined the trees we will work with in Section 1.3. In this section we
fix some more terminology. The reader is advised to quickly glance over it and refer
back to it when necessary.

Recall that all our trees are finite, rooted, and are allowed to have inner edges,
connecting two vertices, and outer edges, only attached to a vertex at one end. One of
these outer edges is the root and all others are leaves. A typical picture of a tree was
already provided in Section 1.3. For a tree T , we will write E(T) for its set of edges
and V(T) for its set of vertices. These vertices come in two kinds, namely external
verticeswhich only have one inner edge attached to them, and internal vertices. Note
that removing an external vertex and all the outer edges attached to it yields a new
tree; a similar procedure is not available for internal vertices. We will often refer to
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this removing of an external vertex as pruning. An external vertex occurring at the
top of T (i.e. minimal in the partial order on V(T)) will sometimes be called a leaf
vertex.

Both V(T) and E(T) come with a natural partial ordering. We will mostly use the
one on E(T), defined by e ≤ f if the path from e to the root of T passes through
f . The root itself is of course the maximal element. We call two edges e and f
incomparable if they are not related in this partial order and denote this by e ⊥ f .
The edges on a path from a given edge e to the root are linearly ordered; from this
one easily deduces that

e ⊥ f , e′ ≤ e, f ′ ≤ f ⇒ e′ ⊥ f ′.

The partial ordering on E(T) defines for any vertex v an outgoing edge out(v) and a
set in(v) of incoming edges. The number of incoming edges is the valence of v and
sometimes denoted |v |. A vertex of valence zero is a nullary vertex or a stump.

There is one rather special tree having no vertices at all, which can be pictured as
follows:

It has a unique edge which is both a leaf and a root. We often write η for this tree.
A tree is called open if it has no nullary vertices; on the other hand, it is called

closed if it has no leaves. For example, the tree η is open but not closed and generally
a tree cannot be both open and closed. A tree is called linear if all its vertices have
valence one. The linear tree with n + 1 edges running from the leaf 0 to the root n
will be denoted [n]:

...

0

1

n

The reason for this notation, if not yet clear, will become apparent in this chapter.
Note that by our convention the tree obtained from [n] by putting a stump on top will
not be referred to as a linear tree.

An embedding ϕ : S → T of trees consists of injective maps ϕE : E(S) → E(T)
and ϕV : V(S) → V(T) such that for any vertex v of S, the map ϕE gives a bijection
between in(v) and in(ϕv) and ϕ(out(v)) = out(ϕv). It is an easy exercise to see that
such an embedding will automatically respect the partial orderings on sets of edges
and vertices. A typical example of an embedding looks as follows:
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p
a b

c
p

a b

c

However, there are no embeddings of trees as indicated below:

v

a b

c
v

a b

c
v

a

b

c

An embedding which is bijective (on edges as well as on vertices) is an isomor-
phism of trees. If ϕ : S → T is an embedding and the map ϕ is just given by inclusion
of subsets E(S) ⊆ E(T) and V(S) ⊆ V(T), then we call S a subtree of T . In other
words then, an embedding S → T is the same thing as an isomorphism of S onto
a subtree of T . Note that if S is a subtree of T , then S can be obtained from T by
successively pruning away external vertices (and the outer edges attached to them)
from T . Note that any edge e of T determines an embedding denoted

e : η→ T .

Any tree T embeds into its closure T defined by putting a nullary vertex on top of
each leaf of T . Conversely, any tree T has an embedded interior T◦ → T obtained
by pruning away its nullary vertices.

T TT◦

A corolla is a tree with precisely one vertex. We will write Cn for the corolla with
root 0 and leaves 1, . . . , n.

C0 C1 C2 C3

· · ·
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If S and T are trees and l is a leaf of S, one can graft T on top of S by identifying
l with the root of T . The resulting tree will be denoted

S ◦l T

and can be depicted as below.

S

T

l

Similarly, if l1, . . . , ln are leaves of S and T1, . . . ,Tn are trees, one can graft each
Ti onto li to obtain a tree

S ◦l1,...,ln (T1, . . . ,Tn).

One can inductively build any tree by grafting together corollas. Indeed, any tree T
is either isomorphic to η or isomorphic to one of the form

Cn ◦1,...,n (T1, . . . ,Tn)

for strictly smaller trees T1, . . . ,Tn. This description will sometimes be helpful when
using induction on the size of trees. For example, the automorphism group of a
tree can be described as an iterated semidirect product of symmetric groups as
follows. First observe that Aut(Cn) � Σn. Then for T as above, partition the set of
trees T1, . . . ,Tn so that Ti and Tj are in the same equivalence class if and only if
they are isomorphic. Say the sizes of the equivalence classes are n1, . . . , nk with
n1 + · · · + nk = n and choose a representative T (i) for each isomorphism class,
i = 0, . . . , k. Then

Aut(T) � (Σn1 × · · · × Σnk ) n (Aut(T (1))n1 × · · · × Aut(T (k))nk ).

We already discussed planar structures on trees in Section 1.3. It is worth noting
that the evident action of Aut(T) on the set of planar structures of T is free. However,
it is generally not transitive. Indeed, consider the two pictures below, which indicate
two different planar structures (now we do use the planar structure induced by our
pictures!) on the same tree T which cannot be related by an automorphism of T .

We end this section with some observations on the poset of edges E(T) of a tree
T .
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Lemma 3.1 Let T be a tree. Then T is uniquely determined (up to isomorphism) by
the partially ordered set E(T) and the subset of leaves L(T) ⊆ E(T).

Proof We will show how to reconstruct T from E(T) with its partial order and
the subset L(T). First of all, the set of vertices V(T) is in bijection with the set
E(T) − L(T), by assigning to each vertex its outgoing edge. We will now inductively
reconstruct T from E(T). Start with the root r , which is the unique maximal element
of E(T). If r ∈ L(T) then T � η. Otherwise, attach a vertex vr to the top of r; as
incoming edges of this vertex, take the elements e < r of E(T) such that there does
not exist any f ∈ E(T) with e < f < r . Next, for every input edge e of vr which is
not contained in L(T), attach a vertex ve to the top of e. Give it the incoming edges
e′ ∈ E(T) with e′ < e so that there are no f ′ with e′ < f ′ < e. Continuing in this
way one ends up with T itself. �

Conversely, we can characterize which posets arise as sets of the form E(T), for
some tree T .

Lemma 3.2 Let E be a finite poset with a unique maximal element r and assume
that E satisfies the following property:

(∗) For every e ∈ E , the poset Ee≤ := {x ∈ E | e ≤ x} is linearly ordered.

Let L ⊆ E be a subset consisting of minimal elements. Then there exists a tree T
with E(T) = E and L(T) = L. This T is unique up to isomorphism by the previous
lemma.

Proof One constructsT as in the proof of the previous lemma. To see that the process
described there yields a tree, we need to check that every edge e with e , r is the
input edge of a uniquely defined vertex v. This is guaranteed by assumption (∗), since
there is a unique element f with the property that e < f and there exists no f ′ with
e < f ′ < f . To see that E(T) = E , one simply notes that any e ∈ E is connected to
r by the finite chain of elements Ee≤, so that such an e is added to T at some stage
of the process. Finally, it is clear that L = L(T) by construction. �

Note that the previous two lemmasmake it possible to give an alternative definition
of tree, simply in terms of a pair (E, L) as above.

3.2 The Category Ω of Trees

In Section 1.3 we discussed how any tree generates an operad Ω(T) in Sets. The
colours of Ω(T) are the edges of T . Given a sequence of colours e1, . . . , en, e, the set
of operationsΩ(T)(e1, . . . , en; e) is either empty or a singleton. There is an operation
in Ω(T)(e1, . . . , en; e) if and only if there exists a subtree of T with leaves e1, . . . , en
and root e. In particular any vertex v of T gives, for any ordering of its input edges
in(v) = {e1, . . . , en}, an operation v ∈ Ω(T)(e1, . . . , en; out(v)). The operad Ω(T) is
free and any planar structure on T fixes a set of generating operations corresponding
to the vertices of T .
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Definition 3.3 The category Ω is the category whose objects are trees and whose
morphisms S → T are maps of operads Ω(S) → Ω(T).

Thus, by definition, Ω is a full subcategory of the category of operads in Sets. The
linear trees [n] form a full subcategory of Ω. For such a tree [n], the corresponding
operad Ω[n] is precisely the category

0→ 1→ · · · → n,

so that we may identify this full subcategory with ∆. We will denote the resulting
inclusion by

i : ∆→ Ω.

This inclusion is compatible with the inclusion of Cat into Op, in the sense that the
square below commutes.

∆

i

��

// Cat

j

��
Ω // Op

Let us consider the morphisms in Ω more closely. A morphism ϕ : S → T sends
edges to edges and vertices v to subtrees ϕ(v) of T , by definition of the operadsΩ(S)
andΩ(T). If e1, . . . en are the input edges of v and e the output, then ϕ(e1), . . . , ϕ(en)
are the leaves of ϕ(v), whereas ϕ(e) is the root. Since the operad Ω(T) has at most
one operation from a given sequence of colours to another colour, it is clear that
the morphism ϕ is uniquely determined by its effect on colours. This map on edges
ϕE : E(S) → E(T) is a map of posets, i.e.

e ≤ f ⇒ ϕ(e) ≤ ϕ( f ),

and preserves independence of edges,

e ⊥ f ⇒ ϕ(e) ⊥ ϕ( f ).

To see the latter fact, observe that the paths from e and f to the root of S first meet in
a vertex v. This vertex has two leaves e′ and f ′ such that e ≤ e′ and f ≤ f ′. These
two leaves are distinct and therefore incomparable; moreover, the edges ϕ(e′) and
ϕ( f ′) are distinct leaves of the subtree ϕ(v) and therefore also incomparable. Since
ϕ(e) ≤ ϕ(e′) and ϕ( f ) ≤ ϕ( f ′) it follows that ϕ(e) and ϕ( f ) are incomparable as
well.

Each embedding of trees S → T (as defined in the previous section) defines a
morphism in Ω. In fact, this morphism sends generators to generators, or in other
words it sends vertices to subtrees with one vertex. We already noted that there is no
embedding as follows:
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v

a b

c
v

a b

c

d

In fact, there is no such morphism in Ω. Indeed, the binary operation inΩ(S)(a, b; c)
would have to map to a binary operation in Ω(T), but there are none. On the other
hand, there is a map between the following trees:

v

a b

c
v

a b

c

d
w

It sends the unique operation inΩ(S)(a, b; c) to the composition v◦dw. This example
shows that taking the interior of a tree is not a functor. The situation is better for the
closure of a tree. Let us first observe the following:

Lemma 3.4 Let T be a closed tree. Let e1, . . . , en, e be edges in T for which ei ≤ e
and ei ⊥ ej for any distinct i and j. Then there is a unique subtree of T with leaves
e1, . . . , en and root e.

Proof Uniqueness is clear, since subtrees of any tree T (closed or not) are always
determined by their leaves and root. For existence, one prunes away everything above
the edges e1, . . . , en. To be more precise, consider the subset X of E(T) consisting
of the edges f for which there exists an ei such that ei ≤ f ≤ e. Also, let Y be the
subset of V(T) consisting of those vertices v for which the path from v to the root of
T contains only edges of X . Then it is easily verified that the pair (X,Y ) defines the
necessary subtree. �

Proposition 3.5 Let S and T be trees and let ϕ : E(S) → E(T) be a map of posets
which preserves the incomparability relation ⊥ on edges. If T is closed, then ϕ is the
underlying map on edges of a unique morphism S → T in Ω.

Proof For a vertex v of S, the input edges and output edge of v satisfy the conditions
of the previous lemma, so we can define ϕ(v) to be the resulting unique subtree. �

Corollary 3.6 Any morphism ϕ : S → T in Ω extends uniquely to a morphism
between closures ϕ : S → T .

We write Ω for the full subcategory of Ω on the closed trees. It is worth noting
that the combination of Proposition 3.5 and Lemma 3.2 gives an alternative way of
describing the category of closed trees. Indeed, since L(T) = � for a closed tree T ,
one concludes that Ω is equivalent to the category whose objects are finite posets
satisfying the assumptions of 3.2 and whosemorphisms are the maps of posets which
respect the incomparability relation.
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Corollary 3.6 shows that the operation of taking the closure of a tree defines a
functor which is left adjoint to the inclusion:

Ω
( ) // Ω.oo

Recall from Corollary 2.10 that this implies in particular that the classifying spaces
of Ω and Ω are homotopy equivalent. We use this observation to prove the following:

Proposition 3.7 The classifying space BΩ is contractible.

Proof By the adjunction above it suffices to prove this for BΩ. Consider the object
η = C0 and the corresponding constant functor denoted η : Ω → Ω. It suffices to
relate the identity functor to η by a zig-zag of natural transformations. For a closed
tree T , let T+ denote the tree obtained from T by adjoining a unary vertex to the root.
In other words, if r is the root of T , then T+ = C1 ◦r T . Write eT for the newly arising
root edge of T+. The procedure assigning T+ to T is in fact a functor; indeed, any
map of closed trees ϕ induces an evident map E(S+) → E(T+) which satisfies the
condition of Proposition 3.5. Clearly there is an embedding iT : T → T+. Moreover,
since T is closed, the map eT : η→ T+ extends to a map eT : η→ T+ by Corollary
3.6. Both iT and eT are parts of natural transformations, completing the proof. �

Remark 3.8 The use of closed trees in the previous proof is essential. Although the
construction of T+ from T makes sense for any tree, it cannot generally be made
functorial in a way that renders the map eT : η → T+ to the new root natural in T .
For example, while there is a map δw as pictured below, there is no root-preserving
map between the trees S+ and T+ at all.

δw
w

v

T

v

S

3.3 Faces and Degeneracies in Ω

In Chapter 2 we explained in what sense the category ∆ is generated by the face
maps ∂i : [n − 1] → [n] and the degeneracy maps σj : [n] → [n − 1]. We will
now discuss a similar set of generating morphisms for the category Ω. There is one
important difference however, in that the automorphism groups of objects of ∆ are
all trivial while in Ω they need not be.
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3.3.1 Outer Faces

For a tree T and an external vertex v of T , write ∂vT for the tree obtained by pruning
away v and all the outer edges attached to it. This vertex v can be any leaf vertex or
it can be the vertex attached to the root of T , provided it is only attached to one inner
vertex of T . We write

∂vT
δv
−−→ T

for the inclusion of this tree and refer to it as an outer face. If v is a leaf vertex we
will sometimes specifically speak of a leaf face and similarly for a root face. Below
is an example of a leaf face δv and a root face δw .

δv δw
w

v

vw

There is one case which deserves special mention. For most trees T the notions
of leaf vertex and root vertex are distinct and the preceding discussion suffices.
However, for corollas (i.e. trees with one vertex) this is not the case. There are n + 1
different maps

η→ Cn

corresponding to the inclusion of each of the n leaves and the root. All of these are
by definition outer faces as well.

3.3.2 Inner Faces

For a tree T and an inner edge e, let ∂eT denote the tree obtained by deleting the edge
e and identifying the vertices v and w at either end of e. We will usually say ∂eT has
been obtained from T by contracting e. This gives an inclusion of trees denoted

∂eT
δe
−−→ T

which sends the new vertex obtained by contraction to the subtree of T obtained
by grafting the two corollas with vertices v and w, i.e. the smallest subtree of T
containing these vertices. In terms of the associated operads, it sends the new vertex
in ∂eT to the composition in Ω(T) of the operations correspondingly given by v and
w along e. A morphism of this kind will be referred to as an inner face.
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δe δfe

f

3.3.3 Degeneracies

Let e be an edge in a tree T . Consider the tree σeT obtained from T by splitting this
edge into two edges e1 and e2 by placing a unary vertex v in the middle of e. Then
there is a morphism

σeT
σe
−−→ T

in Ω which sends both edges e1 and e2 to e and the new unary vertex v to the subtree
η

e
−→ T of T . In operadic terms, it sends the new vertex v to the identity operation of

the colour e in the operad Ω(T). A morphism of this kind is called a degeneracy.

σe ee2

e1

Notice that face maps are injective on edges and increase the number of vertices
by one, while degeneracy maps are surjective on edges and decrease the number
of vertices as well as the number of edges by one. It need not be true that a face
map increases the number of edges, as witnessed by the inclusion η → η. We will
sometimes refer to the face and degeneracy maps discussed above as elementary
faces and degeneracies and use the general terms face (resp. degeneracy) also for
compositions of elementary faces (resp. elementary degeneracies). We will say these
general facemaps are of ‘higher codimension’ if it is necessary tomake the distinction
with elementary face maps. Similar terminology applies to degeneracy maps. Note
that a composition of elementary outer faces is precisely the same as the embedding
of a subtree.

3.3.4 Codendroidal Identities

Analogous to the cosimplicial identities, there are equations governing the various
ways in which elementary faces and degeneracies compose. These equations are the
codendroidal identities, dual to the dendroidal identities to be introduced in the next
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section. For completeness’ sake we provide a list below, although we will rarely
make use of it in this form. This list is necessarily more complicated than that of the
cosimplicial identities. In the list below T is a tree, e and f are edges of T and v and
w are vertices.
(1) δvδw = δwδv if v and w are distinct external vertices.
This equation makes sense, because w is still an external vertex of ∂vT and v an
external vertex of ∂wT . It is to be read as stating the commutativity of the diagram
in Ω pictured below.

∂w(∂vT) = ∂v(∂wT)
δv

''

δw

ww
∂vT

δv
''

∂wT

δw
wwT

Similar remarks apply to the remaining identities below.
(2) δeδf = δf δe if e and f are distinct inner edges.
(3) δeδv = δvδe if e is an inner edge and v an external vertex not attached to e.
(4) δeδx = δvδw if v is an external vertex and e is an inner edge connecting v to

another vertex w, provided w is an external vertex of the tree ∂vT . Here x is
the new vertex of ∂eT arising as the composition of v and w along e.

(5) σeσf = σfσe if e and f are distinct edges.
(6) σeσe1 = σeσe2 if e1 and e2 are the two new edges in the tree σeT .
(7) σeδei = id for i = 1, 2 if ei is an internal edge.
(8) σeδx = id if e is an outer edge and x is the new vertex connecting e1 and e2.
(9) σeδf = δfσe if e and f are distinct and f is an inner edge.
(10) σeδv = δvσe if v is an external vertex and e is not an outer edge attached to v.

3.3.5 Factorization of Morphisms Between Trees

Recall that we use the term face map to mean a composition of elementary face
maps as described above. Similarly a degeneracymap is a composition of elementary
degeneracies.

Proposition 3.9 Any morphism ϕ : S → T in Ω can be factored as

S
σ
−→ S′

α
−→ T ′

δ
−→ T,

where σ is a degeneracy, α an isomorphism and δ a face map. This factorization
is unique up to unique isomorphism, in the sense that for any other factorization
(σ′, α′, δ′) there is a commutative diagram
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S′ α //

'

��

T ′

δ

  
'

��

S

σ

>>

σ′   

T

S′′ α′ // T ′′
δ′

>>

in which the vertical maps are isomorphisms, and moreover the choice of vertical
isomorphisms is unique.

Proof First consider the effect of ϕ on edges and factor it as a surjection followed
by an injection:

E(S)
ϕs
−−→ A

ϕi
−−→ E(T).

Here one takes A to the quotient of E(S) by the equivalence relation ∼ identifying
two elements whenever they have the same image in E(T). If e ∼ e′ then e and e′

must be related in E(S); indeed, any map of trees preserves independence of edges.
Let us assume e ≤ e′. Then ϕ must send all the edges on the path from e down to e′

to the same element of E(S). It follows that every vertex on this path must be unary.
Hence there is a degeneracy S → Se,e′ collapsing the segment from e to e′ in S to
a single edge in Se,e′ . Applying this reasoning to every equivalence class of edges
gives a degeneracy σ : S → S′ such that E(S′) = A. Moreover, ϕ factors as i ◦σ for
some injective map S′→ T . This map i may be factored as

S′
α
−→ T ′

δ
−→ T

where α is an isomorphism onto the image of i. The map δ is an injective map of
trees which on the level of edges is simply an inclusion of subsets E(T ′) ⊆ E(T).
Any such map is a composition of elementary face maps, as we shall prove in detail
in the next proposition.

The uniqueness of this factorization up to isomorphism is straightforward to
establish. Indeed, it is clear on the level of edges, and one uses that maps of trees are
uniquely determined by their effect on edges. �

Proposition 3.10 Any face map ϕ : S → T in Ω can be factored as

S
δ
−→ S′

ε
−→ T,

in the following two ways:

(1) δ is a composition of outer faces and ε a composition of inner faces.
(2) δ is a composition of inner faces and ε a composition of outer faces. In this case

the factorization is unique up to unique isomorphism.

Proof We start with the factorization of type (2). Write l1, . . . , ln for the leaves
of S and r for its root. Then take S′ to be the maximal subtree of T with leaves
ϕ(l1), . . . , ϕ(ln) and root ϕ(r). Clearly ϕ factors into injective maps δ : S → S′ and
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ε : S′ → T . The map ε is a composition of elementary outer face maps, where
each such outer face adds a single vertex to S′. We should argue that the map δ is a
composition of elementary inner faces. Recall that every face map sends a vertex v of
S to a subtree of T . If δ sends every vertex of S to a corolla, then δ is the inclusion of
a subtree. But S and S′ have the same leaves and root, so δ is the identity. Otherwise
there is a vertex v of S such that the subtree ϕ(v) of T has an inner edge, say e. Then
ϕ factors as

S
δ′

−→ ∂eS′
δe
−−→ S′,

where the map δ′ still preserves the leaves and root. We complete the proof by
induction on the number of inner edges in the trees ϕ(v), for v ∈ V(S). For uniqueness
we argue as follows: if (δ′, ε′) is another factorization as in (2), then ε′ has to be
the inclusion of the subtree of T with leaves ϕ(l1), . . . , ϕ(ln) and root ϕ(r). Such a
subtree is unique (namely S′), so that ε′ = ε. Now the map δ′ : S → S′ is uniquely
determined by the inducedmap on edges E(S) → E(S′). But this map has to coincide
with the map induced by δ, so that δ′ = δ.

For (1), it suffices to argue that a composition

∂e(∂vT)
δe
−−→ ∂vT

δv
−−→ T

of an inner face δe followed by an outer face δv can also be factored as an outer face
followed by an inner face. Note that the inner edge e of ∂vT is also an inner edge
of T , which moreover is not connected to v (otherwise it could never be inner in
∂vT). But then we simply have ∂v∂e = ∂e∂v by the codendroidal identity (3) of the
previous subsection. �

Definition 3.11 A morphism ϕ : S → T in Ω is positive if it is injective on edges. A
morphism is negative if it is surjective on edges and on vertices.

By surjective on vertices we mean that any vertex of T is contained in a subtree
ϕ(v) for some vertex v of S. In fact, the surjectivity of ϕ on edges implies that any
such ϕ(v) is simply a corolla. The classes of positive and of negative maps are clearly
closed under composition, so that they define subcategories Ω+ and Ω− respectively.
It is easily verified that their intersection is precisely the class of isomorphisms in Ω.
Note that Proposition 3.9 implies that every positive morphism is the composition
of an isomorphism followed by a face map, whereas every negative morphism is the
composition of a degeneracymap followed by an isomorphism. Also, the proposition
implies:

Corollary 3.12 Every morphism S → T in Ω factors as the composition of a neg-
ative morphism S → R followed by a positive morphism R → T . Moreover, this
factorization is unique up to unique isomorphism.

Finally, the following observation will be useful later on:
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Proposition 3.13 Letσ : S → T be a degeneracy and α an automorphism of S. Then
there is at most one automorphism β of T making the following square commute:

S α //

σ

��

S

σ

��
T

β // T .

Conversely, given an automorphism β of T , there is at most one automorphism α of
S making the square commute.

Proof The first statement is clear from the fact that σ is an epimorphism. For the
second statement we use that the map α is completely determined by its effect on
edges, like any map in Ω. By commutativity of the diagram, it must send the fibre
σ−1{d} to σ−1{β(d)}, for any edge d of T . This fibre is a linear tree, which does not
have nonidentity automorphisms. It follows that the effect ofα on edges is completely
determined by β. �

Remark 3.14 The phrase ‘at most’ in the previous proposition is crucial. It is not true
that an automorphism α of S always induces an automorphism of T , or conversely
that an automorphism of T induces one of S. As an example, consider the following
trees S and T :

σe e
v w

T

e2

e1
v

w

S

Then T has an automorphism interchanging the vertices v and w, but S does not.

3.3.6 Some Limits and Colimits in Ω

As in Section 2.1 we will now establish the existence of certain pushouts and
pullbacks in Ω.

Lemma 3.15 Let S ← T → R be two negative morphisms in Ω. Then their pushout
exists in Ω and is an absolute pushout.

Proof As in the proof of Proposition 2.1 it suffices to show this for elementary
degeneracy maps σe : T → S (collapsing two neighbouring edges e1 and e2 to a
single edge e, deleting the vertex v in between) and σf : T → R (collapsing f1 and
f2 to f , deleting a vertex w). The evident candidate for a pushout square is
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T S

R Q,

σe

σf σ′
f

σ′e

where Q is obtained from T by deleting both v and w and performing the collapses
involving e and f . Again as in Proposition 2.1, it suffices to give sections α of σf

and α′ of σ′f which are compatible in the sense that σeα = α
′σ′e. When v = w, one

can take any section α of σf (there are two choices, depending on whether α( f ) is
f1 or f2) and take α′ to be the identity section of σ′f = id. If v and w are different and
not connected by a single edge, then one can take α to be any of the two available
sections and α′ to be the section with α′( f ) = α( f ).

The remaining case is where v and w are connected by a single edge. If v is
directly above w, so that e2 = f1, one takes α( f ) = f1 and α′( f ) = f1. If v is directly
below w, so that f2 = e1, one takes α( f ) = α′( f ) = f2. �

Lemma 3.16 Let σ : S → T be a negative morphism in Ω. Then the pushout of any
morphism along σ exists in Ω.

Proof Let τ : S → R be a morphism. The negative morphism σ collapses several
linear subtrees of S; the images of those subtrees in R are also linear and we define
R→ σ!R to be the degeneracy morphism collapsing those linear subtrees of R. Then
S → σ!R factors uniquely through a morphism T → σ!R and it is easily verified
that the resulting morphism is the pushout of τ along σ. �

Lemma 3.17 Let ∂ : S → T be a positive morphism and σ : R → T a negative
morphism. Then their pullback exists in Ω.

Proof The morphism σ collapses several linear subtrees Ri onto single edges i of
T . For every edge i in the image of ∂, replace the edge ∂−1i in S by the linear subtree
Ri . It is easily verified that the resulting tree gives the pullback S ×T R. �

We proved in Section 2.1 that in ∆ all pullbacks along face maps exist. In the
previous lemma we only established the analogous statement in Ω for the pullback
of a negative morphism along a face map. The case of a positive map is potentially
problematic, as the example after the following lemma shows:

Lemma 3.18 Let ∂ : S → T and ε : R→ T be two elementary face maps, for a tree
T with at least two vertices. Then their pullback exists in Ω, except in the case of
∂eT → T and ∂vT → T , where v is an external vertex, e an inner edge attached to
v and the other vertex attached to e is not unary.

Proof If we are not in the exceptional case of the lemma, we can use the codendroidal
identities established earlier to describe the pullback of two elementary faces. For
example, if ∂ and ε are outer faces corresponding to distinct outer vertices v and w,
one uses identity (1) to see that the pullback is the tree obtained by removing both v
and w from T . One uses (2) for two inner faces, and (3) and (4) for the combination
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of an outer face and an inner face; note that in (4), where e is the inner edge attached
to v, our assumptions guarantee that the other vertex w attached to e is an external
vertex of ∂vT . �

Example 3.19 We illustrate the problem arising in the exceptional case of the lemma.
Let T be the following tree:

e
v

w r

l

Then the ‘intersection’ between ∂eT and ∂vT consists of the two edges r and l; it is
disconnected and can no longer be described as a single tree.

3.4 Dendroidal Sets

The definition of a dendroidal set is analogous to that of a simplicial set, except that
the category ∆ is replaced by the category Ω of trees described in the previous two
sections. Thus, a dendroidal set is a functor

X : Ωop → Sets.

With natural transformations as morphisms between them, dendroidal sets form a
category which we denote dSets. More explicitly, a dendroidal set is given by a
family of sets XT , one for each T ∈ Ω, together with a map

α∗ : XT → XS

for every morphism α : S → T in Ω. These maps should be functorial in the sense
that (βα)∗ = α∗β∗ for morphisms R

α
−→ S

β
−→ T in Ω and id∗T = idXT . The elements

of XT are called dendrices of X of shape T (or simply T-dendrices of X).
In particular, each set XT carries an action of the group Aut(T) and the dendroidal

set X is completely determined by the collection of all these Aut(T)-sets together
with the elementary face and degeneracy operators of the following three kinds:

de = ∂∗e : XT → X∂eT inner face, for each inner edge e in T ,
dv = ∂∗v : XT → X∂vT outer face, for each external vertex v of T ,
se = σ∗e : XT → XσeT degeneracy, for each edge e of T .

These operators satisfy the dendroidal identities, dual to the identities of the previous
section:

(1) dwdv = dvdw if v and w are distinct outer vertices.
(2) df de = dedf if e and f are distinct inner edges.



3.4 Dendroidal Sets 107

(3) dvde = dedv if e is an inner edge and v an external vertex not attached to e.
(4) dxde = dwdv if v is an external vertex and e is an inner edge connecting v to

another vertex w, provided w is an external vertex of the tree ∂vT . Here x is
the new vertex of ∂eT arising as the composition of v and w along e.

(5) s f se = ses f if e and f are distinct edges.
(6) se1 se = se2 se if e1 and e2 are the two new edges in the tree σeT .
(7) dei se = id for i = 1, 2 if ei is an internal edge.
(8) dxse = id if e is an outer edge and x is the new vertex connecting e1 and e2.
(9) df se = sedf if e and f are distinct and f is an inner edge.
(10) dvse = sedv if v is an external vertex and e is not an external edge attached to

v.

Moreover, the face and degeneracy operators are equivariant with respect to isomor-
phisms of trees, in the sense that if α : S → T is an isomorphism and e an inner
edge of T , then the square

X(T) α∗ //

de

��

X(S)

dα(e)

��
X(∂eT)

(∂eα)
∗
// X(∂α(e)S)

commutes. Of course a similar statement applies to outer faces and degeneracies.
The following is a list of first examples of dendroidal sets.

Example 3.20 (a) As for any presheaf category, any object T of Ω gives rise to a
representable presheaf which we denote by Ω[T]. Thus

Ω[T]S = HomΩ(S,T).

(b) One can form limits and colimits of diagrams of dendroidal sets by calculating
them ‘pointwise’, as in any presheaf category. For instance, one can form the product
X × Y of dendroidal sets X and Y as

(X × Y )T = XT × YT ,

and similarly for pullbacks, coproducts, pushouts, images, unions, etc.
(c) As a particular case, each face δx : ∂xT → T , where x is an inner edge or

outer vertex, defines a monomorphism of dendroidal sets

Ω[∂xT] → Ω[T].

Wewill write ∂eΩ[T] ⊆ Ω[T] for the image of this morphism and call it the face of T
opposite e. The union of all these (for all inner and outer faces) defines the boundary
∂Ω[T] of Ω[T]. Note that these faces and the boundary can be explicitly described
as follows:
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(∂eΩ[T])S = {α : S → T | the edge e is not contained in the image of α},
(∂vΩ[T])S = {α : S → T | no subtree α(w) contains the vertex v},

(∂Ω[T])S = {α : S → T | α factors through a proper inclusion R→ T}.

(d) For a tree T consider the set Pl(T) of planar structures on T . If α : S → T ,
then it induces a map

α∗ : Pl(T) → Pl(S).

Indeed, for v a vertex of S, the morphism α gives an bijection between in(v) and
the set of leaves of α(v). The latter is linearly ordered by the planar structure of T ,
so that the former inherits a linear ordering. This construction is easily seen to be
functorial in α, so that planar structures define a dendroidal set Pl.

(e) The category Ω has been defined as a full subcategory of the category of
operads in Sets. Thus any such operad P defines a dendroidal set NP, its dendroidal
nerve, by

NPT = Op(Ω(T),P).

Note that this definition is completely analogous to that of the nerve of a category.
Let us take a closer look at the dendroidal set NP. For the tree η consisting of a single
edge, the set NPη is the set of colours of P. With Cn the n-corolla and (c1, . . . , cn, c)
a sequence of colours of P, there is a pullback square

P(c1, . . . , cn; c)

��

// NPCn

��
∗ c

// ∏n
i=0 NPη .

Here the vertical map on the right has as its ith component the map i∗ : NPCn →

NPη induced by the edge inclusion i : η → Cn, while c denotes the sequence
(c1, . . . , cn, c). More generally, for a tree T a dendrex in NPT can be pictured as
follows. It consists of an assignment c of colours of P to the edges of T and an
equivalence class of pairs (p, f ), where p is a planar structure on T and f assigns an
operation f (v) ∈ P(c(e1), . . . , c(en); c(e)) to each vertex v of T , where e denotes the
output edge of v and e1, . . . , en enumerates the input edges of v in the order provided
by the planar structure p. Two such pairs (p, f ) and (q, g) are equivalent if for each
vertex v, the permutation σ relating the planar structures p and q as in

{1, . . . , n}
pv //

σ

��

in(v)

{1, . . . , n}
qv

99

satisfies
f (v) = σ∗g(v).
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A little more informally, a dendrex in NPT is an assignment of colours of P to the
edges of T and a compatible assignment of an operation in P to each vertex of T . As
explained above, this is only a precise statement if one has a planar structure on T in
mind.

(f) We list a few special cases of the construction of the nerve of an operad. First
of all, representables are nerves: for the operad Ω(T) generated by a tree T , we have

NΩ(T) = Ω[T].

Secondly, for the commutative operad Com and any tree T , the set NComT is a
singleton. Thus the dendroidal set NCom is a terminal object of the category dSets.
We already encountered the nerve of the associative operad in example (d) above;
indeed, there is an isomorphism

NAss ' Pl.

Finally, every symmetric monoidal category V can be viewed as a coloured operad
V⊗ and hence gives rise to a (large) dendroidal set NV⊗.

(g) Every simplicial set M gives a dendroidal set i!M by ‘extension by zero’,

(i!M)T =

{
Mn if T ' [n],
� otherwise.

This is indeed a well-defined dendroidal set, because if α : S → T is a morphism in
Ω and T is a linear tree, then S must be linear as well. As the notation suggests, the
functor

i! : sSets→ dSets

is the left Kan extension of the functor

i : ∆→ dSets

which sends [n] to the representable Ω[n]. Its right adjoint i∗ : dSets → sSets
gives for every dendroidal set X its underlying simplicial set i∗X . For a symmetric
monoidal V as in the previous example, the simplicial set i∗NV⊗ is precisely the
usual nerve NV of the category V. Note that the dendroidal nerve NV⊗ also records
the monoidal structure of V.

(h) Let P be an operad and let A be a P-algebra. In particular, A defines a set Ac

for each colour c of P. The nerve of A, written

N(P, A),

is the dendroidal set defined as follows. A dendrex of N(P, A)T is a dendrex ξ ∈ NPT

together with an assignment of an element ae ∈ Aξ(e) for every edge e ofT , satisfying
a compatibility which we spell out below. The dendrex ξ gives a planar structure on
T and for every vertex v of T an operation f (v) ∈ P(e1, . . . , en; e), with e1, . . . , en
the ordered set of inputs of v. The assignment of elements of the algebra A should
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satisfy the equation
f (v)(ae1, . . . , aen ) = ae .

This description of N(P, A)T is evidently functorial in T and hence defines a den-
droidal set. Note that it would suffice to specify just the elements al , for l ranging
through the leaves of T , since any other ae is then uniquely determined by ξ because
of the compatibility specified above.

For example, if P is Com and A is a commutative monoid, an element of N(P, A)T
is an assignment of elements ae for e ranging through the edges ofT , with the property
that for any vertex v ofT the element assigned to out(v) is the product of the elements
assigned to the input edges of v. Similarly, if P is Ass and A is an associative monoid,
an element of N(P, A)T is a pair (p, a) where p is a planar structure on T and a is
an assignment as before, now taking the order of the multiplication at each vertex as
prescribed by p into account.

We should also point out a more abstract way of describing the nerve of an
algebra. For a tree T , the set of edges of T defines an Ω(T)-algebra E(T). In fact
it is the terminal Ω(T)-algebra, because E(T)e consists of just the edge e. But it is
also the free algebra generated by the leaves of T . An element of N(P, A)T is a pair
(ξ, a) where ξ : Ω(T) → P is a map of operads and a : E(T) → ξ∗A is a map of
Ω(T)-algebras.

(i) As a final example in this section, recall the Boardman–Vogt resolution WP
of a topological operad P as discussed in Section 1.7. When applied to each of the
discrete operads Ω(T) associated to objects T in Ω, we obtain a functor

w : Ω→ OpTop,T 7→ W(Ω(T)).

Thus we can define for each topological operad P its homotopy-coherent nerve w∗P,
which is the dendroidal set given by

w∗PT = OpTop(w(T),P).

In exactly the same way one can use the simplicial Boardman–Vogt resolution

w : Ω→ sOp,T 7→ W∆(Ω(T))

to define a homotopy-coherent nervew∗P for any simplicial operadP. Let usmake the
description of the homotopy-coherent nerve a little more explicit in the topological
case by means of an example. For a tree T with one internal edge, as depicted below,
a point x in w∗PT consists of an assignment of a colour xi of P to each of the edges
i of T , as well as three operations

xp ∈ P(x1, x2; x3), xq ∈ P(x0, x3; x4), xr ∈ P(x0, x1, x2; x4)

of P, together with a path between xq ◦x3 xp and xr in the topological space
P(x0, x1, x2; x4).
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T :
4

0 3
q

p
21

More generally, for an arbitrary treeT , a point x ∈ w∗PT can be described in terms of
a chosen planar structure on T (which we are also implicitly using above) as follows.
It is given by a collection of maps

xS : [0, 1]I (S) → P(`(S), root(S)),

one for every subtree S of T , where I(S) is the set of inner edges of S, `(S) is the
sequence of leaves of S (in the order prescribed by the planar structure of T) and
root(S) is the root of S. These maps should be compatible in the following sense.
If S is a subtree and e is an inner edge of S, then ‘cutting along e’ results in two
subtrees S/e and e/S of S, the first having e as its root and the second having e as a
leaf. Then on the face of [0, 1]I (S) having 1 at coordinate e, the map xS should take
as value the appropriate composition of xS/e and xe/S . In a diagram:[

0, 1
] I (S)−{e} [

0, 1
] I (e/S)

×
[
0, 1

] I (S/e)
P(`(e/S), root(S)) × P(`(S/e), e)

[
0, 1

] I (S) P(`(S), root(S)).

1e

xe/S×xS/e

◦e

xS

We end this section by recording an observation analogous to the one at the
beginning of Section 2.3. Let X be a dendroidal set. A dendrex x ∈ XT is called
degenerate if there is a degeneracy map σ : T → S which is not an isomorphism
and a dendrex y ∈ XS with σ∗y = x. Of course a dendrex is non-degenerate if such
a pair (σ, y) does not exist.

Proposition 3.21 For any dendrex x ∈ XT there exists a degeneracy σ : T → S
and a non-degenerate dendrex y ∈ XS with σ∗y = x. Furthermore the pair (σ, y) is
unique up to isomorphism, in the sense that for any other such pair (σ′, y′) there is
an isomorphism α : S → S′ with σ′ = ασ and y = α∗z.

Proof The existence of (σ, y) is clear. Indeed, if x is degenerate one starts with a
degeneracy τ : T → R and z ∈ XR such that τ∗z = x. If z is non-degenerate we
are done; if it is not one simply repeats the process for z. Clearly one arrives at a
non-degenerate dendrex after finitely many steps. For uniqueness of (σ, y), suppose
that (σ′, y′) is another such pair as in the proposition. Then one forms the pushout
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T σ //

σ′

��

S

τ′

��
S′ τ // R,

which exists and is an absolute pushout by Lemma 3.15. Therefore the map

XR → XS ×XT XS′

is a bijection. Thus there is an element z in XR whose image is y (resp. y′) in XS

(resp. in XS′). By the assumption that y and y′ are non-degenerate, the maps τ and
τ′ must both be isomorphisms. The desired isomorphism α is then τ−1τ′. �

3.5 Categories Related to Dendroidal Sets

In this section we exploit the fact that dSets is a presheaf category to construct
adjunctions between it and other categories using the method of Kan extension.
These categories include those of simplicial sets, operads and Γ-spaces, as well
as variations on the category of dendroidal sets. Recall from Section 2.4 that if
f : C → D is a functor between small categories, restriction along f defines a
functor

f ∗ : SetsDop
→ SetsCop

: X 7→ X ◦ f

which admits a left adjoint f! and a right adjoint f∗. These are described by the
formulas

f!X(d) = lim
−−→

d→ f (c)

X(c),

f∗X(d) = lim
←−−

f (c)→d

X(c),

where the colimit and limit are taken over the slice categories d/ f and f /d respec-
tively. The left adjoint f! is determined up to natural isomorphism by the fact that
it coincides with f on representables (after identifying C and D with their images
under the Yoneda embedding) and preserves colimits. Let us observe the following
elementary properties:

Lemma 3.22 Let f : C→ D be a functor between small categories, inducing func-
tors f!, f ∗, f∗ as above.

(i) If f is fully faithful, then so is f!.
(ii) If f has a left adjoint g : D→ C, then g! is also left adjoint to f!. Equivalently,

g∗ is naturally isomorphic to f! and g∗ to f ∗.
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Proof (i) It suffices to show that for each presheaf X on C, the unit ηX : X → f ∗ f!X
is an isomorphism. Since both f ∗ and f! preserve colimits and η is natural, it suffices
to check this when X is representable. Indeed, any other presheaf is canonically a
colimit of representables. But if X = C(−, c), we have

( f ∗ f!X)(c′) = ( f ∗D(−, f (c)))(c′)

= D( f (c′), f (c)),

and ηX (c′) is the map
C(c′, c) → D( f (c′), f (c)).

This map is a bijection if f is fully faithful, so that ηX is indeed an isomorphism.
(ii) Since adjoints are unique up to natural isomorphism, the various assertions

in part (ii) are all equivalent. If g is left adjoint to f , then for a representable C(−, c)
there are natural isomorphisms

g∗C(−, c) = C(g−, c)
� D(−, f (c))

= f!C(−, c).

Since f! and g∗ both preserve colimits, this shows that f! � g∗. �

3.5.1 Dendroidal Sets and Operads

Recall that every operad in Sets has a nerve NP defined by

NPT = Op(Ω(T),P).

This construction defines an adjoint pair (left adjoint on the left)

τ : dSets // Op : N .oo

Up to natural isomorphism, the left adjoint τ is the unique colimit-preserving functor
which coincides with Ω on representables, i.e.

τ(Ω[T]) = Ω(T).

More explicitly, for a dendroidal set X , the operad τ(X) has as its colours the elements
of the set Xη , while the operations are generated under composition by elements of
XCn for n ≥ 0. These are subject to the following two types of relations: a degenerate
element of XC1 corresponding to a colour c ∈ Xη gives the identity morphism idc ,
whereas the operation corresponding to an inner face ∂eT of a tree T with two
vertices (as pictured below) is identified with the composition of the two operations
corresponding to the vertices v and w of T .
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e
v

w

There is a simplified description of τ(X) for dendroidal sets satisfying the inner
Kan condition, to be discussed in Chapter 6. Using our description of τ(X) (or
the simplified one of Chapter 6) it follows easily that the counit τNP → P is an
isomorphism for any operad P. In other words, the nerve functor N is fully faithful,
as it is for simplicial sets and categories.

We observed before that the functor τ, when applied to simplicial sets, preserves
products. The same is true for the functor τ : dSets→ Op under consideration here.
Indeed, for representables Ω[S] and Ω[T] we have

τ(Ω[S] ×Ω[T]) � τN(Ω(S) ×Ω(T)) � Ω(S) ×Ω(T).

The case of general dendroidal sets X and Y now follows from the case of repre-
sentables, because the expressions τ(X × Y ) and τ(X) × τ(Y ) both commute with
colimits in each variable separately.

3.5.2 Dendroidal Sets and Simplicial Sets

The inclusion i : ∆→ Ω defines three adjoint functors

sSets

i!
&&

i∗ ::dSets.i∗oo

Thus, each dendroidal set X has an underlying simplicial set i∗X defined by

(i∗X)n = X[n].

Conversely, a simplicial set M gives rise to a dendroidal set i!M by ‘extension by
zero’, as already mentioned in Example 3.20(g) above. Since i : ∆ → Ω is fully
faithful, so is i! by part (i) of Lemma 3.22. Thus, we can identify the category of
simplicial sets with a full subcategory of the category of dendroidal sets. In fact, it
is also a slice category: indeed, the equivalence

∆ ' Ω/η

also implies the equivalence of categories

sSets ' dSets/Ω[η].
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The commutative square of functors on the left gives rise to the commutative square
of adjoint pairs on the right (meaning that the square of left adjoints commutes up
to natural isomorphism, as does the square of right adjoints):

∆ //

i

��

Cat

j

��

sSets
τ //

i!
��

Cat
N

oo

j!
��

Ω // Op, dSets

i∗

OO

τ // Op.
N

oo

j∗

OO

In the diagram on the right we follow our standard convention of writing left
adjoints to the left or on top of their right adjoints. The commutativity of the square
translates into natural isomorphisms of functors

j!τ ' τi! and N j∗ ' i∗N .

Note that since i!, j! and both functors labelled N are fully faithful, we also have the
following natural isomorphisms:

N j! ' i!N and τi∗ ' j∗τ.

3.5.3 Dendroidal Sets and Simplicial Operads

The category of simplicial operads has all small colimits. Therefore the simplicial
Boardman–Vogt resolution W∆ induces an adjoint pair

w! : dSets // sOp : w∗oo

for which
w!Ω[T] = W∆(Ω(T)).

In other words, the homotopy-coherent nerve functor w∗ introduced in the previous
section has a left adjoint. A similar procedure applies to the category of topological
(rather than simplicial) operads. One of the main goals of the second part of this
book will be to show that this adjoint pair induces an equivalence of ‘homotopy
categories’ in an appropriate sense.

3.5.4 Open Dendroidal Sets

The inclusion u : Ω◦ → Ω of the category of open trees into the category of all trees
induces adjoint functors
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odSets

u!
&&

u∗ 88dSets,u∗oo

where we have written odSets for the category of presheaves on Ω◦, which we will
refer to as the category of open dendroidal sets. The functors involved are very easy
to describe. Any dendroidal set X restricts to a presheaf u∗X on open trees, whereas
any open dendroidal set Y can be ‘extended by zero’ to form u!Y :

(u!Y )T =

{
YT if T is open,
� otherwise.

This is indeed a presheaf, because if S → T is any morphism in Ω then S must be
open if T is. The functor u! is a fully faithful embedding because u is (cf. Lemma
3.22) and we will usually identify odSets with the corresponding full subcategory
of dSets.

The category of open dendroidal sets can also be described as a slice category.
Indeed, write 1 = NCom for the terminal dendroidal set and define O := u!u∗1. It
can be described by

OT =

{
∗ if T is open,
� otherwise.

It is then clear that a general dendroidal set X is open (i.e., is in the essential image
of u!) if and only if it admits a (necessarily unique) map X → O. Hence u! gives an
equivalence of categories

odSets '−→ dSets/O.

An operad P is called open if P(�, c) is empty for each colour c. The nerve of an
open operad is an open dendroidal set.

3.5.5 Closed Dendroidal Sets

The adjoint pair
cl : Ω // Ω : incloo

given by the inclusion of closed trees into Ω defines, according to Lemma 3.22(ii),
adjoint functors

cl! a cl∗ = incl! a cl∗ = incl∗ a incl∗.

Here f a g is shorthand for ‘ f is left adjoint to g’. We write cdSets for the category
of closed dendroidal sets, i.e., the category of presheaves on Ω. The functor

incl! : cdSets→ dSets
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is fully faithful and we will usually identify cdSets with the corresponding full
subcategory of dSets. There is a useful way to characterize the dendroidal sets in the
essential image of incl!. Indeed, a dendroidal set X is isomorphic to one of the form
incl!Y if and only if for every tree T , the restriction map

dSets(Ω[T], X) → dSets(Ω[T], X)

is a bijection. If X = incl!Y , then one uses that incl! = cl∗. Conversely, for X
satisfying the condition above, one checks that the counit incl!incl∗X → X is an
isomorphism. To do this, observe that

dSets(Ω[T], incl!incl∗X) = dSets(Ω[T], cl∗incl∗X)
� dSets(incl!cl!Ω[T], X)

and incl!cl!Ω[T] = Ω[T].
An operad P is called unital if P(�; c) is a one-point set for every colour c of P.

In other words, P has a unique constant for each colour. The terminology ‘unital’
comes from operads like Ass and Com, where the constant in P(0) gives the unit in
each associative or commutative algebra. The nerve of a unital operad is a closed
dendroidal set.

3.5.6 Uncoloured Dendroidal Sets

A dendroidal set X is called uncoloured if Xη is a one-point set. The category of
uncoloured dendroidal sets will be denoted udSets. The nerve of an operad with a
single colour is an uncoloured dendroidal set.

A pointed dendroidal set is a pair (X, x0) with X a dendroidal set and x0 ∈
Xη a chosen basepoint. These pointed dendroidal sets and maps preserving the
basepoint form a category which we denote by dSets∗. For later use we construct
some functors relating this category to that of uncoloured dendroidal sets. There are
evident ‘forgetful’ functors

udSets→ dSets∗ → dSets,

the first of which is fully faithful, while the second is only faithful. This second
functor admits a left adjoint

dSets→ dSets∗ : X 7→ X+ := X q η,

which ‘freely adds a basepoint’. The forgetful functor from dSets∗ → dSets does
not admit a right adjoint though, simply because it does not preserve coproducts.
The functor udSets→ dSets∗, which we will denote r∗, does admit a right adjoint

r∗ : dSets∗ → udSets
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which is given by ‘restriction to the basepoint’: for a pointed dendroidal set (X, x0)
and a tree T , one defines r∗(X, x0)T ⊆ X(T) as the subset of dendrices all of whose
edges are x0. More formally, there is a pullback square

r∗(X, x0)T XT

∗
∏

e∈E(T ) Xη,
x0

where x0 takes the value x0 in every coordinate. The inclusion udSets → dSets∗
also admits a left adjoint

r! : dSets∗ → udSets,

defined by simply collapsing all the elements of Xη to the basepoint. More formally,
each x ∈ Xη defines a map x : η→ X of dendroidal sets, and r!(X, x0) is the pushout∐

x∈Xη η X

η r!(X, x0)

We will sometimes call r!(X, x0) the reduction of (X, x0). The x0 may be omitted
from the notation, since the reduction is independent of the choice of basepoint.

3.5.7 Dendroidal Sets and Γ-Sets

An important tool in the theory of infinite loop spaces is Segal’s category Γ. We
shall recall the definition of this category and construct several functors relating
dendroidal sets to presheaves on Γ. In later parts of this book we will return to the
relation between dendroidal sets and the theory of infinite loop spaces in depth.

We write Fpart for the category of which the objects are finite sets and the mor-
phisms are partial maps. A partial map from A to B is by definition a pair (U, f ),
with U ⊆ A and f : U → B an ordinary map of sets. Given another such partial
map (W, g) from B to C, the composition of the two is given by ( f −1W, g ◦ f | f −1W ).
The category Γ is the opposite category of Fpart.

We will now define functors

λ : Ω→ Γ and V : Ω→ Γ.

Here λ sends a tree T to its set of leaves. For a morphism of trees ϕ : S → T one
defines λ(ϕ) as follows. Consider an element ` ∈ λ(T), i.e. a leaf of T , and the path
from ` to the root. If this path meets an edge ϕ(`′) with `′ some leaf of S (which is
unique if it exists) then λ(ϕ)(`) = `′. If that path does not meet any such edge then
λ(ϕ) is not defined on `. As before, the functor λ induces adjoint functors
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dSets

λ!
''

λ∗ 77PSh(Γ).λ∗oo

The functor V sends a tree T to its set of vertices V(T). Consider a map ϕ : S → T
and a vertex v ∈ V(T). If v occurs in a subtree ϕ(w) of T , with w some vertex of
S, then we set V(ϕ)(v) = w. If v does not occur in such a subtree, then V(ϕ) is not
defined on v. Again there are induced functors V!, V∗, and V∗. Of course there is also
a functor E : Ω→ Sets sending a tree T to its set of edges E(T), inducing analogous
adjoint pairs, but we will not have any use for these.

Let us also briefly consider the restriction of the functor V to the subcategory
∆ ⊂ Ω. For an object [n] ∈ ∆, interpreted as a linear tree with n + 1 edges, its set of
vertices V([n]) can be identified with the linear order

1 < 2 < · · · < n.

Write Γord for the opposite of the category of linearly ordered finite sets and partial
maps (U, f ) : A → B with the property that U is a convex subset of A. Then the
restricted functor V : ∆ → Γ factors through this category Γord in an evident way.
This category admits a perhaps more familiar interpretation in terms of intervals, as
follows. Write Int for the category whose objects are the linearly ordered finite sets

n = (−∞ < 1 < · · · < n < ∞)

for n ≥ 0, and whose maps are the monotone maps f between these preserving the
endpoints −∞ and ∞. Any such map f : n → m defines a partial map V([n]) →
V([m]) by restricting it to the preimage of V([m]) in V([n]), which is always convex.
This assignment defines an equivalence of categories

Intop '−→ Γord.

Thus wemay interpret the restriction ofV to∆ as a functorV : ∆→ Intop. The reader
can verify that this functor is in fact an isomorphism of categories, thus giving a
duality between linearly ordered finite sets and intervals. Note that the vertices of
the linear tree corresponding to [n] form precisely the set of ‘cuts’ of the linearly
ordered set [n] into two pieces; it is this interpretation of V one often finds in the
literature.

3.6 Normal Dendroidal Sets and Skeletal Filtration

For a dendroidal set X and a tree T in Ω, the group Aut(T) acts on the set XT . The
dendroidal set X is called normal if this action is free for any tree T . More generally,
a monomorphism u : X → Y of dendroidal sets is called normal if for each tree
T the group Aut(T) acts freely on the complement YT − u(XT ) of the image of u.
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Thus, X is normal precisely if the inclusion of the empty dendroidal set � → X is a
normal monomorphism. In Part II we will see that normality plays an important role
in the homotopy theory of dendroidal sets, comparable to that of CW complexes in
the homotopy theory of topological spaces. In this section we will show that normal
dendroidal sets have a well-behaved skeletal filtration analogous to that of simplicial
sets. But before that, we start with some examples.

Example 3.23 (a) Any representable dendroidal set Ω[T] is normal. To see this,
suppose f : S → T is a morphism in Ω and α is an automorphism of S such that
f α = f . Factor f as δβσ, where σ : S → S′ is a degeneracy, β is an isomorphism,
and δ is a face. Since δβ is a monomorphism in δ, we find that σα = σ. By
Proposition 3.13 it follows that α is the identity.

(b) The dendroidal set of planar structures Pl � NAss is normal.
(c) The terminal dendroidal set NCom is not normal.
(d) Example (b) is a special case of the following general fact. Let P be an operad

with the property that for each colour c, the symmetric group Σn acts freely on the
set

Pn(−; c) :=
∐

c1,...,cn

P(c1, . . . , cn; c)

of all n-ary operations into c. (An operad with this property is called Σ-free.) Then
its nerve NP is a normal dendroidal set. To see this, first note that by assumption the
automorphisms of a corolla Cn act freely on NPCn . For a general tree T we argue
by induction on its size. Suppose α is an automorphism of T and that α∗ξ = ξ for
some dendrex ξ ∈ NPT . Then α restricts to an automorphism αr of the root corolla
Cvr , which is the corolla consisting of the root r of T , the root vertex vr , and its
incoming edges e1, . . . , en. Write j : Cvr → T for the inclusion of this corolla in
T . Then α∗r ( j∗ξ) = j∗ξ, so that αr must be the identity. It follows that α restricts to
an automorphism αi of each of the subtrees T/ei obtained by chopping off the root
corolla. The restriction of ξ to T/ei is fixed by αi , so that (by induction) αi must be
the identity. It follows that α is the identity as well.

(e) The same reasoning as in the previous example shows that for a Σ-free topo-
logical or simplicial operad P, its homotopy-coherent nerve w∗P is normal.

The following simple observation will sometimes be useful:

Proposition 3.24 If X is a dendroidal set such that Aut(T) acts freely on the set
nd(XT ) of non-degenerateT-dendrices for everyT , then X is normal. More generally,
if u : X → Y is a monomorphism and Aut(T) acts freely on the non-degenerate T-
dendrices in YT − u(XT ), then u is normal.

Proof Implicit in the formulation of the proposition is that a T-dendrex x is non-
degenerate if and only if α∗x is, for any automorphism α of T , so that the action of
Aut(T) restricts to give an action on non-degenerate T-dendrices. This fact follows
easily from Proposition 3.13. We prove the second claim of the proposition, since
the first is a special case. Suppose Aut(T) acts freely on non-degenerate elements
of YT − u(XT ) for all T . Let x ∈ YT − u(XT ) be an arbitrary element and write
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x = σ∗y for some degeneracy σ : T → S and a non-degenerate y ∈ YS − u(XS) (cf.
Proposition 3.21). If α ∈ Aut(T) fixes x, let β be the unique automorphism of S such
that βσ = σα. Then

σ∗(β∗y) = α∗(σ∗y) = α∗x = x = σ∗(y).

Since σ∗ is a monomorphism (σ has a section), we conclude that β∗y = y. Since
y is non-degenerate, we have β = id by assumption. Therefore α is the identity as
well, since the homomorphism σ! : Aut(T) → Aut(S) is injective. �

We will now discuss skeletal filtrations of dendroidal sets. For a dendroidal set
X , we define a dendroidal subset

sknX ⊆ X

by declaring that a dendrex x ∈ XT belongs to (sknX)T if there exists a tree S with
at most n vertices and an element y ∈ XS together with a morphism α : T → S such
that α∗y = x. Notice that if β : T ′ → T is any morphism in Ω and x ∈ (sknX)T ,
then β∗x ∈ (sknX)T ′ . So sknX is a well-defined dendroidal set and the inclusion
sknX → X is a morphism of dendroidal sets. In this way one obtains a filtration

sk0X ⊆ sk1X ⊆ sk2X ⊆ · · ·

with
∞⋃
n=0

sknX = X .

One refers to sknX as the n-skeleton of X and to the above filtration as the skeletal
filtration of X . Note that

sk0X =
∐
x∈Xη

Ω[η].

In contrast to the case of simplicial sets this skeletal filtration is not necessarily
of much use in proving properties of a general dendroidal set X , but it turns out to
be very useful when dealing with normal dendroidal sets. The reason is that in this
case the n-skeleton of X is obtained from the (n − 1)-skeleton by ‘cell attachments’,
as expressed by the following:

Proposition 3.25 Let X be a normal dendroidal set. Then for each n > 0, the
dendroidal set sknX can be obtained from skn−1X by means of a pushout square∐

(T,x) ∂Ω[T]

��

f // skn−1X

��∐
(T,x)Ω[T]

g // sknX .
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Here the coproduct is over pairs (T, x) with T a tree with precisely n vertices and
x ∈ XT a non-degenerate dendrex, where we take one such pair in each isomor-
phism class. By definition, two pairs (T, x) and (S, y) are isomorphic if there is an
isomorphism α : T → S with α∗y = x. The map g sends the summand Ω[T] indexed
by (T, x) to sknX by means of the map Ω[T] → X corresponding to x. The map f is
the restriction of g.

Proof Let us temporarily write P for the pushout in the square and p : P→ sknX ⊆
X for the evident map. We will show that this map is an isomorphism.

Let T be a tree and let x ∈ (sknX)T . Then x = α∗y for some α : T → S with S at
most n vertices and y a non-degenerate dendrex in XS . If S has fewer than n vertices,
x is contained in skn−1X . If S has precisely n vertices, then there is an isomorphism
β : S → S′ and y′ ∈ XS′ with β∗y′ = y such that the summand (S′, y′) occurs in
the indexing set of the coproduct. So x must lie in the image of g. We conclude that
p : P→ sknX is surjective.

Wewill now prove that if X is normal, themap p is also injective. Since skn−1X →
sknX is a monomorphism there are two things to check:

(a) If (T, x) occurs as a summand on the left and u : S → T is a morphism in Ω
with u∗x ∈ (skn−1X)S , then u factors through a face of T (so that u is an element of
∂Ω[T]S).

(b) If (T, x) and (S, y) both occur as summands on the left and T
u
←− R

v
−→ S are

morphisms in Ω such that u∗x = v∗y in XR, then either (T, x) = (S, y) and u = v or
u factors through a face of T and v through a face of S.

Loosely speaking, item (b) expresses the idea that any two elements identified by
the map g are already identified by f .

Proof of (a): Take (T, x) and u as in the statement of (a). Then u∗x = v∗y for
some morphism v : S → R and y ∈ XR non-degenerate, with R having fewer than
n vertices. Suppose to the contrary that u does not factor through a face of T . Then
u must necessarily be a negative map, i.e. a composition of a degeneracy and an
isomorphism. Factor v as S

v−
−−→ S′

v+
−−→ R with v− negative and v+ positive. Then

consider the diagram
S

v−

��

v

��

u // T

��
R S′

v+
oo // V,

in which the square is a pushout (which exists by Lemma 3.15). Since x is non-
degenerate, the map T → V must be an isomorphism. Then V has n vertices, but
at the same time the bottom line of the diagram shows it has fewer vertices than R
(since v+ is injective), which is a contradiction.

Proof of (b): Choose factorizations of u and v into a negative morphism followed
by a positive morphism, say R

u−
−−→ R′

u+
−−→ T and R

v−
−−→ R′′

v+
−−→ S. Form the pushout

of u− and v− to obtain a diagram
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T

R
u− //

v−

��

R′

u+

OO

p

��
S R′′

v+
oo

q
// Q.

Since the pushout is absolute the resulting map

XQ → XR′ ×XR XR′′

is bijective. Hence there is an element z ∈ XQ with p∗z = u∗+x and q∗z = v∗+y. But x
and y are both non-degenerate, so that if u+ is an isomorphism then so is p; similarly
if v+ is an isomorphism then so is q. Now, if both u+ and v+ are not isomorphisms
then u and v factor through faces and we are done. So suppose one of them is an
isomorphism, say u+, so that p is an isomorphism as well as we just said. Then T ,
R′ and Q all have the same number of vertices, namely n. The bottom row of the
diagram gives inequalities

n = |V(Q)| ≤ |V(R′′)| ≤ |V(S)|.

But |V(S)| = n so that in fact these are both equalities. It follows that q and v+ are
isomorphisms aswell. The compositionα = v+q−1pu−1

+ is an isomorphism satisfying
x = α∗y. Therefore (T, x) = (S, y), since in the coproduct we picked only one pair in
each isomorphism class. Since X is assumed to be normal, the isomorphism α must
be the identity. Now observe that

u = u+u−
= αu+u−
= v+q−1pu−
= v+q−1qv−
= v,

finishing the proof. �

In exactly the same way one can prove a relative version of the above statement
about skeletal filtrations. To state it, let A → X be a normal monomorphism of
dendroidal sets. For ease of notation let us identify A with its image in X . Let

skn(X, A) = A ∪ sknX,

giving a filtration

A =: sk−1(X, A) ⊆ sk0(X, A) ⊆ sk1(X, A) ⊆ · · ·
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with union X . The argument of the previous proposition then also gives the following
more general statement:

Proposition 3.26 Let A → X be a monomorphism of dendroidal sets. If it is a
normal monomorphism, then for each n ≥ 0 there is a pushout square∐

(T,x) ∂Ω[T]

��

f // skn−1(X, A)

��∐
(T,x)Ω[T]

g // skn(X, A).

The coproduct ranges over isomorphism classes of pairs (T, x)whereT has n vertices
and x ∈ XT is a non-degenerate dendrex not contained in AT .

Finally, there is also a variant of the skeletal filtration for closed dendroidal sets
which we will sometimes use. For a closed tree T , let us define the closed boundary
∂clΩ[T] of T to be the union of all faces S of T which are themselves closed trees.
We define the closed n-skeleton skcl

n X to be the dendroidal subset of X generated by
all dendrices x ∈ XT for T a closed tree with at most n vertices. A straightforward
adaptation of the proof of Proposition 3.27 can be used for the following:

Proposition 3.27 Let X be a closed normal dendroidal set. Then for each n > 0,
the closed dendroidal set skcl

n X can be obtained from skcl
n−1X by means of a pushout

square ∐
(T,x) ∂

clΩ[T]

��

f // skcl
n−1X

��∐
(T,x)Ω[T]

g // skcl
n X .

Here the coproduct is over pairs (T, x) with T a closed tree with precisely n vertices
and x ∈ XT a non-degenerate dendrex, where we take one such pair in each iso-
morphism class. The map g sends the summand Ω[T] indexed by (T, x) to skcl

n X by
means of the map Ω[T] → X corresponding to x. The map f is the restriction of g.

3.7 Normal Monomorphisms and Normalization

The previous section indicates that normalmonomorphisms play an important role in
the theory of dendroidal sets, analogous to relative CW complexes in the homotopy
theory of topological spaces. Here we will discuss several elementary properties of
the class of normal monomorphisms. In particular, we show it is a saturated class of
morphisms (see Definition 3.30). Saturated classes naturally occur when studying
lifting properties of morphisms and will feature heavily in Part II of this book. In
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this section we present Quillen’s small object argument, which allows us to factor
every morphism into a normal monomorphism followed by a trivial fibration. In
particular, we discuss normalizations of a dendroidal set X .

Proposition 3.28 (i) If A
f
−→ B and B

g
−→ C are normal monomorphisms, then so

is their composition g f .
(ii) If

A //

��

C

��
B // D

is a pullback in which C → D is a normal mono, then A→ B is a normal mono
as well.

(iii) If A→ B is a morphism of dendroidal sets and B is normal, then A is normal
as well.

(iv) If
A //

��

C

��
B // D

is a pushout in which A→ B is a normal mono, then C → D is a normal mono
as well.

(v) If A
u
−→ B is a retract of C

v
−→ D, i.e. if there exists a commutative diagram

A

u

��

i // C

v

��

r // A

u

��
B

j // D s // B

in which ri = idA and s j = idB, then u is a normal mono whenever v is.
(vi) If {Ai → Bi}i∈I is a family of normal monomorphisms, then their coproduct
qi Ai → qiBi is a normal mono as well.

(vii) If A0 → A1 → A2 → · · · is a sequence with colimit A∞ for which each
Ai → Ai+1 is a normal mono, then each Ai → A∞ is a normal mono as well.

Remark 3.29 (a) A property similar to (vii) holds for longer ‘continuous’ sequences

indexed by a limit ordinal λ. Explicitly, if {Aζ
fζ ξ
−−→ Aξ | ζ < ξ < λ} is a family of

normal monos such that fηξ ◦ fζη = fζξ for all ζ < η < ξ, and Aµ = lim
−−→ξ<µ

Aξ for
µ a limit ordinal, then each map Aζ → lim

−−→ξ<λ
Aξ of the colimit cone is a normal

mono.
(b) Property (vi), which is easily proved directly, also follows formally from

properties (iv) and (vii), if necessary using its generalization just described in (a).
Indeed, if for instance {An → Bn} is a countable family of normal monos, then
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qnAn → qnBn is themapC0 → C∞ defined by the sequenceC0 → C1 → C2 → · · ·
with

Ci =
∐
k<i

Bk q
∐
k≥i

Ak .

The map Ci → Ci+1 is a pushout of the map Ai → Bi .

Proof (of Proposition 3.28) All parts of this proposition can be proved by elemen-
tary verification, using the fact that limits and colimits of dendroidal sets are com-
puted ‘pointwise’.

(i) Let us identify A and B with their images in C. Then for any tree T in Ω, the
complement CT − AT is the disjoint union of CT − BT and BT − AT . So if Aut(T)
acts freely on the latter two, it acts freely on CT − AT as well.

(ii) For any tree T , the map BT → DT restricts to a map BT − AT → DT − CT

because the square is a pullback. By assumption Aut(T) acts freely on the latter, so
it must act freely on BT − AT as well.

(iii) Consider the pullback square

� //

��

�

��
A // B

and apply (ii).
(iv) For any tree T we have a pushout of sets

AT
//

��

CT

��
BT

// DT .

If we identify AT with its image in BT we can rewrite this as

AT
//

��

CT

��
AT q (BT − AT ) // CT q (BT − AT ).

In particular, BT → DT induces an isomorphism

BT − AT → DT − CT ,

from which the assertion is clear.
(v) The complement of the image of A

u
−→ B maps to the complement of the

image of C
v
−→ D. Indeed, if x ∈ BT and j(x) = v(y) for some y ∈ CT , then

x = s j(x) = sv(y) = ur(y), so that x is in the image of u. The assertion follows,
because BT − AT maps to a free Aut(T)-set and is therefore free.
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(vi) This is clear from the fact that the complement of the image of (qnAn)T →

(qnBn)T is the disjoint union of the complements of the images of (An)T → (Bn)T .
(vii) For any treeT , the complement of the image of (An)T → (A∞)T is isomorphic

to the disjoint union of the complements of the images of each of the (An)T →

(An+1)T , from which the assertion is clear. �

Definition 3.30 Let C be a category with all small colimits. A class of morphismsA
in C isweakly saturated if it contains all isomorphisms and is closed under pushouts,
composition and transfinite composition (as in (vii) above and its ‘longer’ version
of the subsequent remark). The class A is saturated if moreover it is closed under
retracts.

Thus, the previous proposition implies that the normal monomorphisms form a
saturated class of morphisms in dendroidal sets. Moreover, remark (b) shows that any
saturated class is closed under coproducts. The arguments of the previous section
show that the normal monomorphisms are ‘generated’ by boundary inclusions of
trees in the following sense:

Theorem 3.31 The class of normal monomorphisms is the smallest weakly saturated
class containing the boundary inclusion ∂Ω[T] → Ω[T] for every tree T in Ω.

Proof The class of normal monos is saturated, so in particular weakly saturated.
Moreover, each boundary inclusion ∂Ω[T] → Ω[T] is in particular a normal
monomorphism; indeed, observe that Ω[T] is normal (cf. Example 3.23(a)) and
apply Proposition 3.28(iii). Therefore the class described in the theorem is contained
in the class of normal monomorphisms. To see that these classes are equal one ap-
plies Proposition 3.26, which shows that any normal monomorphism can be written
as a transfinite composition of pushouts of boundary inclusions of trees. �

As mentioned at the start of this section, saturated classes arise when studying
lifting properties. Perhaps the most familiar examples of such occur in the definitions
of Serre fibrations and cofibrations in classical homotopy theory.

Definition 3.32 Let C be a category and F a class of morphisms in C. We say that
a morphism i : A → B has the left lifting property with respect to F if, for every
f : X → Y in F and any commutative square

A

i

��

u // X

f

��
B v // Y,

there exists a morphism g : B→ X such that gi = u and f g = v. (More briefly, there
exists a lift in the square.) We denote the class of morphisms having the left lifting
property with respect to F by ⊥F.

Dually, for a class of morphisms C, we say a morphism f : X → Y of C has the
right lifting property with respect to C if for any i : A → B in C and any square as
above there exists a lift. The class of morphisms having the right lifting property
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with respect to C is denoted C⊥. If C has a terminal object 1, we say that an object
X has the extension property with respect to C if the morphism X → 1 has the right
lifting property with respect to C.

It is clear from the definition that for any class ofmorphismsC there is an inclusion
C ⊆ ⊥(C⊥).

Lemma 3.33 If F is any class of morphisms of C, then the class ⊥F is saturated.

Proof Closure of ⊥F under pushouts and (transfinite) compositions follows from
the universal property of colimits. Suppose

A i //

f

��

C

g

��

r // A

f

��
B

j // D s // B

is a retract diagram and g has the left lifting property with respect to F. Suppose
h : X → Y is in F and we have a commutative square as on the right in the following
diagram:

C

g

��

r // A

f

��

// X

h

��
D s // B // Y .

We can find a lift l : D → X in the rectangle by our assumption on g. Then
l j : B→ X is a lift in the square, so that f ∈ ⊥F. �

Definition 3.34 Amorphism of dendroidal sets is a trivial fibration if it has the right
lifting property with respect to all normal monomorphisms.

For now the terminology ‘trivial fibration’ is merely suggestive. It is inspired
by homotopy theory: a map of topological spaces having the right lifting property
with respect to all relative CW complexes is a Serre fibration which is also a weak
equivalence. We will come back to the homotopy-theoretic properties of trivial
fibrations of dendroidal sets in Part II. One can think of the following result and the
subsequent corollary as the dendroidal analogue of CW approximation:

Proposition 3.35 Every morphism of dendroidal sets f : X → Y admits a factor-
ization X

i
−→ Z

p
−→ Y with i a normal monomorphism and p a trivial fibration.

If X is a dendroidal set, one applies this proposition to the map � → X to obtain:

Corollary 3.36 For any dendroidal set X there exists a trivial fibration X ′ → X
with X ′ a normal dendroidal set.

We will refer to such a trivial fibration as a normalization of X . Such normaliza-
tions need not be unique, but we will see later that they are unique ‘up to homotopy’.
Before proving the proposition, we note the following useful lemma:
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Lemma 3.37 A map f : X → Y of dendroidal sets is a trivial fibration if and only
if it has the right lifting property with respect to all boundary inclusions of trees
∂Ω[T] → Ω[T].

Proof Since boundary inclusions are normal monomorphisms, any trivial fibration
has the right lifting property with respect to them. Conversely, suppose f has the
right lifting property with respect to all boundary inclusions. Then Theorem 3.31
and Lemma 3.33 imply that f has the right lifting property with respect to all normal
monomorphisms. �

Proof (of Proposition 3.35) The proof follows the classical ‘small object argument’.
We explain it here in elementary form, but see also Remark 3.38 below. We will
first construct factorizations X

ik
−→ Zk

pk
−−→ Y by an inductive procedure. Set Z0 = X ,

i0 = idX and p0 = f . If Zk , ik and pk have been defined, we construct Zk+1, ik+1 and
pk+1 as follows. Consider the set Sk of commutative squares S of dendroidal sets of
the form

∂Ω[T]

��

αS // Zk

pk

��
Ω[T] // Y .

Define Zk+1 by the pushout square∐
S∈Sk

∂Ω[T]

��

qSαS // Zk

��∐
S∈Sk

Ω[T] // Zk+1.

Define ik+1 to be the composition of the vertical map on the right with ik . Also, by
the universal property of pushouts we find a map pk+1 : Zk+1 → Y . We take the
colimit over k to obtain a factorization

X
i∞
−−→ Z∞

p∞
−−→ Y

which we claim to have the desired properties. Since each ik is a normal monomor-
phism, the colimit i∞ is a normal monomorphism as well by Proposition 3.28(vii).
We wish to show that p∞ is a trivial fibration. We will demonstrate how to solve a
lifting problem of the following form:

∂Ω[T] u //

��

Z∞

p∞

��
Ω[T] // X .
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This suffices by Lemma 3.37. We claim that u must factor as ∂Ω[T]
uk
−−→ Zk → Z∞

for some k. Indeed, since ∂Ω[T] is a finite union∪jΩ[Sj] of representable dendroidal
sets, we have

Hom(∂Ω[T],∪kZk) = ∩jHom(Ω[Sj],∪kZk)

� ∩j ∪k (Zk)S j

= ∪k ∩j (Zk)S j

= ∪kHom(∂Ω[T], Zk).

Here we used that finite intersections commute with infinite unions of sets. The
square

∂Ω[T] u //

��

Zk

pk

��
Ω[T] // Y

is contained in Sk , so by construction there is a commutative square

∂Ω[T] u //

��

Zk

��
Ω[T]

vk // Zk+1.

The composition Ω[T]
vk
−−→ Zk+1 → Z∞ provides a solution to the lifting problem

above, completing the proof. �

Remark 3.38 The small object argument is a general procedure for producing fac-
torizations as above. For a setA of morphisms, it will give a factorization of a given
morphism f : X → Y into morphisms i : X → Z and p : Z → Y , where p has the
right lifting property with respect to morphisms in A and i is a (transfinite) compo-
sition of pushouts of morphisms inA. In the argument above, Z = Z∞ is constructed
as a colimit indexed by the natural numbers. The factorization thus obtained had the
required properties because any map from ∂Ω[T] to the colimit factored through a
finite stage, using that ∂Ω[T] itself is finite in the appropriate sense. In general, the
object Z will be constructed as the colimit of a sequence indexed over a limit ordinal
λ, where λ is chosen large enough so that any map from the domain of a morphism
in A factors through some stage of the colimit. In this book we will only need the
countable case, as exemplified in the preceding proof.

We defined trivial fibrations of dendroidal sets to be those maps which have the
right lifting property with respect to normal monomorphisms. Dually, the class of
trivial fibrations determines the normal monomorphisms in the following way:

Lemma 3.39 Suppose f : A→ B is a morphism of dendroidal sets which has the left
lifting property with respect to trivial fibrations. Then f is a normal monomorphism.
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Proof Use Proposition 3.35 to factor f as A
i
−→ A′

p
−→ B with i a normal monomor-

phism and p a trivial fibration. By the assumption on f there exists a lift as indicated
by the dashed arrow in the following square:

A A′

B B.

f

i

p

This lift exhibits f as a retract of i, so that f is a normal monomorphism as well. �

Historical Notes

The observation that trees are a relevant organizing tool to describe homotopy
coherent algebraic structures goes back to the work of Boardman–Vogt [21]. In fact,
it seems that early on in the development of the theory it was already recognized that
trees provide a convenient way to label the cells of Stasheff’s associahedra, as well
as the cells of certain decompositions of configuration spaces, hinting at the Fulton–
MacPherson operad we described in Chapter 1. Ginzburg–Kapranov [68] use trees
very explicitly, also in their description of free operads. Trees feature prominently
in many of the subsequent works on bar constructions of operads, e.g., the papers
of Fresse [58] for algebraic operads and Ching [36] for topological operads. In
particular, Ching already proposes to study presheaves on a certain category of
trees; he refers to these as arboreal objects. All of the aforementioned authors use
trees to organize the ways in which different operations can be composed, as well
as the contraction of inner edges of a tree to represent composition of operations. In
this chapter we have also taken external face maps and degeneracies between trees
into account to construct the category Ω of trees. This viewpoint, and the fact that Ω
generalizes the simplex category ∆, first appears in [116]. An alternative approach
to the category Ω is presented in [99].
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Chapter 4
Tensor Products of Dendroidal Sets

In the first chapter we described the Boardman–Vogt tensor product of two operads.
This operadic tensor product induces a related tensor product on dendroidal sets by
the method of Kan extension. This new dendroidal tensor product agrees with the
Cartesian product when restricted to simplicial sets, and reproduces the Boardman–
Vogt tensor product when dendroidal sets are realized as operads by the functor τ.
In this chapter we will show how the dendroidal tensor product can be explicitly
described in terms of a notion of shuffles of trees. This notion extends that of shuffle
of linear orders featuring in the product of simplicial sets and many related notions,
such as Eilenberg–Zilber maps of chain complexes. To prepare for an analysis of
the homotopical properties of the dendroidal tensor product in Chapters 6 and
9, we will carefully analyze the behaviour of the tensor product with respect to
normal monomorphisms. While the tensor product of operads provides the category
of operads with the structure of a symmetric monoidal category, the extension
to dendroidal sets is symmetric but no longer associative up to isomorphism. To
describe the more subtle associativity properties of this tensor product, we equip the
category of dendroidal sets with an ‘unbiased’ tensor product of n variables. This
notion will be useful in Part II, where we demonstrate that the tensor product of
dendroidal sets is associative up to homotopy in many case, for example when the
dendroidal sets involved are either all open or all closed, or when some factors are
simplicial.

4.1 Elementary Properties and Shuffles of Trees

Recall from Section 1.6 that for operads P and Q of sets (or of topological spaces),
their tensor product P ⊗ Q is an operad with colours C × D and can be defined in
terms of generators and relations. The generators are

p ⊗ d ∈ (P ⊗ Q)(c1 ⊗ d, . . . , cn ⊗ d; c ⊗ d)
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for d ∈ D and p ∈ P(c1, . . . , cn; c), and

c ⊗ q ∈ (P ⊗ Q)(c ⊗ d1, . . . , c ⊗ dm; c ⊗ d)

for c ∈ C and q ∈ Q(d1, . . . , dm; d). There are relations expressing the fact that for
c ∈ C and d ∈ D the assignments

− ⊗ d : P→ P ⊗ Q and c ⊗ − : Q→ P ⊗ Q

are maps of operads. The crucial relation is the Boardman–Vogt interchange, which
states that

(p ⊗ d)(c1 ⊗ q, . . . , cn ⊗ q) = σ∗n,m(c ⊗ q)(p ⊗ d1, . . . , p ⊗ dm)

for an appropriate permutation σn,m.
In particular, we can use this construction to define a functor

ten : Ω ×Ω→ dSets

by assigning to a pair of trees (S,T) the corresponding free operads Ω(S) and Ω(T),
forming their tensor product Ω(S) ⊗ Ω(T) and finally taking the dendroidal nerve:

ten(S,T) = N(Ω(S) ⊗ Ω(T)).

By the method of Kan extension discussed in Section 2.4, this functor determines a
functor (again denoted as tensor product)

⊗ : dSets × dSets→ dSets,

uniquely determined up to natural isomorphism by the requirement that it agrees with
ten on representables and preserves colimits in each variable separately. Explicitly,

Ω[S] ⊗ Ω[T] = N(Ω(S) ⊗ Ω(T)),

lim
−−→
i

(X ⊗ Yi) ' X ⊗ (lim
−−→
i

Yi),

lim
−−→
i

(Xi ⊗ Y ) ' (lim
−−→
i

Xi) ⊗ Y .

Remark 4.1 Although these three natural isomorphisms characterize the tensor
product of dendroidal sets up to natural isomorphism, this is strictly speaking not
directly a special case of the method of Kan extension introduced in Section 2.4.
Rather, it is a multi-variable extension of that method, which we leave the reader to
formalize.

The category of dendroidal sets, being a presheaf category, is Cartesian closed
and therefore has inner hom objects adjoint to the cartesian product as discussed in
Section 2.4. In exactly the same way, but more importantly for us, there exist inner
hom objects adjoint to the tensor product we have just defined, characterized by
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natural isomorphisms

dSets(X ⊗ Y, Z) ' dSets(X,Hom(Y, Z))

for dendroidal sets X , Y and Z . In later parts of this book we will make extensive
use of the underlying simplicial sets of these hom objects, for which we introduce
the notation

hom(Y, Z) := i∗Hom(Y, Z).

Proposition 4.2 The tensor product of dendroidal sets satisfies the following prop-
erties:

(i) For dendroidal sets X and Y there is a natural isomorphism X ⊗ Y ' Y ⊗ X ,
i.e., the tensor product is symmetric.

(ii) The functor τ : dSets → Op (cf. Section 3.5) commutes with tensor products,
i.e., there is a natural isomorphism of operads τ(X ⊗ Y ) ' τ(X) ⊗ τ(Y ).

(iii) The functor i! : sSets→ dSets sends products to tensor products, i.e., there is a
natural isomorphism i!(M × N) ' i!M ⊗ i!N for simplicial sets M and N .

Proof Since the functors ⊗, τ and i! are all compatible with colimits it suffices to
establish these natural isomorphisms for representables. Then (i) follows from the
symmetry of the Boardman–Vogt tensor product of operads. For (ii), recall from
Section 3.5 that the nerve functor N is fully faithful, so that the counit τN → id is a
natural isomorphism. It follows that

τ(Ω[S] ⊗ Ω[T]) = τN(Ω(S) ⊗ Ω(T)) ' Ω(S) ⊗ Ω(T) = (τNΩ(S)) ⊗ (τNΩ(T)).

Finally, (iii) follows from the fact that for categories C and D the tensor product
C ⊗ D coincides with the Cartesian product C × D, as one easily checks. �

Remark 4.3 We warn the reader that the tensor product of dendroidal sets is not
associative up to coherent isomorphism, so it is not part of a symmetric monoidal
structure on the category dSets. However, in Section 4.4 we will introduce natural
maps expressing associativity which are not necessarily isomorphisms, but which
we will show to be equivalences in a homotopical sense in Part II.

Example 4.4 Let us examine the tensor product of representables Ω[S] and Ω[T]
more closely. From the description of the operadΩ(S) ⊗Ω(T) in terms of generators
and relations and the fact that Ω(S) and Ω(T) are free operads, we see that any
operation of Ω(S) ⊗ Ω(T) can be obtained as a composition of operations p ⊗ d and
c ⊗ q where p and q are themselves generating operations of the operads Ω(S) and
Ω(T), i.e., correspond to vertices in the trees S and T (together with an ordering of
the leaves of those vertices). To give a small example, consider the following trees:

S :
a

b c
v

T :
0

1 2
p

q
43
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Let us fix the planar structures on S and T induced by this picture, giving a choice
of generators for the operads Ω(S) and Ω(T), namely v ∈ Ω(S)(b, c; a) and similarly
for p and q. Then Ω(S) ⊗ Ω(T) is an operad with colours (a, i), (b, i) and (c, i) for
i = 0, . . . , 4. The specified generators make it easy to describe the operations in
Ω(S) ⊗ Ω(T). Indeed, each such operation will arise from a subtree of one of the
following three trees (where we write a1 instead of (a, 1) etc.):

A

a0

b0 c0

b1 b2
c1 c2

b3 b4
c3 c4

B

a0

a1 a2

b1 c1
b2 c2

b3 b4
c3 c4

C

a0

a1 a2

b1 c1
a3 a4

b3 b4
c3 c4

Any subtree of A, B or C, together with an ordering of its leaves, determines an
operation ofΩ(S) ⊗Ω(T) by composing the operations corresponding to the vertices
of the subtree. Each such vertex corresponds to a pair (p, t) (with p a generating
operation ofΩ(S) and t an edge of T) or (s, q) (with s an edge of S and q a generating
operation of Ω(T)). The trees A, B and C represent ‘maximal composable words’ in
the generating operations of Ω(S) and Ω(T). Note that the root of each is labelled by
(a, 0) (i.e., the roots of S andT) and the leaves by the product of the sets of leaves of S
and T . Recall that the sets of edges E(S) and E(T) are partially ordered, with the root
as maximal element. Each of the sets E(A), E(B), E(C) is a subset of E(S) × E(T)
and the partial order on each of them, given by the tree structures of respectively A,
B and C, is precisely the one inherited from E(S) × E(T).

The representation of an operation ofΩ(S)⊗Ω(T) as a subtree of A, B orC need not
be unique. The Boardman–Vogt interchange relation describes which identifications
to make. For example, the operation defined by the subtree of A with leaves b1, b2,
c1, c2 and root a0 describes the same operation as the one with leaves b1, c1, b2, c2
and root a0 inside the tree B (modulo a permutation of the inputs). In fact, one can
view the tree B as obtained from A by interchanging the operations b ⊗ p and c ⊗ p
with v ⊗ 0, i.e., by shuffling up the white vertex v ⊗ 0 through the two black vertices
b ⊗ p and c ⊗ p. Similarly, the tree C is obtained from B by shuffling up the white
vertex v ⊗ 2. On the other hand, while certain operations like the one above occur
in more than one tree, there are also operations which only occur in one, such as the
operation with inputs b1, b2, c0 and output a0 in A.

What all this means for the dendroidal set Ω[S] ⊗ Ω[T] = N(Ω(S) ⊗ Ω(T)) is the
following. Like any dendroidal set it is a colimit of representables. In this case it is
the union of the dendroidal sets represented by the trees A, B and C, glued together
by the Boardman–Vogt interchange relations. These can be described as follows.
The tree ∂b0∂c0 A obtained by contracting the inner edges a0 and b0 is isomorphic
to ∂a1∂a2 B, and similarly ∂b2∂c2 B is isomorphic to ∂a3∂a4C. Moreover, contracting
all inner edges in each of A, B and C results in a corolla CA = ∂b2∂c2∂b0∂c0 A,
and similarly for CB and CC . These three are isomorphic. Together this gives the
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following diagram in the category Ω:

∂b0∂c0 A

CA A

∂a1∂a2 B

CB B

∂b2∂c2 B

CC C.

∂a3∂a4C
�

�
�

�

The dendroidal setΩ[S]⊗Ω[T] is the colimit of this diagram, viewed as a diagram
of representable dendroidal sets. It is a union of Ω[A], Ω[B] and Ω[C], in the sense
thatΩ[A] → Ω[S]⊗Ω[T] is a monomorphism, as are the maps fromΩ[B] andΩ[C],
and these three maps are jointly surjective.

Example 4.5 As in the previous example, a tensor product Ω[S] ⊗ Ω[T] of two rep-
resentable dendroidal sets can be explicitly described as the union of representables,
glued together along certain isomorphic inner faces. The number of these repre-
sentables (A, B and C in the previous example) however can increase very rapidly
as the trees S and T increase in size. For example, consider the two trees

S T

with their planar structure as pictured. Then the set of representables making up their
tensor product Ω[S] ⊗ Ω[T] can be listed as follows:
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Notice that there is a natural partial order on this list, starting with copies of T on
top of S and ending with copies of S on top of T . This partial order is generated by
imposing the relation A < B when B is obtained from A by shuffling up a white
vertex coming from the tree S. This relation is indicated by the lines in the picture
above.

We will now formalize the description of the tensor product Ω[S] ⊗ Ω[T] of two
representable dendroidal sets as a union of representables by means of the notion
of a shuffle of the trees S and T . Before giving the formal definition, let us recall
the classical notion of a shuffle of two numbers p, q ≥ 0, which we discussed in the
context of products of simplicial sets in Chapter 2. As explained there, a shuffle is
an order-preserving injection

{1, . . . , p} → {1, . . . , p + q}

or equivalently an order-preserving injection

{1, . . . , q} → {1, . . . , p + q}

whose image is the complement of the previous one. If one thinks of the linear
orders [p] and [q] as representing linear trees, with p white vertices and edges
labelled 0, . . . , p for [p], and similarly q black vertices and edges 0, . . . , q for [q],
a shuffle can also be represented by a tree with black and white vertices and edges
labelled by pairs of numbers. For p = 2 and q = 3, the relevant trees are

2

1

0

3

2

1

0

and the picture

23

13

12

11

01

00

represents the shuffle {1, 2} → {1, 2, 3, 4, 5} mapping 1 to 2 and 2 to 5.
The following definition of shuffle admits a more economical reformulation (see

Proposition 4.8 below), but the elaborate one we give here is perhaps the most
intuitive.
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Definition 4.6 A shuffle of two trees S and T is a tree A together with a labelling of
its edges by pairs (s, t), where s and t are edges of S and T respectively, satisfying
the following conditions:

(1) The root of A is labelled by the pair (rS, rT ) of root edges of S and T .
(2) The set of labels of the leaves of A is the cartesian products of the sets of leaves

of S and T .
(3) If (s, t) is the label of an edge in A, then

– either (s, t) is a leaf of A and by (2) s and t are leaves of S and T respectively,
– or the vertex above (s, t) has input edges labelled (s1, t), . . . , (sn, t), where

s1, . . . , sn are the input edges of the vertex above s in S (here s is not a leaf of
S),

S :
s

s1 sn· · ·
A :

(s, t)

(s1, t) (sn, t)· · ·

– or the vertex above (s, t) has input edges labelled (s, t1), . . . , (s, tm), where
t1, . . . , tm are the input edges of the vertex above t in T (and so t is not a leaf of
T).

T :
t

t1 tm· · ·
A :

(s, t)

(s, t1) (s, tm)· · ·

(4) If (s, t) is not a leaf of A and the vertex above it is a stump (i.e., has no input
edges), then s is either a leaf or has a stump above it in S and t is either a leaf or
has a stump above it in T .

Remark 4.7 (a) A choice of planar structures on S and T induces a planar structure
on a shuffle A.

(b) The set of edges E(A) of a shuffle A is a subset of the cartesian product
E(S) × E(T). The partial order on E(A) induced by the tree structure of A coincides
with the one induced by the product of the partial orders on E(S) and E(T).

(c) To explain condition (4), note that if the vertex above (s, t) in A is a stump, it
must correspond to a stump in S or in T or in both. For two trees

a

b c

0
1 2

the tree on the left below satisfies conditions (1)–(3), but it is not ‘maximal’ in the
sense that it is a face (contract b2 and c2) of the labelled tree on the right, which is a
shuffle.
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a0

a1 a2

b1 c1

a0

a1 a2

b1 c1
c2b2

(d) For linear trees defined by linear orders [p] and [q], a shuffle in the sense
of Definition 4.6 is exactly the same as a shuffle as in the discussion immediately
preceding the definition.

If A is a shuffle, we observed that the labelling of its edges allows us to identify
the partially ordered set E(A) with a subset of E(S) × E(T). Note that for a tree T ,
the minimal elements in the partially ordered set E(T) are precisely the leaves and
the edges immediately below a stump. The following characterizes the shuffles of
two trees:

Proposition 4.8 For two trees S and T , their shuffles correspond precisely to subsets
E(A) ⊆ E(S) × E(T) satisfying the following:

(i) the partially ordered set E(A) satisfies the conditions of Lemma 3.2,
(ii) the maximal element of E(A) coincides with the maximal element (rS, rT ) of

E(S)×E(T) and the subset of minimal elements of E(A) is precisely the product
of the subsets of minimal elements of E(S) and E(T),

(iii) the linear order given by the path in the tree A from a minimal element (s, t)
to the unique maximal element (rS, rT ) is a ‘classical’ shuffle of the two linear
orders given by the paths from s to rS in S and from t to rT in T .

Proof Clearly the set of edges of a shuffle A satisfies (i)–(iii). Conversely, suppose
we are given E(A) ⊆ E(S) × E(T) satisfying (i)–(iii) and we wish to construct the
corresponding shuffle. Let L(A) ⊆ E(A) be the subset consisting of pairs (s, t)where
s is a leaf of S and t is a leaf of T . Lemma 3.2 gives an essentially unique tree A
with edges E(A) and leaves L(A). Conditions (1), (2) and (4) of Definition 4.6 are
satisfied by construction. For condition (3) we use that A is a tree. Indeed, suppose
(s, t) is an element of E(A) which is not minimal. Pick one of the input edges (s′, t ′)
of the vertex v immediately above (s, t) in A. Then condition (iii) forces that either
s = s′ or t = t ′. Assume t = t ′ (the other case is of course treated analogously).
Then s′ immediately precedes s in the partial order on E(S), again by condition (iii).
In other words, s′ is an input edge of the vertex w above s in S. We need to show
that the set of input edges of v is precisely the set of edges of the form (si, t), with si
ranging over the input edges of w. There are two issues to address:

– If there were another input edge of v of the form (s, t ′), with t ′ immediately
preceding t in E(T), then by condition (iii) the tree E(A) has an edge (s′, t ′)
occurring somewhere in the branch above (s, t ′). But this edge must also occur in
the branch above (s′, t), which contradicts the fact that A is a tree. Therefore all
input edges of v are of the form (s′, t) with s′ an input edge of w.

– For every input edge si ofw, there is a corresponding input edge (si, t) of v. Indeed,
pick a path in S going from some minimal edge s̄ to s which passes through si .
Similarly, pick a path in T from some minimal edge t̄ to t. Then condition (iii)
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forces the existence of a path in A from the minimal element (s̄, t̄) to (s, t) which
passes through the edge (si, t). In particular, this edge exists in A and moreover it
is clear that it must be an input edge of v. �

Remark 4.9 To be precise, the subsets E(A) considered in Proposition 4.8 corre-
spond to isomorphism classes of shuffles.Whenwe speak of ‘the’ shuffles of S andT ,
we will from now on always mean the ones arising from subsets E(A) ⊆ E(S)×E(T)
as above.

We will say an operad P is thin if for any sequence c1, . . . , cn, c of colours of P,
there is at most one operation p ∈ P(c1, . . . , cn; c). The free operadΩ(T) generated by
a tree is thin. Moreover, a tensor productΩ[S]⊗Ω[T] of such is also thin. Indeed, any
two ways of expressing an operation in Ω[S] ⊗ Ω[T] as a composition of generating
operations can be related by applications of the Boardman–Vogt interchange. This
observationwill be useful in Proposition 4.10 to express a tensor productΩ[S]⊗Ω[T]
as a union of shuffles.

In any category of (set-valued) presheaves, an epimorphism Y → X is the co-
equalizer of its pullback projections:

Y ×X Y Y X .

Thus, the following proposition gives an explicit description of the way in which
a tensor product Ω[S] ⊗ Ω[T] of two representable dendroidal sets is a colimit of
representables.

Proposition 4.10 Let S and T be objects of Ω.

(a) The evident map ∐
A

Ω[A] → Ω[S] ⊗ Ω[T]

from the coproduct indexed by the shuffles of S and T is an epimorphism.
(b) The inclusion of each shuffle

Ω[A] → Ω[S] ⊗ Ω[T]

is a monomorphism.
(c) For finitely many shuffles A1, . . . , An, the inclusion of their intersection

Ω[A1] ∩ · · · ∩Ω[An] → Ω[S] ⊗ Ω[T]

in the tensor product is isomorphic to the map

Ω[Bi] → Ω[S] ⊗ Ω[T],

where Bi is the inner face of Ai obtained by contracting all inner edges in Ai

which do not occur in each of the Aj for j , i. In particular, Ω[Bi] is isomorphic
to Ω[Bj] by a unique isomorphism over Ω[S] ⊗ Ω[T].
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Proof (a) Consider an R-dendrex ξ of Ω[S] ⊗ Ω[T] = N(Ω(S) ⊗ Ω(T)), i.e., an
element ξ ∈ (Ω[S] ⊗ Ω[T])R. By definition of the nerve of an operad, ξ is given by
a labelling of the edges of R by pairs of edges (s, t) of S and T and of the vertices of
R by operations of the operad Ω(S) ⊗ Ω(T). By writing each of those operations as
a composition of generating operations, we can factor ξ as

Ω[R] Ω[R′]

Ω[S] ⊗ Ω[T]

m

ξ ξ′

where m : R → R′ is a composition of inner faces and ξ ′ sends vertices of R′ to
generating operations of Ω[S] ⊗ Ω[T]. But then ξ ′ is itself an outer face of a shuffle
of S and T , i.e., there is a further factorization

Ω[R′] Ω[A]

Ω[S] ⊗ Ω[T]

m′

ξ′

where m′ is an outer face map.
(b) Let A be a shuffle and write iA for the inclusion of Ω[A] into the tensor

product. To check that iA is a monomorphism, suppose ϕ and ψ are maps in Ω giving
a commutative diagram

Ω[R] Ω[A] Ω[S] ⊗ Ω[T].
ϕ

ψ

iA

Then for each edge e of R, the corresponding map Ω[η] e
−→ Ω[R] satisfies iAϕe =

iAψe. But iA is injective on edges, so ϕe = ψe. Consequently ϕ and ψ determine
the same map on edges and it follows easily that ϕ = ψ, since any operation in
Ω[S] ⊗Ω[T] is uniquely determined by its output edge and the collection of its input
edges (cf. the discussion about thin operads preceding the proposition).

(c) We only consider the case n = 2, the rest is similar. Let A1 and A2 be shuffles
of S andT and let B1 be the face of A1 obtained by contracting all edges not occurring
in A2. Note that these edges are indeed inner, because A1 and A2 have the same root
and leaves. Similarly define the face B2 of A2. Then B1 and B2 have the same edges
and consequently correspond to the same subset of E(S) × E(T). But then B1 and B2
are isomorphic as objects of Ω and there is a commutative diagram
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Ω[B1] ' Ω[B2]

Ω[A1] Ω[A2]

Ω[S] ⊗ Ω[T].
iA1 iA2

To check that Ω[B1] ' Ω[B2] is the pullback of iA1 and iA2 , consider maps

Ω[A1]
ψ1
←−− Ω[R]

ψ2
−−→ Ω[A2]

for which iA1ψ1 = iA2ψ2. Then ψ1 sends all edges of R to edges which also occur in
A2, so that it factors through Ω[B1]. Similarly ψ2 factors through Ω[B2]. From this
the pullback property is clear. �

Corollary 4.11 For any two trees S andT , the dendroidal setΩ[S]⊗Ω[T] is normal.

Proof For a tree R, any dendrex ξ ∈ (Ω[S] ⊗ Ω[T])R factors through some shuffle
A, i.e., there is a commutative diagram

Ω[R] Ω[A]

Ω[S] ⊗ Ω[T].
ξ

iA

Since Ω[A] is normal and iA is mono, it is clear that the automorphisms of R act
freely on ξ. �

Remark 4.12 It follows that Ω(S) ⊗ Ω(T) is a Σ-free operad. The more general
statement that a tensor product of Σ-free operads is again Σ-free is false, as the
example Ass ⊗ Ass = Com shows (cf. Example 1.24(a)).

Another obvious consequence of Proposition 4.10 is the following.

Proposition 4.13 The tensor product of two open dendroidal sets is open and the
tensor product of two closed dendroidal sets is closed.

Proof If S and T are open trees, then any shuffle of S and T is open as well, as is
each intersection of such shuffles. Thus Ω[S] ⊗Ω[T] is a colimit of open dendroidal
sets and thus itself open. The general statement follows by writing an arbitrary open
dendroidal set as a colimit of representables given by open trees. The proof for closed
dendroidal sets proceeds in exactly the same way. �

Remark 4.14 Another way to phrase the previous proposition is to say that the
category odSets carries a tensor product for which the inclusion functor

u! : odSets→ dSets
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is equipped with an isomorphism u!(X ⊗ Y ) � u!(X) ⊗ u!(Y ). A similar remark
applies to the inclusion cdSets→ dSets of closed dendroidal sets. Moreover, its left
adjoint

cl! : dSets→ cdSets

commutes with tensor products, i.e., for dendroidal sets X and Y there is a natural
isomorphism

cl!(X ⊗ Y ) � cl!X ⊗ cl!Y,

as one easily checks on representables.

4.2 The Tensor Product of a Simplicial and a Dendroidal Set

Restricting one of the factors of the tensor product to be a simplicial (rather than
dendroidal) set defines a functor

sSets × dSets→ dSets : (A, X) 7→ i! A ⊗ X

of which we will make ample use throughout this book. Since it will play such
an important role, we include this short section to highlight an alternative simple
description of this functor. Throughout this section we abbreviate i! A⊗ X simply by
A ⊗ X .

Recall that the set of edges E(T) of a tree T carries a natural partial order, in
which the root is the largest element, and that any morphism S → T in particular
gives a map of posets E(S) → E(T). Therefore, for each n ≥ 0 we can define a
dendroidal set E[n] by

E[n]T = Hom(E(T), [n]),

where on the right-hand side we consider maps of posets only. Thus, an element of
E[n]T is simply a labelling of the edges of T by numbers 0, . . . , n which is monotone
along each branch of T . Notice that E[n] is in fact the nerve of an operad; its colours
are the numbers 0, . . . , n and there is a unique operation (i1, . . . , ik) → j if and only
if each of the indices i1, . . . , ik is less than or equal to j. This construction is evidently
functorial in [n], so in fact we obtain for each simplicial set M a dendroidal set

E[M] = lim
−−→
[n]→M

E[n].

In other words,
E : sSets→ dSets

is the left Kan extension of the functor

∆→ dSets : [n] 7→ E[n].
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Remark 4.15 For a simplicial set M there is a natural isomorphism i∗E[M] → M ,
as one easily verifies. Nonetheless, the functor E should not be confused with one of
the functors i!, i∗ : sSets→ dSets. For example, i!∆[2]T is empty for T = C2, and

i∗∆[2]T = sSets(i∗C2,∆[2])

is the set of all maps from the discrete three-element set of edges ofC2 to [2], whereas
E[2]T only contains the order-preserving maps.

Lemma 4.16 For a simplicial set M and a dendroidal set X , there is a natural
isomorphism

M ⊗ X � E[M] × X .

Proof Since both sides preserve colimits in each variable separately, it suffices to
construct a natural isomorphism

α : ∆[n] ⊗ Ω[T] → E[n] ×Ω[T].

Both sides are nerves of operads, so such an isomorphism is the same as one of
operads

α : [n] ⊗ Ω(T) → τE[n] ×Ω(T)

where [n] is the category (0 → 1 → · · · → n) viewed as an operad with unary
operations only. The operad τE[n] can be described as the operad associated to the
symmetric monoidal category [n] with as tensor product the operation of taking the
maximum. The two operads above have the same colours and we define α to be
the identity on those. The generating operations of the operad [n] ⊗ Ω(T) are of
two kinds. First, there are unary operations (i, e) → ( j, e) for i ≤ j. Then there are
operations

((i, e1), . . . , (i, ek)) → (i, e)

for (e1, . . . , ek) → e corresponding to a vertex of T . Clearly, both of these define
operations in E[n] × Ω(T). The Boardman–Vogt interchange relation is obviously
respected, so α becomes a map of operads. It is automatically faithful, because
[n] ⊗ Ω(T) is a thin operad (i.e., there is at most one operation from any tuple of
colours to another colour). It is also full, because any operation of E[n] × Ω(T) is
clearly the image of a composition of generating operations in [n] ⊗ Ω(T). �

The product M × N of simplicial sets of course admits projections onto each of
its two factors M and N . For the tensor product X ⊗ Y of dendroidal sets, however,
no such projections generally exist. Nonetheless, in the case of a simplicial set M
and dendroidal set X , one can use the unique map M → ∆[0] to form a projection

M ⊗ X → ∆[0] ⊗ X � X

onto the ‘dendroidal factor’. This provides the vertical maps in the following:
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Corollary 4.17 For any simplicial set M and any map of dendroidal sets X → Y ,
the square

M ⊗ X M ⊗ Y

X Y

is a pullback.

4.3 Tensor Products and Normal Monomorphisms

In much of what follows it will be important to understand how normal monomor-
phisms between dendroidal sets behave under tensor products. In particular, we will
be interested in whether the tensor product with a fixed (normal) dendroidal set X
maps a normal mono B→ Y to a normal mono X ⊗ B→ X ⊗Y . More generally, we
would like to know for which normal monos f : A→ X and g : B→ Y the induced
map

A ⊗ Y qA⊗B X ⊗ B→ X ⊗ Y

is again a normal mono. This map is usually referred to as the pushout-product of
f and g. In the context of simplicial sets, with cartesian product playing the role of
the tensor, it is easily seen that the pushout-product of two monomorphisms is again
a monomorphism. The following minimal counterexample shows that the situation
for dendroidal sets is more complicated.

Example 4.18 Consider the tree η̄ = C0 which consists of one edge and a nullary
vertex attached to it and write i : η→ η̄ for the inclusion. Note that η̄ ⊗ η̄ � η̄, since
the Boardman–Vogt interchange relation identifies the nullary operations coming
from each of the factors. The pushout-product of Ω[i] with itself is (isomorphic to)
the map

Ω[η̄] qΩ[η] Ω[η̄] → Ω[η̄],

which is not a monomorphism. Indeed, the left-hand side has two dendrices of shape
η̄, whereas the right-hand side has only one.

The presence of nullary vertices also gives rise to issues of the following kind:

Example 4.19 For any tree T the tensor product Ω[η̄] ⊗ Ω[T] consists of just one
shuffle and is simply given by the dendroidal set Ω[T̄] represented by the closure of
T . It follows that tensoring with Ω[η̄] is (isomorphic to) the closure functor

cl! : dSets→ cdSets.

Indeed, both functors commute with colimits and agree on representables. This
closure functor does not preserve normal monomorphisms. For example, let T be
the tree on the left
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T a

b c

d
v

∂vT a

b c
∂bT a

d c

andwriteV for the subobject ofΩ[T]which is the union of the representablesΩ[∂vT]
and Ω[∂bT]. Their intersection consists of two copies of Ω[η], for which we write

Ω[ηa] q Ω[ηc]

to indicate the relevant edges in the notation. The inclusion V → Ω[T] is a normal
mono. However, Ω[η̄] ⊗ V is the pushout

Ω[∂vT] qΩ[η̄a ]qΩ[η̄c ] Ω[∂bT]

and the ‘inclusion’
Ω[η̄] ⊗ V → Ω[η̄] ⊗ Ω[T] � Ω[T̄]

is not a monomorphism. Indeed, the intersection

Ω[∂vT] ∩Ω[∂bT]

inside Ω[η̄] ⊗ V contains two copies of Ω[∂b(∂vT)] = Ω[∂d(∂bT)], once inside
Ω[∂vT] and once inside Ω[∂bT]:

T̄ a

b c

d
v

∂vT a

b c
∂bT a

d c

Note that only their edges a and c are identified in the pushout Ω[η̄] ⊗ V .
An essential feature of this example is that ∂vT and ∂bT are two faces of T which

have a disconnected intersection, as is typical for the intersection of a leaf face
corresponding to a leaf vertex v and the inner face corresponding to the outgoing
edge of v. This feature cannot occur for the intersection of two inner faces. It
also cannot occur for intersections of faces of a linear tree, explaining why this
phenomenon does not occur in the theory of simplicial sets. As we see from the
example above, the dendroidal theory will be more complicated. We will have to
analyze intersections of various kinds of faces of trees in great detail in the proofs
of Lemma 4.24.

As already becomes clear from the previous example, the notation Ω[T] for a
representable dendroidal set can make the notation rather cluttered.
Notation: From now on, if no confusion can arise, we will often simply write T for
the dendroidal set represented by a tree T .
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In this section we will investigate several special cases in which the pushout-
product of normal monos is again a normal mono. Let us begin with the case in
which one of the factors is a morphism of simplicial sets (or rather its image in the
category dSets under the inclusion i!). Consider a linear tree i[n] and a tree T . A
shuffle of i[n] and T is easily visualized: it is a tree of the same shape as T , where on
each edge of T one has inserted a number of unary vertices corresponding to vertices
of i[n]. For example, here is a shuffle of i[2] and a binary corolla T :

i[2] :

0

1

2
T :

a

b c

a2

a1

b1 c1

b0 c0

There is a (necessarily unique) operation (k1, e1), . . . , (kn, en) → (k, e) in
i[n] ⊗ T if and only if there is an operation e1, . . . , en → e in T and k1, . . . , kn ≤ k.
For the statement of the next lemma, note that for faces ∂ki[n] of i[n] and ∂xT of
T , the operad maps Ω(∂ki[n]) ⊗ Ω(T) → Ω(i[n]) ⊗ Ω(T) and Ω(i[n]) ⊗ Ω(∂xT) →
Ω(i[n]) ⊗ Ω(T) are maps between thin operads which are injective on colours and
therefore monomorphisms. Consequently, the nerves of these maps are monos as
well.

Lemma 4.20 Let T be an arbitrary tree and i[n] a linear tree. Consider faces ∂xT
and ∂yT ofT and numbers 0 ≤ p, q ≤ n. Then the followingmonomorphisms between
dendroidal sets are isomorphisms:

(i) i[n] ⊗ (∂xT ∩ ∂yT) → (i[n] ⊗ ∂xT) ∩ (i[n] ⊗ ∂yT),
(ii) (∂pi[n] ∩ ∂qi[n]) ⊗ T → (∂pi[n] ⊗ T) ∩ (∂qi[n] ⊗ T),
(iii) ∂pi[n] ⊗ ∂xT → (∂pi[n] ⊗ T) ∩ (i[n] ⊗ ∂xT).

Proof Notice that the arrows above can all be interpreted as inclusions be-
tween subobjects of i[n] ⊗ T . We need to show they are surjective. An operation
(k1, e1), . . . , (kn, en) → (k, e) of i[n] ⊗ T belongs to ∂pi[n] ⊗ T if and only if none of
the k1, . . . , kn, k equals p. From this it readily follows that (ii) and (iii) are surjective.
For (i), suppose (k1, e1), . . . , (kn, en) → (k, e) is an operation of i[n]⊗T which occurs
both in i[n] ⊗ ∂xT and in i[n] ⊗ ∂yT . Then k1, . . . , kn ≤ k, while e1, . . . , en → e is
an operation in Ω(T) which belongs to both Ω(∂xT) and Ω(∂yT). This operation is
represented by a subtree T(e1, . . . , en; e) of T with leaves e1, . . . , en and root e. If
∂xT is a leaf face of T removing a leaf vertex v (and its leaves, if it has any), then
this v cannot be a leaf vertex of T(e1, . . . , en; e). Indeed, the latter would not be a
subtree of ∂xT anymore. Similarly, if ∂xT is the root face of T , then e cannot be the
root edge of T . If ∂xT is an inner face, then the corresponding inner edge cannot be
any of the edges e1, . . . , en, e. The same analysis applies to ∂yT and one concludes
that there is a subtree of the intersection ∂xT ∩ ∂yT with leaves e1, . . . , en and root
e (even though this intersection might not be connected!). Therefore the operation
(k1, e1), . . . , (kn, en) → (k, e) also occurs in i[n] ⊗ (∂xT ∩ ∂yT). �
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From this lemma one concludes the pushout-product property if one of the factors
is simplicial by a standard induction:

Proposition 4.21 Let M
f
−→ N be a monomorphism of simplicial sets and let X

g
−→ Y

be a normal monomorphism of dendroidal sets. Then the pushout-product

i!M ⊗ Y qi!M⊗X i!N ⊗ X → i!N ⊗ Y

is again a normal monomorphism.

Remark 4.22 An efficient proof of the proposition can be given by using Lemma
4.16 from the previous section. However, we include the proof below as a warm-up
for the more complicated cases in the remainder of this section.

Proof First consider the special case where M → N is a boundary inclusion
∂∆[n] → ∆[n] and X → Y is a boundary inclusion ∂Ω[T] → Ω[T]. Since
i!∆[n] ⊗ Ω[T] is normal, it suffices to check that the map

i!∂∆[n] ⊗ Ω[T] qi!∂∆[n]⊗∂Ω[T ] i!∆[n] ⊗ ∂Ω[T] → i!∆[n] ⊗ Ω[T]

is a monomorphism. The two maps

i!∂∆[n] ⊗ Ω[T] → i!∆[n] ⊗ Ω[T] and i!∆[n] ⊗ ∂Ω[T] → i!∆[n] ⊗ Ω[T]

are monos. Indeed, Lemma 4.20(i) guarantees that i!∆[n] ⊗− preserves intersections
of faces ofT , whereas item (ii) shows that−⊗Ω[T] preserves intersections of faces of
[n]. Regarding i!∂∆[n] ⊗Ω[T] and i!∆[n] ⊗ ∂Ω[T] as subobjects of i!∆[n] ⊗Ω[T], we
can now use Lemma 4.20 again (also including (iii)) to conclude that the intersection
of these subobjects is precisely i!∂∆[n] ⊗ ∂Ω[T]. This completes the proof in this
special case. For the case of general normal monos M → N and X → Y , recall that
every normal monomorphism of dendroidal sets (or monomorphism of simplicial
sets) can be obtained as a transfinite composition of pushouts of boundary inclusions.
Therefore it suffices to argue that the class of ( f , g) for which the pushout-product
of f and g is a normal monomorphism is closed under pushouts and transfinite
composition in each variable. This is a standard argument, which we record here in
general form as Lemma 4.23 below for future reference. �

In the following lemma, we take C to be a category which admits pushouts and
transfinite compositions and which comes equipped with a functor

− ⊗ − : C × C→ C

which preserves pushouts and transfinite compositions in each variable.
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Lemma 4.23 Let A be a class of morphisms in C which is closed under pushouts
and transfinite composition and let f : X → Y be a fixed morphism. Write B for the
class of morphisms i : A→ B for which the pushout-product

A ⊗ Y qA⊗X B ⊗ X → B ⊗ Y

of i and f is contained in A. Then B is also closed under pushouts and transfinite
composition.

Proof Suppose i ∈ B and we have a pushout square

A C

B D.

i j

We claim that the square

A ⊗ Y qA⊗X B ⊗ X C ⊗ Y qC⊗X D ⊗ X

B ⊗ Y D ⊗ Y .

is also a pushout. The vertical map on the left is inA by assumption, so that the map
on the right is in A as well. To establish our claim, note that the span

A ⊗ Y qA⊗X B ⊗ X C ⊗ Y qC⊗X D ⊗ X

B ⊗ Y

is the pushout of the following diagram of spans:

(B ⊗ X ← A ⊗ X → C ⊗ X) (B ⊗ X ← B ⊗ X → D ⊗ X)

(B ⊗ Y ← A ⊗ Y → C ⊗ Y ).

Taking the pushout of each of these three spans (and using that ⊗ commutes with
pushouts in each of its variables) gives the diagram

D ⊗ Y D ⊗ X D ⊗ X

whose pushout is indeed D⊗Y . Let us now treat the case of a countable composition
of morphisms

A0
i1
−→ A1

i2
−→ A2 → · · · → A∞.
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Finite compositions will be a special case, whereas transfinite compositions for larger
ordinals are treated analogously. We assume that each ik is contained inB. Consider
the following diagram:

A0 ⊗ Y qA0⊗X Ak−1 ⊗ X A0 ⊗ Y qA0⊗X Ak ⊗ X

Ak−1 ⊗ Y Ak−1 ⊗ Y qAk−1⊗X Ak ⊗ X .

It is a pushout by a similar argument as above. Indeed, the span formed by all but
the lower right corner of the diagram is itself a pushout of the following diagram of
spans:

(Ak−1 ⊗ X ← A0 ⊗ X → A0 ⊗ X) (Ak−1 ⊗ X ← Ak−1 ⊗ X → Ak ⊗ X)

(Ak−1 ⊗ Y ← A0 ⊗ Y → A0 ⊗ Y ).

Taking the pushout of each of these gives the diagram

Ak−1 ⊗ Y Ak−1 ⊗ X Ak ⊗ X,

whose pushout is indeed the lower right corner in the square above. By induction on
the length of compositions we may assume that the left vertical map in that square
is in A, so that the vertical map on the right is in A as well. Taking the colimit over
k (and using that ⊗ commutes with this particular colimit in both of its variables),
we conclude that the map

A0 ⊗ Y qA0⊗X A∞ ⊗ X → A∞ ⊗ Y qA∞⊗X A∞ ⊗ X = A∞ ⊗ Y

is in A as well. The case of a transfinite composition indexed by a larger ordinal is
treated in the same way. �

We now turn to the pushout-product in the case where both factors are dendroidal
(rather than one of them being simplicial). Like before, observe that any map of
the form ∂xS ⊗ T → S ⊗ T is a monomorphism. Indeed, it is the nerve of a
map between thin operads which is injective on colours. We will be considering
intersections ∂yT ∩∂zT of faces of a tree T . Recall that such an intersection is always
representable, except in the following cases:

(1) Suppose v is a leaf vertex of T connected to an inner edge e and suppose the
bottom vertex w of e has at least two incoming edges (so at least one besides e).
Then the intersection ∂vT ∩ ∂eT is a disjoint union of representables, namely of
the tree obtained from T by chopping off w and everything above it and each of
the maximal subtrees of T whose root is an incoming edge of w other than e.
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(2) Suppose v is the root vertex ofT and that v has precisely one inner edge e attached
to it, so that the root face ∂vT is defined. Write w for the vertex immediately
above v, i.e., the vertex which has e as its outgoing edge. Then ∂vT ∩ ∂eT is the
disjoint union of the maximal subtrees of T with root edges the incoming edges
of w. Thus, if w has more than one incoming edge, this is not a representable
dendroidal set.

(3) If T is a corolla, so that its faces are simply the inclusions of edges η→ T , then
the intersection of any two distinct faces of T is empty.

Lemma 4.24 Let S and T be trees.

(i) Let e be an inner edge of S and ∂yT any face of T . Then the following map is an
isomorphism:

∂eS ⊗ ∂yT → (∂eS ⊗ T) ∩ (S ⊗ ∂yT).

(ii) The statement of (i) remains true if ∂eS is replaced with the root face of S (which
exists only if the root of S has precisely one inner edge attached to it) or with a
leaf face ∂vS of S corresponding to a leaf vertex v which has at least one leaf
attached to it, i.e., v is not a stump.

(iii) If ∂yT , ∂zT are faces of T for which the intersection ∂yT ∩ ∂zT is not of the
exceptional kind (1) described above, then the followingmap is an isomorphism:

S ⊗ (∂yT ∩ ∂zT) → (S ⊗ ∂yT) ∩ (S ⊗ ∂zT).

(iv) If S is an open tree and ∂yT , ∂zT are any two faces of T , then the map of (iii) is
an isomorphism.

Proof For (i), note first that this map is a monomorphism, simply because the maps

∂eS ⊗ ∂yT → ∂eS ⊗ T and ∂eS ⊗ ∂yT → S ⊗ ∂yT

aremonomorphisms. Let F be a face of a shuffle A of S⊗∂yT and suppose F → S⊗T
also factors through ∂eS⊗T . This means that F cannot contain any edges of the form
(e, t) (for some edge t of T). So if we contract all edges in A of this form, we obtain
a face of G of A which still contains F. Moreover, this face is a shuffle of ∂eS ⊗ ∂yT ,
so that

(∂eS ⊗ T) ∩ (S ⊗ ∂yT) ⊆ ∂eS ⊗ ∂yT .

For (ii) one uses the same argument as above to see that the stated map is a monomor-
phism. To establish surjectivity, let F be a face of a shuffle A of S ⊗ ∂yT and suppose
F → S ⊗ T also factors through ∂xS ⊗ T , for ∂xS a face of S as in (ii). First consider
the case where ∂xS is the root face of S and write e for the unique inner edge attached
to the root vertex of S. Then the shuffle A will have one or several edges of the form
(e, t). Consider the collection of lowest such edges in A (lowest meaning closest to
the root), say (e, t1), . . . , (e, tn). Write Ti for the maximal subtree of ∂yT with root
edge ti and similarly write Ai for the maximal subtree of A with root edge (e, ti).
Since F does not contain any edge of the form (r, t), with r the root edge of S,
this F must factor through one of the Ai . But each Ai is a shuffle of ∂xS ⊗ Ti and
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therefore a face (possibly of high codimension) of a shuffle of ∂xS ⊗ ∂yT , showing
that F factors through ∂xS ⊗ ∂yT . Next, consider the case of a leaf face ∂vS as
described in (ii). Write e for the inner edge attached to the leaf vertex v and l1, . . . , ln
for its leaves. Now list the highest occurrences of edges of the form (e, t) in A, say
(e, t1), . . . , (e, tn). Again write Ti for the maximal subtree of ∂yT with root edge ti
and Ai for the maximal subtree of A with root edge (e, ti). Form a face A′ of A
(possibly of high codimension) by contracting all edges of Ai (if Ti is a closed tree)
or chopping off Ai (if Ti is not closed), for each i. Since F does not contain any edges
of the form (li, t) and v is not a nullary vertex, F must factor through A′. But A′ is
a shuffle of the tensor product ∂vS ⊗ T ′, where T ′ is the tree obtained from ∂yT by
contracting all of Ti (if Ti closed) or chopping off Ti (if Ti is not closed), for each i.
In particular, A′ is contained in ∂vS ⊗ T .

We now consider (iii). Again, the nontrivial part is to establish surjectivity. There
are several cases to check, of which the easiest is the one where ∂yT and ∂zT are
inner faces, contracting edges e and f respectively. Let F be a face of a shuffle A
of S ⊗ ∂fT and suppose F is also contained in S ⊗ ∂eT . Form a face A′ of A by
contracting all edges of the form (s, e), with s ranging over the edges of S. Then
F must be a face of A′. But A′ is a shuffle of S ⊗ ∂e∂fT , which gives the desired
conclusion in the case of two inner faces. Now consider the case where ∂yT = ∂vT
is a leaf face deleting a leaf vertex v and ∂zT is any other face (inner or outer) of
T such that the intersection ∂vT ∩ ∂zT is not of the exceptional kind (1). So z may
correspond to an inner edge of T , or the root vertex, or another leaf vertex. Label the
leaves of v by l1, . . . , ln and its outgoing edge by k. As before, consider a face F of a
shuffle A of S ⊗ ∂zT and suppose F is contained in S ⊗ ∂vT . If z is not the outgoing
edge k of the leaf vertex v, then we reason as follows. Consider edges of the form
(s, k) in A and list the collection of highest such edges, say (s1, k), . . . , (sm, k). Then
the edges of A above these are all of the form (s, lj) and therefore do not occur in F.
So F is also a face of the tree A′ obtained from A by replacing the part above (si, k)
by Si ⊗ k, where Si ⊆ S is the maximal subtree of S with root edge si . This A′ is
a shuffle of S ⊗ ∂v∂zT , finishing this case. We should still address the case z = k.
This works the same way, only now considering the edge k ′ of T immediately below
k and using the highest occurrences of edges of the form s ⊗ k ′ in A. To finish the
proof of (iii), one still has to deal with the case where ∂yT is the root face of T and
∂zT is any other face, as well as the case where T is a corolla. The latter is trivial,
because the intersection of distinct faces of a corolla is empty. In the case where T
is not a corolla and ∂yT is the root face of T , the proof is analogous to the case of
a leaf face as above, where the role of k is now played by the (unique) inner edge
attached to the root vertex of T and one considers the lowest occurrences of edges
of the form (s, k) in A.

Finally, we prove (iv). In almost all cases this is subsumed by (iii); the only case
left to deal with is where the intersection ∂yT ∩ ∂zT is of the exceptional kind (1),
so y is a leaf vertex v and z is the outgoing inner edge e of v. Write F for a face
of a shuffle A of S ⊗ ∂vT and suppose F is also contained in S ⊗ ∂eT . The shuffle
A will have one or several edges of the form (s, e), for s ranging through the edges
of S. List the collection of lowest occurrences of such edges by (s1, e), . . . , (sn, e).
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Since S is assumed to be an open tree, the maximal subtree Si of A with root edge
(si, e) is open (for every i). The intersection of S ⊗ ∂eT with each of the subtrees Si
is empty and it follows that the intersection of S ⊗ ∂eT with A breaks up into several
connected components. To describe these, write w for the bottom vertex of e, then
r for the outgoing edge of w and f1, . . . , fm for the incoming edges of w other than
e. Then the maximal subtrees of A with root edges of the form (si, fj) form all but
one of these connected components; the remaining one is the tree obtained from
A by chopping off everything above the edges (si, r) for 1 ≤ i ≤ n. Now F must
factor through one of these connected components and each of the components is
clearly contained in a shuffle of S with a corresponding connected component of the
intersection ∂vT ∩ ∂eT . �

Remark 4.25 The assumptions in parts (ii) and (iii) of the previous lemma are
necessary: indeed, the statement of (ii) fails for S = T = C0 (cf. Example 4.18),
whereas (iii) fails for S = C0 and the tree T of Example 4.19 with faces ∂bT and ∂vT .

From the previous lemma we deduce the pushout-product property of normal
monomorphisms for two important classes of dendroidal sets:

Proposition 4.26 Let A
f
−→ B and C

g
−→ D be normal monomorphisms between

dendroidal sets and consider the pushout-product

A ⊗ D qA⊗C B ⊗ C → B ⊗ D.

(i) If A, B, C, and D are open dendroidal sets, then the pushout-product is a normal
monomorphism.

(ii) If A, B, C, and D are closed dendroidal sets, then the pushout-product is a
normal monomorphism.

Proof For case (i), observe that every normal monomorphism between open den-
droidal sets is a transfinite composition of pushouts of boundary inclusions of open
trees. Therefore, the same inductive argument as in the proof of 4.21 shows that
it suffices to treat the case where the maps f and g are boundary inclusions, say
∂S → S and ∂T → T , with S and T open trees. Lemma 4.24(iv) shows that S ⊗ −
and − ⊗ T preserve intersections between faces of open trees, so that the maps
S ⊗ ∂T → S ⊗ T and ∂S ⊗ T → S ⊗ T are monomorphisms. Using items (i) and
(ii) of Lemma 4.24 now shows that the intersection of S ⊗ ∂T and ∂S ⊗ T inside
S ⊗ T is precisely ∂S ⊗ ∂T . We conclude that the pushout-product of f and g is a
monomorphism. Since S ⊗ T is normal, it is also a normal monomorphism.

In case (ii) the argument is similar, now using the observation that any monomor-
phism between closed dendroidal sets is a transfinite composition of pushouts of the
modified boundary inclusions ∂clT → T for closed trees T . One replaces the use of
Lemma 4.24(iv) above by item (iii) of that same lemma. The faces from which ∂clT
is built do not include leaf faces of T (since these do not give closed trees), so the
problematic case in item (iii) never arises. �
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4.4 Unbiased Tensor Products

In this sectionwe study the associativity properties of the tensor product of dendroidal
sets, which turn out to be somewhat subtle. They will not feature very prominently
in the rest of this book, except for a few isolated occurrences. Therefore most readers
might wish to skip this material on first reading and refer back to it as needed.

The tensor product of two dendroidal sets has been defined in terms of the nerve of
the Boardman–Vogt tensor product of operads. Indeed, for representable dendroidal
sets Ω[S] and Ω[T] one has

Ω[S] ⊗ Ω[T] = N(Ω(S) ⊗ Ω(T)).

This definition is extended to arbitrary dendroidal sets in the essentially unique way
for which the tensor product commutes with colimits in each variable separately.
The Boardman–Vogt tensor product of operads is symmetric and associative up to
coherent natural isomorphism and makes the category of operads into a symmetric
monoidal category. It follows that the tensor product of dendroidal sets is symmetric
as well, as already observed, but since the nerve functor does not commute with
colimits one cannot conclude the same for associativity. In fact, the tensor product
of dendroidal sets is not associative up to isomorphism, as the following example
shows.

Example 4.27 Consider the corollaC2 and two copies of the linear tree i[1], pictured
as follows:

Then i[1] ⊗ i[1] is the union of two representables, given by the shuffles

whose intersection is their common inner face (just like the product of simplicial sets
∆[1] × ∆[1] decomposes into two 2-simplices glued along their unique inner faces).
Thus C2 ⊗ (i[1] ⊗ i[1]) is a pushout

C2 ⊗ i[2] qC2⊗i[1] C2 ⊗ i[2]

and may be depicted as the union of the following six shuffles:



156 4 Tensor Products of Dendroidal Sets

It does not contain the shuffles

which occur in (C2 ⊗ i[1]) ⊗ i[1].

More generally, for three trees R, S and T , the tensor product R ⊗ (S ⊗ T) is
the union of all shuffles of R ⊗ A where A ranges over shuffles in S ⊗ T , whereas
(R ⊗ S) ⊗ T is a similar union of shuffles of B ⊗ T with B ranging over all shuffles
of R ⊗ S. In general these are different, as the example above shows. Note that this
difference does not occur when all three factors are linear trees; indeed, the product
of simplicial sets is of course associative.

Although in practice we will rarely consider tensor products of more than three
factors, one can define an n-fold tensor product of dendroidal sets as a functor

⊗n : dSets × · · · × dSets→ dSets

which is uniquely determined up to isomorphism by the requirement that it preserves
colimits in each of its n variables separately and is given on representable dendroidal
sets by the nerve of the Boardman–Vogt tensor product:

⊗n(Ω[T1], . . . ,Ω[Tn]) = N(Ω(T1) ⊗ · · · ⊗ Ω(Tn)).

For general dendroidal sets X1, . . . , Xn we will usually write

⊗n(X1, . . . , Xn) = X1 ⊗ · · · ⊗ Xn.

Although the tensor product of dendroidal sets is not associative up to isomorphism,
there are still ‘associator maps’ of the kind

α : X ⊗ (Y ⊗ Z) → X ⊗ Y ⊗ Z .

Indeed, the functors dSets×3 → dSets represented by these two expressions both
commute with colimits in each variable separately, so it suffices to define α for
representable dendroidal sets. By adjunction, a map

α : Ω[R] ⊗ N(Ω(S) ⊗ Ω(T)) → N(Ω(R) ⊗ Ω(S) ⊗ Ω(T))

corresponds to a map of operads
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α̂ : τ(Ω[R] ⊗ N(Ω(S) ⊗ Ω(T))) → Ω(R) ⊗ Ω(S) ⊗ Ω(T).

There is a canonical choice for such a map, even an isomorphism, because the
functor τ commutes with tensor products (cf. Proposition 4.2) and is left inverse (up
to isomorphism) to the nerve functor N (cf. Section 3.5).

More generally, for 0 ≤ i < j ≤ n there are maps α (or αi, j if it is useful to be
more explicit),

αi, j : X1 ⊗ · · · ⊗ Xi−1 ⊗ (Xi ⊗ · · · ⊗ Xj) ⊗ Xj+1 ⊗ · · · ⊗ Xn → X1 ⊗ · · · ⊗ Xn

which are natural in each of the n variables. These natural transformations α are de-
fined exactly as in the simple case above. The coherence isomorphisms for the tensor
product of operads then immediately imply that these maps α, although no longer
isomorphisms, satisfy similar coherence relations. In particular, the dendroidal set
η still acts as a unit. There are relations expressing symmetry and associativity of
the maps α, which are straightforward to describe but somewhat tedious for n large.
For a threefold tensor product, one such relation expressing the compatibility of the
maps α with symmetry is expressed by the following diagram:

(X ⊗ Y ) ⊗ Z X ⊗ Y ⊗ Z

(Y ⊗ X) ⊗ Z Y ⊗ X ⊗ Z .

�

α

�

α

An n-fold tensor product of representables T1 ⊗ · · · ⊗ Tn can again be described
in terms of shuffles. To state this precisely we use shuffles of an n-tuple of numbers
p1, . . . , pn ≥ 0, which are permutations

σ : p1 + · · · + pn → p1 + · · · + pn

which restrict to monotone maps on each segment pi + 1, . . . , pi+1 (for i = 0, . . . , n
with the convention p0 = 0). Notice that by removing one such segment and its
image, such a shuffle σ of p1, . . . , pn ‘projects’ to a shuffle of p1, . . . , p̂i, . . . , pn,
with the hat denoting omission. A shuffle of p1, . . . , pn can also be viewed as a
directed path from (0, . . . , 0) to (p1, . . . pn) through the lattice

{0, . . . , p1} × · · · × {0, . . . , pn} ⊂ Rn

by unit steps along the coordinate axes.
Having said all this, we define a shuffle of trees T1, . . . ,Tn as a tree Awhose edges

are labelled by n-tuples of edges (t1, . . . , tn) where ti is an edge in Ti , and for which
the partial order on these edges induced by the tree structure of A agrees with the
one given by the product of the partial orders on the edges of each of the trees Ti .
Moreover, the following conditions (cf. Proposition 4.8) should be satisfied, where
we think of the poset of edges E(A) as a subset of E(T1) × · · · × E(Tn).
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(i) The maximal element of the poset of edges E(A) is the maximal element
(rT1, . . . , rTn ) of E(T1) × · · · × E(Tn). The subset of minimal elements of E(A) is
precisely the product of the subsets of minimal elements of each of the E(Ti).

(ii) For a tuple (t1, . . . , tn) of minimal elements, the labelling on the branch in A
down from (t1, . . . , tn) to the root of A defines a shuffle of the n linear orders
given by the branches in Ti down from ti , for i = 1, . . . , n.

One then has the following analogue of Proposition 4.10, which is proved in
exactly the same way.

Proposition 4.28 Let T1, . . . ,Tn be trees. The dendroidal set Ω[T1] ⊗ · · · ⊗ Ω[Tn]

is the colimit of representables Ω[A] indexed by all the shuffles A of those trees.
Moreover, each

Ω[A] → Ω[T1] ⊗ · · · ⊗ Ω[Tn]

is a monomorphism and each intersection Ω[A1] ∩ · · · ∩ Ω[Ak] as a subobject of
Ω[T1] ⊗ · · · ⊗ Ω[Tn] is represented by the tree Bi ⊆ Ai obtained by contracting all
inner edges which do no occur in each of the other Aj . In particular, these Bi are all
isomorphic (for i = 1, . . . , k).

The following is proved in the same way as Corollary 4.11.

Corollary 4.29 An n-fold tensor product of trees Ω[T1] ⊗ · · · ⊗ Ω[Tn] is normal.

It is easy to describe the associators α in terms of shuffles. We leave the proof
of the following as an exercise to the reader. A simple instance of it is illustrated in
Example 4.27 above.

Proposition 4.30 Each associator

α : R1 ⊗ · · · ⊗ Rk ⊗ (S1 ⊗ · · · ⊗ Sl) ⊗ T1 ⊗ · · · ⊗ Tm → R1 ⊗ · · · ⊗ Tm

is a normal monomorphism, for trees R1, . . . , Rk , etc. Its domain is the union of those
shuffles A of the k + l +m trees involved with the following property: for a sequence
of minimal elements s1 ∈ S1, . . ., sl ∈ Sl , the shuffles of the linear orders given by
branches from minimal elements (r1, . . . , rk, s1, . . . , sl, t1, . . . , tm) in E(A) down to
the root of A all project to the same shuffle of the l linear orders of the branches
down from si in Si .

Corollary 4.31 The associativity map α in the previous proposition is an isomor-
phism whenever R1, . . . , Rk and T1, . . . ,Tm are all linear trees.

Proof This follows because linear trees have a unique minimal edge. �

Corollary 4.32 Let X1, . . . , Xn be normal dendroidal sets. Then each associativity
map

α : X1 ⊗ · · · ⊗ Xi−1 ⊗ (Xi ⊗ · · · ⊗ Xj) ⊗ Xj+1 ⊗ · · · ⊗ Xn → X1 ⊗ · · · ⊗ Xn

is a normal monomorphism. It is an isomorphism if X1, . . . , Xi−1 and Xj+1, . . . , Xn

are simplicial sets (viewed as dendroidal sets via the embedding i!).
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Proof This follows from the previous two statements by skeletal induction, as be-
fore. �

Example 4.33 A minimal example to keep in mind is 4.27. There we described
C2 ⊗ (i[1] ⊗ i[1]) as a union of six shuffles. It is a subobject of (C2 ⊗ i[1]) ⊗ i[1] =
C2⊗i[1]⊗i[1], which is a union of eight shuffles. The inclusion is precisely an example
of one of the associators α. We will see in Proposition 6.32 that these associator
maps, while not isomorphisms, are still weak equivalences in an appropriate sense.

To conclude this section, let us briefly consider the pushout-product property for
n-fold tensor products. For a tensor product of three factors, this property can be
stated as follows. Consider three maps A→ X , B→ Y andC → Z . Then the various
tensor products can be organized in a cube, where we write ABC for A⊗ B ⊗C, etc.:

ABC ABZ

AYC AY Z

XBC XBZ

XYC XY Z .

Omitting the last vertex XY Z yields a ‘punctured cube’, of which one can take the
colimit. The pushout-product property then states that the map from this colimit to
the last vertex XY Z is a normal monomorphism whenever each of the three maps
A → X , B → Y and C → Z is. This property will hold in three cases, namely
where two of the three factors are simplicial, when all dendroidal sets involved are
open, or when all of them are closed. These last two cases can be proved in a way
analogous to the case of binary products, but the first one is actually a consequence
of the binary case and the associativity isomorphism of Corollary 4.31.

To state the general case of a tensor product of n factors, consider the n-fold
product {0, 1}n, viewed as a category with a unique arrow (i1, . . . , in) → ( j1, . . . , jn)
if and only if ik ≤ jk for each k. Denote the full subcategory on all objects except
the terminal one by {0, 1}n−. Then an n-tuple of maps X0

k
→ X1

k
between dendroidal

sets defines a functor

X : {0, 1}n → dSets : (i1, . . . , in) 7→ X i1
1 ⊗ · · · ⊗ X in

n .

Write X− for the restriction of this functor to the category {0, 1}n−. Then the n-fold
pushout-product property concerns the map

lim
−−→

X− → X1
1 ⊗ · · · ⊗ X1

n .

The domain of this map can also suggestively be written as
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n⋃
k=1

X1
1 ⊗ · · · ⊗ X1

k−1 ⊗ X0
k ⊗ X1

k+1 ⊗ · · · ⊗ X1
n .

The following is then the general analogue of the results on pushout-products of
the previous section. The proof is analogous, we will omit it here.

Proposition 4.34 Let X0
k
→ X1

k
be normal monomorphisms between dendroidal

sets, for k = 1, . . . , n. Then the pushout-product map

lim
−−→

X− → X1
1 ⊗ · · · ⊗ X1

n

is again a normal monomorphism in each of the following three cases:

(i) All but one of the X1
k
are simplicial.

(ii) All X1
k
are open (and hence all X0

k
are as well).

(iii) All X i
k
are closed.

Historical Notes

The construction of a tensor product of dendroidal sets from the Boardman–Vogt
tensor product of operads is already contained in the original papers [116, 117].
However, several aspects were at first overlooked. A correct description of the be-
haviour of the tensor product with respect to normal monomorphisms first appears
in [43]. This aspect is discussed systematically in [80], where the weak form of
associativity that the tensor product of dendroidal sets satisfies is also made explicit.
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Chapter 5
Kan Conditions for Simplicial Sets

In this chapter we will define several important classes of simplicial sets and of
maps between simplicial sets by extension and lifting conditions. These include the
classical notions of Kan complexes and Kan fibrations, as well as the notion of inner
Kan complex (or∞-category). Kan complexes and Kan fibrations play a central role
in homotopy theory and will therefore be of fundamental importance in Part II of
this book. These concepts extend to the theory dendroidal sets, as we will explain
in the next chapter. However, the necessary combinatorics in that case will be more
involved. The current chapter serves as an introduction to and blueprint for these
more general results, but is more accessible to the uninitiated reader. Those readers
familiar with the classical notions of fibrations between simplicial sets and the basics
of the theory of∞-categories might wish to only glance over this chapter and proceed
to the next.

5.1 Kan Complexes and∞-Categories

Important examples of simplicial sets are obtained by applying the singular complex
functor (adjoint to geometric realization)

Sing : Top→ sSets

to a topological space or by applying the nerve functor (adjoint to τ)

N : Cat→ sSets

to a small category. The simplicial sets thus obtained have special ‘extension’ prop-
erties, which we will make explicit in this section. To this end we define the horn
Λk[n], for any n > 0 and 0 ≤ k ≤ n. It is the subobject of the n-simplex ∆[n] given
by the union of all the faces of ∆[n] containing the vertex k (equivalently, the union
of all the faces except the one given by ∂k : ∆[n−1] → ∆[n]). It is a simplicial subset
of the boundary ∂∆[n], which is the union of all faces of ∆[n]. These simplicial sets
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are described by

Λ
k[n]p = {α : [p] → [n] | ∃i , k : i < im(α)},

∂∆[n]p = {α : [p] → [n] | ∃i : i < im(α)}.

Λ2
0 Λ2

1 Λ2
2

0 2

1

0 2

1

0 2

1

Definition 5.1 A simplicial set X is a Kan complex if any map Λk[n] → X admits
an extension to a map ∆[n] → X , for any n > 0 and 0 ≤ k ≤ n. In a diagram:

Λk[n] X .

∆[n]

A simplicial set X is called an∞-category or an inner Kan complex if it satisfies this
condition only for 0 < k < n.

The horns Λk[n] for 0 < k < n are called the inner horns of the n-simplex. The
extensions which the preceding definition asks for need not be unique. If they are,
one calls X a strict (inner) Kan complex. Later in this section we will explain that an
inner Kan complex is a kind of ‘weak’ category, thus providing some justification
for the use of the term∞-category.

Example 5.2 (a) If T is a topological space, then its singular complex Sing(T) is a
Kan complex. Indeed, by adjunction, an extension problem on the left corresponds
to one on the right:

Λk[n] Sing(T) | Λk[n] | X .

∆[n] | ∆[n] |

A dashed arrow making the diagram on the right commute always exists, since the
inclusion |Λk[n]| ⊆ |∆[n]| = ∆n admits a retraction (even a deformation retraction).

(b) If C is a small category, its nerve NC is a strict inner Kan complex. Using
the left adjoint τ : sSets → Cat, this follows as in the previous example because
for 0 < k < n the functor τ maps the inclusion Λk[n] → ∆[n] to an isomorphism
of categories. To see this, note first that for any simplicial set X the generators and
relations of τ(X) are contained in sk2X . Since Λk[n] contains all the 2-simplices of
∆[n] if n ≥ 4, it is clear that τ(Λk[n]) → τ(∆[n]) is an isomorphism in those cases
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(just as τ(∂∆[n]) → τ(∆[n]) is for n ≥ 3). Thus, we only need to check the cases
n = 2, k = 1 and n = 3, k = 1 or k = 2. For the first one, simply observe that

τ(∆[2]) = [2] = (0→ 1→ 2)

is the pushout in Cat of 0→ 1 and 1→ 2 along their common object 1, which is by
definition τ(Λ1[2]). For the second case, note that τ(Λ1[3]) is the category generated
by arrows αji : i → j for 0 ≤ i < j ≤ 3 subject to the relations α21α10 = α20,
α32α21 = α31, and α31α10 = α30. It follows that the relation α32α20 = α30 also holds
and that this category is simply isomorphic to [3]. The case τ(Λ2[3]) is of course
similar.

In fact, the property described in (b) above characterizes the nerves of categories
among simplicial sets:

Proposition 5.3 For a simplicial set X , the following are equivalent:

(i) X is a strict inner Kan complex.
(ii) For each n ≥ 2, the map

Xn → X1 ×X0 · · · ×X0 X1

induced by the morphisms [1]
(i−1,i)
−−−−−→ [n] for i = 1, . . . , n is an isomorphism.

(iii) X is isomorphic to NC for some small category C.
(iv) The unit X → Nτ(X) is an isomorphism.

Proof We will postpone the proof of the implication (i)⇒ (ii) to Section 5.4 (see
Remark 5.33), but all the others are elementary. Suppose X satisfies (ii). Then for
any pair of 1-simplices a, b ∈ X1 with d0a = d1b, depicted as

x0
a
−→ x1

b
−→ x2

there is a unique 2-simplex e with d2e = a and d0e = b,

x0 x1

x2.

a

b

We define b ◦ a = d1e. It is readily checked that this makes X1 into the set of arrows
of a category C with X0 as its set of objects. The associativity of composition follows
by applying property (ii) for n = 3, where it shows that given 1-simplices

x0
a
−→ x1

b
−→ x2

c
−→ x3,

there is a unique 3-simplex f with edges a, b, c, and the various compositions formed
out of them. Consider for this category C the diagram
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Xn NCn

X1 ×X0 · · · ×X0 X1 ar(C) ×ob(C) · · · ×ob(C) ar(C).

The bottommap is an isomorphism for any n ≥ 1 by definition of C and the left-hand
map is an isomorphism by hypothesis. Hence the top map is an isomorphism as well,
showing that X � NC. (The category constructed here is actually τ(X), as will be
clear from what follows.) Now assume X satisfies (iii), i.e., X � NC. Since the
nerve functor is fully faithful, the counit τNC ε

−→ C is an isomorphism. But then the
triangle identity

NC NτNC

NC

Nε

shows that the unit NC → NτNC is an isomorphism, so that the same is true of
X → NτX . Finally, the implication (iv)⇒ (i) is Example 5.2(b) above. �

The previous proposition suggests thinking of an ∞-category as some kind of
‘weak’ category, where compositions exist but are not necessarily unique. They are
unique ‘up to homotopy’ however, in the following sense. Let x0

a
−→ x1 and x1

b
−→ x2

be two 1-simplices in an ∞-category X , compatible in the sense that d0a = d1b
as indicated. Then a 2-simplex e as follows defines some choice of composition
γ = d1e:

x0 x1

x2.

γ

a

b

If f is another such 2-simplex with d0 f = b and d2 f = a, defining another composi-
tion δ = d1 f , then γ and δ fit into a 2-simplex h with a degenerate face d0h = s1x2,

x0 x2

x2.

γ

δ

Such a 2-simplex can be obtained by first ‘filling’ the horn Λ1[3] → ∆[3] depicted
as

x0

x1

x2 x2

γ δ

a

b b
s0b
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and taking the face of the resulting 3-simplex opposite x1.
We will return to this homotopy relation at the end of this section. But first let

us make the following observation. The nerve of a category is a strict inner Kan
complex as we have seen, but it is rarely a Kan complex.

Proposition 5.4 Let C be a small category. Then NC is a Kan complex if and only
if C is a groupoid.

Proof Suppose NC is a Kan complex and let f : c→ d be a morphism in C. Then
filling the horns Λi[2] → NC for i = 0, 2 depicted as

c d d c

c d

f

shows that f has both a left and a right inverse in C, hence is an isomorphism. Since
f was arbitrary, C is a groupoid. The fact that NC is also a strict Kan complex
follows easily from the uniqueness of inverses. Now suppose C is a groupoid. To see
that NC is a Kan complex, consider a horn filling problem

Λk[n] NC.

∆[n]

We already know a unique filling exists for 0 < k < n. Moreover, for n ≥ 4 there
is nothing to prove since τ maps Λk[n] → ∆[n] to an isomorphism, as observed
before. Moreover, for n = 2, k = 0, 2, inverses in C provide fillings (see the diagrams
above), while for n = 1 identity morphisms provide the relevant fillings. Thus, the
only remaining cases are n = 3, k = 0 and k = 3. For the first of these, this means
that given a diagram

x0

x1

x2 x3

a

b

c

in C in which all faces commute except possibly the bottom one, in fact the bottom
one commutes as well. This is indeed the case if a is an isomorphism (in fact, being
an epimorphism suffices). The case k = 3 is similar. �

In this book another important source of examples of ∞-categories is the
homotopy-coherent nerve construction. It provides further motivation for thinking
of∞-categories as a generalization of the concept of category.
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Proposition 5.5 Suppose C is a simplicial category for which C(x, y) is a Kan
complex, for every two objects x, y ∈ C. Then its homotopy-coherent nerve w∗C is
an∞-category.

We postpone the proof of this proposition to Section 6.1, where we prove a more
general version for simplicial operads and dendroidal sets.

We conclude this section with a discussion of the category τ(X) generated by
an ∞-category X . We will sometimes also refer to τ(X) as the homotopy category
of X . For a general simplicial set X , the category τ(X) is hard to control, since it
is only defined by generators and relations. But if X is an inner Kan complex the
category τ(X) is much easier to describe. Indeed, if X has fillers for inner horns,
we construct a category τ1(X) as follows. The objects of τ1(X) are the vertices of X
(like for τ(X)). The arrows x → y in τ1(X) are equivalence classes of 1-simplices f
with d0 f = y and d1 f = x, where two such 1-simplices f and f ′ are declared to be
equivalent if there exists a 2-simplex e ∈ X2 with d2e = f , d1e = f ′ and d0e = s0y,
the degenerate 1-simplex on the vertex y:

y

x y.
f ′

f

Writing [ f ] for the equivalence class of f , the composition of two arrows [ f ] : x → y

and [g] : y → z is defined to be [h] : x → z, where h = d1b for any 2-simplex b
with d2b = f and d0b = g. One can think of this 2-simplex b as a ‘witness’ to the
fact that z is a composition of the arrows g and f .

Lemma 5.6 (i) The relation just defined is an equivalence relation.
(ii) Two 1-simplices f and f ′ as above are equivalent if and only if there exists a

2-simplex b ∈ X2 with d1b = f , d0b = f ′, and d2b = s0x:

x

x y.

f ′

f

(iii) The composition described above is well-defined on equivalence classes.
(iv) The evident functor τ1(X) → τ(X) is an isomorphism of categories (and we will

no longer distinguish them in notation).

Proof The proofs are all elementary horn filling diagrams, which nicely illustrate
the use of the inner Kan condition.

(i) Reflexivity of the relation is witnessed by the degenerate 2-simplex b = s1 f .
To see that the given relation is transitive, suppose we are given 2-simplices a and b
with common inner face d1a = d1b = f ′ as pictured below:
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y

x y

y.

f

f ′

f ′′

Together with a degenerate simplex on ∂0∆[3], these define a mapΛ2[3] → X . Then
picking an extension α : ∆[3] → X and considering the face d2α shows that f ∼ f ′′.
Finally, the relation is symmetric: given a 2-simplex e witnessing the relation f ∼ f ′,
define a map h : Λ1[3] → X which is e on the face opposite the third vertex and
degenerate opposite the vertices 0 and 2 (as in the picture below). Then the face
d1k of an extension k : ∆[3] → X witnesses the symmetry (for clarity we label the
vertices by the objects of [3] rather than x and y):

0

1

2 3

f ′ f

f

(ii) Suppose we are given a 2-simplex e witnessing f ∼ f ′ as above. Then
construct a map Λ2[3] → X

0

1

2 3

f f

f f ′

which is e on the bottom face ∂0∆[3], degenerate s0 f on the face ∂3∆[3] and
degenerate s1 f on the front face ∂1∆[3]. Then the face d2k of a filler k : ∆[3] → X
shows that f and f ′ are related as in the statement of (ii). The converse direction can
be proved by a very similar argument.

(iii) Suppose g ∼ g′ : y → z are two equivalent 1-simplices (with the equivalence
witnessed by a 2-simplex a) and f : x → y is another 1-simplex. If b and c are
2-simplices ‘witnessing’ compositions g ◦ f and g′ ◦ f as in
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0

1

2 3

g◦ f g′◦ f

f

g g′

then a, b, and c together define a map Λ1[3] → X , and the d1 face of an extension
shows g ◦ f ∼ g′ ◦ f , as in the picture. A similar tetrahedron, now using (ii) of the
lemma, applies to show that composition is well-defined on equivalence classes in
the other variable. Moreover, this proves that composition does not depend on the
choice of a 2-simplex (b and c in the diagram above). It is now clear that degenerate
1-simplices act as units for the composition. Finally, to see that composition is
associative, one fills a horn of the form

0

1

2 3

gf h(gf )

f

g hg

h

by taking a 2-simplex for a composition g f on the face d3∆[3], a 2-simplex for a
composition hg on the face d0∆[3], and finally a 2-simplex for a composition of the
1-simplices h and g f on the face d1∆[3]. Together this defines a mapΛ2[3] → ∆[3],
and d2 of an extension gives a 2-simplex equating [h(g f )] with the composition of
[hg] and [ f ].

(iv) Clearly the relations defining τ1(X) are contained in those defining τ(X), so
there is a quotient map τ1(X) → τ(X) which is the identity on objects (the vertices
of X) and on generators for the arrows (the 1-simplices of X). On the other hand,
now that we know τ1(X) is a well-defined category, the universal property of τ(X)
gives a functor τ(X) → τ1(X) satisfying the same properties, so that these must be
each other’s inverse. �

5.2 Fibrations Between Simplicial Sets

The extension conditions defining Kan complexes and ∞-categories can be gener-
alized to morphisms between simplicial sets. This generalization will also help us
to better understand the properties of (inner) Kan complexes themselves, as we will
see. First we refine our terminology for horns.
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Definition 5.7 An inclusion Λk[n] → ∆[n] of simplicial sets is called a horn for
0 ≤ k ≤ n, an inner horn for 0 < k < n, a left horn for 0 ≤ k < n, and a right horn
for 0 < k ≤ n.

Definition 5.8 A morphism Y → X between simplicial sets is said to be

– aKan fibration if it has the right lifting property with respect to all horn inclusions,
– a left fibration if it has the right lifting property with respect to all left horn
inclusions,

– a right fibration if it has the right lifting property with respect to all right horn
inclusions,

– an inner fibration if it has the right lifting property with respect to all inner horn
inclusions.

We record the following properties of these fibrations, which are immediate from
their definitions.

Lemma 5.9 A composition of Kan fibrations, a pullback of a Kan fibration, or a
retract of a Kan fibration is again a Kan fibration. The analogous statements hold
for left, right, and inner fibrations.

Example 5.10 (a) A simplicial set X is a Kan complex if and only if the unique map
X → ∆[0] is a Kan fibration, and an ∞-category if and only if that map is an inner
fibration.

(b) We will see later that if the map X → ∆[0] is a left or right fibration, it is
automatically a Kan fibration (more generally, this is true for any map X → K with
K a Kan complex). This explains why left or right horns did not feature explicitly in
the previous section.

Example 5.11 For a map T → S between topological spaces, the map Sing(T) →
Sing(S) is a Kan fibration if and only if T → S is a Serre fibration. Indeed, by
adjunction there is a correspondence between lifting problems

Λk[n] Sing(T) | Λk[n] | T

∆[n] Sing(S) | ∆[n] | S.

and the right-hand one essentially defines Serre fibrations (see Section 7.2). We will
come back to the relation between Kan and Serre fibrations in much more detail in
Chapter 8, also investigating the effect of geometric realization on a Kan fibration.

Example 5.12 Recall that the nerve NC of a small category C is a strict inner Kan
complex, and a Kan complex if and only if C is a groupoid. One can ask for a
functor p : D → C when the corresponding map of simplicial sets ND → NC is
a fibration of some sort. It follows easily from the uniqueness of inner horn fillings
that ND→ NC is always an inner fibration.
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The property of ND → NC being a right fibration is related to the classical
notion of a fibred category, which is defined in terms of cartesian arrows. Let us
fix an arrow f : c′ → c in C. An arrow g : d ′ → d in D with p(g) = f is said
to be a cartesian lift of f if for any arrow h : d ′′ → d in D and any factorization
p(h) = f ◦ f ′ in C, there is a unique arrow g′ : d ′′ → d ′ in D with g ◦ g′ = h and
p(g′) = f . In a picture:

d ′′ c′′

d ′ d c′ c.

hg′ f ′
p(h)

g f

The functor p : D→ C is called a fibred category if for any arrow f : c′ → c in C
and any object d of D with p(d) = c, a cartesian lift g of f exists. The fibre p−1(c) of
p over an object c is by definition the subcategory of D given by all arrows mapped
by p to the identity of c. If each fibre is a groupoid, then p : D → C is called a
category fibred in groupoids. In a category fibred in groupoids any arrow of D is in
fact cartesian, as one easily verifies by noting that it is related to a cartesian arrow
via an isomorphism. Conversely, the reader may like to check that a fibred category
in which every arrow of D is cartesian is fibred in groupoids.

We claim that for a functor p : D→ C, the map ND→ NC is a right fibration if
and only if p is such a category fibred in groupoids. Indeed, assume ND→ NC is a
right fibration. Then for any object c in C so is its pullback

N(p−1c) ND

∆[0] NC.c

As in the proof of Proposition 5.4, using the right lifting property with respect to horn
inclusions Λ2[2] → ∆[2], it follows that every arrow in p−1(c) has a right inverse,
which implies that p−1(c) is a groupoid. (To see this, note that each such right inverse
has itself a right inverse, hence is an isomorphism.) Next, let us consider a lifting
problem

Λn[n] ND

∆[n] NC.

Since we are dealing with nerves of categories, this problem is only interesting for
n ≤ 3 as noted before. For n = 1, to solve such a lifting problem one should provide,
given an arrow f : c′ → c in C and a lift d ∈ D of c, an arrow g : d ′ → d in D
lifting f . For n = 2 one is given a commutative triangle in C
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c′′

c′ c

and a partial lift to a diagram in D (without the dashed arrow)

d ′′

d ′ d.

f h

g

Solving the lifting problem amounts to providing the dashed arrow so that the
resulting triangle commutes and projects to the given diagram in C under p. To
conclude that the arrows ofD are cartesian, we still have to settle the uniqueness of the
dashed arrow f above. Suppose we have another candidate f ′ for this factorization.
Then we consider the map Λ3[3] → ND depicted by

d ′′

d ′

d ′ d.

f h

f ′

g

g

A lift in
Λ3[3] ND

∆[3] NC

proves that the left triangle in the previous diagram commutes, giving the desired
uniqueness. This concludes the proof that p : D → C is a category fibred in
groupoids.

Conversely, if p : D → C is a category fibred in groupoids, we should argue
that Np is a right fibration. Indeed, we already observed it is an inner fibration,
so we only need to check the right lifting property with respect to horn inclusions
Λn[n] → ∆[n] for 1 ≤ n ≤ 3. For n = 1, 2 this is clear from the discussion above.
For n = 3, we should check that in a diagram in D of shape
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0

1

2 3.

with the property that all faces except the one opposite the vertex 3 commute, that
last one has to commute as well. This property follows from the uniqueness condition
in the definition of a fibred category.

Properties like the one discussed for right fibrations in the last example of course
have dual versions for left fibrations. More generally, if X is an arbitrary simplicial
set, one can define its opposite as the composition

∆op ∆op

Sets,

revop

Xop X

where rev : ∆→ ∆ is the functor which reverses a linear order. When we view linear
orders as categories, then rev is the functor sending a category to its opposite. For
∆, this functor is the identity on objects, but acts on an arrow α : [n] → [m] by

rev(α)(i) = m − α(n − i) for i = 0, . . . , n.

If X is the nerve of a category, the notion of opposite simplicial set corresponds to
the usual opposite of a category, i.e.,

(NC)op = N(Cop).

For an∞-category X the opposite Xop is again an∞-category, which we refer to as
the opposite∞-category. More generally, (−)op preserves inner fibrations, and turns
left fibrations into right fibrations (and vice versa). Thus, many properties of left
fibrations automatically transfer to properties of right fibrations by applying them to
opposites.

We conclude this section with a different, much more restrictive notion of fibra-
tion.

Definition 5.13 A morphism Y → X between simplicial sets is called a trivial
fibration if it has the right lifting property with respect to the boundary inclusion
∂∆[n] → ∆[n] for each n ≥ 0. A simplicial set Y is called an acyclic Kan complex
if Y → ∆[0] is a trivial fibration.

We will have ample occasion to discuss the properties of trivial fibrations later in
this book. For now, we limit ourselves to stating the relation to Kan fibrations and
considering examples analogous to the ones above.
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Lemma 5.14 A trivial fibration is also a Kan fibration.

In particular, this lemma implies that if Y → ∆[0] is a trivial fibration, then Y is
a Kan complex, justifying the terminology ‘acyclic Kan complex’ in the definition
above.

Proof The lemma follows from the fact that any monomorphism between simplicial
sets, in particular any horn inclusionΛk[n] → ∆[n], can be written as a composition
of pushouts of boundary inclusions of simplices. (In fact, the reader is invited to
check that a composition of two such morphisms suffices for a horn.) �

Example 5.15 (a) Let f : T → S be a Serre fibration between topological spaces.
Then Sing(T) → Sing(S) is a Kan fibration as we observed. It is a trivial fibration if
and only ifT → S has the left lifting property with respect to any boundary inclusion
∂∆n → ∆n of a topological simplex. This condition is equivalent to the condition
that f induces an isomorphism π0T → π0S, as well as isomorphisms of homotopy
groups πn(T, t0) → πn(T, f (t0)) for any n ≥ 0 and any choice of basepoint t0 ∈ T . In
other words, Sing( f ) is a trivial fibration if and only if f is a Serre fibration which
is in addition a weak homotopy equivalence.

(b) Let C be a category. Then NC is an acyclic Kan complex if and only if
C is a non-empty contractible groupoid, i.e., a groupoid with the property that
there is a unique morphism between any two objects. A functor D → C defines a
trivial fibration ND → NC if and only if it is a category fibred in such non-empty
contractible groupoids. We leave it to the reader to verify that such a functor is
precisely an equivalence of categories which is also surjective on objects.

5.3 Saturated Classes and Anodyne Morphisms

If Y → X is a fibration of some kind (Kan, inner, left, right) then the defining
right lifting property of Y → X with respect to certain horns implies that it has the
right lifting property with respect to many more morphisms. We will state this using
saturated classes, which we already introduced in Section 3.7. Recall that a class of
morphisms is saturated if it is closed under pushouts, transfinite composition and
retracts. If F is a class of morphisms, then the class of morphisms A having the left
lifting property with respect to F is saturated (Lemma 3.33). Of course, this result
has dual version for classes of morphisms defined by having the right lifting property
with respect to a given collection of morphisms. For the various classes of fibrations
considered before, this was essentially already noted in Lemma 5.9.

Definition 5.16 An anodyne morphism of simplicial sets is a morphism having the
left lifting property with respect to all Kan fibrations. Similarly, an inner, left, or
right anodyne morphism is a morphism having the left lifting property with respect
to inner, left, or right fibrations, respectively.
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Thus the class of inner anodyne morphisms in particular contains all inner horn
inclusions Λk[n] → ∆[n], 0 < k < n, and similarly for the other kinds of anodynes.
Lemma 3.33 implies the following:

Lemma 5.17 The class of (inner, left, right) anodyne morphisms is saturated.

Showing that a given morphism is anodyne is often not accomplished by check-
ing the defining left lifting property, but rather by building it from simple kinds
of anodynes, such as horn inclusions. This is similar to how we described a gen-
eral monomorphism of simplicial sets as a composition of pushouts of boundary
inclusions of simplices, using skeletal filtration.

Definition 5.18 Let I be a class of morphisms. Then a morphism f is I-cellular if it
is a transfinite composition of pushouts of elements of I.

Note that if I is the set of horn inclusions Λk[n] → ∆[n], then an I-cellular map
is in particular an anodyne map. A similar statement applies to maps which are
cellular with respect to inner, left, or right horns and inner, left, or right anodynes
respectively. Using the small object argument (as described in Remark 3.38) we
immediately have the following analogue of a result in Section 3.7.

Lemma 5.19 Let I be the set of all horn inclusions Λk[n] → ∆[n]. Then any mor-
phism f : X → Y of simplicial sets can be factored as

X
i
−→ Z

p
−→ Y,

with i an I-cellular map and p a Kan fibration. The analogous statement is true for
inner, left, or right horns and inner, left, or right fibrations respectively.

Lemma 5.20 Amap f : A→ B of simplicial sets is anodyne if and only it is a retract
of an I-cellular map, with I the set of horn inclusions Λk[n] → ∆[n]. Similarly it is
inner, left, or right anodyne if and only if it is a retract of a map which is cellular
with respect to inner, left, or right horn inclusions respectively.

Proof We repeat the argument of Lemma 3.39, using Lemma 5.19 to obtain the
relevant factorizations. If f is anodyne, factor it into an I-cellular map followed by
a Kan fibration:

A
i
−→ X

p
−→ B.

Then one picks a lift as indicated by the dashed arrow in the following square, which
exists by the assumption on f :

A X

B B.

i

f p

It follows that f is a retract of i. Conversely, any retract of an I-cellular map is
anodyne because the class of anodynes is saturated. �
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We can now characterize the (inner, left, or right) anodyne maps in the following
way:

Corollary 5.21 The class of (inner, left, or right) anodyne maps is the smallest
saturated class containing the (inner, left, or right) horn inclusions.

Proof The smallest saturated class containing a given collection of morphisms I
must at least contain all retracts of I-cellular maps, so the statement is immediate
from the preceding lemma. �

For this reason, we will sometimes refer to the class of (inner, left, or right)
anodynes as the saturation of the class of (inner, left, or right) horn inclusions. The
reader should note that the arguments above have little to do with the specifics of
horn inclusions, or even simplicial sets. Indeed, they apply to a general collection
of morphisms I as long as it ‘admits the small object argument’, meaning that a
statement like Lemma 5.19 applies.

In the remainder of this section we give some examples of anodyne morphisms
of various kinds. For the first example, let us write (0↔ 1) for the groupoid of two
objects and one isomorphism between them, and

J = N(0↔ 1)

for its nerve. The arrow 0 → 1 in this groupoid defines a morphism of simplicial
sets ∆[1] → J.

Proposition 5.22 The morphism ∆[1] → J is both left and right anodyne.

Proof A non-degenerate n-simplex of J i s a sequence of non-identity morphisms
like

0→ 1→ 0→ · · · → 0→ 1.

There are four types of such, depending on whether the sequence starts or ends with
0 or with 1. Any such simplex is obviously a face of one that starts with 0. So if we
let B(n) ⊆ J be the simplicial subset generated by the non-degenerate k-simplices
starting with 0, for k ≤ n, then J is the colimit of the sequence of inclusions

∆[1] = B(1) ⊆ B(2) ⊆ B(3) ⊆ · · · .

Furthermore, B(n−1) ⊆ B(n) fits into a pushout of the form

Λ0[n] B(n−1)

∆[n] B(n).
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Indeed, for the non-degenerate n-simplex starting with 0 (i.e., (0 → 1 → · · · → 0)
for n even and (0 → 1 → · · · → 1) for n odd), all its inner faces are degeneracies
of shorter sequences starting with a 0, as is its last face. Moreover, its initial face
(1 → 0 → · · · → 0) or (1 → 0 → · · · → 1) cannot belong to B(n−1). This proves
that ∆[1] → J is left anodyne.

One can of course prove in the same way that ∆[1] → J is right anodyne, now
adjoining sequences starting with 1. Alternatively, one uses that (−)op turns left
anodyne maps into right anodynes and considers the square

∆[1]op Jop

∆[1] J .

� �

�

For our next example, as well as for other instances of anodyne maps considered
later, the following lemma will be very useful.

Lemma 5.23 Let E ⊂ {0, . . . , n} be a non-empty subset and let ΛE [n] ⊆ ∆[n] be
the union of all the faces ∂i∆[n] for i not in E; or, to put it more positively, the union
of those faces containing all the vertices in E . Then

(i) ΛE [n] → ∆[n] is an anodyne morphism,
(ii) ΛE [n] → ∆[n] is inner anodyne if E ⊆ {1, . . . , n − 1},
(iii) ΛE [n] → ∆[n] is left anodyne if E ⊆ {0, . . . , n − 1},
(iv) ΛE [n] → ∆[n] is right anodyne if E ⊆ {1, . . . , n}.

Proof Let us prove case (ii). Note that n ≥ 2 in that case. If n = 2 and E = {1} the
lemma is tautologically true, since the inclusion in question is Λ1[2] → ∆[2]. We
proceed by induction on n as well as on the number of elements in E . For larger E ,
write E = E0 ∪ {e}, so that we have a pushout

∂e∆[n] ∩ ΛE [n] ∂e∆[n]

ΛE [n] ΛE0 [n].

Now notice that ∂e∆[n] ∩ ΛE [n] → ∂e∆[n] is the inclusion of the union of all the
images of the maps α : ∆[k] → ∆[n] where α misses e as well as some element not
in E . In other words, there are isomorphisms

∂e∆[n] ∩ ΛE [n] ΛE0 [n − 1]

∂e∆[n] ∆[n − 1],

�

�
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where we identify E0 with its preimage under ∂e : [n − 1] → [n]. Thus, the top map
in the previous square is inner anodyne by the induction hypothesis, and therefore
so is the bottom map. Since inner anodyne maps are closed under composition, we
conclude that ΛE [n] → ΛE0 [n] → ∆[n] is inner anodyne.

The proofs of the other cases are similar. For instance, in case (iii) one observes
that in the argument above, if e , n then ∂e(n − 1) = n. And for case (iv) one notes
that if e , 0 then ∂e(0) = 0. �

We will need the following to recognize the kinds of inclusions occurring in the
previous lemma:

Lemma 5.24 Consider a simplicial subset A ⊆ ∆[n]. Suppose A is not equal to ∆[n]
or ∂∆[n] and satisfies the following condition: if F1, . . . , Fk are codimension 1 faces
of ∆[n] not contained in A, then also

F1 ∩ · · · ∩ Fk * A.

Then A is equal to ΛE [n] for some nonempty subset E ⊆ {0, . . . , n}.

Proof Consider a non-degenerate m-simplex ξ : ∆[m] → A. It suffices to show that
there exists a face ∂i∆[n] so that ∂i∆[n] ⊆ A and ξ is contained in ∂i∆[n]. Indeed, it
would then follow that A is a union of codimension one faces of ∆[n] and since we
assumed A is not ∂∆[n], it must be of the form ΛE [n]. So let us write i0, . . . , in−m−1
for the vertices of ∆[n] which are not in the image of the inclusion

∆[m]
ξ
−→ A→ ∆[n].

Then the image of ξ is the intersection

∂i0∆[n] ∩ · · · ∩ ∂in−m−1∆[n].

One of these faces has to be contained in A, because otherwise our hypothesis would
be violated. �

For our next and last example in this section, consider a small category C and
two objects a and b in C. Suppose we wish to freely adjoin a new arrow f : a → b
to get a new category C[ f ]. This category is the pushout

{0, 1} C

(0→ 1) C[ f ]

in the category Cat of small categories. It has the same objects as C, but potentially
many more arrows: the arrows in C[ f ] are all possible compositions of old arrows
of C and the new arrow f (including compositions of f with itself if a = b). On the
other hand, the analogous pushout in simplicial sets
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∂∆[1] NC

∆[1] (NC)[ f ]

is simple to understand: besides the simplices in NC it contains just one new non-
degenerate 1-simplex, namely f . Of course this difference is to be expected, because
there is no reason why the right adjoint nerve functor should preserve pushouts.
However, it does preserve this pushout (and similar ones) ‘up to inner anodyne
morphisms’:

Proposition 5.25 The canonical morphism (NC)[ f ] → N(C[ f ]) is inner anodyne.

Proof Morphisms in C[ f ] are composites of the form

g1 f g2 f g3 f · · · f gn,

with all the gi morphisms in C. Let us call a morphism elementary if it is a morphism
in C, or just f . Let us call an n-simplex

c0 → c1 → · · · → cn

in N(C[ f ]) elementary if all its constituent arrows ci → ci+1 are elementary. Then
any simplex in N(C[ f ]) is a face of an elementary simplex, because the morphisms
of C[ f ] are generated by elementary morphisms. Each non-degenerate elementary
simplex has a certain number of occurrences of f which we call the height of the
simplex. Let us write

A(k) ⊆ N(C[ f ])

for the simplicial subset generated by N(C)[ f ] together with the non-degenerate
elementary simplices of height at most k. Thus A(0) = (NC)[ f ] and N(C[ f ]) =
∪k A(k), so it suffices to prove that each

A(k) → A(k+1)

is inner anodyne. Write

A(k) = A(k+1)
0 ⊆ A(k+1)

1 ⊆ · · ·

where A(k+1)
n ⊆ N(C[ f ]) is generated by A(k) together with all non-degenerate

elementary simplices of dimension n and height k + 1. Thus⋃
n

A(k+1)
n = A(k+1) and A(k+1)

n = A(k) for n ≤ k .

We claim that for each n > k the map A(k+1)
n−1 → A(k+1)

n is inner anodyne. To see this,
list the non-degenerate elementary n-simplices ξ of height exactly k + 1. For a given
one
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ξ = (c0
g1
−−→ c1

g2
−−→ · · ·

gn
−−→ cn)

with k + 1 of the gi equal to f , its outer faces d0ξ and dnξ are still elementary,
so belong to A(k+1)

n−1 . Also, inner faces diξ for which neither gi nor gi+1 is f are
elementary, so belong to A(k+1)

n−1 as well. However, an inner face diξ for which one
or both of gi and gi+1 equal f is not elementary, and it cannot be a face of a non-
degenerate elementary n-simplex of height k + 1 other than ξ itself, nor a face of
a simplex in A(k) of course, because the k + 1 occurrences of f are still there. The
same reasoning applies to intersections of these particular kinds of inner faces diξ,
showing that they are not contained in A(k+1)

n−1 . Thus Lemma 5.24 applies to show that
the following square is a pullback as well as a pushout,∐

ξ Λ
Eξ [n] A(k+1)

n−1

∐
ξ ∆[n] A(k+1)

n ,

in which the disjoint union ranges over all the non-degenerate elementary n-simplices
ξ of height k +1. Here we define for each such ξ the set Eξ ⊆ {1, . . . , n−1} to be the
set of those i for which at least one of gi , gi+1 is f . This shows that A(k+1)

n−1 → A(k+1)
n

is inner anodyne, and hence so is the infinite composition

A(k+1)
0 = A(k) → A(k+1) =

⋃
n

A(k+1)
n .

This completes the proof. �

5.4 Products, Joins, and Spines of Simplices

In this section we will investigate the behaviour of anodyne morphisms (possibly in-
ner, left, or right) with respect to the formation of products and joins of simplices, and
analyze the spine of a simplex from the point of view of inner anodyne morphisms.
The latter analysis will also help to complete the proof of Proposition 5.3.

We begin with products. Recall from Section 2.5 that a product ∆[n] × ∆[m] of
two simplices is itself a union of (n + m)-simplices

∆[n] × ∆[m] =
⋃
τ

∆[n + m]

where τ ranges over the (n,m)-shuffles. These shuffles are injective maps of linear
orders τ : [n + m] → [n] × [m], which one can think of as ‘staircases’ on an n-by-
m rectangular grid. By considering the horizontal and vertical steps, each shuffle
corresponds to a pair of strictly increasing injective maps
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{1, . . . , n} α
−→ {1, . . . , n + m}

β
←− {1, . . . ,m}

with complementary images. This second perspective connects well with our dis-
cussion of shuffles of trees in Section 4.1. Indeed, as explained there, one can think
of [n] (resp. [m]) as a linear tree with n white vertices (resp. m black vertices), and a
shuffle corresponds to a linear tree with n+m vertices of which n are coloured white
and m are coloured black. One can equip the set of shuffles with a linear order given
by the lexicographic order on the image of α. The minimal object in this linear order
is the shuffle starting with all white vertices and ending with all black vertices, and
vice versa for the maximal object. If a shuffle σ is obtained from another shuffle τ
by shuffling up a black vertex through a white vertex, then τ < σ in this linear order.
Throughout this section we will mostly use this last perspective (trees with black and
white vertices) in our proofs. It facilitates the discussion here and hopefully makes
the step to dendroidal sets in the next chapter transparent.

Combinatorial lemmas like the following (and their analogues for dendroidal sets)
will play a major role in this book.

Lemma 5.26 For 0 < k < n and any m, the inclusion

(Λk[n] × ∆[m]) ∪ (∆[n] × ∂∆[m]) → ∆[n] × ∆[m]

is inner anodyne. Moreover, it is left anodyne for k = 0 and right anodyne for k = n.

Proof Let us write A for the domain of the inclusion in the statement of the lemma.
We will build ∆[n] × ∆[m] out of A by adjoining the shuffles of the product in the
linear order described before the lemma. Consider a shuffle τ and let B ⊆ ∆[n]×∆[m]
be the union of A and all the shuffles – or more precisely, the corresponding copies
of ∆[n + m] ⊆ ∆[n] × ∆[m] – occurring before τ. As explained, we think of τ as
a linear tree with edges {0, . . . , n + m} and vertices coloured black or white (white
corresponding to the first factor ∆[n], black to the second ∆[m]). Consider a face
∂iτ, for 0 ≤ i ≤ n + m. If i = 0, then this face corresponds to chopping off the first
vertex of the linear tree corresponding to τ. If this vertex is white then ∂0τ factors
through ∂0∆[n] × ∆[m], whereas it factors through ∆[n] × ∂0∆[m] if this vertex is
black. Similarly, ∂n+mτ factors through ∂n∆[n] × ∆[m] or ∆[n] × ∂m∆[m]. If ∂iτ is
an inner face, there are various cases to consider:

(i) If i corresponds to an inner edge connecting two white vertices, then ∂iτ is
contained in ∂j∆[n] × ∆[m] for some 0 < j < n.

(ii) If i corresponds to an inner edge connecting two black vertices, then ∂iτ is
contained in ∆[n] × ∂j∆[m] for some 0 < j < m.

(iii) If i corresponds to an inner edge connecting a black vertex to a white vertex
below it, then ∂iτ is also a face of the shuffle τ′ obtained from τ by swapping
these two vertices (i.e., shuffling up the white vertex). But τ′ < τ in the linear
order on shuffles, so ∂iτ is already contained in B.

(iv) If i corresponds to an inner edge connecting a white vertex to a black vertex
below it, then ∂iτ is not contained in B. Indeed, it cannot be contained in A and
also cannot be contained in an earlier shuffle.
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This analysis shows that the faces of τ not yet contained in B are the ones described
in (i) in the case where j = k, as well as the faces described in (iv). Write E for the
collection of these missing faces. Note that all of these are inner faces of τ, at least
in the first case 0 < k < n of the lemma. A similar analysis applies to show that each
intersection of elements of E is also missing, so that we may apply Lemmas 5.23
and 5.24 to conclude the existence of a pushout square

ΛE [n + m] B

∆[n + m] B ∪ τ

in which the vertical map on the left is inner anodyne. Therefore the map on the right
is inner anodyne as well. Once we have dealt with all the shuffles τ in this way, we
have written

A→
⋃
τ

∆[n + m] = ∆[n] × ∆[m]

as a composition of inner anodyne maps, which proves the first part of the lemma.
Applying the same analysis in the case k = 0, we see that the collection E of

missing faces again consists of inner faces and possibly the face ∂0τ (only in case
the shuffle τ starts with a white vertex). In that case one concludes that B → B ∪ τ
is left anodyne. When k = n one concludes it is right anodyne. �

Remark 5.27 For later use, we note that the preceding proof gives slightly more.
In proving that the map of the lemma is left anodyne for k = 0, we used certain
pushouts along left horn inclusions Λ0[n+m] → ∆[n+m]. It will be important that
the ‘initial edge’ ∆[0, 1] of this simplex is mapped to the edge ∆[0, 1] × {0} of the
product ∆[n] × ∆[m]. In particular, it is degenerate in the second factor, but not in
the first. A similar (but dual) comment applies to the case k = n.

Corollary 5.28 For an inner anodyne map i : A → B and a monomorphism j :
M → N , the pushout-product

A × N ∪A×M B × M → B × N

is again inner anodyne. The corresponding statements for left and right anodynes
hold as well.

Proof The previous lemma settles the basic case of pushout-products of inner, left,
or right horn inclusions with boundary inclusions, whereas Lemma 4.23 guarantees
that the class of pairs (i, j) for which this pushout-product property holds is saturated
in both variables. �

Next, we turn to the discussion of joins of simplices and prove a similar (but easier)
lemma for these. The join of two simplices ∆[n] and ∆[m] is denoted ∆[n] ? ∆[m]
and defined by

∆[n]?∆[m] = ∆[n + m + 1],
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where [n +m + 1] is to be thought of as the two linear orders [n] and [m] put next to
one another as

0 < 1 < · · · < n < 0′ < 1′ < · · · < m′.

In this way, ∆[n]?∆[m] comes equipped with obvious inclusions

∆[n] → ∆[n + m + 1] ← ∆[m],

which are moreover natural in n and m. The join operation can be extended to
arbitrary simplicial sets A and B to give a diagram

A→ A? B← B

natural in A and B. This operation is essentially uniquely determined by the property
that it behaves as described above on simplices and that A? (−) and (−)?B preserve
colimits, when viewed as functors from the category sSets to the slice categories
A/sSets and B/sSets respectively. For readers wishing to see a more explicit con-
struction of the join of two simplicial sets, we will return to it in Remark 5.31. For
now, let us observe that

∂i∆[n]?∆[m] = ∂i∆[n + m + 1], 0 ≤ i ≤ n

as simplicial subsets of ∆[n + m + 1] and similarly

∆[n]? ∂j∆[m] = ∂n+1+j∆[n + m + 1], 0 ≤ j ≤ m.

Thus
∂∆[n]?∆[m] =

⋃
i≤n

∂i∆[n + m + 1]

and
∆[n]? ∂∆[m] =

⋃
n< j

∂j∆[n + m + 1],

so that
∂∆[n]?∆[m] ∪ ∆[n]? ∂∆[m] = ∂∆[n + m + 1].

If we take out a face on one side of the join, we observe that for 0 ≤ k ≤ n and
0 ≤ l ≤ m

Λ
k[n]?∆[m] ∪ ∆[n]? ∂∆[m] = Λk[n + m + 1],

∆[n]?Λl[m] ∪ ∂∆[n]?∆[m] = Λn+1+l[n + m + 1].

In particular, we conclude the following:
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Lemma 5.29 For any n,m ≥ 0 and 0 ≤ k ≤ n, the inclusion

Λ
k[n]?∆[m] ∪ ∆[n]? ∂∆[m] → ∆[n]?∆[m]

is always left anodyne and inner anodyne for 0 < k. Similarly, for 0 ≤ l ≤ m the
inclusion

∆[n]?Λl[m] ∪ ∂∆[n]?∆[m] → ∆[n]?∆[m]

is always right anodyne and inner anodyne for l < m.
As with Corollary 5.28 one immediately concludes the following:

Corollary 5.30 For an anodyne map i : A→ B and a monomorphism j : M → N ,
the map

A? N ∪A?M B ? M → B ? N

is left anodyne, and inner anodyne whenever i is right anodyne. Similarly,

M ? B ∪M?A N ? A→ N ? B

is always right anodyne, and inner anodyne whenever i is left anodyne.
Remark 5.31 For two simplicial sets A and B it is not difficult to describe A ? B
explicitly. Indeed, one has the formula

(A? B)k =
∐

p+q=k−1, p,q≥−1
Ap × Bq,

where A−1 and B−1 are interpreted as one-point sets. In other words,

(A? B)k = Ak q Bk q
∐

p+q=k−1, p,q≥0
Ap × Bq .

The simplicial structure of A? B is defined as follows. An element ξ = (ξ1, ξ2) ∈
(A?B)k in particular determines p and q with p+ q = k −1, giving an identification

∆
p ?∆q = ∆k .

A map α : [l] → [k] then defines (by considering the preimages of ∆p and ∆q) a
compatible decomposition ∆p′ ?∆q′ = ∆l and a commutative diagram

∆l ∆k

∆p′ ?∆q′ ∆p ?∆q .

α

α1?α2

The simplex α∗ξ is then the element (α∗1ξ1, α
∗
2ξ2).

As a third and last topic in this section, we will now discuss spines of simplices.
In order to define these, let us introduce the following notation. For the representable
simplicial set ∆[n] and numbers 0 ≤ i0 < · · · < ip ≤ n, we write
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∆[i0, . . . , ip] ⊆ ∆[n]

for the p-dimensional face spanned by the vertices i0, . . . , ip . In other words, it is the
image of the corresponding map ∆[p] → ∆[n]. The spine of ∆[n] is the union of the
successive edges

Sp[n] = ∆[0, 1] ∪ ∆[1, 2] ∪ · · · ∪ ∆[n − 1, n].

In other words, it is the pushout of n copies of ∆[1]:

Sp[n] � ∆[1] ∪∆[0] · · · ∪∆[0] ∆[1].

We also define for each 0 < k < n the grafting of ∆[k] and ∆[n − k] as

Grk[n] = ∆[0, . . . , k] ∪ ∆[k, . . . , n] ⊆ ∆[n].

In other words, it is the pushout

Grk[n] = ∆[k] ∪∆[0] ∆[n − k],

where ∆[0] includes as the final vertex in ∆[k] and the initial vertex in ∆[n− k]. Note
that for n = 2 we have

Λ
1[2] = Sp[2] = Gr1[2].

For n = 3, here is a picture of the spine of a 3-simplex:

0 0

1 −→ 1

2 3 2 3.

Lemma 5.32 For any n and any 0 < k < n, the inclusions

Sp[n] → Grk[n] → ∆[n]

are inner anodyne.

Proof For n = 2 this is clear as pointed out above, since the first two simplicial sets
are equal to Λ1[2]. We proceed by induction on n. Notice that there is a pushout
square

Sp[k] q Sp[n − k] Sp[n]

∆[k] q ∆[n − k] Grk[n].



5.4 Products, Joins, and Spines of Simplices 185

The vertical map on the left is inner anodyne by the inductive hypothesis, so the map
on the right is inner anodyne as well. It remains to prove that each Grk[n] → ∆[n] is
inner anodyne. To this end form a sequence

Grk[n] = A1 ⊆ A2 ⊆ · · · ⊆ An = ∆[n].

Here the simplicial set Ap is the union of all p-dimensional faces of ∆[n] which
contain k as a vertex, together with Grk[n]:

Ap = Grk[n] ∪
⋃

∆[i0, . . . , iq−1, k, iq+1, . . . , ip].

The union is over all 0 ≤ q ≤ p and all sequences 0 ≤ i0 < . . . < ip ≤ n with
iq = k. (Of course the simplices with i0 = k or ip = k are redundant, since they are
already contained in Grk[n].) We claim that Ap−1 → Ap is inner anodyne. Indeed,
if we adjoin to Ap the simplices ∆[i0, . . . , iq−1, k, iq+1, . . . , ip] in the union above one
by one, each time we form a pushout along a map (isomorphic to)

Λ
q[p] → ∆[p],

which is an inner horn inclusion. �

Remark 5.33 For a given simplicial set X , consider the class of monomorphisms
A→ B with the property that any map A→ X extends uniquely to B, i.e., the class
of monomorphisms A→ B for which

Hom(B, X) → Hom(A, X)

is an isomorphism. This class is obviously saturated. So if it contains the inner horn
inclusions Λk[n] → ∆[n], 0 < k < n, then it also contains the spine inclusions
Sp[n] → ∆[n]. This observation proves the implication (i)⇒ (ii) of Proposition 5.3,
which we left open at the time.

It is not true that the saturated class generated by the spine inclusions is the class
of inner anodyne morphisms. However, this can be fixed by enlarging this class
slightly:

Proposition 5.34 Let A be a saturated class of monomorphisms between simplicial
sets which contains all spine inclusions and satisfies the following additional closure
property: if i : A→ B and j : B→ C are monomorphisms such that i and ji are in
A, then j is in A as well. Then the class A contains all inner anodynes.

Proof Since A is saturated it suffices to show it contains all inner horn inclusions
Λk[n] → ∆[n], for 0 < k < n. It will be convenient to prove the slightly more
general claim that each inclusion ΛE [n] → ∆[n] is in A, for E a nonempty subset
of {1, . . . , n − 1}. Consider the inclusions

Sp[n] i
−→ Λ

E [n]
j
−→ ∆[n].
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Then ji is in A by assumption, so it suffices to show that i is in A. Factor i as

Sp[n]
i1
−→ ∆[n − 1, n] ∪ ∂n∆[n]

i2
−→ ∂0∆[n] ∪ ∂n∆[n]

i3
−→ Λ

E [n].

We will show that all three of these maps are in A by induction on n. For n = 2
there is nothing to prove, because they are all identities. For larger n, note that i1 is a
pushout of Sp[n − 1] → ∆[n − 1] � ∂n∆[n] and therefore in A. Also, i2 is a pushout
of

∆[n − 1, n] ∪ ∆[1, . . . , n − 1] → ∆[1, . . . , n] = ∂0∆[n].

This is a map of the form i2 again, but for lower n, and therefore inA by the inductive
hypothesis. Finally, we prove i3 is in A by a further induction on the size of the
complement of E . If E is {1, . . . , n − 1} then i3 is an identity and there is nothing
to prove. Otherwise, pick an element i ∈ {1, . . . , n − 1} which is not contained in E
and write E ′ = E ∪ {i}. The map

∂0∆[n] ∪ ∂n∆[n] → Λ
E′[n]

is in A by the inductive hypothesis. Consider the pushout square

ΛE∂i∆[n] ΛE′[n]

∂i∆[n] ΛE [n].

Here the upper left-hand corner denotes the union of all faces of the (n− 1)-simplex
∂i∆[n] corresponding to elements of {0, . . . , î, . . . , n} not contained in E . Thus, the
left vertical map is (isomorphic to) an inner horn inclusion, so that the right vertical
map is in A. It follows that

∂0∆[n] ∪ ∂n∆[n]
i3
−→ Λ

E [n]

is in A as well. �

5.5 Fibrations Between Mapping Spaces

The classes of fibrations of various kinds (Kan, inner, etc.) enjoy closure properties
dual to those of a saturated class of morphisms, cf. Lemma 5.9. For a different
kind of closure property, dual to the pushout-product property of (inner, left, right)
anodynes, one considers a fibration f : Y → X and a map u : A → B. Then
composition with f and restriction along u together induce a morphism

YB → XB ×XA Y A
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and one can ask whether this is a fibration again. This will involve checking the
right lifting property with respect to certain morphisms C → D. In this context we
observe the following correspondence.

Lemma 5.35 Consider morphisms A → B, C → D and Y → X . Then there is a
bijective correspondence between the following three types of commutative squares
and a diagonal filling (as dashed arrow) exists in one if and only if it exists in the
other two:

(B × C) ∪A×C (A × D) Y

B × D X

C YB A YD

D XB ×XA Y A B XD ×XC YC .

Proof This follows easily from exponential correspondences such as the one between
morphisms D → YB and morphisms B × D → Y , together with the universal
properties of the pullbacks and pushouts involved. �

Of course the argument just given applies equally to a hom-tensor adjunction,
with tensor product not necessarily equal to cartesian product.We can use this lemma
to construct many fibrations from a given one. We summarize this in the following:

Theorem 5.36 Consider two morphisms f : Y → X and i : A→ B and the induced
map

p : YB → XB ×XA Y A.

Suppose Y → X is a fibration of one of the five types considered (Kan, inner, left,
right, or trivial).

(i) If i is a monomorphism, then p is again a fibration of the same type.
(ii) If i is an anodyne morphism of the type corresponding to the fibration f , then p

is a trivial fibration. (Thus, for example, this applies if i is inner anodyne and f
is an inner fibration. The case of f a trivial fibration is already covered by (i).)

Proof The statements are all proved in the same formal way; we just prove (i) and
(ii) for an inner fibration f : Y → X . For (i), we should check that p has the right
lifting property with respect to inner anodyne morphisms j : C → D. By Lemma
5.35, this is the case precisely if f has the right lifting property with respect to the
corresponding morphisms

B × C ∪A×C A × D→ B × D.
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But these are also inner anodyne by Corollary 5.21, so that the conclusion follows
from the fact that f itself is an inner fibration. For (ii) one uses the same argument,
now checking the right lifting property of pwith respect to arbitrarymonomorphisms
j. The pushout-product of j and i is again inner anodyne, this time because j is a
monomorphism and i is inner anodyne. �

We list several special cases of Theorem 5.36.

Corollary 5.37 Suppose f : Y → X is a fibration of one of the five types considered
and B is a simplicial set. Then

p : YB → XB

is a fibration of the same type as f .

Proof This is the case A = �. �

Corollary 5.38 SupposeY is an∞-category (resp. aKan complex) and B a simplicial
set. Then YB is also an∞-category (resp. a Kan complex).

Corollary 5.39 Suppose Y is an ∞-category (resp. a Kan complex) and i : A→ B
a map of simplicial sets.

(i) If i is a monomorphism, then YB → Y A is an inner fibration (resp. a Kan
fibration).

(ii) If i is an inner anodyne (resp. an anodyne), then YB → Y A is a trivial fibration.

Proof This is the case X = ∆[0]. �

We will now run through roughly the same pattern, replacing the product A × B
of simplicial sets by the join A? B. While the functor

A × − : sSets→ sSets

has a right adjoint
(−)A : sSets→ sSets,

the situation for the join is a bit more subtle. Indeed, A? (−) only preserves colimits
as a functor

A? (−) : sSets→ A/sSets,

so its right adjoint is a functor

A/sSets→ sSets,

whose value at an object A
α
−→ X will be denoted Xα/ or simply XA/ when the map

α is left implicit. We call XA/ the slice of X under A (or under α if necessary). By
definition, the n-simplices of XA/ correspond to maps A? ∆[n] → X under A. We
can do the same for the other variable of the join, to obtain a right adjoint to the
functor
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(−)? A : sSets→ A/sSets,

whose value at A
α
−→ X is X/A, the slice of X over A. Note that there are natural

projection maps
XA/ → X ← X/A.

Indeed, since an n-simplex of XA/ corresponds to a map A ? ∆[n] → X , it can
be restricted along the inclusion ∆[n] → A? ∆[n] to give an n-simplex of X . The
map X/A → X is defined similarly. In fact, the construction XA/ (and also X/A) is
contravariantly functorial in A. For a map i : A→ B, one uses precomposition with
A? ∆[n] → B ? ∆[n] to obtain an n-simplex of XA/ from an n-simplex of XB/ and
similarly for X/A and X/B.

Remark 5.40 The terminology slice refers to the construction of slice categories.
Indeed, if X is the nerve of a category C and c is a vertex of X (i.e., an object of C),
then

X/c = N(C/c),

with C/c denoting the usual slice category of C over c. More generally, for a diagram
F : D→ C and A = ND, the simplicial set X/A is precisely the nerve of the category
of cones in C over F.

We are now ready to state the analogue of Theorem 5.36 for slices. We replace
the pushout-product map

A × D ∪A×C B × C → B × D

by the map
A? D ∪A?C B ?C → B ? D

and the morphism
YB → XB ×XA Y A

between mapping spaces by the morphism between slices

YB/ → XB/ ×XA/
YA/.

Remember that our notation is a bit misleading here, because the slice YB/ depends
on a morphism B → Y which is implicit in the notation. Given such a morphism
B→ Y and morphisms A→ B andY → X , one obtains morphisms B→ X , A→ X
and A→ Y by composition, so that the other slices in the formula above also make
sense. This convention is implicit in the statement of the following theorem.

Theorem 5.41 Let f : Y → X be a morphism of simplicial sets and let i : A→ B be
a monomorphism over Y . Consider the map

p : YB/ → XB/ ×XA/
YA/.

(i) If f is an inner fibration, then p is a left fibration.
(ii) If f is a right fibration then p is a Kan fibration.
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(iii) If f is an inner fibration and i is right anodyne, then p is a trivial fibration.
(iv) If f is a left fibration and i is anodyne, then p is a trivial fibration.

Proof The proofs of these statements all proceed in the same way, using Corollary
5.30. For (i), we should solve lifting problems of the form

C YB/

D XB/ ×XA/
YA/

j

where j is left anodyne. But these correspond to lifting problems

B ?C ∪A?C A? D Y

B ? D X

f

and the map on the left is inner anodyne by Corollary 5.30, so that a lift exists by the
assumption that f is an inner fibration. For (ii) we let j be a general anodyne. Then
the map on the left is right anodyne, so a lift exists if f is a right fibration. For (iii)
and (iv) one uses the remaining cases of Corollary 5.30 in the evident way. �

Of course Theorem 5.41 has a dual version for the map

Y/B → X/B ×X/A Y/A,

simply by swapping the terms ‘left’ and ‘right’ everywhere. For ease of reference in
the next section as well as later in this book we list a few special cases. As just noted,
all these statements will have evident duals, which we will not state explicitly.

Corollary 5.42 Let f : Y → X be a morphism of simplicial sets and let B be a
simplicial set over Y . If f is an inner fibration, a right fibration, a left fibration, or a
Kan fibration, thenYB/ → XB/ is an inner fibration, a right fibration, a left fibration,
or a Kan fibration respectively.

Proof Note that Y�/ = Y and consider the diagram

YB/ XB/ ×X Y Y

XB/ X .

The first horizontal map is a fibration of the relevant kind by items (i) and (ii) of
Theorem 5.41. Both vertical maps are such fibrations as well: the one on the right by
assumption and the other because it is a pullback. Since the classes of fibrations of
the relevant types are closed under composition, the conclusion for the slanted map
follows. �
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Corollary 5.43 LetY be a simplicial set and let i : A→ B be a monomorphism over
Y .

(i) If Y is an∞-category, then YB/ → YA/ is a left fibration. Moreover it is a trivial
fibration if i is right anodyne.

(ii) If Y is a Kan complex, then YB/ → YA/ is a Kan fibration. Moreover it is a trivial
fibration if i is anodyne.

Proof This follows from Theorem 5.41 by taking X = ∆[0]. �

Corollary 5.44 Let B → Y be a morphism of simplicial sets. If Y is an ∞-category
(or a Kan complex), thenYB/ is also an∞-category (or a Kan complex respectively).

5.6 Equivalences in∞-Categories

In the first section of this chapter we gave an explicit description of the homotopy
category τ(X) of an ∞-category X and we noticed that if X is a Kan complex, then
every arrow in τ(X) is an isomorphism. In this section we will investigate the role
of isomorphisms in τ(X) more systematically. Amongst other things we will prove
the converse statement to the above, namely that any ∞-category X for which τ(X)
is a groupoid is a Kan complex (cf. Corollary 5.51 below). We begin with a few
definitions.

Definition 5.45 Let X be an ∞-category. A 1-simplex α : ∆[1] → X is called an
equivalence if the corresponding arrow τ(α) in τ(X) is an isomorphism.

Definition 5.46 (i) A functor f : D → C between small categories is called an
isofibration if for any isomorphism α : c → c′ in C and any d ∈ D with f (d) = c
there exists an isomorphism β : d → d ′ in D with f (β) = α. In other words, if every
commutative square of small categories

{0} D

(0↔ 1) C

admits a diagonal lift.
(ii) A morphism f : Y → X between∞-categories is said to have path lifting for

equivalences if for every commutative square of simplicial sets

∆[0] Y

∆[1] X

0

α
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in which α is an equivalence, a diagonal lift as indicated exists and is moreover an
equivalence in Y .

(iii) A morphism Y → X between ∞-categories is said to have J-path lifting if
every commutative square

∆[0] Y

J X

0

admits a diagonal lift. (Recall that J is the nerve of the groupoid (0↔ 1) featuring
in part (i).)

These three notions are closely related, as we will see.

Lemma 5.47 Let f : Y → X be an inner fibration between ∞-categories. Then f
has path lifting with respect to equivalences if and only if τ( f ) : τ(Y ) → τ(X) is an
isofibration.

Proof The only if direction is clear. For the converse, consider a commutative square
as in part (ii) of Definition 5.46. Then τ(α) is an isomorphism in τ(X), which lifts
to an isomorphism τ(β) : y0 → y1 in τ(Y ) by assumption. Thus f (β) is equivalent
to α, as witnessed by a 2-simplex a in X2 pictured as follows:

1

0 2.α

f (β)

Since f is an inner fibration, we can find a lift in

Λ1[2] Y

∆[2] X

β̂

b

a

where β̂ is β on ∂2∆[2] and degenerate on ∂0∆[2]. A diagonal b as indicated will
produce a 1-simplex β′ = d1b defining the same arrow τ(β′) = τ(β) in τ(Y ) and
with f (β′) = α. �

A functor f : D → C is conservative if a morphism α in D is an isomorphism
whenever f (α) is an isomorphism in C.

Lemma 5.48 Let f : Y → X be a left or right fibration between ∞-categories.
Then τ( f ) is a conservative isofibration. In particular, if Y → ∆[0] is a left or right
fibration then τ(Y ) is a groupoid.
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Proof Suppose f is a left fibration. We will first check that any 1-simplex β of
Y for which f (β) is an equivalence is itself an equivalence in Y , i.e., that τ( f ) is
conservative. Let a ∈ X2 be a witness of the fact that τ( f (β)) has a left inverse in
τ(X), as in

f (d0β)

f (d1β) f (d1β).

γf (β)

Now lift in a diagram of the form

Λ0[2] Y

∆[2] Xa

to find a 2-simplex b in Y of the form

d0β

d1β d1β.

β

This shows that τ(β) itself has a left inverse τ(d0b) in τ(Y ). The same argument
applied to this left inverse τ(d0b) shows that τ(d0b) itself also has a left inverse in
τ(Y ), so that d0b is indeed an equivalence. But then β is an equivalence as well,
which proves that τ( f ) is conservative. To see that it is an isofibration, use the right
lifting property of f with respect to the horn inclusion Λ0[1] → ∆[1] (which is
simply the inclusion of the vertex 0) to see that for any 1-simplex α of X and vertex
y0 of Y with f (y0) = d1α, there exists a 1-simplex β of Y with f (α) = β. Thus,
any morphism ϕ of τ(X) can be lifted to τ(Y ) once we have specified a lift of the
domain of ϕ. If ϕ is an isomorphism, then this lift is an isomorphism as well, since
we already proved that τ( f ) is conservative. �

Using these two lemmas and the results of the previous sections we can now
easily deduce the following theorem, which states that inner fibrations between
∞-categories additionally have the right lifting property with respect to certain
‘exceptional’ horn inclusions. It is the main technical result of this section.

Theorem 5.49 Let f : Y → X be an inner fibration between ∞-categories. Then a
diagonal lift exists in any commutative square (with n ≥ 2)

Λn[n] Y

∆[n] X

β

α
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with the property that the edge β(∆[n − 1, n]) in Y is an equivalence. Moreover, a
similar statement holds for Λ0[n] → ∆[n] under the condition that β(∆[0, 1]) is an
equivalence in Y .

Proof Note that the statement for Λ0[n] → ∆[n] follows from the first statement for
Λn[n] → ∆[n] by passing to opposite∞-categories. To prove the first, write

∆[n] = ∆[n − 2]?∆[1].

Then Λn[n] → ∆[n] is

∂∆[n − 2]?∆[1] ∪ ∆[n − 2]?Λ1[1] → ∆[n − 2]?∆[1],

and by adjunction the lifting problem of the theorem translates into

Λ1[1] Y∆[n−2]/

∆[1] Y∂∆[n−2]/ ×X∂∆[n−2]/ X∆[n−2]/.

β̂

α̂

The right-hand map is a left fibration between ∞-categories by Theorem 5.41 and
Corollary 5.43. So by Lemmas 5.47 and 5.48, it suffices to prove that α̂ is an
equivalence. To this end, consider the projection π from the codomain of α̂ to Y .
This projection is the composition of the pullback of a left fibration with the left
fibration π′ as in the diagram below (see Corollary 5.43):

Y∂∆[n−2]/ ×X∂∆[n−2]/ X∆[n−2]/ X∆[n−2]/

Y∂∆[n−2]/ X∂∆[n−2]/

Y .

π′

Therefore π is itself a left fibration. The image of α̂ under this projection is precisely
β(∆[n − 1, n]), which is assumed to be an equivalence. Since left fibrations are
conservative in the sense of Lemma 5.48, this shows that α̂ is itself an equivalence,
which completes the proof of the theorem. �

Theorem 5.49 has a number of very useful consequences.

Corollary 5.50 If f : Y → X is an inner fibration and X is a Kan complex, then the
following are equivalent:

(i) f is a Kan fibration,
(ii) τ( f ) is a conservative isofibration,
(iii) f is a left fibration,



5.6 Equivalences in∞-Categories 195

(iv) f is a right fibration.

Proof We prove (i)⇒ (iii)⇒ (ii)⇒ (i). The equivalence to (iv) then follows since
f is a Kan fibration if and only if f op : Yop → Xop is. Now (i) ⇒ (iii) is true by
definition, whereas (iii) ⇒ (ii) follows from Lemma 5.48. Now assume (ii). Since
every edge of X is an equivalence and τ( f ) is conservative, the same is true of the
edges of Y . Theorem 5.49 now implies that f has the right lifting property with
respect to all horn inclusions Λk[n] → ∆[n] for n ≥ 2. For the case n = 1 (which
corresponds to ‘path lifting’) one simply uses Lemma 5.47. �

The following is the special case X = ∆[0]:

Corollary 5.51 Let Y be an∞-category. Then the following are equivalent:

(i) Y is a Kan complex,
(ii) τ(Y ) is a groupoid,
(iii) Y → ∆[0] is a left fibration,
(iv) Y → ∆[0] is a right fibration.

Corollary 5.52 (i) Let Y → X be an inner fibration between∞-categories. Then a
commutative square

∆[1] Y

J X

b

a

admits a diagonal filling if and only if b is an equivalence in Y .
(ii ) In particular, a morphism b : ∆[1] → Y into an∞-category extends to J if and

only if b is an equivalence.

Proof Part (ii) is the special case where X = ∆[0]. For part (i), note that the condition
is clearly necessary, because every 1-simplex in J is an equivalence. Conversely,
recall that ∆[1] → J is left anodyne (Proposition 5.22), and in fact a composition of
pushouts of left horns Λ0[n] → ∆[n] for which the (0, 1)-edge of Λ0[n] is ∆[1] ⊆ J,
i.e., for which

∆[0, 1] J

Λ0[n] ∆[n]

commutes. One can now apply Theorem 5.49 to each step of this composition to get
the desired lift. �

For an ∞-category X , let k(X) be the simplicial subset of X whose n-simplices
are the maps ξ : ∆[n] → X with the property that every edge of ξ is an equivalence,
i.e., for each 0 ≤ i ≤ j ≤ n, the edge

ξ |∆[i, j] : ∆[i, j] � ∆[1] → X
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is an equivalence. In particular, k(X) has the same vertices as X . The following
property now follows immediately from Corollary 5.51.

Corollary 5.53 The simplicial subset k(X) is a Kan complex. Moreover, it is the
largest Kan complex contained in X , in the sense that any other Kan complex
contained in X is in fact contained in k(X).

Another way of stating this corollary is to say that k is a functor which is right
adjoint to the inclusion of Kan complexes into ∞-categories. Our final corollary of
Theorem 5.49 concerns the behaviour of this functor with respect to Kan fibrations.

Corollary 5.54 Let f : Y → X be an inner fibration between ∞-categories. Then
the following properties are equivalent:

(i) k( f ) : k(Y ) → k(X) is a Kan fibration,
(ii) τ( f ) : τ(Y ) → τ(X) is an isofibration,
(iii) f has J-path lifting,
(iv) f has path lifting with respect to equivalences.

Proof The equivalence between (ii) and (iv) is Lemma 5.47, whereas (ii) ⇒ (i)
follows from Corollary 5.50 applied to k( f ). We will prove (i)⇒ (iii)⇒ (iv). For
(i)⇒ (iii) we need to check that a diagonal lift exists in any commutative square

∆[0] Y

J X .

But J → X factors through k(X), since every 1-simplex in J is an equivalence, and
∆[0] → J is anodyne (Proposition 5.22), so that a lift J → k(Y ) exists. For (iii)⇒
(iv), one considers a square

∆[0] Y

∆[1] Xα

where α is an equivalence in X . We can extend α to α̃ : J → X by Corollary 5.52
and then lift as in

∆[0] Y

J X .

β̃

α̃

Then β̃ restricts to the required lift β : ∆[1] → Y of α. �

We will conclude this section by investigating equivalences in mapping spaces
XA, where X is an ∞-category and A is an arbitrary simplicial set. Recall that XA

is also an∞-category (cf. Corollary 5.38). The vertices of XA are the maps A→ X
and the edges in XA are homotopies
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h : ∆[1] × A→ X

parametrized by the 1-simplex. So a priori, these homotopies are directed. The edge
h is an equivalence in XA if and only if this homotopy can be extended to J. The
main result of the remainder of this section will be that such a homotopy h is an
equivalence if and only if it is a ‘pointwise’ equivalence, i.e., if for each vertex
a ∈ A0, the edge

h(−, a) : ∆[1] → X

is an equivalence. To discuss this point in more detail we introduce the following
notation. For a simplicial set and its set of vertices A0, viewed as a (discrete) simplicial
subset A0 ⊆ A, note that

XA0 =
∏
a∈A0

X

and hence
k(XA0 ) =

∏
a∈A0

k(X),

and define k(A, X) via the pullback square

k(A, X) XA

k(XA0 ) XA0 .

Thus, k(A, X) consists of those simplices in XA whose edges are pointwise equiva-
lences. Clearly

k(XA) ⊆ k(A, X)

and we will prove that this inclusion is in fact an equality:

Theorem 5.55 (a) Let X be an ∞-category and let A → B be any monomorphism
between simplicial sets. Then k(B, X) → k(A, X) is a Kan fibration.

(b) In particular, each k(A, X) is a Kan complex, and hence k(A, X) = k(XA).

Proof Part (b) follows from part (a) applied to the monomorphism � → A and the
fact that k(XA) is the largest Kan complex contained in XA. To prove (a), we should
show that a diagonal lift exists in any commutative square of the following form:

Λk[n] k(B, X)

∆[n] k(A, X).

By adjunction this is equivalent to a lifting problem of the form
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Λk[n] × B ∪Λk [n]×A ∆[n] × A X

∆[n] × B

γ

where γ maps each ‘horizontal edge’ in ∆[n] ×∆[m] (automatically in the domain of
γ since n > 0) to an equivalence in X . If 0 < k < n then the map on the left is inner
anodyne by Corollary 5.28 and the assumption that X is an ∞-category. For k = 0,
the map on the left lies in the saturation of the class of monomorphisms of the form

Λ
k[n] × ∆[m] ∪Λk [n]×∂∆[m] ∆[n] × ∂∆[m] → ∆[n] × ∆[m].

Lemma 5.26 and Remark 5.27 in turn show that this map is in the saturation of the
class of inner horn inclusions and left horns whose initial edge is ‘horizontal’, i.e.,
degenerate in the second factor. Since such an edge is mapped to an equivalence by
γ, we find a lift by Theorem 5.49 in case n + m ≥ 2. The only case not yet covered
is n = 1, m = 0, but then the map under consideration is {0} → ∆[1]. The desired
extension exists simply by picking a degenerate simplex of X . A dual argument
applies for k = n (or one replaces X by Xop). �

Almost exactly the same argument as in the preceding proof applies to the relative
case of an inner fibration f : Y → X between ∞-categories, rather than a single
∞-category. The only modification to be made is in the case n = 1, m = 0 at the end
of the proof. In order for a lift to exist, one now has to assume that f has path lifting
with respect to equivalences, or equivalently that f has J-path lifting (Corollary
5.54).

Theorem 5.56 Let f : Y → X be an inner Kan fibration between ∞-categories
which has J-path lifting. Then for any monomorphism A→ B, the map

k(B,Y ) → k(B, X) ×k(A,X) k(A,Y )

is a Kan fibration between Kan complexes.

For later use we mention the following application of Theorem 5.55. First we
make an obvious definition: for A ⊆ B, two maps

B X
f

g

which agree on A are said to be J-homotopic relative to A if there exists a homotopy
h : J × B→ X making the following diagram commute:

J × A ∪ ∂J × B X .

J × B

h
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The horizontal map consists of the constant homotopy J × A → A → X between
f |A and g |A and ( f , g) on ∂J × B = Bq B. The vertical map is the evident inclusion.
This definition in particular applies to the case where A ⊆ B is ∂∆[1] ⊆ ∆[1], so
that f and g represent two arrows in τ(X) with common domain and codomain.

Corollary 5.57 Let X be an∞-category and let f , g ∈ X1 be two edges with common
domain and codomain. Then f and g represent the same arrow in τ(X) if and only
if they are J-homotopic relative to their endpoints.

Proof Suppose f and g represent the same arrow in τ(X). Write d1 f = x = d1g and
d0 f = y = d0g, so f and g represent arrows x → y. If f ∼ g via a 2-simplex of X

x

x y,g

f

we can extend this to a map j : ∆[1] × ∆[1] → X which sends ∆[1] × ∂∆[1] to
degeneracies, as in

y y

x x.

f
g

g

Here the left 2-simplex is the one above and the right 2-simplex is the degenerate
simplex s0g. Thus, j gives a map ∆[1] → k(∆[1], X). In the commutative square

∆[1] k(∆[1], X)

J k(∂∆[1], X) = k(X) × k(X)

j

(x̄,ȳ)

with constant homotopies x̄, ȳ : J → k(X) on the bottom, Theorem 5.49 gives a
diagonal lift h, which corresponds to the required homotopy J × ∆[1] → X .

Conversely, if f and g are J-homotopic relative to their endpoints, then applying
τ to a homotopy between them immediately shows that [ f ] = [g] in τ(X). �

5.7 Minimal∞-Categories and Minimal Kan Complexes

Consider an∞-category X . In the previous section we defined two maps f , g : B→
X which agree on a simplicial subset A ⊆ B to be J-homotopic relative to A if there
exists a homotopy h : J × B→ X making the diagram
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J × A ∪ ∂J × B X .

J × B
h

commute. Here the top horizontal map is the ‘constant homotopy’ J × A
π2
−−→ A

f
−→ X

on the first term and ( f , g) on the second. One can also express the existence of such
a homotopy h as the existence of a solution to the following lifting problem:

∂J XB

J XA,

where the bottom map is degenerate with image the vertex f |A = g |A. Here the
vertical map on the right is an inner fibration by Corollary 5.39. The horizontal
maps in this square factor through the maximal Kan complexes k(XB) and k(XA),
respectively, as would the dashed lift if it exists. Therefore finding a lift is equivalent
to finding a lift h′ in the diagram below:

∂∆[1] k(XB)

∆[1] k(XA).

h′

Indeed, Corollary 5.52 implies that such an h′ would extend from ∆[1] to J to give
the desired lift in the previous square. Observe that the map k(XB) → k(XA) is a
Kan fibration.

Notice that if X is itself a Kan complex, then so are XB and XA, while XB → XA

is a Kan fibration. So in this case f and g are J-homotopic relative to A if and only if
they are ∆[1]-homotopic relative to A, in the sense that there is a lift in the diagram

∂∆[1] XB

∆[1] XA.

Also notice that for a general ∞-category X and A ⊆ B as above, the relation on
maps B→ X of being J-homotopic relative to A is an equivalence relation. Indeed,
the diagramwith h′ above shows that this relation coincides with the relation of lying
in the same connected component of the fibre of the Kan fibration k(XB) → k(XA)

over the vertex f |A = g |A.
We will now apply these considerations to the case where A ⊆ B is the inclusion

∂∆[n] ⊆ ∆[n] of the boundary of an n-simplex.
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Definition 5.58 (i) Two n-simplices x and y in an ∞-category X are said to be
J-equivalent if, when viewed as maps ∆[n] → X , they agree on ∂∆[n] and are
J-homotopic relative to ∂∆[n].

(ii) An∞-category X is minimal if any two J-equivalent simplices are equal.

Remark 5.59 By what we said above, replacing J by ∆[1] gives the same notion of
equivalence in the case when X is a Kan complex. A Kan complex which is minimal
as an∞-category will of course be referred to as a minimal Kan complex.

Example 5.60 LetC be a small category. Then its nerve NC is aminimal∞-category
if and only if any two isomorphic objects of C are equal; in other words, if and only
if C is skeletal. For a general small category D, one can construct a full subcategory
C which is skeletal by picking precisely one object from each isomorphism class in
D. The inclusion C→ D is an equivalence of categories.

Our goal in this section is to prove a similar result for ∞-categories, namely
that every ∞-category contains an equivalent minimal subcategory. But first, let us
discuss some elementary properties of minimal∞-categories.

Proposition 5.61 (a) If X and Y are minimal∞-categories, then so is their product
X × Y . More generally, if an ∞-category X is the limit of a diagram of minimal
∞-categories, then X is itself minimal.

(b) If X0 → X1 → · · · is a diagram of minimal ∞-categories, then lim
−−→i

Xi is again
a minimal ∞-category. The same applies more generally to filtered colimits of
minimal∞-categories.

(c) If X is a minimal∞-category, then k(X) is a minimal Kan complex.
(d) A subcategory of a minimal∞-category is again minimal.

In item (d), a subcategory of an∞-category X is a simplicial subsetY ⊆ X which
is itself an ∞-category. We omit the easy proof of the proposition. The following
expresses the key property of minimal∞-categories:

Proposition 5.62 Any J-homotopy equivalence between minimal∞-categories is an
isomorphism.

Remark 5.63 This proposition in particular implies that if X is a minimal ∞-
category, it cannot contain a smaller∞-categoryY such that the inclusion i : Y → X
is a J-homotopy equivalence. Indeed, a J-homotopy inverse r : X → Y would yield
a J-homotopy equivalence ir : X → X , which has to be an isomorphism since X
is minimal. This implies that the inclusion i is surjective, hence the identity. This is
one explanation of the use of the word ‘minimal’.

Let us return to the statement of Proposition 5.62. If g : Y → X is a J-homotopy
inverse to a given J-homotopy equivalence f : X → Y , then g f : X → X is
an endomorphism which is J-homotopic to the identity. Thus Proposition 5.62 is
essentially equivalent to the following statement, which we will prove:

Proposition 5.64 Let X be a minimal ∞-category. Then any endomorphism of X
which is J-homotopic to the identity is an isomorphism.
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In the proof of this proposition, as well as in the proof of Theorem 5.67, we will
use the following elementary lemma:

Lemma 5.65 Consider an inclusion of simplicial sets A ⊆ B and an∞-category X .
Suppose h, k : J × B → X are two J-homotopies such that the restrictions of h and
k to {0} × B ∪{0}×A J × A agree. Then the maps

h1, k1 : B � {1} × B→ X

are J-homotopic relative to A.

Proof The assumption can be translated into a commutative square

Λ0[2] k(XB)

∆[2] k(XA).

h∪k

l

Here h ∪ k denotes the map which restricts to (the adjoint of) the homotopy h
on ∆[0, 1] and to k on ∆[0, 2]. Also, l denotes the composition of the degeneracy
σ1 : ∆[2] → ∆[1] (collapsing the edge 1 → 2) and the map ∆[1] ⊆ J → k(XA)

corresponding to h = k : J × A → X . Since k(XB) → k(XA) is a Kan fibration,
there exists a lift ∆[2] → k(XB) in the square. Its restriction along ∂0 : ∆[1] → ∆[2]
(i.e. the edge ∆[1, 2]) extends to a map J → k(XB) by Corollary 5.52(ii), which
gives the required homotopy between h1 and k1. �

Remark 5.66 Note that in the statement of Lemma 5.65 we are not assuming that
the homotopies h and k are constant on J × A. Nonetheless, its conclusion involves
a homotopy relative to A.

Proof (of Proposition 5.64) Consider an endomorphism ϕ : X → X for which there
exists a J-homotopy from ϕ to the identity:

h : J × X → X, h0 = ϕ, h1 = idX .

We shall prove by induction on n that ϕ restricts to an automorphism of the n-skeleton
sknX for every n. Taking the colimit over n then gives the desired conclusion.
For n = 0 the claim is clear, because by minimality X has only one vertex in
each J-connected component (i.e., in each connected component of the maximal
Kan complex k(X)). Suppose we have proved that ϕ restricts to an automorphism
of skn−1X . Let us show that the restriction of ϕ to the n-skeleton of X gives an
isomorphism sknX → sknX .

To see that ϕ is injective on sknX , take two n-simplices x, y ∈ Xn and suppose
that ϕx = ϕy. Then ∂x = ∂y : ∂∆[n] → X , because ϕ is injective on skn−1X . The
J-homotopies

J × ∆[n]
id×x
−−−→ J × X

h
−→ X
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from ϕ(x) to x and
J × ∆[n]

id×y
−−−→ J × X

h
−→ X

from ϕ(y) to y agree on J × ∂∆[n] (since ∂x = ∂y) and on {0} × ∆[n] (where they
both equal ϕ(x) = ϕ(y)). Thus Lemma 5.65 implies that x and y are J-homotopic
relative to ∂∆[n]. Minimality of X then implies x = y.

To complete the proof let us show that ϕ : sknX → sknX is surjective. Take an
n-simplex z ∈ Xn. Since ϕ is an isomorphism on the (n − 1)-skeleton we can write
∂z = ϕu for a unique u : ∂∆[n] → X . Now consider the homotopy hu : ∆[1] →
k(X∂∆[n]) from ∂z to u defined by the map

∆[1] × ∂∆[n] ⊆ J × ∂∆[n]
h◦(id×u)
−−−−−−→ X .

The map k(X∆[n]) → k(X∂∆[n]) is a Kan fibration by Theorem 5.55, so there exists
a lift in the following diagram:

∆[0] k(X∆[n])

∆[1] k(X∂∆[n]).

∂1

z

hu

g

This lift extends to a J-homotopy, again denoted

g : J → k(X∆[n])

from g0 = z to another n-simplex y := g1. Then ∂y = u, while g and

hy : J × ∆[n]
id×y
−−−→ J × X

h
−→ X

define two J-homotopies which agree on J × ∂∆[n] and on {1} × ∆[n]. By Lemma
5.65 (or rather its ‘opposite’ version) we conclude that g0 = z and (hy)0 = ϕ(y)
are J-equivalent. Since X is minimal, we conclude that z = ϕ(y), completing the
proof. �

The final result of this section establishes the existence of minimal∞-categories:

Theorem 5.67 Let X be an∞-category. Then X contains a minimal∞-category M
as a strong J-deformation retract. Explicitly, there are maps

M
i
−→ X

r
−→ M, h : J × X → X

with ri = idM and h a J-homotopy relative to M from ir to idX . Moreover, the
retraction r is a trivial fibration.

Remark 5.68 Since a retract of a Kan complex is again a Kan complex, the theorem
also implies that any Kan complex contains a minimal Kan complex as a deformation
retract.
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Proof (of Proposition 5.67) The proof of the first part of the theorem consists of an
explicit construction of M . The second part will then follow relatively easily. We
will build M ⊆ X by inductively defining its skeleta sknM =: M (n), together with
retractions r (n) and homotopies h(n), while i will just be the inclusion:

M (n)
i(n)

−−→ X (n)
r (n)

−−−→ M (n), h(n) : J × X (n) → X .

For n = 0, start by choosing a single vertex in each connected component of k(X) and
let M (0) = M0 be the set of these chosen vertices (thought of as a discrete simplicial
set). Then for each vertex x ∈ X0 there is a unique vertex r(x) ∈ M0 for which there
is a ‘path’ hx : J → X from r(x) to x. This defines

M (0)
i(0)

−−→ X (0)
r (0)

−−→ M (0), h(0) : J × X (0) → X,

which will satisfy the necessary equations for a J-deformation retract, provided we
choose hx to be degenerate if x ∈ M0 (so that r(x) = x).

Suppose now that for n > 0 we have defined M (n−1), r (n−1), and h(n−1). We then
define M (n) to be the simplicial subset of X generated by M (n−1) together with a
chosen collection of n-simplices: we consider the collection of all the simplices
x ∈ Xn whose boundary ∂x lies in M (n−1) ⊆ X (n−1) and which are not fibrewise
homotopic to a degenerate simplex, and choose precisely one such x in each J-
equivalence class (in the sense of Definition 5.58). Thus, M (n) fits into a pushout
square ∐

x ∂∆[n] M (n−1)

∐
x ∆[n] M (n)

where the coproduct is over the set of chosen n-simplices. Next we define r (n) and
h(n), extending r (n−1) and h(n−1). On simplices of M (n), of course we have to define
r (n) to be the identity and h(n) to be the constant homotopy. For a non-degenerate
n-simplex x ∈ Xn which is not contained in M (n) we proceed as follows. The map
h(n−1) defines a homotopy

J × ∂∆[n]
id×∂x
−−−−→ J × X (n−1) h(n−1)

−−−−→ X .

(Notice that if ∂x happened to be contained in M (n−1) then this homotopy is constant.)
Taking adjoints and restricting along the inclusion ∆[1] ⊆ J defines the bottom
horizontal map in the following square:

∆[0] k(X∆[n])

∆[1] k(X∂∆[n]).

∂0

x

f
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The right vertical map is a Kan fibration and the left vertical map is anodyne, so we
may pick a lift f . Thus f defines a homotopy to x from another n-simplex whose
boundary lies in M (n−1), which we denote by s(x). By the definition of M (n), there
exists a unique n-simplex of M (n) which is J-equivalent to s(x) and we define r (n)(x)
to be this simplex. The J-equivalence between s(x) and r (n)(x) means that there is a
homotopy

g : ∆[1] → k(X∆[n])

relative to ∂∆[n] such that g0 = r (n)(x) and g1 = s(x). Now f and g together define
the top horizontal map in the following square:

Λ1[2] k(X∆[n])

∆[2] k(X∂∆[n]).

g∪ f

j

The bottom horizontal arrow is the composition ∆[2]
s0
−→ ∆[1] → k(X∂∆[n]) where

the second map is defined by the evaluation of h(n−1) on ∂x as above. Again the left
vertical map is anodyne, so a lift j as indicated exists. Restricting j along the inner
face ∆[1]

∂1
−−→ ∆[2] then defines a homotopy

∆[1] → k(X∆[n])

from r (n)(x) to x, compatible with h(n−1) on the boundary ∂x. This homotopy can
be extended along the left anodyne map ∆[1] → J to finally define a map

h(n)x : J × ∆[n] → X .

Doing this for every non-degenerate n-simplex of X defines h(n) : J × X (n) → X .
It remains to show that the retraction r : X → M is a trivial fibration. To this end,

consider a lifting problem
∂∆[n] X

∆[n] M .

j

u

r

v

Taking the map iv : ∆[n] → X as the dashed diagonal would make the bottom square
commute, since riv = v. However, the top triangle would only commute up to the
homotopy h from the first part of the theorem: it gives a homotopy

hu : J → X∂∆[n]

from iv j = iru to u. As before, we can use that the right vertical map in the square
below is a Kan fibration to find a lift:
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∆[0] k(X∆[n])

J k(X∂∆[n]).

∂1

iv

hu

f

This map f is a J-homotopy from f0 = iv to a map f1 which agrees with hu on the
boundary ∂∆[n]. Since h f1 : J → X∆[n] is a J-homotopy from ir f1 to f1 agreeing
with hu on the boundary, Lemma 5.65 implies that iv and ir f1 are J-equivalent n-
simplices of X . Applying the retraction r then gives J-equivalent simplices riv = v

and rir f1 = r f1. By minimality of M we conclude that v = r f1. Hence f1 can be
used as the diagonal filling in the lifting problem above. �

5.8 Minimal Fibrations Between∞-Categories

Under suitable conditions, the notions and results of the previous section can be
extended to the ‘relative’ case where X is not simply an inner Kan complex, but
rather an inner fibration X → S over a ‘base’ S. A property of∞-categories playing
a crucial role in the proofs in the ‘absolute’ case of the previous section is the fact
that for an∞-category X and inclusion of simplicial sets A→ B, the map XB → XA

is an inner fibration with J-path lifting, and hence the induced map k(XB) → k(XA)

is a Kan fibration (Theorem 5.55). In this section we will need the relative version
of this fact, as expressed by Theorem 5.56. We will refer to an inner fibration with
J-path lifting more briefly as a J-fibration. Thus, for ∞-categories X and S, a map
X → S is a J-fibration if and only if it is an inner fibration for which k(X) → k(S)
is a Kan fibration (Corollary 5.54). Also if X → S is a J-fibration, then so is
XB → XA ×SA SB for any monomorphism A→ B.

For a J-fibration p : X → S and a monomorphism i : A→ B, we call two maps
f , g : B → X over S (i.e., p f = pg) fibrewise J-homotopic relative to A if there is
a homotopy h : J × B → X from f to g which restricts to the constant homotopy
J × A→ A→ X on A and composes to the constant homotopy J × B→ B→ S to
S. More concisely, h is a map making the following diagram commute:

∂J XB

J XA ×SA SB .

( f ,g)

h

Here the bottom horizontal map is the constant map with value ( f |A, p f ) = (g |A, pg).
Thus, the existence of such a fibrewise homotopy h is equivalent to f and g, as
vertices of XB, being in the same connected component of the relevant fibre of the
Kan fibration

k(XB) → k(XA ×SA SB) = k(XA) ×k(SA) k(SB).
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Note that if p : X → S is itself a Kan fibration, then so is XB → XA ×SA SB,
and this last fact does not require X and S to be∞-categories. Thus in this case two
maps are fibrewise J-homotopic if and only if they are fibrewise ∆[1]-homotopic.
This makes the notion of minimal fibration we consider in this section slightly more
versatile in the case of Kan fibrations, since it does not require the base S to be an
∞-category.

For the following we again consider the special case where A ⊆ B is the boundary
inclusion ∂∆[n] ⊆ ∆[n]:

Definition 5.69 Let p : X → S be a J-fibration between ∞-categories or a Kan
fibration between general simplicial sets.

(a) Two n-simplices x, y ∈ Xn are fibrewise J-equivalent if, when viewed as maps
∆[n] → X , these simplices are fibrewise J-homotopic relative to ∂∆[n]. (In
particular, px = py and x and y agree on ∂∆[n].)

(b) The map p : X → S is a minimal J-fibration (or a minimal Kan fibration if p is
a Kan fibration) if any two fibrewise J-equivalent simplices are equal.

Notice that if S = ∆[0] then these definitions agree with the absolute versions of
the previous section. We will now state the following two basic results. Their proofs
are straightforward adaptations of the proofs given in the previous section and will be
omitted. In any case, in Section 6.8 we will state a more general result for dendroidal
sets and include a detailed proof. The remainder of this section will focus on some
properties which cannot be formulated in the absolute case.

Proposition 5.70 Let p : X → S and q : Y → S be minimal J-fibrations between
∞-categories. Then any fibrewise J-homotopy equivalence ϕ : X → Y over S is an
isomorphism. The same is true for minimal Kan fibrations between general simplicial
sets.

Here we have used the evident terminology, where ϕ is a fibrewise J-homotopy
equivalence over S if there exists another map ψ : Y → X over S such that each of
the compositions ϕψ and ψϕ is fibrewise J-homotopic to the identity.

Theorem 5.71 Let p : X → S be a J-fibration between ∞-categories. Then there
exists a minimal J-fibration q : M → S which is a fibrewise J-deformation retract
of X → S. Moreover, the retraction is a trivial fibration. The same applies to a Kan
fibration between arbitrary simplicial sets.

To be completely explicit, the theorem provides maps

M
i
−→ X

r
−→ M and h : J × X → X

such that h0 = ir , h1 = idX , p ◦ h = p ◦ π2 : J × X → S, and h ◦ (idJ × i) = i ◦ π2 :
J × M → X .

Now let us turn to some closure properties of the class of minimal J-fibrations
between∞-categories. The same properties hold for minimal Kan fibrations between
arbitrary simplicial sets and we will not state these separately.
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Proposition 5.72 (a) Consider a pullback square of∞-categories

Y X

T S.

q p

If p is a minimal J-fibration, then so is q. In particular, the fibres of a minimal
J-fibration are minimal∞-categories.

(b) Let
X0 X1 · · ·

S

be a sequence of minimal J-fibrations over an ∞-category S. Then lim
−−→i

Xi → S
is also a minimal J-fibration.

(c) If {Xi → S}i∈I is a collection of minimal J-fibrations over an ∞-category S,
then qiXi → S is again a minimal J-fibration.

The proofs of these are elementary and left to the reader. The following expresses
a kind of ‘homotopy invariance’ for minimal J-fibrations, somewhat analogous to
the homotopy invariance of fibre bundles over paracompact topological spaces.

Proposition 5.73 Let p : X → S be a minimal J-fibration between∞-categories. If
f , g : T → S are two J-homotopic maps from an ∞-category T , then the pullbacks
f ∗p and g∗p are isomorphic minimal J-fibrations over T .

Proof (of Proposition 5.73) Write Yf (resp. Yg) for the pullback of X along f (resp.
g) and write h : J × T → S for a J-homotopy from f to g. By Proposition 5.70 it
suffices to prove that Yf and Yg are J-homotopy equivalent over T . In fact we will
prove that Yf (and similarly Yg) is J-homotopy equivalent over T to the pullback YJ
of X along h. For this, consider the pullback square

Yf YJ

T J × T .

h∗p

0×idT

The bottom arrow is part of an obvious J-deformation retract. Therefore the top
arrow is as well by the following lemma. �

Lemma 5.74 Consider a pullback square

B Y

A X

j

p

i



5.8 Minimal Fibrations Between∞-Categories 209

in which the right vertical map is a J-fibration between∞-categories. If i is part of a
J-deformation retract of X onto A, then likewise j is part of a J-deformation retract.

Proof Write the J-deformation retract of X onto A as

A
i
−→ X

r
−→ A, h : J × X → X

with ri = idA, h0 = idX , h1 = ir , and h ◦ (id × i) = iπ2 : J × A → X . Then
k := h◦ (id× p) is a J-homotopy from p to irp. Let l be a lift in the following square:

J × B ∪ {0} × Y Y

J × Y X .

jπ2∪π2

p
l

k

Such a lift exists because in the adjoint lifting problem the map YY → YB ×XB XY

is again a J-fibration. Now l1 has the property that pl1 = k1 = irp, so that l1 factors
uniquely as js for some map s : Y → B. Then s j = idB because js j = l1 j = j
and moreover js = l1 is J-homotopic (via l of course) to l0 = idY . This proves the
lemma. �

Corollary 5.75 A minimal J-fibration p : X → S for which S is J-contractible is
trivial, in the sense that it is isomorphic to one of the form M ×S

π2
−−→ S for a minimal

∞-category M .

Proof In the statement, J-contractible means that S admits a J-deformation retract
onto ∆[0]. The corollary follows from Proposition 5.73 by using that the identity
map of S is J-homotopic to a constant map. �

As for the earlier results, if p : X → S is a Kan fibration one may replace J by
∆[1] and the condition that X and S are ∞-categories is unnecessary in Proposition
5.73, as well as in the lemma used in its proof. In particular, we find the following
variant of the previous corollary:
Corollary 5.76 A minimal Kan fibration p : X → S between simplicial sets, for
which S is ∆[1]-contractible, is trivial.

In particular the corollary applies when S is a standard simplex ∆[n]. This fact is
often expressed by saying that a minimal Kan fibration p : X → S (with S arbitrary)
is locally trivial. This is yet another indication that the theory of minimal fibrations
resembles that of topological fibre bundles.

Historical Notes

The extension (or lifting) condition that defines a Kan complex (or Kan fibration)
first appeared in Kan’s paper [95], although in the context of cubical sets. The switch
to simplicial sets and the development of homotopy theory in this language wasmade
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soon after that [118, 96, 97, 98]. The notion of an inner Kan complex (also called a
weak Kan complex) was first singled out by Boardman–Vogt [21]. Joyal studied the
notion of inner Kan complex (under the name quasi-category) in [92] and proved
many of the basic results contained in the present chapter, among which the crucial
Theorem 5.49. Lurie’s book [105] uses the terminology∞-category like we do here
and is the most comprehensive reference. It develops the analogue of a substantial
portion of category theory in this more sophisticated context.
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Chapter 6
Kan Conditions for Dendroidal Sets

In this chapterwe study extension conditions for dendroidal sets and lifting conditions
for maps of dendroidal sets which parallel the conditions for simplicial sets of the
previous chapter. The structure of this chapter follows the same plan to stress the
analogy. The proofs of various pushout-product properties, which we develop in
Section 6.3, become more technical in the case of dendroidal sets.

6.1 Dendroidal Kan Complexes and∞-Operads

We begin by discussing the dendroidal analogues of the various Kan conditions of
the previous chapter. Suppose T is a tree and ∂xT is an elementary face of it. Then
we define the horn Λx[T] to be the subobject of the representable dendroidal set
Ω[T] which is the union of all faces of T except ∂xT . If ∂xT is an inner face of T ,
contracting some inner edge x, we will call the corresponding horn Λx[T] an inner
horn. It will also be convenient to have terminology for leaf horns. These are horns
of one of the following two types:

(1) a horn Λv[T] for T a tree with at least two vertices and v a leaf vertex of T ,
(2) for a corolla Cn, the inclusion of its leaves∐

i=1,...,n
η→ Ω[Cn].

At the opposite end, we define a root horn to be a horn of one of the following types:

(1) a horn Λr [T] for T a tree with root vertex r , where r has precisely one inner
edge attached to it (so that the root face of T exists),

(2) for a corolla Cn, the inclusion of its root and all but one of its leaves (say the kth
one): ∐

i=0,...,k̂,...,n

η→ Ω[Cn].
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Definition 6.1 A dendroidal set X is a dendroidal Kan complex if any map from a
horn Λx[T] → X admits an extension to a map Ω[T] → X . In a diagram:

Λx[T] X .

Ω[T]

A dendroidal set X is an∞-operad or a dendroidal inner Kan complex if it satisfies
this condition for every inner horn inclusion. It is a dendroidal left Kan complex
if it satisfies the extension condition for every inner or leaf horn. Finally, it is a
dendroidal right Kan complex if it satisfies the extension condition for every inner
or root horn. We will say X is a strict Kan complex if the necessary extensions are
unique and similarly for strict inner, left, or right Kan complexes.

As with∞-categories, one should think of∞-operads roughly as ‘weak’ operads
where composition is only defined up to homotopy. We will discuss these in much
more detail later. The notion of a dendroidal right Kan complex will play a far less
prominent role for us than that of a dendroidal left Kan complex. In fact there is
an asymmetry here which was not present for simplicial sets. In the simplicial case
our definitions and results for left horns and left fibrations had evident duals for
right horns and right fibrations, simply by using the automorphism of the category
∆ which reverses the order of a simplex. This automorphism does not extend to an
automorphism of the category of trees Ω, so that there is no natural notion of the
‘opposite’ of a dendroidal set.

The reader should note thatDefinition 6.1 generalizes our definitions for simplicial
sets in the following sense: for a horn inclusion of simplicial sets Λk[n] → ∆[n], the
corresponding map

i!Λk[n] → i!∆[n]

is a horn inclusion of the dendroidal set i!∆[n] represented by the linear tree i[n].
Moreover, i! sends inner horns to inner horns, left horns of the form Λ0[n] to leaf
horns, and right horns of the form Λn[n] to root horns. This simple observation has
the following consequences:

Lemma 6.2 If X is a dendroidal (left or right) Kan complex, then i∗X is a Kan
complex. If X is an∞-operad, then i∗X is an∞-category. Also, if M is a simplicial
set which is an inner Kan complex, then i!M is a dendroidal inner Kan complex.
This last conclusion does not extend to dendroidal (left or right) Kan complexes.

Proof The first two sentences follow immediately from the remark preceding the
lemma and the adjunction between the functors i! and i∗, combined with the fact that
if i∗X → ∆[0] is a left or right fibration of simplicial sets then it is automatically
a Kan fibration (cf. Corollary 5.51). For the third sentence, consider an extension
problem
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Λe[T] i!M

Ω[T]

with Λe[T] an inner horn of T . The horn Λe[T] in particular contains every corolla
Cv corresponding to a vertex v of T . Because any dendroidal set admitting a map
to η = i!∆[0] ‘is’ a simplicial set (in the sense that is in the image of i!) each such
corolla must be linear, i.e., each vertex v has precisely one input edge. It follows
that the entire tree T is linear, so it is of the form i[n]. Because i! is a fully faithful
functor, this lifting problem corresponds to one in the category of simplicial sets,
where it admits a solution by assumption. This line of reasoning fails for leaf horns
(and for root horns by similar reasoning). Indeed, consider a corolla Cn with n , 1
and a lifting problem ∐

i=1,...,n η i!M

Ω[Cn]

where the vertical map on the left is the inclusion of the leaves of Cn. The horizontal
map simply picks out a collection of n vertices of M; in particular there exist such
maps (as long as M is non-empty). However, a map as indicated by the dashed arrow
cannot exist because Cn is not a linear tree. �

We now list some basic examples of ∞-operads and dendroidal (left) Kan com-
plexes. We will then spend most of the remainder of this section checking that these
examples indeed satisfy the necessary extension conditions.

Example 6.3 (a) Let P be an operad in Sets. Then its nerve NP is a strict dendroidal
inner Kan complex (or strict ∞-operad). We will prove this below in Proposition
6.4. Recall that an operad P always defines an ‘underlying category’ j∗P, simply by
discarding all non-unary operations of P, and the simplicial set i∗NP coincides with
the strict inner Kan complex N j∗P.

(b) Let C be a symmetric monoidal groupoid. One can associate to it the operad
C⊗ with

C⊗(c1, . . . , cn; d) = C(c1 ⊗ · · · ⊗ cn; d).

Then the nerve NC⊗ is a dendroidal left Kan complex, not necessarily strict. We will
come back to this example and related ones in Section 9.6, but the special case of a
discrete groupoid features in Example 6.10(e). Of course the underlying simplicial
set i∗NC⊗, being simply the nerve of the groupoid C, is a Kan complex which is
strict as an inner Kan complex (i.e., all fillers for inner horns are unique).

(c) A Picard groupoid C is a symmetric monoidal groupoid in which every object
is invertible with respect to the tensor product, i.e., for every X ∈ C there exists an
X∨ ∈ C such that X ⊗ X∨ is isomorphic to the unit 1 of the symmetric monoidal
structure. The dendroidal set NC⊗ is a dendroidal left Kan complex by (b), but it
is in fact a dendroidal Kan complex. This implication can be reversed; if C is a
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symmetric monoidal groupoid for which NC⊗ is a dendroidal Kan complex, then C
is a Picard groupoid. We will come back to this example in Section 9.7, as well as in
Example 6.10(f) in the case of a discrete groupoid.

(d) Let P be a simplicial operad with the property that for any two colours x, y of
C, the simplicial set P(x, y) is a Kan complex. Then the homotopy-coherent nerve
w∗P is an∞-operad, as we will demonstrate in Proposition 6.5 below.

The following is the generalization of Proposition 5.3 to dendroidal sets. Its formu-
lation uses the notion of the spine of a tree T , which generalizes the corresponding
notion for simplices we discussed in the previous chapter. Roughly speaking, the
spine Sp[T] of T is the union of all its corollas. More precisely, every vertex v of
T defines a subtree Cv of T with one vertex (namely v), the output edge of v as its
root, and the input edges of v as its leaves. With this notation, Sp[T] is the following
subobject of Ω[T]:

Sp[T] :=
⋃

v∈V (T )

Ω[Cv].

Proposition 6.4 For a dendroidal set X , the following are equivalent:

(i) X is a strict inner Kan complex.
(ii) For each tree T , the map

XT = dSets(Ω[T], X) → dSets(Sp[T], X)

is an isomorphism.
(iii) X is isomorphic to NP for some operad P in Sets.
(iv) The unit X → Nτ(X) is an isomorphism.

Proof We postpone the proof of the equivalence between (i) and (ii) to a more
systematic discussion of the relation between inner horns and spines in Section 6.3
(see Remark 6.40 specifically), although the motivated reader can take this as a
useful exercise in the combinatorics of horn inclusions of trees. We will prove the
other fairly elementary equivalences now. The implication (iv)⇒ (ii) is more or less
direct from the definition of the nerve functor and the fact that the operads Ω(T) are
free. Indeed, suppose X satisfies (iv). To prove X satisfies (ii) it suffices to check that
for any operad P and a tree T , the map

dSets(Ω[T], NP) → dSets(Sp[T], NP)

is an isomorphism. This is easily verified by recalling that a T-dendrex of NP is
essentially described by a labelling of the edges of T by colours of P and of each
vertex of T by an operation of P with the appropriate in- and outputs (see Example
3.20(e) for a precise discussion). An alternative way to phrase this argument is by
saying that

τ(Sp[T]) → τ(Ω[T]) = Ω(T)

is an isomorphism of operads, which is yet another way to say that the operad Ω(T)
is free. Now suppose X satisfies (ii). Then define an operad P with Xη as its set of
colours as follows. For x1, . . . , xn, y ∈ Xη , an operation
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p ∈ P(x1, . . . , xn; y)

is a corolla ξp ∈ XCn whose leaves are precisely x1, . . . , xn and whose root is y. For
another such operation

q ∈ P(y1, . . . , ym; z)

with yi = y, one defines the composition q ◦i p as the operation corresponding to
the restriction to the inner face of the map

Ω[Cm ◦i Cn]
ξq◦yi ξp
−−−−−−−→ X,

with Cm ◦i Cn the tree obtained by grafting Cn onto the ith leaf of Cm. That such a
map exists and is uniquely determined by ξp and ξq follows from the assumption that
X satisfies (ii). To see that this composition defines an operad one has to check the
various axioms; for associativity of composition one uses trees obtained by grafting
three corollas together, the others are straightforward. Consider the commutative
square

XT NPT

dSets(Sp[T], X) dSets(Sp[T], NP).

The right-hand vertical map is an isomorphism, as we verified above when proving
(iv)⇒ (ii). The bottom horizontal map is an isomorphism by construction and the
left-hand map is an isomorphism by hypothesis. Therefore the top horizontal map is
an isomorphism, showing that X � NP. The implication (iii)⇒ (iv) works exactly
as in the proof of Proposition 5.3. �

An important source of∞-operads is the homotopy-coherent nerve construction.
In fact, in Part II of this book we will demonstrate that in an appropriate sense this
construction gives an equivalence of homotopy theories between simplicial operads
and∞-operads. The first result in that direction is the following:

Proposition 6.5 Let P be a simplicial operad such that for every tuple of colours
(x1, . . . , xn, y) of P the simplicial set P(x1, . . . , xn; y) is a Kan complex. Then its
homotopy-coherent nerve w∗P is an∞-operad.

Proof We should check that for an inner horn inclusion Λe[T] → Ω[T] of a tree T ,
there exists a lift in any square of the following form:

w!Λ
e[T] P.

w!Ω[T]

We will use the explicit description of the functor w! given in Example 3.20(i) and
Section 3.5.3, as well as the notations S/e and e/S used in Example 3.20(i). In
particular, recall that for a tuple (c1, . . . , cn, d) of edges of T , there is an equality of
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simplicial sets
(w!Ω[T])(c1, . . . , cn; d) = ∆[1]I (S),

where I(S) is the set of inner edges of the maximal subtree S of T with leaves
c1, . . . , cn and root d (if such S exists, otherwise this simplicial set is empty). The
morphism of operads w!Λ

e[T] → w!Ω[T] induces an isomorphism of simplicial sets

(w!Λ
e[T])(c1, . . . , cn; d) � (w!Ω[T])(c1, . . . , cn; d)

for any tuple of colours (c1, . . . , cn, d), except when c1, . . . , cn is precisely the col-
lection of leaves of T and d is the root of T . Indeed, in all other cases, the relevant
maximal subtree S (if it exists) with leaves c1, . . . , cn and root d factors through
some outer face of T and is therefore already contained in Λe[T]. In the exceptional
case, the map above can be identified with the inclusion

V ⊆ ∆[1]I (T ),

where V is the union of the subcubes of the following two types:

(a) The subcubes

∆[1]I (T )−{ f }
0 f

−−→ ∆[1]I (T )

where f ranges over the set I(T) − {e}, and the inclusion gives the edge f the
coordinate 0. Each such cube is contributed by the inner face ∂fT of T .

(b) For each inner edge f of T , the subcube

∆[1]I (T )−{ f }
1 f

−−→ ∆[1]I (T ).

This subcube arises from the ‘composition along f ’ map

∆[1]I (T )−{ f } = ∆[1]I (T/ f ) × ∆[1]I ( f /T ) → ∆[1]I (T ),

where both factors arise from trees (namely T/ f and f /T) which are contained
in outer faces of T and hence in Λe[T].

To provide a solution to our original lifting problem, it suffices to show that a lift
exists in the following (with c1, . . . , cn the leaves and d the root of T):

V P(c1, . . . , cn; d).

∆[1]I (T )

The simplicial set on the right is a Kan complex by assumption, so it suffices to show
that the left vertical map is anodyne. To do this, write

∂(∆[1]I (T )−{e}) :=
⋃

f ∈I (T )−{e}

∂∆[1] × ∆[1]I (T )−{e, f }
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for the ‘boundary’ of the cube ∆[1]I (T )−{e} and note that the inclusion V → ∆[1]I (T )
can be identified with the pushout-product map

{1} × ∆[1]I (T )−{e} ∪ ∆[1] × ∂(∆[1]I (T )−{e}) → ∆[1]I (T ).

This map is right anodyne by Corollary 5.28. �

Remark 6.6 For the reader familiar with the homotopy theory of simplicial sets, the
preceding proof can also be concluded by observing that the inclusionV → ∆[1]I (T )
is a weak homotopy equivalence of simplicial sets. Indeed, the domain and codomain
are easily seen to be weakly contractible. We will return to arguments of this kind
in Part II of this book, once we study the homotopy theory of simplicial sets more
seriously.

We conclude this section with a description of τ(X) in the case where X satisfies
the dendroidal inner Kan condition.Wewill sometimes refer to τ(X) as the homotopy
operad of the ∞-operad X . The following discussion parallels the one at the end of
Section 5.1.

For an ∞-operad X we will define an operad τ1(X) and prove it is naturally
isomorphic to τ(X). First we need the notions of root homotopy and leaf homotopy.
Say ξ, ζ ∈ XCn are two n-corollas of X . WriteTn for the grafted treeC1 ◦Cn, pictured
as follows:

Tn

w

v
0
r

1 n· · ·

Observe the evident identificationsCn � ∂wTn (chopping off the root),Cn � ∂0Tn

(contracting the edge 0), and C1 � ∂vT (chopping off v and its leaves). We say ξ and
ζ are root homotopic if there exists an element ψ ∈ XTn such that:

• The dendrex dvψ ∈ XC1 is degenerate.
• Under the identifications described above, dwψ = ξ and d0ψ = ζ .

More precisely, we say ψ is a root homotopy from ξ to ζ and write ξ ∼r ζ to indicate
the relation of root homotopy. In case n = 1, so that T is linear, this notion reduces
to the homotopy relation we used in Section 5.1. Also, write Sn,i for the grafted tree
Cn ◦i C1. The following is an illustration of Sn,1:

Sn,1

v

w1
1 n

0

l1

· · ·
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There are identifications Cn � ∂wi Sn,i (chopping off the leaf vertex wi connected to
i and its leaf) and Cn � ∂iSn,i (contracting all the input edge i of v). Also, the vertex
wi determines a corolla isomorphic to C1. We say ξ and ζ are leaf homotopic if there
exists i and ϕ ∈ XSn, i such that:

• The restriction of ϕ to the unary corolla with vertex wi is a degenerate corolla of
X .

• Under the identifications described above, diϕ = ξ and dwiϕ = ζ .

In this case ϕ is said to define a leaf homotopy from ξ to ζ , indicated by the notation
ξ ∼l ζ .

We are now ready to define the operad τ1(X). The set of colours of τ1(X) is Xη .
The set of operations

τ1(X)(x1, . . . , xn; y)

is a quotient of the set of pairs (ξ, p) with ξ ∈ XCn an n-corolla of X and p a
planar structure of Cn (i.e. a linear ordering of its leaves), such that the sequence
of leaves of ξ in the chosen ordering is precisely (x1, . . . , xn) and its root is y. The
quotient is determined by the equivalence relation that has (ξ, p) ∼ (ζ, q) precisely
if there is an automorphism σ of Cn (i.e. a permutation of its n leaves) such that
σ∗p = q, the permutation σ leaves the sequence (x1, . . . , xn) invariant, and σ∗ξ is
root homotopic to ζ . Composition in τ1(X) is defined using the fact that X satisfies
the inner Kan condition. Indeed, for two operations a ∈ τ1(X)(x1, . . . , xn; yi) and
b ∈ τ1(X)(y1, . . . , ym; z) with 1 ≤ i ≤ m, represented by pairs (ξ, p) and (ζ, q)
respectively, the composite operation b ◦yi a is represented as follows. Consider the
grafted tree T = Cm ◦i Cn and pick a dendrex θ ∈ XT such that T restricts to ξ on Cn

and to ζ on Cm. Such a θ exists since X is inner Kan. Clearly p and q define a planar
structure t on T and b ◦yi a is represented by the pair (diθ, t), with diθ the inner
face of θ. That our definitions give a well-defined operad τ1(X) which is moreover
isomorphic to τ(X) is guaranteed by:

Lemma 6.7 Assume X is a dendroidal inner Kan complex.

(i) The relation of root homotopy is an equivalence relation.
(ii) Two corollas of X are root homotopic if and only if they are leaf homotopic.
(iii) The composition of operations in τ1(X) described above is well-defined on

equivalence classes and gives τ1(X) the structure of an operad.
(iv) The evident morphism τ1(X) → τ(X) is an isomorphism.

Proof This lemma is a generalization of Lemma 5.6 to dendroidal sets; the reader
might find it instructive to compare the proofs.

(i) Reflexivity ξ ∼r ξ follows from considering dendrices of shape Tn which are
degenerate at the root; more precisely, for ξ ∈ Cn and 0 denoting the root of Cn,
the degenerate dendrex s0ξ shows that ξ is root homotopic to itself. To see that the
relation of root homotopy is transitive, suppose we have n-corollas ξ1, ξ2, and ξ3
of X , and dendrices ψ, ϕ ∈ XTn expressing root homotopies ξ1 ∼r ξ2 and ξ2 ∼r ξ3
respectively. Consider the tree Rn obtained by grafting an n-corolla onto a linear tree
i[2] with two vertices:
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Rn

w

v

u

0
r

s

1 n· · ·

Define a map f from the inner horn Λr [Rn] to X as follows:

• f sends the outer face ∂vRn chopping off v and its leaves to the degenerate dendrex
of shape i[2] with colour that of the root edge of ξ1 (which is the same as that of
ξ2 and ξ3).
• f sends the inner face ∂0Rn to ϕ.
• f sends the root face ∂uRn to ψ.

Since X satisfies the innerKan condition, f can be extended to amap g : Ω[Rn] → X .
The restriction of g to the face ∂r Rn now defines a root homotopy from ξ1 to ξ3.
It remains to prove symmetry of the root homotopy relation. So suppose ψ ∈ XTn

defines a root homotopy from ξ to ζ . With Rn as above, define a map f from the
inner horn Λ0[Rn] to X as follows:

• f sends the outer face ∂vRn to the degenerate dendrex of shape i[2] with colour
that of the root edge of ξ.
• f sends the inner face ∂r Rn to the degenerate dendrex s0ξ.
• f sends the root face ∂uRn to ϕ.

As before, f can be extended to a map g : Ω[Rn] → X . Restricting g to the face
∂0Rn defines a root homotopy from ζ to ξ, as desired.

(ii) Suppose ϕ ∈ XTn is a dendrex giving a root homotopy ξ ∼r ζ between two
corollas ξ, ζ ∈ XCn . Consider a tree Rn,1 as follows:

Rn,1

v

w1
1 n

0

l1

· · ·

u
r

In words, Rn,1 is obtained from the corollaCn by grafting a 1-corolla onto its root and
another one onto the leaf labelled 1. Note the evident identifications ∂w1 Rn,1 � Tn

and ∂uRn,1 � Sn,1. Define a map f from the inner horn Λ0[Rn,1] to X as follows:

• f sends the outer face ∂w1 Rn,1 to ϕ.
• f sends the inner face ∂1Rn,1 to the degenerate dendrex s0ξ.
• f sends the root face ∂uRn,1 to the degenerate dendrex s1ξ.
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Extend f to a map g : Ω[Rn,1] → X . Then the restriction of g to ∂0Rn,1 provides a
leaf homotopy ξ ∼l ζ . Conversely, to see that leaf homotopy implies root homotopy
one uses an entirely analogous argument, now exploiting the existence of a filler for
an inner horn of the kind Λi[Rn,i].

(iii) Suppose we have elements

a ∈ τ1(X)(x1, . . . , xn; yi) and b ∈ τ1(X)(y1, . . . , ym; z).

Say (ξ, p) is a representative of a and (ζ, q) and (ζ ′, q′) are two representatives of
b, so that there exists a dendrex ϕ ∈ XTm giving a root homotopy ζ ∼r ζ ′. As
in the definition of composition before the lemma, suppose we have picked pairs
(θ, t) and (θ ′, t ′), with θ and θ ′ dendrices of X of the shape Cm ◦i Cn, so that the
inner faces of θ and θ ′ represent the compositions of (ζ, q) and (ζ ′, q′) with (ξ, p)
respectively. To show that these two represent the same element, consider the grafted
tree U = C1 ◦ Cm ◦i Cn (illustrated here for i = 1):

U

u

w

v
1w mw

0
r

1v nv· · ·

· · ·

Wewill tacitly make the obvious identifications of the kind ∂vU � Tm. Define a map
f from the inner horn Λ[U] to X as follows:

• f sends the leaf face ∂vU to ϕ.
• f sends the inner face ∂0U to θ ′.
• f sends the root face ∂uU to θ.

Pick an extension of f to a map g : Ω[U] → X . Then the restriction of g to ∂1wU
defines a root homotopy showing that (θ, t) and (θ ′, t ′) represent the same operation
of τ1(X). To see that composition is independent of the chosen representative of
a one uses a similar argument, now exploiting the existence of a leaf homotopy
between any two representatives (ξ, p) and (ξ ′, p′), which is guaranteed by (ii).

(iv) This is now formal and follows by an argument of the same kind used in the
proof of Lemma 5.6. �

6.2 Fibrations and Anodyne Morphisms Between Dendroidal
Sets

The extension conditions of the previous paragraph all have relative versions, defining
corresponding notions of fibrations between dendroidal sets. As with simplicial sets,
these various kinds of fibrations will play a central role in what follows.
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Definition 6.8 A morphism Y → X between dendroidal sets is said to be

– a dendroidal Kan fibration if it has the right lifting property with respect to all
horn inclusions of trees,

– a dendroidal inner fibration if it has the right lifting property with respect to all
inner horn inclusions of trees,

– a dendroidal left fibration if it has the right lifting property with respect to all leaf
and inner horn inclusions of trees,

– a dendroidal right fibration if it has the right lifting property with respect to all
root and inner horn inclusions of trees.

We will omit the adjective ‘dendroidal’ when no confusion can arise.

As already remarked before, the notion of dendroidal left fibration will be much
more important for us than that of dendroidal right fibration. For the record we
mention the following obvious fact:

Lemma 6.9 Each of the classes of fibrations just defined is closed under composition,
pullback, and retracts.

Example 6.10 (a) A dendroidal set X is an∞-operad precisely if the unique map to
the terminal dendroidal set X → 1 is an inner fibration. Here we use the standard
convention of writing 1 for the terminal object. Recall from Example 3.20(f) that
1 = NCom for the category of dendroidal sets.

(b) Contrary to the case of simplicial sets, a left fibration of dendroidal sets over
the terminal object X → 1 is not automatically a Kan fibration, as is witnessed by
the difference between parts (b) and (c) of Example 6.3.

(c) For a morphism of operads f : P → Q, the dendroidal nerve N f is an inner
fibration. This follows easily from the fact that NP and NQ are strict inner Kan
complexes, so that fillers for inner horns are unique.

(d) Let P be an operad in Sets and A a P-algebra. Recall the nerve N(P, A) of
Example 3.20(h): a T-dendrex of N(P, A) is a T-dendrex ξ ∈ NPT together with a
labelling of each leaf l of T by an element xl ∈ Aξ(l). Assigning to such a dendrex
the element ξ defines a map of dendroidal sets

πA : N(P, A) → NP,

which is a left fibration. Indeed, it is an inner fibration as a consequence of example
(c) above. For a lifting problem

Λv[T] N(P, A)

Ω[T] NP

πA
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involving a leaf horn (so v is a leaf vertex of T) one argues as follows. Since the
bottom horizontal arrow already defines the necessary T-dendrex ξ ∈ NPT , all that
is necessary is to give an appropriate labelling xl ∈ Aξ(l) of each leaf l of T . The leaf
hornΛv[T] in particular contains all the leaves of T , so that this labelling is uniquely
determined by the top horizontal map.

(e) Consider a commutative monoid A. In other words, A is a Com-algebra in
Sets. Then N(Com, A) is a dendroidal left Kan complex. This is a special case of
(d) above, and simultaneously a special case of Example 6.3(b) by considering A
as a discrete symmetric monoidal groupoid. Note that a dendrex ξ ∈ N(Com, A) is
simply a labelling of each leaf l of T by an element xl ∈ A.

(f) Let A be an abelian group. By the previous example, the dendroidal set
N(Com, A) is a dendroidal left Kan complex. It is in fact a dendroidal Kan com-
plex. This example is also a special case of Example 6.3(c). To see explicitly that
N(Com, A) has the extension property with respect to root horn inclusions, first
observe that there is nothing to prove for a root horn of a tree T with at least two
vertices; in that case the dendroidal set Λr [T] already contains all the leaves of T , so
that any map Λr [T] → N(Com, A) extends uniquely to Ω[T]. The remaining case is
where T = Cn is a corolla and we consider a horn inclusion of the kind∐

i=0,...,k̂,...,n

η =: R→ Ω[Cn],

missing one of the leaves ofCn. Suppose we have a map f : R→ N(Com, A), which
corresponds to elements f (i) ∈ A for i , k. To extend it to Ω[Cn] we should give an
element f (k) ∈ A such that f (1)+ · · · + f (n) = f (0) in the abelian group A. Clearly
the only possibility is

f (k) := f (0) − ( f (1) + · · · + f̂ (k) + · · · + f (n)).

Remark 6.11 There is a generalization of Example 6.10(d) involving the notion of
an operad cofibred in groupoids, a notion which generalizes the fibred categories of
Example 5.12. Fibred categories D → C are closely related to pseudofunctors on
C, and similarly such operads cofibred in groupoids are closely related to (a weak
kind of) algebras. More precisely, for a map of operads f : P → Q the nerve N f
is a left fibration of dendroidal sets if and only f exhibits P as an operad cofibred
in groupoids. Since we will not need the details of this notion we leave them to the
reader.Wewill come back to the connection between left fibrations over a dendroidal
set X and ‘X-algebras’ in Section 14.8. It turns out that left fibrations are an excellent
tool to study the homotopy theory of such algebras.

Recall that a trivial fibration of dendroidal sets is a map which has the right lifting
property with respect to all normal monomorphisms or, equivalently, with respect
to all boundary inclusions of trees ∂Ω[T] → Ω[T]. Since all of the fibrations of
Definition 6.8 are defined in terms of right lifting properties with respect to certain
normal monomorphisms, we immediately obtain the following:
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Lemma 6.12 A trivial fibration of dendroidal sets is in particular a dendroidal Kan
fibration (and hence also a left, right, and inner fibration).

Let us also record the following evident generalization of Lemma 6.2:

Lemma 6.13 If f is a dendroidal inner (or left, right, Kan, trivial) fibration, then i∗ f
is an inner (resp. left, right, Kan, trivial) fibration of simplicial sets. Conversely, if g
is an inner fibration of simplicial sets, then i!g is an inner fibration of dendroidal sets.
However, this conclusion does not extend to left, right, Kan, and trivial fibrations.

In Section 5.3 we discussed anodyne morphisms of simplicial sets. The general
theory of lifting properties and saturated classes carries over without change; we
will now collect the corresponding facts for dendroidal sets. After that we discuss
several examples of anodynes which will be useful throughout this book.

Definition 6.14 An anodyne morphism of dendroidal sets is a morphism having the
left lifting property with respect to all dendroidal Kan fibrations. Similarly, an inner,
leaf, or root anodyne morphism is a morphism having the left lifting property with
respect to inner, left, or right fibrations, respectively.

Lemma 6.15 The class of anodyne morphisms is saturated, and similarly for inner,
leaf, and root anodyne morphisms.

The small object argument still applies and yields the following:

Lemma 6.16 Let I be the set of all horn inclusions of trees Λx[T] → Ω[T]. Then
any morphism f : X → Y of dendroidal sets can be factored as

X
i
−→ Z

p
−→ Y,

with i an I-cellular map and p a dendroidal Kan fibration. The analogous statement
is true for inner horns and inner fibrations, as well as for leaf and inner horns and
left fibrations, and similarly for right fibrations.

Furthermore, the same arguments used in Section 5.3 give:

Lemma 6.17 A map f : A → B of dendroidal sets is anodyne if and only it is a
retract of an I-cellular map, with I the set of horn inclusions Λx[T] → Ω[T]. It is
inner anodyne if and only if it is a retract of a map which is cellular with respect to
inner horn inclusions, and similarly for leaf and root anodynes.

Corollary 6.18 The class of anodyne maps is the smallest saturated class containing
the horn inclusions. The analogous statements apply to the classes of inner, leaf, and
root anodynes.

We will now discuss several examples of anodyne morphisms. The proof of the
following lemma is straightforward, but we postpone it until after a discussion of
spines of trees in Section 6.5 (see Remark 6.43).
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Lemma 6.19 Consider a tree with at least one vertex. Then the inclusion∐
l∈leaves(T )

η→ Ω[T]

of the leaves of T is a leaf anodyne morphism. This includes the case where T is
closed and hence has no leaves, where one takes the domain of the map above to be
empty.

Wewill oftenmake use of the following kind of generalized inner horn inclusions:

Lemma 6.20 Let T be a tree and let E be a non-empty subset of the set I(T) of inner
edges. Write ΛE [T] ⊆ Ω[T] for the union of all the faces ∂xΩ[T] for x not in E .
In other words, ΛE [T] is the union of those faces of T which contain all the inner
edges in the set E . Then the inclusion ΛE [T] → Ω[T] is a composition of pushouts
of inner horn inclusions. In particular it is an inner anodyne morphism.

Proof The proof is by induction on the size of E . If it consists of a single element
e, then ΛE [T] = Λe[T] and the inclusion into Ω[T] is inner anodyne by definition.
For larger E , pick an element e ∈ E and write E ′ = E − {e}. It suffices to prove that
each of the two inclusions

Λ
E [T] ⊆ ΛE′[T] ⊆ Ω[T]

is a composition of pushouts of inner horn inclusions. For the second map this is the
inductive hypothesis. The first map fits into a pushout square

ΛE′[∂eT] ΛE [T]

Ω[∂eT] ΛE′[T].

Note that the notation in the upper left corner makes sense, because the elements of
E ′ are also inner edges of the tree ∂eT . The left vertical map is a composition of
pushouts of inner horns by the inductive hypothesis. �

There is an evident variant of the preceding lemma for leaf anodynes:

Lemma 6.21 Let T be a tree and let L be a non-empty subset of the set of leaf
vertices of T . Write ΛL[T] ⊆ Ω[T] for the union of all the faces of T except for the
leaf faces corresponding to elements of L. Then the inclusion ΛL[T] → Ω[T] is a
composition of pushouts of leaf horn inclusions of trees. In particular it is a leaf
anodyne morphism.

Proof The proof proceeds by induction on the size of L, using the same technique
as in the previous lemma. Now one uses that if L = L ′ ∪ {v}, then there is a pushout
square
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ΛL′[∂vT] ΛL[T]

Ω[∂vT] ΛL′[T].

�

In practice we will recognize the dendroidal sets of the kind ΛE [T] as follows:

Lemma 6.22 Consider a dendroidal subset A ⊆ Ω[T]. Suppose A is not equal to
Ω[T] or ∂Ω[T] and satisfies the following condition: if F1, . . . , Fk are elementary
faces of T not contained in A, then also

F1 ∩ · · · ∩ Fk * A.

Then A is equal to ΛV [T] for some nonempty subset of faces V of T .

Proof Consider a nondegenerate dendrex ξ : Ω[S] → A. It suffices to show that
there is some elementary face ∂xT of T so that Ω[∂xT] ⊆ A and ξ is contained in
Ω[∂xT]. Indeed, it would then follow that A is the union of elementary faces. Since it
is not equal to ∂Ω[T], it must be a horn of the formΛV [T]. To establish the existence
of a suitable face ∂xT we reason as follows. Consider the collection of all elementary
faces F1, . . . , Fn which contain the dendrex ξ. Then ξ is contained in the intersection

F1 ∩ · · · ∩ Fk

and hence our assumption guarantees that at least one of these faces is contained in
A. �

We will conclude this section with a generalization of Proposition 5.25 to den-
droidal sets. Consider an operad P in sets and a collection of colours c1, . . . , cn, d of
P. We can freely adjoin a new operation f from (c1, . . . , cn) to d to get a new operad
P[ f ]. To be precise, this operad is the pushout∐

i=0,...,n η P

Ω(Cn) P[ f ]

in the category Op of operads. The vertical arrow on the left is the inclusion of the
colours 0, . . . , n of the operad Ω(Cn), whereas the top horizontal arrow sends 0 to
d and i to ci for i ≥ 1. This new operad P[ f ] has the same colours as P, but many
more operations: the operations in P[ f ] are all possible compositions of operations
of P with the new operation f (including possible compositions of f with itself). As
was the case with simplicial sets, the corresponding pushout
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∂Ω[Cn] NP

Ω[Cn] (NP)[ f ]

of dendroidal sets is much simpler to understand: the only ‘new’ non-degenerate
dendrex of (NP)[ f ] compared to NP is precisely f . As with simplicial sets, the
process of adjoining a new operation in this way is not preserved by the nerve
functor, but it is often preserved up to an inner anodyne morphism:

Proposition 6.23 If P is Σ-free, then the canonical morphism (NP)[ f ] → N(P[ f ])
is inner anodyne.

Proof Wewill generalize the proof of Proposition 5.25, which the reader might wish
to refer to for comparison. The operations of the operad P[ f ] are generated from f
and those of P by forming compositions and imposing the relations dictated by P.
We call an operation of P[ f ] elementary if it is simply f or when it is in the image
of the inclusion P ⊆ P[ f ]. We call a dendrex ξ ∈ N(P[ f ])T elementary if for every
vertex v of T , the corolla ξv ∈ N(P[ f ])Cv corresponds to an elementary operation of
P[ f ]. Then any dendrex of N(P[ f ]) is an inner face (possibly of high codimension)
of some elementary dendrex, because the operations of P[ f ] are generated by ele-
mentary operations under composition. Every non-degenerate elementary dendrex
ξ of N(P[ f ]) features a certain number of occurrences of the operation f , which we
call the height of ξ. For k ≥ 1 write

A(k) ⊆ N(P[ f ])

for the dendroidal subset generated by (NP)[ f ] together with the non-degenerate
elementary dendrices of height at most k. Thus A(1) = (NP)[ f ] and ∪k A(k) =
N(P[ f ]), so it suffices to prove that

A(k) → A(k+1)

is inner anodyne for every k. We will decompose this inclusion further as

A(k) = A(k+1)
0 ⊆ A(k+1)

1 ⊆ A(k+1)
2 ⊆ · · · ,

⋃
i

A(k+1)
i = A(k+1),

where A(k)i is the dendroidal subset of N(P[ f ]) generated by A(k) together with the
non-degenerate elementary dendrices of height k + 1 corresponding to trees with at
most i vertices. We claim that each of the maps

A(k+1)
i−1 → A(k+1)

i

is inner anodyne. For i ≤ k this map is the identity and there is nothing to prove. For
i > k, consider a non-degenerate elementary dendrex ξ of height k + 1 and ‘size’ i.
We observe the following:
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• Any outer face (leaf or root) of ξ is still elementary, but of smaller size, and hence
contained in A(k+1)

i−1 .
• Any inner face contracting an inner edge between two vertices which correspond
to operations of P (i.e. do not correspond to f ) is still elementary and hence
contained in A(k+1)

i−1 .
• Any inner face contracting an inner edge between two vertices of which at least
one corresponds to f is no longer elementary and cannot be contained in A(k+1)

i−1 .
Also, it cannot be an inner face of another non-degenerate dendrex ξ of height
k + 1 and size i, unless it is isomorphic to ξ. Similar statements apply to any
intersection of such inner faces.

These observations, together with Lemma 6.22 and the fact that P is Σ-free, imply
that there is a pushout square∐

[ξ] Λ
Eξ [T] A(k+1)

i−1

∐
[ξ]Ω[T] A(k+1)

i ,

where the coproduct is over isomorphism classes of non-degenerate elementary
dendrices ξ of height k + 1 and size i. Here for each such ξ the set Eξ is the set of
inner edges which connect to at least one vertex corresponding to the operation f .
The pushout square above shows that A(k+1)

i−1 → A(k+1)
i is inner anodyne and hence

A(k) → A(k+1) is inner anodyne as well. �

6.3 Tensor Products and Anodyne Morphisms

We will now investigate the behaviour of various kinds of anodyne morphisms with
respect to tensor products. This section is rather technical, but the results we prove
are central to the development of the homotopy theory of dendroidal sets.

Recall from Section 4.1 that the tensor product of two representable dendroidal
setsΩ[S] andΩ[T] can be described as a union of shuffles. According to Proposition
4.8 a shuffle A of S and T is completely determined by its set of edges E(A), which
is a subset of the product of sets of edges E(S) × E(T). The subset E(A) satisfies
several conditions, of which the crucial one is that the path from a minimal element
(s, t) to the maximal element (rS, rT ) is a shuffle (in the more classical sense) of the
two linear orders corresponding to the paths from s to rS in the tree S and t to rT in
the tree T . Many of the combinatorial proofs that we carry out involve an induction
on the shuffles of a tensor product of trees. For this it is useful to equip this set with
an ordering. As already explained in Section 4.1 the set of shuffles of S and T can be
partially ordered in such a way that the minimal element is the shuffle consisting of
copies of S grafted on top of the leaves of T and the maximal element is the shuffle
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built by grafting copies of T on top of the leaves of S. The partial order is generated
by the relations A < B whenever B is a shuffle obtained from A by ‘shuffling a vertex
of S down through a vertex of T’, or equivalently ‘shuffling a vertex of T up through
a vertex of S’. We will use this partial ordering (or sometimes its opposite) in our
proofs.

As we did when discussing tensor products, we will often abbreviate the notation
for representable dendroidal sets fromΩ[T] toT in order to avoid excessive cluttering
of notation. The following is the analogue of Lemma 5.26:

Lemma 6.24 Consider trees S and T and let e be an inner edge of S. Suppose that
S or T is linear, or that both S and T are open. Then the pushout-product

Λ
e[S] ⊗ T ∪ S ⊗ ∂T → S ⊗ T

is a composition of pushouts of inner horn inclusions. In particular it is inner
anodyne.

The proof of this lemma requires some rather elaborate combinatorics. The reader
might wish to refer back to the simpler proof of Lemma 5.26 while working through
it, also noting that Lemma 5.26 is a special case of the result we shall prove shortly.
The proof will make use of the following notion:

Definition 6.25 A pruning of a tree T is a subtree P ⊆ T whose root coincides
with that of T . In other words, P is obtained from T by iteratively chopping off leaf
corollas.

Proof (of Lemma 6.24) The assumptions on S and T guarantee that the map under
consideration is a normal monomorphism, using Propositions 4.21 and 4.26. Let us
first treat the case where S andT are open. The other cases are similar and we discuss
the necessary modifications at the end of the proof. Write ve for the top vertex of the
edge e in S. In other words, ve is the unique vertex which has e as its outgoing edge.
If R is a shuffle of S and T , it will contain one or several vertices of the form ve ⊗ t.
Such a vertex has as its outgoing edge e ⊗ t and we will call these special edges. In
other words, special edges are the highest occurrences of edges of the form e ⊗ t, for
t ranging over the edges of T and highest meaning furthest from the root.

We will construct a rather elaborate filtration of the map of the lemma. To begin
with, write

A0 := Λe[S] ⊗ T ∪ S ⊗ ∂T .

We will think of A0 as a subobject of S ⊗ T , which is justified by the first sentence
of this proof. Arbitrarily choose a linear ordering on the set of shuffles of S and T
which extends the partial order described before the statement of the lemma. Adjoin
these shuffles one by one in the chosen order to obtain a filtration

A0 ⊆ A1 ⊆ A2 ⊆ · · · ,
⋃
i

Ai = S ⊗ T .
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Thus, Ai is the union of A0 with the first i shuffles. We will show that each of the
inclusions Ai ⊆ Ai+1 is a composition of pushouts of inner horn inclusions. Say Ai+1
is obtained from Ai by adjoining a shuffle R. Define a further filtration

Ai =: A0
i ⊆ A1

i ⊆ A2
i ⊆ · · · ,

⋃
j

Aj
i = Ai+1

by adjoining the prunings of R one by one, in an order which extends the partial
ordering of inclusions of prunings. Consider a step Aj

i ⊆ Aj+1
i in this filtration given

by adjoining some pruning P. Denote by ΣP the collection of inner edges of P
which are also special edges. Without loss of generality we may assume that ΣP is
non-empty. Indeed, if it were empty then either P contains no special edges at all
or they are leaf edges. In both cases P cannot contain any vertex of the form ve ⊗ t,
which implies P factors through e/S ⊗ T (where e/S is the tree obtained from S by
chopping off everything above e). But then P is also contained in Λe[S] ⊗ T and the
inclusion Aj

i ⊆ Aj+1
i is the identity.

Recall that I(P) denotes the set of inner edges of P and write

J(P) := I(P) − ΣP .

For each subset H ⊆ J(P), write PH for the tree obtained from P by contracting
all edges in the complement J(P) − H. In particular, PJ(P) = P. Pick a linear order
on the collection of subsets of J(P) which extends the partial order of inclusion and
adjoin the trees PH to Aj

i in this order to obtain a further filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ Aj,2

i ⊆ · · · ,
⋃
k

Aj,k
i = Aj

i ∪ P = Aj+1
i .

Finally we will now argue that each inclusion Aj,k
i ⊆ Aj,k+1

i is a composition of
pushouts of inner horn inclusions. The inclusion under consideration is given by
adjoining some tree of the form PH . If the map

PH → S ⊗ T

factors through Aj,k
i then this inclusion is the identity and there is nothing to prove.

If it does not, we can say the following:

(1) Any outer face ofPH chopping off a leaf corolla factors through a smaller pruning
and is therefore contained in Aj,k

i by our induction on the size of prunings.
(2) The root face of PH , if it exists, is contained in A0. Indeed, it deletes all

occurrences of the root vertex of either S or T in P.
(3) Any inner face of PH which contracts an inner edge f which is not special is

contained in PH′ with H ′ = H − { f } and is therefore contained in Aj,k
i by our

induction on the size of H.
(4) Finally, any inner face Q of PH contracting a special edge e⊗ t (or multiple such

special edges) cannot be contained in Aj,k
i . We will prove this in (a)–(c) below.
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It follows from these four observations and Lemma 6.22 that Aj,k
i ⊆ Aj,k+1

i is a
pushout of the map

Λ
ΣP [PH ] → PH,

which is a composition of pushouts of inner horn inclusions by Lemma 6.20 as
desired. It remains to verify the following:

(a) The face Q cannot be contained in Λe[S] ⊗ T . If it were, then Q would be
contained in ∂xS ⊗T for some face ∂xS of S other than the inner face ∂eS. Since
Q is obtained from PH by contracting one or several edges of the form e ⊗ t,
this would imply that PH itself is contained in ∂xS ⊗ T . This is a contradiction,
because we assumed that PH is not contained in A0.

(b) The face Q cannot be contained in S ⊗ ∂T . Indeed, suppose Q is contained in
S ⊗ ∂xT for some face ∂xT of T . If ∂xT is the root face (assuming it exists) then
PH itself must be contained in S ⊗ ∂xT , giving a contradiction. If ∂xT is a leaf
face chopping off some leaf vertex w, then Q cannot contain any vertices of the
form s ⊗ w or vertices arising from such by contracting inner edges in P. But
then since S is an open tree, such vertices also cannot occur in PH . It follows
that PH is also contained in S ⊗ ∂xT , which is a contradiction. Finally, consider
the case where ∂xT is an inner face of T contracting some inner edge t. Write
w for the top vertex of t. The tree Q cannot contain any edges of the form s ⊗ t
for s ranging through the edges of S. Hence the only possible occurrences of
edges s ⊗ t in PH are special edges (which have been contracted to form Q). It
follows that s = e. The edge e ⊗ t in P has top vertex ve ⊗ t. All the edges in P
of the form s ⊗ t above ve ⊗ t must have been contracted to form PH (since PH

and Q ‘look the same’ above the special edges). But then PH factors through an
earlier shuffle, in which the vertex w is shuffled down all the way through ve. In
particular PH is contained in Ai , a contradiction.

(c) By (a) and (b) it follows that Q is not contained in A0. Also it cannot factor
through an earlier shuffle because of how special edges are defined, in particular
the fact that their top vertex is of the form ve ⊗ t, ‘a vertex of S’. Indeed, the
tree PH is not contained in an earlier shuffle by assumption, and contracting
special edges in PH can only create overlap with shuffles in which ve has been
shuffled down. Thus Q is not contained in Ai . Given this, it is clear that Q
cannot be contained in Aj′

i for j ′ ≤ j because of the size of the pruning P under
consideration, and also it cannot be contained in Aj,k′

i for k ′ ≤ k: if it were, then
PH is evidently contained in Aj,k′

i as well, which is a contradiction again.

This completes our proof under the assumption that S and T are open trees. The
assumption that T is open was only used to ensure that the map under consideration
is a normal monomorphism. It is also a normal monomorphism if S is linear, without
further assumptions on T , and the proof above still applies.

For the case where S is a general tree and T is linear some modifications are
needed. In this case we define a special edge of a shuffle R to be the lowest occurrence
of an edge of the form e⊗ t. SinceT is linear, every shuffle now contains precisely one
such edge (contrary to the more general case considered above). In other words, if ue
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denotes the bottom vertex attached to e, the special edge is the edge of R occurring
immediately above the unique vertex of the form ue ⊗ t. Also, we reverse the order
of the shuffles of S and T : the first one is now the shuffle where one grafts copies
of T onto the leaves of S and the last one is the shuffle obtained by grafting S onto
the (unique) leaf of T . In this ordering we have R1 < R2 when R2 is obtained from
R1 by shuffling down a vertex of T , or equivalently shuffling up a vertex of S. The
argument proceeds as in the other cases above, but one replaces item (b) above with
the following:

(b’) The face Q cannot be contained in S ⊗ ∂T . Indeed, suppose Q is contained in
S ⊗ ∂xT for some face ∂xT . It cannot be the root face of T by the same argument
as in (b). Since T is linear, the face ∂xT is uniquely determined by the unique
edge t it misses. Write w for the bottom vertex of t (which exists because t is not
the root of T). So Q does not contain any edges of the form s ⊗ t (for any edge
s of S). But PH must contain at least one such edge, or it would automatically
be contained in S ⊗ ∂xT as well, using the fact that T is linear. It follows that Q
is obtained from PH by contracting the special edge e ⊗ t. Since there are no
other occurrences of t in PH , in particular not below the special edge e ⊗ t, it
follows that PH must in fact be contained in an earlier shuffle in which w has
been shuffled up all the way through ue (or ue has been shuffled down through
w). This is a contradiction. �

As before we use the standard arguments on saturated classes to conclude:

Corollary 6.26 For an inner anodyne map i : A→ B and a normal monomorphism
j : M → N of dendroidal sets, the pushout-product

A ⊗ N ∪A⊗M B ⊗ M → B ⊗ N

is inner anodyne, provided that all dendroidal sets involved are open or that either
B or N is simplicial.

We will also need some variations on the preceding result concerning root and
leaf anodynes. Let us state these results and their consequences now; the remainder
of this section will consist of their proofs. The following terminology will be useful:
a unary root horn is a root horn of a tree S whose root vertex is unary, i.e., has only
one input edge. The class of unary root anodyne morphisms is the smallest saturated
class containing the inner horn inclusions and the unary root horn inclusions of trees.
These unary root horn inclusions enjoy the following pushout-product property:

Lemma 6.27 Consider a tree S with unary root vertex and another tree T . Let
K → S be a root horn inclusion (of one of the two kinds described at the start of
Section 6.1). Suppose that S or T is linear, or that both S and T are open. Then the
pushout-product

K ⊗ T ∪ S ⊗ ∂T → S ⊗ T

is a unary root anodyne map.
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Remark 6.28 The case of a general root horn is somewhat more complicated. It
features in Section 9.7, specifically Lemmas 9.90 and 9.91.

Leaf horn inclusions satisfy an analogous property:

Lemma 6.29 Consider trees S and T and a leaf horn inclusion L → S (of one of
the two kinds described at the start of Section 6.1). Suppose that S or T is linear, or
that both S and T are open. Then the pushout-product

L ⊗ T ∪ S ⊗ ∂T → S ⊗ T

is a leaf anodyne map.

The previous two lemmas imply the following for the corresponding saturated
classes:

Corollary 6.30 For a unary root anodyne map or leaf anodyne map i : A→ B and
a normal monomorphism j : M → N of dendroidal sets, the pushout-product

A ⊗ N ∪A⊗M B ⊗ M → B ⊗ N

is unary root anodyne or leaf anodyne respectively, provided that all dendroidal sets
involved are open or that either B or N is simplicial.

Although the statements of Lemmas 6.27 and 6.29 appear ‘dual’ (at least for the
case of unary leaf and root vertices), as in the duality between left and right anodynes
of simplicial sets, they do not admit a common proof. As we mentioned before, the
involution of the category ∆ that reverses linear orders does not extend to Ω and
hence there is no formal way to turn statements about leaf anodynes into statements
about root anodynes and vice versa. In fact, there will be some subtle differences in
the proofs of these lemmas, although the general approach is of course very similar.
Proof (of Lemma 6.27) Our strategy is similar to the proof of Lemma 6.24. First of
all, the map under consideration is a normal monomorphism by Propositions 4.21
and 4.26. As before, we begin with the case where S and T are open and indicate the
modifications for the other cases at the end of the proof. We will write r for the root
edge of S and vr for the root vertex, i.e., the unique vertex having r as its outgoing
edge.

Again we will consider a filtration

A0 ⊆ A1 ⊆ A2 ⊆ · · · ,
⋃
i

Ai = S ⊗ T,

where A0 := K ⊗T ∪ S ⊗ ∂T . We think of A0 as a subobject of S ⊗T . Choose a linear
order on the set of shuffles of S and T which extends the partial order described
before, in which the minimal element is given by grafting copies of S onto the leaves
of T . Then Ai is the union of A0 with the first i shuffles in this linear order. We will
show that each of the inclusions Ai ⊆ Ai+1 is a composition of pushouts of inner
horn and root horn inclusions. Say Ai+1 is obtained from Ai by adjoining a shuffle
R. We distinguish two cases:
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Case 1. The root vertex of the shuffle R is not of the form vr ⊗ t for some edge t of
T . In this case we will show that Ai ⊆ Ai+1 is a composition of pushouts of
inner horn inclusions.

Case 2. The root vertex of the shuffle R is of the form vr ⊗ t. In this case wewill show
that Ai ⊆ Ai+1 is a composition of pushouts of unary root horn inclusions.

Case 1. The shuffle R will contain one or several vertices of the form vr ⊗ t, none
of which are root vertices. We will call the outgoing edges r ⊗ t of these vertices the
special edges of R. Note that these special edges are in particular inner edges, since
the vr ⊗ t are not root vertices. Define a further filtration

Ai =: A0
i ⊆ A1

i ⊆ A2
i ⊆ · · · ,

⋃
j

Aj
i = Ai+1

by adjoining the prunings of R one by one, in an order which extends the partial
ordering of inclusion. Say Aj

i ⊆ Aj+1
i is given by adjoining some pruning P. Denote

by ΣP the collection of inner edges which are also special edges. Without loss of
generality we may assume that ΣP is non-empty. Indeed, if it were empty then either
P contains no special edges at all or they are leaf edges. In both cases P cannot
contain any vertex of the form vr ⊗ t, which implies P factors through ηr ⊗T (where
ηr denotes the root edge ofT). But then P is also contained in K ⊗T and the inclusion
Aj
i ⊆ Aj+1

i is the identity.
As in the proof of Lemma 6.24, write J(P) = I(P) − ΣP and for each subset

H ⊆ J(P)write PH for the tree obtained from P by contracting all edges in J(P)−H.
Pick a linear order on the collection of subsets of J(P) which extends the partial
order of inclusion and adjoin the trees PH to Aj

i in this order to obtain a further
filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ Aj,2

i ⊆ · · · ,
⋃
k

Aj,k
i = Aj

i ∪ P = Aj+1
i .

Finally we will now argue that each inclusion Aj,k
i ⊆ Aj,k+1

i is a composition of
pushouts of inner horn inclusions. The inclusion under consideration is given by
adjoining some tree of the form PH . If the map

PH → S ⊗ T

factors through Aj,k
i then this inclusion is the identity and there is nothing to prove.

If it does not, we can say the following:

(1) Any outer face ofPH chopping off a leaf corolla factors through a smaller pruning
and is therefore contained in Aj,k

i by our induction on the size of prunings.
(2) The root face of PH , if it exists, is contained in A0. Indeed, it deletes the root

vertex vT of T (or more precisely, a vertex of the form s ⊗ vT ) and therefore
factors through S ⊗ ∂T ⊆ A0.
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(3) Any inner face of PH which contracts an inner edge f which is not special is
contained in PH′ with H ′ = H − { f } and is therefore contained in Aj,k

i by our
induction on the size of H.

(4) Finally, any inner face Q of PH contracting a special edge r ⊗ t (or multiple
such special edges) cannot be contained in Aj,k

i . This follows by an argument
completely analogous to that in the proof of 6.24, using items (a)–(c) there.

It follows from these four observations and Lemma 6.22 that Aj,k
i ⊆ Aj,k+1

i is a
pushout of the map

Λ
ΣP [PH ] → PH,

which is a composition of pushouts of inner horn inclusions by Lemma 6.20.
Case 2. The root vertex of R is of the form vr ⊗ t. Define Aj

i as before, adjoining
prunings of R to Ai one by one. Say Aj

i ⊆ Aj+1
i is given by adjoining a pruning P.

This time we consider all possible subsets H ⊆ I(P) and the corresponding trees PH

obtained by contracting the all edges in I(P) − H. Adjoining these to Aj
i in an order

extending inclusion of subsets H gives a further filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ Aj,2

i ⊆ · · · ,
⋃
k

Aj,k
i = Aj

i ∪ P = Aj+1
i .

Consider a map Aj,k
i ⊆ Aj,k+1

i adjoining some tree of the form PH . If PH is already
contained in Aj,k

i then this map is the identity. Note that this is in particular the case
if the (unique) incoming edge e ⊗ t of the root vertex vr ⊗ t does not occur in PH :
indeed, then PH either factors through ∂eS⊗T (if e⊗ t connects two vertices coming
from S), or the Boardman–Vogt relation implies that PH factors through an earlier
shuffle in which the vertex vr of S has been shuffled up (if e ⊗ t connects vr ⊗ t to
a vertex coming from T). Without loss of generality we will thus assume that PH is
not contained in Aj,k

i and its root vertex is of the form vr ⊗ t, with incoming edge
e ⊗ t. We will argue that Aj,k

i ⊆ Aj,k+1
i is a pushout of the root horn inclusion of PH .

Indeed:

(1) Any outer face of PH chopping off a leaf corolla factors through a smaller
pruning and is therefore contained in Aj,k

i .
(2) Any inner face of PH factors through some PH′ for H ′ a proper subset of H

and is therefore contained in Aj,k
i .

(3) The root face of PH , chopping off the unary root corolla with vertex vr ⊗ t,
cannot be contained in Aj,k

i . Indeed, it cannot factor through K ⊗T or S ⊗ ∂T or
through an earlier shuffle. Also, it cannot factor through Aj′

i for j ′ ≤ j because
of the size of the pruning P under consideration, or through Aj,k′

i for k ′ ≤ k by
the definition of the trees PH .

It follows that Aj,k
i ⊆ Aj,k+1

i is a pushout of the unary root horn inclusion

Λ
root[PH ] → Ω[PH ].
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This completes the proof of the lemma under the assumption that S and T are
open trees. In fact, the given proof also covers the case where T is a general tree (we
never used that it is open) and S is linear.

We will now deduce the case where S is a general tree (still with unary root vertex
of course) and T is linear from what we have already done. First of all, we claim that
the root horn inclusion K → S is a retract of the pushout-product map

f : i[1] ⊗ K ∪ η1 ⊗ S → i[1] ⊗ S,

where η1 denotes the root edge of the linear tree i[1]. To see this, consider the evident
inclusion

j : S � η0 ⊗ S → i[1] ⊗ S.

It admits a retraction
p : i[1] ⊗ S → S

which is characterized by its effect on edges as follows: it sends an edge of colour
k ⊗ s to the edge s, except when k = 1 and s is the incoming edge of the root vertex
vr , in which case p(k ⊗ s) = r , the root of S. It is easily verified that the map p is
well-defined and indeed gives the desired retraction. It now suffices to check that the
pushout-product of f with the boundary inclusion of T is unary root anodyne:

(i[1] ⊗ K ∪ η1 ⊗ S) ⊗ T ∪ (i[1] ⊗ S) ⊗ ∂T → (i[1] ⊗ S) ⊗ T .

Using Corollary 4.32 and the fact that T is linear, this map can be rewritten (up to
isomorphism) as

i[1] ⊗ (K ⊗ T ∪ S ⊗ ∂T) ∪ η1 ⊗ (S ⊗ T) → i[1] ⊗ (S ⊗ T).

This is the pushout-product of η1 → i[1] (which is a unary root horn inclusion) with
the map K ⊗ T ∪ S ⊗ ∂T → S ⊗ T , which is a normal monomorphism of dendroidal
sets. This map is unary root anodyne, because we have already covered the case of
a pushout-product of a unary root anodyne between simplicial sets and a normal
monomorphism of dendroidal sets. �

Proof (of Lemma 6.29) As before, the map of the lemma is a normal monomor-
phism by Propositions 4.21 and 4.26. We will write v` for the leaf vertex of S
corresponding to the ‘missing face’ of the leaf horn L ⊂ S. Also, we write e for
the outgoing edge of v` and `1, . . . , `n for its incoming edges, which are leaves of S.
In this proof we will treat all cases simultaneously: S and T open, or one of them
simplicial. Essentially the same argument will work for all of these, apart from a
few small distinctions depending on whether the leaf vertex v` of S has leaves or is
a stump (meaning it has no leaves).

As usual, we define a filtration

A0 ⊆ A1 ⊆ A2 ⊆ · · · ,
⋃
i

Ai = S ⊗ T,
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with A0 := K ⊗ T ∪ S ⊗ ∂T and Ai the union of A0 with the first i shuffles of S ⊗ T .
However, for this proof we reverse the ordering on these shuffles, so that the first one
is given by grafting copies of T onto the leaves of S. Thus, one progresses through
this ordering by shuffling vertices of S up through vertices of T . We will show that
each of the inclusions Ai ⊆ Ai+1 is a composition of pushouts of inner horn and
leaf horn inclusions. Say Ai+1 is obtained from Ai by adjoining a shuffle R. We
distinguish two cases:

Case 1. At least one of the vertices of the form v` ⊗ t occurring in R (with t some
edge of T) is not a leaf vertex of R (which is only possible if v` is not a
stump of S).

Case 2. All vertices of the form v` ⊗ t occurring in R are leaf vertices of R.

Case 1. Define a further filtration

Ai =: A0
i ⊆ A1

i ⊆ A2
i ⊆ · · · ,

⋃
j

Aj
i = Ai+1

by adjoining the prunings of R one by one, in an order extending the partial order of
inclusion of prunings. Consider an inclusion Aj

i ⊆ Aj+1
i adjoining some pruning P.

Without loss of generality, P still contains one or several vertices of the form v` ⊗ t.
Indeed if it does not, then all corollas of R occurring above such vertices have been
chopped off as well and P is already contained S ⊗ ∂T ⊆ A0, so there is nothing to
prove. Now consider the incoming edges `1 ⊗ t, . . . , `n ⊗ t of the vertices v` ⊗ t still
occurring in P. At least some of these have to be inner edges of P; if not, v` ⊗ t would
be a leaf vertex of P and again P would be contained in S ⊗ ∂T . We refer to such
inner edges as special edges of P and write ΣP for the collection of special edges.
As before, we define J(P) = I(P) − ΣP and for any subset H ⊆ J(P) we write PH

for the tree obtained by contracting all inner edges of P contained in the complement
J(P) − H. Adjoining the PH in an order extending the partial order of inclusion of
subsets H gives a filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ Aj,2

i ⊆ · · · ,
⋃
k

Aj,k
i = Aj

i ∪ P = Aj+1
i .

Consider an inclusion Aj,k
i ⊆ Aj,k+1

i adjoining a tree PH . If that tree is already
contained in Aj,k

i there is nothing to prove. If it is not, we observe:

(1) Any outer face of PH chopping off a leaf corolla factors through a smaller
pruning and is therefore contained in Aj,k

i .
(2) The root face of PH , if it exists, is contained in A0. Indeed, it deletes the root

vertex vT of T (or more precisely, a vertex of the form s ⊗ vT ) and therefore
factors through S ⊗ ∂T ⊆ A0.

(3) Any inner face of PH which contracts an inner edge f which is not special is
contained in PH′ with H ′ = H − { f } and is therefore contained in Aj,k

i by our
induction on the size of H.
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(4) Finally, any inner face Q of PH contracting a special edge `k ⊗ t (or multiple
such special edges) cannot be contained in Aj,k

i . This follows by an argument
completely analogous to that in the proof of 6.24, using items (a)–(c) there. For
(b) some care is required; we are no longer assuming S is open. However, the
argument only needs that no stumps of S occur above v` , which is true in the
current situation.

As before we conclude that Aj,k
i ⊆ Aj,k+1

i is a pushout of the map

Λ
ΣP [PH ] → PH,

which is inner anodyne.
Case 2. Each of the vertices of the form v` ⊗ t occurring in R is a leaf vertex.

For this case we introduce a variation on the notion of pruning. An `-pruning of R
is a pruning P of R satisfying the following property: if there is a vertex v` ⊗ t of
R whose outgoing edge e ⊗ t is contained in P, then v` ⊗ t itself is contained in P.
This time we define a filtration

Ai =: A0
i ⊆ A1

i ⊆ A2
i ⊆ · · · ,

⋃
j

Aj
i = Ai+1

by adjoining the `-prunings of R one by one in an order compatible with the partial
order of inclusion of prunings. Consider an inclusion Aj

i ⊆ Aj+1
i adjoining some

`-pruning P. Again, we consider subsets H ⊆ I(P) and the corresponding subtrees
PH contracting the inner edges of P not contained in H. Adjoining these in an
appropriate order yields Aj,k

i as before. Say a step Aj,k
i ⊆ Aj,k+1

i in this filtration
adjoins a tree PH . If this tree is contained in Aj,k

i there is nothing to prove. Note that
this is in particular the case if H does not contain any outgoing edges e ⊗ t of a leaf
vertex v` ⊗ t. Indeed, if all such edges are contracted, the resulting tree either factors
through ∂eS ⊗ T or through an earlier shuffle of S ⊗ T in which such a vertex v` ⊗ t
has been shuffled down. Without loss of generality we will assume that PH is not
contained in Aj,k

i , so that it contains several edges of the form e ⊗ t and leaf vertices
v` ⊗ t attached to the top of those. Write L for the corresponding collection of leaf
corollas. We observe:

(1) Any outer face of PH chopping off a leaf corolla not of the form v` ⊗ t factors
through a smaller `-pruning and is therefore contained in Aj,k

i .
(2) The root face of PH , if it exists, is contained in A0. Indeed, it deletes the root

vertex vT of T (or more precisely, a vertex of the form s ⊗ vT ) and therefore
factors through S ⊗ ∂T ⊆ A0.

(3) Any inner face of PH factors through some PH′ for H ′ a proper subset of H and
is therefore contained in Aj,k

i .
(4) Any face chopping off one of the leaf corollas in L (or any intersection of such

faces) cannot be contained in Aj,k
i . Indeed, it cannot factor through K ⊗ T or

S ⊗ ∂T or through an earlier shuffle. Also, it cannot factor through Aj′

i for j ′ ≤ j
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because of the size of the `-pruning P under consideration and the fact that
chopping off a leaf corolla v` ⊗ t yields a tree which is not an `-pruning. Finally,
it cannot factor through Aj,k′

i for k ′ ≤ k by the definition of the trees PH .

It follows that Aj,k
i ⊆ Aj,k+1

i is a pushout of the horn inclusion

Λ
L[PH ] → Ω[PH ],

which is leaf anodyne by Lemma 6.21. �

Remark 6.31 The following is analogous to Remark 5.27. The proof of Lemma 6.29
gives a little more. If the leaf horn in the statement of the lemma concerns a unary
leaf vertex v (i.e. a vertex having only one leaf), then the leaf horns used in the proof
will also concern unary leaf vertices. Moreover, those leaf vertices will be mapped
to corollas of the tensor product S ⊗ T which are of the form v ⊗ t, with t an edge
in T . An analogous comment applies to the proof of Lemma 6.27 and a unary root
vertex of S.

We end this section with some further discussion of the associator morphisms

α : X1 ⊗ · · · ⊗ Xi−1 ⊗ (Xi ⊗ · · · ⊗ Xj) ⊗ Xj+1 ⊗ · · · ⊗ Xn → X1 ⊗ · · · ⊗ Xn

for the tensor product of dendroidal sets discussed in Section 4.4. In Corollary 4.32
we observed that these maps are normal monomorphisms whenever the dendroidal
sets involved are normal. Much more is true; these maps are in fact inner anodyne.
We will now prove this in the case of corollas, since this is all we will need, but
Remark 9.48 gives a statement that applies more generally.

Proposition 6.32 For corollas Ck1, . . . ,Ckn , the associator

α : Ck1 ⊗ · · · ⊗ Cki−1 ⊗ (Cki ⊗ · · · ⊗ Ck j ) ⊗ Ck j+1 ⊗ · · · ⊗ Ckn → Ck1 ⊗ · · · ⊗ Ckn

is inner anodyne.

Let us first illustrate the proof in the case of Examples 4.27 and 4.33, which
describe the associator

C2 ⊗ (C1 ⊗ C1) → C2 ⊗ C1 ⊗ C1.

The codomain C2 ⊗ C1 ⊗ C1 has two shuffles R1 and R2

which are not already contained in the domain C2 ⊗ (C1 ⊗ C1). Consider the one on
the left and the following two prunings of it:
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Write E for the two incoming edges of the 2-corolla at the root. Then each of these
two prunings P can be adjoined via a pushout along the inner anodyne ΛE [P] → P.
Subsequently the shuffle R1 itself can be adjoined via a pushout alongΛE [R1] → R1.
The other shuffle R2 is treated analogously.

Proof (of Proposition 6.32) Write Σ for the set of shuffles of the n corollas
Ck1, . . . ,Ckn , so that the tensor product Ck1 ⊗ · · · ⊗ Ckn is the union of the shuffles
in Σ. The domain of α

Ck1 ⊗ · · · ⊗ Cki−1 ⊗ (Cki ⊗ · · · ⊗ Ck j ) ⊗ Ck j+1 ⊗ · · · ⊗ Ckn

is a union of some subset of these shuffles. Write A0 for this, regarded as a subobject
of Ck1 ⊗ · · · ⊗ Ckn . For every shuffle S ∈ Σ we write VS for the set of vertices of S
corresponding to vertices of the corollas Ck1, . . . ,Cki−1,Ck j+1, . . . ,Ckn . We give Σ a
partial order where S1 < S2 whenever S2 is obtained from S1 by shuffling vertices
of VS1 down, i.e., towards the root. Adjoining the shuffles in Σ to A0 in an order that
respects this partial order defines a filtration

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ AN = Ck1 ⊗ · · · ⊗ Ckn

where Ai is obtained from Ai−1 by adjoining the ith shuffle. Consider an inclusion
Ai ⊆ Ai+1, adjoining a shuffle S. Define a V-pruning to be a subtree P of S (i.e. a
tree obtained by iteratively chopping off leaf corollas and root corollas) satisfying
the following condition: if P contains any vertex of S occurring above some vertex
v ∈ VS , then P also contains v. Adjoining such V-prunings in an order compatible
with the partial order of inclusion of prunings defines a further filtration

Ai =: A0
i ⊆ A1

i ⊆ · · · ⊆
⋃
j

Aj
i = Ai+1.

Note that any V-pruning in which all the vertices above those of VS have been
removed (i.e. in which the vertices of VS are leaf vertices) is a face of the shuffle
of Ck1 ⊗ · · · ⊗ Ckn where all the vertices corresponding to Cki , . . . ,Ck j are below
those of VS . Such a shuffle is contained in A0. Now consider an inclusion Aj

i ⊆ Aj+1
i

adjoining a V-pruning P. Call an inner edge of P special if it is an input edge of a
vertex inVS . Write E for the collection of special edges.Without loss of generality we
may assume it to be non-empty; if it were empty, P would contain no vertices above
VS and is already contained in A0. As usual (by now), consider trees PH obtained
from P by contracting all inner edges that are not special and not contained in some
specified subset H of I(P) −E. Adjoining the PH in an order that extends the partial
order of inclusion of subsets H, we obtain a refinement
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Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ · · · ⊆

⋃
k

Aj,k
i = Aj+1

i .

Consider one of the inclusions Aj,k
i ⊆ Aj,k+1

i adjoining a tree PH . If PH is already
contained in Aj,k

i there is nothing to prove. Otherwise:

(1) Any inner face of PH contracting a special edge, or some collection of special
edges, is not contained in Aj,k

i . Indeed, PH is not contained in Aj,k
i because the

trees on top of the various vertices of V do not all stem from the same shuffle of
Cki ⊗ · · · ⊗ Ck j . Contracting several special edges does not change this fact.

(2) Any inner face of PH contracting a non-special edge is contained in Aj,k
i by our

induction on H.
(3) Any outer face of PH is contained in Aj

i by our induction on the size of V-
prunings.

We conclude that Aj,k
i ⊆ Aj,k+1

i is a pushout of the inclusion ΛE[P] → P and hence
inner anodyne. �

6.4 Fibrations Between Mapping Spaces of Dendroidal Sets

Recall that in Section 4.1 we introduced, for dendroidal sets A and X , the ‘mapping
space’ hom(A, X). It is a simplicial set characterized by a natural isomorphism

sSets(∆[n], hom(A, X)) � dSets(A ⊗ i!∆[n], X).

In other words, it is the underlying simplicial set of the ‘internal hom’ between A
and X in the category of dendroidal sets. We put this term in quotation marks only to
remind the reader that the tensor product does not make dSets a symmetric monoidal
category, so that these mapping spaces do not automatically come equipped with a
natural notion of composition. Nonetheless they will be very useful.

The following result parallels Theorem 5.36 for simplicial sets:

Theorem 6.33 Consider two morphisms of dendroidal sets f : Y → X and i : A→
B, together giving a map of simplicial sets

p : hom(B,Y ) → hom(B, X) ×hom(A,X) hom(A,Y ).

Suppose f is a fibration of one of the five types considered (Kan, inner, left, right,
or trivial).

(i) If i is a normal monomorphism, then p is again a fibration of the same type.
(ii) If i is an anodyne morphism corresponding to the type of the fibration f , then

p is a trivial fibration. Here inner anodynes correspond to inner fibrations, leaf
anodynes to left fibrations, etc. The case where f is a trivial fibration is already
covered by (i), where i is allowed to be any normal monomorphism.
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Proof The proofs all proceed by using the analogue of Lemma5.35 for the adjunction
between hom(−,−) and the tensor product, together with the closure properties of
various classes of anodynes stated in Corollaries 6.26 and 6.30. For example, suppose
f is a left fibration and i a normal monomorphism. To check that p is a left fibration
we should argue the existence of a lift in a square of the following kind:

Λ0[n] hom(B,Y )

∆[n] hom(B, X) ×hom(A,X) hom(A,Y ).

By adjunction this lifting problem corresponds to the following:

B ⊗ i!Λ0[n] ∪A⊗i!Λ0[n] A ⊗ i!∆[n] Y

B ⊗ i!∆[n] X .

f

The vertical map on the left is leaf anodyne by Corollary 6.30 and so a lift indeed
exists. For part (ii), say for example that i is inner anodyne and f an inner fibration.
We should check that a lift existence in the following kind of square, with 0 < k < n:

Λk[n] hom(B,Y )

∆[n] hom(B, X) ×hom(A,X) hom(A,Y ).

This time the conclusion follows from the fact that the map

B ⊗ i!Λk[n] ∪A⊗i!Λk [n] A ⊗ i!∆[n] → B ⊗ i!∆[n]

is inner anodyne, see Corollary 6.26. �

Remark 6.34 With care it is possible to weaken some of the assumptions in the
preceding theorem. For example, in order for p to be a left fibration, it is only
necessary that f has the right lifting property with respect to inner horns and
leaf horns corresponding to a unary leaf corolla. This can be checked using the
observation of Remark 6.31. Similar remarks apply to the corollaries that follow.

Corollary 6.35 Suppose f : Y → X is a fibration of one of the five types considered
in Theorem 6.33 and B is a normal dendroidal set. Then

hom(B,Y ) → hom(B, X)

is a fibration of simplicial sets of the corresponding type.

Proof Take A = �. �
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Another special case of Theorem 6.33 is where X is the terminal dendroidal set
and one obtains statements similar to Corollary 5.39. In particular one finds:

Corollary 6.36 If Y is an∞-operad and B a normal dendroidal set, then hom(B,Y )
is an∞-category.

6.5 Spines and Leaves of Trees

We will consider the relation between spine inclusions of trees and inner anodyne
morphisms. We will use this relation to complete the proof of Proposition 6.4. We
also include a useful characterization of the class of leaf anodyne morphisms.

Recall that for a tree T , its spine is the union of all the subtrees of T with precisely
one vertex:

Sp[T] =
⋃

v∈V (T )

Ω[Cv].

Also, if e is an inner edge of T , one can consider the trees e/T (chopping off
everything above e) and T/e (the maximal subtree of T with root e) and express T
as the result of grafting these two along the edge e:

T = e/T ◦e T/e

Lemma 6.37 For any tree T with at least two vertices and an inner edge e, the
inclusions

Sp[T] → Ω[e/T] ∪e Ω[T/e] → Ω[T]

are inner anodyne.

Proof If T has two vertices (and hence precisely one inner edge e), the first map is
an equality and the second is equal to the inner horn inclusion Λe[T] → Ω[T]. We
proceed by induction on the number of vertices of T . There is a pushout square

Sp[e/T] q Sp[T/e] Sp[T]

Ω[e/T] q Ω[T/e] Ω[e/T] ∪e Ω[T/e].

The left vertical map is inner anodyne by induction, so the right vertical map is inner
anodyne as well. Hence it suffices to prove that Ω[e/T] ∪e Ω[T/e] → Ω[T] is inner
anodyne. Form a sequence of inclusions

Ω[e/T] ∪e Ω[T/e] = A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ An = Ω[T],

where Ap is the union of Ω[e/T] ∪e Ω[T/e] with all the faces S of T that have at
most p vertices and contain e as an inner edge. We claim that Ap−1 ⊆ Ap is inner
anodyne for every p. Indeed, write Fp for the collection of faces being adjoined to
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form Ap . Then there is a pushout square∐
S∈Fp

Λe[S] Ap−1

∐
S∈Fp

Ω[S] Ap .

�

Remark 6.38 Similarly to Remark 5.33, the preceding lemma leads to a proof of the
implication (i)⇒ (ii) in Proposition 6.4. For a given dendroidal set X , consider the
class C of monomorphisms A→ B with the property that any map A→ X extends
uniquely to B, i.e., the class of monomorphisms A→ B for which

dSets(B, X) → dSets(A, X)

is an isomorphism. Clearly C is a saturated class. If it contains all inner horn
inclusions of trees, then it also contains all the spine inclusions by virtue of the
preceding lemma.

As with simplicial sets we can also characterize the inner anodynes in terms of
the spine inclusions in the following way:

Proposition 6.39 Let A be a saturated class of normal monomorphisms between
dendroidal sets which contains all spine inclusions of trees and satisfies the following
additional closure property: if i : A→ B and j : B → C are monomorphisms such
that i and ji are in A, then j is in A as well. Then the class A contains all inner
anodynes.

Proof Since A is saturated it suffices to show it contains all inner horn inclusions
Λe[T] → Ω[T], for T any tree with inner edge e. We will prove the slightly more
general claim that each inclusion ΛE [T] → Ω[T] is in A, for E a non-empty subset
of the set of inner edges I(T) of T . Consider the inclusions

Sp[T] i
−→ Λ

E [T]
j
−→ Ω[T].

Then ji is in A by assumption, so it suffices to show that i is in A. Factor it as

Sp[T]
i1
−→ ∂ext

Ω[T]
i2
−→ Λ

E [T],

where ∂extΩ[T] denotes the union of the outer (or external) faces of T . We will show
that both of these maps are in A by induction on the number k of vertices of T .
For k = 2 there is nothing to prove, because both are identities. For larger k, let us
consider proper subtrees S of T (so S is obtained from T by iteratively taking leaf
and root faces, but not inner faces). Give the set of such subtrees a linear order which
extends the partial order of inclusion and adjoin them to Sp[T] in that order to form
a filtration as follows:
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Sp[T] = B1 ⊆ B2 ⊆ · · · ,
⋃
i

Bi = ∂
ext
Ω[T].

If Bi → Bi+1 is given by adjoining a subtree S, then it is a pushout of the map

∂ext
Ω[S] → Ω[S].

Indeed, all the outer faces of S are contained in Bi by the induction on the size of
S, but no inner face of it can be contained in a smaller subtree. We conclude that
Bi → Bi+1 is in A, because it is a pushout of a map of the form i2 but for a tree
smaller than T . Hence i1 : Sp[T] → ∂extΩ[T] is in A as well.

We prove that i2 : ∂extΩ[T] → ΛE [T] is in A by an induction on the size of
the complement of E . If E is I(T) then i2 is the identity and there is nothing to
prove. Otherwise, pick an element e ∈ I(T) which is not contained in E and write
E ′ = E ∪ {e}. The map

∂ext
Ω[T] → Λ

E′[T]

is in A by the inductive hypothesis. Consider the pushout square

ΛE [∂eT] ΛE′[T]

Ω[∂eT] ΛE [T].

Here the upper left-hand corner denotes the union of all faces of the tree ∂eT except
for the inner faces corresponding to elements of E . Thus the left vertical map is of
the form i2, but for the smaller tree ∂eT . By the inductive hypothesis it is in A, so
that the right vertical map is inA as well. It follows that i2, which is the composition

∂ext
Ω[T] → Λ

E′[T] → Λ
E [T],

is in A. �

Remark 6.40 We can now continue Remark 6.38 and prove the implication (ii)
⇒ (i) of Proposition 6.4. Let C be the same class of monomorphisms as in that
remark. Clearly C has the closure property described in the statement of Proposition
6.39 (simply because isomorphisms are closed under two-out-of-three). So if C

contains the spine inclusions of trees, the proposition implies that it contains all
inner anodynes.

We conclude this section with analogous results describing the class of leaf
anodyne morphisms. We will denote the inclusion of the leaves of a tree T by
`[T] → Ω[T]. We promised in Lemma 6.19 that it is a leaf anodyne morphism, as
we will prove below (see Remark 6.43). Conversely, the class of leaf anodynes may
be characterized in terms of such leaf inclusions as follows:
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Proposition 6.41 Let A be a saturated class of normal monomorphisms between
dendroidal sets which satisfies the following additional closure property: if i : A→ B
and j : B → C are monomorphisms such that i and ji are in A, then j is in A as
well. If A satisfies either of the following two properties, then it contains all leaf
anodyne morphisms:

(1) The class A contains the leaf inclusion `[T] → Ω[T] of any tree T .
(2) The class A contains the leaf inclusion `[Cn] → Ω[Cn] of the n-corolla, for any

n ≥ 0, as well as the spine inclusion Sp[T] → T of any tree T .

The proof of this proposition will use the following elementary observation:

Lemma 6.42 For any tree T , the inclusion of its leaves into its spine

`[T] → Sp[T]

is a composition of pushouts of leaf inclusions of corollas.

Proof If T has one vertex (so T is a corolla) the statement of the lemma is trivial.
We proceed by induction on the size of T . A larger tree T can be described as a
collection of trees (T1, . . . ,Tn) grafted onto the leaves of its root corolla Cn, and we
have

Sp[T] = Ω[Cn] ∪ (Sp[T1] q · · · q Sp[Tn]).

Consider the composition

`[T]
i
−→ Sp[T1] q · · · q Sp[Tn]

j
−→ Sp[T].

The map i is a composition of pushouts of leaf inclusions of corollas by the inductive
hypothesis. The map j is a pushout of the leaf inclusion of the corolla Cn, finishing
the proof. �

Proof (of Proposition 6.41) First we demonstrate that properties (1) and (2) are
equivalent. Indeed, consider the diagram

`[T]

Sp[T] Ω[T].

ji

k

If A satisfies (1) then it contains the map j by assumption and the map i by the
conclusion of Lemma 6.42. By the assumed closure property it must contain k as
well. Conversely, if A satisfies (2) then it contains k by assumption and i by Lemma
6.42. Thus it also contains j = ki.

We should prove that A contains all leaf horn inclusions. In fact, it will be
convenient to prove a slightly more general statement. Consider a composition of
inclusions

`[T]
f1
−→ V

f2
−→ W

f3
−→ Λ

L[T]
f4
−→ Ω[T].
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Here V is a union of `[T] with a collection of inner faces of T and W is the union
of V with DrootT , the ‘modified’ root face of T . This is the disjoint union of trees
obtained from T by removing the root edge and root vertex; in other words, writing
T = Cn◦(T1, . . . ,Tn)we set DrootT = Ω[T1]q· · ·qΩ[Tn]. (In case the root vertex ofT
is unary then DrootT = Ω[∂rootT].) The superscript L denotes a non-empty collection
of leaf vertices of T and ΛL[T] is the corresponding leaf horn. We will prove that
each of f1, f2, f3, and f4 belongs to A. The proposition follows by considering f4 in
the special case where L consists of a single element. We work by induction on the
size of T , the base case where T is a corolla being trivial: all the maps are identities
except f4, which is in A by assumption.

To see that f1 is in A, first consider the case where V consists of only one inner
face Ω[∂eT]. Then `[T] → Ω[∂eT] is in A by the inductive hypothesis, since the
tree ∂eT is smaller than T . For larger V we work by induction. Single out a face ∂eT
occurring in the union and write V = V ′ ∪ Ω[∂eT] for a smaller V ′. Consider the
following square, which is both a pushout and a pullback:

P V ′

Ω[∂eT] V .

Here P is a union of inner faces of Ω[∂eT]. Thus the left vertical map is of the
form f4 f3 f2 for a tree smaller than T (namely ∂eT) and hence in A by the inductive
hypothesis. Since A is closed under pushouts the right vertical map is in A as well.
We conclude that both of the maps `[T] → V ′→ V are inA and therefore so is their
composite f1.

Now recall that DrootT = Ω[T1] q · · · qΩ[Tn] . To see that f2 is inA consider the
following square, which again is both a pushout and a pullback:

Q V

DrootT W .

f2

Here the left vertical map is a disjoint union of maps Qi → Ω[Ti] for 1 ≤ i ≤ n.
Each Qi is a union of inner faces of Ti and potentially DrootTi (ifV contains the inner
face of T corresponding to the root edge of Ti). In particular, each of these maps is
of the form f4 f3 for the smaller tree Ti and therefore contained in A. It follows that
the pushout f2 in the square is also in A.

To see that f3 is in A, we work by downward induction on the size of L. If it
consists of all leaf vertices of T , then f3 is the identity and there is nothing to prove.
For smaller L, pick a leaf vertex v not contained in L and consider the following
square, which is easily checked to be a pushout:



6.6 Joins of Trees 247

ΛL[∂vT] Λ{v }∪L[T]

Ω[∂vT] ΛL[T].

Here the upper left-hand corner makes sense because all the elements of L are also
leaf vertices of the smaller tree ∂vT . The left vertical map is of the form f4 for the
smaller tree ∂vT and hence in A by induction. Therefore the right vertical map is
also in A, from which it follows that f3 is in A.

Finally, consider the diagram

`[T] ΛL[T]

Ω[T].

f3 f2 f1

f4

We have proved that the horizontal map is in A, whereas the slanted map is in A by
assumption. By our hypotheses on A (specifically its ‘cancellation property’), the
map f4 is in A as well. �

Remark 6.43 Note that Lemma 6.19 follows immediately from Lemma 6.42 and the
fact that spine inclusions are inner anodyne, so in particular leaf anodyne.

6.6 Joins of Trees

In this section we discuss the behaviour of certain kinds of anodyne morphisms with
respect to joins of trees. The construction of the join, which is relatively simple for
simplicial sets, becomes a bit more subtle in the dendroidal case. For example, one
has to take care to express the correct functoriality of these constructions, which we
will do below. The main reason for introducing the join is Corollary 6.46, which we
will need in the next section.

We discussed the join of two simplicial sets in Section 5.4. For simplices ∆[n]
and ∆[m] it is essentially given by putting the linear orders [n] and [m] ‘next to each
other’. This definition admits a generalization to trees, which we will now explain. In
fact, it will be useful to phrase our constructions more generally in terms of forests:
by a forest we will mean a tuple (T1, . . . ,Tk) of trees. We explicitly allow the ‘empty
tuple’ () as a forest. For the linear order [n], interpreted as a linear tree i[n], we define
the join (T1, . . . ,Tk)? [n] to be the tree formed by grafting the root of every tree Ti
(label it ti) onto a single new vertex v and grafting the result on top of [n]:
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t1 tk

v

0

...

n

T1 Tk

· · ·

For the empty forest () we define the join ()? [n] to be the tree obtained from [n] by
simply putting a vertex v without leaves on top; in other words, ()? [n] is the closure
of the linear tree i[n]. This construction is evidently functorial in the linear order [n].
We will describe the relevant functoriality in the forest variable below.

Another kind of join, which we only mention here for the sake of completeness,
is the following. Consider a tree S and a leaf ` of S. Then we form the join [n]?` S
by grafting [n] onto a new vertex v and grafting that vertex on top of `:

S

`
v

n

0
...

Remark 6.44 Both constructions of joins above are special cases of a single slightly
more general construction. Indeed, consider a tree S, a set of leaves {`1, . . . , `m} of
S, and for every `i a forest Fi . Then one can form the join

(F1, . . . , Fm)?(`1,...,`m) S

by grafting the forest Fi onto a new vertex vi and then grafting vi onto the leaf `i .
The first case above (joining a forest onto a linear tree) is the only construction we
will actually use.

When considering joins of trees rather than joins of simplices, some new features
arise when considering functoriality in the forest F. For example, consider the tree
T = C2 and let e be one of the two leaves of T . Then the inclusion e → T does not
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induce a corresponding map

(e)? [n] → T ? [n].

Indeed, in the first tree the new vertex v is unary, whereas in the second v is a binary
vertex. The situation is better if one considers the forest (e, f ) consisting of both
leaves of T ; in that case there is an evident face map

(e, f )? [n] → T ? [n].

In fact it is an inner face corresponding to the root edge t of T (which is indeed
an inner edge of the join T ? [n]). To take these issues into account we will now
introduce an appropriate notion of map of forests.

To any forest F = (T1, . . . ,Tn) we associate a dendroidal set

Ω[F] := Ω[T1] q · · · q Ω[Tn],

with the understanding thatΩ[F] = � if F is the empty forest. Then we define awide
map of forests F → G to be a map of dendroidal sets f : Ω[F] → Ω[G] satisfying
the following condition:

(∗) For every constituent tree S of the forest G, any path in the poset E(S) from a
minimal element to the maximal root element rS meets precisely one edge of
the form f (rTi ) for some constituent tree Ti of F (with rTi denoting its root edge
as usual).

In particular, the edges f (rTi ) are pairwise independent edges of the forest G; either
they lie in different components of Ω[G], or when they lie in the same component S
then they are independent edges of that tree. This clearly implies that the images of
the trees Ti under f are disjoint in Ω[G]. However, note that different trees Ti and Tj

may be taken to the same component S of G, but with disjoint images. In particular,
the number of constituent trees of G need not be the same as that of F, but will
always be less than or equal to it. We write Φw for the category with objects the
forests as defined above, and morphisms the wide maps of forests. In this section we
will use the presheaf category PSh(Φw) of wide forest sets. It comes equipped with
a ‘realization functor’

ω : PSh(Φw) → dSets

which is the left Kan extension of the functor Φw → dSets : F 7→ Ω[F].
One of the crucial examples of a map in Φw is the following. If T is a tree with at

least one vertex, write DrT for the ‘forest root face’ of T . It is the forest given defined
by removing the root edge and the root vertex from T . Thus, if T = Cn ◦ (T1, . . . ,Tn),
then DrT = (T1, . . . ,Tn). The evident inclusion DrT → (T) is a wide map of forests.
In fact, the reader might wish to check that any wide map of forests can be obtained
as a composition of maps which (on components) are maps of trees which preserve
the root, together with these ‘modified root faces’ DrT → (T). Note that for a tree
T there is an evident map of trees DrT ? [n] → T ? [n]. Indeed, it is an inner
face map corresponding to the root edge r of T (which is indeed an inner edge of
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the join T ? [n]). More generally, any wide map of forests F → G defines a map
F ? [n] → G ? [n]. This defines a functor

Φw × ∆→ dSets : (F, [n]) 7→ F ? [n]

and, by Kan extension, a functor

PSh(Φw) × sSets→ dSets : (Z,K) 7→ Z ?K,

which preserves colimits in each variable separately and agrees with the previous
functor on representable objects. The dendroidal set Z ?K receives an evident map
from K , as well as from ω(Z). In particular, for a fixed object Z ∈ PSh(Φw) one
obtains a colimit-preserving functor

sSets→ ω(Z)/dSets : K 7→ Z ?K

with right adjoint

ω(Z)/dSets→ sSets : (ω(Z) → X) 7→ XZ/.

A map Y → Z of wide forest sets induces a map XZ/ → XY/ of simplicial sets.
We define a face of a forest F in the expected way, namely as a proper inclusion

G → F in the category Φw . The union of all faces of F defines the wide bound-
ary ∂wF ∈ PSh(Φw). We write ∂wΩ[F] for the corresponding subobject of the
dendroidal set, which we define to be the image of ω(∂wF) inside Ω[F].

In the next section we will need to analyze root horns Λr [T] → T , where r is
a unary root vertex. In this case one can always write T = F ? [1] for some forest
F = (T1, . . . ,Tk). Indeed, the root vertex r is the unique vertex of the linear tree [1]
and F is all that remains once one deletes that copy ofC1 and the vertex ofT attached
to the top of it, which again we label v. More generally, let us consider faces of a
tree F ? [n]. The faces of F ? [n] can be listed as follows:

(i) The faces of T corresponding to the faces of [n]; each deletes an edge i and the
resulting face is F ? ∂i∆[n]. Note that all these faces are inner except for i = n,
which is the root face.

(ii) For every face ∂xTi of a constituent treeTi of the forest F which is not a root face,
there is a corresponding face of T which can be written (T1, . . . , ∂xTi, . . . ,Tk)?
[n]. More briefly, if we write ∂xF for the forest obtained from F by replacing
Ti with ∂xTi , we can rewrite this face of T as ∂xF ? [n].

(iii) For every tree Ti of F which is not η, replacing Ti by the ‘modified root face’
DriTi gives a forest Dri F and a face (Dri F)? [n] of F ? [n]. Note that this face
is an inner face of the tree F ? [n] corresponding to the root edge ri of Ti .

(iv) If all the constituent trees of F are copies of η (including the case where F = (),
so no copies at all), the vertex v is a leaf vertex of T . So then T has a leaf face
deleting v and all its leaves (if any).
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The union of the faces in (i) is precisely the join F ? ∂∆[n]. Similarly, one can
summarize the faces occurring in (ii)–(iv) much more succinctly; their union forms
precisely the join ∂wF ? [n]. Note that if F consists of copies of η as in (iv), then
∂wF = � and ∂wF ? [n] � i!∆[n].

If T = F ? [1] is a tree with unary root vertex r , we may use our analysis above
to write

Λ
r [T] = F ? {1} ∪ ∂wF ? [1].

Indeed, themissing root face ∂rT is the face F?{0}.We have set up our constructions
so that they satisfy the following property:

Lemma 6.45 For any 0 ≤ m ≤ n, the inclusion

F ? i!Λm[n] ∪ ∂wF ? [n] → F ? [n]

is a root anodyne map of dendroidal sets. Moreover, it is inner anodyne if m < n.

Proof Simply observe that

F ? i!Λm[n] ∪ ∂wF ? [n] = Λm(F ? [n]),

with Λm(F ? [n]) the union of all faces of the tree F ? [n] which contain the edge
m. So the only missing face is an inner face contracting m (when m < n) or the root
face (if m = n). �

In analogy with our terminology for dendroidal sets, let us say that a map of wide
forest sets is a normal monomorphism if it is a composition of pushouts of wide
boundary inclusions ∂wF → F. Using the arguments for saturated classes that are
by now standard, we conclude the following:

Corollary 6.46 Let A → B be a normal monomorphism of wide forest sets and
ω(B) → Y a map of dendroidal sets. If f : Y → X is an inner fibration of dendroidal
sets, then the induced map

YB/ → XB/ ×XA/
YA/

is a left fibration of simplicial sets.

Proof Consider a lifting problem of the form

Λm[n] YB/

∆[n] XB/ ×XA/
YA/

with m < n. By adjunction it corresponds to a lifting problem
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B ? i!Λm[n] ∪ A? i!∆[n] Y

B ? i!∆[n] X,

which admits a solution because the left vertical map is inner anodyne by the
preceding lemma. �

The special case where X is terminal gives the following:

Corollary 6.47 Let A → B be a normal monomorphism of wide forest sets and
ω(B) → Y a map of dendroidal sets. If Y is an∞-operad then the induced map

YB/ → YA/

is a left fibration of simplicial sets.

Specializing further to the case where A = � gives:

Corollary 6.48 If B is a normal wide forest set and ω(B) → Y a map into an
∞-operad, then

YB/ → Y�/ � i∗Y

is a left fibration. In particular, YB/ is an∞-category.

There are also versions of the preceding lemmas for a join of the form [n]?` S,
which we leave to the determined reader. They will not feature in this book.

6.7 Equivalences in∞-Operads

The purpose of this section is to give an extension of Theorem 5.49 to dendroidal sets
and discuss its consequences. We begin with a definition. Note that for a dendroidal
set X , a 1-corolla α ∈ XC1 can equivalently be thought of as a 1-simplex of the
underlying simplicial set i∗X , simply using the fact that C1 = i!∆[1].

Definition 6.49 Let X be an∞-operad. A 1-corolla α ∈ XC1 is an equivalence if the
corresponding 1-simplex is an equivalence in the ∞-category i∗X in the sense of
Definition 5.45.

The result we are after is the following:

Theorem 6.50 Let f : Y → X be an inner fibration between∞-operads and consider
a tree T with a unary root vertex v and T itself with at least two vertices. Then a lift
exists in any square of the form
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Λv[T] Y

T X,

β

f

α

provided that β sends the 1-corolla with vertex v to an equivalence in Y .

Proof The tree T may be written as F ?C1, where F is the forest obtained from T
by removing the unary root corolla and the vertex attached to the top of it. As in the
preceding section wemaywriteΛv[T] = F?{1}∪∂wF?[1], where {1} corresponds
to the root edge of T . The lifting problem of the theorem then corresponds to the
following:

{1} YF/

∆[1] XF/ ×X∂wF/
Y∂wF/.

β̂

α̂

The vertical map on the right is a left fibration between ∞-categories by Corollary
6.46. It suffices to prove that α̂ is an equivalence. Indeed, the existence of the lift
then follows from Lemmas 5.47 and 5.48, which in particular guarantee that left
fibrations have path lifting with respect to equivalences. To see that α̂ is indeed an
equivalence, consider the projection π from the codomain of α̂ to i∗Y . This projection
is the composition of the pullback of a left fibration with the left fibration π′ as in
the diagram below (see Corollary 6.47):

XF/ ×X∂wF/
Y∂wF/ XF/

Y∂wF X∂wF/

i∗Y .

π′

Therefore π is itself a left fibration. The image of α̂ under π is precisely the image
of the unary root corolla of T under β, which is assumed to be an equivalence. Since
left fibrations are conservative in the sense of Lemma 5.48, this shows that α̂ is itself
an equivalence, which completes the proof of the theorem. �

We will now use Theorem 6.50 to deduce some results about mapping spaces
between∞-operads analogous to the results of Section 5.6. If X is an∞-operad and
A a normal dendroidal set, we will say two maps f , g : A→ X are J-homotopic if
any of the following three equivalent conditions is satisfied:

(1) There is a map h : i!J ⊗ A→ X such that h0 = f and h1 = g.
(2) The maps f and g are equivalent (cf. Definition 5.45) as vertices of the ∞-

category hom(A, X).
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(3) The vertices f and g lie in the same connected component of the Kan complex
k(hom(A, X)).

We will prove that f and g are J-homotopic if and only if there exists a map

h : C1 ⊗ A→ X

which is a pointwise equivalence, i.e., for every colour a ∈ Aη the corresponding
1-corolla h(−, a) : C1 → X is an equivalence in X .

Extending the notation introduced at the end of Section 5.6, we write k(A, X) for
the simplicial subset of hom(A, X) consisting of the simplices all of whose edges
are pointwise equivalences. Thus, an n-simplex of k(A, X) is a map

ξ : i!∆[n] ⊗ A→ X

such that for every colour a ∈ Aη the corresponding map

ξ(−, a) : ∆[n] → i∗X

factors through the maximal Kan complex k(i∗X) in i∗X . According to Corollary
6.36 the simplicial set hom(A, X) is an ∞-category. Clearly any equivalence in this
∞-category is a pointwise equivalence between maps from A to X , so that there is
an inclusion of its maximal Kan complex into k(A, X):

k(hom(A, X)) ⊆ k(A, X) ⊆ hom(A, X).

We will prove that the first inclusion is an equality:

Theorem 6.51 (a) Let X be an∞-operad and let A→ B be a normalmonomorphism
between dendroidal sets. Then k(B, X) → k(A, X) is a Kan fibration.

(b) In particular, if A is a normal dendroidal set then k(A, X) is a Kan complex and
hence k(A, X) = k(hom(A, X)).

Proof Part (b) follows by applying (a) to the normal monomorphism � → A and
using that k(hom(A, X)) contains any other Kan complex in hom(A, X). To prove
part (a) it suffices to show that k(B, X) → k(A, X) is a right fibration. Indeed, as a
special case it will follow that k(A, X) → k(�, X) = ∆[0] is a right fibration, hence
a Kan fibration by Corollary 5.50. But then k(B, X) → k(A, X) is a right fibration
over a Kan complex, hence itself a Kan fibration by that same corollary.

Thus we should demonstrate that any lifting problem

Λk[n] k(B, X)

∆[n] k(A, X)

with 0 < k ≤ n admits a solution. It is adjoint to a lifting problem of the form
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B ⊗ i!Λk[n] ∪ A ⊗ i!∆[n] X,

B ⊗ i!∆[n]

γ

where γ maps each 1-corolla of the form {b} ⊗ i!∆[ j, j ′] to an equivalence in X . For
0 < k < n the vertical map is inner anodyne by Corollary 6.26 and hence a lift exists
because X is assumed to be an ∞-operad. For k = n, Corollary 6.30 and Remark
6.31 guarantee that the map on the left is a composition of pushouts of inner horn
inclusions and root horn inclusions

Λ
r [T] → T

for which the root vertex of T is unary. Moreover, that unary root vertex is mapped to
a 1-corolla of the form b ⊗ i!∆[ j, j ′] in B ⊗ i!∆[n] and hence to an equivalence in X .
If T has at least two vertices then we conclude that a lift exists by applying Theorem
6.50. If T = C1, the horn under consideration is the inclusion of the root edge of C1
and the lifting problem is trivial: one can simply use a degenerate 1-corolla of X . �

For simplicial sets we also expressed a relative version of the preceding theorem
(namely Theorem 5.56). A similar statement holds for dendroidal sets. We will say
a map f : Y → X is a J-fibration if it is an inner fibration and the map of underlying
simplicial sets i∗ f has J-path lifting (so that in particular i∗ f is a J-fibration of
simplicial sets).

Theorem 6.52 Let f : Y → X be a J-fibration between ∞-operads and A → B a
normal monomorphism between dendroidal sets. Then the map

k(B,Y ) → k(B, X) ×k(A,X) k(A,Y )

is a Kan fibration between Kan complexes.

6.8 Minimal Fibrations Between∞-Operads

In this section we will extend the notion of minimal J-fibration to dendroidal sets
and generalize some of the results of Section 5.8. The main extra feature to deal with
is the presence of nontrivial automorphisms in the category Ω. We begin by defining
several terms in evident analogy with the simplicial case. Throughout this section it
will be convenient to abbreviate notation for the dendroidal set i!J simply to J. The
crucial tool to be used many times in this section is Theorem 6.52 above.

Consider a J-fibration p : X → S between ∞-operads and a normal monomor-
phism j : A → B between dendroidal sets. If f , g : B → X are maps for which
f j = g j and p f = pg, then we say that f and g are fibrewise J-homotopic relative
to A if there exists a J-homotopy h : J ⊗ B→ X from f to g (so h0 = f and h1 = g)
so that h ◦ (id × j) is the constant homotopy
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J ⊗ A
π2
−−→ A

i
−→ X

and p ◦ h is the constant homotopy

J ⊗ B
π2
−−→ B

p f
−−→ S.

Observe that we are using the existence of a projection map J ⊗ A
π2
−−→ A and

similarly for B. Generally the tensor product of dendroidal sets does not admit natural
projection maps onto its factors, but the maps π2 above exist because J is a simplicial
set: indeed, π2 can be thought of as the composition J ⊗ A→ i!∆[0] ⊗ A � A, which
we will continue to do throughout this section. By adjunction, it is straightforward
to verify that f and g are fibrewise J-homotopic relative to A if and only if they lie
in the same connected component of the fibre of the Kan fibration

k(B, X) → k(A, X) ×k(A,S) k(B, S)

over the vertex ( f j, p f ) = (g j, pg).

Definition 6.53 Let p : X → S be a J-fibration between ∞-operads and let T ∈ Ω
be a tree.

(a) Two dendrices x, y ∈ XT are fibrewise J-equivalent if, when viewed as maps
Ω[T] → X , they are fibrewise J-homotopic relative to the boundary ∂Ω[T]. (In
particular, px = py and x and y agree on ∂Ω[T].)

(b) The map p : X → S is aminimal J-fibration if for any two fibrewise J-equivalent
dendrices x, y ∈ XT , there exists an automorphism α of T so that α∗x = y.

Of course there is an alternative to (b) in which one demands x and y to be equal,
rather than related by an automorphism. However, this stricter notion turns out to
be less useful in practice. In particular, we need the more general notion to have a
result such as Theorem 6.56 below. Observe that a minimal J-fibration p between
∞-operads in particular gives a minimal J-fibration i∗p between ∞-categories. As
before, the crucial property of minimal fibrations is the following rigidity:

Proposition 6.54 Let p : X → S and q : Y → S be minimal J-fibrations between
∞-operads and suppose both X and Y are normal. Then any fibrewise J-homotopy
equivalence X → Y over S is an isomorphism.

We will use the following dendroidal analogue of Lemma 5.65, which is proved
by the same argument:

Lemma 6.55 Consider a normal monomorphism of dendroidal sets A ⊆ B and an
∞-category X . Suppose h, k : J ⊗ B → X are two J-homotopies such that the
restrictions of h and k to {0} ⊗ B ∪{0}⊗A J ⊗ A agree. Then the maps

h1, k1 : B � {1} ⊗ B→ X

are J-homotopic relative to A.
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Proof (of Proposition 6.54) By the same formal argument used just before Proposi-
tion 5.64 it suffices to show that any endomorphism ϕ : X → X over S (i.e. pϕ = ϕ)
which is fibrewise J-homotopic to the identity is in fact an isomorphism. So let
h : J ⊗ X → X be a homotopy (over S) from ϕ to idX . As in the simplicial case we
will use skeletal induction on X (which is why we need normality of X).

The case n = 0 is clear: sk0X is a disjoint union of copies of η, and there is a unique
one in each J-connected component of every fibre of the J-fibration i∗X → i∗S. In
fact this even shows that ϕ is the identity on the 0-skeleton. Suppose we have proved
that ϕ restricts to an automorphism of skn−1X . Let us show that ϕ then also gives an
automorphism of sknX .

To see that the restriction of ϕ to sknX is injective, consider a tree T with n
vertices and dendrices x, y ∈ XT for which ϕx = ϕy. Then the restriction of x and y

to ∂Ω[T] agree because ϕ is injective on skn−1X . The fibrewise J-homotopies

J ⊗ Ω[T]
id⊗x
−−−→ J ⊗ X

h
−→ X

from ϕx to x and
J ⊗ Ω[T]

id⊗y
−−−→ J ⊗ X

h
−→ X

from ϕy to y agree on J ⊗ ∂Ω[T] and on {0} ⊗Ω[T], where they both equal ϕx = ϕy.
Therefore Lemma 6.55 implies that x and y are fibrewise J-homotopic relative to
∂Ω[T]. The minimality of p then implies that there is an automorphism α of T so
that α∗x = y. Applying ϕ gives α∗ϕx = ϕy = ϕx. Since X is normal, we conclude
that α must be the identity and thus x = y.

To see that the restriction of ϕ to sknX is surjective onto sknX take a dendrex
z ∈ XT , again for some tree T with n vertices. By the inductive hypothesis we
can write ∂z = ϕu for a unique map u : ∂Ω[T] → X . We consider the fibrewise
homotopy defined by the map

J ⊗ ∂Ω[T]
h◦(id⊗u)
−−−−−−−→ X

and write hu for its restriction along i!∆[1] ⊗ ∂Ω[T] ⊆ J ⊗ ∂Ω[T]. Equivalently, we
may think of hu as a map ∆[1] → k(∂Ω[T], X). Theorem 6.52 guarantees that the
vertical map on the right in the following square is a Kan fibration, so that a lift g
exists:

∆[0] k(Ω[T], X)

∆[1] k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S).

∂1

z

g

hu

This lift gives a fibrewise J-homotopy (again denoted g)

J ⊗ Ω[T] → X

from g0 = z to another dendrex y := g1. Then ∂y = u, while g and
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hy : J ⊗ Ω[T]
id⊗y
−−−→ J ⊗ X

h
−→ X

define two fibrewise J-homotopies which agree on J ⊗ ∂Ω[T] and 1 ⊗ Ω[T]. Again
applying Lemma 6.55 now shows that g0 = z and (hy)0 = ϕy are p-equivalent and
hence z = α∗ϕy = ϕ(α∗y) for some automorphism α of T . In particular, z is in the
image of ϕ. �

Theorem 6.56 Let p : X → S be a J-fibration between ∞-operads. If X is normal,
then there exists a minimal J-fibration q : M → S which is a fibrewise J-deformation
retract of X → S. If S is also normal, then the retraction r : X → M is a trivial
fibration.

Proof Wewill start by inductively constructing M (n), whichwewill be the n-skeleton
of M , together with maps

M (n)
i(n)

−−→ X (n)
r (n)

−−−→ M (n), h(n) : J ⊗ X (n) → X,

so that r (n)i(n) = idM (n) and h(n) is a homotopy (relative to M (n)) from i(n)r (n) to the
identity of X (n) := sknX (or rather the composition of those maps with the inclusion
X (n) ⊆ X). Moreover, the homotopies h(n) are fibrewise over S in the sense that the
composition p ◦ h(n) is the constant homotopy

J ⊗ X (n)
π2
−−→ X (n) → S.

To start the induction we define M (0). Consider for every s ∈ Sη the fibre ηs ×S X =:
Xs , which can be thought of as a simplicial set (it admits a map to η) and is in fact
an ∞-category. Choose a single vertex in each connected component of the Kan
complex k(Xs) and set M (0) to be the coproduct of η’s indexed by the set of these
chosen vertices. Then for each x ∈ X (0) there is a unique vertex r(x) ∈ M (0) in the
same fibre Xp(x) and a path hx : J → X from r(x) to x so that the composition p◦ hx

is constant with value p(x). This defines the relevant maps

M (0)
i(0)

−−→ X (0)
r (0)

−−→ M (0), h(0) : J ⊗ X (0) → X,

provided we arrange hx to be degenerate if x ∈ M (0), in which case r(x) = x.
Now suppose we have defined M (n−1), r (n−1), and h(n−1). Consider the dendrices

x ∈ XT , for T ranging through trees with n vertices, whose boundary ∂x lies in
M (n−1) ⊆ X (n−1) and which are not fibrewise homotopic to a degenerate dendrex.
We say two such dendrices x and y are equivalent if x is fibrewise J-equivalent to
α∗y, for some automorphism α of T . This defines an equivalence relation, because
fibrewise homotopy defines one. Pick exactly one dendrex x in each equivalence
class and write the collection of chosen dendrices as Dn. Then define M (n) to be
the dendroidal subset generated by M (n−1) together with the elements of Dn. Since
X was assumed to be normal, so that it has a good skeletal filtration, it follows that
M (n) fits into a pushout square as follows:
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x∈Dn

∂Ω[Tx] M (n−1)

∐
x∈Dn

Ω[Tx] M (n).

Here Tx denotes the shape of the dendrex x. We should now define r (n) and h(n),
extending the maps r (n−1) and h(n−1). On simplices of M (n) we have no choice but
to define r (n) to be the identity and h(n) the constant homotopy. For a tree T with n
vertices and a non-degenerate dendrex x ∈ XT which is not contained in M (n) we
proceed as follows. We have a fibrewise homotopy over S

J ⊗ ∂Ω[T]
id⊗∂x
−−−−−→ J ⊗ X (n−1) h(n−1)

−−−−→ X,

which is constant if ∂x happened to be contained in M (n−1). Restricting along
∆[1] ⊆ J and taking adjoints gives the bottom map in the following square:

∆[0] k(Ω[T], X)

∆[1] k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S).

x

∂0
f

A lift f exists because the map on the right is a Kan fibration and the map on the
left is anodyne. This map f defines a fibrewise homotopy to x from another dendrex
s(x) ∈ XT , whose boundary lies in M (n−1). The definition of M (n) now assures that
there is a unique T-dendrex in one of the Dm (for m ≤ n) which is equivalent to s(x).
We write r (n)(x) for this dendrex. By definition there exists a fibrewise homotopy

g : ∆[1] → k(Ω[T], X)

relative to ∂Ω[T] such that g0 = r (n)(x) and g1 = s(x). As before we ‘compose’ f
and g. More precisely, consider the following square:

Λ1[2] k(Ω[T], X)

∆[2] k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S).

g∪ f

j

The bottom arrow is the degenerate 2-simplex

∆[2]
s0
−→ ∆[1] → k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S),

where the second map is defined by the evaluation of h(n−1) on ∂x as above. The left
vertical map in the square is inner anodyne, so a lift j indeed exists. The restriction
of j along the inner face ∆[1]

∂1
−−→ ∆[2] is a fibrewise homotopy
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∆[1] → k(Ω[T], X)

from r (n)(x) to x, compatible with h(n−1) on the boundary ∂x. One can of course
extend j along the anodyne inclusion ∆[1] ⊆ J to obtain the desired J-homotopy

h(n)x : J ⊗ Ω[T] → X .

This concludes our constructions. Note that M → S, being a retract of X → S, is
also a J-fibration between∞-categories. Moreover, it is evidently minimal.

It remains to check that if S is normal, then the retraction r : X → M is a trivial
fibration. Consider a lifting problem

∂Ω[T] X

Ω[T] M .

j

u

r

v

Using the map h constructed above, we find a fibrewise homotopy

hu : J → k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S)

from iv j = iru to u. Pick a lift f in the square below:

∆[0] k(Ω[T], X)

J k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S).

∂1

iv

f

hu

This map f gives a fibrewise J-homotopy (agreeing with hu on the boundary ∂Ω[T])
from f0 = iv to another map f1. Now

h f1 : J → k(∂Ω[T], X) ×k(∂Ω[T ],S) k(Ω[T], S)

is another fibrewise J-homotopy from ir f1 to f1, also agreeing with hu on the
boundary. Hence Lemma 6.55 implies that iv and ir f1 are fibrewise J-equivalent.
Applying the retraction r gives fibrewise J-equivalent dendrices riv = v and rir f1 =
r f1. Since M → X is minimal, we conclude that v = α∗(r f1) for some α ∈ Aut(T).
If we can argue that α is the identity, it follows that f1 is a solution to our original
lifting problem above. To see this, write q for the fibration M → S and note that
α∗(qr f1) = qv = qr f1, where the second equality follows from the fact that our
homotopies are fibrewise over S. Since S is assumed to be normal, this implies
α = id. �

In the case of simplicial sets it was rather evident that the class of minimal J-
fibrations is closed under pullbacks. This is not quite the case for dendroidal sets.
However, we still have:
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Lemma 6.57 Let f : S′ → S be a map of ∞-operads such that for any dendrex
x ∈ XT , the induced map of stabilizers Aut(T)x → Aut(T) f (x) is an isomorphism.
If p : X → S is a minimal J-fibration between ∞-operads, with X normal, then
the pullback q : f ∗X → S′ is again a minimal J-fibration between ∞-operads. In
particular, note that the condition on stabilizers is automatically satisfied when S′

and S are normal.

Proof The class of J-fibrations is stable under pullback, so it suffices to check
minimality of f ∗p. Write g : f ∗X → X for the evident map. Let x, y ∈ f ∗X be two
dendrices which are fibrewise J-equivalent over S′. Then g(x) and g(y) are fibrewise
J-equivalent over S, so that minimality of p implies that g(x) = α∗g(y) = g(α∗y) for
some α ∈ Aut(T). Projecting to S, we find that α∗ fixes the dendrex pg(y) = f q(y).
By the condition of the lemma α∗ must also fix q(y), so that q(x) = q(y) = α∗q(y).
By the defining pullback square of f ∗X , it follows that x = α∗y. �

Essentially the same argument used to prove Proposition 5.73 can be used for the
following homotopy invariance property:

Proposition 6.58 Let p : X → S be a minimal J-fibration between ∞-operads and
assume X is normal. If f , g : S′ → S are two J-homotopic maps satisfying the
condition of the previous lemma, then the pullbacks f ∗p and g∗p are isomorphic
minimal J-fibrations over S′.

Historical Notes

The notion of an inner dendroidal Kan complex (or ∞-operad) was introduced and
developed in [116, 117]. These references study the behaviour of the inner Kan
condition with respect to tensor products and also prove Theorem 6.50, the analogue
of Joyal’s theorem in the context of dendroidal sets. Leaf anodynes and left fibrations
of dendroidal sets were first considered systematically in [77]. Minimal fibrations of
dendroidal sets originate in [114].
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Part II
The Homotopy Theory of Simplicial and

Dendroidal Sets



Chapter 7
Model Categories

In [123] Quillen proposed an axiomatic framework for homotopy theory through the
notion of a model structure on a category. Such a structure consists of three distin-
guished classes ofmorphisms, calledweak equivalences, fibrations, and cofibrations,
required to satisfy several axioms reminiscent of the properties of the corresponding
notions in the usual homotopy theory of topological spaces. This axiomatization
allows one to carry out many of the basic manipulations of homotopy theory in any
context where such a model structure is present. One of Quillen’s early applications
of the theory was to the category of simplicial commutative rings, where it leads
to an elegant development of the theory of homology of commutative rings [125].
This is now usually referred to as André–Quillen homology or the cotangent com-
plex. More modern applications of the theory include the study of motivic homotopy
theory, which uses model structures on the category of simplicial presheaves on the
category of smooth schemes (over some fixed base S) [119].

The notion of model category also allows one to make rigorous sense of the
idea that two homotopy theories are ‘equivalent’; this applies, for example, to the
homotopy theories of topological spaces and of simplicial sets. Any sufficiently
homotopy-theoretic statement can thus be carried over from one of these theories to
the other without essential change.More interestingly, in [124] Quillen compared the
homotopy theory of rational spaces to various ‘models’ constructed in a completely
algebraic fashion; in particular, he exhibited equivalences between the model cate-
gory of rational spaces and model categories constructed from differential graded
Lie algebras, or from cocommutative coalgebras, among others.

In this book we will use model categories to study the homotopy theory of
topological and simplicial operads and of dendroidal sets (of various flavours). We
will prove various comparison results relating these theories.
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266 7 Model Categories

7.1 Axioms for a Model Category

In this section we introduce the definition of a model category and give the first few
examples. As we will see, in some cases it is very easy to verify the axioms, but one
learns little new from the fact that they hold. In other cases this verification is hard,
but the validity of the axioms captures crucial properties of the category at hand.

We follow Quillen’s formulation:

Definition 7.1 Let E be a category. A model structure (or more explicitly a Quillen
model structure) on E is given by three classes of morphisms in E, called the
fibrations, the cofibrations, and the weak equivalences. These are required to satisfy
the following axioms:

(M1) The category E has all small limits and colimits.
(M2) If two out of three morphisms f : X → Y , g : Y → Z , and their composition

g f : X → Z are weak equivalences, then so is the third.
(M3) The classes of fibrations, cofibrations, and weak equivalences are closed under

retracts.
(M4) For any commutative square

A X

B Y

i f

in which i is a cofibration and f is a fibration, a lift B → X making both
triangles commutes exists as soon as i or f is also a weak equivalence.

(M5) Any morphism f : X → Y can be factored as a cofibration i : X → Z followed
by a fibration p : Z → Y in twoways: one in which i is also a weak equivalence,
and one in which p is.

A category equipped with a model structure will also be referred to as a model
category (sometimes Quillen model category).

When there is no danger of confusion we will often use the phrase ‘Let E be a
model category’ and leave the choice of model structure on E implicit.

Remark 7.2 (a) Quillen’s original form of axiom (M1) only demands the existence
of finite limits and colimits. However, in all our examples, Ewill have all small limits
and colimits, so that for us it is convenient to use the stronger version of (M1) given
above, as is also standard in the literature.

(b) A map which is both a fibration and a weak equivalence is called a trivial
fibration. Similarly, a cofibration which is also a weak equivalence is referred to as
a trivial cofibration. So (M5) states that every map factors as a trivial cofibration
followed by a fibration and as a cofibration followed by a trivial fibration. With this
terminology, (M4) states that fibrations have the right lifting property with respect to
trivial cofibrations, and trivial fibrations have the right lifting property with respect
to cofibrations.
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(c) In fact, the converse statements also hold. For example, if a map f : X → Y
has the right lifting property with respect to cofibrations, then it must be a trivial
fibration. Indeed, factor f as a cofibration i : X → Z followed by a trivial fibration
p : Z → Y . Then by assumption we can find a lift g in

X X

Z Y

i f

p

g

and this makes f a retract of p:

X Z X

Y Y Y .

i

f

g

p f

So f is a trivial fibration by (M2). Thus

(i) a map is a trivial fibration if and only if it has the right lifting property with
respect to cofibrations.

In exactly the same way one proves

(ii) a map is a fibration if and only if it has the right lifting property with respect to
trivial cofibrations,

(iii) a map is a trivial cofibration if and only if it has the left lifting property with
respect to fibrations,

(iv) a map is a cofibration if and only if it has the left lifting property with respect
to trivial fibrations.

In particular, the classes of weak equivalences and fibrations together determine
the class of cofibrations, and dually the class of fibrations is determined by the
classes of weak equivalences and cofibrations. Also, the class of weak equivalences
is determined in terms of the classes of fibrations and cofibrations. Indeed, the latter
two also determine the classes of trivial cofibrations and fibrations by (i)–(iv) above,
while a map f : X → Y is a weak equivalence if and only if it is a composition of
a trivial cofibration i : X → Z with a trivial fibration p : Y → Z . This composition
is guaranteed to exist by the factorization axiom (M5), using (M2) to conclude that
both constituent maps are weak equivalences. Summarizing, any two of the three
classes defining a model structure determine the third.

(d) The characterization of the classes of cofibrations and of trivial cofibrations
given in (iii) and (iv) above in particular show that these classes are saturated (in the
sense of Definition 3.30). The classes of fibrations and of trivial fibrations satisfy
dual properties. Isomorphisms are automatically in each of the three classes.
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Notation 7.3 It will often be convenient to decorate arrows denoting morphisms
belonging to one or more of the three classes in a model structure:

A B for a weak equivalence,

A B for a cofibration,

A B for a trivial cofibration,

X Y for a fibration,

X Y for a trivial fibration.

∼

∼

∼

Definition 7.4 Let E be a model category. An object X of E is called fibrant if the
unique map X → 1 into the terminal object 1 of E (which exists by (M1)) is a
fibration. Dually, X is called cofibrant if the unique map 0 → X from the initial
object to X is a cofibration.

In practice one often needs to replace objects by weakly equivalent fibrant and/or
cofibrant objects. Let us introduce the relevant terminology:

Definition 7.5 LetE be amodel category and X an object ofE. A fibrant replacement
of X is a weak equivalence X

∼
−→ Xf where Xf is fibrant. Dually, a cofibrant

replacement is a weak equivalence Xc
∼
−→ X with Xc cofibrant.

Of course, for an arbitrary object X one can always factor the unique map X → 1
as

X Xf 1∼

to find a fibrant replacement Xf of X . Dually, one factors 0→ X as

0 Xc X∼

to obtain a cofibrant replacement. Notice that these replacements have the additional
property that the relevant weak equivalences are in fact a trivial cofibration and
trivial fibration, respectively.

We end this section by listing some very elementary examples ofmodel categories.
The reader less familiar with Quillen’s axioms should do the useful exercise of
verifying that the axioms hold in each of them.

First examples. (a) Consider the category Cat of small categories. Call a mor-
phism (i.e., a functor) f : C → D a weak equivalence if it is an equivalence of
categories, a cofibration if it is injective on objects, and a fibration if it is an isofi-
bration. Recall that this means that for any object c of C and any isomorphism
α : f (c) → d in D, there exists an isomorphism β in C with domain c satisfying
f (β) = α (cf. Definition 5.46). It is not difficult to verify that the axioms (M1–5)
hold for these classes of maps. This model structure on Cat if usually referred to as
the naive or folk model structure. Recall that a functor C→ D is a weak equivalence
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if and only if it is essentially surjective and fully faithful. One can check that the
trivial fibrations are precisely the functors which are both fully faithful and surjective
on objects. Also, any category is fibrant as well as cofibrant. We notice for later use
that if

C0 ← C1 ← C2 ← · · · ← Cξ ← Cξ+1 ← · · ·

is a tower of trivial fibrations indexed by some limit ordinal λ then the projection

lim
←−−
ξ<λ

Cξ → C0

is again a trivial fibration.
(b) There is a similar model structure on the category of small groupoids, denoted

Grpd, with the three classes of maps defined exactly as for Cat.
(c) The category Op of operads carries a ‘naive’ model structure generalizing

that of example (a) above. Indeed, say a morphism ϕ : P→ Q is a weak equivalence
if it is an equivalence of operads, meaning

P(c1, . . . , cn; d) → Q(ϕ(c1), . . . , ϕ(cn); ϕ(d))

is a bijection for every tuple of colours c1, . . . , cn, d of P and ϕ is essentially sur-
jective (meaning the functor j∗ϕ of underlying categories is essentially surjective).
Cofibrations are the morphisms which are injective on colours and fibrations are
the maps which give an isofibration on the underlying categories. The axioms are
easily verified. Let us illustrate this by checking one of the lifting axioms. Consider
a diagram of operads

A P

B Q

f

u

p

v

in which f is injective on objects and p is a trivial fibration, i.e., an equivalence
of operads which is moreover an isofibration. Equivalently, p is an equivalence of
operads which is surjective on colours. To find a lift g : B → P, first pick for every
colour b of B a colour g(b) of P satisfying v(b) = p(g(b)) and moreover g(b) = u(a)
whenever b = f (a). There is now a unique way to define g on operations in a way
that is compatible with v, since

P(c1, . . . , cn; d) → Q(p(c1), . . . , p(cn); p(d))

is bijective for every tuple of colours of P. The map g constructed in this way will
satisfy pg = v by construction. To check that g f = u, note that this is true on colours
by construction. On operations, it follows from the equation v f = pu and the fact
that p acts bijectively on sets of operations, as above.
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(d) Let k be a field and consider the category of non-negatively graded chain
complexes V = (V∗, d) of vector spaces over k,

V = (V0
d
←− V1

d
←− V2

d
←− · · · ).

This category carries a model structure in which a map is a weak equivalence if it
is a quasi-isomorphism, i.e., if it induces isomorphisms in homology. Furthermore,
the cofibrations are the maps which are injective in each degree, and the fibrations
are the maps which are surjective in each strictly positive degree. Again, it is not
too hard to verify that the axioms hold. In the literature one finds many extensions
and variations on this example, notably where the field k is replaced by a ring R
(and vector spaces by modules, of course). In this case, a cofibration is a degreewise
injective map which also has degreewise projective cokernel.

(e) Later in this book we will encounter many constructions of new model cate-
gories from given ones. For now, let us just observe the following cases:

(e.i) If E is a model category, then so is its opposite category Eop, with the same
weak equivalences but cofibrations and fibrations reversed.

(e.ii) If E is a model category and X is an object of E, then so are the slice categories
E/X and X/E. The forgetful functors E/X → E and X/E → E define the
three classes of maps. For example, a map

A B

X

is a weak equivalence in E/X precisely if A → B is a weak equivalence in
E. In particular, if 1 denotes the terminal object one finds that the category
1/E = E∗ of pointed objects of E carries a natural model structure. (The same
fact and terminology apply when 1 is replaced by the unit for some tensor
product on E.)

(e.iii) If {Ei}i∈I is a family of model categories indexed by a set I, then the product
category

∏
i Ei again carries a model structure in which the three relevant

classes of morphisms are simply defined componentwise. More precisely, a
map (Xi)i∈I → (Yi)i∈I is a fibration precisely if each Xi → Yi is, and similarly
for the cofibrations and weak equivalences.

7.2 Some Background on Topological Spaces

In the next section we will construct a model structure on the category of topological
spaces. The proof uses some elementary facts from algebraic topology, which can
be found in any of the standard textbooks and which we briefly recall here.
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We begin with a discussion of cellular spaces and maps, and of CW-complexes.
We write

Dn = {x ∈ Rn | ‖x‖ ≤ 1}

for the n-disk and ∂Dn ⊆ Dn for its boundary. One can of course use any homeo-
morphic model for the inclusion, e.g., the geometric realization |∂∆[n]| → |∆[n]|
of the boundary inclusion of the n-simplex. We say that a space Y is obtained from
another space X by attaching a family of cells {Dni | i ∈ I} if it can be written as a
pushout ∐

i∈I ∂Dni X

∐
i∈I Dni Y .

A map X → Y is called a cellular extension if it can be factored as

X = X0 X1 X2 · · ·

Y

with X∞ = lim
−−→k

Xk → Y an isomorphism and each Xk obtained from Xk−1 by
attaching a family of cells. More briefly, a cellular extension is a directed colimit
of cell attachments. We also say Y is a cellular extension of X . By definition of
the colimit, X∞ has the weak topology with respect to the inclusions Xk → X∞. A
relative CW-complex is a cellular extension X → Y equipped with a factorization as
above in which Xn−1 → Xn is obtained by attaching cells of dimension n only. An
important property of cellular extensions is that ‘compact subsets are contained in
finitely many cells’. We state this as follows:

Lemma 7.6 Let A be a topological space and let A0 ⊆ A1 ⊆ A2 ⊆ · · · be a sequence
of subspaces such that

• A =
⋃

n An and A has the weak topology with respect to the An,
• An is closed in An+1,
• An − An−1 is a T1-space.

Then any compact subset K ⊆ A is contained in some An.

Proof For a contradiction, suppose K ⊆ A is compact and not contained in any
An. Replacing (An)n≥0 by a subsequence if necessary, we may suppose that there
are points xn ∈ An − An−1 which belong to K . Since K is compact, the collection
S = {xn}n≥0 must have an accumulation point. On the other hand we claim that S
is closed and discrete, which is a contradiction. Indeed, it suffices to prove that each
S ∩ An is closed and discrete for every n. Clearly S ∩ A0 is. Now suppose the same
is true of S ∩ An−1. Then

S ∩ An = (S ∩ An−1) ∪ (S ∩ (An − An−1))
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and S ∩ (An − An−1) is open and closed in S ∩ An by the assumptions. This proves
the lemma. �

The next basic notion we need is that of a Serre fibration. Recall that a map
E → B is a Serre fibration if any commutative square if of the form

In × {0} E

In × I B

has a diagonal filling as indicated. Here I = [0, 1] ⊆ R is the unit interval. A diagonal
in such a square is at the same time an extension of the map In × {0} → E and
a lift of the homotopy In × I → B, and one refers to this property of E → B as
the ‘homotopy extension and lifting property’ (HELP). Of course one can replace
In×{0} ⊆ In× I by any homeomorphic inclusion. Convenient and often usedmodels
are the inclusion

An+1 = In × {0} ∪ ∂In × I → In+1

(of a box without a lid into a solid cube) and the realizations of the simplicial horn
inclusions

|Λk[n]| → |∆[n]| = ∆n.

In fact, since the class of maps with respect to which E → B has the right lifting
property is saturated, it follows that for any anodyne extension of simplicial sets
M → N (see Section 5.3), the Serre fibration E → B has the right lifting property
with respect to |M | → |N |. Notice in particular that this means that the singular
complex functor Sing maps a Serre fibration to a Kan fibration.

A basic property of Serre fibrations is the long exact sequence of homotopy
groups. Let p : E → B be a Serre fibration, and let b0 ∈ B and e0 ∈ p−1(b0) be
a choice of basepoints. Write F = p−1(b0) for the fibre and i : F → E for the
inclusion. There is a long exact sequence

· · · → πnF
i∗
−→ πnE

p∗
−−→ πnB

δ
−→ πn−1F → · · ·

wherewe have omitted the basepoints from the notation. In low degrees this sequence
passes from abelian groups to groups to pointed sets, but exactness continues to
make sense. The readers unfamiliar with this sequence can certainly prove this for
themselves, once provided with the definition of the map δ : πnB → πn−1F. Given
α ∈ πnB, represent α by a map a : In → B sending the boundary to b0, and lift in

An E

In B.

e0

p

a

b

Then δα is the element in πn−1F represented by the restriction of b to In−1 × {1}.
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Lemma 7.7 Let p : E → B be a map between topological spaces. Then the following
properties are equivalent:

(1) The map p is a Serre fibration inducing isomorphisms πnE → πnB for each
n ≥ 0 and each (compatible) choice of basepoints.

(2) The map p has the right lifting property with respect to the boundary inclusion
∂Dn → Dn for each n ≥ 0.

(3) The map p has the right lifting property with respect to all cellular maps.

Proof The implication (2)⇒ (3) is clear because the class of maps with respect to
which p has the right lifting property is saturated. Conversely (2) is a special case
of (3). We now prove (3) implies (1). Clearly p must be a Serre fibration. To prove
that the maps πnE → πnB are isomorphisms, fix n ≥ 0 and basepoints b0 ∈ B and
e0 ∈ p−1(b0). Let a : Dn → B represent an element α ∈ πnB and lift in the diagram

∂Dn E

Dn B

e0

a

to see that πn(E, e0) → πn(B, b0) is surjective. To see that it is injective, let α, β :
Dn ⇒ E be two maps sending ∂Dn to e0, which become homotopic relative to the
boundary once composed with b, say by a homotopy h. Then a lift in

Dn × {0, 1} ∪ ∂Dn × I E

Dn × I B

α∪β∪e0

p

b

shows that α and β are also homotopic relative to the boundary. Finally, we prove (1)
⇒ (2). Let p : E → B be a Serre fibration inducing isomorphisms on all homotopy
groups and consider a commutative square

∂Dn E

Dn B,

f

p
`

g

in which we need to find a diagonal lift `. Pick a basepoint d0 ∈ ∂Dn and write
e0 = f (d0) and b0 = p(e0). Since Dn is contractible, there exists a homotopy

h : Dn × I → B

from g = h0 to the constant map h1 with value b0. Since p is a Serre fibration, we
can lift the restriction of this homotopy to the boundary ∂Dn to a homotopy h as in
the following square:
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∂Dn × {0} E

∂Dn × I B.

f

p

h

h

Then the map h1 : ∂Dn → E has image contained in the fibre p−1(b0). By the long
exact sequence of the fibration p this fibre has vanishing homotopy groups, so that
there must exist an extension of h1 to a map k : Dn → p−1(b0). Now choose a lift L
in the following diagram:

∂Dn × I ∪ Dn × {1} E

Dn × I B

h∪k

p
L

h

Then the restriction of L to Dn × {0} provides a solution ` to our original lifting
problem. �

Remark 7.8 We already observed that applying Sing to a Serre fibration gives a
Kan fibration of simplicial sets. Lemma 7.7 also shows that Sing of a Serre fibration
which is also a weak homotopy equivalence gives a trivial fibration of simplicial
sets.

For later use, we record the fact that being a Serre fibration is a local property:

Proposition 7.9 Let p : E → B be a map with the property that every b ∈ B has a
neighbourhood U such that the restriction

p−1U
p
−→ U

is a Serre fibration. Then p is itself a Serre fibration.

Proof Let p be as in the statement of the proposition and consider a lifting problem

In × {0} E

In+1 B.

f

p
h

g

By compactness of In+1 and the Lebesgue covering lemma, there exists a natural
number N such that if we subdivide In+1 into a grid of Nn+1 little cubes with side
lengths 1/N , the image under p of each little cube is contained in an open set U
over which p is a Serre fibration. Order these cubes lexicographically and label them
C1, . . . ,CNn+1 . Write Ir := In × {0} ∪ C1 ∪ · · · ∪ Cr . We will now define lifts
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In × {0} E

Ir B.

f

p
hr

g

by induction on r . To extend a given lift hr from Ir to Ir+1, we have to extend hr
over the cube Cr . Thus it suffices to solve the lifting problem

Cr ∩ Ir E

Cr B.

hr |Cr

p

g

This can be done because Cr ∩ Ir → Cr is itself homeomorphic to the inclusion
In × {0} → In+1. Indeed, the intersection Cr ∩ Ir is essentially a variation of the
‘box without a lid’

In × {0} ∪ ∂In × I,

but possibly with ∂In replaced by a smaller union of faces of In. �

Corollary 7.10 A locally trivial fibre bundle p : E → B is a Serre fibration.

Proof By definition every point in B has a neighbourhood on which p is homeo-
morphic to the projection of a product onto one of its factors, which is evidently a
Serre fibration. �

7.3 A Model Structure for Topological Spaces

In this section we shall use the basic facts from the previous section to construct
a model structure on the category Top of (compactly generated weak Hausdorff)
topological spaces. The relevant classes of maps are defined as follows. A map
f : X → Y is called a weak equivalence if it induces a bijection π0X → π0Y and an
isomorphism πn(X, x0) → πn(Y, f (x0)) for any n ≥ 1 and any choice of basepoint
x0 ∈ X . A map f : X → Y is called a fibration if it is a Serre fibration and a
cofibration if it is a retract of a cellular extension.

Theorem 7.11 (Quillen) These classes of maps constitute a model structure on the
category Top.

Proof The axioms (M1) (finite limits and colimits), (M2) (two-out-of-three for weak
equivalences) and (M3) (retracts) are obviously satisfied. For (M5), observe that any
map f : X → Y can be factored as a cellular map i : X → Z followed by a map
p : Z → Y having the right lifting property with respect to all cellular maps. Indeed,
one applies the small object argument (cf. Remark 3.38 ) to the set of boundary
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inclusions of cells ∂Dn → Dn (n ≥ 0). In a bit more detail, one sets Z0 := X and
for k ≥ 1 one inductively defines factorizations

X
ik
−→ Zk

pk
−−→ Y

of f as follows. Suppose Zk , ik , and pk have been defined. Write Sk for the set of all
commutative squares of the form

∂Dn Zk

Dn Y .

pk

Define Zk+1 by a pushout square∐
S∈Sk

∂Dn Zk

∐
S∈Sk

Dn Zk+1

and define ik+1 to be the composite of ik followed by the right-hand vertical map in
the square. The universal property of the pushout defines the map pk+1 : Zk+1 → Y .
Taking the colimit over k gives a factorization

X
i∞
−−→ Z∞

p∞
−−→ Y

of f in which i∞ is a cellular extension. To see that p∞ has the desired right lifting
property with respect to cellular maps, we should solve lifting problems of the form

∂Dn Z∞

Dn Y .

p∞
`

Observe that the map ∂Dn → Z∞ must factor through some Zk by Lemma 7.6. The
resulting square

∂Dn Zk

Dn Y .

pk

defines an element of Sk and a corresponding map `k : Dn → Zk+1. The composite

Dn `k
−−→ Zk+1 → Z∞
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gives the desired lift. To conclude that p∞ is a trivial fibration, we use that a map
having the right lifting property with respect to all cellular maps is a Serre fibration
and a weak equivalence by Lemma 7.7.

The other factorization, into a trivial cofibration followed by a fibration, is proved
in exactly the same way, now using the inclusions

In × {0} → In × I (7.1)

instead of the boundary inclusions ∂Dn → Dn. These inclusions are all cellular and
part of strong deformation retracts (hence in particular weak equivalences). Hence
if {Ai → Bi} is a family of maps of the form (7.1), then their coproduct is again
cellular and a strong deformation retract and so is any pushout of it. Finally, if

X0 → X1 → X2 → · · ·

is a sequence of cellular strong deformations retracts, then each Ai → lim
−−→k

Ak is as
well, as the reader can easily verify. Hence applying the small object argument to
factor a map X → Y into a (transfinite) composition of pushouts of maps of the form
(7.1) (for varying n ≥ 0) followed by a map having the right lifting property with
respect to such finishes the argument.

It remains to prove the lifting axiom (M4). So consider a commutative square

A X

B Y

i

f

p

g

where i is a cofibration and p is a fibration. If p is also a weak equivalence, then
p has the right lifting property with respect to all cellular extensions by Lemma
7.7. But then it also has the right lifting property with respect to any retract of a
cellular extension, i.e., with respect to any cofibration. If instead i is also a weak
equivalence, then we can factor i as v ◦ j with j : A→ C in the saturation of the class
of maps of type (7.1) and v a Serre fibration, as in the second factorization for (M5)
just discussed. Observe that j has the left lifting property with respect to any Serre
fibration. Also, since i and j are weak equivalences, so is v by the two-out-of-three
axiom. Thus by Lemma 7.7 again, v has the right lifting property with respect to all
cellular maps. We can now find a diagonal filling in the square above by lifting in
two steps:

A C A X

B B C Y .

j

i v

f

j p
r h

gv

Then hr is the required lift and the proof is complete. �
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Remark 7.12 One can reinterpret the last step in the proof above in the following
way.Write J for the class of maps described in (7.1). Then the left-hand square above
shows that any trivial cofibration i is a retract of a J-cellular map (see Definition
5.18). Indeed, one can redraw that diagram as follows:

A A A

B C B.

i j i

r v

Since Serre fibrations have the right lifting property with respect to J (by definition),
they also have the right lifting property with respect to any retract of a J-cellular
map.

Generally, if J is a set of maps in amodel category with the property that fibrations
have the right lifting property with respect to J, then the argument above shows that
any trivial cofibration is a retract of a J-cellular map. This is often called the ‘retract
argument’. It follows that the class of trivial cofibrations is the saturation of J. Indeed,
we just argued that any trivial cofibration is in this saturation. Conversely, any map
in J is a trivial cofibration (it has the left lifting property with respect to fibrations),
hence so is any map in the saturation of J.

Remark 7.13 The proof of Theorem 7.11 just given uses the small object argument
in two ways: to construct the cofibrations as the saturation of the set of boundary
inclusions ∂Dn → Dn, n ≥ 0, and to construct the trivial cofibrations as the
saturation of the set of inclusions In × {0} → In × I, n ≥ 0. The crucial properties
that made our argument work were

(i) the inclusions In × {0} → In × I are themselves cellular extensions,
(ii) the saturation of these In × {0} → In × I is contained in the class of weak

equivalences,
(iii) the domains ∂Dn and In are compact, so factor through a finite stage of a colimit

of a sequence
X0 → X1 → X2 → · · ·

of cellular extensions.

More generally, a model category E is said to be cofibrantly generated if there are
sets of maps I and J whose saturations are the classes of cofibrations and of trivial
cofibrations, respectively, satisfying conditions (i’)–(iii’) listed below. These sets
I and J are then called the sets of generating cofibrations and generating trivial
cofibrations. In turn, in the process of trying to establish a model structure on a
category E (which possesses all the necessary colimits), one can use two such sets I
and J to construct factorizations as in (M5). The saturation of I will then be defined
to be the class of cofibrations and one hopes to prove that the saturation of J acts as
the class of trivial cofibrations. One can prove (M5) as we did if conditions analogous
to (i)–(iii) above hold, namely
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(i’) J is contained in the saturation of I,
(ii’) the saturation of J is contained in the class of weak equivalences,
(iii’) if

X0 → X1 → X2 → · · ·

is a sequence of I-cellular maps and K is the domain of a map in I or J, then
any map

K → lim
−−→
k

Xk

factors through some Xi .

This argument also works if condition (iii’) is satisfied for colimits of continuous
sequences indexed over a fixed regular cardinal κ. However, for most of the model
structures we construct in this book, either the countable case described above or the
case where κ is the first uncountable cardinal suffices.

Remark 7.14 Themodel structure of Theorem7.11 satisfies several additional useful
properties. One of these is that in a pullback square

A X

B Y

f

u

g

v

in which g is a fibration and v is a weak equivalence, the map u is again a weak
equivalence. If this additional property holds in a model structure, then one says it
is right proper. We will come back to this property in a more general context in
Section 7.6 below. For now, let us give a proof which is somewhat particular to the
case of topological spaces. Write F and G for the respective fibres of f and g (for
chosen basepoints b ∈ B and v(b) = y ∈ Y ) and w : F → G for the restriction of
u. Then w is a homeomorphism, so in particular a weak equivalence. It now follows
by the five lemma that u is a weak equivalence whenever v is, simply comparing the
long exact sequences of homotopy groups induced by f and g.

· · · πnF πnA πnB πn−1F · · ·

· · · πnG πnX πnY πn−1G · · ·

Remark 7.15 Dually to the previous remark, the model structure of Theorem 7.11 is
also left proper, meaning that the pushout of a weak equivalence along a cofibration
is again a weak equivalence. To see this, recall that a cofibration is a retract of
a cellular extension. Since weak equivalences of topological spaces are preserved
under direct limits, it suffices to prove that for a weak equivalence f : X → Y and a
cell attachment
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Sn X

Dn+1 X ∪α Dn+1,

α

the corresponding map f̃ : X ∪α Dn+1 → Y ∪ fα Dn+1 is a weak equivalence. To
see this, note that f̃ still gives a bijection on path components and moreover an
isomorphism on fundamental groups (at any basepoint) by van Kampen’s theorem.
A standard Mayer–Vietoris argument shows that f̃ induces an isomorphism on
homology (with any local coefficient system). These facts together imply that f̃ is a
weak equivalence.

7.4 Homotopies Between Morphisms in a Model Category

Recall that an object in a model category is called fibrant if it maps to the terminal
object by a fibration and cofibrant if the map from the initial object into it is a
cofibration. In this section we will describe a notion of homotopy for morphisms
in a model category E which behaves well as long as the domain is cofibrant and
the codomain is fibrant. This leads to a well-defined category Ho(E) of objects
which are both fibrant and cofibrant, and homotopy classes of maps between them
as morphisms. The main result of this section is Proposition 7.27, stating that a
morphism between fibrant-cofibrant objects is a weak equivalence if and only if it
is a homotopy equivalence. For the rest of this section we work with a fixed model
category E.

Definition 7.16 (a) Let A be an object of E. A cylinder on A is a factorization of the
fold map ∇ : Aq A→ A into a cofibration followed by a trivial fibration:

Aq A Cyl(A)

A.

(i0,i1)

∇

∼

ε

If ε is only a weak equivalence, we speak of a weak cylinder.
(b) Dually, for an object X , a path object for X if is a factorization of its diagonal

into a trivial cofibration followed by a fibration:

X PX

X × X .

∼

c

∆
(p0,p1)

We speak of a weak path object if c is only a weak equivalence.
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Remark 7.17 (a) In a weak cylinder object, the maps i0 and i1 are trivial cofibrations
if A is cofibrant. Indeed, each of the two coproduct inclusions A → A q A is a
cofibration because

0 A

A Aq A

is a pushout. Composition of (i0, i1) with each of these coproduct inclusions shows
that i0 and i1 are cofibrations. By two-out-of-three they are weak equivalences, using
that εi0 = idA = εi1 and ε is a weak equivalence by assumption.

(b) Dually, the maps p0 and p1 in a path object are both trivial fibrations, provided
X is fibrant.

Example 7.18 For the category of topological spaces with the model structure of
the previous section, the usual cylinder

X q X
(i0,i1)
−−−−→ X × I

pr1
−−→ X

of a space X provides a cylinder object. Dually, the path space

X
const
−−−→ X I (ev0,ev1)

−−−−−−→ X × X

provides a weak path object. In the category of small categories equipped with the
naive model structure, one can use the functors

C q C
(i0,i1)
−−−−→ C × τ(J)

pr1
−−→ C

to provide a cylinder object for a category C. Recall that τ(J) is the groupoid
consisting of two objects and an isomorphism between them. Similarly to the case
of spaces, the functor category Cτ(J) gives a path object for C.

Definition 7.19 Let A and X be objects of E.

(a) Two maps f , g : A→ X are called left homotopic if there exists a weak cylinder
Cyl(A) and a map

h : Cyl(A) → X

for which hi0 = f and hi1 = g. We write f ∼L g. We call such an h a left
homotopy between f and g.

(b) Dually, f and g are called right homotopic if there is a weak path object PX and
a right homotopy

k : A→ PX

for which p0k = f and p1k = g. We write f ∼R g.
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Proposition 7.20 Let A be a cofibrant object and X a fibrant object.

(a) Being left homotopic is independent of the choice of weak cylinder and defines
an equivalence relation on the set of morphisms from A to X .

(b) The dual statement holds for right homotopic maps.
(c) The relations of being left and right homotopic coincide.

Proof The proofs are elementary applications of the axioms. We present a few
observations concerning (a) and (c) and leave further details to the reader.

First of all, notice that f ∼L g via a left homotopy h using a weak cylinder object
A q A→ Cyl(A) → A, then there is also a left homotopy from a cylinder. Indeed,
we can factor ε : Cyl(A) → A as a trivial cofibration followed by a trivial fibration

Cyl(A) Cyl′(A) A∼ ∼

ε′

and lift in
Cyl(A) X

Cyl′(A) 1.

h
∼

The dashed map is now a left homotopy from the actual cylinder Cyl′(A).
Next, if Cyl1(A) and Cyl2(A) with their associated maps are two cylinders on A,

then a lift in
Aq A Cyl1(A)

Cyl2(A) A

∼

shows that if two maps f and g are left homotopic via Cyl1(A), then they also are
via Cyl2(A). This shows that being left homotopic is independent of the cylinder.

If A q A
(i0,i1)
−−−−→ Cyl(A) ε

−→ A is a cylinder, then so is A q A
(i1,i0)
−−−−→ Cyl(A) ε

−→ A,
which shows the symmetry of the left homotopy relation. Transitivity is proved by
gluing two copies of a cylinder, as in the pushout

A Cyl(A)

Cyl(A) Cyl′(A).

i0

i1 j1

j0

Then A q A
(i′0,i

′
1)

−−−−→ Cyl′(A) ε′

−→ A is a weak cylinder, where ε′ is the unique map
with ε′ j0 = ε = ε′ j1, and i′0 = j0i0 while i′1 = j1i1.

For part (c), suppose Cyl(A) and PX are cylinder and path objects respectively,
and suppose h : Cyl(A) → X is a left homotopy from f to g as above. The map f ε
is a left homotopy from f to itself and we can lift in
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A PX

Cyl(A) X × X

i0

∼

c f

l

(h, f ε)

to obtain a map l for which li1 is a right homotopy from g to f . The argument that
right homotopic implies left homotopic is dual. �

Definition 7.21 For a cofibrant object A and a fibrant object X , we shall write [A, X]
for the set of equivalence classes of the equivalence relation of Proposition 7.20 and
call its elements homotopy classes of maps from A to X .

The following basic ‘homotopy lifting lemma’ is very useful:
Lemma 7.22 Let B be a cofibrant object and p : X → Y a fibration. If in a diagram

X

B Y

p

g

there exists a map k : B → X such that pk is left homotopic to g, then there also
exists a map l : B → X with pl = g and l left homotopic to k. In other words, a lift
up to left homotopy is left homotopic to an actual lift. A dual statement applies to
diagrams of the form

A X

B

j

where j is a cofibration and X is fibrant.
Proof Suppose h : Cyl(B) → Y is a homotopy from hi0 = pk to hi1 = g. Then a lift
H exists in the diagram

B X

Cyl(B) Y .

∼

i0

k

p
H

h

Setting l = Hi1 gives the desired lift B→ X . �

Remark 7.23 The lifting axiom (M4) merely requires the existence of a lift and says
nothing about its possible uniqueness. However, these lifts are always unique up to
fibrewise relative homotopy. More precisely, if f : X → Y is a fibration we can form
a fibrewise path object by factoring ∆ : X → X ×Y X as

X PY X

X ×Y X .

∼

c

∆
(p0,p1)
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Then if k and l are two lifts in a commutative square

A X

B Y

i

∼

u

f

v

where i is a trivial cofibration and f a fibration, we can lift in

A PY X

B X ×Y X

i

∼

cu

(p0,p1)

(k,l)

h

to find a fibrewise homotopy h relative to A. Composition with a lift in

X PX

PY X X × X

c

∼

shows that such fibrewise relative homotopies in particular yield ordinary right
homotopies. There is of course a dual statement for squares involving a cofibration
i and a trivial fibration f .

Remark 7.24 In fact the fibrewise path object PY X described above is simply a path
object in the sense of Definition 7.16 for the (fibrant) object X → Y of the slice
category E/Y . Hence Remark 7.17 applies and the projections p0, p1 : PY X → X are
trivial fibrations. Dual remarks apply to relative cylinder objects CylA(B) associated
to a cofibration A→ B.

Proposition 7.25 Let A→ B be a trivial cofibration between cofibrant objects and
let X → Y be a trivial fibration between fibrant objects. Then composition with these
maps induces bijections

[B, X] [B,Y ]

[A, X] [A,Y ] .

�

� �

�

Proof Note first that postcomposition with X → Y obviously respects the left
homotopy relation, while precomposition with A→ B preserves the right homotopy
relation, so these maps are well-defined. Let us prove that the map [B, X] → [A, X]
on the left of the diagram is a bijection. The other cases are identical or dual. First
of all, lifting in

A X

B 1

∼
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shows that Hom(B, X) → Hom(A, X) is surjective, so the same is true of [B, X] →
[A, X]. For injectivity, choose a weak cylinder AqA→ Cyl(A) → A for A and define
a weak cylinder for B as the pushout in the left square of the following diagram.

Aq A Cyl(A) A

B q B Cyl(B) B

∼ ∼

∼

∼

The vertical map on the left is a trivial cofibration since A→ B is, so that Cyl(A) →
Cyl(B) is a trivial cofibration as well. Similarly, the map B q B → Cyl(B) is a
cofibration since A q A → Cyl(B) is. The universal property of the pushout gives
the map Cyl(B) → B on the lower right, which is necessarily a weak equivalence by
the two-out-of-three axiom. With this particular choice of cylinder, one easily shows
that if two maps B → X become left homotopic via Cyl(A) after composing with
A→ B, they are themselves already left homotopic via Cyl(B). So [B, X] → [A, X]
is injective as well. �

Note that the proof of Proposition 7.25 above starts with the observation that
composition of homotopy classes of maps is well-defined. Hence we can make the
following definition:

Definition 7.26 The homotopy category Ho(E) is the category with as objects those
objects in E which are both fibrant and cofibrant, and as morphisms the homotopy
classes of maps.

Let us say that a map f : X → Y between objects which are both fibrant and
cofibrant is a homotopy equivalence if its homotopy class is an isomorphism in
Ho(E). Equivalently, f is a homotopy equivalence if there exists a map g : Y → X
with f g homotopic to idY and g f homotopic to idX . Clearly homotopy equivalences
satisfy the two-out-of-three property. We end this section by collecting some basic
facts about homotopy equivalences in a model category. The main result is the
following:

Proposition 7.27 Let f : X → Y be a map between objects which are both fibrant
and cofibrant.

(i) If f is a weak equivalence, then it is a homotopy equivalence.
(ii) If f is a homotopy equivalence, then it is a weak equivalence.

Proof (of Proposition 7.27) (i). Suppose f is a weak equivalence. Then we may
factor it is a trivial cofibration j : X → Z followed by a trivial fibration p : Z → Y .
So it suffices to prove that each of these two is a homotopy equivalence. This is
immediate from Proposition 7.25 and the Yoneda lemma. In detail, precomposition
with j induces bijections [Z, X] → [X, X] and [Z, Z] → [X, Z]. The first gives the
existence of a map r : Z → X with ri ∼ idX . To prove that ir ∼ idZ , it suffices by
the second bijection to show that iri ∼ i, which follows from ri ∼ idX . The argument
for the trivial fibration p is similar. �



286 7 Model Categories

To prove Proposition 7.27(ii) we will need some preparation.

Lemma 7.28 Let X and Y be both fibrant and cofibrant and suppose q : X → Y is
a fibration which is also a homotopy equivalence. Then there is a section s : Y → X
homotopy inverse to q, i.e., qs = idY and sq is homotopic to idX . In fact, sq is even
fibrewise homotopic over Y to idX .

Proof Write r : Y → X for a homotopy inverse to q. Consider the lifting problem

X

Y Y .

q

Then r is a solution up to homotopy, so that the homotopy lifting lemma 7.22 implies
the existence of a map s homotopic to r with qs = idY . Giving a fibrewise homotopy
over Y between sq and idX amounts to providing a lift in the diagram

PY X

X X ×Y X .

(p0,p1)

(sq,idX )

Note that X ×Y X is fibrant by virtue of q being a fibration between fibrant objects.
Again by the homotopy lifting lemma 7.22 it suffices to solve this lifting problem up
to homotopy. Since s : Y → X is a homotopy equivalence, it suffices to precompose
by this map and provide a lift in the resulting diagram

PY X

Y X ×Y X .

(p0,p1)

(s,s)

The composition
Y

s
−→ X

c
−→ PY X

does the job. �

Proof (of Proposition 7.27) (ii). Suppose that f : X → Y is a homotopy equivalence
between objects which are both fibrant and cofibrant. Factor f as a trivial cofibration
i : X → Z followed by a fibration q : Z → Y . It suffices to show that q is a weak
equivalence. The homotopy class of i is an isomorphism in Ho(E) by Proposition
7.27(i). It follows that the homotopy class of q is an isomorphism as well. Thus
Lemma 7.28 implies the existence of a section s of q with a fibrewise homotopy
h : Z → PY Z from sq to idZ . We will show that q is in fact a trivial fibration by
showing it has the right lifting property with respect to cofibrations. So consider a
lifting problem
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A Z

B Y

i

u

q

v

in which i is a cofibration. A first attempt to find a lift is to consider the map
k = sv : B → Z . It satisfies qk = v, but the composite ki is only fibrewise
homotopic (rather than equal) to u. To fix this, consider the diagram

A PY Z

B Z .

i

hu

p0

k

l

The dashed lift l exists because the first coordinate projection p0 is a trivial fibration
(see Remark 7.24). Finally, taking p1l : B → Z solves our original lifting problem,
since p1li = p1hu = u and qp1l = qp0l = qk = v. This completes the proof. �

7.5 The Homotopy Category of a Model Category

We will apply the results of the previous section to see that the homotopy cate-
gory Ho(E) is the universal solution to turning the weak equivalences of E into
isomorphisms. We can define a functor

η : E→ Ho(E)

by choosing for each object a fibrant and cofibrant replacement. More precisely, for
each X ∈ E pick a fibrant replacement

X Xf
∼

iX

and take it to be the identity if X is already fibrant. Similarly choose a cofibrant
replacement

Xc X∼

qX

being the identity if X happens to be cofibrant. Then on objects we define η(X) =
(Xf )c . On morphisms, we use the lifting axiom (M4) to extend a given α : X → Y
to a map αf : Xf → Yf and then lift to (αf )c , as in

X Y Yf 0 (Yf )c

Xf 1 (Xf )c Xf Yf .

∼

α ∼

∼

αf

∼

(αf )c

αf
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Since these lifts are unique up to homotopy (cf. Remark 7.23), the resulting homotopy
class η(α) = [(αf )c] is independent of choices, which also shows that η is in fact a
functor.

Remark 7.29 Note that we could as well have interchanged the order of fibrant and
cofibrant replacement and defined η(X) = (Xc) f , and similarly for morphisms.

The universal property of Ho(E) we will phrase is really a universal property in
the (large) 2-category of categories:

Definition 7.30 If C is a category and W a class of morphisms in C, then we call
a functor F : C → D a (categorical) localization of C at W if the following two
properties hold:

(1) F sends every element of W to an isomorphism in D.
(2) For any category E, precomposition by F gives an equivalence of categories

F∗ : Fun(D,E) → FunW (C,E).

Here Fun(−,−) denotes the category of functors and natural transformations,
whereas FunW (C,E) denotes the full subcategory of Fun(C,E) on functors send-
ing elements of W to isomorphisms in E.

Theorem 7.31 The functor η : E→ Ho(E) is a localization of E at the class of weak
equivalences.

Proof First observe that η indeed sends weak equivalences to isomorphisms, by
Proposition 7.27(i) and the fact that (αf )c is a weak equivalence whenever α is.
Suppose that ϕ : E→ C is any functor mapping weak equivalences to isomorphisms.
Define a functor ψ : Ho(E) → C by ψ(X) = ϕ(X) on objects and ψ([α]) = ϕ(α) on
morphisms. The latter is indeed well-defined on homotopy classes, for if

Aq A
(i0,i1)
−−−−→ Cyl(A) ε−→ A

is a cylinder, the functor ϕ maps ε to an isomorphism, so ϕ(i0) = ϕ(i1) because
ϕ(εi0) = idϕ(A) = ϕ(εi1). Furthermore,

τX = (ϕ(X)
ϕ(iX )
−−−−→ ϕ(Xf )

ϕ(qXf
)−1

−−−−−−−→ ϕ((Xf )c))

defines a natural isomorphism ϕ → ψη = η∗ψ. Indeed, the map τX is natural in X
since the maps iX and qX f are unique up to homotopy (Remark 7.23 again). Also,
note that the definitions of ψ and τ are functorial in ϕ. If θ : Ho(E) → C is any
functor, then the functor ψ associated to θη is simply θ again. We conclude that the
assignment ϕ 7→ ψ is a pseudo-inverse to η∗. �

Remark 7.32 It is useful to observe that in fact a map α : X → Y is a weak equiva-
lence if and only if η(α) is an isomorphism in Ho(E). Indeed, η(α) is an isomorphism
if and only if the right-most vertical map in the following diagram is a weak equiva-
lence (by Proposition 7.27):
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X Xf (Xf )c

Y Yf (Yf )c .

α

∼

αf

∼

(αf )c

∼ ∼

But by the two-out-of-three property this is the case if and only if α is a weak
equivalence.

Remark 7.33 If A and X are arbitrary objects of E, with arbitrary cofibrant and
fibrant replacements Ac

∼
−→ A and X

∼
−→ Xf respectively, then one easily checks that

Ho(E)(ηA, ηX) � [Ac, Xf ].

ThusHo(E) is equivalent to the categorywith the same objects asE and asmorphisms
from A to X the set [Ac, Xf ].

These remarks lead to the following useful observation:

Proposition 7.34 In a model category E, the three classes of morphisms are entirely
determined by the cofibrations and the fibrant objects.

Proof The fibrations are determined by the trivial cofibrations, so it suffices to check
that the cofibrations and the fibrant objects determine the weak equivalences. Also,
the cofibrations determine the trivial fibrations, so we are free to use those. To check
whether a morphism A → B is a weak equivalence, factor 0 → A as a cofibration
followed by a trivial fibration:

0 Ac A.∼

Similarly factor the composite of the maps Ac → A→ B to obtain a square

Ac Bc

A B

∼ ∼

inwhich the vertical arrows are trivial fibrations and Ac and Bc are cofibrant. Observe
that A→ B is a weak equivalence if and only if Ac → Bc is. By the previous remark
the latter is the case if and only if for each fibrant object X , the map

[Bc, X] → [Ac, X]

is an isomorphism, because that would mean that Ac → Bc is an isomorphism in
Ho(E). �

We finish this section by observing the ‘two-out-of-six property’ for weak equiv-
alences, which will occasionally be useful:
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Proposition 7.35 Consider a commutative diagram

A X

B Y

∼

∼

in a model category E such that the horizontal morphisms are weak equivalences as
indicated. Then every map in the diagram is a weak equivalence.

Remark 7.36 The term ‘two-out-of-six’ refers to the fact that the diagram above
really contains six morphisms: the sixth one is the composite arrow A → Y . Also,
observe that the diagram shape above is encoded by a functor [3] → E, recording
the three composable morphisms A→ B→ X → Y .

Proof By Remark 7.32 it suffices to check that the image of this diagram in the
homotopy category Ho(E) consists entirely of isomorphisms. The upper triangle in
the square shows that the image of the arrow B→ X in Ho(E) admits a right inverse,
whereas the lower triangle shows that it admits a left inverse. Therefore B → X
gives an isomorphism in Ho(E). But then by two-out-of-three, the same is true for
the vertical arrows. �

7.6 Brown’s Lemma and Proper Model Categories

Recall that a model category is called right proper if its weak equivalences are stable
under pullback along fibrations. Dually, a model category is left proper if its weak
equivalences are stable under pushouts under cofibrations. In Section 7.3 we showed
that the model category of topological spaces is left proper and also right proper,
using the long exact sequence of a fibration. In this section we will make several
useful observations about left or right proper model categories. In particular we
prove Brown’s lemma, which implies that any model category in which all objects
are fibrant is right proper, but will also be useful in other contexts. All the general
statements in this section for right proper model categories of course have a dual
form for left proper model categories and vice versa.

Lemma 7.37 (Brown’s lemma) Let f : X → Y be a weak equivalence between
fibrant objects in a model category. Then f factors as a trivial cofibration i : X → Z
followed by a trivial fibration p : Z → Y , where moreover there exists a trivial
fibration q : Z → X with qi = idX .

Proof Factor (idX, f ) : X → X × Y as a trivial cofibration followed by a fibration:

X X × Y

Z

(1, f )

∼
(q,p)
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Since X and Y are fibrant the projections X ×Y → X and X ×Y → Y are fibrations,
hence so are p and q. Since qi = idX and pi = f , it follows by two-out-of-three that
p and q are weak equivalences as well. �

The following is a typical application of Brown’s lemma:

Proposition 7.38 Any functor R : F→ E between model categories which preserves
trivial fibrations also preserves weak equivalences between fibrant objects.

Proof Given any such weak equivalence f : X → Y , consider the maps p, i, and q of
Brown’s lemma. Since R preserves trivial fibrations, the maps Rp and Rq are weak
equivalences. But then by two-out-of-three, so is Ri. We conclude that R f = Rp◦Ri
is a weak equivalence as well. �

Corollary 7.39 Let f : X → Y be a morphism in a model category E. Then the
pullback functor

f ∗ : E/Y → E/X

preserves weak equivalences between fibrations over Y .

Proof The fibrations over Y are the fibrant objects of E/Y and f ∗ is a functor which
preserves trivial fibrations, simply because these are stable under pullback. �

Another application of Brown’s lemma is the following:

Proposition 7.40 In a pullback square

V W

X Y

g

p

∼

f

where p is a fibration and f is a weak equivalence between fibrant objects, the map
g is also a weak equivalence.

Proof Factor f as in Brown’s lemma. Since the pullback of a trivial fibration is again
a trivial fibration, it suffices to consider the case where f is a section of a trivial
fibration q : Y → X . Consider the diagram of pullback squares

T U W

X Y X .

k

u

∼

h

qp

∼

f

∼

q

Then h is a pullback of q, hence a trivial fibration, and hk is an isomorphism because
it is a pullback of q f = idX . Therefore all horizontal maps in the diagram are weak
equivalences and all vertical maps are fibrations. From the commutative square
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W W

Y X

p

idW

qp

q

and the universal property of the pullback, there exists a t : W → U with ht = idW
and ut = p. The first equation gives that t is also a weak equivalence, since h is. In
fact, it is a weak equivalence between fibrations overY , namely p and u. By Corollary
7.39 the pullback of t along f is still a weak equivalence between fibrations over X:

X ×Y W X ×Y U

X .

∼

f ∗t

The top horizontal mapmay be identified with the map g : V → W , which completes
the proof. �

Corollary 7.41 A model category in which every object is fibrant is right proper.

Remark 7.42 The dual forms of the preceding statements will often be used as well.
To be explicit, any weak equivalence X → Y between cofibrant objects can be fac-
tored as a trivial cofibration X → Z followed by a trivial fibration Z → Y having
a trivial cofibration as a section. Furthermore, any functor which preserves trivial
cofibrations also preserves weak equivalences between cofibrant objects. Also, weak
equivalences between cofibrant objects are stable under pushout along a cofibra-
tion. As a particular case, a model category in which every object is cofibrant is
automatically left proper.

Another useful fact for proper model categories is the following lemma:

Lemma 7.43 Let E be a left proper model category, p : Y → X a fibration and
i : A → B a cofibration in E. Consider a cofibrant replacement of i, given by a
diagram

Ac A

Bc B

ic

∼

i

∼

in which ic is a cofibration between cofibrant objects. If p has the right lifting
property with respect to ic , then it also has the right lifting property with respect to
i.

Proof Form the commutative diagram

Ac A Y

Bc P B X,

∼

ic

∼
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where the square on the left is a pushout. The map Bc → P is a weak equivalence
because E is left proper. By assumption there exists a lift Bc → Y in the outer
rectangle, hence also a lift δ : P → Y in the smaller rectangle by the universal
property of the pushout P. As Bc → B is a weak equivalence, so is P → B by
two-out-of-three. Factor P→ B as a trivial cofibration P→ Q followed by a trivial
fibration Q→ B. Now we can lift successively in the following two squares:

P Y A Q

Q X B B.

∼

δ
∼

Composing the two lifts gives the required map B→ Y . �

7.7 Transfer of Model Structures

LetE be a cofibrantly generatedmodel category (see Remark 7.13), soE has a set I of
morphisms generating the cofibrations as a saturated class and similarly a generating
set J for the trivial cofibrations. Let A be another category related to E by a pair of
adjoint functors (left adjoint on top)

E A.
f!

f ∗

We will assume that A (like E) has all small limits and colimits. For example, the
reader might think of the objects of A as objects of E equipped with some algebraic
structure and f ∗ as the forgetful functor. Its left adjoint then assigns to each object X
of E the ‘free algebraic structure generated by E’. More specifically, E could be the
category of topological spaces equipped with the model structure of Section 7.3 and
A could be the category of topological monoids. We will consider more examples
of this kind in Section 13.4.

Our aim in this section is to describe a method to transfer the model structure
from E to A. More precisely, we simply define a map A→ B in A to be a fibration
or a weak equivalence precisely if f ∗A→ f ∗B is a fibration or a weak equivalence,
respectively, in E. We then ask ourselves when this gives a model structure again.
The cofibrations will be the maps having the right lifting property with respect to
the trivial fibrations. Note that f ∗A → f ∗B is a fibration in E if and only if it has
the right lifting property with respect to every generating trivial cofibration U → V ,
so that A → B is a fibration in A if and only if it has the right lifting property
with respect to every corresponding f!U → f!V . Thus, by the retract argument of
Remark 7.12, the class of trivial cofibrations in A has to be the saturation of the set
of generating trivial cofibrations of the form f!U → f!V , with U → V ranging over
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the generating trivial cofibrations in E. Similarly, the set of cofibrations in A must
be the saturation of the set of maps f!U → f!V now with U → V ranging over the
generating cofibrations in E.

The main step in proving the existence of the desired model structure will be to
find conditions that guarantee that in the case of generating trivial cofibrations, the
saturation of this set is indeed contained in the class of weak equivalences in A we
defined above. Any morphism A → B of A in this saturation can be obtained as a
retract of a (transfinite) colimit of a sequence of morphisms which occur in a pushout
of the form

f!U A

f!V B,

where U → V is a generating trivial cofibration in E. So if the functor f ∗ maps each
such A → B to a weak equivalence, as well as any transfinite composition of such
morphisms, then f ∗ will send any morphism in this saturation to a weak equivalence.
This leads to the following formulation:

Theorem 7.44 Let E be a cofibrantly generated model category and let f! : E � A :
f ∗ be an adjoint pair of functors, with f ∗ preserving filtered colimits. AssumeA has
finite limits and all small colimits. Call a morphism A → B a fibration (or a weak
equivalence) if f ∗A→ f ∗B is one in E. Then these fibrations and weak equivalences
form part of a cofibrantly generated model structure on A provided the following
conditions are satisfied:

(1) For every generating trivial cofibration i : U → V in E, any pushout of the
morphism f!i in A is a weak equivalence.

(2) Any transfinite composition of such pushouts as in (1) is a weak equivalence.

The model structure onA obtained in this way is referred to as the transferred model
structure.

Remark 7.45 If p is a pushout of a morphism f!i, for a generating trivial cofibration
i, it will often happen that f ∗p is a trivial cofibration in E (rather than just a weak
equivalence). In this case, condition (2) of the theoremwill be automatic. Indeed, any
transfinite composition of such maps f ∗p, being a transfinite composition of trivial
cofibrations, will itself be a trivial cofibration and in particular a weak equivalence.
Notice that in the situation above, if f ∗ preserves all colimits, then condition (1) is
also automatically satisfied.

Proof (of Theorem 7.44) As explained before the statement of the theorem, we can
take the generating (trivial) cofibrations in A to be the maps of the form f!U → f!V
whereU → V is a generating (trivial) cofibration in E. Axioms (M1–3) are evidently
satisfied. Moreover, the small object argument provides two factorizations of a map
A → B in A: one factorization into maps i : A → C and p : C → B in which p
has the right lifting property with respect to all generating cofibrations and i lies in
the saturation of the class of generating cofibrations; another into maps j : A→ D
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and q : D → B where q has the right lifting property with respect to all generating
trivial cofibrations and j lies in the saturation of these generating trivial cofibrations.
(Here we have used that the domains f!U of generators are still compact, since f ∗

preserves filtered colimits.) Then f ∗p has the right lifting property with respect to all
the (generating) cofibrations in E, so f ∗p is a trivial fibration in E. Hence p is a trivial
fibration inA by definition. Similarly, f ∗q is a fibration in E, so q is a fibration inA.
Moreover, i and j are cofibrations inA by definition and j is also a weak equivalence
precisely by conditions (1) and (2) of the theorem, as we explained above. It remains
to verify the lifting axiom (M4). So consider a commutative square

A X

B Y

i p

inA, where p is a fibration and i is a cofibration. If p is also a weak equivalence then
a lift exists simply by definition of the cofibrations. In the other case where i is a weak
equivalence, we already discussed above that the retract argument (Remark 7.12)
implies that it i lies in the saturation of the generating trivial cofibrations f!U → f!V .
Since p has the right lifting property with respect to these, it also has the right lifting
property with respect to i. �

We conclude this sectionwith some first examples of transferredmodel structures.

Example 7.46 Let E be a cofibrantly generated model category. Let C be a small
category and consider the category EC of functors from C to E, i.e., diagrams of
‘shape’ C in E. Then EC carries a model structure in which a morphism f : X → Y
(i.e., a natural transformation between functors) is a weak equivalence, resp. a
fibration, if and only if f (c) is a weak equivalence, resp. a fibration, for every object
c of C. This is usually called the projective model structure. As its description
suggests, it is obtained by transfer from the model structure on the product

EC0 =
∏
c∈C0

E,

where C0 denotes the set of objects of C and the model structure on the product
is the evident one described in Example (d)(iii) of Section 7.1. There is a pair of
adjoint functors

u! : EC0 EC : u∗

induced by the inclusion u : C0 → C, where C0 is viewed as a discrete category
having identity arrows only. Thus u∗ is simply the forgetful functor remembering
only the values of a functor, while for an object X of EC0 , its value under u! is
described by

(u!X)(c) =
∐
d→c

X(d)
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with the coproduct ranging over all arrows d → c in C. The ‘action’ of C on u!X is
by composition. The conditions for transfer given in Theorem 7.44 are easily seen
to hold. Indeed, since u∗ preserves colimits, it suffices to check that for a trivial
cofibration X → Y in EC0 , the map u∗u!X → u∗u!Y is again a trivial cofibration,
which is obvious.

The construction of the projective model structure is functorial in C, in the
following sense. If ϕ : C → D is a functor between small categories, it induces an
adjoint pair

ϕ! : EC ED : ϕ∗.

It is clear that ϕ∗ preserves fibrations and weak equivalences for the two projective
model structures on EC and ED. In the terminology of Section 8.3, the pair (ϕ!, ϕ

∗)

is a Quillen adjunction.

Example 7.47 A special case of the previous example is where C is the ‘arrow’, i.e.,
the category of shape

• → •.

The functor category EC is then usually called the arrow category and denoted
Ar(E). Its objects are morphisms f : X → Y in E, its morphisms

(u, v) : (X
f
−→ Y ) → (X ′

g
−→ Y ′)

are commutative squares
X X ′

Y Y ′.

u

f g

v

If we equip Ar(E) with the projective model structure, then a pair (u, v) is a weak
equivalence (or a fibration) precisely if both u and v are in E, and a cofibration if and
only if X → X ′ and the map from the pushout Y ∪X X ′→ Y ′ are both cofibrations.
This last fact can be checked directly by contemplating what it means for a morphism
inAr(E) to have the left lifting property with respect to trivial fibrations. In particular,
an object X → Y of Ar(E) is cofibrant if both X and Y are cofibrant and if X → Y is
a cofibration in E.

Example 7.48 In the next section we will consider the example where C is the ‘span’

• ← • → •

for which we write S. So an object of ES is a diagram B ← A→ C in E. We write
Span(E) for this diagram category ES . Much like the previous example, it is simple to
verify that a span is cofibrant in the projective model structure on Span(E) precisely
if all three objects are cofibrant and both arrows are cofibrations in E.
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7.8 Homotopy Pushouts and the Cube Lemma

We conclude this chapter with a short section about the interaction between pushouts
andweak equivalences. In particular wewill prove the ‘cube lemma’ (cf. Lemma 7.51
and Corollary 7.50), which will be a useful tool for inductive arguments involving
CW-structures, or skeletal filtrations of simplicial and dendroidal sets.

A basic problem is that weak equivalences in a model category E are generally
not preserved under pushout. For example, consider the following two diagrams of
topological spaces:

∂Dn ∗ ∂Dn ∗

∗ Dn

Clearly the two spans are weakly equivalent. However, the two pushouts are not
weakly equivalent; on the left one gets the one-point space, but on the right the
result is (homeomorphic to) the n-sphere Sn. It will be useful to have conditions
on diagrams of the above shape which guarantee that the pushout is invariant up to
weak equivalence.

A general way to approach the problem is via the concept of the homotopy colimit,
which is in a precise sense the best approximation to the functor of taking colimits
by a functor which preserves weak equivalences (a ‘derived functor’ in the language
of Section 8.3). We will have more to say on this perspective in Section 10.5, but
here we will give a concrete treatment in the specific case of pushouts.

We begin with the following preliminary version of the cube lemma. It states that
the pushout of a span

B← A→ C

is invariant up to weak equivalence if we assume that all three objects are cofibrant
and both arrows are cofibrations; more briefly, if the span is cofibrant in the projective
model structure of Example 7.48.
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Lemma 7.49 Consider a cubical diagram

A C

B D

A′ C ′

B′ D′

in a model category E. Suppose that the top and bottom faces are pushout squares
and that the vertical maps A → A′, B → B′, and C → C ′ are weak equivalences.
Then the remaining vertical map D → D′ is also a weak equivalence if both of the
spans

B← A→ C and B′← A′→ C ′

are cofibrant in the projective model structure, i.e., consist of cofibrations between
cofibrant objects.

Proof The cube of the lemma describes a weak equivalence between the two spans in
the model category Span(E). The map D→ D′ is the image of this weak equivalence
under the colimit functor

colim : Span(E) → E.

Its right adjoint is the constant diagram functor, which obviously preserves fibra-
tions. By adjunction, the functor colim preserves trivial cofibrations and hence weak
equivalences between cofibrant objects, by (the dual of) Proposition 7.38. Hence the
map D→ D′ is also a weak equivalence. �

In practice it will be very useful to have the conclusion of Lemma 7.49 above
under weaker conditions. Let us introduce a bit of terminology. A pushout square

A B

C D

in E is said to be a homotopy pushout if, after choosing a cofibrant replacement

B0 A0 C0

B A C

∼ ∼ ∼

in the category of spans, the induced map of pushouts

B0 qA0 C0 → B qA C



7.8 Homotopy Pushouts and the Cube Lemma 299

is a weak equivalence in E. This definition is easily seen to be independent of the
choice of cofibrant replacement. By the two-out-of-three property of weak equiva-
lences and Lemma 7.49, we immediately conclude the following:

Corollary 7.50 Consider a cubical diagram

A C

B D

A′ C ′

B′ D′

in a model category E. Suppose that the top and bottom faces are homotopy pushout
squares and that the vertical maps A → A′, B → B′, and C → C ′ are weak
equivalences. Then the remaining vertical map D→ D′ is also a weak equivalence.

Of course any pushout square arising from a cofibrant span B ← A → C is a
homotopy pushout square. However, the following suffices:

Lemma 7.51 Consider a pushout square

A B

C D

in a model category E. Then it is a homotopy pushout if at least one of the following
two conditions is satisfied:

(1) The model category E is left proper and the map A→ C is a cofibration.
(2) The objects A, B, and C are cofibrant and the map A→ C is a cofibration.

Proof (of Lemma 7.51) Choose a cofibrant replacement of spans

B0 A0 C0

B A C.

∼ ∼ ∼

Write D0 for the pushout of the top row; our goal is to prove that the natural map
D0 → D is a weak equivalence. First assume that condition (1) is satisfied. Form the
pushout square

C0 D0

C C qC0 D0.

∼
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Since E is left proper, the map D0 → C qC0 D0 is a weak equivalence, so by
two-out-of-three it will suffice to show that the natural map

C qC0 D0 → D

is a weak equivalence. Since C0 → D0 is the pushout of A0 → B0, we have an
isomorphism C qC0 D0 � C qA0 B0. Consider the diagram

A AqA0 B0 B

C C qA0 B0 D.

Since the square on the left and the rectangle are pushouts, the square on the right
is a pushout as well. We need to show that the lower right horizontal map is a weak
equivalence. All the vertical maps are cofibrations, so by left properness it now
suffices to prove that the map

AqA0 B0 → B

is a weak equivalence. For this, consider the pushout square

A0 B0

A AqA0 B0

∼

and invoke left properness once again to conclude that the vertical map on the right
is a weak equivalence. Applying two-out-of-three and the assumption that B0 → B
is a weak equivalence completes the proof in this case.

If one assumes condition (2) instead, the proof proceeds in the same way. One
replaces the use of left properness everywhere by an application of the dual of
Proposition 7.40, which works by the assumption that all objects under consideration
are cofibrant. �

Remark 7.52 Of course the statements of this section have evident duals, replacing
pushouts by pullbacks, cofibrations by fibrations, and cofibrant objects by fibrant
objects.

Historical Notes

As already indicated in the introduction to this chapter, the notion of model category
arose in Quillen’s work [123, 124] as a tool to formalize the idea that two homotopy
theories can be equivalent. Brown’s lemma was also formulated early on in the
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development of abstract homotopy theory, namely in [33]. However, the development
of the theory in the shape we use it in later chapters of this book took some time, one
reason being that it was difficult to show without further conditions that the axioms
were preserved under certain important constructions such as forming the category
of presheaves with values in a model category. The crucial step here is a systematic
use of the small object argument (already employed by Quillen in [123]), for example
as in Joyal’s construction of a model structure for simplicial sheaves in his letter to
Grothendieck [91]. The notion of a cofibrantly generatedmodel category very clearly
brings out the role of the small object argument in producing factorizations. This is
evident in the transfer of model structures explained in Section 7.7, which in this
form is due to Crans [46]. In the 1990s several accounts of cofibrantly generated
model categories (and their implications for the theory of localization) appeared: the
standard references were written by Hovey [88] and Hirschhorn [84]. Another very
accessible introduction to model categories from this time is the paper of Dwyer–
Spalinski [52]. Alternative references for the basic theory of model categories are
[69, 82].
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Chapter 8
Model Structures on the Category of Simplicial
Sets

In this chapter we will apply the formalism of Quillen model categories discussed in
the previous chapter to the category of simplicial sets. In his first exposition of the
theory of model categories, Quillen already showed that the category of simplicial
sets carries a model structure for which the fibrant objects are the Kan complexes
and the fibrations are the Kan fibrations (see Chapter 5 for a discussion of these
notions). We will refer to it as the Kan–Quillen model structure. Quillen defined the
weak equivalences to be the maps between simplicial sets for which the geometric
realization functor induces isomorphisms in homotopy groups. These are exactly the
weak equivalences of the model structure on topological spaces discussed in Section
7.3, and the adjoint pair of functors given by the geometric realization and the
singular complex in fact induces an equivalence between the associated homotopy
categories. In this sense, simplicial sets and topological spaces are models for the
same homotopy theory. This correspondence between simplicial sets and topological
spaces on the one hand guides the development of the theory of simplicial sets by
providing topological intuition, while on the other hand it shows that simplicial sets
form a complete combinatorial framework for the study of the homotopy theory of
spaces.

The category of simplicial sets carries another model structure, discovered much
later, for which the fibrant objects are precisely the∞-categories. This model struc-
ture, called the Joyal model structure or categorical model structure, has the same
cofibrations as the oldermodel structurementioned above, but a smaller class ofweak
equivalences. We will choose an anachronistic approach and begin this chapter with
a development of the categorical model structure, capturing the homotopy theory
of ∞-categories. Then we will construct Quillen’s model structure described above
in the same fashion, highlighting the relation between the two model structures.
Although non-standard, our approach to these model structures has the appealing
feature that it is uniform and internal to the category of simplicial sets. In particular,
the relation to topological spaces is not needed. Apart from building on the results
of Chapter 5, our treatment is completely self-contained. Perhaps more importantly,
the methods we present here can be adapted to the category of dendroidal sets, as
we will see in the next chapter.
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The contents of this chapter, then, are as follows. In the first two sections we will
construct these two model category structures for∞-categories and Kan complexes,
respectively. After a general interlude about a suitable notion of adjoint functors be-
tween model categories, we will establish the equivalence between the Kan–Quillen
model structure on simplicial sets and the one on topological spaces introduced in
the previous chapter. The proof of this equivalence is somewhat involved; it makes
use of minimal fibrations and the related fact, also established by Quillen, that the
geometric realization of a Kan fibration is a Serre fibration. We return to the cate-
gorical model structure in Section 8.7; we will use the results from Chapter 5 to give
several equivalent characterizations of the maps between ∞-categories which are
weak equivalences in the Joyal model structure. In particular, we will see that they
can be described in a categorical way, as ‘functors’ which are essentially surjective
and fully faithful in the appropriate sense. In the final section 8.8, we describe the
covariant model structure on the slice category sSets/V , for some fixed base sim-
plicial set V . This structure serves as a model for the homotopy theory of V-indexed
diagrams of simplicial sets, in a sense to be made precise in Section 14.8.

8.1 The Categorical Model Structure on Simplicial Sets

In this section we will prove that the category of simplicial sets carries a model
structure for which the cofibrations are the monomorphisms and the fibrant objects
are precisely the inner Kan complexes, i.e., the ∞-categories. (Recall from Propo-
sition 7.34 that this determines the model structure uniquely.) This model structure
is known as the categorical model structure or the Joyal model structure. The proof
of the existence of this model structure relies on the properties of inner Kan com-
plexes and inner anodyne maps already established in Chapter 5. In particular, we
will again use the small object argument which gave a factorization of an arbitrary
morphism into a monomorphism followed by a map having the right lifting property
with respect to monomorphisms. Similarly, it will provide a factorization of a map
into a trivial cofibration followed by a fibration in the sense of this model structure
about to be defined. But in order to be able to use this argument, we need to find a
set of generating trivial cofibrations of which the saturation is precisely the class of
all trivial cofibrations. Given what we have done already in Chapter 5, this will turn
out to be the main difficulty of the proof.

Let us first define the weak equivalences in the categorical model structure. We
use the functor τ : sSets→ Cat, left adjoint to the nerve, discussed in Section 2.4.

Definition 8.1 A map A→ B between simplicial sets is a categorical weak equiva-
lence if for any∞-category X , the induced map

τ(XB) → τ(XA)

is an equivalence of categories.
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Recall from 5.38 that if X is an ∞-category, then so are XB and XA, so the
description of τ applied to∞-categories discussed in Lemma 5.6 applies here.

Theorem 8.2 The category of simplicial sets carries a model structure in which the
cofibrations are precisely the monomorphisms and the weak equivalences are the
categorical weak equivalences. Its fibrant objects are precisely the∞-categories.

We will refer to the fibrations in this model structure (i.e., the maps having the
right lifting property with respect to all trivial cofibrations) as categorical fibrations.

Remark 8.3 This model structure has the property that every object is cofibrant, so
it is left proper (cf. Remark 7.42). As in any model structure, the fibrations are the
maps having the right lifting property with respect to the trivial cofibrations. Notice
that for a cofibration (i.e., monomorphism) A → B, the functor τXB → τXA is
an isofibration between categories (cf. Theorem 5.55 and Corollary 5.54), so that
A → B is a trivial cofibration if and only if, for every ∞-category X , the map
τXB → τXA is a trivial fibration between categories in the model structure of
Example (a) at the end of Section 7.1. It does not seem possible to give a more
explicit and workable description of the fibrations in the model category of the
theorem, but for fibrations between fibrant objects more can be said. We will come
back to this point in Proposition 8.16 below.

Let us now turn to the proof of Theorem 8.2. We begin with a few easy lemmas.

Lemma 8.4 (a) If X → Y is a J-homotopy equivalence between∞-categories, then
τX → τY is an equivalence of categories.

(b) In particular, if X → Y is a map between∞-categories which has the right lifting
property with respect to all monomorphisms, then τX → τY is an equivalence
of categories.

Proof (a) This is clear from the fact that τJ is the groupoid with two objects and
an isomorphism between them. Indeed, since τ preserves products, it follows that
applying τ to J-homotopic maps between ∞-categories gives naturally isomorphic
functors.

(b) If f : X → Y has the right lifting property with respect to all monomorphisms,
then it is a J-homotopy equivalence, as one sees by lifting successively in the
following two squares:

� X J × Y ∪ ∂J × X X

Y Y, J × X Y .

f

sπ2∪(s f ,idX )

fs

f π2

�
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Lemma 8.5 Any J-homotopy equivalence between simplicial sets is a categorical
equivalence.

Proof Suppose f : A � B : g are maps of simplicial sets, h : J × A → A is a
J-homotopy between g f and idA, and k : J × B → B is a J-homotopy between f g
and idB. Then for any other simplicial set X , the induced maps

g∗ : XA � XB : f ∗

are also J-homotopic. Indeed, a homotopy h∗ : J × XA → XA between f ∗g∗ and
the identity is constructed as the adjoint of the composition

J × XA × A � XA × (J × A)
id×h
−−−→ XA × A

ev
−→ X .

Another homotopy k∗ is constructed similarly. The result follows by Lemma 8.4(a).�

Corollary 8.6 Any map between simplicial sets having the right lifting property with
respect to monomorphisms is a categorical equivalence.

Proof As in the proof of Lemma 8.4(b), any map with this lifting property is in
particular a J-homotopy equivalence. �

Lemma 8.7 Any inner anodyne map between simplicial sets is a trivial cofibration.

Proof If A→ B is inner anodyne and X is an ∞-category, then XB → XA has the
right lifting property with respect to all monomorphisms by Corollary 5.39(ii), so
the conclusion follows from Lemma 8.4. �

Corollary 8.8 For X a simplicial set, the map X → ∆[0] is a categorical fibration
if and only if X is an∞-category.

Proof If the stated map has the right lifting property with respect to trivial cofi-
brations, then Lemma 8.7 implies that X is an ∞-category. Conversely, if X is an
∞-category and A→ B a trivial cofibration, then

τXB → τXA

is a trivial fibration of categories and in particular surjective on objects. Thus any
map A→ X admits an extension to B. �

Lemma 8.9 A monomorphism A→ B between∞-categories is a trivial cofibration
if and only if it is a strong J-deformation retract.

Proof The fact that a strong J-deformation retract is a categorical equivalence is
immediate from Lemma 8.5. Conversely, suppose i : A→ B is a trivial cofibration
between∞-categories. Then

i∗A = i∗ : τAB → τAA
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is a trivial fibration between categories, aswe noted inRemark 8.3, hence is surjective
on objects. So we find a map r : B→ A with ri = idA. But

i∗B = i∗ : τBB → τBA

is also a trivial fibration between categories and i∗B(idB) = i∗B(ir), so idB and ir
are isomorphic objects of τ(BB) by an isomorphism lying in the fibre of i∗B over
i. This means that there is a map h : J → BB with h0 = idB and h1 = ir , for
which i∗B ◦ h : J → BA is J-homotopic relative to the endpoints of J to the constant
map J → BA with value i (see Corollary 5.57). Write H : J × J → BA for such a
homotopy, so (not to confuse the two coordinates of J × J)

H(0,−) = i∗B ◦ h, H(1,−) = H(−, 1) = H(−, 0) = consti .

We can now modify h by picking a lift L in the diagram

V k(BB)

J × J k(BA),

G

i∗

H

where V = (J × ∂J) ∪ ({0} × J) and G(0,−) = h, G(−, 0) = idB, and G(−, 1) = ir .
Such a lift indeed exists because k(BB) → k(BA) is a Kan fibration by Theorem
5.55 and the morphism V → J is anodyne. Then l := L(1,−) is a homotopy from
idB to ir with i∗B(l) = H(1,−) = consti , meaning l is a homotopy relative to A, as
required. �

The small object argument allows us to functorially replace any simplicial set A
by an∞-category Â. To be precise, define A′ to be the pushout∐

Λk[n] A

∐
∆[n] A′,

where the coproduct ranges over all 0 < k < n and all maps Λk[n] → A. Then form
a countable sequence

A0 → A1 → A2 → · · ·

by A0 = A and An+1 = (An)
′ and let Â = lim

−−→
An be its colimit. The following

properties are clear from the construction:

Lemma 8.10 (a) The map A→ Â is inner anodyne and Â is an∞-category. More-
over, the construction of Â is functorial and preserves monomorphisms.

(b) If A is countable, then so is Â.
(c) If B ⊆ Â is countable, then there is a countable U ⊆ A such that B ⊆ Û ⊆ Â.

This leads to the following observation:
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Corollary 8.11 A monomorphism i : A → B is a categorical equivalence if and
only if it fits into a diagram

A A′

B B′

u

i j

v

where u and v are inner anodyne maps into ∞-categories A′ and B′ respectively,
and j is a strong J-deformation retract.

Proof Immediate from Lemmas 8.7, 8.9, and 8.10. �

Corollary 8.12 The class of trivial cofibrations is saturated, i.e., it is closed under
pushouts, retracts, and (possibly transfinite) composition.

Proof If A→ B is a retract ofC → D, then τXB → τXA is a retract of τXD → XC ,
so the class is clearly closed under retracts. Similarly, a transfinite composition of
trivial cofibrations

A0 → A1 → A2 → · · · → Aξ → · · ·

with colimit A gives, for any∞-category X , a tower

τXA0 ← τXA1 ← · · · ← τXAξ ← · · ·

of trivial fibrations between categories with limit τXA. Then each projection τXA→

τXAξ is again a trivial fibration (as already observed in Example (a) at the end of
Section 7.1). This proves that each Aξ → A is a trivial cofibration. Finally, consider
a pushout

A C

B D

u

in which u is a trivial cofibration. By Corollary 8.11 we can complete this into a
diagram

A C

Â C ′

B D

B̂ D′

u

where A → Â and B → B̂ are inner anodyne and û : Â → B̂ is a strong J-
deformation retract, while C ′ and D′ are constructed as pushouts of the top and
bottom faces. Then the front face is also a pushout. The mapC ′→ D′ is a pushout of
a strong deformation retract and hence itself a trivial cofibration. The maps C → C ′
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and D → D′ are pushouts of inner anodynes, therefore also trivial cofibrations. It
follows (by two-out-of-three for the weak equivalences in Cat) that C → D is also
a trivial cofibration. �

Lemma 8.13 Consider a strong deformation retract consisting of maps u : A→ B,
r : B → A with ru = idA and a homotopy h : J × B → B from ur to idB relative to
A. Then for any countable U ⊆ A and V ⊆ B, there are countable U ′ and V ′ with
U ⊆ U ′ ⊆ A and V ⊆ V ′ ⊆ B, such that U ′ = u−1(V ′), r maps V ′ into U ′, and
h restricts to a map J × V ′ → V ′. So in particular, U ′ is a strong J-deformation
retract of V ′.

Proof We will construct a sequence of countable simplicial subsets

U = U0 ⊆ U1 ⊆ U2 ⊆ · · · ⊆ A

V = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ B

u r

such that
u(Un) ⊆ Vn+1, r(Vn) ⊆ Un+1, h(J × Vn) ⊆ Vn+1.

Start with U = U0 and V = V0. Now pick V1 ⊆ B to be a countable simplicial subset
containing u(U0) and h(J ×V0). Next, letU1 = r(V1). Now repeat this withU0 andV0
replaced byUn andVn. Having done this for all n ≥ 0, letU ′ = ∪nUn andV ′ = ∪nVn.
Then u(U ′) ⊆ V ′ and r(V ′) ⊆ U ′ (and hence u−1(V ′) = U ′) and h restricts to a map
J × V ′→ V ′. �

Lemma 8.14 Let u : A → B be a trivial cofibration and let U ⊆ A and V ⊆ B be
countable simplicial subsets. Then there are countable U ′ and V ′ with U ⊆ U ′ ⊆ A
and V ⊆ V ′ ⊆ B such that U ′ = u−1(V ′) and u restricts to a trivial cofibration
U ′→ V ′.

Proof The map u : A→ B fits into a diagram

A Â

B B̂

u û

j

r

as in Corollary 8.11. By repeated application of Lemmas 8.10 and 8.13, we can now
construct two sequences of maps between countable subobjects

U = U0 ⊆ U1 ⊆ U2 ⊆ · · · ⊆ A

V = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ B

u u u

and
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U1 ⊆ U2 ⊆ · · · ⊆ Â

V1 ⊆ V2 ⊆ · · · ⊆ B̂

û r

such that the strong deformation retraction between Â and B̂ restricts to strong
deformation retracts between Un and Vn, and such that

Ûn ⊆ Un ⊆ Ûn+1, V̂n ⊆ Vn ⊆ V̂n+1.

Moreover, we can arrange that û−1(Vn) = Un and û−1(Vn) = Un as in Lemmas
8.10 and 8.13. Let U ′ = ∪nUn and V ′ = ∪Vn. Then Û ′ = ∪nÛn = ∪nUn and
V̂ ′ = ∪nV̂n = ∪nVn, so Û ′ is a strong deformation retract of V̂ ′. Thus, we have found
a diagram of subsets of the first square of this proof as follows,

U ′ Û ′

V ′ V̂ ′

u

with horizontal inner anodyne maps and the map on the right part of a strong
deformation retract. In particular U ′ → V ′ is a trivial cofibration, proving the
lemma. �

Corollary 8.15 Any trivial cofibration is the transfinite composition of pushouts of
trivial cofibrations between countable simplicial sets.

Proof Let A → B be a trivial cofibration. Identifying A with its image we may
assume that A ⊆ B and the map is the inclusion. Consider the set E of all non-
degenerate simplices in B which do not belong to A, and fix a well-ordering on E .
By induction, we will construct a sequence

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Aξ ⊆ Aξ+1 ⊆ · · ·

of subobjects of B, such that each inclusion Aξ ⊆ B is a trivial cofibration, such that
each Aξ → Aξ+1 is the pushout of a trivial cofibration between countable simplicial
sets, and such that ∪Aξ = B. Let A0 = A. If Aζ have been constructed for all ζ < ξ
and ξ is a limit ordinal, we let Aξ = ∪ζ<ξ Aζ . If ξ = ζ + 1 and Aζ = B then we are
done. If not, let b ∈ B be the first element in E which does not belong to Aζ , let
Vb ⊆ B be the simplicial subset generated by b, and let Ub = Aζ ∩ Vb . By Lemma
8.14 there are larger but still countable subsets U ′

b
⊆ Aζ and V ′

b
⊆ B such that

Aζ → B restricts to a trivial cofibration U ′
b
→ V ′

b
, and moreover V ′

b
∩ Aζ = U ′

b
.

Now define Aζ+1 as the pushout in the following square:
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U ′
b

Aζ

V ′
b

Aζ+1.

∼

Then the pushout map Aζ → Aζ+1 is again a trivial cofibration. Moreover, Aζ+1 can
be identified with the subset Aζ ∪ V ′

b
of B because V ′

b
∩ Aζ = U ′

b
. This completes

the inductive step and the proof. �

We are now ready to prove the existence of the model structure of Theorem 8.2.
The characterization of the fibrant objects will be given immediately after that.

Proof (of Theorem 8.2) Axiom (M1) is clear, as well as (M2) and (M3), which
follow directly from the corresponding facts for categories. The small object argu-
ment provides two factorizations of each map f : X → Y , once into a cofibration
u : X → Z followed by a map p : Z → Y having the right lifting property with
respect to all cofibrations, and once into a trivial cofibration v : X → W followed
by a map q : W → Z having the right lifting property with respect to all trivial
cofibrations (and thus, by definition, a fibration). Indeed, applying the small object
argument here is possible because the cofibrations form the saturation of the set of
boundary inclusions

{∂∆[n] → ∆[n] | n ≥ 0},

while the trivial cofibrations are generated by the set of those between countable
simplicial sets (Corollary 8.15). Since the map p : Z → Y above is a weak equiva-
lence by Corollary 8.6, this proves the factorization axiom (M5). It remains to check
the lifting axiom (M4). So consider a square

A X

B Y,

i f

where i is a cofibration and f is a fibration. If i is also a weak equivalence then
a lift B → X exists by definition of the fibrations. If f is a weak equivalence, the
existence of a lifting is shown by the following standard retract argument: factor f
as a cofibration u : X → Z followed by a map p : Z → Y having the right lifting
property with respect to cofibrations. Then u is a weak equivalence because f and
p are, and p has the right lifting property with respect to i. Then two liftings in the
squares

A Z X X

B Y Z Y

i p ∼

u f

p

compose to give the required lift B → X . (Alternatively, notice that the square on
the right exhibits f as a retract of p, hence the name of the argument.) This proves
the theorem. �
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We conclude this section by giving the promised characterizations of fibrant
objects and of fibrations between them.

Proposition 8.16 Let f : X → Y be an inner fibration between ∞-categories. Then
the following properties are equivalent:

(1) The map f is a fibration in the Joyal model structure.
(2) The map f has J-path lifting, i.e., it has the right lifting property with respect to
{0} → J.

(3) The functor τX → τY is an isofibration.
(4) For every monomorphism of simplicial sets A → B, the map f has the right

lifting property with respect to

(J × A) ∪ ({0} × B) → J × B.

(5) The map f has the right lifting property with respect to any strong J-deformation
retract.

Before we prove Proposition 8.16, we observe the following.

Corollary 8.17 The fibrant objects in the Joyal model structure are precisely the
∞-categories. A map X → Y between ∞-categories is a fibration if and only if it is
an inner fibration with J-path lifting.

Proof The first sentence is precisely Corollary 8.8. The second is immediate from
Proposition 8.16. �

Proof (of Proposition 8.16) The equivalence between (2) and (3) is part ofCorollary
5.54. We will show (2)⇒ (4)⇒ (5)⇒ (1)⇒ (2).

(2) ⇒ (4): The map f has the right lifting property with respect to (J × A) ∪
({0} × B) → J × B if and only if

XB → Y A ×XA XB

has the right lifting property with respect to {0} → J and for this it suffices that the
induced map on maximal Kan complexes

k(XB) → k(Y A) ×k(XA) k(XB)

has this lifting property. This is Theorem 5.56.
(4)⇒ (5): Let i : A→ B be part of a strong J-deformation retract, with retraction

r : B→ A and homotopy h : J × B→ B (rel A) between ir and idB. Given a square

A X

B Y,

i

α

f

β
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we can attempt to construct a lift by considering the map γ = αr . This might not
make the lower triangle involving β commute. As usual (by now), this can be fixed
by lifting in the diagram

(J × A) ∪ ({0} × B) X

J × B Y

απ2∪γ

f

βh

k

and replacing γ by k1.
(5)⇒ (1): We prove that f : X → Y has the right lifting property with respect

to any trivial cofibration u : A→ B. Indeed, by Corollary 8.11 the map u fits into a
square

A Â

B B̂

u

i

û

j

with i and J inner anodyne and û a strong deformation retract between∞-categories.
Now given any square as in the back of

A X

Â

B Y,

B̂

u

α

f

we can complete this into a commutative diagram as indicated because X and Y are
∞-categories and f is an inner fibration. One then finds a diagonal filling in the
right-hand face by assumption (5), which composes with B→ B̂ to give the required
lift in the back face.

(1)⇒ (2): Clearly {0} → J is a trivial cofibration; it is a J-deformation retract.
So X → Y has the right lifting property with respect to it. �

8.2 The Kan–Quillen Model Structure on Simplicial Sets

In the previous section we established a model structure on the category of simplicial
sets for which the cofibrations are the monomorphisms and the fibrant objects are
exactly the∞-categories. We defined a map A→ B to be a categorical equivalence if
for every∞-category X , the map τXB → τXA is an equivalence of categories. The



314 8 Model Structures on the Category of Simplicial Sets

proof was based on some good properties of this functor τ : sSets → Cat, as well
as the fact that every simplicial set admits an inner anodyne map into an∞-category
in a ‘size-controlled’ way.

We will not attempt to axiomatize the general pattern of this proof, but we do
point out that exactly the same proof works in several other contexts. The first of
these is very similar to the one in the previous section; we will now construct a
model structure with (again) the monomorphisms as cofibrations, but now with Kan
complexes as the fibrant objects. Thus, we adapt Definition 8.1 as follows.

Definition 8.18 A map A → B is a weak homotopy equivalence if for every Kan
complex K , the induced map τKB → τKA is an equivalence of categories.

Notice that the simplicial sets KB and KA occurring in this definition are again
Kan complexes (cf. Corollary 5.38), so that the categories τKB and τKA are in fact
groupoids (cf. Lemma 5.48). If A→ B is a monomorphism, then KB → KA is a Kan
fibration and τKB → τKA is a fibration between groupoids (cf. Corollary 5.39 and
Lemma 5.48 again). Thus, A→ B is a trivial cofibration if and only if τKB → τKA

is a trivial fibration between groupoids for every Kan complex K .
The analogue of Theorem 8.2 can now be stated as follows.

Theorem 8.19 The category of simplicial sets admits a model structure in which
the cofibrations are the monomorphisms and the weak equivalences are the weak
homotopy equivalences just defined. Its fibrations are precisely the Kan fibrations;
in particular, the fibrant objects are the Kan complexes.

We will refer to the model structure of Theorem 8.19 as the Kan–Quillen model
structure. Notice that since any Kan complex is in particular an ∞-category, ev-
ery categorical equivalence is also a weak homotopy equivalence. Thus, when we
compare the Joyal model structure to the Kan–Quillen model structure, we see that
they have the same cofibrations (and hence the same trivial fibrations), but that the
Kan–Quillen model structure has more weak equivalences and hence fewer fibrant
objects. We will come back to this pattern at the end of Section 8.3. Note also that
as in Remark 8.3, the model structure of the theorem is left proper because every
object is cofibrant. We will see later that it is in fact also right proper, unlike the
categorical model structure. Observe that the direct analogue of Theorem 8.2 would
state that the fibrations between Kan complexes in the Kan–Quillen model structure
are precisely the Kan fibrations. This is correct, but the statement of Theorem 8.19
is stronger: the fibrations between arbitrary objects are precisely the Kan fibrations.

Corollary 8.20 A map of simplicial sets is a trivial cofibration in the Kan–Quillen
model structure if and only if it is anodyne. In particular, the horn inclusions
Λk[n] → ∆[n] with 0 ≤ k ≤ n form a set of generating trivial cofibrations in this
model structure.

Proof A map is a trivial cofibration if and only if it has the left lifting property with
respect to fibrations, giving the first sentence. The second sentence follows from
Corollary 5.21. �
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Before we set to work and prove the theorem, let us point out again that in the
context of Kan complexes and Kan fibrations, we might as well replace the ‘interval’
J by themuch smaller representable simplicial set∆[1]. Indeed, for any simplicial set
A, the maps i0, i1 : A→ ∆[1] × A are anodyne (so in particular trivial cofibrations).
Hence the projection ∆[1] × A → A is a weak equivalence by two-out-of-three. In
particular, for any simplicial set A, the diagram

Aq A→ ∆[1] × A→ A

is a weak cylinder object in this model structure, so suffices to define the homotopy
relation on morphisms. Therefore, in mimicking the strategy of the previous section,
we will use ∆[1] rather than J.

We will now list the variations of the lemmas and propositions from the previ-
ous section, which can all be proved in exactly the same way and are sometimes
consequences of the statements of the previous section.

Lemma 8.21 (a) If X → Y is a∆[1]-homotopy equivalence between Kan complexes,
then τX → τY is an equivalence of groupoids.

(b) In particular, if X → Y is a map between Kan complexes having the right lifting
property with respect to all monomorphisms, then τX → τY is an equivalence
of groupoids.

The proof of this lemma is identical to that of Lemma 8.4. But in fact, since
every ∆[1]-homotopy equivalence between Kan complexes can be extended to a
J-homotopy equivalence (as a consequence of Lemma 5.22), part (a) of this lemma
is in fact a consequence of part (a) of Lemma 8.4. The same applies to (b).

Lemma 8.22 Any ∆[1]-homotopy equivalence is a weak homotopy equivalence.

Lemma 8.23 Any anodyne map is a weak homotopy equivalence.

Lemma 8.24 A monomorphism between Kan complexes is a trivial cofibration if
and only if it is a strong ∆[1]-deformation retract (and also if and only if it is a
strong J-deformation retract).

Using the small object argument as in the previous section, but now with respect
to the set of all horn inclusions (rather than just inner horn inclusions), one finds an
assignment A 7→ Â satisfying the following:

Lemma 8.25 (a) The map A → Â is anodyne and Â is a Kan complex. Moreover,
the construction of Â is functorial and preserves monomorphisms.

(b) If A is countable, then so is Â.
(c) If B ⊆ Â is countable, then there is a countable U ⊆ A such that B ⊆ Û ⊆ Â.

Remark 8.26 In the current context there is an alternative to the abstract construction
of Âused above. Kan’sEx∞-functor gives an explicit method of replacing a simplicial
set up to weak equivalence by a Kan complex. It is defined by iterating the functor
Ex, which is right adjoint to barycentric subdivision. Since we will not need its
construction, we omit further details.
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Corollary 8.27 A monomorphism i : A→ B is a weak homotopy equivalence if and
only if it fits into a diagram

A X

B Y

u

i j

v

where u and v are anodyne maps into Kan complexes X and Y respectively, and j is
a strong ∆[1]-deformation retract.

The statements of Corollary 8.12 and Lemmas 8.13 and 8.14 carry over verbatim.
Again we obtain:

Corollary 8.28 Any trivial cofibration (i.e., monomorphism which is also a weak ho-
motopy equivalence) is the transfinite composition of pushouts of trivial cofibrations
between countable simplicial sets.

The proof of Theorem 8.19, except the last statement about fibrations, now pro-
ceeds exactly as the proof of Theorem 8.2 in Section 8.1.

We now turn to a discussion of the fibrations in the Kan–Quillen model structure.
First, we state the analogue of Proposition 8.16, which can be proved in exactly the
same way.

Proposition 8.29 Let f : X → Y be an inner fibration between Kan complexes.
Then the following properties are equivalent:

(1) The map f is a fibration in the Kan–Quillen model structure.
(2) The map f has path lifting, i.e., it has the right lifting property with respect to
{0} → ∆[1].

(3) The functor τX → τY is an isofibration.
(4) For every monomorphism of simplicial sets A → B, the map f has the right

lifting property with respect to

(∆[1] × A) ∪ ({0} × B) → ∆[1] × B.

(5) The map f has the right lifting property with respect to any strong ∆[1]-
deformation retract.

In the previous section we deduced from the analogue of this proposition a char-
acterization of the categorical fibrations between ∞-categories. Here we establish
the following, which completes the proof of Theorem 8.19:

Proposition 8.30 The fibrations in the Kan–Quillen model structure are precisely
the Kan fibrations.

Proof Lemma 8.23 implies that every fibration is a Kan fibration. For the converse,
recall from Section 5.8 that every Kan fibration can be factored as a trivial fibra-
tion followed by a minimal fibration. Trivial fibrations are of course, in particular,
fibrations. Moreover, fibrations in any model structure are closed under pullback.
Therefore, by appealing to Proposition 8.29, Lemma 8.31 below completes the
proof. �
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Lemma 8.31 Any minimal fibration is the pullback of a minimal fibration between
Kan complexes.

Proof Let M → X be a minimal fibration. By Corollary 5.76, it is locally trivial.
Moreover, working with one connected component of X at a time, we may assume
that X is connected. So we can fix a minimal Kan complex F representing the fibre
of M → X .

Now consider for an arbitrary map α : Λk[n] → X from a horn the pushout

Λk[n] X

∆[n] Y .

α

It suffices to extend M → X to a minimal Kan fibration N → Y which fits into a
pullback

M N

X Y .

Indeed, we can the iterate this process (in the style of the small object argument)
and obtain a minimal fibration fitting in a pullback diagram of the form above where
X → Y is an anodyne map into a Kan complex Y . To find such an extension N → Y ,
note that since M → X is locally trivial, the pullback along α is isomorphic to a
product, as in

Λk[n] × F α∗M M

Λk[n] Λk[n] X .

�

α

Now form the pushout as on the top face of the cube

Λk[n] × F M

∆[n] × F N

Λk[n] X

∆[n] Y .

Then there is a unique map N → Y as indicated which makes the cubical diagram
commute. We claim that this map is again a minimal fibration. Indeed, for a diagram
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Λi[m] N

∆[m] Y,

γ

β

themap β either lands in X ⊆ Y or it factors through∆[n] → Y . But then the existence
of a lift∆[m] → N (and its uniqueness properties as required for a minimal fibration)
follow immediately from the fact that all three vertical maps other than N → Y are
already known to be minimal fibrations. We leave it to the reader to check that the
right-hand face of the cube is a pullback square. �

8.3 Quillen Adjunctions and Derived Functors

Now that we have presented a number of examples of model categories, it seems
a good time for a brief intermezzo on ‘morphisms’ between model categories. The
relevant notion is that of a Quillen pair of adjoint functors, briefly Quillen pair or
Quillen adjunction, which derives its importance from the fact that it induces a pair
of adjoint functors between the associated homotopy categories (Section 7.5). We
will also discuss the notion of Quillen equivalence, the latter being an appropriate
definition of ‘equivalence between homotopy theories’ which we promised in the
introduction to this chapter.

Definition 8.32 Let E and D be model categories. A Quillen adjunction or Quillen
pair between them is a pair of adjoint functors (left adjoint on the left)

f! : E D : f ∗

with the property that f! preserves cofibrations and f ∗ preserves fibrations. We will
refer to f! as a left Quillen functor and f ∗ as a right Quillen functor.

Remark 8.33 (a) Because f! and f ∗ are adjoint, there are various equivalent ways to
phrase this last condition. Indeed, f ∗ preserves fibrations if and only if f! preserves
trivial cofibrations. Dually, f! preserves cofibrations if and only f ∗ preserves trivial
fibrations.

(b) Since f ∗ preserves trivial fibrations, it follows from Brown’s lemma that it
preserves weak equivalences between fibrant objects (cf. Proposition 7.38). Dually,
f! preserves weak equivalences between cofibrant objects.

(c) If E is a cofibrantly generated model category, the classes of cofibrations and
trivial cofibrations are the saturations of sets of generating cofibrations and trivial
cofibrations, respectively. Since any left adjoint preserves the constructions involved
in the process of saturation (pushouts, colimits of sequences, retracts), it suffices to
check that f! sends generating (trivial) cofibrations in E to (trivial) cofibrations inD
in order for f! to be a left Quillen functor.
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Before constructing the adjunction between homotopy categories induced by a
Quillen pair, we will describe when a functor G : E→ D between model categories
induces a corresponding functor Ho(E) → Ho(D) between homotopy categories,
usually called a derived functor of G. Theorem 7.31 says that it is sufficient for G
to preserve weak equivalences, but in cases of practical interest this is often not the
case. We will identify convenient conditions which guarantee that a derived functor
of G exists. The most common of these is that G is part of a Quillen pair, as defined
above.

We will use the notation ηE : E → Ho(E) for the functor introduced in Section
7.5.

Definition 8.34 Let G : E → D be a functor between model categories and write
G = ηD ◦ G : E→ Ho(D).

(i) A left derived functor of G is a functor LG : Ho(E) → Ho(D) equipped with a
natural transformation

ε : LG ◦ ηE ⇒ G

which is universal in the following sense: for any H : Ho(E) → Ho(D) and any
natural transformation ν : H ◦ ηE ⇒ G, there is a unique natural transformation
µ : H ⇒ LG with ν = ε(µ ◦ ηE).

(ii) Dually, a right derived functor of G is a functor RG : Ho(E) → Ho(D) equipped
with a natural transformation

ε : G⇒ RG ◦ ηE.

which is universal in the evident sense dual to (i).

Remark 8.35 The universal properties stated in the definition above are exactly those
of Kan extensions. More precisely, a left derived functor LG is precisely a right Kan
extension of G along ηE, whereas a right derived functor is a left Kan extension of
G along ηE. In particular, left and right derived functors (if they exist) are unique
up to natural isomorphism. We will therefore often speak of the left/right derived
functor of a given G, when it exists.

Lemma 8.36 If G preserves cofibrations and trivial cofibrations between cofibrant
objects, then a left derived functor of G exists.

Proof We begin by constructing a suitable functor g : E→ Ho(D) that sends weak
equivalences to isomorphisms. For every X ∈ E, choose a cofibrant replacement

Xc X∼

qX

and define g(X) = G(Xc). For a morphism α : X → Y one finds a corresponding
αc : Xc → Yc as before, simply by lifting α ◦ qX : Xc → Y along the trivial fibration
qY . The choice of αc is unique up to left homotopy. Define g(α) = G(αc). To see that
g is a well-defined functor, it suffices to check that it sends two left homotopic maps
with domain Xc to the same morphism in Ho(D). Since G preserves cofibrations and
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weak equivalences between cofibrant objects (the latter by the dual of Proposition
7.38), it sends a weak cylinder object for Xc to a weak cylinder object for G(Xc). In
particular, it will send left homotopic maps out of Xc to left homotopic maps out of
G(Xc).

Observe that g sends weak equivalences to isomorphisms, again because G pre-
serves weak equivalences between cofibrant objects. Theorem 7.31 implies that (up
to natural isomorphism) g must then factor as a composition of functors

E
ηE
−−→ Ho(E) → Ho(D).

We will denote the second one by LG.
To complete the proof, we should supply a universal natural transformation ε

from LG ◦ ηE to G, or equivalently a natural transformation g ⇒ G. Recall that
G(X) = (G(X)c) f , for some choice of cofibrant and fibrant approximation inD. Lift
in the diagram

0 G(X)c (G(X)c) f

G(Xc) G(X)

∼

∼

G(qX )

to find a map εX : g(X) = G(Xc) → (G(X)c) f . This gives a well-defined natural
transformation after composing with ηE : E → Ho(E), since the choice of lift is
unique up to homotopy. It is straightforward to verify that ε is universal, using that
any composition of functors

E
ηE
−−→ Ho(E) → Ho(D)

sends the map qX : Xc → X to an isomorphism in Ho(D). �

Corollary 8.37 If f! : E → D is a left Quillen functor, then it admits a left derived
functor L f!. Similarly, a right Quillen functor f ∗ admits a right derived functor R f ∗.

Remark 8.38 By the proof of Lemma 8.36, the value of L f! ◦ ηE on a morphism
α : X → Y is the image of f!(αc) : F!(Xc) → f!(Yc) in Ho(D), for any choice
of cofibrant replacement αc of α. In practice one often has a functorial cofibrant
replacement Q : E → E, equipped with a natural transformation Q → idE which
is a trivial fibration when evaluated at any object of E. (Indeed, many authors even
require the existence of functorial factorizations in the axioms for a model structure,
although we, following Quillen, have not done this.) For example, factorizations
constructed using the small object argument can be made functorial. One can then
consider the functor

f! ◦Q : E→ D,

and the composite ηD◦ f!◦Q is then naturally isomorphic to L f!◦ηE. Incidentally, in
the presence of functorial factorizations the statement of Lemma 8.36 only needs that
f! sends trivial cofibrations between cofibrant objects to weak equivalences. Indeed,
it will then preserveweak equivalences between cofibrant objects by Brown’s lemma,
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so that ηD ◦ f! ◦Q is a functor sending weak equivalences to isomorphisms. Theorem
7.31 then guarantees that this composite factors through a functor defined on Ho(E),
namely the left derived functor L f!.

Remark 8.39 It sometimes happens that all objects in E are cofibrant, for example in
the Joyal and Kan–Quillen model structures on the category of simplicial sets. In that
case f! preserves weak equivalences between arbitrary objects and one can simply
take L f!(X) to be the image in Ho(D) of f!(X), i.e., one does not have to ‘derive’ f!
at all. The dual remark applies when all objects of D are fibrant. An example is the
model structure on Top we discussed in the previous chapter.

Lemma 8.40 If ( f!, f ∗) is a Quillen pair, then (L f!,R f ∗) is an adjoint pair of functors
between homotopy categories.

Proof If η : idE → f ∗ f! is the unit of the adjoint pair ( f!, f ∗), then one constructs a
unit for the pair (L f!,R f ∗) as follows. For X an object of Ho(E) (i.e., a fibrant and
cofibrant object of E), one considers

X
ηX
−−→ f ∗ f!(X)

f ∗i f!(X )
−−−−−→ f ∗( f!(X) f ),

where i f!(X) is a fibrant replacement of f!(X). Now note that the right-hand side
computes the value of R f ∗. Since the choice of i f!(X) is unique up to homotopy, this
gives a well-defined natural map in Ho(E). Similarly one constructs a counit and one
easily verifies the triangle identities. �

Remark 8.41 The unit and counit for the adjoint pair (L f!,R f ∗) are often called the
derived unit and derived counit respectively.

The following ‘recognition lemma’ for Quillen adjunctions is often useful:

Lemma 8.42 Let f! : E → D be a functor between model categories which admits
a right adjoint f ∗. If f! preserves cofibrations and f ∗ preserves fibrations between
fibrant objects, then ( f!, f ∗) is a Quillen adjunction.

This lemma follows immediately from the following statement, which we record
for future reference:

Lemma 8.43 A cofibration i : A→ B in a model category E is a trivial cofibration
if and only if it has the left lifting property with respect to fibrations between fibrant
objects.

Proof The only nontrivial direction of the statement is where we assume that i has
the stated lifting property. Choose a fibrant replacement B → Bf and factor the
composite A → B → Bf as a trivial cofibration A → Af followed by a fibration
Af → Bf to get a commutative square as follows:

A Af

B Bf .

i

∼

∼
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A lift l exists by our assumption on i. Since the horizontal maps are weak equiva-
lences, the diagram shows that the image of l in the homotopy category Ho(E) has
both a right and a left inverse. But then it must be an isomorphism in Ho(E), so that
l is a weak equivalence. By two-out-of-three it follows that every map in the square
is a weak equivalence, including i. �

Definition 8.44 A Quillen adjunction ( f!, f ∗) between model categories E and D is
a Quillen equivalence if the pair (L f!,R f ∗) is an adjoint equivalence between the
homotopy categories E and D.

Remark 8.45 The notion of Quillen equivalence is not symmetric (since it depends
on the direction of the left adjoint). Thus, we say that two model categories E andD
are Quillen equivalent if there exists a zig-zag

E→ · ← · · · → D

of left Quillen functors, each of which is part of a Quillen equivalence. More loosely,
one might say that E and D ‘model the same homotopy theory’.

We record several characterizations of Quillen equivalences:

Lemma 8.46 For a left Quillen functor f! : E→ D with right adjoint f ∗, the follow-
ing are equivalent:

(1) The pair ( f!, f ∗) is a Quillen equivalence.
(2) For any cofibrant X ∈ E there exists a fibrant replacement i f!(X) : f!(X) → f!(X) f

such that the composite X → f ∗ f!(X) → f ∗( f!(X) f ) is a weak equivalence, and
for any fibrant Y ∈ D there exists a cofibrant replacement qf ∗(Y) : f ∗(Y )c →
f ∗(Y ) such that the composite f!( f ∗(Y )c) → f! f ∗(Y ) → Y is a weak equivalence.

(3) For any cofibrant X ∈ E and fibrant Y ∈ D, any map α : f!(X) → Y is a weak
equivalence if and only if its adjoint α̂ : X → f ∗(Y ) is a weak equivalence.

Proof Condition (2) implies that the derived unit and counit are equivalences and
therefore implies (1). Conversely, (1) implies (2) when X (resp. Y ) is additionally
assumed to be fibrant (resp. cofibrant). But this is no loss of generality, since for
general X one can always choose a fibrant replacement X → Xf and consider the
following commuting square:

X f ∗( f!(X) f )

Xf f ∗( f!(Xf ) f ).

∼

The bottomhorizontalmap gives the derived unit at Xf and is thus aweak equivalence
by assumption. The map f!(X) → f!(Xf ) is a weak equivalence because f! preserves
trivial cofibrations. Since f ∗ preserves weak equivalences between fibrants, the right
vertical map in the square is a weak equivalence. Therefore all maps in the diagram
are weak equivalences. The argument for Y is similar but dual.
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Condition (3) implies that for objects X ∈ Ho(E) and Y ∈ Ho(D), any map
α : L f!(X) → Y is an isomorphism if and only if its adjoint X → R f ∗(Y ) is an
isomorphism. Unit and counit of the pair (L f!,R f ∗), being adjoint to identity maps,
are therefore isomorphisms and (L f!,R f ∗) is an adjoint equivalence. Finally, we
need to argue that (2) implies (3). So suppose X is cofibrant, Y is fibrant, and
α : f!(X) → Y is an equivalence. Choose a fibrant replacement of f!(X) and pick a
lift β in the following diagram:

f!(X) Y .

f!(X) f

∼

α

β

Then β is a weak equivalence of fibrant objects, so that f ∗(β) is a weak equivalence
as well. The map α̂ is the composition of the maps

X → f ∗ f!(X) → f ∗( f!(X) f )
f ∗(β)
−−−−→ f ∗(Y ).

The composition of the first two maps is a weak equivalence by assumption, so that
the total composition α̂ is a weak equivalence as well. The converse direction, from
α̂ to α, is proved analogously. �

Example 8.47 (a) Let i∗ : Gpd → Cat denote the inclusion of the category of
(small) groupoids into the category of (small) categories. It has both adjoints; the
right adjoint i∗ maps a small category C to its maximal subgroupoid i∗C of all
isomorphisms in C, whereas the left adjoint i! maps C to the category i!C = C[C−1]
obtained by inverting all morphisms in C. (Another way to describe this groupoid
is as the fundamental groupoid π1(BC, ob(C)) of the classifying space of C with
vertices the set ob(C) of objects of C.) Clearly i∗ preserves weak equivalences,
fibrations, and cofibrations. So both (i!, i∗) and (i∗, i∗) are Quillen pairs. In both
model categories, all objects are fibrant as well as cofibrant. Thus Ho(Gpd) has the
same objects as Gpd and natural isomorphism classes of functors as morphisms. A
similar description applies to Ho(Cat).

(b) Consider the adjoint pair of functors

| · | : sSets Top : Sing

given by geometric realization and the singular complex. We already observed that
the functor Sing maps Serre fibrations to Kan fibrations (e.g. in Example 5.15, as
well as in Section 7.2). Also, the geometric realization of any boundary inclusion
∂∆[n] → ∆[n] is a cofibration of topological spaces. Hence the functor | · | preserves
cofibrations and the adjoint pair above is a Quillen adjunction when we equip sSets
with the Kan–Quillen model structure. Every simplicial set is cofibrant and every
topological space is fibrant, so the functors | · | and Sing are ‘already derived’. In
particular, they preserve weak equivalences between arbitrary objects. Moreover, the
unit and counit maps
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A→ Sing|A| and |Sing(X)| → X

for a simplicial set A and topological space X also represent the derived unit and
counit maps. We will prove later in this chapter that these two maps are weak
equivalences. In other words, we will prove that this Quillen pair is a Quillen
equivalence (see Theorem 8.65).

(c) Consider the adjoint pair

τ : sSets Cat : N .

The nerve functor N sends fibrations of categories, i.e. isofibrations, to fibrations
in the Joyal model structure. It also preserves trivial fibrations (and in fact all weak
equivalences), so the pair above is a Quillen adjunction. All objects in Cat are
fibrant and all objects in the Joyal model structure on sSets are cofibrant, so these
two functors τ and N are already derived. Thus for a small category C and simplicial
set A, the derived unit and counit are represented by the ordinary unit and counit
maps

A→ Nτ(A) and τNC→ C.

The counit map is an isomorphism, so the full embedding N : Cat→ sSets remains
fully faithful when viewed as a functor Ho(Cat) → Ho(sSetscat), where the subscript
cat indicates the categorical (or Joyal) model structure. Also, the fact that τ is already
derived implies that it sends categorical equivalences between arbitrary simplicial
sets to equivalences of categories.

(d) Let us write the two model categories of simplicial sets we have constructed
so far as sSetscat (as above) and sSetsKQ. These have the same cofibrations, while
sSetsKQ has more weak equivalences (and consequently fewer fibrations). The iden-
tity functor on sSets is of course adjoint to itself. In order not to confuse the left and
right adjoint notationally, we write this as a pair

id! : sSetscat sSetsKQ : id∗.

It is clear that this is a Quillen pair. The functor id! is already derived (because
every object is cofibrant), but id∗ is not. For a simplicial set A, the derived unit
A → Rid∗(id! A) is represented by an anodyne map A → Â into a Kan complex
Â. For a fibrant object in sSetsKQ, i.e. for a Kan complex K , the derived counit
map Lid!Rid∗(K) → K is represented by the identity map. Thus, at the level of
homotopy categories, Ho(sSetsKQ) is a full subcategory of Ho(sSetscat) for which
the inclusion has a left adjoint. After this example we will discuss this situation a bit
more generally; it is an instance of left Bousfield localization, a concept which will
feature often in this book.

(e) Left Quillen functors between model categories can be composed. Thus, from
the previous examples one can construct the left Quillen functor

i! ◦ τ : sSetscat → Gpd,
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and several other such composites.
(f) The composed adjoint pair

sSets Cat Gpd
τ

N

i!

i∗

is in fact also a Quillen pair for the Kan–Quillen model structure on sSets (although
τ itself is not a left Quillen functor from sSetsKQ to Cat). Indeed, one way to see
this is simply to check that the nerve functor sends a fibration of groupoids to a
Kan fibration. Another way to look at it is to observe that the composed left Quillen
functor sSetscat → Gpd of example (e) above factors through sSetsKQ, as in the
following diagram of left Quillen functors:

sSetscat Cat

sSetsKQ Gpd.

id!

τ

i!

This is the case simply because the nerve of a groupoid is a Kan complex (and we do
not have to consider fibrations of groupoids). Indeed, to check that the factorization
exists, it suffices to prove that i!τ sends a weak homotopy equivalence A → B
between simplicial sets to a weak equivalence of groupoids. For each Kan complex
K , the induced map [B,K] → [A,K] is a bijection. In particular, this applies to
K = NG, for G any groupoid. By adjunction the map [τB,G] → [τA,G] is also an
isomorphism, so that the Yoneda lemma applied to the category Ho(Gpd) implies
that τA→ τB is a weak equivalence of groupoids.

(g) More generally, the same argument shows that a Quillen pair

f! : sSetscat E : f ∗

into a model category E factors through id! : sSetscat → sSetsKQ precisely when
f ∗ sends fibrant objects of E to Kan complexes. This is an instance of the general
theory of Bousfield localizations. A first discussion follows right after this example,
a more thorough treatment is given in Chapter 11.

(h) The construction of model structures via transfer always gives Quillen pairs.
More precisely, suppose E is a cofibrantly generated model category and

E A
f!

f ∗

is an adjunction which meets the conditions for transfer (see Theorem 7.44). If we
equipAwith the transferredmodel structure, then this adjoint pair becomes aQuillen
pair, essentially by construction.

(i) Any morphism ϕ : X → Y in a model category E gives a Quillen adjunction
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ϕ! : E/X E/Y : ϕ∗

between the respective slice categories. Here ϕ! is the functor that composes a
morphism A → X with ϕ and ϕ∗ is the functor that takes the pullback along ϕ. It
follows immediately from the definitions that ϕ! preserves cofibrations and trivial
cofibrations, making it a left Quillen functor. If ϕ is a trivial fibration in E, then the
pair above is in fact a Quillen equivalence. To see this, note that for a cofibrant object
A → X , the derived unit may be described by the first arrow in the top row of the
following diagram:

A X ×Y A A

X X Y .

∼

∼

ϕ

By two-out-of-three, that arrow is a weak equivalence. For a fibrant object B → Y ,
the derived counit may be computed as the top horizontal arrow in the following
square, which is a trivial fibration:

X ×Y B B

X Y .

∼

∼

ϕ

Now Brown’s Lemma 7.37 also implies that whenever ϕ is a weak equivalence be-
tween fibrant objects in E, the associated Quillen adjunction between slice categories
is a Quillen equivalence.

(j) The previous example can be sharpened a bit if E is a right proper model
category. Indeed, if ϕ : X → Y is a weak equivalence between arbitrary objects, the
adjunction

ϕ! : E/X E/Y : ϕ∗

is a Quillen equivalence. To see this, pick a cofibrant object A → X of E/X and
factor the composite map A → Y as a weak equivalence A → A′ followed by a
fibration A′→ Y . The derived unit may be described by the arrow A→ X ×Y A′ in
the following diagram:

A

X ×Y A′ A′

X Y .

∼

∼
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The top horizontal arrow is a weak equivalence by right properness, hence also the
arrow A → X ×Y A′ by two-out-of-three. For a fibrant object B → Y of E/Y , the
fact that the derived counit is a weak equivalence follows directly from the following
pullback square:

X ×Y B B

X Y .

∼

∼

ϕ

(k) The following variation on (i) will also be useful. Suppose that

f! : E F : f ∗

is a Quillen pair between model categories E and F. Let Y be an object of F. Then
the adjoint pair above induces another Quillen pair

f ! : E/ f ∗Y F/Y . : f
∗

The functor f
∗
just applies f ∗ to a morphism, whereas f !(X → f ∗Y ) forms the

composition
f!X → f! f ∗Y

ε
−→ Y .

If Y is fibrant and the original pair ( f!, f ∗) is a Quillen equivalence, then we claim
that this new pair ( f !, f

∗
) is also a Quillen equivalence. First of all, f! detects weak

equivalences between cofibrant objects, so that the same is true of f !. It follows
that the derived functor L f ! detects isomorphisms. It then suffices to check that the
derived counit

L f !R f
∗ ε
−→ idHo(F)

is an isomorphism. Indeed, the derived unit is then an isomorphism by virtue of the
commutative triangle

L f !R f
∗
L f !

L f ! L f !.

εL f !
�

L f !η

To analyse the derived counit, consider a fibration Z → Y in F and a cofibrant
replacementW

∼
−→ f ∗Z in E. Then the derived counit is described by the adjoint map

f!W → Z over Y . But at the same time this is just the derived counit of the original
adjunction ( f!, f ∗) evaluated at the fibrant object Z , hence a weak equivalence by
assumption.
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Remark 8.48 As a sort of converse to part (h) of the previous, it is possible to
recognize when a Quillen adjunction arises from transfer in the following manner.
Suppose we start with a Quillen pair f! : E � A : f ∗ between model categories. If,
ignoring that A has a model structure already, the conditions for transfer are met,
this defines a new model category Atr with the same underlying category A, and a
diagram of Quillen pairs (in which we only draw the left Quillen functors):

E A

Atr

g!

f!

idA

Here idA and its right adjoint are both the identity functor, which is left Quillen
when viewed as a functor Atr → A. The vertical functor is of course also f!, but we
have relabelled it to make the distinction in codomain. If f ∗ preserves and detects
weak equivalences and trivial fibrations (as g∗ does, by definition of transfer), then
the weak equivalences and trivial fibrations inA and inAtr coincide and hence so do
the cofibrations, being the maps having the left lifting property with respect to the
trivial fibrations. Since any two of the three classes in a model structure determine
the third, it follows that Atr is identical to A. In particular, the (trivial) cofibrations
in A are generated by the images under f! of (trivial) cofibrations in E.

We end this section with a brief discussion of left Bousfield localization, to which
we will return in more detail in Section 11.3. Let E be a model category. We will
frequently encounter the situation, already illustrated by Example 8.47(d) above,
where there is another model structure on E with the same cofibrations, but with a
larger class of weak equivalences (and hence a smaller class of fibrations). Let us
refer to this larger class of weak equivalences as the local weak equivalences and the
corresponding class of fibrations as the local fibrations. So every weak equivalence
is a local weak equivalence and every local fibration is a fibration. Write Eloc for this
second model structure on E. Then the identity functor defines a Quillen pair

id! : E Eloc : id∗.

The induced adjoint pair

Lid! : Ho(E) Ho(Eloc) : Rid∗

has the property that the counit Lid!Rid∗(E) → E is an isomorphism, for any E ∈ E.
Indeed, for a locally fibrant and cofibrant object E , we have Rid∗(E) = id∗E = E
and Lid!(E) = E as well. For a fibrant and cofibrant object E in E, the unit E →
Rid∗Lid!(E) is a fibrant replacement of E in Eloc, i.e., a local weak equivalence
E → Eloc into a locally fibrant object. In particular, the right adjoint functor Rid∗
is fully faithful, so that we can regard Ho(Eloc) as a full subcategory of Ho(E). The
left adjoint Lid! is a localization at the class of local weak equivalences in the sense
of Definition 7.30. Indeed, it sends every local weak equivalence to an isomorphism
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in Ho(Eloc). It is universal with this property as a consequence of the fact that the
derived unit is a local weak equivalence, as just discussed. We will refer to Eloc as a
left Bousfield localization of E. We will come back to this concept in more detail in
Chapter 11; for now we record some first properties.

Although Eloc has more weak equivalences than E, it is important to realize that
the weak equivalences between fibrant objects have not changed. For easy reference,
we formulate this explicitly:

Lemma 8.49 For a left Bousfield localization Eloc of E as above, every local weak
equivalence between locally fibrant objects is already a weak equivalence.

Proof By Brown’s lemma, in the form of Proposition 7.38, it suffices to show that
every trivial fibration between fibrant objects in Eloc is also a trivial fibration between
fibrant objects in E. But E and Eloc have the same cofibrations, hence the same trivial
fibrations. �

In fact, we can deduce that also the fibrations between fibrant objects do not
change:

Lemma 8.50 A map f : X → Y between locally fibrant objects is a fibration in E if
and only if it is a local fibration, i.e., a fibration in Eloc.

Proof Clearly every local fibration is in particular a fibration (since Eloc has more
trivial cofibrations than E). Conversely, assume that f is a fibration between locally
fibrant objects. Consider a lifting problem

A X

B Y

i

u

f

v

in which i is a cofibration and a local weak equivalence. Factor u as a local trivial
cofibration j : A→ A′ followed by a local fibration p : A′→ X . Then A′ is a locally
fibrant object. Push out j along i to obtain a larger diagram

A A′ X

B P Y .

i

j p

f

Now factor P → Y as a local trivial cofibration k : P → B′ followed by a local
fibration q : B′ → Y . Then B′ is also locally fibrant and composing the maps
A′→ P→ B′ gives a further diagram

A A′ X

B B′ Y .

i

j

f

q
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In this diagram, the middle vertical map is a local trivial cofibration between locally
fibrant objects. But then it is also a trivial cofibration in E, by Lemma 8.49 above.
Hence a lift in the square on the right exists. Precomposing this lift with the map
B→ B′ gives a lift in the original square. �

Recall from Example 8.47(i) above that any morphism f : X → Y in a model
category E induces a Quillen pair f! : E/X � E/Y : f ∗ and that this Quillen pair is
a Quillen equivalence whenever f is a weak equivalence between fibrant objects or
a trivial fibration between arbitrary objects. Since not every fibrant object is locally
fibrant, the following assertion is slightly stronger. It is again an easy application of
Brown’s lemma:

Proposition 8.51 Let Eloc be a left Bousfield localization of E. Then any weak
equivalence f : X → Y between fibrant objects in E induces a Quillen equivalence

f! : Eloc/X Eloc/Y : f ∗.

Proof Exactly as in Example 8.47(i) above, we can use Brown’s lemma to reduce
this to the case where f is a trivial fibration in E. But then f is also a trivial fibration
in Eloc and we are back in the situation of Example 8.47(i). �

8.4 Homotopy Groups of Simplicial Sets

Throughout this section we will work with the Kan–Quillen model structure on
simplicial sets, so that ‘weak equivalence’ and ‘fibration’ will always mean weak
homotopy equivalence and Kan fibration respectively. The aim of this section is to
prove Theorem 8.58, which states that a map of simplicial sets is a weak homotopy
equivalence if and only if it induces an isomorphism on homotopy groups (at all
possible basepoints).

A pointed simplicial set is a pair (X, x0) where X is a simplicial set and x0 ∈ X0
a vertex in X (‘the basepoint’). A morphism between pointed simplicial sets f :
(X, x0) → (Y, y0) is a map f : X → Y between simplicial sets with f (x0) = y0. We
shall often leave the basepoint implicit and delete it from the notation when it is clear
from the context. We sometimes refer to morphisms between pointed simplicial sets
as pointed maps. The category of pointed simplicial sets will be denoted sSets∗.

This category is a slice category, namely sSets∗ = ∆[0]/sSets, so it carries a
model structure induced by the Kan–Quillen model structure on sSets, with the
same weak equivalences, fibrations, and cofibrations, cf. Example (d)(ii) of Section
7.1.

In this section we will write

Sn = ∆[n]/∂∆[n]
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for the simplicial n-sphere. Its geometric realization is homeomorphic to the usual
topological n-sphere. This simplicial set Sn is naturally pointed, its basepoint being
the image of the boundary ∂∆[n] which has been collapsed to a single vertex. For
any pointed simplicial set (X, x0) we then define

πn(X, x0) = HomHo(sSets∗)(S
n, (X, x0))

to be the set of morphisms in the homotopy category of sSets∗. Thus, this set does
not change if we replace Sn and (X, x0) by weakly equivalent objects. Moreover, this
set is the set of homotopy classes in sSets∗ (the pointed homotopy classes of maps)
whenever X is a Kan complex. Explicitly, for a pointed Kan complex (X, x0) one has

πn(X, x0) = [Sn, (X, x0)]

= [(∆[n], ∂∆[n]), (X, x0)]

where the first set of brackets denotes homotopy classes of pointed maps and the
second those of maps of pairs. A pair of simplicial sets (M, A) consists of a simplicial
set M and a simplicial subset A ⊆ M . A map of pairs f : (M, A) → (N, B) is a
morphism f : M → N for which f (A) ⊆ B. We call such a morphism a weak
equivalence if both f : M → N and its restriction f : A→ B are weak equivalence
in the Kan–Quillen model structure. For greater flexibility, it is important to observe
that in the description above, we can replace the pair (∆[n], ∂∆[n]) by any weakly
equivalent pair, as expressed in the following lemma.

Lemma 8.52 Let f : (M, A) → (N, B) be a weak equivalence of pairs. Then for any
pointed Kan complex (X, x0), the map

f ∗ : [(N, B), (X, x0)] → [(M, A), (X, x0)]

defined by precomposition with f is a bijection.

Proof The easiest way to understand this lemma is to interpret f as a weak equiv-
alence between cofibrant objects in the projective model structure on the arrow
category Ar(sSets), see Example 7.47 below. The homotopy classes of maps above
are then simply sets of homomorphisms in the corresponding homotopy category.�

As a consequence of the lemma, there is also a ‘cubical’ description of the set
πn(X, x0), which we state explicitly as follows.
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Proposition 8.53 For a pointed Kan complex (X, x0), there is a natural bijection

πn(X, x0) � [(∆[1]n, ∂(∆[1]n)), (X, x0)],

where

∂(∆[1]n) =
n⋃
i=1

∆[1]i−1 × ∂∆[1] × ∆[1]n−i

is the boundary of the cube.

For n = 0, 1, the two descriptions of πn(X, x0) coincide, of course. For n > 1, the
proposition is a consequence of Lemma 8.52 together with the following observation.

Lemma 8.54 The pairs (∆[n], ∂∆[n]) and (∆[1]n, ∂(∆[1]n)) are weakly equivalent.
More precisely, there exists a zig-zag of weak equivalences

(∆[n], ∂∆[n])
∼
−→ ·

∼
←− (∆[1]n, ∂(∆[1]n)).

Remark 8.55 The geometric realizations of these two pairs are obviously home-
omorphic, so the lemma would be evident if we knew that geometric realization
detects weak equivalences. However, we are still on our way to establishing this
relation between the homotopy theories of simplicial sets and topological spaces,
so that we are forced to give the rather elaborate combinatorial proof below. The
reader is encouraged to work out some low-dimensional cases for himself using some
pictures.

Proof It will be convenient to use the notation

(M, A) ∧ (N, B) := (M × N, M × B ∪ A × N).

Then

(∆[1]n, ∂(∆[1]n)) = (∆[1], ∂∆[1]) ∧ (∆[1]n−1, ∂(∆[1]n−1))

= (∆[1], ∂∆[1]) ∧ · · · ∧ (∆[1]n, ∂(∆[1]n)),

with n factors occurring on the right. We now establish a zig-zag as in the statement
of the lemma by induction on n. For n = 0, 1 there is nothing to prove. So let us
prove for n > 1 that there is a zig-zag of weak equivalences

(∆[n], ∂∆[n])
∼
−→ ·

∼
←− (∆[1], ∂∆[1]) ∧ (∆[n − 1], ∂∆[n − 1]).

We can write ∆[1] × ∆[n − 1] =
⋃n−1

i=0 Ai where Ai ⊆ ∆[1] × ∆[n − 1] is (the image
of) the ith shuffle

αi : ∆[n] → ∆[1] × ∆[n − 1]

characterized by its effect on vertices by

αi( j) =

{
(0, j) for j ≤ i,
(1, j − 1) for j > i.
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Also write

B := ∂(∆[1] × ∆[n − 1]) = (∂∆[1] × ∆[n − 1]) ∪ (∆[1] × ∂∆[n − 1]).

For the copy Ai ⊆ ∆[1] × ∆[n − 1] of the n-simplex, we will use some notation as
for the standard n-simplex and write

∂j Ai j = 0, . . . , n

for its jth face and similarly

Λ
k Ai =

⋃
j,k

∂j Ai and ∂Ai =
⋃
j

∂j Ai .

We will also have occasion to use the notation ΛE Ai for the union of all the faces
∂j Ai except those with j ∈ E . Notice that

B ∩ A0 = Λ
1 A0,

B ∩ Ai = Λ
i,i+1 Ai, 0 < i < n − 1,

B ∩ An−1 = Λ
n−1 An−1,

and

∂i+1 Ai = ∂i+1 Ai+1,

while for i < j,

Ai ∩ Aj = ∂i+1 Ai ∩ · · · ∩ ∂j Ai

= ∂i+1 Aj ∩ · · · ∩ ∂j Aj .

Now observe that ∂An−1 ⊆ B ∪ An−2, so there are maps

(∆[n], ∂∆[n]) (∆[1] × ∆[n − 1], B ∪ An−2 ∪ An−3 ∪ · · · A0)

(∆[1] × ∆[n − 1], B).

αn−1

incl

The map αn−1 : ∆[n] → ∆[1] ×∆[n − 1] is obviously a weak homotopy equivalence
(since both domain and codomain are ∆[1]-homotopy equivalent to ∆[0]), so it now
suffices to prove that the inclusions

∂An−1
u
−→ B ∪ An−2 ∪ · · · ∪ A0

v
←− B

are both weak homotopy equivalences.
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The case of u. It follows from the identities above that

B ∪ An−2 ∪ · · · ∪ A0 = ∂An−1 ∪ An−2 ∪ · · · ∪ A0.

We show by downward induction on i (starting at i = n − 2) that each inclusion

∂An−1 → ∂An−1 ∪ An−2 ∪ · · · ∪ Ai

is a trivial cofibration. The conclusion then follows by setting i = 0. For the first step
i = n − 2, consider the pushout

∂An−1 ∩ An−2 An−2

∂An−1 ∂An−1 ∪ An−2

and observe that ∂An−1 ∩ An−2 = ∂n−1 An−1 � ∆[n − 2] is contractible. Thus, the
top horizontal map is a trivial cofibration (the codomain is contractible as well) and
hence so is the bottom one. For the induction step, consider the pushout

(∂An−1 ∪ An−2 ∪ · · · ∪ Ai+1) ∩ Ai Ai

∂An−1 ∪ An−2 ∪ · · · ∪ Ai+1 ∂An−1 ∪ An−2 ∪ · · · ∪ Ai

and observe that

(∂An−1 ∪ An−2 ∪ · · · ∪ Ai+1) ∩ Ai = ∂i+1 Ai = ∂i+1 Ai+1

is again contractible, showing that both horizontal maps in the pushout are trivial
cofibrations, as before.

The case of v.We show that each of the maps

B→ B ∪ A0 → B ∪ A0 ∪ A1 → · · · → B ∪ A0 ∪ · · · ∪ An−2

is a weak equivalence. The first is a pushout of B∩ A0 → A0 and B∩ A0 = Λ
1 A0 so

this is an anodyne map, hence a trivial cofibration. For 0 < i < n − 1, the map

B ∪ A0 ∪ · · · ∪ Ai−1 → B ∪ A0 ∪ · · · ∪ Ai

is a pushout of
(B ∪ A0 ∪ · · · ∪ Ai−1) ∩ Ai → Ai .

The object on the left can be rewritten as Λi+1 Ai , which is weakly contractible. So
the latter map is anodyne again, and hence so is its pushout. This completes the
proof. (Notice that this argument fails for i = n − 1, as it should.) �
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Let us return to the cubical description of the sets πn(X, x0) for a pointed Kan
complex (X, x0) as in Proposition 8.53. For n = 0, the set π0(X, x0) is the set of
connected components of X . This is the quotient of the set X0 of vertices of X by
the equivalence relation x ∼ y if and only if there is a 1-simplex α ∈ X1 with
α0 = d1α = x and α1 = d0α = y. For n = 1, the set π1(X, x0) is the set of morphisms
from x0 to itself in the category τX . This category is a groupoid if X is a Kan
complex and hence π1(X, x0) is a group. For n > 1, we can form the loop space
Ω(X, x0) as the pullback

Ω(X, x0) X∆[1]

∆[0] X × X = X∂∆[1].

Here the bottommap is given by the pair (x0, x0). The restriction map on the right is a
Kan fibration by Corollary 5.39, soΩ(X, x0) is a Kan complex. Now the isomorphism

πn(X, x0) = πn−1Ω(X, x0)

is immediate from the cubical description of these homotopy groups. For n > 1, the
group πn(X, x0) is abelian, as one shows exactly as in topology. Moreover, with the
cubical description of Proposition 8.53 one can mimic one proof of the long exact
sequence of a Serre fibration between topological spaces and obtain the following.

Proposition 8.56 Let p : E → B be a Kan fibration between pointed Kan complexes,
with fibre F over the basepoint of B. Then there is an induced long exact sequence
of homotopy groups

· · · → πnF → πnE → πnB
δ
−→ πn−1F → · · · .

Proof As in Section 7.2 we only describe the morphism δ and leave the remaining
details to the reader. Let [α] ∈ πnB be an element represented by α : ∆[1]n → B
mapping ∂(∆[1]n) to the basepoint b0 of B. Let

U = ∆[1] × ∂(∆[1]n−1) ∪ ({0} × ∆[1]n−1),

where of course {0} denotes the image of ∂1 : ∆[0] → ∆[1]. By Corollary 5.28 the
map U → ∆[1]n is left anodyne, so in particular a trivial cofibration. Hence we can
find a lift in

U E

∆[1]n B

e0

α

β

where e0 denotes the constant map with value the basepoint e0 in E . Then the
restriction of β to {1} × ∆[1]n−1 defines a map ∆[1]n−1 → E sending the boundary
to the basepoint, which represents δ[α]. One has to check that the map δ is well-
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defined, that it is a group homomorphism (for n ≥ 2), and that it renders the sequence
exact. All this is completely analogous to the topological case of a Serre fibration,
but is a good exercise in lifting properties of Kan fibrations for those readers less
familiar with these. �

Lemma 8.57 Let M be a minimal Kan complex and let x0 ∈ M be any basepoint. If
πnM � {0} for every n ≥ 0, then M is isomorphic to ∆[0].

Proof Since π0M = {0}, the simplicial set M is connected. But a connectedminimal
Kan complex has only one vertex, i.e., M0 = {x0}. Suppose that for a given n > 0
we have proved that Mk consists of a single element for all k < n. The set Mn is non-
empty because it contains a degenerate simplex coming from Mn−1. If x, y ∈ Mn are
two n-simplices, then they are constant (with the same value) on ∂∆[n], so represent
elements of πn(M, x0). The assumption that this homotopy group is trivial implies
that x and y are homotopic relative to the boundary ∂∆[n]. Because M is minimal,
we must have x = y. The lemma now follows by induction on n. �

We are now ready to state the main result of this section:

Theorem 8.58 Let f : X → Y be a map between simplicial sets. Then f is a
weak homotopy equivalence if and only if it induces an isomorphism πn(X, x0) →
πn(Y, f (x0)) for every basepoint x0 ∈ X0 and every n ≥ 0.

Remark 8.59 It suffices to check the condition of the theorem for one basepoint x0
in every path component of X0. Indeed, if x0 and x1 are distinct vertices connected
by a path α : ∆[1] → X , then

(X, x0) → (X, im(α)) ← (X, x1)

are weak equivalences in Ar(sSets) and one finds an isomorphism πn(X, x0) �
πn(X, x1).

Proof The ‘only if’ part of the theorem is clear from the definitions. For the converse,
first notice that we may choose a trivial cofibration Y → Y ′ with Y ′ a Kan complex,
and by factoring the resulting composite X → Y → Y ′ as a trivial cofibration
followed by a fibration we obtain a square

X Y

X ′ Y ′

f

∼ ∼

f ′

where the vertical maps are trivial cofibrations and the bottom horizontal map f ′ is a
Kan fibration between Kan complexes. Moreover, f ′ will still satisfy the hypotheses
of the theorem. Thus, it suffices to prove the theorem for f ′. Factor it as a trivial
fibration p : X ′ → Z followed by a minimal fibration q : Z → Y ′. Then p certainly
induces isomorphisms in homotopy groups and hence so does q. This reduces the
problem to proving the theorem for a minimal fibration between Kan complexes.
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From the assumption that q : π0(Z) � π0(Y ′), we find that Z → Y ′ must be
surjective on vertices. Choose any basepoint y0 ∈ Y and another one z0 ∈ Z with
q(z0) = y0. Let M be the fibre over y0. Then from the long exact sequence associated
to q we find that πn(M, z0) is trivial for all n ≥ 0. By Lemma 8.57, M is a point.
Now local triviality of q implies that for any simplex α : ∆[n] → Y in the same path
component as y0, one has a pullback square

∆[n] × M Z

∆[n] Y .

q

α

Since M � ∆[0], the vertical map on the left is an isomorphism. Since y0 and α
were arbitrary, the map q itself must be an isomorphism, so in particular a weak
homotopy equivalence. �

8.5 Geometric Realizations and Fibrations

In this short section we will prove the following important fact, first observed by
Quillen. It will be a crucial tool in the proof of the Quillen equivalence between the
category of simplicial sets (with the Kan–Quillen model structure) and the category
of topological spaces, which we will give in the next section.

Theorem 8.60 The geometric realization of a Kan fibration is a Serre fibration.

EveryKanfibration can be decomposed as a trivial fibration followed by aminimal
fibration and minimal fibrations are locally trivial. Since locally trivial fibre bundles
of topological spaces are Serre fibrations, the theorem follows from the following
two statements.

Proposition 8.61 The geometric realization of a trivial fibration between simplicial
sets is a trivial Serre fibration between topological spaces.

Proposition 8.62 The geometric realization of a minimal fibration is a locally trivial
fibre bundle.

Let us once more make explicit the two meanings of the phrase ‘locally trivial’
used above. A map f : X → Y between simplicial sets is locally trivial if for every
n-simplex α : ∆[n] → X the pullback of f along α is isomorphic to a projection, as
in

∆[n] × F X

∆[n] Y .

f

α
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On the other hand, a map between topological spaces p : A → B is locally trivial
if every point a ∈ A admits a neighbourhood U for which the restriction of p to
p−1U → U is homeomorphic over U to a projection, as in the pullback

U × p−1{a} A

U B.

p

α

Proof (of Proposition 8.61) Let f : X → Y be a trivial fibration of simplicial sets.
We claim that f is a retract of the projection Y × X → Y . Then | f | is a retract of the
projection |Y | × |X | → |Y |, because geometric realization preserves products. So in
particular, | f | will be a retract of a Serre fibration, hence itself a Serre fibration. To
prove the claim, consider the square

X X

Y × X Y .

( f ,id) f

π1

The left-hand vertical map is a monomorphism (so a cofibration), hence a lift as
indicated exists. This lift exhibits f as a retract of π1 : Y × X → Y . �

The proof of Proposition 8.62 is a bit delicate, since we have to carefully build
up open neighbourhoods and trivializations over these. Let us introduce some ter-
minology for a map p : A → B between topological spaces. A trivialization (with
fibre F) over a subset U ⊆ A is a homeomorphism over U of the form

U × F p−1U

U.
π1

α

Lemma 8.63 Let U ⊆ V ⊆ A be open subsets and let α : U × F → B and
β : V × F → B be two trivializations with fibre F. If the inclusion U → V admits
a retraction, then α extends to a trivialization over V . In other words, β can be
modified so as to agree with α on U.

Proof Consider the diagram

U × F A V × F

B
π1

α β

π1

and write θ : U → Aut(F) for the map
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θ(a)(x) = π2β
−1α(a, x),

where Aut(F) is the set of homeomorphisms of F onto itself. Then θ extends to a
map τ : V → Aut(F) sinceU → V is assumed to be a retract. Now let γ : V×F → B
be the map defined by γ(a, x) = β(a, τ(a)(x)). Then γ is the required trivialization
over V which extends α. �

For the next lemma, recall that the geometric realization |X | of a simplicial set X
is a CW-complex, whose CW-decomposition

|X |(0) ⊆ |X |(1) ⊆ |X |(2) ⊆ · · ·

corresponds to the skeletal filtration

sk0X ⊆ sk1X ⊆ sk2X ⊆ · · ·

of X , meaning
|sknX | = |X |(n).

Each point ξ ∈ |X | can be uniquely written as ξ = x ⊗ t, where x ∈ Xn is a non-
degenerate n-simplex and t ∈ ∆n is an interior point. Thus ξ ∈ |X |(n) − |X |(n−1). For
such a point ξ, the following lemma and its proof tell us how to build up specific
neighbourhoods of ξ.
Lemma 8.64 Let ξ ∈ |X | be a point in the geometric realization of a simplicial set X
and assume ξ ∈ |X |(n)−|X |(n−1). Then ξ has arbitrarily small closed neighbourhoods
V ⊆ |X | with the following properties for Vm := V ∩ |X |(m):
– Vm = � for m < n,
– Vn is homeomorphic to an n-dimensional disk,
– Vm is a deformation retract ofVm+1 form ≥ n; in particular, eachVm is contractible
for m ≥ n.

Proof To start, write ξ = x ⊗ t as above and let Vn be the image of a small closed
ball around t ∈ int(∆n) under the map x̂ : ∆n → |X |(n), which is an open embedding
on the interior of ∆n. We will extend this neighbourhood Vn to Vn+1 ⊆ |X |(n+1) as
follows. Consider a non-degenerate n + 1-simplex z ∈ Xn+1 and the corresponding
map ẑ : ∆n+1 → |X |(n+1). Then

Vn(z) := ẑ−1(Vn) ⊆ ∂∆
n+1

is a (possibly empty) disjoint union of copies of Vn, each lying on a face of ∆n+1.
Let b be the barycentre of ∆n+1 and write

Vn+1(z) = {tb + (1 − t)a | a ∈ Vn(z), 0 ≤ t ≤ ε}

for some small ε > 0 (which we can keep fixed if we are not concerned with the size
of V). Said more informally, Vn+1(z) is a union of strips, one for each component
of Vn(z), lying in the triangle whose base is that component and whose apex is the
barycentre b.
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Now let Vn+1 be the union of all the images of the Vn+1(z) where z ranges over
the non-degenerate simplices in X:

Vn+1 =
⋃
z

ẑ(Vn+1(z)) ⊆ |X |(n+1).

Then Vn+1 ∩ |X |(n) = Vn and Vn ⊆ Vn+1 obviously has the properties stated in the
lemma.We can now proceed in exactly the same way to construct the entire sequence
Vn ⊆ Vn+1 ⊆ Vn+2 ⊆ · · · and let V = ∪nVn. �

Proof (of Proposition 8.62) Let f : X → Y be a locally trivial map of simplicial
sets. By working on one connected component of Y (and hence of |Y |) at a time, we
may assume that Y is connected and we can fix a single model F for the fibre. Then
by the assumption of local triviality, for each non-degenerate m-simplex z in Y there
is a pullback square of simplicial sets

∆[m] × F X

∆[m] Y .

τz

f

z

We will slightly abuse notation and also write τz for the geometric realization of the
trivialization in the diagram above:

τz : ∆m × |F | → |X |.

Consider a point ξ ∈ |Y |, say ξ = x ⊗ t ∈ |Y |(n) − |Y |(n−1), and pick a neighbourhood
V of it as in Lemma 8.64. We will construct a trivialization of |X | → |Y | over V .
This V is the union of Vn ⊆ Vn+1 ⊆ · · · and it suffices to construct a compatible
sequence of trivializations

αm : Vm × |F | → |X |

of |X | → |Y | over each of theVm, with m ≥ n. First,Vn is the image of a small ball in
the interior of ∆n under x̂ : ∆n → |Y |(n), which is a homeomorphism onto its image,
and we can take αn to be the restriction of τx to this small ball. Next, suppose that
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αm has been constructed, defining a homeomorphism

Vm × |F | → | f |−1(Vm) ⊆ X

over Vm. Then for each non-degenerate m + 1-simplex z ∈ Y , αm restricts and pulls
back to a trivialization over Vm(z) ⊆ ∂∆m+1. We can extend this trivialization over
Vm(z) to one over Vm+1(z) by applying Lemma 8.64 (for the trivialization over Vm(z)
induced by αm and the one overVm+1(z) given by τz). Since the images of theVm+1(z)
for varying z only intersect in Vm, these together give a well-defined trivialization
over Vm+1. This completes the induction. �

8.6 The Equivalence Between Simplicial Sets and Topological
Spaces

In modern homotopy theory, the word ‘space’ is often used as a synonym for ‘sim-
plicial set’. The reason for this lies in the following theorem, which this short section
aims to prove.

Theorem 8.65 The geometric realization and singular complex functors

| · | : sSets Top : Sing

form a Quillen equivalence between the category of simplicial sets with the Kan–
Quillen model structure and the category of topological spaces with the model
structure of Section 7.3.

Thus, the theorem asserts in particular that the stated Quillen adjunction induces
an equivalence of homotopy categories

Ho(sSetsKQ) Ho(Top).

Since every simplicial set is cofibrant and every topological space is fibrant, the
functors involved are ‘already derived’, so another way to state this equivalence is to
assert that

(1) for each Kan complex K , the unit η : K → Sing(|K |) is weak homotopy
equivalence of simplicial sets; and

(2) for each topological space X , the counit |Sing(X)| → X is a weak homotopy
equivalence of topological spaces.

Now clearly, for a topological space X and a basepoint x0 ∈ X , the homotopy groups
of X coincide with the simplicial homotopy groups of Sing(X),

πn(X, x0)
�
−→ πn(Sing(X), x0).
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Thus, it follows from Theorem 8.58 that a map X → Y of topological spaces is a
weak homotopy equivalence if and only if Sing(X) → Sing(Y ) is one. One says that
the functor Sing detectsweak equivalences. As a consequence, the triangle identities

|K | Sing(|K |) Sing(X) Sing|Sing(X)|

|K | Sing(X)

|ηK |

ε|K |

ηSing(X )

Sing(εX )

imply that it now suffices to prove that the unit η : K → Sing(|K |) is a weak
homotopy equivalence for each Kan complex K . Indeed, then the second triangle
shows that for each topological space X the map Sing(εX ) is a weak equivalence as
well, so that the same is true of εX itself. The following lemma shows that η indeed
induces isomorphisms in homotopy groups for any vertex x0 of K:

πn(K, x0)
πnη
−−−→ πn(|K |, x0) � πn(Sing(|K |), x0).

Hence it completes the proof of Theorem 8.65.

Lemma 8.66 For anyKan complexK , any vertex x0 ∈ K0, and any n ≥ 0, the natural
map πn(K, x0) → πn(|K |, x0) from simplicial to topological homotopy groups (or
pointed sets if n = 0) is an isomorphism.

Proof First note that |K | is connectedwheneverK is and that |·| preserves coproducts,
so the assertion is clear for n = 0. Proceeding by induction, suppose we have proved
the lemma for m < n and all K . Consider the Kan fibration

ev = (ev0, ev1) : K∆[1] → K∂∆[1] = K × K

and write PK = P(K, x0) for the pullback

PK K∆[1]

K = ∆[0] × K K × K .

ev

x0×id

Then PK → K is a Kan fibration with fibre Ω(K, x0). Moreover, PK is itself a
contractible Kan complex because it is also the pullback of a trivial fibration

PK K∆[1]

∆[0] K .

ev0

By Theorem 8.60, |PK | → |K | is a Serre fibration with fibre |Ω(K, x0)|. Since
PK is a contractible Kan complex, |PK | is a contractible space, and the long exact
sequences of these two fibrations give isomorphisms which we can compare by the
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natural map in the lemma, as in

πn(K, x0) πn−1(Ω(K, x0))

πn(|K |, x0) πn−1(|Ω(K, x0)|).

�

�

Here we used that the map of the lemma is also compatible with the boundary δ
in the long exact sequence. Since the map on the right is an isomorphism by the
induction hypothesis, so is the map on the left. �

We conclude this section with the following consequence:

Proposition 8.67 The Kan–Quillen model structure on the category of simplicial
sets is right proper, i.e., the pullback of any weak homotopy equivalence along a
fibration is again a weak homotopy equivalence.

Proof The left adjoint of a Quillen equivalence detects weak equivalences between
cofibrant objects; since every object is cofibrant in the Kan–Quillen model structure,
the geometric realization functor detects arbitraryweak equivalences. By Proposition
2.6 it preserves pullbacks and by Theorem 8.60 it sends Kan fibrations to Serre
fibrations. The conclusion of the proposition now follows from the fact that the
model category Top is right proper, cf. Remark 7.14 or Corollary 7.41. �

8.7 Categorical Weak Equivalences Between∞-Categories

The Kan–Quillen model structure on the category of simplicial sets is in many
ways easier to work with than the Joyal model structure. For example, one has an
explicit description of the fibrations and consequently an explicit set of generating
trivial cofibrations. Moreover, the Quillen equivalence to topological spaces helps
to transfer results (and intuition!) from the homotopy theory of topological spaces
to the Kan–Quillen model structure.

In this section we will return to the Joyal model structure and describe its weak
equivalences between fibrant objects in various ways. These descriptions and their
proofs will make use of Kan complexes and of our knowledge of weak homotopy
equivalences. The main result will be the characterization (Theorem 8.74 below)
of the categorical equivalences between ∞-categories as those maps which are
essentially surjective and fully faithful, just like for ordinary categories. We begin
with the following easy consequences of previous results. For a small category C,
we write π0C for the set of isomorphism classes of objects of C. Alternatively, it is
the set of connected components of the maximal groupoid contained in C.
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Lemma 8.68 For a simplicial set A and an∞-category X , there is a natural bijection

[A, X] � π0τ(XA).

Here the left-hand side denotes the set of morphisms A → X in the homotopy
category Ho(sSetscat). In different words, it is the set of homotopy classes of maps
A→ X with respect to the categorical model structure.

Proof Observe that the maps ∂J×A→ J×A→ A exhibit J×A as a cylinder object
for A. Thus, two maps f , g : A → X are homotopic with respect to the categorical
model structure if and only if they are J-homotopic. By Theorem 5.55, this is the case
if and only if f and g are equivalent objects of the ∞-category XA. By definition,
this means that f and g are isomorphic objects of the category τ(XA). �

Proposition 8.69 For a map X → Y between∞-categories, the following properties
are equivalent:

(1) The map X → Y is a categorical equivalence.
(2) The map X → Y is a J-homotopy equivalence.
(3) For each simplicial set A, the map XA→ Y A is a categorical equivalence.
(4) For each simplicial set A, themap k(XA) → k(Y A) is weak homotopy equivalence

between Kan complexes.
(5) For each simplicial set A, the map τ(XA) → τ(Y A) is an equivalence of cate-

gories.

Proof In any model structure, the weak equivalences between fibrant-cofibrant ob-
jects are the same as the homotopy equivalences, by Proposition 7.27.Aswe observed
in the proof of Lemma 8.68 above, we may identify such homotopy equivalences
with J-homotopy equivalences, showing that (1) and (2) are equivalent. Moreover,
if X → Y is a J-homotopy equivalence, the same is true for the maps of (3) and
(4). Indeed, for (4) one observes that for a homotopy inverse Y A → XA to the map
of (3), the image of the Kan complex k(Y A) must be contained in the maximal Kan
complex k(XA). That (3) implies (5) follows from the fact that τ sends categorical
equivalences between simplicial sets to equivalences of categories, which we al-
ready observed in Example 8.47(c). Finally, if either (4) or (5) holds, then Lemma
8.68 and the Yoneda lemma imply that X → Y represents an isomorphism in the
homotopy category Ho(sSetscat). Indeed, we may identify homotopy classes of maps
A → X with isomorphism classes of objects in the category τ(XA), or connected
components of k(XA). But then X → Y is a categorical equivalence (cf. Remark
7.32). �

Lemma 8.70 Suppose that for every n ≥ 0, condition (4) of Proposition 8.69 holds
if A is the simplex ∆[n]. Then (4) holds for every simplicial set A.

Proof We can factor a general f : X → Y between∞-categories as a trivial cofibra-
tion followed by a categorical fibration. Property (4) holds for any trivial cofibration
between ∞-categories, so that without loss of generality we may assume that f is
a categorical fibration. Then k(X) → k(Y ) is in fact a trivial fibration, by applying
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condition (4) with A = ∆[0]. By a skeletal induction we will prove that (4) holds for
any simplicial set A of dimension n (meaning A = sknA), for any n ≥ 0. If A is of
dimension 0 (i.e. discrete), observe that XA → Y A is just a product of copies of f
indexed by the vertices of A. In particular, it gives a trivial fibration k(XA) → k(Y A).
For n > 0, we have a pushout∐

∂∆[n] skn−1 A

∐
∆[n] A

with the coproduct ranging over the non-degenerate n-simplices of A.Write ∂N → N
for the vertical map on the left and consider the cube

k(XA) k(XN )

k(Y A) k(Y N )

k(Xskn−1A) k(X∂N )

k(Y skn−1A) k(Y∂N )

in which the front and back faces are pullbacks. The three maps from back to front
corresponding to skn−1 A, ∂N , and N are weak homotopy equivalences; the first two
by the inductive hypothesis, the third one by assumption. Since the vertical maps are
fibrations, it follows by (the duals of) Lemma 7.51 and Corollary 7.50 that the fourth
map corresponding to A itself is also a weak homotopy equivalence, completing the
induction.

For a general simplicial set A, writing A = ∪nsknA shows that k(XA) → k(Y A) is
the inverse limit of the trivial fibrations k(XsknA) → k(Y sknA), hence itself a trivial
fibration. �

Corollary 8.71 Let f : X → Y be a map between ∞-categories. Then f is a cate-
gorical weak equivalence if and only if k(X∆[1]) → k(Y∆[1]) and k(X) → k(Y ) are
both weak homotopy equivalences of Kan complexes.

Proof Since the inclusion Sp[n] → ∆[n] of the spine of the n-simplex is inner
anodyne, the map X∆[n] → XSp[n] is a trivial fibration, and similarly for Y . Now

k(XSp[n]) = k(X∆[1]) ×k(X) k(X∆[1]) ×k(X) · · · ×k(X) k(X∆[1])

and similarly for Y . Moreover, since the two evaluation maps k(X∆[1]) → k(X)
are Kan fibrations, these pullbacks are homotopy pullbacks (cf. Lemma 7.51). So
k(X∆[n]) → k(Y∆[n]) is a weak homotopy equivalence if and only if k(XSp[n]) →
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k(YSp[n]) is a weak homotopy equivalence, which by the above description is the
case if and only if k(X∆[1]) → k(Y∆[1]) and k(X) → k(Y ) are weak homotopy
equivalences. �

Definition 8.72 (a) For an ∞-category X and two vertices x and y of X , the space
of morphisms X(x, y) from x to y is the pullback

X(x, y) X∆[1]

∆[0] X∂∆[1] = X × X .
(x,y)

(b) A map f : X → Y between ∞-categories is fully faithful if for any two
vertices x and y of X , the induced map X(x, y) → Y ( f (x), f (y)) is a weak homotopy
equivalence.

(c) Amap f : X → Y between∞-categories is essentially surjective if τ f : τX →
τY is an essentially surjective functor.

Remark 8.73 Notice that since ∂∆[1] → ∆[1] is bijective on vertices, the right-hand
square in

X(x, y) k(X∆[1]) X∆[1]

∆[0] k(X∂∆[1]) X∂∆[1]

is a pullback (since the equivalences in X∆[1] are precisely the pointwise equivalences,
see Theorem 5.55). It follows that the left-hand square is a pullback as well. Since
the middle vertical map is Kan fibration, each X(x, y) is a Kan complex. Also notice
that it easily follows from Corollary 5.57 that

(τX)(x, y) � π0X(x, y).

Theorem 8.74 A map f : X → Y between ∞-categories is a categorical weak
equivalence if and only if it is fully faithful and essentially surjective.

Proof The implication from left to right is clear from Proposition 8.69. For the other
implication, suppose f is essentially surjective and fully faithful. We will verify
the conditions of Corollary 8.71. First we will prove that k(X) → k(Y ) induces
isomorphisms in homotopy groups πnk(X) � πnk(Y ) for all n ≥ 0 and all choices of
basepoint. Since (τX)(x, y) = π0X(x, y), and similarly for Y , we find first of all that
τX → τY is an equivalence of categories. But the maximal subgroupoid of τX is
precisely τk(X), and similarly for Y , so that π0k(X) → π0k(Y ) must be a bijection.
Indeed, the set of components π0k(X) is the same as the set of components of the
groupoid τk(X), and similarly for Y . To show that πn(k(X), x) → πn(k(Y ), f (x)) is
also an isomorphism for all n ≥ 1 and x ∈ X0, observe that Ω(k(X), f (x)) ⊆ X∆[1]

consists precisely of the loops at x which are equivalences in X . In other words, the
front and back faces of the cube
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Ω(k(X), x) Ω(X, x)

Ω(k(Y ), f (x)) Ω(Y, f (x))

(τk(X))(x, x) (τX)(x, x)

(τk(Y ))( f (x), f (x)) (τY )( f (x), f (x))

� �

are pullbacks. Notice that the bottom face is a square of sets, so the horizontal inclu-
sions to the right in the top face are inclusions of a set of connected components. If
X → Y is fully faithful, thenΩ(X, x) → Ω(Y, f (x)) is a weak homotopy equivalence
and hence so isΩ(k(X), x) → Ω(k(Y ), f (x)). This proves that k(X) → k(Y ) is indeed
a weak homotopy equivalence.

It remains to be proved that k(X∆[1]) → k(Y∆[1]) is a weak homotopy equivalence
as well. The vertical arrows in the square

k(X∆[1]) k(Y∆[1])

k(X) × k(X) k(Y ) × k(Y )

are fibrations. The bottom horizontal map is a weak homotopy equivalence, as we
just saw. For any point (x, y) ∈ k(X) × k(X), the corresponding map of fibres of the
vertical maps (over (x, y) and ( f (x), f (y))) is the map

X(x, y) → Y ( f (x), f (y))

which is a weak homotopy equivalence by assumption. It follows (by the long exact
sequence of a fibration) that the top horizontal map in the square is a weak homotopy
equivalence, as desired. �

8.8 The Covariant Model Structure

Let V be a simplicial set. Then the Joyal and Kan–Quillen model structures induce
corresponding model structures on the slice category sSets/V , by defining a map

X Y

V
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of simplicial sets over V to be a fibration, cofibration, or weak equivalence precisely
if X → Y itself is one of these in the corresponding model structure on the category
sSets. With respect to the Joyal model structure, this leads to a model structure on
sSets/V in which the fibrant objects are the categorical fibrations X → V . Working
with respect to the Kan–Quillen model structure gives a model structure with fibrant
objects the Kan fibrations X → V . The purpose of this section is to discuss a
third model structure on sSets/V of which the fibrant objects are the left fibrations
X → V . This model structure generally does not arise from slicing a model structure
on the category sSets over V . The relevance of the covariant model structure will
become clear later, when we exhibit a Quillen equivalence to the homotopy theory
of ‘diagrams of spaces on V’ (see Section 14.8).

To avoid too much duplication of arguments, we postpone most proofs until
Section 9.5, where we treat the corresponding model structure for dendroidal sets.
All results of that section imply their simplicial counterparts after observing that for
a simplicial set V , the slice category dSets/i!V can be identified with the category
sSets/V . For two objects f : A→ V and g : X → V of the latter category, we define
a mapping object

homV (A, X)

as follows: it is the simplicial set whose n-simplices are maps ∆[n] × A → X for
which the diagram

∆[n] × A X

A V

g

f

commutes. In other words, homV (A, X) is the pullback

homV (A, X) XA

∆[0] V A.

−◦g

f

If X → V is a left fibration, then the simplicial set homV (A, X) is in fact a Kan
complex (cf. Remark 9.60). We will refer to the model structure of the following
theorem as the covariant model structure over V . As explained above, it is a special
case of the corresponding Theorem 9.59.

Theorem 8.75 Let V be a simplicial set. The category sSets/V carries a left proper
cofibrantly generated model structure with the following properties:

(a) The cofibrations are the monomorphisms over V .
(b) The fibrant objects are the left fibrations X → V .
(c) The fibrations between fibrant objects are the left fibrations.
(d) A map A→ B between simplicial sets over V is a weak equivalence if and only

if for any left fibration X → V , the map
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homV (B, X) → homV (A, X)

is a weak homotopy equivalence of Kan complexes.

The weak equivalences between fibrant objects in the covariant model structure
can be conveniently characterized as the fibrewise weak homotopy equivalences.
Indeed, the following is the specialization of Theorem9.63 to the context of simplicial
sets:

Theorem 8.76 Consider a map

X Y

V

f

between left fibrations X → V and Y → V of simplicial sets. Then the following are
equivalent:

(1) The map f is a weak equivalence in the covariant model structure over V .
(2) The map f is a fibrewise homotopy equivalence over V .
(3) For any map of simplicial sets A→ V , the map

homV (A, X) → homV (A,Y )

is a weak homotopy equivalence of Kan complexes.
(4) For every vertex v ∈ V0, the map Xv → Yv between fibres over v is a weak

homotopy equivalence of Kan complexes.

Although the covariant model structure on sSets/V generally need not arise as a
‘sliced’ model structure from one on the category sSets, we do note the following
special case:

Proposition 8.77 If V is a Kan complex, then the covariant model structure on
sSets/V coincides with the Kan–Quillen model structure. In other words, the fibrant
objects of the covariant model structure are the Kan fibrations X → V .

Proof Corollary 5.50 implies that a left fibration over a Kan complex X → V is in
fact a Kan fibration. �

We conclude this section by proving several useful facts about the class of left
anodyne morphisms, which play an important role in the covariant model structure.
We begin by observing that they are in particular trivial cofibrations with respect to
this model structure:

Lemma 8.78 Consider maps of simplicial sets X
i
−→ Y → V and suppose that i is

left anodyne. Then i is a trivial cofibration in the covariant model structure over V .
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Proof By Lemma 8.43 it suffices to check that i has the left lifting property with
respect to fibrations between fibrant objects. The conclusion now follows from
Theorem 8.75(c), stating that the fibrations between fibrant objects are precisely the
left fibrations. �

Conversely, left anodynes can often be recognized by virtue of the following:

Lemma 8.79 Consider maps of simplicial sets X
i
−→ Y

f
−→ V . Suppose that f is a left

fibration and i is a trivial cofibration in the covariant model structure over V . Then
i is left anodyne.

Proof Factor i as a left anodyne u : X → Z followed by a left fibration p : Z → Y .
Then p is a fibration between fibrant objects in the covariant model structure over
V , by items (b) and (c) of Theorem 8.75. Hence there exists a lift as indicated in the
following diagram:

X Z

Y Y .

i

u

p

This lift exhibits i as a retract of u, so that i is left anodyne. �

Corollary 8.80 The class of left anodyne morphisms has the right cancellation
property among monomorphisms: if A

i
−→ B

j
−→ C are monomorphisms such that i

and ji are left anodyne, then j is left anodyne as well.

Proof Lemma 8.78 implies that i and ji are trivial cofibrations in the covariant
model structure over C. By two-out-of-three for weak equivalences, j must then be
a trivial cofibration as well. When thought of as a map in sSets/C, its codomain is
the identity map of C, which is in particular fibrant in the covariant model structure
over C. Therefore Lemma 8.79 implies that j is left anodyne. �

Left anodyne morphisms often arise from ‘left deformation retracts’, as in the
following:

Lemma 8.81 Consider a monomorphism of simplicial sets i : A → B and a left
deformation retract of it, i.e., a map r : B → A with ri = idA and a homotopy
h : ∆[1] × B→ B relative to A from ir to idB. In other words, h satisfies

h|{0}×B = ir, h|{1}×B = idA, h|∆[1]×A = i ◦ πA,

with πA : ∆[1] × A→ A the projection. Then i is left anodyne.

Remark 8.82 As will be clear from the proof, the direction of the homotopy from
the map ir and to the identity idB is essential.

Proof The pushout-product of i with the inclusion {0} → ∆[1] gives a map

∆[1] × A ∪{0}×A {0} × B→ ∆[1] × B
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which is left anodyne by Lemma 6.29 (or rather just its simplicial version, which is
much easier to prove). Now the diagram

A ∆[1] × A ∪{0}×A {0} × B A

B ∆[1] × B B

i

{1}×idA πA∪r

i

{1}×idB h

exhibits i as a retract of the left anodyne map in the middle. �

A typical application of the previous lemma is the following. Recall that for a
simplicial set X and vertex x ∈ X0, we defined the slice Xx/ to be the simplicial set
whose n-simplices are the (n + 1)-simplices of X with initial vertex equal to x. This
slice has a distinguished vertex idx : ∆[0] → Xx/ corresponding to the degenerate
1-simplex at x.

Lemma 8.83 Let X be a simplicial set and x ∈ X0 a vertex. Then the inclusion
∆[0]

idx
−−→ Xx/ is left anodyne.

Proof There is a unique retraction r : Xx/ → ∆[0]. We will now define a homotopy

h : ∆[1] × Xx/ → Xx/

making ∆[0] a left deformation retract of Xx/. An n-simplex α of ∆[1]× Xx/ is a pair
(τ, f ) consisting of a map τ : ∆[n] → ∆[1] and a map f : ∆[0]?∆[n] → X mapping
the first vertex ∆[0] to x. Label that first vertex −1 and label the vertices of ∆[n] by
0, . . . , n as usual. Then define a map of simplicial sets ϕτ : ∆[0]?∆[n] → ∆[0]?∆[n]
by letting its action on vertices be as follows: ϕτ(−1) = −1 and for i ≥ 0,

ϕτ(i) =

{
−1 if τ(i) = 0
i if τ(i) = 1

.

Then h(τ, f ) = f ◦ ϕτ defines the desired homotopy. �

Historical Notes

The notions of Quillen adjunction and Quillen equivalence originate in [123], al-
though of course with different terminology. In that book it was already proved
that the categories of simplicial sets and of topological spaces both carry a model
structure, and that the geometric realization and singular complex provide a Quillen
equivalence between these. Our proof of this Quillen equivalence largely follows
[61]. The fact that the geometric realization of a Kan fibration is a Serre fibration
was proved by Quillen.
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The categorical model structure on simplicial sets was established by Joyal.
Although most of the technical results needed to establish this model structure
already occur in [92], the first published account of many aspects of the Joyal model
structure is Lurie’s book [105]. The results on equivalences between ∞-categories
of Section 8.7 and on the covariant model structure in Section 8.8 appear both in
[105] and in [90].

The Kan–Quillen model structure on simplicial sets is one of the most central
ones in the literature. Most proofs of its existence follow Quillen in using geometric
realization. Our presentation is anachronistic in that it presents the categorical model
structure first and deduces the Kan–Quillen model structure from it. Rather than
relying on Smith’s general theory of combinatorial model categories or Cisinski’s
theory of model structures on presheaf categories (as is done by Joyal and Lurie), we
build the categorical model structure by hand in a rather direct fashion. The crucial
step that replaces these general theories here is the ‘ladder argument’ appearing in
Lemma 8.14. We have chosen this direct approach in order to be self-contained
and because it applies in the context of dendroidal sets as well, as we will see in
the next chapter. Similarly, we will use this argument in our treatment of Bousfield
localization later on.
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Chapter 9
Three Model Structures on the Category of
Dendroidal Sets

In this chapter we will construct several model structures on the category of den-
droidal sets. For the different model structures, the fibrant objects and fibrations
will be the different types of dendroidal Kan complexes and dendroidal fibrations
introduced in Chapter 6. For example, we will construct the operadic model struc-
ture, for which the fibrant objects will be the ∞-operads and the fibrations between
fibrant objects will be the J-fibrations, so that this model structures describes the
homotopy theory of ∞-operads. Later, we will prove that this model structure is
Quillen equivalent to a model structure on simplicial or topological operads. It is
in this precise sense that dendroidal sets form a combinatorial model for the theory
of topological operads. The other model structures that we will construct, namely
the covariant and Picard model structures, will be shown to model E∞-spaces and
infinite loop spaces, respectively.

The construction of these dendroidal model structures extends what we did in
the previous chapter for simplicial sets in two ways. First of all, for the Joyal model
structure we used a method of proof which we will adapt to apply to dendroidal sets
as well. Secondly, under the equivalence of categories between sSets and the slice
category dSets/η, one recovers the model structures on simplicial sets presented in
the previous chapter. In particular, in this way the operadic model structure reduces
to the Joyal model structure and the Picard model structure reduces to the Kan–
Quillen one. Slicing the dendroidal covariant model structure over a simplicial set
will provide proofs of the results we only outlined for the simplicial case in Section
8.8.

We will begin the chapter with the construction of a generic model structure on
dendroidal sets defined in terms of a setA of cofibrations satisfying some conditions.
The operadic and Picard model structures will then be constructed as special cases of
this generic one in Sections 9.2 and 9.7, respectively. A full treatment of the covariant
model structure in Section 9.5 requires a relative version of the generic construction,
which we will explain in Section 9.4. Recall the functor i! embedding the category
sSets into the category dSets. Throughout this chapter we will often omit it from
our notation to avoid cluttering, simply regarding the category of simplicial sets as
a subcategory of that of dendroidal sets.
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9.1 TheA-Model Structure for Dendroidal Sets

In this section we will present a general type of model structure on the category
dSets of dendroidal sets, depending on a chosen set A of normal monomorphisms.
We will then discuss particular choices for the set A in later sections. To carry out
the necessary constructions, the set A should satisfy the following condition:

Definition 9.1 A set A of normal monomorphisms between normal dendroidal sets
is called admissible if for any morphism A → B in A and any n > 0, the pushout-
product map

∆[n] ⊗ A ∪ ∂∆[n] ⊗ B→ ∆[n] ⊗ B

also belongs to A.

Note that the pushout-product map of the definition is again a normal monomor-
phism, by Corollary 4.21. Recall that for two dendroidal sets A and X , we write
hom(A, X) for the simplicial set defined by

hom(A, X)n = dSets(∆[n] ⊗ A, X).

Definition 9.2 A dendroidal set X is called A-local if the following two conditions
are satisfied:

(1) For any normal monomorphism A→ B between dendroidal sets, the map

hom(B, X) → hom(A, X)

is a categorical fibration of simplicial sets.
(2) Moreover, it is a trivial fibration whenever A→ B belongs to A.

Notice in particular that the first condition implies that hom(B, X) is an ∞-
category for any A-local object X and any normal dendroidal set B. One can of
course express the property of beingA-local in terms of lifting properties. Using the
characterization of categorical fibrations between ∞-categories given in Corollary
8.17, the definition of beingA-local translates into the following two lemmas, which
do not require any further proof.

Lemma 9.3 A dendroidal set X isA-local if and only if it has the extension property
with respect to the following three sets of maps:

(i) The maps
Λ
k[n] ⊗ Ω[T] ∪ ∆[n] ⊗ ∂Ω[T] → ∆[n] ⊗ Ω[T],

for any tree T in Ω and any 0 < k < n.
(ii) The maps

{0} ⊗ Ω[T] ∪ J ⊗ ∂Ω[T] → J ⊗ Ω[T],

for any tree T in Ω and {0} → J the inclusion of the first vertex.



9.1 The A-Model Structure for Dendroidal Sets 355

(iii) The maps
∂∆[n] ⊗ B ∪ ∆[n] ⊗ A→ ∆[n] ⊗ B,

for any A→ B in A and n ≥ 0.

Remark 9.4 In (iii) of the lemma, it would suffice to write only the case n = 0.
Indeed, admissibility of A then guarantees that this includes all the maps described
in (iii).

WritingA for the saturation ofA and using admissibility ofA, we can reformulate
Lemma 9.3 as follows:

Lemma 9.5 A dendroidal set X isA-local if and only if it has the extension property
with respect to the following three classes of maps:

(i) The maps
M ⊗ B ∪ N ⊗ A→ N ⊗ B,

for any normalmonomorphism A→ B of dendroidal sets and any inner anodyne
map M → N of simplicial sets.

(ii) The maps
{0} ⊗ B ∪ J ⊗ A→ J ⊗ B,

for any normal monomorphism A→ B of dendroidal sets.
(iii) The maps

M ⊗ B ∪ N ⊗ A→ N ⊗ B,

for any monomorphism M → N of simplicial sets and any A → B in the
saturation A of A.

Note that all of the maps occurring in (i)–(iii) of the lemma are normal monomor-
phisms by Corollary 4.21. Recall from Section 3.7 that a normalization of a den-
droidal set A is a map p : A′ → A with the property that A′ is normal and p
is a trivial fibration (i.e., has the right lifting property with respect to all normal
monomorphisms). We extend this terminology to morphisms and refer to a commu-
tative square

A′ B′

A B

f ′

f

as a normalization of f if each of the vertical maps is a normalization. Notice that
by choosing a normalization A′ → A of A first and then factoring the composition
A′ → A → B as a normal monomorphism followed by a trivial fibration, we find
that any map f : A→ B admits a normalization, and even one in which f ′ : A′→ B′

is a normal monomorphism.
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Lemma 9.6 Normalizations are unique up to J-homotopy equivalence. More pre-
cisely,

(a) If ϕ1 : A1 → A and ϕ2 : A2 → A are normalizations of A, then there exists a
J-homotopy equivalence A1 → A2 over A.

(b) If f1 : A1 → B1 and f2 : A2 → B2 are two normalizations of a morphism
f : A→ B, then there is a diagram

A1 B1

A2 B2

which commutes up to J-homotopy, in which the vertical maps are J-homotopy
equivalences over A and over B, respectively.

Proof For (a), choose lifts k and l in the diagrams

A2 A1

A1 A A2 A,

k l

which exist by virtue of the fact that A1, A2 are normal and the vertical maps are
trivial fibrations. To see that lk is J-homotopic to the identity of A1 (fibrewise over
A), choose a lift in the diagram

∂J ⊗ A1 A1

J ⊗ A1 A.

(lk,id)

ϕ1

ϕ1◦π

Such a lift exists because the left vertical map is a normal monomorphism and ϕ1 is
a trivial fibration. The same argument applies to the composition kl.

For (b) one constructs J-homotopy equivalences kA : A1 → A2 over A and
kB : B1 → B2 over B by applying item (a). To see that the resulting square commutes
up to J-homotopy, pick a lift in the square

∂J ⊗ A1 B2

J ⊗ A1 B.

( f2kA,kB f1)

This completes the proof. �

The following definition is the crucial ingredient in defining the A-model struc-
ture.
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Definition 9.7 A morphism A→ B is an A-weak equivalence if it has a normaliza-
tion A′→ B′ with the property that for any A-local object X , the map

hom(B′, X) → hom(A′, X)

is a categorical equivalence between∞-categories.

Remark 9.8 (i) The first thing to observe is that Lemma 9.6 implies that this def-
inition is independent of the chosen normalization, because any J-homotopy, say
h : J ⊗ A→ B, induces a J-homotopy

J × hom(B, X) → hom(A, X)

by transposing the map

h∗ : hom(B, X) → hom(J ⊗ A, X) � hom(A, X)J

given by composition with h.
(ii) If the normalization A′ → B′ is chosen to be a normal monomorphism

(which, as already remarked, is always possible), then hom(B′, X) → hom(A′, X)
is a categorical fibration between∞-categories. Hence it is in fact a trivial fibration
whenever A→ B is an A-weak equivalence.

(iii) In Section 8.7 we presented various characterizations of the categorical
equivalences between ∞-categories, which of course each lead to an alternative
formulation of Definition 9.7 above. In particular, A→ B is anA-weak equivalence
if and only if for each A-local object X , the map

τhom(B′, X) → τhom(A′, X)

is an equivalence of categories, a formulation which parallels Definition 8.1. Indeed,
to check that

hom(B′, X) → hom(A′, X)

is a categorical equivalence, Proposition 8.69 guarantees that it suffices to check that
for any simplicial set S, the functor

τ(hom(B′, X)S) → τ(hom(A′, X)S)

is an equivalence of categories. This map may be identified with the map

τ(hom(B′, XS)) → τ(hom(A′, XS))

and XS is another A-local object whenever X is A-local.

We are now ready to formulate a general existence theorem for model structures
on dendroidal sets, as announced at the start of this section.
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Theorem 9.9 Let A be an admissible set of normal monomorphisms between den-
droidal sets. There exists a model structure on the category dSets in which the
cofibrations are the normal monomorphisms, the weak equivalences are theA-weak
equivalences, and the fibrant objects are precisely the A-local objects. This model
structure is left proper.

Anticipating the proof of this theorem, we will refer to a map which is both
a normal monomorphism and an A-weak equivalence as an A-trivial cofibration,
and to a map having the right lifting property with respect to all these A-trivial
cofibrations as an A-fibration.

The theorem asserts that each admissible set of monomorphisms between normal
dendroidal sets gives amodel structure. IfA ⊆ B are two such sets, then clearly every
B-local object is also A-local, and hence any A-weak equivalence is also a B-weak
equivalence. Thus, writing dSetsA for the category of dendroidal sets equipped with
the model structure given by A, and similarly for B, we obtain a Quillen pair

id! : dSetsA dSetsB : id∗,

where id! and id∗ are both the identity functor on the underlying category. The
cofibrations are the same in the two model categories. This is therefore an example
of a left Bousfield localization, as discussed at the end of Section 8.3. The induced
adjunction between homotopy categories

Lid! : Ho(dSetsA) Ho(dSetsB) : Rid∗

has the property that the counit Lid!Rid∗(X) → X is an isomorphism for each object
X . This makes Ho(dSetsB) into a reflective subcategory of Ho(dSetsA).

The proof of Theorem 9.9 follows much the same pattern as that of Theorem
8.2, although some further technicalities arise because in the category of dendroidal
sets (unlike for simplicial sets) we have to distinguish between monomorphisms
and normal monomorphisms. To avoid unnecessary notational complications and to
emphasize some analogies with the arguments of Chapter 8, we will assume that the
domains and codomains of morphisms in the admissible set A are finite dendroidal
sets (meaning they have finitelymany non-degenerate dendrices).We refer to Remark
9.31 below for an explanation of how to avoid this assumption.

Lemma 9.10 The class of A-weak equivalences satisfies the two-out-of-three prop-
erty for a composable pair of morphisms. Moreover, this class is closed under
transfinite composition.

Proof If A
f
−→ B

g
−→ C is a composable pair of morphisms, one can choose normal-

izations fitting into a commutative diagram

A′ B′ C ′

A B C.
f g
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It is then clear from the two-out-of-three property for weak equivalences between
∞-categories that if two out of f , g, and g f are A-weak equivalences, then so is the
third. For transfinite composition, let

A1 → A2 → A3 → · · ·

be a sequence of A-weak equivalences and write A∞ for the colimit. We claim that
each Ai → A∞ is again an A-weak equivalence. To see this, choose successive
normalizations as in

A′1 A′2 A′3 · · ·

A1 A2 A3 · · ·

for which each A′i → A′
i+1 is a normal monomorphism. Write A′∞ for the colimit of

the top row, which is a normalization of A∞ by the fact that a filtered colimit of trivial
fibrations is another trivial fibration. Then for any A-local object X , one obtains a
tower of trivial fibrations of∞-categories

hom(A′1, X) ← hom(A′2, X) ← · · ·

with inverse limit hom(A′∞, X). Hence each projection hom(A′∞, X) → hom(A′i, X)
is again a trivial fibration. This shows that each Ai → A∞ is anA-weak equivalence.
The same argument applies to a longer sequence indexed by an arbitrary ordinal. �

In Definition 3.34 we defined a trivial fibration of dendroidal sets to be a map
which has the right lifting property with respect to normal monomorphisms. We
warn the reader that at this point we have not yet proved that this is equivalent to
being an A-fibration and an A-weak equivalence (although this will turn out to be
the case). We will use this terminology in the following lemma:

Lemma 9.11 (i) Any J-homotopy equivalence of dendroidal sets is an A-weak
equivalence.

(ii) Suppose f : X → Y is a trivial fibration between normal dendroidal sets. Then
f is a J-homotopy equivalence.

(iii) Any trivial fibration between dendroidal sets is an A-weak equivalence.

Proof (i) Suppose f : A → B is a J-homotopy equivalence, given by a homotopy
inverse g : B → A and homotopies h : J ⊗ A→ A and k : J ⊗ B → B between the
composites g f and f g and the two identities, respectively. Choose normalizations
as in the commutative diagram

A′ B′ A′

A B A.

f ′

p

g′

q p

f g
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Then a lift in
∂J ⊗ B′ B′

J ⊗ B′ B

( f ′g′,idB′ )

q ∼

k◦(id⊗q)

and a similar one for A′ show that f ′ and g′ are part of a J-homotopy equivalence.
But then so are

hom(B′, X) → hom(A′, X) → hom(B′, X)

for any X , showing that f is a weak equivalence.
(ii) Suppose f : X → Y has the right lifting property with respect to normal

monomorphisms. If Y is normal, then a lift in the square on the left shows that f has
a section s:

� X ∂J ⊗ X ∪ J ⊗ Y X

Y Y J ⊗ X Y .

f

(s f ,id)∪sπ

f

π◦(id⊗ f )

If X is normal as well, then the monomorphism s : Y → X is necessarily normal.
The left-hand vertical map of the square on the right is the pushout-product of
∂J → J with s, hence also a normal monomorphism. A lift in that square shows
that s f is homotopic to the identity (fibrewise overY ). Here π denotes the projection
M ⊗ Z → Z , which exists for any simplicial set M and any dendroidal set Z .

(iii) Suppose f : X → Y is a trivial fibration. Let Y ′ → Y be a normalization of
Y and let X ′→ X ×Y Y ′ be one of the pullback. Then all morphisms in the diagram

X ′ X ×Y Y ′ Y ′

X Y

are trivial fibrations. In particular, this shows that X → Y has a normalization which
is a trivial fibration. The statement now follows from (i) and (ii). �

Lemma 9.12 (i) Any A-trivial cofibration between normal A-local objects is a
strong J-deformation retract.

(ii) AnyA-weak equivalence between normalA-local objects is a J-homotopy equiv-
alence.

Proof (i) Let u : A→ B be anA-trivial cofibration between normalA-local objects.
Then

hom(B, A) → hom(A, A)

is a trivial fibration of simplicial sets, hence a surjection on vertices. So we find a
retraction r : B→ A with ru = idA. Next,
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hom(B, B) → hom(A, B)

is a trivial fibration as well. A lift in

∂J hom(B, B)

J hom(A, B)

(id,ur)

constu

gives the necessary homotopy.
(ii) Any map A → C of dendroidal sets can be factored as a normal monomor-

phism followed by a trivial fibration, say as A
u
−→ B

p
−→ C. Since C is A-local, so is

B. Also, the fact that A is normal implies that B is normal. By Lemma 9.11, p is a J-
homotopy equivalence and anA-weak equivalence. Lemma 9.10 then implies that u
is also anA-weak equivalence. Then (i) implies that u is a J-homotopy equivalence.
We conclude that the composite pu is a J-homotopy equivalence as well. �

Lemma 9.13 The class of A-trivial cofibrations is saturated, i.e., it is closed under
pushouts, transfinite composition, and retracts.

Proof As in the proof of Corollary 8.12, the cases of retracts and transfinite compo-
sitions are straightforward. We focus on pushouts. Consider a pushout square

A C

B D

u v

in which u is an A-trivial cofibration. Then u is in particular a normal monomor-
phism, hence so is v. Let D′→ D be a normalization of D. Pulling back this map to
all the other objects in the square gives a cube in which the bottom face is a pushout
and all vertical faces are pullbacks:

A′ C ′

B′ D′

A C

B D.

It follows that the top face is again a pushout. Moreover, all of the vertical maps are
trivial fibrations and the objects in the top face are normal (since they admit maps
to D′). Hence every vertical map is a normalization. Upon mapping into a A-local
object X , the top face gives a pullback diagram
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hom(D′, X) hom(B′, X)

hom(C ′, X) hom(A′, X)

in which the right-hand vertical map is a trivial fibration of simplicial sets by
assumption. But then so is the left-hand vertical map, showing that v is an A-weak
equivalence. �

In exactly the same way, one proves the following lemma.

Lemma 9.14 The pushout of anA-weak equivalence along a normalmonomorphism
is again an A-weak equivalence.

Proof Consider a pushout square as in the previous proof, but now with a normal
monomorphism A→ B and an A-weak equivalence A→ C. Construct normaliza-
tions in the same way, resulting in the final pullback square of that proof, now with
the property that the map hom(C ′, X) → hom(A′, X) is a weak equivalence between
∞-categories and hom(B′, X) → hom(A′, X) is a categorical fibration. It follows
from Proposition 7.40 that hom(D′, X) → hom(B′, X) is again a weak equivalence
between∞-categories. We conclude that B→ D is an A-weak equivalence. �

Lemma 9.15 The classes (i)–(iii) listed in Lemmas 9.3 and 9.5 consist of A-trivial
cofibrations.

Proof We will prove that each of the maps in Lemma 9.5 is an A-trivial cofibration
under the assumption that all the objects involved are normal (so that there is no
need for normalization). This will in particular include the maps of Lemma 9.3.
But since the classes of maps occurring in Lemma 9.5 are in the saturations of the
corresponding classes of Lemma 9.3, this will also imply the general case.

If U → V is one of the maps in Lemma 9.5, with U and V normal, we need to
prove for anyA-local object X that hom(V, X) → hom(U, X) is a trivial fibration of
simplicial sets. In other words, it suffices to prove that it has the right lifting property
with respect to each monomorphism K → L of simplicial sets or, equivalently, that
the pushout-product map

L ⊗ U ∪ K ⊗ V → L ⊗ V

is again in one of the classes (i)–(iii) of Lemma 9.5. This follows from the symmetry
and partial (!) associativity properties of the tensor product. Indeed, if L and M are
simplicial sets and A is a dendroidal set, then

L ⊗ (M ⊗ A) � M ⊗ (L ⊗ A),

as discussed in Section 4.4. This implies that for U → V in each of the classes
(i)–(iii), the pushout-product map above is in the same class. For example, if U → V
is of the form M ⊗ B ∪ N ⊗ A→ N ⊗ B, then the relevant pushout-product map is
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M ⊗ (L ⊗ B) ∪ N ⊗ (L ⊗ A ∪ K ⊗ B) → N ⊗ (L ⊗ B),

which is of the same form, but with B replaced by L ⊗ B and A replaced by
L ⊗ A ∪ K ⊗ B. The other two cases are similar. For (iii) one uses admissibility of
A. �

Definition 9.16 A map of dendroidal sets is A-anodyne if it lies in the saturation of
the classes (i)–(iii) of Lemma 9.5 (or equivalently of Lemma 9.3).

With this definition we can rephrase (the proof of) Lemma 9.15 by saying that if
U → V is A-anodyne, then so is the pushout-product

L ⊗ U ∪ K ⊗ V → L ⊗ V

for any monomorphism K → L of simplicial sets. Also, Lemmas 9.13 and 9.15
together show that any A-anodyne map is an A-weak equivalence.

We now wish to prove that any A-trivial cofibration lies in the saturation of the
set of A-trivial cofibrations between countable dendroidal sets, in the case where
A consists of morphisms between finite dendroidal sets, as we will assume from
now on. (See Remark 9.31 for the general case.) The proof is mostly analogous to
the one for simplicial sets in Chapter 8, leading via Lemmas 8.10, 8.13, and 8.14
to Corollary 8.15 there. However, the need for normalizations makes the argument
here a little more involved.

We use the small object argument with respect to the maps of Lemma 9.3 to
produce, for any dendroidal set A, a map

A→ Â

which is A-anodyne and such that Â is A-local. This assignment is functorial and
has the following properties, which are clear from the construction:

Lemma 9.17 (a) The functor A 7→ Â preserves normal monomorphisms.
(b) If A is countable, then so is Â. If B ⊆ Â is countable, then there exists a countable

U ⊆ A such that B ⊆ Û ⊆ Â and Û ∩ A = U.

Corollary 9.18 A normal monomorphism i : A → B between normal dendroidal
sets is an A-weak equivalence if and only if it fits into a diagram

A A′

B B′

u

i j

v

where u and v areA-anodyne maps intoA-local objects A′ and B′ respectively, and
j is a strong J-deformation retract.

Proof Since A-anodyne maps and J-homotopy equivalences are A-weak equiva-
lences, a diagram as in the corollary will show that i is an A-weak equivalence. For
the converse, suppose i is an A-weak equivalence. Consider the following diagram,
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in which the square is a pushout:

A Â

B P

P̂.

i

The map Â → P is an A-trivial cofibration by Lemma 9.13. Since P → P̂ is A-
anodyne, the composite Â→ P̂ is an A-trivial cofibration between normal A-local
objects. Lemma 9.12 then guarantees that it is a strong J-deformation retract. �

The statement of the following lemma and its proof are the same as for simplicial
sets, cf. Lemma 8.13.

Lemma 9.19 Consider a strong deformation retract of dendroidal sets consisting of
maps u : A→ B, r : B→ A with ru = idA and a homotopy h : J × B→ B from ur
to idB relative to A. Then for any countable U ⊆ A and V ⊆ B, there are countable
U ′ and V ′ with U ⊆ U ′ ⊆ A and V ⊆ V ′ ⊆ B, such that U ′ = u−1(V ′), r maps
V ′ into U ′, and h restricts to a map J × V ′ → V ′. So in particular, U ′ is a strong
J-deformation retract of V ′.

Lemma 9.20 Each dendroidal set X admits a normalization X ′→ X with countable
fibres. In particular, if X is countable then we may take X ′ countable as well.

Proof Upon inspection of the small object argument, one sees that it suffices to prove
that if p : X → Y is a map with countable fibres, then so is the map p′ : X ′ → Y
obtained as the pushout ∐

i ∂Ω[T] X

∐
i Ω[T] X ′

Y,

b

p
a′

a

p′

where i ranges over all commutative squares

∂Ω[T] X

Ω[T] Y,

bi

p

ai



9.1 The A-Model Structure for Dendroidal Sets 365

while a = {ai} and b = {bi}. Let y : Ω[S] → Y represent a non-degenerate
element of Y (S). It suffices to show that there are only countably many ‘new’ non-
degenerate elements x ∈ X ′(S) with p′(x) = y, new in the sense of not belonging to
X(S) ⊆ X ′(S). Any such x must arise as a composition

Ω[S]
ϕ
−→ Ω[T]

a′i
−−→ X ′

for some i. Since x is assumed non-degenerate as well as new, the morphism ϕ must
be injective as well as surjective (respectively), hence an isomorphism. Since Aut(T)
is finite, it thus suffices to count the x’s for which ϕ is the identity. But then ai = y

and for a given y there are only countable many bi which fit into a commutative
square

∂Ω[T] X

Ω[T] Y,

bi

y

showing there are only countable many of the x’s we were trying to count. �

Remark 9.21 There is a more appealing construction of a normalization with count-
able fibres, namely the projection X × w∗P→ X , where P is the simplicial Barratt–
Eccles operad with P(n) = EΣn (cf. Section 2.7.6). Indeed, the map w∗P → 1 is
a trivial fibration of dendroidal sets. Although easily shown by hand, this will also
become clear when we discuss the fact that w∗ is a right Quillen functor with respect
to a suitable model structure on the category of simplicial operads (cf. Section 14.6).

Lemma 9.22 Let u : A→ B be anA-trivial cofibration between dendroidal sets and
let U ⊆ A and V ⊆ B be countable dendroidal subsets. Then there are countable U ′

and V ′ with U ⊆ U ′ ⊆ A and V ⊆ V ′ ⊆ B such that U ′ = u−1(V ′) and u restricts to
an A-trivial cofibration U ′→ V ′.

Proof First of all, if u : A→ B is a map between normal dendroidal sets, the proof
is exactly the same as that of Lemma 8.14, now using Corollary 9.18, Lemma 9.17,
and Lemma 9.19. Let us explain how to reduce the general case to the case where
A and B are normal. Consider a map u : A → B as in the statement of the lemma.
Let q : B′ → B be a normalization with countable fibres (as in Lemma 9.20) and
construct the pullback

A′ B′

A B.

u′

p q

u

Then p is a normalization of A with countable fibres. Now take U ⊆ A and V ⊆ B as
in the lemma. Set U ′ = p−1U and V ′ = q−1V . Then U ′ and V ′ are again countable.
By the case of A and B normal, there are countable U ′ ⊆ U ′1 and V ′ ⊆ V ′1 such that
u′ : A′ → B′ restricts to an A-weak equivalence U ′1 → V ′1 and (u′)−1V ′1 = U ′1. Let
U1 = p(U ′1) and V1 = q(V ′1 ). Then u−1V1 = U1. Now repeat the argument with U and
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V replaced by U1 and V1. Continuing in this way, we build a ladder of dendroidal
sets

U U1 U2 · · · A

V V1 V2 · · · B

for which the normalizations, obtained by restricting q : B′→ B, interpolateA-weak
equivalences U ′i → V ′i as in

U ′ U ′1 p−1U1 U ′2 p−1U2 · · · A′

V ′ V ′1 q−1V1 V ′2 q−1V2 · · · B′

Then lim
−−→i

p−1Ui → lim
−−→i

q−1Vi is a normalization of lim
−−→i

Ui → lim
−−→i

Vi . It is an
A-weak equivalence because it coincides with lim

−−→i
U ′i → lim

−−→i
V ′i and each U ′i → V ′i

is an A-trivial cofibration. This proves the lemma. �

Corollary 9.23 Any A-trivial cofibration is a transfinite composition of pushouts of
A-trivial cofibrations between countable dendroidal sets.

Proof The proof is the same as that of Corollary 8.15, with an appeal to Lemma
8.14 replaced by one to Lemma 9.22. �

With all these preparations out of the way, we are now ready to prove Theorem 9.9
stated in the beginning of this section. As mentioned earlier, we restrict our attention
to the case where the domains of the morphisms in A are finite dendroidal sets.
Although the general case can be proved in exactly the same way, all our examples
satisfy this assumption. See also Remark 9.31 below.

Proof (of Theorem 9.9) The proof follows the same pattern as that of Theorem 8.2.
Axiom (M1) (existence of limits and colimits) is clear and axiom (M2) (two-out-
of-three) was verified in Lemma 9.10. Axiom (M3) (retracts) is clear from the fact
that if A is a retract of B then it has a normalization A′ → A which is a retract of a
normalization of B′, as in the diagram

A′ B′ A′

A B A,

in which the square on the right is a pullback. For the factorization axiom (M5), note
that the small object argument provides the following two factorizations of a mor-
phism f : X → Y . The first one as X

i
−→ Z

p
−→ Y where i is a normal monomorphism

while p has the right lifting property with respect to all normal monomorphisms,
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the second as X
j
−→ W

q
−→ Y where j is an A-trivial cofibration and q has the right

lifting property with respect to all A-trivial cofibrations between countable objects,
and hence by Corollary 9.23 with respect to all A-trivial cofibrations. In these fac-
torizations, q is an A-fibration by definition and p is a fibration as well as a weak
equivalence by Lemma 9.11. This proves that (M5) holds. Finally, for the lifting
axiom (M4), consider a square

A X

B Y

j f

in which j is a cofibration (i.e., a normal monomorphism) and f is a fibration. If
j is also an A-weak equivalence, then a lift exists by definition of the A-fibrations.
If f is also an A-weak equivalence, one factors f as f = pi with p a trivial
fibration and i an A-trivial cofibration and uses the same retract argument we have
already applied several times, for example at the end of the proof of Theorem 8.2,
to see that f is a retract of p. Hence f has the right lifting property with respect to
normal monomorphisms. The fact that theA-model structure is left proper is Lemma
9.14. We will characterize the A-fibrant objects (and A-fibrations between them) in
Proposition 9.25 below. �

To characterize the A-fibrant objects, we will need the following preliminary
observation.

Lemma 9.24 Amap X → Y of dendroidal sets is a fibration in theA-model structure
if and only if it has the right lifting property with respect to all trivial cofibrations
between normal objects.

Proof Let e : E → 1 be a normalization of the terminal object in dendroidal sets.
Then for any X , the map E × X → X is a trivial fibration. So a map X → Y is anA-
weak equivalence if and only if E×X → E×Y is. Moreover, since any representable
object Ω[T] is normal, it admits a map to E . So X → Y has the right lifting property
with respect to a boundary inclusion ∂T → T if and only if E × X → E × Y has.
Thus in the Quillen pair

e! : dSets/E dSets : e∗,

where e∗ is the productwithE , the functor e∗ preserves and detectsweak equivalences
and trivial fibrations. Remark 8.48 then implies that the model structure on dSets
agrees with the model structure transferred along this adjunction from the slice
category dSets/E . In particular, a map f of dendroidal sets is a fibration if and only
if e∗ f is a fibration. The lemma follows, because the normal objects are precisely
the objects admitting a map to E . �

Proposition 9.25 Let f : X → Y be a map betweenA-local objects. Then f is anA-
fibration if and only if it has the right lifting property with respect to all A-anodyne
maps.
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Before we prove the proposition, we observe the following.

Corollary 9.26 The fibrant objects in the A-model structure are precisely the A-
local objects.

Proof Any fibrant object is A-local by Lemma 9.15. Conversely, if X is A-local,
Proposition 9.25 guarantees that the map X → 1 to the terminal object is an A-
fibration. �

Proof (of Proposition 9.25) Any fibration has the right lifting property with respect
to A-anodynes by Lemma 9.15. For the converse, let p : X → Y be a map between
A-local objects having the right lifting property with respect to A-anodyne maps.
Consider a lifting problem of the form

A X

B Y,

i

f

p

g

where i is an A-trivial cofibration. By Lemma 9.24 above it suffices to consider the
case where A and B are normal objects. Then as in Corollary 9.18 we may form a
square

A A′

B B′,

i

u

j

v

where u and v are A-anodyne and j is part of a strong deformation retract between
normal A-local objects, with retraction r : B′→ A′ and homotopy h : J ⊗ B′→ B′

between jr and idB′ . Now first extend g to a map g′ : B′ → Y , which is possible
since v is A-anodyne, and next lift f to f ′ as in

A X

A′ B′ Y

u

f

p
f ′

j g′

using the assumption on p. Then k = f ′r : B′ → X is a map with k j = f ′r j = f ′,
but it is not quite a lift in

A′ X

B′ Y

j

f

p

g′

because pk = p f ′r = g′ jr is only homotopic to g′ (relative to A′). To fix this, choose
a lift in
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{0} ⊗ B′ ∪ J ⊗ A′ X

J ⊗ B′ B′ Y

k∪ f ′π2

p

h

l

g′

using that the left-hand vertical map is A-anodyne. Then l1 : B′ → Y has l1 j = f ′

and pl1 = g′h1 = g′, so l1v : B→ X is the required lift in the original lifting problem.
Indeed, l1vi = l1 ju = f ′u = f and pl1v = g′v = g. This proves the proposition. �

Proposition 9.25 also gives the following useful criterion for recognizing left
Quillen functors out of the A-model structure:

Lemma 9.27 Suppose E is a model category and f! : dSets → E is a left adjoint
functor. If f! preserves cofibrations and sends every A-anodyne map to a trivial
cofibration in E, then f! is left Quillen.

Proof By Lemma 8.42 it suffices to check that the right adjoint f ∗ preserves fibra-
tions between fibrant objects. The assumption of the lemma guarantees that f ∗ sends
every fibration to a map having the right lifting property with respect toA-anodynes;
the desired conclusion then follows from Proposition 9.25. �

Another useful consequence of Proposition 9.25 is that the A-model structure on
the category of dendroidal sets is compatible with the Joyal model structure on the
category of simplicial sets, in the sense of Proposition 9.28 below. Roughly speaking,
it says that theA-model is ‘enriched’ over the Joyal model structure; this statement is
imprecise though, because the simplicial mapping objects hom(−,−) do not provide
an actual enrichment ofdSets over sSets because of the subtle associativity properties
of the tensor product of dendroidal sets.

Proposition 9.28 For a monomorphism i : M → N of simplicial sets and a normal
monomorphism of dendroidal sets j : A→ B, the pushout-product

N ⊗ A ∪ M ⊗ B→ N ⊗ B

is a normal monomorphism, which is moreover an A-weak equivalence whenever i
is a categorical equivalence or j is an A-weak equivalence.

Dually, if p : X → Y is an A-fibration, then the induced map

hom(B, X) → hom(B,Y ) ×hom(A,Y) hom(A, X)

is a categorical fibration of simplicial sets, which is a trivial fibration whenever j or
p is an A-weak equivalence.

The proof of the proposition depends on the following, which is an easy conse-
quence of the definition of A-anodynes:
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Lemma 9.29 For i and j (normal)monomorphisms as in the statement of Proposition
9.28, the pushout-product

N ⊗ A ∪ M ⊗ B→ N ⊗ B

is A-anodyne whenever one of the following three conditions is satisfied:

(1) The map j is A-anodyne.
(2) The map i is inner anodyne.
(3) The map i is the inclusion {0} → J.

Proof We covered case (1) in the proof of Lemma 9.15 (cf. the remarks immediately
after Definition 9.16). The argument for the other two cases is entirely analogous,
simply rewriting the relevant pushout-products in one of the forms (i)–(iii) of Lemma
9.5. �

Corollary 9.30 If p : X → Y is a map of dendroidal sets which has the right lifting
property with respect to A-anodynes and j : A → B is a normal monomorphism
between dendroidal sets, then the map

hom(B, X) → hom(B,Y ) ×hom(A,Y) hom(A, X)

is an inner fibration with J-path lifting. If X and Y are A-local and j is an A-weak
equivalence, then this map is even a trivial fibration.

Proof Everything but the last sentence follows by adjunction from cases (2) and (3)
of Lemma 9.29. For the last part, consider the diagram

hom(B, X) hom(B,Y ) ×hom(A,Y) hom(A, X)

hom(A, X).

The slanted map is a categorical equivalence by definition of the A-weak equiva-
lences. The vertical map is a pullback of the trivial fibration hom(B,Y ) → hom(A,Y )
and hence itself a trivial fibration. By two-out-of-three it follows that the horizontal
map is a categorical equivalence between∞-categories. Since we already know that
it is a categorical fibration, it must therefore be a trivial fibration. �

Proof (of Proposition 9.28) The second half follows from the first by the adjunction
between − ⊗ A and hom(A,−). For the pushout-product, we have already proved
(and used many times) that the map is a normal monomorphism (cf. Proposition
4.21). Now suppose that i is also a categorical equivalence or j is also an A-weak
equivalence. To show that the pushout-product is an A-trivial cofibration, it suffices
to check that it has the left lifting property with respect to A-fibrations between
A-fibrant objects by virtue of Lemma 8.43. By Proposition 9.25, such fibrations are
precisely the maps between A-local objects with the right lifting property against
A-anodyne maps. Let p : X → Y be such a map and consider the lifting problem
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N ⊗ A ∪ M ⊗ B X

N ⊗ B Y .

p

By adjunction, it is equivalent to a lifting problem

M hom(B, X)

N hom(B,Y ) ×hom(A,Y) hom(A, X).

i

The right-hand map is a categorical fibration between ∞-categories by Corollary
9.30. Hence a lift exists whenever i is a categorical trivial cofibration. On the other
hand, if j : A → B is an A-weak equivalence, then the right-hand map is a trivial
fibration (again by Corollary 9.30) and therefore a lift exists in that case as well. �

Remark 9.31 We have constructed a model structure associated with an admissible
set A of normal monomorphisms between finite dendroidal sets, by concluding that
the A-trivial cofibrations are generated by the set of A-trivial cofibrations between
countable objects. A similar argument works without the finiteness assumptions on
the morphisms inA, but one should replace countability by the use of an inaccessible
cardinal λ exceeding the size of all the domains and codomains of the morphisms in
A. In this book, this more general version will not play a role.

9.2 The Operadic Model Structure

In this section we introduce the model structure on the category of dendroidal sets
that has as its fibrant objects the ∞-operads, called the operadic model structure.
This is the analogue of the Joyal (or categorical) model structure from the previous
chapter. We will see later that the resulting model category is Quillen equivalent to
that of simplicial or topological operads.

Recall from Chapter 6 the inner horn inclusions of trees, i.e., the inclusions of the
form

Λ
e[T] → Ω[T]

where T is a tree and e an inner edge of T . We will write I for the set of inner
horn inclusions and I for its saturation, the class of inner anodyne maps. Recall
that if M → N is a monomorphism between simplicial sets and A → B a normal
monomorphism between dendroidal sets, then the pushout-product map

M ⊗ B ∪M⊗A N ⊗ A→ N ⊗ B

is again a normal monomorphism, which belongs to I if either A→ B or M → N
is inner anodyne (cf. Corollary 6.26).
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We also recall that the maps between dendroidal sets having the right lifting
property with respect to I are called inner fibrations and that an ∞-operad is a den-
droidal set for which the map X → 1 is an inner fibration. Then dual to our previous
statement about the pushout-product map, if A → B is a normal monomorphism
and X → Y is an inner fibration, then the map

hom(B, X) → hom(A, X) ×hom(A,Y) hom(B,Y )

is an inner fibration between ∞-categories. It is a trivial fibration if A→ B is inner
anodyne. Finally, we recall that if in addition X → Y has J-path lifting then so does
the map above (cf. Theorem 6.52), while the map X → 1 has J-path lifting for any
∞-operad X . All these properties come together in the following statement:

Theorem 9.32 There exists a model structure on the category dSets of dendroidal
sets with the following properties:

(a) The cofibrations are the normal monomorphisms.
(b) The fibrant objects are the∞-operads.
(c) The fibrations between fibrant objects are the inner fibrations having J-path

lifting.
(d) A map A→ B between normal dendroidal sets is a weak equivalence if and only

if for every∞-operad X , the map

hom(B, X) → hom(A, X)

is a categorical equivalence between∞-categories.

Moreover, this model structure is left proper and cofibrantly generated.

Remark 9.33 As stated before, we will refer to this model structure as the operadic
model structure. Similarly, we will refer to its weak equivalences and fibrations as
operadic weak equivalences and operadic fibrations, respectively.

Remark 9.34 As a special case of Proposition 9.28, the simplicial ‘tensoring’ of the
category dSets makes the operadic model structure on dSets compatible with the
categorical model structure on sSets.

Proof We wish to apply Theorem 9.9 about the existence of A-model structures.
For this, take for A any set of morphisms with I ⊆ A ⊆ I which is admissible. For
example, we can take all maps A → B in I for which A and B are finite (i.e., have
finitely many non-degenerate dendrices). The A-anodynes may now be described
in the following way. Corollary 6.26 implies that the maps of type (i) and (iii) in
Lemma 9.3 are inner anodyne. Thus, the class of A-anodyne morphisms is the
smallest saturated class containing the inner anodyne maps as well as the maps

{0} ⊗ Ω[T] ∪ J ⊗ ∂Ω[T] → J ⊗ Ω[T]

for each tree T . By the results from Chapter 6 we recalled above, together with
Proposition 9.25, the A-local objects are precisely the∞-operads and the fibrations
between A-local objects are the inner fibrations having J-path lifting. �
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We introduce the following terminology for the A-anodyne morphisms for the
specific choice of A we introduced above:

Definition 9.35 The class of J-anodyne morphisms of dendroidal sets is the smallest
saturated class containing the inner horn inclusions of trees as well as the inclusion
{0} → J.

Remark 9.36 This definition looks like it describes a slightly smaller class of maps
than the A-anodynes described in the proof of Theorem 9.32. However, the map

j : {0} ⊗ Ω[T] ∪ J ⊗ ∂Ω[T] → J ⊗ Ω[T]

is also J-anodyne. To see this, construct a square

{0} ⊗ Ω[T] ∪ J ⊗ ∂Ω[T] X

J ⊗ Ω[T] J ⊗ Ω[T],

j

u

p

by factoring j into a J-anodyne map u followed by a map p having the right lifting
property with respect to J-anodynes, using the small object argument. Since J⊗Ω[T]
is an ∞-operad (it is the dendroidal nerve of an operad) and p is an inner fibration
with J-path lifting, the dendroidal set X is also an ∞-operad. Then by Theorem
9.32(c), p is a fibration between fibrant objects. Since j is a trivial cofibration, there
exists a lift in the square. Such a lift exhibits j as a retract of u, so that j is also
J-anodyne.

The operadic model structure can be related to several others already discussed:

Proposition 9.37 The adjoint pair τ : dSets � Op : N is a Quillen pair, where Op
is equipped with the naive model structure (cf. the end of Section 7.1). Moreover, the
functor τ preserves weak equivalences between arbitrary objects.

Proof It is clear from the definitions that N preserves fibrations while τ preserves
cofibrations, proving the first sentence of the proposition. Since τ is a left Quillen
functor, it preserves weak equivalences between cofibrant objects. For an arbitrary
operadic equivalence f : X → Y between dendroidal sets we argue as follows.
Take a normalization of the terminal object E → 1. Then the map of operads
τE → τ(1) = Com is an equivalence, as can be seen directly from the description
of the homotopy operad τE of Lemma 6.7. Consider the square

E × X E × Y

X Y .

E× f

∼ ∼

f
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By our previous observation and the fact that τ preserves products, τ will send the
vertical maps to equivalences. The top horizontal map is a weak equivalence between
cofibrant objects and therefore also preserved by τ. It follow by two-out-of-three that
τ( f ) is an equivalence of operads. �

Proposition 9.38 The adjoint pair i! : sSets � dSets : i∗ is a Quillen pair be-
tween the Joyal model structure and the operadic one. Moreover, i! detects weak
equivalences between arbitrary objects.

Proof All of these claims follow easily from the identification sSets ' dSets/η,
combinedwith the observation that the operadicmodel structure on the slice category
dSets/η agrees with the Joyal model structure on the category of simplicial sets. In
these terms, the adjunction of the proposition can be thought of as the usual adjoint
pair for a slice category:

dSets/η dSets.
η!

η∗

�

We will spend the rest of this section studying the operadic equivalences between
∞-operads, with the aim of characterizing them as the fully faithful and essentially
surjective maps. This discussion parallels the one for simplicial sets in Section 8.7.
We begin with the analogue of Proposition 8.69:

Proposition 9.39 For amap f : X → Y between∞-operads, the following properties
are equivalent:

(1) The map f is an operadic equivalence.
(2) Any normalization f ′ of f is a J-homotopy equivalence.
(3) For any normal dendroidal set A, the map hom(A, X) → hom(A,Y ) is a cate-

gorical equivalence between∞-categories.
(4) For any normal dendroidal set A, the map khom(A, X) → khom(A,Y ) is a

homotopy equivalence between Kan complexes.
(5) For any normal dendroidal set A, the map τhom(A, X) → τhom(A,Y ) is an

equivalence of categories.

Proof For a normal dendroidal set A, observe that

Aq A � A ⊗ ∂J → A ⊗ J → A

gives a cylinder object for A. Indeed, the first map is a normal monomorphism by
Proposition 4.21 and the second map is an operadic equivalence, because it admits
a section A � A ⊗ {0} → A ⊗ J which is a trivial cofibration by Corollary 6.30 and
the fact that {0} → J is left anodyne (see Proposition 5.22). As a consequence, we
may identify left homotopies of maps out of A with J-homotopies.

By definition, (1) is equivalent to the statement that any normalization f ′ : X ′→
Y ′ of f is an operadic equivalence between normal ∞-operads. Since weak equiva-
lences between fibrant-cofibrant objects coincide with homotopy equivalences, the
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remarks above imply that f ′ is an operadic equivalence if and only if it is a J-
homotopy equivalence, showing the equivalence between (1) and (2). To see that (2)
implies (3), consider the square

hom(A, X ′) hom(A,Y ′)

hom(A, X) hom(A,Y ).

The verticalmaps are trivial fibrations between∞-categories byTheorem6.33, hence
J-homotopy equivalences. Assuming (2), the top horizontal map is a J-homotopy
equivalence. It follows that the same is true for the bottom horizontal map. A J-
homotopy equivalence of ∞-categories also gives a homotopy equivalent of their
respective maximal Kan complexes, showing that (3) implies (4). Also, (3) implies
(5) since τ sends categorical equivalences between simplicial sets to equivalences
of categories. Finally, both (4) and (5) imply that f induces a natural isomorphism
between the functors represented by X and Y on the homotopy category Ho(dSets)
(taken with respect to the operadic model structure). Indeed, as in Lemma 8.68
we can identify the homotopy classes of maps A → X with the isomorphism
classes of objects in the category τhom(A, X), or with the connected components of
khom(A, X). We conclude that f is an operadic equivalence. �

Lemma 9.40 Consider a map f : X → Y between ∞-operads. If condition (4) of
Proposition 9.39 holds for all representable dendroidal sets Ω[T], then it holds for
all normal dendroidal sets A.

Proof Without loss of generality we may assume f is an operadic fibration. Indeed,
a general f may be factored as a trivial cofibration i followed by an operadic
fibration p. Then i admits a normalization which is a trivial cofibration between
normal ∞-operads, hence a J-homotopy equivalence. But then hom(A, i) is a J-
homotopy equivalence between simplicial sets by the same argument as in the proof
of Proposition 9.39 above. Hence it suffices to prove the proposition for the operadic
fibration p.

The proof proceeds by skeletal induction on the normal dendroidal set A. The
base of the induction is the 0-skeleton sk0 A, which can be written as a coproduct

∐
η

indexed by the elements of Aη . The map of (4) is then the corresponding product of
maps of the form khom(η, X) → khom(η,Y ), which are homotopy equivalences by
assumption. For the induction step, consider a pushout square of the form∐

S ∂Ω[T] A

∐
S Ω[T] B

and the associated cube of Kan complexes
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khom(B, X)
∏

S khom(T, X)

khom(B,Y )
∏

S khom(T,Y )

khom(A, X)
∏

S khom(∂T, X)

khom(A,Y )
∏

S khom(∂T,Y ).

In this cube, the front and back faces are pullbacks and the vertical maps are Kan
fibrations. Then those faces are homotopy pullbacks in the Kan–Quillen model
structure by the dual of Lemma 7.51. The three maps from back to front other than
khom(B, X) → khom(B,Y ) are homotopy equivalences by the inductive hypothesis
and the assumption of the lemma. Corollary 7.50 guarantees that the remaining map
is also a homotopy equivalence. For a general normal dendroidal set A, writing
A = ∪nsknA shows that khom(A, X) → khom(A,Y ) is the inverse limit of the trivial
fibrations khom(sknA, X) → khom(sknA,Y ), hence itself a trivial fibration. �

Corollary 9.41 Let f : X → Y be a map between∞-operads. Then f is an operadic
equivalence if and only if k(i∗X) → k(i∗Y ) and khom(Cn, X) → khom(Cn,Y ), for
each n ≥ 0, are homotopy equivalences between Kan complexes.

Proof The implication from left to right follows from Proposition 9.39, where we
have identified hom(η, X) with i∗X . For the converse, the preceding lemma shows
that it suffices to prove that khom(T, X) → khom(T,Y ) is a homotopy equivalence
for each tree T . Consider the spine inclusion Sp[T] → T . This map is inner anodyne
by Lemma 6.37, so the vertical maps in the square

khom(T, X) khom(T,Y )

khom(Sp[T], X) khom(Sp[T],Y )g

are trivial fibrations. It thus suffices to show that the lower map g is a homotopy
equivalence. Observe that khom(Sp[T], X) can be written as a pullback of Kan
complexes of the form khom(Cn, X) for all the vertices ofT and khom(η, X) for all the
inner edges of T . Moreover, since the evaluation maps khom(Cn, X) → khom(η, X)
at the various edges of Cn are Kan fibrations (and similarly for Y ), these pullbacks
are homotopy pullbacks (cf. Lemma 7.51). Using the assumption of the corollary
we conclude that g is a homotopy equivalence. �

For an ∞-operad X , we sometimes refer to the elements of Xη as the colours (or
the objects) of X . Note that these coincide with the objects of the ∞-category i∗X ,
i.e., the elements of the set (i∗X)0.
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Definition 9.42 (a) For an ∞-operad X and colours x1, . . . xn, y of X , the space of
operations X(x1, . . . , xn; y) from x1, . . . , xn to y is the pullback

X(x1, . . . , xn; y) hom(Cn, X)

∆[0] hom(∂Cn, X) = (i∗X)n+1,
(x1,...,xn,y)

where the map on the bottom is given by x1, . . . , xn for the leaves of Cn and y for the
root edge of Cn.

(b) A map f : X → Y between ∞-operads is fully faithful if for any tuple of
colours x1, . . . , xn, y of X , the induced map

X(x1, . . . , xn; y) → Y ( f (x1), . . . f (xn); f (y))

is a weak homotopy equivalence.
(c) A map f : X → Y between ∞-operads is essentially surjective if the map

of underlying ∞-categories i∗X → i∗Y is essentially surjective, or in other words
if τ(i∗ f ) : τ(i∗X) → τ(i∗Y ) is an essentially surjective functor between ordinary
categories.

Remark 9.43 As was the case with mapping spaces in ∞-categories, we observe
that the simplicial sets X(x1, . . . , xn; y) are in fact Kan complexes. Indeed, they fit
into pullback squares

X(x1, . . . , xn; y) khom(Cn, X)

∆[0] khom(∂Cn, X),
(x1,...,xn,y)

where the right-hand vertical map is a Kan fibration. Also, these mapping spaces are
related to the sets of operations in the homotopy operad τX by natural isomorphisms

(τX)(x1, . . . , xn; y) � π0X(x1, . . . , xn; y).

Remark 9.44 Let y1, . . . , ym, z and x1, . . . , xn, yi , with 1 ≤ i ≤ m, be two sequences
of colours in an ∞-operad X with common element yi . Write Cm ◦i Cn for the tree
obtained by grafting the n-corolla Cn onto the ith leaf of Cn. Then the maps

Ω[Cn+m−1]
∂i
−→ Ω[Cm ◦i Cn]

j
←− Ω[Cm] ∪i Ω[Cn]

induce maps

hom(Cn+m−1, X) ← hom(Cm ◦i Cn)
j∗

−→ hom(Cm, X) ×i∗X hom(Cn, X),
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and j∗ is a trivial fibration, because j is inner anodyne. A section of this map then
yields a map

X(y1, . . . , ym; z) × X(x1, . . . , xn; yi)

X(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn; z),

unique up to homotopy. This can be thought of as a composition operation (up to
homotopy) for the ∞-operad X . In particular, upon taking π0 of the Kan complexes
involved, we retrieve the composition of the homotopy operad τX .

The proof of the following is very similar to that of Theorem 8.74.

Theorem 9.45 A map f : X → Y between ∞-operads is an operadic equivalence if
and only if it is fully faithful and essentially surjective.

Proof If f is an operadic equivalence, then it follows easily from Proposition 9.39
that f is indeed fully faithful and essentially surjective. Conversely, suppose f is
fully faithful and essentially surjective. Then in particular i∗ f is an equivalence of
∞-categories by Theorem 8.74, so that k(i∗ f ) : k(i∗X) → k(i∗Y ) is a weak homotopy
equivalence of Kan complexes. By Corollary 9.41, it now suffices to show that for
each n ≥ 0 themaps khom(Cn, X) → khom(Cn,Y ) induced by f areweak homotopy
equivalences. These maps fit into a square

khom(Cn, X) khom(Cn,Y )

khom(∂Cn, X) khom(∂Cn,Y )

inwhich the vertical arrows areKan fibrations. The bottommap can be identifiedwith
the product k(i∗X)n+1 → k(i∗Y )n+1 and is therefore a weak homotopy equivalence.
For any point (x1, . . . xn, y) ∈ k(i∗X)n+1, the corresponding map of fibres of the
vertical maps over (x1, . . . , xn, y) and ( f (x1), . . . , f (xn), f (y)) is the map

X(x1, . . . , xn; y) → Y ( f (x1), . . . , f (xn); f (y)),

which is a weak homotopy equivalence by assumption. From the long exact sequence
of homotopy groups of a Kan fibration we now conclude that the top horizontal arrow
in the square must be a weak equivalence as well, completing the proof. �

9.3 Open and Uncoloured Dendroidal Sets

The goal of this section is to show how the operadic model structure induces similar
model structures on the categories of open and of uncoloured dendroidal sets. The
first of these two cases is very simple. Recall from Section 3.5.4 that the category
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odSets of open dendroidal sets is the category of presheaves on the full subcategory
Ω◦ ⊆ Ω consisting of open trees. This category can be identifiedwith a slice category
of the category of dendroidal sets itself,

odSets ' dSets/O,

where O is the dendroidal set defined by

OT =

{
∗ if T is open,
� otherwise.

(9.1)

Recall also the associated pair of adjoint functors

o! : odSets dSets : o∗

with o! fully faithful, and the fact that under the equivalence 9.1 above the functor
o! can be identified with the forgetful functor. Using the induced model structure
on slice categories (cf. Example (d)(ii) at the end of Section 7.1), we immediately
obtain the following consequence of Theorem 9.32:

Corollary 9.46 The category odSets of open dendroidal sets carries a left proper
cofibrantly generated model structure, in which the cofibrations are the normal
monomorphisms and in which the weak equivalences are the operadic equivalences.
The fibrant objects are the open∞-operads and the fibrations between fibrant objects
are the inner fibrations with J-path lifting.

Proof All the statements of the corollary are general facts about model structures
on slice categories, except the one about fibrant objects. Indeed, by definition a
fibrant object of dSets/O is an operadic fibration p : X → O. Note that for an open
dendroidal set X the map p : X → O is unique, and that O itself is an ∞-operad.
Hence p is an inner fibration if and only if X is an ∞-operad. The fact that p has
J-path lifting is trivial, because i∗O � ∆[0]. �

Wehave seen in Section 6.3 that the tensor product of open dendroidal sets behaves
well with respect to inner anodyne morphisms. In fact, we have the following:

Proposition 9.47 For normal monomorphisms u : A → B and v : C → D between
open dendroidal sets, the pushout-product

B ⊗ C ∪ A ⊗ D→ B ⊗ D

is a normal monomorphism, which is moreover a trivial operadic cofibration when-
ever u or v is.

Proof The pushout-product is a normal monomorphism by Proposition 4.26. We
claim that the pushout-product is J-anodyne whenever one of the two maps (say u) is
J-anodyne (see Definition 9.35). By the usual arguments involving saturated classes
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it suffices to check this when u is inner anodyne or u is the inclusion {0} → J. The
case of inner anodynes is covered by Corollary 6.26. The case {0} → J is covered
by Remark 9.36.

To get the case of a general trivial operadic cofibration u from the case of J-
anodynes treated above, we reason as in the proof of Proposition 9.28. Instead of
the simplicial mapping objects hom(−,−) we now use the ‘inner hom’ Hom(−,−)
of dendroidal sets, characterized by the property that Hom(A,−) is right adjoint to
A⊗− as a functor from the category dSets to itself. To show that the pushout-product
of u and v is a trivial cofibration, it suffices to show that any lifting problem

B ⊗ C ∪ A ⊗ D→ B ⊗ D X

B ⊗ D Y

p

admits a solution,where p is an inner fibrationwith J-path lifting between∞-operads.
The right-hand vertical map in the adjoint lifting problem

A Hom(D, X)

B Hom(D,Y ) ×Hom(C,Y) Hom(C, X)

is still an inner fibration with J-path lifting between∞-operads, as a consequence of
the first part of this proof. Hence it is a categorical fibration and a lift exists by the
assumption that u is a trivial cofibration. �

As a consequence of Proposition 9.47, the tensor product functor

A ⊗ − : odSets→ odSets

preserves cofibrations and trivial cofibrations for the operadicmodel structure, when-
ever A is a cofibrant (i.e., normal) dendroidal set. By Brown’s lemma, the functor
A ⊗ − therefore preserves weak equivalences between cofibrant objects. Conse-
quently, the restriction of the tensor product functor

− ⊗ − : odSets × odSets→ odSets

to cofibrant objects respects weak equivalences. Therefore it descends to give a
well-defined tensor product on the homotopy category:

− ⊗ − : Ho(odSets) × Ho(odSets) → Ho(odSets).

Remark 9.48 Although the tensor product of dendroidal sets itself is not quite asso-
ciative, this tensor product on the homotopy category does give rise to a symmetric
monoidal structure. This follows from Proposition 6.32, which states that the rele-
vant ‘associator maps’ for the tensor product, when evaluated on corollas, are inner
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anodyne. The case of general normal dendroidal sets follows by first reducing to
representables, using skeletal induction and the cube lemma, and then reducing from
general trees to corollas using the spine.

We now turn to the case of uncoloured dendroidal sets. Recall from Section
3.5.6 that a dendroidal set X is uncoloured if Xη is a single point. The uncoloured
dendroidal sets form a full subcategory udSets of the category dSets, related by
adjoint functors to the category dSets∗ = η/dSets of pointed dendroidal sets, of
which the objects are pairs (X, x0) with x0 ∈ Xη a chosen basepoint. These adjoint
functors are denoted

dSets∗ udSets.

r!

r∗

r∗

The functor r∗ is simply the forgetful functor. Its left and right adjoints r! and r∗ can
be described explicitly as in Section 3.5.6; r! collapses all of Xη to a single point,
whereas r∗ restricts to the basepoint, meaning it retains only those dendrices in XT

for which each edge has colour x0 ∈ Xη .
Uncoloured dendroidal sets relate to uncoloured operads just like dendroidal sets

relate to operads. In particular, there is an adjoint pair of functors

udSets uOp,
τ

N

and a homotopy-coherent version for uncoloured simplicial operads

udSets usOp,
w!

w∗

which we will later show to be a Quillen equivalence. For now, we will show that
the operadic model structure on dSets restricts to a model structure on udSets.
Recall that the category dSets∗ = η/dSets of pointed dendroidal sets inherits a
model structure from dSets, for which the forgetful functor dSets∗ → dSets detects
cofibrations, fibrations, and weak equivalences. Note also that an object (X, x0) is
cofibrant if η → X is a normal monomorphism, which is the case precisely if X
itself is a normal dendroidal set.

Theorem 9.49 The category udSets of uncoloured dendroidal sets carries a model
structure in which a map X → Y is a cofibration (resp. a weak equivalence) if and
only if its image under r∗ is a cofibration (resp. a weak equivalence) in dSets∗, or
equivalently in dSets. This model structure is cofibrantly generated and left proper.
Moreover, the fibrant objects are precisely the uncoloured∞-operads. In otherwords,
r∗ preserves and detects fibrant objects.
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Remark 9.50 The reader should be warned that r∗ does not preserve fibrations in
general. Equivalently, r! does not preserve arbitrary trivial cofibrations. Indeed, the
image of the trivial cofibration {0} → J under r! is the map of simplicial sets
{0} → J/∂J. The simplicial set J/∂J is not weakly contractible (it has the weak
homotopy type of the circle), so this map cannot be an operadic equivalence.

Proof (of Theorem 9.49) We take the cofibrations andweak equivalences on udSets
as in the statement of the theorem and define the fibrations to be the maps having
the right lifting property with respect to trivial cofibrations. Let us verify the axioms
for a model structure. Axioms (M1–3) are evident, as is one half of the lifting axiom
(M4): for a square

A X

B Y

i p

in which i is a trivial cofibration and p is a fibration, a lift exists by definition of the
fibrations. The other half, meaning the case where i is a cofibration and p is a fibration
and a weak equivalence, follows by the retract argument. Let us briefly summarize it
again. Factor p as q◦u where u is a normal monomorphism and q has the right lifting
property with respect to normal monomorphisms. (We will establish the existence
of this factorization in the category of uncoloured dendroidal sets below.) Then q is
a weak equivalence, so u is a trivial cofibration by two-out-of-three. The fact that p
has the right lifting property with respect to u now implies that p is a retract of q, and
therefore also has the right lifting property with respect to normal monomorphisms.

It remains to verify the factorization axiom (M5). The factorization of an arbi-
trary morphism into a normal monomorphism followed by a trivial fibration was
already used above; to construct it for a general morphism f : X → Y of uncoloured
dendroidal sets, first factor it as a normal monomorphism i followed by a trivial
fibration p in the category dSets∗ of pointed dendroidal sets, and subsequently apply
the functor r∗. Clearly r∗X = X and r∗Y = Y . Furthermore, r∗ preserves normal
monomorphisms, so r∗i is a normal monomorphism. To see that r∗p is a trivial fi-
bration, note that for any normal monomorphism u between uncoloured dendroidal
sets, p has the right lifting property with respect to the normal monomorphism r∗u.
Consequently, r∗p has the right lifting property with respect to u.

To obtain the other factorization, into a trivial cofibration followed by a fibration,
we use the small object argument again. To do this we need to know that the trivial
cofibrations are generated, as a saturated class, by a set. As in Section 9.1 one may
take the trivial cofibrations between countable uncoloured dendroidal sets as such a
generating set.

Finally, we will identify the fibrant objects as the uncoloured ∞-operads. If X is
an uncoloured ∞-operad, then it is fibrant as a dendroidal set and thus has the right
lifting property with respect to all trivial cofibrations; in particular, it has the right
lifting property with respect to trivial cofibrations between uncoloured dendroidal
sets and is therefore a fibrant object of udSets. Conversely, assume that X ∈ udSets
is fibrant. Observe that any inner horn inclusion Λe[T] → T is bijective on edges,
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from which it easily follows that the square

Λe[T] r!Λ
e[T]

T r!T

is a pushout and the vertical map on the right is a trivial cofibration of uncoloured
dendroidal sets. Thus X has the right lifting property with respect to such a map.
Consequently, r∗X has the right lifting property with respect to the inner horn
inclusion on the left and r∗X is indeed an uncoloured∞-operad. �

9.4 The RelativeA-Model Structure

In this section we will discuss a variation on the general method from Section 9.1
in order to construct relative versions of A-model structures on the slice category
dSets/V of dendroidal sets over a fixed ‘base’ V . For two objects f : A → V and
g : X → V of this category, the simplicial set

homV (A, X)

is defined as follows: its n-simplices are maps ∆[n] ⊗ A→ X for which the diagram

∆[n] ⊗ A X

A V

g

f

commutes. In other words, homV (A, X) is the pullback

homV (A, X) hom(A, X)

∆[0] hom(A,V).

−◦g

f

Then any map A→ B of dendroidal sets over V induces a map of simplicial sets

homV (B, X) → homV (A, X).

Now let A be a set of normal monomorphisms between normal objects of the
category dSets/V . As in Section 9.1, we call A admissible if for any A → B in A

and any n ≥ 0, the map

∆[n] ⊗ A ∪ ∂∆[n] ⊗ B→ ∆[n] ⊗ B
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(with its evident map to V) again belongs to A. We define an object X → V over V
to be A-local if it has the following two properties:

(1) For any normal monomorphism A→ B over V , the map

homV (B, X) → homV (A, X).

is a categorical fibration of simplicial sets.
(2) Moreover, it is a trivial fibration whenever A→ B belongs to A.

Thus in particular, if A is a normal dendroidal set overV and X → V isA-local, then
homV (A, X) is an∞-category. As in Section 9.1, we can reformulate the property of
being A-local over V in terms of lifting properties:

Lemma 9.51 An object X → V is A-local if its has the right lifting property with
respect to the following maps over V:

(i) The maps
Λ
k[n] ⊗ B ∪ ∆[n] ⊗ A→ ∆[n] ⊗ B,

for any normal monomorphism A→ B over V and any 0 < k < n.
(ii) The maps

{0} ⊗ B ∪ J ⊗ A→ J ⊗ B,

for any normal monomorphism A→ B over V .
(iii) The maps

∂∆[n] ⊗ B ∪ ∆[n] ⊗ A→ ∆[n] ⊗ B,

for any A→ B over V contained in the set A and any n ≥ 0.

The following terminology extends that of Section 9.1 to the relative case:

Definition 9.52 A normal monomorphism A→ B over V is A-anodyne (over V) if
it lies in the saturation of the classes of maps (i)–(iii) above.

So an object X → V is A-local if and only if it has the right lifting property with
respect to all A-anodyne maps over V .

Definition 9.53 A morphism A → B over V is an A-weak equivalence if it has a
normalization A′ → B′ with the property that for any A-local object X → V , the
map

homV (B′, X) → homV (A′, X)

is a categorical equivalence between∞-categories.

Remark 9.54 The uniqueness of normalizations up to J-homotopy of Lemma 9.6
implies that the choice of normalization in the above definition is irrelevant.
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Theorem 9.55 Let A be an admissible set of normal monomorphisms over V . Then
there exists a model structure on dSets/V with the following properties:

(a) The cofibrations are the normal monomorphisms over V .
(b) The weak equivalences are the A-weak equivalences just defined.
(c) The fibrant objects are the A-local objects over V .
(d) A map betweenA-local objects over V is a fibration if and only if it has the right

lifting property with respect to A-anodyne maps over V .

Moreover, this model structure is left proper and cofibrantly generated.

Wewill refer to the fibrations in themodel structure of the theorem asA-fibrations
(over V , if necessary).

Proof The proof proceeds along the same lines as that of Theorem 9.9. As we did
then, we define a map in dSets/V to be a fibration precisely if it has the right lifting
property with respect to all normal monomorphisms over V which are also A-weak
equivalences. With these definitions in place, axioms (M1–3) are clearly satisfied.
(For the two-out-of-three axiom (M2) one uses the evident version of Lemma 9.10 for
maps over V .) The factorization axiom (M5) is proved by the small object argument.
The factorization into a normal monomorphism followed by a map having the right
lifting property with respect to normal monomorphisms proceeds as in Section 9.1,
using the fact that the normal monomorphisms are generated as a saturated class
by boundary inclusions of trees. Moreover, a map over V having the right lifting
property with respect to all monomorphisms will have a normalization which is a J-
homotopy equivalence over V , hence a weak equivalence, as in Lemma 9.11. For the
other factorization into a trivial cofibration followed by a fibration, we assume again
that for all maps A→ B inA the dendroidal sets A and B are finite. (This assumption
is unnecessary, but the general case requires a bit more set theory and induction over
larger ordinals, cf. Remark 9.31). We can then use the small object argument again,
taking as a set of generating trivial cofibrations the A-trivial cofibrations between
countable dendroidal sets over V . The justification of this is identical to that in
Section 9.1.

Finally we should prove the lifting axiom (M4). Half of it is automatic from
the definition of the fibrations, the other half is proved by the retract argument, of
which we have seen several examples by now (cf. the proof of Theorem 9.49 in the
previous section). The characterization of the fibrant objects and fibrations between
them proceeds exactly as in Section 9.1. �

We will see several examples of A-model structures relative to a base V in the
remainder of this chapter. For now, we will limit ourselves to some remarks about
various functors relating to change of base.

Suppose A is an admissible set of normal monomorphisms over V . Then for any
map f : V → W between dendroidal sets, we obtain a set f!A of maps over W ,
simply by regarding each map A → B over V belonging to A as a map over W by
composing with f . Then clearly f!A is again admissible. Let us denote the relative
A-model structure on dSets/V by (dSets/V)A and the relative f!A-model structure
on dSets/W by (dSets/W) f!A. There is an adjoint pair of functors
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dSets/V dSets/W
f!

f ∗

given by composition with f and pullback along f . The functor f! is simplicial, in
the sense that for any map of dendroidal sets A→ V and any simplicial set M , the
canonical map

f!(M ⊗ A) → M ⊗ f!(A)

is an isomorphism over W (indeed, it is essentially the identity map). It follows by
adjunction that for every X → W the canonical map

homW ( f! A, X) → homW (A, f ∗X)

is an isomorphism as well. In particular, X → W is f!A-local over W if and only
if f ∗X → V is A-local over V . Using this observation, we easily conclude the
following:

Proposition 9.56 The adjoint pair

(dSets/V)A (dSets/W) f!A
f!

f ∗

is a Quillen pair. Moreover, f ∗ detects fibrant objects and fibrations between them.

Proof Clearly f! preserves normal monomorphisms, hence cofibrations. Also, we
just observed that an object X → W is f!A-local if and only if f ∗X → V is A-local.
Thus, f ∗ preserves and detects fibrant objects and for the same reason fibrations
between fibrant objects. The fact that ( f!, f ∗) is a Quillen pair now follows from
Lemma 8.42. �

This concludes our brief discussion of the pushforward of an admissible set of
morphisms over V along a map f : V → W . Now let us consider the case where we
pull backA along a map f : W → V , giving a set of maps f ∗A over W consisting of
all pullbacks

A ×V W B ×V W

W

of maps A→ B in A. The f ∗A-local objects are defined in terms of the simplicial
sets homW ( f ∗A, X). Now note that since f! is simplicial, there is a natural map

f!(∆[n] ⊗ f ∗A) � ∆[n] ⊗ f! f ∗A→ ∆[n] ⊗ A

for each n ≥ 0 and hence by adjunction a map

∆[n] ⊗ f ∗A→ f ∗(∆[n] ⊗ A)

natural in n and in A. These maps together induce a natural map



9.5 The Covariant Model Structure on Dendroidal Sets 387

homV (A, f∗X) → homW ( f ∗A, X).

Proposition 9.57 For any map of dendroidal sets f : W → V and maps A → V ,
X → W , the natural map

homV (A, f∗X) → homW ( f ∗A, X)

is an isomorphism.

Proof An n-simplex of homW ( f ∗A, X) is a map

∆[n] ⊗ (W ×V A) → X

over W , while an n-simplex of homV (A, f∗X) is a map ∆[n] ⊗ A→ f∗X over V or,
equivalently, a map f ∗(∆[n] ⊗ A) → X over W . Consider the diagram

∆[n] ⊗ (W ×V A) ∆[n] ⊗ A

W ×V A A

W V .

By Corollary 4.17, the top square is a pullback and hence so is the rectangle. Thus

∆[n] ⊗ (W ×V A) � f ∗(∆[n] ⊗ A),

from which the proposition follows. �

Having established the previous proposition, we can now proceed as for Proposi-
tion 9.56 above and conclude the following by exactly the same argument:

Proposition 9.58 LetA be an admissible set of morphisms overV and let f : W → V
be any map. Then f ∗A is again admissible and the adjoint pair

(dSets/V) f ∗A (dSets/W)A
f ∗

f∗

is a Quillen pair. Moreover, f∗ detects fibrant objects and fibrations between fibrant
objects.

9.5 The Covariant Model Structure on Dendroidal Sets

In this section we will discuss a special case of the relative A-model structure of
the previous section, namely that of the covariant model structure on dSets/V for
some fixed dendroidal set V . For the set I/V of inner horn inclusions over V there
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is a relative operadic model structure on dSets/V . The covariant model structure
over V is a localization of the relative operadic one, where besides the inner horn
inclusions one also takes the inclusions of leaf horns into account. The use of this
model structure will be that if V is an ∞-operad, the covariant model structure on
dSets/V describes the homotopy theory ofV-algebras. We will come to this relation
in Section 14.8.

Recall that Λx[T] → Ω[T] denotes the dendroidal subset of the representable
dendroidal set Ω[T], given by the union of all the faces of T except ∂xT . In Section
9.2 we focused on the case where x is an inner edge in T , so that Λx[T] → Ω[T] is
an inner horn inclusion. Here we will include the case where x is a leaf vertex of
T , so that ∂xT is the face of T obtained by chopping off the vertex x and the leaves
immediately above it (if any). If T is a corolla with a unique vertex v, we interpret
Λx[T] as the disjoint union of the leaves of T or, more precisely, the disjoint union of
copies of η indexed by the leaves of T . It will be convenient to use a concise notation
for this, which we introduced before; we will write λ(T) for the set of leaves of T
and `[T] ⊂ Ω[T] for the corresponding subobject of the dendroidal set represented
by T . With this notation, the leaf horn of the n-corolla Cn is the inclusion

`[Cn] → Ω[Cn].

Let us denote the set of all horn inclusions Λx[T] → Ω[T] where x is either an inner
edge or a leaf vertex by L. As in Definition 6.14, we call a normal monomorphism
leaf anodyne if it belongs to the saturation L of L.

We recall from Corollary 6.30 that if M → N is a monomorphism between
simplicial sets and A → B is a normal monomorphism between dendroidal sets,
then the pushout-product map

M ⊗ B ∪M⊗A N ⊗ A→ N ⊗ B

is a normal monomorphism, which is leaf anodyne whenever A → B or M → N
is. (Recall that for simplicial sets, the notion of leaf anodyne map reduces to that of
a left anodyne map.) We also recall that the maps between dendroidal sets having
the right lifting property with respect to L are called left fibrations. For a normal
monomorphism A→ B and an inner fibration X → Y , the map

hom(B, X) → hom(A, X) ×hom(A,Y) hom(B,Y )

is an inner fibration of simplicial sets, which is a left fibration if X → Y is, and a
trivial fibration if in addition the map A → B is leaf anodyne. This fact is dual to
our previous statement about pushout-products.

Theorem 9.55 now specializes to the following result:

Theorem 9.59 LetV be a dendroidal set. The category dSets/V carries a left proper
cofibrantly generated model structure with the following properties:

(a) The cofibrations are the normal monomorphisms over V .
(b) The fibrant objects are the left fibrations X → V .
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(c) The fibrations between fibrant objects are the left fibrations.
(d) A map A → B between normal objects over V is a weak equivalence if for any

left fibration X → V , the map

homV (B, X) → homV (A, X)

is a categorical equivalence of∞-categories.

Wewill refer to themodel structure of the theoremas the covariantmodel structure
over V and denote the corresponding model category by (dSets/V)cov.

Remark 9.60 The∞-categories homV (B, X) and homV (A, X) featuring in item (d)
of the theorem are in fact Kan complexes. Indeed, take 0 ≤ k < n and consider a
lifting problem as on the left, which is equivalent to the one depicted on the right:

Λk[n] homV (A, X) Λk[n] ⊗ A X

∆[n] ∆[0] ∆[n] ⊗ A V

The left vertical arrow in the square on the right is leaf anodyne by Corollary 6.30,
so that a lift exists by the assumption that X → V is a left fibration. We conclude
that homV (A, X) → ∆[0] is a left fibration. But then it is also a Kan fibration (cf.
Corollary 5.51).

Proof (of Theorem 9.59) Consider the set L/V of leaf horn inclusions over V , i.e.
the commutative diagrams of the form

Λx[T] Ω[T]

V,

where x is an inner edge or a leaf vertex of the tree T . Let L/V be the saturation
in the category dSets/V and let A be an admissible set with L/V ⊆ A ⊆ L/V . For
example,A could consist of all themap A→ B inL/V between finite dendroidal sets.
Then by Theorem 9.55 there is a left proper cofibrantly generated model structure
on dSets/V in which the cofibrations are the normal monomorphisms over V . The
A-local objects are those X → V which have the right lifting property with respect
to the following three classes of maps over V :

(i) The maps
N ⊗ A ∪ M ⊗ B→ N ⊗ B,

for any normal monomorphism A → B over V and any inner anodyne map
M → N between simplicial sets.

(ii) The maps
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J ⊗ A ∪ {0} ⊗ B→ J ⊗ B,

for any normal monomorphism A→ B over V .
(iii) The maps

N ⊗ A ∪ M ⊗ B→ N ⊗ B

for anymap A→ B inL/V and anymonomorphism M → N between simplicial
sets.

But the classes (i) and (ii) are contained in (iii). For (ii), this follows from the fact that
{0} → J is left anodyne (cf. Proposition 5.22). Also, (iii) is contained in L/V . This
shows that the local objects are precisely the left fibrations. The rest of the theorem
is now clear from Theorem 9.55. �

Corollary 9.61 The covariant model structure on dSets/V is a left Bousfield local-
ization of the relative operadic model structure on dSets/V .

Proof The two model structures have the same cofibrations and the class of J-
anodyne morphisms over V is (by definition) contained in the class of leaf anodyne
morphisms over V . �

Next, we observe the following statements concerning change of base:

Proposition 9.62 (a) Let f : V → W be a map of dendroidal sets. Then f induces a
Quillen pair

f! : (dSets/V)cov (dSets/W)cov : f ∗.

(b) If f : V → W is a left fibration, then the covariant model structure (dSets/V)cov
agrees with the slice model structure (dSets/W)cov/ f .

(c) If f : V → W is an operadic equivalence between∞-operads then the pair in (a)
is a Quillen equivalence.

Proof (a) This is a special case of Proposition 9.56.
(b) The fibrant objects in the slice model structure on (dSets/W)cov/ f are the

commutative diagrams
X V

W

g

in which g : X → V is a fibration in the covariant model structure on dSets/W . Since
f is a left fibration,V → W is a fibrant object of (dSets/W)cov. Hence g is a fibration
in the covariant model structure over W precisely if it is a left fibration, by Theorem
9.59(c). It follows that (dSets/W)cov/ f and (dSets/V)cov have the same cofibrations
and the same fibrant objects, so that the two model structures must coincide.

(c) By Brown’s lemma it suffices to prove this if f : V → W is a trivial fibration
in the operadic model structure. But then f is a trivial fibration in (dSets/W)cov as
well, so that
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(dSets/W)cov/ f (dSets/W)cov
f!

f ∗

is a Quillen equivalence (cf. Example 8.47(i)). The result follows by part (b). �

The weak equivalences between fibrant objects in the covariant model structure
can be characterized very efficiently as those maps which induce fibrewise weak
homotopy equivalences, as in part (5) of the following:

Theorem 9.63 Consider a map

X Y

V

f

between left fibrations X → V and Y → V of dendroidal sets. Then the following
are equivalent:

(1) The map f is a weak equivalence in the covariant model structure over V .
(2) Any normalization f ′ of f is a fibrewise J-homotopy equivalence over V .
(3) For any normal dendroidal set A over V , the map

homV (A, X) → homV (A,Y )

is a weak homotopy equivalence of Kan complexes.
(4) For every colour v ∈ Vη , the map Xv → Yv between fibres over v is a weak

homotopy equivalence of Kan complexes.

In part (4), Xv denotes the pullback

Xv X

∆[0] V .v

Note that Xv is indeed a Kan complex, because a left fibration over η = ∆[0] is
automatically a Kan fibration (recall that we are suppressing the inclusion i! of
simplicial sets into dendroidal sets from the notation). To prove the theorem it will
be convenient to have the following characterization of left fibrations:

Proposition 9.64 An inner fibration f : X → Y of dendroidal sets is a left fibration
if and only if for any n ≥ 0, the map

hom(Cn, X) → hom(`[Cn], X) ×hom(`[Cn],Y) hom(Cn,Y )

is a trivial fibration of simplicial sets.
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Proof If f is a left fibration, then the map of the lemma is a trivial fibration by
Theorem 6.33. Conversely, suppose f is an inner fibration for which the map of the
lemma is a trivial fibration for any n ≥ 0. For a normal monomorphism A→ B of
dendroidal sets, consider the map

hom(B, X) → hom(A, X) ×hom(A,Y) hom(B,Y ).

It is an inner fibration between simplicial sets by Theorem 6.33. Consider the class
C of normal monomorphisms A→ B for which this map is a trivial fibration. Then
C is saturated and closed under-two-out-three among normal monomorphisms. It
contains the inner anodynes, again by Theorem 6.33, and the maps `[Cn] → Ω[Cn]

by assumption. Then Proposition 6.41 guarantees that C contains all leaf anodyne
maps. Since any trivial fibration is in particular surjective on vertices, it follows that
X → Y has the right lifting property with respect to leaf anodyne maps, so that it is
a left fibration. �

Proof (of Theorem 9.63) The equivalence between statements (1)-(3) is proved ex-
actly as for Proposition 9.39. Moreover, as in Corollary 9.41, f is a weak equivalence
between left fibrations if and only if the following two statements are true:

(3a) For any map η→ X , the map

homV (η, X) → homV (η,Y )

is a weak homotopy equivalence between Kan complexes.
(3b) For any n ≥ 0 and any map Cn → X , the map

homV (Cn, X) → homV (Cn,Y )

is a weak homotopy equivalence between Kan complexes.

But by Proposition 9.64, the vertical maps in the square

homV (Cn, X) homV (Cn,Y )

homV (`[Cn], X) homV (`[Cn],Y )

are trivial fibrations. Since homV (`[Cn], X) = homV (η, X)n and similarly forY , (3b)
follows from (3a). Furthermore (3a) is the same assertion as (4), because for a given
map v : η→ X , the simplicial set homV (η, X) is precisely the Kan complex Xv (and
similarly for Y ). �

Corollary 9.65 Consider a diagram

X Y

V

f
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of dendroidal sets. If X → V and Y → V are left fibrations and the map of fibres
Xv → Yv is a weak homotopy equivalence of Kan complexes for each v ∈ Vη , then f
is an operadic equivalence.

Proof The map f is an equivalence in the covariant model structure over V by
Theorem 9.63. It is then also a weak equivalence in the relative operadic model
structure over V by Corollary 9.61 (the covariant model structure is a localization of
the operadic one) and Lemma 8.49 (the local weak equivalences between fibrants are
the usual weak equivalences). The forgetful functor (dSets/V)cov → (dSets)cov is left
Quillen and therefore preserves weak equivalences between cofibrant objects; since
it also preserves normalizations, it preserves weak equivalences between arbitrary
objects. In particular, f is an operadic equivalence. �

We have seen in Proposition 9.28 that the A-model structure is ‘enriched’ over
the Joyal model structure in an appropriate sense. The same is true of the covariant
model structure, but in fact we have the following stronger result in this particular
case, replacing the Joyal model structure with the Kan–Quillen model structure. It
can be seen as a strengthening of Remark 9.60, which states that homV (A, X) is a
Kan complex whenever A is a normal dendroidal set over V and X → V is a left
fibration.

Proposition 9.66 For a monomorphism i : M → N of simplicial sets and a normal
monomorphism of dendroidal sets j : A→ B over V , the pushout-product

N ⊗ A ∪ M ⊗ B→ N ⊗ B

is a normal monomorphism over V , which is moreover a covariant weak equiva-
lence over V whenever i is a weak homotopy equivalence or j is a covariant weak
equivalence over V .

Dually, if p : X → Y is a fibration over V in the covariant model structure, then
the induced map

homV (B, X) → homV (B,Y ) ×homV (A,Y) homV (A, X)

is a Kan fibration of simplicial sets, which is a trivial fibration whenever j or p is a
covariant weak equivalence over V .

Proof For the first part, fix j : A→ B and consider the classC of all monomorphisms
i : M → N for which the pushout-product of i with j is a covariant trivial cofibration.
This class is saturated, closed under two-out-of-three among monomorphisms, and
contains the left anodyne maps of simplicial sets by Corollary 6.30. But then C

contains all trivial cofibrations of simplicial sets in the Kan–Quillen model structure.
Indeed, if u : A→ B is such a trivial cofibration, factor the uniquemap B→ ∆[0] as a
left anodyne B→ C followed by a left fibrationC → ∆[0]. ThenC is a Kan complex
(see Corollary 5.51). By two-out-of-three it suffices to show that the composite trivial
cofibration A→ C is in C. Factor it again as a left anodyne v : A→ D followed by
a left fibration q : D→ C. Then q is in fact a Kan fibration by Corollary 5.50. Thus
a lift in the square
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A D

C C

∼

v

q

exists and exhibits the map A→ C as a retract of v, completing the argument.
For the other case, fix a monomorphism i of simplicial sets and consider the class

C of normal monomorphisms j : A→ B over V for which the pushout-product with
i is a covariant trivial cofibration. It contains the leaf anodyne morphisms, again
by Corollary 6.30, and satisfies the same closure properties as above. A completely
analogous factorization and lifting argument shows that C must contain all the
covariant trivial cofibrations over V .

The second half of the proposition follows from the first by adjunction. �

We conclude this section with an example. It concerns operads and their algebras
in Sets, but the observation to be made (Proposition 9.67 below) lies at the basis of
an equivalence of homotopy theories between (dSets/w∗P)cov and a model category
structure on simplicial P-algebras for a simplicial operad P. For a precise statement
and proof we refer the reader to Section 14.8.

LetP be an operad in Sets andwriteC for its set of colours. The nerve construction
defines a functor on the category of P-algebras (in Sets)

N(P,−) : AlgP → dSets/NP

sending a P-algebra A to the left fibration N(P, A) → NP (cf. Example 6.10(d)).
Recall that for a dendrex Ω[T] → NP, a lift

N(P, A)

Ω[T] NP

consists of a labelling of the edges ofT by elements of A, compatible with the colours
and operations that the given map Ω[T] → NP assigns to the edges and vertices of
T . Since such a labelling is completely determined by its values on the leaves of T ,
we find that the functor N(P,−) has a left adjoint

FP : dSets/NP→ AlgP

determined on representables over NP by the formula

FP(Ω[T]
ξ
−→ NP) = FreeP(λ(T)

λ(ξ)
−−−→ C).

Here the right-hand side is the free P-algebra generated by the leaves of T , where a
leaf l is considered as a generator of colour ξ(l). We will often simply write FP(T)
or FP(ξ) for this free algebra in what follows, if ξ or T is clear from the context.
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We will prove the following proposition for a family of colours of P indexed by a
set U. Such a family is a map ϕ : U → C between sets or, equivalently, an object

U · η =
∐
U

η→ NP

in the category dSets/NP.

Proposition 9.67 Suppose P is a Σ-free operad in Sets, so that NP is a normal
dendroidal set. Let ϕ be a family of colours of P as above. Then the unit map

U · η→ N(P, FP(ϕ))

is a leaf anodyne map, so in particular a trivial cofibration in the covariant model
structure over NP.

Before embarking on the proof of the proposition, we observe that it easily implies
the following more general statement:

Corollary 9.68 Let P be a Σ-free operad in Sets and let {ξu : Ω[Tu] → NP}u∈U be
a family of dendrices of NP indexed by a set U and write ξ :

∐
u∈U Ω[Tu] → NP

for the induced map from the coproduct. Then the unit map

ξ → N(P, FP(ξ))

is a trivial cofibration in the covariant model structure over NP.

Proof Consider the diagram∐
`[Tu] N(P, FP(

∐
`[Tu] → NP))

∐
Ω[Tu] N(P, FP(

∐
Ω[Tu] → NP))

in which all coproducts are over U. Since FP commutes with coproducts and

FP(Ω[Tu] → NP) = FP(`[Tu] → NP)

by definition, the right-hand map in the diagram is an isomorphism. The left-hand
map is leaf anodyne and hence a trivial cofibration in the covariant model structure
over NP. So the top map is a covariant weak equivalence over NP if and only if the
bottom map is. In particular, the corollary follows from the proposition. �

Proof (of Proposition 9.67) We begin by considering the dendroidal set N(P, FP(U ·
η→ NP))more closely. A dendrex (ξ, a) of shape T is an element ξ ∈ NPT together
with a labelling of each leaf l of T by an element al of the free algebra FP(U · η) of
colour l. Such an element al is given by applying an operation

pl ∈ P(ϕul1, . . . , ϕulnl ; ξl)
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to generators ul1, . . . , u
l
nl
∈ U. So, we can enlarge T by grafting an nl-corolla on top

of the leaf l, labelling its inputs by these generators ul1, . . . , u
l
nl
∈ FP(U · η) and the

vertex of the corolla by pl . (This extension is not unique, but Σn acts freely on the
set of extensions of this type because P is assumed Σ-free.) Doing this for each leaf,
we see that T is a face of another dendrex

(x̃, ã) : T̃ → N(P, FP(U · η)),

where T̃ is obtained from T by grafting corollas onto its leaves and the labelling ã
of the leaves of T̃ is by generators of FP(U · η), i.e., by elements of U. Let us call a
dendrex of this kind special.

Since P is assumed to be Σ-free, the dendroidal sets NP and N(P, FP(U · η)) are
normal and we can build up N(P, FP(U · η)) from U · η by successively attaching
non-degenerate special dendrices, by induction on the size of the dendrex. More
precisely, consider the filtration

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ An+1 ⊆ · · · ⊆ N(P, FP(U · η)),

where An is generated by all the non-degenerate special dendrices indexed by trees
with at most n vertices. Then A0 = U · η. Moreover, since NP is normal, An−1 ⊆ An

fits into a pushout square∐
(T,ξ,a)Ω[T] ×An An−1 An−1

∐
(T,ξ,a)Ω[T] An,

where the coproduct is over isomorphism classes of trees with exactly n vertices and
non-degenerate special dendrices (ξ, a) of N(P, FP(U · η))T . For such a (ξ, a), no leaf
face can be special, while each inner face or potential root face is still special. So
the intersection Ω[T] ×An An−1 is of the form ΛV [T] where V is the set of all leaf
vertices of T . By Lemma 6.21, the map ΛV [T] → Ω[T] is leaf anodyne. Therefore
An−1 → An, as well as A0 → lim

−−→
An, are leaf anodyne maps. This completes the

proof. �

9.6 The Absolute Covariant Model Structure

In this section we will discuss some aspects of the ‘absolute’ covariant model
structure on the category dSets itself, i.e., on dSets/V where V = 1 is the terminal
object. This serves as preparation and motivation for the next section, in which we
will consider a further localization of the absolute covariant model structure, called
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the Picard model structure. The relevance of these two model structures will become
apparent later, when we prove that the associated homotopy categories are equivalent
to those of E∞-spaces and of infinite loop spaces, respectively.

As a special case of Theorem 9.59 (or, in fact, already of Theorem 9.9), we see that
the absolute covariant model structure on dSets has the following characteristics:

(1) The cofibrations are the normal monomorphisms.
(2) The fibrant objects are the dendroidal left Kan complexes, i.e., the dendroidal

sets having the right lifting property with respect to all inclusions Λx[T] →
Ω[T] where x is an inner edge or a leaf vertex in the tree T .

Furthermore, if X is such a fibrant object, then the simplicial set i∗X is a Kan complex
by Corollary 5.51. By Theorem 9.63, a map X → Y between fibrant objects is a
covariant weak equivalence if and only if i∗X → i∗Y is a weak homotopy equivalence
between Kan complexes.

Example 9.69 LetM be a symmetric monoidal category. Recall thatM can naturally
be viewed as an operad M⊗: its colours are the objects of M and its operations
(c1, . . . , cn) → c are the morphisms c1 ⊗ · · · ⊗ cn → c. Taking the nerve, we
obtain a dendroidal set NM⊗. This dendroidal is an ∞-operad; it is even a strict
inner Kan complex. Moreover, NM⊗ clearly has the right lifting property with
respect to `[Cn] → Ω[Cn], as for any objects c1, . . . , cn the identity is an operation
(c1, . . . , cn) → c1 ⊗ · · · ⊗ cn in M⊗. (For n = 0, the object c1 ⊗ · · · ⊗ cn is the
monoidal unit of M.) For NM⊗ to be covariantly fibrant, the nerve NM = i∗NM⊗

of the underlying category must in particular be a Kan complex, so M has to be a
groupoid. We claim that if this is the case, then NM⊗ is indeed covariantly fibrant.
To check this, consider an extension problem of the kind

Λx[T] NM⊗,

Ω[T]

f

g

where x is a leaf vertex (we already know the extension exists for any inner edge x).
We have just seen that an extension exists if T is a corolla (so that Λx[T] → Ω[T]
is the inclusion of its leaves). We claim that for a larger tree T , there exists a unique
extension. If T has two vertices, then it consists of the corolla with vertex x grafted
onto a leaf, say e, of another corolla with vertex y. Write c1, . . . , cn for the inputs
of x and d1, . . . , dm for the inputs of y, where necessarily di = e for some i. Then
f : Λx[T] → NM⊗ sends the vertex x to a map α : f (c1) ⊗ · · · ⊗ f (cn) → f (e) and
the inner face ∂eT to a map

β : f (d1) ⊗ · · · ⊗ f (di−1) ⊗ f (c1) ⊗ · · · ⊗ f (cn) ⊗ f (di+1) ⊗ · · · ⊗ f (dm) → f (r),

with r the root edge ofT . SinceM is a groupoid, both of thesemaps are isomorphisms
and there exists a unique isomorphism γ : f (d1) ⊗ · · · ⊗ f (dm) → f (r) making the
following diagram commute:
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f (d1) ⊗ · · · ⊗ f (di−1) ⊗ f (c1) ⊗ · · · ⊗ f (cn) ⊗ f (di+1) ⊗ · · · ⊗ f (dm) f (r).

f (d1) ⊗ · · · ⊗ f (dm)

β

id⊗α⊗id γ

This defines the desired extension of f to all of T . For a larger tree T with more than
two vertices, its spine Sp[T] is already contained inΛx[T]. Since NM⊗ is strict inner
Kan, there is a unique extension of f |Sp[T ] to a map g : Ω[T] → NM⊗. It remains
to check that g agrees with f on Λx[T]. Write e for the outgoing edge of x again.
For any face ∂yT other than the inner face ∂eT , the spine of ∂yT is already contained
in Λx[T], so that f and g must agree on ∂yT . To argue that f and g agree on the
spine of ∂eT , it remains to check that they agree on the leaf vertex arising as the
composition of x and the vertex below it, to which it is attached via e. This follows
exactly as in the case of a tree with two vertices, which we treated above.

The previous example shows that the dendroidal nerve of a symmetric monoidal
groupoid is a fibrant object in the covariant model structure on dSets. In fact the
converse also holds, as we will now show.

Proposition 9.70 Let X be a covariantly fibrant dendroidal set. Then τX is isomor-
phic to an operad of the form M⊗ associated to a symmetric monoidal groupoid
M.

Applying the proposition to a dendroidal set of the form NP, for an operad P,
gives the following:

Corollary 9.71 Let P be an operad in Sets. If NP is covariantly fibrant, then P
is isomorphic to an operad of the form M⊗ associated to a symmetric monoidal
groupoid M.

Remark 9.72 The unary operations of P constitute a category j∗P. The proposition
asserts that this category carries a symmetric monoidal structure for which the
morphisms c1 ⊗ · · · ⊗ cn → d are in natural bijective correspondence with the
operations in P(c1, . . . , cn; d). It follows from the Yoneda lemma that this tensor
product is unique up to unique isomorphism.

Proof (of Proposition 9.70) Suppose X is covariantly fibrant. Then in particular i∗X
is a Kan complex, so τ(i∗X) is a groupoid. For any sequence of colours c1, . . . , cn,
choose a lift in

`[Cn] X .

Ω[Cn]

This gives another colour d corresponding to the root and an operation δ =
δc1,...,cn ∈ (τX)(c1, . . . , cn; d). Note that any two choices yield isomorphic results
under c1, . . . , cn. More precisely, if ε ∈ (τX)(c1, . . . , cn; e) is induced by another
choice of lift, then we can find a lift in
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Λv[T] X,

Ω[T]

δ∪ε

where T is the tree

w

v
d

e

c1 cn· · ·

and δ ∪ ε is δ on ∂wT and ε on ∂dT . Then an extension to T gives a map ϕ : d → e
in the groupoid τ(i∗X) with ϕ ◦ δ = ε. Such a ϕ is unique, because if ψ is another
map arising in this way, then ϕ and ψ together define a map on the leaf horn of the
tree

w′

w

v
d

e

e

c1 cn· · ·

which corresponds to ϕ on the root face and to ψ on the lowest inner face, and
the degenerate dendrex given by ε and the identity on e on the top inner face. An
extension in particular shows that the diagram

d e

e

ϕ

ψ

commutes in τ(i∗X), so ϕ = ψ.
So, let us fix choices for δ and d and denote these by c1 ⊗ · · · ⊗ cn := d and

δ = δc1,...,cn ∈ (τX)(c1, . . . , cn; c1 ⊗ · · · ⊗ cn).

Then composition with δ defines for each colour a of τ(X) a map

δ∗ : (τX)(c1 ⊗ · · · ⊗ cn; a) → (τX)(c1, . . . , cn; a),

natural in a. This map δ∗ is a bijection, because we have just seen that any two
operations δ ∈ (τX)(c1, . . . , cn; d) and ε ∈ (τX)(c1, . . . , cn; e) differ by a unique
isomorphism ϕ : d → e. In particular, any α ∈ (τX)(c1, . . . , cn; a) is uniquely of
the form δ∗ϕ for such a map ϕ : c1 ⊗ · · · ⊗ cn → a. Having established that δ∗ is
a natural isomorphism, the functoriality and associativity properties of the chosen
tensor product follow from those of τX and the Yoneda lemma. �
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Remark 9.73 The example and proposition above provide an illustration of the
characterization of the covariant weak equivalences between fibrant objects. Indeed,
for a map P → Q of operads, it is in general not enough to be an equivalence of
underlying categories in order for NP→ NQ to be an operadic equivalence. But it
is enough if P and Q arise from symmetric monoidal categories.

Later, we will refine the relation between fibrant objects in the absolute covariant
model structure and symmetric monoidal groupoids by showing that in fact any such
fibrant object gives rise to an E∞-space. For now we make a more basic observation,
namely that for a covariantly fibrant object X the tensor product operation defined
in the proof of Proposition 9.70 can be upgraded to a map of Kan complexes

− ⊗ − : i∗X × i∗X → i∗X .

To do this, first consider the restriction map

hom(Ω[C2], X) → hom(`[C2], X) � i∗X × i∗X .

Since `[C2] → C2 is leaf anodyne and X is covariantly fibrant, this map is a trivial
fibration between Kan complexes. Hence we may choose a section s : i∗X × i∗X →
hom(Ω[C2], X). Now precomposing with the root inclusion η → C2 in the first
variable gives a further map

hom(Ω[C2], X) → hom(η, X) � i∗X .

Composing these maps

i∗X × i∗X → hom(Ω[C2], X) → i∗X

now gives the desired ‘tensor product’. Of course this construction depends on a
choice, namely that of the section s. However, since any two such sections are
fibrewise homotopic, the resulting maps will also be homotopic. Also note that
replacing 2 by n gives a similar construction of an n-fold tensor product

⊗n : (i∗X)n → i∗X .

Using these choices, we can relate the spaces of operations X(x1, . . . , xn; y) in the
∞-operad X to mapping spaces in the underlying∞-category i∗X as follows:

Lemma 9.74 Let X be a dendroidal left Kan complex and let x1, . . . , xn, y be a
sequence of colours of X . Then the choice of n-fold tensor product above defines a
diagram of Kan complexes

X(x1, . . . , xn; y) ← M → i∗X(x1 ⊗ · · · ⊗ xn; y)

where both arrows are trivial Kan fibrations. In particular, the Kan complexes
X(x1, . . . , xn; y) and i∗X(x1 ⊗ · · · ⊗ xn; y) are homotopy equivalent.
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Proof Write ξ : Ω[Cn] → X for the n-corolla of X defined by s(x1, . . . , xn), with s
as above. Thus ξ is a corolla with leaves x1, . . . , xn and root x1 ⊗ · · · ⊗ xn. Consider
the tree T = C1 ◦ Cn, depicted as follows:

w

v
d

e

c1 cn· · ·

Define the simplicial set M by the following pullback square:

M hom(Ω[T], X)

{ξ} × {y} hom(Ω[Cn], X) × hom(η, X).

Here the right-hand vertical map is the product of the restriction along the inclusion
of the leaf corolla v : Cn → T and the restriction along the root inclusion {e} → T .
We can expand this diagram as follows, where both squares are pullbacks:

M hom(Ω[T], X)

K hom(Ω[Cn], X) ×i∗X hom(Ω[C1], X)

{ξ} × {y} hom(Ω[Cn], X) × hom(η, X).

∼

Here the upper vertical map on the right is the restriction along the spine inclusion
Ω[Cn] ∪{d} Ω[C1] → Ω[T] (and hence a trivial fibration, since X is an ∞-operad)
and the lower vertical map on the right restricts further along the root inclusion
{e} → C1. It follows that M → K is also a trivial fibration. Moreover, by restricting
to the root d of Cn, the simplicial set K is clearly isomorphic to the pullback of the
span

hom(Ω[C1], X)

{x1 ⊗ · · · ⊗ xn} × {y} hom(η, X) × hom(η, X).

By definition this pullback is the simplicial set i∗X(x1 ⊗ · · · ⊗ xn; y), establishing
one of the trivial fibrations claimed in the lemma. For the other map, consider the
leaf horn

Λ
v[T] � Ω[Cn] ∪`[Cn] Ω[Cn].

It is the union of the n-corolla with vertex v and the n-corolla arising as the inner
face ∂dT . Construct a similar diagram of pullbacks
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M hom(Ω[T], X)

L hom(Ω[Cn], X) ×(i∗X)×n hom(Ω[Cn], X)

{ξ} × {y} hom(Ω[Cn], X) × hom(η, X),

∼

where now the upper vertical map on the right restricts along the horn inclusion
Λv[T] → Ω[T]. Since that inclusion is a leaf anodyne, the restriction (and hence
also its pullback M → L) is a trivial fibration. By an argument similar to the one
above, we identify the pullback L as X(x1, . . . , xn; y). �

For future use we also observe the following ‘global’ version of Lemma 9.74.
Indeed, the following implies the conclusion of the previous lemma by taking the
fibre over a vertex (x1, . . . , xn, y) ∈ (i∗X)n+1.

Lemma 9.75 Let X be a dendroidal left Kan complex. The Kan fibration

hom(Ω[Cn], X) → hom(∂Ω[Cn], X) � (i∗X)n+1

is homotopy equivalent (via a zig-zag of trivial fibrations over (i∗X)n+1, as before)
to the fibration ϕX defined by the following pullback square:

TnX hom(∆[1], i∗X)

(i∗X)n × i∗X i∗X × i∗X .

ϕX (ev0,ev1)

(⊗n,id)

Proof The strategy of proof is very similar to that of Lemma 9.74. Consider the
same tree T = C1 ◦ Cn as in that proof. The inner face inclusion Cn � ∂dT → T
and spine inclusion Sp[T] → T , which are both covariant trivial cofibrations, induce
trivial fibrations as in the following diagram:

hom(Ω[Cn], X) hom(Ω[T], X) hom(Sp[T], X)

(i∗X)n × i∗X .

∼ ∼

Here the vertical map is induced by restriction along the inclusion
∐

n+1 η → Ω[T]
of all the external edges of T . Thus it suffices to consider the slanted map on the
right. This map fits into a further commutative diagram

hom(Sp[T], X) hom(Ω[C1], X)

(i∗X)n × i∗X hom(Ω[Cv] ∪ {e}, X) i∗X × i∗X,

(ev0,ev1)

∼
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where the square is a pullback. Here Cv denotes the n-corolla with vertex v in T and
e is the root edge of T . The lower left horizontal map is a trivial fibration between
Kan complexes because `[Cv] → Ω[Cv] is a covariant trivial cofibration. Hence it
admits a section s (which is a homotopy equivalence) and moreover the composition
of such an s with the lower right horizontal map precisely defines the map (⊗n, id).
This completes the proof. �

The tensor products on i∗X constructed above are unital and associative up to
homotopy. To be precise, applying our construction of the n-fold tensor product in
the particular case n = 0 defines a colour 1X of X which serves as a unit. Indeed:

Lemma 9.76 Let X be a dendroidal left Kan complex, with tensor products on i∗X
defined as above. The map

1X ⊗ − : i∗X → i∗X

is homotopic to the identity of i∗X . Moreover, the tensor product is associative up to
homotopy, in the sense that the two assignments

(x, y, z) 7→ (x ⊗ y) ⊗ z and (x, y, z) 7→ x ⊗ (y ⊗ z)

are homotopic maps from (i∗X)3 to i∗X .

Remark 9.77 Of course the statement above concerning three-fold tensor products
admits a generalization to n-fold tensor products and associator maps as in our
discussion of unbiased tensor products in Section 4.4. The reader is invited to check
that a version of the argument below provides this generalization.

Proof Let T be the tree

obtained by grafting a 0-corolla onto one of the leaves of C2. Write l for the unique
leaf of T and r for its root. By construction, the map 1X ⊗ − is defined by picking a
section of the trivial fibration

hom(Ω[T], X) → hom({l}, X) � i∗X

and composing with the map

hom(Ω[T], X) → hom({r}, X) � i∗X .

Consider the unique inner face map C1 → T and the resulting commutative diagram

hom({l}, X) hom(Ω[T], X) hom({r}, X)

hom({l}, X) hom(Ω[C1], X) hom({r}, X).
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The leftward map on the bottom row admits a section, defined by the degeneracy
map C1 → η, so that the resulting composite hom({l}, X) → hom({r}, X) is the
identity, after identifying domain and codomain with i∗X . It follows that 1X ⊗ − is
indeed homotopic to the identity.

The argument for associativity is entirely analogous; one compares the tree

and its inner face, which is a 3-corolla, to show that the maps corresponding to
(x ⊗ y) ⊗ z and the 3-fold tensor product x ⊗ y ⊗ z are homotopic. The conclusion
then follows by symmetry. �

9.7 The Picard Model Structure

In Section 9.6 we considered the absolute covariant model structure on the category
of dendroidal sets, which is a left Bousfield localization of the operadic model
structure. Eventually we will show that the corresponding homotopy category is
equivalent to that of E∞-spaces. Anticipating this result, we will study a further left
Bousfield localization of the covariant model structure in this section, called the
Picard model structure. We will see in Section 13.5 that the homotopy category of
the latter is equivalent to that of grouplike E∞-spaces, which in turn is equivalent
to that of infinite loop spaces or connective spectra. In this section we will restrict
ourselves to proving some basic properties of the Picard model structure and giving
some examples of fibrant objects in it, in analogy with the examples of the previous
section.

A Picard groupoid is a symmetric monoidal groupoid C in which for every object
c of C, the functor

c ⊗ − : C→ C

is an equivalence of categories. In other words, every object should be invertible
with respect to the tensor product. We will often write c∨ for an inverse to c, i.e.,
an object such that there exists an isomorphism between c ⊗ c∨ and the monoidal
unit 1. A typical example (and the reason for the name) of a Picard groupoid is the
groupoid of line bundles on an algebraic variety or a manifold.

The relation between Picard groupoids and dendroidal sets lies in the following
observation, building on Corollary 9.71:

Proposition 9.78 Let P be a symmetric monoidal category. Then P is a Picard
groupoid if and only if the nerve NP⊗ of the operad associated to P has the right
lifting property with respect to any horn inclusionΛx[T] → Ω[T]; or, in other words,
if the map NP⊗ → 1 to the terminal dendroidal set is a dendroidal Kan fibration.
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Remark 9.79 Recall that in the special case whereT is a corollaCn, a horn inclusion
Λx[Cn] → Ω[Cn] is of the form ∐

e∈E(Cn)−{x }

η→ Ω[Cn],

where the disjoint union is over all but one of the edges ofCn. In the previous section
we only considered the ‘leaf horn’ of the corolla, which is the inclusion of all leaves
of Cn. This is of course the horn where one omits the root edge.

Proof Corollary 9.71 states that P is a symmetric monoidal groupoid if and only if
NP⊗ is covariantly fibrant. So it suffices to prove that every object of P is invertible
with respect to the tensor product if and only if NP⊗ additionally has the right lifting
property with respect to the following two types of inclusions:

(i) The inclusion ∐
i,n

η→ Ω[Cn]

of all edges in a corolla Cn except for one of its leaves, which we may as well
assume to be the one labelled n:

0

1 n· · ·

(ii) The inclusion Λr [T] → Ω[T] of the root horn into a tree T for which the root
face exists (i.e., there is exactly one inner edge attached to its root vertex).

If P is a Picard groupoid, then the right lifting property with respect to (i) is satisfied,
because given objects c0, . . . , cn−1 in P, an extension to Ω[Cn] → NP⊗ of the
required kind consists of an object cn and a map c1 ⊗ · · · ⊗ cn → c0. Taking

cn = c∨n−1 ⊗ · · · ⊗ c∨1 ⊗ c0

will clearly make this possible.
For the right lifting property with respect to (ii), first consider the case that T has

only one inner edge; for example, T is

r

a e

b c
d

Then amapΛr [T] → NP⊗ is given bymaps f : a⊗d⊗e→ r and g : b⊗c⊗d⊗e→ r
(where we have already labelled edges of T according to their images in P), and we
need to find a map h : b ⊗ c→ a such that
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f ◦ (h ⊗ d ⊗ e) = g.

Such a map indeed exists, because f −1g : b ⊗ c ⊗ d ⊗ e→ a ⊗ d ⊗ e is of the form
h⊗ d ⊗ e for a unique h, using that all the objects involved are invertible with respect
to the tensor product. If T is a larger tree, then Λr [T] contains the spine of T and one
easily finds an extension to T in the same way as in Example 9.69.

Conversely, suppose P is a symmetric monoidal groupoid having the lifting
properties corresponding to (i) and (ii). Write Λ2[C2] for the horn of C2 consisting
of the root edge and the leaf edge 1. Define a map f : Λ2[C2] → NP⊗ by sending
the root to the unit 1 and the one leaf edge to c. Then an extension of f to all of
C2 will send the other leaf edge to an object c∨ with the property that there is an
isomorphism c ⊗ c∨ � 1, showing that P is Picard. �

Remark 9.80 The reader will observe that in the last part of the proof, we have only
used a fraction of the conditions corresponding to the inclusions of types (i) and (ii).
This is indicative of a more general fact, which we will express in Proposition 9.84
below.

Our purpose in this section is to describe the left Bousfield localization of the
(absolute) covariant model structure of the previous section for which the fibrant
objects are precisely the dendroidal Kan complexes, i.e., the dendroidal sets having
the right lifting property with respect to all horn inclusions Λx[T] → Ω[T]. Thus,
by Proposition 9.78, the nerves of Picard groupoids will be particular examples of
fibrant objects of this model structure.

We will establish the existence of this model structure in the same way as for
the covariant model structure, but using a larger class of anodynes. Write P0 for the
class of anodyne maps of dendroidal sets, i.e., the saturation of the set of all horn
inclusions of trees. We write P for the smallest class containing P0, closed under
pushouts and composition, and satisfying the right cancellation property among
normal monomorphisms: if u : A → B, v : B → C are normal monomorphisms
such that u and vu are in P, then v is in P. We call the elements of P Picard anodyne
maps. The following lemma expresses that P is an admissible class:

Lemma 9.81 For any n ≥ 0 and any morphism A → B in P, the pushout-product
map

∂∆[n] ⊗ B ∪ ∆[n] ⊗ A→ ∆[n] ⊗ B

is Picard anodyne.

Remark 9.82 An explicit construction of the class P from P0 is as follows. Define a
class P′1 containing P0 by declaring a normal monomorphism v to be in P′1 if v ∈ P0
or if there exists a u ∈ P0 such that vu exists and is in P0. Then define P1 to be the
closure of P′1 under composition and pushouts. In the same way, construct a class
P2 from P1, etc. Then ⋃

n≥0
Pn

is closed under composition and pushouts and satisfies the right cancellation property.
Moreover, it is the smallest such class containing P0.
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Lemma 9.81 is very similar to our results about pushout-products of various kinds
of anodynes in Section 6.3. Indeed, the cases where A → B is an inner horn, leaf
horn, or root horn corresponding to a unary root vertex are covered by Lemma 6.24
and Corollary 6.30. What remains is to analyze the case of root horns of trees whose
root vertex is not unary, as well as the behaviour of the right cancellation property
under pushout-products. We postpone the somewhat laborious proof of Lemma 9.81
to the end of this section and first consider its consequences.

Inspired by Proposition 9.78 we will also refer to dendroidal Kan complexes as
Picard ∞-groupoids. Any Picard ∞-category X is in particular an ∞-operad, of
course. Also, its underlying∞-category i∗X is a Kan complex, justifying the use of
the term Picard∞-groupoid. The methods of Section 9.1, in particular Theorem 9.9,
now give most of the following:

Theorem 9.83 There exists a left proper, cofibrantly generated model structure on
the category dSets with the following properties:

(a) The cofibrations are the normal monomorphisms.
(b) The fibrant objects are the Picard∞-groupoids.
(c) The fibrations between Picard∞-groupoids are the dendroidal Kan fibrations.
(d) A map X → Y between Picard∞-groupoids is a weak equivalence if and only if

the map of Kan complexes i∗X → i∗Y is a weak homotopy equivalence.

We will refer to the model structure of the theorem as the Picard model structure
and to its weak equivalences as the Picard equivalences. Given Lemma 9.81 above,
the model structure of the theorem is constructed as for Theorem 9.59, now using
for A an admissible set of Picard anodyne maps containing the horn inclusions
of trees; for example, the set of Picard anodyne maps between finite dendroidal
sets. Part (a) of the theorem is then satisfied. It is clear that the Picard model
structure is a left Bousfield localization of the absolute covariant model structure
on dendroidal sets. Therefore item (d) of Theorem 9.83 follows from Theorem 9.63
(characterizing covariant weak equivalences between fibrant objects) and Lemma
8.49 (weak equivalences between local objects do not change in a localization). We
will prove part (b) as Corollary 9.87 below and (c) in Lemma 9.88.

First, let us observe the following analogue of Proposition 6.41, giving several
equivalent characterizations of the class of Picard anodyne morphisms:

Proposition 9.84 Let C be a saturated class of normal monomorphisms between
dendroidal sets which is closed under two-out-of-three amongst normal monomor-
phisms. The following three classes of maps are Picard anodyne. If C contains any
one of these three, then C contains all Picard anodyne morphisms:

(1) For each tree T with at least one vertex, the inclusion∐
η→ Ω[T],

where the coproduct is over all but one of the outer edges (leaves and root) of T .
(This includes the morphism � → Ω[C0].)
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(2) The spine inclusion Sp[T] → Ω[T] of any tree, as well as the inclusions of type
(1) in the case where T is a corolla.

(3) The spine inclusionSp[T] → Ω[T] of any tree, the leaf inclusions `[Cn] → Ω[Cn]

of any corolla, as well as the inclusion

η q η→ Ω[C2]

of one of the leaves and the root of the 2-corolla.

As part of the proof, let us first show the following:

Lemma 9.85 The morphisms listed in (1)–(3) of Proposition 9.84 are all Picard
anodyne.

Proof For (2) and (3) this is clear from the definitions and the fact that spine
inclusions are inner anodyne (Lemma 6.37). The morphisms of (1) are leaf anodyne
in case the missing edge is the root of T , by Proposition 6.41. If the missing outer
edge is a leaf l, we reason by induction on the size of T . If T is a corolla, we are back
in case (2). For a larger tree, write T as a grafting T ′ ◦e Cv , where v is a leaf vertex
of T with outgoing edge e, and Cv denotes the corolla with vertex v. Then

Ω[T ′] ∪e Ω[Cv] → Ω[T]

is inner anodyne by Lemma 6.37. Write Out(T) for the disjoint union of external
edges of T (though of as a subobject of Ω[T]) and similarly for T ′. We consider two
cases:

(a) The missing leaf l is a leaf of Cv .
(b) The missing leaf l is not a leaf of Cv .

In case (a), consider the maps

Out(T) − {l}
f
−→ Ω[T ′] ∪ (Out(T) − {l})

g
−→ Ω[T ′] ∪Ω[Cv] → Ω[T].

The last one is inner anodyne, so it suffices to show that f and g are Picard anodyne.
This follows from the pushout squares

Out(T ′) − {e} Out(T) − {l}

Ω[T ′] Ω[T ′] ∪ (Out(T) − {l}),

Out(Cv) − {l} Ω[T ′] ∪ (Out(T) − {l})

Ω[Cv] Ω[T ′] ∪Ω[Cv]

f

g

and the inductive hypothesis on T ′. In case (b), we consider the maps
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Out(T) − {l}
f
−→ (Out(T) − {l}) ∪Ω[Cv]

g
−→ Ω[T ′] ∪Ω[Cv] → Ω[T].

Again it suffices to check that f and g are Picard anodyne. This can be seen from
the observation that

(Out(T) − {l}) ∪Ω[Cv] = (Out(T ′) − {l}) ∪Ω[Cv]

and the pushout squares

Out(Cv) − {e} Out(T) − {l}

Ω[Cv] (Out(T) − {l}) ∪Ω[Cv],

Out(T ′) − {l} (Out(T ′) − {l}) ∪Ω[Cv]

Ω[T ′] Ω[T ′] ∪Ω[Cv].

f

g

This completes the proof. �

Proof (of Proposition 9.84) It remains to prove that any class C as in the statement
of the proposition contains all Picard anodyne maps. Proposition 6.41 implies that
C contains all leaf anodynes. So it suffices to prove the following statements, for
C a saturated class of normal monomorphisms between dendroidal sets which is
closed under two-out-of-three amongst normal monomorphisms and contains the
leaf anodynes:

(a) If C contains the inclusions of type (1) for the 2-corolla, then C contains those
inclusions for any corolla Cn.

(b) If C contains those inclusions for all corollas Cn, then it contains the inclusions
qη→ Ω[T] as in (1).

(c) If C contains all the inclusions of (1), then it contains the root horn Λr [T] →
Ω[T] for each tree T which admits a root face.

For (a), denote the leaf edges of the n-corolla by 1, . . . , n and its root by 0. It suffices
to consider the inclusions ∐

0≤i<n
η→ Ω[Cn]

of all the edges except the nth leaf. (The case where the root edge is missing is of
course leaf anodyne.) For n = 1 this is the root inclusion of the 1-corolla. To see that
it is contained in C, consider the maps

η0 → Ω[C1] → J .
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The composition, as well as the second map, are leaf anodyne as a consequence of
Lemma 5.22. By the two-out-of-three property, the first map is also in C. We now
consider the case n ≥ 2, working by induction on n. The case n = 2 is contained in
C by assumption. Suppose we have already dealt with the corollas Ck for 2 ≤ k < n.
Consider the inclusion Out(Cn) − {n} → Ω[Cn]. Let T be the tree obtained by
grafting an (n − 1)-corolla Cv on top of a 2-corolla Cw , with edges labelled as in the
following picture:

0

e n

1 n − 1· · ·

v

w

Then Ω[Cn] = Ω[∂eT] → Ω[T] belongs to C, because both horizontal inclusions in

`[Cn] Ω[∂eT]

`[T] Ω[T]

are leaf anodyne. Consider the maps

Out(T) − {n} → (Out(T) − {n}) ∪Ω[Cv] → Sp[T] → Ω[T].

The first one is a pushout of the leaf anodyne `[Cv] → Ω[Cv] and therefore in C.
The second is a pushout of η0 q ηe → Ω[Cw] and hence in C by assumption. The
last map is inner anodyne, so we conclude that the composition of all three maps is
in C. But that map is also the composition of the maps∐

0≤i<n
η→ Ω[Cn] → Ω[T]

and we already observed that the second map is in C. Hence the first is in C as well,
establishing (a).

For (b), consider a general tree T and an inclusion qη → Ω[T] of all but one of
its outer edges. If the missing edge is the root, then the inclusion is leaf anodyne and
thus contained in C. If it is a leaf of T , number the leaves of T by 1, . . . , n such that
n is the missing leaf and consider the inclusions

Out(T) − {n} → Ω[Cn] → Ω[T],

where the second map is the unique map preserving the root and sending leaves of
Cn to leaves of T ; it is the ‘maximal inner face’ of T obtained by contracting all inner
edges. The first map is in C by (a), so by the two-out-of-three property it suffices to
show that the second map is in C as well. This follows from the diagram
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`[Cn] Ω[Cn]

`[T] Ω[T]

and the two-out-of-three property, noting that the horizontal maps are leaf anodyne
and therefore in C.

Finally we prove (c). Note that the final part of the argument for (b) actually
proves the following, to be used below: if f : S → T is any map of trees which gives
a bijection between Out(S) and Out(T), then f is in C. This follows from the diagram

`[S] Ω[S]

`[T] Ω[T]

in which the horizontal arrows are leaf anodyne. Now consider a general tree T ,
larger than a corolla, for which the root face exists. Let V be a collection of external
vertices containing the root vertex. We will show by downward induction on V that
ΛV [T] → Ω[T] belongs to C. In the minimal case where V consists of only the
root vertex, this yields the desired result. Observe that if V is the set of all external
vertices, then ΛV [T] is the union of all inner faces of T . Let e1, . . . , en be all the
inner edges of T . The face map ∂e1T → Ω[T] is a bijection on external edges and
therefore in C. Note that there are pushout squares⋃k−1

i=1 Ω[∂ei ∂ekT] Ω[∂ekT]

⋃k−1
i=1 Ω[∂eiT]

⋃k
i=1 Ω[∂eiT].

Working by induction on the number of inner faces and the size ofT , we may assume
that the top horizontal map is in C. Hence the bottommap is in C as well. Composing
these maps for k = 2, . . . , n it follows that the first of the maps

Ω[∂e1T] → Λ
V [T] → Ω[T]

is in C, and we already noted that the composition is in C. Hence the remaining map
ΛV [T] → Ω[T] is in C as well. This completes the base case where V consists of all
external vertices. For the inductive step on V , assume that V = W ∪ {v} for some
external vertex v. Consider the pushout square

ΛW [∂vT] Ω[∂vT]

ΛV [T] ΛW [T].
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If T is so small that ∂vT is a corolla, then T has only two vertices and is obtained by
grafting the corollaCv onto the root corollaCr along an inner edge e. Then ∂vT = Cr

and the square above should be read as

Out(Cr ) − {e} Ω[Cr ]

ΛV [T] Λr [T].

The top arrow in this second square is in C by assumption and working by induction
on the size of T , we may assume that the top arrow in the first squares is in C as well.
Hence the bottom arrows in both squares are as well, completing the proof. �

We are now ready to establish the promised characterization of the fibrant objects
of the Picard model structure. Note that a dendroidal set X which is fibrant is at least
a dendroidal Kan complex, since horn inclusions of trees are Picard anodyne (and
hence Picard trivial cofibrations). Proposition 9.70 implies that τ(i∗X) is canonically
a symmetric monoidal groupoid. The main step towards this characterization is the
following property of this symmetric monoidal groupoid:

Proposition 9.86 A dendroidal set X is fibrant for the Picard model structure if
and only if it is a dendroidal left Kan complex for which the symmetric monoidal
groupoid τ(i∗X) is a Picard groupoid, i.e., if every object is invertible with respect
to the tensor product.

Proof Recall that the fibrant objects of the A-model structure are precisely the A-
local objects. In the case at hand, this means that a dendroidal set X is fibrant if and
only if for every Picard anodyne morphism f : A→ B, the map

hom(B, X) → hom(A, X)

is a trivial fibration of simplicial sets.
First assume that X is fibrant in the Picard model structure. Then X is in particular

fibrant in the absolute covariant model structure and therefore a dendroidal left Kan
complex. Using that X has the extension property with respect to the inclusion
η q η → Ω[C2] of one leaf and the root of C2, it is straightforward to see that any
object x of the symmetric monoidal groupoid τ(i∗X) has an inverse with respect to
the tensor product. Indeed, one picks a lift in the diagram

η q η X,

Ω[C2]

(x,1X )

where the top horizontal map sends one leaf ofC2 to x and the root to 1X . Evaluating
the lift on the other leaf of C2 gives the desired inverse x∨.
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For the converse, assume X is a dendroidal left Kan complex for which τ(i∗X) is
a Picard groupoid. Write C for the collection of normal monomorphisms f : A→ B
for which the map above is a trivial fibration. It is saturated and closed under two-
out-of-three. Moreover, it contains all leaf anodyne morphisms by the assumption
that X is a dendroidal left Kan complex and hence fibrant in the absolute covariant
model structure. By Proposition 9.84 it suffices to show that C contains the inclusion
η q η → Ω[C2] of one of the two leaves and the root of the 2-corolla. Thus, we
should check that the Kan fibration

hom(Ω[C2], X) → hom(η q η, X) � i∗X × i∗X

is in fact a trivial fibration. We will do this by checking that the fibre of this map over
any vertex (x1, y) of i∗X× i∗X is contractible. By Lemma 9.75, this fibre is homotopy
equivalent to the simplicial set Y defined by the following pullback square:

Y Pyi∗X

{x1} × i∗X i∗X

ev0

⊗

Here Pyi∗X denotes the fibre of ev1 : hom(∆[1], i∗X) → i∗X over the vertex y. We
claim that the bottom horizontal map is a homotopy equivalence. It follows that the
top map is a homotopy equivalence as well; since Pyi∗X is contractible, this proves
the lemma.

To establish our claim, recall that τ(i∗X) is a Picard groupoid, so there exists a
vertex x∨1 such that x1 ⊗ x∨1 and x∨1 ⊗ x1 are equivalent to the unit 1X . But since
the tensor product on i∗X is unital and associative up to homotopy (Lemma 9.76),
it follows that x1 ⊗ − has a left and right homotopy inverse, hence is a homotopy
equivalence. �

Corollary 9.87 A dendroidal set X is fibrant for the Picard model structure if and
only if it is a Picard ∞-groupoid, i.e., has the extension property with respect to all
horn inclusions of trees.

Proof If X is fibrant then it has the extension property with respect to all horn
inclusions, because those inclusions are Picard anodyne. Conversely, in the proof of
Proposition 9.86 we already saw that for any dendroidal left Kan complex X which
has the extension property with respect to the inclusion ηq η→ C2 of a leaf and the
root, the groupoid τ(i∗X) is Picard. In particular this holds true if X is a dendroidal
Kan complex. But then Proposition 9.86 implies that X is fibrant. �

We can now also characterize the fibrations between fibrant objects:

Lemma 9.88 A map f : X → Y between Picard ∞-groupoids is a fibration in the
Picard model structure if and only if it is a dendroidal Kan fibration, i.e., has the
right lifting property with respect to all horn inclusions.
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Proof Wewill use the fact that the Picard model structure is a left Bousfield localiza-
tion of the absolute covariant model structure. By Lemma 8.50 (fibrations between
fibrants do not change under localization), the map f is a Picard fibration if and
only if it is a fibration in the covariant model structure. By Theorem 9.59(c), we
see that this is the case if and only if f is a left fibration. Thus in particular, every
dendroidal Kan fibration between Picard ∞-groupoids is a Picard fibration. For the
converse, suppose that f is a left fibration between Picard ∞-groupoids. We will
argue that f also has the right lifting property with respect to any root horn inclusion
Λr [T] → Ω[T]. In other words, we will show that the map of simplicial sets

hom(Ω[T], X) → hom(Λr [T], X) ×hom(Λr [T ],Y) hom(Ω[T],Y )

is surjective on vertices. In fact, we can even argue that this map is a trivial fibration.
Indeed, it is a Kan fibration by Proposition 9.66. To see that it is a weak homotopy
equivalence, consider the diagram

hom(Ω[T], X)

hom(Λr [T], X) ×hom(Λr [T ],Y) hom(Ω[T],Y ) hom(Ω[T],Y )

hom(Λr [T], X) hom(Λr [T],Y ).

∼ ∼ ∼

The left slanted and right vertical maps are trivial fibrations because X and Y are
assumed to be fibrant objects. The left vertical map, being a pullback of a trivial
fibration, is then also a trivial fibration. The map into the upper left corner of the
square is then a weak equivalence by two-out-of-three. �

To conclude this section we prove Lemma 9.81. We first observe the following
general fact about pushout-products:
Lemma 9.89 LetC be a class ofmapswhich is closed under pushout and composition
and satisfies the right cancellation property. For a fixed map i : A → B, consider
the class B of maps j : C → D such that the pushout-product

B ⊗ C ∪ A ⊗ D→ B ⊗ D

is contained in C. ThenB is also closed under pushout and composition and satisfies
the right cancellation property.

Proof The case of pushouts and composition was already covered in Lemma 4.23.
For the right cancellation property, consider j : C → D and k : D → E such that j
and k j are in B. Consider the diagram

A ⊗ D ∪A⊗C B ⊗ C B ⊗ D

A ⊗ E ∪A⊗C B ⊗ C A ⊗ E ∪A⊗D B ⊗ D B ⊗ E .
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The square is a pushout. The top horizontal map is in C by assumption, so that the
bottom horizontal map in the square is in C as well. The composite of the lower two
horizontal maps is in C by assumption. Since C has the right cancellation property,
the remaining horizontal map is in C. Hence k is in B. �

Recall that P0 denotes the class of anodyne maps of dendroidal sets and P

denotes the smallest class containing P0 that is moreover closed under pushouts and
composition and satisfies the right cancellation property. We explained in Remark
9.82 how to construct P from P0 explicitly by defining intermediate classes Pn for
n ≥ 0. Now suppose that the pushout-product of any element of P0 with a normal
monomorphism is contained inP. Then Lemma 9.89 implies that the same is true for
elements of P1 and, by induction, for elements of any Pn. Hence, to prove Lemma
9.81, it suffices to treat the generators of P0, i.e., the case where A → B is a horn
inclusion of a tree. As already remarked immediately after the statement of the
lemma, the only case we still have to cover is that of a root horn of a tree T whose
root vertex is not unary. We split the statement into two parts:

Lemma 9.90 Let T be a non-unary corolla and let l be a leaf of T . Then for any
n ≥ 0, the map

∂∆[n] ⊗ Ω[T] ∪ ∆[n] ⊗ (∂T − {l}) → ∆[n] ⊗ Ω[T]

is Picard anodyne.

Lemma 9.91 LetT be a treewith at least two vertices, such thatT admits a non-unary
root face. Then for any n ≥ 0, the map

∂∆[n] ⊗ Ω[T] ∪ ∆[n] ⊗ Λr [T] → ∆[n] ⊗ Ω[T]

is Picard anodyne.

Remark 9.92 Note that the lemmas above do not state that these pushout-product
maps are root anodyne. In that sense, these lemmas are qualitatively different fromour
previous results (namely Lemma 6.24 and Corollary 6.30) about pushout-products
of other inner, leaf, and unary root anodynes.

In the proofs of these lemmas it will be convenient to use the following:

Lemma 9.93 Let T be a tree and let V ⊆ Ω[T] be a union of subtrees S of T such
that for each subtree S occurring in the union, `[S] ⊆ `[T]. In words, each leaf of S
should also be a leaf of T . Then the inclusion V ∪ `[T] ⊆ Ω[T] is in P.

Proof Since P satisfies the right cancellation property and `[T] → Ω[T] is in P, it
suffices to show that `[T] → V∪`[T] is inP. We work by induction on the number of
subtrees S constituting V . If there is only one, then `[T] → Ω[S] ∪ `[T] is a pushout
of `[S] → Ω[S] and hence leaf anodyne. For a larger number of trees S1, . . . , Sn,
consider the pushout square
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Sn ∩ (S1 ∪ · · · ∪ Sn−1)

)
∪ `[Sn] S1 ∪ · · · ∪ Sn−1 ∪ `[T]

Sn T .

(As usual we have abbreviated Ω[T] by T and similarly for the Si .) Then it suffices
to show that the left vertical map is in P. That map is of the same form but for fewer
subtrees, with Sn playing the role of T . This establishes the inductive step. �

Proof (of Lemma 9.90) For n = 0 there is nothing to prove, so assume n > 0. The
map of the lemma is a normal monomorphism by Proposition 4.21 and we will
accordingly regard

A0 := ∂∆[n] ⊗ T ∪ ∆[n] ⊗ (∂T − {l})

as a subobject of ∆[n] ⊗T . Throughout this proof we write v for the unique vertex of
T . The shuffles of the tensor product ∆[n] ⊗ T are linearly ordered, where the initial
shuffle R0 is obtained by grafting T on top of the linear tree [n] and the final shuffle
Rn has copies of [n] grafted onto the leaves of T :

...

l0 a0
· · ·

r0

rn−1

rn

R0 :

l0 a0
l1 a1

...
...

· · ·

ln an
rn

Rn :

We have only explicitly drawn one leaf of T other than l and called it a, but of
course there could be many. The ith shuffle Ri is characterized by the fact that i is
the smallest number for which the edge (i, r) = ri occurs in Ri . Alternatively, it is
the unique shuffle containing the vertex (i, v) = vi . Setting

Ai := A0 ∪ R0 ∪ · · · ∪ Ri−1

gives a filtration
A0 ⊆ A1 ⊆ · · · ⊆ An+1 = ∆[n] ⊗ T

and it will suffice to show that each inclusion Ai ⊆ Ai+1, adjoining a shuffle Ri , is
Picard anodyne. We treat the cases i = 0, 0 < i < n, and i = n separately.

First, for i = 0, all faces of R0 are contained in A0 with the exception of the
inner face contracting r0. Thus A0 → A1 is a pushout of the inner horn inclusion
Λr0 [R0] → R0 and therefore inner (in particular Picard) anodyne.

For 0 < i < n, we define a further filtration
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Ai =: A0
i ⊆ A1

i ⊆ A2
i ⊆ · · · ,

⋃
j

Aj
i = Ai+1,

by adjoining the prunings P of Ri one by one, in an order that extends the partial
ordering of inclusion of prunings. Consider a step Aj

i ⊆ Aj+1
i adjoining some pruning

P. If P does not contain the vertex vi , then it is only some linear part of Ri containing
the root rn and is contained in A0, leaving nothing to prove. If P does contain vi ,
write J(P) for the set of all inner edges of P except for the outgoing edge ri of the
vertex vi . (Compared to our earlier proofs of this kind, the edge ri will play the role
of the ‘special edge’.) For a subset H ⊆ J(P) we write PH for the tree obtained
from P by contracting all edges in J(P) − H. Pick a linear order on the collection of
subsets of J(P) extending the partial order of inclusion and adjoin the trees PH to
Aj
i in this order to obtain a further filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ Aj,2

i ⊆ · · · ,
⋃
k

Aj,k
i = Aj

i ∪ P = Aj+1
i .

We claim that each inclusion Aj,k
i ⊆ Aj,k+1

i is inner anodyne. Indeed, say this
inclusion is given by adjoining some tree PH . If PH is already contained in Aj,k

i
then there is nothing to prove. If it does not, we observe the following:

(1) Any leaf face of PH is contained in a smaller pruning and therefore in Aj
i .

(2) The root face of PH is contained in ∂n∆[n] ⊗ T , so in particular in A0.
(3) Any face of PH contracting an inner edge e other than ri is contained in PH′

with H ′ = H − {e} and therefore in Aj,k
i by our induction on the size of H.

(4) The inner face of PH contracting the inner edge ri cannot be contained in Aj,k
i ,

cf. (a)-(c) below.

It follows that Aj,k
i ⊆ Aj,k+1

i is a pushout of the inner horn inclusionΛri [PH ] → PH

and hence inner anodyne as desired. It remains to verify the following:

(a) The inner face ∂ri PH still contains a non-unary vertex and is therefore clearly
not contained in ∆[n] ⊗ (∂T − {l}).

(b) The face ∂ri PH is not contained in ∂∆[n] ⊗ T . Indeed if it were, then it would
be contained in ∂i∆[n] ⊗ T , meaning that ri is the only occurrence of i in PH .
In particular, all edges of the form li and ai above vi in P must have been inner
and must already have been contracted to form PH . But then PH factors through
the earlier shuffle Ri−1, contradicting our assumption that PH is not contained
in Aj,k

i .
(c) It follows from (a) and (b) that ∂ri PH is not contained in A0. Also, it cannot

be contained in an earlier shuffle (only in later ones, where v is shuffled down
further), not in an earlier pruning, nor in some previous PH . We conclude that
indeed ∂ri PH cannot be contained in Aj,k

i .
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We now proceed to the remaining case i = n, adjoining the shuffle Rn. It is
here that the right cancellation property of P will play an important role. The map
An ⊆ An ∪ Rn = An+1 is a pushout of the inclusion An ∩ Rn → Rn and hence
it suffices to show that the latter map is Picard anodyne. First observe that the
intersection An ∩ Rn is a union E ∪ L of the following two subobjects:

(1) L is the union of the leaf branches ∆[n] ⊗ {a}, for a ranging over the leaves of
T other than l. Of course L is already contained in A0.

(2) E is a union E =
⋃

0≤i≤n Ei , where Ei is the inner face of Rn obtained by
contracting all edges of the form li and ai (if i > 0, so that these are inner) or
the outer face chopping off the leaves of the form l0 and a0 (for i = 0). Note that
Ei ⊆ A0 for i < n, whereas the inner face En is contained in the previous shuffle
Rn−1. �

We will work by induction on the dimension n of the simplex ∆[n]. For n = 0 the
map under consideration is

E0 ∪ L → R0.

This is just a horn inclusion of the corolla associated with the leaf l and hence Picard
anodyne by definition. Indeed, E0 is the root edge of the corolla T , whereas L is the
union of all leaf edges other than l.

For n > 0 we consider the diagram

E0 ∩ (E1 ∪ · · · ∪ En ∪ L) E1 ∪ · · · ∪ En ∪ L

E0 E0 ∪ · · · ∪ En ∪ L Rn

The slanted map is Picard anodyne by Lemma 9.93. Applying the right cancellation
property to the triangle in the diagram, we see that it suffices to show that the right-
hand vertical map is Picard anodyne. In turn, this map is a pushout of the left vertical
map. Thus it suffices to show that the latter is Picard anodyne. But this map is exactly
of the general form E ∪ L → R again, but now for smaller n; indeed, the outer face
E0 is the last shuffle of the tensor product ∂0∆[n] ⊗ T . This establishes the inductive
step and completes the proof.

Proof (of Lemma 9.91) The strategy is very similar to the proof of Lemma 9.90
above. Write e for the unique inner edge attached to the root vertex v of T and list the
other incoming edges of v (which are necessarily leaf edges) as a1, . . . , ak . Again
we regard

A0 := ∂∆[n] ⊗ T ∪ ∆[n] ⊗ Λr [T]

as a subobject of ∆[n] ⊗ T , and consider a linear order on the shuffles of the tensor
product ∆[n] ⊗ T compatible with the partial order starting with the shuffle R0
obtained by grafting T on top of the linear tree [n] and ending with the shuffle RN

having copies of [n] grafted onto the leaves of T . Adjoining the Ri one by one gives
a filtration
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A0 ⊆ A1 ⊆ · · · ⊆ AN = ∆[n] ⊗ T

with
Ai := A0 ∪ R0 ∪ · · · ∪ Ri−1.

We will show that each inclusion Ai ⊆ Ai+1 is Picard anodyne.
We will distinguish two cases: one where the shuffle Ri being adjoined does not

have the root vertex v of T occurring at the bottom and one where it does. In the
first case, the inclusion Ai ⊆ Ai+1 adjoining Ri is inner anodyne. The argument is
essentially the same as before and we summarize it briefly. One refines the inclusion
Ai ⊆ Ai+1 by adjoining prunings P of Ri one by one and then filtering further by
adjoining inner faces PH of such prunings, contracting inner edges of P other than
the ‘special edge’ ri . Then each step of the filtration is either an identity or a pushout
of the inner horn inclusion

Λ
ri [PH ] → PH

by exactly the same argument as in our previous proof.
For the case where the root vertex v of T occurs at the root of the shuffle Ri , the

argument will also be similar to that of our previous proof. As before it suffices to
show that the inclusion Ai ∩ Ri → Ri is Picard anodyne. The intersection Ai ∩ Ri

may now be described as a union E ∪ L of the following subobjects:

(1) L is the union of the leaf branches ∆[n] ⊗ {aj}, for 1 ≤ j ≤ k. All of these are
already contained in A0.

(2) E is a union E0 ∪ E ′, where E ′ is the union of inner faces obtained as the
intersection of Ri with all the previous shuffles already adjoined. The face E0 is
the pruning of Ri obtained by removing all edges of which the first coordinate
is 0. In particular, it is a shuffle of ∂0∆[n] ⊗ T .

Again, we work by induction on the dimension n of the simplex ∆[n]. For n = 0 the
map under consideration is isomorphic to Λr [T] → T and hence Picard anodyne by
definition. For n > 0 we consider the diagram

E0 ∩ (E ′ ∪ L) E ′ ∪ L

E0 E0 ∪ E ′ ∪ L Rn

The slanted map is Picard anodyne by Lemma 9.93. As before it suffices to show that
the left-hand vertical map is in P. Again it is of the same general form as the map
Ai ∩ Ri → Ri , but now for the smaller tensor product ∂0∆[n] ⊗ T . This establishes
the induction. �
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Historical Notes

What we call the operadic model structure on dendroidal sets originates in [40], as
does the its version for uncoloured dendroidal sets. The covariant model structure
for dendroidal sets was first studied in [77]. The Picard model structure first appears
in work of Bašić–Nikolaus [13], who called it the ‘stable model structure’ because
of its relation to infinite loop spaces. (We have chosen a different term, not only
because of the relation to Picard categories, but also to avoid possible confusion
with the notion of a stable model category.)

Our presentation here is different from all of these sources. We have tried to give
uniform proofs of the existence of these various model structures by introducing
the A-model structure. As the reader will have noticed, the existence of ‘countable
approximations’ of a trivial cofibration (Lemma 9.22) proved by means of the ladder
argument plays a central role in establishing the model structures.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 

Commons license, unless indicated otherwise in a credit line to the material. If material is not 

included in the chapter’s Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 

the copyright holder. 

http://creativecommons.org/licenses/by/4.0/


Part III
The Homotopy Theory of Simplicial and

Dendroidal Spaces



Chapter 10
Reedy Categories and Diagrams of Spaces

In later chapters we will develop the homotopy theory of simplicial and dendroidal
spaces, i.e., diagrams of simplicial sets indexed on the categories ∆op and Ωop. There
is a standard way of equipping such diagram categories with a model structure other
than the projective one, but with the sameweak equivalences, called the Reedy model
structure. This structure has the advantage that both the fibrations and cofibrations
are easy to control. In this short chapter we will introduce the theory of Reedy
categories and the Reedy model structure, as well as its basic features. Moreover,
this model structure will be a very useful tool for studying (co)simplicial objects
in general model categories. It provides a flexible framework for various notions of
‘geometric realization’ for such objects, as well as a general theory of ‘resolutions’ of
objects of an arbitrary model category, which will be important in the next chapter.

We illustrate the usefulness of cosimplicial objects in model categories by giving
a general construction (due to Bousfield–Kan) of homotopy colimits in Section 10.5.
The concluding Section 10.6 is a discussion of Quillen’s Theorems A and B; these
are fundamental tools in the study of categories from the point of view of simplicial
homotopy theory and their proofs serve as a demonstration of the use of bisimplicial
sets and homotopy colimits.

10.1 Reedy Categories

Recall fromExample 7.46 that ifE is a cofibrantly generatedmodel category andC is
a small category, then the categoryEC ofC-indexed diagrams inE carries a projective
model structure. The fibrations are easily described as those natural transformations
of diagrams which give a fibration in E after evaluation at any object in C (and the
weak equivalences are described similarly). The cofibrations, by contrast, are less
explicit: they are defined simply by having the left lifting property with respect to
trivial fibrations. As a consequence, the projective model structure has relatively few
cofibrations, which can be inconvenient. In this section we will introduce a class of
indexing categories, the so-called Reedy categories, for which model structures on

423© The Author(s) 2022 

G. Heuts, I. Moerdijk, Simplicial and Dendroidal Homotopy Theory,  

75, https://doi.org/10.1007/978-3-031-10447-3_10 

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern   

Surveys in Mathematics 

 

 

 

 
 
 

https://doi.org/10.1007/978-3-031-10447-3_10
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10447-3_10&domain=pdf


424 10 Reedy Categories and Diagrams of Spaces

the functor category EC exist in which the fibrations and cofibrations play a more
symmetric role. In particular, these model structures will have more cofibrations
than the projective model structure. The weak equivalences will remain the same.

Definition 10.1 A Reedy category is a category R equipped with the following
structure:

• a function d : ob(R) → N, called the degree function,
• two subcategories R+ and R−, called the subcategories of positive and of negative
morphisms, respectively.

These data should satisfy the following axioms:

(a) Every morphism f : r → s can be factored as f = p ◦ n, where p is positive and
n is negative, and this factorization is unique up to isomorphism.

(b) If f : r → s belongs to R+ then d(r) ≤ d(s). This inequality is strict unless f
is an isomorphism. Similarly, if f : r → s belongs to R− then d(r) ≥ d(s) and
moreover d(r) > d(s) unless f is an isomorphism.

(c) Conversely, any isomorphism is both positive and negative.
(d) If f : r → s belongs to R+ and θ is an automorphism of r , then f θ = f

implies that θ = id. Dually, if f : r → s belongs to R− and θ f = f for some
automorphism θ of s, then θ = id. (Informally, ‘isomorphisms regard positive
morphisms as monos and negative morphisms as epis’.)

Remark 10.2 (1) We will often denote the degree function as

d(r) = |r |

and write r
−
−→ s or r

+
−→ s to denote a morphism that is negative or positive,

respectively.
(2) The uniqueness condition (a) means that in a solid commutative diagram

q r

s t

−

− +
'

+

there exists an isomorphism as indicated by the dashed arrow, making both triangles
commute. This isomorphism is unique by condition (d).

(3) If R is a Reedy category, then the opposite category Rop also acquires the
structure of a Reedy category by interchanging the roles of the positive and negative
morphisms. (However, we shall try to avoid using both structures, as it is easier to
keep a single notion of positive and negative morphisms in mind for the examples
below.)

Example 10.3 (1) The original example motivating the definition is the simplex
category ∆, where ∆+ consists of injections and ∆− of surjections, while the degree
function d is defined by d([n]) = n. This category has no nontrivial isomorphisms,
of course.
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(2) Every group or groupoid is a Reedy category, where every morphism is both
positive and negative.

(3) The category Ω is a Reedy category as follows. For a tree T , we define its
degree d(T) to be the number of vertices in T . The subcategory Ω+ consists of
compositions of faces and isomorphisms, while Ω− consists of compositions of
degeneracies and isomorphisms. The factorization axiom (a) holds by Proposition
3.9.

(4) The category F of finite sets is a Reedy category, where monomorphisms are
positive and surjections are negative, while the degree function d counts the number
of elements of a set.

(5) The category Fpart of finite sets and partial maps is a Reedy category. Recall
that a partial map f : A→ B is a pair (A′ ⊆ A, f : A′ → B), with ϕ a map of finite
sets. We refer to the subset A′ as the domain of definition of f and denote it dom( f ).
Every such partial map f : A→ B can be factored as a composition of partial maps

A dom( f ) im( f ) B,

where the first map A→ dom( f ) is the ‘inert’ mapwhich is the identity on dom( f ) ⊆
A and undefined outside dom( f ). As before we define the degree function d as
the cardinality, partially defined surjections as negative maps and totally defined
injections as positive morphisms. This category Fpart is isomorphic to the category
F∗ of finite pointed sets via the functor adding to each set A a disjoint basepoint and
extending each partial map f : A→ B to an actual map

f+ : Aq {∗} → B q {∗}

sending every element outside dom( f ) to the basepoint.
(6) The category Γ introduced in Section 3.5.7 is the opposite of the category

Fpart (or F∗). Therefore it becomes a Reedy category by defining a morphism in Γ to
be positive (resp. negative) if its opposite is negative (resp. positive) in Fpart. Recall
that taking the set of vertices of a tree defines a functor

V : Ω→ Γ.

This functor preserves the Reedy structure. For example, if S → T is a face map
in Ω, every vertex v in S is mapped to a subtree Tv of T and this defines a partial
surjection V(T) → V(S), sending the vertices in Tv back to v.

Example 10.4 There is a collection of examples of a slightly different nature, which
will be useful in deriving some general properties of homotopy limits and colimits,
cf. Section 10.5 below. Among them are the following.

(1) The ‘span category’

• • •

can be made into a Reedy category in three distinct ways, depicted as
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• • •, • • •, • • •.
++ −+ −−

The same applies to its opposite.
(2) The category N corresponding to the poset of natural numbers, as well as

its opposite, can be made into Reedy categories in a unique way so as to make the
degree function the identity:

0 1 2 · · ·
+ + +

and
0 1 2 · · · .

− − −

Proposition 10.5 If ϕ : R→ S is an equivalence of categories andS has the structure
of a Reedy category, then R can also be equipped with the structure of a Reedy
category in a unique way for which ϕ preserves the Reedy structure.

The proof of the proposition is obvious and implies the following useful fact.

Corollary 10.6 Every Reedy category is equivalent to a skeletal Reedy category.

10.2 Reedy Fibrations

In this section E is a fixed model category. For a Reedy category R, we consider
the category ERop of ‘E-valued presheaves on R’. For example, if E is the category
of simplicial sets with the Kan–Quillen model structure, then the categories of
bisimplicial sets

sSets∆op

and of dendroidal simplicial sets

sSetsΩop

are of this form. Since we think of simplicial sets with the Kan–Quillen model
structure as a substitute for the homotopy theory of topological spaces, we will
often refer to these as the categories of simplicial spaces and of dendroidal spaces,
respectively.

For a simplicial set X , the face maps on Xn define a map

Xn → X(∂∆[n]).

Here X(∂∆[n]) is the set of maps from ∂∆[n] → X , which can also be written as the
limit

lim
←−−

α : [m]→[n]
Xm,
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where the limit ranges over all proper injections α : [m] → [n] in ∆. The same
definition makes sense for arbitrary Reedy categories R. Call a morphism r → s
in R strictly positive if it is positive and not an isomorphism. If X is an E-valued
presheaf on R, we will write

X(∂r) = lim
←−−

α : s
+
−→r

Xs

where the limit ranges over all strictly positive morphisms into r . More precisely, this
is the limit over the full subcategory of R/r consisting of strictly positive morphisms
into r . Equivalently (by an evident cofinality argument), one can take the limit over
the full subcategory of R/r consisting of those t → r which factor through some
strictly positive s→ r . From the latter description it is clear that X(∂r) is functorial
in r and in particular carries a (right) action by the group Aut(r). Moreover, there is
an Aut(r)-equivariant map X(r) → X(∂r). More generally, if Y → X is a morphism
in ERop , we obtain for each object r in R an Aut(r)-equivariant map in E,

Y (r) → Y (∂r) ×X(∂r) X(r),

natural in r . These are usually called matching maps in the literature.

Definition 10.7 AmapY → X in ERop is called a Reedy (trivial) fibration if for each
object r in R, the matching map above is a (trivial) fibration in E.

We will see later that these are indeed the (trivial) fibrations for a model structure
on ERop . The results of this section are preparing for that.

In order to characterize these fibrations by a lifting property we introduce some
notation. If P is a presheaf of sets on R and A is an object of E, we can define an
object A � P of ERop by

(A � P)(r) := A × P(r) =
∐

x∈P(r)

A.

In particular, we will use this notation for P the representable presheaf R(−, r) and
for the subpresheaf R+(−, r) of morphisms t → r which factor through a strictly
positive morphism into r . We will usually abbreviate the presheaf R(−, r) by just r
and the subpresheafR+(−, r) by ∂r . Thus, there are natural bijective correspondences
between sets of morphisms

HomERop (A � r, X) = HomE(A, X(r))

and
HomERop (A � ∂r, X) = HomE(A, X(∂r)),

for any A in E and X in ERop . From these correspondences we immediately obtain
the following lemma.
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Lemma 10.8 AmapY → X in ERop is a Reedy fibration (or a Reedy trivial fibration)
if and only if for every object r in R and every trivial cofibration A → B in E (or
every cofibration, respectively) the map Y → X has the right lifting property with
respect to

A � r ∪A�∂r B � ∂r → B � r .

Remark 10.9 If E is cofibrantly generated, the same is of course true when one only
considers generating (trivial) cofibrations A→ B.

We shall need to consider natural maps of the form

Y (r) → Y (V) ×X(V ) X(r)

for ‘subobjects of the boundary’ V ⊆ ∂r . More precisely, let us call a subpresheaf
V ⊆ R(−, r) positive if each s → r in V factors through some strictly positive map
t → r belonging to V . Thus, ∂r is the maximal such positive subpresheaf of R(−, r).
We will need the following simple lemma for such V .

Lemma 10.10 Let V ⊆ R(−, r) be a positive subpresheaf. Then for any strictly
positive f : s→ r not belonging to V , the pullback f −1(V) is a positive subpresheaf
of R(−, s).

Proof This subpresheaf f −1(V) consists of those t → s for which the composition
t → s → r with f lies in V , so in particular factors through some strictly posi-
tive m : x → r in V . We can take for m the positive part in the negative-positive
factorization of t → r , as indicated in the outer square of the following diagram.

s r

y

t x

+

f

+

−

−

m +

'

We claim that t → s must factor through a strictly positive map in f −1(V) as well.
Indeed, factor t → s as

t
−
−→ y

+
−→ s

as in the diagram. Then by uniqueness of factorizations, there exists an isomorphism
x
'
−→ y making the diagram commute. If y → s would not be strictly positive, then it

would be an isomorphism. But then f would be isomorphic to m and hence belong
to V . This contradicts the assumption. �

For V as in the lemma, we will write

X(V) := lim
←−−

(s→r)∈V

X(s),
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extending the notation X(∂r). Thus X(V) is characterized by the bijective correspon-
dence

HomERop (A � V, X) = HomE(A, X(V)),

for every A in E.

Proposition 10.11 (i) If Y → X is a Reedy (trivial) fibration, then for each r in R
and each positive subpresheaf V ⊆ ∂r , the generalized matching map

Y (r) → Y (V) ×X(V ) X(r)

is a (trivial) fibration in E. In particular, so is Y (r) → X(r).
(ii) If Y → X is a Reedy fibration, then it is a Reedy trivial fibration if and only if

Y (r) → X(r) is a weak equivalence in E for every r in R.

Proof (i) First note that the ‘in particular’ part is simply the special caseV = �. The
proof of the other statement proceeds by induction on the degree of r and the size of
V . For |r | = 0 there is nothing to prove, as ∂r = �.

For a given r , suppose the statement is true for all s of smaller degree and all
V ⊆ ∂s. If V ⊂ W ⊆ ∂r and W is the presheaf generated by adjoining a single
strictly positive morphism f : s→ r to V , we can consider the diagram

Y (W) ×X(W ) X(r) Y (V) ×X(V ) X(r)

Y (W) Y (V) ×X(V ) X(W)

Y (V) ×Y( f −1V ) Y (s) Y (V) ×X( f −1V ) X(s)

Y (s) Y ( f −1V) ×X( f −1V ) X(s)

in which each square is a pullback. The bottom horizontal map is a (trivial) fibration
by the inductive hypothesis and Lemma 10.10, hence so is the top one.

Now let us suppose thatR is countable for themoment. Then themaximal positive
subpresheaf ∂r ⊆ r can be written as a union

V = V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ · · · ,
⋃
n

Vn = ∂r,

where Vn+1 is obtained by adjoining a single strictly positive arrow s → r to Vn.
Thus Y (∂r) ×X(∂r) X(r) is the limit of a tower
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Y (r) Y (∂r) ×X(∂r) X(r)

...

Y (Vn) ×X(Vn) X(r)

Y (Vn−1) ×X(Vn−1) X(r)

...

Y (V0) ×X(V0) X(r).

Since all the maps in the tower have just been shown to be (trivial) fibrations, so is
the projection from the limit,

Y (∂r) ×X(∂r) X(r) → Y (V) ×X(V ) X(r).

But then so is the composition

Y (r) → Y (V) ×X(V ) X(r),

proving the statement in the case where R is countable.
All examples in this book concern countable Reedy categories, so this countability

assumption is no restriction. Nonetheless, the same argument works for any Reedy
category, except that one has to replace the tower of countable height by a taller one
indexed by a suitable ordinal (not exceeding the cardinality of R).

(ii) The direction ⇒ follows from part (i). For the reverse implication, assume
Y → X is a Reedy fibration for which each Y (r) → X(r) is a weak equivalence.
Then reading the same induction used to prove part (i) backwards, we can show by
induction on the degree of r and the size of V that the maps in the tower are in fact
trivial fibrations. But then so is the projection from the limit. Thus, taking V0 = �
and applying two-out-of-three to the diagram

Y (r) Y (∂r) ×X(∂r) X(r)

X(r) Y (�) ×X(�) X(r),

∼ ∼
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we find that Y (r) → Y (∂r) ×X(∂r) X(r) is a weak equivalence as well. �

Corollary 10.12 Every Reedy (trivial) fibration in ERop is a (trivial) fibration in the
projective model structure.

10.3 The Reedy Model Structure

As before, let E be a model category. If E is cofibrantly generated, then the category
EG of objects in E with a right G-action carries a projective model structure. A map
in this model structure is a fibration or a weak equivalence if and only if it is one in
E. The cofibrations generally have a further freeness property.

Example 10.13 For the case E = sSets, equipped with the Kan–Quillen model
structure, a map X → Y in sSetsG is a projective cofibration if and only if it is
a monomorphism with the property that G acts freely on the complement of the
image. Indeed, such a monomorphism can be obtained as the transfinite composition
of pushouts of the maps

∂∆[n] × G→ ∆[n] × G,

which are precisely the generating cofibrations.

Theorem 10.14 Let E be a cofibrantly generated model category and let R be a
Reedy category. Then the category ERop of E-valued presheaves on R carries a
cofibrantly generated model structure in which the fibrations are the Reedy fibrations
and the weak equivalences are those maps X → Y such that X(r) → Y (r) is a weak
equivalence for every r in R. In other words, they coincide with the projective weak
equivalences.

We will explicitly describe the cofibrations in this model structure as well (cf.
Proposition 10.15), but let us first prove the theorem.

Proof Notice first that Proposition 10.11(ii) asserts that a map is a Reedy fibration
and a weak equivalence if and only if it is a Reedy trivial fibration as defined in
Definition 10.7. For the moment, let us define a map to be a cofibration if it has
the left lifting property with respect to the Reedy trivial fibrations. Then the axioms
(M1–3) for a model structure are evidently satisfied. Furthermore, the factorization
axiom follows from Lemma 10.8 and the small object argument once we observe
that the saturation of the collection of maps of the form

A � r ∪A�∂r B � ∂r → B � r,

for A→ B a trivial cofibration in E, is contained in the class of weak equivalences.
This is indeed the case, because at a fixed object s in R, this is the map(∐

s→r

A
)
∪

( ∐
s
+
−→r

B
)
→

∐
s→r

B,
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where the three coproducts are over all the maps s → r , the maps s → r factoring
through a strictly positive map into r , and all the maps s→ r , respectively. As usual,
the small object argument shows something stronger, namely that any map factors
as a (trivial) fibration preceded by a map having the left lifting property with respect
to all (trivial) fibrations.

Finally, one half of the lifting axiom (M4) holds by definition, the other half
follows from the standard retract argument. This proves the theorem. �

A feature of the Reedy model structure that we have already alluded to is that
the cofibrations admit an explicit description dual to that of the Reedy fibrations. In
order to state it, we define for an E-valued presheaf U on R and an object r ∈ R an
‘object of degenerate elements’

deg(U)(r) = lim
−−→
r
−

−→s

U(s)

where the colimit ranges over all strictly negative morphisms out of r . For the case
where R = ∆, the object deg(U)(n) consists precisely of the degenerate simplices in
U(n), which motivates the notation. There is an evident map

deg(U)(r) → U(r)

which is natural in r and in particular Aut(r)-equivariant. More generally, if U → V
is a morphism in ERop , we obtain for each object r in R a map

U(r) ∪deg(U)(r) deg(V)(r) → V(r),

again natural in r . In the literature these maps are called latching maps, dual to the
matching maps we described before.

Proposition 10.15 A morphism U → V in ERop is a (trivial) cofibration in the
Reedy model structure of Theorem 10.14 if and only if for each object r in R, the
latching map is a (trivial) cofibration in the projective model structure on EAut(r). In
particular, if r has no nontrivial automorphisms, the latching map should simply be
a (trivial) cofibration in E.

Proof We prove the proposition for the cofibrations. The case of trivial cofibrations
proceeds in exactly the same way. Let C be the class of morphisms U → V in ERop

for which each latching map is a cofibration in EAut(r). Using the fact that colimits
in ERop are computed ‘pointwise’, for each r separately, one readily checks that this
class is saturated. Moreover, each of the generating cofibrations

A � r ∪ B � ∂r → B � r,

for a cofibration A → B in E (cf. Lemma 10.8), belongs to C. Indeed, at a fixed
object s in R, the union

(∂r ∪ deg(r))(s)
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is precisely the set of maps s→ r that are not isomorphisms. Therefore the latching
map

(A � r ∪ B � ∂r ∪ B � deg(r))(s) → (B � r)(s)

is a pushout of the map

A × Iso(s, r) → B × Iso(s, r),

which is a cofibration in EAut(r). This proves that the Reedy cofibrations belong the
class C.

For the converse, we may as well assume that R is skeletal (cf. Corollary 10.6).
Consider a morphism i : U → V in C. To show that it is a Reedy cofibration, take
any commutative square

U Y

V X

i

α

p

β

where p is a Reedy trivial fibration. Let skn(X) be the restriction of X to the full
subcategory R≤n of R of degree ≤ n and similarly for the other objects involved.
Then it suffices to define compatible liftings

skn(U) skn(Y )

skn(V) skn(X)

ϕn

by induction on n. For n = 0, the category R≤0 consists of isomorphisms only.
Since R is assumed to be skeletal, it falls apart into a disjoint union of the groups
Aut(r), for r ranging over the objects of degree 0. By the assumption on i, the
map sk0(i) : sk0(U) → sk0(V) corresponds to a collection of projective cofibrations
in the categories EAut(r) and similarly sk0(p) corresponds to a collection of trivial
fibrations. Therefore a lift ϕ0 exists.

For the inductive step, suppose that the lift ϕn−1 has been defined and consider
an object r in R of degree n. Working in the model category EAut(r), we can find a
lift ϕn in

U(r) ∪deg(U)(r) deg(V)(r) Y (r)

V(r) Y (∂r) ×X(∂r) X(r).

(α,ϕ)

∼ϕn

(ϕ,β)

Here the map ϕ : V(r) → Y (∂r) on the bottom is the composition

V(r) → V(∂r)
ϕn−1
−−−→ Y (∂r)
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and similarly for ϕ : deg(V)(r) → Y (r) on top. By construction, this ϕn is natural for
all automorphisms of r , all strictly negative r

−
−→ s and all strictly positive t

+
−→ r .

If we do this for all objects r of degree n, we obtain a map ϕn : skn(V) → skn(Y )
which is natural on all of R≤n. Indeed, any map r → s in R≤n belongs either to R<n,
or is an automorphism, or factors as r

−
−→ t

+
−→ s, where the first is strictly negative

or the second is strictly positive. This completes the induction and the proof of the
proposition. �

Corollary 10.16 Let U → V be a Reedy cofibration in ERop . Then U → V is a weak
equivalence in the Reedy model structure if and only if each of the latching maps is
a trivial cofibration.

Indeed, by Proposition 10.15 these are just two ways of describing the trivial
cofibrations in the Reedy model structure.

Remark 10.17 Wehave observed in Section 10.1 that for every Reedy categoryR, its
opposite is a Reedy category as well. So for any cofibrantly generatedmodel category
E, the category ER of covariant functors also carries a Reedy model structure. To
emphasize this distinction, we will sometimes refer to the two model structures
appearing in this way as the contravariant Reedy model structure (on ERop ) and the
covariant Reedy model structure (on ER). Rather than switching the meaning of
‘positive’ and ‘negative’ in R, it will be easier to keep only on interpretation of these
adjectives in mind for a given R. The covariant Reedy fibrations and cofibrations
can be described explicitly as follows:

• A map Y → X in ER is a (covariant) Reedy fibration if and only if for each r in R,
the map

Y (r) → lim
←−−

Y (s) ×lim
←−

X(s) X(r)

is a fibration in E (and similarly for trivial fibrations), where the limits are taken
over the strictly negative maps r

−
−→ s out of r .

• A map U → V in ER is a (covariant) Reedy cofibration if and only if for each r in
R, the map

U(r) ∪lim
−→

U(s) lim
−−→

V(s) → V(r)

is a cofibration in the projective model structure on EAut(r) (and similarly for the
trivial cofibrations), where the colimits are taken over the strictly positive maps
s
+
−→ r .

Remark 10.18 We have assumed throughout that E is a cofibrantly generated model
category, partly because this applies to all of our examples and partly to make sure
that the projective model structure on each EAut(r) exists. However, assuming the
latter to exist, it is also possible to define not only the Reedy fibrations as in Section
10.2 but also the Reedy cofibrations as in Proposition 10.15. Then one uses the
inductive argument in the proof of that proposition to show that these definitions
yield a model structure. This applies in particular to Reedy categories in which the
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automorphism group of each object is trivial, in which case the assumption that E is
cofibrantly generated becomes redundant. The Reedy model structure will then exist
generally; of course, it might not be cofibrantly generated if E is not.

10.4 Simplicial Objects and Geometric Realization

Let E be a model category. Recall that we write

sE = E∆op

for the category of simplicial objects in E. Since ∆ is a Reedy category, sE carries a
Reedy model structure (in addition to the projective one, if it exists). The goal of this
section is to present some basic properties of this particular Reedy model structure.

To begin with, let us observe that in many examples the Reedy cofibrant objects
and the Reedy cofibrations are easy to recognize. We say that colimits in E are
universal if for any morphism A → B in E the pullback functors E/B → E/A
preserves colimits. This property holds in the category of sets and hence in all
categories where colimits and pullbacks are computed ‘as in Sets’, in particular in
categories of presheaves of sets or of simplicial sets.

Lemma 10.19 Suppose that colimits in E are universal. Then for any object X in
sE, the map deg(X)n → Xn is a monomorphism. More generally, if X → Y is a
monomorphism in sE, then so is the latching map

deg(Y )n ∪deg(X)n Xn → Yn.

Proof We prove the first assertion; the proof of the second works the same way, but
requires a bit more notation. Consider the pullback square

P deg(X)n

deg(X)n Xn

π2

π1

in E. We will prove that the evident map p : deg(X)n → P with π1 ◦p = π2 ◦p = id is
an isomorphism. This will give the desired conclusion; indeed, if f , g : V → deg(X)n
are two maps in E which become equal after composition with deg(X)n → Xn, then
together they define a map v : V → P. Since p is an isomorphism, f and g must
have been equal to begin with.

Universality of colimits implies that

deg(X)n ×Xn deg(X)n = lim
−−→
σ1,σ2

Xm1 ×Xn Xm2,
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where the colimit ranges over proper surjectionsσ1 : [n] → [m1] andσ2 : [n] → [m2]
in ∆. In Proposition 2.1 we observed that for any two such σ1 and σ2, their pushout

[n] [m1]

[m2] [k]

σ1

σ2

exists in ∆ and is absolute. In particular, the pushout induces a pullback

Xn Xm1

Xm2 Xk .

σ∗1

σ∗2

It follows that the map

lim
−−→
τ

Xk → lim
−−→
σ1,σ2

Xm1 ×Xn Xm2

is an isomorphism, where the colimit on the left ranges over proper surjections
τ : [n] → [k]. But this is precisely the map

p : deg(X)n → deg(X)n ×Xn deg(X)n

described in the first part of the proof. �

Corollary 10.20 Suppose that colimits in E are universal and that the cofibrations
of the model structure on E are precisely the monomorphisms. Then the same is true
for the Reedy model structure on sE.

Proof With the stated hypotheses, Lemma 10.19 implies that every monomorphism
in sE is a Reedy cofibration. Conversely, for any Reedy cofibration f : X → Y in sE,
the maps fn : Xn → Yn are cofibrations (hence monomorphisms) in E for every n.
But then f itself is a monomorphism in sE. �

Example 10.21 Let E be the category sSets. Then sE is the category of bisimplicial
sets, or simplicial spaces since we suggestively refer to the objects of E as ‘spaces’.
We will also denote this category bisSets. If one equips E with the Kan–Quillen
or categorical model structure, then the Reedy cofibrations sE are precisely the
monomorphisms.

Remark 10.22 Recall that the projective model structure on sE, when it exists, has
as its fibrations (resp. weak equivalences) the maps of simplicial objects X• →
Y• such that for each n ≥ 0, the morphism Xn → Yn is a fibration (resp. weak
equivalence). In other words, the fibrations and weak equivalences are detected
‘pointwise’. By contrast, Corollary 10.20 describes a case in which the cofibrations
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andweak equivalences are detected pointwise. Such amodel structure, when it exists,
is called the injective model structure. Thus Corollary 10.20 can be interpreted as
saying that if colimits inE are universal and the cofibrations of themodel structure on
E are precisely the monomorphisms, then the Reedy and injective model structures
coincide on sE.

The same principle applies when the cofibrations are the monomorphisms with
some additional freeness conditions. Rather than formalize a general statement, we
mention two relevant examples:

Example 10.23 (1) LetG be a group and letE = sSetsG be the category of simplicial
sets equipped with a right G-action, equipped with the projective model structure.
Then the Reedy cofibrations in sE are the monomorphisms f : X → Y for which G
acts freely on the complement of the image.

(2) LetE be the category dSets of dendroidal sets, with one of themodel structures
discussed in Chapter 9. A map X → Y is a Reedy cofibration with respect to any
of these model structures if and only if for each tree T in Ω and each n ≥ 0, the
map X(T)n → Y (T)n of sets is a monomorphism with a free action of Aut(T) on the
complement of the image. In other words, each Xn → Yn is a normal monomorphism
of dendroidal sets.

The next topic to discuss is a general form of ‘geometric realization’. Recall that
for a simplicial set or simplicial space X , its geometric realization |X | is a colimit of
copies of Xn×∆

n, where∆n is the standard topological n-simplex. These n-simplices
form a cosimplicial object, i.e., a functor

∆
• : ∆→ Top : [n] 7→ ∆

n.

For a simplicial space X ∈ sTop = Top∆op , one can view |X | as a ‘tensor product’
of the right ∆-module X and the left ∆-module ∆•. This formulation applies more
generally. Indeed, if E is a category with a suitable tensor product, one can form for
each simplicial object X in sE and each cosimplicial object C ∈ E∆ such a colimit
in E (assuming colimits in E exist), which we will denote by

|X |C

and refer to as the realization of X with respect to C•. To be precise, |X |C can be
constructed as the coequalizer∐

[n]
α
−→[m]

Xm ⊗ Cn ∐
n≥0 Xn ⊗ Cn |X |C .

α∗⊗id

id⊗α∗

Let us assume that the tensor product in E preserves colimits in each variable sepa-
rately. Just like for the geometric realization of simplicial sets, the good behaviour of
the tensor product with respect to colimits implies that this general realization |X |C
carries a skeletal filtration. In other words, the coequalizer above can be constructed
in stages, as
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|X |C = lim
−−→
n

|X |(n)
C

where |X |(0)
C
= X0 ⊗ C0 and |X |(n)

C
is constructed from |X |(n−1)

C
as the pushout

deg(X)n ⊗ Cn ∪ Xn ⊗ ∂Cn |X |(n−1)
C

Xn ⊗ Cn |X |(n)
C
.

Here ∂Cn = lim
−−→[m]→[n]

Cm, where the colimit ranges over strict monomorphisms
[m] → [n] in ∆. (In other words, ∂Cn → Cn is the latching object for the covariant
Reedy model structure on E∆, if E is a model category.) The union symbol in the
top left corner of the square denotes the pushout over deg(X)n ⊗ ∂Cn. The vertical
map on the left comes from the maps Xm ⊗ Cn → Xn ⊗ Cn, for proper surjections
[n] → [m] involved in the definition of deg(X)n, and the maps Xn ⊗Cm → Xn ⊗Cn

for proper injections [m] → [n] involved in ∂Cn. (Thus, the construction of the left
vertical map already uses the assumption that the tensor product preserves colimits
in each variable separately.)

Let us moreover assume that there exists an ‘internal hom’ with respect to the
tensor product of E, characterized by the usual adjunction property

E(A ⊗ B,C) � E(A,Hom(B,C)),

for objects A, B, and C in E. Then just like for topological spaces or simplicial sets,
the ‘geometric realization functor’

| − |C : sE→ E

has a right adjoint
SingC : E→ sE,

the ‘singular complex functor’ defined by

SingC(E)n = Hom(Cn, E).

Example 10.24 If E is an object of E and M is a simplicial set, one can form an
object E�M in sE (as in previous sections forERop ) and hence a realization |E�M |C .
Now the terms Cn of the cosimplicial object C reoccur as realizations of standard
simplices, as

|E � ∆[n]|C = E ⊗ Cn.

One can identify several other such realizations, for example

|E � ∂∆[n]|C = E ⊗ ∂Cn.
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Let us interpret this general geometric realization in the context of a model
category E. A cosimplicial object C is cofibrant for the covariant Reedy model
structure on E∆ if each of the boundary inclusions ∂Cn → Cn considered above is
a cofibration. This implies that each object Cn is cofibrant as well. We say that C•

has the pushout-product property if for any cofibration U → V in E, the map

U ⊗ Cn ∪U⊗∂Cn V ⊗ ∂Cn → V ⊗ Cn

is another cofibration in E, which is moreover a trivial cofibration whenever U → V
is. Notice that we have come across conditions of this type in Chapters 8 and 9. In
particular, if the model structure on E itself has the property that the pushout-product
of two cofibrations is another cofibration, which is trivial if one of the factors is, then
the assumption that C• is Reedy cofibrant automatically implies that it also has the
pushout-product property.

Proposition 10.25 Let E be a model category equipped with a tensor product and
internal hom as above. If C• is a Reedy cofibrant object in E∆ satisfying the pushout-
product condition, then the associated adjoint pair

| − |C : sE � E : SingC

is a Quillen pair.

Proof We will check that the right adjoint is a right Quillen functor. To this end,
consider a map f : E → D in E. Then SingC( f ) is a Reedy fibration (resp. a Reedy
trivial fibration) if and only if for each trivial cofibration (resp. each cofibration)
i : U → V in E, the map SingC( f ) has the right lifting property with respect to the
maps

U � ∆[n] ∪ V � ∂∆[n] → V � ∆[n], n ≥ 0,

cf. Lemma 10.8. By adjunction, Example 10.24 shows that this is equivalent to
E → D having the right lifting property with respect to the maps

U ⊗ Cn ∪ V ⊗ ∂Cn → V ⊗ Cn.

and each of these maps is a (trivial) cofibration whenever U → V is, by the pushout-
product assumption on C•. This shows that SingC(−) preserves fibrations and trivial
fibrations, so proves the proposition. �

Example 10.26 Consider for each n ≥ 0 the representable simplicial set ∆[n]. These
form a cosimplicial object ∆[•] in sSets, which is easily seen to be Reedy cofibrant
in sSets∆. (Indeed, this just means that ∂∆[n] → ∆[n] is a monomorphism of
simplicial sets for n ≥ 0.) Moreover, ∆[•] satisfies the pushout-product property for
the cartesian product, both for the Kan–Quillen and the categorical model structures
on the category of simplicial sets. Thus we obtain a geometric realization functor
with respect to the cartesian product and this cosimplicial object,

| − |∆ : bisSets→ sSets,
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which is left Quillen for both of these model structures. In this special case, this
realisation functor takes a particularly simple form, because it can be identified with
the diagonal. In more detail, consider the diagonal functor

δ : ∆→ ∆ × ∆.

It induces adjoint functors (cf. Section 2.4)

sSets bisSets

δ!

δ∗

δ∗

and we claim that there is a natural isomorphism

|X |∆ � δ∗X

for each bisimplicial set X . Indeed, since both functors preserve colimits, it suffices
to check this for representable bisimplicial sets X . If X is represented by ([p], [q]) ∈
∆ × ∆, one usually writes X = ∆[p, q]. Then δ∗∆[p, q] = ∆[p] × ∆[q]. On the other
hand, X is also of the form E � M considered in Example 10.24 above, namely
X = ∆[p] � ∆[q]. So

|X |∆ = ∆[p] × ∆[q]

as well. This identification is evidently natural in p and q.

As a consequence, we obtain the following fundamental property of bisimplicial
sets, which we record explicitly:

Corollary 10.27 Let X → Y be a map of bisimplicial sets. If each Xn → Yn is a
(classical or categorical) weak equivalence of simplicial sets, then so is the diagonal
δ∗X → δ∗Y .

Proof Consider the Reedy model structure on bisSets. Then X → Y is a Reedy
weak equivalence between Reedy cofibrant objects (cf. Example 10.21) and these
are preserved by any left Quillen functor. The result then follows from Proposition
10.25 and the identification of | − |∆ with the diagonal. �

Example 10.28 Let J[n] be the nerve of the groupoid on the objects {0, . . . , n} with
exactly one isomorphism between any two objects. Then there is a map of simplicial
sets∆[n] → J[n]which is the identity on objects, and which is natural in [n]. In other
words, it is a map of cosimplicial objects ∆[•] → J[•]. The maps ∆[n] → J[n] are
weak equivalences of simplicial sets for the Kan–Quillen model structure (both are
weakly contractible), but not for the categorical one. Thus, we obtain an essentially
different realization

| − |J : sSets∆op
→ sSets

for the categorical model structure and the associated Reedy model structure.
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Example 10.29 Each cosimplicial object C• in simplicial sets gives a cosimplicial
object i!C• in dendroidal sets via the embedding i! : sSets → dSets. In particular,
we obtain such objects i!∆[•] and i!J[•] in dSets∆, which are again Reedy cofibrant
and have the pushout-product property. Thus, we obtain two geometric realizations
for any dendroidal space X , related by a map

|X |∆ → |X |J,

and both define left Quillen functors sdSets → dSets. In particular, both preserve
weak equivalences between cofibrant (i.e., normal) objects.

We conclude this section with the following useful application of the fundamental
property of bisimplicial sets, cf. Corollary 10.27 above. For a category C, consider
the category

sPSh(C) = sSetsCop

of simplicial presheaves on C. This category can be equipped with the projective
model structure (with respect to the Kan–Quillen model structure on sSets).

Proposition 10.30 For each simplicial presheaf X on C there exists a weak equiv-
alence P → X such that for every n ≥ 0, the presheaf Pn is a coproduct of
representable presheaves.

Remark 10.31 The construction in the proof below in fact supplies an explicit cofi-
brant replacement of X in the projective model structure on the category sPSh(C) of
simplicial presheaves, cf. Example 13.36(a).

Proof Write E = sSetsCop
, considered as a model category with the projective model

structure. Let
Pn =

∐
c0→···→cn

C(−, c0) × X(cn).

Then P• is an object of sE, the category of bisimplicial presheaves on C. (The
simplicial structure of P• comes from that of the nerve of C and the fact that C(−, c0)
is covariant in c0, while X(cn) is contravariant in cn.) As a bisimplicial presheaf, we
can write more explicitly

Pn,m(d) =
∐

c0→···→cn

C(d, c0) × X(cn)m,

for every object d in C. There is a canonical map of bisimplicial presheaves

ϕ : P→ con(X),

where con(X) as a constant simplicial object in simplicial presheaves. In bidegree
(n,m) this map is defined as

ϕ(d → c0 → · · · → cn, x ∈ X(cn)m) = x |d ∈ X(d)m,
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where x |d denotes the restriction of x along the composition d → cn determined by
the presheaf structure of X . For fixed m and d, this map can be viewed as

ϕ : N(d/Xm) → X(d)m,

where d/Xm is the category whose objects are pairs (d α
−→ c, x ∈ X(c)m) and whose

morphisms (α, x) → (α′, x ′) are β : c → c′ in C with β∗x ′ = x. This category
has a ‘discrete’ subcategory given by objects (α, x) where α is the identity on d,
which can clearly be identified with just the set X(d)m. Moreover, the corresponding
inclusion X(d)m → d/Xm has a right adjoint, mapping (d α

−→ c, x) to α∗x. This
adjunction gives a weak equivalence of nerves, showing that ϕ is a weak equivalence
for fixed m and for each d. By Corollary 10.27 it follows that δ∗P(d) → X(d) is a
weak equivalence for each d, i.e., δ∗P → X is a projective weak equivalence. Now
observe that for each n, the presheaf (δ∗P)n of sets is a sum of representables,

(δ∗P)n =
∐

C(−, c0),

where the sum ranges over all c0 → · · · → cn in C and all x ∈ X(cn)n. This proves
the proposition. �

10.5 Homotopy Colimits

In this short section we make some remarks on homotopy colimits, which will be of
use later on. We will leave it to the reader to explicitly formulate the dual remarks
for homotopy limits.

Let E be a cofibrantly generated model category. Then for any small category C,
there are adjoint functors

lim
−−→

: EC � E : con.

The projective model structure on EC makes this into a Quillen pair. One generally
writes hocolim := L lim

−−→
for the left derived functor of the colimit functor and refers

to it as the homotopy colimit functor. Thus, one way to compute hocolimCX for a
diagram X in EC is as lim

−−→C
X ′, where X ′ → X is a cofibrant replacement of X in

the projective model structure.

Example 10.32 Consider the poset of natural numbers N, regarded as a category.
Thus, there is a unique morphism i → j whenever i ≤ j. A diagram

X = (X0 → X1 → X2 → · · · )

is projectively cofibrant if each Xi is cofibrant and Xi → Xi+1 is a cofibration for
every i ≥ 0. Thus, for a general diagram

Y0 → Y1 → Y2 → · · ·
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one can compute its homotopy colimit as follows. First construct a diagram

Y0 Y1 Y2 · · ·

Y c
0 Y c

1 Y c
2 · · ·

∼ ∼ ∼

in which the vertical maps are weak equivalences and the bottom row consists of
cofibrations between cofibrant objects. (One can inductively defineY c

n+1 by factoring
the compositeY c

n → Yn → Yn+1 as a cofibration followed by a trivial fibration.) Then

hocolimNY• ' lim
−−→
N

Y c
• .

In the example above, cofibrant objects in the projective model structure are
easy to understand. In other cases it can be convenient to be able to switch to an
equivalentmodel structurewithmore cofibrations, so that it is possible to find another
(usually smaller) cofibrant resolution. Indeed, suppose we have a model structure
(with the same weak equivalences) on EC for which the adjoint pair (lim

−−→
, con)

still forms a Quillen pair. Then taking the left derived functor of lim
−−→

results in
an equivalent homotopy colimit functor (or, more precisely, a naturally isomorphic
functor Ho(EC) → Ho(E)). Let us illustrate the idea by another example.

Example 10.33 Consider the span category S,

1 −
←− 0 +

−→ 2,

interpreted as a Reedy category as indicated by the labels of the arrows. Equip the
category ES with the covariant Reedy model structure. Then a map of spans

α : (X1 ← X0 → X2) → (Y1 ← Y0 → Y2)

is a Reedy cofibration if the maps X0 → Y0, X1 → Y1, and

X2 ∪X0 Y0 → Y2

are cofibrations in E. Dually, it is a Reedy fibration if X1 → Y1, X2 → Y2, and

X0 → Y0 ×Y1 X1

are fibrations. From this description it is easily checked that the constant diagram
functor

con: E→ ES

preserves Reedy fibrations. Since it also preserves weak equivalences, it is right
Quillen. Hence, the left derived functor

L lim
−−→

: Ho(ES) → Ho(E)
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with respect to the Reedy model structure is a model for the homotopy colimit. Thus,
to compute the homotopy pushout of a span

X1 ← X0 → X2,

it suffices to replace it by a Reedy cofibrant weakly equivalent span. This is one in
which all three objects are cofibrant and the rightward arrow is a cofibration. Observe
that this recovers Lemma 7.51(2) from our earlier discussion of homotopy pushouts.

Finally, we will use Reedy model structures to establish a general formula for
homotopy colimits, which is essentially the classical formula of Bousfield–Kan.

Example 10.34 Let D be a small category and consider the adjoint pair

lim
−−→

: ED � E : con.

for the projective model structure on ED, as in the beginning of this section. There
is a standard technique for computing hocolimDX for a diagram X ∈ ED with the
property that each X(d) is a cofibrant object of E, as we will now explain.

For an object d of D, write

Yn(d) =
∐

c0→···→cn→d

X(c0).

ThenY•(d) is an object ofE∆op , with simplicial structure coming from that of the nerve
of D/d and the action by D on X (involved in the face d0 : Yn(d) → Yn−1(d).) This
simplicial objectY•(d) is clearly covariantly functorial in d; i.e., we have constructed
a functor

Y• : D→ E∆op
.

Moreover, for the constant simplicial object conX(d), there are simplicial maps

Y•(d) conX(d).
π

ν

For a string of morphisms c0 → · · · → cn → d, the morphism π maps X(c0) to
X(d) by acting via the composed morphism c0 → d. The map ν sends X(d) to the
summand where all of the arrows c0 → · · · → cn → d are the identity map of d.
The map π is natural in d, but ν evidently is not.

Now assume that E has a tensor product that preserves colimits in each variable
separately, satisfies the pushout-product property, and has cofibrant tensor unit 1. Re-
call that to any cosimplicial object C• of E, we can associate a ‘geometric realization
functor’

| · |C : E∆op
→ E.

We claim that under some natural conditions on the cosimplicial object C• to be
specified below, the homotopy colimit of X can be computed as

hocolimDX � lim
−−→
|Y• |C .
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The conditions we assume are as follows (cf. Section 10.4):

(1) The cosimplicial object C• ∈ E∆ is Reedy cofibrant.
(2) The object C• is a homotopically constant resolution of the tensor unit 1, in the

sense that there is a weak equivalence

C0 → 1

and every map in the cosimplicial object

C0 C1 C2 · · ·

is a weak equivalence.

The basic examples to keep in mind are E = sSets (say with the Kan–Quillen model
structure) or E = Top. In this case condition (2) can be phrased as saying that each
Cn is weakly contractible, so that the standard simplices form a suitable choice. To
establish our claim that lim

−−→
|Y• |C is a model for the homotopy colimit, it suffices to

verify the following two properties:

(a) The functor
d 7→ |Y•(d)|C

is a projectively cofibrant object of ED.
(b) There is a weak equivalence

|Y• |C → X

in ED.

Indeed, (a) and (b) combined give that |Y• |C is a cofibrant replacement for the diagram
X . Property (a) readily follows from the definition of |Y (d)|C by considering its
skeletal filtration. Indeed, one starts by observing that

|Y• |
(0)
C
=

∐
c0

D(c0,−) � (Xc0 ⊗ C0).

(For a set S and object E of E, we use the notation S � E to denote the S-fold
coproduct of copies of E .) The expression above is a projectively cofibrant functor,
using that Xc0 ⊗ C0 is a cofibrant object of E. Proceeding by induction, we have that
|Y• |
(n)
C

is obtained from |Y• |(n−1)
C

by a pushout along∐
c0→···→cn

D(cn,−) � (Xc0 ⊗ ∂Cn) →
∐

c0→···→cn

D(cn,−) � (Xc0 ⊗ Cn),

where the coproduct ranges over all nondegenerate simplices c0 → · · · → cn. This
is again a projective cofibration by our assumptions on X and C•, completing the
proof of (a).
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To establish (b), let us examine the two maps

Y•(d) conX(d)
π

ν

a little more closely. First observe that πν is simply the identity of conX(d). In the
other direction, the fact that the category D/d has a terminal object easily leads to
the construction of a simplicial homotopy between νπ and the identity on Y•(d). In
other words, the simplicial set conX(d) is a simplicial deformation retract of Y•(d)
(although the retraction is not natural in d). We will demonstrate that simplicial
homotopies yield left homotopies in E upon applying the realization | · |C . Property
(b) then follows immediately from this.

For a simplicial setK and a simplicial object Z• ofE, wewriteK�Z• (generalizing
our previous notation) for the object ofE∆op having (K�Z•)n = Kn�Zn. A simplicial
homotopy between νπ and the identity on Y•(d) can be thought of as a map of
simplicial objects in E

∆[1] � Y•(d) → Y•(d).

We should show that its realization is a weak equivalence in E. More generally, we
will demonstrate that for a general Reedy cofibrant simplicial object Z• of E, the
projection map

∆[1] � Z• → ∆[0] � Z• � Z•

becomes a weak equivalence in E upon applying | · |C . (Said differently, this will
prove that |∆[1] � Z• |C serves as a cylinder object for |Z• |C .) First consider the
special case where Z• is of the form ∆[n] � E for some n ≥ 0 and some cofibrant
object E in E. Observe that

|∆[n] � E |C � Cn ⊗ E
'
−→ C0 ⊗ E

'
−→ E,

using Remark 10.24 for the isomorphism and assumption (2) for the weak equiva-
lences. Now

|∆[1] � (∆[n] � E)|C � |(∆[1] × ∆[n]) � E |C � lim
−−→
σ

Cn+1 ⊗ E,

where σ ranges over all the shuffles [n + 1] → [1] × [n]. Assumption (2) on our
cosimplicial object C• and an easy induction on the shuffles now implies that the
maps

lim
−−→
σ

Cn+1 ⊗ E → C0 ⊗ E → E

are weak equivalences. This completes the proof in the special case Z• = ∆[n] � E .
For general Reedy cofibrant Z• we argue by induction on its skeleta sknZ . We can
write sk0Z = ∆[0] � Z0, while sknZ is obtained from skn−1Z as the pushout
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∂∆[n] � Zn ∪ ∆[n] � deg(Z)n skn−1Z

∆[n] � Zn sknZ .

The union in the top left denotes the pushout over ∂∆[n] � deg(Z)n. With this
notation, we have Z � lim

−−→n
sknZ . The vertical map on the left is a Reedy cofibration

in E∆op . Now Corollary 7.50 and the cube lemma 7.51 give the inductive step from
skn−1Z to sknZ , using our previous argument for the object ∆[n] � Zn in the lower
left corner.

10.6 A Version of Quillen’s Theorem B

In the preceding sections we have seen some first applications of bisimplicial sets
or, more generally, of simplicial objects in a model category E, for example to
the construction of homotopy colimits. To further illustrate the usefulness of these
notions we devote this section to proving some fundamental facts about homotopy
colimits of functors from a (simplicial) categoryC to the category sSets of simplicial
sets. In particular we prove Quillen’s Theorems A and B; these theorems are central
to many applications of the theory of simplicial sets and belong in any homotopy
theorist’s toolkit. Also, the version of Quillen’s Theorem B we treat here will be
useful to us in Section 14.1.

Let C be a category and f : C→ sSets a simplicial diagram on it. According to
the results of the previous section, the homotopy colimit of f may be described as
the diagonal of the bisimplicial set h( f ) with (p, q)-simplices

h( f )p,q =
∐

c0→···→cp

f (c0)q .

Here the coproduct is indexed over the p-simplices of the nerve NC. In particular,
there is an evident projection map

hocolimC f
π
−→ NC.

Note that the fibre of π over a vertex c ∈ C is precisely the simplicial set f (c). Thus
it is tempting to think of π as a kind of fibration that encodes the family of simplicial
sets f (c) indexed over the points of C. The following makes this idea more precise:
Proposition 10.35 Suppose that for every morphism α : c → d of C, the map f (α)
is a weak homotopy equivalence of simplicial sets. Then there is a natural weak
homotopy equivalence from f (c) to the homotopy fibre of π at c.

Proof Factor the map c : ∆[0] → NC as an anodyne map i : ∆[0] → U followed
by a Kan fibration p : U → NC. Then consider the following diagram of pullback
squares:
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f (c) hofibc(π) hocolimC f

∆[0] U NC.

π

i

The square on the right is a homotopy pullback square by the dual of Lemma 7.51 and
therefore its top left corner is indeed a model for the homotopy fibre, as indicated by
the notation. The map i is a (transfinite) composition of pushouts of horn inclusions
Λk[n] → ∆[n] over NC and therefore f (c) → hofibc(π) is a composition of pushouts
of maps of the form

Λ
k[n] ×NC hocolimC f → ∆[n] ×NC hocolimC f .

Hence it suffices to show that each such map is a trivial cofibration of simplicial sets
(with respect to the Kan–Quillen model structure). Clearly it is a monomorphism,
so we will check that it is a weak homotopy equivalence. Note that the codomain is
the diagonal of the bisimplicial set with (p, q)-simplices∐

k0→···→kp

f (σ(k0))q,

where the disjoint union ranges over p-simplices of ∆[n] and σ : ∆[n] → NC is the
n-simplex we are working over. The domain can be described similarly, but now only
taking p-simplices of the horn Λk[n] as an indexing set. The inequality 0 ≤ k0 in
[n] induces a map f (σ(0)) → f (σ(k0)) of simplicial sets that is a weak homotopy
equivalence by assumption. Upon taking diagonals and applying the fundamental
property of bisimplicial sets (Corollary 10.27), we conclude that the map above is
weakly equivalent to the map

Λ
k[n] × f (σ(0)) → ∆[n] × f (σ(0)),

which is anodyne. This completes the proof. �

Proposition 10.35 can be generalized to a statement about a simplicial category
C and a simplicial functor f : C→ sSets. Such a functor can be described explicitly
by a collection of simplicial sets { f (c)}c∈C together with maps

fc,d : C(c, d) × f (c) → f (d).

Alternatively, it is a system of (ordinary) functors fp : Cp → Sets, for p ≥ 0,
appropriately compatible with the simplicial structure maps. For every α : ∆[p] →
C(c, d) we get a corresponding map

α∗ : ∆[p] × f (c) → f (d).

We sayC acts by weak equivalences (via f ) if each of these maps is a weak homotopy
equivalence. Note that it suffices to check this for p = 0, since any map ∆[0] → ∆[p]
is a weak homotopy equivalence.
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As before we can define a bisimplicial set h( f ) with (p, q)-simplices the pairs(
(c0 → · · · → cp) ∈ N(Cq)p, x ∈ f (c0)q

)
.

Let us define hocolimC f to be the diagonal of this h( f ). Equivalently, hocolimC f
is the diagonal of the bisimplicial set (hocolimC( fp))q . Clearly there is a natural
projection map

π : hocolimC f → δ∗NC,

with NC the bisimplicial set given by NCp,q = N(Cp)q .

Proposition 10.36 Let f : C→ sSets be a simplicial functor and suppose C acts by
weak equivalences. Then there is a natural weak homotopy equivalence from f (c) to
the homotopy fibre of π at c.

Proof Reasoning as in the proof of Proposition 10.35, it suffices to show that for
every map σ : ∆[n] → δ∗NC and every horn Λk[n] of the n-simplex, the pullback

Λ
k[n] ×δ∗NC hocolimC f → ∆[n] ×δ∗NC hocolimC f

is a weak homotopy equivalence. Now observe that the unit of the adjoint pair (δ!, δ
∗)

evaluated on a simplex ∆[n] is precisely the diagonal map

∆[n] → δ∗δ!∆[n] = ∆[n] × ∆[n].

This map admits a retraction induced by the map of posets [n]× [n] → [n] : (a, b) 7→
max(a, b). Furthermore, this retraction exhibits the horn inclusion Λk[n] → ∆[n] as
a retract of the map δ∗δ!Λ

k[n] → δ∗δ!∆[n]. Hence, to prove that the map in the first
display is a weak homotopy equivalence, it suffices to prove that the corresponding
map of bisimplicial sets

δ!Λ
k[n] ×NC h( f ) → δ!∆[n] ×NC h( f )

becomes a weak homotopy equivalence upon applying δ∗. For a given map
σ : ∆[n] → δ∗NC, corresponding to a string of morphisms σ(0) → · · · → σ(n)
in the category Cn, the codomain of the map above can be described explicitly as
follows: its (p, q)-simplices are triples

([p]
α
−→ [n], [q]

β
−→ [n], x ∈ f (σ(α(0)))q).

The domain δ!Λ
k[n] ×NC h( f ) can be described similarly, with the additional re-

quirement that α and β factor through the horn Λk[n]. The assumption that f acts
by weak equivalences now guarantees that the ‘action map’

f∗ : δ!∆[n] × f (σ(0)) → δ!∆[n] ×NC h( f )
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is a weak homotopy equivalence for fixed p, hence a weak homotopy equivalence
upon applying δ∗. The same holds after replacing ∆[n] by Λk[n], so that finally it
suffices to prove that

δ!Λ
k[n] × f (σ(0)) → δ!∆[n] × f (σ(0))

becomes a weak homotopy equivalence upon taking diagonals. But this is clear,
since both δ∗δ!Λ

k[n] and δ∗δ!∆[n] are weakly contractible simplicial sets. �

With the previous two propositions in hand we can now prove a version of
Quillen’s Theorems A and B. These theorems allow one to analyze the homotopy
fibre of a map NC→ ND induced by a functor f : C→ D under certain conditions.
Usually they are stated for ordinary categories C and D, but Proposition 10.36 will
give us the added generality of simplicial categories.

To state these results we introduce some notation. Suppose f : C → D is a
(simplicial) functor between simplicial categories. Then for any object d of D we
can consider the slice category f /d, which is the simplicial categorywith p-simplices
given by the slice category Cp ×Dp Dp/d in simplicial degree p. Taking the nerves
of these we obtain a simplicial diagram

D→ sSets : d 7→ δ∗N( f /d).

Theorem 10.37 (Quillen’s Theorem B) Suppose f : C → D is a functor between
simplicial categories. If D acts by weak equivalences on the diagram δ∗N( f /−), then
there is a natural weak homotopy equivalence between δ∗N( f /d) and the homotopy
fibre of the map δ∗N f : δ∗NC→ δ∗ND at d.

Proof We define a trisimplicial set C//D with (p, q, r)-simplices the pairs of sim-
plices

(c0 → · · · → cp) ∈ N(Cr )p, ( f (cp) → d0 → · · · → dq) ∈ N( f (cp)/Dr )q .

There are natural maps

NCp,r
π1
←−− (C//D)p,q,r

π2
−−→ NDq,r

projecting onto the two factors. Note that π1 may be written as∐
c0→···→cp

N( f (cp)/Dr )q →
∐

c0→···→cp

∆[0],

where the coproducts range over p-simplices c0 → · · · → cp of the nerve of Cr .
For fixed cp and r , the map N( f (cp)/Dr ) → ∆[0] is a weak homotopy equivalence,
because the category f (cp)/Dr has an initial object. Hence the diagonal of π1 is a
weak homotopy equivalence of simplicial sets as well. The map π2 may be written∐

d0→···→dq

N(( f /d0)r )p →
∐

d0→···→dq

∆[0],
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where this time the coproducts range over q-simplices of the nerve of Dr . Viewed in
this way, we may reinterpret its diagonal as the projection

π : hocolimDδ
∗N( f /−) → δ∗ND.

Now consider the diagram

δ∗NC δ∗(C//D) hocolimDδ
∗N( f /−)

δ∗ND δ∗(D//D) δ∗ND.

δ∗N f

∼

π1

π

∼

π1 π2
∼

Here D//D is formed with respect to the identity functor; moreover, the map
π2 : δ∗(D//D) → δ∗ND is a weak homotopy equivalence by an evident variation of
the argument we used for π1 above. According to the diagram above, determining the
homotopy fibre of the left vertical map is equivalent to determining the homotopy
fibre of π. But Proposition 10.36 identifies this homotopy fibre as δ∗N( f /d). �

The following special case has its own name and is very useful in practice:

Corollary 10.38 (Quillen’s Theorem A) Suppose f : C → D is a functor between
simplicial categories. If δ∗N( f /d) is weakly contractible for every object d of D,
then f induces a weak homotopy equivalence of nerves δ∗NC→ δ∗ND.

Historical Notes

Generalizing work of Bousfield and Kan for simplicial spaces, Reedy showed that
simplicial objects in a model category carry what is now called a Reedy model
structure; the properties of the category ∆ he used in his proof gave rise to the notion
of a Reedy category. Reedy’s work [127] remains unpublished; accounts of it appear
in the books of Hovey [88] and Hirschhorn [84]. In order to include categories in
which objects have nontrivial automorphisms, like Ω and Segal’s category Γ, the
paper [18] introduced the notion of a ‘generalized Reedy category’ and proved the
existence of a model structure in this context. For Γ-spaces, this model structure
already occurs in the work of Bousfield–Friedlander [31]. In this book we have
simply used the term ‘Reedy category’ for this more general notion. The model
we have given for homotopy colimits is the one described by Bousfield–Kan [32].
A first version of Quillen’s Theorem B occurs in his work on algebraic K-theory
[126]. Several generalizations subsequently appeared in the literature, notably in the
context of the group completion theorem of McDuff–Segal [113].
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Chapter 11
Mapping Spaces and Bousfield Localizations

Recall from Section 8.3 that a left Bousfield localization of a model category E is
a different model structure on the same category with more weak equivalences, but
the same cofibrations. We have seen several examples of these already, such as the
Kan–Quillen model structure as a localization of the categorical model structure on
simplicial sets, as well as the various model structures on the category of dendroidal
sets. In the next chapter, it will be necessary to have a general method of constructing
such localizations, starting only froma ‘basic’model structure and a set ofmorphisms
which one would like to make weak equivalences. We will establish the technique to
do so in this chapter. It requires a general notion of ‘mapping space’ in an arbitrary
model category, which we will discuss first.

11.1 Mapping Spaces

Let E be a model category. For objects X and Y in E we will define a mapping space

MapE(X,Y ),

or just Map(X,Y ) if E is clear from context. This mapping space will be a simplicial
set, functorial up to homotopy in X and Y , respecting weak equivalences, and with
the property that there is a natural isomorphism (as functors on Ho(E)) as follows:

π0MapE(X,Y ) � Ho(E)(X,Y ).

In fact, we will provide several different but weakly equivalent ways of constructing
such a mapping space and, strictly speaking, the use of the phrase ‘the mapping
space’ MapE(X,Y ) is somewhat misleading. It would be better to speak of ‘models
for the mapping space’. We will come back to this point in Remark 11.8 below.

Before turning to the definitions, recall that the constant functors

con: E→ E∆ and con: E→ E∆op
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behave in opposite ways with respect to the Reedy model structures: the constant
functor E → E∆ is right Quillen, whereas the constant functor E → E∆op is left
Quillen. On the other hand, the functor con: E → E∆op is rarely right Quillen. For
this to be the case, the diagonal X → X × X of any fibrant object in E would have
to be a fibration, for example.
Definition 11.1 A simplicial resolution of an object X in E is a fibrant replacement

con(X) → X̂•

in the (contravariant) Reedy model structure on E∆op . Dually, a cosimplicial resolu-
tion is a cofibrant replacement

qX• → con(X)

in the (covariant) Reedy model structure on E∆.
Remark 11.2 (a) By the axioms for a model structure, these resolutions always exist.
In fact, one can always arrange con(X) → X̂• to be a trivial cofibration in E∆op and
qX• → con(X) to be a trivial fibration in E∆, although the definition only requires
these maps to be weak equivalences.

(b) A cosimplicial resolution qX• → con(X) in particular contains a cofibrant
replacement qX0 ∼−→ X of X in E. Conversely, if Xc → X is a cofibrant replacement of
X in E, one can always construct qX• in such a way as to have qX0 = Xc . In particular,
if X is already cofibrant, we can find a cosimplicial resolution qX• → con(X) which
starts with qX0 = X . Dual remarks apply to simplicial resolutions con(X) → X̂•.

(c) If X → Y is a weak equivalence, any cosimplicial resolution of X is also
one of Y . Conversely, a simple application of the factorization axiom for the model
category E∆ shows that for any map X → Y in E and any cosimplicial resolution
qX• → con(X) there is a cosimplicial resolution of Y fitting into a commutative
diagram in E∆ as follows:

qX• con(X)

qY• con(Y ).

If X → Y is a weak equivalence, then of course so is qX• → qY•. Again, dual remarks
apply to simplicial resolutions in E∆op .

Let C• be a cosimplicial object in E. Recall that, just like for standard topological
simplices, we write ∂Cn for the colimit of the Ck for all monomorphisms [k] → [n]
in ∆ except the identity. Similarly, we write

Λ
iCn → Cn

for the colimit of all the Ck for monomorphisms [k] → [n] which miss a j , i from
their image, exactly as for Λi[n] ⊆ ∆[n] in simplicial sets. If C• is Reedy cofibrant,
then ΛiCn → Cn is a cofibration by the dual of Proposition 10.11(i).
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Lemma 11.3 (a) Let C• be a Reedy cofibrant cosimplicial object in E. If all the
cosimplicial structure maps α∗ : Cm → Cn are weak equivalences, thenΛiCn →

Cn is a trivial cofibration for all n > 0 and 0 ≤ i ≤ n.
(b) Dually, for a Reedy fibrant simplicial object Y• in E in which all structure maps

are weak equivalences, the maps

Yn → Y (Λi[n])

are trivial fibrations for all 0 ≤ i ≤ n.

Proof We prove the statements for the cosimplicial object C•; the second half of the
lemma is dual. By induction we will argue that for n > 0 and k ≤ n, the union of the
first k + 1 faces ∂0, · · · , ∂k with ∂i omitted gives a trivial cofibration⋃

i,j≤k

Cn−1 ∪∂j−−−→ Cn.

For n = 1 this is one of the two maps C0 → C1 and hence a trivial cofibration by
assumption. If the assertion has been proved for all smaller n, then we proceed for
fixed n by induction on k, using that the square in the diagram⋃

i,j≤k−1 Cn−2 Cn−1

⋃
i,j≤k−1 Cn−1 ⋃

i,j≤k Cn−1

Cn

∂k

∪∂j

∪∂j

is a pushout. The top horizontal map is a trivial cofibration by induction, hence so is
the lower horizontal map. Now the two-out-of-three property of weak equivalences
and the inductive hypothesis on k imply that the slanted map is a weak equivalence
as well. �

Proposition 11.4 (a) Let qA• be a cosimplicial resolution of an object A in E. If
X → Y is a (trivial) fibration in E, then

E( qA•, X) → E( qA•,Y )

is a (trivial) Kan fibration between simplicial sets.
(b) Dually, let X̂• be a simplicial resolution of an object X in E. If A → B is a

(trivial) cofibration in E, then

E(B, X̂•) → E(A, X̂•)

is a (trivial) Kan fibration of simplicial sets.
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Proof Again we only prove (a), the proof of (b) being dual. A lifting problem in
sSets as in the square on the left is equivalent to one in E as on the right:

∂∆[n] E( qA•, X) ∂ qAn X

∆[n] E( qA•,Y ) qAn Y .

From this, the case of a trivial fibration X → Y is clear. The proof for a fibration is
similar, replacing ∂∆[n] by Λi[n] and ∂ qAn by Λi

qAn and using that Λi
qAn → qAn is a

trivial cofibration in E, as in the preceding lemma. �

Corollary 11.5 (a) Let qA• be a cosimplicial resolution of an object A in E. Then a
weak equivalence X → Y between fibrant objects inE induces aweak equivalence
between Kan complexes

E( qA•, X) → E( qA•,Y ).

(b) Dually, let X̂• be a simplicial resolution of an object X in E. Then a weak
equivalence A→ B between cofibrant objects in E induces a weak equivalence
between Kan complexes

E(B, X̂•) → E(A, X̂•).

Proof This is clear from Proposition 11.4 and Brown’s lemma (cf. Proposition
7.38). �

Corollary 11.6 Let qA• be a cosimplicial resolution of an object A in E and X̂• a
simplicial resolution of an object X . Then there are weak equivalences of simplicial
sets

E( qA0, X̂•)
∼
−→ δ∗E( qA•, X̂•)

∼
←− E( qA•, X̂0),

where δ∗ is the diagonal of a bisimplicial set (as in Example 10.26).

Proof View E( qA•, X̂0) as a bisimplicial set which is constant in the second coordi-
nate, i.e., as a bisimplicial set with (p, q)-simplices E( qAp, X̂0). Then the map on the
right in the statement of the lemma arises from a map of bisimplicial sets

E( qAp, X̂0) → E( qAp, X̂q).

All of the degeneracy maps X0 → Xq are weak equivalences by the definition of a
simplicial resolution. Thus for fixed q, Proposition 11.4 implies that the map

E( qA•, X̂0) → E( qA•, X̂q)

is a weak equivalence of simplicial sets. By Corollary 10.27 we obtain a weak
equivalence on the diagonals of these bisimplicial sets, which concludes the proof
for the right-hand map of the lemma. The argument for the map on the left is
analogous. �
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Definition 11.7 For two objects A and X in a model category E, a mapping space
MapE(A, X) is a simplicial set weakly equivalent to each of the three simplicial sets
in the previous corollary.

A specific choice of such a simplicial set will sometimes be referred to as ‘a
model for the mapping space’. As stated before, if E is clear from context we just
write Map(A, X).

Remark 11.8 (a) This definition might strike the reader as somewhat odd in that
the notation MapE(A, X) does not necessarily refer to any object in particular, but it
captures the common uses in the literature. In practice, however, one generally works
with a specific model of MapE(A, X). For example, one takes a fibrant replacement
X → Xf of X in E and a convenient cosimplicial resolution qA• → A, and interprets
MapE(A, X) as the Kan complex E( qA•, Xf ). On the other hand, it will sometimes
be efficient to make ‘model-independent’ statements about mapping spaces, a first
example being Proposition 11.9 below. Our use of the expression MapE(A, X) will
hopefully always be clear from context.

(b) If A is cofibrant and X is fibrant, one can always choose resolutions qA• and
X̂• with qA0 = A and X̂0 = X . Doing so, the models of MapE(A, X) just described
will have as their set of vertices precisely the set E(A, X) of morphisms from A to X .

(c) It is always possible to choose models of mapping spaces in such a way that
for A→ B and Y → X in E, ‘the’ morphism

Map(B,Y ) → Map(A,Y ) ×Map(A,X) Map(B, X)

is a Kan fibration between Kan complexes, which is moreover a trivial fibration if
A→ B or Y → X is a weak equivalence. Indeed, replacing A→ B and Y → X by
weakly equivalent maps if necessary, we may assume that A → B is a cofibration
between cofibrant objects and Y → X is a fibration between fibrant ones. Now
choose simplicial resolutions which fit into a square

con(Y ) Ŷ•

con(X) X̂•

∼

∼

in such a way that Ŷ• → X̂• is a Reedy fibration between Reedy fibrant objects in
E∆op . Then a lifting problem as on the left translates into one on the right in the
following diagrams:

∂∆[n] E(B, Ŷ•) A Ŷn

∆[n] E(A, Ŷ•) ×E(A,X̂•) E(B, X̂•), B Ŷ (∂∆[n]) ×X̂(∂∆[n]) X̂n.
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The map on the very right is a fibration in E because Ŷ• → X̂• is a Reedy fibration,
so a lift exists if A → B is a trivial cofibration. The other cases (Y → X being a
trivial fibration, or ∂∆[n] → ∆[n] replaced by Λi[n] → ∆[n]) are similar.

The relation between the mapping space as defined above and homotopy classes
of maps in the sense of model categories is as expected, by virtue of the following:

Proposition 11.9 For objects A and X in a model category E, there is an isomor-
phism

π0MapE(A, X) � Ho(E)(A, X).

Proof Note first that the assertion is independent of the choice of model for
MapE(A, X). We may assume that A is cofibrant and X is fibrant. Then if X̂• is
a simplicial resolution of X , the maps

X̂0
s0
−→ X̂1

(d0,d1)
−−−−−→ X̂0 × X̂0

describe a path object for X̂0. It follows that π0E(A, X̂•) is exactly the set of (right)
homotopy classes of maps from A to X̂0. From this the proposition is clear. �

Corollary 11.10 A map A→ B in a model category E is a weak equivalence if and
only if for every object X in E, the map

MapE(B, X) → MapE(A, X)

is a weak equivalence of simplicial sets.

Proof If A → B is a weak equivalence, then the map of the corollary is a weak
equivalence by Corollary 11.5. Conversely, if the map of the corollary is an equiv-
alence for every X , then it follows from the previous proposition that the image of
A→ B in the homotopy category Ho(E) is an isomorphism. But then the map itself
is a weak equivalence by Remark 7.32. �

Recall that a Quillen adjunction f! : E � F : f ∗ induces an adjunction on the
level of homotopy categories, by taking derived functors:

Ho(E) Ho(F).
L f!

R f ∗

In particular, for objects E of E and F of F, the identification of Proposition 11.9
gives a bijection

π0MapF(L f!E, F) � π0MapE(E,R f ∗F).

The following proposition shows that this bijection can be lifted to aweak equivalence
of mapping spaces.
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Proposition 11.11 Let f! : E � F : f ∗ be a Quillen pair. Then for objects E and F
as above there is a weak equivalence of simplicial sets

MapF(L f!E, F) ' MapE(E,R f ∗F).

Proof Wemay assume E is cofibrant and F fibrant. If qE• is a cosimplicial resolution
of E in E∆, then f! qE• is one of f!E in F∆. The proposition is then immediate from
the bijection

F( f! qE•, F) � E( qE•, f ∗F). �

Corollary 11.12 (1) If f! : E � F : f ∗ is a Quillen equivalence, then for any two
objects A and X in E, the morphism

MapE(A, X) → MapF(L f! A,L f!X)

is a weak equivalence of simplicial sets (and similarly for R f ∗ applied to objects
in F).

(2) If f! : E � F : f ∗ is a left Bousfield localization (cf. the discussion at the end of
Section 8.3), then for any objects B and Y in F, the map

MapF(B,Y ) → MapE(R f ∗B,R f ∗Y )

is a weak equivalence of simplicial sets. Thus, one might say that R f ∗ is homo-
topically fully faithful.

We conclude this section with a simple observation about mapping spaces in slice
categories. Let E be a model category and A an object of E. Then the slice category
A/E is again a model category, as we have seen before. For objects f : A→ X and
g : A→ Y of this category, let us write MapA(X,Y ) for the mapping space between
them, defined with respect to the model category A/E. We write Map(X,Y ) for the
mapping space between X and Y with respect to the model category E.

Proposition 11.13 Suppose A is a cofibrant object of E and f and g are as above.
Then there is a homotopy pullback square of simplicial sets

MapA(X,Y ) Map(X,Y )

∆[0] Map(A,Y ).g

Proof Without loss of generality we may assume that f : A→ X is a cofibration (so
that in particular X is cofibrant). Fix an arbitrary simplicial resolution Y → Ŷ• of Y ;
note that this also provides a resolution in A/E by precomposing with the fixed map
g : A→ Y . By construction, there is a pullback square of simplicial sets as follows:
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(A/E)(X, Ŷ•) E(X, Ŷ•)

∆[0] E(A, Ŷ•).
g

These simplicial sets are (models for) the ones appearing the statement of the propo-
sition; moreover, all of them are Kan complexes and the map on the right is a Kan
fibration by Proposition 11.4. The square is therefore also a homotopy pullback by
the dual of Lemma 7.51. �

11.2 Common Models for Mapping Spaces

The purpose of this section is to discuss some specific models for mapping spaces
for the various model structures on the categories of simplicial and dendroidal sets
we have defined. We begin with a general construction.

Suppose E comes equipped with a notion of tensor product, given by a functor

− ⊗ − : E × E→ E

which preserves colimits in each variable separately and admits a unit 1. We assume
that this tensor product satisfies the pushout-product property and that 1 is cofibrant.
Let C• be a cosimplicial resolution of 1. The assumption that 1 is cofibrant implies
that the weak equivalence C•

∼
−→ 1 is preserved by tensoring with an arbitrary

cofibrant object. For any cofibrant object A of E, the map

C• ⊗ A→ con(1 ⊗ A) � con(A)

is a cosimplicial resolution of A. If tensoring withCn has a right adjoint Hom(Cn,−)
for each n ≥ 0, then duallyHom(C•, X) is a simplicial resolution of any fibrant object
X .
Example 11.14 (Simplicial sets) (a) Consider the category sSets of simplicial sets
equipped with the Kan–Quillen model structure. Then the representable objects ∆[n]
together form a cosimplicial resolution ∆[•] of the terminal object ∆[0], because all
the ∆[n] are weakly contractible (i.e., weakly equivalent to ∆[0]) in this model
structure. Every simplicial set is cofibrant, so that

qAn := ∆[n] × A

defines a cosimplicial resolution of any simplicial set A. Consequently, for a fibrant
object (i.e., a Kan complex) X , we have a model for the mapping space given by

Map(A, X)n = sSets(∆[n] × A, X) = (XA)n.

In other words, the usual exponential XA is a model for the mapping space.
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(b) Now consider the categorical model structure for simplicial sets. Let J[n] be
the nerve of the groupoid with {0, . . . , n} as objects and exactly one isomorphism
between any two objects. (In particular, J[1] is the usual J we used many times
in earlier chapters.) Then J[•] is a cosimplicial resolution of the terminal object
∆[0] = J[0] and we find the formula

Map(A, X)n = sSets(J[n] × A, X)

as a model for the mapping space, valid for any simplicial set A and any fibrant object
(i.e., ∞-category) X . This simplicial set Map(A, X) is a Kan complex, whereas the
exponential XA used in (a) is only an ∞-category in general. In fact, the evident
maps ∆[n] → J[n] yield a map of simplicial sets

Map(A, X) → XA.

Since the left-hand side is a Kan complex, this map must factor through the maximal
Kan complex k(XA) in XA. In fact the resulting map Map(A, X) → k(XA) is a trivial
fibration. Indeed, writing Z for the exponential XA, it suffices to show that for any
∞-category Z the map

sSets(J[•], Z) → sSets(∆[•], kZ) = kZ

is a trivial fibration of simplicial sets. We may identify the left-hand side with
sSets(J[•], kZ), so in fact it suffices to show that

sSets(J[•],K) → sSets(∆[•],K)

is a trivial fibration for any Kan complex K . But this follows easily from the fact
that ∆[n] → J[n] is a trivial cofibration in the Kan–Quillen model structure. We
conclude that k(XA) is another model for the mapping space Map(A, X)with respect
to the Joyal model structure.

(c) For any n > 0, the simplicial set J[n] has infinitely many nondegenerate
simplices. There exists a smaller cosimplicial resolutionQ• of∆[0] in the categorical
model structure, for which each Qn is a finite simplicial set. As before, we take
Q0 = ∆[0]. The simplicial set Q1 is the quotient of ∆[3] obtained by forcing the two
edges (02) and (13) to be degenerate:

0

1

2 3.
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Formally, it is defined as the pushout

∆[1] q ∆[1] ∆[3]

∆[0] q ∆[0] Q1.

(02)q(13)

(Intuitively, Q1 is the quotient of the nerve of [3] where we force the arrow 1 → 2
to have both a left and a right inverse.) Notice that Q1 has a natural map to J[1] = J
with image the 3-simplex

0→ 1→ 0→ 1.

The map Q1 → J is a weak equivalence in the categorical model structure. Indeed,
to prove this it suffices to prove that the inclusion of a vertex ∆[0] → Q1 has the
left lifting property with respect to any categorical fibration Y → X between ∞-
categories. But clearly the image of any 1-simplex of Q1 in an ∞-category X is an
equivalence. Thus by Corollaries 5.53, 5.54, and 8.17, a commutative diagram

∆[0] Y

Q1 X

factors through the Kan fibration kY → k X , so in fact we need only show that
∆[0] → Q1 is a trivial cofibration in the Kan–Quillen model structure. This is clear
because Q1 is weakly contractible.

Generally, we take Qn to be the simplicial set obtained from the nerve of the
category

0→ 1→ · · · → n

by forcing each arrow i → i + 1 to have a left and a right inverse. For example, for
n = 3 it can be pictured as

a3 a2 a1 a0

0 1 2 3

b3 b2 b1 b0,

∗ ∗ ∗

∗ ∗ ∗

where each arrow marked ∗ has been made degenerate. Formally, it is defined as a
quotient of ∆3n formed by collapsing each of the 1-simplices as in the picture above
to a copy of ∆[0]. To be precise, thinking of ∆3n as the nerve of the directed category
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a0 → · · · → an = 0→ · · · → n = b0 → · · · → bn,

the 1-simplices to be collapsed correspond to the morphisms

an−i → i and i → bn−i .

Then just as for n = 1, there are maps

∆
3n → Qn → J[n],

where Qn → J[n] is obtained by observing that the map ∆3n → J[n] given by the
nondegenerate 3n-simplex

0→ 1→ 0→ · · · → 1→ 0

for n even or
0→ 1→ 0→ · · · → 0→ 1

for n odd factors through the quotient ∆3n → Qn. The map Qn → J[n] is again a
categorical equivalence, by the same argument as for n = 1. Thus, for any∞-category
X and any simplicial set A,

Map(A, X)n := sSets(Qn × X,Y )

is another model for the mapping space in the categorical model structure.

Example 11.15 (Simplicial presheaves) For a small category C, consider the cate-
gory sPSh(C) = sSetsCop

of simplicial presheaves on C, equipped with the projective
model structure. There is a functor

con: sSets→ sPSh(C)

assigning to each simplicial set X the constant simplicial presheaf with value X . If
C has a terminal object, then con(X) is the product of the presheaf represented by
that terminal object with X , hence con(X) is projectively cofibrant. It follows that in
this case Cn := con(∆[n]) gives a cosimplicial resolution of the terminal object in
sPSh(C). For general C this is not necessarily true. Nonetheless, if X is a cofibrant
simplicial presheaf, then

qXn = con(∆[n]) × X

defines a cosimplicial resolution of X , as we will demonstrate below. Then a model
for the mapping space between a cofibrant object X and a fibrant object Y is given
by

Map(X,Y )n := sPSh(C)(con(∆[n]) × X,Y ).

To show that qXn is indeed a cosimplicial resolution, for each cofibrant object X , we
need to prove that

con(∂∆[n]) × X → con(∆[n]) × X)
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is a projective cofibration. For this, consider the class of A of morphisms A→ B in
the category sPSh(C) for which

con(U) × B ∪ con(V) × A→ con(V) × B

is a projective cofibration for any monomorphism U → V of simplicial sets. It then
suffices to show that this class is saturated (which follows by the same standard
arguments for pushout-products as before) and contains the generating cofibrations.
If A→ B is a generating projective cofibration of the form

con(∂∆[n]) × C(−, c) → con(∆[n]) × C(−, c),

where c is an object of C, then the map under consideration is

con(U × ∆[n] ∪ V × ∂∆[n]) × C(−, c) → con(V × ∆[n]) × C(−, c).

Clearly this is again a cofibration.
Example 11.16 (Dendroidal sets) The inclusion i! : sSets→ dSets is a left Quillen
functor for the categorical model structure on sSets and the operadic model structure
on dSets, as well as for the Kan–Quillen model structure on sSets and the covariant
one on dSets. Thus, we can ‘transfer’ the cosimplicial resolutions of Example 11.14
via the functor i! to obtain cosimplicial resolutions of dendroidal sets. More specif-
ically, if A is a normal dendroidal set and X is an ∞-operad, then the following are
models for Map(A, X) for the operadic model structure:

MapJ (A, X)n := dSets(i!J[n] ⊗ A, X)

MapQ(A, X)n := dSets(i!Qn ⊗ A, X).

As in the case of simplicial sets, the mapping space MapJ (A, X) is naturally equiva-
lent to the maximal Kan complex in the∞-category i∗Hom(A, X), with Hom(A, X)
denoting the ‘internal hom’ of dendroidal sets adjoint to the tensor product. For the
covariant model structure on dSets we can simply use the standard simplices and
obtain another model

Map∆(A, X)n := dSets(i!∆[n] ⊗ A, X)

for the mapping space, this time for a normal dendroidal set A and a covariantly
fibrant one X (i.e., a dendroidal left Kan complex).
Example 11.17 (Kites) IfT is a tree, viewed as a representable dendroidal set, there
is a very small and useful cofibrant resolution ofT with respect to the operadic model
structure, which we write as

kite0(T) kite1(T) · · · .

The object kiten(T) is the tree T with a ‘degenerate tail’ of length n adjoined to it,
defined as the pushout
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∆[n] ∆[0]

[n] ◦ T kiten(T).

Here [n] ◦ T is the grafting of T to the top of the linear tree [n], which may be
regarded as the pushout of the span

T
root
←−−− η

0
−→ [n]

in Ω. The object kiten(T) derives its name from the following picture:

T

0

...

n

The cosimplicial structure of kite•(T) is given by interpreting it as a quotient of
the grafting [n] ◦T . If T has leaves labelled 1, . . . , k, it is easy to see that kite•(T) is a
Reedy cofibrant object of ∂Ck/dSets∆, where the map ∂Ck → kite•(T) picks out the
leaves and root of T . To see that kite•(T) is indeed a cosimplicial resolution of T in
this slice category, we need to check that each projection kiten(T) → T , collapsing
the tail to a single edge, is an operadic equivalence. To this end, consider the cube
of dendroidal sets

[n] [0]

[n] [0]

Ω[T] ∪η ∆[n] Ω[T] ∪η ∆[0]

Ω[[n] ◦ T] kiten(T).

in which the front and back faces are pushouts. The map Ω[T] ∪η [n] → Ω[[n] ◦T],
which grafts [n] onto the root of T , is inner anodyne. Hence the cube lemma (cf.
Corollary 7.50 and Lemma 7.51) guarantees that the map

Ω[T] = Ω[T] ∪η ∆[0] → kiten(T)
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is a weak equivalence. This map is a section of the projection kiten(T) → T , which
must then be a weak equivalence as well.

Example 11.18 (Spaces of operations) There is a close relation between the map-
ping spaces under consideration here and the ‘space of operations’ X(x1, . . . , xk ; y)
in an ∞-operad X as introduced in Definition 9.42. This simplicial set was defined
by a pullback square

X(x1, . . . , xk ; y) hom(Ck, X)

∆[0] hom(∂Ck, X) = (i∗X)k+1.
(x1,...,xk,y)

In other words, the n-simplices of X(x1, . . . , xk ; y) are the maps of dendroidal sets

Ck ⊗ ∆[n] ∪∂Ck ⊗∆[n] ∂Ck → X

in the slice category ∂Ck/dSets, where X is regarded as an object under ∂Ck via
the map that sends the leaves of Ck to the x1, . . . , xk and its root to y. We claim
that X(x1, . . . , xk ; y) is (a model for) the mapping space Map(Ck, X) in the model
category ∂Ck/dSets. Let us write Map∂Ck

(Ck, X) for this space to emphasize the
fact that it is the mapping space for the slice category.

To verify our claim, recall from Proposition 11.13 that Map∂Ck
(Ck, X) is the

homotopy fibre of
Map(Ck, X) → Map(∂Ck, X),

where both mapping spaces refer to those in the model category dSets, over the
vertex of Map(∂Ck, X) determined by the sequence x1, . . . , xk, y. According to
Example 11.16 we may identify Map(Ck, X) with the maximal Kan complex in-
side the ∞-category hom(Ck, X), and similarly for Map(∂Ck, X). Thus, the space
Map∂Ck

(Ck, X) is the homotopy fibre of the left vertical map in the following square:

k
(
hom(Ck, X)

)
hom(Ck, X)

k
(
hom(∂Ck, X)

)
hom(∂Ck, X).

The left verticalmap is aKanfibration according toTheorem6.51(a), so that its actual
fibre is a model for the homotopy fibre. Moreover, the square is a pullback: indeed,
this follows from item (b) of the same theorem, stating that an edge of hom(Ck, X)
is an equivalence if and only if it sends each colour of Ck to an equivalence in X .
Hence the fibre of the left vertical map agrees with that of the right vertical map.
The latter is precisely the space X(x1, . . . , xk ; y), completing our argument.
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The previous example describes a cosimplicial resolution of Ck in terms of kites;
it follows that the mapping space Map∂Ck

(Ck, X) may also be computed in terms
of maps kite•(Ck) → X . The resulting space will then be weakly equivalent to the
space X(x1, . . . , xk ; y) discussed above.

11.3 Left Bousfield Localizations

In earlier chapters we have seen various examples of a left Bousfield localization of
a model category E: a new model structure Eloc on the same category E, with the
same cofibrations but with a larger class of weak equivalences. (A first discussion
was given at the end of Section 8.3.) In such a situation, the identity functor defines
a Quillen pair

E Eloc
id!

id∗

that induces an adjoint pair at the level of homotopy categories

Ho(E) Ho(Eloc)
Lid!

Rid∗

with the property that the counit is an isomorphism from Lid! ◦ Rid∗ to the identity
of Ho(Eloc). In other words, the right adjoint Ri∗ embeds Ho(Eloc) as a full reflective
subcategory of Ho(E).

Generally, given a model category E and a class of morphisms λ in E, one can ask
whether it is possible to construct a left Bousfield localization of E by forcing the
elements of λ to beweak equivalences (andwhich is in an appropriate sense universal
with this property). In the next section we will give a useful set of conditions making
this possible, which we will apply many times in the remainder of this book. In this
section we introduce some terminology and collect a few general observations.

To begin, consider a cofibrantly generatedmodel categoryE and set of morphisms
λ in E. Notice that if A→ B is a morphism in λ, we can use the factorization axiom
to find a square

A′ A

B′ B

∼

∼

in which the horizontal maps are trivial fibrations, while A′ → B′ is a cofibration
between cofibrant objects. By two-out-of-three, demanding that A → B be a weak
equivalence is the same as demanding that A′→ B′ is aweak equivalence. Therefore,
we may without loss of generality assume that λ consists of cofibrations between
cofibrant objects. For such a set λ, we introduce the following terminology.
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Definition 11.19 An object E in E is λ-local (or just local if λ is clear from context)
if for any morphism A→ B in λ, the morphism

MapE(B, E) → MapE(A, E).

is a weak equivalence of simplicial sets. If E is in addition fibrant in E, we say that
E is λ-fibrant.

Remark 11.20 Many authors demand that E be fibrant in the above definition;
however, for us it will occasionally be convenient to consider local objects which
are not necessarily fibrant. Note that for us, the property of being λ-local is thus
invariant under weak equivalence.

Recall that for a fibrant object E in E, one can always arrange the map
Map(B, E) → Map(A, E) to be a Kan fibration between Kan complexes, of which
the restriction to vertices is the map of sets E(B, E) → E(A, E). Then E is λ-fibrant
if and only if this map is a trivial fibration between these Kan complexes for every
A→ B in λ.

Definition 11.21 Let λ be a set of cofibrations between cofibrant objects in a cofi-
brantly generated model category E. The left Bousfield localization with respect to
λ, if it exists, is the model structure Eλ on the same underlying category E, which
is characterized by the fact that it has the same cofibrations as E and in which the
fibrant objects are exactly the λ-fibrant objects.

We have seen various examples of left Bousfield localizations already. Indeed, the
characterization of the fibrant objects shows that the Kan–Quillen model structure
on the category of simplicial sets is the left Bousfield localization of the categorical
model structure with respect to the horn inclusion Λk[n] → ∆[n] for k = 0, n.
For the category of dendroidal sets, the covariant (resp. Picard) model structure
is the left Bousfield localization of the operadic one with respect to the leaf horn
inclusions (resp. all horn inclusions). Before moving on to general existence results
for Bousfield localizations, we observe some basic properties.

For emphasis we repeat the following facts, whichwere already proved as Lemmas
8.49 and 8.50.

Proposition 11.22 A map between λ-fibrant objects is a weak equivalence (resp.
fibration) in Eλ if and only if it is a weak equivalence (resp. fibration) in E.

Next, we record the following easy observation:

Proposition 11.23 If Eλ is a left Bousfield localization of a left proper model cate-
gory E, then Eλ is again left proper.

Proof Consider a pushout
A C

B D
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in which A→ B is a cofibration and A→ C is a weak equivalence in Eλ. Factor the
latter as A → X → C where A → X is a trivial cofibration in Eλ and X → C is a
fibration in Eλ. Then X → C is in fact a trivial fibration in Eλ, hence also a trivial
fibration in E. Thus B → D can be factored as the pushout of the trivial cofibration
A → X and a pushout (along a cofibration) of the weak equivalence X → C in E.
Since E is assumed left proper, the latter pushout is also a weak equivalence (both
in E and Eλ). It follows that B→ D is a weak equivalence in Eλ. �

We now also state the universal property of left Bousfield localization alluded to
at the beginning of this section.

Proposition 11.24 Let Eλ be the left Bousfield localization of model category E with
respect to a set λ of cofibrations between cofibrant objects, and let f! : E � F : f ∗

be a Quillen pair. Then the following are equivalent:

(i) The pair above factors through Eλ by a Quillen pair Eλ � F, as in

E Eλ

F.

id!

f!
f !

(ii) The functor f ∗ sends fibrant objects in F to λ-fibrant objects in E.
(iii) The functor f! sends the morphisms in λ to weak equivalences in F.

Proof The implication (i)⇒ (ii) is clear, as (ii) just says that f ∗, as a functorF→ Eλ,
preserves fibrant objects. For the equivalence (ii)⇔ (iii), note that assumption (ii)
says that

MapE(B, f ∗F) → MapE(A, f ∗F)

is a weak equivalence for any A→ B and any fibrant object F in F. By adjunction,
this is equivalent to

MapF( f!B, F) → MapF( f! A, F)

being a weak equivalence. This means that f! maps A → B to a weak equivalence
in F. Finally, for the implication (ii)⇒ (i), notice that when we view f! as a functor
Eλ → F, it still preserves cofibrations as these are the same in E as in Eλ. To show
that f! and f ∗ still define a Quillen pair, it thus suffices to prove that f ∗ preserves
fibrations between fibrant objects (cf. Lemma 8.42). But this is clear from assumption
(ii) and Lemma 8.50. �

11.4 Existence of Left Bousfield Localizations

Throughout this section E denotes a cofibrantly generated model category, which we
will most of the time assume to be left proper. In the previous section we defined the
notion of left Bousfield localization of E with respect to a set of morphisms λ, but
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left the question of whether such a localization exists open. There are several quite
general criteria to be found in the literature; see the notes at the end of this chapter
for references. These are all of a rather set-theoretic nature. Rather than proving one
of these, we will begin by stating some general properties and then prove a more
restrictive result which is sufficiently general to cover the examples in this book.

Recall that if R is a Reedy category, the projective and Reedymodel structures are
two Quillen equivalent model structures on the diagram category ERop with the same
weak equivalences, while one (the projective model structure) has fewer cofibrations
than the other (the Reedy model structure). In situations like this, the following
observation is useful.

Proposition 11.25 Let E be a model category and let λ be a set of morphisms in E for
which the left Bousfield localization Eλ exists. Suppose E′ is another model structure
on the same category E with fewer cofibrations but the same weak equivalences, so
that the identity functor E′ → E is a left Quillen equivalence. Then the localization
E′λ also exists and E′λ → Eλ is again a left Quillen equivalence.

Proof We may assume that λ consists of cofibrations between cofibrant objects in
E′. Let us write j! : E′ � E : j∗ for the Quillen equivalence given by the identity
functors. By hypothesis, j! and j∗ preserve and detect weak equivalences between
arbitrary objects. Define a new model structure E′λ by taking the weak equivalences
to be those of Eλ and the cofibrations to be those of E′. The fibrations in E′λ are then
defined as the morphisms having the right lifting property with respect to the trivial
cofibrations in E′λ. Our task is to show that these classes of morphisms satisfy the
axioms for a model structure. Assuming this for the moment, the claim that E′λ → Eλ
is a Quillen equivalence is clear from the fact that the weak equivalences of these
model structures coincide.

So let us check the axioms (M1–5) for E′λ. As usual, the first three axioms are
obvious. Moreover, the factorization of a morphism into a cofibration followed by
a map having the right lifting property with respect to all the cofibrations can be
performed in E′λ as it is in E′ (these two having the same cofibrations), and a map
having this right lifting property is a weak equivalence in E′, hence also in E′λ. For
the other factorization, consider a map X → Y . Factor it first as a trivial cofibration
followed by a fibration in Eλ, say X → V → Y . Next, factor X → V as a cofibration
followed by a trivial fibration in E′λ, say as X → W → V . Then X → W is a weak
equivalence in E′λ because X → V and W → V are. Moreover, W → Y has the right
lifting property with respect to all the trivial cofibrations in E′λ, because the same is
true for both W → V and V → Y . Thus X → W → Y is the desired factorization
into a trivial cofibration followed by a fibration in E′λ. Finally, one half of the lifting
axiom (M5) holds by definition of the fibrations and the other half follows because
the trivial fibrations in E′λ are the same as those of E′. Indeed, ifY → X is a fibration
in E′λ and a weak equivalence, we can factor it as Y → V → X where Y → V
is a cofibration and V → X has the right lifting property with respect to all the
cofibrations. Then Y → V is also a weak equivalence, so Y → X has the right lifting
property with respect to Y → V . This makes Y → X a retract of V → X , as in



11.4 Existence of Left Bousfield Localizations 471

Y Y

V X .

Hence also Y → X has the right lifting property with respect to all cofibrations, as
desired.

Finally, we need to prove that an object is fibrant in E′λ if and only if it is fibrant in
E′ and λ-local. Take such a fibrant and λ-local object X in E′ and factor X → 1 into
a trivial cofibration f : X → Y followed by a fibration Y → 1 in E. (In other words,
Y is a fibrant replacement of X in the model structure E.) Then X → Y is a weak
equivalence between fibrant objects inE′, soY is also λ-local and hence fibrant inEλ.
A fortiori, Y is fibrant in E′λ. Now, as in Brown’s lemma, factor (1, f ) : X → X × Y
as

X X × Y,

Z

(1, f )

u
(p,q)

where X
u
−→ Z is a trivial cofibration in E′ and Z → X ×Y is a fibration in E′. Then

all of u, p, and q are weak equivalences in E′. Since X is fibrant in E′, the map
Z → Y is a fibration in E′. Hence it is a trivial fibration in E′ and also in E′λ. Since
Y is fibrant in E′λ, so is Z . But X is a retract of Z , so X is fibrant in E′λ as well. �

For a cofibrantly generated model category E, again consider a set λ of cofibra-
tions between cofibrant objects. If the localization Eλ were to exist, then its weak
equivalences are determined by Corollary 11.10, i.e., a map A → B is a weak
equivalence in Eλ if and only if

MapEλ (B, X) → MapEλ (A, X)

is a weak equivalence of simplicial sets for every fibrant object X in Eλ. Applying
Corollary 11.12 to the Quillen pair E � Eλ, this is the same as saying that

MapE(B, X) → MapE(A, X)

is a weak equivalence for every λ-fibrant object X in E. Thus, the following proposi-
tion shows that at least one criterion for the existence of Eλ is satisfied, namely that
the (supposed) trivial cofibrations form a saturated class.

Proposition 11.26 Let λ be a set of cofibrations between cofibrant objects in a left
proper model category E. Write λ̂ for the class of cofibrations A → B having the
property that

MapE(B, X) → MapE(A, X)

is a weak equivalence for any λ-fibrant object X . Then λ̂ is a saturated class.
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Proof It is clear that λ̂ is closed under retracts. For a given λ-fibrant object X , let us
use the model for the mapping space MapE(A, X) given by

E(Ac, X̂•),

where Ac is a cofibrant replacement of A and X̂• is a simplicial resolution of X (and
similarly for B in place of A). Then A→ B belongs to λ̂ if and only if

MapE(B, X) → MapE(A, X)

is a trivial fibration of simplicial sets (cf. Proposition 11.4), provided we arrange
the map Ac → Bc of cofibrant replacements to be a cofibration (which we can
always do). It then easily follows that λ̂ is closed under transfinite composition. For
pushouts, observe that if a square as below on the left is a pushout in E, then the one
on the right is a pullback of simplicial sets:

A C E(D, X̂•) E(B, X̂•)

B D E(C, X̂•) E(A, X̂•).

So if the right-hand map in the pullback is a trivial fibration then so is the one on the
left. Hence it suffices to show that we can ‘lift’ such a pushout square to a pushout
square of cofibrant replacements. To this end, first use the factorization axiom to lift
C ← A→ B to cofibrations between cofibrant objects as in

C ′ A′ B′

C A B.

∼ ∼ ∼

Then take the pushout of the top row to get a cube

A′ B′

C ′ D′

A B

C D.

in which bottom and top are pushouts. Then by Lemma 7.51 and the assumption that
E is left proper, D′→ D is again a weak equivalence. This concludes the proof that
λ̂ is closed under pushouts. �
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Definition 11.27 Let λ be a set of morphisms as before and define the class λ̂ as
in Proposition 11.26. Then λ is localizable if the class λ̂ admits the small object
argument.

Recall that this means that λ̂ is the saturation of a set of morphisms, each having
a domain which is ‘small’ in an appropriate sense. In all of the examples of this book
‘small’ can be taken to mean finite or countable (e.g. for simplicial or dendroidal
sets). Generally, one fixes a regular cardinal κ and asks that the domains D are κ-
compact, meaning that E(D,−) preserves κ-filtered colimits. Under these conditions,
the small object argument provides a factorization of any map in E as a map in λ̂
followed by a map having the right lifting property with respect to all maps in λ̂. In
the next section we provide a general way to prove that certain classes are localizable.

The localizability of λ allows us to use standard arguments to derive the following
existence result.

Proposition 11.28 Let E be a left proper cofibrantly generated model category. If λ
is a localizable set of morphisms, then the left Bousfield localization Eλ exists.

Proof As already described before, the definitions of the relevant classes of mor-
phisms are as follows: the cofibrations are the same as those of E and a map A→ B
is a weak equivalence precisely if MapE(B, X) → MapE(A, X) is a weak equivalence
of simplicial sets for every λ-fibrant object X . In particular, every weak equivalence
in E is also one in Eλ. The fibrations are defined as the maps having the right lifting
property with respect to the trivial cofibrations, i.e., with respect to the maps in λ̂.
With these definitions, axioms (M1–3) are clearly satisfied. Moreover, for the fac-
torization axiom (M5), a map factors as a cofibration followed by a trivial fibration
in E and this also gives the required factorization in Eλ. As mentioned already, the
assumption on λ̂ implies that any map in E factors as a map in λ̂ (i.e., a trivial cofi-
bration) followed by one having the right lifting property with respect to all the maps
in λ̂ (which is a fibration in Eλ by definition). Finally, one half of the lifting axiom
(M4) holds by definition, while the other half follows by the usual retract argument.
This proves that the classes of cofibrations, fibrations, and weak equivalences as just
defined for Eλ indeed define a model structure.

It remains to be shown that the fibrant objects in Eλ are exactly the λ-fibrant
ones, i.e., the fibrant objects X in E for which MapE(B, X) → MapE(A, X) is a weak
equivalence for each A → B in λ. First suppose X is fibrant in Eλ. Since the maps
A→ B in λ are obviously trivial cofibrations in Eλ, it follows immediately that

MapEλ (B, X) → MapEλ (A, X)

is a weak equivalence of simplicial sets. But Eλ can be replaced by E in this expres-
sion, as we already observed in Corollary 11.12, so X is λ-fibrant. For the converse,
suppose X is λ-fibrant. We should show that X → 1 has the right lifting property
with respect to all cofibrations which are weak equivalences in Eλ. Since X is fibrant
in E, Lemma 7.43 shows that it suffices to prove this for cofibrations between cofi-
brant objects. Let A→ B be such a trivial cofibration between cofibrant objects in
Eλ. Then we can choose a model for the mapping spaces for which
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MapE(B, X) → MapE(A, X)

is a trivial fibration. Moreover, we may arrange Map(B, X)0 = E(B, X) and similarly
for A. Any trivial fibration is surjective on vertices, so picking a preimage of the
vertex corresponding to a given map A→ X gives a lift B→ X . This completes the
proof. �

11.5 Localizable Sets of Morphisms

Let λ be a set of cofibrations between cofibrant objects in a left propermodel category
E. In order to apply Proposition 11.28 in practice to establish the existence of left
Bousfield localizations, it is necessary to have a useful way of checking that λ is
localizable in the sense of Definition 11.27. In this section we will give some criteria
to do this, which are sufficiently general to cover the instances of left Bousfield
localization used in this book (and many more). The arguments are modelled on
those in Section 8.1.

We shall work with model structures on a category E of set-valued presheaves,
E = SetsCop

, where C is a countable category. The categories of simplicial and
dendroidal sets are examples of such E. Moreover, if E is of this form then so is
the category sE = E∆op of simplicial objects in E. An object in E is called finitely
presented (or briefly, finite) if it can be written as a finite colimit of representables.
Similarly one defines countable objects. If K is finite and if

A0 → A1 → · · ·

is a countable sequence of monomorphisms, then any map K → lim
−−→n

An factors
through An for some n.

Remark 11.29 Everything we do in this section works (with straightforward modifi-
cation) with ‘finite’ replaced by ‘κ-small’ and considering κ-filtered colimits instead
of just countable ones. Also, the hypothesis that E is a category of presheaves can be
relaxed to only assume that it is ‘presentable’ (meaning a certain kind of localization
of a presheaf category) at the cost of phrasing our arguments in a more abstract way.
However, this added generality will not play a role for us and the essence of the
arguments remains unchanged.

We will assume that E carries a model structure which is left proper and has the
following four properties:

(1) Each cofibration is a monomorphism. Moreover, if X ⊆ A ⊆ Y and X → Y is a
cofibration, then so is A→ Y .

(2) The cofibrations are generated by a set of cofibrations between finite objects.
(3) An object X is fibrant if and only if X → 1 has the right lifting property with

respect to the trivial cofibrations between finite objects in E.
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(4) If A is a finite cofibrant object, then it admits a cosimplicial resolution qA• with
each qAn a finite object. Moreover, if A → B is a cofibration between finite
cofibrant objects, one may arrange a compatible map of such finite cosimplicial
resolutions qA• → qB• which is a Reedy cofibration.

It is useful to note that the set of all trivial cofibrations between finite objects is
countable. All the model structures described so far in this book have the properties
listed above. In fact it is possible to get rid of assumption (4) at the cost of working
with a suitably large cardinal κ as in Remark 11.29. However, (4) is easily seen to
hold in all of our examples, so we choose to include it.

Definition 11.30 A morphism X → Y is called finite (resp. countable) if for every
object c in C and every morphism C(−, c) → X , the pullbackY ×X C(−, c) is a finite
(resp. countable) object.

The countability of C and property (2) ensure the following.

Lemma 11.31 Suppose X → Y is a countable morphism. Then there exists a factor-
ization X → Z → Y into a cofibration followed by a trivial fibration, where Z → Y
is again countable.

Proof The factorization is constructed in the standard way from the small object
argument, as we will explain. We may write Y as a filtered colimit of finite objects
Yi and define Xi = Yi ×Y X . Then Xi is countable and it suffices to construct the
factorization for each Xi → Yi and take the filtered colimit afterwards. In other
words, we may assume Y is finite and X is countable. Then there are only countably
many commutative squares

A X

B Y

where A → B is a generating cofibration between finite objects. If we take the
pushout along the coproduct of all these cofibrations as in the small object argument∐

A X

∐
B X ′,

then X ′ is still countable. Repeating this construction countably many times and
taking the colimit yields the required factorization. �

We will use the lemma in the following special case:

Example 11.32 If X → Y is a cofibration, then there exists a factorization of the
fold mapY qX Y → Y as a cofibration followed by countable trivial fibration, giving
a relative cylinder for Y with respect to X:

Y qX Y CX (Y ) Y .∼
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The following definition reflects a property thatwe proved earlier for the categories
of simplicial and dendroidal sets, cf. Sections 8.1 and 9.1, specifically Lemma 9.22.

Definition 11.33 Let λ be a set of cofibrations between cofibrant objects in a model
category E. We say that λ has the countable approximation property if for any
cofibration X → Y in λ̂ and any commutative diagram

A X

B Y

with A→ B a monomorphism between countable objects, there exists an extension
to a diagram

A A′ X

B B′ Y

in which A′ and B′ are again countable, the square on the right is a pullback, and
A′→ B′ also belongs to λ̂.

Proposition 11.34 Ifλ has the countable approximation property, then λ̂ is generated
by morphisms in λ̂ between countable objects. In particular, since there is only a set
of such morphisms (up to isomorphism), the set λ is localizable.

Proof The proof is the same as that of Corollary 8.15. More explicitly, let f : X → Y
be a morphism in λ̂. We may assume that X is a subpresheaf ofY and that f is simply
the inclusion. Enumerate the elements ofY which do not belong to X as {yξ | ξ < α}
for some ordinal α. We will construct a sequence of subpresheaves

X = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mξ ⊆ Mξ+1 ⊆ · · · ⊆ Y,

where each Mξ → Mξ+1 belongs to λ̂ and where yζ ∈ Mξ whenever ζ < ξ. We
proceed by induction. At limit ordinals ξ we define Mξ = ∪ζ<ξMζ . If Mξ has been
defined then we define Mξ+1 as follows. Let B ⊆ Y be a countable subpresheaf with
yξ ∈ B (which exists because C is countable) and let A = B ∩ Mξ . The countable
approximation property provides a diagram

A A′ Mξ

B B′ Y,
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where A′ → B′ belongs to λ̂. Let Mξ+1 = B′ ∪A′ Mξ be the pushout. Then Mξ →

Mξ+1 belongs to λ̂ since A′→ B′ does, and Mξ+1 → Y is a monomorphism because
the square is a pullback. So Mξ+1 → Y is a cofibration (using property (1) of E),
which must belong to λ̂ since Mξ → Y and Mξ → Mξ+1 do. This completes the
induction. �

Proposition 11.35 Let E be a model category satisfying properties (1)–(4). Let λ
be a set of cofibrations between finite cofibrant objects. Then λ has the countable
approximation property.

If X is an object of E, a λ-fibrant replacement of X is a cofibration X → Xλ
which belongs to λ̂ and for which Xλ is a λ-fibrant object. Such a replacement can be
constructed explicitly using the small object argument, using it to force Xλ → 1 to
have the right lifting property with respect to the set of trivial cofibrations between
finite objects (using property (3) of E) as well as with respect to the cofibrations

qAn ∪∂ qAn ∂ qBn → qBn

for A → B in λ (using property (4) in order to assume that these are finite). This
explicit construction will have the following obvious properties.

Lemma 11.36 (a) If X is countable, then so is its λ-fibrant replacement Xλ.
(b) If X is arbitrary and B ⊆ Xλ is countable, then there exists a countable A ⊆ X

for which B ⊆ Aλ ⊆ Xλ.

Proof (of Proposition 11.35) Let i : X → Y be a cofibration in λ̂ and consider a
diagram

A0 X

B0 Y

where A0 and B0 are countable. Suppose for the moment that X and Y are cofibrant.
Let Xλ and Yλ be λ-fibrant replacements, fitting into a diagram

X Xλ

Y Yλ.

i iλ

Then iλ is a morphism in λ̂ between cofibrant and λ-fibrant objects, which implies
that it is a deformation retract. In other words, there exists a retraction rλ : Yλ → Xλ
and a homotopy between iλrλ and the identity on Yλ, which can be taken to be
parametrized by a cylinder

Yλ ∪Xλ Yλ → CXλ (Yλ)
π
−→ Yλ
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for which the projection is a countable morphism. Let us write h : CXλ (Yλ) → Yλ
for this homotopy. Then there are countable A′ ⊆ Xλ and B′ ⊆ Yλ with A0 ⊆ A′

and B0 ⊆ B′ for which r and h restrict to maps r : B′ → A′ and h : CB′ → B′,
where CB′ = π

−1B′ is the restriction of the cylinder to B′. Next, by the lemma, there
are countable A′′ ⊆ X and B′′ ⊆ Y with A′ ⊆ (Aλ)′′, B′ ⊆ (Bλ)′′ and A0 ⊆ A′′,
B0 ⊆ B′′. This gives a diagram

A′0 A′′ X

A′ A′′λ Xλ

B0 B′′ Y

B′ B′′λ Yλ

in which the two rightmost vertical maps in the front fact are part of deformation
retracts, hence belong to λ̂. Now let B1 = B′′ and A1 = X ∩ B1 (which contains A′′)
and repeat the construction with A0 and B0 replaced by A1 and B1. If we iterate this
countably many times, we arrive at a sequence

A0 A1 A2 · · · X

B0 B1 B2 · · · Y

for which the λ-fibrant replacements are interpolated by deformation retracts

(A1)λ A′1 (A2)λ · · ·

(B1)λ B′1 (B2)λ · · · .

∼

This shows that lim
−−→
(An)λ → lim

−−→
(Bn)λ belongs to λ̂ and hence so does lim

−−→
An →

lim
−−→

Bn. The diagram

A0 lim
−−→

An X

B0 lim
−−→

Bn Y

then shows that the countable approximation property holds.
In the preceding argument, we have assumed that X and Y are cofibrant. In the

general case, we can use Lemma 11.31 to find a diagram
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X̂ X

Ŷ Y

p

q

where X̂ and Ŷ are cofibrant and the horizontal maps are trivial fibrations with
countable fibres. Then X̂ → Ŷ also belongs to λ̂. Let Â0 = p−1(A0) and B̂0 = q−1(B0).
Then the proof above gives a diagram

Â0 Â1 X̂

B̂0 B̂1 Ŷ,

where Â1 → B̂1 is a map between countable objects which belongs to λ̂. Let A1 ⊆ X
and B1 ⊆ Y be countable subpresheaves with Â1 ⊆ p−1 A1 and B̂1 ⊆ q−1B1. Now
iterate this countably many times to get a diagram

Â1 p−1(A1) Â2 p−1(A2) · · · X̂

B̂1 q−1(B1) B̂2 p−1(B2) · · · Ŷ

in which each Ân → B̂n belongs to λ̂. Then p−1(∪An) → q−1(∪Bn) does too, and
hence so does ∪An → ∪Bn. In this way, we deduce the case where X and Y are
arbitrary from the one where they are both cofibrant, and the proof of the proposition
is complete. �

Let us summarize the conclusions:

Theorem 11.37 Suppose E = SetsCop
is a category of presheaves on a countable

categoryC. Suppose thatE carries a left propermodel structure satisfying properties
(1)–(4) listed at the start of this section. Then any set λ of cofibrations between finite
cofibrant objects is localizable. Hence the left Bousfield localization Eλ of E with
respect to λ exists.

Historical Notes

The concept of localization (and the closely related notion of completion) was first
introduced into homotopy theory to make sense of rationalization and p-completion
of spaces; some of the earliest references are Quillen’s paper [124], Sullivan’s notes
[136], and the book of Bousfield–Kan [32]. Localization with respect to general
homology theories was described byAdams in [1]; the existence of such localizations
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(both in stable and unstable homotopy) was proved by Bousfield in [29, 28]; these
two papers were crucial to the further development of the notion. The theory was
generalized both by Bousfield [30] and by Dror-Farjoun [56] to localizations with
respect to arbitrary maps between spaces. The first systematic and comprehensive
exposition of localization in the context ofmodel categories is the book ofHirschhorn
[84].

In this chapter we have given a self-contained treatment of left Bousfield local-
ization, trying to distinguish the general theory (see Section 11.3) and the problem
of existence. We have proved existence only in the special case of a model structure
on a category of simplicial presheaves whose cofibrations are monomorphisms. This
suffices for our purposes in this book; moreover, many naturally occurring model
categories are (closely related to one) of this form, as the work of Dugger [49] shows.
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Chapter 12
Dendroidal Spaces and ∞-Operads

Recall that a dendroidal set X is an∞-operad if it satisfies the inner Kan condition;
i.e., it has the extension property with respect to all inner horn inclusions of trees.
In particular, this condition guarantees that if we interpret the sets X(T) as ‘sets of
operations’ parametrized by the tree T , then there is a notion of composition of such
operations (well-defined up to homotopy) when grafting trees T and T ′. In Section
12.1 we introduce an analogous condition for dendroidal spaces, namely the Segal
condition. A dendroidal space X satisfying this condition is called a dendroidal Segal
space and again there exists a notion of ‘composition of operations’, well-defined up
to homotopy. In Section 12.2 we introduce the notion of completeness of dendroidal
Segal spaces. Essentially, this amounts to a localization of the homotopy theory of
dendroidal Segal spaces in which the groupoid interval J is forced to become weakly
contractible.With this localization in place, wewill show that the homotopy theory of
complete dendroidal Segal spaces is equivalent to that of∞-operads, by exhibiting a
Quillen equivalence between a certain model structure on the category of dendroidal
spaces and the operadicmodel structure on the category of dendroidal sets. In Section
12.3 we further characterize completion as the localization of the homotopy theory of
dendroidal Segal spaces at the fully faithful and essentially surjective maps. Section
12.4 aims to show that the Boardman–Vogt tensor product of dendroidal spaces
(rather than of dendroidal sets) behaves well with respect to the homotopy theory we
have introduced; it can be used to equip the homotopy category of∞-operads with a
symmetric monoidal structure. In particular, we will see that the subtle behaviour of
the tensor product of dendroidal sets with respect to cofibrations does not pose such
a problem in the context of dendroidal spaces. In the next two sections of this chapter
we introduce closed and reduced dendroidal spaces, respectively. These two variants
are designed to capture the somewhat simpler homotopy theory of ∞-operads in
which the spaces of nullary operations are contractible and all unary operations are
invertible, which is the case in many examples of interest. In the final Section 12.7,
we discuss how the theory of dendroidal spaces specializes to that of simplicial
spaces, in particular recovering Rezk’s notion of complete Segal spaces.
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12.1 Dendroidal Segal Spaces

We begin this section by reviewing some notational conventions. A dendroidal space
is, by definition, a contravariant functor from the category Ω of trees to the category
of simplicial sets,

X : Ωop → sSets.

Here and below, we use the term ‘space’ for a simplicial set, as suggested by the
Quillen equivalence between the Kan–Quillen model structure and the classical
model structure on the category of topological spaces. With natural transformations
as morphisms, this defines a category

dSpaces := sSetsΩop
.

It is a category of simplicial presheaves of the type discussed several times already
in this book. Before we go into specific aspects of dendroidal spaces, let us establish
some notation. First of all, the category of dendroidal spaces is naturally tensored
over that of simplicial sets: if X is a dendroidal space and M is a simplicial set, we
denote by X � M the dendroidal space defined by

(X � M)(T) = X(T) × M,

where T ranges over Ω. For such X and M , we denote by XM the dendroidal space
defined by

XM (T)n = sSets(M × ∆[n], X(T)) = dSpaces(T � (M × ∆[n]), X).

Herewe identifyT with the representable dendroidal set or the corresponding discrete
dendroidal space, so T � M is the dendroidal space with

(T � M)(S)n = Ω(S,T) × Mn.

We will continue to use this abbreviated notation for representables. As a further
piece of notation, each dendroidal space X defines a functor (denoted by the same
symbol)

X : dSetsop → sSets

by Kan extension: it is the unique functor (up to isomorphism) which agrees with
the given X : Ωop → sSets on representables and preserves all small limits. Thus,
for a dendroidal set A, the simplicial set X(A) is characterized by the identifications

sSets(M, X(A)) � dSpaces(A � M, X) � dSpaces(A, XM ).

Alternatively, writing A as a colimit of representables, we find the formula

X(A) = lim
←−−
T→A

X(T),
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where the limit ranges over all the maps from representable dendroidal sets T to A.
Finally, we observe that the inclusion i : ∆→ Ω induces adjoint functors

sSpaces dSpaces
i!

i∗

between the category of dendroidal spaces and that of simplicial spaces (alias bisim-
plicial sets), analogous to the usual adjunction between dendroidal and simplicial
sets. As in this case (cf. Section 3.5.2), the category on the left can be identified with
the slice category dSpaces/η and the adjunction then takes the form

dSpaces/η dSpaces,

with left adjoint the forgetful functor.
With these notational conventions in place, we can now begin our discussion of

the homotopy theory of dendroidal spaces. As a category of simplicial presheaves,
dSpaces carries the projective model structure (with respect to the Kan–Quillen
model structure on the category of simplicial sets). We denote this model category
by

dSpacesP .

Recall that this projective model structure is defined by declaring a map X → Y
of dendroidal spaces to be a fibration (or weak equivalence) if for each tree T , the
map X(T) → Y (T) of simplicial sets is a Kan fibration (resp. a weak homotopy
equivalence). The generating (trivial) cofibrations for the projective model structure
are of the form

T � M → T � N,

where M → N is a generating (trivial) cofibration in sSets and T is any object of Ω.
Since Ω is a Reedy category, the category dSpaces also carries a Reedy model

structure. We denote the corresponding model category by

dSpacesR .

The Reedy model structure has the same weak equivalences as the projective one,
but fewer fibrations and hence more cofibrations. Explicitly, the Reedy cofibrations
are generated by the maps of the form

T � ∂∆[n] ∪ ∂T � ∆[n] → T � ∆[n],

for all T in Ω and all n ≥ 0. A map X → Y is a Reedy fibration if and only if for
each tree T the map of simplicial sets

X(T) → Y (T) ×Y(∂T ) X(∂T)

is a Kan fibration. Here, according to the notational conventions explained above,
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X(∂T) = lim
←−−
S→T

X(S),

where the limit ranging over propermonomorphisms S → T . Recall fromProposition
10.11 that this implies that for any dendroidal subset U ⊆ ∂T , the map

X(T) → Y (T) ×Y(U) X(U)

is also a Kan fibration. In particular, taking U = � we find that any Reedy fibration
is a projective fibration, as already asserted above. All in all, the identity functor
defines a Quillen equivalence

dSpacesP dSpacesR .
id!

id∗

It will be convenient to have the following description of the Reedy cofibrations:

Lemma 12.1 A map X → Y of dendroidal spaces is a Reedy cofibration if and only
if for each simplicial degree k, the map Xk → Yk of dendroidal sets is a normal
monomorphism.

We call a map with the properties of the lemma a normal monomorphism of
dendroidal spaces.

Proof The class of degreewise normal monomorphisms is a saturated class that
evidently contains the generating Reedy cofibrations listed above, so every Reedy
cofibration is indeed a normalmonomorphismof dendroidal spaces. For the converse,
suppose X → Y has the property that each Xk → Yk is a normal monomorphism of
dendroidal sets. By definition of the Reedy cofibrations, we need to show that the
map

degY (T) ∪degX(T ) X(T) → Y (T)

is a cofibration in sSetsAut(T )op
. Since Aut(T) acts freely on Y (T)k − X(T)k for each

k by assumption, it suffices to show that the map above is a monomorphism. This
will follow if we demonstrate that for any element x ∈ X(T)k of which the image in
Y (T)k is degenerate, x itself was already degenerate. To see this, consider a square
of the form

T � ∆[k] X

S � ∆[k] Y,

x

where the vertical map on the left arises from a degeneracy map T → S. There is
such a square whenever x is degenerate as an element ofY (T)k . Forming the pushout
P in the square gives a factorization

X → P→ Y,
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where the first map is a surjection. Since the composition of the twomaps is injective,
the first map is in fact an isomorphism. It follows that x factors through S � ∆[k],
hence is already degenerate in X . �

Corollary 12.2 The functor dSets → dSetsR, sending each dendroidal set to the
corresponding discrete dendroidal space, preserves cofibrations.

However, we note that this functor (even though it has a right adjoint) is not a
left Quillen functor. Indeed, one readily verifies that it does not map an inner horn
inclusion Λe[T] → T to a Reedy weak equivalence, for example. This situation will
be ‘corrected’ by appropriately localizing the Reedy model structure, cf. Theorem
12.22 below.

Definition 12.3 A dendroidal space X is said to satisfy the Segal condition if for any
tree T , the morphism

Map(T, X) → Map(Sp[T], X)

is a weak homotopy equivalence of simplicial sets. (Here, as before, we identify the
tree T with the corresponding discrete dendroidal space.)

Remark 12.4 The expression ‘Map’ is defined in terms of (co)simplicial resolutions
relative to a model structure on dSpaces. In our case, this is either the projective or
the Reedy model structure. Since the two are related by a Quillen equivalence, the
Segal condition is independent of which of the two model structures one takes.

Again identifying dendroidal sets with the corresponding discrete dendroidal
spaces, the definition above has several equivalent formulations:

Lemma 12.5 For a dendroidal space X , the following are equivalent:

(1) X satisfies the Segal condition.
(2) For any tree T and any inner edge e of T , the map

Map(T, X) → Map(Λe[T], X)

is a weak homotopy equivalence of simplicial sets.
(3) For any inner anodyne morphism A→ B of dendroidal sets, the map

Map(B, X) → Map(A, X)

is a weak homotopy equivalence of simplicial sets.

Proof The class of normal monomorphisms A → B of dendroidal sets having the
property that

Map(B, X) → Map(A, X)

is a weak homotopy equivalence is saturated and as the two-out-of-three property.
Hence the lemma is clear from Proposition 6.39. �
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The general theory of Bousfield localizations explained inChapter 11 (and specifi-
cally Theorem 11.37) shows that there exists a left Bousfield localization of the Reedy
model structure on dendroidal spaces for which the local objects are exactly the den-
droidal spaces satisfying the Segal condition. Furthermore, Proposition 11.25 shows
that a similar localization exists for the projective model structure on dSpaces and
that it is Quillen equivalent to the previous localization of the Reedy model structure.
We summarize these model structures in the following diagram, where the further
subscript S denotes the localization with respect to the Segal condition and all the
arrows are the identity, interpreted as a left Quillen functor:

dSpacesP dSpacesR

dSpacesPS dSpacesRS .

∼

∼

Although the localized model categories dSpacesPS and dSpacesRS are Quillen
equivalent, in a given context one may be easier to work with than the other. For
example, consider the formulation of the Segal condition in terms of ‘Map’. In
the model category dSpacesR, the inner horn inclusions Λe[T] → T and spine
inclusions Sp[T] → T are cofibrations between cofibrant objects, by Lemma 12.1.
(This is not the case in the projective model structure; the objects Λe[T] and Sp[T]
are usually not cofibrant.) Now for an arbitrary fibrant object X and a cofibrant one
A, the simplicial set Map(A, X) can be calculated from the cosimplicial resolution
A � ∆[n], for n ≥ 0 (cf. Example 11.15), as

Map(A, X)n = Hom(A � ∆[n], X).

In particular, if A is a normal dendroidal set, A can be viewed as a Reedy cofibrant
discrete dendroidal space, and we find for a Reedy fibrant dendroidal space X that
as a model for Map we can take

Map(A, X) = X(A)

as defined at the start of this section.Moreover, for such an X and a normal monomor-
phism A→ B of dendroidal sets, the restrictionmap X(B) → X(A) is aKan fibration.
This applies in particular to the inclusions featuring in the previous lemma, which
can therefore be reformulated as follows:

Lemma 12.6 For a Reedy fibrant dendroidal space X , the following statements are
equivalent:

(1) X satisfies the Segal condition.
(2) For each tree T , the map X(T) → X(Sp[T]) is a trivial fibration between Kan

complexes.
(3) For each tree T and inner edge e of T , the map X(T) → X(Λe[T]) is a trivial

fibration between Kan complexes.



12.1 Dendroidal Segal Spaces 487

(4) For each inner anodyne map A → B between normal dendroidal sets, the map
X(B) → X(A) is a trivial fibration between Kan complexes.

(5) X is a fibrant object in dSpacesRS .

This lemma also leads to the following reformulation of the Segal condition,
which is sometimes useful:

Lemma 12.7 SupposeT = T1◦eT2 is a tree arising from grafting a treeT2 onto a leaf
edge e of another tree T1. Then a dendroidal space X satisfies the Segal condition if
the square

X(T) X(T1)

X(T2) X(η)

e∗

e∗

is a homotopy pullback, for any suchT and a decomposition as a grafting of subtrees
as above.

Remark 12.8 By induction on the size of T one also concludes that X satisfies the
Segal condition if X(T) is equivalent to the iterated homotopy pullback of the values
of X on the corollas and edges making up the spine Sp[T].

Proof Assume that X satisfies the property described in the lemma. Since the
property of being a homotopy pullback square is invariant under weak equivalence,
we may take a Reedy fibrant replacement Y of X and prove that Y satisfies the Segal
condition. Since Y is Reedy fibrant, the maps Y (Ti) → Y (η) are Kan fibrations. It
follows from the dual of Lemma 7.51 that the relevant square for Y is a homotopy
pullback if and only if the map

Y (T) → Y (T1) ×Y(η) Y (T2) � Y (T1 ∪e T2)

to the actual pullback is a weak homotopy equivalence. Next observe that

Sp[T] = Sp[T1] ∪e Sp[T2].

Inductively assuming that Y (Ti) → Y (Sp[Ti]) is a trivial fibration for i = 1, 2 now
shows that the map

Y (T) → Y (Sp[T])

is a also a trivial fibration. The previous lemma then implies thatY satisfies the Segal
condition. �

These Reedy fibrant objects satisfying the Segal property are quite convenient to
work with and it is helpful to single them out:

Definition 12.9 A dendroidal Segal space is a Reedy fibrant dendroidal space satis-
fying the equivalent conditions of the preceding lemma.
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So, by definition, an arbitrary dendroidal space X has the Segal property if and
only if it has a Reedy fibrant replacement which is a dendroidal Segal space.

Let us observe the following easy consequence of the definition.

Lemma 12.10 Let X be a Reedy fibrant dendroidal space. Then X is a dendroidal
Segal space if and only if for each monomorphism of simplicial sets M → N , the
map (XN )0 → (XM )0 is an inner fibration between dendroidal sets. In particular,
if X is a dendroidal Segal space then for each k ≥ 0 the dendroidal set Xk is an
∞-operad.

Proof For a map A → B between dendroidal sets and a map M → N between
simplicial sets, (XN )0 → (XM )0 has the right lifting property with respect to A→ B
in the category dSets if and only if X(B) → X(A) has the right lifting property
with respect to M → N in the category sSets, as follows immediately from the
definitions. Applying this to inner anodynes A→ B, the first statement is clear. The
second statement follows by taking M → N to be the inclusion � → ∆[k]. �

We now list several fundamental examples of dendroidal Segal spaces.

Example 12.11 (i) Let P be a simplicial operad with set of colours C. If for each
sequence c1, . . . , cn, c of colours the space P(c1, . . . , cn; c) of operations is a Kan
complex, then NP is a projectively fibrant dendroidal space. Indeed, for a tree T ,
fixing a planar structure on T gives an identification

NP(T) =
∐
α

∏
v

P(α(v)),

where the coproduct ranges over all functions α : E(T) → C assigning colours to
the edges of T and the product ranges over the vertices of v of T . Moreover, for a
vertex v with input edges e1, . . . , en and output edge e, we have written α(v) for the
sequence α(e1), . . . , α(en), α(e). The right-hand side is clearly a Kan complex.

From this description of NP(T), we also see that

NP(T) → NP(Sp[T])

is in fact an isomorphism. Since NP is not necessarily Reedy fibrant, we cannot
immediately conclude that NP satisfies the Segal condition. However, we may still
apply the criterion of Lemma 12.7. So write T = T1 ◦e T2 and consider the square

NP(T) NP(T1)

NP(T2) NP(η),

which is a pullback by our discussion above. The fact that NP(η) is discrete implies
that the bottom and right maps are Kan fibrations. But then Lemma 7.51 guarantees
that the square is also a homotopy pullback.
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(ii) Let X be an∞-operad. Then we can define a dendroidal space X̂ by

X̂(T)n = dSets(J[n] ⊗ T, X).

By Example 11.16, J[−] ⊗ T provides a cosimplicial resolution of a tree T (in the
operadic model structure, say), and we can somewhat informally write

X̂(T) = Map(T, X).

By the homotopy invariance properties of Map, it is then immediate that X̂ is a
dendroidal Segal space, using that X itself is an∞-operad.

(iii) Recall that for a simplicial operad P whose spaces of operations are Kan
complexes, as in (i) above, we have defined an∞-operad w∗P with

w∗P(T) = sOp(W(T),P).

Here W(T) is the Boardman–Vogt resolution of the free operad Ω(T) generated by
the tree T . Thus, continuing example (ii), we can define for each simplicial operad a
dendroidal Segal space

N̂P := ŵ∗P.

The relation between this dendroidal space and the ordinary nerve NP is discussed
in Section 14.6.

We conclude this section with a brief discussion of the weak equivalences (in
the model category dSpacesR) between dendroidal Segal spaces and the notion
of homotopy operad of a dendroidal Segal space. To this end, we first introduce
some notation. Let X be a Reedy fibrant dendroidal space. An object of X is by
definition a vertex of the simplicial set X(η). For objects x1, . . . , xn, x of X , we write
X(x1, . . . , xn; x) for the pullback

X(x1, . . . , xn; x) X(Cn)

∆[0] X(∂Cn).
(x1,...,xn,x)

Recall that ∂Cn is the coproduct of copies of η indexed by the edges of the n-corolla,
so X(∂Cn) =

∏n
i=0 X(η). The lower map picks out the vertices x1, . . . , xn for the

input edges of Cn and x for the output. Notice that the map X(Cn) → X(∂Cn) is a
Kan fibration between Kan complexes by the assumption that X is Reedy fibrant.
Hence the fibre X(x1, . . . , xn; x) is also a Kan complex and the square is in fact a
homotopy pullback. We will think of the simplicial set X(x1, . . . , xn; x) as the ‘space
of operations’ in X from x1, . . . , xn to x.
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Definition 12.12 Amap f : X → Y between dendroidal Segal spaces is fully faithful
if for each sequence x1, . . . , xn, x of objects in X , the induced map

X(x1, . . . , xn; x) → Y ( f (x1), . . . , f (xn); f (x))

is a weak homotopy equivalence of Kan complexes.

Proposition 12.13 Let f : X → Y be a map between dendroidal Segal spaces. Then
the following are equivalent:

(1) The map f is a weak equivalence in dSpacesR, i.e., X(T) → Y (T) is a weak
homotopy equivalence for each tree T .

(2) The map X(T) → Y (T) is a weak homotopy equivalence for each tree T with at
most one vertex (i.e., T is η or a corolla).

(3) The map f : X → Y is fully faithful and X(η) → Y (η) is a weak homotopy
equivalence.

Proof It is clear that (1) implies (2). The equivalence between (2) and (3) can be
seen as follows. Consider the square

X(Cn) Y (Cn)

X(∂Cn) Y (∂Cn),

in which the bottom map is a weak homotopy equivalence by the assumption on
X(η) → Y (η). Then the top map is an equivalence if and only if it induces an equiv-
alence on fibres over any (x1, . . . , xn, x) ∈ X(∂Cn) and ( f (x1), . . . , f (xn), f (x)) ∈
Y (∂Cn). Indeed, this is clear from the fact that the vertical maps are Kan fibrations
and their resulting long exact sequences on homotopy groups. Finally, to see that (2)
implies (1), observe that in the square

X(T) Y (T)

X(Sp[T]) Y (Sp[T])

∼ ∼

the vertical maps are trivial fibrations, as indicated. So the upper map is a weak
equivalence if and only if the lower one is. But X(Sp[T]) is an iterated pullback of
the form

X(Sp[T]) = X(Cv1 ) ×X(η) X(Cv2 ) ×X(η) × · · · ×X(η) X(Cvn )

where v1, . . . , vn are the vertices of T and Cv1, . . . ,Cvn denote the corresponding
corollas. Each map X(Cvi ) → X(η) involved in this pullback is a Kan fibration by
the Reedy condition, so the (iterated) pullback is also a homotopy pullback. The
same applies to Y . So assumption (3) implies that X(Sp[T]) → Y (Sp[T]) is a weak
homotopy equivalence and hence so is X(T) → Y (T). �
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For later use we now introduce the homotopy operad ho(X) of a dendroidal Segal
space X . This ho(X) is an operad in the category of sets with colours given by the
set X(η)0 of objects of X . Given a tuple of colours x1, . . . , xn, x, the corresponding
set of operations in ho(X) is defined by

ho(X)(x1, . . . , xn; x) := π0
(
X(x1, . . . , xn; x)

)
.

To make ho(X) into an operad we should describe the composition of operations,
which is defined using the Segal property of X . To be precise, suppose ξ1 ∈ X(Cm)

and ξ2 ∈ X(Cn) represent operations of ho(X), such that the root of the corolla
ξ1 corresponds to one of the leaves e of the corolla ξ2. Then the Segal property
of X guarantees the existence of an element ζ ∈ X(Cn ◦e Cm) that restricts to ξ1
and ξ2 on the leaf and root corolla, respectively. The composite operation ξ2 ◦e ξ1 is
represented by the inner face ∂eζ . The verification that ho(X) is a well-defined operad
is straightforward (and similar to our earlier analysis of the operad τY associated to
an∞-operad Y ). For example, associativity of the composition is guaranteed by the
fact that X(T) → X(Sp[T]) is a trivial fibration for trees T built from three corollas.
We leave the details to the reader.

12.2 Complete Dendroidal Segal Spaces

In the previous section we introduced dendroidal Segal spaces, which are the ana-
logues in the category of dendroidal spaces of the ∞-operads in the category of
dendroidal sets. However, it is not quite true that the model category dSets (with the
operadic model structure) and the model category dSpacesRS for dendroidal Segal
spaces are Quillen equivalent. For this to work, one needs to localize dSpacesRS
further with respect to completeness. We will explain this concept in this section
and prove the Quillen equivalence just alluded to in Theorem 12.22. Also, we will
give various interpretations of the notion of completeness that will be technically
convenient in the sequel.

Definition 12.14 A dendroidal space X is complete if it is local with respect to
either of the two endpoint inclusions η → J, interpreted as a morphism of discrete
dendroidal spaces. In other words, X is complete if

Map(J, X) → Map(η, X)

is a weak homotopy equivalence.

Remark 12.15 Notice that for a dendroidal space X , completeness depends only on
the underlying simplicial space i∗X , since η→ J lies in the image of the embedding
i! : sSets→ dSets. Notice also that if X is Reedy fibrant, we may identify Map(A, X)
with X(A), as discussed in the previous section. This applies in particular to A = J
and A = η.
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According to Theorem 11.37, the model category dSpacesRS admits a left Bous-
field localization dSpacesRSC with respect to either of the two morphisms η → J,
characterized by the property that its fibrant objects are the complete dendroidal
Segal spaces. Recall that in the category of dendroidal sets, the morphisms η → J
are operadic equivalences. Hence, in order to ‘force’ dSpacesRS to become Quillen
equivalent to the category dSets equipped with the operadic model structure, it is
only natural to consider the localization dSpacesRSC with respect to the completion
just defined.

We will now characterize the complete dendroidal Segal spaces (i.e., the fibrant
objects of dSpacesRSC) in terms of lifting properties.

Proposition 12.16 A dendroidal space X is a complete dendroidal Segal space if
and only if it has the extension property with respect to the following three classes
of maps:

(a) The maps
T � Λk[n] ∪ ∂T � ∆[n] → T � ∆[n]

for each tree T and each n ≥ 1, 0 ≤ k ≤ n.
(b) The maps

T � ∂∆[n] ∪ Λe[T] � ∆[n] → T � ∆[n]

for each tree T , each inner edge e of T , and each n ≥ 0.
(c) The maps

J � ∂∆[n] ∪ η � ∆[n] → J � ∆[n]

for each n ≥ 0.

Proof A dendroidal space X is Reedy fibrant if and only if the maps X(T) → X(∂T)
are Kan fibrations for every treeT . This is equivalent to X having the extension prop-
erty with respect to the maps (a). Such a Reedy fibrant X satisfies the Segal condition
if and only if the fibration X(T) → X(Λe[T]) is a weak homotopy equivalence, for
each tree T and inner edge e of T . In other words, a Reedy fibrant X is a dendroidal
Segal space if and only if it has the extension property with respect to the maps of
(b). Finally, X is then complete if and only if the Kan fibration X(J) → X(η) is a
weak equivalence, which is the same as having the extension property with respect
to the maps of (c). �

Another way to reformulate these lifting conditions is as follows.

Lemma 12.17 Let X be a dendroidal space. Then the following are equivalent:

(1) X is a complete dendroidal Segal space.
(2) For any monomorphism M → N of simplicial sets, (XN )0 → (XM )0 is an

operadic fibration of dendroidal sets. Moreover, this fibration is trivial if M → N
is anodyne.

(3) For any n ≥ 0, the map X∆[n] → X∂∆[n] is an operadic fibration of dendroidal
sets. Moreover, for any n > 0 and 0 ≤ i ≤ n the face map
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di : Xn → Xn−1

is a trivial fibration.

Proof We first show the equivalence between (1) and (2). By definition, X is Reedy
fibrant if X(T) → X(∂T) is a Kan fibration for each T . In other words, for any
anodyne map M → N there exists a lift in any square of the form

M X(T)

N X(∂T).

But this lifting problem is equivalent to

∂T (XN )0

T (XM )0,

showing that (XN )0 → (XM )0 is a trivial fibration. If X is Reedy fibrant, then the
same argument shows that (XN )0 → (XM )0 is an inner fibration between∞-operads,
for any monomorphism M → N , if and only if X has the Segal property (as already
observed in Lemma 12.10). Finally, it also shows that X is then complete if and only
if (XN )0 → (XM )0 has J-path lifting, for any monomorphism M → N . By Theorem
9.32(c), the operadic fibrations between∞-operads are precisely the inner fibrations
with J-path lifting.

Clearly (2) implies (3). For the converse, observe that the class of monomor-
phisms of simplicial sets M → N such that (XN )0 → (XM )0 is a (trivial) fibration is
saturated and closed under two-out-of-three (among monomorphisms). The conclu-
sion then follows from the fact that the boundary inclusions ∂∆[n] → ∆[n] generate
all monomorphisms as a saturated class, and that the face maps ∂i : ∆[n−1] → ∆[n]
generate all anodyne maps as a saturated class closed under two-out-of-three among
monomorphisms. �

Up to now, we have been considering the category dSpaces of dendroidal spaces
as the category sSetsΩop

of simplicial presheaves on the Reedy category Ω. As has
already become clear above, it is sometimes useful to view this category as that of
simplicial objects in dSets:

sSetsΩop
= dSpaces = dSets∆op

.

In order to not confuse the two points of view,wewill alwayswrite a dendroidal space
X as a functor Ωop → sSets as in the previous section and denote the corresponding
simplicial object ∆op → dSets by tw(X), the twist of X . So we have an equality of
sets
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tw(X)n(T) = X(T)n.

We can regard dSets∆op
as a model category giving it the Reedy model structure with

respect to the Reedy category ∆ and the operadic model structure on dSets. This
model structure is different from the Reedy model structure dSpacesR we have been
considering. However, the descriptions of complete dendroidal Segal spaces above
admit the following reformulation in these terms:

Corollary 12.18 A dendroidal space X is a complete dendroidal Segal space if and
only if both X and tw(X) are Reedy fibrant, in the categories sSetsΩop

and dSets∆op
,

respectively.

Proof Being Reedy fibrant in sSetsΩop
means having the extension property with

respect to the maps (a) of Proposition 12.16, whereas being Reedy fibrant in dSets∆op

means having the extension property with respect to the maps (b) and (c) of the same
proposition. �

This gives yet another interpretation of complete dendroidal Segal spaces. Indeed,
consider a dendroidal space X such that tw(X) ∈ dSets∆op

is Reedy fibrant with
respect to the Reedy structure of ∆. According to Lemma 12.17(3), X is then a
complete dendroidal Segal space if and only if all face maps di : Xn → Xn−1, which
are already fibrations by the latter Reedy condition, are also weak equivalences. We
record this observation for convenience:

Corollary 12.19 A dendroidal space X is a complete dendroidal Segal space if and
only if tw(X) is Reedy fibrant, interpreted as an object ofdSets∆op

, and homotopically
constant, in the sense that for any α : [m] → [n] in ∆ the map

α∗ : Xn → Xm

is an operadic equivalence of dendroidal sets.

For our next few results it will be convenient to observe the following:

Lemma 12.20 The two Reedy model structures on dSpaces, arising from its identi-
fication with sSetsΩop

and dSets∆op
respectively, have the same cofibrations.

Proof For each of these two, the cofibrations are generated by the maps of the form

T � ∂∆[n] ∪ ∂T � ∆[n] → T � ∆[n],

for trees T and n ≥ 0. �

Since any model structure is uniquely characterized by its cofibrations and its
fibrant objects, it follows from the lemma andCorollary 12.19 that themodel category
dSpacesRSC for complete dendroidal Segal spacesmay alternatively be characterized
as the left Bousfield localization of the Reedy model structure on dSets∆op

for which
the local objects are the homotopically constant ones. We record the following
consequence for future reference:
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Corollary 12.21 Let X be a Reedy fibrant dendroidal space (with respect to the
Reedy structure of Ω). Then in the model category dSpacesRSC , the object X admits
a fibrant replacement by a complete dendroidal Segal space X̂ so that for each n ≥ 0,
the map Xn → X̂n is an operadic equivalence of dendroidal sets.

Proof As already observed in the proof of Lemma 12.17, the fact that X is Reedy
fibrant implies that the face maps

di : Xn → Xn−1

are trivial fibrations of dendroidal sets. In particular, the simplicial object tw(X) ∈
dSets∆op

is homotopically constant. Any Reedy fibrant replacement tw(X) → Y in
particular induces operadic equivalences tw(X)n → Yn for all n ≥ 0, so that Y is
also homotopically constant. But then Corollary 12.19 implies thatY corresponds to
a complete dendroidal Segal space in sSetsΩop

. �

Now consider the adjoint pair

dSets dSpaces.
dis!

dis∗

For a dendroidal spaceY , the right adjoint takes the degree zero part dis∗Y = Y0. The
functor dis! assigns to every dendroidal set X the corresponding discrete dendroidal
space with (dis!X)(T)n = X(T). As a simplicial object

∆op → dSets : [n] 7→ (dis!X)n = X,

it is constant in the variable n. By the discussion above, the fibrant objects of
dSpacesRSC are the homotopically constant dendroidal Segal spaces, which should
make the following plausible:

Theorem 12.22 The adjoint pair (dis!, dis∗) is a Quillen equivalence between the
operadic model structure on dSets and the model category dSpacesRSC for complete
dendroidal Segal spaces.

By the discussion preceding the theorem, it is really a special case of the following
easy observation:

Lemma 12.23 Let E be a model category and let sE be the category of simplicial
objects in E equipped with the Reedy model structure. Then the constant simplicial
object functor con: E → sE is a left Quillen functor, which becomes a Quillen
equivalence for the left Bousfield localization of sE whose fibrant objects X are the
homotopically constants ones, whenever that localization exists.

Proof It is clear that for the Reedy model structure on sE, the evaluation at 0 functor
ev0 : sE→ E preserves fibrations and trivial fibrations, so con and ev0 form aQuillen
pair. For an object E in E, write con(E) → Ê for a Reedy fibrant replacement in sE.
Then E → Ên is a weak equivalence for each n ≥ 0, so by two-out-of-three each



496 12 Dendroidal Spaces and∞-Operads

face map Ên → Ên−1 is a weak equivalence and Ê is homotopically constant, hence
local. The fact that E → Ê0 is a weak equivalence then shows that the derived unit

E → Rev0Lcon(E)

(which may be identified with E → Ê0 if E is cofibrant) is a weak equivalence.
As to the derived counit, for a fibrant object X in sE this is the map con(X0) → X
which is always a weak equivalence in degree 0, and hence a weak equivalences in
all degrees precisely by the assumption that X is homotopically constant. �

Example 12.24 Let X be an ∞-operad. In Example 12.11(ii) we constructed a
corresponding dendroidal space X̂ , for which X̂(T) is a model of the mapping
space Map(T, X). Since η → J is an operadic equivalence of dendroidal sets,
Map(J, X) → Map(η, X) is a weak equivalence of simplicial sets. Hence X̂ is com-
plete.

In a bit more detail, recall that we explicitly defined

X̂(T)n = dSets(J[n] ⊗ T, X).

One can think of this construction as the ‘geometric realization - singular complex’
adjunction with respect to the cosimplicial object J[•].

dSets∆op dSets.
| · |J

SingJ

This is a Quillen adjunction by Proposition 10.25 and becomes a Quillen equivalence
for the localization of dSets∆op

as in the lemma; indeed, the composition of dis!
followed by | · |J is the identity. Since Ldis! is an equivalence, the same is true for
L| · |J . When we identify the localization of the lemma with dSpacesRSC as above,
we can write this Quillen pair as

dSpacesRSC dSets.
| · |J

SingJ

Example 12.25 Let X be a dendroidal Segal space. If X(C1) → X(η) is a weak
equivalence, then X is complete. Indeed, in order to show that X(J) → X(η) is
also a weak equivalence, consider the collection of monomorphisms M → N of
simplicial sets for which X(i!N) → X(i!M) is a weak equivalence. This collection is
saturated and closed under two-out-of-three (among monomorphisms). Moreover, it
contains all inner horn inclusions because X has the Segal property, as well as the
two inclusions ∆[0] → ∆[1] by hypothesis. But then it must contain all simplicial
anodyne maps, i.e., all trivial cofibrations in the Kan–Quillen model structures. In
particular, it contains ∆[0] → J.

Remark 12.26 In some cases it is more convenient to workwith the projectivemodel
structure dSpacesP , with the corresponding localizations dSpacesPS by the Segal
condition and dSpacesPSC also with respect to η → J. These localizations exist by
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Proposition 11.25 and we get the following diagram of left Quillen functors and left
Quillen equivalences (with all functors simply the identity, of course):

dSpacesP dSpacesPS dSpacesPSC

dSpacesR dSpacesRS dSpacesRSC .

∼ ∼ ∼

Then a projectively fibrant object X is local for the PSC-localization if and only if a
Reedy fibrant replacement of X is a dendroidal complete Segal space. The following
example is an illustration of this situation.

Example 12.27 Let P be a simplicial operad and assume all its spaces of operations
are Kan complexes. We noticed in Example 12.11 that NP is a projectively fibrant
dendroidal space satisfying the Segal condition. In many examples, P has just one
colour and the space P(1) of unary operations is contractible. This is the case
for (simplicial) versions of the little n-cubes operad En, for instance, and for the
Barratt–Eccles operad. For such an operad P, the map NP(C1) → NP(η) is the
map P(1) → ∆[0], which is a weak equivalence by hypothesis. The same is then
true for a Reedy fibrant replacement of NP, making it a dendroidal complete Segal
space. Hence NP itself is a fibrant object in dSpacesPSC , but not necessarily in
dSpacesRSC .

Example 12.28 Let P be a discrete operad, i.e., an operad in the category of sets,
and write C for the set of colours of P. One can construct a simplicial object P̃ in
the category of discrete operads as follows. In simplicial degree n, the set of colours
of P̃n is the set of strings of isomorphisms in (the underlying category of) P of the
form

c : c0
�
−→ c1

�
−→ · · ·

�
−→ cn.

For such strings c1, . . . , ck and c, an operation α in P̃n(c1, . . . , ck ; c) is a sequence
of operations αi ∈ P(c1

i , . . . , c
k
i ; ci), for i = 0, . . . , n, which are compatible with

the specified isomorphisms. The simplicial structure maps relating these P̃n are
defined exactly as for the nerves of categories. Thus, di : P̃n → P̃n−1 deletes the ith
component. Clearly, each such face map is surjective on colours and fully faithful on
operations. For a fixed n, the dendroidal set N(P̃n) is the nerve of a discrete operad,
hence a dendroidal strict inner Kan complex. The same is true for NP̃(∂∆[n]) and
one easily checks that

NP̃n = NP̃(∆[n]) → NP̃(∂∆[n])

is a fibration between ∞-operads. The maps NP̃n → NP̃n−1 are weak equivalences
of ∞-operads because P̃n → P̃n−1 is essentially surjective and fully faithful, so NP̃
is a fibrant object in dSpacesRSC . In other words, NP̃ is a complete dendroidal
Segal space. As con(NP) → NP̃ gives a weak equivalence of dendroidal sets in each
simplicial degree, it is a weak equivalence in dSets∆op

and hence in dSpacesRSC .
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Therefore our construction of NP̃ yields an explicit fibrant replacement (or ‘com-
pletion’) of NP in dSpacesRSC . In fact, the reader can unravel the definitions to find
that

NP̃n(T) = dSets(J[n] ⊗ T, NP),

so this is just a special instance of Example 12.24.

12.3 Complete Weak Equivalences

In this section we discuss the weak equivalences in the model category dSpacesRSC
for complete dendroidal Segal spaces inmore detail.We shall call amap of dendroidal
spaces f : X → Y a complete weak equivalence if it is a weak equivalence in
dSpacesRSC . This model category is defined as a left Bousfield localization of the
category dSpacesR of dendroidal spaces with the Reedymodel structure andwe have
seen in the previous section that it can also be viewed as a left Bousfield localization
of the category dSets∆op

of simplicial objects in dendroidal sets, equipped with
the Reedy model structure coming from ∆. In particular, the latter perspective
immediately gives the following property of the complete weak equivalences:

Proposition 12.29 Let f : X → Y be a map of dendroidal spaces. If for each simpli-
cial degree n ≥ 0 the map fn : Xn → Yn is an operadic weak equivalence between
dendroidal sets, then X → Y is a complete weak equivalence.

Lemma8.49 states that in a left Bousfield localization, the localweak equivalences
between local objects are also weak equivalences in the original model category.
Hence we can also immediately record the following.

Proposition 12.30 Let f : X → Y be a map between complete dendroidal Segal
spaces. Then the following statements are equivalent:

(1) f : X → Y is a complete weak equivalence.
(2) f induces a weak homotopy equivalence X(T) → Y (T) between Kan complexes

for each tree T in Ω.
(3) f induces an operadic equivalence Xn → Yn between∞-operads for each n ≥ 0.
(4) f induces an operadic equivalence X0 → Y0.

Proof The equivalence between the first three statements follows by the comment
preceding the proposition, interpreting dSpacesRSC as a left Bousfield localization
of the Reedy model structures on sSetsΩop

for statement (2) and on dSets∆op
for

statement (3). Statement (4) is equivalent to (3), because each face map di : Xn →

Xn−1 is a trivial fibration for a complete dendroidal Segal space X . �

In Theorem 9.45 we characterized the operadic equivalences between∞-operads
as those maps that are fully faithful and essentially surjective. We now aim for
a similar description of weak equivalences between (complete) dendroidal Segal
spaces. Recall that to define fully faithful maps between ∞-operads, we used the
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‘space of operations’ in an ∞-operad X (which is a dendroidal set) defined by a
pullback

X(x1, . . . , xn; y) Map(Cn, X)

∆[0] Map(∂Cn, X).
(x1,...,xn,y)

The functor sending a dendroidal space Y to its underlying dendroidal set Y0 is
right Quillen with respect to the model structure dSpacesRSC (cf. Theorem 12.22),
which makes it straightforward to compare this ‘space of operations’ to the one for
dendroidal Segal spaces given in Section 12.1:

Lemma 12.31 (i) Let Y be a complete dendroidal Segal space. Then for any se-
quence of objects y1, . . . , yn, y ∈ Y (η)0 there is a natural weak homotopy equiv-
alence

Y0(y1, . . . , yn; y) ' Y (y1, . . . , yn; y).

(ii) Consequently, a map f : X → Y between complete dendroidal Segal spaces is
fully faithful if and only if f0 : X0 → Y0 is a fully faithful map of∞-operads.

Proof This follows from Proposition 11.11 applied to the adjoint pair (dis!, dis∗). �

Remark 12.32 Note that item (i) in particular shows that for a complete dendroidal
Segal space Y , the homotopy operad ho(Y ) is naturally isomorphic to the homotopy
operad τ(Y0) associated to the dendroidal set Y0.

Next, let us take a closer look at ‘essential surjectivity’. Consider a map f : X →
Y between complete dendroidal Segal spaces. Recall that the corresponding map
f0 : X0 → Y0 between ∞-operads is said to be essentially surjective if for any
y ∈ Y0(η) there exists an x ∈ X0(η) and a ‘path’ J → Y0 connecting f (x) to y.
Another way to express this is by saying that there exists a lift as follows:

Y (J)

∆[0] Y (η) × Y (η).
( f (x),y)

The completeness of Y implies that Y (J) is a path object for the Kan complex Y (η).
More precisely, in the diagram

Y (η) Y (J)

Y (η) × Y (η),
diag

the horizontal map is a weak equivalence by completeness, whereas the vertical map
is a fibration by Reedy fibrancy of Y . Another path object for Y (η) would of course
be just Y (η)∆[1]. This shows the consistency of the following definition.
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Definition 12.33 A map f : X → Y between complete dendroidal Segal spaces is
essentially surjective if any of the following equivalent conditions holds:

(1) For any object y ∈ Y (η)0 there exists an object x ∈ X(η)0 and a path∆[1] → Y (η)
connecting f (x) to y.

(2) For any object y ∈ Y (η)0 there exists an object x ∈ X(η)0 and a path J → Y0
connecting f (x) to y.

(3) The induced morphism of homotopy operads ho(X) → ho(Y ) is essentially
surjective.

Now that we have discussed the meanings of ‘fully faithful’ and ‘essentially
surjective’ in the context of both ∞-operads and complete dendroidal Segal spaces,
we can state the following variant of the previous proposition.

Corollary 12.34 Let f : X → Y be amapbetween complete dendroidal Segal spaces.
Then the following statements are equivalent:

(1) f : X → Y is a complete weak equivalence.
(2) f : X → Y is a fully faithful and essentially surjectivemap of complete dendroidal

Segal spaces.
(3) f0 : X0 → Y0 is a fully faithful and essentially surjective map of∞-operads.

Proof The fact that (1) is equivalent to (3) is clear from the previous proposition and
the characterization of operadic equivalences between∞-operads as the fully faithful
and essentially surjective maps. By the discussion above, (2) is also equivalent to
(3). Indeed, f : X → Y is fully faithful if and only if f0 : X0 → Y0 is fully faithful
by Lemma 12.31, while essential surjectivity of f is equivalent to that of f0 by
formulations (1) and (2) of the definition above. �

It is harder to show (and perhaps a bit surprising) that the equivalence between
(1) and (2) of the corollary also holds if X and Y are dendroidal Segal spaces that
are not necessarily complete. Without completeness, we cannot identify the space
X(x1, . . . , xn; x) with the space X0(x1, . . . , xn; x) associated to the∞-operad X0 and
the different versions of Definition 12.33 are no longer equivalent. Thus, in addition
to the notion of fully faithful map between Segal spaces already introduced in Section
12.1, we use version (3) of Definition 12.33 for essential surjectivity. Explicitly:

Definition 12.35 A map of dendroidal Segal spaces f : X → Y is essentially sur-
jective if the induced morphism of homotopy operads ho(X) → ho(Y ) is essentially
surjective.

The main result of this section is as follows:

Theorem 12.36 Let f : X → Y be a map of dendroidal Segal spaces. Then f is a
complete weak equivalence if and only if f is fully faithful and essentially surjective.

Remark 12.37 The theorem can be interpreted as saying that the model category
dSpacesRSC for complete dendroidal Segal spaces is the localization of the model
category dSpacesRS for dendroidal Segal spaces with respect to the fully faithful
and essentially surjective maps.
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A map f of dendroidal Segal spaces is fully faithful and essentially surjective
if and only if f is fully faithful and induces an equivalence of homotopy operads;
in particular, the class of such maps is clearly closed under two-out-of-three. We
have already seen that the statement of the theorem is true for complete dendroidal
Segal spaces, so in fact it suffices to prove that any dendroidal Segal space X has
a completion (i.e., a fibrant replacement in dSpacesRSC) via a fully faithful and
essentially surjective map. Thus, the theorem is a consequence of the following
result.

Proposition 12.38 Let X be a dendroidal Segal space. Then there exists a completion
u : X → X̂f by a map which is fully faithful and a bijection on objects:

X(η)0
�
−→ X̂f (η)0.

Proof As in Example 12.24, we may associate to each of the ∞-operads Xn a
complete dendroidal Segal space SingJ (Xn), defined by

SingJ (Xn)(T)m = dSets(J[m] ⊗ T, Xn).

Thus SingJ (X•) is now a simplicial object in dendroidal spaces, i.e., a bisimplicial
dendroidal set, and we define X̂ to be its diagonal:

X̂n(T) := SingJ (Xn)(T)n.

The map J[n] → J[0] = η, which is an operadic equivalence, defines a map of
dendroidal spaces X → X̂ , which in simplicial degree n is the operadic equivalence
of dendroidal sets

Xn(−) → dSets(J[n] ⊗ −, Xn).

By Proposition 12.29 it is then a complete weak equivalence. Let X̂ → X̂f be a Reedy
fibrant replacement of dendroidal spaces and let u : X → X̂f be the composition.
Then u is also a complete weak equivalence. The construction of this Reedy fibrant
replacement by the small object argument involves pushouts along maps of the form
(a) in Proposition 12.16, which are isomorphisms in ‘bidegrees’ (η, 0), i.e., do not
add new objects. Since X(η)0 → X̂(η)0 is an isomorphism, so is X(η) → X̂f (η)0. It
thus suffices to prove Lemmas 12.39 and 12.40 below. �

Lemma 12.39 The dendroidal Segal space X̂f is complete.

Lemma 12.40 The map u : X → X̂f is fully faithful.

Proof (of Lemma 12.39) Observe that for fixed n and T , the face maps

SingJ (Xn)(T) → SingJ (Xn−1)(T)

are trivial fibrations of simplicial sets. Indeed, let us write ∂J[m] for the union of the
subobjects ∂i : J[m− 1] → J[m] (as we have previously been doing for cosimplicial
objects). Then a lifting problem as in the square on the left is equivalent to a lifting
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problem as in the square on the right:

∂∆[m] SingJ (Xn)(T) ∆[n − 1] X(J[m] ⊗ T)

∆[m] SingJ (Xn−1)(T) ∆[n] X(∂J[m] ⊗ T).

The map on the very right is a Kan fibration because X is Reedy fibrant and ∂J[m] ⊗
T → J[m] ⊗ T is a normal monomorphism of dendroidal sets, so these lifting
problems indeed have solutions. Then the fundamental property of bisimplicial sets
(Corollary 10.27) guarantees that the simplicial set X̂(T) is weakly equivalent to
X̂0(T), for any tree T . The latter is local in dSpacesRSC by Example 12.24. Hence
any Reedy fibrant replacement of X̂ is a complete dendroidal Segal space. �

Proof (of Lemma 12.40) Recall the notation Hom(A,Y ) for the ‘internal hom’ be-
tween dendroidal sets A and Y , defined by

Hom(A,Y )(T) = dSets(A ⊗ T,Y ).

The proof consists of three steps. First of all, we replace the dendroidal space
X̂ by an equivalent object. Recall that SingJ (Xn)(T) is a model for the mapping
space Map(T, Xn). By Example 11.16 and 11.14(b) it is naturally equivalent (via a
trivial fibration) to the mapping object ki∗Hom(T, Xn). Hence Corollary 10.27 (the
fundamental property of bisimplicial sets) implies that the map

X̂(T) → diag(ki∗Hom(T, X•))

is a weak equivalence of simplicial sets, for any T . We define X to be a Reedy fibrant
replacement of the dendroidal space

T 7→ diag(ki∗Hom(T, X•)).

Hence it suffices to prove that X → X is fully faithful. Observe that the dendroidal
space above is also naturally a subobject of the diagonal of the bisimplicial dendroidal
set

Hom(∆[•], X•).

To be more precise, write XE[m] for the dendroidal space of which the n-simplices
are described by (

XE[m])(T)n = (
ki∗Hom(T, Xn)

)
m.

Then X is, by construction, a Reedy fibrant replacement of the diagonal of XE[•]
• .

Since Theorem 6.51 states that ‘equivalences are determined pointwise’, one may
also regard the elements of XE[m](T)n as the maps

ξ : ∆[m] ⊗ T → Xn
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such that for every edge e of T , the restriction ξe : ∆[m] → Xn sends every edge of
∆[m] to an equivalence in Xn.

The second step is to reduce the problem to showing that the ‘constant path map’
X → XE[1] is fully faithful. Indeed, if this is the case, then so is the iterated map

X → XE[1] ×X · · · ×X XE[1]

into an m-fold pullback. But the map

XE[m] → XE[1] ×X · · · ×X XE[1],

arising from the inclusion of the ‘intervals’ with endpoints (i, i + 1) into ∆[m], is
a trivial fibration by the Segal condition. So then X → XE[m] is fully faithful as
well. If this holds for every m, then X → diag(XE[•]

• )
∼
−→ X is also fully faithful, as

follows easily from Corollary 10.27. This proves that it is indeed enough to show
that X → XE[1] is fully faithful.

For the third and final step, fix a sequence of objects x1, . . . , xk, x of X . Then
X(x1, . . . , xk ; x) is the pullback

X(x1, . . . , xk ; x) X(Ck)

∆[0] X(∂Ck).

Let us consider a similar pullback for XE[1], as in the left square of

XE[1](x1, . . . , xk ; x) XE[1](Ck) X(Ck ⊗ C1)

∆[0] XE[1](∂Ck) X(∂Ck ⊗ C1),

where we have identified x1, . . . , xk, x with their images under X → XE[1]. The
square on the right is a pullback as well, precisely because equivalences are deter-
mined pointwise as already noted above. Thus, if we show that the outer rectangle
in the diagram

X(x1, . . . , xk ; x) XE[1](x1, . . . , xk ; x) X(Ck ⊗ C1)

∆[0] ∆[0] X(∂Ck ⊗ C1),

is a homotopy pullback, it follows that the square on the left is a homotopy pullback
and thus X(x1, . . . , xk ; x) → XE[1](x1, . . . , xk ; x) is a weak homotopy equivalence,
as desired.
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Now Ck ⊗ C1 is the union of two shuffles G and H,

G H

whose intersection (which is just a k-corolla Ck) we denote by F. Thus

X(Ck ⊗ C1) = X(G) ×X(F) X(H).

The Segal condition for X now gives homotopy equivalences

X(H) ' X(C1) ×X(η) X(Ck)

and
X(G) ' X(Ck) ×X(η)k X(C1)

k .

Pulling back along the map from ∆[0] picking out x1, . . . , xk, x therefore gives
homotopy pullback squares

X(x1, . . . , xk ; x) X(H)

∆[0] X(C1) ×X(η) X(∂Ck),

X(x1, . . . , xk ; x) X(G)

∆[0] X(∂Ck) ×X(η)k X(C1)
k .

Combining these squares with the observation(
X(C1) ×X(η) X(∂Ck)

)
×X(∂Ck )

(
X(∂Ck) ×X(η)k X(C1)

k ) = X(∂Ck ⊗ C1)

then shows that

X(x1, . . . , xk ; x) X(G) ×X(F) X(H)

∆[0] X(∂Ck ⊗ C1)

is a homotopy pullback square. But this is precisely the outer rectangle from our
previous diagram. We conclude that X → XE[1] is fully faithful and the proof of the
lemma is complete. �
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12.4 The Tensor Product of Dendroidal Spaces

The aim of this section is to show that the tensor product of dendroidal spaces behaves
well with respect to the model structures we have introduced. In particular, we will
see that it admits a derived functor and defines a symmetric monoidal structure on the
homotopy category Ho(dSpacesRSC). By Theorem 12.22 this category is equivalent
to the homotopy category Ho(dSets) associated with the operadic model structure,
which therefore inherits a symmetric monoidal structure as well. In particular, this
result improves on our earlier statements that the tensor product gives a well-defined
symmetric monoidal structure on the homotopy category of open dendroidal sets.

The tensor product of dendroidal spaces can be characterized as follows. For
representable dendroidal spaces S � ∆[m] and T � ∆[n], with trees S and T , their
tensor product is given by

(S � ∆[m]) ⊗ (T � ∆[n]) = (S ⊗ T) � (∆[m] × ∆[n]).

Moreover, the tensor product preserves colimits in each variable separately.
For model categories C, D, and E, let us say that a functor F : C × D → E is

a left Quillen bifunctor if F preserves colimits in each variable separately and for
cofibrations i : K → L in C and j : M → N in D, the map

F(K, N) qF(K,M) F(L, M) → F(L, N)

is a cofibration in E that is moreover trivial if i or j is trivial. With this terminology
we can formulate the main technical result of this section as follows:

Theorem 12.41 The tensor product of dendroidal spaces defines a Quillen bifunctor

dSpacesPSC × dSpacesPSC → dSpacesRSC .

Observe that in the domain we are using the projective model structure for com-
plete dendroidal Segal spaces, whereas the target has the Reedy version. At the level
of homotopy categories this difference is irrelevant; in particular, we will deduce the
following consequence of the theorem at the end of this section.

Corollary 12.42 The tensor product of dendroidal spaces defines a symmetric
monoidal structure on the homotopy category Ho(dSpacesRSC).

We start the proof of the theorem with a simple observation:

Lemma 12.43 The tensor product of dendroidal spaces defines a left Quillen bifunc-
tor

dSpacesP × dSpacesP → dSpacesR .

Proof Generating (trivial) cofibrations for the projective model structure on den-
droidal spaces are maps of the form T � M → T � N with T a tree and M → N
a generating (trivial) cofibration for the Kan–Quillen model structure for simplicial
sets. For another such map S � K → S � L, their pushout-product is the map
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(S ⊗ T) � (K × N ∪K×M L × M) → (S ⊗ T) � (L × N).

This is a Reedy cofibration (since S ⊗ T is normal and hence Reedy cofibrant) that
is moreover a weak equivalence whenever K → L or M → N is. �

Remark 12.44 The preceding proof demonstrates why the Reedy model structure
has to be used in the target; generally the dendroidal set S ⊗ T is not representable
and there is no reason for it to be a projectively cofibrant dendroidal space. Still, the
use of the projective model structure in the domain is necessary, because it makes
the family of generating cofibrations small enough for the result to hold.

To see how the tensor product interacts with the localizations for the Segal and
completeness conditions, wewill again use the combinatorics of shuffles as in Section
6.3. Recall that for trees S andT , their set of shuffles is partially ordered with minimal
element the shuffle obtained by grafting copies of S on top ofT and maximal element
the one where copies of T are grafted on top of S. The partial ordering is defined by
‘shuffling down’ the vertices of S through those of T .

The following is the crucial input to proving Theorem 12.41. Unlike the results of
Section 6.3 it does not require any assumptions (such as openness) on our dendroidal
spaces. Those assumptions were necessary in the case of dendroidal sets to guarantee
that the relevant pushout-products were normal monomorphisms; we will see that
the map featuring in the proof below is of a simpler form and can be checked to be
a normal monomorphism without further hypotheses.

Lemma 12.45 The tensor product of dendroidal spaces is compatible with the Segal
condition in the sense that it defines a left Quillen bifunctor

dSpacesPS × dSpacesPS → dSpacesRS .

Proof By Lemma 12.7, we can characterize the model category dSpacesPS as
obtained from dSpacesP by localizing with respect to the ‘grafting maps’

(S ∪e R) � ∆[n] ∪ (S ◦e R) � ∂∆[n] → (S ◦e R) � ∆[n]

where S and R are trees, e is a leaf of S and simultaneously the root of R, and n ≥ 0.
Given Lemma 12.43 above, it therefore suffices to prove that the pushout-product of
a map as above with a generating cofibration T � M → T � N is a weak equivalence
in the model category dSpacesRS . (Here M → N is a monomorphism of simplicial
sets.) Such a pushout-product is of the form

X � V ∪X�U Y � U → Y � V

with X = (S ∪e R) ⊗ T , Y = (S ◦e R) ⊗ T , and U → V the monomorphism of
simplicial sets

∂∆[n] × N ∪∂∆[n]×M ∆[n] × M → ∆[n] × N .
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To show that this is a trivial cofibration in dSpacesRS , it suffices to show that the
map

(S ∪e R) ⊗ T → (S ◦e R) ⊗ T

is an inner anodyne map of dendroidal sets.
We begin by observing that this map is a normal monomorphism; indeed, the

codomain is normal and the square

{e} ⊗ T R ⊗ T

S ⊗ T (S ◦e R) ⊗ T

is easily seen to be a pullback. We may therefore view (S∪e R) ⊗T as a subobject of
(S ◦e R) ⊗T . (This is where the current proof is simpler, and applies more generally,
than that of Lemma 6.24.)

Write ve for the root vertex of R, which is also the top vertex of the edge e in the
tree S ◦e R. Any shuffle Q of (S ◦e R) ⊗ T will have one or several vertices of the
form ve ⊗ t, for t an edge of T , and we will call the outgoing edges e ⊗ t of such
vertices special edges. Now consider a filtration

(S ∪e R) ⊗ T =: A0 ⊆ A1 ⊆ A2 ⊆ · · · ,
⋃
i

Ai = (S ◦e R) ⊗ T

by adjoining the shuffles of S ◦e R and T one by one, in some order that is compatible
with the partial ordering on shuffles described above the lemma. If Ai+1 is obtained
from Ai by adjoining some shuffle Q, we define a further filtration

Ai =: A0
i ⊆ A1

i ⊆ A2
i ⊆ · · · ,

by adjoining all of the outer faces P (possibly of high codimension) of Q one by
one, in some order that extends the partial ordering of inclusion. Consider a step
Aj
i ⊆ Aj+1

i in this filtration, adjoining some outer face P of Q. As usual we write
I(P) for the set of inner edges of P. Furthermore, write ΣP ⊆ I(P) for the subset
consisting of special edges e⊗ t as defined above. Without loss of generality we may
assume that ΣP is nonempty; indeed, if it is not, then P is entirely contained in either
S ⊗ T or R ⊗ T and the inclusion Aj

i ⊆ Aj+1
i is the identity.

Now write J(P) = I(P) − ΣP and for every H ⊆ J(P), write PH for the tree
obtained from P by contracting all edges in the complement J(P) − H. Adjoining
the PH to Aj

i in some order that extends the partial ordering of inclusion of subsets
of J(P), we obtain a further filtration

Aj
i =: Aj,0

i ⊆ Aj,1
i ⊆ Aj,2

i ⊆ · · · ,
⋃
k

Aj,k
i = Aj

i ∪ P = Aj+1
i .
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We will now argue that each inclusion Aj,k
i ⊆ Aj,k+1

i , adjoining some tree PH , is
inner anodyne. Suppose that PH is not yet contained in Aj,k

i . Then we can argue the
following:

(1) Any outer face of PH is contained in Aj
i by our induction on the size of P.

(2) Any inner face of PH contracting an edge of J(P) is in Aj,k
i by our induction on

the size of H.
(3) Any inner face F contracting a special edge (or multiple such edges) in ΣP

cannot be contained in Aj,k
i . Indeed, it is clear that if such an F would be in A0,

then PH itself would already have been contained in A0. Also, F cannot factor
through any earlier shuffle P′. Indeed, contracting special edges can only create
overlap with other shuffles in which the vertex ve has been shuffled further down.
�

Now Lemma 6.22 implies that Aj,k
i ⊆ Aj,k+1

i is a pushout of the inner anodyne map

Λ
ΣP [PH ] → PH . �

We are now almost done proving the main results of this section:

Proof (of Theorem 12.41) After Lemma 12.45 it only remains to show that the
tensor product of dendroidal spaces also respects the localization with respect to
completion. To be precise, it will suffice to show that the pushout-product of a map

J � ∂∆[n] ∪ {0} � ∆[n] → J � ∆[n]

with a generating projective cofibration of the form T � M → T � N is a weak
equivalence in the model category dSpacesRSC . As in the proof of the previous
lemma, that pushout-product can be rewritten in the form

X � V ∪X�U Y � U → Y � V

with X = {0} ⊗ T , Y = J ⊗ T , and U → V the monomorphism of simplicial sets

∂∆[n] × N ∪∂∆[n]×M ∆[n] × M → ∆[n] × N .

Hence it suffices to show that {0} × T → J ⊗ T is trivial cofibration in the operadic
model structure on dendroidal sets. This follows from Proposition 9.28. �

Proof (of Corollary 12.42) It follows from Theorem 12.41 that the tensor product
indeed gives a well-defined functor on homotopy categories. To verify that this is a
symmetric monoidal structure, it remains to check associativity. To do this, we will
argue that the associator maps of the kind

(X ⊗ Y ) ⊗ Z → X ⊗ Y ⊗ Z
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are weak equivalences whenever X , Y , and Z are cofibrant objects of dSpacesPSC
(cf. Remark 9.48). By the usual skeletal induction it suffices to do this for dendroidal
sets represented by trees T1, T2, and T3. Since Sp[T] → T is a trivial cofibration,
we can reduce further to the case of corollas. In that case we explicitly verified that
these associators are inner anodyne in Proposition 6.32. �

12.5 Closed Dendroidal Spaces

For many (simplicial or topological) operads P of interest, the space P(0) of nullary
operations is contractible, or even equal to a point. This is the case for the operads
En of little n-cubes, for example. In this section we study variants of the theory of
dendroidal spaceswhich take these conditions into account.Amongst other things,we
will show that a dendroidal Segal space X for which all spaces of nullary operations
are contractible may be replaced, up to weak equivalence, by one for which these
spaces equal a point. In fact, we will prove that the homotopy theory of ∞-operads
X with such contractible spaces of nullary operations may be presented in terms of
presheaves on the smaller category Ω of closed trees.

We will see below that dendroidal Segal spaces X with X(−; x) equal to a point,
for each object x, can naturally be studied in terms of the following category:

Definition 12.46 The category of closed dendroidal spaces is the category of sim-
plicial presheaves on the category Ω of closed trees:

cdSpaces := sSetsΩ
op
.

To discuss dendroidal spaces Segal spaces X satisfying the weaker condition that
X(−; x) is contractible, we introduce the following terminology.

Definition 12.47 A dendroidal space X is weakly closed if for each tree T in Ω with
closure T ⊆ T , the restriction map X(T) → X(T) is a weak equivalence.

Remark 12.48 The property of being weakly closed is evidently invariant under
weak equivalence in the projective or Reedy model structure on dSpaces. In particu-
lar, any weakly closed dendroidal space X has a Reedy fibrant replacement Y which
is still weakly closed. For such a Y , the restriction maps Y (T) → Y (T) are trivial
fibrations.

Wewill mostly be interested in the property of being weakly closed for (complete)
dendroidal Segal spaces. For these, we observe the following:
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Proposition 12.49 Let X be a dendroidal Segal space. Then the following properties
are equivalent:

(1) X is weakly closed.
(2) For each nullary vertex v in a tree T , the map X(T) → X(∂vT) is a trivial

fibration.
(3) The map X(η) → X(η) is a trivial fibration.

Proof Of course (3) is the special case of (2) where T = η. Also (1) follows from
(2) by repeatedly applying the latter condition to the nullary vertices of T − T and
(2) follows from (3) by noticing that

X(T) → X(∂vT) ×X(η) X(η)

is a weak equivalence by the Segal condition. �

By the above proposition, the weakly closed dendroidal Segal spaces are the
fibrant objects in the left Bousfield localization of the model category dSpacesRS
with respect to the map η→ η. We will denote this localization by

dSpacesRS,wcl

and we use similar notations for the analogous localizations by η → η of the model
category dSpacesRSC and the projective variants dSpacesPS and dSpacesPSC .
Notice in this context that η → η is a Reedy cofibration, but not a projective one.
We will now describe these localizations in a different, simpler way.

Recall the adjoint pair

Ω Ω
cl

incl

between the categories of closed trees and all trees. As above, we often use the
abbreviated notation T for the closure cl(T). The inclusion and closure functors
induce adjoint pairs

cdSpaces dSpaces cdSpaces
incl! cl!

incl∗ cl∗

satisfying
cl!incl! = id, cl∗ = incl!.

The functor incl! is fully faithful, so it embeds cdSpaces as a full subcategory of all
dendroidal spaces. Its essential image consists precisely of those dendroidal spaces
X for which the restriction X(T) → X(T) is an isomorphism for each tree T .

These adjoint pairs are Quillen pairs for the projective model structure. The cate-
gory cdSpaces also carries a Reedy model structure, where generating cofibrations
are the maps of the form

∂clT � ∆[n] ∪ T � ∂∆[n] → T � ∆[n].
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Here n ≥ 0, T is any closed tree, and ∂clT is the union of all its closed faces (which
are the inner faces, together with the root face if it exists). These maps are also
Reedy cofibrations in dSpaces and it is readily verified that incl! is also a left Quillen
functor with respect to the Reedy model structures. (The same is not true, however,
for the functor cl!. Indeed, cl! does not preserve normal monomorphisms, as we have
seen before.)

For a closed tree T , the union of all the closed corollas indexed by the internal
vertices of T forms the closed spine of T , denoted

Spcl[T] =
⋃
v

Cv → T .

The projective and Reedy model categories cdSpacesP and cdSpacesR can be
localized with respect to these closed spine inclusions to produce model categories
cdSpacesPS and cdSpacesRS respectively. The fibrant objects in cdSpacesRS will
be referred to as closed dendroidal Segal spaces.

Proposition 12.50 The functors incl! and cl! define left Quillen functors

incl! : cdSpacesPS → dSpacesPS,
incl! : cdSpacesRS → dSpacesRS,
cl! : dSpacesPS → cdSpacesPS .

Proof We already observed that these are left Quillen functors for the projective and
Reedy model structures, before localizing with respect to (closed) spine inclusions.
So it suffices to prove that incl! and cl! send these localizing maps to weak equiva-
lences. For incl!, we have to check that for a closed tree T , the inclusion Spcl[T] → T
is a trivial cofibration in dSpacesRS . Using induction on the size of T , this follows
from the following grafting property of a closed corolla onto a closed tree T . Con-
sider a nullary vertex v of T attached to an edge e and a closed corolla Ck . We can
graft Ck onto ∂vT by identifying the root edge of Ck with the edge e to obtain a new
tree T ′. Then we may factor the closed spine inclusion of T ′ as

Spcl[T
′] → T ∪η Ck → T ′.

The first map is a pushout of the closed spine inclusion Spcl[T] → T and hence a
trivial cofibration by the inductive hypothesis. The second map fits into a square

(∂vT ∪η η) ∪η Ck ∂vT ∪η Ck

T ∪η Ck T ′.

The vertical maps are inner anodyne, so that the bottom horizontal map is a trivial
cofibration.
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Checking that cl! is left Quillen is only slightly more involved since we have to
work with the projective model structure. Again using an induction on the size of
trees, we now consider a tree S with a leaf e and a corolla Ck to be grafted onto S
to obtain a new tree S′. We have to prove that Lcl! sends S ∪e Ck → S to a weak
equivalence in cdSpacesPS (or equivalently in cdSpacesRS). The pushout A as in

η � ∂∆[1] S q Ck

η � ∆[1] A

is a projectively cofibrant replacement of S ∪e Ck , where the top map picks out the
edge e in S and the root of Ck . Then cl! sends A to a similar pushout A in cdSpaces,

η � ∂∆[1] S q Ck

η � ∆[1] A.

This object A is a projectively cofibrant replacement of S ∪η Ck and S ∪η Ck → S′
is a weak equivalence in dSpacesRS by the closed analogue of Lemma 12.7. This
completes the proof of the proposition. �

Theorem 12.51 (a) The composition of the leftQuillen functor incl! : cdSpacesRS →
dSpacesRS with the localization dSpacesRS → dSpacesRS,wcl is a Quillen
equivalence.

(b) The left Quillen functor cl! : dSpacesPS → cdSpacesPS induces a Quillen
equivalence dSpacesPS,wcl → cdSpacesPS .

Proof Since theReedymodel structures in (a) areQuillen equivalent to the projective
ones, both statements can be proved simultaneously by considering the diagram

cdSpacesPS dSpacesPS cdSpacesPS .

dSpacesPS,wcl

incl!

f! id!

cl!

g!

Here f! is the composition id!incl!. Since cl! sends the localizing map η → η to
an isomorphism, it factors through a left Quillen functor g! as in the diagram. Now
observe that g! f! is the identity functor. Moreover, for a dendroidal space X and a
tree T ,

g∗ f ∗X(T) = X(T)

and the map X(T) → X(T) (which is the counit of the adjoint pair (incl!, incl∗) in
disguise) provides a natural map g∗ f ∗(X) → X which is a weak equivalence if X is
a local object in dSpacesPS,wcl. This proves the theorem. �
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Corollary 12.52 Every weakly closed dendroidal Segal space is weakly equivalent
to a dendroidal Segal space X for which X(T) → X(T) is an isomorphism for every
tree T .

Proof This follows from the theorem together with the fact that the X as in the
corollary are exactly the objects in the essential image of the functor incl! = cl∗. �

As observed in Remark 4.14, the tensor product of dendroidal sets restricts to
one on the category of closed dendroidal sets and the functor cl! respects the tensor
product. By defining the tensor product of simplicial presheaves on Ω degreewise,
we obtain a tensor product on cdSpaces for which incl! and cl! are again monoidal,
in the sense that for dendroidal spaces (or closed dendroidal spaces, respectively) X
and Y , there are natural isomorphisms

cl!(X ⊗ Y ) � cl!(X) ⊗ cl!(Y )
incl!(X ⊗ Y ) � incl!(X) ⊗ incl!(Y ).

However, observe that incl! does not preserve the unit, which is η in cdSpaces, but η
in dSpaces. In Proposition 4.26 we observed that the tensor product behaves better
on closed dendroidal sets than on general ones, because for normal monomorphisms
A→ B and C → D of closed dendroidal sets, the pushout-product map

A ⊗ D ∪ B ⊗ C → B ⊗ D

is again a normalmonomorphism. It follows that cdSpacesRS behaves verymuch like
a symmetric monoidal model category, the only failure being that the associativity
maps for the tensor product are only trivial cofibrations (for cofibrant objects) rather
than isomorphisms. Let us record this explicitly as follows.

Theorem 12.53 The tensor product of closed dendroidal spaces has the following
properties:

(a) If A→ B and C → D are normal monomorphisms, then so is

A ⊗ D ∪ B ⊗ C → B ⊗ D.

If one of the two is in addition a weak equivalence, then so is the pushout-product
map.

(b) For normal closed dendroidal spaces A1, . . . , An, the associatormaps (cf. Section
4.4)

A1 ⊗ · · · ⊗ (Ai ⊗ · · · ⊗ Aj) ⊗ · · · ⊗ An → A1 ⊗ · · · ⊗ An

are trivial cofibrations in cdSpacesRS .
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12.6 Reduced Dendroidal Spaces

In the previous section we considered the homotopy theory of∞-operads for which
the spaces of nullary operations X(−; x) are contractible, for each colour x of X , and
showed that it can be presented in terms of simplicial presheaves on the category
Ω of closed trees. In this section we will specialize further, considering operads
for which in addition the unary operations are invertible. We will relate these to
simplicial presheaves on the full subcategory Ωred of Ω on the closed trees without
unary vertices. We will refer to such trees as reduced closed trees.

Definition 12.54 The category of reduced dendroidal spaces is the category of
simplicial presheaves on the category of reduced closed trees:

rcdSpaces := sSets(Ωred)
op
.

We will use such reduced dendroidal spaces as a model for the following kinds
of dendroidal spaces:

Definition 12.55 A dendroidal space X is weakly reduced if it is weakly closed
and for each degeneracy σ : T → S in Ω, the map σ∗ : X(S) → X(T) is a weak
equivalence.

Remark 12.56 The same terminology is used in a more restrictive sense for (un-
coloured) operads. A simplicial or topological operad P is reduced (resp. weakly
reduced) if P(0) and P(1) equal a point (resp. are weakly contractible). For example,
the operads En are weakly reduced.

Remark 12.57 Observe that the property of being weakly reduced is invariant under
weak equivalence.

The category rcdSpaces is simpler than that of all dendroidal spaces in several
respects. First of all, the combinatorics of the category Ωred are simpler than those of
Ω. Secondly, we will prove in this section that for weakly reduced dendroidal spaces,
the notion of completeness is redundant and therefore plays no role in the theory.

For dendroidal Segal spaces, the property of being weakly reduced can be formu-
lated as follows.

Proposition 12.58 Let X be a weakly closed dendroidal Segal space. Then the fol-
lowing properties are equivalent:

(1) X is weakly reduced.
(2) The map X(η) → X(C1) associated to the degeneracy C1 → η is a weak

equivalence.
(3) For any surjection T → S in Ω from a tree T to a tree S without unary vertices,

the map X(S) → X(T) is a weak equivalence.
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Proof A map T → S as in (3) is a composition of degeneracies, so (3) follows from
(1). Furthermore, (2) is a special case of (3) and of (1), so it remains to prove that
(2) implies (1). Let σv : T → S be degeneracy, deleting a unary vertex v of T . Then
we can write T as a grafting T1 ◦ Cv ◦ T2, where Cv is the unary corolla with vertex
v. By the Segal condition, the horizontal morphisms in the diagram

X(S) X(T1) ×X(η) X(T2)

X(T) X(T1) ×X(η) X(C1) ×X(η) X(T2)

∼

∼

are weak equivalences. The map on the right is the pullback of the weak equivalence
X(η) → X(C1) along the projection

X(T1) ×X(η) X(C1) ×X(η) ×X(T2) → X(C1).

Since this map is a fibration by the Reedy fibrancy of X , this pullback is also a weak
equivalence. �

It follows from this proposition that the weakly reduced dendroidal Segal spaces
are the fibrant objects in the left Bousfield localization of dSpacesRS,wcl by the map
C1 → η. We will denote this localized model category by

dSpacesRS,wred.

Let us observe that this model category is in fact a localization of the model category
dSpacesRSC for complete dendroidal Segal spaces:

Proposition 12.59 Any weakly reduced dendroidal Segal space is complete.

Proof Let X be a weakly reduced dendroidal Segal space. Consider the class of
all monomorphisms M → N of simplicial sets for which the corresponding map
X(i!N) → X(i!M) is a trivial fibration. It contains the inner anodynes, since X is
Segal, as well as the two inclusions ∆[0] → ∆[1] by the proposition above. Since the
class under consideration is saturated, it must then contain all anodyne maps (i.e.,
all trivial cofibrations in the Kan–Quillen model structure). In particular, it contains
∆[0] → J. Hence X(J) → X(η) is a trivial fibration and X is complete. �

We will now follow the same strategy as in the previous section and prove
a Quillen equivalence between the model category dSpacesRS,wred and a smaller
model category of reduced dendroidal spaces. The category Ωred inherits a Reedy
structure from Ω, so that we may consider the projective and Reedy model structures
on the category rcdSpaces. These can be localized for the closed spine inclusions of
trees as in the previous section, so that we obtain a square of model categories and
left Quillen functors (each of which is the identity) as follows:
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rcdSpacesP rcdSpacesR

rcdSpacesPS rcdSpacesRS .

∼

∼

Consider the inclusion functor

incl : Ωred → Ω

of reduced trees into closed trees. This functor has a left adjoint

red : Ω→ Ωred

which sends a closed tree T to its ‘reduction’ red(T); the unit of this adjunction
T → incl(red(T)) is the maximal degeneracy which collapses all the unary vertices
in T . Exactly as in the previous section, these functors induce Quillen pairs for the
projective model structures on simplicial presheaves,

rcdSpacesP cdSpacesP,

cdSpacesP rcdSpacesP,

incl!

incl∗

red!

red∗

and red! ◦ incl! is the identity since red ◦ incl is. Moreover, incl! is easily seen to
preserve Reedy cofibrations (in fact, it preserves closed boundaries of closed trees),
hence also induces a Quillen pair

rcdSpacesR cdSpacesR .
incl!

incl∗

Theorem 12.60 These Quillen pairs factor through the localizations with respect to
the Segal condition and induce Quillen equivalences

rcdSpacesRS cdSpacesRS,wred
incl!

incl∗

and

cdSpacesPS,wred rcdSpacesPS .
red!

red∗

Proof We begin by verifying that these functors are indeed compatible with local-
ization with respect to the Segal condition. Clearly incl! preserves closed spines and
therefore gives a left Quillen functor

incl! : rcdSpacesRS → cdSpacesRS .
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To see that red! similarly gives a left Quillen functor from cdSpacesPS to
rcdSpacesPS , we have to consider projectively cofibrant replacements as in the
proof of Proposition 12.50. Using induction, it suffices to show that for a closed
tree T and a grafting T ′ = T ◦η Cn obtained by replacing a nullary vertex v of T
by a closed corolla Cn, the functor Lred! sends T ∪η Cn → T ′ to a weak equiva-
lence in rcdSpacesPS . To this end, consider the projectively cofibrant replacement
of A→ T ∪η Cn defined as the pushout

η � ∂∆[1] T q Cn

η � ∆[1] B.

If n = 1 then red! maps this to the pushout

η q η red!T q η

η � ∆[1] B′.

Note that B′ then also fits in a pushout square

η red!T

η � ∆[1] B′,

∼ ∼

while red!(T ′) = red!(T), so that the resulting map B′ → red!(T ′) is indeed a weak
equivalence.

For n > 1, the reduced dendroidal space red!B is given by the pushout

η � ∂∆[1] red!T q Cn

η � ∆[1] B′′.

Now observe that B′′ exactly defines a projectively cofibrant replacement of red!(T ′)
in the same style; in particular, the map B′′→ red!(T ′) defines a weak equivalence.

Now consider the diagram

rcdSpacesPS cdSpacesPS rcdSpacesPS .

cdSpacesPS,wred

incl!

f! id!

red!

g!
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Then red! factors through a left Quillen functor g! as indicated, because red! sends
the localizing map C1 → η to an isomorphism. Moreover, red!incl! is the identity,
while for X in cdSpaces and T a closed tree,

incl!incl∗(X)(T) = red∗incl∗(X)(T) = X(red(T)).

For local X , the counit incl!incl∗(X) → X is a weak equivalence by definition. Hence
L f! and Lg! are mutually quasi-inverse functors, which completes the proof. �

Finally, we may combine Theorems 12.60 and 12.51 to obtain the following.

Corollary 12.61 The pairs

rcdSpacesRS dSpacesRS,wred
incl!

incl∗

and

dSpacesPS,wred rcdSpacesPS .
red!cl!

cl∗red∗

are Quillen equivalences.

To conclude this section, we observe that all of the statements above have evident
variants for open dendroidal spaces. Write Ω◦red for the category of open reduced
trees, defined as the full subcategory of the category Ω◦ of open trees on the trees
without unary vertices. Then define the category of reduced open dendroidal spaces
as the corresponding category of simplicial presheaves:

rodSpaces := sSets(Ω
◦
red)

op
.

We say an open dendroidal space X ∈ odSpaces is weakly reduced if for every
degeneracy σ : T → S in Ω, the map σ∗ : X(S) → X(T) is weak equivalence. Then
we have the following analogue of Corollary 12.61, proved in precisely the same
way:

Theorem 12.62 The pairs

rodSpacesRS odSpacesRS,wred
incl!

incl∗

and

odSpacesPS,wred rodSpacesPS .
red!

red∗

are Quillen equivalences.
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12.7 Simplicial Spaces

In this section we summarize how the results of this chapter specialize once we
restrict to simplicial (rather than dendroidal) spaces. Essentially we recover Rezk’s
theory of complete Segal spaces, which he proposed as a model for higher category
theory. Theorem 12.66 below states that the category of simplicial spaces, equipped
with a model structure in which the fibrant objects are the complete Segal spaces, is
Quillen equivalent to the category of simplicial sets equipped with the Joyal model
structure. In other words, the homotopy theory of complete Segal spaces is equivalent
to that of∞-categories.

Recall that the slice category dSets/η can be identified with the category sSets
of simplicial sets. Similarly, regarding η as a discrete dendroidal space, we find an
equivalence of categories

dSpaces/η ' sSpaces,

where the right-hand side is of course just alternative notation for the category of
bisimplicial sets. However, it is convenient (and important) to keep track of the two
different simplicial directions; one of them is the ‘categorical’ direction, the other
the ‘space’ direction. In particular, the model structures we consider in this section
do not treat the two simplicial coordinates symmetrically. Although the results of
this section follow trivially from the more general statements for dendroidal spaces
proved before, we do collect them here for the convenience of the reader.

We briefly recall the relevant definitions. Throughout this section, we think of
objects of the category sSpaces as functors

X : ∆op → sSets

and use notation accordingly.

Definition 12.63 A simplicial space X satisfies the Segal condition if for every n ≥ 2,
the map

X(∆[n]) → Map(Sp[n], X)

is a weak homotopy equivalence of simplicial sets. A Segal space is a Reedy fibrant
simplicial space X satisfying the Segal condition.

Alternatively, the definition can also be expressed as saying that X(∆[n]) is
equivalent to the iterated homotopy pullback of the terms X(∆[0, 1]), . . . , X(∆[n −
1, n]), and it is this form of the Segal condition one often finds in the literature.
According to Lemma 12.7, the Segal condition admits the following reformulation.
For n ≥ 2 and 0 < k < n, write ∆[0, k] and ∆[k, n] for the subsimplices of ∆[n]
spanned by the vertices 0, . . . , k and k, . . . , n respectively.
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Lemma 12.64 A simplicial space X satisfies the Segal condition if for any n ≥ 2
and 0 < k < n, the square

X(∆[n]) X(∆[0, k])

X(∆[k, n]) X(∆[0])

k∗

k∗

is a homotopy pullback.

Definition 12.65 A simplicial space X is complete if the map of simplicial sets
J → ∆[0] induces a weak homotopy equivalence of simplicial sets

Map(∆[0], X) → Map(J, X).

We write sSpacesRSC for the category of simplicial spaces equipped with the left
Bousfield localization of the Reedy model structure for which the fibrant objects are
the complete Segal spaces. Below we record the simplicial versions of the two main
theorems of this chapter. Of course most statements from the preceding sections
have such a specialization; we leave it to the reader to formulate these explicitly.

Consider the adjoint pair

sSets sSpaces.
dis!

dis∗

for which dis∗ sends a simplicial space X to its degree zero part X0, whereas dis!
assigns to a simplicial set the corresponding discrete simplicial space. Then Theorem
12.22 yields the following statement:

Theorem 12.66 The adjoint pair (dis!, dis∗) is a Quillen equivalence between the
Joyal model structure on sSets and the model category sSpacesRSC for complete
Segal spaces.

Recall that a complete weak equivalence is a map X → Y of simplicial spaces
which is a weak equivalence in the model category sSpacesRSC . We record the
following special case of Theorem 12.36:

Theorem 12.67 Let f : X → Y be a map of simplicial Segal spaces. Then f is a
complete weak equivalence if and only if f is fully faithful and essentially surjective.

To conclude this section we describe some important examples, emphasizing the
fact that a complete Segal space should be thought of as a model for a homotopy
theory.

Example 12.68 If C is a (small) category, its nerve NC is an ∞-category. As in
Example 12.24, there is an associated simplicial space N̂C which can be explicitly
described as follows:
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N̂C([n])• = sSets(J[•] × ∆[n], NC).

The right-hand side can alternatively be written as sSets(J[•], N(C[n])). For a cate-
gory D let us write iso(D) for the maximal groupoid contained in D. In other words,
iso(D) is obtained from D by discarding all non-invertible morphisms. With this
notation we may write

N̂C([n]) = Niso(C[n]).
The right-hand side is the nerve of a groupoid and hence a Kan complex. Of course
much more is true: Example 12.24 guarantees that N̂C([n]) is in fact a complete
Segal space. This space is often called the classifying diagram of C.

Example 12.69 The previous example may be generalized in the following way.
Consider a small category C and a subcategory W , which will play the role of the
‘weak equivalences’. Call a natural transformation α between functors F,G : [n] →
C a weak equivalence if each of the components αc : F(c) → G(c) of α is contained
in W . Write W(C[n]) for the subcategory of C[n] consisting of those morphisms (i.e.,
natural transformations) that are weak equivalences. Then we may form a simplicial
space N(C,W) by setting

N(C,W)([n]) = NW(C[n]).

In particular, if we take W = iso(C), then we retrieve the previous example:

N(C, iso(C)) = N̂C.

In general, there is no reason to expect the simplicial space N(C,W) to be a complete
Segal space. However, if E is a model category and W is its class of weak equiva-
lences, then any Reedy fibrant replacement of N(E,W) is a complete Segal space.
Moreover, for objects x and y ofE, themapping spacesMapE(x, y) and N(E,W)(x, y)
(as defined above Definition 12.12) are weakly equivalent, see [129].

Historical Notes

Most of the material in this chapter is a reworking of the papers [40, 41]. As ex-
plained, the results all specialize to analogous results for simplicial spaces proved
earlier. In particular, the theory of complete Segal simplicial spaces was introduced
by Rezk [129], who also proved the simplicial version of the characterization of com-
plete weak equivalences between Segal spaces (Theorem 12.36). The equivalence
between complete Segal spaces and the Joyal model structure on simplicial sets was
demonstrated by Joyal–Tierney [94].
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Chapter 13
Left Fibrations and the Covariant Model
Structure

In Section 9.5 we introduced the covariant model structure on a slice category
dSets/B, for a fixed dendroidal set B. This model category represents the homotopy
theory of ‘B-algebras’, as we will see in Section 13.5. The first aim of this chapter
is to establish the analogous structure for the category of dendroidal spaces over a
fixed dendroidal space B. We will do this in Section 13.1 and demonstrate that the
covariant model structure on dSpaces/B is Quillen equivalent to the covariant model
structure on dSets/B0 in the case when B is a complete dendroidal Segal space (cf.
Proposition 13.7). In Section 13.3 we establish a form of ‘homotopy invariance’
for the covariant model structure. To be precise, we will show that a complete weak
equivalence between dendroidal Segal spaces A and B induces a Quillen equivalence
between the covariant model structures on dSpaces/A and dSpaces/B. In order to
prove this result in the stated generality we will need a digression on simplicial
systems of model categories (Section 13.2), which helps to relate the covariant
model structure on dSpaces/B to that on the categories dSets/Bn, for n ≥ 0.

The main aim of this chapter is to relate left fibrations to algebras for operads. If
P is a simplicial operad, then the homotopy theory of P-algebras can be described
through a ‘projective model structure’, which we introduce in Section 13.4. Then
in Section 13.5 we establish a Quillen equivalence between this model structure on
the category of P-algebras and the covariant model structure on the slice category
dSpaces/NP. This result has a number of very useful consequences, including the
‘straightening-unstraightening equivalence’ for left fibrations over∞-categories. We
discuss these corollaries in Section 14.8 at the end of the next chapter, after we have
established an equivalence of homotopy theories between∞-operads and simplicial
operads.

523© The Author(s) 2022 

G. Heuts, I. Moerdijk, Simplicial and Dendroidal Homotopy Theory,  

75, https://doi.org/10.1007/978-3-031-10447-3_13 

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern   

Surveys in Mathematics 

 

 

 

 
 
 

https://doi.org/10.1007/978-3-031-10447-3_13
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10447-3_13&domain=pdf


524 13 Left Fibrations and the Covariant Model Structure

13.1 The Covariant Model Structure on Dendroidal Spaces

In this section we will introduce the analogue of the covariant model structure on
dendroidal sets (cf. Section 9.5) in the context of dendroidal spaces. Consider a fixed
dendroidal space B. The slice category dSpaces/B inherits model structures from
the Reedy model structure and the projective model structure on dSpaces, denoted
dSpacesR/B and dSpacesP/B, respectively. The covariant model structures will be
left Bousfield localizations of these; to be precise, there will be one for the Reedy
model structure and a Quillen equivalent one for the projective model structure.

Recall that a left fibration of dendroidal sets is a map that has the right lifting
property with respect to inner horns and leaf horns. Alternatively, we characterized
left fibrations over a dendroidal set B as fibrant objects in a localization of the
operadic model structure on the slice category dSets/B with respect to the leaf
inclusions of trees. Our first aim is to introduce the analogous notion for dendroidal
spaces. For given objects p : X → B and q : Y → B of dSpaces/B, let us write

MapB(X,Y )

for the mapping space between them, leaving themaps p and q implicitly understood.
Recall that for a tree T , we write `[T] for the coproduct of copies of η indexed by the
leaves of T .

Definition 13.1 A map p : X → B of dendroidal spaces is a left quasifibration if for
any tree T and any map T → B, the map

MapB(T, X) → MapB(`[T], X)

is a weak homotopy equivalence. In other words, p is a left quasifibration if it is local
with respect to the leaf inclusions `[T] → T over B. We say X → B is a Reedy left
fibration (resp. a projective left fibration) if it is a left quasifibration that is moreover
a Reedy fibration (resp. projective fibration) of dendroidal spaces.

Remark 13.2 Since the Reedy and projective model structures on dSpaces/B are
Quillen equivalent, the homotopy type of themapping spaceMapB(X,Y )with respect
to either of these is the same. Hence the definition of left quasifibration is independent
of which of the these two model structures on dSpaces/B is used.

The mapping space MapB(X,Y ), with respect to either the Reedy or the projective
model structure, is straightforward to describe. IfY → B is a Reedy (resp. projective)
fibration and X is Reedy (resp. projectively) cofibrant, we can use the cosimplicial
resolution X � ∆[•] of X to compute (a model of) this mapping space as

MapB(X,Y )n = (dSpaces/B)(X � ∆[n],Y ).

In other words, MapB(X,Y )n is the pullback
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MapB(X,Y )n dSpaces(X � ∆[n],Y )

∆[0] dSpaces(X � ∆[n], B),

where the vertex defining the lower arrow is the composite of the projection mor-
phism X � ∆[n] → X with the given map X → B. Thus, if B itself is Reedy (resp.
projectively) fibrant, we can rewrite this pullback as

MapB(X,Y ) Map(X,Y )

∆[0] Map(X, B),

where the twomapping spaces on the right are taken in themodel category dSpacesR
(resp. dSpacesP). Notice that for this model of the mapping space, the morphism
on the right is a Kan fibration, since Y → B is assumed to be a fibration and X is
assumed cofibrant. Note that the objects T and `[T] featuring in Definition 13.1 are
both Reedy and projectively cofibrant, so that the preceding discussion applies to
describe the mapping spaces featuring in that definition.

The following characterization of left quasifibrations is analogous to that of
dendroidal Segal spaces in Lemma 12.7. It is a particularly convenient criterion,
since it does not make reference to any particular model structure.

Lemma 13.3 A map X → B of dendroidal spaces is a left quasifibration if and only
if for every tree T , the square

X(T) B(T)

X(`[T]) B(`[T])

is a homotopy pullback.

Proof Without loss of generality we may assume that X → B is a Reedy fibration,
since it can always be replaced by such without changing the homotopy type of X(T).
It follows from the discussion preceding the lemma that the map MapB(T, X) →
MapB(`[T], X) may be identified with the map between the fibres of the horizontal
maps in the square of the lemma over a specified vertex of B(T), i.e., a fixed
map T → B. Since the horizontal maps are Kan fibrations under our assumptions,
those fibres are also homotopy fibres. The lemma now follows from the observation
that a square as above is a homotopy pullback if and only if the induced map
of homotopy fibres (over any vertex of B(T)) of the horizontal maps is a weak
homotopy equivalence. �
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Example 13.4 Let P be a simplicial operad, with associated dendroidal space NP.
The following example will play a key role in our comparison between left fibrations
over NP andP-algebras in Section 13.5. Let A be a simplicialP-algebra. Thenwe can
define a dendroidal space N(P, A) over NP by applying the construction of Example
3.20(h) in each simplicial degree. More explicitly, if T is a tree, then an element
of NP(T)n consists of labellings of the edges of T by colours of P and the vertices
of T by operations of P in simplicial degree n, compatible with the labelling of the
edges by colours. An n-simplex of N(P, A)(T) consists of the same data, together
with the assignment of an n-simplex of A to each leaf of T ; more precisely, if a leaf
l is labelled by a colour c of P, then it should be assigned an n-simplex in A(c). The
map N(P, A) → NP is simply the projection forgetting this final assignment. It is
clear from this description that

N(P, A)(T) → N(P, A)(`[T]) ×NP(`[T ]) NP(T)

is an isomorphism. In other words, N(P, A) → NP is a ‘strict’ left fibration. If
the simplicial sets P(c1, . . . , cn; c) of operations in P are Kan complexes, then the
map NP(T) → NP(`[T]) is a Kan fibration; indeed, the simplicial set NP(`[T]) is
discrete. It then follows from Lemma 7.51(1) and Proposition 8.67 that the pullback
square

N(P, A)(T) NP(T)

N(P, A)(`[T]) NP(`[T])

is also a homotopy pullback, so that Lemma 13.3 guarantees that N(P, A) → NP is a
left quasifibration. If one assumes that all the simplicial sets Ac are Kan complexes, it
is even a projective left fibration. We will see later that general (projective or Reedy)
left fibrations X → NP can be interpreted as P-algebras up to coherent homotopy.

For later reference,we now review several equivalent formulations of the condition
of being a Reedy left fibration.

Lemma 13.5 For a Reedy fibration X → B between dendroidal spaces, the following
are equivalent:

(1) X → B is a Reedy left fibration.
(2) For any tree T , the map

X(T) → X(`[T]) ×B(`[T ]) B(T)

is a trivial fibration.
(3) For any tree T and any inner or leaf horn Λx[T] → T , the map

X(T) → X(Λx[T]) ×B(Λx [T ]) B(T)

is a trivial fibration of simplicial sets.
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Proof Since X → B is a Reedy fibration, the maps of items (2) and (3) are always
Kan fibrations. The equivalence between (1) and (2) follows from Lemma 13.3
and the condition of Lemma 7.51 for homotopy pullback squares. The equivalence
between (2) and (3) follows from Proposition 6.41, which states that the inclusions
`[T] → T ‘generate’ the class of leaf anodynes in the appropriate sense. �

According to Theorem 11.37, the Bousfield localization of the Reedy model
structure on dSpaces/B with respect to the leaf inclusions `[T] → T exists, with T
ranging over all trees in Ω. We will call this the Reedy covariant model structure
and denote the resulting model category by (dSpacesR/B)cov. Similarly, Proposition
11.25 guarantees the existence of the corresponding localization of the projective
model structure, which we denote by (dSpacesP/B)cov and refer to as the projective
covariant model structure.

Theorem 13.6 The fibrant objects of the Reedy covariant model structure on
dSpaces/B are the Reedy left fibrations X → B. If B is a dendroidal Segal space,
then the covariant model structure is a left Bousfield localization of the model cate-
gory dSpacesRS/B. If B is moreover complete, then it is a left Bousfield localization
of dSpacesRSC/B.

Proof The fibrant objects of (dSpacesR/B)cov are the maps X → B which are
fibrant as objects of dSpacesR/B and local with respect to the maps `[T] → T . By
definition, these are the Reedy left fibrations. To argue that (dSpacesR/B)cov is also
a left Bousfield localization of dSpacesRS/B in the case where B is a dendroidal
Segal space, we should check that every Reedy left fibration X → B is fibrant as
an object of dSpacesRS/B. The fibrant objects of the latter model category are the
fibrations X → B in the model category dSpacesRS , which by Lemma 8.50 are
exactly the Reedy fibrations X → B with X a local object, i.e., a dendroidal Segal
space. But the fact that X is a dendroidal Segal space follows immediately from the
fact that both X → B and B → ∗ are inner fibrations, i.e., have the right lifting
property with respect to the maps

T � ∂∆[n] ∪ Λe[T] � ∆[n] → T � ∆[n]

for every tree T and inner edge e of T (cf. Lemma 13.5(3)). Similarly, for the final
statement of the theorem it suffices to show that for a Reedy left fibration X → B
with B a complete dendroidal Segal space, X is also complete. But X → B has the
right lifting property with respect to all maps of the form

i!N � ∂∆[n] ∪ i!M � ∆[n] → i!N � ∆[n],

where M → N is a left anodyne map of simplicial sets. In particular, we may
consider the map {0} → J and conclude that if B is complete, then so is X . �

The comparisonwith the covariant model structure on dendroidal sets (as opposed
to spaces) is now quite straightforward:
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Proposition 13.7 Let B be a dendroidal complete Segal space, with associated ∞-
operad B0. Then there is a Quillen equivalence

(dSets/B0)cov (dSpacesR/B)cov.
dis!

dis∗

Proof For a dendroidal complete Segal space B, the previous theorem tells us that
we can interpret (dSpacesR/B)cov as a left Bousfield localization of dSpacesRSC/B.
Now the Quillen equivalence

dSets dSpacesRSC
dis!

dis∗

of Theorem 12.22 gives another Quillen equivalence by slicing over B (cf. Example
8.47(j)), which we denote by

dSets/B0 dSpacesRSC/B.
dis!

dis∗

Clearly, dis! sends the localizing `[T] → T over B0 to localizing maps over B, so it
induces a further Quillen pair

(dSets/B0)cov (dSpacesRSC/B)cov.
dis!

dis∗

In other words, the right Quillen functor dis∗ preserves local objects. But for a
complete Segal space X , the first Quillen equivalence above yields that

MapdSpacesRSC
(T, X) ' MapdSets(T, dis∗X)

and similarly with B for X and/or `[T] for T . Hence X → B is local with respect to
the maps `[T] → T if and only if X0 → B0 is; in other words, dis∗ also detects local
objects. This implies that the last Quillen pair above is in fact a Quillen equivalence.�

We include the following easy characterization of the weak equivalences between
fibrant objects in the Reedy covariant model structure on dSpaces/B, similar to
the one in Theorem 9.63 for dendroidal sets. A similar characterization holds for
the projective model structure and a projectively fibrant B, as will be discussed
shortly. We will refer to weak equivalences in the Reedy covariant model structure
as covariant equivalences over B.

Proposition 13.8 For a map

X Y

B



13.1 The Covariant Model Structure on Dendroidal Spaces 529

between Reedy left fibrations in dSpaces/B, the following statements are equivalent:

(1) The map is a covariant equivalence over B.
(2) For each vertex b ∈ B(η)0, the map Xb → Yb between the fibres is a weak

homotopy equivalence of Kan complexes.
(3) The map X(η) → Y (η) is a weak homotopy equivalence of Kan complexes.

Proof By Lemma 8.49, the weak equivalences between local objects in a Bousfield
localization coincide with the weak equivalences in the original model category. In
this case, this means that the covariant equivalences between Reedy left fibrations
coincide with the usual equivalences in the Reedy model structure, which are the
maps such that X(T) → Y (T) is a weak homotopy equivalence for each tree T . It
follows that (1) implies (3). The maps in (2) arise from considering the fibres of
the Kan fibrations X(η) → B(η) and Y (η) → B(η), so clearly also (2) and (3) are
equivalent. To see that (3) implies (1), observe that since X → B and Y → B are
Reedy left fibrations, the map X(T) → Y (T) is a weak homotopy equivalence if and
only if

X(`[T]) ×B(`[T ]) B(T) → Y (`[T]) ×B(`[T ]) B(T)

is a weak homotopy equivalence. This map is the pullback along B(T) → B(`[T])
of the map

X(`[T]) Y (`[T])

B(`[T])

between Kan fibrations over B. Since B(`[T]) is a product (indexed over the leaves
of T) of copies of B(η), and similarly for X and Y , it suffices to show that

X(η) Y (η)

B(η)

is a weak equivalence between Kan fibrations over B(η). But that is precisely the
content of (3). �

We conclude this section with some remarks on the projective covariant model
structure, which will sometimes be convenient to use. For a fixed projectively fibrant
dendroidal space B and a Reedy fibrant replacement f : B → B′ of it, consider the
composition of left Quillen functors

dSpacesP/B
f!
−→ dSpacesP/B′

id!
−−→ dSpacesR/B′.

The first is composition with f whereas the second is just the identity, interpreted
as a left Quillen functor from the projective to the Reedy model structure. Since f
is a weak equivalence between projectively fibrant objects, the functor f! is part of a
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Quillen equivalence by Example 8.47(i). Also, id! is evidently a Quillen equivalence,
since the weak equivalences in the projective and Reedy model structure coincide.
Now localize the model category dSpacesP/B to the projective covariant model
structure (dSpacesP/B)cov and observe that pushing forward this localization to
dSpacesR/B′ gives the Reedy covariant model structure (dSpacesR/B)cov. Hence
we find:

Proposition 13.9 The adjoint pair

(dSpacesP/B)cov (dSpacesR/B′)cov
f!

f ∗

is a Quillen equivalence.

One can now use this Quillen equivalence to transfer results about the Reedy
covariant model structure to the projective model structure, as we will for example
see in Remark 13.27.

13.2 Simplicial Systems of Model Categories

In Chapter 12 we made good use of the fact that the category dSpaces of dendroidal
spaces can be identified with the category dSets∆op

of simplicial objects in dSets
and therefore carries two different Reedy model structures: one with respect to the
Reedy structure of Ω, the other one with respect to that of ∆. We wish to apply
this point of view to the covariant model structure on dSpaces/B established in the
previous section. However, for general B the category dSpaces/B is not directly
identified with a category of simplicial objects. Indeed, for a constant dendroidal
space B = con(B0) one would have

dSpaces/B = (dSets/B0)
∆op
,

but if the assignment
∆op → dSets : [n] → Bn

is not constant then there is no such formula. Thus, the way in which the covariant
model structure on dSpaces/B is obtained from some kind of Reedy model structure
with respect to ∆ is more subtle. The next section aims to explain how this can be
understood, using a more flexible viewpoint on Reedy model structures developed
in the current section.

We begin with the following general definition. Throughout this section, we will
assume our model categories to be cofibrantly generated.

Definition 13.10 A simplicial system of model categories is a ∆op-shaped diagram

E0 E1 E2 · · ·
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of model categories and left Quillen functors, for which the simplicial identities hold
up to coherent natural isomorphism.

Remark 13.11 (1) For our purposes, the crucial example to have in mind is the
following. If X• is a simplicial object of a model category E, then we obtain a
simplicial system of model categories

E/X0 E/X1 E/X2 · · ·

for the slice model structures on the categories E/Xi or any modification of these
model structures for which the adjoints pairs E/Xn � E/Xm induced by the simpli-
cial structure maps Xn → Xm remain Quillen pairs.

(2) One precise way of expressing the definition above is in terms of pseudofunc-
tors from ∆op into the 2-category of model categories, left Quillen functors, and
natural isomorphisms between these. We will not spell this out in detail, as the only
examples we will have to deal with are of the type above.

(3) If E• is a simplicial system of model categories, we shall denote the Quillen
pair induced by a morphism α : [m] → [n] in ∆ by

En Em.
E(α)!

E(α)∗

The reader is advised to pay attention to the direction of the functors here.

For a simplicial system of model categories E•, we can construct a new category
Γ(E•), which we will refer to as the totalization of E•, as follows. Its objects are pairs
(X, θ) where X = {Xn}n≥0 is a sequence of objects Xn in En and θ assigns to each
α : [m] → [n] in ∆ a map

θα : Xn → E(α)∗(Xm).

These θα are required to be functorial in α and compatible with the coherence
isomorphisms of E•, in the sense that for α : [m] → [n] and β : [n] → [l], the
diagram

Xl E(β)∗(Xn)

E(βα)∗(Xm) E(β)∗E(α)∗(Xm)

θβ

θβα E(β)∗(θα )

�

commutes. By adjunction, the maps θα correspond to maps

θ̂α : E(α)!(Xn) → Xm

and the objects of Γ(E•) could of course also have been expressed in this form. For
two objects (X, θ) and (Y, τ) in Γ(E•), a morphism f : (X, θ) → (Y, τ) is a sequence
of morphisms
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fn : Xn → Yn,

compatible with θ and τ in the sense that each square of the form

Xn Yn

E(α)∗(Xm) E(α)∗(Ym)

fn

θα τα

E(α)∗ fm

commutes.

Example 13.12 For a simplicial object X• in a model category E, the category
Γ(E/X•) can be identified with E∆op

/X .

There is an evident forgetful functor

ϕ∗ : Γ(E•) →
∏
n≥0

En

sending an object (X, θ) to the sequence of objects {Xn}n≥0. This functor has a left
adjoint

ϕ! :
∏
n≥0

En → Γ(E•).

It can be described explicitly as follows: for an object X = {Xn}n≥0, we have

ϕ!(X)n =
∐

β : [n]→[k]
E(β)!(Xk),

together with (adjoint) structure maps

θ̂α : E(α)!(ϕ!(X)n) → ϕ!(X)m

for each α : [m] → [n] being defined by

E(α)!(ϕ!(X)n) ϕ!(X)m

∐
β : [n]→[k] E(α)!E(β)!(Xk)

∐
γ : [m]→[l] E(γ)!(Xl)

∐
β : [n]→[k] E(βα)!(Xk)

�

θ̂α

�

where the morphism on the lower right sends the summand for β to the one for
γ = βα via the identity map.

We will refer to the model structure of the following proposition as the projective
model structure on Γ(E•).
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Proposition 13.13 The category Γ(E•) carries a model structure for which∏
n≥0 En Γ(E•)

ϕ!

ϕ∗

is a Quillen adjunction with the property that ϕ∗ detects fibrations and weak equiv-
alences. This model structure is left proper whenever each En is.

Proof The product
∏

n≥0 E carries an evident model structure for which the classes
of fibrations, cofibrations, and weak equivalences are defined coordinatewise. The
projective model structure on Γ(E•) is now obtained by transfer along the adjoint
pair ϕ! and ϕ∗. The conditions for transfer are easily verified, using that ϕ∗ preserves
colimits. �

We now wish to refine this projective model structure on Γ(E•) and describe
a Quillen equivalent ‘Reedy model structure’. To this end, we introduce notation
analogous to the one in Section 10.1 and define for an object (X, θ) in Γ(E•) and
n ≥ 0 the objects X(∂∆[n]) and deg(Xn) in En by

X(∂∆[n]) = lim
←−−

β : [k]→[n]
E(β)∗(Xk),

deg(X)n = lim
−−→

σ : [n]→[k]
E(σ)!(Xk),

where β and σ range over proper injections and surjections in ∆, respectively. Note
that the structure maps θβ and θσ of (X, θ) together induce maps

deg(X)n → Xn → X(∂∆[n])

in En. We then define a morphism (X, θ) → (Y, τ) in Γ(E•) to be a Reedy fibration
if for each n ≥ 0 the map

Xn → X(∂∆[n]) ×Y(∂∆[n]) Yn

is a fibration in En. Similarly, it is a Reedy cofibration if for each n ≥ 0 the map

deg(Y )n ∪deg(X)n Xn → Yn

is a cofibration in En.

Theorem 13.14 The Reedy fibrations and cofibrations defined above are part of
a model structure on the category Γ(E•) in which the weak equivalences are the
same as for the projective model structure. The identity functor is a left Quillen
equivalence from the projective model structure of Proposition 13.13 to this Reedy
model structure. Finally, the Reedy model structure is left proper whenever each En

is.

A first step towards the proof of the theorem is the following fact, which is
analogous to Proposition 10.11.
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Lemma 13.15 A map X → Y in Γ(E•) is both a Reedy fibration and a weak equiva-
lence if and only if for each n ≥ 0 the map

Xn → X(∂∆[n]) ×Y(∂∆[n]) Yn

is a trivial fibration in En.

Proof For n ≥ 0 let us write Mn for the full subcategory of ∆/[n] whose objects are
the monomorphisms [k] → [n] in ∆. Then Mn is a Reedy category in which every
morphism is positive. An object (X, θ) in Γ(E•) yields a functor

X (n) : Mop
n → En

for each n, defined on objects α : [k] → [n] by

X (n)(α) = E(α)∗(Xk)

and on morphisms γ as in

[k] [l]

[n]

γ

α β

by the map X (n)(β) → X (n)(α) given by the commutative diagram

X (n)(β) E(β)∗(Xl)

E(β)∗E(γ)∗(Xk)

X (n)(α) E(α)∗(Xk).

E(β)∗(θγ )

�

If X → Y is a Reedy fibration in Γ(E•) then for each n ≥ 0 the map X (n) → Y (n) is a
Reedy fibration in EMop

n
n . This puts us in a position to use the analogue of the lemma

for ordinary Reedy model structures, namely Proposition 10.11. First of all, if

Xn → X(∂∆[n]) ×Y(∂∆[n]) Yn

is a trivial fibration for each n ≥ 0, then X (n) → Y (n) is a trivial Reedy fibration in
the Reedy model structure with respect to Mn, hence a weak equivalence there. So
X (n)(α) → Y (n)(α) is a weak equivalence for each n and each α : [k] → [n] and in
particular so is Xn → Yn itself. This proves one direction of the lemma.
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For the converse, suppose Xn → Yn is a weak equivalence for each n ≥ 0. Since
X (n) → Y (n) is a Reedy fibration in E

Mop
n

n , it is also a projective fibration. In other
words, X (n)(α) → Y (n)(α) is a fibration for each α, or E(α)∗(Xk) → E(α)∗(Yk) is a
fibration for each n ≥ 0 and each α : [k] → [n]. In particular so is Xn → Yn, so that
it is a trivial fibration for each n ≥ 0. But trivial fibrations are preserved by right
Quillen functors, so E(α)∗(Xk) → E(α)∗(Yk) is a trivial fibration for each α as above.
So X (n) → Y (n) is a weak equivalence in the Reedy model structure with respect to
Mn, so that

X (n)(α) → X (n)(∂α) ×Y (n)(∂α) Y
(n)(α)

is a trivial fibration for each α. For α = id this precisely means that

Xn → X(∂∆[n]) ×Y(∂∆[n]) Yn

is a trivial fibration. �

As a next preparation for the proof of the theorem, we consider two classes of
morphisms in Γ(E•), which are intended to be the generating cofibrations and trivial
cofibrations. For an object A in En, define two objects in Γ(E•), heuristically denoted
A � ∆[n] and A � ∂∆[n], by setting

(A � ∆[n])k =
∐

β∈∆[n]k

E(β)!(A),

(A � ∂∆[n])k =
∐

β∈∂∆[n]k

E(β)!(A).

In other words, in the first sum β ranges over all maps [k] → [n], and in the second
sum only over the nonsurjective ones. For α : [k] → [l], the adjoint structure map

θ̂α : E(α)!((A � ∆[n])l) → (A � ∆[n])k

sends the summand E(α)!E(β)!(A) of E(α)!(A � ∆[n])l for β : [l] → [n] to the
summand of (A � ∆[n])k for the composition βα : [l] → [n] via the isomorphism
E(α)!E(β)! � E(βα)!. These structure maps evidently restrict to structure maps

θ̂α : E(α)!((A � ∂∆[n])l) → (A � ∂∆[n])k

and we obtain a morphism

A � ∂∆[n] → A � ∆[n]

in Γ(E•).
Next, let I be the saturation in Γ(E•) of the set of morphisms of the form

A � ∆[n] ∪A�∂∆[n] B � ∂∆[n] → B � ∆[n],
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where A → B ranges over generating cofibrations in En for all n ≥ 0, and let J be
defined similarly but with A→ B ranging over generating trivial cofibrations.

Lemma 13.16 For a (trivial) cofibration A → B in En the map defined above is a
(trivial) Reedy cofibration in Γ(E•).

Proof In simplicial degree k, we can write deg(B � ∆[n])k as

deg(B � ∆[n])k =
∐
σ

∐
β

E(σ)!E(β)!(B),

where σ ranges over all proper surjections σ : [k] → [l] and β over all maps
[l] → [n] in ∆. Since any α : [k] → [n] factors uniquely as

[k]
σ
−→ [l]

β
−→ [n]

where σ is a proper surjection if and only if α is not a monomorphism, we find that

deg(B � ∆[n])k =
∐

α : [k]→[n]
E(α)!(B),

with α ranging over non-injective maps. So for A→ B in En, the degree k part of

(A � ∆[n] ∪A�∂∆[n] B � ∂∆[n]) ∪ deg(B � ∆[n]) → B � ∆[n]

is the coproduct indexed by maps α : [k] → [n] of maps E(α)!B
∼
−→ E(α)!B if α is

not the identity, and A→ B if α is the identity on [n]. This shows that

A � ∆[n] ∪A�∂∆[n] B � ∂∆[n] → B � ∆[n]

is a Reedy cofibration if A→ B is a cofibration, and clearly a weak equivalence for
each k if A→ B is moreover a weak equivalence. �

Lemma 13.17 A map X → Y in Γ(E•) is a Reedy fibration (respectively a trivial
Reedy fibration) if and only if it has the right lifting property with respect to I

(respectively J).

Proof For an object X in Γ(E•), there are natural bijective correspondences between
maps A � ∆[n] → X in Γ(E•) and A→ Xn in En, and similarly for A � ∂∆[n] → X
and A→ X(∂∆[n]). From this it is clear that X → Y is a Reedy fibration in Γ(E•) if
and only if it has the right lifting property with respect to all the generating trivial
cofibrations of the form

A � ∆[n] ∪A�∂∆[n] B � ∂∆[n] → B � ∆[n]

where A→ B is a generating trivial cofibration in En. Using Lemma 13.15, a similar
statement holds for a trivial Reedy fibration. This proves the lemma. �
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Lemma 13.18 The classes of Reedy cofibrations and trivial Reedy cofibrations in
Γ(E•) are saturated. In particular, they contain I and J respectively.

Proof Dual to the objects A�∆[n] and A� ∂∆[n] defined above, we can define, for
each object A in En, two objects A[n] and Adeg[n] in Γ(E•) by

(A[n])k =
∏

β : [n]→[k]
E(β)∗(A),

(Adeg[n])k =
∏

β : [n]
+
−→[k]

E(β)∗(A),

with the obvious structure maps θ. Here the first product is over all maps β : [n] →
[k], the second product only over the non-identity maps β. Then for an object X
in Γ(E•) there are bijective correspondences between maps X → A[n] in Γ(E•) and
Xn → A in En. Similarly, maps X → Adeg[n] correspond to maps deg(X)n → A. So
X → Y is a Reedy cofibration if and only if for any trivial fibration B → A in En,
the map X → Y has the left lifting property with respect to

B[n] → A[n] ×Bdeg[n] Bdeg[n].

This shows that the class of Reedy cofibrations is saturated. In particular, by Lemma
13.16, it contains the class I. Since the saturation of the maps

A � ∆[n] ∪A�∂∆[n] B � ∂∆[n] → B � ∆[n]

where A→ B is a trivial cofibration is obviously contained in the weak equivalences,
the class J is contained in the trivial Reedy cofibrations. �

Based on the lemmas above, the proof of Theorem 13.14 is now straightforward:
Proof (of Theorem 13.14) We prove the existence of the model structure; the veri-
fication of the further claims in the theorem is completely straightforward and left to
the reader. As usual, axioms (M1–3) obviously hold. For the factorization axioms,
the small object argument gives for each morphism X → Y in Γ(E•) a factorization
into a morphism in I followed by a morphism having the right lifting property with
respect to I and a similar factorization for J. By Lemmas 13.17 and 13.18, these
are in particular a factorization into a Reedy cofibration followed by a trivial Reedy
fibration and by a trivial Reedy cofibration followed by a Reedy fibration. So it
remains to prove the lifting axiom. To this end, consider a commutative square

U X

V Y

where U → V is a Reedy cofibration and X → Y is a Reedy fibration. If X → Y is
also a weak equivalence, we can use Lemma 13.15 to find lifts Vn → Xn compatible
with the structure maps by induction on n. Indeed, having found such compatible
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lifts for all k < n yields a commutative square

Un ∪deg(U)n deg(V)n Xn

Vn X(∂∆[n]) ×Y(∂∆[n]) Yn,

in which a diagonal gives the required lift for n. This provides the inductive step.
If on the other hand U → V is a weak equivalence, we factor U → V as

U → W → V , where U → W is in J and W → V has the right lifting property
with respect to all maps in J. Then by two-out-of-three, the map W → V is also a
weak equivalence, hence a trivial fibration. Then by the first part of the lifting axiom
just proved, U → V is a retract of U → W . Moreover X → Y has the right lifting
property with respect to U → W by Lemma 13.17. Composing these two lifts (as in
the retract argument) provides the required lift V → X:

U X

W

V Y .

This completes the proof of the theorem. �

Remark 13.19 The argument above indeed shows that I and J are classes of gener-
ating cofibrations and trivial cofibrations, respectively.

We wish to emphasize a particular left Bousfield localization of Γ(E•). Let us
assume that each En is a left proper cofibrantly generated model category whose
cofibrations are monomorphisms, satisfying the conditions for the existence of lo-
calizations. Then the same is true for the Reedy model structure on Γ(E•) and in this
case we observe the following.

Proposition 13.20 Under the above assumptions, the category Γ(E•) carries amodel
structure in which the cofibrations are the Reedy cofibrations and the fibrant ob-
jects are the Reedy fibrant objects (X, θ) with the additional property that for each
α : [n] → [m], the map θα : Xm → E(α)∗(Xn) is a weak equivalence.

We denote the model category of the proposition by Γw(E•).

Proof By two-out-of-three for the weak equivalences, the condition on the Reedy
fibrant objects (X, θ) is equivalent to the condition that for each facemap ∂i : [n−1] →
[n], the corresponding face map

Xn → E(∂i)
∗(Xn−1)
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is a weak equivalence. This map is a fibration if X is Reedy fibrant and a trivial
fibration if and only if X has the right lifting property with respect to the maps of
the form

A � ∆[n] ∪A�∂i∆[n] B � ∂i∆[n] → B � ∆[n]

for each generating cofibration A→ B inEn. So taking the left Bousfield localization
with respect to these maps gives the desired result. �

The construction of the Reedy model structure is functorial in the simplicial
system of model categories E•, in the following sense. Define a Quillen pair

E• F•
ϕ!

ϕ∗

between simplicial systems to be a sequence of Quillen pairs

En Fn

(ϕn)!

ϕ∗n

which are compatible with the simplicial structure maps up to coherent natural
isomorphism. More precisely, as part of the structure of the Quillen pair (ϕ!, ϕ

∗),
we require for each α : [n] → [m] in ∆ a natural isomorphism between the two
compositions in the square

Em Fm

En Fn

(ϕm)!

E(α)! F(α)!

(ϕn)!

and these are required to be compatible with the isomorphisms forE andF associated
to each composition [n] α−→ [m]

β
−→ [l].

Proposition 13.21 A Quillen pair ϕ! : E• � F• : ϕ∗ induces a Quillen pair between
the Reedy model categories

Γ(ϕ)! : Γ(E•)� Γ(F•) : Γ(ϕ)∗.

The Quillen pair is compatible with the localizations introduced above and induces
a similar pair Γw(E•) � Γw(F•). Moreover, if each pair ((ϕn)!, ϕ∗n) is a Quillen
equivalence, then so is (Γ(ϕ)!, Γ(ϕ)∗).

Proof The functor Γ(ϕ)! is defined on an object of (X, θ) of Γ(E•) by

(Γ(ϕ)!(X, θ))n = (ϕn)!(Xn),

with structure maps defined by

F(α)!((ϕm)!(Xm)) � (ϕn)!E(α)!(Xm)
(ϕn)! θ̂α
−−−−−−→ (ϕn)!(Xn),
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and similarly for Γ(ϕ)∗. It is readily verified that this is indeed a Quillen pair for
the Reedy model structures. Moreover, Γ(ϕ)∗ clearly maps the fibrant objects of the
localization Γw(F•) to those of Γw(E•), hence restricts to the claimed Quillen pair
between localizations. �

13.3 Homotopy Invariance of the Covariant Model Structure

In this section we will apply the construction of the total model category Γ(E•) of
a simplicial system of model categories, as in the previous section, to the problem
of homotopy invariance of the covariant model structure. To be precise, we aim to
show that a complete weak equivalence of dendroidal Segal spaces A→ B induces
a Quillen equivalence between the covariant model structures on the slice categories
dSpaces/A and dSpaces/B (cf. Corollary 13.26 below).

Recall from Proposition 9.62 that if A → B is an operadic equivalence of ∞-
operads, then the induced Quillen pair

(dSets/A)cov (dSets/B)cov

is a Quillen equivalence. Exactly the same argument applies to dendroidal spaces
and yields the following proposition. We remark right away that we will prove a
stronger version of this result in Corollary 13.26 below.

Proposition 13.22 Let A→ B be a map between dendroidal Segal spaces. If A→ B
is a weak equivalence in the model category dSpacesRS (i.e., if A(T) → B(T) is a
weak homotopy equivalence for each tree T), then the induced Quillen pair

(dSpacesR/A)cov (dSpacesR/B)cov

is a Quillen equivalence.

Proof By Brown’s lemma it suffices to show this for a trivial fibration f : A → B
between dendroidal Segal spaces. Such an f induces a Quillen equivalence

dSpacesRS/A dSpacesRS/B

by Example 8.47(i). To see that this pair also induces a Quillen equivalence between
the covariant localizations, note that the left adjoint sends localizing morphisms
`[T] → T over A to localizing maps over B. Conversely, any localizing morphism

`[T] T

B
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over B is in the image of the functor dSpacesRS/A → dSpacesRS/B because any
map T → B may be lifted along the trivial fibration A→ B. �

To prove a sharper result, we will now identify the model category
(dSpacesR/B)cov with a model category of the form Γw(E•) discussed in the pre-
vious section. This identification will explain how the covariant model structure on
dSpaces/B is related to the different covariant model structures on the categories
dSets/Bn for n ≥ 0.

Theorem 13.23 Under the identification of the category dSpaces/B with
Γ(dSets/B•) (cf. Example 13.12), the model structures Γw((dSets/B•)cov) and
(dSpacesR/B)cov coincide.

Proof Let us denote the adjoint functors between the categories involved by

Γ(dSets/B•) dSpaces/B.
ψ!

ψ∗

This adjoint pair is an equivalence of categories. The functor ψ∗ sends an object
X → B to the pair (X•, θ) of objects Xn → Bn in dSets/Bn for n ≥ 0 and structure
maps

θα : Xn → Xm ×Bm Bn

for α : [m] → [n] given by the simplicial structure of X and of B.
First of all, it is straightforward to verify that under the equivalence ψ! the cofi-

brations in the Reedy model structure on Γ(dSets/B•) associated to the operadic
or covariant model structures on the categories dSets/Bn correspond to the Reedy
cofibrations on dSpaces/B. It thus suffices to prove that this equivalence identifies
the fibrant objects of one model category with those of the other. The following
arguments are very similar to those proving Lemma 12.17 and the reader might like
to compare them.

The fibrant objects in (dSpacesR/B)cov are the Reedy left fibrations X → B. By
Lemma 13.5, these are the maps of dendroidal spaces p : X → B having the right
lifting property with respect to the following two kinds of morphisms:

(a) The maps
T � Λk[n] ∪ ∂T � ∆[n] → T � ∆[n]

for any tree T and 0 ≤ k ≤ n.
(b) The maps

T � ∂∆[n] ∪ Λx[T] � ∆[n] → T � ∆[n]

for any tree T and any inner or leaf horn Λx[T] of T .

Indeed, (a) encodes the Reedy condition, whereas the right lifting property with
respect to themaps of (b) thenmakes p a left fibration. Condition (b) can equivalently
be stated as saying that for any monomorphism M → N of simplicial sets, the
resulting map

X(N) → X(M) ×B(M) B(N)
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is a left fibration of dendroidal sets. In particular, if (b) is satisfied, then the maps

Xn → Bn and X(∂∆[n]) ×B(∂∆[n]) Bn → Bn

are left fibrations, the second one being a pullback of the left fibration X(∂∆[n]) →
B(∂∆[n]). Moreover, Xn → X(∂∆[n]) ×B(∂∆[n]) Bn is also a left fibration and hence
a fibration in the covariant model structure on the category dSets/Bn by Theorem
9.59. Equivalently, ψ∗p is a Reedy fibrant object of Γ((dSets/B•)cov) in the sense of
Theorem 13.14.

Conversely, if ψ∗p is Reedy fibrant, then the maps

Xn → X(∂∆[n]) ×B(∂∆[n]) Bn

are covariant fibrations over Bn (in particular, left fibrations) and therefore p has the
right lifting property with respect to the maps (b). For the remainder of this proof,
assume that p has this lifting property.

It remains to show that p additionally has the right lifting property with respect
to the maps of (a) if and only if ψ∗p is a local object of Γw((dSets/B•)cov), i.e., if
and only if for each α : [m] → [n], the associated map

θα : Xn → Xm ×Bm Bn

is a weak equivalence. By two-out-of-three, it suffices to consider monomorphisms
α, in which case the map above is a left fibration by the Reedy condition. Now
consider the class A of monomorphisms M → N of simplicial sets for which the
map

X(N) → X(M) ×B(M) B(N)

is a trivial fibration. Clearly,A is saturated and closed under two-out-of-three among
monomorphisms. If p has the right lifting property with respect to the maps of (a),
then A contains all anodyne maps between simplicial sets, so in particular each θα
is a weak equivalence. Conversely, if the maps θα are weak equivalences for the
face inclusion α = δi : [n − 1] → [n], then A must contain all anodyne maps. In
particular, p will then have the right lifting property with respect to the maps of (a).
This completes the proof. �

Corollary 13.24 Let
X Y

B

be a map of dendroidal spaces over B. If Xn → Yn is a covariant equivalence over
Bn for every n ≥ 0, then X → Y is a covariant equivalence over B.
Proof The assumption clearly implies that ψ∗(X → Y ) is a weak equivalence in
the Reedy model structure on Γ((dSets/B•)cov). Hence it is also a weak equivalence
in the localization Γw((dSets/B•)cov) and thus a covariant equivalence over B by
Theorem 13.23. �
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Let us return to the invariance problem. In Proposition 13.22 our hypothesis was
that A→ B is a map of dendroidal Segal spaces for which A(T) → B(T) is a weak
homotopy equivalence of simplicial sets for every treeT . The identification of model
categories of Theorem 13.23 now yields a similar result if A→ B has the property
that An → Bn is an operadic equivalence of dendroidal sets for each n ≥ 0:

Proposition 13.25 Let A→ B be a map between dendroidal Segal spaces. If An →

Bn is an operadic equivalence of dendroidal sets for each n ≥ 0, then the induced
Quillen pair

(dSpacesR/A)cov (dSpacesR/B)cov

is a Quillen equivalence.

Proof The dendroidal sets An and Bn are∞-operads, so as already remarked at the
beginning of this section, Proposition 9.62 shows that the Quillen pairs dSets/An �
dSets/Bn are Quillen equivalences for the covariant model structures. It follows
from Proposition 13.21 that the Quillen pair

Γ((dSets/A•)cov) Γ((dSets/B•)cov)

is a Quillen equivalence as well. Moreover, this Quillen equivalence restricts to
one between the localizations Γw((dSets/A•)cov) and Γw((dSets/B•)cov), so that the
identification of Theorem 13.23 yields the result. �

As a consequence, we obtain the following sharpening of Proposition 13.22.

Corollary 13.26 Let A → B be a complete weak equivalence between dendroidal
Segal spaces. Then the induced Quillen pair

(dSpacesR/A)cov (dSpacesR/B)cov

is a Quillen equivalence.

Proof If A and B are themselves complete dendroidal Segal spaces, then the corol-
lary is a special case of Proposition 13.22 (and also of Proposition 13.25, for that
matter). Thus it suffices to prove that each Reedy fibrant dendroidal space A admits
a completion Â so that An → Ân is an operadic equivalence for every n ≥ 0. This
follows from Corollary 12.21. �

Remark 13.27 Using Proposition 13.9, we can also deduce a projective version of
the previous corollary. To be precise, if A→ B is a morphism of fibrant objects in
dSpacesPS which is a complete weak equivalence (i.e., is a weak equivalence in the
localization dSpacesPSC), then the Quillen pair

(dSpacesP/A)cov (dSpacesP/B)cov

is a Quillen equivalence.
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To conclude this section we observe a slight further sharpening of the previous
remark. Indeed, it is not necessary to require A and B to be projectively fibrant:

Corollary 13.28 Suppose A→ B is a morphism of dendroidal spaces, both of which
satisfy the Segal property. If this morphism is a complete weak equivalence, then the
Quillen pair

(dSpacesP/A)cov (dSpacesP/B)cov

is a Quillen equivalence.

Proof This corollary follows from Remark 13.27 if we can show that for any pro-
jective weak equivalence of dendroidal spaces f : A→ A′ the adjunction

(dSpacesP/A)cov (dSpacesP/A′)cov
f!

f ∗

is a Quillen equivalence. For the projective model structures dSpacesP/A and
dSpacesP/A′ this follows from Example 8.47(j) and the fact that dSpacesP is a
right proper model category. To see that this equivalence respects the covariant lo-
calization, it suffices to show that the derived functors R f ∗ and L f! preserve local
objects. This is evident for f ∗, since its left adjoint f! sends localizing morphisms
`[T] → T to localizing morphisms. To see that f! preserves local objects we use the
criterion of Lemma 13.3; indeed, that lemma makes it clear that a map X → A is a
left quasifibration if and only if the same is true for the composite X → A′. �

13.4 The Homotopy Theory of Algebras

Let P be a simplicial operad. The main result of this chapter will come in the
next section, when we establish a Quillen equivalence between the category of P-
algebras and the category dSpaces/NP, equippedwith the covariant model structure.
To prepare for this result we need a suitable model structure on the category of P-
algebras, which is what we establish in the present section. We also include several
important examples, such as the category of simplicial categories (or operads) with
fixed set of objects (or colours), which will be useful later.

Write C for the set of colours of P. Recall that a P-algebra is a collection of
simplicial sets {Ac}c∈C equipped with maps of the form

P(c1, . . . , cn; c) × Ac1 × · · · × Acn → Ac

satisfying the usual axioms for associativity, symmetry, and unitality.

Theorem 13.29 The category AlgP of P-algebras carries a cofibrantly generated
model structure in which a morphism f : A → B is a weak equivalence (resp. a
fibration) if the morphism fc : Ac → Bc is a weak homotopy equivalence (resp. a
Kan fibration) of simplicial sets for every c ∈ C. This model structure is right proper.
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Remark 13.30 We will refer to the model structure of the theorem as the projective
model structure. In the special case where P has only unary operations (so can
be thought of as a simplicial category), the category of P-algebras is precisely the
category of simplicial functorsP→ sSets. Themodel structure of the theorem is then
the projective model structure already discussed in the case of ordinary categories
in Example 7.46.

Note that once the model structure of Theorem 13.29 is established, the fact that it
is right proper follows immediately from the corresponding fact for the Kan–Quillen
model structure on the category of simplicial sets. Let us therefore focus on proving
the existence of the projective model structure. As before, write U for the forgetful
functor

AlgP →
∏
c∈C

sSets : A 7→ {Ac}c∈C

and FreeP for its left adjoint, forming the free P-algebra on a C-indexed collection
of simplicial sets. Then the model structure of Theorem 13.29 is defined in such
a way that f is a weak equivalence or fibration if and only if U( f ) is such. In the
terminology of Section 7.7, the projective model structure on AlgP is transferred
along U. We will call a morphism f of P-algebras a projective trivial cofibration
if it lies in the saturation of the class of morphisms of the form FreeP(i), where i
ranges over the trivial cofibrations of the category

∏
c∈C sSets. To prove Theorem

13.29 it suffices to check that the conditions of Theorem 7.44 are satisfied; in other
words, it will suffice to verify that every projective trivial cofibration is in particular
a weak equivalence in AlgP. Observe that (by construction) every projective trivial
cofibration has the left lifting property with respect to fibrations in AlgP, as defined
in Theorem 13.29. The proof of that theorem is complete once we have settled the
following:

Lemma 13.31 A projective trivial cofibration i : A → B of P-algebras is a weak
equivalence.

Proof The proof we present here is often referred to as ‘Quillen’s path object
argument’. All it requires is the existence of a product-preserving fibrant replacement
of simplicial sets, meaning a functor

R : sSets→ sSets

and a natural map αX : X → R(X) satisfying the following:

(1) For any X the simplicial set R(X) is a Kan complex.
(2) For any X the map αX is a weak homotopy equivalence.
(3) The functor E preserves finite products.

One example of such an R is the composite Sing ◦ | − |, relying on the fact that
geometric realization preserves products, and α the unit map. (Readers familiar with
Kan’s Ex∞-functor will realize that this is another such functor.)

The fact that R preserves products implies that for any P-algebra A the collection
R(A) is naturally a P-algebra again, using the structure maps
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P(c1, . . . , cn; c) × R(Ac1 )× · · · × R(Acn )

α
−→ R(P(c1, . . . , cn; c)) × R(Ac1 ) × · · · × R(Acn )

� R(P(c1, . . . , cn; c) × Ac1 × · · · × Acn )

→ R(Ac).

Write R(B)∆[1] for the ‘path space’ of the algebra R(B): it is defined by

(R(B)∆[1])c := (R(B)c)∆[1]

with evident structure maps inherited from R(B). Observe that the simplicial sets
(R(B)∆[1])c are still Kan complexes. Evaluation at 0 defines a trivial fibration

ev0 : R(B)∆[1] → R(B)

and, pulling back along the map R(A)
R(i)
−−−→ R(B), a trivial fibration

R(A) ×R(B) R(B)∆[1] → R(A).

This fibration admits a section using the ‘constant path’ map R(B) → R(B)∆[1],
formally defined by restriction along the map ∆[1] → ∆[0]. This section is then a
weak equivalence and defines the upper horizontal map in the following commutative
square:

A R(A) ×R(B) R(B)∆[1]

B R(B).

i

∼

ev1

α

The vertical map on the right is given by evaluation at 1: in detail, it is the composite

R(A) ×R(B) R(B)∆[1] → R(B)∆[1]
ev1
−−→ R(B).

Alternatively, this map can be factored as

R(A) ×R(B) R(B)∆[1] → R(A) ×R(B) R(B)∂∆[1] � R(A) × R(B) → R(B).

The first morphism is the pullback of the fibration R(B)∆[1] → R(B)∂∆[1] and hence
itself a fibration; the last morphism is a fibration because R(A)c is a Kan complex
for any c ∈ C. It follows that the right vertical morphism in the square above is
a fibration. Projective trivial cofibrations have the left lifting property with respect
to fibrations, so a lift in the square exists. Since the horizontal maps in the square
are weak equivalences, the two-out-of-six-property of weak homotopy equivalences
(cf. Proposition 7.35) implies that all maps in the square are weak equivalences. In
particular this proves that i is a weak equivalence, as desired. �



13.4 The Homotopy Theory of Algebras 547

Example 13.32 (a) Let S be a set and consider the category sOpS of S-coloured
simplicial operads and morphisms between them that are the identity on colours.
This category sOpS is itself the category of simplicial algebras for a coloured operad
OS (cf. Example 1.22) and thus admits a projective model structure as in Theorem
13.29. Let us briefly recall this operad OS and describe the weak equivalences and
fibrations of sOpS explicitly. The set of colours of OS can be taken to be the set
of S-coloured corollas (cf. Section 1.4), i.e., the set of corollas C equipped with a
labelling E(C) → S of their edges by elements of S. An operation from a collection
C1, . . ., Ck of S-coloured corollas to a further S-coloured corolla C then consists of
a tree T with k vertices v1, . . ., vk , equipped with a labelling of the edges of T by
elements of S, with the following extra data:

• An isomorphism of S-coloured corollas Cvi � Ci for each 1 ≤ i ≤ k.
• An isomorphism of the S-coloured corolla C with the S-coloured corolla obtained
from T by contracting all of its inner edges.

The tree T should be thought of as representing a way of composing k operations
(represented by the coloured corollas Ci) into a single operation (represented by the
coloured corolla C). Composition of operations in OS is defined by grafting such
S-coloured trees. One verifies that these data indeed define a coloured operad OS

and that its algebras are precisely (coordinate-free) S-coloured operads as defined in
Section 1.4.

Now considering the projective model structure on sOpS � AlgOS
, we see that

a morphism ϕ : P → Q of S-coloured simplicial operads is a weak equivalence
(resp. a fibration) precisely if the corresponding morphism of underlying S-coloured
collections is a weak equivalence (resp. a fibration). In other words, ϕ is a weak
equivalence (resp. a fibration) if and only if for every sequence of colours c1, . . . , cn, c,
the map

ϕc1,...,cn,c : P(c1, . . . , cn; c) → Q(c1, . . . , cn; c)

is a weak homotopy equivalence (resp. a Kan fibration) of simplicial sets.
(b) The previous example can be specialized to the category sCatS of simplicial

categories with set of objects S and functors between them that are the identity on
objects. To be precise, there is an operad PS with set of colours S × S, and a unique
operation (

(c1, d1), . . . , (ck, dk)
)
→ (c1, dk)

whenever di = ci+1 for every 1 ≤ i ≤ k − 1. The category of simplicial PS-algebras
is easily identified with sCatS , so that the latter admits a projective model structure
by Theorem 13.29. A functor ϕ : C→ D is a weak equivalence (resp. a fibration) in
this model structure if and only if for every pair of objects (c, d), the induced map

ϕc,d : C(c, d) → D(c, d)

is a weak homotopy equivalence (resp. a Kan fibration) of simplicial sets.
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We conclude this section with a discussion of cofibrant objects in the category of
P-algebras; a convenient characterization of such will be useful later. For simplicity
(and because it covers all the examples we will need), take P to be an operad in
Sets. By the construction of the projective model structure via transfer, a family of
generating (trivial) cofibrations in AlgP can be obtained by applying the left adjoint
functor FreeP to the generating (trivial) cofibrations in the category

∏
S sSets. Let

us make this explicit. For c ∈ S and a simplicial set A, write c ⊗ A for the S-indexed
collection that takes the value A at c and � elsewhere. Then the morphisms

FreeP(c ⊗ (∂∆[n] → ∆[n])) and FreeP(c ⊗ (Λk[n] → ∆[n]))

for c ∈ C and 0 ≤ k ≤ n form a set of generating cofibrations (resp. trivial
cofibrations) for the projective model structure on AlgP.

Definition 13.33 A simplicial P-algebra A is s-free if for each n there exists a
collection of elements Gn in the algebra An such that the following hold:

(1) The P-algebra An is free on Gn, i.e., the canonical map FreeP(Gn) → An is an
isomorphism.

(2) For any surjection α : [n] → [m] in ∆, we have α∗(Gm) ⊆ Gn. In words, a
degeneracy of a generator is another generator.

Clearly any s-free algebra A can be built from the initial P-algebra by a compo-
sition of pushouts of morphisms of the kind FreeP(c ⊗ (∂∆[n] → ∆[n])), one for
every element of Gn that is ‘non-degenerate’, meaning not in the image of some
α∗ : Gm → Gn with m < n. It follows that s-free simplicial P-algebras are cofibrant.
Conversely, observe that anything built from the initial P-algebra by pushouts along
FreeP(c ⊗ (∂∆[n] → ∆[n])) is in particular s-free.

Lemma 13.34 A simplicial P-algebra A is cofibrant if and only if it is a retract of
an s-free algebra.

Remark 13.35 If A is s-free, then in particular it is ‘degreewise free’, in the sense
that An is a free P-algebra. Thus, any cofibrant P-algebra is a retract of a degreewise
free algebra.

Proof The ‘if’ direction is clear from the discussion above the lemma. For the
converse, write 0 for the initial P-algebra (which is just the collection of nullary
operations {P(−; c)}c∈S) and suppose A is cofibrant. We may factor the morphism
i : 0 → A as a composition of j : 0 → B and p : B → A, with j a composition of
pushouts of morphisms of generating cofibrations FreeP(c ⊗ (∂∆[n] → ∆[n])) and
p a morphism with the right lifting property with respect to those. Then B is s-free
and p is a trivial fibration. Lifting in the square

0 B

A A

i

j

∼p
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shows that A is a retract of B. �

Example 13.36 (a) Consider a category C and the associated category sSetsCop
of

simplicial presheaves. Interpreting Cop as an operad with only unary operations,
the free algebra on an object c is precisely the representable functor C(−, c). Thus,
Lemma 13.34 in particular implies that any projectively cofibrant simplicial presheaf
on C is a retract of a presheaf that is degreewise a coproduct of representables.
(Observe that the resolution in Proposition 10.30 thus provides an explicit cofibrant
replacement of simplicial presheaves.)

(b) Consider the operad PS of Example 13.32(b) for which the algebras are
precisely categories with set of objects S. The set of colours of PS is S × S. A
collection of sets {Ac,d} indexed by S × S is precisely a directed graph with set
of vertices S, with the elements of Ac,d representing edges from c to d. The free
PS-algebra on A is then the free category on that directed graph. Lemma 13.34
characterizes the cofibrant simplicial categories; in particular, it implies that any
cofibrant simplicial category is a retract of a simplicial category C with the property
that for every n the category Cn is free on a directed graph.

13.5 Algebras and Left Fibrations

The goal of this section is to establish the promised Quillen equivalence between
the covariant model structure on the category dSpaces/NP and the projective model
structure on the category of simplicial P-algebras, for P a simplicial operad. We
will do this in Theorem 13.37. At the end of this section we include some first
consequences, namely the facts that the absolute covariant model structure on dSets
is a ‘model’ for the homotopy theory of E∞-spaces and the Picard model structure
‘models’ the homotopy theory of infinite loop spaces. Many more results, such as
the ‘straightening-unstraightening equivalence’ for left fibrations over∞-categories,
can be deduced from Theorem 13.37. However, we postpone a discussion of these
to Section 14.8, when we have a better grasp of the adjoint pair (w!,w

∗) relating
dendroidal sets and simplicial operads.

Let P be an operad in Sets. Recall from Section 9.5 that the nerve construction
for algebras defines an adjoint pair

dSets/NP AlgP.
FP

N (P,−)

Here the right adjoint sends a P-algebra A in Sets to the left fibration of dendroidal
sets N(P, A) → NP. A T-dendrex of N(P, A) consists of a map ξ : Ω[T] → NP
together with a labelling of each leaf l of T by an element of the set Aξ(l). The left
adjoint FP is characterized by the fact that it sends a representable ξ : Ω[T] → NP
to the free P-algebra generated by the leaves of T with their labelling by a colour of
P provided by ξ.
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Now ifP is a simplicial operad andAlgP the category ofP-algebras in the category
of simplicial sets, we may apply the construction of the previous paragraph levelwise
to obtain an adjunction

dSpaces/NP AlgP.
FP

N (P,−)

Here NP is now the dendroidal space defined by (NP)n = N(Pn). The aim of this
section is to establish the following:

Theorem 13.37 Suppose P is a Σ-free simplicial operad. Then the adjoint pair
(FP, N(P,−)) described above is a Quillen equivalence between the projective co-
variant model structure on the category dSpaces/NP and the projective model
structure on the category AlgP of simplicial P-algebras.

The proof of the theorem will be a straightforward combination of the following
three lemmas.

Lemma 13.38 The functor

N(P,−) : AlgP → (dSpacesP/NP)cov

is right Quillen.

Proof It is clear that N(P,−) sends fibrations and weak equivalences in AlgP to fi-
brations and weak equivalences in dSpacesP/NP, respectively. Thus, by Proposition
11.24, it suffices to verify that N(P,−) sends fibrant objects of AlgP to local objects
for the Bousfield localization (dSpacesP/NP)cov of dSpacesP . But this is precisely
the content of Example 13.4. �

Lemma 13.39 The functor

N(P,−) : AlgP → (dSpacesP/NP)cov

preserves and detects arbitrary weak equivalences.

Proof It is clear that a map f : A → B of P-algebras is a weak equivalence if and
only if N(P, f ) is a weak equivalence with respect to the projective model structure
on the category dSpaces/NP. Now pick a square in AlgP of the form

A B

Â B̂,

f

g

where the vertical maps are weak equivalences and Â and B̂ are fibrant. Then f is
a weak equivalence if and only if g is a weak equivalence; moreover, our previous
observation implies that this is the case if and only if N(P, g) is a weak equivalence
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with respect to the projective model structure. But since this is a map between
fibrant objects in the covariant model structure, this is the case if and only if N(P, g)
is a weak equivalence in the covariant model structure by virtue of Lemma 8.49.
Applying N(P,−) to the square above, we see that this is the case if and only if N(P, f )
is a weak equivalence in the covariant model structure, completing the proof. �

The previous two lemmas do not need the hypothesis that P is Σ-free. This is only
necessary for the following statement:

Lemma 13.40 Let X
p
−→ NP be a cofibrant object of dSpacesP/NP. Then the unit

X → N(P, FP(X)) is a covariant weak equivalence of dendroidal spaces over NP.

Proof By Example 13.36(a), any projectively cofibrant dendroidal space X is a re-
tract of a dendroidal spaceY with the property thatYn is a coproduct of representables
Ω[T] for every n. Thus it suffices to prove the lemma for suchY . Moreover, by Corol-
lary 13.24 it suffices to prove that for every n, the morphism Yn → N(Pn, FPn (Yn)) is
a covariant weak equivalence of dendroidal sets over NPn. This follows immediately
from Corollary 9.68. �

We are now in a position to prove the promised result:

Proof (of Theorem 13.37) Suppose X → NP is a cofibrant object of dSpacesP/NP
and choose a fibrant replacement FP(p) → A inAlgP. Then Lemmas 13.39 and 13.40
imply that the composite

X → N(P, FP(X)) → N(P, A)

is a weak equivalence. As a consequence, the derived unit id→ RN(P,−) ◦ LFP is
an isomorphism. By Lemma 13.39, the assertion that the derived counit

LFP ◦ RN(P,−) → id

is also an isomorphism can be verified after postcomposing with RN(P,−). But then
the assertion follows from the triangle identity

RN(P,−) RN(P,−) ◦ LFP ◦ RN(P,−)

RN(P,−)

�

and two-out-of-three. �

We conclude this section with some first consequences of Theorem 13.37.

Corollary 13.41 Let E∞ be any Σ-free simplicial operad equivalent to Com (such
as the Barratt–Eccles operad). Then there exist zigzags of Quillen equivalences
between the categories dSpaces, dSets (both equipped with the absolute covariant
model structure) and the category AlgE∞ of E∞-spaces equipped with the projective
model structure.
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Proof The comparison between the covariant model structures on the categories
of dendroidal spaces and dendroidal sets is a consequence of Proposition 13.7.
Theorem 13.37 provides a Quillen equivalence between the (projective) covariant
model structure on dSpaces/NE∞ and AlgE∞ . Finally, the forgetful functor

(dSpaces/NE∞)cov → dSpacescov

is the left adjoint in a Quillen equivalence by Remark 13.27. �

The fibrant objects of the absolute covariant model structure on the category of
dendroidal sets are precisely the left dendroidal Kan complexes. We saw in Section
9.6 that for a left dendroidal Kan complex X , the category τ(i∗X) is naturally
a symmetric monoidal groupoid. In particular, the set of connected components
π0(i∗X) inherits the structure of a commutative monoid by identifying it with the set
of isomorphism classes of objects in τ(i∗X). In Section 9.7 we introduced the Picard
model structure on the category of dendroidal sets. It is the Bousfield localization
of the (absolute) covariant model structure characterized by the fact that its fibrant
objects are the dendroidal Kan complexes, i.e., those dendroidal sets having the
extension property with respect to all horn inclusions Λx[T] → T of trees. In
Proposition 9.86 we saw a convenient alternative description of these fibrant objects;
indeed, if X is already fibrant with respect to the covariant model structure (i.e., is
a dendroidal left Kan complex), then it is fibrant for the Picard model structure if
every object of τ(i∗X) admits an inverse with respect to the tensor product. In other
words, a dendroidal left Kan complex X is fibrant in the Picard model structure if
the monoid π0(i∗X) is in fact a group.

To state the following, recall that an E∞-spaceY is called grouplike if the commu-
tative monoid π0Y is a group. Write Alggp

E∞ for the full subcategory of the category
of E∞-spaces on the grouplike objects.

Corollary 13.42 The zigzag of Quillen equivalences of the previous corollary in-
duces an equivalence of homotopy categories

Ho(dSetsPicard) ' Ho(Alggp
E∞ ).

Proof The homotopy category Ho(dSetsPicard) can be identified with the full subcat-
egory of Ho(dSetscov) spanned by the dendroidal left Kan complexes X satisfying
the condition above, i.e., for which the commutative monoid π0(i∗X) is a group. For
a dendroidal space Z that is covariantly fibrant, the underlying bisimplicial set i∗Z is
homotopically constant in both simplicial directions: in the original simplicial direc-
tion by completeness (cf. Corollary 12.19) and in the other one by the fact that for a
linear tree T and its unique leaf l, the restriction Z(T) → Z(ηl) is a weak homotopy
equivalence. In particular, i∗Z0 and Z(η) are weakly equivalent as simplicial sets,
hence have the same set of connected components.

If Y is an E∞-space, then clearly π0Y is π0(N(E∞,Y )(η)). By the preceding
discussion, this agrees with i∗N(E∞,Y )0, which is the set of connected components
of the corresponding dendroidal set. This gives the identification of the subcategories
of ‘grouplike’ objects on both sides. �



13.5 Algebras and Left Fibrations 553

Remark 13.43 It is a classical result that the homotopy theory of grouplike E∞-
spaces is equivalent to that of connective spectra [112]. Thus the previous corollary
shows that the Picard model structure on the category of dendroidal sets provides
another model for the homotopy theory of connective spectra.

Historical Notes

While the covariant model structure on dendroidal sets goes back to [77], the covari-
ant model structure on dendroidal spaces was first studied in [23]. Both references
prove versions of the ‘homotopy invariance’ of the covariant model structure (The-
orem 13.26). Our proof of this result is new and uses the notion of totalization
of a simplicial system of model categories, reminiscent of the category of sheaves
on a simplicial space as described by Deligne [48]. The projective model structure
for algebras over a (coloured) simplicial operad is discussed in many places in the
literature. The case of simplicial algebras over an ordinary operad already follows
from Quillen’s work [123], but his arguments apply to the more general case as
well; this is made explicit by Rezk [128]. Model structures for algebras over oper-
ads in a differential graded context were studied by Hinich [83]; for algebras and
operads in more general model categories we refer to [16]. A comprehensive recent
account, including an extensive bibliography of references on the subject, is given
by Pavlov–Scholbach [121]. The relation between the model category of P-algebras
and the covariant model structure on the category of dendroidal spaces over NP
has many precursors; we will discuss the relation to the literature in more detail in
the historical notes of the next chapter, after we have proved corresponding results
about the covariant model structure on slice categories of dendroidal sets, rather than
spaces. The results of Section 13.5 first appeared in [23].
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Chapter 14
Simplicial Operads and ∞-Operads

In this final chapter we fulfil one of the main promises of this book, namely we
prove that the homotopy theory of ∞-operads is equivalent to that of simplicial (or
topological) operads. To prepare for this, Sections 14.1 and 14.2 establish some
rather classical material on the homotopy theory of simplicial categories, most of it
going back to the work of Dwyer and Kan. Then in Section 14.3 we establish a model
structure on the category of simplicial operads in which the weak equivalences are
the fully faithful and essentially surjective maps (in an appropriate interpretation
of those terms). When restricting to simplicial categories, thought of as simplicial
operads with only unary operations, this model structure specializes to the well-
known Bergner model structure.

In Section 14.5we establish the first form of an equivalence between the homotopy
theory of dendroidal spaces and that of simplicial operads. This requires us to work
with a model structure on the category of dendroidal spaces that is slightly different
from the ones we have considered before, which we establish in Section 14.4. Finally,
in Section 14.6, we deduce from these results that the homotopy-coherent nerve
functor w∗ provides a Quillen equivalence from the category of simplicial operads
to the category of dendroidal sets, equipped with the operadic model structure. As
a corollary, we reproduce the important result that the homotopy-coherent nerve
provides a Quillen equivalence from the category of simplicial categories to the
Joyal model structure on the category of simplicial sets.

Many applications of the theory of∞-operads concern operads with only a single
colour and therefore we devote Section 14.7 to this special case. Several arguments
and results simplify considerably there; in particular, the notion of completion can
be circumvented. As such, the reader only interested in the case of a single colour
could start reading this section immediately and refer back to others as needed. We
include an application of the theory of dendroidal spaces that has turned out to be
important in the literature, namely that the space of maps between simplicial operads
P and Q with a single colour can equivalently be computed as the mapping space
(with respect to the projective model structure) between the dendroidal spaces NP
and NQ, cf. Corollary 14.42.
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In the concluding Section 14.8we record some further consequences of our results
in this chapter and the previous one. In particular, we will see that for an∞-operad X ,
there is an equivalence of homotopy theories between the category of algebras for the
simplicial operad w!X and the covariant model structure on the category dSets/X .
This specializes to a version of Lurie’s ‘straightening-unstraightening’ equivalence
when X is a simplicial set.

14.1 Simplicial Categories with Fixed Objects

In this section we review some of the classical homotopy theory of simplicial cate-
gories. Fix a set O. We write sCatO for the category of (small) simplicial categories
with O as their set of objects and functors between them that are the identity on
objects. In Example 13.32(b) we observed that sCatO admits a model structure in
which a functor ϕ : C→ D is a weak equivalence (resp. a fibration) if

ϕx,y : C(x, y) → D(x, y)

is a weak homotopy equivalence (resp. a Kan fibration) of simplicial sets, for every
pair of objects x, y ∈ O. Let us fix some terminology for these classes of maps.

Definition 14.1 A functor ϕ : C→ D between simplicial categories (not necessarily
with fixed set of objects) is fully faithful if

ϕx,y : C(x, y) → D(ϕ(x), ϕ(y))

is a weak homotopy equivalence for each pair of objects x, y of C. We call ϕ a local
fibration if each ϕx,y is a Kan fibration.

Recall from Example 13.36(b) that a simplicial category C is cofibrant precisely
if it is a retract of an s-free simplicial category D, i.e., a simplicial category for
which each Dn is free on a set of arrows Gn and these generating sets can be chosen
so that α∗(Gm) ⊆ Gn for each surjective map α : [n] → [m] in ∆. For later use we
observe that the property of being cofibrant is preserved by ‘restriction of objects’.
To be precise, if f : M → O is an injective function between finite sets, then there
is a functor

f ∗ : sCatO → sCatM
sending a simplicial category with objects O to the full subcategory on the objects
M (regarding M as a subset of O via f ).

Lemma 14.2 For any injective function f as above, the restriction f ∗ preserves
cofibrant simplicial categories.

Proof By the characterization of cofibrant objects quoted above it suffices to check
this for s-free simplicial categories. Suppose C is the free category F(G) on some
directed graph G with vertices O. Then one can form a new graph f !G with vertices
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M and edges from m to m′ given by the finite strings

m→ o1 → · · · → on → m′

with n ≥ 0 and oi ∈ O − M . (Here the case n = 0 just refers to edges m → m′ in
G.) Then clearly f ∗C is free on the graph f !G. Applying this observation levelwise
to an s-free simplicial category with objects O, we see that f ∗ of it is another s-free
category. �

Recall the functor
π0 : sSets→ Sets

sending a simplicial set X to its set π0X of connected components. It is left adjoint
to the functor assigning to a set the corresponding discrete simplicial set. Explicitly,
π0X is the colimit over ∆op of X or (more efficiently) just the coequalizer of the
two maps d0, d1 : X1 → X0. Since the functor π0 preserves products, it defines a
corresponding functor

π0 : sCat→ Cat

from the category of simplicial categories to that of categories by applying π0 to
‘spaces of morphisms’. More precisely, any simplicial category C defines a category
π0C having the same set of objects as C and with

(π0C)(c, d) := π0(C(c, d)).

The remainder of this section will be devoted to the following result of Dwyer and
Kan. It can be paraphrased as saying that if all morphisms in a cofibrant simplicial
category C are invertible up to homotopy, then actually inverting them does not
affect the homotopy type of C. We write C[C−1] for the localization of C at all of
its morphisms: it is the simplicial category which in degree n is obtained from the
category Cn by formally inverting all of its morphisms.

Theorem 14.3 Let C be a cofibrant simplicial category for which π0C is a groupoid.
Then the localization functorC→ C[C−1] is fully faithful, hence a weak equivalence
of simplicial categories.

Remark 14.4 It is possible to establish a more general result, where one inverts only
a certain subset W of the morphisms in C under the weaker assumption that only the
morphisms in W go to isomorphisms in π0C. We will not need this added generality
here.

We prove the theorem at the end of this section, after establishing some prelimi-
nary lemmas. Recall that we may take the nerve of a simplicial category C to obtain
a bisimplicial set NC:

NCp,q = N(Cp)q .

For the duration of this section we denote the diagonal δ∗NC by BC and refer to it as
the classifying space of C. It follows immediately from the fundamental property of
bisimplicial sets (Corollary 10.27) that a fully faithful functor of simplicial categories
C→ D induces a weak homotopy equivalence of classifying spaces BC→ BD.
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Lemma 14.5 If C is a cofibrant simplicial category, then the localization C →
C[C−1] induces a weak homotopy equivalence of classifying spaces BC '

B(C[C−1]).

Proof By Corollary 10.27 it suffices to show that for each p, the map N(Cp) →

N(Cp[C−1
p ]) is a weak homotopy equivalence of simplicial sets. We will argue that

this works for any free category D, generated by some graph G. That graph may
equivalently be thought of as a simplicial set with vertices those of G and one non-
degenerate 1-simplex for every edge of G. Viewing G as a simplicial set in this way,
we have D = τ(G). There is an evident inclusion G → ND, which we claim to be
a weak homotopy equivalence. The lemma then follows from this. Indeed, a graph
has the homotopy type of a disjoint union of wedges of circles, and in particular
has vanishing higher homotopy groups πn for n > 1 (at an arbitrary basepoint).
It is well known (and rather easy to see) that for any category C, the localization
map NC → N(C[C−1]) gives an isomorphism on fundamental groupoids and that
moreover N(C[C−1]) has vanishing higher homotopy groups, being a disjoint union
of classifying spaces of discrete groups. In particular, if NC itself has vanishing
homotopy groups in dimensions n > 1, then the localizationmap is a weak homotopy
equivalence.

It remains to prove our claim. First observe that this is clear in the case where
G has no edges at all (so that G → ND is even an isomorphism). Then one proves
the general case by induction on the edges of G. Indeed, if H is built from G by
adjoining a single edge f , there are squares as follows, the right obtained from the
left by applying Nτ:

∂∆[1] G ∂∆[1] ND

∆[1] H, ∆[1] N(D[ f ]).

The one on the left is a pushout, whereas Proposition 5.25 states that on the right the
map from the pushout ∆[1] ∪∂∆[1] ND to N(D[ f ]) is inner anodyne, so in particular
a weak homotopy equivalence. The cube lemma and the inductive hypothesis on D
then show that H → Nτ(H) = N(D[ f ]) is a weak homotopy equivalence as well. �

Lemma 14.6 If C is a simplicial category for which π0C is a groupoid, then the
simplicial set C(c, d) is a model for the path space of BC from c to d, i.e., it is
naturally weakly equivalent to the homotopy pullback of the maps

∆[0] c
−→ BC d

←− ∆[0].

Proof Consider the simplicial functor

C(c,−) : C→ sSets : d 7→ C(c, d).

We may form its homotopy colimit (as in Section 10.6)
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hocolimC C(c,−) = δ∗(hocolimCp Cp(c,−))

and obtain a projection map

hocolim C(c,−) → BC.

Observe that its fibre over a vertex d ∈ BC is precisely the simplicial set C(c, d). On
the other hand, we claim that its homotopy fibre is the homotopy pullback described
in the lemma. To see this, we first observe that the inclusion of the ‘initial vertex’

idc : ∆[0] → hocolim C(c,−)

is a weak homotopy equivalence. Indeed, it can be obtained by taking the diagonal of
a map of bisimplicial sets which in degree p is the inclusion idc : ∆[0] → N(c/Cp).
Since idc is initial in c/Cp , the nerve of the latter category is weakly contractible.
We conclude that the homotopy fibre of hocolim C(c,−) → BC at d is equivalent to
the homotopy fibre at d of the map

∆[0] c
−→ BC

as desired.
It remains to argue that the fibre and homotopy fibre of themap hocolim C(c,−) →

BC agree up to weak homotopy equivalence. The assumption that π0C is a groupoid
implies that any morphism f : d → e in C0 induces a weak homotopy equiva-
lence f∗ : C(c, d) → C(c, e). Thus, the functor C(c,−) satisfies the hypothesis of
Proposition 10.36, concluding the proof. �

Proof (of Theorem 14.3) Suppose C is a cofibrant simplicial category with π0C is
a groupoid. We should argue that for any objects c and d of C, the map

C(c, d) → C[C−1](c, d)

is a weak homotopy equivalence of simplicial sets. By Lemma 14.6 it suffices to
show that the map of classifying spaces BC → B(C[C−1]) is a weak homotopy
equivalence, which is precisely the statement of Lemma 14.5. �

14.2 Equivalences in Simplicial Categories

In Corollary 5.52 we proved that an edge f : ∆[1] → X of an ∞-category X is an
equivalence if and only if f extends along the inclusion ∆[1] → J. In this section
we establish an analog of this fact for simplicial categories, which is one of the key
ingredients in establishing the Bergner model structure for simplicial categories (cf.
Corollary 14.13). We will use this analog in the next section to provide a model
structure on the category of simplicial operads. We begin by specifying the relevant
version of the ‘interval’ J.
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Definition 14.7 Let O = {0, 1}. A categorical interval is a simplicial category E
with objects O such that:

(a) E is cofibrant in sCatO,
(b) the category π0E is the free isomorphism (0 � 1), and
(c) the functor E → π0E is a local weak equivalence (so all mapping spaces in E

are weakly contractible).

A morphism f : c → d in a simplicial category C is called an equivalence if the
image of f in π0C is an isomorphism. Writing [1] for the ‘free morphism’ category
(0→ 1), the main result of this section can be formulated as follows.

Theorem 14.8 A morphism f : c → d in a simplicial category C is an equivalence
if and only if the corresponding functor [1] → C extends to a functor E→ C from
a categorical interval.

Proof Without loss of generality we may assume that the set of objects of C is O =
{0, 1}; indeed, we can pull back a general C along the map of objects {0, 1} → ob(C)
induced by f . Also, we may assume that π0C is a groupoid, simply by restricting
to those components of the mapping spaces C(c, d) corresponding to isomorphisms
in π0C and observing that f can only map into such components. Finally, we may
replaceC by a cofibrant simplicial category. Indeed, since the category [1] = (0→ 1)
is cofibrant in sCatO, the map f will factor through such a replacement.

Write I for the free isomorphism (0 � 1). Then the functor f : [1] → C gives a
functor I → C[C−1], which we may factor as a local trivial cofibration followed by
a local fibration:

I I f C[C−1].
∼

Then f factors through the pullback D in the following square:

D I f

C C[C−1].

The bottom arrow is fully faithful by Theorem 14.3; since sCatO is a right proper
model category, the top arrow is fully faithful as well. It follows that D satisfies
requirements (b) and (c) of Definition 14.7. Simply taking a cofibrant replacement
D̃→ D now provides a categorical interval through which f factors. �

In the next section we will have to construct a certain set of generating trivial
cofibrations using categorical intervals. For this purpose it will be useful to know
that one can bound the cardinality of the intervals E appearing in Theorem 14.8:

Proposition 14.9 In the statement of Theorem 14.8 the categorical interval E can
be arranged to be countable, meaning a simplicial category with countably many
morphisms in each simplicial degree.
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The proof of the proposition relies on the following observation:

Lemma 14.10 Let f : A → X be a map of simplicial sets with A countable and X
weakly contractible. Then there exists a factorization of f as in

A X

B

i

f

in which i is a monomorphism and B is a simplicial set that is both countable and
weakly contractible.

Proof This is essentially a special case of Lemma 8.14, or alternatively of our
arguments concerning the ‘countable approximation property’ in Section 11.5. Since
those arguments simplify considerably in this case, let us describe a direct proof here
for the reader’s convenience. Factor f as a monomorphism i : A→ Y followed by a
trivial fibration p : Y → X . Assumewe have a functorial anodynemap Z → E(Z) for
any simplicial set Z , such that E preserves monomorphisms and E(Z) is countable
whenever Z is countable. (Such an E can always be produced abstractly from the
small object argument as in Lemma 8.25, or one takes Kan’s Ex∞-functor.) Then in
particular we have the square

A E(A)

Y E(Y ).

∼

∼

Since E(Y ) is a contractible Kan complex there exists a homotopy

h : ∆[1] × E(Y ) → E(Y )

with h0 = idE(Y) and h1 a constant map. We will inductively define countable
simplicial subsets of Y , starting from B0 := i(A),

i(A) = B0 ⊆ B1 ⊆ B2 ⊆ · · · .

Assuming Bi has been defined, we construct Bi+1 in the following way. Consider
the simplicial subset C0 := E(Bi) of E(Y ). Inductively define Cj := h(∆[1] × Cj−1)
for all j ≥ 1. Then C∞ :=

⋃
j Cj is still countable and h restricts to a contracting

homotopy
h : ∆[1] × C∞ → C∞.

Now let Bi+1 be any countable simplicial subset of Y such that Bi+1 contains Bi and
E(Bi+1) contains C∞ (cf. Lemma 8.25). Note that the inclusion E(Bi) → E(Bi+1) is
nullhomotopic, since it factors through C∞. It follows that

⋃
i E(Bi) is contractible.

Therefore B :=
⋃

i Bi is weakly contractible (and still countable), proving the
lemma. �
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Proof (of Proposition 14.9) Suppose that E is a categorical interval. We will show
that the inclusion of objects O = {0, 1} → E can be factored as a cofibration O → D
followed by a fully faithful functor D→ E with D a countable categorical interval.
To do this, we inductively construct cofibrant countable simplicial categories D(n)
with functors as in the following diagram:

D(−1) := O D(0) D(1) D(2) · · ·

E.

As indicated in the diagram, we start our construction by setting D(−1) := O. Now
suppose n ≥ 0 and D(n−1) has been constructed. Let i, j ∈ O and consider the
corresponding mapping space Ai j = D(n−1)(i, j). Applying Lemma 14.10 to the map
Ai j → E(i, j) yields a factorization Ai j → Bi j → E(i, j) with Bi j countable and
weakly contractible. Now construct D(n) by forming the pushout∐

(i, j) C1[Ai j] D(n−1)

∐
(i, j) C1[Bi j] D(n).

Here C1[Ai j] denotes the simplicial category with objects i, j, and nonidentity
morphisms Ai j from i to j. Finally, define D := lim

−−→n
D(n). Then D is clearly cofibrant

and countable; it remains to show that its mapping spaces are weakly contractible.
But observe that for each n, the map

D(n−1)(i, j) → D(n)(i, j)

factors through the weakly contractible space Bi j by construction. Thus

D(i, j) = lim
−−→
n

D(n)(i, j)

is weakly contractible as well. �

We conclude this section with a useful observation on isofibrations of simplicial
categories. Recall that an isofibration of categories is a functor ϕ : C → D such
that for any object c of C and any isomorphism g : ϕ(c) → d in D, there exists an
isomorphism f : c→ d inCwith ϕ( f ) = g.Wewill say that a functor ϕ of simplicial
categories is an isofibration if π0ϕ is an isofibration between ordinary categories.

Proposition 14.11 A functor ϕ : C → D between simplicial categories is an isofi-
bration whenever it has the right lifting property with respect to the maps {0} → E,
where E ranges over the set of countable categorical intervals. The converse is also
true if ϕ is assumed to be a local fibration.
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Proof Suppose that ϕ has the stated lifting property. To see that it is an isofibration,
suppose that c is an object of C and g : ϕ(c) → d is an isomorphism in π0D. Then
Theorem 14.8 and Proposition 14.9 imply that g can be extended to a functor from a
countable categorical interval E to D. Lifting this to a functor E → C in particular
determines an isomorphism f in π0C with ϕ( f ) = g.

For the converse, assume that ϕ is an isofibration and a local fibration. Consider
a lifting problem of the form

{0} C

E D.

c

ϕ

The bottom horizontal arrow in particular gives an equivalence g : ϕ(c) → d in D.
By assumption there exists a morphism f : c→ d in C such that g and ϕ( f ) have the
same image in π0D. In other words, g and ϕ( f ) are in the same path component of the
simplicial set D(ϕ(c), d). Since C(c, d) → D(ϕ(c), d) is a Kan fibration, there must
then also exist a vertex f ′ ∈ C(c, d) with ϕ( f ′) = g. Thus we find a commutative
diagram

[1] C

E D

f ′

ϕ

and it suffices to show that there exists a lift in this square. Without loss of generality
we may assume that the sets of objects of C and D are O = {0, 1} and ϕ is the
identity on objects; indeed, if not, we can always pull back C and D to the set of
objects of E. Thus we may consider the square above as a lifting problem in sCatO.
Writing P for the pullback in the square, the resulting map [1] → P extends over
a categorical interval F by Theorem 14.8. Now observe that the functor F → E is
a weak equivalence (since both are categorical intervals) and factor it as a trivial
cofibration F → G followed by a local trivial fibration G → E. Lifting in the two
squares

F C [1] G

G D E E

∼ ϕ ∼k l

provides a functor kl : E→ C solving our previous lifting problem. �
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14.3 A Model Structure for Simplicial Operads

The aim of this section is to construct a model structure on the category sOp
of simplicial operads in which the weak equivalences are the fully faithful and
essentially surjective maps. Here a map ϕ : P → Q of simplicial operads is said to
be fully faithful if for every tuple of colours (c1, . . . , cn, d) of P, the map

P(c1, . . . , cn; d) → Q(ϕ(c1), . . . , ϕ(cn); ϕ(d))

is a weak homotopy equivalence of simplicial sets. The map ϕ is called essentially
surjective if the map π0ϕ is essentially surjective as a map between operads in sets.
By definition, this means that the corresponding functor between underlying cate-
gories (obtained by restricting π0P and π0Q to unary operations only) is essentially
surjective.

Before stating themain result of this sectionwe introduce somemore terminology.
In analogy with the case of simplicial categories from the preceding sections, we say
that a map ϕ : P→ Q of simplicial operads is a local fibration if each of the maps

P(c1, . . . , cn; d) → Q(ϕ(c1), . . . , ϕ(cn); ϕ(d))

is a Kan fibration of simplicial sets. We will say that ϕ is an isofibration if the
corresponding functor of underlying simplicial categories is an isofibration. Recall
that this means that for any object p of π0P and isomorphism g : ϕ(p) → q in π0Q,
there exists an isomorphism f in π0P with ϕ( f ) = g.

Theorem 14.12 There exists a model structure on the category sOp of simplicial
operads as follows:

(1) The weak equivalences are the fully faithful and essentially surjective maps of
simplicial operads.

(2) The fibrations are the maps of simplicial operads that are both local fibrations
and isofibrations.

The cofibrations are those maps having the left lifting property with respect to the
trivial fibrations.

The theorem in particular yields a model structure on the category sCat of
simplicial categories by regarding it as the slice category of sOp over the trivial
operad. This is known as the Bergner model structure:

Corollary 14.13 There exists a model structure on the category sCat of simplicial
categories in which the weak equivalences are the fully faithful and essentially
surjective functors and the fibrations are those functors that are both local fibrations
and isofibrations.
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For a simplicial set A and n ≥ 0 we write τ(Cn)[A] for the simplicial operad with
colours {0, 1, . . . , n} and

τ(Cn)[A](1, . . . , n; 0) = A

as its only nontrivial space of operations. This operad can be thought of as (τ applied
to) the corolla Cn with leaves 1, . . . , n, root 0, and unique vertex labelled by A. By
slight abuse of notation we will also write η for the trivial operad with one colour
and no non-identity operations; it would be more precise to write τ(η), but it should
always be clear whether we mean an operad or a dendroidal set.

To prove Theorem 14.12 we introduce two classes of maps. First, let C be the set
consisting of the following two kinds of morphisms:

(C1) The morphisms τ(Cm)[∂∆[n]] → τ(Cm)[∆[n]] for m, n ≥ 0.
(C2) The morphism � → η.

The elements of C will serve as generating cofibrations for the model structure of
Theorem 14.12. Secondly, writeA for the set consisting of the following morphisms:

(A1) The maps τ(Cm)[Λ
k[n]] → τ(Cm)[∆[n]] for n ≥ 1, m ≥ 0, and 0 ≤ k ≤ n.

(A2) All the maps η → E, where E ranges over the countable categorical intervals
(in the sense of Definition 14.7), thought of as simplicial operads with only
unary operations.

These will play the role of generating trivial cofibrations. Indeed, we have the
following characterizations:

Lemma 14.14 A map of simplicial operads is a fibration (resp. a fibration and a
weak equivalence) if and only if it has the right lifting property with respect to all
the maps in A (resp. all the maps in C).

Proof Let ϕ : P→ Q be a map of simplicial operads. Clearly ϕ is a local fibration if
and only if it has the right lifting property with respect to the maps (A1). Proposition
14.11 then implies that it is also an isofibration if and only if it has the right lifting
property with respect to (A2).

If ϕ has the right lifting property with respect to (C1) and (C2) then it is a
fully faithful local fibration and surjective on objects. But clearly any fully faithful
functor that is surjective on objects is an isofibration, so ϕ is a fibration and a weak
equivalence. Conversely, if ϕ is a fibration and a weak equivalence then in particular
it is a local trivial fibration, hence has the right lifting property with respect to (C1).
An essentially surjective isofibration is actually surjective on objects, so that ϕ also
has the right lifting property with respect to (C2). �

To prove Theorem 14.12 we will also need the following observation:

Lemma 14.15 Any morphism in the saturation of the setA is a weak equivalence of
simplicial operads.
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Proof Clearly it will suffice to show that any pushout of a map in (A1) or (A2) is a
weak equivalence of simplicial operads. For (A1) we can again apply the path object
argument used in the proof of Lemma 13.31. Indeed, any product-preserving fibrant
replacement E of simplicial sets allows us to construct a natural map P → EP,
for any simplicial operad P, which is a weak equivalence and so that EP is locally
fibrant, meaning all of the simplicial sets EP(c1, . . . , cn; d) are Kan complexes. Now
if ϕ : P→ Q is a pushout of a morphism in (A1), one forms a square

P EP ×EQ EQ∆[1]

Q EQ

ϕ

∼

∼

just as in the proof of Lemma 13.31. The right vertical map is a local fibration (by
the same argument as before) and hence a lift in the square exists. Then all maps
in the square are weak equivalences by the two-out-of-six property (cf. Proposition
7.35).

Now consider a morphism η → E in (A2). Without loss of generality we may
assume that it picks out the object 0 of E. Write E0 for the full subcategory of E on
the object 0. Then for any pushout square of simplicial operads

η P

E Q

we may factor P → Q as a composition of morphisms P → Q0 → Q, where the
first map is the pushout along η → P of the morphism η → E0. That morphism
is a cofibration in sCat{0} by Lemma 14.2; it is also fully faithful, hence a trivial
cofibration. It is therefore in the saturation of the set of morphisms of type (A1). In
particular, P → Q0 is a weak equivalence of simplicial operads by what we have
already proved in the previous paragraph. It remains to deal with the morphism
Q0 → Q. Observe that for any colours c1, . . . , cn, d of Q0, the map

Q0(c1, . . . , cn; d) → Q(c1, . . . , cn; d)

is an isomorphism. (This is a consequence of the fact that for operads in sets, the
pushout of a fully faithful morphism along a map injective on colours is again fully
faithful, as the reader may easily verify.) In particular, Q0 → Q is fully faithful. It is
also essentially surjective; indeed, the only colour not in the image corresponds to
the object 1 of E, but in π0Q this object is connected to 0 by an isomorphism in the
groupoid π0E. �

Establishing the promised model structure on the category of simplicial operads
is now an easy task:
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Proof (of Theorem 14.12) Axioms (M1–3) are easily checked. The factorization
axiom (M5) follows by applying the small object argument to the classes C and
A. Indeed, Lemma 14.14 implies that with respect to C one obtains a factorization
into a cofibration followed by a trivial fibration; with respect to A one obtains a
factorization into a trivial cofibration (cf. Lemma 14.15) followed by a fibration.
Finally there is the lifting axiom (M4). The cofibrations have the left lifting property
with respect to trivial fibrations by definition. To see that trivial cofibrations have the
left lifting property with respect to fibrations, one applies the retract argument again.
Indeed, if i : P → Q is a trivial cofibration, it can be factored as a map j : P → R
in the saturation of A (which is a weak equivalence by Lemma 14.15) followed by
a fibration p : R → Q. The latter is a weak equivalence by two-out-of-three, so a
trivial fibration. Then there exists a lift in the square

P R

Q Q

i

j

∼p

exhibiting i as a retract of j. But j has the left lifting property with respect to
fibrations by Lemma 14.14, so that i has this lifting property as well. �

14.4 The Sparse Model Structure

Consider a simplicial operad P. It can be thought of as a simplicial object [n] 7→ Pn

in the category of operads with the property that the sets of colours col(Pn) form a
constant simplicial set. Taking the nerve levelwise defines a dendroidal space with
n-simplices N(Pn). As we have seen before this defines a functor

N : sOp→ dSpaces : P 7→ NP.

Like the usual nerve functor, it admits a left adjoint τ. However, this does slightly
more than just to apply τ levelwise; indeed, for a general dendroidal space X there
is no reason for the simplicial set col(τ(Xn)) to be constant. Rather, one can first
construct a dendroidal space X̃ as the pushout in the following diagram:

X(η) X

π0X(η) X̃ .

Here the set π0X(η) is to be interpreted as a constant simplicial set. The object X̃ is the
universal way of replacing X by a dendroidal space with X̃(η) a constant simplicial
set. One then easily deduces that τ(X) is the simplicial operad with n-simplices
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τ(X)n = τ(X̃n).

In the next section we will prove that the pair (τ, N) gives an equivalence of ho-
motopy theories between simplicial operads and complete dendroidal Segal spaces.
However, the functors τ and N do not form a Quillen adjunction with respect to any
of the model structures we have considered thus far. Indeed, τ sends the projective
cofibration

Cn � ∂∆[1] → Cn � ∆[1]

to the morphism
τ(Cn) q τ(Cn) → τ(Cn)[∆[1]]

of simplicial operads. The latter is not injective on colours, so cannot be a cofibration.
Therefore τ cannot be left Quillen with respect to the projective model structure,
nor with respect to the Reedy one (which has more cofibrations). To circumvent this
problem we will introduce another structure on the category of dendroidal spaces,
called the sparse model structure. It has the same weak equivalences as the model
category dSpacesRSC for complete dendroidal Segal spaces, but fewer cofibrations.
To state our result, write C for the set consisting of the following kinds of maps:

(C1) The maps � → η � ∆[n] for all n ≥ 0.
(C2) The maps

T � ∂∆[n] ∪E(T )�∂∆[n] E(T) � ∆[n] → T � ∆[n]

for all trees T and n ≥ 0.

Here E(T) denotes the set of edges of T , thought of as the discrete dendroidal
set consisting as a coproduct of copies of η. We call a map of dendroidal spaces a
sparse cofibration if it lies in the saturation of C, i.e., if it can be obtained as a retract
of a transfinite composition of pushouts of maps of the kinds (C1) and (C2). A more
direct description is as follows:

Lemma 14.16 (i) A map X → Y of dendroidal spaces has the right lifting property
with respect to sparse cofibrations if and only if the map of simplicial sets
X(η) → Y (η) is surjective in each simplicial degree and for each tree T the map

X(T) → Y (T) ×Y(E(T )) X(E(T))

is a trivial fibration of simplicial sets.
(ii) Dually, a map of A→ B of dendroidal spaces is a sparse cofibration if and only

if the simplicial set B(η) − A(η) is a disjoint union of representables and the map

Aqη�A(η) η � B(η) → B

is a projective cofibration of dendroidal spaces.



14.4 The Sparse Model Structure 569

Proof From the generating sets (C1) and (C2) above, the claim about X → Y is clear.
The set of maps A→ B described in the lemma is precisely the set of maps having
the left lifting property with respect to those X → Y satisfying the two properties
described in the lemma and is therefore the saturation of C. �

The following is the main result of this section, establishing the existence of the
sparse model structure (which we will denote by dSpacessp):

Theorem 14.17 There exists a model structure on the category of dendroidal spaces
in which the cofibrations are the sparse cofibrations and the weak equivalences are
the complete weak equivalences, i.e., the weak equivalences in the model category
dSpacesRSC for complete dendroidal Segal spaces. The identity functor defines a
Quillen equivalence

dSpacessp dSpacesRSC .
id!

id∗

We will deduce the theorem from the following two lemmas:

Lemma 14.18 Let f be a map of dendroidal spaces having the right lifting property
with respect to sparse cofibrations. Then f is a complete weak equivalence.

We call a map between dendroidal spaces a sparse trivial cofibration if it is a
sparse cofibration and a complete weak equivalence.

Lemma 14.19 The class of sparse trivial cofibrations is saturated. Moreover, any
sparse trivial cofibration is a retract of a transfinite composition of pushouts of
sparse trivial cofibrations between countable dendroidal spaces.

Let us first show how to deduce Theorem 14.17. The remainder of this section
will then be devoted to proving the two lemmas.

Proof (of Theorem 14.17) The only nontrivial verifications are the factorization
axiom (M5) and the lifting axiom (M4). Applying the small object argument to the
set ofmapsC provides a factorization into a sparse cofibration followed by amapwith
the right lifting property with respect to sparse cofibrations, which is then a trivial
fibration by Lemma 14.18. Lemma 14.19 guarantees that the trivial cofibrations are
generated (as a saturated class) by a set, namely that of trivial cofibrations between
countable dendroidal spaces (or rather a set of representatives of isomorphism classes
of such). Applying the small object argument to this set then gives a factorization into
a trivial cofibration followed by a fibration. For the lifting axiom (M4) we follow
a familiar pattern: fibrations have the right lifting property with respect to trivial
cofibrations by definition, whereas trivial fibrations have the right lifting property
with respect to cofibrations by the familiar retract argument.

It remains to argue that the pair (id!, id∗) defines a Quillen equivalence between
dSpacessp and dSpacesRSC . Observe that every sparse cofibration is in particular
a Reedy cofibration and that the weak equivalences of these two model structures
coincide (by definition), so that the identity functor indeed defines a left Quillen
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functor id! from dSpacessp to dSpacesRSC . Since these model structures share the
same weak equivalences, it is evident that id! induces an equivalence of homotopy
categories and is thus a Quillen equivalence. �

Proof (of Lemma 14.18) Suppose f : X → Y has the right lifting property with
respect to sparse cofibrations. Write

f ∗Y (T) := Y (T) ×Y(E(T )) X(E(T)),

so that f factors as a composition

X → f ∗Y → Y .

The first map is a weak equivalence of dendroidal spaces (even in the Reedy model
structure dSpacesR) by Lemma 14.16. To see that the second map is a complete
weak equivalence it suffices to prove that for every n, the map f ∗Yn → Yn is a
trivial fibration of dendroidal sets (cf. Proposition 12.29). This map is a pullback of
E∗Xn → E∗Yn, where

E∗Xn(T) := X(E(T))n

and similarly for Y . Now a lifting problem as on the left is equivalent to one as on
the right in the following diagram:

∂T E∗Xn E(∂T) Xn

T E∗Yn, E(T) Yn.

The map E(∂T) → E(T) is an isomorphism for any tree T that is not η, whereas for
T = η the lifting problem on the right admits a solution by the fact that X(η)n →
Y (η)n is surjective (cf. Lemma 14.16). This completes the proof. �

To prepare for the proof of Lemma 14.19, we first observe that the sparse trivial
cofibrations satisfy the following variation of the ‘countable approximation property’
of Definition 11.33:

Lemma 14.20 For any commutative diagram

A X

B Y

i f

with f a sparse trivial cofibration and i a sparse cofibration between countable
objects A and B, there exists an extension of this diagram to



14.4 The Sparse Model Structure 571

A A′ X

B B′ Y

i j f

in which A′ and B′ are countable and j is a sparse trivial cofibration.

Proof We first exploit the countable approximation property of the trivial cofibra-
tions in the model category dSpacesRSC . Indeed, that model category was con-
structed as a Bousfield localization of the Reedy model structure dSpacesR and thus
Proposition 11.35 implies that there exists a commutative diagram

A A′ X

B D Y

i f

in which A′→ D is a trivial cofibration between countable objects in dSpacesRSC ,
i.e., a Reedy cofibration that is also a complete weak equivalence. Now form the
pushout of i along the map A→ A′ to obtain maps

A A′

B C D

i k

with k a sparse cofibration between countable objects. The map C → D may be
factored as a sparse cofibration C → B′ followed by a map p : B′ → D having
the right lifting property with respect to sparse cofibrations; moreover, p may be
arranged to be a morphism with countable fibres (cf. Lemma 11.31), so that B′ is
also countable. By Lemma 14.18 the map p is a complete weak equivalence. By
two-out-of-three we conclude that A′→ B′ is a complete weak equivalence as well.
It is also a sparse cofibration, being the composition of A′→ C and C → B′. �

Proof (of Lemma 14.19) Checking that the class of sparse trivial cofibrations is
saturated is entirely straightforward. Indeed, this class is the intersection of the class
of sparse cofibrations with the class of trivial cofibrations in the model category
dSpacesRSC . Both of those classes are closed under retracts, transfinite composition,
and pushout, implying the same for the class of sparse trivial cofibrations.

Now suppose f : A→ B is a sparse trivial cofibration. We claim that there exists
a factorization of f as a composition

A
j
−→ X

p
−→ B

with j a transfinite composition of pushouts of sparse trivial cofibrations between
countable dendroidal spaces and p a map having the right lifting property with
respect to sparse cofibrations. Granted this factorization, there exists a lift in the
square
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A X

B B

f

j

p

demonstrating that f is a retract of j. In particular, f is contained in the saturated class
generated by the sparse trivial cofibrations between countable dendroidal spaces, as
desired.

To verify the claim of the previous paragraph, we use a variation of the small
object argument. Inductively construct a sequence of dendroidal spaces and maps

A = A0 A1 A2 · · ·

B

f

by constructing Ak+1 out of Ak as follows. Consider the set I of commutative squares
of the form

Ci Ak

Di B,

with Ci → Di a generating sparse cofibration of the form (C1) or (C2), as defined
earlier in this section. Apply Lemma 14.20 to each such square to find a larger
diagram

Ci C ′i Ak

Di D′i B,

with the middle vertical map a sparse trivial cofibration between countable den-
droidal spaces. Now define Ak+1 to be the pushout in the square∐

i∈I C ′i Ak

∐
i∈I D′i Ak+1

and define X = lim
−−→k

Ak . Then j : A → X is a transfinite composition of pushouts
of sparse trivial cofibrations between countable dendroidal spaces and p : X → B
has the right lifting property with respect to maps of type (C1) and (C2), so that it
also has the right lifting property with respect to general sparse cofibrations. This
concludes the proof. �
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14.5 Simplicial Operads and Dendroidal Spaces

In the previous section we recalled the nerve construction for simplicial operads,
giving rise to an adjoint pair

dSpaces sOp.
τ

N

The aim of this section is to prove that these functors induce an equivalence of
homotopy theories between dendroidal spaces and simplicial operads in a suitable
sense. This result will be a key ingredient in the next section, where we finally
establish a Quillen equivalence between the categories of dendroidal sets and of
simplicial operads.

Theorem 14.21 With respect to the sparse model structure on the category dSpaces
and the model structure of Theorem 14.12 on the category sOp of simplicial operads,
the functor τ admits a left derived functor Lτ and the nerve N admits a right derived
functor RN . These functors give an adjoint equivalence of homotopy categories

Ho(dSpaces) Ho(sOp).
Lτ

RN

We will establish three preliminary lemmas and subsequently prove the theorem
at the end of this section.

Lemma 14.22 The functor τ sends sparse cofibrations between dendroidal spaces
to cofibrations of simplicial operads.

Proof It suffices to check that τ sends the generating sparse cofibrations of types
(C1) and (C2) to cofibrations of simplicial operads. The functor τ was described
explicitly at the start of Section 14.4. From that description it is clear that it sends
the maps

� → η � ∆[n]

of type (C1) to the inclusion� → η, where now η is interpreted as the trivial operad.
This is a cofibration of simplicial operads. To deal with the maps

T � ∂∆[n] ∪E(T )�∂∆[n] E(T) � ∆[n] → T � ∆[n]

of type (C2) we introduce a bit more notation. Recall that any tree T generates a
free operad Ω(T) = τ(T). For a simplicial set A, we write Ω(T)[A] for the simplicial
operad generated by the vertices of T and simplices of A, in the following sense. If T
is a corolla Ck , then Ω(Ck)[A] is the operad τ(Ck)[A] as before. For general T with
more than one vertex, one can always decompose T as a grafting T1 ◦e T2 of smaller
trees along a common edge. Then inductively define the pushout

Ω(T)[A] := Ω(T1)[A] ∪e Ω(T2)[A].
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Of course Ω(T)[A] could also be expressed directly as a colimit, indexed over
vertices and edges of T , of operads of the forms Ω(Ck)[A] and η respectively. With
this notation in place, applying τ to the map of type (C2) displayed above gives the
map

Ω(T)[∂∆[n]] → Ω(T)[∆[n]].

This is a composition of pushouts (one for each vertex of T) of maps of the form
τ(Ck)[∂∆[n]] → τ(Ck)[∆[n]], each of which is a cofibration of simplicial operads.�

Lemma 14.23 A morphism ϕ : P→ Q of simplicial operads is a weak equivalence
if and only if Nϕ is a complete weak equivalence of dendroidal spaces. In other
words, N preserves and detects weak equivalences of simplicial operads.

Proof First observe that the dendroidal spaces NP and NQ satisfy the Segal property,
cf. Example 12.11(i). They might not be dendroidal Segal spaces in the sense of
Definition 12.9, but this can always be arranged by taking Reedy fibrant replacements
of NP f and NQ f of NP and NQ respectively. Theorem 12.36 implies that Nϕ is
a complete weak equivalence if and only if NP f → NQ f is a fully faithful and
essentially surjective map of dendroidal Segal spaces. Now note that for colours
c1, . . . , cn, d of P, the mapping space (NP f )(c1, . . . , cn; d) introduced right before
Definition 12.12 is weakly equivalent to the simplicial set P(c1, . . . , cn; d). Of course
the same applies with Q in place of P. Hence NP f → NQ f is fully faithful if and
only if ϕ is fully faithful.

Similar comments apply to essential surjectivity. Indeed, it is straightforward to
see that the operad π0P agrees with the homotopy operad ho(NP f ) of the dendroidal
Segal space NP f . Therefore ϕ is essentially surjective if and only if NP f → NQ f

is. We conclude that Nϕ is a complete weak equivalence if and only if ϕ is a fully
faithful and essentially surjective map of operads, which proves the lemma. �

Lemma 14.24 Let X be a dendroidal space that is cofibrant in the sparse model
structure. Then the unit map X → Nτ(X) is a complete weak equivalence.

Proof Consider the classD of sparsely cofibrant dendroidal spaces X for which the
unit X → Nτ(X) is a complete weak equivalence. It is clear that D is closed under
retracts and directed colimits and contains the empty dendroidal space. Therefore it
suffices to show that it satisfies the following additional closure property: if

A X

B Y

i

is a pushout square in which i is a generating sparse cofibration of type (C1) or (C2)
and X is inD, then also Y is inD. For the maps (C1) of the form � → η � ∆[n] this
is quite clear; Y is simply a coproduct of X with η �∆[n] and on the second term the
unit is the map of dendroidal spaces

η � ∆[n] → η,
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which is even a Reedy weak equivalence. For maps (C2) of the form

T � ∂∆[n] ∪E(T )�∂∆[n] E(T) � ∆[n] → T � ∆[n],

recall that applying τ gives the map of simplicial operads

Ω(T)[∂∆[n]] → Ω(T)[∆[n]].

Decomposing Ω(T)[∆[n]] as an iterated pushout of simplicial operads of the form
τ(Ck)[∆[n]] as in the proof of Lemma 14.22, the map τ(X) → τ(Y ) can be written
as a composition of pushouts of maps of the form τ(Ck)[∂∆[n]] → τ(Ck)[∆[n]].
Hence we can reduce to the case where T is a corolla Ck .

To deduce that Y is in D, the cube lemma (cf. Corollary 7.50) shows that it will
suffice to prove that the square

Nτ(Ck)[∂∆[n]] Nτ(X)

Nτ(Ck)[∆[n]] Nτ(Y )

is a homotopy pushout. Since the left-hand map is a Reedy cofibration, this is
equivalent to checking that the map

P→ Nτ(Y )

from the pushout P in the square to Nτ(Y ) is a complete weak equivalence of
dendroidal spaces. This will follow from Proposition 12.29 if we check that for every
m ≥ 0, the morphism Pm → (NY )m is an operadic equivalence of dendroidal sets.
For m < n it is an isomorphism and there is nothing to prove. For m = n the pushout
above adjoins a single operation f ; in other words, the map we are considering is of
the form

(Nτ(X))[ f ] → N(τ(X)[ f ])

described in Proposition 6.23 and hence an inner anodyne. (For the sake of com-
pleteness, observe that X is a normal dendroidal space, so that the simplicial operad
τ(X) is Σ-free.) For m > n it is a composition of pushouts of maps of this kind
(one for each m-simplex of ∆[n] not contained in ∂∆[n]) and therefore again inner
anodyne as a consequence of Proposition 6.23. This completes the proof. �

Corollary 14.25 The functor τ preserves weak equivalences between sparsely cofi-
brant objects.

Proof If f : X → Y is a complete weak equivalence of dendroidal spaces, then τ( f )
is a weak equivalence if and only if Nτ( f ) is a weak equivalence as a consequence
of Lemma 14.23. But the map Nτ( f ) is weakly equivalent to f itself by Lemma
14.24, at least if X and Y are sparsely cofibrant. �



576 14 Simplicial Operads and∞-Operads

Proof (of Theorem 14.21) Combining Corollary 14.25with the fact that τ preserves
cofibrations (Lemma 14.22) it follows that τ admits a left derived functor by Lemma
8.36. The right adjoint N preserves arbitraryweak equivalences and therefore induces
a right derived functor RN on homotopy categories. It is clear that Lτ and RN form
an adjoint pair.

We have seen in Lemma 14.24 that the unit id → Nτ is a weak equivalence on
sparsely cofibrant objects. This in particular shows that the derived unit id→ RN◦Lτ
is an isomorphism. The fact that RN detects isomorphisms then proves that the pair
(Lτ,RN) forms an adjoint equivalence. �

14.6 The Homotopy-Coherent Nerve

In this section we come to one of the main results in this book, namely Theorem
14.27, relating dendroidal sets and simplicial operads. We will use Theorem 14.21 to
produce a directQuillen equivalence between the categories of simplicial operads and
of dendroidal sets (equipped with the operadic model structure). This equivalence
will be implemented by the homotopy-coherent nerve w∗, as first introduced in
Example 3.20(i), and its left adjoint w! defined in terms of the Boardman–Vogt
resolution. The functor w! is characterized by the fact that for a tree T , the simplicial
operad w!T is the Boardman–Vogt resolution WΩ(T) of the free operad Ω(T).

Proposition 14.26 The adjunction

dSets sOp
w!

w∗

is a Quillen pair.

Proof We check thatw! preserves cofibrations by considering its effect on generating
cofibrations ∂T → T . For a sequence of edges c1, . . . , cn, d of T , the map

w!(∂T)(c1, . . . , cn; d) → w!T(c1, . . . , cn; d)

is almost always an isomorphismof simplicial sets, except in the casewhere c1, . . . , cn
is exactly the collection of leaves of T and d is its root. In that case

w!T(c1, . . . , cn; d) =
∏

e∈I (T )

∆[1]

is the cube whose coordinates are indexed by the inner edges of T . We denote this
cube by K . The simplicial set w!(∂T)(c1, . . . , cn; d) is the boundary ∂K of that cube.
It follows that there is a pushout square
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τ(Cn)[∂K] w!(∂T)

τ(Cn)[K] w!T .

In particular, w!(∂T) → w!T is a cofibration of simplicial operads.
It remains to be checked that w! sends J-anodyne maps (cf. Definition 9.35) of

dendroidal sets to weak equivalences between simplicial operads. The morphism
w!(η → J) is one of the generating trivial cofibrations of simplicial operads of the
kind (A2), since w!J is a categorical interval. For an inner edge x of a tree T , the
map

w!(Λ
x[T])(c1, . . . , cn; d) → w!T(c1, . . . , cn; d)

is an isomorphism in all cases, except (again) the onewhere c1, . . . , cn is the collection
of leaves of T and d is the root. In this case the domain is the simplicial subset L of
the cube K =

∏
e∈I (T ) ∆[1] given by the union of the following subcubes:

(a) For inner edges f , the cubes {1}×
∏

e∈I (T )−{ f } ∆[1]where the edge f is labelled
by the coordinate 1.

(b) For inner edges f not equal to x, the cubes {0} ×
∏

e∈I (T )−{ f } ∆[1] where the
edge f is labelled by the coordinate 0.

Thus, the map L → K is the pushout-product of the boundary inclusion of the cube∏
e∈I (T )−{x }

∆[1]

with the inclusion {1} → ∆[1] of the final vertex of the edge corresponding to x. The
latter is an anodyne map of simplicial sets, hence so is the pushout-product L → K .
In particular, it is a weak homotopy equivalence. �

The various constructions in this chapter can be summarized in the following
diagram of left adjoint functors:

dSpacessp sOp

dSpacesRSC dSets.

id!

τ

| · |J

w!

The reader should be warned that this diagram does not commute. However, we
will show that it commutes up to natural isomorphism after passing to homotopy
categories and derived functors. Since we have already proved that all but the right
vertical arrow give equivalences on the level of homotopy categories, it will follow
that the same is true for the functor w! and its adjoint w∗, the homotopy-coherent
nerve. This will then imply the main result of this chapter:
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Theorem 14.27 The adjoint pair

dSets sOp
w!

w∗

is a Quillen equivalence.

We will prove the theorem after establishing two preparatory lemmas. The first
concerns the behaviour of τ with respect to cosimplicial resolutions. Although τ is
not quite a left Quillen functor, it does satisfy the following:

Lemma 14.28 Let Y be a cofibrant object of dSpacessp and qY• a cosimplicial reso-
lution of Y . Then τ(qY•) is a cosimplicial resolution of the simplicial operad τ(Y ). In
particular, this applies when Y is (the dendroidal space represented by) a tree T .

Proof Since τ preserves colimits and cofibrations (Lemma 14.22), it sends Reedy
cofibrant cosimplicial objects of dSpacessp to Reedy cofibrant cosimplicial objects
of sOp. Furthermore, the fact that τ preserves weak equivalences between cofibrant
objects (Corollary 14.25) implies that τ(qY•) → τ(Y ) is a weak equivalence of
cosimplicial objects. Thus, τ(qY•) is indeed a cosimplicial resolution of τ(Y ). For the
last sentence of the lemma, it remains to check that a tree T represents a sparsely
cofibrant dendroidal space. The map � → E(T) is a sparse cofibration, being
a coproduct of generating sparse cofibrations of type (C1), and E(T) → T is a
generating sparse cofibration of type (C2). Hence their composition � → T is a
sparse cofibration as desired. �

Lemma 14.29 For P a simplicial operad, there is a natural complete weak equiva-
lence between NP and the dendroidal space

T 7→ MapsOp(Ω(T),P).

Proof As in Examples 12.11(ii) and 12.24 we will use the specific cosimplicial
resolution J[•] ⊗ T of a tree T . For X a dendroidal set and m ≥ 0, consider the map
of dendroidal sets

X(−) → dSets(J[m] ⊗ −, X)

induced by the unique map J[m] → J[0] = η. If X is an ∞-operad, then the map
above is an operadic equivalence of dendroidal sets; indeed, any choice of section
η→ J[m] induces a map

dSets(J[m] ⊗ −, X) → X(−)

that is a trivial fibration of dendroidal sets. This last claim follows from the fact that
the pushout-product of the trivial cofibration η → J[m] with a boundary inclusion
∂T → T is again a trivial cofibration of dendroidal sets by Proposition 9.28.

Now suppose that X is a dendroidal space such that for every n ≥ 0, the dendroidal
set Xn is an ∞-operad. Then using the observation above, taking the diagonal with
respect to m and n and applying Proposition 12.29, we see that the map
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X•(−) → dSets(J[•] ⊗ −, X•)

is a complete weak equivalence of dendroidal spaces. In particular, this applies to
X = NP. Now observe that

dSets(J[•] ⊗ −, NP) � sOp(τ(J[•] ⊗ −), NP).

By Lemma 14.28 above, the expression τ(J[•] ⊗ T) is a cosimplicial resolution of
τ(T) = Ω(T), so that the right-hand side can be interpreted as the dendroidal space

T 7→ MapsOp(Ω(T),P),

completing the proof. �

We can now prove the promised result:

Proof (of Theorem 14.27) Consider the following diagram of functors derived right
adjoint to those in the previous square:

Ho(dSpacessp) Ho(sOp)

Ho(dSpacesRSC) Ho(dSets).

RN

Rw∗Rid∗

RSingJ

It will suffice to show that Rw∗ is an equivalence of categories. We already know
this for the other three functors: indeed, for RN this is Theorem 14.21, for Rid∗ this
is part of Theorem 14.17, and for RSingJ this is explained in Example 12.24. Thus
the theorem will follow if we can show that the diagram commutes up to natural
isomorphism.

To do this, consider a fibrant simplicial operad P. By Lemma 14.29 above, there
is a natural isomorphism

RN(P) � MapsOp(Ω(−),P)

in Ho(dSpacessp). On the other hand, by definition we have

id∗SingJw
∗P(T) = sOp(w!(J[•] ⊗ T),P).

Since w! is left Quillen, the object w!(J[•] ⊗ T) is a cosimplicial resolution of w!T ,
which in turn is weakly equivalent to Ω(T). Hence the right-hand side is another
model for MapsOp(Ω(T),P). In particular, in the category Ho(dSpacessp) the object
R(id∗SingJw∗)(P) is naturally isomorphic to RN(P), concluding the proof. �

For future use, let us also record the following consequence of our arguments:

Corollary 14.30 Let X be an∞-operad X and let Y be a sparsely cofibrant replace-
ment of the dendroidal space SingJ X . Then the objects w!X and τ(Y ) are isomorphic
in the homotopy category Ho(sOp) of simplicial operads.



580 14 Simplicial Operads and∞-Operads

Proof Taking inverses of the functors RN and Rw∗ in the square above, we conclude
that the following must also commute up to natural isomorphism:

Ho(dSpacessp) Ho(sOp)

Ho(dSpacesRSC) Ho(dSets).

Lτ

Rid∗

RSingJ

Lw!

Chasing X around both ways gives the conclusion. �

Theorem 14.27 allows us to compare spaces of operations in an ∞-operad (see
Definition 9.42) with those in the corresponding simplicial operad. To be precise:

Proposition 14.31 Let P be a fibrant simplicial operad and c1, . . . , cn, d a sequence
of colours of P. Then there is a natural weak homotopy equivalence between
P(c1, . . . , cn; d) and the space of operations (w∗P)(c1, . . . , cn; d) in the ∞-operad
w∗P. Similarly, if X is a normal ∞-operad and x1, . . . , xn, y a sequence of colours
of X , then there is a natural weak homotopy equivalence between the space of
operations X(x1, . . . , xn; y) and the simplicial set (w!X)(x1, . . . , xn; y).

Proof Example 11.18 shows that (w∗P)(c1, . . . , cn; d) is (a model for) the mapping
space from Cn to w∗P in the model category ∂Cn/dSets, where the reference map
∂Cn → w∗P assigns the colours c1, . . . , cn to the leaves of Cn and d to its root.
The fact that (w!,w

∗) is a Quillen adjunction implies that this space is equivalent
to the mapping space Map(w!Cn,P) computed with respect to the model category
τ(∂Cn)/sOp. Note that w!Cn = τ(Cn) and that the cosimplicial object τ(Cn)[∆[•]]

is a cosimplicial resolution of τ(Cn). Thus the space Map(τ(Cn),P) is weakly equiv-
alent to the simplicial set whose k-simplices are morphisms of simplicial operads
τ(Cn)[∆[k]] → P sending the edges of Cn to the specified colours of P. But that
simplicial set is precisely P(c1, . . . , cn; d).

For the second part, pick a fibrant replacementw!X
∼
−→ P ofw!X . Then the derived

unit
X → w∗P

is a weak equivalence by Theorem 14.27. In particular, the map

X(x1, . . . , xn; y) → (w∗P)(x1, . . . , xn; y)

is a weak homotopy equivalence. By what we proved above, the space on the
right is weakly equivalent to P(x1, . . . , xn; y), which in turn is weakly equivalent
to (w!X)(x1, . . . , xn; y) by construction. �

Specializing from dendroidal sets to simplicial sets, Theorem 14.27 in particu-
lar reproduces the well-established equivalence between the homotopy theories of
simplicial categories and of∞-categories. To be precise, slicing the category of den-
droidal spaces over η and the category of simplicial operads over the trivial operad
τ(η) gives the following:
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Corollary 14.32 The homotopy-coherent nerve functor w∗ gives a Quillen equiva-
lence

sSets sCat
w!

w∗

between the Joyal (or categorical) model structure on the category of simplicial sets
and the Bergner model structure on the category of simplicial categories.

Another specialization of Theorem 14.27 concerns uncoloured dendroidal sets
and simplicial operads. (We treat uncoloured dendroidal spaces in the next section.)
Recall from Section 9.3 that the pair (w!,w

∗) restricts to given an adjunction

udSets usOp.
w!

w∗

According to Theorem 9.49, the category udSets of uncoloured dendroidal sets
admits amodel structure for which cofibrations andweak equivalences are ‘the same’
as in the operadic model structure on dSets, i.e., both are detected by the inclusion
functor udSets → dSets. For simplicial operads the situation is even better; the
inclusion usOp→ sOp of uncoloured simplicial operads into all simplicial operads
detects weak equivalences, fibrations, and cofibrations.

Corollary 14.33 The adjoint pair (w!,w
∗) induces aQuillen equivalence between the

categories udSets of uncoloured dendroidal sets and usOp of uncoloured simplicial
operads.

Proof The remarks above the corollary and the fact that w! : dSets → sOp is left
Quillen immediately imply that the restricted functor w! : udSets → usOp is left
Quillen as well. Now the derived unit and counit of the restricted pair (w!,w

∗) are
isomorphisms, simply because they are the restrictions of those featuring in the
Quillen equivalence of Theorem 14.27. �

14.7 Operads with a Single Colour

Many applications of the theory of ∞-operads concern operads with only a single
colour. There are various equivalent ways to describe such a theory, for example
as dendroidal spaces X with X(η) a one-point set (as at the end of the previous
section), or as dendroidal spaces X with X(η) a weakly contractible space (see
Proposition 14.40 below). In this section we establish the equivalence between
dendroidal spaces and simplicial operads in this restricted setting (Theorem 14.36).
Many of our arguments simplify considerably in this case and, in particular, the
notion of completion can be avoided in the relevant results (although it does feature
in some of our proofs). As such, the reader only interested in operads with a single
colour can read this section first and refer to the rest of this chapter as needed. We
will conclude with an important and useful application (cf. Corollary 14.42), namely
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the fact that the space of maps between uncoloured simplicial operads P and Q is
equivalent to the space ofmapsMap(NP, NQ) between the corresponding dendroidal
spaces NP and NQ, computed with respect to the projective (or equivalently Reedy)
model structure on the category dSpaces, rather than any of the more complicated
model structures we have considered before.

Let us briefly discuss some terminology and notation concerning uncoloured den-
droidal sets and spaces, which already featured in Section 3.5.6. We say a dendroidal
space X is uncoloured if X(η) � ∆[0] and write udSpaces for the full subcategory
of dSpaces on the uncoloured dendroidal spaces. Similarly, we will write usOp for
the category of uncoloured simplicial operads, consisting of simplicial operads P
having only a single colour. There is an adjoint pair of functors

dSpaces udSpaces,
r!

r∗

where the right adjoint r∗ is simply the inclusion and the left adjoint r! collapses the
space X(η) to a single point. To be precise, for a dendroidal space X the uncoloured
dendroidal space r!(X) fits in a pushout square

η � X(η) X

η r!(X).

If P is an uncoloured simplicial operad, then NP is an uncoloured dendroidal space;
similarly, an uncoloured dendroidal space produces an uncoloured simplicial operad
τ(X). Thus, the functors τ and N restrict to give an adjoint pair

udSpaces usOp.
τ

N

The main result of this section (Theorem 14.36) will be that this pair is a Quillen
equivalence; moreover, the relevant model structure on udSpaces will just be a
variant of the projective model structure localized for the Segal condition, rather
than any of the more involved ones considered previously (such as those involving
completion or sparseness). To prepare for this result we begin by observing that the
projective model structure on dSpaces induces a corresponding model structure on
the category udSpaces, to which we will also refer as the projective model structure:

Proposition 14.34 There exists a cofibrantly generated left proper model structure
on the category udSpaces such that a map is a weak equivalence (resp. a fibration) if
and only if it is a weak equivalence (resp. a fibration) in the projectivemodel structure
on the category dSpaces. With respect to these projective model structures, the pair

dSpaces udSpaces
r!

r∗
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is a Quillen adjunction.

Proof Observe that for a generating projective trivial cofibration

T � Λk[n]
j
−→ T � ∆[n]

between dendroidal spaces, the morphism r!( j) fits into a pushout square of den-
droidal spaces as follows:

T � Λk[n] ∪E(T )�Λk [n] E(T) � ∆[n] r!(T � Λk[n])

T � ∆[n] r!(T � ∆[n]).

r!(j)

The left-hand vertical morphism is not quite a projective cofibration, but it is a trivial
cofibration (and in particular a weak equivalence) in the Reedy model structure on
dendroidal spaces. Hence the same is true for r!( j) and any pushout (or transfinite
composition of pushouts) of such maps. We conclude that the conditions for transfer
are satisfied; to be precise, Theorem 7.44 implies that a cofibrantly generated model
structure on udSpaces with the desired fibrations and weak equivalences exists.
Left properness follows from the corresponding fact for the Reedy model structure
on dSpaces, combined with the observation that any cofibration in udSpaces is in
particular a Reedy cofibration of dendroidal spaces (cf. also Remark 14.35 below).
The fact that (r!, r∗) is aQuillen pair is immediate from the definitions of the fibrations
and weak equivalences on udSpaces. �

Remark 14.35 It will be useful to observe that the transfer above also yields an
explicit set of generating cofibrations for the projectivemodel structure on udSpaces,
namely the collection of maps r!(T � ∂∆[n]) → r!(T � ∆[n]) for T ranging over Ω
and n ≥ 0. Note that these maps fit into pushout squares as follows:

T � ∂∆[n] ∪E(T )�∂∆[n] E(T) � ∆[n] r!(T � ∂∆[n])

T � ∆[n] r!(T � ∆[n]).

The left-hand map is a sparse cofibration between dendroidal spaces. It follows that
every cofibration in udSpacesP , when interpreted as a map in the category dSpaces,
is in particular a sparse cofibration.

We will denote the model category of the preceding proposition by udSpacesP .
As before, we can now consider the Bousfield localization of this model category
with respect to the Segal condition. To be precise, localizing with respect to the maps
r!(Sc[T]) → r!(T), for T ranging over objects of Ω, gives a new model category that
we denote udSpacesPS . The fibrant objects of this model category are precisely
those uncoloured dendroidal spaces that are projectively fibrant (so X(T) is a Kan
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complex for every T) and satisfy the Segal condition. Since X(η) is a point, this
reduces to the condition that for every T , the map

X(T) →
∏

v∈V (T )

X(Cv)

is a weak homotopy equivalence.
According to Example 13.32(a) the category usOp of uncoloured simplicial op-

erads can be equipped with a model structure with weak equivalences and fibrations
defined ‘locally’, i.e., by considering the effect ofmorphisms on spaces of operations.
With respect to this model structure we can state the main result of this section:

Theorem 14.36 The adjoint pair

udSpacesPS usOp
τ

N

is a Quillen equivalence.

We will prove the theorem after establishing three lemmas.

Lemma 14.37 Let X andY be fibrant objects ofudSpacesPS , i.e., projectively fibrant
uncoloured dendroidal spaces satisfying the Segal condition. Then a map f : X → Y
is a complete weak equivalence (when considered as a map in the category dSpaces)
if and only if it is a projective weak equivalence, i.e., X(T) → Y (T) is a weak
equivalence of simplicial sets for each tree T .

Proof Observe that any map between uncoloured dendroidal spaces is essentially
surjective. Thus Theorem 12.36 implies that f is a complete weak equivalence if
and only if it is fully faithful. Since X and Y are uncoloured, this is equivalent to
X(Cn) → Y (Cn) being a weak equivalence for every n ≥ 0. Invoking the Segal
condition for X and Y , this is equivalent to X(T) → Y (T) being a weak equivalence
for every tree T . �

Lemma 14.38 The functor N : usOp → dSpacesP preserves and detects weak
equivalences.

Proof A map f : P→ Q of uncoloured simplicial operads is a weak equivalence if
and only if the induced map (NP)(Cn) → (NQ)(Cn) is a weak equivalence for every
corolla Cn. But since NP and NQ satisfy the Segal condition, this is the case if and
only if (NP)(T) → (NQ)(T) is a weak equivalence for every tree T . �

Lemma 14.39 For any cofibrant uncoloured dendroidal space X , the unit map X →
Nτ(X) is a complete weak equivalence.

Proof By Remark 14.35, every cofibrant uncoloured dendroidal space X is in partic-
ular sparsely cofibrant when considered as an object of dSpaces, so the conclusion
follows immediately from Lemma 14.24. �
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Proof (of Theorem 14.36) Clearly N sends fibrations between uncoloured simpli-
cial operads to projective fibrations between dendroidal spaces. Combining this with
Lemma 14.38 shows that (τ, N) defines a Quillen adjunction

udSpacesP usOp.
τ

N

To see that this is also a Quillen adjunction with respect to the localized model
category udSpacesPS , it suffices to show that N sends fibrant simplicial operads to
local objects. This is indeed the case; for any simplicial operad P, the dendroidal
space NP satisfies the Segal condition.

Let X be an object of udSpaces that is both fibrant and cofibrant; in particular,
it satisfies the Segal condition. Then the unit X → Nτ(X) is a complete weak
equivalence by Lemma 14.39 and hence also a projective weak equivalence, by
Lemma 14.37 and the fact that NP satisfies the Segal condition for any simplicial
operad P. Thus, the unit of the adjoint pair of derived functors (Lτ,RN) is an
equivalence. The counit Lτ ◦ RN → id is then also a weak equivalence; indeed,
by Lemma 14.38 this may be checked after applying RN , when it follows from the
triangle identity

RN RN ◦ Lτ ◦ RN

RN .

�

�

We conclude this section with a discussion of the relation between the model cat-
egories udSpaces and dSpaces, equipped with either the projective model structures
or their localizations with respect to the Segal condition. Let us write dSpacesP,∗
for the left Bousfield localization of the projective model structure on the category
of dendroidal spaces with respect to the morphism � → η. Observe that η is a pro-
jectively cofibrant object and η � ∆[•] is a cosimplicial resolution of it with respect
to the projective model structure. It follows from this that for any dendroidal space
X , there is a weak equivalence

Map(η, X) ' X(η),

where the mapping space is taken with respect to the projective model structure on
the category dSpaces. It follows that the local objects of dSpacesP,∗ are precisely
those dendroidal spaces X for which X(η) is weakly contractible.

Proposition 14.40 The adjunction

dSpacesP,∗ udSpacesP
r!

r∗

is aQuillen equivalence. Similarly, it also gives aQuillen equivalence after localizing
both model categories with respect to the Segal condition:
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dSpacesPS,∗ udSpacesPS .
r!

r∗

Proof To see that (r!, r∗) is still a Quillen pair with respect to the localized model
structure dSpacesP,∗, it suffices to observe that r! sends the localizing morphism
� → η to the isomorphism η = η in udSpaces. To prove that it is in fact a
Quillen equivalence, we begin by observing that r∗ preserves and detects arbitrary
weak equivalences. Hence it suffices to show that for a dendroidal space X that
is both fibrant and cofibrant in dSpacesP,∗, the unit map X → r∗r!(X) is a weak
equivalence. By assumption, the simplicial set X(η) is weakly contractible. Factor the
evident inclusion η � X(η) → X as a projective cofibration η � X(η) → Y followed
by a projective trivial fibration p : Y → X . Since η � X(η) is projectively cofibrant,
the same is true for Y , so that p is a projective weak equivalence between cofibrant
objects. Hence the same is true of r∗r!(p); indeed, r! preserves projective weak
equivalences between cofibrant objects by Brown’s lemma, whereas r∗ preserves
arbitrary projective weak equivalences. Hence it suffices to examine the unit map
Y → r∗r!(Y ). By definition of r!, this map fits into a pushout square

η � Y (η) ∆[0]

Y r∗r!(Y ).

'

By left properness (or the observation that this square is a homotopy pushout), it
follows that the bottom horizontal map is a weak equivalence as desired. The final
claim of the proposition now follows by observing that (by definition) r! sends the
localizing maps for the Segal condition in dSpaces to the localizing maps for the
Segal condition in udSpaces. �

Combining the proposition with Theorem 14.36 yields the following:

Corollary 14.41 The adjoint pair (τ, N) gives a Quillen equivalence

dSpacesPS,∗ usOp.
τ

N

Finally, the previous results also imply the following very useful observation
about mapping spaces between uncoloured simplicial operads.

Corollary 14.42 Let P and Q be uncoloured simplicial operads. Then the functor N
induces a natural weak equivalence of mapping spaces

Map(P,Q) ∼−→ Map(NP, NQ),

where the mapping space on the right is computed in the model category dSpacesP .

Proof For emphasis write MapPS,∗ (resp. MapP) for the space of maps between
dendroidal spaces with respect to themodel structure dSpacesPS,∗ (resp. dSpacesP).
Then the previous corollary, combined with Corollary 11.12(1), in particular implies
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a weak equivalence
Map(P,Q) ∼−→ MapPS,∗(NP, NQ).

(Note that there is no need to distinguish between N and RN , since N preserves arbi-
trary weak equivalences.) Then the observation that dSpacesPS,∗ is a left Bousfield
localization of dSpacesP gives a further weak equivalence (cf. Corollary 11.12(2))

MapPS,∗(NP, NQ) ∼−→ MapP(NP, NQ),

completing the proof. �

14.8 Algebras for∞-Operads and for Simplicial Operads

In this short concluding section we record some further consequences of our results
for the theory of algebras over operads. Specifically, we show that for an∞-operad X
the covariant model structure on the category dSets/X is a model for the homotopy
theory of algebras for the simplicial operadw!X (cf. Theorem14.44). This specializes
to a version of Lurie’s ‘straightening-unstraightening’ equivalence for left fibrations
over a simplicial set (Corollary 14.46). Before we do this, let us observe that our
results imply ‘homotopy invariance’ of the model category AlgP of P-algebras:

Theorem 14.43 Suppose that f : P→ Q is a weak equivalence of Σ-free simplicial
operads. Then the adjoint pair

AlgP AlgQ
ϕ!

ϕ∗

is a Quillen equivalence.

Proof It is evident that ϕ∗ preserves fibrations and weak equivalences, so that the
pair above is a Quillen adjunction. To see that it is a Quillen equivalence, consider
the following commutative square of right Quillen functors:

AlgP AlgQ

(dSpacesP/NP)cov (dSpacesP/NQ)cov.

N (P,−) N (Q,−)

ϕ∗

Nϕ∗

The vertical functors are part of Quillen equivalences by Theorem 13.37. The bottom
horizontal arrow is part of a Quillen equivalence by Corollary 13.28 and the fact that
Nϕ : NP → NQ is a complete weak equivalence between dendroidal spaces that
satisfy the Segal property (cf. Lemma 14.23). Therefore the top horizontal arrow in
the square is also part of a Quillen equivalence. �
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Combining the various Quillen equivalences we have established, we can now
finally relate the covariant model structure on dSets/X to the homotopy theory of
w!X-algebras.

Theorem 14.44 Let X be a normal ∞-operad. There exists a natural zig-zag of
Quillen equivalences between the covariant model structure on dSets/X and the
projectivemodel structure on the categoryAlgw!X

of simplicialw!X-algebras. Under
these equivalences, a map x : η → X corresponds (up to weak equivalence) to the
free w!X-algebra generated by x.

Proof According to Example 12.24, the dendroidal space SingJ (X) is a complete
dendroidal Segal space with SingJ (X)0 = X . Hence Proposition 13.7 provides a
Quillen equivalence

(dSets/X)cov (dSpacesR/SingJ (X))cov.
dis!

dis∗

Now pick a sparsely cofibrant replacement Y of SingJ (X). In detail, fix a map Y →
SingJ (X) that has the right lifting property with respect to sparse cofibrations and
such thatY is sparsely cofibrant. (If desired, this map can be constructed functorially
from the small object argument, of course.) Using Lemma 14.16(i) it is easily seen
that Y still satisfies the Segal property. Hence Corollary 13.28 provides a Quillen
equivalence

(dSpacesP/Y )cov (dSpacesP/SingJ (X))cov.

Note that we have switched from the Reedy to the projective model structure on the
category of dendroidal spaces here, but of course the two are Quillen equivalent. To
proceed, note that Lemma 14.24 states that the unit map Y → Nτ(Y ) is a complete
weak equivalence of dendroidal spaces. Since both satisfy the Segal property, we
may apply Corollary 13.28 again to find a Quillen equivalence

(dSpacesP/Y )cov (dSpacesP/Nτ(Y ))cov.

Now Theorem 13.37 provides a further Quillen equivalence

(dSpacesP/Nτ(Y ))cov Algτ(Y).

Corollary 14.30 implies that the simplicial operad τ(Y ) is weakly equivalent to w!X .
Finally, combining this with Theorem 14.43 gives a zigzag of Quillen equivalences
between Algτ(Y) and Algw!X

. �

Remark 14.45 Of course the chain of Quillen equivalences used to prove Theorem
14.44 is rather long and somewhat indirect. It is possible to write down a direct
Quillen pair relating dSpaces/X to Algw!X

, but since the extra payoff is marginal
we refrain from doing so here.
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Specializing to simplicial sets, Theorem14.44 gives a version of the ‘straightening-
unstraightening’ correspondence (for left fibrations) first established by Lurie:

Corollary 14.46 Let X be an ∞-category. There exists a natural zig-zag of Quillen
equivalences between the covariant model structure on sSets/X and the projective
model structure on the category sSetsw!X of simplicial diagrams on the simplicial
category w!X . Under these equivalences, a map x : ∆[0] → X corresponds (up to
weak equivalence) to the functor corepresented by x.

Historical Notes

Localizations of simplicial categories were introduced by Dwyer–Kan [51] and all
of the results in Section 14.1 are due to them. The characterization of equivalences
in simplicial categories given in Section 14.2 is due to Bergner [19] and is the
crucial input in establishing what is now called the Bergner model structure on
the category of simplicial categories. The generalization to a model structure for
simplicial operads in Section 14.3 first appears in [42] and in work of Robertson
[130].

The equivalence of homotopy theories between simplicial operads and dendroidal
sets was established in [41, 42] (including the case of uncoloured operads); our proof
in Sections 14.5 and 14.6 is different, relying on the sparse model structure. In the
proof of Lemma 14.19 we used a modification of the usual small object argument
originating with Jeff Smith; an account of this appears right before Lemma 1.8 of
[15].

As we have observed, our results in particular imply equivalences between the ho-
motopy theories of simplicial categories,∞-categories, and complete Segal spaces.
The equivalence between simplicial categories and complete Segal spaces was es-
tablished by Bergner [20], the equivalence between complete Segal spaces and the
Joyal model structure on simplicial sets by Joyal–Tierney [94]. Bergner’s proof uses
the Segal categories of Hirschowitz–Simpson [85] as an intermediate device; the
proof presented in this chapter sidesteps this by the use of the sparse model struc-
ture. A direct proof that the homotopy-coherent nerve gives a Quillen equivalence
between the Joyal model structure on simplicial sets and the Bergner model structure
on simplicial categories was given by Lurie [105].

Section 14.7 on the relation between uncoloured dendroidal spaces and simplicial
operads contains several proofs and results that have not appeared in the literature
before. The application of dendroidal spaces to mapping spaces between simplicial
operads (Corollary 14.42) has been important in recent years, for example in the
work of Boavida–Weiss [25] and Göppl [70] (see also the appendix of [79]).

In the final Section 14.8 we started by discussing the homotopy invariance of the
category of simplicial P-algebras; this result was first demonstrated (with a different
proof) in [16]. The straightening-unstraightening equivalence between left fibrations
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over a simplicial set X and simplicial diagrams on the simplicial category w!X was
established by Lurie [105]; see also [81] for a different approach. The generalization
to left fibrations over a dendroidal set X and w!X-algebras appears in [77].
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Epilogue

In this book we have developed the theory of dendroidal sets and spaces. We have
not attempted to cover the many variations and extensions of this theory that have
appeared in the recent literature. In this epilogue we would like to direct the reader to
some of these, as well as highlight some applications. Also, we point out alternative
(but equivalent) models for the theory of∞-operads.

Different Models for the Theory of ∞-Operads

In this book we have described the theory of dendroidal sets and spaces as an
approach to the homotopy theory of∞-operads and shown that it is equivalent to the
theory of simplicial (or topological) operads. These are certainly not the only two
available models for a theory of operads ‘up to coherent homotopy’. Let us briefly
review the various other perspectives that have been developed in the literature and
point the reader to the available comparisons between them.

Perhaps the most well-known model is that of Lurie [106]. His starting point is
the category of operators associated to an operad O. This category has as its objects
the finite lists (c1, . . . , cn) of colours of O, with a morphism to another such list
(d1, . . . , dm) consisting of a partial map f : {1, . . . , n} → {1, . . . ,m} of sets and for
each 1 ≤ i ≤ m an operation of O with output di and set of inputs f −1(di). This
category of operators is equipped with an evident forgetful functor to the category
Fpart of finite sets and partial maps. The properties of such categories can be captured
in a short list of axioms, which can then be generalized to the setting of∞-categories:
Lurie defines an∞-operad to be amap of simplicial sets X → NFpart satisfying these
axioms. This approach can be seen as a generalization of Segal’s approach to infinite
loop spaces as particular kinds of simplicial diagrams indexed by the category Fpart.

The relation between simplicial sets over NFpart and dendroidal objects can be
visualized very concretely. Roughly speaking, a simplex S0 → S1 → · · · → Sn
of NFpart can be pictured as a forest (meaning a disjoint union of trees), with the
elements of the various sets Si serving as edges and the partial maps going from
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Si to Si+1 expressing how edges are attached to each other via vertices. Assigning
to such a simplex the corresponding disjoint union of representable dendroidal sets
provides a functor relating Lurie’s framework to the one of this book. This idea was
made precise in [80], where it is shown that this gives an equivalence of homotopy
categories between the two formalisms, at least in the case of operads without nullary
operations. (A full comparison is also available, as will be explained shortly.)

Another approach was proposed by Barwick [11]. He introduces a category ∆Fin
of which the objects are strings

S0
f1
−→ S1

f2
−→ · · ·

fm
−−→ Sm

of functions between finite sets, i.e., simplices f : [m] → F of the nerve of the
category of finite sets. The morphisms between such (m, f ) and (n, g) are pairs of
a morphism α : [m] → [n] in ∆ and an injective natural transformation f → α∗g
with the property that all naturality squares are pullbacks. One can then consider
presheaves (of sets or of spaces) on this category and impose various Segal conditions
on them. Barwick proves that the homotopy theory obtained in this way is equivalent
to that of Lurie’s∞-operads. On the other hand, it is proved in [39] that this model is
equivalent to that of dendroidal spaces, thus in particular proving that Lurie’s model
and the dendroidal one of this book are equivalent without any restrictions on nullary
operations.

To conclude we mention two further alternative approaches. First of all, any
(uncoloured) operadO in simplicial sets induces a corresponding free algebramonad

X 7→
∐
n≥0

O(n) ×Σn Xn

on the category of simplicial sets. Working in the ∞-category of spaces, Gepner–
Haugseng–Kock [63] characterize the monads arising in this way from an∞-operad
as the analytic ones, meaning those which are cartesian and preserve sifted colimits
and weakly contractible limits. The ∞-category of such monads (and a particular
kind of morphisms between them) can then serve as a theory of (uncoloured) ∞-
operads. The three authors also include a version for operads with colours and prove a
comparison result to the theory of dendroidal spaces. Another approach byHaugseng
[76] is perhaps closest in spirit to the traditional treatment of operads. A symmetric
sequence of simplicial sets is a collection {S(n)}n≥0 of simplicial sets with a specified
action of the symmetric group Σn on the term S(n). There is a monoidal structure on
this category, called the composition product, such that algebras with respect to this
product are precisely (uncoloured) operads in simplicial sets. Haugseng develops an
analogue of this notion in the ∞-categorical setting and shows that the theory of
∞-operads constructed in this way is equivalent to any of the other models described
above.
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One appealing feature of the problem of comparing different models for ∞-
operads is that once an equivalence has been established, it is essentially unique;
indeed, Ara, Groth, and Gutierrez [4] prove that the space of automorphisms of the
theory of∞-operads is contractible.

Spaces of Maps Between Little Disks Operads

As we have seen in Section 14.7, the space of maps Map(P,Q) between uncoloured
simplicial operads P and Q may be computed as the space of maps Map(NP, NQ)
between the associated dendroidal spaces NP and NQ. This space is of particular
interest for the operadsEn of little n-cubes, for varying n, since in this case thesemap-
ping spaces feature in the study of differential topology. For example, for n−m ≥ 3,
Boavida and Weiss [25] show that the space emb∂(Dm,Dn) of embeddings between
disks which agree with a standard embedding near the boundary is equivalent to the
homotopy fibre of a certain map from the space of immersions imm∂(Dm,Dn) to the
m-fold loop space of the mapping space Map(Em,En). For m = 1, this embedding
space is a space of ‘long knots’ and has received much attention in the literature.
In fact, Boavida and Weiss prove results of this kind for general manifolds M and
N by introducing their ‘configuration categories’. These are a type of Segal space
capturing the spaces of configurations of n points in these manifolds (for n ≥ 1), as
well as the relations between them as points collide.

One approach to analyzing mapping spaces of the kind Map(P,Q) is to approxi-
mate them by a tower

· · · → Map≤k(P,Q) → Map≤k−1(P,Q) → · · · ,

where Map≤k(P,Q) is the mapping space between the ‘k-truncations’ of the operads
P andQ. This idea features explicitly in the paper of Boavida andWeiss [25] aswell as
that ofArone andTurchin [5], both in the context of the embedding problemdescribed
above. The computation of these mapping spaces between truncated operads can be
carried over the setting of dendroidal spaces aswell, by considering diagrams indexed
by the subcategory Ω≤k of Ω spanned by trees that have at most k input edges for
every vertex. This translation is explained by Weiss in [141] and in the appendix
of [79] in the setting of operads without constants. In the latter case one has the
additional option of restricting attention to the subcategory of Ω of open trees with
at most k leaves. Göppl [70] uses these truncations in the case P = Em and Q = En

to prove that the mapping space Map(Em,En) is (n−m− 1)-connected if n−m ≥ 2.

Epilogue
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Equivariant Operads

In equivariant homotopy theory, one replaces the basic categories of spaces and
spectra by those of G-spaces and G-spectra, meaning all objects are equipped with
an action by some fixed group G. Corresponding algebraic notions, such as E∞-
ring spectra, are upgraded accordingly to G-spectra equipped with an action by
a suitable ‘G-equivariant operad’. The theory of equivariant homotopy-coherent
algebraic structures has seen much development by May and his collaborators and
has recently gained renewed interest because of the solution of the Kervaire invariant
one problem by Hill–Hopkins–Ravenel [82], relying heavily on equivariant stable
homotopy theory.

The extension of the theory of simplicial operads to that of equivariant simplicial
operads admits a parallel in the context of dendroidal sets developed by Bonventre
and Pereira. The paper [122] introduces the notion of equivariant dendroidal sets,
which are based on an extension ΩG of the category Ω. The objects of ΩG are
‘G-trees’, but the reader should be warned that these are bit more than simply a
tree T with an action of a group G. There is a notion of ‘G-∞-operad’, defined as
a presheaf on the category ΩG satisfying an inner horn filling condition. Bonventre
and Pereira establish a theory of equivariant dendroidal Segal spaces in [27] and
prove a comparison result with the theory of G-equivariant simplicial operads in
[26].

Enriched ∞-Operads

This book has focused on operads in the category of simplicial sets. One of the great
virtues of the concept of an operad (and its algebras) is that it makes sense in any
symmetric monoidal category, and that operads and their algebras can be transported
along suitable functors between such categories. For example, taking the homology
of the little 2-cubes operad yields an operad in graded vector spaces whose algebras
are precisely Gerstenhaber algebras [65], explaining why the homology of a double
loop space has a Gerstenhaber algebra structure.

However, if P is an operad in a symmetric monoidal category M, we cannot
simply construct its nerve NP as a presheaf on Ω as we did in the case where M
is the category of (simplicial) sets. Indeed, the action by external face maps in Ω
would require M to have projections from a tensor product to its factors. For many
purposes it is enough to consider NP in such a situation as a functor on the smaller
category Ω′ ⊆ Ω of inner faces and isomorphisms only, i.e., the subcategory of
morphisms which send leaves to leaves and preserve the root. For example, this
applies to treatments of bar-cobar duality that we will briefly touch upon below.

Amore elaborate solution to this problem that applies generally has been proposed
by Chu and Haugseng [38], extending a similar treatment of ∞-categories in a
symmetric monoidal∞-category by Gepner and Haugseng [62]. To explain the basic
idea, recall that a morphism α : S → T in Ω defines a partial map V(α) : V(T) →
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V(S) between sets of vertices. Now define a new category Ω[M] whose objects are
pairs (S,m) where S is an object of Ω and m = (mv)v∈V (S) is a labelling of the
vertices of S by objects of M. Morphisms (S,m) → (T, n) are pairs consisting of a
map α : S → T in Ω and a family of morphisms

αv : mv →
⊗

V (α)(w)=v

nw

in M, one for each vertex v of S. An operad P (uncoloured, for simplicity) defines a
presheaf NP on Ω[M] by

NP(S,m) =
∏

v∈V (S)

M(mv,P(in(v))),

where in(v) is the collection of inputs of a vertex v, as usual. Carrying this idea
over the context where M is an ∞-category (rather than an ordinary category), Chu
and Haugseng now define a theory of∞-operads enriched in M by considering such
simplicial presheaves X on Ω[M] which satisfy a Segal property: the map induced
by the corollas Cv → S for vertices v in S,

X(S,m) →
∏
v

X(Cv,mv)

is an equivalence in sSets. Moreover, they require that for each corolla Cn with n
leaves, the map

X(Cn,−) : Mop → sSets/X(η)n+1

is fibrewise representable. This then defines for any vertices x1, . . . , xn, y in X(η) a
fibre X(x1, . . . , xn; y), an object in M of ‘operations from x1, . . . , xn to y’.

They go on to formulate a completeness condition in this context and prove general
comparison theorems analogous to our comparison between dendroidal spaces and
simplicial operads, as well as the comparison results mentioned in the first section
of this epilogue.

Bar Constructions

An important application of the theory of operads is to what is often referred to as
‘Koszul duality’. Briefly said, for an operad P, say of spaces or of chain complexes,
one can associate a dual cooperad BP by performing a certain bar construction.
Then there exists an adjoint pair of functors relating P-algebras to BP-coalgebras
with a host of interesting properties. Examples of this include Moore’s bar-cobar du-
ality for associative differential graded algebras and coassociative differential graded
coalgebras, as well as Quillen’s duality between differential graded Lie algebras and
cocommutative differential graded coalgebras. Another example is the relation be-
tween En-algebras and En-coalgebras (and the resulting ‘self-duality’ of the theory
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of En-algebras). The bar construction of an operad P in chain complexes was first
defined by Ginzburg–Kapranov [68] and around the same time (in slightly different
terms) byGetzler–Jones [65]. However, the construction is not limited to the differen-
tial graded context; both Salvatore [131] and Ching [36] define the bar construction
for an operad P of spaces and Ching also for operads of spectra [37].

All of these constructions can be formulated in terms of colimits over certain
categories of trees closely related to the category Ω we have considered in this book.
Let us single out the case where P is an operad in spaces for concreteness. Consider
a finite set A with at least two elements. Then we write ΩA for the subcategory
of Ω on open trees with set of leaves precisely A and maps between them the
injective morphisms of trees that preserve the root and are the identity on leaves.
Any topological operad P defines a presheaf NP of spaces on Ω and hence by
restriction also on this category ΩA. Following Ching and Salvatore, associate to an
object T of ΩA a cube

w(T) := I ×
( ∏
e∈I (T )

I
)
.

Here the product is over the inner edges I(T) of T ; note that this is almost identical
to the space used to define the Boardman–Vogt W-construction, except that now we
have an extra factor of I in front, which we think of as a label on the root of T .
Write w0(T) for the subspace consisting of points where at least one edge is labelled
1 or the root edge is labelled 0 and define w(T) := w(T)/w0(T). These spaces are
functorial in T as in the case of the Boardman–Vogt construction; for an inner face
map T → S one assigns the label 0 to any newly arising inner edges. Then the bar
construction BP is defined by a coend over the category ΩA:

BP(A) := w(−) ⊗ΩA NP(−).

It is proved in [131, 36, 37] that this construction produces a cooperad out of
an operad. Also, as is already clear from this description, the bar construction
is closely related to the W-construction. To be precise, if one defines the space
Indec(WP(A)) of indecomposables to be the quotient of WP(A) by the subspace of
operations that can be obtained as compositions of (non-identity) operations, then
there is a homeomorphism BP(A) � ΣIndec(WP(A)), with Σ denoting the reduced
suspension. The description of the bar construction for differential graded operads,
as in the work of Ginzburg–Kapranov and Getzler–Jones, is described in very similar
terms in [87]. There it is also explained how Koszul duality for such operads may be
understood in terms of combinatorial features of the category of trees and inner face
maps between them.

Epilogue



597

Cyclic Operads, Modular Operads, Properads

There are several important variations of the notion of operad occurring in the
literature. One of these is that of a cyclic operad introduced by Getzler and Kapranov
[66]. In a cyclic operad, one can not only permute the input colours (as for any
symmetric operad), but also ‘rotate’ the colours by an isomorphism

P(c1, . . . , cn; c0) � P(c0, c1, . . . , cn−1; cn).

This typically happenswhen theP-algebras are objects in a categorywith duality such
as that of finite-dimensional vector spaces. In the tree picture that we have advertised
in this book, this corresponds to rotating a tree so that the root becomes a leaf and
one of the leaves becomes a root. Getzler and Kapranov [67] also introduced the
notion of a modular operad, which is a cyclic operad that moreover has ‘contraction
operations’

P(c1, . . . , cn; c0) → P(c1, . . . , cn−2; c0).

A typical (uncoloured) example is the one where P(n) is the space of Riemann
surfaces with n + 1 numbered boundary circles, with n of them serving as inputs
and one as output. One can glue one such surface to another by identifying the
output circle of the first with one of the input circles of the second to get an operadic
composition, but one could also glue two of the boundary circles of a given surface
to each other to obtain the stated ‘contraction’, which produces a surface with genus
increased by one.

Yet another variation of the notion of operad is that of a so-called PROP, where
operations can have multiple inputs as for operads, but also multiple outputs. Such
PROPs are relevant for describing algebraic structures such as bialgebras and Hopf
algebras in monoidal categories in which the tensor product is not the cartesian
product. There is also a slightly restricted version of the notion of PROP, called a
properad, enjoying better Koszul duality properties [138], and there are ‘wheeled’
variations of these notions allowing contractions as for modular operads.

In this book, we have observed that the nerve functor enables one to view operads
(in Sets) as presheaves on the categoryΩ satisfying the strict inner Kan condition and
we have shown that the more general (not necessarily strict) inner Kan complexes, or
∞-operads, form the fibrant objects in amodel structure on the category of presheaves
on Ω. We have also shown that there is an equivalent model structure for complete
Segal spaces on the category of simplicial presheaves on Ω. It is natural to ask to
what extent such results can be proved for the generalizations of operads described
above, by replacing Ω by some other suitable category of graphs. There are a number
of results in this direction of which we would like to mention a few here. Hackney,
Robertson, and Yau [73, 74] study modular ∞-operads by considering presheaves
on a category U of graphs, closely related to the Feynman graphs introduced by
Joyal–Kock [93]. They prove that the category of modular operads in Sets embeds
fully faithfully into the category of presheaves on U and study a localization of the
Reedy model structure on the category of simplicial presheaves on U of which the

Epilogue



598

fibrant objects can be viewed as modular∞-operads. In [72], the same three authors
define a variant Ξ of Ω, which plays a similar role, but now for cyclic operads. In [75]
they extend these methods and results to (wheeled) properads. Another approach to
cyclic operads, better suited to the coloured version, is taken by Walde in [140]. He
also shows that dendroidal Segal spaces that are ‘invertible’, in the sense that inner
face maps act by weak equivalences, are closely related to the 2-Segal spaces of
Dyckerhoff and Kapranov [53].

Brane Actions and Gromov–Witten Invariants

In work by Toën [137] and Mann–Robalo [109], ∞-operads are used to give an
interpretation of Gromov–Witten invariants. In order to explain some of the main
ideas, let us start with operads in the category of sets for the moment. The 2-category
of spans has sets as objects, while morphisms from A to B are diagrams of the form
A ← S → B and 2-cells between two such spans are morphisms S → S′ over
A × B. Composition is given by pullback of spans. Dually, there is a 2-category of
cospans A → S ← B where composition is given by pushout. For a fixed object
X , the contravariant functor A 7→ Hom(A, X) sends cospans to spans. These span
and cospan categories have a symmetric monoidal structure given by product and
coproduct of sets, respectively. If P is a operad, then a P-algebra in cospans is given
by a set A and for each operation p ∈ P(n) a cospan

qn
i=1 A→ Sp ← A

or, in other words, a single cospan

qn
i=1(P(n) × A) → S ← A × P(n)

in the category of sets over P(n). These data then satisfy unit and associativity
conditions with respect to the composition of operations in P. A collection of maps
as above is called a lax algebra if these conditions for a P-action only hold up to
specified 2-cells between cospans. If A is a lax P-algebra in cospans, then Hom(A, X)
is a lax P-algebra in spans.

Toën observes that if P is any operad with P(0) = P(1) = ∗, then the set P(2) is a
lax P-algebra in cospans, with action given by

qiP(n) × P(2) P(n + 1) P(2) × P(n)

P(n).
π1

◦1

π2

Here the middle arrow substitutes the constant of P(0), say in the first variable, and
the left horizontal map is given by the ◦i-operations and symmetries of P so as to
make the diagram commute. If P satisfies certain conditions (is of configuration
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type in Toën’s terminology, or coherent in Lurie’s), then this lax action is in fact
a true action, meaning the specified 2-cells are invertible. So for such a P, the set
Hom(P(2), X) is a P-algebra in spans. Much of the work of [137] goes into showing
that the same applies to an ∞-operad P and in the much wider context where one
replaces the sets by objects with a geometric structure, such as spaces or objects in
a topos or an ∞-topos. For the derived category of quasi-coherent sheaves DA (or
some suitable variant of it) of an object A in such a category, a span

A
p
←− S

q
−→ B

yields functors q∗p∗ : DA→ DB and these respect the composition of spans if a base
change formula for direct images holds. Thus, under favourable circumstances, an
operad P of configuration type acts on DHom(P(2), X), the derived category of the
‘spaces’ ofmaps fromP(2) into X . For example, ifP is theEn+1-operad, thenEn+1(2)
is homotopy equivalent to the n-sphere Sn and one concludes that DHom(Sn, X) is
an En+1-algebra for suitable X . Toën subsequently applies this to higher formality
problems.

Mann–Robalo [109] apply these ideas to the construction of Gromov–Witten
invariants roughly as follows. Consider the operad P with arity n operations given by
M0,n+1, themoduli space of genus zero stable curveswith n+1marked points. (Really,
Mann–Robalo use a derived enhancement and consider it in a suitable∞-category of
derived stacks.) The marked points on such a curve C can be labelled x0, x1, . . . , xn,
with x0 considered the output and the other xi’s the inputs. Composition of operations
is given by gluing curves. In this case, the operad P acts on P(2) by cospans as in
the diagram above.

Now fix a smooth projective variety X and apply the internal hom
MapP(n)(−,P(n) × X) in the category of spaces (or derived stacks) over P(n) to
the earlier diagram expressing the P-action by cospans to get a span

M0,n+1 × Xn M0,n+1(X) M0,n+1 × X

M0,n+1

over P(n). In this diagram, we have used that P(2) = M0,3 = ∗ to identify
Map(P(2), X) with X itself. Also, the middle term M0,n+1(X) denotes the mod-
uli space of stable curves C with n + 1 marked points x0, . . . , xn, equipped with a
map f : C → X . The arrow to the right evaluates f at x0, whereas the arrow to the
left evaluates at the remaining points x1, . . . , xn.

The diagram above describes an action by spans of the operad M0,•+1 on X . As
explained above, this also induces an action on (a version of) the derived category
of X . In particular, one obtains an action of the homology of the operad P of moduli
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spaces of stable curves on the cohomology of X , which is the more usual perspective
on Gromov–Witten invariants. The work of Mann–Robalo is an enhancement of this
action on cohomology to a ‘geometric’ action by spans on X itself.

Epilogue
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inner, 223
leaf, 223
of dendroidal sets, 223
root, 223
unary root, 231

associative operad Ass, 7
A-trivial cofibration, 358
attaching cells, 271
A-weak equivalence, 357, 384

bar construction, 595
Barratt–Eccles operad, 87
Bergner model structure, 564
bisimplicial set, 78
Boardman–Vogt

interchange relation, 27
resolution, 29, 83
resolution, of an operad, 89
tensor product, 26

Brown’s lemma, 290

cartesian
arrow, 170
closed, 67
lift, 170

categorical
equivalences between∞-categories, 343
fibrations, 305
interval, 560
localization, 288
model structure, 304
weak equivalence, 304

category
enriched, 81
fibred in groupoids, 170
object, 81
of elements, 63
of operators, 591
simplicial, 82

cellular extension, 271
classifying diagram, 521
classifying space, 66, 98, 557

of a simplicial category, 83
of a simplicial group, 80
of a topological group, 78

closed
dendroidal sets, 116
spine, 511

closure
of a tree, 97
of an operad, 6

codendroidal identities, 100
cofibrant

object, 268
P-algebra, 548
replacement, 268

cofibrantly generated model category, 278
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cofibration, 266
of topological spaces, 275

colimit, universal, 435
collection, 20
coloured operad, 6
colours, 4

of an∞-operad, 376
commutative operad Com, 7
compactly generated

topology, 73
weak Hausdorff spaces, 73

complete, 491, 520
dendroidal Segal spaces, 491
Segal spaces, 519
weak equivalence, 498, 520

configuration space, 37
connected components, 69
connective spectra, 553
conservative functor, 192
constant

bisimplicial set, 83
presheaf, 69

contravariant Reedy model structure, 434
convenient category of spaces, 73
corolla, 21, 93
cosimplicial

identities, 50
object, 437
resolution, 454

cospan, 598
countable approximation property, 476
covariant

equivalence, 529
model structure, 348, 524, 527
model structure overV , 389
Reedy model structure, 434

cube lemma, 297
cyclic operad, 597
cylinder, 280

degeneracy, 100
maps, 53

degree function, 424
dendrex, 106

dendroidal
inner fibration, 221
inner Kan complex, 212
Kan complex, 407
Kan fibration, 221
left fibration, 221
left Kan complex, 212
nerve, 108
right fibration, 221
right Kan complex, 212
Segal space, 487
Segal space, closed, 511
set, 106
set, A-local, 354
space, closed, 509
space, open reduced, 518
space, reduced, 514
spaces, category of, 426
space, weakly closed, 509
space, weakly reduced, 514

derived
counit, 321
unit, 321

d-fold loop space, 11
discrete, 69

bisimplicial set, 83

edges, 16
E∞, 9
E∞-space, 551

grouplike, 552
elementary

degeneracy, 50, 100
face, 50, 100

embedding
between disks, 593
of trees, 92

enriched∞-operads, 594
equivalence, 252

in a simplicial category, 560
in an∞-category, 191

equivariant
dendroidal sets, 594
simplicial operad, 594

essentially surjective, 346, 377, 500
map of simplicial operads, 564

Ex∞-functor, 315
exponential, 67
extension property, 128
external product, 79

face
maps, 53
of a forest, 250
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fibrant
in the Picard model structure, 412
object, 268
replacement, 268

fibration, 266
of topological spaces, 275
Reedy, 427
trivial Reedy, 427

fibre, 170
bundle, 275

fibred category, 170
fibrewise

homotopy, 284
J-equivalent, 207, 256
J-homotopic, 206, 255
path object, 283

folk model structure, 268
forest, 247
free

operads, 23
resolution, 14

freely adjoin a new arrow, 177
fully faithful, 346, 377, 490

functor of simplicial categories, 556
map of simplicial operads, 564

Fulton–MacPherson
compactification, 37, 44
operad, 41

fundamental property of bisimplicial sets, 440

generating cofibration, 278
trivial, 278

geometric realization, 55, 65
of a simplicial space, 77

grafting, 94, 184
Gromov–Witten invariants, 599
groupoid, 165

HELP, 272
homotopically

constant, 494
fully faithful, 459

homotopy
category, of a model category, 285
category, of a simplicial set, 166
class, in a model category, 283
colimit, 297
colimit functor, 442
equivalence, 285
groups, of simplicial sets, 330
invariance, of the covariant model
structure, 540
lifting lemma, 283
operad, 217
of a dendroidal Segal space, 491
pushout, 298

homotopy-coherent
diagram, 35
nerve, 86, 165

horn, 161, 169
of a tree, 211

I-cellular morphism, 174
incoming edge, 92
incomparable edges, 92
independent edges, 249
infinite loop spaces, 12
∞-category, 162
∞-operad, 212

in the sense of Lurie, 591
injective model structure, 437
inner

anodyne morphism, 173
edge, 16, 91
face, 99
fibration, 169
hom, of dendroidal sets, 134
horn, 162, 169, 211
Kan complex, 162

input, 16
interior, of a tree, 93
internal

category, 81
functor, 81
hom, 67
operad, 82

interval object, 83
invertible object, 404
isofibration

of simplicial categories, 562
of simplicial operads, 564

isomorphism
of trees, 93

J-anodyne morphism, 373
J-equivalent simplices, 201
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J-fibration, 206, 255
J-homotopic, 198, 253
J , nerve of free isomorphism, 83
join

of trees, 247
of two simplices, 181

Joyal model structure, 304
J-path lifting, 192

Kan
complex, strict, 212
complex, 162
extension, 64
fibration, 169

Kan–Quillen model structure, 314
kite, 464
Koszul duality, 595

ladder, of dendroidal sets, 366
λ-fibrant, 468
λ-local object, 468
latching maps, 432
leaf

face, 99
homotopy, 217
horn, 211
vertex, 92

leaves, 16
left

anodyne morphism, 173
Bousfield localization, 324, 329, 467,
468
deformation retract, 350
derived functor, 319
fibration, 169, 391
homotopic, 281
homotopy, 281
horn, 169
Kan extension, 64
lifting property, 127
proper, 290, 292
proper model category, 279
quasifibration, 524, 525
Quillen bifunctor, 505
Quillen functor, 318

little d-cubes operad Ed , 8
local

fibration, 328, 556
fibration, of simplicial operads, 564
object, 468
weak equivalences, 328

localizable set of morphisms, 473
long exact sequence, 272

of homotopy groups, 335

loop space, 335

mapping space, 240, 453, 457
in dendroidal sets, 464
in Joyal model structure, 461
in simplicial presheaves, 463
in simplicial sets, 460

matching maps, 427
minimal

∞-category, 201
J-fibration, 207, 256
Kan complex, 201
Kan fibration, 207

model category, 266
model for the mapping space, 457
model structure, 266

on P-algebras, 544
modular operad, 597
monad, 592

naive model structure, 269
n-coskeleton, 69
negative morphism, 103

category of, 424
nerve

functor, 65
of a category, 65
of an algebra, 109
of an operad, 109
of a simplicial category, 82

non-degenerate dendrex, 111
normal

configuration, 38
dendroidal set, 120
monomorphism, 124, 125
monomorphism, of dendroidal spaces,
484
monomorphism, of wide forest sets, 251

normalization
of a dendroidal set, 355
of a map, 355
of configurations, 38

n-simplices, 53
n-skeleton sknX, 60, 69
nullary vertex, 16, 92

object, of a dendroidal Segal space, 489
open

dendroidal sets, 116, 379
operad, 6
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operad, 4
cofibred in groupoids, 222
coordinate free, 20
enriched, 82
reduced, 514
simplicial, 82
weakly reduced, 514

operadic
equivalence, 374
fibrations, 372
model structure, 371, 372
weak equivalences, 372

operations, 4
opposite

∞-category, 172
of a simplicial set, 172

outer
edge, 16, 91
face, 99

outgoing edge, 92
output edge, 16

partial map, 118
path

lifting, 191
object, 280

Picard
anodyne map, 406
equivalence, 407
groupoid, 213, 404
∞-groupoid, 407
model structure, 407, 553

planar structure, 17
pointed

dendroidal set, 117
maps, 330

positive
morphism, 103
morphisms, category of, 424
subpresheaf, 428

presheaf, 62
product, of simplicial sets, 70
projective

covariant model structure, 527
left fibration, 524
model structure, 295, 532

PROP, 597
properad, 597
pruning, 92, 228
pullback in Ω, 105
pushout-product, 146

property, 439

Quillen
adjunction, 296, 318
equivalence, 322
equivalent, 322
model category, 266
model structure, 266
pair, 318
path object argument, 545
Theorem A, 451
Theorem B, 450

realization, of a simplicial object, 437
reduction, 118
Reedy

category, 424
covariant model structure, 527
left fibration, 524, 526
model structure, 431, 533

relative
CW-complex, 271
cylinder objects, 284

representable presheaves, 62
retract argument, 278
right

anodyne morphism, 173
derived functor, 319
fibration, 169
homotopic, 281
homotopy, 281
horn, 169
lifting property, 127
proper, 290, 292, 343
proper model category, 279
Quillen functor, 318

root, 16
face, 99
homotopy, 217
horn, 211
horn, unary, 231

saturated, 127
Segal

condition, 485, 519
space, 519

Serre fibration, 272
s-free algebra, 548
shuffle, 71, 139

maps, 70
simplex

category, 49
degenerate, 57
non-degenerate, 57
standard, 63
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simplicial
Boardman–Vogt resolution, 115
group, 53, 80
identities, 53
n-sphere, 331
object, 53
operad, 86
resolution, 454
scheme, 53
set, 53
set, pointed, 330
space, 53, 77
spaces, 519
spaces, category of, 426
system, of model categories, 530
W -construction, 89

singular complex, 56
skeletal filtration, 60, 120, 121
slice

over, 189
under, 188

small object argument, 278
space

of morphisms, 346
of operations in an∞-operad, 466

span, 598
sparse

cofibration, 568
model structure, 568
trivial cofibration, 569

spine, 184, 214, 242
standard topological n-simplex, 54
Stasheff polytopes, 36
straightening-unstraightening, 587
strict (inner) Kan complex, 162
strictly positive, 427
stump, 16, 92
subpresheaf, 63
subtree, 93
symmetric monoidal

category, 397
groupoid, 398

tensor product
n-fold, 156
of dendroidal sets, 134
of dendroidal spaces, 505
unbiased, 155

thin operad, 141
topological operad, 8
totalization, 531
transfer, of a model structure, 293
transferred model structure, 294
tree, 16, 91

closed, 92
closed reduced, 514
linear, 92
open, 92
open reduced, 518

trivial
cofibration, 266
fibration, 128, 172, 222, 266

truncated operad, 593
twist, 493
two-out-of-six, 290

uncoloured, 582
dendroidal sets, 117, 381
operad, 6

underlying simplicial set, 109
unital operad, 117
universal property of left Bousfield localization,

469

valence, 92
vertex, 16

external, 91
internal, 91

W -construction, 30
weak

cylinder, 280
equivalence, 266
equivalence, of topological spaces, 275
homotopy equivalence, 314
path object, 280

weakly saturated, 127
wide

boundary, 250
forest sets, 249
map, of forests, 249

Yoneda
embedding, 62
lemma, 62
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