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PREFACE 

This book is initiated by the engineering experience of the author. Throughout his career the 

author has encountered many of the problems known to others involved in the design of elec-

troacoustic transducers. The fact of the matter is that the complexity of designing electroacous-

tic transducers is inherent in the multidisciplinary nature of the subject. Therefore, the develop-

ers and designers of the transducers must possess the knowledge of several different theoretical 

disciplines (such as the vibration of mechanical systems, electromechanical conversion by de-

formed piezoelectric bodies, and acoustic radiation) and be able to actively use this knowledge 

to derive equations that describe the performance of the transducers. Furthermore, creating 

practical transducer designs that meet certain requirements and can operate under realistic en-

vironmental conditions requires the knowledge of properties of materials used and a certain 

level of engineering intuition that cannot be developed without a clear understanding of the 

underlying physics. Hardly anyone may possess all these capabilities without having received 

a specially targeted education, which, to the best of the author’s knowledge, is not commonly 

available in the academic world. Usually, the necessary skills may be acquired through self-

education, which was the case for the author. The main difficulties that arise in this endeavor 

are not in the lack of available information. On the contrary, the theoretical disciplines listed 

above are very well developed and are well-represented in the literature. Nevertheless, all these 

disciplines employ different methods for solving their problems and the results obtained are 

usually presented in forms not suitable for direct use in concert for synthesizing equations that 

govern transducer performance. Thus, the results must be tailored accordingly. 

Experiencing the above difficulties over several decades, the author gradually developed a 

special approach to treating transducers problems that allows one to overcome many of the 

obstacles. The essence of this approach is in the consistent application of the physics-based 

energy method for solving all the problems that arise in the course of treating electromechanical 

and electroacoustic transducers. The first attempt to describe this concept was undertaken in 

Electromechanical transducers from piezoelectric ceramic published in 1990 in Russia. This 

version has now been updated and expanded to the extent that it can be considered a completely 
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different book. Only the underlying energy approach to solving the problems has remained 

unaltered. This book is written for students, applied scientists and engineers in a way that should 

prove fruitful both for those who have only begun to chart their careers in electroacoustics as 

well as for those at a more advanced level. The content of the book is split into four p arts. 

In Part I, titled “Introduction of energy method of treating the transducers,” the main con-

cepts of the method are considered (Chapter 1); applications of the method to calculating prop-

erties of transducers with single degree of freedom are illustrated (Chapter 2); and the study of 

problems for designing the transducers as a part of the transmit/receive channel is made (Chap-

ter 3). The main concept is that of energy and following its transformation. Different types of 

energies involved in the electro-mechano-acoustic conversion in the course of transducer oper-

ation are presented in the generalized coordinates. All the governing equations are derived from 

the energy principles, that is, from the Law of Conservation of Energy for transducers with a 

single mechanical degree of freedom, and from the Principle of Least Action for transducers 

with multiple degrees of freedom. Equations describing the electromechanical part of the prob-

lem are reinterpreted as Kirchhoff’s equations for the corresponding equivalent electromechan-

ical circuits. In Chapter 2, the general approach is applied towards calculating the properties of 

transducers of widely used types (spheres, cylinders, bars undergoing extensional vibration and 

for circular plates and rectangular beams vibrating in flexure) that may be considered as systems 

with single mechanical degree of freedom. In Chapter 3, the operating properties of transducers 

as a part of a transmit/receive channel are considered and some recommendations regarding a 

rational transducer designing are presented. Given that the single degree of freedom approxi-

mation covers many practical transducer designs, Part I can be regarded as a self-sufficient 

study of underwater electroacoustic transduction on a basic level and can be read independently 

from the rest of the book. 

The general treatment of electroacoustic transduction requires an advanced knowledge of 

the vibration of mechanical systems, electromechanical conversion in the deformed pie-

zoceramic bodies and acoustic radiation. Information about these topics, which is necessary for 

the consideration of virtually all practical transducer types is presented in Chapters 4-6 of Part 

II under the title: “Subsystems of the Electroacoustic Transducers.” All the constitutive equa-

tions are derived in these chapters from the Principle of Least Action as Euler’s Equations in 
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generalized coordinates. The obtained results are presented in the form of impedances, (includ-

ing the radiation impedances), electromechanical transformation coefficients and acting forces 

(including those of acoustic origin) that can be directly substituted into the equivalent electro-

mechanical circuits (multi contour in general) of the transducers. The diffraction coefficients 

and directional factors for differently configured transducer surfaces are also presented. 

In Chapter 4, special attention is paid to the consideration of coupled vibrations in the 

generally two-dimensional mechanical systems. The results allow determining the range of as-

pect ratio, at which the system can be approximately considered as one-dimensional, where the 

problem can be simplified. 

In Chapter 5, especial importance is ascribed to the theorem that sets the conditions, at 

which the electromechanical conversion under the longitudinal and transverse piezoelectric ef-

fects can be treated qualitatively in the same way. This allows for the unifying calculation tech-

nique for the transducers that employ these types of ceramics polarization. Another important 

subject is the general analysis of optimizing the effective coupling coefficients in nonuniformly 

deformed piezoceramic bodies. 

Chapter 6 touches upon several noteworthy issues. Besides solving the general radiation 

problems, it provides a detailed consideration of the effects of baffling parts of the surfaces of 

cylindrical and spherical transducers, which ensures their unidirectionality. The technique for 

the experimental investigation of the acoustic interaction between transducers (or between the 

mechanically isolated parts of the same transducer) is also analyzed. Since the baffles have an 

effect on the acoustic near field, the interactions can rarely be treated analytically for practical 

transducer configurations, hence more reliable characterization of the interaction can be ob-

tained through an experimental investigation. 

The results obtained in the Part II are used in Part III of the book titled “Calculating trans-

ducers of different types” for synthesizing equations that describe the detailed operation of 

transducers of various configurations: cylindrical (Chapter 7), spherical (Chapter 8), plates and 

beams vibrating in flexure (Chapter 9) and bar transducers (Chapter 10). 

Chapter 7 presents a study of cylindrical transducers that employ multimode extensional 

and flexural vibration of complete and incomplete cylinders (slotted cylinder projectors are also 

considered) for various practical applications. Different modes of the cylinder polarization are 
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considered, including the tangential polarization (with striped electrodes). An extensive study 

is provided of the effects of coupled vibrations on the electromechanical and acoustic perfor-

mance of transducers that employ cylindrical piezoelements having finite thickness to diameter 

aspect ratios. Chapter 8 covers transducers which employ general multimode extensional vibra-

tions of complete and incomplete piezoceramic spherical shells, (hemispherical in particular). 

The baffling of the parts of the surface that allows using multiple modes of vibration for unidi-

rectional transducer operations is also considered. 

In Chapter 9, a general analysis is provided of transducers which feature flexural vibrations 

of circular and rectangular piezoceramic plates (beams), including non-uniform over thickness 

and radius (length) transducer designs. Optimizing the effective coupling coefficients of the 

transducers is considered making use of the nonuniformity of the distribution of deformations 

in the volume of the plates. Corrections for transducer parameters due to a finite thickness to 

radius (length) ratio of the plates are taken into account. It is then concluded that the accuracy 

with which the wave numbers can be predicted substantially depends on the aspect ratio (espe-

cially for the higher modes of vibration) and presenting their values without the notion of the 

aspect ratios is not appropriate. 

In Chapter 10, the length expander bar transducers are considered Transitions of configu-

rations of bars to thickness vibrating plates at different polarizations and related dependencies 

of their effective coupling coefficients on the aspect ratios are considered using the technique 

of coupled vibrations. Relatively small attention is paid to the widely used Tonpilz transducer 

designs because they have already been described in detail in the available literature. 

Part IV (Chapters 11 through 15) is titled: “Some aspects of the transducers designing.” 

In Chapter 11, a review of the existing data and some new results is presented regarding 

effects of operating environmental conditions, such as the hydrostatic pressure, temperature, 

and drive level on the parameters of piezoceramics. It is emphasized that, under these condi-

tions, the parameters of ceramics may deviate significantly from those that are given in speci-

fications for normal conditions. Moreover, they may differ for samples of ceramics supplied by 

different (and even by the same) manufacturers. This must be kept in mind when calculating 

the operating parameters of transducers under real conditions and in estimating a reasonable 

accuracy of calculation of the parameters. The variations in the parameters of transducers 
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intended for operating at great depths can be avoided by using designs, which incorporate hy-

drostatic pressure compensation. Issues related to the practical implementation of the pressure 

compensation are examined in Chapter 12 (more general information), in Chapter 13 (regarding 

the liquid filled cylindrical projectors) and in Chapter 14 (regarding the hydrophones). 

Chapter 13 presents some considerations regarding the practical challenges of the projec-

tors design. Using the concept of the Reserves-of-Strength for improving parameters of the 

transducers of different types by optimizing their matching with the acoustic field is considered. 

The possibilities of increasing the dynamic and static mechanical strength of the projectors by 

prestressing and combining piezoceramic with passive materials in their mechanical systems 

are analyzed. 

Chapter 14 is dedicated to the design of hydrophones and related issues. The hydrophones 

employing different transducer types are classified by the pressure and pressure-gradient hy-

drophones of the diffraction and motion types. Their properties as a source of energy of signal 

and internal noise for a receive channel are considered. Special attention is paid to the response 

of the hydrophones and accelerometers to unwanted actions and to measures aimed at increas-

ing their noise immunity. 

 Chapter 15 is crucial for the structure of the book because it introduces the practice of 

combining Finite Element Analysis (FEA) with analytical energy methods. This is illustrated 

with examples of flextensional and oval transducers. Combining powerful computer-based FEA 

techniques that are used to obtain results for vibration mode shapes with the energy method that 

yields great physical insight opens up a new area of research collaboration for many transducer 

problems. FEA allows the determination of the vibration mode shapes for mechanical systems 

that cannot be approximated analytically due to the complexities of the mechanical system and 

its boundary conditions. 

The book also contains appendices with information on the properties of the piezoelectric 

ceramics and passive materials that may be used in transducer designs, and on the properties of 

the special functions that are referred to throughout the book. 

In summary, the book presents methods for calculating the properties of most common 

electroacoustic transducer problems with particular focus on underwater applications. Moreo-

ver, by combining the FEA technique to determine the prerequisite vibration mode shapes with 
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the energy method, virtually any transducer type may be analyzed. Still however, when it comes 

to choosing and designing a particular transducer for a particular application under demanding 

operating and environmental specifications – this remains somewhat of an art. Thus, recom-

mendations of transduction choices for representative problems remain a guide and not a pre-

scription for success. 

It is inevitable that the book may contain typographical or content errors and thus the author 

would welcome the readers’ comments and notifications of such. 

 

Boris S. Aronov 
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CHAPTER 7 

CYLINDRICAL TRANSDUCERS 

7.1 Introduction 

After vibration of the potential mechanical systems of the transducers, electromechanical en-

ergy conversion in the piezoelectric vibrating bodies and conditions of their loading are consid-

ered in Chapters 4-6, respectively, the equations that govern operation of the particular electro-

mechanical transducer types can be completed. This will be done in the following Chapters. 

We will start the treatment from the cylindrical transducers. This example is the most typical 

for illustrating the general procedure of application of the energy method. Mechanical systems 

of cylindrical transducers are usually composed of a number of coaxial rings mechanically iso-

lated from each other. In calculating vibrations of the comprising rings that constitute the trans-

ducers, their joint operation affects only conditions of their loading. Therefore, the general anal-

ysis of the rings vibration that is performed in Ch. 4 remains applicable. The main body of the 

treatment will be performed under the assumption that the rings have small height and small 

thickness compared with their diameter in order to avoid unnecessary complications in illus-

trating the essential concepts, moreover that the most of practical transducer designs fall into 

this category. The cases that the height of a ring is comparable with its diameter (i. e., the ring 

becomes a tube of a finite height), or the ring has significant thickness will be considered sep-

arately with example of a transducer uniformly vibrating in radial direction.  

As it was discussed in Section 4.4.4, the circular ring may vibrate in the extensional and 

flexural modes that have significantly different ranges of the resonance frequencies spectrum 

and require different conditions for their electromechanical excitation In order to determine 

fundamental design differences of the ring transducers that realize extensional or/and flexural 

vibrations, we will assume at first that the transverse piezoelectric effect is employed for elec-

tromechanical conversion in piezoceramic rings. For illustrating the design differences let us 

place the origin of the coordinate system on the mean circumference of a ring, as it is shown in 

Figure 7.1(a), and represent the electric field in the ring in the form 
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 ( ) ( ) ( )3 1 2

2
, Ω Ω

V
E z z

t
 = , (7.1) 

where ( )1 z  and ( )2   are the functions that depend on configuration and on the manner of 

connection of electrodes located in the volume of the ring Figure 7.1 (b)-(d)).  

 

Figure 7.1: General view of a ring (a) and the electrical field distributions over the ring thickness 

for excitation of: (b) extensional deformations, (c) flexural deformations, (d) both extensional and 

flexural deformation. 1 - prisms, from which ring is assembled in the case that the longitudinal 

piezoeffect is employed, 2 - electrodes, 3 - layer of passive material. Solid arrow shows direction 

of electric field, dashed arrow – of the field of polarization. 

After substituting function ( )3 ,E z   and the general expression (4.220) for strain in the ring 

(replacing in it (r-a) by z) into formula (5.67) and integrating the energy density over the volume 

of the ring we obtain, 
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Apparently, the first integral is responsible for electromechanical conversion related to the ex-

tensional vibration and the second - for those caused by the flexure. The results of calculating 

Wem depend significantly on the properties of functions ( )1 z  and ( )2  . The following 
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variants differ in principle regardless of how the function ( )2   looks: when ( )1 z  is an 

even function of z, ( ) ( )1 1z z = − , as shown in Figure 7.1 (b), and when it is an odd function, 

( ) ( )1 1z z = − − , as shown in Figure 7.1(c). At even ( )1 z  the second integral in formula 

(7.2) vanishes. Electromechanical conversion can occur only under the extensional defor-

mations. The basic design of a ring element is presented in Figure 7.1 (b). A typical example of 

such a transducer is pulsating piezoceramic ring, considered in Section 2.3. At odd ( )1 z  the 

first integral in expression (7.2) becomes zero. Electromechanical conversion under the flexural 

deformations may take place. The variants of basic designs of the ring elements, which allow 

for such conversion, are shown in Figure 7.1 (c). Finally, the function ( )1 z  may have such a 

form that both integrals therein exist, and the electromechanical conversion of both modes of 

deformation is possible. The example of one of the possible designs of a ring element for this 

case is given in Figure 7.1 (d). In the second row of the Figure 7.1 the variants of ring design 

are shown that allow employing the longitudinal piezoeffect for excitation of vibration. In these 

cases, the rings are composed of the prisms that have electrodes on their side surfaces. Getting 

different patterns of electric field through the thickness of a prism is self-explanatory from the 

figure. 

In accordance with design versions presented in Figure 7.1 (b)-(c) we will consider sepa-

rately transducers operating in the extensional and flexural vibration modes. It is noteworthy 

that by switching electrodes in the volume of a ring the transducers can be, in principle, con-

verted from one type to another. Since in the design shown in Figure 7.1 (d) the result of exci-

tation of both types of vibrations can be obtained as their superposition, transducers of this kind 

will not be considered here as a separate issue. 

7.2 Transducers Operating in the Extensional Modes 

Considering transducers of this type we will use the results presented in Sections 4.4.4 and 

4.5.2, where vibration of the passive rings was discussed. 

7.2.1 Generating Different Modes of Vibration 

Substituting expressions (4.258) and (4.259) for displacements r  and   under the sign of  

the first integral in relation (7.2) and assuming that in this case 1( ) 1z =  due to a small  
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thickness of a ring, we obtain 

 ( ) ( ) ( )
2

231
2

111 0

1 cos .em o iE
i

d Vh
W i i d

s

 

    
=

 
=  + + 

 
  (7.3) 

Now the electromechanical transformation coefficients can be found by using formula (5.212) 

in the form 

 ( )31 11/ E

i in d h s=  , (7.4) 

where 

 ( ) ( ) ( )
2

2

2

0

1 cosi i i d


   = +  . (7.5) 

In the variant of the longitudinal piezoelectric effect in a segmented ring 

 ( )33 33/ E

i in d th s =  . (7.6) 

Here   is the average width of the prisms comprising the ring (see Figure 7.1). Thus, the con-

ditions of electromechanical conversion for different modes of vibration depend on how the 

function ( )2   looks. By giving this function different forms, it is possible to govern the 

frequency characteristics and displacements distribution over the ring surface, as it was shown 

for the bar transducer in Section 2.4. Consider values of coefficients i  for some of configu-

rations of electrodes. At first, we will assume that the electrodes fully cover the entire side 

surfaces of the ring. In the case that the electrodes are unipolar, as shown in Figure 7.2(a), 

 ( )2 1 = , 0 2 = , 0i =  at 1 i  . (7.7) 

Only the zero mode of vibration that corresponds to the pulsating vibrations of the ring is elec-

tromechanically active.  

In the case that the electrodes are divided into 2N parts, which are alternately connected in 

phase opposition, as it is shown for N = 1 and N = 2 in Figure 7.2 (b)-(c), 

 ( ) ( )1 2( 1) 4 1 / 2 1l

i i l+ = −  + −  at ( )2 1i l N= −  and 1,2,l =   (7.8) 

All the other transformation coefficients are zero. The first electromechanically active vibration 

mode is ( ) cosN N  = . Besides, the active vibration modes are those with numbers 3N, 5N, 

etc. Thus, for N = 1 
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1 8 =  and 

3 40 / 3 = − . (7.9) 

If the electrodes cover only a part of the ring surface at angles / m  , i.e., ( )2 1 =  at 

/ m   and ( )2 0 =  at / m  , then 

 0 2 / ,m =  ( )22 1 / sin( / )i i i i m  = +
 

. (7.10) 

Note, that it is possible to govern the resonance frequency spectrum of the transducer by varying 

value of m and hence changing relation between transformation coefficients for different modes 

of vibration. Thus, for example, if a half of the electrodes is used (m = 2), the zero and all the 

odd vibration modes are active. Upon changing the position of the electrodes by 180, the func-

tions i  and transformation coefficients in  reverse the sign at odd values of i. 

 

Figure 7.2: Distributions of electric field over circumference of a ring for generating different 

resonance modes of vibration: (a) zero mode, (b) first mode (full size electrodes), (c) second mode, 

(d) first mode optimized (with suppressed third mode). 

Theoretically one can realize all the above-listed variants of electrodes connection in a 

single ring and thus to change frequency responses of a transducer by dividing the electrodes 

into corresponding parts and by switching these parts accordingly. As an example, in Figure 

7.2 the qualitative plots are shown for the frequency characteristics of the amplitude of vibration 

of the reference point on the ring surface, ( ) 0 10  = + , obtained for the case that electrodes 

are divided into halves and both halves are connected or in phase (curve 0 ), or in phase oppo-

sition (curve 1 ), or only one half of the electrodes is used at / 2   (curve 0 1 + ) and at 

/ 2   (curve 0 1 − ). (Note that the frequency responses are shown in vicinity of the res-

onance frequencies 0f  , 1f  and below. In the broader frequency range the higher modes of 

vibration become involved).  
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Figure 7.3: Frequency responses of displacement (0)  of the reference point at different elec-

trodes configuration. Solid lines - halves of the electrodes are connected or in phase (curve 0  

with resonance frequency 0f ), or in phase opposition (curve 1  with resonance frequency 1f ); 

dashed line - one half of the electrodes is used at / 2   (curve 0 1 + ); dash-dotted line – 

the electrodes are used at / 2   (curve 0 1 − ). 

To generate a single mode of vibration, for example, ( )1 cos  = , the electrodes should 

be designed in such a way as to meet the condition ( )2 cos  = . However, in practice for 

operation in a sufficiently broad frequency range it is enough for this purpose to “suppress” the 

closest of the active vibration modes, ( )3 cos3  =  in our example. In accordance with for-

mula (7.5) 3 0 =  at m = 3, i.e., in this case two electrode segments of size  = 2/3 must be 

connected in phase opposition (Figure 7.2 (d)), which produces the simplest stepwise approxi-

mation to the ideal distribution ( )1 cos  = . 

As shown in Section 5.6, applying of electrodes to the entire side surface of the ring is not 

optimal for maximizing the value of its effective coupling coefficient in the case of a nonuni-

form strain distribution. By the same reason that is discussed in Section 5.6.2 regarding the 

bars, 1effk  for the vibrational mode ( ) cosi i  =  can be increased, if to reduce the size of 

electrodes appropriately. This is illustrated by plots in Figure 7.4, where dependence of ratio 

( ) / ( )c c     from angle  of the electrodes coverage is shown. It is seen that the maximum 

value of coefficient 1effk  for the vibration mode ( )1 cos  =  is reached at  = 0.74. Re-

duction in electrode size to  = /2 does not lead to a decrease in 1effk , and at  = 2/3, 

which corresponds to suppression of the vibration mode 3 ( )   (at this point 3 0effk = ), it is 

somewhat higher. 

ƒ1 ƒ0 ƒ

(0)
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Figure 7.4: On the dependence of effk  from the electrode dimension. 

For calculating modal equivalent masses iiM  and rigidities E

iiK  of the piezoceramic rings 

relations (4.262) and (4.263) are valid that were obtained for the rings made of a passive mate-

rial. One has only to replace Young’s modulus Y  in expressions for iiK  with 111/ Es  for the 

transverse piezoeffect, and with 331/ Es  for the longitudinal piezoeffect. As for the additional 

rigidity iK , which arises in course of electromechanical conversion in the case that strain is 

nonuniform along the lines of electric field, the following should be noted. 

In the variant of the transverse piezoelectric effect in a thin ring 0K = , since the strains 

do not vary over the ring thickness. This quantity should be considered, would the thickness of 

a ring be significant (on this issue see Section 7.2.2.1.1). In the variant of the longitudinal pie-

zoelectric effect the segmented ring design is used, and for the modes with nonuniform defor-

mation at number of segments more than 6 on the half wavelength of deformation K 0 by the 

same reason, as for a segmented bar (see Figure 5.9). Thus, the expressions for the equivalent 

parameters of a thin ring are as follows. 

The mechanical parameters are: 

 ( )2

0 , 1 / 2eqv eqviiM M M M i= = + ; (7.11) 

 ( ) 2 2

0 2 / , / (1 ) .E E E E

eqv ll ii llK th as K th as i = = +  (7.12) 

Here 1l =  and 3l = for the transverse and longitudinal piezoeffect, respectively. The modal 

resonance frequency is 

 
2

0 1i i = + , (7.13) 

where ( )0 1/ lla s =  is the natural frequency of the zero mode. 
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The electromechanical transformation coefficients for the transverse and longitudinal piezoef-

fects in variants of transducers with full size electrodes are according to expressions (7.4), (7.6) 

and (7.8): 

 ( )0 31 112 / En d h s= , ( )0 33 332 / En d th s = ; (7.14) 

 ( )231

11

4 1i E

d h
n i

s
= + , ( )233

11

4 1i E

d th
n i

s 
= + . (7.15) 

The last relations are for the first active modes (at l = 1 in expression (7.8)). Together with 

expressions for capacitances, 

 ( )1 2

311S T

el elC C k= −  and ( )3 2

331
S T

el elC C k= − , (7.16) 

where T

elC  is the capacitance of a clamped ring determined at the particular electrodes config-

uration, the full set of the equivalent parameters that are needed for calculating electromechan-

ical cylindrical transducers is completed. 

In further treatment we will title different cylindrical transducers types according to their 

main active vibrational modes, which are determined by a certain configuration of the elec-

trodes. Additional characterization of the transducers will be made according to their applica-

tions. 

7.2.2 Zero Mode Transducers 

7.2.2.1 Omnidirectional Transducers 

Transducers of this kind that employ uniform vibration of uniformly loaded rings are considered 

in Section 2.32 under the assumption that the rings have small enough height and thickness 

compared with their diameter. But it remains not clear to what extent “enough is enough” in 

application to the real rings that have a finite height and thickness, and what corrections should 

be made to results obtained under this assumption, if the rings are not sufficiently short and 

thin. This information can be obtained based on the results regarding radial vibration of thick 

isotropic rings of small height and coupled vibration of the finite height cylinders of small 

thickness that are presented in Secs. 4.4.2.3 and 4.6.2.4, respectively. 

One of the ways of employing longitudinal piezoeffect in the radially vibrating relatively 

thin rings is in using so called “tangential polarization” that is achieved without segmenting the 
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rings, as shown in Figure 7.1. In this case the electrodes that are used for polarization and op-

eration have form of the stripes (see Figure 7.10). Approximate method of evaluating electro-

mechanical parameters of tangentially polarized piezoelements is considered in Section 

7.2.2.1.2 

7.2.2.1.1 Equivalent Parameters of the Thick Piezoceramic Rings 

In Section 4.4.2.3 the mode shapes of vibration of short isotropic rings were derived as depend-

encies of ratio of their inner to outer radiuses, b/a. The condition of isotropy holds for pie-

zoceramic rings axially poled. In the cases that the rings are radially or circumferentially poled 

properties of piezoceramic material in the plane of deformation are anisotropic, equations of 

motion differ from the Bessel equation (4.162), and strictly speaking do not allow simple ana-

lytical solution. But very reliable assumption can be made that the mode shapes of deformation 

remain the same, as for axial poled isotropic ring. Under this assumption all the equivalent 

parameters for differently poled rings can be determined from expressions for the respective 

energies, if to use the expressions for stress, charge density, dielectric constant and for electric 

field specified for a particular mode of polarization. Under the condition that the height of a 

ring is much smaller than wavelength of deformation, the stress in the axial direction is negli-

gible. Thus, we assume that in geometrical coordinates shown in Figure 7.5 0zT = . 

 

Figure 7.5: Geometry of a thick ring and coordinate system 

Correspondence between geometrical and crystallographic coordinates for different modes 

of polarization will be as follows: for axial polarization 1, 2, 3r z→ → → ; for circumferen-

tial polarization 1, 3, 2r z→ → → ; for radial polarization 3, 1, 2r z→ → → . Subscripts 

for the strain in the plane of the ring, 

 ( )
( )r

r r

d rd
S a

dr dr


= = , ( )

( )r
r

r
S a

r r



= =  (7.17) 
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(and for the stress accordingly) must be changed to numbers that correspond to coordinates r 

and   in crystallographic notations for a particular mode of polarization. 

In case of the radial and circumferential polarization the piezoelectric equations with stress 

as independent variables have form (given that 
2 0T = ) 

 1 11 1 13 3 31 3

E ES s T s T d E= + + , (7.18) 

 3 13 1 33 3 33 3

E ES s T s T d E= + + , (7.19) 

 3 31 1 33 3 33 3

TD d T d T E= + + . (7.20) 

The stress 1

ET  and 3

ET  at 3 0E =  being expressed from Eqs. (7.18) and (7.19) in terms of the 

working strain are 

 ( )1
1 1 3 3

3 131

E
E E

E E

Y
T S S

 
= +

−
, (7.21) 

 ( )3
3 3 13 1

3 131

E
E E

E E

Y
T S S

 
= +

−
, (7.22) 

where the notations are introduced 

 1 111/E EY s= , 3 331/E EY s= , 3 13 33/E Es s = − , 13 13 11/E Es s = − . (7.23) 

The charge density obtained from Eq. (7.20) after substituting expressions for the stress will be 

 ( ) 1,3

3 3 1 3 33 3,
SED D S S E= + , (7.24) 

where 

 ( ) ( ) ( )31
3 1 3 31 1 3 3 33 3 13 1

3 13 3 13

,
1 1

EE
E E E

E E E E

YY
D S S d S S d S S 

   
= + + +

− −
, (7.25) 

and 1,3

33

S
  is the dielectric constant at 1 3 20, 0S S T= = = , 

 1,3

2 2

31 33 31 33 13 3

33 33

3 13

2
1

1

E E
S T

E E

k k k k  
 

 

 + −
 = −
 −
 

. (7.26) 

Difference between the variants of the radial and circumferential polarizations is that in all the 

above relations instead of 1S S= , 3 rS S=  for the radial polarization it must be adopted 

1 rS S= , 3S S=  for the circumferential. 

In variant of the axial polarization 3 0T = , 1S S= , 2 rS S=  and piezoelectric equations are 
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 1 11 1 12 2 31 3

E ES s T s T d E= + + , (7.27) 

 2 12 1 11 2 31 3

E ES s T s T d E= + + , (7.28) 

 ( )3 31 1 2 33 3

TD d T T E= + + . (7.29) 

The stress 1

ET  and 2

ET  at 3 0E =  are 

 ( )1
1 1 1 22

11 ( )

E
E E

E

Y
T S S


= +

−
, (7.30) 

 ( )1
2 1 1 22

11 ( )

E
E E

E

Y
T S S


= +

−
. (7.31) 

Here 1 12 11/E E Es s = − . The charge density can be presented as 

 ( ) 1,2

3 3 1 2 3,
SED D S S D= + , (7.32) 

where 

 ( ) ( )31 1
3 1 2 1 2

1

,
1

E
E

E

d Y
D S S S S


= +

−
, (7.33) 

 1,2 1,2

3 33 3

S S
D E= , and ( )1,2 2

33 33 1
S T

pk = − . (7.34) 

For determining the equivalent parameters of the rings as functions of their thickness, con-

sider expressions for the energies, in which these parameters are involved. The expressions for 

energies and for corresponding equivalent parameters in the form suitable for a single degree 

of freedom system are as follows.  

The kinetic energy is 

 ( ) ( ) ( )2 2 2 21 1 1
2

2 2 2

a

kin r eqv

bV

W dV a h r rdr a M     = = =  , (7.35) 

where from eqvM  can be represented as 

 ( ) ( )2

.2 /
a

eqv eqv tr M

b

M h r rdr M F b a  = = . (7.36) 

Here ( )2 2

. 2eqv tr avM a b h hta   = − =  is the equivalent mass determined in the approxima-

tion of a thin ring (at b a→ ), and ( )/MF b a  is the correction factor that accounts for nonuni-

form distribution of displacements in the radial direction. The equivalent mass obviously does 

not depend on a mode of polarization. Plot of the function ( )/MF b a  is shown in Figure 7.6. 
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Figure 7.6. Correction factors: ( / )MF b a  for the equivalent mass (dashed line); ( / )KF b a  for 

the rigidities at the radial, circumferential and axial polarizations (solid lines numbered 1, 2, 3, 

respectively.) 

The equivalent rigidity is determined from the expression for the potential energy that in the 

case of piezoelectric mechanical system we denote E

mW , as follows, 

 
( )2

1
2 [ ]

2 2

a

E E E E

m r r eqv

b

a
W h T S T S rdr K 


= + = . (7.37) 

We denote in this expression 

 ( ). /E E

eqv eqv tr KK K F b a= , (7.38) 

where 

 
( )

( ).

4 2
E E

iE i
eqv tr

avb a

Y a b Y t
K

a b

h

a

h 

→

−
= =

+
 (7.39) 

is the rigidity determined by formulas for a thin ring with thickness t and radius ava . In variants 

of the radial and axial polarization i = 1, in the variant of the circumferential polarization i = 3. 

( )/KF b a  is the correction factor accounting for the finite thickness of the axially polarized 

ring. When calculating rigidity E

eqvK  from expression (7.37) for different modes of polarization, 

the subscripts r and   must be replaced by the corresponding numbers. Thus, for the variants  

of the radial and circumferential polarization after substituting expressions (7.21) and (7.22) we 

obtain 
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( )

( )

1 1 3 3

2 2

1 1 1 3 3 13 1 3 3 3

3 13

1

2

1 2

2 1

E E E

m

V

a

E E E E E E

E E

b

W S T S T dV

h
Y S Y Y S S Y S rdr


 

 

= + =

 = + + +
 −





. (7.40) 

Here in variant of the radial polarization 2S S= , 3 rS S= , and in variant of circumferential 

polarization 
1 rS S= , 3S S= . 

In the variant of axial polarization 1 rS S= , 2S S= and 

 ( ) 2 21
1 1 2 2 1 1 1 2 22

1

21 1
2

2 2 1 ( )

aE
E E E E

m E

bV

hY
W S T S T dV S S S S rdr





 = + = + + −  . (7.41) 

Functions ( )/KF b a  for different modes of polarization are plotted in Figure 7.6. After the 

correction factor is introduced, the mechanical energy can be presented as 

 ( ) ( )./ /E E

m m tr KW b a W F b a= , (7.42) 

where .

E

m trW  corresponds to energy calculated for a thin ring. 

It is noteworthy that dimensions of the rings at ( )/ 0.7b a  , in which case ( )/ 0.4avt a  , 

are not practical for cylindrical transducer designs with the radial and circumferential polariza-

tion. Not only it is hard to imagine, how such piezoelements could be effectively polarized at 

related nonuniformity of the electric field. Operational characteristics of transducers composed 

of such thick rings would not have positive features whatsoever. The axial polarized radial vi-

brating piezoelements can be used as electromechanical transducers at any ratio b/a, for exam-

ple, as annular disks in piezoelectric transformer designs. However, the data in Figure 7.6 are 

retained for all the range of ratios b/a in order to show tendency in changing the equivalent 

parameters. For the practical range of rings thickness the data will be presented in a scale more 

appropriate for using in calculations as correction factors. In case of the radial polarization de-

formation changes along the lines of electric field. At this condition the additional energy term 

W , strictly speaking, must be taken into consideration, when calculating mechanical energy 

and hence the equivalent rigidity. But in the practical range of ratios b/a the mode shape of 

deformation changes not significantly (see Figure 4.12), and this term can be neglected, as it is 

shown in Section 5.5.2. 

The electromechanical transformation coefficient n is determined from the expression for 

the electromechanical energy, 
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 ( ) ( ) ( )3 3 3 3

1 1 1
, 2 ,

2 2 2

a

E E

em r r

v b

W D S S E dV h D S S E rd a Vn  = = =   , (7.43) 

where ( )3 ,E

rD S S  is given by formula (7.25) in variants of the radial and circumferential po-

larization (with 1S S = , 
3rS S=  for the radial, and 

3rS S= , 3S S =  for the circumferential 

polarizations), and by formula (7.33) with 1rS S= , 2S S =  in variant of the axial polarization. 

Directions of the electric fields in a thick ring (annular disk) at different variants of polarization 

are illustrated with Figure 7.7. 

 

Figure 7.7: Directions of the electric fields at different variants of polarization: (a) axial, (b) cir-

cumferential, (c) radial. 

Expressions for the strength of electric field at different variants of polarization with volt-

age V applied to electrodes are: 

 3 /E V h=  (7.44) 

at axial polarization; 

 
3 ,

2

VN
E

r
=  (7.45)  

at circumferential polarization (N is the number of segments, of which the piezoelement is com-

posed); 

 3 ln( / )
V

E b a
r

= , (7.46) 

at radial polarization. Thus, in the variant of the axial polarization after combining expressions   

(7.33), (7.43) and (7.44) will be obtain 

V

(a) (b) (c)
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V
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We denote 

 ( ). . /ax tr ax n axn n F b a= , (7.48) 

where ( ). 1 312 E

tr axn a b Y d= −  is determined by formula for a thin axial poled ring, and 
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  (7.49) 

is the correction factor accounting for the finite thickness of the ring. It can be obtained in 

analogous way that for the variant of the radial polarization 

 ( ). . /rad tr rad n radn n F b a= , (7.50) 

where . 1 312 E

tr radn hY d=  is determined by formula for a thin radial poled ring and 

 ( ) 33 3 33
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= + + +      

−        
  (7.51) 

is the correction factor. And for the variant of the circumferential polarization 

 ( ). . /cf tr cf n cfn n F b a= , (7.52) 

where ( ). 3 332 /tr cfn htY d N a b= +  and 
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 +    
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 . (7.53) 

 

Figure 7.8: Correction factors ( / )nF b a  for different variants of polarization: 1 - axial, 2 - cir-

cumferential, 3 - radial. 
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Plots of the correction factors are presented in Figure 7.8. (See the note made in relation to 

Figure 7.6  regarding practical values of ratio b/a).  After the correction factor is introduced, 

the electromechanical energy can be presented as 

 ( ) ( )/ /em emtr nW b a W F b a= , (7.54) 

where em trW  corresponds to energy calculated for a thin ring. 

Electrical capacitances of the thick rings clamped in direction of the working strain must be 

determined from expressions for the electric energy 

 1,3 2

31 1133 33 /S ES
e c = + . (7.55) 

After substituting corresponding expressions for the dielectric constants (from (7.26), (7.34)) 

and for the electric field strength (from (7.44) - (7.46)), we will obtain the following expressions 

for the capacitances related to different modes of polarization: 

 ( )1,2 1,2 2 2

33 /
S S

elC a b h = −  (7.56) 

for thee axial polarization; 

 1,3 1,3

33 2 ln( / )
S S

elC h b a =  (7.57) 

for the radial polarization; 

 1,3 1,3

2

33 ln( / )
2

S S

el

N
C h a b


=  (7.58) 

for the circumferential polarization. Expressions for the dielectric constants in the formulasare: 

Expressions for 1,2

33 3

2

3 (1 )T

p

S
k = −  and 1,3 2

31 1133 33 /S ES
e c = +  (see in Table 5.3 in Section 5.3). 

After dependencies of the energies E

mW , emW  and elW  from relative thickness of the rings 

are determined, the effective coupling coefficients of the differently polarized piezoelements 

can be obtained using the expression (5.126), 

 
2

2 em
eff T E

el m

W
k

W W
= . (7.59) 

This formula can be rewritten as 
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=   (7.60) 
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considering expressions (7.37), (7.47) and (7.55) for the energies involved and the subsequent 

expressions for the equivalent parameters. The effective coupling coefficients efftrk  of the thin 

rings for corresponding modes of polarization are 31k  for axial and radial polarizations and 33k  

for the circumferential polarization. The relative change of effective coupling coefficients vs. 

ratio b/a will be denoted as 

 
( )/

( / )
eff

eff i
k i

efftr i

k b a
F b a

k
= , (7.61) 

where number i corresponds to a mode of polarization. Plots of these functions are shown in 

Figure 7.9. 

 

Figure 7.9: Plots of relative change of effective coupling coefficients vs. ratio b/a for the different 

modes of polarization: 1 - axial, 2 - circumferential, 3 - radial. 

Qualitative explanation for the trend of the plots is as follows. The effective coupling co-

efficient of a ring under radial polarization (curve 3) decreases with increase of the thickness 

due to increase of stress 3T  and thus developing distractive contribution of the longitudinal  

piezoeffect, which is proportional to 33d , to transverse piezoeffect in the thin ring (remember 

that 31d  and 33d  have opposite signs). Similar effect takes place in the variant of circumferential 

polarization (curve 2). The difference is that now the main is the longitudinal piezoeffect in 

circumferential direction and due to increasing the radial stress 1T  a distractive contribution of 

transverse piezoeffect is developing. Thus, the effective coupling coefficient drops with in-

crease of the thickness. In the variant of the axial polarization both stress 1T  and 2T  in the plane 
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of the ring contribute positively that results in increasing the effective coupling. Results of cal-

culating plots in Figure 7.6 through Figure 7.9 were presented in Ref. 1. 

Results of the analysis show that values of the correction factors for the equivalent param-

eters are not significant in the practical range of thicknesses for the rings with radial and cir-

cumferential polarization. They can be taken for calculations from the plots presented in the 

Figure 7.6 and Figure 7.8. The thick ring with axial polarization gradually becomes an annular 

disk vibrating radially. Similar results for this variant of the ring can be obtained from Ref. 2, 

though the equivalent parameters are not presented in this work in explicit form. 

7.2.2.1.2 Tangentially Polarized (“Stripe-Electroded”) Design of a Piezoelement 

The most common cylindrical transducers that employ longitudinal piezoeffect utilize the cir-

cumferential polarization and are made of segmented rings cemented out of the prisms with 

electrodes on their sides, as shown in Figure 7.1 (b). Fabrication of such piezoelements is time 

consuming and expensive. Besides the segmented rings have significantly smaller dynamic me-

chanical strength compared with solid ones especially in case that the rings are thin. Therefore, 

they require reinforcement for a heavy duty operation. For some applications an alternative to 

the segmented is design of piezoelements that employs so called “tangential polarization”, in 

which case the electrodes in the form of stripes are applied to the exterior surfaces of thin walled 

cylinders or short rings. Such electrodes configuration is also used for polarizing piezoelements 

in the shape of the thin plates, stripes and rods. Piezoelements design that employs stripe elec-

trodes for performing tangential polarization can be called “stripe-electroded”. Thus, the terms 

“tangentially polarized” and “stripe-electroded” may be used interchangeably for such piezoel-

ements. 

 

Figure 7.10: Qualitative view of configuration of electric field in a piezoelement with striped elec-

trodes: p characterizes periodicity of the electrodes, Δ  is the width of the electrodes. 

+ +-

t

p
+ +-
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Voltage applied to the striped electrodes induce in the body of a piezoelement electric field 

that has configuration qualitatively shown in Figure 7.10. The electric field in this piezoelement 

design is inherently nonuniform, therefore the electromechanical parameters of the piezoele-

ment do not reach that of the segmented piezoelement of the same geometry. 

For example, the effective coupling coefficient is usually about 20% lower than that 

achievable in the segmented design, in which case the electric field is uniformly aligned with 

the extensional deformation. Another peculiarity regarding the stripe-electroded cylindrical 

transducer designs is that diameter of the solid cylinders is typically limited by about 15 cm. 

from manufacturing considerations. This makes the operational frequency range of the tangen-

tially poled projectors higher than approximately 10 kHz. It can be said that the stripe-elec-

troded design of piezoelements may be a practical alternative to the segmented design, if the 

performance requirements cannot be met by using solid piezoelements employing transverse 

piezoeffect (radially poled cylinders in particular).The tangentially poled piezoelements com-

bine simplicity of manufacturing solid transversely poled piezoelements and advantage of em-

ploying the longitudinal piezoelectric effect, though for expense of some reduction of electro-

mechanical parameters compared with the segmented piezoelements of the same configuration. 

Analysis of electromechanical parameters of the tangentially polarized piezoelements from ge-

ometry of the elements and configuration of the striped electrodes was reported in papers Refs. 

3 and 4. In the first paper an approximate analytical method for evaluating parameters was 

considered. In the second paper the electromechanical parameters were calculated more accu-

rately by using FEA. Numerical FEA analysis was also used for modeling the piezoelements 

with “interdigitated electrodes” (analog of striped electrodes in our notation) for application as 

electromechanical actuators5, 6. We will present an approximate analytical analysis that provides 

a simple means for calculating the piezoelectric properties of common elements, following the 

main results of Ref. 3. 

The main peculiarities of the tangentially poled piezoelements are due to nonuniformity of 

the electric field in their volume, as it is qualitatively illustrated in Figure 7.10. If the actual 

electric field distribution in the piezoceramic was known to a high accuracy, analytical or nu-

merical calculations of the electric field related electromechanical parameters could be possible. 

As this is not readily the case, a simplified model of electric field may be used in order to reveal 
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the effects on the electromechanical parameters, which arise from nonuniformity of the electric 

field. The following simplifying assumptions will be made in this approach. The representative 

part of a piezoelement in the shape of a cylinder will be replaced by a volume of piezoelectric 

ceramic material having a rectangular shape with attached electrodes, as shown in Figure 7.10. 

This is justified, because the thickness of the stripe-electroded cylinders usually is small relative 

to their radius. By obvious symmetry considerations it is sufficient to consider the electric field 

in a representative part of the volume between two electrodes that is limited by the bold solid 

line in Figure 7.10. Further we assume that the real curved electric field lines will be approxi-

mated by rectangular contours tangential to the real lines on their horizontal and vertical parts, 

as it is shown schematically in Figure 7.11(a). 

 

Figure 7.11: (a) Approximation of the real electric field lines by rectangular contours (“piecewise” 

representation), (b) the corresponding nonuniform distributions of the vertical and horizontal com-

ponents of the electric field. 3E →   and 
3

E


 are the electric field in the horizontal and vertical 

directions, respectively. 

Nonuniform distributions of the horizontal and vertical components of the electric field are 

qualitatively shown in Figure 7.11(b). Thus, the volume of a piezoelement can be imagined as 

subdivided in elemental volumes limited by the electric field lines that are dz apart, inside of 

which the electric field can be considered independent of z coordinate. At voltage V between 

the electrodes the electric field in the elemental volume with coordinate z of its horizontal part 

will be found as ( ) ( )3  /E z V l z= ), where l(z) is the length of corresponding electric field line. 

Using geometry considerations following from Figure 7.11(a), we obtain that 

( ) ( )( )1 2 /l z p z t= − + , where 
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Correspondingly, 

 ( )3

1 1

1 2 / 1 2 /
max

V
E z E

p z t z t 
=  =

− + +
. (7.63). 

In Eq. (7.63) ( ) ( )3 0 /maxE E V p= = −  is the electric field between edges of the electrodes. 

The electric field changes along z axis and reaches its minimum value 
minE  at z = t/2 

 
1

1
min maxE E


=

+
. (7.64) 

Thus, a concentration of the electric field takes place around the edges of the electrodes, 

and the electric field drops to its minimum value, which is determined by the coefficient . In 

order to get a quantitative estimate of the field nonuniformity for a practical piezoelement ge-

ometry, consider two examples that are representative for the tangentially poled cylinders that 

have outer diameter oD  = 38.1 mm, thickness t = 3.2 mm, electrode width  = 2.0 mm. The 

samples differ by number of stripes: N = 12 (sample 1) and N = 16 (sample2). The samples of 

this geometry were used for the experimental investigation in Ref. 3 that was aimed on verifying 

results of calculation of parameters performed by the method under consideration. It follows 

from the geometry of the cylinders and from the electrode configurations that: in the first case  

 = 0.73 (p = 9.1 mm, t = 3.2 mm,  = 2.0 mm) and minE  = 0.58 maxE ; in the second case  = 

1.07 (p = 6.9 mm, t = 3.2 mm,  = 2.0 mm) and minE  = 0.48 maxE . The same estimates are valid 

for piezoelements in the shape of rectangular plate having the same parameters p, t and . 

Nonuniformity of the electric field can lead to incomplete polarization of a part of its vol-

ume during the manufacturing process of poling the piezoelement. We denote the magnitude of 

electric field that is necessary to fully polarize the piezoelement, i.e., to achieve the maximum 

piezoelectric modulus of its material, as PE . If the electric field does not reach this value in 

some part of the piezoelement, the resulting piezoelectric modulus may depend on the actual 

field applied. This is shown qualitatively by the idealized plot in Figure 7.12. By no means can 

this plot be recommended for a quantitative estimation. It is used only to illustrate the reason 

for possible incomplete polarization. The actual dependence is not known. In fact, the elastic 

and dielectric constants also depend on quality of poling the piezoceramic. In order to fully 
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polarize a piezoelement, the minimum electric field must be greater than that assumed to be 

necessary, i.e., the field should be 
min PE E , or 

 ( )1Pmax

V
E E

p
=  +

−
. (7.65) 

 

Figure 7.12: Qualitative representation of dependence of the piezoelectric modulus on the electric 

field of polarization. 

The maximum magnitude of the voltage applied to a piezoelement is limited: by the electric 

field  in terms of intrinsic electric and related mechanical breakdown of the ceramic material(de-

note the magnitude of this field lE ); and by the voltage between the stripe-electrodes  in terms 

of preventing electrical breakdown over the piezoelement surface (denote it lV ). Obviously, 

the following conditions must be fulfilled 

 ( ),max l max lE E E p V −  . (7.66) 

The conditions (7.65) and (7.66) may be unavoidably contradictory. The first condition (7.66) 

is common for piezoelements of different kinds; the second condition may be more restrictive 

for the stripe-electroded piezoelements, due to the concentration of electric field around the  

edges of the electrodes and thus concentration of the mechanical stress in this region. For small 

values of the coefficient , the most probable limitation may be the electrical breakdown volt-

age pV . In this case the electric field in the piezoelement can be fairly uniform, but the whole 

piezoelement may not be fully polarized. For the larger values of , nonuniformity of the elec-

tric field may become the main reason for “under-polarizing” a part of the piezoelement vol-

ume. In any case, the applied poling voltage must be determined by relation (7.65). Otherwise, 

the piezoelement will not be fully polarized. 

Emin EP Emax E0

1

33

33max

d

d
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Even if all the volume of the piezoelement is considered as being fully polarized, it can be 

expected that the electromechanical parameters of the tangentially poled piezoelements should 

have reduced values (on average) in comparison with those for the analogous piezoelements 

operating under uniform electric field. The reduction of the electromechanical parameters of a 

piezoelement with stripe-electrodes may be estimated as follows. 

In order to evaluate parameters of a piezoelement under nonuniform electric field in com-

parison with those that would exist for the piezoelement under uniform electric field, the notion 

of “effective” parameters for the nonuniform case can be introduced. We define the effective 

parameters as the analytically or experimentally determined parameters that can be used in the 

regular formulas for piezoelements with uniform field in order to account for the nonuniformity 

of the field. Thus, the effective elastic constant, 
33

E

effs , dielectric constant, 
33

T

eff , and piezoelec-

tric modulus, 33effd , of a tangentially poled cylinder having N electrode stripes can be deter-

mined from results of measuring the resonance frequency, rf , the capacitance at low frequency, 

LfC , and the effective coupling coefficient, effk , of the stripe-electroded cylinder. The effective 

parameters may be determined from results of the measurements using the following formulas, 

which are valid for segmented cylinders of the same geometry comprised of N staves: 

 33 2

1

(2 )

E

eff

r

s
a f 

= , (7.67) 

 33 2

2T

eff Lf

a
C

N th


 = , (7.68) 

 33 33 33 33

E T

eff eff eff effd k s =   . (7.69) 

Analytically the effective parameters can be determined from considering the corresponding 

energies, namely the electrical energy, 3S

elW , potential energy, E

mW , and electromechanical en-

ergy, emW , of the striped-electroded piezoelement. In addition, the formula 2 2 / T E

eff em el mk W W W=    

can be used for calculating the effective coupling coefficient.. 

The effective dielectric constant can be determined from expression for the electric energy 

of a clamped piezoelement under the boundary conditions typical for a short and thin-walled 

cylinder (at 1 2 0T T= = ). The total electric energy can be found by integrating the electric en-

ergy stored in elemental volumes of the piezoelement along the electric field lines shown in 
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Figure 7.11(a). The energy of an elemental volume per unit height of a cylinder, 

( ) ( )V dz l z dz=  , may be represented as follows 

 ( ) ( ) ( ) ( )312

3 3

2

33 33

1 1
2

2 2

SS

el z xw E z l dx E z l z dzz = + . (7.70) 

Here ( )zl z  and ( )xl z  are the lengths of the vertical and horizontal parts of the elemental vol-

ume, respectively. From the geometry considerations following from Figure 7.11(a), 

 ( ) ( ) ( ) ( ) ( )/ , , 2 / , ( )z xz xdx t dz l z l z p z t l l zz z lz=  = = −+  + = . (7.71) 

In the first term of relation (7.70) 1

33

S  is taken with subscript 1S , because on the vertical lines 

the poling direction is perpendicular to the direction of deformation. Therefore, all the conclu-

sions, which may follow from the piezoelectric equations, should correspond to the case of the 

transverse piezoeffect, whereas on the horizontal lines they correspond to the longitudinal pie-

zoeffect. Thus, on the vertical lines the elastic constant 11

Es  and piezoelectric modulus 31d  

should be used instead of 33

Es  and 33d  on the horizontal lines. Considering (7.71) expression 

(7.70) can be transformed to 
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. (7.72) 

Now the electric energy per unit height of a piezoelement will be found as 
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  . (7.73) 

The ratio of the dielectric constants in the brackets may be presented as 

( ) ( ) ( )31 2 2

33 33 31 33/ 1 / 1
SS k k  = − − , and for PZT-4 (Navy Type I) it corresponds to a coefficient of 

1.75. As a result of integrating in Eq. (7.73), we arrive at the following expression 
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= + +  − + −    

− − +    
. (7.74) 

In order to determine the effective dielectric constant, expression (7.74) must be equated to the 

expression 

 3 32 / 2
S S

el elW V C=  (7.75) 
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for the electrical energy per unit height of an equivalent piezoelement under uniform electric 

field generated by applying the same voltage to the electrodes imaginary attached to the side 

surfaces of the piezoceramic element at 0x =  and at x p= , where 

 
3

3
33

2

S

effS

el

t
C

p


=  (7.76) 

is the capacitance per unit height of the real piezoelement expressed through the effective die-

lectric constant. Thus, for the effective dielectric constant we obtain 
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. (7.77) 

The effective elastic constant will be found through calculation of the potential energy. As it 

was noted, for the parts of the piezoelement, in which the direction of poling is vertical, the 

elastic constant 11

Es  must be used instead of 33

Es . Given that we consider the one-dimensional 

uniform deformation of a piezoelement, its potential energy can be represented as 

 
2

2 3 33 11
3

33 11 33 11

1 1
1

2 2

E E
E

m E E E E

V VV S V s s
W S

s s s sV

→  
   −

= + = +      
   

. (7.78) 

Here 3S  is the deformation in the horizontal direction; V  is the total volume of the piezo-

element; V


 is the part of the volume, in which lines of the electric field go in the vertical di-

rection (shaded area in Figure 7.11(a)); V→
 is the part of the volume, in which direction of 

deformation and electric field lines go in horizontal. From the geometry of the piezoelement 

/ 2V pt=  and / 4V t

=  . In order to determine the effective elastic constant, expression 

(7.78) must be equated to 

 
2

3 33/ 2E E

m effW S V s=  (7.79) 

This will result in the following formula for the effective elastic constant 
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1
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E E
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 − 
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. (7.80) 

Thus, from formula (7.80) follows that for piezoelements considered as samples 1 and 2 

33 330.97E E

effs s= , if they are made of PZT-4. The change of value of elastic constant can be more 

substantial in case that the piezoelement is not fully polarized. 
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For determining electromechanical energy of a piezoelement that undergoes one-dimen-

sional uniform deformation the density of this energy is defined by formula (5.67 c) 

 3

3 3

1

2

i

em E

ii

d
w S E dV

s
= . (7.81) 

When integrating this expression over the volume of the piezoelement, for the parts of the vol-

ume, in which the electric field is perpendicular to direction of deformation, subscript in for-

mula (7.81) has value 1i =  and in the parts of the volume, for which they are parallel, 3i = . 

Thus, we arrive at the following expression for the electromechanical energy 
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  . (7.82) 

After substituting under integrals the expressions (7.63) for 3 ( )E z  and (7.71) for ,z xl l , and dx, 

integrating and performing some manipulations the electromechanical energy can be repre-

sented in the following form 

 ( )33
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d t
W S V A B
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= + , (7.83) 

where 

 
( )

( ) ( )31 33

33 11

2 1
1 ln 1 , 1 ln 1

E

E

d s
A B

p p p d s
 

 

       
= + − + = − +      − − −    

. (7.84) 

The factor in parathesis of coefficient B is ( ) ( )31 33 33 112 / 1.07E Ed s d s = −  for PZT-4. 

The effective coupling coefficient of a piezoelement can be determined from the expression 

(5.127) 
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. (7.85) 

After substituting expressions (7.73), (7.78) and (7.83) for the energies involved, from this for-

mula will be obtained 
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where A and B are given by formulas (7.84). Calculations performed for piezoelements of ex-

amples 1 and 2 made of PZT-4 result in the effective coupling coefficients 33 0.56effk =  and 

33 0.52effk = , respectively, instead of 33 0.70k =  for the case of uniform electric field in the 

segmented piezoelement. Analysis of formula (7.86) shows that the effective coupling coeffi-

cient may be approximated as 

 
( )

( )33 33

ln 1

/
effk k

p p





+


−
 (7.87) 

for values of   1. This approximate formula gives an underestimated result with less than 5% 

error. It follows from formula (7.87) that greater values of 33effk  can be achieved for smaller 

values of  and the ratio ( )/ p −  (note that ln(1 ) / 1 + →  at 0 → ). As 

( ) ( )/ /t p p = − + − , this means that the smaller are the thickness to separation between 

electrodes ratio (main contributor) and the electrode width to separation between electrodes 

ratio, the greater is the effective coupling coefficient 33effk . But this conclusion is made under 

the condition that all the volume of the piezoelement is fully polarized. Although, the larger the 

separation between electrodes, p− , the harder is to meet this condition due to technological 

limits of applying high voltages for achieving a required electric field. Thus, there is a tradeoff 

between the quality of polarization and uniformity of the electric field in a stripe-electroded 

piezoelement. 

After the values of dielectric and elastic constants, and the effective coupling coefficient 

are determined from the relations (7.77), (7.79) and (7.86), the effective piezoelectric modulus 

can be calculated using formula (7.69). Note that in this formula the quantity 

( )3 2

33 33 33/ 1
ST

eff eff effk = −  must be substituted, and finally the piezoelectric modulus may be ex-

pressed as 

 3
33

33 33 33
2

331

eff SE

eff eff eff

eff

k
d s

k
=

−
. (7.88) 

For the piezoelement examples 1 and 2 made of PZT-4, we find 33effd  = 22510-12 C/N and 

20710-12 C/N, respectively, compared to 33d  = 28910-12 C/N for the uniformly polarized seg-

mented piezoelement.   

Results of calculating the dependencies of the electromechanical parameters of tangentially 

poled piezoelement for examples 1 and 2 are presented in Figure 7.13. 
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Figure 7.13: Normalized values of electromechanical parameters vs. parameter  for the stripe-

electroded rings (examples 1 and 2): effective coupling coefficient, ( ) ( )33 33/ 0eff effk k ; piezo-

electric constant, ( ) ( )33 33/ 0eff effd d ; elastic constant, ( ) ( )33 33/ 0E E

eff effs s ; and dielectric 

constant, ( ) ( )33 33/ 0T T

eff effK K . Note that at   = 1 the poling voltage needs to be twice as large 

as the voltage required for the case of uniform polarization. 

It is noteworthy that the model of the electric field that was used for the calculations was 

developed for the rectangular piezoelements and thus may be less accurate for the piezoele-

ments in the shape of the cylinders. Strictly speaking, the electric fields in the outer and inner 

halves of a hollow cylinder are different because of its curvature. Obviously, the results must 

be more accurate the smaller is the thickness to mean radius ratio , t/a, of a cylinder. Although 

the tangential polarization is usually used for relatively thin cylinders (with t/a ratio on the order 

of 0.1 – 0.2), the accuracy of calculating the cylinder parameters performed for only one half 

of a cylinder is reduced because of curvature considerations. If the geometry of the outer half 

is taken for calculation, then the requirements for poling electric field are harder and nonuni-

formity of the electric field is underestimated for the inner half. If the geometry of the inner 

half is taken, then requirements for the poling electric field are less demanding and nonuni-

formity of the electric field is overestimated for the outer half of the cylinder. The accuracy 

related to the curvature effects in the cylinder is improved, if the mean diameter of a cylinder 
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is used when calculating the stripe-electrode periodicity, p. Thus, all calculations in this section 

take into account the mean diameter of the cylinder when calculating p. 

The model used may lead to somewhat underestimated values of calculated parameters 

under the assumption that the piezoelement is fully polarized, because the assumed lines of 

electric field seem to be longer than the real ones. But, if the piezoelement is not fully polarized, 

which may be very probable by aforementioned reasons, then the results of calculation can be 

overestimated. In any case, the results of this section show the tendencies of parameters de-

pendence from geometry of the tangentially poled piezoelement that cannot be ignored in the 

design and application of the transducers. More accurate estimations of parameters of the tan-

gentially poled piezoelements are presented in Ref. 4. 

7.2.2.1.3 Effects of Coupled Vibration on Parameters of the Thin-Walled Cylindrical 

Transducers 

Coupled vibration of the thin-walled cylinders (tubes) made of a passive isotropic material were 

analyzed in Section 4.6.2.4. Consider now the vibration problem in the case that the tubes are 

made from piezoelectric ceramics and constitute an electromechanical system. In this section a 

piezoceramic tube will be considered as an electromechanical transducer without any external 

load applied (vibrating in air). As the first step the energies involved in the electromechanical 

conversion should be calculated using information available regarding modes of coupled vibra-

tion of analogous passive mechanical systems in accordance with general procedure of appli-

cation of the energy method. Results of this section were presented in Ref. 7. 

The piezoelectric equations of state that must be used for calculating the energies have 

different form depending on how the piezoceramic tubes are oriented relative to the crystallo-

graphic coordinate system, in other words depending on a particular mode of their polarization. 

Variants of tubes with different electrodes configuration that correspond to different modes of 

polarization to be considered, and orientations of the crystallographic coordinates are shown in 

Figure 7.14. 

The most often used are the thickness poled tubes especially among those that have rela-

tively large h/2a aspect ratio. Therefore, a detailed analysis will be made for this case. The 
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changes that must be made, when the poling axis is directed circumferentially or axially, will 

be considered afterwards. 

 

Figure 7.14. Piezoceramic tubes with different electrodes configurations that correspond to their 

(a) radial, (b) circumferential and (c) axial polarizations, and related orientation of the crystallo-

graphic axes. 

In the case of the radial (thickness) polarization we have 1xS S= , 2S S = , 3rT T=  (the 

crystallographic coordinate system is shown in Figure 7.14 (a)). Remembering that for the thin-

walled tube 3 0rT T= = , the piezoelectric equations simplify to the form of Eqs. (7.27)-(7.29)

Therefore the expressions (7.30), (7.31) for stress, expression (7.33) for the charge density at 

3 0E = , and dielectric constant of clamped piezoelement ( )1,2 2

33 33 1
S T

pk = −  are valid for this 

case. The summary of these expressions is presented here for convenience of further analysis 

(numbering the formulas is retained), as follows: 

 ( )1
1 1 1 22

11 ( )

E
E E

E

Y
T S S


= +

−
, (7.30) 
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2 1 1 22
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E E
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−
, (7.31) 
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 ( ) ( )31 1
3 1 2 1 2

1

,
1

E
E

E

d Y
D S S S S


= +

−
, (7.33) 

 1,2 1,2

3 33 3

S S
D E= , and ( )1,2 2

33 33 1
S T

pk = − . (7.34) 

Eqs. (7.30) and (7.31) are identical with Eqs. (4.637) and (4.638), if to replace 1

EY  and 1

E  for 

the previous Y  and  . Therefore, all the expressions for the equivalent parameters, imped-

ances and resonance frequencies introduced in Section 4.6.2.4 are valid for piezoceramic tubes 

upon substituting 1

EY  and 1

E  for Y  aid  . In order to distinguish the mechanical quantities 

in the case that a piezoelectric material is involved, the notations E

mW  instead of potW  and E

ilK  

instead of ilK  will be used. The expressions for the rigidities related to the first approximation 

(at i = 0, 1, 2) are presented in Table 7.1 (expressions for the equivalent masses remain the 

same independently of the piezoelectric nature of the material). New for the piezoceramic tubes 

are the electrical, S

elW , and electromechanical, emW , energies. After multiplying both parts of 

Eq. (7.33) and (7.34) by 3 /E V t= , and integrating over the tube volume the following expres-

sions for the energies will be obtained.  

For the electrical energy of a clamped tube, 

 1,2 1,2 1,2 1,22 2

3 3 33 3

1 1 1

2 2 2

S S S S

el el

V V

W D E dV E dV C V= = =  .  (7.89) 

Here the electrical capacitance of a clamped tube is denoted as 

 1,2 1,2

332 /
S S

elC ah t = . (7.90) 

For the electromechanical energy, 

 ( ) ( )
2 1

31
3 1 2 3 1 2 3

011 12

1 1
,

2 2 2

n
E

em i iE E
iV V

d V
W D S S E dV S S E dV n

s s


−

=

= = + =
+

  . (7.91) 

For calculating the integral and thus determining the electromechanical transformation coeffi-

cients, expressions for the deformations 1 xS S=  and 2S S=  that follow from Eqs. (4.635), 

(4.636) to the first approximation (i.e., at 0,1, 2i = ) must be used. (It must be remembered that 

notations 1  (former 1r ) and 2  (former 1x ) for generalized coordinates were introduced in 

Section 4.6.2.4). After performing integration, the electromechanical transformation coeffi-

cients in  are obtained as 
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 31

0

11

2
E

hd
n

s


= , 

( )
31

1

11 1

4

1E E

hd
n
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=

−
, 

( )
31

2

11 1

4

1E E

ad
n

s




=

−
. (7.92) 

A set of equations of motion of a piezoceramic tube may be represented in the general form 

of Eqs. (1.101) that incudes mutual impedances due to interaction between the modes of vibra-

tion, and Eq. (1.103), namely, 

 ( )/ , )( 0,1,2E

eqvi mi mLi aci i ij M K j r Z U Vn i + + + = = . (7.93) 

 1,2

2

1

1S

el i i

ieL

I j C V U n
R


=

 
= + + 
 

 . (7.94) 

The equivalent masses and rigidities in Eq. (7.93) in this case are represented by expressions 

(4.649) and (4.650). Resistances of the electrical and mechanical losses eLR , mLir  in these equa-

tions are commonly expressed as 

 1,21/ tan
S

eL el eR C = , and /E

mLi mi mr K Q = . (7.95) 

The radiation impedances, aciZ , must be set to zero, as in this section transducer is considered 

as electromechanical without any load. All the other constants are already obtained for the par-

ticular case of the thickness poled tube. 

 

Figure 7.15: The equivalent electromechanical circuit of a transducer made from a piezoceramic 

tube undergoing the two-dimensional vibration for different transducer modifications: (a) with 

free ends and without an acoustic load applied to the side surface, (b) with the ends shielded and 

acoustic load applied to the side surface, and (c) with the caps attached to the ends and sound 

pressure acting all over the surface (the case typical for hydrophones). In cases (b) and (c) the one-

port circuits must be connected to the corresponding terminals of the circuit (a) 
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The set of Eqs. (7.93) and (7.94) solves the problem of calculating a piezoceramic tube as 

an electromechanical transducer. Eqs. (7.93) are the equations of forced vibrations of a tube. 

They become Eqs. (4.648) of free vibrations under the conditions that applied voltage is zero 

and the resistances of the mechanical losses are neglected. Therefore, the resonance frequencies 

of a piezoceramic tube may be found from the Eqs. (4.651), if to substitute all the impedances 

ilZ  by E

ilZ . The results of calculating the resonance frequencies presented in Figure 4.51 and 

Figure 4.52 of Section 4.6.2.4 were obtained under exactly this condition. Thus, they are valid 

for the thickness poled tubes that have parameters of PZT-4 ceramics. 

 Returning to the set of Eqs. (7.93) and (7.94), we note that these equations may be consid-

ered as the Kirchhoff’s equations for the circuit that is shown in Figure 7.15 (a) for an unloaded 

transducer. 

The circuit is equivalent to these set of equations in terms of calculating the electromechanical 

parameters of a transducer and distribution of velocity over its surface. The mechanical 

branches of the equivalent circuit correspond to the zero, first and second modes of vibration. 

They are coupled. The coupling is introduced through the mutual impedances 01z , 02z , 12z  (see 

Eq. (4.652)) as follows: 

 ( )01 01 1 0/Z z U U= , 10 01 0 1( / )Z z U U= , 02 02 2 0( / )Z z U U= ,  (7.96) 

 20 02 0 2( / )Z z U U= , ( )12 12 2 1/Z z U U= , 21 12 1 2( / )Z z U U= . (7.97) 

After the generalized velocities iU  are calculated, and the admittance of a transducer between 

input terminals of the equivalent circuit in Figure 7.15 (a) is determined, the calculation of a 

cylindrical thickness poled transducer as an unloaded electromechanical device may be consid-

ered completed. The calculated and measured values of modulus of admittance Y  are shown 

in Figure 7.16 for the tube at aspect ratio / 2 1.1h a = . 

The distribution of radial velocity over surface, ( )rU x , and the magnitude of vibration of the 

ends of a tube, ( )/ 2xU h , are of a great interest for a better understanding of the mechanism 

of coupled vibration in the tubes and for calculating or predicting the acoustic field related 

parameters of a transducer. It follows from Eqs. (4.633) and (4.634) rewritten in the complex 

form that 

 ( ) 0 1cos( / )rU x U U x h= + , (7.98) 

 ( ) ( )1 0 2/ 2 / 2E

xU h h a U U= − + . (7.99) 
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Figure 7.16: Admittances for h/2a = 1.1 measured (solid line) and calculated (Refs. 7, 8). 

 

Figure 7.17: Calculated resonance mode shapes of a tube (at h/2a = 1.1. For the tube with dimen-

sions  2a = 35 mm, t = 3.2 mm at 0 28.8f =  kHz ( branch 0, solid line) and at 1f = 30.8 kHz  

(branch 1, dashed line). Experimental data from Ref. 8 are shown by circles and squares. 

The mode shape of the surface vibration defined as the distribution of radial velocity normalized 

to its value at 0x =  is 

 ( )  )0 1

0 1

1
cos( / ]r x U U x h

U U
 = +

+
. (7.100) 
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The calculated mode shapes corresponding to the resonance frequencies of a tube at h/2a = 1.1 

and results of their experimental verification are shown in Figure 7.17. Evidently the mode 

shape related to branch 1 is typical of the flexural vibration of a bar with free ends at its lowest 

resonance frequency.  

 

Figure 7.18: The ratio of the magnitudes of vibration in the radial and axial directions

( ) ( )0 / / 2r xU x U h=     vs. h/2a along branches 0 and 2. The modulus of  0/r xU U  is 

shown by dashed line. Results of measurements7 are shown by the circles and triangles. 

The calculated and experimentally measured dependences of ratio of magnitudes of velocity in 

the radial direction at x = 0 to velocity of the ends in the axial direction, 

( ) ( )0 / / 2r xU x U x h= =  , along branches 0 and 2 as a function of aspect ratio are shown in 

Figure 7.18. The dependences clearly show, how the radial component of vibration, being pre-

dominant at lower frequency branch 0 below the point of the strongest coupling, becomes pre-

dominant at the upper branch 2 above this point. A very important feature resulting from cal-

culations and confirmed experimentally is that rU  and xU  are in anti-phase, when related to 

branch 0, and in phase, when related to branch 2 (the displacements leading to expansion are 

conventionally considered as positive). This fact explains peculiarities in behavior of the effec-

tive coupling coefficients, pertaining to the frequency branches. 
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The effective coupling coefficients that correspond to different frequency branches of the 

coupled vibrations can be calculated by formula (7.85), in which for this particular case the 

term 1,2S

elW  must be used, namely, 

 
1,2

2 2

21

eff em

S E
eff el m

k W

k W W
=

−
. (7.101) 

All the energies involved in the formula are determined above. Results of calculating the effec-

tive coupling coefficients for the thickness poled tubes of different aspect ratio are shown in 

Figure 7.19 

 

Figure 7.19: Effective coupling coefficients as a function of aspect ratio along the frequency 

branches 0, 1 and 2 (the plots are labeled respectively). The numerical values for 1effk  (dashed 

line) depend on the wall thickness and are valid for t = 3.2mm. Experimental data from Ref. 8 are 

shown as markers. 

together with the experimental data from Refs. 7, 8. For the extensional branches 0 and 2 the 

results do not depend on the wall thickness (so far as the thin-wall assumption remains appli-

cable). For the flexure related branch 1 the results are numerically valid for the tube thickness, 

for which the calculations are made, at aspect ratios below the strongest coupling point. Above 

this point they become thickness independent, because the nature of vibration gradually changes 

to the extensional, as it was pointed out. Given the facts that the thin–walled piezoceramic tube 
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is electromechanically isotropic and that deformations in the circumferential and axial direc-

tions are in anti-phase along branch 0 and in phase along branch 2, it could be expected that 

electromechanical effects being subtracting at branch 0 and adding up at branch 2 will result in 

0effk  dropping to zero and 2effk  raising to maximum at the point of strongest coupling, where 

the magnitudes of deformation in the circumferential and axial directions become equal. It is 

noteworthy that although at this point (at h/2a = 1.57) 2effk  has maximum, the electromechan-

ical energy at this point is equally distributed between vibration in the radial and axial direc-

tions, whereas the operational direction is radial. At larger aspect ratios 2effk   

decreases slightly, but most of the electromechanical energy goes for radial vibration, which 

makes this range of aspect ratios advantageous for use of piezoceramic tubes, as single cylin-

drical projectors. 

Consider now the changes that must be made in calculating transducer parameters in the 

case that the piezoceramic tubes are poled in circumferential or in axial directions. Orientations 

of the axes of the crystallographic coordinate system in these cases shown in Figure 7.14 cor-

relate with the geometrical axes as follows: for the circumferential polarization 

1, 2, 3x r → → → ; for the axial polarization 3, 2, 1x r → → → . In the variants of the cir-

cumferential (tangential) polarization we will assume that electrodes are embedded into the 

body of a tube, as it is shown in Figure 7.14(b), and the electric field is uniform and may be 

calculated as 3 / cE V = , where c  is the separation between electrodes (the segments are sup-

posed to be electrically connected in parallel). However, in reality the stripped electrodes are 

usually used for tangential polarizing the thin-walled tubes, as shown in Figure 7.10. 

In this case the electric field, strictly speaking, cannot be considered as uniform and it is hard 

to make quantitatively accurate calculations, but qualitatively the results should be similar to 

those for the segmented design. In the variant of the axial polarization, which can be of interest 

in application to transducers operating in the axial direction, design of a piezoelement can be 

imagined, as illustrated in Figure 7.14(c), namely, segmented tubular stack cemented from a 

number of end-electroded rings, or a tube tangentially poled in axial direction. We will consider 

the segmented tube design, in which case the electric field may be assumed to be uniform with 

magnitude 3 / aE V = , where a  is the separation between electrodes. The mechanical bound-

ary condition 2 0T =  for circumferential and axial polarization is the same as for the radial and 
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circumferential polarization of the thick rings (Section 7.2.2.1.1). Therefore, the piezoelectric 

equations (7.18)-(7.20), expressions for strain (7.21) and (7.22), expressions for the charge den-

sity (7.25) and dielectric constant (7.26) are valid for these variants. The difference is in corre-

lating expressions for strain 
1S , 

3S  with expressions for 
xS  and S  by formulas (4.626) and 

(4.627) according to orientation of the crystallographic axes. Namely, in the variant of the cir-

cumferential polarization 1 xS S= , 3S S= , and in the variant of the axial polarization 3 xS S=

and 1S S= . 

Table 7.1. Expressions for the equivalent rigidities at different modes of polarization 
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Calculating the equivalent parameters using the same general expressions for the energies 

as in the variant of the radial polarization is straightforward and will be omitted. The resulting 

expressions for the equivalent rigidities and for the electromechanical transformation coeffi-

cients  are presented for all the modes of polarization in Tables 7.1 and 7.2. 

Note: In the variant of axial polarization a peculiarity exists in calculating the equivalent 

rigidities. As is shown in Section 5.5.2, when strains change in the direction of electric field 

(and in the case of the axial polarization both xS  and S  change along the electric field), an 

additional mechanical energy related term W  must be considered, resulting in an increase of 

the rigidity of mechanical system. If a h = , this effect can be accounted for by introducing the 

rigidity ( )
1,3 1,3

2 2

220.2 / 1E

S SK K k k = −  in addition to 22

EK . For PZT-4 
1,3

2 0.4Sk  , and 

220.13 EK K  . However, when / 4ah    (and this is usually the case for a range of aspect 
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ratios, for which the effects of the coupled vibrations are significant) the additional rigidities 

drop and become negligible. Therefore, the corresponding corrections are not included for sim-

plicity. 

Table 7.2. Electromechanical transformation coefficients for tubes with different polarizations. 
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Here 1,3

33

S
 is given by formula. Capacitances of the tubes (at 1 3 0S S= = , 2 0T =  and under 

the condition that all the segments are connected in parallel) are: in the variant of circumferen-

tial polarization 

 1,3 1,3 2

332 /
S S

e cC aht  = , (7.102) 

in the variant of the axial polarization 

 1,3 1,3 2

332 /
S S

e aC aht  = . (7.103) 

Here 1,3

33

S
 is given by formula (7.26) 

 

Figure 7.20: The resonance frequencies of the axially (dashed lines) and circumferentially (solid 

lines) poled tubes normalized by 0f  = 30 kHz. Labeling 0, 1 and 2 of the curves corresponds 

with numbering of the frequency branches. 
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Once the equivalent electromechanical parameters of the circumferentially and axially poled 

tubes are determined, all the necessary characteristics can be calculated in the same way as it 

was done in the case of the radial polarization. In particular, the results of calculating the reso-

nance frequencies are shown in Figure 7.20. The plots for the resonance frequencies are nor-

malized to the same value as in the case of the radial polarization, i.e., to the resonance fre-

quency of a short radial  poled tube, 0 30f = kHz. The numerical values of the normalized res-

onance frequencies vs. aspect ratio are presented in Table 7.3. 

Table 7.3. Values of calculated resonance frequencies normalized to f = 30 kHz. 

Polarization Radial Circumferential Axial 

h/2a branch 0 branch 2 branch 0 branch 2 branch 0 branch 2 

0.50 1.00 3.35 0.89 3.43 0.99 3.06 

0.75 0.99 2.25 0.88 2.30 0.98 2.08 

1.00 0.97 1.72 0.87 1.76 0.95 1.61 

1.25 0.94 1.42 0.84 1.44 0.89 1.36 

1.50 0.89 1.25 0.81 1.25 0.82 1.24 

1.75 0.82 1.17 0.76 1.14 0.74 1.18 

2.00 0.74 1.13 0.70 1.08 0.66 1.14 

2.25 0.67 1.11 0.65 1.04 0.60 1.13 

2.50 0.61 1.09 0.59 1.02 0.54 1.12 

2.75 0.56 1.08 0.55 1.01 0.50 1.11 

3.00 0.51 1.08 0.51 1.00 0.46 1.10 

Dependencies of the radial to axial velocities ratios and effective coupling coefficients for 

the tubes, having the same dimensions, as in the case of the radial polarization, are depicted in 

Figure 7.21 and Figure 7.22, as function of the aspect ratio h/2a. 

The results for the effective coupling coefficients show clear distinctions due to difference 

in the modes of polarization and consequent elastic and piezoelectric anisotropy of the tubes. 

For example, it can be seen that in terms of a qualitative behavior the plots for effk  related to 

branches 0 and 2 changed places compared with the case of the radial polarization. This effect 

could be expected by the following reason. In the cases of the axial and circumferential polari-

zation the piezoelectric moduli effective in the axial and circumferential directions ( 31d  and 

33d ) have different signs, whereas in the case of the radial polarization they (both being 31d )  



7.2 Transducers Operating in the Extensional Modes 49 

 

Table 7.4. Values of the effective coupling coefficients for the extreme mechanical systems. 
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1) mk  is the coupling coefficient for piezoelectric ceramic material under different boundary condi-
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are of the same sign. Therefore, the electromechanical effects are subtracting along the branch 

2 and adding up along the branch 0 on the contrary to the case of the radial polarization. The 

results of calculating the effective coupling coefficients comply with their expected values for 

the extreme aspect ratios at / 2 0h a →  and / 2h a → , in which cases the one-dimensional 

approximations for the corresponding piezoelements are valid. 

Expressions for the coupling coefficients of piezoceramic material for the mechanical 

boundary conditions that correspond to the extreme cases of / 2 0h a →  (a low pulsating tube 

and an infinitely long strip vibrating in the direction of its width with cos( / )x h  distribution) 

and / 2h a →  (a long pulsating tube and a long tube of small diameter axially vibrating with 

cos( / )x h  distribution) may be found in Ref. 2. They are summarized in Table 7.4. These 

values for PZT-4 ceramics are shown in Figure 7.22 by the extreme lines, to which the calcu-

lated plots must be approaching asymptotically. Note hat in the case that cosine distribution of 
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deformation exists the coupling coefficients of material are multiplied by the corresponding 

factors in order to get values for the effective coupling coefficients. 

 

Figure 7.21: Magnitude of radial-to-axial velocity ratios, [ / ]r x iU U , for the axially (dashed 

curves) and circumferentially (solid curves) poled tubes. 

 

Figure 7.22: Effective coupling coefficients for the axially (dashed curves) and circumferentially 

(solid curves) poled tubes. Horizontal markers denote the asymptotic limits of the curves as 

/ 2 0h a →  and / 2h a → . 
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7.2.2.1.4 Effects of the Coupled Vibration on the Electroacoustic Characteristics of the 

Transducers 

All the calculations made so far were concerned with electromechanical parameters of unloaded 

(vibrating in air) transducers, whereas it is impossible to complete treatment of a transducer for 

practical applications without considering their acoustic and/or mechanical loading and other 

external actions typical for the particular applications. The energy method allows acoustic loads 

and the external actions to be formally included into equations of motion (7.93) A way to com-

bine the results of solving the radiation problems, which we will assume to be known from 

Chapter 6, with electromechanical part of an unloaded transducer treatment that is presented by 

the equivalent circuit in Figure 7.15 (a) is illustrated with examples of cylindrical air-backed 

underwater transducer designs, shown schematically as icons in Figure 7.15 (b)-(c). The variant 

of transducer design in Figure 7.15 (b) with caps mechanically isolated from the ends of a pie-

zoceramic tube is typical for the projectors and broadband receivers. The ends of the tube are 

free to vibrate and are isolated from the acoustic field by the caps that are assumed to be abso-

lutely rigid. The design variant in Figure 7.15 (c) with the caps attached to the ends of a pie-

zoceramic tube and exposed to acoustic field are used predominately for the low frequency 

cylindrical hydrophones. Similar design can be used for radiation along the axis, but in this 

case, it falls into category of Tonpilz transducers, and usually the thick-walled axially polarized 

cylinders are used for this purpose. 

The radiation problem to be solved in the variant of Figure 7.15 (b) is that for a cylinder of 

finite height. Analysis of this problem is presented in Section 6.3.1.3. Note that in the case that 

( )/ 0.6 0.7h   −  a simpler model of the cylinder vibrating between two infinite rigid cylin-

drical baffles can be used that is considered in Section 6.3.1.2. As the radial velocity distribution 

over the height exists according to formula (7.98), we will assume that the radiation problem is 

solved for uniformly vibrating cylinder and for the cylinder vibrating with velocity distribution 

1 cos( / )U x h , and therefore the following functions can be considered known: the far field 

sound pressures ( ) ( )0 0 0, difP r A r U k =  and ( ) ( )1 1 1, difP r A r U k = , where ( )A r  is a distance 

depending coefficient and dif ik   are the diffraction coefficients; the sound pressures on the cyl-

inder surface ( ) ( )0 0 0, ,P ka x B ka x U =  and ( ) ( )1 1 1, ,P ka x B ka x U = , where functions 

( ),iB ka x  are introduced to make it obvious for the further analysis that the sound pressure on 
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the surface is proportional to the velocity.The acoustic power radiated by a transducer can be 

represented now as 

 

( )

( ) ( ) )

*

0 1

* *

0 0 1 1 0 1[ , , cos( / .

ac S S rW P P U d

B ka x U B ka x U U U x h d





= +  =

 = + +  




 (7.104) 

As the functions ( ),iB ka x  are assumed to be known, after integrating over the transducer sur-

face in Eq. (7.104) and some manipulations the acoustic power can be expressed as 

2 2

0 0 1 1ac ac acW Z U Z U= +  ,where 

 0 01 1 0/ac acoo acZ Z z U U= + , 1 11 01 0 1/ac ac acZ Z z U U= + . (7.105) 

The radiation impedances 0acZ  and 1acZ  represent the total acoustic loads related to the gener-

alized velocities 0U  and 1U ; 00acZ  and 11acZ  are the modal impedances for the uniform and 

cosine by height modes of vibration; 01z  is the mutual impedance between the modes. The 

impedances 0acZ  and 1acZ  must be included in Eq. (7.93) and introduced into the equivalent 

circuit. 

For calculating transducer in the receive mode the same equivalent circuit of Figure 7.15 

is valid, if the equivalent forces, 

 0 0eqv o difF P kS=  , 1 1eqv o difF P kS= , (7.106) 

that are due to action of acoustic field, are introduced into the contours related to the velocities 

0U  and 1U . In the expressions (7.106) oP  is the sound pressure in the free acoustic field, S  

is the radiating surface area of the transducer, 0difk  and 1difk  are the same diffraction coeffi-

cients that are introduced for the radiating mode of operation. The acoustic loads and equivalent 

forces determined by expressions (7.105) and (7.106) must be introduced into the equivalent 

circuit between the terminals 0,0 and 1,1 in Figure 7.15 (a) as the one-port networks shown in 

Figure 7.15 (b) (we will refer to thus obtained circuit as to Figure 7.15 (a)-(b)). After this is 

done, the equivalent circuit for electroacoustic transducer operating in the transmit and receive 

modes can be considered completed, and the generalized velocities iU  can be determined. The 

far field sound pressure, ( ),P r  , generated by a transducer will be found as 

  ( ) ( ) ( ) ( )( )0 1 0 0 1 1, , , dif difP r P r P r A r U k U k  = + = + , (7.107) 
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so far as the velocities 
0U  and 

1U are calculated from Eqs.(7.93) or, alternatively, from equiv-

alent circuit in Figure 7.15 (a)-(b). 

The problem of calculating parameters of a transducer with symmetrical caps attached to 

the ends of a piezoceramic tube and exposed to acoustic field, as shown in Figure 7.15 (c), has 

both the mechanical and acoustic aspects. The mechanical part of the problem is in formulating 

the boundary conditions for the joints between the caps and the ends of the tube and in calcu-

lating the coupled vibration of the caps and of the tube under these conditions. The acoustic 

part is in determining the radiation impedances and equivalent forces applied to the surface of 

the caps and to the side surface of a transducer. Results of solving the mechanical part of the 

problem can be represented by the input impedances on the contour of the caps in the radial and 

axial directions, crZ  and cxZ . The impedances are determined in Section 4.7.2.1 and 4.7.2.2. 

If to consider operation of a transducer in the receive mode at frequencies well below its reso-

nance, which is typical for the low frequency hydrophones, then the acoustic part of the problem 

simplifies to determining the diffraction coefficients only. In addition to the equivalent forces 

that are defined by expressions (7.106), the equivalent forces .eqv cF  applied to the caps must be 

taken into account, and .eqvc o c dif cSF P k= , were cS  is the surface area of a cap and difck  is the 

diffraction coefficient related to the cap radiation. Information regarding the diffraction coeffi-

cients for tubes of the finite height with capped ends can be found in Ref. 10. After the input 

impedances of the caps and diffraction coefficients are determined, the equivalent circuit of a 

transducer can be completed by connecting the one-port networks, shown in Figure 7.5(c), to 

the corresponding terminals of the mechanical branches in Figure 7.15 (a). Note that imped-

ances crZ  and cxZ  are doubled because of symmetry (associated mechanical energies are dou-

bled), and crZ  is ascribed to the generalized coordinate 0U  only, because according to Eq. 

(7.98) ( ) 0/ 2 .rU h U =  Also of note is, that velocity 2U  found from the equivalent circuit is 

the velocity on the contour of a cap. In the case that the cap cannot be considered as absolutely 

rigid, distribution of velocity on its surface must be determined. These calculations, as well as 

those for determining the input impedances of the caps, are pure mechanical problems, which 

can be treated separately. However, methodically the equivalent circuit of Figure 7.15 (a) with 

the one-port networks of Figure 7.15 (c) included provides the means for calculating parameters 

of capped cylindrical transducers. 
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Figure 7.23: Transmit frequency responses (TVR) calculated (dashed curve) and measured (solid 

curve) for a transducer comprised of a thickness poled tube with (a) h/2a = 1.32 and (b) h/2a = 

2.2. Mechanical losses for the fabricated transducers were included in the calculations. For com-

parison the frequency response without influence of coupled vibration is presented that are calcu-

lated for aspect ratio h/2a = 0.5 (dash-dotted line). 

 

Figure 7.24: Receive frequency responses (FFVS) calculated (dashed curve) and measured (solid 

curve) for a transducer comprised of a thickness poled tube with (a) h/2a = 1.32 and (b) h/2a = 

2.2. For comparison the frequency response without influence of coupled vibration is presented 

that are calculated for aspect ratio h/2a = 0.5 (dash-dotted line). 



7.2 Transducers Operating in the Extensional Modes 55 

 

Effects of the coupled vibration on acoustic performance of the cylindrical transducers 

were estimated by calculation and investigated experimentally in Refs. 11 and 12. Examples of 

calculated and measured frequency responses of the transducers with different aspect ratios 

from Ref. 11 are shown in  

Figure 7.23 and Figure 7.24. 

As can be seen, the results of calculating are in a good agreement with the experiment. The 

conclusions that can be made based on the results of the calculating and experimenting allow 

several general suggestions regarding the preferable aspect ratios of cylindrical piezoelements 

used for underwater transducers. It is desirable to have the height to diameter aspect ratio of the 

radially poled piezoelements / 2 0.5h a  . A higher effective coupling coefficient can be ob-

tained by using piezoelements of smaller aspect ratio. Piezoelements with larger aspect ratios, 

h/2a > 1.5, can be used effectively in a frequency band around resonance. In this range they 

even have an advantage in terms of electroacoustic parameters over transducers of the same 

height comprised of rings having small aspect ratios. Although, the piezoelements with large 

aspect ratios cannot be recommended for use as the broadband receivers that operate predomi-

nantly below the resonance frequency because of the deep notches that occur in the frequency 

response due to effects of coupled vibrations. The best results can be achieved for this purpose 

by employing mechanically separated piezoelements with small aspect ratios. In general, the 

frequency responses of transducers comprised of individual cylinders having aspect ratios 

larger than about 0.5 may differ dramatically due to effect of the coupled vibration, especially 

for the range of aspect ratios 0.5 ( / 2 ) 1.5h a  . 

Circumferentially (tangentially) polarized cylinders operating in the lowest frequency 

branch can be used effectively up to much larger height to diameter aspect ratios than the radi-

ally polarized. There is no apparent need or electromechanical advantage in axially segmenting 

the tangentially polarized cylinders for improving their performance, as compared with taking 

such measure for avoiding the effect of coupled vibrations in the case of the radial polarization. 

It is noteworthy that cylinders of equal dimensions but different polarizations may have signif-

icantly different frequency responses, as is shown with plots in Figure 7.25.  
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Figure 7.25: Comparison of TER of tangentially (solid line) and radially (dashed line) polarized 

cylindrical transducers, normalized to the TER of an axially segmented radially polarized cylin-

drical transducer of the same overall height: (a) aspect ratio h/2a = 1.1 and (b) aspect ratio h/2a = 

1.62. The frequency is normalized to resonance frequency of an axially segmented radially polar-

ized cylindrical transducer in water. For comparison the frequency response without influence of 

coupled vibration is presented that is calculated for aspect ratio h/2a = 0.5 (dash-dotted line).  

More detailed analysis of effects of coupled vibration on performance of the cylindrical trans-

ducers including dependence of their vertical directionality on the aspect ratio can be found in 

Refs. 11 and 12. Further we will assume that the rings comprising cylindrical transducers that 

vibrate in zero mode have aspect ratios h/2a < 0.5, if it is not noted otherwise. 

As to effects of the coupled vibration on parameters of the rings vibrating in higher modes, the 

exact analysis could be performed in the same way. Though a qualitative conclusion regarding 

the aspect ratios of the rings, at which they can be considered short enough for neglecting these 

effects can be made based on the following considerations. As it was shown, the aspect ratio, 

at which the strongest coupling between the radial and axial modes of a cylinder vibration takes 
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place, corresponds to condition of equality the resonance frequencies of a thin ring and the thin 

bar that have dimensions of the cylinder, i.e., 0 / 1ring barf f = . For radially poled cylinder that 

vibrates in zero mode the respective aspect ratio is ( / 2 ) 1.5h a = . For the cylinders vibrating in 

higher modes 2

0 1ringi ringf f i= + , therefore the aspect ratio of the strongest coupling reduces 

in factor of 21 i+ , and so should be reduced the value of aspect ratio, at which the effects of 

the coupling can be neglected. 

7.2.2.1.5 Nonuniform (Active-Passive) Ring Transducers 

Uniform segmented ring transducers are usually used in order to realize longitudinal piezoelec-

tric effect and to build rings of bigger diameter than it is achievable for manufacturing the solid 

rings. For some applications it may be required to change the resonance wave size of a trans-

ducer. Thus, for example, when employing a transducer in array it is desirable to reduce its 

wave size from considerations of directivity pattern steering. In situation that rings vibrating in 

the zero and first modes are used in a single transducer design it is desirable to have the same 

diameter for both of them, which can be achieved by reducing the zero mode ring wave diameter 

down to those of the first mode. In the first example the effective sound speed in the ring should 

be reduced, and in the second example – increased. And in all the cases the mode shape of 

transducer vibration and its main operating parameters should not change significantly. 

Changing to some extent the effective sound speed in a ring under this requirement can be 

produced by combining in its design the active piezoelements and inserts made of a passive 

material having different properties. If the active and passive parts are situated alternatively and 

have sufficiently small size in direction of circumference (in other words, number of parts is 

sufficiently large) the ring can be considered as quasi uniform with averaged elastic properties 

and density. But what number of parts is sufficient remains to be determined. 

Consider an active-passive design, in which case the ring is a combination of piezoelements 

and of passive inserts in the shape of tapered prisms, as it is shown in Figure 7.26. 

We will assume that the thickness of the ring is uniform. The mean widths of the active and 

passive elements are related as 

 2 /p a a N  + = , (7.108) 
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where N is the number of piezoelements (pairs of active and passive elements) in the ring, the 

subscripts a and p will stay for all the quantities related to the active and passive parts, respec-

tively. The relative amount of a passive material in the ring, 

 /p a  = , (7.109) 

 

Figure 7.26: Geometry of an active-passive ring. 

will be referred to as the space factor, i.e., as the ratio of volumes of passive to active material. 

Calculation of the active-passive ring transducer parameters will be made under the assumption 

that the ring vibrates uniformly in the zero mode, and thus can be considered approximately as 

one degree of freedom system. This assumption is not obvious, and how many of the active-

passive segments in the ring may be accepted as sufficient enough for meeting this assumption 

must be determined. This will be discussed later after the relations for the electromechanical 

parameters of the rings vs. materials properties and relative amount of passive material will be 

obtained. Consider deformations in the ring that experiences radial displacement o  under ac-

tion of applied voltage. The total circumferential elongation of the ring l  is 

 ( )2 2 2o ol a a    = + − = . (7.110) 

The circumferential stress 
ET  produced by electrical field in the piezoelements does not change 

in the volume of the inhomogeneous ring due to the condition of force equilibrium. Therefore, 

the strains in the active and passive prisms are 

 
33 3/ , /E E E E E

a p pS s T T Y S T Y= = = . (7.111) 

Thus, the total circumferential elongations of prisms is 
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Elongation of the ring’s mean circumference is 

 ( ) ( )3 32 / / / /E E E E
N

o a p p a p pl T Y Y l Y l Y T   = = + = + ,  (7.113) 

where 
a al N=  is the total length of the active material and p pl N=  is the total length of the 

passive material. From Eq. (7.113) 

 0
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E
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l Y l Y


=

+
. (7.114) 

The relative elongation of the circumference of the ring is 

 
2

E

a p eq

l l T

a l l Y

 
= =

+
, (7.115) 

where eqY  will be considered as the equivalent Young’s modulus of the composite ring. Using 

Eq. (7.114), (7.115), and definition (7.109) we obtain 
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Now the potential energy of the active-passive ring at 3 0E =  will be found as 
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Upon substituting aS , pS  and 
ET  from Eq. (7.111) and (7.114) into Eq. (7.117) and integrating 

over the volumes of the active and passive parts of the composite ring, we obtain 
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Thus, we arrive at the expression for the equivalent compliance of the active-passive ring 
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where 3

E

mC  is the equivalent compliance of the segmented ring of the same size made of active 

prisms only. 

When calculating the kinetic energy of the vibrating ring 
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it must be taken into account that the active and passive prisms may have different densities, 

namely, 
a  and p . The integration over the ring volume leads to 
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where the equivalent density of the active-passive ring is 
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Thus, the equivalent sound speed in the active-passive ring is 
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(note that 3

Ec  is the sound speed in the segmented active ring), and the resonance frequency of 

an active-passive ring can be found as 
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The electromechanical energy and the electromechanical transformation coefficient apn  will be 

determined from the expression 

 33
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33

1 1

2 2
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emap a o apE

V

d
W S E dV V n

s
= = , (7.126) 

where integrating must be performed over the volume of the active prisms. After substituting 

expressions for the electric field, 3 / aE V = , for the strain aS  from Eq. (7.111) and for the 

stress 
ET  from Eq. (7.114) we arrive at 
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where an is the transformation coefficient of the fully active ring. The electrical capacitance of 

the active prisms connected in parallel is 
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The resistances of the mechanical and electrical losses in the segmented active-passive 

rings may be determined as follows. The energies of mechanical losses ( mLW ) in the active and 

passive parts are proportional to their total potential energies ( mW ) and anti-proportional to their 

quality factors, mL mW W Q= . Using results of calculating the potential energies of active and 

passive parts from Eq. (12), the resistance of mechanical losses will be represented as 
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. (7.129) 

The resistance of the electrical losses eLapR  may be found as 

 ( )
3 3

1 1
1

tan tan
eL ap eL aS S

eap e

R R
C C




   

+
= = = + , (7.130) 

where Eq. (7.128) for 3S

e apC  is taken into account. Thus, the expressions for all the equivalent 

parameters of the active-passive ring are determined. 

An expected positive effect of combining active and passive materials in the mechanical 

system of a transducer is that the equivalent sound speed and, respectively, the wave size 

2 /a   of the transducer at resonance frequency can be changed to a degree. This will depend 

on the parameters of passive and active materials and on the space factor  . However, the 

tradeoff is that the electromechanical properties of the active-passive transducer decline to some 

extent. In particular, the effective coupling coefficient as one of the important figure of merits 

of the transducer may be affected. Another important characteristic of an active-passive trans-

ducer is the electromechanical force em apF n V= , or the electromechanical transformation coef-

ficient apn , as function of the same factors. 

The effective coupling coefficient can be determined by formula 

 ( )2 21/ 1 /S E

eff e mk C n C= + . (7.131) 
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The combination of the equivalent circuit parameters in formula (7.131) is denoted as 

 ( )2 2 2/ 1
E

m
c eff effS

e

C
n k k

C
 = = − . (7.132) 

For the completely active ring 2 2

33effk k=  and the coefficient 
c  becomes 

 ( )2 2

33 33/ 1m k k = − . (7.133) 

For the composite active-passive ring ( )c c  = , and after substituting parameters apn , E

m apC  

and 3S

e apC into expression (7.132), we arrive at 

 ( ) ( )33/ 1/ 1 / E

c m ps Y   = +  (7.134) 

and ( ) ( ) ( )2 2

33/ 1 / 1eff m mk k x x  = + + , (7.135) 

where ( ) /c mx   = . 

Correlation between the equivalent sound speed apc  in Eq.(7.125) and the effective cou-

pling coefficient vs. the relative amount of the passive and active materials,  , depends on the 

particular combination of these materials properties. Consider as the examples of the active 

materials PZT-4 ( 9

3 64 10 PaEY =  , 3 37.5 10 kg/ma =  ) and single crystal (SCr) material 

PMN-PT (
9

3 10 10  PaEY   , 3 38.0 10  kg/mp =  ). 

PMN-PT is chosen together with PZT ceramics for illustrating effects of combining active 

and passive materials due to its exceptionally high coupling coefficient and small Young’s 

modulus (relatively small sound speed). It is often desirable to increase the effective sound 

speed in a ring made of SCr in order to increase the wave diameter of the ring and thus to 

achieve its better acoustic loading. The opposite tendency is usually typical for the rings made 

of PZT ceramics. Besides, it is instructive to estimate how a positive effect of changing the 

effective sound speed may correlate with decline of the effective coupling coefficient with ex-

ample of combining piezoelectric SCr material with passive material, because an exceptionally 

large coupling coefficient is exactly what makes SCr materials attractive in comparison with 

PZT ceramic materials. 

In order to increase the diameter 2a of a ring made of the single crystal material such as 

PMN-PT, the passive material should be lighter and “stiffer.” Aluminum with 

3 32.7 10  kg/mp =   and 972 10  PapY =   makes an almost ideal match in this sense, and it 
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will be considered as the passive counterpart for PMN-PT material. Results of calculation of 

relative change of the sound speed and effective coupling coefficient of an active-passive ring 

transducer vs.   by formulas (7.123) and (7.135) are shown in Figure 7.27. Analyzing these 

results, one can conclude that replacement of half of the volume of single crystal active material 

by aluminum results in approximately 70% increase of the equivalent sound speed almost with-

out loss of the effective coupling coefficient. Effect of combination of PZT-4 ceramics with 

aluminum on the same parameters of the ring is shown in the Figure 7.27 for comparison. 

 

Figure 7.27: The relative changes of parameters of the active-passive rings vs. the space factor 

: (1) effective sound speed, 3( ) /apc c ; (2) effective coupling coefficient squared, 
2 2

33( ) /eff apk k

; (3) the effective electromechanical force related parameter 
33 33 33 33( / ) ( / )E E

apd s d s of an active-

passive segmented ring transducers. Solid lines – combination of PMN-PT and aluminum, dashed 

lines – PZT-4 and aluminum. 

In addition to achieving the goal of regulating the wave size of a transducer to a desirable 

extent, the material cost of the transducer can be reduced significantly. For the rings made of 

PZT ceramics more often is desirable to reduce their wave size to some extent, i.e., to reduce 

the effective sound speed in the active-passive structure. This requires using passive materials 

with large density or/and smaller Young’s modulus than those of piezoceramics. Given that the 

densities and Young’s moduli of PZT ceramics are on the order of 
3 37.5 10 kg/m    and 

970 10 PaY   , it is practically impossible to find passive materials suitable for application in 
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transducers among metals. An alternative is in designing rings nonuniform by thickness (with 

passive pats thicker than active), or in using modified metal parts with reduced effective 

Young’s modulus (for example, perforated). A number of patents on the related issues exist, 

but their analysis is out of scope of this treatment. 

 

Figure 7.28. Distribution of displacements over a segment of active-passive ring: (a) combination 

of PMN-PT and aluminum, (b) combination of PZT-8 and aluminum. The curves are numbered 

according to number of active-passive segments in the rings. The displacement values for each 

curve are normalized to the displacement at the joint between active and passive segments, which 

occurs around a normalized arc length of 0.5. 

As the basic assumption behind the above analysis was that the distribution of displace-

ments of the ring surface is uniform, it must be determined, how many active-passive segments 

in a ring is sufficient for meeting this assumption. In other words, what is the minimal number 

of the active passive segments that ensures close to pulsating resonance mode of vibration and 

achieving projected value of the resonance frequency. With this goal the Finite Element 
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Analysis of vibration of the active-passive ring was produced for different number of the seg-

ments and different combinations of active and passive materials. Results of the analysis are 

presented in Figure 7.28 and Figure 7.29.  

 

Figure 7.29. The input impedance of the active-passive ring (PMN-PT and aluminum) for four, 

eight, and twelve active-passive segments in the ring. The projected resonance frequency for the 

considered ring geometry is 14 kHz. 

It can be concluded that in order to obtain practically uniform distribution of the ring, num-

ber of active-passive segments must be more than eight (with length of the segment less than 

/ 8ap , where ap  is the wavelength of sound in the active-passive structure). 

Similar results regarding calculating parameters of the active-passive rings were reported 

in Ref. 13 though without mentioning about the underlying assumption that the radial displace-

ment should be uniform, which presupposes that number of active-passive segments in a ring 

must be sufficiently large for ensuring that the results of calculating are valid. 

7.2.2.2 Unidirectional (Baffled) Transducer 

Unidirectionality in the horizontal plane of the transducer, in which the zero order mode of 

vibration is electromechanically active, is achieved by the way of its baffling, as shown in Fig-

ure 7.30. The acoustic field related characteristics of the baffled transducers are considered in 

detail in Chapter 6. 
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The acoustic load becomes not symmetric due to the baffling, the modes of ring vibration 

on the radiating part of its surface are not orthogonal anymore, and the general equations of 

vibration (Eqs. (1.101)) become acoustically coupled. The radiation impedances ac iZ  must be 

regarded as 

 ( )1 /aci acii acil i acii inil

l i l i

Z Z z U U Z Z
 

= + = +   , (7.136) 

where the self-radiation impedances ac iiZ  and mutual impedances ac ilz  for the baffled trans-

ducers are determined in general form in Section 6.3.1.1.2 . And the introduced impedances 

 ( )/inil acil l iZ z U U=  (7.137) 

depend on solution of the vibration problem for the baffled transducer. In particular, for the 

 

Figure 7.30: Geometry of the baffled transducer with 180° coverage. 

zero and first modes of vibration the nondimensional coefficients for the self-impedances are 

presented in Figure 6.10, and for the mutual impedances between the zero and other modes in 

Figure 6.11. The last Figure is reproduced here as Figure 7.31. As follows from the plots in 

Figure 7.31, a significant coupling exists between the zero and first modes of vibration. The 

mutual impedances with higher modes can be neglected, especially at frequencies around and 

below the resonance frequency corresponding to the zero mode of vibration, where 

( )0/ 1lU U  . Thus, the baffled transducer with electromechanically active zero mode, strictly 

speaking, must be considered as having two mechanical degrees of freedom that correspond to 

the generalized velocities 0U  and 1U . Its operation in the transmit node can be described in the 

electromechanical sense by equivalent circuit shown in Figure 7.32. In the equivalent circuit 

the impedance 10inZ  introduced from the zero mode contour into contours that correspond to 

the first mode of the surface vibration is represented in the form of force il acil lF z U= , which is 

0U =

cos( )i

i

U U i=

0 =
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equivalent in terms of the energy balance. Indeed, the energy flow from the contour with ve-

locity 
lU  into contour with velocity 

iU  is 

 
2 *

ac inil i il iZ U FW U= = . (7.138) 

 

Figure 7.31; Nondimensional coefficients 0i  and 0i  for the mutual radiation impedances be-

tween zero and other modes of the surface vibration of a cylindrical transducer with 180° rigid 

baffle. 

 

Figure 7.32: The equivalent electromechanical circuit of the baffled cylindrical transducer with 

the zero mode of vibration active. 
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Another peculiarity of the equivalent circuit is that the contour that correspond to the first 

mode of vibration is split into two parts with velocities 
10U  and 

11U . The reason behind this is 

that under action of an external force a cylinder can move as a whole (this “transitional” mode 

of vibration formally corresponds to the resonance frequency 0 = ), in which case the radial 

component of the surface displacement changes as cos , i.e., in the same way as in the first 

mode of the cylinder vibration that corresponds to the resonance frequency 1 . 

If to denote the magnitude of vibration as a whole (as the mass M  of the cylinder) 
10U , 

and in the first mode as 11U , then the magnitude of vibration with cosine distribution of velocity 

over radiating part of the transducer surface, 1U , will be found as 

 1 10 11U U U= + , (7.139) 

and expression for the impedance introduced into the zero-mode contour will be 

 ( )01 01 10 11 0/in acZ z U U U= + . (7.140) 

After the velocities 0U  and 1U  are determined from the equivalent circuit in the straightforward 

way, the sound pressure on the axis and directional factor of a transducer can be found as 

 ( ) ( ) ( )0 1,0 ,0 ,0P r P r P r= + , (7.141) 

where 0P  and 1P  are the modal sound pressures determined by formula (6.147) with values of 

the diffraction coefficients ( )/ 2difik   by formula (6.146) (their moduli are presented in Figure 

6.8) and 

 ( )
( ) ( )0 0 1 1

0 1

, / 2 , / 2
, / 2

U H U H
H

U U

   
 

+
=

+
, (7.142) 

where 0H  and 1H  are the modal directional factors determined by formula (6.148) (their mod-

uli are presented in Figure 6.9). 

It is noteworthy that calculation the effects of the modes interaction in practical baffled 

transducers should not be significant in the frequency range around and below the resonance 

frequency of the zero mode, 0 , because the introduced impedances are small. Effect of the 

first mode can be noticeable in the range around the resonance frequency of the first mode,  

1 , due to the fact that the ratio 1 0/U U  becomes large. Thus, to the first approximation the 

directional factors in the horizontal plane of the baffled transducer are as shown in Figure 6.9 

and reproduced in Figure 7.33. 
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Figure 7.33: The modal directional factors of transducers at / 2 =  baffle coverage for ka = 1 

(solid line), ka = 2 (dashed line), ka = 3 (dash-dotted line), ka = 4 (thin solid line): (a) zero mode, 

(b) the first mode (see Section 7.2.3.3). 

Remarkable property of the directional factors is that they almost do not change in a wide range 

of transducer wave sizes. It is also of note that the directional factors in this range are practically 

the same for the transducers with compliant baffles. 

7.2.3 The First Order Transducer 

The first order cylindrical transducer will be called a transducer comprised of the rings that 

have design shown in Figure 7.2(b), i.e., with electrodes split in two equal parts and connected 

in phase opposition. As follows from Eq. (7.8), the ring has the first order mode of vibration 

( )1 cos  =  being the lowest electromechanically active mode. Though, unlike the case of 

the zero mode transducer, the first electromechanical active mode is not isolated. With full size 

electrodes all the odd order modes are also active. Thus, strictly speaking, the first order trans-

ducer has multiple degrees of freedom, and multi contour equivalent circuit shown in Figure 
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7.34 must be used for its calculation. The equivalent electromechanical parameters of the circuit 

are determined by the expressions (7.4), (7.5), (7.8), (7.11) and (7.12). The acoustic field related 

parameters are presented in Section 6.3.1.1. However, for practical calculations of the 

      

Figure 7.34: Multi contour equivalent circuit of the first order cylindrical transducer. 

first order transducers operating in the frequency range around and below the first resonance 

frequency, which is usually the case, the equivalent circuit can be greatly simplified. The reso-

nance frequencies that correspond to the successive modes of vibration according to formula 

(7.13) are: 
1 0 2 = , 

3 0 10 = , 
5 0 26 = . Thus, the closest to the first mode fre-

quency is 2.2 times higher. Besides the diffraction coefficients for higher modes drop signifi-

cantly at small ka, as it follows from expression (6.119) and is illustrated in Figure 6.6 by the 

plot at i = 3. Therefore, contributions of the higher modes to results obtained using the first 

mode approximation (using the single contour of equivalent circuit that correspond to the mode 

shape ( )1 cos  = ) can be neglected. The frequency range, in which the first mode of vibra-

tion dominates, can be broaden even up to 3  , as it may be needed for some applications 

discussed below, by reducing the size of electrodes down to 2 / 3  = . At this electrode size 

the third mode of vibration becomes inactive (according to expression (7.5) 3 0 =  and hence 

3 0n = ), and the effective coupling coefficient for the first mode even increases (see plots in 

Figure 7.4). Effect of such changing the electrodes size on the directionality of the transducer 
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is illustrated with plots in Figure 7.35, where directional factors of a transducer are presented 

at ka = 7 (in vicinity of the third mode resonance for PZT-4).  calculated with full size and 120o 

degree electrodes.  

 

Figure 7.35: Directivity patterns of the first order transducer at ka = 7: full size electrode (solid 

line), 120° electrode (dashed line). 

Taking into account all the above considerations we will further represent the equivalent 

circuit of the first order transducer without the acoustic baffles as is shown in Figure 7.36. 

Parameters of the circuit are: 

 1 2M M aht = = , 1 4 /E E

l llK th as= , 1, 3l =  (7.143) 

for the radial and circumferential polarization; 

 1 31 118 / En d h s=  (7.144) 

for radial and 

 1 33 338 / En d th s =  (7.145) 

for circumferential polarizations. Acoustic field related parameters , 11acZ  and 1difk , are pre-

sented in Section 6.3.1.1.1. (Figures 6.6 and 6.7). The directional factor is ( ) cosH  = . 

 

Figure 7.36: The equivalent electromechanical circuit of the first order transducer for an opera-

tional frequency range. 
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7.2.3.1 Dipole Directionality of the First Order Transducers  

Many applications of the first order transducers are due to their dipole type directionality. In 

this capacity the first order transducers were mentioned in Ref. 14. Theoretically, under the 

assumption of ideal uniformity of electromechanical properties of the rings directionality of this 

type can be achieved in a broad range of frequencies. But the real piezoceramic rings, especially 

made as solid piezoelements, may be not sufficiently uniform, and this may result in significant 

corruption of the dipole directionality at frequencies below transducer resonance. In order to 

qualitatively estimate, what does it mean “not sufficiently uniform”, consider a transducer op-

erating in the receive mode assuming that electromechanical transformation coefficients of the 

halves of electrodes differ only by 2%, which can be considered as quite a precise match. De-

note transformation coefficients of the halves that have opposite signs as an  and bn (according 

the note above Figure 7.2) and let it be 1.02b an n= . Given that for the first mode an  and bn  

have opposite signs, at parallel in antiphase connection of the electrodes will be obtained that 

transformation coefficient for the first mode of vibration 1 2.02 2b a a an n n n n= + =  , and for 

the zero mode 0 0.02b a an n n n= − = . Thus, the zero mode of vibration becomes unwanted ac-

tive, and the equivalent circuit of Figure 7.36 must be modified by including corresponding 

contour, as shown in Figure 7.37 for the receive mode of operation. 

 

Figure 7.37: Equivalent circuit of the first order transducer with additional contour that takes into 

consideration unwanted contribution of the zero mode of vibration. 

The output voltage of the transducer, outV , will be found as superposition of effects of the 

first, 1V , and zero, 0V , modes. The output voltage dependence from the angle is 

 ( )1 0 1 0 1c /cos osoutV V V V V V = + = + . (7.146) 
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The second term in the parenthesis corrupts the dipole directivity. Especially strong contribu-

tion of this term can be expected in the frequency range around the zero-mode resonance due 

to difference in the mechanical impedances of the zero and first modes, and at low frequencies 

(at small ka) due to dominance of diffraction coefficient of zero mode over those of the first 

mode. The approximate quantitative estimations can be made as follows.  

At the resonance frequency of the zero mode 

 0
0 0

0 0

1

( )
dif S

ac mL r el

n
V pS k j

r r C
=

+
, 1

1 1

1

1ro
dif E S

m ro el

n
V pS k j

jK C




 . (7.147) 

Taken into account that at 0r  ( 2.2ka   for PZT-4) 0 0( ) ( )ac mL wr r c S +   (see Figure 6.7) 

and 0 1dif difk k  (see Figure 6.6), after some manipulations will be obtained that 

 0 0

1 1

4 c c

w w

V c nt
j

V a c n




    . (7.148) 

Thus, for the particular case of a cylinder with more or less typical for receivers ratio 

( )/ 0.2t a   made of PZT-4 under condition that 1.02b an n=  

 0

1

0.13
V

j
V

 . (7.149) 

At low frequencies (at 1.0ka  ) 

 0
0 0

0

1
dif E S

m el

n
V pS k

K C
= , 1

1 1

1

1
dif E S

m el

n
V pS k

K C
= . (7.150) 

As it follows from plots in Figure 6.6, at 1.0ka   0 1/ 1.5 /dif difk k ka . Thus, 

 
( )0 1arg arg00 1 0

1 1 10

0.06 dif dif

E
k kdif m

E

dif m

kV K n
e

V k n kaK

−
=     , (7.151) 

 

Figure 7.38: The main contribution to output voltage of a receiver of the first mode, 1V , and 

unwanted zero mode, 0V . 

0V
1V
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and distortions of the dipole directionality gradually increase with lowering the frequency. Dis-

tortions of the discussed type can be visualized with help of plots in Figure 7.38, where contri-

butions of the first mode and unwanted contribution of the zero mode are presented qualita-

tively. It has to be remembered also that in general there exists shift of phase between these 

contributions, as is seen, for example, from formula (7.148). 

To some extent the effect of mismatch of the transformation coefficients can be reduced 

by electrical equalizing the output voltages of transducer halves. This procedure will be con-

sidered in Ch. 14. 

Another reason for distortions of the dipole directionality may be due to a possible nonu-

niformity of the mechanical properties of a ring (the most probable being in the density). In this 

case the mechanical interaction between zero and first modes introduces the unwanted contri-

bution. Much better results in terms of uniformity of properties and thus broadening operational 

range of the first order transducer can be achieved with segmented ring design, in which case 

properties of the comprised prisms can be matched before cementing. Though, this improve-

ment comes for expense of the cost and much more complicated manufacturing of the trans-

ducers. 

7.2.3.2  About Some Applications of the First Order Transducers. 

One of the possible applications of the first order transducers is their employing in capacity of 

the pressure gradient receivers. Given that corresponding requirements for the frequency re-

sponse of a receiver can be corrected electronically, the most challenging is requirement for 

exactness of cos  directionality including deepness of the nulls. This presupposes uniformity 

of the mechanical and electromechanical properties of the rings, or in other words, immunity to 

action of the sound pressure, as was illustrated above. Such application will be considered in 

more detail in Ch. 14. 

Some applications of the first order transducers require involvement of the zero order om-

nidirectional reference transducer for resolving an ambiguity in detecting direction to a source 

of sound with help of the first order transducer. 

7.2.3.2.1 Cardioid Type Characteristic 

One of examples of this kind is obtaining unidirectional characteristic of the cardioid type 
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 ( ) ( )0.5 cos 1H  = +  (7.152) 

in a way that is shown in Figure 7.39. 

 

Figure 7.39: Forming the cardioid directional pattern by combining the first and zero modes of 

vibration of a cylindrical transducer. 

For obtaining ideal cardioid pattern ratio of output voltages of the zero and first mode 

should be 

 1 0arg arg1 1

0 0

1
V VV V

e
V V

−
= = , (7.153) 

i.e., the voltages should be equal by magnitude and phase. The phase difference between the 

output voltages can be represented as 

 ( ) ( )1 0 1 0 1 0arg arg arg arg arg argmw mw dif difV V Z Z k k− = − + − , (7.154) 

where arg mwiZ  is the argument of the mechanical impedance of a transducer in water. At fre-

quencies significantly below 0rf  the first term in parenthesis can be neglected (see formula 

(7.151)). At frequencies above 1rf  the velocities are in phase (remember that for getting cosine 

directional pattern the size of electrodes must be reduced). In the range that includes the reso-

nance frequencies the phase difference depends on the frequency, as 

 1 0 1 1 0 0arg arg arctan arctanmw mw mw mwZ Z Q Q−   −  , (7.155) 

where according to expression (3.15) ( ) ( )/ /i ri rif f f f = −  and mwiQ is the mechanical qual-

ity factor of a transducer in water. Example of the phase difference frequency response is pre-

sented in Ref. 15). 

By splitting the electrodes in four equal parts and then combining the opposite parts in 

antiphase, as shown in Figure 7.40, two independent (except for a possible capacitive coupling 
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between the quarters of the electrodes) electrical inputs will be obtained, which can be used for 

generating two orthogonal ( cos  and sin ) distributions of displacement. 

 

Figure 7.40: The electrodes configuration for forming two orthogonal first order ( cos  and 

sin ) displacement distributions. 

For calculating thus formed identical transducers the equivalent circuit of Figure 7.36 is 

valid with electromechanical transformation coefficients that are determined using formula 

(7.10) at m = 4. Thus, at parallel antiphase connection of the electrode segments in pairs it will 

be 
1 31 114 2 / En d h s= . Combination of such orthogonal displacement distributions can be used 

for designing a portable acoustic system for a direction finder. This can be done in different 

ways that involve different procedures of processing the output signals of the first order and 

zero order channels. 

7.2.3.2.2 Double Dipole Transducer for Detecting Direction on a Sound Source 

The principle of operation of one of the direction finder that employs vector addition of output 

signals of the channels having cos  and sin  directional characteristics on the display 

screen of a cathode-ray tube (CRT) is illustrated in Figure 7.41. 

 

Figure 7.41: Illustration of principle of operating the direction finder with acoustic system that 

consist of four separate channels having cos  and sin  directional characteristics. 
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Accuracy of the bearing detection depends on how close the actual directional factors are 

to the ideal cos  and sin  configurations in a sufficiently broad operational frequency 

range. As it was shown, the first order transducer under consideration is capable of producing 

exact cos  and sin  characteristics. The problem is that output signals from their lobs that 

have opposite phases belong to the same channel. Being applied to the opposite deflecting plates 

of a CRT these signals will produce an ambiguous bearing. For resolving the ambiguity the 

signals from the lobs having different phase must be separated and directed to their correspond-

ing deflecting plates. In principle this can be done by comparing the signals with reference 

output of omnidirectional transducer by phase with help of a phase detector and switch that 

directs signal, which is “in phase” with omnidirectional, to one of the deflecting plates, and 

those in “antiphase”- to the opposite plate. This is shown schematically in Figure 7.42. 

 

Figure 7.42: Schematic illustration of using outputs of orthogonal dipole cylindrical transducer 

(1) in combination with its omnidirectional output for detecting direction to a source of sound. 

Blocks 2 contain a phase detector and switch that separates close to in phase signals from those 

close to antiphase. 

The quotation signs are used because the signals are not exactly in phase or in antiphase 

due to above estimated inherent phase difference between the first order and zero order outputs. 

All the needed signals theoretically can be obtained by combining the quarters of electrodes of 

the same transducer. Namely, the combinations I III−  and II IV−  give the orthogonal dipole 

outputs, and I II III IV+ + +  gives omnidirectional output. In doing the comparison by phase 

the inherent phase difference between the first and zero order outputs must be remembered. 

Note that CRT in this example was used for illustrating the underlying principle and describing 

peculiarities of the acoustic system in Ref. 15. The real procedures of processing the signals 

0 =

I

II

III

IV

2

2

I III−

II IV−

I II III IV+ + +

in phase

out

out

in



78  7 Cylindrical Transducers 

 

can be different, including those realized in design of the Sonobuoy DIFAR (Ref. 13) for the 

same purpose. 

7.2.3.2.3 “Spiral Wave” Transducer 

One more application of the two orthogonal first order distributions of radial displacement on 

the surface of a ring for developing a direction finder may be based on a different signals pro-

cessing. Consider combination of two identical orthogonal displacement distributions that are 

phase biased by 90 degrees. The resulting radial vibration of the surface will be denoted  

 ( ) ( )1 1, cos sin j t j j t

r t j e e e       = + = , (7.156) 

that is uniform in magnitude, but has a phase that depends on azimuthal angle. The sound pres-

sure generated in far field by this combination of displacements, spP , may be expressed as 

 ( ) ( )
1 1, s j t krj

sp difP A r U k e e


−
=  , (7.157) 

where 11 rU  = =  and ( ),A r  is a common function of propagating the spherical wave. 

With addition of a reference omnidirectional transducer the combination of two first order 

transducers with orthogonal directional characteristics can be used as acoustic system of a bea-

con for underwater navigation that is described in Ref. 17. Results of investigating such acoustic 

system that can be called “spiral-wave” transducer are presented in Ref. 18. Direction to a 

source of sound, bearing s , in this application is determined as phase difference between the 

received signals that are generated by the above combination of the first order transducers and 

by the omnidirectional transducer that produces sound pressure 

  ( ) ( )
0 0 0,

j t kr

difP A r U k e



−

=   (7.158) 

at the same point of the acoustic field. A systematic error due to the phase difference between 

the factors 1 1difU k  and 0 0difU k , which is the same as determined by Eq. (7.154), can be elimi-

nated in course of calibrating the acoustic system. Obviously, the same acoustic system can be 

used in the receive mode. 

In practical realization of the described acoustic system all the required directional charac-

teristics can be obtained by using separate rings of small height that produce orthogonal dipole 

radiation and omnidirectional radiation. This configuration is shown in Figure 7.43. 
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Figure 7.43: Acoustic system formed by the separate rings that produce cos , sin  and omni-

directional patterns in the horizontal plane. The segments 1 and 2 characterize unwanted phase 

shifts between the transducer outputs. Diameters of the zero and first order transducers at reso-

nance frequencies are supposed to be equalized for eliminating an additional phase shift between 

the transducers in the horizontal plane. 

It must be noted that in this acoustic system the comprising transducers have different 

acoustic centers, and an additional error in determining bearing may occur that depends on 

direction of sound wave propagation in the vertical plane. Minimizing of this error requires 

reducing the heights of the rings. The concerns regarding phase difference between the signals 

due to difference in frequency dependences of the impedances and diffraction coefficients of 

the zero and first mode transducers remain the same. But in this case an opportunity exists to 

significantly reduce this difference by way of equalizing the resonance frequencies of the rings. 

This can be achieved by employing the active-passive ring design, as was shown in Section 

7.2.2.1.5, and by using different ceramic compositions for the first and zero order transducers. 

In order to get equal resonance frequencies at the same diameters, the sound speed in the zero 

order transducer must be greater in factor of 1.4 (the ratio of the resonance frequencies 1 0/r rf f

) in regard to the sound speed in the first order rings. Thus, for example, if the radially polarized 

rings for the first order transducers are made of PZT-5 (
3

1 2.8 10Ec =   m/s), and for the zero 

order transducer an active–passive ring is used made of radially poled PZT-4 segments com-

bined with aluminum segments of the same size (at 1 = ), the sound speed apc  will be 

11.4 E

apc c  according to formula (7.123). In this case the frequency dependent factors i  in 

formula (7.155) are equal, and independent of frequency remaining phase shift can be elimi-

nated in course of calibration of the acoustic system. 

7.2.3.2 Unidirectional (Baffled) First Order Transducer 

Unidirectionality of a transducer that has the first mode of vibration as the lowest active mode 

may be achieved in the frequency range around its resonance frequency by baffling a part of 
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radiating surface that vibrates in antiphase. Assuming that the electrodes configuration meets 

condition (7.8) at N = 1, the most common is the 180o coverage of the surface, as shown in 

Figure 7.30. The next closest active mode of vibration has the resonance frequency 3 12.2f f

and its contribution to vibration in the operating frequency range can be neglected. But due to 

non-symmetrical acoustic loading the acoustic coupling with electromechanically passive zero 

mode must be taken into consideration exactly in the same way, as it was done in Section 7.2.2.2 

for the case that the zero mode was active, and acoustically coupled with the passive first mode. 

Thus, the equivalent electromechanical circuit of the baffled transducer with the first mode of 

vibration active looks like it is shown in Figure 7.44 with all the electromechanical parameters 

the same. 

 

Figure 7.44: The equivalent electromechanical circuit of the baffled cylindrical transducer with 

the first mode of vibration active. 

The acoustic field related characteristics of the transducer are considered in Section 

6.3.1.1.2, where the general analytical expressions for the characteristics are given and plots 

are presented of their dependences on the wave size. For the modal diffraction coefficient and 

nondimensional coefficients of the radiation impedance they are presented in Figures 6.8 and 

6.10, respectively. Coefficients of the mutual impedances between the first and zero modes  

are given in Figure 7.31. Plots of the directional factors are presented in Figure 7.33. They are 

similar with those for the baffled zero mode transducer, as is illustrated by the plots. The direc-

tionality of the baffled transducers do not change significantly at values of ka from about 2.0 to 

3.5 that correspond to the range around resonance frequencies of the zero and first modes of the 

rings made of PZT ceramics. 
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The frequency response of the transducer calculated with help of the equivalent circuit in 

Figure 7.44 has peculiarities due to contribution of the zero mode at frequencies around its 

resonance, because the ratio 0 1/U U  has significant value at these frequencies. This effect is 

analogous to those produced on the frequency response of the baffled zero mode transducer by 

interference of the first mode in vicinity of its resonance frequency. These peculiarities can be 

seen on the plots of corresponding frequency responses. 

7.2.3.3 Dual (0  1) Active Modes Transducer 

The operational bandwidth of a cylindrical transducer may be extended by simultaneous using 

both zero and first modes of vibration. This can be achieved at various conditions of energizing 

separate halves of electrodes of a baffled transducer. 

When only one half of the electrodes is activated, these modes as well as the higher order 

odd modes are generated, as it follows from relations (7.10). Contribution of the higher modes 

to overall vibration in the operational range around and below the resonance frequency of the 

first mode can de neglected. Hence, the equivalent circuit of the baffled cylindrical transducer 

includes two active contours, as shown in Figure 7.45. 

 

Figure 7.45: Two-contour equivalent electromechanical circuit of a transducer operating in the 

zero and first modes. 

The operational characteristics (frequency responses, directional factors) of the transducer 

depend on whether the working electrode is outside or inside of the baffle (number I, or number 

II in Figure 7.46, respectively). These two cases differ by sign of the electromechanical 
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transformation coefficients 
1 / 2n , as this follows from expression (7.10): sign (+) for half I at 

/ 2 / 2  −   , and sign (-) for half II at / 2 3 / 2    . This change of the sign produces 

different results of superposition of the modal characteristics of the zero and first modes. The 

modal frequency responses typical for velocities of vibration 
0U  and 

1U  are qualitatively il-

lustrated in Figure 7.47. 

 

Figure 7.46: Baffled transducer with two pairs of electrodes. 

 

Figure 7.47: Qualitative view of the modulus (a) and phase (b) of the frequency responses of the 

modal velocities of vibration in the zero and first modes ( 0U  and 1U ), and of modulus of their 

superposition under condition that only a half of electrode is active (c). Mode 0+1 corresponds to 

the inner (#II) half of the electrodes, mode 0-1 to the outer (# I) half. 

I

0 =

II

0 mode

M
od

ul
us

1 mode

f0 f1

P
ha

se
M

od
ul

us

f0 f1

f0 f1

0+1 mode

0-1 mode

f

f

f

(a)

(b)

(c)



7.2 Transducers Operating in the Extensional Modes 83 

 

 

Figure 7.48: Calculated directional factors of the baffled cylindrical transducers for different 

modes of vibration19: (a) zero mode, (b) first mode, and (c) “0+1” mode for ka = 2.1 (solid line), 

ka = 2.6 (dashed line), and ka = 3.1 (dash-dotted line). The directional factors for a compliant 

baffled cylindrical transducer at ka = 2.1 (thin solid line) are also plotted in (a) and (b). 

It follows from the Figure that with half II of the electrode active, the constructive superposition 

of the modal responses takes place in the frequency range between the resonance frequencies, 

and deconstructive at frequencies below and above the resonance frequencies. In opposite, with 

half I active superposition is deconstructive between, and constructive outside the resonance 

frequencies. We will designate these cases for brevity as “0+1” and “0−1” modes of operation, 

where the plus and minus signs indicate the constructive and deconstructive superposition in 

the range between the resonance frequencies 0f  and 1f . Directional factor of the transducer in 

the horizontal plane and sound pressure on the axis may be calculated using the equivalent 

circuit of Figure 7.45 by formulas (7.141) and (7.142). The directional factors are shown in 

Figure 7.48. 

The ( 0 1 ) modes may be used in different applications. The 0-1 mode may be beneficial 

for operation in the receive mode at frequencies below 0f , or/and in the systems that 
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simultaneously employ two individual resonances that need to be effectively separated. The 

0+1 mode provides approximately half an octave operational bandwidth and appropriate direc-

tional factors in this range, as is illustrated in Figure 7.48. The directional factors correspond to 

excitation of “0+1” mode, and of the zero and first modes for comparison. It follows from the 

figure that in the frequency range around and between frequencies 
0f  and 

1f  the directional 

factors change not significantly. 

 

Figure 7.49: Circuit for generating the combined 0+1 and 0-1 mode of a baffled cylindrical trans-

ducer. 

The unidirectional radiation of the “0+1” mode suggest its application for the broadband 

directional projectors. The disadvantage of the 0+1 mode, however, is the use of only a half of 

the piezoelectric material available, which results in a reduction of the sound pressure generated 

by the projector in comparison with the single mode projectors utilizing all the material. This 

problem may be reduced to some extent by using both 0+1 and 0-1 modes simultaneously, as 

it was described in Ref. 19. The idea behind this solution is in applying to both halves of the 

electrodes simultaneously voltages from electrical sources, whose relative phase can be 

changed. This can be implemented by employing two-channel transmit system that is schemat-

ically shown in Figure 7.49. 

Applying the voltages V and jVe   to separated electrode halves of the transducer results in 

the phase biased superposition of electromechanical forces acting in the mechanical system of 

the transducer. 

For calculating the frequency responses of the system, the equivalent circuit of Figure 7.45 

must be used once under action of voltage V and then under action of voltage jVe   and with 

sign of the electromechanical transformation coefficient 1n  changed, and the results must be 

added. Obviously, the phase shift 0 =  results in excitation of the zero mode, and the phase 

shift 180o =  results in excitation of the first mode. In general, by changing the phase shift 
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between the two channels the frequency response of a projector can be controlled in favor of a 

certain frequency band in the range between the zero and first modes resonance frequencies. 

Analysis of the effects of various phase shifts produced in Ref. 19 showed that the flattest fre-

quency response is achieved at 90o = . 

7.2.4 The Second Mode Transducers 

The higher the mode number, the more circumferential becomes vibration of a ring, as follows 

from formula (4.266). Besides, the radial displacements in high modes have multiple nodes, 

and the smaller portions of radiating surface vibrate interchangeably in phase opposition. Alto-

gether this makes high mode transducers poor acoustic sources. Probably, the last vibrational 

mode that may have practical applications is the second mode, ( )2 cos2  = , with corre-

sponding resonance frequency 
2 0 5f f= . For excitation of this mode of vibration the elec-

trodes must be arranged, as it is shown in Figure 7.2(c). Namely, they must be divided in four 

parts, and the neighboring parts must be connected in antiphase. According to formulas (7.4) 

and (7.8) at 2N = , the lowest active mode has electromechanical transformation coefficient, 

 31

2

11

20
E

d h
n

s
= , (7.159) 

if the parts of electrodes are connected in parallel. The next active mode is ( )6 cos6  =  with 

resonance frequency 
6 0 37f f= . Thus, the second mode can be considered as isolated in the 

frequency range around and below its resonance frequency, and in terms of calculating param-

eters of a transducer that employs this mode of vibration the electromechanical equivalent cir-

cuit can be used having one active mechanical contour. 

The distribution of displacements in the ring at the second mode is cos2r o  = , 

2 sin 2o  = , and the equivalent mass and rigidity are according to formulas (4.262) and 

(4.263), 

 2 2.5M M=  and 2 1125 /E EK th as= . (7.160) 

The electrical capacitance of the clamped ring is 

 ( )2

31 332 1 /S T

elC ah k t = − . (7.161) 
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The effective coupling coefficient for the second mode transducer may be found with help of 

formulas (5.178) and (5.177),  

 

2

21

eff

c

eff

k

k
=

−
, where 

2

2

2

c E S

el

n

K C
 = . (7.162) 

After substituting expressions (7.159)- (7.161) for the parameters involved it will be 

 
( )

2
2 31

2 2 2

31

8

1 1 8 /
eff

k
k

k 
= 

 − −
 

. (7.163) 

Note that this expression is the same as for a longitudinally vibrating bar for all the rings vi-

brating in high modes (at 1i  ), because the distribution of stress in circumferential direction 

is the same. For a ring made of PZT-4 (with 31 0.33k = ) 0.3effk = . 

 

Figure 7.50: Directional factors of the second mode transducer: without baffles (solid line), and 

with rigid baffle on 3/4 of its surface at ka = 3.5 that corresponds to the resonance frequency of 

the ring made of PZT-4 ceramics (dashed line). 

Acoustic field related parameters of a second mode transducer differ significantly depend-

ing on whether a part of its surface is covered by a baffle or not. We will assume that the overall 

height of the transducer is comparable with wavelength in the frequency range around its reso-

nance frequency. Therefore, the modal acoustic characteristics of the transducer without baffles 

may be calculated by formulas presented in Section 6.3.1.1.1. The directional factor in the hor-

izontal plane is ( )2 cos2H  = , i.e., those of the quadrupole. It is shown in Figure 7.50 by the 

solid line. 

The modal radiation impedance is determined by formula (6.121) and (6.123) at i = 2, and 

can be represented as 
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 ( ) ( )2 2 2acZ c ah ka j ka   =  +   . (7.164) 

Plots of the nondimensional coefficients ( )2 ka  and ( )2 ka  are depicted in Figure 7.51 for 

transducer without a baffle (solid lines) and with rigid baffle on 3/4 of surface (dashed lines). 

 

Figure 7.51: The nondimensional coefficients of radiation impedances of the second order trans-

ducer without baffles (solid lines) and with rigid baffle on 3/4 of its surface (dashed lines). 

It is noteworthy that the lowest mode of the flexural vibration of a ring has the same distri-

bution of the radial displacement ( ) cos2rfl ofl   = , as the second extensional mode (see 

Section 4.5.4). Therefore, the acoustic coupling exists between these modes. It can be concluded 

from expression (6.41) that the corresponding mutual impedance is 2, 2ac fl acz Z=  (as the modes 

of vibration are the same). Thus, the additional electromechanically passive mechanical contour 

must be included into equivalent circuit of the second mode transducer, which is responsible 

for the acoustically coupled flexural mode of vibration. Equivalent parameters of this contour 

according to formulas (4.287) and (4.289) are 

 
5

4
flM M= , 

3

3

11

3

4
fl F

t h
K

a s


= , 

2

11

1
0,12rfl F

t
f

a s
= . (7.165) 

The sound pressure generated by the transducer may be determined following formula 

(6.120) as 
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− −= , (7.166) 

where ( )2difk ka  is the diffraction coefficient for a transducer vibrating in the second mode 

without baffles that is determined by formula (6.119)). Velocity of vibration,
2U , must be de-

termined from the equivalent circuit of the transducer that is presented in Figure 7.52. 

 

Figure 7.52: Equivalent electromechanical circuit of the second mode transducer. The inactive 

contour is due to acoustic coupling between the extensional and flexural modes that have the same 

velocity distribution on the transducer surface. 

The equivalent force for determining sensitivity in the receive mode of operation is 

2 0 22 difF P ahk=  . Plots of the diffraction coefficients for the transducer are shown in Figure 

7.53.  

In principle, the second mode transducer can be used, when the quadrupole directional 

pattern is needed. For example, such application is described in Ref. 21. Behavior of the dif-

fraction coefficient shows that the second mode transducer is highly inefficient at frequencies 

below its resonance. Besides, distortions of the quadrupole patterns take place in vicinity of the 

frequency rflf  due to coupling with flexural mode, and they can be corrupted due to unwanted 

contributions from the side of the zero and first modes.  

This may occur by the same reasons that were noted regarding the dipole patterns in Section 

7.2.3.1, as the quarters of a ring never can be ideally identical in electromechanical sense. The 

corruptions can be more pronounced, because of inherently smaller sensitivity of the second 

mode transducer. 
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Figure 7.53: The diffraction coefficients for the second mode transducer: magnitude 2difk  (thick 

lines) and phase 2difk  (thin lines) without baffles (solid lines) and with rigid baffle that covers 

3/4 of the radiating surface (dashed lines). 

Much more acoustically efficient and suitable for application in arrays is the transducer 

supplied with baffles that cover 3/4 of its surface, as shown in Figure 7.54. 

 

Figure 7.54: View of transducer with baffle that covers 3/4 of its surface. 

The acoustic field related parameters of the second mode transducer with the baffle are 

determined as follows. The diffraction coefficient ( )2 , / 4difk ka   that is calculated with help 

of expression (6.146) with / 2 =  replaced by / 4 =  is plotted in Figure 7.53 by the 

dashed lines. The directional factors ( )2 , / 4H ka   at values ka in vicinity of the resonance 

frequency calculated from expression (6.148) are presented in Figure 7.50. The radiation im-

pedance  

 ( ) ( ) ( )2 2 2, / 4 0.25 / 4 / 4acZ ka c j      =  +   , (7.167) 

/ 4−

0 =

/ 4
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may be determined from expression (6.113) with coefficients 
2ia  calculated by formula (6.103) 

at / 4 = . Thus obtained nondimensional coefficients 
2  and 

2  are plotted in Figure 7.51 

by the dashed lines. 

 

Figure 7.55: Equivalent electromechanical circuit of the baffled second mode transducer. The 

electromechanically passive contours are responsible for corrections due to acoustic coupling with 

the active contour. 

When calculating the frequency response of the transducer in a broad range below the res-

onance frequency it must be taken in consideration that acoustic coupling of the active second 

mode exists not only with the flexural mode, as is mentioned above, but also with electrome-

chanically passive zero and first modes. Therefore, the corresponding mechanical contours, 

strictly speaking, must be considered in the calculations. This is reflected in the equivalent cir-

cuit of the baffled second mode transducer that is shown in Figure 7.55.  

The mutual acoustic impedances 20z  and 21z  that are responsible for the coupling can be 

calculated with help of expression (6.114) at / 4 = . Judging by resemblance of the modes 

of vibration within interval / 4 / 4  −   , their values should be close to values of the self-

impedances for the zero, first and second modes. The peculiarities in the frequency response of 
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a transducer that are due to the acoustic coupling take place in vicinities of frequencies flf , 
0f  

and 
1f . This is shown with a qualitative example of the frequency response in Figure 7.56. 

Quantitative analysis of these peculiarities hardly makes sense, though this can be done after 

the mutual impedances are determined. It is rather a matter of awareness of their existence and 

of avoiding the corresponding frequency ranges in operation, so far as a flat response of the 

transducer is required. 

 

Figure 7.56: Qualitative example of frequency receive response of the second order transducer 

that illustrates existing of peculiarities in vicinity of the frequencies flf , 0f  and 1f . 

It is noteworthy that the 3/4 baffled cylindrical transducer can be used as a unidirectional 

projector/receiver that is operating in the frequency bands around the zero, first and second 

mode resonance frequencies separately or simultaneously. Such in concert operation may be 

achieved by a proper for generating these modes of vibration combining the quarters of elec-

trodes/ 

7.2.5 Incomplete Ring Transducer 

Extensional vibrations of the incomplete rings (segments of a ring) made of passive materials 

were examined in Section 4.5.3. Consider now the extensional vibrating incomplete rings that 

are made from piezoelectric ceramics for designing transducers that may employ vibrations of 

such mechanical systems. Geometry of the ring is shown in Figure 7.57. The ring is assumed 

to be thin and short, therefore 0rT   and 0hT  . In the crystallographic coordinates 3rT T→ , 

2hT T→ , 1S S →  for the solid, and 1rT T→ , 2hT T→ , 3S S →  for the segmented rings. We 

will consider in detail variant of the solid ring. The results obtained can be specified for the 

variant of the segmented ring in a straightforward way. 

ffl f0 f1 f2 f
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Figure 7.57: Geometry of the incomplete piezoceramic ring. 

Status of a radial poled ring is governed by the piezoelectric equations 

 1 11 1 31 3 ,ES s T d E= +  3 31 1 33 3

TD d T E= + , (7.168) 

where from follows that 

 ( )1 11 1 1 11/E E ET s S Y S= = , ( )3 31 11 1/E ED d s S= , ( )1 2

33 33 311S T k = − . (7.169) 

Thus, in all the expressions for the equivalent mechanical parameters of the passive rings by 

formulas that include Young’s modulus Y it should be replaced by ( )1 111/E EY s= . The summary 

of the parameters is: 
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Note that all the parameters related to the incomplete ring transducers having opening angle   

will be distinguished further by this value, as for example ( )acZ  . In the expressions (7.170), 

(7.171) i=0,1,2,… resonance frequency of the lowest mode is 

 ( ) 2

0 0 1 ( / 2 )rf f  = + . (7.172) 

Thus, the lowest resonance frequencies at ( ) ( ), / 2 , / 4   =  are 
0 0 01.25, 2, 5r r rf f f , 

respectively. It is noteworthy that the resonance frequencies for the half ring and for the quarter 

of ring are the same, as for the first and second modes of vibration of the complete ring. At 

 = the resalt corresponds to resonance frequency of a ring with a thin slot or with a crack.  

The electromechanical conversion status of the ring is characterized by the electromechan-

ical energy 

0 =

el
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=  , (7.173) 

where ( )3 31 11 1/E ED d s S=  and ( ) ( )3 / ,E elE V t   = . The function ( ), 1E el   =  for the parts 

of a ring covered by electrodes (at 
el   in Figure 7.57), and ( ), 0E el   =  otherwise. 

Expression for the strain 1S S=  obtained by formula (4.2687) after substituting expressions 

for displacements (4.272) and (4.273) is 

 ( ) ( )
2

1

0

1
1 2 1 cos 2 1

2 2
i

i

S S i i
a





 
 

 =

     
= = + + +    

     
  (7.174) 

After substituting 3E  and 3

ED  under the integral (7.173) and performing integration we will 

obtain 
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where from follows that the coefficient of electromechanical transformation, in , is 
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With the full size electrode, at el = , 
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and for the case of the ring with a slot (at   ) 
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The effective coupling coefficients of the rings may be calculated through the coefficient 

12 / S E

c i el in C K = , where parameters 
E

iK  and in  must be determined in the general case from 

formulas (7.170) and (7.176), and ( )1 2

33 312 1 /S T

el elC ha k t = − . Calculating coefficient c  for 

the general case results in 
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For the case that el =  
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Thus, the effective coupling coefficients in this case do not depend on the opening angle of the 

ring. It is noteworthy that this value of c  is the same as for the modes of extensional vibrations 

of a side electroded straight bar, and so are the effective coupling coefficients. The most usable 

 

Figure 7.58; Plot that shows dependence of function ( ) ( )/c el c     on the angle of the elec-

trode coverage. 

for transducer applications is the lowest mode of vibration at 0i = . For this mode 
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and for all the piezoceramic compositions (with 31 0.35k  ) 
2

31 8 /effk k =  within 2% accu-

racy. Expression (7.179) for the function ( )c el   shows that it has maximum at some value of 

el  (and so does the effective coupling coefficient). This function normalized to its value at 

el = , 
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is shown in Figure 7.58, where from it follows that function ( )c el   achieves its maximum at 

3 / 4el  , and at / 2el =  it has the same value, as for the full size electrode. 

It must be remembered that all the calculations and conclusions regarding the electrome-

chanical parameters of the incomplete rings are valid under the assumption that they are short 

enough for neglecting effects of coupled vibration between vibration in the circumferential and 

axial directions. Qualitative estimations in this regard can be made by comparison with situation 

that takes place for the complete rings, so far as angle   is relatively large, or with thickness 

poled plates at smaller  , in which case the segment of a ring becomes closer to the curved 

plate. As to the first case, a note is made in the end of Section 7.2.2.1.3. Analogous estimations 

for the second case can be made based on results presented in Section 4.6.2.2, where it is shown 

that the strongest coupling takes place at ( )/ 2 1h a =  in our notations. 

Table 7.5. Comparison of the calculated and measured at different aspect ratios effective coupling 

coefficients of the incomplete rings. 

 

Solid ring 

 =  

Ring with a slot 

 =  2 / 3 =  / 2 =  / 3 =  

Calculated 0.33 0.30 0.30 0.30 0.30 

Measured 

h/2a = 0.50 
0.32 0.29 0.24 0.21 0.2 

Measured 

h/2a = 0.25 
0.33 0.30 0.30 0.30 0.3 

 

With reduction of angle   the aspect ratio of the original solid ring, at which a harmful 

effect of coupled vibration on the effective coupling coefficient can be neglected, should be 

reduced. This is illustrated by comparison that is made in Table 7.5 between the calculated by 

above presented formulas and values of the effective coupling coefficients of incomplete rings 

measured with samples cut from the rings having different aspect ratios. 

The acoustic field related parameters of incomplete rings depend on distribution of dis-

placements on their surface in the radial direction. According to (4.272), 
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Thus, the modal distributions (mode shapes) of the radial vibration are 
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= +  (7.184) 

The most usable may be the lowest modes (at i = 0). For the opening angles ( ), / 2  = and 

( )/ 4  they are: ( )0 , cos( / 2)   = , ( )0 , / 2 cos   =  and ( )0 , / 4 cos2   = , respec-

tively. Note that ( ) ( )0 , cos( / 2) 1 cos / 2    = = +  is the square root of the cardioid dis-

tribution. The mode shape at    (for a ring with a slot) is shown in Figure 7.59 (a). 

 

Figure 7.59: (a) The mode shape of radial vibration of a ring with a slot (at   ), and (b) the 

corresponding directional factors in the horizontal plane at ka =2.4 (solid line) and ka =1 (dashed 

line). Plot of cardioid is presented by the dotted line for comparison. 

It is noteworthy that a half ring (at / 2 = ) and a quarter of ring (at / 4 = ) have the 

same distributions of displacement and the same resonance frequencies (see (7.172)), as a com-

plete ring vibrating in the first and second extensional modes. This is because the boundary 

conditions on the free ends of the segments that are cut out of a complete ring along the nodal 

lines remain the same, as in the complete ring.  

Consider calculating the acoustic characteristics of variants of the transducers at different 

values of the opening angle. 

7.2.5.1 Ring with a Slot 

The closest resonance frequencies of the active modes of vibration are 
0 0( ) 1.25rf f =  

and 
1 0 0( ) 3.25 1.6 ( )rf f f = = . Thus, in vicinity of the lowest resonance frequency the trans-

ducer made of rings with a slot may be considered as one mechanical degree of freedom system, 

and may be represented by the single contour equivalent circuit of Figure 7.60. The summary 

of equivalent parameters of the circuit is as follows: 

0 = 0 =

(a) (b)

cos / 2 =

 =  =
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 ( )1 2

33 312 1 /S T

elC ah k t = − , (2 / )av slS S = , 0.5eff slS S= . (7.186) 

 

Figure 7.60.:Equivalent electromechanical circuit of a transducer that employs piezoceramic ring 

with a slot. 

The acoustic field related quantities must be determined in the following way. The distri-

bution of radial displacements can be represented in the form of series 

( ) ( )1 2, cos( / 2) cos cos2 ...r o o oa a a       = = + + + , where the Fourier coefficients are: 

 
0

2
a


= , 

1

4

1 3
a


=


, 

2

4

3 5
a


= −


, 

3

4

5 7
a


=


,  … (7.187) 

The terms with ia  at 3i   may be neglected, and 

 
2 4 4

cos( / 2) cos cos 2
1 3 3 5

r o o     
  

 
=  + − 

  
. (7.188) 

The sound field radiated by the transducer can be calculated as superposition of the sound fields 

radiated by the partial distributions of displacements that correspond to the terms of the series 

(7.188) with help of expression (6.117) and (6.119). Thus, the sound pressure generated may 

be presented as 

 ( ) ( ) 0 1 2

2 4 4
, , 2 cos cos 2 .

3 3 5
o dif dif difP A r ah k k k      

  

 
= + − 

 
 (7.189) 

The velocity 
o oU =  must be determined from the equivalent circuit in Figure 7.60. It can be 

concluded from expression (7.189) that diffraction coefficient in this case is 

 ( ) 0 1 2

2 4 4
0,

3 3 5
dif dif dif difk k k k

  
= + −


. (7.190) 

The directional factor of the transducer is 
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As it follows from plots in Figure 6.6, at the wave sizes 2.4ka   the diffraction coefficients up 

to 3difk  are equal approximately to 0difk  . ( 2.4ka   corresponds to the resonance frequency of 

a solid ring made of PZT-4.). Therefore, in this range the expressions for the sound pressure, 

diffraction coefficient and directional factor become 

 ( ) ( ) 0, , 2 cos( / 2)o difP A r ah k       , (7.192) 

 ( ) 00,dif difk k  , (7.193) 

 ( ) ( ), cos( / 2) 1 cos / 2H     = + . (7.194) 

Plot of the directional factor is shown in Figure 7.57(b) by the solid line. With decrease of ka 

the terms in the general expressions (7.189) and (7.191) that contain the diffraction coefficients 

at 1i   gradually die out. At 1ka   the expressions for the diffraction coefficient and direc-

tional factor reduce to 

 ( ) 00, 1.06dif difk k  , (7.195) 

 ( )
3 2

, 1 cos
5 3

H   
 

 + 
 

. (7.196) 

Plot of this function is shown in Figure 7.59 (b) by the dashed line. The conclusion can be made 

that the directional factor of the transducer almost does not change in the range of frequencies 

at least from 1.0ka   up to 3.0ka  , and the diffraction coefficient is equal to those of the 

zero mode transducer. The transducer can be used for the same purposes as transducer having 

cardioid characteristic that is described in Section 7.2.3.2.1 in the much broader range of fre-

quencies and without involvement of complications related to excitation of different modes of 

vibration of a solid ring. 

Radiation impedance of the transducer may be determined from expression for power ra-

diated by superposition of modes, through which the velocity of vibration is represented. Ac-

cording to (7.188) 
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2 4 4

, cos cos 2
1 3 3 5

r oU U   
  

 
 + − 

  
, (7.197) 

and following Eq. (6.123) 

 ( )
2 2 2

2

00 11 22

2 4 4

3 3 5
ac o ac ac acUW Z Z Z

  

      
= + +      

        

, (7.198) 

where aciiZ  are the modal impedances of the cylindrical transducer without baffles, 

 ( ) ( )00 002acooZ c ah ka j ka   =  +   , ( ) ( )acii ii iiZ c ah ka j ka   =  +   . (7.199) 

Plots of the nondimensional coefficients for the modal impedances are presented in Figure 6.7. 

The last term in (7.198) can be neglected. Thus, ( ) ( )
2

ac ac oZW U   , where 

 ( )
2 2

00 11

2 4

3
ac ac acZ Z Z

 

    
 +    

     

. (7.200) 

After substituting expressions (7.199) for the impedances we obtain 

 ( ) ( ) ( )acZ c ah j      =  +   , (7.201) 

where 

 ( )
2 2

00 11

2 4
2

3
   

 

    
= +    

     

 and ( )
2 2

00 11

2 4
2

3
   

 

    
= +    

     

. (7.202) 

The wave sizes of rings with a slot made of PZT-4, PZT-5 and PZT-8 ceramics at frequen-

cies around their resonances are within the range 2.0 3.0ka   (both for variants of radial and 

circumferential polarizations). At these values of ka 11 00   and 11 00  . Hence, 

 ( ) 11   , ( ) 11   , and ( ) ( )11 11 11ac acZ c ah j Z      + = . (7.203) 

Note that ( )effah S = , where ( )effS   is the effective surface area of transducer with a 

slot determined by formula (6.140). 

The equivalent force acting on the transducer in the receive mode is according to (6.34) 

 ( ) ( )2eqv o difF P ah k  =   . (7.204) 

At 1.0ka   ( ) 0dif difk k  .  

At low frequencies (at 0ka → ) ( ) 2 /difk  → , and 
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 ( ) 4 ( )eqv o o avF P ah P S =  = . (7.205) 

Here ( ) ( )2 /avS S  =  is the average surface area of transducer determined by formula (6.8).  

It is noteworthy that a zero mode ring that has a crack can be considered as unintended ring 

with a slot and its electromechanical parameters change accordingly. Thus, one of immediate 

indications of appearance a crack in the ring is raise of its resonance frequency in factor of 

1.25 1.12 . 

7.2.5.2 Half Ring Transducer 

We will consider variants of the transducer made of a single half ring furnished with a rigid 

cylindrical baffle, as shown in Figure 7.61, and transducer made of two half rings mechanically 

isolated, as shown in Figure 7.62. 

 

Figure 7.61: Transducer configuration that includes a half of active ring and cylindrical rigid baf-

fle. 

The lowest and the next closest resonance frequencies of the half ring transducer according 

to formula (7.171) are ( )0 0/ 2 2rf f = ( )0 0/ 2 2rf f =  and ( )1 0/ 2 10rf f = , therefore 

in the vicinity and below of the resonance frequency ( )0 / 2f   the transducer can be considered 

as having single mechanical degree of freedom, and the equivalent circuit of Figure 7.60 can 

be used for its calculations. The equivalent parameters of the circuit are (see (7.170), (7.177))

( )0 / 2M tha  = , ( )0 1/ 2 2 /E EK thY a = , 0 31 114 / En hd s= , 

 ( )1 2

33 311 /S T

elC ah k t = − , (7.206) 

The effective coupling coefficient of the transducer by formula (7.181) is the same as for the 

first order transducer ( 0.3effk =  for PZT-4 ceramics). 

The acoustic field related characteristics of the transducer depend on the entire transducer 

design configuration. Single half ring transducer with rigid half cylindrical baffle has all the 

0 =0U =

1U

1 cos( )U U =



7.2 Transducers Operating in the Extensional Modes 101 

 

same acoustic characteristics as the baffled first order transducer described in Section 7.2.3.2, 

as the mode of vibration on the radiating surface is the same, ( ) 0 cosU U = . The advantage 

of the half ring transducer is that it has twice broader band of the transmit frequency response 

at -3 dB level around the resonance frequency than the first order transducer, because at the 

same value of radiation resistance it has twice smaller equivalent mass, and thus twice smaller 

( )0 0 / 2 /ac acQ M r = . 

In the transducer that is composed of two half rings the rings can be used in the transmit 

and/or receive modes separately or simultaneously. The boundary conditions on the transducer 

surface can be presented as superposition of the two modes of operation, as shown in Figure 

7.62. In the first mode ring I vibrates, surface of ring II is clamped; in the second mode ring II 

vibrates, surface of ring I is clamped. 

 

Figure 7.62. Operation of the two half ring transducer, as superposition of modes of operation of 

single half ring transducers with baffles. 

Consider the first mode of operation. Acoustic characteristics of the transducer ( acIZ , difIk

, ( )IH  ) are the same as for the baffled first order transducer. Vibration of transducer I gener-

ates sound pressure on the clamped surface of transducer II that can be calculated by formula 

(6.106) for i = 1. The coefficients ( )nia  , which for our case should be specified as ( )1 / 2na 

, are the Fourier coefficients that are determined in (6.144) as 10 2a = , 11 / 2a = , 12 2 / 3a = , 

13 0a = . As the result, the distribution of the sound pressure on the clamped surface of trans-

ducer II is  

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2

0 1 2

2 2 2' ' '

0 1 2

4
( , ) 2 cos cos 2

3

U

II oI

H ka H ka H ka
P a j cU

H ka H ka H ka
    

 
 − + + 

  

. (7.207) 

(Values of the higher order terms in series (7.207) are negligible.) In other words, the vibrating 

transducer I generates on the surface of transducer II the equivalent “acoustomotive” force, 

0IIU = IU 0IU =IIU

III
0 =
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, (7.208) 

The equivalent force can be presented alternatively as 

 , ,acII I acII I oIF z U=  , (7.209) 

where ,acII Iz  is the mutual impedance between transducers I and II. Taking into consideration 

expressions (6.113) for the modal radiation impedances, and (7.208) for the force, we arrive at 

relation for the mutual impedance 

 
, 00 11 222 2

1 1 4

4 9
acII I ac ac acz Z Z Z

 
= − + − , (7.210) 

where aciiZ  are the modal radiation impedances of cylindrical shell. Their plots are shown in 

Figure 6.7. In vicinity of the resonance frequency of the half ring 3ka  , and nondimensional 

coefficients of the radiation impedances in expression (7.210) are: 1.0ii  , 0.2ii  . Accord-

ingly, ( )00 2 1 0.2acZ ah c j  + , ( )11 22 1 0.2ac acZ Z ah c j   + , and 

 ( ) 3

, 2 1 0.2 10acII Iz ah c j  − +  . (7.211) 

Thus, the mutual impedance between the halves of the transducer in vicinity of the resonance 

frequency is negligible in comparison with the self-impedance of the baffled first order trans-

ducer, for which the nondimensional coefficients are plotted in Figure 6.10. The halves of the 

cylinder are practically uncoupled in the vicinity and above the resonance frequency, because 

the wave size 3ka   is large enough for the back side of the cylinder being in the shadow zone. 

The situation changes with reduction of the wave size (at lower frequencies). Dependence of 

the nondimensional coefficients of the mutual radiation impedance from the wave size is pre-

sented in Figure 7.63. This information will be useful for calculating the transducers in the 

receive mode of operation. 

The sound pressure generated by the transducer I in the far field is according to formula (6. 

152), 
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 (7.212) 

 

 

Figure 7.63: Nondimensional coefficients of the mutual radiation impedance between halves of 

the rings that comprise a transducer. Active component   (solid line), reactive component   

(dashed line). 

(Values of the higher mode terms are negligible.) The directional factor is 
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. (7.213) 

The sound pressure on the acoustic axis can be represented according  formula (6.120), as 

 ( ) ( ), ,0 ,I I difIP r A r ahU k  =   , (7.214) 

where it is denoted for brevity  

 ( /4)2
( , )

4

j krk c
A r e

kr






− −= . (7.214a) 

After comparing expressions (7.212) and (7.214) we obtain 
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, (7.215) 

or, after using relations (6.119), 

 0 1 2

2 2

2 3
difI dif dif difk k k k





 
= + − 

 
. (7.216) 

Thus, the sound pressure generated by the transducer may be presented, as 

 ( ) ( ) ( ), , ,I I difI IP r A r ahU k H    =   . (7.217) 

Consider now the mode of operation, in which case transducer II vibrates, and the surface 

of transducer I is clamped. So far as the mode shape of vibration is the same as in the previous 

case, expressions for all the acoustic field related characteristics that do not depend on the mag-

nitude of velocity remain the same. Just when superposing the sound fields of both modes of 

operation it must be taken into consideration that radiation of transducer II occurs in the oppo-

site direction. Therefore, ( ) ( )II IH H  = + , and 

 ( ) ( ) ( ), , ,II II difI IP r A r ahU k H     =   + . (7.218) 

The resulting sound pressure that is generated by the transducer is 

 ( ) ( ) ( ) ( )1, , ,I II difI I II IP r P P A r ahk U H U H       = + = + +   . (7.219) 

And the directional factor is 

 ( )
( ) ( )

( )
1I II I

I II I

U H U H
H

U U H

  





+ +
=

+
. (7.220) 

The final result for the operational characteristics of the two half ring transducer depends on 

correlation between velocities IU  and IIU  that can differ for various transducer applications. 

The following applications of the transducer may have practical sense. 

One ring (for certainty #I) radiates, another is in the passive mode. Voltage IV is applied 

to input of transducer I, and output of transducer II is or open, or short circuited. 

Both the rings are in the receive mode. Outputs of the rings are open circuited. 

Both the rings radiate. Voltage is applied to both transducer inputs. The most interesting 

are the variants, in which I IIV V=  and I IIV V= − . 
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Results of calculating the velocities and thus the related characteristics of the half ring 

transducers for all of these variants of operation can be obtained from combination of two 

acoustically coupled equivalent circuits that are presented in Figure 7.64 at different positions 

of the switches. 

 

Figure 7.64: Acoustically coupled equivalent circuits of the half ring transducers that describe 

their combined electromechanical operation. Positions of switches T, R, OC correspond to opera-

tion in transmit or receive modes, and to the open circuited output. 

Two comments to otherwise self-explanatory circuits must be made. Firstly, we will as-

sume that in the receive mode the sound wave is coming from the side of transducer I in direc-

tion of the acoustic axis ( 0 = ). In this case eqvI o av difIF P S k=  and ( )eqvII o av difI IF P S k H = . Sec-

ondly, if the rings are electromechanically identical, then I IIn n= , E E

m I m IIZ Z= , 1 1S S

eI eIIC C= . In 

general, they can be different. The acoustic field related parameters remain intact, so far as the 

mode shapes of the rings vibration do not change. 

In the case that one half ring transducer radiates the unidirectionality is achieved in the 

frequency range around the resonance frequency without using a baffle. The directional factors 

in this range are close to those of the first order transducers with baffles, because a contribution 

to acoustic field of vibration of the rear half ring turned to be negligible (the mutual impedance 

between the half rings is close to zero). One more advantage of the half ring transducer, which 

is mentioned above, is that it has twice broader band of the transmit frequency response at -3 

dB level around the resonance frequency than the first order transducer. The directional factors 

of the transducer in some frequency range around the resonance frequency are close to cosine 

in the half space. This feature makes possible using transducers of this kind in the receive mode 
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in acoustic system of the direction finder, operational principle of which is illustrated in Figure 

7.41. Employing the half ring transducer does not require a process of eliminating ambiguity in 

detecting the bearing that is necessary in case that the first order transducer is used for the same 

purpose. Though the simplicity is achieved for expense of the narrower operational range and 

lesser accuracy. Such simple system may find applications in the case that these features are 

not critical (e.g., for communication between divers). 

The mode of simultaneous radiating of both half rings under equal voltages applied in 

phase is equivalent to operation of a single half ring installed on the surface of rigid flat baffle, 

due to symmetry. And radiating under the voltages applied in antiphase is equivalent to opera-

tion of the half ring transducer installed on the compliant surface. These situations are illustrated 

in Figure 7.65. 

 

Figure 7.65: Half rings radiating in the (a) rigid and (b) compliant flat baffles. By solid lines are 

shown the rings, by the dashed lines are shown their images. 

The directional factors of the transducers that operate under these conditions are presented for 

a range of the rings wave sizes in Figure 7.66. These characteristics and all the parameters of 

the transducers remain practically the same in case the flat baffles of about a wavelength size 

are used.  

It has to be noted that transducers made of the incomplete rings have peculiarities that must 

be considered in their practical designing for underwater applications. First of all, the air-backed 

variant of the transducer design cannot withstand a significant hydrostatic pressure, and the 

variants of the liquid (PU) filled designs must be considered in this respect. On the positive side 

is that in terms of influencing the liquid filled internal volume on parameters of a transducer 

the extensionally vibrating incomplete rings behave in the same way as the complete rings. 

0U = 0P =

(a) (b)
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Figure 7.66: The directional factors of the half rings radiating in a cylindrical rigid baffle (solid 

lines), in a rigid flat baffle (dashed lines), and in a compliant flat baffle (dash-dotted lines) at (a) 

ka = 2.2, (b) ka = 3.0, (c) ka = 4.0. 

Other peculiarities are related to the frequency responses of the transducers. Except for the 

modes of vibration, which were considered so far for operating in the frequency ranges around 

the extensional resonance frequencies, the incomplete rings may vibrate as a whole (that for-

mally corresponds to the resonance frequency 0 = ) and in the flexural modes (that have res-

onance frequencies much below the extensional ones). These “parasitic” modes of vibration do 

not have electromechanical coupling with the working extensional modes, but may influence 

the frequency response of transducer through the acoustic interactions with the working modes. 

These interactions may be especially pronounced in vicinity of the “parasitic” resonances, and 
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they result in a drop of sensitivity of transducer at low frequencies and in the notches in the 

transducer frequency response in vicinity of the flexural resonances. Example of analytical ap-

proach to estimating such effects is illustrated with the equivalent circuit in Figure 7.55, and 

resulting qualitative frequency response in Figure 7.56. Here we assume that operational range 

of the incomplete ring transducers can be recommended in the more or less broad band around 

their resonance frequencies. Therefore, the contours that are accounting tor these “parasitic” 

effects where not included in the equivalent circuits of the transducers for simplicity. 

7.3 Transducers Operating in the Flexural Modes 

When considering cylindrical transducers of this type the results will be used that are presented 

in Section 4.5.4 and 4.5.10, where flexural vibrations of the complete and slotted passive rings 

are discussed. The same assumption will be in place that the rings are thin and short, unless it 

will be noted otherwise. Therefore, the correspondence between strain and stress in the crystal-

lographic and geometry coordinates, and governing piezoelectric equations are the same, as for 

the incomplete rings in Section 7.2.5. Thus, 3rT T→ , 2hT T→ , 1S S →  for the solid, and 

1rT T→ , 2hT T→ , 3S S →  for the segmented rings. The relations (7.169) modified for both 

radial (at i = 1) and circumferential (at i =3) polarizations that follow from the piezoelectric 

equations, 

 ( )1/E E E

i ii i i iT s S Y S= = , ( )3 3 33/E E

i iD d s S=  ( )2

33 33 31iS T

ik = − , (7.221) 

can be used in this case as well. The main analysis will be made for the radially polarized rings 

(transverse piezoeffect). Results for the segmented ring design will be presented based on this 

analysis. 

7.3.1 Complete Rings Transducers 

The main content of this section is after Ref. 21. 

7.3.1.1 Equivalent Electromechanical Parameters of the Rings 

Consider the design features of a ring made of piezoceramic intended to generate the lowest 

mode of the flexural vibrations. Geometry of the ring and configuration of electrodes and 
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electric fields in its body are presented in Figure 7.67 with example of a solid ring for simplicity. 

In reality transducers of this type are usually cemented out of prisms shown in Figure 7.1(c) 

 

Figure 7.67: Geometry of the piezoceramic ring intended for excitation of the flexural vibration, 

and configuration of electrodes in the body of the ring. The electrodes are shown by solid lines); 

mutual directions of the electric field of polarization ( P ) and operational electric field ( E ) in 

the layers above and below the neutral surface are shown by solid and dashed arrows. For gener-

ating the flexural deformation of a ring the bending moments in neighboring quarters must change 

signs (operational fields, or fields of polarization must change signs). 

As it was shown by analyzing the general expression (7.1) for the electromechanical energy 

associated with vibration of piezoceramic rings, excitation of the flexural deformations only is 

possible under the condition that function ( )1Ω z  in the distribution of electric field in the vol-

ume of a ring represented by formula, 

 ( ) ( ) ( )3 1 2,E z E z =   , (7.222) 

is odd, i.e., ( ) ( )1 1z z = − − . Under this condition, which is realized at configuration of elec-

trodes and relative directions of the operational electric field and field of polarization that are 

shown in Figure 7.1(c) and 7.67, the bending moment is generated in the piezoelement. In this 

case the electromechanical conversion under the flexural deformation is characterized by the 

energy 
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d hE
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−
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  . (7.223) 

Following the results presented in Section 4.5.4, the radial modes of flexural vibration, 

 ( ) ( ), cosr it t i   = , (7.224) 

P E
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and expressions for the equivalent mechanical parameters and resonance frequencies (with elas-

tic modulus Y replaced by 1

EY ) are 
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After substituting expression (7.224) for displacements r  under the integral in (7.223) and 

taking into consideration definition for the electromechanical transformation coefficient, n, we 

arrive at the expression 
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 (7.227) 

It follows from this expression that the flexural vibration modes can be electromechanically 

active only, if function ( )2   has a form that insures non zero value of integral 

 ( ) ( )
2

2

2 2

0

1 cos .i i i d


   = −   (7.228) 

Obviously, this takes place at  2i  , and in the case that function ( )2   changes sign simul-

taneously with cosi . Thus, when the electrodes are divided into 2N equal parts along the 

circumference and the adjacent parts are connected electrically in anti-phase (the bending mo-

ments of the opposite sign are generated in these parts), then 

 ( )1 2

2 ( 1) 4 1 /l

i i i+ = −  −  at (2 1) ,i l N= − 1,2,l =  (7.229) 

and 2 0i =  otherwise. The lowest active mode of vibration ( )2 cos2  = is generated at N 

= 2, when the electrodes are divided in 4 parts, as shown in Figure 7.67. This mode of vibration 

is of the greatest practical interest. The corresponding coefficient of electromechanical trans-

formation will be obtained at 22 6 = , and the resonance frequency of the ring is 

 ( )2

2 10.12 / /Ef t a Y = . (7.230) 
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The next closest active vibration mode is ( )6 cos6  =  (at 2,   2N l= = ). The resonance fre-

quency that corresponds to this mode is 
6 212.8f f=  according to formula (7.226). Thus, the 

vibration mode ( )2   can be considered as dominant within a broad frequency range. There-

fore, the transducers employing rings vibrating in this mode can be treated as having a single 

mechanical degree of freedom. For calculating transducer properties, the regular single degree 

of freedom equivalent electromechanical circuit can be used with equivalent mechanical pa-

rameters, 

 
5

8
eqvM M= , 

3

1

3

31

4

E
E

eqv E

eqv

Y t h
K

C a


= = , (7.231) 

according to expressions (7.225).  

For specifying values of the transformation coefficients and capacitances, the variants of 

electrical connection of parts of electrodes in piezoelements must be considered. They are il-

lustrated in Figure 7.68. 

 

Figure 7.68: Configuration of piezoelements that produce the bending deformations, and variants 

of electrodes connections: (a) transverse piezoeffect, parallel connection of electrodes; (b) trans-

verse piezoeffect, series connection of electrodes; (c) longitudinal piezoeffect and distribution of 

the electric fields through the thickness of the prisms. 

We assume that the thickness of a ring is small, and dependence of electric field from z can 

be neglected. In the variant of parallel connection of the concentric parts of a ring (Figure 7.68 

(a)) 2 /E V t=  and 
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 31 113 / En d th s a= , ( )1 2

33 318 1 /S T

elC ah k t = − . (7.232) 

In the variant of series connection of the electrodes (Figure 7.68 (b)) /E V t=  and 

 31 111.5 / En d th s a= , ( )1 2

33 312 1 /S T

elC ah k t = − . (7.233) 

The piezoelements that realize the longitudinal piezoelectric effect can be made up of the 

prisms (wedges) with electrodes on their sides separated into two parts, and the electric fields 

of polarization and operation directed as shown in Figure 7.68 (c). Under the assumption that 

ratio / t  is small enough for the electric field within the stripe   to be neglected, the opera-

tional electric field is /E V = . It may be obtained in the same way, as it was done for the 

case of the transverse piezoeffect, that for the case of the parallel connection of the prisms 

(which is the most practical), 

 ( )2 2

2 33 333 / En d h t s a= − , ( ) ( )3 2 2

33 332 1 /
S T

elC a t h k  = − − . (7.234) 

Besides, in formulas for the rigidities the elastic modulus, 1

EY  must be replaced by 3 331/E EY s=

. It is noteworthy that the segmented transducer design is the most practical, because the trans-

ducer piezoelement made of the concentric solid rings is hard to manufacture, not to speak about 

lesser effective coupling coefficient that is critical for this transducer type. 

Knowing the equivalent parameters allows determining the effective coupling coefficient 

of the transducer. This will be done for the segmented design as the most usable for the projector 

application. At first determine the coefficient 32 /
SE

с eqv eln K C = . After substituting expressions 

(7.234) and (7.231) for the parameters involved (the latter with replacement 1

EY  by 3

EY ), we 

will arrive at expression for c  
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= + −    

−     

. (7.235)  

The coefficient c  as a function of the ratio / t  has maximum. Plot of the function 

( ) ( )/ / 0c ct   vs. / t  is presented in Figure 7.69. It is seen that the maximum value c max

is achieved at / 1/ 3t = . The effective coupling coefficient at c c max =  is 

 
2

2 33

2

331 2.8 1.8

c max

eff

c max

k
k

k




= =

+ −
. (7.236) 

In case that PZT-4 ceramics is used 330.72effk k .  
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Figure 7.69: Normalized functions that characterize dependence of the effective coupling coeffi-

cient from separation between electrodes through the thickness, ( / ) / (0)c ct   (solid line), 

and from the angular size of the electrodes, ( ) / ( / 2)c el c     (dashed line). 

It must be kept in mind that increase of the ratio / t  is followed by reduction of the 

electromechanical transformation coefficient according to formula (7.234). Thus, the equiva-

lent electromechanical force emF nV=  that drives the flexural vibration reduces. On the other 

hand, the gap   between the electrodes cannot be small because this gap must withstand po-

larizing voltage that is applied in the course of poling process.  

The effective coupling coefficient can be further optimized by changing the size of the 

electrodes (the active segment of a ring) in circumferential direction. Consider the general ex-

pressions for the capacitance and transformation coefficient under condition that only a part of 

each quarter of the volume of the ring within sector 45o  around its axis is active. The electro-

mechanical transformation coefficient is proportional to the coefficient calculated by formula 

(7.228). Ratio of values of this coefficient determined by integrating over shortened and full-

size electrodes, and of respective transformation coefficients is, 

 ( ) ( )/ 2 sinel eln n  = . (7.237) 

The capacitance of the active part of the ring may be represented as 

 ( ) ( )/ 2 2 /S S

el el el elC C   = . (7.238) 

After substituting these expressions for ( )eln   and ( )S

el elC   into formula for c  we obtain, 
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 ( ) ( )
2sin

/ 2
2

el
c el c

el

 
   


= . (7.239) 

Dependence ( ) ( )/ / 2c el c     from angle el  is depicted in Figure 7.69 by the dashed line. 

This function has maximum at 3 / 8el = , and (3 / 8) 1.23 ( / 2)c c   = . The maximum 

value of the effective coupling coefficient under the combined effect of optimizing the elec-

trodes configuration through the thickness and over circumference is 

 
2

2 33

2

332.4 1.4
effmax

k
k

k
=

−
. (7.240) 

With PZT-4 ceramics used this results in 330.94effmaxk k= .  

The parts of the ring that are cleared out of electrodes (piezoelectrically inactive parts) are 

located around the nodal lines. They can be replaced by a passive material, or alternatively by 

piezoelements that excite shear deformations. The reason for this is that while the bending de-

formations are minimal near the nodal lines, the shear deformations are maximal. The situation 

is similar to those described in Ref. 22 in regard to a piezoceramic beam vibrating in flexure, 

and calculation of contribution of electromechanical transformation due to shear deformations 

can be made in the same way, as it is done therein. Some detail on this issue will be discussed 

in Section 9.2.2.2. 

7.3.1.2 Acoustic Field Related Characteristics of the Transducers 

In order to complete calculation of an electromechanical transducer as electroacoustic device, 

the acoustic field related parameters that are presented in the equivalent circuit by the radiation 

impedance , acZ , and the equivalent force , eqvF , must be determined. Peculiarities of the acous-

tic field related characteristics of a cylindrical transducer of the flexural type arise from the fact 

that the neighboring quarters of its surface vibrate in antiphase and its diameter is small com-

pared to wavelength at resonance frequency. Namely, using formula (7.230) for the resonance 

frequency we obtain 

 ( ) 0.75 c
res

w

c t
ka

c a
= . (7.241) 

In the case that PZT-4 is used ( )/ 2c wc c  , and for the thin rings ( ) ( )/ 0.2 0.25t a to . Thus 

the wave size of the rings can be estimated as ( ) 0.3reska   or less. 
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In order to address the problems related to using transducers as low frequency projectors, 

at first they must be built from a number of mechanically isolated rings stacked axially so that 

the overall height ( h ) of the transducer is comparable with wavelength at the resonance fre-

quency. Acoustic field generated by such transducer in the horizontal plane can be approxi-

mately considered, as radiated by the infinitely long cylinder having the same distribution of 

velocity. Radiation of tall cylindrical shells having modal distributions of velocity is considered 

in Section 6.3.1.1.1, where expressions for the directional factor, diffraction coefficient and 

radiation impedances are presented for different modes of vibration including cos2 . Plots of 

these quantities as functions of ka are shown in Figs. 6.6 through 6.8. Thus, the expression for 

the radiation impedance is 

 

( ) ( )
( ) ( )

2

2
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( )ac w
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Z j c h a

H x
 

=

= − . (7.242) 

For small ka ( 0.3ka  ), which is our case, 
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= = = , (7.244) 

where wM is the mass of water in the volume of the cylinder per unit height. 

The directional factor of the transducer ( ( ) cos 2H  = ) is not appropriate for underwater 

applications in the first place. Besides, the radiation impedance of the transducer at frequencies 

around its resonance is almost purely reactive. The ratio of its active component to reactive is 

( ) 4/ ( ) /16ac acr x ka= , where ka < 0.3. This could be expected, as the volume velocity of the 

surface vibration for mode ( )2 cos2  =  is zero. Obviously, transducer having such infini-

tesimal radiation resistance is not practical. In order to change the spatial distribution of energy 

radiated and to increase the radiation resistance, the parts of transducer surface that vibrate in 

antiphase should be covered by acoustic baffles, as shown in Figure 7.70. 
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Figure 7.70: Variants of baffling the transducer surface: (a) baffles cover the opposite quarters of 

a ring, (b) baffles cover three quarters of a ring, when it is used in an array of a large size. 

The variant with two opposite quarters of a ring covered with baffles, as shown in Figure 

7.70(a), is the most suitable for designing the column like transducers, and the variant with 

three quarters covered is more appropriate for using in array, as shown in Figure 7.70(b). If to 

assume that the baffles are absolutely rigid, then the distribution of velocity over surface of 

transducer with two quarters of surface baffled will be ( ) cos2  =  at / 4 / 4  −    

and 3 / 4 5 / 4    , and ( ) 0  =  otherwise. The directional factor and radiation imped-

ance of the transducer can be calculated following the procedure described in Section 6.3.1.1.2. 

 

Figure 7.71: Directional factors of a cylindrical transducer vibrating in the mode ( ) cos2  =  

without baffles (solid line); with the baffles on the opposite quarters of surface at 0.4ka =  

(dashed line) and 0.6ka =  (dash-dotted line). 

Results of calculation performed at 0.4ka =  and 0.6ka =  are presented in Figure 7.71 by the 

dashed and dash-dotted lines, respectively. For obtaining even closer to omnidirectional re-

sponse at these values of ka, the baffled rings that are adjacent by height must be turned ninety 

degrees in respect to each other. Components of the radiation impedance per unit length of a 

0 =

(a) (b)

A A
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long column like baffled transducer can be presented according to expression (6.358) for a 

simple cylindrical source as 

 
2

2( ) ( )
2

av
ac w w

S
r c ka c


 


= = , (7.245) 

( 2avS a=  per unit length) and 

 20.9acx a  . (7.246) 

For a tall transducer of finite height, the radiation impedance must be multiplied by zh . 

It is convenient for practical applications to use completed flexural ring transducer units 

that can operate as single projectors of small wave size, or can populate projector systems of a 

large size. The height of such units usually is comparable with their diameter by technological 

reasons. Transducers of this small wave size ( 0.3ka  ) may be considered as the equivalent 

spherical simple sources. The radiation impedance of an equivalent spherical simple source can 

be determined by modifying expressions (2.24) and (2.25) for components of radiation imped-

ance of the pulsating sphere of a small wave size. The radiation resistance is 

 
2 2( ) /ac w avr c S  = , (7.247) 

( S  is replaced by avS , which in this case is 2avS a=  per unit length). The radiation reactance 

will be estimated as for a pulsating sphere having the same volume velocity, and the result is 

 34ac eqvx a = , (7.248) 

where eqva  must be determined from the condition 24 eqv ava S = , which is equivalent to the 

condition of equality of the volume velocities (remember that volume velocity is 0avV
U S U= ). 

In the case that transducers with baffles on the three quarters of surface populate an array 

of a large size, the  radiation impedance can be estimated as follows. A strip of an array having 

the width of transducer (shown between imaginary planes A-A in Figure 7.70(b)) being small 

compared to wave-length can be considered as vibrating uniformly with the same volume ve-

locity per unit length, oV
U aU= , that a single ring has. The average velocity of uniform vibra-

tion of the strip will be found from equality of the volume velocities, 2o avV
U aU aU= = , where 

from / 2av oU U= . The acoustic power radiated from a strip of width 2a per unit length of a 

large array, or per unit height of the single ring located within the strip, is 
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2 2( ) 2 ( ) / 2ac w av w oW c aU c aU = = . The radiation resistance per unit height of a single ring in 

this case is 

 ( ) / 2ac wr c a= . (7.249) 

The radiation reactance in array of a large size that vibrates with uniform average velocity can 

be neglected. 

So far as the radiation impedances for the usable variants of the flexural type cylindrical 

transducers made of complete rings with baffles are determined, velocity of vibration 
oU  can 

be obtained from the equivalent circuit of the transducers operating in the transmit mode. After 

this the sound pressure that column like transducer generates may be calculated by formula 

(2.64), as for cylindrical simple source having volume velocity 2av o oV
U S U ah U= = . 

It follows from above considerations that quality of the baffles is essential for determining 

the acoustic characteristics and effectiveness of the flexural ring transducers. The model of a 

rigid baffle used for estimating acoustic characteristics is idealized, but experience obtained 

with baffling cylindrical extensional transducers showed that a good agreement was obtained 

between characteristics calculated under the assumption that the baffles are ideally rigid and 

results obtained experimentally at moderate operating depth with baffles made of corprene. 

More appropriate for transducers of this kind may be metal baffles that are described in Ref. 

23. 

7.3.2 Slotted Ring Transducers 

A short history of development of this transducer type in USA with related references and ap-

proximate equivalent circuit model of the transducer can be found in Ref. 24. More detailed 

analysis was later produced in Ref. 25. Some work on the slotted ring transducers was done in 

parallel in Russia with results reported in Ref. 26 and later significantly expended in Ref. 27. 

The main content of this Section is after Ref. 27. 

7.3.2.1 Equivalent Electromechanical Parameters of the Transducer 

Free flexural vibrations of a thin and short slotted ring are considered in Section 4.5.10, where 

the mode shape of vibration and equivalent mechanical parameters of the ring are determined. 

A qualitative comparison between the mode shapes of the radial displacements for the complete 

ring and slotted ring is made in Figure 7.72. 
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Figure 7.72: Qualitative comparing the mode shapes: (a) radial displacements for a complete ring 

and (b) for a slotted ring.  

Comparison of the mode shapes illustrates difference between these vibrating systems as 

sources of low frequency radiation. Whereas the complete ring constitutes a quadrupole source 

with 0avS = , and baffling is required of the areas vibrating in anti-phase for its effective radi-

ation, the slotted ring is a monopole source with 0avS  , and may have a fairly decent value 

of the radiation resistance without additional measures taken. Disadvantage of the slotted ring 

vibrating in flexure is its relatively small hydrostatic pressure strength. 

In case that the ring is made of piezoceramics the relations (7.221) that follow from the 

piezoelectric equations of state must be used, and in the mechanical quantities the elastic mod-

ulus Y must be replaced by 
E

iY . The summary of mechanical equivalent parameters that  follows 

from expressions (4.517)-(4.518) is, 
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Configuration of piezoelements and variants of the electrodes connection for producing the  

bending moments in the ring are the same as shown in Figure 7.68. And general expressions 

(7.222), (7.223) for the distribution of the operating electric field and electromechanical energy 

are the same as well. Different is expression for distribution of the radial displacement, which 

in the case of slotted ring is according to formula (4.513) 

 ( ) ( )0.55cos 0.70sin 0.22 sin 0.44r ro      = + − + . (7.251) 

After substituting expressions (7.222) for the electric field and (7.251) for the displacement 

distribution into the general expression for the electromechanical energy (7.223) we obtain 

cos(2 )

0 = 0 =

(a) (b)
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As the basic variant of transducer design we will consider the parallel connection of electrodes 

shown in Figure 7.68 (a) that cover all the ring surface. The electromechanical transformation 

coefficient and capacitance in this case are 

 31 110.44 / En d ht s a= , ( )2

33 311 8 /iS T

elC k ah t = − . (7.253) 

The effective coupling coefficient for the basic transducer design being calculated by formula 

( )2 / 1eff c ck  = + , where 12 / SE

c m eln K C = , is 

 
2

2 31

2

312.1 1.1
eff

k
k

k
=

−
. (7.254) 

If PZT-4 ceramics is used, 310.71effk k . 

For the variant of design that employs the longitudinal piezoeffect, in which case the ring 

is made up of the prisms shown in Figure 7.68 (c), it can be obtained analogous to expressions 

(7.234) that 

 ( )2 2

33 330.44 / En d h t s a = − , ( ) ( )3 2 2

33 3131 2 /
S T

elC k ah t  = − − . (7.255) 

Given that distribution of strain exists in the volume of the ring both through the thickness and 

over circumference, optimizing of the effective coupling coefficient is possible in the same way 

as it was done for the complete flexural ring. For the basic design optimizing can be achieved 

by changing size of the electrodes over circumference. Assuming that the electrodes cover seg-

ment of the surface at   −   , from expression (7.252) will be obtained that 

 ( ) ( )( )0 sin /n n    = − + . (7.256) 

Besides, 

 ( ) ( )( )1 1 0 /S S

el elC C   = − . (7.257) 

Here the factors ( )0n  and ( )1 0S

elC  are the values of these quantities determined for the full size 

electrodes (at 0 = ) in variants with transverse or longitudinal piezoeffect. After substituting 

(7.256) and (7.257) into expression for function c , we arrive at relation 
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( ) ( )

2( sin )
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− +
=

−
. (7.258). 
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Note that in the course of manipulations it was neglected insignificant changing of equivalent 

rigidity, which strictly speaking may occur due to difference between values of elastic moduli 

on the parts of volume before and after they are deprived of electrodes. In the case that the 

electrodes on these parts are electrically separated and short circuited, no changes of elastic 

modulus take place at all. The function (7.258) is plotted in Figure 7.73. 

 

Figure 7.73: Plots of functions ( ) ( )/ 0n n  (solid line) and ( ) ( )/ 0c c    (dashed line) vs. 

angle, up to which the parts of ceramic volume become inactive. 

The same result is valid for the longitudinal piezoeffect, when ring is composed of the prisms 

shown in Figure 7.68 (c). It follows from the plot that function ( ) ( )/ 0c c    has maximum 

at 75 =  . The effective coupling coefficient also have maximum at this value of (75 )o

c , 

and after some manipulations it can be shown that 
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. (7.259) 

With PZT-4 ceramics used 310.82eff maxk k=  at the transverse piezoelectric effect, and 

330.88effmaxk k=  at longitudinal piezoeffect. In the variant of the segmented ring an additional 

optimization of the effective coupling coefficients may be achieved by changing ratio / t , as 

it was shown regarding the complete ring vibrating in flexure and illustrated with plot in Figure 

7.69. At / 1/ 3t =  ( / ) 1.18 (0)c ct  = . Under the combined effect of optimizing the elec-

trodes configuration through the thickness and over circumference the maximum value of the 

effective coupling coefficient will be 
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With PZT-4 ceramics 330.94keffmaxk = . 

Optimizing the effective coupling coefficient is accompanied by reducing the electrome-

chanical transformation coefficient, n, according to formula (7.256), and thus by reducing the 

effective electromechanical force emF Vn= . Reducing the electrodes up to their optimal size 

results in 10% loss of the transformation coefficient, as follows from the plot in Figure 7.73. 

Note that the physical effect of bending is produced by bending moments distributed over the 

circumference of a ring. The “effective electromechanical force” is the imaginary force that 

being applied to the reference point in the radial direction produces the same effect as a real 

bending moment distribution.  

One of the problems related to underwater applications of the slotted ring transducers is 

their limited strength under hydrostatic pressure. A partial solution  for transducers intended for 

operating at moderate depth is in using half passive (bilaminar) design of their mechanical sys-

tem that is considered below. (Analogous analysis is performed regarding vibration of a bilami-

nar beam in Section 4.5.6.4. and of the flexural type plate transducers in Chapter 9. This analysis 

is partially reproduced in the next section for convenience of reading.) 

7.3.2.2 Bilaminar (Active-Passive) Slotted Ring Design 

The tensile strength of ceramics is much less than compressive strength. Therefore, the replace-

ment of the layer of ceramics located exterior to the neutral (free of stress) surface of a ring by 

metal would result in significant increase of the ring strength under action of hydrostatic pres-

sure and in the corresponding increase of operating depth of transducer. Replacing the outer 

layer of a ring by metal leads to the bilaminar ring design, a fragment of which is shown in 

Figure 7.74. Previously (see Figure 7.1 (c)) such design was mentioned as typical for excitation 

both the extensional and flexural modes of vibration. Indeed, the extensional vibration of the 

ring with a slot that is considered in Section 7.2.6.1 will be generated as well. But the resonance 

frequency of the extensional vibration is a way higher, and these types of vibration can be con-

sidered as independent. Although, if by some reason a simultaneous radiation of high and low 
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frequencies by the same acoustic system is desirable, transducer of such design can be used for 

this purpose. 

 

Figure 7.74: Fragment of the bilaminar ring, and distributions of strain and stress over thickness 

of the ring. The active layer is shown as solid (under the transverse piezoeffect), but it can be 

segmented (under the longitudinal piezoeffect) as well. 

When analyzing properties of the bilaminar ring, the assumption will be kept that the thick-

ness to diameter ratio, / 2t a , is sufficiently small for elementary theory of bending being ap-

plicable to the first approximation. Elastic moduli and densities of the active and passive layers 

will be denoted 1/E E

a iiY s= , pY  and a , p . And notations will be introduced for brevity 
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= . (7.261) 

Values of the equivalent parameters for the active-passive rings will be distinguished by sub-

script ap, and for the fully active - just a. 

Peculiarity of this case is that the neutral surface under bending does not coincide with the 

middle surface as it was in the case of the fully active ring. Thus, as the first step the location 

of the neutral surface (coordinate 0z ) must be determined. By definition the neutral surface 

should be free of stress, and therefore its coordinate 0z  may be found from the condition that 
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If the thickness of the active layer is at , then condition (7.262) is equivalent to 
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where from 
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In a rational transducer design 
0z  should be greater than 

at  (otherwise the electromechanical 

effects in the piezoelectric element above and below the neutral plane would be in opposite 

phase). Denote the value of 0z  that is equal to at  as 0mz , i.e., 0m az t=  (the subscript m stands 

for the minimum reasonable value of 0z ). It follows from Eq. (7.265) that 
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. (7.266) 

Thus, for example, for combinations of solid piezoelement made of PZT-4 with aluminum and 

steel the values of ratio 0 /mz t  are 0.48 and 0.62, respectively. 

Now we can determine the equivalent parameters of the active-passive slotted ring with the 

piezoelectric elements of different thickness. Values of the equivalent parameters for the active-

passive rings will be distinguished by subscript ap, and for the fully active - just a. The expres-

sion for the mechanical energy of a bilaminar ring is 
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E r
m ro a p r

t

h
W z z Y dz z z Y dz d

a

 
  



   
= − + − +   

    
   . (7.267) 

The term in the brackets is equal to 

 ( ) ( ) ( )
3 3 33

0 0 0 0

1

3
a a a pt z z Y t z z t Y   − + + − + −

   
. (7.268) 

For the fully active ring this term would be equal to 
3 /12E

aY t . Thus, if to denote 

 ( )
3 3 3 3

0 0 0 0

0 4 1a a

eqvap a p

t z z z z t
Y z Y Y

t t t t t t

            
= − + + − + −           

               

, (7.269) 

then expression (7.267) for the mechanical energy will look in the same way as for fully active 

ring with the only difference that 
E

aY  will be replaced by eqvapY . Accordingly, formula (7.250) 
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for the equivalent rigidity is valid, if to use value of eqvapY  from expression (7.269) instead of 

1/ E

iis , i.e., 

 ( )/E E E

eqvap ma eqvap aK K Y Y=  . (7.270) 

In the particular case that 0 0m az z t= =  using relation (7.266) we obtain 

 ( )
( )

0 2

4

1

E Y
eqvap m a

Y

Y z Y



= 

+

. (7.271) 

The kinetic energy of the ring is 

 ( )
2 2 2

2

0

2
2 2 2

ro ro ro
kin a a p a r eqvap eff eqvapW ha t t t d tS M

  
     = + − = =  , (7.272) 

where 

 1a a
eqvap a

t t

t t
  

      
= + −     

      
 (7.273) 

is the equivalent density of the ring, and 

 2

0

2 r effha d S


  =  (7.274) 

is the effective mean surface of the ring. Thus 

 ( )/eqvap eqvap eff eqvap a eqvaM tS M  = = . (7.275) 

In the case that 0 0m az z t= =  

 ( )1

1
eqvap a Y

Y

   


= +
+

. (7.276) 

Using expressions (7.270) and (7.275) for the equivalent rigidity and mass we arrive at the 

formula for the resonance frequency of the bilaminar ring 

 ( )
( )

( )
0

0

0

E

eqvapa
rap ra E

eqvapa

Y z
f z f

zY




=  , (7.277) 

where raf is the resonance frequency of the fully active ring, and E

eqvapY  and eqvap  are given by 

expressions (7.269) and (7.273). In the case that 0 0mz z=  
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 ( )
( )

0

2

1

Y

rap m ra

Y Y

f z f





  
=

 + +
 

. (7.278) 

The electromechanical energy is 

 ( )
2 2

3
3 0 2

0 0

1

2 2

at

ro i r
em r ro apE

ii

hd
W E z z dz d Vn

as

 
  



 
= − + = 

 
  . (7.279) 

Comparing expressions for the transformation coefficients of bilaminar and fully active rings 

results in relations:  

 ( ) 0
0

2 a
ap a

z t
n z n

t t

 
= − 

 
 (7.280) 

for the general case, and 

 ( )0
1

Ya
ap m a a

Y

t
n z n n

t




=  = 

+
 (7.281)  

for the case that 0 0mz z= . 

Capacitances of the ring in these cases are 

 ( ) 1 1

0 33

2

4

S S S

el ap el a

a a

ah t
C z C

t t




= =  , (7.282) 

and 

 ( )1 1

0

1

4

YS S

el ap m el a

Y

C z C




+
= , (7.283) 

respectively. 

Thus, the nondimensional coefficient c , through which we express the effective coupling co-

efficient, is for the bilaminar ring 

 ( )
( )

( ) ( ) ( )

1 2
0 0

0 2 3
0 0

4 (2 )

/

S

el ap a a
c ap E E

ap eqv ap eqvap a

c a

C z t z t
z

n z C z t Y Y
 

−
= = . (7.284) 

In the case that 0 0mz z=  

 ( )0
1

Y

c ap m c a

Y

z


 


= 
+

. (7.285) 
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and the effective coupling coefficient is 

 

2

2

21

eff a Y

eff ap

Y eff a

k
k

k




=

+ −
. (7.286) 

Thus, for combination of aluminum and PZT-4 ( 970 10pY Pa=  , 981 10aY Pa=   for transverse 

piezoeffect) 0.86Y = , and 310.5eff apk k=  instead of 310.71eff ak k= . 

7.3.2.3 Acoustic Field Related Properties of the Transducers 

Peculiarities of the acoustic properties of the slotted rings and their combinations are due to 

small wave sizes of their elementary units (technologically completed units that can be used as 

the single transducers). The situation is similar to those considered in Section 7.3.1.2 regarding 

the complete rings vibrating in flexure. The difference is that the slotted ring transducers have 

significantly (six times) lower resonance frequency at the same geometry as the complete ring 

vibrating in flexure has. Therefore, it is hard to imagine a column like mechanically solid slotted 

ring transducer that has the height comparable with operational wavelength, and more realistic 

it is to consider all the radiating systems configurations as combination of acoustically interact-

ing simple sources. Assuming that the elementary units have comparable height and diameter 

they can be considered as simple three-dimensional sources, for which the radiation resistance 

and reactance can be represented by the relations (7.247) and (7.248), namely, 

 
2 2( ) /ac w avr c S  = , (7.287) 

 34ac eqvx a = , (7.288) 

where eqva  may be determined from the condition 24 eqv ava S = .The average surface area is by 

definition 

 ( )
0

2av rS ah d


  =  . (7.289) 

After substituting ( )r   from expression (7.251), it will be obtained that 0.62avS S= , where 

S  is the total outer surface of a transducer. It is noteworthy that the average surface determined 

for the part of ring within segments 150   , i.e., up to the nodal lines, where displacement 

changes sign, is ( )150 0.65avS S  = . The 5% difference characterizes distractive contribution 
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of the parts of the surface vibrating in anti-phase. The equivalent force for a transducer having 

small wave size is determined by the formula 

 eqv av oF S P . (7.290) 

In practice the low frequency transducers are composed of a number of elementary slotted rings. 

The most natural is the column like transducer design shown in Figure 7.75(a).  

 

Figure 7.75: Variants of transducers composed of elementary slotted rings: (a) column like trans-

ducer, (b) three-ring assembly and (c) assembly of three column like transducers. 

The radiation impedance of a combination of elementary slotted ring transducers can be deter-

mined considering acoustic interaction between them as between the simple sources by formula 

(6.356) 

 ( ) ( )12 11 sin cos /Z d r kd j kd kd= + , (7.291) 

where ( )12Z d  is the mutual impedance between two sources separated by distance d, and 11r  

is the radiation resistance by formula (7.287). Thus, for the three-ring transducer shown in Fig-

ure 7.75 (a), the radiation impedances of the rings can be calculated as  

 ( )1 11 12 12Z Z Z d= + , ( ) ( )2 3 11 12 1 13 12Z Z Z Z d Z d= = + + . (7.292) 

Here 11 ac acZ r jx= +  is the self-impedance of an elementary transducer with acr  and acx  ac-

cording expressions (7.287) and (7.288). The radiation resistance per unit ring can be increased 

in the composition of slotted rings shown in Figure 7.75 (b). The three rings are tangential to 

each other at the nodal lines of the modes of vibration. The internal 60° segments of the ring 

that vibrate in anti-phase with the other parts are self-baffled and do not participate in outside 

radiation. Therefore, when determining average surface area by formula (7.196) integration 

should be performed over the sectors 0 150  . This results in ( )150 0.65avS S =  as noted 

°

or

r

H

0 =

(a) (b) (c)
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before. From the geometry consideration follows that radius r  of the circle inclosing the rings 

and tangential to their surfaces is ( )1 2 / 3 2.15o or r r = +  , and this assembly still remains 

small enough for considering the transducer as a simple source. The acoustic power radiated by 

a simple source can be presented as 2 2 2( ) /ac ac o w V
W r U c U  = = , where from the radiation 

resistance is 2

ac V
r U . The total volume velocity generated by the three rings is 

3
3 0.65 oV

U S U=   , whereas generated by a single ring is 
1

0.62 oV
U S U=  .Thus, the ratio of 

the radiation resistances of the three-ring assembly and the single ring is 

 

2

3 3

2

1 1

3
9.9ac V

ac V

Ur

r U
=  , (7.293) 

i.e., the radiation resistance of a ring in assembly of three is 3 13.3ac acr r=  compared with radia-

tion resistance of the same ring operating as a single. Calculating the radiation impedances in 

the column like transducer shown in Figure 7.75(c) can be performed applying formula (7.291) 

to a number of the three-ring simple sources. 

Results of this section allow calculating operating characteristics of the transducers that 

employ flexural vibration of the slotted rings. Estimation of their operating properties as pro-

jectors will be made in Ch. 13 in comparison with properties of transducers of different types. 
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CHAPTER 8 

SPHERICAL TRANSDUCERS 

8.1 Introduction 

Piezoceramic spherical shell transducers are common in underwater acoustics predominantly 

as omnidirectional (zero mode) projectors and hydrophones, and less frequently as bidirectional 

(first order) hydrophones and multimode hydrophones. Spherical shell transducers  have also 

been suggested in Refs. 1-3 as directional projectors by combining different modes of vibration, 

as discussed theoretically in Ref. 3, however the directionality is achieved in this case at the 

expense of significant reduction in bandwidth and efficiency of the transducer. Demand for 

moderately directional broadband transducers of small size is increasing with the growth of 

underwater acoustic communications, networks, and unmanned underwater vehicles and glid-

ers. 

A practical way of achieving the goal of simultaneously directional and broadband radia-

tion with spherical shells is in employing the conformal baffles in the same manner, as it was 

illustrated with examples of cylindrical transducers in the previous Chapter. This approach was 

demonstrated in Ref. 8. Another possibility for achieving this goal is in the use of incomplete  

spherical shells, e.g., hemispheres and open spheres of various shapes for the transducers de-

signing. The practical designing directional multimode spherical shell transducers for a broad 

range of applications requires a general treatment of such related problems as vibration of spher-

ical shells, electromechanical excitation of their vibration and acoustic radiation by the vibrat-

ing spherical shells. The modal analysis of vibration of the complete and incomplete passive 

spherical shells was performed in Ref. 5 and in Section 4.5.5, and the modal characteristics of 

acoustic radiation by spheres including those with baffles were considered in Section 6.3.2. 

Objectives of this Chapter are in considering the electromechanical excitation of different 

modes of vibration of spherical shells made of piezoelectric ceramics, and in completing ana-

lytical analysis of the spherical transducers that may be intended for various applications. 
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8.2 Modes of Spherical Shell Vibrations 

Consider an element of the spherical piezoceramic shell in the crystallographic coordinate sys-

tem shown in Figure 8.1 (b). Following the common notations for the crystallographic axes 

with poling axis denoted as 3, we have correlations 1S S = , 2S S = ; 1T T = , 
2T T = , 

3rT T= . For a thin shell it is assumed that 
3 0T = , and the piezoelectric equations for element 

of the shell volume simplify to the following form 

 

Figure 8.1: (a) Geometry of the spherical shell and (b) differential element of the shell and coor-

dinate systems (geometrical and crystallographic) used. 

 1 11 1 12 2 31 3

E ES s T s T d E= + + , (8.1) 

 2 12 1 22 2 31 3

E ES s T s T d E= + + , (8.2) 

 3 31 1 2 33 3( ) TD d T T E= + + . (8.3) 

Substituting the stresses 1T  and 2T  from Eqs. (8.1) and (8.2) into Eq. (8.3) yields 

 1,2

3 3

S E

eD D D= + . (8.4) 

Components of the charge density are introduced here as follows: 

 1,2 1,2

33 3

S S

eD E= , (8.5) 

where 1,2 2

33 33 (1 )
S T

pk = −  and 2 2

31 33 11 12 112 / [ (1 / )]T E E E

pk d s s s= +  are the dielectric constant and the 

square of the planar coupling coefficient of a piezoceramic material in the clamped sphere (su-

perscript 1,2S  indicates that the deformations 1S  and 2S  are set to zero). The term 

 31
3 1 2 1 2

11 12

( , ) ( )E

em E E

d
D D S S S S

s s
= = +

+
 (8.6) 

is the charge density induced by the deformations at 3 0E = . 

The stresses in a sphere at 3 0E =  are found from Eqs. (8.1) and (8.2) as 

0 =



0 ,  

, rr 

(a)

,2

,1 ,3z

t

(b)
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 1
1 1 1 22

1

( )
1 ( )

E
E E

E

Y
T S S


= +

−
, (8.7) 

 1
2 1 1 22

1

( )
1 ( )

E
E E

E

Y
T S S


= +

−
. (8.8) 

Eqs. (8.7) and (8.8) are identical with Eqs. (4.295), if Y and  are replaced with 1

EY  and 1

E . 

Therefore, all the results obtained for the isotropic passive elastic shells in terms of their modal 

equivalent parameters that characterize mechanical behavior of the shells are completely appli-

cable to the thin-walled thickness poled piezoelectric shells. It is noteworthy that in the numer-

ical examples the values of resonance frequency related factor,  , may slightly deviate from 

those presented in Table 4.1 due to difference between values of 1

E  for a particular ceramic 

composition and 0.3 =  that is used in calculations for the Table, and for the bending modes 

due to change of thickness to radius ratio compared with / 0.1t a = . 

Consider now parameters related to the electromechanical conversion in the vibrating 

spherical shells. The electric energy supplied to the piezoelectric shell under the condition that 

it is clamped is 

 1,2 1,2 1,2 1,22 2

3 33 3

1 1 1

2 2 2

S S S S

el e e

V V

W D E dV E dV C V= = =  , (8.9) 

where 1,2S

eC  is the electric capacitance of a clamped sphere. Its value depends on configuration 

of electrodes. 

The electromechanical energy is 

 31
1 2 3 1 2 3

11 12

1 1
( , ) ( )

2 2
em em E E

V V

d
W D S S E dV S S E dV

s s
= = +

+  . (8.10) 

Note that elementary volume dV  of the spherical shell is 2 sindV r drd = . Let us place 

origin of the axis z of the crystallographic coordinate system on the middle surface of the shell. 

Given that radius of the middle surface is a and the thickness of a shell is small compared with 

its radius, the following manipulations can be made: r a z= + , dr dz= , 2 2 2r a az + , and as 

the result 

 2( 2 )sindV a az dzd d   + . (8.11) 

Integration by   and z has to be performed within intervals 00    , where 0  is the open 
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ing angle of the sphere, and / 2 / 2t z t−   . When representing expression for 
1 2S S+  under 

the integral, it must be remembered that according to formulas (4.294) 

 1S S z = + , 
2S S z = + , (8.12) 

where S  and S  are the strains of the middle surface of the sphere (“membrane” strains), and 

 ,   are the changing of curvature of the middle surface in directions of meridian and azi-

muth. Thus, 

 1 2 ( ) ( )S S S S z    + = + + + . (8.13) 

The strains and curvatures can be expressed through displacements ( )r   and ( )   of the 

middle surface according to relations (4.292) and (4.293) as 

 
1 1

( ) ( ) , ( )cot ( )r rS S
a a

              = + = +    , (8.14) 

 
2 2

1 1
( ) ( ) , cot ( ) ( )r r

a a
                  = − = −    . (8.15) 

We will denote for brevity 

 
1 1

[2 ( ) ( ) ( )cot ] ( )r rS S A
a a

         + = + + = , (8.16) 

 
2 2

1 1
{[ ( ) ( )]cot [ ( ) ( )]} ( )r r B

a a
                + = − + − = . (8.17) 

The terms A(φ) and B(φ) will be marked as ( )iA   and ( )iB   for the ith  mode of vibration. The 

displacements ( )r   and ( )   are represented by series (4.299), namely, 

 
0 1

( ) (cos ), ( ) (cos )r ri i i i

i i

P P        
 

= =

= =  . (8.18) 

The modal displacements ri  and i  are related according to (4.300) as 

 ( ) (cos ), ( ) (1 ) '(cos ), 1,2,3,...ri ri i i ri i iP C P i        = = − + = , (8.19) 

where coefficients iC  are presented in Table 4.1. Thus, the radial displacements ri  only can 

be taken for the generalized coordinates. Subscript r will be further omitted for brevity. 

The electric field in a thin shell can be represented as 

 3 ( )
V

E
t

=  , (8.20) 
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where ( )  is a function of the geometry of electrodes (a small change of electric field through 

the thickness in a thin-walled shell is neglected). Function ( ) 0 =  on the parts of surface 

deprived of electrodes. Otherwise, ( ) 1 = , if the pats of electrodes are unipolar, or it has to 

be changed accordingly, if the parts are connected in different polarities or/and in series. 

Upon substituting expressions (8.13)-(8.17) under the integral (8.10) and integration over 

the volume of the shell, we arrive at the following expression for the modal electromechanical 

energy of a spherical shell 

 
0 2

31

2

11 12 0

21 1
( ) ( ) ( )sin

2 26
emi i i i iE E

ad t
W V A B d Vn

s s a




     
 

= +  = 
+  

 , (8.21) 

where in  is the modal coefficient of electromechanical transformation. The first term in the 

brackets is due to the extensional deformations of the shell, and it constitutes the main part of 

the electromechanical energy. The second term is due to the flexural deformations of the shell. 

Under the membrane theory approach (at / 0t a → ) this flexural term vanishes. For the relative 

thicknesses that are typical of transducer applications ( / 0.2t a  ) this term accounts for a small 

contribution to the electromechanical conversion of the bending modes of the shell vibration. 

The total electromechanical energy for an arbitrary vibrating spherical shell can be represented 

as 

 
2

em emi i i

i i

V
W W n= =  . (8.22) 

The electromechanical conversion in the complete and incomplete spherical shells will be con-

sidered separately. 

8.2.1 Electromechanical Conversion in the Complete Spherical Shells 

Upon substituting the displacements (8.19) into expressions (8.16) and (8.17) the terms ( )iA   

and ( )iB   that correspond to ith mode of vibration for the complete spherical shell become 

 ( ) {2 (cos ) (1 ) [cot (cos ) (cos )]}i i i i i iA P C P P       = − + + , (8.23) 

 ( ) [1 (1 ) ][cot (cos ) ( )]i i i i iB C P P cos      = − + + + , (8.24)  
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where i = 0, 1; 2m, 2b; 3m, 3b; after differentiating with respect to φ, denoting cos x =  and 

using Eq. (4.298) the expression in brackets may be transformed as follows 

 
2

2

2

( ) ( )
cot (cos ) (cos ) (1 ) 2 ( 1) ( )i i

i i i

d P x dP x
P P x x i i P x

dxd x
   + = − − = − + . (8.25) 

Taking into account relation (8.25), the expressions (8.23) and (8.24) become 

 ( ) [2 ( 1)(1 ) ] ( )i i i iA x i i C P x = + + + , (8.26) 

 ( ) ( 1)[1 (1 ) ] ( )i i i iB x i i C P x = + + + . (8.27) 

Thus, the Eq. (8.21) for the modal electromechanical energy emiW  in the case of the complete 

spherical shell (at 0 = ) may be represented as 

 

1 2

31

2

11 12 1

21
( ) ( ) ( )

2 6
emi i iE E

ad t
W V A x B x x dx

s s a

 −  
= +  

+  
 . (8.28) 

Taking into account expressions for ( )iA x  and ( )iB x , after referring to Eq. (8.21) we arrive at 

the following expression for the modal coefficients of electromechanical transformation, in , 

 

12

31

2

11 12 1

2
[2 ( 1)(1 ) ] ( 1)[1 (1 ) ] ( ) ( )

6
i i i iE E

ad t
n i i C i i C P x x dx

s s a


 

− 
= + + + + + + +  

+  
 . (8.29) 

For the zero mode of vibration (at 0i = ) the electromechanical transformation coefficient does 

not depend on coefficient C (as well as other equivalent parameters, which is noted in the Table 

4.1). As it follows from Table 4.1, for the first mode 1 1/ 2(1 )C = +  and for the higher modes 

at 2i   the coefficient iC  has two values: larger i mC  and smaller i bC . The large value corre-

sponds to the membrane mode of vibration having higher resonance frequency, and the smaller 

corresponds to the bending mode having significantly lower resonance frequency. Respec-

tively, the electromechanical transformation coefficients for these modes, imn  and ibn , have 

different values. (Remember that the membrane and bending modes that have the same number 

i have the same distribution of radial displacements). 

Note that the bending modes do not have useful applications. In opposite, they produce 

corruption of the frequency responses that correspond to active membrane modes, because their 

resonances appear within operating frequency ranges (predominantly at their lower parts). 



138  8 Spherical Transducers 

 

Therefore, it is desirable to take measures, if possible, for suppressing or diminishing effect of 

electromechanical conversion of the bending modes by rational designing the electrodes. 

Numerical values of the modal transformation coefficients critically depend on the form of 

the function ( )x , i.e., on the geometry and electrical connection of the parts of electrodes 

applied to the shell. In the variant that the unipolar electrodes cover the entire outer and inner 

surfaces of the shell, as shown in Figure 8.2 (a), ( ) 1x = . Since 0 ( ) 1P x =  and for 1i   

 
1

1

( ) 0iP x dx
−

= , (8.30) 

we conclude that the only active mode of vibration is zero or “breathing” mode with 0( )r r  =

and the corresponding electromechanical transformation coefficient is 

 31
0

11 12

8
E E

ad
n

s s


=

+
. (8.31) 

 

Figure 8.2: Illustration of different electrode configurations: (a) unipolar electrodes, (b) bipolar 

electrodes, (c) variable angle 1  electrode division. 

If the electrodes are split into two halves and the halves are connected in opposite phase (“bi-

polar” electrodes connection) as is shown in Figure 8.2 (b), then ( ) 1x =  at 0 1x   and 

( ) 1x = −  at 0 1x  − . According to the properties of Legendre polynomials (see Appendix 

C.3) 
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 (8.32) 

(here l = 0, 1, 2, …) all the even modes are inactive. For the odd modes the values of integral 

in (8.29), which we will denote as iI , are 

1

2
III

II

I

(a) (b) (c)
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 1 3 51, 1/ 4, 1/ 8,...I I I= = =  (8.33) 

Thus, for the electromechanical transformation coefficients of the first and 3m modes from 

Eq. (8.29) we arrive at 
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+
, 31
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=

+
. (8.34) 

The sign of electromechanical transformation coefficient must be taken into consideration only 

if several modes of vibration are employed simultaneously. The convention is that on the part 

of the electrode, where 0   (at 0 / 2    in the variant of the “bipolar” connection), the 

direction of operating electric field should coincide with the direction of polarization. The next 

closest active is the membrane mode 3m with resonance frequency 3 11.9mf f , which is ac-

companied by the bending mode 3b with resonance frequency 3 10.44bf f . Contribution of 

the membrane mode 5m with resonance frequency 5 13.0mf f  that is far beyond the range of 

interest can be neglected. But the bending mode 5b  having resonance frequency 5 10.6bf f  

may produce unwanted effect on the operating characteristics of transducer at low frequencies, 

and has to be considered as well as the mode 3b. It follows from Eq. (8.29) that electromechan-

ical transformation coefficients for the bending modes are 

 31
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+
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. (8.35) 

In the variant that only one half of the electrode is used, ( ) 0x =  at 0 1x   or at 0 1x  −  

and both the zero and first modes of vibration are active together with other odd modes, while 

the even modes remain inactive. The magnitudes of the corresponding transformation coeffi-

cients will be reduced by a factor of 2. The sign of 1n  changes depending on which half of the 

electrode is used. It is positive, if the electrodes are facing in the direction of 0 = , and nega-

tive for the opposite half of the electrodes. The zero and the first modes of the spherical shell 

vibration (with resonance frequencies 0f  and 1f ) and their possible combinations are the most 

practical and effective for transducer applications. 

Although using the higher order modes of vibrations is generally less practical, employing 

the membrane modes of higher order for the unidirectional multi resonance transducer opera-

tion may have applications, when part of the shell surface is baffled accordingly. Whereas the 
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third mode is automatically generated together with the first mode at the bipolar full-size elec-

trode connection, generating the second mode requires a special electrode configuration.  

Consider the configurations of electrodes shown in Figure 8.2 ( c). If the electrodes I and II are 

used in the unipolar connection, then ( ) 1x =  at 
10 cosx    and at 1cos 1x−   − , and 

( ) 0x =  elsewhere. Given that 2

2 ( ) 0.5(3 1)P x x= − , the integral in Eq. (8.29) becomes 

 2

2 1 1 1( ) cos sinI   = − . (8.36) 

Thus, for the transformation coefficient of the second membrane mode we obtain from Eq. 

(8.29) (at t/a < 0.2), 

 231
2 1 1 1

11 12

11.2
( ) cos sinm E E

ad
n

s s


  = −

+
. (8.37) 

The function 2 1( )I   has maximum at 1 54.7 =  . At this angle 2 max 1( ) 0.38I  =  and 

2 31 11 12(54.7 ) 4.3 / ( )E E

mn ad s s = − + .This outcome could be predicted using results presented in 

Ref. 6 and qualitatively estimated by observing the plots of the mode shapes in Figure 8.3. 

  

Figure 8.3: The modal radial velocity distributions for the complete spherical shells, (cos )nP  , 

n = 0, 1, 2, 3. 

The value of integral 2 1( )I   is proportional to the area under the curve corresponding to the 

mode of interest within interval of angles [0, 1 ] covered by the electrodes. (Note that 

2 ( ) 0P x =  at 1/ 3x = , which corresponds to 1 54.7 =  .) If the pairs of electrodes I and III 
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are connected in opposite phase ( ( ) 1x =  at 
10 cosx   , and ( ) 1x = −  at 

1cos 1x−   − ), the integral 
2 1( ) 0I  =  and the second mode remains inactive. 

If the electrodes have configuration III shown in Figure 8.2 (c), ( ) 1x =  at 

2 2sin sinx −    and it is zero elsewhere. In this case 

 2

2 2 2 2( ) sin cosI   =  (8.38) 

and 

 231
2 2 2 2

11 12

11.2
( ) sin cosm E E

ad
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  =

+
. (8.39) 

If 2 190 = − , then 2 2 2 1( ) ( )I I = − . Thus, if the electrodes on the inner and outer sur-

faces of the spherical shell are split along the meridian lines at angles 54.7 and 126.7 and the 

pairs of electrodes of groups I and III are connected in phase and together connected to group 

II in opposite phase (all the connections being in parallel), then the maximum transformation 

coefficient for the second mode will reach the value 

 31
2 1 2 max

11 12

8.6
( , )

( )
m E E

ad
n

s s


  = −

+
. (8.40) 

The notation 2 1 2( , )mn    is introduced in order to distinguish the electromechanical transfor-

mation coefficient for this combination of electrodes from those related to the cases that only 

electrodes I and II or electrodes III are used. The latter are denoted 2 1( )mn   and 2 2( )mn  . For 

the bending mode, which accompanies the second membrane mode at the same electrodes con-

figuration, from Eq. (8.29) follows that 

 2 1 2 max 31 11 12( , ) 0.29 / ( )E E

bn ad s s  = + . (8.41) 

As we can see, the three consecutive modes of vibration of the spherical shell may be gen-

erated by combining the parts of electrodes shown in Figure 8.42 (c): zero mode, if all the parts 

are connected in parallel in the same polarity (I+II+III); first mode, if the parts I and II are 

connected in the opposite phase (I-II); second mode, if the parts I and II are connected in phase 

and in the opposite phase to part III (I+II-III).  

Determining the best position for dividing the electrodes is a matter of evaluating the de-

sirable contribution of the modes of vibration. While being optimal for generating the second 
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mode, this position is not favorable for generating the first mode.  To find a possible compro-

mise between the electromechanical activities of these modes, dependence of the transformation 

coefficient for the first mode from the electrode size must be considered. It is also important to 

investigate the effective coupling coefficients of the transducer for all the modes and their de-

pendence on the electrode geometry to be able to make a balanced choice. With this goal we 

consider the coefficient 

 1,22 /
SE

ci i eqvi en K C =  (8.42) 

that is related to the effective coupling coefficient as 2 / (1 )eff ci cik  = + , with which they reach 

maximum values simultaneously. Expressions for the transformation coefficient 1n  and capac-

itance 1,2S

eC  of the transducer in the case that the electrodes cover axially symmetric segments 

10     around both poles and are connected in parallel in the opposite phase, can be ob-

tained from expressions (8.29) and (8.9), in which integration has to be performed over the 

surface of the segments, in the form 

 231
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+
, (8.43) 

 1,2 1,22

1 33 1( ) (4 / )(1 cos )
S S

eC a t   = − . (8.44) 

The equivalent rigidities 
E

eqviK  may be obtained from Table 4.1 after replacing Y and  by 1

EY  

and 1

E . These quantities do not change depending on the angle 1 , if the remaining parts of 

the electrodes are retained and are electrically short-circuited. They change insignificantly, if 

those electrodes are removed. After substituting 
1

E

eqvK  and expressions (8.43), (8.44) for 1n  and 

1,2S

eC , we arrive at 
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. (8.45) 

In the variant of the full-size electrodes in bipolar connection 2 2

1(90 ) 0.75 / (1 )c p pk k  = −  

The corresponding effective coupling coefficient is 1 0.90eff pk k , if PZT-4 ceramics is used 

having 0.58pk = . Function 1 1( )c   has maximum at the angle 1 70.5 =  , which can be found 

from the condition 1 1[ ( )] 0c   = . This results in 2 2

1(70.5 ) 0.89 / (1 )c p pk k  = − . The corre-

sponding effective coupling coefficient is 1max 0.96eff pk k . The function 1 1( )c   normalized 
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to 
1(90 )c   is depicted in Figure 8.4 (curve 1). It is of note that the increase of 1effk  occurs as 

a result of disproportional reduction of the electromechanical transformation coefficient and 

capacitance, 1 1( )n   and 1,2

1( )
S

eC  , which is more beneficial for operating in receive rather than 

transmit mode. Dependencies of these functions from the angle 
1  are shown in Figure 8.4 as 

well. 

 

Figure 8.4: Plots of normalized functions related to optimizing the electromechanical conversion 

as a function of angle: (1) function 1( )c   normalized to 1(90 )c  , (2) function 1( )n   normal-

ized to 1(90 )n  , (3) the capacitance 1,2 ( )
S

eC   normalized to 1,2 (90 )
S

eC  , (4) function 

2 1 2( , )c m    normalized to its maximum value. 

Considering that the electrode configuration I+II-III is used for generating the second 

mode, the integral in Eq. (8.29) for 2 1 2( , )mn    may be found as the difference of 2 1( )I   and 

2 2( )I   at 2 190 = − . As the result of this manipulation, we arrive at the expression 
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The capacitance for the full size electrodes is 

 1,2 1,22

1 33( ) 4 /
S S

eC a t  = . (8.47) 

Note that for the assumed electrode connection 1,2S

eC and 2mn are determined under the condition 

that electrodes cover all the surface of a sphere. In practical transducer designs the separation 

between electrodes having different signs must be made of finite width to ensure the electrical 

strength of the transducer under applied operating voltage. Therefore, strictly speaking, these 

quantities have to be calculated accordingly. With 
2

E

eqv mK  taken from Table 4.1 we obtain 
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2 1 2 1 1 12
( , ) 3.5(1 ) cos sin

1

pE

c m

p

k

k
     = +

−
 (8.48) 

This function has maximum, 2 2

2 1 2 max 1( , ) 0.52(1 ) / (1 )E

c m p pk k   = + − , at angle 1 54.7 =  . 

For the sphere made of PZT-4 2 0.79eff m pk k . The function (8.48) normalized to its maximum 

value is presented in Figure 8.4 (curve 4).  

The resonance frequencies of the bending modes, which are labeled as modes 2b, 3b, 5b 

and so on, may be situated within the operating ranges of the transducers employing the mem-

brane modes. Presence of the unwanted bending modes may corrupt the operating frequency 

responses and directional factors of the transducers. Therefore, an estimation of the electrome-

chanical conversion related parameters for the bending modes, and their behavior in the course 

of optimizing parameters of transducers by altering the electrodes geometry is of interest. Thus, 

maximizing the coupling coefficient for a certain mode may be achieved by removing elec-

trodes from those parts of the spherical shell, in which the strains are relatively small. For ex-

ample, for the first mode the electrodes can be removed from some segment around the line 

/ 2 = , which brings us to the configuration of electrodes I-II (bipolar connection at the re-

duced electrodes) illustrated in Figure 8.2 (c) and to the expression (8.45) for 1 1( )  . 

 The bending modes limit the operating range, in which the first mode of vibration domi-

nates, at frequencies below its resonance. At frequencies above the resonance the operating 

range is limited by interference on the side of the high membrane modes, the most influential 

of which is the closest 3m mode. To avoid corruption of the operating characteristics in a broad 

frequency range, both the bending and 3m membrane modes of vibration must be suppressed. 

As it follows from Eq. (8.29), this can be achieved by determining the size of electrodes (angle 

1 ) from condition that 

 
1

3

1

( ) 0

x

P x dx = , (8.49) 

where 1 1cosx = . Given that 
3

3 ( ) (5 3 ) / 2P x x x= − , this condition is equivalent to 

 
4 2

1 15cos 6cos 1 0 − + = , (8.50) 

where from 1 63.5o = . With electrodes of this size 3 3 0m bn n= = , whereas  according to Eq. 

(8.43) 1 31 11 124.8 / ( )E En ad s s= + . This feature is especially useful for the bipolar transducers 



8.2 Modes of Spherical Shell Vibrations 145 

 

intended for producing dipole directional characteristics in a broad frequency range. The effec-

tive coupling coefficient for the first mode at this electrode size slightly deviates from its max-

imum value at 1 70.5o = , but this reduction is negligible, as it follows from curve 1 in Figure 

8.4. 

The general expressions of transformation coefficients for the modes of vibration at elec-

trodes size reduced to an angle 1  can be obtained following Eq. (8.29). In addition to formula 

(8.43) for 
1 1( )n   they are: 

 4 2

3 1 3 1 1( ) ( / 2) (5cos 6cos 1)m mn n   =  − + , (8.51) 

 
4 2

3 1 3 1 1( ) ( / 2) (5cos 6cos 1)b bn n   =  − + , (8.52) 

 6 4 2

5 1 5 1 1 1( ) ( / 2) (21cos 35cos 15cos 1)b bn n    =  − + + . (8.53) 

Here ( / 2)n   are the values that correspond to the full size electrodes. 

8.2.2 Electromechanical Conversion in the Incomplete Spherical Shells 

The modal displacements of the incomplete spherical shells are given in general by expressions 

(4.306). The transformation coefficient can be obtained upon determining the functions ( )A   

and ( )B   from expressions (8.17), (8.18) after their substituting under the integral in (8.28). 

The most usable out of incomplete spherical shells is the hemisphere with free boundary. It is 

shown in Section 4.5.5.3 that spectrum of resonance frequencies of the hemisphere is the same 

as of the complete sphere vibrating in the odd modes. Thus, the closest membrane frequencies 

are 1mf  and 3 11.9m mf f . Frequency 1mf  is preceded by the frequencies 3bf  and 5bf  that be-

long to bending modes of vibration that practically coincide with those for the complete sphere. 

And distributions of displacements for the first membrane and first bending (labeled as 3b) 

modes are 

 1 1( ) (cos ), ( ) 0.39(1 ) (cos )rm r m rP P          − + ; (8.54) 

 3 3( ) (cos ), ( ) 0.1(1 ) (cos )rb r b rP P          + . (8.55) 

Following the above procedure of calculating the electromechanical transformation coefficients 

for these modes, it will be obtained that they are equal to half of those for the complete sphere 

at the bipolar electrode connection, ( / 2) 0.5 ( )n n = . Taking into consideration that the 
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equivalent rigidity of hemisphere is half of rigidity of complete sphere, 

( / 2) 0.5 ( )E E

eqv eqvK K = , as shown in Section 4.5.5.3, and the capacitance is half the capaci-

tance of complete sphere, 1,2 1,2( / 2) 0.5 ( )
S S

el elC C = , we will come to conclusion that the coef-

ficient 1,22 /
S E

c el eqvn C K =  and hence the effective coupling coefficient remain the same as for 

the complete sphere, 

 

1,22

2 2

( / 2) [ ( / 2)] / [ ( / 2)] [ ( / 2)] ( ),

( / 2) ( ).

S E

c el eqv c

eff eff

n C K

k k

      

 

=  =

=
 (8.56) 

The considerations for optimizing the coupling coefficient for the first mode of the complete 

sphere are also applicable to the hemisphere. Thus, it reaches maximum at 1 70.5 =  . 

As one more example of incomplete spherical shell that may have application for unidirec-

tional radiation, consider the spherical segment with opening angle 0 / 3 = . The resonance 

frequency of the first membrane mode is 0( / 3) 1.5f f  , where 0f  is the resonance frequency 

of complete sphere of the same radius. Two bending modes exist that have resonance frequen-

cies at 0.37 and 0.55 of ( / 3)f  . Following Section 4.5.5.3 the simplified expressions for dis-

placements in the first membrane and the lowest bending modes are 

 1.6 1.6( ) (cos ), ( ) 0.45(1 ) (cos )rm r m rP P        = = − + ; (8.57) 

 3.6 3.6( ) (cos ), ( ) 0.07(1 ) (cos )rb r b rP P        = = − + . (8.58) 

The values of the electromechanical transformation and of the effective coupling coeffi-

cients for the first membrane mode of the hemisphere and of the segment at 0 / 3 =  are as 

follows (the numerical values are for PZT-4 ceramic)s: 
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=

−
, 1 ( / 3) 0.51eff mk  = . (8.60) 

A detailed analysis of parameters of the bending modes does not make a practical sense except 

for predicting a damaging effect on the frequency responses in vicinity of their resonance fre-

quencies. 
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8.3 Spherical Transducer Types 

8.3.1 Complete Spherical Shell Transducers without Baffles 

8.3.1.1 Omnidirectional Transducer 

With electrodes covering all the surfaces of the sphere the only mode of vibration generated is 

zero (pulsating) mode. In the broad frequency range (up to frequencies close to resonance fre-

quency of vibration through the thickness of the shell) the transducer represents classical ex-

ample of the single degree of freedom system. Calculation of operating characteristics of the 

transducer can be performed using common equivalent electromechanical circuit with single 

mechanical contour shown in Figure 8.5. All the equivalent parameters of the circuit including 

the acoustic field related parameters are determined in Section 2.2. 

 

Figure 8.5: Equivalent electromechanical circuit of the zero-mode spherical transducer, Positions 

T and R of the switch correspond to the transmit and receive modes of operation. 

Expressions for the parameters are summarized as follows: 
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, (8.61) 
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. (8.62) 

The acoustic field related quantities, which in this case can be presented in the closed analytical 

form, following expressions (2.23), (2.27)-(2.29), and (2.33) are: 

the radiation impedance 
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the sound pressure generated  
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 0 0( , ) ( ) difP P kr k =r  , (8.64) 

where 

 ( /2)

0 ( )
2
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V

c
P kr U e
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− −= , (8.65) 

24oV
U U a=  is the volume velocity (strength of the source), and 

 
( arctan )
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; (8.66) 

the equivalent force 

 0 0 ,eqv o difF P k S=  (8.67) 

where oP  is the sound pressure in the plane wave, and 
24S a = . The wave size of the trans-

ducer at resonance frequency is 

 1
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1 2
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E
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w

Y
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c  
=

−
. (8.68) 

For a sphere made of PZT-4 0( ) 3.8ka  . 

8.3.1.2 Dipole Transducer 

The main usable property of the transducer of this type is in providing the dipole like directional 

factor, ( , ) cosH   = , in as broad frequency range, as is required by an intended application. 

In this case the electrodes are split into two halves and the halves are connected in opposite 

phase, as is shown in Figure 8.2 (b). The odd modes of vibration ( ) (cos )ri i iP   =  at i = 1, 

3, 5… that include the membrane (1, 3m, 5m …) and bending (3b, 5b...) modes are generated. 

Equivalent mechanical parameters that correspond to these modes are presented in Table 4.1 

(Section 4.5.5.2). The resonance frequencies of the modes that are close to the resonance fre-

quency 1 01.22f f=  of the first (operating) mode and therefore have to be taken into consider-

ation, when calculating operating characteristics of the transducer, are: 3 11.9mf f , 

3 10.44bf f , 5 10.6bf f . Thus, the transducer cannot be treated as the single degree of free-

dom system, if an intended operating frequency range of the dipole transducer is from low 

frequencies and up to frequencies above the first resonance. Strictly speaking, the velocities 

1m , 
3m , 

3b , and 
5b  have to be considered as the generalized velocities. 
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It must be noted that spherical shell can vibrate as a rigid body with the same radial distri-

bution of velocity as in the first membrane mode. This movement itself does not produce elec-

tromechanical conversion and cannot be generated electromechanically. But the sphere can vi-

brate as the whole under action of the acoustic field and can produce indirect effect on vibration 

in the first membrane mode through the acoustic interaction. This mechanism will be consid-

ered later. At least mechanically the resulting magnitude of vibration in the first mode must be 

presented as 

 1 1 1m t  = + , (8.69) 

where 1m  is responsible for deformation in the first membrane mode, and 1t  (t stands for 

“transition”) is due to vibration of sphere as rigid body.  

Thus, in general the resulting directional factor of the transducer may be represented as 

 1 3 3 3 5 5

1 3 3 5

cos ( ) (cos ) (cos )
( , ) m b b

m b b

P P
H

      
 

   

+ + +
=

+ + +
. (8.70) 

From this expression follows that the transducer has uncorrupted dipole directionality only in 

the frequency ranges, within which the additional terms in the nominator can be neglected. For 

numerical estimations, the equivalent circuit shown in Figure 8.6 may be used. The electrome-

chanical equivalent parameters of the circuit that are taken from Table 4.1 (mechanical param-

eters) and electromechanical transformation coefficients are summarized below. 

For the equivalent masses 

 1 ,eqv tM M=  24eqvi MiM a t  =  ,  

 1 0.5M m = 3 0.62M m = 3 0.17M b = , 5 0.10M b = . (8.71) 

For the equivalent rigidities, 
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2
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E
E

eqv i KiE
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= 

−
;  

 1 13(1 )E

K n = + , 3 8.9K m = , 3 0.23K b = , 5 0.16K b = . (8.72) 

At 2i   the mutual rigidities, i mbK , exist that characterize the elastic coupling between the 

membrane and bending modes of the same order. In our case 
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, (8.74) 

 1 1.50n = , 3 1.04n m = − , 3 0.06n b = − , 5 0.04n b = . (8.75) 

Note that this is a typical situation, in which the signs of the modal electromechanical 

transformation coefficients matter, because the modes with transformation coefficients having 

different signs participate in operation simultaneously (see the remark under formula (8.34)). 

The additional rigidities that are introduced due to the coupling to 3

E

mK  and 3

E

bK  are 

3 3 3( / )mb b mK U U and 3 3 3( / )mb m bK U U , respectively. Since the ratios of velocities of vibration 

in water are not large enough to make the values of introduced rigidities comparable with the 

self-rigidities, effect of the elastic coupling between the modes can be neglected. Note that in 

case of vibration in air the situation may change in vicinity of the resonance frequencies of the 

modes due to high mechanical Q of the shells. 

Acoustic field related parameters that correspond to the involved modes of vibration were 

considered in Section 6.3.2. The general expressions for the diffraction coefficients and radia-

tion impedances are given by formulas (6.236), (6.240) and plotted in Figures 6.27, 6.28. For 

the first mode of vibration they are 

 
2 (2)

1 11/ ( ) ( )difk ka h ka=  , (8.76) 
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   − +

= = +


. (8.77) 

Here (2)

1h  is the spherical Hankel function of the second kind, and 24 / (2 1)eff iS a i= + .The 

Figures 6.27 and 6.28 are also reproduced here for the sake of convenience as Figure 8.6 and 

Figure 8.7. In case that 2i   distribution of radial vibration in the membrane and bending 

modes are the same and correspond to the radial distribution of vibration 1  cos i  = . There-

fore dif im dif ib dif ik k k= = , and acim acib ac iZ Z Z= = . In particular, 

 3 3 3dif b dif m difk k k= = , 5 5 5dif b dif m difk k k= =  and 3 3 3ac b ac m acZ Z Z= = . (8.78) 
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Figure 8.6: Diffraction coefficients dif ik  for spheres without baffles: Magnitude (thick lines) and  

phase (thin lines, labeled with ') for i = 0, 1, 3.  

 

Figure 8.7: Nondimensional modal radiation impedance coefficients for spheres without baffles: 

ii  (solid lines) and ii  (dashed lines, labeled with ') for i = 0, 1, 3. 

The equivalent forces, eqv iF ¸ that are generating vibration in different modes must be deter-

mined by formula analogous to (8.67) with corresponding diffraction coefficients. 

Since the magnitude iU  in the radial distribution of velocity ( ) cosi iU U i =  at 2i   is 

superposition of the generalized velocities that belong to the membrane and bending modes of 

vibration, 

 i im ibU U U= + . (8.79) 
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The acoustic energy produced by this distribution of velocity can be represented as 

 
2 2

( )aci i i ac i im im ib im ib ib ac iW U U Z U U U U U U Z   = = + + +
 

. (8.80) 

This expression in its turn can be represented in the form 

 

2 2

2 2

( / ) ( / )

,

ac i im aci ac i ib im ib aci ac i im ib

im ac im ib ac ib

W U Z Z U U U Z Z U U

U Z U Z

   = + + +   

= +
 (8.81) 

where 

 ( / )ac im aci ac i ib imZ Z Z U U= +  and ( / )ac ib aci ac i im ibZ Z Z U U= +  (8.82) 

are the radiation impedances that correspond to the membrane and bending modes of vibration. 

From relations (8.82) follows that acoustic interaction between the membrane and bending 

modes exists with mutual impedances ac imb ac iz Z= . Likewise, it can be concluded based on the 

expression (8.57) for the total radial displacement in the first mode of vibration that the acoustic 

interaction between the membrane component of vibration and vibration of the shell as a rigid 

body exists with mutual impedance 1acZ , and the diffraction coefficient for the “transitional” 

mode of vibration is 1difk .  

After all the equivalent parameters are  specified, the magnitudes of the generalized veloc-

ities can be determined with help of equivalent circuit in Figure 8.8, and hence the directional 

factor of the transducer may be obtained by formula (8.70). 

A qualitative estimation can be made regarding possible contribution of the acoustically 

induced passive mode of vibration to results of calculating transducer characteristics. It is ap-

propriate to make such estimation for this particular case, because the acoustic coupling be-

tween the first active mode and passive (“transitional”) mode of movement transducer body as 

a whole is the strongest in this case. It is reasonable to make the estimations separately for the 

transmit and receive modes of operation, i.e., in the range around the resonance frequency of 

transducer and at low frequencies. As it follows from considering the passive contour in Figure 

8.8 in the transmit mode 

 1
1 1 1

1 1

1

1 ( / )

ac
t m m

ac ac

Z
U U U

j M Z j M Z 
= =

+ +
. (8.83) 
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Figure 8.8: Equivalent electromechanical circuit of the spherical transducer with full size bipolar 

electrodes. 

Value of the ratio 1( / )ac tj M Z k =  can be estimated as follows. At frequencies around the 

resonance frequency of transducer the wave number 1( ) 3.8ka  , i.e., 3.8 / ;wc a   

2

1 ( ) 4 / 3ac wZ c a   . Thus, 11.4 ( / ) ( / )t c wk j t a     . Assuming that ( / ) 0.2t a   and ra-

tio of the ceramics and water densities is ( / ) 7.5c w   , we obtain that 17tk j . Thus, we  

rrive at the conclusion that an additional impedance introduced in the active contour due to 

coupling with the passive one is 
1 10.05t mU U . Such addition is within accuracy of deter-

mining the radiation impedance and can be neglected to the first approximation. 

In the receive mode of operation at frequencies much below the resonance frequency the 

magnitude of vibration in the passive contour can be estimated to the first approximation (with-

out secondary influence of the first active mode) as 
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The force induced by vibration of transducer body as a whole in the first mode contour, which 

is 
1 1in ac tF Z U=  , will be estimated as 

 1 1

1

1 1

1 / 1
in eqv eqv

ac t

F F F
j M Z k

= =
+ +

. (8.85) 

Given that at low frequencies 3

1 (2 / 3)ac wZ j a     according to (6.257), 

6 ( / ) ( / ) 9t c wk t a     = . Thus, 10.1in eqvF F . This may result in changing output of the 

transducer by about 10%. 

Note that there is no acoustic coupling between contours of the equivalent circuit that be-

long to velocity distributions of different order ( cos i  at 1,3,5i = ). Thus, the velocities 

1 3 5, ,U U U  that are determined by formula (8.79) can be calculated independently. The sound 

pressure radiated may be obtained using formula (8.64), which in this case can be modified as 

follows, 

 ( /2) 2

1 1 3 3 5 5( , ) 4 [ ]
2

j kr

dif b dif b dif

c
P r e a U k U k U k

r


 



− −=  + + . (8.86) 

 

Figure 8.9: The frequency responses of spherical transducer without baffles with unipolar and 

bipolar electrode configurations: (a) transmit mode (TVR) and (b) receive mode (FFVS). Calcu-

lated responses are shown by the solid lines and measured by the dashed lines. 



8.3 Spherical Transducer Types 155 

 

Calculated and measured frequency responses of the spherical transducer without baffles 

that operate with unipolar and bipolar full size electrodes configurations are presented in Figure 

8.9. Specifics of the bipolar configuration in contribution of the bending modes of vibration is 

clearly illustrated. 

In practical designing of the bipolar transducer the general formulas may simplify depend-

ing on the transducer application and hence on its operating range. Thus, in the transmit mode 

(one of such possible applications will be considered in the next section) the operating range is 

around the resonance frequency of the first mode. Contribution of all the other modes can be 

neglected, and the equivalent circuit in Figure 8.10 reduces to the two first contours. The wave 

size of the first order transducer at resonance is 

 1
1

1

1 3
( )

1

E

E

w

Y
ka

c  
=

−
. (8.87) 

For transducer made of PZT-4 1( ) 4.6ka  . At wave numbers close to this value the nondimen-

sional coefficients of radiation impedance are 1 1  , 1 0.25  . The diffraction coefficient 

can be approximated with reference to plots in Figure 8.6 and formula (8.66) as 1 1/difk ka . 

 

Figure 8.10: The frequency response (FFVS) of spherical transducer without baffles for bipolar 

(first mode) electrode configuration. With full size electrodes (solid line) and with optimized elec-

trodes (dashed line). 
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The most challenging is application of the bipolar transducer as a broadband dipole (pres-

sure gradient) hydrophone. Without special measures taken the frequency response and direc-

tional characteristics of the hydrophone are significantly corrupted in the frequency ranges be-

low and above the first membrane resonance frequency, as it was pointed out above. The char-

acteristics of hydrophone in a broad band can be greatly improved, if to optimize the electrodes 

dimensions by reducing their size to 1 70.5o = . In this case the electromechanical transfor-

mation coefficients are determined by formulas (8.43). Thus, the third membrane mode of vi-

bration is suppressed, and the bending modes are greatly weakened. As the result the directional 

characteristics and frequency response in the broad frequency range are significantly improved. 

This is shown in Figure 8.10 and Figure 8.11 (only halves of the plots are presented in the 

Figure due to symmetry). Equivalent circuit of the transducer in Figure 8.9 can be reduced to 

the first two contours that are related to the only active first mode of vibration. 

 

Figure 8.11: Directional factors of spherical transducer without baffles with bipolar electrodes. 

 (a) Full size electrode configuration: ka = 4.3 (solid line), ka = 1.8 (dotted line), ka = 2.6 (dashed 

line). In Figure (b) are shown results of optimizing the electrodes configuration at the same fre-

quencies and with the same line styles.. 
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8.3.2 Complete Spherical Shell Transducers with Baffles  

The complete spherical shells may have application as unidirectional transducers, in which case 

unidirectionality is achieved by employing the acoustic baffles, as shown in Figure 8.12. 

 

Figure 8.12: Illustration of a spherical transducer with the conformal baffle. Opening angle of the 

baffle is b . 

Radiation of the spherical shells with baffles related issues were considered in Section 

6.3.2.3. The modal (pertaining to a single mode of vibration) directional characteristics, diffrac-

tion coefficients and radiation impedances as well as mutual intermodal radiation impedances 

that characterize acoustic coupling between the modes were determined therein. Due to exist-

ence of the acoustic interaction between modes of vibration, not only radiation related parame-

ters of the active modes change, but some additional passive modes of vibration of mechanical 

system can be generated acoustically. Therefore, peculiarities in calculating the baffled single 

active mode transducers appear that must be considered. Besides, existence of the baffles makes 

possible using multiple active modes of the spherical shell vibration, and thus broadening an 

operating frequency range of transducer. Calculating the multimode transducers also will be 

considered in this section. 

8.3.2.1 Single Active Mode Transducers 

All the peculiarities of calculating the baffled transducers with intentionally single active modes 

of vibration arise due to their possible acoustic interaction with passive modes. Therefore, first 

the mutual impedances between the modes must be determined. In general, they are different 

for different active mode transducers. Expression for the mutual intermodal impedances for a 

spherical shell with rigid baffle is given in Section 6.3.2.1 in the form of Eq. (6.241), 
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In this section we will consider baffles with opening angle / 2b = . As it follows from 

the plots in Figures. 6.30-6.31 the radiation impedances (including mutual) and diffraction co-

efficients with compliant baffles have practically the same values as with the rigid baffles at 

least for this opening angle. The coefficients ( )mn ba   according to formula (6.229) are 

 
/2

0

( / 2) ( 1/ 2) ( , ) (cos )sinml m la l P a P d


    = +  . (8.89) 

With opening angle / 2b =  for the case that 0m =  

 00 1/ 2a = , 01 3 / 4a = , 03 7 /16a = − , 05 11/ 32a = ,…, and 0 0la =  for l even. (8.90) 

For the case that 1m = , 

 11 1/ 2a = , 10 1/ 4a = , 12 5 /16a = , …, and 1 0la =  for l > 1 odd. (8.91) 

Calculations show that magnitudes of the mutual impedances between modes drop abruptly, as 

separation between modes increases, and especially so the higher the orders of the modes are. 

Plots presented in Figure 8.13 show that only the mutual impedance 01acz   between the zero 

and first modes has significant value, and 13acz  can be already neglected. Therefore, only inter-

action between the zero and first modes will be further taken into consideration. 

 

Figure 8.13: Nondimensional coefficients of the mutual radiation impedances of a baffled (

/ 2b = ) sphere: with rigid baffle (solid lines) and with compliant baffle (dashed lines). il is 

labeled with' The mutual radiation impedances are 
22 ( )acil il ilz c a j   =  +   . 
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Expression for 01 10ac acz z=  can be determined from formula (6.241) in the form 
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8.3.2.1.1 Unipolar (0th Active Mode) Transducer 

Equivalent circuit of the transducer with baffle is presented in Figure 8.13. In comparison with 

the circuit in Figure 8.5 of the transducer without baffle it contains the passive (not having a 

direct coupling with the electrical side) mechanical contours related to vibrations in the modes 

that are generated due to acoustic coupling with the zero mode of vibration. All the mechanical 

equivalent parameters of the corresponding contours remain the same, as for the transducer 

without a baffle. Only the acoustic field related parameters change. They must be calculated 

using general formulas presented in Section 6.3.2.1. Thus, the radiation impedances 

00 ( / 2)acZ   and 11( / 2)acZ   following formula (6.240) are 
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Figure 8.14: Equivalent electromechanical circuit of the baffled transducer with unipolar elec-

trodes 
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Nondimensional coefficients of these impedances are plotted in Figure 8.15. The impedances 

introduced into the contours due to acoustic coupling are 

 0
10 01

1

ac

U
Z z

U
=  and 1

01 01

0

ac

U
Z z

U
= . (8.95) 

Alternatively, the acoustic coupling can be accounted for by introducing the forces 

 10 01 0ac acF z U=  and 01 01 1ac acF z U=  (8.96) 

into contours that correspond to the zero and first modes of vibration, respectively. 

The modal diffraction coefficients 0 ( / 2)difk   and 1( / 2)difk  following formula (6.236) 

are 
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Figure 8.15: Nondimensional coefficients of the modal self-radiation impedances of a baffled (

/ 2b = ) sphere for the rigid baffle (solid lines) and for the compliant baffle (dashed lines). 

ii  is labeled with' The radiation impedances are ( )ac ii eff i ii iiZ cS j  = + , where 

2

0 2effS a=  and 
2

1 2 / 3effS a= . 

Plots of these functions are presented in Figure 8.16. 
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Figure 8.16: Modal diffraction coefficients of a baffled ( / 2b = ) sphere: dif ik  (thick lines) 

and phase (thin lines, labeled with ') for i = 0, 1 with rigid baffle (solid lines) and compliant baffle 

(dashed lines).  

The equivalent forces that are acting in the contours in the receive mode are by definition 

(6.34) 

 22 ( / 2)eqvi o dif iF a P k = , (8.99) 

where oP  is the sound pressure in the plane wave. Using the equivalent circuit of Figure 8.14 

with all the parameters known, the velocities 0U  , 1U , and frequency response in the receive 

mode can be determined. 

The sound pressure generated by the transducer on the acoustic axis in the far field accord-

ing to formula (6.236) is 
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The directional factor of the transducer following expression (6.235) is 
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8.3.2.1.2 Bipolar (1st Active Mode) Transducer 

In distinction from the circuit in Figure 8.8 the equivalent electromechanical circuit of the baf-

fled bipolar transducer includes additional passive contour that corresponds to the zero mode 

vibration due to its acoustic coupling with the first mode. The circuit is shown in Figure 8.17. 
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Figure 8.17: The electromechanical equivalent circuit of the baffled bipolar spherical transducer. 

All the electromechanical and mechanical equivalent parameters of the contours remain the 

same as they were listed in Section 8.3.1.1 and 8.3.1.2. The radiation impedances and diffrac-

tion coefficients must be used that are determined in the previous section. Formulas (8.100) and 

(8.101) for calculating the sound pressure generated and the directional characteristics in gen-

eral must be modified in order to include contributions of the bending modes. Thus, they will 

be 
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It must be taken into consideration that the terms related to the bending modes as well as those 

induced due acoustic coupling with zero mode may have noticeable contribution in vicinity of 

resonance frequencies of these modes only, i.e., in the frequency range below the resonance 

frequency of the bipolar transducer ( 3 10.37bf f , 5 10.50bf f ) . At corresponding wave sizes 

(with PZT-4 ceramics 3( ) 1.7bka   and 5( ) 2.3bka  , whereas 1( ) 4.5ka  ) the directional char-

acteristics of the bipolar baffled transducer significantly widen (see Figure 8.11(a)) and become 

apparently not usable. Thus, the peculiarities of the frequency responses and directional char-

acteristics that occur due to existence of the bending modes are beyond an operating frequency 

range. Therefore, for practical calculations the contours related to the bending modes and the 

corresponding terms in formulas (8.102), (8.103) may be neglected in this case. Thus, for prac-

tical calculations the equivalent circuit of the transducer can be simplified to those shown in 

Figure 8.18. 

 

Figure 8.18: Simplified equivalent electromechanical circuit of the baffled bipolar spherical trans-

ducer for operating range around the resonance frequency. 

For calculating transmit frequency response and directional characteristics of the transducer the 

formulas (8.100) and (8.101) can be used.  
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Figure 8.19: Frequency responses of the baffled bipolar spherical transducer: (a) transmit mode, 

(b) receive mode. 

 

Figure 8.20: Directional factors of the rigidly baffled spherical bipolar transducer in the frequency 

band around its resonance frequency at different ka: (a) 3.5; (b) 4.5; (c) 5.5. Note that the charac-

teristics are the same as in Figure 6.33. In plot (b) is also shown the measured directional factor 

of a hemispherical transducer (thin solid line). 
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The frequency responses and directional characteristics of the baffled bipolar transducer 

calculated for the most practical operating range around its resonance frequency are presented 

in Figure 8.19 and Figure 8.20. 

8.3.2.2 Multimode (0±1 Active Modes) Transducer 

Baffled spherical transducer with electrodes divided into halves can be used in multimode op-

eration at different electrodes connections that are shown in Figure 8.21: Variants of connection 

of half electrodes for multimode operation of the baffled spherical transducer: (a) unipolar (0 

mode) operation, (b) bipolar (1 mode) operation, (c) operation with two simultaneously active 

modes (0+1 mode). The situation is analogous to those considered for the cylindrical transduc-

ers in Section 7.2.3.3. 

 

Figure 8.21: Variants of connection of half electrodes for multimode operation of the baffled 

spherical transducer: (a) unipolar (0 mode) operation, (b) bipolar (1 mode) operation, (c) operation 

with two simultaneously active modes (0+1 mode). 

Transition between the zero and first mode operating resonance frequencies is achieved by 

switching the half electrodes. Calculating the operating characteristics can be performed as de-

scribed above for unipolar and bipolar baffled transducers. 

If only one half of electrodes is used, both zero and first modes of vibration are active 

simultaneously. In this case the magnitudes of the transformation coefficients must be reduced 

in factor of 2, and the sign of 1 / 2n  must be taken into account.  

The sign of 1 / 2n  changes depending on which half of the electrodes is used. Thus, 1 0n   

if electrodes are under the baffle, as it follows from analysis made in Section 8.2.1. By the 

considerations that are illustrated with Figure 7.47 for the analogous situation regarding the 

cylindrical transducers, in this case superposition of modal responses between their resonances 

is constructive and leads to a broadband operation of the transducer. The operating frequency 

(a) (b) (c)

0 1 0+1
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range extends from below resonance frequency 
0f  and above resonance frequency 

1f  within 

the band, in which the directional characteristics are appropriate (at 3.0 5.5ka  , as follows 

from plots in Figure 6.32 and Figure 8.20). For this frequency range calculation of transducer 

characteristics may be performed using the simplified equivalent circuit presented in Figure 

8.22, in which contribution of the bending modes is neglected. 

 

Figure 8.22: Equivalent circuit of the dual resonance frequency spherical baffled transducer. zero-

mode operation 00 0 11, 0n n n= = ; first-mode operation 11 1 00, 0n n n= = ; 0+1 mode operation 

00 0 11 1/ 2, / 2n n n n= = − . 

 

Figure 8.23: The transmit responses of baffled spherical transducer at different combinations of 

the halves of electrodes: for unipolar connection (0), for bipolar connection (1), for one half of 

electrodes located under the baffle (0+1). Measured characteristics are shown by the solid lines, 

calculated by the dashed lines. 
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Calculated transmit frequency responses of the transducer with the full size electrodes in uni-

polar and bipolar connections and with one half of electrodes active are presented in Figure 

8.23. Calculations are made for transducer that is assumed to be made of PZT-4 ceramics with 

dimensions t/a = 0.1 and t = 3 mm. 

Remarkable property of the transducer operating in the 0+1 mode is that in a broad fre-

quency range its directional factors almost do not change. This is illustrated in Figure 8.24 with 

results of measurements performed with transducer having the frequency responses shown in 

Figure 8.23. 

 

Figure 8.24: Measured directional factors of baffled spherical transducer in 0+1 mode of operation 

at different frequencies: ka = 3.0 (thin solid line), ka = 3.5 (thin dashed line), ka = 4.0 (thick solid 

line), ka = 4.5 (thick dashed line).   

8.3.3 Hemispherical Transducer 

Application of the transducers employing vibration of incomplete spherical shells is not com-

mon, although they may have some advantages as single unidirectional transducers, in which 

unidirectional operation is achieved without using acoustic baffles. This can be helpful given 

that effectiveness of the baffles may depend on operating depth. Using the hemispherical trans-

ducers was suggested in Refs. 7 and 8. We consider calculation of transducers in the shape of 

the hemisphere ( 0 / 2 = ) and results of experimental verification of their characteristics as 

this follows from Ref. 8. 

As shown in Section 4.5.5.3, the spectrum of resonance frequencies of the hemisphere is 

the same as of the complete sphere vibrating in the odd modes. Thus, the closest to the first 

membrane resonance frequency, 1mf , is 3 11.9m mf f . Frequency 1mf  is preceded by the 
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frequencies 
3bf  and 

5bf  that belong to bending modes of vibration. An effective use of hemi-

spherical transducers may be realized in the frequency range around their membrane resonance 

frequencies. In the case that PZT-4 ceramics is used the first resonance frequency for a hemi-

sphere corresponds to 4.6ka   ( / 1.5D   ). Resonance frequencies of the bending modes are 

much below the operating range ( 3( ) 2.0bka   and 5( ) 2.7bka  ), therefore contribution of 

these modes can be neglected. Distribution of displacement for the first membrane mode is 

given by expressions (8.54). For calculating electromechanical characteristics of the transducer 

equivalent circuit can be used without the bending modes related contours. The equivalent pa-

rameters of the equivalent circuit are those presented by formulas (8.71)-(8.75) reduced by fac-

tor of two. Thus, calculating electromechanical characteristics of the hemispherical transducer 

can be performed using equivalent circuit shown in Figure 8.18 with following equivalent pa-

rameters: 
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The wave size of the hemispherical transducer over its operating range is large enough to as-

sume that to the first approximation the acoustic radiation related parameters of the transducer: 

the radiation impedance, diffraction coefficient and directional factors can be considered the 

same, as for the full size sphere correspondingly baffled, and having distribution of radial ve-

locities according to expressions (8.54) on their open parts. This assumption can be supported 

by the following considerations. 

 

Figure 8.25: To the acoustic radiation of oscillating sphere as superposition of fields radiated by 

the coaxial baffled spherical transducers. 

0IIU = IU 0IU =IIU

0 =
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Acoustic field of the oscillating sphere can be imagined, as superposition of the fields gen-

erated by the two spherical transducers having the same acoustic center with rigid baffles on 

their half surfaces that vibrate with the same distribution of velocities on their open parts as the 

oscillating sphere has. This situation is shown in Figure 8.25. 

Radiation impedance of the oscillating sphere can be represented as 

 11 , , ,2ac ac I I acII II ac I IIZ Z Z Z= + − , (8.106) 

where , ,ac I I ac II IIZ Z=  are the radiation impedances of the baffled first order transducers, and 

,ac I IIZ  is the mutual impedance between halves of the oscillating sphere. In terms of the nondi-

mensional coefficients of the radiation impedance relation (8.106) is equivalent to equations 

 11 , ,I I I II  = − , (8.107) 

 11 , ,I I I II  = −  (8.108) 

(remember that 2

11 4 / 3effS a=  , whereas 2

, , 2 / 3eff I I eff II IIS S a= =  ). 

Comparing the dependences of the nondimensional coefficients of the oscillating sphere in 

Figure 8.7 and of the baffled first order transducer in Figure 8.15 at ka > 4 leads to the conclu-

sion that at these wave sizes 11 ,I I   and 11 ,I I  . Thus, , 0I II   and , 0I II  , i.e., the 

mutual impedance between halves of the oscillating sphere is , 0ac I IIZ  , and they can be con-

sidered practically as acoustically independent. Thus, the conclusion can be made that radiation 

impedance of the hemispherical transducer at the wave sizes around and above its resonance 

frequency practically do not depend on whether it is backed by the rigid or compliant baffle. 

This is illustrated with Figure 8.26 since in these cases hemisphere does not interact with its 

images regardless of the phase of their vibration. 

 

Figure 8.26: Hemispheres and their images that vibrate (a) in phase and (b) in antiphase.  

By the analogous considerations, the dependence of the modal diffraction coefficient on ka 

for the first mode baffled transducer can be considered valid for the hemispherical transducers 

0U = 0P =

(a) (b)
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in the range of ka > 4. And all the considerations regarding the acoustic interaction between 

movement of sphere as a rigid body and active first mode of vibration are also applicable to 

hemispheres with free edges. 

The calculated and measured transmit frequency responses of the hemispherical transducer 

are presented in Figure 8.27. The unintended active modes of vibration (the third membrane 

 

Figure 8.27: The transmit frequency response of the hemispherical transducer: calculated (solid 

line) and measured (dashed line). The resonance frequencies correspond to the first and third 

modes of vibration of the complete sphere. By the dash-dotted line the frequency response is 

shown of the transducer with size of electrodes reduced to 1 63.5 =   

 and bending modes) can be suppressed by reducing size of the electrodes to the coverage angle 

1 63.5 =  , as it is illustrated for the case of the complete spherical transducer in Figure 8.9 and 

Figure 8.11. This will result in optimizing the effective coupling coefficient for the first mode 

and in broadening frequency range of non-corrupted directional characteristics. In this case 

3 0n = , and the circuit of Figure 8.18 is reduced to the single mechanical contour. The fre-

quency response of the hemispherical transducer with reduced size of electrodes is shown in 

Figure 8.27 by the dash-dotted line. 

Despite the large wave size of the hemispherical transducer some small level of back radi-

ation exists, and it is approximately the same as in the case of the baffled spherical transducer 

of the same diameter. This assertion is supported by results of comparing the measured 
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directional characteristics of a hemispherical transducer with modal directional factors calcu-

lated for the first mode baffled transducer in the range 3 < ka < 6 that are shown in Figure 8.20 

by the solid thin line. 
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CHAPTER 9 

FLEXURAL PLATE TRANSDUCERS 

9.1 Introduction 

Piezoelectric flexural plate transducers have multiple applications as electroacoustic and elec-

tromechanical devices in many fields of engineering including underwater and air acoustics. 

Our treatment is intended predominantly for the underwater applications that imply certain re-

strictions on configuration of the transducers mechanical systems. For this reason, only the 

lowest modes of vibration of beams and plates are considered, as the most usable for underwater 

applications. Though the method of theoretical analysis used can be applied to broader range 

of configurations and higher modes of vibration, which may be of interest for designing differ-

ent electromechanical devices in a straightforward way. As to specifics that arise from require-

ments for the underwater projectors and receivers of the flexural type, they will be considered 

in Chapters 13 and 14. Besides, a comprehensive treatment of the underwater circular disk and 

rectangular beam transducers was made by R. Woollett in Refs. 1 and 2. 

The most widely used variants of mechanical system configurations of the transducer that 

can meet different requirements for their operational parameters and environmental conditions 

are schematically shown in Figure 9.1 with examples of the circular plates for the case that their 

boundary is simply supported. The cross sections of the rectangular beams look in the same 

way, if to replace notations for coordinate r by x and for radius a by l/2, where l is the length of 

a beam. Therefore, references to the Figure 9.1 will be made for both the circular plates and 

rectangular beams. 

The “bimorph” configuration (Figure 9.1(a)) can be considered as the basic design, and the 

“trilaminar” (Figure 9.1(b)) and “bilaminar” (Figure 9.1(c)) configurations as its modifications. 

Less typical for underwater applications are flexural type transducers shown in Figure 9.2. 

Transducers of these types may be used as accelerometers in designs of the pressure gradient 

sensors, but mainly they are employed as electromechanical drivers and sensors for general 

applications. 
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Figure 9.1: Illustration of the flexural plate transducers. (a) “Bimorph” mechanically uniform 

transducer considered as the basic design (1- fully active, 2- partially active). (b) Trilaminar trans-

ducers, (c) bilaminar transducers. Transducers (b.1) and (c.1) are radially uniform. Transducers 

(b.2) and (c.2) are radially nonuniform. Electrodes are shown by the solid bold lines,   is the 

thickness of piezoceramic lamination, shaded parts indicate inactive material. Arrows indicate: 

→ P  the vector of polarization, E− →  the electric field vector. 

  

Figure 9.2: (a) Cantilever bimorph beam and (b) center supported (dual cantilever) beam, or cir-

cular plate. The dual cantilever design is a way of insuring clamping of the cantilever at one and 

(in the middle cross section) that otherwise is hard to achieve practically. 

Transducers of the flexural type are used in the frequency range around and below the first 

resonance frequency. In this frequency range they mostly (with exclusion of highly nonuniform 

and virtually not usable for effective electromechanical transduction mechanical systems) can 

be considered as systems with one mechanical degree of freedom, and properties of the trans-

ducers as electromechanical devices can be represented in the transmit mode (for the projectors 
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and drivers in general) and receive mode (for hydrophones and sensors in general) using the 

common equivalent electromechanical circuit with single mechanical contour that is repeatedly 

shown for convenience in Figure 9.3 

  

Figure 9.3: The equivalent electromechanical circuit of a flexural type transducer having one me-

chanical degree of  freedom. Positions of the switch: T for the transmit, and R for the receive 

modes of operation. 

Theory of the uniform bimorph and trilaminar modifications of the beam and circular plate 

flexural transducers for underwater applications was well developed by Woollett2 though using 

a different methodical approach. Analysis of the uniform bimorph circular plate transducers 

using the energy method was made in Ref. 3. 

As the parts of mechanical systems of the transducers located near their boundaries and 

neutral planes are less effective in terms of electromechanical energy conversion, an active 

material at those parts can be replaced by a passive material (e.g., by a metal) practically without 

loss or even with an increase of the effective coupling coefficient of the transducer. Thus, the 

length and radially nonuniform trilaminar and especially bilaminar transducers (shown sche-

matically in Figure 9.1(b.2) and (c.2)) may become advantageous in terms of their reliability, 

cost effectiveness, and possibilities of manufacturing thin low frequency transducers. Assump-

tion of applicability of the single degree of freedom approximation may become questionable 

regarding such mechanical systems, in general. But, as it is shown in Sections 4.5.6 and 4.5.7 

with examples of the beams and circular plates nonuniform over their length and radius, this 

assumption can be adopted to the first approximation at reasonable for transducers designing 

degree of nonuniformity. Number of publications were devoted to considering nonuniform cir-

cular plate transducers predominantly for in air applications. A detailed list of references to 

these publications can be found, for example, in Refs. 4-6. A brief analysis of the approximate 

analytical methods that are used in these works is made in Ref. 8, where it is concluded that 
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they are hardly applicable for treating transducers of more general types including underwater 

transducers. In the further treatment the approach used in Ref. 8 is accepted. 

9.2 Electromechanical Conversion in the Flexural Transducers 

Mechanical systems of the flexural transducers are in the shape of the circular plates or the 

rectangular beams and plates that are completely or partially made of piezoceramics, as shown 

in Figure 9.1. When considering rectangular plates, we will assume that they are made up of 

several beams mechanically separated.  Examples of the flexural plate transducers of the basic 

design  were used in Section 2.6 for illustrating the electromechanical conversion in nonuni-

formly deformed bodies. Here all the variants of transducer designs is analyzed in detail.  

The electromechanical energy conversion in the plate transducers will be mainly consid-

ered under the transverse piezoelectric effect, which is typically used in transducers of this type. 

The exceptions may be rectangular beams (plates composed of the beams) that are tangentially 

polarized or made segmented in the manner as the rings were shown to be built, in which cases 

the longitudinal piezoelectric effect is used. In the analysis of electromechanical conversion we 

assume that the plates are thin (so that elementary theory of bending is applicable) and that the 

boundary conditions are ideal. Effects due to deviation from these assumptions will be consid-

ered separately and resulting corrections will be introduced.  

For calculating energies involved in the electromechanical conversion expressions (5.67) 

and (5.70) for the energy densities can be used, since in the case of the transverse piezoeffect 

for the beams it holds that 2 3 0T T= =  and for the circular plates 3 0T = . But we will repeat 

their derivation here for the sake of convenience, moreover, this is sufficiently straightforward. 

At first, we consider rectangular beams. 

9.2.1 Electromechanical Conversion in the Piezoceramic Beams  

Conventional assumption for the beams in the elementary theory of bending is that ,w t l . 

Thus, it can be considered that 2 3 0T T= = , 1 0T 
 
and the one-dimensional piezoelectric equa-

tions in the form 

 31
1 1 3

11 11

1
E E

d
T S E

s s
= − ,  (9.1) 
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 231
3 1 33 31 3

11

(1 )T

E

d
D S k E

s
= + − . (9.2) 

are valid. In Eq. (9.2) 12

33 31 33(1 ) ST k − =  is the dielectric constant of piezoelectric material in the 

beam clamped in the direction of axis (at 
1 0S = ). 

Following Eq. (4.28) in the coordinate system shown in Figure 9.1 expression for strain is 
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, (9.3) 

where 0z  is coordinate of the neutral plane, ( )z o x  = , o  is displacement of the reference 

point on the surface of the beam, and ( )x  is the mode shape of vibration. For the beams 

uniform over length the mode shapes of vibration for different boundary conditions on the ends 

are considered in Section 4.3.4. Vibration of the nonuniform over length beams is considered 

in the Section 4.5.6. As a result, the conclusion is made that for extend of nonuniformity that is 

reasonably acceptable for the transducer designs the mode shapes of vibration to the first ap-

proximation are the same as for the uniform beams. Thus, the mode shapes ( )x  will be con-

sidered known for all the modifications of beams shown in Figure 9.1. 

The stress at 3 0E =  in Eq. (9.1) is 
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In this form the expression for stress is valid for parts of a beam that are made of piezoceramics. 

For the nonuniform beams that are composed of active and passive materials formula (9.4) can 

be generalized as 
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where ( , ) pY z x Y=  on the parts of the beam made of passive material with Young’s modulus 

pY , and ( , ) E

aY z x Y=  on the active parts of the beam (at the transverse piezoeffect 

1 111/E E E

aY Y s= = , at the longitudinal piezoeffect 3 331/E E E

aY Y s= = ). 

The general expression for the potential energy of deformation of a beam under flexure is 
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Here 
E

eqvK  is the equivalent rigidity of the beam. Superscript E indicates that elastic constant of 

piezoceramic part of a beam that in general may be nonuniform should be taken at 3 0E = . For 

the beam with simply supported ends that is in full made of active ceramic material 
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= . (9.7) 

9.2.1.1 Electromechanical transformation coefficients 

The electromechanical energy associated with the flexural deformation is 

 31
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Here aV  is the volume of active material, and 3 ( , )E z x  is the electric field within the volume 

of active material, in other words, the volume confined between the electrodes; 

3 31 11 1( / )E ED d s S=  is the charge density determined from Eq. (9.2) at 3 0E = ; V  is the voltage 

applied, n is the coefficient of electromechanical transformation. The electric field can be rep-

resented as 

 3 ( , ) ( / ) ( ) ( )t lE z x V z x=   , (9.9) 

where   is separation between electrodes, and ( )t z , ( )l x  are the nondimensional functions 

that depend on configuration of the electrodes in the volume of a beam and on their polarities. 

At passive parts of the beam they vanish. At active parts their moduli are ( ) ( ) 1t lz x =  = , 

and their signs depend on the mutual direction of vectors of polarization and electric field in 

the volume of ceramics between the electrodes. Now expression (9.8) for the electromechanical 

energy after substituting strain 1S  by formula (9.3) can be transformed to 
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By comparing expressions (9.8) and (9.10) the electromechanical transformation coefficient of 

the beam can be represented as 

 31
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= −   , (9.11) 

where it is denoted 
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These factors depend on the status of electrodes over the surface and over the thickness of a 

beam. For illustration consider the bimorph beams shown in Figure 9.1(a), that are composed 

of two identical laminates of piezoceramics. Coordinate of the neutral plane is 
0 / 2z t= . In 

terms of polarities of the electrodes and mutual direction of the vectors of polarization P  and 

electric field 3E  the variants possible that are shown in Figure 9.4 and Figure 9.5. The conven-

tion is that ( ) 0t z   and ( ) 0l x   in the parts of piezoceramic volume, in which directions 

of the vectors of polarization and electric field coincide ( 3E P ), and ( ) 0t z  , ( ) 0l x   

in the parts, where they are in opposition ( 3E P ). 

At first, consider Figure 9.4, where different mutual directions of vectors of polarization 

and electric field are shown over the thickness. 

  

Figure 9.4: Variants of electrical connection of the piezoceramic laminates forming bimorph pie-

zoelement: (a) distractive connection that does not result in generating the bending moment; (b) 

parallel connection of the halves of the laminates, / 2t = ; (c) their series connection, t = ; 

(d) parallel connection of active laminates typical for trilaminar design, dashed area is passive 

material. The vector of polarization, P , solid line; the electric field vector, E , dashed line. 

In the variant (a) ( )t z  does not change sign over the thickness, and as result of integrating in 

expression (9.12), in which 0 / 2z t= , will be obtained that factor 0t = , i.e., electromechan-

ical conversion does not take place. In variants (b) and (c) ( ) 1t z = −  at 0 / 2z t  , and 

( ) 1t z =  at / 2t z t   Result of integrating in (9.12) will be 
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Difference between the variants is that in variant (b), which corresponds to the parallel connec-

tion of halves of the beam, separation between the electrodes is / 2t = ; in variant (c),which  

corresponds to the series connection of the halves, t = . As the result, the capacitances of the 

beams will be different. In variant (d) the electrodes are imbedded into volume of the beam, 

( ) 1t z = −  at 0 z   , and ( ) 1t z =  at t z t−   . At z t   −  function ( ) 0t z = . 

Result of integrating in (9.11) is 

 ( )t t  = − . (9.15) 

Consider now variants of the electrodes configuration over the length of a beam that are 

shown in Figure 9.5. 

  

Figure 9.5: Variants of the electrodes configuration over the length of a beam: (a) full size unipolar 

electrodes; (b) the electrodes are split into parts, and their periphery parts are connected in anti-

phase to the central part; (c) the external parts of the electrodes are short circuited, thus 3 0E =  

in the volume between them. ( )ss x  and ( )cl x  are the mode shapes of the beams with simply 

supported and clamped ends. 

Note that the modes of vibration are presented in Figure 9.5 (a) and (b) in the coordinate system 

with origin on the left end of the beam unlike in Figure 9.1(a.1). In the variant of the full size 

unipolar electrode ( )l x  does not change sign along the length, and integrating in (9.13) per-

formed in the interval [0, l) results in 
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Thus, this factor completely depends on the turning angles of cross sections of a beam on the 

edges of the electrodes (tangents to the mode shape on the edges of the electrodes), which in 

this case coincide with the ends of the beam. For a beam with simply supported ends 

( ) sin( / )ss x x l =  and 

 
2

l
l


 = . (9.17) 

It is instructive to consider the electromechanical conversion performed by the vibrating beam 

with clamped ends. The boundary conditions on the clamped ends are 
/2

( ) 0
x l

x
=

=  and 

/2( / ) 0x ld dx = = . According to formula (9.16) 0l = , and the overall effect of electrome-

chanical conversion under the flexural deformation of the beam does not exist. This is due to 

the fact that the electrical charge density that is proportional to curvature of the deflection curve 

( 2 2

3 1( ) ( ) ( / )D x S x d dx ) according to Eqs. (9.2) and (9.3)) changes sign at the coordinates, 

at which the curvature changes sign (at point of inflection), and the total charge over the elec-

trodes appears to be zero. The deflection curve for a beam with clamped ends (4.493) is 
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Coordinates of the inflection points found from equation 
2 2( / ) 0d dx =  are 

1 20.21 , 0.79x l x l= = . The electromechanical conversion can be “revived” by splitting the 

electrodes on the lines corresponding to these coordinates, and then by connecting the periphery 

parts to the central part in opposite phase, as it is shown in Figure 9.5(b). In this case the factor 

l  may be calculated from expression (9.13) taking into consideration that ( ) 1l x =  at

0.21 0.79l x l  , and ( ) 1l x = −  at 0.21 0.79l x l   and 0.79l x l  . Simple manipula-

tions result in 
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The ideal clamped boundary conditions are hardly achievable in practical transducer designs, 

and the theoretical gain that is obtained by antiphase connection of parts of electrodes close to 

the ends may be not so impressive. More reliable way of avoiding a possible distractive contri-

bution of end parts of a beam to electromechanical conversion in situation, when boundary 
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conditions are not exactly known, is to use the central part of electrodes only, as is shown in 

Figure 9.5(c). In this case it is more convenient to use formula (9.13) in its original form that 

corresponds to position of x = 0 in the middle of a beam. For the simply supported beam this 

will result in 

 
/2 /2

2
sin

2
e e

ss ss e
l

x l x l

d d l

dx dx l l

  

= =−

 = − = . (9.20) 

Combining general expressions (9.11) for electromechanical transformation coefficient 

and expressions (9.15) for t  and (9.20) for l we obtain for the variant of simply supported 

beam shown in Figure 9.1(a.2) 

 31

11

2
( )sin

2

e

E

wd l
n t

ll s

 
= − . (9.21) 

The electromechanical transformation coefficient characterizes force of electromechanical 

origin that generates vibration of mechanical system of a transducer, 

 emF nV= . (9.22) 

As it was noted in Section 2.6.1, sign (-) in the expressions (9.10) and therefore in formula 

(9.11) is in accord with the sign convention formulated in Section 1.5.2. It indicates that at the 

conditionally positive direction of the electric field) that coincides with direction of polarization 

and conditionally positive curvature (with convex down and bending moment positive in anti-

clockwise direction on the right end) the electromechanical force is directed in positive direc-

tion at the transverse piezoeffect (given that 31d  < 0), or in negative direction at the longitudi-

nal piezoeffect. This results in compression or tension in the upper layer of ceramics, respec-

tively. The same explanation is valid for the circular plates under flexure. For calculating pa-

rameters of the single mode transducers these details do not matter, and the sign (-) in expres-

sions for the transformation coefficients can be further omitted. Keeping the signs is important, 

when considering multimode transducers, in which case the modal transformation coefficients 

may have different signs. Such situation takes place, for example, in calculating spherical trans-

ducer (see note under formulas (8.75)). 
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9.2.1.2 The Effective Coupling Coefficients 

An important figure of merit that characterizes quality of electromechanical conversion of en-

ergy performed by the transducer is the effective coupling coefficient that can be calculated by 

formula 

 2

1

c
eff

c

k



=

+
, where 

1

2

c S E

el eqv

n

C K
 = . (9.23) 

It can be readily determined so far as the equivalent parameters of a transducer are known. The 

equivalent rigidity may be determined from Eq. (9.6). For determining the capacitance 1S

elC  of 

the transducer at 1 0S =  consider the electric energy of a beam clamped in direction x, 

 1 1 12 2

33 3

1 1
( , )

2 2
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S S S

el a el

V

W E z x dV C V= = , (9.24) 

Upon substituting expression (9.9) for the electric field and integrating over the active part of 

the beam we arrive at 
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−

= −   −  . (9.25) 

For the case with embedded electrodes shown in Figure 9.1 (a2) 

 1 2

33 31

2
(1 )S T

el e

w
C k l


= − . (9.26) 

The absolute value of the effective coupling coefficient of the fully active simply supported 

beam following formulas (9.23), (9.21) for n, (9.26) for 1S

elC , and (9.7) for 
E

eqvK  will be obtained 

as 

 

2
2 31

2 2 2

31

6

( 6)
eff

k
k

k 
=

− −
. (9.27) 

For the beam made of PZT-4 310.8effk k . 

9.2.1.3 Employing the Longitudinal Piezoeffect 

Consider now peculiarity of the electromechanical conversion that arises from utilizing the lon-

gitudinal piezoelectric effect. This is typical of the rectangular beams intended for underwater 

projectors, operation of which is often electric field limited and therefore requires the 
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electromechanical transformation coefficients to be as large as possible. Practically, the longi-

tudinal piezoeffect can be realized in the designs shown in Figure 9.6 (a) and (b). In this case 

the beams must be cemented from the piezoelements that are polarized in the length direction 

and connected electrically as it is shown schematically in the Figure 9.6. Note that the pie-

zoceramic bars that are tangentially polarized can also be used in the designs of Figure 9.6 in a 

straightforward way, but this variant would require a special approach to calculating electro-

mechanical parameters, which is described in Section 7.2.2.1.2, and therefore will not be con-

sidered here. 

  

Figure 9.6: The beam designs that utilize the longitudinal piezoeffect. (a) The beam is cemented 

out of two segmented bars, or of the prisms with electrodes separated analogous to those shown 

in Figure 7.1 (c). (b) The beam is cemented out of segmented bar and of the metal lamination with 

a dielectric substrate between them (trilaminar design). The electrodes having (+) polarity in pro-

cess of polarization are shown by the solid lines. The solid arrow-line →  indicates the direction 

of the polarization; the dashed arrow-line − →  indicates the direction of the operating electric 

field. 

In the variant of the longitudinal piezoeffect 1 2 0T T  , 3 0T  , and the appropriate pie-

zoelectric equations are, 

 33

3 3 3

33 33

1
E E

d
T S E

s s
= − , (9.28) 
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3 3 33 33 3

33

(1 )T

E

d
D S k E

s
= + − . (9.29) 

Here 32

33 33 33(1 )
ST k − =  is the dielectric constant of piezoelectric material in the beam clamped 

in direction of axis x (at 3 0S = ). 

Expressions for the equivalent parameters of a transducer utilizing the longitudinal pie-

zoeffect may be readily obtained from those that were determined for the variant of the trans-

verse effect. Thus, when calculating the equivalent rigidity from expression (9.6) it should be 

considered that 331/E E

aY s= . After denoting 

(b)(a)
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 3 ( , ) ( / ) ( ) ( )t lE z x V z x=    , (9.30) 

where /ell N =  (
ell  is the total length of the segmented bar, N is the number of segments) 

and functions ( )t z  and ( )l x  have the same meaning as in the case of the transverse pie-

zoeffect, the general expression for the electromechanical transformation coefficient will be-

come 

 33

33

t lE

wd
n

s
=  


, (9.31) 

instead of the formula (9.11) for the transverse piezoeffect. In the variant of the simply sup-

ported beam formula for the transformation coefficient becomes 

 33

33

( )
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−
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. (9.32) 

The capacitance of the beam at parallel connection of the segments is 

 3 2

33 33

2
(1 )

S T

el

w
C k N


= −


. (9.33) 

As it was discussed in Section 5.5.2, an additional to 
E

eqvK  rigidity K must be included 

that arises, if a nonuniform distribution of strain in direction of the electric field of polarization 

takes place. In the case under consideration the distribution of strain along the field of polari-

zation (over the length of the beam) is ( 3 ( ) cos(2 / )S x x l ), and the additional rigidity theo-

retically must be taken into account. But, as it follows from results presented in Section 5.5.2.1 

in the case that piezoelement is segmented along the electric field lines, and number of segments 

is 6N  , the K  term is small and can be neglected compared with 
E

eqvK . It is noteworthy 

that in the case of the transverse effect the distribution of strain through the thickness ( 1( )S z z

), i. e. in direction of polarization, also results in an additional rigidity. According to formula 

(5.162) this rigidity has value 
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 =

−
. (9.34) 

Given that for PZT piezoceramics 
2

31k  is on the order of 0.1 this term can be also neglected. 

Expression for the effective coupling coefficients under the longitudinal piezoeffect differs 

from expression (9.27) for the transverse piezoeffect by the absolute value of the coupling co-

efficient of piezoceramics. Thus, for the fully active simply supported beam 
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. (9.35) 

9.2.2 Electromechanical Conversion in the Piezoceramic Circular Plates 

The plates are assumed to be thin compared with the radius, t a , and free of stress on the 

major surfaces. Thus, the stress 
3T  in the axial direction throughout the thickness can be ne-

glected. The appropriate piezoelectric equations are 

 1 11 1 12 2 31 3

E ES s T s T d E= + + , (9.36) 

 2 12 1 11 2 31 3

E ES s T s T d E= + + , (9.37) 

 3 31 1 2 33 3( ) TD d T T E= + + . (9.38) 

The electrodes and the plate vibrations are axially symmetric. Therefore, the strains in the polar 

coordinates are according to formulas (4.182) and (4.183) 
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where ( ) ( / )oz r a  =  . Upon substituting 1T  + 2T  from Eqs. (9.36) and (9.37) into Eq. (9.38) 

we obtain 
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+
, (9.41) 

where 1,2 2

33 33 (1 )
S T

pk = − , and 
2 2

31 33 11 122 / ( )T E E

pk d s s= +  is the square of the planar coupling co-

efficient of the piezoceramic material. From Eq. (9.41) the charge density at 3 0E =  is 
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d
D S S

s s
= +

+
. (9.42) 

It follows from Eqs. (9.36) and (9.37) that stress in piezoelectric material at 3 0E =  are 
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For the nonuniform plates that are composed of active and passive materials these formulas can 

be generalized in the same way, as it was done for the beams, namely, 

 1 1 22 2
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Y z r z r
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= −
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, (9.45) 
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. (9.46) 

Here ( , ) pY z r Y=  and ( , ) pz r =  on the parts of the plate made of passive material with 

Young’s modulus pY  and Poison’s ratio p , and 1( , ) EY z r Y= , 1( , ) Ez r =  on the active parts 

of the beam ( 1 111/E EY s= , 1 12 11/E E Es s = − ). For brevity, the modified elastic modulus will be 

introduced 

 
21

Y
Y


=

−
, (9.47) 

as the combination of the Young’s modulus and Poisson’s ratio for the material. On the passive 

and active parts of a plate the modified elastic moduli are 
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9.2.2.1 Electromechanical Transformation Coefficient 

Expression for the electromechanical energy associated with deformation of a circular plate is 

 ( )31
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Here expression (9.42) for the charge density 3

ED  is used, and strain 1S , 2S  are determined by 

formulas (9.39) and (9.40). Strength of the electric field 3 ( , )E r z  can be represented by expres-

sion analogous to (9.9) for the beams as 

 3 ( , ) ( / ) ( ) ( / )t rE r z V z r a=   . (9.50) 

The function ( / )r r a  characterizes the geometry and polarity of the electrodes and their elec-

trically isolated parts over the radius. It is similar to the function ( )l x  for the beams. Suppose 

that the electrodes are divided into two parts, as shown in Figure 9.7. Within these parts 

( / ) 1r r a =  , where the sign depends on polarity of the electrodes. The variant of full size 
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Figure 9.7: The piezoelectric ceramic plate with electrodes divided into two parts. 

electrodes corresponds to 1r a= . If only the part of the electrode having radius 1r  is active, we 

assume that the remaining part is short circuited, in which case the rigidity of the transducer 

remains unchanged, as the condition of the constant electric field is fulfilled throughout the 

volume of the plate. If this part remains open circuited, its elastic constant must be determined 

at 3 0D =  and, strictly speaking, the plate must be considered as nonuniform over the radius. 

After substituting expressions for 1S  and 2S  into formula (9.49) and integrating over the vol-

ume will be obtained that 
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where 
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is the same quantity as by expression (9.12) for the rectangular beam; and 
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If both parts of electrodes in Figure 9.7 are used and connected in the opposite phase, then 
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Following Eq. (9.51) the electromechanical transformation coefficient is 

 31

11 12

2

( )
t rE E

d
n

s s




=  

+
. (9.55) 

In this section we will assume that the plate has bimorph design with active laminates connected 

in parallel. In this case / 2t =  and 
2 / 4t t =  according to formula (9.14) and 

0

z

r
ar1
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s s
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. (9.56) 

The coefficient r  and therefore the electromechanical transformation coefficient, is deter-

mined by the slope of the mode of vibration on the contours of electrodes. It may have sign 

minus. Regarding nature of signs of the electromechanical transformation coefficient see the 

note under formula (9.22). Further the signs will be omitted unless noted otherwise. If the elec-

trodes are divided in parts, it depends also on the polarity of the parts. The mode of vibration 

of the plate is defined by the boundary conditions, which may in practice vary significantly 

depending on the transducer design. In the case that the boundary is simply supported, the mode 

shape being approximated by the static deflection curve is given by expression (see (4.495)) 

 2 2 2 2( / ) (1 / )(1 / 4 )r a r a r a = − − . (9.57) 

and coefficient r  is 
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It is informative to consider the electromechanical parameters of circular plates for the 

boundary conditions other than simply supported. One of the reasons behind this is that in a 

practical transducer design it is hard to achieve the ideal boundary conditions, and it is good to 

have an estimate as how the change in boundary conditions can affect the transducer parame-

ters. 

  

Figure 9.8: Illustration of the circular plate having clamped boundary with its mode shape of vi-

bration and electrode configuration. 

Thus, for the clamped boundary conditions (Figure 9.8) the static deflection curve is (see 

(4.496)) 
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and 
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 = − − 

 
. (9.60) 

At elr a=  the electromechanical transformation coefficient is zero by formula (9.49) because 

the slope is zero on the clamped boundary [( / ) 0]r ad dr = = . The physical reason behind this 

is the same as was discussed regarding the rectangular beam with clamped ends. In the case of 

the circular plate the charge density on the surface of electrodes is proportional to [ ( / )]r d dr 

, and it changes sign at 2r a= . Theoretically, the maximum output from the clamped circular 

plate transducer can be obtained, if the electrodes are split into two parts on the circle of radius 

0.71r a=  and the parts are connected in antiphase. In this case the electromechanical transfor-

mation coefficient must be determined by formula (9.54), namely, 

  

Figure 9.9: The mode shape of the circular plate with free boundary. The nodal line is at 

0.68r a= . 
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In the variant of free boundary (Figure 9.9) the mode shape of vibration at the first reso-

nance frequency according to (4.200) is 
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where 1( )iJ k r  and 1( )iI k r  are the first order Bessel and modified Bessel functions, respec-

tively, and 1 3.01k a = .
.
The coefficient r  is 
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For the full size electrode (at elr a= ) 
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z

r
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0.68r a=
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9.2.2.2 The Effective Coupling Coefficients of the Circular Plates 

In accordance with formulas (9.23) the coefficients 
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must be considered first. In this formula the equivalent rigidity,
E

eqvK , is determined by expres-

sion (4.391) 
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Here eqvY  is the equivalent Young’s modulus that depends on the composition of the plate 

through the thickness and is determined by expression (4.390). Factor (0.3)bcL  depends on the 

boundary conditions (on the mode shape of vibration). It is determined by expression (4.382) 

at 0.3 = . For the simply supported boundary 
2(0.3) 7.2 /ssL a= . Value of the equivalent 

rigidity does not depend on the electrodes size under the condition that remaining part of the 

plate surface is covered with electrodes, which are shot circuited. Capacitance of the clamped 

plate at parallel connection of the ceramic laminates is 
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= − . (9.67) 

The procedure of calculating the effective coupling coefficients and their optimizing will be 

considered for uniform over the radius plates. In principle, it remains the same as for the beams. 

After substituting the general expressions for the transformation coefficient (9.55), for the ca-

pacitance (9.67) and rigidity (9.66) into formula for coefficient c  and normalizing to its value 

for the fully active simply supported plate we obtain 
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Here the subscript bc stands for the specific boundary conditions, the factor ( / 2, )c ss t a  is the 

value of the coefficient for the simply supported fully active plate. The function depends on the 



9.2 Electromechanical Conversion in the Flexural Transducers 191 

 

diameter of the electrodes and the boundary conditions. For the simply supported plates using 

the mode shape described by function (9.57) we obtain 
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For the clamped and free boundaries expressions (9.60) and (9.63) for the function r  

must be used, and values of coefficients (0.3)bcL  that correspond to these boundary conditions 

according to expression (4.382) with all the other parameters of the plates equal. They are 

2(0.3) 21.4 /clL a=  and 
2(0.3) 22.0 /freeL a= . Thus, the results will be  

for the clamped plate, 
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and for the free plate, 
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Figure 9.10: Plots of the functions that characterize relative dependences of the effective coupling 

coefficients on the radius of electrodes at different boundary conditions: (1) simply supported, (2) 

free, (3) clamped. 
2 20.62 / (1 )css p pk k = − . 
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These functions are presented in Figure 9.10. Note that the plots of these functions are valid 

for all the radially uniform plate designs. The maximum values of the effective coupling coef-

ficients at different boundary conditions are achieved at: 

 0.90elr a  for the simply supported boundary, (9.72) 

 0.58elr a  for the clamped boundary, (9.73) 

 0.72elr a  for the free boundary. (9.74) 

The coefficient max  for the plate with clamped boundary theoretically can be doubled, if the 

electrodes are split at radius 0.58elr a and the parts are connected in antiphase. In this case 
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Absolute maximum values of the coupling coefficients for different boundary conditions can 

be calculated using expressions for the coefficient ( / 2 )css t a  and eff bck  that are given by for-

mulas (9.23), namely, 
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 (9.76) 

As the comparison shows, the plates with simply supported boundaries have advantage in 

terms of the effective coupling coefficient. They are the most suitable for underwater applica-

tions. The simply supported conditions can be closely achieved in the symmetrical double sided 

design schematically shown in Figure 9.11 in case that dimensions of the supporting ring ensure 

small moment of resistance on the contour of the plate. The displacements of foundation 0f =  

due to symmetry, and the moments 0fM   (is shown on one side), if the thickness of the 

foundation,  , is small enough compared with its height, fh . 

   

Figure 9.11: Double-plate balanced transducer design. (1) The identical bimorph plates, (2) com-

mon boundary foundation for the plates. Dashed line shows the plane of symmetry. 

fM
fh

f
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It is noteworthy that the clamped boundary conditions can provide greater mechanical 

strength (
E E

eqvcl eqv ssK K ), but not only are the clamped piezoelements less electromechanically 

effective, the clamped conditions hardly can be achieved in the real transducer design. 

After the general expressions for parameters that characterize electromechanical energy 

conversion are obtained, the values of equivalent electromechanical parameters for particular 

transducer designs will be determined in the next two Sections for the transducers that are made 

of the rectangular beams and circular plates. 

9.3 Rectangular Beam Transducers 

In terms of peculiarities of calculating the rectangular beam transducers of configurations 

shown in Figure 9.1 fall into two groups: with mechanical systems uniform (a.1, b.1, c.1) and 

nonuniform (a.2, b.2, c.2) over the length. For all the transducers of the first group the mode 

shapes of vibration are the same at the same boundary conditions, and differences may arise 

only due to differences in composition of the beams through their thickness. Calculating trans-

ducers of the second group requires also considering differences between their modes of vibra-

tion. 

9.3.1 Beams Uniform over the Length 

The bimorph beam design (a.1) may be considered as the basic design within this group, with 

which all the other modifications of beams (trilaminar (a.2) and bilaminar (a.3)) is convenient 

to compare in terms of quality of electromechanical conversion. Examples of the bimorph 

beams and their parameters were considered in Section 2.5 and throughout Section 9.2.1 for 

illustrating the results that follow from the general expressions. 

9.3.1.1 Simply Supported Fully Active Bimorph Beam 

In this variant all the volume of the beam is active. Therefore, in the general formulas for the 

energies involved / 2t = , el l= , and throughout the volume ( , ) E

aY x z Y=  and ( , ) ax z =

The normal modes of vibration of a simply supported beam are ( ) sin( / )x xi l = . Upon sub-

stituting these values into expressions (9.6) and (9.10) for the potential and electromechanical 

energies and for the kinetic energy we arrive at the following summary for the equivalent 
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parameters of a beam utilizing the transverse piezoeffect for the first and for the next closest 

active third mode of vibration 
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Capacitance of the bimorph beam is 
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= − . (9.79) 

The expressions (9.78) and (9.79) are given for the case that halves of a beam are connected in 

parallel. For the case of series connection of the halves the value of transformation coefficient 

must be reduced by factor of 2, and value of capacitance by factor of 4. 

For the beams that utilize longitudinal piezoeffect and have geometry shown in Figure 9.7 

(a) the expressions for equivalent parameters that take into consideration comments made in  

Section 9.2.1.3 regarding contribution of the term K  are as follows (for the first mode of 

vibration). 
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Useful equivalent parameters that depend solely on the geometry of the mechanical system and 

mode of vibration are the effective, effS , and average, avS , surface areas that are introduced for 

the beams by formulas (2.120) and (2.126). For the simply supported beams vibrating in the 

first mode they are 

 2 /avS lw = , / 2effS lw= . (9.83) 

The resonance frequencies of the bimorph beam calculated by formula 1/ 2 E

r eqv eqvf M C=

are 
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where 
1cc  is the sound speed of longitudinal vibration in the piezoceramic bar utilizing trans-

verse piezoeffect. In the frequency range below and around the first resonance frequency con-

tribution of the third and higher modes with sufficiently remote resonance frequencies to oper-

ational characteristics of the flexural beam transducer is negligible, and calculating properties 

of the transducer can be produced with help of the equivalent circuit shown in Figure 9.3. The 

acoustic field related parameters of the circuit will be considered later in the Chapter for all the 

flexural type transducers together. Following expressions (9.23) with reference to the above 

formulas for the equivalent parameters the values of the effective coupling coefficients for the 

bimorph benders utilizing the transverse and longitudinal piezoeffect will be determined as 
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. (9.85) 

Thus, for the simply supported bimorph beams made of PZT-4 ceramics having 31 0.33k =  and 

33 0.7k = , the respective values of the effective coupling coefficients are 

 1 310.8effk k , 3 330.87effk k . (9.86) 

9.3.1.2 Cantilever Bimorph Beam 

The basic design of the cantilever bimorph beam transducer as shown in Figure 9.20 (a) was 

considered in Section 2.5. Here the expressions for the equivalent parameters of the transducer 

are summarized for comparing with results for their trilaminar and bilaminar modifications. 

They are obtained from the general expressions by specifying the mode of static deflection of 

uniformly loaded beam with one end clamped, namely, 

 ( ) ( )2 2 2( ) 2 / 1 2 / 3 / 6x x l x l x l = − + . (9.87) 

The equivalent parameters of the cantilever beam employing transverse piezoeffect at parallel 

connection of the piezoelements are 
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 0.42avS lw= , 0.26effS lw= . (9.89) 
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The resonance frequencies of the cantilever beam is 
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Remember that the reference point is at the end of a beam. Therefore, the generalized velocity 

is lU . 

The effective coupling coefficients for the cantilever beam utilizing the transverse and longitu-

dinal piezoeffect will be determined as 
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Thus, for the cantilever beams made of PZT-4 ceramics values of the effective coupling coef-

ficients are 

 1 310.67effk k , 3 330.77effk k , (9.92) 

respectively. 

It is noteworthy that real clamping of a beam at the end is hard to accomplish. One of the 

practical ways of achieving this is the dual center supported beam design, as shown in Figure 

9.2 (b). All the parameters of transducers are the same per each half of the design, as above 

presented. Remember that the reference point is at the end of a beam. Therefore, the generalized 

velocity is lU . 

9.3.1.3 Elastically Uniform Partially Active Beam 

The basic variant of bimorph beam (Figure 9.1 (a.1)), in which case all the volume of the ce-

ramic is active, was considered in Section 193. Consider now the variant of design with elec-

trodes having variable length el  and separation   between them, which are embedded intothe 

volume of ceramic, as shown in Figure 9.1(a.2). We assume that the Young’s modulus and 

density of the ceramic are the same 
E

aY  and a  as in the bimorph design in the case that all the 

ceramic volume is confined between the electrodes. Such variant of design cannot be practically 

realized unless the electrodes in the passive parts exist and are short circuited. Bu it is useful in 

the methodical sense, as ideal base for comparison properties of the truly nonuniform over 

length transducers and for illustrating peculiarities of electromechanical conversion in the 
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flexural transducers. In the last capacity it was used as an example in Section 9.2.1. Some of 

related results of Section 9.2.1 are repeated here for convenience of referencing. The bimorph 

design is the particular case of this transducer at / 2t =  and el l= . The equivalent mechanical 

parameters of the transducer are the same as bimorph transducer of the same geometry and at 

the same boundary conditions has. Namely, for simply supported beam 
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The transformation coefficient and capacitance at parallel connection of the active laminates 

are 
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according to expressions (9.21) and (9.26). Coefficient c  used for determining the effective 

coupling coefficient by formula (9.23) is 
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For the bimorph beam (at / 2t = , el l= ) 
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The ratio ( , ) / [( / 2), ]c e cl t l    falls into product of two functions 
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one of which, 
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, (9.99) 

depends only on position of the electrodes over the thickness of the beam, and another, 
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depends only on the length of the electrodes and on the boundary conditions. Plots of these 

functions are presented in Figure 9.12 and Figure 9.13. 

 

Figure 9.12: Plot of the function that characterizes dependence of the effective coupling coeffi-

cient on the relative separation between the electrodes (solid line). Function 

] 0.5 [ ( / ) / (1/ 2)n t n ] 0.5 [ ( / ) / (1/ 2)n t n  at /el l  constant (dashed line). 

 

Figure 9.13: Plot of the function that characterizes dependence of the effective coupling coeffi-

cient on the relative length of the electrodes for a beam with simply supported ends (solid line). 

Function ( / ) / (1)en l l n  at / t  constant (dashed line). 



9.3 Rectangular Beam Transducers 199 

 

The dependence according to formula (9.99) is the same for all the transducers of the flexural 

type due to the same linear dependence of strain over their cross sections. Dependences of 

(9.100) type for different boundary conditions are presented in Figure 9.10. As it follows from 

the plots, the maximum value of the effective coupling coefficient can be achieved at 

/ 1/ 3t =  and / 0.7ell l =  , i.e., with volume of active material reduced almost in factor of 

two, and it equals to 
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−
. (9.101). 

Thus, for the maximum value of the effective coupling coefficient we obtain 
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max 312 2
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1 0.79
effk k

k
=

−
. (9.102) 

For the beam made of PZT-4 max 310.93effk k , whereas for the bimorph (fully active) beam 

310.80effk k . 

It is also shown in Figure 9.12 and Figure 9.13, how the relative values of the electrome-

chanical transformation coefficient, ( / ) / (1)en l l n  at / t  constant and ( / ) / (1/ 2)n t n  at /el l  

constant, change simultaneously with relative values of coefficients c . It is remarkable that 

the increase of effective coupling coefficient at reduction of the active volume of a beam is 

achieved with even some increase of the electromechanical transformation coefficient and thus 

of the driving electromechanical force (9.22). As it follows from formula (9.94), 

[( / 3), (0.7 )] 1.3 [( / 2), ]n t l n t l  . This effect is typical of the flexural transducers due to highly 

nonuniform distribution of the dynamic stress in their mechanical systems. 

9.3.1.4 Trilaminar Beams 

The symmetric trilaminar beam transducer shown in Figure 9.1(a.2) is composed of two piezo-

electric ceramic layers having equal thickness that are cemented to the central laminate made 

of a passive material. The elastic moduli and densities of the active and passive laminates will 

be denoted 
E

aY , pY , and a , p . The following notations will be used for brevity to character-

ize properties of the trilaminar beams 
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= . (9.103) 
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Vibration of the passive trilaminar beams is considered in Section 4.5.6.1, where it is shown 

that in terms of the equivalent mechanical parameters trilaminar beam can be represented as 

uniform through the thickness beam having the same boundary conditions and equivalent 

Young’s modulus, eqv tY , and density, eqv t , that are presented by formulas (4.319) and (4.321), 

namely, 
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. (9.104) 
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Thus, for the simply supported beam 
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The resonance frequency of the trilaminar beam is 
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Further we will mainly consider beams with simply supported ends keeping in mind that values 

of the equivalent electromechanical parameters determined for different boundary conditions 

differ by the corresponding factors that can be introduced separately. 

Consider now the electromechanical conversion in the trilaminar beam. In the general ex-

pression (9.8) for the electromechanical energy and in the corresponding expression (9.11) for 

the electromechanical transformation coefficient only the value of factor t  is different for the 

trilaminar design from those for the bimorph variant. The function ( )t z  that characterizes the 

distribution of electric field through the thickness at parallel connection of active layers in this 

case is shown in Figure 9.4 (d). Therefore we arrive at value (9.15) of the factor ( )t z . Thus, 

expression (9.11) for the electromechanical transformation coefficient becomes 

 31
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−
= . (9.108) 

Related to the  quantity of the effective coupling coefficient function c t  that is defined by 

formula (9.23) after substituting expressions (9.108) for tn , (9.106) for 
E

eqv tK , and 
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will be determined as 
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The factor ( / )t t  , which after using notations (9.103) and expression (9.104) for eqv tY  may 

be transformed to 
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depends on structure of the beam cross section only. This function and, hence, the effective 

coupling coefficient of the transducer have maximum at value of y that can be determined from 

condition ( ) 0t y  = . This results in equation 
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Figure 9.14: Functions ( ) / (0.5)t ty   for different combinations of the active (PZT-4) and pas-

sive materials: (1) material with properties of PZT-4, (2) aluminum, (3) steel, (4) alumina, (5) G-

10. 

This value depends on ratio of elastic moduli of the passive and active materials, Y . Plots of 

the function ( )t y  are presented in Figure 9.14 for different combinations of active (PZT-4) 
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and passive (aluminum, steel, alumina, G-10) materials. They are normalized to value of the 

function at 0.5y = , i.e., to its value for the bimorph beam of the same size. 

Parameters of materials used for calculations are presented in Table 9.1 (see Appendix A.) 

Table 9.1. Parameters of materials used for calculations. 

 PZT-4 Alumina Aluminum Steel G10 

11(1/ )EY s , 109 N/m2 81 300 70 210 12.0 

 , 103 kg/m3 7.6 3.7 2.7 7.8 2.0 

      

It is seen from the plots in Figure 9.14 that position of maximum of function ( )t y  and its 

maximum value depend on parameter Y . The smaller this parameter, the greater the maximum 

value and it is achieved at a smaller ratio of thicknesses of the active to passive material. This 

means that maximum of the coupling coefficient is achieved at relatively smaller amounts of 

the active material. But the effective coupling coefficient is not the only important parameter 

of a transducer that depends on the ratio ( / )t y = . The resonance frequency and the electro-

mechanical transformation coefficient n, to which the electromechanical force generating vi-

bration of the mechanical system of the transducer is proportional, also depend on this ratio. 

Both these quantities must be considered as requirements for the transducer design in accord 

with the coupling coefficient. Expressions for the resonance frequency and transformation co-

efficient vs. y obtained from relations (9.107) and (9.108), respectively, are as follows 
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Here (0.5)tf  and (0.5)tn  are the values of these quantities for the fully active bimorph beam.  

The plots for ( ) / (0.5)r rf y f  vs. combinations of the active and passive materials are presented 

in Figure 9.15. Relation (9.114) shows that the transformation coefficient increases with reduc-

ing the relative thickness of the active layer. The following comment is appropriate in this re-

gard. As the force that generates vibration of the mechanical system of the transducer is tF Vn=

, the sound pressure radiated per unit voltage applied increases proportionally with an  
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Figure 9.15: The resonance frequency of the trilaminar beam normalized to the resonance fre-

quency of the fully active beam for different combinations of active and passive materials: PZT-

4 with: (1) aluminum, (2) steel, and (3) alumina. 

increase of the transformation coefficient (that is the TVR of the transducer increases). How-

ever, the magnitude of the operating electric field, /opE V = , that is required for generating 

of a certain force is 
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, (9.115) 

and 
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This dependence shows that a reduction of the amount of active material, which both optimizes 

the effective coupling coefficient and increases TVR, is not possible, if radiating the greatest 

acoustic power under condition of limited electric field is required. It is a tradeoff. Increasing 

the electromechanical coupling coefficient (and hence useable bandwidth) can be achieved at 

the expense of reduction of the maximum operating acoustic power of the transducer. The lesser 

the requirement of high acoustic power, the greater is the opportunity for optimizing the effec-

tive coupling coefficient by replacing parts of the active material with passive material. Such 

optimizing the effective coupling coefficient is the most beneficial for implementing in the hy-

drophone designs.  
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9.3.1.5 Bilaminar Beams 

The bilaminar beam is composed of active and passive parts having different mechanical prop-

erties, as shown Figure 9.1 (c.1). The main reason for using bilaminar design of a bender trans-

ducer intended for underwater application is in increasing its mechanical strength under action 

of the hydrostatic pressure by replacing piezoceramics in the parts of mechanical system that 

experience tension with a passive material (usually metal) having a higher yield stress. Yet 

another reason may be in reducing cost and gaining technological benefits in manufacturing the 

transducers in the case that they are used as hydrophones (receivers in general), or drivers that 

are not electric field limited (usually for air applications). 

Essential peculiarity of the bilaminar design is that the neutral plane under bending does 

not coincide with the middle plane, as it was in previously considered bimorph and trilaminar 

beams. Therefore, in order to be able to use the general expressions for the equivalent electro-

mechanical parameters, location of the neutral plane (coordinate 0z , as shown in Figure 9.16) 

must be determined at first. Analysis of deformation of the passive bilaminar beams for deter-

mining position of the neutral plane is performed in Section 4.5.6.3. Results of this analysis are 

summarized here. 

   

Figure 9.16: Bilaminar beam configuration and position of the neutral plane: (a) the general case, 

(b) the case that corresponds to maximum reasonable thickness of the active layer max . 

The relative coordinate of the neutral plane is determined as 
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where notations (9.103) are used. For a rational transducer design it should be 0z   (other-

wise the electromechanical effects in the piezoelectric element above and below the neutral 

plane would be in opposite phase). The value of 0z  that is equal to   is denoted as 0mz . 

Active
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z
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t
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Obviously, 
0 maxmz =  is the maximum reasonable thickness of piezoceramic layer for a given 

combination of active and passive materials. It follows from equation (9.117) that 

 0
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Ym

Y

z

t




=

+
. (9.118) 

The mechanical equivalent parameters of a transducer with the piezoelectric and passive lami-

nates having different relative thickness are as follows. 

The equivalent Young’s modulus is 
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In the case that 0 0 maxmz z = = , 
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The equivalent density of the beam is 
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Expressions (9.88) and (9.90) for the equivalent parameters and resonance frequency of the 

bimorph beam (we rename them as 
E

eqv aK , eqv aM , r af ) remain valid for those of the bilaminar 

beam, if to replace 111/E E

aY s=  and a  therein by eqvbY  and eqv b . Thus, 

 [ ( 1) ]eqvb eqv aM M y  =  − − ; (9.122) 

 0( ) /E E E

eqvb eqv a eqvb aK K Y z Y=  , (9.123) 

where 0( )eqvbY z  is given by formula (9.119) in the general case, and 
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in the variant that 0 0 maxmz z = = . For the same variant 
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Consider now the electromechanical energy associated with deformation of the bilaminar beam 
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 (9.126) 

where from expression for the electromechanical transformation coefficient is 
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In the case that 0 0 maxmz z = =  
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The same question arises regarding maximizing the effective coupling coefficient effk  of the 

bilaminar beam for a particular combination of the active and passive materials, as in the pre-

vious case of symmetric trilaminar beam. In order to determine the conditions for optimizing 

the effective coupling coefficient by changing the relative thickness of the active layer, / t , 

consider parameter 
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in comparison with its value at 0 0 maxmz z = = , namely, the function 
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Considering expressions for bn , capacitance 

 1 2

33 31(1 ) /S T

elC k wl = − , (9.131) 

and relation 
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we arrive at the expression for the normalized coefficient c  c  
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Here 0 0( ) and ( )eqvb eqvb mY z Y z  are defined by formulas (9.119) and (9.120). Dependencies of 

functions (9.133) from / t y =  are depicted in Figure 9.17 for combinations of different ma-

terials with PZT-4 ceramics. Note that G-10 as a passive layer is presented for illustrating results 

of combining PZT-4 with material having significantly smaller Young’s modulus. This should 

not be considered as recommendation for its practical use. 

  

Figure 9.17: To optimizing the effective coupling coefficient of the bilaminar beam: function 

(9.133) vs. ratio of active to total thickness y t=  for different combinations of materials: (1) 

aluminum, (2) steel, (3) G-10. Positions of max / t  and /opt t  are shown regarding curve 2. 

All the expressions for the equivalent parameters of the trilaminar beams and for the 

bilaminar beams in case that 0 0 maxmz z = =  can be represented through parameters of the bi-

morph (fully active) beam in the following way: 
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9.3.2 Beams of Finite Thickness 

So far all the treatments in this chapter were performed within the elementary theory of bending, 

i.e., under the assumption that the thickness to length aspect ratio of the beams, /t l , is small 

enough for neglecting effects of the shear stresses 5T  and rotary inertia of the cross sections 

under flexure on the energies of beam deformations. These effects were discussed in Section 

4.2.2. In some cases, increase of the aspect ratio is required from operational and/or environ-

mental considerations. With increase of the relative thickness of a beam, contribution of the 

above listed effects to the energy balances may become significant, so that corrections must be 

made to the values of equivalent parameters of the beams previously determined. 

9.3.2.1 Corrections for the Bender Parameters Due to finite Thickness of the Beams 

Corrections for the equivalent parameters of uniform passive beams were introduced in Section 

4.3.5. They are completely applicable to the bimorph beams with corresponding replacement 

of the elastic constants. Peculiarity in this regard is that with electric field 3E  applied in the 

direction of polarization the share deformation is not electromechanically active, and therefore 

the values of shear moduli must be used for non-polarized ceramics, which are not specified. 

Assumingly a good approximation to these values gives substituting 661/ s = , where 

66 11 122( )E Es s s= −  (see Table 5.1). Thus, according to relations (4.140) for the simply supported 

beams 
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, (9.141) 
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where eqv aM   and 
E

eqv aK   are the equivalent parameters with corrections due to the finite thick-

ness. Noteworthy is to remind that the resulting rigidity 
E

eqv aK   was presented in Section 4.3.5 

as 

 
E

eqv a eqvb eqv sK K K = − , (9.143) 
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where 
E

eqvb eqv aK K=  is the rigidity proportional to the energy of pure bending, and eqv sK  is 

the correction rigidity term that is accounted for reduction of this energy due to shear defor-

mation. Thus, the contribution of energy of shear deformation to the total energy of pure bend-

ing can be estimated as 

 
2 2

66220

Es
a

b

W t
Y s

W l


= . (9.144) 

It is shown (Eq. (4.34)) that the shear stress is  

 
2 3

2

5 32 4

Eo
a

t d
T Y z

dx

  
= − 

 
. (9.145) 

The shear strain is  

 5 5 66 ( , )sS T s x z= = , (9.146) 

where s  is the additional tilt of elements of distorted cross section of the deformed beam 

relative to their in plane position according the elementary theory, as shown in Figure 9.18.  

   

Figure 9.18: To distortion of the beam cross section due to shear deformation. Tilt of not distorted 

cross section according to elementary theory -  . The dashed line shows distortion of the cross 

section due to finite thickness, and s  is the additional tilt in the point on the neutral plane. 

The distortions of a cross section result in the additional displacements in direction of axis x, 

 ( , ) ( , )x s sz x z x z = . (9.147) 

The related linear strain in x direction is 

 ( , ) ( . ) /x s x sS z x d z x dx= . (9.148) 

Considering expression (9.145),  

0



x
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and, consequently, the additional strain due to the shear deformation is 
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As follows from this expression, ( / 2) (0) 0x s x sS z t S=  = = , and it has the maximum value at 

0.3z t  . The total strain due to the bending and shear is 

 xb x sS S S = + , (9.151) 

where xbS  (subscript b stays for bending) is given by Eq. (9.3). 

The electromechanical energy of a beam having finite thickness must be calculated by the 

general formula (9.8), in which 1S  is replaced by the total strain S . Thus, we obtain 
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= + =  , (9.152) 

where n  is the electromechanical transformation coefficient for the beam that includes correc-

tion due to the shear deformation. For the simply supported beam after substituting expressions 

for strain (9.151) and performing integration we obtain 

 
2 2

662
1

8

E

a a

t
n n Y s

l

 
 = − 
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Here an  is the electromechanical transformation coefficient determined for the thin bimorph 

beam. The correction factor in formula (9.153) is valid for either the transverse or longitudinal 

piezoeffect with 111/E E

aY s=  or 331/ Es . The factor 66 / E

iis s  for PZT-4 ceramics is 66 11( / ) 2.7Es s   

and 66 33( / ) 2.0Es s   for the transverse and longitudinal piezoeffect, respectively. 

The effective coupling coefficient for a beam of the finite thickness, effk  , may be deter-

mined using expression for the factor c  that includes the equivalent parameters of the beam 

with corrections due to the finite thickness taken into account, 
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Upon substituting expressions (9.153) for n , (9.142) for 
E

eqvK   and 1SS

el el aC C=  this factor be-

comes 
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where c a  is this factor for the bimorph beam at small t/l, and 
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According to (9.85) 
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The corrected value of effective coupling coefficient of the simply supported beam will be ob-

tained from equation 

 2
( / )

1 ( / )

c a

eff i

c a

t l
k

t l

 

 
 =

+
. (9.158) 

  

Figure 9.19: Dependences of the functions ( / )t l  (solid lines) and effective coupling coeffi-

cients (dashed lines) on the thickness to length ratio: (1) transverse piezoeffect, (2) longitudinal 

piezoeffect. PZT-4 ceramics. 

Dependences of the functions ( / )t l  and corresponding effective coupling coefficients on the 

thickness to length ratio for the beams made of PZT-4 ceramics at the transverse and longitu-

dinal piezoeffects are presented in Figure 9.19. 
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9.3.2.2 Employing Shear Deformation  

With increase of the relative thickness of a beam the portion of total energy of deformation that 

is due to shear gradually increases, as it follows from relation (9.144), and at some point it may 

become profitable to use electromechanical conversion of the shear deformations instead of or 

in combination with deformations due to pure bending. In addition to relation (9.144) it must 

be taken into consideration that 2

15 0.5k  , whereas 2

31 0.1k  , and results of the electromechan-

ical conversion of energies of shear and bending may become comparable. Example of the 

bender transducer that employs electromechanical conversion of the shear deformations is de-

scribed in Ref. 7. It is informative to consider the design principle and way of calculating pa-

rameters of such transducer. Moreover, qualitatively they may be applied to different mechan-

ical systems vibrating in flexure, such as the relatively thick circular plates and rings. 

For employing electromechanical conversion of the shear deformation the direction of op-

eratiing electric field in the piezoelement must be perpendicular to the direction of polarization, 

as it is shown in Figure 9.20 with example of the partially active simply supported beam.. 

 

Figure 9.20: Configuration of piezoceramic beam vibrating in flexure that employs electrome-

chanical conversion of the shear deformations. Operating electrodes are shown by the solid bold 

lines. P  is the vector of polarization, 2E  is the vector of operating electric field. 

This can be achieved by removing the electrodes used for polarization and then applying elec-

trodes on the perpendicular surfaces of the piezoelement. It is noteworthy that after this proce-

dure all the elastic constants related to the extensional deformations due to bending must be 

changed to quantities with superscript “D” instead of “E”. Putting aside details of the transducer 

design consider the electromechanical energy associated with the shear deformation of the pie-

zoelements within beam vibrating in flexure. The piezoelectric equations that describe electro-

mechanical conversion in the piezoelement are 

 5 55 5 15 2

ES s T d E= + , (9.159) 

 2 15 5 11 2

TD d T E= + . (9.160) 

0

z

x
/ 2l/ 2l−

PP

2E2E
xx−
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Substituting the expression for 
5T  that follows from Eq. (9.159) into Eq. (9.160) results in 

 215
2 5 11 15 2

55

(1 )T

E

d
D S k E

s
= + − , (9.161) 

where 2 2

15 15 55 11/ E Tk d s = . The electromechanical energy is 
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After substituting the strain 5 5 55

ES T s=  with 5T  from expression (9.145), where 1

EY  must be 

replaced by 1

DY , the expression for electromechanical energy will be 
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  . (9.163) 

As it is follows from Figure 9.20, 2 2( ) ( ) /E x E x V = − − = in the active part of the beam, and

2 ( ) 0E x =  in the interval [ , ]x x− . After integrating the transformation coefficient for the 

simply supported beam will be obtained as 
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= . (9.164) 

When determining the equivalent rigidity we will assume that the entire beam is made from 

ceramics that was polarized through the thickness, and afterwards the electrodes used for po-

larization were removed and working electrodes were applied to active parts of the beam. Under 

this assumption the expression (9.143) for the equivalent rigidity of the beam remains the same 

as in the case that the bending deformations were active, but the elastic moduli related to bend-

ing deformation must be taken with superscripts D,. Thus, the corresponding rigidity will be 

D

eqvbK , whereas the portion of rigidity related to shear deformation must be calculated with shear 

module 551/ Es , i.e., can be denoted 
E

eqv sK . Therefore, the total equivalent rigidity will be 
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. (9.165) 

This equivalent rigidity, the equivalent mass by formula (9.141), electromechanical transfor-

mation coefficient sn  by formula (9.164) and capacitance, which in this case is 

 5 2 2
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= − = −

−
, (9.166) 
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form the full set of equivalent parameters that are sufficient for calculating transducer electro-

mechanical parameters using regular one-dimensional equivalent circuit. 

The effective coupling coefficient of the shear mode driven flexural transducer can be es-

timated using expression 

 
5

2 2

2

1

1 1 ( / )

eff s s
c s S E DD

eff s eqv s eqvel eqv

k n

k K KC K
= = 

− − 
. (9.167) 

 

Figure 9.21: The normalized functions ( / ) / (0)cs csx l   that characterize dependence of the 

effective coupling coefficient due to shear from the length of active part of the piezoelement (solid 

line), and ( / ) / (0.5)cb cbx l   due to bending (dashed line). 

At first consider dependence of the coefficient c s  from coordinate x. After substituting 

sn , eqvK   and 5S

elC  from expressions (9.164), (9.165) and (9.166), respectively, we arrive at 
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Dependence of the ratio 

 
2( / ) cos ( / )
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c s
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−
 (9.169) 

is depicted in Figure 9.21 (solid line). This function has maximum at 0.125x l= , and at 

0.25x l=  has the same value, as for the fully active beam. 
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Compare function (9.169) with analogous function for the variant of the “bending activated” 

beam that can be obtained by replacing 
ell  by 2x in formula (9.100), namely, 
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= . (9.170) 

This function is also depicted in Figure 9.21. The plots in the figure show that the parts of the 

beam, which are the most effective for utilizing the bending deformations, are the least effective 

for using the shear deformations. This means that the overall effective coupling coefficient of 

a bender transducer can be increased by combining active elements that utilize the bending and 

shear deformations. This can be achieved in the design schematically shown in Figure 9.22 

For estimating the resulting benefit of such a transducer design, the maximum values of 

coefficients c s , 
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and c b  (see (9.155)), 
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Figure 9.22: Configuration of a beam, in which electromechanical conversion due to the bending 

and shear deformations takes place simultaneously. 

must be compared depending on the thickness to length ratio. As the result, the corresponding 

effective coupling coefficients are presented in Figure 9.23 for the case that PZT-4 is used. The 

design variant with the transverse piezoeffect used for conversion of the bending deformations 

is shown in Figure 9.22 as an example. More practical is the design with the longitudinal effect 

in segmented piezoelement used in combination with elements employing shear. The coupling 

coefficients are presented in Figure 9.23 for both variants for comparison. 
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Figure 9.23: Comparison of the effective coupling coefficients of the beam transducers employing 

the shear (curve 1) and bending deformations at the transverse (curve 2) and longitudinal (curve 

3) piezoeffect. The comparison is made for the case that PZT-4 is used.  

Although the results obtained are quantitatively specified for the rectangular beams, they 

are qualitatively applicable to similar mechanical systems vibrating in flexure, such as circular 

plates and thick rings. 

9.3.3 Nonuniform Over the Length Beams 

As it was shown above, the effective coupling coefficient of a bender transducer can be max-

imized by placing a reduced amount of the active material in the parts of a beam, where it 

experiences the greater stress. Therefore, in the cases that maximizing the effective coupling 

coefficient is desirable even at expense of a reduction of the electromechanical force (for ex-

ample, for receivers or projectors operating in air with small mechanical load), the parts of 

active material that contribute the least to the electromechanical conversion can be replaced by 

passive material. This can make the transducer more reliable and cost effective. Two variants 

of transducer designs pursuing such goals are illustrated with Figure 9.1 (b.2), which will be 

called variant A, and (c.2), which will be called variant B. In both cases the beams become 

nonuniform over the length. Vibration of the passive nonuniform over the length beams is con-

sidered in Sections 4.5.6.2 and 4.5.6.4. The main results obtained therein are that for both trans-

ducer designs and variants of nonuniformity the mode shapes of vibration remain practically 

the same, as for the uniform over length beams of the same type, at least up to the size of active 
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laminates / 0.6el l   and for their relative thicknesses /opt t  that are optimal in terms of the 

effective coupling coefficients. Based on these results the expressions for the equivalent rigid-

ities and masses of the nonuniform beams were obtained. Knowing the mode shapes of vibra-

tion for nonuniform beams allows calculating electromechanical transformation coefficients 

and effective coupling coefficients of the transducers, and thus completing all the set of param-

eters required for transducers designing. This is done in the following sections. 

9.3.3.1 Trilaminar Beams 

The equivalent masses and rigidities of the nonuniform over the length trilaminar beams in 

variant A according to expressions (4.332) and (4.337) are 

 1 1 1

2( 1)
1 ( / )

2( 1)
tA t e

y
M M F l l

y



 



 

 −
= + 

− −  

, (9.173) 

 
3

1 1 13

( 1)[1 (1 2 ) ]
1 ( / )

1 ( 1)(1 2 )

Y
tA t e

Y

y
K K F l l

y





 − − −
= + 

+ − − 
, (9.174) 

where 
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and function 1( / )eF l l  is 

 1( / ) 1 ( / ) (1/ )sin( / )e e eF l l l l l l = − − . (9.176) 

The same expressions (9.173) and (9.174) are valid for the masses and rigidities in the variant 

B, if to change subscripts A for B, and to set to zero   and Y  in numerators in the brackets. 

The electromechanical transformation coefficient can be determined by formula (9.21) as 

 31
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lls

 
= − , (9.177) 

because the mode shape of vibration is the same to the first approximation, as for the uniform 

beam with simply supported ends. Capacitance of the active laminates connected in parallel is 

 1 2

33 31(1 )2 /S T

el eC k wl = − . (9.178) 
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With all the equivalent parameters known, the effective coupling coefficient can be determined 

by formula (9.23) using the coefficient 
c  that for variant A is 
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Here 

 
1

2

1

( )
( )

t
ctS

t el

n
y

K C l
=  (9.180) 

is the coefficient for trilaminar beam uniform over the length according to formula (9.110). Its 

dependences on the relative thickness of the active laminate, /y t= , are presented in normal-

ized form of the function ( / )t   in Figure 9.14 for different combinations of PZT-4 and pas-

sive materials. The function [ , ( / )]t ey l l in the  expression (9.179) is, 
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This function depends on the relative length of the active laminate /el l  for each value of its 

relative thickness y. Expression (9.181) for the function t  is valid in variant B of the beam 

nonuniformity if to set 0Y =  in the nominator of the term in brackets. 

Dependences of the equivalent parameters and of the resonance frequencies of nonuniform 

over length trilaminar beams from /el l  are shown in Figure 9.24–Figure 9.26 for values of 

( / )opt opty t= , which correspond to the optimal value of the effective coupling coefficient for 

the combinations of PZT-4 with different passive materials. They are normalized to parameters 

of uniform over length trilaminar beams having the same length, thickness and ( / )opt opty t=  

ratio. The plots can be used for practical calculating transducers utilizing the trilaminar nonu-

niform beams. They allow making informed choice of the geometry of the beams. Plots of 

function [ , ( / )]t opt ey l l  are presented in Figure 9.27. They show that an additional gain or loss 

in the effective coupling coefficient of the nonuniform beam can be obtained compared with 

the case that the beam is uniform and the length of electrodes is reduced to the same extent. 

This depends on what passive material is used. Qualitatively this result could be foreseen, be-

cause the value of rigidity of nonuniform beam 1tAK  reduces or increases (see Figure 9.24) in 

comparison with those of uniform beam at all other conditions equal in expression for 1c tA . 
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Figure 9.24: The equivalent rigidities of the nonuniform over length trilaminar beams normalized 

to the equivalent rigidities of the uniform trilaminar beams that correspond to the maximum ef-

fective coupling coefficient, vs. /el l  for different passive materials used for replacement of pie-

zoceramics. Variant A: (1) aluminum, (2) steel. Variant B: (3) aluminum, (4) steel. 

 

Figure 9.25: The equivalent masses of the nonuniform over length trilaminar beams normalized 

to the equivalent masses of the uniform trilaminar beams that correspond to the maximum effec-

tive coupling coefficient, vs. /el l  for different passive materials used for replacement of pie-

zoceramics. Variant A: (1) aluminum, (2) steel. Variant B: (3) aluminum, (4) steel. 

Within range of values of /el l , at which the first approximation to the mode of vibration 

is applicable ( / (0.5 0.6)el l  −  at opty ), calculating the nonuniform trilaminar beam transducer 

can be produced using the single mechanical degree of freedom equivalent circuit of Figure 9.3. 



220  9 Flexural Plate Transducers 

 

All the parameters of the circuit are determined except for those related to acoustic field. They 

will be considered in Section 9.5. 

  

Figure 9.26: The resonance frequencies of the nonuniform over length trilaminar beams normal-

ized to the resonance frequencies of uniform trilaminar beams that correspond to the maximum 

effective coupling coefficient, vs. /el l  for different passive materials used for replacement of 

ceramics. Variant A: (1) aluminum, (2) steel. Variant B: (3) aluminum, (4) steel. 

 

Figure 9.27: Dependences of the function [ , ( / )]t opt ey l l  on the relative length of the active 

laminate for different combinations of PZT-4 and passive materials. Variant A: (1) aluminum, (2) 

steel, (3) G-10. Variant B: (4) aluminum, (5) steel, (6) G-10. 

If it is needed by some reasons to use beams with even smaller relative length of the active 

laminates, then the second approximation to the mode of vibration must be taken into 
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consideration, as it is shown in Section 4.5.6.2, and the transducer must be considered as having 

two mechanical degrees of freedom in order to increase the accuracy of calculations. 

9.3.3.2 Bilaminar Beams 

Procedure of considering the bilaminar nonuniform over the length beam transducers after the 

mechanical part of the problem is solved in Section 4.5.6.4 is the same, as for the trilaminar 

beams. For simplicity we will consider the case, in which the thickness of active laminate is 

maximum, i.e., 0 0 maxmz z = = . Thus, it is assumed that in formulas below 0 /my z t= . The 

general case, in which the thickness of active laminate can be reduced max( )   for optimizing 

effective coupling coefficient, can be considered in analogous way just with more cumbersome 

calculations, as it was illustrated for the uniform bilaminar beams in Section 9.3.1.5. 

The equivalent masses and rigidities of the nonuniform over the length bilaminar beams in 

variant A according to expressions (4.364) and (4.368) are 
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where 
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and function 1( / )eF l l  is determined by Eq. (9.176). The same Eqs. (9.182) and (9.183) are 

valid for the masses and rigidities in the variant B, if to change subscripts A for B, and to set to 

zero   and Y  in numerators in the brackets. 

The electromechanical transformation coefficient to the first approximation remains the 

same as for the uniform bilaminar beam. Thus, in the general case (see Eq. (9.129)) 
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In the case that 0 0 maxmz z = =  and thus 0 max/my z t y= =  
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If to assume that the beam is simply supported and the mode shape of displacement remains the 

same as for a uniform beam, which is the case to the first approximation, then 
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Capacitance of the active laminate is 
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Coefficient 1c bA  for determining effective coupling coefficient in the variant A is 
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where the first factor is coefficient max( )cb   for the uniform bilaminar beam (see formula 

(9.129)), and function ( / )b el l  is 
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−
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. (9.190) 

Expression for the function b  in variant B of the beam nonuniformity differs from expression 

(9.190) by setting 0Y =  in the nominator of the term in brackets. 

  

Figure 9.28: The equivalent rigidities of the nonuniform over length bilaminar beams normalized 

to the equivalent rigidities of the analogous uniform bilaminar beams vs. /el l  for different pas-

sive materials used for replacement of piezoceramics. Variant A: (1) aluminum, (2) steel. Variant 

B: (3) aluminum, (4) steel. 
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Dependences of the equivalent parameters, resonance frequencies and function 

max max[ , ( / )] / [ ,1]b e by l l y   for nonuniform over length bilaminar beams from /el l  are shown 

in Figure 9.28-Figure 9.31. Remember that it is assumed that in all these cases 

0 max/my z t y= =  . The functions are normalized to parameters of the analogous uniform over 

length bilaminar beams having the same length, thickness and 
0 /my z t=  ratio vs. /el l . 

  

Figure 9.29: The equivalent masses of the nonuniform over length bilaminar beams normalized to 

the equivalent masses of the uniform bilaminar beams vs. /el l  for different passive materials 

used for replacement of piezoceramics. Variant A: (1) aluminum, (2) steel. Variant B: (3) alumi-

num, (4) steel. 

 

Figure 9.30: The resonance frequencies of the nonuniform over length bilaminar beams normal-

ized to the resonance frequencies of analogous uniform bilaminar beams vs. /el l  for different 

passive materials used for replacement of piezoceramics. Variant A: (1) aluminum, (2) steel. Var-

iant B: (3) aluminum, (4) steel. 
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The same considerations regarding applicability of the equivalent circuit shown in Figure 9.3 

for calculating parameters of trilaminar beams are valid for the bilaminar beams. Peculiarity of 

the bilaminar beams is that the range of values of relative lengths of active laminates, at which 

the first approximation to the mode of vibration is applicable, is wider than for trilaminar beams, 

as it is shown in Section 4.5.6.4. 

 

Figure 9.31: Dependences of the function max max[ , ( / )] / [ ,1]b e by l l y   on the relative length of 

the active laminate for different combinations of PZT-4 and passive materials. Variant A: (1) alu-

minum, (2) steel. Variant B: (3) aluminum, (4) steel. 

9.4 Circular Plate Transducers 

The modifications of the circular flexural type transducers to be considered are presented in 

Figure 9.1. They are analogous to those of the rectangular beam transducers and will be treated 

in the same sequence: uniform over radius transducers with bimorph plate as the basic design, 

and transducers nonuniform over the radius. The main results of this Section were presented in 

Ref. 8. 

9.4.1 Radially Uniform Transducers 

The basic bimorph design of uniform through the thickness circular plate transducer was con-

sidered in Section 2.6.3 under the simply supported boundary conditions. Procedure of deter-

mining the mechanical equivalent parameters of nonuniform through the thickness plates 
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(trilaminar and bilaminar) was illustrated with example of the rectangular beam in Section 4.5.6. 

The general expressions for calculating electromechanical conversion related parameters (elec-

tromechanical transformation and effective coupling coefficients) are presented in Section 

9.2.2. The goal of this section is to summarize all the set of circular transducers equivalent 

parameters under different boundary conditions. 

9.4.1.1 Equivalent Electromechanical Parameters of the Circular Plate Transducers 

General expressions for the equivalent mechanical parameters of the radially uniform and non-

uniform by the thickness circular plates were obtained in Section 4.5.7.1 in the form of 

 

3

(0.3)
12

eqvE

eqv bc

t Y
K L=  , (9.191) 

 eqv eqv eff bcM tS= . (9.192) 

Here eqvY  and eqv  are the equivalent Young’s modulus and density that depend on composi-

tion of the plate through the thickness. They are defined by formulas (4.390) and (4.393), re-

spectively. In terms of nonuniformity of properties through the thickness the variants of bi-

morph, trilaminar and bilaminar plates must be considered that are shown in Figure 9.1 (a.1), 

(b.1), and (c.1). Quantities (0.3)bcL  and eff bcS  depend on the boundary conditions for the plates. 

They are defined by formulas (4.382) at 0.3 =  and (4.394) and reproduced here for the sake 

of convenience. 
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where 
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The general expression for the electromechanical transformation coefficient is (9.55) 
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11 12
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t r bcE E

d
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s s




=  

+
. (9.196) 
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Here 
t  depends on configuration of electric field through the thickness, and r bc  depends 

on the boundary conditions and on the size of the electrodes. We will assume that in general 

the radially uniform plates may have reduced electrodes. (As it was mentioned before, strictly 

speaking, the remaining parts of the plate surface are supposed to be covered with electrodes 

that are short circuited in order to keep value of the elastic constants of ceramic unchanged 

along the radius and equal to E

iks .) These coefficients are defined by formulas (9.53), and will 

be denoted 1( )r bc r . 

9.4.1.2 Bimorph  Plates 

The bimorph plates are fully active uniform in thickness, therefore, eqv aY Y=  and eqv a = . 

Due to symmetry the neutral plane coincides with the middle plane of a plate. It is convenient 

to place the origin of the coordinate system in the neutral plane. As the result, 0 0z =  and inte-

gration in all the general expressions must be performed over the interval ( / 2) ( / 2)t z t  − . 

Table 9.2. Factors accounting for different boundary conditions. 

 
(0.3)bcL , 

2/ a  

eff bcS , 

2a  

av bcS , 

2a  
( )r bc a  1( )r bc r  

ss 7.2 0.28 0.45 1.5 

2 2

1 1

2 2
2.5

r r

a a

 
− − 

 
 

cl 21.4 0.18  0.33 0 

2 2

1 1

2 2
4 1

r r

a a



 
− − 

 
 

Free 22 0.26 0 2.18 (9.63) 

Center supported** 6.6 0.46  0.63 0.97  


Maximum value at 1 / 2r a= . **Reference point is on the edge. 

In the expression (9.196) for the electromechanical transformation coefficient / 2t = , 

and 
2 / 4t t =  for parallel connection of the half plates according to formula (9.14). Thus, the 

equivalent parameters of the bimorph plate become 
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+
, (9.197) 

where the factors (0.3)bcL , eff bcS and r bc depend on the boundary conditions. Values of these 

factors are presented in Table 9.2. The subscripts “a” indicate that the parameters belong to the 
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basic bimorph plate design for distinguishing them in case of comparing with analogous pa-

rameters of different plate modifications. 

Together with expression for the capacitance, 

 1,2

2
2

33

4
(1 )

S T

el p

a
C k

t


= − , (9.198) 

we obtain the full set of electromechanical parameters of the bimorph circular plate transducer. 

In the variant of the simply supported boundary, which will be used for reference as the basic 

design, 
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The resonance frequency of the plate is 
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The effective coupling coefficients of the bimorph plates under different boundary conditions 

were considered as an example in Section 9.2.2.2. For the simply supported bimorph plate with 

the full-size electrodes ( elr a= ) the coefficient ( )c ss a and effective coupling coefficients are 
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, (9.201) 

It the plate is made of PZT-4 ceramics ( 0.33E

a = , 0.58pk = ), ( ) 0.49eff ssk a  .  

In Figure 9.10 are presented dependences from radius of electrodes of the relative values of 

coefficients, which characterize effective coupling coefficients, ( ) / ( )cbc el c ssr a  , for different 

boundary conditions. For the simply supported plate the maximum of this ratio is achieved at 

0.91elr a= . The maximum value of the effective coupling coefficient is  
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2
0.64

1 0.36
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eff

p

k
k

k
=

−
, (9.202) 

and it remains about the same up to 0.8elr  . 
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9.4.1.3 Bimorph Center Supported (Clamped) Plate 

Vibration of the center supported plate made of a passive material was considered in Section 

4.5.8.1. The first resonance mode of vibration was determined by expression (4.438) 
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2 3 4
( / ) 0.91 0.27 (1) ( / )

r r r
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  = − + = , (9.203) 

where (1) 0.36 =  is displacement of the reference point on the edge. Thus, the mode shape of 

vibration is 
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. (9.204) 

Following general expressions (9.193) and (9.195) the coefficients bcL  and eff bcS  calcu-

lated for this mode of vibration will be 217 /bcL a=  and 
20.46eff bcS a= . Expressions for the 

equivalent rigidity, mass and resonance frequency of the transducer are, accordingly, 
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, (9.205) 

i.e., they are the same as for the passive plate, (see (4.440) and (4.441)), with elastic modulus 

replaced by its analog for the active material. Besides 20.63avS a= . 

The electromechanical transformation coefficient must be determined by formula (9.196). 

In the case of parallel connection of the piezoelements and under general assumption that a part 

of the electrodes having radius 1r  is active the expression for the coefficient will be 

 31

11 12( )
cs r bcE E

d t
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s s


= 

+
, (9.206) 

where function r bc  is determined by formula (9.53). Taking into account expression (9.205) 

for the mode shape, 
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Thus, 
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For the fully active electrodes, at 
1r a= , 0.97r = , and 

 31

11 1

0.97
(1 )

cs E E

d t
n

s




=

−
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Effective coupling coefficient of the transducer can be commonly calculated through the 

coefficient 

 1,22 /
S E

c cs cs el eqv csn C K = . (9.210) 

After substituting parameters by formulas (9.209), (9.205) and capacitance 

1,2 2 2

33 1(1 )4 /
S T

el pC k r t = − , we arrive at 
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At 1r a=  
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Figure 9.32: Dependencies of the ratio 1( / ) / (1)c cs c csr a   (solid line) and electromechanical 

transformation coefficient n (dashed line) from the relative radius of the active part of the elec-

trodes. 
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Function (9.211) has maximum at value of 1( / )r a  that may be found from equation 

1( / ) 0c cs r a = . This value appears to be 
1 0.54r a= , and the maximum values of the function 

c cs  and corresponding effective coupling coefficient are, respectively, 
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In the case that piezoceramic PZT-4 is used ( 0.58pk = ) the coupling coefficients with fully 

active (at 1r a= ) and optimized (at 1 0.54r a= ) electrodes are 0.6eff pk k=  and 0.76 pk . Plot of 

the ratio 1( / ) / (1)c cs c csr a   vs. 1 /r a  is shown in Figure 9.32. At the same Figure, the depend-

ence of electromechanical transformation coefficient 1( / ) / (1)cs csn r a n  vs. relative size of the 

electrodes is depicted that shows, how the electromechanical force generated by the transducer 

changes simultaneously with the effective coupling coefficient. 

9.4.1.4 Bimorph Plate Center Supported by the Post of a Finite Radius 

The center supported (clamped) plate is the ideal model. In practical applications, such as me-

chanical system of a hydrophone (accelerometer), real supporting element has a finite diameter. 

Vibration of a passive plate supported by the post of a finite diameter was considered in Section 

4.5.8.2, where the first resonance mode of displacement was determined as 
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( / ) 1 ln 1 1 ln 1

r r r a a a
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   = − + −  − + −       
             

. (9.214) 

Coefficient A in this expression depends on the ratio b/a. A reasonable estimation for value of 

b/a in application to electromechanical transducers may be about / 0.1b a = . For this case 

0.01A = . We will use this example for comparing results with those obtained by using analyt-

ically more straightforward ideal case of the center supported plate. Comparison of the mode 

shapes of vibration and equivalent parameters of the center supported and clamped on radius 

/ 0.1b a =  plates is made in Figure 4.33 and in Table 4.5. Thus, at b = 0.1a. 
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2

0.1

2.25
1.34

1.94
r r cs r csf f f

 
= = 
 

. (9.218) 

The coefficient of electromechanical transformation at radius of electrodes 
1elr r=  must be 

determined by formula (9.206), where 

 

1

/
/ 1 1

( / )
( ) b a

r b a

r r

d r b
r r

dr



=

 = . (9.219) 

The coefficient /c b a  , which is linked to the effective coupling coefficient, is 

 1,22

/ 1 / 1 / 1 /( ) ( ) / ( )
S E

cb a b a el b a eqvb ar n r C r K = . (9.220) 

Here 1,2 2 2 2 2

/ 33 (1 )4 (1 / ) /
S T

el b a pC k a b a t = − −  is the capacitance of bimorph plate at parallel con-

nection of laminates. Using expressions (9.214) and (9.219) for the fully active electrodes at 

/ 0.1b a = , will be obtained that 1.25r = . Thus, we arrive at the following expressions for 

the coefficients of electromechanical transformation, 0.1n , and 0.1c : 
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The values of 0.1

E

eqvK  and ( )c cs a are given by formulas (9.205) and (9.212), respectively.Thus, 

the effective coupling coefficient with electrodes of the full size is 
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Comparison with the effective coupling coefficient of the center supported plate (see (9.213)) 

shows that for the plates with full size electrodes made of PZ-4 ceramics 0.1 1.09eff eff csk k= . 

Summarizing results of the last two sections we may conclude that increase of relative 

radius of the supporting central post up to / 0.1b a =  produces increase of the resonance fre-

quency of the transducer (according to (9.218)) and slight improvement of its electromechanical 

characteristics. 
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9.4.1.5 Trilaminar Plates 

Structure of the trilaminar circular plate through the thickness is the same as of the trilaminar 

beam considered in Section 9.3.1.4. Therefore, all the relations that characterize properties of 

the equivalent parameters that depend on this structure are the same. Thus, the equivalent 

Young’s modulus and density of the trilaminar plate according to (9.104) and (9.105) are 

 
3[1 ( 1)(1 2 ) ]eqvt a YY Y y =  + − − , [ 2( 1) ]eqv t a y    =  − − . (9.224) 

(Subscript t stands for trilaminar and all the notations Y ,   and y are defined by relations 

(9.103)). The mechanical equivalent parameters of the trilaminar plates must be determined by 

formulas (9.191) and (9.193) using these expressions, namely, 

 
3

3 3(0.3) [1 ( 1)(1 2 ) ] [1 ( 1)(1 2 ) ]
12

E Ea
eqvt bc Y eqv a Y

t Y
K L y K y  =  + − − =  + − − , (9.225) 

 [ 2( 1) ] [ 2( 1) ]eqv t a eff bc eqv aM tS y M y       =  − − =  − − . (9.226) 

And the resonance frequency of the trilaminar plate is 
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Dependence of ratio /res t res af f  for combinations of PZT-4 ceramics with different passive ma-

terials is the same as for the trilaminar beam and it is shown in Figure 9.16. 

Electromechanical transformation coefficient of the trilaminar plate is determined by ex-

pression (9.196), where coefficient t for the trilaminar plate it is ( )t t  = −  according to 

(9.15). Thus, the coefficient of electromechanical transformation is 
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Given that the capacitance is 
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the coefficient c t bc  will be found to be 
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The value of this expression at 0.5y = , 
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= + 

−  

, (9.231) 

corresponds to the case of the bimorph (fully active) plate design (denoted with subscript “c a 

bc”). The last factor in expression (9.230) is the same function ( )t y  that is introduced by Eq. 

(9.111) and characterizes dependence of ratio of the coefficients c  for the trilaminar and bi-

morph plate designs from composition of the trilaminar design through the thickness at the same 

boundary conditions. Plots of this function for combinations of PZT-4 ceramics with different 

passive materials are presented in Figure 9.14. Numerical values of the last factor in expression  

(9.231) can be calculated for different boundary conditions using data from Table 9.2. 

As it follows from the data presented in Figure 9.10 and Figure 9.14, the thickness and 

radius of the active laminates of the plates vibrating in flexure can be significantly reduced 

without reduction, and even with some increase of the effective coupling coefficient. Thus, in 

the case of combination PZT-4 – aluminum under the simply supported boundary conditions it 

remains the same at 0.2t = , 1 0.8r a= , and achieves its maximum value, which reaches 

0.52effk =  vs. 0.48 for the full size piezoelement, at 0.2t = , 1 0.9r a= . 

It is noteworthy that minimizing the volume of active material with the goal of improving 

(or at least of keeping the same) the coupling coefficient is possible only in the case that re-

quired acoustic (mechanical) power generated is not electric field limited. This can be the case 

of receivers (sensors), projectors operating in air and drivers at small mechanical loads, while 

fulfilling of this condition can be questionable for underwater projectors. Comments that are 

made in this regard in Section 9.3.1.4 about tradeoff between acoustic power radiated and min-

imizing the volume of active material without loss of the effective coupling coefficient are 

completely applicable to the case of the circular plates. 

9.4.1.6 Bilaminar plates 

Structure of the bilaminar circular plate through the thickness is the same as of the bilaminar 

beam considered in Section 9.3.1.5 and shown in Figure 9.16. Therefore, all the characteristics 

of the bilaminar plates that depend on this structure are the same. In particular the position of 

the neutral plane (coordinate 0z ) is determined by relation (9.117), 
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in the general case, and by relation (9.118), 
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in the case that the thickness of the active laminate   = 0z  (these values are denoted max  and 

0mz ). Values of the ratio 

 0 max
max

mz
y

t t


= =  (9.234) 

for different combinations of the active and passive materials are presented in Figure 9.17. 

Expressions for the equivalent Young’s modulus and density of the bilaminar plates fol-

lowing Eqs. (9.119)-(9.121) are 
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in the general case that 0z  , and 
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in the case that max 0mz = , i. e., 0 max/mz t y= ; 

 [ ( 1) ]eqvb a y    = − − , (9.237) 

(subscript b stands for bilaminar). 

Accordingly, the expressions (9.191) and (9.192) for the equivalent rigidity and equivalent 

mass become: 
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for the general case with 0( )eqv bY z  determined by formula (9.235), and 
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for the case that 0 max/mz t y= ; 
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 [ ( 1) ] [ ( 1) ]eqvb a eff bc eqv aM t y S M y       = − − =  − − . (9.240) 

Resonance frequency of the bilaminar plate for the case that 
0 max/mz t y=  is 
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The transformation coefficient bn  must be determined from formula (9.196), where coef-

ficient 

 0( 2 )
2

t z


 = −  (9.242) 

is calculated by formula (9.12) and coefficient 1( )r bc r  is determined by formula (9.53). Thus, 
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in the general case, and  

 31 0
0 1

11 12

2
( ) ( )m

bbc m r bcE E

d t z
n z r

ts s


= 

+
 (9.244) 

in the case that max 0mz = . 

 The effective coupling coefficient of the bilaminar plate related coefficient c b can be 

commonly presented by formula (9.65), using expressions for the transformation coefficient bn

, rigidity 
E

eqvbK  and capacitance 

 1,2 2 2

33 1(1 ) /
S T

el pC k r  = − . (9.245) 

This results in 
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in the general case, and 
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in the case that max 0mz = . The second factor in the both expressions depends on the correlation 

between the thicknesses of the layers of active and passive materials for a given combination 
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of materials. It can be optimized by the corresponding choice of the thicknesses. Dependence 

of the coefficient 0( , )cbbc y z  from the thickness of the active layer at constant total thickness 

of a plate normalized to 0( / )cbbc my z t = is the same as those for the bilaminar beam that is 

presented in Figure 9.17. Dependences of the third factor from the relative radius of electrodes 

for different boundary conditions are the same, as presented in Figure 9.10. 

9.4.2 Radially Nonuniform Plates 

 Vibration of the nonuniform over the radius circular plates made of passive materials is con-

sidered in Section 4.5.7.2. As the result it was concluded that parameters of the nonuniform 

active-passive plates for a wide range of their dimensions can be calculated to the first approx-

imation using the mode shapes of vibration of uniform plates. This conclusion is valid at least 

up to ratios 1 / 0.6r a   even for the maximum reasonable thicknesses of the active laminates 

and for the most critical case B (with part of active material removed).  

Expressions for the mechanical equivalent parameters (rigidity and mass) of the bilaminar 

plates were determined in the Section 4.5.7.3. They are expressed through the equivalent rigid-

ity and mass of the uniform bilaminar plates as follows: 
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in the general case, and 

 1

3

0
1 0 2

0

[1 ( / )]
( ) 1 1

(0.3)4( / )

r bcE Y m
eqvb m eqvb

bcm

Fz t
K z K

Lz t

  −
= − −  

   
 (9.249) 

in the case that max 0mz = ;  

 1

1 1
( 1)

eff r bc

eqvb eqvb
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− −  

. (9.250) 

Here the subscripts “eqv b1” denote equivalent parameters of the nonuniform plates to the first 

approximation, and notations are introduced in addition to (9.193) and (9.194): 
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22 ( / )
a

eff r bc

r

S r a rdr =  , (9.252) 

For the particular values of 
0 /my z t=  and ( / )my t=  (the relative thickness of active lami-

nate, at which the effective coupling coefficient reaches maximum (see Figure 9.17)) depend-

ences of the equivalent parameters and the resonance frequencies of nonuniform bilaminar 

plates on 1 /r a  normalized to parameters of uniform bilaminar plates having the same overall 

dimensions are shown in Figure 9.33 - Figure 9.35. 

 

Figure 9.33: The equivalent rigidities of the nonuniform over length bilaminar circular plates nor-

malized to the equivalent rigidity of the uniform bilaminar plates having the same radius, thickness 

and 0 /my z t=
 
ratios vs. 1 /r a  for different passive materials used for replacement of pie-

zoceramic. Aluminum (solid lines), steel (dashed lines). Curves 1 for 0 /my z t= , curves 2 for 

( / )my t= . 

They are calculated using formulas (9.248) and (9.249) that are valid to the first approximation. 

Note, that values of the equivalent parameters at 1( / ) 0r a =  belong to the uniform plates made 

of the corresponding passive material having thickness ( )t − . 

Expressions for the electromechanical transformation coefficient of radially nonuniform 

plate to the first approximation are the same as (9.243) and (9.244) for a radially uniform plate, 

because the mode of vibration is assumed to be the same, i.e., 1 0 0( ) ( )b bc bbcn z n z=  and 

1 0 0( ) ( )b bc m bbc mn z n z= . The capacitance of the active laminate also remains the same. 
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Figure 9.34: The equivalent masses of the nonuniform over length bilaminar circular plates nor-

malized to the equivalent masses of the uniform bilaminar plates having the same radius, thickness 

and 0 /my z t=
 
ratios vs. 1 /r a  for different passive materials used for replacement of pie-

zoceramic. Aluminum (solid lines), steel (dashed lines). Curves 1 for 0 /my z t= , curves 2 for 

( / )my t= . 

 

Figure 9.35: The resonance frequencies of the nonuniform over radius bilaminar plates normalized 

to the resonance frequencies of uniform bilaminar plates having the same radius, thickness and 

0 /my z t=
 
ratio vs. 1 /r a  for different passive materials used for replacement of piezoceramic. 

Aluminum (solid lines), steel (dashed lines). Curves 1 for 0 /my z t= , curves 2 for ( / )my t= . 

The coefficient c  that determines the effective coupling coefficient will be denoted as 

1c b bc  for the nonuniform bilaminar plate to the first approximation, and it is 
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 1,22

1 1 1/
S

cb bc b bc el eqvbn C K = . (9.253) 

Substituting the parameters involved in this expression results in 

 
1

1 1( / )E

cb bc cbbc eqvb eqv bK K  −= , (9.254) 

where c bbc  are determined by expressions (9.246), (9.237), and the factor in parenthesis is 

determined by expressions (9.248), (9.249) for the cases that 
0z   and 

0mz = , respectively. 

This factor is presented as reversed in Figure 9.36 for several combinations of materials and 

values of the relative thicknesses of active laminate. Plots of function (9.254) vs. ratio 1 /r a  are 

presented in Figure 9.36 for different combinations of materials under assumption that the 

boundary is simply supported. 

Several conclusions regarding the effective coupling coefficients of the bilaminar circular 

flexural plates can be made based on the data presented in Figure 9.36. First, they are greater 

for the combination steel – PZT-4 compared with aluminum – PZT-4 for the same categories 

of the relative thicknesses of the active laminates. This reflects the general fact that the higher 

the Young’s modulus of the passive material is the greater is the effective coupling coefficient 

of the bilaminar plate. Second, the effective coupling coefficients are greater for nonuniform 

by radius plates compared with the uniform plates having the same radiuses of electrodes. The 

maximum of coupling coefficients for the nonuniform plates shifts towards the smaller relative 

radiuses of the active elements. (Remember that we are considering the rational designs of the 

bilaminar plates that are restricted by the condition that 0mz  ). 

As to other variants of the transducers (bilaminar and trilaminar of A modification), they 

were considered in Section 4.5.7.3 using the same approximation and analogous calculating 

procedures. Thus, for the bilaminar plates of A modification (with removed parts of active lam-

inates replaced by passive materials) expressions for the equivalent rigidities and masses were 

obtained in the following forms (see expressions (4.421)-(4.423)): 

for the rigidity 
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in the general case that 0mz  , and 
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in the case that 
0mz = ; and for the mass 
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Figure 9.36: Plots of the function 1 /cb cb   by formula (9.254) for different combinations of 

materials ((a) aluminum-PZT-4, (b) steel- PZT-4) and for different relative thicknesses of the ac-

tive layers: 1 - 0( / )my z t= , 2 - ( / )my t= . The plots are normalized to value of cb  for the 

uniform bilaminar plate made from combination of aluminum and PZT-4 ceramic with relative 

thickness of ceramic 
0

( / ) 0.48
m

y z t= =  that have the full size electrodes. Dependence of this co-

efficient from relative radius of the electrodes, 1 /r a , (see Figure 9.10 for the simply supported 

boundary) is shown in the figure (a) and (b) by the dashed lines. 

The electromechanical transformation coefficients remain the same as for the modification 

B because the mode of vibration does not change. 

It is noteworthy that designs of A modification have advantage of greater static and dy-

namic strength in comparison with B modification. This is due to avoiding concentration of 

stress that occurs in the region, where the cross section of the mechanical system changes ab-

ruptly. 
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9.4.3 Corrections for Parameters Due to Finite Thickness of the Plates 

With increase of the relative thickness t/a of the circular plates corrections to the energies as-

sociated with their bending deformations must be made that account for the rotary inertia and 

transverse shear deformation of their cross sections. These effects for the plates made of passive 

materials were considered in Section 4.4.3.1. In application to the electromechanical transduc-

ers that employ flexural vibrations of the circular plates the expressions for the additional ener-

gies presented therein must be specified for active materials used. For definiteness we will con-

sider fully active bimorph plates. Therefore, elastic parameters of ceramics only must be used 

in the expressions for the energies, namely, the Young’s modulus 
2 2

11 11 12/ ( )E E E

aY s s s = −  and 

the shear modulus 441/ Ds = .  

After substituting expressions for displacement in the form of 

 ( , ) ( ) ( )z or t t r  =  (9.258) 

into expressions for the energy densities (4.203) and (4.208) and after integrating over volume 

of the plate we obtain the corrections for the kinetic and potential energies in the form 
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Correction for the electromechanical energy of the plate due to its finite thickness must be 

calculated by the general formula (9.49) with bending strain r bS  replaced by the additional 

strain r sS  by formula (4.212). After changing elastic moduli by those of the piezoceramics and 

considering that for the fully active bimorph plate at parallel connection of ceramic laminates 

3 ( , ) 2 /E z r V t= , we arrive at 
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Here sn  is correction for the electromechanical transformation coefficient of a thick plate. 

After performing integration, we will obtain that 
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As examples of quantitative estimations, we consider corrections due to the finite thickness for 

equivalent parameters of the bimorph plates with simply supported and clamped boundaries, 

and of the center supported plates. For this purpose we will use expressions for the mode shapes 

of displacements for these plates by formulas (9.57), (9.59). and (9.204), respectively, that are 

reproduced here 

 2 2 2 2( / ) (1 / )(1 / 4 )r a r a r a = − − . (9.263) 
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. (9.265) 

Expressions (9.197) together with data from Table 9.2 will be used for the original equiv-

alent parameters of the plates considered as thin. Values of integrals in expressions (9.259), 

(9.260) and (9.262), which we denote for brevity as In1, In2 and In3, are presented in Table 9.3 

for the corresponding boundary conditions.  

Table 9.3. Values of integrals In1, In2 and In3 for the plates with different boundary conditions. 

Boundary  

conditions  
S.s. Cl. C.s. 

In1 0.85 2/3 0.62 

In2, 
41/ a  9.0 144 13.8 

In3, 
21/ a  3.0 12 9.0 

    

Using expressions (9.197) for equivalent parameters of the thin plates and expressions  

(9.259), (9.260), (9.262) for the corrections, we will finally obtain the following results for the 

parameters of plates having finite thickness to radius ratio. 

For the plates with simply supported boundaries 
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For the plates with clamped boundaries 

 
2 2[1 0.6 ( / )]eqvcl eqvclM M t a = +  , 

2 2

44[1 1.3 ( / )]E D

eqv cl eqv cl aK K Y s t a
 = −  . (9.269) 

Coefficient of electromechanical transformation for the clamped thin bimorph plate having 

full size electrode is zero. Distortions of the cross section of the plate due to finite thickness 

result in some electromechanical activity of the clamped plate that is characterized by the elec-

tromechanical transformation coefficient 
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For the center supported plates 
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For PZT-4 and PZT-5 ceramic compositions 
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and reduction of resonance frequency of simply supported plate is determined by ratio 
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For relatively thin for practical underwater applications simply supported piezoceramic plate 

with ( / ) 0.2t a =  this ratio already is / 0.98r rf f   and it drops with increase of the relative 

thickness of the plate .  

It is noteworthy that presenting data on the resonance frequencies for the plates by formulas 

obtained from thin plates theory to a greater accuracy does not make sense without information 

about their relative thickness. Moreover this is true regarding the resonance frequencies of 

higher modes of vibration, for which the corrections for finite thickness significantly increase, 

as it is shown in Ref. 8 with example of beams. 

Consider dependence of the effective coupling coefficient of a simply supported plate of 

finite thickness from the thickness to radius ratio. The related coefficient c ss   is 
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Here the first factor represents coefficient c ss  for the thin bimorph plate according to formula 

(9.201). Thus, for the plate made of PZT-4 ceramlcs 
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At / 0.2t a =  this ratio is 0.96, and at / 0.3t a =  it is already 0.9. 

9.5 Acoustic Field Related Issues 

The radiation impedances of the bender transducers depend significantly on the size of a single 

transducer unit and on the configuration of the system of transducers operating collectively. 

The radiation impedances of the typical systems of the bender transducers are depicted sche-

matically in Figure 9.37. 

  

Figure 9.37: Categories of the bender transducers that differ in terms of determining their radiation 

impedances: (a) single transducer units and their combinations; (b) the column like array densely 

populated by the single transducer units, (c) the flat array of a large size populated by the single 

transducer units. 

In terms of the peculiarity of determining the radiation impedances they can be divided 

into three categories: (1) single transducers of small wave size and small groups of such trans-

ducers closely spaced, (2) column like transducers with length of the column comparable with 

wavelength, (3) arrays of a large wave size populated with the bender transducers. 

d2l a=

2l a=

dy

dx
(a) (b) (c)
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9.5.1 Radiation Impedances of the Single Transducers  

Dimensions of the single bender transducers are usually much less than the wavelength  . 

Using formula (9.200) for the resonance frequency of the simply supported circular plate it can 

be concluded that at resonance / /D t a  . For estimating the maximum wave size of a trans-

ducer we assume that / 1/ 5t a  , then / 0.2D   . The overall thickness of a single double 

plate bender transducer, trt , is usually about two thicknesses of the comprising plates, i.e., 

/ 0.04trt   . The rectangular plate benders predominantly consist of beams. We will assume 

that a single transducer unit has approximately the same wave size as a circular plate having 

the same resonance frequency ( l w D= = ). Though this assumption is not quite rigorous, it 

allows a sufficiently fair comparison between the benders. 

By symmetry considerations, one side of the double sided circular plate pulsating  projector 

has the same radiation impedance as a circular piston vibrating in an infinite rigid plane baffle 

that is (see Section 6.3.3.2) 

 1 1 1ac ac acZ r jx= + , (9.276) 

where 
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, (9.277) 

and 

 1
1

(2 )
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S ka
x

ka
= . (9.278) 

Here 1(2 )J ka  and 1(2 )S ka  are the Bessel and Struve functions of the first order (subscripts 1 

for the radiation impedance and its components indicate that they are related to one side of the 

double sided transducer). The approximate estimations that follow from these relations for one 

side of the projector at 0.6ka   that corresponds with the maximum size of a bender plate 

transducer are 
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2
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 = , (9.279) 

within 5% accuracy, and 
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3 3
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 = = , (9.280) 

within 10% accuracy. 

These formulas can be generalized for transducers of small wave size that have distribution 

of velocity on their surface by replacing the surface area 2S a=  with the average surface area 

avS , because the volume velocity av oV
U S =  is what counts in terms of the radiation for small 

sources. Thus, further the expressions for the radiation resistance per one plate of the double- 

sided bender transducer (as of a simple source radiating in half space) will be used 
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8

3
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 . (9.281) 

It is noteworthy that these values of radiation impedances must be used when calculating 

the magnitude of vibration of one side of the double sided bender transducer from the equivalent 

electromechanical circuit. The acoustic radiation impedance for the entire transducer must be 

doubled. Then for the pulsating piston 

 2 2 2(2 ) /acr c a  = , (9.282) 

and taking into account that now the full radiating surface 22S a=  must be in the general case 

replaced by avS , we obtain the known formula for the radiation resistance of a simple source 

vibrating in free space in the form 

 
2

2

( )av
ac

S
r c


= . (9.283) 

This value will be used for the benders of finite size having ( / ) 0.2D    with the stated esti-

mated accuracy. Formulas (9.262) and (9.283) are introduced under the assumption that the 

acoustic mass is proportional to the volume of water forced out by a pulsating body, i.e., it is 

proportional to its volume velocity, or to the average radiating surface. 

The above estimations are made for a single bender transducer that can be approximated 

as a simple source. In practice, the low frequency transducer designs often are composed of a 

number of elementary single sources, in our case from a number of single benders, to form 

radiators of larger size. The radiation impedance of the combination of several single bender 
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transducers can be determined considering the acoustic interaction between simple sources by 

the formula (see Section 6.4.3) 

 ( )12 11 sin cos /Z r kd j kd kd= + , (9.284) 

where 12Z the mutual radiation impedance between two sources separated by distance d, and 

11r  is the radiation resistance of a single source given by expression (9.281). For example, in 

the particular case of a transducer comprised of three simultaneously operating identical equally 

spaced single benders their radiation impedances can be calculated by formulas 

 1 2 3 11 122 .Z Z Z Z Z= = = +   (9.285) 

Thus, the radiation impedance of a single unit can be significantly increased. 

9.5.2 Radiation Impedances of the Column Like Transducers 

In practice a low frequency transducer may have a comparable with wavelength linear  size 

being composed of a number of elementary single sources in the column like fashion, as shown 

in Figure 9.37(b). The column like design of such kind is typical for the rectangular beam bend-

ers. If the total length of the transducer exceeds wavelength, the components of radiation im-

pedance per unit length can be calculated approximately as for infinitely long pulsating strip. 

This problem is  considered in Section 6.3.4.4. Based on the results obtained therein, the radia-

tion impedance per one side of the double sided bender transducer can be presented as 

 ( ) ( ) ( ) [ ( ) ( )]ac ac ac effZ kl r kl j x kl cS kl j kl  = + = + , (9.286) 

where eff iS  is the effective radiating surface area per unit length. For the transducer comprised 

of simply supported beams that vibrate with velocity distribution ( ) cos ( / )U x U x l= , 

/ 2effS l=  per unit length. Numerical values of the nondimensional coefficients of the radiation 

resistance and reactance, ( )kl  and ( )kl , are presented in Table 9.4 up to values 2kl = that 

is sufficient for a practical range of the bender transducer sizes. 

It follows from the table that the nondimensional coefficient of the radiation resistance  can 

be presented as 0.4kl   up to  kl < 1.5 within 4% accuracy. Considering that per unit length 

of the entire double sided transducer ( / 2) 2effS l l=  =  and (2 / ) 2avS l =  , in this range of kl  

the radiation resistance may be represented by formula 
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=   , (9.287) 

which is the expression (6.358) for radiation resistance of the cylindrical simple source. 

Table 9.4. The nondimensional coefficients of the radiation impedance. 

kl 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

( )kl  0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 

( )kl  0.10 0.18 0.24 0.29 0.33 0.37 0.40 0.43 

         

kl 0.9 1.0 1.1 1.2 1.3 1.4 1.5  

( )kl  0.36 0.39 0.43 0.47 0.51 0.54 0.57  

( )kl  0.45 0.47 0.49 0.51 0.52 0.53 0.54  

The radiation impedance of several column like bender transducers operating simultaneously 

may be determined considering the acoustic interaction between the cylindrical simple sources. 

The mutual radiation impedance between two transducers according to formula (6.359) is 

 12 11 0 0( / ) ( ) ( )z r J kd jN kd= − , (9.288) 

where d is the separation between their axes. 

9.5.3 Radiation Impedance in Flat Arrays of a Large Size 

One of the possible applications of the bender transducers is their employment in flat low fre-

quency arrays of a large size, as shown in Figure 9.37(c). The radiating surface of the array can 

be considered as a plane uniformly vibrating with average volume velocity, because dimensions 

of the single bender transducers are small compared with wavelength, and the volume velocity 

generated by the benders is what counts in terms of radiation. The volume velocity of a single 

transducer unit is 01 avV
U S = . The volume velocity of a part of the radiating flat array that is 

occupied by a single transducer unit is 
x y array avVarray

U d d = , where xd  and yd  are the separa-

tions between centers of the benders, and array av  is the average velocity of array vibration. 

From equality of these volume velocities 0( / )array av av x yS d d = . 

The radiation impedance of a large uniformly vibrating plane array is active, and acoustic radi-

ation resistance per unit area is ( )ac wr c= . Thus, the acoustic energy radiated per part of the 

array surface that corresponds to a single transducer unit is 
2( )ac w x y array avW c d d =  

2 2

0( ) ( / )w av x yc S d d = . This amount of energy is equal to the energy radiated by the single 
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bender, 
2

1 1ac ac oW r = . From equality of these energies the radiation resistance per one side of 

the double sided benders that populate a large size array will be determined as 

 
2

1 ( ) av

ac w

x y

S
r c

d d
= . (9.289) 

It must be remembered that so far the double sided bender design was considered as sym-

metrical in respect to its middle plane with both sides equally loaded. In case of application in 

a flat array the symmetry becomes broken because one side of the transducer is loaded acous-

tically whereas the loading status of another side depends on the array design. Typically, it can 

be loaded by input impedance of acoustic baffle that is used for eliminating  back radiation of 

the array, and the load may be influenced by structures, to which the transducers are fixed. The 

transducer design must be considered, strictly speaking, as asymmetrical under these condi-

tions.  
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CHAPTER 10 

LENGTH EXPANDER TRANSDUCERS AND THEIR MODIFICATIONS 

10.1 Introduction 

Under the category of the length expander transducers we will assume the bar transducer (as 

the basic design) and its modifications that perform one-dimensional vibrations along one of 

coordinates with other coordinates not working (no energy flow in their directions). The basic 

transducer designs are shown in Figure 10.1(a) as the bars made of piezoceramics that have the 

lateral dimensions much smaller than their length ( ,t w l ) to the extent that the stresses being 

zeros on the free side surfaces can be considered the same throughout the lateral dimensions of 

the bar. These transducers are used in several modifications: with electrodes on the side surfaces 

(transverse piezoeffect) (a.1), with electrodes on the ends (a.2), or made of segments (longitu-

dinal piezoeffect) (a.3). The mechanical boundary conditions in the first case are 

2 3 4 5 6 0T T T T T= = = = = , and in the second 1 2 4 5 6 0T T T T T= = = = = . (The share stresses 

don’t exist in all modifications of the length expander transducers, and further will be omitted.) 

Another transducer of the category of one-dimensional length expander can be imagined 

as the thin strip shown in Figure 10.1(b) that has the length large enough for considering strain 

being negligible along the strip and stress negligible throughout the thickness. The transducer 

may employ the transverse (b.1) and longitudinal (b.2) piezoeffect with mechanical boundary 

conditions 3 0T = , 2 0S =  and 2 0T = , 1 0S = , respectively. One more length expander trans-

ducer is the thickness vibrating plate (Figure 10.1(c)) that has the lateral dimensions large 

enough for considering side surfaces of the transducer clamped, i.e., vibrating under boundary 

conditions 1 2 0S S= = . 

Vibration of the thin prolonged strip and of the plate having large lateral dimensions can 

be treated in the same way as one-dimensional vibrations of the thin bars. Difference in the 

mechanical boundary conditions results only in changing the equivalent parameters of the trans-

ducers. These changes will be considered in Section 10.2. The assumption regarding the one-

dimensional vibration of strips and plates is, strictly speaking, valid in the case that their length 

and lateral dimensions, respectively, are infinitely large. And what is “large enough” for using 
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these approximations needs to be determined. This is done in Section 10.3, where vibration of 

these systems are considered as coupled two-dimensional, and where it is shown at what aspect 

ratios results of the calculations are approaching the limiting cases of infinitely large dimen-

sions with sufficient accuracy. Transition of vibrating mechanical system between the extreme 

limiting one-dimensional cases is schematically illustrated with Figure 10.2. 

 

Figure 10.1: The length expander transducers as one-dimensional vibrating systems having dif-

ferent mechanical boundary conditions on their side surfaces. (a) Bars: (a.1) 2 3 0T T= =  (trans-

verse piezoeffect), (a.2) and (a.3) 1 2 0T T= =   (longitudinal piezoeffect). (b) Strips: (b.1) 3 0T =  

, 2 0S =   (transverse piezoeffect; (b.2) 2 0T =  , 1 0S =  (longitudinal piezoeffect). (c) Thickness 

vibrating plate: 1 2 0S S= =  . 

It is noteworthy that dimensions of the mechanical systems in Figure 10.1 and Figure 10.2 are 

denoted differently intentionally. In the first case they are chosen for the ideal extreme mechan-

ical systems in order to comply with previously used notations for the bar as basic transducer 

design (l – in direction of wave propagation, w and t – as dimensions of the radiating surface). 

In the second case the dimensions are denoted in accordance with directions of the crystallo-

graphic axis ( 1 2 3, ,L L L ) for convenience of considering the coupled vibrations in course of 

transition between the extreme mechanical systems.  
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Figure 10.2: Transition between the one-dimensional vibrating mechanical systems having ideal 

extreme dimensions through the two-dimensional coupled mechanical systems: (a) between the 

thin bar ( 1 3/ 0L L → ) and strip ( 1 3/L L → ); (b) between strip ( 2 3/ 0L L → ) and plate (

2 3/L L → ); (c) between thickness vibrating thin circular disk (aspect ratio / 2 0h a → ) and 

axial vibrating long bar ( / 2h a → ). 

Uniform over the length bar transducers intended for underwater applications appear to be 

greatly under loaded by radiation impedances, and therefore their acoustic power generated is 

the dynamic stress limited, while significant reserves of the electrical strength exist (see Chap-

ters 3 and 13). Therefore, the internal mechanical impedances of the transducers must be 

matched with acoustic field for effective operation. The matching elements may be imagined 

as parts of transducer mechanical system having different cross section areas (“Tonpilz” design, 

mass loaded transducer considered in Section 2.5), or as the matching layers of the same cross 

section attached to the transducer surface. In both the cases the mechanical system of the bar 

transducer becomes nonuniform over the length, as is shown in Figure 10.3. The bar transducers 

nonuniform over the length are considered in Section 10.4. The most widely used nonuniform 

over the length Tonpilz transducer design is described only in principle, because such trans-

ducer are considered to detail in vast literature. In this respect only an alternative approach to 

optimizing matching the transducer with acoustic field is considered in Section 10.4. 
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Figure 10.3: Mechanical systems of bar transducers with matching elements: (a) with variable 

cross section, (b) with cross section uniform over the length. 1 – piezoelement, 2 and 3 – matching 

elements. 

Equations of one-dimensional vibration of length expander bars and equivalent circuits for cal-

culating their operating characteristics were considered as examples of employing the general 

approaches in Sections 5.7.3.1 and 5.8.3. Some of the results obtained there will be repeated in 

this Chapter for convenience of reading. 

10.2 Transducers Uniform over the Length 

10.2.1  Energy Densities in the Deformed Piezoelements  

For calculating energy status of the length expander piezoelements deformed under different 

boundary conditions expressions for the corresponding energy densities that were derived in 

Section 5.2 can be used (see Eqs. (5.53)-(5.67)). However, we will use the constituting piezoe-

lectric equations of state for this purpose, moreover that the derivations are straightforward, and 

the piezoelectric equations will be needed for reference, when considering coupled vibrations 

in mechanical systems of the transducers in case that they have finite aspect ratios. 

All the length expander piezoelements under the ideal boundary conditions experience one-

dimensional deformation with a single working strain 1S  or 3S . Thus, the governing equations 

for them can be represented in the generalized form 

 3

ET K S n E = − , (10.1) 

 3 3

S

eD n S C E = + , (10.2) 

where 
EK  is analog of elastic modulus of isotropic passive body in one-dimensional defor-

mation at particular boundary conditions, 

 3

ED n S=  (10.3) 

3 1 2 3 1 2

(a) (b)
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is the charge density and 
S

eC  is the dielectric constant for the ceramics at a particular combina-

tion of boundary conditions. According to expression (5.99) 

 
2(1 )iS T

e e mC C k = − , (10.4) 

where mk  is the coupling coefficients of the ceramic composition at particular boundary con-

ditions. Notations for the coefficients mk  will be used according to the classification of bound-

ary conditions accepted in Ref. 2.  

In the case that the boundary conditions are 2 3 0T T= =  or 1 2 0T T= =  it is convenient to 

use the piezoelectric equations with independent stress in the form 

 3 3

E

i ii i iS s T d E= + , (10.5) 

 3 3 33 3

T

i iD d T E= + , (10.6) 

where 1, 3i =  for the case of the transverse and longitudinal piezoeffect, respectively. From 

Eqs. (10.1) and (10.5) at 3 0E =  

 1/E E E

ii iK s Y = = . (10.7) 

After substituting expression for stress iT  from Eq. (10.5) into Eq. (10.6) we arrive at 

 
2

3 3
3 33 3 3 33 3

33

1 ( ) iST Ei i
i iE T E

ii ii

d d
D S E D S E

s s
 



 
= + − = + 

 
. (10.8) 

Thus, 

 3 3( ) ( / )E E

i i ii iD S d s S= , 3 / E

i iin d s = , (10.9) 

and 

 
2

33 33 3(1 )i iS S T

e iC k  = = −  (10.10) 

is the dielectric constant of ceramics in the bar clamped in direction of deformation ( 0iS = ). 

In case that the boundary conditions are 1 2 0S S= =  (infinite plate vibrating over the thick-

ness at longitudinal piezoeffect), appropriate are piezoelectric equations with independent strain 

that at these boundary conditions reduce to the form 

 3 33 3 33 3

ET c S e E= − , (10.11) 

 3 33 3 33 3

SD e S E= + , (10.12) 
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where from follows that 

 33

E EK c = , 
33n e = , 3 2

33 33 (1 )
S S T

e tC k  = = −   (10.13) 

The analogous elastic modulus for isotropic plate deformed through the thickness according to 

(4.18) is 

 
( )

(1 )

(1 ) 1 2
pl

Y
Y



 

−
=

+ −
. (10.14) 

The following respective expressions may be obtained from Eqs. (5.57)–(5.64) for the case 

of a bar element in the form of a thin strip vibrating at the following boundary conditions: (1) 

1 0T = , 2 0S =  that correspond to the longitudinal piezoeffect; (2) 3 0T = , 2 0S =  that corre-

spond to the transverse piezoeffect; (3) variants of the transverse piezoeffect with axis 3 parallel 

to the length and vibration taking place in the direction of axis 2  (variant at 1 0T = , 3 0S =  that 

corresponds to the width mode of vibration) and of axis 1 (variant at 2 0S = , 3 0S =  that cor-

responds to the thickness mode).  

 311
3 2

3 1311 33 13 1

EE
E

E E E

Ys
K

s s s  
 = =

−−
, 33 11 31 13

3 2

11 33 13

E E

E E E

d s d s
n

s s s


−
=

−
, 3,1 3,1

33

S S

eC  = ; (10.15) 
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− −
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11 12
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d
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s s
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+
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33C
S S

e  = ; (10.16) 

 33 1
1 2

3 1311 33 13 1

E E
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E E E

s Y
K

s s s  
 = =

−−
, 31 33 33 13

1 2

11 33 13

E E

E E E

d s d s
n

s s s


−
=

−
, 1,3 1,3

33C
S S

e  = ; (10.17) 

Note that parameters for the thickness mode of variant 3 are presented in Table 5.3 in the col-

umn numbered II.2 and they are: 11

E EK c = , 31n e = , 1

33

S S

eC  = ;. 31 31 33 11/ S D

tk e c = . 

The analogous elastic modulus for the isotropic strip according to Eq. (4.15) is 

 
21

st

Y
Y


=

−
. (10.18) 

In accordance with relation (10.4) parameters iS

eC   can be represented as 

 3,1 3,1

2
231

33 33 33 33

11

(1 )
S SS T

e E

e
C k

c
  

= + = = − , (10.19) 

 1,2 1,2

2
233

33 33 33 31

33

C (1 )
S SS T

e E

e
k

c
  

= + = = − , (10.20) 
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 1,3 1,3 2

33 33 31C (1 )
S S T

e wk 
= = − . (10.21) 

(notations for the coupling coefficients of piezoceramics at different boundary conditions are 

the same as in Ref. 1). 

With all the parameters EK , iS

eC 
 and n  known, expressions for the energy densities in a 

deformed bar may be presented as 

 21

2

E E

mchw K S= , 2

3

1

2
iSS

el ew C E= , 3

1

2
emw n E S= . (10.22) 

The coupling coefficients of piezoceramic material that characterize electromechanical en-

ergy conversion in a unit volume of a bar deformed under particular boundary conditions may 

be calculated according to expression (5.127) as 

 

2 2 2

21 i i

m em

S SE E

m el m e

k w n

k w w C K



 

= =
−

. (10.23) 

Taking into consideration relation (10.4) and notations (10.19)-(10.21) for elementary capaci-

tances at different boundary conditions we obtain 

 

2
2

33

m T E

n
k

K




= . (10.24) 

After substituting parameters by formulas (10.15)-(10.17) into this expression we will arrive at 

the following expression for the coupling coefficients of piezoceramics: 

 

2
2 23

33 33 3 13 31

3 1333 3

1
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 = =  −
−

, (10.25) 
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2 21
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 = = + − , (10.26) 

 
2 2

31 31 3 13 33

3 13

1
( )

1
wk k k 

 
 =  − +

−
, (10.27) 

 

2
2 31

31

33 11

t S D

e
k

c
 = , (10.27a) 

(the subscripts w and t indicate the with ant thickness modes).  

Although the coupling coefficients are essentially positive quantities, sometimes 31k  is consid-

ered having sign (-) of the corresponding piezoelectric modulus 31d . In expressions (10.25) and 
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(10.27) 31k  is taken by modulus in order to avoid this confusion. For PZT-4 33 0.62k  = , 

31 0.46k  = , 31 0.06wk  = , 
31 0.18tk  = . 

It is noteworthy that the expressions (10.25) and (10.27) for 33k   and 31wk   differ by the 

factor 2

31/ 1 ik−  from those presented for this coefficients in Ref.1 This results from the erro-

neous using expression (5.126) instead of (5.127) that is appropriate for determining the cou-

pling coefficients for the boundary conditions under consideration. For detailed explanation of 

these issues see Section 5.4.3. 

10.2.2  Equations of Vibrations in the Generalized Coordinates  

Equations of vibration of the length expander bar transducers of the basic design shown in 

Figure 10.1 (at extreme case of large length to width aspect ratio) were considered in detail in 

Section 5.7.3.1. The results presented therein are completely applicable to all the one-dimen-

sional length expander transducers with mechanical systems vibrating under different boundary 

conditions with corresponding changes of values of their equivalent parameters. Considering 

the expressions (10.22) for the energy densities and definitions for the equivalent parameters  it 

can be obtained, as results of integrating these independent of coordinates quantities over vol-

ume of a mechanical system, that per unit of radiating surface of the piezoelement 

 ( / )E E E E

eqv eqvb bK K K K = , ( / )b bn n n n = , ( / )S S S S

el el b e e bC C C C = , (10.28) 

where parameters with subscript “b” are related to the basic design. The equivalent mass per 

unit surface does not depend on the boundary conditions and remains the same, as for the basic 

design. The resulting expressions for the modal equivalent parameters and corresponding reso-

nance frequencies are presented in the following sections. 

10.2.2.1 The Basic Bar Transducer Designs  

Summary of equivalent parameters for the designs depicted in Figure 10.1(a) is as follows. 

(Note that in all the cases subscripts 1,3,...i =  denote number of the mode of vibration assuming 

that only odd modes are active.) 

For the transverse piezoeffect (Figure 10.1 (a.1)): 

 
2 2

1
2

E E

eqvi

i wt
K Y

l


=  , 31 2 12 E

in d w Y= , 1 2

33 31(1 ) /S T

elC k wl t= − , (10.29) 
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 / 2eqv iM M= , 1

2

E

r i

Yi
f

l 
= . (10.30) 

For the longitudinal piezoeffect (Figure 10.1(a.2), (a3)): 

 
2 2

3
2

E Ecs
eqv i

i S
K Y

l


=  , 33

3

2 Ecs
i

S Nd
n Y

l
=  , (10.31) 

 3 2 2

33 33(1 ) /
S T

el csC k S N l= − , / 2eqv iM M= . (10.32) 

Here csS wt=  for the rectangular bars, and 2

csS a=  for round bars; N is number of segments. 

Additional rigidity term K  must be used that depends on number of the segments. This de-

pendence is given in Section 5.5.2 and is replicated here in Figure 10.4. 

  

 Figure 10.4: Ratio 1/NK K   as a function of number of segments N. 

As it follows from the plot, at 6N   on the half wave of deformation the K  term can be 

neglected. At 1N =  

 

2

33

2 2 2

33

8
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E
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K K

k i 

 
 = − 

−  
. (10.33) 

Thus, the resonance frequency is 

 
2

3 33
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8
1 1
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=  + − 

− 
. (10.34) 

Otherwise, the dependence of K  from a number of segments must be taken into account. 

10.2.2.2 Width Vibrating Long Strip of Small Thickness  

For the transverse piezoeffect (Figure 10.1 (b.1) the energy densities are determined by formu-

las (10.16)) and the equivalent parameters are: 
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=

−
. (10.36) 

For the longitudinal piezoeffect (Figure 10.1 (b.2) the energy densities are given by formulas 

(10.15)) and the equivalent parameters are: 

 
2 2
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3 132 1
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−
,  (10.37) 
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−
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−
, (10.38) 

 3,1 2 2

33 33(1 ) /
S T

elC k wtN l = − . (10.39) 

The additional rigidity term at 1N =  has to be calculated by formula (10.33) with replacing the 

coupling coefficient, namely, 

 

2

33

2 2 2

33

8
1

1

E

eqvi

k
K K

k i 

  
 = − −  

. (10.40) 

The resonance frequencies are 
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1 1
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=  + −  − − 

. (10.41) 

10.2.2.3 Thickness Vibrating Plate  

For the longitudinal piezoeffect (Figure 10.1 (c) the energy densities are by formulas (10.13)) 

and the equivalent parameters are:  

 
2 2
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= , / 2eqv iM M= , 332
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The additional rigidity is 
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8
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, (10.43) 

and the resonance frequencies are 
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1 1
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c ki
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=  + − 

− 
. (10.44) 

It must be remembered that all the expressions for the equivalent parameters are accurate 

within limits of the aspect ratios, at which the vibrations can be considered one-dimensional. 

The conclusions about these limits can be made based on the results presented in Section 10.3, 

where the estimations are obtained regarding the first modes of vibration. For these estimations 

to be valid for higher modes, they must be related to the half wave of deformation. Thus, while 

for a bar vibrating in the first mode it is sufficient to have the length approximately twice larger 

than the lateral dimensions, for the mode with number i this condition musts be valid for l/i. 

10.2.2.4 Equivalent Electromechanical Circuits  

Equations of vibration and the corresponding multicontour equivalent electromechanical circuit 

of the length expander transducers are the same, as where considered in Section5.7 in general, 

and in Section 5.7.3.1 with example of the bar transducers (see Figure 5.25). The general equiv-

alent circuit of Figure 5.25 is specified here to the case that the transducers are intended for 

underwater applications. In this case the external forces and mechanical loads are the acoustic 

equivalent force, eqv iF , and radiation impedance, ac iZ . We will assume that they are acting on 

one end of the transducer (for certainty on the end at 0x = ) with another end remaining free of 

external actions, which is usually the case. The modified circuit is shown in Figure 10.5. The 

equivalent parameters in the circuit correspond to piezoelements at the particular boundary con-

ditions considered above. The equivalent compliance, 
E

eqviC , in general is 

1/ ( )E E

eqvi eqvi iC K K= + . As the radiating surfaces vibrate uniformly at all the modes of vibra-

tion, the equivalent forces and self- radiation impedances are the same for all the modes. Thus, 

according to formulas (5.253)-(5.255) iF  and iiZ  must be replaced by eqvF  and ac iZ , 

 [1 ( / )]aci ac l i

l i

Z Z U U


= + , (10.45) 

where acZ  is the self-impedance of the mode of vibration and the second term in brackets 

represents contribution of mutual impedances between the modes, introduced impedance 

( / )in li ac l iZ Z U U= . Information regarding the radiation impedances of piston like vibrating 

surfaces of transducers in the form of circular and rectangular pistons, and strip of large length 
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is presented in Section 6.3.3.2-6.3.3.5 for the single transducers, and in Section 6.4.5-6.4.7 for 

the acoustic interacting transducers. 

The length expander transducers are greatly underloaded by radiation impedances and have 

large mechanical quality factor 
mQ . (As it was noted in Ch. 3 (Table 3.1) even under the greatest 

acoustic impedance ( )ac w csZ c S=  this quantity is about 25.) Therefore, in vicinity of reso-

nance frequency of thi  mode in expression (10.45) i lU U , and contribution of other modes 

can be neglected. The contours in Figure 10.5 can be considered as independent, and for calcu-

lating operational characteristics of transducer in the range around its resonance frequency this 

circuit may be reduced to a single contour, as shown in Figure 10.6(a). The equivalent param-

eters in the circuit depend on the above considered boundary conditions. 

  

Figure 10.5: Multicontour equivalent circuit of a length expander transducer. 

When calculating the output voltage of a transducer in the receive mode at low frequencies 

much below the first resonance, contribution of all the modes must be taken into consideration 

in the way as was shown in Section 5.7.3.1 for a bar under the transverse piezoeffect and re-

sulted in formula (5.256). For the length expander transducers at different boundary conditions 

the analogous result is 
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E

E

cs bc

l
K

S Y C




= =  (10.47) 

is the static rigidity of the mechanical system clamped at the middle section, and subscript bc 

indicates correspondence of the parameter to certain boundary conditions in accordance with 

formulas (10.30), (10.32), (10.36), (10.39) and (10.40). As to bcY , it is defined as 

2 2(2 / )E

bc eqvibcY K L i wt=  . Equivalent circuit that corresponds to the result by formula (10.46) 

 

Figure 10.6: Equivalent circuits of the length expander transducer: (a) for the frequency range 

around resonance frequency, (b) at low frequencies much below the first resonance. 

is shown in Figure 10.6 (b). The “zero mode” contour represents vibration of mechanical system 

of the transducer without deformation unless it is not fixed in the middle section. This move-

ment does not produce a direct effect on the electrical side of the transducer, though introduces 

acoustically induced force 0in acF Z U=  in the active contour. 
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10.2.3 Equations of Vibrations in the Geometry Coordinates 

10.2.3.1 Three-Port T-Network Equivalent Circuits  

Equations of vibration of piezoceramic bodies in the rectangular coordinates are considered in 

Section 5.8. It is shown that for one-dimensional vibrating piezoelements, which is the case for 

the length expander transducers, the equations of vibration are the same as for the passive me-

chanical systems of the same configuration except for difference in the values of sound speed. 

As is shown with example of longitudinally vibrating bar (Eq. (5.348)), the sound speed is 

 2 2/ ( )E Ec K m c = =  (10.48) 

under the transverse piezoeffect and under the longitudinal piezoeffect in segmented bars with 

sufficient number of segments. For the solid bars under the longitudinal piezoeffect 

 2 2/ ( )D Dc K m c = = . (10.49) 

( EK  and DK  are analogs of elastic modulus of isotropic passive body at 0E =  and 0D = , 

respectively, and m  = ). 

The equivalent electromechanical circuits that can be put in correspondence with equations 

of motion and conditions of mechanical loading on the ends formulated in the rectangular co-

ordinates were introduced in Section 5.8 in the form of three-port networks shown in Figure 

5.38. The circuits are valid for all the length expander transducers, if to replace parameters of 

the circuits by those with subscripts “bc.” The circuits with modified notations are presented in 

Figure 10.7 together with their schematic representations that can be used for brevity. 

It must be remembered that the general requirement for the aspect ratios of the piezoele-

ments employed that ensure their one-dimensional mode of vibration must be fulfilled. 

In the circuit (a) 

 1 / sinE E E

bc bc cs bcZ j c S k l= − , 2 n( / 2)E E E

bc bc cs bcZ j c S ta k l= ; (10.50) 

 1 1 / 2bc bcN n= , 
2

1 33 31(1 ) /bcS T

el bcC k wl t= − . (10.51) 

In the circuit (b) for not segmented transducer ( 1N = ) 

 1 / sinD D D

bc bc cs bcZ j c S k l= − , 2 / sinD D D

bc bc cs bcZ j c S k l= − ; (10.52) 

 3 3 / 2bc bcN n= , 
2

3 33 33(1 ) /bcS T

el bc csC k S l= − . (10.53) 



264  10 Length Expander Transducers and Their Modifications 

 

For the segmented transducer 

 
3 3 / 2bc bcN N n=  , 

2 2

3 33 33(1 ) /bcS T

el bc csC k S N l= − . (10.54) 

   

Figure 10.7: Equivalent electromechanical three-port networks of the length expander transducers: 

(a) for the transverse piezoelectric effect, (b) for the longitudinal piezoelectric effect, (c) schematic 

representation of the networks. 

Expressions for the parameters in the circuits can be rewritten by generalizing expressions 

(5.385), (5.387) and (5.392), (5.393) for particular boundary conditions considered above.  

As was noted in Section 5.8.3, for a segmented transducer under the longitudinal piezoe-

lectric effect at number of segments 6N  , the circuit shown in Figure 10.7 (a) is valid if to 

replace 1bcN  by 3bcN  and 1
bcS

elC  by 3
bcS

elC . In the circuits 0F , lF  and 0Z , lZ  are the forces and 

impedances acting on the ends of the transducer. In particular, lF  and lZ  are eqvF  and acZ , 

assuming that radiating surface is at x l= . 

Advantage of application of the three-port equivalent circuits, as well as analogous two-

port T-networks for passive elements, which can be used in concert, is that they allow deter-

mining operating characteristics of a transducer under mechanical loads on the ends that may 

vary in a broad range. In particular, the loads may constitute input impedances of the bars made 

of passive materials, which may also be represented by their two-port T-networks. In this case 

the cascade connection of the equivalent circuits can be used instead of solving new equations 

of motion and considering mating conditions on the boundaries of the two systems that may 

have different cross section areas and/or different elastic properties. The mating conditions in 
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this case are met automatically. This is illustrated with examples in Section 10.4, where a pos-

sible approach to calculating nonuniform over length transducers is considered. 

Disadvantage of using these equivalent circuits is in a quite formal way of determining the 

operating characteristics of the transducers, a lack of possibility of predicting and physical in-

terpreting results unless multiple calculations are made. In this sense the advantages are on the 

side of the generalized coordinates approach. In practice the positive features of both methods 

may be combined. 

10.2.3.2 Modifications of the T-Network Equivalent Circuits 

10.2.3.2.1 Bar Transducers with Different Configuration of Electrodes 

For investigating possibility of optimizing the effective coupling coefficient and governing the 

frequency response of a bar transducer by changing configuration of electrodes (these issues 

where considered in Section 5.6.2 in the generalized coordinates), the T-network circuits may 

be modified as shown in Figure 10.8. 

  

Figure 10.8: Modified equivalent T-network circuits for different variants of electrodes configu-

ration: (a) transducer with partial electrodes; (b) transducer with electrodes connected for gener-

ating the second mode of vibration. 

The vibration velocities of the cross sections at 1x x=  and 2x x=  correspond to the “currents” 

1( )U x  and 2( )U x  in the respective branches of the combined equivalent circuit. Proper values 

of elastic constants for the deprived of electrodes end sections must be used in the passive net-

works. The variant of electrical connection of parts of electrodes in the opposite polarities, 

which is shown in the Figure 10.8 (b), illustrates application of the T-equivalent circuits to 
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considering effects of different electrodes arrangement on the frequency response and effec-

tiveness of the electromechanical conversion. In general, various voltages can be applied to the 

separated parts of the electrodes. 

10.2.3.2.2 Operation of Transducer in the Frequency Range around Its Resonance Fre-

quency 

The equivalent circuits in Figure 10.7 and their analysis may simplify under certain conditions 

of action of forces and mechanical loads, and in the case that transducer operates in the fre-

quency range around its resonance frequency. Thus, in the typical variant of the side electroded 

bar with one end under action of load LZ  and force LF  and another end free, which is consid-

ered in detail in Ref. 1, the equivalent circuit in Figure 10.7 (a) (in this case terminals 1, 1’ must 

be short circuited) may be transformed into the circuit shown in Figure 10.9 (a). The series 

impedance in this circuit is 1 12 / tan( / 2)E E E

sZ j c S k l= − . Note that at low frequencies, such 

that tan / 2 / 2kl kl , the parallel impedance in the circuit transforms into inertia shunting ele-

ment 22 EZ j M , which is analogous to the passive parallel contour in Figure 10.5. 

  

Figure 10.9: Equivalent circuits of the transducer under transverse piezoeffect with one end un-

loaded: (a) for a broad frequency range, (b) for the frequency range around its first resonance.. 

At frequencies around the first resonance further simplification of this equivalent circuit 

may be produced by expansion of trigonometric functions 
E

sZ  and 2

EZ  into a series in terms of 

small deviations from the resonance frequency. This results in the circuit shown in Figure 10.9 

(b), where for the basic transducer design (bar at transverse piezoeffect) 
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2

1

112

E

eqv E

wt
K

ls


= , / 2eqvM M= , 

 1 31 11 12 2 / EN wd s n= = , 1 2

33 31(1 ) /S T

elC k wl t= − . (10.55) 

This circuit coincides with the circuit in Figure 10.6 (a), which was obtained in generalized 

coordinates for the first mode of vibration in more explicit way. For different boundary condi-

tions the equivalent parameters must be changed accordingly. 

If to apply the analogous derivation to the equivalent circuit in Figure 10.7 (b) for the lon-

gitudinal piezoelectric effect, we obtain the circuits presented in Figure 10.10 (a) and (b), where 

 1 1eqvM M→ , 3 33 33 32 2 / E

csN S d s n= = , 3 2

33 33(1 ) /
S T

el csC k S l= − . (10.56) 

With terminals 2, 2’ in Figure 10.10 (b) short-circuited, we obtain circuits of a resonator with 

free ends shown in Figure 10.10 (c) and (d). Physical meaning of the “negative capacitance” 

3( )
S

elC−  in the equivalent circuit of Figure 10.10 (a) is not clear, but it may be clarified as result 

of the following manipulations.  

At first, we transform the “negative capacitance” into the mechanical contour, as shown in 

Figure 10.10 (c), where 3 2

3/ 4
S

elC C N = − . After performing the calculations in course of which 

the relation 
2

33 33 33(1 )D Es s k= −  is taken into account, we arrive at the circuit representation shown 

in Figure 10.10 ( d), where 

 

3

2 2 2
3 33

2 2

3 33 33 33

2

33

2 2

3 3 33 33

41 1 8

2 (1 )

1 1 8
1

(1 )

cs

D S D E

eqv el

E E E

eqv eqv

N S k

j lj C s s kj C

k

j C j C s k



 

  

 
− = − = 

− 

 
= + − 

− 

, (10.57) 

 
2

3

3 33

1

2

E cs

eqvE E

eqv

S
K

C ls


= =  (10.58) 

and 

 

2

33
3 2 2

33

1 8
1

(1 )

E

eqv

k
K K

C k

 
=  = − 

 − 
. (10.59) 

This is the same quantity K  as by formulas (5.156) and (10.40). And the circuits in Figure 

10.10 (b) and (c) are the same, as those in Figure 5.7 that were obtained directly by using the 

first normal mode of vibration of the end-electroded bar. Thus, the negative capacitance on the 
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electrical side has to do with the electrical interaction in the solid (not segmented) end-elec-

troded length expander piezoelement. 

  

Figure 10.10. Equivalent circuits of the transducer under the longitudinal piezoelectric effect: (a) 

with one end unloaded, and (b) of the sane transducer at frequencies around the first resonance; 

(c) and (d) around the first resonance with both ends unloaded (terminals 2, 2’ are short-circuited). 

3 2

3/ 4
S

elC C N = − . 

10.2.3.2.3 The Small Wavelength of the Piezoelement Approximation. 

If the size of a length expander piezoelement (let it be a bar for simplicity) loaded on the ends 

appears to be small as compared to the wavelength, the equivalent circuits in Figure 10.7 can 

be simplified. At this condition tan( / 2) / 2kl kl , and independently of the mode of polariza-

tion 

 2 n( / 2) / 2 / 2cs csZ j cS ta kl j S l j M  =  = , (10.60) 

where M is the mass of the piezoelement. When transforming impedance 1Z  at small kl, for 

more accurate result we represent 
3sin ( ) / 6kl kl kl − . Thus, 1

EZ  for the side-electroded bar 

becomes 
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 1 1
1 2

1 1 1 1

   1

6sin [1 ( ) / 6]

E E
E cs cs

E E E E

c S c S M
Z j

j k l jk l k l j C

 



=  = −

−
, (10.61) 

where M is the mass of the bar, and (remembering that 1 111/E Ec s= ) 

 11
1

E
E

cs

ls
C

S
=  (10.62) 

This is the static compliance of the bar at 0E = . 

For the end-electroded bar in the same way we obtain 

 3
1

3 3

   1

6sin

D
D cs

D D

c S M
Z j

j k l j C





=  − , (10.63) 

where 

 33
3

D
D

cs

ls
C

S
= . (10.64) 

Taking into account the compliance term (- 3 2

3/
S

elC N ) in the equivalent circuit in Figure 10.7 

(b) transformed from electrical side, we will find that 

 
3

2 2

3 33

2

3 33 33 33 3

1 1 1

(1 )

cs

D S D E E

el

N S k

j lj C s s k j Cj C  

 
− = − = 

− 
, (10.65) 

since 
2

33 33 33(1 )D Es s k= − . Thus, under the assumptions of small wavelength of the piezoelement 

the equivalent circuits of the length expander transducer for both the transverse and longitudinal 

piezoelectric effect simplify to the form shown in Figure 10.11. 

  

Figure 10.11. Equivalent circuit for the length expander transducer loaded on the ends under the 

condition that length of the piezoelement is much smaller than wave-length: 1, 3i =  for the trans-

verse and longitudinal piezoeffect, respectively. 
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The difference between the circuits for the longitudinal and transverse piezoelectric effect due 

to existence of the negative capacitance (of the elastic impedance 32

3 /
S

elN j C− ) disappeared. 

As it is shown in Section 5.5, there should not be such differences. if the strains do not change 

along the lines of force of the electric field. In the case under consideration the strains along the 

length of the piezoelement practically do not change. 

10.3 Coupled Vibrations in the Transducers 

10.3.1 Statement of the Problem 

So far, the electromechanical conversion and vibration in the mechanical systems of the length 

expander transducers were considered in one-dimensional approximation, i.e., under the as-

sumption that their deformations occur along a single geometry coordinate. In many cases this 

assumption does not hold, or at least is questionable, and deformations must be treated as cou-

pled two-dimensional. The main goal of this treatment is in determining the aspect ratios of the 

mechanical systems of the transducers, at which the one-dimensional approximation remains 

applicable to a certain extent, and thus in avoiding harmful effects of the coupled vibrations on 

the operational characteristics of the transducers. In case  that effects of the coupled vibration 

are tolerable or even useful, considering the transducers calculation in the two-dimensional ap-

proximation may be also of interest. 

General technique of treating the coupled vibration in isotropic passive mechanical systems 

was considered in Section 4.6, where outline of the theory of coupled vibrations is given (Sec-

tion 4.6.1), and effects of the coupled vibrations are illustrated with examples of several me-

chanical system configurations in Section 4.6.2.2 (vibration of rectangular plates), and in Sec-

tion 4.6.2.3 (vibration of cylindrical discs and solid rods). The results obtained therein will be 

specialized in this Section for the anisotropic mechanical systems made of piezoceramics and 

will be used for determining electromechanical parameters of the corresponding transducers 

and for developing equivalent circuits that allow calculating their operational characteristics. 

The variants of mechanical systems that are of special interest for practical applications and 

must be considered in general as two-dimensional are presented in Figure 10.1 and Figure 10.2. 

Transitions between the one-dimensional vibrating piezoelements having ideal extreme 
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dimensions through the two-dimensional piezoelements performing coupled vibration: (a) be-

tween the thin bar (
1 2/ 0L L →  ) and strip (

1 2/L L → ), (b) between strip (
2 3/ 0L L → ) and 

plate ( 2 3/ 0L L → ), (c) between thickness vibrating thin circular disk (aspect ratio / 2 0)h a →  

and axial vibrating long bar ( / 2h a → ) were considered in Refs. 2-4. The analytical results 

obtained therein, and results of their experimental verification are presented in this section.  

As a prerequisite for treating effects of coupled vibration in the active piezoelements, it is 

useful to remind the procedure for considering the coupled vibrations in passive mechanical 

systems that was used in Section 4.6.2.2. General two-dimensional vibrations of an isotropic 

plate were presented in Section 4.6.2.2 as superposition of vibration of two partial mechanical 

systems with corresponding distribution of displacements and strain in the form (with example 

of the plate in Ref. 2, and considering only the first fundamental modes of vibration) 

 1 1 2 2( , ) sin( / ) sin( / )p px y x L y L    = + , (10.66) 

 1 1 1 1( / )cos( / ),pS L x L  = 2 2 2 2( / ) cos( / )pS L y L  = . (10.67) 

Here 1 p  and 2 p  are the generalized coordinates - maximum displacements in the partial sys-

tems. The boundary condition for a partial system is determined by the condition that another 

partial system is clamped. Therefore, for the partial system #1 it should be 2 0S =  . Together 

with condition 3 0T =   due to small thickness of the plate this means that the partial system is 

the infinitely long in y direction thin strip. Likewise, for the partial system #2 the boundary 

conditions are 1 0S = , 3 0T = , and the partial system is the strip infinitely long in x direction. 

The partial systems are shown in Figure 10.12 by the dashed lines. 

  

Figure 10.12: To the coupled vibration of a thin plate, as superposition of vibration of two partial 

systems– infinitely long thin strips vibrating through their widths. The partial systems are shown 

by the dashed lines. 
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It is noteworthy that in transition between two extreme one-dimensional systems only one of 

them coincides with a partial system. For example, in the transition of one-dimensional bar and 

infinite strip shown in Figure 10.12 (a) this is the strip at 1 2/L L → . As it is shown in Section 

4.6.1, for determining all the characteristics of the coupled vibrations it is necessary (and suffi-

cient) to know resonance frequencies of the partial systems, ipf , and coefficient of coupling 

between the partial systems,  , which can be readily obtained from considering expressions 

for the potential and kinetic energies of the coupled system (4.520) and (4.521) that we rewrite 

in the form 

 ( ) 2 2

1 1 2 2 1 1 12 1 2 2 2

1 1 1

2 2 2

E E E E E

pot p p p p

V

W T S T S dV K K K   = + = + + , (10.68) 

 2 2

1 1 12 1 2 2 2

1 1

2 2
kin p p p pW M M M   = + + . (10.69) 

Here 1

EK , 2

EK  and 1M , 2M  are the equivalent rigidities and masses of the partial systems; 12K   

and 12M  are the parameters that characterize the elastic and inertial coupling mechanism be-

tween the partial systems. In our cases 12 0M   and the coupling may be considered as pure 

elastic. The partial resonance frequencies are determined by formulas (1/ 2 ) /ip i if K M= , 

and the coefficient of elastic coupling between the partial systems by formula 12 1 2/ .K K K =

The factual values of partial resonance frequencies and coupling factors depend on configura-

tion of the partial systems and on the boundary conditions imposed. Thus, for the partial systems 

in form of isotropic passive strips expressions for the partial resonance frequencies, rigidities 

and coupling factors were determined in Section 4.6.2.2 as 

 
2

1
, 1,2

2 (1 )
ip

i

Y
f i

L  
= =

−
; (10.70) 
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−
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2(1 )
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L




=

−
12 2

4

1

Y t
K




=

−
; (10.71) 

 12

2

1 2

8K

K K





= = . (10.72) 

Using these quantities two branches of the resonance frequencies, ( )  , and corresponding 

mode shape coefficients, 2 1( ) /p pms   = , were found for the coupled systems, as functions 

of the aspect ratio factor, 2 1/p pf f = . All these functions of the aspect ratio factor have to be 
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determined for the partial systems made of piezoceramic taking into consideration anisotropy 

of elastic and piezoelectric properties of the material that leads to different results for variants, 

in which the transverse and longitudinal piezoeffect is used. After this is done, the mode shapes 

of vibration of the coupled system that correspond to the resonance frequencies may be obtained 

from expression (10.66) as 

 
1 1 1 2 2 2

1 1 1 2 2 1 1 2

( , ) sin( / ) sin( / )

[sin( / ) ( ) sin( / )] ( , ; )

p p

p p

x y x L x L

x L ms x L x x

    

      

= + =

= +  =
, (10.73) 

and all the electromechanical parameters of transducer including the effective coupling coeffi-

cient can be calculated using the previously described technique. These procedures are consid-

ered in Section 10.3.2 and 10.3.3 for the situations shown in Figure 10.2 (a) and (b). Coupled 

vibrations in the isotropic passive disks and rods were considered in Section 4.6.2.3 with essen-

tially the same general approach. Specifics of coupled vibrations in the piezoceramic cylinders 

in course of their transition from thickness vibrating thin disks to one-dimensional long bar is 

considered in Section 10.3.4. 

10.3.2 Transition Between the Thin Bar and Infinite Strip Vibrating over Its Width 

10.3.2.1 Transverse Piezoeffect 

In the variant of transverse piezoeffect that is shown in Figure 10.2 (a), in which case the strip 

is polarized in perpendicular to its radiating surface direction, the elastic properties of pie-

zoceramic in the plane are isotropic and characterized by the constants 1

EY  and 1

E  that are 

analogous to the Young’s modulus and Poisson’s ratio for isotropic passive material. Therefore, 

all the results presented in Section 4.6.2.2 regarding coupled vibrations in isotropic plates are 

valid for the piezoceramic plates of the same geometry, if to replace Y  and   by 1

EY  and 1

E  

in all the related expressions. (Note that names strip and plate can be used interchangeably in 

the context of this section. The difference is in their extreme configurations.) Thus, the expres-

sions (10.70)-(10.72) become 

 1

2

1

1
, 1,2

2 (1 )

E

ip E

i

Y
f i

L  
= =

−
; (10.74) 
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1 2

8 EK

K K





= = . (10.76) 

Dependencies of the resonance frequencies and mode shape coefficients from the plate 

aspect ratio (in this case the aspect ratio factor is 2 1 1 2/ /p pf f L L = = ), which are shown in 

Figure 4.46 and Figure 4.47 by solid lines, are also valid for the piezoceramic plates because 

they were calculated at the value of 1 0.33E =  for PZT-4 ceramics. 

It is noteworthy that after the assumption is made that distribution of displacements in the 

plate having finite dimensions can be represented in the form of expression (10.66) all the same 

results regarding parameters of the coupled vibration, which are predicted by the general cou-

pling theory, can be obtained by using calculating procedure typical of application of the energy 

method to the transducer with two mechanical degrees of freedom. Advantage of such approach 

is that it allows presenting results in the common form of equivalent electromechanical circuit 

and calculating operating characteristics of the transducer under an external loading. We will 

illustrate this approach with example under consideration though the procedure is general. At 

first, all the energies associated with transducer performance must be determined. The potential 

and kinetic energies are presented in the form of expressions (10.68) and (10.69). 

The electrical energy of a transducer is 

 1,2 1,2 1,22 2

33 33

1 1

2 2

S S S

el el

V

W E dV C V= = , (10.77) 

where 1,2 1,2

33 1 2 /
S S

elC L L t= . The dielectric constant of ceramic 1,2

33

S
  depends on boundary condi-

tions for the mechanical system. It must be noted that uncertainty exists in presenting the die-

lectric constant of the coupled system. Hypothesis, on which the approach to treating coupled 

vibrations in mechanical systems is based, does not apply to calculating the electrical energy 

1,2S

elW  of the partially (depending on mechanical boundary conditions) clamped piezoelectric 

body. Thus, in the extreme case of infinitely long strip (one of the partial systems for variant of 

transducer under consideration) according to (10.15) and (10.16) 1,2 2

33 33 33 33/
S S Ee c = +  and may 

be represented as 1,2 2

33 33 31(1 )
S T k  = − . But such value of the dielectric constant is questionable 

for the plate of finite size in course of transition between the extreme cases of thin bar and 
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infinite strip. It is more logical to assume that for the plate of finite size the dielectric constant 

may be represented as 

 1,2 2

33 33[1 ( )]
S T

lk  = − , (10.78) 

where ( )lk   is the effective coupling coefficient that corresponds to the mode shape associated 

with coefficient lms  for each value of aspect ratio factor  . (The subscript ,l I II=  denotes 

number of one of two branches of resonance frequencies for a coupled system.) At least this 

expression holds for the extreme cases. Determining the coupling coefficients ( )lk   is one of 

the goals of solving the coupled vibration problem for mechanical system made of piezoceram-

ics. Thus, expression for the capacitance will be 

 1,2 2

33 1 2[1 ( )] /
S T

el lC k L L t = − . (10.79) 

The electromechanical energy of a transducer is 

 3 1 2 3 1 1 2 2

1 1
( , ) ( )

2 2

E

em p p

V

W D S S E dV V n n = = + . (10.80) 

Following expressions (10.14) and (10.16), for this case 

 31
3 1 2 1 2

11 12

( , ) ( )E

E E

d
D S S S S

s s
= +

+
, (10.81) 

and after integrating over the volume it will be obtained that 

 1 31 2 1 31 1
1 2

1 1

2 2
,

1 1

E E

E E

Y d L Y d L
n n

 
= =

− −
. (10.82) 

After all the energies associated with functioning of the transducer as an electromechanical 

device are determined, the Lagrange’s equations that describe its vibration, can be represented 

in the following form (without taking into account the energy losses and external loads) 

 1 1 1 12 2 1( / ) ( / )p pj M K j U K j U n V  + + = , (10.83) 

 12 1 2 2 2 2( / ) ( / )p pK j U j M K j U n V  + + = , (10.84) 

 1,2

1 1 2 2

S

el p pI j C V n n  = + + . (10.85) 

Here I is the input current of the transducer, i ipU j= . Considering the losses and external 

loads is not essential for illustrating the coupled vibration analysis. They can be included in the 

Lagrange’s equations in the same general way as it was done before, when necessary. 
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In order to determine the resonance frequencies and the resonance mode shapes of the 

transducer, we first consider free vibration of its mechanical system. The Eqs. (10.83) and 

(10.84) at V = 0 can be presented in the form of 

 
2 2 2

1 1 12 1 1 2( ) ( / ) 0p p p pf f U K K f U− + = , (10.86) 

 
2 2 2

12 2 2 1 2 2( / ) ( ) 0p p p pK K f U f f U+ − = , (10.87) 

where from the frequency equation follows  

 
2 2 2 2 2 2 2

1 2 1 2( )( ) 0p p p pf f f f f f− − − = . (10.88) 

The elastic coupling factor  is defined by formula (10.76). Thus, the dependences of the res-

onance frequencies and mode shape coefficients of a transducer on the aspect ratio of the plate 

may be determined, as it is done in Section 4.6.2.2. Assuming for definiteness that the dimen-

sion 2L  (i. e., 2 pf ) is kept constant while 1L  changes, after denoting 
2 2

2/ pf f =   as the nor-

malized nondimensional resonance frequency factor and introducing aspect ratio coefficient 

2 1( / )p pf f = , Eq. (10.88) may be transformed to 

 2 2 2 2(1 1/ ) (1 )/ 0   − + + − = . (10.89) 

From this equation two branches of resonance frequencies corresponding to the solutions I  

and II  may be found as functions of the aspect ratio for the strip. We accept the convention 

that ( )I   forms the lower and ( )II   the upper frequency branches. The frequency depend-

encies calculated at value 
2

1(8 / ) 0.27  = =  of the coupling factor for PZT-4 are shown in 

Figure 10.13. 

 

Figure 10.13: Dependence of the normalized resonance frequencies on aspect ratio for lower (I) 

and upper (II) frequency branches. 
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In particular, it follows from Eq. (10.89) that at 1 =  

 1I  = − , 1II  = + . (10.90) 

The experimental data that are shown by markers in the figure were obtained in Ref. 2 with 

samples made of PZT-4 and PZT-8. The plots are normalized to values of frequencies at the 

limiting case of 1  to avoid differences between parameters of ceramic compositions and 

absolute values of dimensions. The results show good agreement between the predicted and 

experimental data regardless of some difference (about 5%) in coefficients 1

E  for PZT-4 and 

PZT-8 ceramics. 

After the resonance frequencies are determined, the corresponding mode shape factors, 

which will be defined as 

 1 2 1 2( / ) ( / )
i il p p at p p atms U U  = = = =  ( ,l I II= ), (10.91) 

may be found from one of Eqs. (10.86), (10.87). Namely, 

 12

2

1

1

1
l

l

K
ms

K 
= −

−
. (10.92) 

Using expressions (10.75) and (10.76) it may be concluded that 12 11( / )K K  = , and hence 

 
21

l

l

ms
 


= −

−
. (10.93) 

The dependence of the mode shape factors on the aspect ratio   is shown in Figure 10.14. 

 

Figure 10.14: Dependence of the mode shape factors on aspect ratio for lower (I) and upper (II) 

frequency branches At branch I 0
I

ms  . At branch II 0
II

ms  . 
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It follows from the figure that at frequencies pertaining to the lower branch the velocities 1pU  

and 2 pU  are in anti-phase. In particular, it follows from expressions (10.93) and (10.90) that at 

1 =  

 1Ims = −  and 1IIms = . (10.94) 

This means that at higher and lower resonance frequencies the velocities have the same magni-

tude but are in-phase at the higher frequency and in anti-phase at the lower frequency. 

The effective electromechanical coupling coefficient of a transducer can be found from the 

generalized relation (10.23) 

 
1,2

2 2

2

( )
( )

1 ( )

em l

clS E
lel m

W k

kW W


 


= =

−
, (10.95) 

where expressions for energies 
E

potW , 1,2S

elW , emW  are given by formulas (10.68), (10.77) and 

(10.80), respectively. The subscripts l = I or II  correspond to the lower and upper frequency 

branches. The expressions for energies 
E

potW  and emW  can be modified by using the mode shape 

coefficients lms  and aspect ratio factor   as follows 

 2 212 1
2 2

2 2

21
1

2

E

pot p l l

K K
W K ms ms

K K


 
= + + 

 
= 

2

2 2 2 2

2

1
( 2 )

2

p

l l

K
ms ms


  


+ + , (10.96) 

 
2 21

2 2

2

1 1
1 ( )

2 2

p

em p l l

nn
W V n ms V ms

n


 



 
= + = + 

 
. (10.97) 

In the expression for electric energy the capacitance must to be presented by formula (10.79). 

Substituting all of the expressions for energies into relation (10.95) results in 

 
1,2

2 22

2

2 2 2

2

( ) ( )
( )

1 ( ) 2

l l

em lS

l l lel

k msn
A A

k ms msC K

 


   

+
= =

− + +
. (10.98) 

The right side of this relation appears to be represented as a product of two factors, one of 

which, 1,22

2 22/
S

em elA n C K= , depends on the electromechanical properties of the piezoelement 

and another, ( )lA  , is a function of the aspect ratio factor, 

 

2

2 2

( )
( )

2

l
l

l l

ms
A

ms ms




  

+
=

+ +
. (10.99) 

After substituting expressions for the parameters 2K , 1,2S

elC  and 2n  given by formulas (10.75), 

(10.79) and (10.82), the factor emA  for the transverse piezoeffect becomes 



10.3 Coupled Vibrations in the Transducers 279 

 

 

2

31 1

2 2

1

18

1 ( ) 1

E

em E

l

k
A

k



  

+
= 

− −
. (10.100) 

(Note that the dielectric constant of the two-dimensional piezoelement depends on the effective 

coupling coefficient to be determined according to expression (10.79).) 

Thus, the resulting expression for the effective coupling coefficient as function of the as-

pect ratio factor at given coefficient of coupling between the partial systems is 

 

2
2 2 1

312 2 2

1

( )18
( )

1 2

E

l
l E

l l

ms
k k

ms ms




    

++
=  

− + +
. (10.101) 

Dependences of the effective coupling coefficients on the aspect ratio for the upper and lower 

resonance frequency branches are shown in Figure 10.15 The coupling coefficients are normal-

ized to the effective coupling coefficient of a thin side electroded bar, eff bark , that represents 

the limiting case of a strip at 0 →  and 2L  constant, which is known as  

 2

2 2 2

31 31

1

1 ( / 8)(1 ) /
eff bark

k k
=

+ −
. (10.102) 

This formula is also valid for the effective coupling coefficient of the strip, eff stripk , that repre-

sents another limiting case at  →  and 2L  constant, if to replace 31k  by 31k  , i.e., 

 
2

2 2 2

31 31

1

1 ( / 8)(1 ) /
eff stripk

k k
=

 + −
. (10.103) 

 

Figure 10.15: Dependences of the effective coupling coefficient on aspect ratio for lower (I) and 

upper (II) frequency branches. 

/
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It is interesting to estimate the correlation between the obtained solutions for the resonance 

frequencies and the coupling coefficients and known results for the limiting one-dimensional 

configurations of a strip. At 1 2/ 0L L = →  the extreme configurations are: thin bar ( 2L  con-

stant, 
1 0L → ) for the lower frequency branch I, and infinite strip (

1L  constant, 
2L → ) for 

the upper branch II (the strip is the partial system #1). At 
1 2/L L = →  the extreme config-

urations are: infinite strip ( 2L  constant, 1L → ) for the upper frequency branch II (the strip is 

the partial system #2), and thin bar (
1L  constant, 2 0L → ) for the lower branch I.  

It is shown in Section 4.6.2.2 that at 0 →  

 
21I  → − , 

21/II  → . (10.104) 

Therefore, 

 
2

2 1I pf f → −  and 2 1( / )II p pf f f→ = . (10.105) 

Considering expressions (10.70) for the partial frequencies ipf , we arrive at the expression 

for the resonance frequency of the infinitely thin bar of the length 2L  

 
2

1

2

2 1

(1 )1

2 (1 )

E

I E

Y
f

L



 

−
=

−
, (10.106) 

and for the infinitely long strip of the width 1L  

 1

2

1 1

1

2 (1 )

E

II E

Y
f

L  
=

−
. (10.107) 

Given that the exact value for the resonance frequency of the bar must be 

2 1(1/ 2 ) /E

barf L Y =  and that 10.81 = , for PZT-4 ceramics ( 1 0.33E = , 0.27 = ) we 

obtain 1 1.02 barf f= . Thus, the error of the current approach can be considered as negligible for 

the limiting case at 0 → . For another extreme case (long strip of width 1L ) the value of 

resonance frequency obtained by formula (10.107) is exact. 

In terms of the effective coupling coefficients determined from the two-dimensional and 

one-dimensional approximations, comparison of the values for the limiting cases of the trans-

ducers in the shape of a bar and of a strip gives the following results. Using expressions (10.91) 

for the mode shape coefficients and (10.104) for the normalized frequencies l , at 0 →  we 

arrive at 
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Ims → −  and 1/IIms → . (10.108) 

From formula (10.99) for ( )lA   follows that 

 0( ) (1 ) / (1 )IA   → → − +  and 0( ) 1IIA  → → , (10.109) 

respectively. Thus, from Eq. (10.101) we obtain 

 
2 2 1

0 312

1

18 1
( )

11

E

I E
k k

 


 
→

+ −
=  

+−
, (10.110) 

 
2 2 1

0 312

1

18
( )

1

E

II E
k k




 
→

+
= 

−
. (10.111) 

At another extreme case of  →  from Eq. (4.587) follows (using relation 1 1 / 2 −  −  

at 1 ) that 

 
2

2

1
I





−
 → , 1II → . (10.112) 

Therefore, the lower and upper resonance frequencies for this extreme case are 

 
2 2

1

2 2

1 1 1

(1 )1 (1 )

2 (1 ) (1 )

E

I barE E

Y
f f

L

 

  

− −
= =

− −
 and 2II pf f= . (10.113) 

In order to estimate values of the effective coupling coefficients, the mode shape coefficients 

must be determined by formula (10.93) using the normalized frequencies (10.112). This results 

in the expressions 

 /Ims  = −  and /IIms  = . (10.114) 

Now from formula (10.99) for ( )lA   follows 

 ( ) (1 ) / (1 )IA   → → − +  and ( ) 1IIA  → → , (10.115) 

i.e., the same results as were obtained for the case of 0 →  by formulas (10.109). Therefore, 

values of the effective coupling coefficients in the extreme cases are equal for both frequency 

branches, i.e., 

 ( ) ( )l l ok k  → →= , (10.116) 

as it can be seen in Figure 10.15. This could be expected because the partial systems for both 

extreme cases have the same configuration. In the case that PZT-4 ceramics is used ( 31 0.33,k =
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0.27 = ) it follows from expressions (10.110) and (10.111) that (0) 0.31Ik  , whereas for the 

bar in one-dimensional approximation it should be 0.30eff bark =  (by formula (10.102)); and 

(0) 0.42IIk = , whereas in one-dimensional approximation it should be for the strip 

0.43eff stripk    (by formula (10.103) and given that 
31 0.46k = ). The obtained values of the ef-

fective coupling coefficients for these extreme cases are somewhat different from those ob-

tained by one-dimensional approximation. But in the dependencies on the aspect ratio that are 

normalized to value eff bark  this systematic error is avoided, and they appear to be accurate 

enough, as results of experimenting show. Besides, the accurate absolute values of the effective 

coupling coefficients for the extreme case configurations must be calculated from the one-di-

mensional approximations anyway. 

10.3.2.2 Longitudinal Piezoeffect 

The variant of longitudinal piezoeffect is shown in Figure 10.16.In this case the strip is polar-

ized in direction of its width, the elastic properties of piezoceramics in the plane are not iso-

tropic, and results of calculating parameters of the coupled isotropic system cannot be directly 

implemented for the piezoceramic strip. In this variant one of the partial systems is determined 

by the condition 1 0S =  and constitutes the strip that is infinite in the x direction and vibrates 

  

Figure 10.16. To the transition between the thin end-electroded bar ( 1 3/ 0L L → ) and strip po-

larized through the width ( 1 3/L L → ). 

along its width 3L . Similarly, another partial system at 3 0S =  is the strip that is infinite in the 

z direction and vibrates along dimension 1L . After substituting displacement analogous to those 

by Eq. (10.66) into formula for the potential energy we will obtain the following expressions 

for the rigidities of the partial systems at these boundary conditions, 

 

2

31
1

13 13

,
2(1 )

E
E

E E

LY t
K

L



 
=

−
 

2

3 1
3

3 13 3

,
2(1 )

E Y t L
K

L



 
=

−
 1 3

13

3 13

4

1

E E

E E

Y t
K



 
=

−
. (10.117) 
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As in the partial system at 
1 0S =  deformation changes along the direction of polarization, the 

additional rigidity 2 2

3 3 33 330.2 / (1 )EK K k k    −  must be taken into account according to relation 

(10.40), and the effective rigidity 3K  will be 3 3 3

EK K K= +  . For PZT-4 ceramics 

3 31.12 EK K . Thus, the partial resonance frequencies are 

 
3 1

3 1

3 13 13 3 13

1.06 1
,

2 2(1 ) (1 )

E E

p pE E E E

Y Y
f f

L L     
= =

− − , (10.118) 

respectively. (Remember that it is denoted 1 111/E EY s= , 3 331/E EY s= , 3 13 33/E E Es s = − , 

13 13 11/E E Es s = − ). The ratio of the partial resonance frequencies is 

 
3 3 31

1 3 1 1

1.06 1.06
E E

p

E E

p

f Y YL w

f L hY Y
 = = = . (10.119) 

For the strip made of PZT-4 ceramics 0.94 /w h =  . The elastic coupling factor that is deter-

mined from expression for the potential energy of the coupled system (10.68) is 

 3 1 30.76 /E E EY Y = . (10.120) 

After the coefficients of aspect ratio and of coupling between the partial systems are deter-

mined, all the calculations of the resonance frequencies, mode shape coefficients, and effective 

coupling coefficients can be performed as it is done above. The resulting dependences of these 

parameters are as follows. 

 

Figure 10.17: Dependence of the nondimensional resonance frequencies on the aspect ratio coef-

ficient   for the width poled strip: (I) for the lower frequency branch and (II) for the upper 

branch. The lines - results of calculation, markers - experimental results from Ref. 3. Note that

0.94 /w h =    
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Dependences of the resonance frequencies from the aspect ratio coefficient   in the case 

that 
3L  is kept constant normalized to the partial frequency 3 pf   are presented in Figure 10.17. 

Note that at the extreme value of the aspect ratio,  → , the upper branch resonance fre-

quency coincides with the partial resonance frequency 3 pf , and at 0 →  the lower branch 

resonance frequency corresponds to the resonance frequency of the thin longitudinally vibrating 

bar. 

To determine the electromechanical energy and electromechanical transformation coeffi-

cients from Eq. (10.80), expression for the charge density 3 1 3 1 1 3 3( , )ED S S n S n S = +  must be 

used, where 1n  and 3n  are (see the formulas (10.15) and (10.17)) 

 31 33 33 13 31 1 33 31 13
1 2

11 33 13 3 13

[1 ( / )

1

E E E E

E E E E E

d s d s d Y d d
n

s s s



 


− +
= =

− −
, (10.121) 

 33 11 31 13 33 3 31 33 3
3 2

11 33 13 3 13

[1 ( / )

1

E E E E

E E E E E

d s d s d Y d d
n

s s s



 


− +
= =

− −
. (10.122) 

Integration in (10.80) results in the following expressions for the electromechanical transfor-

mation coefficients 

 1 12n n t= , (10.123) 

 3 3 1 3 32 ( / ) 2n n t L L n t  =  =  . (10.124) 

Ratio of the coefficients is 

 1 1

3 3

n n

n n




=  . (10.125) 

The effective coupling coefficients that correspond to the lower (at l I=  ) and upper (at )l II=  

frequency branches may be found as result of manipulations analogous to those performed in 

the previous case in the form 

 

2
2 2 1 3

332 2 2

[( / ) ]8
( )

2

l
l

l l

n n ms
k k

ms ms




   
   +

= 
+ +

. (10.126) 

Dependencies of the effective coupling coefficients on the aspect ratio coefficient   are pre-

sented in Figure 10.18. The values of the coupling coefficients in the Figure are normalized to 

the effective coupling coefficient 33effk   for the partial system that is the strip infinite in the x 
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direction and vibrating in direction of polarization. The calculations were made for the strips 

made from PZT-4 ceramics with 33 0.58effk  = , but in the normalized form the plots may be 

used for different ceramic compositions to a great accuracy. At the extreme case of  →  the 

effective coupling coefficient that corresponds to the upper frequency branch (branch II) coin-

cides with those for the partial system, at 0 →  the effective coupling coefficient that corre-

sponds to lower frequency branch (branch I) is 

 2

33 338 /effk k= , (10.127) 

as for a thin bar at longitudinal piezoeffect. 

  

Figure 10.18: Dependences of the effective coupling coefficients on the aspect ratio coefficient 

  for the width poled strip: solid line (I) corresponds to the lower frequency branch, the dashed 

line (II) corresponds to the upper branch. The lines - results of calculation, the markers – experi-

mental data from Ref. 3. Note that 0.94 /w h =  . 

It can be concluded based on the results presented in the figures of this section that the bars 

can be considered in one-dimensional approximation at values of aspect ratio about 0.5  , 

i.e., at 2 1/ 2.0L L   under the transverse and 3 1 11 33/ 2.1 /E EL L s s  under the longitudinal pie-

zoeffect. 
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10.3.3 Transition from the Thin Infinitely Long Strip to the Infinite Plate Vibrating 

over the Thickness 

Geometry and the electrodes location of the problem are shown in Figure 10.19 for variant of 

the longitudinal  piezoeffect (vibration over width of the strip and thickness of the plate). For 

the transverse piezoeffect the dimensions 
1L  and 

3L  must be reversed and location of electrodes 

must be changed correspondingly. The condition 2 0S =  is held in course of the transition in 

both cases. Distribution of displacement in the piezoelements is assumed in the form of Eq. 

(10.66) with subscript 2 replaced by 3. The partial systems in this case are the infinite plates x, 

y ( 1 0S = , 2 0S = ) and z, y ( 3 0S = , 2 0S = ). Coupled vibrations in the isotropic mechanical  

    

Figure 10.19. Transition from the one-dimensional thin infinitely long strip (extreme case at 

1 3/ 0L L → ) to the one-dimensional over the thickness infinite plate (extreme case at 

1 3/L L → ). Longitudinal piezoeffect. 

system under these conditions are considered in Section 4.6.2.2, and expressions for the param-

eters that characterize the coupled vibrations are summarized by formulas (4.596)-(4.569). To 

present these parameters for the system made of piezoceramics, appropriate are piezoelectric 

equations (5.8), which for our case have the form 

 1 11 1 13 3 31 3

E ET c S c S e E= + − , (10.128) 

 2 12 1 13 3 31 3

E ET c S c S e E= + − , (10.129) 

 3 13 1 33 3 33 3

E ET c S c S e E= + − , (10.130) 

 3 31 1 33 3 33 3

SD e S e S E= + + . (10.131) 

Results of application of the equations are different for variants of the longitudinal and trans-

verse piezoeffect. 

1L

3L

2

1

3
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2

1

3
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10.3.3.1 Longitudinal Piezoeffect 

For the partial system at 
3 0S = , 2 0S = : 

 1 11

E EK c = , 1 31n e = , 1 1

33

S S

eC  =  (or according to (10.4) 1 2

33 31(1 )S T

eC k
= − ). (10.132) 

For the partial system at 1 0S = , 2 0S = : 

3 33

E EK c = , 3 33n e = , 3 3

33

S S

eC  =  (or according to (10.4) 3 2

33 (1 )
S T

e tC k = − ). (10.133) 

After substituting 1 1 3 3

E ET S T S+  into expression (10.68) for the potential energy we will obtain 

 
2

2 3
1 11

12

E E L L
K c

L


= , 

2

2 1
3 33

32

E E L L
K c

L


= , 13 13 24E EK c L= . (10.134) 

Strictly speaking, the additional rigidity 2 2

3 30.2 / (1 )E

t tK K k k   −  must be taken into account 

due to changing deformation along the direction of electric field. With PZT-4 ceramics used 

this would result in increase of rigidity up to 3 31.07 EK K . In terms of numerical estimating 

effects of the coupled vibrations such correction is not significant and will be neglected. 

Thus, expressions for the partial resonance frequencies, aspect ratio factor and for the cou-

pling factor are: 
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 = , (10.136) 
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c
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= . (10.137) 

Note that the real aspect ratio is 1 3( / ) ( / )L L w h= . Thus, in this case the correlation be-

tween factor l   (the subscript l stays for “longitudinal”) and aspect ratio for piezoelements 

made of PZT-4 ceramics is 0.9 ( / )l w h =  . 

The modal resonance frequencies for the piezoelement, mode shape coefficients and effective 

coupling coefficients vs. aspect ratio factor l  now can be calculated following the above de-

scribed procedures. The results of calculating the resonance frequencies for the piezoelements 

made from PZT-4 ceramics are presented in Figure 10.20 (a). 

Dependences of the modal effective coupling coefficients for the long strips made from 

PZT-4 ceramics from the aspect ratio coefficient l  are depicted in Figure 10.21 (a). The values 
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of the coupling coefficients in Figure 10.21 (a) are normalized to the effective coupling coeffi-

cient for the partial system that is the plate infinite in the x and y directions, which is t effk  . 

The results presented in Figure 10.20 (a) and Figure 10.21 (a) are restricted to the funda-

mental modes of vibration of the partial systems, and as such are applicable for frequency range 

near and below the resonance frequencies of the lowest modes of their vibration. The analysis 

is not intended for a much broader frequency range that could be of interest for a general treat-

ment of the vibration of piezoelectric plates and bars per se.  

The overtones of the partial systems are neglected because the corresponding modes of 

vibration are typically not suitable for practical or effective electromechanical transduction. 

While the response of vibrations at higher modes that correspond to the overtone frequencies 

of the partial systems were not considered here, their effects (although very weak) were ob-

served in the course of experimentation. It is understood that the closest and most influential 

overtones are due to the third and fifth harmonics of the partial system along the x axis, which 

are coupled with the lowest mode of vibration in z direction. The strongest coupling between 

these modes of vibration must be expected at the aspect ratios that correspond to 1.5   and 

2.5  , at which the partial resonance frequencies of the third and fifth harmonics of vibration 

in x direction are equal to the partial resonance frequency of the first mode of vibration in the 

z direction, respectively. Some peculiarities in the trend of coupling coefficient for the first 

mode can be seen in Figure 10.18 and Figure 10.21 (a) in the range of aspect ratios around these 

values. 

  

Figure 10.20: Dependences of the nondimensional resonance frequencies on the aspect ratio fac-

tors l and t  in course of transition from infinite strip to the thickness vibrating plate: (a) at the 

longitudinal piezoeffect, markers are the experimental data; (b) at the transverse piezoeffect. The 

lower frequency branches (I) – solid lines, the upper branches (II) - dash lines. The piezoelements 

are made of PZT-4 ceramics, 0.9 ( / )l w h =   and 1.1 ( / )t w h =  . 

(a) (b)
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Figure 10.21: Dependences of the effective coupling coefficients for the long strip on the aspect 

ratio coefficients l and t  that correspond to lower (I) and upper (II) frequency branches: (a) at 

the longitudinal piezoeffect, markers are the experimental data; (b) at the transverse piezoeffect. 

The values are normalized to the effective coupling coefficient for the partial systems that are the 

plates infinite in the x and y directions polarized accordingly. Under the longitudinal polarization 

it is t effk .  Under the transverse effect it is t effk .  The piezoelements are made of PZT-4 ceramics,  

0.9 ( / )l w h =   and 1.1 ( / )t w h =  . 

The coupling coefficients are normalized to the coefficient t effk  because its value is specified 

For PZT-t ceramics 0.46t effk = .  

10.3.3.2 Transverse Piezoeffect 

The case of the transverse piezoeffect can be considered in analogous way. As it follows from 

Figure 10.19 (b), the partial systems remain the same, as for the case of the longitudinal pie-

zoeffect, if to reverse the dimensions 1L
 and 3L

. Therefore, the expressions for the rigidities, 

partial resonance frequencies, aspect ratio factor and for the coupling factor also remain the 

same, if to revers numbers 1 and 3 in their subscripts. Thus, the nondimensional frequency 

factor is now 
2 2

1/ pf f =
. Noteworthy is that though the correlation between expressions for 

the aspect ratio factors is 
1/t l =

 (the subscripts stay for the “transverse” and “longitudinal”), 

their expressions through the real aspect ratios are 

 33

11

E

l E

cw

h c
 =    and 11

33

E

t E

cw

h c
 =  . (10.138) 

In case that PZT-4 ceramics is used 0.9 ( / )l w h =   and 1.1 ( / )t w h =  . 
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The results of calculations in the variant of transverse piezoeffect are presented in Figure 10.20 

(b) for the resonance frequencies, and in Figure 10. 21 (b) for the effective coupling coefficients. 

For comparison they are placed next to analogous figures for the variant of the longitudinal 

piezoeffect.  

Based on the results presented, it can be concluded that the best electromechanical charac-

teristics can be obtained with piezoelements utilizing longitudinal piezoeffect (radiating from 

the electroded surface) at aspect ratios 0.7l  ( / 0.8w h  ), approximately. At greater aspect 

ratios a contribution of the coupled vibrations in the transverse direction increases. This may 

result in substantial growth of the side lobes. This effect is illustrated by Figure 10.22, where 

the experimental directional factors from Ref. 3 are presented, that were obtained at the same 

operating frequency with piezoelements having different aspect ratios. In the case that the width 

of radiating surface of a projector needs to be increased for obtaining a required directivity 

pattern, the projector must be composed of mechanically isolated piezoelements having smaller 

aspect ratios. Approach to an analytical estimating of this effect of coupled vibrations on the 

modes of vibration of the radiating surfaces and thus on the directional factors is considered in 

Section 10.3.5. 

 

Figure 10.22: Directional factors of the piezoelements having different aspect ratios: 1.3 =  

(solid line), 0.65 = (dashed line). 

In the variant of transducer employing the transverse piezoeffect in opposite a smaller contri-

bution of motion in the transverse direction can be expected at larger aspect ratios (at 

1.3 1.5   ). For more accurate estimations see Section 10.3.5. 
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10.3.4 Transition from the One-Dimensional Vibrations of a Thin Circular Disk to 

the One-Dimensional Vibration of a Long Bar 

Geometry of the problem is shown in Figure 10.23. Coupled vibrations of isotropic elastic finite 

size cylinders in this range of aspect ratios were considered in Section 4.6.2.3. The assumed 

distribution of displacements in the finite size cylinders was therein accepted in the form 

 1 1 1 1( , ) ( ) / ( ) sin( / )a hr z J k r J k a z h   = + , (10.139) 

where 
a  and 

h  are the generalized partial coordinates- maximum displacements in the radial 

and axial directions. The partial systems are: partial system a (at h → , 0h = ) - radial vi-

brating infinite cylinder of radius a, and partial system h (at a → , 0a = ) – axial vibrating 

disk of infinite radius, or thickness vibrating infinite plate. The coupled vibration technique can 

be applied to a system that can be considered as two-dimensional. The range of aspect ratios 

/ 2h a , in which piezoelements in the shape of finite size cylinders (as the piezoelements of the 

geometries under consideration will be called regardless of the factual value of their aspect 

ratio) can be treated as two-dimensional was analyzed in Ref. 4. 

Expressions for strain in the body of cylinder are 

 1 1 1 1 1
1 0 1

1 1 1 1 1

( ) ( )( , ) 1
( )

( ) ( )
a a

J k r k J k rr z
S J k r

r J k a r J k a k r


 

 
= = = − 
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Figure 10.23: To the transition from the thickness vibrating thin disk at / 2 1h a  (a)  to the 

one-dimensional axial vibrating bar at / 2 1h a  (c) . 
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For determining eigenvalues of the radial modes for the partial system a (a tall cylinder at 

3 0S  ) Eq. (4.166)  is valid with value of the Poisson’s ratio 12 11/E E E

rd c c =  (the subscript “rd” 

stands for “rod” in distinction from 1 12 11/E E Es s = −  for a thin disc). For the piezoceramic com-

positions PZT-4, PZT-5, and PZT-8 the values of E

rd  are 0.56, 0.62 and 0.54, respectively. The 

eigenvalues obtained from Eq. (4.166) at these values of E

rd  for these compositions are 

2.2; 5.4; 8,6; . . .i ik a = =  with deviation within less than 1%. Thus, 1 2.2k a =  may be taken 

for calculating strains 
1S  and 

2S . 

It is suitable for this case to use piezoelectric equations of state in the form 

 1 11 1 12 2 13 3 31 3

E E ET c S c S c S e E= + + − , (10.143) 

 2 12 1 11 2 13 3 31 3

E E ET c S c S c S e E= + + − , (10.144) 

 3 13 1 13 2 33 3 33 3

E E ET c S c S c S e E= + + − , (10.145) 

 3 13 1 2 33 3 33 3( ) SD e S S e S E= + + + , (10.146) 

Equivalent parameters of the cylindrical piezoelements will be obtained from expressions for 

the related energies. Omitting the straightforward calculating procedures, the following results 

will be obtained. 

From the expression for potential energy, 

 

/2

2 2

1 1 2 2 3 3

/2 0

1 1
2 ( ) ( 2 )

2 2

h a

E E E E E E

pot a a ah a h h h

h

W S T S T S T rdrdz K K K    
−

= + + = + +  , (10.147) 

follows that the equivalent rigidities are 

 
3 2

11 13 3313.4 , 4.6 ,
2

E E E E E

a ah h

a
K hc K ac K c

h


= = = . (10.148) 

We will assume that cylindrical piezoelements under consideration are solid, which is usually 

the case for the most interesting range of aspect ratios around the point of strongest coupling 

(h/2a is about unity). The value of the equivalent rigidity related to the axial vibration under 

this condition must be changed to 

 
2

33

2 2

33

8
1 1

(1 )

E

h h

k
K K

k

  
 = + −  

−  
, (10.149) 

as the deformation in this case changes along the electric field. For the piezoelements made of 

PZT-4 or PZT-8 ceramics 1.2h hK K  .  
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The equivalent masses obtained from expression for the kinetic energy, 

 

/2

2 2 2

/2 0

1 1
2 ( , ) ( 2 )

2 2

h a

kin a a ah a h h h

h

W r z rdrdz M M M     
−

= = + +  , (10.150) 

are 

 0.86 , 0.5 , 0a h ahM M M M M= = = . (10.151) 

The electromechanical transformation coefficients determined from the expression for 

electromechanical energy, 

 3 1 2 3 3

1 1
( , , ) ( )

2 2

E

em a a h h

V

W D S S S E dV V n n = = + , (10.152) 

are 

 
2

31 332 , (2 / )a hn ae n a h e = = . (10.153) 

With addition of expression for the capacitance of the clamped piezoelement, 

 2

33( / )S S

elC a h = , (10.154) 

the set of the equivalent parameters that are needed for calculating the resonance frequencies, 

effective coupling coefficients and operating characteristics of a cylindrical finite-size piezoel-

ement is completed. Following general expressions for the partial resonance frequencies are,  

 111 1.1

2

E E

a
a

a
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f

M a  
= = , 331 1.1

2 2

E

h
h

h

K c
f

M h 


= = . (10.155) 

(Note that hf  coincides with the resonance frequency of a tall cylinder for the extreme case of 

the aspect ratio ( / 2 ) 1h a .) The aspect ratio factor is 

 1.4
2

a

h

f h

f a
 =  . (10.156) 

(for PZT-4 and PZT-8  ceramics the numerical factor differs by 2%). The coefficient of coupling 

between the partial systems is 

 13

11 33

( / )
E

E E

ah a h
E E

c
K K K

c c
 =  . (10.157) 

For piezoelements made of ceramics PZT-4 and PZT-8 it can be taken that 0.6 = . 
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After all the parameters in expressions for energies associated with vibration of the cylin-

drical piezoelement are determined (the energies of the electrical and mechanical losses are not 

included for simplicity, because they are not essential at this phase of the treatment), the La-

grange’s equations that govern operation of the piezoelement as electromechanical transducer 

will be obtained in the form of Eqs. (10.83)-(10.85), in which the subscripts 1 and 2 must be 

replaced by a and h. From the frequency equation (10.89) of free vibration of the piezoelement, 

where 2 2/ af f = , two branches of nondimensional resonance frequency factor, ( )I   and 

( )II   follow. Plots of these frequency branches are presented in Figure 10.24.  

 

Figure 10.24: The resonance frequency branches for cylinders made from PZT-4 and PZT-8 ce-

ramics normalized to frequencies af . The circles mark the experimental data24. The solid lines 

show theoretical results, the dashed lines show the trends revealed by experimenting. The triangles 

mark the experimental data related to the third mode of the longitudinal vibration. The icons il-

lustrate directions of one-dimensional vibration for the extreme values of the aspect ratios 

The plots are calculated under the assumption that 2a remains constant and h is changing. The 

plots are the same for piezoelements made from PZT-4 and PZT-8 ceramics, as it is accepted 

that 0.6 =  in both cases. With resonance frequencies known, the corresponding mode shape 

factors, which we define according to formulas (10.91) and (10.92) as 
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−
 (10.158) 

may be found. Dependences of the mode shape coefficients from the aspect ratio / 2h a  are 

depicted in Figure 10.25. 

  

Figure 10.25: Dependences of modulus of the mode shape coefficients from the aspect ratio. At 

branch I 0Ims  . At branch II 0IIms  . The icons illustrate relative directions of the radial and 

axial vibration related to these branches. 

As it follows from Eq. (10.158), the mode shape coefficients are negative for the lower fre-

quency branch (branch I) and positive for the higher branch (branch II). This means that vibra-

tions of the cylinder surfaces related to branch I occur in anti-phase, and in-phase related to 

branch II. This is shown with icons in Figure 10.25 

The effective electromechanical coupling coefficients that correspond to the mode shapes 

of the coupled vibration can be determined from basic relation, which for this particular case 

will be modified in the way analogous to those employed in Section 10.3.3.1 to the expression 

 

2 2 2

2 2

( ) [( / ) 1]

1 ( ) ( / ) 2( / ) 1

l h a h l

S E

l h el a h l ah h l
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+
=

  − + +
. (10.159) 

Given that capacitance of the clamped piezoelement can be represented as 

 
2[1 ( )]S T

el el lC C k = − , (10.160) 
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Note that in case the piezoelement is built of segments in number 6  connected in parallel, 

hK   should be replaced by E

hK  here and in all the preceding formulas. 

All the parameters in relation (10.161) are already determined as functions of aspect ratio. 

Results of calculating the effective coupling coefficients for the range of aspect ratios h/2a > 

0.5 that correspond to the frequency branches at l = I, II and results of the experimental inves-

tigation made for a broader range of aspect ratios are presented in Figure 10.26. 

 

Figure 10.26: Dependences of the effective coupling coefficients that correspond to the frequency 

branches I and II for the piezoelements made of PZT-4 and PZT-8 that are normalized to coupling 

coefficients of a tall bar. The circles mark experimental data. The solid lines show theoretical 

results, the dashed lines show the trends revealed by experimenting. Triangles show experimental 

results related to the third mode of axial vibrations The icons illustrate directions of one-dimen-

sional vibration for the extreme values of the aspect ratio . 

The data are normalized to the value of effective coupling coefficient 0.59effk =  for a tall bar 

made of PZT- 4 These results may be sufficiently accurate for piezoelements made of PZT-8 

ceramics considering that they are normalized to 0.57effk = . Peculiarities in the trend of the 

effective coupling coefficients for the axial mode of vibration in the range of aspect ratios from 
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approximately 0.1 up to 0.5 that are revealed by the experimenting confirm the conclusion, 

which is generally recognized by the transducer industry, that this range of aspect ratios should 

be avoided for designing of axially vibrating transducers due to harmful effects of the coupled 

vibrations. Such a conclusion was made previously on the basis of highly nonuniform distribu-

tions of displacement on the surface of a transducer (see Ref. 5) that take place by the same 

reason of coupling between the axial and radial modes. 

The coupled effects can be eliminated by slicing the circular discs into rods and thus 

achieving uniform distribution of displacements and getting high effective coupling coefficient. 

The greatest positive effect in terms of effective coupling coefficient may be obtained, if the 

height to average diameter ratio of the rods is about unity or more, as the theoretical and exper-

imental results presented in Figure 10.26 show. The same effect of decoupling the vibrations is 

achieved in the composite piezoelement designs. Plot of the modulus of admittance for such a 

circular disc having aspect ratio / 2 0.13h a =  is depicted in Figure 10.27, where the first radial 

 

Figure 10.27: Plots of moduli of input admittances of the disc made of PZT-4 ceramics at aspect 

ratio h/2a = 0.05 (solid line), and for the composite disc (dashed line) made of 3-1 composite 

material having aspect ratio h/2a = 0.13 

resonance of the solid disk is marked as “r” and the axial – as “ax”. The plot shows that vibra-

tions of the composite disc are one-dimensional in all the range of aspect ratios with effective 

coupling coefficient having maximum possible value for a particular piezoceramic composi-

tion. 
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10.3.5 Equivalent Electromechanical Circuit accounting for Effects of Coupled Vi-

brations 

Content of this Section will be illustrated with example of the finite-size cylindrical piezoele-

ment. But it will be seen that the developed approach to the problem can be generalized for 

other two-dimensional coupled systems in a straightforward way. 

An important characterization of the electromechanical transducer that employs finite-size 

cylindrical piezoelement is distribution of displacement in axial direction over its end surfaces. 

The extent, to which vibration in the radial direction may contribute to nonuniformity of this 

distribution, can be estimated qualitatively by the values of ratio /a h   of magnitudes of dis-

placements in the radial and axial directions, i.e., by the mode shape coefficients. Their depend-

ences on the aspect ratio that are presented in Figure 10.25 show that at 1   ( ( / 2 ) 0.8h a  ) 

the smaller the aspect ratio, the larger is ratio /a h  , and more pronounced nonuniformity of 

the axial vibration can be expected. At 1   in opposite h  gradually becomes much larger 

than a , and the axial vibration of the cylinder surface becomes more and more uniform. Ex-

perimental confirmation of these considerations can be found in Ref. 5. 

Note, that as it follows from Eq. (10.145) for a thin disc (at 3 0T = ), 

 13 1 2
3 0 1

33

( )
( ) ( )

E

aE

c S S
S r J k r

c


+
= − . (10.162) 

Given that for a finite-size cylinder 3 ( ) hS z  , the distribution of axial displacement due to the 

radial deformation will be denoted ( )h a r . It can be assumed that 0 1( ) ( )h a ar J k r  . Like-

wise, it follows from Eqs. (10.143) and (10.144) for the tall rod (at 1 2 0T T= = ) that 

 13
1 2 3

11 12

2
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E

hE E

c z
S S S

hc c


+ = −

+
. (10.163) 

Given that 1 2( ) aS S + , the distribution of radial displacement due to the axial deformation, 

which we denote ( )ah z , may be assumed to be ( ) cos( / )ah hz z h   . 

Using these considerations for qualitative prediction of the mode shapes of vibration is 

illustrated with results of measuring distributions of axial displacements on the surfaces of disks 

with aspect ratios 0.5 and 1.5 presented in Figure 10.28. The results obtained are in a qualitative 

agreement with predictions that follow from data on the mode shape coefficients presented in 

Figure 10.25. 
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Figure 10.28: Plots of the mode shapes of vibration in the axial direction measured on surface of 

cylindrical piezoelement: (1) - low frequency branch, h/2a = 0.5; (2) – high frequency branch, 

h/2a = 0.5; (3) – low frequency branch, h/2a = 1.5. 

 At h/2a = 0.5 at low frequency branch the radial mode dominates in accordance with results 

shown in the Figure for the mode shape coefficients, and the mode shape of vibration in axial 

direction reflects predominant contribution of this mode. At high frequency branch (at fre-

quency that corresponds to axial resonance) the contribution of radial mode remains significant, 

and superposition of vibrations due to axial and radial modes results in changing the phase of 

vibration in axial direction. Thus, radiation in the axial direction can be more effective at radial 

resonance mode than at the axial mode of vibration, as could be expected, if not to consider 

effects of coupled vibration. Moreover, that effective coupling coefficient for the radial mode 

is also much greater (see effk  for branch I vs for branch II at h/2a = 0.5 Figure 10.15). At aspect 

ratio h/2a = 1.5 in the low frequency branch the axial mode of vibration dominates according 

to Figure 10.25. Contribution of the radial mode is negligible, and vibration in the axial direc-

tion is uniform within accuracy of the measurements. 

The relation between displacements in the partial systems (modal displacements a  and 

h ) in operational mode of a transducer, i.e., at forced vibration under action of applied voltage, 

differ from those determined for free vibration. Determining this relation and overall opera-

tional characteristics of finite cylinder based electromechanical transducers require considering 

their forced vibration with reaction of acoustic field included. The operational 
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electromechanical properties of a transducer that employs the finite-size cylindrical piezoele-

ment can be calculated using the set of Eqs. (10.83)-(10.85) (with subscripts that correspond to 

each particular case), or from the electromechanical circuit presented in Figure 10.29, which is 

equivalent to this set of equations.  

   

Figure 10.29: Equivalent electromechanical circuit of the finite size cylindrical transducer with 

effects of coupled vibration taken into consideration. 

We assume that the side surface of the cylinder is free of a load, and the mechanical (acous-

tic) load, mZ , that is applied to one end surface (it is included in the equivalent circuit by ob-

servation as well as the resistances of the electrical and mechanical losses, eLR  and mLr ) has 

magnitude small enough as not to change distribution of displacement in the axial direction, 

which is usually the case for electroacoustic transducers. The impedances ( / )ha ha a hZ z U U=  

and ( / )ah ah h aZ z U U= , where /ah ha ahz z K j= = , are the introduced impedances that char-

acterize coupling between contours that correspond to the partial vibrating systems; ahz  is the 

mutual impedance between the partial systems. Velocities hU  and aU  result from the combined  

effect of the “self” velocities of the partial systems (i.e., without effect of coupling) and 

their mutual contributions due to coupling between the systems. Thus, hU  can be represented, 

as 

 h h ahU  = + , (10.164) 

where h  is the self-partial axial velocity and ha  is the additional axial velocity due to coupling 

with the radial vibrating partial system. 

Likewise, 

 a a ahU  = + , (10.165) 
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where 
a  is the self-partial radial velocity and 

ah  is the additional radial velocity due to cou-

pling with the axial vibrating partial system. The velocities 
hU  and 

aU  must be calculated from 

the equivalent circuit in Figure 10.29. The self-partial velocities a  and h  have to be deter-

mined from the equivalent circuit considering the contours as independent. After this is done, 

the velocities ha  and ah  can be found. We will assume that distributions of velocity on the 

surfaces of the finite-size cylinder may be presented following the notes regarding relations 

(10.162) and (10.163) as 

 0 1( ) ( )h h haU r J k r = + , (10.166) 

 ( ) cos( / )a a ahU z z h  = + . (10.167) 

If to accept these assumptions, then calculating of all the parameters of the transducer as an 

electroacoustic device including the directional factor becomes straightforward in principle. 

Employing the equivalent circuit based calculating technique is appropriate for the range 

of aspect ratios 0.5 / 2 1.5h a  . It can be concluded following the results presented in Figure 

10.24 and Figure 10.26 that the axial vibrations of the cylinder can be considered as one-di-

mensional at aspect ratios larger than 1.5, because values of the resonance frequencies and ef-

fective coupling coefficients practically reach their values for the extreme case at these aspect 

ratios. This conclusion is supported by results of measuring the mode shape of vibration in the 

axial direction of a cylinder at h/2a = 1.5 that proved to be uniform, as shown in Figure 10.28. 

10.4 Transducers Nonuniform over the Length 

Inherent disadvantage of the uniform in direction of vibration length expander transducers for 

underwater applications is that they are greatly under loaded by radiation impedances, as it was 

noted in Ch. 3. As the result, the acoustic power radiated is limited by the dynamic mechanical 

strength of the transducers, while they have significant reserves of the electrical strength. Other 

operational characteristics of the transducers such as efficiency and ability to work in a broad 

frequency range are also far from optimal. Improving the operational characteristics of the 

transducers can be achieved by employing matching elements that may produce a required step 

up transformation of the acoustic load. For low frequency transducers (approximately in the 

range from 2 to 30 kHz) this function can be fulfilled by the passive bars (length expander 
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vibrating systems in general) vibrating one-dimensionally (in the piston like mode). Being ce-

mented to the ends of the length expander piezoelement they perform transformation of loads 

and thus allow optimizing the transducer operational properties by proper choice of their pa-

rameters. Resulting structure presents the length expander transducer nonuniform over the 

length (“Tonpilz” transducer) that is shown schematically in Figure 10.30 (a). 

  

Figure 10.30: (a) Nonuniform length expander transducer composed of piezoelement with param-

eters marked by subscript “c” and two passive bars, with parameters marked by subscripts “H” 

(for Head) and “T” (for Tail), respectively; (b) cascade equivalent circuit of the transducer. 

 Calculating operating characteristics of the transducer can be performed using cascade 

connection of the T-network equivalent circuits of the length expander active and passive vi-

brating systems (see Section 10.2.3.1) that is presented in Figure 10.30 (b) for the basic design 

of the nonuniform transducer. Such transducer designs and calculating principle are considered 

to great detail in vast literature, for example, in Refs. 6-8 and in the works referenced therein. 

Using the cascade equivalent circuit allows calculating all the parameters of the transducer if 

dimensions and material properties of its parts are known. This problem can be called the direct 

problem of transducer designing. The cascade circuit representation is very well suited for solv-

ing the direct problems by application of the matrix analysis. An outline of this approach to 

calculating transducer parameters can be found in Ref. 8. In the process of application of the 

matrix analysis it must to be remembered that all the formulas for impedances in the particular 
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T-networks are valid under the assumption that the corresponding parts vibrate in piston like 

mode (in one-dimensional fashion). In the case that the assumption of one-dimensional mode 

of vibration of the transducer parts is not valid or is questionable, the alternative to analytical 

approach method of Finite Element Analysis (FEA) operating characteristics of the transducers 

is widely used. An introduction to employing the FEA for nonuniform bar transducer designing, 

and vast bibliography on the related issues including references to programs available for trans-

ducer analysis can be found in Ref. 8. 

Being powerful means for solving the direct problem of transducer designing, the matrix 

and FEA methods do not provide means for physical clear and adequate approach to solving 

the inverse problem, which consists in optimizing transducer operating properties in accordance 

with particular requirements. Although a formal solution of this problem can be obtained by 

analyzing results of multiple calculations in the direct way, this procedure does not develop 

engineering intuition that can be based on understanding of underlying physics. In contrast is 

the situation with uniform transducers, in which case the conditions for their optimal matching 

with acoustic load may be clearly formulated from solutions in the generalized coordinates. But 

in this case there is no reasonable technical means for realizing the necessary loading for rela-

tively low frequency transducers. This contradiction can be partially resolved in the way of 

combining both approaches as it was suggested in Ref. 9 and is considered below. 

10.4.1 Equivalent Transformation between Nonuniform and Uniform Length Ex-

pander Transducers 

It can be shown that the problem of calculating nonuniform transducer depicted in Figure 10.30 

(a) in the frequency range near to resonance can be reduced to already discussed calculation of 

a homogenous piezoceramic transducer, in which only a portion of piezoceramic volume is 

used as active. With this goal at first consider input impedance of one-dimensionally vibrating 

bar loaded on the opposite end (Figure 10.31 (a)). As it was shown in Section 4.3.3, the input 

impedance is 

 
tan

1 ( / ) tan

cs L

in

L cs

j cS kl Z
Z

j Z cS kl





+
=

+
, (10.168) 
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where 
LZ  is impedance of the load; , , ,csc S l  are the parameters of material and dimensions 

of the bar. The circuit representation that corresponds with this expression is shown in Figure 

10.31(b). Correlation between the input and output velocities in this circuit is 

 
0

1

[1 ( / ) tan ]cos

l

L cs

U

U j Z cS kl kl
=

+
. (10.169) 

  

Figure 10.31: To the input impedance of a bar loaded on one end. (a) Geometry of the bar, (b) T-

network representation of the input impedance, (c) the two-terminal equivalent circuit of input 

impedance after application of the Thevenin’s theorem. 

If to assume that 

 ( ) ( )1 2 / tanL csZ Z Z cS kl + = , (10.170) 

which usually holds for acoustic loading, then the equivalent circuit of the input impedance can 

be represented following the Thevenin’s theorem in the form of circuit shown in Figure 

10.31(c), where 

 ( ) ( )tancsZ j cS kl , ( )' 2/ cosL LZ Z kl , ( )' / cosF F kl , (10.171) 

 0 / cos( )lU U kl= . (10.172) 

Note that formulas for LZ   and F  follow directly from conservation of energy in course of 

manipulations The mechanical energies associated with load and force acting on the end are 

 
2 2

0L L l LW Z U Z U= = , (10.173) 

 0F lW FU F U = =  , (10.174) 
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where from formulas (10.171) for 
LZ   and F   follow due to relation (10.172). The input im-

pedance of an unloaded bar obtained from formula (10.168) is 

 ( ) ( )tancsZ j cS kl= . (10.175) 

Now the method accepted in the theory of electric long lines can be applied, according to 

which a reactive load used to be replaced with a segment of the same line having the input 

impedance equal to impedance of the load. Let us imaginary replace the actual passive bars 

with imaginary bars having the cross section area, density and sound speed equal to those of 

the active bar. And let us assume that the input impedances of the imaginary bars are equal to 

the input impedances of the actual passive bars under action of real loads and forces on their 

ends at resonance frequency of the transducer. Usually only one of the ends of the combined 

transducer is operating, i.e., subjects to action of a load and/or an external force (let it be the 

end of bar H in Figure 10.30 (a), to which external actions L acZ Z=  and L eqvF F=  are applied), 

while another end is free of loads ( 0LZ =  on the end of bar T  ). The input impedance of bar T 

from the side of the piezoelement is by formula (10.175) ( ) ( )taninT cs T T
Z j cS kl= . 

The input impedance of bar H in accordance with circuit in Figure 10.31 (c) and expres-

sions (10.171) is 

 ( ) ( )taninH cs H H
Z j cS kl= , ( )' 2/ cosL ac H

Z Z kl= , ( )' / coseqv H
F F kl= . (10.176) 

The lengths 1l  and 2l  of ceramic bars that are equivalent to the passive bars in terms of their 

input impedances at the resonance frequency will be found from the relations 

 ( ) ( ) ( ) 1tan tanE E

cs csH H c
cS kl c S k l = , (10.177) 

 ( ) ( ) ( ) 2tan tan .E E

cs csT T c
cS kl c S k l =  (10.178) 

The subscript “c” stands for ceramics having the same parameters as the active piezoelement, 

from which the equivalent bars are supposed to be built. Impedance LZ   and force F   defined 

by formulas (10.176) are applied to the boundary of the active segment and the passive bar H. 

Being transformed to the operating end of the imaginary homogenous bar 1, these quantities 

become 

 ( )'' ' 2 2 2

1 1cos cos / cosE E

L L ac H
Z Z k l Z k l kl= = , (10.179) 
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 ( )'' '

1 1cos cos / cosE E

eqv H
F F k l F k l kl= = . (10.180) 

Here the considerations expressed by relations (10.173) and (10.174) are applied. For definite-

ness we will further assume that the transducer operates in array of a big size, and therefore 

( )ac w HZ c S=  and 2eqv o HF P S= , where oP  is the sound pressure in the free acoustic field. 

Thus, the initial Tonpilz transducer appeared to be converted to the uniform piezoceramic 

bar with partial electrodes and with external actions transformed according to formulas (10.179) 

and (10.180), as shown in Figure 10.32. The transducers are equivalent in terms of their calcu-

lated operating electromechanical characteristics, strictly speaking, at the resonance frequency, 

but it can be expected that the characteristics will not differ significantly in some frequency 

range around the resonance frequency. 

Further, parameters of the uniform bar transducer can be found using a single contour 

equivalent circuit considered in Section 5.7.3.1, if calculations are restricted to the frequency 

region around the resonance frequency of the imaginary uniform bar with appropriately located 

active section and under transformed actions "

LZ  and 
"F  applied to the end of the bar. 

 

Figure 10.32: (a) The equivalent conversion of the composite transducer into uniform ceramic bar 

with partial electrodes. By the dashed lines are shown extensions of the ceramic section of the 

uniform bar that are equivalent to real passive parts of the composite transducer in terms of their 

input impedances. (b) The resulting uniform ceramic bar with partial electrodes. 

Thus, replacement of the parts of the uniform piezoceramic bar by the passive parts made 

of a certain material and having a certain size can be regarded as a way of matching the trans-

ducer to a load. This is possible for the uniform bar transducers by two reasons. Firstly, because 

they have a significant reserve of electrical strength, as was noted in Ch. 3, and reducing this 
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reserve with simultaneous increase of otherwise not sufficient mechanical strength of trans-

ducer due to increase of acoustic load is highly beneficial. Secondly, contribution to the elec-

tromechanical conversion of the parts of a length expander piezoelement located close to the 

ends is relatively small, and their replacement by passive material may even increase the effec-

tive coupling coefficient of the transducer, as it was shown in Section 5.6.2 and is illustrated by 

plot in Figure 10.33. 

 

Figure 10.33. Dependence of the normalized effective coupling coefficient 
2 2

3( ) /eff e ik l k  (solid 

line) and electromechanical transformation coefficient ( ) / ( )eln l n l  (dashed line) on the length of 

the symmetrically positioned active part of length expander piezoelement. 

In case that active part of the uniform transducer is displaced from its center, as is shown 

in Figure 10.32, the electromechanical transformation coefficient will change according to for-

mula 

 ( ) cos( / )el avn n l x l=  , (10.181) 

where ( )eln l  is the value for the symmetrically located active part and avx  is displacement of 

the center of the active part. The effective coupling coefficient will reduce proportionally to 

2cos ( / )avx l . 

Summarizing the above considerations, we will illustrate the procedure of optimal design-

ing of the composite transducer with idealized example. Definitely, a real designing is more 

complicated and, probably, may require several approximations for achieving desirable results. 

But our goal is to illustrate the idea of the approach. 
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Suppose that for the composite transducer requirements are formulated for the resonance 

frequency, 
rf , radiating surface area, 

HS , and operating characteristics (power radiated, fre-

quency range of operation, overall length of the transducer and so on). We assume that from 

condition of operating in an array of a big wave size acoustic load of the composite transducer 

acts on one end and is equal to ( )ac w HZ c S . For simplicity we will also assume that the 

composite transducer will be symmetrical relative to its middle section, as it is shown in Figure 

10.34. These assumptions are not essential in principle, though the symmetrical configuration 

of the electrodes can be recommended, as the most effective in terms of electromechanical con-

version. If it is desirable to have not symmetrical design for meeting requirements for trans-

ducer, then the active part of the equivalent uniform bar may be displaced from the center, as it 

is shown in Figure 10.32 (b). This will result in reducing the electromechanical transformation 

coefficient in accordance with formula (10.181) and corresponding reduction of the effective 

coupling coefficient. 

 

Figure 10.34: To the equivalent conversion of the uniform bar into composite transducer. By the 

solid line is shown imaginary uniform bar, by the dash lines are shown passive parts of composite 

transducer that are equivalent to their ceramic counterparts in terms of the input impedances. 

At first, we consider uniform bar transducer (shown in Figure 10.34 by solid line) that has 

the required resonance frequency. Its overall length must be 

 12 / 2E

el c rl l l c f= + = . (10.182) 

Next, the required value of the acoustic load for the uniform bar, acr , which ensures optimal 

matching of the transducer for achieving specified operating characteristics, may be determined 

in the way that was discussed in Ch. 3. In doing this the length of the active part of the uniform 

transducer, ell , of its cross section area, csS ¸ and mode of polarization of piezoelement may be 

chosen from condition of reducing excessive reserve of the electrical strength to an acceptable 

minimum, in order to maximize the lengths 1l  of parts of the bar that are supposed to be replaced 
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by the passive parts of combined transducer. This may result in a greater opportunity of tailoring 

the passive parts for achieving required transformation of acoustic load. It is noteworthy that 

the length of electrodes and cross section area of a piezoelement are related through the elec-

tromechanical transformation coefficient. It must be kept in mind in the process of determining 

their values that reducing the cross section area may be desirable, because increase of ratio 

/H cS S  can make it easier optimizing parameters of the passive parts. Example that illustrates 

calculating the uniform transducer under an optimal load for achieving certain requirements 

will be given in Ch. 13. 

Assuming that acr  , ell  and csS  are known, the following equations can be formulated that 

have to be met by the material properties and length of the passive part of the combined trans-

ducer (its surface area is supposed to be known from requirements for the transducer): 

from condition (10.179) of the proper impedance transformation 

 ( )2 2cos ( ) cos
2

E elH
w cH

ac

l lS
kl c k

r


−
=


; (10.183) 

from condition (10.177) of equality of the input impedances. 

 ( ) ( ) ( )tan tan
2

E E el
cs cH H c

l l
cS kl c S k 

−
= . (10.184) 

Thus, we have two equations for determining values of H , Hc  and Hl . One more condition 

can be derived from practical considerations regarding material or geometry of the passive part. 

For example, this can be requirement for its piston like vibration, as at a given surface area, HS

, the length (thickness) of the passive part cannot be too small to avoid a harmful contribution 

of its flexural deformation. Several examples that illustrate dependence of modes of vibration 

of circular disks that may be used as passive parts of the combined transducers from their rela-

tive dimensions are considered in the next section. 

After the estimation of geometry of the combined transducer is done, results of calculating 

characteristics of the imaginary uniform transducer in the operating frequency range may be 

verified using the common cascade T-network technique for the resulting combined transducer. 

These characteristics can differ to some extent, because the conditions of equivalency strictly 

speaking are held at resonance frequency only. Plots in Figure 10.35 illustrate the extent of 

difference of results obtained by employing both methods for calculating frequency responses 
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of two transducer prototypes that have the same resonance frequencies and radiating surface 

areas, but different ratios of the load transformed to surface of the equivalent uniform bar and 

the real acoustic load, namely, that correspond to nondimensional coefficients of radiation re-

sistance ( / ) 2.5r ac cr cS = =  and 4.0. As can be seen from the plots, the agreement between 

the results is fairly good in a broad frequency range. The discrepancy increases with increase 

of the transformed acoustic load. On the positive side is that characteristics of the real opera-

tional band look more optimistic than predicted by the suggested approximate method. 

  

Figure 10.35: Results of calculating the frequency responses of the power radiated by two Tonpilz 

transducers having the same resonance frequencies and radiating surface areas: (a) at 4.0r = , 

(b) at 2.5r = . Solid lines-calculations are made using regular technique. Dashed lines-calcula-

tions are made for the equivalent uniform bar. 

10.4.2 Input Impedance and Mode of Vibration of the Circular Disk  

The passive matching part of the bar transducer can be imagined as a circular disk cemented to 

the end of the active driver. Variants of typical configuration of the ends of the drivers are 

schematically shown in Figure 10.36. 

All the previous considerations were made under the assumption that the matching disk 

vibrates in the piston like manner, with uniform distribution of the displacements on its surface. 

Validity of this assumption may be questionable for real transducer designs, moreover, it is 

often desirable to have the disk as thin as can be acceptable, in which case a possibility of the 

flexural vibration of the disk that may violate this assumption must be considered. A trade off 

takes place between the thickness to diameter ratio of the matching disk and uniformity of 
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vibration of its surface. The flexural vibrations of the disk under action of the drivers depend 

essentially on the boundary conditions on the area of contact between the driver and the disk. 

It is hardly possible to formulate these conditions analytically and to get exact analytical solu-

tion to the problem. The adequate numerical solution of the problem can be obtained by FEA. 

But it seems beneficial to use a combined approach. Firstly, to formulate reasonably idealized 

boundary conditions and to obtain physical clear approximate analytical solution, and secondly, 

to verify the obtained result and to make it more accurate by using FEA. 

  

Figure 10.36: The schematic view of the disks vibrating under action of the drivers having differ-

ent configuration: (a) solid piezoceramic bar, (b) cylindrical piezoelement having various mean 

diameter. The variant (b) is more common because it allows placing a strengthening bolt inside. 

In this section we will use an approximate analytical method for estimating the acceptable 

dimensions of the matching disk and for obtaining the value of its input impedance with taking 

flexural deformations into consideration. The goal will be to determine the smallest possible 

thickness of the disk that insures a permissible deviation of displacement from uniform distri-

bution over the surface of the disk. The following assumptions will be made. Let the diameter 

to wavelength ratio foe the disk be / 1/ 2dD  =  for definiteness. Actual size of radiating sur-

face depends on application of the transducer and may vary. Desirable is to have smaller wave 

diameter for application in a big array with steerable directional pattern, but for the goal of 

estimating the minimal thickness the bigger diameter is more demanding. We will assume that 

displacement (denoted it 0 ) is uniform over cross section of the driver on the area of contact 

with the disk. Overall displacement of the surface of the disk will be represented as 
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 0 1( ) ( )r r r   = + , (10.185) 

where ( )r  is the lowest mode of flexural vibration of the disk under the boundary conditions 

imposed by the driver, 1  is the maximum deflection in the flexural vibration of the plate. As 

we are interested in close to piston like vibration of the matching disk, the condition 1 0   

must be fulfilled.  

Under the accepted assumptions the disk can be considered as a system with two coupled 

degrees of freedom. The partial systems are: the rigid disk that vibrates as a piston with dis-

placements 0 , and the plate that performs vibration 1( ) ( )r r  = . The boundary conditions 

that are imposed on the flexural vibrations of the disk by a driver is the matter of principle in 

this treatment. It is clear that real boundary conditions depend on geometry of the driver. They 

are likely to be the clamped conditions on the contour of contact with the driver assuming that 

the moment of resistance of the driver is large enough for both variants of the drivers, as is 

shown in Figure 10.36 (a) and (b). Though what is large enough is not clear, we will consider 

that the clamped conditions are in place. Validity of this assumption, as well as of assumption 

that displacement is uniform over the cross section of a driver may be checked by experimental 

verifying results of calculations or/and by FEA. 

At first, we consider variant (a), in which case the part of the disk at r b  vibrates in 

flexure as the annular plate that is free on the outer surface and clamped on the inner surface. 

Determine energy status of the disk. As the piston like (without deformation) vibration of the 

disk does not contribute to the potential energy, the potential energy is 

 2

1 1

1

2
pot eqvW K= , (10.186) 

where 1eqvK  is equivalent rigidity of the disk in flexural vibration under prescribed boundary 

conditions. The kinetic energy is 

 
2 2 2

0 1 0 0 1 01 1 1

0

1 1
2 [ ( )] [ 2 ]

2 2

a

kin d eqvW t r rdr M M M       =  + = + + , (10.187) 

where 
2

d dM t a tS  =  =  is the mass of the disk, 1eqvM  is the equivalent mass of the disk in 

flexure, and 01M  is the mutual mass between the piston like and flexural vibration of the disk. 
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The equivalent and mutual masses are commonly expressed as eqv effM tS= and 01 avM tS= , 

where 

 22 ( )effS r rdr 


=  , (10.188) 

 2 ( )avS r rdr 


=  . (10.189) 

Here   is the surface area of the part of the disk that vibrates in flexure (it depends on geometry 

of the driver). Usually effS  and avS  are presented among equivalent parameters of the plates 

at different boundary conditions. The energy of external action is 

 0e drW f = , (10.190) 

where drf  is the total force, with which the driver is acting on the area of contact. 

The Lagrange equations after converting to the complex form ( /U j = , j U = ) are 

 0 01 1d drj M U j M U F + = , (10.191) 

 2

01 0 1 / 1[1 ( / ) ] 0eqv b aj M U j M U   + − = , (10.192) 

where 
/ 1 1/b a eqv eqvK M =  is the lowest resonance frequency of flexural vibration of the 

plates under boundary conditions that depend on geometry of the driver’s cross sectional area. 

They are annular plates clamped on the inner (of radius b) and free on the outer boundary of 

radius a, and the plate of radius 1b  clamped on the boundary, as shown in Figure 10.36. 

Vibration of the plates under these boundary conditions are considered in Ch. 4 (for the 

annular plate in Section 4.5.8.2) under the condition that elementary theory of bending is appli-

cable. As our goal is to estimate smallest acceptable thickness of the disk, we will assume that 

this approximation holds. Otherwise, the corrections for the finite thickness of the plates can be 

used that are introduced in Section 9.4.3. From Eqs. (10.190) and (10.191) will be obtained 

 01
1 0 02 2

1 / /[1 ( / ) ] [1 ( / ) ]

av

eqv b a eff b a

M S
U U U

M S   
= − = −

− −
, (10.193) 

and the input impedance of the disk 
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As we are interested in close to piston like vibration of the matching disk, the condition 

must be fulfilled that in expression (10.185) 1 0  . Let it be, for example, 

 1 00.2  . (10.195) 

Then from relation (10.193) follows that at resonance frequency of the driver, drf , should be 

fulfilled relation 

 
2

/

0.2
[( / ) 1]

av

eff b a dr

S

S f f


−
, (10.196) 

or 

 / 5( / ) 1b a dr av efff f S S + . (10.197) 

Expressions for the parameters / ,b a avf S  and effS  of the annular plates vs. ratio b/a that are 

extracted from Table 4.5 are presented in Table 10.1. 

Table 10.1. Parameters of the annular plates clamped on the inner diameter. 

b/a 
2 2

/ / ( )eff b aS a b −  
2 2

/ / ( )avb aS a b −  /b a  

0.7 0.26 0.41 6.17 

0.6 0.28 0.42 4.61 

0. 5  0.29 0.44 3.69...... 

 

Note that  2

/ / 22 (1 )2 12
b a b a

t Y
f

a


 
=

−
. (10.198) 

Thus, for example, if radius of the driver is 0.5b a= , than according to data from the Table 

/ // 1.5avb a eff b aS S = , and from relation (10.197) follows that it must be / 2.9b a drf f . Using for-

mula (10.198), where 3.68 =  , we arrive at the requirement for the geometry of the disk 

 
2 2

4.6
(1 )

dr

t Y
f

a  


−
 (10.199) 

To get impression regarding an order of quantities involved consider an example. Let the 

operating frequency of the driver be  = 10 kHz. Diameter of the matching disk according to our 

assumption is 2 / 2wa =   7.5 cm. Assuming that the disk is made of aluminum  
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( 2 3/ (1 ) 5.4 10Y  − =  m/s), from condition (10.199) will be obtained that 1.2t   cm. Thus, 

at the dimensions a = 3.75 cm and 1.2t   cm deviation of displacement from uniform over 

surface of the disk at frequency 10 kHz is less than 20%. 

It is noteworthy that for the annular disk of these dimensions the thin plate theory can be 

not exact, and corrections to the expressions of the equivalent parameters must be required for 

the rotary inertia and shear deformations. Though the assumptions made for the considered 

example regarding the wave diameter of the radiating surface and acceptable nonuniformity of 

displacements are probably too demanding for practical applications. Thus, for example, if 

2 / 4 4wa =   cm, then at all other conditions equal it should be 3.4t   mm, and the aspect 

ratio for the disk will be / 6a t   vs. 3.3 in the previous example. The input impedance of the 

disk under the same condition (10.195) of uniformity of vibration, being obtained from (10.194) 

after substituting these values of the parameters, will be 

 1.07in dZ j M=  . (10.200) 

An increase of the acceptable nonuniformity of displacement will result in reducing the thick-

ness of the disk and in increasing deviation of value of input impedance from .in dZ j M=  

In the variant of driving the disk by a cylindrical piezoelement, as shown in Figure 

10.36(b), the flexural vibrations may occur also of the central part of the disk at inr b . We 

will assume that vibration of this part of the disk can be considered, as of the plate clamped on 

its boundary at inr b= . In this case the mode shape ( / )r b  in expression (10.185) is 

2 2 2( / ) (1 / )inr b r b = − , 
20.18eff inS b= , 20.33av inS b=  (see Table 9.3), and in formula (10.198) 

for the resonance frequency 2a  must be replaced by 
2

inb  and /b a  by 3.2
inb = . Compare the 

resonance frequencies of the annular plate clamped at the radius ob  (denoted /ob a ) and of the 

inner plate clamped at radius inb  (denoted 
inb ). Obviously, under the condition that 

/in ob b a   the nonuniformity of the surface displacement will be determined by displace-

ments of the annular plate, which is already estimated for variant (a), and vibration of the central 

part of the disk can be considered as uniform. Given that 
o inb b  , the relation between the 

resonance frequencies /o ob b a   will be more strict then required. Using formula (10.198) for 

both resonance frequencies and remembering that 3.2
ob =  we arrive at relation 

 

2 2
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ob aob
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 =  

 
. (10.201) 
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Assuming, for example, that / 0.6ob a =  and 0.7, we obtain with values /ob a  taken from  

Table 10.1 that 0.7 =  and 1.8, respectively. Thus, the condition (10.201) is satisfied at 

/ 0.6ob a = . And at values /ob a  somewhere between 0.6 and 0.7 the flexural vibration of the 

central part of the disk seem to start contribute to overall nonuniformity of the displacements. 

But at this point it is useful to keep in mind the following considerations. 

For fare comparison with variant (a) it must be assumed that the cross section areas of the 

drivers in both cases are the same, i.e., the ratio 2 / 2 ava b t  should be kept constant. Following 

the previous example, in which case / 4d drS S = , this means that thickness of the driver reduces 

with increase of /ob a  and at / 0.7ob a   reaches about 0.2t a . At thicknesses of this order 

the assumption of clamped boundary conditions for both outer and inner parts of the disk be-

comes questionable. The assumption that the disk is simply supported on the average diameter 

of the driver may become more reasonable. The input impedance of a thin disk supported on 

the circle of radius b a  is considered in Section 4.7.2.3. It is shown that if only the first mode 

of vibration 1 ( / )r a is taken in calculation, then according to expression (4.696) the input im-

pedance on the circle of radius b is  
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. (10.202) 

The first mode of vibration of free plate has a nodal line at / 0.68r a = . Thus, if a driver is 

acting on the line with radius 0.68b a= , 1( / ) 0b a =  and in dZ j M= , i.e., the plate vibrates 

uniformly seemingly independent of frequency at least in vicinity of the first resonance fre-

quency of the disk and even higher given that the resonance frequency of the next mode of 

vibration, which may contribute to nonuniformity of displacements, is 2 14.3 = . If to admit 

that contribution of the second mode may produce a visible nonuniformity of displacement at 

frequencies above 2 / 2 , then at the same operating frequency and diameter of the disk as in 

the previous example ( opf  = 10 kHz, 2a = 7.5 cm) the acceptable thickness of the disk may be 

0.3t   cm. 

Definitely, this result is approximate at least by the two reasons. Firstly, the driving force 

is applied not exactly on the line, but on the ring of a finite width, and simple supporting con-

ditions are also not exact. Besides, as already mentioned, in the absence of the first vibrational 
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mode contribution of the next vibrational mode 2 ( / )r a , which was neglected, must be more 

accurately estimated. But these considerations show that by appropriate application of the act-

ing force vibration of even relatively thin disk can be made close to uniform.  

10.4.3 Transducers with Uniform over Length Cross Section Area 

The nonuniform length expander transducer designs combined of parts having different cross 

section areas are typical for application at relatively low frequencies (in the range of about 2 

kHz up to 50 kHz following Ref. 6-8). High-frequency transducers are normally made of the 

single piezoelements (blocks of piezoceramics) and have uniform over the length cross section 

area. Typical schematic view of the transducers is shown in Figure 10.37. 

  

Figure 10.37: Schematic view of the transducer with uniform over length cross section area:1- 

piezoelement, 2 and 3 are metal blocks in variant of the sandwiched transducer and matching 

layers otherwise. 

The half-wavelength piezoelements for operating in the frequency range about 50-200 kHz 

may appear to be not appropriately thick. For reducing the size they can be sandwiched between 

two metal parts (2 and 3 in Figure 10.37) that perform mass loading of the piezoelements. Re-

placing the portions of piezoelement by passive parts occurs without loss (and even with some 

raise) of the effective coupling coefficient, and the electrical strength of the transducer is not 

compromised because of its significant reserves that are typical for the length expander trans-

ducers. In this case it is possible to excite the second mode of vibration. Also, the piezoelements 

may be cemented of two parts connected in parallel. In such design it is possible to excite vi-

bration in the second mode by connecting the parts in antiphase, or both in the first and second 

modes by switching polarities of the parts. All these variants of transducers can be treated using 

the technique described in Section 10.2.3 in a straightforward way. 

 The lateral dimensions of the transducers may be significantly larger than their length (re-

member that the “length” is dimension in direction of vibration) from consideration of direc-

tionality required for their sonar applications. Therefore, the length to lateral dimensions aspect 

ratios of the piezoelements that may have configuration of stripes, plates and discs have to be 

3 1 2ZL = 0 ( )L wSZ c=
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taken into consideration for avoiding harmful effects of the coupled vibration in the piezoele-

ments. The necessary information on these issues is presented in Section 10.3.  

After the aspect ratio related conditions are fulfilled, all the equivalent circuits technique 

described in Section 10.2 can be employed in a straightforward way for calculating parameters 

of transducer. Effects of the matching layers may be considered as well by representing them 

as the passive T-networks.  

Requirements for the matching layers and their design peculiarities were not considered so 

far, therefore we present some considerations regarding these issues following Ref. 10, where 

a comprehensive review can be found of different aspects of the high-frequency transducer 

designs. Usually, they offer less opportunities for optimizing acoustic load than Tonpilz like 

design. The functions of reducing mechanical Q of the transducers for achieving their accepta-

ble efficiency and bandwidth are performed by the matching layers in the front and in the back 

of the piezoelement (blocks 2 and 3 in Figure 10.37). Employing the matching layers (blocks) 

is based on their properties to perform transformation of mechanical and acoustic loads ( LZ ) 

applied to one of the ends according to the general formula (10.168). 

 
( ) tan

1 [ / ( ) ] tan

bc cs l bc L
in

L bc cs l bc

j c S k l Z
Z

j Z c S k l





+
=

+
, (10.203) 

where subscript l stays for “layer”. This formula is valid under assumption that the layer vibrates 

in one dimensional (piston-like) mode. Value of the sound speed in the formula depends on 

whether the layers can be imagined as bars, strips, or plates. In other words, it depends on the 

boundary conditions for vibration of the layers. Therefore, the sound speed and wave number 

in the formula are used with the subscript “bc”, which collectively reflects that the effective 

Young’s moduli bcY in these cases have different values (Y for bars, stY  and plY  by formulas 

(10.18) and (10.14) for the strips and plates) and /bc bcc Y = . Further the subscript will be 

omitted. Formula (10.203) does not account for mechanical losses in the layers for simplicity. 

In some cases considering the losses may be essential, as it will be pointed out below. 

 For matching and backing purposes the quarter-wavelength ( / 4l =  at the resonance 

frequency) and half-wavelength ( / 2l = ) layers are usually used. As it can be seen from for-

mula (10.203), these layers perform transformations of loads that depend on frequency. At the 

resonance frequencies they are as follows. For the / 4  layer ( tan kl =  ), 
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 2( ) /in l LZ cS Z= ; (10.204) 

for the / 2  layer ( tan 0kl = ), 

 in LZ Z= . (10.205) 

In the common for underwater applications variant of loading shown in Figure 10.37 the im-

pedances acting on the ends of piezoelement are as follows: with / 4  matching layers 

2[( ) / ( ) ]in l wZ c c S =   on the front, and inZ =   on the back; with / 2  matching layers 

( )in wZ c S=  on the front, and 0inZ =  on the back. 

Different combinations of the matching layers can be used depending on the requirements 

for transducer properties. For getting a loading that is near to optimal in terms of acoustic power 

radiated and ensures an acceptable bandwidth of the transducer operation (for the tradeoff be-

tween these properties see Section 3.1.5) the / 4  layer must be used in front of the piezoele-

ment. In the situation that the bandwidth needs to be increased for improving conditions for 

signal processing this can be achieved for expense of efficiency of the transducer by backing 

the piezoelement with / 2  layer made of lossy material. Low loss / 2  layer in front of the 

piezoelement may serve as acoustic window and simultaneously as a protective layer that seals 

the transducer. Backing / 4 layer made of high-impedance material such as steel produces 

clamping effect ( inZ =  ) on the end of the piezoelement, length of which must be reduced in 

this case to / 4  for retaining the same resonance frequency. The cross section that does not 

move can be used for mounting transducer within a case without (or with minimal) additional 

losses and interaction with the structure of the case. 

Realization of the functions of the matching layers critically depends upon availability of 

materials with appropriate properties (sound speed, characteristic acoustic impedance ( )lc  

and coefficient of absorption). Review of the materials used for these applications can be found 

in Ref. 10. Most of them are composite materials synthesized from epoxy resins with addition 

of proper fillers. 

Quantitative estimations of input impedances of the matching layers made at resonance 

frequency subject to change with deviation of operating frequency. Variations of values of the 

input impedances in some frequency range around the resonance frequencies may be deter-

mined from approximate equivalent circuits with lump parameters that are presented in Ref. 10 
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and shown in Figure 10.38. These circuits were obtained as result of decomposition of the trig-

onometric functions in formula (10.203) into series in vicinity of the resonance frequencies. 

Resistances mLr  and mLR  are introduced in the circuits to account for losses of energy in the 

layers. In the equivalent circuits 
lM lS=  is the mass of the layer, /lC l YS=  - static compli-

ance of the layer, 2 / 2mL l lr C Q =  , and 2 /mL l lR Q C= , where 
lQ  is the quality factor of 

the layer. It is shown that approximation of these circuits is valid within 3 dB bandwidth with 

an error less than 10% for the layers with Q-factor larger than 3, which is usually the case. 

  

Figure 10.38: Simplified equivalent circuits in the frequency range around the resonance for the 

/ 2  (a) and / 4  (b) layers loaded by impedance ZL. 
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Some Aspects of Transducers 

Designing 



  

CHAPTER 11 

EFFECTS OF OPERATIONAL AND ENVIRONMENTAL CONDITIONS 

11.1 Introduction 

The preceding Parts I–III were concerned with solving the direct problem of transducers de-

signing that is calculating the transducer’s output characteristics at specified input actions. It 

was assumed in course of this treatment that operating and environmental conditions for the 

transducers are ideal (small signals for the projectors, room temperatures, negligible external 

pressure). Parameters of piezoceramic materials were assumed to be linear and independent of 

these conditions. Content of this Part is related to considering the reverse problems of the de-

signing, which are the problems of achieving and optimizing transducer’s operating character-

istics at specified real environmental conditions and at as large as required levels of acoustic 

radiation including the maximum possible level for a given transducer type. Practical environ-

mental and operating conditions result in external actions on the piezoceramic materials that 

influence their parameters. The actions that affect parameters of piezoceramics and hence prop-

erties of transducers include the following. 

Large variable mechanical stress and electric fields, under which high power projectors 

may operate, that can reach the values beyond the linearity of the piezoceramic properties and 

even cause mechanical failures or electrical breakdown of the transducer. 

Large static mechanical stress that can arise both due to the hydrostatic pressure and due 

to structural features of the transducers (e.g., static compression bias stress on the ceramics). 

The static mechanical stress may induce instability of the piezoceramic properties and can result 

in the destruction of the transducer. 

Large temperatures, which may cause instability in the piezoceramic properties. In the case 

of the high-power projectors, it is heating due to the internal energy losses that include dielectric 

and mechanical losses in the piezoceramics. 

As the results the estimations of maximum available power radiated under the optimal load, 

and the value of the optimal load for projectors that were introduced in Ch. 3 by relations (3.126) 

and (3.127), 
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may change noticeably. Remember that coefficients EA
 
and TA  involve piezoelectric and elas-

tic properties of ceramics (see Table 3.5), and the permissible electric field and mechanical 

stress, pE  and pT , have values at which operation of a projector can be considered as linear 

and reliable for long term operation. Besides, the values of resonance frequency that is propor-

tional to 1/ E

iis  and clamped capacitance, 2

33(1 )S T

e effC k − , on which tuning the transducers 

drastically depend, subject to change. Increase of tan e  may cause excessive heating of a trans-

ducer. 

Properties of the receivers that are important for functioning of receive channel are the 

specific sensitivity and tan tr . They characterize a receiver as the source of signal and of the 

internal noise, respectively. It follows from their expressions (3.181) and (3.175) that 

 E

sp eff iik s  and 

2

2tan (1 ) tan
eff

tr eff e

m

k
k

Q
 



= − + . (11.2) 

Here effk  is directly related to the coupling coefficient of the ceramics, mk , the mechanical 

quality of transducer, mQ  , mainly depends on the radiation resistance though includes contri-

bution of the mechanical losses in ceramics. 

So far, estimations of the listed transducer characteristics were made using parameters of 

piezoceramics determined at small signals, at atmospheric pressure and at room temperature. 

For the most usable PZT ceramic compositions they are presented in Table B.1 (Appendix B). 

For informed designing the underwater transducers dependences of the ceramic parameters on 

the operating and environmental conditions must be considered. The main results regarding the 

limiting factors for the transducers operation and dependence of parameters of ceramic compo-

sitions on the external actions were published in s Refs. 2-112. The brief review of these results 

is presented in the following sections. Before doing this some comments must be made to the 

basic data for the ceramic parameters at small signals. 

11.2 Parameters of Ceramics at Small Signals 

Data on the parameters of piezoelectric ceramics at small signals are related to Morgan standard 

original versions of the piezoelectric ceramics PZT-4, PZT-8, PZT-5A and PZT-5H (Navy 
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types I. III, II. and VI, respectively). The same data are presented in Ref. 2 (Table VIII), in Ref. 

1 (Table A5), and in Table B.1. As it is noted in Ref. 2, these low signal properties “…show 

statistical and systematic fluctuations from batch to batch or within a given batch due to slight 

chemical differences, variations in density, inhomogeneous chemical composition, variations 

in grain size, varying response to the poling treatment, and so forth. Measured values of coef-

ficients mainly converge to those listed in typical table with variation of about 5% for elastic, 

10% for piezoelectric, and 20% for dielectric constants”. 

Moreover, the same is true regarding different versions of these basic ceramic brands pro-

duced by different manufacturers. Thus, the results of calculations that employ values of ce-

ramic parameters taken from the Table B.1 cannot be fully accurate. To increase accuracy of 

predicting properties of a transducer design under development, parameters of the ceramics 

must be used that are obtained as a result of batch-to-batch incoming control of piezoelements 

provided by a particular manufacturer. 

The variations that exist in the values of the small signal parameters of ceramics produced 

by different manufactures can be significantly magnified with increase of the electric field, 

dynamic stress and static stress, as it will be shown below. And these variations can be large 

even if the initial small signal properties of the samples were similar. This makes an accurate 

prediction of transducer parameters under the real operating conditions even more complicated. 

Therefore, developing methods and capabilities for physical testing transducers at conditions 

close to operating is of a great importance. 

It is noteworthy that presenting fixed values for deviating parameters of ceramics under 

high signals may be misleading without noting that these values are approximate and without 

referring to available results of investigating parameters of ceramics under different operating 

and environmental conditions. 

11.3 Review of Published Results 

11.3.1 Parameters of Ceramics at High Electric Fields 

Investigating behavior of parameters of ceramics under strong electric field alone (without ef-

fects of high dynamic stress and/or hydrostatic pressure) has some reasons. One of the reasons 
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(less important) is to make it possible estimating influence of other factors on change of the 

ceramic properties. More important reason is that even for projectors of moderate power and 

those intended for shallow water applications it may be required to operate under highest per-

missible electric field, pE , in case that transducer is overloaded or operating at frequencies 

below resonance (the dynamic stress in this case may be relatively small, d pT T ). Such situa-

tion may be typical for the spherical and extensional ring projectors, and for the bender trans-

ducers at certain radiation loading conditions. 

In Figure 11.1 and Figure 11.2 dependencies are shown of dielectric constants 33

T  and 

dielectric loss factor tan e  for 24 hour aged PZT ceramic compositions vs. electric field.3 As 

operation of projectors may be accompanied by increase of temperature due to the dielectric 

loss, these dependencies are presented for temperatures 25°C and 100°C. 

 

Figure 11.1: Dielectric constants 33 0/T   vs. electric field. Solid lines - 25°C, dashed lines - 

100°C; ● – PZT-5A, ■ – PZT-4, ▲ – PZT-8. 

 

Figure 11.2: Dielectric loss factor tan e  vs. electric field. Solid lines - 25°C, dashed lines - 

100°C; ● – PZT-5A, ■ – PZT-4, ▲ – PZT-8. 

Electric Field (Kv/cm)

Electric Field (Kv/cm)
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Figure 11.3: Differences in dielectric properties of PZT-4 type ceramic samples produced by dif-

ferent manufacturers revealed by high electric field. 

Advantage of PZT-8 composition is clearly seen especially at high temperature. It is noteworthy 

that with increasing time of aging the changes of parameters reduce. Therefore, it is important 

to know the history of the piezoelements that are used for transducers designing. It must be also 

kept in mind that variation in the dielectric properties of samples made of the same type of 

ceramic composition by different manufacturers may differ significantly under high-drive con-

ditions though their initial values at small signals can be similar. This is illustrated by results of 

high-field measurements of PZT-4 samples produced by 3 manufacturers that are presented in 

Figure 11.3 according to Ref. 4. 

11.3.2 Effect of Dynamic Stress on the Mechanical Quality Factor mQ  and Young 

Modulus ( 1 111/E EY s= ) 

The conditions of high dynamic stress at relatively small electric field take place in operating 

underloaded projectors in vicinity of their resonance frequency. In this case the dynamic stress 

may have the maximum permissible value d pT T= , whereas dE  may be much less than pE . 

Such situation is typical for unmatched length expander bar projectors. Results of measuring 

the quality factor mQ  and 1

EY  vs. peak dynamic stress (Ref. 5) are presented in Figure 11.4. 

The measurements were made with well-aged (about 200 days) radially poled rings up to stress 

of their mechanical failure (about 3–4 kpsi or 25 MPa). It is noted in Ref. 5 that extent of the 

changes presented may be quite different for various modifications of the same ceramics. 
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Figure 11.4: Dependencies of mQ  and 1

EY  on dynamic stress perpendicular to polar axis; Solid 

lines – PZT-4, dashed lines – PZT-5A. 

In case the projector is optimal acoustically loaded (well-matched) both the electric field 

and dynamic stress may reach their permissible values simultaneously, i. e., d pE E=  and 

d pT T= . No data exist on the combined effect of high electric field and dynamic stress on prop-

erties of piezoceramics. 

11.3.3 Effects of Static Stress on the Properties of Piezoelectric Ceramics 

At first, we consider effects of static stress, to which the mechanical systems of all the under-

water transducers both the receivers and projectors are subjected due to action of the hydrostatic 

pressure or/and compression bias in a projector design. All the other limiting operating factors 

are typical for high power projectors only. 

 

Figure 11.5: Air-backed cylindrical transducers: (a) schematic view, (b) perpendicular stress, (c) 

parallel stress, (d) stripe-electroded. 

In terms of effects of hydrostatic pressure on the properties of piezoelectric ceramics the 

transducer designs can be divided into two groups: air-backed and hydrostatic pressure com-

pensated. Schematic representations of these groups of designs are shown in Figure 11.5 
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through Figure 11.9. (The stresses are “perpendicular” and “parallel” to direction of polariza-

tion.) 

 

Figure 11.6: One-dimensional bender transducers: (a) perpendicular stress, (b) parallel stress. 

 

Figure 11.7: Mass loaded length expander transducer: (a) schematic view, (b) parallel stress, (c) 

perpendicular stress. 

 

Figure 11.8: Two-dimensional transducers (planar stress): (a) Sphere, (b) Circular bender. 

Besides of the hydrostatic pressure, the structural elements that produce compression bias 

in high power transducers to prevent mechanical failure of the transducers under dynamic stress 

in phase of tension may be a source of the mechanical stress in the transducer piezoelements. 

The variants of transducer designs with such structural elements are shown schematically in 

Figure 11.10. 
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Figure 11.9: Hydrostatic pressure compensated transducers: (a) cylindrical transducers with 

acoustically isolated internal volume and (b) with open ends; (c) spherical and (d) bender trans-

ducers with acoustically isolated internal volume. 

 

Figure 11.10: Schematic views of transducer designs with static stress bias imposed on pie-

zoceramics: (a) fiber reinforced ring transducer, (b) Tonpilz transducer with central bolt, (c) rec-

tangular bender with compressing frame. 

Magnitude of stress in the mechanical systems of air-backed transducers that are developed 

under action of the hydrostatic pressure may be highly increased compared with magnitude of 

the pressure itself due to mechanical transformation performed by a mechanical system. Thus, 

the short rings (at h/2a < 0.5) with ends shielded (as shown in Figure 11.5) experience one-

dimensional compression stress in the circumferential direction, iT , which is 

 
i h

a
T P

t
= . (11.3) 

In the case of the radial polarization the stress is acting in perpendicular, and in case of circum-

ferential polarization – in parallel to poling axis directions. Stress in a thin spherical shell is 

two-dimensional compression in the plane perpendicular to the poling axis, and 

 1 2 h

a
T T P

t
= = . (11.4) 

In the case of a simply supported rectangular beam transducer (Figure 11.6) magnitude of the 

stress changes through the thickness and over the length, and can be represented as 
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The stress is one-dimensional compression in the upper half of the beam (at z > 0) and tension 

in the lower.In the case of simply supported circular plates (Figure 11.8) the stress is two-di-

mensional (
1T  in radial and 

2T  in circumferential directions). The maximum stress takes place 

in the center of the plate. At this point 
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The stresses are compression in the upper half and tension in the lower half of the plate and 

change along the radius. The stresses remain approximately equal at the central part of the plate 

(up to / 0.5r a  ), and after this they differ, though this difference is insignificant for practical 

estimation of effect of hydrostatic pressure on parameters of piezoceramics, of which the me-

chanical systems of the circular benders are built. 

Given that in the practical designs it may be / 5 10a t    for cylindrical and spherical 

transducers, and for the benders /l t  as well as /a t  may be about 5, stress in the piezoelements 

can be significantly larger than the hydrostatic pressure. 

For presenting the hydrostatic pressure and stress in the transducers besides the standard 

(SI) unit, which is Pa (N/m2), often are used in literature: psi (lb/in2), technical atmosphere atm 

(kg/cm2) and Bar. The unit’s conversions are: 1 psi = 6895 Pa; 1 atm = 101.3 kPa;  

1 Bar = 105 Pa. And the depth correspondence is: 1 m → 10 kPa; 0.1 atm = 1.46 psi. Given 

that 1 m ~ 0.3 ft, these relations may be presented accordingly. Thus, 1 ft → 0.44 psi.  

Both SI and psi units are used throughout the chapter to make it easier comparison with 

previously reported data that are predominantly presented vs. pressure in psi. Operating and/or 

survival depth for transducers may be up to the full Ocean depth. Putting aside possible extreme 

conditions, the average depth of the Ocean can be taken about 4,300 m (14,000 ft) that corre-

sponds to the hydrostatic pressure hP  = 43 MPa (6.2 kpsi). 

Thus, the compression stress on the ceramics within mechanical systems of air-backed 

transducer designs, which are the most appreciable in terms of achieving the best electroacous-

tic characteristics, theoretically may reach values that are beyond the limits of mechanical 



332 11 Effects of Operational and Environmental Conditions 

 

strength of transducers. Moreover, parameters of piezoceramics subject to changes that may 

result in significant degradation of transducers performance under compression stress that are 

below the limits of mechanical strength. Following Ref. 2 the allowable (that do not produce 

drastic change of ceramic parameters) compression bias stress and rated tensile stress are pre-

sented in Table 11.1 for several ceramic compositions. 

Table 11.1: Allowable compression and rated tensile stress for piezoceramics. 

 

One-dimensional compres-

sion MPa (kpsi) 

 ⊥  
 

Tensile dynamic and static 

strength 

MPa (kpsi) 

Hydrostatic pressure 

MPa (kpsi) 

PZT-4 84 (12) 56 (8) 24 (3.5) 350 (5) 

PZT-8 84 (12) 56 (8) 35 (5.0) 350 (50) 

PZT-5 21 (3) 14 (2) 28 (4.0) 140 (20) 

 

Data presented in the Table must be considered as approximate. They were obtained with 

small samples of the materials. Actual values may depend upon configuration and quality of 

fabrication of piezoelements used in the mechanical systems of transducers. Besides, the data 

are given for temperatures 25oC and may change with rise of temperature. The data were ob-

tained only with compression stress. As to the tensile stress, they are presented based on as-

sumption that the dynamical tensile strength of small specimens is approximately equal to the 

static tensile strength. In Ref. 6 the difference was reported between tensile strength of PZT 

ceramics and bending strength of a bar made of these ceramics. It was found that the bending 

strength is about 1.7 times larger than the tensile strength for both perpendicular and parallel 

directions of stress with respect to the poling axis. Possible reason for this may be the statistical 

effect leading to influence of stress distribution in the body of specimens (see Eq. (11.5)), which 

are different for both cases. 

Thus, the allowed bending stress in the flexural type transducers may be increased approx-

imately in factor of 1.7 compared with the tensile stress given in the Table. Though the values 

of stress in the Table are suggested as maximum allowable, the changes of ceramic parameters 

within this range of static stress may be significant enough for being taken in consideration in 

transducers designing. In operation the transducer is subjected to a maintained constant static 
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stress (bias) and to a slowly variable compression stress due to changing of hydrostatic pressure. 

Properties of piezoceramics may change with time of being under maintained stress and due to 

variable stress in reversible and nonreversible way. These effects are dependent on orientation 

of stress with respect to the polar axis. And they are different for the “hard” and “soft” materials 

(PZT-4, PZT-8 and PZT-5, in particular). The most comprehensive analyses of the ceramics 

behavior under pressure were made in Refs. 7-12. Their results are summarized below. Note 

that values of stress will be given in kpsi, as this is done in the references. Effects of acting 

stress depend on their orientation with respect to the axis of polarization. 

Noteworthy is that the most results of testing were obtained in the referenced works with 

ceramic specimens of small size (predominantly ½ inch cubes) under unidirectional action of 

static mechanical stress developed by a press. Applying the compression force and direct meas-

urement of static charge and strain (the latter being produced by metal foil gauges bonded to 

surfaces of the specimens) required great precautions for achieving an acceptable accuracy of 

the results. While results obtained with small specimens may be appropriate for investigating 

physical properties of the piezoceramic materials per se, the accuracy of their application for 

predicting properties of transducers may be questionable. Especially this is true regarding trans-

ducers, in mechanical systems of which distribution of hydrostatic stress is inherently nonuni-

form (e.g., in flexural type transducers). Besides, effect of the static stress may depend on ge-

ometry (aspect ratio) of a piezoelement used. (To some extent different results were observed 

by authors of the referenced works even on small samples having different aspect ratios.) More 

appreciable in this sense would be performing testing under pressure the full size piezoelements 

in the real transducer designs. One of such possibilities is reported in Ref. 15, 16. Brief descrip-

tion of the experimental technique and results obtained therein are presented in Section 11.4. 

11.3.3.1 Effects of Compression Stress Acting Parallel to the Polar Axis 

Piezoceramics is subjected to compression stress parallel to the polar axis in the mechanical 

systems of circumferential poled rings and in outer half of transversely poled rectangular bend-

ers (item (c) in Figure 11.15 and item (b) in Figure 11.6). Note that the inner half of the bender 

is subjected to parallel tension, and behavior of parameters of ceramic under this action was not 

investigated. In the rings and rectangular benders with striped electrodes ceramics experiences 
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combined action: parallel to polar axis stress in the main part of the volume and perpendicular 

stress in some parts. Behavior of parameters of ceramics in the piezoelements of this type was 

not previously investigated. Some results in this respect were reported in Ref. 16 and are pre-

sented in Section 11.4.1. 

11.3.3.1.4 PZT-4 

Typical effects of the reversible and non-reversible changes of ceramic parameters are illus-

trated with example of behavior the dielectric constant 33 0/T   of PZT-4 vs. parallel compres-

sion stress acting in cycles up to 140 MPa (20 kpsi) are shown in Figure 11.11. 

 

Figure 11.11: Dependencies of 33 0/T   vs. parallel compression stress in course of the first, sec-

ond and forth cycles of changing the stress. 

During the first cycle of exposure to maximum stress a dramatic raise of about 80% takes 

place of initial value, which is indicated in specification for the ceramics. In the end of the cycle 

at zero stress 3 0T =  the value of dielectric constant remains non-reversibly increased in about 

13% of the initial value. The second and forth cycles of exposure to the pressure show the same 

kind of dielectric constant reversible behavior during the cycle, and gradual raise of non-re-

versible change of its value at 3 0T =  (up to 22% in the end of the 4th cycle). 

Such changes of the dielectric constant in process of transducer operation are not accepta-

ble. For the transmit channel they will result in dramatic detuning with a projector and loss of 

efficiency. Therefore, the allowable level of the parallel stress for PZT-4 in the Table 11.1 is 

restricted by 84 MPa (12 kpsi). (Strictly speaking, this should include allowable exposure to 

the survival depth.) In the range of stress below this level behavior of ceramics parameters vs. 

compression stress remains qualitatively similar, but quantitatively the values of parameters 
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after maintained exposure to maximum stress (at 3 0T = ) and maximum values of reversible 

changes under variable stress (at variable submergence depth conditions) may be much more 

modest. Two dependencies are presented in Figure 11.12 of the relative values of dielectric 

constant 33 3 33( ) / (0)T TT   for PZT-4 from maximum parallel compression stress ( 33 (0)T  is the 

initial value before exposure to the stress). The lower curve represents the values after long 

exposure to the stress 
3T  (value stabilized, or “aged” at this stress). It is shown that the finite 

(stabilized) value is reached after about 5-10 cycles of exposure to the maximum stress. The 

upper curve represents the value, to which the dielectric constant may be reversibly changed at 

the maximum stress. 

 

Figure 11.12: Dependencies of values of dielectric constant 33 3 33( ) / (0)T TT   vs. parallel compres-

sion stress: (1) at 3 0T =  after long exposure to the stress, (2) at the maintained stress 3T . Solid 

lines – for PZT-4, dashed lines – for PZT-8. 

With stress changing from 0 to a specified maximum value of 3T  the dielectric constant 

will change in reversible way with hysteresis that is less than those shown in Figure 11.11 

roughly proportional to ratio of maximum stresses. For example, for the maximum stress 3T   

35 Mpa (5 kpsi), which corresponds to operating depth about 700 m for the air-backed circum-

ferentially poled ring having ratio / 5a t = , increase of dielectric constant between its value 

that it has close to surface and at the operating depth will be about 18%. 

Analogous dependencies of the piezoelectric modulus 33d  and tan e  vs. compression 

stress are illustrated in the similar way in Figure 11.13(a) and (b), and Figure 11.14. 

11.3.3.1.5 PZT-8 

Behavior of PZT-8 ceramics under parallel compression stress is similar to that of PZT-4 but 

has a smaller range of change. This is illustrated by dependencies of the dielectric constant 33

T  
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                                           Pressure, kpsi (MPa) 
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and piezoelectric modulus 33d  vs. compression stress 3T , that are shown in Figure 11.12 and 

Figure 11.13 by the dashed lines. 

 

Figure 11.13: Dependencies of values of 33d  vs. parallel compression stress: (a) in course of the 

fourth cycles of changing the stress for PZT-4, and in the 4th cycle for PZT-8; (b) at 3 0T =  after 

long exposure to the stress (1), and at the maintained stress 3T  (2). Sold lines – for PZT-4, dashed 

lines – for PZT-8. 

 

Figure 11.14: Dependencies of values of tan e  for PZT-4 vs. parallel compression stress: (1) at 

the maintained stress 3T , (2) at 3 0T =  after long exposure to the stress. 

But the main advantage of PZT-8 ceramic has under the compression bias at high drive condi-

tions, which are typical for its application for projectors. 

11.3.3.1.6 PZT-5A 

Behavior of parameters of “soft” PZT-5 ceramics vs. parallel compression stress is quite differ-

ent. Values of the dielectric constant 33

T  and piezoelectric modulus 33d
 
degrade sharply in 

course of the first cycle of exposure to the stress after its value reaches about 8kpsi. 

0                             5(35)                           10(70)                    15(105)
                                           Pressure, kpsi (MPa) 

(a)                                                                                         (b)
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Figure 11.15: Dependences of parameters PZT-5A vs. compression stress 3T  in course of the first 

exposure to the stress: (a) dielectric constant 33 0/T  , (b) piezoelectric modulus 33d . Note that 

the lower plots are related to exposure to maximum stress 10 kpsi that is more typical for PZT-5. 

This is illustrated with dependencies of these parameters vs. the stress shown in Figure 11.15(a) 

and (b). (By this reason the allowed stress in Table 11.1 is restricted by 8 kpsi.) 

A favorable property of PZT-5 is that degradation of its parameters under maintained stress 

is less than for the “hard” materials. In Figure 11.16 comparison is made of relative changes of 

dielectric constants and piezoelectric moduli of PZT-4 and PZT-5 vs. time of exposure to com-

pression stress T3 = 10 kpsi. 

Important peculiarity of PZT-5 (as of all the “soft” materials) is that no stabilization of its 

parameters after a certain number of cycles of exposure to operating compression stress occurs, 

unlike this is with “hard” ceramic materials, in which case stabilization of parameters takes 

place after few cycles of the exposure. This is illustrated with Figure 11.17, where behavior of 

33d  is shown vs. number of cycles of exposure to stress 3T  = 10 kpsi for PZT-5 and PZT-4. 

Thus, it can be recommended to avoid using PZT-5 ceramics for designing transducers that 

are intended for frequent submergences (exposure to cycling compression stress). 
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Figure 11.16: Behavior of the relative values of piezoelectric moduli 33d  and dielectric constants 

33

T  under exposure to maintained stress 3T  = 10 kpsi: solid lines – for PZT-5A, dashed lines – 

for PZT-4. 

 

Figure 11.17: Values of piezoelectric modulus 33d  vs. number of stress cycles up to stress 3T  = 

10 kpsi: solid lines – for PZT-5A, dashed lines – for PZT-4. 

11.3.3.2 Compression Stress Perpendicular to the Polar Axis 

Piezoceramics is subjected to compression stress perpendicular to the polar axis (or lateral 

stress) in the mechanical systems of radial poled rings and in outer half of transversely poled 

rectangular benders (items (b) in Figure 11.5 and item (a) in Figure 11.6). Note that the inner 

Time (min)

1 10 100 10000



11.3 Review of Published Results 339 

 

half of the bender is subjected to perpendicular tension, and behavior of parameters of ceramics 

under this action was not investigated. The main peculiarity in behavior of parameters of ce-

ramics under the lateral stress is that piezoelectric modulus 31d  reduces under lateral stress ( 1T  

), whereas 
32d  rises for all the ceramic compositions. Piezoceramics become anisotropic in the 

plane perpendicular to the polar axis. This effect is large even for “hard” PZT-4 and PZT-8 

piezoceramics and is especially pronounced for the “soft” PZT-5A and PZT-5H. Besides PZT-

5 suffer remnant changes in ratio 
31 32/d d  after exposure to the stress. This is illustrated with 

plots in Figure 11.18 – Figure 11.20, where dependencies of 31d  and 32d  are shown in the 4th 

cycle of exposer to the lateral stress (with increase of number of the cycles the dependencies 

remain practically the same). 

 

Figure 11.18: Dependencies of 31d  and 32d  vs. lateral stress 1T  in 4th cycle of exposure to the 

stress; PZT-4. 

 

Figure 11.19: Dependencies of 31d  and 32d  vs. lateral stress 1T  in 4th cycle of exposure to the 

stress; PZT-8. 
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Figure 11.20: Dependencies of 31d  and 32d  vs. lateral stress 1T  in 4th cycle of exposure to the 

stress: (a) PZT-5A, (b) PZT-5H 

Ranges of stress for PZT-5A and PZT-5H are reduced because of stronger change of pie-

zoelectric moduli vs. stress. 

As it was noted regarding the case of exposure to the parallel stress, in the range of stress 

below the maximum levels in cycles shown in Figure 11.18 – Figure 11.20 behavior of 31d  and 

32d  vs. compression stress remains qualitatively similar, but quantitatively differences of their 

values at maximum operating stress 1T  and after removal of the maintained exposure to this 

stress (i.e., at 1 0T = ) are less pronounced. The plots are presented in Figure 11.21 and Figure 

11.22 analogous to those shown in Figure 11.13 for making quantitative estimations of the val-

ues of piezoelectric moduli at different operating conditions. Dependencies are shown of the 

relative values of piezoelectric moduli 3 1 31( ) /i md T d  and 3 1 31( 0) /i md T d=  (where 1,2i =  and 

31md  is the initial value before exposure to the compression stress). The lower curve represents 

the values after long exposure to the stress 1T  (stabilized, or “aged” at this stress). It follows 

that the finite (stabilized) values are reached after about 5-10 cycles of exposure to the maxi-

mum stress 1T  = 10 kpsi. The upper curve represents the level, to which the value of may be 

reversibly changed at the maximum stress. At each maximum operating depth values of 3id  

change vs. variable depth submergence qualitatively in the way as shown in Figure 11.19. For 

example, at the operating depth that corresponds to stress 1T  = 10 kpsi the changes occur be-

tween the values in points indicated as min and max. 

Plots in Figure 11.21 and Figure 11.22 show that “aging” of the piezoelectric moduli under 

the maintained lateral compression is not significant for “hard” piezoelectric ceramics and is 

Stress (kpsi) Stress (kpsi)

(a) (b)
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rather severe for “soft” PZT-5A and PZT-5H ceramics. Remnant increase of 
32d  after pro-

longed exposure to compression stress 1 10T kpsi=  is about in factor of 1.2. This property of 

PZT-5 materials theoretically can be used for improving hydrophones based on their employ-

ment. How this can be done is illustrated with Figure 11.23. It is noteworthy though that no 

data were available regarding behavior of thus improved transducers under compression stress 

2T  until later investigation reported in Ref. 15. The results of this investigation are presented in 

Section 11.4.2. 

 

Figure 11.21: Dependencies of values of 31d  and 32d  for PZT-4 vs. lateral compression stress: 

(1) at 1 0T =  after long exposure to the stress, (2) at the maintained stress 1T . Solid lines for 31d

, dashed lines for 32d . 

 

Figure 11.22: Dependencies of values of 31d  and 32d  vs. lateral compression stress: (1) at 1 0T =  

after long exposure to the stress, (2) at the maintained stress 1T . Sold lines for 31d , dashed lines 

for 32d . Figure (a) for PZT-5A, (b) for PZT-5H. 
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Figure 11.23: To the improving piezoelectric modulus in “working” direction of the piezoelements 

after subjecting them to prolonged compression in the direction perpendicular to the polar axis: 

(a) ring transducer, (b) length-expander side-electroded bar, (c) piezoelements for the rectangular 

bender transducer. 

Effect of the lateral stress on the dielectric constants is relatively small. The nature of 

changing dielectric constants under varying stress is shown in Figure 11.24 for the “hard” and 

in Figure 11.25 for the “soft” ceramics with examples of the 4th cycle (for greater number of 

the cycles the dependencies remain qualitatively similar). In the same figures are also presented 

the dependencies that show correlation between the temporal and maximum reversible changes 

of the dielectric constants under stress that may correspond to different operating depths. 

 

Figure 11.24: Dependencies of values of 33 0/T   vs. lateral compression stress: (1) at 1 0T =  

after long exposure to the stress, (2) at the maintained stress 1T : (a) for PZT-4, (b) for PZT-8. 

Knowing behavior of tan e  vs. lateral compression stress is important for designing pro-

jectors that employ transverse piezoeffect. These dependencies measured at small electrical 

signals are shown in Figure 11.26 for PZT-4 and PZT-8. It is of note that no data is available in 

literature on the combined effect of the large electric fields and lateral stress on tan e . 
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Figure 11.25. Dependencies of values of 33 0/T   vs. lateral compression stress: (1) at 1 0T =  

after long exposure to the operating stress, (2) at the maintained stress 1T : (a) for PZT-5A, (b) for 

PZT-5H. 

Analysis of the data regarding behavior of parameters of ceramics under the lateral stress 

leads to conclusion that the advantage of “soft” PZT-5 ceramics as material for designing hy-

drophones holds for shallow water applications. Judging by value of parameter 31 33/ Td   that 

is related to the specific sensitivity sp  of a hydrophone (see (11.2)) even at moderate depths 

PZT-4 ceramic may successfully compete in this respect, especially in terms of stability under 

pressure. 

 

Figure 11.26: Dependences of tan e  vs. lateral compression stress: (1) at 1 0T =  after long ex-

posure to the stress, (2) at the maintained stress 1T : (a) PZT-4, (b) PZT-8. 

11.3.3.3 Two-dimensional Compression Stress in Plane Perpendicular to the Polar Axis 

These conditions exist in spherical transducers and with reasonable approximation in circular 

bender transducers shown in Figure 11.8. The most comprehensive data on behavior of ceramic 

parameters under the varying planar stress 1 2pT T T= =  up to pT  = 240 Mpa (35 kpsi) are 

Stress (kpsi) Stress (kpsi)

(a)                                                                                          (b)
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presented in Ref. 11. Changing of the dielectric constants 33

T , elastic constants 
11 122( )E E E

ps s s= +

, piezoelectric moduli 
31d  and coupling coefficients pk  were measured at small signals for 

PZT-4 and PZT-5 ceramics. The dielectric constant and dielectric loss factor tan e  were meas-

ured also as functions of simultaneously acting driving electric field up to E = 3 kV/cm (rms) 

for PZT-4. The testing were conducted with spheres having diameter to thickness ratios 

/ 20D t =  and / 12D t =  under the hydrostatic pressure up to 48 MPa (7 kpsi) that corresponds 

approximately to the full Ocean depth (on average). The results obtained are presented in Figure 

11.27 – Figure 11.31. 

 

Figure 11.27: Properties of PZT-4 under maintained planar stress. 

Results presented in the figure were obtained in the first cycle of pressure with fresh sam-

ples. Measurements made in successive stress cycles showed that parameters of PZT-4 ceramics 

remained approximately independent of number of the cycles. 

Unlike for PZT-4 the values of 33

T  and 31d  for PZT-5 ceramics depend on the number of 

cycles. They reach stable values after approximately 20 cycles of exposure to an operating pres-

sure. This is shown in Figure 11.29. 

Thus, parameters of transducers made of PZT-5 ceramics that experience planar static com-

pression can be stabilized (though to the lower values) before they are used for applying multi-

ple cycles of operating pressure. After such stabilization the properties of PZT-5 almost do not 

change in time under the operating pressure. In opposite the PZT-4 ceramics exhibits a signifi-

cant aging in time under the same stress conditions, as this is shown in Figure 11.30 for the 

dielectric constant 33

T . This must be taken into consideration when designing the spherical 

transducers for deep water applications. 
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Figure 11.28: Properties of PZT-5 under maintained planar stress in the first two cycles on a fresh 

sample:  - first cycle, • - second cycle. 

 

Figure 11.29: Effect of repeating pressure cycles on relative values of parameters of PZT-5 ce-

ramics (in factions of unity). 

Important for designing the spherical projectors made of PZT-4 ceramics are the data on 

behavior of the dielectric constant 33

T  and dielectric loss factor tan e  
under combined action 

of the planar compression and electric field that are presented in Figure 11.31. 
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Figure 11.30: Aging of the dielectric constant 33

T  of ceramics under the planar stress 250 MPa; 

solid line – PZT-5, dashed line – PZT-4. 

 

Figure 11.31: Dependence of the dielectric constant 33

T  and dielectric loss factor tan e  of PZT-

4 from planar compression under different driving fields. 

Comparison with analogous dependencies for the case of parallel one-dimensional com-

pression at the same level of stress (see Figure 11.36) shows more severe raise of the loss factor. 

11.3.3.4 Effects of the Hydrostatic Compression on Ceramics Parameters 

In this case the piezoelements experience hydrostatic (uniform three-dimensional) compression 

in the pressure compensated transducer designs shown in Figure 11.19. There is no transfor-

mation of external pressure in the mechanical systems of these transducer designs. Therefore, 

the three-dimensional compression stresses do not exceed hT  = 243 Mpa (6.2 kpsi) at full (in 

average) Ocean depth. Such actions on the ceramics are relatively small compared with those 

that are experienced in the air-backed designs. The hydrostatic compression has relatively little 
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effect on the domain’s reorientation, and its effect on the ceramics properties is much less (up 

to one order of magnitude) than with other stress configurations, as this is noted and experi-

mentally confirmed in Ref. 9 for piezoceramics PZT-4. Thus, the percentage change of the 

piezoelectric moduli 
31d  and 

33d over their initial values at atmospheric pressure with increase 

of the hydrostatic pressure up to 10 kpsi was less than 7%, as it follows from Figure 11.32. The 

initial values of piezoelectric moduli were 12

33 254 10d −=   m/V and 12

31 124 10d −=   m/V with 

deviations between the tested samples about 2%. 

 

Figure 11.32: Variations of the piezoelectric moduli 31d  and 32d with hydrostatic pressure. 

Variations of the dielectric constant 33

T  and dielectric loss factor tan e  with hydrostatic 

pressure at different electric fields applied are shown in Figure 11.33. 

 

Figure 11.33: Variations of parameters with hydrostatic pressure at different electric fields: (a) 

33

T , (b) tan e . 

%
 C

h
an

ge
 in

 t
h

e 
p

ie
zo

e
le

ct
ri

c 
m

o
d

u
li



348 11 Effects of Operational and Environmental Conditions 

 

The increase of the relative dielectric constant over its reference value at small signals and 

atmospheric pressure (that was 33 0/ 1190T  = ) at E = 2 kV/cm and 
hT  = 10 kpsi is about 8%, 

whereas for PZT-4 ceramics with parallel stress hT  = 10 kpsi it was about 30%. It must be noted 

that for a ring transducer of air-backed design having radius to thickness ratio a/t = 5 this stress 

would correspond to operating depth about 1400 m, whereas for the pressure compensated (free 

flooded in particular) design – to about 7000 m. Dielectric loss factor changes not significantly 

under hydrostatic pressure compared with its increase vs. electric field at atmospheric pressure. 

It is noted in Ref. 10 that variations in the pressure and field dependences for samples from 

different batches or produced by different manufacturers may be significantly greater than it 

could be expected from deviation of the same parameters at low signals and atmospheric pres-

sure. 

The dielectric properties at high electric field reach their values shortly after application of 

the hydrostatic pressure and remain stable in time afterwards. Small changes of parameters 

under pressure and their time stability make transducers of pressure compensated design espe-

cially suitable for deep water applications. Though some complications regarding the frequency 

responses and directional factors of such transducers may arise due to additional acoustic effects 

that accompany designs of this kind. Influence of these effects on transducer parameters will 

be considered in Ch. 13. 

11.3.3.5 Combined Effect of the Compression Bias and Hydrostatic Pressure 

This combination of the stress is typical for pressure compensated (free flooded in particular) 

projector designs shown in Figure 11.10, in which the compression one-dimensional stress bias 

is imposed on ceramics in order to increase dynamic strength of the transducers by avoiding 

tensile strain. Ceramics in the prestressed projectors is usually aged under the compression bias 

prior to subjecting to hydrostatic pressure. Effect of superposing the hydrostatic pressure and 

one-dimensional compression bias, under which the ceramics was aged, on the high-field die-

lectric properties of PZT-4 ceramics was considered in Ref. 10. Results of testing samples sub-

jected to parallel compression bias of 2, 5 and 10 kpsi under the hydrostatic stress up to 10 kpsi 

showed that percentage change of the high-field dielectric properties ( 33

T and tan e ) over their 

values aged under the bias is approximately the same, as under action of the hydrostatic stress 
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alone. This is illustrated with plots in Figure 11.34 with 5 kpsi bias stress only, but effect of the 

magnitude of the bias stress on the dependence of parameters on the depth is small. It is noted 

also that the results did not depend on number of pressure cycles. 

 

Figure 11.34: Variation of the (a) dielectric constant 33

T  and (b) tan e  with hydrostatic pressure 

for PZT-4 ceramics subjected to 5 kpsi parallel bias stress. 

11.3.3.6 Combined Effect of Parallel Compression Stress and Ac Electric Field on Pie-

zoceramics Parameters 

The parallel compression bias is the most typical for the projectors. Therefore, the combined 

effect of the parallel stress and electric field on parameters of piezoceramics is of a great inter-

est. Dependencies of the dielectric constants and tan e  
vs. electric field at different compres-

sion stress are presented in Figure 11.35 and Figure 11.36. 

 

Figure 11.35: Dependencies of 33 0/T   vs. electric field (in rms) at different values of compres-

sion stress: PZT-8 – solid lines, PZT-4 – dashed lines. 
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Figure 11.36: Dependencies of tan e  vs. electric field (in rms) at different values of compression 

stress: PZT-8 – solid lines, PZT-4 – dashed lines. 

 

Figure 11.37: Dependencies of tan e  vs. electric field (in rms) at different values of compression 

stress for PZT-5A. 

They show clear advantages of PZT-8 ceramics for the high drive applications. In Figure 11.37 

dependencies of tan e vs electric field are shown for the “soft” PZT-5A ceramics that is not 

intended for application in high drive transducers due to large dielectric losses, particularly at 

high electric fields and under the static pressure. 

11.4  Testing in High Pressure Air Chamber 

The most natural way of investigating behavior of electromechanical parameters of piezoceram-

ics in real piezoelements used in the transducer designs would be testing the transducers under 

changing hydrostatic pressure in the water filled pressure vessels (tanks). The most accurate 

measurements of the parameters in principle can be made by the dynamic resonance-
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antiresonance method. But this method cannot be used in a water filled tank because of acoustic 

loading of the transducers and possible tank resonances. 

Thus, for example, when investigating parameters of ceramics under the planar stress with 

spheres subjected to hydrostatic pressure in water filled vessel, for getting results authors of 

Ref. 10 were forced to use strain gauges and the reciprocity method for determining the low 

frequency sensitivity of the transducer. This made the measurement procedure quite compli-

cated and significantly reduced accuracy of the results. 

The above problems can be overcome, if to perform testing in the air pressure vessel (or 

small chamber) having sufficient pressure multiplied by volume ( PS V ) capabilities. Equip-

ment for such purposes is not commercially available and have to be custom made. But this is 

a solvable engineering problem and being once built the equipment of this kind may allow a 

broad spectrum of investigations of transducer parameters under pressure using the most accu-

rate dynamical measurements. Examples of performing testing the piezoelements under pres-

sure in the air chamber are presented in Ref. 15 and 16. All the experiments were performed in 

a custom air pressure chamber with air pressure capabilities up to about 10 MPa (≈ 1500 psi) 

that corresponds to 1000 m of operating depth for a transducer. Parameters of the piezoelements 

were measured by an Impedance Analyzer. Two subjects were considered: (a) effects of static 

circumferential stress on the piezoelectric properties of tangentially polarized stripe-electroded 

cylinders, which could not be predicted based on the available dependencies of parameters un-

der the parallel and lateral stress due to nonuniformity of the electric field of polarization; (b) 

possibility of increasing piezoelectric effect in radially polarized soft PZT cylinders by pressure 

treating that was predicted in earlier work7 but never practically implemented. The results ob-

tained are presented in the following sections. 

11.4.1 Effects of Static Circumferential Stress on the Piezoelectric Properties of 

Tangentially Polarized Stripe-Electroded Cylinders 

Electric field of polarization in the tangentially polarized (stripe-electroded) piezoelements is 

inherently non uniform. Schematic representation of the electric field geometry that was sug-

gested and used for analysis of electromechanical properties of the piezoelements in Ref. 17 is 

shown in Figure 11.38. In the stripe-electroded cylinders the stress acting in the circumferential 
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direction produces predominantly longitudinal piezoeffect in the region A and predominantly 

transverse piezoeffect in the region B. As a result, the effective piezoelectric modulus of the 

tangentially polarized piezoelement reduces in comparison with those under regular 

 

Figure 11.38: Representation of the electric field in the tangentially polarized (stripe-electroded) 

piezoelement 

longitudinal piezoeffect, which is quantitatively estimated in Section 7.2.2.1.2. Qualitatively 

the value of effective piezoelectric modulus of the tangentially polarized piezoelement can be 

represented as 

 
33 33 31effd Ad B d= − , (11.8) 

where coefficients A and B depend on the geometry of the piezoelement and electrodes (thick-

ness t, l and Δ, in particular). Thus, it can be expected that sensitivity of the effective electro-

mechanical parameters of the tangentially polarized piezoelements to compression circumfer-

ential stress can be different from those under the stress parallel to polar axis considered above. 

The more so, as behavior of the parameters under the parallel and perpendicular to polar axis 

compression stress is different. For verifying this assumption and for getting information that 

was not available from previous works, dependencies of the effective electromechanical param-

eters of the stripe-electroded piezoelements from the compression stress produced by the hy-

drostatic pressure were investigated. 

The testing was performed using a custom air pressure chamber capable of producing pres-

sure up to P = 10 MPa (≈ 1500 psi) with samples of the stripe-electroded cylinders made of 

commercial hard PZT-4 like piezoceramics (further referred to as samples I) and commercial 

soft PZT-5A like piezoceramics (further referred to as samples II). Dimensions of the cylinders 

(mean diameter 2a = 35 mm, height h = 13 mm, thickness t = 3.15 mm) insured close to uniform 
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circumferential stress distribution under the external pressure. The samples had N = 12 striped 

electrodes of Δ = 1.5 mm width. The cylinders were installed in the fixture shown in Figure 

11.39 that imitated the air-backed transducer design. The pressure P in the chamber and the 

circumferential stress 
cT  in the cylinders were related as ( / ) 5.5cT P a t P=  = . 

 

Figure 11.39: Schematic view of the fixture for exposing the samples to the external pressure; 1 – 

end cap, 2 – o-ring, 3 – tangentially polarized piezoelectric cylinder, 4 – leads from internal vol-

ume 

In process of the testing the samples were subjected to increasing and decreasing stress 

cycles ranging from 0 up to 8250 psi with 825 psi increments. At each pressure step all the 

parameters ( , ,T ar Lff f C ) were measured with an Impedance Analyzer. The effective electro-

mechanical parameters of the stripe-electroded cylinders were calculated from results of the 

measurements by the following formulas (see Section 7.2.2.1.2): 

the effective coupling coefficient, 

 2 2

33 1 ( / )eff r ark f f= − ; (11.9) 

the effective dielectric constant, 

 
33 21

LfT

eff

eff

C th
N

lk
 =

−
, (11.10) 

where N is the number of stripes and l is the separation between the stripes: 

the effective elastic constant, 

 2 2

33 1/ (2 )E

eff rs f a =  (11.11) 

the effective piezoelectric modulus, 



354 11 Effects of Operational and Environmental Conditions 

 

 
33 33 33 33

T E

eff eff eff effd k s= . (11.12) 

In Figure 11.40 -Figure 11.43 are presented results of the 4-th circle of the testing. After 

the first cycle of testing some remnant changes were observed in results of measurements, and 

after the second circle they practically stabilized. 

 

Figure 11.40: Dependence of the relative change of effective coupling coefficient 𝑘33(𝑇𝑐)/𝑘33(0) 

of ceramics I and II under compressive circumferential stress Tc. 

 

Figure 11.41: Dependence of relative change of the effective elastic constant 

( ) ( )33 33/ 0E E

eff c effs T s  of ceramics I and II under compressive circumferential stress Tc 
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Figure 11.42: Dependence of relative change of the effective dielectric constant 

( ) ( )33 33/ 0
eff

T T

c effT   of ceramics I and II under compressive circumferential stress Tc .Solid lines 

– results from this work, dashed lines – results from Ref. 7 (Figure 11.12 at stress T3 up to 10 kpsi) 

 

Figure 11.43: Dependence of the relative change of effective piezoelectric modulus 

𝑑33(𝑇𝑐)/𝑑33(0) of ceramics I and II under compressive circumferential stress Tc. Solid lines – 

results from this work, dashed lines – results from Ref. 7 (Figure 11.13 (b) at stress T3 up to 10 

kpsi) 

As it follows from plots in Figure 11.42 and Figure 11.43, the relative change of the effec-

tive dielectric constants and piezoelectric moduli of the tangential polarized piezoelements 
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made both from the hard and soft ceramics under the circumferential compression stress (shown 

by the solid lines I and II) are less pronounced than for the PZT-4 and PZT-5A ceramics under 

compression stress parallel to the polar axis, as was reported in Ref. 8 (shown by the dashed 

lines I and II). It is noteworthy that analogous comparison for the elastic constants and coupling 

coefficients cannot be made, because data on their sensitivities to the parallel compression stress 

for regularly polarized ceramics are not available from literature. 

11.4.2 Increasing Piezoelectric Effect in Radially Polarized Cylinders Made of Soft 

PZT Ceramics by Pressure Treating 

It was shown in previous investigations (Ref. 7) that piezoceramics became anisotropic in the 

plane perpendicular to the polar axis being subjected to the lateral (perpendicular to the axis of 

polarization) compression stress. Namely, the piezoelectric modulus 31d  reduces under lateral 

stress, whereas 32d  rises for all the piezoceramic compositions. The changes in ratio 31 32/d d  

for PZT-5A and -5H piezoceramics became remnant after exposure to the first cycle of the 

stress and then remain practically the same after the subsequent cycles. This is illustrated with 

plots in Figure 11.20(a) and (b), where dependencies of 31d  and 32d  are shown in the 4th cycles 

of exposure to the lateral stress for PZT-5A and -5H piezoceramics. The effect of uniaxial com-

pression prestress on the properties of soft PZT piezoceramics was also investigated recently in 

Ref. 18, and the results obtained agree with previously predicted. 

This property of the soft piezoceramics can potentially be used for improving parameters 

of transducers after the pressure treating of their piezoelements by applying the compression 

force as is illustrated in Figure 11.23 with examples of side-electroded length expander bar, 

hollow cylinder, and rectangular flexural plate. Without doubts these improvements can be used 

in the transducers intended for applications in air or in shallow water. But the question arises 

regarding behavior of parameters of the pressure treated piezoelements under significant oper-

ating hydrostatic pressure. Obviously, in the air-backed designs of the transducers operating 

hydrostatic pressure must produce a reverse effect on the piezoelectric moduli, and it can be 

expected that at some level of the pressure their values may return to original before treatment. 

Investigation of the possible applications in the transducer designs of the pressure treated 
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piezoelements in the shape of cylinders was reported in Ref. 15. The results obtained are sum-

marized below. 

All the testing were performed in the same air pressure chamber that was referred to in the 

previous section. Samples of the radial poled cylinders with mean diameter 2a = 35 mm, height 

h = 13 mm, and thickness t = 3.15 mm made of commercial soft PZT piezoceramics (further 

referred to as ceramic A) were used for the experimenting. The aspect ratio h/2a ≈ 0.35 guaran-

teed that deformation of cylinders was one-dimensional both in axial and circumferential direc-

tions. The experiments were performed with three prototype configurations that are schemati-

cally illustrated with sketches in Figure 11.44 (a), (b) and (c). They insured different actions of 

stress in the cylinders depending on the goal of the experiment. Analogous cylinders made of 

Navy Type-I piezoceramics (further referred to as ceramic B) were tested simultaneously in the 

same way for comparison. 

In the case (a) the cylinders were exposed to axial stress 1 csc( / )capT S S P=  , where 

2

cap capS r=  with capr  = 27.5 mm and csc 2S at=  is the cross-section area of the cylinder. Thus, 

2 ( / ) 6.6T a t P P=  =  . In the case (b) surface of the cylinder with ends mechanically isolated 

from the caps was exposed to the radial pressure that imitated stress conditions in the air-backed 

transducer design. Correlation between the pressure applied and circumferential stress 2T  in 

ceramic was 2 ( / ) 5.5T a t P P=  =  . In the case (c) the bare cylinders were subjected to pres-

sure over all the surfaces that imitated hydrostatic stress conditions in the pressure equalized 

(liquid filled) transducer design. 

 

Figure 11.44: Schematics of the prototypes designed for testing cylindrical piezoelements under 

the external actions: (a) in course of the pressure treating; (b) under condition of use in the air-

backed design; (c) for application in the pressure equalized (liquid filled) design. 1 – piezoceramic 

cylinder, 2 – polyurethane boot, 3 – mid-section/central support, 4 – end cap 
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All the prototypes were subjected to increasing and decreasing cycles of pressure ranging 

from 0 up to 1500 psi in 150 psi increments. The pressure was held for 10 minutes at each 

increment step and was maintained for 30 minutes at 1500 psi. Electromechanical parameters 

of the samples were determined from results of measuring with Impedance Analyzer by stand-

ard formulas from Ref. 19. 

11.4.2.1 Results of the Pressure Treating 

Only the capacitance and conductance of the cylinders could be accurately measured in the 

course of testing under the axial pressure, because the resonance and antiresonance frequencies 

were subjected to change due to attachment of the caps used for application of the pressure. 

Changing of all the other parameters were determined after the pressure was released. 

 

(a) 

 

(b) 

Figure 11.45: Dependences of the relative change of (a) dielectric constant 33 1 33( ) / (0)T TT   and 

(b) dielectric loss factor 1tan ( ) / tan (0)T   from axial stress 1T . For ceramic A – solid line, for 

ceramic B – dashed line. 
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Dependence of the dielectric constant and dielectric loss factor on axial stress 
1T  up to 

1T  

≈ 10 kpsi (≈ 70 MPa) that corresponds to maximum pressure in the chamber P = 1500 psi are 

presented in Figure 11.45. These data can be used in case that the axial vibration of the radial 

polarized cylindrical piezoelement is employed (e.g., in the Tonpilz like design). 

Relative change of parameters of the pressure treated piezoelements (marked with 
1T  in 

parenthesis) in comparison with their values before the treating (marked with primes) are sum-

marized in Table 11.2. Results of the testing of five samples of cylinders A were in close agree-

ment, therefore the averaged data are presented in the Table. These results proved to be stable 

with time. Presumably, greater increase of 32d  and 32k  could be achieved for cylinders made 

of PZT-5H ceramics, as it follows from comparison between plots in Figure 11.20 (a) and (b). 

Table 11.2: Summary of parameters of piezoceramics before and after treating by stress 1T . 

Parameters 32 2

32

( )k T

k 
 33 2

33

( )T

T

T

 
 

22 2

22

( )E

E

s T

s 
 

32 2

32

( )d T

d 
 

1tan ( )

tan

T

 
 

Values  1.21 0.88 1.04 1.16 0.950 

It is noteworthy that the pressure treating of the cylinders could be performed under the 

static pressure in a water filled chamber, as well as under pressure mechanically applied to the 

caps, because in this case an additional axial loading would not influence the results of meas-

uring capacitance and tan e  
under pressure anyway. The air pressure chamber was used for 

this purpose for standardizing the experimental technique. 

11.4.2.2 Results of Testing in the Air-Backed Design 

After it was confirmed that effect of treating cylinders under the axial stress is significant and 

stable, the question arises regarding possible underwater acoustic transducer applications of the 

cylinders with the improved piezoelectric properties. The most common application of the ra-

dial poled cylinders is in the air-backed transducer designs, 2 ( / )T a t P=  , in which case the 

static pressure that is acting on the cylinder’s surface transforms in the circumferential stress 

2 ( / )T a t P=  . Judging by the previously obtained data1 that are presented in Figure 11.20(a), 

it may be expected that under stress 2T  the piezoelectric modulus 32d  and hence coupling co-

efficient 32k  should reduce in an irreversible manner. To verify the factual behavior of the 
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pressure treated cylinders in the air-backed design, prototypes shown in Figure 11.42 (b) were 

tested in accordance with the accepted pressure cycle. All the parameters of the cylinders were 

measured in process of changing the pressure. Results of the 1st cycle of exposure to the radial 

pressure are presented in Figure 11.46 - Figure 11.48, where the relative change of the coupling 

coefficient, 
32 2 32( ) /k T k  , dielectric constant, 33 2 33( ) /T TT   , and elastic constant, 

22 2 22( ) /E ET   , 

are depicted. 

In the same Figures the dependences on the stress are shown of the analogous relative 

quantities for cylinders made of ceramics B. 

 

Figure 11.46: Dependence of the relative change of the coupling coefficients, 32 2 32( ) /k T k  , from 

the circumferential stress 2T  (from the operating depth h): solid line – ceramics A, dashed line – 

ceramics B. The 1st cycle of exposure to the stress. 

 

Figure 11.47: Dependence of the relative change of 33 2 33( ) /T TT  
 from the circumferential stress 

2T
 (from the operating depth h): solid line – ceramics A, dashed line – ceramics B (the 1st cycle 

of exposure to the stress) 
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Figure 11.48: Dependence of the relative change of the elastic constant 22 2 22( ) /E Es T s   from the 

circumferential stress 2T  (from the operating depth h): solid line –ceramic A, dashed line – ce-

ramic B. The 1st cycle of exposure to the stress. 

Plots in the figures have two scales: one for the stress in ceramics (kpsi) another that cor-

responds with operating depth (m) in water for the transducers that employ cylinders used in 

the testing. The relative changes of the piezoelectric modulus 32 2 32( ) /d T d   vs. stress 2T  were 

calculated from formula 32 32 33 22

T Ed k s=  after dependencies of other parameters became 

known. They are presented in Figure 11.49 for the first cycle of exposure to the stress. Notice-

able remnant reduction of ceramic parameters takes place after the 1st cycle of exposing pressure 

treated cylinders to stress 2T . Then under subsequent cycles of testing under pressure parame-

ters of ceramic were gradually reducing and stabilized after the 4th cycle at the level that is 

below the original level before the treatment. 

 

Figure 11.49: Dependence of the relative change of the piezoelectric modulus, 32 2 32( ) /d T d  , 

from the circumferential stress 2T : solid line – ceramic A, dashed line – ceramics B. 
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The values of parameters of the treated ceramic after the 4th circle of exposure to the cir-

cumferential stress are presented in Table 11.3. (Note that data in the Table and in the Figures 

may be somewhat different, because in the Table they are averaged, and in the Figures they are 

taken for a particular sample). Dependences of the coupling coefficient and piezoelectric mod-

ulus vs. circumferential stress occur in the reversible way after the 4th stress cycle for the treated 

and after the 2nd cycle for untreated ceramics. 

Table 11.3: Changing parameters of ceramic after the 1st and 4th cycles of exposure to stress 
2T  

Parameter 

# cycles 
32 2 32( ) /k T k    

33 2 33( ) /T TT    22 2 22( ) /E Es T s    32 2 32( ) /d T d    

1 start 1.21 0.88 1.04 1.16 

end 1.17 0.92 0.97 1.11 

5 

start 0.96 0.89 0.90 0.85 

end 0.96 0.88 0.90 0.85 

Results of testing the cylinders up to pressure equivalent to 1000 m. depth being interesting 

from the point of view of the physical processes in the piezoceramics do not characterize a 

possibility of their practical applications in the air-backed transducer designs operating at a 

reasonable depth. 

 

Figure 11.50: Dependences of the coupling coefficient 32 2 32( ) /k T k  , 32 2 32( ) /d T d   and 

33 2 33( ) /T TT    of the pressure treated cylinders in the range of circumferential stress up to 2T  = 

1600 psi (equivalent to about 200 m depth). 

Usually, transducers made of soft PZT ceramics are intended for relatively shallow water 

applications because of significant drop of their parameters under great stress. For more realistic 

estimation in Figure 11.50 is shown, how parameters of the pressure treated cylinders change 
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in the range of circumferential stress up to 
2T  ≈ 1600 psi (equivalent to about 200 m depth for 

the cylinders tested). Changes of the values of parameters are reversible (within accuracy of the 

measurement). 

Thus, it can be concluded that pressure treated piezoceramic cylinders with improved pie-

zoelectric parameters can be used in the air-backed transducer designs operating at the relatively 

shallow depth (with equivalent circumferential stress of about 
2T  ≈ 1600 psi). Changing pa-

rameters of ceramics vs. pressure within this range of the stress is reversible and takes place in 

the typical for soft PZT materials way. Possibility of application of the pressure treated piezo-

elements to the greater depth is considered in the next section. 

11.4.2.3 Results of Testing in the Pressure Equalized Design 

 

(a) 

 

(b) 

Figure 11.51: Dependences of the relative changing parameters of the pressure treated cylinders 

vs. hydrostatic pressure P: (a) coupling coefficients 32 2 32( ) /k T k  , (b) piezoelectric moduli, 

32 2 32( ) /d T d  , and dielectric constants, 22 2 22( ) /E Es T s  . Solid lines – ceramics A, dashed lines – 

ceramics B. 
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In order to determine, how parameters of the pressure equalized (free flooded) transducer de-

signs that employ the pressure treated cylinders may depend on the operating depth, the bare 

cylinders were tested in the air chamber up to pressure P = 1500 psi that imitated submergence 

of the transducers to about 1000 m depth. The treated cylinders made of ceramics A were tested 

together with the cylinders made of ceramics B for comparison. Results of the testing are pre-

sented in Figure 11.51 in the form of the plots normalized to original values of the parameters 

before the pressure treating. 

They show that the pressure treated soft PZT piezoceramics with improved parameters can be 

successfully used in the pressure equalized transducer designs. 

It is noteworthy that results obtained for the pressure treated ceramics B differ qualitatively 

from those previously presented in Ref. 10 for untreated PZT-4 ceramics (see Figure 11.35 and 

Figure 11.36). Whereas in the latter case at the hydrostatic pressure about 1.5 kpsi both 31d  and 

33

T  slightly raise, in the reported testing they drop noticeably. Partially the reason may be in 

difference of properties of the ceramics used (commercially available materials in both cases, 

but with interval of more than 50 years), but probably the main difference needs to be attributed 

to peculiarity of properties of the treated vs. untreated ceramics. 

11.4.2.4 Concluding Remarks for the Section 

It is shown that electromechanical properties of the cylinders made of soft PZT piezoceramics 

can be improved by prolonged applying the compression stress of about 8 kpsi in the axial 

direction, as it was predicted in Ref. 8 based on results of investigations performed with small 

samples of PZT-5 piezoceramics. The effect of improvement proved to be stable in time and 

can be realized in underwater transducer designs. It is shown that in the air-backed design, in 

which case the ceramics is subjected to unidirectional compression stress in the circumferential 

direction, 2 ( / ) hT a t P= , the improved properties remain reversible up to an operating depth that 

corresponds to the stress about 1600 psi (this corresponded to depth about 200 m for the cylin-

ders used). With variation of the stress within 1600 psi range the improved parameters of treated 

cylinders behave in the same way as for the untreated cylinders. In the course of gradual in-

crease of the compression stress the remnant values of the improved parameters drop and at 2T  

≈ 8 kpsi they come to a level that is slightly lower than they were before the pressure treatment. 
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Investigation of the pressure treated cylinders was performed also under the conditions that 

imitated their application in the hydrostatic pressure equalized (free flooded) transducer de-

signs. It is shown that at least up to the static pressure hP  = 1500 psi (the maximum pressure 

available in the air pressure chamber used), which imitated submergence of the transducers to 

about 1000 m depth, the improved parameters remained reversible. With increase of pressure 

the dielectric constant practically did not change, while the piezoelectric module and coupling 

coefficient raised by about 10%. Thus, application of the pressure treated cylinders in the pres-

sure equalized designs can be highly recommended. Especially advantages can be using the 

pressure treated piezoelements made of soft PZT piezoceramics for designing sensors that do 

not experience intensive external actions. 

 

Figure 11.52: Arrangement for compensating pressure on the walls of an air chamber: 1 - air 

chamber, 2 – water filled high pressure vessel, 3 - pressure input, 4 - electrical output, 5-prototype 

under testing. 

On the separate issue, the conclusion can be made that the technique of experimenting 

involving employment of air pressure chamber in combination with an impedance analyzer, 

which allows dynamic measurement parameters of transducers in process of their subjecting to 

action of pressure, is an extremely useful tool for investigating transducers performance under 

their operating environmental conditions. The apparatus used allowed testing up to pressure P 

= 1500 psi (≈ 10 MPa) equivalent to 1000 m depth. This is sufficient for the most of practical 

transducers applications. In case that it is necessary to expend the pressure capability for inves-

tigating the physical properties of piezoceramic materials and/or behavior of transduces in-

tended for greater depth of operation, the requirements for safety of the air pressure chamber 
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may seriously complicate its design and increase its cost. These complications can be avoided 

by placing an air chamber inside of a water filled high pressure vessel, as it is shown schemat-

ically in Figure 11.52, and synchronizing the pressure inside and outside the chamber in course 

of testing. 

Requirements for the strength of the air-chamber can be even reduced in this case. Note-

worthy is that with such arrangement it is easy to perform a combined transducer testing under 

air pressure and under elevated temperature by heating water in the vessel. 

11.5 Concluding Remarks for the Chapter 

Results of experimental investigations presented in Refs. 6-11 and reproduced here are in agree-

ment with concept of the domain structure of piezoelectric ceramic materials and could be qual-

itatively predicted. But in terms of practical transducers designing the data obtained must be 

considered more as the tendencies in the parameters of piezoceramics behavior. Many uncer-

tainties in values of ceramics parameters were revealed by these investigations that do not allow 

accurate prediction of maximum power that can be reliably radiated by a projector. Great vari-

ations in maximum achievable values of electric field, dynamic stress and resulting acoustic 

power may exist between practical projector designs depending on conditions of operation. This 

is illustrated by results of study presented in Ref. 123, where information was examined on the 

mechanical and electrical limits for transducers obtained from literature, from transducer de-

signers and ceramics manufacturers. One of conclusions of this study is that permissible values 

of electric field and stress for transducers are lower than those that ceramics alone may with-

stand. At the same time, it was revealed that up to about 70-100 MPa of compression and up to 

4-6 kV/cm electric field are achievable in projectors at certain operating conditions. But it is 

noted that these are single-point results. 

In the conclusion it may be acknowledged that Woollett’s assertion made in year 1968 

(Ref. 14) remains intact today: “No general agreement as yet exists on the values of power 

limits of piezoceramic materials that should be used in design. The reasons for this include 

inadequate knowledge of the nonlinear properties of the materials, uncertain reliability of the 

high-voltage insolation techniques employed, and variability of the mechanical strength of ce-

ramics in production lots and between manufacturers”. And the same problems formulated in 



11.6 References 367 

 

Ref. 14 remain actual: determining more precisely the power limits of the piezoelectric ceram-

ics, increasing uniformity of the piezoelectric ceramics in production lots and between manu-

facturers, considering the problem of stability after reliability of operation has been achieved. 

It seems to be wise to concentrate on improving the existing materials in terms of solving 

the above listed problems. Resulting improving of the traditional transducers capabilities may 

bring great economic effect with much less funding than searching for “silver bullet” new ma-

terials, implementation of which for underwater sonar techniques may encounter the same (if 

not greater) problems. 

Remembering that most of the transducers users would rather have reliability than extra 

power achievable by calculation, it seems to be a right approach on the first stages of a trans-

ducer designing to use more conservative values of permissible (allowable) values for purpose 

of comparing different transducer types and for prototyping. Further the prototypes made of 

ceramics produced by a certain vendor (or by different vendors for comparison) have to be 

tested for determining the upper limits of a safe transducer operation under the specified oper-

ating conditions. If it will appear as result of the testing that the transducer design has excessive 

reserves of safety for achieving the set goals, the design can be optimized by reducing these 

reserves. 

In our farther estimations the following conservative values of permissible dynamic stress 

and electric fields will be used for PZT-4 and PZT-8 like ceramics: electric field pE  = 2kV/cm 

(5.1 mil); dynamic compression one-dimensional stress pcT  = 84 MPa and tensile stress pcT  = 

24 MPa for the transverse and for the longitudinal piezoeffect with solid piezoelements; dy-

namic bending compression, pcT  = 84×1.7 = 142.8 MPa, and tensile, pbtT  = 24×1.7 = 40.8 MPa, 

stress. In case that the longitudinal piezoeffect with segmented piezoelements is used, it is as-

sumed that the piezoelements are pre compressed up to pcT  = 70 MPa. 
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CHAPTER 12 

HYDROSTATIC PRESSURE EQUALIZATION 

12.1 Introduction 

Harmful effects of the hydrostatic pressure in the air-backed transducer designs (Figure 11.5) 

both in terms of static mechanical strength and changing parameters of ceramic materials are 

avoided in the pressure equalized (pressure compensated) designs presented schematically in 

Figure 11.9. In these designs the ceramic material experiences overall pressure equal to the 

ambient hydrostatic pressure. As shown in Sec. 11.3.3.4, influence of the hydrostatic pressure 

on the ceramic parameters and their stability is insignificant. But the pressure equalization does 

not come for free. It requires including additional structural elements in the transducer designs, 

which may influence operating characteristics of the transducers. These elements are in shape 

of cavities (compliant chambers) connected with outside space through a narrow neck or 

through an opening. The least influencing the transducer characteristics is the pressure equali-

zation by means of pressurized gas; however, it requires special equipment for providing pres-

surized gas supply and its control. The size and complexity of this equipment depends on com-

pliance of mechanical system of the transducer and on its internal cavity volume. Seemingly 

this volume can be made sufficiently small due to large compressibility of the gas, but in reality 

it may be restricted because of reducing compressibility of the gas under pressure at a great 

depth. For low frequency transducers that employ mechanical systems vibrating in flexure and 

therefore having large compliance the air compensation is, probably, the only way to extend 

their application to great depth. 

The most widely used with transducer types vibrating in the extensional modes and benders 

operating at moderate frequencies is pressure equalizing by means of liquids (or rubber like 

materials) filled cavities connected with outside space. Some of them may play role of the low 

frequency filters that pass signals with very low frequencies L   (including hydrostatic 

pressure at 0 = ), where L  is below the operating range of a transducer, and acousticly 

isolates the volume of cavity from the external acoustic field at higher frequencies (usually used 

with hydrophones). Some of them may be used as Helmholtz resonators having resonance 
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frequencies close to operating resonance frequency of the transducer (presumably, may be used 

with benders and slotted ring projectors). In some cases, the internal volume may freely radiate, 

as for example from open ends of a cylindrical transducer. Accordingly, the following issues 

will be considered related to problem of the hydrostatic pressure equalization: acoustic elements 

of transducer designs (compliance of the internal volume, acoustic mass and resistance of the 

neck and/or opening, Helmholtz resonator) (Seсtions 12.2 and 12.3); properties of the fluids 

(gasses and liquids) vs. pressure (Section 12.4); input impedances of the internal liquid filled 

volumes (including coupled vibration with internal Helmholtz resonator), and contribution of 

vibrating internal volumes to acoustic radiation of a transducer (these issues will be considered 

in Section 13.4.2.) 

12.2 Acoustic Elements of Transducer Designs 

12.2.1 Lumped Acoustic Elements 

Consider input impedance of a column of fluid having density   and sound speed c that is 

confined within a tube of length l with rigid walls surrounded by the same fluid (note that under 

the term “fluid” we will mean both liquid and gas unless it will be necessary to consider their 

properties separately). At one end of the column we imagine a piston having area of the column 

cross-section csS  that can freely move along the walls under action of applied force mF . The 

other end of the tube is closed by an imaginary cap loaded by impedance LZ , as shown in 

Figure 12.1. All the dimensions of the tube are supposed to be small with respect to wavelength. 

 

Figure 12.1: Column of fluid within tube with rigid walls loaded at the end by an impedance LZ . 

Since the wave motion within the tube obeys the same one-dimensional wave equation as 

the longitudinal vibrations in an elastic bar (see Eq. (4.90)), the mechanical input impedance of 

the column can be determined by the same formula (4.101) 

U0Fm

Zin

Ul

Pl ZL

0 l x
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+
= =

+

, (12.1) 

which corresponds with the equivalent circuit of Figure 12.2 (see the original circuit in Figure 

4.6) loaded by impedance LZ . 

 

Figure 12.2: Equivalent mechanical circuit of the liquid column vibrating within tube with rigid 

walls loaded by impedance LZ : (a) general view ( 1 . / sin ,c sZ j cS kl= −  

2 . tan( / 2)c sZ j cS kl= ) (b) modification at 0.6kl  . 

In the case that the end is clamped LZ =  , 0LU = . In the case that the end is open (acous-

tic short circuit) 0LZ = , 0lP = . The more realistic case is that the end of the tube radiates in 

the surrounding space. The radiation from the end can be approximated, as being produced by 

one-sided piston of cross-section csS . Assuming that the tube has circular cross-section of ra-

dius a, and following the expressions for nondimensional coefficients of radiation impedance 

of one-sided circular piston at small ka presented by formulas (see expressions (6.324) and 

(6.325)) 
2( ) / 4ka = , 2 /ka = , we arrive at expression 

 
2

2 3( )
2

4
L

ka
Z c a j c ka  = +  . (12.2) 

Consider input impedance of the column of fluid under the assumption that dimensions of the 

tube are small with respect to wavelength of sound, e.g., 0.6kl  . After replacing 

3sin ( ) / 6kl kl kl −  and tan( / 2) / 2kl kl  the equivalent circuit Figure 12.2 (a) will be sim-

plified to the circuit in Figure 12.2 (b), where 

 m csM lS=  and 
2m

cs

l
C

c S
=  (12.3) 

are the mechanical mass and compliance of the volume (note that for elastic bar of the same 

size /m csC l YS=  as 
2 /c Y = ). 
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When considering the acoustic elements of transducer designs it is more convenient to use 

acoustic generalized quantities rather than mechanical, in which case the generalized force is 

the acoustic pressure P, and the generalized velocity is the volume velocity 
V

U . In our case the 

volume velocity of the piston is 
0 csV

U U S= . Accordingly, the acoustic input impedance of the 

column is related to mechanical impedance as 

 
2

0

( / ) in mm cs

in ac

cs csV

ZF SP
Z

U U S S
= = = . (12.4) 

Thus, the acoustic analogs of mechanical elements (12.3) are the acoustic mass and acoustic 

compliance, 

 /ac csM l S=  and 
2ac

V
C

c
= . (12.5) 

The equivalent mechanical circuit of Figure 12.2 (b) can be represented in the equivalent acous-

tic form shown in Figure 12.3. Impedance of the load in the acoustic circuit must be replaced 

by its acoustic analog 2/L ac L csZ Z S= . 

 

Figure 12.3: Equivalent acoustic circuit of the column of fluid vibrating within tube with rigid 

walls having small wave size. 

In the case that the end of the tube is closed ( L acZ =  , output of the circuit is open) we 

will find that 

 
1

3

ac

in ac

ac

M
Z j

j C



= + . (12.6) 

The mass term at 0.6kl   can be neglected. Indeed, it can be shown using expressions (12.5) 

that 

 
41

1 ( ) / 9in ac
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Z kl
C

= + , (12.7) 
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and 

 
21 ac

inac

ac

K c
Z

j C j j V



  
 = = . (12.8) 

Thus, the input impedance of the column of fluid within closed tube having rigid walls is that 

of compliance (rigidity acK ). This conclusion can be generalized to volumes of fluid confined 

within closed cavities with rigid walls of any configuration provided their dimensions are small 

with respect to length of the acoustic wave, practically, when they are less than /6. In this case 

the rigidity and potential energy of the volume are 

 
21

ac

ac

c
K

C V


= = , 

2

2

V
pot acW K


= , (12.9) 

where 
V
  is the volume displacement at the input of the cavity. If the energy is supplied through 

a part of its surface, on which a nonuniform distribution of displacements takes place, then 

o avV
S = , where o  is displacement of a reference point on the surface. From the obvious 

equality 

 

22

2 2

o V
pot m acW K K


= =  (12.10) 

follows that  

 
2/ac m avK K S= , 

2

ac m avC C S= . (12.11) 

In the case that the end of the tube is open ( 0L acZ = ), output of the circuit in Figure 12.3 

is short circuited) we obtain that 

 in ac acZ j M , (12.12) 

where according to formulas (12.5) 

 
2 2/ / /ac cs cs csV

M l S V S M S = = = . (12.13) 

This expression, where 
V

M  is the total mass of fluid in the tube, can be generalized to volumes 

of fluid confined within open ducts of small wave size with rigid walls. The kinetic energy of 

an open volume of fluid is 

 

2

2

V
kin acW M


= . (12.14) 
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If the energy is supplied by nonuniform vibration of the input surface of a duct, then 

o avV
S = , and it can be shown analogous to the previous case that in general 

 2/ac avV
M M S= . (12.15) 

Consider the effect of radiation from the end of the tube under assumption that the radiation 

takes place in the media having the same properties as the fluid inside of the resonator (other-

wise   and c below will be different). After substituting impedance of radiation from the end 

of a tube (12.2) in the form of acoustic impedance 

 2 2

2 2

2
/ ( )L ac LZ Z a c j

a


  

 
= = +   (12.16) 

into equivalent circuit Figure 12.3, we will obtain that 

 
2 2

1 2
in ac ac L aZ j M Z c j l a

a


  

 

 
= + = + + 

 
. (12.17) 

(Note that according to (12.21), 
2/acM l a = ). The active radiation resistance characterizes 

energy losses, while the presence of the reactance results in the equivalent increase of mass of 

the fluid that can be accounted for by introducing the effective length of the tube 

0.64effl l a= +  . 

12.2.2 Effects of Finite Viscosity of the Fluids 

So far, the vibration of fluid was supposed to be lossless. Due to finite viscosity of the real 

fluids losses of energy take place in course of vibration of fluids inside the ducts with rigid 

walls. Predominantly they occur in the thin boundary layers near the walls (see Figure 13.18 

and formula (13.109)), 2 /bl  = ), within which the transverse viscous wave develops that 

rapidly attenuates with distance from the wall. Therefore, the effects of viscosity become es-

sential in case of propagating sound in narrow long tubes and slots, where separation between 

the walls is comparable with length of the shear wave. The related issues are considered in 

detail in Refs. 1–3. As viscosity of fluids plays essential role in determining properties of the 

acoustic elements, some information regarding this quantity that is available from literature is 

summarized here. 
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The dynamic (absolute) viscosity,  , that is used in expressions for the viscose resistances 

is by definition (Newton’s Law of friction) / ( / )du dn = , where   is the shearing stress 

(tangential force per unit area between layers of flow), and ( / )du dn  is the rate of change of 

velocity of flow in direction of normal to the layers The dynamic viscosity units are: in system 

SI - N∙s/m2, or Pa∙s that sometimes are referred to as Poiseuille (Pl), and smaller unit mPa∙s 

(millipascal-seconds); in system CGS - poise (P) (dyn∙s/cm2), and centipoise (cP), 1 cP = 0.01 

P. Correlations between the units are: 1 P = 0.1 Pa∙s; 1 cP = 1 mPa∙s; 1 Pl = 1000 cP. The 

viscosity   is known to be independent of pressure (except for extremely high pressure that is 

beyond practical range of interest for transducer applications). Though, the viscosity depends 

on temperature: its values tend to drop for liquids and to raise for gases as temperature increases. 

Therefore, the reference temperature must be quoted each time together with value of viscosity. 

The range of operating temperatures in underwater applications for hydrophones (receivers in 

general) is as an ambient temperature in ocean and can be estimated following Ref. 4 as -2°C < 

T < 35°C. Temperatures in the projector designs can be higher due to heat generation in course 

of operation. Values of the dynamic viscosity of several fluids are presented in Table 12.1 at 

temperature 20°C. Note that modifications of the silicon oils are available having substantially 

different viscosities. Low viscosity (10 cSt) modification is chosen for the current application. 

Table 12.1: Values of the dynamic viscosity of fluids at 20°C. 

 air water Motor oil, 

CAE-50 

Castor 

oil  

Silicon oil (low vis-

cosity) 

 , N∙s/m2 52.0 10−  
31.0 10−  0.54 0.65 0.01 

310 − , kg/m3

 
31.2 10−  1.0 0.95 0.95 0.96 

310c − , m/s
 

0.33 1.5 1.75 1.54 1.35 

 

As shown in Ref. 1, the averaged input mechanical impedance of viscous fluid in the cir-

cular tube is, 

 1

0

2 ( )
/ 1

( )
in cs

J k a
Z j lS

k aJ k a


 
 = − 

  
, (12.18) 

where 
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2

(1 )
j

k j
 

 
 = = +


, and ' 2 2 /   =  (12.19) 

is the wavelength of the viscous wave. For example, in case of air ( 52 10 −=  , N∙s/m2,   = 

1.2 kg/m3) at frequencies f > 100 Hz   < 1.4 mm. In case of water ( 310 −=  N∙s/m2,   = 

1000 kg/m3) at f > 100 Hz   < 0.35 mm. 

If the radius of a tube is small with respect to the wavelength  (at 2k a 
 
), then the 

input impedance (12.18) may be approximated as 

 
2(8 / 4 / 3)in csZ S l a j l   = +  . (12.20) 

Thus, the effect of viscosity results in introducing resistance of losses, 

 28 /csR lS a = , (12.21) 

and in increase of the effective mass of vibrating fluid to value 

 
4

3 V
M M = , (12.22) 

where 
V

M  is the actual mass of the fluid. The attached mass due to the effect of viscosity is 1/3 

of the actual mass of the fluid.  

In the case of sufficiently narrow tube and low frequencies the resistive term of the impedance 

may become dominant (
2/ /R M a f     ). The tube in this case will present a pure acoustic 

resistance, 

 
48 /acR l a  = . (12.23) 

With raising the values of /a   (at 10k a  ) the following expression for the impedance 

can be obtained from the general formula (12.18) 

 
1 1

2 1in cs csZ S j lS
a k a

 
 

  + +  
. (12.24) 

In case 1/ 0.1k a   and given that this quantity drops with increase of radius and frequency, 

the term in parenthesis may be neglected, and input impedance of tube with not extremely small 

diameter can be presented in the form, 

 in V
Z R j M = + , (12.25) 

where 
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 2R a  = , or 
3

1
2acR

a



 =  (12.26) 

is the resistance of losses due to finite viscosity of the fluid. The resistance is small compared 

with the inertia term, indeed, 

 
1 2 1

V

R

M a k a



 


= =


, (12.27) 

but this term cannot be neglected, as it is the only source of losses. 

Expression for the input impedance of fluid within a thin rectangular slit with rigid walls 

(Figure 12.4) is also presented in Ref. 1 (theoretically under the assumption that the slit is  

 

Figure 12.4: Rectangular slit with rigid walls. 

infinitely wide). It is shown that at 1k t  , where /k j  = , 

 
2

12 6

5
in cs cs

l
Z R j M S j lS

t


    = +  + . (12.28) 

Thus, the resistance of losses due to finite viscosity of the fluid is 

 
2

12
cs

l
R S

t


 = , or 

3

12
ac

l
R

wt


 = . (12.29) 

Another effect of the viscosity is in addition to the actual mass of fluid inside the slit.. 

If to take into consideration combined effect of radiation from the end ( LacZ  by formula 

(12.17)) and viscosity of the fluid ( in acZ   obtained from formula (12.25)), then the input imped-

ance of the tube will be 

 
3 2 2

1 2
2 (1 )in ac loss ac eff

l
Z c j a R j M

a a

 
   

  

 
= + + + = + 
 

. (12.30) 

Remember that if the tube is especially thin the input impedance is determined by formula 

(12.20). 

w

t

l
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12.3 Acoustic Elements in Transducers 

12.3.1 Helmholtz Resonators 

Acoustic structures that are used in transducers represent a combination of the considered com-

ponents: cavities, in which the fluid behaves as a rigidity; tubes (slots), in which the fluid be-

haves as a vibrating mass; and resistances that account for the viscous losses and losses due to 

radiation from inside of a cavity. Two variants of these combinations and the equivalent circuits, 

which can be used to determine, how the structures may influence transducer parameters, are 

shown in Figure 12.5. 

 

Figure 12.5: Equivalent circuits of the acoustic resonators. 

In the variant (a) the sound pressure P is generated by vibration of a part of the cavity wall 

with volume displacement 
1V

 . The volume displacement at the output of the cavity is denoted 

as 
2V

 . The energies involved in the process being expressed through the volume displacements 

as the generalized coordinates are 

 2

1 2
( ) / 2pot ac V V

W K  = − , 
2

2
/ 2kin ac eff V

W M = , 
1e V

W P= . (12.31) 

It is easy to verify that the Lagrange’s equations for this system are equivalent to relations for 

the parallel contour shown in Figure 12.5 (a), where resistance of losses, acR , that accompanies 

the acoustic mass is introduced by observation. The acoustic mass, ac effM  , and resistance of 
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(b)
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losses that are due to effects of viscosity and radiation from the opening can be determined from 

expression (12.30).  

In the variant (b) the outside pressure P generates the volume displacement 
V
  at the neck 

input. Expressions for the energies involved are, as follows: 

 2

1 2
( ) / 2pot ac V V

W K  = − , 
2

2
/ 2kin ac eff V

W M = , 
1e V

W P= . (12.32) 

and the equivalent circuit corresponding to the balance of these energies is the series contour 

shown in Figure 12.5 (b). Both structures represent the Helmholtz resonators. Assuming that 

the neck is a tube, parameters of the resonators are according to relation (12.30): 

 
2ac

V
C

c
= , 

2

2
(1 )aceff

l
M a

a




= + , (12.33) 

And 

 
3 2

1
2acR c

a


 

 
 = + . (12.34) 

If the opening is in the form of especially thin tube or slit (the later may be typical for 

application with the rectangular bender designs), then ac effM  and acR  must be determined from 

expressions (12.23) and (12.29), respectively. We will assume further that the neck is cylindri-

cal and parameters have values by formulas (12.33) and (12.34) unless noted differently. The 

resonators have resonance frequency 

 

21

(1 0.64 )
H

ac ac eff

a
c

Vl aC M


 = =

+
. (12.35) 

The quality factor of the resonators is 

 
2

1 1 (1 0.64 )H aceff ac eff

ac ac ac ac

M M l a
Q

R R C R a V





+
= = =

  
. (12.36) 

12.3.2 Transducer with Helmholtz Resonator as Hydrostatic Pressure Equalizing 

System 

If to assume that the vibrating part of the cavity wall in the case shown in Figure 12.65 (a) is 

mechanical system of a transducer, then operation of the entire system can be described by 
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means of the equivalent electro-mechano-acoustic circuit presented in Figure 12.6, in which the 

mechanical system of the transducer is loaded with input of the cavity. Being commonly de-

scribed as electromechanical with equivalent parameters n, , ,E

eqv eqv mLC M r  and sZ  (radiation 

impedance), the equivalent circuit of the transducer must be converted to electroacoustic, i.e., 

presented in respect to the volume velocity 
V V

U = .  

 

Figure 12.6: To equalizing the hydrostatic pressure on the transducer mechanical system: (a) sche-

matic view of the arrangement, (b) acoustic equivalent circuit of the transducer with resonator. 

The generalized displacement in Figure 12.6 (a) is 01 avV
S = , where 0  is displacement of 

the reference point and avS  is the average surface of the mechanical system of the transducer. 

Accordingly, the values of equivalent mechanical parameters must be converted into the corre-

sponding acoustic values, namely, 

/ac avn n S= , 2E E

eqv ac eqv avC C S= , 2/eqv ac eqv avM M S= , 2/mL ac mL avr r S= , 2/s ac s avZ Z S= . (12.37) 

The external pressure P(t) acting on the mechanical system of the transducer is introduced 

in the circuit directly as acoustic equivalent of eqvF . Given that in terms of equalizing the hy-

drostatic pressure we are interested in functioning of the system at low frequencies close to 

0 = , we assume that the same external pressure is acting on the input of the cavity neck and 

can be included in the circuit of the resonator. It is noteworthy that in operating range of the 

transducer these sound pressures can be different, and radiations from the transducer and 

through the neck may interact. But these issues are out of scope of this Section. 
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Contours that correspond to vibration of the mechanical system of the transducer and res-

onator are connected by means of the ideal transformer with transformation coefficient 1Un = −  

that converts direction of the volume velocity. The sign (–) reflects the fact that the volume 

velocity of the inner surface of transducer is in anti-phase with velocity of outer surface (the 

conditionally positive being direction of radiation into external medium). This feature is not 

essential unless a radiation from the neck is considered, and the transformer can be removed 

from the circuit for simplicity. One more simplifying assumption is made regarding the equiv-

alent circuit. We assume that the volume velocities of the outer and inner surface of the trans-

ducer mechanical system are the same. While this is true for transducers with flat mechanical 

system (such as rectangular bender), it can be not exact for transducers with cylindrical me-

chanical system (such as slotted ring). 

Analysis of the mechano-acoustic circuit may be performed using technique of the coupled 

vibrations considered in Section 4.6 for the pure mechanical systems. The general outline of 

applying this technique can be introduced here, though a more complete analysis requires know-

ing properties of transducer designs that employ the pressure equalizing system. This will be 

done in Chapter 13. 

The energies associated with operation of the system under the assumption that the electri-

cal side of a transducer is short circuited are 

 

2 2 2 2

1 1 2 1 2

1 2

( )
( )

2 2 22

EV V V V V
pot eqv acE V V V V V

eqv ac V

W K K K K
CC

    
 

−
= + = + − + , (12.38) 

 

2 2

1 2

2 2

eqv ac ac effV V

kin

M M
W

 
= + , (12.39) 

 
1 2e V V

W P P = − . (12.40) 

The energies of losses including the radiation impedance are omitted, because they are not es-

sential for illustrating the approach. 

The expressions for the potential and kinetic energies are analogous to expressions (4.520) 

and (4.521) that characterize coupled vibrations of two partial systems. In our case one of the 

partial systems (that remains at 
2

0
V
 = ) has combined rigidity E

eqv ac V
K K+ , mass 

eqv acM  and 

its vibration is generated by external generalized force P. Another partial system (that remains 
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at 
1

0
V
 = ) has rigidity 

V
K  and mass 

aceffM , i.e., represents the Helmholtz resonator shown in 

Figure 12.5(b).Vibration in the system is generated by pressure P. Coupling between the partial 

systems is due to mutual rigidity 
V

K  (compliance 
V

C ). 

Using expressions (12.38)-(12.40) the following Lagrange’s equations in complex form 

may be obtained that describe vibrations in this coupled system 

 2

1 2
[( ) ]E

eqv ac eqv acV V V V
K K M U K U P+ − + = , (12.41) 

 2

1 2 2
( )aceffV V V V V

K U K U M U P+ − = − . (12.42) 

These equations may be accounted for by the equivalent circuit shown in Figure 12.6 (c) with 

the terms that represent losses of energy and electrical side of the transducer included. It must 

be noted that so far, the electrical side of transducer was supposed to be short circuited, and 

therefore did not influence parameters of the corresponding partial system. The same condition 

holds if the transducer operates in the transmit mode. In case that the electrical side is open 

circuited, which is typical for the hydrophones, reaction of the electrical side (reactance intro-

duced into the mechanical contour) must be taken into consideration. Analysis of operating 

characteristics of the coupled system can be made using general procedures of theory of coupled 

vibrations described in Section 4.6. Thus, expressions for the partial resonance frequencies of 

the system, tpf  for the transducer and rpf  for the resonator, are 

 
1

2

E

eqv ac V

tp

eqv ac

K K
f

M

+
= , 

1

2

V
rp

ac eff

K
f

M
= , (12.43) 

and coefficient of the “compliant” coupling is 

 
1

( ) 1 /

V
C

E E

eqv ac eqv acV V V

K

K K K C C
 = =

+ +
. (12.44) 

The frequency equation for determining the resonance frequencies of the system is 

 2 2 2[1 ( / ) ][1 ( / ) ] 0rp tp Cf f f f − − − = . (12.45) 

The further analysis requires specifying the transducer design and will be considered in 

Section 13.4.3 with examples of the rectangular bender and slotted ring projectors. 
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12.3.2.1 Transient Process in the Helmholtz Resonator 

Under maintained action of the hydrostatic pressure, which can be considered as the extreme 

case of the sound pressure at 0 → , the inertial impedances in the circuit of Figure 12.6 (c) 

can be neglected, and it can be transformed to the circuit in Figure 12.7 (a) (remember that the 

electrical side is assumed to be short circuited). The force that causes deformation of the 

 

Figure 12.7: Equivalent circuits of the coupled system transducer-resonator: (a) and (b) at fre-

quencies 0 →  under steady state conditions, (b) with additional rigidity related term included; 

(c) under rapidly changing hydrostatic pressure ( M  
and R  

are the combined masses and re-

sistances in the contour of the resonator). 

mechanical system of transducer is proportional to difference trP  between the external pres-

sure ( )hP t  and pressure within the cavity ( )
V

P t , 

 ( ) ( )tr h V
P P t P t = − . (12.46) 

At the steady state ( ) ( )hV
P t P t=  and 0trP = . Thus, the arrangement shown in Figure 12.6 

performs the function of the static pressure equalizer. In real transducer designs the interior of 

the fluid filled volume of the resonator must be separated from the outer medium (water) with 

aid of some sealing member that possesses its own rigidity and mass. Their acoustic values will 

be denoted as adK  and adM . In the steady state the corresponding compliance, 1/ad adC K= , 

must be included in the equivalent circuit of the resonator, as this is shown in Figure 12.7 (b). 

This results in reducing 
V

P . Namely, / ( )h ad adV V
P P C C C  + , and the mismatch between 

the outer and inner pressure on the mechanical system of a transducer becomes 
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 V

tr h

adV

C
P P

C C
 

+
. (12.47) 

In a rational design of the transducer with pressure compensation the ratio /E

eqvac V
C C  must be 

considerably less than unity and ad V
C C  for minimizing the mismatch. In this case the mis-

match will be 

 /tr h adV
P P C C   . (12.48) 

Maximum value of trP  must not exceed some value that is permissible in terms of strength of 

mechanical system of the transducer and/or changing properties of piezoceramic. This quantity 

can be called allowed accuracy of the pressure equalization, tr aP . Its value depends on a trans-

ducer design. 

The condition of maintained (steady state) hydrostatic pressure is ideal in terms of operat-

ing the pressure equalizing system. In real operation the hydrostatic pressure may change in 

time according to deviations of the depth of transducer submergence. The most demanding 

condition is that of a rapid submergence of a vehicle, on which the transducer is installed. In 

this case the final value of the pressure ( )
V

P t  within the cavity is achieved as result of a transient 

process. In course of the transient process all the elements of the resonator must be taken into 

consideration in the equivalent circuit of the equalization system, as is shown in Figure 12.7 

(c). Reaction of this circuit to changing input pressure depends on the rate of change of hydro-

static pressure. Thus, if the pressure changed in the step like way, the response would be as 

shown qualitatively in Figure 12.8. 

 

Figure 12.8: Step response of the resonator at different values of the damping coefficient  : (1) 

1   underdamped resonator, (2) 1 = -critical damping; (3) 1  -overdamped resonator. 
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The rate of changing value of pressure 
V

P  depends on the damping coefficient of the res-

onator, 

 
2

R M

C
  



= , (12.49) 

where for brevity the combined reactive and active parameters of the resonator denoted as 

,C M   and R . The pressure reaches save for transducer level ( ) ( )h trV
P t P t P= −  sooner or 

later, but in all the cases at the first moment all the hydrostatic pressure is acting on the me-

chanical system of transducer. 

In reality the rate of changing hydrostatic pressure (rate of submergence), /hdP dt , is finite. 

At the beginning of submergence, the flow of fluid in the neck (assumed to be in the shape of 

a tube) is proportional to ( )hP t . Due to viscous resistance of fluid inside the tube a drop of 

pressure, P , on the length of the tube takes place. For approximate estimating the value of 

the drop the Hagen-Poiseuille law (Ref. 3) can be used that establishes relation 

 
4

8 l
P Q

a




 =  (12.50) 

between pressure drop ( P ), resistance of fluid (
48 /acR l a = ) and rate of laminar flow 

through the tube (Q). (It is analogous to Ohm’s law for electrical circuits). As noted, 

( / )hQ dP dt= . Equating tpP P =  , geometry of the tube can be found from Eq. (12.50)  for a 

particular rate of transducer submergence. For achieving a higher accuracy of hydrostatic pres-

sure equalization parameter of resonator 
4 /a l  must be increased. 

It is noteworthy that relation (12.50) is valid, strictly speaking, for the long thin tubes. 

Therefore, the results obtained must be considered more as tendencies rather than accurate val-

ues. The same is true regarding all the calculations that are related to processes of propagating 

through the tubes of finite size, moreover, even properties of the fluids in real transducer designs 

may be known not to a great accuracy. 

Characteristics of the resonator, as a partial system that accomplishes the hydrostatic pres-

sure compensation, influence the operating parameters of transducer, as this can be quantita-

tively analyzed using the equivalent circuit in Figure 12.6 (b). Therefore, designing the trans-

ducer and resonator, as the parts of the coupled system, must be produced in accord. Two 
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variants must be considered differently in this respect: operating of the transducer in the receive 

mode in a broad frequency range that includes low frequencies and operating in the transmit 

mode in vicinity of the resonance frequency of the projector. These situations will be illustrated 

with examples of transduces in Chapter 13 (for projectors) and in Chapter 14 (for receivers). 

12.4 Properties of Fluids under Pressure 

A common peculiarity of transducers with hydrostatic pressure equalization systems is that their 

parameters (sensitivity for receivers, resonance frequencies for projectors) may change to some 

extent due to dependence of properties of used fluids from environmental conditions. The most 

vulnerable in this respect are the mechanical systems of low frequency transducers of the flex-

ural type. Properties of the fluids, of which parameters of resonators depend, according to for-

mulas (12.9), (12.13), and (12.21), (12.26) are: 2

acc K , acM , acR   (for thin tubes), 

and 
acR   (for tubes of moderate diameter). A brief information regarding properties of 

the fluids that are essential for determining variations of parameters of resonators is presented 

below. 

For a fluid 

 1/c K=  and 
2 1/c K = , (12.51) 

where K is compressibility of the fluid. For liquids that have great heat conductivity the iso-

thermal compressibility, TK , must be used in the formulas. More appropriate for a gas is the 

adiabatic compressibility, SK , (except for high frequencies that are beyond the range of under-

water acoustics). Correlation /S TK K =  exists, where /P V
C C =  is ratio of the specific 

heats of the gas at constant pressure and at constant volume. Thus, ac TK K  for liquids, and 

/ac TK K   for gasses. By definition 

 
1

T

TT

i V
K

P PV





   
= − =   

   
. (12.52) 

From equation of state for a perfect gas (in the range of operating temperature and hydrostatic 

pressure conditions all the gases behave approximately as a perfect gas), 

 PV nRT= , (12.53) 
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where n is number of moles (mass equal to molecular weight in grams) in the volume, 

38.3 10R =   joules/mole and T is the absolute temperature, follows that 

 
1

TK
P

= , and 
1

SK
P

= . (12.54) 

For the liquids the compressibility is 

 
1

K
B

= , (12.55) 

where 2B c=  is the bulk modulus, / ( / )B P V V=   . (The bulk modulus B is analogous to 

the Young’s modulus Y for solids). Approximately linear relationship exists between the vol-

ume of a liquid and pressure (between the density and pressure) up to pressures at least about 

1000 atm (this corresponds to the pressure at the deepest point in the Ocean, Mariana Trench). 

Thus, compressibility of seawater with 
323 10B    atm changes at this depth by about 5% (the 

density changes as well), and therefore compressibility of the liquids can be considered practi-

cally independent of pressure in underwater applications. Data on the bulk moduli of several 

liquids are presented in Table A.2 

Table 12.2: Bulk moduli of liquids 

Liquid Water Seawater Castor oil Motor oil 

SAE-30 

Hydraulic fluid 

ISO 32 

Silicon oil 

 B, GPa 2.15 2.34 2.1 1.5 1.8 1.1 

 

According to formulas (12.9) for acoustic rigidity of a cavity, and (12.54), (12.55) for com-

pressibility of the gasses and liquids, the ratio of rigidities of cavities having equal volumes 

filled with commonly used castor oil and air under pressure is 

 9

( )

1
1.25 10

ac air oil

ac oil Pa

K B

K P P
= =   . (12.56) 

(For air 1.4 = ). Thus, at the average depth of Ocean (≈ 4200 m) this ratio is about 30, i.e., at 

equal rigidities the volume of cavity filled with air can be made accordingly smaller. Especially 

vulnerable to problems of reducing the size of the pressure compensating systems and their 

influence on the transducer performance are the low-frequency projectors that employ 
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mechanical systems of flexural type (benders, slotted ring and flextensional type transducers). 

These problems and possible ways of their overcoming are briefly discussed in Ref. 6. Using 

the pressurized gas would be the best choice in this respect, but its employing encounters sig-

nificant technical problems with reliable pressurized gas supply. Using compressible liquids 

such as the silicon oil may allow reducing volume of cavity approximately in factor of two. For 

transducers operating at moderate depth, it is possible to increase compressibility by inserting 

compliant metal or plastic sealed tubes inside the volume. 

In case of widely used pressure compensated cylindrical transducers the main concern may 

be to reduce effect of input impedance of the internal volume on the transducer performance. 

For the most of practical applications it is advantageous to use polyurethane rather than liquids 

for filling the interior of transducers. This simplifies the transducer designs and increases their 

reliability. Physical properties of the polyurethane modifications differ, but they can be charac-

terized in average for approximate estimating parameters of the internal volume. Useful infor-

mation regarding mechanical and acoustic properties of the polyurethanes can be found in 

Ref.7. For example, the data are presented in Table 12.3 for two commercial polyurethane (PU) 

rubbers: DeSoto PR1547 and GS960PU of Gallaher Corporation. 

Table 12.3: Properties of the polyurethanes. 

Property  , kg/m3 C, m/s B, GPa G, MPa 

PR1547 
4oC 

 1.05 
1650 2.9 6 

34oC 1500 2.3 4 

GS960PU, 20oC 1.08 1700 3.3 1.2 

 

The properties of PU to some extent depend on temperature, as is illustrated in the table, and 

on frequency. The dynamic bulk modulus of elasticity for different PU compositions may 

change approximately within ±35% of the mean value of 2.9 GPa. Therefore, it may be desira-

ble to increase compressibility of the PU filled internal volume of a transducer. For a limited 

depth applications, the compliant inserts can be used. Thus, in case that transducer is intended 

to operate up to relatively small depth, but must withstand much deeper submergence, using 

corprene for this purpose can be recommended. For example, 3 mm thick sheet of corprene DC-

100 being encapsulated in PU proved to be effective up to about 250 meters before its 
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compliance dropped, but the original properties were restored after exposure to pressure equiv-

alent to 1000 m depth. 
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CHAPTER 13 

PROJECTORS DESIGNING RELATED ISSUES 

13.1 Introduction 

The theoretical considerations presented in the preceding chapters allow calculating the elec-

troacoustic characteristics of transducers regardless of their application. But an optimal design-

ing the real transduces (especially high-power projectors) requires many skills and engineering 

intuition besides the ability to calculate parameters of the transducers analytically or numeri-

cally. Therefore, attempts to describe detail of designs of the particular transducer types without 

specifying requirements for their electroacoustic characteristics and operating and environmen-

tal conditions hardly can be successful. It may be useful and possible instead to show the tenden-

cies that can be pursued for achieving certain goals. In terms of meeting requirements for the 

electroacoustic parameters, the most challenging are the projector designs due to limitations of 

acoustic power radiated predominantly by the dynamic stress and electric field in the active 

material. These limitations are influenced by the environmental conditions, especially by the 

hydrostatic pressure that may produce reversible and permanent changing parameters of pie-

zoceramics (see Chapter 11). In this Chapter several aspects of the projector designing are con-

sidered related to optimizing their operation. 

For making decisions regarding optimal matching transducers of different type with acous-

tic field the concept of reserves of mechanical and electrical strength of a transducer that was 

introduced in Section 3.1.3.2 is used. It is shown how reducing the excessive reserves of 

strength by changing transducer design may lead to optimizing transducer parameters: to in-

creasing power radiated, or to making the design more balanced and therefore more reliable. 

This is done in Section 13.2. 

Mechanical strength of the load bearing (air-backed) transducers of different type under 

action of the hydrostatic pressure is considered in Section 13.3. The notions are introduced in 

this regard of the survival depth of submergence and of the maximum operating depth that is 

limited by a tolerable changing of ceramics parameters under the pressure.  
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Insuring the static mechanical strength and stable parameters of the transducer design under 

the hydrostatic pressure is one of important issues in their practical realization. Especially de-

manding in this respect are the low frequency flexural type projectors, as their mechanical sys-

tems inherently have relatively large compliance and hence vulnerability to static loads. Solving 

this problem requires using the hydrostatic pressure equalizing arrangements. The questions 

arise as to influence of these arrangements on the electromechanical parameters of the projec-

tors. The related issues are considered in Section 13.4. 

13.2 Using Concept of Reserves of Strength 

13.2.1 The Optimum Projector Loading and Coefficients of Reserves of Strength 

Summary is presented below of expressions that characterize the maximum acoustic power 

ac mW  that can be radiated by a transducer under the condition that radiation resistance has op-

timum for this transducer value optWr , or a real for the transducer value acr , which were intro-

duced in Section 3.1.3 under certain assumptions. Thus, for example, the mechanical losses in 

the transducers are neglected to the first approximation in order to simplify relations that illus-

trate the essence of the matter without loss of generality, as it is explained in Section 3.1.3. 

Therefore, all the following relations must be considered as approximate. When using the rela-

tions, it has to be remembered that numerical values of optimum acoustic load and maximum 

power radiated depend significantly on the values of permissible electric field and dynamic 

mechanical stress, which may change under particular operating conditions (temperature re-

gime, duty cycle). Therefore, the numerical data must be considered as illustrative for the me-

thodical purpose rather than as exact values. 

The optimum radiation resistance is determined by formula (3.126) as 

 
T P

optW

E P

A E
r

A T
= . (13.1) 

Here the quantities EA  and TA  for a particular transducer type must be determined using rela-

tions (3.121) and (3.123), respectively, where 

 52 10  V/mpE =  , 7 22 10  N/mpT =  , and 2/ 10 Vm/Np pE T −=  (13.2) 
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for the extensional type transducers, and 
52 10  V/mpE =  , 7 7 22 1.7 10 =3.4 10 N/mpT =    , and 2/ 0.6 10 Vm/N p pE T −=   (13.3) 

for transducers of the flexural type. It is noteworthy that the same values pE  = 2 kV/cm and 

pT  = 3000 psi (about 21 MPa) were used as permissible for estimating the extensional type 

transducers in Ref. 5. Regarding the permissible values of electric field and mechanical stress 

must be remembered the following. 

Magnitude of the permissible electric field may be limited by a smaller value depending 

on the temperature regime of a particular transducer design. The maximum power of electrical 

losses that is generated in volume of a transducer at resonance frequency 0  at permissible 

electric field pE  can be estimated as 

 2

0 tanS

eL eW V C =  = 2 2

0 tanS

p e eE t C  , (13.4) 

where et  is separation between electrodes. This quantity can be calculated for a particular trans-

ducer type. Thus, for example, for the spherical transducer made of PZT-4 ceramics: .

2 2

33 (1 ) 4 /S T

e p eC k a t = −  ., where et t=  is the thickness of the sphere; tan 0.02 =  at 

52 10  V/mpE =  , and 0 11 1(1/ ) 2 / (1 )E Ea s  = − . After substituting these data in formula 

(13.4) we arrive at 43eLW at=  , where a and t are in cm. Or being normalized to the radiating 

surface area 24S a = , 

 23.4 w/cmeLW t

S a

= . (13.5) 

 

Figure 13.1: Temperature dependencies for sphere with a = 3.3 cm and t = 0.3 cm that vibrates in 

water at room temperature in cw mode at 
52 10  V/mpE =  . Solid line for bare sphere, dash and 

dot-dash lines for the sphere incapsulated by 3 and 5 mm thick layers of polyurethane, respec-

tively. 
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If the raise of temperature due to dissipating this amount of energy in a piezoelement ex-

ceeds an acceptable level, then the permissible value of the electric field must be reduced ac-

cordingly to ensure a safe level of temperature and radiating power. 

This new permissible value of the electric field must be taken in estimation of the optimum 

loading. Evidentially, this can be done only after considering particularities of the transducer 

design and conditions of its operation. Example of the temperature dependences for the spher-

ical transducer with dimensions a = 3.3 cm and t = 0.3 cm made of PZT-4 ceramics that vibrates 

in water at room temperature in cw mode at 52 10  V/mpE =  , are presented in Figure 13.1. 

The cases are considered that the sphere is bare, or it is encapsulated with layers of polyurethane 

having different thickness. 

For illustrating general approach to estimations of the optimum loading we will keep the 

permissible value of electric field 52 10  V/mpE =   until specified otherwise. The permissible 

value of the mechanical stress is related to the solid piezoelements. If the piezoelements are 

cemented of parts, this value should be significantly reduced unless the piezoelement is pre-

compressed to a value that excludes tension in the bondings. 

Real radiation resistance, acr , may differ from the optimum, optr , if no special measures 

are taken. The difference can be characterized by the coefficient of mismatch, 

 /ac opt W Wr r m= . (13.6) 

At the real radiation resistance the maximum power radiated can be limited by the electric field 

( mEW ), or by the mechanical stress ( mTW ) that are expressed by formulas 

 

2

2

1p

mE

acE

E
W

rA
 , 

2

2

p

mT ac

T

T
W r

A
= . (13.7) 

In the expression for mEW  resistance of mechanical losses is neglected. This is especially justi-

fied in situation that the radiation resistance is close to the optimum. Ratio of these limiting 

values of power is related to the coefficient of mismatch, as 

 

2 2 2
2

2

mT acE P
w

T PmE optW

W rA T
m

A EW r

   
  = =   
   

. (13.8) 

The ratio ( /E TA A ) is called in Section 3.1.3 the design factor, because it is determined by 

the type and mode of vibration of the transducer mechanical system and by the electromechan-

ical properties of the piezoelectric ceramic material used. 
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Table 13.1. Estimations of the optimum acoustic loads for different projector types and their mis-

match with “real” acoustic loads. 
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=  = , where ha  and ca  are the radiuses of the head and piezo-

element, is the matching coefficient. ) /sK S dx dy

=   is the space factor of an array. 

The ratio ( / )p pT E  is called the technological factor because it depends on the existing 

average technological level of fabrication of the piezoelements and of the finished transducers 

that determines the permissible values of electric field and mechanical stress. The mismatch 

coefficient wm  can be considered as the acoustic load factor. In the case that 1wm   the trans-

ducer is underloaded, and the maximum power radiated is mechanical stress limited. At 1wm   

the transducer is overloaded and the maximum power radiated is electric field limited. At 

1wm =  the transducer is optimal loaded, and mT mEW W= . These situations were illustrated in 

Table 3.5 with examples of the basic designs of the uniform rod and circular ring transducer 

under the loads that are real for their application in array of a large size and in a single cylin-

drical transducer of a big height. It is seen that under these “natural” loading conditions they 

represent typical examples of underloaded and overloaded transducer types, respectively. Re-

sults of the analogous estimations that are made for broader range of the transducer types are 

presented in Table 13.1. 

The estimations in the Table 13.1 are made under the following assumptions: 

The radiation resistances for the baffled cylinder, sphere, and mass-loaded bar (assuming 

that its head is a round piston that has wave size / 0.5D  = ) are determined from the plots in 

Figures 6.10, 6.28 and 6.38 at values ka that correspond to the resonance frequencies of the 

transducers made of PZT-4 ceramics. 
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The radiation resistances of the flexural type transducers are calculated by formulas pre-

sented in Section 9.4: (9.283) for the single transducer units, (9.288) for the column like rec-

tangular benders and slotted rings, (9.294) for the benders in arrays of a large size. It is assumed 

that the single rectangular plate and slotted ring transducer units have dimensions w l=  and 

2h a= , accordingly. The column like transducers have the height that exceeds the wavelength. 

The wave sizes of the single flexural transducers are assumed to be / /D t a  ,were for the 

numerical estimations is used / 0.2t a = . Convention is that for the rectangular benders 

2D a w l= = = . 

All the values of the mismatch coefficients wm  are determined for the transducers made of 

PZT-4 ceramics. In the case that they depend on the relative dimensions of the piezoelements, 

the values of ratios / 5a t =  and / 5l t =  are used for numerical estimations. For the mass-

loaded bar transducer the numerical values depend on the transducer dimensions through the 

coefficient ( / ) / 2m h c hK S S m M =   that must be calculated for a particular transducer de-

sign. Loading for the rectangular benders in an array can be changed by changing the space 

factor /sK S dx dy=  , where S  is the transducer surface area, and ,dx dy  are the dimensions 

of the place that is occupied by the transducer in the array. 

Several conclusions can be made following the data presented in Table 13.1. Example of 

the mass-loaded bar transducer, which is a particular case of the Tonpilz design, illustrates a 

way for matching the underloaded equivalent uniform bar transducer with acoustic field (re-

garding the equivalent mutual transforming between the uniform and nonuniform bars in a gen-

eral case see Sec. 10.4). Close to optimum loading can be achieved by proper choosing the 

matching coefficient mK . It is noteworthy that due to cementing the parts of transducer design 

with piezoelement and segments of the piezoelement in case that longitudinal piezoeffect is 

employed prestress of the whole structure is required. Introducing a prestressing member of the 

design requires replacing a part of ceramic volume by a passive material, and thus results in 

some changes of coefficients EA  and TA . Therefore, the example in the table is numerically 

not exact, but it illustrates the way of better matching the transducer with acoustic field. How 

the conditions of optimum matching can be achieved in a transducer design will be considered 

in the next section. 
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Example of the baffled cylindrical transducer shows much better loading in comparison 

with omni radiating transducer. Given that a/t aspect ratio may be slightly changed the loading 

of baffled transducer can be considered almost optimum especially for the case that longitudinal 

piezoeffect is employed. In the last case a prestressing the segmented piezoelement is needed, 

but it does not require any replacement of the active material. Though the coefficient 
EA  may 

be reduced due to exposure of the ceramics to the maintained compression stress in direction 

of polarization. One of the possible ways of prestressing the cylindrical piezoelement without 

a significant changing its mechanical properties is by wrapping with a fiber (for example, glass 

fiber) under tension in combination with epoxy compound, as illustrated in Figure 13.2. 

 

Figure 13.2: To prestressing the cylindrical piezoelement. (a) General view, (b) cross section of 

the single element of the winding.: 1 - ring, 2 - winding, 3 - fiber, 4 - epoxy. 

Correlation between necessary ceramics prestressing, cT , and tension in the fiber, fT , can 

be determined as follows. Assuming that thickness of the winding is much less than thickness 

of the ring, t , it can be concluded that, 

 0c f fT t T k+  = , (13.9) 

where fk  is the space factor for the winding, /f fk S S=  ( fS  is cross-section area of the 

fiber, and S  is the total cross-section area of the element). From geometry considerations for 

the cross-section of a single element of the winding shown in Figure 13.2 (b) follows that 

0.9fk = . Thickness   of the winding will be found from this relation with known maximum 

permissible value of tension fT  in the fiber. For estimating effect of the winding on parameters 

of a ring the resulting equivalent rigidity and mass of the cylinder with winding, K  and M , 

must be determined. Approximately they are (subscript c stays for “ceramics”) 

 [1 / ]c f c w cK K K K Y Y t = +  + , [1 / ]c f c w cM M M M t   = +  + . (13.10) 
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Here 0.9 0.1w f epY Y Y= + , 0.9 0.1w f ep  = + ; fY , f  and epY , ep , are the Young’s moduli 

and densities of the fiber and epoxy, respectively. After these corrections due to the winding 

are determined, calculating changes of the ring parameters becomes straightforward. Given that 

t  , 
w cY Y , and 

w c   all the changes of parameters most probable are negligible. 

It is noteworthy that though this method of reinforcing the piezoceramic rings is widely 

used, it is not known for how long and to what extent the originally established stress is main-

tained due to possible stress relief in process of the fiber relaxation.  

Baffling can be considered as the way of matching the cylindrical transducers with acoustic 

field in case that they are used as unidirectional. Otherwise, the only way of matching is by 

changing the ratio /a t . Using the cylindrical transducers as unidirectional is typical for their 

employment in arrays. The range of their effective operating vs. depth depends significantly on 

properties of the baffles and on their behavior under the hydrostatic pressure. We considered in 

our estimations in Table 13.1 the ideal (rigid or compliant) baffle representations for revealing 

their influence on transducer performance. In practical applications baffles made of encapsu-

lated corprene can be used for operating in a shallow water (up to about 200 m depth). Design-

ing the baffles intended for operating at great depth and at low frequencies (below approxi-

mately 10 kHz) is a complicated engineering problem. Description of several examples of baf-

fles for underwater transducers and methods of their calculating can be found in Ref. 9. 

The spherical transducer is overloaded, if the piezoelement is solid. This means that the 

power radiated is limited by the electric field. The degree of overloading can be reduced by 

increase of the relative thickness of the sphere. Although usually the piezoceramic spherical 

shells are cemented out of hemispheres, and a prestress of the bonding is hardly possible. In 

this case the permissible stress will be limited by the strength of bonding the hemispheres, and 

the transducer may become underloaded, i.e., limited by the mechanical strength. 

The single circular and rectangular plate benders at transverse piezoeffect are almost opti-

mally loaded. The single rectangular plate benders that employ the longitudinal piezoeffect are 

underloaded. But it must be kept in mind that the segmented rectangular beam requires pre-

stress, and a part of the active material can be used for achieving this goal. As a result, the 

loading conditions may become closer to optimum. It is of note that the single flexural trans-

ducer units are seldom used for radiation. The circular plate benders are not capable of radiating 
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significant power (remember that condition of optimum loading, 1wm = , means only that 

mE mTW W= , and does not say about their absolute values), and rectangular benders are usually 

used in columns, or as the members of the large arrays. The column like rectangular benders 

are noticeably overloaded (electric field limited), if the transverse piezoeffect is used, and are 

almost optimally loaded, if the longitudinal piezoeffect is employed (though the prestress is 

required in this case). Loading of the rectangular benders in the large arrays can be tailored by 

changing the “space factor” 
sK . With transverse piezoeffect used the benders are overloaded 

at reasonable (that does not contradict overall amount of power radiated) value of the space 

factor, and with longitudinal effect used the optimum loading may be achieved at 0.5sK  , or 

a little less given that the prestress is required. 

The slotted ring transducers are dramatically underloaded (mechanical stress limited) as 

the single units and in the column like transducers. Especially this is true regarding the trans-

ducers that employ longitudinal piezoeffect, moreove, they require a prestress. 

It must be kept in mind that the numerical estimations are presented in Table 13.1 without 

considering real environmental conditions. Thus, the possible effects of hydrostatic pressure on 

peculiarities of the transducer designs and on their parameters are not taken into consideration. 

13.2.2 About Using Concept of Reserves of Strength for Optimizing Projector De-

signs 

Reserves of the electrical and mechanical strength of the projector regarding the maximum val-

ues of power limited by permissible electric field and mechanical stress are characterized by 

the coefficients (see relations (3.130) and (3.131)) 

 mEP
E

op op

WE
k

E W
= =  and mTP

T

op op

WT
k

T W
= = . (13.11) 

Here the operating acoustic power of a projector is denoted by 
opW , and the corresponding 

electrical field and mechanical stress for the projector are denoted by opE  and opT . According 

to these definitions for the reserves of strength coefficients (they may be also considered as 

safety factors), it must be 1Ek   and 1Tk  . If Ek  and/or Tk  exceeds the unity, it means that 

the projector has an excessive reserve of strength. In general, the projector design may be re-

garded as rational in the case that it does not have excessive reserves of either electrical or 
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mechanical strength, i.e., 1E Tk k= =  under the operating loading conditions. This situation 

corresponds to the maximum power available from the projector for a particular application. If 

a moderate acoustic power is required, then it will be 1E Tk k=  , which means that the pro-

jector acquires excessive reserves and its design can be made simpler, cheaper, and even more 

reliable for expense of reducing these reserves (for example, the amount of active material can 

be reduced, or the prestressing arrangements can be simplified, etc.). Note, that the resulting 

increase of opE  and opT  up to their permissible values pE  and pT  should not compromise the 

reliability of a projector, because the permissible values by their definitions must insure a long 

term reliability of a transducer. This assertion is seemingly unusual, and most of the users may 

prefer to have excessive reserves of strength to be on a save side, but the concept of possibility 

of optimizing projector design by reducing its reserves of the strength rests on this assumption. 

13.2.2.1 Length Expander Bar 

To illustrate, how the concept of reserves of strength may be realized in way of optimizing a 

projector design, consider example of transducer that employs piezoceramic length expander 

bar, as the typical representative of underloaded transducer type. The concept of equivalent 

transformation between the uniform and nonuniform (composite) bar representations that was 

introduced in Section 10.4.2 can be used with this goal. For simplicity we consider symmetrical 

composite transducer. Geometry of both composite and equivalent uniform bars is shown in 

Figure 13.3. 

 

Figure 13.3: To the equivalent conversion of the uniform bar into composite transducer. By the 

solid line is shown imaginary uniform bar, by the doted lines are shown passive parts of composite 

transducer that are equivalent to their ceramic counterparts in terms of the input impedances. 

As it was shown in Section 10.4, dimensions of the composite bar transducer can be related 

to parameters of the equivalent uniform bar that has a certain resonance frequency, rf , area of 

the end surface, cS , and is loaded by arbitrary radiation resistance ar  . They must satisfy rela-

tions (10.177) - (10.179) that are replicated below as 

l1 l1

acr

L1 L1

S1S1

SC

lel
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Given that parameters of ceramics ( c , E

cc ) are known beforehand, for determining parameters 

1 , 1c , 1L , ell , and cS  ( 1S  should be known as the area that is occupied by the transducer in 

array) we have the two first equations. Eq. (13.14) can be specified for the optimum matching 

with acoustic field by a proper choice of the radiation resistance ar  . We will assume that at 

optimum matching the mechanical and electrical safety factors must be equal ( 1E Tk k= =  that 

correspond to the maximum power radiated by the transducer). This condition can be formu-

lated as follows. Expression for the electromechanical transformation coefficient of a uniform 

bar transducer in the case that only a central part of ceramics is active is 

 ( ) ( ) sin( / 2 )el eln l n l l l= . (13.15) 

Accordingly, at the same radiated power the electric field opE   for a transducer with partially 

active ceramics as compared to oрE  for the fully active piezoelement is 

 ( ) / ( )op op elE E n l n l =  (13.16) 

and ( ) / ( ) sin( / 2 )E E el E elA A n l n l A l l =  =  . (13.17) 

Now from the condition E Tk k= , i.e., mE mTW W= , making use of formula (13.1) we obtain 

 
1 1
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p pT T
ac optW
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E EA A
r r

T T l l l lA A  
 =  =  =


. (13.18) 

Upon substituting this expression into Eq. (13.14) we arrive at the condition 
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c S l l
kL k l l
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−
=  . (13.19) 

It must be kept in mind that reducing amount of active material for achieving better matching 

with acoustic field comes for expense of the electromechanical force (reducing the electrome-

chanical transformation coefficient). At the same time, it is desirable to retain (or at least not to 

reduce significantly) value of the effective coupling coefficient in order not to compromise the 
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bandwidth of matching the transducer with power amplifier. These conditions can be not con-

tradictory until / 0.5ell l  , as it was previously illustrated with Figure 10.33. 

For maximizing the overall bandwidth of the transmit channel and increasing with this goal 

the bandwidth of mechanical system (reducing its 
mchQ ) predominantly light passive materials 

must be used for replacing ceramics such, for example, as aluminum alloys and titanium. This 

imposes an additional condition for determining values that characterize the composite trans-

ducer design. 

13.2.2.2 Rectangular Bender 

Consider the rectangular bender projector employing the longitudinal piezoeffect as one more 

example of achieving a close to balanced acoustic loading. Projectors of this type are the can-

didates for covering frequency range below 3-4 kHz. As this is seen from Table 13.1, the mis-

match coefficient of loading the rectangular bender in the large array is 2.2w sm K= , and it can 

be tailored by changing the “space factor” /sK S dxdy= . Thus, seemingly close to optimum 

loading could be achieved at 0.5sK  , but it must be taken into consideration that a prestress-

ing of ceramic may be required, if the goal of radiating maximum possible power is pursued. 

Therefore, an element that produces the prestressing must be included in the transducer design. 

In case of the composite length expander transducer, it was the central bolt stretched between 

its head and tail. Introducing the bolt could be considered in terms of influencing transducer 

electromechanical parameters as replacing some part of ceramic volume by passive material. 

This could be tolerated because the length expander transducer had excessive reserve of the 

electrical strength. Specifics of the rectangular bender as a member of an array is that it is 

overloaded and introducing an additional structural element ideally must not result in reducing 

the electromechanical transformation coefficient of transducer, or this reduction must be as 

small as possible. At the same time, the changes in transducer unit design that are followed by 

reducing its space factor (area occupied by the active element in array) can be made for expense 

of existing reserve of the mechanical strength. For illustration two possible variants of the rec-

tangular bender design with elements that produce precompression are shown in Figure 13.4 

and Figure 13.5. 
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Figure 13.4: (a) Design with the compression member that constitutes a part of the bender plate: 

1- segmented piezoceramic blocks, 2 - compression member, 3 - wedges for transforming the 

applied force, 4 - dielectric substrate, 5 - metal end parts. Arrows indicate directions of polariza-

tion. (b) Cross-section of the plate. 

 

Figure 13.5: Design with the compression member outside of the bender active volume: 1– seg-

mented piezoceramic blocks, 2 – compression bolts, 3 – the end parts. Arrows indicate directions 

of polarization. 

In the variant of Figure 13.4 precompression of ceramic blocks is produced with help of 

the parts of transducer mechanical system. This must be done in process of cementing the me-

chanical system under action of compressive forces, cf , applied to the wedges. The design 

requires replacing parts of the active volume at the ends (with length 1pl ) and through the thick-

ness (the latter includes dielectric substrates for isolating electrodes form the central metal 

layer). In the variant of Figure 13.5 the compression members (bolts) are located outside of the 

active mechanical system. They are positioned between extensions of the passive end parts of 

the mechanical system (with length 2pl ) in the neutral plane of the bender. 

t
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The compression can be produced after the mechanical system of the bender is assembled. 

Compare these variants in terms of minimal reducing reserves of electrical strength under the 

condition that dimensions of the radiating surfaces are the same. In both cases replacement of 

a part of the active material by passive (presumably metal) is required. This results in reducing 

electromechanical force ( em emF n V= ) according to plots presented in Figures 9.12 and 9.13 that 

are reproduced here as Figure 13.6 and Figure 13.7. 

 

Figure 13.6: Dependence of relative values of the transformation coefficient and effective cou-

pling coefficient from the relative thickness of the passive substrate / t : 1 - ( / ) / (0)n t n ; 2 

– ( / ) / (0)eff effk t k . 

 

Figure 13.7: Dependence of relative values of the transformation coefficient and effective cou-

pling coefficient from the relative length of passive parts /pl l : 1 - ( / ) / (0)pn l l n ; 2 – 

( / ) / (0)eff p effk l l k . 

For the qualitative estimations we use the plots obtained under the assumption that values of 

Young’s moduli of the passive material and piezoceramics are close. Although in the first var-

iant the metal parts may be made of metal having noticeably larger Young’s modulus, because 
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they experience significant tensile stress. More accurate estimations can be made in this case 

using results of Section 9.2.1.2. 

As can be concluded from the plots, in both cases replacing a part of volume by a passive 

material is followed by loss of the transformation coefficient, i.e., by reducing reserves of elec-

trical strength. Especially large drop of electromechanical transformation takes place in the first 

variant, in which case the required volume of passive material is much greater than in the second 

variant. This is because the stress-bearing central layer must have a certain thickness, and the 

passive parts at the ends must be more massive ( 1pl
 
> 2pl ) to arrange for developing the com-

pressive force. 

Therefore, this variant of design can be recommended for projectors of a moderate power 

in an array, or for the single unit transducers that are underloaded (have reserves of electrical 

strength). On the positive side is that reducing amount of active material is followed by increase 

of the effective coupling coefficient according to plots in Figure 13.6 and 137.. 

For the more powerful transducers the second variant is preferable in terms of preserving 

the level of electromechanical force. But while the prestressing bolts do not influence the elec-

tromechanical force, they may reduce to some extent the effective coupling coefficient of a 

transducer even though their axes are in the neutral plane due to a finite diameter of the bolts. 

The diameter of a bolt must be determined from the condition that the tensile stress in the bolt, 

tbT , is related to compression stress in the ceramics, ccT , by relation 

 22 b t b cs c cca T S T  = , (13.20) 

where ba  is the radius of the bolt, and cscS  is the cross-section area of the ceramic plate. Thus, 

 22 b t b cs c cca T S T  = . (13.21) 

Suppose that the bolts are made from beryllium copper, as was suggested in Ref. 1 for the center 

bolt of a Tonpilz transducer. This material has the tolerable stress tbT  = 700 MPa, bY  200 

GPa, 
38 10b =  kg/m3 . it is noteworthy that the bolts do not experience a dynamic stress in 

course of vibration, because of their location in the neutral plane, therefore the static stress is 

the only factor that must be taken into consideration, when determining their mechanical 

strength. Thus, for reaching the suggested permissible value of the tensile stress in solid ceram-

ics it must be cc ptT T=  = 34 MPa (see Eq. (13.3)), and 
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 38 10b cs ca S−=  . (13.22) 

To estimate effects of the bolts on the equivalent mechanical parameters of the transducer, con-

sider the energies associated with their deformation in course of flexural vibration of the me-

chanical system of the transducer. If the bolts have the same length, and the same boundary 

conditions as the mechanical system of the transducer, its first mode of vibration can be repre-

sented in the same way as for the piezoelement, i.e., 

 ( ) sin( / )b obx x l  = , (13.23) 

and given that the slops at the ends, ( ( )0,( / )x ld dx = , are the same, 
ob o = - maximum dis-

placement of the piezoelement. 

The potential energy of the bolts is, 
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where the inertia moment of the circular cross-section in respect to y axis is 4 / 4y bJ a= , and 

eqvbK  is the equivalent rigidity of the single bolt. Thus, 
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The kinetic energy of the bolts is, 

 2 2 2
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1
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l

pot b b eqvb oW a dx M   =  = , (13.26) 

where eqv bM   is the equivalent mass of the single bolt. Thus, 

 2 / 2 / 2eqvb b b bM a l M = = . (13.27) 

Validity of representing vibration of the bolts in the operating range of the bender by the 

first mode can be estimated by comparing the resonance frequencies of the bolts and of the 

bender itself. Based on the expressions for the equivalent parameters of the bolts and mechan-

ical system of the bender and using formula /r eqv eqvK M =  may be obtained that the first 

resonance frequency for the bolt is about two times lower than for the bender. Keeping in mind 

that the next (third) mode resonance frequency of the bolt is 9 times higher, representing 
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vibration of the bolts by the first mode in the frequency range of the bender operation can be 

considered appropriate. 

Thus, the total equivalent rigidity and the mass of the piezoelement and the bolts made of 

beryllium copper is, 
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 ( )2(1 2 / ) 1 5 10 /eqv eqvb eqv eqv b cM M M M M  −

 = + = +  . (13.29) 

Here 4 3 3

3 / 24E E

eqvK wt Y l=  and / 2eqv cM wtl= . With PZT ceramics used and at reasonable 

value of ratio w/t the second terms in parenthesis are negligible and E

eqvK K  , 
eqvM M  . 

Thus, the compression bolts do not influence equivalent mechanical parameters of the piezoel-

ement to the first approximation. 

Another question is whether the compressive stress acting along the piezoceramic beam 

influences its elastic property. It is shown in Ref. 7 that relative change of the resonance fre-

quency of a beam due to compressive stress, cT , acting along its length can be estimated by 

formula 
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= −  

 
. (13.30) 

Thus, if cT  = 40 MPa and l/t = 5, then for PZT-4 ceramics / 0.99r rf f = . This shift of the 

resonance frequency is negligible, but for a larger compression and relatively thinner beams 

this value can become noticeable. For example, it was assumed in Ref. 4 that cT  = 70 MPa and 

l/t = 10. The shift of resonance frequency under this assumption / 0.93r rf f =  is big enough 

to be considered in the transducer designing. 

13.3 Static Mechanical Strength of Transducers 

The typical environmental conditions for underwater transducers involve action of the hydro-

static pressure. Therefore, it must be estimated how the resulting stress and measures for insur-

ing the static mechanical strength of projectors of the load-bearing design may influence the 

above considerations regarding maximum possible power radiated and optimum loading. 
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Severity of acting the hydrostatic pressure on the transducers operation is quite different for the 

designs that realize the extensional vibrations and those vibrating in flexure. The latter are es-

pecially vulnerable in this respect as their mechanical systems inherently have relatively large 

compliance and hence larger deformations under static loads. Transducers of these types will 

be considered separately. 

13.3.1 The Extensional Type Transducers 

The static compression stress in the piezoelements of the extensional type transducers such as 

spheres and circular rings (planar for spheres and one dimensional for rings) under the hydro-

static pressure can be determined by formula 

 
s c h

a
T p

t
= , (13.31) 

so far as they are relatively thin and distribution of stress over the thickness can be neglected, 

which is usually the case. Assuming that compression static strength of ceramics that is typi-

cally used for projectors (PZT-4 and PZT-8) is maxscT  = 350 MPa and the aspect ratio of the 

piezoelements may be approximately estimated as / 5a t  , from formula (13.31) follows that 

in terms of strength the pure piezoelements can withstand hydrostatic pressure up to hp  = 70 

MPa. This corresponds to depth 7000 m, which exceeds the average depth of ocean (4300 m, 

and hp  = 43 MPa). (Definitely, this does not mean that transducer designs that employ such 

piezoelements may have equal mechanical strength). To estimate a real operating range of depth 

for application of the piezoelements, dependences of their electromechanical parameters on the 

compression stress that are presented in Section 11.3.3 must be taken into consideration. Thus, 

under the two dimensional (planar) stress in the spherical shell properties of PZT-4 ceramics 

may change as it is shown by plots in Figure 11.27.  

Under the one-dimensional stress in the circumferentially poled (segmented) rings a pre-

stress in the circumferential direction is usually required. In the extreme case the prestress up 

to psT  = 20 MPa must be imposed to prevent developing the dynamic tensile stress in the ring. 

The situation regarding the stress acting in the ceramics in the circumferential direction in this 

case is illustrated with plots in Figure 13.8. (Remember that the compressive stress is negative 



13.3 Static Mechanical Strength of Transducers 409 

 

according to the sign convention.) It follows that for the transducers intended to operate below 

400 m the prestress is not needed for avoiding the tensile dynamic stress. 

 

Figure 13.8: Dependencies of the stress in circumferential direction in a ring vs. hydrostatic pres-

sure (operating depth): 1 - hydrostatic compression stress in the ring having aspect ratio a/t = 5; 2 

– compression stress in the same ring that is prestressed up to 20 MPa; 3 – dynamic tensile stress 

in the ring without prestress. 

It must be noted that the static and dynamic strengths are usually determined in peak values 

of stress, whereas in calculating power radiated the rms values are used. Thus, if the permissible 

value pT  = 20 MPa is accepted for calculating the power, the prestress for avoiding the tensile 

stress in ceramics should be, strictly speaking, 28psT  MPa. However, we will retain for sim-

plicity in approximate estimations the rms value. Moreover, some level of self-strength of bond-

ing exists, at small depth radiation of ultimate power is not possible because of cavitation and 

at a greater depth an additional compression in ceramics occurs due to the hydrostatic pressure. 

Dependencies of the dielectric constants and piezoelectric moduli of PZT-4 and PZT-8 ceram-

ics from the static stress parallel to direction of polarization are presented in Section 11.3.3.1 

(Figures 11.12 and 11.13). 
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13.3.2 The Flexural Type Transducers 

The stresses in the mechanical system of a bender depend significantly on the boundary condi-

tions. We will assume that the circular plates and rectangular beams employed in the benders 

are predominantly simply supported. The reasons behind these are that simply supported pie-

zoelements proved to be the most effective electromechanically, and these conditions are the 

most easily achievable, particularly, in the double-sided symmetrical bender transducer designs. 

13.3.2.1 Rectangular Beams 

The stresses in the rectangular beam are (see Section 2.6.1) 
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The displacement 0  under action of the hydrostatic pressure hp  on the transducer surface can 

be found as 

 0 / E

h av mp S K = . (13.33) 

Thus, for the maximum stress that takes place at / 2z t=  in the middle section of the beam 
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At simply supported boundary conditions with ( ) ( )( )3 2 4 3  16 / 5l 2 / /x x x l x l = − +  
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and 0.64 0.64avS S wl= =  (see (2.128) and (2.130)). After substituting expressions for E

mK  and 

( )x  into Eq. (13.34) we obtain 

 

2

max 2
0.78 h

l
T P

t
= , (13.36) 

For estimating the limiting survival depth of the rectangular bender, we will use values of 

the static bending tensile and compression stress psT
 = 40 MPa and 500 MPa, respectively, 

as permissible in terms of mechanical strength for solid piezoelements. (They are the tensile 

and compression strength for the extensional deformation taken from Table 11.1 and multiplied 

by factor of 1.5–1.7). The permissible tensile stresses for the segmented piezoelements are 
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significantly smaller and they depend on quality of cementing the segments. Such piezoele-

ments subject to prestress in the transducer designs for avoiding tension. Here we will assume 

that transducers are made from solid piezoelements that may include the stripe electroded pie-

zoelements employing the longitudinal piezoeffect, or from the segmented piezoelements pre-

stressed up to excluding the tension, as it was assumed for the rings in the previous article. 

When using the numerical estimations made in this section, it should be kept in mind that the 

value of stress that characterizes the bending tensile strength of ceramics must be considered as 

conditional. It has to be admitted that no reliable data regarding the tensile strength (both static 

and dynamic) exist. Significantly different results of determining the tensile strength can be 

encountered in literature (in Ref. 2 this value is about 60-70 MPa, in Ref. 10 this value is esti-

mated as peak dynamic stress about 90 MPa). Probably, 40psT  MPa accepted here is some-

what underestimated value. The subsequent numerical results can be easily recalculated, if more 

trustworthy estimations for the bending strength of ceramics become available. 

In determining the maximum depth, to which the benders can be used, the notion of the 

maximum survival and operating depth must be distinguished. Additional limitations on the 

operating depth may arise due to changing parameters of ceramics under static stress, and due 

to combined effect of the static and dynamic tensile stress on the strength of the beams. At first, 

we will consider the survival depth without considering these effects. Estimation of the maxi-

mum survival depth that follows from relation (13.35) at value for the static tensile strength psT  

= 40 MPa is 

 

2
3

max 2
5 10 ( )

t
h m

l
=  . (13.37) 

Thus, the thickness to length aspect ratio of a beam is related to the depth as 

 
2

(m )( / ) 1.4 10t l h−  . (13.38) 

The theoretical assumption for applicability of the elementary theory of bending is that / 1t l

. But the results obtained under this assumption can be used for benders of finite thickness with 

corrections that are introduced in Section 9.2.2.1. The corrections are negligible for practical 

application up to values / 1/ 5t l  . Increase of the thickness to length aspect ratio not only 

affects the electromechanical parameters of the piezoelements. It results also in an increase of 

about:blank#_Expressions_for_energies
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the shear stress under the bending that has maximum values in the midplane and close to the 

ends of a beam. Therefore, the shear strength of epoxy that bonds the parts of the beam must be 

taken into consideration, when determining a reasonable increase of the aspect ratio. As an 

example, the shear strength for metal to metal bonding is about p shT  13 MPa according to 

the data from manufacturer for a particular epoxy used. Following (9.145) expression for the 

shear stress is 
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= − 
 

. (13.39) 

The shear stress 5T  reaches its maximum value at z = 0 and at 0,x l=  (for the simply supported 

beam ( ) sin( / )x x l = ), and after substituting expression (13.33) for 0  the maximum value 

will be obtained as 

 0.6m sh h

l
T p

t
= . (13.40) 

Given that 111/E E

aY s=  = 81 GPa and the permissible shear stress is p shT  = 13 MPa, the depth 

limit due to the shear strength is about 

 32.2 10 ( )m sh

t
h m

l
  . (13.41) 

If t/l < 1/5, the depth limited by shear strength of the bonding between ceramics is h = 440 m. 

The depth limited by the tensile strength according to formula (13.37) is 200 m. Thus, the tensile 

strength remains the limiting factor and the geometry of the beam vs. required survival depth 

must be determined using formula (13.37) and its modification 

 
3

(m)6.3 10 c

r

c
l h

f

−   (13.42) 

that relates the length of a beam to its resonance frequency and to the depth. For example, the 

length of the fully active beam that has resonance frequency rf  = 1.5 kHz at the aspect ratio t/l 

= 1/5 and must withstand maximum depth 200 m is l   20 cm. This makes the overall dimen-

sions of the beam 4 cm × 20 cm. Beam of such a large size cannot typically be produced as a 

solid piezoelement, and must be glued out of smaller parts, in which case the tensile strength of 

the whole structure can be reduced dramatically. In order to illustrate the correlation between 

more realistic geometry of a beam and its limiting survival depth, the dependences of the length 
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of a beam having aspect ratio t/l =1/5 from the depth for different resonance frequencies are 

presented in Figure 13.9 for the case that PZT–4 piezoceramics is used. For different aspect 

ratios the maximum depth must be determined from formula (13.41). This is noteworthy that 

the range of the operating depths for the benders as self-sustaining structures was estimated in 

Ref. 11 as up to 200 m approximately. In our estimation this corresponds to the transducer with 

resonance frequency 1.5rf kHz= . 

 

Figure 13.9: Dependences of the length of the beam vs. the maximum survival depth for different 

resonance frequencies: 1,1’- 1.0 kHz; 2, 2’ – 1.5 kHz; 3, 3’ – 2.0 kHz. Curves 1, 2, 3 for the fully 

active beams; 1’, 2’, 3’ for the half passive beams. Piezoceramics is PZT-4, passive material alu-

minum. Aspect ratio of the beams is t/l=0.2. 

For increasing the survival depth and still retaining reasonably compact dimensions of the 

flexural beam transducers, the half passive beam designs are used, in which case the part of the 

beam that experiences tension is made of a metal that has a much higher yield tensile strength 

than piezoceramics. For example, if aluminum alloy AA2011 with ptT  = 330 MPa is used as a 

passive material in combination with PZT-4 ceramics, then formulas (13.38) and (13.42) must 

be replaced by relations 
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−   (13.43) 

respectively. The plots of dependencies of the length of half passive beam vs. maximum oper-

ating depth for different resonance frequencies are presented in Figure 13.9 by the dash lines. 

The plots are restricted by length 20 cm. Increase of the maximum survival depth of a bender 

comes for expense of reducing the electric field limited acoustic power. If the beams are 
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prestressed for expending their dynamic range of operation, then the corresponding operating 

depth is also increased. 

13.3.2.2 Circular Plates 

The issues related to the strength of the circular plates under action of the hydrostatic pressure 

can be considered in the same way as for the rectangular beams. The difference is that the 

stresses in the circular plates are two dimensional: 1rrT T=  in the radial direction, and 2T T =  

in the circumferential direction. The maximum stress takes place in the center of the plate. At 

this point rrT T= . Expression for the radial stress in the center of a circular plate is 
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where the static deflection curve for the simply supported boundary conditions is given by for-

mula 
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According to (2.151) the rigidity, 
E

mK , and the average surface area, avS , are 
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20.46avS a= .  (13.46) 

Substituting these quantities into Eq. (13.44) results in 
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1max 2
0.92 h

a
T P

t
= . (13.47) 

Estimation of the maximum operating depth that follows from this relation at value of the per-

missible static tensile stress for the flexural deformation psT  = 40 MPa is 

 
3 2

max 4.3 10 ( / ) ( )h t a m=  . (13.48) 

It is noteworthy that for the two-dimensional case the permissible static tensile stress under the 

flexural deformation must be greater than that for the one dimensional system, but numerically 

it is not certain and therefore the same value psT  = 40 MPa is used. Thus, the thickness to radius 

ratio for a circular plate is 
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2

( )( / ) 1.5 10 mt a h−  . (13.49) 

On the other hand, we consider that t/a ≤ 1/5 is the maximum aspect ratio, at which the correc-

tions for the finite thickness of a plate still remain small. At t/a = 1/5 the correlation between 

the radius of the plate for a certain resonance frequency, 20.23( / ) E

r cf t a c=  (see (9.200)), and 

maximum operating depth can be estimated as 

 3

( )3.6 10
E

c
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r

c
a h

f

−  , (13.50) 

where ( )mh  is taken in meters. From this relation the radius of a plate that insures its static 

strength at a required depth and for a certain resonance frequency ca be determined. 

The maximum theoretically achievable operating depth being obtained from relation (13.48) at 

t/a = 1/5 is about 170 m. Thus, for example, if the resonance frequency of transducer is 

1.5rf kHz=  the radius of plate for this depth must be a ≥ 10 cm, which makes the overall 

dimensions of the plate D ≥ 20 cm, t ≥ 2 cm. A transducer of this size is too massive. Besides, 

the plates of this size cannot be manufactured as solid piezoelements and being glued out of 

number of smaller parts they will lose their tensile strength dramatically. More realistic corre-

lation between the plate radius and its maximum operating depth is illustrated for several reso-

nance frequencies with plots in Figure 13.10 following Eq. (13.50). 

 

Figure 13.10: Dependences of the radius of the plate at the maximum operating depth for different 

resonance frequencies: 1, 1’ – 1.0 kHz; 2, 2’ – 1.5 kHz; 3, 3’ – 2.0 kHz. Curves 1, 2, 3 for the 

fully active plates; 1’, 2’, 3’ for the active- passive plates. 
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For increasing the operating depth of the piezoelements having realistic geometries, a half 

passive plate design can be used, in which material of the lower half plate is replaced by a metal. 

It must be kept in mind that not only the permissible stress is changed, when calculating the 

active-passive plates (beam), but in general the Young’s moduli E

aY  and sound speeds 
cc

 
in 

the due formulas must be changed to eqvY  and eqvc  determined for the active–passive designs, 

as this is shown in Sections 9.2.3 and 9.3.2. The changes are small, if the values of Young’s 

moduli of the ceramics and metal are close, as it is in case that aluminum alloy AA2011 is used. 

Plots for the half passive ceramics-aluminum plates are shown in Figure 13.10 by the dash lines. 

As it was already noted, using the circular plates for projectors is less common compared 

with the rectangular beams. The half passive circular plate designs are typical for the hydro-

phones. 

13.3.2.3 Slotted Rings 

The circumferential stress in the slotted ring shown in Figure 13.11 is according to Eqs. (4.500) 

and (4.513), 

 

Figure 13.11: Slotted ring geometry. 
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where ro  is the maximum radial displacement at 0 = . The maximum stress maxT  is devel-

oped at / 2z t=  and  = . In the outer layer ( / 2z t= ) 

 max 2
0.44 roE

ii

t
T

s a
= − . (13.52) 

Formula (13.52) can be used for determining the static stress, if the displacement ro  under 

action of the hydrostatic pressure is known. This displacement can be found from relation 
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/ E

ro eqv mF K = , where the equivalent force produced by the hydrostatic pressure 
hP  is 

eqv av hF S P=  and  

 0.62 0.62 2 [ ( / 2)]av outerS S a t h= =  +  (13.53) 

following expression (7.289). The rigidity E

mK  for the short circuited ring is (see (7.250)) 
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Note that here and in formula (13.53) h denotes the height of the slotted ring, whereas ( )mh

denotes the depth in meters. 

As the result we obtain 
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Sign (-) shows that the displacement is directed to the center of a ring, whereas positive is 

direction outside. Now from formula (13.52) follows that the maximum tension in the outer 

layer is 
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or given that the resonance frequency of the ring is 
20.02( / )r cf t a c= , 

 max 0.22 1
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c t
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. (13.57) 

Thus, for example, for a ring made of PZT-4 ceramics having dimensions 

 25.2 10oD m−=  , 21.6 10t m−=   ( 1.5rf kHz= ) (13.58) 

the limiting survival depth may be determined from relation 

 ( ) ( )2.5m p MPah T  . (13.59) 

With pT  = 40 MPa it will be ( ) 100mh m . This estimation is valid for the fully active transverse 

poled and for the tangential poled (stripe-electroded) rings. For the segmented longitudinal po-

larized rings the permissible static tension is smaller and so is the survival depth of the trans-

ducer. 
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The limiting depth can be significantly extended in the half passive transducer design, in 

which case the outer layer of ceramics is replaced with metal (for example, aluminum). Thus, 

the tension in the ceramics will be avoided at the expense of reducing the electromechanical 

force by the factor of two. 

13.3.2.4 On the Correlation Between the Operating and Survival Depth of the Transducers 

So far, the maximum survival depth for the transducers was considered. In determining the 

maximum allowable operating depth, the additional limitations must be considered that arise 

due to changing parameters of ceramics under static stress, and due to combined effect of the 

static and dynamic tensile stress on the strength of the transducers. This issue will be considered 

with example of the flexural type transducers that are the most vulnerable in this respect. For 

estimating the operating depth an assumption must be made regarding the permissible values 

of the dynamic stress, dT , in presence of the biasing static stress, stT . We will assume that the 

maximum permissible stress remains the same for the total stress T , as this was suggested in 

Ref. 5. 

The maximum biasing stress due to the hydrostatic pressure is that of tension on the inner 

surface, compression on the outer surface of the plates (beams), and vice versa for the slotted 

rings. Accordingly, the operating (dynamic) tensile stress becomes biased by the static com-

pression stress on the inner surface for the plates (beams), as 

 i d stT T T = + , (13.60) 

and on the outer surface, as 

 o d stT T T = − . (13.61) 

Remember that according to the accepted sign convention the tensile stress is considered as 

positive and the compressive - as negative. For a slotted ring these relations must be changed 

places. 

Further an example of a beam as a part of the rectangular bender transducer will be used 

for illustrating. We introduce the following notations. The survival depth limited by tension that 

corresponds to permissible tensile stress ptT  is denoted sth , limited by compression that corre-

sponds to permissible compressive stress pcT is denoted sch . The operating depth that corre-

sponds to permissible stress at this depth ( )opT h  is denoted oph  



13.3 Static Mechanical Strength of Transducers 419 

 

 

Figure 13.12: Illustration of the operating and survival depths determined for the fully active 

bender plates on the lower and upper halves of the mechanical system. Values of the permissible 

operating stresses for a particular depth are within the shaded areas. The survival depth limited by 

tension is sth  , survival depth limited by compression is sch . 

The correlations between the survival and operating depths that are obtained with help of 

relations (13.60) and (13.61) for the fully active bender plates on the lower and upper halves of 

the mechanical system are qualitatively illustrated with diagrams in Figure 13.12. 

The dashed areas show the limits for values of permissible operating stress ( )opT h  vs. depth. 

Obviously, at 0h = (0)op d ptT T T= = . On the inner surface the permissible operating stress 

comes to zero at sth h= . On the outer surface the permissible operating stress raises with depth 

until it reaches the survival depth sch h= . Thus, the value of stress limited power radiated by 

the bender is restricted by stress conditions in the lover half of the mechanical system, 

and the larger is the required power the smaller is the operating depth. Radiating by the 

fully active bender at the survival depth is impossible. Maximum power can be radiated close 

to the surface. Though, it must be noted that close to the surface the radiated power may be 

limited by cavitation rather than by the tensile strength. 

The situation is quite different for the half passive design with the inner half of ceramics 

replaced by a metal having tensile strength comparable to compressive strength of the ceramics. 

Much larger survival depth that is determined by permissible compressive static stress, psT , of 

ceramics, and operating depth for radiating much larger stress-limited power is now allowed by 

strength of the upper part. But this advantage comes for expense of reduction of the bending 
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moment, or in other words, by reduction of acoustic power limited by the electric field. Another 

factor that must be taken into consideration regarding the half passive design is related to pos-

sible changing parameters of ceramics under the compressive stress generated by the hydro-

static pressure. This circumstance is not important for the fully active design, because its 

strength is limited by the relatively small tensile strength of the ceramics. In the half passive 

design the compressive stress in ceramics may reach its permissible value of about pcT  ≈ 350 

MPa, which may produce changes in the ceramic parameters. Note that the permissible com-

pressive bending stress can be even as large as about 500 MPa, but no data exist regarding 

changing parameters of ceramics under the bending stress. Approximate estimations can be 

made following the data presented for extensional deformations in Section 11.3.3. 

Alternative to the half passive design in terms of increasing operating depth and dynamic 

range of a transducer is precompression of the ceramics for reducing tension to a safe level in 

case of the transverse effect in the fully active design, and for avoiding tension in the segmented 

beams. The precompression may be required also in the half passive designs in case that the 

bias due to hydrostatic pressure is not sufficient for insuring dynamic strength of the ceramics. 

13.4 Hydrostatic Pressure Equalized Designs 

In this Section the cylindrical and flexural type (bender) transducer designs with internal vol-

ume filled with liquid are considered. The intended purpose of these designs is to equalize hy-

drostatic pressure and thus to avoid its harmful effect on the strength and electromechanical 

parameters of the transducers. Radiation from the internal volume of the transducers in this case 

must be regarded as parasitic. Considering the liquid filled transducer designs intended for ra-

diation from the internal volume, such as cylindrical free flooded (“squirter”) and Helmholtz 

resonator transducers, are out of scope of this treatment. Some information on the performance 

characteristics of transducers of this kind can be found in Refs. 12-18. 

13.4.1 Liquid Filled Cylindrical Shell of Infinite Length 

At first, we consider input impedance, inZ , of internal volume of infinitely long liquid filled 

cylindrical shell in the two modifications shown in Figure 13.13: (a) the volume is free of other 

parts, and (b) a rigid cylindrical post is installed coaxially inside the volume. Though this case 
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is not an exact representation of a real transducer design, it can serve as a prerequisite to con-

sidering the finite size cylindrical transducers, and the results obtained even may be applicable 

to the transducers having height comparable to wavelength. 

The assumptions ares that vibration of the shell is radial with velocity uniform along z-axis 

and the shell is thin enough for velocities of the outer and inner surfaces of the shell, 
outU  and 

inU , being considered equal. Thus, the radiation problem is two dimensional due to symmetry, 

and is equivalent to radiation into internal volume of a ring that is confined between two rigid 

planes perpendicular to axis of the shell as is shown in the Figure 13.13 (b). 

 

Figure 13.13: Infinite liquid filled cylindrical shell: (a) with internal volume free of other parts, 

(b) with a coaxially installed cylinder. 

The input impedance per unit length of internal volume for different modes of radial vibra-

tion of the shell, 

 ( , ) cosj t

nr a
U t U e n 

=
= , (13.62) 

will be determined from relation 
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  = = . (13.63) 

The general solution for different modes of sound pressure in the internal volume with time 

dependent factor omitted is (see Section 6.3.1.1) 

 ( , ) cos [ ( ) ( )]n n n n nP r n A J kr B N kr = + , (13.64) 

and the boundary conditions are: 
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for the case (a) 
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; (13.65) 

for the case (b) 
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The note must be made regarding the signs in the boundary conditions. Generally, the 

boundary conditions are derived from description of the sound field in some volume using re-

lations (6.45) or (6.47), where sign (-) in the relation 

 u grad= −   (13.67) 

corresponds to the case that velocity of the boundary vibration is directed inside the volume. In 

the situation shown in Figure 13.13 the velocity of the surface at r = a is directed outside the 

internal volume. Therefore, the signs in relations (13.65) and (133.66) are changed when for-

mulating condition at r = a. 

In the case (a) it must be 0nB =  in Eq. (13.64) due to the condition that sound pressure in 

the center has a limited value, while 
0

( )n r
N kr

→
→ . Thus, 

 ( , ) ( )cosn n nP r A J kr n = . (13.68) 

13.4.1.1 The Zero Mode of Vibration 

At the zero mode of vibration 0( , )U a U =
 
and after using boundary condition (13.65) will be 

obtained 

 0
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oA j U
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P r j c U
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Considering relation (13.63) we arrive at 
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J k a
Z j c a

J k a
 = −  . (13.70) 

Here the subscript l stays for “liquid” that fills the internal volume. 

The internal volume has resonances and antiresonances at 0 0inZ =  ( 0 ( ) 0lJ k a = ) and at 

0inZ =   ( 1( ) 0lJ k a = ), respectively. The corresponding values of lk a  are: 
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for the resonances 

 ( ) 2.4, 5.5, ...;l rk a = ; (13.71) 

for the antiresonances 

 ( ) 3.8, 7.0, ... .l ark a =  (13.72) 

Plot of the function 0injZ−  is shown qualitatively in Figure 13.14 by solid lines. 

 

Figure 13.14: Input impedance per unit length of the internal volume of infinitely long cylindrical 

shell: vibrating in the zero mode-solid lines, vibrating in the first mode-dash lines. 

Let us suppose that a cylindrical transducer is composed of short rings (generally with 

aspect ratio / 2 0.5h a  ) made of PZT piezoceramics and it is long enough to be approximated 

in terms of radiation by infinitely long cylindrical shell. The common equivalent electrome-

chanical circuit of a ring transducer that is loaded by the input impedance of the internal volume 

may be represented as is shown in Figure 13.15. The input impedance per ring of height h is 

denoted as 
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Figure 13.15: Equivalent electromechanical circuit of the ring transducer loaded with the input 

impedance of the liquid filled internal volume of cylindrical shell. 
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The wave size of a ring at the resonance frequency of the zero mode without reaction of the 

internal volume is 2.2wk a   in case that it is made of PZT-4 ceramics (subscript w stays for 

water). For the internal volume at the same frequency ( / )( )l w l wk a c c k a= . If for example, lc  

= 1500 m/s, then 2.2lk a =  and input impedance of internal volume is that of rigidity, as it 

follows from the plot in Figure 13.14. Therefore, the resonance frequency of the transducer 

with internal volume filled with liquid will go up. Besides, the presence of an additional rigidity 

will result in some reducing the effective coupling coefficient of the transducer and notches in 

its frequency response can be expected at antiresonance frequencies of the internal volume. At 

low frequencies, at 0lk a → , 0 ( ) 1lJ k a →  and 1( ) / 2l lJ k a k a→ . Thus, 
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where 
2

0 1/ 4 ( )h lC h c =  is the mechanical compliance of the internal volume of the ring that 

is confined between two rigid planes. The acoustic compliance of the volume with vibrating 

surface area 2S ah=  is 
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which coincides with relation (12.5) obtained in Chapter 12 for the small volumes. 

13.4.1.2 The First Mode of Vibration 

The first mode of vibration 1( , ) cosU a U =  is typical for cylindrical transducers described 

in Section7.2.3. In this case 1 1 1( , ) ( ) coslP r A J k r = . Using the boundary condition (13.65) 

and remembering that 

 1 0 1( ) ( ) ( ) /J kr kJ kr J kr r = −  (13.76) 

(see Appendix C) will be obtained 

 
1

1 1

0 1

( )
( , ) ( ) cos

( ) ( ) /

l
l

l l l

J k r
P r j c U

J k a J k a k a
  =

−
. (13.77) 

After substituting 1P  into relation (13.63) we obtain expression for the input impedance per 

unit length of the shell in the form of 
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1

1

0 1

( )
( )

( ) ( ) /

l
in l

l l l

J k a
Z j c a

J k a J k a k a
 =

−
. (13.78) 

The resonance frequencies of the internal volume take place at 1 0inZ = , i.e., at 1( ) 0lJ k a = . 

Thus, 

 ( ) 0, 3.8, 7.0,l rk a = … . (13.79) 

The antiresonance frequencies (at 1inZ =  ) take place at 0 1( ) ( ) / 0l l lJ k a J k a k a− = , where 

from 

 ( ) 1.8, 5.3,l ark a = … . (13.80) 

At low frequencies, at 0lk a → , the input impedance of internal volume per unit length of the 

shell is 

 2

1 1in l inZ j a j M  = = , (13.81) 

where 1inM  is the mass of the liquid per unit length. Function 1injZ−  is presented in Figure 13.14 

by the dashed lines. 

In this case the equivalent circuit of Figure 13.15 is applicable with replacement the sub-

script 0 by 1. The loading impedance for a ring is 

 
0

1 1

0 1

( )
( )

( ) ( ) /

l
h in l

l l l

J k a
Z Z h j c ah

J k a J k a k a
 =  = 

−
. (13.82) 

The wave size of a ring made of PZT-4 ceramics at resonance frequency of the first mode of 

vibration without reaction of the internal volume is 3.1wk a  . This corresponds to the same 

value 3.1lk a  of the wave size of the internal volume filled with liquid, for which lc  = 1500 

m/s. As it follows from the plot in Figure 13.14, the input impedance at this wave size is that of 

rigidity, and the resonance frequency of the ring goes up, as well as for the ring vibrating in the 

zero mode. Quantitatively the relation between the resonance frequencies of a ring for the zero 

and first modes, which is 
1 0/ 2f f  , may change due to the additional loading by the imped-

ances of the internal volume. This may result in changing the frequency responses of transduc-

ers that employ 0 1  modes of ring vibration (see Section 7.2.4). 
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13.4.1.3 The Second Mode of Vibration 

The second mode of vibration 
2( , ) cos 2U a U =  is typical for low frequency transducers that 

employ flexural vibration of the complete rings that are described in Section 7.3.1. Using the 

same procedure as in the previous cases, for this mode of vibration will be obtained expression 

for the input impedance per unit length of the internal volume 

 
2

2

1 2

( )
( )

( ) 2 ( ) /

l
in l

l l l

J k a
Z j c a

J k a J k a k a
 =

−
. (13.83) 

Resonances of the internal volume are at frequencies that correspond to 2 ( ) 0lJ k a = , where 

from 

 0, 5.13,lk a = …. (13.84) 

The antiresonance frequencies obtained from condition 1 2( ) 2 ( ) / 0l l lJ k a J k a k a− =  correspond 

to 

 0, 5.13,lk a = …. (13.85) 

From analysis made in Chapter 7 follows that ratio of the resonance frequency of the flex-

ural (see formula (7.230)) and zero mode radial vibrations of a ring is ( / ) 0.75( / )fl radf f t a= . 

Assuming that maximum aspect ratio for the flexural ring may be / 1/ 5t a  , this makes 

/ 0.15fl radf f  . Thus, the value of lk a  at the resonance frequency of flexural vibration is 

0.35lk a  , which is much below the first antiresonance frequency of the internal volume. At 

small lk a , 1( ) ( ) / 2l lJ k a k a , and 2

2 / 2in lZ j a = . In the equivalent circuit of Figure 13.15 

for a single ring the inertia reactance must be introduced 

 
2

2 2 / 2h in lZ Z h j a h =  = . (13.86) 

This will result in some lowering of the resonance frequency of the transducer. 

13.4.1.4 Liquid Filled Shell with Coaxial Rigid Cylindrical Post 

The boundary conditions for the case that a rigid cylinder of radius r = b is coaxially installed 

inside of the internal volume are 

 
r a

r a

P
j U

r


=
=


=


, 0

r b

P

r =


=


. (13.87) 
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We will consider the zero mode of the shell vibration. From expression (13.64) at n = 0, 

 
0 0 0 0 0( ) ( ) ( )l lP r A J k r B N k r= + . (13.88) 

Using the boundary conditions (13.87) we obtain expressions for the constants 0A  and 0B  as 

 1
0 0

( )
( ) l

l

N k b
A j c U= −


, 1

0 0

( )
( ) l

l

J k b
B j c U=


, (13.89) 

where 

 1 1 1 1( ) ( ) ( ) ( )l l l lJ k a N k b J k b N k a = − . (13.90) 

Thus, 

 0 0 0 1 0 1

1
( ) ( ) [ ( ) ( ) ( ) ( )]l l l l lP r j c U J k r N k b N k r J k b= − −


. (13.91) 

After applying formula (13.63) we arrive at the expression for the input impedance per unit 

length of the shell 

 0 1 0 1

1
( ) 2 [ ( ) ( ) ( ) ( )]l l l l linV

Z j c a J k a N k b N k a J k b = − −


 (13.92) 

Conditions for determining the resonance and antiresonance frequencies of the input impedance 

are: 

 0 1 0 1( ) / ( ) ( ) / ( )J x J mx N x N mx= ; (13.93) 

and 

 1 1 1 1( ) / ( ) ( ) / ( )J x J mx N x N mx= . (13.94) 

Here lx k a=  and m = b/a. Solutions for Eqs. (13.93) and (13.94) that correspond to the reso-

nance and antiresonance frequencies are presented in Table 13.2. 

Table 13.2: Values of lk a  at the resonance and antiresonance frequencies. 

m 0 0.2 0.4 0.6 0.8 

( )l rk a  2.40 2.57 3.11 4.34 8.21 

( )l ark a   3.83 4.24 5.39 7.93 15.74 

 

At low frequencies (at 0lk a → ) from expression (13.92) follows that the input impedance 

per single ring of the height h is 
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a h c
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= =

−
, (13.95) 

i.e., that of the rigidity. After converting the mechanical compliance 
hV

C  to acoustic value, we 

obtain 

 
2 2

2 2 2 int

2 2

( )
4

( ) ( )hVac hV

l l

Va b h
C C a h

c c




 

−
=  = = , (13.96) 

that is the common expression for the acoustic compliance of a small volume with vibrating 

surface area 2S ah= , which is confined within rigid walls. 

13.4.2 Input Impedance of Internal Volume of the Liquid Filled Finite Height Cy-

lindrical Transducer 

Real cylindrical projectors are usually composed of rings with aspect ratio (h/2a) < 0.5. At 

number of rings in the transducer greater than two a nonuniform distribution of vibration over 

the transducer height may take place due to acoustic interaction between the comprising rings 

both in the external and internal acoustic fields, if special measures are not taken for their equal-

izing (for example, by the series connection of the rings). In this treatment we will assume that 

distribution of velocity on the surface of transducer is uniform. One more assumption will be 

made regarding accounting for losses in the internal acoustic field. For simplicity we will con-

sider equations for determining acoustic field inside the volume as lossless. And then, after 

velocity distributions in the field become known, the viscose losses of energy due to shear in 

the regions close to boundaries (in the boundary layers) will be introduced. This approach seems 

to be appropriate, because the shear losses in the boundary layers contribute the most to dissi-

pation of energy inside the internal volume. We will assume further that the liquid filled volume 

is closed at the ends by the floating disks that separate the internal volume from outside envi-

ronment, as shown in Figure 13.16. The axisymmetric rings vibration will be considered only. 

Due to symmetry solution for the problem will be the same as for the half-length transducer 

closed on the bottom by the absolutely rigid baffle, as shown in Figure 13.16 (b). We will 

assume that velocities of vibration of the transducer and disks, 
0( )

r a
U r U

=
= and 

( ) Lz L
U z U

=
= , are directed outside the volume to make impedance of the internal volume 

compatible with radiation impedance of the transducer. 
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The boundary conditions for the problem are formulated as follows: 

 0

r a

P
j U

r


=


=


 (13.97) 

at the internal surface of the transducer, and 

 L

z L

P
j U

z


=


=


 (13.98) 

at the surfaces of the disks. 

 

Figure 13.16: (a) Geometry of the finite height cylindrical transducer with internal volume filled 

by a liquid and with floating disks at the ends. (b) The half-length transducer with imaginary rigid 

foundation 

 

Figure 13.17: Illustration of superposition of the boundary conditions. 

Solution to the problem can be represented as superposition of solutions I and II that cor-

respond to the following combinations of boundary conditions: 
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 II
l L

z L

P
j U

z


=


=


, 0II

r a

P

r =


=


. (13.100) 

The superposition of boundary conditions is illustrated with Figure 13.17. 

The set I of the boundary conditions is the same, as for the infinitely long cylindrical shell, 

due to symmetry. Therefore, 

 
0

1

( )
( ) ( )

( )

l
I l o

l

J k r
P r j c U

J k a
= −  (13.101) 

according to expression (13.69), and velocity ( )IU r  is 

 
1

0

1

( )
( )

( )

l

I

l

J k r
U r U

J k a
= . (13.102) 

Solution to the wave equation that corresponds to set II of boundary conditions is (the 

liquid is supposed to be ideal) 

 ( ) cos sinIIP z D kz C kz= + . (13.103) 

Due to symmetry in respect to plane 0z =  it should be 0C = . Thus, cosIIP D kz=  and after 

applying boundary condition (13.100) at z L=  will be obtained 

 
cos

( ) ( )
sin

l

II l L

l

k z
P z j c U

k L
= − , (13.104) 

 
sin

( )
sin

l

II L

l

k z
U z U

k L
= . (13.105) 

Now the characteristics of the acoustic field in the internal volume can be represented as 

 0

1

( ) cos
( , ) ( )

( ) sin

l l
l o L

l l

J k r k z
P r z j c U U

J k a k L


 
= − + 

 
, (13.106) 
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J k r
U r U

J k a
= , 

sin
( )

sin

l

L

l

k z
U z U

k L
= . (13.107) 

After the expressions for velocity distributions are obtained, the losses of energy due to 

viscosity of the liquid can be considered. The conditions ( ) / ( ) / 0U z r U r z  =   =  hold. 

Therefore, the viscous losses inside the volume do not exist under the approximations accepted. 

The energy of losses and corresponding resistances that must be included into the equivalent 
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circuit of the transducer may be attributed to dissipation of energy in the boundary layers near 

the side surfaces of the cylinder and disks. The dissipation of energy in the boundary layer can 

be introduced as follows (Ref. 19). 

Due to finite viscosity of a real fluid, a thin layer exists near a boundary, in which the shear 

stress can develop, if the tangential to the boundary movement of the fluid takes place, as it is 

shown in Figure 13.18. The shear stress is defined as 

 
y

xy

v
T

x



=


, (13.108) 

where the coefficient   is called the coefficient of viscosity. Thickness bl  of the boundary 

layer is 

 2 /bl  = . (13.109) 

 

Figure 13.18: The boundary layer and distribution of the tangential velocity. 

The layer is very thin compared with acoustic wavelength. Thus (see Chapter 12), for water 

310 −= Pa∙s and 
2

kHz0.2 10 /bl f− cm, for the castor oil 1.0  Pa∙s and 

2

kHz6.0 10 /bl f−  cm. Within the boundary layer the propagating wave itself cannot fit the 

boundary condition, and the shear wave in the tangential to the vibrating surface direction must 

be considered also. This wave is dying down rapidly in the normal to the surface direction. In 

Figure 13.18 
(1 ) /

( ) bj x l

shear wall acU U U e 

− −
= − , where shearU , wallU and acU  are the velocity in 

the shear wave, velocity of vibration of the transducer surface in the tangential direction, and 

the tangential component of the acoustic wave velocity, respectively. The shear wave does not 

influence the propagating wave. Effect of the shear wave is in producing the loss of energy 

within the boundary layer. The rate of energy loss per unit area of the transducer surface can be 

estimated by formula (Ref. 19). 

lb

Un

Uτwall wall

Uτac

ny
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21

2
loss b wall acW l U U  − . (13.110) 

According to this expression the energy of losses in the boundary layer on the inner surface of 

the cylinder due to velocity distribution ( )U z  along the surface will be 

 
2 21

2 ( )
2

L

loss L l b lL L

L

W l a U z dz r U  
−

= = , (13.111) 

where lLr  is the equivalent resistance of losses on the inner surface attributed to velocity LU ; 

bl  is the thickness of the boundary layer that is determined by formula (13.109). After integrat-

ing in expression (13.111) will be obtained that 
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1 1
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=  − 
 

. (13.112) 

In the analogous way on the surface of the disk 
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and 
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r l a
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= − 

 
. (13.114) 

Vibration of the disks is generated by vibration of the transducer and is influenced by a 

reaction of the outside sound field. Consider the movement of the disks under these actions 

assuming that the disks vibrate in the piston like mode, and their thickness is much smaller than 

wavelength in their material. In this case the input impedance of the disk itself can be repre-

sented as d dZ j M= . The external reaction strictly speaking may be due to self-radiation of 

the disk and due to interaction with radiation produced by the outer side surface of the trans-

ducer. Effect of the interaction may be neglected, if the height of the cylinder is not too small. 

The self-impedance will be introduced as radiation impedance, ac dZ , of the disk vibrating on 

one side (see Section 6.3.3.7). Besides, the resistance of losses lLr  related to velocity LU  must 

be included. Thus, the total input impedance of the disk will be 

 in d d ac d lLZ j M Z r= + + . (13.115) 
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The force acting on the surface of the disk that is produced by the internal acoustic field is 

 
0

2 ( , )
a

d z L
F P r z rdr

=
=  . (13.116) 

After substituting expression (13.106) for ( , )P r z and integrating will be obtained 
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. (13.117) 

Using relation d in d LF Z U=  we arrive at 
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+
. (13.118) 

Note that at 0in dZ =  (liquid filled cylinder with ends closed by imaginary thin films vibrating 

in air) 

 
0

2
tanL

l

l

U
k L

U k a
= − . (13.119) 

At low frequencies (at 0 → ) 

 
0

2LU L

U a
= − . (13.120) 

The same result can be obtained from consideration that the volume of incompressible liquid 

must remain constant during vibration, i.e., 2

0 4 0LU aL U a + =  and 0/ 2 /LU U L a= − . 

After substituting relation (13.118) for velocity LU  in formulas (13.106) and (13.107) we 

arrive at expressions for the field characteristics inside the volume attributed to velocity 0U
 
of 

the transducer vibration: 
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, (13.121) 
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+
. (13.123) 

The resistance of losses lLr also must be recalculated to velocity 0U . The transformed 

value, which we denote iLr , will be found from equality 
2 2

0iL iL Lr U r U=  as 
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Now the input impedance of the internal volume per the entire transducer that must be 

included in its equivalent circuit, as this is shown in Figure 13.15, can be determined from 

relation 
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lL lainV inV
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W aU P a z dz r r U Z U 

−

= + + =  , (13.125) 

which represents the total energy spent by the transducer for generating acoustic field in the 

internal volume. After performing the integration, the following expressions will be obtained 

for the input impedance ant its components: 

 ( ) ( )ina l in L linV
Z Z k a Z k L= + , (13.126) 

where 
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. (13.128) 

The values of the impedances are average for the entire transducer, whereas input imped-

ances per comprising rings may be somewhat different, because the sound pressure inside the 

volume is not uniform over the height. 

Due to symmetry the solutions obtained are valid for the transducer design with internal 

volume closed on the bottom by a rigid (theoretically absolutely rigid) element, as shown in 

Figure 13.16 (b). In this case the impedances of the internal volume will have half value of 

those determined for the full size transducer. 

The reactions of the internal volume influence the operating characteristics of a cylindrical 

transducer. The reactive loading for the transducer at frequencies around antiresonances are the 

largest by magnitude and change signs. This may produce shift of the resonance frequency of 

the transducer in case that it is close to the frequency of the antiresonance. Introducing large 

impedances in the equivalent circuit of a transducer in vicinity of the antiresonance frequencies 

may result in appearance of notches in frequency response of the transducer. Besides, the 
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resistances of losses are introduced in the equivalent circuit that represent dissipation of energy 

in the internal volume due to viscosity of the liquid. The combined effect of all the sources of 

energy dissipation results in reducing the seemingly infinite values of the input impedances at 

the antiresonance frequencies. 

It must be admitted that calculations made for the frequency regions around the antireso-

nances of the input impedances should be considered as qualitative, because of the assumptions 

made. For estimating the main features of the impedance of internal volume and its influence 

on the operating characteristics of a transducer consider the following example. Suppose that 

transducer vibrates in air, the liquid is lossless, and the internal volume is confined between 

thin disks with negligible mass. In this case 0in dZ = . (Note that analogous problem was con-

sidered at such approximation in Ref. 0 in a different way). 

Putting 0in dZ =  and neglecting other losses related terms in formulas (13.127) and 

(13.128), we obtain expressions for the input reactances: 
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l
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Z j c aL
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 = − , (13.129) 

 
2 tan8

( ) l
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l l

k LL
Z j c

k L k L


=  . (13.130) 

Impedance in aZ  represents the impedance per unit length of the internal volume of the infinitely 

long cylindrical shell multiplied by the length of the finite height cylinder 2L. The correspond-

ing set of the antiresonance frequencies was obtained from condition 1( ) 0lJ k a =  at 

 3.8; 7.0;...lk a = . (13.131) 

The first antiresonance frequency that is close to the resonance frequency of the pulsating cy-

lindrical transducer (at 2.2lk a  ) is  

 01.7ar a rf f  (13.132) 

in case that the sound speeds in the liquid is 
31.5 10 /lc m s=   . As it was noted in Section 

13.4.1.1, the input reactance in aZ  produces increase of the resonance frequency of the trans-

ducer. Another set of antiresonance frequencies will be obtained from condition tan lk L =  , 

i.e., from 
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 (2 1), 1, 2,...
2

lk L m m


= − =  . (13.133) 

This set of the antiresonance frequencies is 

 (2 1), 1, 2,...
4

l
ar L

c
f m m

L
= − = . (13.134) 

i.e., the set of resonance frequencies of longitudinal vibration of the column of liquid with free 

ends having height 2L. Being expressed in terms of the resonance frequency of the cylindrical 

transducer, these frequencies are 

 00.35 (2 1), 1, 2,...ar L r

a
f f m m

L
= − =  (13.135) 

Thus, the number of the antiresonances below the resonance frequency of the transducer in-

creases with increase of aspect ratio L/a, the lowest antiresonance frequency being 

 00.35ar L r

a
f f

L
= . (13.136) 

The input reactance in LZ  may produce notches in the frequency response of the transducer. It 

is noteworthy that according to formula (13.112) the resistance of losses lLr  increases with L. 

This reduces the depths of the notches. 

Internal volume has resonances. The resonance frequencies may be determined from con-

dition 

 [ ] [ ( ) ( )] 0ina l in L linV
Jm Z Jm Z k a Z k L= + = . (13.137) 

Approximately this condition can be represented as 

 
0

1

tan ( )
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l l l

l l

k L k a J k a

k L J k a
− = , (13.138) 

following the expressions (13.129) and (13.130) for the input impedances. At the resonance 

frequencies only the resistances of losses are introduced in the equivalent circuit of the trans-

ducer. Their effect on the frequency response of the transducer is straightforward. At the same 

time, a radiation from the transducer ends may increase due to raise of magnitude of vibration 

inside the internal volume in axial direction. 

Both the antiresonance and resonance frequencies can be changed to some extent by chang-

ing dimensions of the disks on the ends of the volume. 
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In the general case of operating transducer in water the active energy of radiation from the 

ends and its relation to the active energy radiated from the side surface of the transducer can be 

estimated in the following way. The energy radiated by the disks is 
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= =

+
. (13.139) 

The energy of radiation from the side surface of the transducer having radiation resistance ac trR  

is 

 
2

Re[ ]actr actr oW R U= . (13.140) 

If transducer is made of PZT-4 ceramics and operates in vicinity of its resonance frequency, 

then 2.2ka  . At this value of ka 2( )ac d wR c a  . For the cylindrical transducer of the length 

comparable with wavelength (approximately at (2 / ) 0.8L   ) the radiation resistance is 

( ) 4ac tr wR c aL  . (For the radiation resistances of the cylindrical transducer and disc radiat-

ing from one side see Sections 6.3.1.1 and 6.3.3.7). For the approximate estimation we assume 

that ( ) ( )l wc c  , and the mass of the disk, which can be considered as imaginary, is ne-

glected. With help of expressions (13.139) and (13.140) will be obtained 

 2
Re[ ]

tan
2Re[ ]

ac d

ac tr

W a
kL

LW
 . (13.141) 

Given that for this case 2kL  , the radiation from the ends is negligible. 

Although the above analysis was not intended for calculating acoustic field due to com-

bined radiation from the side surface and from the ends of the liquid filled transducer, this can 

be done within the accepted approximations in the following way. Using relation (13.112) be-

tween velocities of the uniformly vibrating side surface and of the ends of transducer (or of the 

one end, if another end rests on a rigid foundation), oU  and LU , the sound pressure may be 

found, as radiation of the finite size cylinder that is described in Section 6.3.1.3. The results that 

can be obtained in this way may be less accurate for cylinders of small height, because the 

acoustic interaction between radiations of the side and end surfaces was not considered when 

determining relation between their velocities. 

For rough estimation of peculiarities of the directional factor of the cylindrical transducer 

the combined radiation from the side surface and from the ends can be represented as their 
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superposition that is illustrated with Figure 13.19. The resulting expression for the sound pres-

sure in the far field is 

 

Figure 13.19: Liquid filled cylindrical projector radiating from the side and end surfaces. 

 ( ) ( ) 2 [ ( / 2)]side endP P P   = + − , (13.142) 

where according to expressions (2.67) and (6.327) 
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The values of functions ( )F ka  and ( , )E ka   can be found from Table 6.3 and expression 

(6.315). 

Note that some additional error in determining the combined acoustic field exists because 

the acoustic centers of radiation of the cylinder (which is in the center of coordinates on the 

axis of the cylinder) and of the disks do not coincide. 

13.4.3 Flexural Type Projectors 

Specifics of the flexural type projectors (rectangular benders, slotted rings) in comparison with 

the above considered cylindrical transducers in terms of influencing the pressure equalization 

arrangements on their operating characteristics is due to much greater compliance of their me-

chanical systems and smaller wave size. Their fluid filled internal volumes represent acoustic 

U0U0
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chambers with lumped acoustic parameters, and their influence on the transducer operation is 

more pronounced. The acoustic properties of the fluid filled chambers are considered in Chapter 

12. Requirements for properties of the pressure equalizing system differ depending on the fre-

quency response of a transducer. Regarding the hydrophones operating in a broad low fre-

quency range these issues are considered in Chapter 14. 

Using the liquid filled internal volumes for hydrostatic pressure equalizing in low fre-

quency projectors that operate in vicinity of resonance frequency is more questionable. Imped-

ance of the internal volume may influence dramatically on the properties of the projector. The 

related problems are discussed in Ref. 11. In particular, using compliant inserts (metal or plastic 

tubes) into the liquid filled chamber is considered as one of the measures for reducing its rigid-

ity. But this restricts operating depth of projector by the strength of the insert. In terms of ex-

pending the range of pressure equalizing for the low frequency projectors, attractive looks idea 

to use the internal volume as Helmholtz resonator having resonance frequency close to the res-

onance frequency of the projector. The problem in this case is that influencing parameters of 

the resonator on the operating characteristics of the projector is not that obvious. In principle, 

the operating characteristics of a projector with Helmholtz resonator may be investigated quan-

titively using the equivalent circuit presented in Figure 12.6. Execution of this task can be 

greatly facilitated by a preliminary qualitative analysis of the main peculiarities of this ap-

proach. A detailed considering of related to the problem issues is out of scope of this treatment. 

As to the approximate qualitative analysis, applying technique of the coupled vibration can be 

recommended for this purpose. Employing this technique is illustrated in the following sections 

with example of the slotted ring projector. 

13.4.3.1 Coupled Vibration Analysis of the Pressure Equalizing System 

Requirements for the pressure equalizing system of the low frequency projectors may be for-

mulated based on analysis of the equivalent circuit of a transducer operating in vicinity of its 

resonance frequency that includes acoustic elements of this system. The corresponding electro-

mechano-acoustic equivalent circuit was introduced in Chapter 12 (Figure 12.6). The slightly 

modified version of this circuit is shown in Figure 13.20. 
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Figure 13.20: (a) Schematic representation and (b) equivalent electro-mechano-acoustic circuit of 

a projector of the flexural type with hydrostatic pressure equalizing system in the shape of Helm-

holtz resonator. 

Namely, a possible transformation of the volume velocity between the outer and inner surfaces 

of a transducer with cylindrical mechanical system is introduced in the form of imaginary trans-

former with coefficient of transformation 
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For brevity they are marked by primes ( acn n= , E E

eqv ac eqvC C= , eqv ac eqvM M = , mL ac mLr r=
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The energies associated with vibration of the coupled mechano-acoustic system under volt-
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Here 
Vn
  is the generalized displacement in the neck, 

2 1 V
UV V

n =   , and 
2V Vn

 −  is the gen-

eralized deformation of the internal volume of the resonator. Effects of losses and acoustic ra-

diation impedance are omitted (both for transducer and resonator) when considering the cou-

pled vibrations. The expressions for the potential and kinetic energies are analogous to expres-

sions (4.520) and (4.521) that characterize the coupled vibrations of two partial mechanical 

systems. In our case one of the partial systems that remains, if to put 0
Vn
 = , has combined 

rigidity 
2

V

E

eqv U V
K n K + , mass 

eqvM   and its vibration is generated by voltage applied. Another 

partial system that remains at 
1

0
V
 =  is the resonator with rigid walls that has rigidity 

V
K  and 

mass 
aceffM . Coupling between the partial systems is due to the mutual rigidity 

12
V

U V
K n K=

. Analysis of operating characteristics of this coupled system can be made using general proce-

dures of theory of coupled vibrations described in Section 4.6. The starting considerations al-

most do not differ from those presented by expressions (12.37) - (12.45). 

Expressions for the partial resonance frequencies of the system, 1 pf  for the transducer and 

2 pf  for the resonator, are 
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and coefficient of the elastic coupling is 
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Using expressions (13.136) - (13.138) the following Lagrange’s equations in complex form 

may be obtained that describe free vibrations in this coupled system 
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Due to relations 
1 2

/ /av o av i oV V
U S U S U= = , 
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n U U S S= = , (13.153) 

where aviS  and av oS  are the average inner and outer surface areas of the mechanical system of 

a transducer. 

Using expressions for the partial resonance frequencies and coefficient of coupling, the 

frequency equation for determining resonance frequencies of the system will be obtained in the 

form 

 2 2 2

1 2[1 ( / ) ][1 ( / ) ] 0p pf f f f − − − = . (13.154) 

For convenience of the general analysis of the coupled vibrations in the system the detuning 

factor, 

 1 2/p pf f = , (13.155) 

and the normalized frequency factor, 

 2 2

1/ pf f = , (13.156) 

will be introduced. Using these factors, Eq. (13.154) can be represented in the form 

 
2 2 2 2[1 (1/ )] (1 ) / 0   − + + − = . (13.157) 

Two branches 1( )  and 2 ( )  of normalized resonance frequencies of the coupled system 

will be found as solutions for this equation. The convention will be used that 1 2( ) ( )    . 

We will assume further that parameters of the mechanical system of transducer do not change, 

and all the changes of resonance frequencies of the coupled system are due to alternations of 

the resonator. For further manipulations denote 
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Then parameters of the coupled system will be expressed as 
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 2( / ) 1 1tr pf f   = + = + , 2/tr pf f  =  (13.161) 

 2 2( / ) / (1 )trf f  = + . (13.162) 

From Eq. (13.157) follows that 

 
2 2 2

1,2 2 2 2

1 4 (1 )
1 1

2 (1 )

  

 

 + −
 =  − 

+  

. (13.163) 

After substituting expressions (13.160) and (13.161) for parameters   and  , we arrive at 

equation for determining resonance frequencies of the coupled system, as functions of param-

eter 2/tr pf f  =  at different values of constant   
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After the values of i  are determined, ratios of the volume velocities ( )1
/

Vn V i
U U  at resonance 

frequencies of the system can be found from either of equations (13.151) or (13.152). For ex-

ample, from Eq. (13.152) we obtain 
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. (13.165) 

This quantity characterizes contribution of unintended radiation from the neck in comparison 

with radiation from the transducer surface at corresponding resonance frequencies together with 

corresponding radiation impedances. 

 

Figure 13.21: Geometry of the rectangular bender (a) and of the slotted ring (b) with resonators. 
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Constant   depends on the geometry and elastic properties of the transducer mechanical 

system and resonator. We will specify values of this quantity and subsequent calculations for 

the rectangular bender and for the slotted ring projector. Their schematic representations with 

Helmholtz resonator chambers are shown in Figure 13.21. Remember that the walls of the 

chambers as partial systems are considered to be rigid. 

13.4.3.2 Rectangular Benders with Helmholtz Resonator 

Due to symmetry of the design one half of it can be considered under the condition that the 

plane of symmetry is absolutely rigid. For the rectangular plate bender 1
V

Un = − . 

Acoustic rigidities of the rectangular simply supported plate and of the chamber of resona-

tor are 
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Thus, 

 

2 2 4

4

( )
0.16V

U V l

E E

eqv i

n K c l t

K Y t


 = =

 
. (13.168) 

For approximate estimation we will assume that the internal volume is filled with liquid 

having parameters of water, 2( )wc  = 2.25 GPa and the benders are made of piezoceramics 

having parameters of PZT-4: 1

EY  = 81 GPa and 3

EY  = 64 GPa for the transverse and longitudinal 

piezoeffect, respectively. Assuming that the maximum length to thickness ratio is l/t = 5, we 

obtain 

 2.8
t

 


 and 3.5
t

 


. (13.169) 

For a particular value of ratio /t   (i.e.,  ) and resonance frequency of the mechanical 

system of transducer in air, trf , dependencies can be obtained of the frequency factor,  , and 

of the “mode shape” coefficients, 
1

/
Vn V

U U , by formulas (13.158) and (13.159) from parameter 

2/tr pf f  = . Calculating these quantities will be considered with example of a slotted ring. 
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13.4.3.3 Slotted Ring Projector 

The average inner surface of a slotted ring is following expression (7.289) 

 1.34 [1 ( / 2 )]avinS ha t a= − , (13.170) 

and coefficient of velocity transformation, is 
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The acoustic rigidiеs of a ring (after expressions (7.250) and (13.166)) and of a resonator are 
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Consider an example of slotted ring made of PZT-4 ceramics with more or less realistic 

dimensions: a = 3.5 cm, t = 2 cm,   = 2 mm. Let it be filled with liquid having parameters of 

water, i.e., l wc c=  = 1500 m/s and 2( )lc  = 2.25 GPa. Under these assumptions   = 0.46 for 

the transverse and   = 0.58 for the longitudinal piezoeffect. 

Using formulas for the resonance frequencies of the resonator ( 2 pf  by formula (13.143)) 

and of the ring, 20.02( / ) E

ring cf t a c= , ( E

cc is the sound speed in ceramics) the value of coeffi-

cient    will be obtained as 
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E
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. (13.175) 

Values of the coefficients  ,    and all the non-dimensional resonance frequencies for this 

example are presented in Table 13.3. Note that relation holds between the resonance frequencies 

of the coupled system and partial frequencies, 1 1 2 2p pf f f f   , that is known from the gen-

eral theory of the coupled vibrations (see Section 4.6). 

Important characteristics of the coupled system are the relations between the volume ve-

locities of the transducer surface and surface of the neck (the “mode shape” coefficients), 

( )1
/

Vn V i
U U , which are determined from Eq. (13.165). Their values for the example considered 

are presented in Table 13.3. As it follows from the data, at the low (operating) resonance 
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frequency of the transducer the volume velocity of the neck is distractive (in antiphase) and 

smaller than velocity of the ring surface. At high resonance frequency (resonance frequency of 

the resonator operating as projector) it is in phase and larger. Noteworthy is that outside the 

resonance frequency region 
1V

U  and 
Vn

U  are in quadrature. 

Table 13.3: Quantities that characterize the coupled ring-resonator system. 

      1  2  1f  2f  1 pf  2 pf  

1
1

Vn

V f

U

U

 
  
 

 

2
1

Vn

V f

U

U

 
  
 

 

Eq. (13.174) (13.175) (13.164) (13.162) (13.159) (13.161) (13.165) 

Trans-

verse 

effect 

0.46 0.62 0.55 2.2 0.9 ringf  1.8 ringf  1.2 ringf  1.6 ringf  -0.80 2.2 

Longi-

tudinal 

effect 

0.58 0.55 0.51 2.6 0.8 ringf  2.0 ringf  1.26 ringf  1.8 ringf  -0.64 1.2 

 

By changing parameters   and    that are related to properties of transducer and resona-

tor the most favorable characteristics of the coupled system can be determined. After this is 

done, a detailed calculation of operating characteristics of the transducer must be produced 

using the equivalent circuit of Figure 13.20, which includes radiation impedances and re-

sistances of losses for the transducer and for the resonator. 
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CHAPTER 14 

SENSORS DESIGNING RELATED ISSUES 

14.1 Introduction 

General characterization of properties of the sensors (hydrophones and accelerometers) as 

members of a receive channel was produced in Section 3.3. Namely, their properties as a source 

of signal and internal noise, and their immunity to unwanted actions were concerned. Methods 

of analyses and results obtained for particular transducer types that allow calculating character-

istics of the sensors in detail were addressed in the related chapters of Part III. Here some gen-

eral properties of the sensors of different type that allow their comparison for operating under 

real environmental conditions will be considered, and recommendations on improving these 

properties will be discussed. The most widely used in the underwater applications are the hy-

drophones. Using the accelerometers per se is less common. Therefore, the main body of the 

chapter is devoted to the hydrophones.  

Requirements for the hydrophones can differ depending on their applications. Thus, for the 

hydrophones intended for measuring characteristics of the acoustic fields (pressure and pressure 

gradient) their immunity to unwanted actions may be especially important. Hydrophones in-

tended for populating arrays of passive sonars are the most demanding in terms of their sensi-

tivity under the operating environmental conditions. As to the reversible transducers that are 

used interchangeably in the transmit and receive modes of operation, requirements for their 

properties are usually dictated by the transmit mode and there is no need to consider them as 

hydrophones. 

Considerations regarding optimizing properties of the hydrophones operating in a broad 

band under hydrostatic pressure are addressed in Section 14.3. Harmful effects of unwanted 

actions on characteristics of hydrophones and some recommendations regarding improving 

their immunity to the unwanted actions are considered in Section 14.4. Most of the results that 

are presented in this chapter were reported in Ref. 1. More information regarding the first order 

sensor designs and related literature can be found in Ref. 2 and Ref. 3. 
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14.2 Zero and First Order Hydrophones 

14.2.1 Ideal Zero Order (Pressure) and First Order (Pressure gradient) Hydro-

phones 

Harmonic sound fields are characterized by the sound pressure P (a scalar quantity) and by the 

particle velocity U , or by the pressure gradient P  (vector quantity). The velocity and pres-

sure are related by Euler’s equation 

 0P j U = − . (14.1) 

This is noteworthy that there is no real means for direct measuring of the velocity, if not con-

sider hypothetical mechanisms of converting movement of particles into electrical signals. All 

the real devices (especially those employing piezoceramics) produce effect of measuring, be-

cause of deformation or motion of solid bodies under action of forces related to pressure gradi-

ent in the acoustic fields. Measurement of sound pressure and pressure gradient requires acous-

tic hydrophones of zero order (omnidirectional, or of the monopole type) and of the first order 

(having figure of eight directionality, or of the dipole type). 

An ideal sensor of zero order can be considered as a device with dimensions much smaller 

than the acoustic wavelength   ( / 1D  , where D  is its maximum dimension of the hydro-

phone), and having electrical response that is omnidirectional and proportional to the sound 

pressure only, as it is illustrated in Figure 14.1 (a). The ideal hydrophone must be insensitive to 

motion regardless of its origin, especially if it is produced by acoustic field. 

An ideal sensor of the first order or of the “dipole type” can be realized by a pair of identical 

ideal monopoles closely spaced (at distance d, where / 1d  ) and electrically connected in 

opposite phase, as illustrated in Figure 14.1 (b.1). Ideally the dipole possesses a figure of eight 

directionality with the acoustic axis directed along the line connecting the monopoles. Zero 

sensitivity in the lateral direction is equivalent to insensitivity of the dipole to the sound pres-

sure. In the case that the monopoles in Figure 14.1 (b.1) are identical (with equal sensitivities 

1 1p p  = = ), the output of the dipole hydrophone in the incident plane wave with magnitude 

P  propagating in the direction of axis 0 =  is 

 2 1
2 2 1 1p p

P P
V P P d d gradP

d
   

−
= − =   , (14.2) 
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and electrical output V  of the device is proportional to the pressure gradient only (is insensitive 

to the sound pressure). For the wave propagating in direction of angle   = 90° the output volt-

age is V = 0. 

 

Figure 14.1: Various types of ideal hydrophones and their directivities: (a) ideal zero order (sound 

pressure) hydrophone; (b) ideal first order (pressure gradient) hydrophones. Diffraction (fixed) 

type pressure gradient hydrophones: dipole (b.1) and flexural plate (b.2). Motion type pressure 

gradient hydrophone with an accelerometer (b.3). 

Note that the ideal figure of eight directional response of the device with zero response at 

  = 90° can be observed only under the assumption that there is no acoustic noise (or the signal 

to noise ratio in the sound field is infinitely large) and the sensitivities of the monopoles are 

infinitely large in order not to add electrical noise from the receiving system. Otherwise, the 

“nulls” of the directional characteristic will be limited by the environmental and receiving sys-

tem noise. 

Another example of the ideal first order hydrophone represents bimorph flexural plate sup-

ported on the circumference by foundation that does not move (massive enough), as is shown 

in Figure 14.1 (b.2). Under the condition that force acting in plane of the plate (denoted as F


) does not produce an output effect (halves of bimorph are identical) the output voltage of the 

hydrophone is proportional to the force F→  only. Assuming that dimensions of the plate are 

much smaller than wavelength, in direction 0 =  of the wave propagation the output voltage 

of the hydrophone will be 

 2 1( )V P P t gradP = −   , (14.3) 

φ

φ=0

( ) 1H  =

φ

φ=0

( ) cosH  =

D

(a)
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d
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U→

U
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where   is sensitivity of the bimorph plate. The approximation sign is used because in principle 

a correction must be made due to diffraction of the sound wave on the plate despite its small 

dimensions. The first order hydrophone of this kind will be conditionally referred to as the 

diffraction type hydrophone. 

An ideal hydrophone of the first order can also be realized with a small body containing an 

accelerometer, which can move under the action of acoustic field in the direction of wave prop-

agation without any restriction, as shown in Figure 14.1 (b.3). We denote sensitivity of the 

accelerometer to acceleration in the direction of motion as 
U


→
, where U  denotes the deriva-

tive of velocity or acceleration and the arrow denotes motion in the direction of acoustic wave 

propagation. Likewise, sensitivity of the accelerometer to motion in the perpendicular direction 

will be denoted as 
U



. Ideally sensitivity to this motion must be zero, i.e., 0

U



= . In this 

case the device has the directional response of the first order, ( ) cosH  = . Hydrophone of 

this kind will be referred to as the motion type hydrophone. The ideal device of this type must 

be insensitive to deformations of the body under action of sound pressure. By the same reason, 

as in the previous case of the dipole type hydrophone, the signal to noise ratio in the acoustic 

field and the sensitivity of the accelerometer must be infinitely large in order to get an ideal 

first order directional response of the device. Due to inherent directional figure of eight property 

that allows ciple resolving direction of the wave propagation the first order hydrophones are 

also called the vector hydrophones. 

Thus, for obtaining the ideal responses of the zero and first order, the hydrophones must 

meet certain unrealistic requirements. They must be immune to unwanted actions. In the case 

of sound pressure hydrophones, they must be immune to the actions of the pressure gradient 

that exists in the sound field, and in the case of pressure gradient hydrophones they must be 

immune to sound pressure. The sound pressure hydrophones used in the dipole type device 

must also be absolutely identical. Accelerometers used in the motion type hydrophones must 

be insensitive to vibrations in the perpendicular direction. And lastly, the sensitivities of the 

sound pressure hydrophones and accelerometers used for obtaining an ideal first order response 

must be infinitely large. As these requirements cannot be completely met, the responses of ac-

tual hydrophones are not ideal and will always be compromised to some degree. Real hydro-

phones always have a finite sensitivity to signal and are sensitive to unwanted actions to some 
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extent. The goal of rational designing is to keep these sensitivities within acceptable limits that 

must be established for each sensor type and its intended application. 

14.2.2 Real Zero and First Order Hydrophones 

A real hydrophone placed in the acoustic field can be represented as an elastic body involving 

a mechanism of mechano-electrical transduction (Figure 14.2 (a). The body with surface de-

noted   vibrates under the action of sound wave. Related movement and/or deformation of the 

body are transformed into electrical output. The motion of the body can be imagined as the 

superposition of its vibration as a “clamped” body (as if it is rigid) allowed by the compliance 

of the mounting conditions, and the elastic deformations of the body under consideration that 

the body is held fixed (does not move). These conditions are illustrated in Figure 14.2. 

 

Figure 14.2: Representation of motion of a real body (a) by superposition of its motion as the rigid 

body (b) and elastic deformation of the body that is fixed (c). 

For introducing the forces that generate these components of motion the concept of diffrac-

tion coefficients must be used (see Section 6.1.3.1.4). For this purpose, consider the mechanical 

power amW  delivered by the acoustic field that is associated with motion of a rigid body and 

deformation of the body that does not move. 

In the case of movement of the rigid body all the surface elements d   vibrate with the 

same velocity 1U  in the direction of the wave propagation, as shown in Figure 14.3(a). As the 

sound pressure is acting by the normal to a surface element, we have 

 
1 1( ) cosam eqv mW P r U d F U 





=  = , (14.4) 

where (*) denotes the complex conjugate. The equivalent force eqv mF  can be represented using 

definition for the diffraction coefficient difk , as 

(a) (b) (c)
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 0eqv m dif mF P S k= , (14.5) 

where 
0P  is sound pressure in the free acoustic field at the point, where the acoustic center of 

the body is located, S  is the total surface of the body and 

 
0

1
( )cosdif mk P r d

P S


 

=   . (14.6) 

In formulas (14.4) and (14.6) ( )P r  is the sound pressure on the “clamped” body surface. The 

diffraction coefficient depends on configuration of the body and on the acoustic wavelength. 

 

Figure 14.3: Surface elements vibrating with the same velocity 1u : (a) in the direction of the wave 

propagation, (b) under the action of sound pressure. 

In the case of deformation of the body that does not move as a whole (Figure 14.2 (c)), we 

have for the mechanical power 

 ( ) ( )amW P r U r d

 



=  , (14.7) 

where ( )U r  is the distribution of velocity of vibration in the normal direction over the body 

surface (Figure 14.3 (b)) and ( )P r  is the sound pressure on the surface determined under the 

condition that the surface is “clamped” (the same sound pressure distribution, as in the previous 

case). Under assumption that the body has single mechanical degree of freedom, which is usu-

ally the case in the frequency range below its first resonance frequency, distribution of velocity 

may be represented in the form ( ) ( ) ( )oU r U r r = , where ( )oU r  is the velocity of the refer-

ence point and ( )r   
is the mode of vibration of the mechanical system. Thus, expression (14.7) 

for the acoustomechanical power can be presented as ( )am eqv d oW F U r= . The equivalent force 

eqv dF  that produces deformation of the body may be expressed in the form analogous to formula 

(14.5), as 

(a) (b)

( )U r



454 14 Sensors Designing Related Issues 

 

 0eqv d dif dF P S k= , (14.8) 

the diffraction coefficient is 

 
0

1
( ) ( )dif dk P r r d

P S
 

 

=  . (14.9) 

The hydrophones, in which output effect is associated with motion of their bodies, will be 

referred to as the motion type hydrophones. The hydrophones, in which effect is associated with 

deformation of their bodies, will be referred to as the diffraction (or fixed) type hydrophones. 

In both cases the output effect is proportional to the same property of acoustic field through the 

diffraction coefficients dif dk  and dif mk  (the subscripts d and m in the diffraction coefficients are 

introduced for distinguishing between the diffraction and motion type situations). For different 

hydrophone types the coefficients may have the same values, as this is illustrated with examples 

(b) and (c) shown in Figure 14.4 (in case (b) the mode shape is ( ) cosr  = ). 

 

Figure 14.4: Examples of spherical mechanical systems of hydrophones of (a) zero order and of 

(b) the first order hydrophones of diffraction and (c) motion types. In the cases (a) and (b) the 

spherical shells do not move and realize the zero and first modes of deformation (diffraction type 

hydrophones). In the case (c) the spherical body moves in direction of wave propagating. 

Under the condition that wave size of the spherical shell is small the following values of 

the diffraction coefficients will be obtained from expressions (14.6) and (14.9) for the hydro-

phone that realizes zero mode of deformation 

 0 1difk  . (14.10) 

For the hydrophone of diffraction type that realizes the first mode of the spherical shell 

deformation, and for the hydrophone of motion type that employs movement of spherical shell 

( ) 1H  =

+ +

(a)

+ +

(b)

( ) cosH  =

(c)

( ) cosH  =

        

P P

U
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the diffraction coefficients have the same values. From expression (6.250) follows that value 

of the diffraction coefficient for spheres of small wave size at 0 =  is / 2difk jka − . 

Thus,  

 ( ) ( ) ( / 2)cosdif d dif mk k j ka  =  − . (14.11) 

Given that in the plane wave propagating in direction r  under angle   relative to the horizontal 

plane (to x axis) ( )

0

j tP P e  − = k r , 

 ( cos )xgradP jk P= −  , (14.12) 

i. e., the diffraction coefficients (14.11) are proportional to the pressure gradient in acoustic 

field. With increase of the wave size of the hydrophones the values of diffraction coefficients 

become frequency dependent by modulus and by phase (for hydrophones that employ the spher-

ical shells this is shown in Figure 14.5), and the correspondences between their outputs and 

values of sound pressure and pressure gradient in the acoustic field become not accurate. Alt-

hough in terms of the directional characteristics the hydrophones remain being of the zero and 

first order. 

 

Figure 14.5: Diffraction coefficients for spherical hydrophones of the zero (solid lines) and first 

(dashed lines) order. The plots for difk  are marked 0 and 1, the plots for arg difk are marked 0’ 

and 1’. 

The analogous situation exists regarding the hydrophones that employ cylindrical shells 

vibrating in the zero and first modes. Dependence of the diffraction coefficients from ka for this 

case is shown in Figure 14.6 by modulus and phase. 
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For the oscillating cylinder of small wave diameter (at ka < 0.3) 

 cosdifk jka = −  , (14.13) 

as it follows from formula (6.119). For the oscillating disk of small wave size (at ka <0.5 as 

follows from (6.322)) 

 
4

cos
3

difk j ka 


= −  , (14.14) 

and its dependence on ka is presented in Figure 4.6 (after Figure 6.49). 

 

Figure 14.6: Diffraction coefficients for the cylindrical hydrophones of the zero (solid line) and 

first (dash line) order. The plots for difk  are marked 0 and 1, the plots for arg difk are marked 0’ 

and 1’. 

The diffraction coefficients are the only quantities that correlate outputs of hydrophones 

with properties of acoustic fields. All the rest characteristics of the hydrophones depend on 

mechanisms of mechanoelectrical conversion employed and on the frequency responses of their 

mechanical systems. They can be changed by a receive channel and presented in a form of the 

frequency dependence that is convenient for a particular application. Thus, the output effect of 

the first order hydrophone in plane harmonic wave can be presented in the units of the pressure 

gradient, of velocity of vibration, of the displacement, and even in units of sound pressure pro-

ceeding from the fact that all these quantities are proportional to value of sound pressure. 

The fact that the modulus and phase of diffraction coefficients deviate from their real val-

ues for the sound pressure and pressure gradient with increase of the hydrophones wave size 

does not compromise ability of different calibration of the output, so far as the hydrophones are 

used as the single units. But in the case of combined use of the zero and first order hydrophones 
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(for example, for forming cardioid response, or measuring intensity of sound field) the addi-

tional magnitude and phase differences that arise from frequency dependences of the diffraction 

coefficients (analogous to those shown in Figure 14.5 and Figure 14.6) must be taken into con-

sideration. 

As result of the above discussion the following classification of the hydrophones that is 

based on their directional characteristics and on actions that they experience in the acoustic 

field may be considered as appropriate: all the hydrophones of zero order may be called “acous-

tic pressure hydrophones” and all the hydrophones of the first order may be called “pressure 

gradient hydrophones” or “vector hydrophones.” The pressure gradient hydrophones may be 

subcategorized as either of motion or fixed type. And further the fixed type hydrophones may 

be characterized as either differential (dipole), or diffraction types. The pressure gradient hy-

drophones are often interchangeably called in literature as “velocity hydrophones”, though this 

may produce a misleading impression that the corresponding hydrophones possess some mag-

ical acoustic field related properties other than the pressure gradient hydrophones have. 

In reality the bodies of motion type hydrophones are subjected to deformation under action 

of acoustic field, and bodies of the fixed type hydrophones move under unwanted action of the 

structural vibrations of their supporting elements and under pressure gradient in acoustic field. 

All the real hydrophones are sensitive to some extent to these unwanted actions, and output 

effect produced by unwanted actions may compromise the zero and first order characteristics. 

Distortions of the assumed characteristics depend on the environmental conditions, and they 

may be very significant, as example considered in Section 3.2.4 shows. These issues will be 

addressed in Sec. 14.4. Besides, the ideal zero and first order characteristics of the hydrophones 

may be distorted due contribution of noise of the receive channel, if their sensitivity to the 

intended signals is insufficient. 

At first, we consider issues related to properties of hydrophones as converters of the in-

tended actions (signals). 
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14.3 Hydrophone as Source of Signals 

14.3.1 Parameters of Hydrophone as Source of Signals 

It was noted in Section 14.1 that we are considering the low frequency broad band hydrophones. 

As it has been established in Section 3.2.2, in a broad band below the first resonance frequency 

a hydrophone can be represented as equivalent generator shown in Figure 14.57 with electro-

motive force 0E P=  and internal impedance in LfZ j C , where according to expressions 

(3.169) and (3.170) 

 2/ (1 )S

Lf e effC C k= − , (14.15) 

 ( ) ( )

E

eqv

dif

Lf

C
nS k

C
  =  . (14.16) 

 

Figure 14.7: Representation of a hydrophone as equivalent generator of signal for a preamplifier. 

Together with these parameters, which fully characterize a hydrophone as source of energy 

of signal, important characterization of the hydrophone is the specific sensitivity 

 sp LfC = . (14.17) 

This figure of merit allows comparison of potential quality of the hydrophones having different 

parameters   and LfC . It has to do with the rated power of a hydrophone as source of energy 

by formula (see (3.182)) 

 

2
2

0
4

sp

rtW P


= . (14.18) 

In case the surface occupied by the hydrophone in an array (that will be denoted as dS - 

“dimensional area”) is limited, the more objective figure of merit may be helpful, which will 

be called the “reduced sensitivity”, rd , 

 /rd sp dS = . (14.19) 

0E P=

LfC
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The reduced sensitivity has to do with efficiency of acoustoelectrical conversion of energy of 

acoustic wave, 
2

/ ( )ac o d wW P S c= , performed by the hydrophone per unit of its dimensional 

area. Namely, 

 

2

21 1
( ) ( )

4 4

sprt

w w rd

dac

W
c c

SW


    = = . (14.20) 

After using relations (14.15) and (14.16) for   and C and definition for effk  (2.93), the 

expression for 
rd  becomes 

 /E

rd eff dif eqv dk S k C S = . (14.21) 

Considering that 

 

2

2 2

11 effЕ

eqv

r eqv me eqv

k
C

M M 

−
= = , (14.22) 

where r  and em  are the frequencies of the mechanical and electromechanical resonances of 

a mechanical system, expression (14.21) may be presented in the form 

 
2

2

2
1

4
rd em dif eff eff

eqv d

S
f k k k

M S



 =  −  . (14.23) 

Given that in general, eqv effM S t= , where t is the thickness of mechanical system, we 

obtain the relation 

 
2

2

2

1
1

4
rd em dif eff eff

eff d

S
f k k k

S S t


 

 =  −   . (14.24) 

For all the hydrophones of the same transducer type the coefficient 

 
2

24
dif

eff d

S
Ff k

S S
=  , (14.25) 

which can be called the “form factor”, has approximately the same value. Therefore, the product 

of the reduced sensitivity and bandwidth that is characterized by the first resonance frequency 

can be estimated for a particular hydrophone transducer type, as 

 2 21 1
1 1rd em eff eff eff efff Ff k k k k

t t


 
 =  −  −  . (14.26) 
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14.3.2 Variants of the Sensor Designs 

Designs of the pressure and pressure gradient hydrophones employ electromechanical trans-

ducers of different type. The most widely used of them are schematically depicted in Figure 

14.8. 

 

Figure 14.8: Variants of the sensors and electromechanical transducers involved in their designs. 

(a) Sound pressure hydrophones (1-cylindrical, 2-single plate bender, 3-double plate bender). (b) 

Pressure gradient hydrophones. (c) Accelerometers for the pressure gradient hydrophones of the 

motion type (c.1, c.2) and for measuring vibration of structures (c.3, c.4). 

Accordingly, the issues will be considered related to designing: the sound pressure hydro-

phones, pressure gradient hydrophones of the dipole and diffraction type, and accelerometers 

as a part of pressure gradient transducers of the motion type and for measuring vibration of 

structures. 

14.3.3 Sound Pressure Hydrophones 

Data necessary for estimations by formula (14.26) for pressure hydrophone types that are shown 

in Figure 14.8 (a) are presented in previous chapters. When using this formula for the pressure 

hydrophones of the air-backed design that belong to group (a) in Figure 14.8, it must be verified 

whether the thickness of their mechanical system insures sufficient strength at a required 
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operating depth. Thus, the maximum static mechanical stress in the spherical and cylindrical 

shells at fixed resonance frequency is 

 

211 1

2 2

c effc
h h h

r em

c kca
T P P P

t t f t f 

−
= =   =   , (14.27) 

where 111/ E

cc s =  and 31effk k=  for radial polled cylinder with aspect ratio ( / 2 ) 0.5h a  ; 

11 12 / (1 )E E

cc s  = −  and 2

eff pk k=  for sphere. 

From relation (14.27) follows that the minimal thickness of the shells may be expressed as 

 

21

2

c effh

p em

c kP
t

T f

−
=  , (14.28) 

where pT  is the value of stress in the piezoelement that is allowed from consideration of its 

mechanical strength or of changing parameters under hydrostatic pressure according to the data 

presented in Chapter 11. After substituting this value of the minimal thickness in formula 

(14.26) we obtain expression 

 2 1/42.5
(1 )rd em h p eff eff

c

f P T Ff k k
c




  =     − , (14.29) 

Analogous expression can be obtained for the circular flexural plate hydrophone. In the 

case that the plate is simply supported, 

 

22 11
1.25 0.56

c eff

h h

em

c ka
T P P

t t f

− 
 =   

 
, (14.30) 

and the minimal thickness is 

 

21
0.56

c effh

p em

c kP
t

T f

−
=  . (14.31) 

Accordingly, 

 2 1/41.3
(1 )rd em h p eff eff

c

f P T Ff k k
c




  =     − , (14.32) 

The inherent difference between variants of transducers of extensional type (formula 

(14.29)) and flexural bimorph type (formula (14.32)) is that in the first case pT  is permissible 



462 14 Sensors Designing Related Issues 

 

compression stress, whereas in the second – permissible tensile stress that is significantly 

smaller, so far as a fully active plate design is concerned. 

Given that maximum operating frequency band of a hydrophone determined from the con-

dition of linearity of its frequency response may be estimated approximately as 0.7op emf f  , 

it follows from formulas (14.29) and (14.32) that requirements for a large sensitivity per some 

restricted volume of the hydrophone, operating in a broad frequency range and at large depth 

are contradictory. Product of quantities that characterize these properties of a hydrophone is 

numerically constant for a given transducer type. 

Thus, the broader operating frequency range and larger depth of operation, the smaller 

sensitivity can be achieved per unit area occupied by the hydrophone by normal to direction of 

wave propagation. Note that the spherical and cylindrical hydrophones have much higher reso-

nance frequency (much broader frequency range of operation) compared with the flexural plate 

sensors of a comparable size. Therefore, they significantly exceed the plate sensors in the static 

mechanical strength (operating depth), although they have smaller reduced sensitivity. 

The factors that allow increasing this product for a particular transducer of air-backed de-

sign type are: increasing the effective coupling coefficient and/or increasing of permissible hy-

drostatic pressure. As the tensile strength of a circular piezoceramic plate is much less than the 

compressive, the overall static strength of this transducer can be increased, if to replace the 

internal half of ceramic plate by the one made of a metal. Though the increase of the static 

strength in this case is achieved for expense of the reducing its effective coupling coefficient in 

factor of about 2 , this measure may result in increase of the sensitivity at great operating 

depths. 

In terms of a possible increase of the effective coupling coefficients it must be noted that 

there is no means for increase of the coupling coefficients of the spherical and cylindrical hy-

drophones except for using an appropriate piezoceramic composition because of uniform dis-

tribution of dynamic stress in their mechanical systems. As to the flexural plate designs that has 

essentially nonuniform distribution of stress, possibilities for optimizing the effective coupling 

coefficients were considered in Chapter 9. Here a summary of the results obtained is presented. 
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14.3.3.1 Regarding Optimizing the Effective Coupling Coefficient of the Flexural Plate 

Hydrophon 

In the case of a simply supported bilaminar circular plate the effective coupling coefficient is 

0.8eff pk k . The effective coupling coefficient may be increased by combining active and pas-

sive materials in the flexural plate design as described in Section 9.3. The relative changes of 

effk  vs. active circular plate dimensions are shown in Figure 14.9. It is assumed that the me-

chanical parameters of the active and passive portions of the plate are approximately the same. 

As it follows from the Figure, the optimum thickness   of the active layer is / 3t = , and the 

gain of the coupling coefficient is approximately 20%. 

 

Figure 14.9: The effective coupling effk  as functions of (a) normalized thickness and (b) radius 

of the active layer. 

The optimum radius of the active layer appears to be 0.9r a . As the gain of the coupling 

coefficient effk  is insignificant, it seems to be more advantageous to reduce radius of the active 

plate to 0.8r a . While the specific sensitivity in this case remains approximately the same, it 

is achieved with smaller capacitance, which makes matching with a preamplifier easier. Be-

sides, the boundary conditions in real designs may differ from the assumed simply supported, 

and this measure may reduce a distractive effect of non-ideal boundary condition on the output 

of transducer. The optimized version of the hydrophone with potentially higher sensitivity is 

realized by reducing the volume of active material as is illustrated in Figure 14.10. However, 

the major limitation of sensitivity of the flexural type hydrophone designs for underwater ap-

plications is due to hydrostatic pressure that produces compression on the outer surface and 

tension on the inner surface of the plate. Ceramic materials fail under tensile stress of approxi-

mately 40tT MPa whereas the permissible compression is 350cT MPa , 

(a) (b)
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as is adopted in Chapter 14. In different references and for different materials these values may 

differ, but their relation remains about / 10c tT T  . Thus, the operating depth may be increased 

in this proportion for the same hydrophone dimensions if the inner ceramic half plate is replaced 

by a metal. It can be, for example, titanium or an aluminum alloy. The modified hydrophone 

design for deeper water operation is illustrated in Figure 14.11. The specific sensitivity of this 

half passive design is smaller in factor of 2  compared with the original bimorph design due 

to reducing the volume of active material. Therefore, the projected increase of the product in 

formula (14.32) may be estimated approximately in factor of 2.5. 

 

Figure 14.10: The hydrophone design with sensitivity optimized by using combination of active 

and passive materials. 

 

Figure 14.11: Example of the “half passive” flexural plate hydrophone design for deep water 

operation. 

It must be kept in mind when using formulas (14.29) and (14.32) for estimating properties 

of the hydrophones that parameters of piezoceramics can change under stress due to hydrostatic 

pressure in both reversible and irreversible ways, as was described in Chapter 11. For a real 

great operating depth, the changes may become not tolerable. To reduce effect of limiting the 

operating depth by the hydrostatic pressure and to eliminate dependence of hydrophone 

t / 3

t / 3
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parameters on the depth, the hydrostatic pressure compensation technique considered in Chap-

ter 12 can be employed in the hydrophone designs. 

14.3.3.2 Hydrostatic Pressure Compensation in the Hydrophone Designs 

Peculiarities of employing the hydrostatic pressure compensation will be illustrated with exam-

ple of the flexural plate hydrophones that are the most typical in this respect. The function of 

compensator may be carried out in this case by the internal cavity that communicates with the 

external environment through a cylindrical hole. The corresponding transducer design is shown 

schematically in Figure 14.12 (a), and the equivalent circuit of the transducer is presented in 

Figure 12.6 (b).  

 

Figure 14.12: Equivalent circuit and the frequency response of a hydrophone with a compensator 

(solid and dashed lines) and without (dash-dotted line). 

At very low frequencies the circuit in Figure 12.6 (b) can be simplified to the circuit in (b), 

where acV
C , ac effM , acR  are the parameters of the cavity with a hole that have to be 
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determined by formulae given in Section 12.2.1 and 2E E

eqv ac eqv avC C S= , /ac avn n S=  are the 

equivalent acoustic parameters of the hydrophone. Frequency response of the hydrophone in 

this range depends on the values of the resonance frequency of the compensator, cf , and on 

the quality factor of the resonator formed by the cavity and the cylindrical hole. Qualitatively 

the frequency response of the hydrophone is shown in Figure 14.12 (c) below frequency 
Lf . 

The dashed lines correspond to different values of quality factor of resonator. The resonance 

frequency 
cf  is determined by relation 

 1/ 2 ( ) / 1 /E E

c ac eqv ac ac eqv ac acV V V
f C C M f C C= + = + , (14.33) 

where 
2(1 )E E

eqv ac eqv ac effC C k= −  is the acoustic compliance of the open circuited hydrophone, and 

1/ 2 ac aceffV V
f C M=  is the natural frequency of the resonator under the condition that the 

mechanical system of the hydrophone is clamped. Generally, compensator is designed in such 

a way, as to have the frequency cf  below the lower frequency of operating range, Lf . Besides, 

the settling time for a compensator should be matched with the rate of changing the external 

pressure. If the frequency Lf  is very low, these conditions may become contradictory. Regard-

ing the transient process in a resonator see Section 12.3.2.1. 

In the operating range of the hydrophone at H Lf f f   the equivalent circuit can be pre-

sented like it is shown in Figure 14.12 (c). If to denote 

 1 /E

eqv ac Vac
C C + = , (14.34) 

then the equivalent compliance of its mechanical system with the compensator will be 

 
2/E E

eqv ac c eqv acC C = , (14.35) 

and frequency of the electromechanical resonance of the sensor with compensator will be 

 
emc emf f =  . (14.36) 

Following formula (14.23) for the reduced sensitivity rd c , where E

eqvC  in the case with the 

compensator must be replaced by 
E

eqv ac cC , we obtain 

 /rd c rd  = . (14.37) 

Thus, the sensitivity of the hydrophone with compensator decreases, while the resonance 

frequency increases in the factor of  . This is shown in Figure 14.12 (d). The limitation 
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imposed on the thickness of mechanical systems of the hydrophones by the hydrostatic pressure 

now does not exist, and we have to return to formula (14.26) for determining the product of 

sensitivity and bandwidth. As follows from relations (14.36) and (14.37), 

 rd c rd c rd rdf f  =  , (14.38) 

and formula (14.26) can be rewritten in the form 

 2 1
1rd c emc eff efff Ff k k

t



 =  −  . (14.39) 

The thickness now can be reduced seemingly to its value that is determined by the technological 

considerations, but its value may be limited since coefficient   depends on the thickness if the 

liquid filled compensator is used. In this case the term /E

eqv ac Vac
C C  in formula (14.34) for   

can be represented as 

 

2

2
 

(1 )
( / )

E E

eqv ac eqv av

eff

Vac

C C S
k

C V B



=  − =  (14.40) 

(see formulas (12.37) for E

eqv acC , (12.5) for 
Vac

C , and relation 2c B = , where B is the bulk 

modulus of liquid used). With this notation introduced the expression (14.34) becomes 

 1 = + . (14.41) 

Values of coefficient   for the hydrophones of different type are presented in Table 14.1. 

and of effective coupling coefficients for the spherical, cylindrical and circular flexural plate 

hydrophones are presented in Table 14.1. 

Table 14.1 Coefficients   for hydrophones of different type. 

 Sphere Cylinder Circular plate 

   
22.2 10 ( / )a t−  

24.4 10 ( / )a t−  
2 4 31.4 10 ( / )a t−   

effk  pk  31k  20.68 / 1 0.54p pk k−  

 

The calculations in the Table are produced for the hydrophones made of PZT-4 ( 1

EY  = 81 

GPa, 1 0.33E = , 31 0.33k = , 0.58pk = ) with internal volume filled with Mineral oil ISO 32 (B 

= 1.8 GPa). (Note that the bulk moduli of the usable liquids have close values, as shown in 
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Table 12.2.) In the variant of the flexural circular double plate hydrophone with separation   

between the plates the total compliance of transducer must be used that equals to doubled com-

pliance per one plate. The maximum practical radius to thickness ratio of the mechanical sys-

tems may be estimated as / 5a t  .  

The data show that the low frequency sensitivity and the resonance frequency of the spher-

ical and cylindrical hydrophones practically do not depend on the compensation. Parameters of 

hydrophones of the flexural type are especially vulnerable to the liquid compensation. Even at 

maximum value of ratio / 5a t   the coefficient   becomes 1 /a = +   according to for-

mula (14.41) and without an unreasonable increase of separation between the plates change of 

hydrophone parameters is hardly acceptable. For achieving a large sensitivity of the flexural 

type hydrophones intended for operation at great hydrostatic pressures the air compensation is 

the option though its employment encounter significant technical complications. 

14.3.4 Pressure Gradient Hydrophones 

14.3.4.1 Requirements for Sensitivity of the First Order Hydrophones 

 

Figure 14.13: Illustration of two hydrophone systems: (a) with a single preamplifier, (b) with sep-

arate preamplifiers. 

In determining required sensitivities for the hydrophones produced in Section 3.2.2 they were 

assumed to be omnidirectional or of the zero order. In the case of the first order hydrophones 

their directional (actually, super directional) property must be considered. The difference in the 
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signal to noise situation, which arises in the super directional system, and the typical approach 

to its analysis, may be illustrated with example of the dipole hydrophone. 

In considering the dipole type pressure gradient receiving systems made of two closely 

spaced zero order hydrophones connected in opposite phase two options exist that are illustrated 

in Figure 14.13.  

In the variant (a) the two hydrophones are connected prior to amplification. In the variant (b) 

the preamplifiers are incorporated with the hydrophones and the receiving channels are con-

nected in opposite phase after amplification. 

The average signal to noise power ratio at the output of the system in Figure 14.13 (a) can 

be represented as follows 

 
( )

2 22
1 2

2 2 2 2 2

1 2( ) 2

s s

n n sn amp
out

p ps

n p p e e





− 
=

−  + +
. (14.42) 

Here 1sp , 2sp  and 1np  2snp  are the sound pressures of signal and noise accordingly in the points 

1 and 2 of acoustic field, brackets indicate the mean square value per 1 Hz bandwidth. The 

total amplifier noise, 
2

ampe , is 

 

2 2 2

amp R sce e e= + , (14.43) 

where (see Section 3.2.3) sce  represents the noise voltage of the amplifier with input short-

circuited, and Re is the voltage of thermal noise of equivalent input resistance of the amplifier. 

It is considered that sources of internal (self) noise of the hydrophones, sne , are incoherent and 

their energies add independently. 

The signal to noise power ratio in acoustic field related to the receiving dipole system input 

is 

 
( )

2
2

1 2

2 2

1 2( )

s s

n n
in

p ps

n p p

−
=

−
. (14.44) 

In this relation, 

 ( )
2 2 2

1 2 1 1 2 22s s s s s sp p p p p p− = −  + , (14.45) 

 ( )
2 2 2

1 2 1 1 2 22n n n n n np p p p p p− = −  + . (14.46) 
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When considering the right-hand part of the relation (14.44), the effects of the signal and noise 

coherence that depend on the statistical structure of the fields of signal and noise, must be taken 

into account for the particular operating conditions. We will assume that field of the acoustic 

noise is isotropic, and the signal is a sound pressure in the plane wave propagating in direction 

of the dipole acoustic axis 0 = . 

In the isotropic noise field 

 
2 2 2

1 2n n np p p= = , (14.47) 

 2 2 2

1 2 1 2( ) ( )n n n n n n np p d p p d p  =   =  , (14.48) 

where ( )np d  is the spatial correlation coefficient between the noise pressure in the points sep-

arated by length d. It is known (see, for example, Ref. 4) that in the isotropic noise field 

 
sin

( )n

kd
d

kd
 = . (14.49) 

Thus, according to relations (14.47) - (14.49) the expression (14.46) becomes 

 ( )
2 2

1 2 2 (1 sin / )n n np p p kd kd− =  − . (14.50) 

In the plane wave of signal we have 

 
2 2 2

1 2s s sp p p= = , (14.51) 

 2 2 2

1 2 1 2( ) ( )s s s s s s sp p k d p p k d p  =    =   , (14.52) 

where ( )sp k d
 
is the spatial correlation coefficient between the sound pressure in the points 

separated by segment d , k  is the wave vector directed along the direction of wave propaga-

tion, and cosk d kd  =  (see Figure 14.13). Thus, in case of the plane wave we have 

 ( ) cos( cos )s k d kd  = . (14.53) 

For the wave propagating in direction 0 =  it simplifies to 

 ( ) coss k d kd  = . (14.54) 

After substituting the corresponding terms from relations (14.51) - (14.53) into relation (14.45)

, we obtain 
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 ( )
2 2

1 2 2 [1 cos( cos )]s s sp p p kd − =  − . (14.55) 

Now the relation (14.44) for the signal to noise ratio at the dipole system input becomes 

 

2 2

2 2

1 cos( cos )

1 sin /
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n
in

s p kd
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−
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−
. (14.56) 

The first factor in the right-hand side of the expression is the signal to noise power ratio meas-

ured by the omnidirectional hydrophone. For the dipole pressure gradient system condition 

1kd  holds. Considering that at this condition  

( )
2

sin
1

6

kdkd

kd
 − , 

( )
2 2cos

cos( cos ) 1
2

kd
kd


  − , 21 cos( cos )

3cos
1 sin /

kd

kd kd




−


−
, (14.57) 

the relation (14.56) becomes 

 

2 2

2

2 2
3cos

s

n
in

s p

n p
=  . (14.58) 

In fact, this approximation is valid to a sufficient accuracy at kd < 0.3. 

If to assume that the smallest signal to noise ratio, at which a signal still can be detected, 

is that at the input of omnidirectional hydrophone, then it follows from relation (14.58) that in 

the isotropic noise field the dipole hydrophone cannot detect signals beyond the sector of an-

gles, in which 
23cos 1   that is | | 55    (see Figure 14.13 (a)). Improving the dipole hydro-

phone or system design cannot change this fact. The gain in the input signal to noise power 

ratio of dipole in the sector 55    by comparison with a single hydrophone is due to di-

rectivity of the dipole. In the isotropic noise field, the gain in the direction 0 =  is equal to the 

directivity factor of the dipole in this direction, which is known to be 3. The directivity index 

is 10log3  or 4.8 dB. The sector, in which the minimum signal can be detected, increases only 

in the case that the signal to noise ratio in the sound field increases as measured by an omnidi-

rectional hydrophone. 

Taking into account the relations (14.50), (14.54) and (14.55) for the direction
 

0 = , the 

relation (14.42) may be transformed to 
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. (14.59) 

In order to realize the gain due to the directivity, the same decrease of the signal to noise 

ratio as in the case of a single omnidirectional hydrophone must be allowed. And thus, by anal-

ogy with Equations (3.196) and (3.197) the condition 
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+
  (14.60) 

should be fulfilled. Thus, the minimum required sensitivity, min , will be found as 

 

2 2

2

min 2 2

/ 26
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sn amp
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e e
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+
= . (14.61) 

In the variant that the preamplifiers are integrated with hydrophones, as shown in Figure 

14.13 (b), the evaluation procedure for the output signal to noise ratio is almost the same as in 

the preceding case. The only difference is that in the starting relation (14.42) the amplifier noise 

power 2

ampe   has to be doubled, because the noise of the amplifiers is incoherent. Thus, the 

signal to noise ratio and minimum sensitivity required will be determined as follows 
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, (14.62) 
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+
= . (14.63) 

Compare the minimum required sensitivities of a hydrophone integrated with preamplifier 

in the case that it is intended to be used as a single omnidirectional unit (denote this sensitivity 

as 0 ) and in the case that it is intended to be used in the dipole system (denote this sensitivity 

as 1 ). Considering formulas (3.197) and (14.63) we obtain 

 1 0

6

kd
  . (14.64) 

If Lf  and Hf  are the lowest and highest frequencies of the operating frequency range, then 

condition ( ) 0.3Hkd   must be fulfilled at the highest frequency of the range, and at the lowest 
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frequency it will be ( ) 0.3 / .L L Hkd f f=  Given that required sensitivity of the zero order hydro-

phone should be determined at the lowest frequency and remains linear in the operating range 

0( )const = , the maximum sensitivity 1  of the hydrophone intended for the dipole system 

should be 

 1 08 H

L

f

f
  . (14.65) 

Strictly speaking, this sensitivity should be determined under the angle 55 =  , if the dipole 

system is used for detecting signals at small signal to noise ratios in the broadest possible sector 

of forward view. 

Comparison between the required sensitivities 1  in the variants of a single amplifier and 

two individual amplifiers shown in Figure 14.13 (a) and (b), respectively, leads to relation 
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e e
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+
=

+
. (14.66) 

Thus, using the combined hydrophone-amplifier units requires some increase in hydrophone 

sensitivity compared with the case of the direct connection of the hydrophones and a single 

amplifier. But the variant (b) is preferable anyway because it allows optimal matching of the 

hydrophones with preamplifiers without loss of sensitivity on the connecting cables. This is 

especially advantages in view of the harsh requirements formulated by relation (14.65). 

The above analysis shows that requirements for sensitivity of the zero order hydrophones 

comprising the dipole pressure gradient system intended to be used in arrays for detecting sig-

nals at small signal to noise ratios are extremely demanding especially at low frequencies and 

at significant depths. The dipoles can be successfully used for operating with strong signals, in 

particular, for measuring properties of acoustic fields, for short distance navigation and so on.  

Remember that the above results are obtained under the assumption that field of the acous-

tic noise is isotropic. Considerations regarding using dipoles and vector hydrophones in receiv-

ing arrays under assumption of different noise models can be found in Ref. 4. 

14.3.4.2 Pressure Gradient Hydrophones of the Fixed Diffraction Type 

The pressure gradient hydrophone of the diffraction type can be realized as the bimorph flexural 

disk with simply supported edge, or as rectangular plate with simply supported opposite edges, 
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as shown in Figure 14.14. The edge-supporting boundary conditions can be provided by foun-

dations in the form of a metal ring, or of two bars in the case of the rectangular plate. It is 

assumed that the foundations are heavy enough for considering that they do not move under 

action of acoustic wave. It may seem that this assumption is not very real. At least it must be 

estimated, what “heavy enough” is. This will be done in Section 14.3.5.1, where it will be shown 

that this assumption is not very demanding. 

 

Figure 14.14: Examples of the diffraction type hydrophones: (a) edge-supported disk, (b) side 

view of the edge-supported disk (rectangular plates) and (c) the edge-supported rectangular plates. 

The same considerations on the sensitivity calculation and optimizing as in the case that 

the plates comprise the sound pressure hydrophone are relevant, except that the corresponding 

diffraction coefficient must be used in the expression for the equivalent force and form factor 

in formula (14.25). 

Important inherent advantage of the diffraction type hydrophones is that the plates experi-

ence action of all around static pressure and the mechanical stresses in piezoelectric material 

do not exceed the hydrostatic pressure itself, that is the strength of ceramics is no longer a 

limiting factor. The diffraction type hydrophones can be used to full ocean depth practically 

without change of their properties. Because of this, expression (14.26) for estimating product 

rd emf   of the reduced sensitivity and bandwidth of the hydrophone is valid without restrictions 

on value of the thickness that can be imposed by mechanical strength or by changing ceramic 

parameters at operating depth. Thus, the optimized fully active bimorph or trilaminar plates 

shown in Figure 14.10 may be used. In the last variant the substrate can be made of a dielectric 

plastic material, which makes it easier to manipulate the electrode segmentation to change par-

allel and series connections for increasing sensitivity and amplifier matching. In order to in-

crease the specific sensitivity, the resonance frequency of a single transducer unit can be shifted 
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as close to an operating frequency range as is acceptable with respect to specifications of the 

frequency response. However, operating close to the resonance frequency can result in the ad-

ditional noise contributions and therefore a reduction in the dynamic range. For diminishing 

this effect, damping the resonance to an acceptable level without significant loss of the sensi-

tivity in the operating frequency range can be used (although an added internal noise due to 

damping also must be considered). 

Another consequence of independence of the hydrostatic pressure is that the rectangular 

plates can be used as well as circular disks for realizing the diffraction type hydrophone. 

Whereas it is hard to employ the rectangular plates for pressure hydrophone designs because of 

necessity of sealing their free edges. In the case of the diffraction type operation, a single plate 

is used, and there is no internal volume to be sealed. The same considerations on the optimizing 

the rectangular plates as for the circular disks are valid. The optimum length of the active part 

of a rectangular plate is 0.75ell l= . It is of note that at 0.5ell l=  the specific sensitivity remains 

the same as in the case that the active plate is of the full size, as can be seen from Figure 14.9. 

The comparison of the specific sensitivities of hydrophones based on the circular and rectangu-

lar plates with transverse polarization under the conditions of equal surfaces and resonance 

frequencies shows a slight advantage for the rectangular plates. It is of note, that it is possible 

and advantageous to use the tangential polarization of rectangular plates, in which case the 

coupling coefficient is proportional to 33effk  (see Section 7.2.2.1.14) instead of 31k . Thus, the 

additional increase of the hydrophone sensitivity can be achieved. Approximately the same es-

timation can be used for the diffraction coefficient of the rectangular plates (especially, when 

their assembly has the square shape), as for the circular disk with similar dimensions. 

The equivalent force acting on the circular disk is 
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eqv pl o
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F j k S P


= −  , (14.67) 

where D is diameter of the foundation and 2

plS a= . (Remember that the formula is accurate 

at (kD/2) <0.5 , as noted regarding (14.14)) The expression for sensitivity   of the pressure 

gradient hydrophone at frequencies significantly below the resonance is 

 
4

( ) cos
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= −  , (14.68) 

instead of the expression by formula (14.16) at 1difk =  for sensitivity of the double circular 
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plate sound pressure hydrophone, p . Thus, the sensitivity of the pressure gradient hydrophone 

in the direction 0 =  may be represented as 

 
4 4
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pl eqv
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nS C
j kD j kD

C
 

 
= −  = −  . (14.69) 

Therefore, all the expressions for the specific sensitivity of a double flexural disk hydrophone 

must be multiplied by the diffraction constant 4 / 3difk j kD = −  to obtain sensitivity of the 

pressure gradient hydrophone of diffraction type that employs the same disk. 

It must be noted that in calculating the low frequency sensitivities effect of radiation im-

pedance of the oscillating disk is neglected for simplicity, as it results in some shift of resonance 

frequency only. This effect will be taken into consideration in Section 14.3.5.12, where more 

accurate calculating the diffraction type hydrophone will be considered. 

14.3.4.3 Pressure gradient Hydrophones of the Motion Type 

Although motion type hydrophones may employ accelerometers of different kind (some of their 

configurations are shown in Figure 14.7( d), in this section we will assume for illustration that 

this is a uniform flexural disk mounted inside of a spherical shell, as shown schematically in 

Figure 14.15. 

 

Figure 14.15: Illustration of the pressure gradient hydrophone of the motion type. 

The alternative variants of accelerometers that can be used for this purpose will be considered 

in Section 14.3.5. In Figure 14.15 1MZ  is impedance of a mounting structure that supports the 

shell, 2MZ  is impedance of the flexural disk mounted to the case. We assume that the resonances 

of the mechanical system of the hydrophone itself are above the operating frequency range. The 

motion of the system can be represented as superposition of motion as a rigid body with velocity 
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1U  under action of the acoustic wave with equivalent force 1eqvF  and vibration of the mechan-

ical system of the accelerometer under the action of inertial forces. Thus, the velocity 
1U  is 

 
1

1

1
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F
U

Z j M Z 

=
− +

, (14.70) 

where M  is the total mass of the system (it includes the mass of piezoelement) and acZ  is the 

radiation impedance. For the oscillating sphere the acoustic mass asM  is 

 32

3
ac wM a= , (14.71) 

where w  is the density of water. This equates to one half the mass of a water filled sphere of 

the same volume. Note that the impedance of mounting can depend on the direction of motion, 

i.e., in general 1 1( )M MZ Z = . In this case the modulus of velocity 1U  will be angular dependent 

and the directional factor will be distorted from the ideal figure of eight response in spite of the 

spherical symmetry of the body. For simplicity we will assume that the mounting impedance is 

the reactance 1 1/M MZ j C= . Thus, 
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. (14.72) 

The velocity 1U  as a function of frequency is qualitatively shown in Figure 14.16. 

 

Figure 14.16: Typical velocity frequency response of the compliant mounted hydrophone body. 

Above the frequency Lf  velocity of vibration of the body in direction of wave propagation is 

frequency independent. 

In the frequency range well above the resonance frequency Mf , 

 11/ 2 ( )M M acf C M M = + , (14.73) 

the system is mass controlled and velocity 1U  is frequency independent. At these frequencies 

impedance 1 1/M MZ j C=  may be neglected in relation (14.72) and we arrive at expression 

fM fL f

U

U1
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For the spherical shell of small wave size (at 0.3ka  ) the equivalent force at 0 =  is 
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1 4
2

eqv o
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F j a P= −  , (14.75) 

and the acoustic mass acM  is given by formula (14.71). Upon substituting 1eqvF  and acM
 
into 

expression (14.74) we arrive at 

 
3

1
3

2

2
( )

3

o

w w

a P
U

c M a



 

=

+

. (14.76) 

Here and further the value of velocity of vibration in direction 0 =  will be considered only. 

If the hydrophone has neutral buoyancy, i.e., 

 34
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wM a  = , (14.77) 

the velocity is 
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= . (14.78) 

Thus, in this case the shell vibrates as the volume of water in the shape of the shell vibrates in 

the plane wave. 

The distributed inertia forces acting over the mechanical system of an accelerometer 

mounted inside the shell are  

 1( ) ( )f U= Σ Σr r , (14.79) 

where ( ) Σr  is the density distribution in the mechanical system. If the mechanical system has 

one degree of freedom characterized by the mode of vibration ( ) Σr , then the equivalent force 

acting on its mechanical input is 

 
1 ( ) ( )eqv

V

F U dV =  Σ Σr r , (14.80) 

where V  is the volume of the mechanical system. In our case of a uniform bimorph plate the 

density ( ) =rΣ  and dV t d=   . Thus, the equivalent force is 
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1eqv avF S t U=  . (14.81) 

Using this expression for eqvF , we obtain the open circuit output voltage of the motion type 

hydrophone at frequencies much below its resonance as 
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In the general case expressions (14.72) or (14.74) for 1U  have to be used for calculating the 

output voltage. For the motion type hydrophone with the spherical shell the sensitivity in terms 

of sound pressure in harmonic plane wave will be obtained using expression (14.76) for 1U  in 

the form, 
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where 
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eqv av
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 =  (14.84) 

is the open circuit sensitivity per one plate of the double plate sound pressure hydrophone made 

of the same bimorph plates (see (14.16) at 1difk = ). 

In the variant of neutrally buoyant, the sensitivity of the pressure gradient motion hydro-

phone may be expressed as 
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Alternatively, by using expression (14.82) we obtain that the sensitivity of the hydrophone 

to acceleration is 
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Obviously, the same relation exists between the specific sensitivities by sp pspU
t  =  . If to 

use formula (14.17) for sp p  remembering that eqv effM tS= , we obtain expression for the spe-

cific sensitivity of a motion hydrophone to acceleration as 
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=  , (14.87) 

where r  is the resonance frequency of the flexural disk. Formula (14.87) shows that the spe-

cific sensitivity of accelerometer can be increased by increasing the equivalent mass of its me-

chanical system and lowering the resonance frequency. Thus, one of the possible effective ways 

to increase sensitivity of accelerometer is to attach an additional mass addM  to its mechanical 

system as is shown in Figure 14.17. If 
addM  is attached to the reference point on the  

 

Figure 14.17: Illustration of a mass loaded accelerometer. 

plate surface, the equivalent mass of the plate becomes eqv eqv addM M M = +
, and the spe-

cific sensitivity spU
 

 and resonance frequency r  become 

 1 /add eqvspU spU
M M  =  + , (14.88) 

 / 1 /r r add eqvM M  = + . (14.89) 

(Related explanations see in the next section). The downside of this way of increasing sensitiv-

ity of the accelerometer is that adding mass to the mechanical system of piezoelement makes it 

more vulnerable to the action of shocks.  

The depth limitation of a hydrophone of the motion type can be imposed due to a limited 

strength of the enclosing accelerometer case under the action of hydrostatic pressure. Increasing 

the strength usually tends to increase of the mass of the case and thus to decreasing the sensi-

tivity pg . 

Correlation between sensitivities of the motion type pressure gradient hydrophone in terms 

of the sound pressure in plane wave, pg , and as an accelerometer, 
U
 , is based on the relation 

 addM



14.3 Hydrophone as Source of Signals 481 

 

(14.1), or / ( )o wU j P c = − . Therefore, the following correlation between the sensitivities 

may be used 

 5

kHz[μV/Pa] 4.2 10 [mV/g]pg U
f −=   , (14.90) 

where kHzf  is the frequency measured in kHz. Thus, for example, if the sensitivity of motion 

type hydrophone as an accelerometer is 
U
 , = 400 mV/g, then the corresponding sensitivity as 

the pressure gradient hydrophone in terms of the sound pressure is kHz170 V/Papg f =  . 

14.3.4.4 Comparison of Sensitivities of the Motion and Fixed Type Hydrophones 

It is informative to compare sensitivities of the pressure gradient hydrophones of the motion 

(Figure 14.15) and fixed diffraction (Figure 14.1(b)) types that employ the same simply sup-

ported circular bimorph disk under the assumption that the spherical shell and foundation of the 

fixed type hydrophone have the same diameter. 

In the most favorable case that the motion type hydrophone is neutrally buoyant its sensi-

tivity, pg m , is given by formula (14.85) and the sensitivity of the fixed type hydrophone, pg f

, is given by formula (14.69). Thus, the ratio of the sensitivities is 
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=    . (14.91) 

For the quantitative estimation in relation (14.91) coefficient / 2D a = is introduced that char-

acterizes size of the plate supporting elements. It is assumed that a reasonable estimate for its 

value is 1.6  . Besides, the ratio of the densities of piezoelectric ceramics and water,

/ 7.5w   , and 0.45av plS S=  are used. Practical low frequency transducer designs usually 

have the radius to thickness ratio a/t > 5. For example, a simply supported circular plate with 

thickness t = 3 mm and diameter 2a = 30 mm made of PZT-4 has resonance frequency rf  ≈ 10 

kHz. The lower the operating frequency range, the larger the ratio a/t must be. Thus, the pres-

sure gradient hydrophones of the diffraction type may have some advantage in terms of sensi-

tivity over the hydrophones of the motion type having the same cross-section area. Their fre-

quency responses may be similar, if to avoid complications due to mounting conditions of the 

motion type hydrophone. Though, the resonance frequency of diffraction type hydrophone may 

be lower because the flexural disk is exposed to acoustic medium and experiences reactive 
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loading. Also, being potted in polyurethane the hydrophone will have lower Q due to a higher 

damping. 

The conclusion regarding comparison of the hydrophone types is not that straightforward 

for practical transducer designs. For example, the assumption of the neutral buoyancy of the 

motion type hydrophone may contradict requirements for its operating depth, which may result 

in reducing the hydrophone sensitivity. On the other hand, the value of coefficient   may be 

overestimated. The mass of supporting element itself can be smaller for the motion type hydro-

phone, because the mass of the shell adds up to it. 

14.3.5 Accelerometers as Parts of the Motion Type Pressure Gradient Hydro-

phones 

Although in the context of this Chapter the accelerometers are considered as a part of the motion 

type pressure gradient hydrophones, the analysis of their properties is applicable to the accel-

erometers as separate devices for general applications. Several variants of accelerometer de-

signs are presented in Figure 14.8 (c). 

As acceleration is a vector, it may be necessary to measure all its three components. In this 

case the accelerometer that measures any of them must be insensitive to the others, for which 

purpose special measures must be taken in the accelerometer design. Some of the measures will 

be discussed in Section 14.4. Here we will assume that accelerometer is intended for measuring 

the component of acceleration that is normal to the accelerometers’ base plane, and it should 

not react to the components that are acting in the plane. Under this condition the accelerometer 

has figure of eight directivity relative to the acceleration vector with sensitivity 
U
  in the di-

rection of its maximum. 

In order not to distort a mode of vibration of the object (source of vibration) accelerometer 

is installed on, the condition should be fulfilled 
.m m inZ Z , where mZ  is the input impedance 

of the accelerometer at its area of contact, and .m inZ  is the internal mechanical impedance of the 

object. Under this condition the source of vibration can be considered as the “current generator” 

with respect to the accelerometer, and result of measuring acceleration does not depend on the 

accelerometer properties. 
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Low frequency accelerometer designs mainly employ the flexural circular plate or rectan-

gular beam (plates composed out of the beams) piezoelements (Figure 14.8 (c.1), (c.2)). For 

frequencies that are below about 10 kHz they allow achieving an acceptable sensitivity at suf-

ficiently small mass. For higher frequencies the length expander piezoelements with additional 

masses are almost exclusively used for accelerometer designs (Figure 14.8 (c.3), (c.4)). Con-

sider the typical versions of these two design types. 

14.3.5.1 Accelerometers of the Flexural Type 

Example of calculating sensitivity of the accelerometer employing the rectangular bimorph 

plate or beam is considered in Section 2.6.2. In the more general case, a concentrated mass can 

be applied to the plate for increasing sensitivity of the accelerometer, as it is shown in Figure 

14.8 (c.1) and 14.17. Besides, the input mechanical impedance of the accelerometer must be 

calculated. We will perform a general analysis of this variant of design. Moreover, that the 

procedure and results of the analysis will be valid for all the designs involving flexural beams 

and plates after straightforward substituting appropriate equivalent parameters of piezoelements 

of different configuration in the finite formulas. 

 

Figure 14.18: Cantilever accelerometer of a general type: 1- foundation having mass fM , 2-

piezoceramic beam, 3- additional mass adM . 

Consider accelerometer made as the cantilever flexural bimorph beam that is clamped on 

one end to foundation having mass fM  and loaded on the other end by an additional lamped 

mass adM  (Figure 14.18). 

The foundation makes the mechanical input of the accelerometer. In the frequency range 

up to the first resonance, the motion of the mechanical system of the accelerometer may be 

represented as superposition of its vibration as a whole with velocity fU  and vibration of the 

beam relative to the foundation. Namely, 
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 ( ) ( )f lU x U U x= + . (14.92) 

Here ( )x  is the mode of the static deformation of the beam. For the case that one end of the 

beam is clamped, while the other end is under the action of a concentrated force 

2 2( ) ( / 2 ) (3 / )x x l x l = −  (see (4.494)). 

The equivalent parameters of the cantilever beam in its vibration relative to the foundation 

are (see (2.131)): 

 

1

3

3

11

231
33 31

11

0.22 , 0.27 , 0.38 ,

0.33 , 2 (1 ) / .

E

eqv eqv av plE

S T

eE

wt
M M K S S

l s

wd t
n C k wl t

ls
 

= = =

= = −

 (14.93) 

Here n

 and 1S

eC 
 are given for a half-beam, plS wl= . Note that the equivalent parameters, 

which are determined using the mode of the static deformation under action of force on the end 

and under the action of a distributed load (2.129), differ insignificantly. The latter case corre-

sponds to a greater extent to the design version with 0adM = . 

To obtain equations of the accelerometer motion in the generalized velocities fU  and 1U  

(in the generalized displacements f  and l ), expressions for the kinetic and potential energies 

of the system must be considered. 

 

2 2 2
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2 2

2 2
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kin f f ad f l f l

f ad pl f av ad f l eqv ad l

f f l l

wt
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= + + + + =

= + + + + + + =

= + +



 (14.94) 

In this expression pl plM tS=  is the mass of the beam (in general, mass of plate made of 

beams), ( / )av av pl pltS S S M = , and the following notations are introduced for brevity: 

 1 ( )f pl adM M M M= + + , 2 eqv adM M M= + , 12 ( / )av pl pl adM S S M M= + . (14.95) 

The potential energy E

potW  possesses only the deformed beam, and 

 2 / 2E E

pot eqv lW K = . (14.96) 

The force that is applied to the foundation at the area of contact with an object of measurement 

and generates velocity of vibration, fU , will be denoted as fF . 

Finally, the Euler’s equations of general type (5. 222) for the case under consideration will 

be obtained in the following form that is typical for a coupled system, 
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 1 12f l fj M U j M U F + = , (14.97) 

 2 2

12 2 (1 / ) 0f em lj M U j M U   + − = , (14.98) 

where 

 
12

0

2

/ 1

1 /

SE

eqv e

em em

ad eqv

K n C

M M M
 

+
= =

+
. (14.99) 

Here 0em
 
is the frequency of electromechanical resonance of the beam at 0adM = . 

The equivalent circuit that corresponds to equations (14.97) and (14.98) along with the 

equation of type (5.229) for the electrical coordinate ocV  is presented in Figure 14.19 (a). 

 

Figure 14.19: (a) Equivalent circuit of the accelerometer as a coupled system, (b) single contour 

representation of the equivalent circuit. 

The equation for the electrical coordinate (output of the transducer) in this case has the 

form 

 1/ S

oc l eV nU j C= . (14.100) 

Values of the electromechanical transformation coefficient and capacitance in the expressions 

(14.99) and (14.100) depend on the electrical connection of the halves of the beam. For their 

parallel connection 2n n= , 1 12S S

e eC C = ; for the series connection n n= , 1 1 / 2S S

e eC C = . 

The input mechanical impedance of the accelerometer, mZ , is the impedance between the 

points 1, 1 in the equivalent circuit. Upon determining from equation (14.98) velocity lU  as 
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 2 2

12 2/ (1 / )l f emU M U M  = − − , (14.101) 

and after substituting this value into equation (14.97), we arrive at 

 2 2 2

1 12 1 2/ [1 / (1 / )]m f f emZ F U j M M M M  = = − − . (14.102) 

The mechanical system of the accelerometer can be considered as a coupled system with 

two degrees of freedom (see Section 4.6), for which the partial systems are the foundation with 

the beam vibrating as a whole and the beam with mass addM  at the end that vibrates relative to 

the foundation. In this case in accordance with formula (4.528), 12 1 2/M M M  is the coefficient 

1  of the inertial coupling between the partial systems. Thus, 

 2 2 2

1 1[1 / (1 / )]m emZ j M   = − − . (14.103) 

The frequency dependence of the input impedance is qualitatively the same, as for the input 

impedance on the contour of a circular disc (see Figure 4.55). It is shown in Figure 14.20. At 

frequency ar emf f=  the input impedance inZ → . At frequency 
2

1/ 1r emf f = −  the input 

impedance is 0inZ = . 

The equivalent circuit of the accelerometer for calculating its sensitivity can be represented 

as shown in Figure 14.19 (b). The equivalent force in this circuit is due to inertia coupling with 

the first partial system, 
12eqv fF M U= − . The sensitivity of the accelerometer at frequencies be-

low the frequency of electromechanical resonance will be found as 
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= = = − = − + . (14.104) 

 

Figure 14.20: Input impedance of the accelerometer. 

The sign minus indicates that the measured acceleration and voltage at accelerometer output 

are in antiphase. As can be seen, in this frequency range the sensitivity in terms of acceleration 

far fr f

mZ

j
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does not depend on frequency. Namely by this reason the sensor of this kind is called an accel-

erometer, although, by virtue of the relations 2/ /f f fU U j  = = − , the result of the meas-

urements could be attributed to velocity of vibration and to the displacement. The inconven-

ience due to the frequency dependence of the values ,U U
j =  2

U  = −  can be avoided 

by performing operations of integration in a receiving channel. In terms of measuring the dis-

placements, the major drawback of this design is that its sensitivity sharply decreases with fre-

quency. Therefore, for measuring the slowly changing displacements a different sensor design 

is usually used that will be discussed below. 

The equivalent circuits in Figure 14.19 and formula (14.104) for the sensitivity are valid 

for all the accelerometer designs involving beams and plates that experience flexural defor-

mation, if to use appropriate equivalent parameters of the piezoelements in the above expres-

sions. So far as the additional mass adM  does not change noticeably the mode of vibration 

being applied at the reference point on the surface of a piezoelement (which is usually the case), 

the values of the equivalent parameters can be used that are determined without the mass. In 

this case adM  can be just added to the equivalent mass of the piezoelement. Thus, for the simply 

supported on a foundation circular plate and rectangular beam the equivalent parameters are: 

for circular plates 
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 (14.105) 

for rectangular beams (plates made of the beams) supported on the opposite ends 

 
1
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= = =
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 (14.106) 

It is noteworthy that in the variant of rectangular beam the stripe-electroded (tangentially 

polarized) piezoelements can be employed. In this case the corresponding equivalent electro-

mechanical parameters (see Section 7.2.2.1.2) 33effd , 
33

E

effs , 
33

T

eff  and 33 effk  must be used in 

formulas (14.106). Ability of employing the close to longitudinal piezoeffect is to advantage of 

designs with rectangular vs. circular plates. 
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14.3.5.2 Effects of Foundation Vibration on the Fixed Diffraction Type Hydrophones  

The pressure gradient hydrophones of the fixed diffraction type were considered under the as-

sumption that their foundation does not move, e.g., it has the infinite mass. In the real designs 

the mass of foundation has a finite value. It is interesting to estimate, how this may influence 

parameters of the hydrophone, and how big the mass must be to minimize this influence.  

The logic of considering these issues among the sections related to accelerometers is due 

to the fact that analysis performed in the preceding Section can be almost completely applied 

to calculating characteristics of the hydrophone of the fixed diffraction type without assumption 

that its foundation does not move. The calculations will be produced for a circular plate piezo-

element, given that analogous results for the rectangular beam (plate) can be obtained in a 

straightforward way. 

  

Figure 14.21: Equivalent acoustomechanical generator that produces oscillation of a rigid disk. 

inZ  is the input impedance of the mechanical system that is subjected to action of the acoustic 

field. 

The peculiarity of this case is that the source of the force that is acting between terminals 

1, 1 of the equivalent circuit in Figure 14.19 ( a) and produces oscillating motion of the first 

partial system, i.e., of the rigid disk having diameter of the foundation, D, is acoustic field. This 

source can be represented by the equivalent acoustomechanical generator shown in Figure 

14.21 (previously was introduced by Eq. (1.63) and by Figure 1.8). The force acting between 

terminals 1,1 is 

 1,1 1 1eqv ac fF F Z U= − , (14.107) 

where 

 3

1

1

3
eqv oF j kD P= −  , (14.108) 

Zac11

UfZin Feqv1

1
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following formula (14.67) at 0 = , and 1acZ  is the radiation impedance of the oscillating disk. 

According to expressions (6.311), for the oscillating disk of small wave size (practically up to 

kD < 0.6) 1 1ac acZ j m , where 

 3

1

1

6
ac wm D = . (14.109) 

In this case the acoustic field is acting also on the second partial system (bimorph plate), and 

the acoustomechanical generator that has the corresponding parameters 2eqvF  and 2acZ  must be 

included between points 2, 2 of the equivalent circuit in Figure 14.19.(a). The equivalent force 

is given by general formula (14.67). For the simply supported circular plate at 0 =  

 2

2 1.3eqv oF j ka D P= −   . (14.110) 

The radiation impedance (inertia reactance due to small wave size), 2 2ac acZ j m , was ne-

glected when considering the diffraction type sensor in Section 14.3.4.2. The equivalent acous-

tic mass in this case can be estimated by formula analogous to (14.109). Taking into account 

the nonuniform distribution of velocity over the surface it is 

 3

2 0.6ac wm a = . (14.111) 

Equations (14.97) and (14.98) for the diffraction type hydrophone become with these ad-

ditions 

 1 1 12 1( )ac f o eqvj M m U j M U F + + = , (14.112) 

 2 2

12 2 2 2 2[1 ( / )](1 / )f ac emac o eqvj M U j M m M U F   + + − = . (14.113) 

Here velocity lU  is replaced by oU  - velocity of the reference point at the center of the circular 

plate, and 

 12 2

2 2 2( / ) / (1 / )SE

emac eqv e acK n C M m M = + + . (14.114) 

Eq. (14.100) for output voltage ocV  remains the same. 

We will further assume that no additional mass is attached to the plate, and hence 0adM =  

in expressions (14.95) for 1M , 2M , and 12M . Our goal is in estimating validity of approxima-

tions made in Section 14.4.2.2 in course of calculating sensitivity of the hydrophone. Namely, 

in determining the value of the relative mass of foundation, /f plM M , that is sufficient for 
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neglecting effect of vibrating foundation of hydrophone. Another goal is in estimating contri-

bution of the acoustic mass that is associated with oscillating the piezoelement. 

When considering effect of finite value of the mass of foundation on vibration of a circular 

plate, it must be remembered that expression of type (14.92) for velocity distribution over sur-

face of the circular plate will be used, in which 
lU  is replaced by 

oU  and the expression for 

the mode shape is approximated by formula for static deflection 
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2 2
( / ) 1 1

4

r r
r a

a a


  
 − −  
  

. (14.115) 

It is interesting to estimate an accuracy of the results obtained by employing this approximation 

by comparing with results of exact solutions in case that they are known. Thus, it is known (see 

Section 4.4.3) that the resonance frequency of a passive circular plate with free boundary, freef

, is related to the resonance frequency of the same plate simply supported, ssf , as 1.82free ssf f=

, and the radius of the nodal circle of the free plate is 0.68nlr a= . In the case under considera-

tion the free plate conditions are fulfilled at 0fM = . Likewise, when the mass of foundation 

is increased up to fM → , the conditions for simply supported plate are achieved. 

The resonance frequency of the plate with a finite mass of foundation,
frMf , can be derived 

from the condition that determinant of the system of Equations (14.112) and (14.113) for the 

case of free vibration of the plate in air (at 1 2 0eqv eqvF F= =  and 1 2 0ac acm m= = ) must be zero. 

And the values for the relative radius of the nodal line /nlr a  can be found using expression 

(14.92) from the equation 

 0 ( / ) 0f nlU U r a+ = , (14.116) 

where the ratio 0/fU U  may be determined from Eq. (14.112) as 12 1/ /f oU U M M= − . After 

some manipulations the following equations for calculating the resonance frequency and radius 

of the nodal circle will be obtained as 
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For the plate with free boundary (at 0fM = ) from these equations will be found that

1.826fm ssf f=  and 0.69nlr a= , i.e., nearly the exact values predicted for these quantities. The 

plot for the relative resonance frequency vs. relative mass of foundation is shown in Figure 

14.22. Thus, the minimal value of ratio /f plM M , at which a circular plate can be considered 

as simply supported, may be estimated as about 6~7. 

  

Figure 14.22: Plots of the functions: /free ssf f , (solid line), /nlr a (dash line) vs. value of ratio 

mass of the foundation to mass of the plate, /f plM M . 

Shift of the resonance frequency of the hydrophone due to contribution of the acousticmass 

can be significant. Besides, the movement of the foundation affects the sensitivity of the hydro-

phone. For approximate numerical estimations of effect of the finite mass of foundation on 

sensitivity of the hydrophones we will assume that coefficient / 2D a =  is 1.6, as it was pre-

viously suggested, and the radius to thickness ratio for the plate is / 5a t  . These assumptions 

seem to be reasonable for practical design. Moreover, we pursue approximate estimations, and 

effect of different dimensions can be considered in the same way. 

After representing 
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, (14.119) 

and estimating 1 /ac plm M  with help of relation (14.109) as 

 1 0.2 1.0ac
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. (14.121) 

The term 2 2 2( / ) ( / )ac ac eqvm M m M=  in Equations (14.113) and (14.114) can be repre-

sented as 

 2 0.1ac

eqv

m a

M t
 . (14.122) 

According to expression (14.114) the ratio of value of the resonance frequency determined with 

acoustic mass taken into account, em ac , to the resonance frequency of the plate itself is 

 
1

1 0.1( / )

em ac

em a t




=

+
. (14.123) 

At / 5a t =  the shift of resonance frequency is about 20%. This effect reduces operating range, 

in which response of the hydrophone is described by formula (14.68) that was obtained under 

the condition that fM → , though this shift does not change the formula itself. 

For estimating the relative mass of foundation required for validity of this relation determine 

the low frequency sensitivity considering that mass of the foundation is finite. After substituting 

fU  from Eq. (14.112) into Eq. (14.113) and taking into account expressions (14.119) and 

(14.121) (the latter at a/t = 5) will be obtained that 
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, (14.124) 

where it is denoted for brevity /f pl fM M = . 

Output of the sensor, ocV , at low frequencies (at em ac  ) is proportional to velocity oU  

by formula (14.100). Compare values of the velocity from Eq. (14.119) for the cases that fM  

is finite (will be denoted 
foMU ) and fM →  (denoted oU  ). At em ac   Eq. (14.124) be-

comes 
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, (14.125) 

where from 
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Following expressions (14.108) and (14.110) 
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Under the assumption that / 2 1.6D a =  this ratio is 1 2/ 2.8eqv eqvF F = , and 
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. (14.128) 

Thus, at / 6f plM M =  the loss of sensitivity in comparison with the situation that the hydro-

phone does not move ( fM → ) is about 15%. 

Equating expression in the brackets in Eq. (14.124) to zero results in some increase of the 

resonance frequency of the plate supported by the finite mass up to 
frM , namely, 
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+ +
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. (14.129) 

At / 6f plM M =  the frequency increases less than by 3%. 

The following example may illustrate design configuration of a real fixed diffraction type 

pressure gradient hydrophone. Bimorph piezoelement: circular plate made of PZT-4, 2a = 30 

mm, t = 3 mm, a/t = 5. Foundation: ring made of brass (   = 8500 kg/m3), D/2a = 1.6, ft  = 10 

mm. Thus, / 6f plM M   and all the above estimations of parameters are valid. 

14.3.5.3 Accelerometers of the Length Expander Type 

Accelerometers of this type are shown in Figure 14.8 (c.3) and (c.4). They can be considered 

based on the general equivalent circuit for the length expander transducer presented in Figure 

10.7. In the case of accelerometer of the type (c.3) this circuit can be modified as shown in 

Figure 14.23. 

In the circuit 0F  and 0Z  between terminals 1, 1  belong to a source of vibration (structure under 

investigation) that generates vibration of the end with velocity fU . (In the case of calibration 

0F  and 0Z  are the electromotive force and internal impedance of a shaker-table). 
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Figure 14.23: (a) Schematic representation of the length expander accelerometer: 1-piezoelement, 

2-passive block ( 1M ). (b) The equivalent electromechanical circuit of the accelerometer. 

Another end of the piezoelement is loaded by a passive block. We assume that in the operating 

range of an accelerometer, which is significantly lower than frequency of its electromechanical 

resonance, the size of accelerometer is small compared with the wavelength, i.e. 1kt  and 

1 1kt , where t and 1t  are the thicknesses of the piezoelement and of the passive block. There-

fore, the piezoelement can be represented by its lamped parameters and the passive block by its 

mass 1M , as this is shown in Figure 14.23, and expressions for the parameters in the circuit are 

(see Section 10.2.3.2.3): 

 33 /E E

m csC ts S= , 3 33 33/ E

elN d S s t= , 3 2 2

33 33(1 ) (1 )
S T

e e LfC C k C k= − = − . (14.130) 

For determining the input mechanical impedance of the accelerometer it must be suggested 

that force fF  is applied between terminals 1 , 1  of the equivalent circuit. Then, /in f fZ F U=  

may be calculated. This will result in 
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where 
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The output voltage of the accelerometer is 
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At frequencies, for which 2 2/ 1em  , after some manipulations that involve expression 

(14.132) for 
em

 
will be obtained 
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Thus, the sensitivity 
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does not depend on frequency. We can see that with increase of mass 1M  the sensitivity of 

accelerometer increases, but the operating bandwidth reduces. This is the same tendency as in 

the previous case of the flexural type accelerometer. 

The design shown in Figure 14.8 (c.4) is symmetrical relative to element that mounts the 

accelerometer to an enclosing case. Due to the symmetry the halves of the design can be calcu-

lated independently with the above results. Electrically they must be connected in antiphase in 

respect to the signs of polarization. This will result in summarizing effects of acceleration, 
fU

, and increasing the specific sensitivity of the device in factor of 2 . But the main advantage 

of the symmetrical design is that it must be not sensitive to possible deformations of the inclos-

ing case under unwanted action of the sound pressure under the condition that the halves are 

electromechanically identical. 

14.4 Response of Sensors to Unwanted Actions 

14.4.1 Notations for Sensitivities to Unwanted Actions 

The general formulation of problem of hydrophones sensitivity to unwanted actions was made 

in Section 3.2.4. Concept of the noise immunity (NI) was introduced therein and illustrated with 

example of a single plate vs. symmetrical double plate bimorph transducer. Here some harmful 

effects that may be produced by unwanted actions on characteristics of the hydrophones and 
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recommendations on reducing these effects will be considered. In particular, the sensitivity of 

hydrophones of the zero and first order to unwanted actions may be the main cause for distortion 

of their expected ideal directional factors. Effects of the unwanted actions on characteristics of 

accelerometers will be addressed as well. 

At first the notations for sensitivities of the sensors to the most likely unwanted actions 

must be introduced. The real hydrophones and accelerometers both move and deform in the 

acoustic field, which can lead to unwanted electrical outpust. For example, in case of the zero 

order (sound pressure) hydrophone the output voltage caused by its motion or deformation due 

to the pressure gradient in the sound field is unwanted. We will denote this voltage by subscript 

that indicates the useful effect and by the superscript that indicates the unwanted action, as 

follows 

 P P

p pV P =  , (14.137) 

where P

p
  is the sensitivity of the sound pressure hydrophone to the unwanted action of the 

pressure gradient. 

For the first order (pressure gradient) hydrophone the output voltage caused by defor-

mations due to the action of the sound pressure is unwanted. Similarly, we will denote this 

voltage as 

 
p p

P PV P =  , (14.138) 

where 
p

P  is the sensitivity of the pressure gradient hydrophone to the unwanted action of the 

sound pressure. 

For the motion type pressure gradient hydrophone the output voltage caused by movement 

in the perpendicular to the acoustic axis of the hydrophone direction is also unwanted. This 

unwanted voltage can be denoted as 

 
U U

U U
V U 


=   (14.139) 

where 
U

U
   is the sensitivity of an accelerometer in the direction that is perpendicular to the 

acoustic axis (the acceleration and sensitivity in direction of acoustic axis will be denoted as 

U→  and 
U


→

). 
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Acceleration of a hydrophone due to structural vibration propagating directly through its 

mounting elements also produces an unwanted action. We will denote the voltage output due 

to actions of structural vibration born acceleration as 

 
U U

p pV U=   (14.140) 

and 

 U U

P PV U =   (14.141) 

for the sound pressure and pressure gradient hydrophones accordingly, where 
U

p  and U

P  are 

the sensitivities to acceleration due to structural vibration. The effect of structural vibration on 

a hydrophone is of the same physical nature as the effect due to its movement in the acoustic 

field, therefore hydrophones of the motion type are especially vulnerable to an unwanted action 

of this kind. 

In order to quantitatively characterize vulnerability of a sensor to unwanted actions the 

notion of the Noise Immunity factors, (NI), can be introduced that are analogous to those pre-

sented by relation (3.205) in Section 3.2.4. Namely, the factors 

 /P P

P P PNI   =  and /U U

P P PNI  =  (14.142) 

characterize the noise immunity of the pressure hydrophone to action of the pressure gradient 

and acceleration, respectively. Analogous notations will be used for other combinations of the 

measured and unwanted actions. Quantity that is opposite to the Noise Immunity can be called 

the Noise Susceptibility, NS. Thus, for example, 

 
1

P
PP
PP

PP

NS
NI










= = . (14.143) 

is the susceptibility of the pressure gradient hydrophone to the sound pressure. 

The same effect as caused by unwanted actions in the acoustic field can be produced by 

the electrical crosstalk between receiving channels in the case of combined several first order 

hydrophones or combined zero and first order hydrophones incorporated in one small unit. 

Even small spurious electrical coupling between channels can lead to large distortions of the 

channel outputs or directional characteristics in case that signal in one of the channels is much 

larger than in another. 
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14.4.2 Immunity of Sensors to Unwanted Actions 

Immunity of the hydrophones to unwanted actions can be increased by a proper hydrophone 

designing and precise manufacturing. Some practical considerations on this issue can be illus-

trated with examples of typical hydrophone designs. 

14.4.2.1 Sound Pressure hydrophone 

The sound pressure hydrophone of the double plate flexural type that is shown in Figure 14.24 

was considered in Section 3.2.4 as an example of the hydrophone that may be insensitive to 

action of acceleration under the ideal condition that the plates are identical and have equal sen-

sitivities to sound pressure, i.e., 1 2p p p  = = . 

 

Figure 14.24: Illustrations of: (a) sound pressure hydrophone of the double plate flexural type, (b) 

the symmetric mode of the plates vibration under action of sound pressure, (c) the anti-symmetric 

mode of vibration under action of unwanted acceleration. 

In reality this condition can be fulfilled only to some degree of accuracy, and the hydrophone 

is characterized by a finite value of the noise immunity factor, U

PNI . Here we consider situation 

regarding a real design, in which case the sensitivities may be not equal, 1 2  . We will as-

sume that the dimensions of the hydrophone are small in comparison with wavelength, and the 

mounting elements are located within the plane of symmetry of the hydrophone design. The 

sound pressure on the surfaces of plates can be represented as 

 1 ,P P P= +  2P P P= − , (14.144) 

(a) (b) (c)
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Where 

 1 2( ) / 2P P P= + , 
1 2( ) / 2P P P = − . (14.145) 

For the incident plane wave we have 

 
4

cos
3

difP k P j ka P


 =  = −  . (14.146) 

Let the piezoceramic plates be connected electrically in series and in such a way that their out-

puts due to the plate deformation in the symmetrical mode are in phase, as shown in Figure 

14.24 (b). Then the total output voltage is 

 
1 2 1 2

1 2 1 2

( ) ( )

( ) ( ) [1 (1/ )].P P

P P P P

V V V P P P P

P P V V V NI

 

   



 

= + = + + − =

= + + −  = + = +
 (14.147) 

Considering relation (14.46), expression for the Noise Immunity factor, P

PNI , is 

 
1 2

1 2

4
cos

3

P

PNI j ka
 


 

 +
= − 

−
. (14.148) 

The last term in brackets of expression (14.147) determines quantitatively the distortions of the 

omnidirectional sound pressure output by unwanted contribution due to the pressure gradient. 

At 1 2 =  the noise immunity is absolute ( P

PNI → ). 

In general, the hydrophone may experience acceleration U  due to its movement in the 

sound field and/or due to a structural vibration transmitted through a mounting of the hydro-

phone. If the mounting elements are located within the plane of symmetry of the hydrophone 

design, the acceleration of the plates is the same. The inertial forces due to the acceleration, 

sU
F m U=  ,

 
are uniformly distributed assuming that the specific mass of the plate, sm , is uni-

form. They generate deformation of plates in the asymmetrical mode (Figure 14.24 (c)). Elec-

trical outputs of the plates are in phase opposition, the total output voltage due to the accelera-

tion in case that 1 2 
 
is 

 1 2 1 2 1 2( ) ( )U U U

P P P sU
V V V F m U   = − = − = −  , (14.149) 

and the unwanted contribution of acceleration to the hydrophone output is characterized bythe 

term 
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 1 2

1 2

U

P
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P

V U
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V P

 

 

−
= 

+
. (14.150) 

By the definition (14.142) 

 
1 2

1 2( )

U

P

s

NI
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+
=

−
. (14.151) 

Thus, under the conditions that the mounting elements are located within the plane of sym-

metry and the plates are identical ( 1 2 = ) the hydrophone is insensitive to acceleration. 

The immunity of a pressure hydrophone to acceleration as well as to pressure gradient can 

be increased by equalizing sensitivities of the plates. A possible procedure of equalizing sensi-

tivities of the plates to a uniformly distributed force may be accomplished by external tuning, 

as illustrated in Figure 14.25. 

 

Figure 14.25: Illustration of method of equalizing the sensitivities of individual plates by external 

capacitive tuning. 

By changing the capacitance adC  connected in parallel to the plate having larger sensitiv-

ity, the output voltage can be reduced theoretically to zero (and practically to the noise level of 

instrumentation used). This will be reached at 

 1 1 2 1( ) /adC C   = − . (14.152) 

Note that contribution of acceleration by formula (14.150) depends on the relation between 

acceleration and total sound pressure generated by different sources including structural vibra-

tion. If the ratio /U P  is small enough, the acceleration canceling feature may not be required. 

For example, if we assume that the hydrophone is mounted on a plane surface vibrating uni-

formly, then the sound field generated by the vibration is ( ) /wP U c = , and 
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3

kHz/ / ( ) 4 10wU P c f  −= =  . Under this condition acceleration canceling obviously does not 

make sense. 

It is noteworthy that sensitivity to acceleration can be a reason for distortion of direction-

ality of small compared to wavelength sound pressure hydrophones that otherwise should be 

omnidirectional. Thus, if the spherical or cylindrical piezoelement has a nonuniformity (in-

creased or reduced density) in some part of the shell, as is shown schematically in Figure 14.256 

(a), the hydrophone becomes sensitive to vibration under action of the pressure gradient with 

maximum sensitivity in direction of location of the nonuniformity. This will result in distorting 

the presumable omnidirectionality of the hydrophone by contribution of figure of eight re-

sponse, as is illustrated in the Figure 14.26 (b). 

 

Figure 14.26: Illustration of distortion of omnidirectionality of a hydrophone (1) due to nonuni-

formity of density (2) of the comprising piezoelement. Projected omnidirectional pattern-dashed 

line, real pattern distorted by contribution of the pressure gradient response -solid line. 

This contribution may change by magnitude over a frequency range. This circumstance 

must be taken into consideration when calibrating the measurement hydrophones, which are 

theoretically assumed to be omnidirectional due to their small wave size. In order to increase 

accuracy of measurement with a real hydrophone, its directional pattern must be measured, 

direction of maximum sensitivity has to be marked. Calibration of the hydrophone must be 

performed in this direction that further must be used for reference. 

14.4.2.2 Pressure gradient Hydrophones of the Fixed Diffraction Type 

If the halves of a bimorph flexural disk hydrophone are electromechanically identical, then an 

output under the action of the acoustic field is proportional to the pressure gradient only, 

φ = 0 

φ 

1

2

(a) (b)

φ = 0 

φ 
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because effects of in-phase deformations of the comprising half plates due to the action of sound 

pressure, 1PV  and 2PV , cancel each other. In the case that the plates are not identical, the output 

due to sound pressure is 1 2 0P

P P PV V V = −  . This output can be reduced by using the above 

considered procedure of equalizing sensitivities of the half plates. 

However, the major unwanted action for hydrophones of this kind is an acceleration sU

due to a structural vibration in direction of acoustic axis. (Note that uniform circular plates must 

be insensitive to vibration in plane due to symmetry. Though, precautions must be taken for a 

uniform mounting the boundary of the plate.) Contribution of the structural acceleration in-

duced output to the total output of the hydrophone in this case is 

 
3

4

U
avP U av s

eqvP

F SV t U
j

F k D PV





= =  , (14.153) 

where av  and t are the average specific density of the flexural plate and its thickness, and D is 

the diameter of foundation in the case that the plate is circular, or the equivalent dimension in 

the case of a rectangular plate. Except for manipulating the parameter /avt D  to some extent 

the sensitivity to structural vibration can be reduced only by using vibration isolation. 

14.4.2.3 Pressure gradient Hydrophones of the Differential Dipole Type 

Provided that the individual sound pressure hydrophones are identical, the electrical output of 

the pressure gradient differential hydrophone is proportional to the pressure gradient only, and 

for the plane wave we have, 

 P P PV d P jkd P  =  = 
.
 (14.154) 

If the sensitivities are not identical, 1 2P P 
 (let 1 2P P 

), then for the output voltage of the 

dipole we will obtain 

 1 2
1 2( )

2

P P
out P PV d P P

 
 

+
=  + − . (14.155) 

The second term in this relation is the unwanted contribution, 
P

PV , of the sound pressure to the 

first order hydrophone output. Thus, the measure of the first order dipole type hydrophone sen-

sitivity to sound pressure in the plane wave is 

 1 2

1 2

2
P

P P P

P PP

V
j

kdV

 

 




−
= −

+
.

 (14.156) 
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Usually / 4Hd   where 
H  

is the wavelength at the higher frequency of the operating range, 

and formula (14.156) can be transformed to 

 1 2

1 2

4
P

P H P P

P PP

V f
j

fV

 

  




−
 −

+
.

.

 (14.157) 

From this expression follows that contribution of the sound pressure to the first order hydro-

phone output can be significant at low frequencies even in the case that the difference between 

sensitivities of comprising dipole hydrophones is not that large. For example, if the difference 

is about 5% and
 Hf  = 10 kHz, then 

 
1

P

P

kHzP

V
j

fV 




 −  . (14.158) 

This means that the omnidirectional output of relative magnitude 1/ kHzf
 
should be added in 

quadrature to the directional figure of eight output. To increase the immunity of the first order 

hydrophone of the dipole type to sound pressure, the same procedure of sensitivity equalization 

as in the previous case can be used. In particular, this can be done by minimizing output of the 

dipole in direction / 2 =  in the course of the sensitivities equalizing. / 2 =  

Sensitivity of the dipole type hydrophone to acceleration depends on the sensitivity to ac-

celeration of the individual hydrophones that is considered in the previous section. However, 

the requirements for immunity to acceleration of the hydrophones intended to be used in a di-

pole are higher than for zero order hydrophone. Indeed, the output of a dipole due to accelera-

tion is 

 
1 2

2U U U U

P P P PV V V V  + 
,
 (14.159) 

because the phase between 
1

U

PV
 
and 

2

U

PV
 
is unknown (it cannot be predicted beforehand due to 

a spurious nature of sensitivity with respect to acceleration). The output due to pressure gradient 

is P PV jkd V =  . Therefore, measure of contribution of acceleration to the total output, 

 
2

U U

P P

PP

V V

kd VV





  , (14.160) 

is 2/kd times larger than in the case of the zero order hydrophone. 
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Figure 14.27: Illustration of the procedure for increasing the immunity of the dipole hydrophone 

to acceleration. 

The immunity to acceleration of the dipole design can be increased by using the following 

procedure based on the idea of compensation of unwanted effects. This is illustrated with Figure 

14.27. At first the sensitivities of the comprising hydrophones to acceleration must be meas-

ured, and the polarity of a hydrophone regarding the acceleration has to be indicated on the 

hydrophone surface. 

The hydrophones must be symmetrically mounted on a rigid platform in such a way that 

the hydrophone outputs that are due to the common acceleration are in phase opposition. In this 

case the negative sign must appear in the formula (14.159) and the contributions due to the 

acceleration will be reduced. Theoretically very deep acceleration canceling can be achieved 

iin this case by equalizing sensitivities of the comprising hydrophones to acceleration. The sen-

sitivity of a hydrophone to acceleration can be changed independently of its sensitivity to sound 

pressure by applying an additional mass to its surface. Thus, sensitivities of the hydrophones to 

acceleration can be equalized, if to apply a proper mass to the surface of the hydrophone that 

has the smaller sensitivity to acceleration. 

14.4.2.4 Pressure gradient Hydrophones of the Motion Type 

Sensitivity of the pressure gradient hydrophone to sound pressure can be caused by defor-

mations of the inclosing case that may be transformed into motion of accelerometer. The sen-

sitivity to sound pressure can be reduced if to use the symmetry considerations, when mounting 

the accelerometer inside the case, as illustrated in Figure 14.8 (c.4). 
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However, the main possible source of unwanted action for a hydrophone of the motion type 

is the structural vibration born motion of its body. Obviously, in this case 

 
U

P s

P P

V U

V U



 

= , (14.161) 

where sU  is unwanted acceleration due to structural vibration and PU  is the acceleration in 

the sound field proportional to the pressure gradient. Under the condition of neutral buoyancy 

/ ( )P wU j P c  = − , and it follows that 
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=  . (14.162) 

This quantity does not depend on the hydrophone design unless the buoyancy becomes nega-

tive. The only way to reduce the unwanted contribution of acceleration sU  is to use vibration 

isolation. Comparison between expressions (14.153) and (14.162) for the fixed and motion type 

hydrophones at the same environmental conditions ( /sU P  = const) results in the relation 
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=   , (14.163) 

if to assume that the plate is fully made of ceramics ant 7.6av w = . In the case that D/t >20, 

which is very likely for low frequency hydrophone designs, and the density av  is decreased 

due to optimization of the flexural plate, then the fixed type hydrophone can be slightly more 

favorable than the motion hydrophone in terms of immunity to the sound pressure. 

14.4.2.5 Regarding Deepness of Nulls in Directional factor of the First Order Hydrophones 

Insufficient immunity of the first order hydrophones to sound pressure is the most probable 

reason for distortions of their directional factor, which ideally would be
 

( ) cosH  = . It was 

shown in Section 14.3.4.1 that the first order hydrophone cannot be used for detecting extremely 

small signals (on the threshold of noise) beyond the sector of angles
 

54   ,
 
because its out-

put signal/noise ratio becomes smaller than it is for the omnidirectional sound pressure hydro-

phone. In this sense it does not matter how the directional factor behaves in the vicinity of 

“nulls”, as the signal to noise is greatly reduced. Moreover, the actual values of directional 

factors of ideal hydrophone at the angles close to
 

/ 2 =
 
may be measured only by using the 
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strong signals compared with the electrical and environmental noise levels. The greater the 

signal/noise ratio the lower levels of directional factor are attainable. And theoretically the in-

finitely large signal/noise ratio should exist for approaching value
 

( / 2) 0H   . But this situ-

ation is not realistic due to a finite unwanted sensitivity of the first order hydrophone to the 

sound pressure, and the actual minimum level of the directional factor (so called “deepness of 

nulls”) depends on this sensitivity. The “deepness of nulls”, which may be measured by using 

correspondingly strong signals, characterizes the immunity of the first order hydrophone to 

sound pressure. 

The lack of immunity to sound pressure also deteriorates the signal/noise ratio at the hy-

drophone output in the operating sector (at 0 =  in particular). Thus, the “deepness of nulls” 

although not practically important for actual operation may be important in terms of character-

ization of the immunity of the first order hydrophone to sound pressure, which in turn affects 

the signal/noise ratio at the output of the hydrophone in the operating sector of directional fac-

tor. To evaluate the deterioration of the signal/noise ratio due to insufficient immunity to sound 

pressure (insufficient “deepness of nulls” measured in a strong sound field) we will consider 

the dipole hydrophone as a typical example of the first order hydrophone. 

Let the dipole hydrophone is made of two ideal sound pressure hydrophones having differ-

ent sensitivities, namely,   and (1 ) + . We will call such a dipole hydrophone “real” to dis-

tinguish it from an “ideal” dipole with identical pressure hydrophones. We assume that 1   

and therefore the directional factor outside vicinity of 0   does not change in a frequency 

range, so far as the wave size of the dipole remains sufficiently small. (Note that for validity of 

relation (14.58) it must be approximately 0.3kd  .)  

Sensitivity of the dipole to the sound pressure is due to the difference in sensitivities of the 

comprising pressure hydrophones. Output of the hydrophone can be represented as 

 
( /2)cos( ) 2sin[( / 2)cos ] j kdU j kd e    +

.
 (14.164) 

At small kd, 

 ( ) cos ( )U jkd jkd U    
 + =  , (14.165) 

where 
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 ( ) cosU j
kd


 

 −  (14.166) 

is the directional function of the real dipole, which at 0 =  becomes directional function of 

the ideal dipole, ( ) cosU  
 . Moduli of both functions that are proportional to the direc-

tional factors qualitatively are presented in Figure 14.28. The value of 1/ ( / 2)U 
 that follows 

from relation (14.166) can be called the “Deepness of Null” (DN). Thus, 

 /DN kd = . (14.167) 

It is important to estimate an acceptable deepness of null from the point of view of reducing the 

signal/noise by the real pressure gradient hydrophone vs. ideal one, when formulating require-

ments for the hydrophones intended for populating arrays that operate in a real signal to noise 

situation. With this goal let us evaluate the time averaged signal to noise power ratio at the 

output of the real hydrophone in the same way as it was done for the ideal hydrophone in Section 

14.3.4.1. 

 

Figure 14.28: Qualitative distortions of the directional factor of ideal dipole hydrophone, 

( ) cosH  =  (dashed line), in case that a “real” dipole is composed of the pressure hydro-

phones having different sensitivities (solid line). The sensitivities of the pressure hydrophones are 

1  and 2 1(1 )  = + . 

For a real hydrophone we have 
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We may assume that the noise field is isotropic, and the signal field is that of the plane wave 

propagating in the direction of dipole axis 0 = . In this case Eq. (14.168) may be represented 

after manipulations analogous to those made in Section 14.3.4.1 as 

 

2 2 2 2

2 22 2

0

1 [(1 ) / ] ( )

1 [(1 ) / ] ( ) / 3
real

s s kd

kdn n

 

 

+ + 
= 

+ + 
. (14.169) 

As it was also shown in Section 14.3.4.1, for the ideal hydrophone (at a = 0) we have 

 

2 2

2 2
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3

ideal

s s

n n
= . (14.170) 

Thus, we arrive at the relation 
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. (14.171) 

The degradation of signal/noise by the real hydrophone in comparison with the ideal hydro-

phone will be denoted as 

 

2 2 2 2

2 2

/ /

/

ideal real

ideal

s n s n

s n


−
= . (14.172) 

From Eq. (14.171) follows that 

 
2 2

2

3 [(1 ) / ] ( )kd


 
=

+ + 
. (14.173) 

Thus, for each value of permissible degradation   of signal/noise the tolerance for sensitivity 

of the hydrophones comprising the dipole,  , and the corresponding “deepness of nulls”, 

/DN kd = , may be found. Conversely, if DN is determined, then for each kd the resulting 

degradation of the signal/noise may be found. If the permissible signal/noise degradation is 

prescribed and it is achieved at the highest frequency of an operating range, Hf , then the lowest 

frequency, Lf , depends on the tolerance for the pressure hydrophones sensitivity. The closer 

the tolerance the broader the attainable frequency range. Ratio /H Lf f

 

can be obtained from 

Eq. (14.173) as 

 
2 2( / ) [ / (2 3 )] [ ( ) ]H L H H Hf f DN kd DN = −  + . (14.174) 
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To achieve a broader frequency range, value of the spacing related term at the highest fre-

quency, ( )Hkd , must be chosen as large as possible. According to our assumption, it is 

( ) 0.3Hkd  . 

For example, in the case that 0.1 =  and the deepness of nulls at the high frequency is 

HDN  = 10 (20 dB), the frequency ratio becomes / 2.6H Lf f = . To get a broader operating 

range, the deepness of nulls at the high frequency must be increased. Thus, at / 10H Lf f =  it 

should be 
HDN  = 40 (32 dB). Correspondingly, at the lowest frequency of the operating range 

the acceptable in terms of the signal to noise ratio “deepness of nulls” in this case will be ac-

cording to formula (14.167) /10L HDN DN=  = 4 (12 dB). But at the low frequencies of oper-

ating range the directional factor of the hydrophone becomes significantly corrupted due to 

contribution of the omnidirectional term in expression (14. 166). 

Considering this example it must be remembered that for achieving value HDN =40 dif-

ference between sensitivities of the pressure hydrophones must be according to formula 

(14.167) less than 1% under the condition that ( ) 0.3Hkd  . Thus, requirement for the pressure 

hydrophones identity is very demanding.  

As it follows from comparison of formulas (14.167) and (14.156), the coefficients DN and 

noise immunity, P

PNI , are proportional, i. e., P

PDN NI . Therefore, the results of this section 

are applicable to the first order hydrophones of different type, if to use these coefficients inter-

changeably. The conclusion can be made that a tradeoff exists between value of the noise im-

munity factor, P

PNI , and operating frequency range, /H Lf f . Achieving a broad frequency 

range requires very careful pressure gradient designing and manufacturing in terms of the noise 

immunity.  
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CHAPTER 15 

COMBINING FINITE ELEMENT ANALYSIS WITH ANALYTICAL 

METHOD 

15.1 Introduction 

Application of the energy method for solving electroacoustic transducer problems demonstrated 

in the preceding content assumed that boundary conditions for the transducer mechanical sys-

tems are ideal and their modes of vibration can be found analytically, or the modes of static 

deformation of the mechanical systems are known, or the direct methods can be used for deter-

mining the modes of vibration by choosing appropriate systems of the trial functions. The ana-

lytical solutions obtained for the considered transducer types and realized in practical designs 

showed good enough agreement with experimental verifications. But in some cases, the bound-

ary conditions for the mechanical systems may be inherently not ideal and vibrations of the 

system hardly can be satisfactory approximated by convenient for analytical treatment func-

tions. Such, for example, are vibrations of mechanical systems of the flextensional transducers, 

which represent passive shells of various configuration, generated by the piezoceramic drivers. 

In this and in more general cases the problems of vibration of complicated mechanical systems 

can be solved using Finite Element Analysis (FEA). Powerful computer-based technologies 

allow simulating virtually any well-defined linear system (not only mechanical, but electrome-

chanical and acoustic as well) and obtaining its natural frequencies, modes of vibration and 

responses without using analytical treatment. Though the result thus obtained will be purely 

numerical, and a physical insight into the nature of the solutions anyway is required through 

theoretical considerations, possibilities of using FEA for calculating the overall performance of 

the electroacoustic transducers may seem attractive. However, the following reasoning regard-

ing this issue deserves to be considered. While calculating parameters of a transducer of a given 

configuration (solving the direct problem for the transducer) using FEA is more or less straight-

forward, solving the reverse problem of designing the transducer that meets certain require-

ments under real environmental conditions is problematic. Moreover, as it was articulated in 

Chapter 11, properties of piezoelectric ceramics are not known to a great accuracy and subject 
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to changing under operating environmental conditions. Therefore, it would be advantageous to 

obtain results of analyzing a transducer in a form with parameters of the ceramics explicitly 

presented. This can be achieved by combining the FEA technique and the analytical energy 

method for calculating transducers. The goal of this Chapter is to illustrate, how this can be 

done. 

The most crucial and necessary for application of the energy method step in the vibration 

analysis of the mechanical systems of the transducers with complex boundary conditions is in 

determining vibrational mode shape of a passive mechanical system having the same configu-

ration This part of the problem can be especially successfully resolved by the FEA. After this 

is done, the energy method can be used for calculating transducer parameters in the straightfor-

ward way. Using FEA in such capacity regarding electroacoustic transducers was noted in Ref. 

3: “Computer programs are very useful for looking in detail at components of the transducer. 

Thus, one might use them advantageously to find the natural vibrational modes of the transducer 

and its housing, or to investigate an unusual hinge structure” (read “boundary conditions”, the 

Author’s remark). 

We will consider the proposed approach with example, in which the flextensional trans-

ducer of Class IV is involved. The flextensional transducers are one of the types of low fre-

quency transducers. Theoretical treatments, practical designing and applications of the flexten-

sional underwater transducers have a long history (see Refs. 1 and 2) and are widely discussed 

in literature. Typical of the flextensional mechanism is generating flexural vibrations of shells 

made of passive materials by extensionally vibrating piezoelements. Analyzing the flexten-

sional transducer types per se is out of scope of this chapter. The flextensional transducer that 

realizes flexural vibration of a passive oval shell (Class IV transducer) will be only considered. 

The goal is in comparing its operating characteristics with those of the low frequency bender 

transducer previously described in Chapter 9 and of the transducer that employs direct electro-

mechanical conversion in the oval shells by building them from piezoceramic elements (so 

called oval flexural transducer). The comparison will be made under the condition that all the 

transducers have approximately the same geometry and amounts of piezoceramic materials 

used. This comparison makes sense because, supposedly, the hydrostatic and dynamical 

strength of the oval shells must be greater than for analogous benders utilizing vibration of 
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plates due to transformation of hydrostatic pressure into compression stress in circumferential 

direction of the shells. 

Calculations of operating characteristics of the flextensional transducers were made in lit-

erature, predominantly, by using FEA. Therefore, it is logical to apply the same approach for 

achieving the intended goal of comparing the traditional flextensional transducer with trans-

ducer that employs electromechanically active shell having the same geometry as the passive 

shell of the flextensional transducer has. In distinction from the previous works the FEA mod-

eling is used for determining the natural frequencies and modes of vibration of the oval shells 

only. After this is done, the equivalent parameters of the transducers are calculated from con-

sidering energies associated with electromechanical conversion in the corresponding transduc-

ers, and equivalent circuits are presented that allow further analysis of operating characteristics 

and their comparison. Brief description of this approach was previously reported in Ref. 4. 

In order to make the approach to calculations more physically clear, and in order to be able 

to verify results of calculations at least for one particular case, prototypes of the transducers 

were built (courtesy of BTech Acoustics), and FEA was done for these particular cases. Note 

that according to expert recommendation on application of FEA (Ref. 5): “Modeling requires 

that the physical action of the problem be understood well enough to choose suitable kinds of 

analysis. Once the results have been calculated, we must check them to see, if they are reason-

able. Checking is very important, because it is very easy to make mistakes when we rely upon 

FEA software to solve complicated problems.” 

Formulating problem for calculating free vibration of a prototype oval mechanical system 

is done in Section 15.2. The general case of the combined FEA and single degree of freedom 

equivalent circuit involving treatment of Class IV flextensional transducer and analogous oval 

shell bender transducer is performed in Sections 15.3 and 15.4. This could be possible under 

the condition that results of FEA can be scaled for a range of values that characterize geometry 

of the shell. Verification of this possibility is done in Section 15.33.1, and further the equivalent 

parameters of the equivalent circuits are determined. Comparison of the operating characteris-

tics of the flextensional, oval bender transducers, and rectangular plate bender transduces is 

made in Section 5.5 
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15.2 Determining Mode Shapes of Prototypes Vibration 

15.2.1 Formulating the Problem 

Flextensional transducers of Class IV employ mechanical systems in shape of oval shells. Usu-

ally, the mechanical system of entire column like transducer is composed of several single oval 

(elliptical) shell units that have height, h, relatively small compared with their meridional cir-

cumference. Therefore, the shell unit can be considered as a ring. This makes the problem of a 

shell unit vibration one dimensional. Another assumption will be made that the elliptical con-

figuration will be approximated by segments of a circular ring like it is shown in Figure 15.1. 

 

Figure 15.1: (a) Geometry of the mechanical system of a flextensional transducer with oval ring 

replaced by segments of a circular ring: 1 – segments of a circular ring, 2 – additional parts, 3 – 

extensionally vibrating piezoceramic driver. (b) Mechanical system of the oval bender. (c) Geom-

etry of the additional part 2. 

Practical justification for replacing the elliptical ring by combination of segments of the circular 

ring is in the fact that it is easier to build out of piezoelements in case of manufacturing the oval 

bender transducer, in which case the shell is active. Besides, this simplifies treatment of the 

problem without losing its essence. The radius, a, and opening angle,  , of the replacement 

segments are related to the major, 2b, and minor, 2c, axes and their ratio m of the original 
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elliptical shell. From the geometry considerations following from Figure 15.1 (a) these relations 

are: 

 
1 cos

tan
sin 2

c
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−
= = = , sinb a = , (15.1) 

Outer radius of the additional part in Figure 15.1 (c) is 

 ( / 2sin )r w t= + , (15.2) 

where w is the width of the driver, and t is the thickness of the shell. To keep amount of the 

ceramic material in the flextensional and analogous active oval shell transducer the same, we 

will assume that 1.5w t . Thus, the outer radius of the additional part will be 

 
0.75

1
sin

r t


 
= + 

 
. (15.3) 

The symmetrical forces, dF , that are generated by the driver on the ends can be decom-

posed into two components: extF , which is tangent to its middle line, and flF , which is normal 

to the middle line of the ring. The force cosext dF F =  produces predominantly extensional 

deformation of the ring segments, whereas the force sinfl dF F =  produces predominantly 

their flexure. Conditions, under which vibrations of the rings are predominantly flexural or ex-

tensional, are considered in Ref. 6 and in Section 4.4.4. The resonance frequencies of the ex-

tensional (membrane) and flexural vibrations of an incomplete ring may differ practically by 

an order of magnitude (this will be illustrated below). Therefore, they can be treated separately 

as independent vibrations, and their effects on performance of the flextensional transducers can 

be superposed in final result. It must be noted that except for the first symmetrical flexural mode 

of vibration, which is the intended operating mode, the next symmetrical flexural mode of the 

segment of a circular ring is also generated. The resonance frequency of this mode is about 

three times higher than that of the first mode (by analogy with the straight beams at different 

ideal boundary conditions), besides this mode of vibration is not suited for effective radiation, 

because it has multiple nodes.  

Therefore, its contribution to operating characteristics in vicinity of the first resonance fre-

quency is negligible. But the input mechanical impedance related to this mode below its reso-

nance frequency may have some effect on vibration of the driver rod. Although the main atten-

tion in calculations will be given to the range of operation around the resonance frequency of 
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the first flexural mode, the contributions of the next flexural and extensional modes of the shell 

vibration will be also considered. 

15.2.2 Results of Calculations and Experimental Verification. 

Prior to performing general analysis of the problem, calculating was performed by FEA param-

eters of vibration of the prototypes that imitated structures of real transducer designs. This was 

done for experimental verification of results of calculations. Two transducer prototypes were 

built that corresponded to configurations of transducers shown in Figure 15.1 (a) and (b). The 

curved parts 1 were built as bilaminar structures out of segments of rings made of aluminum 

(outer layer) and radially polarized piezoceramics (inner layer). This allowed generating the 

flexural and extensional vibrations of the segments using direct “internal” electromechanical 

conversion. Extensionally vibrating transversely polarized bar was used as the driver 3 of the 

flextensional prototype. The designated opening angle (which is in fact half of full opening 

angle) of the segments / 4 = ; mean radius of the segments a = 54.5 mm; thicknesses of the 

aluminum and piezoceramic layers al ct t=  = 3.5 mm. 

Finite element model was performed for analyzing the structural vibration of the flexten-

sional transducer and oval bender. The “Piezoelectric Device” under “Structural Mechanics 

Module” in COMSOL was used for the modeling. A frequency domain solver was used for 

calculating resonance frequencies, mode shapes, potential and kinetic energies for the trans-

ducer from 100 Hz up to 25 kHz. A static solver was used for calculating the displacements and 

stress inside the mechanical systems under the hydrostatic pressure. 

Results of calculations made for the prototypes were compared with results of measuring 

the following characteristics of both prototypes: resonance frequencies, mode shapes at the res-

onance frequencies (radial components of the displacements), ratios of radial displacement of 

the reference point and of the ends, 0 /r x  . Results of measuring and calculating the resonance 

frequencies of the oval segments of the flextensional and oval driver prototypes are summarized 

in Table 15.1. Results of measuring and calculating the mode shapes of the first and second 

flexural, and the first extensional modes of vibration are presented in Figure 15.2 - Figure 15.4 

for the oval driver prototype. 
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Table 15.1. Measured and calculate values of the resonance frequencies and 
0 /r x   ratios for dif-

ferent modes of oval segments vibration 

 1st Flexural 0 /r x   2nd Flexural 0 /r x   1st Extensional 0 /r x   

Measured 3 kHz 2.4 14.3 kHz 4.2 20 kHz 0.78 

Calculated 2.9 kHz 2.1 14.2 kHz 4.3 19.4 kHz 0.75 

 

Figure 15.2: Oval driver prototype. Calculated mode shapes of the first flexural mode (1 – radial, 

2 – circumferential) and results of measuring (squares). 

 

Figure 15.3: Oval driver prototype. Calculated mode shapes of the second flexural mode (1 – 

radial, 2 – circumferential) and results of measuring (diamonds). 
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. 

Figure 15.4: Oval driver prototype. Calculated mode shapes of the extensional mode (1 – radial, 

2 – circumferential) and results of measuring (diamonds). 

 

Figure 15.5: Flextensional prototype, the driver is active. Calculated mode shapes of the first flex-

ural mode (1 – radial, 2 – circumferential) and results of measuring (squares). 

 

Figure 15.6: Flextensional prototype, the driver is active. Calculated mode shapes of the exten-

sional mode (1 – radial, 2 - circumferential) and results of measuring (squares). 
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The first flexural and extensional modes of vibration for the flextensional prototype with 

driver active and the oval segments short circuited are presented in Figure 15.5 and Figure 15.6. 

The second flexural mode practically can’t be generated by the extensional driver, and as result 

is not visible both in calculating and measuring. Note that the modes of vibration of the oval 

shell with and without the extensional driver are close. 

The essential quantities, values of which is necessary to know for determining the input 

impedances of the oval segments, are the ratios 
0 /r x  . Calculated and measured values of 

these ratios are presented in Table 15.1. The calculations showed that deformation in the cir-

cumferential direction for the 1st flexural mode of vibration, 
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a d



 



 
= − + 

 
, (15.4) 

has zero points at 30    . At these points the electromechanically generated moment 

changes sign, and hence the full-size electrodes don’t produce maximum possible effect. Ex-

periment confirmed this prediction. After the electrodes were split at 30    , and their end 

parts were connected in antiphase with the central part of the electrodes (by using their series 

connection), the magnitude of the radial displacement 0r  
increased in factor of 6.5 compared 

with effect of the full size electrodes (with these parts connected in parallel) at the same electric 

field in the ceramics (see results of calculating the electromechanical transformation coeffi-

cients for such connections in Table 15.5, where from follows that this ratio calculated is 7). 

Thus, the conclusion can be made from the results of comparison presented in this Section 

that calculated by FEA and measured characteristics of the prototypes are in a good agreement. 

15.3 Equivalent Circuit of the Oval Transducer 

15.3.1 About Scaling Results Obtained by FEA. 

It is essential to make sure whether results of FEA obtained for a certain configuration of the 

mechanical system of a transducer can be scaled, i.e., can be used for the mechanical systems 

of the same configuration that have different size. In fact, it is advantageous to have configura-

tions of the vibrating shells scalable even from consideration of manufacturing transducers of 
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a particular type. In the case under consideration the ratio of minor to major axes, m, and open-

ing angle   of the oval shell are related by Eq. (15.1). Under the assumption that width of the 

driver, w, is in a certain relation with thickness of the oval segment, t, (for example, 1.5w t= ) 

all the geometry of the oval ring is determined by values of the radius and thickness. Thus, it is 

possible to express equivalent parameters of the flextensional and oval driver transducers for 

each value of angle   in a general form as functions of radius a and thickness t. 

 

Figure 15.7: Deviations of the 1st flexural mode shapes calculated for the range of changing values 

of the radius and thickness of the oval segments at / 4 = (1 – radial, 2 – circumferential) 

presented in Table 15.2. 

Results of calculating by FEA can be considered scalable, if to make sure that the mode shapes 

of vibration do not change (to a certain accuracy), when radius and/or thickness change within 

margins required for practical transducer designing, and the ratio t/a remains within range of 

applicability the thin shell theory. This assertion is due to the fact that all the equivalent param-

eters of transducers can be calculated using expressions for the mode shapes of vibration. With 

this goal FEA calculations were undertaken of the mode shapes for / 4 =  and the values of 

dimensions that are presented in Table 15.2. Based on the results of calculations it may be 

concluded that the mode shapes of vibration remain virtually unchanged within the range of 

dimensions presented in Table 15.2. Example of deviation of the 1st flexural mode shapes cal-

culated between the marginal values of dimensions from the Table are shown in Figure 15.7. 
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Table 15.2. Dimensions of the oval segments at / 4 = , for which the mode shapes of vibration 

were calculated. 

a, mm 50 50 50 100 100 100 150 150 150 

t, mm 2.5 5.0 7.5 5.0 10 15 7.5 15 22.5 

t/a 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 

 

The analogous procedure can be used regarding the different values of angle  . After the 

mode shapes are determined, all the equivalent parameters that correspond to calculated modes 

of vibration can be obtained in the general forms that depends on the thickness and radius of 

the ring only and on the properties of materials, of which they are built. This will be done within 

this Chapter for / 4 =  and predominantly for t/a = 0.1. 

15.3.2 Equivalent Mechanical Parameters of the Oval Shells for / 4 =  

The equivalent mechanical parameters of an oval segment (per one side of the double-sided 

structure) may be obtained from the following expressions for the potential and kinetic energies 
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Here 2M
 
represents the mass of the end part 2 of the shell in Figure 15.1 (c). From geometry 

of the part and formula (15.3) follows that 2

2 ( / 4)V t h  and 
2 2 2M V=  (it is assumed that 

1.5w t=  and / 4 = ). 

After introducing the mode shapes of vibration by formulas 
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the expressions for strain will be represented as (see Section 4.4.4) 
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for the extensional mode, and 
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for the flexural mode. It must be remembered that expressions for the displacement distributions 

and mode shapes differ for different modes of vibration, though they are not marked by corre-

sponding subscripts for brevity. 

The expressions (15.5) for the potential energy now can be represented as follows. 

For the extensional mode 
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Here eK  is the equivalent rigidity for the extensional mode that will be represented as 

 ( )e e KeK K =  , (15.11) 

where 
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For the flexural mode 
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The equivalent rigidity fK  for the flexural mode will be represented as 

 ( )eqvf eqvf KfK K =  , (15.15) 

where 
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Expressions for the kinetic energy and equivalent masses are 
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Here the equivalent mass eqvM
 
is 

 ( )eqv eqv MM M =  , (15.19) 

where 

 2eqvM hta =  (15.20) 

and 
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    = + . (15.21) 

Factors ( )M   have different values for the flexural and extensional modes, due to different 

dependencies ( )r   and ( )  . They will be distinguished for these modes of vibration as 

M f  and M e , respectively. Values of all the factors M  and K  are presented in Table 15.3 

and Table 15.4. 

It has to be noted that expressions (15.16) for fK   and (15.20) for eqvM   are accurate so far 

as the thin shell theory is applicable. With increase of the ratio t/a some correction factors have 

to be introduced in these expressions that are responsible for shear deformations and rotary 

inertia in course of the shell flexural vibration. Such factors named ( / )t a
 
are included in 

Table 15.3 for the flexural modes. 

Expressions for the equivalent parameters depend on how position of the reference point 

is chosen. These points can be 0 =  or  =  depending on whether the radiation problem or 

determining the input impedances of the shell are the issues. The reference point is chosen at 

0 = , and 0ref r = , respectively, for calculating factors in Table 15.3 and Table 15.4, and 

will remain the same until it is noted otherwise. Important quantity for recalculating equivalent 

parameters between the reference points at 0 =  and at the end of the oval segment is ratio 

0 /r x 
 
that will be denoted for brevity as 
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 0( / )r x   =  . (15.22) 

We will denote   for the first flexural mode as 1f , for the second flexural mode as 2f , 

and for the extensional mode as e . One more quantity, which is important for determining 

radiation resistance of a projector having small wave dimensions (as in the case under consid-

eration), is the volume velocity, 
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The average surface area avS  will be denoted as 

 2av SS ha=  , (15.24) 

where 
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Factors   and S are presented in Table 15.3 and Table 15.4 for corresponding modes of 

vibration at / 4 = . 

Table 15.3. Factors for calculating the equivalent parameters for the flexural mode at / 4 = . 

t/a S  1f  1Mf  ( / )t a   2f  2Mf  ( / )t a  1Kf  ( / )t a  2Kf  ( / )t a  

0.05 

0.32 

2.28 

0.33 

1.00 3.06 

0.46 

1.00 30.20 1.00 1162.40 1.00 

0.1 2.13 1.06 3.12 1.12 
 

0.87  0.85 

0.15 2.0 1.11 8.62 1.89 0.76  0.74 

Table 15.4. Factors for calculating the equivalent parameters for the extensional mode. 

t/a avS  e  Me  
Ke  

0.05 0.23 4.91 0.26 0.80 

0.1 0.35 0.78 0.65 2.57 

0.15 0.14 0.87 0.46 1.88 

15.3.3 Electromechanical Conversion in the Oval Shells Made of Piezoceramics 

If to assume that the oval segments are made from piezoceramic elements designed to produce 

a bending moment (bimorph or bilaminar piezoelements that employ the transverse or 
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longitudinal effect) then the electromechanical transformation coefficients that characterize the 

electromechanical energy conversion must be determined vs. opening angle. So far as the oval 

segments represent parts of a circular ring, all the treatment in terms of electromechanical con-

version may be performed in the way analogous to those used for considering the circular ring 

flexural transducer in Section 7.3.1. The main difference is that in the current case the modes 

of vibration are different. For convenience of reading some parts of this section will be repeated 

here. 

Status of an oval segment that is made of piezoelectric ceramics is governed by the piezo-

electric equations 

 3 3 ,E

i ii i iS s T d E= +  (15.26) 

 3 3 33 3 ,T

i iD d T E= +  (15.27) 

where i = 1, 3 for the case that ceramics is polarized in the radial or circumferential directions; 

iS S=  and iT T= . It follows from Equations (15.26) and (15.27) that 

 (1/ )E E E

i ii i i iT s S Y S= = , 3 3( / )E E

i ii iD d s S= , 2

33 33 3(1 )iS T

ik = − . (15.28) 

Thus, in all the above expressions for mechanical equivalent parameters Young’s modulus Y 

must be replaced by (1/ )E E

i iiY s= . The general formula (9.7) for the electromechanical energy 

associated with the flexural vibration will be specified in this case as 
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The variants of configurations of piezoelements that may produce the flexural deformation, out 

of which segments of fully active oval rings can be build, are shown in Figure 15.8. 

 

Figure 15.8: Configuration of piezoelements that produce the flexural deformations, and variants 

of electrodes connections: (a) transverse piezoeffect, parallel connection of electrodes; (b) trans-

verse piezoeffect, series connection of electrodes; (c) longitudinal piezoeffect. 
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Also widely used are the half passive (bilaminar) designs of the rings, in which case one of the 

layers is made of passive material. Peculiarities of calculations for all these possible variants of 

piezoelements are the same as were considered in Chapter 7 regarding cylindrical transducers 

of the flexural type. Peculiarity of the oval type transducers is in the special mode shape con-

figuration that is determined with help of FEA. Here we will consider the variant of employing 

the transverse piezoeffect with parallel connection of the layers (Figure 15.8 (a)). 

The electric field in the oval segment that is comprised of two layers of ceramics may be rep-

resented in general form as 

 3 ( , ) (2 / ) ( , )E z V t z =  , (15.30) 

where V is the voltage applied and 1 2( , ) ( ) ( )elz z  =    is the function that depends on 

configuration and on the way of connection of electrodes located in the volume of the ring: 

1( )z
 
- through the thickness ( 1( ) 1z =  at z > 0, 1( ) 1z = −  at z < 0), 2 ( )el

 
- along the 

circumference. After substituting function (15.30), expression for the electromechanical energy 

becomes 

 

/2 2

31
0 1 2 02

11 /2 0

41 1
( ) ( )

2 2

t

em r el rE

t

d h rW V z zdz d V nr
s at




    


−

 
=   + = 

 
  . (15.31) 

Here will be denoted: 

 ( )nn n =  , (15.32) 
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in the variant of parallel connection of ceramic layers (variant shown in Figure 15.5 (a)), and it 

is twice smaller for the half passive design; and 

 

2

2 2

0

( ) ( )n el
r dr




   


 
 =  + 

 
 . (15.34) 

Coefficient n  depends on the dimensions of the mechanical system, parameters of materials 

and on the design of the piezoelement. Coefficient ( )n   depends on the angle   (on the 

mode shape of vibration) and on the status of the electrodes. Factor 2 ( ) 1el =  at the angles, 

at which the electrodes have a basic polarity; 2 ( ) 1el = −  at the angles, at which polarity of 
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the electrodes have opposite sign; and 
2 ( ) 0el = at the angles, at which electrodes don’t exist. 

Decision on how to divide and electrically connect the electrodes depends on how the function 

looks 

 

2

2
( )r Tr 


 



 
+ 

 
. (15.35) 

At the angles, at which the stress in circumferential direction changes sign, the electrodes must 

be split, and the obtained parts of electrodes may be connected in antiphase in order to realize 

the maximum possible value of the electromechanical transformation coefficient. For the first 

flexural mode 0T =  at 30    . Values of factor n  determined for the variants that elec-

trodes have full size, when they are split at angles 30     and the central part of the elec-

trodes is used while the remaining parts are short circuited, and when the end parts are con-

nected to the central part in series in opposite polarity are presented in Table 15.5. 

Table 15.5. Electromechanical transformation coefficients for different electrode configurations. 

 Full Electrode Central Electrode End Parts are Connected in 

Opposite to Central 

n  0.5 2.0 3.5 

15.3.4 Equivalent Circuit of the Oval Bender Transducer 

In the context of this Chapter that is devoted to combining FEA and energy method technique 

the results related to the oval transducers are obtained as a “byproduct” of analysis intended for 

the flextensional transducers of Class IV, for which vibrating (and radiating) mechanical system 

has the same configuration. For the oval bender transducers per se it is not necessary in principle 

to have the central rod, as shown in Figure 15.1 (b), although the variant of design with passive 

central rod may also have sense, if increase of static strength of the transducer is needed. In this 

section the basic design of the oval bender transducer without the central rod will be considered. 

All the equivalent electromechanical parameters for the first flexural mode will be determined. 

This mode can be considered as isolated, because the resonance frequency of the next flexural 

mode is higher approximately in factor of 4 (see Table 15.1 and expressions for eqv fM
 
and 

eqv fK ). Therefore, the common one dimensional equivalent circuit shown in Figure 15.9 is 
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representative, where expressions for the parameters are given by above formulas, and the nu-

merical values of the corresponding coefficients   are determined for the opening angle 

/ 4 =  per one half of the oval mechanical system. 

The note must be made regarding value of the radiation impedance 
acZ

 
introduced in the 

equivalent circuit. The wave size of the oval transducers is comparable with the wave size of 

the rectangular benders having approximately the same operating resonance frequencies. The 

related results that are presented in Section 9.4 are applicable for the oval transducers. Predom-

inantly the transducers behave like three or two dimensional simple sources, in which case their 

radiation characteristics depend on the volume velocity av roV
U S = , where avS  is expressed by 

formula (15.24). For the case that the opening angle is / 4 =  0.64avS ha=  

 

Figure 15.9: The equivalent electromechanical circuit of the oval driver transducer per one half of 

the mechanical system, 1/E E

eqvf eqvfC K= . 

For different values of the opening angles   new values of the parameters must be calculated. 

Although the value / 4 =  seems to be close to optimum by the following considerations. 

Because of symmetry the boundary conditions for the half oval segment at angles   are 

 ( ) 0z   , 0zd

d
 




=

 , (15.36) 

as is illustrated in Figure 15.10 (a). At / 2 →  these conditions correspond to the circular 

ring transducer undergoing flexural vibrations that is considered in detail in Section 7.3.1. Thus, 

with increase of angle   the mode shape tends to cos 2r ro  = , 0avS → , and the transducer 

becomes not efficient projector. In the limiting case at 0 →  configuration of the oval trans-

ducer tends to become rectangular bender made of beams with clamped ends. Properties of such 
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transducers are considered in Chapter 9, where it is shown that they have no advantages com-

pared with the benders with simply supported ends. 

 

Figure 15.10: Illustration of geometries of the oval benders at limiting values of the opening angle: 

(a) arbitrary angle  ; (b) / 2 → , circular ring, cos 2r ro  = ; (c) 0 →  rectangular 

bender with ends clamped. 

It is noteworthy that transducer analogous by configuration to the oval transducer was con-

sidered in Ref. 7 under the title “A Conformal Driving Class IV Flextensional Transducer.” In 

our notation this transducer presents a particular variant of the oval flexural transducer with half 

passive piezoelements employing transverse piezoeffect. Treating the transducer is produced in 

Ref. 7 by the FEA in full in contrast to the current approach. As the result, the information 

presented is of a qualitative nature and cannot be used without repeating procedures of FEA for 

designing transducers that employ different variants of the piezoelements or/and meet certain 

requirements. This example clearly illustrates advantages of the adopted combined FEA and 

the energy method technique. 

15.4 Equivalent Circuit of the Flextensional Transducer 

Equivalent circuit of the flextensional Class IV transducer can be represented as the equivalent 

circuit of piezoceramic extensionally vibrating rod loaded on the ends by the input impedances 

of the oval shell. Therefore, at first the input impedances of the oval shell at the area of contact 

between the rod and the shell must be determined. 

0 =

F



(a) (b)

0 =

F

(c)

cos2
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15.4.1 Input Impedance of the Oval Shell 

For determining the input impedances of the oval shell, we assume that force F is applied to the 

shell in x direction, as shown in Figure 15.10 (a). As the first step, the reference point that was 

previously used for determining equivalent parameters of the oval shell must be placed at the 

point, to which the force F is applied, and displacement of this point in the x direction must be 

expressed through the displacement of the previous reference point, i.e., through 0r . The ratio 

of the displacements is known as relation (15.22), i.e., 0( / )r i xi i  =  for each mode of vibra-

tion. Here and further we will use numerical notations for the modes of vibration for brevity as 

follows: the first flexural mode – 1, the second flexural mode – 2, the extensional mode – 3. 

The values of i  are given in Table 15.3 for the flexural and Table 15.4 for the extensional 

modes. 

Thus, the total displacement in x direction can be represented as 

 
3 3

1 1

( / )x xi roi i

i i

  
= =

= =   . (15.37) 

The energy that is delivered by an external source of force F to vibrating oval segment (per one 

end) is 

 
3

0

1

( / )ext x r i i

i

W F F  
=

= =  . (15.38) 

The equivalent mechanical parameters that were determined regarding the reference point at 

0 =  and the corresponding generalized coordinates 0r i  must be recalculated to the new ref-

erence point and to the generalized coordinates xi . As the total values of the potential and 

kinetic energies should not change at this transformation, the equivalent rigidities and masses 

iK  and iM  per one end of the segment may be found from the equalities 2 2

02 ( )i xi eqvi r iK x K =  

and 
2 2

02 i xi eqvi r iM M =  as 

 20.5i eqvi iK K =   and 20.5i eqvi iM M =  . (15.39) 

From the Lagrange’s equations regarding the independent generalized coordinates x i , 

 
potkin ext

x i x ix i

WW Wd

dt  

   
+ = 

    

, 1, 2, 3i = . (15.40) 
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after substituting expressions for the energies involved, we arrive at the set of equations in the 

complex form 

 
i

i x i

K
j M F

j
 



 
+ = 

 
, i = 1, 2, 3. (15.41) 

With the mechanical losses and losses on the acoustic radiation included by observation it will 

be obtained that 

 
i

i mLi ac i x i

K
j M r Z F

j
 



 
+ + + = 

 
. (15.42) 

Here the values of the radiation impedances, aciZ ,
 
must be recalculated from the radiation im-

pedances ac oiZ related to the reference point at 0 = in the same way as the mechanical equiv-

alent parameters, namely, 20.5aci acoi iZ Z =   . 

The input impedance per one end of the oval segment for each mode of vibration will be 

found from Eq. (15.42) as 

 i
in i i mL aci

x i

KF
Z jM r Z

j
= = + + + . (15.43) 

 

Figure 15.11: The equivalent circuits of the input impedance per one end of an oval segment: (a) 

for a broad frequency range, (b) for the frequency range around the resonance frequency of the 

1st flexural mode, (c) with 2nd flexural mode neglected, (d) to the first approximation. 

Considering the expression (15.37) for the total vibration velocity of the end and relation 

/x i in iF Z = , the total input impedance will be found as the impedance of the parallel connec-

tion of the partial impedances iZ , and its equivalent circuit for a broad frequency range can be 

(a) (b)

2C1Z 3C
3Z

2Z1ZF
x

(c)

1Z 3C

(d)

1acZ
1C 1M mLr
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represented as shown in Figure 15.11 (a). The general representation of the input impedance 

may be simplified depending on the operating frequency range. Thus, in the frequency range 

around the resonance frequency of the 1st flexural mode the impedances of the 2nd flexural and 

extensional modes are governed by their rigidities, and the equivalent circuit of the input im-

pedance can be represented, as shown in Figure 15.11 (b). Comparing rigidities 
2K  and 

3K  

that can be made by using data presented in Table 15.3 and Table 15.4 results in 
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= = 

  
. (15.44) 

Thus, the contribution of impedance of the 2nd flexural mode can be neglected, and the equiv-

alent circuit of the input impedance can be presented as shown in Figure 15.11 (c). Comparing 

the rigidities 1K  and 3K  results in their ratio 
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= = 

  
. (15.45) 

Thus, contribution of the extensional mode to the input impedance can be also neglected to the 

first approximation, though it has tendency of increasing with raising the thickness to radius 

ratio. The equivalent circuit of the input impedance to the first approximation is presented in 

Figure 15.11 (d). 

This analysis shows that there is no need in calculating parameters of the second flexural 

and extensional modes of the oval segment to a great accuracy, as far as the frequency range 

around and below the resonance frequency of the first flexural mode is of interest, which is 

usually the case. For practical transducers designing their influence even can be neglected, and 

the equivalent circuit of the input impedance per one end of the oval segment shown in Figure 

15.11 (d) can be used to the first approximation. 

15.4.2 Equivalent Circuits of the Extensionally Vibrating Piezoceramic Bar 

The well-known and widely used equivalent T- network circuit representation of longitudinally 

vibrating piezoceramic bar having two mechanical ports and electrical port that is described in 

Sections 5.8.3 and 10.2.3 is the most appropriate for use in the case under consideration. The 

circuit, as shown in Figure 15.12, is valid for both variants of the piezoceramic bar design: side 
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electroded and segmented that realize the transverse and longitudinal piezoeffect under the as-

sumption that number of segments comprising the bar is more than 6 or its wavelength is small. 

 

Figure 15.12: The equivalent circuit representation of longitudinally vibrating piezoceramic bar 

loaded at the ends by the impedances LZ . 

All the impedances for both cases have the same expressions for the values, namely, 

 1 / sinE E E

i cs iZ j c S k l= − , 2 tan( / 2)E E E

i cs iZ j c S k l= . (15.46) 

Here csS  is cross section area of the bar; l is the length of the bar; /E E

i ic Y = , 1, 3i =  for 

the transverse and longitudinal piezoeffect, respectively. Parameters on the electrical side and 

electromechanical transformation coefficients differ and have the following values. For the 

transverse piezoeffect (assuming that electrodes are applied to the surfaces having width w) 

 1 31 11/ E

iN N wd s= = , 1 2

33 31(1 ) /iS S T

e eC C k wl h= = − , (15.47) 

and for the longitudinal piezoeffect of a segmented bar at parallel connection of the segments 

(under condition that number of segments is more than six) 

 3 33 33/ E

iN N whd s = = , 3 2 2

33 33(1 ) /iS S T

e eC C k wlh = = − , (15.48) 

where /l N = , and N  is number of the segments. 

15.4.3 Equivalent Electromechanical Circuit of the Flextensional Transducer 

In the case that piezoceramic bar is used as a driver of the flextensional transducer its ends must 

be loaded by the input impedances of the oval segments that were determined in Section 15.4.1 

(impedances of two symmetrical segments for each end of the bar). Thus, in the circuit shown 

in Figure 15.12 the impedance LZ  must be replaced by 2 inZ  and velocity 
L  by 

x , where 

inZ  is the input impedance on the end of the shell that must be determined from one of the 

LL

LZLZ

11: N

V

1

EZ

1S
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circuits in Figure 15.11 depending on the approximation accepted. After this is done, the circuit 

in Figure 15.12 can be represented as shown in Figure 15.13 

 

Figure 15.13: The one-dimensional representation of equivalent circuit of flextensional transducer 

for determining velocity 
x . 

due to symmetry. In this variant of the equivalent circuit 

 
tan( )

E
E i cs
dr E

i

c S
Z j

k l


= − . (15.49) 

At 1E

ik l , (which is usually the case for the flextensional transducers), 

 / / 4E E

dr dr drZ K j j M = + , (15.50) 

where /E E

dr i csK Y S l=  is the static rigidity of the bar and drM whl= . At 0 →  

 /E E

dr drZ K j= . (15.51) 

After velocity 
x  is found from the equivalent circuit of Figure 15.13, all the operating 

parameters of the flextensional transducer can be calculated so far as the mechanical equivalent 

and radiation related parameters of the oval segment reduced to the displacement x  are already 

known. Distribution of radial velocity of the oval shell vibration is known as 
0( ) ( )r r r    =

, where 0 1r x  =  , thus all the data needed for calculating the acoustic field radiated by the 

vibrating shell are available. 

15.5 Example of Comparing the Operational Characteristics 

With the equivalent electromechanical circuits known a comparison can be made between op-

erating characteristics of the flextensional and oval bender transducers that use the vibrating 

systems of the same geometry. The goal of this Section is to illustrate, how a physical clear 

information regarding important properties of the transducers can be obtained, as result of 

2 x

E

drZ

mZ

1: N

V iS
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calculating mode shapes of vibration by FEA in combination with energy method approach. 

The comparison will be made by the effective coupling coefficients, resonance frequencies and 

by the mechanical strength limited maximum operating depth of the transducers. 

The calculations in this Section will be made using prototype examples of the transducers 

with only purpose to illustrate, how the combined technique can be practically applied. The 

numerical results obtained must be considered as illustration of tendencies rather than charac-

terization of real transducer designs. According to assumptions made regarding the prototypes 

geometry the following set of their relative dimensions will be used: / 4 = , / 1.5w t = , 

/ 0.1t a = , / 2l a = . 

15.5.1 The Effective Coupling Coefficients 

The general definition for the effective coupling coefficient (2.88), 

 
2 energy stored in mechanical form at the working mode of vibration 

total input energy
effk = , (15.52) 

can be directly used for estimating the effective coupling coefficients of the flextensional and 

analogous oval bender transducers at 0 → . 

 

Figure 15.14: Equivalent electromechanical circuit of the flextensional transducer at 0 → . 

1/E E

dr drC K= , 1 11/C K= . 

The Flextensional Transducer 

The equivalent circuit of a flextensional transducer in Figure 15.13 simplifiers at 0 →  to the 

circuit in Figure 15.14. According to expression (15.43) 1 /inZ K j→ , where 1K  is deter-

mined as (15.39), and /E E

dr drZ K j→  by expression (15.51). 

The total input energy supplied to the transducer can be presented using this circuit as 

 iS

total el emW W W= + , (15.53) 

where 

2 x
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 21

2
i iS S

el eW V C=  and 
1

(2 )
2

em x iW VN= . (15.54) 

On the other hand 

 2

1

1 1
(2 ) ( ) (2 )

2 2

E

em mech x dr x iW W K K VN = = + = . (15.55) 

where E

drK  is the static rigidity of the driving bar (15.51), and 1K  is the rigidity of the oval 

segment per one end from Eq. (15.39) (after the input impedance of the segment is reduced to 

impedance of the first flexural mode only, there is no need in subscript 1 in 1x ). From this 

equation follows that 

 
2

E
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x i

K KV

N

+
= . (15.56) 

The total energy supplied to the transducer is 

 2 2

1

1
[ (2 ) ( )]

2
iS E

total e x drW V C K K= + + , (15.57) 

where the energy stored in the mode of vibration of the oval segment (the working mode of 

vibration) is 

 2

1 1

1
(2 )

2
fl xW K= . (15.58) 

After substituting expressions (15.56) - (15.58) into expression(15.52) for 2

effk , it becomes 
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1 1

1 /( / ) (1 / ) 1i
eff S EE E
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= 
+ + +

. (15.59) 

Summary of parameters involved in formula (15.59) for 2

effk  is: 1 /E E

drK Y wh l=  from (15.51); 

1 31 11/ EN wd s= , 1 2

33 31(1 ) /iS S T

e eC C k wl h= = −  from (15.47); 3 3 2

1 1 10.5( / 6 ) KK ht Y a =    from 

(15.15) and (15.39); 1 30.2K = , 
1 2.0 =  from Table 15.3. Note that 

2 2 2

1 31 31( / ) (1 ) /iSE

dr eK C N k k= − . For PZT-4 ceramics 31 0.33k = .  

After substituting the above expressions for the parameters into formula (15.59). we arrive 

at expression for the effective coupling coefficient 

 
2

2 31
1 2

317.8 1.2
eff

k
k

k
=

−
, (15.60) 

where from 1 310.36 0.12effk k = . 
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The Oval Transducer 

Expressions for the energies involved in the definition (15.52) for the oval transducer may be 

obtained from the equivalent circuit in Figure 15.9. (Though the circuit is presented for one 

oval segment, the result will be the same as for the entire transducer, as all the energies in this 

case double due to symmetry). Namely, 

 2 21
( )

2
iS E

total e ro eqv iW V C K= + , (15.61) 

 21 1

2 2

E

em mech ro eqv i roW W K V n = = = . (15.62) 

From the last equality follows that 

 

E

eqvi

ro

KV

n
= . (15.63) 

After substituting expressions for the energies into (15.52), the effective coupling coefficient 

will be obtained as 
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. (15.64) 

Note that 
2 / iSE

eqv i e cn K C = , and (15.64) is the common expression (2.93) for 2

effk  of one degree 

of freedom piezoceramic transducer. Parameters involved in formula (15.64) are: 

3 3

1 1130.2 / 6E E

eqvK ht s a=  from (15.15) and Table 15.3; 31 11( / )E

nn d th s a=  from (15.32). If the 

electrodes are divided at angles 30 =  
 
and the end parts are connected in antiphase to the 

central part, from Table 15.5 follows that 3.5n = . In this case 1 2

33 31(1 ) /S T

elC k ah t = − .  

After substituting expressions for the parameters into formula (15.64) we obtain 

 
2

2 31
1 2

311.3 0.3
eff

k
k

k
=

−
, (15.65) 

where from 1 310.89 0.29effk k = . 

It is noteworthy that with replacing the transverse poled piezoelements by longitudinally 

poled segmented piezoelements (common for the bar, and such as shown in Figure 15.8 (c) for 

the oval segments) the effective coupling coefficients can be calculated from formulas (15.60) 

and (15.65) by changing 
2

31k  to 
2

33k  with negligible error. 
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The difference in the effective coupling coefficients of the flextensional and oval transduc-

ers is partially due to the fact that in case of the flextensional transducer the active piezoelement 

is shunted by the passive shell. The difference may change to some extent, if in the flextensional 

transducer the ratio w/t is increased. Besides the amount of active material of the driver in the 

flextensional transducer can be increased in comparison with the oval segments in practical 

designs. But the main inaccuracy of the comparison made is that the transducers have different 

strength under hydrostatic pressure. Advantage of the flextensional transducer is that its shell 

can withstand greater hydrostatic pressure due to reinforcing function of the driver bar (putting 

aside that the shell can be made of a material stronger than ceramics). Introducing the reinforc-

ing central passive bar into the oval transducer for achieving comparable static strength condi-

tions will result in significant drop of the effective coupling coefficient of the oval transducer. 

As it will be shown in Section 15.5.3, instead of 
1 0.29effk =  for the oval transducer without 

reinforcing bar by formula (15.65) it will be 1 0.17effk =  with the reinforcing bar having the 

same rigidity as the driver of flextensional transducer has. 

15.5.2 The Resonance Frequencies 

The resonance frequencies of the oval and flextensional transducers can be determined using 

the equivalent circuits in Figure 15.9 and Figure 15.13. Thus, for the oval transducer 

 
1
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ro

eqvi

K
f

M
= . (15.66) 

When determining the resonance frequency of the flextensional transducer, the impedance E

drZ  

in Figure 15.13 must be used in the form of expression (15.50). This will result in 
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. (15.67) 

Note that the equivalent rigidity and mass in formula (15.66) are for the piezoceramics and 

in formula (15.67) eqvK  and eqvM  are for the passive material, of which the oval segments are 

made. At the same dimensions of the oval shell 
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where subscript p stays for “passive”. Given that for PZT-4 ceramics, 1

EY  = 81 GPa and 
c  = 

7500 kg/m3, and for aluminum, pY  = 70 GPa and p  = 2700 kg/m3, in the example considered 

this ratio is 

 3.2rf rof f= . (15.69) 

The flextensional transducer has higher resonance frequency than oval transducer having 

the same dimensions partially because its shell is made of the lighter material, but mainly due 

to increase of the potential energy of its mechanical system due to additional rigidity of the 

driver bar. 

The above estimations do not mean that the practical designs of the oval transducers may 

have advantages over the flextensional transducers in underwater applications, because no real 

environmental and operating conditions were taken into consideration. The most challenging 

among these conditions is the hydrostatic pressure and related issues of the static mechanical 

strength of the transducer designs. The low frequency transducers of flextensional type were 

introduced as alternative to the flexural plate drivers, which are extremely vulnerable to the 

hydrostatic pressure, as it was articulated in Chapter 14. The oval driver transducers may be 

considered as possible improvement of the rectangular benders (see the considerations related 

to Figure 15.10), if they can withstand greater hydrostatic pressures, and remain sufficiently 

electromechanical effective. But a fair comparison between the flextensional and oval trans-

ducers must be produced with accounting for their strength under the hydrostatic pressure. 

15.5.3 Mechanical Strength of the Transducers Under the Hydrostatic Pressure 

The static strain in the oval shell can be determined by formula (4.221) presented for the circular 

ring in Section 4.4.4, 
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, (15.70) 

or 
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Here r h  and h  are the distributions of displacements under the hydrostatic pressure in the 

radial and tangential directions normalized to displacement 
0r  of the reference point; eS  and 

fS  are the strains that correspond to the extensional and flexural deformations, respectively.

 The corresponding stresses are, 

 ( , ) ( , )
h

e o rh o he
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 (15.72) 

and 
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. (15.73) 

Here the functions ( , )eh    and ( , )fh    are introduced for brevity. 

The distributions of static displacement were determined by FEA for / 4 =  and for the 

range of ratios t/a = 0.05 to 0.15. Their plots are presented in Figure 15.15. As within this range 

of thickness to radius ratio the distributions do not deviate noticeably from those at t/a = 0.1, 

the further analysis will be restricted to this ratio. Thus, the functions in (15.71) and (15.72) 

will depend on the angle   only. 

It is noteworthy that the mode of static deflection practically coincides with the first flex-

ural dynamic mode of vibration that is shown in Figure 15.7 (just in different scale). This is in 

line with the rule that the mode shapes of vibration at different boundary conditions can be 

determined as static deflections under uniform load (hydrostatic pressure in particular). 

Distribution of displacements in the same oval shell are shown in Figure 15.16 for the case 

that a central bar is installed into the shell analogous to the driver of flextensional transducer 

with goal of reducing stress in the shell. In this case it is assumed that the shell is made of 

aluminum and the bar is made of steel. The distributions of displacement changed to some 

extent, but what is more important the normalizing coefficient in the case with the central bar 

is reduced in factor of six, which means that the stresses in the shell are reduced accordingly. 

The corresponding distributions of stress in the circumferential direction are shown in Fig-

ure 15.17 and Figure 15.18 for the oval driver transducer without and with the central bar, 

respectively, at thickness to radius ratio t/a = 0.1. Remember that according to adopted rule of 

signs the tension is positive, and compression is negative. 
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Figure 15.15: Deviations of the normalized displacements in radial and tangential direction for 

oval shells with t/a ranging between 0.05 and 0.15. Normalizing coefficient for t/a = 0.1 is 0r = 

0.11 mm per 1 Pa of hydrostatic pressure. 

 

Figure 15.16: Normalized displacement in radial (1) and tangential (2) direction for the oval shell 

made of aluminum at t/a = 0.1 with the steel central bar. The normalizing coefficients is 0r  = 

0.016 mm per 1 Pa of the hydrostatic pressure. 

Thus, the central bar has a significant influence on the magnitude and distribution of the 

static stress in the shell. Quantitatively this effect depends on the rigidity of the bar, which is 

proportional to Young’s modulus of material used. The plots in Figure 15.18 are obtained for 

the extreme case that bar is made of steel with Y = 210 GPa to clearly illustrate the tendency. 

In reality choosing the material for the strengthening bar is a tradeoff, because its effect does 

not come for free. Introducing the central bar results in increase of the resonance frequency and 

reducing the effective coupling of the oval transducer. 
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Figure 15.17: Stress developing in the oval transducers without central bar per 1 Pa of hydrostatic 

pressure: (a) flexural stress (top half (1) and bottom half (2)) and extensional stress (3); (b) sum 

of the flexural and extensional stress (top half (1) and bottom half (2)). 

 

Figure 15.18: Stress developing in the oval shell with a central bar per 1 Pa of hydrostatic pressure: 

flexural stress (top half (1) and bottom half (2)) and extensional stress(3); (b) sum of the flexural 

and extensional stress (top half (1) and bottom half (2)). 

Both effects are due to appearance of an additional potential energy of deformation of the 

electromechanically passive bar. This can be illustrated with the example considered in Section 

0 with help of the equivalent circuit of the oval transducer shown in Figure 15.9. We will as-

sume that the bar has the same rigidity as the piezoceramic bar of the flextensional transducer 

(Y = 81 GPa). The additional rigidity, adK , must be introduced into the equivalent circuit to 

account for the potential energy of deformation of the bar, which is 

 2 2 2

2

1 1 1

2 2 2

bar
pot bar x ro ad ro

K
W K K



  = = =


. (15.74) 

Here 2/add barK K =   , /bar csK YS l=  is the static rigidity of the bar and 2.13 =
 
from Table 

15.3. 
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The effective coupling coefficient of the oval transducer with the additional rigidity of the 

central bar , effik  , can be calculated by formula that may be obtained by including the additional 

passive rigidity into expression (15.64) in the following way, 

 

2

2

22

1

1 ( / )(1 )( / )(1 / ) 1i

effi

effi S EE E

add eqvi effieqvi e i add eqvi

k
k

K K kK C n K K
 = =

+ −+ +
. (15.75) 

In the example that we consider / 2.3E

ad eqvK K =  and ( )2 2 2/ 3.3 2.3effi effi effik k k = − . 

Thus, instead of 
1 0.29effk =  for the oval transducer without reinforcing bar (formula 

(15.65)) it will be 1 0.17effk =  with the bar, i.e., the drop of effective coupling is dramatic. 

So much attention to distribution and magnitude of stress in the volume of the oval trans-

ducers is justified, because they can be considered as an alternative to the rectangular benders, 

in which ceramics is especially vulnerable to tension that is developing under the hydrostatic 

pressure in half of their volume. As it was previously mentioned and illustrated with Figure 

15.15, configuration of the rectangular bender can be imagined as extreme case of the oval shell 

at 0 → . Another extreme case of the oval shell at  →  being circular ring vibrating in 

flexure along the circumference. The case at / 4 =  can be regarded as intermediate and 

close to optimal in terms of its electroacoustic parameters. The worst in terms of the static 

strength is the rectangular bender (at 0 → ), in which case half of the volume experiences 

tension. The best is the flexural ring transducer, in which case all the volume is under compres-

sion. And the oval transducer at / 4 =  is somewhere in the middle. Given that the flexural 

cylindrical transducer without baffling parts of the surface vibrating in opposite phase is not 

effective low frequency projector (with 0avS = ), the oval transducer at / 4 =  may be con-

sidered as a real alternative to the rectangular bender for underwater applications that require 

operating at a moderate depth. It is remarkable that all the volume of the oval shell except for 

the segments of upper half beyond the angles 30o =  does not experience tension under the 

hydrostatic pressure, as it follows from plots in Figures 15.17 (b) and 15.18 (b). Moreover, in 

the variant with the central bar all this volume is under compression. 

In addition to the distrbutions of stress formulas for the maximum values of the stress at 

the center of oval segment (at 0 = ) must be provided. For the designs without central bar 

theycan be obtained from expressions (15.72) and (15.73). Dependence of the maximum com-

pression stress in the extensional mode, (0)eT , is 
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 ( ,0) ( ,0)e h he

a
T p

t
  =  , (15.76) 

where hp  is the hydrostatic pressure, and coefficient ( ,0)he   at / 4 =  is 5he  . 

Expression for the stress (0)fT  can be obtained in the following way. As it was noted, 

the mode of displacement under the hydrostatic pressure may be approximated by the first res-

onance mode of the flexural vibration. Therefore, the displacement 0r  under the hydrostatic 

pressure can be found as 

 0 1 1/r h av eqvp S K = , (15.77) 

where 1eqvK  and 1avS  are determined by formulas (15.15) and (15.24). After substituting this 

expression for 0r  
into (15.73), we arrive at the formula for the maximum stress at z = t/2, 

 
2

1

2

( )6
( ,0) ( ,0)

( )

S

f h hf

Kf

a
T p

t



 




= 


. (15.78) 

By calculation from the flexural mode shape at / 4 = , ( / 4,0) 8.3hf  = . From Table 15.3 

follows that ( / 4) 0.32s  =  and 30.2Kf = . Therefore, 

 

2

max 2
(0) 0.5f h

a
T p

t
 = − . (15.79) 

Now all the information needed for estimating effects of hydrostatic pressure on parameters 

of an oval transducer, and for taking decision regarding rational configuration of active parts of 

its mechanical system is available. Together with the equivalent electromechanical circuits and 

expressions for the equivalent parameters of the oval and flextensional transducers derived 

above this makes possible analytical designing the transducers that meet certain operating re-

quirements. Detailed analyzing properties of transducers of these types can be performed in the 

same way, as it was illustrated with numerous examples in the preceding chapters. 

Summarizing the results presented in this chapter it may be concluded that combining the 

FEA technique for calculating mode shapes of vibration of mechanical systems and energy 

method of analysis the transducer properties based on using the obtained mode shapes may 

provide a physical clear analytical approach to designing the transducers.  
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AFTERWORD 

The energy methods used throughout this treatment are inherently approximate. Real distribu-

tions of displacements in the mechanical systems of the transducers (the mode shapes) are rep-

resented as modes of displacements under static loads, or as expansions in a finite series of 

supporting functions. This allows simplifying the problems and achieving physical clear results 

by relatively elementary means. But this simplicity does not come for free. The question arises 

regarding accuracy of the finite results of calculations. To answer this question and to estimate 

an acceptable accuracy of the approximations it must be known first, what values of parameters 

of transducers under consideration may be considered as accurate. In fact, the accurate (true) 

values of parameters are not known a priory and it must be established, what values may be 

regarded as such. The most convincing and close to the true values may be considered those 

obtained as result of physical experimental verification. But results of an experimenting are not 

accurate themselves. Thus, by estimations made in the book of R Bobber, Underwater Electro-

acoustic Measurement, accuracy of measurements of acoustic parameters may be on the order 

of (5-10) %. Probably, the most accurate may be results of measuring the resonance frequencies 

of the mechanical systems in air. Results of calculating this very important characteristic is the 

most vulnerable to not appropriate approximations made. Other widely used “true values” of 

parameters are those obtained analytically under ideal assumptions regarding dimensional as-

pect ratios for the mechanical systems: / 1t l  for longitudinally vibrating rods; / 1t a  (

/ 1t l ) for flexural vibration of plates (beams) according the elementary theory of bending. 

Numerous data thus obtained for the mechanical systems under different boundary conditions 

can be found in literature, for example, in the book of Leissa, Vibration of Plates, though no 

estimations are provided on how small this aspect ratios must be for considering the results to 

be sufficiently accurate. Real mechanical systems have finite aspect ratios, and one must be 

very cautious using this data, moreover, that in the most cases they are presented for several 

high modes of vibration. Thus, for example, in Table 2.3 of referred book values of the reso-

nance frequency related parameter 2 2 /a D  =  are given for the first three consecutive 

modes of vibration of the simply supported circular plate as 4.977, 13.94, 25.65 without 
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presenting information on how small the aspect ratio for the plate must be to insure four-digit 

accuracy of the results. At the same time, if to consider corrections due to rotary inertia and 

shear deformations presented in Section 9.4.3 for plate with finite aspect ratio to results of the 

elementary theory, 
rf  , the valuer of resonance frequency for the first mode of vibration, 

r
f  , 

must be calculated by formula 

 
2 2

2

1 0.5[(1 ) / (1 )]( / )

1 0.5( / )

r

r

f t a

f t a

  − + −
=

+
.  

(See formula (9.268), where for passive elastic materials 2/ (1 )E

aY Y = −  and 44

Ds  must 

be replaced by 1/ 2(1 ) / Y = + ). For fairly thin plate at / 0.2t a =  the ratio is 0.97. To ensure 

the same level of accuracy of approximation to results of the elementary theory for the higher 

modes of vibration, the thickness to radius aspect ratio must be reduced roughly in number of 

the mode times (see S. P. Timoshenko, Vibration Problems in Engineering.) Thus, for the sec-

ond and third modes for circular plate /t a  must be less than 0.01 and 0.05, respectively. Such 

thin plates are hardly practical. This example shows that in case of the simply supported plates 

presenting four-digit accurate values for the resonance frequencies related parameter is mis-

leading, moreover that no restrictions on the aspect ratio of the plates are imposed. Analogous 

reasonings are applicable for results of calculations that are based on elementary theory of lon-

gitudinal vibration. Extent of the aspect ratios, to which the results can be considered accurate 

enough, can be estimated using data regarding the coupled vibrations in the corresponding sys-

tems that are presented in Section 4.6. 

Besides of the systematic errors due to not appropriate aspect ratios of the vibrating bodies 

it must be remembered that parameters of materials used in the transducer designs are deter-

mined in experimental way and their values as a rule are presented in specifications with not 

more than three-digit accuracy. 

In summary, it can be concluded that the upper level of accuracy in determining transducer 

related quantities may not be more than three-digits. Presenting results of calculating with big-

ger precision does not make sense and even may be misleading. 

 



  

LIST OF SYMBOLS 

Symbol Description 

A radius 

B bulk modulus 

c , cc , wc  sound speed, peed of sound in ceramic composition and in water 

E

mic  elastic stiffness of a piezoceramics at constant electric field 

C, 
S

eC  capacitance, capacitance of blocked transducer 

C, E

eqvC   compliance, equivalent compliance of a mechanical system at con-

stant electric field 

d, mid   separation, distance; piezoelectric constant 

D  diameter, flexural rigidity 
3 2/12(1 )D Yh = −  

iD , 
E

iD   charge density, charge density at constant electric field 

E

mie   piezoelectric constant, E

mi mj jie d c= , j =1…6 

E , opE , pE  electric field, operating field, permissible field 

Ef   effectiveness 

f , rf , arf , f   frequency, resonance frequency, antiresonance frequency, deviation 

of frequency 

ipf  partial resonance frequencies of a coupled system 

F , eqvF  force, equivalent force 

G torsional rigidity 

h  height 

( , )H     directional factor 

I  current 

LI  , CI  , mI   current through inductance, current through capacitance, motional 

current 

J, pJ  moment of inertia, polar moment of inertia 

k; ck , effk ; difk  wave number /k c= ; electromechanical coupling coefficient, ef-

fective coupling coefficient; diffraction coefficient 

Ek , Tk  reserves of the electrical and mechanical strength coefficients  

K , E

eqvK , ilK  rigidity, equivalent rigidity of a mechanical system, mutual rigidity 

of coupled systems 
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Symbol Description 

K  additional rigidity term that characterizes electrical interaction be-

tween elements in nonuniformly deformed piezoelectric body 

l, t, w length, thickness, width 

L ; pL ,
sL  Lagrangian, inductance; parallel and series inductances 

wms   Mismatch coefficient, /w ac optms r r=  

ims  mode shape coefficient 

M ; eqvM , ilM  Moment, total mass; equivalent mass, mutual mass of coupled sys-

tems 

n  turns ratio, electromechanical transformation coefficient,  

N, iN  Number of segments in segmented mechanical system, electrome-

chanical transformation coefficients, 1,3i = . 

o subscript that denotes a reference point 

P , oP ; hP  sound pressure, sound pressure of simple source; hydrostatic pres-

sure 

Q , eQ , mQ  quality factor, /kin LossQ W W= ; electrical and mechanical quality 

factors 

r, r  distance, radius vector 

r, mLr ; acr , optr   resistance, resistance of mechanical loss; radiation resistance, opti-

mal value of the radiation resistance  

R, eLR  resistance, resistance of electrical loss 

E

mis   elastic compliance of piezoceramics at constant electric field 

S , ikS , iS  deformation, tensor of deformation ( , 1,2,3)i k = , tensor of defor-

mation ( 1,..,6)i =  

S , avS , effS   surface area, average surface area, effective surface area 

T , ikT , iT  stress, stress tensor ( , 1,2,3)i k = , stress tensor ( 1,..,6)i =   

opT , pT  operating stress, permissible stress 

u, U ; oU , iU   Velocity; velocity of reference point, velocity of reference point in 
thi  mode of vibration 

V
U  volume velocity 

v,V  voltage  

V  volume 

w; intw , ew , mchw , 

emw   

width, energy density; densities of the internal, electrical, mechani-

cal, and electromechanical energies 

W , W ,W  energy, energy flux (power), complex power 
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Symbol Description 

elW , 
S

eW  total electrical energy, electrical energy stored in a blocked piezoel-

ement 

intW , 
mW , emW ,

acW  internal, mechanical, electromechanical, and acoustic energies  

kinW , E

potW  kinetic energy, potential energy at constant electrical field 

eLW , 
mLW  energies of electrical and mechanical loss 

mEW , mTW   maximum power electric field limited and mechanical stress limited 

W  additional energy term that characterizes electrical interaction be-

tween elements in nonuniformly deformed piezoelectric body  

x; acx  coordinate; reactance of acoustic radiation 

y; /y t=  coordinate; ratio of thickness of active layer to total thickness of 

mechanical system  

Y, 1/E E

i iiY s=  Young’s modulus, Young’s modulus of piezoceramics (i =1, 3)  

E

aY , pY   Young’s moduli of active and passive materials  

Y   2/ (1 )Y Y = −  

z; ilz   Coordinate; mutual impedance between modes of vibration  

Z, /il il i lZ z U U=   impedance, introduced impedance 

mZ , 
E

mZ , inZ   mechanical impedance, impedance at constant electric field, input 

impedance 

acZ  radiation impedance 

ac   nondimensional coefficients of the radiation resistance  

2 /E S

c m en C C =  coefficient related to effective coupling coefficient, 
2 / (1 )eff c ck  = +  

ac   nondimensional coefficient of the radiation reactance 

1 2/p pf f =   detuning factor between partial frequencies of a coupled system 

 , m , k , coefficient of coupling between partial systems, coefficients of in-

ertial and elastic coupling 

Y  / E

Y p aY Y =  

  /p a  =  

 ; em , ma , ea  efficiency; electromechanical, mechanoacoustic, electroacoustic ef-

ficiencies 

   separation between electrodes, 

e , m  angles of dielectric and mechanical losses, tan 1/e eQ = , 

tan 1/m mQ =   
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Symbol Description 

 ; 
T

ik , 
S

ik  dielectric constant; tensors of dielectric constants of piezoceramics 

at free and clamped conditions  

 ; ( r)  angle, mode shape 

  wavelength, Lame constant 

  Lame constant (share modulus)  

 , o  displacement, displacement of reference point 

 , 
a , p  density, density of the active and passive materials 

 , 
E

i  Poisson’s ratio; Poisson’s ratio of piezoceramics, 1 12 11/E E Es s = − , 

3 13 33/E E Es s = −  

  surface in general 

  angle 

  diffraction function 

 , r , ar  angular frequency, resonance and antiresonance frequencies 

2 2

1/ pf f =  nondimensional frequency factor 

2 / rf f =   normalized bandwidth 

1. Vectors are displayed in bold letters.  

2. Low case letters denoting the time dependent quantities indicate instantaneous values; 

the capital letters are values in rms. 

3. An overbar on a capital letter denotes a complex quantity. 

 



  

APPENDIX A. Properties of Passive Materials 

Table A.1: Elastic properties of the passive materials
)
. 

Material Y (GPa)    310−  (kg/m3) c (m/s) c 610−

(kg/m2s) 

Aluminum 71 0.33 2.7 5130 13.5 

Alumina 300 0.21 3.7 9000 33.3 

Beryllia, BeO 345 0.26 3.0 10,700 32.1 

Beryllium Cu 125 0.30 8.2 3900 32,0 

Brass 97 0.31 8.5 3400 29.0 

Corprene 0.23 0.43 1.1 460 0.51 

Glass 62 0.24 2.3 5200 12 

G-10  24 0.14 1.8 3600 6,6 

Invar 148 0.3 8.0 4300 34 

Lead 16.5 0.44 11,3 1200 13.6 

Macor 67 0.29 2.5 5180 13 

Pyrex 64 0.24 2.3 5300 12 

Stainless steel 193 0.28 7.9 4940 39 

Tin 50 0.36 7.3 2600 19 

Titanium 104 0.36 4.5 4810 21.6 

)
 Bulk modulus / 3(1 2 )B Y = − . Shear modulus / 2(1 )Y = +  

Table A.2:  Properties of the fluids at room conditions 

 

Liquid Air Water Seawater 
Castor 

oil 

Motor oil 

SAE-30 

Hydraulic 

fluid ISO 

32 

Sili-

con 

oil 

 B, GPa 
6142 10−  2.15 2.34 2.1 1.5 1.8 2.1 

310 

kg/m3 

31.2 10−  1.0 1.02 0.96 0.88 0.86 0.97 

c, m/s 340 1500 1500 1470 1300 1450 1500 



 553 

 

Table A.3: Properties of the polyurethanes  

Property  , kg/m3 c, m/s B, GPa G, MPa 

PR1547 
4oC 

 1.05 
1650 2.9 6 

34oC 1500 2.3 4 

GS960PU, 20oC 1.08 1700 3.3 1.2 
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APPENDIX B. Properties of Piezoelectric Ceramics 

Table B.1: Piezoelectric constants 

Property 
PZT-4 

Type I 

PZT-5A 

Type II 

PZT-8 

Type III 

PZT-5H 

Type VI 

11

Es , 10-12 m2/N 12.3 16.4 11.5 17.7 

33

Es  15.5 18.8 13.5 21.9 

13

Es  −5.31 −7.22 -4.8 − 

12

Es  −4.05 −5.74 -3.7 -5.7 

44

Es  39.0 47.5 31.9 − 

11

Ds  10.9 14.4 10.1 15.5 

33

Ds  7.9 9.46 8.5 10.5 

13

Ds  −2.1 −2.98 -2.5 − 

12

Ds  −5.42 −7.71 -4.5 -7.6 

44

Ds  19.3 25.2 22.6 − 

66s  32.7 44.3 30.4 48.5 

11

Ec , 1010 N/m2 13.9 12.1 14.9 − 

33

Ec  11.5 11.1 13.2 − 

13

Ec  7.43 7.52 8.11 − 

12

Ec  7.78 7.54 8.11 − 

44

Ec  2.56 2.11 3.13 − 

11

Dc  14.5 12.6 15.2 − 

33

Dc  15.9 14.7 16.9 − 

13

Dc  6.09 6.52 7.03 − 

12

Dc  8.39 8.09 8.41 − 

44

Dc  5.18 3.97 4.46 − 

66c  3.06 2.26 3.40 − 

33d  289 374 225 620 

15d  496 584 330 − 

31e , C/m2 −5.2 −5.4 -4.1 − 

33e  15.1 15.8 14.0 − 

15e  12.7 12.3 10.3  

11

SK  730 916 900 − 
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Property 
PZT-4 

Type I 

PZT-5A 

Type II 

PZT-8 

Type III 

PZT-5H 

Type VI 

33

SK  635 830 600 − 

11

TK  1475 1730 1290 − 

33

TK  1300 1700 1000 − 

31k  0.334 0.344 0.30 0.35 

33k  0.7 0.705 0.64 0.72 

15k  0.71 0.685 0.55 − 

pk  0.58 0.60 0.51 0.60 

tk  0.513 0.486 0.48 0.50 

 , 103 kg/m3 7.5 7.75 7.6 7.4 

0tan e  1) 0.005 0.015 − 0.018 

tan eE  0.01 0.08 − − 

0mQ  2) 500 75 1000 65 

mTQ  140 20 − − 

33

TK  3) 0.1 0.3 − − 

31 31/d d  0.12 0.06 − − 

1) 0tan e , tan eE  are the tan e  in weak field and at E = 1 kV/cm. 

2) 0mQ , mTQ  are the mQ  values at low stress and at T = 10 MPa. 

3) The parameter change at temperatures 0-60°C. 
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APPENDIX C. Special Functions 

In the Appendix some data regarding the properties of special functions that are required for 

treating the radiation and vibration problems related to the cylindrical and spherical transducers 

are summarized. More details regarding properties of the functions and their numerical values 

can be found [1, 2], which are the primary sources of the information and where these functions 

are tabulated. Some of the integral relations that include the special functions are presented 

from a source [3] where much more particular useful relations can be found. 

C.1 Cylindrical Bessel Functions 

Definition 

Cylindrical functions ( )nZ x  are the solutions to Bessel equation 

 

2 2

2 2

1
1 0n nd Z dZ n

x dxdx x

 
+ + − = 

 
. (C.1) 

Partial solutions to this equation are the Bessel functions (cylindrical functions of the first 

kind) ( )nJ x , Neumann functions (cylindrical functions of the second kind) ( )nN x , and Hankel 

functions (cylindrical functions of the third kind) 
(1) ( )nH x  and 

(2) ( )nH x , where 

(1) ( ) ( ) ( )n n nH x J x jN x= +  and 
(2) ( ) ( ) ( )n n nH x J x jN x= − . The functions 

(1) ( )nH x  or 
(2) ( )nH x  

are used alternatively according to the time dependence 
j te −

 or 
j te 

 (the later is accepted in 

our treatment). In course of this treatment it will be assumed that n is the natural integer number 

and for the cylindrical coordinates x kr= . Thus, it will be used form of 

 (2) ( ) ( ) ( )n n nH kr J kr jN kr= − . (C.2) 

Properties 

 (2) ( ) ( ) ( )n n nH x J x jN x− − −= − , (C.3) 

where 

 ( ) ( 1) ( ), ( ) ( 1) ( )n n

n n n nJ x J x N x N x− −= − = − . (C.4) 
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Series representation 

 

2 2 4
1 1 1

( ) ...
0! ! 2 1!( 1)! 2 2!( 2)! 2

n n

n

x x x
J x

n n n

+ +

     
= − + −     

+ +     
 (C.5) 

 

2 4 6

0 2 2 2 2 2 2
( ) 1 ...

2 2 4 2 4 6

x x x
J x = − + −+ −

  
 (C.6) 

 

3 5

1 2 2 2

2 3
( ) ...

2 2 4 2 4 6

x x x
J x = − + −

  
 (C.7) 

Approximations at small argument 1x   (low frequency approximations at 1x kr= ) 

 

2 3

0 1( ) 1 , ( )
4 2 16

x x x
J x J x − − , (C.8) 

 
0 1

2 2 1
(ln 011),N x N

x 
 −  −  , (C.9) 

 
(2) (2)

1 1 2

2 2
( ) , ( )

2 ( )

x
H x j H x j

x x 
 +  − . (C.10) 

At large arguments 1x  (high frequency approximation, large distances from a cylinder at 

x kr= → ) 

 (2) 2 42
( )

n
j x

nH x e
x

 



 
− − − 

 → , (C.11) 

 
2

( ) cos
2 4

n

n
J x x

x

 



 
→ − − 

 
, (C.12) 

 
2

( ) sin
2 4

n

n
N x x

x

 



 
→ − − 

 
. (C.13) 

Functional equations 

 
1 1

2
( ) ( ) ( )n n n

n
Z x Z x Z x

x
− ++ =  (C.14) 

 1 1

2
n n n nN J N J

x
− −− =  (C.15) 

Differential formulas 

 1 1 1 1

1
( )

2

n
n n n n n n

dZ n n
Z Z Z Z Z Z

dx x x
− + − += − + = − = −  (C.16) 
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0 1 1 0

1
,Z Z Z Z Z

x
 = − = −  (C.17) 

Integral formulas 

 
1 1 1 1

1 1( ) ( ), ( ) ( )n n n n

n n n nx Z x dx x Z x x Z x dx x Z x− + − + + +

− += − =   (C.18) 

 1 0 0 1( ) ( ), ( ) ( )Z x dx Z x xZ x dx xZ x= − =   (C.19) 

 
2

2 2

1 1( ) [ ( ) ( ) ( )]
2

n n n n

x
J x xdx J x J x J x− += −  (C.20) 

Integral representation 

 
2

cos

0

1
( )

2

jx jn

n n
J x e e d

j


  


=   (C.21) 

 
/2

cos

0

0 0 0

1 1 2
( ) cos( sin ) cos( sin )jxJ x e d x d x d

  
     

  
= = =    (C.22) 

Also tabulated are functions Struve that are solutions to one of variations of the Bessel equation 

[1, 2]: 

 

/2

0

0

2
( ) sin( cos )S x x d



 


=  , (C.23) 

 

/2

2

1

0

4
( ) sin( cos )sinS x x d



  


=  . (C.24) 

There series representations are 

 
3 5

0 2 2 2 2 2

2
( ) ...

1 3 1 3 5

x x
S x x



 
= − + − 

   
, (C.25) 

 
2 4 6

1 2 2 2 2 2 2

2
( ) ...

1 3 1 3 5 1 3 5 7

x x x
S x



 
= − + − 

      
, (C.26) 

 0 1( ) ( )xS x dx xS x= . (C.27) 

Modified Bessel functions (Bessel functions of imaginary values of argument), ( )nI x  and 

( )nK x  

The modified functions are the partial solutions to the equation (Compare with Eq. (C.1)) 
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2 2

2 2

1
1 0n nd Z dZ n

x dxdx x

 
+ − + = 

 
. (C.28) 

The modified functions are defined by equations: 

 ( ) ( )n

n nI x j J jx= −   (C.29) 

for the first kind, 

 (2)2( ) ( )
2

n
j

n n

j
K x e H jx

 −

= − −  (C.30) 

for the second kind, with 

 (2) (2)

0 0 1 1( ) ( ), ( ) ( )
2 2

j
K x H jx K x H jx

 
= − − = − − . (C.31) 

The properties of these functions can be obtained from formulations of the corresponding 

properties of functions ( )nJ x  and 2 ( )nH x  by replacing x jx→−  and introducing the factors 

from Eqs. (C.24) and (C.25). In particular 

 ( ) ( ), ( ) ( )n n n nI x I x K x K x− −= = , (C.32) 

 0 1( ) ( ).K x K x = −  (C.33) 

C.2 Spherical Bessel Functions 

The partial solutions to equation 

 

2

2 2

2 ( 1)
1 0

d R dR m m
R

z dzdz z

+ 
+ + − = 

 
, (C.34) 

where z kr= , are the spherical Bessel functions (or Bessel functions for the spherical coordi-

nates). Spherical Bessel functions of order m of the first kind are defined as 

 
1/2( ) / 2 ( )m mj z zJ z += ; (C.35) 

of the second kind (spherical Neumann functions) as 

 
1/2( ) / 2 ( )m my z zN z += ; (C.36) 

and of the third kind (spherical Hankel functions) as ( )mh z . For outgoing wave 

 (2) (2)

1/2( ) ( ) ( ) / 2 ( )m m m mh z j z jy z zH z += − = . (C.37) 
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In particular, 

 

0 0

1 12 2

2 23 2 2 3

sin cos
( ) , ( ) ;

sin cos sin cos
( ) , ( ) ;

3 1 3 3 3 1
( ) sin cos , ( ) sin cos .

z z
j z y z

z z

z z z z
j z y z

z zz z

j z z z y z z z
z zz z z z


= = − 




= − = − − 

   

= − − = − − −    
    

  (C.38) 

Functions 
mj  and 

my  are tabulated [1) at 0.3z   as 

 

1

(2) (2)

1 12 3

( ) 1 3 5 (2 1)
( ) , ( ) ,

1 3 5 (2 1) ( )

1 3 1 6
, ( ) 1 ;

3 3( ) ( )

m

m m m

z m
j z y z

m z

h z j h z j
z z

+

   −
  − 

   + 


     +  −        

  (C.39) 

and at z →  

 
1

(2) 2

1 1 1 1
( ) cos , ( ) sin ,

2 2

1
,

m m

m
j z

m

m m
j z z y z z

z z

h e
z



 

+ 
− − 

 

+ +    
→ − → −    

    



→ 

  (C.40) 

 2

1 1( ) ( ) ( ) ( )m m m my z j z y z j z z−

− −− = . (C.41) 

The following properties are the same for the functions mj , my  and mh that will be collec-

tively denoted as mf . 

Recurrent relations 

 
1

1 1( ) ( ) (2 1) ( )m m mf z f z m z f z−

− ++ = +  (C.42) 

 
1 1( ) ( 1) ( ) (2 1) ( )m m m

d
mf z m f z m f z

dz
− +− + = +  (C.43) 

 (2) (2) (2)

1 0 2

1
( ) [ ( ) 2 ( )]

3
h z h z h z = −  (C.44) 

 1 1

1 1[ ( )] ( ), [ ( )] ( )m m m m

m m m m

d d
z f z z f z z f z z f z

dz dz

+ + − −

− −= = −  (C.45) 

Integral formulas 

 
2 2

1 0 0 1( ) ( ), ( ) ( )f z dz f z f z z dz z f z= − =   (C.46) 
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2

2 2 2

1 1( ) [ ( ) ( ) ( )]
2

m m m m

z
f z z dz f z f z f z− += −  (C.47) 

C.3 Legendre Polynomials 

The partial solutions to Legendre equation 

 
2(1 ) ( 1) 0

d dP
x m m P

dx dx

 
− + + = 

 
 or 

2
2

2
( 1) 2 ( 1) 0

d P dP
x x m m P

dxdx
− + − + = . (C.48) 

at m integer and cosx =  are the Legendre polynomials of the order m 

 
21

( ) ( 1)
2 !

m
m

m m m

d
P x x

m dx
= − . (C.49) 

In particular, 

 

0

1

2

2

2

3

( ) 1,

( ) cos ,

1 1
( ) (3 1) (3cos 2 1),

2 4

1 1
( ) (5 3 ) (5cos3 3cos ).

2 8

P x

P x x

P x x

P x x z





 

= 


= = 

= − = +



= − = + 


 (C.50) 

 
( 1)( ) ( 1) ( ), ( ) ( )m

m m m mP x P x P x P x− +− = − =  (C.51) 

Recurrent relation 

 
1 1

2 1 1
( ) ( ) ( )m m m

m m
P x xP x P x

m m
− +

+ +
= −  (C.52) 

Differential formulas 

 1( ) ( ) ( )m m mmP x xP x P x−
 = −  (C.53) 

 
1 1(2 1) ( ) [ ( ) ( )]m m m

d
m P x P x P x

dx
+ −+ = −  (C.54) 

Orthogonality 

 

1

1

0
( ) ( )

2 / (2 1)
n m

n m
P x P x dx

m n m
−


= 

+ =
   (C.55) 

(Any function of x in the range from 1x =  to 1x = −  can be expanded in terms of series of 

these functions.) 
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Useful integrals with Legendre polynomials 

 

0.5( 1)

1 1

0
2

1/ (2 1)

( 1)
,...

2
( ) ( ) ,

! !
( ) even

( )( 1){[( / 2)![( 1) / 2]!}

 even,
0

 odd

m n

m n

m n

m m n

m n

P x P x dx m n
m n

m n
m n m n m n

m

n

+ +

+ +




+ =

 −




= 
 −
 + + + −




   (C.56) 

 

1 1

2 2 1

0 0

( 1)( 3) ( 2 1)
( ) 0, ( )

(2 2) 2 (2 1)
m m

m
P x dx P x dx

m m m
+

− −  − +
= =

+   −   (C.57) 

 

1

1

( ) 0b

mx P x dx
−

=  at b m  (C.58) 

 
1

2

1

[ ( )] ( 1)mP x dx m m
−

 = +  (C.59) 

 
1

2 2

1

2 ( 1)
(1 )[ ( )]

2 1
m

m m
x P x dx

m
−

+
− =

+  (C.60) 

 

1 3/2
1/2

1

2
(1 ) ( )

2 1
mx P x dx

m

−

−

− =
+  (C.61) 
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