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Preface 

Taxis is an orientation mechanism under which the migration of the population is 
regulated by light, temperature, electric field, chemicals and many more in its envi-
ronment. Among these, chemotaxis is an important sensory phenomenon in which 
cellular organisms direct their movements up or away the concentration gradient of 
stimulating chemical. 

As a prototypical macroscopic model for self-enhanced chemotaxis, the mathe-
matical feature of the Keller–Segel system has been the subject of intensive study 
over the past few decades, inter alia its ability to display cell aggregation in the utmost 
sense of finite-time blow-up of some solutions in two-even higher-dimensional 
settings. Motivated by numerical and modeling issues, suppressing taxis-driven blow-
up in theory and numerics is a considerable challenging problem. There are some 
possible ways to avoid blow-up such as bounded chemotaxis sensibilities, nonlinear 
cell diffusion, logistic-type proliferation and death, and additional cross-diffusion 
term in the equation for the chemical signal. 

In this book, we refrain from attempting to show that our results encompass all that 
have been done in the numerous relevant contributions on global classical solvability, 
boundedness and large time behavior in various types of chemotaxis systems, and 
rather put our recent research studies together in one place, and try to present in a 
somewhat systematic way some of the progress on these issues for more involved 
taxis-type cross-diffusive equations capable of adequately describing more complex 
biological systems. 

The book is organized as follows. The first chapter focuses on global bounded-
ness to a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and 
rotation, and asymptotic profile of a two-dimensional chemotaxis–Navier–Stokes 
system with singular sensitivity and logistic source. The second chapter is concerned 
with Keller-Segel-fluid system where the chemoattractant is produced by bacteria 
rather than being consumed in the previous chapter. Relying on a variant of the 
natural gradient-like energy functional, the first part thereof shows that blow-up 
can be prevented by the slow diffusion of the cells in a two-dimensional Keller– 
Segel–Navier–Stokes system with rotational flux. In comparison with that the second

v



vi Preface

part demonstrates that the suitable saturation of sensitivity is sufficient to guar-
antee global existence in a three-dimensional Keller–Segel–Navier–Stokes system 
involving tensor-valued sensitivity. The third chapter is divided into three parts. 
The first part investigates the logistic damping on Chaplain–Lolas model of cancer 
invasion with remodeling of tissue remodeling in two-dimensional spaces, while 
the second part of this chapter is devoted to the integrative interactions of chemo-
taxis, haptotaxis, logistic growth and remodeling mechanisms, and proves the global 
boundedness of solutions thereof rather comprehensively, as well as the global clas-
sical solutions under some smallness conditions in the three-dimensional setting. 
In the third part, we consider the long-time behavior of solutions to the evolution 
equations modeling tumor angiogenesis in a bounded smooth domain Ω ⊂ RN 

(N = 1, 2). In particular, in the one-dimensional case, it is shown that the corre-
sponding solution converges to a steady state thereof with an explicit exponential 
rate. The fourth chapter is devoted to Keller–Segel–(Navier)–Stokes system modeling 
coral fertilization. The fifth chapter is concerned with the density-suppressed motility 
model. In the first part, by introducing an auxiliary parabolic problem to which the 
comparison principle applies and constructing relaxed super- and sub-solutions with 
spatially inhomogeneous decay rates, it is proved that the density-suppressed motility 
model admits traveling wave solutions in RN ; In the second part, based on the duality 
argument, it is shown that for suitable fast diffusion of chemical signals the problem 
under consideration admits at least one global weak solution which will asymptoti-
cally converge to the spatially uniform equilibrium. The sixth chapter is devoted to a 
haptotactic cross-diffusion system modeling oncolytic virotherapy. In the first part, 
the corresponding solutions of the model with suitably small initial data is globally 
bounded and approach some constant profiles asymptotically. In the second part apart 
from the haptotaxis of uninfected cancer cells, the inclusion of two further haptotaxis 
mechanisms, both of infected tumor cells and virions, is considered with respect to 
aspects of classical solvability and boundedness in the presence of certain suitably 
strong further zero-order degradation. 

It is our great pleasure to thank our collaborators, former students who were 
involved in this research. In particular, we would like to express our deep thanks to 
Professors Jingxue Yin, Peter Y. H. Pang, Zhian Wang, Li Chen and Jiashan Zheng, 
not only for our joint research but for the warm hospitality we enjoyed when visiting 
them as well. We would also like to acknowledge the financial support from the NNSF 
Project 12071030, 12171498, and Beijing Natural Science Foundation Z210002. 

Beijing, China 
March 2022 

Yuanyuan Ke 
Jing Li 

Yifu Wang
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Chapter 1 
Chemotaxis–Fluid System 

1.1 Introduction 

In the early 1970s, Keller and Segel proposed the cross-diffusion system to describe 
the phenomenon of spatial structures in biological system through chemical induced 
processes (Keller and Segel 1970, 1971a). In particular, they looked at situations 
where cells partially orient their movement along gradients of a signal secreted by 
themselves, or instead, cells direct their movement in response to a substance which 
they consume. A prototypical example of the former is the Dictyostelium discoideum 
colony, while the latter is an E. coli population. The model in which the biased migra-
tion is induced by the consumed nutrient is usually called chemotaxis–consumption 
system. Often such chemotactic movements take place in a fluid environment, and 
experimental findings and analytical studies have revealed the remarkable effects of 
chemotaxis–fluid interaction on the overall behavior of the respective chemotaxis 
systems, such as the prevention of blow-up and improvement of efficiency of mix-
ing (Chertock et al. 2012; Kiselev and Ryzhik 2012a; Kiselev and Xu 2016; Lorz  
2012; Tuval et al. 2005). It should be noted that the derivation of chemotaxis models 
interacting with a fluid can be obtained by asymptotic methods inspired by Hilbert’s 
sixth problem (Bellomo et al. 2016). 

This chapter is concerned with a convective chemotaxis system for the oxygen-
consuming and oxy-tactic bacteria, coupled with the incompressible Navier–Stokes 
equations. Section 1.3 is concerned with the following system 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nt + u ·  ∇n = Δnm −  ∇  ·  (nS(x, n, c) ·  ∇c), x ∈ Ω, t > 0, 
ct + u ·  ∇c = Δc − nc, x ∈ Ω, t > 0, 
ut +  ∇  P = Δu + n∇φ, x ∈ Ω, t > 0, 
∇  ·  u = 0, x ∈ Ω, t > 0, 
(∇nm − nS(x, n, c) ·  ∇c) · ν = ∂νc = 0, u = 0, x ∈ ∂Ω, t > 0, 
n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω 

(1.1.1) 
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2 1 Chemotaxis–Fluid System

with m > 0, where Ω is a bounded domain in R3, S(x, n, c) is a chemotactic sensi-
tivity tensor satisfying 

S ∈ C2 ( Ω̄ ×  [0, ∞)2; R3×3 ) (1.1.2) 

and 

|S(x, n, c)|  ≤  (1 + n)−α S0(c) for all (x, n, c) ∈ Ω ×  [0, ∞)2 (1.1.3) 

with α ≥ 0 and some non-decreasing S0 :  [0, ∞) → R. 
In the two-dimensional analogue of (1.1.1), the condition of m = 1, α = 0 is 

sufficient to ensure global existence of some generalized solution thereof (see Winkler 
2018d), which eventually becomes smooth (Winkler 2021a). Nevertheless, a new 
difficulty arises in the analytical studies of the three-dimensional version of (1.1.1). 
It is well known that, compared with the case m = 1 (see Ke and Zheng 2019, Wang 
et al. 2018, Winkler 2018e), the nonlinear diffusion mechanism m /= 1 may inhibit 
the occurrence of blow-up phenomena (see Tao and Winkler 2012b, Winkler 2013). 
Up to now, system (1.1.1) with nonlinear diffusion has been studied systematically. 
Indeed, in three space dimensions (N = 3), many authors considered the global 
existence and boundedness of the solutions, and the restriction on m is weakened bit 
by bit. For example, when the chemotactic sensitivity function S(x, n, c) is scalar-
value, in 2010, the range of m can be belong to [ 7+

√
217 

12 , 2] (Francesco et al. 2010); in 
2013, for locally bounded solution, m can be greater than 8 7 (Tao and Winkler 2013); 
in 2018, the result is pushed to m > 9 8 (Winkler 2018c). If we only consider the global 
existence of the solutions, rather than its boundedness, the value of m can be even 
smaller, such as m ≥ 1 in Duan and Xiang (2014) and m ≥ 2 3 in Zhang and Li (2015a). 
When the chemotactic sensitivity function S(x, n, c) is tensor-value (S is a matrix), 
in 2015, Winkler (Winkler 2015b) established the uniform-in-time boundedness of 
global weak solutions in bounded and convex domains Ω for m > 7 6 . Zheng (2022) 
extended the previous global boundedness result to m > 10 9 . As an extension of 
this result, when S fulfills (1.1.3), the corresponding results are constantly updated. 
In 2017, it was shown in Wang and Li (2017) that m ≥ 1 and m + α  >  7 6 insures 
the global existence of bounded weak solution; in 2020, Wang (2020) extended the 
previous global boundedness result to m + 5 4 α  >  9 8 ,  α  >  0 and m + α  >  10 9 . The first 
section shows how far the porous medium type diffusion of bacteria and saturation 
of tensor-valued sensitivity ensure the global boundedness of the weak solutions to 
(1.1.1) in the standard sense by the method different from those in Tao and Winkler 
(2013), Wang (2020), Winkler (2015b), Winkler (2018c). 

In order to prepare a precise statement of our main results in these respects, let us 
assume that the initial data satisfy
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⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

n0 ∈ Cκ ( Ω̄) for certain κ  >  0 with n0 ≥ 0 and n0 /≡ 0 in  Ω, 
c0 ∈ W 1,∞(Ω) with c0 > 0 in  Ω̄, 

u0 ∈ D(Aγ ) for some γ ∈
⎛
3 

4 
, 1

⎞

, 
(1.1.4) 

where A denotes the Stokes operator with domain D(A):=W 2,2(Ω) ∩ W 1,2 0 (Ω) ∩ 
L2 

σ (Ω), and L2 
σ (Ω) := {ϕ ∈ L2(Ω)|∇ · ϕ = 0} (see Sohr 2001). As for the time-

independent gravitational potential function φ, we assume for simplicity that φ ∈ 
W 2,∞(Ω). 

Within this framework, our main result can be stated as follows (Zheng and Ke 
2021): 

Theorem 1.1 Let (1.1.4) hold and suppose that S satisfies (1.1.2)–(1.1.3). If  m + 
α  >  10 9 with m > 0 and α ≥ 0, then there exists at least one global weak solution (in 
the sense of Definition 1.1 below) of problem (1.1.1). Also, this solution is bounded 
in Ω × (0, ∞) in the sense that for all t > 0

||n(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||u(·, t)||L∞(Ω) ≤ C 

with some positive constant C independent of t . Moreover, c and u are continuous 
in Ω̄ ×  [0, ∞) and 

n ∈ C0 
ω−∗([0, ∞); L∞(Ω)). 

The proof of Theorem 1.1 focuses on the derivation of regularity estimates for 
the component nε properly by means of a new bootstrap iteration in the case of 
10 
9 < m + α  <  3 2 , which seems to be quite different from those in Tao and Winkler 
(2013), Wang (2020), Winkler (2015b, 2018c), Zheng (2022). More precisely, based 
on the basic a priori estimates, we can establish the L p(Ω)-estimates on nε for some 
p > 3 2 in the case 

10 
9 < m + α ≤ 2,  α  >  7 18 or m + α  >  2 by using some carefully 

analysis. Whereas for 10 9 < m + α ≤ 2 and smaller α ∈  [0, 7 18 ], the derivation of the 
L p∗(Ω)-estimates on nε with some p∗ > 3 2 needs a new iteration. In fact, on the 
basis of the spatio-temporal estimate

∫ t+1 
t

∫

Ω 
nε 
cε 

|∇cε|2 provided by the quasi-energy 
functional, one can establish the boundedness of nε in L p1 (Ω) (see Lemma 1.20) and 
L pn (Ω) (see Lemma 1.23), where p1 = 16 3 (m + α)2 − 25 3 (m + α) + 4 + 1 3 α[4(m + 
α) − 1] and pn = 2 3 p

2 
n + 2 3 (4m − 5 + 3α) pn + (2m + 2α − 3)(m − 1) + 1. Based 

on the L pn -boundedness of nε, one can then archive the uniform bounds of nε in 
L p(Ω) for any p > 1. With the aid of a standard Morse-type technique and the 
maximal Sobolev regularity, one can derive the boundedness of nε, ∇cε and uε in 
L∞(Ω), inter alia the further regularity properties thereof which seem necessary to 
obtain the global weak solution to system (1.1.1). 

In the second part of this chapter, we are concerned with the chemotaxis– 
consumption system coupled with the incompressible Navier–Stokes equations
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⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

nt + u ·  ∇n = △n − χ ∇  ·
⎛n 

c 
∇c

⎞
+ f (n), x ∈ Ω, t > 0, 

ct + u ·  ∇c = △c − nc, x ∈ Ω, t > 0, 
ut + (u ·  ∇)u = Δu +  ∇  P + n∇φ, x ∈ Ω, t > 0, 
∇  ·  u = 0, x ∈ Ω, t > 0, 

(1.1.5) 

describing the biological population density n, the chemical signal concentration c, 
the incompressible fluid velocity u and the associated pressure P of the fluid flow in 
the physical domain Ω ⊂ RN . It is assumed that n and c diffuse randomly as well as 
are transported by the fluid, with a buoyancy effect on n through the presence of a 
given gravitational potential φ. Further, it is assumed that the chemotactic stimulus 
is perceived in accordance with the Weber–Fechner Law (Short et al. 2010; Wang 
2013; Winkler 2019b) which states that subjective sensation is proportional to the 
logarithm of the stimulus intensity, in other words, the population n partially direct 
their movement toward increasing concentrations of the chemical nutrient c that 
they consume with the logarithmic sensitivity. In addition, on the considered time 
scales of cell migration, we allow for population growth to take place, through the 
term f (n) = rn  − μn2 with the effective growth rate r ∈ R, which accounts for the 
mortality or population renewal, and strength of the overcrowding effect μ  >  0; we  
note that r = 0 is allowed and has indeed been argued for in certain models (Hillen 
and Painter 2009; Kiselev and Ryzhik 2012a). 

The system (1.1.5) appears to generate interesting, nontrivial dynamics. However, 
to the best of our knowledge, no analytical result is available yet which rigorously 
describes the qualitative behavior of such solutions. This may be due to the circum-
stance that (1.1.5) joins two subsystems which are far from being fully understood 
even when decoupled from each other. Indeed, (1.1.5) contains the Navier–Stokes 
equations which themselves do not admit a complete existence and regularity theory 
(Wiegner 1999). 

At the same time, by setting u ≡ 0 in (1.1.5), we arrive at the following 
chemotaxis–consumption model 

⎧ 
⎨ 

⎩ 
nt = △n − χ∇  ·

⎛n 

c 
∇c

⎞
, 

ct = △c − nc, 
(1.1.6) 

where population growth has been ignored, which was introduced by Keller and 
Segel (1971a) to describe the collective behavior of the bacteria E. coli set in one 
end of a capillary tube featuring a gradient of nutrient concentration observed in 
the celebrated experiment of Adler (1966). Later, this model was also employed to 
describe the dynamical interactions between vascular endothelial cells and vascular 
endothelial growth factor (VEGF) during the initiation of tumor angiogenesis (see 
Corrias et al. 2003; Levine et al. 2000). It has already been demonstrated that the 
logarithmic sensitivity featured in (1.1.6) renders a significant degree of complexity 
in the system; in particular, it plays an indispensable role in generating wave-like
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solutions without any type of cell kinetics (Hillen and Painter 2009; Keller and Segel 
1970; Rosen 1978; Schwetlick 2003; Wang 2013), which is a prominent feature in 
the Fisher equation (Kolmogorov et al. 1937). 

In comparison with (1.1.6), the related chemotaxis system 

⎧ 
⎨ 

⎩ 
nt = △n − χ∇  ·  ( 

n 

c 
∇c) + f (n), 

ct = △c − c + n, 
(1.1.7) 

where the chemical signal c is actively secreted by the bacteria rather than consumed 
(see Bellomo et al. 2015; Hillen and Painter 2009), has been more extensively stud-
ied. It is observed that the chemical signal production mechanism in the c−equation 
inhibits the tendency of c to take on small values, and thereby the singularity in the 
sensitivity function is mitigated. Accordingly, for such higher dimensional systems 
with reasonably smooth but arbitrarily large data, the global existence of bounded 
smooth solutions can be achieved. Indeed, global existence and boundedness of clas-

sical solutions to (1.1.7) without source terms is guaranteed if χ ∈ (0,
/

2 
N ) (Fujie 

2015; Winkler 2011a), or if N = 2,  χ  ∈ (0,  χ0) with some χ0 > 1.015 (Lankeit 
2016b), while certain generalized solutions have been constructed for general χ  >  0 
in the two-dimensional radially symmetric case (Stinner and Winkler 2011; Winkler 
2011a). Moreover, without any symmetry hypothesis, Winkler and Lankeit estab-
lished the global solvability of generalized solutions for the cases χ  <  ∞, N = 2; 
χ  <  

√
8, N = 3; and χ  < N 

N−2 , N ≥ 4 (Lankeit and Winkler 2017). 
Furthermore, in accordance with known results for the classical Keller–Segel 

chemotaxis model (see Lankeit 2015; Winkler 2010a, 2014a for example), the pres-
ence of the logistic source term f (n) = n(r − μn) in (1.1.7) can inhibit the tendency 
toward explosions of cells at least under some restrictions on certain parameters. 
Indeed, it is known that (1.1.7) with N = 2 possesses a global classical solution (n, c) 
for any r ∈ R,  χ  ,  μ  >  0, and (n, c) is globally bounded if r > χ 2 

4 for 0 <  χ  ≤ 2 or 
r >  χ  − 1 for χ  >  2 (Zhao and Zheng 2017). Moreover, (n, c) exponentially con-
verges to ( r 

μ , 
r 
μ ) in L

∞(Ω) provided that μ  >  0 is sufficiently large (Zheng et al. 
2018). As for the higher dimensional cases (N ≥ 2), the global very weak solution 
of (1.1.7) with f (n) = rn  − μnk is constructed when k,  χ  and r fulfill a certain 
condition. In addition, when N = 2 or 3, this solution is global bounded provided r 

μ 
and the initial data ||n0||L2 , ||∇c0||L4 are suitably small (Zhao and Zheng 2019). 

In contrast to (1.1.7), system (1.1.6) is more challenging due to the combination 
of the consumption of c with the singular chemotaxis sensitivity of n. Intuitively, 
the absorption mechanism in the c−equation of (1.1.6), which induces the pref-
erence for small values of c, considerably intensifies the destabilizing potential of 
singular sensitivity in the n−equation. Up to now, it seems that only limited results 
on global classical solvability in the spatial two-dimensional case are available. In 
fact, only recently have certain global generalized solutions to (1.1.6) been con-
structed for general initial data in Lankeit and Lankeit (2019b), Winkler (2016a), 
Winkler (2018a), whereas with respect to global classical solvability, it has only
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been shown for some small initial data (see Wang et al. 2016; Winkler 2016c). In 
particular, Winkler (2016c) showed that the global classical solutions to (1.1.6) in  
bounded convex two-dimensional domains exist and converge to the homogeneous 
steady state under an essentially explicit smallness condition on n0 in L log L(Ω) 
and ∇ ln c0 in L2(Ω). We would, however, like to note that numerous variants of 
(1.1.6), such as those involving nonlinear diffusion, logistic-type cell kinetics and 
saturating signal production (Ding and Zhao 2018; Jia and Yang 2019; Lankeit and 
Lankeit 2019a; Lankeit 2017; Winkler 2022; Lankeit and Viglialoro 2020; Liu  2018; 
Viglialoro 2019; Zhao and Zheng 2018), have been studied. For example, the authors 
of Zhao and Zheng (2018) proved that the particular version of (1.1.6) by adding 
f (n) = rn  − μnk (r > 0,  μ  >  0, k > 1) into the n-equation admits a global classi-
cal solution (n, c) in the bounded domain Ω ⊂ RN if k > 1 + N 2 , and in the two-
dimensional setting, (n, c, |∇c| 

c ) → (( r 
μ ) 

1 
k−1 , 0, 0) for sufficiently large μ. In partic-

ular, it is shown in the recent paper Lankeit and Lankeit (2019a) that (1.1.6) with 
logistic source f (n) = rn  − μn2 (r ∈ R,  μ  >  0) possesses a unique global classi-
cal solution if 0 <  χ  <

/
2 
N , μ  >  N−2 

2N , and a globally bounded solution only in one 
dimension for any χ  >  0,  μ  >  0. Also, the author of Wang (2019) showed that if 
μ  >  μ0 with some μ0 = μ0(Ω, χ ) > 0 then the corresponding classical solution is 
globally bounded, and (n, c, |∇c| 

c ) → ( r+ 
μ ,  λ,  0) with λ ∈  [0, 1 

|Ω|
∫

Ω c0) in (L
∞(Ω))3 

as t →  ∞. Of course, this leaves open the possibility of blow-up of solutions when μ 
is positive but small. Anyhow, it has been shown in Winkler (2017a) that when μ  >  0 
is suitably small, the strongly destablizating action of chemotactic cross-diffusion 
may lead to the occurrence of solutions which attain possibly finite but arbitrarily 
large values. 

Coming back to our chemotaxis–consumption–fluid model (1.1.5), as we have 
already pointed out, very little seems to be known regarding the qualitative behavior 
of solutions (Black 2018; Black et al. 2018, 2019). In fact, we are aware of one 
result only which is concerned with the asymptotic behavior and eventual regularity 
of solutions to the Stokes variant of (1.1.5). Namely, it is shown in Black (2018) that 
for small initial mass

∫

Ω n0, the corresponding system upon neglection of u ·  ∇u and 
f (n) in (1.1.5) possesses at least one global generalized solutions, which will become 
smooth after some waiting time and stabilize toward the steady state ( 1 |Ω|

∫

Ω n0, 0, 0) 
with respect to the topology of (L∞(Ω))3. Since the presence of the fluid interaction 
does not have any regularizing effect on the large time behavior, it is expected that 
instead of the small restriction on the initial data, the quadratic degradation may have 
a substantial regularizing effect on the dynamic behavior of solutions to (1.1.5). 

The second part of this chapter focuses on the asymptotic profile in time of solu-
tions to (1.1.5) in the two-dimensional case. In order to state our main results, we 
shall impose on (1.1.5) the boundary conditions 

∇n · ν =  ∇c · ν = 0 and u = 0 for  x ∈ ∂Ω, (1.1.8) 

and initial conditions
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n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x) for x ∈ Ω. (1.1.9) 

Throughout this part, it is assumed that 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

n0 ∈ C0 ( Ω̄), n0 ≥ 0 and n0 /≡ 0 in  Ω, 
c0 ∈ W 1,∞(Ω), c0 > 0 in  Ω̄ as well as 

u0 ∈ D(Aβ ) for all β ∈ ( 
1 

2 
, 1) 

(1.1.10) 

with A denoting the Stokes operator A=  −  PΔ with domain D(A):=W 2,2(Ω; R2) ∩ 
W 1,2 0 (Ω; R2) ∩ L2 

σ (Ω), where L2 
σ (Ω) := {ϕ ∈ L2(Ω; R2)|∇ · ϕ = 0} and P stands 

for the Helmholtz projection of L2(Ω) onto L2 
σ (Ω). 

Within this framework, by straightforward adaptation of arguments in Lankeit and 
Lankeit (2019a) with only some necessary modifications, one can see that the problem 
(1.1.5), (1.1.8), (1.1.9) admits a global classical solution (n, c, u, P) whenever χ ∈ 
(0, 1), r ∈ R and μ  >  0, which is unique up to addition of constants in the pressure 
variable P , and satisfies n > 0, c > 0 in Ω ×  [0, ∞). The first of our main results 
is concerned with the global boundedness of the solution as well as its asymptotic 
behavior (Pang et al. 2021). 

Theorem 1.2 Let f (n) = rn  − μn2, r ∈ R, μ  >  0 and φ ∈ W 2,∞(Ω), and suppose 
that (n0, c0, u0) satisfy (1.1.10). If  (n, c, u, P) denotes the corresponding global clas-
sical solution to (1.1.5), (1.1.8), (1.1.9), then there exists a value μ0 = μ0(Ω, χ , r ) ≥ 
0 with μ0(Ω, χ , 0) = 0 such that whenever μ  >  μ0, (n, c, u) is global bounded,

||n(·, t) − 
r+ 

μ
||L∞(Ω) → 0, ||∇c 

c 
(·, t)||L∞(Ω) → 0, ||u(·, t)||L∞(Ω) → 0 

and when r > 0, ||c(·, t)||L∞(Ω) → 0 as t →  ∞. 

As indicated in the above discussion, we need to introduce new ideas to show 
how the regularizing effect of the quadratic degradation in the chemotaxis–fluid 
model (1.1.5) can counterbalance the strongly destabilizating action of chemotactic 
cross-diffusion caused by the combination of the consumption of c with the singular 
chemotaxis sensitivity of n. Specifically, we develop the conditional energy func-
tional method in Winkler (2016c) to show the global boundedness of solutions in the 
case of r > 0, in which the key point is to verify that 

F (n,  w)  :=
∫

Ω 
H (n) + 

χ 
2

∫

Ω 
|∇w|2 ,  w  := − ln( 

c

||c0||L∞(Ω) 
) (1.1.11) 

with H (s) := s ln μs er + r 
μ constitutes an energy functional in the sense that F (n,  w)  

is non-increasing in time whenever μ is appropriately large relative to r (see Lemma 
1.41). Indeed, from (1.4.29), one can obtain the global bound of

∫

Ω n| ln n|dx  and∫

Ω |∇w|2dx , which then serves as a starting point to derive the uniform bound of
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||n(·, t)||L∞(Ω) via the Neumann heat semigroup estimates. Furthermore, by making 
appropriate use of the dissipative information expressed in (1.4.29), we can establish 
the convergence result asserted in Theorem 1.2. It is noted that compared to that of the 
case r > 0,  μ  >  0, the proof of Theorem 1.2 in the case of r ≤ 0,  μ  >  0 involves 
a more delicate analysis. In fact, unlike in the case r = μ = 0 or r > 0,  μ  >  0, 
(1.1.5) with r ≤ 0,  μ  >  0 seems to lack the favorable structure that facilitates such 
conditional energy-type inequalities. Taking full advantage of the decay information 
on n in L1−norm expressed in (1.4.2), our approach toward Theorem 1.2 is to 
construct the quantity 

F (n,  w)  :=
∫

Ω 
n(ln n + a) + 

χ 
2

∫

Ω 
|∇w|2 (1.1.12) 

with parameter a > 0 determined below (see (1.4.64)). Unlike in the case of r > 0, 
F (n,  w)  does not enjoy monotonicity property, it however satisfies a favorable non-
homogeneous differential inequality (1.4.71) in the sense that it can provide us a priori 
information on solution such as the global bound of

∫

Ω n| ln n|dx  and ∫

Ω |∇w|2dx  
(see Lemma 1.43), as well as lim 

t→∞

∫

Ω 
|∇w(·, t)|2 = 0 (see (1.4.77)). 

As an important step to understand the model (1.1.5) more comprehensively, 
we shall consider the convergence rate of its classical solutions in the form of the 
following result: 

Theorem 1.3 Let the assumptions of Theorem 1.2 hold and r > 0. Then one can 
find μ∗(χ , Ω, r )  >  0 such that if μ  >  μ∗(χ , Ω, r ), the classical solution of (1.1.5), 
(1.1.8), (1.1.9) presented in Theorem 1.2 satisfies

||n(·, t) − 
r 

μ
||L∞(Ω) → 0, ||c(·, t)||L∞(Ω) → 0, ||u(·, t)||L∞(Ω) → 0 

as well as ||∇c 
c (·, t)||L p(Ω) → 0 for all p > 1 exponentially as t →  ∞. 

This implies that suitably large μ relative to r enforces asymptotic stability of the 
corresponding constant equilibria of (1.1.5); however, the optimal lower bound on μ 

r 
seems yet lacking. The main ingredient of our approach toward Theorem 1.3 involves 
a so-called self-map-type reasoning. More precisely, making use of the convergence 
properties of (n, |∇c| 

c ) asserted in Theorem 1.3, we prove by a self-map-type reasoning 
that whenever μ is suitably large compared with r , 

(n(·, t) − 
r 

μ 
, c(·, t), u) −→ (0, 0, 0) and 

|∇c| 
c 

(·, t) −→ 0 

in (L∞(Ω))3 and L6(Ω) exponentially as t →  ∞, respectively (see Lemma 1.45). 
As aforementioned, the limit case r = 0 becomes relevant in several applications. 

In this limiting situation, the total cell population can readily be seen to decay in the 
large time limit (cf. Lemma 1.36 below). As a consequence, we can obtain the decay
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properties of solutions, namely that the decay on n in L1 actually occurs in L∞, and 
also for c. More precisely, our result reads as follows: 

Theorem 1.4 Let the assumptions of Theorem 1.2 hold and r = 0. Then the classical 
solution of (1.1.5), (1.1.8), (1.1.9) from Theorem 1.2 satisfies (n, c, |∇c| 

c , u) −→ 
(0, 0, 0, 0) in (L∞(Ω))4 algebraically as t →  ∞. 

The result indicates that structure generating dynamics in the spatially two-
dimensional version of (1.1.5), (1.1.8) and (1.1.9), if at all, occur on intermediate 
time scales rather than in the sense of a stable large time pattern formation pro-
cess. Apparently, it leaves open the questions whether the more colorful large time 
behavior can appear in the three-dimensional version of (1.1.5). 

The approach toward Theorem 1.4 uses an alternative method, which, at its core, 
is based on the argument that the L∞-norm of n can be controlled from above 
by appropriate multiples of 1 

t+1 . This results from a suitable variation-of-constants 
representation of n, by which and in view of the decay information on |∇w| in 
L∞(Ω), the  L1 decay information on u from (1.4.2) can be turned into the L∞-
norm of n (see Lemma 1.46). As a consequence, by comparison argument, we have 
a pointwise upper estimate for w as well as a lower estimate for v (see Lemma 
1.47). Using L p − Lq estimates for the Neumann heat semigroup (etΔ )t>0, we then 
successively show that ||∇w||L∞ and ||n||L∞(Ω) can be controlled by appropriate 
multiples of 1 

t+1 from above and below, respectively (see Lemma 1.48). These a 
priori estimates allow us to get the pointwise lower estimate for w as well as the 
upper estimate for c, which complement the lower bound for c previously obtained, 
and thereby prove that c actually decays algebraically. 

1.2 Preliminaries 

Firstly let us recall the important L p − Lq estimates for the Neumann heat semigroup 
(etΔ )t>0 on bounded domains, which plays an important role not only in Chap. 1, but  
also in Chaps. 3, 4 and 6. 

Lemma 1.1 (Lemma 1.3 of Winkler 2010 and Lemma 2.1 of Cao 2015) Let (etΔ )t>0 

denote the Neumann heat semigroup in the domain Ω and λ1 > 0 denote the first 
nonzero eigenvalue of −Δ in Ω ⊂ RN under the Neumann boundary condition. 
There exists ci , i = 1, 2, 3, 4, such that for all t > 0, 

(i ) If 1 ≤ q ≤ p ≤  ∞, then for all ω ∈ Lq (Ω) with
∫

Ω ω = 0,

||etΔ ω||L p(Ω) ≤ c1
⎛
1 + t− N 2 ( 

1 
q − 1 p )

⎞
e−λ1t||ω||Lq (Ω); 

(i i  ) If 1 ≤ q ≤ p ≤  ∞, then for all ω ∈ Lq (Ω),

||∇etΔ ω||L p(Ω) ≤ c2
⎛
1 + t−

1 
2 − N 2 ( 

1 
q − 1 p )

⎞
e−λ1t||ω||Lq (Ω);
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(i i i  ) If 2 ≤ q ≤ p ≤  ∞, then for all ω ∈ W 1,q (Ω),

||∇etΔ ω||L p(Ω) ≤ c3
⎛
1 + t− N 2 ( 

1 
q − 1 p )

⎞
e−λ1t||∇ω||Lq (Ω); 

(i v) If 1 ≤ q ≤ p < ∞ or 1 < q < ∞ and p =  ∞, then for all ω ∈ (Lq (Ω))N ,

||etΔ∇  ·  ω||L p(Ω) ≤ c4
⎛
1 + t−

1 
2 − N 2 ( 

1 
q − 1 p )

⎞
e−λ1t||ω||Lq (Ω). 

In order to obtain the solution of system (1.1.1) through a suitable approxima-
tion procedure, we follow the well-established approaches to regularize both the 
chemotactic sensitivity and nonlinear diffusion in the first equation in (1.1.1) (see 
Cao and Lankeit 2016; Li et al.  2015; Winkler 2015a, b; Ke and Zheng 2019). 
Let (ρε)ε∈(0,1) ∈ C∞

0 (Ω) be a family of standard cut-off functions, which satisfy-
ing 0 ≤ ρε ≤ 1 in Ω and ρε ↗ 1 in Ω as ε ↘ 0, and χε ∈ C∞

0 ([0, ∞)) satisfying 
0 ≤ χε ≤ 1 in [0, ∞) and χε ↗ 1 as ε ↘ 0. Define 

Sε(x, n, c) := ρε(x)χε(n)S(x, n, c), x ∈ Ω̄, n ≥ 0, c ≥ 0 

for ε ∈ (0, 1), which implies that Sε(x, n, c) = 0 on ∂Ω . As an approximation func-
tion of the sensitivity tensor S, Sε also satisfies the condition (1.1.3), that is, 

|Sε(x, n, c)|  ≤  (1 + n)−α S0(c) for all (x, n, c) ∈ Ω ×  [0, ∞)2 . (1.2.1) 

The regularized problem of (1.1.1) can be presented as follows 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nεt + uε ·  ∇nε = Δ(nε + ε)m −  ∇  ·  (nε Fε(nε)Sε(x, nε, cε) ·  ∇cε), x ∈ Ω, t > 0, 
cεt + uε ·  ∇cε = Δcε − nεcε, x ∈ Ω, t > 0, 
uεt +  ∇  Pε = Δuε + nε∇φ, x ∈ Ω, t > 0, 
∇  ·  uε = 0, x ∈ Ω, t > 0, 
∇nε · ν =  ∇cε · ν = 0, uε = 0, x ∈ ∂Ω, t > 0, 
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω, 

(1.2.2) 

where Fε(s) = 1 
1+εs for s ≥ 0. 

Let us recall the local well-posedness of (1.2.2). 

Lemma 1.2 (Winkler 2012, 2015b) Let Ω ⊆ R3 be a bounded domain with smooth 
boundary. Suppose that (1.1.2)–(1.1.3) hold. Assume that the initial data (n0, c0, u0) 
fulfills (1.1.4). Then for each ε ∈ (0, 1), there exist functions
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⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

nε ∈ C0 ( Ω̄ ×  [0, ∞)) ∩ C2,1 ( Ω̄ × (0, ∞)), 
cε ∈ C0 ( Ω̄ ×  [0, ∞)) ∩ C2,1 ( Ω̄ × (0, ∞)) ∩q>3 C

0 ([0, ∞); W 1,q (Ω)), 
uε ∈ C0 ( Ω̄ ×  [0, ∞)) ∩ C2,1 ( Ω̄ × (0, ∞)), 
Pε ∈ C1,0 ( Ω̄ × (0, ∞)), 

(1.2.3) 
such that (nε, cε, uε, Pε) solves (1.2.2) classically in Ω × (0, ∞), and such that 
nε ≥ 0 and cε > 0 in Ω̄ × (0, ∞). 

The following lemma reveals the relationship between the regularity of uε and nε. 

Lemma 1.3 (Winkler 2015b; Zheng 2022, 2019) Let (nε, cε, uε, Pε) be the solution 
of (1.2.2) in Ω × (0, T ) as well as p ∈  [1, +∞) and q ∈  [1, +∞), such that 

⎧ 
⎨ 

⎩ 
q < 

3p 

3 − p 
if p ≤ 3, 

q ≤  ∞  if p > 3. 

Then for all K > 0, there exists C = C( p, q, K ) such that if ||nε(·, t)||L p(Ω) ≤ K 
for all t ∈ (0, T ), then ||Duε(·, t)||Lq (Ω) ≤ C for all t ∈ (0, T ). 

The following lemmas will be used in the sequel. 

Lemma 1.4 Let T > 0, τ ∈ (0, T ), A > 0,  α  >  0 and B > 0, and suppose that 
y :  [0, T ) →  [0, ∞) is absolutely continuous fulfilling y'(t) + Ayα (t) ≤ h(t) for a.e. 
t ∈ (0, T ) with some nonnegative function h ∈ L1 

loc([0, T )) satisfying
∫ t+τ 
t h(s)ds  ≤ 

B for all t ∈ (0, T − τ  ).  Then 

y(t) ≤ max

⎧

y0 + B, 
1 

τ 1 α 
( 
B 

A 
) 

1 
α + 2B

⎫

for all t ∈ (0, T ). (1.2.4) 

For its elementary proof, we refer to Lemma 3.4 of Stinner et al. (2014) where the 
particular case τ = α = 1 is detailed. 

As a crucial tool for analyzing the key term
∫

Ω 
|∇cε |2 
cε 

below, we will use the 
following inequality established by Lemma 2.2.4 in Lankeit (2016a). 

Lemma 1.5 (Lankeit 2016a) There are C0 > 0 and μ0 > 0 such that every positive 
w ∈ C2( Ω̄) fulfilling ∇w · ν = 0 on ∂Ω satisfies 

− 2
∫

Ω 

|Δw|2 
w 

+
∫

Ω 

|∇w|2Δw 
w2 

≤  −  μ0

∫

Ω 
w|D2 ln w|2 − μ0

∫

Ω 

|∇w|4 
w3 

+ C0

∫

Ω 
w. 

(1.2.5) 

Now, we display an important auxiliary interpolation lemma in Winkler (2015b), 
Zheng and Wang (2017).
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Lemma 1.6 (Winkler 2015b; Zheng and Wang 2017) Let q ≥ 1, 

λ ∈  [2q + 2, 4q + 1] (1.2.6) 

and Ω ⊂ R3 be a bounded domain with smooth boundary. Then there exists C > 0 
such that for all ϕ ∈ C2( Ω̄) fulfilling ϕ · ∂ϕ 

∂ν = 0 on ∂Ω , we have

||∇ϕ||Lλ(Ω) ≤ C|||∇ϕ|q−1 D2 ϕ||
2(λ−3) 
(2q−1)λ 
L2(Ω)

||ϕ||
6q−λ 

(2q−1)λ 
L∞(Ω) + C||ϕ||L∞(Ω). (1.2.7) 

As an application of Lemma 1.6, (1.2.10) immediately leads to 

Lemma 1.7 Let β ∈  [1, ∞). Then there exists a positive constant λ0,β such that

||∇cε||2β+2 
L2β+2(Ω) ≤ λ0,β (|||∇cε|β−1 D2 cε||2 L2(Ω) + 1). (1.2.8) 

The basic boundedness information of solutions to (1.2.2) is stated as follows. 

Lemma 1.8 The solution (nε, cε, uε, Pε) of (1.2.2) satisfies

||nε(·, t)||L1(Ω) = ||n0||L1(Ω) for all t > 0 (1.2.9) 

and
||cε(·, t)||L∞(Ω) ≤ ||c0||L∞(Ω) for all t > 0. (1.2.10) 

Proof The identity (1.2.9) directly follows by integrating the first equation in (1.2.2). 
Moreover (1.2.10) is readily derived by applying the maximum principle to the 
second equation. 

The following Gagliardo–Nirenberg inequality will be used several times in 
Sect. 1.4. 

Lemma 1.9 Let Ω ⊂ R2 be a bounded Lipschitz domain. Then i) there is C > 0 such 
that ||∇ϕ||4 L4(Ω) ≤ C||Δϕ||2 L2(Ω)

||∇ϕ||2 L2(Ω)
for all ϕ ∈ W 2,2(Ω) fulfilling ∂ϕ 

∂ν |∂Ω = 0; 
(ii) there is C > 0 such that ||ϕ||3 L3(Ω) ≤ C||ϕ||2 W 1,2(Ω)

||ϕ||L1(Ω) for all ϕ ∈ W 1,2(Ω). 

1.3 Global Boundedness of Solution to a Chemotaxis–Fluid 
System with Nonlinear Diffusion 

1.3.1 A Quasi-energy Functional 

Since some first regularity properties beyond those from Lemma 1.8 can be obtained 
by making use of a quasi-energy functional. Indeed it is a starting point of the 
derivation of further estimates for solutions to the approximate problems (1.2.2).
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Lemma 1.10 For any ε ∈ (0, 1), the solution (nε, cε, uε, Pε) of (1.2.2) satisfies 

d 

dt

∫

Ω 

|∇cε|2 
cε 

+ μ0

∫

Ω 
cε|D2 ln cε|2 + 

μ0 

2

∫

Ω 

|∇cε|4 
c3 ε 

+
∫

Ω 

nε|∇cε|2 
cε 

≤2
∫

Ω 
|∇nε||∇cε|  +  

2||c0||L∞(Ω) 

μ0

∫

Ω 
|∇uε|2 + C for all t > 0 

(1.3.1) 

for some C > 0, where μ0 is the same as (1.2.5). 

Proof Thanks to cε > 0, we integrate by parts and deduce from cε-equation in (1.2.2) 
that 

d 

dt

∫

Ω 

|∇cε|2 
cε 

=−2
∫

Ω 

Δcεcεt 

cε 
+

∫

Ω 

|∇cε|2cεt 

c2 ε 

=−2
∫

Ω 

|Δcε|2 
cε 

+ 2
∫

Ω 

Δcεnεcε 

cε 
+ 2

∫

Ω 

Δcε 

cε 
uε ·  ∇cε 

+
∫

Ω 

|∇cε|2Δcε 

c2 ε 
−

∫

Ω 

|∇cε|2nεcε 

c2 ε 
−

∫

Ω 

|∇cε|2uε ·  ∇cε 

c2 ε 

=−2
∫

Ω 

|Δcε|2 
cε 

+ 2
∫

Ω 
Δcεnε + 2

∫

Ω 

Δcε 

cε 
uε ·  ∇cε 

+
∫

Ω 

|∇cε|2Δcε 

c2 ε 
−

∫

Ω 

|∇cε|2nε 

cε 
−

∫

Ω 

|∇cε|2uε ·  ∇cε 

c2 ε 
. 

(1.3.2) 
Together with (1.2.10), an application of Lemma 1.5 yields that for some positive 
constants μ0 and C(μ0), it has 

− 2
∫

Ω 

|Δcε|2 
cε 

+
∫

Ω 

|∇cε|2Δcε 

c2 ε 

≤  −  μ0

∫

Ω 
(cε|D2 ln cε|2 + 

|∇cε|4 
c3 ε 

) + C(μ0)||c0||L∞(Ω)|Ω| for t > 0. 

In addition, integrating by parts again, we have 

2
∫

Ω 

Δcε 

cε 
(uε ·  ∇cε) 

=2
∫

Ω 

|∇cε|2 
c2 ε 

uε ·  ∇cε − 2
∫

Ω 

1 

cε 
∇cε · (∇uε ·  ∇cε) 

− 2
∫

Ω 

1 

cε 
(uε · D2 cε) ·  ∇cε for all t > 0 

and ∫

Ω 

|∇cε|2 
c2 ε 

uε ·  ∇cε = 2
∫

Ω 

1 

cε 
uε · D2 cε ·  ∇cε for all t > 0.
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So combining the above two inequalities, we get 

2
∫

Ω 

Δcε 

cε 
(uε ·  ∇cε) −

∫

Ω 

|∇cε|2 
c2 ε 

uε ·  ∇cε 

≤2
∫

Ω 

|∇cε|2 
cε 

|∇uε|  ≤  
μ0 

2

∫

Ω 

|∇cε|4 
c3 ε 

+ 
2||c0||L∞(Ω) 

μ0

∫

Ω 
|∇uε|2 . 

Therefore inequality (1.3.1) readily results from above inequalities. 

In order to deal with the term
∫

Ω |∇uε|2 on the right of (1.3.1), we recall the 
following standard energy inequality for the fluid component of solutions of (1.2.2). 

Lemma 1.11 Let m + α  >  2 3 . Then for any η ∈ (0, 1), there exists C(η) > 0 such 
that 

d 

dt

∫

Ω 
|uε|2 +

∫

Ω 
|∇uε|2 ≤ η

∫

Ω 
(nε + ε)m+α−2|∇nε|2 + C(η) for all t > 0. 

(1.3.3) 

Proof Testing the third equation in (1.2.2) by  uε and using ∇  ·  uε = 0, we get 

1 

2 

d 

dt

∫

Ω 
|uε|2 +

∫

Ω 
|∇uε|2 =

∫

Ω 
nεuε ·  ∇φ for all t > 0. (1.3.4) 

By the Young inequality and the continuity of the embedding W 1,2(Ω) ϲ→ L6(Ω), 
we obtain that there is C1 > 0 such that

∫

Ω 
nεuε ·  ∇φ ≤||∇φ||L∞(Ω)||nε||L 

6 
5 (Ω)

||∇uε||L2(Ω) 

≤C1||nε + ε||
L 

6 
5 (Ω)

||∇uε||L2(Ω) for all t > 0. 
(1.3.5) 

Further, by the Gagliardo–Nirenberg inequality, we have

||nε + ε||
L 

6 
5 (Ω) 

≤C2(||∇(nε + ε) 
m+α 
2 ||

1 
3(m+α)−1 

L2(Ω)
||(nε + ε) 

m+α 
2 ||

2 
m+α − 1 

3(m+α)−1 

L 
2 

m+α (Ω) 
+ ||(nε + ε) 

m+α 
2 ||

2 
m+α 

L 
2 

m+α (Ω) 
) 

≤C3(||∇(nε + ε) 
m+α 
2 ||

1 
3(m+α)−1 

L2(Ω) + 1) for all t > 0, 
(1.3.6) 

for some C2 > 0 and C3 > 0 independent of ε. Combining (1.3.6) with (1.3.5) and 
noticing m + α  >  2 3 , we can see that for any η ∈ (0, 1),
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∫

Ω 
nεuε ·  ∇φ 

≤ 
1 

2
||∇uε||2 L2(Ω) + C4(||∇(nε + ε) 

m+α 
2 ||

2 
3(m+α)−1 

L2(Ω) + 1) 

≤ 
1 

2
||∇uε||2 L2(Ω) + η

∫

Ω 
(nε + ε)m+α−2|∇nε|2 + C(η) for all t > 0. 

(1.3.7) 

This together with (1.3.4) arrives at (1.3.3). 

Now, we turn to analyze
∫

Ω (nε + ε) ln(nε + ε) or ||nε + ε||1+α 
L1+α (Ω)

, which con-

tributes to absorbing
∫

Ω (nε + ε)m+α−2|∇nε|2 on the right-hand side of (1.3.3). 
Lemma 1.12 The solution (nε, cε, uε, Pε) of (1.2.2) satisfies 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

d 

dt

∫

Ω 
(nε + ε) ln(nε + ε) + m

∫

Ω 
(nε + ε)m−2|∇nε|2 

≤CS

∫

Ω 
|∇nε||∇cε| if α = 0, 

1 

α(1 + α) 
d 

dt
||nε + ε||1+α 

L1+α (Ω) + m
∫

Ω 
(nε + ε)m+α−2|∇nε|2 

≤CS

∫

Ω 
|∇nε||∇cε| if α  >  0 

(1.3.8) 

for all t > 0, where CS = sup 
0≤s≤||c0||L∞ (Ω) 

S0(s). 

Proof The proof of the lemma is given separately for two cases. 
(1) For the case α = 0. Integration by parts, we deduce from nε-equation as well 

as ∇  ·  uε = 0 and (1.2.1) that 

d 

dt

∫

Ω 
(nε + ε) ln(nε + ε) 

=
∫

Ω 
Δ(nε + ε)m ln(nε + ε) −

∫

Ω 
ln(nε + ε)∇  ·  (nε Fε(nε)Sε(x, nε, cε) ·  ∇cε) 

−
∫

Ω 
ln(nε + ε)uε ·  ∇nε (1.3.9) 

≤−m
∫

Ω 
(nε + ε)m−2|∇nε|2 +

∫

Ω 
S0(cε)|∇nε||∇cε| 

≤−m
∫

Ω 
(nε + ε)m−2|∇nε|2 + CS

∫

Ω 
|∇nε||∇cε|. 

(2) For the case α  >  0. Multiplying the first equation in (1.2.2) by  (nε + ε)α , and 
noticing the hypothesis (1.1.3), we then have
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1 

1 + α 
d 

dt
||nε + ε||1+α 

L1+α (Ω) + mα

∫

Ω 
(nε + ε)m+α−2|∇nε|2 

=α

∫

Ω 
(nε + ε)α−1 nε∇nε · (Fε(nε)Sε(x, nε, cε) ·  ∇cε) (1.3.10) 

≤α

∫

Ω 
(nε + ε)α (1 + nε)

−α S0(cε)|∇nε||∇cε| 

≤αCS

∫

Ω 
|∇nε||∇cε| for all t > 0. 

Hence, (1.3.8) readily follows from (1.3.9) and (1.3.10). 

Remark 1.1 Note that when S(x, n, c) is scalar-value, one can make use of the 
corresponding flavor thereof to neutralize 2

∫

Ω |∇nε||∇cε| on the right-hand side of 
(1.3.1) and CS

∫

Ω |∇nε||∇cε| on the right side of (1.3.8). 
In the sequel we shall derive an energy-type inequality under the assumption 

10 
9 < m + α ≤ 2, from which the regularity of solutions of (1.2.2) beyond that of 
Lemma 1.8 is achieved. 

Lemma 1.13 Let 10 9 < m + α ≤ 2 and S satisfy (1.1.2)–(1.1.3). Suppose that (1.1.4) 
hold. Then there exists C > 0 independent of ε such that the solution of (1.2.2) sat-
isfies

∫

Ω 

|∇cε|2 
cε 

+
∫

Ω 
|uε|2 ≤ C for all t > 0, (1.3.11) 

⎧ 
⎪⎪⎨ 

⎪⎪⎩

∫

Ω 
(nε + ε)1+α ≤ C if  α  >  0,

∫

Ω 
(nε + ε) ln(nε + ε) ≤ C if  α = 0, 

(1.3.12)

∫ t+1 

t

∫

Ω 
( 
nε 

cε 
|∇cε|2 + 

|∇cε|4 
c3 ε 

+ (nε + ε)m+α+ 2 
3 + (nε + ε)m+α−2|∇nε|2 ) ≤ C, 

(1.3.13)

∫ t+1 

t

∫

Ω 
|∇uε|2 ≤ C (1.3.14) 

as well as ∫ t+1 

t

∫

Ω 
cε|D2 ln cε|2 ≤ C. (1.3.15) 

Proof Adding an suitable multiples of the inequalities in Lemmas 1.10–1.12, one 
can conclude that there exist positive constants ci ,  (i = 1, 2, 3), such that 

d 

dt

⎛∫

Ω 

|∇cε|2 
cε 

+
∫

Ω 
(nε + ε) ln(nε + ε) + k1

∫

Ω 
|uε|2

⎞

+ k2
∫

Ω 
|∇uε|2
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+ k2Ωcε|D2 ln cε|2 +
∫

Ω 

nε|∇cε|2 
cε 

(1.3.16) 

+ k2
∫

Ω 

|∇cε|4 
c3 ε 

+ k2
∫

Ω 
(nε + ε)m−2|∇nε|2 

≤ k3
∫

Ω 
|∇nε||∇cε|  +  k3 for all t > 0 when α = 0 

and 

d 

dt

⎛∫

Ω 

|∇cε|2 
cε 

+ 1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) + k1
∫

Ω 
|uε|2

⎞

+k2

∫

Ω 
|∇uε|2 + k2

∫

Ω 
cε|D2 ln cε|2 +

∫

Ω 

nε|∇cε|2 
cε 

+k2

∫

Ω 

|∇cε|4 
c3 ε 

+ k2
∫

Ω 
(nε + ε)m+α−2|∇nε|2 

≤k3

∫

Ω 
|∇nε||∇cε|  +  k3 for all t > 0 when α  >  0. 

(1.3.17) 

Next, we will estimate
∫

Ω |∇nε||∇cε| by the Gagliardo–Nirenberg inequality along 
with the basic priori information provided by Lemma 1.8. Indeed, making use of 
(1.2.10) and the Young inequality, we thereby find k5 > 0 such that 

k3

∫

Ω 
|∇nε||∇cε| 

≤ 
k2 
2

∫

Ω 

|∇cε|4 
c3 ε 

+ 
k2 
4

∫

Ω 
(nε + ε)m+α−2|∇nε|2 + k5

∫

Ω 
(nε + ε)4−2m−2α . 

(1.3.18) 

Therefore for α  >  0, we insert (1.3.18) into (1.3.17) to get 

d 

dt

⎛∫

Ω 

|∇cε|2 
cε 

+ 1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) + k1
∫

Ω 
|uε|2

⎞

+k2

∫

Ω 
|∇uε|2 + k2

∫

Ω 
cε|D2 ln cε|2 +

∫

Ω 

nε|∇cε|2 
cε 

+ 
k2 
2

∫

Ω 

|∇cε|4 
c3 ε 

+ 
3k2 
4

∫

Ω 
(nε + ε)m+α−2|∇nε|2 

≤k5

∫

Ω 
(nε + ε)4−2m−2α + k3 for all t > 0. 

(1.3.19) 

Next, we deal with
∫

Ω 
(nε + ε)4−2m−2α separately for two cases. Indeed, in the case 

10 
9 < m + α  <  3 2 , by the Gagliardo–Nirenberg inequality, we get
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k5

∫

Ω 
(nε + ε)4−2m−2α 

=k5||(nε + ε) 
m+α 
2 ||

2(4−2m−2α) 
m+α 

L 
2(4−2m−2α) 

m+α (Ω) 

≤k6||∇(nε + ε) 
m+α 
2 ||

2(3−2m−2α) 
3(m+α)−1 

L2(Ω)
||(nε + ε) 

m+α 
2 ||

2(4−2m−2α) 
m+α − 2(3−2m−2α) 

3(m+α)−1 

L 
2 

m+α (Ω) 
(1.3.20) 

+ ||(nε + ε) 
m+α 
2 ||

2(4−2m−2α) 
m+α 

L 
2 

m+α (Ω) 

=k7(||∇(nε + ε) 
m+α 
2 ||

6(3−2m−2α) 
3(m+α)−1 

L2(Ω) + 1) for all t > 0, 

where k6 and k7 are positive constants. Hence, if 10 
9 < m + α  <  3 2 , we have  

6(3−2m−2α) 
3(m+α)−1 ∈ (0, 2), and then get 

k5

∫

Ω 
(nε + ε)4−2m−2α ≤ 

k2 
4

∫

Ω 
(nε + ε)m+α−2|∇nε|2 + k8 for all t > 0 (1.3.21) 

with some k8 > 0 by the Young inequality. While in the case 3 2 ≤ m + α ≤ 2, we  
have 4 − 2m − 2α ∈ (0, 1) and thereby immediately get 

k5

∫

Ω 
(nε + ε)4−2m−2α ≤ k5

∫

Ω 
nε + k9 (1.3.22) 

with some k9 > 0. Therefore, (1.3.19) together with (1.3.20)–(1.3.22) leads to 

d 

dt

⎛∫

Ω 

|∇cε|2 
cε 

+ 1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) + k1
∫

Ω 
|uε|2

⎞

+k2

∫

Ω 
|∇uε|2 + k2

∫

Ω 
cε|D2 ln cε|2 +

∫

Ω 

nε|∇cε|2 
cε 

+ 
k2 
2

∫

Ω 

|∇cε|4 
c3 ε 

+ 
k2 
2

∫

Ω 
(nε + ε)m+α−2|∇nε|2 

≤ k10 for all t > 0. 

(1.3.23) 

Since m + α  >  10 9 , we utilize the Gagliardo–Nirenberg inequality to see that there 
exists a positive constant k11 such that 

1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) 

≤k11

⎛∫

Ω 
(nε + ε)m+α−2|∇nε|2

⎞ 3α 
3(m+α)−1 

+ k11 for all t > 0. 

Hence recalling (1.2.10) and according to the Poincaré inequality, we can see that 
for all t > 0,
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∫

Ω 

|∇cε|2 
cε 

+ 1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) + k1
∫

Ω 
|uε|2 

≤k12

⎛∫

Ω 
|∇uε|2 +

∫

Ω 

|∇cε|4 
c3 ε 

+
∫

Ω 
(nε + ε)m+α−2|∇nε|2

⎞ζ 

+ k12 
(1.3.24) 

with some k12 > 0 and ζ = max{ 3α 
3(m+α)−1 , 1}. Thus, we infer from (1.3.23) and 

(1.3.24) that there exist k13 > 0 and k14 > 0 such that for all ε ∈ (0, 1), 

d 

dt

⎛∫

Ω 

|∇cε|2 
cε 

+ 1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) + 
8 

μ0
||c0||L∞(Ω)

∫

Ω 
|uε|2

⎞

+ k13
⎛∫

Ω 

|∇cε|2 
cε 

+ 1 

α(1 + α)
||nε + ε||1+α 

L1+α (Ω) + 
8 

μ0
||c0||L∞(Ω)

∫

Ω 
|uε|2

⎞ 1 
ζ 

+k13

⎛∫

Ω 
|∇uε|2 +

∫

Ω 
cε|D2 ln cε|2 +

∫

Ω 

nε|∇cε|2 
cε

⎞

+k13

⎛∫

Ω 

|∇cε|4 
c3 ε 

+ 
5mα 
8

∫

Ω 
(nε + ε)m+α−2|∇nε|2

⎞

≤ k14 for all t > 0 if  α  >  0 
(1.3.25) 

which along with Lemma 1.4, implies that (1.3.11)–(1.3.12) are valid. Further, 
(1.3.13)–(1.3.15) result from integrating the inequality (1.3.25). The proof for the 
case α = 0 can be proved similarly, and is thus omitted here. 

1.3.2 L∞((0, ∞); L p(Ω)) Estimate of nε for Some p > 3 
2 

The further regularity properties of solutions can be obtained by means of a bootstrap 
iteration in the case of 10 9 < m + α  <  3 2 . In this direction, we first shall make use of 
results in Lemma 1.13 to improve the regularities, in particular for nε. 

Lemma 1.14 Let p > 1. Then the solution (nε, cε, uε, Pε) of (1.2.2) satisfies 

1 

p 

d 

dt
||nε + ε||p 

L p(Ω) + 
m(p − 1) 

2

∫

Ω 
(nε + ε)m+p−3|∇nε|2 

≤ 
(p − 1)C2 

S 

2m

∫

Ω 
(nε + ε)p+1−m (1 + nε)

−2α|∇cε|2 for all t > 0. 
(1.3.26) 

Proof Multiplying the first equation in (1.2.2) by  (nε + ε)p−1, using  ∇  ·  uε = 0 as 
well as (1.1.3), we get
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1 

p 

d 

dt
||nε + ε||p 

L p(Ω) + m(p − 1)
∫

Ω 
(nε + ε)m+p−3|∇nε|2 

=( p − 1)
∫

Ω 
(nε + ε)p−2 nε∇nε · (Fε(nε)Sε(x, nε, cε) ·  ∇cε) 

≤(p − 1)
∫

Ω 
(nε + ε)p−1 (1 + nε)

−α S0(cε)|∇nε||∇cε| 

≤(p − 1)CS

∫

Ω 
(nε + ε)p−1 (1 + nε)

−α|∇nε||∇cε| for all t > 0. 

(1.3.27) 

Hence (1.3.26) follows from (1.3.27) and Young’s inequality. 

As a consequence of Lemma 1.13, we have  

Lemma 1.15 Under the assumptions of Lemma 1.13, there exists a positive constant 
C independent of ε such that

∫

Ω 
|∇cε|2 ≤ C for all t > 0. (1.3.28) 

Proof Noticing that |∇cε|2 ≤ 
|∇cε|2 
cε

||cε(·, t)||L∞(Ω), (1.3.28) results from (1.3.11) 

and (1.2.10). 

Combining Lemma 1.14 and estimate (1.3.28) immediately leads to 

Lemma 1.16 Let 10 9 < m + α ≤ 2, S satisfy (1.1.2)–(1.1.3) and (nε, cε, uε, Pε) be 
the solution of (1.2.2). Then there exists C > 0 independent of ε such that 

sup 
t∈(0,∞)

∫

Ω 
(nε + ε)m+2α + sup 

t∈(0,∞)

∫ t+1 

t

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 ≤ C (1.3.29) 

for all t > 0. 

Proof Taking p = m + 2α in (1.3.26), we get 

1 

m + 2α 
d 

dt
||nε + ε||m+2α 

Lm+2α (Ω) + 
m(m + 2α − 1) 

2

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 

≤k1

∫

Ω 
(nε + ε)1+2α (1 + nε)

−2α|∇cε|2 

≤||c0||L∞(Ω)k1

∫

Ω 

nε 

cε 
|∇cε|2 + k1

∫

Ω 
|∇cε|2 

(1.3.30) 
for some positive constant k1 > 0. Now, applying the Gagliardo–Nirenberg inequal-
ity and (1.2.9), one can find constants k2 > 0, k3 > 0 and k4 > 0 independent of 
ε ∈ (0, 1) such that
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∫

Ω 
(nε + ε)m+2α 

=||(nε + ε) 
2m+2α−1 

2 ||
2(m+2α) 
2m+2α−1 

L 
2(m+2α) 
2m+2α−1 (Ω) 

≤c2

⎛

||∇(nε + ε) 
2m+2α−1 

2 ||
3m+6α−3 
3m+3α−2 

L2(Ω)
||(nε + ε) 

2m+2α−1 
2 ||

2(m+2α) 
2m+2α−1 − 3m+6α−3 

3m+3α−2 

L 
2 

2m+2α−1 (Ω) 

+||(nε + ε) 
2m+2α−1 

2 ||
2(m+2α) 
2m+2α−1 

L 
2 

2m+2α−1 (Ω)

⎞

≤c3(||∇(nε + ε) 
2m+2α−1 

2 ||
3m+6α−3 
3m+3α−2 

L2(Ω) + 1) 

≤ 
m(m − 1) 
(2m − 1)2

||∇(nε + ε) 
2m+2α−1 

2 ||2 L2(Ω) + k4. 

Inserting the above inequality into (1.3.30), one then has 

1 

m + 2α 
d 

dt
||nε + ε||m+2α 

Lm+2α (Ω) + 
m(m + 2α − 1) 

4

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 

+
∫

Ω 
(nε + ε)m+2α 

≤||c0||L∞(Ω)k1

∫

Ω 

nε 

cε 
|∇cε|2 + k1

∫

Ω 
|∇cε|2 + k4. 

As the application of Lemma 1.4, this together with (1.3.28) and (1.3.13) then arrives 
at (1.3.29). 

According to Lemma 1.3, the bound of L p(Ω) for Duε can be suitably enlarge upon 
the result of Lemma 1.16 in asserting the following. 

Lemma 1.17 Let 10 9 < m + α ≤ 3 2 . Then for r < 3(m+α) 
3−(m+α) , there exists K := K (r, m) 

such that
||Duε(·, t)||Lr (Ω) ≤ K for all t > 0. (1.3.31) 

Proof In light of (1.3.29), (1.3.31) is the consequence of an application of Lemma 
1.3 with p = m + α. 

In order to obtain the further regularity of cε, one can establish the time evolution 
of ∇cε in L2β (Ω), similar to that of Lemma 3.6 in Winkler (2015b). 

Lemma 1.18 For any β  >  1, the solution of (1.2.2) satisfies 

1 

2β 
d 

dt
||∇cε||2β 

L2β (Ω) + 
2(β − 1) 

β2

∫

Ω

|
|∇|∇cε|β

|
|2 

+ 
1 

2

∫

Ω 
|∇cε|2β−2|D2 cε|2 +

∫

Ω 
nε|∇cε|2β 

≤−
∫

Ω 
cε|∇cε|2β−2∇nε ·  ∇cε +

∫

Ω 
|Duε||∇cε|2β + C 

(1.3.32)
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for all t > 0, where C > 0 is a positive constant independent of ε. 

Proof Noticing the boundedness of ||∇cε(·, t)||L2(Ω) obtained in Lemma 1.15, and 
applying the arguments as those in the proof (3.10) of Ishida et al. (2014) (see also 
Wang and Xiang 2016; Zheng 2016, 2017a), one can find a positive constant k1 such 
that ∫

∂Ω 

∂|∇cε|2 
∂ν 

|∇cε|2β−2 ≤ 
(β − 1) 

β2

∫

Ω

|
|∇|∇cε|β

|
|2 + k1. 

Hence by pursuing quite a similar strategy in the proof of Lemma 3.6 in Winkler 
(2015b), one can derive (1.3.32). 

Now, we address the question how far the regularity information such as provided 
by Lemma 1.17 is convenient to estimate the term

∫

Ω |Duε||∇cε|2β on the right of 
(1.3.32). 

Lemma 1.19 Let r > 3 2 and β ∈  [r − 1, r−1 
(4−2r )+ ]. Then for any η  >  0 and K > 0 

there exists C = C(β, r, K )  >  0 such that if ||Duε||Lr (Ω) ≤ K , then
∫

Ω 
|∇cε|2β |Duε|  ≤  η

∫

Ω 
|∇cε|2β−2|D2 cε|2 + C for all t > 0. (1.3.33) 

Proof We invoke the Hölder inequality with exponents r 
r−1 and r to see that

∫

Ω 
|∇cε|2β |Duε|  ≤

⎛∫

Ω 
|∇cε| 2βr 

r−1

⎞ r−1 
r

⎛∫

Ω 
|Duε|r

⎞ 1 
r 

≤K

⎛∫

Ω 
|∇cε| 2βr 

r−1

⎞ r−1 
r 

≤K||∇cε||2β 

L 
2βr 
r−1 (Ω) 

for all t > 0. 

Since β ∈  [r − 1, r−1 
(4−2r)+ ] ensures that λ := 2βr r−1 ∈  [2β + 2, 4β + 1]. Therefore, we 

may apply Lemma 1.7 and (1.2.10) to see that for some k1 = k1(K , r,  β)  >  0 and 
k2 = k2(K ,  β,  r )  >  0, it has 

K||∇cε||2β 

L 
2βr 
r−1 (Ω) 

≤k1|||∇cε|β−1 D2 cε||
4β(λ−3) 
(2β−1)λ 
L2(Ω)

||cε||2β 6β−λ 
(2β−1)λ 

L∞(Ω) + k1||cε||2β 
L∞(Ω) 

≤k2(|||∇cε|β−1 D2 cε||
4β(λ−3) 
(2β−1)λ 
L2(Ω) + 1) for all t > 0. 

Thanks to the assumption r > 3 2 and β ∈  [r − 1, r−1 
(4−2r )+ ], we have  

4β(λ − 3) 
(2β − 1)λ 

= 
4β( 2βr r−1 − 3) 

(2 2βr r−1 − 1) 2βr r−1 

< 2,
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and thus arrive at (1.3.33) by means of the Young inequality. 

At this position, on the basis of space–time regularity property of nε provided by 
Lemmas 1.16, 1.14 can be exploited so as to derive the further regularity features of 
nε. 

Lemma 1.20 Let (nε, cε, uε, Pε) be the solution of (1.2.2) as well as 10 9 < m + α ≤
3 
2 . Then there exists C > 0 such that 

sup 
t∈(0,∞)

||nε(·, t) + ε||p1 
L p1 (Ω) + sup 

t∈(0,∞)

∫ t+1 

t

∫

Ω 
(nε + ε)p1+m−3|∇nε|2 ≤ C, 

(1.3.34) 
where p1 = 16 3 (m + α)2 − 25(m+α) 

3 + 4 + α 
3 (4(m + α) − 1). 

Proof Let β1 = 2m + 2α − 1. Then in view of (1.3.32) and (1.2.10), we obtain that 
for some C1 > 0 and all t > 0, 

1 

2β1 

d 

dt
||∇cε||2β1 

L2β1 (Ω) + 
2(β1 − 1) 

β2 
1

∫

Ω

|
|∇|∇cε|β1

|
|2 +

∫

Ω 
|∇cε|2β1−2|D2 cε|2 

≤||c0||L∞(Ω)

∫

Ω 
|∇cε|2β1−1|∇nε|  −

∫

Ω 
nε|∇cε|2β1 +

∫

Ω 
|∇cε|2β1 |Duε|  +  C1. 

(1.3.35) 
By Lemma 1.7 and the Young inequality twice, we can conclude that for some 
C2 > 0,

||c0||L∞(Ω)

∫

Ω 
|∇cε|2β1−1|∇nε| 

=||c0||L∞(Ω)

∫

Ω

⎛
n 

2m+2α−3 
2 

ε |∇nε|
⎞ ⎛

n 
3−2m−2α 

2 
ε |∇cε| 3−2m−2α 

2 2β1

⎞
|∇cε|2β1−1− 3−2m−2α 

2 2β1 

≤ 
1 

2

∫

Ω 
nε|∇cε|2β1 + 

1 

2λ0,β1

∫

Ω 
|∇cε|[2β1−1− 3−2m−2α 

2 2β1] 1 
m+α−1 

+ C2

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 

= 
1 

2

∫

Ω 
nε|∇cε|2β1 + 

1 

2λ0,β1

∫

Ω 
|∇cε|2β1+2 + C2

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 + 

1 

2 

≤ 
1 

2

∫

Ω 
nε|∇cε|2β1 + 

1 

2
|||∇cε|β1−1 D2 cε||2 L2(Ω) + C2

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 + 

1 

2 
. 

(1.3.36) 
Here we have used the fact that 1 2 + 2m+2α−2 

2 + 3−2m−2α 
2 = 1. Inserting (1.3.36) into  

(1.3.35), we then have
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1 

2β1 

d 

dt
||∇cε||2β1 

L2β1 (Ω) + 
2(β1 − 1) 

β2 
1

∫

Ω

|
|∇|∇cε|β1

|
|2 

+ 
1 

2

∫

Ω 
|∇cε|2β1−2|D2 cε|2 + 

1 

2

∫

Ω 
nε|∇cε|2β1 

≤C2

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 +

∫

Ω 
|∇cε|2β1 |Duε|  +  

1 

2 
. 

(1.3.37) 

In addition, it is observed that 

3(m + α) 
3 − (m + α) 

− 1 <  β1 < 
3(m+α) 
3−(m+α) − 1 

(4 − 2 3(m+α) 
3−(m+α) )+ 

can be warranted by m + α ∈ ( 10 9 , 
3 
2 ], and thereby by Lemmas 1.16 and 1.17, there 

exists a constant C3 > 0 such that
∫

Ω 
|∇cε|2β1 |Duε|  ≤  

1 

4

∫

Ω 
|∇cε|2β1−2|D2 cε|2 + C3 for all t > 0. 

Substituting it into (1.3.37), one immediately obtains that for some C4 > 0 

1 

2β1 

d 

dt
||∇cε||2β1 

L2β1 (Ω) + 
2(β1 − 1) 

β2 
1

∫

Ω

|
|∇|∇cε|β1

|
|2 

+ 
1 

4

∫

Ω 
|∇cε|2β1−2|D2 cε|2 + 

1 

2

∫

Ω 
nε|∇cε|2β1 

≤C2

∫

Ω 
(nε + ε)2m+2α−3|∇nε|2 + C4, 

which along with (1.3.29) leads to 

sup 
t∈(0,∞)

||∇cε||2β1 

L2β1 (Ω) + sup 
t∈(0,∞)

∫ t+1 

t

∫

Ω 
(|∇cε|2β1−2|D2 cε|2 + nε|∇cε|2β1 ) ≤ C5 

(1.3.38) 
for some C5 > 0. 

Moreover, denoting p0 = m + 2α and taking p := p1 = 16 3 (m + α)2 − 25 3 (m + 
α) + 4 + 1 3 α[4(m + α) − 1] in (1.3.26), and applying the Young inequality, we con-
clude that for any δ  >  0, there exists constant C(δ) > 0 such that
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1 

p1 

d 

dt
||nε + ε||p1 

L p1 (Ω) + 
m(p1 − 1) 

2

∫

Ω 
(nε + ε)m+p1−3|∇nε|2 

≤C1

∫

Ω 
(nε + ε)p1+1−m−2α|∇cε|2 

≤δ

∫

Ω 
(nε + ε)[p1+1−m−2α− 1 

β1 
] β1 

β1−1 + C(δ)

∫

Ω 
(nε + ε)|∇cε|2β1 

≤δ

∫

Ω 
(nε + ε) 

5m 
3 +p1−1+ 4α 

3 + C(δ)

∫

Ω 
(nε + ε)|∇cε|2β1 , 

(1.3.39) 

thanks to (p1 + 1 − m − 2α − 1 
β1 

) β1 

β1−1 = 5m 3 + p1 − 1 + 4α 
3 = m + p1 − 1 + 2 3 p0. 

Further, by the Gagliardo–Nirenberg interpolation inequality, we infer from 
(1.3.29) that

∫

Ω 
(nε + ε)m+p1−1+ 2 

3 p0 

=||(nε + ε) 
m+ p1−1 

2 ||
2(m+ p1−1+ 2 3 p0 ) 

m+ p1−1 

L 
2(m+ p1−1+ 2 3 p0 ) 

m+ p1−1 (Ω) 

≤C6

⎞

||∇(nε + ε) 
p1+m−1 

2 ||2 L2(Ω)||(nε + ε) 
p1+m−1 

2 ||
2(m+ p2−1+ 2 3 p0 ) 

m+ p1−1 −2 

L 
2 p0 

m+ p1−1 (Ω) 

+ ||(nε + ε) 
p1+m−1 

2 ||
2(m+ p1−1+ 2 3 p0 ) 

m+ p1−1 

L 
2 p0 

m+ p1−1 (Ω)

⎛

≤C7(||∇(nε + ε) 
p1+m−1 

2 ||2 L2(Ω) + 1) 

with constants C6 > 0 and C7 > 0. Inserting the above inequality into (1.3.29) and 
picking δ  >  0 appropriately small, one concludes that there exists a positive constant 
C8 such that 

1 

p1 

d 

dt
||nε + ε||p1 

L p1 (Ω) + 
m( p1 − 1) 

4

∫

Ω 
(nε + ε)m+p1−3|∇nε|2+

∫

Ω 
(nε + ε)p1 

≤C8

∫

Ω 
nε|∇cε|2β1 +

∫

Ω 
|∇cε|2β1+2 + C8. 

Now by (1.3.38) and (1.2.8), one can get 

sup 
t∈(0,∞)

||nε(·, t) + ε||p1 
L p1 (Ω) + sup 

t∈(0,∞)

∫ t+1 

t

∫

Ω 
(nε + ε)p1+m−3|∇nε|2 ≤ C9 

for some positive constant C9. 

Lemma 1.21 Let 10 9 < m + α ≤ 3 2 and (nε, cε, uε) be the solution of (1.2.2). Then 
for any β  >  1 and η  >  0 there exists a constant C = C(β, η) > 0 such that
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∫

Ω 
|∇cε|2β +

∫

Ω 
|∇cε|2β |Duε|  ≤  η

∫

Ω 
|∇cε|2β−2|D2 cε|2 + C for all t > 0. 

Proof It is observed that m + α  >  10 9 ensures p1 = 16 3 (m + α)2 − 25 3 (m + α) + 4 +
1 
3 α[4(m + α) − 1] > 322 243 , and thus from Lemma 1.20, we have  

sup 
t∈(0,∞)

||nε(·, t)||L 
322 
243 (Ω) 

≤ C1. 

By Lemma 1.3, for any 2 < r < 966 407 , ||Duε(·, t)||Lr (Ω) ≤ C2 for some positive con-
stant C2. Moreover, by Lemma 1.19, one can conclude that for any β  >  1

∫

Ω 
|∇cε|2β |Duε|  ≤  

η 
2

∫

Ω 
|∇cε|2β−2|D2 cε|2 + C3 for all t > 0 (1.3.40) 

with some positive constant C3. On the other hand, in view of Lemma 1.7, it follows 
from the Young inequality that there is C4 > 0 satisfying∫

Ω 
|∇cε |2β ≤ 

η 
2

∫

Ω 
|∇cε |2β−2|D2cε |2 + C4 for all t > 0, 

which together with (1.3.40) leads to the desired inequality. 

The regularity of ∇cε from Lemma 1.21 can be readily developed to the following 
basis for the iterative reason, which can elevate L p1 (Ω) of nε from Lemma 1.20 to the 
L p(Ω)-boundedness of nε with some p > 3 2 . To this end, we consider the properties 
of the iteration sequence {pn}n≥1 stated in the following. 

Lemma 1.22 Let p1 = 16 3 (m + α)2 − 25 3 (m + α) + 1 3 α(4(m + α) − 1) + 4, 10 9 < 
m ≤ 3 2 and 0 ≤ α ≤ 7 

18 . Assume that for any n = 1, 2, · · ·  , 

pn+1 = 
2 

3 
p2 n + 

2 

3 
(4m − 5 + 3α) pn + (2m + 2α − 3)(m − 1) + 1, 

then p1 is monotonically non-decreasing functions with respect to m as well as pn is 
monotonically non-decreasing functions with respect to n, inter alia lim 

n→∞ 
pn =  +∞. 

Proof A direct calculation shows that 

pn+1 = 
2 

3 
p2 n + 

2 

3 
(4m − 5 + 3α)pn + (2m + 2α − 3)(m − 1) + 1 

= 
2 

3 
pn[pn + (4m − 5) + 3α]  +  (2m + 2α − 3)(m − 1) + 1. 

Due to 0 <  α  ≤ 7 
18 and 

10 
9 < m + α ≤ 3 2 , the mathematical induction implies that 

for any n ∈ N∗, pn ≥ m + α. In addition, it is observed that
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pn+1 − pn = 
2 

3 
(p2 n − p2 n−1) + 

2 

3 
(4m − 5)(pn − pn−1) 

= 
2 

3 
(pn − pn−1)(pn + pn−1 + 4m − 5 + 3α). 

Hence in light of p2 > p1 and m + α  >  10 9 , one can see that p3 > p2, and thereby 
pn+1 > pn by the induction. 

By the contradiction argument, one can show that lim 
n→∞ 

pn =  +∞. In fact, sup-

posed that {pn}n≥1 is bounded, then limn→∞ pn = p∗ with some positive con-
stant p∗ < ∞, which implies that p∗ = 2 3 p

2∗ + 2 3 (4m − 5 + 3α)p∗ + (2m + 2α − 
3)(m − 1) + 1, that is 

2 

3 
p2 ∗ + ( 

8 

3 
m − 

13 

3 
+ 2α)p∗ + (2m + 2α − 3)(m − 1) + 1 = 0. (1.3.41) 

By Weda’s Theorem, we have 

0 ≤ △ =( 
8 

3 
m − 

13 

3 
+ 2α)2 − 4 × 

2 

3 
×  [(2m + 2α − 3)(m − 1) + 1] 

= 
16ρ2 − 8(11 − 2α)ρ + 4α2 − 20α + 73 

9 

:= 
H (ρ, α) 

9 

(1.3.42) 

with ρ = m + α. Note that for any 0 ≤ α ≤ 7 
18 and 

10 
9 < m + α ≤ 3 2 , 

∂ H (ρ,α) 
∂ρ = 

32ρ − 8(11 − 2α) < 0. So for  0 ≤ α ≤ 7 
18 and 

10 
9 < m + α ≤ 3 2 , 

H (ρ, α) ≤ H ( 
10 

9 
,  α)  = 16( 

10 

9 
)2 − 8(11 − 2α) 

10 

9 
+ 4α2 − 20α + 73 < 0, 

which contradicts with (1.3.42). 

Lemma 1.23 Let 10 9 < m + α ≤ 3 2 as well as 0 ≤ α ≤ 7 
18 . If  

sup 
t∈(0,∞)

||nε(·, t) + ε||pn 
L pn (Ω) + sup 

t∈(0,∞)

∫ t+1 

t

∫

Ω 
(nε + ε)pn+m−3|∇nε|2 ≤ K (1.3.43) 

with pn + m − 3 < 0 for some K > 0, then there exists C = C(K )  >  0 independent 
of ε, such that 

sup 
t∈(0,∞)

||nε(·, t) + ε||pn+1 

L pn+1 (Ω) + sup 
t∈(0,∞)

∫ t+1 

t

∫

Ω 
(nε + ε)pn+1+m−3|∇nε|2 ≤ C, 

where pn+1 = 2 3 p
2 
n + 2( 4 3 m − 5 3 + α)pn + (2m + 2α − 3)(m − 1) + 1 for any n = 

1, 2, 3, · · ·  , and p1 is taken from Lemma 1.20.
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Proof Let βn = pn + m − 1 for any n = 1, 2, 3, · · ·  . Recalling (1.3.32), there is 
C1 > 0 such that for all t > 0, 

1 

2βn 

d 

dt
||∇cε||2βn 

L2βn (Ω) + 
2(βn − 1) 

β2 
n

∫

Ω

|
|∇|∇cε|βn

|
|2 +

∫

Ω 
|∇cε|2βn−2|D2 cε|2 

≤ ||c0||L∞(Ω)

∫

Ω 
|∇cε|2βn−1|∇nε|  −

∫

Ω 
nε|∇cε|2βn +

∫

Ω 
|∇cε|2βn |Duε|  +  C1. 

(1.3.44) 
As done in (1.3.36), we can conclude that there exists a positive constant C2 such 
that

||c0||L∞(Ω)

∫

Ω 
|∇cε|2βn−1|∇nε| 

≤ 
1 

2

∫

Ω 
nε|∇cε|2βn + 

1 

2
|||∇cε|βn−1 D2 cε||2 L2(Ω) 

+ C2

∫

Ω 
(nε + ε)m+pn−3|∇nε|2 + 

1 

2 
, 

(1.3.45) 

which along with (1.3.44) implies that  

1 

2βn 

d 

dt
||∇cε||2βn 

L2βn (Ω) + 
2(βn − 1) 

β2 
n

∫

Ω

|
|∇|∇cε|βn

|
|2 

+ 
1 

2

∫

Ω 
|∇cε|2βn−2|D2 cε|2 + 

1 

2

∫

Ω 
nε|∇cε|2βn 

≤C2

∫

Ω 
(nε + ε)m+pn−3|∇nε|2 +

∫

Ω 
|∇cε|2βn |Duε|  +  

1 

2 

(1.3.46) 

and thereby together with Lemma 1.21 leads to 

1 

2βn 

d 

dt
||∇cε||2βn L2βn (Ω) + ||∇cε||2βn L2βn (Ω) + 

1 

8

∫

Ω 
|∇cε |2βn−2|D2cε |2 + 

1 

2

∫

Ω 
nε |∇cε |2βn 

≤C2

∫

Ω 
(nε + ε)m+pn−3|∇nε |2 + C4 

with some constant C4 > 0. By  (1.3.43), there exists some positive constant C5 such 
that 

sup 
t∈(0,∞)

||∇cε||2βn 

L2βn (Ω) + sup 
t∈(0,∞)

∫ t+1 

t

∫

Ω 
[|∇cε|2βn−2|D2 cε|2 + nε|∇cε|2βn ]  ≤  C5. 

(1.3.47) 
Furthermore, in view of pn > m + α, taking pn+1 = 2 3 p

2 
n + 2( 4 3 m − 5 3 + α) pn + 

(2m + 2α − 3)(m − 1) + 1 in (1.3.26) and by the Young inequality, it follows that 
for any η  >  0, there is C(η) > 0 such that
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1 

pn+1 

d 

dt
||nε + ε||pn+1 

L pn+1 (Ω) + 
m(pn+1 − 1) 

2

∫

Ω 
(nε + ε)m+pn+1−3 (1 + nε)

−2α|∇nε|2 

≤ 
( pn+1 − 1)C2 

S 

2m

∫

Ω 
(nε + ε)pn+1+1−m−2α|∇cε|2 

= ( pn+1 − 1)C2 
S 

2m

∫

Ω 
(nε + ε) 

1 
βn |∇cε|2 (nε + ε)pn+1+1−m−2α− 1 

βn 

≤C(η)

∫

Ω 
(nε + ε)|∇cε|2βn + η

∫

Ω 
(nε + ε)[pn+1+1−m−2α− 1 

βn 
] βn 

βn −1 . 
(1.3.48) 

Thanks to pn+1 = 2 3 p
2 
n + 2( 4 3 m − 5 3 + α)pn + (2m + 2α − 3)(m − 1) + 1, we can 

see that 

(pn+1 + 1 − m − 2α − 
1 

βn 
) 

βn 

βn − 1 
=(pn+1 + 1 − m − 2α − 1 

pn + m − 1 
) 
pn + m − 1 
pn + m − 2 

=m + pn+1 − 1 + 
2 

3 
pn 

and thereby

∫

Ω 
(nε + ε)m+pn+1−1+ 2 

3 pn 

=||(nε + ε) 
m+ pn+1−1 

2 ||
2(m+pn+1−1+ 2 3 pn ) 

m+ pn+1−1 

L 
2(m+ pn+1−1+ 2 3 pn ) 

m+ pn+1−1 (Ω) 

≤C6||∇(nε + ε) 
pn+1+m−1 

2 ||2 L2(Ω)||(nε + ε) 
pn+1+m−1 

2 ||
2(m+ pn+1−1+ 2 3 pn ) 

m+ pn+1−1 −2 

L 
2 pn 

m+ pn+1−1 (Ω) 

+C6||(nε + ε) 
pn+1+m−1 

2 ||
2(m+ pn−1+ 2 3 pn ) 

m+ pn−1 

L 
2 pn 

m+ pn+1−1 (Ω) 

≤C7(||∇(nε + ε) 
pn+1+m−1 

2 ||2 L2(Ω) + 1). 

Substituting the above inequality into (1.3.48) and taking η  >  0 appropriately small, 
one may derive that there is C8 > 0 such that for any ε ∈ (0, 1), 

1 

pn+1 

d 

dt
||nε + ε||pn+1 

L pn+1 (Ω) + 
m(pn+1 − 1) 

4

∫

Ω 
(nε + ε)m+pn+1−3|∇nε|2 

+
∫

Ω 
(nε + ε)m+pn+1−1+ 2 

3 pn 

≤C(η)

∫

Ω 
nε|∇cε|2βn +

∫

Ω 
|∇cε|2βn + C8. 

This together with (1.3.47) implies that for some positive constant C9,
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sup 
t∈(0,∞)

||nε(·, t) + ε||pn+1 

L pn+1 (Ω) + sup 
t∈(0,∞)

∫ t+1 

t

∫

Ω 
(nε + ε)pn+1+m−3|∇nε|2 ≤ C9 

and thus completes the proof of Lemma 1.23. 

Combining Lemma 1.3.34 with Lemma 1.23, we immediately have 

Lemma 1.24 Let 0 ≤ α ≤ 7 
18 and 

10 
9 < m + α ≤ 3 2 . Then there exist constants p

∗ > 
3 
2 and C = C( p∗)  >  0 such that

∫

Ω 
n p

∗ 

ε (x, t)dx  ≤ C 

for all t > 0. 

By the similar strategy as above, one can also derive the boundedness of
∫

Ω n 
p 
ε 

with some p > 3 2 in the case m + α  >  2. 

Lemma 1.25 Let m + α  >  2. There exists C > 0 independent of ε such that the 
solution of (1.2.2) satisfies

∫

Ω 
(nε + ε)m+2α−1 ≤ C v f orall  t  > 0 (1.3.49) 

as well as

∫ t+1 

t

∫

Ω

⎾
(nε + ε)2(m+α− 2 

3 ) + (nε + ε)2m+2α−4|∇nε|2
⎤

≤ C. (1.3.50) 

Proof Taking cε as the test function for the second equation of (1.2.2) and using 
∇  ·  uε = 0, it yields that 

1 

2 

d 

dt
||cε||2 L2(Ω) +

∫

Ω 
|∇cε|2 =  −

∫

Ω 
nεc

2 
ε , 

which together with nε ≥ 0 and cε ≥ 0 implies that for some positive constant C1,

∫

Ω 
c2 ε +

∫ t+1 

t

∫

Ω 
|∇cε|2 ≤ C1 for all t > 0. 

Now, choosing p = m + 2α − 1 in (1.3.26), we get
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1 

m + 2α − 1 
d 

dt
||nε + ε||m+2α−1 

Lm+2α−1(Ω) + 
m(m + 2α − 2) 

2

∫

Ω 
(nε + ε)2m+2α−4|∇nε|2 

≤ 
(m + 2α − 2)C2 

S 

2m

∫

Ω 
(nε + ε)2α (1 + nε)

−2α|∇cε|2 

≤ 
(m + 2α − 2)C2 

S 

2m

∫

Ω 
|∇cε|2 for all t > 0. 

(1.3.51) 
Furthermore, applying the Gagliardo–Nirenberg inequality, we obtain that there 

are Ci > 0,  (i = 1, 2, 3), such that
∫

Ω 
(nε + ε)m+2α−1 

=||(nε + ε)m+α−1||
m+2α−1 
m+α−1 

L 
m+2α−1 
m+α−1 (Ω) 

≤C1||∇(nε + ε)m+α−1||2 
3(m+2α−2) 
6m+6α−7 

L2(Ω)
||(nε + ε)m+α−1||

m+2α−1 
m+α−1 −2 3(m+2α−2) 

6m+6α−7 

L 
1 

m+α−1 (Ω) 

+C1||(nε + ε)m+α−1||
m+2α−1 
m+α−1 

L 
1 

m+α−1 (Ω) 

≤C2(||∇(nε + ε)m+α−1||
6(m+2α−2) 
6m+6α−7 

L2(Ω) + 1) 

≤ 
m(m + 2α − 2) 

8

∫

Ω 
(nε + ε)2m+2α−4|∇nε|2 + C3 

thanks to 6(m+2α−2) 
6m+6α−7 < 2, and

∫

Ω 
(nε + ε)2(m+α− 2 

3 ) =||(nε + ε)m+α−1||
2(m+α− 2 3 ) 
m+α−1 

L 
2(m+α− 2 3 ) 
m+α−1 (Ω) 

≤C3(||∇(nε + ε)m+α−1||2 L2(Ω) + 1). 

Inserting above two inequalities into (1.3.51), we derive 

1 

m + 2α − 1 
d 

dt
||nε + ε||m+2α−1 

Lm+2α−1(Ω) +
∫

Ω 
(nε + ε)m+2α−1 

+ 
m(m + 2α − 2) 

2

∫

Ω 
(nε + ε)2m+2α−4|∇nε|2 + (nε + ε)2(m+α− 2 

3 ) 

≤ 
(m + 2α − 2)C2 

S 

2m

∫

Ω 
|∇cε|2 + C4 for all t > 0 

(1.3.52) 

with some positive constant C4. Now, we define yε(t) := ||nε(·, t) + ε||m+2α−1 
Lm+2α−1(Ω) and 

hε(t) := 
m(m + 2α − 2) 

2

∫

Ω 
(nε + ε)2m+2α−4|∇nε |2 + (nε + ε)2(m+α− 2 

3 ) for all t > 0.
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As an application of Lemma 1.4, this together with (1.3.51) readily yields (1.3.49) 
and (1.3.50). 

With the space–time regularity property of nε in (1.3.50), we can improve the regu-
larity of ∇uε beyond (1.3.14) through following lemma. 

Lemma 1.26 Let m + α  >  2. There exists constant C > 0 such that for all t > 0,
∫

Ω 
|∇uε(·, t)|2 +

∫ t+1 

t

∫

Ω 
|Δuε|2 ≤ C. (1.3.53) 

Proof Multiplying the projected Stokes equation uεt + Auε = P[nε∇φ] by Auε, 
we derive 

1 

2 

d 

dt
||A 1 2 uε||2 L2(Ω) +

∫

Ω 
|Auε |2 =

∫

Ω 
P(nε∇φ)Auε 

≤ 
1 

2

∫

Ω 
|Auε |2 + 

1 

2
||∇φ||2 L∞(Ω)

∫

Ω 
n2 ε for all t > 0. 

(1.3.54) 

Recalling that ||A 1 2 uε||2 L2(Ω) = ||∇uε||2 L2(Ω) (see p. 133 of Sohr 2001), and with some 
C1 > 0, we have

∫

Ω 
|∇uε(·, t)|2 ≤ C1

∫

Ω 
|Auε|2 for all t > 0. 

Thanks to the fact that || · ||W 2,2(Ω) and ||A(·)||L2(Ω) are equivalent on D(A) (see p. 
129 of Sohr 2001), we see that for 

y(t) :=
∫

Ω 
|∇uε(·, t)|2 , t > 0 

and 

h(t) := 
1 

2
||∇φ||2 L∞(Ω)

∫

Ω 
n2 ε, t > 0. 

Equation (1.3.54) implies the inequality 

y'(t) + 
1 

2C1 
y(t) + 

1 

2

∫

Ω 
|Auε|2 ≤ h(t) for all t > 0. 

As an application of Lemma 1.4, this yields (1.3.53) thanks to (1.3.50). 

At this position, we can achieve the regularity of cε in the case m + α  >  2 just as 
that in Lemma 1.13. 

Lemma 1.27 Let m + α  >  2. There exists C > 0 independent of ε such that
∫

Ω 
|∇cε(·, t)|2 +

∫ t+1 

t

∫

Ω 
|Δcε|2 ≤ C for all t > 0. (1.3.55)
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Proof Similar to the proof (1.3.42), we can conclude that 

1 

2 

d 

dt
||∇cε||2 L2(Ω) 

≤− 
1 

2

∫

Ω 
|Δcε|2 + ||c0||L∞(Ω)

∫

Ω 
n2 ε −

∫

Ω 
∇cε(∇uε ·  ∇cε) 

≤− 
1 

2

∫

Ω 
|Δcε|2 + ||c0||L∞(Ω)

∫

Ω 
n2 ε + ||∇uε||L2(Ω)||∇cε||2 L4(Ω) for all t > 0. 

(1.3.56) 
Recalling (1.2.10), the Gagliardo–Nirenberg inequality entails that there exist C1 > 0 
and C2 > 0 such that

||∇cε||2 L4(Ω) ≤C1||Δcε||L2(Ω)||cε||2 L∞(Ω) + C1||cε||2 L∞(Ω) 

≤C2||Δcε||L2(Ω) + C2 for all t > 0. 
(1.3.57) 

Substituting (1.3.57) into (1.3.56) and by the Young inequality, we obtain that for 
some positive constant C3, 

1 

2 

d 

dt
||∇cε||2 L2(Ω) 

≤− 
1 

2

∫

Ω 
|Δcε|2 + ||c0||L∞(Ω)

∫

Ω 
n2 ε + ||∇uε||L2(Ω)[C2||Δcε||

1 
2 

L2(Ω) + C2]2 

≤− 
1 

4

∫

Ω 
|Δcε|2 + ||c0||L∞(Ω)

∫

Ω 
n2 ε + C3||∇uε||2 L2(Ω) + C3 for all t > 0, 

(1.3.58) 
which together with (1.3.57) implies that for some positive constants C4, C5, 

1 

2 

d 

dt
||∇cε||2 L2(Ω) + 

1 

8
||Δcε||2 L2(Ω) + C4||∇cε||2 L2(Ω) 

≤||c0||L∞(Ω)

∫

Ω 
n2 ε + C3||∇uε||2 L2(Ω) + C5 for all t > 0. 

(1.3.59) 

Now, we define gε(t) := ||∇cε(·, t)||2 L2(Ω) and 

hε(t) := ||c0||L∞(Ω)

∫

Ω 
n2 ε(·, t) + C3||∇uε(·, t)||2 L2(Ω) + C5. 

As an application of Lemma 1.4, this in conjunction with (1.3.53) entails (1.3.55). 

Proceeding as the proof of Lemma 1.16, we can arrive at 

Lemma 1.28 Let m + α  >  2. Then there exists C > 0 independent of ε such that 
the solution of (1.2.2) satisfies

∫

Ω 
(nε + ε)m+2α− 1 

2 ≤ C for all t > 0. (1.3.60)
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Proof Choosing p = m + 2α − 1 2 in (1.3.26), we obtain that for some C1 > 0, 

1 

m + 2α − 1 2 

d 

dt
||nε + ε||m+2α− 1 

2 

Lm+2α− 1 2 (Ω) 
+ 

m(m + 2α − 3 2 ) 
2

∫

Ω 
(nε + ε)2m+2α− 1 

2 −3|∇nε |2 

≤C1

∫

Ω 
(nε + ε) 

1 
2 +2α 

(1 + nε)
−2α |∇cε |2 

≤C1

∫

Ω 
(nε + ε) 

1 
2 |∇cε |2 

≤C2 
1 [||n0||L1(Ω) +  |Ω|] + 

1 

4

∫

Ω 
|∇cε |4 for all t > 0. 

(1.3.61) 
On the other hand, we employ the Gagliardo–Nirenberg inequality to derive that 
there exists positive constants C2, C3 and C4 such that

∫

Ω 
(nε + ε)m+2α− 1 

2 

=||(nε + ε)m+α− 3 
4 ||

m+2α− 1 2 
m+α− 3 4 

L 

m+2α− 1 2 
m+α− 3 4 (Ω) 

≤C2||∇(nε + ε)m+α− 3 
4 ||2 

3(2m+4α−3) 
3(4m+4α−3)−2 

L2(Ω)
||(nε + ε)m+α− 3 

4 ||
m+2α− 1 2 
m+α− 3 4 

−2 3(2m+4α−3) 
3(4m+4α−3)−2 

L 

1 
m+α− 3 4 (Ω) 

+C2||(nε + ε)m+α− 3 
4 ||

m+2α− 1 2 
m+α− 3 4 

L 

1 
m+α− 3 4 (Ω) 

≤C3(||∇(nε + ε)m+α− 3 
4 ||2 

3(2m+4α−3) 
3(4m+4α−3)−2 

L2(Ω)
+ 1) 

=C4

⎛∫

Ω 
(nε + ε)2m+2α− 1 

2 −3|∇nε|2
⎞ 3(2m+4α−3) 

3(4m+4α−3)−2 

+ C3 for all t > 0. 

Inserting the above inequality into (1.3.61), one has 

1 

m + 2α − 1 2 

d 

dt
||nε + ε||m+2α− 1 

2 

Lm+2α− 1 2 (Ω) 
+ C5

⎛∫

Ω 
(nε + ε)m+2α− 1 

2

⎞ 3(4m+4α−3)−2 
3(2m+4α−3) 

≤C6 + 
1 

4

∫

Ω 
|∇cε|4 for all t > 0. 

With the help of (1.3.55) and (1.3.57), we derive that (1.3.60) by Lemma 1.4. 

At this position, by the result stated in Lemmas 1.28, 1.24 and 1.16, we have  

Lemma 1.29 Let m + α  >  10 9 . Then there exist positive constants q0 > 3 2 and C > 0 
such that the solution of (1.2.2) satisfies

∫

Ω 
nq0 ε (x, t)dx  ≤ C for all t > 0. (1.3.62)
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Proof Let 

q0 = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

p∗ if 
10 

9 
< m + α ≤ 

3 

2 
and 0 ≤ α ≤ 

7 

18 
, 

m + 2α if 
10 

9 
< m + α ≤ 

3 

2 
and α  >  

7 

18 
, 

m + 2α if 
3 

2 
< m + α ≤ 2, 

m + 2α − 
1 

2 
if m + α  >  2, 

with p∗ given in Lemma 1.24. Then it is easy to see that q0 > 3 2 and thereby (1.3.62) 
readily follows from Lemmas 1.28, 1.24 and 1.16. 

1.3.3 Uniform L∞-Boundedness of nε as Well as ∇cε and uε 

With Lemma 1.29 at hand, further regularity properties of nε, cε and uε can now be 
obtained by essentially rather standard arguments (see the proof of Corollary 3.4 in 
Winkler 2015b or Lemma 6.1 in Winkler 2018c for example). We firstly use the heat 
semigroup to obtain the L∞(Ω)-bound for uε. 

Lemma 1.30 Let m + α  >  10 9 and assume that the hypothesis of Theorem 1.1 holds. 
Then there exists a positive constant C independent of ε such that, the solution of 
(1.2.2) satisfies

||uε(·, t)||L∞(Ω) ≤ C for all t > 0. (1.3.63) 

Proof Let hε(x, t) = P[nε∇φ]. Then by Lemma 1.29, there is C1 > 0 such that 
for all t > 0

||hε(·, t)||Lq0 (Ω) ≤ C1. (1.3.64) 

Fixing r0 and δ with r0 ∈ ( 3 2q0 
, 1) and δ ∈ (0, 1 − r0), one can chooses r1 > 3 

δ such 

that W δ,r1 (Ω) ϲ→ L∞(Ω). It then follows from the variation-of-constants represen-
tation, the Young inequality, the Sobolev embedding theorem and (1.3.64) that

||uε(·, t)||L∞(Ω) 

≤||e−t A  u0||L∞(Ω) +
∫ t 

0
||Ar0 e−(t−τ  )  A A−r0 hε(·,  τ  )dτ||L∞(Ω)dτ 

≤||e−t A  u0||L∞(Ω) +
∫ t 

0
||Ar0+δ e−(t−τ  )  A A−r0 hε(·,  τ  )dτ||Lr1 (Ω)dτ 

≤||e−t A  u0||L∞(Ω) + C1

∫ t 

0 
(t − τ  )−r0−δ e−λ(t−τ  )||e−(t−τ  )  A A−r0 hε(·,  τ  )dτ||Lr1 (Ω)dτ 

≤||Aγ u0||L2(Ω) + C2

∫ t 

0 
(t − τ  )−r0−δ e−λ(t−τ  )||hε(·,  τ  )||Lq0 (Ω)dτ 

≤C3 for all t > 0.



36 1 Chemotaxis–Fluid System

Here, we have used the fact that r0 > 3 
2q0 

> 3 2 ( 
1 
q0 

− 1 r1 ) and

∫ t 

0 
(t − τ  )−r0−δ e−λ(t−τ  )  ≤

∫ ∞ 

0 
t−r0−δ e−λτ dτ  <  ∞. 

Lemma 1.31 Assume that the hypothesis of Theorem 1.1 holds. Then there exists a 
positive constant C independent of ε such that the solution of (1.2.2) satisfies

||∇cε(·, t)||Lr0 (Ω) ≤C for all t > 0 (1.3.65) 

with 3 < r0 < min{ 3q0 
(3−q0)+ 

, 4}, where q0 > 3 2 is given by Lemma 1.29. 

Proof Involving the variation-of-constants formula for cε and applying ∇  ·  uε = 0 
in x ∈ Ω, t > 0, we have  

cε(t) = et (Δ−1) c0 −
∫ t 

0 
e(t−s)(Δ−1) (nε(s)cε(s) − cε(s) −  ∇  ·  (uε(s)cε(s))ds, 

and thus

||∇cε(·, t)||Lr0 (Ω) 

≤||∇etΔ c0||Lr0 (Ω) +
∫ t 

0
||∇e(t−s)Δ[nε(s) − 1]cε(s)||Lr0 (Ω)ds  

+
∫ t 

0
||∇e(t−s)Δ∇  ·  (uε(s)cε(s))||Lr0 (Ω)ds  for all t > 0, 

(1.3.66) 

where r0 ∈ (3, min{ 3q0 
(3−q0)+ 

, 4}). 
Now, we will estimate the terms on the right of (1.3.66) one by one. In view of 

(1.1.4), there is C1 > 0 such that

||∇et (Δ−1) c0||Lr0 (Ω) ≤ C1 for all t > 0. (1.3.67) 

Since q0 > 3 2 , it yields 

− 
1 

2 
− 

3 

2

⎛
1 

q0 
− 

1 

r0

⎞

> −1, 

which together with Lemmas 1.29 and 1.8 implies that for some positive constants 
C2 and C3,

∫ t 

0
||∇e(t−s)(Δ−1)[(nε(s) − 1)cε(s)]||Lr0 (Ω)ds  

≤C2

∫ t 

0 
[1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 r0 
)]e−λ(t−s)[||nε(s)||Lq0 (Ω) + 1]||cε(s)||L∞(Ω)ds  

≤C3 for all t > 0. 
(1.3.68)
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Finally, we choose ι = 1 3 satisfying 
1 
2 + 3 2 ( 

1 
∞ − 1 6 )  <  1 3 and κ̃ = 1 

12 ∈ (0, 1 6 ). In  
view of Hölder’s inequality, we derive from Lemma 1.30 that there exist positive 
constants Ci , i = 4, · · ·  , 8 such that

∫ t 

0
||∇e(t−s)(Δ−1)∇  ·  (uε(s)cε(s))||Lr0 (Ω)ds  

≤C4

∫ t 

0
||e(t−s)(Δ−1)∇  ·  (uε(s)cε(s))||W 1,r0 (Ω)ds  

≤C5

∫ t 

0
||(−Δ + 1)ι e(t−s)(Δ−1)∇  ·  (uε(s)cε(s))||L6(Ω)ds  

≤C6

∫ t 

0 
(t − s)−ι− 1 

2 −κ̃ e−λ̃(t−s)||uε(s)cε(s)||L∞(Ω)ds  

≤C7

∫ t 

0 
(t − s)−ι− 1 

2 −κ̃ e−λ̃(t−s)||uε(s)||L∞(Ω)||cε(s)||L∞(Ω)ds  

≤C8 for all t > 0. 

(1.3.69) 

Here, we have used the fact that

∫ t 

0 
(t − s)−ι− 1 

2 −κ̃ e−λ(t−s) ds  ≤
∫ ∞ 

0 
σ −ι− 1 

2 −κ̃ e−λσ dσ  <  +∞. 

Combining with (1.3.66)–(1.3.69), we arrive at (1.3.65). 

From the regularity property of solutions obtained above, we can infer the higher 
regularity about nε. 

Lemma 1.32 Assuming that m + α  >  10 9 . Then for all p > 2, there exists C > 0 
such that

||nε(·, t) + ε||L p(Ω) ≤ C for all t > 0. (1.3.70) 

Proof Recalling Lemmas 1.14 and by (1.31), we have 

1 

p 

d 

dt
||nε + ε||p 

L p (Ω) + 
m(p − 1) 

2

∫

Ω 
(nε + ε)m+p−3|∇nε|2 

≤C1

∫

Ω 
(nε + ε)p+1−m (1 + nε)

−2α|∇cε|2 

≤C1

⎛∫

Ω 
(nε + ε)3( p+1−m−2α)

⎞ 1 
3
⎛∫

Ω 
|∇cε|3

⎞ 2 
3 

≤C2

⎛∫

Ω 
(nε + ε)3( p+1−m−2α)

⎞ 1 
3 

for all t > 0 

for constants C1 > 0 and k2 > 0. By the Gagliardo–Nirenberg inequality, there exist 
positive constants Ci > 0, (i = 3, 4, 5, 6) fulfilling
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⎛∫

Ω 
(nε + ε)3( p+1−m−2α)

⎞ 1 
3 

=||(nε + ε) 
m+ p−1 

2 ||
2(p+1−m−2α) 

m+ p−1 

L 
6(p+1−m) 
m+ p−1 (Ω) 

≤C3||∇(nε + ε) 
m+ p−1 

2 ||2 
3 p−3m+2−6α 
3m+3 p−4 

L2(Ω)
||(nε + ε) 

m+ p−1 
2 ||

2(p+1−m) 
m+ p−1 −2 3 p−3m+2−6α 

3m+3 p−4 

L 
2 

m+ p−1 (Ω) 

+C3||(nε + ε) 
m+ p−1 

2 ||
2(p+1−m) 
m+ p−1 

L 
2 

m+ p−1 (Ω) 

≤C4(||∇(nε + ε) 
m+ p−1 

2 ||2 
3 p−3m+2−6α 
3m+3 p−4 

L2(Ω)
+ 1) for all t > 0 

and ∫

Ω 
(nε + ε)p 

=||(nε + ε) 
m+ p−1 

2 ||
2 p 

m+ p−1 

L 
2 p 

m+ p−1 (Ω) 

≤C5||∇(nε + ε) 
m+ p−1 

2 ||2 
3 p−3 

3m+3 p−4 

L2(Ω)
||(nε + ε) 

m+ p−1 
2 ||

2 p 
m+ p−1 −2 3 p−3 

3m+3 p−4 

L 
2 

m+p−1 (Ω) 

+C4||(nε + ε) 
m+ p−1 

2 ||
2 p 

m+ p−1 

L 
2 

m+ p−1 (Ω) 

≤C6(||∇(nε + ε) 
m+ p−1 

2 ||2 
3 p−3 

3m+3 p−4 

L2(Ω) + 1) for all t > 0. 

With the help of m + α  >  10 9 , we have  3p−3m+2−6α 
3m+3p−4 < 1 and hence obtain that for 

some constant C7 > 0 

1 

p 

d 

dt
||nε + ε||p 

L p(Ω) + C7

⎛∫

Ω 
(nε + ε)p

⎞ 3m+3 p−4 
3 p−3 

≤C7 for all t > 0. 

Therefore, (1.3.70) follows from the application of Lemma 1.4. 

By applying the general semigroup estimates, the standard parabolic regularity 
arguments and a Moser-type iteration (see, e.g., Lemma A.1 of Tao and Winkler 
2012a), we can now establish the existence of global bounded classical solutions to 
the regularized system (1.2.2). 

Proposition 1.1 Let m + α  >  10 9 . Then there exists C > 0 independent of ε ∈ (0, 1) 
such that

||nε(·, t)||L∞(Ω) + ||cε(·, t)||W 1,∞(Ω) + ||Aγ uε(·, t)||L2(Ω) ≤ C for all t > 0. 
(1.3.71) 

Proof Let hε(x, t) = P[nε∇φ]. Then by (1.3.70), there is C1 > 0 such that

||hε(·, t)||L2(Ω) ≤ C1 for all t > 0.
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So combining the known smoothing properties of the Stokes semigroup (see Giga 
1986) with (1.1.4), there are positive constants C2 and C3 such that

||Aγ uε(·, t)||L2(Ω) ≤||Aγ e−t A  u0||L2(Ω) +
∫ t 

0
||Aγ e−(t−τ  )  A hε(·,  τ  )dτ||L2(Ω)dτ 

≤||Aγ u0||L2(Ω) + C2

∫ t 

0 
(t − τ  )−γ e−λ(t−τ  )||hε(·,  τ  )||L2(Ω)dτ 

≤C3 for all t > 0. 

Next, we rewrite the variation-of-constants formula for cε in the form 

cε(·, t) = et (Δ−1) c0 +
∫ t 

0 
e(t−s)(Δ−1) (cε − nεcε − uε ·  ∇cε)(·, s)ds  for all t > 0. 

Due to 3 < r0 < min{ 3q0 
(3−q0)+ 

, 4} (see Lemma 1.31), one can pick θ ∈ ( 1 2 + 3 
2r0 

, 1) 
and thereby the domain of the fractional power D((−Δ + 1)θ ) ϲ→ W 1,∞(Ω) (see 
Winkler 2010). Hence, in view of L p-Lq estimates associated heat semigroup, 
Lemma 1.31 as well as (1.1.4), we conclude that there exist positive constants λ1, C4 

as well as C5 and C6 such that

||∇cε(·, t)||W 1,∞(Ω) 

≤C4e
−λ1t||∇c0||L∞(Ω) 

+
∫ t 

0 
(t − s)−θ e−λ1(t−s)||(cε − nεcε − uε ·  ∇cε)(s)||Lr0 (Ω)ds  

≤C5 + C5

∫ t 

0 
(t − s)−θ e−λ1(t−s) ds  

+C5

∫ t 

0 
(t − s)−θ e−λ1(t−s)[||nε(·, s)||Lr0 (Ω) + ||∇cε(·, s)||Lr0 (Ω)]ds  

≤C6 for all t ∈ (0, ∞). 

(1.3.72) 

Finally, we rewrite the first equation of (1.2.2) as  

nεt = Δ(nε + ε)m −  ∇  ·  (nεuε + nε Fε(nε)Sε(x, nε, cε) ·  ∇cε), (1.3.73) 

Hence, in view of (1.3.72) and using the outcome of Lemma 1.32 with suitably large 
p as a starting point, we may invoke Lemma A.1 in Tao and Winkler (2012a) which 
by means of a Moser-type iteration applied to (1.3.73) and establish

||nε(·, t)||L∞(Ω) ≤C7 for all t > 0 (1.3.74) 

with some positive constant C7 independent of ε. 

To achieve the convergence result, we still need the following further regularity 
estimate. With the help of Proposition 1.1, we can straightforwardly deduce the
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uniform Hölder properties of cε as well as ∇cε and uε by using the standard parabolic 
regularity property and the standard semigroup estimation techniques. 

Lemma 1.33 Let m + α  >  10 9 . Then one can find μ ∈ (0, 1) such that for some 
C > 0,

||cε(·, t)||Cμ, μ 
2 (Ω×[t,t+1]) ≤ C for all t ∈ (0, ∞) 

as well as
||uε(·, t)||Cμ, μ 

2 (Ω×[t,t+1]) ≤ C for all t ∈ (0, ∞), 

and for any τ  >  0, there exists C(τ ) > 0 fulfilling

||∇cε(·, t)||Cμ, μ 
2 (Ω×[t,t+1]) ≤ C for all t ∈ (τ, ∞). 

Proof Based on the uniform boundedness of {(nε, cε, uε)}ε∈(0,1) as claimed in Propo-
sition 1.1 and the assumptions on φ, we conclude the desired estimates by applying 
the standard parabolic regularity theory (see, e.g., Ladyzenskaja et al. 1968) and 
some standard semigroup estimation techniques, which is omitted here. 

Unlike cε and uε, we are not able to attain the Hölder regularity for nε due to the 
presence of nonlinear diffusion. We now make full use of the a priori bounds derived 
so far to obtain the boundedness property of the time derivatives of certain powers of 
nε and spatio-temporal integrability property of

∫ ∞ 
0

∫

Ω (nε + ε)m+p−3|∇nε|2, which 
plays a key role in deriving strong compactness properties for nε. Let us provide the 
following spatio-temporal estimates at first. 

Lemma 1.34 Let m + α  >  10 9 . Then there exists a positive constant C such that for 
any ε ∈ (0, 1)

∫ ∞ 

0

∫

Ω 
(nε + ε)m+p−3|∇nε|2 ≤ C for all p > 1 and p ≥ m + 2α − 1. (1.3.75) 

Proof In light of Proposition 1.1, there exists C1 > 0 such that for all ε ∈ (0, 1), 
nε ≤ C1 in Ω × (0, ∞). For any p ≥ m + 2α − 1 and p > 1, using Proposition 1.1, 
we can thereby estimate the integral on the right of (1.3.26) according to 

1 

p
||nε(·, t) + ε||p 

L p(Ω) + 
m( p − 1) 

2

∫ t 

0

∫

Ω 
(nε + ε)m+p−3|∇nε|2 

≤ 
( p − 1)C2 

S 

2m

∫ t 

0

∫

Ω 
(nε + ε)p+1−m−2α|∇cε|2 + 

1 

p
||n0 + ε||p 

L p (Ω) 

≤ 
(p − 1)C2 

S 

2m 
(C1 + 1)p+1−m−2α

∫ ∞ 

0

∫

Ω 
|∇cε|2 + 

1 

p
||n0 + 1||p 

L p(Ω) 

≤ 
(p − 1)C2 

S 

4m 
(C1 + 1)p+1−m−2α

∫

Ω 
c2 0 + 

1 

p
||n0 + 1||p 

L p (Ω) for all t ∈ (0, ∞), 

which immediately leads to our conclusion.
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In order to pass to the limit in system (1.2.2) by compactness argument, we intend 
to supplement Proposition 1.1 with an appropriate boundedness property of the time 
derivatives of nε. 

Lemma 1.35 Let m + α  >  10 9 . Then one can find C > 0 such that for any ε ∈ (0, 1)

||∂t nε(·, t)||(W 2,2 0 (Ω))∗ ≤ C for all t ∈ (0, ∞). (1.3.76) 

In particular,

||nε(·, t) − nε(·, s)||(W 2,2 0 (Ω))∗ ≤ C |t − s| for all t ≥ 0, s ≥ 0 and ε ∈ (0, 1). 
(1.3.77) 

Moreover, let ς  >  m and ς ≥ 2(m − 1). Then for all T > 0 and ε ∈ (0, 1), there 
exists a positive constant C(T ) such that

∫ T 

0
||∂t (nε + ε)ς (·, t)||(W 3,2 0 (Ω))∗dt  ≤ C(T ) for all ε ∈ (0, 1). (1.3.78) 

Proof To estimate the integrals on the right of (1.3.80) below appropriately, we first 
apply Proposition 1.1 to find C1 such that 

(nε + ε)m ≤ C1, nε ≤ C1 as well as |∇cε|  ≤  C1 and |uε|  ≤  C1 in Ω × (0, ∞). 
(1.3.79) 

For any fixed ψ ∈ C∞
0 (Ω), we multiply the first equation in (1.2.2) by  (nε + ε)ς −1ψ 

and then get 

1 

ς

∫

Ω 
∂t (nε + ε)ς (·, t) · ψ 

=
∫

Ω 
(nε + ε)ς −1

┌
Δ(nε + ε)m −  ∇  ·  (nε Sε(x, nε, cε)∇cε) − uε ·  ∇nε

⎤ · ψ 

=−(ς − 1)m
∫

Ω 
(nε + ε)ς −2 (nε + ε)m−1|∇nε|2 ψ 

−m
∫

Ω 
(nε + ε)ς −1 (nε + ε)m−1∇nε ·  ∇ψ 

+ (ς − 1)
∫

Ω 
(nε + ε)ς −1∇nε · (Sε(x, nε, cε) ·  ∇cε)ψ 

+
∫

Ω 
(nε + ε)ς Sε(x, nε, cε)∇cε ·  ∇ψ 

+ 
1 

ς

∫

Ω 
(nε + ε)ς uε ·  ∇ψ for all t ∈ (0, ∞). 

(1.3.80) 
In what follows, we shall estimate the right of the above equality appropriately by 
(1.3.79). Indeed, since ς  >  m and ς ≥ 2(m + α − 1), the number p := ς − m + 1 
satisfies p > 1 and p ≥ m + 2α − 1, so that, (1.3.75) becomes applicable so as to 
yield C3 > 0 fulfilling



42 1 Chemotaxis–Fluid System

∫ ∞ 

0

∫

Ω 
(nε + ε)ς −2|∇nε|2 =

∫ ∞ 

0

∫

Ω 
(nε + ε)m+p−3|∇nε|2 ≤ C3 

for some positive constant C3. Now, applying (1.3.79), we conclude from the Young 
inequality that 

−(ς − 1)m
∫

Ω 
(nε + ε)ς −2 (nε + ε)m−1|∇nε|2 ψ 

−m
∫

Ω 
(nε + ε)ς −1 (nε + ε)m−1∇nε ·  ∇ψ 

+ (ς − 1)
∫

Ω 
(nε + ε)ς −1∇nε · (Sε(x, nε, cε) ·  ∇cε)ψ 

+
∫

Ω 
(nε + ε)ς Sε(x, nε, cε)∇cε ·  ∇ψ + 

1 

ς

∫

Ω 
(nε + ε)ς uε ·  ∇ψ 

≤C4(ς − 1)
∫

Ω 
(nε + ε)ς −2|∇nε|2||ψ||L∞(Ω) 

+C5

∫

Ω 
[(nε + ε)ς −2|∇nε|2 + (C1 + 1)ς −1]||∇ψ||L∞(Ω) 

+ C6

∫

Ω 
[(nε + ε)ς −2|∇nε|2 + Cς 

1 ]||ψ||L∞(Ω) 

+Cς +1 
1 CS|Ω|||∇ψ||L∞(Ω) + 

1 

ς 
Cς +1 
1 |Ω|||ψ||L∞(Ω) 

(1.3.81) 

with some positive constants C4 as well as C5 and C6. Inserting (1.3.81) into (1.3.80), 
we derive that there is C7 > 0 such that for all t > 0 and any ε ∈ (0, 1), 

|
∫

Ω 
∂t (nε + ε)ς (·, t) · ψ |  ≤  C7(

∫

Ω 
(nε + ε)ς −2|∇nε|2 + 1)||ψ||W 1,∞(Ω). 

As in the three-dimensional space, we have W 3,2 0 (Ω) ϲ→ W 1,∞(Ω). Collecting the 
above inequalities, we infer the existence of C8 > 0 such that for any ε ∈ (0, 1),

||∂t (nε + ε)ς (·, t)||(W 3,2 0 (Ω))∗ ≤ C8(

∫

Ω 
(nε + ε)ς −2|∇nε|2 + 1) for all t ∈ (0, ∞). 

Therefore, we obtain the desired estimate (1.3.78). 
Testing the first equation in (1.2.2) by an arbitrary  ϕ ∈ C∞

0 (Ω), we have

∫

Ω 
nε,t (·, t) · ϕ =

∫

Ω

┌
Δ(nε + ε)m −  ∇  ·  (nε Sε(x, nε, cε)∇cε) − uε ·  ∇nε

⎤ · ϕ 

=
∫

Ω 
(nε + ε)m Δϕ +

∫

Ω 
nε Sε(x, nε, cε)∇cε ·  ∇ϕ +

∫

Ω 
nεuε ·  ∇ϕ 

for all t ∈ (0, ∞). Then combining this with (1.3.79) as well as (1.1.3), we get
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|
∫

Ω 
nε,t (·, t) · ϕ|  ≤  C9[

∫

Ω 
|Δϕ|  +

∫

Ω 
|∇ϕ|] in Ω × (0, ∞) 

for all ε ∈ (0, 1) with some positive constant C9, which establishes implies (1.3.76) 
and thus also (1.3.77). 

1.3.4 Global Boundedness of Weak Solutions 

The a-priori estimates achieved so far allow us to construct weak solutions by com-
pactness arguments. To this end, let us define what a weak solution is supposed to 
be. 

Definition 1.1 (Weak solutions) By a global weak solution of (1.1.1), we mean a 
triple (n, c, u) of functions 

⎧ 
⎪⎨ 

⎪⎩ 

n ∈ L1 
loc( Ω̄ ×  [0, ∞)), 

c ∈ L1 
loc([0, ∞);W 1,1 (Ω)), 

u ∈ L1 
loc([0, ∞);W 1,1 0 (Ω; R3 )), 

such that n ≥ 0 and c ≥ 0 a.e. in Ω × (0, ∞), 

nc, nm ∈ L1 
loc( Ω̄ ×  [0, ∞)), u ⊗ u ∈ L1 

loc( Ω̄ ×  [0, ∞); R3×3 ), and 
nS(x, n, c)∇c, cu and nu belong to L1 

loc( Ω̄ ×  [0, ∞); R3 ), 

∇  ·  u = 0 a.e. in Ω × (0, ∞), and 

−
∫ T 

0

∫

Ω 
nϕt −

∫

Ω 
n0ϕ(·, 0) 

=
∫ T 

0

∫

Ω 
nm Δϕ +

∫ T 

0

∫

Ω 
n(S(x, n, c) ·  ∇c) ·  ∇ϕ +

∫ T 

0

∫

Ω 
nu ·  ∇ϕ 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, ∞)) as well as 

−
∫ T 

0

∫

Ω 
cϕt −

∫

Ω 
c0ϕ(·, 0) =−

∫ T 

0

∫

Ω 
∇c ·  ∇ϕ −

∫ T 

0

∫

Ω 
nc · ϕ +

∫ T 

0

∫

Ω 
cu ·  ∇ϕ 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, ∞)) and 

−
∫ T 

0

∫

Ω 
uϕt −

∫

Ω 
u0ϕ(·, 0) =−

∫ T 

0

∫

Ω 
∇u ·  ∇ϕ −

∫ T 

0

∫

Ω 
n∇φ · ϕ 

for any ϕ ∈ C∞
0 (Ω ×  [0, ∞); R3) fulfilling ∇  ·  ϕ ≡ 0.
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The Proof of Theorem 1.1 We first give a series of convergence results. According 
to Lemma 1.33, the Arzelà-Ascoli theorem and a standard extraction procedure, we 
can find a sequence (ε j ) j∈N ⊆ (0, 1) with ε j ↘ 0 as j →  ∞  such that 

cε j → c in C0 
loc( Ω̄ ×  [0, ∞)), (1.3.82) 

∇cε j →  ∇c in C0 
loc( Ω̄ ×  [0, ∞)), (1.3.83) 

and 
uε j → u in C0 

loc( Ω̄ × (0, ∞)) (1.3.84) 

hold with some limit functions c and u belonging to the indicated spaces. On the 
other hand, Proposition 1.1 ensures the existence of a subsequence such that 

∇cε j ⇀ ∇c weakly star in L∞(Ω × (0, ∞)), (1.3.85) 

Duε j ⇀ Du weakly star in L∞(Ω ×  [0, ∞)), (1.3.86) 

and 
nε j ⇀ n weakly star in L∞(Ω × (0, ∞)) (1.3.87) 

hold for some n ∈ L∞(Ω × (0, ∞)). 
Fix ζ  >  m − 1. Then Lemmas 1.34 and 1.35 assert that for any T > 0, 

((nε + ε)ς )ε∈(0,1) is bounded in L
2 ((0, T ); W 1,2 (Ω)) 

and 
(∂t (nε + ε)ς )ε∈(0,1) is bounded in L

1 ((0, T ); (W 3,2 0 (Ω))∗) 

respectively. So the embedding W 1,2(Ω) ϲ→ϲ→ L2(Ω) ϲ→ (W 3,2 0 (Ω))∗ and the 
Aubin–Lions compactness lemma yield that (nε + ε) ς 

ε∈(0,1) is a relatively compact 
subset of the space L2(Ω × (0, T )). This in conjunction with the Egorov theorem 
gives that for some subsequence of ε = ε j , 

(nε + ε)ς → nς strongly in L2 (Ω × (0, T )) 

and hence 
(nε + ε) → z a.e. in Ω × (0, T ), 

for some nonnegative measurable z : Ω × (0, T ) → R. This combined with the 
Egorov theorem, then we can see that z = n, and thereby 

nε → n a.e. in Ω for all (0, ∞) \ N . (1.3.88)
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Next, noticing that L∞(Ω) ϲ→ (W 2,2 0 (Ω))∗ is compact, in view of Proposition 1.1 
and Lemma 1.35, we can use the Arzelà-Ascoli theorem again to assert 

nε → n in C0 
loc([0, ∞); (W 2,2 0 (Ω))∗). (1.3.89) 

With the help of (1.3.89) and the fact that ||n||L∞(Ω×(0,∞)) is finite, we can derive 

n ∈ C0 
ω−∗([0, ∞); L∞(Ω)) (1.3.90) 

by using the similar methods in the proof of Lemma 4.1 in Winkler (2015b). 
Combining (1.3.83) with (1.3.88), noticing the definition of Sε, we may further 

infer that 

nε Sε(x, nε, cε) ·  ∇cε → nS(x, n, c) ·  ∇c a.e. in Ω × (0, ∞) as ε := ε j ↘ 0. 

Then we may use the dominated convergence theorem, along with a subsequence 
(still denoted by {ε j }∞ 

j=1), we derive that 

nε Sε(x, nε, cε) ·  ∇cε → nS(x, n, c) ·  ∇c strongly in L2 loc( Ω̄ ×  [0, ∞)) as ε := ε j ↘ 0. (1.3.91) 

In the following, we shall show that the triple (n, c, u) is exactly a global weak 
solution to system (1.1.1). Indeed, multiplying the first equation in (1.2.2) by  ϕ ∈ 
C∞
0 ( Ω̄ ×  [0, ∞)), integrating by parts, we obtain 

−
∫ ∞ 

0

∫

Ω 
nεϕt −

∫

Ω 
n0ϕ(·, 0) 

=
∫ ∞ 

0

∫

Ω 
(nε + ε)m Δϕ +

∫ ∞ 

0

∫

Ω 
nε(Sε(x, nε, cε) ·  ∇cε) ·  ∇ϕ 

+
∫ ∞ 

0

∫

Ω 
nεuε ·  ∇ϕ. 

In view of (1.3.89), (1.3.91) as well as (1.3.84), we conclude from the dominated 
convergence theorem that 

−
∫ ∞ 

0

∫

Ω 
nϕt −

∫

Ω 
n0ϕ(·, 0) 

=
∫ ∞ 

0

∫

Ω 
nm Δϕ +

∫ ∞ 

0

∫

Ω 
n(S(x, n, c) ·  ∇c) ·  ∇ϕ 

+
∫ ∞ 

0

∫

Ω 
nu ·  ∇ϕ. 

Next, multiplying the second equation and the third equation in (1.2.2) by  ϕ ∈ 
C∞
0 (Ω ×  [0, ∞)) and ψ ∈ C∞

0 ( Ω̄ ×  [0, ∞); R3), respectively, then with the help 
of (1.3.85)–(1.3.86) and by a limit procedure, we also derive that
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−
∫ ∞ 

0

∫

Ω 
cϕt −

∫

Ω 
c0ϕ(·, 0) 

=−
∫ ∞ 

0

∫

Ω 
∇c ·  ∇ϕ −

∫ ∞ 

0

∫

Ω 
ncϕ +

∫ ∞ 

0

∫

Ω 
cu ·  ∇ϕ 

and 

−
∫ ∞ 

0

∫

Ω 
uϕt −

∫

Ω 
u0ϕ(·, 0) =  −

∫ ∞ 

0

∫

Ω 
∇u ·  ∇ϕ −

∫ ∞ 

0

∫

Ω 
n∇φ · ϕ 

in a completed similar manner. This means that (n, c, u) is a weak solution of (1.1.1). 
The convergence properties in (1.3.82)–(1.3.89) lead to the stated boundedness of 
global weak solutions thereof, and thus complete the proof of Theorem 1.1. 

1.4 Asymptotic Profile of Solution to a Chemotaxis–Fluid 
System with Singular Sensitivity 

1.4.1 Basic a Priori Bounds 

In order to derive some essential estimates, it would be more convenient to deal with a 
nonsingular chemotaxis term of the form ∇  ·  (n∇w) instead of ∇  ·  ( n c∇c) in (1.1.5). 
To this end, we employ the following transformation as in Lankeit and Lankeit 
(2019a), Lankeit (2017), Winkler (2016a): w := − ln( c

||c0||L∞ (Ω) 
), whereupon 0 ≤ 

w ∈ C0( Ω̄ × (0, ∞)) ∩ C2,1( Ω̄ × (0, ∞)), and the problem (1.1.5), (1.1.8), (1.1.9) 
transforms to 
⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nt + u ·  ∇n = △n + χ∇  ·  (n∇w) + n(r − μn), x ∈ Ω, t > 0, 
wt + u ·  ∇w = △w −  |∇w|2 + n, x ∈ Ω, t > 0, 
ut + (u ·  ∇)u = Δu +  ∇P + n∇φ, x ∈ Ω, t > 0, 
∇  ·  u = 0, x ∈ Ω, t > 0, 
∇n · ν =  ∇w · ν = 0, u = 0, x ∈ ∂Ω, t > 0, 

n(x, 0) = n0(x), w(x, 0) =  −  ln( 
c0(x)

||c0||L∞(Ω) 
), u = u0(x), x ∈ Ω. 

(1.4.1) 
Let us first recall some basic but important information about (n,  w)  due to the 

presence of the quadratic degradation term in the first equation of (1.4.1). 

Lemma 1.36 The classical solution (n,  w,  u, P) of (1.4.1) satisfies 
(i) lim sup 

t→∞
||n(·, t)||L1(Ω) ≤ 

|Ω|r+ 

μ 
;
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(ii)
∫ t 

t0

||n(·, s)||2 L2(Ω)ds  ≤ 
r+ 

μ

∫ t 

t0

||n(·, s)||L1(Ω)ds  + 
1 

μ
||n(·, t0)||L1(Ω) for all t > 

t0; 

(iii)
∫ t 

t0

∫

Ω 
|∇w|2 dxds  ≤

∫

Ω 
w(x, t0)dx  +

∫ t 

t0

||n(·, s)||L1(Ω)ds  for all t > t0. 

In particular, if r ≤ 0, then

||n(·, t)||L1(Ω) ≤ 
|Ω| 

μ(t + γ  )  
for all t > t0 (1.4.2) 

with γ = |Ω| 
μ

∫

Ω n0(x)dx  
. 

Proof Integrating the first equation in (1.4.1) and using the Cauchy–Schwarz 
inequality, we get 

d 

dt

∫

Ω 
n =r

∫

Ω 
n − μ

∫

Ω 
n2 ≤ r+

∫

Ω 
n − 

μ 
|Ω| (

∫

Ω 
n)2 (1.4.3) 

which yields (i) readily. By the time integration of (1.4.3) over (t0, t), we get (ii) 
immediately. In addition, from the second equation in (1.4.1), ∇  ·  u = 0 and u = 0 
on ∂Ω , it follows that 

d 

dt

∫

Ω 
w =  −

∫

Ω 
|∇w|2 +

∫

Ω 
n, (1.4.4) 

and thus establishes (iii). 
When r ≤ 0, it follows from (1.4.3) that 

d 

dt

∫

Ω 
n ≤  −  

μ 
|Ω| (

∫

Ω 
n)2 (1.4.5) 

which then yields (1.4.2) by the time integration. 

In order to make use of the spatio-temporal properties provided by Lemma 1.36(ii) 
to estimate the ultimate bound of

∫

Ω |∇u|2, we shall utilize the following elementary 
lemma (see Lemma 3.4 of Winkler 2019a): 

Lemma 1.37 Let t0 ≥ 0, T ∈ (t0, ∞], a > 0 and b > 0, and suppose that the 
nonnegative function h ∈ L1 

loc(R) satisfies
∫ t+1 
t h(s)ds  ≤ b for all t ∈  [t0, T ]. If  

y ∈ C0([t0, T )) ∩ C1([t0, T )) has the property that y'(t) + ay(t) ≤ h(t) for all t ∈ 
(t0, T ), then y(t) ≤ e−a(t−t0)y(t0) + b 

1−e−a for all t ∈  [t0, T ). 
With Lemmas 1.36 and 1.37 at hand, we can employ the standard energy inequality 

associated with the fluid evolution system in (1.4.1) to derive some boundedness 
results for u.
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Lemma 1.38 For the global classical solution (n,  w,  u) of (1.4.1), we have 
(i) if r > 0, then 

lim sup 
t→∞

||u(·, t)||2 L2(Ω) ≤ 
3(1 + r )|Ω| 

μ

||∇φ||2 L∞(Ω) 

Cp(1 − e− C p 
2 ) 

r 

μ 
(1.4.6) 

as well as 

lim sup 
t→∞

∫ t+1 

t
||∇u(·, s)||2 L2(Ω)ds  ≤ 

5(1 + r )|Ω| 
μ

||∇φ||2 L∞(Ω) 

Cp(1 − e− C p 
2 ) 

r 

μ 
(1.4.7) 

with Poincaré constant CP > 0. 
(ii) if r ≤ 0, then

∫

Ω 
|u(·, t)|2 ≤ ||u(·, t0)||2 L2(Ω) e

−C p 
2 (t−t0) + 

2|Ω| 
μ2

||∇φ||2 L∞(Ω) 

C p(1 − e−
C p 
2 ) 

1 

t0 + γ 
for all t > t0 

(1.4.8) 

as well as

∫ t+1 

t
||∇u(·, s)||2 L2(Ω)ds  

≤||u(·, t0)||2 L2(Ω)e
− C p 

2 (t−t0) + 
4|Ω| 
μ2

||∇φ||2 L∞(Ω) 

Cp(1 − e− C p 
2 ) 

1 

t0 + γ 
for all t > t0. (1.4.9) 

Proof (i) According to the Poincaré inequality, one can find some constant Cp > 0 
such that Cp

∫

Ω |u|2 ≤ ∫

Ω |∇u|2. Testing the third equation in (1.4.1) by  u and using 
the Hölder inequality, we obtain 

d 

dt

∫

Ω 
|u|2 + Cp

∫

Ω 
|u|2 +

∫

Ω 
|∇u|2 

≤ 2
∫

Ω 
n∇φ · u ≤ 2||∇φ||L∞(Ω)||n||L2(Ω)||u||L2(Ω) 

≤ 
Cp 

2
||u||2 L2(Ω) + 

2 

Cp
||∇φ||2 L∞(Ω)||n||2 L2(Ω), 

due to u|∂Ω = 0 and ∇  ·  u = 0. 
Writing h(t) = 2 

Cp
||∇φ||2 L∞(Ω)||n(·, t)||2 L2(Ω)

, we see that y(t) := ∫

Ω |u(·, t)|2 sat-
isfies 

y'(t) + 
Cp 

2 
y(t) +

∫

Ω 
|∇u(·, t)|2 ≤ h(t) for all t > 0. (1.4.10)
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In view of Lemma 1.36 (i) and (ii), we know that 

lim sup 
t→∞

∫ t+1 

t 
h(s)ds  ≤ 

2 

Cp
||∇φ||2 L∞(Ω) 

(1 + r )|Ω| 
μ 

r 

μ 
. (1.4.11) 

An application of Lemma 1.37 thus shows that there exists positive t0 > 0 such that

∫

Ω 
|u(·, t)|2 ≤ ||u(·, t0)||2 L2(Ω) e

−C p 
2 (t−t0) + 

3(1 + r )|Ω| 
μ

||∇φ||2 L∞(Ω) 

C p(1 − e−
C p 
2 ) 

r 

μ 
for all t > t0 

and thereby verifies (1.4.6). Thereafter, again thanks to (1.4.11), an integration of 
(1.4.10) in time yields (1.4.7). 

(ii) In view of (1.4.2), we have

∫ t+1 

t 
h(s)ds  ≤ 

2 

Cp
||∇φ||2 L∞(Ω) 

|Ω| 
μ2 

1 

t + γ 
, (1.4.12) 

whereupon Lemma 1.37 guarantees that

∫

Ω 
|u(·, t)|2 ≤ ||u(·, t0)||2 L2(Ω) e

−C p 
2 (t−t0) + 

2|Ω| 
μ2

||∇φ||2 L∞(Ω) 

C p(1 − e−
C p 
2 ) 

1 

t0 + γ 
for all t > t0. 

This precisely warrants (1.4.8), and thereby in turn yields (1.4.9) after integrating 
(1.4.10) over (t, t + 1) and once more employing (1.4.12). 

Now by a further testing procedure, we can turn the above information into the 
estimate of ||∇u(·, t)||L2(Ω), particularly its decay in the case of r = 0, on the basis 
of an interpolation argument, which is inspired by an approach illustrated in section 
3.2 of Tao and Winkler (2016). 

Lemma 1.39 For the global classical solution (n,  w,  u, P) of (1.4.1), we have 
(i) if r > 0, then there exists μ1 := μ1(Ω, r)  >  0 such that for all μ  >  μ1, 

lim sup 
t→∞

||∇u(·, t)||L2(Ω) ≤ 1 

17K1|Ω| (1.4.13) 

(ii) if r ≤ 0, then for any μ  >  0, 

lim 
t→∞ ||∇u(·, t)||L2(Ω) = 0. (1.4.14) 

Proof Applying the Helmholtz projector P to the third equation in (1.4.1), multi-
plying the resulting identity ut + Au =  −P[(u ·  ∇)u]  +  P[n∇φ] by Au, and using 
the Gagliardo–Nirenberg inequality, we can find C1 > 0 such that
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1 

2 

d 

dt

∫

Ω 
|∇u|2 +

∫

Ω 
|Au|2 

=  −
∫

Ω 
P[(u ·  ∇)u]  ·  Au +

∫

Ω 
P[n∇φ]  ·  Au 

≤ 
1 

2

∫

Ω 
|Au|2 +

∫

Ω 
|(u ·  ∇)u|2 + ||∇φ||2 L∞(Ω)

∫

Ω 
n2 

≤ 
1 

2

∫

Ω 
|Au|2 + ||u||2 L∞(Ω)||∇u||2 L2(Ω) + ||∇φ||2 L∞(Ω)

∫

Ω 
n2 

≤ 
1 

2

∫

Ω 
|Au|2 + C1||Au||L2(Ω)||u||L2(Ω)||∇u||2 L2(Ω) + ||∇φ||2 L∞(Ω)

∫

Ω 
n2 

≤
∫

Ω 
|Au|2 + 

C2 
1 

2
||u||2 L2(Ω)||∇u||4 L2(Ω) + ||∇φ||2 L∞(Ω)

∫

Ω 
n2 , 

which entails y(t) := ∫

Ω |∇u(·, t)|2 satisfies 

y'(t) ≤ h1(t)y(t) + h2(t) for all t > 0 (1.4.15) 

with h1(t)=C2 
1||u(·, t)||2 L2(Ω)

||∇u(·, t)||2 L2(Ω) and h2(t) = 2||∇φ||2 L∞(Ω)||n(·, t)||2 L2(Ω)
. 

(i) In order to prepare the integration of (1.4.15), we may use Lemma 1.38 (i) to 
find some t0 > 0 such that

||u(·, t)||2 L2(Ω) ≤ C2 := 
3(1 + r )|Ω| 

μ

||∇φ||2 L∞(Ω) 

Cp(1 − e− C p 
2 ) 

r 

μ 

and
∫ t 
t−1 ||∇u(·, s)||2 L2(Ω)

ds  ≤ 2C2 for all t > t0 + 1. 
Hence for any t > t0 + 1, we can find t∗ = t∗(t) ∈  [t − 1, t) such that

||∇u(·, t∗)||2 L2(Ω) ≤ 2C2, (1.4.16) 

and then integrating (1.4.15) over (t∗, t) yields 

y(t) ≤ y(t∗)e
∫ t 
t∗ h1(σ )dσ +

∫ t 

t∗ 

e
∫ t 
s h1(σ )dσ h2(s)ds  ≤ (2 + Cp)C2e

2C2 
1 C

2 
2 

and thereby verifies (1.4.13). 
(ii) For any t0 > 1 and t > t0 + 2, we use Lemma 1.38 (ii) to pick t∗ = t∗(t) ∈ 

[t − 1, t) fulfilling

||∇u(·, t∗)||2 L2(Ω) =
∫ t 

t−1
||∇u(·, s)||2 L2(Ω)ds  

≤||u(·, t0)||2 L2(Ω)e
− C p 

2 (t−1−t0) + 
4|Ω| 
μ2

||∇φ||2 L∞(Ω) 

Cp(1 − e− C p 
2 ) 

1 

t0 + γ 
,
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as well as

∫ t 

t−1 
h1(σ )dσ ≤ C2 

1 max 
t−1≤s≤t

||u(·, s)||2 L2(Ω)

∫ t 

t−1
||∇u(·, s)||2 L2(Ω)ds  

≤ C2 
1 (||u(·, t0)||2 L2(Ω)e

− C p 
2 (t−1−t0) + 

4|Ω| 
μ2

||∇φ||2 L∞(Ω) 

Cp(1 − e− C p 
2 ) 

1 

t0 + γ 
)2 . 

In addition, by (1.4.12) we also have

∫ t 

t−1 
h2(σ )dσ = 2||∇φ||2 L∞(Ω)

∫ t 

t−1
||n(·, s)||2 L2(Ω)ds  ≤ 2||∇φ||2 L∞(Ω) 

|Ω| 
μ2 

1 

t − 1 + γ 
. 

Therefore combining the above inequalities, (1.4.15) implies that  

y(t) ≤ y(t∗)e
∫ t 
t−1 h1(σ )dσ + e

∫ t 
t−1 h1(σ )dσ

∫ t 

t−1 
h2(s)ds  

and thus (1.4.14) holds readily. 

1.4.2 Global Boundedness of Solutions 

In this party, we show that the classical solution of problem (1.4.1) is globally 
bounded in the cases of r > 0 and r ≤ 0, respectively. 
1. The Case r > 0 
In this subsection, we derive the global boundedness of solutions to (1.4.1) whenever 
μ is suitably large compared with r . As in Winkler (2016c), the main idea is to 
examine the behavior of the functional 

F (n,  w)  :=
∫

Ω 
H (n) + 

χ 
2

∫

Ω 
|∇w|2 (1.4.17) 

where H (s) := s ln μs er + r 
μ , along trajectories of the boundary value problem (1.4.1). 

The following elementary property of H (n) will be used in the sequel. 
Lemma 1.40 For all nonnegative function n ∈ C( Ω̄), H(n) ≥ 0. 

Proof It is easy to verify that H ( r 
μ ) = 0, H '( r 

μ ) = 0 and H ''(s) = 1 s ≥ 0, which 
implies H (n) ≥ 0 for all n ≥ 0. 

Now we can describe the evolution of F (n,  w)  along the trajectories of (1.4.1) 
by the standard testing procedure. 

Lemma 1.41 Let Ω ⊂ R2 be a smooth bounded domain and (n,  w,  u) be the global 
classical solution of (1.4.1) with r > 0,  μ  >  0. Then whenever μ  >  μ2(Ω, χ , r ) := 
max{μ1, K1(36+16χ  )|Ω| 

χ
r}, there exists t∗ > 0 such that
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d 

dt  
F (n,  w)  ≤ 0 for all t ≥ t∗. (1.4.18) 

Proof Multiplying the first equation in (1.4.1) by  H '(n) and integrating by parts, we 
get 

d 

dt

∫

Ω 
H (n) =

∫

Ω 
H '(n)(△n + χ∇  ·  (n∇w) + rn  − μn2 − u ·  ∇n) 

=  −
∫

Ω 
H ''(n)(|∇n|2 + χn∇n ·  ∇w) +

∫

Ω 
H '(n)(rn  − μn2 ) 

=  −
∫

Ω 

|∇n|2 
n 

− χ
∫

Ω 
∇n ·  ∇w +

∫

Ω 
(ln n − ln 

r 

μ 
)(rn  − μn2 ) 

≤  −
∫

Ω 

|∇n|2 
n 

− χ
∫

Ω 
∇n ·  ∇w 

(1.4.19) 
due to (ln n − ln r 

μ )(rn  − μn2) ≤ 0, ∇  ·  u = 0 and u = 0 on ∂Ω . 
On the other hand, testing the second equation in (1.4.1) by  −△w, using  ∇  ·  u = 0 

and u = 0 on ∂Ω again, we can obtain 

1 

2 

d 

dt

∫

Ω 
|∇w|2 +

∫

Ω 
|△w|2 

=
∫

Ω 
|∇w|2△w +

∫

Ω 
∇n ·  ∇w +

∫

Ω 
(u ·  ∇w)△w 

≤ 
1 

2

∫

Ω 
|△w|2 + 

1 

2

∫

Ω 
|∇w|4 +

∫

Ω 
∇n ·  ∇w +

∫

Ω 
(u ·  ∇w)△w 

= 
1 

2

∫

Ω 
|△w|2 + 

1 

2

∫

Ω 
|∇w|4 +

∫

Ω 
∇n ·  ∇w −

∫

Ω 
∇w · (∇u ·  ∇w) −

∫

Ω 
u(D2w ·  ∇w) 

= 
1 

2

∫

Ω 
|△w|2 + 

1 

2

∫

Ω 
|∇w|4 +

∫

Ω 
∇n ·  ∇w −

∫

Ω 
∇w · (∇u ·  ∇w) − 

1 

2

∫

Ω 
u ·  ∇|∇w|2 

= 
1 

2

∫

Ω 
|△w|2 + 

1 

2

∫

Ω 
|∇w|4 +

∫

Ω 
∇n ·  ∇w −

∫

Ω 
∇w · (∇u ·  ∇w). 

Furthermore, by Lemma 1.9 (i) and the Cauchy–Schwarz inequality, we get 

1 

2 

d 

dt

∫

Ω 
|∇w|2 + 

1 

2

∫

Ω 
|△w|2 

≤ 
K1 

2
||∇w||2 L2(Ω)

∫

Ω 
|△w|2 +

∫

Ω 
∇n ·  ∇w +

∫

Ω 
|∇u||∇w|2 

≤( 
K1 

2
||∇w||2 L2(Ω) + K1|Ω| 1 

2 ||∇u||L2(Ω))

∫

Ω 
|△w|2 +

∫

Ω 
∇n ·  ∇w 

and thus
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1 

2 

d 

dt

∫

Ω 
|∇w|2 + 

1 

2 
(1 − K1||∇w||2 L2(Ω) − 2K1|Ω| 1 

2 ||∇u||L2(Ω))

∫

Ω 
|△w|2 

≤
∫

Ω 
∇n ·  ∇w. 

(1.4.20) 
Since 2F (n,  w)  ≥ χ||∇w||2 L2(Ω) due to H (n) ≥ 0, combining (1.4.20) with 

(1.4.19) yields 

d 

dt  
F (n,  w)  +

∫

Ω 

|∇n|2 
n 

+ ( 
χ 
2 

− K1F (n,  w)  − 2χ K1|Ω| 1 2 ||∇u||L2(Ω))

∫

Ω 
|△w|2 ≤ 0 (1.4.21) 

for t > 0. 
On the other hand, when μ  >  μ1, it follows from (1.4.13) that it is possible to pick 

some t0 > 0 such that 16K1|Ω| 1 
2 ||∇u(·, t)||L2(Ω) < 1 for all t > t0, and thereby 

d 

dt  
F (n,  w)  +

∫

Ω 

|∇n|2 
n 

+ ( 
3χ 
8 

− K1F (n,  w))

∫

Ω 
|△w|2 ≤ 0 for  t > t0. 

(1.4.22) 
In what follows, we shall show that there exists t∗ > t0 such that 4K1F (n,  w)(t∗)  <  

χ . 
Firstly by Lemma 1.36 (i), there exists t1 > t0 such that for all t > t1

||n(·, t)||L1(Ω) ≤ 
3|Ω|r 
2μ 

, (1.4.23) 

which along with Lemma 1.36 (iii) yields

∫ t2 

t1

∫

Ω 
|∇w|2 ≤

∫

Ω 
w(·, t1) +

∫ t2 

t1

||n(·, s)||L1(Ω)ds  

≤
∫

Ω 
w0(x) +

∫ t1 

0
||n(·, s)||L1(Ω)ds  + 

3|Ω|r 
2μ 

(t2 − t1). 

Similarly invoking Lemma 1.36 (i) and (ii), we find that

∫ t2 

t1

||n(·, s)||2 L2(Ω)ds  ≤ 
3|Ω| 
2 

( 
r 

μ 
)2 (t2 − t1) + 

1 

μ
||n(·, t1)||L1(Ω). 

Hence there exists t∗ > t1 suitably large such that whenever t2 ≥ t∗,
∫ t2 

t1

∫

Ω 
|∇w|2 ≤ 

2|Ω|r 
μ 

(t2 − t1) (1.4.24) 

and ∫ t2 

t1

||n(·, s)||2 L2(Ω)ds  ≤ 2|Ω|( r 
μ 

)2 (t2 − t1). (1.4.25)
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Let 

S1 := {t ∈  [t1, t2]|
∫

Ω 
|∇w(·, t)|2 ≥ 

8|Ω|r 
μ 

} 

and 
S2 := {t ∈  [t1, t2]|||n(·, t)||2 L2(Ω) ≥ 8|Ω|( r 

μ 
)2}. 

Then 

|S1|  ≤  
|t2 − t1| 

4 
, |S2|  ≤  

|t2 − t1| 
4 

. (1.4.26) 

In order to estimate the size of S1 and S2, we recall (1.4.24) to get 

8|Ω|r 
μ 

|S1|  ≤
∫ t2 

t1

∫

Ω 
|∇w|2 ≤ 

2|Ω|r 
μ 

(t2 − t1) 

and thus |S1|  ≤  |t2−t1| 
4 is valid. Similarly, one can verify that |S2|  ≤  |t2−t1| 

4 . 
As (1.4.26) warrants that |(t1, t2) \ (S1 ∪ S2)|  ≥  |t2−t1| 

2 , one can conclude that 
there exists t∗ ∈ (t1, t2) such that

||n(·, t∗)||2 L2(Ω) < 8|Ω|( r 
μ 

)2 (1.4.27) 

and ∫

Ω 
|∇w(·, t∗)|2 < 

8|Ω|r 
μ 

. (1.4.28) 

Applying ξ ln ξ 
σ ≤ ηξ 2 + ln 1 

ησ · ξ for all ξ  >  0,  η  >  0,  σ  >  0 with η = μ 
r (see 

Lemma 5.5 of Winkler 2016c) and (1.4.27), we then arrive at

∫

Ω 
H (n)(·, t∗) ≤ 

μ 
r

∫

Ω 
n2 (·, t∗) −

∫

Ω 
n(·, t∗) + 

r 

μ 
|Ω|  ≤  

9|Ω|r 
μ 

. 

Thereupon from (1.4.28) and the definition of F (n,  w), it follows that  F (n,  w)(t∗)  <  
(9 + 4χ  )|Ω| r 

μ , which entails that 4K1F (n,  w)(t∗)<χ provided μ  >  K1(36+16χ  )|Ω|r 
χ

. 
As an immediate consequence of (1.4.22), we have 

d 

dt  
F (n,  w)  +

∫

Ω 

|∇n|2 
n 

+ 
χ 
8

∫

Ω 
|△w|2 ≤ 0 for all t > t∗ (1.4.29) 

when μ  >  μ2(Ω, χ , r ), and thus end the proof of this lemma. 

Additionally from (1.4.29), one can also conclude that 

Corollary 1.1 Under the conditions of Lemma 1.41, we have
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F (n,  w)(t) +
∫ ∞ 

t∗

∫

Ω 

|∇n|2 
n 

+ 
χ 
8

∫ ∞ 

t∗

∫

Ω 
|△w|2 ≤ (9 + 4χ  )|Ω| r 

μ 
for all t > t∗. 

(1.4.30) 

Next by a further testing procedure, we can turn the above information into the 
uniform-in-time boundedness of ||n(·, t)||L2(Ω) and ||∇w(·, t)||L4(Ω) if μ is appro-
priately large compared with r , which will serve as the foundation for the proof of 
global boundedness of ||n(·, t)||L∞(Ω) and ||∇w(·, t)||L∞(Ω). 

Lemma 1.42 If μ  >  μ0(χ , Ω, r ) := max{μ2(χ , Ω, r ), 208K2|Ω|r 
χ 2 }, then there exists 

C > 0 such that

||n(·, t)||L2(Ω) + ||∇w(·, t)||L4(Ω) ≤ C for all t ≥ t∗. (1.4.31) 

Proof Since μ  >  μ2(χ , Ω, r ), it follows from (1.4.30) that

∫

Ω 
|∇w|2 ≤ 

r 

μ 
( 
18 

χ 
+ 

8 

χ 2 
)|Ω| for all t > t∗ 

and moreover due to r 
μ < χ 2 

208K2|Ω| , 

K2

∫

Ω 
|∇w|2 ≤ 

1 

8 
for all t > t∗. (1.4.32) 

Multiplying the first equation in (1.4.1) by  n and integrating the result over Ω , 
we get 

1 

2 

d 

dt

∫

Ω 
n2 =  −

∫

Ω 
|∇n|2 − χ

∫

Ω 
n∇n∇w + r

∫

Ω 
n2 − μ

∫

Ω 
n3 

≤  −  
1 

2

∫

Ω 
|∇n|2 + 

1 

2

∫

Ω 
n2|∇w|2 + r

∫

Ω 
n2 − μ

∫

Ω 
n3 . 

(1.4.33) 

On the other hand, by the second equation in (1.4.1) and the identity∇w ·  ∇Δw =
1 
2 Δ|∇w|2 −  |D2w|2, we obtain 
d 

dt

∫

Ω 
|∇w|4 

= 2
∫

Ω 
|∇w|2△|∇w|2 − 4

∫

Ω 
|∇w|2|D2 w|2 − 4

∫

Ω 
|∇w|2∇w ·  ∇|∇w|2 

+ 4
∫

Ω 
|∇w|2∇n ·  ∇w − 4

∫

Ω 
|∇w|2∇w ·  ∇(u ·  ∇w) 

=  −2
∫

Ω 
|∇|∇w|2|2 − 4

∫

Ω 
|∇w|2|D2 w|2 

−4
∫

Ω 
|∇w|2∇w ·  ∇|∇w|2 − 4

∫

Ω 
n|∇w|2△w
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−4
∫

Ω 
n∇|∇w|2 ·  ∇w + 2

∫

∂Ω 
|∇w|2 ∂|∇w|2 

∂ν 
− 4

∫

Ω 
|∇w|2∇w · (∇u ·  ∇w) 

(1.4.34) 

due to ∇  ·  u = 0 and u = 0 on ∂Ω . 
According to ∂|∇w|2 

∂ν ≤ C1|∇w|2 on ∂Ω for some C1 > 0 and

|||∇w|2||L2(∂Ω) ≤ η||∇|∇w|2||L2(Ω) + C2(η)|||∇w|2||L1(Ω) for any η ∈ (0, 
5 

4 
) 

(see Lemma 4.2 of Mizoguchi and Souplet (2014) and Remark 52.9 in Quittner and 
Souplet 2007), one can conclude that 

2
∫

∂Ω 
|∇w|2 ∂|∇w|2 

∂ν 
≤ 

1 

4

∫

Ω 
|∇|∇w|2|2 + C3(

∫

Ω 
|∇w|2 )2 (1.4.35) 

for some C3 > 0. 
For the other integrals on the right side of (1.4.34), we use the Young inequality 

to estimate 

− 4
∫

Ω 
|∇w|2∇w ·  ∇|∇w|2 ≤ 

1 

3

∫

Ω 
|∇|∇w|2|2 + 12

∫

Ω 
|∇w|6 (1.4.36) 

− 4
∫

Ω 
n∇|∇w|2 ·  ∇w ≤ 

1 

3

∫

Ω 
|∇|∇w|2|2 + 12

∫

Ω 
n2|∇w|2 (1.4.37) 

as well as 

−4
∫

Ω 
n|∇w|2△w ≤ 

1 

6

∫

Ω 
|∇w|2|△w|2 + 24

∫

Ω 
n2|∇w|2 

≤ 
1 

3

∫

Ω 
|∇w|2|D2 w|2 + 24

∫

Ω 
n2|∇w|2 

(1.4.38) 

due to |△w|2 ≤ 2|D2w|2 on Ω . 
Substituting (1.4.35)–(1.4.38) into (1.4.34), we readily get 

d 

dt

∫

Ω 
|∇w|4 + 

13 

12

∫

Ω 
|∇|∇w|2|2 + 

11 

3

∫

Ω 
|∇w|2|D2 w|2 

≤12
∫

Ω 
|∇w|6 + 36

∫

Ω 
n2|∇w|2 + C3(

∫

Ω 
|∇w|2 )2 + 4

∫

Ω 
|∇w|4|∇u| 

and thus
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d 

dt

∫

Ω 
|∇w|4 + 2

∫

Ω 
|∇|∇w|2|2 

≤12
∫

Ω 
|∇w|6 + 36

∫

Ω 
n2|∇w|2 + C3(

∫

Ω 
|∇w|2 )2 + 4

∫

Ω 
|∇w|4|∇u| 

(1.4.39) 

due to the fact |∇|∇w|2|2 ≤ 4|∇w|2|D2w|2 on Ω . 
Therefore combining (1.4.33) with (1.4.39) leads to 

d 

dt

∫

Ω 
(n2 +  |∇w|4 ) + 2

∫

Ω 
|∇|∇w|2|2 +

∫

Ω 
|∇n|2 

≤12
∫

Ω 
|∇w|6 + 37

∫

Ω 
n2|∇w|2 + C3(

∫

Ω 
|∇w|2 )2 

+ 2r
∫

Ω 
n2 − 2μ

∫

Ω 
n3 + 4

∫

Ω 
|∇w|4|∇u| 

≤13
∫

Ω 
|∇w|6 + 372

∫

Ω 
n3 + C3(

∫

Ω 
|∇w|2 )2 

+ 2r
∫

Ω 
n2 − 2μ

∫

Ω 
n3 + 4

∫

Ω 
|∇w|4|∇u|. 

(1.4.40) 

Furthermore by Lemma 1.9 (ii), we get ||ϕ||3 L3 ≤ K2||∇ϕ||2 L2||ϕ||L1 + C4||ϕ||3 L1 and 
thus ∫

Ω 
|∇w|6 ≤ K2(

∫

Ω 
|∇|∇w|2|2)

⎛∫

Ω 
|∇w|2

⎞

+ C4(

∫

Ω 
|∇w|2)3. 

Upon inserting this into (1.4.40) and (1.4.30), we obtain 

d 

dt

∫

Ω 
(n2 +  |∇w|4) + (2 − 13K2

∫

Ω 
|∇w|2)

∫

Ω 
|∇|∇w|2|2 

+
∫

Ω 
|∇n|2 +

∫

Ω 
(n2 +  |∇w|4) 

≤ 372
∫

Ω 
n3 + (2r + 1)

∫

Ω 
n2 − 2μ

∫

Ω 
n3 +

∫

Ω 
|∇w|4 + 4

∫

Ω 
|∇w|4|∇u|  +  C5, 

which, along with ∫

Ω 
|∇w|4 ≤ 

1 

7

∫

Ω 
|∇|∇w|2|2 + C6 

and 

4
∫

Ω 
|∇w|4|∇u|  ≤  4|||∇w|2||2 L6(Ω)||∇u||

L 
3 
2 (Ω) 

≤ 
13 

56

∫

Ω 
|∇|∇w|2|2 + C7 

by the Gagliardo–Nirenberg inequality and (1.4.13), implies that
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d 

dt

∫

Ω 
(n2 +  |∇w|4 ) + ( 

13 

8 
− 13K2

∫

Ω 
|∇w|2 )

∫

Ω 
|∇|∇w|2|2 

+
∫

Ω 
|∇n|2 +

∫

Ω 
(n2 +  |∇w|4 ) 

≤ 372
∫

Ω 
n3 + (2r + 1)

∫

Ω 
n2 − 2μ

∫

Ω 
n3 + C8. 

(1.4.41) 

On the other hand, according to an extended variant (Biler et al. 1994), (1.4.23) and 
(1.4.30), one can infer that 

372
∫

Ω 
n3 ≤ C9

⎛∫

Ω 
|∇n|2

⎞ ⎛∫

Ω 
n| ln n|

⎞

+ C9(

∫

Ω 
n)3 + C9 ≤ 

1 

2

∫

Ω 
|∇n|2 + C10. 

Hence from (1.4.41) it follows that there exists C11 > 0 such that for all t > t∗ 

d 

dt

∫

Ω 
(n2 +  |∇w|4) +

∫

Ω 
(n2 +  |∇w|4) + ( 

13 

8 
− 13K2

∫

Ω 
|∇w|2)

∫

Ω 
|∇|∇w|2|2 ≤ C11, 

(1.4.42) 
which, along with (1.4.32), entails that 

d 

dt

∫

Ω 
(n2 +  |∇w|4 ) +

∫

Ω 
(n2 +  |∇w|4 ) ≤ C11 

for all t > t∗ and thereby (1.4.31) is valid. 

We are now ready to prove Theorem 1.2 in the case of r > 0. 
Proof of Theorem 1.2 in the case of r > 0. From the above lemmas, it follows that 
there exists C > 0 such that

||n(·, t)||L2(Ω) + ||∇w(·, t)||L4(Ω) + ||∇u(·, t)||L2(Ω) ≤ C 

whenever μ  >  μ0(χ , Ω, r ) := max{μ2(χ , Ω, r ), 208K2|Ω|r 
χ 2 }. So, by the argument 

in, e.g., Lemma 4.4 of Black (2018), we can readily prove that ||n(·, t)||L∞(Ω),

||∇w(·, t)||L∞(Ω) and ||Aαu(·, t)||L2(Ω) with some α ∈ ( 1 2 , 1) are globally bounded; 
we refer the reader to the proof of Lemma 4.4 in Black (2018), Lemmas 3.12 and 
3.11 in Tao and Winkler (2016) for the details. 

Based on the global boundedness of solutions, we are able to derive the conver-
gence result claimed in Theorem 1.2, namely, 

lim 
t→∞ ||n(·, t) − 

r 

μ
||L∞(Ω) = 0, (1.4.43) 

lim 
t→∞ ||∇w(·, t)||L∞(Ω) = 0, (1.4.44) 

lim 
t→∞ ||u(·, t)||L∞(Ω) = 0 (1.4.45)
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as well as 
lim 
t→∞ 

inf 
x∈Ω 

w(x, t) =  ∞. (1.4.46) 

In fact, due to ∫ ∞ 

t∗

∫

Ω 

|∇n|2 
n 

+
∫ ∞ 

t∗

∫

Ω 
|△w|2 ≤ C 

established in (1.4.30), we can show (1.4.44), (1.4.45) and 

lim 
t→∞ ||n(·, t) − n(t)||L∞(Ω) = 0 (1.4.47) 

with n(t) = 1 
|Ω|

∫

Ω n(·, t) by the arguments in Proposition 4.15 of Black (2018), 
where we have used

∫ ∞ 

t∗
||n(·, t) − n(t)||2 L2(Ω) ≤ C

∫ ∞ 

t∗
||∇n||2 L1(Ω) ≤ C

∫ ∞ 

t∗ 

(

∫

Ω 

|∇n|2 
n

∫

Ω 
n) 

and the regularity of n. Therefore it suffices to show that 

lim 
t→∞ |n(t) − 

r 

μ
|  =  0. (1.4.48) 

To this end, we adapt the idea of Liţcanu and Morales-Rodrigo (2010b) and give the 
details of the proof for the convenience of readers. 

Integrating the first equation in (1.4.1) on the spatial variable over Ω , we obtain 

nt = rn − 
μ 

|Ω|
∫

Ω 
n2 = rn − μn2 − 

μ 
|Ω|

∫

Ω 
(n − n)2 . 

Putting a(t) := μ 
|Ω|

∫

Ω (n(·, t) − n)2, the above equation then becomes 

nt = μn( 
r 

μ 
− n) − a(t). (1.4.49) 

Thereupon multiplying (1.4.49) by  n − r 
μ , we get 

d 

dt  
(n − 

r 

μ 
)2 + 2μn(n − 

r 

μ 
)2 =  −2a(t)(n − 

r 

μ 
) 

and then 

2μ
∫ ∞ 

1 
n(n − 

r 

μ 
)2 ≤ (n(1) − 

r 

μ 
)2 + 2 sup  

t≥1 
|n(t) − 

r 

μ 
|
∫ ∞ 

1 
a(t). (1.4.50) 

In addition, invoking the Poincaré–Wirtinger inequality
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∫

Ω 
|ϕ − 

1 

|Ω|
∫

Ω 
ϕ(y)dy|2 ≤ Cp

∫

Ω 
|ϕ|

∫

Ω 

|∇ϕ|2 
|ϕ| for all ϕ ∈ W 1,2 (Ω) 

for some Cp > 0, one can find

∫ ∞ 

1 
a(s)ds  ≤ Cp sup 

t≥1
||n(t)||L1(Ω)

∫ ∞ 

1

∫

Ω 

|∇n(s)|2 
n(s) 

ds  ≤ C (1.4.51) 

due to (1.4.30) and Lemma 1.38 (i). Hence combining (1.4.51) with (1.4.50) yields

∫ ∞ 

1 
n(n − 

r 

μ 
)2 ≤ C. (1.4.52) 

On the other hand, d 
dt  n(n − r 

μ )
2 = nt ((n − r 

μ )
2 + 2n(n − r 

μ )), which along with 
|nt |  ≤  rn + μ 

|Ω|
∫

Ω n
2 ≤ C implies that

|
|
|
|
d 

dt  
n(n − 

r 

μ 
)2

|
|
|
| ≤ C. (1.4.53) 

Therefore by Lemma 6.3 of Liţcanu and Morales-Rodrigo (2010b), (1.4.53) and 
(1.4.52) show that 

lim 
t→∞ 

n(t)(n(t) − 
r 

μ 
)2 = 0. (1.4.54) 

From (1.4.47), it follows that there exists t1 > t∗ such that ||n(·, t) − n(t)||L∞(Ω) ≤
r 
2μ for all t > t1, and thus 

nt =rn − μn2 − 
μ 

|Ω|
∫

Ω 
n(n − n) 

≥μn( 
r 

μ 
− n − sup 

t>t1
||n(·, t) − n(t)||L∞(Ω)) 

≥μn( 
r 

2μ 
− n). 

(1.4.55) 

On the other hand, noticing that the solution y(t) of the ODE 

y'(t) = μy( 
r 

2μ 
− y), y(t1)  >  0 

satisfies lim 
t→∞ 

y(t) = 
r 

2μ 
, by the comparison principle, (1.4.55) implies that there 

exists t2 > t1 such that for all t ≥ t2, n(t) ≥ 
r 

4μ 
. This together with (1.4.54) yields 

(1.4.48).
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Finally, in view of (1.4.43), one can find t3 > 1 such that n(x, t) ≥ r 
2μ for all x ∈ 

Ω and t ≥ t3, and thereby w(x, t) satisfies wt ≥ △w −  |∇w|2 + r 
2μ − u ·  ∇w for 

t ≥ t3. Hence if y(t) denotes the solution of ODE: y'(t) = r 
2μ , y(t3) = min 

x∈Ω 
w(·, t3), 

then 

w(x, t) ≥ 
r 

2μ 
(t − t3) (1.4.56) 

by means of a straightforward parabolic comparison which warrants that (1.4.46) 
holds and thereby completes the proof. 
2. The Case r ≤ 0 
In this subsection, we show the global boundedness of solutions to (1.1.5), (1.1.8), 
(1.1.9) in the case r ≤ 0,  μ  >  0. As mentioned in the introduction, due to the structure 
of (1.1.5) with r ≤ 0,  μ  >  0, it is difficult to find a decreasing energy functional com-
pared with the situation when r > 0,  μ  >  0 considered in the previous subsection or 
when r = μ = 0 considered in Winkler (2016c). Indeed, the energy-type functional 
F (n,  w)  in (3.1) of Winkler (2016c) decreases along a solution in Ω × (t0, ∞) if 
F (n(·, t0), w(·, t0)) is suitably small, namely 

d 

dt  
F (n,  w)  ≤ 0 for all t ≥ t0. 

The main idea underlying our approach is to make use of the quadratic degradation in 
the first equation of (1.1.5) which should enforce some suitable regularity properties. 
More precisely, on the basis of (1.4.2), we can show that the quantity of form 

F (n,  w)  :=
∫

Ω 
n(ln n + a)dx  + 

χ 
2

∫

Ω 
|∇w|2 dx, (1.4.57) 

with parameter a > 0 determined below (see (1.4.64)), satisfies a certain of differen-
tial inequality. Although unlike the case of r > 0 in which it enjoys the monotonicity 
property, F (n,  w)  also provides us the global boundedness of

∫

Ω n| ln n|dx  and∫

Ω |∇w|2dx . This is encapsulated in the following lemma. 

Lemma 1.43 Let Ω ⊂ R2 be a smooth bounded domain and (n,  w,  u) be the global 
classical solution (1.4.1) with r ≤ 0,  μ  >  0. Then there exists t∗ > 0 such that for 
all t > t∗ ∫

Ω 
|∇w(·, t)|2 ≤ 

1 

4K1 
(1.4.58) 

with K1 given in Lemma 1.9 as well as

∫

Ω 
n| ln n|  ≤  C (1.4.59) 

for some C > 0.
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Proof We test the first equation in (1.4.1) against  ln n + a + 1, and integrate by parts 
to see that 

d 

dt

∫

Ω 
n(ln n + a) 

≤  −
∫

Ω 

|∇n|2 
n 

− χ
∫

Ω 
∇n ·  ∇w +

∫

Ω 
(n(r − μn) − u ·  ∇n)(ln n + a + 1) 

≤  −
∫

Ω 

|∇n|2 
n 

− χ
∫

Ω 
∇n ·  ∇w +

∫

Ω 
n(r − μn)(ln n + a) (1.4.60) 

due to r ≤ 0 and ∇  ·  u = 0. 
On the other hand, recalling (1.4.20) and (1.4.14), it is possible to fix t0 > 0 such 

that for all t ≥ t0, we have  

1 

2 

d 

dt

∫

Ω 
|∇w|2 + 

1 

4

∫

Ω 
|△w|2 + 

1 

4 
( 
3 

4 
− 2K1||∇w||2 L2(Ω))

∫

Ω 
|△w|2 

≤
∫

Ω 
∇u ·  ∇w. 

(1.4.61) 

From Lemma 1.9 (i), there exists a constant K3 > 0 such that 

8K3||∇w||2 L2(Ω) ≤ ||Δw||2 L2(Ω). (1.4.62) 

Hence combining (1.4.61) with (1.4.60), we get 

d 

dt  
F (n,  w)  +

∫

Ω 

|∇n|2 
n 

+ 
χ 
4

∫

Ω 
|△w|2 + K3

∫

Ω 
n(ln n + a) 

+ 
χ 
4 

( 
3 

4 
− 2K1||∇w||2 L2(Ω))

∫

Ω 
|△w|2 

≤
∫

Ω 
n(K3 − μn)(ln n + a) + r

∫

Ω 
n(ln n + a) for t ≥ t0. (1.4.63) 

Now for any fixed ε  <  min{ χ 
24K1 

, χ 
42K2 

}, we pick  a > 1 sufficiently large such that 

e−a < 
K3 

μ 
, (1 − r )|Ω| max 

0<n≤e−a 
|n ln n| <  ε  min{K3, 1}, (1.4.64) 

due to lim 
n→0 

n ln n = 0 and n ln n < 0 for all n ∈ (0, 1), and thereby fix t1 > max{1, t0} 
fulfilling 

a|Ω| 
μ(t1 + γ  )  

< 
ε 
4 
,

|Ω| 
μ2(t1 + γ  )  

< 
ε 
16 

(1.4.65) 

as well as
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(a + (ln K3 
μ )+)|Ω| 

μ(t1 + γ  )
+ 

2χ  (  |Ω| 
μ + ||n0||L1(Ω) + ||w0||L1(Ω)) 

t1 
< 

ε 
4 
. (1.4.66) 

Let t2 = t1 + t2 1 , 

S1 ⍙ {t ∈  [t1, t2]|
∫

Ω 
|∇w(·, t)|2 ≥ 

ε 
2χ 

} 

and 
S2 ⍙ {t ∈  [t1, t2]|||n(·, t)||2 L2(Ω) ≥ 

ε 
4
}. 

Then 

|S1|  ≤  
|t2 − t1| 

4 
, |S2|  ≤  

|t2 − t1| 
4 

. (1.4.67) 

By Lemma 1.36(iii), (1.4.2) and the second equation in (1.4.1), we obtain that

∫ t2 

t1

∫

Ω 
|∇w|2 ≤

∫ t2 

t1

∫

Ω 
n +

∫

Ω 
w(·, t1) 

=
∫ t2 

t1

∫

Ω 
n +

∫

Ω 
w0 +

∫ t1 

0

∫

Ω 
n 

≤ 
|Ω| 

μ(t1 + γ  )  
(t2 − t1) +

∫

Ω 
w0 + t1

∫

Ω 
n0. 

Furthermore, by (1.4.65) and (1.4.66)

∫ t2 

t1

∫

Ω 
|∇w|2 dxds  ≤( 

|Ω| 
μ(t1 + γ  )  

+ 
t1||n0||L1(Ω) + ||w0||L1(Ω) 

t2 − t1 
)(t2 − t1) 

≤ 
|Ω| 
μ + ||n0||L1(Ω) + ||w0||L1(Ω) 

t1 
(t2 − t1) 

< 
ε 
8χ 

(t2 − t1). 

On the other hand, by the definition of S1, we see that 
ε 
2χ 

|S1|  ≤
∫ t2 

t1

∫

Ω 
|∇w|2 and 

thereby |S1|  ≤  |t2−t1| 
4 . 

In addition, by (1.4.2) and (1.4.65), we get

∫ t2 

t1

∫

Ω 
n2 ≤ 

1 

μ

∫

Ω 
n(·, t1) ≤ |Ω| 

μ2(t1 + γ  )  
< 

ε 
16 

, 

which implies that |S2|  ≤  |t2−t1| 
4 .
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Therefore from (1.4.67), it follows that |(t1, t2) \ (S1 ∪ S2)|  ≥  |t2−t1| 
2 , and thereby 

there exists t∗ ∈ (t1, t2) such that

||n(·, t∗)||2 L2(Ω) < 
ε 
4 

(1.4.68) 

and ∫

Ω 
|∇w(·, t∗)|2 < 

ε 
2χ 

< 
1 

6K1 
. (1.4.69) 

By (1.4.69), we can see that the set 

S ⍙ {t ∈ (t∗, ∞)| K1

∫

Ω 
|∇w(·, s)|2 < 

1 

4 
for all s ∈ (t∗, t)} 

is not empty and hence TS = sup S is a well-defined element of (t∗, ∞]. In fact, we 
claim that TS =  ∞. To this end, supposing on the contrary that TS < ∞, we then 
have K1

∫

Ω |∇w(·, t)|2 < 1 4 for all t ∈  [t∗, TS), but  

K1

∫

Ω 
|∇w(·, TS)|2 = 

1 

4 
. (1.4.70) 

Hence from (1.4.63) and (1.4.62), it follows that for all t ∈  [t∗, TS), 
d 

dt  
F (n,  w)  +

∫

Ω 

|∇n|2 
n 

+ 
χ 
4

∫

Ω 
|△w|2 + K3

∫

Ω 
n(ln n + a) + 

K3χ 
2

∫

Ω 
|∇w|2 

≤
∫

Ω 
n(K3 − μn)(ln n + a) + r

∫

Ω 
n(ln n + a) 

≤
∫

e−a <n≤ K3 
μ 

n(K3 − μn)(ln n + a) + r
∫

0<n≤e−a 

n(ln n + a) 

≤K3

∫

e−a <n≤ K3 
μ 

n(ln n + a) + r
∫

0<n≤e−a 

n ln n (1.4.71) 

≤aK3

∫

Ω 
n + K3

∫

e−a <n≤ K3 
μ 

n ln n − r |Ω| max 
0<n≤e−a 

|n ln n| 

≤K3(a + (ln 
K3 

μ 
)+)

∫

Ω 
n + εK3 

≤ 
(a + (ln K3 

μ )+)K3|Ω| 
μ(t1 + γ  )

+ εK3, 

where we have made use of t∗ ≥ t1, the decay estimate (1.4.2) and (1.4.65), and thus
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F (n,  w)(Ts) +
∫ Ts 

t∗ 

e−K3(Ts−σ  )  (

∫

Ω 

|∇n|2 
n 

(·,  σ  )  + 
χ 
4

∫

Ω 
|△w(·,  σ  )|2 )dσ 

≤F (n,  w)(t∗) + 
(a + (ln K3 

μ )+)|Ω| 
μ(t1 + γ  )

+ ε, 

which implies that 

χ 
2

∫

Ω 
|∇w(·, TS)|2 ≤F (n,  w)(t∗) + 

(a + (ln K3 
μ )+)|Ω| 

μ(t1 + γ  )
−

∫

Ω 
n(ln n + a)(·, TS) + ε 

≤
∫

Ω 
n(ln n + a)(·, t∗) + 

χ 
2

∫

Ω 
|∇w|2(·, t∗) + ε 

+ 
(a + (ln K3 

μ )+)|Ω| 
μ(t1 + γ  )

−
∫

Ω 
n(ln n + a)(·, TS) 

≤
∫

Ω 
(n2 + an)(·, t∗) + 

χ 
2

∫

Ω 
|∇w|2(·, t∗) + ε (1.4.72) 

+ 
(a + (ln K3 

μ )+)|Ω| 
μ(t1 + γ  )

−
∫

Ω 
n(ln n + a)(·, TS), 

due to n ≥ ln n for all n > 0. 
In addition, by (1.4.65), we see that

∫

Ω 
n(ln n + a)(·, TS) ≥

∫

0<n≤e−a 

n(ln n + a)(·, TS) (1.4.73) 

≥
∫

0<n≤e−a 

n ln n(·, TS) 
≥  −  |Ω| max 

0<n≤e−a 
|n ln n| 

≥  −  ε. 

Upon inserting (1.4.73) into (1.4.72), we see that 

χ 
2

∫

Ω 
|∇w(·, TS)|2 ≤

∫

Ω 
(n2 + an)(·, t∗) + 

χ 
2

∫

Ω 
|∇w|2 (·, t∗)c1.2 − 3.58 

(1.4.74) 

+ 
(a + (ln K3 

μ )+)|Ω| 
μ(t1 + γ  )

+ 2ε, 

which along with (1.4.68), (1.4.69), (1.4.2) and (1.4.65), establishes that
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χ 
2

∫

Ω 
|∇w(·, TS)|2 ≤ 

5ε 
2 

+ a
∫

Ω 
n(·, t∗) + 

(a + (ln K3 
μ )+)|Ω| 

μ(t1 + γ  )  
<3ε (1.4.75) 

≤ 
χ 
8K1 

. 

This contradicts (1.4.70) and thereby TS =  ∞, which means that the differential 
inequality (1.4.71) is actually valid for all t > t∗. 

Now revisiting the proof of (1.4.75), upon integration in time over (t∗, t), we have  
χ 
2

∫

Ω |∇w(·, t)|2 ≤ 3ε for all t > t∗ which implies that (1.4.58) is valid by the choice 
of ε, as well as ∫

Ω 
n ln n(·, t) ≤ C1 for all t > t∗ (1.4.76) 

for some C1 > 0. 
Since ξ ln ξ ≥  − 1 

e for all ξ  >  0,
∫

Ω 
n| ln n|(·, t) =

∫

Ω 
n ln n(·, t) − 2

∫

0<n<1 
n ln n(·, t) ≤

∫

Ω 
n ln n(·, t) + 

2|Ω| 
e 

, 

which along with (1.4.76) readily implies that (1.4.59) is actually valid with C = 
C1 + 2|Ω| 

e . 

Furthermore, from (1.4.71), one can also conclude that 

Corollary 1.2 Under the conditions of Lemma 1.43, we have 

lim 
t→∞

∫ t+1 

t

∫

Ω 
( 
|∇n|2 
n 

+  |△w|2 ) = 0, lim 
t→∞

∫

Ω 
|∇w(·, t)|2 = 0. (1.4.77) 

Proof On the basis of the decay estimate (1.4.2) and revisiting the argument in the 
proof of Lemma 1.43, one can conclude that for any ε ∈ (0, min{ χ 

24K1 
, χ 
42K2 

}), there 
exists tε > 1 such that

∫

Ω 
|∇w(·, t)|2 +

∫ t 

tε 

e−K3(t−σ  )  (

∫

Ω 

|∇n|2 
n 

(·,  σ  )  + 
χ 
8

∫

Ω 
|△w(·,  σ  )|2 )dσ ≤ ε 

for all t > tε. Furthermore, it follows from the above inequality that

∫ t 

t−1 
(

∫

Ω 

|∇n|2 
n 

(·,  σ  )  + 
χ 
8

∫

Ω 
|△w(·,  σ  )|2 )dσ ≤ εeK3 

for any t > tε + 1, which implies that (1.4.77) is indeed valid. 

At this point, we can prove Theorem 1.2 in the case of r ≤ 0.
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Proof of Theorem 1.2 in the case r ≤ 0. We can repeat the argument in the proof of 
Theorem 1.2 in the case r > 0. In fact, in view of  (1.4.58) and (1.4.59), (1.4.31) is  
also valid for r ≤ 0,  μ  >  0, and thereby the global boundedness of solutions can be 
proven. In addition, similar to the case of r > 0, we can show 

lim 
t→∞ ||n(·, t)||L∞(Ω) = 0, (1.4.78) 

lim 
t→∞ ||∇w(·, t)||L∞(Ω) = 0 (1.4.79) 

as well as 
lim 
t→∞ ||u(·, t)||L∞(Ω) = 0. (1.4.80) 

For the sake of completeness we shall only recount the main steps and refer to the 
mentioned sources for more details. Invoking standard parabolic regularity theory 
(see the proofs of Lemma 4.5 and Lemma 4.9 of Winkler 2016c for details), one can 
see that there exist θ ∈ (0, 1) and α ∈ ( 1 2 , 1) and C1 > 0 such that for all t > 1

||n||
Cθ,  θ 

2 (Ω×[t,t+1]) + ||∇w(·, t)||Cθ (Ω) + ||Aα u(·, t)||L2(Ω) ≤ C1. (1.4.81) 

If (1.4.78) were false, then there would be C2 > 0, (tk)k∈N and (xk)k∈N ⊆ Ω such that 
tk →  ∞  as k →  ∞, and n(xk, tk)  >  C2 for all k ∈ N, which, along with the uniform 
continuity of n in Ω ×  [t, t + 1] as shown by (1.4.81), entails that one can find r > 0 
such that B(xk, r ) ⊆ Ω for all k ∈ N and n(x, tk)  >  C2 

2 for all x ∈ B(xk, r ). This 
shows ∫

Ω 
n(·, tk) ≥

∫

B(xk ,r) 
n(·, tk) ≥ 

C2 

2 
πr2 

which contradicts (1.4.2) and thus proves (1.4.78). Similarly, on the basis of (1.4.77) 
and (1.4.81), (1.4.79) can be proved. Finally, (1.4.80) results from (1.4.14), (1.4.81) 
and a simple interpolation, and thereby completes the proof. 

1.4.3 Asymptotic Profile of Solutions 

It is observed that in the case r < 0, solutions to (1.1.5), (1.1.8), (1.1.9) enjoy the 
exponential decay property due to the exponential decay of ||n(·, t)||L1(Ω). There-
fore, we pay our attention to the asymptotic profile of (1.1.5), (1.1.8), (1.1.9) in the  
cases r > 0 and r = 0, namely, we will give the proofs of Theorems 1.3 and 1.4 
respectively. 
1. The Case r > 0 
Making use of the convergence properties of (n, |∇c| 

c ) asserted in Theorem 1.2, 
we apply L p − Lq estimates for the Neumann heat semigroup (etΔ )t>0 to show
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(n, c, u) → ( r 
μ , 0, 0) in L

∞(Ω) and |∇c| 
c → 0 in L p(Ω) at some exponential rate as 

t →  ∞, respectively, whenever μ is suitably large compared with r . To this end, we 
first make an observation which will be used in the proof of the subsequent lemma: 

Lemma 1.44 For any fixed α ∈ (0, min{λ1, r}), there exists ε1 > 0 such that 

8με1 < r − α (1.4.82) 

as well as 
4c1 I ε2 < 1, 8χc4 I ε2 < 1 (1.4.83) 

where ci > 0 (i=1,4) is given in Lemma 1.1, I = ∫ ∞ 
0 (1 + σ − 2 

3 + σ − 1 
2 )e−(λ1−α)σ dσ 

and ε2 = 4c1|Ω| 1 
6 I ε1. 

Lemma 1.45 Let (n,  w,  u) be the global bounded solution of (1.4.1). For fixed 
α ∈ (0, min{λ1, r}) and μ  >  32χc4c1|Ω| 1 

6 I 2r , one can find constants Ci > 0 (i = 
1, 2, 3) and β  <  α  such that

||n(·, t) − 
r 

μ
||L∞(Ω) ≤ C1e

−αt , (1.4.84)

||∇w(·, t)||L6(Ω) ≤ C2e
−αt (1.4.85) 

as well as

||u(·, t)||L∞(Ω) ≤ C3e
−βt (1.4.86) 

for all t ≥ 1. 

Proof Let Ñ (x, t) = n(x, t) − r 
μ , ε1 > 0 and ε2 > 0 be given by Lemma 1.44. Then 

from (1.4.43), (1.4.44) and (1.4.45), there exists t0 > 1 suitably large such that for 
t ≥ t0

||Ñ (·, t)||L∞(Ω) ≤ 
ε1 

8 
, (c2 + 1)||∇w(·, t)||L∞(Ω) ≤ 

ε2 

8 
(1.4.87) 

and 

8c1||u(·, t)||L∞(Ω)

∫ ∞ 

0 
(1 + σ −

1 
2 )e−(λ1−α)σ dσ ≤ 1. (1.4.88) 

Now we consider 

T ⍙sup

⎧

~T ∈ (t0, ∞)

|
|
|
|
|

||Ñ (·, t)||L∞(Ω) ≤ ε1e−α(t−t0) for all t ∈  [t0, ~T ),

||∇w(·, t)||L6(Ω) ≤ ε2e−α(t−t0) for all t ∈  [t0, ~T ).

⎫

(1.4.89) 

By (1.4.87), T is well-defined. In what follows, we shall demonstrate that T =  ∞.
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To this end, we first invoke the variation-of-constants representation of w: 

w(·, t) =e(t−t0)Δ w(·, t0) −
∫ t 

t0 

e(t−s)Δ|∇w(·, s)|2 ds  +
∫ t 

t0 

e(t−s)Δ Ñ (·, s)ds  

−
∫ t 

t0 

e(t−s)Δ (u ·  ∇w)(·, s)ds  + 
r 

μ 
(t − t0), 

(1.4.90) 
and use Lemma 1.1(i), (ii) to estimate

||∇w(·, t)||L6(Ω) 

≤||∇e(t−t0)Δ w(·, t0)||L6(Ω) +
∫ t 

t0

||∇e(t−s)Δ|∇w(·, s)|2||L6(Ω)ds  

+
∫ t 

t0

||∇e(t−s)Δ N (·, s)||L6(Ω)ds  +
∫ t 

t0

||∇e(t−s)Δ (u ·  ∇w)(·, s)||L6(Ω)ds  

≤2c2e
−λ1(t−t0)||∇w(·, t0)||L6(Ω) 

+ c1
∫ t 

t0 

(1 + (t − s)−
2 
3 )e−λ1(t−s)||∇w(·, s)||2 L6(Ω)ds  

+ c1|Ω| 1 
6

∫ t 

t0 

(1 + (t − s)−
1 
2 )e−λ1(t−s)||Ñ (·, s)||L∞(Ω)ds  

+ c1
∫ t 

t0 

(1 + (t − s)−
1 
2 )e−λ1(t−s)||u(·, s)||L∞(Ω)||∇w(·, s)||L6(Ω)ds  

:=I1 + I2 + I3 
(1.4.91) 

for all t0 < t < T . 
Now we estimate the terms Ii (i = 1, 2, 3), respectively. Firstly, from (1.4.87), 

we have I1 ≤ ε2 
4 e

−λ1(t−t0). By the definition of T and (1.4.83), we can see that 

I2 ≤c1ε
2 
2

∫ t 

t0 

(1 + (t − s)−
2 
3 )e−λ1(t−s) e−2α(s−t0) ds  

≤c1ε
2 
2

∫ t 

t0 

(1 + (t − s)−
2 
3 )e−λ1(t−s) e−α(s−t0) ds  

≤c1ε
2 
2

∫ ∞ 

0 
(1 + σ −

2 
3 )e−(λ1−α)σ dσ · e−α(t−t0) 

≤ 
ε2 

4 
e−α(t−t0) . 

By the definition of T , (1.4.88) and ε2 = 4c1|Ω| 1 
6 I ε1, we also have
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I3 ≤(c1|Ω| 1 6 ε1 + c1 sup 
t≥t0

||u(·, t)||L∞(Ω)ε2)

∫ t 

t0 
(1 + (t − s)−

1 
2 )e−λ1(t−s)e−α(s−t0)ds  

=(c1|Ω| 1 6 ε1 + c1 sup 
t≥t0

||u(·, t)||L∞(Ω)ε2)

∫ t 

t0 
(1 + (t − s)−

1 
2 )e−(λ1−α)(t−s)e−α(t−t0)ds  

≤(c1|Ω| 1 6 ε1 + c1 sup 
t≥t0

||u(·, t)||L∞(Ω)ε2)

∫ ∞ 

0 
(1 + σ −

1 
2 )e−(λ1−α)σ dσ · e−α(t−t0) 

≤ 
3ε2 
8 

e−α(t−t0) . 

Substituting these estimates into (1.4.91), we get

||∇w(·, t)||L6(Ω) ≤ 
7ε2 
8 

e−α(t−t0) <  ε2e−α(t−t0) for all t ∈  [t0, T ). (1.4.92) 

On the other hand, since Ñt = △Ñ + χ∇  ·  (n∇w) − r Ñ − μ Ñ 2 − u ·  ∇  ̃N , the 
variation-of-constants representation of Ñ yields 

Ñ (·, t) =e(t−t0)(Δ−r ) Ñ (·, t0) + χ
∫ t 

t0 

e(t−s)(Δ−r)∇  ·  (n∇w)(·, s)ds  

− μ
∫ t 

t0 

e(t−s)(Δ−r) Ñ 2 (·, s)ds  −
∫ t 

t0 

e(t−s)(Δ−r ) (u ·  ∇  ̃N )(·, s)ds. 

Then by ∇  ·  u = 0 we can see that

||Ñ (·, t)||L∞(Ω) 

≤||e(t−t0)(Δ−r ) Ñ (·, t0)||L∞(Ω) + μ
∫ t 

t0

||e(t−s)(Δ−r) Ñ 2 (·, s)||L∞(Ω)ds  

+
∫ t 

t0

||e(t−s)(Δ−r )∇  ·  (u Ñ )(·, s)||L∞(Ω)ds  

+ χ
∫ t 

t0

||e(t−s)(Δ−r)∇  ·  (n∇w)(·, s)||L∞(Ω)ds  

:=J1 + J2 + J3 + J4. 

Here the maximum principle together with (1.4.87) ensures that 

J1 ≤ e−r (t−t0)||Ñ (·, t0)||L∞(Ω) ≤ 
ε1 

8 
e−α(t−t0) . 

By the definition of T and comparison principle, we infer that 

J2 ≤ μ
∫ t 

t0 

e−r(t−s)||e(t−s)Δ Ñ 2 (·, s)||L∞(Ω)ds  

≤ μ

∫ t 

t0 

e−r(t−s)||Ñ (·, s)||2 L∞(Ω)ds
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≤ με2 1

∫ t 

t0 

e−r(t−s) e−2α(s−t0) ds  

≤ με2 1

∫ t 

t0 

e−(r−α)(t−s) ds  · e−α(t−t0) 

≤ με2 1 

r − α 
e−α(t−t0) 

≤ ε1 

8 
e−α(t−t0) 

due to (1.4.82) and α  <  r . Similarly by (1.4.88), we have 

J3 ≤c1 sup 
t≥t0

||u(·, t)||L∞(Ω)

∫ t 

t0 

(1 + (t − s)−
1 
2 )e−(λ1+r )(t−s)||Ñ (·, s)||L∞(Ω)ds  

≤c1 sup 
t≥t0

||u(·, t)||L∞(Ω)ε1

∫ t 

t0 

(1 + (t − s)−
1 
2 )e−(λ1+r)(t−s) e−α(s−t0) ds  

≤c1 sup 
t≥t0

||u(·, t)||L∞(Ω)ε1

∫ ∞ 

0 
(1 + σ −

1 
2 )e−(λ1−α)σ dσ · e−α(t−t0) 

≤ 
ε1 

8 
e−α(t−t0) . 

As for the term J4, we recall (1.4.83), (1.4.89) and apply Lemma 1.1 (iv) to get 

J4 ≤χc4

∫ t 

t0 

(1 + (t − s)−
2 
3 )e−(λ1+r)(t−s)||(n∇w)(·, s)||L6(Ω)ds  

≤χc4ε2

∫ t 

t0 

(1 + (t − s)−
2 
3 )e−(λ1+r )(t−s) ( 

r 

μ 
+ ε1e−α(s−t0) )e−α(s−t0) ds  

≤χc4ε2( 
r 

μ 
+ ε1)

∫ ∞ 

0 
(1 + σ −

2 
3 )e−(λ1+r−α)σ dσ · e−α(t−t0) 

≤ 
ε1 

8 
e−α(t−t0) + χc4 

r 

μ 
I ε2e

−α(t−t0) 

= 
ε1 

8 
e−α(t−t0) + 4χc4c1|Ω| 1 

6 I 2 ε1 
r 

μ 
e−α(t−t0) 

≤ 
ε1 

4 
e−α(t−t0) 

due to μ  >  32χc4c1|Ω| 1 
6 I 2r . Hence combining above inequalities, we arrive at

||Ñ (·, t)||L∞(Ω) ≤ 
5ε1 
8 

e−α(t−t0) for all t ∈  [t0, T ). 

This along with (1.4.92) readily shows that T cannot be finite. In combination with the 
decay property (1.4.84), a straightforward interpolation argument can be employed 
to prove (1.4.86).
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Proof of Theorem 1.3. According to (1.4.56) and w =  −  ln( c
||c0||L∞ (Ω) 

), we have  

c(x, t) ≤ ||c0||L∞(Ω)e
− r 2μ (t−t3) for all t ≥ t3. On the other hand, if μ∗(χ , Ω, r ) := 

max{μ0, 32χc4c1|Ω| 1 
6 I 2r}, then as an immediate consequence of Theorem 1.3 and 

Lemma 1.45, n(·, t) → r 
μ and 

|∇c| 
c (·, t) → 0 in L∞(Ω) and L6(Ω), respectively, at 

an exponential rate when μ  >  μ∗(χ , Ω, r ). Moreover, with the help of the uniform 
boundedness of|| |∇c| 

c (·, t)||L∞(Ω) with respect to t > 0, one can show that |∇c| 
c (·, t) → 

0 in L p(Ω) for any p > 1 exponentially by the interpolation argument. The proof 
of this theorem is thus complete. 
2. The Case r = 0 
The proof of Theorem 1.4 proceeds on an alternative reasoning. To this end, making 
use of the decay information on |∇w| in L∞(Ω) in (1.4.77) and the quadratic degra-
dation in the n−equation, we first turn the decay property of ||n(·, t)||L1(Ω) from 
(1.4.2) into an upper bound estimate of ||n(·, t)||L∞(Ω). 

Lemma 1.46 Let (n,  w,  u) be the global bounded solution of (1.4.1) obtained in 
Theorem 1.2 with r = 0,  μ  >  0. Then one can find constant C > 0 such that

||n(·, t)||L∞(Ω) ≤ C 

t + 1 
for all t > 0. (1.4.93) 

Proof According to the known smoothing properties of the Neumann heat semigroup 
(eτ  Δ  )t>0 on Ω ⊂ Rn (see Winkler 2010), one can pick c1 > 0 and c2 > 0 such that 
for all 0 <  τ  ≤ 1,

||eτ  Δ  ϕ||L∞(Ω) ≤ C1τ −
n 
2 ||ϕ||L1(Ω) for all ϕ ∈ L1 (Ω) (1.4.94) 

and

||eτ  Δ∇  ·  ϕ||L∞(Ω) ≤ C2τ −
1 
2 − n 2 p ||ϕ||L p(Ω) for all ϕ ∈ C1 (Ω; Rn ). (1.4.95) 

By (1.4.79) and (1.4.80), there exists t0 > 3 such that 

24C2(χ||∇w(·, t)||L3(Ω) + ||u(·, t)||L3(Ω)) ≤ 1 for all t > t0 − 1. (1.4.96) 

Now in order to prove the lemma, it is sufficient to derive a bound, independent of 
T ∈ (t0, ∞), for  M(T ) ⍙ sup 

t0−1<t<T 
{t||n(·, t)||L∞(Ω)}. 

By the variation-of-constants representation of n, we have  

n(·, t) = eΔn(·, t − 1) + χ
∫ t 

t−1 
e(t−s)Δ∇  ·  (n∇w)(·, s)ds  −

∫ t 

t−1 
e(t−s)Δ (u ·  ∇n)(·, s)ds  

− μ
∫ t 

t−1 
e(t−s)Δn2(·, s)ds. 

(1.4.97) 
Since e(t−s)Δ is nonnegative in Ω for all 0 < s < t due to the maximum principle, it 
follows from the nonnegativity of n that for all t ∈ (t0, T )
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||n(·, t)||L∞(Ω) 

≤||eΔ n(·, t − 1)||L∞(Ω) + χ
∫ t 

t−1
||e(t−s)Δ∇  ·  (n∇w)(·, s)||L∞(Ω)ds  

+
∫ t 

t−1
||e(t−s)Δ (u ·  ∇n)(·, s)||L∞(Ω)ds  

which along with (1.4.94)–(1.4.96) and (1.4.2) yields

||n(·, t)||L∞(Ω) 

≤C1||n(·, t − 1)||L1(Ω) + C2χ

∫ t 

t−1 
(t − s)−

5 
6 ||(n∇w)(·, s)||L3(Ω)ds  

+ C2

∫ t 

t−1 
(t − s)−

5 
6 ||(un)(·, s)||L3(Ω)ds  

≤ C1|Ω| 
μ(t − 1 + γ  )  

+ 
6C2 

t − 1 
(χ max 

t0−1<s<T
||∇w(·, s)||L3(Ω) + ||u(·, t)||L2(Ω))· M(T ) 

≤ C1|Ω| 
μ(t − 1 + γ  )  

+ 1 

4(t − 1) 
M(T ). 

Hence, 

M(T ) ≤ 
4C1|Ω| 

μ 
+ 2 sup  

t0−1<s<t0 

{s||n(·, s)||L∞(Ω)}, 

which readily yields (1.4.93) since T > t0 is arbitrary, and thus ends the proof. 

In light of Lemma 1.46, we can derive a pointwise estimate c(x, t) from below. 

Lemma 1.47 Let (n,  w,  u) be the global classical solution of (1.4.1) obtained in 
Thenrem 1.2 with r = 0,  μ  >  0. Then there exists κ  >  0 fulfilling 

c(x, t) ≥ 
inf 
x∈Ω 

c0(x) 

(t + 1)κ . (1.4.98) 

Proof By the second equation of (1.4.1) and Lemma 1.46, we can see that 

wt ≤ △w −  |∇w|2 + 
C1 

t + 1 
− u ·  ∇w 

with some C1 > 0 for all t > 0. Let  y ∈ C1([0, ∞)) denote the solution of the initial-
value problem y'(t) = C1 

t+1 , y(0) = ||w0||L∞(Ω), then from the comparison principle, 
we infer that 

w(x, t) ≤ ||w0||L∞(Ω) + C1 ln(t + 1) for all t > 0, (1.4.99) 

which along with w =  −  ln( c
||c0||L∞ (Ω) 

), yields (1.4.98) with κ = C1.
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Now utilizing the decay information on |∇w| in L∞(Ω) in (1.4.77) again, and 
thanks to the precise information on the decay of ||n(·, t)||L∞(Ω) in Lemma 1.46, we  
can obtain the desired estimate for ||n(·, t)||L∞(Ω) from below as well as the upper 
estimate for ||∇w(·, t)||L∞(Ω). 

Lemma 1.48 Let (n,  w,  u) be the solution of (1.4.1) obtained in Thenrem 1.2 with 
r = 0,  μ  >  0. Then one can find C1 > 0 and C2 > 0 fulfilling

||n(·, t)||L∞(Ω) ≥ 
1 

|Ω| ||n(·, t)||L1(Ω) ≥ 
C1 

t + 1 
for all t > 0 (1.4.100) 

as well as

||∇w(·, t)||L∞(Ω) ≤ 
C2 

t + 1 
for all t > 0. (1.4.101) 

Proof We first adapt the method in Lemma 1.46 to derive the precise decay rate of
||∇w(·, t)||L∞(Ω). By  (1.4.79) and (1.4.80), one can choose some t0 > 2 such that 

4c1

∫ ∞ 

0 
(1 + σ −

1 
2 )e−λ1σ dσ  (||∇w(·, t)||L∞(Ω) + ||u(·, t)||L∞(Ω)) ≤ 1 (1.4.102) 

for all t > t0 2 and then let M(T ) ⍙ sup 
t0 
2 <s<T 

{s||∇w(·, s)||L∞(Ω)} for all T > t0. 

By the variation-of-constants representation of w, we have  

w(·, t) = e 
t 
2 Δ w(·, t 

2 
) −

∫ t 

t 
2 

e(t−s)Δ|∇w|2 (·, s)ds  +
∫ t 

t 
2 

e(t−s)Δ (n − u ·  ∇w)(·, s)ds  

for all t0 < t < T . We then show that

||∇w(·, t)||L∞(Ω) 

≤||∇e 
t 
2 Δ 

w(·, t 
2 
)||L∞(Ω) +

∫ t 

t 
2

||∇e(t−s)Δ|∇w|2||L∞(Ω) +
∫ t 

t 
2

||∇e(t−s)Δn||L∞(Ω) 

+
∫ t 

t 
2

||∇e(t−s)Δ (u ·  ∇w)||L∞(Ω) 

≤c1(1 + t−
1 
2 )e−

λ1t 
2 ||w(·, t 

2 
)||L∞(Ω) + c1

∫ t 

t 
2 

(1 + (t − s)−
1 
2 )e−λ1(t−s)||n(·, s)||L∞(Ω) 

+ c1
∫ t 

t 
2 

(1 + (t − s)−
1 
2 )e−λ1(t−s)||∇w(·, s)||L∞(Ω)(||∇w(·, s)||L∞(Ω) + ||u(·, s)||L∞(Ω)) 

≤c1(1 + t−
1 
2 )e−

λ1t 
2 (||w0||L∞(Ω) + c2 ln(t + 1)) + 

2c1c2 
t

∫ ∞ 

0 
(1 + σ −

1 
2 )e−λ1σ dσ 

+ 
2c1 
t

∫ ∞ 

0 
(1 + σ −

1 
2 )e−λ1σ dσ sup 

t≥ t0 
2 

(||∇w(·, t)||L∞(Ω) + ||u(·, t)||L∞(Ω)) · M(T )
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≤c1(1 + t−
1 
2 )e−

λ1t 
2 (||w0||L∞(Ω) + c2 ln(t + 1)) + 

2c1c2 
t

∫ ∞ 

0 
(1 + σ −

1 
2 )e−λ1σ dσ 

+ 
1 

2t 
M(T ) 

by using Lemma 1.4.1(i), (1.4.99), (1.4.93) and (1.4.102). This along with the defi-
nition of M(T ) yields 

M(T ) ≤ 2 sup  
t0 
2 <s<t0 

{s||∇w(·, s)||L∞(Ω)}  +  c4 

with some constant c4 > 0 as lim 
t→∞ 

t ln(t + 1)e−λ1t = 0. Hence, upon the definition 
of M(T ), we arrive at (1.4.101) with an evident choice of C2. 

Continuing with the proof, we claim that there exists c4 > 0 such that

||n(·, t)||L∞(Ω) ≥ 
1 

|Ω| ||n(·, t)||L1(Ω) ≥ c4 
t + 1 

for all t > 0. (1.4.103) 

Indeed, from the n−equation of (1.4.1) with r = 0 and Young’s inequality, it follows 

that 
d 

dt

∫

Ω 
ln n =

∫

Ω 

|∇n|2 
n2 

+ χ
∫

Ω 

1 

n 
∇  ·  (n∇w) − μ

∫

Ω 
n ≥  −  

χ 2 

4

∫

Ω 
|∇w|2 − μ

∫

Ω 
n. Inserting (1.4.2) and (1.4.101) into the above inequality yields d 

dt

∫

Ω ln n ≥ 

−χ 2 
4 

C2 
2 |Ω| 

(t+1)2 − |Ω| 
t+γ and thus

∫

Ω 
ln n(·, t) ≥  −|Ω| ln(t + γ  )  − c5 for all t > 1 (1.4.104) 

with some c5 > 0. On the other hand, by the Jensen inequality, we have 

|Ω| ln(
∫

Ω 
n(·, t)) −  |Ω| ln |Ω|  =  |Ω| ln{ 1 |Ω|

∫

Ω 
n(·, t))}  ≥

∫

Ω 
ln n(·, t). 

This inequality together with (1.4.104) readily leads to (1.4.100). 

With the above lemmas at hand, we can now complete the proof of Theorem 1.4. 
Proof of Theorem1.4. By  w =  −  ln( c

||c0||L∞ (Ω) 
), Lemma 1.46 and Lemma 1.48, one can 

see that (n, |∇c| 
c ) −→ (0, 0) in L∞(Ω) algebraically as t →  ∞. Hence, it suffices to 

show the decay property of c(x, t). In view of the  w-equation in (1.4.1), (1.4.103), 
(1.4.101) and ∇  ·  u = 0, we can pick Ci > 0 (i = 1, 2, 3) such that 

d 

dt

∫

Ω 
w =

∫

Ω 
n −

∫

Ω 
|∇w|2 −

∫

Ω 
u ·  ∇w ≥ 

C1|Ω| 
t + 1 

− 
C2|Ω| 
(t + 1)2 

, 

and hence
∫

Ω w(·, t) ≥ C1|Ω| ln(t + 1) − C3, which entails that for any t > 0 
there exists x0(t) ∈ Ω such that w(x0(t), t) ≥ C1 ln(t + 1) − C3 

|Ω| . Since for each 
ϕ ∈ W 1, p(Ω) with p > 2, there exists C4 > 0 such that
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|ϕ(x) − ϕ(y)|  ≤  C4|x − y|1− 2 p ||∇ϕ||L p (Ω) for all x, y ∈ Ω, 

we therefore obtain from (1.4.101) that  

w(x, t) ≥ w(x0(t), t) −  |x − x0(t)|||∇w(·, t)||L∞(Ω) (1.4.105) 

≥ C1 ln(t + 1) − 
C3 

|Ω| − C4diam(Ω), 

and thereby c(x, t) ≤ C5 

(t + 1)C1 
for x ∈ Ω, t > 0 for some C5 > 0. This together 

with (1.4.98) shows that c(x, t) actually converges to 0 in L∞(Ω) algebraically as 
t →  ∞, and thus ends the proof of Theorem 1.4. 
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Chapter 2 
Keller–Segel–Navier–Stokes System 
Involving Tensor-Valued Sensitivity 

2.1 Introduction 

Chemotaxis, the biased movement of cells in response to chemical gradients, plays 
an important role in coordinating cell migration in many biological phenomena (see 
Hillen and Painter 2009). For example, the fruit fly Drosophila melanogaster navi-
gates up gradients of attractive odors during food location, and male moths follow 
pheromone gradients released by the female during mate location. In 1970, Keller and 
Segel (1971b) proposed a mathematical model describing chemotactic aggregation 
of cellular slime molds⎰

nt = Δn −  ∇  ·  (n∇c), x ∈ Ω, t > 0, 
ct = Δc − c + n x ∈ Ω, t > 0, 

(2.1.1) 

where Ω ⊂ RN , and n and c denote the density of the cell population and the con-
centration of the attracting chemical substance, respectively. One of the most char-
acteristic mathematical features of system (2.1.1) is the possibility of blow-up of 
solutions in a finite or infinite time. It is well known that solutions of system (2.1.1) 
may blow up when  N = 2 with large total mass of cells and N ≥ 3 with arbitrarily 
small prescribed total mass of cells (see Bellomo et al. 2015; Horstmann 2003; Nagai 
et al. 1997; Winkler 2013). In order to describe the nonlinear dependence on the cell 
density in cell movement, the following variant has also been widely studied:

⎰
nt = Δnm −  ∇  ·  (n∇c), x ∈ Ω, t > 0, 
ct = Δc − c + n, x ∈ Ω, t > 0, 

(2.1.2) 

where m > 0. Recent results indicates that m = 2 − 2 N is the critical blow-up expo-
nent of (2.1.2) in some sense. Indeed, all solutions are global and uniformly bounded 
if m > 2 − 2 N (see Tao and Winkler 2012a; Winkler 2010b); whereas if m < 2 − 2 N ,
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(2.1.2) has some solutions which blow up in a finite time (see Cieślak and Stinner 
2012; Winkler 2010b).

Recent analytical findings show that already cell transport through a given fluid can 
substantially influence the solution behavior in certain Keller–Segel-type chemotaxis 
systems (Kiselev and Ryzhik 2012a, b); in fact, even complete suppression of blow-
up may occur (Kiselev and Xu 2016). To the best of our knowledge, however, the full 
mutual coupling of equations from fluid dynamics to chemotaxis systems, including 
buoyancy-driven feedback on the fluid motion, has been considered in the analytical 
literature in cases when the signal substance is produced by the cells, which seems 
rather thin compared with that in cases for the oxygen-consumed though, such as the 
Keller–Segel–Navier–Stokes of the form 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nt + u ·  ∇n = Δn −  ∇  ·  (nS(x, n, c)∇c), x ∈ Ω, t > 0, 
ct + u ·  ∇c = Δc − c + n, x ∈ Ω, t > 0, 
ut + κ(u ·  ∇)u +  ∇ P = Δu + n∇φ, x ∈ Ω, t > 0, 
∇  ·  u = 0, x ∈ Ω, t > 0, 
(∇n − nS(x, n, c)) · ν =  ∇c · ν = 0, u = 0, x ∈ ∂Ω, t > 0, 
n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω, 

(2.1.3) 

where n and c are defined as before and Ω ⊂ R3 is a bounded domain with a smooth 
boundary. Here, u, P,  φ  and κ ∈ R denote, respectively, the velocity field, the asso-
ciated pressure of the fluid, the potential of the gravitational field and the strength of 
nonlinear fluid convection. S(x, n, c) is a chemotactic sensitivity tensor satisfying 

S ∈ C2 ( Ω̄ ×  [0, ∞)2; R3×3 ) (2.1.4) 

and 

|S(x, n, c)|  ≤  CS(1 + n)−α for all (x, n, c) ∈ Ω ×  [0, ∞)2 (2.1.5) 

with some CS > 0 and α  >  0. Problem (2.1.3) is proposed to describe the chemotaxis– 
fluid interaction in cases when the evolution of the chemoattractant is essentially 
dominated by production through cells (see Winkler et al. 2015 and Hillen and 
Painter 2009). For example, in two dimensions, if S = S(x, n, c) is a tensor-valued 
sensitivity fulfilling (2.1.4) and (2.1.5), Wang and Xiang (2015) proved that the 
Stokes version (κ = 0 in the first equation of (2.1.3)) of system (2.1.3) admits a 
unique global classical solution that is bounded. Recently, Wang, Winkler and Xiang 
(2018) extended the above result Wang and Xiang (2015) to the Navier–Stokes ver-
sion (κ /= 0 in the first equation of (2.1.3)). In both papers Wang et al. (2018) and 
Wang and Xiang (2015), the condition α  >  0 is optimal for the existence of the 
solution. Furthermore, similar results are also valid for the three-dimensional Stokes 
version (κ = 0 in the first equation of (2.1.3)) of system (2.1.3) with α  >  1 2 (see 
Wang and Xiang 2016). In the three-dimensional case, Wang and Liu (2017) showed
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that the Keller–Segel–Navier–Stokes (κ /= 0 in the first equation of (2.1.3)) system 
(2.1.3) admits a global weak solution for tensor-valued sensitivity S(x, n, c) satisfy-
ing (2.1.4) and (2.1.5) with α  >  3 7 . Recently, due to the lack of enough regularity and 
compactness properties for the first equation, by using the idea proposed by Winkler 
(2015a), Wang (2017) presented the existence of global very weak solutions for the 
system (2.1.3) under the assumption that S satisfies (2.1.4) and (2.1.5) with α  >  1 3 , 
which, in light of the known results for the fluid-free system mentioned above, is an 
optimal restriction on α. However, the existence of global (stronger than the result 
of Wang 2017) weak solutions is still open. 

When taking the nonlinear diffusion of the cells into account, the system above 
may be reformed as 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

nt + u ·  ∇n = Δnm −  ∇  ·  (nS(x, n, c)∇c), x ∈ Ω, t > 0, 
ct + u ·  ∇c = Δc − c + n, x ∈ Ω, t > 0, 
ut + κ(u ·  ∇)u +  ∇ P = Δu + n∇φ, x ∈ Ω, t > 0, 
∇  ·  u = 0, x ∈ Ω, t > 0, 

(2.1.6) 

with S fulfilling 
|S(x, n, c)|  ≤  CS 

for some positive constant CS . When κ = 0, Li et al. (2016) and Zheng (2019) 
considered the chemotaxis–Stokes system (2.1.6) for  N = 2 and N = 3, respectively. 
They concluded that when m > 2 − 2 N , the weak solutions of the simplified system 
(2.1.6) (κ = 0) are global existent and bounded. But till now, as far as we know, it 
is still not clear that in the case that κ /= 0, whether the solution of the chemotaxis– 
Navier–Stokes system (2.1.6) is bounded or not. 

The emergence of degenerate diffusion, full Navier–Stokes fluid (κ /= 0) and 
rotational flux (tensor-valued sensitivity S) makes the system (2.1.6) contain a more 
complex cross-diffusion mechanism, which brings more mathematical difficulties to 
the problem. In fact, if κ = 0, by utilizing the L1 estimate on n, one can invoke Lemma 
2.4 in Wang and Xiang (2015) and the Sobolev embedding theorem (Theorem 5.6.6 
in Evans 2010) to obtain the regularity of u in arbitrary L p spaces (see Lemma 2.4 
in Li et al. 2016). Then one can also obtain L p estimate on c, by using the variation-
of-constants representation for c (see the proof of Lemma 2.6 in Wang and Xiang 
2015 and Lemma 2.6 in Li et al. 2016). By using the estimates on c and u, one can 
finally derive the entropy-like estimate involving the functional

∫
Ω n

p + ∫
Ω |∇c|2q 

(see Lemma 2.9 in Li et al. 2016 or Lemma 2.10 in Wang and Xiang 2015). Once the 
crucial step has been accomplished, the main results can be easily obtained by using 
the standard Alikakos–Moser iteration. However, when κ /= 0, one cannot acquire 
the regularity of u in arbitrary L p spaces directly. Here, we develop some L p-estimate 
techniques to raise the a priori estimates of solutions from L1(Ω) → Lm−1(Ω) → 
Lm(Ω) → L p(Ω) (for any p > 2), which even seems a new method in the case of 
fluid-free system.
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The first part of this chapter is concerned with system (2.1.6) along with the initial 
data 

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω, (2.1.7) 

and under the boundary conditions

(∇nm − nS(x, n, c)∇c
) · ν =  ∇c · ν = 0, u = 0, x ∈ ∂Ω, t > 0 (2.1.8) 

in a bounded domain Ω ⊂ R2 with smooth boundary, where the chemotactic sensi-
tivity tensor S(x, n, c) satisfies 

S ∈ C2 ( Ω̄ ×  [0, ∞)2; R2×2 ) (2.1.9) 

and 
|S(x, n, c)|  ≤  CS for all (x, n, c) ∈ Ω ×  [0, ∞)2 (2.1.10) 

with someCS > 0. Throughout this part φ ∈ W 2,∞(Ω) and the initial data (n0, c0, u0) 
fulfills ⎧⎪⎨ 

⎪⎩ 

n0 ∈ Cκ ( Ω̄) for certain κ  >  0 with n0 ≥ 0 in  Ω, 
c0 ∈ W 2,∞(Ω) with c0 ≥ 0 in  Ω̄, 
u0 ∈ D(A), 

(2.1.11) 

where A denotes the Stokes operator with domain D( A) := W 2,2(Ω) ∩ W 1,2 
0 (Ω) ∩ 

L2 
σ (Ω), and L2 

σ (Ω) := {ϕ ∈ L2(Ω)|∇ · ϕ = 0} (see Sohr 2001). 
Within the above frameworks, the main result on global existence and bounded-

ness of solutions to (2.1.6)–(2.1.8) is stated as follows (Zheng and Ke 2020). 

Theorem 2.1 Let m > 1, Ω ⊂ R2 be a bounded domain with smooth boundary, and 
assume (2.1.9)–(2.1.11) hold. Then the problem (2.1.6)–(2.1.8) admits a global-in-
time weak solution (n, c, u, P), which is uniformly bounded in the sense that

||n(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||u(·, t)||L∞(Ω) ≤ C for all t > 0 (2.1.12) 

with some positive constant C. 

Remark 2.1 (i) If u ≡ 0, Theorem 2.1 coincides with Theorem 5.1 in Winkler 
(2010b), which seems to be optimal according to the two-dimensional fluid-free 
system. 

(ii) Theorem 2.1 extends the results of Li et al. (2016), in which the authors dis-
cussed the chemotaxis–Stokes system (κ = 0) in a two-dimensional convex domain. 
As mentioned earlier, we not only extend the results to the chemotaxis–Navier– 
Stokes system (κ /= 0), but also remove the convexity assumption of the domain. In 
Li et al. (2016), in order to get the regularity of ∇c, the assumption that the domain
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should be convex is required. Applying the boundedness of ||∇c||L2(Ω) (see Lemma 
2.8) and the fractional Gagliardo–Nirenberg inequality (see Lemma 2.5 in Ishida 
et al. 2014) to gain the regularity of ∇c in arbitrary L p spaces, the hypothesis of 
convexity for Ω is removed herein. 

The second part of this chapter considers the globally defined weak solution (see 
Definition 2.1) to system (2.1.3) with the initial data (n0, c0, u0) fulfilling ⎧⎪⎨ 

⎪⎩ 

n0 ∈ Cκ ( Ω̄) for certain κ  >  0 with n0 ≥ 0 in  Ω, 
c0 ∈ W 1,∞(Ω) with c0 ≥ 0 in  Ω̄, 
u0 ∈ D(Aγ 

r ) for some γ ∈ (3/4, 1) and any r ∈ (1, ∞), 
(2.1.13) 

where Ar denotes the Stokes operator with domain D( Ar ) := W 2,r (Ω) ∩ W 1,r 
0 (Ω) ∩ 

Lr 
σ (Ω) and Lr 

σ (Ω) := {ϕ ∈ Lr (Ω)|∇ · ϕ = 0} for r ∈ (1, ∞) (similar to that in Sohr 
2001). 

Theorem 2.2 Let Ω ⊂ R3 be a bounded domain with a smooth boundary, and 
(2.1.13) hold. Suppose that S satisfies (2.1.4) and (2.1.5) with some α  >  1 3 . Then 
problem (2.1.3) possesses at least one global weak solution (n, c, u, P) in the sense 
of Definition 2.1. 

2.2 Preliminaries 

In order to construct the weak solutions to (2.1.6)–(2.1.8) by an approximation pro-
cedure, we consider the approximate variant of (2.1.3) given by 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nεt + uε ·  ∇nε = Δ(nε + ε)m −  ∇  ·  (nε Sε(x, nε, cε)∇cε), x ∈ Ω, t > 0, 
cεt + uε ·  ∇cε = Δcε − cε + nε, x ∈ Ω, t > 0, 
uεt +  ∇ Pε = Δuε − κ(uε ·  ∇)uε + nε∇φ, x ∈ Ω, t > 0, 
∇  ·  uε = 0, x ∈ Ω, t > 0, 
∇nε · ν =  ∇cε · ν = 0, uε = 0, x ∈ ∂Ω, t > 0, 
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω, 

(2.2.1) 
where Sε(x, n, c) := ρε(x)χε(n)S(x, n, c), n ≥ 0, c ≥ 0, ρε ∈ C∞

0 (Ω) such that 
0 ≤ ρε ≤ 1 in  Ω and ρε ↖ 1 in  Ω as ε ↘ 0, χε ∈ C∞

0 ([0, ∞)) such that 0 ≤ 
χε ≤ 1 in  [0, ∞) and χε ↖ 1 in  [0, ∞) as ε ↘ 0. 

By the well-established fixed-point arguments (see Lemma 2.1 in Winkler 2016v, 
Winkler 2015b and Lemma 2.1 in Painter and Hillen 2002), we could show the local 
solvability of system (2.2.1). 

Lemma 2.1 Let Ω ⊂ R2 be a bounded domain with smooth boundary, and assume 
(2.1.9)–(2.1.11) hold. For any ε ∈ (0, 1), there exist Tmax,ε ∈ (0, ∞] and a classical 
solution (nε, cε, uε, Pε) of system (2.2.1) in  Ω ×  [0, Tmax,ε). Here,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nε ∈ C0( Ω̄ ×  [0, Tmax,ε)) ∩ C2,1( Ω̄ × (0, Tmax,ε)), 

cε ∈ C0( Ω̄ ×  [0, Tmax,ε)) ∩ C2,1( Ω̄ × (0, Tmax,ε)) ∩
∩
p>1 

L∞([0, Tmax,ε); W 1, p(Ω)), 

uε ∈ C0( Ω̄ ×  [0, Tmax,ε)) ∩ C2,1( Ω̄ × (0, Tmax,ε)) ∩
∩

γ ∈(0,1) 
C0([0, Tmax,ε); D(Aγ )), 

Pε ∈ C1,0( Ω̄ × (0, Tmax,ε)). 
(2.2.2) 

Moreover, nε and cε are nonnegative in Ω × (0, Tmax,ε), and if Tmax,ε < +∞, then 

lim sup 
t↖Tmax,ε 

[||nε(·, t)||L∞(Ω) + ||cε(·, t)||W 1,∞(Ω) + ||Aγ uε(·, t)||L2(Ω)]  =  ∞  

for all p > 2 and γ ∈ ( 1 2 , 1). 

Lemma 2.2 (Tao and Winkler 2015b) Let T ∈ (0, ∞], σ ∈ (0, T ), A > 0 and B > 
0, and suppose that y :  [0, T ) →  [0, ∞) is absolutely continuous such that y'(t) + 
Ay(t) ≤ h(t) for a.e. t ∈ (0, T ) with some nonnegative function h ∈ L1 

loc([0, T )) 
satisfying

∫ t+σ 
t h(s)ds ≤ B for all t ∈ (0, T − σ  ).  Then y(t) ≤ max{y0 + B, B 

Aτ + 
2B} for all t ∈ (0, T ). 

In light of the strong nonlinear term (u ·  ∇)u, problem (2.1.3) has no classical 
solutions in general, thus we consider its weak solutions. 

Definition 2.1 Let T > 0 and assume that (n0, c0, u0) fulfills (2.1.13). Then a triple 
of functions (n, c, u) is called a weak solution of (2.1.3) if the following conditions 
are satisfied: ⎧⎪⎨ 

⎪⎩ 

n ∈ L1 
loc( Ω̄ ×  [0, T )), 

c ∈ L1 
loc([0, T ); W 1,1 (Ω)), 

u ∈ L1 
loc([0, T ); W 1,1 (Ω); R3 ), 

(2.2.3) 

where n ≥ 0 and c ≥ 0 in Ω × (0, T ) as well as ∇  ·  u = 0 in the distributional sense 
in Ω × (0, T ). Moreover, 

u ⊗ u ∈ L1 
loc( Ω̄ ×  [0, ∞); R3×3 ) and n belongs to L1 

loc( Ω̄ ×  [0, ∞)), 
cu, nu, and nS(x, n, c)∇c belong to L1 

loc( Ω̄ ×  [0, ∞); R3 ) 
(2.2.4) 

and 

−
∫ T 

0

∫
Ω 

nϕt −
∫

Ω 
n0ϕ(·, 0) 

=−
∫ T 

0

∫
Ω 

∇n ·  ∇ϕ +
∫ T 

0

∫
Ω 

nS(x, n, c)∇c ·  ∇ϕ +
∫ T 

0

∫
Ω 

nu ·  ∇ϕ 
(2.2.5) 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, T )) satisfying ∂ϕ 

∂ν = 0 on ∂Ω × (0, T ), as well as
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−
∫ T 

0

∫
Ω 

cϕt −
∫

Ω 
c0ϕ(·, 0) 

=−
∫ T 

0

∫
Ω 

∇c ·  ∇ϕ −
∫ T 

0

∫
Ω 

cϕ +
∫ T 

0

∫
Ω 

nϕ +
∫ T 

0

∫
Ω 

cu ·  ∇ϕ 
(2.2.6) 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, T )) and 

−
∫ T 

0

∫
Ω 

uϕt −
∫

Ω 
u0ϕ(·, 0) − κ

∫ T 

0

∫
Ω 

u ⊗ u ·  ∇ϕ 

=−
∫ T 

0

∫
Ω 

∇u ·  ∇ϕ −
∫ T 

0

∫
Ω 

n∇φ · ϕ 
(2.2.7) 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, T ); R3) fulfilling ∇ϕ ≡ 0 in Ω × (0, T ). 

If (n, c, u) : Ω × (0, ∞) −→ R5 is a weak solution of (2.1.3) in  Ω × (0, T ) for 
all T > 0, then (n, c, u) is called a global weak solution of (2.1.3). 

To obtain the solution of system (2.1.3), we first consider the following approxi-
mate system of (2.1.3): 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nεt + uε ·  ∇nε = Δnε −  ∇  ·  (nε F
'
ε(nε)Sε(x, nε, cε)∇cε), x ∈ Ω, t > 0, 

cεt + uε ·  ∇cε = Δcε − cε + Fε(nε), x ∈ Ω, t > 0, 
uεt +  ∇ Pε = Δuε − κ(Yεuε ·  ∇)uε + nε∇φ, x ∈ Ω, t > 0, 
∇  ·  uε = 0, x ∈ Ω, t > 0, 
∇nε · ν =  ∇cε · ν = 0, uε = 0, x ∈ ∂Ω, t > 0, 
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω, 

(2.2.8) 
where 

Fε(s) := 
1 

ε 
ln(1 + εs) for all s ≥ 0 and ε  >  0, (2.2.9) 

as well as 

Sε(x, n, c) := ρε(x)S(x, n, c), x ∈ Ω̄, n ≥ 0, c ≥ 0 (2.2.10) 

and 
Yεw := (1 + εA)−1 w for all w ∈ L2 

σ (Ω) 

is a standard Yosida approximation and A is the realization of the Stokes operator 
(see Sohr 2001). Here, (ρε)ε∈(0,1) ∈ C∞

0 (Ω) is a family of standard cutoff functions 
satisfying 0 ≤ ρε ≤ 1 in Ω and ρε ↖ 1 in Ω as ε ↘ 0. 

The local solvability of (2.2.8) can be derived by a suitable extensibility criterion 
and a slight modification of the well-established fixed-point arguments in Lemma 2.1 
of Winkler (2016v) (see also Winkler 2015b and Lemma 2.1 of Painter and Hillen 
2002), so here we omit the proof.
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Lemma 2.3 For each ε ∈ (0, 1), there exist Tmax,ε ∈ (0, ∞] and a classical solution 
(nε, cε, uε, Pε) of (2.2.8) in  Ω × (0, Tmax,ε) such that 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

nε ∈ C0 ( Ω̄ ×  [0, Tmax,ε)) ∩ C2,1 ( Ω̄ × (0, Tmax,ε)), 
cε ∈ C0 ( Ω̄ ×  [0, Tmax,ε)) ∩ C2,1 ( Ω̄ × (0, Tmax,ε)), 
uε ∈ C0 ( Ω̄ ×  [0, Tmax,ε); R3 ) ∩ C2,1 ( Ω̄ × (0, Tmax,ε); R3 ), 
Pε ∈ C1,0 ( Ω̄ × (0, Tmax,ε)), 

classically solving (2.2.8) in  Ω ×  [0, Tmax,ε). Moreover, nε and cε are nonnegative 
in Ω × (0, Tmax,ε), and

||nε(·, t)||L∞(Ω) + ||cε(·, t)||W 1,∞(Ω) + ||Aγ uε(·, t)||L2(Ω) →  ∞  as t → Tmax,ε, 

where γ is given by (2.1.13). 

Lemma 2.4 (Winkler 2010; Zheng 2017c) Let (eτ  Δ  )τ ≥0 be the Neumann heat semi-
group in Ω and p > 3. Then there exist positive constants k1 := k1(Ω), k2 := k2(Ω) 
and k3 := k3(Ω) such that for all τ  >  0 and any ϕ ∈ W 1, p(Ω),

||∇eτ  Δ  ϕ||L p(Ω) ≤ k1||∇ϕ||L p (Ω), 

and for all τ  >  0 and each ϕ ∈ L∞(Ω)

||∇eτ  Δ  ϕ||L p(Ω) ≤ k2(1 + τ −
1 
2 )||ϕ||L∞(Ω), 

as well as for all τ  >  0 and all ϕ ∈ C1( Ω̄; R3) fulfilling ϕ · ν = 0 on ∂Ω

||eτ  Δ∇  ·  ϕ||L∞(Ω) ≤ k3(1 + τ −
1 
2 − 3 2p )||ϕ||L p (Ω). 

2.3 Blow-Up Prevention by Nonlinear Diffusion to a 
Two-Dimensional Keller–Segel–Navier–Stokes System 

2.3.1 Some Basic a Priori Estimates 

In order to establish the global solvability of system (2.2.1), this section is to derive 
some necessary estimates for the approximate system (2.2.1). Let us first state two 
basic estimates on nε and cε. 

Lemma 2.5 (Ke and Zheng 2019) The solution of (2.2.1) satisfies

∫
Ω 

nε =
∫

Ω 
n0 for all t ∈ (0, Tmax,ε) (2.3.1)
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as well as ∫
Ω 

cε ≤ max{
∫

Ω 
n0,

∫
Ω 

c0} for all t ∈ (0, Tmax,ε). 

According to Lemma 2.5, we will derive some information on (nε + ε)m−1, ∇(nε + 
ε)m−1, c2 ε and |∇cε|2. This approach has been undertaken previously in, e.g., Wang 
et al. (2018), Ke and Zheng (2019) and Liu and Wang (2016). 

Lemma 2.6 Let m > 1. Then there exists C > 0 independent of ε such that the 
solution of (2.2.1) satisfies

∫
Ω 

(nε + ε)m−1 +
∫

Ω 
c2 ε +

∫
Ω 

|uε|2 ≤ C for all t ∈ (0, Tmax,ε) (2.3.2) 

as well as ∫ t+τ 

t

∫
Ω

⎣
(nε + ε)2m−4|∇nε|2 +  |∇cε|2 +  |∇uε|2

⎤ ≤ C (2.3.3) 

for all t ∈ (0, Tmax,ε − τ  )  with τ = min{1, 1 6Tmax,ε}. 
Utilizing the latter spatio-temporal bound for ∇(nε + ε)m−1, we can establish the 

regularity of cε beyond Lemma 2.6. 

Lemma 2.7 Let (nε, cε, uε, Pε) be the solution of (2.2.1). Then for any q > 2, there 
exists C := C(q) independent of ε such that

||cε(·, t)||Lq (Ω) ≤ C for all t ∈ (0, Tmax,ε). (2.3.4) 

Proof Multiplying the second equation in (2.2.1) by  cp−1 
ε with p > 3 + 4(m − 1), 

using the fact ∇  ·  uε = 0, we have  

1 

p 

d 

dt

∫
Ω 

cp 
ε + (p − 1)

∫
Ω 

cp−2 
ε |∇cε|2 +

∫
Ω 

cp 
ε 

≤
∫

Ω 
cp−1 
ε (nε + ε) 

≤||nε + ε||
L 

p−2(m−1) 
p−4(m−1) (Ω)

⎧∫
Ω 

c 
(p−1)[p−2(m−1)] 

m−1 
ε

⎫ m−1 
p−2(m−1) 

≤C1||nε + ε||
L 

p−2(m−1) 
p−4(m−1) (Ω) 

(||∇c 
p 
2 
ε ||

p[p−2(m−1)−1] 
[p−1][p−2(m−1)] 
L2(Ω)

||c 
p 
2 
ε ||

2(m−1) 
(p−1)[p−2(m−1)] 

L 
2 
p (Ω) 

+ ||c 
p 
2 
ε ||

L 
2 
p (Ω) 

) 
2(p−1) 

p 

≤C2||nε + ε||
L 

p−2(m−1) 
p−4(m−1) (Ω) 

(||∇c 
p 
2 
ε ||

2[p−2(m−1)−1] 
p−2(m−1) 

L2(Ω)
+ 1) 

≤ 
(p − 1) 

2

∫
Ω 

cp−2 
ε |∇cε|2 + C3||nε + ε||p−2(m−1) 

L 
p−2(m−1) 
p−4(m−1) (Ω) 

+ C3 

(2.3.5) 
for some positive constants Ci , (i = 1, 2, 3), due to the Gagliardo–Nirenberg 
inequality.
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By appropriate reformulation, if follows from (2.3.5) that for all  t ∈ (0, Tmax,ε), 

1 

p 

d 

dt

∫
Ω 

cp 
ε + 

(p − 1) 
2

∫
Ω 

cp−2 
ε |∇cε|2 +

∫
Ω 

cp 
ε 

≤C3||nε + ε||p−2(m−1) 

L 
p−2(m−1) 
p−4(m−1) (Ω) 

+ C3 for all t ∈ (0, Tmax,ε). 
(2.3.6) 

In the following, we will estimate the integrals on the right-hand side of (2.3.6). In 
view of the Gagliardo–Nirenberg inequality, for some C4 > 0 and C5 > 0, we may  
derive from (2.3.3) that

||nε + ε||p−2(m−1) 

L 
p−2(m−1) 
p−4(m−1) (Ω) 

=||(nε + ε)m−1||
p−2(m−1) 

m−1 

L 
p−2(m−1) 

[p−4(m−1)](m−1) (Ω) 

≤||∇(nε + ε)m−1||2 L2(Ω)||(nε + ε)m−1||
p 

m−1 

L 
1 

m−1 (Ω) 
+ ||(nε + ε)m−1||

p−2(m−1) 
m−1 

L 
1 

m−1 (Ω) 

≤||∇(nε + ε)m−1||2 L2(Ω) 

which along with (2.3.6) and Lemma 2.2 leads to (2.3.4). 

Based on the  information from Lemma  2.7, we can derive the more regularity 
property of solutions than that in Lemma 2.6 asserted in the following lemma. 

Lemma 2.8 Let m > 1. Then the solution of (2.2.1) satisfies

∫
Ω 

(nε + ε)m +
∫

Ω 
|∇cε|2 ≤ C for all t ∈ (0, Tmax,ε) (2.3.7) 

as well as∫ t+τ 

t

∫
Ω 

|∇(nε + ε) 
2m−1 

2 |2 ≤ C for all t ∈ (0, Tmax,ε − τ  ), (2.3.8) 

where τ = min{1, 1 6Tmax,ε}. 

Proof Multiplying the first equation of (2.2.1) by  (nε + ε)m−1 and noticing ∇  ·  uε = 
0, one obtains 

1 

m 

d 

dt
||nε + ε||m 

Lm (Ω) + (m − 1)
∫

Ω 
(nε + ε)2m−3|∇nε|2 

=−
∫

Ω 
(nε + ε)m−1∇  ·  (nε Sε(x, nε, cε)∇cε) 

≤CS(m − 1)
∫

Ω 
(nε + ε)m−1|∇nε||∇cε| for all t ∈ (0, Tmax,ε)
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by using (2.1.10). From the Young inequality, it follows that for any η  >  0, there 
exists C1(η) > 0 such that 

1 

m 

d 

dt
||nε + ε||m 

Lm (Ω) + (m − 1)
∫

Ω 
(nε + ε)2m−3|∇nε|2 

≤m − 1 
2

∫
Ω 

(nε + ε)2m−3|∇nε|2 + 
(m − 1)C2 

S 

2

∫
Ω 

(nε + ε)|∇cε|2 

≤m − 1 
2

∫
Ω 

(nε + ε)2m−3|∇nε|2 + η
∫

Ω 
(nε + ε)2m + C1(η)

∫
Ω 

|∇cε| 4m 
2m−1 . 

(2.3.9) 

On the other hand, in view of Lemma 2.5 and the Gagliardo–Nirenberg inequality, 
we infer that for some C2 > 0,∫

Ω 
(nε + ε)2m = ||(nε + ε) 

2m−1 
2 ||

4m 
2m−1 

L 
4m 

2m−1 (Ω) 
≤ C2||∇(nε + ε) 

2m−1 
2 ||2 L2(Ω) + C2. 

(2.3.10) 
Inserting (2.3.10) into (2.3.9) and choosing η appropriately small, we then get 

1 

m 

d 

dt
||nε + ε||m 

Lm (Ω) + 
m − 1 

4

∫
Ω 

(nε + ε)2m−3|∇nε|2 

≤C3

∫
Ω 

|∇cε| 4m 
2m−1 . 

In light of (2.3.4), there exist positive constants l0 > 1 
m−1 and C2, such that

||cε(·, t)||Ll0 (Ω) ≤ C2 for all t ∈ (0, Tmax,ε). (2.3.11) 

Next, with the help of the Gagliardo–Nirenberg inequality and (2.3.11), we derive 
that ∫

Ω 
|∇cε| 4m 

2m−1 ≤C4||Δcε||a 4m 
2m−1 

L2(Ω)
||cε||(1−a) 4m 

2m−1 

Ll0 (Ω) + C4||cε||
4m 

2m−1 

Ll0 (Ω) 

≤C5||Δcε||a 4m 
2m−1 

L2(Ω) + C5 

with some positive constants C3 and C4, and 

a = 
1 
2 + 1 l0 

− 2m−1 
4m 

1 
2 + 1 l0 

∈ (0, 1), 

which together with the fact that 4am 
2m−1 < 2 (due to l0 > 1 

m−1 ), yields 

C3

∫
Ω 

|∇cε| 4m 
2m−1 ≤ 

1 

8
||Δcε||2 L2(Ω) + C6. (2.3.12)
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On the other hand, taking −Δcε as the test function for the second equation of 
(2.2.1), and using the Young inequality, it yields that for all t ∈ (0, Tmax,ε) 

1 

2 

d 

dt
||∇cε||2 L2(Ω) +

∫
Ω 

|Δcε|2 +
∫

Ω 
|∇cε|2 

=−
∫

Ω 
nεΔcε −

∫
Ω 

∇cε∇(uε ·  ∇cε) 

=−
∫

Ω 
nεΔcε −

∫
Ω 

∇cε(∇uε ·  ∇cε) 

≤ 
1 

2

∫
Ω 

|Δcε|2 + 
1 

2

∫
Ω 

n2 
ε + ||∇uε||L2(Ω)||∇cε||2 L4(Ω) 

≤ 
1 

2

∫
Ω 

|Δcε|2 + 
1 

2

∫
Ω 

n2 
ε + C7||∇uε||L2(Ω)||Δcε||L2(Ω)||∇cε||L2(Ω) 

≤ 
3 

4

∫
Ω 

|Δcε|2 + 
1 

2

∫
Ω 

n2 
ε + C8||∇uε||2 L2(Ω)||∇cε||2 L2(Ω) 

(2.3.13) 

where we have used the fact that∫
Ω 

∇cε · (D2 cε · uε) = 
1 

2

∫
Ω 

uε ·  ∇|∇cε|2 = 0 for all t ∈ (0, Tmax,ε) 

as well as

||∇cε||2 L4(Ω) ≤ C7||Δcε||L2(Ω)||∇cε||L2(Ω) for all t ∈ (0, Tmax,ε) 

for some C7 > 0 by the elliptic regularity (Gilbarg and Trudinger 2001). 
Hence by appropriate reformulation, (2.3.9), (2.3.12) and (2.3.13), we derive that 

for all t ∈ (0, Tmax,ε), 

d 

dt 
(||nε + ε||m 

Lm (Ω) + ||∇cε||2 L2(Ω)) + C8

∫
Ω 

|∇(nε + ε) 
2m−1 

2 |2 

+ C8

∫
Ω 

(|Δcε|2 +  |∇cε|2 ) 

≤C9

∫
Ω 

(nε + ε)2 + C9||∇uε||2 L2(Ω)||∇cε||2 L2(Ω) + C9 for all t ∈ (0, Tmax,ε) 
(2.3.14) 

with some C8 > 0 and C9 > 0. So by (2.3.10) and m > 1, we can see that 

d 

dt 
(||nε + ε||m 

Lm (Ω) + ||∇cε||2 L2(Ω)) + 
C8 

2

∫
Ω 

|∇(nε + ε) 
2m−1 

2 |2 

+ C8

∫
Ω 

(|Δcε|2 +  |∇cε|2 ) 
≤C9||∇uε||2 L2(Ω)||∇cε||2 L2(Ω) + C10 for all t ∈ (0, Tmax,ε) 

(2.3.15)
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for some constant C10 > 0. 
Note that from the Gagliardo–Nirenberg inequality and (2.3.3), it follows that 

there exist constants Ci > 0, (i = 11, 12, 13), such that
∫ t+τ 

t

∫
Ω 

(nε + ε)m 

=
∫ t+τ 

t
||(nε + ε)m−1||

m 
m−1 

L 
m 

m−1 (Ω) 

≤C11

⎧∫ t+τ 

t
||∇(nε + ε)m−1|| m−1 

m 

L2(Ω)
||(nε + ε)m−1|| 1 

m 

L 
1 

m−1 (Ω) 

+
∫ t+τ 

t
||(nε + ε

⎫m−1

||
L 

1 
m−1 (Ω) 

) 
m 

m−1 

≤C12

∫ t+τ 

t
||∇(nε + ε)m−1||2 L2(Ω) + C12 

≤C13. 

(2.3.16) 

Therefore, if we write y(t) := ||nε(·, t) + ε||m 
Lm (Ω) + ||∇cε(·, t)||2 L2(Ω) + 1 and ρ(t) = 

C9
∫
Ω |∇uε(·, t)|2 + C10, (2.3.15) implies that  

y'(t) + h(t) ≤ ρ(t)y(t) for all t ∈ (0, Tmax,ε), (2.3.17) 

with 

h(t) = 
C8 

2

∫
Ω 

|∇(nε + ε) 
2m−1 

2 |2 + C8

∫
Ω 

|Δcε|2 . 

Next, by estimates (2.3.3) and (2.3.16), one obtains

∫ t+τ 

t 
ρ(s)ds ≤ C14 (2.3.18) 

as well as ∫ t+τ 

t 
y(s)ds ≤ C14, (2.3.19) 

for all t ∈ (0, Tmax,ε − τ  )  and some C14 > 0. For given t ∈ (0, Tmax,ε), by estimate 
(2.3.19), one can see that there exists t0 ≥ 0 such that t0 ∈  [t − τ, t], y(·, t0) ≤ C14 

τ 
and hence 

y(t) ≤ y(t0)e
∫ t 

t0 
ρ(s)ds ≤ 

C14 

τ 
eC14 (2.3.20) 

due to (2.3.18) and the Gronwall lemma. Moreover, combining (2.3.17), (2.3.18) and 
(2.3.20), we immediately get the desired inequality (2.3.8).
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In order to obtain the global boundedness of nε, a further regularity of ∇nε beyond 
(2.3.7) seems to be required. Indeed, drawing on (2.3.3) and (2.3.8), we first have 
the following. 

Lemma 2.9 Let m > 1. There exists a positive constant C independent of ε, such  
that ∫

Ω 
|∇uε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε). (2.3.21) 

Proof Applying the Helmholtz projection to the third equation in (2.2.1), and also 
multiplying the result identified by Auε, we then find that 

1 

2 

d 

dt
||A 

1 
2 uε||2 L2(Ω) +

∫
Ω 

|Auε|2 

=
∫

Ω 
AuεP(−κ(Yεuε ·  ∇)uε) +

∫
Ω 
P(nε∇φ) Auε 

≤ 
1 

2

∫
Ω 

|Auε|2 + κ2
∫

Ω 
|(Yεuε ·  ∇)uε|2 

+ ||∇φ||2 L∞(Ω)

∫
Ω 

n2 
ε for all t ∈ (0, Tmax,ε). 

(2.3.22) 

Noticing that since||Yεuε||L2(Ω) ≤ ||uε||L2(Ω), it follows from the Gagliardo–Nirenberg 
inequality and the Cauchy–Schwarz inequality that with some C1 > 0 and C2 > 0 

κ2
∫

Ω 
|(Yεuε ·  ∇)uε|2 

≤κ2||Yεuε||2 L4(Ω)||∇uε||2 L4(Ω) 

≤κ2 C1[||∇Yεuε||L2(Ω)||Yεuε||L2(Ω)][||Auε||L2(Ω)||∇uε||L2(Ω)] 
≤κ2 C2||∇Yεuε||L2(Ω)||Auε||L2(Ω)||∇uε||L2(Ω) for all t ∈ (0, Tmax,ε). 

(2.3.23) 

Now, from the fact that D(A 
1 
2 ) := W 1,2 

0 (Ω; R2) ∩ L2 
σ (Ω) and (2.3.2), it follows that

||∇Yεuε||L2(Ω) = ||A 
1 
2 Yεuε||L2(Ω) = ||Yε A 

1 
2 uε||L2(Ω) ≤ ||A 

1 
2 uε||L2(Ω) ≤ ||∇uε||L2(Ω). 

This, together with (2.3.23), yields 

κ2
∫

Ω 
|(Yεuε ·  ∇)uε|2 

≤C3||Auε||L2(Ω)||∇uε||2 L2(Ω) 

≤ 
1 

4
||Auε||2 L2(Ω) + C2 

3||∇uε||4 L2(Ω) for all t ∈ (0, Tmax,ε), 

which combining with (2.3.22) implies that
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1 

2 

d 

dt
||A 

1 
2 uε||2 L2(Ω) ≤ C2 

3||∇uε||4 L2(Ω) + ||∇φ||2 L∞(Ω)

∫
Ω 

n2 
ε for all t ∈ (0, Tmax,ε). 

By the fact that ||A 
1 
2 uε||2 L2(Ω) = ||∇uε||2 L2(Ω) , we conclude that 

z'(t) ≤ ρ(t)z(t) + h(t) for all t ∈ (0, Tmax,ε), (2.3.24) 

where z(t) := ∫
Ω |∇uε(·, t)|2, as well as ρ(t) = 2C2 

3

∫
Ω |∇uε(·, t)|2 and 

h(t) = 2||∇φ||2 L∞(Ω)

∫
Ω 

n2 
ε(·, t). 

Note that (2.3.3), (2.3.8) and (2.3.10) warrant that for some positive constant C4,

∫ t+τ 

t 
(ρ(s) + h(s))ds ≤ C4. 

Therefore, by an argument similar to the proof of (2.3.8), we can arrive at (2.3.21) 
and thus complete the proof of this lemma. 

Lemma 2.10 Let m > 1. Then there exists a positive constant C independent of ε 
such that the solution of (2.2.1) satisfies

||∇cε(·, t)||L2m (Ω) ≤ C for all t ∈ (0, Tmax,ε). (2.3.25) 

Proof Considering the fact that ∇cε ·  ∇Δcε = 1 2 Δ|∇cε|2 −  |D2cε|2, the straightfor-
ward computation implies that 

1 

2m 

d 

dt
||∇cε||2m 

L2m (Ω) 

=
∫

Ω 
|∇cε|2m−2∇cε ·  ∇(Δcε − cε + nε − uε ·  ∇cε) 

= 
1 

2

∫
Ω 

|∇cε|2m−2 Δ|∇cε|2 −
∫

Ω 
|∇cε|2m−2|D2 cε|2 −

∫
Ω 

|∇cε|2m 

−
∫

Ω 
nε∇  ·  (|∇cε|2m−2∇cε) +

∫
Ω 

(uε ·  ∇cε)∇  ·  (|∇cε|2m−2∇cε) (2.3.26) 

=−m − 1 
2

∫
Ω 

|∇cε|2m−4
||∇|∇cε|2

||2 + 
1 

2

∫
∂Ω 

|∇cε|2m−2 ∂|∇cε|2 
∂ν 

−
∫

Ω 
|∇cε|2m 

−
∫

Ω 
|∇cε|2m−2|D2 cε|2 −

∫
Ω 

nε|∇cε|2m−2 Δcε −
∫

Ω 
nε∇cε ·  ∇(|∇cε|2m−2 ) 

+
∫

Ω 
(uε ·  ∇cε)|∇cε|2m−2 Δcε +

∫
Ω 

(uε ·  ∇cε)∇cε ·  ∇(|∇cε|2m−2 ) 

=− 
2(m − 1) 

m2

∫
Ω

||∇|∇cε|m
||2 + 

1 

2

∫
∂Ω 

|∇cε|2m−2 ∂|∇cε|2 
∂ν 

−
∫

Ω 
|∇cε|2m−2|D2 cε|2
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−
∫

Ω 
nε|∇cε|2m−2 Δcε −

∫
Ω 

nε∇cε ·  ∇(|∇cε|2m−2 ) −
∫

Ω 
|∇cε|2m 

+
∫

Ω 
(uε ·  ∇cε)|∇cε|2m−2 Δcε +

∫
Ω 

(uε ·  ∇cε)∇cε ·  ∇(|∇cε|2m−2 ) 

for all t ∈ (0, Tmax,ε). Since |Δcε|  ≤  
√
2|D2cε|, we can estimate

∫
Ω 

nε|∇cε|2m−2 Δcε ≤
√
2

∫
Ω 

nε|∇cε|2m−2|D2 cε| 

≤ 
1 

4

∫
Ω 

|∇cε|2m−2|D2 cε|2 + 2
∫

Ω 
n2 

ε |∇cε|2m−2 

≤ 
1 

4

∫
Ω 

|∇cε|2m−2|D2 cε|2 + 2
∫

Ω 
(nε + ε)2|∇cε|2m−2 

(2.3.27) 
and∫

Ω 
(uε ·  ∇cε)|∇cε|2m−2 Δcε ≤

√
2

∫
Ω 

|uε ·  ∇cε||∇cε|2m−2|D2 cε| 

≤ 
1 

4

∫
Ω 

|∇cε|2m−2|D2 cε|2 + 2
∫

Ω 
|uε ·  ∇cε|2|∇cε|2m−2 

≤ 
1 

4

∫
Ω 

|∇cε|2m−2|D2 cε|2 + 2
∫

Ω 
|uε|2|∇cε|2m 

≤ 
1 

4

∫
Ω 

|∇cε|2m−2|D2 cε|2 + 2
∫

Ω 
|uε|2|∇cε|2m 

(2.3.28) 
for all t ∈ (0, Tmax,ε). Again, from the Young inequality, we have 

−
∫

Ω 
nε∇cε ·  ∇(|∇cε|2m−2 ) 

=−(m − 1)
∫

Ω 
nε|∇cε|2(m−2)∇cε ·  ∇|∇cε|2 

≤m − 1 
8

∫
Ω 

|∇cε|2m−4
||∇|∇cε|2

||2 + 2(m − 1)
∫

Ω 
|nε|2|∇cε|2m−2 

≤ 
(m − 1) 
2m2

∫
Ω

||∇|∇cε|m
||2 + 2(m − 1)

∫
Ω 

|nε|2|∇cε|2m−2 

(2.3.29) 

and ∫
Ω 

(uε ·  ∇cε)∇cε ·  ∇(|∇cε|2m−2 ) 

=(m − 1)
∫

Ω 
(uε ·  ∇cε)|∇cε|2(m−2)∇cε ·  ∇|∇cε|2
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≤m − 1 
8

∫
Ω 

|∇cε|2m−4
||∇|∇cε|2

||2 (2.3.30) 

+ 2(m − 1)
∫

Ω 
|uε ·  ∇cε|2|∇cε|2m−2 

≤ 
(m − 1) 
2m2

∫
Ω

||∇|∇cε|m
||2 + 2(m − 1)

∫
Ω 

|uε|2|∇cε|2m . 

Observe that ∫
∂Ω 

∂|∇cε|2 
∂ν 

|∇cε|2m−2 ≤CΩ

∫
∂Ω 

|∇cε|2m 

=CΩ ||∇cε|m||2 L2(∂Ω). 
(2.3.31) 

Due to Proposition 4.22 (ii) in Haroske and Triebel (2008), W r+ 1 
2 ,2(Ω) ϲ→ L2(∂Ω) 

with r ∈ (0, 1 2 ) is compact and thus

|||∇cε|m||2 L2(∂Ω) ≤ C1|||∇cε|m||2 
W r+ 1 2 ,2 (Ω) 

. (2.3.32) 

Therefore, from the fractional Gagliardo–Nirenberg inequality and Lemma 2.8, it  
follows that for some positive constants C2 and C3,

|||∇cε|m||2 
W r+ 1 2 ,2 (Ω) 

≤C2||∇|∇cε|m||2a 
L2(Ω)

|||∇cε|m||2−2a 

L 
2 
m (Ω) 

+ δ1|||∇c2|m||2 
L 

2 
m (Ω) 

≤C3||∇|∇cε|m||a 
L2(Ω) + C3 

(2.3.33) 

with a = 2m+2r−1 
2m . Note that r ∈ (0, 1 2 ) and m > 1, 0 < a < 1. Hence, combining 

(2.3.31)–(2.3.33) and using the fact that a ∈ (0, 1), we can see that
∫

∂Ω 

∂|∇cε|2 
∂ν 

|∇cε|2m−2 ≤ 
(m − 1) 
2m2

∫
Ω

||∇|∇cε|m
||2 + C4. (2.3.34) 

Now from (2.3.26)–(2.3.30) and (2.3.34), we obtain that for some positive constant 
C5, 

1 

2m 

d 

dt
||∇cε||2m 

L2m (Ω) + 
m − 1 
2m2

∫
Ω

||∇|∇cε |m
||2 + 

1 

2

∫
Ω 

|∇cε |2m−2|D2cε |2 +
∫
Ω 

|∇cε |2m 

≤2m
∫
Ω 

n2 ε |∇cε |2m−2 + 2m
∫
Ω 

|uε |2|∇cε |2m + C5 for all t ∈ (0, Tmax,ε). 

(2.3.35) 
Next we turn to estimate terms on the right of (2.3.35). By the Young inequality, we 
have
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2m
∫

Ω 
n2 

ε |∇cε|2m−2 ≤2m
∫

Ω 
(nε + ε)2|∇cε|2m−2 

≤ 
1 

2

∫
Ω 

|∇cε|2m + C5

∫
Ω 

(nε + ε)2m for all t ∈ (0, Tmax,ε) 
(2.3.36) 

and 

2m
∫

Ω 
|uε|2|∇cε|2m ≤

∫
Ω 

|∇cε|2m+1 + C6

∫
Ω 

u4m+2 
ε for all t ∈ (0, Tmax,ε), 

(2.3.37) 

where C5 = m 
m−1

(
1 
2m

)− 1 
m−1 (2m)m and C6 = (2m)2m+1. On the other hand due to 

(2.3.7), we derive from the Gagliardo–Nirenberg inequality that for some positive 
constants Ci , (i = 7, 8, 9),∫

Ω 
|∇cε|2m+1 =|||∇cε|m|| 2m+1 

m 

L 
2m+1 

m (Ω) 

≤C7(||∇|∇cε|m||
2m−1 
2m+1 

L2(Ω)
|||∇cε|m||

2 
2m+1 

L 
2 
m (Ω) 

+ |||∇cε|m||
L 

2 
m (Ω) ) 

2m+1 
m 

≤C8(||∇|∇cε|m|| 2m−1 
m 

L2(Ω) + 1), 

≤m − 1 
2m2

∫
Ω

||∇|∇cε|m
||2 + C9 

which along with (2.3.37) implies that 

2m
∫

Ω 
|uε|2|∇cε|2m 

≤m − 1 
2m2

∫
Ω

||∇|∇cε|m
||2 + C6

∫
Ω 

u4m+2 
ε + C9 for all t ∈ (0, Tmax,ε). 

(2.3.38) 

Substituting (2.3.36) and (2.3.38) into (2.3.35), we have 

1 

2m 

d 

dt
||∇cε||2m 

L2m (Ω) + 
1 

2

∫
Ω 

|∇cε|2m 

≤C5

∫
Ω 

(nε + ε)2m + C6

∫
Ω 

u4m+2 
ε + C10 for all t ∈ (0, Tmax,ε). 

Hence, due to W 1,2(Ω) ϲ→ L p(Ω) for any p > 1, the boundedness of
||∇uε(·, t)||L2(Ω) (see Lemma 2.9) implies that there exists a positive constant C11 

such that||uε(·, t)||L4m+2(Ω) ≤ C11 for all t ∈ (0, Tmax,ε), which together with (2.3.8), 
(2.3.10) leads to (2.3.25) by Lemma 2.2. This completes the proof of Lemma 2.10.
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Lemma 2.11 Let m > 1. Then for all p > 1, there exists a positive constant C 
independent of ε, such that the solution of (2.2.1) from Lemma 2.2 satisfies

||nε(·, t)||L p(Ω) ≤ C for all t ∈ (0, Tmax,ε). (2.3.39) 

Proof Taking (nε + ε)p−1 with p > max{1, m − 1} as the test function for the first 
equation of (2.2.1), combining with the second equation, and using ∇  ·  uε = 0, we  
obtain that for all t ∈ (0, Tmax,ε), 

1 

p 

d 

dt
||nε + ε||p 

L p (Ω) + m(p − 1)
∫

Ω 
(nε + ε)m+p−3|∇nε|2 

≤(p − 1)
∫

Ω 
(nε + ε)p−2 nε|∇nε||Sε(x, nε, cε)||∇cε| 

≤(p − 1)CS

∫
Ω 

(nε + ε)p−1|∇nε||∇cε| 

≤m(p − 1) 
2

∫
Ω 

(nε + ε)m+p−3|∇nε|2 + 
(p − 1)C2 

S 

2m

∫
Ω 

(nε + ε)p+1−m |∇cε|2 , 

and hence 

1 

p 

d 

dt
||nε + ε||p 

L p(Ω) + 
m(p − 1) 

2

∫
Ω 

(nε + ε)m+p−3|∇nε|2 

≤ 
(p − 1)C2 

S 

2m

∫
Ω 

(nε + ε)p+1−m |∇cε|2 
(2.3.40) 

for all t ∈ (0, Tmax,ε). In the following, we will estimate the right-hand side of 
(2.3.40). In fact, due to m > 1, we conclude from (2.3.25) that∫

Ω 
(nε + ε)p+1−m |∇cε|2 

≤
⎧∫

Ω 
(nε + ε) 

m(p+1−m) 
m−1

⎫ m−1 
m

⎧∫
Ω 

|∇cε|2m

⎫ 1 
m 

≤C1

⎧∫
Ω 

(nε + ε) 
m(p+1−m) 

m−1

⎫ m−1 
m 

for all t ∈ (0, Tmax,ε). 

(2.3.41) 

Further, noticing that 2(mp−m2+1) 
m( p+m−1) < 2 due to m > 1, an application of the Gagliardo– 

Nirenberg inequality then leads to
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C1

⎧∫
Ω 

(nε + ε) 
m(p+1−m) 

m−1

⎫ m−1 
m 

=C1||(nε + ε) 
m( p+1−m) 

m−1 ||
2(p+1−m) 

m+p−1 

L 
2m(p+1−m) 

(m−1)(m+p−1) (Ω) 

≤C2(||∇(nε + ε) 
p+m−1 

2 ||
mp−m2+1 
m(p+1−m) 
L2(Ω)

||(nε + ε) 
p+m−1 

2 ||
m−1 

m(p+1−m) 

L 
2 

p+m−1 (Ω) 

+ ||(nε + ε) 
p+m−1 

2 ||
L 

2 
p+m−1 (Ω) 

) 
2(p+1−m) 

m+p−1 

≤C3(||∇(nε + ε) 
p+m−1 

2 ||
2(mp−m2+1) 

m( p+m−1) 
L2(Ω) + 1) 

≤m( p − 1) 
4

∫
Ω 

(nε + ε)m+p−3|∇nε|2 + C4 

(2.3.42) 

for some C3 > 0 and C4 > 0. Therefore, combining (2.3.40), (2.3.41) with (2.3.42), 
we arrive at 

1 

p 

d 

dt
||nε + ε||p 

L p(Ω) + 
m( p − 1) 

4

∫
Ω 

(nε + ε)m+p−3|∇nε|2 ≤ C5, 

which along with the fact that for some C6 > 0,

||nε + ε||p 
L p(Ω) ≤ 

m(p − 1) 
8

∫
Ω 

(nε + ε)m+p−3|∇nε|2 + C6, 

and Lemma 2.2 implies that (2.3.39) holds. 

Now we can rely on standard reasoning to obtain the following. 

Lemma 2.12 Let m > 1 and γ ∈ ( 1 2 , 1). Then one can find a positive constant C 
independent of ε, such that

||nε(·, t)||L∞(Ω) ≤ C for all t ∈ (0, Tmax,ε),

||cε(·, t)||W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax,ε) 

as well as
||Aγ uε(·, t)||L2(Ω) ≤ C for all t ∈ (0, Tmax,ε). 

Proof Firstly, applying the variation-of-constants formula to the projected version 
of the third equation in (2.2.1), we derive that 

uε(·, t) = e−t Au0 +
∫ t 

0 
e−(t−τ  )  AP[nε(·, t)∇φ − κ(Yεuε ·  ∇)uε]dτ for all t ∈ (0, Tmax,ε).
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Let hε = P[nε(·, t)∇φ − κ(Yεuε ·  ∇)uε]. Then in view of the standard smoothing 
properties of the Stokes semigroup, we can conclude that for γ ∈ ( 1 2 , 1) and p0 ∈ 
( 2 
3−2γ , 2), there exists C1 > 0 such that

||Aγ uε(·, t)||L2(Ω) 

≤||Aγ e−t A  u0||L2(Ω) +
∫ t 

0
||Aγ e−(t−τ  )  A hε(·,  τ  )dτ||L2(Ω)dτ 

≤||Aγ u0||L2(Ω) + C1

∫ t 

0 
(t − τ  )−γ − 1 p0 

+ 1 
2 e−λ(t−τ  )||hε(·,  τ  )||L p0 (Ω)dτ 

(2.3.43) 

for all t ∈ (0, Tmax,ε). 
In light of (2.3.39), for some positive constant C2, it has

||nε(·, t)||L p0 (Ω) ≤ C2 for all t ∈ (0, Tmax,ε). 

So employing the Hölder inequality and the continuity of P in L p(Ω; R2) (see 
Fujiwara and Morimoto 1977), there exist positive constants Ci ,  (i = 3, 4, 5, 6), 
such that

||hε(·, t)||L p0 (Ω) 

≤C3||(Yεuε ·  ∇)uε(·, t)||L p0 (Ω) + C3||nε(·, t)||L p0 (Ω) 

≤C4||Yεuε||
L 

2p0 
2−p0 (Ω)

||∇uε(·, t)||L2(Ω) + C4 

≤C5||∇Yεuε||L2(Ω)||∇uε(·, t)||L2(Ω) + C4 

≤C6||∇uε(·, t)||2 L2(Ω) + C4 for all t ∈ (0, Tmax,ε), 

(2.3.44) 

where we have used the fact that W 1,2(Ω) ϲ→ L 
2 p0 
2−p0 (Ω). Collecting (2.3.43), (2.3.21) 

and (2.3.44), we conclude that

||Aγ uε(·, t)||L2(Ω) ≤ C7 for all t ∈ (0, Tmax,ε) 

which together with the fact that D(Aγ ) is continuously embedded into L∞(Ω) by 
γ  >  1 2 yields ||uε(·, t)||L∞(Ω) ≤ C8 for all t ∈ (0, Tmax,ε). (2.3.45) 

Further, in view of (2.3.25), one may use (2.1.11), m > 1 and the smoothing proper-
ties of the Neumann heat semigroup (etΔ )t≥0 to obtain that there exists C9 > 0 such 
that

||∇cε(·, t)||L∞(Ω) ≤ C9 for all t ∈ (0, Tmax,ε). (2.3.46) 

Moreover, the boundedness of nε can be archived by the well-known Moser–Alikakos 
iteration procedure (see, e.g., Lemma A.1 in Tao and Winkler 2012a). Indeed, by 
(2.3.45) and (2.3.46), we see that the hypotheses of Lemma A.1 in Tao and Winkler
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(2012a) are valid provided that the parameter p in Lemma 2.11 is appropriately large. 
The proof of Lemma 2.12 is complete. 

With all the above regularization properties of nε, cε and uε at hand, we can show 
the existence of global bounded solutions to the regularized system (2.2.1). 

Lemma 2.13 Let m > 1 and γ ∈ ( 1 2 , 1) and (nε, cε, uε, Pε)ε∈(0,1) be classical solu-
tions of (2.2.1) constructed in Lemma 2.2 on [0, Tmax,ε). Then the solution is global 
on [0, ∞). Moreover, one can find C > 0 independent of ε ∈ (0, 1) such that

||nε(·, t)||L∞(Ω) ≤ C for all t ∈ (0, ∞) 

and
||cε(·, t)||W 1,∞(Ω) ≤ C for all t ∈ (0, ∞) 

as well as
||Aγ uε(·, t)||L2(Ω) ≤ C for all t ∈ (0, ∞). 

Then, with the help of Lemma 2.13, we can straightforwardly deduce the uniform 
Hölder properties of cε, ∇cε and uε by the standard parabolic regularity theory as 
the proof of Lemmas 3.18–3.19 in Winkler (2015b) (see also Zheng 2016). 

Lemma 2.14 Let m > 1. Then one can find μ ∈ (0, 1) such that for some C > 0

||cε(·, t)||Cμ, μ 
2 (Ω×[t,t+1]) ≤ C for all t ∈ (0, ∞) 

as well as
||uε(·, t)||Cμ, μ 

2 (Ω×[t,t+1]) ≤ C for all t ∈ (0, ∞), 

and for any τ  >  0, there exists C(τ ) > 0 fulfilling

||∇cε(·, t)||Cμ, μ 
2 (Ω×[t,t+1]) ≤ C(τ ) for all t ∈ (τ, ∞). 

2.3.2 Global Boundedness of Weak Solutions 

Based on the above lemmas, the weak solution of (2.1.6)–(2.1.8) can be obtained 
as the limitation of classical solutions to the systems (2.2.1). Applying the idea of 
Zheng (2016) (see also Liu and Wang 2016 and Winkler 2015b), we first state the 
definition of the solution as follows. 

Definition 2.2 Let T > 0 and (n0, c0, u0) fulfill (2.1.11). Then a triple of functions 
(n, c, u) is called a weak solution of (2.1.6)–(2.1.8) in  Ω × (0, T ) if the following 
conditions are satisfied:
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⎧⎪⎨ 

⎪⎩ 

n ∈ L1 
loc( Ω̄ ×  [0, T )), 

c ∈ L1 
loc([0, T ); W 1,1 (Ω)), 

u ∈ L1 
loc([0, T ); W 1,1 (Ω)), 

where n ≥ 0 and c ≥ 0 in Ω × (0, T ) as well as ∇  ·  u = 0 in the distributional sense 
in Ω × (0, T ), moreover, nm ∈ L1 

loc( Ω̄ ×  [0, ∞)), cu, nu and n∇c belong to 
L1 

loc( Ω̄ ×  [0, ∞); R2) and u
⦻

u ∈ L1 
loc( Ω̄ ×  [0, ∞); R2×2); and 

−
∫ T 

0

∫
Ω 

nϕt −
∫
Ω 

n0ϕ(·, 0) =
∫ T 

0

∫
Ω 

nm Δϕ +
∫ T 

0

∫
Ω 

n∇c ·  ∇ϕ +
∫ T 

0

∫
Ω 

nu ·  ∇ϕ 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, T )) satisfying ∂ϕ 

∂ν = 0 on ∂Ω × (0, T ), as well as  

−
∫ T 

0

∫
Ω 

cϕt −
∫

Ω 
c0ϕ(·, 0) 

=−
∫ T 

0

∫
Ω 

∇c ·  ∇ϕ −
∫ T 

0

∫
Ω 

cϕ +
∫ T 

0

∫
Ω 

nϕ +
∫ T 

0

∫
Ω 

cu ·  ∇ϕ 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, T )) and 

−
∫ T 

0

∫
Ω 

uϕt −
∫

Ω 
u0ϕ(·, 0) 

=κ

∫ T 

0

∫
Ω 

u ⊗ u ·  ∇ϕ −
∫ T 

0

∫
Ω 

∇u ·  ∇ϕ −
∫ T 

0

∫
Ω 

n∇φ · ϕ 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, T ); R2) fulfilling ∇ϕ ≡ 0 in Ω × (0, T ). 

If for each T > 0, (n, c, u) :Ω × (0, ∞) −→ R4 is a weak solution of (2.1.6)– 
(2.1.8) in  Ω × (0, T ), then we call (n, c, u) a global weak solution of (2.1.6)–(2.1.8). 

In order to apply the Aubin–Lions Lemma (Simon 1986), we will need the reg-
ularity of the time derivative of bounded solutions. Employing almost exactly the 
same arguments as that in the proof of Lemmas 3.22–3.23 in Winkler (2015b) (the  
minor necessary changes are left as an exercise to the reader), and taking advantage 
of Lemma 2.13, we conclude the following lemma. 

Lemma 2.15 Let m > 1 and let ς  >  max{m, 2(m − 1)}. Then for every T > 0 
and ε ∈ (0, 1), one can find C(T )  >  0 independent of ε such that

∫ T 
0 ||∂t (nε + 

ε)ς (·, t)||(W 2,2 
0 (Ω))∗dt ≤ C(T ) as well as

∫ T 
0

∫
Ω |∇(nε + ε)ς |2 ≤ C(T ). 

At this position, the main result can be proved as follows. 
Proof of Theorem 2.1. In conjunction with Lemmas 2.13, 2.11 and the Aubin– 

Lions compactness lemma (see Simon 1986), one can infer the existence of a 
sequence of numbers ε = ε j ↘ 0 along which 

nε −→ n a.e. in Ω × (0, ∞), (2.3.47)
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∇nm 
ε ⇀ ∇nm in L2 

loc(Ω ×  [0, ∞)), (2.3.48) 

cε → c in C0 
loc( Ω̄ ×  [0, ∞)), (2.3.49) 

∇cε →  ∇c in C0 
loc( Ω̄ × (0, ∞)), (2.3.50) 

∇cε ⇀ ∇c weakly star in L∞(Ω × (0, ∞)) (2.3.51) 

as well as 
uε → u in C0 

loc( Ω̄ ×  [0, ∞)) (2.3.52) 

and 
Duε ⇀ Du weakly star in L∞(Ω × (0, ∞)) (2.3.53) 

holds for some limit (n, c, u) ∈ (L∞(Ω × (0, ∞)))4 with nonnegative n and c. 
Indeed, Lemma 2.15 implies that for each T > 0, (nς 

ε )ε∈(0,1) is bounded in L2((0, T ); 
W 1,2(Ω)). By using Aubin–Lions lemma, one then obtains nς 

ε → zς for some non-
negative measurable z : Ω × (0,  Ω)  → R. Further by Lemma 2.11 and the Egorov 
theorem, one has (2.3.47) and (2.3.48). 

Due to these convergence properties (see (2.3.47)–(2.3.53)), by applying the stan-
dard arguments, we may take ε = ε j ↘ 0 in each term of the natural weak formu-
lation of (2.2.1) separately. Then we can verify that (n, c, u) can be complemented 
by some pressure function P in such a way that (n, c, u, P) is a weak solution of 
(2.1.6)–(2.1.8). Finally, we can infer from the boundedness of (nε, cε, uε) and the 
Banach–Alaoglu theorem that (n, c, u) is bounded. 

2.4 Global Existence of Solutions to a Three-Dimensional 
Keller–Segel–Navier–Stokes System 

2.4.1 A Priori Estimates for Approximate Solutions 

In this subsection, we are going to establish an iteration step to develop the main 
ingredients of our result. The iteration depends on a series of a priori estimates. We 
first recall some properties of Fε and F '

ε, which play an important role in the proof 
of Theorem 2.2.
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Lemma 2.16 Assume Fε is given by (2.2.9). Then 

0 ≤ F '
ε(s) =

1 

1 + εs 
≤ 1 for all s ≥ 0 and ε  >  0 (2.4.1) 

as well as 
lim 

ε→0+ 
Fε(s) = s, lim 

ε→0+ 
F '

ε(s) = 1 for all s ≥ 0 (2.4.2) 

and 
0 ≤ Fε(s) ≤ s for all s ≥ 0. (2.4.3) 

Proof Recalling (2.2.9), by tedious and simple calculations, we can derive (2.4.1)– 
(2.4.3). 

The proof of this lemma is very similar to that of Lemmas 2.2 and 2.6 of Tao and 
Winkler (2015b) (see also Lemma  3.2 of Wang  2017), so we omit it here. 

Lemma 2.17 There exists λ  >  0 independent of ε such that the solution of (2.2.8) 
satisfies ∫

Ω 
nε +

∫
Ω 

cε ≤ λ for all t ∈ (0, Tmax,ε). (2.4.4) 

Lemma 2.18 Let α  >  1 3 . Then there exists C > 0 independent of ε such that the 
solution of (2.2.8) satisfies

∫
Ω 

n2α 
ε +

∫
Ω 

c2 ε +
∫

Ω 
|uε|2 ≤ C for all t ∈ (0, Tmax,ε). (2.4.5) 

Moreover, for T ∈ (0, Tmax,ε), one can find a constant C > 0 independent of ε such 
that ∫ T 

0

∫
Ω

⎣
n2α−2 

ε |∇nε|2 +  |∇cε|2 +  |∇uε|2
⎤ ≤ C. (2.4.6) 

Proof The proof consists of two cases. 
Case (I) 2α /= 1: We first obtain from ∇  ·  uε = 0 in Ω × (0, Tmax,ε) and straight-

forward calculations that 

sign(2α − 1) 
1 

2α 
d 

dt
||nε||2α 

L2α (Ω) 

+sign(2α − 1)(2α − 1)
∫

Ω 
n2α−2 

ε |∇nε|2 

=−
∫

Ω 
sign(2α − 1)n2α−1 

ε ∇  ·  (nε F
'
ε(nε)Sε(x, nε, cε) ·  ∇cε) 

≤sign(2α − 1)(2α − 1)
∫

Ω 
n2α−2 

ε nε F
'
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| 

(2.4.7)
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for all t ∈ (0, Tmax,ε). Therefore, from (2.4.1), in light of (2.1.5) and (2.2.9), we can 
estimate the right-hand side of (2.4.7) as follows: 

sign(2α − 1)(2α − 1)
∫

Ω 
n2α−2 

ε nε F
'
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| 

≤sign(2α − 1)(2α − 1)
∫

Ω 
n2α−2 

ε nεCS(1 + nε)
−α|∇nε||∇cε| 

≤sign(2α − 1) 
2α − 1 

2

∫
Ω 

n2α−2 
ε |∇nε|2 

+|2α − 1| 
2 

C2 
S

∫
Ω 

n2α−2 
ε n2 

ε(1 + nε)
−2α|∇cε|2 

≤sign(2α − 1) 
2α − 1 

2

∫
Ω 

n2α−2 
ε |∇nε|2 

+|2α − 1| 
2 

C2 
S

∫
Ω 

|∇cε|2 for all t ∈ (0, Tmax,ε) 

(2.4.8) 

by using Young’s inequality, where in the last inequality we have used the fact that 
n2α−2 

ε n2 
ε(1 + nε)

−2α ≤ 1 for all ε ≥ 0 and (x, t) ∈ Ω × (0, Tmax,ε). Inserting (2.4.8) 
into (2.4.7), we conclude that 

sign(2α − 1) 
1 

2α 
d 

dt
||nε||2α 

L2α (Ω) + sign(2α − 1) 
2α − 1 

2

∫
Ω 

n2α−2 
ε |∇nε|2 

≤|2α − 1| 
2 

C2 
S

∫
Ω 

|∇cε|2 for all t ∈ (0, Tmax,ε). 
(2.4.9) 

To track the time evolution of cε, taking cε as the test function for the second equation 
of (2.2.8) and using ∇  ·  uε = 0 and (2.4.3) together with Hölder’s inequality yields 

1 

2 

d 

dt
||cε||2 L2(Ω) +

∫
Ω 

|∇cε|2 +
∫

Ω 
|cε|2 

=
∫

Ω 
Fε(nε)cε 

≤
∫

Ω 
nεcε 

≤||nε||L 
6 
5 (Ω)

||cε||L6(Ω) for all t ∈ (0, Tmax,ε). 

(2.4.10) 

By applying Sobolev embedding W 1,2(Ω) ϲ→ L6(Ω) in the three-dimensional set-
ting, in view of (2.4.4), there exist positive constants C1 and C2 such that

||cε||2 L6(Ω) ≤C1||∇cε||2 L2(Ω) + C1||cε||2 L1(Ω) 

≤C1||∇cε||2 L2(Ω) + C2 for all t ∈ (0, Tmax,ε). 
(2.4.11)
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Thus, by means of Young’s inequality and (2.4.11), we proceed to estimate 

1 

2 

d 

dt
||cε||2 L2(Ω) +

∫
Ω 

|∇cε|2 +
∫

Ω 
|cε|2 

≤ 
1 

2C1
||cε||2 L6(Ω) + 

C1 

2
||nε||2 

L 
6 
5 (Ω) 

≤ 
1 

2
||∇cε||2 L2(Ω) + 

C1 

2
||nε||2 

L 
6 
5 (Ω) 

+ C3 for all t ∈ (0, Tmax,ε) 

(2.4.12) 

and some positive constant C3 independent of ε. Therefore, 

1 

2 

d 

dt
||cε||2 L2(Ω) + 

1 

2

∫
Ω 

|∇cε |2 +
∫
Ω 

|cε |2 ≤ C1 

2
||nε||2 

L 
6 
5 (Ω) 

+ C3 for all t ∈ (0, Tmax,ε). 

(2.4.13) 
To estimate ||nε||L 

6 
5 (Ω) for all t ∈ (0, Tmax,ε), we should notice that α  >  1 3 ensures 

that 2 
6α−1 < 2, so that in light of (2.4.4), the Gagliardo–Nirenberg inequality and 

Young’s inequality allow us to estimate that

||nε||2 
L 

6 
5 (Ω) 

=||nα 
ε || 2 

α 

L 
6 
5α (Ω) 

≤C4(||∇nα 
ε ||

2 
6α−1 

L2(Ω)
||nα 

ε ||
2 
α − 2 

6α−1 

L 
1 
α (Ω) 

+ ||nα 
ε || 2 

α 

L 
1 
α (Ω) 

) 

≤ 
1 

4 

1 

C1α2C2 
S

||∇nα 
ε ||2 L2(Ω) + C5 for all t ∈ (0, Tmax,ε) 

(2.4.14) 

with some positive constants C4 and C5 independent of ε. This together with (2.4.13) 
contributes to 

1 

2 

d 

dt
||cε||2 L2(Ω) + 

1 

2

∫
Ω 

|∇cε|2 +
∫

Ω 
|cε|2 

≤ 
1 

8 

1 

α2C2 
S

||∇nα 
ε ||2 L2(Ω) + C6 for all t ∈ (0, Tmax,ε) 

(2.4.15) 

and some positive constant C6. Taking an evident linear combination of the inequal-
ities provided by (2.4.9) and (2.4.15), one can obtain 

sign(2α − 1) 
1 

2α 
d 

dt
||nε||2α 

L2α (Ω) +  |2α − 1|C2 
S 

d 

dt
||cε||2 L2(Ω) 

+ 
|2α − 1| 

2 
C2 

S

∫
Ω 

|∇cε|2 + 2|2α − 1|C2 
S

∫
Ω 

|cε|2 

+
⎧
sign(2α − 1) 

2α − 1 
2 

− 
1 

4
|2α − 1|

⎫ ∫
Ω 

n2α−2 
ε |∇nε|2 

≤C7 for all t ∈ (0, Tmax,ε) 

(2.4.16)
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and some positive constant C7. Since sign(2α − 1) 
2α − 1 

2 
= 

|2α − 1| 
2 

, (2.4.16) 
implies that 

sign(2α − 1) 
1 

2α 
d 

dt
||nε||2α 

L2α (Ω) +  |2α − 1|C2 
S 

d 

dt
||cε||2 L2(Ω) 

+ 
|2α − 1| 

2 
C2 

S

∫
Ω 

|∇cε|2 + 2|2α − 1|C2 
S

∫
Ω 

|cε|2 

+ 
|2α − 1| 

4

∫
Ω 

n2α−2 
ε |∇nε|2 

≤C7 for all t ∈ (0, Tmax,ε). 

(2.4.17) 

If 2α  >  1, then sign(2α − 1) = 1 > 0, thus, integrating (2.4.17) over time, we can 
obtain ∫

Ω 
n2α 

ε +
∫

Ω 
c2 ε ≤ C8 for all t ∈ (0, Tmax,ε) (2.4.18) 

and∫ T 

0

∫
Ω

⎣
n2α−2 

ε |∇nε|2 +  |∇cε|2
⎤ ≤ C8(T + 1) for all T ∈ (0, Tmax,ε) (2.4.19) 

and some positive constant C8. If 2α  <  1, then sign(2α − 1) =  −1 < 0; hence, in 
view of (2.4.4), integrating (2.4.17) over time and employing Hölder’s inequality, 
we also conclude that there exists a positive constant C9 such that∫

Ω 
n2α 

ε +
∫

Ω 
c2 ε ≤ C9 for all t ∈ (0, Tmax,ε) (2.4.20) 

and∫ T 

0

∫
Ω

⎣
n2α−2 

ε |∇nε|2 +  |∇cε|2
⎤ ≤ C9(T + 1) for all T ∈ (0, Tmax,ε). (2.4.21) 

Case (II) 2α = 1: Using the first equation of (2.2.8) and (2.2.9), integrating by 
parts, and applying (2.1.5) and (2.4.1), we obtain 

d 

dt

∫
Ω 

nε ln nε 

=
∫

Ω 
nεt ln nε +

∫
Ω 

nεt 

=
∫

Ω 
Δnε ln nε −

∫
Ω 
ln nε∇  ·  (nε F

'
ε(nε)Sε(x, nε, cε) ·  ∇cε) 

≤  −
∫

Ω 

|∇nε|2 
nε 

+
∫

Ω 
CS(1 + nε)

−α nε 

nε 
|∇nε||∇cε| for all t ∈ (0, Tmax,ε),
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which combined with Young’s inequality and 2α = 1 implies that 

d 

dt

∫
Ω 

nε ln nε + 
1 

2

∫
Ω 

|∇nε|2 
nε 

≤ 
1 

2 
C2 

S

∫
Ω 

|∇cε|2 for all t ∈ (0, Tmax,ε). 

However, since 2α = 1 yields α  >  1 3 , by employing almost exactly the same argu-
ments as in the proof of (2.4.10)–(2.4.16) (with the minor necessary changes being 
left as an easy exercise to the reader), we conclude an estimate of

∫
Ω 

nε ln nε +
∫

Ω 
c2 ε ≤ C10 for all t ∈ (0, Tmax,ε) (2.4.22) 

and

∫ T 

0

∫
Ω

⎡ |∇nε|2 
nε 

+  |∇cε|2
⎤

≤ C10(T + 1) for all T ∈ (0, Tmax,ε). (2.4.23) 

Now, multiplying the third equation of (2.2.8) by  uε, integrating by parts, and using 
∇  ·  uε = 0 give 

1 

2 

d 

dt

∫
Ω 

|uε|2 +
∫

Ω 
|∇uε|2 =

∫
Ω 

nεuε ·  ∇φ for all t ∈ (0, Tmax,ε). (2.4.24) 

Here, we use Hölder’s inequality, Young’s inequality and the continuity of the embed-
ding W 1,2(Ω) ϲ→ L6(Ω) to find C11 and C12 > 0 such that

∫
Ω 

nεuε ·  ∇φ ≤||∇φ||L∞(Ω)||nε||L 
6 
5 (Ω)

||uε||L6(Ω) 

≤C11||∇φ||L∞(Ω)||nε||L 
6 
5 (Ω)

||∇uε||L2(Ω) 

≤ 
1 

2
||∇uε||2 L2(Ω) + C12||nε||2 

L 
6 
5 (Ω) 

for all t ∈ (0, Tmax,ε). 

(2.4.25) 

Next, in view of (2.4.4) and α  >  1 3 , (2.4.14) and Young’s inequality along with the 
Gagliardo–Nirenberg inequality yield

∫
Ω 

nεuε ·  ∇φ ≤ 
1 

2
||∇uε||2 L2(Ω) + C8||∇nα 

ε ||
2 

6α−1 

L2(Ω)
||nα 

ε ||
2 
α − 2 

6α−1 

L 
1 
α (Ω) 

≤ 
1 

2
||∇uε||2 L2(Ω) + ||∇nα 

ε ||2 L2(Ω) + C13 for all t ∈ (0, Tmax,ε) 
(2.4.26) 

and some positive constant C13. Now, inserting (2.4.25) and (2.4.26) into (2.4.24) 
and using (2.4.19) and (2.4.23), one has

∫
Ω 

|uε|2 ≤ C14 for all t ∈ (0, Tmax,ε) (2.4.27)
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and ∫ T 

0

∫
Ω 

|∇uε|2 ≤ C14(T + 1) for all T ∈ (0, Tmax,ε) (2.4.28) 

and some positive constant C14. Finally, collecting (2.4.18)–(2.4.21), (2.4.22)– 
(2.4.23) and (2.4.27)–(2.4.28), we can get (2.4.5) and (2.4.6). 

With the help of Lemma 2.18, based on the Gagliardo–Nirenberg inequality and 
an application of well-known arguments from parabolic regularity theory, we can 
derive the following lemmas. 

Lemma 2.19 Let α  >  1 3 . Then there exists C > 0 independent of ε such that, for 
each T ∈ (0, Tmax,ε), the solution of (2.2.8) satisfies

∫ T 

0

∫
Ω

⎡
|∇nε| 3α+1 

2 + n 
6α+2 
3 

ε

⎤
≤ C(T + 1) if 

1 

3 
<  α  ≤ 

1 

2 
, (2.4.29)

∫ T 

0

∫
Ω

⎡
|∇nε| 10α 

3+2α + n 
10α 
3 

ε

⎤
≤ C(T + 1) if 

1 

2 
<  α  <  1, (2.4.30) 

as well as ∫ T 

0

∫
Ω

⎡
|∇nε|2 + n 

10 
3 

ε

⎤
≤ C(T + 1) if α ≥ 1 (2.4.31) 

and ∫ T 

0

⎧∫
Ω 

[c 
10 
3 

ε +  |uε| 10 
3 ]  + ||uε||2 L6(Ω)

⎫
≤ C(T + 1). (2.4.32) 

Proof Case 1 3 <  α  ≤ 1 2 : From (2.4.4), (2.4.5) and (2.4.6), in light of the Gagliardo– 
Nirenberg inequality, for some C1 and C2 > 0 that are independent of ε, one may 
verify that ∫ T 

0

∫
Ω 

n 
6α+2 
3 

ε 

=
∫ T 

0
||nα 

ε || 6α+2 
3α 

L 
6α+2 
3α (Ω) 

≤C1

∫ T 

0

⎧
||∇nα 

ε ||2 L2(Ω)||nα 
ε || 2 

3α 

L 
1 
α (Ω) 

+ ||nα 
ε || 6α+2 

3α 

L 
1 
α (Ω)

⎫
≤C2(T + 1) for all T > 0. 

(2.4.33) 

Therefore, employing Hölder’s inequality (with two exponents 4 
3α+1 and

4 
3−3α ), we 

conclude that there exists a positive constant C3 such that
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∫ T 

0

∫
Ω 

|∇nε| 3α+1 
2 ≤

⎡∫ T 

0

∫
Ω 

n2α−2 
ε |∇nε|2

⎤ 3α+1 
4

⎡∫ T 

0

∫
Ω 

n 
6α+2 
3 

ε

⎤ 3−3α 
4 

≤C3(T + 1) for all T > 0. 
(2.4.34) 

Case 1 
2 <  α  <  1: Again by  (2.4.4), (2.4.5) and (2.4.6) and the Gagliardo– 

Nirenberg inequality and Hölder’s inequality (with two exponents 3+2α 
5α and 3+2α 

3−3α ), 
we derive that there exist positive constants C4, C5 and C6 such that

∫ T 

0

∫
Ω 

n 
10α 
3 

ε 

=
∫ T 

0
||nα 

ε || 10 
3 

L 
10 
3 (Ω) 

≤C4

∫ T 

0

⎧
||∇nα 

ε ||2 L2(Ω)||nα 
ε || 4 

3 

L2(Ω) + ||nα 
ε || 10α 

3 

L2(Ω)

⎫
≤C5(T + 1) for all T > 0 

(2.4.35) 

and

∫ T 

0

∫
Ω 

|∇nε| 10α 
3+2α ≤

⎡∫ T 

0

∫
Ω 

n2α−2 
ε |∇nε|2

⎤ 5α 
3+2α

⎡∫ T 

0

∫
Ω 

n 
10α 
3 

ε

⎤ 3−3α 
3+2α 

≤C6(T + 1) for all T > 0. 
(2.4.36) 

Case α ≥ 1: Multiplying the first equation in (2.2.8) by  nε, in view of (2.2.9) and 
using ∇  ·  uε = 0, we derive 

1 

2 

d 

dt
||nε||2 L2(Ω) +

∫
Ω 

|∇nε|2 

=−
∫

Ω 
nε∇  ·  (nε F

'
ε(nε)Sε(x, nε, cε) ·  ∇cε) 

≤
∫

Ω 
nε F

'
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| for all t ∈ (0, Tmax,ε). 

(2.4.37) 

Recalling (2.1.5) and (2.2.9) and using α ≥ 1, via Young’s inequality, we derive
∫

Ω 
nε F

'
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| 

≤CS

∫
Ω 

|∇nε||∇cε| 

≤ 
1 

2

∫
Ω 

|∇nε|2 + 
C2 

S 

2

∫
Ω 

|∇cε|2 for all t ∈ (0, Tmax,ε). 

(2.4.38) 

Here, we have used the fact that
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nε F
'
ε(nε)|Sε(x, nε, cε)|  ≤  CSnε(1 + nε)

−1 ≤ CS 

by using (2.1.5). Therefore, collecting (2.4.37), (2.4.38) and using (2.4.6), we con-
clude that ∫

Ω 
n2 

ε ≤ C7 for all t ∈ (0, Tmax,ε) (2.4.39) 

and ∫ T 

0

∫
Ω 

|∇nε|2 ≤ C7(T + 1). (2.4.40) 

Hence, from (2.4.39)–(2.4.40) and (2.4.5)–(2.4.6), in light of the Gagliardo–Nirenberg 
inequality, we derive that there exist positive constants Ci , (i = 8, · · ·  , 17) such that∫ T 

0

∫
Ω 

n 
10 
3 

ε ≤C8

∫ T 

0

⎧
||∇nε||2 L2(Ω)||nε||

4 
3 

L2(Ω) + ||nε||
10 
3 

L2(Ω)

⎫
≤C9(T + 1) for all T > 0, 

(2.4.41)

∫ T 

0

∫
Ω 

c 
10 
3 

ε ≤C10

∫ T 

0

⎧
||∇cε||2 L2(Ω)||cε||

4 
3 

L2(Ω) + ||cε||
10 
3 

L2(Ω)

⎫
≤C11(T + 1) for all T > 0 

(2.4.42) 

as well as∫ T 

0

∫
Ω 

|uε| 10 
3 ≤C14

∫ T 

0

⎧
||∇uε||2 L2(Ω)||uε||

4 
3 

L2(Ω) + ||uε||
10 
3 

L2(Ω)

⎫
≤C15(T + 1) for all T > 0 

(2.4.43) 

and ∫ T 

0
||uε||2 L6(Ω) ≤C16

∫ T 

0
||∇uε||2 L2(Ω) 

≤C17(T + 1) for all T > 0, 
(2.4.44) 

where in the last inequality we have used the embedding W 1,2 
0,σ (Ω) ϲ→ L6(Ω) and 

the Poincaré inequality. Finally, combining (2.4.33)–(2.4.36) with (2.4.40)–(2.4.44), 
we can obtain the results. 

Lemma 2.20 Let 1 3 <  α  ≤ 8 
21 . Then there exist γ = 2α+ 2 

3 
α+1 ∈ (1, 2) and C > 0 inde-

pendent of ε such that, for each T ∈ (0, Tmax,ε), the solution of (2.2.8) satisfies

∫ T 

0
||nε||

2γ 
2−γ 

L 
6γ 
6−γ (Ω) 

≤ C(T + 1). (2.4.45) 

Proof To this end, we first prove that for all p ∈ (1, 6α), there exists a positive 
constant C1 independent of ε such that, for each T ∈ (0, Tmax,ε), the solution of
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(2.2.8) satisfies ∫ T 

0
||nε||

2p(α− 1 6 ) 
p−1 

L p(Ω) ≤ C1(T + 1). (2.4.46) 

In fact, by (2.4.4) and (2.4.6), we derive that for some positive constants C2 and C3 

independent of ε such that

∫ T 

0
||nε||

2p(α− 1 6 ) 
p−1 

L p(Ω) 

=
∫ T 

0
||nα 

ε ||
2 p 

p−1 · 6α−1 
6α 

L 
p 
α (Ω) 

≤C2

∫ T 

0

⎧
||∇nα 

ε ||2 L2(Ω)||nα 
ε ||

2p 
p−1 · 6α−1 

6α −2 

L 
1 
α (Ω)

+ ||nα 
ε ||

2 p 
p−1 · 6α−1 

6α 

L 
1 
α (Ω)

⎫
≤C3(T + 1) for all T > 0, 

which implies that (2.4.46) holds. Next, by α ∈ ( 1 3 , 
8 
21 ], we may choose γ = 2α+ 2 

3 
α+1 

such that 

1 <  γ  <  min{ 6α 
α + 1 

, 2} (2.4.47) 

as well as 

p := 6γ 
6 − γ 

∈ (1, 6α) (2.4.48) 

and 
2p(α − 1 6 ) 

p − 1 
= 

12γ  (α  − 1 6 ) 
7γ − 6 

> 
2γ 

2 − γ 
. (2.4.49) 

Collecting (2.4.46)–(2.4.49), one can derive (2.4.45) by the Young inequality. 

2.4.2 Global Solvability of the Approximate System 

The main task of this subsection is to prove the global solvability of the regularized 
problem (2.2.8). To this end, first, we need to establish some ε-dependent estimates 
for nε, cε and uε. 

Lemma 2.21 Let α  >  1 3 . Then there exists C = C(ε) > 0 depending on ε such that 
the solution of (2.2.8) satisfies

∫
Ω 

n2α+2 
ε +

∫
Ω 

|∇uε|2 ≤ C for all t ∈ (0, Tmax,ε). (2.4.50)
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In addition, for each T ∈ (0, Tmax,ε] with T < ∞, one can find a constant C > 0 
depending on ε such that

∫ T 

0

∫
Ω

⎣
n2α 

ε |∇nε|2 +  |Δuε|2
⎤ ≤ C. (2.4.51) 

Proof In view of (2.2.9), we derive 

F '
ε(nε) ≤ 

1 

εnε 
, 

so that, by multiplying the first equation in (2.2.8) by  n1+2α 
ε , using  ∇  ·  uε = 0, and 

applying the same argument as in the proof of (2.4.7)–(2.4.21), one can obtain that 
there exist positive constants C1 and C2 depending on ε such that

∫
Ω 

n2α+2 
ε ≤ C1 for all t ∈ (0, Tmax,ε) (2.4.52) 

and ∫ T 

0

∫
Ω 

n2α 
ε |∇nε|2 ≤ C2 for all T ∈ (0, Tmax,ε] with T < ∞. 

Now, from D(1 + εA) := W 2,2(Ω) ∩ W 1,2 
0,σ (Ω) ϲ→ L∞(Ω) and (2.4.5), it follows 

that, for some C3 > 0 and C4 > 0,

||Yεuε||L∞(Ω) = ||(I + εA)−1uε||L∞(Ω) ≤ C3||uε(·, t)||L2(Ω) ≤ C4 for all t ∈ (0, Tmax,ε). 
(2.4.53) 

Next, testing the projected Stokes equation uεt + Auε = P[−κ(Yεuε ·  ∇)uε + 
nε∇φ] by Auε, we derive 

1 

2 

d 

dt
||A 

1 
2 uε||2 L2(Ω) +

∫
Ω 

|Auε|2 

=
∫

Ω 
AuεP(−κ(Yεuε ·  ∇)uε) +

∫
Ω 
P(nε∇φ) Auε 

≤ 
1 

2

∫
Ω 

|Auε|2 + κ2
∫

Ω 
|(Yεuε ·  ∇)uε|2 + ||∇φ||2 L∞(Ω)

∫
Ω 

n2 
ε for all t ∈ (0, Tmax,ε). 

(2.4.54) 
However, in light of the Gagliardo–Nirenberg inequality, Young’s inequality and 
(2.4.53), there exists a positive constant C5 such that
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κ2
∫

Ω 
|(Yεuε ·  ∇)uε|2 ≤κ2||Yεuε||2 L∞(Ω)

∫
Ω 

|∇uε|2 

≤κ2||Yεuε||2 L∞(Ω)

∫
Ω 

|∇uε|2 

≤C5

∫
Ω 

|∇uε|2 for all t ∈ (0, Tmax,ε). 

(2.4.55) 

Here, we have used the well-known fact that ||A(·)||L2(Ω) defines a norm equivalent 
to || · ||W 2,2(Ω) on D(A) (see Theorem 2.c2.2-1.3 of Sohr 2001). Now, recall that
||A 

1 
2 uε||2 L2(Ω) = ||∇uε||2 L2(Ω) . Substituting (2.4.55) into (2.4.54) yields 

1 

2 

d 

dt
||∇uε||2 L2(Ω) +

∫
Ω 

|Δuε|2 

≤C6

∫
Ω 

|∇uε|2 + ||∇φ||2 L∞(Ω)

∫
Ω 

n2 
ε for all t ∈ (0, Tmax,ε). 

(2.4.56) 

Since α  >  1 3 yields 2α + 2 > 8 3 > 2, by collecting (2.4.52) and (2.4.56) and per-
forming some basic calculations, we can get the results. 

Lemma 2.22 Under the assumptions of Theorem 2.2, one can find that there exists 
C = C(ε) > 0 depending on ε such that

∫
Ω 

|∇cε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε) (2.4.57) 

and ∫ T 

0

∫
Ω 

|Δcε|2 ≤ C for all T ∈ (0, Tmax,ε] with T < ∞. (2.4.58) 

Proof First, testing the second equation in (2.2.8) against  −Δcε, employing Young’s 
inequality, and using (2.4.3) yields 

1 

2 

d 

dt
||∇cε||2 L2(Ω) =

∫
Ω 

−Δcε(Δcε − cε + Fε(nε) − uε ·  ∇cε) 

=−
∫

Ω 
|Δcε|2 −

∫
Ω 

|∇cε|2 −
∫

Ω 
Fε(nε)Δcε −

∫
Ω 

(uε ·  ∇cε)Δcε 

≤− 
1 

4

∫
Ω 

|Δcε|2 −
∫

Ω 
|∇cε|2 +

∫
Ω 

n2 
ε +

∫
Ω 

|uε ·  ∇cε||Δcε| 
(2.4.59) 

for all t ∈ (0, Tmax,ε). Next, one needs to estimate the last term on the right-hand side 
of (2.4.59). Indeed, in view of Sobolev’s embedding theorem (W 1,2(Ω) ϲ→ L6(Ω)) 
and applying (2.4.50) and (2.4.5), we derive from Hölder’s inequality, the Gagliardo– 
Nirenberg inequality, and Young’s inequality that there exist positive constants C1, 
C2, C3 and C4 such that
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Ω 

|uε ·  ∇cε||Δcε|  ≤||uε||L6(Ω)||∇cε||L3(Ω)||Δcε||L2(Ω) 

≤C1||∇cε||L3(Ω)||Δcε||L2(Ω) 

≤C2(||Δcε||
3 
4 

L2(Ω)
||cε||

1 
4 

L2(Ω) + ||cε||2 L2(Ω))||Δcε||L2(Ω) 

≤C3(||Δcε||
7 
4 

L2(Ω) + ||Δcε||L2(Ω)) 

≤ 
1 

4
||Δcε||2 L2(Ω) + C4 for all t ∈ (0, Tmax,ε). 

(2.4.60) 

Inserting (2.4.60) into (2.4.59) and using (2.4.50), one obtains (2.4.57) and (2.4.58). 
This completes the proof of Lemma 2.22. 

Lemma 2.23 Let α  >  1 3 . Assume that the hypothesis of Theorem 2.2 holds. Then 
there exists a positive constant C = C(ε) depending on ε such that, for any 3 < q < 
6, the solution of (2.2.8) from Lemma 2.3 satisfies

||Aγ uε(·, t)||L2(Ω) ≤C for all t ∈ (0, Tmax,ε) (2.4.61) 

as well as
||uε(·, t)||L∞(Ω) ≤C for all t ∈ (0, Tmax,ε) (2.4.62) 

and
||∇cε(·, t)||Lq (Ω) ≤C for all t ∈ (0, Tmax,ε), (2.4.63) 

where γ is the same as in (2.1.13). 

Proof Let hε(x, t) = P[nε∇φ − κ(Yεuε ·  ∇)uε]. Because α  >  1 3 , then along with 
(2.4.50), and (2.4.53), there exist positive constants q0 > 3 2 and C1 such that

||nε(·, t)||Lq0 (Ω) ≤ C1 for all t ∈ (0, Tmax,ε) (2.4.64) 

and
||hε(·, t)||Lq0 (Ω) ≤ C1 for all t ∈ (0, Tmax,ε). (2.4.65) 

Hence, because q0 > 3 2 , we pick an arbitrary  γ ∈ ( 3 4 , 1) and, then, −γ − 3 2 ( 
1 
q0 

− 
1 
2 )  >  −1. Therefore, in view of the smoothing properties of the Stokes semigroup 
Giga (1986), we derive that, for some λ, C2 > 0, and C3 > 0,

||Aγ uε(·, t)||L2(Ω) 

≤||Aγ e−t A  u0||L2(Ω) +
∫ t 

0
||Aγ e−(t−τ  )  A hε(·,  τ  )dτ||L2(Ω)dτ 

≤||Aγ u0||L2(Ω) + C2

∫ t 

0 
(t − τ  )−γ − 3 

2 ( 
1 

q0 
− 1 

2 ) e−λ(t−τ  )||hε(·,  τ  )||Lq0 (Ω)dτ 

≤C3 for all t ∈ (0, Tmax,ε). 

(2.4.66)
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Observe that γ  >  3 4 , and D(Aγ ) is continuously embedded into L∞(Ω). Therefore, 
we derive that there exists a positive constant C4 such that

||uε(·, t)||L∞(Ω) ≤ C4 for all t ∈ (0, Tmax,ε) (2.4.67) 

from (2.4.66). However, from (2.4.57), with the help of Sobolev’s embedding theo-
rem, it follows that, for any fixed q̃ ∈ (3, 6),

||cε(·, t)||L ̃q (Ω) ≤ C5 for all t ∈ (0, Tmax,ε). (2.4.68) 

Now, involving the variation-of-constants formula for cε and applying ∇  ·  uε = 0 in 
x ∈ Ω, t > 0, we have  

cε(t) = et (Δ−1) c0 +
∫ t 

0 
e(t−s)(Δ−1) (Fε(nε(s)) +  ∇  ·  (uε(s)cε(s))ds, t ∈ (0, Tmax,ε), 

(2.4.69) 
so that, for any 3 < q < min{ 3q0 

(3−q0)+ 
, q̃}, we have

||∇cε(·, t)||Lq (Ω) 

≤||∇et (Δ−1) c0||Lq (Ω) +
∫ t 

0
||∇e(t−s)(Δ−1) Fε(nε(s))||Lq (Ω)ds 

+
∫ t 

0
||∇e(t−s)(Δ−1)∇  ·  (uε(s)cε(s))||Lq (Ω)ds. 

(2.4.70) 

To address the right-hand side of (2.4.70), in view of (2.1.13), we first use Lemma 
2.4 to get

||∇et (Δ−1) c0||Lq (Ω) ≤C6 for all t ∈ (0, Tmax,ε). (2.4.71) 

Since (2.4.64) and (2.4.68) yields 

− 
1 

2 
− 

3 

2

⎧
1 

q0 
− 

1 

q

⎫
> −1, 

together with this and (2.4.3), by using Lemma 2.4 again, the second term of the 
right-hand side is estimated as

∫ t 

0
||∇e(t−s)(Δ−1) Fε(nε(s))||Lq (Ω)ds 

≤C7

∫ t 

0 
[1 + (t − s)−

1 
2 − 3 

2 ( 
1 

q0 
− 1 q )]e−(t−s)||nε(s)||Lq0 (Ω)ds 

≤C8 for all t ∈ (0, Tmax,ε).
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Finally, we will address the third term on the right-hand side of (2.4.70). To this 
end, we choose 0 <  ι  <  1 2 satisfying 

1 
2 + 3 2 ( 

1 
q̃ − 1 q )  <  ι  and κ̃ ∈ (0, 1 2 − ι). In view  

of Hölder’s inequality, we derive from Lemma 2.4, (2.4.68) and (2.4.67) that there 
exist constants C9, C10, C11 and C12 such that∫ t 

0
||∇e(t−s)(Δ−1)∇  ·  (uε(s)cε(s))||L ̃q (Ω)ds 

≤C9

∫ t 

0
||(−Δ + 1)ι e(t−s)(Δ−1)∇  ·  (uε(s)cε(s))||Lq (Ω)ds 

≤C10

∫ t 

0 
(t − s)−ι− 1 

2 −κ̃ e−λ(t−s)||uε(s)cε(s)||L ̃q (Ω)ds 

≤C11

∫ t 

0 
(t − s)−ι− 1 

2 −κ̃ e−λ(t−s)||uε(s)||L∞(Ω)||cε(s)||L ̃q (Ω)ds 

≤C12 for all t ∈ (0, Tmax,ε). 

(2.4.72) 

Here, we have used the fact that

∫ t 

0 
(t − s)−ι− 1 

2 −κ̃ e−λ(t−s) ds ≤
∫ ∞ 

0 
σ −ι− 1 

2 −κ̃ e−λσ dσ  <  +∞. 

Finally, collecting (2.4.70)–(2.4.72), we can obtain that there exists a positive con-
stant C13 such that∫

Ω 
|∇cε(t)|q ≤ C13 for all t ∈ (0, Tmax,ε) and some q ∈

⎧
3, min

⎧
3q0 

(3 − q0)+ 
, q̃

⎫⎫
. 

(2.4.73) 
The proof of Lemma 2.23 is complete. 

Then we can establish global existence in the approximate problem (2.2.8) by  
using Lemmas 2.21 and 2.22. 

Lemma 2.24 Let α  >  1 3 . Then, for all ε ∈ (0, 1), the solution of (2.2.8) is global in 
time. 

Proof Assume that Tmax,ε is finite for some ε ∈ (0, 1). Fix  T ∈ (0, Tmax,ε), and let 
M(T ) := supt∈(0,T ) ||nε(·, t)||L∞(Ω) and h̃ε := F '

ε(nε)Sε(x, nε, cε)∇cε + uε. Then, 
by Lemma 2.23, (2.1.5) and (2.4.1), there exists C1 > 0 such that

||h̃ε(·, t)||Lq (Ω) ≤C1 for all t ∈ (0, Tmax,ε) and some 3 < q < 6. (2.4.74) 

Hence, because ∇  ·  uε = 0, we can derive 

nε(t) = e(t−t0)Δ nε(·, t0) −
∫ t 

t0 

e(t−s)Δ∇  ·  (nε(·, s) ̃hε(·, s))ds, t ∈ (t0, T ) (2.4.75)
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by means of an associate variation-of-constants formula for n, where t0 := (t − 1)+. 
If t ∈ (0, 1], by virtue of the maximum principle, we can derive

||e(t−t0)Δ nε(·, t0)||L∞(Ω) ≤||n0||L∞(Ω), (2.4.76) 

while if t > 1 then, with the help of the L p–Lq estimates for the Neumann heat 
semigroup and Lemma 2.17, we conclude that

||e(t−t0)Δ nε(·, t0)||L∞(Ω) ≤C2(t − t0)−
3 
2 ||nε(·, t0)||L1(Ω) ≤ C3. (2.4.77) 

Finally, we fix an arbitrary p ∈ (3, q) and then once more invoke known smoothing 
properties of the Stokes semigroup (see P. 201 of Giga 1986) and Hölder’s inequality 
to find C4 > 0 such that

∫ t 

t0

||e(t−s)Δ∇  ·  (nε(·, s) ̃hε(·, s)||L∞(Ω)ds 

≤C4

∫ t 

t0 

(t − s)−
1 
2 − 3 2 p ||nε(·, s) ̃hε(·, s)||L p(Ω)ds 

≤C4

∫ t 

t0 

(t − s)−
1 
2 − 3 2 p ||nε(·, s)||L 

pq 
q−p (Ω)

||h̃ε(·, s)||Lq (Ω)ds 

≤C4

∫ t 

t0 

(t − s)−
1 
2 − 3 2 p ||uε(·, s)||b 

L∞(Ω)||uε(·, s)|||1−b 
L1(Ω)

||h̃ε(·, s)||Lq (Ω)ds 

≤C5Mb (T ) for all t ∈ (0, T ), 

(2.4.78) 

where b := pq−q+p 
pq ∈ (0, 1) and 

C5 := C4C
2−b 
1

∫ 1 

0 
σ −

1 
2 − 3 2p dσ. 

Since p > 3, we conclude that − 1 
2 − 3 

2 p > −1. In combination with (2.4.75)– 
(2.4.78) and using the definition of M(T ), we obtain C6 > 0 such that 

M(T ) ≤ C6 + C6Mb (T ) for all T ∈ (0, Tmax,ε). (2.4.79) 

Hence, in view of b < 1, with some basic calculation, since T ∈ (0, Tmax,ε) was 
arbitrary, we can obtain there exists a positive constant C7 such that

||nε(·, t)||L∞(Ω) ≤C7 for all t ∈ (0, Tmax,ε). (2.4.80) 

To prove the boundedness of ||∇cε(·, t)||L∞(Ω), we rewrite the variation-of-constants 
formula for cε in the form
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cε(·, t) = et (Δ−1)c0 +
∫ t 

0 
e(t−s)(Δ−1)[Fε(nε)(s) − uε(s) ·  ∇cε(s)]ds for all t ∈ (0, Tmax,ε). 

Now, we choose θ ∈ ( 1 2 + 3 
2q , 1), where 3 < q < 6 (see (2.4.73)), then the domain 

of the fractional power D((−Δ + 1)θ ) ϲ→ W 1,∞(Ω) (see Horstmann and Winkler 
2005). Hence, in view of L p–Lq estimates associated with the heat semigroup, 
(2.4.62), (2.4.63) and (2.4.3), we derive that there exist positive constants λ, C8, 
C9, C10 and C11 such that

||cε(·, t)||W 1,∞(Ω) 

≤C8||(−Δ + 1)θ cε(·, t)||Lq (Ω) 

≤C9t−θ e−λt||c0||Lq (Ω) + C9

∫ t 

0 
(t − s)−θ e−λ(t−s)||(Fε(nε) − uε ·  ∇cε)(s)||Lq (Ω)ds 

≤C10 + C10

∫ t 

0 
(t − s)−θ e−λ(t−s)[||nε(s)||Lq (Ω) + ||uε(s)||L∞(Ω)||∇cε(s)||Lq (Ω)]ds 

≤C11 for all t ∈ (0, Tmax,ε). 
(2.4.81) 

Here, we have used Hölder’s inequality as well as

∫ t 

0 
(t − s)−θ e−λ(t−s) ≤

∫ ∞ 

0 
σ −θ e−λσ dσ  <  +∞. 

In view of (2.4.61), (2.4.80) and (2.4.81), we apply Lemma 2.3 to reach a contradic-
tion. 

2.4.3 Regularity Property of Time Derivatives 

In preparation of an Aubin–Lions-type compactness argument, we will rely on an 
additional regularity estimate for nε F '

ε(nε)Sε(x, nε, cε)∇cε, uε ·  ∇cε, nεuε and cεuε. 

Lemma 2.25 Let α  >  1 3 , and assume that (2.1.13) holds. Then one can find C > 0 
independent of ε such that, for all T ∈ (0, ∞),

∫ T 

0

∫
Ω

⎡
|nε F

'
ε(nε)Sε(x, nε, cε)∇cε| 3α+1 

2 +  |nεuε|
2α+ 2 3 
α+1

⎤

≤C(T + 1), if 
1 

3 
<  α  ≤ 

8 

21 
, 

(2.4.82)

∫ T 

0

∫
Ω

⎡
|nε F

'
ε(nε)Sε(x, nε, cε)∇cε| 3α+1 

2 +  |nεuε| 10(3α+1) 
9(α+2)

⎤

≤C(T + 1), if 
8 

21 
<  α  ≤ 

1 

2 
, 

(2.4.83)
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∫ T 

0

∫
Ω

⎡
|nε F

'
ε(nε)Sε(x, nε, cε)∇cε| 10α 

3+2α +  |nεuε| 10α 
3(α+1)

⎤
, 

≤C(T + 1) if 
1 

2 
<  α  <  1 

(2.4.84) 

as well as∫ T 

0

∫
Ω

⎡
|nε F

'
ε(nε)Sε(x, nε, cε)∇cε|2 +  |nεuε| 5 

3

⎤
≤ C(T + 1), if α ≥ 1 (2.4.85) 

and ∫ T 

0

∫
Ω

⎡
|uε ·  ∇cε| 5 

4 +  |cεuε| 5 
3

⎤
≤ C(T + 1). (2.4.86) 

Proof First, by (2.1.5), (2.4.1) and (2.2.10), we derive 

nε F
'
ε(nε)Sε(x, nε, cε) ≤ CSn(1−α)+ 

ε 

with (1 − α)+ = max{0, 1 − α}. Case 8 21 <  α  ≤ 1 2 : It is not difficult to verify that 

2 

3α + 1 
= 

1 

2 
+ 3 

6α + 2 
(1 − α) 

and 
9(α + 2) 

10(3α + 1) 
= 

3 

10 
+ 

3 

6α + 2 
, 

so that, recalling (2.4.29), (2.4.44) and Hölder’s inequality, we can obtain (2.4.83). 
While if 1 3 <  α  ≤ 8 

21 , in light of (2.4.6), (2.4.29), (2.4.32), (2.4.45), an employment 
of the Hölder and Young inequalities to shows that

∫ T 

0

∫
Ω

⎡
|nε F

'
ε(nε)Sε(x, nε, cε)∇cε| 3α+1 

2 +  |nεuε|γ
⎤

≤C1

⎡∫ T 

0

∫
Ω 

n 
6α+2 
3 

ε

⎤ 3−3α 
4

⎡∫ T 

0

∫
Ω 

|∇cε|2
⎤ 3α+1 

4 

+ C1

∫ T 

0
||nε||γ 

L 
6γ 
6−γ (Ω)

||uε||γ 
L6(Ω) 

≤C2(T + 1), 

where γ = 2α+ 2 
3 

α+1 is given by Lemma 2.20. 
Other cases can be proved very similarly. Therefore, we omit their proofs.
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To prepare our subsequent compactness properties of (nε, cε, uε) by means of 
the Aubin–Lions lemma (see Simon 1986), we use Lemmas 2.17–2.19 to obtain the 
following regularity property with respect to the time variable. 

Lemma 2.26 Let α  >  1 3 , and assume that (2.1.13) holds. Then there exists C > 0 
independent of ε such that

∫ T 

0
||∂t nε(·, t)||(W 2,4(Ω))∗dt ≤ C(T + 1) for all T ∈ (0, ∞) (2.4.87) 

as well as∫ T 

0
||∂t cε(·, t)||

5 
4 

(W 1,5(Ω))∗dt ≤ C(T + 1) for all T ∈ (0, ∞) (2.4.88) 

and ∫ T 

0
||∂t uε(·, t)||

5 
4 

(W 1,5 
0,σ (Ω))∗

dt ≤ C(T + 1) for all T ∈ (0, ∞). (2.4.89) 

Proof Firstly, testing the first equation of (2.2.8) by certain ϕ ∈ C∞( Ω̄), we have

||||
∫

Ω 
(nε,t )ϕ

||||
=

||||
∫

Ω

⎣
Δnε −  ∇  ·  (nε F

'
ε(nε)Sε(x, nε, cε)∇cε) − uε ·  ∇nε

⎤
ϕ

||||
=

||||
∫

Ω

⎣−∇nε ·  ∇ϕ + nε F
'
ε(nε)Sε(x, nε, cε)∇cε ·  ∇ϕ + nεuε ·  ∇ϕ

⎤||||
≤

||||
∫

Ω

⎣|∇nε|  +  |nε F
'
ε(nε)Sε(x, nε, cε)∇cε|  +  |nεuε|

⎤|||| ||ϕ||W 1,∞(Ω) 

for all t > 0. 
Observe that the embedding W 2,4(Ω) ϲ→ W 1,∞(Ω), so that, in view of  α  >  1 3 , 

Lemmas 2.19 and 2.25, we deduce from the Young inequality that for some C1 and 
C2 such that∫ T 

0
||∂t nε(·, t)||(W2,4(Ω))∗dt 

≤C1

⎰∫ T 

0

∫
Ω 

|∇nε |r1 +
∫ T 

0

∫
Ω 

|nε F '
ε(nε)Sε(x, nε, cε)∇cε |r1 +

∫ T 

0

∫
Ω 

|nεuε |r2 + T

⎫

≤C2(T + 1) for all T > 0, 
(2.4.90) 

where
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r1 = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

3α + 1 
2 

if 
1 

3 
<  α  ≤ 

1 

2 
, 

10α 
3 + 2α 

if 
1 

2 
<  α  <  1, 

2 if  α ≥ 1 

and 

r2 = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

2α + 2 3 
α + 1 

if 
1 

3 
<  α  ≤ 

8 

21 
, 

10(3α + 1) 
9(α + 2) 

if 
8 

21 
<  α  ≤ 

1 

2 
, 

10α 
3(α + 1) 

if 
1 

2 
<  α  <  1, 

5 

3 
if α ≥ 1, 

Likewise, given any ϕ ∈ C∞( Ω̄), we may test the second equation in (2.2.8) 
against ϕ to conclude that

||||
∫

Ω 
∂t cε(·, t)ϕ

||||
=

||||
∫

Ω 
[Δcε − cε + nε − uε ·  ∇cε] · ϕ

||||
=

||||−
∫

Ω 
∇cε ·  ∇ϕ −

∫
Ω 

cεϕ +
∫

Ω 
nεϕ +

∫
Ω 

cεuε ·  ∇ϕ

||||
≤

{
||∇cε||L 

5 
4 (Ω) 

+ ||cε||L 
5 
4 (Ω) 

+ ||nε||L 
5 
4 (Ω) 

+ ||cεuε||L 
5 
4 (Ω)

}
||ϕ||W 1,5(Ω) 

for all t > 0. Thus, from Lemmas 2.19 and 2.25 again, in light of α  >  1 3 , we invoke  
the Young inequality again and obtain that there exist positive constant C3 and C4 

such that∫ T 

0
||∂t cε(·, t)||

5 
4 

(W 1,5(Ω))∗dt 

≤C3

⎧∫ T 

0

∫
Ω 

|∇cε|2 +
∫ T 

0

∫
Ω 

nr3 
ε +

∫ T 

0

∫
Ω 

c 
10 
3 

ε +
∫ T 

0

∫
Ω 

|uε| 10 
3 + T

⎫
≤C4(T + 1) for all T > 0 

with
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r3 = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

6α + 2 
3 

if 
1 

3 
<  α  ≤ 

1 

2 
, 

10α 
3 

if 
1 

2 
<  α  <  1, 

10 

3 
if α ≥ 1. 

(2.4.91) 

Finally, for any given ϕ ∈ C∞
0,σ (Ω;R3), we infer from the third equation in (2.2.8) 

that for all t > 0||||
∫

Ω 
∂t uε(·, t)ϕ

|||| =
||||−

∫
Ω 

∇uε ·  ∇ϕ − κ
∫

Ω 
(Yεuε ⊗ uε) ·  ∇ϕ +

∫
Ω 

nε∇φ · ϕ
|||| . 

Now, by virtue of (2.4.6), Lemmas 2.19 and 2.25, we also get that there exist positive 
constants C5, C6 and C7 such that∫ T 

0
||∂t uε(·, t)||

5 
4 

(W 1,5 
0,σ (Ω))∗

dt 

≤C5

⎧∫ T 

0

∫
Ω 

|∇uε| 5 
4 +

∫ T 

0

∫
Ω 

|Yεuε ⊗ uε| 5 
4 +

∫ T 

0

∫
Ω 

n 
5 
4 
ε

⎫

F ≤C6

⎧∫ T 

0

∫
Ω 

|∇uε|2 +
∫ T 

0

∫
Ω 

|Yεuε|2 +
∫ T 

0

∫
Ω 

|uε| 10 
3 +

∫ T 

0

∫
Ω 

nr3 
ε + T

⎫
≤C7(T + 1) for all T > 0, 

which implies (2.4.89). Here r3 is the same as (2.4.91). 

2.4.4 Global Existence of Weak Solutions 

Based on the above lemmas and by extracting suitable subsequences in a standard 
way, we can prove Theorem 2.2. 

Lemma 2.27 Let (2.1.4), (2.1.5) and (2.1.13) hold, and suppose that α  >  1 3 . There 
exists (ε j ) j∈N ⊂ (0, 1) such that ε j ↘ 0 as j →  ∞  and such that as ε = ε j ↘ 0 we 
have 

nε → n a.e. in  Ω × (0, ∞) and in Lr 
loc( Ω̄ ×  [0, ∞)) with r = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

3α + 1 
2 

if 
1 

3 
<  α  ≤ 

1 

2 
, 

10α 
3 + 2α 

if 
1 

2 
<  α  <  1, 

2 if α ≥ 1, 

(2.4.92)
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∇nε ⇀ ∇n in Lr 
loc( Ω̄ ×  [0, ∞)) with r = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

3α + 1 
2 

if 
1 

3 
<  α  ≤ 

1 

2 
, 

10α 
3 + 2α 

if 
1 

2 
<  α  <  1, 

2 if α ≥ 1, 

(2.4.93) 

cε → c in L2 
loc( Ω̄ ×  [0, ∞)) and a.e. in Ω × (0, ∞), (2.4.94) 

∇cε →  ∇c a.e. in  Ω × (0, ∞), (2.4.95) 

uε → u in L2 
loc( Ω̄ ×  [0, ∞)) and a.e. in Ω × (0, ∞) (2.4.96) 

as well as 
∇cε ⇀ ∇c in L2 

loc( Ω̄ ×  [0, ∞)) (2.4.97) 

and 
∇uε ⇀ ∇u in L2 

loc( Ω̄ ×  [0, ∞)) (2.4.98) 

and 
uε ⇀ u in L  

10 
3 

loc( Ω̄ ×  [0, ∞)) (2.4.99) 

with some triple (n, c, u) that is a global weak solution of (2.1.3) in the sense of 
Definition 2.1. 

Proof First, from Lemma 2.19 and (2.4.87), we derive that there exists a positive 
constant C0 such that

||nε||Lr 
loc([0,∞);W 1,r (Ω)) ≤ C0(T + 1) and ||∂t nε||L1 

loc([0,∞);(W 2,4(Ω))∗) ≤ C0(T + 1), 
(2.4.100) 

where r is given by (2.4.92). Hence, from (2.4.100) and the Aubin–Lions lemma 
(see, e.g., Simon 1986), we conclude that 

(nε)ε∈(0,1) is strongly precompact in Lr 
loc( Ω̄ ×  [0, ∞)), (2.4.101) 

so that, there exists a sequence (ε j ) j∈N ⊂ (0, 1) such that ε = ε j ↘ 0 as j →  ∞  
and 

nε → n a.e. in Ω × (0, ∞) and in Lr 
loc( Ω̄ ×  [0, ∞)) as ε = ε j ↘ 0, (2.4.102) 

where r is the same as (2.4.92). Now, in view of Lemmas 2.18, 2.19, 2.25 and 2.26, 
employing the same arguments as in the proof of (2.4.100)–(2.4.102), we can derive 
(2.4.92)–(2.4.94) and (2.4.96)–(2.4.99) hold. Next, let gε(x, t) := −cε + Fε(nε) − 
uε ·  ∇cε. With this notation, the second equation of (2.2.8) can be rewritten in com-
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ponent form as 
cεt − Δcε = gε. (2.4.103) 

Case 1 3 <  α  ≤ 1 2 : Observe that 

5 

4 
< 

4 

3 
< min

⎧
6α + 2 

3 
, 
10 

3

⎫
for 

1 

3 
<  α  ≤ 

1 

2 
. 

Thus, recalling (2.4.29), (2.4.32) and (2.4.86) and applying Hölder’s inequality, we 
conclude that, for any ε ∈ (0, 1), gε is bounded in L 

5 
4 (Ω × (0, T )), and we may 

invoke the standard parabolic regularity theory to (2.4.103) and infer that (cε)ε∈(0,1) is 
bounded in L 

5 
4 ((0, T ); W 2, 5 4 (Ω)). Hence, by virtue of (2.4.88) and the Aubin–Lions 

lemma, we derive the relative compactness of (cε)ε∈(0,1) in L 
5 
4 ((0, T ); W 1, 5 4 (Ω)). 

We can pick an appropriate subsequence that is still written as (ε j ) j∈N such that 
∇cε j → z1 in L 

5 
4 (Ω × (0, T )) for all T ∈ (0, ∞) and some z1 ∈ L 

5 
4 (Ω × (0, T )) 

as j →  ∞. Therefore, by (2.4.88), we can also derive that ∇cε j → z1 a.e. in Ω × 
(0, ∞) as j →  ∞. In view of (2.4.97) and Egorov’s theorem, we conclude that 
z1 =  ∇c and hence (2.4.95) holds. Next, we pay attention to the case 1 2 <  α  <  1: By  
straightforward calculations, and using relation 1 2 <  α  <  1, one has 

5 

4 
< 

5 

3 
< min

⎧
10α 
3 

, 
10 

3

⎫
. 

Consequently, based on (2.4.30), (2.4.32) and (2.4.86), it follows from Hölder’s 
inequality that 

cεt − Δcε = gε is bounded in L 
5 
4 (Ω × (0, T )) for any ε ∈ (0, 1). (2.4.104) 

Employing almost exactly the same arguments as in the proof of the case 1 3 <  α  ≤ 1 2 , 
and taking advantage of (2.4.104), we conclude the estimate (2.4.97). The proof of 
case α ≥ 1 is similar to that of case 1 3 <  α  ≤ 1 2 , so we omit it. 

In the following proof, we shall prove that (n, c, u) is a weak solution of problem 
(2.1.3) in Definition 2.1. In fact, by  α  >  1 3 , we conclude that 

r > 1, 

where r is given by (2.4.92). Therefore, with the help of (2.4.92)–(2.4.94) and 
(2.4.96)–(2.4.98), we can derive (2.2.3). Now, by the nonnegativity of nε and cε, 
we obtain n ≥ 0 and c ≥ 0. Next, from  (2.4.98) and ∇  ·  uε = 0, we conclude that 
∇  ·  u = 0 a.e. in Ω × (0, ∞). However, in view of (2.4.83), (2.4.84) and (2.4.85), 
we conclude that 

nε F
'
ε(nε)Sε(x, nε, cε)∇cε ⇀ z2 in L

r (Ω × (0, T )) (2.4.105)
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as ε = ε j ↘ 0 for each T ∈ (0, ∞), where r is given by (2.4.92). However, it follows 
from (2.1.4), (2.2.10), (2.4.2), (2.4.92), (2.4.94) and (2.4.95) that 

nε F
'
ε(nε)Sε(x, nε, cε)∇cε → nS(x, n, c)∇c a.e. in Ω × (0, ∞) as ε = ε j ↘ 0. 

(2.4.106) 
Again by Egorov’s theorem, we gain z2 = nS(x, n, c)∇c, and therefore (2.4.105) 
can be rewritten as 

nε F
'
ε(nε)Sε(x, nε, cε)∇cε ⇀ nS(x, n, c)∇c in Lr (Ω × (0, T )) (2.4.107) 

as ε = ε j ↘ 0 for each T ∈ (0, ∞), which together with r > 1 implies the integra-
bility of nS(x, n, c)∇c in (2.2.4) as well. It is not difficult to check that 

2α + 2 3 
α + 1 

> 1 if  
1 

3 
<  α  ≤ 

8 

21 
, 

10(3α + 1) 
9(α + 2) 

> 1 if  
8 

21 
<  α  ≤ 

1 

2 
, 

10α 
3(α + 1) 

> 1 if  
1 

2 
<  α  <  1. 

Thereupon, recalling (2.4.83), (2.4.84) and (2.4.85), we infer that, for each T ∈ 
(0, ∞), when ε = ε j ↘ 0, 

nεuε ⇀ z3 in L
r̃ (Ω × (0, T )) with r̃ = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

2α + 2 3 
α + 1 

if 
1 

3 
<  α  ≤ 

8 

21 
, 

10(3α + 1) 
9(α + 2) 

if 
8 

21 
<  α  ≤ 

1 

2 
, 

10α 
3(α + 1) 

if 
1 

2 
<  α  <  1, 

5 

3 
if α ≥ 1. 

(2.4.108) 

(2.4.108) together with (2.4.92) and (2.4.96) implies 

nεuε → nu a.e. in Ω × (0, ∞) as ε = ε j ↘ 0. (2.4.109) 

(2.4.108) along with (2.4.109) and Egorov’s theorem guarantees that z3 = nu, where-
upon we derive from (2.4.108) that
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nεuε ⇀ nu in Lr̃ (Ω × (0, T )) with r̃ = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

2α + 2 3 
α + 1 

if 
1 

3 
<  α  ≤ 

8 

21 
, 

10(3α + 1) 
9(α + 2) 

if 
8 

21 
<  α  ≤ 

1 

2 
, 

10α 
3(α + 1) 

if 
1 

2 
<  α  <  1, 

5 

3 
if α ≥ 1 

(2.4.110) 

as ε = ε j ↘ 0, for each T ∈ (0, ∞). 
As a straightforward consequence of (2.4.94) and (2.4.96), it holds that 

cεuε → cu in L1 
loc( Ω̄ × (0, ∞)) as ε = ε j ↘ 0. (2.4.111) 

Thus, the integrability of nu and cu in (2.2.4) is verified by (2.4.94) and (2.4.96). 
Next, by (2.4.96) and the fact that ||Yεϕ||L2(Ω) ≤ ||ϕ||L2(Ω)(ϕ ∈ L2 

σ (Ω)) and 
Yεϕ → ϕ in L2(Ω) as ε ↘ 0, we can get that there exists a positive constant C1 

such that, for any ε ∈ (0, 1),

||Yεuε(·, t) − u(·, t)||L2(Ω) ≤||Yε[uε(·, t) − u(·, t)]||L2(Ω) + ||Yεu(·, t) − u(·, t)||L2(Ω) 

≤||uε(·, t) − u(·, t)||L2(Ω) + ||Yεu(·, t) − u(·, t)||L2(Ω) 

→0 as  ε = ε j ↘ 0 

and
||Yεuε(·, t) − u(·, t)||2 L2(Ω) ≤

(||Yεuε(·, t)|||L2(Ω) + ||u(·, t)|||L2(Ω)

)2 
≤(||uε(·, t)|||L2(Ω) + ||u(·, t)|||L2(Ω)

)2 
≤C1 

for all t ∈ (0, ∞)/N with some null set N ⊂ (0, ∞), and thus by the dominated 
convergence theorem, we can find that

∫ T 

0
||Yεuε(·, t) − u(·, t)||2 L2(Ω)dt → 0 as  ε = ε j ↘ 0 for all T > 0. 

Therefore, 
Yεuε → u in L2 

loc([0, ∞); L2 (Ω)). (2.4.112) 

Now, combining (2.4.96) with (2.4.112), we derive 

Yεuε ⊗ uε → u ⊗ u in L1 
loc( Ω̄ ×  [0, ∞)) as ε = ε j ↘ 0. (2.4.113) 

Therefore, the integrability of nS(x, n, c)∇c, nu, cu and u ⊗ u in (2.2.4) is verified 
by (2.4.107), (2.4.110), (2.4.111) and (2.4.113). Finally, for any fixed T ∈ (0, ∞), 
applying (2.4.92), one can get
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∫ T 

0
||Fε(nε(·, t)) − n(·, t)||r 

Lr (Ω) dt 

≤
∫ T 

0
||Fε(nε(·, t)) − Fε(n(·, t))||r 

Lr (Ω) dt 

+
∫ T 

0
||Fε(n(·, t)) − n(·, t)||r 

Lr (Ω) dt 

≤||F '
ε||L∞(Ω×(0,∞))

∫ T 

0
||nε(·, t) − n(·, t)||r 

Lr (Ω) dt 

+
∫ T 

0
||Fε(n(·, t)) − n(·, t)||r 

Lr (Ω) dt, 

(2.4.114) 

where r is  the same as in (2.4.92). Besides that, we also deduce from (2.4.3) and 
r > 1 that

||Fε(n(·, t)) − n(·, t)||r 
Lr (Ω×(0,T )) ≤2r||n(·, t)||

for each t ∈ (0, T ), which together with (2.4.92) shows the integrability of

||Fε(n(·, t)) − n(·, t)||r 
Lr (Ω) 

on (0, T ). Thereupon, by virtue of (2.4.2), we infer from the dominated convergence 
theorem that ∫ T 

0
||Fε(n) − n||r 

Lr (Ω) dt → 0 as  ε = ε j ↘ 0 (2.4.115) 

for each T ∈ (0, ∞). Inserting (2.4.115) into (2.4.114) and using (2.4.92) and (2.4.1), 
we can see clearly that 

Fε(n) → n in Lr 
loc( Ω̄ ×  [0, ∞)) as ε = ε j ↘ 0. (2.4.116) 

Finally, according to (2.4.92)–(2.4.94), (2.4.96)–(2.4.98), (2.4.107), (2.4.110)– (2.4.113) 
and (2.4.116), we may pass to the limit in the respective weak formulations associated 
with the regularized system (2.2.8) and obtain the integral identities (2.2.5)–(2.2.7).
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Chapter 3 
Chemotaxis–Haptotaxis System 

3.1 Introduction 

Cancer invasion and metastasis are influenced by a plethora of biochemical processes 
and involve many biochemical mechanisms, among which chemotaxis and haptotaxis 
are two of the main mechanisms directing the migration of cancer cells Chaplain and 
Lolas (2005). Evidence has been found that cancer cells release complex enzymes 
such as the urokinase-type plasminogen activator (uPA), which degrade the surround-
ing extracellular matrix (ECM), and thereby allow the migration of cells following 
the concentration gradient of such diffusive enzymes. This process is referred to as 
chemotaxis Chaplain and Lolas (2006). On the other hand, in addition to random 
diffusion, the movement of cancer cells is biased toward the gradient of an immov-
able stimulus (density of tissue fiber) by finding matrix molecules such as vitronectin 
adhered therein. This process is called haptotaxis Perumpanani and Byrne (1999). 

Recently, a variety of mathematical models have been proposed for various aspects 
of cancer invasion and metastasis Aznavoorian et al. (1990); Chaplain and Lolas 
(2005, 2006); Friedman and Lolas (2005); Gatenby and Gawlinski (1996); Meral 
et al. (2015); Szymańska et al. (2009). Gatenby and Gawlinski (1996) used reaction– 
diffusion equations to describe the interaction between the density of normal cells, 
tumor cells and the concentration of H+-ions produced by the latter. They suggested 
that cancer cells up-regulate certain mechanisms, which allow for the extrusion of 
excessive protons and hence acidify the environment. This triggers apoptosis of nor-
mal cells and thus allows the neoplastic tissue to extend into the space made available. 
Later on, Meral et al. (2015) proposed a population-based micro–macro model for 
acid-mediated tumor invasion, which involves the the microscopic dynamics of intra-
cellular protons and their exchange with extracellular counterparts. The continuum 
micro–macro models explicitly accounting for subcellular events are rather new, 
especially in the context of cancer cell migration Stinner et al. (2014, 2016). 

The analytical results on various models of cancer invasion are mathematically 
interesting Bellomo et al. (2015); Engwer et al. (2017); Jin (2018); Li and Lankeit 
(2016); Liţcanu and Morales-Rodrigo (2010b); Morales-Rodrigo and Tello (2014);
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Stinner et al. (2014, 2016); Szymańska et al. (2009); Tao and Wang (2008); Walker 
and Webb (2007); Zhigun et al. (2016). From a mathematical point of view, the system 
under consideration comprises a strong coupling of reaction–diffusion equations and 
an ordinary differential equation (ODE) in two or three space dimensions. Since 
ODE corresponds to an everywhere degenerate reaction–diffusion equation and has 
no regularizing effect, this amounts to considerable difficulty for the analysis. Indeed, 
analytical results on the cancer invasion model are yet quite fragmentary, so far mainly 
concentrating on the global existence and boundedness of solutions. For example, 
Stinner et al. (2014) proved the global existence of weak solutions to a PDE-ODE 
system modeling the multiscale invasion of tumor cells through the surrounding 
tissue matrix. Very recently, Engwer et al. (2017) studied the global existence of 
weak solutions to a multiscale model for tumor cell migration in a tissue network. 
The more detailed answers have been given only in some special cases Hillen et al. 
(2013); Liţcanu and Morales-Rodrigo (2010b); Tao and Wang (2009); Wang and Ke 
(2016).

The first part of this chapter is concerned with the Chaplain–Lolas model of cancer 
invasion Chaplain and Lolas (2005, 2006) 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

ut = Δu − χ ∇  ·  (u∇v) − ξ∇  ·  (u∇w) + μu(r − u − w), x ∈ Ω, t > 0, 
σ  vt = Δv − v + u, x ∈ Ω, t > 0, 
wt =  −vw + ηw(1 − w − u), x ∈ Ω, t > 0, 
∂u 

∂ν 
− χu 

∂v 
∂ν 

− ξu 
∂w 
∂ν 

= 
∂v 
∂ν 

= 0, x ∈ ∂Ω, t > 0, 

u(x, 0) = u0(x), σ v(x, 0) = σ  v0(x), w(x, 0) = w0(x), x ∈ Ω 
(3.1.1) 

in a bounded domain Ω ⊂ Rn (n = 2, 3) with smooth boundary ∂Ω , where ∂/∂ν 
denotes the outward normal derivative on ∂Ω , u denotes the density of cancer 
cells, v represents the concentration of the matrix degrading enzyme (MDE) and 
w describes the concentration of the extracellular matrix (ECM), respectively; and χ 
and ξ measure the chemotactic and haptotactic sensitivities, respectively. The term 
μu(r − u − w) assumes that in the absence of the ECM, cancer cell proliferation 
satisfies a logistic law, and η  >  0 embodies the ability of the ECM to remodel back 
to a normal level. The parameter σ may take on the value of 0 or 1. When σ = 0, we  
are making the simplifying assumption that the diffusion rate of the MDE is much 
greater than that of cancer cells, which is supported by evidence Chaplain and Lolas 
(2006). Indeed, similar quasi-steady approximations for corresponding chemoattrac-
tant equations are frequently used to study classical chemotaxis systems (see Jäger 
and Luckhaus (1992)). As for the initial data (u0,  v0,  w0), we suppose throughout 
this section that, for some ϑ ∈ (0, 1),
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⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

u0 ∈ C1 ( Ω̄) with u0 ≥ 0 in  Ω, u0 /≡ 0, 
v0 ∈ W 1,∞(Ω) with v0 ≥ 0 in  Ω, 

w0 ∈ C2+ϑ ( Ω̄) with w0 ≥ 0 in  Ω̄ and 
∂w0 

∂ν 
= 0 on  ∂Ω. 

(3.1.2) 

It is observed that when letting w ≡ 0, (3.1.1) is reduced to the Keller–Segel sys-
tem with logistic source. This chemotaxis-only system has been extensively studied 
by many authors during the last decades. In this context, the particular attention 
focuses on the question of whether the solutions of the models are bounded or blow-
up (see, e.g., Cieślak and Stinner (2012), Cieślak and Winkler (2008), Ishida et al. 
(2014), Painter and Hillen (2002) and Winkler (2008, 2010a, 2011b)). In particu-
lar, solutions may blow up in finite time when n ≥ 2,  μ  = 0 Herrero and Velázquez 
(1997); Nagai (2001). It is known that arbitrarily small μ  >  0 guarantees the bound-
edness of solutions when n = 2 Osaki et al. (2002), while when n ≥ 3, appropri-
ately large μ (compared with the chemotactic coefficient χ ) is required to exclude 
unbounded solution Winkler (2010a). It is still unknown whether finite-time blow-up 
may occur if μ  >  0 is small, though global weak solutions are known to exist and 
will become smooth after some time Lankeit (2015). On the other hand, the nonlinear 
self-diffusion of cells may prevent blow-up of solutions Cieślak and Winkler (2008); 
Ishida et al. (2014); Wang et al. (2014). 

When χ = 0, (3.1.1) becomes the haptotaxis-only system. For χ = μ = η = 
0,  σ  = 1, the local existence and uniqueness of classical solutions have been shown 
in Morales-Rodrigo (2008). The global existence and asymptotic behavior of weak 
solutions have been proven in Liţcanu and Morales-Rodrigo (2010b); Marciniak-
Czochra and Ptashnyk (2010); Walker and Webb (2007) when η = 0, and global 
existence and uniqueness of classical solutions have been shown in Tao (2011) when 
η  >  0, respectively. 

Note that in contrast of the chemotaxis-only system, haptotaxis-only system and 
the chemotaxis–haptotaxis system, the chemotaxis–haptotaxis system with remod-
eling of non-diffusible attractant (η  >  0 in (3.1.1)) is much less understood (Chap-
lain and Lolas (2006), Pang and Wang (2017) and Tao and Winkler (2014b)). The 
main technical difficulty in their proof lies in the effects of the strong coupling in 
(3.1.1) on the spatial regularity of u, v and w when η  >  0. When η = 0, one can 
build a one-sided pointwise estimate which connects Δw to v (see Lemma 2.2 of 
Cao (2016) or (3.10) of Wang (2016)). Relying on such a pointwise estimate, one 
can derive two useful energy-type inequalities which can help us to bypass the term∫

Ω u 
p−1∇  ·  (u∇w) (see Lemma 3.2 of Zheng (2017b)). Using such information along 

with coupled estimate techniques and the boundedness of the ||∇v(·, t)||L2(Ω), one 
can establish the estimates on

∫

Ω u 
p +  |∇v|2q for any p and q > 1 (see Lemmas 3.3 

and 3.4 of Zheng (2017b)), which combined with the standard regularity theory of 
parabolic equation and the Moser iteration procedure implies the boundedness of u 
in L∞(Ω) (see Lemma 3.5 of Zheng (2017b)). However, for the model (3.1.1) with 
η  >  0, one needs to estimate the chemotaxis-related integral term

∫

Ω a 
p|∇v|2 (see
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(3.28) in Tao and Winkler (2014b)) or
∫

Ω e
−(p+1)(t−s)a p|∇v|2 (see (3.8) of Pang and 

Wang (2017)) with a := ue−ξ  w, which requires much more technical demanding. 
In Pang and Wang (2017), assuming that μ  >  ξ  η  max{||u0||L∞(Ω), 1}  +  μ∗(χ 2,  ξ  )  
(the hypothesis cannot be dropped (see the proof of Lemma 3.2 of Pang and Wang 
(2017))), Pang and Wang (2017) proved that the problem 3.1.1 admits a unique global 
solution (u,  v,  w)  ∈ (C2,1( Ω̄ × (0, ∞)))3. Moreover, u is bounded in Ω × (0, ∞). 

This chapter consists of three parts. The first part shows the global boundedness 
of classical solutions to the chemotaxis–haptotaxis model with any η  >  0 (Ke and 
Zheng (2018)). 

Theorem 3.1 Let σ  >  0,  χ  >  0,  ξ  >  0, r = 1 and η  >  0. Assume that Ω ⊆ R2 is 
a bounded domain with smooth boundary and the initial data (u0,  v0,  w0) satisfy 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

u0 ∈ C2+ϑ ( Ω̄) with u0 ≥ 0 in Ω and 
∂u0 
∂ν 

= 0 on ∂Ω, 

v0 ∈ C2+ϑ ( Ω̄) with v0 ≥ 0 in Ω and 
∂v0 

∂ν 
= 0 on ∂Ω, 

w0 ∈ C2+ϑ ( Ω̄) with w0 ≥ 0 in Ω̄ and 
∂w0 

∂ν 
= 0 on ∂Ω 

with some ϑ ∈ (0, 1). If μ  >  0, then there exists a triple (u,  v,  w)  ∈ (C0( Ω̄ × 
[0, ∞)) × C2,1( Ω̄ × (0, ∞)))3 which solves (3.1.1) in the classical sense. More-
over, u and v are bounded in Ω × (0,∞). 

Remark 3.1 (i) If w ≡ 0, it is not difficult to obtain that the solutions under the 
conditions of Theorem 3.1 are uniformly bounded when n = 2, which coincides 
with the results of Osaki et al. (2002). 

(ii) From Theorem 3.1, it follows that solutions of model (3.1.1) are global and 
bounded for any η = 0,  μ  >  0 and n ≤ 2, which coincides with the result of Tao 
(2014). 

The second part of this chapter is devoted to the integrative interactions of chemo-
taxis, haptotaxis, logistic growth and remodeling mechanisms, and establishes the 
global existence of classical solutions to the chemotaxis–haptotaxis model (3.1.1) 
with the remodeling of the ECM. It is noticed that the authors of Tao and Winkler 
(2014b) made appropriate use of the dampening effect of −ηuw in the third equation 
of (3.1.1) to derive an energy-like inequality, which yields an a priori estimate of∫

Ω u ln u in bounded time intervals. The latter is the starting point for a bootstrap 
argument used to derive higher regularity estimates. In this part, thanks to the variable 
transformation a = ue−ξ  w  (Tao and Wang (2009, 2008); Tao and Winkler (2014b)), 
making use of the damping effect in the first equation of cancer cells, one derives a 
priori estimate of

∫

Ω u ln u for all time t > 0 and thus proves the global boundedness 
of solutions thereof rather comprehensively. The result in this respect is the following 
(Pang and Wang (2018)).
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Theorem 3.2 Let Ω ⊂ R2 be a bounded smooth domain, and suppose that χ  >  
0,  ξ  >  0, η  >  0 and μ  >  0. Then for any r > 0, the problem (3.1.1) admits a unique 
global classical solution (u,  v,  w), where ||u(·, t)||L∞(Ω) is uniformly bounded for 
t ∈ (0, ∞). 

The key step of our analysis of (3.1.1) consists of identifying a certain dissipative 
property of the functional

∫

Ω e
ξ  wa2 with a = e−ξ  wu. Indeed, we shall see in Lemma 

3.17 below that a certain variant thereof satisfies an inequality of the form 

d 

dt

∫

Ω 
eξ  w  a2 + 

1 

ε

∫

Ω 
eξ  w  a2 ≤ c(||Δv||2 L2(Ω) + ||a||2 L2(Ω))

∫

Ω 
eξ  w  a2 + c(ε) 

with some c > 0, c(ε) > 0 for any ε  >  0 (see (3.4.17)), whereupon Lemma 3.5 will 
provide the bound of

∫

Ω u
2, which provides a starting point for the higher regularity 

estimates of solutions. On the other hand, in the case of σ = 0, the key step in our 
proof of theorem is to identify 

d 

dt

∫

Ω 
eξ  w  a ln a + 

μ 
2

∫

Ω 
eξ  w  a ln a 

≤εc(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω))

∫

Ω 
eξ  w  a ln a 

+ c(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω)) + c(ε) 

(3.1.3) 

with some c > 0, c(ε) > 0 for all ε  >  0, which along with Lemma 3.5 enables us to 
obtain an a priori estimate for u in the space L log L(Ω) for all time. Notice that in 
the two-dimensional space, the global boundedness of solutions (p, c,  w)  to a tumor 
angiogenesis model was established in Morales-Rodrigo and Tello (2014) if the initial 
data w0 of the fibronectin concentration satisfies either w0 > 1 or||w0 − 1||L∞(Ω) <  δ  
with some δ  >  0. It should be mentioned that by the estimate technique above, one 
can remove the extra assumption on w0. 

In the three-dimensional setting, the problem of the global existence of solutions 
to (3.1.1) seems to be more delicate. Indeed, the only result that we are aware of 
is presented in the recent paper Bellomo et al. (2015), where a certain global weak 
solution was constructed for (3.1.1) with σ = 1. To the best of our knowledge, the 
existence of global classical solutions to (3.1.1) is still open. As mentioned previously, 
some weak solutions to the three-dimensional chemotaxis system including logistic 
growth eventually become classical solutions after some waiting time when smallness 
conditions on the growth rate of the cells are imposed Lankeit (2015); Winkler (2008). 
A natural question is whether the chemotaxis–haptotaxis system (3.1.1) possesses 
global classical solutions under some smallness conditions. Our result in this direction 
is as follows (Pang and Wang (2018)). 

Theorem 3.3 Let Ω ⊂ R3 be a bounded convex domain with smooth boundary 
and χ  >  0,  ξ  >  0, η  >  0 and μ  >  0. For any given w0, there exist a constant 
r0 = r0(μ, |Ω|, ||w0||L∞(Ω))  >  0 and appropriate small ||u0||L2(Ω) and ||v0||W 1,4(Ω)
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such that the problem (3.1.1) possesses a unique global classical solution (u,  v,  w)  
provided that r < r0. 

Relying on the mass evolution of solutions to (3.1.1), the quantity
∫

Ω a
2(t) +∫

Ω |∇v(t)|4 is shown to satisfy an autonomous ordinary differential inequality, and 
thereby is bounded whenever r > 0 and initial data are suitably small by the com-
parison argument of the corresponding ordinary differential equation. This serves as 
a starting point for the bootstrap procedure to yield a bound for a in L∞(Ω). 

As a physiological process, angiogenesis involves the formation of new capillary 
networks sprouting from a pre-existing vascular network and plays an important role 
in embryo development, wound healing and tumor growth. For example, it has been 
recognized that capillary growth through angiogenesis leads to the vascularization of 
a tumor, providing it with its own dedicated blood supply and consequently allowing 
for rapid growth and metastasis. 

The process of tumor angiogenesis can be divided into three main stages (which 
may be overlapping): (i) changes within existing blood vessels; (ii) formation of 
new vessels; and (iii) maturation of new vessels. Over the past decade, a lot of work 
has been done on the mathematical modeling of tumor growth; see, for example, 
Anderson and Chaplain (1998b); Bellomo et al. (2015); Chaplain and Lolas (2005, 
2006); Li et al. (2015); Stinner et al. (2015, 2016) and the references cited therein. 
In particular, the role of angiogenesis in tumor growth has also attracted a great 
deal of attention; see, for example, Anderson and Chaplain (1998a); Chaplain and 
Stuart (1993); Levine et al. (2001); Paweletz and Knierim (1989); Sleeman (1997) 
and the references cited therein. For example, in Levine et al. (2001), a system 
of PDEs using reinforced random walks was deployed to model the first stage of 
angiogenesis, in which chemotactic substances from the tumor combine with the 
receptors on the endothelial cell wall to release proteolytic enzymes that can degrade 
the basal membrane of the blood vessels eventually. 

The third part of this chapter considers a variation of the model proposed in 
Anderson and Chaplain (1998b), namely 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

pt = Δp −  ∇·p( α 
1 + c

∇c + ρ∇w) + λp(1 − p), x ∈ Ω, t > 0, 

ct = Δc − c − μpc, x ∈ Ω, t > 0, 
wt = γ p(1 − w), x ∈ Ω, t > 0, 
∂p 

∂ν 
− p( 

α 
1 + c 

∂c 

∂ν 
+ ρ 

∂w 
∂ν 

) = 
∂c 

∂ν 
= 0, x ∈ ∂Ω, t > 0, 

p(x, 0) = p0(x), c(x, 0) = c0(x), w(x, 0) = w0(x), x ∈ Ω, 
(3.1.4) 

in a bounded smooth domain Ω ⊂ RN (N = 1, 2), where, in addition to random 
motion, the existing blood vessels’ endothelial cells p migrate in response to the 
concentration gradient of a chemical signal c (called Tumor Angiogenic Factor, or 
TAF) secreted by tumor cells as well as the concentration gradient of non-diffusible 
glycoprotein fibronectin w produced by the endothelial cells Morales-Rodrigo and 
Tello (2014). The formerly directed migration is a chemotactic process, whereas
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the latter is a haptotactic process. In this model, it is assumed that the endothelial 
cells proliferate according to a logistic law, that the spatio-temporal evolution of 
TAF occurs through diffusion, natural decay and degradation upon binding to the 
endothelial cells, and that the fibronectin is produced by the endothelial cells and 
degrades upon binding to the endothelial cells. 

For the remainder of this chapter, the initial data are assumed to satisfy 

⎧ 
⎪⎨ 

⎪⎩ 

( p0, c0,  w0) ∈ (C2+β (Ω))3 is nonnegative for some β ∈ (0, 1) with p0 /≡ 0, 

∂p0 
∂ν 

− p0( 
α 

1 + c0 
∂c0 
∂ν 

+ ρ 
∂w0 

∂ν 
) = 

∂c0 
∂ν 

= 0. 
(3.1.5) 

The third part focuses on the global existence and asymptotic behavior of classical 
solutions to (3.1.4). Let us look at two subsystems contained in (3.1.4). The first is 
a Keller–Segel-type chemotaxis system with signal absorption:

⎧
pt = Δp −  ∇  ·  (p∇c) + λp(1 − p), x ∈ Ω, t > 0, 
ct = Δc − pc, x ∈ Ω, t > 0. 

(3.1.6) 

It is known that, unlike the standard Keller–Segel model, (3.1.6) with λ = 0 possesses 
global, bounded classical solutions in two-dimensional bounded convex domains for 
arbitrarily large initial data; while in three spatial dimensions, it admits at least global 
weak solutions which eventually become smooth and bounded after some waiting 
time Tao and Winkler (2012c). In the high-dimensional setting, it has been proved 
that global bounded classical solutions exist for suitably large λ  >  0, while only 
certain weak solutions are known to exist for arbitrary λ  >  0 Lankeit and Wang 
(2017). 

Another delicate subsystem of (3.1.4) is the haptotaxis-only system obtained by 
letting α = 0 in (3.1.4):

⎧
pt = Δp − ρ∇·( p∇w) + λp(1 − p), x ∈ Ω, t > 0, 
wt = γ p(1 − w), x ∈ Ω, t > 0. 

Here, since the quantity w satisfies an ODE without any diffusion, the smoothing 
effect on the spatial regularity of w during evolution cannot be expected. To the best of 
our knowledge, unlike the study of chemotaxis systems, the mathematical literature 
on haptotaxis systems is comparatively thin. Indeed, the literature provides only some 
results on global solvability in various special models, and the detailed description 
of qualitative properties such as long-time behaviors of solutions is available only in 
very particular cases (see, for example, Corrias et al. (2004); Liţcanu and Morales-
Rodrigo (2010b, a); Marciniak-Czochra and Ptashnyk (2010); Tao (2011); Tao and 
Winkler (2019a); Walker and Webb (2007); Winkler (2018b)). 

More recently, some results on global existence and asymptotic behavior for cer-
tain chemotaxis–haptotaxis models of cancer invasion have been obtained (see, for
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example, Li and Lankeit (2016); Pang and Wang (2017, 2018); Stinner et al. (2014); 
Tao and Winkler (2014b, 2015a); Wang and Ke (2016)). Particularly, Hillen et al. 
(2013) have shown the convergence of a cancer invasion model in one-dimensional 
domains, and the result has been subsequently extended to higher dimensions Li and 
Lankeit (2016); Tao and Winkler (2015a); Wang and Ke (2016). 

In Morales-Rodrigo and Tello (2014), in two spatial dimensions, the authors 
showed the global existence and long-time behavior of classical solutions to (3.1.4) 
when the initial data (p0, c0,  w0) satisfy either w0 > 1 or ||w0 − 1||L∞(Ω) <  δ  for 
some δ  >  0 (see Lemma 5.8 of Morales-Rodrigo and Tello (2014)). Generalizing 
this result, our first main result establishes that, for any choice of reasonably regular 
initial data (p0, c0,  w0), the  L∞-norm of p is globally bounded. This is done via an 
iterative method (Pang and Wang (2019)). 

Theorem 3.4 Let α, ρ, λ, μ and γ be positive parameters. Then for any initial 
data (p0, c0,  w0) satisfying (3.1.5), the problem (3.1.4) possesses a unique classical 
solution (p, c,  w)  comprising nonnegative functions in C( Ω̄ ×  [0, ∞)) ∩ C2,1( Ω̄ × 
(0, ∞) such that ||p(·, t)||L∞(Ω) ≤ C for all t > 0. 

Next, we investigate the asymptotic behavior of solutions to (3.1.4). Under an 
additional mild condition on the initial data w0, we will show that the solution 
(p, c,  w)  converges to the spatially homogeneous equilibrium (1, 0, 1) as time tends 
to infinity (Pang and Wang (2019)). 

Theorem 3.5 Let α, ρ, λ, μ and γ be positive parameters, and suppose that (3.1.5) 
is satisfied and w0 > 1 − 

1 

ρ 
. Then the solution (p, c,  w)  ∈ C( Ω̄ ×  [0, ∞)) ∩ C2,1 

( Ω̄ × (0, ∞) of (3.1.4) satisfies 

lim 
t→∞ ||p(·, t) − 1||Lr (Ω) + ||c(·, t)||W 1,2(Ω) + ||w(·, t) − 1||Lr (Ω) = 0 (3.1.7) 

for any r ≥ 2. In particular, if N = 1, then for any ∈ ∈ (0, min{λ1, 1,  γ  ,  λ}) there 
exists C(∈) > 0 such that

||p(·, t) − 1||L∞(Ω) ≤ C(∈)e−(min{λ1,1,γ ,λ}−∈)t , (3.1.8)

||c(·, t)||W 1,2(Ω) ≤ C(∈)e−(1−∈)t , (3.1.9)

||w(·, t) − 1||W 1,2(Ω) ≤ C(∈)e−(γ −∈)t , (3.1.10) 

where λ1 > 0 is the first nonzero eigenvalue of −Δ in Ω with the homogeneous 
Neumann boundary condition. 

The main mathematical challenge of the full chemotaxis–haptotaxis system is the 
strong coupling between the migratory cells p and the haptotactic agent w. This



3.2 Preliminaries 135

strong coupling has an important effect on the spatial regularity of p and w. In  
fact, the lack of regularization effect in the spatial variable in the w-equation and 
the presence of p therein demand tedious estimates on the solution. The key ideas 
behind this result are as follows. 

As pointed out in Tao and Winkler (2015a), the variable transformation z := 
pe−ρw plays an important role in the examination of global solvability for the full 
chemotaxis–haptotaxis model in the two- and higher dimensional setting. However, 
due to the presence of the additional chemotaxis term in our model, this approach 
is not directly applicable to our problem. Instead, in the derivation of Theorem 
3.4, we introduce the variable transformation q := p(c + 1)−αe−ρw as in Morales-
Rodrigo and Tello (2014), and thereby ensure that q(·, t) is bounded in Ln(Ω) for 
any finite n (see Lemma 3.27). It is essential to our approach to derive a bound 
for

∫

Ω q
2m+1 + ∫ t+τ 

t

∫

Ω |∇q2m |2 from the bound of
∫ t+τ 
t

∫

Ω q
2m (m = 1, 2,  .  .  .) by  

making appropriate use of (3.5.3)–(3.5.4) in Lemma 3.26 (see (3.5.7) below). 

3.2 Preliminaries 

Before formulating our main results, we recall some preliminary lemmas used 
throughout this chapter. Some basic properties of solution can be found in Horstmann 
and Winkler (2005) (see also Winkler (2010), Zhang and Li (2015b)). 

Lemma 3.1 (Horstmann and Winkler (2005)) For p ∈ (1, ∞), let  A := Ap denote 
the sectorial operator defined by 

Apu := −Δu for all u ∈ D(Ap) := {ϕ ∈ W 2,p (Ω)|∂ϕ 
∂ν 

|∂Ω = 0}. 

The operator A + 1 possesses fractional powers (A + 1)α (α ≥ 0), the domains of 
which have the embedding properties 

D(( A + 1)α ) ϲ→ W 1, p (Ω) if α  >  
1 

2 
. 

If m ∈  {0, 1}, p ∈  [1, ∞] and q ∈ (1, ∞) with m − n p < 2α − n q , then we have

||u||W m,p (Ω) ≤ C||(A + 1)α u||Lq (Ω) for all u ∈ D((A + 1)α ), 

where C is a positive constant. The fact that the spectrum of A is a p-independent 
countable set of positive real numbers 0 = κ0 <  κ1 <  κ2 < · · ·  entails the following 
consequences: for all 1 ≤ p < q < ∞ and u ∈ L p(Ω), it has

||(A + 1)α e−t A  u||Lq (Ω) ≤ ct−α− n 
2 ( 

1 
p − 1 q ) e(1−κ)t||u||L p(Ω) 

for any t > 0 and α ≥ 0 with some κ  >  0.
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In deriving some preliminary estimates for v, we shall make use of the following 
property referred to as a variation of Maximal Sobolev Regularity. 

Lemma 3.2 (Hieber and Prüss (1997, Theorem 3.1) Li and Wang (2018, Lemma 
2.2)) Let r ∈ (1, ∞) and κ  >  0; consider the following evolution equation: 

⎧ 
⎪⎨ 

⎪⎩ 

ht = Δh − κh + f, (x, t) ∈ Ω × (0, T ) , 
∇h · ν = 0, (x, t) ∈ ∂Ω × (0, T ) , 
h (x, 0) = h0(x), x ∈ Ω. 

(3.2.1) 

Then for each h0 ∈ W 2,r (Ω) with ∇h0 · ν = 0 on ∂Ω and any f ∈ Lr ((0, T ) , 
Lr (Ω)), (3.2.1) admits a unique mild solution h ∈ W 1,r ((0, T ) ; Lr (Ω)) ∩ 
Lr

(
(0, T ) ;W 2,r (Ω)

)
. Moreover, for any ε ∈ (0,  κ], there exists Cr > 0 such that

∫ T 

0 
eεrs||h(·, s)||r W 2,r (Ω)ds  ≤ Cr

⎫∫ T 

0 
eεrs|| f (·, s)||r Lr (Ω)ds  + (||h0(·)||r W 2,r (Ω))

⎫

. 

(3.2.2) 

Let us also recall the well-known Gagliardo–Nirenberg inequality Friedman 
(1969); Tao and Wang (2009). 

Lemma 3.3 Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let l, k be 
any integers satisfying 0 ≤ l < k, 1 ≤ q, r ≤  ∞  and p ∈ R+, l k ≤ θ ≤ 1 such that 

1 

p 
− 

l 

n 
= θ  (  

1 

q 
− 

k 

n 
) + 

1 − θ 
r 

. (3.2.3) 

Then there are positive constants CGN  and C1 depending only on Ω, q, k, r and n 
such that for any function ϕ ∈ W k,q (Ω) ∩ Lr (Ω),

||∇l ϕ||L p(Ω) ≤ CGN||∇k ϕ||θ 
Lq (Ω)||ϕ||1−θ 

Lr (Ω) + C1||ϕ||Lr (Ω) (3.2.4) 

with the following exception: If 1 < q < ∞ and k − l − n q is a nonnegative integer, 
then we assume that (3.2.3) holds for θ satisfying l k ≤ θ  <  1, r > 1. 

To estimate
∫

Ω a
2 + ∫

Ω |∇v|4 with a = e−ξ  wu in the proof Theorem 3.3, we  
will have to get a handle on

∫

Ω |∇v|6 and ∫

Ω a
3. The above Gagliardo–Nirenberg 

inequality enables us to replace them by more convenient terms. 

Lemma 3.4 Let Ω ⊂ R3 be a bounded domain with smooth boundary. For any 
ε  >  0, there are C(ε) > 0 and C2 > 0 such that for any v ∈ C2(Ω)

∫

Ω 
|∇v|6 ≤ ε

∫

Ω 
|∇|∇v|2|2 + C(ε)

⎛⎫∫

Ω 
|∇v|4

⎫3 

+
⎫∫

Ω 
|∇v|4

⎫ 3 
2

⎞

, (3.2.5) 

and for any a ∈ W 1,2(Ω)
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∫

Ω 
a3 ≤ ε

∫

Ω 
|∇a|2 + C(ε)

⎫∫

Ω 
a2

⎫3 

+ C2

⎫∫

Ω 
a

⎫3 

. (3.2.6) 

Proof We would like refer the reader to Lemma 4.3 of Lankeit (2015) for  (3.2.5) 
and (2.7) with γ = 2 of Winkler (2008) for  (3.2.6), respectively. 

The following statement generalizing that of Lemma 3.4 in Stinner et al. (2014) 
plays an important role in the proofs of Lemmas 3.17 and 3.22 below. 

Lemma 3.5 Let T ∈ (0, ∞], 0 <  τ  <  T and suppose that y is a nonnegative abso-
lutely continuous function satisfying 

y'(t) + a(t)y(t) ≤ b(t)y(t) + c(t) for a.e. t ∈ (0, T ) (3.2.7) 

with some functions a(t)  >  0, b(t) ≥ 0, c(t) ≥ 0 and a, b, c ∈ L1 
loc(0, T ) for which 

there exist b1, c1 > 0 and ρ  >  0 such that 

sup 
0≤t≤T −τ

∫ t+τ 

t 
b(s)ds  ≤ b1, sup 

0≤t≤T−τ

∫ t+τ 

t 
c(s)ds  ≤ c1 

and ∫ t+τ 

t 
a(s)ds  −

∫ t+τ 

t 
b(s)ds  ≥ ρ for any t ∈ (0, T − τ  ).  

Then 

y(t) ≤ y(0)eb1 + 
c1e2b1 

1 − e−ρ + c1eb1 for all t ∈ (0, T ). 

Proof From (3.2.7) and a comparison argument, we obtain that for any τ ≤ t < T , 

y(t) ≤y(t − τ  )e
∫ t 
t−τ (b(s)−a(s))ds  +

∫ t 

t−τ 
c(s)e

∫ t 
s (b(σ )−a(σ ))dσ ds  

≤y(t − τ  )e−ρ +
∫ t 

t−τ 
c(s)e

∫ t 
s b(σ )dσ ds  

≤y(t − τ  )e−ρ +
∫ t 

t−τ 
c(s)e

∫ t 
t−τ b(σ )dσ ds  

≤y(t − τ  )e−ρ + c1eb1 . 

Hence, taking t = kτ (k = 1, 2,  .  .  .  ,  [ T 
τ ]), we have
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y(kτ  )  ≤y((k − 1)τ )e−ρ + c1eb1 

≤e−ρ (y((k − 2)τ )e−ρ + c1eb1 ) + c1eb1 

=e−2ρ y((k − 2)τ ) + e−ρ c1e
b1 + c1eb1 

=e−kρ y(0) + c1eb1 
k−1Σ

j=0 

e− jρ 

≤e−kρ y(0) + 
c1eb1 

1 − e−ρ . 

Now for any given t ∈ (0, T )  >  0, we can fix k ∈ N such that kτ  <  t ≤ (k + 1)τ , 
i.e., k =  [ t 

τ ], and thus get 

y(t) ≤y(kτ  )e
∫ t 
kτ (b(s)−a(s))ds  +

∫ t 

kτ 
c(s)e

∫ t 
s (b(σ )−a(σ ))dσ ds  

≤y(kτ  )e
∫ t 
kτ b(s)ds  +

∫ t 

kτ 
c(s)e

∫ t 
s b(σ )dσ ds  

≤y(kτ  )eb1 + c1eb1 

≤y(0)eb1 e−[ t 
τ ]ρ + 

c1e2b1 

1 − e−ρ + c1eb1 . 

Apart from the asserted results in Lemma 3.2, we also need some fundamental 
estimates for the inhomogeneous linear heat equation 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

vt = Δv − v + u, x ∈ Ω, t > 0, 
∂v 
∂ν 

= 0, x ∈ ∂Ω, t > 0, 

v(x, 0) = v0(x), x ∈ Ω, 

(3.2.8) 

which can be derived from a standard regularity argument involving the variation-
of-constants formula for v and Lq − L p estimates for the heat semigroup (see 
Horstmann and Winkler (2005) for instance). 

Lemma 3.6 Ishida et al. (2014, Lemma 2.1) Yang et al. (2015, Lemma 2.2) Let T > 
0, 1 ≤ p ≤  ∞,  v0 ∈ L p(Ω) and u ∈ L1(0, T ; L p(Ω)). Then (3.2.8) has a unique 
mild solution v ∈ C([0, T ]; L p(Ω)) given by 

v(t) = e−t etΔ v0 +
∫ t 

0 
e−(t−s) e(t−s)Δ u(s)ds for all t ∈  [0, T ], 

where etΔ is the semigroup generated by the Neumann Laplacian. In addition, let 1 ≤ 
q ≤ p < nq 

n−q , v0 ∈ W 1, p(Ω) and u ∈ L∞(0, T ; Lq (Ω)). Then for every t ∈ (0, T ),

||v(t)||L p(Ω) ≤ ||v0||L p(Ω) + c2||u||L∞((0,T );Lq (Ω)), (3.2.9)
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||∇v(t)||L p(Ω) ≤ ||∇v0||L p(Ω) + c2||u||L∞((0,T );Lq (Ω)), (3.2.10) 

where c2 is a positive constant depending on p, q and n. 

The following statement can be found in Appendix A of Tao and Winkler (2014b). 

Lemma 3.7 Tao and Winkler (2014b, Lemma A.3 and Lemma A.4) Let Ω ⊂ R2 be 
a bounded domain with smooth boundary. Then for all M > 0, there exist constants 
α  >  0, β  >  0 depending only upon M such that for any nonnegative function u ∈ 
L2(Ω) and

∫

Ω u ≤ M, the solution v of 
⎧ 
⎨ 

⎩ 

−Δv + v = u, x ∈ Ω, 
∂v 
∂ν 

= 0, x ∈ ∂Ω 
(3.2.11) 

satisfies ∫

Ω 
|∇v|2 +

∫

Ω 
|v|2 ≤ α

∫

Ω 
u ln u + β. (3.2.12) 

3.3 Global Boundedness of Solutions 
to a Chemotaxis–Haptotaxis Model 

In some parts of our subsequent analysis, we introduce the variable transformation 
(see Tao and Wang (2009); Tao and Winkler (2011, 2014b), Pang and Wang (2017)) 

a = ue−ξ  w  , (3.3.1) 

upon which (3.1.1) takes the form 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

at =e−ξ  w∇  ·  (eξ  w∇a) − χe−ξ  w∇  ·  (eξ  wa∇v) + ξavw 

+ a(μ − ξ  ηw)(1 − eξ  wa − w), x ∈ Ω, t > 0, 

vt =Δv + aeξ  w  − v, x ∈ Ω, t > 0, 

wt =  −  vw + ηw(1 − aeξ  w  − w), x ∈ Ω, t > 0, 
∂a 

∂ν 
= 

∂v 
∂ν 

= 0, x ∈ ∂Ω, t > 0, 

a(x, 0) :=a0(x) = u0(x)e−ξ  w0(x) ,  v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω. 
(3.3.2) 

The following lemma deals with local-in-time existence and the uniqueness of a 
classical solution for the problem (3.1.1). 

Lemma 3.8 (Pang and Wang (2017)) Assume that the nonnegative functions u0,  v0, 
and w0 satisfy (3.3.2) for  some  ϑ ∈ (0, 1). Then there exists a maximal existence
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time Tmax ∈ (0, ∞] and a triple of nonnegative functions 
⎧ 
⎪⎨ 

⎪⎩ 

a ∈ C0 ( Ω̄ ×  [0, Tmax )) ∩ C2,1 ( Ω̄ × (0, Tmax )), 
v ∈ C0 ( Ω̄ ×  [0, Tmax )) ∩ C2,1 ( Ω̄ × (0, Tmax )), 
w ∈ C2,1 ( Ω̄ ×  [0, Tmax )), 

which solves (3.3.2) classically and satisfies 

0 ≤ w ≤ ρ := max{1, ||w0||L∞(Ω)} in Ω × (0, Tmax ). (3.3.3) 

Moreover, if Tmax < +∞, then

||a(·, t)||L∞(Ω) + ||∇w(·, t)||L5(Ω) →  ∞  as t ↗ Tmax . (3.3.4) 

In this subsection, we are going to establish an iteration step to develop the main 
ingredient of our result. Firstly, based on the ideas of Lemma 3.1 in Pang and Wang 
(2017) (see also Lemma 2.1 of Winkler (2010a)), we can derive the following prop-
erties of solutions of (3.1.1). 

Lemma 3.9 Under the assumptions in Theorem 3.1, we derive that there exists a 
positive constant C such that the solution of (3.1.1) satisfies

∫

Ω 
u(x, t) +

∫

Ω 
v2 (x, t) +

∫

Ω 
|∇v(x, t)|2 ≤ C for all t ∈ (0, Tmax ). 

Lemma 3.10 Let 

A1 = 
1 

δ + 1 
( 
δ + 1 

δ 
)−δ[ δ(δ − 1) 

2 
χ 2]δ+1 C7Cδ+1 

and H (y) = y + A1y−δ for y > 0. For any fixed δ ≥ 1, C7,  χ  ,  Cδ+1 > 0, 

min 
y>0 

H (y) = 
δ(δ − 1)χ 2 

2 
(C7Cδ+1) 

1 
δ+1 . 

Proof It is easy to verify that H '(y) = 1 − A1δy−δ−1 and H '((A1δ) 
1 

δ+1 ) = 0. On the  
other hand, limy→0+ H (y) =  +∞  and limy→+∞ H (y) =  +∞. Hence, we have 

min 
y>0 

H (y) = H [(A1δ) 
1 

δ+1 ]  =δ(δ − 1)χ 2 

2 
(C7Cδ+1) 

1 
δ+1 , 

whereby the proof is completed. 

Lemma 3.11 Let h( p) := 
pμ 
2 

− 
p(p − 1)χ 2 

2 
(C7Cp+1) 

1 
p+1 − (p − 1)ξ ηρ, where 

p ≥ 1,  ξ,  χ  ,  η,  ρ,  μ,  C7 and Cp+1 are positive constants. Then there exists a positive
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constant p0 > 1 such that 
h(p0)  >  0. (3.3.5) 

Proof Since h(1) = μ 
2 > 0, from the continuity of h it follows that for each μ  >  0, 

there is some p0 > 1 such that (3.3.5) holds. 

According to the local existence results in Lemma 3.8, for any fixed s ∈ (0, Tmax ), 
it yields (u(·, s), v(·, s), w(·, s)) ∈ (C2( Ω̄))3. Therefore, without loss of generality, 
we can assume that there exists a constant β  >  0 such that

||u0||C2( Ω̄) ≤ β, ||v0||C2( Ω̄) ≤ β and ||w0||C2( Ω̄) ≤ β. (3.3.6) 

Lemma 3.12 Let μ, χ , η and ξ be the positive constants. Assume that (a,  v,  w)  
is a solution of (3.3.2) on  (0, Tmax ). Then there exists a positive constant C = 
C(p0, |Ω|,  μ,  χ  ,  ξ,  η,  β)  such that

∫

Ω 
a p0 (x, t)dx  ≤ C for all t ∈ (0, Tmax ), (3.3.7) 

where p0 > 1 is the same as in Lemma 3.11. 

Proof By using (3.3.2) and integration by parts, we get 

d 

dt

∫

Ω 
eξ  w  a p0 + (p0 + 1)

∫

Ω 
eξ  w  a p0 

= ξ
∫

Ω 
eξ  w  a p0 ·  {−vw + ηw(1 − aeξ  w  − w)} 

+ p0
∫

Ω 
eξ  w  a p0−1 ·  {e−ξ  w∇  ·  (eξ  w∇a) − χe−ξ  w∇  ·  (eξ  w  a∇v)} 

+ aξ  vw  + a(μ − ξ  ηw)(1 − aeξ  w  − w)}  +  (p0 + 1)
∫

Ω 
eξ  w  a p0 

= −p0(p0 − 1)
∫

Ω 
eξ  w  a p0−2|∇a|2 + p0(p0 − 1)χ

∫

Ω 
eξ  w  a p0−1∇a ·  ∇v 

+ (p0 − 1)ξ
∫

Ω 
eξ  w  a p0 vw 

+
∫

Ω 
eξ  w  a p0{(p0 + 1) + ( p0 − 1)ξ ηw(w − 1) + p0μ(1 − w)} 

+
∫

Ω 
e2ξ  w  a p0+1[(p0 − 1)ξ ηw − p0μ] 

: =  J1 + J2 + J3 + J4 + J5 for all t ∈ (0, Tmax ). 

(3.3.8) 

Now, in light of (3.3.3), (3.3.4) and the Young inequality, we derive that



142 3 Chemotaxis–Haptotaxis System

J3 ≤ε1

∫

Ω 
e2ξ  wa p0+1 + 1 

p0 + 1

⎫

ε1 · p0 + 1 
p0

⎫−p0 
[(p0 − 1)ξ ]p0+1

∫

Ω 
eξ  w(1−p0) v p0+1 

≤ε1

∫

Ω 
e2ξ  wa p0+1 + 1 

p0 + 1

⎫
ε1(p0 + 1) 

p0

⎫−p0 
[(p0 − 1)ξ ]p0+1

∫

Ω 
v p0+1, (3.3.9) 

J4 ≤[(p0 + 1) + (p0 − 1)ξ ηρ2 + p0μ]
∫

Ω 
eξ  wa p0 

≤(p0 + 1)[1 + ξ  ηρ2 + μ]
∫

Ω 
eξ  wa p0 (3.3.10) 

≤ε2

∫

Ω 
e2ξ  wa p0+1+ 1 

p0 + 1

⎫
ε2(p0 + 1) 

p0

⎫−p0 
(p0 + 1) p0+1[1 + ξ  ηρ2 + μ]p0+1|Ω| 

as well as 

J5 ≤
∫

Ω 
e2ξ  w  a p0+1[( p0 − 1)ξ ηρ − p0μ] for all t ∈ (0, Tmax ) 

and 

J2 ≤ 
p0(p0 − 1) 

2

∫

Ω 
eξ  w  a p0−2|∇a|2 + 

p0( p0 − 1) 
2 

χ 2
∫

Ω 
eξ  w  a p0 |∇v|2 

≤ 
p0(p0 − 1) 

2

∫

Ω 
eξ  w  a p0−2|∇a|2 + λ0

∫

Ω 
e2ξ  w  a p0+1 

+ 
1 

p0 + 1

⎫
λ0(p0 + 1) 

p0

⎫−p0 ⎾
p0( p0 − 1) 

2 
χ 2

⏋p0+1 ∫

Ω 
e(1−p0)ξ w|∇v|2(p0+1) 

(3.3.11) 

≤ 
p0(p0 − 1) 

2

∫

Ω 
eξ  w  a p0−2|∇a|2 + λ0

∫

Ω 
e2ξ  w  a p0+1 

+ 
1 

p0 + 1

⎫
λ0(p0 + 1) 

p0

⎫−p0 ⎾
p0( p0 − 1) 

2 
χ 2

⏋p0+1 ∫

Ω 
|∇v|2( p0+1) 

with any small positive constants ε1,  ε2 and λ0. 
Inserting (3.3.9)–(3.3.11) into (3.3.8), we derive that 

d 

dt

∫

Ω 
eξ  w  a p0 

+ (p0 + 1)
∫

Ω 
eξ  w  a p0 +

∫

Ω 
e2ξ  w  a p0+1[p0μ − ε1 − ε2 − λ0 − (p0 − 1)ξ ηρ] 

≤ 1 

p0 + 1 
( 
λ0( p0 + 1) 

p0 
)−p0 [ p0(p0 − 1) 

2 
χ 2]p0+1

∫

Ω 
|∇v|2( p0+1) 

+C1(ε1,  ε2) for all t ∈ (0, Tmax ), 
(3.3.12) 

where
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C1(ε1,  ε2) : = 1 

p0 + 1 
( 
ε2(p0 + 1) 

p0 
)−p0 (p0 + 1)p0+1[1 + ξ  ηρ2 + μ]p0+1|Ω| 

+ 1 

p0 + 1 
( 
ε1(p0 + 1) 

p0 
)−p0 [(p0 − 1)ξ ]p0+1

∫

Ω 
v p0+1 . 

(3.3.13) 
Next, from Lemma 3.9, n = 2 and the Gagliardo–Nirenberg inequality, it follows 
that

||v(·, t)||L p0 (Ω) ≤ C2 for all t ∈ (0, Tmax ). (3.3.14) 

This along with (3.3.13) follows 

C1(ε1,  ε2) ≤C3(ε1,  ε2) 

: = 1 

p0 + 1 
(ε2 × 

p0 + 1 
p0 

)−p0 (p0 + 1)p0+1[1 + ξ  ηρ2 + μ]p0+1|Ω| 

+C2 
1 

p0 + 1 
(ε1 × 

p0 + 1 
p0 

)−p0 [(p0 − 1)ξ ]p0+1 . 

From this and (3.3.12), we also obtain 

d 

dt

∫

Ω 
eξ  w  a p0 + (p0 + 1)

∫

Ω 
eξ  w  a p0 

+
∫

Ω 
e2ξ  w  a p0+1[p0μ − ε1 − ε2 − λ0 − ( p0 − 1)ξ ηρ] 

≤ 1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0(p0 − 1) 

2 
χ 2]p0+1

∫

Ω 
|∇v|2(p0+1)||

+ C3(ε1,  ε2) for all t ∈ (0, Tmax ). 

Then for any t ∈ (0, Tmax ), by means of the variation-of-constants representation for 
the above inequality, we can estimate

∫

Ω 
eξ  w  a p0 (·, t) +  [p0μ − ε1 − ε2 − λ0 − ( p0 − 1)ξ ηρ] 

·
∫ t 

0

∫

Ω 
e−( p0−1)(t−s) e2ξ  w  a p0+1 

≤
∫

Ω 
u p 0 +

1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0( p0 − 1) 

2 
χ 2]p0+1 

·
∫ t 

0

∫

Ω 
e−( p0−1)(t−s)|∇v|2( p0+1) 

+ C3(ε1,  ε2) for all t ∈ (0, Tmax ). 

(3.3.15) 

Next, according to the Gagliardo–Nirenberg inequality, (3.3.14) and Lemma 3.9, we  
can choose C4 and C5 such that
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||∇v(·, s)||2( p0+1) 
L2( p0+1) (Ω) ≤C4||v(·, s)||p0+1 

W 2,p0+1(Ω)
||∇v(·, s)||p0+1 

L2(Ω) 

≤C5||v(·, s)||p0+1 
W 2, p0+1(Ω) for all t ∈ (0, Tmax ). 

(3.3.16) 

Therefore, with the help of (3.3.16), applying (3.2.2) of Lemma 3.2 with γ = p0 + 1, 
we obtain 

1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0( p0 − 1) 

2 
χ 2]p0+1

∫ t 

0

∫

Ω 
e−(p0−1)(t−s)|∇v|2( p0+1) 

≤ 
1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0( p0 − 1) 

2 
χ 2]p0+1 C5

∫ t 

0 
e−(p0−1)(t−s)||v(·, s)||p0+1 

W 2,p0+1(Ω) 

≤ 
1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0( p0 − 1) 

2 
χ 2]p0+1 C5Cp0+1 

·
∫ t 

0

∫

Ω 
e−(p0−1)(t−s) u p0+1 + C6 

≤ 
1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0( p0 − 1) 

2 
χ 2]p0+1 C5Cp0+1e

ξ(p0−1) (3.3.17) 

·
∫ t 

0

∫

Ω 
e−(p0−1)(t−s) e2ξ  w  a p0+1 + C6 

≤ 
1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0( p0 − 1) 

2 
χ 2]p0+1 C7Cp0+1 

·
∫ t 

0

∫

Ω 
e−(p0−1)(t−s) e2ξ  w  a p0+1 + C6 

for all t ∈ (0, Tmax ), where 

C6 := 1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0(p0 − 1) 

2 
χ 2]p0+1 C5Cp0+1||v0||γ 

W 2,γ (Ω) 

and 
C7 := C5e

ξ( p0−1) . 

Substituting (3.3.17) into (3.3.15), we derive

∫

Ω 
eξ  w  a p0 (·, t) +  [p0μ − ε1 − ε2 − λ0 − (p0 − 1)ξ ηρ] 

·
∫ t 

0

∫

Ω 
e−( p0−1)(t−s) e2ξ  w  a p0+1 

≤ 
1 

p0 + 1 
( 
λ0(p0 + 1) 

p0 
)−p0 [ p0(p0 − 1) 

2 
χ 2]p0+1 C7Cp0+1 

·
∫ t 

0

∫

Ω 
e−( p0−1)(t−s) e2ξ  w  a p0+1 + C8(ε1,  ε2) for all t ∈ (0, Tmax ), 

(3.3.18)
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where C8(ε1,  ε2) := C3(ε1,  ε2) + C6. Choosing λ0 = (A1 p0) 
1 

p0+1 in (3.3.18) and 
using Lemma 3.10, we derive

∫

Ω 
eξ  wa p0 (·, t) +  [p0μ − ε1 − ε2 − 

p0(p0 − 1)χ 2 

2 
(C7C p0+1) 

1 
p0+1 − (p0 − 1)ξ ηρ] 

·
∫ t 

0

∫

Ω 
e−( p0−1)(t−s)e2ξ  wa p0+1 

≤C8(ε1,  ε2) for all t ∈ (0, Tmax ). 

(3.3.19) 

Now, for the above positive constants μ, χ , ξ and η, due to Lemma 3.11, it has  

p0μ − 
p0( p0 − 1)χ 2 

2 
(C7Cp0+1) 

1 
p0+1 − ( p0 − 1)ξ ηρ > 

p0μ 
2 

> 0, 

thus one can choose ε1 and ε2 appropriately small (e.g., ε1 = ε2 = p0μ 
8 ) such that 

0 <  ε1 + ε2 < p0μ − 
p0(p0 − 1)χ 2 

2 
(C7Cp0+1) 

1 
p0+1 − (p0 − 1)ξ ηρ. (3.3.20) 

Collecting (3.3.19) and (3.3.20), we derive that there exists a positive constant C9 

such that ∫

Ω 
u p0 (x, t)dx  ≤ C9 for all t ∈ (0, Tmax ). 

The proof of Lemma 3.12 is completed. 

Lemma 3.13 Assume the hypothesis of Lemma 3.12 holds. Then for all p > 1, there 
exists a positive constant C = C(p, |Ω|,  μ,  χ  ,  ξ,  η,  β)  such that

∫

Ω a 
p(x, t)dx  ≤ 

C for all t ∈ (0, Tmax ). 

Proof Firstly, from Lemma 3.12 (see (3.3.7)) and (3.3.1), there exists a positive 
constant C1 such that

∫

Ω 
u p0 (x, t)dx  ≤ C1 for all t ∈ (0, Tmax ), (3.3.21) 

where p0 > 1 is the same as that in Lemma 3.11. Next,  we fix  q < 2 p0 
(2−p0)+ and choose 

some α  >  1 2 such that 

q < 
1 

1 
p0 

− 1 2 + 2 2 (α − 1 2 ) 
≤ 2 p0 

(2 − p0)+ . (3.3.22) 

Now, involving the variation-of-constants formula for v, we have  

v(t) = e−( A+1) v0 +
∫ t 

0 
e−(t−s)( A+1) u(s)ds, t ∈ (0, Tmax ). (3.3.23)
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Hence, it follows from (3.3.6), (3.3.21)–(3.3.23) that

||(A + 1)α v(t)||Lq (Ω) 

≤c
∫ t 

0 
(t − s)−α− 2 

2 ( 
1 
p0 

− 1 q ) e−κ(t−s)||u(s)||L p0 (Ω)ds  + ce−κt t−α+ 1 q ||v0||L∞(Ω) 

≤C2

∫ +∞ 

0 
σ −α− 2 

2 ( 
1 
p0 

− 1 q ) e−κσ dσ + C3t
−α+ 1 q for all t ∈ (0, Tmax ), 

(3.3.24) 
where c > 0 is given by Lemma 3.1. Hence, in light of Lemmas 3.1 and 3.8, due to 
(3.3.22) and (3.3.24), we have

∫

Ω 
|∇v(t)|q ≤ C4 for all t ∈ (0, Tmax ) and q ∈  [1, 2 p0 

(2 − p0)+ ) (3.3.25) 

with some positive constant C4. Now, due to the Sobolev embedding theorems and 
N = 2, we conclude that

||v(·, t)||L∞(Ω) ≤ C5 for all t ∈ (0, Tmax ). (3.3.26) 

Applying the Young inequality, one obtains from (3.3.3), (3.3.2) and (3.3.26) that 
for any p > max{2, p0 − 1} 

d 

dt

∫

Ω 
eξ  wa p + p(p − 1)

∫

Ω 
eξ  wa p−2|∇a|2 + pμ

∫

Ω 
e2ξ  wa p+1 

= p(p − 1)χ
∫

Ω 
eξ  wa p−1∇a ·  ∇v + ( p − 1)ξ

∫

Ω 
eξ  wa pvw 

+
∫

Ω 
eξ  wa p{(p + 1) + (p − 1)ξ ηw(w − 1) + pμ(1 − w)} 

+
∫

Ω 
e2ξ  wa p+1(p − 1)ξ ηw (3.3.27) 

≤ 
p(p − 1) 

2

∫

Ω 
eξ  wa p−2|∇a|2 + 

p(p − 1) 
2 

χ 2
∫

Ω 
eξ  wa p |∇v|2 + (p − 1)ξ

∫

Ω 
eξ  wa pvw 

+
∫

Ω 
eξ  wa p{(p + 1) + (p − 1)ξ ηw(w − 1) + pμ(1 − w)} 

+
∫

Ω 
e2ξ  wa p+1(p − 1)ξ ηw 

≤ 
p(p − 1) 

2

∫

Ω 
eξ  wa p−2|∇a|2 + 

p(p − 1) 
2 

χ 2
∫

Ω 
eξ  wa p |∇v|2 + C6

∫

Ω 
a p+1 

≤ 
p(p − 1) 

2

∫

Ω 
eξ  wa p−2|∇a|2 + 

p(p − 1) 
2 

χ 2eξρ
∫

Ω 
a p |∇v|2 

+ C6

∫

Ω 
a p+1 for all t ∈ (0, Tmax ). 

Next, with the help of the Gagliardo–Nirenberg inequality (see, e.g., Zheng (2015)), 
it yields that
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C6

∫

Ω 
a p+1 =C6||a p 2 ||2 

(p+1) 
p 

L2 (p+1) 
p (Ω) 

≤C7(||∇a 
p 
2 ||μ1 

L2(Ω)
||a p 2 ||1−μ1 

L 
2 p0 
p (Ω) 

+ ||a p 2 ||
L 

2 p0 
p (Ω) 

)
2 (p+1) 

p 

≤C8(||∇a 
p 
2 ||2μ1 

L2(Ω) + 1) 

= C8(||∇a 
p 
2 ||

2(p− p0+1) 
p+1 

L2(Ω) + 1) 

with some positive constants C7, C8 and 

μ1 = 
p 
p0 

− p 
p+1 

p 
p0 

= 
p + 1 − p0 

p + 1 
∈ (0, 1). 

Since, p0 > 1 yields p0 < 2 p0 
2(2−p0)+ , in light of the Hölder inequality and (3.3.25), 

we derive 

χ 2 p(p − 1) 
2 

eξρ

∫

Ω 
a p|∇v|2 ≤ 

χ 2 p(p − 1) 
2 

eξρ

⎫∫

Ω 
a 

p0 
p0−1 p

⎫ p0−1 
p0

⎫∫

Ω 
|∇v|2 p0

⎫ 1 
p0 

≤C9||a p 2 ||2 
L 
2 

p0 
p0−1 (Ω) 

, 

where C9 is a positive constant. Since p0 > 1 and p > p0 − 1, we have  

p0 
p 

≤ p0 
p0 − 1 

< +∞, 

which together with the Gagliardo–Nirenberg inequality (see, e.g., Zheng (2015)) 
implies that 

C9||a p 2 ||2 
L 
2 

p0 
p0−1 (Ω) 

≤C10(||∇a 
p 
2 ||μ2 

L2(Ω)
||a p 2 ||1−μ2 

L 
2 p0 
p (Ω) 

+ ||a p 2 ||
L 

2 p0 
p (Ω) 

)2 

≤C11(||∇a 
p 
2 ||2μ2 

L2(Ω) + 1) 

=C11(||∇a 
p 
2 ||

2( p− p0+1) 
p 

L2(Ω) + 1) 

with some positive constants C10, C11 and 

μ2 = 
p 
p0 

− p 
p0 

p0−1 p 

p 
p0 

∈ (0, 1). 

Moreover, an application of the Young inequality shows that
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C6

∫

Ω 
a p+1 + 

χ 2 p(p − 1) 
2 

eξρ

∫

Ω 
a p|∇v|2 

≤ 
p(p − 1) 

4

∫

Ω 
a p−2|∇a|2 + C12 

≤ 
p(p − 1) 

4

∫

Ω 
eξ  w  a p−2|∇a|2 + C12. 

(3.3.28) 

Inserting (3.3.28) into (3.3.27), we conclude that 

d 

dt

∫

Ω 
eξ  w  a p + 

p( p − 1) 
4

∫

Ω 
eξ  w  a p−2|∇a|2 + pμ

∫

Ω 
e2ξ  w  a p+1 ≤ C13. 

Therefore, integrating the above inequality with respect to t yields

||a(·, t)||L p(Ω) ≤ C14 for all p ≥ 1 and t ∈ (0, Tmax ) 

for some positive constant C14. 

Remark 3.2 It only assumes that μ  >  0 which is different from that in Pang and 
Wang (2017). Indeed, by the technical lemma (see Lemma 3.10), one could conclude 
the boundedness of

∫

Ω a
q0 (for some q0 > 1),, and further in light of the variation-

of-constants formula and Lq -L p estimates for the heat semigroup, one may derive 
the boundedness of

∫

Ω a 
p (for any p > 1). 

Our main result on global existence and boundedness thereby becomes a straight-
forward consequence of Lemma 3.8 and Lemma 3.13. 

The proof of Theorem 3.1: The proof of Theorem 3.1 consists of the following steps. 
Step 1. ||a(·, t)||L∞(Ω): Firstly, in light of (3.3.3), due to Lemma 3.13, we derive 

that there exist positive constants p0 > 2 and C1 such that

||u(·, t)||L p0 (Ω) ≤ C1 for all t ∈ (0, Tmax ). 

Next, since p0 > 2 and n = 2 yield to +∞ = np0 
(n−p0)+ 

, therefore, by using Lemma 
3.1 (see also Lemma 2.1 of Ishida et al. (2014)), we conclude that

||∇v(t)||L∞(Ω) ≤ C2 for all t ∈ (0, Tmax ). (3.3.29) 

Applying the Young inequality, in light of (3.3.3) and the first equation of (3.3.2), 
one obtains from (3.3.29) that for any p ≥ 4
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d 

dt

∫

Ω 
eξ  wa p + p(p − 1)

∫

Ω 
eξ  wa p−2|∇a|2 +

∫

Ω 
eξ  wa p 

= ξ
∫

Ω 
eξ  wa p ·  {−vw + ηw(1 − aeξ  w  − w)} 

+ p
∫

Ω 
eξ  wa p−1 ·  {e−ξ  w∇  ·  (eξ  w∇a) − χe−ξ  w∇  ·  (eξ  wa∇v)} 

+ aξ  vw  + a(μ − ξ  ηw)(1 − aeξ  w  − w)}  +  p
∫

Ω 
eξ  wa p 

≤ 
p(p − 1) 

4

∫

Ω 
eξ  wa p−2|∇a|2 + p(p − 1)χ 2C3

∫

Ω 
eξ  wa p 

+ (p − 1)ξ
∫

Ω 
eξ  wa pvw +

∫

Ω 
eξ  wa p{(p + 1) + (p − 1)ξ ηw(w − 1) + pμ(1 − w)} 

+
∫

Ω 
e2ξ  wa p+1[(p − 1)ξ ηw − pμ] 

≤ 
p(p − 1) 

4

∫

Ω 
eξ  wa p−2|∇a|2 + C4 p

2(

∫

Ω 
a p+1 + 1) for all t ∈ (0, Tmax ), 

(3.3.30) 

where C3 > 0 and C4 > 0 are independent of p. Here and throughout the proof of 
Theorem 3.1, we shall denote by Ci (i ∈ N) the several positive constants independent 
of p. Therefore, (3.3.30) implies that 

d 

dt

∫

Ω 
eξ  wa p + C5

∫

Ω 
|∇a 

p 
2 |2 +

∫

Ω 
eξ  wa p ≤ C4 p

2(

∫

Ω 
a p+1 + 1) for all t ∈ (0, Tmax ). 

(3.3.31) 
Next, once more by means of the Gagliardo–Nirenberg inequality, we can estimate 

C4 p
2
∫

Ω 
a p+1 = C4 p

2||a p 2 ||
2(p+1) 

p 

L 
2(p+1) 

p (Ω) 

≤C6 p
2 (||∇a 

p 
2 ||

2(p+1) 
p ς1 

L2(Ω)
||a p 2 ||

2(p+1) 
p (1−ς1) 

L1(Ω)
+ ||a p 2 ||

2(p+1) 
p 

L1(Ω) ) 

=C6 p
2 (||∇a 

p 
2 ||

p+2 
p 

L2(Ω)
||a p 2 ||L1(Ω) + ||a p 2 ||

2(p+1) 
p 

L1(Ω) ) 

≤C5||∇a 
p 
2 ||2 L2(Ω) + C7 p 

4 p 
p−2 ||a p 2 ||

2 p 
p−2 

L1(Ω) + C6 p
2||a p 2 ||

2(p+1) 
p 

L1(Ω) 

≤C5||∇a 
p 
2 ||2 L2(Ω) + C8 p 

4 p 
p−2 ||a p 2 ||

2 p 
p−2 

L1(Ω) , 

(3.3.32) 

where 

0 <  ς1 = 
2 − 2 p 

2( p+1) 

1 − 2 2 + 2 
= p + 2 

2(p + 1) 
< 1. 

Here, we have used the fact that 4p 
p−2 ≥ 2. Therefore, inserting (3.3.32) into (3.3.31), 

we derive that 

d 

dt

∫

Ω 
eξ  w  a p +

∫

Ω 
eξ  w  a p ≤C8 p 

4 p 
p−2 ||a p 2 ||

2 p 
p−2 

L1(Ω) + C4 p
2 

≤C9 p 
4 p 
p−2

⎛
max{1, ||u p 2 ||L1(Ω)

⎞ 2 p 
p−2 

. 
(3.3.33)
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Now, choosing pi = 2i+2 and letting Mi = max{1, supt∈(0,T )

∫

Ω a 
pi 
2 } for T ∈ 

(0, Tmax ) and i = 1, 2, 3,  .  .  ., we then obtain from (3.3.33) that 

d 

dt

∫

Ω 
eξ  w  a pi +

∫

Ω 
eξ  w  a pi ≤ C10 p 

2 pi 
pi −2 

i M 
2 pi 
pi −2 

i−1 (T ), 

which together with the comparison argument entails that there exists λ  >  1 inde-
pendent of i such that 

Mi (T ) ≤ max{λi M 
2 pi 
pi −2 

i−1 (T ), e
ξ |Ω|||a0||pi 

L∞(Ω)}. (3.3.34) 

Here, we use the fact that κi := 2 pi 
pi−2 ≤ 4. Now, if λi Mκi 

i−1(T ) ≤ eξρ |Ω|||a0||pi 
L∞(Ω) 

for infinitely many i ≥ 1, we get

⎛

sup 
t∈(0,T )

∫

Ω 
a pi−1 (·, t)

⎞ 1 
pi−1 

≤
⎛
eξρ |Ω|||a0||pi 

L∞(Ω) 

λi

⎞ 1 
pi−1 κi 

for such i , which entails that 

sup 
t∈(0,T )

||a(·, t)||L∞(Ω) ≤ ||a0||L∞(Ω). (3.3.35) 

Otherwise, if λi Mκi 
i−1(T )  >  eξ |Ω|||a0||pi 

L∞(Ω) for all sufficiently large i , then by 
(3.3.34), we derive that 

Mi (T ) ≤ λi Mκi 
i−1(T ) for all sufficiently large i, (3.3.36) 

and thus (3.3.36) is still valid for all i ≥ 1 upon enlarging λ if necessary. That is, 

Mi (T ) ≤ λi Mκi 
i−1(T ) for all i ≥ 1. 

Therefore, based on a straightforward induction (see, e.g., Lemma 3.12 of Tao and 
Winkler (2014b)), we have 

Mi (T ) ≤λi+Σi 
j=2( j−1)·Π i 

k= j κk M 
Π i 

k=1κk 
0 for all i ≥ 1, (3.3.37) 

where κk = 2(1 + εk) satisfies εk = 4 
pk−2 ≤ C11 

2k for all k ≥ 1 with some C11 > 0. 
Therefore, due to the fact that ln(1 + x) ≤ x(x ≥ 0), we derive 

Π i k= j κk = 2i+1− j eΣi 
k= j ln(1+ε j ) 

≤2i+1− j eΣi 
k= j ε j 

≤2i+1− j eC11 for all i ≥ 1 and j ∈  {1,  .  .  .  ,  i},
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which implies that

Σi 
j=2( j − 1) · Π i k= j κk 

2i+2
≤

Σi 
j=2( j − 1)2i+1− j eC11 

2i+2 

≤ 
eC11 

2 

iΣ

j=2 

( j − 1) 
2 j 

≤ 
3eC11 

8 
. 

By the definition of pi , we easily deduce from (3.3.37) that 

M 
1 
pi 
i (T ) ≤λ 

i 
2i+2 +

Σi 
j=2 ( j−1)·Π i 

k= j κk 
2i+2 M 

Π i 
k=1 κk 
2i+2 

0 ≤ λ 
i 

2i+2 λ 
3eC11 

8 M 
eC11 
4 

0 , 

which after taking i →  ∞  and T ↗ Tmax readily implies that

||a(·, t)||L∞(Ω) ≤ λ 
3eC11 

8 M 
eC11 
4 

0 for all t ∈ (0, Tmax ). (3.3.38) 

Step 2:||∇w(·, t)||L5(Ω) Employing almost exactly the same arguments as that 
in the proof of Lemmas 3.5–3.6 in Pang and Wang (2017) (the minor necessary 
changes are left as an easy exercise to the reader), and taking advantage of (3.3.29) 
and (3.3.38), we conclude the estimate for any T < Tmax ,

||∇w(·, t)||L5(Ω) ≤ C for all t ∈ (0, T ). 

Now, with the above estimate in hand, using (3.3.35) and (3.3.38), employing the 
extendibility criterion provided by Lemma 3.8, we may prove Theorem 3.1. 

Remark 3.3 If μ  >  ξ  η  max{||u0||L∞(Ω), 1}  +  μ∗(χ 2,  ξ  )  (see the proof of Lemma 
3.4 to Pang and Wang (2017)), one only needs to estimate Cp2

∫

Ω a 
p other than 

Cp2(
∫

Ω a 
p+1 + 1). 

3.4 Global Boundedness of Solutions 
to a Chemotaxis–Haptotaxis Model with Tissue 
Remodeling 

3.4.1 A Convenient Extensibility Criterion 

For the convenience in some parts of our subsequent analysis, we introduce the 
variable transformation Tao and Wang (2009, 2008); Tao and Winkler (2014b)
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a = ue−ξ  w  , 

upon which (3.1.1) takes the following form: 
⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

at = e−ξ  w∇  ·  (eξ  w∇a) − e−ξ  w  χ∇  ·  (eξ  wa∇v) + ξavw 

+ aμ(r − eξ  wa − w) − aξ  ηw(1 − eξ  wa − w), x ∈ Ω, t > 0, 

σ  vt = Δv − v + eξ  wa, x ∈ Ω, t > 0, 

wt =  −vw + ηw(1 − w − eξ  wa), x ∈ Ω, t > 0, 
∂a 

∂ν 
= 

∂v 
∂ν 

= 
∂w 
∂ν 

= 0, x ∈ ∂Ω, t > 0, 

a(x, 0) = a0(x) = u0(x)e−ξ  w0(x) ,  σ  v0(x, 0) = σ  v0(x), w(x, 0) = w0(x), x ∈ Ω. 

(3.4.1) 

We note that (3.1.1) and (3.4.1) are equivalent within the concept of classical solu-
tions. 

The following result is concerned with the local existence and uniqueness of clas-
sical solutions to the problem (3.4.1), along with a convenient extensibility criterion 
for such solutions. 

Lemma 3.14 Let χ  >  0,  ξ  >  0, μ  >  0 and r > 0, and suppose that u0,  v0 and w0 

satisfy (3.1.2) with some ϑ ∈ (0, 1). Then the problem (3.4.1) admits a unique clas-
sical solution 

⎧ 
⎪⎨ 

⎪⎩ 

a ∈ C0 ( Ω̄ ×  [0, Tmax )) ∩ C2,1 ( Ω̄ × (0, Tmax )) 
v ∈ C0 ( Ω̄ ×  [0, Tmax )) ∩ C2,1 ( Ω̄ × (0, Tmax )) 

w ∈ C2,1 ( Ω̄ ×  [0, Tmax )) 
(3.4.2) 

with a ≥ 0,  v  ≥ 0 and 0 ≤ w ≤ A := max{1, ||w0||L∞(Ω)}, where Tmax denotes the 
maximal existence time. In addition, if Tmax < +∞, then

||a(·, t)||L∞(Ω) + ||∇w(·, t)||L5(Ω) →  ∞  as t ↗ Tmax . (3.4.3) 

Proof Invoking well-established fixed point arguments and applying the standard 
parabolic regularity theory, one can readily verify the local existence and uniqueness 
of classical solutions, as well as the extensibility criterion (3.4.3) (see Pang and Wang 
(2017); Tao and Winkler (2014a, b) for instance). With the help of the maximum 
principle, we can also verify the asserted nonnegativity of the solutions. 

It should be pointed out that the extensibility criterion in (3.4.3) involves the L5-
norm of |∇w|. Although the L5-norm of |∇w| is time-dependent, it is sufficient to 
enable us to apply standard parabolic regularity theory to the first equation of (3.4.1) 
in the two-dimensional setting (see Lemma 2.2 of Pang and Wang (2017) and Tao 
and Winkler (2014b) for instance). 

For the classical solution of (3.4.1), the following observation will be used fre-
quently below.
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Lemma 3.15 Let (a,  v,  w)  be the classical solution of (3.4.1) in  Ω ×  [0, Tmax ). 
Then for any p > 1, we have 

d 

dt

∫

Ω 
eξ  w  a p + 

2(p − 1) 
p

∫

Ω 
eξ  w|∇a 

p 
2 |2 + ( pμ − (p − 1)ξ η A)

∫

Ω 
a p+1 e2ξ  w  

≤ 
χ 2 p(p − 1) 

2

∫

Ω 
eξ  w  a p|∇v|2 + ξ A(p − 1)

∫

Ω 
eξ  w  a p v 

+ (μpr + ξ  η  A2 (p − 1))
∫

Ω 
eξ  w  a p 

(3.4.4) 
with A = max{1, ||w0||L∞(Ω)}. 
Proof Testing the first equation in (3.4.1) by  a p−1 with p > 1 and integrating by 
parts yields 

d 

dt

∫

Ω 
eξ  w  a p + 

4(p − 1) 
p

∫

Ω 
eξ  w|∇a 

p 
2 |2 + ( pμ − (p − 1)ξ η A)

∫

Ω 
a p+1 e2ξ  w  

≤χ p(p − 1)
∫

Ω 
eξ  w  a p−1∇a ·  ∇v + ξ A(p − 1)

∫

Ω 
eξ  w  a p v 

+ (μpr + ξ  η  A2 (p − 1))
∫

Ω 
eξ  w  a p . 

(3.4.5) 
Here, we note that 0 ≤ w ≤ A in Ω ×  [0, Tmax ). By the Young inequality, we esti-
mate 

χ p( p − 1)
∫

Ω 
eξ  w  a p−1∇a ·  ∇v 

≤ 
p( p − 1) 

2

∫

Ω 
eξ  w  a p−2|∇a|2 + 

χ 2 p(p − 1) 
2

∫

Ω 
eξ  w  a p|∇v|2 . 

This together with (3.4.5) proves (3.4.4). 

3.4.2 Global Existence in Two-Dimensional Domains 

According to Lemma 2.6, the key step in the proof of Theorem 3.2 is to estab-
lish a priori estimates of ||a(·, t)||L∞(Ω) and ||∇w(·, t)||L5(Ω). As pointed out in Tao 
and Winkler (2014b), one essential analytic difficulty stems from the fact that the 
chemotaxis and haptotaxis terms in the first equation in (3.1.1) require different 
L p-estimate techniques, since ECM density satisfies an ordinary differential equa-
tion (ODE) whereas MDE concentration satisfies a parabolic equation (PDE). This 
part establishes the crucial a priori estimates of solutions via identifying a certain 
dissipative property of the functionals

∫

Ω e
ξ  wa2 and

∫

Ω e
ξ  wa ln a with a = e−ξ  wu.
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1. The Case of σ = 1 
According to the above local existence result, (u(·, s), v(·, s), w(·, s)) ∈ (C2( Ω̄))3 

for any s ∈ (0, Tmax ). Hence without loss of generality, we may assume that there 
exists a constant C > 0 such that

||u0||C2( Ω̄) + ||v0||C2( Ω̄) + ||w0||C2( Ω̄) ≤ C. (3.4.6) 

From now on, (u,  v,  w)  is the unique maximal solution provided by Lemma 3.14. 
In order to avoid regularity problems, we assume in the rest of this section that 
the initial data satisfies (3.1.2). Some basic but important properties of solutions of 
(3.1.1) are summarized in the next lemmas. 

Lemma 3.16 Let (u,  v,  w)  be the classical solution of (3.1.1) with σ = 1. Then we 
have 

(i) ||u(·, t)||L1(Ω) ≤ m0 := max{r |Ω|, ||u0||L1(Ω)} for all t ∈ (0, Tmax ); 
(ii)

∫ t+τ 

t
||u(·, s)||2 L2(Ω)ds  ≤ m1 := r2|Ω|  +  

2m0 

μ 
for any 0 <  τ  ≤ min{1, Tmax 

3 } 
and all t ∈ 
(0, Tmax − τ  ); 

(iii) ||v(·, t)||L1(Ω) ≤  ̃m0 := max{m0, ||v0||L1(Ω)} for all t ∈ (0, Tmax ); 
(iv) ||∇v(·, t)||2 L2(Ω) ≤ m2 := 

r μ + 2 
μ 

m0 + ||∇v0||2 L2(Ω) for all t ∈ (0, Tmax ); 

(v)
∫ t+τ 

t
||Δv(·, s)||2 L2(Ω)ds  ≤ m3 := m2 + m1 for any 0 <  τ  ≤ min{1, Tmax 

3 } and 
all t ∈ (0, Tmax − τ  ). 

Proof (i) Integrating the first equation in (3.1.1) with respect to x ∈ Ω yields 

d 

dt

∫

Ω 
u(x, t) ≤ r μ

∫

Ω 
u(x, t) − μ

∫

Ω 
u2 (x, t), (3.4.7) 

since w ≥ 0 by Lemma 3.14. Moreover, by 2μru  ≤ μu2 + μr2, we get 

d 

dt

∫

Ω 
u(x, t) + r μ

∫

Ω 
u(x, t) ≤ μr2|Ω|, 

which implies that ||u(·, t)||L1(Ω) ≤ max{r |Ω|, ||u0||L1(Ω)}. 
(ii) By (3.4.7) and the Cauchy–Schwartz inequality, we also have 

d 

dt

∫

Ω 
u(x, t) + 

μ 
2

∫

Ω 
u2 (x, t) ≤ 

μr2 

2 
|Ω|. (3.4.8) 

Then we integrate (3.4.8) over (t, t + τ  )  to get 

μ 
2

∫ t+τ 

t

∫

Ω 
u2 ≤ 

r2μ 
2 

|Ω|τ +
∫

Ω 
u(x, t),
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which along with (i) yields (ii) of the lemma. 
(iii) Integrating the second equation in (3.1.1) with respect to x ∈ Ω yields 

d 

dt

∫

Ω 
v(x, t) +

∫

Ω 
v(x, t) ≤

∫

Ω 
u(x, t) ≤ sup 

t≥0

∫

Ω 
u(x, t). 

So (iii) follows from the nonnegativity of v and (i). 
(iv) Multiplying the second equation in (3.1.1) by  −Δv and integrating over Ω , 

we find 
1 

2 

d 

dt

∫

Ω 
|∇v(x, t)|2 +

∫

Ω 
|Δv(x, t)|2 +

∫

Ω 
|∇v(x, t)|2 

=  −
∫

Ω 
uⵠv 

≤1 

2

∫

Ω 
|Δv(x, t)|2 + 

1 

2

∫

Ω 
u2 (x, t) 

and thus 

d 

dt

∫

Ω 
|∇v(x, t)|2 +

∫

Ω 
|Δv(x, t)|2 +

∫

Ω 
|∇v(x, t)|2 ≤

∫

Ω 
u2 (x, t). (3.4.9) 

Combining (3.4.9) with (3.4.7), we can obtain 

d 

dt

∫

Ω 
(u(x, t) + μ|∇v(x, t)|2 ) +

∫

Ω 
(u(x, t) + μ|∇v(x, t)|2 ) 

≤(r μ + 1)
∫

Ω 
u(x, t) 

≤(r μ + 1)m0, 

(3.4.10) 

which, together with the Gronwall lemma, yields 

μ

∫

Ω 
|∇v(x, t)|2 ≤ (r μ + 2)m0 + μ||∇v0||2 L2(Ω) 

and hence (iv) holds. 
(v) In view of (3.4.9), we have

∫ t+τ 

t
||Δv(·, s)||2 L2(Ω)ds  ≤

∫

Ω 
|∇v(x, t)|2 +

∫ t+τ 

t
||u(·, s)||2 L2(Ω)ds. 

So (v) follows from (ii) and (iv). 

Lemma 3.17 Let (a,  v,  w)  be a classical solution of (3.4.1) with σ = 1 in (0, Tmax ). 
Then there exists some C > 0 such that

||a(·, t)||L3(Ω) ≤ C (3.4.11)
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is valid for all t ∈ (0, Tmax ). 

Proof Applying Lemma 3.15 with p = 2, one can find k1( A)  >  0 such that 

d 

dt

∫

Ω 
eξ  w  a2 +

∫

Ω 
eξ  w|∇a|2 + (2μ − ξ  η  A)

∫

Ω 
e2ξ  w  a3 

≤χ 2
∫

Ω 
eξ  w  a2|∇v|2 + k1(A)

∫

Ω 
eξ  w  a2 + k1(A)

∫

Ω 
eξ  w  a2 v. 

Therefore, by means of the Young inequality, we can get 

d 

dt

∫

Ω 
eξ  w  a2 +

∫

Ω 
eξ  w|∇a|2 +

∫

Ω 
eξ  w  a2 

≤k2||a||2 L4(Ω)||∇v||2 L4(Ω) + k2||a||3 L3(Ω) + k2||v||3 L3(Ω) + k2, 

(3.4.12) 

where k2 > 0 is the constant only depending upon A,  ξ,  η,  χ  . 
On applying Lemma 3.3 with n = 2, we have

||a||2 L4(Ω) ≤ k3||∇a||L2(Ω)||a||L2(Ω) + k3||a||2 L2(Ω) 

and
||∇v||2 L4(Ω) ≤ k3||ⵠv||L2(Ω)||∇v||L2(Ω) + k3||∇v||2 L2(Ω), 

which along with Lemma 3.16 (iv), implies that ||∇v||2 L4(Ω) ≤ k4||ⵠv||L2(Ω) + k4. 
Hence, combining above inequalities and by the Young inequality, we have 

k2||a||2 L4(Ω)||∇v||2 L4(Ω) ≤ 
1 

2
||∇a||2 L2(Ω) + k5||a||2 L2(Ω)(1 + ||ⵠv||2 L2(Ω)). (3.4.13) 

Therefore, inserting (3.4.13) into (3.4.12), and noting the fact||v||L3(Ω) ≤ ||v||W 1,2(Ω) ≤ 
k6 by Lemma 3.16 (iv) (iii), we can conclude that 

d 

dt

∫

Ω 
eξ  w  a2 + 

1 

2

∫

Ω 
eξ  w|∇a|2 +

∫

Ω 
eξ  w  a2 

≤k7||ⵠv||2 L2(Ω)

∫

Ω 
eξ  w  a2 + k7

∫

Ω 
a3 + k7. 

(3.4.14) 

Now applying Lemma 3.3 and the Young inequality, we have

||a||2 W 1,2(Ω) ≥ 
1 

ε
||a||3 L3(Ω) − 

C6 
GN  

ε2
||a||4 L2(Ω) 

for any ε  >  0, which after inserting into (3.4.14) and taking ε = 1 
4k7 

says that
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d 

dt

∫

Ω 
eξ  w  a2 + k7

∫

Ω 
a3 ≤ k7||ⵠv||2 L2(Ω)

∫

Ω 
eξ  w  a2 + k7 + k8||a||4 L2(Ω) 

with k8 = 16k2 7C6 
GN  + k7eξ A. 

In view of a3 ≥ 1 
ε a

2 − 1 
ε3 

for any ε  >  0, we can obtain 

d 

dt

∫

Ω 
eξ  w  a2 + 

1 

ε

∫

Ω 
eξ  w  a2 

≤(k7||ⵠv||2 L2(Ω) + k8||a||2 L2(Ω))

∫

Ω 
eξ  w  a2 + k7 + 

e3ξ A 

ε3k2 7 
|Ω|. 

(3.4.15) 

Now, let τ = min{1, Tmax 
6 } and ε = τ 

1+k7m3+k8m1 
. Then (3.4.15) implies that writ-

ing a(t) := 1 
ε , b(t) := k7||ⵠv||2 L2(Ω) + k8||a||2 L2(Ω) and c(t) := k7 + e3ξ A 

ε3k2 7 
|Ω|, func-

tion y(t) := ∫

Ω e
ξ  wa2 satisfies 

y'(t) + a(t)y(t) ≤ b(t)y(t) + c(t). (3.4.16) 

Hence, the application of Lemma 3.5 to (3.4.16) with b1 = k7m3 + k8m1, k1 = k7 +
e3ξ A 

ε3k2 7 
|Ω| and ρ = 1 yields

∫

Ω 
eξ  w  a2 ≤ C := eb1 eξ A||a0||2 L2(Ω) + 

k1e2b1 

1 − e−1 
+ k1eb1 . 

Now we turn to estimate ||a(·, t)||L3(Ω). Applying the Young inequality, one 
obtains from (3.4.4) that 

d 

dt

∫

Ω 
eξ  wa3 + 

3 

2

∫

Ω 
eξ  wa|∇a|2 +

∫

Ω 
eξ  wa3 

≤6χ 2
∫

Ω 
eξ  wa3|∇v|2 + 3(ξ η A − μ)

∫

Ω 
e2ξ  wa4 + 2ξ A

∫

Ω 
eξ  wa3v + 2ξ  η  A2

∫

Ω 
eξ  wa3 

≤6χ 2
∫

Ω 
eξ  wa3|∇v|2 + k9( sup 

0≤t<Tmax

||v(·, t)||L∞(Ω) + 1)
∫

Ω 
eξ  wa3 + k9

∫

Ω 
eξ  wa4. 

(3.4.17) 

On the other hand, by
∫

Ω a
2 ≤ C and Lemma 3.6, one can find some constant k10 > 0 

such that ||v(·, t)||L∞(Ω) ≤ k10 and ||∇v(·, t)||L8(Ω) ≤ k10 for all t < Tmax . Hence, 
(3.4.17) shows that there exists k11 > 0 such that 

d 

dt

∫

Ω 
eξ  w  a3 + 

2 

3

∫

Ω 
eξ  w|∇a 

3 
2 |2 +

∫

Ω 
eξ  w  a3 ≤ k11

∫

Ω 
a4 + k11. (3.4.18) 

By means of the Gagliardo–Nirenberg inequality, we have

||a||4 L4(Ω) = ||a 3 2 || 8 
3 

L 
8 
3 (Ω) 

≤ 2C 
8 
3 
c3.2−2.1||∇a 

3 
2 || 4 

3 

L2(Ω)
||a 3 2 || 4 

3 

L 
4 
3 (Ω) 

+ 2C 
8 
3 
1 ||a 3 2 || 8 

3 

L 
4 
3 (Ω) 

.
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Therefore by (3.4.18), ||a(·, t)||L2(Ω) ≤ C and the Young inequality, one can arrive 
at 

d 

dt

∫

Ω 
eξ  w  a3 +

∫

Ω 
eξ  w  a3 ≤ k12. 

Finally, (3.4.11) follows from the Gronwall inequality. 

On applying Lemma 3.6, the following result is an immediate consequence of 
0 ≤ w(x, t) ≤ A and Lemma 3.17. 

Lemma 3.18 Under the same assumptions as in Theorem 3.2, there exists C > 0 
such that the classical solution (u,  v,  w)  of (3.1.1) satisfies

||v(·, t)||W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax ). (3.4.19) 

Note that ||∇v(·, t)||L∞(Ω) is bounded by (3.4.19). However, ||∇w(·, t)||L∞(Ω) 
might become unbounded. Therefore, Lemma A.1 of Tao and Winkler (2012a) 
as the result of the well-known Moser–Alikakos iteration Alikakos (1979) can-
not be directly applied to the first equation in (3.1.1) to get the boundedness of
||u(·, t)||L∞(Ω). At this position, arguing as in Lemma 3.6 of Pang and Wang (2017), 
Lemma 4.2 of Tao (2011) or Lemma  3.5 of Tao and Winkler (2014b), we can establish 
the following estimates. 

Lemma 3.19 Under the assumptions of Theorem 3.2, there exists C > 0 such that 
the classical solution (u,  v,  w)  of (3.1.1) satisfies

||u(·, t)||L∞(Ω) ≤ C for all t ∈ (0, Tmax ). (3.4.20) 

Lemma 3.20 Under the assumptions of Theorem 3.2, for all T > 0 there exists 
C(T )  >  0 such that the classical solution (u,  v,  w)  of (3.1.1) satisfies

||∇w(·, t)||L5(Ω) ≤ C(T ) for all t ∈ (0, min{T , Tmax }). (3.4.21) 

We are now in the position to prove Theorem 3.2 in the case σ = 1. 

Proof of Theorem 3.2 in the case of σ = 1. By a rather standard argument, 
we can show the global existence of classical solutions to (3.1.1) with σ = 1, 
i.e., Tmax =  +∞. In view of Lemma 3.18, ||a(·, t)||L∞(Ω) is bounded uniformly 
with respect to t ∈ (0, Tmax ). Combining this with Lemma 3.20, we can obtain
||∇w(·, t)||L5(Ω) ≤ C(Tmax ) for all t ∈ (0, Tmax ). Hence, the statement of global exis-
tence and boundedness of classical solutions to (3.1.1) is a straightforward conse-
quence of Lemma 3.14. Now by retracing the proof of Lemma 3.17, one can find that 
τ = 1, and thereby there exists a constant C > 0 which is time-independent such 
that ||a(·, t)||L3(Ω) ≤ C for all t > 0. Therefore, ||a(·, t)||L∞(Ω) ≤ C for some C > 0 
and all t > 0.
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2. The Case of σ = 0 
Now we turn to proving Theorem 3.2 in the case σ = 0. 

Lemma 3.21 Let (u,  v,  w)  be the classical solution of (3.1.1) with σ = 0. Then we 
have 

(i) ||u(·, t)||L1(Ω) ≤ m0 for all t ∈ (0, Tmax ); 
(ii)

∫ t+τ 

t
||u(·, s)||2 L2(Ω)ds  ≤ m1 for any 0 <  τ  ≤ min{1, Tmax 

3 } and all t ∈ 
(0, Tmax − τ  ); 

(iii) ||v(·, t)||L1(Ω) ≤ m0 for all t ∈ (0, Tmax ); 
(iv)

∫ t+τ 

t
||∇v(·, s)||2 L2(Ω)ds  ≤ m1 for any 0 <  τ  ≤ min{1, Tmax 

3 } and all t ∈ 
(0, Tmax − τ  ); 

(v)
∫ t+τ 

t
||Δv(·, s)||2 L2(Ω)ds  ≤ m1 for any 0 <  τ  ≤ min{1, Tmax 

3 } and all t ∈ 
(0, Tmax − τ  ). 

Proof We note that we only need to show (iii), (iv) and (v) here. Integrating the 
elliptic equation in (3.1.1) with respect to x ∈ Ω yields

∫

Ω 
v(x, t) =

∫

Ω 
u(x, t), (3.4.22) 

so (iii) is the consequence of (i). 
Testing the equation for v in (3.1.1) by  −Δv and integrating over Ω , we can see 

that
∫

Ω 
|Δv(x, t)|2 +

∫

Ω 
|∇v(x, t)|2 =  −

∫

Ω 
uⵠv ≤ 

1 

2

∫

Ω 
|Δv(x, t)|2 + 

1 

2

∫

Ω 
u2 (x, t) 

and thus
∫

Ω |Δv(x, t)|2 + ∫

Ω |∇v(x, t)|2 ≤ ∫

Ω u
2(x, t). Hence (iv) and (v) follow 

from (ii). 

As pointed out in Tao and Winkler (2014b), with the help of a well-known reg-
ularity result on semilinear second-order elliptic equations, one can only infer that
||∇v(·, t)||Lq (Ω) ≤ C for any 1 < q < 2 and all t ∈ (0, Tmax ) from Lemma 3.21 (i) 
and the second equation in (3.1.1) with σ = 0, hence in order to allow for the choice 
q = 2, some additional efforts are needed. It should be remarked that for (3.1.1) 
with σ = 1, ||∇v(·, t)||L2(Ω) ≤ C can be obtained directly (see Lemma 3.16 (iv)). 
It is observed in Tao and Winkler (2014b) that a key step toward this is to estimate∫

Ω u(·, t) ln u(·, t) (see (3.16) of Tao and Winkler (2014b)). However, the estimate 
of the latter involves the compensation of the term

∫

Ω ∇u ·  ∇w, which makes the 
bound of

∫

Ω u(·, t) ln u(·, t) to be time-dependent. Here, we make use of Lemmas 
3.5 and 3.21 to derive the global boundedness of

∫

Ω u(·, t) ln u(·, t). 
Lemma 3.22 There exists some C > 0 such that for any (u0,  w0) fulfilling (3.1.2), 
the corresponding classical solution (u,  v,  w)  of (3.1.1) with σ = 0 satisfies
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∫

Ω 
u(·, t) ln u(·, t) ≤ C for all t ∈ (0, Tmax ). 

Proof From the first equation in (3.4.1), it follows 

(aeξ  w  )t =  ∇  ·  (eξ  w∇a) − χ∇  ·  (eξ  w  a∇v) + μaeξ  w  (r − w − aeξ  w  ) 

and thus 

d 

dt

∫

Ω 
eξ  w  a ln a +

∫

Ω 
eξ  w  |∇a|2 

a 
+ μ

∫

Ω 
a2 e2ξ  w  ln a 

=
∫

Ω 
(eξ  w  a)t ln a +

∫

Ω 
eξ  w  at +

∫

Ω 
eξ  w  |∇a|2 

a 
+ μ

∫

Ω 
a2 e2ξ  w  ln a 

= χ
∫

Ω 
eξ  w∇a ·  ∇v +

∫

Ω 
aeξ  w[μ(r − w − aeξ  w  ) − ξ  ηw(1 − w − aeξ  w  )] 

(3.4.23) 

+
∫

Ω 
aeξ  w[μ ln a(r − w) + ξ  vw] 

≤ 
1 

2

∫

Ω 
eξ  w  |∇a|2 

a 
+ 

χ 2 

2

∫

Ω 
eξ  w  a|∇v|2 + 

μ 
4

∫

Ω 
a2 e2ξ  w  ln a + k1 

for some k1 > 0 and t ∈ (0, Tmax ). Here, we may use the facts that 0 ≤ w ≤ A := 
max{||w0||, 1}, a2 ≤ εa2 ln a + e 2 ε , a ln a ≤ εa2 ln a − ε−1 ln ε and a ≤ εa2 ln a + 
2e 

2 
ε for any ε ∈ (0, 1). 
By Young’s inequality and applying a2 ≤ εa2 ln a + e 2 ε again, we have 

χ 2 

2

∫

Ω 
eξ  w  a|∇v|2 ≤ ε

∫

Ω 
|∇v|4 + 

μ 
4

∫

Ω 
a2 e2ξ  w  ln a + k2(ε). (3.4.24) 

Along with aeξ  w  ln a ≤ a2e2ξ  w  ln a + ξ Ae2ξ A, combining (3.4.24) with (3.4.23) 
gives 

d 

dt

∫

Ω 
eξ  w  a ln a + 

1 

2

∫

Ω 
eξ  w  |∇a|2 

a 
+ 

μ 
2

∫

Ω 
aeξ  w  ln a 

≤ε

∫

Ω 
|∇v|4 + k1 + k2(ε) + 

μξ A 
2 

e2ξ A|Ω|, 
(3.4.25) 

which along with the Gagliardo–Nirenberg interpolation inequality

||∇v||4 L4(Ω) ≤ C4 
c3.2−2.1(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω))||∇v||2 L2(Ω) 

and Lemma 3.7 entails
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d 

dt

∫

Ω 
eξ  w  a ln a + 

1 

2

∫

Ω 
eξ  w  |∇a|2 

a 
+ 

μ 
2

∫

Ω 
eξ  w  a ln a 

≤εC4 
c3.2−2.1(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω))||∇v||2 L2(Ω) + k3(ε) 

≤εC4 
c3.2−2.1(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω))(α

∫

Ω 
u ln u + β) + k3(ε). 

Therefore, by the fact u ln u = eξ  wa ln a + aξ  weξ  w  ≤ 2eξ  wa ln a + k4 for some 
k4 > 0, we have  

d 

dt  
(

∫

Ω 
eξ  w  a ln a + eξ A|Ω|) + 

1 

2

∫

Ω 
eξ  w  |∇a|2 

a 
+ 

μ 
2 

(

∫

Ω 
eξ  w  a ln a + eξ A|Ω|) 

≤2εC4 
c3.2−2.1(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω))(α

∫

Ω 
eξ  w  a ln a + α|Ω|k4 + β) + k5(ε) 

≤εk6(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω))(

∫

Ω 
eξ  w  a ln a + eξ A|Ω|) 

+ k7(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω)) + k5(ε) 

for t ∈ (0, Tmax ). 
Now, we let the nonnegative functions a(t), b(t) and c(t) be defined by a(t) := μ 

2 , 
b(t) := εk6(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω) ), c(t):=k7(||Δv||2 L2(Ω) + ||∇v||2 L2(Ω) ) + k5(ε). 
Then, we see that the nonnegative function 

y(t) :=
∫

Ω 
eξ  w  a ln a + eξ A|Ω| 

satisfies y'(t) + a(t)y(t) ≤ b(t)y(t) + c(t). With the help of Lemma 3.21 (iv) and 
(v), we can conclude that when fixing τ := min{1, Tmax 

6 } and taking ε = μτ 
8k6m1 

, 
applying Lemma 3.5 with ρ = μ 

4 τ yields
∫

Ω e
ξ  wa ln a ≤ C(τ ) with some constant 

C(τ ) > 0, which completes the proof of this lemma as 0 ≤ w ≤ A. 

Based on the  above  LlogL(Ω) estimate of u, we have the following. 

Corollary 3.1 There exists some C > 0 such that for any (u0,  w0) fulfilling (3.1.2), 
the corresponding classical solution (u,  v,  w)  of (3.1.1) with σ = 0 satisfies

||v(·, t)||W 1,2(Ω) ≤ C for all t ∈ (0, Tmax ). 

Proof This follows from Lemma 3.21 (i), Lemmas 3.22 and 3.7 immediately. 

At this position, we can proceed as in the proof of Lemmas 3.2–3.5 or Lemmas 
3.10–3.12 of Tao and Winkler (2014b) to derive the a priori estimates below. It 
should be pointed out that the bounds of

∫

Ω a ln a play an essential role in the proof 
of Lemma 3.11 in Tao and Winkler (2014b), while it is not necessary for our argument 
in the proof of Lemma 3.17 whenever ||v(·, t)||W 1,2(Ω) is bounded.
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Lemma 3.23 Let (u,  v,  w)  be the classical solution of (3.1.1) with σ = 0. Then 
there exists some C > 0 such that

||u(·, t)||L∞(Ω) ≤ C (3.4.26) 

is valid for all t ∈ (0, Tmax ). 

Proof of Theorem 3.2 in the case of σ = 0. Since the proof is very similar to that 
of Theorem 3.2 in the case σ = 1, we omit it here. 

3.4.3 Global Existence in Three-Dimensional Domains 

In this subsection, inspired by Lankeit (2015); Winkler (2011b), we prove Theorem 
3.3. The main idea of the proof is to verify that the quantity

∫

Ω a
2(t) + ∫

Ω |∇v(t)|4 
satisfies an autonomous ordinary differential inequality, and then the comparison 
argument can be applied to the corresponding ordinary differential equation when 
r > 0 and the initial data are suitably small. 

Lemma 3.24 Let (a,  v,  w)  be the classical solution of problem (3.4.1) in  Ω × 
[0, Tmax ). Then 

σ 
d 

dt

∫

Ω 
|∇v|4 +

∫

Ω 
|∇|∇v|2|2 + 4

∫

Ω 
|∇v|4 ≤ 7

∫

Ω 
e2ξ  w  a2|∇v|2 . (3.4.27) 

Proof We refer the interested reader to Lemma 3.2 of Tao and Winkler (2015b), 
(24)–(26) in Viglialoro (2017), and Lemma 4.6 in Lankeit (2015) for the proof. 

Proof of Theorem 3.3 in the case of σ = 1. By Lemma 3.15, we have  

d 

dt

∫

Ω 
eξ  w  a2 +

∫

Ω 
eξ  w|∇a|2 + (2μ − ξ  η  A)

∫

Ω 
a3 e2ξ  w  

≤χ 2
∫

Ω 
eξ  w  a2|∇v|2 + ξ A

∫

Ω 
eξ  w  a2 v + (2μr + ξ  η  A2 )

∫

Ω 
eξ  w  a2 . 

Furthermore, the Young inequality entails that there is a constant k1 > 0 depending 
upon ξ,  χ  ,  η  and A only such that 

d 

dt

∫

Ω 
eξ  w  a2 +

∫

Ω 
eξ  w|∇a|2 +

∫

Ω 
eξ  w  a2 

≤k1

∫

Ω 
e2ξ  w  a3 +

∫

Ω 
|∇v|6 +

∫

Ω 
v3 + r2 μ

∫

Ω 
a, 

which along with Lemmas 3.4 and 3.16 implies that
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d 

dt

∫

Ω 
eξ  w  a2 + 

1 

2

∫

Ω 
eξ  w|∇a|2 +

∫

Ω 
eξ  w  a2 

≤k2

⎫∫

Ω 
eξ  w  a2

⎫3 

+
∫

Ω 
|∇v|6 +

∫

Ω 
v3 + r2 μ

∫

Ω 
a + k3(A)

⎫∫

Ω 
a

⎫3 

≤k2

⎫∫

Ω 
eξ  w  a2

⎫3 

+
∫

Ω 
|∇v|6 + k4(||∇v|| 12 

5 

L2(Ω) + ||v|| 12 
5 

L1(Ω) )||v|| 3 
5 

L1(Ω) 

+ r2 μ
∫

Ω 
a + k3(A)

⎫∫

Ω 
a

⎫3 

≤k2

⎫∫

Ω 
eξ  w  a2

⎫3 

+
∫

Ω 
|∇v|6 + k4 m̃ 

3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2 μ

∫

Ω 
a + k3(A)

⎫∫

Ω 
a

⎫3 

. 

(3.4.28) 
On the other hand, from Lemmas 3.24 and 3.4, it follows that 

d 

dt

∫

Ω 
|∇v|4 +

∫

Ω 
|∇|∇v|2|2 + 4

∫

Ω 
|∇v|4 

≤
∫

Ω 
a3 + k5(A)

∫

Ω 
|∇v|6 

≤
∫

Ω 
a3 + 

1 

2

∫

Ω 
|∇|∇v|2|2 + k6( A)

⎫

(

∫

Ω 
|∇v|4 )3 + (

∫

Ω 
|∇v|4 ) 3 2

⎫

, 

and thus 
d 

dt

∫

Ω 
|∇v|4 + 

1 

2

∫

Ω 
|∇|∇v|2|2 + 4

∫

Ω 
|∇v|4 

≤
∫

Ω 
a3 + k6( A)

⎫

(

∫

Ω 
|∇v|4 )3 + (

∫

Ω 
|∇v|4 ) 3 2

⎫

. 
(3.4.29) 

Combining (3.4.29) with (3.4.28) and using Lemma 3.4 again, we can see 

d 

dt  
(

∫

Ω 
eξ  w  a2 +

∫

Ω 
|∇v|4 ) + 

1 

2

∫

Ω 
eξ  w|∇a|2 + 

1 

2

∫

Ω 
|∇|∇v|2|2 +

∫

Ω 
eξ  w  a2 

+ 4
∫

Ω 
|∇v|4 

≤
∫

Ω 
a3 +

∫

Ω 
|∇v|6 + k2

⎫∫

Ω 
eξ  w  a2

⎫3 

+ k6(A)

⎫

(

∫

Ω 
|∇v|4 )3 + (

∫

Ω 
|∇v|4 ) 3 2

⎫

+ k4 m̃ 
3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2 μ

∫

Ω 
a + k3(A)(

∫

Ω 
a)3 

≤1 

4

∫

Ω 
eξ  w|∇a|2 + 

1 

4

∫

Ω 
|∇|∇v|2|2 + k7

⎫∫

Ω 
eξ  w  a2

⎫3 

+ k8(A)

⎫

(

∫

Ω 
|∇v|4 )3 + (

∫

Ω 
|∇v|4 ) 3 2

⎫

+ k4 m̃ 
3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2 μ

∫

Ω 
a + k9(A)(

∫

Ω 
a)3 . 

(3.4.30)
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Finally, by the Young inequality, we obtain that 

k8(A)(

∫

Ω 
|∇v|4 ) 3 2 ≤ 2

∫

Ω 
|∇v|4 + k10(A)(

∫

Ω 
|∇v|4 )3 . 

Hence, applying Lemma 3.16, (3.4.30) shows that y(t) := ∫

Ω e
ξ  wa2 + ∫

Ω |∇v|4, 
t > 0, satisfies 

y'(t) + y(t) ≤k11(A)y3(t) + k4 m̃ 
3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2μ

∫

Ω 
a(·, t) + k9(A)(

∫

Ω 
a(·, t))3 

≤k11(A)y3(t) + k4 m̃ 
3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2μm0 + k9(A)m3 

0 

for some k11(A)  >  0. 
Now we can conclude that there is a positive constant r0 such that function

Ө(ς ) := −ς + k11(A)ς 3 + k4 m̃ 
3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2μm0 + k9(A)m3 

0, ς ≥ 0, attains 
its minimum at ς0 = ( 1 

3k11(A) ) 
1 
2 , and Ө(ς0)  <  0 when r < r0, and ||u0||L1(Ω) and

||v0||W 1,2(Ω) are suitably small. In fact, it is observed that Ө(ς0)  <  0 provided that 
k4 m̃ 

3 
5 
0 (m 

6 
5 
2 +  ̃m 

12 
5 
0 ) + r2μm0 + k9(A)m3 

0 < 2ς0 3 . To this end, taking 

r0 = min{1, 1 

|Ω| , 
ς0 

2|Ω| (μ + c9(A) + 2c4(1 + 
1 

μ 
))−1} 

and by continuity of the expressions m0, m2 and m̃0, one can verify that k4 m̃ 
3 
5 
0 (m 

6 
5 
2 + 

m̃ 
12 
5 
0 )+r2μm0+k9( A)m3 

0< 2ς0 3 is indeed valid if r <r0, and ||u0||L1(Ω) and ||v0||W 1,2(Ω) 
are suitably small. The comparison principle for ordinary differential equations 
y'(t) ≤ Ө(y(t)) therefore shows by means of comparison with y ≡ ς0 that y(t) ≤ ς0 

for all t ≥ 0 when y(0) ≤ ς0, which can be satisfied whenever ||u0||L2(Ω) and
||v0||W 1,4(Ω) are sufficiently small. 

The next step is to obtain a bound for a with respect to the norm in L∞(Ω) by a 
bootstrap procedure, on the basis of the bounds on ||a||L2(Ω) and ||v||W 1,4(Ω). 

By Lemma 3.15 with p = 3, we get 

d 

dt

∫

Ω 
eξ  w  a3 + 

4 

3

∫

Ω 
eξ  w|∇a 

3 
2 |2 + 3(μ − ξ  η  A)

∫

Ω 
a4 e2ξ  w  

≤3χ 2
∫

Ω 
eξ  w  a3|∇v|2 + 2ξ A

∫

Ω 
eξ  w  a3 v + (3μr + 2ξ  η  A2 )

∫

Ω 
eξ  w  a3 . 

Moreover, due to W 1,4(Ω) ϲ→ L∞(Ω) and applying Lemma 3.3, we have
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d 

dt

∫

Ω 
eξ  w  a3 +

∫

Ω 
|∇a 

3 
2 |2 +

∫

Ω 
eξ  w  a3 

≤3χ 2 eξ A
∫

Ω 
a3|∇v|2 +

∫

Ω 
a4 + k12( A) 

≤3χ 2 eξ A (

∫

Ω 
a6 ) 

1 
2 (

∫

Ω 
|∇v|4 ) 1 2 +

∫

Ω 
a4 + k12(A) 

≤k13(A)

⎫

(

∫

Ω 
|∇a 

3 
2 |2 ) 6 7 (

∫

Ω 
a2 ) 

3 
14 + (

∫

Ω 
a2 ) 

3 
2

⎫

(

∫

Ω 
|∇v|4 ) 1 2 

+ (
∫

Ω 
|∇a 

3 
2 |2 ) 6 7 (

∫

Ω 
a2 ) 

5 
7 + (

∫

Ω 
a2 )2 + k12( A) 

≤ 
1 

2

∫

Ω 
|∇a 

3 
2 |2 + k14(A), 

which implies that
∫

Ω e
ξ  wa3 ≤ C for some C > 0. At this position, similarly as in the 

proof of Theorem 3.2, one can derive ||a(·, t)||L∞(Ω) ≤ C and ||v(·, t)||W 1,∞(Ω) ≤ C 
for some time-independent constant C > 0 and all t > 0, and then ||∇w(·, t)||L5(Ω) ≤ 
C(T ) for all t ∈ (0, T ), which along with Lemma 3.14 completes the proof of this 
theorem. 

Proof of Theorem 3.3 in the case of σ = 0. Since the proof is similar to that of the 
case σ = 1, we may confine ourselves to an outline, giving only details in places 
which are characteristic for the present setting. 

By Lemma 3.15 and Young’s inequality, we have 

d 

dt

∫

Ω 
eξ  w  a2 +

∫

Ω 
eξ  w|∇a|2 + 2

∫

Ω 
eξ  w  a2 

≤k1(A)

∫

Ω 
a3 +

∫

Ω 
|∇v|6 +

∫

Ω 
v3 + r2 μ

∫

Ω 
a. 

(3.4.31) 

On the other hand, from Lemma 3.24, it follows that

∫

Ω 
|∇|∇v|2|2 + 4

∫

Ω 
|∇v|4 ≤ k2( A)

∫

Ω 
a2|∇v|2 ≤ k3(A)

∫

Ω 
a3 +

∫

Ω 
|∇v|6 . 
(3.4.32) 

Combining (3.4.32) with (3.4.31) and applying Lemma 3.4, we can obtain
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d 

dt

∫

Ω 
eξ  w  a2 +

∫

Ω 
eξ  w|∇a|2 + 2

∫

Ω 
eξ  w  a2 +

∫

Ω 
|∇|∇v|2|2 + 4

∫

Ω 
|∇v|4 

≤k4(A)

∫

Ω 
a3 + 2

∫

Ω 
|∇v|6 +

∫

Ω 
v3 + r2 μ

∫

Ω 
a 

≤1 

2

∫

Ω 
eξ  w|∇a|2 + 

1 

2

∫

Ω 
|∇|∇v|2|2 + k5(A)

⎫∫

Ω 
eξ  w  a2

⎫3 

+ k6(A)(

∫

Ω 
a)3 

+ r2 μ
∫

Ω 
a + k7(

∫

Ω 
|∇v|4 )3 +

∫

Ω 
|∇v|4 +

∫

Ω 
v3 

≤ 
1 

2

∫

Ω 
eξ  w|∇a|2 + 

1 

2

∫

Ω 
|∇|∇v|2|2 + k5(A)

⎫∫

Ω 
eξ  w  a2

⎫3 

+ k6(A)(

∫

Ω 
a)3 

+ r2 μ
∫

Ω 
a + k7(

∫

Ω 
|∇v|4 )3 + 2

∫

Ω 
|∇v|4 + k8(

∫

Ω 
v)3 . 

(3.4.33) 
By the Gagliardo–Nirenberg inequality,

||v||3 L3(Ω) ≤ C3 
c3.2−2.1||∇v|| 24 

13 

L4(Ω)
||v|| 15 

13 

L1(Ω) + k9||v||3 L1(Ω) 

≤ ||∇v||4 L4(Ω) + k10||v||3 L1(Ω). 

Hence from (3.4.33), it follows that 

d 

dt

∫

Ω 
eξ  w  a2 + 2

∫

Ω 
eξ  w  a2 + 2

∫

Ω 
|∇v|4 

≤k5(A)

⎫∫

Ω 
eξ  w  a2

⎫3 

+ k6(A)(

∫

Ω 
a)3 + r2 μ

∫

Ω 
a + k7(

∫

Ω 
|∇v|4 )3 + k8(

∫

Ω 
v)3 . 

(3.4.34) 
On the other hand, applying the standard elliptic regularity theory in the three-
dimensional setting to the second equation in (3.4.1), we have

∫

Ω 
|∇v|4 ≤ ||v||4 W 2,2(Ω) ≤ k11||eξ  w  a||4 L2(Ω) 

for some k11 > 0, which combined with (3.4.34) and the Young inequality says that 

d 

dt

∫

Ω 
eξ  wa2 + 2

∫

Ω 
eξ  wa2 

≤k5(A)

⎫∫

Ω 
eξ  wa2

⎫3 
+ k6(A)(

∫

Ω 
a)3 + r2μ

∫

Ω 
a + k12(A)

⎫∫

Ω 
eξ  wa2

⎫6 
+ k8(

∫

Ω 
v)3 

≤
∫

Ω 
eξ  wa2 + k13(A)

⎫∫

Ω 
eξ  wa2

⎫6 
+ k14(A)(

∫

Ω 
a)3 + r2μ

∫

Ω 
a, 

(3.4.35) 
where we have used the fact

∫

Ω v = ∫

Ω u. Therefore along with Lemma 3.21 (i), 
(3.4.35) shows that y(t) := ∫

Ω e
ξ  wa2, t > 0, satisfies
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y'(t) + y(t) ≤ k13(A)y6 (t) + k14( A)(

∫

Ω 
a)3 + r2 μ

∫

Ω 
a 

≤ k13(A)y6 (t) + k14( A)m3 
0 + r2 μm0. 

At this point, the proof can be completed by arguments similar to those for the case 
σ = 1. 

3.5 Asymptotic Behavior of Solutions 
to a Chemotaxis–Haptotaxis Model 

3.5.1 Global Boundedness 

In this part, we first recall the result on local existence and uniqueness of classical 
solutions to (3.1.4) as well as a convenient extensibility criterion, which follows from 
Theorem 3.1, Lemma 5.9 and Theorem 5.1 of Morales-Rodrigo and Tello (2014). 

Lemma 3.25 (Morales-Rodrigo and Tello (2014)) Let Ω ⊂ Rn be a smooth bounded 
domain. There exists Tmax ∈ (0, ∞] such that the problem (3.1.4) possesses a unique 
classical solution satisfying ( p, c,  w)  ∈ (C( Ω̄ ×  [0, Tmax)) ∩ C2,1( Ω̄ × (0, Tmax))

3. 
Moreover, for any s > n + 2, 

lim sup 
t↗Tmax

||p(·, t)||W 1,s (Ω) →  ∞ (3.5.1) 

if Tmax < +∞. 

From now on, let (p, c,  w)  be the local classical solution of (3.1.4) on  (0, Tmax) 
provided by Lemma 3.25, and τ := min{1, Tmax 

6 }. 
The following basic but important properties of the solution to (3.1.4) can be 

directly obtained via standard arguments. 

Lemma 3.26 (Morales-Rodrigo and Tello (2014)) There exists a positive constant 
C independent of time such that

∫

Ω 
p(·, t) ≤ C1 := max{

∫

Ω 
p0, |Ω|},

∫ t 

0 
e−2s

∫

Ω 
p2ds  ≤ C for all t ∈ (0, Tmax), (3.5.2)

∫ t+τ 

t

∫

Ω 
p2 ≤ C1(1 + 

1 

λ 
) for all t ∈ (0, Tmax − τ  ), (3.5.3) 

c(t) ≤ ||c0||L∞(Ω)e
−t ,

∫

Ω 
|∇c(t)|2 +

∫ t 

0

∫

Ω 
(|∇c|2 +  |Δc|2) ≤ C for all t ∈ (0, Tmax), (3.5.4) 

0 ≤ w(t) ≤ max{||w0||L∞(Ω), 1} for all t ∈ (0, Tmax). (3.5.5)
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As the proof of Theorem 3.4 in the one-dimensional case is similar to that for two 
dimensions, henceforth in this section, we shall focus on the case n = 2. 

First, we shall show that p remains bounded in Lq (Ω) for any finite q. We note 
that the Lq (Ω)-bound in Lemma 3.10 of Morales-Rodrigo and Tello (2014) depends 
on the time variable. 

Lemma 3.27 For any r ∈ (1, ∞), there exists a positive constant C(r,  τ  )  indepen-
dent of t , such that ||p(·, t)||Lr (Ω) ≤ C(r,  τ  )  for all t ∈ (0, Tmax). 

Proof Let q := p(c + 1)−αe−ρw. As in the proof of Lemma 3.10 in Morales-Rodrigo 
and Tello (2014), we infer that for any m = 1, 2,  .  .  .  there exist constants c(m)  >  0 
depending upon m and C1 > 0 such that 

d 

dt

∫

Ω 
q2m (c + 1)α eρw +

∫

Ω 
|∇q2m−1 |2 (3.5.6) 

≤c(m)(

∫

Ω 
|Δc|2 + 1)

∫

Ω 
q2m + c(m)(

∫

Ω 
q2m )2 + C1. 

Next, we use induction to show

∫

Ω 
q2m +

∫ t+τ 

t

∫

Ω 
|∇q2m−1 |2 ≤ C(m). (3.5.7) 

Taking m = 1 in (3.5.6), we get 

d 

dt

∫

Ω 
q2 (c + 1)α eρw +

∫

Ω 
|∇q|2 (3.5.8) 

≤c(1)(
∫

Ω 
|Δc|2 + 1 +

∫

Ω 
q2 )

∫

Ω 
q2 (c + 1)α eρw + C1, 

which implies that for the functions 

y(t) =
∫

Ω 
q2 (c + 1)α eρw and a(t) = c(1)(

∫

Ω 
|Δc|2 + 1 +

∫

Ω 
q2 ), 

we have dy  dt  ≤ a(t)y + C1. On the other hand, for any given t >  τ  , it follows  from  
(3.5.2) that there exists some t0 ∈  [t − τ, t] such that y(t0) ≤ C1 

τ (1 + 1 
λ ). Hence, by 

ODE comparison argument we get 

y(t) ≤ y(t0)e
∫ t 
t0 
a(s)ds  + C1

∫ t 

t0 

e
∫ t 
s a(τ )dτ ds  ≤ C2. (3.5.9) 

In this inequality, we have taken t0 = 0 if t ≤ τ and noticed that
∫ t 
t−τ a(s)ds  ≤ C3 

for all t < Tmax by Lemma 3.25. Combining (3.5.8) with (3.5.9), one can see that 
(3.5.7) is indeed valid for m = 1.
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Now, suppose that (3.5.7) is valid for an integer m + 1 = k ≥ 2, i.e.,
∫

Ω 
q2k−1 +

∫ t+τ 

t

∫

Ω 
|∇q2k−2 |2 ≤ C(k). (3.5.10) 

By the Gagliardo–Nirenberg inequality in two dimensions

||z||4 L4(Ω) ≤ C3||∇z||2 L2(Ω)||z||2 L2(Ω) + C4||z||4 L2(Ω), 

and hence
∫

Ω 
q2k ≤ C3

∫

Ω 
|∇q2k−2 |2

∫

Ω 
q2k−1 + C4(

∫

Ω 
q2k−1 

)2 . (3.5.11) 

Integrating (3.5.10) between t and t + τ , we have
∫ t+τ 

t

∫

Ω 
q2k ≤ C5(k), 

which implies that for any t≥τ , there exists some t0 ∈  [t − τ, t] such that ∫
Ω q

2k (t0) ≤ 
C6. At this point, let 

y(t) :=
∫

Ω 
q2k (c + 1)α eρw and b(t) = c(k)(

∫

Ω 
|Δc|2 + 1 +

∫

Ω 
q2k ). 

Then (3.5.6) can be rewritten as 

dy  

dt  
+

∫

Ω 
|∇q2k−1 |2 ≤ b(t)y + C1. 

By the argument above, one can obtain

∫

Ω 
q2k +

∫ t+τ 

t

∫

Ω 
|∇q2k−1 |2 ≤ C, 

and thereby conclude that (3.5.7) is valid for all integers m ≥ 1. The proof of Lemma 
3.27 is now complete in view of the boundedness of the weight (c + 1)αeρw. 

To establish a priori estimates of ||p(·, t)||L∞(Ω), we need some fundamental esti-
mates for the solution of the following problem: 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ct = Δc − c + f, x ∈ Ω, t > 0, 
∂c 

∂ν 
= 0, x ∈ ∂Ω, t > 0, 

c(x, 0) = c0(x), x ∈ Ω. 

(3.5.12)
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Lemma 3.28 (Li and Wang (2018, Lemma 2.2)) Let T > 0, r ∈ (1, ∞). Then for 

each c0 ∈ W 2,r (Ω) with 
∂c0 
∂ν 

= 0 on ∂Ω and f ∈ Lr (0, T ; Lr (Ω)), (3.5.12) has a 

unique solution c ∈ W 1,r (0, T ; Lr (Ω)) ∩ Lr (0, T ; W 2,r (Ω)) given by 

c(t) = e−t etΔ c0 +
∫ t 

0 
e−(t−s) e(t−s)Δ f (s)ds, t ∈  [0, T ], 

where etΔ is the semigroup generated by the Neumann Laplacian, and there is Cr > 0 
such that

∫ t 

0

∫

Ω 
ers |Δc(x, s)|r dxds  ≤ Cr

∫ t 

0

∫

Ω 
ers | f (x, s)|r dxds  + Cr||v0||W 2,r (Ω). 

Now applying these estimates to control the cross-diffusive flux appropriately, we 
can derive the boundedness of p in Ω × (0, Tmax ). 

Lemma 3.29 There exists a constant C > 0 independent of t such that
||p(·, t)||L∞(Ω) ≤ C for all t ∈ (0, Tmax ). 

Proof We will only give a sketch of the proof, which is similar to that of Lemma 
c3.3–3.13 of Morales-Rodrigo and Tello (2014). For k ≥ max{2, ||p0||L∞(Ω)}, let  
qk = max{q − k, 0} and Ωk(t) =  {x ∈ Ω : q(x, t)  >  k}. Multiplying the equation 
of q by qk , we obtain 

d 

dt

∫

Ω 
q2 
k (c + 1)α eρw + 2

∫

Ω 
|∇qk |2 + 2

∫

Ω 
q2 
k + 8

∫

Ω 
q2 
k (c + 1)α eρw 

≤C1

∫

Ω 
q3 
k + C1k

∫

Ω 
q2 
k + C1k

2
∫

Ω 
qk + C1

∫

Ω 
(q2 

k + kqk)|Δc| 
(3.5.13) 

for some C1 > 0 independent of k. By the boundedness of q in Lr (Ω) for any r > 1, 
the Gagliardo–Nirenberg inequality and Young inequality, we obtain 

C1||qk||3 L3(Ω) ≤ 
1 

4
||qk||2 H 1(Ω) + C2||qk||L1(Ω), 

C1k||qk||2 L2(Ω) ≤ 
1 

4
||qk||2 H 1(Ω) + C2k

2||qk||L1(Ω), 

C1

∫

Ω 
q2 
k |Δc|  ≤  

1 

4
||qk||2 H 1(Ω) + C2||qk||2 L2(Ω)||Δc||2 L2(Ω), 

C1k
∫

Ω 
qk |Δc|  ≤  

1 

4
||qk||2 H 1(Ω) + C2k

2 (1 + ||Δc||8 L8(Ω))|Ωk | 3 
2 .
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Inserting the above estimates into (3.5.10), we have 

d 

dt

∫

Ω 
q2 
k (c + 1)α eρw +

∫

Ω 
|∇qk |2 +

∫

Ω 
q2 
k + 8

∫

Ω 
q2 
k (c + 1)α eρw 

≤C2||qk||2 L2(Ω)||Δc||2 L2(Ω) + C2k
2 (1 + ||Δc||8 L8(Ω))|Ωk | 3 

2 + (C1 + 2C2)k
2||qk||L1(Ω) 

≤C2||qk||2 L2(Ω)||Δc||2 L2(Ω) + 
1 

2
||qk||2 H 1(Ω) + C3k

4 (1 + ||Δc||8 L8(Ω))|Ωk | 3 
2 . 

On the other hand, according to the relation between distribution functions and L p 

integrals (see, e.g., (2.6) of Reyes and Vázquez (2006)), we can see that 

(r + 1)
∫ ∞ 

0 
sr |Ωs(t)|ds  = ||q(t)||r+1 

Lr+1(Ω) . 

Hence, taking into account Lemma 3.26, we get 

(k − 1)16|Ωk(t)| <
∫ k 

k−1 
s16|Ωs(t)|ds  <

∫ ∞ 

0 
s16|Ωs(t)|ds  ≤ 

1 

17
||q(·, t)||17 L17(Ω) 

and thus 

d 

dt

∫

Ω 
q2 
k (c + 1)α eρw + 8

∫

Ω 
q2 
k (c + 1)α eρw 

≤C2||Δc||2 L2(Ω)

∫

Ω 
q2 
k (c + 1)α eρw + C4(1 + ||Δc||8 L8(Ω))|Ωk | 5 

4 . 

Therefore, if h(t) = 8 − C2||Δc||2 L2(Ω)
, then

∫

Ω 
q2 
k (c + 1)α eρw ≤ C4e

− ∫ t 
0 h(s)ds

∫ t 

0 
(1 + ||Δc||8 L8(Ω))e

∫ s 
0 h(σ )dσ |Ωk(s)| 5 

4 ds. 

Furthermore, since e− ∫ t 
0 h(s)ds  = e−8t eC2

∫ t 
0 ||Δc||2 

L2 (Ω) 
ds  ≤ C5e−8t by Lemma 3.25 and 

e
∫ s 
0 h(σ )dσ ≤ e8s , we get

∫

Ω 
q2 
k ≤C6

∫ t 

0 
e−8(t−s) (1 + ||Δc||8 L8(Ω))|Ωk(s)| 5 

4 ds  

≤C6

∫ t 

0 
e−8(t−s) (1 + ||Δc||8 L8(Ω))ds  · sup 

t≥0 
|Ωk(t)| 5 

4 . 

To estimate the integral term in the right-hand side of the above inequality, we apply 
Lemma 3.28 with r = 8 and Lemma 3.27 to get

∫ t 

0 
e−8(t−s)||Δc||8 L8(Ω)ds  ≤ C7
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and thus
∫

Ω q
2 
k ≤ C8(sup 

t≥0 
|Ωk(t)|) 5 4 . 

On the other hand,
∫

Ω q
2 
k (t) ≥

∫

Ω j (t) q
2 
k (t) ≥ ( j − k)2|Ω j (t)| for j > k. Conse-

quently 
( j − k)2 sup 

t≥0 
|Ω j (t)|  ≤  C8(sup 

t≥0 
|Ωk(t)|) 5 4 |Ωk(t)|. 

According to Lemma B.1 of Kinderlehrer and Stampacchia (1980), there exists k0 < 
∞ such that |Ωk0 (t)|  =  0 for all t ∈ (0, Tmax ). Therefore, ||q(·, t)||L∞(Ω) ≤ k0 for 
any t ∈ (0, Tmax ) and thereby the proof is complete. 

Proof of Theorem 3.4. By the boundedness of p in L∞((0, Tmax ), L∞(Ω)) from 
Lemma 3.29 and a bootstrap argument as in Morales-Rodrigo and Tello (2014), we 
can see that the global existence of classical solutions to (3.1.4) is an immediate 
consequence of Lemma 3.25, i.e., Tmax =  ∞. Indeed, suppose that Tmax < ∞, then 
by Lemmas 3.15 and 3.19 of Morales-Rodrigo and Tello (2014), we can see that for 
any s > n + 2 and t ≤ Tmax

||c(·, t)||W 1,s (Ω) + ||w(·, t)||W 1,s (Ω) ≤ C. 

Further by Lemma 3.20 of Morales-Rodrigo and Tello (2014), we have
||p(·, t)||W 1,s (Ω) ≤ C which contradicts (3.5.1) and thus implies that Tmax =  ∞. 
Moreover, since τ := min{1, Tmax 

6 }  =  1, there exists a constant C > 0 independent of 
time t such that ||p(·, t)||L∞(Ω) ≤ C for all t ≥ 0 by retracing the proofs of Lemmas 
3.27 and 3.28. This completes the proof of Theorem 3.4. 

3.5.2 Asymptotic Behavior 

In this part, on the basis of the L∞-bound of p provided by Theorem 3.4, we shall 
look at the asymptotic behavior of the solution ( p, c,  w)  of the problem (3.1.4). 

1. Lr -convergence of solutions in two dimensions 
When either w0 > 1 or ||w0 − 1||L∞(Ω) <  δ  for some δ  >  0, the authors of Morales-
Rodrigo and Tello (2014) removed the time dependence of the L∞-bound of p 
(see Lemma 5.8 of Morales-Rodrigo and Tello (2014)) and thereby investigated the 
asymptotic behavior of solutions to (3.1.4). In this subsection, on the basis of the 
L∞-bound of p being independent of time as provided by Theorem 3.4, we shall 
derive the same estimates as in Lemmas 5.6 and 5.7 of Morales-Rodrigo and Tello 
(2014) under the weaker assumption that w0 > 1 − 1 

ρ . We shall show that the solution 
(p, c,  w)  to (3.1.4) converges to the homogeneous steady state (1, 0, 1) as t →  ∞. 

Before going into the details, let us first collect some useful related estimates. It 
should be noted that no other assumptions on the initial data ( p0, c0,  w0) are made 
except for reasonable regularity, i.e., (3.1.5).
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Lemma 3.30 (Morales-Rodrigo and Tello (2014, Lemmas 3.4, 3.8, 5.1, 5.2)) Let 
(p, c,  w)  be the global, classical solution of (3.1.4). Then

|
|
|
|

∫ ∞ 

0

∫

Ω 
p(1 − p)

|
|
|
| ≤ max{

∫

Ω 
p0, |Ω|}/λ; (3.5.14)

∫ ∞ 

0

∫

Ω 
p|w − 1|  ≤ ||w0 − 1||L1(Ω); (3.5.15)

∫ ∞ 

0

∫

Ω 
p|∇c|2 < ∞; (3.5.16)

∫

Ω 
|∇c(t)|2 ≤ e−2t

⎫∫

Ω 
|∇c0|2 + μ2||c0||2 L∞(Ω) max{

∫

Ω 
p0, |Ω|}(t + 

1 

λ 
)

⎫

. 

(3.5.17) 

Lemma 3.31 Under the assumptions of Theorem 3.4, we have 

sup 
t≥0

||c(t)||W 1,∞(Ω) ≤ C. (3.5.18) 

Proof We know that c solves the linear equation 

ct = Δc − c + f 

under the Neumann boundary condition with f := −μpc. Since p ≥ 0, we know 
that 0 ≤ c(x, t) ≤ ||c0||L∞(Ω)e−t by the standard sub-super solutions method. On 
the other hand, by Theorem 3.4, sup 

t≥0
||p(t)||L∞(Ω)≤ C1, which readily implies that

|| f ||L∞((0,∞);L∞(Ω)) ≤ C1. Now upon a standard regularity argument, we can deduce 
the desired result. For the reader’s convenience, we only give a brief sketch of the main 
ideas, and would like to refer to the proof of Lemma 1 in Kowalczyk and Szymańska 
(2008) or Lemma 4.1 in Horstmann and Winkler (2005) for more details. Indeed, 
according to the variation-of-constants formula of c, we have for  t > 2 

c(·, t) = e(t−1)(Δ−1) c(·, 1) +
∫ t 

1 
e(t−s)(Δ−1) f (·, s)ds. 

So by Lemma 1.1 (ii), we infer that

||∇c(·, t)||L∞(Ω) 

≤2c2||c(·, 1)||L1(Ω) + c2
∫ t 

1 
(1 + (t − s)−

1 
2 )e−(t−s)(λ1+1)|| f (·, s)||L∞(Ω)ds  

≤2c2||c(·, 1)||L1(Ω) + c2C1

∫ ∞ 

0 
(1 + σ −

1 
2 )e−σ dσ.
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Lemma 3.32 (Morales-Rodrigo and Tello (2014, Lemma 5.4)) Let (p, c,  w)  be the 
global, classical solution of (3.1.4). Then for every t ≥ 0 and κ  >  0, 

d 

dt  
F( p(t), w(t)) = G(p(t), w(t), c(t)), 

where 

F(p,  w)  = κ
∫

Ω 
|∇w|2 +

∫

Ω 
p(ln p − 1) +

∫

Ω 
p(w − 1) − γ  κ

∫

Ω 
p(w − 1)2 , 

and 

G(p,  w,  c) =  −
∫

Ω 

|∇ p|2 
p 

+
∫

Ω 

α 
1 + c 

∇ p ·  ∇c +
∫

Ω 
(2αγ κ(1 − w) + αρ) 

p 

1 + c 
∇c ·  ∇w 

+
∫

Ω 
(ρ2 − 2γ  κ  + 2ργ κ(1 − w))p|∇w|2 + λ

∫

Ω 
p(1 − p) ln p 

+ λρ
∫

Ω 
p(1 − p)(w − 1) + γρ

∫

Ω 
p2(1 − w) 

+ 2γ 2κ
∫

Ω 
p2(w − 1)2 − λγ κ

∫

Ω 
p(1 − p)(w − 1)2. 

Lemma 3.33 If w0 > 1 − 
1 

ρ 
, then there exists κ  >  0 such that 

G(p,  w,  c) ≤  −  
1 

2

∫

Ω 

|∇ p|2 
p 

− 
1 

2

∫

Ω 
p|∇w|2 + C

∫

Ω 
p|w − 1|  +  C

∫

Ω 
p|∇c|2 
(3.5.19) 

for some C > 0. 

Proof By the Hölder and Young inequalities, we have

∫

Ω 

α 
1 + c 

∇ p ·  ∇c ≤ 
1 

2

∫

Ω 

|∇ p|2 
p 

+ 
α2 

2

∫

Ω 
p|∇c|2 , 

and
∫

Ω 
(2αγ κ(1 − w) + αρ) 

p 

1 + c
∇c ·  ∇w ≤ 

1 

2

∫

Ω 
p|∇w|2 + C1

∫

Ω 
p|∇c|2 

for some C1 > 0. 
As w0 > 1 − 

1 

ρ 
, we can find some ε1 > 0 such that ρ(1 − w0)+ ≤ 1 − ε1, where 

(1 − w0)+ = max{0, 1 − w0}. Hence from the w-equation in (3.1.4), it follows that 

1 − w = (1 − w0)e
−γ

∫ t 
0 p(s)ds  , (3.5.20)
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and thus ∫

Ω 
(ρ2 − 2γ  κ  + 2ργ κ(1 − w))p|∇w|2 

≤
∫

Ω 
(ρ2 − 2γ  κ  + 2ργ κ(1 − w0)+) p|∇w|2 

≤
∫

Ω 
(ρ2 − 2γ  κε1)p|∇w|2 

≤  −
∫

Ω 
p|∇w|2 

if we pick κ  >  0 sufficiently large such that ρ2 − 2γ  κε1 < −1. 
Denote the lower order terms of G(p,  w,  c) by θ  (p,  w), i.e., 

θ  (p,  w)  =:λ
∫

Ω 
p(1 − p) ln p + λρ

∫

Ω 
p(1 − p)(w − 1) + γρ

∫

Ω 
p2 (1 − w) 

+ 2γ 2 κ
∫

Ω 
p2 (w − 1)2 − λγ κ

∫

Ω 
p(1 − p)(w − 1)2 . 

Since s(1 − s) ln s ≤ 0 for s ≥ 0, we get 

θ  (p,  w)  ≤λρ

∫

Ω 
p(1 − p)(w − 1) + γρ

∫

Ω 
p2 (1 − w) 

+ 2γ 2 κ
∫

Ω 
p2 (w − 1)2 − λγ κ

∫

Ω 
p(1 − p)(w − 1)2 

≤C2(||p||L∞(Ω), ||w − 1||L∞(Ω))

∫

Ω 
p|w − 1|, 

which, along with ||p(·, t)||L∞(Ω) ≤ C from Theorem 3.4 and ||w(·, t) − 1||L∞(Ω) ≤
||w0 − 1||L∞(Ω) from (3.5.20), yields 

θ  (p,  w)  ≤ C3

∫

Ω 
p|w − 1|. 

The desired result (3.5.19) then immediately follows. 

Lemma 3.34 If w0 > 1 − 
1 

ρ 
, then 

sup 
t≥0

∫

Ω 
|∇w(t)|2 +

∫ ∞ 

0

∫

Ω 

|∇ p|2 
p

+
∫ ∞ 

0

∫

Ω 
p|∇w|2 < ∞. (3.5.21) 

. 

Proof Combining Lemmas 3.30 and 3.31, we have
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d 

dt  
F(p(t), w(t)) + 

1 

2

∫

Ω 

|∇ p|2 
p 

+ 
1 

2

∫

Ω 
p|∇w|2 ≤ C

∫

Ω 
p|w − 1|  +  C

∫

Ω 
p|∇c|2. 

Hence, (3.5.21) follows upon integration on the time variable, and using (3.5.15) and 
(3.5.16). 

Lemma 3.35 If w0 > 1 − 
1 

ρ 
, then for any r ≥ 2 

lim 
t→∞ ||p(·, t) − p(t)||Lr (Ω) = 0, (3.5.22) 

lim 
t→∞ |p(t) − 1|  =  0, (3.5.23) 

where p(t) = 1 
|Ω|

∫

Ω p(·, t), and 

lim 
t→∞ ||w(·, t) − 1||Lr (Ω) = 0. (3.5.24) 

Proof The proofs of (3.5.22) and (3.5.23) are similar to those of Lemmas 5.9– 
5.11 of Morales-Rodrigo and Tello (2014), respectively. However, for the reader’s 
convenience, we only give a brief sketch of (3.5.23). In fact, from (3.1.4) and the 
Poincaré–Wirtinger inequality, it follows that 

pt =λ(p − p2 − 
1 

|Ω|
∫

Ω 
(p − p)2 

≥λ p(1 − p − C1

∫

Ω 

|∇ p|2 
p 

). 

Hence by (3.5.21), we get 

p(t) ≥p0 exp{λt − λ
∫ t 

0 
p(s)ds  − C1λ

∫ ∞ 

0

∫

Ω 

|∇ p|2 
p 

ds} 

≥C2 exp{λt − λ
∫ t 

0 
p(s)ds}, 

which means that (3.5.23) is valid due to either p(t) → 1 or p(t) → 0 in Lemma 
5.10 of Morales-Rodrigo and Tello (2014). Indeed, suppose that p(t) → 0, then there 
exists t0 > 1 such that p(t) ≤ 1 2 and thus

∫ t 
0 p(s)ds  ≤ t 2 +

∫ t0 
0 p(s)ds  for all t ≥ t0. 

Therefore, we arrive at p(t) ≥ C3e 
λt 
2 for all t ≥ t0, which contradicts p(t) → 0. 

Now we turn to show (3.5.24). Invoking the Poincaré inequality in the form

∫

Ω 
|ϕ(x) − 

1 

|Ω|
∫

Ω 
ϕ(y)dy|2 dx  ≤ Cp

∫

Ω 
|∇ϕ|2 dx  for all ϕ ∈ W 1,2 (Ω) 

for some Cp > 0, one can find that for all j ∈ N
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∫ j+1 

j
||p(s) − p(s)||2 L2(Ω)ds  ≤ Cp

∫ j+1 

j
||∇ p(s)||2 L2(Ω)ds  

≤ Cp sup 
t≥0

||p(t)||L∞(Ω)

∫ j+1 

j

∫

Ω 

|∇ p(s)|2 
p(s) 

ds, 

(3.5.25) 
which, along with (3.5.21) and Theorem 3.4, shows that

∫

Ω

∫ j+1 

j 
|p(x, s) − p(s)|2 dsdx  =

∫ j+1 

j
||p(s) − p(s)||2 L2(Ω)ds  → 0 (3.5.26) 

as j →  ∞. 
Now defining p j (x) :=

∫ j+1 
j |p(x, s) − p(s)|2ds, x ∈ Ω, j ∈ N, (3.5.26) tells 

us that p j → 0 in L1(Ω) as j →  ∞. There exist a certain null set Q ⊆ Ω and a 
subsequence ( jk)k∈N ⊂ N such that jk →  ∞  and p jk (x) → 0 for every x ∈ Ω \ Q 
as k →  ∞. Restated in the original variable, this becomes

∫ jk+1 

jk 

|p(x, s) − p(s)|2 ds  → 0 (3.5.27) 

for every x ∈ Ω \ Q as k →  ∞. 
Therefore, from (3.5.20) and p(x, t) ≥ 0, it follows that for any x ∈ Ω \ Q 

|w(x, t) − 1| 

≤||w0 − 1||L∞(Ω) exp{−γ

∫ [t] 

0 
p(x, s)ds} 

≤||w0 − 1||L∞(Ω) exp{−γ 
m(t)Σ

k=0

∫ jk+1 

jk 

p(x, s)ds} 

≤||w0 − 1||L∞(Ω) exp{γ 
m(t)Σ

k=0

∫ jk+1 

jk 

|p(x, s) − p(s)|ds  − γ 
m(t)Σ

k=0

∫ jk+1 

jk 

p(s)ds} 

≤||w0 − 1||L∞(Ω) exp{γ 
m(t)Σ

k=0 

(

∫ jk+1 

jk 

|p(x, s) − p(s)|2 ds) 1 2 − γ 
m(t)Σ

k=0

∫ jk+1 

jk 

p(s)ds}, 

where m(t) := max 
k∈N 

{ jk + 1, [t]}. Furthermore, by (3.5.23), there exists k0 ∈ N such 

that
∫ jk+1 
jk 

p(s)ds  ≥ 1 2 for all k ≥ k0. Hence by the fact that m(t) →  ∞  as t →  ∞  
and (3.5.27), we obtain that w(x, t) − 1 → 0 almost everywhere in Ω as t →  ∞. 
On the other hand, as |w(x, t) − 1|  ≤ ||w0 − 1||L∞(Ω), the dominated convergence 
theorem ensures that (3.5.24) holds for any r ∈ (2, ∞). 

Remark 3.4 (1) It is observed that since W 1,2(Ω) ϲ→ L∞(Ω) is invalid in the two-
dimensional setting, ||p(s) − p(s)||2 L2(Ω) in (3.5.25) cannot be replaced by ||p(s) −



178 3 Chemotaxis–Haptotaxis System

p(s)||2 L∞(Ω), and thus we cannot infer that lim 
t→∞ ||w(·, t) − 1||L∞(Ω) = 0, even though 

we have established that all the related estimates of (p, c,  w)  in Morales-Rodrigo 
and Tello (2014) continue to hold under the milder condition imposed on the initial 
data w0. 
(2) Similar to the remark above, we note that, even though ||w(·, t)||W 1,n (Ω) ≤ 
C(T ) for any n ≥ 2 and t ≤ T , we are not able to infer the global estimate 
supt≥0

∫

Ω |∇w(t)|2+ε ≤ C . Otherwise, we would be able to apply regularity esti-
mates for bounded solutions of semilinear parabolic equations (see Porzio and Vespri 
(1993) for instance) to obtain the Hölder estimates of p(x, t) in Ω × (1, ∞), and 
thereby conclude lim 

t→∞ ||p(·, t) − 1||L∞(Ω) = 0. As things stand at the moment, we 

are only able to infer convergence in Lr . 

2. L∞-convergence of solutions with exponential rate in one dimension 
It is observed that the results, in particular Lemma 3.35, in the previous subsec-

tion are still valid in the one-dimensional case. Moreover, in the one-dimensional 
setting, the weak convergence result in Lemma 3.35 can be improved via a boot-
strap argument. In fact, we shall derive some a priori estimates of (p, c,  w)  and 
thereby demonstrate that (p, c,  w)  converges to (1, 0, 1) in L∞(Ω) as t →  ∞. Fur-
thermore, by a regularity argument involving the variation-of-constants formula for 
p and smoothing L p − Lq type estimates for the Neumann heat semigroup, we will 
show that p(·, t) − 1 decays exponentially in L∞(Ω). 

As pointed out in the introduction, the main technical difficulty in the derivation 
of Theorem 3.5 stems from the coupling between p and w. Indeed, the lack of the 
regularization effect in the space variable in the w-equation and the presence of p 
there demand tedious estimates of the solution. 

The following lemma plays a crucial role in establishing the uniform convergence 
of p as t →  ∞  (see Lemma 3.40). Though the proof thereof only involves elementary 
analysis, we give full proof here for the sake of the reader’s convenience since we 
could not find a precise reference covering our situation. 

Lemma 3.36 Let k(t) be a function satisfying 

k(t) ≥ 0,
∫ ∞ 

0 
k(t)dt  < ∞. 

If k '(t) ≤ h(t) for some h(t) ∈ L1(0, ∞), then k(t) → 0 as t →  ∞. 

Proof Supposing the contrary, then we can find A > 0 and a sequence (t j ) j∈N ⊂ 
(1, ∞) such that t j ≥ t j−1 + 2, t j →  ∞  as j →  ∞  and k(t j ) ≥ A for all j ∈ N. On  
the other hand, by k '(t) ≤ h(t), we have  

k(t j − τ  )  ≥ k(t j ) −
∫ t j 

t j−τ 
|h(s)|ds  ≥ k(t j ) −

∫ t j 

t j−1 
|h(s)|ds (3.5.28) 

for all τ ∈ (0, 1).
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Since h(t) ∈ L1(0, ∞), we have
∫ t j 
t j−1 |h(s)|ds  → 0 as t j →  ∞  and thereby there 

exists j0 ∈ N such that
∫ t j 
t j−1 |h(s)|ds  ≤ A 2 for all j ≥ j0, which along with (3.5.28) 

implies that 

k(t j − τ  )  ≥ k(t j ) − 
A 

2 
≥ 

A 

2 
(3.5.29) 

for j ≥ j0 and τ ∈ (0, 1). It follows that
∫ t j 
t j−1 k(t)dt  ≥ A 2 for all j ≥ j0, which 

contradicts
∫ ∞ 
0 k(t)dt  < ∞ and thus completes the proof of the lemma. 

Lemma 3.37 If w0 > 1 − 
1 

ρ 
, then there exists a constant C > 0 such that

∫ ∞ 

0

∫

Ω 
eρw|zx |2 ≤ C (3.5.30) 

where z = pe−ρw. 

Proof We know that zx = e−ρw px − ρzwx and thus 

eρw|zx |2 ≤ 4e−ρw|px |2 + 4 p2 e−ρw ρ2|wx |2 . 

Integrating over Ω × (0, ∞) and taking (3.5.5) into account, we have
∫ ∞ 

0

∫

Ω 
eρw|zx |2 ≤ 4

∫ ∞ 

0

∫

Ω 
|px |2 + 4ρ2 sup 

t≥0
||p(t)||L∞(Ω)

∫ ∞ 

0

∫

Ω 
p|wx |2 

≤ 4(1 + ρ2 ) sup 
t≥0

||p(t)||L∞(Ω)(

∫ ∞ 

0

∫

Ω 

|px |2 
p 

+
∫ ∞ 

0

∫

Ω 
p|wx |2 ). 

Hence by Theorem 3.4 and Lemma 3.34, we get (3.5.30). 

Lemma 3.38 If w0 > 1 − 
1 

ρ 
, then there exists a constant C > 0 such that 

d 

dt

∫

Ω 
eρw |zx |2 + 

1 

3

∫

Ω 
eρwz2 t 

≤C(

∫

Ω 
eρw |zx |2 +

∫

Ω 
p|wx |2 +

∫

Ω 
|cxx |2 +

∫

Ω 
p|cx |2 +

∫

Ω 
p|w − 1|  +

∫

Ω 
p(p − 1)2) 

with z = pe−ρw. 

Proof Note that z satisfies 

zt = e−ρw (eρw zx )x − e−ρw ( 
zxeρw 

1 + c 
∇c)x + λz(1 − zeρw ) − ργ eρw z2 (1 − w). 

Multiplying the above equation by zt eρw and integrating in the spatial variable, we 
obtain
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∫

Ω 
eρw z2 t +

∫

Ω 
eρw zx zxt  

=  −
∫

Ω 
eρw zt ( 

α 
1 + c 

zxcx + 
αzρ 
1 + c 

wxcx − 
αz 

(1 + c)2 
|cx |2 + αz 

1 + c 
cxx  ) 

+
∫

Ω 
eρw zt (λz(1 − zeρw ) − ργ eρw z2 (1 − w)). 

(3.5.31) 

Notice that
∫

Ω 
eρwzx zxt  = 

1 

2 

d 

dt

∫

Ω 
eρw |zx |2 − 

γρ 
2

∫

Ω 
e2ρwz(1 − w)|zx |2 

≥ 
1 

2 

d 

dt

∫

Ω 
eρw |zx |2 − 

γρ 
2 

sup 
t≥0

||p(t)||L∞(Ω)||1 − w0||L∞(Ω)

∫

Ω 
eρw |zx |2, 

−
∫

Ω 
zt 

αeρw 

1 + c 
zx cx ≤ 

1 

6

∫

Ω 
eρwz2 t + C1 sup 

t≥0
||cx (t)||2 L∞(Ω)

∫

Ω 
eρw |zx |2,

∫

Ω 
zt 

αzeρwρ 
1 + c 

wx cx ≤ 
1 

6

∫

Ω 
eρwz2 t + C1 sup 

t≥0
||cx (t)||2 L∞(Ω) sup 

t≥0
||p(t)||L∞(Ω)

∫

Ω 
p|wx |2,

∫

Ω 
zt 

αzeρw 

(1 + c)2 
|cx |2 ≤ 

1 

6

∫

Ω 
eρwz2 t + C1 sup 

t≥0
||p(t)||L∞(Ω) sup 

t≥0
||cx (t)||2 L∞(Ω)

∫

Ω 
p|cx |2, 

−
∫

Ω 
zt 

αzeρw 

1 + c 
cxx  ≤ 

1 

6

∫

Ω 
eρwz2 t + C1 sup 

t≥0
||p(t)||2 L∞(Ω)

∫

Ω 
|cxx |2 

and
∫

Ω 
eρw zt (λz(1 − zeρw ) − ργ eρw z2 (1 − w)) 

= λ

∫

Ω 
pzt (1 − p) − ργ

∫

Ω 
zt p

2 (1 − w)) 

≤ 
1 

6

∫

Ω 
eρw z2 t + C1 sup 

t≥0
||p(t)||L∞(Ω)

∫

Ω 
p(1 − p)2 

+ C1 sup 
t≥0

||p(t)||3 L∞(Ω)||1 − w0||L∞(Ω)

∫

Ω 
p|1 − w|. 

Applying Theorem 3.4, (3.5.18) and inserting the above inequalities into (3.5.31), 
we obtain the desired inequality. 

Now we focus our attention on the decay properties of the solutions. Indeed, we 
will show that p(x, t) converges to 1 with respect to the norm in L∞(Ω) as t →  ∞. 
Subsequently, we will establish the exponential decay of ||p(·, t) − 1||L∞(Ω) with 
explicit rate. 

Lemma 3.39 If w0 > 1 − 
1 

ρ 
, then
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lim 
t→∞ ||w(·, t) − 1||L∞(Ω) = 0. (3.5.32) 

Proof From (3.5.20), it follows that for any ∈ >  0 

|w(x, t) − 1|  ≤ ||w0 − 1||L∞(Ω) exp{−γ

∫ t 

0 
p(s)ds} (3.5.33) 

≤ ||w0 − 1||L∞(Ω) exp{γ
∫ t 

0
||p(s) − p(s)||L∞(Ω)ds  − γ

∫ t 

0 
p(s)ds} 

≤ ||w0 − 1||L∞(Ω) exp{ 
γ

∈

∫ t 

0
||p(s) − p(s)||2 L∞(Ω)ds  + ∈γ t − γ

∫ t 

0 
p(s)ds}, 

where p(t) = 1 
|Ω|

∫

Ω p(·, t). 
On the other hand, by the Poincaré–Wirtinger inequality, the Sobolev embedding 

theorem in one dimension and (3.5.21), we have

∫ t 

0
||p(s) − p(s)||2 L∞(Ω)ds  ≤ C1

∫ ∞ 

0
||px (s)||2 L2(Ω)ds  

≤ C1 sup 
t≥0

||p(t)||L∞(Ω)

∫ ∞ 

0

∫

Ω 

|px (s)|2 
p(s) 

ds  

≤ C2 

(3.5.34) 

for some constant C2 > 0. Combining (3.5.33) with (3.5.34) yields

||w(t) − 1||L∞(Ω) ≤ ||w0 − 1||L∞(Ω) exp{ C2γ

∈
+ ∈γ t − γ

∫ t 

0 
p(s)ds} 

for t ≥ 0. The assertion now follows from the last inequality and the proof is com-
plete. 

Lemma 3.40 If w0 > 1 − 
1 

ρ 
, then 

lim 
t→∞ ||p(·, t) − 1||L∞(Ω) = 0. (3.5.35) 

Proof We first show that 

lim 
t→∞ ||z(·, t) − z(t)||L∞(Ω) = 0 (3.5.36) 

where z(t) = 1 
|Ω|

∫

Ω z(·, t). 
To this end, we consider the function k(t) ≥ 0 defined by k(t) = ∫

Ω e
ρw|zx |2 and 

prove that 
lim 
t→∞ 

k(t) = 0. (3.5.37) 

By Lemmas 3.36, 3.37 and 3.38, it is enough to prove that
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h(t) :=
∫

Ω 
eρw |zx |2 +

∫

Ω 
p|wx |2 +

∫

Ω 
(|cxx |2 + p|cx |2) +

∫

Ω 
p|w − 1|  +

∫

Ω 
p(p − 1)2 

∈ L1(0, ∞). 

Noting (3.5.30), (3.5.21), (3.5.16), (3.5.15) and (3.5.4), it remains to estimate

∫ ∞ 

0

∫

Ω 
p(p − 1)2 . 

In fact, multiplying the p-equation in (3.1.4) by  p − 1, we have  
1 

2 

d 

dt

∫

Ω 
(p − 1)2 =  −

∫

Ω 
|px |2 + ρ

∫

Ω 
pwx px + α

∫

Ω 

p 

1 + c 
cx px − λ

∫

Ω 
p(p − 1)2 

≤  −  
1 

2

∫

Ω 
|px |2 + C(

∫

Ω 
p2|wx |2 +

∫

Ω 
p2|cx |2) − λ

∫

Ω 
p( p − 1)2. 

Hence, by the boundedness of p, (3.5.16) and (3.5.21), we easily infer that

∫ ∞ 

0

∫

Ω 
p(p − 1)2 ≤ C. 

Furthermore, by the Poincaré–Wirtinger inequality and the Sobolev embedding 
theorem in one dimension, we have

||z(t) − z(t)||L∞(Ω) ≤ Cp||zx (t)||L2(Ω), 

which along with (3.5.37) yields (3.5.36). 
On the other hand, for any {t j } j∈N ⊂ (1, ∞), there exists a subsequence along 

which z(·, t j ) − e−ρ → 0 a.e. in Ω as j →  ∞  by Lemma 3.35. We apply the 
dominated convergence theorem along with the uniform majorization |z(·, t j )|  ≤  
sup 
j≥1

||z(t j )||L∞(Ω) ≤ C to infer that 

lim 
t→∞ |z(t) − e−ρ |  =  0. (3.5.38) 

Hence

||p(·, t) − 1||L∞(Ω) 

=||eρw z − 1||L∞(Ω) 

≤eρ(1+||w0||∞(Ω)) (||z(·, t) − z(t)||L∞(Ω) +  |z(t) − e−ρ |) + ||eρw(·,t) − eρ||L∞(Ω) 

≤eρ(1+||w0||∞(Ω)) (||z(·, t) − z(t)||L∞(Ω) +  |z(t) − e−ρ |) + C1||w(·, t) − 1||L∞(Ω) 

for some C1 > 0, which together with (3.5.32), (3.5.36) and (3.5.38) yields the 
desired result.
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Having established that p(x, t) converges to 1 uniformly with respect to x ∈ Ω as 
t →  ∞, we now go on to establish an explicit exponential convergence rate. Using 
(3.5.35), we first look into the decay of

∫

Ω |wx (t)|2. 

Lemma 3.41 Let w0 > 1 − 
1 

ρ 
. Then for any ∈ >  0, there exists C(∈) > 0 such that

∫

Ω 
|wx (t)|2 ≤ C(∈)e−2γ  (1−∈)t . (3.5.39) 

Proof From (3.5.20), it follows that 

|wx (t)|2 ≤4|w0x |2 e−2γ
∫ t 
0 p(s)ds  + 4γ 2|w0 − 1|2 e−2γ

∫ t 
0 p(s)ds

⎫∫ t 

0 
|px (s)|ds

⎫2 

≤4|w0x |2 e−2γ
∫ t 
0 p(s)ds  + 4tγ 2|w0 − 1|2 e−2γ

∫ t 
0 p(s)ds

∫ t 

0 
|px (s)|2 ds. 

Taking Lemma 3.40 into account, we know that for any ∈ >  0, there exists t∈ > 1 
such that p(x, t)  >  1 − ∈ for all x ∈ Ω, t > t∈ . Therefore, integrating the above 
inequality in the space variable yields

∫

Ω 
|wx (t)|2 

≤4e−2γ  (1−∈)(t−t∈ )
∫

Ω 
|w0x |2 + 4tγ 2||w0 − 1||2 L∞(Ω)e

−2γ  (1−∈)(t−t∈ )
∫ ∞ 

0

∫

Ω 
|px |2 

≤C1(∈)(1 + t)e−2γ  (1−∈)t (

∫

Ω 
|w0x |2 + ||w0 − 1||2 L∞(Ω) sup 

t≥0
||p(t)||L∞(Ω)

∫ ∞ 

0

∫

Ω 

|px |2 
p 

), 

for all t > t∈ , which along with (3.5.21) implies (3.5.39). 

Now we utilize the decay properties of
∫

Ω |cx (t)|2,
∫

Ω |wx (t)|2 and the uniform 
convergence of |p(x, t) − 1| asserted by Lemma 3.40 to establish the decay property 
of ||p(·, t) − 1||L2(Ω). 

Lemma 3.42 Let w0 > 1 − 
1 

ρ 
. Then for any ∈ ∈ (0, min{1,  γ  ,  λ}), there exists 

C(∈) > 0 such that

||p(·, t) − 1||L2(Ω) ≤ C(∈)e−(min{1,γ ,λ}−∈)t . (3.5.40)
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Proof By (3.5.35), we know that for any ∈ ∈ (0, min{1,  γ  ,  λ}), there exists t∈ > 1 
such that p(x, t)  >  1 − ∈ for all x ∈ Ω, t > t∈ . Hence, we multiply the p-equation 
in (3.1.4) by  p − 1 and integrate the result over Ω to get 

1 

2 

d 

dt

∫

Ω 
(p − 1)2 =  −

∫

Ω 
|px |2 + ρ

∫

Ω 
pwx px + α

∫

Ω 

p 

1 + c 
cx px − λ

∫

Ω 
p(p − 1)2 

≤  −  
1 

2

∫

Ω 
|px |2 + C1(

∫

Ω 
|wx |2 +

∫

Ω 
|cx |2) − λ(1 − ∈)

∫

Ω 
(p − 1)2 

for all t > t∈ . Now, applying the Gronwall inequality, (3.5.18) and Lemma 3.43, we  
have

∫

Ω 
(p(t) − 1)2 

≤e−2λ(1−∈)(t−t∈ )
∫

Ω 
(p(t∈) − 1)2 + C1

∫ t 

0 
e−2λ(1−∈)(t−s) (

∫

Ω 
|wx |2 +

∫

Ω 
|cx |2 ) 

≤C2(∈)e
−2λ(1−∈)t + C3(∈)

∫ t 

0 
e−2λ(1−∈)(t−s) (e−2γ  (1−∈)s + e−2(1−∈)s ) 

≤C4(∈)e
−2min{λ,1,γ }(1−∈)t , 

where ci (∈) > 0 (i = 2, 3, 4) are independent of time t . This completes the proof. 

Moving forward, on the basis of Lemma 3.42, we come to establish the exponential 
decay of ||p(·, t) − p(t)||L∞(Ω) by means of a variation-of-constants representation 
of p, as follows. 

Lemma 3.43 Let w0 > 1 − 
1 

ρ 
. Then for any ∈ ∈ (0, min{λ1, 1,  γ  ,  λ}), there exists 

C(∈) > 0 such that

||p(·, t) − p(t)||L∞(Ω) ≤ C(∈)e−(min{λ1,1,γ ,λ}−∈)t . (3.5.41) 

Proof By noting that pt = λp(1 − p)(t), applying the variation-of-constants for-
mula to the p-equation in (3.1.4) yields 

p(·, t) − p(t) = etΔ ( p(·, 0) − p(0)) − α
∫ t 

0 
e(t−s)Δ ( 

p 

1 + c 
cx )x 

− ρ
∫ t 

0 
e(t−s)Δ ( pwx )x + λ

∫ t 

0 
e(t−s)Δ (p(1 − p) − p(1 − p)). 

Together with (3.5.17), Lemmas 3.42 and 1.1, this gives
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||p(·, t) − p(t)||L∞(Ω) 

≤||etΔ (p(·, 0) − p(0))||L∞(Ω) + α
∫ t 

0
||e(t−s)Δ ( 

p 

1 + c 
cx )x||L∞(Ω) 

+ ρ
∫ t 

0
||e(t−s)Δ (pwx )x||L∞(Ω) + λ

∫ t 

0
||e(t−s)Δ (p(1 − p) − p(1 − p))||L∞(Ω) 

≤c1e
−λ1t||p(·, 0) − p(0)||L∞(Ω) + C1

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s)||wx||L2(Ω) 

+ C1

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s)||cx||L2(Ω) 

+ C1

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s)||p(1 − p) − p(1 − p)||L2(Ω) 

≤c1e
−λ1t||p(·, 0) − p(0)||L∞(Ω) + C2(∈)

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s) e−γ  (1−∈)s 

+ C2(∈)

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s) e−(1−∈)s 

+ C1

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s)||p(1 − p) − p(1 − p)||L2(Ω). 

It is observed that

||p(1 − p) − p(1 − p)||2 L2(Ω) = ||p(1 − p)||2 L2(Ω) −  |Ω||p(1 − p)|2 
≤||p(1 − p)||2 L2(Ω). 

Hence from (3.5.15) and Lemma 3.42, it follows that

||p(·, t) − p(t)||L∞(Ω) 

≤c1e
−λ1t||p(·, 0) − p(0)||L∞(Ω) + C2(∈)

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s) e−γ  (1−∈)s 

+ C2(∈)

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s) e−(1−∈)s 

+ C3(∈)

∫ t 

0 
(1 + (t − s)−

3 
4 )e−λ1(t−s) e− min{1,γ ,λ}(1−∈)s 

≤C4(∈)e
−min{λ1,1,γ ,λ}(1−∈)t , 

which implies (3.5.41).
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Lemma 3.44 Let w0 > 1 − 
1 

ρ 
. Then for any ∈ ∈ (0, min{λ1, 1,  γ  ,  λ}), there exists 

C(∈) > 0 such that 

|p(t) − 1|  ≤  C(∈)e−(min{2λ1,2,2γ  ,λ}−∈)t . (3.5.42) 

Proof We integrate the p-equation in the spatial variable over Ω to obtain 

( p − 1)t = λ(p − p2 − 
1 

|Ω|
∫

Ω 
( p − p)2 ) 

=  −  λp(p − 1) − λ 
|Ω| ||p − p||2 L2(Ω). 

(3.5.43) 

By (3.5.23), there exists t∈ > 0 such that p(t) ≥ 1 − ∈ for t ≥ t∈ . Hence by (3.5.41) 
and (3.5.43), solving the differential equation entails 

|p(t) − 1|  ≤|p(tε) − 1|e−λ
∫ t 
tε p(s)ds  + λ 

|Ω|
∫ t 

tε 

e−λ
∫ t 
s p(σ )dσ||p(s) − p(s)||2 L2(Ω) 

≤|p(tε) − 1|e−λ(1−∈)(t−t∈ ) + λ 
|Ω|

∫ t 

tε 

e−λ(1−∈)(t−s)||p(s) − p(s)||2 L2(Ω) 

≤|p(tε) − 1|e−λ(1−∈)(t−t∈ ) + C1(∈)

∫ t 

0 
e−λ(1−∈)(t−s) e−2min{λ1,1,γ ,λ}(1−∈)s 

≤|p(tε) − 1|e−λ(1−∈)(t−t∈ ) + C2(∈)e
−min{2λ1,2,2γ  ,λ}(1−∈)t 

≤C3(∈)e
−min{2λ1,2,2γ  ,λ}(1−∈)t 

for t ≥ t∈ , which proves (3.5.42). 

Lemma 3.45 Let w0 > 1 − 
1 

ρ 
. Then for any ∈ ∈ (0, min{λ1, 1,  γ  ,  λ}), there exists 

C(∈) > 0 such that

||p(·, t) − 1||L∞(Ω) ≤ C(∈)e−(min{λ1,1,γ ,λ}−∈)t . (3.5.44) 

Proof Combining above two lemmas, we have

||p(·, t) − 1||L∞(Ω) ≤ ||p(·, t) − p(t)||L∞(Ω) +  |p(t) − 1|  ≤  C(∈)e−(min{λ1,1,γ ,λ}−∈)t . 

Proof of Theorem 3.5. (3.1.7) is a direct consequence of Lemma 3.35 in the previous 
subsection. As for (3.1.8)–(3.1.10), we only need to collect (3.5.19), (3.5.32) and 
(3.5.44).
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Remark 3.5 In comparison with (3.5.44), by (3.5.21) and (3.5.37), we have 

sup 
t≥0

∫

Ω 
|wx (t)|2 +  |zx (t)|2 ≤ C, 

and thus supt≥0 ||p(t)||W 1,2(Ω) ≤ C . Hence, an interpolation by means of the 
Gagliardo–Nirenberg inequality in the one-dimensional setting provides

||p(·, t) − 1||L∞(Ω) ≤ ||p(·, t)|| 1 
2 

W 1,2(Ω)
||p(·, t) − 1|| 1 

2 

L2(Ω) ≤ C(∈)e−( 1 2 min{1,γ ,λ}−∈)t , 

where we have used (3.5.40). 
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Chapter 4 
Keller–Segel–(Navier–)Stokes System 
Modeling Coral Fertilization 

4.1 Introduction 

Chemotaxis, the directed movement caused by the concentration of certain chem-
icals, is ubiquitous in biology and ecology, and has a significant effect on pattern 
formation in numerous biological contexts (Hillen and Painter 2009; Maini et al. 
1991). The first mathematically rigorous studies of chemotaxis were carried out by 
Patlak (1953) and Keller–Segel (1970). The latter work involves the derivation of a 
system of PDEs, now known as the Keller–Segel system, which, despite its simple 
structure, was proved to have a lasting impact as a theoretical framework describing 
the collective behavior of populations under the influence of a chemotactic signal 
produced by the populations themselves (Bellomo et al. 2015; Herrero and Velázquez 
1997; Winkler 2013, 2014c). In contrast to this well-understood Keller–Segel sys-
tem, there seem to be few theoretical results on nontrivial behavior in situations where 
the signal is not produced by the population, such as in oxygenotaxis processes of 
swimming aerobic bacteria (Tuval et al. 2005), or where the signal production occurs 
by indirect processes, such as in glycolysis reaction, tumor invasion and the spread 
of the mountain pine beetle (Chaplain and Lolas 2005; Dillon et al. 1994; Fujie and 
Senba 2017; Hu and Tao 2016; Painter et al. 2000; Tao and Winkler 2017b). 

In this chapter, we study the decay property of the chemotaxis–fluid systems 
modeling coral fertilization. Section 4.3 is concerned with the following Keller– 
Segel–Stokes system 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ρt + u ·  ∇ρ = Δρ −  ∇  ·  (ρS (x,  ρ,  c)∇c) − ρm, (x, t) ∈ Ω × (0, T ), 
mt + u ·  ∇m = Δm − ρm, (x, t) ∈ Ω × (0, T ), 
ct + u ·  ∇c = Δc − c + m, (x, t) ∈ Ω × (0, T ), 
ut = Δu −  ∇  P + (ρ + m)∇φ, ∇  ·  u = 0, (x, t) ∈ Ω × (0, T ), 
(∇ρ − ρS (x,  ρ,  c)∇c) · ν =  ∇m · ν =  ∇c · ν = 0, u = 0, (x, t) ∈ ∂Ω × (0, T ), 
ρ(x, 0) = ρ0(x), m(x, 0) = m0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω, 

(4.1.1) 
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where T ∈ (0, ∞], Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω , 
the chemotactic sensitivity tensor S (x,  ρ,  c) = (si j  (x,  ρ,  c)) ∈ C2(Ω ×  [0, ∞)2), 
i, j ∈  {1, 2, 3}, and φ ∈ W 2,∞(Ω). 

This PDE system describes the phenomenon of coral broadcast spawning (Espejo 
and Suzuki 2017; Espejo and Winkler 2018; Kiselev and Ryzhik 2012a, b), where 
the sperm ρ chemotactically moves toward the higher concentration of the chemical 
c released by the egg m, while the egg m is merely affected by random diffusion, 
fluid transport and degradation upon contact with the sperm. Meanwhile, the fluid 
flow vector u, modeling the ambient ocean environment, satisfies a Stokes equation, 
where P = P(x, t) represents the associated pressure, and the buoyancy effect of 
the sperm and egg on the velocity, mediated through a given gravitational potential 
φ, is taken into account. We note that the use of the Stokes equation instead of the 
Navier–Stokes equation is justified by the observation that the fluid flow is relatively 
slow compared with the movement of the sperm and egg. We further note that the 
sensitivity tensor S (x,  ρ,  c) may take values that are matrices possibly containing 
nontrivial off-diagonal entries, which reflects that the chemotactic migration may 
not necessarily be oriented along the gradient of the chemical signal, but may rather 
involve rotational flux components (see Xue and Othmer (2009); Xue (2015) for  the  
detailed model derivation). 

A two-component variant of (4.1.1) has been used in the mathematical study of 
coral broadcast spawning. Indeed, in Kiselev and Ryzhik (2012a, b), Kiselev and 
Ryzhik investigated the important effect of chemotaxis on the coral fertilization 
process via the Keller–Segel type system of the form

⎧
ρt + u ·  ∇ρ = Δρ − χ∇  ·  (ρ∇c) − μρq , 
0 = Δc + ρ 

(4.1.2) 

with a given regular solenoidal fluid flow vector u. This model implicitly assumes 
that the densities of sperm and egg gametes are identical, and that the Péclet number 
for the chemical concentration c is small which allows us to ignore the effects of 
convection on c. The authors showed that, for the Cauchy problem in R2, the total 
mass

∫

R2 ρ(x, t)dx  can become arbitrarily small with increasing χ in the case q > 2 
of supercritical reaction, whereas in the critical case q = 2, a weaker but related effect 
within finite time intervals is observed. Recently, Ahn et al. (2017) established the 
global well-posedness of regular solutions for the variant model of (4.1.2) with ct + 
u ·  ∇c = Δc − c + ρ instead of 0 = Δc + ρ. They also proved that

∫

Rd ρ(x, t)dx  
(d = 2, 3) asymptotically approaches a strictly positive constant C(χ ) which tends 
to 0 as χ →  ∞. 

In Espejo and Suzuki (2015), Espejo and Suzuki studied the three-component 
variant of (4.1.1)
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⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ρt + u ·  ∇ρ = Δρ − χ∇  ·  (ρS (x,  ρ,  c)∇c) − μρ2 , 
ct + u ·  ∇c = Δc − c + ρ,  
ut + κ(u ·  ∇)u = Δu −  ∇  P + ρ∇φ, 
∇  ·  u = 0 

(4.1.3) 

in the modeling of broadcast spawning when the interaction of chemotactic move-
ment of the gametes and the surrounding fluid is not negligible. Here the coefficient 
κ ∈ R is related to the strength of nonlinear convection. In particular, when the fluid 
flow is slow, we can use the Stokes instead of the Navier–Stokes equation, i.e., assume 
κ = 0 (see Difrancesco et al. (2010); Lorz (2010)). It should be mentioned that the 
chemotaxis–fluid model with ct + u ·  ∇c = Δc − cρ replacing the second equation 
in (4.1.3) has also been used to describe the behavior of bacteria of the species Bacil-
lus subtilis suspended in sessile water drops (Tuval et al. 2005). From the viewpoint 
of mathematical analysis, this chemotaxis–fluid system compounds the known dif-
ficulties in the study of fluid dynamics with the typical intricacies in the study of 
chemotaxis systems. It has also been observed that when S = S (x,  ρ,  c) is a tensor, 
the corresponding chemotaxis–fluid system loses some energy-like structure, which 
plays a key role in the analysis of the scalar-valued case. Despite these challenges, 
some comprehensive results on the global boundedness and large time behavior of 
solutions are available in the literature (see Cao and Lankeit (2016); Li et al. (2019a); 
Liu and Wang (2017); Tao and Winkler (2015b); Wang and Xiang (2016); Winkler 
(2012, 2017b, 2018c, e) for example). It has been shown that when S = S (x,  ρ,  c) 
is a tensor fulfilling 

|S (x,  ρ,  c)|  ≤ CS 

(1 + ρ)α for some α  >  0 and CS > 0, (4.1.4) 

the three-dimensional system (4.1.3) with μ = 0, κ = 0 admits globally bounded 
weak solutions for α  >  1/2 (Wang and Xiang 2016), which is slightly stronger than 
the corresponding subcritical assumption α  >  1/3 for the fluid-free system. As for 
α ≥ 0, when the suitably regular initial data (ρ0, c0, u0) fulfill a smallness condition, 
(4.1.3) with μ = 0, κ = 1 possesses a global classical solution which decays to 
( ̄ρ0, ρ̄0, 0) exponentially with ρ̄0 = 1 

|Ω|
∫

Ω ρ0(x)dx  (Yu et al. 2018). Removing the 
presupposition that the densities of the sperm and egg coincide at each point, Espejo 
and Suzuki (2017) looked at a simplified version of (4.1.1) in two dimensions, namely 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ρt + u ·  ∇ρ = Δρ − χ∇  ·  (ρ∇c) − ρm, 
mt + u ·  ∇m = Δm − ρm, 

0 = Δc + k0(m − 
1 

|Ω|
∫

Ω 
mdx) with

∫

Ω 
cdx = 0, 

(4.1.5)
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and showed that
∫

Ω ρ0(x)dx  ≥
∫

Ω m0(x)dx  implies that m(x, t) vanishes asymptot-
ically, while

∫

Ω ρ(x, t)dx  → 1 
|Ω| (

∫

Ω ρ0(x)dx  −
∫

Ω m0(x)dx) as t →  ∞, provided 
that χ is small enough and u is low. In two dimensions, Espejo and Winkler (2018) 
have recently considered the Navier–Stokes version of (4.1.1) 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ρt + u ·  ∇ρ = Δρ −  ∇  ·  (ρ∇c) − ρm, 
mt + u ·  ∇m = Δm − ρm, 
ct + u ·  ∇c = Δc − c + m, 
ut + κ(u ·  ∇) = Δu −  ∇  P + (ρ + m)∇φ, ∇  ·  u = 0, 

(4.1.6) 

and established the global existence of classical solutions to the associated initial-
boundary value problem, which tend toward a spatially homogeneous equilibrium 
in the large time limit. 

In Sect. 4.3, motivated by the above works, we shall consider the properties of 
solutions to (4.1.1). In particular, we shall show that the corresponding solutions 
converge to a spatially homogeneous equilibrium exponentially as t →  ∞  as well. 

Throughout the rest of this part, we shall assume that 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

ρ0 ∈ C0 (Ω), ρ0 ≥ 0 and ρ0 /≡ 0, 
m0 ∈ C0 (Ω), m0 ≥ 0 and m0 /≡ 0, 
c0 ∈ W 1,∞(Ω), c0 ≥ 0 and c0 /≡ 0, 

u0 ∈ D(Aβ ) for all β ∈ ( 
3 

4 
, 1), 

(4.1.7) 

where A denotes the realization of the Stokes operator in L2(Ω). Under these assump-
tions, we shall first establish the existence of global bounded classical solutions to 
(4.1.1): 

Theorem 4.1 Suppose that (4.1.4), (4.1.7) hold with α  >  1 3 . Then the system (4.1.1) 
admits a global classical solution (ρ, m, c, u, P), which is uniformly bounded in the 
sense that for any β ∈ ( 3 4 , 1), there exists K > 0 such that for all t ∈ (0, ∞)

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) ≤ K . 
(4.1.8) 

Then, we establish the large time behavior of these solutions as follows: 

Theorem 4.2 Under the assumptions of Theorem 4.1, the solutions given by 
Theorem 4.1 satisfy 

ρ(·, t) → ρ∞, m(·, t) → m∞, c(·, t) → m∞, u(·, t) → 0 in L∞(Ω) as t →  ∞.
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Furthermore, when
∫

Ω ρ0 /= ∫

Ω m0, there exist K > 0 and δ  >  0 such that

||ρ(·, t) − ρ∞||L2(Ω) ≤ Ke−δt , (4.1.9)

||m(·, t) − m∞||L∞(Ω) ≤ Ke−δt , (4.1.10)

||c(·, t) − m∞||L∞(Ω) ≤ Ke−δt , (4.1.11)

||u(·, t)||L∞(Ω) ≤ Ke−δt , (4.1.12) 

where ρ∞ = 1 
|Ω|

{∫

Ω ρ0 −
∫

Ω m0
}

+, m∞ = 1 
|Ω|

{∫

Ω m0 −
∫

Ω ρ0
}

+. 

According to the result for the related fluid–free system, the subcritical restriction 
α  >  1 3 seems to be necessary for the existence of global bounded solutions. However, 
for α ≤ 1 3 , inspired by Cao and Lankeit (2016); Yu et al. (2018), we investigate the 
existence of global bounded classical solutions and their large time behavior under 
a smallness assumption imposed on the initial data, which can be stated as follows 
Li et al. (2019b): 

Theorem 4.3 Suppose that (4.1.4) hold with α = 0 and
∫

Ω ρ0 /= ∫

Ω m0. Further, 
let N = 3 and p0 ∈ ( N 2 , ∞), q0 ∈ (N , ∞) if

∫

Ω ρ0 >
∫

Ω m0; and p0 ∈ ( 2N 3 , ∞), 
q0 ∈ (N , ∞) if

∫

Ω ρ0 <
∫

Ω m0. Then there exists ε  >  0 such that for any initial data 
(ρ0, m0, c0, u0) fulfilling (4.1.7) as well as

||ρ0 − ρ∞||L p0 (Ω) ≤ ε, ||m0 − m∞||Lq0 (Ω) ≤ ε, ||∇c0||L N (Ω) ≤ ε, ||u0||L N (Ω) ≤ ε, 

(4.1.1) possesses a global classical solution (ρ, m, c, u, P). Moreover, for any α1 

∈ (0, min{λ1, m∞ + ρ∞}), α2 ∈ (0, min{α1,  λ'
1, 1}), there exist constants Ki , i = 

1, 2, 3, 4, such that for all t ≥ 1,

||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , ||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e

−α1t ,

||c(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t , ||u(·, t)||L∞(Ω) ≤ K4e

−α2t . 

Here λ'
1 is the first eigenvalue of A, and λ1 is the first nonzero eigenvalue of −Δ on 

Ω under the Neumann boundary condition. 

Remark 4.1 In Theorem 4.3, we have excluded the case
∫

Ω ρ0 =
∫

Ω m0. Indeed, in 
this case, some results of Cao and Winkler (2018) suggest that exponential decay of 
solutions may not hold. 

Remark 4.2 It is observed that the similar result to Theorem 4.3 is also valid for 
the Navier–Stokes version of (4.1.1) upon slight modification of the definition of T 
in (4.3.60) and (4.3.94). 

As mentioned above, compared with the scalar sensitivity S , the system (4.1.1) 
with rotational tensor loses a favorable quasi-energy structure. For example, we note 
that the integral
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∫

Ω 
ρlnρ + a

∫

Ω 
|∇c|2 + b

∫

Ω 
|u|2 

with appropriate positive constants a and b plays a favorable entropy-like functional 
in deriving the bounds of solution to (4.1.6). However, this will no longer be available 
in the present situation (see Espejo and Winkler (2018)). To overcome this difficulty, 
our approach underlying the derivation of Theorem 4.1 will be based on the estimate 
of the functional

||ρ(·, t)||2 L2(Ω) + ||u(·, t)||2 W 1,2(Ω) + ||∇c(·, t)||2 L2(Ω). 

In addition, the proof of the exponential decay results in Theorem 4.2 relies on careful 
analysis of the functional 

G(t) :=
∫

Ω 
(ρ − ρ)2 + a

∫

Ω 
(m − m)2 + b

∫

Ω 
(c − c)2 + c

∫

Ω 
ρm 

with suitable parameters a, b, c > 0. Indeed, it can be seen that G(t) satisfies the ODE 
G '(t) + δ1G(t) ≤ 0 for some δ1 > 0, and thereby the convergence rate of solutions 
in L2(Ω) is established. At the same time, in comparison with the chemotaxis–fluid 
system considered in Cao and Lankeit (2016); Yu et al. (2018), due to

||etΔ ω||L p(Ω) ≤ c1
⎛
1 + t− N 2 ( 

1 
q − 1 p )

⎞
e−λ1t||ω||Lq (Ω) 

for all ω ∈ Lq (Ω) with
∫

Ω ω = 0, −ρm in the first equation of (4.1.1) gives rise to 
some difficulty in mathematical analysis despite its dissipative feature. Accordingly, 
it requires a nontrivial application of the mass conservation of ρ(x, t) − m(x, t). 

In Sect. 4.4, we are concerned with the asymptotic behavior of classical solutions 
of the three-dimensional Keller–Segal–Navier–Stokes system 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ρt + u ·  ∇ρ = Δρ −  ∇  ·  (ρS (x,  ρ,  c)∇c) − ρm, (x, t) ∈ Ω × (0, T ), 
mt + u ·  ∇m = Δm − ρm, (x, t) ∈ Ω × (0, T ), 
ct + u ·  ∇c = Δc − c + m, (x, t) ∈ Ω × (0, T ), 
ut + (u ·  ∇)u = Δu −  ∇  P + (ρ + m)∇φ, ∇  ·  u = 0, (x, t) ∈ Ω × (0, T ), 
(∇ρ − ρS (x,  ρ,  c)∇c) · ν =  ∇m · ν =  ∇c · ν = 0, u = 0, (x, t) ∈ ∂Ω × (0, T ), 
ρ(x, 0) = ρ0(x), m(x, 0) = m0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω. 

(4.1.13) 
In this coral fertilization model, the sperm ρ chemotactically moves toward the higher 
concentration of the chemical c released by the egg m, while the egg m is merely 
affected by random diffusion, fluid transport and degradation upon contact with the 
sperm. We assume that the tensor-valued chemotactic sensitivity S = S (x,  ρ,  c) 
satisfies 

|S (x,  ρ,  c)|  ≤  CS for some CS > 0, (4.1.14)
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and the initial data satisfy 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

ρ0 ∈ C0 (Ω), ρ0 ≥ 0 and ρ0 /≡ 0, 
m0 ∈ C0 (Ω), m0 ≥ 0 and m0 /≡ 0, 
c0 ∈ W 1,∞(Ω), c0 ≥ 0 and c0 /≡ 0, 

u0 ∈ D( Aβ ) for all β ∈ ( 
3 

4 
, 1), 

(4.1.15) 

where A denotes the realization of the Stokes operator in L2(Ω). 
Under these assumptions, our main result can be stated as follows Myowin et al. 

(2020): 

Theorem 4.4 Suppose that (4.1.14) hold and
∫

Ω ρ0 >
∫

Ω m0. Let p0 ∈ ( 3 2 , 3), q0 ∈ 
(3, 3p0 

3−p0 
). Then, there exists ε  >  0 such that for any initial data (ρ0, m0, c0, u0) 

fulfilling (4.1.15) as well as

||ρ0 − ρ∞||L p0 (Ω) <  ε, ||m0||Lq0 (Ω) <  ε, ||c0||L∞(Ω) <  ε, ||u0||L3(Ω) <  ε,  

(4.1.13) admits a global classical solution (ρ, m, c, u, P). In particular, for any α1 ∈ 
(0, min{λ1,  ρ∞}), α2 ∈ (0, min{α1,  λ'

1, 1}), there exist constants Ki , i = 1, 2, 3, 4, 
such that for all t ≥ 1

||m(·, t)||L∞(Ω) ≤ K1e
−α1t ,

||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e
−α1t ,

||c(·, t)||W 1,∞(Ω) ≤ K3e
−α2t ,

||u(·, t)||L∞(Ω) ≤ K4e
−α2t . 

Here, λ1 is the first nonzero eigenvalue of −Δ on Ω under the Neumann boundary 
condition, ρ∞ = 1 

|Ω| (
∫

Ω ρ0 −
∫

Ω m0). and λ'
1 is the first eigenvalue of A. 

As for the case
∫

Ω ρ0 <
∫

Ω m0, i.e., m∞ = 1 
|Ω| (

∫

Ω m0 −
∫

Ω ρ0)  >  0, we have  
Myowin et al. (2020) 

Theorem 4.5 Assume that (4.1.14) and
∫

Ω ρ0 <
∫

Ω m0 hold, and let p0 ∈ (2, 3), 
q0 ∈ (3, 3p0 

2(3−p0) ). Then there exists ε  >  0 such that for any initial data (ρ0, m0, c0, u0) 
fulfilling (4.1.15) as well as

||ρ0||L p0 (Ω) ≤ ε, ||m0 − m∞||Lq0 (Ω) ≤ ε, ||∇c0||L3(Ω) ≤ ε, ||u0||L3(Ω) ≤ ε, 

(4.1.13) admits a global classical solution (ρ, m, c, u, P). Furthermore, for any 
α1∈ (0, min{λ1, m∞, 1}), α2∈ (0, min{α1,  λ'

1}), there exist constants Ki > 0, i = 
1, 2, 3, 4, such that
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||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t ,

||ρ(·, t)||L∞(Ω) ≤ K2e
−α1t ,

||c(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t ,

||u(·, t)||L∞(Ω) ≤ K4e
−α2t . 

Remark 4.3 In our results, we have excluded the case
∫

Ω ρ0 =
∫

Ω m0. Indeed, in 
light of results of Cao and Winkler (2018); Htwe and Wang (2019), algebraic decay 
rather than exponential decay of the solutions is expected in this case. 

It is noted that the nonlinear convection (u ·  ∇)u in the three-dimensional Navier– 
Stokes equation may lead to the spontaneous emergence of singularities, resulting in a 
blow-up with respect to the norm of L∞(Ω). Hence, we subject the study of classical 
solutions of (4.1.13) to small initial data. We further note the substantial difference 
between dimensions two and three, and acknowledge results on global boundedness 
in two dimensions obtained by Espejo (2018) in the case of scalar-valued sensitivity 
and by Li (2019) in the case of tensor-valued sensitivity with saturation effect or 
suitably small initial data. 

Section 4.5 is devoted to the large time behavior in a chemotaxis-Stokes system 
modeling coral fertilization with arbitrarily slow porous medium diffusion. In accor-
dance with the phenomena observed from experiments (Coll et al. 1994, 1995; Miller 
1979, 1985), oriented motions may occur to sperms in response to some chemical 
signal secreted by eggs during the period of coral fertilization. In order to describe 
this in mathematics, a model appearing as 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

nt + u ·  ∇n =  ∇  ·  (D(n)∇n) −  ∇  ·  (n∇c) − nv, 
ct + u ·  ∇c = Δc − c + v, 
vt + u ·  ∇v = Δv − vn, 
ut = Δu +  ∇  P + (n + v)∇Φ, 

(4.1.16) 

was proposed under the assumptions that sperms and eggs enjoy different densities 
n and v, respectively, that P and Φ separately stand for the liquid pressure and the 
gravitational potential with 

Φ ∈ W 2,∞(Ω), (4.1.17) 

and that the fluid velocity u is an unknown function (Espejo and Winkler 2018). 
For simplified versions of (4.1.16), such as D ≡ 1 together with n ≡ v or with 

a given fluid field u, related analytical results on global dynamic behaviors of the 
solution can be found in Espejo and Suzuki (2015, 2017). Whereas for more com-
plex situations, during the past years, a number of analytic approaches have been 
developed to explore global dynamics in (4.1.16) and the variants thereof. 

In particular, under the interaction of linear diffusion, i.e., D ≡ 1, with proper 
saturation effects of cells, by constructing appropriate weighted functions g and 
whereafter detecting the evolution of
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∫

Ω 
n p g(c) (4.1.18) 

with any p > 1, system (4.1.16) coupled with (Navier–)Stokes-fluid is proved to 
be globally solvable in the classical sense (Li 2019) or in the weak sense (Zheng 
2021). Moreover, arguments based on L p-Lq estimates for Neumann heat semigroup 
further show exponential decay features of the corresponding classical solutions 
under suitable smallness assumptions on initial data (Htwe et al. 2020; Li et al.  
2019b). 

As a more frequently used method, energy-based arguments, which start from 
constructions of proper energy functionals, play a crucial role in the whole study of 
systems related to (4.1.16). More precisely, as shown in Espejo and Winkler (2018), 
an analysis of a suitably established entropy-like functional

∫

Ω 
n ln n + k1

∫

Ω 
|∇c|2 + k2

∫

Ω 
|u|2 (4.1.19) 

with k1 > 0 and k2 > 0 underlies the derivation of global boundedness and stabiliza-
tion of the unique classical solution to the Navier–Stokes version of system (4.1.16) 
with D ≡ 1 in spatially two-dimensional setting. In cases when saturation influence 
of cells is accounted for in the cross-diffusion term of n-equation, the construc-
tion of a similar but different functional as compared to (4.1.19) is also viewed as 
the fundament in deriving global solvability of system (4.1.16) with D ≡ 1, both 
in the Stokes-fluid context (Li et al. 2019b) and in the Navier–Stokes-fluid setting 
(Liu et al. 2020). Apart from that, when cell mobility depends on gradients of some 
unknown quantity, such as p-Laplacian cell diffusion, the pursuance of global solv-
ability involves an analysis of a functional with more complex structure (Liu 2020). 

Actually, whether by establishing weighted estimates as (4.1.18) or by construct-
ing energy functionals of different types, the core of the analysis is to derive a uniform 
L p bound of component n for any p > 1. Taking a recent work (Liu 2020) as an  
example, in the presence of a porous medium type diffusion, namely D in (4.1.16) 
is chosen to generalize the prototypical case 

D(s) = sm−1 , s > 0 (4.1.20) 

with some m > 1, the condition 
m > 

37 

33 
(4.1.21) 

therein reflects an explicitly quantitative requirement for the strength of nonlinear 
diffusion in the derivation of temporally independent L p estimates for n. However, 
since complementary results on possibly emerging explosion phenomena are rather 
barren, it is still unknown that corresponding uniform L p bounds could be achieved 
for smaller values of m or even for the optimal restriction m ≥ 1. 

In the present work, we attempt to make use of a different method, by which 
conditional estimates for u and c subject to some uniform L p norms of n are estab-
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lished, to explore how far the porous medium type diffusion of sperms can prevent 
the occurrence of singularity formation phenomena. 

For precisely formulating our main results, let us close the considered problem 
involving system (4.1.16) with the following initial-boundary conditions 

n(x, 0) = n0(x), c(x, 0) = c0(x), v(x, 0) = v0(x) and u(x, 0) = u0(x), x ∈ Ω 
(4.1.22) 

as well as 

D(n) 
∂n 

∂ν 
= 

∂c 

∂ν 
= 

∂v 

∂ν 
= 0 and u = 0, x ∈ ∂Ω, t > 0, (4.1.23) 

where Ω ⊂ R3 is a bounded domain with smooth boundary, where the function D 
fulfills 

D ∈ Cμ 
loc([0, ∞))

∩
C2 
loc((0, ∞)) and D(s) ≥ CDs

m−1 for any s ≥ 0 (4.1.24) 

with certain μ ∈ (0, 1), CD > 0 and m ≥ 1, and where the initial data satisfies 
⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

n0 ∈ Cν ( Ω̄) for some ν  >  0 with n0 ≥ 0 in  Ω and n0 /≡ 0, 
c0 ∈ W 1,∞(Ω) with c0 ≥ 0 in  Ω, 
v0 ∈ W 1,∞(Ω) with v0 ≥ 0 in  Ω, and 

u0 ∈ D(Aα ) for certain α ∈
⎛
3 

4 
, 1

⎞
(4.1.25) 

with A representing the realization of the Stokes operator with its domain defined as 
D( A) := W 2,2(Ω; R3)

⋂
W 1,2 0 (Ω; R3)

⋂
L2 

σ (Ω) with L2 
σ (Ω) := {ω ∈ L2(Ω; R3)| 

∇  ·  ω = 0} (Sohr 2001). 
Within this framework, our main results can be read as follows (Wang and Liu 

2022). 

Theorem 4.6 Assume that Ω ⊂ R3 is a bounded domain with smooth boundary. 
Let (4.1.17) be satisfied, and let (4.1.24) hold with 

m > 1. (4.1.26) 

Then for each (n0, c0, v0, u0) complying with (4.1.25), there exist functions n, c, v 
and u fulfilling 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

n ∈ L∞(Ω × (0, ∞)) ∩ C0([0, ∞); (W 2,2 0 (Ω))∗), 
c ∈  ∩r >3 L

∞((0, ∞); W 1,r (Ω)) ∩ C0( Ω̄ ×  [0, ∞)) ∩ C1,0( Ω̄ × (0, ∞)), 

v ∈  ∩r >3 L
∞((0, ∞); W 1,r (Ω)) ∩ C0( Ω̄ ×  [0, ∞)) ∩ C1,0( Ω̄ × (0, ∞)), 

u ∈ L∞(Ω × (0, ∞); R3) ∩ L2 
loc([0, ∞); W 1,2 0 (Ω; R3) ∩ L2 

σ (Ω)) ∩ C0( Ω̄ ×  [0, ∞); R3), 
(4.1.27)
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such that n ≥ 0, c ≥ 0 and v ≥ 0, and that along with certain P ∈ C0 (Ω × (0, ∞)) 
the quintuple (n, c, v, u, P) becomes a global weak solution of the problem (4.1.16), 
(4.1.22) and (4.1.23) in the sense of Definition 4.1 below, and has the stabilization 
features that

||n(·, t) − n∞||L p (Ω) + ||c(·, t) − v∞||W 1,∞(Ω) + ||v(·, t) − v∞||W 1,∞(Ω) + ||u(·, t)||L∞(Ω) → 0 
(4.1.28) 

for any p ≥ 1 as t →  ∞  with 

n∞ := 
1 

|Ω|
⎧∫

Ω 
n0 −

∫

Ω 
v0

⎫

+ 
and v∞ := 

1 

|Ω|
⎧∫

Ω 
v0 −

∫

Ω 
n0

⎫

+ 
. 

From (4.1.26), which shows the values that m could be taken herein for suc-
cessfully establishing temporally independent L p bounds of n, one can see that an 
apparent relaxation is realized in comparison to the previously derived range of m, 
i.e., (4.1.21). In fact, for introduced approximated problems of (4.1.16), (4.1.22) and 
(4.1.23), which is verified to be locally solvable with an extensible blow-up criterion, 
the hypothesis (4.1.26) allows for an application of a standard testing procedure to 
derive the uniform L p estimates of (nε)ε∈(0,1) with the aids of conditionally uniform 
L∞ estimates of (∇cε)ε∈(0,1) which are established by utilizing L p-Lq estimates 
for fractional powers of a sectorial operator on the basis of basic estimates implied 
in the regularized problems and of some well-established conditional estimates of 
(uε)ε∈(0,1) (see Sects. 4.3–4.4). The derivation of (4.1.28) is essentially based on 
the dissipative effect of the considered consumption process, as shown in Espejo 
and Winkler (2018) for two-dimensional Navier–Stokes version of (4.1.16) with 
m = 1, or in Winkler (2015b, 2018c) and Winkler (2014b, 2017b, 2021a) for  sim-
plified oxygen-consumption type chemotaxis-fluid models with m > 1 and m = 1, 
respectively. More precisely, the absorptive contribution −nv to the third equation in 
(4.1.16) implies time-independently uniform bounds of spatio-temporal integrals for 
nv and for the square of the gradients of both v and c, which underlies the achieve-
ment of the convergence of n, c and v in (4.1.28). Thanks to the convergence of n and 
v in (4.1.28), the large time behavior of u can be detected by means of a combination 
of variation-of-constants formula with regularity properties of analytic semigroup. 

4.2 Preliminaries 

In this subsection, we provide some preliminary results that will be used in the 
subsequent sections. 

Next we introduce the Stokes operator and recall estimates for the correspond-
ing semigroup. With L p σ (Ω) := {ϕ ∈ L p(Ω)|∇ · ϕ = 0} and P representing the 
Helmholtz projection of L p(Ω) onto L p σ (Ω), the Stokes operator on L p σ (Ω) is defined 
as Ap =  −PΔ with domain D( Ap) := W 2,p(Ω) ∩ W 2,p 0 (Ω) ∩ L p σ (Ω). Since Ap1
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and Ap2 coincide on the intersection of their domains for p1, p2 ∈ (1, ∞), we will 
drop the index in the following. 

Lemma 4.1 (Lemma 4.2 of Cao and Lankeit (2016)) The Stokes operator A gen-
erates the analytic semigroup (e−t A)t>0 in Lr 

σ (Ω). Its spectrum satisfies λ'
1 = 

inf Reσ  (A)  >  0 and we fix μ ∈ (0,  λ'
1). For any such μ, we have 

(i ) For any p ∈ (1, ∞) and γ ≥ 0, there is c5(p,  γ  )  >  0 such that for all φ ∈ 
L p σ (Ω),

||Aγ e−t A  φ||L p(Ω) ≤ c5( p,  γ  )t−γ e−μt||φ||L p(Ω); 

(i i  ) For any p, q with 1 < p ≤ q < ∞, there is c6( p, q)  >  0 such that for all 
φ ∈ L p σ (Ω),

||e−t A  φ||Lq (Ω) ≤ c6(p, q)t
− N 2

⎛
1 
p − 1 q

⎞

e−μt||φ||L p (Ω); 

(i i i  ) For any p, q with 1 < p ≤ q < ∞, there is c7( p, q)  >  0 such that for all 
φ ∈ L p σ (Ω),

||∇e−t A  φ||Lq (Ω) ≤ c7(p, q)t
− 1 

2 − N 2
⎛

1 
p − 1 q

⎞

e−μt||φ||L p(Ω); 

(iv) If γ ≥ 0 and 1 < p < q < ∞ satisfy 2γ − N q ≥ 1 − N p , there is c8(γ , p, q)  >  
0 such that for all φ ∈ D(Aγ 

q ),

||φ||W 1, p(Ω) ≤ c8(γ , p, q)||Aγ φ||Lq (Ω). 

Lemma 4.2 (Theorem 1 and Theorem 2 of Fujiwara and Morimoto (1977)) The 
Helmholtz projection P defines a bounded linear operator P: L p(Ω) → L p σ (Ω); 
in particular, for any p ∈ (1, ∞), there exists c9( p)  >  0 such that ||Pω||L p (Ω) ≤ 
c9(p)||ω||L p(Ω) for every ω ∈ L p(ω). 

The following elementary lemma provides some useful information on both the 
short time and the large time behavior of certain integrals, which is used in the proof 
of Theorem 4.3. 

Lemma 4.3 (Lemma 1.2 of Winkler (2010)) Let α  <  1, β  <  1, and γ , δ be positive 
constants such that γ /= δ. Then there exists c10(α,  β,  γ  ,  δ)  >  0 such that

∫ t 

0 
(1 + s−α )(1 + (t − s)−β )e−γ s e−δ(t−s) ds  

≤c10(α,  β,  γ  ,  δ)
(
1 + tmin{0,1−α−β}) e−min{γ  ,δ}t .
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4.3 Global Boundedness and Decay Property of Solutions 
to a 3D Coral Fertilization Model 

4.3.1 A Convenient Extensibility Criterion 

At the beginning, we recall the result of the local existence of classical solutions, 
which can be proved by a straightforward adaptation of a well-known fixed point 
argument (see Winkler (2012) for example). 

Lemma 4.4 Suppose that (4.1.4), (4.1.7) and 

S (x,  ρ,  c) = 0,  (x,  ρ,  c) ∈ ∂Ω ×  [0, ∞) ×  [0, ∞) (4.3.1) 

hold. Then there exist Tmax ∈ (0, ∞] and a classical solution (ρ, m, c, u, P) of 
(4.1.1) on (0, Tmax ). Moreover, ρ,  m, c are nonnegative in Ω × (0, Tmax ), and if 
Tmax < ∞, then for β ∈ ( 3 4 , 1), 

lim 
t→Tmax

(||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβu(·, t)||L2(Ω)

) =  ∞. 

This solution is unique, up to addition of constants to P. 

The following elementary properties of the solutions in Lemma 4.4 are immediate 
consequences of the integration of the first and second equations in (4.1.1), as well 
as an application of the maximum principle to the second and third equations. 

Lemma 4.5 Suppose that (4.1.4), (4.1.7) and (4.3.1) hold. Then for all t ∈ (0, Tmax ), 
the solution of (4.1.1) from Lemma 4.4 satisfies

||ρ(·, t)||L1(Ω) ≤ ||ρ0||L1(Ω), ||m(·, t)||L1(Ω) ≤ ||m0||L1(Ω), (4.3.2)
∫ t 

0
||ρ(·, s)m(·, s)||L1(Ω)ds  ≤ min{||ρ0||L1(Ω), ||m0||L1(Ω)}, (4.3.3)

||ρ(·, t)||L1(Ω) − ||m(·, t)||L1(Ω) = ||ρ0||L1(Ω) − ||m0||L1(Ω), (4.3.4)

||m(·, t)||2 L2(Ω) + 2
∫ t 

0
||∇m(·, s)||2 L2(Ω)ds  ≤ ||m0||2 L2(Ω), (4.3.5)

||m(·, t)||L∞(Ω) ≤ ||m0||L∞(Ω), (4.3.6)

||c(·, t)||L∞(Ω) ≤ max{||m0||L∞(Ω), ||c0||L∞(Ω)}. (4.3.7) 

4.3.2 Global Boundedness and Decay for S = 0 on ∂Ω 

In this subsection, we shall consider the case in which besides (4.1.4), the sensitivity 
satisfies S = 0 on ∂Ω . Under this hypothesis, the boundary condition for ρ in (4.1.1) 
actually reduces to the homogeneous Neumann condition ∇ρ · ν = 0.
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1. Global boundedness for S = 0 on ∂Ω 

Lemma 4.6 Suppose that (4.1.4), (4.1.7), (4.3.1) hold with α  >  1 3 . Then for any 
ε  >  0, there exists K (ε) > 0 such that, for all t ∈ (0, Tmax ), the solution of (4.1.1) 
satisfies 

d 

dt
||ρ(·, t)||2 L2(Ω) + 

1 

2
||∇ρ(·, t)||2 L2(Ω) ≤ ε||Δc(·, t)||2 L2(Ω) + K (ε). (4.3.8) 

Proof Multiplying the first equation of (4.1.1) by  ρ, we obtain 

1 

2 

d 

dt

∫

Ω 
ρ2 +

∫

Ω 
|∇ρ|2 

=
∫

Ω 
ρS (x,  ρ,  c)∇ρ∇c −

∫

Ω 
ρ2 m (4.3.9) 

≤ 
1 

2

∫

Ω 
|∇ρ|2 + 

C2 
S 

2

∫

Ω 

ρ2 

(1 + ρ)2α |∇c|2 . 

Now we estimate the term C
2 
S 
2

∫

Ω 
ρ2 

(1+ρ)2α |∇c|2 on the right-hand side of (4.3.9). In 
fact, if α ≥ 3 4 , 

C2 
S 

2

∫

Ω 

ρ2 

(1 + ρ)2α |∇c|2 ≤ ε
∫

Ω 
|∇c|4 + K (ε), (4.3.10) 

while for α ∈ (
1 
3 , 

3 
4

)
, 

C2 
S 

2

∫

Ω 

ρ2 

(1 + ρ)2α |∇c|2 ≤ 
C2 

S 

2

∫

Ω 
ρ2−2α|∇c|2 

≤ 
C4 

S 

16ε

∫

Ω 
ρ4−4α + ε

∫

Ω 
|∇c|4 . (4.3.11) 

On the other hand, by Lemma 4.5 and the Gagliardo–Nirenberg inequality, we get

∫

Ω 
|∇c|4 ≤ CGN

{
||Δc||2 L2(Ω)||c||2 L∞(Ω) + ||c||4 L∞(Ω)

}
(4.3.12) 

≤C '
GN  (||Δc||2 L2(Ω) + 1) 

and
∫

Ω 
|ρ|4−4α = ||ρ||4−4α 

L4−4α (Ω) ≤ CGN

{
||∇ρ||(4−4α)λ2 

L2(Ω)
||ρ||(4−4α)(1−λ2) 

L1(Ω)
+ ||ρ||4−4α 

L1(Ω)

}

with λ2 = 6(3−4α) 
5(4−4α) . Due to  α ∈ (

1 
3 , 

3 
4

)
, we have  (4 − 4α)λ2 < 2 and thus
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C4 
S 

16ε

∫

Ω 
|ρ|4−4α ≤ 

1 

4

∫

Ω 
|∇ρ|2 + K1 (4.3.13) 

by the Young inequality. Combining (4.3.9)–(4.3.13), we readily have (4.3.8). 

Lemma 4.7 Under the assumptions of Lemma 4.6, there exists a positive constant 
C = C(m0, c0) such that for all t ∈ (0, Tmax ), the solution of (4.1.1) satisfies 

d 

dt
||∇c(·, t)||2 L2(Ω) + 2||∇c(·, t)||2 L2(Ω) + ||Δc(·, t)||2 L2(Ω) 

≤K (||∇u(·, t)||2 L2(Ω) + 1). (4.3.14) 

Proof Multiplying the c-equation of (4.1.1) by  −Δc and by the Young inequality, 
we obtain 

1 

2 

d 

dt

∫

Ω 
|∇c|2 +

∫

Ω 
|Δc|2 +

∫

Ω 
|∇c|2 

≤  −
∫

Ω 
mΔc +

∫

Ω 
(u ·  ∇c)Δc (4.3.15) 

=  −
∫

Ω 
mΔc −

∫

Ω 
∇c · (∇u ·  ∇c) −

∫

Ω 
∇c · (D2 c · u) 

=  −
∫

Ω 
mΔc −

∫

Ω 
∇c · (∇u ·  ∇c) 

≤
∫

Ω 
|m|2 + 

1 

4

∫

Ω 
|Δc|2 + (

∫

Ω 
|∇c|4 ) 1 2 (

∫

Ω 
|∇u|2 ) 1 2 

≤||m||2 L2(Ω) + 
1 

4
||Δc||2 L2(Ω) + 

1 

2ε
||∇u||2 L2(Ω) + 

ε 
2
||∇c||4 L4(Ω), 

where the fact that u is solenoidal and vanishes on ∂Ω is used to ensure
∫

Ω ∇c · 
(D2c · u) = 0. 

By (4.3.12) and taking ε = 1 
2C '

GN  
in the above inequality, we have 

1 

2 

d 

dt

∫

Ω 
|∇c|2 + 

1 

2

∫

Ω 
|Δc|2 +

∫

Ω 
|∇c|2 ≤ ||m||2 L2(Ω) + C '

GN||∇u||2 L2(Ω) + 
1 

4 
, 

which along with (4.3.5) readily ensures the validity of (4.3.14). 

Lemma 4.8 Under the assumptions of Lemma 4.6, the solution of (4.1.1) satisfies 

d 

dt
||u(·, t)||2 L2(Ω) + ||∇u(·, t)||2 L2(Ω) ≤K

⎛
||ρ(·, t)||2 L2(Ω) + 1

⎞
, (4.3.16) 

d 

dt
||∇u(·, t)||2 L2(Ω) + ||Au(·, t)||2 L2(Ω) ≤K

⎛
||ρ(·, t)||2 L2(Ω) + 1

⎞
(4.3.17) 

for all t ∈ (0, Tmax ) for a positive constant K .
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Proof Testing the u-equation in (4.1.1) by  u, using the Hölder inequality and 
Poincaré inequality, we can get 

1 

2 

d 

dt

∫

Ω 
|u|2 +

∫

Ω 
|∇u|2 =

∫

Ω 
(ρ + m)∇φ · u 

≤ ||∇φ||L∞(Ω)||ρ + m||L2(Ω)||u||L2(Ω) 

≤ 
1 

2
||∇u||2 L2(Ω) + K1(||ρ||2 L2(Ω) + ||m||2 L2(Ω)), 

which together with (4.3.5) yields (4.3.16). Applying the Helmholtz projection P 
to the fourth equation in (4.1.1), testing the resulting identity by Au and using the 
Young inequality, we have 

1 

2 

d 

dt

∫

Ω 
|A 1 2 u|2 +

∫

Ω 
|Au|2 =  −

∫

Ω 
P[(ρ + m)∇φ]  ·  Au 

≤ 
1 

2

∫

Ω 
|Au|2 + K2(

∫

Ω 
ρ2 +

∫

Ω 
m2 ), 

which yields (4.3.17), due to (4.3.5) and the fact that
∫

Ω |∇u|2 = ∫

Ω |A 
1 
2 u|2. 

Lemma 4.9 Under the assumptions of Lemma 4.6, one can find C > 0 such that for 
all t ∈ (0, Tmax ), the solution of (4.1.1) satisfies

||ρ(·, t)||2 L2(Ω) + ||∇c(·, t)||2 L2(Ω) + ||u(·, t)||2 W 1,2(Ω) ≤ K . 

Proof By the Gagliardo–Nirenberg inequality

||ρ||L2(Ω) ≤ CGN

⎛
||∇ρ|| 3 

5 

L2(Ω)
||ρ|| 2 

5 

L1(Ω) + ||ρ||L1(Ω)

⎞

and (4.3.8), for any ε  >  0, there exists K (ε) > 0 such that 

d 

dt
||ρ||2 L2(Ω) + ||ρ||2 L2(Ω) + 

1 

4
||∇ρ||2 L2(Ω) ≤ ε||Δc||2 L2(Ω) + K1(ε). (4.3.18) 

Adding (4.3.16) and (4.3.17), and by the Poincaré inequality, one can find constants 
Ki > 0, i = 2, 3, 4, such that 

d 

dt  
(||u||2 L2(Ω) + ||∇u||2 L2(Ω)) + K2(||u||2 L2(Ω) + ||∇u||2 L2(Ω)) 

≤K3

⎛
||ρ||2 L2(Ω) + 1

⎞

≤ 
1 

8
||∇ρ||2 L2(Ω) + K4. 

(4.3.19) 

Recalling (4.3.14), we get
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d 

dt
||∇c||2 L2(Ω) + 2||∇c||2 L2(Ω) + ||Δc||2 L2(Ω) ≤ K5

⎛
||∇u||2 L2(Ω) + 1

⎞
. (4.3.20) 

Now combining the above inequalities and choosing ε = K2 
2K5 

, one can see that there 
exists some constant K6 > 0 such that 

Y (t) := ||ρ(·, t)||2 L2(Ω) + ||u(·, t)||2 W 1,2(Ω) + ε||∇c(·, t)||2 L2(Ω) 

satisfies Y '(t) + δY (t) ≤ K6, where δ = min{1, K2 
2 }. Hence, by an ODE comparison 

argument, we obtain Y (t) ≤ K7 for some constant K7 > 0 and thereby complete the 
proof. 

With all of the above estimates at hand, we can now establish the global existence 
result in the case S = 0 on ∂Ω . 

Proof of Theorem 4.1 in the case S = 0 on ∂Ω . To establish the existence of 
globally bounded classical solution, by the extensibility criterion in Lemma 4.4, we  
only need to show that

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) ≤ K1 

(4.3.21) 

for all t ∈ (0, Tmax ) with some positive constant K1 independent of Tmax . To this  
end, by the estimate of Stokes operator (Corollary 3.4 of Winkler (2015b)), we first 
get

||u||L∞(Ω) ≤ K2||u||W 1,5(Ω) ≤ K3 (4.3.22) 

with positive constant K3 > 0 independent of Tmax , due to ||ρ||L2(Ω) ≤ K4 and
||m||L∞(Ω) ≤ K4 from Lemma 4.9 and Lemma 4.5, respectively. 

By Lemma 1.1, Lemma 4.9 and the Young inequality, we have 

sup 
t∈(0,Tmax )

||∇c||L∞(Ω) ≤ K5(1 + sup 
t∈(0,Tmax )

||m − u ·  ∇c||L4(Ω)) 

≤ K5(1 + sup 
t∈(0,Tmax ) 

(||m||L4(Ω) + ||u||L6(Ω)||∇c||L12(Ω))) 

≤ K5(1 + sup 
t∈(0,Tmax ) 

(||m||L4(Ω) + ||u||L6(Ω)||∇c||
1 
6 
L2(Ω)

||∇c||
5 
6 
L∞(Ω))) 

≤ K6(1 + sup 
t∈(0,Tmax )

||∇c||
5 
6 
L∞(Ω)), 

which implies that sup 
t∈(0,Tmax )

||∇c(·, t)||L∞(Ω) ≤ K7. Along with (4.3.7) this implies

||c(·, t)||W 1,∞(Ω) ≤ K8. Furthermore, applying the variation-of-constants formula to 
the ρ−equation in (4.1.1), the maximum principle, Lemma 1.1(iv) and Lemma 4.9, 
we get
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||ρ||L∞(Ω) ≤||etΔ ρ0||L∞(Ω) +
∫ t 

0
||e(t−s)Δ∇  ·  (ρS ∇c + ρu)||L∞(Ω)ds  

≤||ρ0||L∞(Ω) + c4
∫ t 

0 
(1 + (t − s)−

7 
8 )e−λ1(t−s)||ρS ∇c + ρu||L4(Ω)ds  

≤||ρ0||L∞(Ω) + K9

∫ t 

0 
(1 + (t − s)−

7 
8 )e−λ1(t−s)||ρ||L4(Ω)ds  

≤||ρ0||L∞(Ω) + K9

∫ t 

0 
(1 + (t − s)−

7 
8 )e−λ1(t−s)||ρ|| 1 

2 
L∞(Ω)||ρ|| 1 

2 

L2(Ω)
ds  

≤||ρ0||L∞(Ω) + K10 sup 
s∈(0,Tmax )

||ρ|| 1 
2 
L∞(Ω) 

with K10 = K9 sup 
t∈(0,Tmax )

||ρ|| 1 
2 

L2(Ω)

∫ ∞ 

0 
(1 + s− 7 

8 )e−λ1s ds, where we have used  ∇  ·  

u = 0. Taking supremum on the left-hand side of the above inequality over (0, Tmax ), 
we obtain 

sup 
t∈(0,Tmax )

||ρ||L∞(Ω) ≤ ||ρ0||L∞(Ω) + K10 sup 
t∈(0,Tmax )

||ρ|| 1 
2 
L∞(Ω), 

and thereby sup 
t∈(0,Tmax )

||ρ||L∞(Ω) ≤ K11 by the Young inequality. Finally, by a straight-

forward argument (see [Espejo and Winkler (2018), Lemma 3.1] or [Tuval et al. 
(2005), p. 340]), one can find K12 > 0 such that sup 

t∈(0,Tmax )

||Aβ u||L2(Ω) ≤ K12. The  

boundedness estimate (4.3.21) is now a direct consequence of the above inequalities 
and this completes the proof. 

2. Large time behavior for S = 0 on ∂Ω 
This subsection is devoted to showing the large time behavior of global solutions to 
(4.1.1) obtained in the above subsection. In order to derive the convergence properties 
of the solution with respect to the norm in L2(Ω), we shall make use of the following 
lemma. In the sequel, we denote f = 1 

|Ω|
∫

Ω f (x)dx . 

Lemma 4.10 (Lemma 4.6 of Espejo and Winkler (2018)) Let λ  >  0, C > 0, and 
suppose that y ∈ C1([0, ∞)) and h ∈ C0([0, ∞)) are nonnegative functions satis-
fying y'(t) + λy(t) ≤ h(t) for some λ  >  0 and all t > 0. Then if

∫ ∞ 
0 h(s)ds  ≤ C, 

we have y(t) → 0 as t →  ∞. 

By means of the testing procedure and the Young inequality, we have 

d 

dt

∫

Ω 
(ρ − ρ)2 = 2

∫

Ω 
(ρ − ρ)(Δρ −  ∇(ρS (x,  ρ,  c)∇c) − u ·  ∇ρ − ρm + ρm) 

=  −2
∫

Ω 
|∇ρ|2 + 2

∫

Ω 
ρS (x,  ρ,  c)∇c ·  ∇ρ − 2

∫

Ω 
(ρ − ρ)(ρm − ρm) 

≤  −
∫

Ω 
|∇ρ|2 + K1

∫

Ω 
|∇c|2 − 2

∫

Ω 
(ρ − ρ)ρm, (4.3.23)
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d 

dt

∫

Ω 
(m − m)2 = 2

∫

Ω 
(m − m)(Δm − u ·  ∇m − ρm + ρm) (4.3.24) 

= 2
∫

Ω 
m(Δm − u ·  ∇m) − 2

∫

Ω 
(m − m)(ρm − ρm) 

≤  −2
∫

Ω 
|∇m|2 − 2

∫

Ω 
(m − m)ρm, 

d 

dt

∫

Ω 
(c − c)2 = 2

∫

Ω 
(c − c)(Δc − u ·  ∇c − (c − c) + (m − m)) (4.3.25) 

= 2
∫

Ω 
c(Δc − u ·  ∇c) − 2

∫

Ω 
(c − c)2 + 2

∫

Ω 
(c − c)(m − m) 

≤  −2
∫

Ω 
|∇c|2 −

∫

Ω 
(c − c)2 +

∫

Ω 
(m − m)2 , 

d 

dt

∫

Ω 
|u|2 =  −2

∫

Ω 
|∇u|2 + 2

∫

Ω 
(ρ + m)∇φ · u − 2

∫

Ω 
∇ P · u (4.3.26) 

=  −2
∫

Ω 
|∇u|2 + 2

∫

Ω 
(ρ − ρ + m − m)∇φ · u 

≤  −2
∫

Ω 
|∇u|2 + K2

⎛∫

Ω 
|ρ − ρ + m − m|2

⎞ 1 
2
⎛∫

Ω 
|u|2

⎞ 1 
2 

≤  −
∫

Ω 
|∇u|2 + K3

⎛∫

Ω 
|ρ − ρ|2 +

∫

Ω 
|m − m|2

⎞

, 

where ∇  ·  u = 0, u |∂Ω= 0 and the boundedness of u, ∇φ and S are used. 

Lemma 4.11 Under the assumptions of Lemma 4.6,

||(ρ − ρ)(·, t)||L∞(Ω) → 0 as t →  ∞,

||(m − m)(·, t)||L∞(Ω) → 0 as t →  ∞,

||(c − c)(·, t)||L∞(Ω) → 0 as t →  ∞,

||u(·, t)||L∞(Ω) → 0 as t →  ∞. 

Proof From (4.3.23)–(4.3.26), it follows that 

d 

dt

∫

Ω 
(ρ − ρ)2 ≤  −

∫

Ω 
|∇ρ|2 + K1

∫

Ω 
|∇c|2 + 2ρ

∫

Ω 
ρm, (4.3.27) 

d 

dt

∫

Ω 
(m − m)2 ≤  −2

∫

Ω 
|∇m|2 + 2m

∫

Ω 
ρm, (4.3.28) 

d 

dt

∫

Ω 
(c − c)2 ≤  −2

∫

Ω 
|∇c|2 −

∫

Ω 
(c − c)2 +

∫

Ω 
(m − m)2 , (4.3.29) 

d 

dt

∫

Ω 
|u|2 ≤  −

∫

Ω 
|∇u|2 + K3

⎛∫

Ω 
|ρ − ρ|2 +

∫

Ω 
|m − m|2

⎞

. (4.3.30)
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Since
∫

Ω |m − m|2 ≤ Cp||∇m||2 L2(Ω) and
∫ ∞ 
0

∫

Ω ρm ≤ K4 by (4.3.3), an application 
of Lemma 4.10 to (4.3.28) yields

||m(·, t) − m(t)||L2(Ω) → 0 as  t →  ∞. (4.3.31) 

Since
∫ ∞ 

0

∫

Ω 
|(m − m)|2 ds  ≤ Cp

∫ ∞ 

0
||∇m||2 L2(Ω)ds  ≤ K5, (4.3.32) 

the application of Lemma 4.10 to (4.3.29) also yields

||c(·, t) − c(t)||L2(Ω) → 0 as  t →  ∞ (4.3.33) 

and
∫ ∞ 

0
||∇c||2 L2(Ω) ≤

∫ ∞ 

0

∫

Ω 
|m − m|2 +

∫

Ω 
|c0 − c0|2 ≤ K6. (4.3.34) 

Furthermore, by (4.3.34),
∫

Ω |ρ − ρ|2 ≤ Cp||∇ρ||2 L2(Ω) and
∫ ∞ 
0

∫

Ω ρm ≤ K4, 
Lemma 4.10 implies that

||ρ(·, t) − ρ(t)||L2(Ω) → 0 as  t →  ∞, (4.3.35)
∫ ∞ 

0
||ρ − ρ||2 L2(Ω) ≤ Cp

∫ ∞ 

0
||∇ρ||2 L2(Ω) ≤ K7. (4.3.36) 

Hence, from (4.3.32), (4.3.36),
∫

Ω |u|2 ≤ Cp||∇u||2 L2(Ω) and Lemma 4.10, it follows 
that

||u(·, t)||L2(Ω) → 0 as  t →  ∞ (4.3.37) 

as well as
∫ ∞ 
0 ||∇u||2 L2(Ω) ≤ K8. 

Now we turn the above convergence in L2(Ω) into L∞(Ω) with the help of the 
higher regularity of the solutions. Indeed, similar to the proof of ||c(·, t)||W 1,∞(Ω) ≤ K 
in Theorem 4.1 in the case S = 0 on ∂Ω , ||m(·, t)||W 1,∞(Ω) ≤ K10 can be proved 
since ||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) ≤ K9 for all t > 0 in (4.3.21). Hence, from 
(4.3.21), there exists a constant K11 > 0, such that ||m(·, t) − m(t)||W 1,∞(Ω) ≤ 
K11, ||c(·, t) − c(t)||W 1,∞(Ω) ≤ K11, ||u(·, t)||W 1,5(Ω) ≤ K11 for all t > 1. Therefore, 
by (4.3.31), (4.3.33) and (4.3.37), the application of the interpolation inequality 
yields as t →  ∞,

||m − m||L∞(Ω) ≤ C
⎛
||m − m|| 3 

5 

W 1,∞(Ω)
||m − m|| 2 

5 

L2(Ω) + ||m − m||L2(Ω)

⎞
→ 0,

||c(·, t) − c(t)||L∞(Ω) → 0, ||u(·, t)||L∞(Ω) → 0.
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In addition, similar to Lemma 4.4 in Espejo and Winkler (2018) or Lemma 5.2 
in Cao and Lankeit (2016), there exist ϑ ∈ (0, 1) and constant K12 > 0 such 
that ||ρ||

Cϑ, ϑ 
2 (Ω×[t,t+1]) ≤ K12 for all t > 1, which along with (4.3.35) implies that

||ρ(·, t) − ρ(t)||Cloc(Ω) → 0 as  t →  ∞  and then by the finite covering theorem,
||ρ(·, t) − ρ(t)||L∞(Ω) → 0 as  t →  ∞. 

By a very similar argument as in Lemma 4.2 of Espejo and Winkler (2018), we 
have 

Lemma 4.12 Under the assumptions of Lemma 4.6, 

ρ(t) → ρ∞, m(t) → m∞, c(t) → m∞ as t →  ∞  

with ρ∞ =  {ρ0 − m0}+ and m∞ =  {m0 − ρ0}+. 
Proof From (4.3.3) and (4.3.5), we have

∫ t 

t−1
||ρm||L1(Ω) → 0 as  t →  ∞, (4.3.38)

∫ t 

t−1
||∇m||2 L2(Ω) → 0 as  t →  ∞. (4.3.39) 

On the other hand,

∫ t 

t−1
||ρm||L1(Ω) =

∫ t 

t−1

∫

Ω 
ρ(m − m) +

∫ t 

t−1

∫

Ω 
ρm 

≥  −
∫ t 

t−1
||ρ(·, s)||L2(Ω)||m − m||L2(Ω) +  |Ω|

∫ t 

t−1 
ρ · m 

≥  −K
∫ t 

t−1
||∇m||L2(Ω) +  |Ω|

∫ t 

t−1 
ρ · m 

≥  −K

⎛∫ t 

t−1
||∇m||2 L2(Ω)

⎞ 1 
2 

+  |Ω|
∫ t 

t−1 
ρ · m. 

Inserting (4.3.38) and (4.3.39) into the above inequality, we obtain

∫ t 

t−1 
ρ · m → 0 as  t →  ∞. (4.3.40) 

Now if ρ0 − m0 ≥ 0, (4.3.4) warrants that ρ − m ≥ 0, which along with (4.3.40) 
implies that

∫ t 

t−1 
m2 (s)ds  → 0 as  t →  ∞. (4.3.41)
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Noticing that m(s) ≥ m(t) for all t ≥ s, we have  0 ≤ m(t)2 ≤ ∫ t 
t−1 m

2 (s)ds  → 
0 as  t →  ∞, and thus ρ → ρ∞ as t →  ∞  due to (4.3.4). By very similar argu-
ment, one can see that ρ → 0 as  t →  ∞  and m → m∞ as t →  ∞  in the case 
of ρ0 − m0 < 0. Finally, it is observed that c(·, t) → m∞ in L2(Ω) as t →  ∞  is 
also valid (see Lemma 4.7 of Espejo and Winkler (2018) for example) and thus 
c(t) → m∞ as t →  ∞  by the Hölder inequality. 

Combining Lemma 4.11 with Lemma 4.12, we have  

Lemma 4.13 Under the assumptions of Lemma 4.6, we have 

ρ(·, t) → ρ∞, m(·, t) → m∞, c(·, t) → m∞, u(·, t) → 0 in L∞(Ω) as t →  ∞. 

Now we proceed to estimate the decay rate of ||ρ(·, t) − ρ∞||L∞(Ω), ||m(·, t) − 
m∞||L∞(Ω), ||c(·, t) − c∞||L∞(Ω), and ||u(·, t)||L∞(Ω) when

∫

Ω ρ0 /= ∫

Ω m0. To this  
end, we first consider its decay rate in L2(Ω) based on a differential inequality. 

Lemma 4.14 Under the assumptions of Lemma 4.6 and
∫

Ω ρ0 /= ∫

Ω m0, for any 
ε  >  0, there exist constants K (ε) > 0 and tε > 0 such that for t > tε, 

|ρ(t) − ρ∞|  +  |m(t) − m∞|  ≤ K (ε)e−(ρ∞+m∞−ε)t , (4.3.42) 

|c(t) − m∞|  ≤ K (ε)e− min{1,(ρ∞+m∞−ε)}t . (4.3.43) 

Proof For the case
∫

Ω ρ0 >
∫

Ω m0, we have  ρ∞ > 0 and m∞ = 0. By Lemma 4.13, 
there exists tε > 0 such that ρ(x, t) ≥ ρ∞ − ε for t > tε and x ∈ Ω , and thereby 
d 
dt

∫

Ω m =  − ∫

Ω ρm ≤  −(ρ∞ − ε)
∫

Ω m for t > tε, which implies that m(t) ≤ 
m0e−(ρ∞−ε)(t−tε ) for t > tε. Moreover, due to ρ = m + ρ∞ by (4.3.4), we have 
|ρ(t) − ρ∞|  =  m(t) ≤ m0e−(ρ∞−ε)(t−tε ) for t > tε. As for the case

∫

Ω ρ0 <
∫

Ω m0, 
similarly we can prove that |m(t) − m∞|  =  ρ ≤ ρ0e−(m∞−ε)(t−tε ) . for t > tε. Further-
more, by the third equation of (4.1.1), we have d dt

∫

Ω (c − m∞) = ∫

Ω (m − m∞) −∫

Ω (c − m∞), and thereby |c(t) − m∞|  ≤  K (ε)e−min{1,ρ∞+m∞−ε}t . 

Proof of Theorem 4.2 in the case S = 0 on ∂Ω . By Lemmas 4.11 and 4.13, as  
t →  ∞, we have  

ρ(·, t) − ρ(t) → 0, m(·, t) − m(t) → 0,  ρ(·, t) → ρ∞, m(·, t) → m∞ in L∞(Ω), 

which implies that for any ε ∈ (0, ρ∞+m∞ 
2 ), there exists tε > 0 such that |ρ(·, t) − 

ρ(t)| <  ε, |m(·, t) − m(t)| <  ε, ρ(·, t) + m(·, t) ≥ ρ∞ + m∞ − ε for all t > tε and 
x ∈ Ω . Hence, from (4.3.23)–(4.3.26), we have
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d 

dt

∫

Ω 
(ρ − ρ)2 +

∫

Ω 
|∇ρ|2 ≤ K1

∫

Ω 
|∇c|2 + 2ε

∫

Ω 
ρm, (4.3.44) 

d 

dt

∫

Ω 
(m − m)2 + 2

∫

Ω 
|∇m|2 ≤ 2ε

∫

Ω 
ρm, (4.3.45) 

d 

dt

∫

Ω 
(c − c)2 + 2

∫

Ω 
|∇c|2 +

∫

Ω 
(c − c)2 ≤

∫

Ω 
(m − m)2 , (4.3.46) 

d 

dt

∫

Ω 
|u|2 +

∫

Ω 
|∇u|2 ≤ K3

⎛∫

Ω 
(ρ − ρ)2 +

∫

Ω 
(m − m)2

⎞

(4.3.47) 

for t > tε, as well as  

d 

dt

∫

Ω 
ρm (4.3.48) 

=
∫

Ω 
[ρ(Δm − u ·  ∇m − ρm) + m(Δρ −  ∇(ρ S(x,  ρ,  c)∇c) − u ·  ∇ρ − ρm)] 

=  −  2
∫

Ω 
∇ρ∇m −

∫

Ω 
(ρu ·  ∇m + mu ·  ∇ρ) +

∫

Ω 
ρS(x,  ρ,  c)∇c ·  ∇m −

∫

Ω 
ρm2 

−
∫

Ω 
ρ2 m 

≤
∫

Ω 
|∇ρ|2 + 2

∫

Ω 
|∇m|2 −

∫

Ω 
u ·  ∇(ρm) + K3

∫

Ω 
|∇c|2 −

∫

Ω 
ρm(ρ + m) 

≤
∫

Ω 
|∇ρ|2 + 2

∫

Ω 
|∇m|2 + K3

∫

Ω 
|∇c|2 − 

1 

2 
(ρ∞ + m∞)

∫

Ω 
ρm, 

where ∇  ·  u = 0, u |∂Ω= 0 and the boundedness of ρ are used. 
On the other hand, by Poincare’s inequality, there exists CP > 0, such that

∫

Ω 
|∇ρ|2 ≥ CP

∫

Ω 
(ρ − ρ)2 ,

∫

Ω 
|∇m|2 ≥ CP

∫

Ω 
(m − m)2 ,

∫

Ω 
|∇c|2 ≥ CP

∫

Ω 
(c − c)2 ,

∫

Ω 
|∇u|2 ≥ CP

∫

Ω 
(u − u)2 . 

Therefore, combining the above inequalities, and taking ε  <  a(ρ∞+m∞)CP 

8(K1+CP )
with a = 

min{ 1 2 , K1 
4CP 

, K1 
K3 

}, the functional G(t) := ∫

Ω (ρ − ρ)2 + K1 
CP

∫

Ω (m − m)2 + K1
∫

Ω 
(c − c)2 + a

∫

Ω ρm satisfies the ordinary differential inequality 
d 
dt  G(t) + δ1G(t) ≤ 

0 with δ1 = min{CP 
2 , 1, 

ρ∞+m∞ 
4 }, which implies that

||ρ(·, t) − ρ||L2(Ω) + ||m(·, t) − m||L2(Ω) + ||c(·, t) − c||L2(Ω) ≤ Ce− δ1 
2 t . (4.3.49) 

Moreover, by (4.3.49) and (4.3.47), ||u(·, t)||L2(Ω) ≤ Ce−δ2t for some δ2 > 0. At this  
position, combining (4.3.49) with Lemma 4.14, we can find δ3 > 0 such that
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||ρ(·, t) − ρ∞||L2(Ω) + ||m(·, t) − m∞||L2(Ω) + ||c(·, t) − m∞||L2(Ω) ≤ Ce−δ3t . 
(4.3.50) 

Hence, as in the proof of Lemma 4.11, we can obtain the decay estimates (4.1.9)– 
(4.1.12) by an application of the interpolation inequality, and thus the proof is com-
plete. 

3. Exponential decay under smallness condition 

In this subsection, we give the proof of Theorem 4.3 under the assumption that S = 0 
on ∂Ω . The proof thereof is divided into two cases (Propositions 4.1 and 4.2). 

(1) The case
∫

Ω ρ0 >
∫

Ω m0 

In this subsection, we consider the case
∫

Ω ρ0 >
∫

Ω m0, i.e., ρ∞ > 0, m∞ = 0. 

Proposition 4.1 Suppose that (4.1.4) hold with α = 0 and
∫

Ω ρ0 >
∫

Ω m0. Let N = 
3, p0 ∈ ( N 2 , N ), q0 ∈ (N , Np0 

N−p0 
). There exists ε  >  0 such that for any initial data 

(ρ0, m0, c0, u0) fulfilling (4.1.7) as well as

||ρ0 − ρ∞||L p0 (Ω) ≤ ε, ||m0||Lq0 (Ω) ≤ ε, ||∇c0||L N (Ω) ≤ ε, ||u0||L N (Ω) ≤ ε, 

(4.1.1) admits a global classical solution (ρ, m, c, u, P). In particular, for any α1 ∈ 
(0, min{λ1,  ρ∞}), α2 ∈ (0, min{α1,  λ'

1, 1}), there exist constants Ki , i = 1, 2, 3, 4, 
such that for all t ≥ 1

||m(·, t)||L∞(Ω) ≤ K1e
−α1t , (4.3.51)

||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e
−α1t , (4.3.52)

||c(·, t)||W 1,∞(Ω) ≤ K3e
−α2t , (4.3.53)

||u(·, t)||L∞(Ω) ≤ K4e
−α2t . (4.3.54) 

Proposition 4.1 is the consequence of the following lemmas. In the proof of these 
lemmas, the constants ci > 0, i = 1,  .  .  .  ,  10, refer to those in Lemmas 1.1, 4.1–4.3, 
respectively. We first collect some easily verifiable observations in the following 
lemma: 

Lemma 4.15 Under the assumptions of Proposition 4.1 and 

σ =
∫ ∞ 

0

⎛
1 + s− N 

2 p0

⎞
e−α1s ds, 

there exist M1 > 0, M2 > 0 and ε  >  0, such that
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c3 + 2c2c10e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ ≤ 
M2 

4 
, M1ε  <  1, (4.3.55) 

12c2c10(c6 + 4c6c9c10||∇φ||L∞(Ω)(M1 + c1 + c1|Ω| 1 p0 − 1 q0 

+ 4e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ ))ε < 1, (4.3.56) 

c4c10CS M2(e
(1+c1+c1|Ω| 1 p0 − 1 q0 )σ + ρ∞|Ω| 1 q0 ) ≤ 

M1 

8 
, (4.3.57) 

3c10c4CS(M1 + c1 + c1|Ω| 1 p0 − 1 q0 )M2ε ≤ 
M1 

8 
, (4.3.58) 

3c10c7c6(M1 + c1 + c1|Ω| 1 p0 − 1 q0 )(1 + 2c9c10||∇φ||L∞(Ω) 

· (M1 + c1 + c1|Ω| 1 p0 − 1 q0 + 4e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ ))ε ≤ 
M1 

4 
. (4.3.59) 

Let 

T ⍙sup 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩

~T ∈ (0, Tmax )

|
|
|
|
|
|
|
|
|

||(ρ−m)(·, t)−etΔ (ρ0−m0)||Lθ (Ω) 

≤M1ε(1+t
− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t for all θ ∈  [q0, ∞], t ∈  [0, ~T );

||∇c(·, t)||L∞(Ω) ≤ M2ε(1 + t− 1 
2 )e−α1t for all t ∈  [0, ~T ). 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

(4.3.60) 

By (4.1.7) and Lemma 4.4, T > 0 is well-defined. We first show T = Tmax . To this  
end, we will show that all of the estimates mentioned in (4.3.60) is valid with even 
smaller coefficients on the right-hand side. The derivation of these estimates will 
mainly rely on L p − Lq estimates for the Neumann heat semigroup and the fact that 
the classical solutions on (0, Tmax ) can be represented as 

(ρ − m)(·, t) =etΔ (ρ0 − m0) 

−
∫ t 

0 
e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) + u ·  ∇(ρ − m))(·, s)ds, 

(4.3.61) 

m(·, t) =etΔ m0 −
∫ t 

0 
e(t−s)Δ (ρm + u ·  ∇m)(·, s)ds, (4.3.62) 

c(·, t) =et (Δ−1) c0 +
∫ t 

0 
e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)ds, (4.3.63) 

u(·, t) =e−t A  u0 +
∫ t 

0 
e−(t−s) A P((ρ + m)∇φ)(·, s)ds (4.3.64) 

for all t ∈ (0, Tmax ) as per the variation-of-constants formula. 

Lemma 4.16 Under the assumptions of Proposition 4.1, for all t ∈ (0, T ) and θ ∈ 
[q0, ∞],
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||(ρ − m)(·, t) − ρ∞||Lθ (Ω) ≤ M3ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t . 

Proof Since etΔ ρ∞ = ρ∞ and
∫

Ω (ρ0 − m0 − ρ∞) = 0, the definition of T and 
Lemma 1.1(i) show that

||(ρ − m)(·, t) − ρ∞||Lθ (Ω) 

≤||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) + ||etΔ (ρ0 − m0 − ρ∞)||Lθ (Ω) 

≤M1ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t + c1(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )(||ρ0 − ρ∞||L p0 (Ω) 

+ ||m0||L p0 (Ω))e
−λ1t 

≤M3ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t 

for all t ∈ (0, T ) and θ ∈  [q0, ∞], where M3 = M1 + c1 + c1|Ω| 1 p0 − 1 q0 . 

Lemma 4.17 Under the assumptions of Proposition 4.1, for any k > 1,

||m(·, t)||Lk (Ω) ≤ M4||m0||Lk (Ω)e
−ρ∞t for all t ∈ (0, T ) (4.3.65) 

with σ = ∫ ∞ 
0 (1 + s− N 

2 p0 )e−α1sds  and M4 = eM3σ  ε. 

Proof Multiplying the m-equation in (4.1.1) by  kmk−1 and integrating the result over 
Ω , we get d dt

∫

Ω m
k ≤  −k

∫

Ω ρm
k on (0, T ). Since 

−ρ ≤  |ρ − m − ρ∞|  −  m − ρ∞ ≤  −ρ∞ +  |ρ − m − ρ∞|, 

Lemma 4.16 yields 

d 

dt

∫

Ω 
mk ≤  −kρ∞

∫

Ω 
mk + k

∫

Ω 
mk |ρ − m − ρ∞| 

≤  −kρ∞
∫

Ω 
mk + k||ρ − m − ρ∞||L∞(Ω)

∫

Ω 
mk 

≤  −kρ∞
∫

Ω 
mk + kM3ε

⎛
1 + t− N 

2 p0

⎞
e−α1t

∫

Ω 
mk 

and thus

∫

Ω 
mk ≤

∫

Ω 
mk 

0 exp{−kρ∞t + kM3ε

∫ t 

0 
(1 + s− N 

2 p0 )e−α1s ds} 
≤||m0||k Lk (Ω)

ek(M3σ  ε−ρ∞t) . 

The assertion (4.3.65) follows immediately. 

Lemma 4.18 Under the assumptions of Proposition 4.1, there exists M3 > 0, such  

that ||u(·, t)||Lq0 (Ω) ≤ M5ε
⎛
1 + t−

1 
2 + N 2q0

⎞
e−α2t for all t ∈ (0, T ).
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Proof For any given α2 <  λ'
1, we fix  μ ∈ (α2,  λ'

1). By  (4.3.64), Lemmas 4.1 and 
4.2, we obtain

||u(·, t)||Lq0 (Ω) 

≤c6t
− N 2

⎛
1 
N − 1 q0

⎞

e−μt||u0||L N (Ω) +
∫ t 

0
||e−(t−s)A P((ρ + m)∇φ)(·, s)||Lq0 (Ω)ds  

≤c6t
− N 2

⎛
1 
N − 1 q0

⎞

e−μt||u0||L N (Ω) (4.3.66) 

+ c6
∫ t 

0 
e−μ(t−s)||P((ρ + m − ρ + m)∇φ)(·, s)||Lq0 (Ω)ds  

≤c6t
− 1 

2 + N 2q0 e−μt||u0||L N (Ω) 

+ c6c9||∇φ||L∞(Ω)

∫ t 

0 
e−μ(t−s)||(ρ + m − ρ + m)(·, s)||Lq0 (Ω)ds, 

where P(ρ + m∇φ) = ρ + mP(∇φ) = 0 is used. On the other hand, due to α1 < 
ρ∞, Lemmas 4.16 and 4.17 show that

||(ρ + m − ρ + m)(·, s)||Lq0 (Ω) 

=||(ρ − m − ρ − m)(·, s) + 2(m − m)(·, s)||Lq0 (Ω) (4.3.67) 

≤||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) + 2||(m − m)(·, s)||Lq0 (Ω) 

≤M '
5ε(1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s 

with M '
5 = M3 + 4eM3σ  ε. Combining (4.3.66) with (4.3.67) and applying Lemma 

4.2, we have

||u(·, t)||Lq0 (Ω) 

≤c6t
− 1 

2 + N 2q0 e−μt||u0||L N (Ω) 

+ c6c9||∇φ||L∞(Ω) M
'
5ε

∫ t 

0 
(1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s e−μ(t−s) ds  

≤c6t
− 1 

2 + N 2q0 e−μt||u0||L N (Ω) + c6c9c10||∇φ||L∞(Ω) M
'
5ε(1 + tmin{0,1− N 2 ( 

1 
p0 

− 1 q0 
)}
)e−α2t 

≤c6t
− 1 

2 + N 2q0 e−μt ε + 2c6c9c10||∇φ||L∞(Ω) M
'
5εe

−α2t 

≤M5ε(1 + t−
1 
2 + N 2q0 )e−α2t , 

where M5 = c6 + 2c6c9c10||∇φ||L∞(Ω) M '
5 and 

N 
2 ( 

1 
p0 

− 1 q0 )  <  1 is used. 

Lemma 4.19 Under the assumptions of Proposition 4.1, for all t ∈ (0, T ),

||∇c(·, t)||L∞(Ω) ≤ 
M2 

2 
ε(1 + t−

1 
2 )e−α1t .
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Proof By (4.3.63) and Lemma 1.1(iii), we have

||∇c(·, t)||L∞(Ω) 

≤||et (Δ−1)∇c0||L∞(Ω) +
∫ t 

0
||∇e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)||L∞(Ω)ds (4.3.68) 

≤c3(1 + t−
1 
2 )e−(λ1+1)t||∇c0||L N (Ω) +

∫ t 

0
||∇e(t−s)(Δ−1) m(·, s)||L∞(Ω)ds  

+
∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds. 

Now we estimate the last two integrals on the right-hand side of the above inequality. 
From Lemmas 1.1(ii), 4.3, 4.17 with k = q0 and the fact that q0 > N , it follows that

∫ t 

0
||∇e(t−s)(Δ−1) m||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s)||m||Lq0 (Ω)ds (4.3.69) 

≤c2 M4ε

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s) e−ρ∞s ds  

≤c2c10 M4(1 + tmin{0, 1 2 − N 2q0 
}
)εe−α1t 

≤2c2c10 M4(1 + t−
1 
2 )εe−α1t . 

On the other hand, by Lemmas 4.3, 4.18 and the definition of T , we obtain

∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s)||u ·  ∇c||Lq0 (Ω)ds (4.3.70) 

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s)||u||Lq0 (Ω)||∇c||L∞(Ω)ds  

≤c2 M5M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s) (1 + s− 1 

2 + N 2q0 )(1 + s− 1 
2 )e−(α1+α2)s ds  

≤3c2 M5 M2ε
2
∫ t 

0 
e−(λ1+1)(t−s) e−(α1+α2)s (1 + (t − s)−

1 
2 − N 2q0 )(1 + s−1+ N 2q0 )ds  

≤3c2c10 M2 M5ε
2 (1 + t−

1 
2 )e−α1t .
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From (4.3.68)–(4.3.70), it follows that

||∇c||L∞(Ω) ≤ (c3 + 2c2c10 M4 + 3c2c10 M2 M5ε)(1 + t−
1 
2 )εe−α1t 

≤ 
M2 

2 
(1 + t−

1 
2 )εe−α1t , 

due to the choice of M1, M2 and ε satisfying (4.3.55), (4.3.56), and thereby completes 
the proof. 

Lemma 4.20 Under the assumptions of Proposition 4.1, for all θ ∈  [q0, ∞] and 
t ∈ (0, T ),

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

Proof According to (4.3.61), Lemmas 1.1(iv) and 4.1, we have

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) 

≤
∫ t 

0
||e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) + u ·  ∇(ρ − m))(·, s)||Lθ (Ω)ds  

≤
∫ t 

0
||e(t−s)Δ∇  ·  (ρS (x,  ρ,  c)∇c)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)Δ∇  ·  ((ρ − m − ρ∞)u)(·, s)||Lθ (Ω)ds  

≤c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s)||ρ(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

+ c7
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−μ(t−s)||u(ρ − m − ρ∞)(·, s)||Lq0 (Ω)ds  

=I1 + I2. 

Now we need to estimate I1 and I2. Firstly, from Lemmas 4.16 and 4.17, we obtain

||ρ(·, s)||Lq0 (Ω) ≤ ||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) + ||m(·, s)||Lq0 (Ω) + ||ρ∞||Lq0 (Ω) 

≤ M3ε(1 + s− N 2
⎛

1 
p0 

− 1 q0

⎞

)e−α1s + M6 (4.3.71) 

with M6 = e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ + ρ∞|Ω| 1 q0 , which together with Lemmas 4.19 and 
1.1 implies that
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I1 ≤c4CS M6

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s)||∇c||L∞(Ω)ds (4.3.72) 

+ M7ε

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )(1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1se−λ1(t−s)||∇c||L∞(Ω)ds  

≤c4CS M6 M2ε

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s) (1 + s− 1 

2 )e−α1sds  

+ 3M7 M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )(1 + s− 1 

2 − N 2 ( 
1 
p0 

− 1 q0 
) 
)e−2α1se−λ1(t−s)ds  

≤c10(c4CS M6 M2 + 3M7 M2ε)(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )εe−α1t 

≤ 
M1 

4 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

with M7 := c4CS M3, where we have used (4.3.57) and (4.3.58) and 1 
p0 

− 1 q0 < 1 
N . 

On the other hand, from Lemmas 4.16 and 4.18, it follows that 

I2 = c7
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−μ(t−s)||ρ − m − ρ∞||L∞(Ω)||u||Lq0 (Ω)ds  

≤ 3c7 M3 M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−μ(t−s) (1 + s− 1 

2 + N 2q0 
− N 

2 p0 )e−(α1+α2)s ds  

≤ 3c7 M3 M5c10ε
2 (1 + tmin{0, N 2 ( 1 θ − 1 p0 )})e−min{μ,α1+α2}t 

≤ 
M1 

4 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t , (4.3.73) 

where we have used  (4.3.59) and 1 p0 − 1 q0 < 1 
N . Hence, combining the above inequal-

ities leads to our conclusion immediately. 

Proof of Theorem 4.3 in the case S = 0 on ∂Ω , part 1 (Proposition 4.1). First  we  
claim that T = Tmax . In fact, if  T < Tmax , then by Lemmas 4.19 and 4.20, we have
||∇c(·, t)||L∞(Ω) ≤ M2 

2 ε(1 + t− 1 
2 )e−α1t and

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

for all θ ∈  [q0, ∞] and t ∈ (0, T ), which contradicts the definition of T in (4.3.60). 
Next, we show that Tmax =  ∞. In fact, if  Tmax < ∞, we only need to show that as 
t → Tmax ,

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) →  ∞  

according to the extensibility criterion in Lemma 4.4. 
Let t0 := min{1, Tmax 

3 }. Then from Lemma 4.17, there exists K1 > 0 such that for 
t ∈ (t0, Tmax ),

||m(·, t)||L∞(Ω) ≤ K1e
−ρ∞t . (4.3.74)
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Moreover, from Lemma 4.16 and the fact that

||ρ(·, t) − ρ∞||L∞(Ω) ≤ ||(ρ − m)(·, t) − ρ∞||L∞(Ω) + ||m(·, t)||L∞(Ω), 

it follows that for all t ∈ (t0, Tmax ) and some constant K2 > 0,

||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e
−α1t . (4.3.75) 

Furthermore, Lemma 4.19 implies that there exists K '
3 > 0, such that

||∇c(·, t)||L∞(Ω) ≤ K '
3e

−α2t for all t ∈ (t0, Tmax ). (4.3.76) 

On the other hand, we can conclude that ||c(·, t)||L∞(Ω) + ||Aβu(·, t)||L2(Ω) ≤ C for t 
∈ (t0, Tmax ). In fact, we first show that there exists a constant M9 > 0, such that

||Aβ u(·, t)||L2(Ω) ≤ M9e
−α2t (4.3.77) 

for t0 < t < Tmax . By  (4.3.64), we have

||Aβ u(·, t)||L2(Ω) 

≤||Aβ e−t A  u0||L2(Ω) +
∫ t 

0
||Aβ e−(t−s) A P((ρ + m − ρ∞)∇φ)(·, s)||L2(Ω)ds. 

According to Lemma 4.1, ||Aβe−t Au0||L2(Ω) ≤ c5e−μt||Aβu0||L2(Ω) for all t ∈ (0, 
Tmax ). On the other hand, from Lemmas 4.1, 4.2, and 4.16, it follows that there exists 
M̂ > 1, such that

∫ t 

0
||Aβ e−(t−s) A P((ρ + m − ρ∞)∇φ)(·, s)||L2(Ω)ds  

≤c9c5||∇φ||L∞(Ω)|Ω| q0−2 
2q0

∫ t 

0 
e−μ(t−s) (t − s)−β (||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) 

+ 2||m(·, s)||Lq0 (Ω))ds  

≤c9c5||∇φ||L∞(Ω)|Ω| q0−2 
2q0 M̂

∫ t 

0 
e−μ(t−s) (t − s)−β (1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s ds  

≤c5c9c10||∇φ||L∞(Ω)|Ω| q0−2 
2q0 M̂e−α2t (1 + tmin{0,1−β− N 2 ( 

1 
p0 

− 1 q0 
)}
) 

≤c5c9c10||∇φ||L∞(Ω)|Ω| q0−2 
2q0 M̂e−α2t (1 + t 

min{0,1−β− N 2 ( 
1 
p0 

− 1 q0 
)} 

0 ) 

for t0 < t < Tmax . Hence, combining the above inequalities, we arrive at (4.3.77). 
Since D(Aβ ) ϲ→ L∞(Ω) with β ∈ ( N 4 , 1), we have

||u(·, t)||L∞(Ω) ≤ K4e
−α2t for some K4 > 0 and t ∈ (0, Tmax ). (4.3.78)
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Now we turn to show that there exists K ''
3 > 0, such that

||c(·, t)||L∞(Ω) ≤ K ''
3 e

−α2t for all t ∈ (0, Tmax ). (4.3.79) 

Indeed, from (4.3.63), it follows that

||c||L∞(Ω) ≤ ||et (Δ−1) c0||L∞(Ω) +
∫ t 

0
||e(t−s)(Δ−1) (m − u ·  ∇c)||L∞(Ω)ds  

≤ e−t||c0||L∞(Ω) +
∫ t 

0
||e(t−s)(Δ−1) m(·, s)||L∞(Ω)ds (4.3.80) 

+
∫ t 

0
||e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds. 

An application of (4.3.65) with k =  ∞  yields
∫ t 

0
||e(t−s)(Δ−1) m(·, s)||L∞(Ω)ds  ≤

∫ t 

0 
e−(t−s)||m(·, s)||L∞(Ω)ds (4.3.81) 

≤ ||m0||L∞(Ω) M4

∫ t 

0 
e−(t−s) e−ρ∞s ds  

≤ M4c10e
−α2t . 

On the other hand, from (4.3.78) and (4.3.76), we can see that

∫ t 

0
||e(t−s)(Δ−1) u ·  ∇c||L∞(Ω)ds  ≤

∫ t 

0 
e−(t−s)||u||L∞(Ω)||∇c||L∞(Ω)ds (4.3.82) 

≤ K '
3K4

∫ t 

0 
e−2α2s e−(t−s) ds  

≤ K '
3K4c10e

−α2t . 

Hence, inserting (4.3.81), (4.3.82) into (4.3.80), we arrive at the conclusion (4.3.79). 
Therefore, we have Tmax =  ∞, and the decay estimates in (4.3.51)–(4.3.54) follow 
from (4.3.74)–(4.3.79), respectively. 

(2) The case
∫

Ω ρ0 <
∫

Ω m0 

In this subsection, we consider the case
∫

Ω ρ0 <
∫

Ω m0, i.e., m∞ > 0, ρ∞ = 0. 

Proposition 4.2 Suppose that (4.1.4) hold with α = 0 and
∫

Ω ρ0 <
∫

Ω m0. Let N = 
3, p0 ∈ ( 2N 3 , N ), q0 ∈ (N , Np0 

2(N−p0) ). Then there exists ε  >  0 such that for any initial 
data (ρ0, m0, c0, u0) fulfilling (4.1.7) as well as

||ρ0||L p0 (Ω) ≤ ε, ||m0 − m∞||Lq0 (Ω) ≤ ε, ||∇c0||L N (Ω) ≤ ε, ||u0||L N (Ω) ≤ ε,
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(4.1.1) admits a global classical solution (ρ, m, c, u, P). Furthermore, for any α1∈ 
(0, min{λ1, m∞}), α2∈ (0, min{α1,  λ'

1, 1}), there exist constants Ki > 0, i = 1, 2, 
3, 4, such that

||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , (4.3.83)

||ρ(·, t)||L∞(Ω) ≤ K2e
−α1t , (4.3.84)

||c(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t , (4.3.85)

||u(·, t)||L∞(Ω) ≤ K4e
−α2t . (4.3.86) 

The proof of Proposition 4.2 proceeds in a parallel fashion to that of Proposition 
4.1. However, due to differences in the properties of ρ and m, there are significant 
differences in the details of their proofs. Thus, for the convenience of the reader, we 
will give the full proof of Proposition 4.2. The following can be verified easily: 

Lemma 4.21 Under the assumptions of Proposition 4.2, it is possible to choose 
M1 > 0, M2 > 0 and ε  >  0, such that 

c3 ≤ 
M2 

6 
, c2c10(1 + c1 + c1|Ω| 

1 
p0 

− 1 q0 + M1) ≤ 
M2 

6 
, (4.3.87) 

18c2c6c10(1 + 2c9c10(1 + c1 + c1|Ω| 
1 
p0 

− 1 q0 + 2M1)||∇φ||L∞(Ω))ε ≤ 1, (4.3.88) 

2c1 + (min{1, |Ω|})− 1 p0 ≤ 
M1 

8 
, 24c4CSc10 M2ε  <  1, (4.3.89) 

24c4c10c6(1 + 2c9c10(1 + c1 + c1|Ω| 
1 
p0 

− 1 q0 + 2M1)||∇φ||L∞(Ω))ε < 1, (4.3.90) 

24c4c10(1 + c1 + c1|Ω| 
1 
p0 

− 1 q0 + M1)ε < 1, (4.3.91) 

12c4CSc10 M1 M2ε  <  1, (4.3.92) 

c10c6c4(1 + c1+c1|Ω| 
1 
p0 

− 1 q0 )(1 + 2c9c10(1 + c1 + c1|Ω| 
1 
p0 

− 1 q0 + 2M1)||∇φ||L∞(Ω))ε 

< 
1 

24 
. (4.3.93) 

Similar to the proof of Proposition 4.1, we define 

T ⍙sup 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩

~T ∈ (0, Tmax )

|
|
|
|
|
|
|
|
|

||(m−ρ)(·, t)−etΔ (m0−ρ0)||Lθ (Ω) ≤ ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t ,

||ρ(·, t)||Lθ (Ω) ≤ M1ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t , ∀θ ∈  [q0, ∞],

||∇c(·, t)||L∞(Ω) ≤ M2ε(1 + t−
1 
2 )e−α1t , ∀t ∈  [0, ~T ). 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

(4.3.94) 

By Lemma 4.3.7 and (4.1.7), T > 0 is well-defined. As in the previous subsection, 
we first show T = Tmax , and then Tmax =  ∞. To this end, we will show that all of the 
estimates mentioned in (4.3.94) are valid with even smaller coefficients on the right-
hand side than appearing in (4.3.94). The derivation of these estimates will mainly
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rely on L p − Lq estimates for the Neumann heat semigroup and the corresponding 
semigroup for Stokes operator, and the fact that the classical solutions of (4.1.1) on  
(0, T ) can be represented as 

(m − ρ)(·, t) = etΔ (m0 − ρ0) 

+
∫ t 

0 
e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) − u ·  ∇(m − ρ))(·, s)ds, 

(4.3.95) 

ρ(·, t) = etΔ ρ0 −
∫ t 

0 
e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) + u ·  ∇ρ + ρm)(·, s)ds, 

(4.3.96) 

c(·, t) = et (Δ−1) c0 +
∫ t 

0 
e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)ds, (4.3.97) 

u(·, t) = e−t A  u0 +
∫ t 

0 
e−(t−s) A P((ρ + m)∇φ)(·, s)ds. (4.3.98) 

Lemma 4.22 Under the assumptions of Proposition 4.2, we have

||(m − ρ)(·, t) − m∞||Lθ (Ω) ≤ M3ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t 

for all t ∈ (0, T ) and θ ∈  [q0, ∞]. 
Proof Since etΔ (m0 − ρ0) = m∞ and

∫

Ω (m0 − ρ0 − m∞) = 0, from the Definition 
of T and Lemma 1.1(i), we get

||(m − ρ)(·, t) − m∞||Lθ (Ω) 

≤||(m − ρ)(·, t) − etΔ (m0 − ρ0)||Lθ (Ω) + ||etΔ (m0 − ρ0) − etΔm∞||Lθ (Ω) 

≤ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t + c1(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )(||ρ0||L p0 (Ω) + ||m0 − m∞||L p0 (Ω))e

−λ1t 

≤(1 + c1 + c1|Ω| 1 p0 − 1 q0 )ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t 

for all t ∈ (0, T ) and θ ∈  [q0, ∞]. This lemma is proved for 

M3 = 1 + c1 + c1|Ω| 1 p0 − 1 q0 . 

Lemma 4.23 Under the assumptions of Proposition 4.2, we have

||m(·, t) − m∞||Lθ (Ω) ≤ M4ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t for all t ∈ (0, T ), θ ∈  [q0, ∞].
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Proof From Lemma 4.22 and the definition of T , it follows that

||m(·, t) − m∞||Lθ (Ω) ≤||(m − ρ − m∞)(·, t)||Lθ (Ω) + ||ρ(·, t)||Lθ (Ω) 

≤(M3 + M1)ε(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−α1t . 

The lemma is proved for M4 = M3 + M1. 

Lemma 4.24 Under the assumptions of Proposition 4.2, there exists M5 > 0, such  
that

||u(·, t)||Lq0 (Ω) ≤ M5ε(1 + t−
1 
2 + N 2q0 )e−α2t for all t ∈ (0, T ). 

Proof For any given α2 <  λ'
1, we can fix μ ∈ (α2,  λ'

1). By (4.3.98), Lemmas 4.1, 
4.2 and P(∇φ) = 0, we obtain that

||u(·, t)||Lq0 (Ω) 

≤c6t
− N 2 ( 

1 
N − 1 q0 

) e−μt||u0||L N (Ω) +
∫ t 

0
||e−(t−s) A P((ρ + m)∇φ)(·, s)||Lq0 (Ω)ds  

≤c6t
− N 2 ( 

1 
N − 1 q0 

) e−μt||u0||L N (Ω) (4.3.99) 

+ c6c9
∫ t 

0 
e−μ(t−s)||(ρ + m − m∞)(·, s)||Lq0 (Ω)||∇φ||L∞(Ω)ds  

≤c6t
− 1 

2 + N 2q0 e−μt||u0||L N (Ω) 

+ c6c9||∇φ||L∞(Ω)

∫ t 

0 
e−μ(t−s)||(ρ + m − m∞)(·, s)||Lq0 (Ω)ds. 

By Lemma 4.23 and the definition of T , we get

||(ρ + m − m∞)(·, s)||Lq0 (Ω) =||(m − m∞)(·, s)||Lq0 (Ω) + ||ρ(·, s)||Lq0 (Ω) 
(4.3.100) 

≤(M4 + M1)ε(1 + s− N 2 ( 
1 
p0 

− 1 q0 
) 
)e−α1s . 

Inserting (4.3.100) into (4.3.99), and noting N 2 ( 
1 
p0 

− 1 q0 )  <  1, we have

||u(·, t)||Lq0 (Ω) 

≤c6t
− 1 

2 + N 2q0 e−μt||u0||L N (Ω) 

+ c6c9(M4 + M1)||∇φ||L∞(Ω)ε

∫ t 

0 
(1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s e−μ(t−s) ds  

≤c6t
− 1 

2 + N 2q0 e−μt||u0||L N (Ω) 

+ c6c9c10(M4 + M1)||∇φ||L∞(Ω)ε(1 + tmin{0,1− N 2 ( 
1 
p0 

− 1 q0 
)}
)e−α2t
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≤c6t
− 1 

2 + N 2q0 εe−μt + 2c6c9c10(M4 + M1)||∇φ||L∞(Ω)εe
−α2t 

=M5ε(1 + t−
1 
2 + N 2q0 )e−α2t 

with M5 = c6 + 2c6c9c10(M4 + M1)||∇φ||L∞(Ω). 

Lemma 4.25 Under the assumptions of Proposition 4.2, we have

||∇c(·, t)||L∞(Ω) ≤ 
M2 

2 
ε(1 + t−

1 
2 )e−α1t for all t ∈ (0, T ). 

Proof From (4.3.97) and Lemma 1.1(iii), we have

||∇c(·, t)||L∞(Ω) 

≤||et (Δ−1)∇c0||L∞(Ω) +
∫ t 

0
||∇e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)||L∞(Ω)ds (4.3.101) 

≤c3(1 + t−
1 
2 )e−(λ1+1)t||∇c0||L N (Ω) +

∫ t 

0
||∇e(t−s)(Δ−1) (m − m∞)(·, s)||L∞(Ω)ds  

+
∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds. 

In the second inequality, we have used ∇e(t−s)(Δ−1)m∞ = 0. 
From Lemmas 1.1, 4.3 and 4.23, it follows that

∫ t 

0
||∇e(t−s)(Δ−1) (m − m∞)(·, s)||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s)||(m − m∞)(·, s)||Lq0 (Ω)ds (4.3.102) 

≤c2 M4ε

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s) (1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s ds  

≤c2c10 M4ε(1 + tmin{0, 1 2 − N 
2 p0 

}
)e−min{α1,λ1+1}t 

≤c2c10 M4ε(1 + t−
1 
2 )e−α1t . 

On the other hand, by Lemmas 1.1(ii), 4.3 and the definition of T , we obtain
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∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s)||u ·  ∇c(·, s)||Lq0 (Ω)ds (4.3.103) 

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s)||u(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

≤c2 M5 M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2q0 )e−(λ1+1)(t−s) (1 + s− 1 

2 + N 2q0 )(1 + s− 1 
2 )e−(α1+α2)s 

≤3c2 M5M2ε
2
∫ t 

0 
e−(λ1+1)(t−s) e−(α1+α2)s (1 + (t − s)−

1 
2 − N 2q0 )(1 + s−1+ N 2q0 )ds  

≤3c2 M5M2c10ε
2 (1 + t−

1 
2 )e− min{λ1+1,α1+α2}t 

≤3c2 M5M2c10ε
2 (1 + t−

1 
2 )e−α1t . 

Hence, combining above inequalities with (4.3.87) and (4.3.88), we arrive at the 
conclusion. 

Lemma 4.26 Under the assumptions of Proposition 4.2, we have

||ρ(·, t)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t for all t ∈ (0, T ), θ ∈  [q0, ∞]. 

Proof By the variation-of-constants formula, we have 

ρ(·, t) =et (Δ−m∞) ρ0 −
∫ t 

0 
e(t−s)(Δ−m∞) (∇  ·  (ρS (·,  ρ,  c)∇c) − u ·  ∇ρ)(·, s)ds  

+
∫ t 

0 
e(t−s)(Δ−m∞) ρ(m∞ − m)(·, s)ds. 

By Lemma 1.1, the result in Sect. 2 of Horstmann and Winkler (2005) and α1 < 
min{λ1, m∞}, we obtain

||ρ(·, t)||Lθ (Ω) 

≤e−m∞t (||etΔ (ρ0 − ρ0)||Lθ (Ω) + ||ρ0||Lθ (Ω)) 

+
∫ t 

0
||e(t−s)(Δ−m∞)∇  ·  (ρS (·,  ρ,  c)∇c)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞) (u ·  ∇ρ)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞) ρ(m∞ − m)(·, s)||Lθ (Ω)ds  

≤c1(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )e−(λ1+m∞)t||ρ0 − ρ0||L p0 (Ω)
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+ (min{1, |Ω|})− 1 p0 e−m∞t ε 

+ c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||Lq0 (Ω)||∇c||L∞(Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞)∇  ·  (ρu)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞) ρ(m∞ − m)(·, s)||Lθ (Ω)ds  

≤(2c1 + (min{1, |Ω|})− 1 p0 )(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )εe−α1t 

+ c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||Lq0 (Ω)||∇c||L∞(Ω)ds  

+ c4
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||L∞(Ω)||u||Lq0 (Ω)ds  

+ c1
∫ t 

0 
(1 + (t − s)− N 2 ( 

1 
q0 

− 1 
θ ) )e−m∞(t−s)||ρ||Lq0 (Ω)||m − m∞||L∞(Ω)ds  

=(2c1 + (min{1, |Ω|})− 1 p0 )(1 + t− N 2 ( 
1 
p0 

− 1 
θ ) )εe−α1t + I1 + I2 + I3. 

By the definition of T , Lemmas 4.25, 4.3 and (4.3.89), we get 

I1 ≤ 3c4CS M1M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s) e−2α1s 

· (1 + s− 1 
2 − N 2 ( 

1 
p0 

− 1 q0 
) 
)ds  

≤ 3c4CSc10 M1 M2ε
2 (1 + tmin{0,− N 2 ( 

1 
p0 

− 1 
θ )})e− min{λ1,2α1}t 

≤ 
M1 

8 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

Similarly, by (4.3.91) and (4.3.92), we can also get 

I2 ≤ 3c4 M1 M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s) e−2α1s (1 + s− 1 

2 − N 2 ( 
1 
p0 

− 1 q0 
) 
)ds  

≤ 3c4c10 M5M1ε
2 (1 + tmin{0,− N 2 ( 

1 
p0 

− 1 
θ )})e− min{λ1,2α1}t 

≤ 
M1 

8 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t ,
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I3 ≤ 3c4 M1 M4ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−m∞(t−s) e−2α1s (1 + s− N p0 

+ N 2q0 )ds  

≤ 3c4c10 M1 M4ε
2 (1 + tmin{0,− N 2 ( 

1 
p0 

− 1 
θ )})e−min{m∞,2α1}t 

≤ 
M1 

8 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t , 

respectively, where the fact that q0 ∈ (N , Np0 
2(N−p0) ) warrants − N p0 + N 

2q0 
> −1 is used. 

Hence, the combination of the above inequalities yields

||ρ(·, t)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

Lemma 4.27 Under the assumptions of Proposition 4.2, we have

||(m − ρ)(·, t) − etΔ (m0 − ρ0)||Lθ (Ω) ≤ 
ε 
2 
(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

for θ ∈  [q0, ∞], t ∈ (0, T ). 

Proof From (4.3.95) and Lemma 1.1(iv), it follows that

||(m − ρ)(·, t) − etΔ (m0 − ρ0)||Lθ (Ω) 

≤
∫ t 

0
||e(t−s)Δ (∇  ·  (ρS (·,  ρ,  c)∇c) − u ·  ∇(m − ρ))(·, s)||Lθ (Ω)ds  

≤
∫ t 

0
||e(t−s)Δ∇  ·  (ρS (·,  ρ,  c)∇c)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)Δ∇  ·  ((m − ρ − m∞)u)(·, s)||Lθ (Ω)ds  

≤c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s)||ρ(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

+ c4
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s)||u(m − ρ − m∞)(·, s)||Lq0 (Ω)ds  

=I1 + I2. 

From the definition of T and (4.3.93), we have 

I1 ≤c4CS M1M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s) (1 + s− 1 

2 − N 2 ( 
1 
p0 

− 1 q0 
) 
)e−2α1s ds  

≤ 3c4CSc10 M1 M2ε
2 (1 + tmin{0,− N 2 ( 

1 
p0 

− 1 
θ )})e−min{λ1,2α1}t 

≤ 
ε 
4 
(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

On the other hand, from Lemmas 4.22, 4.24 and (4.3.94), it follows that
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I2 =c4

∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s)||m − ρ − m∞||L∞(Ω)||u||Lq0 (Ω)ds  

≤2c4 M3 M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )e−λ1(t−s) 

· (1 + s− N 
2 p0 )e−α1s (1 + s− 1 

2 + N 2q0 )e−α2s ds  

≤6c4 M3 M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − N 2 ( 

1 
q0 

− 1 
θ ) )(1 + s− 1 

2 + N 2 ( 
1 
q0 

− 1 p0 ) ) 

· e−λ1(t−s) e−(α1+α2)s ds  

≤6c10c4 M3M5ε
2 e− min{λ1,α1+α2}t (1 + tmin{0, N 2 ( 1 θ − 1 p0 )}) 

≤ 
ε 
4 
(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

Combining the above inequalities, we arrive at

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) ≤ 
ε 
2 
(1 + t− N 2 ( 

1 
p0 

− 1 
θ ) )e−α1t , 

and thus complete the proof of this lemma. 

By the above lemmas, we can claim that T = Tmax . Indeed, if T < Tmax , by  
Lemmas 4.27, 4.26 and 4.25, we have

||(m − ρ)(·, t) − etΔ (m0 − ρ0)||Lθ (Ω) ≤ 
ε 
2 
(1 + t− N 2 ( 

1 
p0 

− 1 
θ )e−α1t ,

||ρ(·, t)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t− N 2

⎛
1 
p0 

− 1 
θ

⎞

)e−α1t 

as well as

||∇c(·, t)||L∞(Ω) ≤ 
M2 

2 
ε
⎛
1 + t−

1 
2

⎞
e−α1t 

for all θ ∈  [q0, ∞] and t ∈ (0, T ), which contradict the definition of T in (4.3.94). 
Next, the further estimates of solutions are established to ensure Tmax =  ∞. 

Lemma 4.28 Under the assumptions of Proposition 4.2, there exists M6 > 0 such 
that

||Aβ u(·, t)||L2(Ω) ≤ ε M6e
−α2t for t ∈ (t0, Tmax ) with t0 = min{ Tmax 

6 
, 1}. 

Proof For any given α2 <  λ'
1, we can fix μ ∈ (α2,  λ'

1). From  (4.3.98), it follows that
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||Aβ u(·, t)||L2(Ω) 

≤||Aβ e−t A  u0||L2(Ω) +
∫ t 

0
||Aβ e−(t−s) A P((ρ + m − m∞)∇φ)(·, s)||L2(Ω)ds. 

In the first integral, we apply Lemma 4.1, which gives

||Aβ e−t A  u0||L2(Ω) ≤ c5|Ω| N−2 
2N t−β e−α2t||u0||L N (Ω) ≤ c5|Ω| N−2 

2N t−β e−α2t ε 

for all t ∈ (0, T ). Next by Lemmas 4.2, 4.22 and 4.26, we have

∫ t 

0
||Aβ e−(t−s) A P((ρ + m − m∞)∇φ)(·, s)||L2(Ω)ds  

≤c9c5||∇φ||L∞(Ω)|Ω| q0−2 
2q0

∫ t 

0 
e−μ(t−s) (t − s)−β 

· (||m(·, s) − ρ(·, s) − m∞||Lq0 (Ω) + 2||ρ(·, s)||Lq0 (Ω))ds  

≤M '
6ε

∫ t 

0 
e−μ(t−s) (t − s)−β (1 + s− N 2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s ds  

≤M '
6εc10(1 + t−1 )e−α2t , 

where M '
6 = (M3 + M1)c9c5||∇φ||L∞(Ω)|Ω| q0−2 

2q0 . Therefore there exists M6 > 0 such 
that ||Aβu(·, t)||L2(Ω) ≤ εM6e−α2t for t ∈ (t0, Tmax ). 

Lemma 4.29 Under the assumptions of Proposition 4.2, there exists M7 > 0, such  
that ||c(·, t) − m∞||L∞(Ω) ≤ M7e−α2t for all (t0, Tmax ) with t0 = min{ Tmax 

6 , 1}. 
Proof From (4.3.97) and Lemma 1.1, we have

||(c − m∞)(·, t)||L∞(Ω) 

≤c1e
−t||c0 − m∞||L∞(Ω) +

∫ t 

0
||e(t−s)(Δ−1) (m − m∞)(·, s)||L∞(Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds. (4.3.104) 

By Lemmas 4.3 and 4.23, we obtain

∫ t 

0
||e(t−s)(Δ−1) (m − m∞)(·, s)||L∞(Ω)ds  

≤c1

∫ t 

0 
(1 + (t − s)− N 2q0 )e−(t−s)||(m − m∞)(·, s)||Lq0 (Ω)ds (4.3.105) 

≤c1c10 M4εe
−α2t . 

On the other hand, by Lemmas 4.3, 4.24 and 4.25, we get
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∫ t 

0
||e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds  

≤c1

∫ t 

0 
(1 + (t − s)− N 2q0 )e−(t−s)||u ·  ∇c(·, s)||Lq0 (Ω)ds  

≤c1

∫ t 

0 
(1 + (t − s)− N 2q0 )e−(t−s)||u(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

≤6c1 M5 M2c10ε
2 e−α2t . (4.3.106) 

Therefore combining the above equalities, we arrive at the desired result. 

Proof of Theorem 4.3 in the case S = 0 on ∂Ω , part 2 (Proposition 4.2). We 
now come to the final step to show that Tmax =  ∞. According to the extensibility 
criterion in Lemma 4.4, it remains to show that there exists C > 0 such that for 
t0 := min{ Tmax 

6 , 1} < t < Tmax

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) < C. 

From Lemmas 4.23 and 4.26, there exists Ki > 0, i = 1, 2, 3, such that

||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t ,

||ρ(·, t)||L∞(Ω) ≤ K2e
−α1t ,

||∇c(·, t)||L∞(Ω) ≤ K3e
−α1t 

for t ∈ (t0, Tmax ). Furthermore, Lemma 4.29 implies that ||c(·, t) − m∞||W 1,∞(Ω) ≤ 
K '

3e
−α2t with some K '

3 > 0 for all t ∈ (t0, Tmax ). Since D(Aβ ) ϲ→ L∞(Ω) with 
β ∈ ( N 4 , 1), it follows from Lemma 4.28 that ||u(·, t)||L∞(Ω) ≤ K4e−α2t for some 
K4 > 0 for all t ∈ (t0, Tmax ). This completes the proof of Proposition 4.2. 

Before we move to the next section, we remark that the following result is also 
valid by suitably adjusting ε  >  0 for the larger values of p0 or q0. 

Corollary 4.1 Let N = 3 and
∫

Ω ρ0 /= ∫

Ω m0. Further, let p0 ∈ ( N 2 , ∞), q0 ∈ 
(N , ∞) if

∫

Ω ρ0 >
∫

Ω m0, and p0 ∈ ( 2N 3 , ∞), q0 ∈ (N , ∞) if
∫

Ω ρ0 <
∫

Ω m0. There 
exists ε  >  0 such that for any initial data (ρ0, m0, c0, u0) fulfilling (4.1.7) as well as

||ρ0 − ρ∞||L p0 (Ω) ≤ ε, ||m0 − m∞||Lq0 (Ω) ≤ ε, ||∇c0||L N (Ω) ≤ ε, ||u0||L N (Ω) ≤ ε, 

(4.1.1) admits a global classical solution (ρ, m, c, u, P). Moreover, for any α1 

∈ (0, min{λ1, m∞ + ρ∞}), α2 ∈ (0, min{α1,  λ'
1, 1}), there exist constants Ki i = 

1, 2, 3, 4, such that for all t ≥ 1

||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , ||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e

−α1t ,

||c(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t , ||u(·, t)||L∞(Ω) ≤ K4e

−α2t .
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4.3.3 Global Boundedness and Decay for General S 

In this subsection, we give the proof of our results for the general matrix-valued S . 
This is accomplished by an approximation procedure. In order to make the previous 
results applicable, we introduce a family of smooth functions ρη ∈ C∞

0 (Ω) and 0 ≤ 
ρη(x) ≤ 1 for η ∈ (0, 1), limη→0 ρη(x) = 1 and let Sη(x,  ρ,  c) = ρη(x)S (x,  ρ,  c). 
Using this definition, we regularize (4.1.1) as follows:  

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(ρη)t + uη ·  ∇ρη = Δρη −  ∇  ·  (ρηSη(x,  ρη, cη)∇cη) − ρηmη, 
(mη)t + uη ·  ∇mη = Δmη − ρηmη, 
(cη)t + uη ·  ∇cη = Δcη − cη + mη, 
(uη)t = Δuη −  ∇  Pη + (ρη + mη)∇φ, ∇  ·  uη = 0, 
∂ρη 

∂ν 
= 

∂mη 

∂ν 
= 

∂cη 

∂ν 
= 0, uη = 0 

(4.3.107) 

with the initial data 

ρη(x, 0) = ρ0(x), mη(x, 0) = m0(x), c(x, 0) = c0(x), uη(x, 0) = u0(x), x ∈ Ω. 
(4.3.108) 

It is observed that Sη satisfies the additional condition S = 0 on ∂Ω . Therefore, 
based on the discussion in Sect. 4.3.2, under the assumptions of Theorem 4.1 and 
Theorem 4.3, the problem (4.3.107)–(4.3.108) admits a global classical solution 
(ρη, mη, cη, uη, Pη) that satisfies

||mη(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , ||ρη(·, t) − ρ∞||L∞(Ω) ≤ K2e

−α1t ,

||cη(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t , ||uη(·, t)||L∞(Ω) ≤ K4e

−α2t . 

for some constants Ki , i = 1, 2, 3, 4, and t ≥ 0. Applying a standard procedure such 
as in Lemmas 5.2 and 5.6 of Cao and Lankeit (2016), one can obtain a subsequence of 
{η j } j∈N with η j → 0 as j →  ∞, such that ρη j → ρ,  mη j → m, cη j → c, uη j → 
u in C 

ϑ, ϑ 
2 

loc  (Ω × (0, ∞)) as j →  ∞  for some ϑ ∈ (0, 1). Moreover, by the argu-
ments as in Lemmas 5.7, 5.8 of Cao and Lankeit (2016), one can also show that 
(ρ, m, c, u, P) is a classical solution of (4.1.1) with the decay properties asserted in 
Theorems 4.2 and 4.3. The proofs of Theorems 4.1–4.3 are thus complete.
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4.4 Asymptotic Behavior of Solutions to a Coral 
Fertilization Model 

4.4.1 A Convenient Extensibility Criterion 

Firstly, we recall the result of the local existence of classical solutions, which can be 
proved by a straightforward adaptation of a well-known fixed point argument (see 
Winkler (2012) for example). 

Lemma 4.30 Suppose that (4.1.14), (4.1.15) and 

S (x,  ρ,  c) = 0,  (x,  ρ,  c) ∈ ∂Ω ×  [0, ∞) ×  [0, ∞) (4.4.1) 

hold. Then there exist Tmax ∈ (0, ∞] and a classical solution (ρ, m, c, u, P) of 
(4.1.13) on (0, Tmax ). Moreover, ρ,  m, c are nonnegative in Ω × (0, Tmax ), and if 
Tmax < ∞, then for β ∈ ( 3 4 , 1), as  t → Tmax

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) →  ∞. 

This solution is unique, up to addition of constants to P. 

The following elementary properties of the solutions in Lemma 4.30 are immedi-
ate consequences of the integration of the first and second equations in (4.1.13), as 
well as an application of the maximum principle to the second and third equations. 

Lemma 4.31 Suppose that (4.1.14), (4.1.15) and (4.4.1) hold. Then for all t ∈ 
(0, Tmax ), the solution of (4.1.13) from Lemma 4.30 satisfies

||ρ(·, t)||L1(Ω) ≤ ||ρ0||L1(Ω), ||m(·, t)||L1(Ω) ≤ ||m0||L1(Ω), (4.4.2)
∫ t 

0
||ρ(·, s)m(·, s)||L1(Ω)ds  ≤ min{||ρ0||L1(Ω), ||m0||L1(Ω)}, (4.4.3)

||ρ(·, t)||L1(Ω) − ||m(·, t)||L1(Ω) = ||ρ0||L1(Ω) − ||m0||L1(Ω), (4.4.4)

||m(·, t)||2 L2(Ω) + 2
∫ t 

0
||∇m(·, s)||2 L2(Ω)ds  ≤ ||m0||2 L2(Ω), (4.4.5)

||m(·, t)||L∞(Ω) ≤ ||m0||L∞(Ω), (4.4.6)

||c(·, t)||L∞(Ω) ≤ max{||m0||L∞(Ω), ||c0||L∞(Ω)}. (4.4.7) 

4.4.2 Global Boundedness and Decay for S = 0 on ∂Ω 

Throughout this section, we assume that S = 0 on ∂Ω . We note that, under this 
assumption, the boundary condition for ρ in (4.1.13) reduces to the homogeneous 
Neumann condition ∇ρ · ν = 0.
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In the case
∫

Ω ρ0 >
∫

Ω m0, i.e., ρ∞ > 0, m∞ = 0, Theorem 4.4 reduces to: 

Proposition 4.3 Suppose that (4.1.14) hold and
∫

Ω ρ0 >
∫

Ω m0. Let p0 ∈ ( 3 2 , 3), 
q0 ∈ (3, 3p0 

3−p0 
). There exists ε  >  0, such that for any initial data (ρ0, m0, c0, u0) 

fulfilling (4.1.15) as well as

||ρ0 − ρ∞||L p0 (Ω) <  ε, ||m0||Lq0 (Ω) <  ε, ||c0||L∞(Ω) <  ε, ||u0||L3(Ω) <  ε,  

(4.1.13) admits a global classical solution (ρ, m, c, u, P). In particular, for any α1 ∈ 
(0, min{λ1,  ρ∞}), α2 ∈ (0, min{α1,  λ'

1, 1}), there exist constants Ki , i = 1, 2, 3, 4, 
such that for all t ≥ 1

||m(·, t)||L∞(Ω) ≤ K1e
−α1t , (4.4.8)

||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e
−α1t , (4.4.9)

||c(·, t)||W 1,∞(Ω) ≤ K3e
−α2t , (4.4.10)

||u(·, t)||L∞(Ω) ≤ K4e
−α2t . (4.4.11) 

Proposition 4.3 is the consequence of the following lemmas. In the proofs thereof, 
the constants ci , i = 1, 2, 3, 4 refer to those in Lemma  1.1, ci > 0, i = 5,  .  .  .  ,  10, 
refer to those in Lemmas 4.1–4.3. 

Lemma 4.32 Under the assumptions of Proposition 4.3 and 

σ =
∫ ∞ 

0

⎛
1 + s− 3 

2 p0

⎞
e−α1s ds, 

there exist M1 > 0, M2 > 0 and ε ∈ (0, 1), such that 

c2 + 2c2c10e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ ≤ 
M2 

4 
, (4.4.12) 

c4c10CS M2(e
(1+c1+c1|Ω| 1 p0 − 1 q0 )σ + ρ∞|Ω| 1 q0 ) ≤ 

M1 

8 
, (4.4.13) 

c6 + 2c6c9c10||∇φ||L∞(Ω)(M1 + c1 + c1|Ω| 1 p0− 1 q0 + 4e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ )  <  
M3 

4 
, 

(4.4.14) 

c7 + 2c7c9c10||∇φ||L∞(Ω)|Ω| 1 
3 − 1 q0 (M1 + c1 + c1|Ω| 1 p0 − 1 q0 + 4e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ ) 

< 
M4 

4 
, (4.4.15) 

3c10c4CS(M1 + c1 + c1|Ω| 1 p0 − 1 q0 )M2ε ≤ 
M1 

8 
, (4.4.16) 

3c10c4(M1 + c1 + c1|Ω| 1 p0 − 1 q0 )M3ε ≤ 
M1 

4 
, (4.4.17) 

12c2c10 M3ε  <  1, 12c7c9c10 M3ε ≤ 1, 12c6c9c10 M4ε ≤ 1. (4.4.18)
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Let 

T ⍙sup 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩

~T ∈(0, Tmax )

|
|
|
|
|
|
|
|
|
|
|
|
|
|

||(ρ−m)(·, t)−etΔ (ρ0−m0)||Lθ (Ω) 

≤ M1ε(1+t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t ∀θ ∈  [q0, ∞], t ∈  [0, ~T );

||∇c(·, t)||L∞(Ω) ≤ M2ε(1 + t−
1 
2 )e−α1t ∀ t ∈  [0, ~T );

||u(·, t)||Lq0 (Ω) ≤ M3ε(1 + t−
1 
2 + 3 

2q0 )e−α2t ∀t ∈  [0, ~T );
||∇u(·, t)||L3(Ω) ≤ M4ε(1 + t−

1 
2 )e−α2t ∀t ∈  [0, ~T ). 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.4.19) 

Then T > 0 is well-defined by Lemma 4.30 and (4.1.15). Now we claim that T = 
Tmax =  ∞  if ε is sufficiently small. To this end, by the contradiction argument, it 
suffices to verify that all of the estimates mentioned in (4.4.19) still hold for even 
smaller coefficients on the right-hand side. This mainly relies on L p − Lq estimates 
for the Neumann heat semigroup and the fact that the classical solution on (0, Tmax ) 
can be written as 

(ρ − m)(·, t) 
=etΔ (ρ0 − m0) −

∫ t 

0 
e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) + u ·  ∇(ρ − m))(·, s)ds, 

(4.4.20) 

m(·, t) =etΔ m0 −
∫ t 

0 
e(t−s)Δ (ρm + u ·  ∇m)(·, s)ds, (4.4.21) 

c(·, t) =et (Δ−1) c0 +
∫ t 

0 
e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)ds, (4.4.22) 

u(·, t) =e−t A  u0 +
∫ t 

0 
e−(t−s) A P((ρ + m)∇φ − (u ·  ∇)u)(·, s)ds (4.4.23) 

for all t ∈ (0, Tmax ) according to the variation-of-constants formula. 
Although the proofs of Lemmas 4.33 and 4.34 below are similar to those of 

Lemmas 3.11 and 3.12 in Li et al. (2019b), respectively, we provide their proofs for 
the convenience of the interested reader. 

Lemma 4.33 Under the assumptions of Proposition 4.3, for all t ∈ (0, T ) and θ ∈ 
[q0, ∞], there exists constant M5 > 0, such that

||(ρ − m)(·, t) − ρ∞||Lθ (Ω) ≤ M5ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

Proof Due to etΔ ρ∞ = ρ∞ and
∫

Ω (ρ0 − m0 − ρ∞) = 0, the definition of T and 
Lemma 1.1(i) show that for all t ∈ (0, T ) and θ ∈  [q0, ∞],
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||(ρ − m)(·, t) − ρ∞||Lθ (Ω) 

≤||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) + ||etΔ (ρ0 − m0 − ρ∞)||Lθ (Ω) 

≤M1ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

+ c1(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )(||ρ0 − ρ∞||L p0 (Ω) + ||m0||L p0 (Ω))e

−λ1t 

≤M5ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t , 

where M5 = M1 + c1 + c1|Ω| 1 p0 − 1 q0 . 

Lemma 4.34 Under the assumptions of Proposition 4.3, for any k > 1,

||m(·, t)||Lk (Ω) ≤ M6||m0||Lk (Ω)e
−ρ∞t for all t ∈ (0, T ) (4.4.24) 

with σ = ∫ ∞ 
0 (1 + s− 3 

2 p0 )e−α1sds  and M6 = eM5σ  ε. 

Proof Testing the first equation in (4.1.13) with mk−1 (k > 1) and integrating by 
parts, we have 

d 

dt

∫

Ω 
mk ≤  −k

∫

Ω 
ρmk on (0, T ). 

In view of −ρ ≤  |ρ − m − ρ∞|  −  m − ρ∞ ≤  −ρ∞ +  |ρ − m − ρ∞|, Lemma 4.33 
yields 

d 

dt

∫

Ω 
mk ≤  −kρ∞

∫

Ω 
mk + k

∫

Ω 
mk |ρ − m − ρ∞| 

≤  −kρ∞
∫

Ω 
mk + k||ρ − m − ρ∞||L∞(Ω)

∫

Ω 
mk 

≤  −kρ∞
∫

Ω 
mk + kM5ε(1 + t− 3 

2 p0 )e−α1t
∫

Ω 
mk 

and thus

∫

Ω 
mk ≤

∫

Ω 
mk 

0 exp{−kρ∞t + kM5ε

∫ t 

0 
(1 + s− 3 

2 p0 )e−α1sds}  ≤ ||m0||k Lk (Ω)
ek(M5σ  ε−ρ∞t) , 

from which (4.4.24) follows immediately. 

Lemma 4.35 Under the assumptions of Proposition 4.3, we have

||u(·, t)||Lq0 (Ω) ≤ 
M3 

2 
ε
⎛
1 + t−

1 
2 + 3 

2q0

⎞
e−α2t for all t ∈ (0, T ). 

Proof For α2 <  λ'
1, we fix  μ ∈ (α2,  λ'

1). According to (4.4.23), Lemmas 4.1(ii) and 
4.2, we infer that
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||u(·, t)||Lq0 (Ω) 

≤c6t
− 3 

2

⎛
1 
3 − 1 q0

⎞

e−μt||u0||L3(Ω) 

+
∫ t 

0
||e−(t−s) A P((ρ + m)∇φ − (u ·  ∇)u)(·, s)||Lq0 (Ω)ds  

≤c6t
− 3 

2

⎛
1 
3 − 1 q0

⎞

e−μt||u0||L3(Ω) 

+ c6
∫ t 

0 
e−μ(t−s)||P((ρ + m − ρ + m)∇φ)(·, s)||Lq0 (Ω)ds  

+ c6
∫ t 

0 
e−μ(t−s)||P((u ·  ∇)u)(·, s)||Lq0 (Ω)ds (4.4.25) 

≤c6t
− 1 

2 + 3 
2q0 e−μt||u0||L3(Ω) 

+ c6c9||∇φ||L∞(Ω)

∫ t 

0 
e−μ(t−s)||(ρ + m − ρ + m)(·, s)||Lq0 (Ω)ds  

+ c6c9
∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||(u ·  ∇)u(·, s)||

L 

1 
1 
3 + 1 q0 (Ω) 

ds  

=:c6t−
1 
2 + 3 

2q0 e−μt||u0||L3(Ω) + J1 + J2, 

where P(ρ + m∇φ) = ρ + mP(∇φ) = 0 is used. 
Due to α1 <  ρ∞, an application of Lemmas 4.33 and 4.34 shows that 

J1 ≤c6c9||∇φ||L∞(Ω)

∫ t 

0 
e−μ(t−s)||(ρ − m − ρ − m)(·, s) + 2(m − m)(·, s)||Lq0 (Ω)ds  

≤c6c9||∇φ||L∞(Ω)

∫ t 

0 
e−μ(t−s) (||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) + 2||(m − m)(·, s)||Lq0 (Ω))ds  

≤c6c9||∇φ||L∞(Ω) M
'
7ε

∫ t 

0 
e−μ(t−s) (1 + s− 3 

2 ( 
1 
p0 

− 1 q0 
) 
)e−α1sds (4.4.26) 

with M '
7 = M5 + 4eM5σ  ε. 

On the other hand, by the Hölder inequality and definition of T , we have  

J2 ≤c6c9

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||u(·, s)||Lq0 (Ω)||∇u(·, s)||L3(Ω)ds  

≤3c6c9 M3M4ε
2
∫ t 

0 
(t − s)−

1 
2 e−μ(t−s) (1 + s−1+ 3 

2q0 )e−2α2s ds. (4.4.27) 

Now, plugging (4.4.26), (4.4.27) into (4.4.25) and applying Lemma 4.3, we end up 
with
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||u(·, t)||Lq0 (Ω) 

≤c6t
− 1 

2 + 3 
2q0 e−μt||u0||L3(Ω) + c6c9c10||∇φ||L∞(Ω) M

'
7ε(1 + tmin{0,1− 3 

2 ( 
1 
p0 

− 1 q0 
)}
)e−α2t 

+ 3c6c9c10 M3M4ε
2 (1 + t−

1 
2 + 3 

2q0 )e−α2t 

≤c6t
− 1 

2 + 3 
2q0 e−μt ε + 2c6c9c10||∇φ||L∞(Ω) M

'
7εe

−α2t 

+ 3c6c9c10 M3M4ε
2 (1 + t−

1 
2 + 3 

2q0 )e−α2t 

≤ 
M3 

2 
ε(1 + t−

1 
2 + 3 

2q0 )e−α2t , 

where (4.4.14), (4.4.18) and the fact that 3 2 ( 
1 
p0 

− 1 q0 )  <  1 are used. 

In the next lemma, we show that the estimate for the gradient is also preserved. 

Lemma 4.36 Under the assumptions of Proposition 4.3, we have

||∇u(·, t)||L3(Ω) ≤ 
M4 

2 
ε(1 + t−

1 
2 )e−α2t for all t ∈ (0, T ). 

Proof According to (4.4.23), we have 

∇u(·, t) =  ∇e−t A  u0 +
∫ t 

0 
∇e−(t−s) A (P((ρ + m)∇φ) − P((u ·  ∇)u))(·, s)ds. 

Applying Lemmas 4.1(iii), 4.2 and the Hölder inequality, we arrive at

||∇u(·, t)||L3(Ω) 

≤c7t
− 1 

2 e−μt||u0||L3(Ω) +
∫ t 

0
||∇e−(t−s)AP((ρ + m)∇φ − (u ·  ∇)u)(·, s)||L3(Ω)ds  

≤c7t
− 1 

2 e−μt ε + c7
∫ t 

0 
(t − s)− 1 

2 e−μ(t−s)||P((ρ + m − ρ + m)∇φ)(·, s)||L3(Ω)ds  

+ c7
∫ t 

0 
(t − s)−

1 
2− 3 

2q0 e−μ(t−s)||P((u ·  ∇)u)(·, s)||
L 

3q0 
3+q0 (Ω) 

ds (4.4.28) 

≤c7t
− 1 

2 e−μt ε 

+ c7c9||∇φ||L∞(Ω)|Ω| 
1 
3− 1 q0

∫ t 

0 
(t − s)− 1 

2 e−μ(t−s)||(ρ + m − ρ + m)(·, s)||Lq0 (Ω)ds  

+ c7c9
∫ t 

0 
(t − s)−

1 
2− 3 

2q0 e−μ(t−s)||∇u(·, s)||L3(Ω)||u(·, s)||Lq0 (Ω)ds  

=:c7t−
1 
2 e−μt ε + τ1 + τ2, 

where P(ρ + m∇φ) = ρ + mP(∇φ) = 0 is used. 
Due to α1 <  ρ∞, an application of Lemmas 4.33 and 4.34 shows that
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τ1 ≤c7c9||∇φ||L∞(Ω)|Ω| 1 
3− 1 q0

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)

||(ρ − m − ρ − m)(·, s) + 2(m − m)(·, s)||Lq0 (Ω)ds (4.4.29) 

≤c7c9||∇φ||L∞(Ω)|Ω| 1 
3− 1 q0

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s) 

(||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) + 2||(m − m)(·, s)||Lq0 (Ω))ds  

≤c7c9||∇φ||L∞(Ω)|Ω| 1 
3− 1 q0 M '

7ε

∫ t 

0 
e−μ(t−s) (1 + s− 3 

2 ( 
1 
p0 

− 1 q0 
) 
)(t − s)−

1 
2 e−α1s ds. 

On the other hand, from the Hölder inequality and definition of T , it follows that 

τ2 ≤ 3c7c9 M3 M4ε
2
∫ t 

0 
(t − s)−

1 
2− 3 

2q0 e−μ(t−s) (1 + s−1+ 3 
2q0 )e−2α2sds. (4.4.30) 

Therefore, inserting (4.4.30), (4.4.29) into (4.4.28) and applying Lemma 4.3, we get

||∇u(·, t)||Lq0 (Ω) 

≤c7t
− 1 

2 e−μt ε + c7c9c10||∇φ||L∞(Ω)|Ω| 
1 
3− 1 q0 M '

7ε(1 + t min{0, 1 2− 3 
2 ( 

1 
p0 

− 1 q0 
)}

)e−α2t 

+ 3c7c9c10 M3 M4ε
2(1 + t− 1 

2 )e−α2t 

≤c7t
− 1 

2 e−μt ε+2c7c9c10||∇φ||L∞(Ω)|Ω| 
1 
3− 1 q0 M '

7εe
−α2t 

+ 3c7c9c10 M3 M4ε
2(1 + t− 1 

2 )e−α2t 

≤ 
M4 

2 
ε(1 + t− 1 

2 )e−α2t , 

where (4.4.15), (4.4.18) and the fact that q0 ∈ (3, 3p0 
3−p0 

), p0 ∈ ( 3 2 , 3) are used. 

Lemma 4.37 Under the assumptions of Proposition 4.3, we have

||∇c(·, t)||L∞(Ω) ≤ 
M2 

2 
ε(1 + t−

1 
2 )e−α1t for all t ∈ (0, T ). 

Proof By (4.4.22) and Lemma 1.1(ii), we have

||∇c(·, t)||L∞(Ω) 

≤ ||et (Δ−1)∇c0||L∞(Ω) +
∫ t 

0
||∇e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)||L∞(Ω)ds  

≤ c2(1 + t−
1 
2 )e−(λ1+1)t||c0||L∞(Ω) +

∫ t 

0
||∇e(t−s)(Δ−1) m(·, s)||L∞(Ω)ds  

+
∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds. (4.4.31)



4.4 Asymptotic Behavior of Solutions to a Coral Fertilization Model 239

Now we estimate the last two integrals on the right-hand side of the above inequality. 
From Lemmas 1.1(ii), 4.3, 4.34 with k = q0 and the fact that q0 > 3, it follows that
∫ t 

0
||∇e(t−s)(Δ−1) m||L∞(Ω)ds  ≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s)||m||Lq0 (Ω)ds  

≤c2 M6ε

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s) e−ρ∞s ds  

≤c2c10 M6(1 + tmin{0, 1 2 − 3 
2q0 

}
)εe−α1t (4.4.32) 

≤2c2c10 M6εe
−α1t . 

On the other hand, by Lemmas 1.1(ii), 4.3, 4.35 and the definition of T , we obtain

∫ t 

0
||∇e(t−s)(Δ−1)u ·  ∇c||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s)||u ·  ∇c||Lq0 (Ω)ds (4.4.33) 

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s)||u||Lq0 (Ω)||∇c||L∞(Ω)ds  

≤c2 M3 M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s) (1 + s− 1 
2 + 3 

2q0 )(1 + s− 1 
2 )e−(α1+α2)sds  

≤3c2 M3 M2ε
2
∫ t 

0 
e−(λ1+1)(t−s)e−(α1+α2)s (1 + (t − s)−

1 
2 − 3 

2q0 )(1 + s−1+ 3 
2q0 )ds  

≤3c2c10 M2 M3ε
2(1 + t−

1 
2 )e−α1t . 

From (4.4.31)–(4.4.33), it follows that

||∇c||L∞(Ω) ≤ (c2 + 2c2c10 M6 + 3c2c10 M2 M3ε)(1 + t−
1 
2 )εe−α1t 

≤ 
M2 

2 
(1 + t−

1 
2 )εe−α1t , 

due to the choice of M2, M3 and ε in (4.4.12) and (4.4.18), and thereby completes 
the proof. 

Lemma 4.38 Under the assumptions of Proposition 4.3, for all θ ∈  [q0, ∞] and 
t ∈ (0, T ),

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t .
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Proof According to (4.4.20), Lemma 1.1(iv), we have

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) 

≤
∫ t 

0
||e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) + u ·  ∇(ρ − m))(·, s)||Lθ (Ω)ds  

≤
∫ t 

0
||e(t−s)Δ∇  ·  (ρS (x,  ρ,  c)∇c)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)Δ∇  ·  ((ρ − m − ρ∞)u)(·, s)||Lθ (Ω)ds  

≤c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s)||ρ(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

+ c4
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s)||u(ρ − m − ρ∞)(·, s)||Lq0 (Ω)ds  

=:I1 + I2. 

Now we need to estimate I1 and I2. Firstly, from Lemmas 4.33 and 4.34, we obtain

||ρ(·, s)||Lq0 (Ω) ≤ ||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) + ||m(·, s)||Lq0 (Ω) + ||ρ∞||Lq0 (Ω) 

≤ M5ε(1 + s− 3 
2

⎛
1 
p0 

− 1 q0

⎞

)e−α1s + M8 (4.4.34) 

with M8 = e(1+c1+c1|Ω| 1 p0 − 1 q0 )σ + ρ∞|Ω| 1 q0 , which along with Lemmas 4.37 and 1.1 
implies that 

I1 ≤c4CS M8

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s)||∇c||L∞(Ω)ds  

+ c4CS M5ε

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )(1 + s− 3 

2 ( 
1 
p0 

− 1 q0 
) 
)e−α1s e−λ1(t−s) 

· ||∇c||L∞(Ω)ds (4.4.35) 

≤c4CS M8M2ε

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s) (1 + s− 1 

2 )e−α1s ds  

+ 3c4CS M5M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )(1 + s− 1 

2 − 3 
2 ( 

1 
p0 

− 1 q0 
) 
)e−2α1s 

· e−λ1(t−s) ds  

≤c10c4CS(M8M2 + 3M5 M2ε)(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )εe−α1t 

≤ 
M1 

4 
(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )εe−α1t , 

where we have used (4.4.13) and (4.4.16) and 1 
p0 

− 1 q0 < 1 3 .
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On the other hand, from Lemmas 4.33 and 4.35, it follows that 

I2 = c4
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−α1(t−s)||ρ − m − ρ∞||L∞(Ω)||u||Lq0 (Ω)ds  

≤ 3c4 M3 M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−α1(t−s) (1 + s− 1 

2 + 3 
2q0 

− 3 
2 p0 ) 

· e−(α1+α2)s ds (4.4.36) 

≤ 3c4c10 M3M5ε
2 (1 + tmin{0, 3 2 ( 1 θ − 1 p0 )})e−α1t 

≤ 
M1 

4 
ε(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t , 

where we have used  (4.4.17) and 1 p0 − 1 q0 < 1 3 . Hence, combining the above inequal-
ities leads to our conclusion immediately. 

Now we are ready to complete the proof of Proposition 4.3. 

Proof of Proposition 4.3. First from Lemmas 4.35–4.38 and Definition (4.4.19), it 
follows that T = Tmax . It remains to show that Tmax =  ∞  and to establish conver-
gence result asserted in Proposition 4.3. 

Supposed that Tmax < ∞. We only need to show that for all t ≤ Tmax ,

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) < ∞ 

with β ∈ ( 3 4 , 1) according to the extensibility criterion in Lemma 4.30. 
Let t0 := min{1, Tmax 

3 }. Then from Lemma 4.34, there exists K1 > 0, such that for 
t ∈ (t0, Tmax ),

||m(·, t)||L∞(Ω) ≤ K1e
−ρ∞t . (4.4.37) 

Moreover, from Lemma 4.33 and the fact that

||ρ(·, t) − ρ∞||L∞(Ω) ≤ ||(ρ − m)(·, t) − ρ∞||L∞(Ω) + ||m(·, t)||L∞(Ω), 
it follows that for all t ∈ (t0, Tmax ) and some constant K2 > 0,

||ρ(·, t) − ρ∞||L∞(Ω) ≤ K2e
−α1t . (4.4.38) 

Furthermore, Lemma 4.37 implies that there exists K '
3 > 0, such that

||∇c(·, t)||L∞(Ω) ≤ K '
3e

−α1t for all t ∈ (t0, Tmax ) (4.4.39) 

Hence, it only remains to show that

||c(·, t)||L∞(Ω) + ||Aβ u(·, t)||L2(Ω) ≤ C for all t ∈ (t0, Tmax ).
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for some constant C > 0. In fact, we will show that

||Aβ u(·, t)||L2(Ω) ≤ Ce−α2t (4.4.40) 

for t0 < t < Tmax with some constant C > 0. 
By (4.4.23), we have

||Aβ u(·, t)||L2(Ω) (4.4.41) 

≤||Aβ e−t A  u0||L2(Ω) +
∫ t 

0
||Aβ e−(t−s) A P((ρ + m − ρ∞)∇φ)(·, s)||L2(Ω)ds  

+
∫ t 

0
||Aβ e−(t−s)A P((u ·  ∇)u)(·, s)||L2(Ω)ds. 

According to Lemma 4.1,

||Aβ e−t A  u0||L2(Ω) ≤ c5e−μt||Aβ u0||L2(Ω) for all t ∈ (0, Tmax ). 

From Lemmas 4.1, 4.2, 4.33 and the Hölder inequality, it follows that there exists 
l1 > 0, such that

∫ t 

0
||Aβ e−(t−s) A P((ρ + m − ρ∞)∇φ)(·, s)||L2(Ω)ds  

≤c5c9||∇φ||L∞(Ω)|Ω| q0−2 
2q0

∫ t 

0 
(||(ρ − m − ρ∞)(·, s)||Lq0 (Ω) 

+ 2||m(·, s)||Lq0 (Ω))(t − s)−β e−μ(t−s) ds  

≤c5c9||∇φ||L∞(Ω)|Ω| q0−2 
2q0 l1

∫ t 

0 
e−μ(t−s) (t − s)−β (1 + s− 3 

2 ( 
1 
p0 

− 1 q0 
) 
)e−α1s ds  

≤c5c9c10||∇φ||L∞(Ω)|Ω| q0−2 
2q0 l1e

−α2t (1 + tmin{0,1−β− 3 
2 ( 

1 
p0 

− 1 q0 
)}
). 

On the other hand, let M(t) := e−α2t||Aβu(·, t)||L2(Ω) for 0 < t < Tmax . By Lemmas 
4.1(iv) and the Gagliardo–Nirenberg type inequality, one can see that

||(u ·  ∇)u(·, s)||L2(Ω) ≤|Ω| 1 
6 ||u(·, s)||L∞(Ω)||∇u(·, s)||L3(Ω) 

≤l2||Aβ u(·, s)||ϑ 
L2(Ω)||u(·, s)||1−ϑ 

Lq0 (Ω)||∇u(·, s)||L3(Ω) 

for some l2 > 0 with ϑ = 1 
q0 

/( 1 q0 − 1 2 + 2β 
3 ), and thereby an application of Lem-

mas 2.2, 4.2, 4.35 and 4.36 gives
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∫ t 

0
||Aβ e−(t−s) A P((u ·  ∇)u)(·, s)||L2(Ω)ds  

≤c5c9l2

∫ t 

0
||Aβ u(·, s)||ϑ 

L2(Ω)||u(·, s)||1−ϑ 
Lq0 (Ω)||∇u(·, s)||L3(Ω) 

≤l3( max 
0≤s<Tmax 

M(s))ϑ
∫ t 

0 
e−μ(t−s) (t − s)−β (1 + s− 1 

2 +(− 1 
2 + 3 

2q0 
)(1−ϑ)  

)e−2α2s ds  

≤c10l3( max 
0≤s<Tmax 

M(s))ϑ (1 + tmin{0, 1 2 −β+( 3 
2q0 

− 1 
2 )(1−ϑ)}

)e−α2t 

for some l3 > 0. Now inserting the above inequalities into (4.4.41), we arrive at 

M(t) ≤c5||Aβ u0||L2(Ω) + c5c9c10||∇φ||L∞(Ω)|Ω| q0−2 
2q0 l1(1 + tmin{0,1−β− 3 

2 ( 
1 
p0 

− 1 q0 
)}
) 

+ c10l3( max 
0≤s<Tmax 

M(s))ϑ (1 + tmin{0, 1 2 −β+( 3 
2q0 

− 1 
2 )(1−ϑ)}

), 

which implies that for some l4 > 0 depending on t0, we have  

max 
t0≤t<Tmax 

M(t) ≤ l4 + l4( max 
0≤t<Tmax 

M(t))ϑ . 

On the other hand, from Lemma 4.30, max 
0≤t≤t0 

M(t) ≤ l5. Therefore, we get 

max 
0≤t<Tmax 

M(t) ≤ l4 + l5 + l4( max 
0≤t<Tmax 

M(t))ϑ . 

As ϑ  <  1, we infer that M(t) ≤ l6 for all t ∈ (0, Tmax ) for some l6 > 0 independent 
of Tmax and hence arrive at (4.4.40). 

Furthermore, due to D(Aβ ) ϲ→ L∞(Ω) with β ∈ ( 3 4 , 1) and Lemma 4.35, we get

||u(·, t)||L∞(Ω) ≤ K4e
−α2t for some K4 > 0 and t ∈ (0, Tmax ). (4.4.42) 

Now we turn to showing that there exists K ''
3 > 0, such that

||c(·, t)||L∞(Ω) ≤ K ''
3 e

−α2t for all t ∈ (0, Tmax ). (4.4.43) 

From (4.4.22), it follows that

||c||L∞(Ω) ≤ ||et (Δ−1) c0||L∞(Ω) +
∫ t 

0
||e(t−s)(Δ−1) (m − u ·  ∇c)||L∞(Ω)ds  

≤ e−t||c0||L∞(Ω) +
∫ t 

0
||e(t−s)(Δ−1) m(·, s)||L∞(Ω)ds (4.4.44) 

+
∫ t 

0
||e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds.
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An application of (4.4.24) with k =  ∞  yields
∫ t 

0
||e(t−s)(Δ−1) m(·, s)||L∞(Ω)ds  ≤

∫ t 

0 
e−(t−s)||m(·, s)||L∞(Ω)ds (4.4.45) 

≤ ||m0||L∞(Ω) M6

∫ t 

0 
e−(t−s) e−ρ∞s ds  

≤ ||m0||L∞(Ω) M6c10e
−α2t . 

On the other hand, from (4.4.42) and (4.4.39), we can see that

∫ t 

0
||e(t−s)(Δ−1) u ·  ∇c||L∞(Ω)ds  ≤

∫ t 

0 
e−(t−s)||u||L∞(Ω)||∇c||L∞(Ω)ds (4.4.46) 

≤ K '
3K4

∫ t 

0 
e−(α1+α2)s e−(t−s) ds  

≤ K '
3K4c10e

−α2t . 

Inserting (4.4.45), (4.4.46) into (4.4.44), we arrive at the conclusion (4.4.43). We 
have thus established that Tmax =  ∞, and the decay estimates in (4.4.8)–(4.4.11) 
follow from (4.4.37)–(4.4.40) and (4.4.43), respectively. 

As for the case
∫

Ω ρ0 <
∫

Ω m0, i.e., m∞ > 0, ρ∞ = 0, Theorem 4.5 reduces to 

Proposition 4.4 Assume that (4.1.14) and
∫

Ω ρ0 <
∫

Ω m0 hold, and let p0 ∈ (2, 3), 
q0 ∈ (3, 3p0 

2(3−p0) ). Then there exists ε  >  0, such that for any initial data (ρ0, m0, c0, u0) 
fulfilling (4.1.15) as well as

||ρ0||L p0 (Ω) ≤ ε, ||m0 − m∞||Lq0 (Ω) ≤ ε, ||∇c0||L3(Ω) ≤ ε, ||u0||L3(Ω) ≤ ε, 

(4.1.13) admits a global classical solution (ρ, m, c, u, P). Furthermore, for any 
α1∈ (0, min{λ1, m∞, 1}), α2∈(0, min{α1,  λ'

1}), there exist constants Ki > 0, i = 
1, 2, 3, 4, such that

||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , (4.4.47)

||ρ(·, t)||L∞(Ω) ≤ K2e
−α1t , (4.4.48)

||c(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t , (4.4.49)

||u(·, t)||L∞(Ω) ≤ K4e
−α2t . (4.4.50) 

The basic strategy of the proof of Proposition 4.4 parallels that of Proposition 4.3 
to a certain extent. However, due to differences in the properties of ρ and m, there 
are significant differences in the details of their proofs. Thus, for the convenience of 
the reader, we will sketch the proof of Proposition 4.4. 

The following elementary observations can be verified easily: 

Lemma 4.39 Under the assumptions of Proposition 4.4, it is possible to choose 
M1 > 0, M2 > 0 and ε  >  0, such that
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c3 + c2c10(1 + c1 + c1|Ω| 1 p0 − 1 q0 + M1) ≤ 
M2 

4 
, (4.4.51) 

c6 + 2c6c9c10(M1+ 2 + 2c1+ 2c1|Ω| 1 p0− 1 q0)||∇φ||L∞(Ω) < 
M3 

4 
(4.4.52) 

c7 + 2c7c9c10(M1+ 2 + 2c1+ 2c1|Ω| 1 p0− 1 q0)||∇φ||L∞(Ω)|Ω| 1 
3− 1 q0 < 

M4 

4 
(4.4.53) 

12c2c10 M3ε ≤ 1, (4.4.54) 

2c1 + (min{1, |Ω|})− 1 p0 ≤ 
M1 

8 
, 12c6c9c10 M4ε  <  1, (4.4.55) 

24c4CSc10 M2ε  <  1, (4.4.56) 

12c7c9c10 M3ε  <  1, (4.4.57) 

12c4c10CS M1M2ε  <  1, (4.4.58) 

24c1c10(1 + c1 + c1|Ω| 1 p0 − 1 q0 + M1)ε < 1, (4.4.59) 

18c4c10 M3ε  <  1. (4.4.60) 

12c10c4 M3(1+c1+c1|Ω| 1 p0− 1 q0 )ε < 1. (4.4.61) 

Define 

T :=sup 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

~T∈ (0, Tmax )

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||(m−ρ)(·, t)−etΔ (m0−ρ0)||Lθ (Ω) ≤ ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t ;

||ρ(·, t)||Lθ (Ω) ≤ M1ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t , ∀θ ∈  [q0, ∞];

||∇c(·, t)||L∞(Ω) ≤ M2ε(1 + t− 1 
2 )e−α1t for all t ∈  [0, ~T );

||u(·, t)||Lq0 (Ω) ≤ M3ε

⎛

1 + t−
1 
2+ 3 

2q0

⎞

e−α2t for all t ∈  [0, ~T );

||∇u(·, t)||L3(Ω) ≤ M4ε
⎛
1 + t− 1 

2

⎞
e−α2t for all t ∈  [0, ~T ). 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(4.4.62) 

By Lemma 4.30 and (4.1.15), T > 0 is well-defined. As in the proof of Proposition 
4.3, we first show  T = Tmax , and then Tmax =  ∞. To this end, we will show that all 
of the estimates mentioned in (4.4.62) are still valid with even smaller coefficients on 
the right-hand side. The derivation of these estimates will mainly rely on L p − Lq 

estimates for the Neumann heat semigroup and the corresponding semigroup for the 
Stokes operator, and the fact that the classical solution of (4.1.13) on  (0, T ) can be 
represented as
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(m − ρ)(·, t) = etΔ (m0 − ρ0) 

+
∫ t 

0 
e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) − u ·  ∇(m − ρ))(·, s)ds, (4.4.63) 

ρ(·, t) = etΔ ρ0 −
∫ t 

0 
e(t−s)Δ (∇  ·  (ρS (x,  ρ,  c)∇c) + u ·  ∇ρ + ρm)(·, s)ds, 

(4.4.64) 

c(·, t) = et (Δ−1) c0 +
∫ t 

0 
e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)ds, (4.4.65) 

u(·, t) = e−t A  u0 +
∫ t 

0 
e−(t−s) A P((ρ + m)∇φ − (u ·  ∇)u)(·, s)ds. (4.4.66) 

Lemma 4.40 (Lemma 3.17 in Li et al. (2019b)) Under the assumptions of 
Proposition 4.4,

||(m − ρ)(·, t) − m∞||Lθ (Ω) ≤ M5ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

for all t ∈ (0, T ) and θ ∈  [q0, ∞] with M5 = 1 + c1 + c1|Ω| 1 p0 − 1 q0 . 

Lemma 4.41 (Lemma 3.18 in Li et al. (2019b)) Under the assumptions of 
Proposition 4.4,

||m(·, t) − m∞||Lθ (Ω) ≤ (M5 + M1)ε(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

for all t ∈ (0, T ), θ ∈  [q0, ∞]. 
Lemma 4.42 Under the assumptions of Proposition 4.4, we have

||u(·, t)||Lq0 (Ω) ≤ 
M3 

2 
ε(1 + t−

1 
2 + 3 

2q0 )e−α2t for all t ∈ (0, T ). 

Proof For any given α2 <  λ'
1, we can fix μ ∈ (α2,  λ'

1). By (4.4.66), Lemmas 4.1, 
4.2 and P(∇φ) = 0, we obtain that

||u(·, t)||Lq0 (Ω) 

≤c6t
− 3 

2 ( 
1 
3 − 1 q0 

) e−μt||u0||L3(Ω) 

+
∫ t 

0
||e−(t−s) A P((ρ + m)∇φ − (u ·  ∇)u)(·, s)||Lq0 (Ω)ds (4.4.67) 

≤c6t
− 1 

2 + 3 
2q0 e−μt ε + c6c9||∇φ||L∞(Ω)

∫ t 

0 
e−μ(t−s)||(ρ + m − m∞)(·, s)||Lq0 (Ω)ds  

+ c6c9
∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||(u ·  ∇)u(·, s)||

L 

1 
1 
3 + 1 q0 (Ω) 

ds.
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By Lemma 4.41 and the definition of T , we get

||(ρ + m − m∞)(·, s)||Lq0 (Ω) =||(m − m∞)(·, s)||Lq0 (Ω) + ||ρ(·, s)||Lq0 (Ω) (4.4.68) 

≤(2M5 + M1)ε(1 + s− 3 
2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s . 

Inserting (4.4.68) into (4.4.67), by the definition of T and noting that 3 2 ( 
1 
p0 

− 1 q0 )  <  1, 
we have

||u(·, t)||Lq0 (Ω) 

≤c6t
− 1 

2 + 3 
2q0 e−μt ε 

+ c6c9(2M5 + M1)||∇φ||L∞(Ω)ε

∫ t 

0 
(1 + s− 3 

2 ( 
1 
p0 

− 1 q0 
) 
)e−α1s e−μ(t−s) ds  

+ c6c9
∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||∇u(·, s)||L3(Ω)||u(·, s)||Lq0 (Ω)ds  

≤c6t
− 1 

2 + 3 
2q0 e−μt ε + c6c9c10(2M5 + M1)||∇φ||L∞(Ω)ε(1 + tmin{0,1− 3 

2 ( 
1 
p0 

− 1 q0 
)}
)e−α2t 

+ 3c6c9 M3M4ε
2
∫ t 

0 
(t − s)−

1 
2 e−μ(t−s) (1 + s−1+ 3 

2q0 )e−2α2s ds  

≤c6t
− 1 

2 + 3 
2q0 εe−μt + 2c6c9c10(2M5 + M1)||∇φ||L∞(Ω)εe

−α2t 

+ 3c6c9c10 M3M4(1 + t−
1 
2 + 3 

2q0 )ε2 e−α2t 

≤ 
M3 

2 
ε(1 + t−

1 
2 + 3 

2q0 )e−α2t , 

where we have used (4.4.52) and (4.4.55). 

Lemma 4.43 Under the assumptions of Proposition 4.4, we have

||∇u(·, t)||L3(Ω) ≤ 
M4 

2 
ε(1 + t−

1 
2 )e−α2t for all t ∈ (0, T ). 

Proof According to (4.4.66), and applying Lemmas 4.1(iii) and 4.2, we arrive at

||∇u(·, t)||L3(Ω) 

≤c7t
− 1 

2 e−μt||u0||L3(Ω) +
∫ t 

0
||∇e−(t−s) AP((ρ + m)∇φ − (u ·  ∇)u)(·, s)||L3(Ω)ds  

≤c7t
− 1 

2 e−μt ε + c7|Ω| 1 3− 1 q0

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||P((ρ + m − m∞)∇φ)(·, s)||Lq0 (Ω)ds  

+ c7
∫ t 

0 
(t − s)−

1 
2 − 3 

2q0 e−μ(t−s)||P((u ·  ∇)u)(·, s)||
L 

3q0 
3+q0 (Ω) 

ds (4.4.69) 

≤c7t
− 1 

2 e−μt ε 

+ c7c9||∇φ||L∞(Ω)|Ω| 1 3− 1 q0

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||(ρ + m − m∞)(·, s)||Lq0 (Ω)ds



248 4 Keller–Segel–(Navier–)Stokes System Modeling Coral Fertilization

+ c7c9
∫ t 

0 
(t − s)−

1 
2 − 3 

2q0 e−μ(t−s)||∇u(·, s)||L3(Ω)||u(·, s)||Lq0 (Ω)ds, 

where P(m∞∇φ) = m∞P(∇φ) = 0 is used. 
From (4.4.68), it follows that

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s)||(ρ + m − m∞)(·, s)||Lq0 (Ω)ds (4.4.70) 

≤(2M5 + M1)ε

∫ t 

0 
(t − s)−

1 
2 e−μ(t−s) (1 + s− 3 

2 ( 
1 
p0 

− 1 q0 
) 
)e−α1s ds. 

In addition, an application of the Hölder inequality and definition of T shows that

∫ t 

0 
(t − s)−

1 
2 − 3 

2q0 e−μ(t−s)||u(·, s)||Lq0 (Ω)||∇u(·, s)||L3(Ω)ds  

≤3M3 M4ε
2
∫ t 

0 
(t − s)−

1 
2 − 3 

2q0 e−μ(t−s) (1 + s−1+ 3 
2q0 )e−2α2s ds. (4.4.71) 

Therefore, inserting (4.4.71), (4.4.70) into (4.4.69) and applying Lemma 4.3, we get

||∇u(·, t)||L3(Ω) 

≤c7t
− 1 

2 e−μt ε 

+ c7c9c10||∇φ||L∞(Ω)|Ω| 1 
3− 1 q0 (2M5 + M1)ε(1 + tmin{0, 1 2 − 3 

2 ( 
1 
p0 

− 1 q0 
)}
)e−α2t 

+ 3c7c9c10 M3M4ε
2 (1 + t−

1 
2 )e−α2t 

≤ 
M4 

2 
ε(1 + t−

1 
2 )e−α2t , 

where (4.4.53), (4.4.57) are used. 

Lemma 4.44 Under the assumptions of Proposition 4.4, we have

||∇c(·, t)||L∞(Ω) ≤ 
M2 

2 
ε(1 + t−

1 
2 )e−α1t for all t ∈ (0, T ). 

Proof From (4.4.65) and the standard regularization properties of the Neumann heat 
semigroup (eτ  Δ  )τ  >0 in Winkler (2010), one can conclude that
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||∇c(·, t)||L∞(Ω) 

≤ e−t||∇etΔ c0||L∞(Ω) +
∫ t 

0
||∇e(t−s)(Δ−1) (m − u ·  ∇c)(·, s)||L∞(Ω)ds  

≤ c3(1 + t−
1 
2 )e−t||∇c0||L3(Ω) +

∫ t 

0
||∇e(t−s)(Δ−1) (m − m∞)(·, s)||L∞(Ω)ds  

+
∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds. (4.4.72) 

In the second inequality, we have used ∇e(t−s)(Δ−1)m∞ = 0. 
From Lemmas 1.1(ii), 4.41 and 4.3, it follows that

∫ t 

0
||∇e(t−s)(Δ−1) (m − m∞)(·, s)||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s)||(m − m∞)(·, s)||Lq0 (Ω)ds (4.4.73) 

≤c2(M5 + M1)ε

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s) (1 + s− 3 
2 ( 

1 
p0 

− 1 q0 
) 
)e−α1s ds  

≤c2c10(M5 + M1)ε(1 + tmin{0, 1 2 − 3 
2 p0 

}
)e− min{α1,λ1+1}t 

≤c2c10(M5 + M1)ε(1 + t−
1 
2 )e−α1t . 

On the other hand, by Lemmas 1.1(ii), 4.3 and the definition of T , we obtain

∫ t 

0
||∇e(t−s)(Δ−1) u ·  ∇c(·, s)||L∞(Ω)ds  

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s)||u ·  ∇c(·, s)||Lq0 (Ω)ds (4.4.74) 

≤c2

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s)||u(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

≤c2 M3 M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2q0 )e−(λ1+1)(t−s) (1 + s− 1 
2 + 3 

2q0 )(1 + s− 1 
2 )e−(α1+α2)s 

≤3c2 M3M2ε
2
∫ t 

0 
e−(λ1+1)(t−s) e−(α1+α2)s (1 + (t − s)−

1 
2 − 3 

2q0 )(1 + s−1+ 3 
2q0 )ds  

≤3c2 M3M2c10ε
2 (1 + t−

1 
2 )e−α1t . 

Hence, combining the above inequalities and applying (4.4.51) and (4.4.54), we 
arrive at the desired conclusion. 

Lemma 4.45 Under the assumptions of Proposition 4.4, we have

||ρ(·, t)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t for all t ∈ (0, T ), θ ∈  [q0, ∞].
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Proof From (4.4.64), we have 

ρ(·, t) =et (Δ−m∞) ρ0 −
∫ t 

0 
e(t−s)(Δ−m∞) (∇  ·  (ρS (·,  ρ,  c)∇c) − u ·  ∇ρ)(·, s)ds  

+
∫ t 

0 
e(t−s)(Δ−m∞) ρ(m∞ − m)(·, s)ds. 

By Lemma 1.1, the result in Sect. 2 of Winkler (2010) and α1 < min{λ1, m∞}, 
we obtain

||ρ(·, t)||Lθ (Ω) 

≤e−m∞t (||etΔ (ρ0 − ρ0)||Lθ (Ω) + ||ρ0||Lθ (Ω)) 

+
∫ t 

0
||e(t−s)(Δ−m∞)∇  ·  (ρS (·,  ρ,  c)∇c)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞) (u ·  ∇ρ)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞) ρ(m∞ − m)(·, s)||Lθ (Ω)ds  

≤c1(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )e−(λ1+m∞)t||ρ0 − ρ0||L p0 (Ω) + (min{1, |Ω|})− 1 p0 e−m∞t ε 

+ c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||Lq0 (Ω)||∇c||L∞(Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞)∇  ·  (ρu)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)(Δ−m∞) ρ(m∞ − m)(·, s)||Lθ (Ω)ds  

≤(2c1 + (min{1, |Ω|})− 1 p0 )(1 + t−
3 
2 ( 

1 
p0 

− 1 
θ ) )εe−α1t 

+ c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||Lq0 (Ω)||∇c||L∞(Ω)ds  

+ c4
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||L∞(Ω)||u||Lq0 (Ω)ds  

+ c1
∫ t 

0 
(1 + (t − s)−

3 
2 ( 

1 
q0 

− 1 
θ ) )e−m∞(t−s)||ρ||Lq0 (Ω)||m − m∞||L∞(Ω)ds. 

According to the definition of T , Lemmas 4.44 and 4.3, this shows that
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∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||Lq0 (Ω)||∇c||L∞(Ω)ds  

≤3M1 M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s) e−2α1s (1 + s− 1 

2 − 3 
2 ( 

1 
p0 

− 1 q0 
) 
)ds  

≤3c10 M1M2ε
2 (1 + tmin{0,− 3 

2 ( 
1 
p0 

− 1 
θ )})e−min{λ1,2α1}t . 

Similarly, we can also get

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−(λ1+m∞)(t−s)||ρ||L∞(Ω)||u||Lq0 (Ω)ds  

≤3M1 M3ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s) e−2α1s (1 + s− 1 

2 − 3 
2 ( 

1 
p0 

− 1 q0 
) 
)ds  

≤3c10 M3M1ε
2 (1 + tmin{0,− 3 

2 ( 
1 
p0 

− 1 
θ )})e−min{λ1,2α1}t 

and

∫ t 

0 
(1 + (t − s)−

3 
2 ( 

1 
q0 

− 1 
θ ) )e−m∞(t−s)||ρ||Lq0 (Ω)||m − m∞||L∞(Ω)ds  

≤3M1(M5 + M1)ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−m∞(t−s) e−2α1s (1 + s− 3 p0 + 3 

2q0 )ds  

≤3c10 M1(M5 + M1)ε
2 (1 + tmin{0,− 3 

2 ( 
1 
p0 

− 1 
θ )})e−min{m∞,2α1}t , 

where the fact that q0 ∈ (3, 3p0 
2(3−p0) ) warrants − 3 p0 + 3 

2q0 
> −1 is used. Hence, the 

combination of the above inequalities yields

||ρ(·, t)||Lθ (Ω) ≤ 
M1 

2 
ε(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t , 

thanks to (4.4.60), (4.4.59) and (4.4.56). 

Lemma 4.46 Under the assumptions of Proposition 4.4, we have

||(m − ρ)(·, t) − etΔ (m0 − ρ0)||Lθ (Ω) ≤ 
ε 
2 
(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

for θ ∈  [q0, ∞], t ∈ (0, T ). 

Proof From (4.4.63) and Lemma 1.1(iv), it follows that
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||(m − ρ)(·, t) − etΔ (m0 − ρ0)||Lθ (Ω) 

≤
∫ t 

0
||e(t−s)Δ (∇  ·  (ρS (·,  ρ,  c)∇c) − u ·  ∇(m − ρ))(·, s)||Lθ (Ω)ds  

≤
∫ t 

0
||e(t−s)Δ∇  ·  (ρS (·,  ρ,  c)∇c)(·, s)||Lθ (Ω)ds  

+
∫ t 

0
||e(t−s)Δ∇  ·  ((m − ρ − m∞)u)(·, s)||Lθ (Ω)ds  

≤c4CS

∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s)||ρ(·, s)||Lq0 (Ω)||∇c(·, s)||L∞(Ω)ds  

+ c4
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s)||u(m − ρ − m∞)(·, s)||Lq0 (Ω)ds  

=:I1 + I2. 

From the definition of T and (4.4.58), we have 

I1 ≤3c4CS M1 M2ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s) (1 + s− 1 

2 − 3 
2 ( 

1 
p0 

− 1 q0 
) 
)e−2α1sds  

≤3c4CSc10 M1 M2ε
2(1 + t min{0,− 3 

2 ( 
1 
p0 

− 1 
θ )})e− min{λ1,2α1}t 

≤ 
ε 
4 
(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

From Lemmas 4.40, 4.42 and (4.4.61), it follows that 

I2 = c4
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s)||m − ρ − m∞||L∞(Ω)||u||Lq0 (Ω)ds  

≤ c4 M3M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )e−λ1(t−s) (1 + s− 3 

2 p0 )e−α1s 

· (1 + s− 1 
2 + 3 

2q0 )e−α2s ds  

≤ 3c4 M3 M5ε
2
∫ t 

0 
(1 + (t − s)−

1 
2 − 3 

2 ( 
1 
q0 

− 1 
θ ) )(1 + s− 1 

2 + 3 
2 ( 

1 
q0 

− 1 p0 ) ) 

· e−λ1(t−s) e−(α1+α2)s ds  

≤ 3c10c4 M3 M5ε
2 e−min{λ1,α1+α2}t (1 + tmin{0, 3 2 ( 1 θ − 1 p0 )}) 

≤ 
ε 
4 
(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t . 

Combining the above inequalities, we arrive at

||(ρ − m)(·, t) − etΔ (ρ0 − m0)||Lθ (Ω) ≤ 
ε 
2 
(1 + t−

3 
2 ( 

1 
p0 

− 1 
θ ) )e−α1t 

and thus complete the proof of this lemma.
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By the above lemmas, one can see that T = Tmax . We will need two more estimates 
to show that Tmax =  ∞. 

Lemma 4.47 Under the assumptions of Proposition 4.4, for all β ∈ ( 3 4 , min{ 5 4 −
3 
2q0 

, 1}) there exists M6 > 0, such that

||Aβ u(·, t)||L2(Ω) ≤ ε M6e
−α2t for t ∈ (t0, Tmax ) with t0 = min{ Tmax 

6 
, 1}. 

Proof The proof is similar to that of (4.4.40), and thus is omitted here. 

Lemma 4.48 Under the assumptions of Proposition 4.4, there exists M7 > 0, such  
that ||c(·, t) − m∞||L∞(Ω) ≤ M7e−α2t for all (t0, Tmax ) with t0 = min{ Tmax 

6 , 1}. 
Proof We refer the readers to the proof of Lemma 3.24 in Li et al. (2019b). 

Proof of Proposition 4.4. We first show that the solution is global, i.e., Tmax =  ∞. To  
this end, according to the extensibility criterion in Lemma 4.30, it suffices to show 
that there exists C > 0, such that for all t0 < t < Tmax

||ρ(·, t)||L∞(Ω) + ||m(·, t)||L∞(Ω) + ||c(·, t)||W 1,∞(Ω) + ||Aβ u(·, t)||L2(Ω) < C. 
From Lemmas 4.41, 4.45 and 4.47, there exist Ki > 0, i = 1, 2, 3, 4, such that

||m(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , ||ρ(·, t)||L∞(Ω) ≤ K2e

−α1t ,

||∇c(·, t)||L∞(Ω) ≤ K3e
−α1t , ||Aβ u(·, t)||L2(Ω) ≤ K4e

−α2t 

for t ∈ (t0, Tmax ). Furthermore, Lemma 4.48 implies that ||c(·, t) − m∞||W 1,∞(Ω) ≤ 
K '

3e
−α2t with some K '

3 > 0 for all t ∈ (t0, Tmax ). Since D(Aβ ) ϲ→ L∞(Ω) with 
β ∈ ( 3 4 , 1), it follows from Lemma 4.47 that ||u(·, t)||L∞(Ω) ≤ K4e−α2t for some 
K4 > 0 for all t ∈ (t0, Tmax ). This completes the proof of Proposition 4.4. 

4.4.3 Global Boundedness and Decay for General S 

Proof of Theorems for general S . We complete the proofs of our theorems by 
an approximation procedure (see Cao and Lankeit (2016) for example). In order 
to make the previous results applicable, we introduce a family of smooth func-
tions ρη ∈ C∞

0 (Ω) with 0 ≤ ρη(x) ≤ 1 for η ∈ (0, 1), and limη→0 ρη(x) = 1, and 
let Sη(x,  ρ,  c) = ρη(x)S (x,  ρ,  c). 

Using this definition, we regularize (4.1.13) as follows:



254 4 Keller–Segel–(Navier–)Stokes System Modeling Coral Fertilization

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(ρη)t + uη ·  ∇ρη = Δρη −  ∇  ·  (ρηSη(x,  ρη, cη)∇cη) − ρηmη, 
(mη)t + uη ·  ∇mη = Δmη − ρηmη, 
(cη)t + uη ·  ∇cη = Δcη − cη + mη, 
(uη)t + (uη ·  ∇)uη = Δuη −  ∇  Pη + (ρη + mη)∇φ, ∇  ·  uη = 0, 
∂ρη 

∂ν 
= 

∂mη 

∂ν 
= 

∂cη 

∂ν 
= 0, uη = 0 

(4.4.75) 

with the initial data 

ρη(x, 0) = ρ0(x), mη(x, 0) = m0(x), c(x, 0) = c0(x), uη(x, 0) = u0(x), x ∈ Ω. 
(4.4.76) 

It is observed that Sη satisfies the additional condition S = 0 on ∂Ω . There-
fore based on the discussion in Sect. 4.4.2, under the assumptions of Theorem 4.4 
and Theorem 4.5, the problem (4.4.75)–(4.4.76) admits a global classical solution 
(ρη, mη, cη, uη, Pη) that satisfies

||mη(·, t) − m∞||L∞(Ω) ≤ K1e
−α1t , ||ρη(·, t) − ρ∞||L∞(Ω) ≤ K2e

−α1t ,

||cη(·, t) − m∞||W 1,∞(Ω) ≤ K3e
−α2t , ||Aβ uη(·, t)||L2(Ω) ≤ K4e

−α2t 

for some constants Ki , i = 1, 2, 3, 4, and all t ≥ 0. Applying a standard procedure 
such as in Lemmas 5.2 and 5.6 of Cao and Lankeit (2016), one can obtain a subse-
quence of {η j } j∈N with η j → 0 as j →  ∞  such that ρη j → ρ,  mη j → m, cη j → 
c, uη j → u in C 

ν, ν 
2 

loc  (Ω × (0, ∞)) as j →  ∞  for some ν ∈ (0, 1). Moreover, by 
the arguments as in Lemmas 5.7 and 5.8 of Cao and Lankeit (2016), one can also 
show that (ρ, m, c, u, P) is a classical solution of (4.1.13) with the decay properties 
asserted in Theorems 4.4 and 4.5, respectively. The proof of our main results is thus 
complete. 

4.5 Large Time Behavior of Solutions to a Coral 
Fertilization Model with Nonlinear Diffusion 

4.5.1 Regularized Problems 

At first, we present a natural notion of weak solvability to (4.1.16), (4.1.22) and 
(4.1.23). 

Definition 4.1 For a quadruple of functions (n, c, v, u), we call it a global weak 
solution of (4.1.16), (4.1.22) and (4.1.23), if it fulfills



4.5 Large Time Behavior of Solutions to a Coral Fertilization … 255

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

n ∈ L1 
loc( Ω̄ ×  [0, ∞)), 

c ∈ L∞ 
loc( Ω̄ ×  [0, ∞))

∩
L1 
loc([0, ∞); W 1,1 (Ω)), 

v ∈ L∞ 
loc( Ω̄ ×  [0, ∞))

∩
L1 
loc([0, ∞); W 1,1 (Ω)), 

u ∈ L1 
loc([0, ∞); W 1,1 0 (Ω; R3 )), 

(4.5.1) 

with n ≥ 0, c ≥ 0, v ≥ 0 in Ω × (0, ∞), and 

E(n), n|∇c|, n|u|, c|u| and v|u| belong to L1 
loc( Ω̄ ×  [0, ∞)), (4.5.2) 

where E(s) := ∫ s 
0 D(σ )dσ, if ∇  ·  u = 0 in the distributional sense, if 

−
∫ ∞ 

0

∫

Ω 
nϕt −

∫

Ω 
n0ϕ(·, 0) =  −

∫ ∞ 

0

∫

Ω 
E(n)Δϕ +

∫ ∞ 

0

∫

Ω 
n∇c ·  ∇ϕ 

+
∫ ∞ 

0

∫

Ω 
nu ·  ∇ϕ −

∫ ∞ 

0

∫

Ω 
nvϕ 

(4.5.3) 

for any ϕ ∈ C∞
0 ( Ω̄ ×  [0, ∞)) satisfying ∂ϕ 

∂ν = 0, if 

−
∫ ∞ 

0

∫

Ω 
cϕt −

∫

Ω 
c0ϕ(·, 0) =  −

∫ ∞ 

0

∫

Ω 
∇c ·  ∇ϕ −

∫ ∞ 

0

∫

Ω 
cϕ +

∫ ∞ 

0

∫

Ω 
vϕ 

+
∫ ∞ 

0

∫

Ω 
cu ·  ∇ϕ 

(4.5.4) 
and 

−
∫ ∞ 

0

∫

Ω 
vϕt −

∫

Ω 
v0ϕ(·, 0) =  −

∫ ∞ 

0

∫

Ω 
∇v ·  ∇ϕ −

∫ ∞ 

0

∫

Ω 
vnϕ +

∫ ∞ 

0

∫

Ω 
vu ·  ∇ϕ 

(4.5.5) 
for any ϕ ∈ C∞

0 ( Ω̄ ×  [0, ∞)), as well as if 

−
∫ ∞ 

0

∫

Ω 
u · ϕt −

∫

Ω 
u0ϕ(·, 0) =  −

∫ ∞ 

0

∫

Ω 
∇u ·  ∇ϕ +

∫ ∞ 

0

∫

Ω 
(n + v)∇Φ · ϕ 

(4.5.6) 
for any ϕ ∈ C∞

0

(
Ω̄ ×  [0, ∞); R3

)
fulfilling ∇  ·  ϕ ≡ 0. 

Now, in line with the analysis in closely related settings (Winkler 2015b, 2018c), 
let us introduce a family of regularized problems of (4.1.16), (4.1.22) and (4.1.23) 
through a standard approximation procedure. Thereupon, the corresponding approx-
imated problems appear as
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nεt + uε ·  ∇nε =  ∇  ·  (Dε(nε)∇nε) −  ∇  ·  (nε F
'
ε(nε)∇cε) − Fε(nε)vε, x ∈ Ω, t > 0, 

cεt + uε ·  ∇cε = Δcε − cε + vε, x ∈ Ω, t > 0, 
vεt + uε ·  ∇vε = Δvε − vε Fε(nε), x ∈ Ω, t > 0, 
uεt = Δuε +  ∇  Pε + (nε + vε)∇Φ, ∇  ·  uε = 0, x ∈ Ω, t > 0, 
∂nε 
∂ν 

= 
∂cε 
∂ν 

= 
∂vε 
∂ν 

= 0, uε = 0, x ∈ ∂Ω, t > 0, 

nε(x, 0) = n0(x), cε(x, 0) = c0(x), vε(x, 0) = v0(x), uε(x, 0) = u0(x), x ∈ Ω, 
(4.5.7) 

where for each ε ∈ (0, 1) (Dε)ε∈(0,1) ∈ C2([0, ∞)) fulfills 

Dε(s) ≥ ε and D(s) ≤ Dε(s) ≤ D(s) + 2ε, s ≥ 0, (4.5.8) 

and where 

Fε(s) :=
∫ s 

0 
ρε(σ )dσ, s ≥ 0 for all ε ∈ (0, 1) (4.5.9) 

with (ρε)ε∈(0,1) ⊂ C∞
0 ([0, ∞)) having the properties that for each ε ∈ (0, 1) 

0 ≤ ρε ≤ 1 in  [0, ∞), ρε ≡ 1 in  [0, 1 
ε 
] and ρε ≡ 0 in  [ 2 

ε 
, ∞), (4.5.10) 

from which and (4.5.9) one can infer that for each ε ∈ (0, 1) 

Fε ∈ C∞([0, ∞)), 0 ≤ Fε(s) ≤ s and 0 ≤ F '
ε(s) ≤ 1, s ≥ 0 (4.5.11) 

as well as 

Fε(s) → s and F '
ε(s) → 1 for any s > 0 as  ε → 0. (4.5.12) 

Actually, the local solvability of (4.5.7) can be verified through a suitable adapta-
tion of standard fixed point arguments as proceeding in Winkler (2012, Lemma 2.1), 
so here we merely present the associated assertions. 

Lemma 4.49 Let (4.1.17) be fulfilled. Then for any (n0, c0, v0, u0) complying with 
(4.1.25) and each ε ∈ (0, 1), one can find Tmax,ε ∈ (0, +∞] and functions 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

nε ∈ C0 ( Ω̄ ×  [0, Tmax,ε))
∩

C2,1 ( Ω̄ × (0, Tmax,ε)), 

cε ∈
∩

r>3 

C0 ([0, Tmax,ε); W 1,r (Ω))
∩

C2,1 ( Ω̄ × (0, Tmax,ε)), 

vε ∈
∩

r>3 

C0 ([0, Tmax,ε); W 1,r (Ω))
∩

C2,1 ( Ω̄ × (0, Tmax,ε)), 

uε ∈ C0 ( Ω̄ ×  [0, Tmax,ε); R3 )
∩

C2,1 ( Ω̄ × (0, Tmax,ε); R3 ), 

(4.5.13)
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such that nε ≥ 0, cε ≥ 0 and vε ≥ 0 in Ω ×  [0, Tmax,ε), that with Pε ∈ C1,0(Ω × 
(0, Tmax,ε)) the quintuple of functions (nε, cε, vε, uε, Pε) forms a classical solution 
of (4.5.7) in  Ω ×  [0, Tmax,ε), and that with some α ∈ ( 3 4 , 1) either Tmax,ε < ∞ or 

lim sup 
t↗Tmax,ε

{
||nε(·, t)||L∞(Ω) + ||cε(·, t)||W 1,r (Ω) + ||vε(·, t)||W 1,r (Ω) + ||Aαuε(·, t)||L2(Ω)

}

=  ∞  
(4.5.14) 

holds. 

Thanks to the consumption interaction between n and v, (4.5.7) implies following 
basic estimates. 

Lemma 4.50 Let M0 := max{∫
Ω n0,

∫

Ω v0, ||c0||L∞(Ω), ||v0||L∞(Ω)}. Then the solu-
tions constructed in Lemma 4.49 satisfy

∫

Ω 
nε(·, t) ≤ M0 and

∫

Ω 
vε(·, t) ≤ M0 (4.5.15) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1), as well as

||vε(·, t)||L∞(Ω) ≤ M0 and ||cε(·, t)||L∞(Ω) ≤ M0 (4.5.16) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). Moreover, there exists some C > 0 such that
∫ ∞ 

0

∫

Ω 
F(nε)vε ≤ C for all ε ∈ (0, 1) (4.5.17) 

and ∫ ∞ 

0

∫

Ω 
|∇vε|2 ≤ C for all ε ∈ (0, 1) (4.5.18) 

as well as ∫ ∞ 

0

∫

Ω 
|∇cε|2 ≤ C for all ε ∈ (0, 1). (4.5.19) 

Proof The detailed process of the derivation thereof can be found in Espejo and 
Winkler (2018); Liu (2020). 

In the final, we provide some conditional estimates of (uε)ε∈(0,1), which reveal the 
relationships between temporally independent estimates of (uε)ε∈(0,1) and uniform 
L p (p > 1) norms of (nε)ε∈(0,1). 

Lemma 4.51 uppose (nε, cε, vε, uε)ε∈(0,1) are solutions as established in Lemma 
4.49. Let p ≥ 2, l > 3 and α ∈ ( 3 4 , 1). Then for any ι  >  0, one can find M1 = 
M1(p, l,  ι,  M0)  >  0 and M2 = M2(α, p,  ι,  M0)  >  0 such that
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||uε(·, t)||Ll (Ω) ≤ M1 ·
⎧

1 + sup 
τ ∈(0,t)

||nε(·,  τ  )||L p(Ω)

⎫ p 
p−1 ·( l−3 

3l +ι) 
(4.5.20) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1), and that

||Aα uε(·, t)||L2(Ω) ≤ M2 ·
⎧

1 + sup 
τ ∈(0,t)

||nε(·,  τ  )||L p (Ω)

⎫ p 
p−1 ·( 4α−1 

6 +ι) 
(4.5.21) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). 

Proof Recalling (Winkler 2021b, Corollary 2.1), we infer from uε-equation in (4.5.7) 
that

||uε(·, t)||Ll (Ω) ≤ C1 ·
⎧

1 + sup 
τ ∈(0,t)

||nε(·,  τ  )  + vε(·,  τ  )||L p(Ω)

⎫ p 
p−1 ·( l−3 

3l +ι) 
(4.5.22) 

with some C1 = C1( p, l,  ι,  M0)  >  0 for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1), where 
due to (4.5.16),

||nε(·,  τ  )  + vε(·,  τ  )||L p(Ω) ≤||nε(·,  τ  )||L p (Ω) + ||vε(·,  τ  )||L p(Ω) 

≤||nε(·,  τ  )||L p (Ω) + M0|Ω| 1 
p 

(4.5.23) 

for any τ ∈ (0, t) with each t ∈ (0, Tmax,ε) for all ε ∈ (0, 1). Thereupon, we can 
rewrite (4.5.22) as

||uε(·, t)||Ll (Ω) ≤ C1 ·
⎧

1 + M0|Ω| 1 
p + sup 

τ ∈(0,t)
||nε(·,  τ  )||L p (Ω)

⎫ p 
p−1 ·( l−3 

3l +ι) 
(4.5.24) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). With the choice of M1 := C1 · (1 + 
M0|Ω| 1 

p ), (4.5.20) is implied by (4.5.24). In a flavor quite similar to the reason-
ing of (4.5.20), (4.5.21) follows from a combination of Winkler (2021b, Proposition 
1.1) with (4.5.23). 

4.5.2 Conditional Uniform Bounds for (∇cε)ε∈(0,1) 

In fact, for the derivation of uniform L p bounds of (nε)ε∈(0,1), besides the ε-
independent conditional estimates of (uε)ε∈(0,1) as given by Lemma 4.51, it is also  
essential to gain similar uniform estimates for signal gradients with respect to the 
temporally independent L p norms of (nε)ε∈(0,1) in accordance with the recursive 
frameworks established in Winkler (2021b). For convenience in expressions, we
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make use of the following abbreviations:

Ip,ε(t) := 1 + sup 
τ∈(0,t)

||nε(·,  τ  )||L p (Ω), t ∈ (0, Tmax,ε) for all ε ∈ (0, 1) (4.5.25) 

and 

Kq,θ,ε(t) := 1 + sup 
τ ∈(0,t)

||
||Bθ

(
cε(·,  τ  )  − e−sB  c0

)||
||
Lq (Ω) , t ∈ (0, Tmax,ε) (4.5.26) 

for all ε ∈ (0, 1). 

Lemma 4.52 Let θ ∈ ( 1 2 , 1) and q > 3. Then for any ι  >  0, one can find some 
C = C(θ, q,  ι)  >  0 satisfying

||
||
||∇(cε(·, t) − e−τ Bc0)

||
||
||
L∞(Ω) 

≤ C ·
⎧

1 + sup 
τ ∈(0,t)

||
||
||Bθ (cε(·,  τ  )  − e−τ Bc0)

||
||
||
Lq (Ω)

⎫ q+3 
2θq +ι 

(4.5.27) 
for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). 

Proof Since θ ∈ ( 1 2 , 1) enable s us to choose q > 3 large enough such that 1 − q+3 
2θ q > 

0, this ensures the existence of ι  >  0 sufficiently small such that ι  <  1 − q+3 
2θ q , which 

allows for the following choice of ϑ, namely 

ϑ(ι)  := 
q + 3 
2q 

+ ιθ < θ. (4.5.28) 

From the interpolation inequality provided by Friedman (1969, Theorem 2.14.1) for 
fractional powers of sectorial operators, it follows that

||
||Bϑ (cε(·, t) − e−τ B c0)

||
||
Lq (Ω) 

≤C1

||
||Bθ (cε(·, t) − e−τ B c0)

||
||

ϑ 
θ 
Lq (Ω)

||
||cε(·, t) − e−τ B c0

||
||

θ−ϑ 
θ 

Lq (Ω) 

≤C1

{
2M0|Ω| 1 

q

}1−ι− q+3 
2θ q ||

||Bθ (cε(·, t) − e−τ B c0)
||
||

q+3 
2θ q +ι 
Lq (Ω) 

(4.5.29) 

with some C1 = C1(θ, q,  ι)  >  0 and M0 > 0 as taken in Lemma 4.50 for each t ∈ 
(0, Tmax,ε) and all ε ∈ (0, 1). Combining with the embedding D(Bϑ ) ϲ→ W 1,∞(Ω) 
(Henry 1981), we obtain from (4.5.29) that

||
||∇(cε(·, t) − e−τ B c0)

||
||
L∞(Ω) 

≤C2

||
||Bϑ (cε(·, t) − e−τ B c0)

||
||
Lq (Ω) 

≤C2C1

{
2M0|Ω| 1 

q

}1−ι− q+3 
2θ q ||

||Bθ (cε(·, t) − e−τ B c0)
||
||

q+3 
2θq +ι 
Lq (Ω)
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with C2 = C2(θ, q,  ι)  >  0 for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1), and whereafter 

(4.5.27) holds with C := C2C1

{
2M0|Ω| 1 

q

}1−ι− q+3 
2θq 

. 

With the aid of Lemma 4.52, the following conditional estimates can be estab-
lished by means of the L p-Lq estimates for fractional powers of sectorial operators 
(Horstmann and Winkler 2005, (3)). 

Lemma 4.53 Let θ ∈ ( 1 2 , 1), and let q > 3, p ≥ 2. Then for each ι  >  0 there exists 
C = C(θ, q, p,  ι)  >  0 such that

||
||Bθ (cε(·,  τ  )  − e−τ B c0)

||
||
Lq (Ω) ≤ C ·

⎧

1 + sup 
τ ∈(0,t)

||nε(·,  τ  )||L p(Ω)

⎫ p 
p−1 ·( 2θ 

3 +ι) 

(4.5.30) 
for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). 

Proof Picking ι  >  0 sufficiently small such that 

ι  <  min

⎧

1 − 
q + 3 
2θ q 

, 2q(1 − θ  )
⎫

, (4.5.31) 

and then letting 

l := 3q 

3 + 2q(1 − θ  )  − ι 
, (4.5.32) 

one can observe from ι  <  2q(1 − θ  )  and q > 3 + 2q − 2qθ + 2qθ  ι  >  3 + 2q − 
2qθ implied by (4.5.31) and (4.5.32), respectively, that 

q = 3q 

3 + 2q − 2qθ − 2q(1 − θ  )  
> l = 3q 

3 + 2q − 2qθ − ι 
> 

3q 

3 + 2q − 2qθ 
> 3. 

(4.5.33) 
Next, we apply Bθ to the following variation-of-constants representation 

cε(·, t) − e−t B  c0 =
∫ t 

0 
e−B(t−τ  )  {vε(·,  τ  )  − uε(·,  τ  )∇cε(·,  τ  )} dτ 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1) to have

||
||Bθ (cε(·, t) − e−τ B c0)

||
||
Lq (Ω) ≤

∫ t 

0

||
||Bθ e−B(t−τ  )  vε(·,  τ  )

||
||
Lq (Ω) dτ 

+
∫ t 

0

||
||Bθ e−B(t−τ  )  uε(·,  τ  )∇cε(·,  τ  )

||
||
Lq (Ω) dτ 

(4.5.34) 
for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). Recalling the L p-Lq estimates for fractional 
powers of sectorial operators (Horstmann and Winkler, 2005, (3)) and the following
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regularity features of the Neumman heat semigroup (Henry 1981; Winkler 2010), 
namely ||

||∇e−t B  c0
||
||
L∞(Ω) ≤ C1 ||∇c0||L∞(Ω) (4.5.35) 

with some C1 > 0, we gain from (4.5.16), (4.5.20), (4.5.25), (4.5.26) and (4.5.27) 
that

∫ t 

0

||
||
||Bθ e−B(t−τ  )vε(·,  τ  )

||
||
||
Lq (Ω) 

dτ ≤C2

∫ t 

0

⎛
1 + (t − τ  )−θ

⎞
e−(t−τ  )||vε(·,  τ  )||Lq (Ω)dτ 

≤C2 M0|Ω| 1 q
∫ t 

0

⎛
1 + (t − τ  )−θ

⎞
e−(t−τ  )dτ ≤ C3 

(4.5.36) 
for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1) with C2 > 0 and 

C3 := C2 M0|Ω| 1 
q

∫ ∞ 

0

(
1 + σ −θ

)
e−σ dσ  <  ∞ 

thanks to θ ∈ (
1 
2 , 1

)
, and that

∫ t 

0

||
||Bθ e−B(t−τ  )  uε(·,  τ  )∇cε(·,  τ  )

||
||
Lq (Ω) dτ 

≤C4

∫ t 

0

⎛
1 + (t − τ  )−θ − 3 

2 ( 
1 
l − 1 q )

⎞
e−(t−τ  )||uε(·,  τ  )∇cε(·,  τ  )||Ll (Ω)dτ 

≤C4

∫ t 

0

⎛
1 + (t − τ  )−θ − 3 

2 ( 
1 
l − 1 q )

⎞
e−(t−τ  )||uε(·,  τ  )||Ll (Ω)||∇cε(·,  τ  )||L∞(Ω)dτ 

≤C4

∫ t 

0

⎛
1 + (t − τ  )−θ − 3 

2 ( 
1 
l − 1 q )

⎞
e−(t−τ  )||uε(·,  τ  )||Ll (Ω) 

·
{||
||∇(cε(·,  τ  )  − e−t B  c0)

||
||
L∞(Ω) + ||∇e−t B  c0||L∞(Ω)

}
dτ 

≤C4 M1

∫ t 

0

⎛
1 + (t − τ  )−θ − 3 

2 ( 
1 
l − 1 q )

⎞
e−(t−τ  )  dτ · I 

p 
p−1 ·( l−3 

3l +ι) 
p,ε (t) 

·
⎧

C5K 
q+3 
2θq +ι 
q,θ,ε (t) + C1||∇c0||L∞(Ω)

⎫

≤C6 I 
p 

p−1 ·( l−3 
3l +ι) 

p,ε (t) · K 
q+3 
2θq +ι 
q,θ,ε (t) 

(4.5.37) 
for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1), where C4, C5 are positive constants and C6 := 
C4 M1(C5 + C1 M0)

∫ ∞ 
0

⎛
1 + σ −θ − 3 

2 ( 
1 
l − 1 q )

⎞
e−σ dσ  <  ∞ due to (4.5.33). Inserting 

(4.5.36) and (4.5.37) into (4.5.34) entails

||
||Bθ (cε(·, t) − e−τ B c0)

||
||
Lq (Ω) ≤ C3 + C6 I 

p 
p−1 ·( l−3 

3l +ι) 
p,ε (t) · K 

q+3 
2θq +ι 
q,θ,ε (t) (4.5.38) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). It can be readily seen from (4.5.31) that
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ι + 
q + 3 
2θq 

< 1, 

which allows for an application of Young’s inequality to attain

||
||Bθ (cε(·, t) − e−τ B c0)

||
||
Lq (Ω) ≤ C3 + 

1 

2 
Kq,θ,ε(t) + C7 I 

p 
p−1 ·( l−3 

3l +ι)· 2θq 
2θq−q−3−2θqι 

p,ε (t) 

with certain C7 = C7(θ, q, p, l,  ι)  for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). We thus com-
bine with (4.5.26) to have  

Kq,θ,ε(t) ≤ 1 + C3 + 
1 

2 
Kq,θ,ε(t) + C7 I 

p 
p−1 ·( l−3 

3l +ι)· 2θq 
2θq−q−3−2θqι 

p,ε (t), 

namely 

Kq,θ,ε(t) ≤ 2(1 + C3) + 2C7 I 
p 

p−1 ·( l−3 
3l +ι)· 2θ q 

2θq−q−3−2θqι 
p,ε (t) (4.5.39) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). Setting 

ψ(ι̃) := p 

p − 1 
·
⎛
2θq − q − 3 +  ̃ι 

3q
+  ̃ι

⎞

· 2θq 

2θ q − q − 3 − 2θq ι̃ 
, 

we note that ψ(ι̃) ↘ p 
p−1 · 2θ 

3 as ι̃ ↘ 0, whereupon for arbitrarily small ι  >  0 one 

can pick ι' ∈
⎛
0, min

{
1 − q+3 

2θ q , 2q(1 − θ  )
}⎞

such that 

ψ(ι') ≤ 
p 

p − 1 
· 2θ 
3 

+ ι. 

An elementary calculation along with (4.5.32) thus shows 

p 

p − 1 
·
⎛
l − 3 
3l

+ ι'
⎞

· 2θ q 
2θ q − q − 3 − 2θqι'

= 
p 

p − 1 
·
⎛
2θq − q − 3 + ι'

3q
+ ι'

⎞

· 2θq 

2θq − q − 3 − 2θ qι'

=ψ(ι') ≤ 
p 

p − 1 
· 2θ 
3 

+ ι, 

which in conjunction with (4.5.39), (4.5.25) and (4.5.26) yields (4.5.30). 

With Lemmas 4.52–4.53 at hand, we are in the position to derive the desired 
conditional uniform L∞ estimates for (∇cε)ε∈(0,1) from a well-known continuous 
embedding.
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Lemma 4.54 Suppose that p ≥ 2. Then for any ι  >  0, one can find C(p,  ι)  >  0 
fulfilling

||∇cε(·, t)||L∞(Ω) ≤ C ·
⎧

1 + sup 
τ ∈(0,t)

||nε(·,  τ  )||L p(Ω)

⎫ p 
p−1 ·( 1 3 +ι) 

(4.5.40) 

for any t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). 

Proof For given ι  >  0, there exists q > 3 sufficiently large satisfying 1 q <  ι,  which 
shows 

q + 3 
3q 

< 
1 

3 
+ ι. 

Define 

φ(ι̃) :=
⎛
q + 3 
2θq 

+  ̃ι
⎞

·
⎛
2θ 
3 

+  ̃ι
⎞

, ι̃  >  0. 

We can readily see that 

φ(ι̃) ↘ q + 3 
2θ q 

· 2θ 
3 

= 
q + 3 
3q 

< 
1 

3 
+ ι as ι̃ ↘ 0. 

This enables us to pick some ι'' = ι''(ι) > 0 such that 

φ(ι'') ≤ 
1 

3 
+ ι. (4.5.41) 

Now, from Lemmas 4.52–4.53, we are able to find certain C1 = C1(p, q,  θ,  ι'')  >  0 
fulfilling

||
||∇(cε(·, t) − e−τ B c0)

||
||
L∞(Ω) ≤ C1 I 

p 
p−1 ·( 2θ 

3 +ι'')·
⎛
q+3 
2θ q +ι''

⎞

p,ε (4.5.42) 

for any t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Apart from that, (4.5.35) provides some 
C2 > 0 satisfying ||

||∇e−t B  c0
||
||
L∞(Ω) ≤ C2 ||∇c0||L∞(Ω) . (4.5.43) 

Thereupon, it can be deduced from (4.5.25), (4.5.41), (4.5.42) and (4.5.43) that
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||∇cε(·, t)||L∞(Ω) ≤
||
||∇(cε(·, t) − e−τ B c0)

||
||
L∞(Ω) +

||
||∇e−τ B c0

||
||
L∞(Ω) 

≤C1 I 
p 

p−1 ·( 2θ 
3 +ι'')·

⎛
q+3 
2θ q +ι''

⎞

p,ε (t) + C2 ||∇c0||L∞(Ω) 

≤C3 I 
p 

p−1 ·( 2θ 
3 +ι'')·

⎛
q+3 
2θq +ι''

⎞

p,ε (t) 

=C3 I 
p 

p−1 ·φ(ι'') 
p,ε (t) 

≤C3 I 
p 

p−1 ·( 1 3 +ι) 
p,ε (t) 

with C3 := C1 + C2 ||∇c0||L∞(Ω) for any t ∈ (0, Tmax,ε) and all ε ∈ (0, 1), as claimed. 

4.5.3 A Prior Estimates 

Relying on the basic estimates and the conditional estimates obtained in previous 
sections, we can achieve the boundedness of (nε)ε∈(0,1) in temporally independent 
L p-topology under a milder assumption on m as compared to that imposed in Liu 
(2020). 

Lemma 4.55 Let m > 1. Then for any p > 1 there exists C = C(p)  >  0 such that

||nε(·, t)||L p(Ω) ≤ C (4.5.44) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). In particular, for p = m, one can find 
C∗ > 0 fulfilling

∫ T 

0

∫

Ω 
n2m−3 

ε |∇nε|2 ≤ C∗(T + 1) (4.5.45) 

for any T ∈ (0, Tmax,ε). 

Proof Thanks to the arbitrariness of p > 1, herein without loss of generality, we let 

p > m. (4.5.46) 

In addition, since m > 1, it is possible to choose ι  >  0 sufficiently small such that 

λ := 
1 + 3ι 
3m − 2 

< 1. (4.5.47) 

In view of (4.1.24), (4.5.11), ∇  ·  uε = 0 and the nonnegativity of nε and vε, we test 
nε-equation in (4.5.7) by  pn 

p−1 
ε and invoke Young’s inequality to have
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d 

dt

∫

Ω 
n p ε =  −  p(p − 1)

∫

Ω 
Dε(nε)n 

p−2 
ε |∇nε|2 + p(p − 1)

∫

Ω 
n p−1 

ε F '
ε(nε)∇nε ·  ∇cε 

− p
∫

Ω 
n p−1 

ε Fε(nε)vε 

≤  −  CD p(p − 1)
∫

Ω 
nm+p−3 

ε |∇nε|2 + p(p − 1)
∫

Ω 
n p−1 

ε |∇nε||∇cε| 

≤  −  
CD p( p − 1) 

2

∫

Ω 
nm+p−3 

ε |∇nε|2 + 
p(p − 1) 
2CD

∫

Ω 
n p−m+1 

ε |∇cε|2 

=  −  
2CD p(p − 1) 
(m + p − 1)2

∫

Ω

|
|
|
|∇n 

m+p−1 
2 

ε

|
|
|
|

2 

+ 
p( p − 1) 
2CD

∫

Ω 
n p−m+1 

ε |∇cε|2 
(4.5.48) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). For the rightmost integral, we deduce from 
(4.5.25), (4.5.46) and Lemma 4.54 that 

p(p − 1) 
2CD

∫

Ω 
n p−m+1 

ε |∇cε|2 

= 
p(p − 1) 
2CD

∫

{nε≤1} 
n p−m+1 

ε |∇cε|2 + 
p( p − 1) 
2CD

∫

{nε>1} 
n p−m+1 

ε |∇cε|2 

≤ 
p(p − 1)|Ω| 

2CD
||∇c||2 L∞(Ω) + 

p( p − 1) 
2CD

||∇c||2 L∞(Ω)

∫

Ω 
n p−m+1 

ε 

≤ 
p(p − 1)|Ω| 

2CD 
I 

2 p 
p−1 ·( 1 3 +ι) 
p,ε (t) + 

p(p − 1) 
2CD 

I 
2 p 
p−1 ·( 1 3 +ι) 
p,ε (t) ·

∫

Ω 
n p−m+1 

ε 

(4.5.49) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Since (4.5.46) implies 

2 

m + p − 1 
< 

2( p − m + 1) 
m + p − 1 

< 6, 

with a := 3( p−m)(m+p−1) 
( p−m+1)(3m+3p−4) ∈ (0, 1) an application of the Gagliardo–Nirenberg 

inequality combined with (4.5.15) shows that

∫

Ω 
n p−m+1 

ε 

=
||
||
||n 

m+ p−1 
2 

ε

||
||
||

2( p−m+1) 
m+ p−1 

L 
2(p−m+1) 
m+ p−1 (Ω) 

≤C1

⎧||
||
||∇n 

m+ p−1 
2 

ε

||
||
||
a 

L2(Ω)

||
||
||n 

m+ p−1 
2 

ε

||
||
||
1−a 

L 
2 

m+ p−1 (Ω) 
+

||
||
||n 

m+ p−1 
2 

ε

||
||
||
L 

2 
m+ p−1 (Ω)

⎫ 2(p−m+1) 
m+ p−1 

≤C2

||
||
||∇n 

p+m−1 
2 

ε

||
||
||
2· 3( p−m) 

3m+3 p−4 

L2(Ω) 
+ C2 

(4.5.50) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1), where both C1 and C2 are positive con-
stants. Observing that
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3(p − m) 
3m + 3p − 4 

− 1 = 
−6m + 4 

3m + 3p − 4 
< 0 

due to m > 1, we again employ Young’s inequality and derive from (4.5.49) and 
(4.5.50) that 

p(p − 1) 
2CD

∫

Ω 
n p−m+1 

ε |∇cε|2 

≤ 
p(p − 1)|Ω| 

2CD 
I 

2 p 
p−1 ·( 1 3 +ι) 
p,ε (t) + 

p(p − 1)C2 

2CD 
I 

2 p 
p−1 ·( 1 3 +ι) 
p,ε (t) 

+ 
p( p − 1)C2 

2CD 
I 

2 p 
p−1 ·( 1 3 +ι) 
p,ε (t) ·

||
||
||∇n 

p+m−1 
2 

ε

||
||
||
2· 3(p−m) 

3m+3 p−4 

L2(Ω) 

≤ 
p(p − 1)(|Ω|  +  C2) 

2CD 
I 

2 p 
p−1 ·( 1 3 +ι) 
p,ε (t) + 

CD p(p − 1) 
(m + p − 1)2

∫

Ω

|
|
|
|∇n 

m+ p−1 
2 

ε

|
|
|
|

2 

+ C3 I 
p 

p−1 ·( 1 3 +ι)· 3m+3 p−4 
3m−2 

p,ε (t) 

(4.5.51) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). In light of the facts that Ip,ε ≥ 1 and that 
Ip,ε is nondecreasing with respect to t, it follows from (4.5.48) and (4.5.51) that 

d 

dt

∫

Ω 
n p ε + 

CD p(p − 1) 
(m + p − 1)2

∫

Ω

|
|
|
|∇n 

m+ p−1 
2 

ε

|
|
|
|

2 

≤ C4 I 
p 

p−1 ·( 1 3 +ι)· 3m+3 p−4 
3m−2 

p,ε (t) (4.5.52) 

with C4 := p( p−1)(|Ω|+C2) 
2CD

+ C3 for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). From m > 
1 and (4.5.46), it is clear that p > 1 and p > 3 2 (1 − m), which warrants that 

2 

m + p − 1 
< 

2 p 

m + p − 1 
< 6, 

whence letting b := 3( p−1)(m+p−1) 
p(3m+3p−4) ∈ (0, 1), we once more make use of the Gagliardo– 

Nirenberg inequality to have

⎧∫

Ω 
n p ε

⎫ 3m+3 p−4 
3(p−1) 

=
||
||
||n 

m+ p−1 
2 

ε

||
||
||

2 p 
m+ p−1 · 3m+3 p−4 

3(p−1) 

L 
2 p 

m+ p−1 (Ω) 

≤C5

⎧||
||
||∇n 

m+ p−1 
2 

ε

||
||
||
b 

L2(Ω)

||
||
||n 

m+ p−1 
2 

ε

||
||
||
1−b 

L 
2 

m+ p−1 (Ω) 
+

||
||
||n 

m+ p−1 
2 

ε

||
||
||
L 

2 
m+ p−1 (Ω)

⎫ 2 p 
m+ p−1 · 3m+3 p−4 

3(p−1) 

≤C6

||
||
||∇n 

p+m−1 
2 

ε

||
||
||
2 

L2(Ω) 
+ C6 

with C5 > 0 and C6 > 0 for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1), that is
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∫

Ω

|
|
|
|∇n 

m+ p−1 
2 

ε

|
|
|
|

2 

≥ 
1 

C6

⎧∫

Ω 
n p ε

⎫ 3m+3 p−4 
3( p−1) 

− 1 (4.5.53) 

for each t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Also due to Ip,ε ≥ 1 and its nondecreas-
ing features, for each fixed T ∈ (0, Tmax,ε), a combination of (4.5.52) with (4.5.53) 
entails 

d 

dt

∫

Ω 
n p ε + C7

⎧∫

Ω 
n p ε

⎫ 3m+3 p−4 
3(p−1) 

≤ C8 I 
p 

p−1 ·( 1 3 +ι)· 3m+3 p−4 
3m−2 

p,ε (T ) (4.5.54) 

with C7 := CD p( p−1) 
C6(m+p−1)2 and C8 := C4 + CD p( p−1) 

(m+p−1)2 for each t ∈ (0, T ) and all ε ∈ 
(0, 1). By means of an ODE comparison argument, we obtain from (4.5.54) that for 
any fixed T ∈ (0, Tmax,ε)

∫

Ω 
n p ε ≤ max

⎧∫

Ω 
n p 0 ,

⎧
C8 

C7 
I 

p 
p−1 ·( 1 3 +ι)· 3m+3 p−4 

3m−2 
p,ε (T )

⎫ 3(p−1) 
3m+3 p−4

⎫

for each t ∈ (0, T ) and all ε ∈ (0, 1), which further implies

∫

Ω 
n p ε ≤ C9 · I p· 

1+3ι 
3m−2 

p,ε (T ) = C9 · I pλ 
p,ε(T ) (4.5.55) 

for each t ∈ (0, T ) and all ε ∈ (0, 1), where C9 := max

⎧
∫

Ω n 
p 
0 ,

{
C8 
C7

} 3(p−1) 
3m+3 p−4

⎫

. 

Recalling (4.5.25), one can infer from (4.5.55) that 

Ip,ε(T ) ≤ 1 + C 
1 
p 

9 I 
λ 
p,ε(T ) ≤ C10 I 

λ 
p,ε(T ) 

with C10 := 1 + C 
1 
p 

9 for each T ∈ (0, Tmax,ε) and all ε ∈ (0, 1). In view of (4.5.47), 
this further shows 

Ip,ε(T ) ≤ C 
1 

1−λ 
10 (4.5.56) 

for each T ∈ (0, Tmax,ε) and all ε ∈ (0, 1), and thus (4.5.44) holds. Combining 
(4.5.56) with (4.5.52) and (4.5.47) entails 

d 

dt

∫

Ω 
n p ε + 

CD p( p − 1) 
(m + p − 1)2

∫

Ω

|
|
|
|∇n 

m+ p−1 
2 

ε

|
|
|
|

2 

≤ C11 (4.5.57) 

with C11 := C4 · C 
p 

p−1 ·( 1 3 +ι)· 3m+3 p−4 
3m−3−3ι 

10 for any t ∈ (0, Tmax,ε), whence upon an integra-
tion of (4.5.57) on  (0, T ) for each T ∈ (0, Tmax,ε), we have
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∫

Ω 
n p ε (·, T ) + 

CD p(p − 1) 
(m + p − 1)2

∫ T 

0

∫

Ω

|
|
|
|∇n 

m+ p−1 
2 

ε

|
|
|
|

2 

≤ C11T +
∫

Ω 
n p 0 . (4.5.58) 

Thanks to the nonnegativity of nε, m > 1 and (4.1.25), we let p = m and derive from 
(4.5.58) that

∫ T 

0

∫

Ω 
n2m−3 

ε |∇nε|2 ≤ C12(T + 1) (4.5.59) 

with C12 := 4 
CDm(m−1) max{C11,

∫

Ω n
m 
0 } for each T ∈ (0, Tmax,ε), which shows 

(4.5.45) by choosing C∗ = C12 and thus completes the proof. 

Now, we are able to verify the uniform boundedness for the left-hand side of 
(4.5.14) so as to establish the global solvability of the approximated problems (4.5.7), 
which underlies the derivation of global boundedness and stabilization in problem 
(4.1.16), (4.1.22) and (4.1.23) by means of well-established arguments. 

Lemma 4.56 Let m > 1. Then the family of the solutions (nε, cε, vε, uε)ε∈(0,1) as 
established in Lemma 4.49 solves (4.5.7) globally and has the properties that for any 
r > 3 and all t > 0 there exists C = C(r )  >  0 independent of ε ∈ (0, 1) such that

||nε(·, t)||L∞(Ω) + ||cε(·, t)||W 1,r (Ω) + ||vε(·, t)||W 1,r (Ω) + ||Aα uε(·, t)||L2(Ω) ≤ C. 
(4.5.60) 

Proof At first, for any l > 3 and each α ∈ ( 3 4 , 1), a combination of Lemma 4.55 
with Lemma 4.51 provides some C1 > 0 such that

||uε(·, t)||Ll (Ω) + ||Aα uε(·, t)||L2(Ω) ≤ C1 (4.5.61) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). Moreover, from (4.5.16), Lemmas 4.54 and 
4.55, we can infer the existence of C2 > 0 fulfilling

||cε(·, t)||W 1,∞(Ω) ≤ C2 (4.5.62) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). In conjunction with (4.5.61) and (4.5.62), an 
application of a Moser-type iteration reasoning (Tao and Winkler 2012a, Lemma 
A.1) to nε-equation in (4.5.7) yields

||nε(·, t)||L∞(Ω) ≤ C3 (4.5.63) 

with some C3 > 0 for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). Apart from that, for any 
r > 3 (Liu 2020, Lemma 5.1) combined with (4.5.16) allows for a choice of C4 > 0 
such that

||vε(·, t)||W 1,r (Ω) ≤ C4 (4.5.64) 

for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). As a result, a collection of (4.5.61)–(4.5.64) 
along with (4.5.14) shows the global solvability of (4.5.7) and the validity of (4.5.60).
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4.5.4 Global Solvability 

The task of this section is to construct global weak solutions of (4.1.16), (4.1.22) 
and (4.1.23) in the sense of Definition 4.1. As the first step toward this, some further 
regularity features of (nε, cε, vε, uε)ε∈(0,1) are essential to be provided. 

Lemma 4.57 There exists ν ∈ (0, 1) with the properties that one can find some 
ε-independent C > 0 fulfilling

||uε(·, t)||Cν ( Ω̄) ≤ C for all t ≥ 0, (4.5.65)

||cε||Cν ( Ω̄×[t,t+1]) ≤ C for all t ≥ 0 (4.5.66) 

and
||vε||Cν ( Ω̄×[t,t+1]) ≤ C for all t ≥ 0, (4.5.67) 

and that for any τ  >  0, there exists ε-independent C(τ ) > 0, such that

||∇cε||Cν ( Ω̄×[t,t+1]) ≤ C(τ ) for all t ≥ τ (4.5.68) 

and
||∇vε||Cν ( Ω̄×[t,t+1]) ≤ C(τ ) for all t ≥ τ. (4.5.69) 

Proof According to the arguments of Liu (2020, Lemmas 5.4–5.6), (4.5.66)–(4.5.69) 
can be derived from a combination of maximal Sobolev regularity with appropriate 
embedding consequences, while (4.5.65) is an immediate result of (4.5.60) because 
of the embedding D( Aα ) ϲ→ Cν ( Ω̄) for each ν ∈ (

0, 2α − 3 2
)
(Giga 1981; Henry 

1981), due to α ∈ (
3 
4 , 1

)
required by (4.1.25). 

In order to take limit of (nε)ε∈(0,1) by suitable extraction procedures in the sequel, it 
is also necessary to explore the regularity properties of time derivatives of (nε)ε∈(0,1). 
For expressing conveniently, throughout the sequel, we let 

Bn := sup 
ε∈(0,1)

||nε||L∞(Ω×(0,∞)). (4.5.70) 

Lemma 4.58 Let m > 1. Then for each T > 0, there exists C = C(T )  >  0 satisfy-
ing

∫ T 

0
||∂t nm ε (·, t)||(W 1,∞ 

0 (Ω))∗dt  ≤ C(T ) for all ε ∈ (0, 1). (4.5.71) 

Furthermore, one can find C > 0 independent of ε ∈ (0, 1), such that

||nε(·, t) − nε(·, s)||(W 2,2 0 (Ω))∗ ≤ C |t − s| for all t ≥ 0 and s ≥ 0. (4.5.72)



270 4 Keller–Segel–(Navier–)Stokes System Modeling Coral Fertilization

Proof For any fixed ψ ∈ C∞
0 ( Ω̄) and t ∈ (0, T ), integrations by parts combined 

with applications of Young’s inequality on the basis of the first equation in (4.5.7) 
entails

|
|
|
|
1 

m

∫

Ω 
∂t n

m 
ε (·, t) · ψ

|
|
|
|

=
|
|
|
|

∫

Ω 
nm−1 

ε

{∇  · (
Dε(nε)∇nε − nε F

'
ε(nε)∇cε − nεuε

) − Fε(nε)vε

} · ψ
|
|
|
|

=
|
|
|
|−(m − 1)

∫

Ω 
nm−2 

ε Dε(nε)|∇nε|2 ψ −
∫

Ω 
nm−1 

ε Dε(nε)∇nε ·  ∇ψ 

+ (m − 1)
∫

Ω 
nm−1 

ε F '
ε(nε) (∇nε ·  ∇cε) ψ +

∫

Ω 
nm ε F

'
ε(nε)∇cε ·  ∇ψ 

+ 
1 

m

∫

Ω 
nm ε uε ·  ∇ψ −

∫

Ω 
nm−1 

ε Fε(nε)vεψ

|
|
|
|

≤
⎧

CD(m − 1)
∫

Ω 
n2m−3 

ε |∇nε|2 + CD

∫

Ω 
n2m−2 

ε |∇nε| 

+ (m − 1)
∫

Ω 
nm−1 

ε |∇nε|  ·  |∇cε|  +
∫

Ω 
nm ε |∇cε| 

+ 
1 

m

∫

Ω 
nm ε |uε|  +

∫

Ω 
nm ε vε

⎫

· ||ψ||W 1,∞(Ω) 

≤
⎧

CD(m − 1)
∫

Ω 
n2m−3 

ε |∇nε|2 + CD

∫

Ω 
n2m−3 

ε |∇nε|2 + CD

∫

Ω 
n2 ε 

+ (m − 1)
∫

Ω 
n2m−3 

ε |∇nε|2 + (m − 1)
∫

Ω 
nε|∇cε|2 +

∫

Ω 
nm ε |∇cε| 

+ 
1 

m

∫

Ω 
nm ε |uε|  +

∫

Ω 
nm ε vε

⎫

· ||ψ||W 1,∞(Ω) 

≤
⎧

(CDm + m − 1)
∫

Ω 
n2m−3 

ε |∇nε|2 + CD B
2 
n |Ω|  +  (m − 1)Bn

∫

Ω 
|∇cε|2 

+Bm 
n

∫

Ω 
|∇cε|  +  

Bm 
n 

m

∫

Ω 
|uε|  +  Bm 

n M0|Ω|
⎫

· ||ψ||W 1,∞(Ω) 

for all ε ∈ (0, 1), with CD and M0 given by (4.1.24) and (4.5.16), respectively, which 
thus together with (4.5.45) and (4.5.65) yields (4.5.71). As for (4.5.72), readers can 
refer to Liu (2020) for its proof. 

Now, we are in the position to verify global solvability of (4.1.16), (4.1.22) and 
(4.1.23). 

Lemma 4.59 Let m > 1. Then one can find (ε j ) j∈N ⊂ (0, 1), a null set ℵ  ⊂  (0, ∞) 
and functions n, c, v and u complying with (4.5.1) and (4.5.2), such that ε j ↘ 0 as 
j →  ∞, that n ≥ 0, c ≥ 0 and v ≥ 0 in Ω × (0, ∞), and that as ε = ε j ↘ 0, we 
have
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nε → n a.e.  in  Ω for each t ∈ (0, ∞)\ℵ, (4.5.73) 

nε 
∗

⇀ n in  L∞(Ω × (0, ∞)), (4.5.74) 

nε → n in  C0 
loc

⎛
[0, ∞); (W 2,2 0 (Ω))∗

⎞
, (4.5.75) 

cε → c in  C0 
loc

(
Ω̄ ×  [0, ∞)

)
, (4.5.76) 

cε 
∗

⇀ c in  L∞((0, ∞); W 1,r (Ω)) for each r ∈ (1, ∞), (4.5.77) 

∇cε →  ∇c in  C0 
loc

(
Ω̄ ×  [0, ∞)

)
, (4.5.78) 

vε → v in  C0 
loc

(
Ω̄ ×  [0, ∞)

)
, (4.5.79) 

vε 
∗

⇀ v in  L∞((0, ∞); W 1,r (Ω)) for each r ∈ (1, ∞), (4.5.80) 

∇vε →  ∇v in  C0 
loc

(
Ω̄ ×  [0, ∞)

)
, (4.5.81) 

uε → u in  C0 
loc

(
Ω̄ ×  [0, ∞)

)
, (4.5.82) 

uε 
∗

⇀ u in L∞ (Ω × (0, ∞)) , (4.5.83) 

and 
∇uε ⇀ ∇u in L2 

loc

(
Ω̄ ×  [0, ∞)

)
. (4.5.84) 

Furthermore, (n, c, v, u) solves (4.1.16), (4.1.22) and (4.1.23) globally in the sense 
of Definition 4.1. 

Proof Observing that

∫ T 

0

∫

Ω 
|∇nm ε |2 = m2

∫ T 

0

∫

Ω 
n2m−2 

ε |∇nε|2 ≤ m2 Bn

∫ T 

0

∫

Ω 
n2m−3 

ε |∇nε|2 

for each T > 0 and all ε ∈ (0, 1), we thereby infer from (4.5.60) and (4.5.45) that 
actually nm ε ∈ L2 

loc

([0, ∞); (W 1,2(Ω))
)
. Thereupon, in line with the reasoning of 

Liu (2020, Lemma 7.2), the convergence claimed by (4.5.73)–(4.5.84) as well as the 
integral identities (4.5.3)–(4.5.6) are valid. 

4.5.5 Asymptotic Behavior 

Recalling (4.5.9) and (4.5.10), one can see that with some sufficiently small ε∗ ∈ 
(0, 1) fulfilling 

Bn ≤ 
1 

ε∗ 
(4.5.85)
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(4.5.17) can be rewritten as

∫ ∞ 

0

∫

Ω 
nεcε ≤ C for all ε ∈ (0,  ε∗), 

where C > 0. This in conjunction with (4.5.18), the convergence of (nε)ε∈(0,1) and 
(vε)ε∈(0,1) in Lemma 4.59 as well as the uniform boundedness property of (nε)ε∈(0,1) 
implies the following stability of the spatial average of both n and v. The detailed 
reasoning thereof can be found in Liu (2020). 

Lemma 4.60 Suppose that ℵ  ⊂  (0, ∞) is the null set provided by Lemma 4.59. Then 
we have

∫

Ω 
n(·, t) →

⎧∫

Ω 
n0 −

∫

Ω 
v0

⎫

+ 
as (0, ∞)\ℵ ∋ t →  ∞ (4.5.86) 

and ∫

Ω 
v(·, t) →

⎧∫

Ω 
v0 −

∫

Ω 
n0

⎫

+ 
as (0, ∞)\ℵ ∋ t →  ∞. (4.5.87) 

Now, we are able to achieve the stability of both v and c as asserted by (4.1.28). 

Lemma 4.61 Both v and c have the properties that 

v → v∞ in W 1,∞(Ω) as t →  ∞ (4.5.88) 

and 
c → v∞ in W 1,∞(Ω) as t →  ∞, (4.5.89) 

respectively, where v∞ = 1 
|Ω|

{∫

Ω v0 −
∫

Ω n0
}

+ . 

Proof According to the arguments of Liu (2020, Lemmas 8.3–8.4), the conver-
gence (4.5.81) together with (4.5.18) shows the uniform boundedness features of 
∇v in L2(Ω × (0, ∞)) by Fatou’s lemma, which along with the Poincaré inequal-
ity, (4.5.87) and the continuity of v implied by (4.5.79) entails the convergence 
v → v∞ as t →  ∞  in the topology of L2(Ω). In view of the embedding C1+ν ( Ω̄) ϲ→ 
W 1,∞(Ω) ϲ→ L2(Ω) with the first one being compact, (4.5.88) follows from an 
Ehrling type interpolation argument relying on the Hölder regularity property of ∇v 
implied by (4.5.69). With the aid of (4.5.88), the convergence c → v∞ as t →  ∞  
in L2(Ω) can be derived from applications of a standard testing procedure along 
with the dominated convergence theorem to the second equation in (4.5.7) on the  
basis of (4.5.16), (4.5.76) and (4.5.79), based on which and the Hölder continuity of 
∇c implied by (4.5.68), the convergence (4.5.89) is proved to be valid also from an 
Ehrling type lemma. 

For the large time behavior of n, we intend to divide the discussion into two 
situations, that are

∫

Ω n0 ≤
∫

Ω v0 and
∫

Ω n0 >
∫

Ω v0, where in the case when
∫

Ω n0 >
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∫

Ω v0, a quasi-energy structure which resembles that constructed in Winkler (2018c) 
is essential to be analyzed for detecting the corresponding stability of n. 

Lemma 4.62 With ℵ  ⊂  (0, ∞) as chosen in Lemma 4.59, for
∫

Ω n0 ≤
∫

Ω v0, we 
have 

n(·, t) → n∞ in L1 (Ω) as (0, ∞)\ℵ ∋ t →  ∞, (4.5.90) 

while for
∫

Ω n0 >
∫

Ω v0, we have 

n(·, t) → n∞ in L2 (Ω) as (0, ∞)\ℵ ∋ t →  ∞, (4.5.91) 

where n∞ = 1 
|Ω|

{∫

Ω n0 −
∫

Ω v0
}

+ . 

Proof If
∫

Ω n0 ≤
∫

Ω v0, then clearly n∞ = 0, whence (4.5.90) is an immediate con-
sequence of (4.5.85). Whereas, if

∫

Ω n0 >
∫

Ω v0, in line with the reasoning of Liu 
(2020, Lemma 8.6), it is essential to firstly establish an inequality as follows, which 
shows the quantity

∫

Ω (nε − n∞)2 remains small during a certain short time, that is 
for any fixed t∗ ≥ 0

∫

Ω

⎛
nε(·, t) − n∞

⎞2 ≤C1 ·
⎧∫

Ω

⎛
nε(·, t∗) − n∞

⎞2 +
∫

Ω 
|∇cε(·, t∗)|2 

+
∫ t 

t∗

∫

Ω 
vεnε + sup 

s∈(t∗,t∗+1)

∫

Ω 
|∇vε(·, s)|2

⎫ (4.5.92) 

for all t ∈ (t∗, t∗ + 1) and ε ∈ (0,  ε∗) with some C1 > 0 and ε∗ ∈ (0, 1) satisfying 
(4.5.85), where

∫

Ω (nε(·, t∗) − n∞)2 can be verified to be arbitrarily small whenever 
t∗ is sufficiently large. Consequently, along with the decay properties of the last three 
integrals on the right-hand side of (4.5.92), as claimed by Lemma 4.50, (4.5.91) can 
be obtained. 

Thanks to the bounds of n in L∞(Ω) and the continuity implied by (4.5.75), the 
topologies in which n converges to n∞ as t →  ∞  as asserted by Lemma 4.62 can be 
further improved. 

Lemma 4.63 each p ≥ 1, 

n(·, t) → n∞ in L p (Ω) as t →  ∞ (4.5.93) 

holds. 

Proof As performed in the proof of Liu (2020, Corollary 8.7), the topology of the 
convergence claimed by (4.5.93) can be achieved by drawing on the Hölder inequality 
on the basis of the boundedness property of n in L∞(Ω) as well as the stability of n 
provided by Lemma 4.62. Moreover, in light of the continuity implied by (4.5.75), the 
restriction that the convergence should be valid outside null sets of times as required 
by Lemma 4.62 can be removed. As a result, (4.5.93) follows.
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The convergence of n and v in (4.5.93) and (4.5.88), respectively, enables us 
to derive the large time behavior of u from employing the variation-of-constants 
formula along with smoothing features of analytic semigroup, as demonstrated in 
the arguments of Liu (2020, Lemma 8.8). 

Lemma 4.64 For u, we have 

u(·, t) → 0 in L∞(Ω) as t →  ∞. (4.5.94) 

Proof Readers can find the detailed proof in Liu (2020). 

Proof of Theorem 4.6. Theorem 4.6 follows from a collection of Lemmas 4.59, 4.61, 
4.63 and 4.64. 
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Chapter 5 
Density-Suppressed Motility System 

5.1 Introduction 

The reaction–diffusion models can reproduce a wide variety of exquisite spatio-
temporal patterns arising in embryogenesis, development and population dynamics 
due to the diffusion-driven (Turing) instability (Kondo and Miura 2010; Murray  
2001). Many of them invoke nonlinear diffusion enhanced by the local environment 
condition to accounting for population pressure (cf. Méndez et al. 2012), volume 
exclusion (cf. Painter and Hillen 2002; Wang and Hillen 2007) or avoidance of danger 
(cf. Murray 2001) and so on. However, the opposite situation where the species will 
slow down its random diffusion rate when encountering external signals such as the 
predator in pursuit of the prey (Jin and Wang 2021; Kareiva and Odell 1987) and the 
bacterial searching food (Keller and Segel 1970, 1971b) has not been considered. 
Recently, a so-called “self-trapping” mechanism was introduced in Liu (2011) by a  
synthetic biology approach onto programmed bacterial Escherichia coli cells which 
excrete signaling molecules acyl-homoserine lactone (AHL) such that at low AHL 
levels, the bacteria undergo run-and-tumble random motion and are motile, while 
at high AHL levels, the bacteria tumble incessantly and become immotile due to 
the vanishing macroscopic motility. Remarkably, Escherichia coli cells formed the 
outward expanding ring (strip) patterns in the petri dish (Fig. 5.1). 

To understand the underlying patterning mechanism, both two-component and 
three-component “density-suppressed motility” reaction–diffusion systems are pro-
posed. In this chapter, we study the global existence, boundedness, asymptotic behav-
ior of solutions and the existence of traveling wave solutions for density-suppressed 
motility models. The chapter is divided into two parts. Section 5.3 is devoted to inves-
tigate a two-component density-suppressed motility model and shows the existence 
of traveling wave solutions which are genuine patterns observed in the experiment 
of Liu (2011), whereas Sect. 5.4 shows the existence and the asymptotic behavior of 
global weak solution for a three-component quasilinear density-suppressed motility 
model. 

© The Author(s) 2022 
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Fig. 5.1 Time-lapsed photographs of spatio-temporal patterns formed by the engineered 
Escherichia coli strain CL3 (see details in Liu 2011). The figure is taken from Fig. 1 in Liu 
(2011) for illustration 

Chemotaxis plays an outstanding role in the life of many cells and microorganisms, 
such as the transport of embryonic cells to developing tissues and immune cells to 
infection sites (Isenbach 2004; Murray 2001). The celebrated mathematical model 
describing chemotactic migration processes at population level is the Keller–Segel 
system of the form

⎧
ut =  ∇  ·  (γ (u,  v)∇u − uφ(u,  v)∇v), x ∈ Ω, t > 0, 
vt = dΔv − v + u, x ∈ Ω, t > 0, 

(5.1.1) 

in a bounded domain Ω ⊂ Rn where u = u(x, t) denotes the population density and 
v = v(x, t) is the concentration of chemical substance secreted by the population 
itself (Keller and Segel 1970). The prominent feature of (5.1.1) is the ability of the 
constitutive ingredient cross-diffusion thereof to describe the collective behavior of 
cell populations mediated by a chemoattractant. Indeed, a rich literature has revealed 
that the Neumann initial-boundary value problem for the classical Keller–Segel sys-
tem ⎧

ut = Δu −  ∇  ·  (u∇v), x ∈ Ω, t > 0, 
vt = dΔv − v + u, x ∈ Ω, t > 0 

(5.1.2) 

possesses solutions blowing up in finite time with respect to the spatial L∞ norm 
of u in two- and even higher dimensional frameworks under some condition on the 
mass and the moment of the initial data (Herrero and Velázquez 1996, 1997; Winkler 
2013, see also the surveys Bellomo et al. 2016). Apart from that, when φ and γ in 
(5.1.1) are only smooth positive functions of u on [0, ∞), a considerable literature 
underlines the crucial role of asymptotic beahvior of the ratio γ  (u) 

φ(u) at large values 
of u with regard to the occurrence of singularity phenomena (see recent progress in 
Ishida et al. 2014; Winkler 2017c, 2019e). 

As a simplification of (5.1.1), the Keller–Segel system with density-dependent 
motility ⎧

ut =  ∇  ·  (γ (v)∇u − uφ(v)∇v), x ∈ Ω, t > 0, 
vt = dΔv − v + u, x ∈ Ω, t > 0 

(5.1.3)
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was proposed to describe the aggregation phase of Dictyostelium discoideum (Dd) 
cells in response to the chemical signal cyclic adenosine monophosphate (cAMP) 
secreted by Dd cells in Keller and Segel (1971b). Here, the signal-dependent diffu-
sivity γ  (v)  and chemotactic sensitivity function φ(v)  are linked through 

φ(v)  = (α − 1)γ '(v), 

where α ≥ 0 denotes the ratio of effective body length (i.e., distance between the 
signal–receptors) to the walk length (see Cai et al. 2022 for details). Notice that when 
α = 0, there is only one receptor in a cell, and hence, chemotaxis is driven by the 
indirect effect of chemicals in the absence of the chemical gradient sensing. In this 
case, (5.1.3) reads as

⎧
ut = Δ(γ (v)u), x ∈ Ω, t > 0, 
vt = dΔv − v + u, x ∈ Ω, t > 0, 

(5.1.4) 

where the considered diffusion process of the population is essentially Brownian, 
and the assumption γ '(v) < 0 accounts for the repressive effect of the chemical 
concentration on the population motility (Fu et al. 2012). In the context of acyl-
homoserine lactone (AHL) density-dependent motility, the extended model of (5.1.4)⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

ut = Δ(uγ  (v))  + β 
uw2 

w2 + λ 
, x ∈ Ω, t > 0, 

vt = DΔv + u − v, x ∈ Ω, t > 0, 

wt = Δw − 
uw2 

w2 + λ 
, x ∈ Ω, t > 0 

(5.1.5) 

was proposed in Liu (2011) to advocate that spatio-temporal pattern of Escherichia 
coli cells can be induced via so-called “self-trapping” mechanisms, that is, at low 
AHL levels, the bacteria undergo run-and-tumble random motion, while at high AHL 
levels, the bacteria tumble incessantly and become immotile at the macroscale. 

In comparison with plenty of results on the Keller–Segel system where the dif-
fusion depends on the density of cells, the respective knowledge seems to be much 
less complete when the cell dispersal explicitly depends on the chemical concentra-
tion via the motility function γ  (v), which is due to considerable challenges of the 
analysis caused by the degeneracy of γ  (v)  as v →  ∞  from the mathematical point 
of view. Indeed, to the best of our knowledge, Yoon and Kim (2017) showed that in 
the case of γ  (v)  = c0 

vk 
for small c0, problem (5.1.4) admits a global classical solu-

tions in any dimensions. The smallness condition on c0 is removed lately in Ahn and 
Yoon (2019) for the parabolic–elliptic version of (5.1.4) with 0 < k < n 

(n−2)+ 
. Fur-

thermore, for the full parabolic system (5.1.4) in the three-dimensional setting, Tao 
and Winkler (2017a) showed the existence of certain global weak solutions, which 
become eventually smooth and bounded for suitably small initial data u0 under the 
assumption
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(H )  γ  (v)  ∈ C3([0, ∞)), and there exist γ1,  γ2,  η  >  0 such that 0 <  γ1 ≤ γ  (v)  ≤ γ2, 
|γ '(v)| <  η  for all v ≥ 0. 

It should be remarked that based on the comparison method, Fujie and Jiang (2021) 
obtained the uniform-in-time boundedness to (5.1.4) in two-dimensional setting for 
the more general motility function γ and in the three-dimensional case under a 
stronger growth condition on 1/γ , respectively. In addition, they investigated the 
asymptotic behavior to the parabolic–elliptic analog of (5.1.4) under the assump-

tion max 
0≤v<+∞ 

|γ '(v)|2 
γ  (v)  

< +∞ or γ  (v)  = v−k with 0 < k < n 
(n−2)+ 

in Fujie and Jiang 

(2020) and Jiang and Laurençot (2021). 
On the considered time scales of cell migration, e.g., metastatic cells moving in 

semi-solid medium, often it is relevant to take into account the growth of the pop-
ulation. A prototypical choice to accomplish this is the addition of logistic growth 
terms κu − μu2 in the cell equation (Murray 2001). From the mathematical point 
of view, the dissipative action of logistic-like growth possibly prevents the occur-
rence of singularity phenomena in various chemotaxis models. For instance, for the 
chemotaxis-growth system (Fu et al. 2012)

⎧
ut = Δ(γ (v)u) + u(a − bu), x ∈ Ω, t > 0, 
vt = Δv − v + u, x ∈ Ω, t > 0, 

(5.1.6) 

it is shown in Jin et al. (2018) that in two-dimensional setting, the system admits 
a unique global classical solution if the motility function γ ∈ C3([0, ∞)) satisfies 

γ  (v)  >  0 and γ '(v) < 0 for all v ≥ 0, limv→∞ γ  (v)  = 0 and lim 
v→∞ 

γ '(v) 
γ  (v)  

, and even 

the constant steady state (1, 1) is globally asymptotically stable if a = b > 1 
16 max 

0≤v<+∞ 
|γ '(v)|2 
γ  (v)  

. For  a = b, the global existence thereof in the higher dimensions has been 

proved for large a and b (Wang and Wang 2019a), while for small a and b, the  
respective model can generate pattern formation (see Ma et al. 2020). The reader is 
referred to Lv and Wang (2020, 2021) for the other studies on the related variants 
involving super-quadratic degradation terms. 

As recalled above, the existing results for (5.1.6) are confined to the global well-
posedness and asymptotic behaviors of solutions and stationary solutions (pattern 
formation). However, the traveling wave solutions, which are genuinely relevant to 
the experiment observation of Liu (2011), are not investigated mathematically except 
for a special case that γ  (v)  is piecewise constant. When γ  (v)  is a constant, equations 
of (5.1.6) are decoupled each other and the first equation becomes the well-known 
Fisher-KPP equation—a benchmark model for the study of traveling wave solutions 
of reaction–diffusion equations (Murray 2001). However, once γ  (v)  is non-constant, 
(5.1.6) becomes a coupled system with cross-diffusion, and the study of traveling 
wave solutions drastically becomes difficult.
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The purpose of Sect. 5.3 is to make some progress in this direction and explore the 
existence of traveling wave solutions to (5.1.6) with allowable wave speeds. With 
general γ  (v), the analysis and results will be too complicated to have an elegant 
presentation. Noticing that the key feature of γ  (v)  lies in the monotone property 
γ '(v) < 0, in this Section, we consider a general algebraically decreasing motility 
function 

γ  (v)  = 1 

(1 + v)m 
, m > 0. (5.1.7) 

However, our argument can be directly extended to other forms of motility function, 
such as the exponentially decreasing γ  (v)  = e−χ  v  and so on. 

To put things in perspective, we rewrite (5.1.6) as

⎧
ut =  ∇  ·  (γ (v)∇u + uγ '(v)∇v) + u(a − bu), 
vt = Δv + u − v, 

(5.1.8) 

which is a Keller–Segel-type chemotaxis model proposed in Keller and Segel (1971b) 
with growth. For the classical chemotaxis-growth system

⎧
ut =  ∇  ·  (∇u − χ u∇v) + u(a − bu), 
τ  vt = Δv + u − v, 

(5.1.9) 

traveling wave solutions are investigated in a series of works (Nadin et al. 2008; 
Salako and Shen 2017a, b, 2018, 2020) for both cases τ = 0 and τ = 1, where 
χ  >  0 denotes the chemotactic coefficient. The existence of traveling wave solutions 
with minimal wave speed depending on a and χ was obtained, and the asymptotic 
wave speed as χ → 0 as well as the spreading speed were examined in detail in 
Salako and Shen (2017a, b, 2018) and Salako et al. (2019) where the major tool used 
therein to prove the existence of traveling wave solutions is the parabolic comparison 
principle. Except traveling wave solutions, the chemotaxis-growth system (5.1.9) 
can also drive other complex patterning dynamics (cf. Kolokolnikov et al. 2014; Ma  
et al. 2012; Painter and Hillen 2011). When the volume filling effect is considered in 
(5.1.9) (i.e., χu∇v is changed to χu(1 − u)∇v), the traveling wave solutions with 
minimal wave speed were shown to exist in Ou and Yuan (2009) for small chemotactic 
coefficient χ  >  0. For the original singular Keller–Segel system generating traveling 
waves without cell growth, we refer to Keller and Segel (1971a), Li et al. (2014), 
Wang (2013) and references therein. In contrast to the classical chemotaxis-growth 
system (5.1.9), both diffusive and chemotactic coefficients in the system (5.1.8) are  
non-constant. This not only makes the analysis more complex, but also makes the 
parabolic comparison principle inapplicable due to the nonlinear diffusion. In this 
section, we shall develop some new ideas to tackle the various difficulties induced 
by the nonlinear motility function γ  (v)  and establish the existence of traveling wave 
solutions to (5.1.6).
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In Sect. 5.3, we shall establish the existence of traveling wave solutions and wave 
speed of (5.1.6) and explore how the density-suppressed motility influences traveling 
wave profiles and “the minimal wave speed”. In the spatially homogeneous situation, 
the steady states are (0, 0) and (a/b, a/b), which are, respectively, unstable (saddle 
point) and stable node. This suggests that we should look for traveling wavefront 
solutions to (5.1.6) connecting (a/b, a/b) to (0, 0). Moreover, negative u and v have 
no physical meanings to what we have in mind in the sequel. 

A nonnegative solution (u(x, t), v(x, t)) is called a traveling wave solution of 
(5.1.6) connecting (a/b, a/b) to (0, 0) and propagating in the direction ξ ∈ SN−1 

with speed c if it is of the form 

(u(x, t), v(x, t)) = (U (x · ξ − ct), V (x · ξ − ct)) =: (U (z), V (z)) 

satisfying the following equations:

⎧
(γ (V )U )'' + cU ' + U (a − bU ) = 0, 
V '' + cV ' + U − V = 0 

(5.1.10) 

and 

(U (−∞), V (−∞)) = (a/b, a/b), (U (+∞), V (+∞)) = (0, 0), (5.1.11) 

where ' = d 
dz  . In the first part of this chapter, we proceed to find the constraints on 

the parameters to exclude the spatio-temporal pattern formation and guarantee the 
existence of traveling wave solutions connecting the two constant steady states. 

Denoting 

b∗(m, a) = max

⎧
9m, 3m + 2

/
m(m + 1)a 

1 + a

⎫
, (5.1.12) 

we obtain the following two theorems (Li and Wang 2021c). 

Theorem 5.1 Let γ  (v)  be given in (5.1.7). Then for any c ≥ 2
√
a and b > b∗(m, a), 

the system (5.1.6) has a traveling wave solution (u(x, t), v(x, t)) = (U (x · ξ − 
ct), V (x · ξ − ct)) with speed c in the direction ξ ∈ SN−1 for all (x, t) ∈ RN × 
[0, +∞), satisfying 

lim 
z→+∞ 

U (z) 
e−λz 

= 1, lim 
z→+∞ 

V (z) 
e−λz 

= 
1 

1 + a 
(5.1.13) 

with λ = c−
√
c2−4a 
2 and 

lim inf 
z→−∞ 

U (z)  >  0 and lim inf 
z→−∞ 

V (z)  >  0.
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Moreover, if 

K (m, a) = m

/
a(1 + a) 
m(m + 1)

⎛/
a(1 + a) 
m(m + 1) 

+ 1

⎞m 

< 1, (5.1.14) 

we have 
lim 

z→−∞ 
U (z) = lim 

z→−∞ 
V (z) = a/b 

and 
lim 

z→±∞ 
U '(z) = lim 

z→±∞ 
V '(z) = 0. 

Theorem 5.2 For c < 2
√
a, there is no traveling wave solution (u(x, t), v(x, t)) = 

(U (x · ξ − ct), V (x · ξ − ct)) of (5.1.6) connecting the constant solutions (a/b, 
a/b) and (0, 0) with speed c. 

Remark 5.1 Theorems 5.1 and 5.2 imply that c = 2
√
a is the minimal wave speed 

same as the one for the classical Fisher-KPP equation and irrelevant to the decay 
rate of the motility function. Different from the Fisher-KPP equation, a lower bound 
b∗(m, a) for b is induced by the density-suppressed motility. As m → 0, γ  (v)  → 1 
and the equation for u becomes the classical Fisher-KPP equation. Noticing 

lim 
m→0 

b∗(m, a) = 0 and lim 
m→0 

K (m, a) → 0, 

our result well agrees with that for the classical Fisher-KPP equation. 

Proof strategies for Theorems 5.1 and 5.2. Since the model (5.1.6) is a cross-
diffusion system, see also (5.1.8), many classical tools proving the existence of 
traveling waves such as phase plane analysis, topological methods and bifurcation 
analysis (cf. Volpert et al. 1994), among others, become infeasible. Motivated from 
excellent works of Salako and Shen (2017a, 2018, 2020) for the chemotaxis-growth 
model (5.1.9) by constructing super- and sub-solutions and proving the existence of 
traveling wave solutions as the large time limit of solutions in the moving-coordinate 
system based on the parabolic comparison principle, we plan to achieve our goals 
in a similar spirit. However, substantial differences exist between the models (5.1.6) 
and (5.1.9). The nonlinear motility function γ  (v)  in (5.1.6) refrains us from employ-
ing the parabolic comparison principle and constructing super- and sub-solutions 
with the same decay rate at the far field, which are crucial ingredients used for 
(5.1.9) in Salako and Shen (2017a, 2018). In the first part of this chapter, we develop 
two innovative ideas to overcome these barriers. First, we introduce an auxiliary 
parabolic problem (5.3.16) with constant diffusion to which the method of super-
and sub-solutions applies (see Sect. 5.3.2). This auxiliary problem subtly bypasses 
the barriers induced by the nonlinear diffusion but its time-asymptotic limit yields a 
solution to an elliptic problem (5.3.29) whose fixed points indeed correspond to solu-
tions to (5.1.10)—namely traveling wave solutions to our concerned system (5.1.6)
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(see Sect. 5.3.3). Second, we construct a sequence of relaxed sub-solution Un(x) for 
any n > 1 with a spatially inhomogeneous decay rate θ1(x) which approaches to 
the constant decay rate of the super-solution U (x) as x →  +∞  (see Sect. 5.2). With 
them, we use the method of super- and sub-solutions to construct solutions to the 
auxiliary parabolic problem (5.3.16) in appropriate function space and manage to 
show its time-asymptotic limit problem has a fixed point. This is a fresh idea sub-
stantially different from the works (Salako and Shen 2017a, 2018) where the super-
and sub-solutions were directly constructed with the same decay rates by taking the 
advantage of constant diffusion. 

We divide the proof of Theorem 5.1 into four steps. In step 1, we construct an 
auxiliary parabolic problem (5.3.16) with constant diffusion and prove its global 
boundedness uniformly in time (see Proposition 5.1) by the method of super- and 
sub-solutions. In step 2, we show that the limit of global solutions to (5.3.16) as  
t →  ∞  yields a semi-wavefront solution to an elliptic problem (5.3.29) with some 
compactness argument (see Proposition 5.2). In step 3, we show that the solution 
obtained in step 2 satisfies the boundary condition (5.1.11) by direct estimates under 
some constraints on m and a (see Proposition 5.3), which hence warrants that the 
semi-wavefront solution is indeed a wavefront solution in R. Finally, in step 4, we 
use Schauder’s fixed point theorem to prove that (5.3.29) has a fixed point which 
gives a solution to (5.1.10) in  R satisfying (5.1.11) (see Sect. 5.3.3), where the trick 
of utilizing relaxed sub-solution Un(x) with spatially inhomogeneous decay rate is 
critically used to obtain the continuity of the solution map. Theorem 5.2 is proved 
directly by an argument of contradiction. 

Section 5.4 is devoted to the asymptotic behavior of a quasilinear Keller–Segel 
system with signal-suppressed motility. In the context of the diffusion of cells in a 
porous medium (see the discussions in Calvez and Carrillo 2006; Vázquez 2007), 
Winkler (2020) considered the cross-diffusion system

⎧
ut = Δ(γ (v)um ), x ∈ Ω, t > 0, 
vt = Δv − v + u, x ∈ Ω, t > 0 

(5.1.15) 

in smoothly bounded convex domains Ω ⊂ Rn , where m > 1, γ generalizes the pro-
totype γ  (v)  = a + b(v + d)−α with a ≥ 0, b > 0, d ≥ 0 and α ≥ 0, and proved the 
boundedness of global weak solutions to the associated initial-boundary value prob-
lem under some constriction on m and α, which particularly indicates that increasing 
m in the cell equation goes along with a certain regularizing effect despite both the 
diffusion and the cross-diffusion mechanisms implicitly contained in (5.1.15) are  
simultaneously enhanced. 

In a recent paper (Jin et al. 2020), Jin et al. considered the three-component system⎧⎪⎨ 

⎪⎩ 

ut = Δ(γ (v)u) + βu f  (w) − θ u, x ∈ Ω, t > 0, 
vt = DΔv + u − v, x ∈ Ω, t > 0, 
wt = Δw − u f  (w), x ∈ Ω, t > 0 

(5.1.16)
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in a bounded domain Ω ⊂ R2, where β, D > 0 and θ ≥ 0, the random motility func-
tion γ  (v)  satisfies (H) and functional response function f (w) fulfills the assumption 

f (w) ∈ C1 ([0, ∞)), f (0) = 0, f (w) > 0 in  (0, ∞) and f '(w) > 0 on  [0, ∞). 
(5.1.17) 

Based on the method of energy estimates and the Moser iteration, they showed 
the uniform boundedness to initial-boundary value problem of (5.1.16), inter alia the 
asymptotic behavior thereof when parameter D is suitably large. Note that the authors 
of Lv and Wang (2022) showed the existence of global classical solutions to system 
(5.1.16) without the restriction (H) on γ  (v). In synopsis of the above results, one 
natural problem seems to consist in determining to which extent nonlinear diffusion 
of porous medium type may influence the solution behavior in chemotaxis systems 
involving density-suppressed motility. Accordingly, the purpose of the present work 
is to address this question in the context of the particular choice γ  (v)  = v−α with 
α  >  0 instead of assumption (H) in (5.1.16). Specifically, we consider the asymptotic 
behavior to the initial-boundary value problem 

⎧⎪⎪⎨ 

⎪⎪⎩ 

ut = Δ( 
um 

vα ) + βu f  (w), x ∈ Ω, t > 0, 

vt = DΔv + u − v, x ∈ Ω, t > 0, 
wt = Δw − u f  (w), x ∈ Ω, t > 0 

(5.1.18) 

along with the initial conditions 

u(x, 0) = u0,  v(x, 0) = v0 and w(x, 0) = w0, x ∈ Ω (5.1.19) 

and under the boundary conditions 

∂u 

∂ν 
= 

∂v 
∂ν 

= 
∂w 
∂ν 

= 0 on  ∂Ω (5.1.20) 

in a bounded convex domain Ω ⊂ R2 with smooth boundary ∂Ω . 
In what follows, for simplicity, we shall drop the differential element in the inte-

grals without confusion, namely abbreviating
∫
Ω f (x)dx  as

∫
Ω f and

∫ t 
0

∫
Ω f (x,  τ  )  

dxdτ as
∫ t 
0

∫
Ω f (·,  )dτ as an important step toward a comprehensive understanding 

of the effect of nonlinear diffusion on the density-suppressed motility model. Our 
main result asserts that the weak solutions to the density-suppressed motility system 
(5.1.18) may approach the relevant homogeneous steady state in the large time limit 
if D is suitably large, which is stated as follows (Xu and Wang 2021). 

Theorem 5.3 Let Ω ⊂ R2 be a bounded convex domain with smooth boundary, and 
suppose that m > 1,  α  >  0,  β  >  0 and f satisfies (5.1.17). Assume that initial data 
(u0,  v0,  w0) ∈ (W 1,∞(Ω))3 with u0 ≩ 0,  w0 ≩ 0 and v0 > 0 in Ω . Then problem 
(5.1.18)–(5.1.20) admits at least one global weak solution (u,  v,  w)  in the sense of 
Definition 2.1 below. Moreover, there exists constant D0 > 0 such that if D > D0,
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lim 
t→∞ ||u(·, t) − u✶||L∞(Ω) + ||v(·, t) − u✶||L∞(Ω) + ||w(·, t)||L∞(Ω) = 0 (5.1.21) 

with u✶ = 1 
|Ω|
∫
Ω u0 + β 

|Ω|
∫
Ω w0. 

Proof strategies for Theorem 5.3. As the first step to prove the above claim, in 
Sect. 5.4, we give the definition of a global weak solution to problem (5.1.18)– 
(5.1.20) and recall that problem (5.1.18)–(5.1.20) with m > 1 and α  >  0 possesses 
a globally defined weak solution in two-dimensional setting by the approximation 
procedure (5.2.20). With respect to the convergence properties asserted in (5.1.21), 
our analysis is essentially different from that of Jin et al. (2020). In fact, thanks to 
γ1 ≤ γ  (v)  ≤ γ2 for all v ≥ 0 in (H), authors of Jin et al. (2020) derived the estimate 
of ||u(·, t)||L2(Ω), which is the starting point of a priori estimate of ||u(·, t)||L∞(Ω). In  
particular, the assumption γ1 ≤ γ  (v)  plays an essential role in constructing energy 
function F (u,  v)  := ||u(·, t) − u∗||L2(Ω) + ||v(·, t) − u∗||L2(Ω), which leads to the 
convergence of (u,  v)  if D is suitable large (see the proofs of Lemma 4.8 and Lemma 
4.10 in Jin et al. 2020 for the details). Whereas our asymptotic analysis consists at 
its core in an analysis of the functional

∫
Ω 
u2 + η

∫
Ω 

|∇v|2 

for solutions of certain regularized versions of (5.1.18), provided that in dependence 
on the model parameter D, the positive constant η is suitably chosen when D is 
suitable large. This yields the finiteness of

∫∞ 
3

∫
Ω |∇u 

m+1 
2 |2 and ∫∞ 

3

∫
Ω |∇v|2 (see 

Lemma 5.18) and then entails that as a consequence of these integral inequalities, 
all our solutions asymptotically become homogeneous in space and hence satisfy 
(5.1.21) (Lemmas 5.19–5.22). 

Remark 5.2 (1) Note that as an apparently inherent drawback, assumption (H) in 
Jin et al. (2020) excludes γ  (v)  decay functions such as v−α . Indeed, despite v is 
bounded below by δ with the help of Lemma 5.4 and thereby the upper bound for 
γ  (v)  can be removed, an lower bound for γ  (v)  in (H) is essentially required therein. 

(2) Due to the results on the existence of global solutions in Winkler (2020), 
the asymptotic behavior of solutions herein seems to be achieved for the higher 
dimensional version of (5.1.18) at the cost of additional constraint on m and α. 

5.2 Preliminaries 

In this section, we first introduce some notations/definitions and list some basic 
facts which will be used in our subsequent analysis in Sect. 5.3. In particular, the 
construction of relaxed super and sub-solutions with spatially inhomogeneous decay 
rates will be presented. For c ≥ 2

√
a, define
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λ := 
c − 

√
c2 − 4a 
2 

and θ1(x) := 
c −

/
c2 − 4a

⎛
1 + e−λx 

1+a

⎞−m 

2
⎛
1 + e−λx 

1+a

⎞−m ∀x ∈ R, 

(5.2.1) 

for which 

λ2 − cλ + a = 0,
⎛
1 + 

e−λx 

1 + a

⎞−m 
θ 2 1 (x) − cθ1(x) + a = 0 ∀x ∈ R (5.2.2) 

and 

lim 
x→+∞ 

θ1(x) = λ, 0 <  θ1(x)  <  λ  ≤ 
√
a ∀x ∈ R. (5.2.3) 

Choose 

θ2(x) :=
⎧

θ1(x) + λ/4, c = 2
√
a, 

θ1(x) + λ/k0, c > 2
√
a 

∀x ∈ R (5.2.4) 

with k0 > max
{

2λ 
c−2λ , 2

}
. Then 

θ2(x) ∈
⎛

θ1(x), θ1(x) + 
λ 
2

⎞
∀x ∈ R (5.2.5) 

and there exists x0 ∈ R such that 

θ2(x)  <  2θ1(x) for x > x0. (5.2.6) 

Define two functions: 

U (x) := min{e−λx ,  η}  ∀x ∈ R (5.2.7) 

and 

Un(x) :=
⎧

δ, x ≤ xδ, 
dne

−θ1(x)x + d0e−θ2(x)x , x > xδ 
(5.2.8) 

for b > b∗(m, a) with b∗(m, a) is defined in (5.1.12), where δ is chosen sufficiently 
small, xδ > 0 is the unique positive solution of the equation dne−θ1(x)x + d0e−θ2(x)x = 
δ,
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Fig. 5.2 A schematic of 
functions U (x) and Un(x), 
where the solid black line 
represents U (x) and the 
dashed red line represents 
Un(x) 

x 

y 

U(x) 

xδ0 

η 

U n(x)δ 

dn := 1 − 
1 

n 
with 2 ≤ n ∈ N, d0 :=

⎧
1,c = 2

√
a, 

−1,c > 2
√
a 

and 

η := 2a 

b − 3m +
/

(b − 3m)2 − 4m(m+1)a 
1+a 

. (5.2.9) 

Noticing that dn ∈ (0, 1) and 

lim 
x→+∞ 

e(θ1(x)−λ)x = 1, 

which will be verified in Lemma 5.1, we can choose sufficiently small δ, with which 
xδ is large enough such that for all x ∈ R, 

0 < Un < U ≤ η. 

We note that the functions U (x) and Un(x) will be essentially used later as the super-
and sub-solutions of an auxiliary problem we introduce in Sect. 5.3.2. A schematic 
of U (x) and Un(x) is plotted in Fig. 5.2. Note that the coefficients dn (n ≥ 2) and 
d0 determine the amplitude of Un(x) and θ1(x) and determine the decay of Un(x) 
for large x > xδ . This is a new ingredient developed in the first part of Chapter 5 to 
settle the difficulty of analysis caused by the nonlinear motility function γ  (v).
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Denote 

Cb 
unif (R) := {u ∈ C(R)| u is uniformly continuous in R and sup 

z∈R 
|u(z)| < +∞}, 

which is equipped with the norm

||u|| =  sup 
z∈R 

|u(z)|. 

Define the function space 

En := {u ∈ Cb 
unif (R)|Un ≤ u ≤ U }, X0 :=

⋂
n>1 

En. 

To find solutions of (5.1.10) in  X0, we need the following Lemmas. 

Lemma 5.1 Let λ and θ1(x) be defined in (5.2.1). Then it follows that 

lim 
x→+∞ 

e(θ1(x)−λ)x = 1. (5.2.10) 

Moreover, for sufficiently small δ  >  0, if  x > xδ , then for c = 2
√
a, 

0 <  θ '
1(x) ≤ 2K1e

− λ 
2 x and − λK1e

− λ 
2 x ≤ θ ''

1 (x)  <  0 (5.2.11) 

with K1 = a 2
/

m 
1+a ; while for c > 2

√
a, 

0 <  θ '
1(x) ≤ 2K2e

−λx and − 2λK2e
−λx ≤ θ ''

1 (x)  <  0 (5.2.12) 

with K2 = 4a2mλ⎛
c+√

c2−4a
⎞2√

c2−4a(1+a) 
. 

Proof In the sequel, for notational simplicity, under c ≥ 2
√
a, we introduce the 

following notations: 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

φ(x) := 1 + 
e−λx 

1 + a 
, 

ρ(φ(x)) := √c2 − 4aφ−m(x), 

h(φ(x)) := 2a 

c + ρ(φ(x)) 
= 2a 

c +√c2 − 4aφ−m(x) 
. 

Then from the definition of θ1(x), we have  

θ1(x) = 
c −√c2 − 4aφ−m(x) 

2φ−m(x)
= 2a 

c +√c2 − 4aφ−m(x) 
= h(φ(x)).
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With simple calculation, we find 

h'(φ(x)) = −4a2m 

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x) 
, φ'(x) = 

−λe−λx 

1 + a 
(5.2.13) 

and then 

θ '
1(x) = (h(φ(x)))' = h'(φ)φ'(x) = 4a2mλe−λx 

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a) 
> 0. 

(5.2.14) 

When c = 2
√
a, it has that lim 

x→+∞ 
φ(x) = 1 and lim 

x→+∞ 
ρ(φ(x)) = 0. By L’Hopital’s 

rule, we have 

lim 
x→+∞

|||| e− λ 
2 x 

ρ(φ(x))

||||
2 

= lim 
x→+∞ 

e−λx 

c2 − 4aφ−m(x) 

= lim 
x→+∞ 

e−λx 

4aφm(x) − 4a 
lim 

x→+∞ 
φm (x) (5.2.15) 

= lim 
x→+∞ 

1 + a 
4maφm−1(x) 

= 
1 + a 
4ma 

. 

Then it can be easily verified that 

lim 
x→+∞ 

4a2mλe− λ 
2 x 

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a) 
= 

a 

2

/
m 

1 + a 
:= K1, 

from which and (5.2.14), by choosing sufficiently small δ  >  0, we can find xδ > 0 
such that for x > xδ , there holds that 

0 <  θ '
1(x) ≤ 2K1e

− λ 
2 x . 

When c > 2
√
a, it has that lim 

x→+∞ 
φ(x) = 1 and lim 

x→+∞ 
ρ(φ(x)) = 

√
c2 − 4a. It can  

be directly checked that 

lim 
x→+∞ 

4a2mλ 
ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a) 

= 4a2mλ√
c2 − 4a(c + 

√
c2 − 4a)2(1 + a) 

:= K2. 

Then from (5.2.14), by choosing sufficiently small δ  >  0, for  x > xδ , we obtain 

0 <  θ '
1(x) ≤ 2K2e

−λx . 

The first parts of (5.2.11) and (5.2.12) are proved.
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On the other hand, by L’Hôpital’s rule, using (5.2.13) and (5.2.15), for c = 2
√
a, 

we obtain 

lim 
x→+∞ 

(h(φ(x)) − h(1)) x 

= lim 
x→+∞ 

h'(φ(x)) 
λx2e−λx 

1 + a 

= lim 
x→+∞ 

−4a2mλx2e−λx 

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a) 

=  −  
4a2mλ 

c2(1 + a) 
lim 

x→+∞ 

e− λ 
2 x 

ρ(φ(x)) 
lim 

x→+∞ 

x2 

e 
λ 
2 x 

=  −  
amλ 
1 + a

/
1 + a 
4ma 

lim 
x→+∞ 

x2 

e 
λ 
2 x 

= 0. 

While for c > 2
√
a, we obtain 

lim 
x→+∞ 

(h(φ(x)) − h(1)) x = lim 
x→+∞ 

h'(φ(x)) 
λx2e−λx 

1 + a 
= 

λh'(1) 
1 + a 

lim 
x→+∞ 

x2 

eλx 
= 0. 

Summing up, for c ≥ 2
√
a, we obtain 

lim 
x→+∞ 

e(θ1(x)−λ)x = e lim 
x→+∞(h(φ(x))−h(1))x = 1 

and then (5.2.10) follows. 
Now, we turn to the estimate of θ ''

1 (x). Noticing that h
''(φ) = h'(φ)(ln(−h'(φ)))'

and 

(ln(−h'(φ)))' = ⎾
ln(4a2 m) − 2 ln(c + ρ(φ)) − ln ρ(φ) − (m + 1) ln φ

⏋'
= −4am 

ρ(φ)(c + ρ(φ))φm+1 
− 2am 

(ρ(φ))2φm+1 
− 

m + 1 
φ 

, 

which together with (5.2.13) and the fact that φ'(x) = −λe−λx 

1+a and φ''(x) = λ2e−λx 

1+a 
implies 

θ ''
1 (x) 

= (h(φ(x))'' = (h'(φ(x))φ'(x))' = h'(φ(x))φ''(x) + h''(φ(x))(φ'(x))2 

= h'(φ(x))[φ''(x) + (ln(−h'(φ)))'(φ'(x))2] 

= −4a2mλ2e−λx 

ρ(φ(x))(c + ρ(φ(x)))2φ(x)m+1(1 + a) 

·
⎧
1 − 

e−λx 

1 + a

⎛
4am 

ρ(φ(x))(c + ρ(φ(x)))φ(x)m+1 +
2am 

(ρ(φ(x)))2φ(x)m+1 + 
m + 1 
φ(x)

⎞⎫
.
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For c = 2
√
a, then λ = 

√
a, from (5.2.15), it can be verified that 

lim 
x→+∞ 

−4a2mλ2e− λ 
2 x 

ρ(φ(x))(c + ρ(φ(x)))2φ(x)m+1(1 + a) 
=  −λK1 

and 

lim 
x→+∞ 

e−λx 

1 + a

⎛
4am 

ρ(φ(x))(c + ρ(φ(x)))φ(x)m+1 +
2am 

(ρ(φ(x)))2φ(x)m+1 + 
m + 1 
φ(x)

⎞
= 

1 

2 
. 

By choosing sufficiently small δ  >  0, we can find a xδ > 0 such that 

0 >  θ ''
1 (x) ≥  −λK1e

− λ 
2 x , for x > xδ. 

While for c > 2
√
a, we can check that 

lim 
x→+∞ 

−4a2mλ2 

ρ(φ(x))(c + ρ(φ(x)))2φ(x)m+1(1 + a) 
=  −λK2 

and 

lim 
x→+∞ 

e−λx 

1 + a

⎛
4am 

ρ(φ(x))(c + ρ(φ(x)))φ(x)m+1 +
2am 

(ρ(φ(x)))2φ(x)m+1 + 
m + 1 
φ(x)

⎞
= 0. 

Then by choosing sufficiently small δ  >  0 so as to generate a xδ > 0, we have  

0 >  θ ''
1 (x) ≥  −2λK2e

−λx , for x > xδ. 

Then the last parts of (5.2.11) and (5.2.12) follow. This completes the proof of 
Lemma 5.1. 

Throughout Sect. 5.4, we shall pursue weak solutions to problem (5.1.18)–(5.1.20) 
specified as follows. 

Definition 5.1 Let m > 1,  α  >  0,  β  >  0 and f satisfies (5.1.17). Then a triple 
(u,  v,  w)  of nonnegative functions 

⎧⎪⎨ 

⎪⎩ 

u ∈ L1 
loc(Ω ×  [0, ∞)) 

v ∈ L1 
loc([0, ∞); W 1,1 (Ω)) 

w ∈ L1 
loc([0, ∞); W 1,1 (Ω)) 

will be called a global weak solution of problem (5.1.18)–(5.1.20) if  

um /vα ∈ L1 
loc(Ω ×  [0, ∞)) (5.2.16) 

and
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−
∫ ∞ 

0

∫
Ω 
uϕt −

∫
Ω 
u0ϕ(·, 0) =

∫ ∞ 

0

∫
Ω 

um 

vα Δϕ + β
∫ ∞ 

0

∫
Ω 
u f  (w)ϕ (5.2.17) 

for all ϕ ∈ C∞
0 (Ω ×  [0, ∞)) such that ∂ϕ 

∂ν |∂Ω = 0 and 

−
∫ ∞ 

0

∫
Ω 

vϕt −
∫

Ω 
v0ϕ(·, 0) =  −D

∫ ∞ 

0

∫
Ω 

∇v ·  ∇ϕ −
∫ ∞ 

0

∫
Ω 

vϕ +
∫ ∞ 

0

∫
Ω 
uϕ 

(5.2.18) 
for all ϕ ∈ C∞

0 (Ω ×  [0, ∞)) as well as
∫ ∞ 

0

∫
Ω 

wϕt −
∫

Ω 
w0ϕ(·, 0) =  −

∫ ∞ 

0

∫
Ω 

∇w ·  ∇ϕ −
∫ ∞ 

0

∫
Ω 
u f  (w)ϕ (5.2.19) 

for all ϕ ∈ C∞
0 (Ω ×  [0, ∞)). 

For ε ∈ (0, 1), we denote by (uε,  vε,  wε) the solution of the regularized problem 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

uεt = εΔ(uε + 1)M + Δ
(
uε(uε + ε)m−1 v−α 

ε

)+ βuε f (wε), x ∈ Ω, t > 0, 
vεt = DΔvε + uε − vε, x ∈ Ω, t > 0, 
wεt = Δwε − uε f (wε), x ∈ Ω, t > 0, 
∂uε 

∂ν 
= 

∂vε 

∂ν 
= 

∂wε 

∂ν 
= 0, x ∈ ∂Ω, t > 0, 

uε(x, 0) = u0,  vε(x, 0) = v0,  wε(x, 0) = w0, x ∈ Ω 
(5.2.20) 

with M > m. Note that due to the a priori boundedness of wε, the global smooth 
solvability of (5.2.20) can be derived by the argument in Lemma 2.4 of Winkler 
(2020) with evident minor adaptations, and we may refrain from giving the details 
for brevity here. As for the global weak solutions of (5.1.18)–(5.1.20), we can state 
as follows. 

Lemma 5.2 Let m > 1,  α  >  0,  β  >  0 and f satisfies (5.1.17). Then there exist 
(ε j ) j∈N ⊂ (0, 1) as well as nonnegative functions 

⎧⎪⎪⎨ 

⎪⎪⎩ 

u ∈ L∞(Ω ×  [0, ∞)) 

v ∈ C0 (Ω ×  [0, ∞))
⋂

L2 
loc([0, ∞); W 1,2 (Ω)) 

w ∈ C0 (Ω ×  [0, ∞))
⋂

L2 
loc([0, ∞); W 1,2 (Ω)) 

(5.2.21) 

such that ε j ↘ 0 as j →  ∞  and as ε j ↘ 0, we have
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uε → u a.e.  in  Ω × (0, ∞), (5.2.22) 

uε → u in
⋂
p≥1 

L p loc(Ω ×  [0, ∞)), (5.2.23) 

vε → v in C0 
loc(Ω ×  [0, ∞)), (5.2.24) 

wε → w in C0 
loc(Ω ×  [0, ∞)), (5.2.25) 

∇vε ⇀ ∇v in L2 
loc(Ω ×  [0, ∞)), (5.2.26) 

∇wε ⇀ ∇w in L2 
loc(Ω ×  [0, ∞)). (5.2.27) 

Moreover, v  >  0 in Ω × (0, ∞) and (u,  v,  w)  forms a global weak solution of 
(5.1.18)–(5.1.20) in the sense of Definition 5.1. 

Proof The existence of global weak solutions of (5.1.18)–(5.1.20) can be verified on 
the basis of straightforward extraction procedures as in Winkler (2020). Indeed, due 
to the a priori boundedness of wε, one can derive some necessary a priori estimation 
for (uε,  vε,  wε) such as

∫ t+1 
t

∫
Ω u 

p 
ε with all p < m + 1, (vε,  wε) in (W 1,q (Ω))2 with 

some q > 2 and uε in L∞(Ω) and finally apply an Aubin–Lions lemma to obtain a 
weak solution of (5.1.18)–(5.1.20) with the additional information (5.2.22) (we  refer  
the reader to the proof of Lemma 7.1 in Winkler 2020 for detail). 

The following basic properties of the spatial L1 norms of (uε,  vε,  wε) as well as 
the L∞ norm of wε are easily verified. 

Lemma 5.3 Let (uε,  vε,  wε) be the classical solution of (5.2.20) in Ω × (0, ∞). 
Then we have

||uε(·, t)||L1(Ω) + β||wε(·, t)||L1(Ω) = ||u0||L1(Ω) + β||w0||L1(Ω), (5.2.28)

||uε(·, t)||L1(Ω) ≥ ||u0||L1(Ω), (5.2.29)

∫
Ω 

vε(·, t) ≤
∫

Ω 
v0 +

∫
Ω 
u0 + β

∫
Ω 

w0 (5.2.30) 

as well as 
t |→ ||wε(·, t)||L∞(Ω) is non-increasing in [0, ∞). (5.2.31) 

Proof Multiplying wε-equation by β and adding the result to uε-equation in (5.2.20), 
we get 

β 
d 

dt

∫
Ω 

wε + 
d 

dt

∫
Ω 
uε = 0, (5.2.32) 

which immediately yields (5.2.28). An integration of the first equation in (5.2.20) 
gives us
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d 

dt

∫
Ω 
uε =

∫
Ω 
uε f (wε) ≥ 0 (5.2.33) 

which readily entails (5.2.29). Upon the integration of the second equation in (5.2.20), 
we can see that 

d 

dt

∫
Ω 

vε +
∫

Ω 
vε ≤

∫
Ω 
uε 

which, along with (5.2.28), leads to (5.2.30). Due to the fact that f and wε are non-
negative, the claim in (5.2.31) results upon an application of the maximum principle 
to wε-equation in (5.2.20). 

Let us first derive a positive uniform-in-time lower bound for vε which will alle-
viate the difficulties caused by the singularity of signal-dependent motility function 
v−α near zero. Despite the quantitative lower estimate for solutions of the Neumann 
problem was established in the related literature (Hillen et al. 2013; Winkler 2020), 
we present a proof of our results with some necessary details to make the lower 
bound accessible to the sequel analysis. 

Lemma 5.4 For all D ≥ 1 and ε ∈ (0, 1), there exists δ  >  0 such that 

vε(x, t)  >  δ for all x ∈ Ω and t > 0. (5.2.34) 

Proof According to the pointwise lower bound estimate for the Neumann heat semi-
group (etΔ )t≥0 on the convex domain Ω , one can find C1(Ω) > 0 such that 

etΔ ϕ ≥ C1(Ω)

∫
Ω 

ϕ for all t ≥ 1 and each nonnegative ϕ ∈ C0 (Ω) 

(e.g., Fujie 2016; Hillen et al. 2013). 
By the time rescaling t̃ = Dt , we can see that ṽ(x, t̃) := vε(x, t̃ D ) satisfies 

∂ ̃v 
∂ ̃t 

= Δṽ − D−1 ṽ + D−1 uε(x, D−1 t̃). (5.2.35) 

Now applying the variation-of-constants formula to (5.2.35), we have 

ṽ(·, t̃) = et̃(Δ−D−1) v0(·) + D−1
∫ t̃ 

0 
e(t̃−s)(Δ−D−1) uε(·, D−1 s)ds t  > 0, 

(5.2.36) 
where by the comparison principle, we can see 

et̃(Δ−D−1) v0(·) ≥ e−t̃ D−1 
inf 
x∈Ω 

v0(x) 

≥ e−2 inf 
x∈Ω 

v0(x) for all x ∈ Ω,  ̃t ≤ 2D 

and
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D−1
∫ t̃ 

0 
e(t̃−s)(Δ−D−1)uε(·, D−1s)ds  

≥ D−1
∫ t̃−1 

0 
e(t̃−s)(Δ−D−1)uε(·, D−1s)ds  

≥ C1(Ω)D−1(

∫ t̃−1 

0 
e−D−1(t̃−s)ds) inf 

s∈(0,∞)

∫
Ω 
uε(·, s) 

≥ C1(Ω)(e−D−1 − e−D−1 t̃ )

∫
Ω 
u0 

≥ 
C1(Ω) 
2e

∫
Ω 
u0 for all x ∈ Ω and t̃ ≥ 2D, 

due to D ≥ 1. Therefore, inserting above inequalities into (5.2.36), readily establish 
(5.2.34) with δ = min{C1(Ω) 

2e

∫
Ω u0, e

−2 inf 
x∈Ω 

v0(x)}. 

Through a straightforward semigroup argument, we formulate a favorable depen-
dence of ||vε(·, t)||L p(Ω) with respect to parameter D. 

Lemma 5.5 For p > 1, there exists C( p)  >  0 such that

||vε(·, t)||L p(Ω) ≤ C(p)(1 + D 
1 
p −1 

) for all t > 0. (5.2.37) 

Proof Applying Duhamel’s formula to the equation 

∂ ̃v 
∂ ̃t 

= Δṽ − D−1 ṽ + D−1uε(x, D−1 t̃) 

satisfied by ṽ(x, t̃) := vε(x, t̃ D ) and employing well-known smoothing properties of 
the Neumann heat semigroup (etΔ )t≥0 on Ω (see Lemma 3 of Rothe 1984 or Lemma 
1.3 of Winkler 2010 for example), we can find Cp > 0 such that for any t̃ > 0

||ṽε(·, t̃)||L p (Ω) 

= ||e−D−1 t̃ et̃Δ v0(·) + D−1
∫ t̃ 

0 
e(t̃−s)(Δ−D−1)uε(·, D−1s)ds||L p (Ω) 

≤ e−D−1 t̃||v0||L p (Ω) + 
Cp 

D

∫ t̃ 

0 
e−D−1(t̃−s) (1 + (t̃ − s)−1+ 1 p )||uε(·, D−1s)||L1(Ω)ds  

≤ ||v0||L p (Ω) + 
Cp 

D 
(||u0||L1(Ω) + β||w0||L1(Ω))

∫ t̃ 

0 
e−D−1(t̃−s) (1 + (t̃ − s)−1+ 1 p )ds  

= ||v0||L p (Ω) + 
Cp 

D 
(||u0||L1(Ω) + β||w0||L1(Ω))

∫ t̃ 

0 
e−D−1σ (1 + σ −1+ 1 p )dσ 

≤ ||v0||L p (Ω) + 
Cp 

D 
(||u0||L1(Ω) + β||w0||L1(Ω))(D + D 

1 
p

∫ ∞ 

0 
e−σ σ −1+ 1 p dσ  )  

≤ ||v0||L p (Ω) + (1 + D 
1 
p −1 

)Cp(||u0||L1(Ω) + β||w0||L1(Ω))(1 +
∫ ∞ 

0 
e−σ σ −1+ 1 p dσ  )
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which ends up (5.2.37) with 

C( p) = ||v0||L p(Ω) + 2Cp(||u0||L1(Ω) + β||w0||L1(Ω))

⎛
1 +

∫ ∞ 

0 
e−σ σ −1+ 1 p dσ

⎞
. 

5.3 Traveling Wave Solutions to a Density-Suppressed 
Motility Model 

5.3.1 Some a Priori Estimates 

Lemma 5.6 For any u ∈ En, denote V (·; u) the solution of 

V '' + cV ' + u − V = 0. (5.3.1) 

Then for c ≥ 2
√
a, we have 

0 < V (x; u) ≤ min

⎧
e−λx 

1 + a 
,  η
⎫

, (5.3.2) 

|V '(x; u)|  ≤  min

⎧
2η√
c2 + 4 

, 
2e−λx 

√
c2 + 4

⎫
≤ min

⎧
η√
1 + a 

, 
e−λx 

√
1 + a

⎫
(5.3.3) 

for all x ∈ R. 

Proof Denote 

λ1 = 
−c − 

√
c2 + 4 

2 
, λ2 = 

−c + 
√
c2 + 4 

2 
. (5.3.4) 

From (5.3.4) and the definition of λ in (5.2.1), we obtain 

0 <  λ  ≤ 
√
a, λ1 < 0, λ2 > 0, λ1 + λ  <  0, λ2 + λ  >  0 (5.3.5) 

and 

λ1λ2 =  −1, λ1 + λ2 =  −c, λ2 − cλ − 1 =  −(1 + a). (5.3.6) 

By the variation of constants, the solution of (5.3.1) can be expressed as 

V (x; u) = 1 

λ2 − λ1

⎛∫ x 

−∞ 
eλ1(x−s) u(s)ds  +

∫ +∞ 

x 
eλ2(x−s) u(s)ds

⎞
. (5.3.7) 

Note that 0 ≤ u ≤ U = min{η, e−λx } since u ∈ En . Then using (5.3.5) and (5.3.6), 
we obtain from (5.3.7) that
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0 ≤ V (x; u) ≤ 1 

λ2 − λ1

⎛∫ x 

−∞ 
eλ1(x−s) e−λs ds  +

∫ +∞ 

x 
eλ2(x−s) e−λs ds

⎞

= 1 

λ2 − λ1

⎛
e−(λ1+λ)s

||x −∞ 
−(λ1 + λ)e−λ1x 

+ 
e−(λ2+λ)s

||+∞ 
x 

−(λ2 + λ)e−λ2x

⎞

= 
−e−λx 

λ2 − cλ − 1 
= 

e−λx 

1 + a 

and 

0 ≤ V (x; u) ≤ 1 

λ2 − λ1

⎛∫ x 

−∞ 
eλ1(x−s) ηds  +

∫ +∞ 

x 
eλ2(x−s) ηds

⎞
= 

−η 
λ1λ2 

= η. 

Thus, the inequality in (5.3.2) follows. On the other hand, differentiating (5.3.7) with 
respect to x , we have  

V '(x; u) = 1 

λ2 − λ1

⎛∫ x 

−∞ 
λ1e

λ1(x−s) u(s)ds  +
∫ +∞ 

x 
λ2e

λ2(x−s) u(s)ds

⎞
. 

For c ≥ 2
√
a, using  (5.3.5), (5.3.6) and the fact that 

λ2 − λ1 =
√
c2 + 4 ≥ 2

√
1 + a, 

as well as the fact 0 ≤ u ≤ min{η, e−λx }, we obtain with some simple calculations 

|V '(x; u)|  ≤ 1 

λ2 − λ1

⎛∫ x 

−∞ 
(−λ1)e

λ1(x−s) e−λs ds  +
∫ +∞ 

x 
λ2e

λ2(x−s) e−λs ds

⎞

≤ 
2e−λx 

√
c2 + 4 

≤ e−λx 

√
1 + a 

and 

|V '(x; u)|  ≤ 1 

λ2 − λ1

⎛∫ x 

−∞ 
(−λ1)e

λ1(x−s) ηds  +
∫ +∞ 

x 
λ2e

λ2(x−s) ηds

⎞

≤ 
2η√
c2 + 4 

≤ η√
1 + a 

, 

from which the inequality in (5.3.3) follows. The Lemma is, thus, proved. 

Lemma 5.7 For any u ∈ En, denote V (x; u) the solution of 

V '' + cV ' + u − V = 0. 

Then for sufficiently small δ  >  0, if  x > xδ , then
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γ  (V )θ 2 1 (x) − cθ1(x) + a ≥ 0, (5.3.8) 

and 

γ  (V )θ 2 2 (x) − cθ2(x) + a ≥ 
a 

64 
if c = 2

√
a, (5.3.9) 

γ  (V )θ 2 2 (x) − cθ2(x) + a ≤  −  
λ(c − 2λ) 

4k0 
if c > 2

√
a. (5.3.10) 

Proof Noticing V (x) ≤ e−λx 

1+a for x > xδ , we get (5.3.8) from the fact that 

γ  (V )θ 2 1 (x) − cθ1(x) + a ≥
⎛
1 + 

e−λx 

1 + a

⎞−m 
θ 2 1 (x) − cθ1(x) + a = 0. 

With 

lim 
x→+∞

⎛
1 + 

e−λx 

1 + a

⎞−m = 1, lim 
x→+∞ 

θ1(x) = λ, 

by choosing sufficiently small δ  >  0, for all x > xδ , we have  

15 

16 
λ ≤ θ1(x)  <  λ, γ  (V ) = 1 

(1 + V )m 
≥
⎛
1 + 

e−λx 

1 + a

⎞−m ≥ 
33 

34 
. (5.3.11) 

For the case c = 2
√
a, forwhich  λ = c 2 , noticing θ2(x) = θ1(x) + 1 4 λ, using  (5.3.11), 

we get 

γ  (V )θ 2 2 (x) − cθ2(x) + a 

= γ  (V )θ 2 1 (x) − cθ1(x) + a + γ  (V )
⎛

1 

16 
λ2 + 

1 

2 
λθ1(x)

⎞
− 

1 

4 
cλ 

≥ γ  (V )
⎛

1 

16 
λ2 + 

1 

2 
λθ1(x)

⎞
− 

1 

4 
cλ 

≥ 
33 

34

⎛
1 

16 
λ2 + 

15 

32 
λ2

⎞
− 

1 

2 
λ2 = 

a 

64 

for all x > xδ , from which (5.3.9) follows. 
On the other hand, for the case c > 2

√
a, for  which  λ  <  c 2 , noticing 

θ2(x) = θ1(x) + 
1 

k0 
λ with k0 > max

⎧
2λ 

c − 2λ 
, 2
⎫

, 

we obtain 
1 

k0 
λ2 + 2λθ1(x) − cλ ≤ 

1 

2 
λ(2λ − c)  <  0
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and then 

γ  (V )θ 2 2 (x) − cθ2(x) + a ≤ θ 2 2 (x) − cθ2(x) + a (5.3.12) 

= θ1(x)2 − cθ1(x) + a + 
1 

k0

⎛
1 

k0 
λ2 + 2λθ1(x) − cλ

⎞

≤ θ1(x)2 − cθ1(x) + a + 
1 

2k0 
λ(2λ − c). 

Moreover, owing to the fact limx→+∞ θ1(x) = λ, we have  

lim 
x→+∞(θ1(x)

2 − cθ1(x) + a) = λ2 − cλ + a = 0. 

Then choosing δ sufficiently small, we obtain that for all x > xδ 

θ1(x)
2 − cθ1(x) + a ≤ 

1 

4k0 
λ(c − 2λ). (5.3.13) 

Inserting (5.3.13) into (5.3.12), we obtain γ  (V )θ 2 2 (x) − cθ2(x) + a ≤ 1 
4k0 

λ(2λ − 
c)  <  0. Thus, (5.3.10) follows and Lemma 5.7 is proved. 

5.3.2 Auxiliary Problems 

In this section, we shall investigate some auxiliary problems which act as bridges to 
our concerned problem. 

1. An auxiliary parabolic problem 
In the sequel, for convenience, we use γ '(v) and γ ''(v) to denote the first- and second-
order derivatives of γ  (v)  with respect to v, respectively. This should not be confused 
with U ', V ', U '', V '' where the prime ' means the differentiation with respect to x . 
Given u ∈ En , we first consider the following equation: 

V '' + cV ' + u − V = 0 (5.3.14) 

which, subject to variation of constants, yields 

V := V (x; u) = 1 

λ2 − λ1

⎛∫ x 

−∞ 
eλ1(x−s) u(s)ds  +

∫ +∞ 

x 
eλ2(x−s) u(s)ds

⎞
. 

(5.3.15) 

Now taking V in (5.3.15) as a known function, we define
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F(U, U ') 

:= 1 

γ  (V )
{(
2γ '(V )V ' + c

)
U ' + ⎾γ ''(V )|V '|2 + γ '(V )(V − U − cV ') + a

⏋
U − bU 2

}
. 

By U (x, t; u, U ), we denote the solution of the following Cauchy problem:

⎧
Ut = U '' + F(U, U '), x ∈ R, t > 0 
U (x, 0; u, U ) = U (x), x ∈ R. 

(5.3.16) 

From Lemma 5.6 and the definition of γ  (·), the boundedness of 1 
γ  (V ) , γ

'(V ), γ ''(V ), 
V and V ' has been guaranteed. Then the comparison principle is applicable to 
(5.3.16). By the semigroup theory, U can be represented as 

U (x, t; u, U ) = et (Δ−1) U (x) +
∫ t 

0 
e−(t−s) e(t−s)Δ (U + F(U, U '))(x, s)ds. 

The local existence of solutions to (5.3.16) can be obtained by the well-known fixed 
point theorem (cf. see Salako and Shen 2017b, Theorem 1.1) along with standard 
parabolic estimates. We omit the details here for brevity and assume that the solu-
tion of (5.3.16) exists in an maximal interval [0, T ) for some T ∈ (0, ∞] with 
U (x, 0; u, U )  >  0 for x ∈ R. Then the comparison principle for (5.3.16) implies 
that U (x, t; u, U )  >  0 for all (x, t) ∈ R ×  [0, T ). 
Proposition 5.1 If c ≥ 2

√
a and b > b∗(m, a) with b∗(m, a) defined in (5.1.12), 

there exists δ  >  0 such that for any u ∈ En, the solution U (x, t; u, U ) of (5.3.16) 
satisfies U (·, t; u, U ) ∈ En for all t ∈  [0, +∞). 

Proof Denote 

L(U ) (5.3.17) 

:= γ  (V )U '' + (2γ '(V )V ' + c
)
U ' + (γ ''(V )(V ')2 + γ '(V )(V − U − cV ') + a

)
U − bU 2 

with V defined in (5.3.15). Noticing γ  (V )  >  0, we have  

U '' + F(U, U ') = 
L(U ) 
γ  (V ) 

. 

Hence, a function U (x) is a super-solution (resp. sub-solution) of (5.3.16) if  L(U ) ≤ 
0 (reps. L(U ) ≥ 0). Firstly, we need to prove that for any solution u ∈ En , there exists 
U (x, t; u, U ) ≤ U . For any s ≥ 0, from the definition of γ  (·), we have  

0 <  γ  (s) = 1 

(1 + s)m 
≤ 1, −m <  γ '(s) =  − m 

(1 + s)m+1 
< 0, (5.3.18) 

and
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0 <  γ ''(s) = 
m(m + 1) 
(1 + s)m+2 

≤ m(m + 1). (5.3.19) 

From (5.3.17), using (5.3.2), (5.3.3), (5.3.18) and (5.3.19), by the definition of η in 
(5.2.9), it is easy to verify that 

L(η) = (γ ''(V )(V ')2 + γ '(V )(V − η − cV ') + a
)
η − bη2 

≤
⎛
m(m + 1) 
1 + a 

η2 + m
⎛
1 + 

2c√
c2 + 4

⎞
η + a − bη

⎞
η 

≤
⎛
m(m + 1) 
1 + a 

η2 + 3mη + a − bη
⎞

η = 0. 

On the other hand, from (5.3.17), using (5.3.2), (5.3.3), (5.3.18) and (5.3.19), we 
obtain 

L(e−λx ) 
= γ  (V )λ2 e−λx − (2γ '(V )V ' + c

)
λe−λx 

+ (γ ''(V )(V ')2 e−λx + γ '(V )(V − e−λx − cV ')
)
e−λx + ae−λx − be−2λx 

≤ λ2 e−λx + 
2mλ√
1 + a 

e−2λx − cλe−λx + 
m(m + 1) 
1 + a 

e−4λx +
⎛
m + 2cm√

4 + c2

⎞
e−2λx 

+ ae−λx − be−2λx 

≤ (λ2 − cλ + a)e−λx +
⎛

2m
√
a√

1 + a 
+ 

m(m + 1) 
1 + a 

e−2λx + 3m − b
⎞
e−2λx , 

where we have used the fact that λ ∈ (0, 
√
a]. Noticing 

b > b∗(m, a)  >  
2m

√
a√

1 + a 
+ 3m, 

by choosing δ sufficiently small in (5.3.26), we obtain L(e−λx ) ≤ 0 for all x > xδ . By  
the comparison principle for parabolic equations, it follows that U (x, t; u, U ) ≤ U . 

Now we prove that for any u ∈ En , we have  U (x, t; u, U ) ≥ U n . From  (5.3.17), 
using (5.3.2), (5.3.3), (5.3.18) and (5.3.19), we obtain 

L(δ) = γ ''(V )(V ')2 δ + γ '(V )(V − δ − cV ')δ + δ(a − bδ) 
≥ γ '(V )(V − cV ')δ + δ(a − bδ) (5.3.20) 

≥ δ
⎛
a − bδ − mη

⎛
1 + 2c√

c2 + 4

⎞⎞
≥ δ (a − bδ − 3mη) . 

Owing to the fact b > b∗(m, a), we obtain
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η = 2a 

b − 3m +
/

(b − 3m)2 − 4m(m+1)a 
1+a 

< 
a 

3m 
. (5.3.21) 

Substituting (5.3.21) into (5.3.20), we have L(δ) ≥ 0 for sufficiently small δ. On the  
other hand, using (5.3.17), by direct but tedious calculations, we have 

L(dne
−θ1(x)x + d0e−θ2(x)x ) 

= γ  (V )(dne−θ1(x)x + d0e−θ2(x)x )'' + (2γ '(V )V ' + c)(dne−θ1(x)x + d0e−θ2(x)x )'

+ (γ ''(V )(V ')2 + γ '(V )(V − (dne−θ1(x)x + d0e−θ2(x)x ) − cV ') + a
)

· (dne−θ1(x)x + d0e−θ2(x)x ) − b(dne−θ1(x)x + d0e−θ2(x)x ))2 (5.3.22) 

≥ (γ  (V )θ 2 1 (x) − cθ1(x) + a
)
dne

−θ1(x)x + (γ  (V )θ 2 2 (x) − cθ2(x) + a
)
d0e

−θ2(x)x 

+ dne−θ1(x)x
⎾
γ  (V )

(
(θ '

1(x)x)
2 + 2θ '

1(x)θ1(x)x − θ ''
1 (x)x − 2θ '

1(x)
)− cθ '

1(x)x 

−2γ '(V )V '(θ '
1(x)x + θ1(x)) + γ ''(V )(V ')2 + γ '(V )(V − cV ')

⏋
+ d0e−θ2(x)x

⎾
γ  (V )

(
(θ '

2(x)x)
2 + 2θ '

2(x)θ2(x)x − θ ''
2 (x)x − 2θ '

2(x)
)− cθ '

2(x)x 

−2γ '(V )V '(θ '
2(x)x + θ2(x)) + γ ''(V )(V ')2 + γ '(V )(V − cV ')

⏋
− b(dne−θ1(x)x + d0e−θ2(x)x )2 . 

To prove that L(dne−θ1(x)x + d0e−θ2(x)x ) ≥ 0, we consider the cases c = 2
√
a and 

c > 2
√
a separately. 

Case 1. c = 2
√
a. In this case, we have d0 = 1 and substitute it into (5.3.22). 

Using (5.3.18) and Lemmas 5.1 and 5.7, by choosing sufficiently small δ, for  x > xδ , 
we obtain 

γ '(V )  <  0, γ ''(V )  >  0, θ '
1(x)  >  0, θ ''

1 (x)  <  0 

and 

γ  (V )θ 2 1 (x) − cθ1(x) + a ≥ 0, γ  (V )θ 2 2 (x) − cθ2(x) + a ≥ 
a 

64 
, 

from which we obtain that for any x > xδ , 

L(dne
−θ1(x)x + e−θ2(x)x ) (5.3.23) 

≥ 
a 

64 
e−θ2(x)x + dne−θ1(x)x 

· ⎾−2γ  (V )θ '
1(x) − cθ '

1(x)x − 2γ '(V )V '(θ '
1(x)x + θ1(x)) + γ '(V )(V − cV ')

⏋
+ e−θ2(x)x

⎾−2γ  (V )θ '
2(x) − cθ '

2(x)x − 2γ '(V )V '(θ '
2(x)x + θ2(x)) + γ '(V )(V − cV ')

⏋
− b(dne−θ1(x)x + e−θ2(x)x )2. 

Furthermore, from (5.2.3) and Lemmas 5.1 and 5.6, we have
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0 <  θ1(x)  <  
√
a, 0 <  θ '

1(x) ≤ 2K1e
− λ 

2 x 

and 

0 < V (x; u) ≤ min

⎧
e−λx 

1 + a 
,  η
⎫

, |V '(x; u)|  ≤  min

⎧
η√
1 + a 

, 
e−λx 

√
1 + a

⎫
. 

By the above estimates and (5.3.18), we arrive at the following estimates: 

− 2γ  (V )θ '
1(x) − cθ '

1(x)x − 2γ '(V )V '(θ '
1(x)x + θ1(x)) + γ '(V )(V − cV ') 

(5.3.24) 

≥  −
⎛
4 + 2cx + 

4mηx√
1 + a

⎞
K1e

− λ 
2 x −

⎛
2m

√
a√

1 + a 
+ m 

1 + a 
+ 

cm√
1 + a

⎞
e−λx 

=  −
⎛
4 + 4

√
ax  + 

4mηx√
1 + a

⎞
K1e

− λ 
2 x −

⎛
4m

√
a√

1 + a 
+ 

m 

1 + a

⎞
e−λx . 

Then from the fact that θ2(x) = θ1(x) + λ 
4 , we get 

− 2γ  (V )θ '
2(x) − cθ '

2(x)x − 2γ '(V )V '(θ '
2(x)x + θ2(x)) + γ '(V )(V − cV ') 

(5.3.25) 

=  −  2γ  (V )θ '
1(x) − cθ '

1(x)x − 2γ '(V )V '(θ '
1(x)x + θ1(x)) + γ '(V )(V − cV ') 

− 
1 

2 
γ '(V )V 'λ 

≥  −
⎛
4 + 4

√
ax  + 

4mηx√
1 + a

⎞
K1e

− λ 
2 x −

⎛
4m

√
a√

1 + a 
+ m 

1 + a 
+ 

m
√
a 

2
√
1 + a

⎞
e−λx . 

Substituting (5.3.24) and (5.3.25) into (5.3.23), we end up with 

L(dne
−θ1(x)x + e−θ2(x)x ) 

≥ e−θ2(x)x

⎧
a 

64 
− K1

⎛
4 + 4

√
ax  + 

4mηx√
1 + a

⎞⎛
e− λ 

2 x + dne(θ2(x)−θ1(x)− λ 
2 )x
⎞

(5.3.26) 

−
⎛

4m
√
a√

1 + a 
+ m 

1 + a

⎞ (
e−λx + dne(θ2(x)−θ1(x)−λ)x

)− 
m

√
a 

2
√
1 + a 

e−λx 

− b
(
d2 
n e

(θ2(x)−2θ1(x))x + e−θ2(x)x + 2dne−θ1(x)x
) ⎫

. 

From (5.2.5) and (5.2.6), we have θ2(x) − 2θ1(x)  <  0 and θ2(x) − θ1(x) − λ  <  
θ2(x) − θ1(x) − λ 

2 < 0 for x > xδ , then for c = 2
√
a, by choosing δ sufficiently 

small in (5.3.26), we obtain
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L(dne
−θ1(x)x + e−θ2(x)x ) ≥ 0 

for all x > xδ . 
Case 2. c > 2

√
a. Inserting d0 =  −1 in (5.3.22), using Lemmas 5.1, 5.6 and 5.7, 

we obtain 

0 <  θ1(x)  <  
√
a, 0 <  θ '

1(x) ≤ 2K2e
−λx 0 >  θ ''

1 (x) ≥  −2λK2e
−λx , 

0 < V (x; u) ≤ min

⎧
e−λx 

1 + a 
,  η
⎫

, 

|V '(x; u)|  ≤  min

⎧
2η√
c2 + 4 

, 
2e−λx 

√
c2 + 4

⎫
≤ min

⎧
η√
1 + a 

, 
e−λx 

√
1 + a

⎫
, 

γ  (V )θ 2 1 (x) − cθ1(x) + a ≥ 0, γ  (V )θ 2 2 (x) − cθ2(x) + a ≤  −  
λ(c − 2λ) 

4k0 
. 

By these results, (5.3.18) and (5.3.19), for any x > xδ , noticing that θ2(x) = θ1(x) +
λ 
k0 
, we obtain 

L(dne
−θ1(x)x − e−θ2(x)x ) 

≥ (γ  (V )θ 2 1 (x) − cθ1(x) + a
)
dne

−θ1(x)x − (γ  (V )θ 2 2 (x) − cθ2(x) + a
)
e−θ2(x)x 

+ dne−θ1(x)x
⎾−2γ  (V )θ '

1(x) − cθ '
1(x)x − 2γ '(V )V '(θ '

1(x)x + θ1(x)) + γ '(V )(V − cV ')
⏋

− e−θ2(x)x
⎾
γ  (V )((θ '

2(x)x)
2 + 2θ '

2(x)θ2(x)x − θ ''
2 (x)x) − 2γ '(V )V '(θ '

2(x)x + θ2(x)) 

+γ ''(V )(V ')2 − cγ '(V )V '⏋− b(dne−θ1(x)x − e−θ2(x)x )2 (5.3.27) 

≥ e−θ2(x)x
⎧

λ(c − 2λ) 
4k0 

− b
⎛
d2 n e

(θ2(x)−2θ1(x))x + e−θ2(x)x
⎞

−
⎛
4K2 + 2cx K2 + 2m√

1 + a 
(2K2e

−λx x + 
√
a) + m

⎛
1 

1 + a 
+ 

2c√
4 + c2

⎞⎞

· dne(θ2(x)−θ1(x)−λ)x 

−
⎛

(2K2x)
2e−λx + 4K2

⎛√
a + 

λ 
k0

⎞
x + 2λK2x + 

2m√
1 + a

⎛
2K2xe

−λx + 
√
a + 

λ 
k0

⎞

+ 
m(m + 1) 
1 + a 

e−λx + 2cm√
4 + c2

⎞
e−λx

⎫
. 

Noticing θ2(x) − 2θ1(x)  <  0 and θ2(x) − θ1(x) − λ  <  0 for x > xδ , then for c > 
2
√
a, by choosing δ sufficiently small in (5.3.27), we obtain 

L(dne
−θ1(x)x − e−θ2(x)x ) ≥ 0 

for all x > xδ . Then by the comparison principle for parabolic equations, we obtain 
U (x, t; u) ≥ Un for c ≥ 2

√
a. 

Summing up, by choosing
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η := 2a 

b − 3m +
/

(b − 3m)2 − 4m(m+1)a 
1+a 

(5.3.28) 

and sufficiently small δ, (U , Un) is a pair of super- and sub-solutions of (5.3.16) (see a  
schematic of super- and sub-solutions illustrated in Fig. 5.2). Denoting U (x, t; u, U ) 
the unique solution of (5.3.16), by the comparison principle for parabolic equations, 
we obtain Un ≤ U (x, t; u, U ) ≤ U and thus U (x, t; u, U ) ∈ En . This completes the 
proof of Proposition 5.1. 

2. An auxiliary elliptic problem 
Now for u ∈ X0 :=⋂n>1 En , we study the following problem: 

⎧⎪⎨ 

⎪⎩ 

γ  (V )U '' + (2γ '(V )V ' + c
)
U ' + (γ ''(V )(V ')2 + γ '(V )(V − U − cV ') + a

)
U 

− bU 2 = 0, 
V '' + cV ' + u − V = 0, 

(5.3.29) 

which is equivalent to solving L(U ) = 0. 

Proposition 5.2 For every u ∈ X0, if  c ≥ 2
√
a and b > b∗(m, a) with b∗(m, a) 

defined in (5.1.12), denote U (x, t; u, U ) the solution of (5.3.16) with U (x, 0; u, U ) = 
U, there exists a unique function U (x; u) ∈ X0 such that 

U (x; u) = lim 
t→∞ 

U (x, t; u, U ) = inf 
t>0 

U (x, t; u, U ) 

and U (x; u) is the unique solution of (5.3.29) satisfying 

lim inf 
x→−∞ 

U (x; u)  >  0 and lim 
x→+∞ 

U (x; u) 
e−λx 

= 1. (5.3.30) 

Proof From Proposition 5.1, we have  

U (x, t; u, U ) ≤ U (x) for all (x, t) ∈ R ×  [0, +∞). (5.3.31) 

For any 0 ≤ t1 ≤ t2, noticing 

U (x, t2; u, U ) = U (x, t1; u, U (x, t2 − t1; u, U )), 

from (5.3.31), we have 
U (x, t2 − t1; u, U ) ≤ U (x). 

Then using again the comparison principle for parabolic equations, we obtain 

U (x, t2; u, U ) ≤ U (x, t1; u, U ),
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which implies that U (x, ·; u, U ) is decreasing with respect to t . Noticing 

U (x, ·; u, U ) 

has lower and upper bounds since U (x, ·; u, U ) ∈ En as shown in Lemma  5.1, one 
can conclude that there exists a unique U (x; u) such that 

U (x; u) = lim 
t→∞ 

U (x, t; u, U ) = inf 
t>0 

U (x, t; u, U ) (5.3.32) 

for all x ∈ R. Denote 
Un(x, t) = U (x, t + tn; u, U ) 

for (x, t) ∈ R ×  [0, ∞), where {tn}n≥1 is an increasing sequence of positive real 
numbers converging to +∞. Then from the elliptic regularity theory for (5.3.14) and 
parabolic regularity theory for (5.3.16), we obtain that for all 1 < p < ∞, R > 0, 
T > 0,

||V ||W 2,p(−R,R) ≤ C and ||Un||W 2,1 p ((−R,R)×(0,T )) ≤ C. 

From the Sobolev embedding theorem, we obtain

||V ||C1,α 
loc (R) ≤ C and ||Un||Cα,α/2 

loc (R×(0,+∞)) ≤ C. 

Arzelà–Ascoli’s theorem and Schauder’s theory for parabolic equation (cf. Krylov 
1996) imply that there is a subsequence {Un' }n'≥1 of the sequence {Un}n≥1 and a 
function Ũ ∈ C2,1(R × (0, ∞)), such that {Un' }n'≥1 converges to Ũ locally uniformly 
in C2,1(R × (0, ∞)) as n' →  ∞. Hence, Ũ (x, t) solves (5.3.29) and Ũ ∈ X0. On  
the other hand, noticing Ũ (x, t) = limt→∞ U (x, t; u, U ), from  (5.3.32), we have 
U (x; u) = Ũ (x, t) for every x ∈ R and t ≥ 0, from which we obtain that U (x; u) ∈ 
X0 is a solution of (5.3.29). Furthermore, from (5.2.10) and the definition of X0, 
we obtain 

lim inf 
x→−∞ 

U (x; u)  >  0 

and 

dn ≤ lim inf 
x→+∞ 

U (x; u) 
e−λx 

≤ lim sup 
x→+∞ 

U (x; u) 
e−λx 

= 1 (5.3.33) 

for any n ≥ 2. Noticing limn→∞ dn = 1, by taking n →  ∞  in (5.3.33), we obtain 

lim 
x→+∞ 

U (x; u) 
e−λx 

= 1.
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The uniqueness of U (x; u) satisfying (5.3.30) follows from the same arguments as 
that in Lemma 3.6 in Salako and Shen (2017a). The proof is thus completed. 

5.3.3 Minimal Wave Speed 

In this section, we shall prove Theorems 5.1 and 5.2. To this end, we first prove 
the following result concerning the asymptotic behavior of solutions to (5.1.10) as  
z →  ±∞. 

Proposition 5.3 Assume that a > 0 and m > 0 satisfy (5.1.14). Then any solution 
(U, V ) ∈ (C2(R) ∩ X0)

2 to (5.1.10) has the property that 

lim 
z→+∞ 

U (z) = lim 
z→+∞ 

V (z) = 0, lim 
z→−∞ 

U (z) = lim 
z→−∞ 

V (z) = a/b 

and 
lim 

z→±∞ 
U '(z) = lim 

z→±∞ 
V '(z) = 0. 

Proof From the fact that (U, V ) ∈ X 2 0 and Lemma 5.6, we obtain 

|U (z)|  ≤  η, |V (z)|  ≤  η and |V '(z)|  ≤ η√
1 + a 

(5.3.34) 

for all z ∈ R. From the first equation of (5.1.10), by the Hölder regularity esti-
mates for bounded solutions of elliptic equations and the Schauder theory (Gilbarg 
and Trudinger 2001), there exists C > 0 independent of z and α ∈ (0, 1) such that
||U||C2,α (z,z+1) ≤ C and ||V ||C2,α (z,z+1) ≤ C for all z ∈ R, from which it follows that 

|U '(z)|  ≤  C, |U ''(z)|  ≤  C and |V ''(z)|  ≤  C (5.3.35) 

for all z ∈ R. Multiplying the first equation of (5.1.10) by  (a − bU ), integrating over 
[−R, R], we obtain 

0 =
∫ R 

−R 
(γ (V )U )''(a − bU )dz  + c

∫ R 

−R 
U '(a − bU )dz  +

∫ R 

−R 
U (a − bU )2 dz  

= (γ (V )U )'(a − bU )
||z=R 

z=−R + b
∫ R 

−R 
(γ '(V )V 'U + γ  (V )U ')U 'dz  + caU

||z=R 

z=−R 

− 
1 

2 
cbU 2

||z=R 

z=−R +
∫ R 

−R 
U (a − bU )2 dz. 

Then using (5.3.18), (5.3.34) and (5.3.35), we find a constant C1 independent of R 
such that
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b 

(1 + η)m

∫ R 

−R 
|U '|2 dz  +

∫ R 

−R 
U (a − bU )2 dz  

≤ b
∫ R 

−R 
γ  (V )|U '|2 dz  +

∫ R 

−R 
U (a − bU )2 dz (5.3.36) 

≤b
∫ R 

−R 
|γ '(V )V 'UU '|dz  − (γ (V )U )'(a − bU )

||z=R 

z=−R − caU
||z=R 

z=−R + 
1 

2 
cbU 2

||z=R 

z=−R 

≤ C1 + 
1 

2 
bmη

⎛∫ R 

−R 
|U '|2 dz  +

∫ R 

−R 
|V '|2 dz

⎞
. 

On the other hand, multiplying the second equation of (5.1.10) by  V '' and integrating 
the result over [−R, R], we obtain 

0 =
∫ R 

−R 
|V ''|2dz  + c

∫ R 

−R 
V 'V ''dz  +

∫ R 

−R 
UV ''dz  −

∫ R 

−R 
V V ''dz  

=
∫ R 

−R 
|V ''|2dz  + 

c 

2 
(V ')2

||z=R 
z=−R + UV '||z=R 

z=−R −
∫ R 

−R 
U 'V 'dz  − VV '||z=R 

z=−R +
∫ R 

−R 
|V '|2dz. 

This along with (5.3.34) and (5.3.35) yields

∫ R 

−R 
|V ''|2dz  +

∫ R 

−R 
|V '|2dz  ≤ C2 +

∫ R 

−R 
U 'V 'dz  ≤ C2 + 

1 

2

∫ R 

−R 
|U '|2dz  + 

1 

2

∫ R 

−R 
|V '|2dz, 

where C2 is a constant independent of R. Then it follows that

∫ R 

−R 
|V '|2 dz  ≤ 2C2 +

∫ R 

−R 
|U '|2 dz. (5.3.37) 

Substituting (5.3.37) into (5.3.36), one can find a constant C3 = C1 + bmηC2 inde-
pendent of R such that 

b 

(1 + η)m

∫ R 

−R 
|U '|2 dz  +

∫ R 

−R 
U (a − bU )2 dz  ≤ C3 + bmη

∫ R 

−R 
|U '|2 dz. (5.3.38) 

Note that (5.3.28) together with condition (5.1.14) implies 

1 

(1 + η)m 
− mη  >  0. 

Sending R →  ∞  in (5.3.38), we obtain 

b

⎛
1 

(1 + η)m 
− mη

⎞∫
R 

|U '|2 dz  +
∫
R 

U (a − bU )2 dz  ≤ C3. (5.3.39) 

By sending R →  ∞  in (5.3.37), we find a constant C4 > 0 such that
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R 

|V '|2 dz  ≤ C4. (5.3.40) 

Then (5.3.39) and (5.3.40) assert that 

U ' ∈ L2 (R), U (a − bU )2 ∈ L1 (R), V ' ∈ L2 (R). (5.3.41) 

From (5.3.35) and (5.3.41), we obtain 

lim 
z→±∞ 

U (z) ∈  {0, a/b}, lim 
z→±∞ 

U '(z) = 0 and lim 
z→±∞ 

V '(z) = 0. (5.3.42) 

Furthermore, from the definition of X0 and the fact that U ∈ X0, we obtain 

lim 
z→+∞ 

U (z) = 0 and lim 
z→−∞ 

U (z) = a/b. 

On the other hand, from the second equation of (5.1.10), we have 

V (z) = 1 

λ2 − λ1

⎛∫ z 

−∞ 
eλ1(z−s) U (s)ds  +

∫ +∞ 

z 
eλ2(z−s) U (s)ds

⎞
(5.3.43) 

with λ1 < 0 and λ2 > 0 defined in (5.3.4). Applying L’Hopital’s rule to (5.3.43), 
from the fact (5.3.42), we obtain 

lim 
z→+∞ 

V (z) = lim 
z→+∞ 

1 

λ2 − λ1

⎛∫ z 
−∞ e

−λ1sU (s)ds  

e−λ1z
+
∫ +∞ 
z e−λ2sU (s)ds  

e−λ2z

⎞

= 1 

λ2 − λ1 
lim 

z→+∞

⎛
U (z) 
−λ1 

+ 
U (z) 
λ2

⎞
= lim 

z→+∞ 
U (z) = 0 

and 

lim 
z→−∞ 

V (z) = lim 
z→−∞ 

1 

λ2 − λ1

⎛∫ z 
−∞ e

−λ1sU (s)ds  

e−λ1z
+
∫ +∞ 
z e−λ2sU (s)ds  

e−λ2z

⎞

= 1 

λ2 − λ1 
lim 

z→−∞

⎛
U (z) 
−λ1 

+ 
U (z) 
λ2

⎞

= lim 
z→−∞ 

U (z) = 
a 

b 
. 

This completes the proof. 

1. Proof of Theorem 5.1. Note that a fixed point of the mapping u ↘ X0 |→ 
U (·, u) ∈ X0 formed in (5.3.29) is a solution to the wave equations (5.1.10). Hence, 
to prove the existence of traveling wave solutions to (5.1.6), it suffices to prove that
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the mapping u ↘ X0 |→ U (·, u) ∈ X0 formed in (5.3.29) has a fixed point. We shall 
achieve this by the Schauder fixed point theorem. 

First, we prove that the mapping u ↘ X0 |→ U (·, u) ∈ X0 is compact. Let {un}n≥1 

be a sequence in X0. Denote Un = U (·, un), we have  Un ∈ X0. From the elliptic 
regularity theorem, we have that ||Un||W 2,p loc (R) ≤ C for all p > 1. From the Sobolev 
embedding theorem, we obtain ||Un||Cα 

loc(R) ≤ C, which along with Arzela–Ascoli’s 
theorem implies that there is a subsequence {Un' }n'≥1 of the sequence {Un}n≥1 and 
a function U (x) ∈ C(R), such that {Un' }n'≥1 → U (x) locally uniformly in C(R). 
Furthermore, we have U (x) ∈ X0. Then the mapping u ↘ X0 |→ U (·, u) ∈ X0 is 
compact. 

Second, we prove that the mapping u ↘ X0 |→ U (·; u) ∈ X0 is continuous. To 
this end, denote

||u||∗ = 
∞Σ
n=1 

1 

2n
||u||L∞([−n,n]). 

Then any sequence of functions in X0 is convergent with respect to norm || · ||∗ if and 
only if it converges locally uniformly on R. Let  u ∈ X0 and {un}n≥1 be a sequence 
in X0 such that un converges to u locally uniformly on R as n →  ∞. Then by the 
elliptic regularity theorem applied to the second equation of (5.3.29) and the Sobolev 
embedding theorem, we obtain

||V (·; un)||C1,α 
loc (R) ≤ C. 

From Arzelà–Ascoli’s theorem, there exists a subsequence of {V (·; un)}n≥1, still 
denoted by itself without confusion, such that 

lim 
n'→∞ 

V (·; un) = V (·; u) in C1 
loc(R). 

Suppose by contradiction that the mapping u ↘ X0 |→ U (·; u) ∈ X0 is not contin-
uous, then there exist δ  >  0 and a subsequence {un' }n'≥1 such that

||U (·; un') − U (·; u)||∗ ≥ δ, ∀n ≥ 1. (5.3.44) 

By Schauder’s theory (Krylov 1996) applied to the first equation of (5.3.29) and the 
Sobolev embedding theorem, from Arzelà–Ascoli’s theorem, there is a subsequence 
{U (·; un'')}n''≥1 of the sequence {U (·; un')}n'≥1 and a function U (·) ∈ C2(R), such 
that {U (·; un'')}n''≥1 converges to U (·) in C2 

loc(R) and U is a solution of (5.3.29). 
Moreover, from the fact that U (·; un'') ∈ X0 and 

lim 
n→∞ ||U (·; un'') − U (·)||∗ = 0, 

we obtain U (·) ∈ X0. Then from Proposition 5.2, we obtain U (·) = U (·, u). By 
(5.3.44), then

||U (·; u) − U (·)||∗ ≥ δ,
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which is a contradiction. Hence, the mapping u ↘ X0 |→ U (·; u) ∈ X0 is continu-
ous. 

Now by Schauder’s fixed point theorem, there is U ∈ X0 such that U (·) = 
U (·;U ). Denote V (·) := V (·; U ). Then (U, V ) is a solution of (5.1.10). From the 
definition of X0 and (5.2.10), we obtain 

lim 
z→+∞ 

U (z) 
e−λz 

= 1. 

This along with (5.3.5)–(5.3.6) and L’Hôpital’s Rule yields 

lim 
z→+∞ 

V (z) 
e−λz 

= lim 
z→+∞ 

1 

λ2 − λ1

⎛∫ z 
−∞ e

−λ1sU (s)ds  

e−(λ1+λ)z
+
∫ +∞ 
z e−λ2sU (s)ds  

e−(λ2+λ)z

⎞

= 1 

λ2 − λ1 
lim 

z→+∞

⎛
U (z) 

−(λ1 + λ)e−λz 
− U (z) 

−(λ2 + λ)e−λz

⎞
= 1 

1 + a 
. 

Since U ∈ X0, it follows  that  lim inf 
z→−∞ 

U (z)  >  0. On the other hand, noticing for 
z < xδ , U (z)  >  δ  and then 

V (z) = 1 

λ2 − λ1

⎛∫ z 

−∞ 
eλ1(z−s) U (s)ds  +

∫ +∞ 

z 
eλ2(z−s) U (s)ds

⎞

≥ δ 
λ2 − λ1

∫ z 

−∞ 
eλ1(z−s) ds  = δ 

(λ2 − λ1)(−λ1) 
> 0, 

from which lim inf 
z→−∞ 

V (z)  >  0 follows. Finally, by the assumption (5.1.14) and Propo-

sition 5.3, we finish the proof of Theorem 5.1. 
2. Proof of Theorem 5.2. Arguing by contradiction, for c < 2

√
a, we suppose that 

there is a traveling wave solution (u(x, t), v(x, t)) = (U (x · ξ − ct), V (x · ξ − ct)) 
of (5.1.6) connecting the constant solutions (a/b, a/b) and (0, 0). Take a sequence 
{zn} with zn →  +∞, then 

lim 
n→+∞ 

U (zn) = lim 
n→+∞ 

V (zn) = lim 
n→+∞ 

V '(zn) = 0. 

Now we set 

hn(z) = 
U (z + zn) 
U (zn) 

, Un(z) = U (z + zn), Vn(z) = V (z + zn). 

As U is bounded and satisfies (5.1.10), the Harnack inequality implies that the shifted 
functions Un(z), Vn(z) and V '

n(z) converge to zero locally uniformly in z and the 
sequence hn is locally uniformly bounded and satisfies
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⎪⎩ 

γ ''(Vn)(V
'
n)

2 hn + γ '(Vn)(Vn − Un − cV '
n)hn + 2γ '(Vn)V

'
nh

'
n + γ  (Vn)h

''
n 

+ ch'
n + hn(a − bUn) = 0, 

V ''
n + Un − Vn + cV '

n = 0 

in R. Thus, up to a subsequence, the sequence {hn}n≥1 converges to a function h that 
satisfies 

h'' + ch' + ah = 0 in  R. (5.3.45) 

Moreover, h is nonnegative and h(0) = 1. Equation (5.3.45) admits such a solution 
if and only if c ≥ 2

√
a, which leads to a contradiction. This denies our assumption 

and hence (5.1.6) admits no traveling wave solution connecting (a/b, a/b) and (0, 0) 
with speed c < 2

√
a. 

5.3.4 Selection of Wave Profiles 

By introducing some auxiliary problems and spatially inhomogeneous relaxed decay 
rates for super- and sub-solutions constructed, we manage to establish the existence of 
traveling wavefront solutions to the density-suppressed motility system (5.1.6) with 
decay motility function (5.1.7), where we find that there is a minimal wave speed 
coincident with the one for the cornerstone Fisher-KPP equation and a maximum 
wave speed c resulting from the nonlinear diffusion. However, we are unable to 
characterize further properties of wave profiles such as monotonicity, stability and so 
on. In this section, we shall discuss the selection of possible wave profiles motivated 
by some argument in Ou and Yuan (2009). 

1. Trailing edge wave profiles 
In the spatially homogeneous situation, the system (5.1.6) has equilibria (0, 0) and 
(a/b, a/b), which are unstable saddle and stable node, respectively. This suggests that 
we should look for traveling wavefront solutions to (5.1.6) connecting (a/b, a/b) to 
(0, 0) as we have done. Now we linearize the ODE system (5.1.10) at the origin (0, 0) 
and let U ' = X, V ' = Y . Then we get the following linear system of (U, X, V , Y ): 

⎛ 

⎜⎜⎝ 

U '
X '
V '
Y '

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

0 1 0  0  
− a 

γ  (0) − c 
γ  (0) 0 0  

0 0 0  1  
−1 0 1  −c 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

U 
X 
V 
Y 

⎞ 

⎟⎟⎠ . 

The eigenvalue λ of the above coefficient matrix is

⎛
λ2 + 

c 

γ  (0) 
λ + 

a 

γ  (0)

⎞⎛
λ2 + cλ − 1

⎞
= 0.
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To ensure there is a positive trajectory connecting the equilibria (0, 0) and (a/b, a/b), 
we need to rule out the case that (0, 0) is a spiral, which amounts to require 

c ≥ 2
√

γ  (0)a. (5.3.46) 

With γ  (v)  given in (5.1.7), γ  (0) = 1 and (5.3.46) is equivalent to c ≥ 2
√
a. This  

is well consistent with our results obtained in Theorems 5.1 and 5.2. Under the 
restriction (5.3.46), it can be easily checked that the origin (0, 0) is either a stable 
node or saddle point, which indicates that the traveling wave profile around the origin 
(0, 0) will not be oscillatory or periodic. 

Next, we linearize the system (5.1.10) at  (a/b, a/b) and arrive at the following 
linearized system: 

⎛ 

⎜⎜⎝ 

U '
X '
V '
Y '

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

0 1 0 0  
a(b+σ2) 

σ1b 
− c 

σ1 
− aσ2 

bσ1 

aσ2c 
bσ1 

0 0 0 1  
−1 0 1  −c 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

U 
X 
V 
Y 

⎞ 

⎟⎟⎠ (5.3.47) 

where σ1 = γ  (a/b)andσ2 = γ '(a/b). By some tedious computation, we find that 
the eigenvalue λ of the above coefficient matrix is determined by the following 
characteristic equation: 

λ4 +
⎛
c + 

c 

σ1

⎞
λ3 +

⎛
c2 

σ1 
− 

a(b + σ2) 
σ1b 

− 1
⎞

λ2 − 
(a + 1)c 

σ1 
λ + 

a 

σ1 
= 0. (5.3.48) 

We suppose that there are periodic solutions near the positive equilibrium (a/b, a/b), 
namely the above characteristic equation has purely imaginary roots λ =  ±ωi , where 
ω is a real number. Then the substitution of this ansatz into the equation (5.3.48) 
immediately yields a necessary condition c = 0, and consequently, we get 

ω4 −
⎛
a(b + σ2) 

σ1b 
+ 1
⎞

ω2 + 
a 

σ1 
= 0. (5.3.49) 

Notice that σ2 = γ '(a/b)  <  0. Then a necessary and sufficient condition warranting 
that Eq. (5.3.49) has a real root ω is 

|σ2| < 
b 

a 
σ1

⎛/
a 

σ1 
− 1
⎞2 

. (5.3.50) 

That is, the linearized system (5.3.47) at the equilibrium (a/b, a/b) will have periodic 
solutions if the condition (5.3.50) is fulfilled. Thereof, we anticipate that the non-
monotone traveling wave solutions oscillating about the critical point (a/b, a/b) may 
exist, but whether the condition (5.3.50) is sufficient to guarantee that the nonlinear 
system (5.1.6) has similar oscillatory behavior around the equilibrium (a/b, a/b)
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is very hard to determine and even to predict due to the complexity induced by the 
nonlinear diffusion and cross-diffusion in the system. Below we shall use numerical 
simulations to illustrate that indeed the condition (5.3.50) plays a critical role for the 
nonlinear system in determining the monotonicity of wave profiles. 

We consider the motility function γ  (v)  = 1 
(1+v)m 

(m > 0) as given in (5.3.29). 
With simple calculation, we find that the condition (5.3.50) amounts to 

√
m <

/
1 + ϑ 

ϑ

||√a(1 + ϑ)m − 1
||,  ϑ  = 

a 

b 
. (5.3.51) 

Without loss of generality, we first choose m = 6 and a = b = 0.1. Then ϑ = 1 and/
1 + ϑ 

ϑ

|||√a(1 + ϑ)m − 1
||| = 2.1635 < 

√
6 = 2.4495. 

Hence, the condition (5.3.51) is violated and no oscillation around (a/b, a/b) = 
(1, 1) is expected for the linearized system. To verify if this is the case for the 
nonlinear system (5.1.6), we set the initial value (u0,  v0) as 

u0(x) = v0(x) = 1 

1 + e2(x−20) (5.3.52) 

and perform the numerical simulations in an interval [0, 200] with Neumann bound-
ary conditions to comply with the experiment. The numerical solution of (5.1.6) is  
shown in Fig. 5.3 where we observe that the solution will stabilize into monotone 
traveling waves although it oscillates initially. This is also well consistent with our 
analytical results about the existence of traveling wave solutions given in Theorem 5.1 
when K (m, a) = 0.4143 < 1 if m = 6 and a = b = 0.1. Next, we choose m = 4 
and a = b = 1 such that

/
1+ϑ 
ϑ

|||√a(1 + ϑ)m − 1
||| = 4.2426 and hence (5.3.51) 

holds. But numerically we still find that the system (5.1.6) will generate monotone 
traveling waves qualitatively similar to the patterns shown in Fig. 5.3 (not shown 
here for brevity). This implies that the condition (5.3.50) is not sufficient to induce 
non-monotone traveling waves oscillating around (a/b, a/b). 

Now an important question is whether the density-suppressed motility system 
(5.1.6) is capable of producing persistent oscillating traveling waves to interpret (at 
least qualitatively) the pattern observed in the experiment (see Fig. 5.1). To explore 
this question numerically, we consider the following sigmoid motility function: 

γ  (v)  = 1 − v − 1√
0.1 + (v − 1)2 

which decays but changes the convexity at the point v = 1, in contrast to the decreas-
ing function (5.1.7) whose convexity remains unchanged. We perform the numerical 
simulations for (5.1.6) with a = b = 0.2 in an interval [0, 200] with the same ini-
tial value (5.3.52). Remarkably, we find non-monotone traveling wavefronts develop
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Fig. 5.3 Numerical 
simulations of wave 
propagation generated by the 
system (5.1.6) in  [0, 200] 
with γ  (v)  = 1 

(1+v)m 
with 

m = 6, a = b = 0.1, u0 = 
v0 = 1 

1+e2(x−20) 

0 

50 

100 

150 

200 0 

50 

100 

150 

200 

250 

3000 

0.5 

1 

TimeSpace 

u(
x,
t)
 

(see Fig. 5.4) and persist in time, where the wave oscillates at the trailing edge and 
propagates into the far field as time evolves. This is a prominent feature different 
from the patterns shown in Fig. 5.3 generated from the motility function (5.1.7). If we 
choose some other forms of decreasing function γ  (v)  that changes its convexity at 
v = a/b = 1, we shall numerically find similar non-monotone traveling wavefront 
patterns generated by (5.1.6). 

The above numerical simulations indicate, although not proved in Chapter 5, 
that the density-suppressed motility system (5.1.6) can generate both monotone 
and non-monotone traveling wavefront solutions connecting (a/b, a/b) to (0, 0). 
It numerically appears that the change of convexity of γ  (v)  at v = a/b is necessary 
to generate the non-monotone traveling wavefronts oscillating at the trailing edge 
around the equilibrium (a/b, a/b). The underlying mechanism remains mysterious 
and we will leave it as an open question for future study. 

Next, we are devoted to exploring the patterns in a disk to mimic the apparatus 
used in the experiment of Liu (2011) where the experiment was conducted in Petri 
dishes with bacteria initially inoculated at the center (see Fig. 5.1). In the numerical 
simulations, we set the domain as a disk with radius 10 and initially place the ini-
tial value (u0,  v0) = (4 + e−(x2+y2) , 4 + e−(x2+y2) ) in the center. We use the motility
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Fig. 5.4 Numerical simulations of wave propagation generated by the system (5.1.6) in  [0, 200] 
with γ  (v)  = 1 − v−1√

0.1+(v−1)2 
, a = b = 0.2, u0 = v0 = 1 

1+e2(x−20)
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Fig. 5.5 Snapshot of numerical simulations of outward expanding ring patterns in a disk generated 
by the system (5.1.6) with γ  (v)  = 1 

(1+v)6 
, a = b = 0.1, u0 = v0 = 4 + e−(x2+y2)

function given in (5.1.7) with m = 6 and set out Neumann boundary (i.e., zero-flux) 
conditions aligned with the experiment reality. The snapshots of numerical patterns 
are recorded in Fig. 5.5, where we do observe the outward expanding ring patterns 
qualitatively analogous to the experiment patterns shown in Fig. 5.1. This validates 
the capability of model (5.1.6) to reproduce the experimental patterns. However, we 
should underline that it appears that the generation of oscillating patterns in two 
dimensions does not rely on the change of convexity of the motility function γ  (v)  
as shown in Fig. 5.5, which is very different from the situation in 1D as shown in
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Figs. 5.3 and 5.4. This imposes another interesting question elucidating this subtle 
difference.

2. Leading edge wave speeds 
Following the spirit of classical method as in Mollison (1977) and Murray (2001), we 
discuss the selection of the wave speed c from the initial conditions given at infinity. 
Suppose that the initial value (u0,  v0) of the system (5.1.6) satisfies

⎧
u0(x) ∼ Ae−λx , 
v0(x) ∼ Be−λx , 

as x →  ∞ (5.3.53) 

with positive amplitudes A and B. Now we look for traveling wave solutions of 
(5.1.10) at the leading edge (i.e., x →  ∞) in the form of

⎧
u(x, t) ∼ Ae−λ(x−ct) , 
v(x, t) ∼ Be−λ(x−ct) . 

(5.3.54) 

We substitute (5.3.54) into the first equation of (5.1.6) and get the dispersion relation 
between the wave speed c and the initial decay rate λ: 

c = γ  (0)λ + 
a 

λ 
. (5.3.55) 

Hence, by the standard argument as in Murray (2001), the asymptotic wave speed c 
of traveling wave solutions to (5.1.6) satisfies 

c =
⎧

γ  (0)λ + a 
λ , if 0 <  λ  <  

√
a, 

2
√

γ  (0)a, if λ ≥ 
√
a. 

(5.3.56) 

Next, we plug (5.3.54) into the second equation of (5.1.6) and get the following 
relation on the amplitude of u and v: 

A =  [1 + a + (γ (0) − 1)λ2]B. (5.3.57) 

Therefore, given the initial condition (5.3.53), the leading edge of traveling waves 
is fully determined by the ansatz (5.3.54) with wave speed (5.3.56) and amplitudes 
fulfilling (5.3.57). 

As an example, we consider the motility function (5.1.7) chosen in the first part 
of this chapter, where γ  (0) = 1 and hence (5.3.55) gives  

λ2 − cλ + a = 0 

which is exactly the same as the equation (5.2.2). Furthermore, (5.3.57) gives  A = 
(1 + a)B which well agrees with the result (5.1.13) in Theorem 5.1.
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5.4 Asymptotic Behavior of Solutions to a 
Signal-Suppressed Motility Model 

5.4.1 Space–Time L1-Estimates for um+1 
ε v−α 

ε 

In this section, taking advantage of the special structure of the diffusive processes 
in (5.2.20) (also  (5.1.16)), the classical duality arguments (cf. Cañizo et al. 2014; 
Tao and Winkler 2017a) are used to obtain the fundamental regularity information 
for a bootstrap argument. To this end, we denote by A the self-adjoint realization of 
−Δ + 1 under homogeneous Neumann boundary condition in L2(Ω) with its domain 

given by D(A) =
{
ϕ ∈ W 2,2(Ω)| ∂ϕ 

∂ν = 0
}
and A is self-adjoint and possesses a 

family (Aβ )β∈R of corresponding densely defined self-adjoint fractional powers. 

Lemma 5.8 Assume that m > 1 and D ≥ 1, then for t > 0 

d 

dt

∫
Ω 

|A− 1 
2 (uε + 1)|2 +

∫
Ω 
um+1 

ε v−α 
ε ≤ C

∫
Ω 

|A−1 (uε + 1)|m+1 + C (5.4.1) 

with constant C > 0 independent of D. 

Proof Due to ∂t (uε + 1) = uεt , the first equation in (5.2.20) can be written as 

d 

dt  
A−1 (uε + 1) + ε(uε + 1)M + uε(uε + ε)m−1 v−α 

ε 

= A−1 {ε(uε + 1)M + uε(uε + ε)m−1 v−α 
ε + βuε f (wε)

}
. 

(5.4.2) 

Testing (5.4.2) by  uε + 1, one has 

1 

2 

d 

dt

∫
Ω 

|A− 1 
2 (uε + 1)|2 + ε

∫
Ω 

(uε + 1)M+1 +
∫

Ω 
uε(uε + ε)m−1 (uε + 1)v−α 

ε 

= ε
∫

Ω 
(uε + 1)M A−1 (uε + 1) +

∫
Ω 
uε(uε + ε)m−1 v−α 

ε A−1 (uε + 1) 

+ β
∫

Ω 
uε f (wε) A−1 (uε + 1). 

(5.4.3) 
Thanks to W 2,2(Ω) ϲ→ L∞(Ω) in two-dimensional setting and the standard elliptic 
regularity in L2(Ω), one can find C1 > 0 and C2 > 0 such that

||ϕ||M+1 
L M+1(Ω) ≤ C1||ϕ||M+1 

W 2,2(Ω) ≤ C2||Aϕ||M+1 
L2(Ω) 

for all ϕ ∈ W 2,2(Ω) such that ∂ϕ 
∂ν |∂Ω = 0. Hence, by the Young inequality, we can 

see that
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ε

∫
Ω 

(uε + 1)M A−1 (uε + 1) ≤ 
ε 
2

∫
Ω 

(uε + 1)M+1 + 
ε 
2

∫
Ω 

|A−1 (uε + 1)|M+1 

≤ 
ε 
2
||uε + 1||M+1 

L M+1(Ω) + 
εC1 

2
||A−1 (uε + 1)||M+1 

W 2,2(Ω) 

= 
ε 
2

∫
Ω 

(uε + 1)M+1 + 
εC1C2 

2
||uε + 1||M+1 

L2(Ω) , 

which along with the Young inequality implies that for any ε1 > 0, there exists 
c(ε1)  >  0 such that ||ϕ||L2(Ω) ≤ ε1||ϕ||L M+1(Ω) + c(ε1)||ϕ||L1(Ω) due to M > 1 and 
entails that 

ε

∫
Ω 

(uε + 1)M A−1 (uε + 1) ≤ 
3ε 
4

∫
Ω 

(uε + 1)M+1 + C3||uε + 1||M+1 
L1(Ω) . 

Furthermore, since ||wε(·, t)||L∞(Ω) ≤ ||w0||L∞(Ω), we apply Lemma 5.4 and Young’s 
inequality to obtain that for t > 0,

∫
Ω 
uε(uε + ε)m−1 v−α 

ε A−1 (uε + 1) 

≤ 
1 

4

∫
Ω

{
uε(uε + ε)m−1} m+1 

m v−α 
ε + C4

∫
Ω 

|A−1 (uε + 1)|m+1 v−α 
ε 

≤ 
1 

4

∫
Ω 
u 

m+1 
m 

ε (uε + ε) 
m2−1 
m v−α 

ε + C4δ
−α

∫
Ω 

|A−1 (uε + 1)|m+1 

(5.4.4) 

and 

β

∫
Ω 
uε f (wε)A

−1 (uε + 1) 

≤ 
1 

4

∫
Ω 
um+1 

ε v−α 
ε + C5

∫
Ω 

v 
α 
m 
ε |A−1 (uε + 1)| m+1 

m 

≤ 
1 

4

∫
Ω 
um+1 

ε v−α 
ε +

∫
Ω 

|A−1 (uε + 1)|m+1 + C6

∫
Ω 

v 
α 

m−1 
ε . 

(5.4.5) 

Noticing that uε + 1 ≥ max{uε + ε, ε}, we have
∫

Ω 
uε(uε + ε)m−1 (uε + 1)v−α 

ε ≥ 
1 

4

∫
Ω 
u 

m+1 
m 

ε (uε + ε) 
m2−1 
m v−α 

ε + 
3 

4

∫
Ω 
um+1 

ε v−α 
ε , 

and hence insert (5.4.5) and (5.4.4) into (5.4.3) to get 

d 

dt

∫
Ω 

|A− 1 
2 (uε + 1)|2 +

∫
Ω 
um+1 

ε v−α 
ε 

≤2(C4δ
−α + 1)

∫
Ω 

|A−1 (uε + 1)|m+1 + 2C6

∫
Ω 

v 
α 

m−1 
ε , 

which along with Lemma 5.5 and D ≥ 1 readily arrive at (5.4.1).
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By means of suitable interpolation arguments, one can appropriately estimate the 
integrals

∫
Ω |A−1(uε + 1)|m+1 and

∫
Ω |A− 1 

2 (uε + 1)|2 in terms of
∫
Ω u

m+1 
ε v−α 

ε and 
thereby derive estimate of the form

∫ t+1 

t

∫
Ω 
um+1 

ε v−α 
ε ≤ C 

with C > 0 independent of D, which can be stated as follows. 

Lemma 5.9 Let m > 1 and D ≥ 1. Then there exists C > 0 such that for all D ≥ 1 
as well as ε ∈ (0, 1)

∫ t+1 

t

∫
Ω 
um+1 

ε v−α 
ε ≤ C for all t > 0. (5.4.6) 

Proof By the standard elliptic regularity in L2(Ω), we have

∫
Ω 

|A−1 (uε + 1)|m+1 ≤ C1||uε + 1||m+1 
L2(Ω) . 

Noticing that for the given p ∈ (2, m + 1) (for example, p := m+3 
2 ), an application 

of Young’s inequality implies that for any η  >  0, there exists C1(η) > 0 such that 

C1||uε + 1||m+1 
L2(Ω) ≤ η||uε + 1||m+1 

L p(Ω) + C1(η)||uε + 1||m+1 
L1(Ω) . 

On the other hand, by the Hölder inequality, we can see that

∫
Ω 
u p ε =

∫
Ω

(
um+1 

ε v−α 
ε

) p 
m+1 v 

pα 
m+1 
ε 

≤
⎛∫

Ω 
um+1 

ε v−α 
ε

⎞ p 
m+1
⎛∫

Ω 
v 

pα 
m+1− p 
ε

⎞ m+1− p 
m+1 

. 

Hence, combining the above estimates with Lemma 5.5, we arrive at

∫
Ω 

|A−1 (uε + 1)|m+1 ≤ η||uε + 1||m+1 
L p(Ω) + C1(η)||uε + 1||m+1 

L1(Ω) 

≤ η||uε||m+1 
L p(Ω) + C2(η) 

≤ η
⎛∫

Ω 
um+1 

ε v−α 
ε

⎞⎛∫
Ω 

v 
pα 

m+1− p 
ε

⎞ m+1− p 
p 

+ C2(η) 

≤ ηC3(α, m)

⎛∫
Ω 
um+1 

ε v−α 
ε

⎞
+ C2(η) for all t > 0. 

(5.4.7) 
On the other hand, by self-adjointness of A− 1 

2 and Hölder’s inequality, we get
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Ω 

|A− 1 
2 (uε + 1)|2 =

∫
Ω 

(uε + 1) A−1 (uε + 1) 

≤ ||uε + 1||L2(Ω)||A−1 (uε + 1)||L2(Ω) 

≤ C4||uε + 1||2 L2(Ω) 

≤ C5||uε||2 L2(Ω) + C5 

≤ C6||uε||m+1 
L2(Ω) + C6 for all t > 0. 

So in this position, proceeding in the same way as above, we also have

∫
Ω 

|A− 1 
2 (uε + 1)|2 ≤ C6η||uε + 1||m+1 

L p(Ω) + C1(η)C6||uε + 1||m+1 
L1(Ω) 

≤ ηC3(α, m)

⎛∫
Ω 
um+1 

ε v−α 
ε

⎞
+ C7(η) for all t > 0.(5.4.8) 

Therefore, inserting (5.4.7) and (5.4.8) into (5.4.1) and taking η sufficiently small, 
we have 

d 

dt

∫
Ω 

|A− 1 
2 (uε + 1)|2 + C8

∫
Ω 

|A− 1 
2 (uε + 1)|2 + C8

∫
Ω 
um+1 
ε v−α 

ε ≤ C9 for all t > 0 

with some C8 > 0, C9 > 0 for all D ≥ 1. Furthermore, by Lemma 3.4 of Stinner 
et al. (2014), we immediately obtain (5.4.6). 

As the direct consequence of Lemmas 5.9 and 5.5, we have the following. 

Lemma 5.10 Let m > 1, D ≥ 1, then for p ∈ (max{2, m+1 
α+1 }, m + 1), one can find 

a constant C(p)  >  0 such that
∫ t+1 

t

∫
Ω 
u p ε (·, s)ds  ≤ C(p) for all t > 0 and D ≥ 1. (5.4.9) 

Proof For p ∈ (2, m + 1), we utilize Young’s inequality to estimate

∫ t+1 

t

∫
Ω 
u p ε =

∫ t+1 

t

∫
Ω

(
um+1 

ε v−α 
ε

) p 
m+1 v 

pα 
m+1 
ε 

≤
∫ t+1 

t

∫
Ω 
um+1 

ε v−α 
ε +

∫ t+1 

t

∫
Ω 

v 
pα 

m+1− p 
ε for all t > 0, 

which leads to (5.4.9) with the help of Lemma 5.5.



322 5 Density-Suppressed Motility System

5.4.2 Boundedness of Solutions (uε, vε,wε) 

On the basis of the quite well-established arguments from parabolic regularity the-
ory, we can turn the space–time integrability properties of u p ε into the integrability 
properties of ∇vε as well as ∇wε. 

Lemma 5.11 Let m > 1,  α  >  0 and suppose that D ≥ 1. Then for q ∈ (2, 2(m+1) 
(3−m)+ 

), 
there exists constant C > 0 such that for all D ≥ 1 and ε ∈ (0, 1)

||vε(·, t)||W 1,q (Ω) ≤ C (5.4.10) 

as well as
||wε(·, t)||W 1,q (Ω) ≤ C (5.4.11) 

for all t > 0. 

Proof From the continuity of function h(x) = 2x 
(4−x)+ 

for x ∈  [2, 4), it follows that  
for given q > 2 suitably close to the number 2(m+1) 

(3−m)+ 
, one can choose p ∈ (2, m + 1) 

in an appropriately small neighborhood of m + 1 such that 

p 

p − 1 
·
⎛
1 

2 
+ 

1 

p 
− 

1 

q

⎞
< 1. (5.4.12) 

From the smoothing properties of Neumann heat semigroup (etΔ )t≥0, it follows 
that there exist Ci > 0(i = 1, 2) such that

||eΔ ϕ||W 1,q (Ω) ≤ C1||ϕ||L1(Ω) for ϕ ∈ C0 (Ω) (5.4.13) 

as well as

||etΔ ϕ||W 1,q (Ω) ≤ C2t
− 1 

2 − 1 
2 ( 

1 
p − 1 q )||ϕ||L p(Ω) for all t ∈ (0, 1) and ϕ ∈ C0 (Ω). 

(5.4.14) 
Therefore, by the Duhamel representation to the second equation of (5.2.35), we 
obtain

||ṽε(·, t)||W 1,q (Ω) (5.4.15) 

= ||e(t−(t−1)+)(Δ−D−1) ṽε(·,  (t − 1)+) + 
1 

D

∫ t 

(t−1)+ 

e(t−s)(Δ−D−1) uε(·, s 
D 

)ds||W 1,q (Ω) 

≤ ||e(t−(t−1)+)Δ ṽε(·,  (t − 1)+)||W 1,q (Ω)+ 
1 

D

∫ t 

(t−1)+
||e(t−s)Δ uε(·, s 

D 
)||W 1,q (Ω)ds. 

Due to (5.4.13) and (5.4.14), we have
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||e(t−(t−1)+)Δ ṽε(·,  (t − 1)+)||W 1,q (Ω) = ||eΔ ṽε(·, t − 1)||W 1,q (Ω) 

≤ C1||ṽε(·, t − 1)||L1(Ω) for t > 1, 
(5.4.16) 

while for t ≤ 1,

||e(t−(t−1)+)Δ ṽε(·,  (t − 1)+)||W 1,q (Ω) = ||etΔ v0(·)||W 1,q (Ω) 

≤ C1||v0(·)||W 1,∞(Ω). 

On the other hand, we can see that for t > 0
∫ t 

(t−1)+
||e−(t−s)Δ uε(·, D−1 s)||W 1,q (Ω) 

≤ C2

∫ t 

(t−1)+ 

(t − s)−
1 
2 −( 1 p − 1 q )||uε(·, D−1 s)||L p(Ω)ds  

≤ C2

⎧∫ t 

(t−1)+ 

(t − s)
− p 

p−1 ( 
1 
2 + 1 p − 1 q ) 

ds

⎫ p−1 
p
⎧∫ t 

(t−1)+
||uε(·, D−1 s)||p 

L p(Ω)ds

⎫ 1 
p 

≤ C2(

∫ 1 

0 
σ 

− p 
p−1 ·( 1 2 + 1 p − 1 q ) 

dσ  )  
p−1 
p

⎧∫ t 

(t−1)+
||uε(·, D−1 s)||p 

L p(Ω)ds

⎫ 1 
p 

≤ C2 D 
1 
p (

∫ 1 

0 
σ 

− p 
p−1 ·( 1 2 + 1 p − 1 q ) 

dσ  )  
p−1 
p

⎧∫ D−1t 

(D−1t−D−1)+
||uε(·, s)||p 

L p(Ω)ds

⎫ 1 
p 

≤ C3 D 
1 
p , 

(5.4.17) 
where due to D ≥ 1 and the application of Lemma 5.10, we have

∫ D−1t 

(D−1t−D−1)+
||uε(·, s)||p 

L p (Ω)ds  ≤ C4 

and the finiteness of
∫ 1 
0 σ 

− p 
p−1 ·( 1 2 + 1 p − 1 q ) 

dσ due to (5.4.12). Hence, combining (5.4.15) 
with (5.4.16) and (5.4.17) gives

||vε(·, t)||W 1,q (Ω) ≤ C2||ṽε(·, t − 1)||L1(Ω) + C3 D 
1 
p −1 + C1||v0(·)||W 1,∞(Ω) 

≤ C2(

∫
Ω 
u0 + β

∫
Ω 

w0) + C3 + C1||v0(·)||W 1,∞(Ω) 

for all t > 0 and thus completes the proof of (5.4.10). 
Next due to ||wε(·, t)||L∞(Ω) ≤ ||w0||L∞(Ω), an application of the Duhamel repre-

sentation to the third equation in (5.2.20) yields
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||wε(·, t)||W 1,q (Ω) ≤
||||eΔ wε (·,  (t − 1)+)

||||
W 1,q (Ω) 

+ f (||w0||L∞(Ω))

∫ t 

(t−1)+

||||e(t−s)Δ uε(·, s)
||||
W 1,q (Ω) ds, 

and thereby (5.4.11) can be actually derived as above. 

The following lemma will be used in the derivation of regularity features about 
spatial and temporal derivatives of uε. 

Lemma 5.12 Let p > 0 and ϕ ∈ C∞(Ω), then 

1 

p

∫
Ω 

d 

dt  
(uε + ε)p · ϕ + (p − 1)Mε

∫
Ω 

(uε + ε)p−2 (uε + 1)M−1|∇uε|2 ϕ 

= (1 − p)
∫

Ω 
(muε + ε)(uε + ε)m+p−4 v−α

∈ |∇uε|2 ϕ 

+ α(p − 1)
∫

Ω 
(uε + ε)m+p−3 v−α−1 

ε ∇uε ·  ∇vεϕ 

+ (1 − p)
∫

Ω 
(muε + ε)(uε + ε)m+p−3 v−α 

ε ∇uε ·  ∇ϕ 

− Mε

∫
Ω 

(uε + ε)p−1 (uε + 1)M−1∇uε ·  ∇ϕ 

+ α
∫

Ω 
uε(uε + ε)m+p−2 v−α−1 

ε ∇vε ·  ∇ϕ + β
∫

Ω 
uε f (wε)(uε + ε)p−1 ϕ 

(5.4.18) 
for all t > 0 and ε ∈ (0, 1). 

Proof This can be verified by the straightforward computation. 

Thanks to the boundedness of ||∇vε(·, t)||Lq (Ω) with some q > 2 in Lemma 5.11, 
we can achieve the following D-independent L p-estimate of uε with finite p. 

Lemma 5.13 Let m > 1. Then for all D ≥ 1 and any p > 1, there exists a constant 
C(p)  >  0 such that

||uε(·, t)||L p(Ω) ≤ C(p) 

for all t > 0 and ε ∈ (0, 1). 

Proof According to Lemmas 5.4 and 5.5, one can find Ci > 0(i = 1, 2) independent 
of D ≥ 1 fulfilling 

v−α 
ε (x, t) ≥ C1, v−α−2 

ε (x, t) ≤ C2 in Ω × (0, ∞) (5.4.19) 

for all ε ∈ (0, 1). 
Letting ϕ ≡ 1 in (5.4.18) and by Young’s inequality, we have
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d 

dt

∫
Ω 

(uε + ε)p + p(p − 1)
∫

Ω 
(muε + ε)(uε + ε)m+p−4v−α 

ε |∇uε|2 +
∫

Ω 
(uε + ε)p 

≤ αp( p − 1)
∫

Ω 
uε(uε + ε)m+p−3v−α−1 

ε ∇uε ·  ∇vε 

+ βp
∫

Ω 
uε f (wε)(uε + ε)p−1 +

∫
Ω 

(uε + ε)p 

≤ 
p(p − 1) 

2

∫
Ω 

(muε + ε)(uε + ε)m+p−4v−α 
ε |∇uε|2 

+ 
α2 p( p − 1) 

2

∫
Ω 

(uε + ε)m+p−1v−α−2 
ε |∇vε|2 

+ βp f  (||w0||L∞(Ω))

∫
Ω 
uε(uε + ε)p−1 +

∫
Ω 

(uε + ε)p. 

Furthermore, recalling (5.4.19), we can find C3 > 0 and C4 > 0 independent of p 
such that 

d 

dt

∫
Ω 

(uε + ε)p + C3

∫
Ω 

|∇(uε + ε) 
m+ p−1 

2 |2 +
∫

Ω 
(uε + ε)p 

≤ C4 p
2
∫

Ω 
(uε + ε)m+p−1|∇vε|2 + C4 p

∫
Ω 

(uε + ε)p . 
(5.4.20) 

According to (5.4.10), ||∇vε||2 Lq (Ω) ≤ C5 for any fixed q ∈ (2, 2(m+1) 
(3−m)+ 

), and hence, 
the Hölder inequality yields 

C4 p
2
∫

Ω 
(uε + ε)m+p−1|∇vε|2 

≤C4 p
2

⎧∫
Ω 

(uε + ε) 
(m+ p−1)q 

q−2

⎫1− 2 q
||∇vε||2 Lq (Ω) 

≤C4C5 p
2||(uε + ε) 

m+ p−1 
2 ||2 

L 
2q 
q−2 (Ω) 

≤ 
C3 

4

∫
Ω 

|∇(uε + ε) 
m+ p−1 

2 |2 + C6(p), 

(5.4.21) 

where we have used an Ehrling-type inequality due to W 1,2(Ω) ϲ→ L 
2q 
q−2 (Ω) in two-

dimensional setting and (5.2.28). 
On the other hand, since 

C4 p
∫

Ω 
(uε + ε)p 

≤ η
∫

Ω 
(uε + ε)m+p−1 + 

(C4 p) 
m−1+ p 
m−1 |Ω| 

η 
p 

m−1 

=η||(uε + ε) 
m+ p−1 

2 ||2 L2(Ω) + 
(C4 p) 

m−1+ p 
m−1 |Ω| 

η 
p 

m−1 

for any η  >  0, we also have
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C4 p
∫

Ω 
(uε + ε)p ≤ 

C3 

4

∫
Ω 

|∇(uε + ε) 
m+ p−1 

2 |2 + C7(p) (5.4.22) 

with some C7( p)  >  0. Now inserting (5.4.22) and (5.4.21) into (5.4.20), we infer 
that for all t > 0 

d 

dt

∫
Ω 

(uε + ε)p +
∫

Ω 
(uε + ε)p ≤ C8( p) 

with C8(p)  >  0 independent of D ≥ 1, which along with a standard comparison 
argument implies that

∫
Ω 
u p ε (·, t) ≤ max{C8( p), ||u0||p 

L P (Ω) + 1} 

for all t ≥ 0 and thus yields the claimed conclusion. 

With the L p-estimate of uε at hand, the standard Moser-type iteration can be 
immediately applied in our approaches to obtain further regularity concerning L∞-
norm of uε (see Lemma A.1 of Tao and Winkler 2012a for example) and so we refrain 
from giving the details here. 

Lemma 5.14 Assume that m > 1,  α  >  0 and D ≥ 1, then there exists C > 0 such 
that

||u(·, t)||L∞(Ω) ≤ C for all t ≥ 0. (5.4.23) 

Remark 5.3 It should be mentioned that when m > 1,  α  >  0 and D > 0, one can 
obtain the boundedness of L∞-norm of uε for all t > 0 by the above argument (also 
see Winkler 2020 for reference). However, the explicit dependence of ||uε(·, t)||L p(Ω) 
on D is required to investigate the large time behavior of solutions in the sequel. 
Hence, D ≥ 1 is imposed specially for the convenience of our discussion below. 

At the end of this section, based on the above results, we derive a regularity property 
for v which goes beyond those in Lemma 5.11. 

Lemma 5.15 Let m > 1,  α  >  0. Then there exists C > 0 such that for all D ≥ 1 
and ε ∈ (0, 1) such that

||∇vε(·, t)||L∞(Ω) ≤ C (5.4.24) 

as well as
||∇wε(·, t)||L∞(Ω) ≤ C (5.4.25) 

for all t > D. 

Proof Due to ||∇eΔ ṽ(·, t̃ − 1)||L∞(Ω) ≤ C1||ṽ(·, t̃ − 1)||L1(Ω), as the proof of 
Lemma 5.11, we use the Duhamel formula of (5.2.35) in the following way:
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||∇ ̃v(·, t̃)||L∞(Ω) 

=
||||||||||∇e(Δ−D−1) ̃v(·, t̃ − 1) + D−1

∫ t̃ 

t̃−1 
∇e(t−s)(Δ−D−1)u(·, D−1s)ds

||||||||||
L∞(Ω) 

≤ ||∇eΔ ̃v(·, t̃ − 1)||L∞(Ω) + D−1
∫ t̃ 

t̃−1
||∇e(t̃−s)Δu(·, D−1s)||L∞(Ω)ds  

≤ C1||ṽ(·, t̃ − 1)||L1(Ω) + C2 D
−1
∫ t̃ 

t̃−1 
(1 + (t̃ − s)− 3 

4 )ds max
t̃−1≤s≤t̃

||u(·, D−1s)||L4(Ω). 

for all t̃ > 1, which along with (5.4.23) readily leads to (5.4.24). It is obvious that 
(5.4.25) can be proved similarly. 

5.4.3 Asymptotic Behavior 

1. Weak decay information 
The standard parabolic regularity property becomes applicable to improve the regu-
larity of u,  v  and w as follows. 

Lemma 5.16 Let (u,  v,  w)  be the nonnegative global solution of (5.1.18)–(5.1.20) 
obtained in Lemma 5.2. Then there exist κ ∈ (0, 1) and C > 0 such that for all t > D

||u||Cκ, κ 
2 (Ω×[t,t+1]) ≤ C (5.4.26) 

as well as
||v||C2+κ,1+ κ 

2 (Ω×[t,t+1]) + ||w||C2+κ,1+ κ 
2 (Ω×[t,t+1]) ≤ C. (5.4.27) 

Proof We rewrite the first equation of (5.2.20) in the form 

uεt =  ∇  ·  a(x, t, uε, ∇uε) + b(x, t, uε, ∇uε) 

where 

a(x, t, uε, ∇uε) = (ε M(uε + 1)M−1 + mum−1 
ε v−α 

ε )∇uε − αum ε v
−α−1 
ε ∇vε 

and 
b(x, t, uε, ∇uε) = βuε f (wε). 

According to Lemmas 5.4, 5.5, 5.14 and 5.15, there exist two constants C1 > 0 and 
C2 > 0 independent of D ≥ 1 satisfying 

C1 ≤ v−α 
ε (x, t) ≤ C2 in Ω × (D, ∞) 

and
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||v−α−1 
ε (·, t)||L∞(Ω) + ||∇vε(·, t)||L∞(Ω) + ||uε(·, t)||L∞(Ω) + ||wε(·, t)||L∞(Ω) ≤ C2 

for t ≥ D. This guarantees that for all (x, t) ∈ Ω × (D, ∞) 

a(x, t, uε, ∇uε) ·  ∇uε ≥ 
C1m 

2 
um−1 

ε |∇uε|2 − C3, 

|a(x, t, uε, ∇uε)|  ≤  mC4u
m−1 
ε |∇uε|  +  C4|uε| m−1 

2 

and 
|b(x, t, uε, ∇uε)|  ≤  C5 

with some constants Ci > 0 (i = 3, 4, 5) for all t > D and ε ∈ (0, 1). Therefore, 
as an application of the known result on the Hölder regularity in scalar parabolic 
equations (Porzio and Vespri 1993), there exist κ1 ∈ (0, 1) and C > 0 such that for 
all t > D and ε ∈ (0, 1),

||uε||Cκ1 , 
κ1 
2 (Ω×[t,t+1]) ≤ C, 

which along with (5.2.22) readily entails (5.4.26) with κ = κ1. Similarly, one can 
also conclude that there exist κ2 ∈ (0, 1) and C > 0 such that

||v||
Cκ2 , 

κ2 
2 (Ω×[t,t+1]) + ||w||

Cκ2 , 
κ2 
2 (Ω×[t,t+1]) ≤ C for all t > D. 

Moreover, since f ∈ C1[0, ∞), we have

||u f  (w)||
Cκ3 , 

κ3 
2 (Ω×[t,t+1]) ≤ C for all t > D 

with κ3 = min{κ1,  κ2}. Thereupon (5.4.27) with κ = κ3 follows from the parabolic 
regularity estimates (Ladyzenskaja et al. 1968, Chap. IV, Theorem 5.3). 

The first step toward establishing the stabilization result in Theorem 5.3 consists 
in the following observation. 

Lemma 5.17 Assuming that m > 1 and D ≥ 1, we have
∫ ∞ 

0

∫
Ω 
u f  (w) < ∞ (5.4.28) 

and ∫ ∞ 

0

∫
Ω 

|∇w|2 < ∞. (5.4.29) 

Proof An integration of the third equation in (5.1.18) yields

∫
Ω 

wε(·, t) +
∫ t 

0

∫
Ω 
uε f (wε) =

∫
Ω 

w0 for all t > 0.
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Since wε ≥ 0, this entails
∫ ∞ 

0

∫
Ω 
uε f (wε) ≤

∫
Ω 

w0 (5.4.30) 

which implies (5.4.28) on an application of Fatou’s lemma, because uε f (wε) → 
u f  (w) a.e. in Ω × (0, ∞). 

We test the same equation by wε to see that 

1 

2

∫
Ω 

w2 
ε (·, t) +

∫ t 

0

∫
Ω 

|∇wε|2 = 
1 

2

∫
Ω 

w2 
0 −

∫ t 

0

∫
Ω 
uε f (wε)wε ≤ 

1 

2

∫
Ω 

w2 
0 

and thereby verifies (5.4.29) via  (5.2.32). 

The above decay information of wε seems to be weak for the derivation of the large 
time behavior of uε and vε. Indeed, under additional constraint on D, we obtain 
the decay information concerning the gradient of uε and vε which makes our latter 
analysis possible. 

Lemma 5.18 Let m > 1 and α  >  0. There exists D0 ≥ 1 such that whenever D > 
D0, the solution of (5.1.18)–(5.1.20) constructed in Lemma 5.2 satisfies∫ ∞ 

3

∫
Ω 

|∇u 
m+1 
2 |2 < ∞ (5.4.31) 

as well as ∫ ∞ 

3

∫
Ω 

|∇v|2 < ∞. (5.4.32) 

Proof Testing the first equation of (5.2.20) by  (uε + ε) and applying Young’s 
inequality, we obtain that 

1 

2 

d 

dt

∫
Ω 

(uε + ε)2 +
∫

Ω 
(uε + ε)m−1 v−α 

ε |∇uε|2 

≤α

∫
Ω 

(uε + ε)m v−α−1 
ε ∇uε ·  ∇vε + β

∫
Ω 
uε(uε + ε) f (wε) 

≤ 
1 

2

∫
Ω 

(uε + ε)m−1 v−α 
ε |∇uε|2 + 

α2 

2

∫
Ω 

v−α−2 
ε (uε + ε)m+1|∇vε|2 

+ β
∫

Ω 
(uε + ε)uε f (wε), 

and hence
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d 

dt

∫
Ω 

(uε + ε)2 +
∫

Ω 
(uε + ε)m−1 v−α 

ε |∇uε|2 

≤ α2
∫

Ω 
v−α−2 

ε (uε + ε)m+1|∇vε|2 + 2β
∫

Ω 
(uε + ε)uε f (wε). 

(5.4.33) 

On the other hand, let με(t) =
⎛

1 
|Ω|
∫
Ω u 

m+1 
2 

ε (·, t)
⎞ 2 

m+1 

, then testing the second 

equation of (5.2.20) by  −Δvε shows 

d 

dt

∫
Ω 

|∇vε|2 + 2D
∫

Ω 
(Δvε)

2 + 2
∫

Ω 
|∇vε|2 

= 2
∫

Ω 
(uε(·, t) − με(t))Δvε 

≤ 
1 

D

∫
Ω 

|uε(·, t) − με(t)|2 + D
∫

Ω 
(Δvε)

2 , 

and thus 

d 

dt

∫
Ω 

|∇vε|2 + D
∫

Ω 
(Δvε)

2 + 2
∫

Ω 
|∇vε|2 ≤ 

1 

D

∫
Ω 

|uε(·, t) − με(t)|2 . (5.4.34) 

Hence, combining (5.4.33) and (5.4.34), we have 

d 

dt

⎛∫
Ω 

(uε + ε)2 + η
∫

Ω 
|∇vε|2

⎞
+ ηD

∫
Ω 

|Δvε|2 + 2η
∫

Ω 
|∇vε|2 

+
∫

Ω 
v−α 

ε (uε + ε)m−1|∇uε|2 

≤ 
η 
D

∫
Ω 

|uε(·, t) − με(t)|2 + α2
∫

Ω 
v−α−2 

ε (uε + ε)m+1|∇vε|2 

+ 2
∫

Ω 
(uε + ε)uε f (wε) 

(5.4.35) 

for parameter η  >  0 which will be determined later. 
In view of Lemmas 5.4 and 5.5, there exist Ci > 0(i = 1, 2) independent of D ≥ 1 

satisfying 
v−α 

ε (x, t) ≥ C1, v−α−2 
ε (x, t) ≤ C2 in Ω × (2, ∞) 

for all ε ∈ (0, 1). Therefore, from (5.4.35), it follows that
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d 

dt

⎛∫
Ω 

(uε + ε)2 + η
∫

Ω 
|∇vε|2

⎞
+ η D

∫
Ω 

|Δvε|2 + 2η
∫

Ω 
|∇vε|2 

+ C1

∫
Ω 

(uε + ε)m−1|∇uε|2 

≤ 
η 
D

∫
Ω 

|uε(·, t) − με(t)|2 + α2 C2

∫
Ω 

(uε + ε)m+1|∇vε|2 + 2
∫

Ω 
(uε + ε)uε f (wε). 

(5.4.36) 
According to Lemma 5.13 with p = 2(m + 1), we have

⎛∫
Ω 

(uε + ε)2(m+1)

⎞ 1 
2 

≤ C3, 

and then use the Gagliardo–Nirenberg inequality and the Hölder inequality to arrive 
at ∫

Ω 
(uε + ε)m+1|∇vε|2 

≤
⎛∫

Ω 
(uε + ε)2(m+1)

⎞ 1 
2
⎛∫

Ω 
|∇vε|4

⎞ 1 
2 

≤ C4

⎛∫
Ω 

(uε + ε)2(m+1)

⎞ 1 
2 ⎛

||Δvε||2 + ||∇vε||2 L2(Ω)

⎞
≤ C3C4(||Δvε||2 + ||∇vε||2 L2(Ω)). 

(5.4.37) 

Therefore, inserting (5.4.37) into (5.4.36) yields 

d 

dt

⎛∫
Ω 

(uε + ε)2 + η
∫

Ω 
|∇vε|2

⎞
+ η D

∫
Ω 

|Δvε|2 + 2η
∫

Ω 
|∇vε|2 

+ 
4C1 

(m + 1)2

∫
Ω 

|∇(uε + ε) 
m+1 
2 |2 

≤ 
η 
D

∫
Ω 

|uε(·, t) − με(t)|2 + α2 C2C3C4(||Δvε||2 L2(Ω) + ||∇vε||2 L2(Ω)) 

+ 2
∫

Ω 
(uε + ε)uε f (wε). 

(5.4.38) 

By the elementary inequality: 

ξ μ − δμ 

ξ − δ 
≥ δμ−1 for μ ≥ 1,  ξ  ≥ 0,  δ  ≥ 0 and ξ /= δ, 

we have 
|u m+1 

2 
ε (·, t) − μ 

m+1 
2 

ε |  ≥  με(·, t) m−1 
2 |uε(·, t) − με(t)| 

and thus
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μm−1 
ε (t)

∫
Ω 

|uε(·, t) − με(t)|2 ≤
∫

Ω 
|u m+1 

2 
ε (·, t) − μ 

m+1 
2 

ε (t)|2 . 

Furthermore, by the Hölder inequality and the noncreasing property of t |→ ∫
Ω uε 

(·, t), 
με(t) ≥ 

1 

|Ω|
∫

Ω 
uε(·, t) ≥ 

1 

|Ω|
∫

Ω 
u0 

and thereby the Poincaré inequality entails that for some C5 > 0 

u0 
m−1

∫
Ω 

|uε(·, t) − με(t)|2 

≤
∫

Ω 
|u m+1 

2 
ε (·, t) − μ 

m+1 
2 

ε (t)|2 

≤C5

∫
Ω 

|∇u 
m+1 
2 

ε |2 

≤C5

∫
Ω 

|∇(uε + ε) 
m+1 
2 |2 . 

(5.4.39) 

Hence, substituting (5.4.39) into (5.4.38) shows that 

d 

dt

⎛∫
Ω 

(uε + ε)2 + η
∫
Ω 

|∇vε|2
⎞

+
⎛

4C1 

(m + 1)2 
− ηC5 

Du0 m−1 )

∫
Ω 

|∇(uε + ε
⎞m+1 

2 |2 

≤ (α2C2C3C4 − ηD)||Δvε||2 L2(Ω) + (α2C2C3C4 − 2η)||∇vε||2 L2(Ω) 

+ 2
∫
Ω 

(uε + ε)uε f (wε) 

≤ (α2C2C3C4 − η)||Δvε||2 L2(Ω) 

+ (α2C2C3C4 − 2η)||∇vε||2 L2(Ω) + 2||uε(·, t)||L∞(Ω) + 1)
∫
Ω 
uε f (wε) 

and hence completes the proof upon the choice of D0 := max{1, α2C2C3C4C5(m+1)2 

3C1u0 
m−1 }. 

Indeed, for any D > D0, it is possible to find η  >  0 such that 

3C1 

(m + 1)2 
≥ ηC5 

Du0 
m−1 ,  α2 C2C3C4 ≤ η 

and thereby 

d 

dt

⎛∫
Ω 

|uε + ε|2 + η
∫
Ω 

|∇vε|2
⎞

+ C1 

(m + 1)2

∫
Ω 

|∇(uε + ε) 
m+1 
2 |2 + η

∫
Ω 

|∇vε|2 

≤ 2(||uε(·, t)||L∞(Ω) + 1)
∫
Ω 
uε f (wε).
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Therefore, in view of (5.4.30), (5.4.23) and (5.4.24), we see that for any t > 3,
∫ t 

3

∫
Ω 

|∇(uε + ε) 
m+1 
2 |2 +

∫ t 

3

∫
Ω 

|∇vε|2 ≤ C6 + C6

∫ ∞ 

3

∫
Ω 
uε f (wε) ≤ C6 + C6

∫
Ω 

w0 

(5.4.40) 
with constant C6 > 0 independent of ε and time t , which implies that (5.4.31) and 
(5.4.32) are valid due to the lower semi-continuity of norms. 

2. Decay of w 
The integrability statement in Lemma 5.17 can be turned into the decay property of w 
with respect to the norm in L∞(Ω), thanks to the fact that ||u(·, t)||L1(Ω) is increasing 
with time, while ||w(·, t)||L∞(Ω) is non-increasing. 

Lemma 5.19 The third component of the weak solution of (5.1.18)–(5.1.20) con-
structed in Lemma 5.2 fulfills

||w(·, t)||L∞(Ω) → 0 as t →  ∞. (5.4.41) 

Proof Writing u0 := 1 
|Ω|
∫
Ω u0 and f (w) := 1 

|Ω|
∫
Ω f (w), we use the Cauchy– 

Schwarz inequality and the Poincaré inequality to see that for all t > 0 

u0 ·
∫

Ω 
f (w) =

∫
Ω 
u f (w) 

=
∫

Ω 
u f  (w) −

∫
Ω 
u( f (w) − f (w)) 

≤
∫

Ω 
u f  (w) + C1||u||L∞(Ω)|| f '(w)||L∞(Ω)

⎧∫
Ω 

|∇w|2
⎫ 1 

2 

. 

Thanks to the boundedness of u and w, we have  

u0 
2 ·
⎧∫

Ω 
f (w)

⎫2 
≤ 2

⎧∫
Ω 
u f  (w)

⎫2 
+ C2

∫
Ω 

|∇w|2 

≤ C3

∫
Ω 
u f  (w) + C2

∫
Ω 

|∇w|2 . 

Hence, from Lemma 5.17, it follows that∫ ∞ 

1
|| f (w(·, t))||2 L1(Ω)dt  < ∞, 

which, along with the uniform Hölder estimate from Lemma 5.16, implies that 

f (w(·, t)) → 0 in  L1 (Ω) as t →  ∞  

and thereby we may extract a subsequence (t j ) j∈N ⊂ N such that as t j →  ∞, 
f (w(·, t j )) → 0 almost everywhere in Ω . Recalling function f is positive on (0, ∞)
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and f (0) = 0, this necessarily requires that w(·, t j ) → 0 almost everywhere in Ω 
as t j →  ∞. Furthermore, the dominated convergence theorem ensures that 

w(·, t j ) → 0 in  L1 (Ω) as t j →  ∞. 

Now invoking the Gagliardo–Nirenberg inequality in two dimensional setting, we 
have

||w(·, t j )||L∞(Ω) ≤ C4||∇w(·, t j )||
4 
5 

L4(Ω)
||w(·, t j )||

1 
5 

L1(Ω) + C4||w(·, t j )||L1(Ω) 

and thus
||w(·, t j )||L∞(Ω) → 0 as  t j →  ∞. (5.4.42) 

Since t |→ ||w(·, t)||L∞(Ω) is noncreasing by Lemma 5.4, (5.4.41) indeed results from 
(5.4.42). 

3. Convergence of u 
Now we will show that u stabilizes toward the constant u0 + βw0 as t →  ∞. Note  
that a first step in this direction is provided by the finiteness of

∫∞ 
3

∫
Ω |∇u 

m+1 
2 |2 in 

Lemma 5.18, which implies that ||∇u 
m+1 
2 (·, tk)||L2(Ω) along a suitable sequence of 

numbers tk →  ∞. However, in order to make sure convergence along the entire net 
t →  ∞, a certain decay property of ut seems to be required. 

Lemma 5.20 We have ∫ ∞ 

3
||ut (·, t)||2 (W 1,2 0 (Ω))∗dt  < ∞. (5.4.43) 

Proof For any ϕ ∈ C∞
0 (Ω), multiplying the first equation in (5.2.20) by  ϕ and inte-

grating by parts over Ω yield 

|
∫

Ω 
uεt ϕ| 

=
||||
∫

Ω 
ε∇(uε + 1)M ·  ∇ϕ +  ∇(uε(uε + ε)m−1v−α 

ε ) ·  ∇ϕ + βuε f (wε)ϕ

||||
≤
∫

Ω 
(M(uε + 1)M−1|∇uε|  +  mv−α 

ε (uε + ε)m−1|∇uε|  +  α(uε + 1)m v−α−1 
ε |∇vε|)|∇ϕ| 

+ β
∫

Ω 
|uε f (wε)|||ϕ||L∞(Ω) 

≤ C1(

⎧∫
Ω 

|∇(uε + ε) 
m+1 
2 |2

⎫ 1 
2 +

⎧∫
Ω 

|∇vε|2
⎫ 1 

2 

)||ϕ||W 1,2(Ω) 

+ β
∫

Ω 
uε f (wε)||ϕ||L∞(Ω) 

with C1 > 0 independent of ϕ and ε, where we have used the boundedness of uε and 
vε.
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As in the considered two-dimensional setting we have W 1,2(Ω) ϲ→ L∞(Ω), the  
above inequality implies that

||uεt (·, t)||(W 1,2 0 (Ω))∗ ≤ C1(

⎧∫
Ω 

|∇(uε + ε) 
m+1 
2 |2

⎫ 1 
2 +

⎧∫
Ω 

|∇vε|2
⎫ 1 

2 

) + β
∫

Ω 
uε f (wε) 

for all t > 3 and hence for all T > 4,

∫ T 

3
||uεt (·, t)||2 (W 1,2(Ω))∗dt  

≤ C2

⎛∫ T 

3

∫
Ω 

|∇(uε + ε) 
m+1 
2 |2 +

∫ T 

3

∫
Ω 

|∇vε|2 +
∫ T 

3

∫
Ω 
uε f (wε)

⎞

which together with (5.4.40) leads to

∫ ∞ 

3
||uεt (·, t)||2 (W 1,2 0 (Ω))∗dt  ≤ C3 

with C3 > 0 independent of ε. Hence, (5.4.43) results from lower semi-continuity 
of the norm in the Hilbert space L2((3, ∞); (W 1,2 0 (Ω))∗) with respect to weak con-
vergence. 

Thanks to the above estimates, we adapt the argument in Winkler (2015b) to show  
that u actually stabilizes toward u0 + βw0 in the claimed sense beyond in the weak-∗ 
sense in L∞(Ω). 

Lemma 5.21 Let m > 1,  α  >  0 and suppose that D ≥ D0 with D0 as in Lemma 5.18. 
Then we have

||u(·, t) − u✶||L∞(Ω) → 0 as t →  ∞, (5.4.44) 

where u✶ = 1 
|Ω|
∫
Ω u0 + β 

|Ω|
∫
Ω w0. 

Proof According to Lemmas 5.18 and 5.20, one can conclude that 

u(·, t) w
∗

⇀ u✶ in L∞(Ω) as t →  ∞. (5.4.45) 

In fact, if this conclusion does not hold, then one can find a sequence (tk )k∈N ⊂ (0, ∞) 
such that tk →  ∞  as k →  ∞, and some ψ̃ ∈ L1(Ω) such that∫

Ω 
u(x, tk) ψ̃dx  −

∫
Ω 
u✶ψ̃dx  ≥ C1 for all k ∈ N 

with some C1 > 0. Furthermore, by the boundedness of u and the density of C∞
0 (Ω) 

in L1(Ω), we can choose ψ ∈ C∞
0 (Ω) closing ψ̃ in L1(Ω) enough that

∫
Ω 
u(x, tk )ψdx  −

∫
Ω 
u✶ψdx  ≥ 

3C1 

4 
for all k ∈ N
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and then

∫ tk+1 

tk

∫
Ω 
u(x, t)ψdxdt  −

∫ tk+1 

tk

∫
Ω 
u✶ψdxdt  ≥ 

C1 

2 
for all sufficently large k ∈ N, 

(5.4.46) 
where we have used the fact that||||

∫ tk+1 

tk

∫
Ω 

(u(x, t) − u(x, tk))ψdx

||||
=
||||
∫ tk+1 

tk

∫ t 

tk

⟨ut (·, s), ψ(·)⟩dsdt
||||

≤
∫ tk+1 

tk

∫ t 

tk

||ut (·, s)||(W 1,2 0 (Ω))∗dsdt  · ||ψ||W 1,2 0 (Ω) 

≤
∫ tk+1 

tk

⎧∫ t 

tk

||ut (·, s)||2 (W 1,2 0 (Ω))∗ds

⎫ 1 
2 

|t − tk | 1 
2 dt  · ||ψ||W 1,2 0 (Ω) 

≤
⎧∫ tk+1 

tk

∫ t 

tk

||ut (·, s)||2 (W 1,2 0 (Ω))∗dsdt

⎫ 1 
2 

· ||ψ||W 1,2 0 (Ω) 

≤
⎧∫ ∞ 

tk

||ut (·, s)||2 (W 1,2 0 (Ω))∗ds

⎫ 1 
2 

· ||ψ||W 1,2 0 (Ω) 

−→0 as  k →  ∞, 

due to Lemma 5.20. 

Let μ(t) =
⎛

1 
|Ω|
∫
Ω u 

m+1 
2 (·, t)

⎞ 2 
m+1 

. Then as in (5.4.39), we have 

u0 
m−1

∫
Ω 

|u(·, t) − μ(t)|2 ≤
∫

Ω 
|u m+1 

2 (·, t) − μ 
m+1 
2 (t)|2 ≤ C5

∫
Ω 

|∇u 
m+1 
2 |2 

and thus 

u0 
m−1

∫ tk+1 

tk

∫
Ω 

|u(·, t) − μ(t)|2 ≤ C5

∫ tk+1 

tk

∫
Ω 

|∇u 
m+1 
2 (·, t)|2 . (5.4.47) 

We now introduce 

uk(x, s) := u(x, tk + s), (x, s) ∈ Ω × (0, 1) 

and 
μk(x, s) := μ(x, tk + s), (x, s) ∈ Ω × (0, 1)



5.4 Asymptotic Behavior of Solutions to a Signal-Suppressed Motility Model 337

for k ∈ N. Then (5.4.47) implies that 

u0 
m−1

∫ 1 

0

∫
Ω 

|uk(·, s) − μk(s)|2 ds  ≤C5

∫ tk+1 

tk

∫
Ω 

|∇u 
m+1 
2 (·, t)|2 

→ 0 as  k →  ∞, 

due to (5.4.31) in Lemma 5.18. This means that 

uk(x, s) − μk(s) → 0 in  L2 (Ω × (0, 1)) as k →  ∞, 

which in particular allows us to get

∫ 1 

0

∫
Ω 

(uk(·, s) − μk(s))ψds  → 0 as  k →  ∞ (5.4.48) 

as well as ∫ 1 

0

∫
Ω 

(uk(·, s) − μk(s))ds  → 0 as  k →  ∞. (5.4.49) 

Moreover, by Lemma 5.19, we have

∫ tk+1 

tk

∫
Ω 

w(·, t)dt  ≤  |Ω|||w(·, tk)||L∞(Ω) → 0 as  k →  ∞  

and thereby 

|Ω|
∫ 1 

0 
μk(s)ds  =

∫ 1 

0

∫
Ω 
uk(·, s)ds  −

∫ 1 

0

∫
Ω 

(uk(·, s) − μk(s))ds  

=  |Ω|u∗ − β
∫ tk+1 

tk

∫
Ω 

w(·, t)dt  −
∫ 1 

0

∫
Ω 

(uk(·, s) − μk(s))ds  

→|Ω|u∗ as k →  ∞ (5.4.50) 

due to (5.4.49) and (5.4.41). 
Therefore, from (5.4.46), (5.4.48) and (5.4.50), it follows that 

C1 

2 
≤
∫ tk+1 

tk

∫
Ω 
u(·, t)ψdt  −

∫ tk+1 

tk

∫
Ω 
u✶ψdt  

=
∫ 1 

0

∫
Ω 

(uk(·, s) − μk(s))ψds  +
∫ 1 

0

∫
Ω 

μk(s)ψds  − u✶

∫
Ω 

ψ 

=
∫ 1 

0

∫
Ω 

(uk(·, s) − μk(s))ψds  +
∫ 1 

0 
μk(s)ds

∫
Ω 

ψ − u✶

∫
Ω 

ψ 

→0 as  k →  ∞,
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which is absurd and hence proves that actually (5.4.45) is valid. 
Let us suppose on the contrary that (5.4.44) be false. Then without loss of gen-

erality, there exist sequence {xk}k∈N and {tk}k∈N ∈ (0, ∞) with tk →  ∞  as k →  ∞  
such that for some C1 > 0 

u(xk, tk) − u∗ = max 
x∈Ω 

|u(x, tk) − u∗|  ≥  C1 for all k ∈ N. 

In view of the compactness of Ω , where passing to subsequences we can find x0 ∈ Ω 
such that xk → x0 as k →  ∞. Furthermore, because u is uniformly continuous in⋃

k∈N(Ω × tk), this entails that one can extract a further subsequence if necessary 
such that 

u(x, tk ) − u∗ ≥ 
C1 

2 
for all x ∈ B := Bδ(x0) ∩ Ω and k ∈ N 

for some δ  >  0. Noticing that if x0 ∈ ∂Ω , the smoothness of ∂Ω ensures the existence 
of x̂0 ∈ Ω and a smaller δ̂  >  0 such that Bδ̂( ̂x0) ⊂ B. Now taking the nonnegative 
function ψ ∈ C∞

0 (Bδ̂( ̂x0))) such as a smooth truncated function in Bδ̂( ̂x0)), we then 
have ∫

Ω 
(u(x, tk ) − u✶)ψdx  =

∫
Bδ̂ ( ̂x0) 

(u(x, tk) − u✶)ψdx  ≥ 
C1 

2 
·
∫

Ω 
ψdx, 

which contradicts (5.4.45) and hence proves the lemma. 

4. Stabilization of v 
In what follows, based on the uniform Hölder bounds of v and decay of ∇v implied 
by (5.4.27) and (5.4.32), respectively, we shall show the corresponding stabilization 
result for v by a contradiction argument. 

Lemma 5.22 Let m > 1 and (u,  v,  w)  be the solution of (5.1.18)–(5.1.20) obtained 
in Lemma 5.2. Then we have

||v(·, t) − u✶||L∞(Ω) → 0 as t →  ∞. (5.4.51) 

Proof According to the uniform Hölder bounds of v and decay of ∇v implied by 
(5.4.27) and (5.4.32), respectively, (5.4.51) may be derived by a contradiction argu-
ment. Indeed, assume that (5.4.51) was false, then we can find a sequence (tk)k∈N 
with tk →  ∞  as k →  ∞, and constant C1 > 0 such that

||v(·, tk) − u✶||L∞ ≥ C1. 

Furthermore, the uniform Hölder continuity of v in Ω ×  [t, t + 1] warrants the exis-
tence of (xk)k∈N and r > 0 such that
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|v(x, t) − u✶| > 
C1 

2 

for every x ∈ Br (xk) and t ∈ (tk, tk + τ)  and hence
∫ tk+τ 

tk

∫
Ω 

|v(·, t) − u✶|2 > 
|Ω|τ c2 1 

4 
. (5.4.52) 

On the other hand, the Poincaré inequality indicates

∫ tk+τ 

tk

∫
Ω 

|v(·, t) − u✶|2 ≤ C
∫ tk+τ 

tk

∫
Ω 

|∇v|2 + C
∫ tk+τ 

tk

∫
Ω 

|v(·, t) − u✶|2 . 
(5.4.53) 

Therefore, (5.4.53) yields a contradiction to (5.4.52) thanks to

∫ tk+τ 

tk

∫
Ω 

|∇v|2 → 0 as  tk → ∞. 

Now the convergence result in the flavor of Theorem 5.3 has actually been proved 
already. 

Proof of Theorem 5.3. The claimed assertion in Theorem 5.3 is the consequence 
of Lemmas 5.19, 5.21 and 5.22. 
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Chapter 6 
Multi-taxis Cross-Diffusion System 

6.1 Introduction 

Multi-taxis appears in society interactions and cancer treatment. Society interactions 
can lead to the complex dynamical behavior in biology and even in criminology 
(Eftimie et al. 2007; Guttal and Couzin 2010; Short et al. 2008). A particular example 
in this direction is mixed-species foraging flocks, such as the formation of Alaska’s 
shearwater flocks through attraction to kittiwake foragers (Hoffman et al. 1981). 
Oncolytic viruses (OV) are a kind of viruses that preferentially infect and destroy 
cancer cells. Oncolytic viruses can be engineered by some of the less virulent viruses 
in nature and be readily combined with other agents. A diverse range of viruses has 
been investigated as potential cancer therapeutics, such as herpesvirus, adenovirus, 
vaccinia virus measles virus and polio virus, and oncolytic virotherapy offers a novel 
promising cancer treatment modality (Breitbach and Parato 2015; Goldsmith et al. 
1998; Msaouel et al. 2013). 

This chapter is concerned with the multi-taxis diffusion systems modeling 
foraging–scrounging interplay or oncolytic virotherapy. Section 6.3 is concerned 
with the asymptotic behavior in a doubly tactic resource consumption model with 
proliferation. Toward better understanding of the effect of foraging–scrounging inter-
play on spatio-temporal dynamics, the authors of Tania et al. (2012) proposed the 
forager–scrounger system given by 

⎧ 
⎪⎨ 

⎪⎩ 

ut = Δu − χ1∇  ·  (u∇w), 
vt = Δv − χ2∇  ·  (v∇u), 
wt = dΔw − λ(u + v)w − μw + r 

(6.1.1) 

with positive parameters d,  χ1,  χ2,  λ  and nonnegative parameters μ and r , for the  
unknown population densities u = u(x, t) and v = v(x, t) of foragers and scroungers 
and nutrient concentration w = w(x, t), respectively. The term−∇ · (u∇w) accounts 
for the tendency of foragers moving toward the increasing resource concentration,
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and −∇ · (v∇u) models the movement of scroungers following the actively search-
ing foragers rather the resource. Due to the sequential taxis-type cross-diffusion 
mechanisms in (6.1.1), the considerable extra difficulties seem to be expected when 
compared to the corresponding scrounger-free system

⎧
ut = Δu − χ1∇  ·  (u∇w), 
wt = dΔw − λuw − μw + r. 

(6.1.2) 

Indeed, in the prototypical case μ = r = 0, the two-dimensional version of (6.1.2) 
exhibits a substantially stronger tendency toward spatial homogeneous equilibria, 
which is also valid for its 3D analog at least after some waiting times (Tao and Win-
kler 2012c). This result implies that any destabilization of the taxis mechanism in 
(6.1.2) can be suppressed by the relaxation of the diffusion process together with 
nutrient consumption and thereby allows for a certain entropy-like structure. The 
feature of (6.1.1) is the sequential taxis, that is, the nutrient-taxis mechanism from 
(6.1.2) coupled with forager-taxis mechanism. In this situation, the mild relaxation 
of foragers may not suppress the potential of destabilization driven by the forager-
taxis mechanism and thus limits the accessibility of energy-like techniques from the 
mathematical point of view. Accordingly, to the best of our knowledge, the ana-
lytical results in the literature are available only for the low dimensions or certain 
generalized solutions, and thereby, the comprehensive understanding of (6.1.1) is  
still far from complete (Black 2020; Cao  2020; Cao and Tao 2021; Liu  2019; Liu  
and Zhuang 2020; Tao and Winkler 2019b; Wang and Wang 2020; Winkler 2019c). 
For example, Tao and Winkler (2019b) established the existence of global classical 
solutions to the corresponding Neumann initial-boundary value problem of (6.1.1) in  
the one-dimensional setting for suitably regular initial data, as well as an exponential 
stabilization provided that the initial masses of either u or v are suitably small. As 
for the higher dimensional model (6.1.1), only generalized solutions are considered 
in Winkler (2019c) under an explicit condition on the initial datum for w and r , and 
moreover, they can approach spatially homogeneous equilibria in the large time limit 
if r decays sufficiently fast. For more related works on smooth properties of solu-
tions to the variants of (6.1.1), inter alia accounting for the superlinear degradation 
mechanisms of two populations, we refer the readers to Black (2020) and Wang and 
Wang (2020). 

On the other hand, (6.1.2) may be viewed as a kind of the predator–prey system 
with prey-taxis:

⎧
ut = Δu − χ1∇  ·  (u∇w) + u f  (w, u) + h(u), 
wt = dΔw − λu f  (w, u) + g(w), 

(6.1.3) 

where u(x, t) and w(x, t) are predator density and prey density, respectively; χ1∇w 
is the velocity of predators pursuing preys (i.e., prey-taxis); h(u) and g(w) represent 
the intra-specific interaction of predators and preys, while f (w, u) is the functional 
response, and its typical form in the literature is f (w, u) = w (Lotka–Volterra type)
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and 1 
λ is the biomass conversion rate from the prey loss to predator gain. In contrast to 

the attractive Keller–Segel model, prey-taxis in most cases of (6.1.3) tends to stabilize 
the predator–prey interactions and may actually lead to the lack of pattern formation, 
which contradicts intuitive assumptions (Chakraborty et al. 2007; Lee et al. 2008, 
2009; Lewis  1994). It also has been recognized that the possibility of spatial pattern 
formation in (6.1.3) crucially depends on the death rate of predators, the prey growth 
kinetics g(w) and inter alia functional forms of functional response f (w, u) (Cai 
et al. 2022; Lee et al. 2009; Wang et al. 2015). In addition to the pattern formation 
in (6.1.3), the question of which extent the intrinsic predator–prey interaction may 
preclude the population overcrowding has received considerable attention (see Jin 
and Wang 2017; Wang and Wang 2019b; Wu et al.  2018; Xiang 2018 and references 
therein). 

In synopsis of the above results, it is natural to consider the dynamical behavior of 
(6.1.1) when the proliferation of foragers and scroungers is taken into account, which 
thus indicates that the population proliferation essentially relies on the availability of 
nutrient resources. Specially, this work will be concerned with the initial-boundary 
value problem 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

ut = Δu − χu∇  ·  (u∇w) + uw, x ∈ Ω, t > 0, 
vt = Δv − χv∇  ·  (v∇u) + vw, x ∈ Ω, t > 0, 
wt = Δw − λ(u + v)w − μw, x ∈ Ω, t > 0, 
∇u · ν =  ∇v · ν =  ∇w · ν = 0, x ∈ ∂Ω, t > 0, 
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω 

(6.1.4) 
in a smoothly bounded domain Ω ⊂ RN , N ≥ 1, where ν denotes the outward normal 
vector field on ∂Ω . 

It is worthwhile to mention that (6.1.4) can be regarded as a relative of 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

ut = Δu − χ ∇  ·  (u∇w) + uw, x ∈ Ω, t > 0, 
vt = αvw, x ∈ Ω, t > 0, 
wt = Δw − βuw − γ  vw, x ∈ Ω, t > 0, 
∇u · ν =  ∇w · ν = 0, x ∈ ∂Ω, t > 0, 
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω, 

(6.1.5) 
which describes the competition between the populations u and v feeding on a com-
mon single non-renewable resource w. The authors of Krzyżanowski et al. (2019) 
asserted global solvability of problem (6.1.5) within a natural weak solution concept 
and moreover provided an analytical evidence which indicates that under suitably 
small initial nutrient distributions, in the long time perspective, the motility abil-
ity of population u will turn out to be a competitive advantage irrespectively of 
the competitive kinetics thereof. It should be remarked that the structure of (6.1.5) 
is comparatively simple enough to allow for the quasi-dissipative property, which 
seems to be lost due to the taxis-type cross-diffusive term in the second equation
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of (6.1.4). Inspired by Cao and Lankeit (2016), Myowin et al. (2020) and Li et al. 
(2019b), we shall consider the asymptotic behavior of (6.1.4) under suitably small 
initial data. Our standing assumptions on the initial data herein will be that 

⎧ 
⎨ 

⎩ 

v0 ∈ W 1,∞(Ω) is nonnegative with v0 /≡ 0 and that 

(u0, w0) ∈ (W 2,∞(Ω))2 is nonnegative with 
∂u0 
∂ν 

= 0, 
∂w0 

∂ν 
= 0. 

(6.1.6) 

In this setting, all of the solutions of (6.1.4) approach spatially homogeneous 
profiles in the large time limit when suitably regular initial data satisfy a certain 
small condition, which reads as follows (Li and Wang 2021a). It is remarked that in 
comparison with the relative results of Wang and Wang (2020), the small restriction 
on initial data does not involve v0 herein. 

Theorem 6.1 Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary 
and m∞ = 1 

|Ω|
∫

Ω (λu0 + λv0 + w0). Then there exists ε0 > 0 such that for all ε  <  ε0 
and

||(λu0 + λv0 + w0)(·) − m∞||L∞(Ω) ≤ ε, ||∇u0||L2 p0 (Ω) ≤ ε,
||w0||L∞(Ω) ≤ ε, ||∇w0||L2 p0 (Ω) ≤ ε, ||Δw0||L p0 (Ω) ≤ ε 

with some p0 ∈ N satisfying p0 > 1 + N 2 , the problem (6.1.4) admits a unique non-
negative global classical solution (u,  v,  w) ∈ (C(Ω ×  [0, ∞)) ∩ C2,1(Ω × 
(0, ∞)))3. Moreover, there exist constants u∗ ∈ (0, m∞ 

λ ), v∗ ∈ (0, m∞ 
λ ) and Ki > 0 

(i = 1, 2, 3) such that for all t ∈ (0, ∞), we have

||u(·, t) − u∗||L∞(Ω) ≤ K1εe
−αt ,

||v(·, t) − v∗||L∞(Ω) ≤ K2εe
−αt ,

||w(·, t)||L∞(Ω) ≤ K3εe
−αt , 

where α = min{λ1,  μ} for μ  >  0 and α = min{λ1, m∞} for μ = 0 with λ1 > 0 the 
first nonzero eigenvalue of −Δ in Ω under the Neumann boundary condition. 

It is noted that the L p − Lq estimate for the Neumann heat semigroup etΔ: there 
exists C > 0 such for all ω ∈ Lq (Ω) with

∫

Ω ω = 0,

||etΔ ω||L p(Ω) ≤ C
⎛
1 + t− N 2 ( 

1 
q − 1 p )

⎞
e−λ1t||ω||Lq (Ω) 

plays an important role in the derivation of decay estimations in Cao and Lankeit 
(2016), Myowin et al. (2020) and Li et al. (2019b). However, for the doubly tac-
tic model (6.1.4) with μ  >  0, despite its dissipative feature, a more subtle effort is 
required in rigorous analysis due to the invalid of the mass conservation of λu(·, t) + 
λv(·, t) + w(·, t). Indeed, the core of our argument is to verify that the interval 
(0, T ) on which solutions enjoy some exponential decay properties can be extended
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to (0, ∞) in which the application of above L p − Lq estimate seems to be neces-
sary. To this end, a nonnegative auxiliary quantity z(·, t) = μ

∫ t 
0 e

(t−s)Δw(·, s)ds  is 
introduced and accordingly allows us to apply L p − Lq estimate in our argument 
since the mass of λu(·, t) + λv(·, t) + w(·, t) + z(·, t) is conserved now. It should 
be remarked that our approach is also valid when system (6.1.4) takes into account 
nutrient renewal r (x, t) with a certain temporal decay. 

Oncolytic virotherapy offers a novel promising cancer treatment modality and 
currently has some limitations in the oncolytic efficacy, which might be the result of 
virus clearance and the physical barriers inside tumors such as the interstitial fluid 
pressure, extracellular matrix (ECM) deposits and tight inter-cellular junctions. The 
next two sections of this chapter focus on the boundedness and asymptotic behavior 
for solutions to oncolytic virotherapy models involving triply haptotactic terms. To 
better understand the physical barriers that limit virus spread, the authors of Alzahrani 
et al. (2019) recently proposed the PDE-ODE system of the form 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ut = DuΔu − ξu∇  ·  (u∇v) + μuu(1 − u) − ρuuz, 
wt = DwΔw − ξw∇  ·  (w∇v) − δww + ρwuz, 
vt =  −(αuu + αww)v + μvv(1 − v), 
zt = DzΔz − ξz∇  ·  (z∇v) − δz z − ρzuz  + βw 

(6.1.7) 

to describe the coupled dynamics of uninfected cancer cells u, OV-infected cancer 
cells w, ECM v and oncolytic viruses (OV) z. Herein, the underlying modeling 
hypotheses are that in addition to random diffusion with the respective motility 
coefficient Du and Dw, cancer cells can direct their movement toward regions of 
higher ECM densities with the haptotactic coefficient ξu,  ξw, respectively, and that 
uninfected cells, apart from proliferating logistically at rate μu , are converted into 
an infected state upon contact with virus particles, whereas infected cells die owing 
to lysis at a rate δw. It is assumed that the static ECM is degraded by both types of 
cancer cells, possibly remodeled with rate μv in the sense of spontaneous renewal 
of healthy tissue. Finally, it is also supposed that besides the random motion with 
Dz the random motility coefficient, virus particles move up the gradient of ECM 
with the ECM-OV-taxis rate ξz , increase at a rate β due to the release of free virus 
particles through infected cells and undergo decay at the rate δz accounting for the 
natural virions’ death as well as the trapping of these virus particles into the cancer 
cells. 

From a mathematical perspective, model (6.1.7) on the one hand involves three 
simultaneous haptotaxis processes, but on the other hand contains the production 
term ρuz  in w−equation which distinguishes (6.1.7) from the most of the previous 
haptotaxis (Fontelos et al. 2002; Marciniak-Czochra and Ptashnyk 2010; Liţcanu 
and Morales-Rodrigo 2010b; Tao  2011; Winkler 2018b) and chemotaxis–haptotaxis 
models (Pang and Wang 2018; Stinner et al. 2014; Tao and Winkler 2019a). In 
fact, the haptotactic migration of u, z toward higher densities v simultaneously, in 
which no smoothing action on the spatial regularity of v can be expected, renders us 
unable to apply smoothing estimates for the Neumann heat semigroup to gain a priori
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boundedness information on u and z beyond the norm in L1(Ω). Accordingly, this 
superlinear production term ρuz  in (6.1.7) seems likely to increase the destabilizing 
potential in the sense of enhancing the tendency toward blow-up of solutions and 
thus becomes the key contributor to mathematical challenges already given in the 
derivation of global solvability theory of (6.1.7), which is also indicated in the quali-
tative analysis of chemotaxis-May–Nowak model (Bellomo and Tao 2020; Bellomo 
et al. 2019; Hu and Lankeit 2018; Winkler 2019d). 

Though the methodological limitations seem to widely restrict the theoretical 
understanding of the full model (6.1.7), some analytical works on simplifications of 
the latter have recently been achieved in Tao and Winkler (2020a, b, 2021). Indeed, 
upon neglecting haptotactic migration processes of infected tumor cells and oncolytic 
viroses, renewal of ECM as well as proliferation of infected tumor cells, Tao and 
Winkler considered the corresponding Neumann initial-boundary value problem for 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ut = Δu −  ∇  ·  (u∇v) − ρuz, 
vt =  −  (u + w) v, 
wt = DwΔw − w + uz, 
zt = DzΔz − z − uz  + βw 

(6.1.8) 

in a bounded domain Ω ⊂ R2 and obtained that the globally defined classical solution 
is bounded if 0 <  β  <  1, ρ ≥ 0 (Tao and Winkler 2020a), whereas for β  >  1 and∫

Ω u(·, 0)  >  |Ω|/(β − 1), infinite-time blow-up occurs at least in the particular case 
when ρ = 0 (Tao and Winkler 2021). In order to provide an complement to this, the 
study in Tao and Winkler (2022) reveals that for any ρ ≥ 0 and arbitrary β  >  0, at  
each prescribed level γ ∈ (0, 1/(β − 1)+), one can identify an L∞-neighborhood 
of the homogeneous distribution (u,  v,  w, z) ≡ (γ , 0, 0, 0) within which all initial 
data lead to globally bounded solutions that stabilize toward the constant equilibrium 
(u∞, 0, 0, 0) with some u∞ > 0. On the other hand, in Tao and Winkler (2020c), it 
is proved that if β ∈ (0, 1), for any choice of M > 0, one can find initial data such 
that the globally defined classical solution satisfies u ≥ M in Ω × (0, ∞). 

Moreover, for the doubly haptotactic version of (6.1.7) with ξz = 0, the global 
classical solvability to the corresponding initial-boundary value problem for more 
comprehensive systems of the form 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ut = DuΔu − ξu∇  ·  (u∇v) + μuu(1 − u) − ρuuz, 
wt = DwΔw − ξw∇  ·  (w∇v) − δww + ρwuz, 
vt =  −(αuu + αww)v + μvv(1 − v), 
zt = DzΔz − δz z − ρzuz  + βw. 

(6.1.9) 

is proved in Tao and Winkler (2020b). This is achieved by discovering a quasi-
Lyapunov functional structure that allows to appropriately cope with the presence 
of nonlinear zero-order interaction terms which apparently form the most signifi-
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cant additional mathematical challenge of the considered system in comparison to 
previously studied haptotaxis models. 

The purpose of Sect. 6.4 is to a more comprehensive understanding of model 
(6.1.7) in the biologically most relevant constellation in which the haptotactic motion 
of virus particles is taken into account particularly, and either the production term 

uz  or proliferating term μuu(1 − u) is adjusted to 
uz  

ku + θ u 
of the Beddington– 

deAngelis type with positive parameters ku,  θ  (Bellomo and Tao 2020) or  μuu(1 − 
ur ) of superquadratic type, respectively. We are concerned with the PDE-ODE system 
given by 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ut = Du Δu − ξu∇  ·  (u∇v) + μuu(1 − ur ) − 
ρuz  

ku + θ u 
, x ∈ Ω, t > 0, 

wt = DwΔw − ξw∇  ·  (w∇v) − δww + ρuz  

ku + θu 
, x ∈ Ω, t > 0, 

vt =  −(αuu + αww)v + μvv(1 − v), x ∈ Ω, t > 0, 

zt = DzΔz − ξz∇  ·  (z∇v) − δz z − ρuz  

ku + θu 
+ βw, x ∈ Ω, t > 0, 

(Du∇u − ξuu∇v) · ν = 0, x ∈ ∂Ω, t > 0, 
(Dw∇w − ξww∇v) · ν = 0, x ∈ ∂Ω, t > 0, 
(Dw∇z − ξz z∇v) · ν = 0, x ∈ ∂Ω, t > 0, 
u(x, 0) = u0(x), w(x, 0) = w0(x), v(x, 0) = v0(x), z(x, 0) = z0(x), x ∈ Ω 

(6.1.10) 
in a bounded domain Ω ⊂ R2 with smooth boundary, where for the initial data 
(u0, w0,  v0, z0), we suppose throughout Sect. 6.4 that 
⎧ 
⎨ 

⎩ 

u0, w0, z0 and v0 are nonnegative functions from C2+ϑ ( Ω̄) for some ϑ ∈ (0, 1), 

with u0 /≡ 0, w0 /≡ 0, z0 /≡ 0,  v0 /≡ 0 and 
∂w0 

∂ν 
= 0 on  ∂Ω. 

(6.1.11) 
Beyond the global classical solvability, in Sect. 6.4, we focus on the global bound-

edness of classical solutions to (6.1.10)–(6.1.11) stated as follows, which can be 
regarded as a first step toward the qualitative comprehension of (6.1.10) (Li and 
Wang 2021b). 

Theorem 6.2 Let Ω ⊂ R2 be a bounded domain with smooth boundary, Du, Dw, 
Dz, ξu,  ξw,  ξz,  μu,  μv,  ρ,  ku,  αu,  αw,  β,  δw and δz are positive parameters. Sup-
pose that r = 1,  θ  >  0 or r > 1,  θ  ≥ 0. Then for any choice of (u0, w0,  v0, z0) 
fulfilling (6.1.11), there exists C > 0 such that if ξwαw < C, (6.1.10) admits a 
unique global classical solution (u, w,  v,  z), where ||u(·, t)||L∞(Ω),||w(·, t)||L∞(Ω) 
and ||z(·, t)||L∞(Ω) are uniformly bounded for t ∈ (0, ∞). 

Remark 6.1 In line with the above discussion, the boundedness result on (6.1.10) 
with r = 1,  θ  = 0 is also valid when ξz = 0. 

Remark 6.2 When μv = 0, one can see that the restriction on ξwαw in Theorem 6.2 
can be replaced by a certain small condition on v0.
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A cornerstone of our analysis is to show that for the suitably small ξwαw, the functional 

F (t) 

:= A
∫

Ω 
eχw v(·,t)b(·, t) ln b(·, t) +

∫

Ω 
eχu v(·,t)a(·, t) ln a(·, t) +

∫

Ω 
eχz v(·,t)c(·, t) ln c(·, t) 

with a = ue−χu v , b = we−χwv and c = ze−χz v enjoys a certain quasi-dissipative prop-
erty under appropriate choice of the positive constant A (of (6.4.32)). As the 
first step in this direction, we perform the variable change used in several prece-
dents, by which the crucial haptotactic contribution to the equations in (6.1.10) 
is reduced to zero-order terms χua(αuu + αww)v − χuμvav(1 − v), χwb(αuu + 
αww)v − χwμvbv(1 − v) and χzc(αuu + αww)v − χzμvcv(1 − v), respectively 
(see (6.4.1) below). Thanks to a variant of the Gagliardo–Nirenberg inequality involv-
ing certain L log L-type norms, the latter offers the sufficient regularity so as to allow 
for the L∞-bounds of solutions in the present two-dimensional setting. 

Section 6.5 is devoted to understand the dynamics behavior of (6.1.7) to a con-
siderable extent in higher dimensional settings in light of the above-mentioned 
results and a recent consideration of global classical solutions to the one-dimensional 
(6.1.7) in Tao  (2021). Specially, taking into account the linear degradation instead 
of the renewal of ECM and neglecting the proliferation of uninfected tumor cells in 
(6.1.7), we are concerned with the following Neumann initial-boundary problem in 
Ω ⊂ RN (N ≥ 1): 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ut = Δu − ξu∇  ·  (u∇v) − ρuuz, x ∈ Ω, t > 0, 
wt = Δw − ξw∇  ·  (w∇v) − δww + ρwuz, x ∈ Ω, t > 0, 
vt =  −(αuu + αww)v − δvv, x ∈ Ω, t > 0, 
zt = Δz − ξz∇  ·  (z∇v) − δz z − ρzuz  + βw, x ∈ Ω, t > 0, 
(∇u − ξuu∇v) · ν = (∇w − ξww∇v) · ν = (∇z − ξz z∇v) · ν = 0, x ∈ ∂Ω, t > 0, 
u(x, 0) = u0(x), w(x, 0) = w0(x), v(x, 0) = v0(x), z(x, 0) = z0(x), x ∈ Ω, 

(6.1.12) 
where ξu , ξw, ξz , ρu , ρw, ρz , δw, δv , δz , αu , αw and β are positive parameters, for the 
initial data (u0, w0,  v0, z0), we suppose throughout the third part of Chap. 6 that 

⎧ 
⎨ 

⎩ 

u0, w0,  v0, z0 are nonnegative functions from C2+ν (Ω) for some ν ∈ (0, 1), 

u0 /≡ 0, w0 /≡ 0,  v0 /≡ 0, z0 /≡ 0 and  
∂u0 
∂ν 

= 
∂w0 

∂ν 
= 

∂v0 

∂ν 
= 

∂z0 
∂ν 

= 0 on  ∂Ω. 
(6.1.13) 

Our main result makes sure that for suitably small initial data, these solutions will 
be globally bounded and approach some constant profiles asymptotically (Wei et al. 
2022). 

Theorem 6.3 Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary. 
Assume (6.1.13) holds and β ≤ ρu+ρz 

ρw 
δw. Then if for some p0 > max{1, N 2 }, there 

exists ε  >  0 which depends on ξu,  ξw,  ξz,  ρu,  ρw,  ρz,  αy,  αw such that
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||
||
||
||u0 + 

ρu + ρz 

ρw 
w0 + z0

||
||
||
||
L∞(Ω) 

≤ ε,

||∇u0(·)||L2 p0 (Ω) ≤ ε, ||∇w0(·)||L2 p0 (Ω) ≤ ε,

||∇v0(·)||L2 p0 (Ω) ≤ ε, ||∇z0(·)||L2 p0 (Ω) ≤ ε,

||Δu0(·)||L p0 (Ω) ≤ ε, ||Δw0(·)||L p0 (Ω) ≤ ε, ||Δv0(·)||L p0 (Ω) ≤ ε, 

the problem (6.1.12) has a unique nonnegative global classical solution 

(u,  v,  w, z) ∈ (
C

(
Ω̄ ×  [0, ∞)

) ∩ C2,1
(
Ω̄ × (0, ∞)

))4 
. 

Moreover, there exists a nonnegative constant u∗ such that

||u(·, t) − u∗||L∞(Ω) → 0,

||w(·, t)||L∞(Ω) → 0,

||z(·, t)||L∞(Ω) → 0,

||v(·, t)||L∞(Ω) → 0 

as t →  ∞. 

Remark 6.3 Our result indicates that the infected cancer cells and virus particle 
population can become extinct asymptotically and the density of uninfected cancer 
cells tends to a nonnegative constant u∗ which is less than u0. This result implies 
that the oncolytic virotherapy is effective. Unfortunately, the condition under which 
u∗ equals to zero is left as an open problem. 

Same to the analysis in Sect. 6.3, a more subtle effort seems to be required for our 

analysis in Sect. 6.5 due to the decreasing of
∫

Ω

⎛
u + ρu+ρz 

ρw 
w + z

⎞
(·, s)ds. To this  

end, a nonnegative auxiliary quantity 

Q(·, t) =
∫ t 

0 
e(t−s)Δ

⎡

−
⎛

β − 
ρu + ρz 

ρw 
δw

⎞

w + δz z
⎤

(·, s)ds  

is introduced and accordingly allows us to apply L p − Lq estimate in our argument 
since the mass of u + ρu+ρz 

ρw 
w + z + Q is conserved now.
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6.2 Preliminaries 

In this section, we provide some preliminary results that will be used in the subsequent 
sections. 

By applying the maximal Sobolev regularity (Theorem 3.1 of Hieber and Prüss 
1997), we can obtain the following lemma, which together with Lemmas 1.1, 3.2 and 
4.3 will play an important role in the proof of our main results in Sects. 6.3 and 6.5. 

Lemma 6.1 (Ishida et al. 2014, Lemma 2.1; Yang et al. 2015, Lemma 2.2) Let 
r ∈ (1, ∞) and consider the following evolution equation: 

⎧ 
⎪⎨ 

⎪⎩ 

ht = Δh + f, (x, t) ∈ Ω × (0, T ), 
∇h · ν = 0, (x, t) ∈ ∂Ω × (0, T ), 
h(x, 0) = h0(x), x ∈ Ω. 

(6.2.1) 

Then for each h0 ∈ W 2,r (Ω) with ∇h0 · ν = 0 on ∂Ω and any f ∈ Lr ((0, T ), 
Lr (Ω)), (6.2.1) admits a unique mild solution h ∈ W 1,r ((0, T ); Lr (Ω)) ∩ Lr ((0, T ); 
W 2,r (Ω)). Moreover, there exists Cr > 0, such that

∫ T 

0

∫

Ω 
|Δh|r ≤ Cr

∫ T 

0

∫

Ω 
| f |r + Cr (||h0||r Lr (Ω) + ||Δh0||r Lr (Ω)). (6.2.2) 

The following lemma is a special case of Lemma A.5 in Tao and Winkler (2014b) 
and can be regarded as a variant of a Gagliardo–Nirenberg inequality originally 
derived in Biler et al. (1994), which will be of importance in the later analysis in 
Sect. 6.4. 

Lemma 6.2 Let Ω ⊂ R2 be a bounded domain with smooth boundary, and let p ∈ 
(1, ∞) and ε  >  0. Then there exists K (p,  ε)  >  0 such that

||ϕ||
2(p+1) 

p 

L 
2(p+1) 

p (Ω) 
≤ ε||∇ϕ||2 L2(Ω) ·

∫

Ω 
|ϕ| 2 

p | ln |ϕ|| + K (p,  ε)
⎛

||ϕ||
2( p+1) 

p 

L 
2 
p (Ω) 

+ 1
⎞

holds for all ϕ ∈ W 1,2(Ω). 

The following Lemma is based on simple calculations on the maximal value of 
the function f (t) = tae−bt for t ≥ 0, which is used in the analysis in Sect. 6.5. 

Lemma 6.3 For all a > 0, b > 0, we have 

ta e−bt ≤
⎛ a 

be

⎞a 

holds for all t ≥ 0.
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6.3 Asymptotic Behavior of Solutions to a Doubly Tactic 
Resource Consumption Model 

At the beginning of this subsection, we provide a basic state on local existence 
and extensibility of solutions to (6.1.4), which can be readily proved by the Amann 
theory. Similar proof thereof can be found in Tao and Winkler (2019b, Lemma 2.1) 
and hence we omit the detail here. 

Lemma 6.4 There exist a maximal existence time Tmax ∈ (0, ∞] and (u,  v,  w) ∈ 
C(Ω ×  [0, Tmax )) ∩ C2,1(Ω × (0, Tmax )) such that (u,  v,  w) is the unique nonneg-
ative solution of (6.1.4) in [0, Tmax ). Furthermore, if Tmax < +∞, then 

lim 
t→Tmax

(||u(·, t)||W 1,q (Ω) + ||v(·, t)||W 1,q (Ω) + ||w(·, t)||W 1,q (Ω)

) =  ∞  

for all q > N . 

Theorem 6.1 is the consequence of the following lemmas. In the proof of these 
lemmas, the constants ci > 0, i = 0, 1,  .  .  .  ,  4, refer to those in Lemmas 1.1 and 4.3, 
respectively. 

We first collect some easily verifiable observations in the following lemma: 

Lemma 6.5 Under the assumptions of Theorem 6.1, there exist Mi > 1(i = 1, 2, 3), 
and ε  >  0 such that 

2c10c4(1 + m∞)(χu M4 + χv M3) ≤ 
M1 

2 
, (6.3.1) 

e 
2 
α ≤ 

M2 

2 
, (6.3.2) 

2c3 + 2c10c2
⎛

(χu M6 + M2|Ω| 1 
2 p0 ) 

1 + m∞ 

λ
+ 1

⎞

≤ 
M3 

2 
, (6.3.3) 

M2ε ≤ 1, M5ε ≤ 1, M3ε ≤ 1,  χu M4 M3ε ≤ 1, 4χvc2 M3ε ≤ 1, (6.3.4) 

where 

M4 := 2c3 + 2|Ω| 1 
2 p0 (1 + m∞ + μ) c10c2 M2, M5 := M1 + 2c1, 

M6 := 2c1 + 2c4 M2c10λ

⎛

|Ω| 1 
2 p0 + C5|Ω| 

p0−2 
2 p0( p0−1)

⎞

+ 2c4 M4c10 (1 + m∞ + μ) |Ω| 1 
2 p0 

and constant C5 > 0 is given in Lemma 6.10 below which is independent of Mi (i = 
1, 2, 3). 

To obtain a conservation law of mass, we introduce an nonnegative variable z satis-
fying
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⎧ 
⎪⎨ 

⎪⎩ 

zt = Δz + μw, (x, t) ∈ Ω × (0, T ), 
∇z · ν = 0, (x, t) ∈ ∂Ω × (0, T ), 
z(x, 0) = z0(x) ≡ 0, x ∈ Ω, 

(6.3.5) 

then it is easy to see that for any t ∈  [0, T ),
∫

Ω 
(λu + λv + w + z)(·, t) =

∫

Ω 
(λu0 + λv0 + w0). (6.3.6) 

Let 

T ⍙sup 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

~T ∈ (0, Tmax )

|
|
|
|
|
|
|
|
|
|

||(λu + λv + w + z)(·, t) −etΔ (λu0+ λv0 +w0)(·)||L∞(Ω) 

≤ M1εe
−αt for all t ∈  [0, ~T );

||w(·, t)||L∞(Ω) ≤ M2εe
−αt for all t ∈  [0, ~T );

||∇u(·, t)||L2 p0 (Ω) ≤ M3εe
−αt for all t ∈  [0, ~T ). 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

(6.3.7) 

By Lemma 6.4 and the smallness condition on initial data in Theorem 6.1, T > 0 
is well-defined. We first show T = Tmax . To this end, we will show that all of the 
estimates mentioned in (6.3.7) are valid with even smaller coefficients on the right-
hand side. The derivation of these estimates will mainly rely on L p − Lq estimates 
for the Neumann heat semigroup and the fact that the classical solutions on (0, Tmax ) 
can be represented as 

(λu + λv + w + z)(·, t) = etΔ (λu0 + λv0 + w0)(·) (6.3.8) 

− λ
∫ t 

0 
e(t−s)Δ (χu∇  ·  (u∇w) + χv∇  ·  (v∇u))(·, s)ds, 

u(·, t) = etΔ u0(·) −
∫ t 

0 
e(t−s)Δ (χu∇  ·  (u∇w) − uw)(·, s)ds, (6.3.9) 

v(·, t) = etΔ v0(·) −
∫ t 

0 
e(t−s)Δ (χv∇  ·  (v∇u) − vw)(·, s)ds, (6.3.10) 

w(·, t) = etΔ w0(·) −
∫ t 

0 
e(t−s)Δ (λ(u + v)w + μw)(·, s)ds, (6.3.11) 

z(·, t) = μ
∫ t 

0 
e(t−s)Δ w(·, s)ds (6.3.12) 

for all t ∈ (0, Tmax ) as per the variation-of-constants formula. 

Lemma 6.6 Suppose that the assumptions from Theorem 6.1 hold. Then for all t ∈ 
(0, T ), we have

||(λu + λv + w + z)(·, t) − m∞||L∞(Ω) ≤ M5εe
−αt (6.3.13)
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with M5 := M1 + 2c1. 

Proof Due to 

etΔ m∞ = m∞,

∫

Ω 
[(λu0 + λv0 + w0)(·) − m∞]  =  0,

||(λu0 + λv0 + w0)(·) − m∞||L∞(Ω) ≤ ε, 

and the assumption of Theorem 6.1, the definition of T along with Lemma 1.1(i ) 
implies that for all t ∈ (0, T ),

||(λu + λv + w + z)(·, t) − m∞||L∞(Ω) 

≤||(λu + λv + w + z)(·, t) − etΔ (λu0 + λv0 + w0)||L∞(Ω) 

+ ||etΔ[(λu0 + λv0 + w0)(·) − m∞]||L∞(Ω) 

≤ M1εe
−αt + 2c1||(λu0 + λv0 + w0)(·) − m∞||L∞(Ω)e

−λ1t 

≤ (M1 + 2c1)εe−αt 

=M5εe
−αt . 

Lemma 6.7 Under the assumptions of Theorem 6.1, we have

||w(·, t)||L∞(Ω) ≤ 
M2 

2 
εe−αt for all t ∈ (0, T ). (6.3.14) 

Proof Multiplying the third equation in (6.1.4) by  kwk−1 and integrating the result 
over Ω , we get d dt

∫

Ω w
k ≤  −k

∫

Ω (λu + λv + μ)wk on (0, T ). 
In what follows, we shall show (6.3.14) in two cases: μ  >  0 and μ = 0. 
(I) The case μ  >  0. Since −(λu + λv + μ) ≤  −μ, we have  

d 

dt

∫

Ω 
wk (·, t) ≤  −μk

∫

Ω 
wk (·, t), 

and thus
∫

Ω 
wk (·, t) ≤

∫

Ω 
wk 
0(·)e−μkt  , 

which implies that

||w(·, t)||L∞(Ω) ≤ εe−μt ≤ 
1 

2 
M2εe

−μt 

for any t ∈ (0, T ), where we have used (6.3.2). 
(II) The case μ = 0. Note that z ≡ 0 for all (x, t) ∈ Ω ×  [0, T ), and thus



354 6 Multi-taxis Cross-Diffusion System

−(λu + λv) ≤  |λu + λv + w + z − m∞|  +  w − m∞. 

From the definition of T and Lemma 6.6, it follows that for any t ∈ (0, T ), 

d 

dt

∫

Ω 
wk (·, t) 

≤ k
∫

Ω 
wk (·, t)|(λu + λv + w + z)(·, t) − m∞|  +  k

∫

Ω 
wk+1(·, t) − km∞

∫

Ω 
wk (·, t) 

≤ k||(λu + λv + w + z)(·, t) − m∞||L∞(Ω)

∫

Ω 
wk (·, t) + k||w(·, t)||L∞(Ω)

∫

Ω 
wk (·, t) 

− km∞
∫

Ω 
wk (·, t) 

≤ k((M5 + M2)εe
−αt − m∞)

∫

Ω 
wk (·, t) 

and hence
∫

Ω 
wk (·, t) ≤

∫

Ω 
wk 
0(·)ek((M5+M2)ε

∫ t 
0 e

−αsds−m∞t) 

≤ ||w0(·)||k Lk (Ω)
e 
k
⎛

M5+M2 
α ε−m∞t

⎞

, 

which implies that for any t ∈ (0, T ),

||w(·, t)||Lk (Ω) ≤ ||w0(·)||Lk (Ω)e 
(M5+M2 )ε 

α
−m∞t . (6.3.15) 

Thanks to ||w0||L∞(Ω) ≤ ε and (6.3.2), (6.3.4), we obtain that for any t ∈ (0, T ),

||w(·, t)||L∞(Ω) ≤ 
1 

2 
M2εe

−m∞t 

by letting k →  ∞  in (6.3.15). 

Lemma 6.8 Let the conditions from Theorem 6.1 be fulfilled. Then for all t ∈ (0, T ) 
and p0 > N 2 , we have

||∇w(·, t)||L2 p0 (Ω) ≤ M4εe
−αt 

with M4 := 2c3 + 2|Ω| 1 
2 p0 (1 + m∞ + μ) c10c2 M2. 

Proof By (6.3.11) and Lemma 1.1(i i i  ), noticing ||∇w0(·)||L2 p0 (Ω) ≤ ε, we have
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||∇w(·, t)||L2 p0 (Ω) (6.3.16) 

≤ ||∇etΔ w0(·)||L2 p0 (Ω) +
∫ t 

0
||∇e(t−s)Δ ((λu + λv + μ)w)(·, s)||L2 p0 (Ω)ds  

≤ 2c3εe−λ1t +
∫ t 

0
||∇e(t−s)Δ ((λu + λv + μ)w)(·, s)||L2 p0 (Ω)ds. 

Now, we estimate the last two integrals on the right-hand side of the above inequality. 
From the definition of T , Lemmas 1.1(i i  ), 4.3 and 6.6, it follows that

∫ t 

0
||∇e(t−s)Δ ((λu + λv + μ)w)(·, s)||L2 p0 (Ω)ds  

≤ c2
∫ t 

0 
(1 + (t − s)− 1 

2 )e−λ1(t−s)||(λu + λv + μ)w(·, s)||L2 p0 (Ω) (6.3.17) 

≤ c2|Ω| 
1 

2 p0

∫ t 

0 
(1 + (t − s)− 1 

2 )e−λ1(t−s)||w(·, s)||L∞(Ω)||(λu + λv + μ)(·, s)||L∞(Ω)ds  

≤ c2|Ω| 
1 

2 p0 M2ε

∫ t 

0 
(1 + (t − s)− 1 

2 )e−λ1(t−s)e−αs (1 + m∞ + μ) ds  

≤ 2|Ω| 
1 

2 p0 (1 + m∞ + μ) c10c2 M2εe
−αt . 

Inserting (6.3.17) into (6.3.16), we get

||∇w||L2 p0 (Ω) ≤
⎛
2c3 + 2|Ω| 1 

2 p0 (1 + m∞ + μ) c10c2 M2

⎞
εe−αt 

= M4εe
−αt , 

and thereby complete the proof. 

Lemma 6.9 Under the assumptions of Theorem 6.1, for all p0 > N 2 , there exists a 
constant C > 0 independent of T such that

∫ T 

0

∫

Ω 
|Δw(x, s)|p0 dxds  ≤ C, (6.3.18)

∫ T 

0

∫

Ω 
|Δu(x, s)|p0 dxds  ≤ C. (6.3.19) 

Proof Noticing that w satisfies 

⎧ 
⎪⎨ 

⎪⎩ 

wt = Δw + F(x, t), (x, t) ∈ Ω × (0, T ), 
∇w · ν = 0, (x, t) ∈ ∂Ω × (0, T ), 
w(x, 0) = w0, x ∈ Ω 

(6.3.20) 

and u satisfies
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⎧ 
⎪⎨ 

⎪⎩ 

ut = Δu + G(x, t), (x, t) ∈ Ω × (0, T ), 
∇u · ν = 0, (x, t) ∈ ∂Ω × (0, T ), 
u(x, 0) = u0, x ∈ Ω, 

(6.3.21) 

with F(x, t) =  −λ(u + v)w − μw and G(x, t) =  −χu(∇u∇w + uΔw) + uw, 
respectively. By Lemmas 6.6 and 6.7, we can see that

∫ T 

0

∫

Ω 
|F(x, s)|p0 dxds  ≤ 

M p0 2 ((1 + m∞)p0 + μp0 ) 
αp0 

|Ω|. 

Hence, thanks to Lemma 6.1, we can find C1 > 0 independent of T such that

∫ T 

0

∫

Ω 
|Δw(x, s)|p0 dxds  ≤ C1. 

Similarly, by the definition of T , (6.3.18) and Lemma 6.8, there exists C2 > 0 inde-
pendent of T fulfilling

∫ T 

0

∫

Ω 
|G(x, s)|p0 dxds  ≤ C2. 

Applying Lemma 6.1 to (6.3.21) once more, we have

∫ T 

0

∫

Ω 
|Δu(x, s)|p0 dxds  ≤ C3 

for some C3 > 0 independent of T and thereby complete the proof. 

Thanks to the decay property of w,  v,  ∇u and space–time L p0 -estimate for Δu, 
we can establish an L2( p0−1) bound for ∇v based on Lemmas 1.1 and 4.3. 

Lemma 6.10 Suppose that the requirements from Theorem 6.1 are met. Then for all 
p0 > 1 + N 2 , there exists C5 > 0 independent of T and Mi (i = 1, 2, 3) such that

||∇v(·, t)||L2(p0−1) (Ω) ≤ C5 for all t ∈ (0, T ). (6.3.22) 

Proof By (6.3.10), we have

||∇v(·, t)||L2( p0−1) (Ω) (6.3.23) 

≤ ||∇etΔ v0(·)||L2( p0−1) (Ω) + χv

∫ t 

0
||∇e(t−s)Δ∇  ·  (v∇u)(·, s)||L2(p0−1) (Ω)ds  

+
∫ t 

0
||∇e(t−s)Δ (vw)(·, s)||L2( p0−1) (Ω)ds. 

From Lemma 1.1(i i i  ), we obtain



6.3 Asymptotic Behavior of Solutions to a Doubly Tactic Resource Consumption Model 357

||∇etΔ v0(·)||L2(p0−1) (Ω) ≤ 2c3||∇v0(·)||L2(p0−1) (Ω)e
−λ1t . (6.3.24) 

Now, we estimate the last two integrals on the right-hand side of (6.3.23). From the 
definition of T , Lemmas 1.1(i i  ), 4.3, 6.6 and 6.9, it follows that 

χv

∫ t 

0
||∇e(t−s)Δ∇  ·  (v∇u)(·, s)||L2( p0−1)(Ω)

ds  

≤ c2χv

∫ t 

0 
e−(t−s)λ1

⎛

1 + (t − s)−
1 
2− N 2 p0 

+ N 
4( p0−1)

⎞

||v(·, s)Δu(·, s)||L p0 (Ω)ds  

+ c2χv

∫ t 

0 
e−(t−s)λ1

⎛

1 + (t − s)−
1 
2− N (2 p0−1) 

4 p0(p0−1) + N 
4( p0−1)

⎞

· ||∇v(·, s)∇u(·, s)||
L 

2 p0( p0−1) 
2 p0−1 (Ω) 

ds  

≤ c2χv 
1 + m∞ 

λ

∫ t 

0
||Δu(·, s)||p0 L p0 (Ω)

ds (6.3.25) 

+ c2χv 
1 + m∞ 

λ

∫ t 

0 
e
−(t−s) λ1 p0 p0−1

⎛

1 + (t − s)−
1 
2− N 2 p0 

+ N 
4( p0−1)

⎞ p0 
p0−1 

ds  

+ c2χv sup 
t∈(0,T )

||∇v(·, s)||L2( p0−1)(Ω) 

·
∫ t 

0 
e−(t−s)λ1

⎛

1 + (t − s)−
1 
2− N (2 p0−1) 

4p0(p0−1) + N 
4( p0−1)

⎞

M3εe
−αsds  

≤ c2χvC1 
1 + m∞ 

λ
+ c2χvC2 

1 + m∞ 
λ

+ 2c2c10χv M3εe
−αt sup 

t∈(0,T )
||∇v(·, s)||L2( p0−1)(Ω) 

where C1 :=
∫ t 
0 ||Δu(·, s)||p0 

L p0 (Ω)ds  is bounded by Lemma 6.9 and 

C2 :=
∫ t 

0 
e−(t−s) λ1 p0 p0−1

⎛
1 + (t − s)−

1 
2 − N 

2 p0 
+ N 

4( p0−1)

⎞ p0 
p0−1 

ds  < +∞ 

for p0 > 1 + N 2 . 
Next, by Lemmas 1.1(i i  ), 4.3, 6.6 and 6.7, we get

∫ t 

0
||∇e(t−s)Δ vw||L2( p0−1) (Ω)ds  

≤ c2|Ω| 1 
2(p0−1)

∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s)||w||L∞(Ω)||v||L∞(Ω)ds (6.3.26) 

≤ c2|Ω| 1 
2(p0−1) M2ε

∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s) e−αs 1 + m∞ 

λ 
ds  

≤ 2|Ω| 1 
2(p0−1) c10c2 M2 

1 + m∞ 

λ 
εe−αt . 

Inserting (6.3.24)–(6.3.26) into (6.3.23) and using (6.3.4), we readily get



358 6 Multi-taxis Cross-Diffusion System

sup 
t∈(0,T )

||∇v||L2(p0−1)(Ω) ≤ 2c3||∇v0(·)||L2(p0−1)(Ω) + 2c2χvC1 
1 + m∞ 

λ
+ 2c2χvC2 

1 + m∞ 
λ 

+ 4|Ω| 1 
2( p0−1) c10c2 

1 + m∞ 
λ 

, 

and thereby from Lemma 6.5, we arrive at

∫

Ω 
|∇v(x, t)|2( p0−1)dx  ≤ C5, t ∈ (0, T ) (6.3.27) 

with some C5 > 0 independent of T , Mi (i = 1, 2, 3) and hence complete the proof. 

Beyond the weak information ofΔw in Lemma 6.9, we now turn the boundedness 
of ∇v into a statement on decay of Δw. 

Lemma 6.11 Under the assumptions of Theorem 6.1, for all p0 > N 2 ,

||Δw(·, t)||L p0 (Ω) ≤ M6εe
−αt for all t ∈ (0, T ) (6.3.28) 

with 

M6 := 2c1 + 2c4 M2c10λ

⎛

|Ω| 1 
2 p0 + C5|Ω| 

p0−2 
2 p0 ( p0−1)

⎞

+ 2c4 M4c10 (1 + m∞ + μ) |Ω| 1 
2 p0 . 

Proof From (6.3.8), we have

||Δw(·, t)||L p0 (Ω) 

≤ ||etΔ Δw0||L p0 (Ω) +
∫ t 

0
||e(t−s)Δ Δ((λ(u + v) + μ)w)(·, s)||L p0 (Ω)ds (6.3.29) 

≤ 2c1e−λ1t||Δw0||L p0 (Ω) 

+
∫ t 

0
||e(t−s)Δ∇  ·  (λ(∇u +  ∇v)w + (λ(u + v) + μ)∇w)(·, s)||L p0 (Ω)ds  

≤ 2c1e−λ1t||Δw0||L p0 (Ω) + λ
∫ t 

0
||e(t−s)Δ∇  ·  ((∇u +  ∇v)w)(·, s)||L p0 (Ω)ds  

+
∫ t 

0
||e(t−s)Δ∇  ·  ((λ(u + v) + μ)∇w)(·, s)||L p0 (Ω)ds. 

From Lemma 1.1(i ) and the fact that ||Δw0||L p0 (Ω) ≤ ε, we obtain that

||etΔ Δw0||L p0 (Ω) ≤ 2c1εe−λ1t . (6.3.30) 

Now, we estimate the last two integrals on the right-hand side of the above inequality. 
From the definition of T , Lemmas 1.1(i v), 4.3, 6.6, 6.8, 6.10 and (6.3.4), it follows 
that
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λ

∫ t 

0
||e(t−s)Δ∇  ·  ((∇u(·, s) +  ∇v(·, s))w(·, s))||L p0 (Ω)ds  

≤ c4λ
∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s)||w(·, s)||L∞(Ω)||∇u(·, s)||L p0 (Ω)ds (6.3.31) 

+ c4λ
∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s)||w(·, s)||L∞(Ω)||∇v(·, s)||L p0 (Ω)ds  

≤ c4 M2ελ|Ω| 1 
2 p0

∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s) e−2αs M3εds  

+ c4 M2ελ|Ω| p0−2 
2 p0(p0−1)

∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s) e−αs C5ds  

≤ 2c4 M2c10λ
⎛
|Ω| 1 

2 p0 + C5|Ω| p0−2 
2 p0 (p0−1)

⎞
εe−αt 

and

∫ t 

0
||e(t−s)Δ∇  ·  ((λ(u + v) + μ)(·, s)∇w(·, s))||L p0 (Ω)ds  

≤ c4
∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s)||∇w(·, s)||L p0 (Ω)||(λ(u + v) + μ)(·, s)||L∞(Ω)ds  

≤ c4 M4ε (1 + m∞ + μ) |Ω| 1 
2 p0

∫ t 

0 
(1 + (t − s)−

1 
2 )e−λ1(t−s) e−αs ds (6.3.32) 

≤ 2c4 M4c10 (1 + m∞ + μ) |Ω| 1 
2 p0 εe−αt . 

Inserting (6.3.30), (6.3.31) and (6.3.32) into (6.3.29), we obtain

||Δw(·, t)||L p0 (Ω) ≤ M6εe
−αt 

and thereby complete the proof. 

Lemma 6.12 Under the assumptions of Theorem 6.1, for all p0 > N 2 ,

||∇u(·, t)||L2 p0 (Ω) ≤ 
M3 

2 
εe−αt for all t ∈ (0, T ). (6.3.33) 

Proof By (6.3.9), we have

||∇u(·, t)||L2 p0 (Ω) ≤ ||∇etΔu0(·)||L2 p0 (Ω) + χu

∫ t 

0
||∇e(t−s)Δ∇  ·  (u∇w)(·, s)||L2 p0 (Ω)ds  

(6.3.34) 

+
∫ t 

0
||∇e(t−s)Δ (uw)(·, s)||L2 p0 (Ω)ds. 

From Lemma 1.1(i i i  ) and the fact that ||∇u0(·)||L2 p0 (Ω) ≤ ε, we obtain
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||∇etΔ u0(·)||L2 p0 (Ω) ≤ 2c3εe−λ1t . (6.3.35) 

Now, we estimate the last two integrals on the right-hand side of (6.3.34). From the 
definition of T , Lemmas 1.1(i i  ), 4.3, 6.6, 6.8 and 6.11, it follows that  

χu

∫ t 

0
||∇e(t−s)Δ∇  ·  (u∇w)(·, s)||L2 p0 (Ω)ds  

≤ c2χu

∫ t 

0 
e−(t−s)λ1

⎛
1 + (t − s)−

1 
2 − N 

4 p0

⎞
||u(·, s)Δw(·, s)||L p0 (Ω)ds  

(6.3.36) 

+ c2χu

∫ t 

0 
e−(t−s)λ1

⎛
1 + (t − s)−

1 
2 − N 

4 p0

⎞
||∇u(·, s)∇w(·, s)||L p0 (Ω)ds  

≤ c2χu

∫ t 

0 
e−(t−s)λ1

⎛
1 + (t − s)−

1 
2 − N 

4 p0

⎞
M6εe

−αs 1 + m∞ 

λ 
ds  

+ c2χu

∫ t 

0 
e−(t−s)λ1

⎛
1 + (t − s)−

1 
2 − N 

4 p0

⎞
M4 M3ε

2 e−2αs ds  

≤ 2c10c2χu

⎛

M6 
1 + m∞ 

λ
+ M4 M3ε

⎞

εe−αt 

and

∫ t 

0
||∇e(t−s)Δ uw||L2 p0 (Ω)ds  

≤ c2|Ω| 1 
2 p0

∫ t 

0

⎛
1 + (t − s)−

1 
2

⎞
e−λ1(t−s)||w||L∞(Ω)||u||L∞(Ω)ds (6.3.37) 

≤ c2 M2ε|Ω| 1 
2 p0

∫ t 

0

⎛
1 + (t − s)−

1 
2

⎞
e−λ1(t−s) e−αs 1 + m∞ 

λ 
ds  

≤ 2c10c2 M2 
1 + m∞ 

λ 
ε|Ω| 1 

2 p0 e−αt . 

Inserting (6.3.35)–(6.3.37) into (6.3.18) and using (6.3.3), we readily get

||∇u||L2 p0 (Ω) ≤ 2c3εe−λ1t + 2c10c2
⎛⎛

χu M6 + M2|Ω| 1 
2 p0

⎞
1 + m∞ 

λ
+ χu M4 M3ε

⎞

εe−αt 

≤ 
M3 

2 
εe−αt 

and thereby complete the proof. 

Lemma 6.13 Under the assumptions of Theorem 6.1, for all t ∈ (0, T ),

||(λ(u + v) + w + z)(·, t) − etΔ (λ(u0 + v0) + w0)||L∞(Ω) ≤ 
M1 

2 
εe−αt .
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Proof According to (6.3.7) and Lemma 1.1(i v), we have

||(λ(u + v) + w + z)(·, t) − etΔ (λ(u0 + v0) + w0)||L∞(Ω) 

≤ λ
∫ t 

0
||e(t−s)Δ (∇  ·  (χuu∇w + χvv∇u))(·, s)||L∞(Ω)ds (6.3.38) 

≤ λχu

∫ t 

0
||e(t−s)Δ∇  ·  (u∇w)(·, s)||L∞(Ω)ds  + λχv

∫ t 

0
||e(t−s)Δ∇  ·  (v∇u)(·, s)||L∞(Ω)ds  

≤ c4λχu

∫ t 

0

⎛

1 + (t − s)−
1 
2 − N 

4 p0

⎞

e−λ1(t−s)||u(·, s)||L∞(Ω)||∇w(·, s)||L2 p0 (Ω)ds  

+ c4λχv

∫ t 

0

⎛

1 + (t − s)−
1 
2 − N 

4 p0

⎞

e−λ1(t−s)||v(·, s)||L∞(Ω)||∇u(·, s)||L2 p0 (Ω)ds  

=:I1 + I2. 

Now, we need to estimate I1 and I2. Firstly, from the definition of T , Lemmas 4.3, 
6.6 and 6.8, we obtain 

I1 ≤ c4χu(1 + m∞)M4ε

∫ t 

0

⎛
1 + (t − s)−

1 
2 − N 

4 p0

⎞
e−λ1(t−s) e−αs ds (6.3.39) 

≤ 2c10c4χu(1 + m∞)M4εe
−αt 

and 

I2 ≤ c4λχv (1 + m∞) M3ε

∫ t 

0

⎛
1 + (t − s)−

1 
2 − N 

4 p0

⎞
e−λ1(t−s) e−αs ds  

≤ 2c10c4χv(1 + m∞)M3εe
−αt . (6.3.40) 

Combining (6.3.38)–(6.3.40) along with (6.3.1) leads to

||(λ(u + v) + w + z)(·, t) − etΔ (λ(u0 + v0) + w0)||L∞(Ω) 

≤ 2c10c4(1 + m∞)(χu M4 + χv M3)εe
−αt 

≤ 
1 

2 
M1εe

−αt 

and hence ends the proof. 

Now, we have prepared the major parts of the proof of Theorem 6.1 and thus can 
verify asymptotic properties stated there. 

Proof of the Theorem 6.1. First we claim that T = Tmax . In fact, if  T < Tmax , 
then by Lemmas 6.7, 6.12 and 6.13, we have
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||w(·, t)||L∞(Ω) ≤ 
M2 

2 
εe−αt ,

||∇u(·, t)||L∞(Ω) ≤ 
M3 

2 
εe−αt ,

||(λ(u + v) + w + z)(·, t) − etΔ (λ(u0 + v0) + w0)||L∞(Ω) ≤ 
M1 

2 
εe−αt 

for all t ∈ (0, T ), which contradicts the definition of T in (6.3.7). 
Next, we show that Tmax =  ∞. In fact, if  Tmax < ∞, then in view of the definition 

of T , Lemmas 6.6, 6.8 and 6.10, we obtain that for any p0 > 1 + N 2 , 

lim 
t→Tmax

(||u(·, t)||W 1,2 p0 (Ω) + ||v(·, t)||W 1,2( p0−1) (Ω) + ||w(·, t)||W 1,2 p0 (Ω)

)
< ∞, 

which contradicts with Lemma 6.4. Therefore, we have Tmax =  ∞. 
Integrating the first equation in (6.1.4) over Ω , we have

∫

Ω 
u(x, t)dx  =

∫

Ω 
u0(x)dx  +

∫ t 

0

∫

Ω 
(uw)(x, s)dxds, 

which, along with the nonnegative property of u, w and the fact that

||u(·, t)||L∞(Ω) < 
1 + m∞ 

λ 
, ||w(·, t)||L∞(Ω) < M2εe

−αt , 

warrants 

lim 
t→∞

∫

Ω 
u(x, t)dx  =

∫

Ω 
u0(x)dx  +

∫ +∞ 

0

∫

Ω 
(uw)(x, s)dxds, (6.3.41) 

as well as 

lim 
t→∞ 

u(t) = 
1 

|Ω|
⎛∫

Ω 
u0(x)dx  +

∫ +∞ 

0

∫

Ω 
(uw)(x, s)dxds

⎞

:= u∗. (6.3.42) 

As a consequence of the latter, we immediately have 

0 ≤ u∗ − u(t) = 1 

|Ω|
∫ +∞ 

t

∫

Ω 
(uw)(x, s)dxds  

≤ 
1 + m∞ 

λ|Ω|
∫ +∞ 

t

∫

Ω 
w(x, s)dxds (6.3.43) 

≤ 
1 + m∞ 

αλ 
M2εe

−αt . 

On the other hand, by Poincare’s inequality,
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||u − u||L2 p0 (Ω) ≤ C1||∇u||L2 p0 (Ω), 

and thanks to W 1,2 p0 (Ω) ↗→ L∞(Ω) for p0 > N 2 , we can find C2 > 0 such that

||u − u||L∞(Ω) ≤ C2||u − u||W 1,2 p0 (Ω) ≤ C2(1 + C1)||∇u||L2 p0 (Ω). (6.3.44) 

Therefore, by (6.3.43) and the fact that ||∇u||L2 p0 (Ω) ≤ M3εe−αt , we can pick K1 > 0 
such that

||u − u∗||L∞(Ω) ≤ ||u − u||L∞(Ω) + ||u − u∗||L∞(Ω) 

≤ C2(1 + C1)||∇u||L2 p0 (Ω) +  |u(t) − u∗| (6.3.45) 

≤ K1εe
−αt . 

On the other hand, from (6.3.12) and Lemma 1.1(i i  ), we infer that

||∇z(·, t)||L2 p0 = μ

∫ t 

0
||∇e(t−s)Δ w(·, s)||L2 p0 (Ω)ds  

≤ μc2|Ω| 1 
2 p0

∫ t 

0 
e−(t−s)λ1 (1 + t−

1 
2 )||w(·, s)||L∞(Ω)ds (6.3.46) 

≤ 2μc2c10 M2|Ω| 1 
2 p0 εe−αt . 

By similar procedure as that in the derivation of (6.3.45), there exists constant K2 > 0 
such that

||z − z∗||L∞(Ω) ≤ K2εe
−αt (6.3.47) 

with 

z∗ := 
μ 

|Ω|
∫ +∞ 

0

∫

Ω 
w(x, s)dxds. (6.3.48) 

Then from the fact that 

λ||v − v∗||L∞(Ω) ≤ ||(λu + λv + w + z) − m∞||L∞(Ω) + λ||u − u∗||L∞(Ω) 

+ ||w||L∞(Ω) + ||z − z∗||L∞(Ω) 

with 

v∗ := 
1 

λ

(
m∞ − z∗) − u∗, (6.3.49) 

using (6.3.13), (6.3.14), (6.3.45) and (6.3.47), there exists K3 > 0 such that
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||v − v∗||L∞(Ω) ≤ K3εe
−αt . 

The decay estimates claimed in Theorem 6.1 readily follow and the proof of this 
theorem is thus completed. 

6.4 Boundedness of Solutions to an Oncolytic Virotherapy 
Model 

6.4.1 Some Basic a Prior Estimates 

For the convenience in our subsequent estimation procedure, we let 

χu := 
ξu 

Du 
, χw := 

ξw 

Dw 
and χz := 

ξz 

Dz 

and introduce the variable change used in several precedents (Fontelos et al. 2002; 
Pang and Wang 2018; Tao and Winkler 2014b) 

a = ue−χu v b = we−χwv and c = ze−χz v 

upon which (6.1.10) takes the following form: 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

at = Due
−χu v∇  ·  (eχu v∇a) + f (a, b,  v,  c), x ∈ Ω, t > 0, 

bt = Dwe
−χw v∇  ·  (eχw v∇b) + g(a, b,  v,  c), x ∈ Ω, t > 0, 

vt =  −(αuae
χu v + αwbe

χw v )v + μvv(1 − v), x ∈ Ω, t > 0, 
ct = Dze

−χz v∇  ·  (eχz v∇c) + h(a, b,  v,  c), x ∈ Ω, t > 0, 
∂a 

∂ν 
= 

∂b 

∂ν 
= 

∂c 

∂ν 
= 0, x ∈ ∂Ω, t > 0, 

a(x, 0) = u0(x)e−χu v0(x) , b(x, 0) = w0(x)e
−χw v0(x) , x ∈ Ω, 

v0(x, 0) = v0(x), c(x, 0) = z0(x)e−χz v0(x) , x ∈ Ω 

(6.4.1) 

with 

f (a, b,  v,  c) := μua(1 − ar er χu v ) − 
ρaceχz v 

ku + θaeχu v + χua(αuae
χu v + αwbe

χwv )v 

− χuμvav(1 − v) 

g(a, b,  v,  c) := − δwb + 
ρace(χu+χz−χw)v 

ku + θaeχu v + χwb(αuae
χu v + αwbe

χwv )v 

− χwμvbv(1 − v) 

h(a, b,  v,  c) := − δzc − ρaceχu v 

ku + θaeχu v + βbe(χw−χz )v + χzc(αuae
χu v + αwbe

χwv )v 

− χzμvcv(1 − v).
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It is noted that (6.1.10) and (6.4.1) are equivalent in this framework of classical 
solutions. The following basic statement on the local existence and extensibility 
criterion of classical solutions to (6.4.1) can be proved by a straightforward adaptation 
of the reasoning in Pang and Wang (2018) and Tao and Winkler (2020b). 

Lemma 6.14 Let Du, Dw, Dz, ξu,  ξw,  ξz,  μu,  μv,  ρ,  ku,  αu,  αw,  β,  δw and δz are pos-
itive parameters, and assume that r ≥ 1,  θ  ≥ 0. Then there exist Tmax ∈ (0, ∞] and 
a uniquely determined quadruple (a, b,  v,  c) ∈ (C2,1(Ω ×  [0, Tmax )))

4 which solves 
(6.4.1) in the classical sense and a > 0, b > 0, c > 0 and v  >  0 in Ω × (0, Tmax ), 
and that if Tmax < +∞, then

||a(·, t)||L∞(Ω) + ||b(·, t)||L∞(Ω) + ||∇v(·, t)||L4(Ω) + ||c(·, t)||L∞(Ω) →  ∞  as t ↗ Tmax . 
(6.4.2) 

Proof Invoking well-established fixed point arguments and applying the standard 
parabolic regularity theory, one can readily verify the local existence and uniqueness 
of classical solutions, as well as the extensibility criterion (6.4.2) (cf. Pang and Wang 
2018; Tao and Winkler 2014b for instance). With the help of the maximum principle, 
we can also verify the asserted positivity of the solutions. 

From now on without any further explicit mentioning, we shall suppose that the 
assumptions of Theorem 6.2 are satisfied, and let (a, b,  v,  c) and Tmax ∈ (0, ∞] be as 
provided by Lemma 6.14. Moreover, we may tacitly switch between these variables 
and the quadruple (u, w,  v,  z) if necessary. 

The following important properties of solutions of (6.1.10) can be easily checked. 

Lemma 6.15 Let T > 0. Then solution (u, w,  v,  z) of (6.1.10) satisfies

||u(·, t)||L1(Ω) ≤ u∗ := max{|Ω|, ||u0||L1(Ω)} for all t ∈ (0, T̂ ), (6.4.3)

||v(·, t)||L∞(Ω) ≤ v∗ := max{1, ||v0||L∞(Ω)} for all t ∈ (0, T̂ ) (6.4.4) 

and

||w(·, t)||L1(Ω) ≤ w∗ := max

⎧

||u0||L1(Ω) + ||w0||L1(Ω), 
4μu |Ω| 

min{μu,  δw}
⎫

(6.4.5) 

for all t ∈ (0, T̂ ) as well as

||z(·, t)||L1(Ω) ≤ z∗ := max

⎧

||z0||L1(Ω), 
βw∗ 

δz

⎫

for all t ∈ (0, T̂ ) (6.4.6) 

where T̂ := min{T , Tmax }. 
Proof Integrating the first equation in (6.1.10) over Ω yields
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d 

dt

∫

Ω 
u ≤ μu

∫

Ω 
u − μu

∫

Ω 
ur+1 (6.4.7) 

due to z ≥ 0. Since (
∫

Ω u)r+1 ≤  |Ω|r ∫
Ω u

r+1 by the Cauchy–Schwartz inequality, 
(6.4.7) implies that y(t) := ∫

Ω u(·, t) satisfies 

y'(t) ≤ μu y(t) − 
μu 

|Ω|r y
1+r (t) for all (0, T̂ ), 

from which (6.4.3) follows by the Bernoulli inequality. On the other hand, due to 
the nonnegativity of u, w and v in Ω × (0, T̂ ), the comparison principle entails that 
vt ≤ μvv(1 − v) and thus the estimate in (6.4.4) follows similarly. 

Once more integrating the equations in (6.1.10) over Ω and using the fact that 
2u ≤ ur+1 + 4, we can see that 

d 

dt

∫

Ω 
u + μu

∫

Ω 
u ≤ 4μu |Ω|  −  ρ

∫

Ω 

uz  

ku + θ u 
(6.4.8) 

and 

d 

dt

∫

Ω 
w + δw

∫

Ω 
w ≤ ρ

∫

Ω 

uz  

ku + θu 
(6.4.9) 

as well as 

d 

dt

∫

Ω 
z + δz

∫

Ω 
z ≤  −ρ

∫

Ω 

uz  

ku + θ u 
+ β

∫

Ω 
w. (6.4.10) 

Combining (6.4.8)–(6.4.9), we obtain that 

d 

dt

⎛∫

Ω 
u +

∫

Ω 
w

⎞

+ μu

∫

Ω 
u + δw

∫

Ω 
w ≤ 4μu |Ω|, 

which entails that y(t) := ∫

Ω u +
∫

Ω w satisfies 

y'(t) + min{μu,  δw}y(t) ≤ 4μu |Ω|. 

Hence, using the Bernoulli inequality to the above inequality, we get the estimate in 
(6.4.5). Further, it follows from (6.4.10) that 

d 

dt

∫

Ω 
z + δz

∫

Ω 
z ≤ βw∗ 

and thereby derive (6.4.6) by an ODE comparison argument.
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6.4.2 Bounds for a, b and c in LlogL 

This section aims to construct an Lyapunov-like functional involving the logarithmic 
entropy of a, b and c, rather than that of u, w and z, which provides some regularity 
information of solutions that forms the crucial step in establishing L∞ bounds for 
u, w and z in the present spatially two-dimensional setting. It should be mentioned 
that upon the special structure of (6.1.9), inter alia neglecting haptotactic migration 
processes of oncolytic viruses z, the energy-like functional F in Tao and Winkler 
(2020b) can be achieved by appropriately combining the logarithmic entropy of u, 
w, Dirichlet integral of 

√
v and integral of z2 in line with some precedent studies 

(see Tao and Winkler 2014b; Winkler 2018b). 
The first step of our approaches consists in testing the first equation of (6.4.1) 

against ln a. 

Lemma 6.16 For any ε ∈ (0, 1), there exists K1(ε) > 0 such that 

d 

dt

∫

Ω 
eχu v a ln a + Du

∫

Ω 
eχu v |∇a|2 

a 
+ 

μu 

2

∫

Ω 
(ln a + 1)ur+1 ≤ ε

∫

Ω 
w2 + K1(ε). 

(6.4.11) 

Proof From the first equation in (6.4.1), it follows 

(aeχu v )t = Du∇  ·  (eχu v∇a) + μuu(1 − ur ) − 
ρuz  

ku + θ u 
. 

By the positivity of a in Ω × (0, ∞), testing the first equation in (6.4.1) by  ln a then 
shows that 

d 

dt

∫

Ω 
eχu va ln a 

=
∫

Ω 
(eχu va)t ln a +

∫

Ω 
eχu vat 

=  −Du

∫

Ω 
eχu v |∇a|2 

a 
+

∫

Ω

⎛

μuu(1 − ur ) − ρuz  

ku + θ u

⎞

ln a +
∫

Ω 
f (a, b,  v,  z)eχu v 

=  −Du

∫

Ω 
eχu v |∇a|2 

a 
+

∫

Ω 
(ln a + 1)

⎛

μuu(1 − ur ) − ρuz  

ku + θu

⎞

(6.4.12) 

+ χu
∫

Ω 
u(αuu + αww)v − χu μv

∫

Ω 
uv(1 − v) 

≤  −Du

∫

Ω 
eχu v |∇a|2 

a 
− μu

∫

Ω 
(ln a + 1)(ur+1 − u) − ρ

∫

Ω 

uz  

ku + θu 
ln a 

+ χu
∫

Ω 
u(αuu + αww)v + χu μv

∫

Ω 
uv2. 

By (6.4.6), we see that
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−ρ

∫

Ω 

uz  

ku + θu 
ln a =  −ρ

∫

Ω 

zeχu v 

ku + θ u 
a ln a ≤ 

ρeχu v
∗ 

kue

∫

Ω 
z ≤ 

ρeχu v
∗ 

kue 
z∗, 

since a ln a ≥  −e−1 for all a > 0 and v(x, t) ≤ v∗ for all x ∈ Ω, t > 0 by (6.4.4). 
Apart from that, for any ε ∈ (0, 1), there exists C1(ε) > 0 such that 

μu

∫

Ω 
(ln a + 1)u + χu

∫

Ω 
u(αuu + αww)v + χuμv

∫

Ω 
uv2 

≤ 
μu 

2

∫

Ω 
(ln a + 1)u2 + ε

∫

Ω 
w2 + C1(ε) 

due to a2 ≤ ε1a2 ln a + e 
2 
ε1 , a ln a ≤ ε1a2 ln a − ε−1 

1 ln ε1 and a ≤ ε1a2 ln a + 2e 
2 
ε1 

for any ε1 ∈ (0, 1). Therefore, inserting above two inequalities into (6.4.12), we 
arrive at (6.4.11). 

Lemma 6.17 There exists c∗ > 0 with the property that if ξwαw < c∗, then one can 
find ε0 ∈ (0, 1) and K2 > 0 such that for all ε ∈ (0,  ε0), 

d 

dt

∫

Ω 
eχwv b ln b + 

Dw 

4

∫

Ω 
eχwv |∇b|2 

b 
+ δw

∫

Ω 
eχwv b ln b 

≤ ε||c||2 L2(Ω) + 
K2 

ε
||a||2 Lr+1(Ω) + 

K2 

ε 
, 

(6.4.13) 

where r = 1 if θ  >  0 and r > 1 if θ ≥ 0. 

Proof From the second equation in (6.4.1), it follows that 

(beχwv )t = Dw∇  ·  (eχwv∇b) − δww + ρuz  

ku + θu 
. 

By straightforward calculation relying on 0 ≤ v ≤ 1 in Ω × (0, ∞) and the Young 
inequality, we then see that for any ε  >  0, 

d 

dt

∫

Ω 
eχw vb ln b + δw

∫

Ω 
eχw vb ln b + Dw

∫

Ω 
eχw v |∇b|2 

b 
(6.4.14) 

=
∫

Ω 
(ln b + 1)

⎛
ρuz  

ku + θ u 
− δww

⎞

+ χw

∫

Ω 
w(αuu + αww)v − χwμv

∫

Ω 
wv(1 − v) 

+ δw
∫

Ω 
w ln b 

≤ ρ
∫

Ω 

uz  

ku + θ u 
ln b + ρ

∫

Ω 

uz  

ku + θ u 
+ χwμvv

∗
∫

Ω 
w + χwαu v

∗
∫

Ω 
wu + χwαwv∗

∫

Ω 
w2. 

The first summand on the right-hand side of (6.4.14) will be estimated in the case 
r = 1,  θ  >  0 and r > 1,  θ  ≥ 0, respectively. 

For r = 1 and θ  >  0, we have
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d 

dt

∫

Ω 
eχw vb ln b + δw

∫

Ω 
eχw vb ln b + Dw

∫

Ω 
eχw v |∇b|2 

b 
(6.4.15) 

≤ 
ρ 
θ

∫

b>1 
z ln b + (ε + χwαwv∗)

∫

Ω 
w2 + 

ρ 
θ

∫

Ω 
z + 

χ 2 wα2 
u v

∗2 

ε

∫

Ω 
u2 + χwμvv

∗
∫

Ω 
w. 

Since ln2 s ≤ 4 
e2 s for all s > 1, an application of the Hölder inequality leads to 

ρ 
θ

∫

b>1 
z ln b ≤ ε||z||2 L2(Ω) + 

ρ2 

εθ 2

∫

Ω 
b. 

In conjunction with (6.4.15), we can see that 

d 

dt

∫

Ω 
eχwv b ln b + Dw

∫

Ω 
eχwv |∇b|2 

b 
+ δw

∫

Ω 
eχwv b ln b (6.4.16) 

≤ (ε + χwαwv∗)||w||2 L2(Ω) + ε||z||2 L2(Ω) + 
χ 2 wα2 

uv
∗2 

ε
||u||2 L2(Ω) 

+ (χwμvv
∗ + 

ρ2 

εθ 2 
)||w||L1(Ω) + 

ρ 
θ

||z||L1(Ω). 

To estimate the first term on the right-hand side of (6.4.16), by means of the 
two-dimensional Gagliardo–Nirenberg inequalities, we can find Kg > 0 such that

||ϕ||4 L4(Ω) ≤ Kg||∇ϕ||2 L2(Ω)||ϕ||2 L2(Ω) + Kg||ϕ||4 L2(Ω) for all ϕ ∈ W 1,2 (Ω). (6.4.17) 

Thereby thanks to (6.4.4) and (6.4.5), there exists C1 > 0 such that 

(ε + χwαwv∗)||w||2 L2(Ω) ≤e2χwv∗ 
(ε + χwαwv∗)||√b||4 L4(Ω) 

≤ 
e2v

∗χw Kg(ε + χwαwv∗) 
4

∫

Ω 
b
∫

Ω 
eχwv |∇b|2 

b 
+ C1 

≤ 
e2χwv∗ 

Kg(ε + χwαwv∗) 
4 

w∗ ·
∫

Ω 
eχwv |∇b|2 

b 
+ C1 

(6.4.18) 

≤ 
3Dw 

4

∫

Ω 
eχwv |∇b|2 

b 
+ C1, 

provided that ξwαw < c∗ := 2Dw 

e2χw v∗ Kgw∗v∗ and any 0 <  ε  <  ε0 := min{1, Dw 

e2χw v∗ Kgw∗v∗ }. 
Therefore, along with Lemma 6.15 and the Hölder inequality, we insert (6.4.18) into  
(6.4.16) to arrive at (6.4.13). 

While for r > 1,  θ  ≥ 0, we have
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d 

dt

∫

Ω 
eχw vb ln b + δw

∫

Ω 
eχw vb ln b + Dw

∫

Ω 
eχw v |∇b|2 

b 
(6.4.19) 

≤ 
ρ 
ku

∫

Ω 
zu ln b + (ε + χwαwv∗)

∫

Ω 
w2 + 

ρ 
ku

∫

Ω 
uz  + 

χ 2 wα2 
u v

∗2 

ε

∫

Ω 
u2 + χwμvv

∗
∫

Ω 
w. 

Here, an apparently challenging issue is to estimate
∫

Ω zu ln b appropriately in 
terms of expression which can be controlled by the dissipation terms in (6.4.11). 
Since there exists C2 > 0 such that ln 

2(r+1) 
r−1 s ≤ s + C2 for all s > 1, we can infer 

from (6.4.6) and the Hölder inequality that 

ρ 
ku

∫

Ω 
zu ln b ≤ 

ρ 
ku

∫

{b>1} 
zu ln b 

≤ 
ρ 
ku

||u||Lr+1(Ω)||z||L2(Ω)

⎧∫

{b>1} 
(ln b) 

2(r+1) 
r−1

⎫ r−1 
2(r+1) 

≤ 
ρ 
ku

||u||Lr+1(Ω)||z||L2(Ω)(||b||L1(Ω) + C2|Ω|) r−1 
2(r+1) 

≤ 
ε 
2
||z||2 L2(Ω) + 

C3 

ε
||u||2 Lr+1(Ω) 

with C3 = ρ2 

k2 u 
(||b||L1(Ω) + C2|Ω|) r−1 

r+1 . 
Apart from that, by the Hölder inequality and the Young inequality, it is easy to 

see that 

ρ 
ku

∫

Ω 
zu ≤ 

ρ 
ku

||u||L2(Ω)||z||L2(Ω) 

≤ 
ε 
2
||z||2 L2(Ω) + 

ρ2 

2k2 uε
||u||2 L2(Ω). 

In conjunction with (6.4.19), we get 

d 

dt

∫

Ω 
eχwv b ln b + Dw

∫

Ω 
eχwv |∇b|2 

b 
+ δw

∫

Ω 
eχwv b ln b 

≤ (ε + χwαwv∗)||w||2 L2(Ω) + ε||z||2 L2(Ω) + 
C3 

ε
||u||2 Lr+1(Ω) 

+
⎛

χ 2 wα2 
uv

∗2 

ε
+ 

ρ2 

2k2 uε

⎞

||u||2 L2(Ω) + χwμvv
∗||w||L1(Ω) 

≤ (ε + χwαwv∗)||w||2 L2(Ω) + ε||z||2 L2(Ω) 

+
⎛
C3 + χ 2 wα2 

uv
∗2 

ε
+ 

ρ2 

2k2 uε

⎞

||u||2 Lr+1(Ω) + χwμvv
∗||w||L1(Ω) + C4 

for some C4 > 0, which together with (6.4.18) and (6.4.5) implies that  (6.4.13) holds.
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Lemma 6.18 There exists K3 > 0 such that 

d 

dt

∫

Ω 
eχz v c ln c + 

3Dz 

4

∫

Ω 
eχz v |∇c|2 

c 
+ δz

∫

Ω 
eχz v c ln c 

≤ K3||b||2 L2(Ω) + K3||a||2 L2(Ω) + K3. 
(6.4.20) 

Proof By the fourth equation in (6.4.1), we can see that 

(ceχz v )t = Dz∇  ·  (eχz v∇c) − δz z − ρuz  

ku + θu 
+ βw. (6.4.21) 

Proceeding as above, we test (6.4.21) by  ln c and integrate by parts to see that for 
ε  >  0, 

d 

dt

∫

Ω 
eχz v c ln c + δz

∫

Ω 
eχz v c ln c + Dz

∫

Ω 
eχz v |∇c|2 

c 
(6.4.22) 

≤
∫

Ω 
(ln c + 1)

⎛

βw − ρuz  

ku + θu

⎞

+ χz

∫

Ω 
z(αuu + αww)v − χzμv

∫

Ω 
cv(1 − v) 

≤  −  ρ
∫

Ω 

uz  

ku + θ u 
ln c + β

∫

Ω 
w + β

∫

Ω 
w ln c + χzαuv

∗
∫

Ω 
cu 

+ χzαwv∗
∫

Ω 
cw + χzμv

∫

Ω 
c 

≤ 
ρeχz v

∗ 

ku 
u∗ + ε

∫

Ω 
c2 + 

χ 2 z α2 
uv

∗2 

ε

∫

Ω 
u2 +

⎛
χ 2 z α2 

wv∗2 

ε
+ 1

⎞∫

Ω 
w2 

+ (χzμv + β2 )

∫

Ω 
c + β

∫

Ω 
w 

due to 

−ρ

∫

Ω 

uz  

ku + θu 
ln c =  −ρ

∫

Ω 

ueχz v 

ku + θu 
c ln c 

≤  −ρ

∫

{c<1} 
ueχz v 

ku + θu 
c ln c 

≤ 
ρeχz v

∗ 

ku 
u∗ 

and 

β

∫

{c>1} 
w ln c ≤ ||w||2 L2(Ω) + 

β2 

4

∫

{c>1} 
ln2 c 

≤ ||w||2 L2(Ω) + β2
∫

Ω 
c.
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Now according to the two-dimensional Gagliardo–Nirenberg inequality (6.4.17) and 
Lemma 6.15, we pick  ε = Dz 

8Kg z∗ and thereafter obtain some C1 > 0 such that 

ε||c||2 L2(Ω) =ε||√c||4 L4(Ω) 

≤
⎛

Kgε

∫

Ω 
c

⎞∫

Ω 

|∇c|2 
c 

+ εKg

⎛∫

Ω 
c

⎞2 

≤ 
Dz 

4

∫

Ω 
eχz v |∇c|2 

c 
+ C1. 

(6.4.23) 

Therefore, along with Lemma 6.15, in conjunction with (6.4.22) and (6.4.23), we 
readily arrive at (6.4.20). 

We are now ready to obtain the bounds for a, b and c in LlogL by taking suitable 
linear combinations of the inequalities provided by Lemmata 6.16–6.18, stated as 
follows. 

Lemma 6.19 Let T > 0. Then there exists K4 > 0 such that
∫

Ω 
a(·, t)| ln a(·, t)|  ≤  K4, (6.4.24)

∫

Ω 
b(·, t)| ln b(·, t)|  ≤  K4 (6.4.25) 

and ∫

Ω 
c(·, t)| ln c(·, t)|  ≤  K4 (6.4.26) 

for all t ∈ (0, T̂ ) with T̂ := min{T , Tmax }. 
Proof From (6.4.18) and (6.4.23), it follows that there exists C1 > 0 such that

||b||2 L2(Ω) ≤ C1

∫

Ω 

|∇b|2 
b 

+ C1 (6.4.27)

||c||2 L2(Ω) ≤ C1

∫

Ω 

|∇c|2 
c 

+ C1. (6.4.28) 

Multiplying (6.4.13) by  A := 8K3C1 
Dw 

and adding the resulting inequality to (6.4.20), 
using (6.4.27) and (6.4.28), we have 

d 

dt

∫

Ω

⎛

Aeχwv b ln b +
∫

Ω 
eχz v c ln c

⎞

+ 
Dw 

8

∫

Ω 
eχwv |∇b|2 

b 
+ Aδw

∫

Ω 
eχwv b ln b 

+ 
3Dz 

4

∫

Ω 
eχz v |∇c|2 

c 
+ δz

∫

Ω 
eχz v c ln c (6.4.29)
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≤ Aε||c||2 L2(Ω) + 
AK2 

ε
||a||2 Lr+1(Ω) + 

AK2 

ε 
+ K3||a||2 L2(Ω) + K3 

≤ AεC1

∫

Ω 
eχz v |∇c|2 

c 
+ 

AK2 

ε
||a||2 Lr+1(Ω) + 

AK2 

ε 
+ K3||a||2 L2(Ω) + AεC1 + K3. 

Taking ε = 3Dz 

8AC1 
in (6.4.29), we can find C2 > 0 such that 

d 

dt

∫

Ω

⎛

Aeχwv b ln b +
∫

Ω 
eχz v c ln c

⎞

+ 
Dw 

8

∫

Ω 
eχwv |∇b|2 

b 
+ Aδw

∫

Ω 
eχwv b ln b 

+ 
3Dz 

8

∫

Ω 
eχz v |∇c|2 

c 
+ δz

∫

Ω 
eχz v c ln c 

≤ C2||a||2 Lr+1(Ω) + C2. 
(6.4.30) 

Combining (6.4.11) with (6.4.30) and using (6.4.18), we can pick ε  >  0 in (6.4.11) 
appropriately small to derive that for some C3 > 0 

d 

dt

∫

Ω

⎛

Aeχw vb ln b +
∫

Ω 
eχu va ln a +

∫

Ω 
eχz vc ln c

⎞

+ 
Dw 

9

∫

Ω 
eχw v |∇b|2 

b 

+ Aδw

∫

Ω 
eχw vb ln b (6.4.31) 

+ 
3Dz 

8

∫

Ω 
eχz v |∇c|2 

c 
+ δz

∫

Ω 
eχz vc ln c + Du

∫

Ω 
eχu v |∇a|2 

a 
+ 

μu 

2

∫

Ω 
(ln a + 1)ur+1 

≤ C3||a||2 Lr+1(Ω) + C3, 

which, along with ar+1 ≤ εar+1 ln a + c(ε) for some c(ε) > 0, implies that there 
exist C4 > 0 and C5 > 0 fulfilling 

d 

dt  
F (t) + C4F (t) ≤ C5 (6.4.32) 

with 

F (t) := A
∫

Ω 
eχwv(·,t) b(·, t) ln b(·, t) +

∫

Ω 
eχu v(·,t) a(·, t) ln a(·, t) 

+
∫

Ω 
eχz v(·,t) c(·, t) ln c(·, t), 

and thereby 
F (t) ≤ C6 (6.4.33) 

is valid for some C6 > 0.
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Now, by the inequality a ln a ≥  −e−1 for all a > 0,
∫

Ω 
a(·, t)| ln a(·, t)|  =

∫

Ω 
a(·, t) ln a(·, t) − 2

∫

a<1 
a(·, t) ln a(·, t) 

≤
∫

Ω 
a(·, t) ln a(·, t) + 2|Ω|, 

and similarly,

∫

Ω 
b(·, t)| ln b(·, t)|  ≤

∫

Ω 
b(·, t) ln b(·, t) + 2|Ω| 

as well as ∫

Ω 
c(·, t)| ln c(·, t)|  ≤

∫

Ω 
c(·, t) ln c(·, t) + 2|Ω|. 

Hence, (6.4.24)–(6.4.26) result readily from (6.4.33). 

6.4.3 L∞-Bounds for a, b and c 

By means of some quite straightforward L p testing procedures, combining Lemma 2.1 
with appropriate interpolation, we can now proceed to turn the outcome of 
Lemma 6.19 into the L∞-bounds for a, b and c. 

Lemma 6.20 Let (a, b,  v,  c) be the classical solution of (6.4.1) in Ω ×  [0, Tmax ). 
Then one can find C > 0 fulfilling

||a(·, t)||L∞(Ω) ≤ C (6.4.34) 

and
||b(·, t)||L∞(Ω) ≤ C (6.4.35) 

as well as
||c(·, t)||L∞(Ω) ≤ C (6.4.36) 

for all t ∈ (0, Tmax ). 

Proof Testing the first equation in (6.4.1) by  eξu va p−1 with p > 4, integrating by 
parts and using the Young inequality, we can find C1 > 0 and C2 := C2( p)  >  0 such 
that
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d 

dt

∫

Ω 
eχu va p +

∫

Ω 
eχu va p 

= p
∫

Ω 
eχu va p−1at + χu

∫

Ω 
eχu va pvt +

∫

Ω 
eχu va p 

= p
∫

Ω 
eχu va p−1{Due

−χu v∇  ·  (eχu v∇a) + f (a, b,  v,  c)}  +  χu

∫

Ω 
eχu va pvt +

∫

Ω 
eχu va p 

≤  −  
4Du ( p − 1) 

p

∫

Ω 
|∇a 

p 
2 |2 + pχu αu

∫

Ω 
a p+1e2χu v + C1 p

∫

Ω 
a p + C1 p

∫

Ω 
a pb 

≤  −  
4Du ( p − 1) 

p

∫

Ω 
|∇a 

p 
2 |2 + C2

∫

Ω 
a p+1 + C2

∫

Ω 
bp+1 + C2. 

(6.4.37) 

Similarly, based on the other equations in (6.4.1), we infer the existence of C3 > 0 
such that 

d 

dt

∫

Ω 
eξwv bp +

∫

Ω 
eξwv bp 

≤  −  
4Dw( p − 1) 

p

∫

Ω 
|∇b 

p 
2 |2 + C3

∫

Ω 
a p+1 + C3

∫

Ω 
bp+1 + C3

∫

Ω 
cp+1 + C3 

(6.4.38) 
as well as 

d 

dt

∫

Ω 
eξz v cp +

∫

Ω 
eξz v cp 

≤  −  
4Dz( p − 1) 

p

∫

Ω 
|∇c 

p 
2 |2 + C3

∫

Ω 
a p+1 + C3

∫

Ω 
bp+1 + C3

∫

Ω 
cp+1 + C3. 

(6.4.39) 
Collecting (6.4.37)–(6.4.39), we then have 

d 

dt

⎧∫

Ω 
eξu va p +

∫

Ω 
eξw vbp +

∫

Ω 
eξz vcp

⎫

+
∫

Ω 
eξu va p +

∫

Ω 
eξw vbp +

∫

Ω 
eξz vcp 

≤  −  
4( p − 1) 

p

⎛

Du

∫

Ω 
|∇a 

p 
2 |2 + Dw

∫

Ω 
|∇b 

p 
2 |2 + Dz

∫

Ω 
|∇c 

p 
2 |2

⎞

+ (C2 + 2C3)

∫

Ω 
a p+1 

+ (C2 + 2C3)

∫

Ω 
bp+1 + (C2 + 2C3)

∫

Ω 
cp+1 + C2 + 2C3. 

(6.4.40) 
Now on the basis of Lemma 6.19, we employ Lemma 2.1 to estimate

∫

Ω a 
p+1,

∫

Ω b
p+1 

and
∫

Ω c
p+1 in term of

∫

Ω |∇a 
p 
2 |2, ∫

Ω |∇b 
p 
2 |2 and ∫

Ω |∇c 
p 
2 |2, respectively. 

Indeed, applying Lemma 2.1 to ϕ = a 
p 
2 , we have
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(C2 + 2C3)

∫

Ω 
a p+1 

= (C2 + 2C3)||a p 2 ||
2(p+1) 

p 

L 
2(p+1) 

p (Ω) 
(6.4.41) 

≤ (C2 + 2C3)ε||∇a 
p 
2 ||2 L2(Ω) ·

∫

Ω 
a| ln a p 2 |  +  (C2 + 2C3)K (p,  ε)

⎛

||a p 2 ||
2( p+1) 

p 

L 
2 
p (Ω) 

+ 1
⎞

= 
p(C2 + 2C3)ε 

2
||∇a 

p 
2 ||2 L2(Ω) ·

∫

Ω 
a| ln a|  +  (C2 + 2C3)K ( p,  ε)

⎛∫

Ω 
a)p+1 + 1

⎞

which along with (6.4.24) and the appropriate choice of ε readily shows that for 
C4( p)  >  0 

(C2 + 2C3)

∫

Ω 
a p+1 ≤ 

4( p − 1)Du 

p

∫

Ω 
|∇a 

p 
2 |2 + C4(p). 

Similarly, 

(C2 + 2C3)

∫

Ω 
bp+1 ≤ 

4( p − 1)Dw 

p

∫

Ω 
|∇b 

p 
2 |2 + C5(p) 

as well as 

(C2 + 2C3)

∫

Ω 
cp+1 ≤ 

4(p − 1)Dz 

p

∫

Ω 
|∇c 

p 
2 |2 + C6(p). 

Therefore, (6.4.40) shows that 

d 

dt

⎧∫

Ω 
eξu v a p +

∫

Ω 
eξwv bp +

∫

Ω 
eξz v cp

⎫

+
∫

Ω 
eξu v a p +

∫

Ω 
eξwv bp +

∫

Ω 
eξz v cp 

≤ C7(p), 

which entails that for all p ≥ 2 there exists C8( p)  >  0 such that
∫

Ω 
a p (·, t) +

∫

Ω 
bp (·, t) +

∫

Ω 
cp (·, t) ≤ C8( p) (6.4.42) 

for all t ∈ (0, Tmax ). 
Furthermore, by adapting a well-established Moser-type iteration, one can readily 

turn the latter into the L∞ bounds for a, b, c. However, since the procedure is rather 
standard (see Tao and Winkler 2014b, 2020b for example), we give the details only 
in places which are characteristic of the present setting. 

By a straightforward calculation and three integrations by parts, we get
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d 

dt

⎧∫

Ω 
eξu v a p + eξwv bp + eξz v cp

⎫

+
∫

Ω

{
eξu v a p + eξwv bp + eξz v cp

}

≤  −  2min{Du, Dw, Dz}
∫

Ω

{
|∇a 

p 
2 |2 +  |∇b 

p 
2 |2 +  |∇c 

p 
2 |2

}

+ C9 p
∫

Ω

{
a p+1 + bp+1 + cp+1

} + C9 

(6.4.43) 

where C9 > 0 as all subsequently appearing constants C10, C11,  .  .  .  is independent 
of p ≥ 4. 

It is observed that by the Gagliardo–Nirenberg inequality, due to 2 ≤ 2( p+1) 
p ≤ 2.5 

for p ≥ 4, one can pick C10 > 1 such that for all p ≥ 4,

||ϕ||
L 

2(p+1) 
p (Ω) 

≤ C10||∇ϕ||
p+2 

2(p+1) 
L2(Ω)

||ϕ||
p 

2(p+1) 
L1(Ω) + C10||ϕ||L1(Ω) for all ϕ ∈ W 1,2 (Ω). 

Applying this together with the Young inequality, we obtain that for some C11 > 0, 

C9 p
∫

Ω 
a p+1 = C9 p||a p 2 ||

2(p+1) 
p 

L 
2(p+1) 

p (Ω) 

≤ C9 p

⎧

C10||∇a 
p 
2 ||

p+2 
2( p+1) 
L2(Ω) · ||a p 2 ||

p 
2(p+1) 
L1(Ω) + C10||a p 2 ||L1(Ω)

⎫ 2(p+1) 
p 

≤ 8C9C
3 
10 p||∇a 

p 
2 ||

p+2 
p 

L2(Ω) · ||a p 2 ||L1(Ω) + 8C9C
3 
10 p||a 

p 
2 ||

2(p+1) 
p 

L1(Ω) 

≤ min{Du, Dw, Dz}||∇a 
p 
2 ||2 L2(Ω) + C11 p

4 max{1, ||a p 2 ||L1(Ω)} 
2 p 
p−2 , 

where the fact that 2(p+1) 
p ≤ 2 p 

p−2 ≤ 4 for any p ≥ 4 is used. 
Similarly, we have 

C9 p
∫

Ω 
bp+1 ≤ min{Du, Dw, Dz}||∇b 

p 
2 ||2 L2(Ω) + C11 p

4 max{1, ||b p 2 ||L1(Ω)} 
2 p 
p−2 

as well as 

C9 p
∫

Ω 
cp+1 ≤ min{Du, Dw, Dz}||∇c 

p 
2 ||2 L2(Ω) + C11 p

4 max{1, ||c p 2 ||L1(Ω)} 
2 p 
p−2 . 

Consequently, inserting the above inequalities into (6.4.43) yields the existence of 
C12 > 0 such that 

d 

dt

⎧∫

Ω 
eξu v a p + eξwv bp + eξz v cp

⎫

+
∫

Ω

{
eξu v a p + eξwv bp + eξz v cp

}

≤ C12 p
4 max{1, ||a p 2 ||L1(Ω) + ||b p 2 ||L1(Ω) + ||c p 2 ||L1(Ω)} 

2 p 
p−2 . 

(6.4.44)
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Now let pk = 4 · 2k and Mk = max{1, sup 
t∈(0,Tmax )

∫

Ω 
a pk (·, t) + bpk (·, t) + cpk (·, t)} 

for k = 0, 1, 2,  .  .  .. Then (6.4.44) implies that for  k = 1, 2,  .  .  .  

d 

dt

⎧∫

Ω 
eξu v a pk + eξwv bpk + eξz v cpk

⎫

+
∫

Ω

{
eξu v a pk + eξwv bpk + eξz v cpk

}

≤ C12 pk 
4 M4 

k−1, 

which entails the existence of L > 1 independent of k such that 

Mk ≤ max{Lk M4 
k−1, |Ω|(||u0||pk 

L∞(Ω) + ||w0||pk 
L∞(Ω) + ||z0||pk 

L∞(Ω))} for all k ≥ 1. 

Therefore, by means of a standard recursive argument (see Pang and Wang 
2018; Tao and Winkler 2014b for example), both when Lk M4 

k−1 ≤  |Ω|(||u0||pk 
L∞(Ω) +

||w0||pk 
L∞(Ω) + ||z0||pk 

L∞(Ω)) for infinitely many k ≥ 1, and as well in the opposite case, 
we can obtain some C13 > 0 such that for all k ≥ 1 

M 
1 
pk 
k ≤ C13, 

from which, after taking k →  ∞, the claims (6.4.34)–(6.4.36) readily follow. 

According to Lemma 6.14, it remains for us to establish a priori estimates for
||∇v(·, t)||L4(Ω). 

Lemma 6.21 Let T > 0. Then there exists C( T̂ )  >  0 such that ||∇v(·, t)||L4(Ω) ≤ 
C( T̂ ) for all t < T̂ , where T̂ := min{T , Tmax }. 
Proof This can be achieved through an appropriate combination of three further 
testing processes, essentially relying on the L∞-estimates for a, b and c just asserted. 
We refrain from giving the proof and refer to Tao and Winkler (2020b) or Tao and 
Winkler (2014b) for details in a closely related setting. 

We are now in the position to prove Theorem 6.2. 
Proof of Theorem 6.2. Thanks to the equivalence of (6.1.10) and (6.4.1) in the  

considered framework of classical solutions and in particular the extensibility crite-
rion provided by Lemma 6.14, the proof is an evident consequence of Lemmas 6.20 
and 6.21. 

6.5 Asymptotic Behavior of Solutions to an Oncolytic 
Virotherapy Model 

At the beginning of this subsection, in light of the method used in Horstmann and 
Winkler (2005) and Pang and Wang (2017), we provide the following statement on 
the local existence and extensibility of solutions to (6.1.12) as below.
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Lemma 6.22 Suppose that Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth 
boundary. Then one can find Tmax ∈ (0, ∞] and a unique quadruple of nonnegative 
functions (u,  v,  w, z) ∈ (

C
(
Ω̄ ×  [0, Tmax )

)∩
C2,1

(
Ω̄ × (0, Tmax )

))4 
which solves 

(6.1.12) classically in Ω × (0, Tmax ). Moreover, if Tmax < +∞, then 

lim 
t↗Tmax

(||u (·, t)||W 1,2q (Ω)+||v (·, t)||W 2,q (Ω)+||w (·, t)||W 1,2q (Ω)+||z (·, t)||W 1,2q (Ω)

)=∞  

(6.5.1) 

for all q > N 2 . 

To make the system mass-conserved, we introduce a nonnegative variable Q satis-
fying 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

Qt = ΔQ +
⎛

ρu + ρz 

ρw 
δw − β

⎞

w + δz z, (x, t) ∈ Ω × (0, T ) , 

∇ Q · ν = 0, (x, t) ∈ ∂Ω × (0, T ) , 
Q (x, 0) = 0, x ∈ Ω, 

(6.5.2) 

where ρu+ρz 

ρw 
δw − β ≥ 0. Then it is easy to see that for all t ∈ (0, T ),

∫

Ω

⎡⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t)
⎤

t 

= 0, 

which means
∫

Ω

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t) =
∫

Ω

⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

. (6.5.3) 

We first collect some easily verifiable observations in the following lemma. The con-
stants ci ,  (i = 1, 2, 3, 4), c10 and Cp0 refer to Lemmas 1.1, 4.3 and 3.2 respectively. 

Lemma 6.23 Under the assumptions of Theorem 6.3, there exist Mi > 1 (i = 0, 1, 
·  ·  ·, 6) and ε(ξu,  ξw,  ξz,  ρu,  ρw,  ρz,  αy,  αw)  >  0 such that 

2c3 + 2c10c2ξuε(M1 M4 + M0 M5) + 2c10c3ρu M0ε(M1 + M3) ≤ 
M1 

2 
, (6.5.4) 

2c3 + 2c10c2ξwε (M2 M4 + M0 M5) + 2c10c3ρw M0ε(M1 + M3) ≤ 
M2 

2 
, (6.5.5)
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2c3 + 2c10c2ξzε (M3 M4 + M0 M5) + 2c10c3ρz M0ε(M1 + M3) + 2c10c3β M2 ≤ 
M3 

2 
, 

(6.5.6) 

1 + 
(αu M1 + αw M2) ||v0 (·)||L∞(Ω)

⎛
2 p0−1 

2 p0e(δv−α)

⎞ 2 p0−1 
2 p0 

(2αp0) 
1 

2 p0 

≤ 
M4 

2 
, (6.5.7) 

1 + ε||v0(·)||L∞(Ω) 
(αu M1 + αw M2)

2 

(2αp0) 
1 
p0

⎛
2 p0 − 1 

p0e(δv − α)

⎞ 2 p0−1 
p0 

+ 2ε 
αu M1 + αw M2 

(2αp0) 
1 

2 p0

⎛
2 p0 − 1 

2 p0e(δv − α)

⎞ 2 p0−1 
2 p0 

+ ||v0(·)||L∞(Ω)Cp0 αu

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0 

·
⎛

εξu M1 M4 

((2α − k) p0) 
1 
p0 

+ εξu M0 M5 

((α − k)p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

(6.5.8) 

+ ||v0(·)||L∞(Ω)Cp0 αw

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0 

·
⎛

εξw M2 M4 

((2α − k) p0) 
1 
p0 

+ εξw M0 M5 

((α − k)p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ ||v0(·)||L∞(Ω)Cp0 M0|Ω| 1 p0 
(kp0) 

1 
p0

⎛
p0 − 1 

p0e(δv − α − k)

⎞ p0−1 
p0 

·
⎛

εαuρu M0 + 
1 

2 
αu(δv − α) + εαwρw M0

⎞

≤ 
M5 

2 
, 

2c10c4 M0 M4ε

⎛

ξu + 
ρu + ρz 

ρw 
ξw + ξz

⎞

≤ 
M6 

2 
, (6.5.9) 

where 

M0 = 1 + M6 + 2c1, k = min

⎧
1 

2 
(δv − α), δw

⎫

∈ (0,  α),  

with α ∈ (0, min {λ1,  δv}) and λ1 > 0 the first nonzero eigenvalue of −Δ in Ω under 
the Neumann condition.
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For constants α ∈ (0, min {λ1,  δv}) and Mi > 1(i = 0, 1,  .  .  .  ,  6) referring to 
Lemma 6.23, let  

T⍙ sup 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

T̃ ∈ (0, Tmax )

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||∇u (·, t)||L2 p0 (Ω) ≤ M1εe−αt f or  all  t  ∈  [0, T̃ ),
||∇w (·, t)||L2 p0 (Ω) ≤ M2εe−αt f or  all  t  ∈  [0, T̃ ),
||∇z (·, t)||L2 p0 (Ω) ≤ M3εe−αt f or  all  t  ∈  [0, T̃ ),
||∇v (·, t)||L2 p0 (Ω) ≤ M4εe−αt f or  all  t  ∈  [0, T̃ ),
||Δv (·, t)||L p0 (Ω) ≤ M5εe−αt f or  all  t  ∈  [0, T̃ ), 
||(u + ρu+ρz 

ρw 
w + z + Q) (·, t)−etΔ (u0 + ρu+ρz 

ρw 
w0 

+z0) (·) ||L∞(Ω) ≤ M6εe−αt f or  all  t  ∈  [0, T̃ ). 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(6.5.10) 
By Lemma 6.22 and the smallness condition on the initial data in Theorem 6.3, T > 0 
is well-defined. We first show T = Tmax . To this end, we will show that all of the 
estimates mentioned in (6.5.10) are valid with even smaller coefficients on the right-
hand side. The derivation of these estimates will mainly rely on L p − Lq estimates 
for the Neumann heat semigroup and the fact that the classical solutions on (0, Tmax ) 
can be represented as

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t) 

= etΔ
⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·) 

−
∫ t 

0 
e(t−s)Δ

⎡

ξu∇  ·  (u∇v) + 
ρu + ρz 

ρw 
ξw∇  ·  (w∇v) + ξz∇  ·  (z∇v)

⎤

(·, s)ds, 
(6.5.11) 

u(·, t) = etΔ u0 (·) +
∫ t 

0 
e(t−s)Δ [−ξu∇  ·  (u∇v) − ρuuz] (·, s)ds, (6.5.12) 

w(·, t) = et (Δ−δw) w0 (·) +
∫ t 

0 
e(t−s)(Δ−δw) [−ξw∇  ·  (w∇v) + ρwuz] (·, s)ds, 

(6.5.13) 

z(·, t) = et (Δ−δz ) z0 (·) +
∫ t 

0 
e(t−s)(Δ−δz )

⎡−ξz∇  ·  (z∇v) − ρzuz  + βw
⎤
(·, s)ds  
(6.5.14) 

for all t ∈ (0, Tmax ) as per the variation-of-constants formula. 
The global boundedness for solutions of (6.1.12) can be obtained directly from 

the following lemmas.
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Lemma 6.24 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ), we have
||
||
||
||

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t)
||
||
||
||
L∞(Ω) 

≤ M0ε, (6.5.15) 

where M0 = 1 + M6 + 2c1 with c1 defined in Lemma 1.1. 

Proof Set m∞ = 1 
|Ω|

∫

Ω

⎛
u0 + ρu+ρz 

ρw 
w0 + z0

⎞
, then m∞ ≤ ε. It is obvious that 

etΔ m∞ = m∞,

∫

Ω

⎡⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·) − m∞
⎤

= 0,

||
||
||
||

⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·) − m∞
||
||
||
||
L∞(Ω) 

≤ ε. 

According to the Lemma 1.1(i), we know for all t ∈ (0, T ),
||
||
||
||e

tΔ

⎡⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·) − m∞
⎤||
||
||
||
L∞(Ω) 

≤ 2c1εe−λ1t . 

Then due to the definition of T and Lemma 1.1(i), we have

||
||
||
||

⎛

u + 
ρu + ρz 

ρw 
w + z + Q − m∞

⎞

(·, t)
||
||
||
||
L∞(Ω) 

=
||
||
||
||

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t) − etΔ
⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·)
||
||
||
||
L∞(Ω) 

+
||
||
||
||e

tΔ

⎡⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·) − m∞
⎤||
||
||
||
L∞(Ω) 

≤ M6εe
−αt + 2c1εe−λ1t 

≤ (M6 + 2c1) εe−αt 

and hence end the proof. 

Lemma 6.25 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ), we have

||∇u (·, t)||L2 p0 (Ω) ≤ 
M1 

2 
εe−αt . 

Proof Applying (6.5.12), Lemma 1.1 (iii), we have
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||∇u (·, t)||L2 p0 (Ω) 

≤ ||
||∇etΔ u0 (·)

||
||
L2 p0 (Ω) +

∫ t 

0

||
||∇e(t−s)Δ [−ξu∇  ·  (u∇v) − ρuuz] (·, s)

||
||
L2 p0 (Ω) ds  

≤ 2c3e−λ1t ||∇u0 (·)||L2 p0 (Ω) + ξu
∫ t 

0

||
||∇e(t−s)Δ∇  ·  (u∇v)  (·, s)||||L2 p0 (Ω) ds  

(6.5.16) 

+ ρu

∫ t 

0

||
||∇e(t−s)Δ (uz)  (·, s)||||L2 p0 (Ω) ds. 

From Lemmas 1.1(ii) and 4.3, we obtain 

ξu

∫ t 

0

||
||
||∇e(t−s)Δ∇  ·  (u∇v)  (·, s)

||
||
||
L2 p0 (Ω) 

ds  

≤ ξu
∫ t 

0

||
||
||∇e(t−s)Δ (∇u∇v)  (·, s)

||
||
||
L2 p0 (Ω) 

ds  + ξu
∫ t 

0

||
||
||∇e(t−s)Δ (uΔv)  (·, s)

||
||
||
L2 p0 (Ω) 

ds  

≤ ξuc2
∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4p0

⎤

e−λ1(t−s) ||∇u∇v (·, s)||L p0 (Ω) ds  

+ ξuc2
∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4 p0

⎤

e−λ1(t−s) ||uΔv (·, s)||L p0 (Ω) ds  

≤ ξuc2
∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4p0

⎤

e−λ1(t−s)
⎛
||∇u (·, s)||L2 p0 (Ω) · ||∇v (·, s)||L2 p0 (Ω)

⎞
ds  

+ ξuc2
∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4 p0

⎤

e−λ1(t−s) (||u (·, s)||L∞(Ω) · ||Δv (·, s)||L p0 (Ω)

)
ds  

≤ 2c10c2ξu (M1 M4ε
2e−min{2α,λ1}t + M0 M5ε

2e−αt ) 

≤ 2c10c2ξu ε2e−αt (M1 M4 + M0 M5). 

From Hölder’s inequality, using Lemmas 1.1(iii) and 4.3, we get 

ρu

∫ t 

0

||
||∇e(t−s)Δ (uz)  (·, s)||||L2 p0 (Ω) ds  

≤ 2ρuc3

∫ t 

0 
e−λ1(t−s)

(||z∇u(·, s)||L2 p0 (Ω) + ||u∇z(·, s)||L2 p0 (Ω)

)
ds  

≤ 2ρuc3

∫ t 

0 
e−λ1(t−s) 

· (||∇u (·, s)||L2 p0 (Ω) · ||z (·, s)||L∞(Ω) + ||u (·, s)||L∞(Ω) · ||∇z (·, s)||L2 p0 (Ω)

)
ds  

≤ 2c10c3ρu(M0 M1ε
2 e−αt + M0 M3ε

2 e−αt ) 
= 2c10c3ρu M0ε

2 e−αt (M1 + M3). 

Therefore, inserting the above two results into (6.5.16), we arrive at
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||∇u (·, t)||L2 p0 (Ω) 

≤ 2c3εe−αt + 2c10c2ξuε2 e−αt (M1M4 + M0 M5) + 2c10c3ρu M0ε
2 e−αt (M1 + M3) 

≤ [2c3 + 2c10c2ξuε(M1 M4 + M0 M5) + 2c10c3ρu M0ε(M1 + M3)] εe
−αt . 

According to (6.5.4), we thereby complete the proof. 

Lemma 6.26 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ), we have

||∇w (·, t)||L2 p0 (Ω) ≤ 
M2 

2 
εe−αt . (6.5.17) 

Proof From (6.5.13), using Lemmas 1.1(iii) and 4.3, we have

||∇w (·, t)||L2 p0 (Ω) 

≤ ||
||∇et (Δ−δw) w0(·)

||
||
L2 p0 (Ω) + ξw

∫ t 

0

||
||∇e(t−s)(Δ−δw)∇  ·  (w∇v)  (·, s)||||L2 p0 (Ω) ds  

+ ρw

∫ t 

0

||
||∇e(t−s)(Δ−δw) (uz)  (·, s)||||L2 p0 (Ω) ds  

≤ 2c3εe−(λ1+δw)t + ξwc2
∫ t 

0 
[1 + (t − s)−

1 
2 − N 

4 p0 ]e−(λ1+δw)(t−s) 

· (||∇w(·, s)||L2 p0 (Ω) ||∇v(·, s)||L2 p0 (Ω)

)
ds  

+ ξwc2
∫ t 

0 
[1 + (t − s)−

1 
2 − N 

4 p0 ]e−(λ1+δw)(t−s)
(||w(·, s)||L∞(Ω) ||Δv(·, s)||L p0 (Ω)

)
ds  

+ 2ρwc3

∫ t 

0 
e−(λ1+δw)(t−s)

(||∇u(·, s)||L2 p0 (Ω) ||z(·, s)||L∞(Ω)

)
ds  

+ 2ρwc3

∫ t 

0 
e−(λ1+δw)(t−s)

(||u(·, s)||L∞(Ω) ||∇z(·, s)||L2 p0 (Ω)

)
ds  

≤ [2c3 + 2c10c2ξwε (M2 M4 + M0 M5) + 2c10c3ρw M0ε(M1 + M3)] εe
−αt , 

which along with (6.5.5) implies that  (6.5.17) is valid.  

Similar as done in Lemma 6.26, we also have the following. 

Lemma 6.27 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ), we have

||∇z (·, t)||L2 p0 (Ω) ≤ 
M3 

2 
εe−αt . (6.5.18) 

Proof From (6.5.14), using Lemmas 1.1(iii) and 4.3, we have
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||∇z (·, t)||L2 p0 (Ω) 

≤
||
||
||∇et (Δ−δz )z0(·)

||
||
||
L2 p0 (Ω) 

+ ξz
∫ t 

0

||
||
||∇e(t−s)(Δ−δz )∇  ·  (z∇v)  (·, s)

||
||
||
L2 p0 (Ω) 

ds  

+
∫ t 

0

||
||
||∇e(t−s)(Δ−δz ) (−ρzuz  + βw) (·, s)

||
||
||
L2 p0 (Ω) 

ds  

≤ 2c3εe−(λ1+δz )t + ξzc2
∫ t 

0 
[1 + (t − s)−

1 
2 − N 

4 p0 ]e−(λ1+δz )(t−s) 

· ||∇z(·, s)||L2 p0 (Ω) ||∇v(·, s)||L2 p0 (Ω) ds  

+ ξzc2
∫ t 

0 
[1 + (t − s)−

1 
2 − N 

4 p0 ]e−(λ1+δz )(t−s) ||z(·, s)||L∞(Ω) ||Δv(·, s)||L p0 (Ω) ds  

+ ρzc3

∫ t 

0 
2e−(λ1+δz )(t−s) 

·
⎛
||∇u (·, s)||L2 p0 (Ω) · ||z (·, s)||L∞(Ω) + ||u (·, s)||L∞(Ω) · ||∇z (·, s)||L2 p0 (Ω)

⎞
ds  

+ 2βc3
∫ t 

0 
e−(λ1+δz )(t−s) ||∇w(·, s)||L2 p0 (Ω) ds  

≤ ⎡
2c3 + 2c10c2ξzε (M3 M4 + M0 M5) + 2c10c3ρz M0ε(M1 + M3) + 2c10c3β M2

⎤
εe−αt , 

which together with (6.5.6) already implies that (6.5.18) holds. 

Lemma 6.28 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ), we have

||∇v (·, t)||L2 p0 (Ω) ≤ 
M4 

2 
εe−αt . (6.5.19) 

Proof We know that 
vt + (αuu + αww + δv)v = 0, 

from which we obtain 

v (·, t) = v0 (·) e− ∫ t 
0 (αuu+αww+δv )ds  . (6.5.20) 

It follows that

||∇v (·, t)||L2 p0 (Ω) 

=
||
||
||∇

⎡
v0(·)e− ∫ t 

0 (αu u+αww+δv )ds
⎤||
||
||
L2 p0 (Ω) 

(6.5.21) 

≤
||
||
||∇v0 (·) e− ∫ t 

0 (αu u+αww+δv )ds
||
||
||
L2 p0 (Ω) 

+
||
||
||v0 (·) ∇e− ∫ t 

0 (αu u+αww+δv )ds
||
||
||
L2 p0 (Ω) 

≤ ||
||∇v0 (·) e−δv t

||
||
L2 p0 (Ω) + ||v0 (·)||L∞(Ω)

||
||
||
||e

−δv t
∫ t 

0 
(αu∇u + αw∇w)  (·, s) ds

||
||
||
||
L2 p0 (Ω) 

.
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Noticing that

⎛∫ t 

0 
|∇u (·, s)| ds

⎞2 p0 

≤
⎡⎛∫ t 

0 
|∇u (·, s)|2 p0 ds

⎞ 1 
2 p0

⎛∫ t 

0 
1ds

⎞ 2 p0−1 
2 p0

⎤2 p0 

≤ t2 p0−1
∫ t 

0 
|∇u (·, s)|2 p0 ds, 

then
||
||
||
||

∫ t 

0 
∇u(·, s)ds

||
||
||
||
L2 p0 (Ω) 

=
⎡∫

Ω

|
|
|
|

∫ t 

0 
∇u (·, s) ds

|
|
|
|

2 p0 

dx

⎤ 1 
2 p0 

≤
⎡

t2 p0−1
∫ t 

0

∫

Ω 
|∇u (·, s)|2 p0 dxds

⎤ 1 
2 p0 

(6.5.22) 

≤
⎛∫ t 

0

∫

Ω 
|∇u (·, s)|2 p0 dxds

⎞ 1 
2 p0 

t 
2 p0−1 
2 p0 

≤
⎛∫ t 

0 
(M1εe

−αs )2 p0 ds

⎞ 1 
2 p0 

t 
2 p0−1 
2 p0 

≤ 
M1εt 

2 p0−1 
2 p0 

(2αp0) 
1 

2 p0 

. 

Similarly, we have

||
||
||
||

∫ t 

0 
∇w(·, s)ds

||
||
||
||
L2 p0 (Ω) 

≤ 
M2εt 

2 p0−1 
2 p0 

(2αp0) 
1 

2 p0 

. (6.5.23) 

From Lemma 6.3, noticing p0 > 1, α − δv < 0, for all t ≥ 0, we obtain 

t 
2 p0−1 
2 p0 e(α−δv )t ≤

⎛
2 p0 − 1 

2ep0(δv − α)

⎞ 2 p0−1 
2 p0 

. (6.5.24) 

Inserting (6.5.22) and (6.5.23) into (6.5.21) and using (6.5.24), we obtain

||∇v (·, t)||L2 p0 (Ω) 

≤
⎡

1 + 
(αu M1 + αw M2) ||v0 (·)||L∞(Ω) 

(2αp0) 
1 

2 p0

⎛
2 p0 − 1 

2ep0(δv − α)

⎞ 2 p0−1 
2 p0

⎤

εe−αt .
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Therefore, (6.5.19) results from (6.5.7). 

To obtain the estimate of ||Δv(·, t)||L p0 (Ω) for t ≥ 0, we need the following lemma. 

Lemma 6.29 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ), we have

⎛∫ t 

0

∫

Ω 
|Δu (x, s)|p0 dxds

⎞ 1 
p0 ≤ K1(t) (6.5.25) 

and

⎛∫ t 

0

∫

Ω 
|Δw (x, s)|p0 dxds

⎞ 1 
p0 ≤ K2(t), (6.5.26) 

where 

K1(t) = Cp0 

⎛ 

⎝ ε2ξu M1 M4 

((2α − k)p0) 
1 
p0 

+ ε2ξu M0 M5 

((α − k)p0) 
1 
p0 

+ 
ε M0|Ω| 1 p0 ekt (ερu M0 + 1 2 (δv − α)

)

(kp0) 
1 
p0 

+ε(1 +  |Ω| 1 p0 )
⎞

and 

K2(t) = Cp0 

⎛ 

⎝ ε2ξw M2 M4 

((2α − k)p0) 
1 
p0 

+ ε2ξw M0 M5 

((α − k)p0) 
1 
p0 

+ 
ε2ρw M2 

0 |Ω| 1 p0 ekt  
(kp0) 

1 
p0 

+ ε(1 +  |Ω| 1 p0 ) 
⎞ 

⎠ 

with k = min
{
1 
2 (δv − α), δw

} ∈ (0,  α). 

Proof Denote G (x, t) =  −ξu∇  ·  (u∇v) − ρuuz  + 1 2 (δv − α)u, then ut = Δu − 1 2 
(δv − α)u + G(x, t) and

⎛∫ t 

0 
ekp0s

∫

Ω 
|G (x, s)|p0 dxds

⎞ 1 
p0 

≤
⎛∫ t 

0 
ekp0s

||
||
||
||(−ξu∇u∇v − ξuuΔv − ρuuz  + 

1 

2 
(δv − α)u)(·, s)

||
||
||
||

p0 

L p0 (Ω) 
ds

⎞ 1 
p0 

≤
⎛∫ t 

0 
ekp0s

⎡
ξu M1 M4ε

2 e−2αs + ξu M0 M5ε
2 e−αs + ρu M

2 
0 ε

2|Ω| 1 p0 (6.5.27) 

+ 
1 

2 
(δv − α)M0ε|Ω| 1 p0

⎤p0 

ds

⎞ 1 
p0 

≤ ε2ξu M1 M4 

((2α − k)p0) 
1 
p0 

+ ε2ξu M0 M5 

((α − k)p0) 
1 
p0 

+ 
ε M0|Ω| 1 p0 ekt (ερu M0 + 1 2 (δv − α)

)

(kp0) 
1 
p0 

.
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According to Lemma 3.2, we obtain

⎛∫ t 

0

∫

Ω 
|Δu (x, s)|p0 dxds

⎞ 1 
p0 ≤ K1(t). 

Similarly, denote F (x, t) =  −ξw∇  ·  (w∇v) + ρwuz, then wt = Δw − δww + 
F(x, t) and

⎛∫ t 

0 
ekp0s

∫

Ω 
|F (x, s)|p0 dxds

⎞ 1 
p0 

≤
⎛∫ t 

0 
ekp0s ||(−ξw∇w∇v − ξwwΔv + ρwuz)(·, s)||p0 

L p0 (Ω) ds

⎞ 1 
p0 

≤
⎛∫ t 

0 
ekp0s

⎡
ξw M2 M4ε

2 e−2αs + ξw M0 M5ε
2 e−αs + ρw M

2 
0 ε

2|Ω| 1 p0
⎤p0 

ds

⎞ 1 
p0 

≤ 
ε2ξw M2 M4 

((2α − k) p0) 
1 
p0 

+ ε2ξw M0 M5 

((α − k)p0) 
1 
p0 

+ 
ε2ρw M2 

0 |Ω| 1 p0 ekt 
(kp0) 

1 
p0 

, 

thus from Lemma 3.2, we obtain

⎛∫ t 

0

∫

Ω 
|Δw (x, s)|p0 dxds

⎞ 1 
p0 ≤ K2(t) 

and thereby complete the proof. 

Lemma 6.30 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ),

||Δv (·, t)||L p0 (Ω) ≤ 
M5 

2 
εe−αt . (6.5.28) 

Proof By v (·, t) = v0 (·) e− ∫ t 
0 (αuu+αww+δv )ds , we get

||Δv (·, s)||L p0 (Ω) 

≤
||
||
||di  v

⎛
∇v0(·)e− ∫ t 

0 (αuu+αww+δv )(·,s)ds
⎞||
||
||
L p0 (Ω) 

+
||
||
||di  v

⎛
v0(·)∇e− ∫ t 

0 (αuu+αww+δv )(·,s)ds
⎞||
||
||
L p0 (Ω) 

≤
||
||
||Δv0(·)e− ∫ t 

0 (αuu+αww+δv )(·,s)ds
||
||
||
L p0 (Ω) 

+
||
||
||v0(·)Δe− ∫ t 

0 (αuu+αww+δv )(·,s)ds
||
||
||
L p0 (Ω) 

+ 2
||
||
||
||∇v0(·)e− ∫ t 

0 (αuu+αww+δv )(·,s)ds
∫ t 

0 
(αu∇u + αw∇w) (·, s)ds

||
||
||
||
L p0 (Ω) 

(6.5.29) 

≤ ||
||Δv0(·)e−δv t

||
||
L p0 (Ω)
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+
||
||
||
||
||
v0(·)e− ∫ t 

0 (αuu+αww+δv )(·,s)ds
⎡∫ t 

0 
(αu∇u + αw∇w) (·, s)ds

⎤2
||
||
||
||
||
L p0 (Ω) 

+
||
||
||
||v0(·)e− ∫ t 

0 (αuu+αww+δv )(·,s)ds
∫ t 

0 
(αuΔu + αwΔw)  (·, s) ds

||
||
||
||
L p0 (Ω) 

+ 2
||
||
||
||e

−δv t∇v0(·)
∫ t 

0 
(αu∇u + αw∇w)  (·, s) ds

||
||
||
||
L p0 (Ω) 

≤ ||
||Δv0(·)e−δv t

||
||
L p0 (Ω) + ||v0(·)||L∞(Ω)e

−δv t

||
||
||
||
||

⎡∫ t 

0 
(αu∇u + αw∇w) (·, s)

⎤2
||
||
||
||
||
L p0 (Ω) 

+ 2 ||∇v0(·)||L2 p0 (Ω) e
−δv t

||
||
||
||

∫ t 

0 
(αu∇u + αw∇w)(·, s)ds

||
||
||
||
L2 p0 (Ω) 

+ ||v0(·)||L∞(Ω)e
−δv t

||
||
||
||

∫ t 

0 
(αuΔu + αwΔw)  (·, s) ds

||
||
||
||
L p0 (Ω) 

. 

From (6.5.22) and (6.5.23), we obtain 

e−(δv−α)t

||
||
||
||
||

⎡∫ t 

0 
(αu∇u + αw∇w) (·, s) ds

⎤2
||
||
||
||
||
L p0 (Ω) 

≤ α2 
ue

−(δv−α)t

||
||
||
||
||

⎛∫ t 

0 
∇u (·, s) ds

⎞2
||
||
||
||
||
L p0 (Ω) 

+ α2 
we

−(δv−α)t

||
||
||
||
||

⎛∫ t 

0 
∇w (·, s) ds

⎞2
||
||
||
||
||
L p0 (Ω) 

+ 2αu αwe
−(δv−α)t

||
||
||
||

∫ t 

0 
∇u (·, s) ds

∫ t 

0 
∇w (·, s) ds

||
||
||
||
L p0 (Ω) 

≤ α2 
ue

−(δv−α)t
||
||
||
||

∫ t 

0 
∇u (·, s) ds

||
||
||
||

2 

L2 p0 (Ω) 
+ α2 

we
−(δv−α)t

||
||
||
||

∫ t 

0 
∇w (·, s) ds

||
||
||
||

2 

L2 p0 (Ω) 

+ 2αu αwe
−(δv−α)t

||
||
||
||

∫ t 

0 
∇u (·, s) ds

||
||
||
||
L2 p0 (Ω)

||
||
||
||

∫ t 

0 
∇w (·, s) ds

||
||
||
||
L2 p0 (Ω) 

(6.5.30) 

≤ 
(αu M1ε)

2t 
2 p0−1 

p0 e−(δv−α)t 

(2αp0) 
1 
p0 

+ 
2αu αw M1 M2ε

2t 
2 p0−1 

p0 e−(δv−α)t 

(2αp0) 
1 
p0 

+ 
(αw M2ε)

2t 
2 p0−1 

p0 e−(δv−α)t 

(2αp0) 
1 
p0 

≤ 
(αu M1 + αw M2)

2ε2 

(2αp0) 
1 
p0

⎛
2 p0 − 1 

ep0(δv − α)

⎞ 2 p0−1 
p0 

and
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2 ||∇v0(·)||L2 p0 (Ω) e
−δv t

||
||
||
||

∫ t 

0 
(αu∇u + αw∇w)(·, s)ds

||
||
||
||
L2 p0 (Ω) 

≤ 2ε2 e−αt αu M1 + αw M2 

(2αp0) 
1 

2 p0

⎛
2 p0 − 1 

2 p0e(δv − α)

⎞ 2 p0−1 
2 p0 

. (6.5.31) 

From Lemma 6.3, noticing 0 < k <  δv − α, p0 > 1, we obtain 

t 
p0−1 
p0 e−(δv−α)t ≤

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0 

and 

t 
p0−1 
p0 e−(δv−α−k)t ≤

⎛
p0 − 1 

p0e(δv − α − k)

⎞ p0−1 
p0 

for all t ≥ 0, which together with Lemma 6.28 implies 

e−(δv−α)t
||
||
||
||

∫ t 

0 
(αu Δu + αwΔw)  (·) dτ

||
||
||
||
L p0 (Ω) 

≤
⎛∫ t 

0

∫

Ω 
|αu Δu + αwΔw|p0 (x, s)dxds

⎞ 1 
p0 

t 
p0−1 
p0 e−(δv−α)t 

≤ (αu K1(t) + αw K2(t)) t 
p0−1 
p0 e−(δv−α)t (6.5.32) 

= εCp0 αut 
p0−1 
p0 e−(δv−α)t

⎛
εξu M1 M4 

((2α − k) p0) 
1 
p0 

+ εξu M0 M5 

((α − k)p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ εCp0 αwt 
p0−1 
p0 e−(δv−α)t

⎛
εξw M2 M4 

((2α − k) p0) 
1 
p0 

+ εξw M0 M5 

((α − k) p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ ε 
Cp0 M0|Ω| 1 p0 

(kp0) 
1 
p0 

t 
p0−1 
p0 e−(δv−α−k)t

⎛

εαu ρu M0 + 
1 

2 
αu (δv − α) + ερwαw M0

⎞

≤ εCp0 αu

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0

⎛
εξu M1 M4 

((2α − k)p0) 
1 
p0 

+ 
εξu M0 M5 

((α − k) p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ εCp0 αw

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0

⎛
εξw M2 M4 

((2α − k)p0) 
1 
p0 

+ εξw M0 M5 

((α − k)p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ ε 
Cp0 M0|Ω| 1 p0 

(kp0) 
1 
p0

⎛
p0 − 1 

p0e(δv − α − k)

⎞ p0−1 
p0

⎛

εαu ρu M0 + 
1 

2 
αu (δv − α) + ερwαw M0

⎞

. 

Inserting (6.5.30), (6.5.31) and (6.5.32) into (6.5.29), we get
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||Δv (·, t)||L p0 (Ω) 

≤ εe−αt + ε2||v0(·)||L∞(Ω)e
−αt (αu M1 + αw M2)

2 

(2αp0) 
1 
p0

⎛
2 p0 − 1 

p0e(δv − α)

⎞ 2 p0−1 
p0 

+ 2ε2 e−αt αu M1 + αw M2 

(2αp0) 
1 

2 p0

⎛
2 p0 − 1 

2 p0e(δv − α)

⎞ 2 p0−1 
2 p0 

(6.5.33) 

+ ε||v0(·)||L∞(Ω)e
−αt Cp0 αu

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0 

·
⎛

εξu M1 M4 

((2α − k)p0) 
1 
p0 

+ εξu M0 M5 

((α − k)p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ ε||v0(·)||L∞(Ω)e
−αt Cp0 αw

⎛
p0 − 1 

p0e(δv − α)

⎞ p0−1 
p0 

·
⎛

εξw M2 M4 

((2α − k) p0) 
1 
p0 

+ εξw M0 M5 

((α − k)p0) 
1 
p0 

+ 1 +  |Ω| 1 p0
⎞

+ 
ε||v0(·)||L∞(Ω)e−αtCp0 M0|Ω| 1 p0 

(kp0) 
1 
p0

⎛
p0 − 1 

p0e(δv − α − k)

⎞ p0−1 
p0 

·
⎛

εαuρu M0 + 
1 

2 
αu(δv − α) + ερwαw M0

⎞

. 

Therefore, (6.5.28) follows from (6.5.8). 

Lemma 6.31 Under the assumptions of Theorem 6.3, for all t ∈ (0, T ),
||
||
||
||

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t) − etΔ
⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·)
||
||
||
||
L∞(Ω) 

≤ 
M6 

2 
εe−αt . (6.5.34) 

Proof From Lemma 1.1(iv) and (6.5.11), using Lemma 4.3, it follows that

||
||
||
||

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t) − etΔ
⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·)
||
||
||
||
L∞(Ω) 

≤
∫ t 

0

||
||
||
||e

(t−s)Δ
⎡

ξu∇  ·  (u∇v) + 
ρu + ρz 

ρw 
ξw∇  ·  (w∇v) + ξz∇  ·  (z∇v)

⎤

(·, s)
||
||
||
||
L∞(Ω) 

ds  

≤ ξuc4
∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4 p0

⎤

e−λ1(t−s) ||(u∇v)  (·, s)||L2 p0 (Ω) ds  

+ 
ρu + ρz 

ρw 
ξwc4

∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4 p0

⎤

e−λ1(t−s) ||(w∇v)  (·, s)||L2 p0 (Ω) ds
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+ ξzc4
∫ t 

0

⎡

1 + (t − s)−
1 
2 − N 

4 p0

⎤

e−λ1(t−s) ||(z∇v)  (·, s)||L2 p0 (Ω) ds  

≤ 2c10c4 M0 M4ε
2e−αt

⎛

ξu + 
ρu + ρz 

ρw 
ξw + ξz

⎞

, 

and in view of (6.5.9), we already arrive at (6.5.34) and complete the proof. 

Proof of Theorem 6.3. First let us verify T = Tmax by contraction. In fact, suppose 
that T < Tmax , then from Lemmas 6.25–6.31, it follows

||∇u (·, t)||L2 p0 (Ω) ≤ 
M1 

2 
εe−αt ,

||∇w (·, t)||L2 p0 (Ω) ≤ 
M2 

2 
εe−αt ,

||∇z (·, t)||L2 p0 (Ω) ≤ 
M3 

2 
εe−αt ,

||∇v (·, t)||L2 p0 (Ω) ≤ 
M4 

2 
εe−αt ,

||Δv (·, t)||L p0 (Ω) ≤ 
M5 

2 
εe−αt ,

||
||
||
||

⎛

u + 
ρu + ρz 

ρw 
w + z + Q

⎞

(·, t) − etΔ
⎛

u0 + 
ρu + ρz 

ρw 
w0 + z0

⎞

(·)
||
||
||
||
L∞(Ω) 

≤ 
M6 

2 
εe−αt , 

for all t ∈ (0, T ), which contradicts the definition of T . 
Next, we show that Tmax =  ∞. In fact, if  Tmax < ∞, then in view of the definition 

of T , we obtain 

lim 
t↗Tmax

⎛
||u (·, t)||W 1,2 p0 (Ω) + ||v (·, t)||W 2, p0 (Ω) + ||w (·, t)||W 1,2 p0 (Ω) + ||z (·, t)||W 1,2 p0 (Ω)

⎞

< ∞, 

which contradicts with (6.5.1) in Lemma 6.22. Therefore, we have Tmax =  ∞. 
Integrating the equation of u in (6.1.12) over Ω , we have

∫

Ω 
u (x, t) dx  =

∫

Ω 
u0(x)dx  − ρu

∫ t 

0

∫

Ω 
(uz) (x, s) dxds, 

which along with the nonnegative property of u, z and the fact that ||u(·, t)||L∞(Ω) ≤ 
M0ε warrants that ū (t) := 1 

|Ω|
∫

Ω u (x, t) dx  is noncreasing with respect to time t 
and and its limit t →  ∞  exists, that is,
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lim 
t→∞

∫

Ω 
u (x, t) dx  =

∫

Ω 
u0 (x) dx  − ρu

∫ +∞ 

0

∫

Ω 
(uz) (x, s) dxds  

as well as 

lim 
t→∞ 

ū (t) = 
1 

|Ω|
⎛∫

Ω 
u0 (x) dx  − ρu

∫ +∞ 

0

∫

Ω 
(uz) (x, s) dxds

⎞

:= u∗, 

which implies 

0 ≤ 
ρu 

|Ω|
∫ ∞ 

t

∫

Ω 
(uz) (x, s) dxds  =  ̄u(t) − u∗ → 0 

as t →  ∞. On the other hand, by Poincare’s inequality, there exists k1 > 0 such that

||u(·, t) −  ̄u(t)||L2 p0 (Ω) ≤ k1 ||∇u(·, t)||L2 p0 (Ω) . 

By Embedding theorem, we know W 1,2 p0 (Ω) ↗→ C1− N p0 (Ω), for  p0 > max{1, N 2 }. 
There exists k2 > 0, such that

||u(·, t) −  ̄u(t)||L∞(Ω) ≤ k2 ||u(·, t) −  ̄u(t)||W 1,2 p0 (Ω) 

≤ k2 (1 + k1) ||∇u(·, t)||L2 p0 (Ω) → 0 

as t →  ∞. Thus,

||
||u(·, t) − u∗||||

L∞(Ω) ≤ ||u(·, t) −  ̄u(t)||L∞(Ω) +
||
||ū(t) − u∗||||

L∞(Ω) → 0. 

Now, we consider a linear combination of u and w 

H := ρwu + ρuw, 

then 

Ht = ρwut + ρuwt = ΔH − ρwξu∇  ·  (u∇v) − ρuξw∇  ·  (w∇v) − ρuδww. 

Accordingly,

∫

Ω 
H (x, t) dx  =

∫

Ω 
H (x, 0)dx  − ρuδw

∫ t 

0

∫

Ω 
w (x, s) dxds. 

Similarly, we obtain 

lim 
t→∞ 

H (t) = 
1 

|Ω|
⎛∫

Ω 
H (x, 0) dx  − ρuδw

∫ +∞ 

0

∫

Ω 
w (x, s) dxds

⎞

:= H ∗,
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and

||
||H (·, t) − H̄ (t)

||
||
L∞(Ω) ≤ k2

||
||H (·, t) − H̄ (t)

||
||
W 1,2 p0 (Ω) 

≤ k2 (1 + k1) ||∇ H (·, t)||L2 p0 (Ω) → 0. 

Then

||H (·, t) − H∗||L∞(Ω) ≤ ||H (·, t) − H (t)||L∞(Ω) + ||H (t) − H∗||L∞(Ω) → 0 

as t →  ∞. Then denote w∗ := 1 
ρu 

(H∗ − ρwu∗), as  t →  ∞, we obtain 

ρu

||
||w(·, t) − w∗||||

L∞(Ω) 

= ||
||ρuw(·, t) − (H∗ − ρwu

∗)
||
||
L∞(Ω) 

≤ ||
||H (·, t) − H∗||||

L∞(Ω) + ρw

||
||u(·, t) − u∗||||

L∞(Ω) → 0. 

Next, we consider a linear combination of u, w and z. Let  

I = ρz(u + w) + (ρu + ρw)z. 

Then 

It = ΔI − ρzξu∇  ·  (u∇v) − ρzξw∇  ·  (w∇v) − (ρu + ρw)ξz∇  ·  (z∇v) 
− (ρzδw − (ρu + ρw)β) w − (ρu + ρw)δz z. 

Accordingly,

∫

Ω 
I (x, t) dx  

=
∫

Ω 
I (x, 0)dx  −

∫ t 

0

∫

Ω 
[(ρzδw − (ρu + ρw)β) w(x, s) + (ρu + ρw)δz z(x, s)]dxds, 

where ρzδw − (ρu + ρw)β > 0. 
Similarly, we obtain 

lim 
t→∞ 

I (t) = 
1 

|Ω|
⎛∫

Ω 
I (x, 0) dx  

−
∫ +∞ 

0

∫

Ω 
[(ρzδw − (ρu + ρw)β) w(x, s) + (ρu + ρw)δz z(x, s)]dxds

⎞

:= I ∗, 

and
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||
||I (·, t) − Ī (t)

||
||
L∞(Ω) ≤ k2

||
||I (·, t) − Ī (t)

||
||
W 1,2 p0 (Ω) 

≤ k2 (1 + k1) ||∇ I (·, t)||L2 p0 (Ω) → 0. 

Then

||I (·, t) − I ∗||L∞(Ω) ≤ ||I (·, t) − I (t)||L∞(Ω) + ||I (t) − I ∗||L∞(Ω) → 0 

as t →  ∞. Then denote z∗ := 1 
ρu+ρw 

(I ∗ − ρz(u∗ + w∗)), as  t →  ∞, we obtain 

(ρu + ρw)
||
||z(·, t) − z∗||||

L∞(Ω) 

= ||
||(ρu + ρw)z(·, t) − (I ∗ − ρz(u

∗ + w∗))
||
||
L∞(Ω) 

≤ ||
||I (·, t) − I ∗

||
||
L∞(Ω) + ρz||u(·, t) − u∗||L∞(Ω) + ρz||w(·, t) − w∗||L∞(Ω) → 0. 

By contradiction, if w∗ > 0 or z∗ > 0, then there exists t∗ > 0 such that for all t > t∗, 

d 

dt

∫

Ω 
Q(x, t)dx  =

∫

Ω

⎛⎛
ρu + ρz 

ρw 
δw − β

⎞

w(x, t) + δz z(x, t)
⎞

dx  

≥ 
|Ω| 
2

⎛⎛
ρu + ρz 

ρw 
δw − β

⎞

w∗ + δz z∗
⎞

> 0, 

which implies that
∫

Ω Q(x, t)dx  →  ∞  as t →  ∞  and thus contradicts with that
||Q(·, t)||L∞(Ω) ≤ M0ε. Hence, we have w∗ = z∗ = 0. On the other hand, by (6.5.20), 
it is easy to see that

||v(·, t)||L∞(Ω) → 0. 

So the proof of Theorem 6.3 is complete. 
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