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Preface to the Second Edition

In this new edition we have retained the overall structure of the original book. It now consists of
12 chapters. We have shifted some material from later chapters to the first chapter. In particular,
we have described gravitationally induced quantum interference (COW experiment) and early
experiments on spin rotation, spinors, and spin-related phases in Chapter 1. These results have
gotten broad attention in recent years and are now described in various standard physics textbooks.
This change in format was done with a view of the close connection of these experiments with the
atom interferometry field and with the modern ideas on entanglement now permeating all of the
modern quantum mechanical literature.

Neutron interferometry is a mature technique in experimental physics. The use of the perfect
silicon crystal interferometer to accurately measure scattering lengths of many isotopes is given in
Chapter 3. Very accurate measurements of the neutron scattering lengths of the proton, deuteron,
and He-3 have been carried out in recent years. These results confine the parameters in various
theoretical models of few-body nuclear physics.

Chapter 4 is retitled “Coherence and Decoherence,” so as to include many new topics
connected to the current emphasis in certain areas of physics related to how coherent quantum
systems decohere and evolve into systems described by classical Lagrangian and Hamiltonian
mechanics. The quantum concepts of entanglement, contexuality, squeezing, Wigner functions,
interactions of quantum systems with the environment, post selection experiments, measures of
distinguishability, intensity–intensity correlations, and Bell’s inequalities are the general topics of
this expanded chapter. “Contexuality and Kochen–Specker Phenomena” are discussed in a new
Chapter 7.

Our original Chapter 8 dealing with forthcoming and more speculative experiments is now
Chapter 10. Some of those experiments have advanced considerably over the intervening 12 years
since the publication of the 1st edition. Experiments related to searches for non-Newtonian gravity
at short distances have been pursued in various confined geometries, such as transmission through
narrow slits. Related ideas, called “bouncing ball” experiments, have successfully observed quan-
tized states of ultra-cold neutrons in the Earth’s gravity. An experiment designed to observe the
Anandan acceleration has not yet been attempted. The observation of relativistic proper time
effects, as suggested in Chapter 8, occurs at the level of 10–9. Suggested observation of such
effects in atom beam interferometry, related to a gravitational redshift, has generated interesting,
but controversial papers. Perhaps there is a way to pursue such effects with neutron interferome-
try utilizing the Pendellösung interference fringes, as discussed in this chapter on “Gravitational,
Inertial, andMotional Effects.” A feasible time-dependent Fizeau experiment is described to study
new motional effects and for the cooling of neutron beams.

Various new techniques and experiments of phase contrast radiography, and phase contrast
interferometry and microscopy are discussed in Chapter 9 on “Solid State Physics Applications.”

The final Chapter 12 deals with epistemological questions connected with basic quantum
experiments with massive and composed systems. This has started a new era of experimental
quantum physics.
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This new edition has a vastly expanded and detailed index. We want to thank our many
collaborators and students mentioned in the first edition and those joining our groups in
the meantime, particularly R. Cappelletti, Y. Hasegawa, M. Huber, H. Lemmel, D. Pushin,
K. Schoen, S. Sponar, G. Sulyok, T.E. Wietfeldt who were involved in various experiments and
discussions included in this book. Continuous interest of D.M. Greenberger (New York), A.G.
Klein (Melbourne) and W. Schleich (Ulm) is gratefully acknowledged as well. From many sides
we got help in identifying and eliminating various typographical errors in the 1st edition.

Helmut Rauch, Vienna, Austria
Samuel Werner, Gaithersburg, MD, USA
December 2014



Preface to the First Edition

This book is the result of an ongoing scientific journey that the two of us began a quarter-century
ago on opposite sides of the Atlantic Ocean. The experimental observation of interference between
coherently split, well-separated beams of matter waves, in this case neutron de Broglie waves, is
now central to the fabric of quantum physics. The revolution in this field was brought about by the
wonderfully simple, didactically exquisite, and beautifully stable perfect silicon crystal interferom-
eter, invented by Ulrich Bonse and Michael Hart for X-rays in 1964, and first applied to neutrons
in Vienna in 1974 in a cooperative work together with U. Bonse and W. Treimer. It is topologically
identical to the Mach–Zehnder interferometer of classical optics. Over the past 25 years, more
than 40 neutron interferometry experiments, having an impact on fundamental quantum and
neutron physics, have been carried out with these devices. In recent years interferometers based
upon cold and ultra-cold neutrons, and also the Larmor- and Ramsey-type interferometers, have
been successfully employed. A description of the instrumentation, analysis of the results, and the
theoretical motivation and interpretation of these experiments are the main subjects of this book.

The similarities of classical optics and neutron optics are easy to understand and anticipate,
since the time-dependent Schrödinger equation is formally equivalent to the Helmholtz scalar
wave equation, which accounts for the behavior of light waves (aside from polarization effects).
However, since for a thermal neutron (energy ≈ 20 meV) having a wavelength about 2 Å moves
with a velocity ≈ 2000 m/s, the time-of-flight across a silicon interferometer is typically ≈ 100 μs.
The combination of these long transit times, short wavelengths, and rather long data collection
periods requires more attention to vibration, thermal, and environmental isolation of the interfer-
ometer than the typical optical interferometer. Chapter 2 is devoted to a discussion of the necessary
instrument design to accomplish the required level of stability.

Since the neutron experiences all four fundamental forces of nature (gravitation, electromag-
netic, and weak and strong interactions), the landscape for neutron interferometry investigations
has proven to be quite broad, extending beyond wave-optical phenomena to encompass the fun-
damental particle attributes of the neutron itself and the nuclei, with which it interacts strongly,
and the electrons and their fields, with which it interacts more weakly. The fundamental dual
nature of thermal and cold neutrons—sometimes a particle (when detected) and sometimes a
wave (when traversing the interferometer)—is wonderfully manifested by the highly non-local
effects observed in neutron interferometry. Chapters 3 and 4 are devoted to a comprehensive
discussion of the various neutron interactions, especially the strong interactions and the measure-
ment of the nuclear–nuclear scattering lengths by interferometry, and the intricacies of the mutual
coherence properties of the wave packets traversing the two legs of the interferometer. Chapters 5,
6, and 7 provide detailed discussions of fundamental quantum interference phenomena induced
by neutron spinor rotation, topology, and geometry (Aharonov–Bohm effects and Berry’s phase),
gravity, acceleration, rotation (Sagnac effect), and translational motion (Fizeau effects).

Non-relativistic quantum mechanics, based upon the Schrödinger equation, is generally
accepted to be a linear theory involving wave functions, which are complex numbers. However,
a quantum theory which is neither linear nor restricted to complex numbers is conceivable.
Chapter 8 is devoted to a review of neutron interferometry experiments which search for these
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“speculative” prospects. Some experiments of this type, looking for non-linear effects, quaternion
wave functions, AB effects not involving the electromagnetic field, and non-ergodic effects, have
already been carried out.

Applications of neutron interferometry in solid state physics have just begun. Interesting exper-
iments on the density fluctuations due to inhomogeneities caused by hydrogen in metals and
the density of polymeric overlayers have already been done. These, along with other potentially
significant ideas, such as phase-contrast tomography and Fourier spectroscopy, are discussed in
Chapter 9. A full understanding of the Bragg reflection process in the perfect silicon crystals of
our neutron interferometers requires a detailed description of the dynamical theory of diffraction.
Chapter 10 provides the expert with the necessary theory. An understanding of this theory is not
necessary for most of the experiments described in this book. The final chapter is devoted to inter-
pretational questions related to quantum mechanics, and specifically to the quantum interference
of matter waves. The reader will find the book by Varley Sears, Neutron Optics, to be an excellent
companion to this book. We refer to it often.

Finally, we would like to thank our many colleagues and students located in many places
throughout the world for their very valuable cooperation and for providing us with many fig-
ures and original data during the writing of this book over the past four years. With the hope of
not omitting any of them, we simply mention them by name: B.E. Allman, M. Arif, G. Badurek,
E. Balcar, W. Bauspiess, U. Bonse, A. Cimmino, R. Clothier, R. Colella, C.F. Eagen, G. Eder,
G.L. Greene, Y. Hasegawa, A.I. Ioffe, D.L. Jacobsen, H. Kaiser, A.G. Klein, G. Kroupa, W.-T.
Lee, K.C. Littrell, P.D. Mannheim, B. Mashhoon, M. Namiki, G.I. Opat, A.W. Overhauser, S.
Pascazio, D. Petrascheck, J.-L. Staudenmann, E. Seidl, M. Suda, J. Summhammer, W. Treimer,
D. Tuppinger, A. Wilfing, M. Zawisky, and A. Zeilinger.

A large amount of work has been financially supported by the Austrian Science Foundation
(FWF) and the National Science Foundation of US (NSF), which is gratefully acknowledged. The
hospitality of the Institute Laue–Langevin (ILL) in Greboble, the National Institute of Standards
and Technology (NIST) in Gaithersburg, and our respective home institutions, the Atominstitut
in Vienna, and the University of Missouri Research reactor (MURR) in Columbia, where many
of the experiments have been performed, is gratefully acknowledged as well.

The manuscript was patiently typed by Evi Haberl, who saw it through many restructurings,
revisions, and changes. To her we offer our sincerest thanks. Also, to Ilse Futterer, who gave
technical assistance.

Vienna, Austria, and Columbia, Missouri, USA H. R.
September 1999 S. A. W.
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Introduction

1.1 Neutron Optics and the Analogy with Light Optics

Optical phenomena are directly connected to wave phenomena, which are known for many kinds
of radiation. Elsasser (1936) first suggested that the motion of neutrons could be determined by
quantum mechanics, shortly after the discovery of the neutron by Chadwick (1932). His sugges-
tion that as waves they would be diffracted by crystalline matter was soon verified experimentally
by Halban and Preiswerk (1936) and by Mitchell and Powers (1936). The diffraction and scatter-
ing of thermal neutrons (E ∼ kT ≈ 0.025 eV) having a de Broglie wavelength comparable to the
interatomic spacings of atoms in solids has become one of the most powerful modern techniques
in the study of the dynamic and static structure of condensed matter. The word “optics,” when
applied to the propagation of neutron radiation and its modifications by various potentials or fields
of force and by material objects, is by no means used here metaphorically. The extremely close
mathematical analogies between the propagation of light as described by Maxwell’s equations and
the propagation of low-energy neutrons as described by the Schrödinger equation suggest that
most phenomena occurring for light will have their analogs in neutron optics.

Neutrons experience interactions with their environment via all four forces of nature: strong
nuclear force, the electromagnetic, the weak and the gravitational force, whose strengths are related
as 1:10–2:10–7:10–39. Neutrons have a spin of 1/2 and are therefore fermions, while photons are
bosons. Thus, the breadth and richness of neutron optical phenomena are a consequence of their
wave nature, their full interaction with the four forces of nature, and their mathematical similarities
to light optics. The observation of interference phenomena of neutron matter waves having a
wavelength of a few ångstroms, but with coherence features extending over macroscopic distances
in the perfect silicon crystal interferometer as described in this book, represents a compendium of
exquisite and didactic experimental elucidations of quantum mechanics.

Since the invention of the laser, the field of quantum optics has experienced a resurgence with
some spectacular discoveries related to squeezed states, multiple photon effects, entanglement,
cooling of atoms by laser light, and the Bose–Einstein condensation (Born and Wolf 1975, Walls
and Milburn 1994, Anderson et al. 1995, Mandel and Wolf 1995, Berman 1997, Haroche and
Raimond 2006). It can be anticipated that more of these developments will suggest new and
related neutron optical experiments. Due to the differences in particle statistics for neutrons and
photons, and the fact that neutrons have a rest mass while the mass of the photon is zero, future
developments in these two fields will be complementary, borrowing experimental techniques and
theoretical frameworks from each other. Neutrons are massive and composite (quark-structure)
systems which exhibit a well-known level structure within a magnetic field where transitions can

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.



2 Introduction

Table 1.1 Properties of the Neutron (Taylor 1990).

Particle properties Connection Wave properties

m = 1.674928(1) × 10–27 kg λc =
h
m.c

=

1.319695(20) × 10–15 m

s =
1
2
h̄ de Broglie (thermal neutrons: λ = 1.8 Å,

v = 2200 m/s)

μ = –9.6491783(18) × 10–27 J/T λB =
h
mv

λB =
h
m.v

= 1.8 × 10–10 m

τ = 887(2) s �c =
1
2δk

∼= 10–8 m

R = 0.7 fm Schrödinger �p = v.�t ∼= 10–2 m

α = 12.0 (2.5) ×10–4 fm3 Hψ(r, t) = ih̄
δψ(r, t)
δt

�d = v.τ = 1.942(5) × 106 m

u–d–d = quark structure 0 ≤ χ ≤ 2π (4π)

m = mass, s = spin, μ = magnetic
moment, τ = β-decay lifetime,
R = (magnetic) confinement radius,
α = electric polarizability; all other
quantities like electric charge,
magnetic monopole, and electric
dipole moment are compatible with 0.

λc = Compton wavelength,
λB = de Broglie wavelength,
Δc = coherence length,
Δp = packet length,
�k = momentum width,
�t = chopper opening time,
v = group velocity, χ = phase.

be induced by several means. Several typical particle and wave properties of neutrons are given in
Tables 1.1 and 1.2.

The more recent achievements of atom and molecular interferometry show that there is appar-
ently no natural upper mass limit to which interferometry can be developed, but the experimental
requirements become increasingly more stringent. The status and several perspectives of atom
and molecular interferometry can be found in a book edited by Berman (1997) and in a review
article by Cronin et al. (2009). Interferometry with Bose–Einstein condensates (Shin et al. 2004,
Wang et al. 2005) and superfluid Helium-4 (Hoskinson et al. 2006, Sato and Packard 2012) has
been developed as well.

The development of quantummechanics took an important new direction with the complimen-
tarity hypothesis of particle motion and wave behavior, most clearly displayed in the de Broglie
relation (de Broglie 1923, 1925, 1926)

p = mv = h/λ = h̄k (1.1)

where the momentum p of a particle of mass m and group velocity v is related to a matter
wave with wavelength λ. Matter wave fields �(r, t) are described by the Schrödinger equation
(Schrödinger 1926).

H�(r, t) =

(
–
h̄2

2m
∇2 + V (r, t)

)
�(r, t) = ih̄

∂ψ(r, t)
∂t

(1.2)
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Table 1.2 Useful Conversion Factors in Neutron Physics.

Kinetic energy E =
h̄2k2

2m
=

h2

2mλ2
= hf =

1
2
mv2 =

1
2
m
(
d
t

)2

=̂kBT

E [meV] = 2.0723k2 =
81.81
λ2

= 4.136 f = 5.2267 × 10–6v2

= 5.2267 × 106 1

(t/d)2
= 0.086173T

λ [Å], f [THZ], v [m/s], k[Å–1],
t
d

[μs
m

]
,T [K]

Velocity v [m/s] = 3956/λ [Å]

Rest mass energy E0 = m0c2 = 939.6 MeV

Zeeman energy
(for B = 1 tesla)

E = –μB = 60.311 neV

Larmor precession frequency
(for B = 1 tesla)

ωL = –
2μ
h̄
B = –γB = 1.833 × 108rad/s

and electromagnetic wave fields are given by the wave equation of classical optics

∇2ψ(r, t) –
1
c2
∂2ψ(r, t)
∂t2

= 0. (1.3)

These are linear equations which can be solved in free space using the plane wave Ansatz

�k(r, t) = ak ei(k·r–ωkt) = �(r)e–iωkt, (1.4)

which gives in both cases the well-known Helmholtz equation

∇2ψ(r) + k2ψ(r) = 0, (1.5)

with the dispersion relations

k2 =
2mE

h̄2
(matter-waves), (1.6a)

and

k2 =
E2

h̄2c2
(e. m. waves), (1.6b)

where the energy is related to the frequency of the wave by E = h̄ω. The velocity of wave propa-
gation for electromagnetic waves in free space is always equal to the velocity of light, whereas for
matter waves it is determined by the de Broglie relation (Eq. 1.1).

One should differentiate between two velocities for all wave motions: the group (vg) and phase
velocity (vph). The group velocity is defined as

vg =
dω
dk

=
h̄k
m

, (1.7)
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which coincide with the de Broglie relation (Eq.1.1) when the total (kinetic) energy is written as
h̄ω = h̄2k2

2m . The phase velocity follows from its definition as

vph =
ω

k
=
vg
2
, (1.8)

which is in contradiction with the correct relativistic result. One should start with the relativistic
relation connecting the energy E to the momentum p. That is,

E2 = p2c2 +
(
m0c2

)2
,

or

ω2 = c2k2 +
m2

0c
4

h̄2
. (1.9)

This gives a phase velocity of (de Broglie 1923)

vph =
ω

k
=
c2

vg
, (1.10)

which shows that the phase velocity of a matter wave always exceeds the velocity of light (e.g.,
Rogalski and Palmer 1999, Zettili 2001).

The physical significance of the phase velocity is still under discussion and the difference
between the two values has not yet been resolved (e.g., Zettili 2001, Dunningham and Vedral
2011). On the other hand the particle rest mass m0 determines the Compton wavelength
λC = h/m0c which can be used to define a Compton frequency

ωC =
m0c2

h̄
. (1.11)

This gives for the neutron a frequency of fCompton = m0c2/h = 2.27 × 1023 Hz. Several authors
have proposed to use this quantity as an internal clock in an atom-beam interference experiment
(Müller et al. 2010, Hohensee et al. 2011). This idea resides in the spirit of de Broglie (1923,
1924), but there is also criticism and skepticism regarding this interpretation of the physical reality
of the Compton frequency (see Sections 8.4 and 8.5.6, Sinha and Samuel 2011, Wolf et al. 2011,
Greenberger et al. 2012). There is a relation between the Compton frequency and de Broglie
wavelength, which reads in the non-relativistic limit as λC = λdBv/c and which suggests a physical
meaning to the Compton frequency as well. A more detailed description of this view is given in
Section 8.5.6.

When stationary situations are described, the time-independent Schrödinger equation (and the
Helmholtz equation) can be used for matter waves (and electromagnetic radiation). They have the
same mathematical structure and therefore the expected diffraction phenomena must be analo-
gous, aside from the different dispersion relations and the different kinds of interactions. Equation
(1.5) is a linear differential equation and, therefore, linear combinations (superpositions) of solu-
tions are also solutions. For time-dependent phenomena, differences are expected because the
time derivatives in the Maxwell and Schrödinger wave equations are different, i.e., of first order
and second order, respectively. The spreading of matter wave packets may be seen as a most
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λ'

Vg

λ

vp

Figure 1.1 Real part of a neutron wave packet traveling in the x-direction with group
velocity vg and phase velocity vp. The imaginary part of the wave packet is complementary.
The diagram is drawn for �k/k = 0.1. Thanks to Robert Dimeo, NIST

well-known phenomenon of this kind (see, e.g., Messiah 1965, Cohen-Tannoudji et al. 1992),
but diffraction in time which occurs for matter waves but not for electromagnetic waves in vac-
uum may be mentioned as another example where marked differences appear (Moshinsky 1952,
Brukner and Zeilinger 1997).

The pervasive conceptual idea of a wave packet provides us with a common language for
describing many of the experiments discussed in this book. We show in Fig. 1.1 a snapshot of such
a packet of waves moving with velocity vg along the x-axis. Because of the quadratic dispersion
law (Eq. 1.9) the packet spreads in time according to the well-known quantum mechanics rule

[δx(t)]2 = [δx(0)]2 +
[

h̄t
2m δx(0)

]2
. (1.12)

See the quantum mechanics books by Schiff (1955), Messiah (1965), and Sakurai (1994), for
example. This spreading occurs in time-dependent situations only because Eq. (1.12) is based
on the time-dependent Schrödinger equation (1.2). The dispersion requires the wavelength of
the internal oscillations to be shorter on the front end than on the tail end of the wave packet.
The planes of constant phase are moving with the velocity vph which is much greater than the
velocity of light, and the frequency of the internal oscillations is very large, in the neutron case the
Compton frequency fCompton = m0c2/h = 2.27 × 1023 Hz. Thus, the question remains: what is it
that is oscillating and moving with such high velocities? Is the phase velocity real? To what extent
is it playing a role in the neutron interferometry experiments discussed in detail in this book?

The recent and continuing controversy regarding the possible observability of a gravitational
redshift in atom interferometry is intimately related to the phase velocity idea. Louis de Broglie
(1923) recognized these conceptual problems from the very start when he used the words “associ-
ated fictitious wave” in describing the moving electron. Contributions to this ongoing controversy
come from Müller et al. (2010), Wolf et al. (2011), and Greenberger et al. (2012).

For dispersive phase shifts caused by forces, such as those arising from the mean optical nuclear
potential or frommagnetic fields, there will be a change in the group velocity vg. However, for non-
dispersive phase shifts arising from Aharonov–Bohm-type potentials, there will be a change of the
phase velocity vph, but no change of the packet group velocity.

Lamb (1995) has shown that such wave fields are dynamically equivalent to a system of
quantum-mechanical harmonic oscillators exhibiting a coherent state behavior. Since reflection,
refraction, diffraction, and interference are consequences of the stationary equations, the com-
plete array of wave optical phenomena known from the wave nature of light is also expected to
occur for neutron matter waves. For an overview of light optical phenomena see the classical book
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by Born andWolf (1975). Diffraction of neutrons by macroscopic objects, such as edges, slits, and
zone plates, and the refraction of neutrons by wedges and lenses have been demonstrated in a full
range of experiments that parallel those of classical optics (Sears 1989, Kaiser and Rauch 1999,
Utsuro and Ignatovich 2010). In addition to the standard measurement of scattered intensities,
neutron interferometry also provides experimental access to the phases of neutron wave functions
as they are perturbed and modified by gravity, inertia, motion, magnetic and electric fields, topol-
ogy, and material media (Bonse and Rauch 1979, Werner and Klein 1986, Badurek et al. 1988a,
Rauch 2004).

The close mathematical analogy between the theory of neutron optics and the optics of elec-
tromagnetic waves allows one to formally connect the two types of fields through the index
of refraction n(r). For a neutron moving adiabatically while experiencing a spatially dependent
potential V(r), the wave function is described by an energy eigenstate (E = h̄ω)

�(r, t) = ψ(r) e–iωt, (1.13)

where ψ(r) satisfies the time-independent Schrödinger equation

–
h̄2

2m
∇2ψ(r) + V (r)ψ(r) = E ψ(r), (1.14)

which is a Helmholtz scalar wave equation, as shown above. Including the additional interaction
one gets

∇2ψ(r) +K2(r)ψ(r) = 0. (1.15)

The spatially dependent wave vector K(r) in the region of the potential is given by

K2(r) =
2m

h̄2
[E – V (r)]. (1.16)

It is therefore natural to define the spatially dependent index of refraction as the ratio of this wave
vector K(r) to the free space wave vector k such that (Halpern et al. 1941, Sears 1989)

n(r) ≡ K(r)
k

=
[
1 –

V (r)
E

]1/2
. (1.17)

Strictly speaking, n(r) is a tensor since some media or regions of space where the neutron interacts
with its environment will in general be anisotropic. Furthermore, for regions of space containing
media that absorb or scatter the neutron incoherently, the index of refraction will be complex. This
aspect of the index of refraction is discussed in detail in Chapter 3.

Neutron optics differs from light-, X-ray-, and electron-optical phenomena in a number of
significant ways, but most importantly because the neutron’s interaction with matter is domi-
nated by the strong neutron–nuclear interaction, which can be described by the point-like Fermi
pseudopotential (Fermi 1936), for each nucleus at site rj , such that

Vnuc(r) =
∑
j

2π h̄
m

bcδ(r – rj). (1.18)
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This pseudopotential approximation is generally valid because the range of the strong nuclear
force is roughly the nuclear radius R, which is much smaller than the de Broglie wavelength λ for
thermal neutrons. This neutron–nuclear interaction is characterized by the single parameter bc,
called the scattering length. The values are typically in the range of –5 to +10 fm, and they are in
most cases positive.

In magnetic materials, the neutron interacts with the magnetic induction fieldB via its magnetic
dipole moment μ, which is related to the Pauli spin operator σ (Eqs. 3.44–3.46, Halpern and
Johnson 1939):

Vmag(r) = –μ ·B(r) = –μσ ·B(r). (1.19)

The magnetic interaction acts on the spinor part of the neutron wave function. The so-called 4π-
symmetry of spinors has been verified by neutron interferometry (Rauch et al. 1975, Werner et al.
1975, Klein and Opat 1976; see Chapter 5). It should be pointed out that a coupling (entangle-
ment) exists between the spinor part and the momentum part of the wave function (Stern–Gerlach
effect). The strengths of Vmag and V nuc are comparable for magnetic materials such as the ferro-
magnetic metals Fe, Ni, and Co. The corresponding magnetic scattering lengths, generally called
p, are dependent upon the scattering vector q due to the magnetic shape of the atoms. Magnetism
in materials generally arises from unpaired electron spins, as discussed in Section 3.2.

The neutron feels the gravitational attraction of the Earth through the local Newtonian potential

Vgrav(r) = mg · r , (1.20)

where g is the gravitational field. The neutron follows a parabolic trajectory in free space, and falls
according to Newton’s laws of motion. This classical trajectory was first observed by McReynolds
(1951) and later more precisely by Dabbs et al. (1965). The free fall of neutrons under gravity has
led to experiments by Koester (1976) that establish the equivalence of the gravitational and inertial
masses of the neutron to an accuracy of 3 parts in 104. It has also given rise to the gravity spec-
trometer, an important method for measuring the index of refraction of materials. The phase shift
accompanying the bending of the neutron rays by gravity can only be observed by interferometry
as was first done by Colella, Overhauser, and Werner (1975).

Most of the experiments are based on perfect silicon crystal interferometers where the perfect
arrangement of the atoms within the monolithic perfect crystal provides a wide angle coherent
beam splitting and superposition. Such an interferometer was first tested by Rauch, Treimer, and
Bonse in 1974. Figure 1.2 shows the principle of this technique and the first results obtained at
a small 250-kW research reactor in Vienna. This technique has been used for many experiments
exploiting basic phenomena of quantum physics. These experiments are described in Chapters 5–
8. Two of them are also shown here to demonstrate the capabilities of this technique. First, there
is the observation of a gravity-induced phase when the interferometer is tilted about the horizontal
beam line causing a relative gravitational difference between the two beams. Second, there is the
verification of the 4π-symmetry of spinor wave functions.

The neutron interferometry experiments verifying the gravitational and spinor symmetry effect
have become part of many textbooks. They are discussed in many quantum mechanics textbooks
(e.g., Ballentine 1990, Sakurai 1994, Dubbers and Stöckmann 2013) and have entered the broader
physics literature in a lively manner, such as in a Physics Today article by Snow (2013). Figure 1.3
shows these results which stimulated many other quantum optics investigations with neutrons and
have become a motivation for the development of matter wave interferometry in general reaching
to antimatter-antiproton interferometry (Aghion et al. 2014).
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Figure 1.2 The principle (above) and first realization of perfect crystal neutron interferometry (below)
(Rauch et al. 1974). The optical path difference is obtained by rotating a flat aluminum plate subtending
both beams around a vertical axis

The neutron also interacts weakly with the electric field E(r) surrounding nuclei and electrons
in matter via the spin–orbit coupling, namely

Vspin–orbit(r,p) =
1
mc

μ · (E × p), (1.21)

where p is the neutron′s canonical momentum. This velocity-dependent term in the Hamiltonian
leads to Schwinger (1948) scattering. It was first observed for thermal neutrons by Shull (1963,
1967) in a polarized beam experiment on vanadium metal. In 1984, Aharonov and Casher pro-
posed that a beam of neutrons moving around a line of charge will experience a topological
quantum phase shift, which was subsequently observed by Cimmino et al. (1989) by neutron
interferometry. This experiment is discussed in Section 6.1. The interaction giving rise to this
effect is the spin–orbit coupling.
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Figure 1.3 (Above) Observed gravitationally induced phase shift (COW experiment; Colella,
Overhauser, Werner 1975); (below) the spinor 4π-symmetry experiment (Rauch et al. 1975)

The collective interaction of a neutron wave with a large assembly of nuclei leads to elastic
Bragg scattering, inelastic scattering by the elementary excitations in condensed matter (phonons
and magnons), and small-angle scattering by density fluctuations, for example in polymers and
alloys. As alluded to earlier, these neutron scattering techniques have become indispensable in solid
state physics, biology, chemistry, and materials science. Besides these diffraction and spectroscopic
methods, neutron optics has evolved as a complementary field where the collective interaction of
neutron waves with macroscopic objects is of central interest. In this regime, the phenomena
depend upon the index of refraction n and the dimensions of these objects. The refraction of a
neutron beam at a vacuum–solid interface is governed by Snell’s Law

n =̂
K
k

=
v
v0

=
sin ϕ0
sin ϕ

, (neutrons) (1.22)
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where the incident ray of wave vector k makes an angle ϕ0 with the surface normal, and the
refracted ray inside the medium of wave vector k makes an angle ϕ with the surface normal. For
light, the wave vector k inside the medium is inversely proportional to the photon’s velocity v,
so that

n =̂
K
k

=
v0
v

=
c
v
=

sin ϕ0
sin ϕ

. (light) (1.23)

One notes that the index of refraction for neutrons is defined in terms of the ratio of veloci-
ties for neutrons, which is inverse to that for light. Snell discovered this law empirically for light
in 1621, but died before publishing it. Apparently it first appeared in the published literature in
Descartes’ Dioptrique (1637), and was subsequently extensively used by Isaac Newton (1730) in
his investigations of the diffraction of light. Historical aspects of Snell’s law are recounted in the
book by Silverman (1997).

For a non-magnetic medium, averaging the Fermi pseudopotential (Eq. 1.18) over a macro-
scopic volume gives us an expression for the effective optical potential (e.g., Sears 1989)

Voptical =
2πh̄2

m
bc N , (1.24)

where N is the atom density and bc the neutron–nuclear scattering length. Any absorption or
nuclear reaction effect is described by an imaginary term of the interaction potential (e.g., Blatt
and Weisskopf 1952); that is, the scattering length bc becomes complex: bc = b′ – ib′′. This yields
according to expressions (1.17) and (3.16) a complex index of refraction (Goldberger and Seitz
1947, Sears 1989)

n = 1 –
λ2N
2π

√
b2c –

( σr
2λ

)2
+ i
σrNλ
4π

, (1.25)

thus accounting for absorption (σ a) and incoherent scattering (σ incoh) processes (where the total
reaction cross-section per atom is σ r = σ a + σ incoh). The imaginary part is in most cases small and,
therefore, one can often use the relation

n = 1 – λ2Nbc/2π , (1.26)

where we have used the de Broglie relation in the expression for the neutron’s kinetic energy
( p2/2m). The optical potential is typically of order 10–7 eV; thus, for thermal neutrons one has
1–n ∼ 1–10–5. A small number of isotopes (less than 5% of all isotopes) have a negative coher-
ent scattering length; examples are 1H (–3.74 fm), 48Ti (–5.84 fm), and 55Mn (–3.73 fm).
Consequently, the neutron optical potential of most materials is positive (repulsive) such that the
index of refraction is slightly less than unity. This fact leads to total external reflection of neutrons
at surfaces at grazing angles θ less than a critical angle θc, which occurs when the neutron’s kinetic
energy related to the momentum perpendicular to the surface ( p2 sin2θ/2m) is less than Voptical,
such that θc is given by

sin θc = λ(Nb/π)1/2. (1.27)

This critical angle is generally less than 0.3◦ in the thermal neutron energy range. For example,
θ c/λ = 0.097◦/Å for Ni, an element quite often used for coating the glass surfaces in neutron guides.
For long wavelength neutrons (ultra-cold neutrons) the critical angle increases and reaches 90◦ at
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λc = (π /Nb)1/2, which corresponds to neutrons with wavelengths greater than about 700 Å. These
ultra-cold neutrons are totally reflected at all angles of incidence. This result has opened up a
field of research on neutrons where they are confined within bottles (Steyerl 1977, Gollub and
Pendlebury 1979) or within magnetic traps (Paul and Trinks 1978).

The index of refraction for X-rays, like neutrons, is generally slightly less than unity, while for
photons in the optical region of the electromagnetic spectrum the index of refraction for insulators,
like SiO2, is greater than unity, typically in the range 1.2–1.7. It may appear somewhat surprising
that the neutron optical potential is generally repulsive, since the individual nuclei always provide
an attractive potential well for neutrons. The origin of this fact is strictly quantum mechanical,
having to do with nuclear size effect resonances and the requirements on the neutron wave function
continuity at the nuclear surface. For a detailed derivation and explanation of this effect the reader
is referred to Peshkin and Ringo (1971) or to Klein and Werner (1983) and Byrne (1994). This
is discussed in Chapter 3.

Neutron optical phenomena are fundamentally connected to the coherence properties of the
wave function �(r,t), which describes the neutron in a certain beam by means of a wave packet.
This linear superposition of plane waves with amplitude a(k – k0) is a general solution of the
Schrödinger equation (1.2), namely

�k0 (r, t) =
1

(2π)3/2

∫
a(k – k0)ei(k·r –ωkt) d3k. (1.28)

The group or particle velocity of the neutron beam is given by vg = h̄ k0/m, where k0 is the central
wave vector of the wave packet and the frequency is given by the quadratic dispersion relation
ωk ∼= h̄k2/2m0 + m0c2/h̄ in free space (Eq. 1.9), which, for pulsed beams, causes distinct differ-
ences compared to electromagnetic wave phenomena, where all Fourier components of a pulse
travel with the velocity of light, c, and ωk = ck (Eq. 1.6b). The quadratic dispersion causes the
well-known, time-dependent spreading of the neutron wave packet (Section 4.5.5). The ampli-
tude function a(k – k0) is determined by the experimental constraints applied to the beam by
collimation, monochromatization, polarization, apertures, etc. The autocorrelation function of the
wave function is defined as (Glauber 1963, Walls and Milburn 1994, Mandel and Wolf 1995)

�(�, τ) = <ψ(0, 0) · ψ(�, τ)>. (1.29)

This function describes the spatial and temporal coherence at two space–time points separated by
� = r – r′ and τ = t–t′. The spatial coherence lengths are given by characteristic lengths �c of the
function �(�,0), and therefore the spatial extent δxi of �(r,t), which in turn depends upon the
widths δki of the amplitude function a(k – k0). These widths must satisfy the uncertainty relation

δki δxi = δki�c
i ≥ 1/2. (1.30)

These coherence phenomena are discussed in Chapter 4.

1.2 The Quantum Phase Shift of Matter Waves

The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonder-
fully manifested in the various non-local interference effects observed in neutron interferometry
experiments. The point-by-point motion of particles in space–time as described by relativity
considerations and the seemingly incompatible non-local quantum mechanical phenomena are
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brought into close juxtaposition by neutron interference experiments, for example, by spinor rota-
tion in a magnetic field (Rauch et al. 1975, Werner et al. 1975, Klein and Opat 1976), by the
Earth’s gravity and rotation (Colella et al. 1975, Staudenmann et al. 1980, Werner et al. 1988),
by Aharonov–Bohm (1959) type topological potentials (Cimmino et al. 1989, Allman et al. 1992,
Wagh et al. 1997), and by quantum contextuality phenomena (Hasegawa et al. 2003).

We begin here with a general discussion of the quantum phase�(x, t) of a matter wave evolving
in space and time according to the Feynman–Dirac path integral along the trajectories defined by
classical mechanics (Dirac 1945, Feynman 1948, Feynman et al. 1965, Goldstein 1980). This is
identical to the Wentzel–Kramers–Brillouin (WKB) approximation and usually called the eikonal
approximation in classical optics used for slowly varying potentials. The phase �(x, t) of the
wave function �(x, t) should be regarded as a scalar field extending throughout the apparatus,
in our case a neutron interferometer, which includes the slits, phase shifting interactions, and
detectors. The perfect Si-crystal neutron interferometer is geometrically identical to the classical
optics Mach–Zehnder interferometer, and topologically equivalent to a ring as shown in Fig. 1.4.
At some point A on the ring an incident wave �0 is brought into the ring and split coherently into
two parts; one propagates clockwise on path I and the other counter-clockwise on path II around
the ring. After interacting with a potential V (x′, v′, t′) which depends upon position x′ along the
trajectories, the time t′ and occasionally also on the neutron’s velocity v′, these two waves are mixed
and allowed to interfere in a small region of space surrounding point B, such that an exit beam
is formed which is a linear superposition of the two wave functions �I and �II traversing the two
paths. We will see that differences in phase are the only measurable quantities. Here one faces the
same situation as in the case of position, momentum, angular momentum, or time measurements
in classical and quantum mechanics where also only relative observables are measurable, which
are always defined relative to a system of reference.

The phase accumulated on either path is a line integral over the Lagrangian L in space–time
given by (Feynman et al. 1965, Opat 1995)

�(x, t) =
1
h̄

∫
Ldt′. (1.31)

The Lagrangian L is related to the HamiltonianH by a Legendre transformation

L = p · v –H, (1.32)

where p is the canonical momentum of the neutron and v is the classical (group) velocity, i.e.,
v= ds/dt. Thus, Eq. (1.31) gives the phase at the detector at position x as a function of time t,
namely

Source Detector

A BII

I

(xo, to) (x, t)

V (x', t')

Figure 1.4 General scheme of an interferometer experiment
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�(x, t) =
1
h̄

x∫
x0

p · ds – 1
h̄

t∫
t0

H dt′ =

x∫
x0

k · ds –
t∫

t0

ωdt′, (1.33)

where the wave vector k = 2π /λ corresponding to the de Broglie wavelength λ, and ω is the
frequency related to the total energy of the wave at any point (x′, t′) along the trajectories.

We must evaluate the line integrals in Eq. (1.33) along each of the paths in Fig. 1.4, namely

�I(x, t) =
1
h̄

x∫
x0

pI · ds – 1
h̄

t∫
t0

H I dt′, (1.34a)

and

�II(x, t) =
1
h̄

x∫
x0

pII · ds – 1
h̄

t∫
t0

H II dt′. (1.34b)

Thus, the last terms cancel due to energy conservation and the phase difference for the waves
traversing the two paths is

��(x, t) = �II(x, t) –�I(x, t) =
1
h̄

∫
pII.ds –

1
h̄

∫
pI.ds, (1.35)

which is a path integral around the ring in Fig. 1.4. In neutron interferometry, it is the phase shift
��V(x, t) caused by the potential V (x′, v′, t′) that is of physical interest, namely

��V = �� –��0 , (1.36)

where ��0 is the “empty” interferometer phase shift, that is, when V(x′, v′, t′) is everywhere zero
(or spatially constant). This potential-dependent phase shift is the line integral along the classical
trajectories of the neutron, which is the “golden rule” of small perturbations (e.g., Opat 1995,
Greenberger et al. 2012). A stationary phase shifter is represented by a potential V (x) which
changes the momenta due to energy conservation:

( p + δ p)2

2m
+ V (x) = E ⇒ v.δ p ≈ –V (x) (1.37)

and

��V =
1
h̄

∮
δp.ds = –

1
h̄

∮
V (x)dt. (1.38)

This is the basic equation for most interferometer measurements.
The canonical momentum pmust be used in evaluating this potential-dependent phase shift to

account for gauge invariant potentials. In general it consists of two parts

p = pkinetic + phidden , (1.39)
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where the kinetic momentum is given by the product of the neutron’s mass and velocity v,

pkinetic = mv. (1.40)

The hidden part of the momentum arises in situations where the potential is velocity-dependent.
In the Aharonov–Casher (AC) effect experiment, the velocity-dependent potential comes from the
spin–orbit coupling of the neutron’s motion to the electric field E generated by a line of charge,
where it is found that

phidden =
1
c

μ × E. (1.41)

This will be discussed in detail in Section 6.1. In the Sagnac effect experiments the hidden
momentum is

phidden = mω × r, (1.42)

and comes from the state of rotation of the frame of the interferometer, that is, its frequency of
angular rotation ω. These non-inertial frame experiments are described in Sections 8.3 and 8.5.

There are three general situations to consider:

1. The potential depends only upon position, and is independent of time t and velocity v,
that is:

V = V (x), (1.43)

Since the Hamiltonian H is time-independent, the neutron’s total energy E is a constant of the
motion. The force is said to be conservative and the neutron decelerates when entering the region
R where V is non-zero and accelerates when leavingR (and vice versa when the potential changes
sign). There is no hidden momentum in this case and the phase shift depends only upon the action
of the kinetic momentum

��V =
1
h̄

∫
R

�pkinetic · ds. (1.44)

This is the situation that applies for a neutron traversing of slab of material and interacting with
many nuclei which creates an effective optical potential as discussed in more detail in Chapter 3
(Eq. 3.11). It also applies to the gravitationally induced quantum interference experiments
(Section 8.1), and to spin precession in a time-independent magnetic field B (Section 5.3).

2. Zero-force situations when H is independent of time:

The phase shift ��V may depend explicitly upon the geometry and topology. In the AC effect
geometry, the neutron’s acceleration due to the electric field E of a line charge can be shown to be

a = –
1
mc

(μ · ∇) (v× E). (1.45)

This is worked out explicitly in Section 6.1. If the axis of quantization is along the line charge,
call this the z-direction, and we take μ = μẑ, while E = E(x,y) as is the case for a line charge, we



The Quantum Phase Shift of Matter Waves 15

see that the acceleration a = 0. Thus, the phase shift depends only upon the hidden momentum,
namely

��V =
1
h̄

∮
�phiddends. (1.46)

The energy E and the kinetic momentum �pkinetic are both constants of the motion.

3. Zero-force situations where the potential depends only upon the intermediate time t′, but
not upon position:

The experiments in this case require synchronized time-of-flight analysis since

�V = �V (t′) = �H(t′), (1.47)

and the phase shift is

��V (t) = –
1
h̄

∫
pulse

�H(t′)dt′, (1.48)

where the time structure of Hamiltonian determines the phase shift and integration range, indi-
cated by the label “pulse” on the integral. This is the situation appropriate to the neutron version
of the scalar AB effect discussed in Section 6.2. The neutron feels no force and the kinetic momen-
tum mv is a constant of the motion but the total energy E is not. The more general case is one
in which the neutron enters a region of space R where the potential is changing with time while
it experiences a spatial gradient of the potential, thus being accelerated by a position-dependent,
time-varying force.

A compilation of various interactions (conservative and non-conservative) and their related
phase shifts are listed up in Table 1.3. Table 1.4 gives a listing of neutron interferometry experi-
ments carried out over the past three decades, along with a chapter and section number notation
where they are discussed in this book.

Neutron optics continues to be an important field of research, which combines the unique par-
ticle properties of neutrons and fundamental wave optical phenomena. The status of the whole
field has been summarized in proceedings of workshops (Bonse and Rauch 1979, Badurek et al.
1988a, Kawano et al. 1996), in various review articles (for example, Klein and Werner 1983,
Werner and Klein 1986, Rauch 1986, Wagh and Rakhecha 1996, Kaiser and Rauch 1999), and in
the books of Sears (1989) and of Utsuro and Ignatovich (2010). Here, we focus on neutron inter-
ferometry and its relation to fundamental quantum physics problems, its applications in solid state
physics and for precise scattering length measurements. The wave–particle dualism of quantum
mechanics can now be discussed on a more profound basis with considerably more epistemologi-
cal and pedagogic aspects. More recently it has been shown that neutron interferometry is a branch
of quantum optics, where quantum statistics, squeezing, and the quantum mechanical measuring
process can be studied for massive particles. The two-level system which the neutron experiences
inside a magnetic field provides the basis for distinct state manipulation and for Bordé–Ramsey
state interferometry.

The question how the (quantum) system interacts with, and how it can be separated from,
the (classical) measuring apparatus plays an essential role in the discussions throughout this book.
It will be shown how this somewhat arbitrary borderline between the quantum and classical system
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Table 1.3 Neutron Interferometric-Measured Phase Shifts.

Interaction Potential Phase Shift Reference

nuclear
2π h̄2

m
bcδ(r) –NbcλD Rauch et al. (1974)

magnetic –μ ·B(r) ±μBmλD
2π h̄2

Rauch et al. (1975)

gravitation mg · r m2gλA sinα

2πh2
Collela et al. (1975)

Coriolis –h̄ω · (r× k)
2m
h̄

ωe · A Werner et al. (1979)

Aharonov–Casher (Schwinger) –μ · (v× E)/c ±2μ

h̄c
E ·D Cimmino et al. (1989)

scalar Aharonov–Bohm –μ ·B(t) ±μBT
h̄

Allman et al. (1992)

magnetic Josephson –μ ·B(t) ± ω t Badurek et al. (1986)

Fizeau — –NbcλD
(

wx
vx –wx

)
Klein et al. (1981a)

geometry (Berry) — �/2 Wagh et al. (1997)

B = magnetic field strength, g = gravitational acceleration, A = normal area enclosed in the coherent beams, α =
angle between the horizontal and the area A, ωe = 0.727 × 10–4 s–1 = angular rotation velocity of the Earth, E =
electric field, h̄ω = energy transfer due to the time-dependent field B(t), T = time during which the constant field
B is switched on, wx, vx = velocity components of the phase shifter and the neutrons perpendicular to the moving
surface of the phase shifter, � = solid angle subtended by a closed circuit in parameter space.

depends on the historical debate on whether quantum mechanics is a complete description of
the physical reality. The uncertainty principle implies that, unlike classical mechanics, the quan-
tum mechanical backreaction can never be negligible. In certain cases this backreaction can be
described by an induced topological phase (Aharonov et al. 1998). It should be kept in mind that
experiments cannot decide by themselves between different interpretations of the quantum formal-
ism. The reason is that it is not the interpretation of the theory that predicts the result of the exper-
iments, it is the theory itself. Quantum theory is a part of modern quantum field theories which are
mainly based upon superstring theories (e.g., Gibbin 1998). In this respect neutron interference
experiments also contribute to our understanding of these more general views of nature.

The demonstration of quantum interference of neutron waves has led to a wealth of exper-
imental and theoretical work concerned with the understanding of quantum interference of
massive particles. The complementarity between particle and wave behavior is embedded in
the broader complementarity between observables, whose simultaneous precise knowledge is
impossible due to basic uncertainty relations. Neutron interferometry is a proper tool for such
investigations due to the fact that neutrons carry well-defined particle and wave properties
(Table 1.1). The relevance of neutrons in cosmology and particle physics has been summarized
by Dubbers and Schmidt (2011).

The problems of locality and non-locality of quantum separability are inherently involved in
any interpretation (e.g., Bell 1965, Wigner 1970, d’Espargnat 1979, Wotters and Zurek 1979,
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Table 1.4 Neutron Interferometry Experiments (1974–2014).

• First test of perfect Si-crystal interferometer with neutrons: Vienna (1974)
• Observation of gravitationally induced quantum interference: Michigan, Missouri (1975, 1980,
1988, 1993, 1996)

• Observation of the change of sign of the wave function of a fermion due to precession of 360◦

in a magnetic field: Michigan, Vienna–Grenoble (1975, 1978)
• Observation of the effect of the Earth’s rotation on the quantum mechanical phase of the
neutron (Sagnac effect): Missouri (1980)

• Measurement of the energy-dependent scattering length of Sm-149 in the vicinity of a thermal
nuclear resonance: Missouri (1982)

• Charge dependence of the four-body nuclear interaction in n-3He versus n-3H:
Vienna-Grenoble (1979, 1985)

• Search for nonlinear terms in the Schrödinger equation: MIT (1981)
• Search for the Aharonov–Bohm effect for neutrons with a magnetized single crystal of Fe inside
interferometer: MIT (1981)

• Measurement of the longitudinal coherence length of a neutron beam: Missouri (1983)
• Observation of the coherent superposition of spin states (“Wigner Phenomenon”) with both
static and RF spin flippers: Vienna–Grenoble (1983, 1984)

• Neutron interferometric search for quaternions in quantum mechanics: Missouri (1984)
• Sagnac effect using a laboratory turntable-shows phase shift due to rotation is linear in ω: MIT
(1984)

• Observation of acceleration-induced quantum interference: Dortmund–Grenoble (1984)
• Experiment on the null Fizeau effect (stationary boundaries) for thermal neutrons in moving
matter: Missouri–Melbourne (1985)

• Observation of the neutron Fizeau effect with moving boundaries of moving matter:
Dortmund–Grenoble (1985)

• Double-RF coil experiment–analogue of the magnetic Josephson experiment: Vienna–Grenoble
(1986)

• Precision measurement of the bound-coherent neutron scattering lengths of U-235, U-238, V,
Eu, Gd, Th, Kr, H, D, Si, Bi, etc.: Vienna–Grenoble, Missouri (1975–93)

• Observation of a motion-induced phase shift of neutron de Broglie waves passing through
matter near a nuclear resonance (Sm-149): Missouri–Melbourne (1988)

• Observation of stochastic versus deterministic absorption of the neutron wave function:
Vienna-Grenoble (1984, 1987, 1990)

• Observation of the topological Aharonov–Casher phase shift: Missouri–Melbourne (1989)
• Test of possible non-ergodic memory effects: Vienna-Grenoble (1989)
• Observation of the effects of spectral filtering in neutron interferometry: Missouri–Vienna
(1991)

• Counting statistics experiments—particle number/phase uncertainty: Vienna (1990, 1992)
• Observation of the neutron phase echo effect: Missouri–Vienna (1991)
• Coherence effects in time-of-flight neutron interferometry: Missouri–Vienna (1992)
• Observation of the scalar Aharonov–Bohm effect: Missouri–Melbourne (1992, 1993)
• Spectral modulation and squeezed states in neutron interferometry: Missouri–Vienna (1994)
• Observation of multiphoton exchange amplitudes by interferometry: Vienna–Missouri (1995)
• Observation of the topological phase by coupled loop interferometers: Vienna–Berlin (1996)
• Experimental separation of geometric (Berry) and dynamical phases by neutron interferometry:
Bombay–Missouri–Vienna (1997)

(continued)
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Table 1.4 (continued)

• Light-induced interferometer: Geestacht–Vienna (1997)
• Verification of quantum contextuality in matter wave quantum optics: Grenoble–Vienna (2003)
• Polarized He-3 scattering length: NIST, ILL (2006–13)
• n-p and n-d scattering lengths: NIST, Missouri, Indiana (2003)
• Non-defocusing, non-dispersive phase shifters: Vienna, Grenoble, Mumbai (2010–13)
• Kochen–Specker and weak measurements: Vienna, Grenoble, Nagoya (2013–)
• Observation of the Cheshire Cat effect for neutron matter waves: Vienna, Grenoble, Orange
(2014)

Pitowsky 1982, Selleri 1990, Schleich 2001). Non-locality means in this connection that the results
of measurements performed at distant parts with distant local pieces of apparatus are statistically
correlated in a way that indicates the existence of a link between the measurement events, and this
correlation persists even when these distant measurement events are separated by a Minkowskian
space-like distance. It will be shown that even if a quantum entity (say a neutron) is in a wave-like
situation it can be influenced without destroying its wave properties, giving rise to interference in a
sense that one could only imagine for a particle-like entity. This influence is not a measurement of
localization, but the apparatus defines several widely separated regions of space where the neutron
can be influenced as a whole by a local device that acts at a given instant of time in any one of
these regions. A heuristical approach which focuses on the description of the experiments and
of their interference results will be given. In connection with post-selection measurements which
are treated in Section 4.5 we conclude that locality should be considered in phase space rather
than in ordinary space (Schleich and Wheeler 1987, Rauch 1993a, Schleich 2001, Suda 2005).
Interference phenomena can be transformed between different parameter spaces, e.g., between
ordinary and momentum space. Different features of a quantum entity can be transported along
different paths through an interferometer (Denkmayr et al. 2014).

The interpretation of neutron interferometry results is closely related to the well-known sit-
uation in ordinary double-slit interference experiments, “which has in it the heart of quantum
mechanics; in reality it contains the only mystery of the theory” (Feynman et al. 1965, Ghose
2009). The experimental results are described by the laws of standard quantum mechanics.
However, it should be emphasized that the classical method of defining the location of the particle
(in beam I or in beam II) is inconsistent with quantum mechanics, since this definition presumes
the existence of a hidden variable which determines particle location. When an interference pat-
tern exists it is even misleading to describe the situation with the particle picture in the sense that
the neutron has chosen one of both possible beam paths. It is fair to say that there are many aspects
to this mystery, perhaps even “more than one mystery” (Silverman 1997).

While the whole topic of neutron interferometry is described by the wave picture of quantum
mechanics, the particle trajectories appear only in the de Broglie–Bohm interpretation of quan-
tum mechanics where a quantum potential is introduced to guide the neutrons properly (Bohm
and Vigier 1984, Dewdney 1985, Dürr 2001, Sanz and Miret-Artès 2012). This topic will be
addressed again in the last chapter of this book. However, the main purpose of this book is to
provide a comprehensive elucidation of the experimental facts obtained by neutron interferometry.

The many-fold possibilities of neutron interferometry stimulated the development of matter-
wave interferometry for atoms and molecules. Both transmission gratings and standing light wave
gratings have been tested as proper beam splitter devices (Keith et al. 1988, Martin et al. 1988,
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Cronin et al. 2009). A special challenge for the realization of atom interferometry is the possibility
to store and to recover information in the form of atomic excitations. Carnal and Mlynek (1991)
tested a double-slit interferometer for He atoms and achieved a beam separation of 8 μm. The
slit width was 1 μm and the He atoms had a mean velocity of 500 m/s. Keith et al. (1991)
developed a grating interferometer for sodium atoms with a beam separation of 27 μm. Riehle
et al. (1991) and Kasevich and Chu (1991) tested interferometers with laser-cooled calcium and
sodium atoms which are coherently split and superposed by proper stimulated Raman transitions.
These Ramsey–Bordé-type interferometers are analogous to neutron zero-field spin-echo systems
discussed in Section 2.4 (Fig. 2.23), and they are operational with and without spatial beam
separation. Rather comprehensive reviews have been written by Adams et al. (1994), Berman
(1997), and Cronin et al. (2009). Chapman et al. (1995) tested successfully an interferometer
for Na2 molecules which is based on three nanofabricated diffraction gratings which constitute
a Mach–Zehnder interferometer. The beam separation was 38 μm and the observed contrast
was on the order of 50%. This kind of interferometer has been used to measure the real and
imaginary parts of the forward scattering amplitude for atoms and molecules (Chapman et al.
1995, Schmiedmayer et al. 1995, Berman 1997). Transmission gratings have also been used by
Schoellkopf and Toennis (1994, 1996) to observe the mass selective diffraction of He clusters
with up to 26 He atoms. Rare gas atomic beam diffraction and diffraction phenomena of
CH3F and CHF3 molecules have also been observed. The diffraction and coherent splitting of
Bose–Einstein condensates from optically induced lattices has been reported (Kozuma et al.
1999) and the diffraction of fullerenes from material grating has been reported by Arndt et al.
(1999) and Hackermüller et al. (2003). This shows that diffraction and interference phenomena
can be observed for rather large and fragile objects as well. New perspectives for matter-wave
interferometry arise when further experimental methods become available and more complex
objects can be used as quantum objects. The wide spectrum of new matter wave interferometry
experiments may bring additional technological applications of quantum phenomena, enhancing
the daily experience of the subtleties of nature by everyone. From a fundamental physics
perspective new instruments and possibilities continue to influence the debate about quantum
mechanics. This has been addressed, e.g., by Bromberg (2008), Snow 2013, Klepp et al. 2014.

1.3 Basic Neutron Diffraction Phenomena

The diffraction of light from macroscopic objects is best described by the coherent superposition
of Huygens waves, which gives the Fraunhofer limit for the case of small phase shifts between
the diffracted waves and the Fresnel limit for large phase shifts. These phenomena also apply
to neutron optics and are described by the Helmholtz–Kirchhoff theorem which reduces to the
Kirchhoff formula if the wavelength of the neutron is smaller than the dimensions of the object
(D) and the distance of the source to the object (L1) and also the distance between the object and
the point of observation (L2). Crystal diffraction is a special case of the Fraunhofer limit, with a
linear phase dependence (James 1950) when

D
2

(
1
L1

+
1
L2

)
<< λ/D. (1.49)

In all other cases the diffraction integral becomes more complicated and depends explicitly on the
distance between the object and the points of observation. Diffraction is described in k-space and
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depends on the momentum transfer h̄�k which correlates with the spatial interaction distances
�x by the Heisenberg uncertainty relation (1.30). In the Fraunhofer limit �x equals D, while in
the Fresnel limit �x becomes the Fresnel length defined by

� =
(
λ L1L2

L1 + L2

)1/2

, (1.50)

which in the thermal neutron case is generally of order 50 μm. Therefore, D << � and D >> � are
alternative definitions of the Fraunhofer and Fresnel regimes.

Neutron diffraction phenomena are described by the solutions of the Schrödinger equation
using appropriate boundary conditions. Due to the same structure of the wave equations, these
effects are equivalent to those of classical optics and many features of light optics can be adapted to
the neutron case (Born and Wolf 1975, Sears 1989, Kaiser and Rauch 1999). Fraunhofer diffrac-
tion appears as long as the plane wave approximation holds and Fresnel diffraction appears if the
curvature of the wave front has to be considered in the calculation of the path differences. These
limiting cases are characterized by the condition D � � for the Fraunhofer regime and D � � for
the Fresnel regime, where D denotes the dimension of the slit (aperture) and � the Fresnel length
(coherence length) as defined in Eq. (1.49). The finite dimensions of the entrance (d1) and the
detector slit (d2) influence the coherence properties, as well. Visibility of an interference pattern
can be expected only if Dd1/L1 ≤ λ/2 and Dd2/L2 ≤ λ/2. Related diffraction measurements from
narrow slits (10–100 μm) have been performed and interpreted with wave front division interfer-
ometry byMayer-Leibnitz and Springer (1962), by Landkammer (1966), by Friedrich and Heintz
(1978), and by Zeilinger et al. (1982). Shull (1969) realized the Fraunhofer limit by using a non-
dispersive perfect-crystal double-crystal arrangement, allowing him to experimentally deduce a
transverse coherence length of 21 μm, which is in rough agreement with the interferometer result
described in Section 4.2.2. In both cases, the dynamical diffraction from a perfect crystal deter-
mines the transverse coherence length. The broadening of the zero-order slit diffraction peak is
given according to the Fraunhofer formula (�ε = 0.888 λ/d, where d is the slit width). The out-
come of the classical experiments of double-slit diffraction (Zeilinger et al. 1982), the diffraction
at an absorbing wire (Gähler et al. 1981), and the focusing effects from a cylindrical zone plate
(Klein et al. 1981) are shown in Fig. 1.5 together with the calculated diffraction pattern where the
finite resolution has been taken into account (Tumulka et al. 2007). In the neutron case, gratings
can be designed as phase gratings (see Fig. 2.14) and zone plates which act rather by phase reversal
instead of absorption and, thereby, achieve greater transmission efficiencies (Kearney et al. 1980).
Such zone plates have also been used instead of a biprism to establish neutron interferometry by
division of the wave front (Klein et al. 1981).

These experiments were performed with a 10-m-long optical bench (Fig. 1.5; Gähler et al.
1980) at a neutron wavelength of about 18.4 Å. The other characteristic dimensions were as fol-
lows: center-to-center distance between the two-slit openings, 126 μm; diameter of the absorbing
wire, 100 μm; total width of the cylindrical zone plate, 2 mm; number of zones, 200. All the results
are in excellent agreement with the calculated intensity profiles if the related resolution function
is convoluted with the ideal two-slit diffraction curve (Zeilinger et al. 1988). The agreement with
calculation is very good, allowing an upper limit of a nonlinear term of the Schrödinger equation
to be extracted (Gähler et al. 1981; Section 10.1) from this experiment. The double-slit diffraction
pattern has also been observed with a perfect crystal amplification camera, where the diffraction
pattern from rather macroscopic slits (∼0.2 mm) has been projected onto a scale of about 25 mm
(Section 11.3; Lacroix et al.1999).
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Figure 1.5 Sketch of the optical bench used for various diffraction experiments form macroscopic objects:
(a) double-slit diffraction (Zeilinger et al. 1982), (b) diffraction from an absorbing wire (Gaehler et al.
1991), and (c) the diffraction from a Fresnel zone plate (Klein et al. 1981b). (b) reproduced with
permission from Gaehler et al. 1991. Copyright 1991, American Association of Physics Teachers.

The diffraction of thermal and cold neutrons at ruled gratings showed that multiple beam
interferences from structured macroscopic objects can be observed (Kurz and Rauch 1969, Graf
et al. 1979). Such lattices have been used in combination with mirror reflections by Ioffe et al.
(1985) to develop a grating interferometer for 3.15 Å neutrons which has aberration-free fea-
tures (Ioffe 1988; see Fig. 2.1). Transmission phase gratings for very cold neutrons (λ ∼= 102 Å)
have been tested by Gruber et al. (1989) and combined to form a Mach–Zehnder interferome-
ter device with rather large beam paths. In this case, intensity can be concentrated into certain
diffraction orders. The lattice constant was 2 μm and the step height for the first and third grat-
ing produced a phase shift difference of π /2 and the middle one a phase shift difference of π
which provides optimal neutron economy of the interferometer. Diffraction of ultra-cold neutrons
(λ ∼ 1500 Å) at blazed gratings indicated a coherence length greater than 100 μm (Scheckenhofer
and Steyerl 1977). Diffraction from multilayer mirrors and supermirrors has become a standard
tool for advanced neutron beam tailoring (e.g., Mezei and Dagleish 1977, Majkrzak and Passel
1985). Reflectometry from various surface structures and small-angle scattering measurements
from various precipitates, magnetic domains, or magnetic flux lines in superconductors bridge the
field of coherent neutron optics to important solid state physics applications (Chapter 9). In all
cases, diffraction peaks become visible if the typical momentum transfer (�k ∼= π/d) becomes
larger than the momentum resolution of the beam. In this case a new state—a new entity—which
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carries information about the diffracting object is created. Reflections from nano-structured sub-
stances show resonance, tunneling, and surface wave effects (Maaza 2011). These aspects will be
discussed in more detail in Section 4.3 in connection to an experiment where an absorbing lattice
is rotated within one beam of a crystal interferometer.

Even much higher resolution can be achieved when multiple Laue-rocking curves are used
where the reflecting lattice planes dhkl of a perfect crystal of thickness t act as a kind of monochro-
mator, so that dhkl/t instead of D/L defines the collimation (see Section 11.3, Bonse et al. 1977).
With such a system the diffraction of thermal neutrons from slits having a width of several mil-
limeters has been observed (Rauch et al. 1983a, Fig. 11.10). From the structure of these rocking
curves, scattering lengths for finite momentum transfer can be extracted as has been done for
X-rays (Bonse and Teworte 1980).

The collective interaction of the neutron with magnetic fields is an important topic of neu-
tron optics. The development of neutron spin-echo spectroscopy uses this collective interaction to
achieve a very high energy resolution (∼1 neV) by marking each neutron with its own clock in the
form of its Larmor rotation angle (Mezei 1972, 1980a). The collective interaction with oscillating
fields appears most clearly in the case of resonance fields where single neutron wave–field inter-
actions and dressed neutron phenomena have been studied (Muskat et al. 1987). Investigations
concerning the intrinsic 4π-symmetry of fermions (Rauch et al. 1975, Werner et al. 1975), dis-
cussed in Chapter 5, and the observation of the geometric Berry phase are other examples of
important quantum measurements (Bitter and Dubbers 1987, Richardson 1988, Wagh et al.
1997). Neutron interferometry experiments related to the topological and the geometric quantum
phases are described in Chapter 6 and those dealing with quantum contextuality in Chapter 7.

All neutron experiments performed up till now belong to the field of self-interference where at
a given time only one neutron—if at all—is within the interferometer and the next one is not yet
released from the fission (or spallation) process in the neutron source. This can be quantified by
the mean numbers of neutronsNPh (degeneracy parameter) within the phase space volume, which
is defined as �x �y �z �kx �ky �kz = (1/2)

3. For advanced neutron sources NPh is on the order
of 10–14, whereas for thermal light, synchrotron and electron sources Nph reach values of 10–3;
but lasers produce phase space densities up to 1014 (Mandel_and Wolf 1965, Boffi and Caglotti
1966, Maier-Leibnitz 1966a). The degeneracy parameter of a beam can also be understood as
the mean number of particles passing through a coherence area normal to the beam in an interval
of time called the longitudinal coherence time. According to the quantum Liouville theorem the
phase space density ρ obeys the quantum Liouville equation (von Neumann equation)

ih̄
δρ

δt
= [H, ρ] , (1.51)

where [H,ρ] denotes the commutator of the Hamiltonian H with ρ. The phase space density
cannot be changed by any conservative force acting on the system. Self-interference means that
the neutron interferes with itself, supporting Dirac’s statement that in ordinary light optics the
photon interferes with itself (Dirac 1930).

Modern neutron scattering instrumentation has benefitted greatly from advances in neutron
optical components. Total reflection inside neutron guides is used to transfer the luminosity exist-
ing near to the neutron source to many instruments placed in low background environments far
from the source (Christ and Springer 1962, Maier-Leibnitz and Springer 1963, Willis and Carlile
2009). Multilayers with variable spacing consisting of materials with different indices of refrac-
tion can enhance the region of total reflection by a factor of about 3 (Mezei and Dagleish 1977).
Neutron microscopy, with corrections for gravitationally induced chromatic aberration, has been



Basic Neutron Diffraction Phenomena 23

developed and has reached a magnification of 50 by using an achromatic two-mirror arrange-
ment and gravity focusing (Schütz et al. 1980, Arzumanov et al. 1984, Herrmann et al. 1985).
Charged particle physics has benefitted substantially by the invention of phase space cooling (e.g.,
van der Meer 1985), but no similar methods are known for neutrons. However, various bunch-
ing systems, particularly for pulsed beams, are feasible by mechanical and electromagnetic means
(Maier-Leibnitz 1966b, Buras and Kjems 1973, Steyerl 1975, Rauch 1985, Mayer et al. 2009).



2

Neutron Interferometers
and Apparatus

Among the various areas of neutron optical research, neutron interferometry has provided some of
the most challenging and spectacular developments (Bromberg 2008, Snow 2013). In most cases,
separated coherent beams which are produced either by wave-front division (Young’s type inter-
ferometer) or by amplitude division (Mach–Zehnder-type interferometer) are used. These beams
are subsequently coherently superposed after passing through regions of space where the neutron
wave function is modified in phase and amplitude by various interactions: nuclear, magnetic, elec-
tromagnetic, gravitational, or geometry and topology (as in Aharonov–Bohm-type experiments).
Various types of neutron interferometers that have been tested are shown in Fig. 2.1. The first
neutron interferometer was based upon wave-front division and biprism deflection, but it had
several constraints for interferometric applications mainly due to the small beam separation (100
μm) (Maier-Leibnitz and Springer 1962). Nevertheless, this method gained further interest for
diffraction experiments from macroscopic objects and for the detection of weak interaction effects
where the long flight paths (10 m) enhance the sensitivity for the measurements of these effects
(Gaehler et al. 1980, Klein et al. 1981a). The perfect crystal interferometer (Rauch, Treimer,
and Bonse 1974) provides widely separated coherent beams and has become a standard method
for advanced neutron optical investigations. The development of diffraction and phase-grating
interferometers extended the Mach–Zehnder interferometer method to very slow neutrons (Ioffe
et al. 1985, Gruber et al. 1989). The superposition of spin-“up” and spin-“down” states in the
longitudinal direction provides the basis for Larmor and Ramsey interferometry where no lat-
eral beam splitting is necessary. The well-known spin-echo systems (Mezei 1972) and zero-field
spin-echo systems (Gaehler and Golub 1987, Dubbers et al. 1989) are examples of such interfer-
ometers, which also play an important role in atom interferometry (Bordé 1989, Kasevich and Chu
1991, Riehle et al. 1991, Parazzoli et al. 2012). Ramsey (1993) has addressed the complementar-
ity of neutron two-path and spin-rotation interferences. These various types of interferometers
will be described in some detail in the following sections and they are schematically shown
in Fig. 2.1.

2.1 The Perfect Si-Crystal Interferometer

A great resurgence of activity in neutron optics occurred after the development of the perfect
crystal interferometer by Rauch et al. (1974), which was first tested at a rather small (250-kW)
TRIGA-reactor in Vienna. The first results and the setup are shown in Fig. 1.2. The results

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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indicate the opposite intensity variation (as a function of phase shift) of the forward and deviated
beam (Fig. 1.2). The oscillations are 180◦ out of phase with each other. A schematic view of such
an interferometer is shown in Fig. 2.2.

Its operation is based on the perfect arrangement of the lattice planes which causes a coherent
division of amplitudes by dynamical Bragg diffraction from perfect crystals of silicon as was first
implemented for X-rays (Bonse and Hart 1965a). In the standard version, a monolithic triple-plate
system in the Laue (L) transmission geometry which provides a wide beam separation (>̃5 cm)
and a non-dispersive response to the incident neutron beam is used. This LLL device permits the
use of large-beam cross-sections providing good intensity conditions (Fig. 2.1). It is geometrically
analogous to the well-known Mach–Zehnder interferometer of light optics (Zehnder 1891, Mach
1892). Various configurations of this interferometer have been suggested for neutrons and to some
extent implemented, such as the skew symmetric device shown in Fig. 2.3, left. Some designs have
only two crystal plates, analogous to the Rayleigh (1896)-type interferometer (Fig. 2.3, middle),
while others have four (Fig. 2.3, right) and even more plates (Heinrich et al. 1988, Suda et al.
2004). The essential feature of all these devices is that the reflecting lattice planes are arranged
undisturbed throughout the whole crystal with a precision comparable to the lattice parame-
ter. This is most easily provided by a monolithic design of such interferometers. Details on the
necessary silicon crystal perfection and the interferometer fabrication, including machining with
diamond cutting tools and the subsequent chemical etching, are given at the end of this section.
When the interferometer crystal has the required perfection and is cut and etched properly, neu-
tron interferometry can be introduced rather easily in any neutron laboratory. We point out also
that perfect crystal interferometry opens many possibilities for educational purposes, because it
exhibits the fundamentals of quantum mechanics in a very direct and obvious way. The perfect Si
crystal interferometer is extremely useful for fundamental neutron physics studies and has proven
to be a marvelous didactic laboratory for probing and elucidating the basic quantum mechanical
principles of nature.
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For most applications the standard triple Laue-case interferometer (Fig. 2.4, top) is gener-
ally the best configuration. It follows from symmetry considerations that the amplitude and the
phase of the wave function in the forward direction (0-beam) behind the empty interferometer are
composed of equal parts coming from both beams traversing paths I and II. The wave on path I
arrives in the detector in the “0-beam” after having made a transmission (t) in the first crystal, a
reflection (r) is the second crystal, and another reflection (r) in the third crystal. On path II the
sequence is rrt. From symmetry, it follows that these two waves are equal in phase and amplitude.
The phases (χ1 and χ2) can become different when the neutron experiences an interaction along
the two beam paths which are different. Thus, the intensity in the 0-beam is given by

I0 = |ψI + ψII|2 =
∣∣trr ψ0 eiχ1 + rrt ψ0 eiχ2

∣∣2, (2.1)

where ψ0 is the incident wave function. Setting �χ = χ2 – χ1 to be the phase difference, one sees
that the intensity pattern for the 0-beam interferogram displays complete modulation in this ideal
case:

I0(�χ) = A[1 + cos �χ]. (2.2)

The constant A is given as A= |ψ0|2|r|4|t|2.
By similar reasoning one finds that the intensity in the H-beam is

IH(�χ) =
∣∣trt ψ0 eiχ1 + rrr ψ0 eiχ2

∣∣2 = B – A cos�χ , (2.3)

where B = |ψ0|2[|t|4|r|2 + |r|6]. The minus sign in front of the cosine term arises because there is an
odd number of reflections, r, for each component contributing to IH. From particle conservation
it also follows that

I0 + IH = constant. (2.4)
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The explicit dynamical diffraction calculation of the transmission and reflection coefficients,
t and r, is carried out in Chapter 11 on the basis of plane wave dynamical diffraction theory.
Here it should be mentioned that r and t strongly depend on the deviation (|k – kB|) of the dif-
ferent momentum components k and kB fulfilling exactly the Bragg condition. Thus, in cases
where r =0 or t=0 a path labeling exists. The formulas show that these wave components do
not contribute to the interference pattern, but they contribute to the non-interfering part of the H-
beam and to the beams leaving the interferometer at the second interferometer plate (see Fig. 2.3).
Whether individual k-components can or cannot be associated with individual neutrons having the
related momentum is an epistemological question and will be discussed in Chapter 12. The most
important feature here is that the wave functions can be calculated because the whole interac-
tion region between the neutrons and the perfect crystal is known up to an accuracy better than
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the wavelength of the neutrons. The sum of the 0-beam intensity and the H-beam intensity is a
constant as it must be, since Si has essentially zero absorption for thermal neutrons. Thus, the
neutron intensity is swapped back and forth between the 0-beam and the H-beam detectors as the
phase difference �χ is varied (Bonse and Graeff 1977, Rauch and Petrascheck 1978, Lemmel
2013). A general discussion of the calculation of the quantum phase shift �� according to the
Feynman–Dirac path integral formalism along the classical trajectories was given in Section 1.2.
Due to various imperfections of the apparatus (the interferometer, especially) and of the neutron
beam (finite monochromaticity), the intensity oscillations are somewhat damped compared to the
predicted behavior (Eq. 2.2):

Imeas = A′ + B′ cos(�χ + φ0), (2.5)

where A′, B′, and φ0 are characteristic parameters for each experimental setup.
From the point of view of using the change of wave vector due to the optical potential provided

by the collection of nuclei in a slab of matter of thickness D0 in one of the sub-beams of the
interferometer, we find that the phase shift is

�χnuc = (n – 1) kD0 = –λN bcD0, (2.6)

where we have used Eq. (1.26) for the index of refraction n. A direct and simple technique to
produce an interferogram is to rotate the slab about an axis perpendicular to the interferometer
through angles δ, such that the neutron path length within the slab is D0/cos(θB + δ). If the slab
extends across both beams as shown in Fig. 2.4 (top), the path length difference �D(δ) of the
neutron passing through the slab on path II minus that on path I is given by

�D(δ) =
(

1
cos(θB + δ)

–
1

cos(θB – δ)

)
·D0. (2.7)

For small δ, this function is nearly linear in δ. Consequently, an interferogram obtained by rotat-
ing the slab will be approximately a sinusoid in δ. Figure 2.5 shows a typical scan taken with a
symmetric LLL-interferometer. A rather high contrast in the 0-beam and particle conservation
between the 0- and the H-beams is observed. To provide an idea of the size of the phase shift for
thermal neutrons traversing a slab of matter, suppose that the neutrons of wavelength 2 Å traverse
a 1-cm-thick aluminum slab at normal incidence. The phase shift is �χ = 420 rad ≈ 150,000◦.
It is clear from this calculation that neutron interferometry provides a very sensitive method for
accurately measuring the neutron coherent scattering lengths bc. Results and discussion of such
experiments are given in the next chapter. Macroscopic optical path differences can be achieved
in a Michelson (1881)-type interferometer (Fig. 2.4) where Laue and Bragg case diffraction from
perfect crystals are used (Appel and Bonse 1991). This idea has not yet been utilized in neutron
interferometry. The application of phase shifts in the transverse and vertical direction will be dis-
cussed in Section 4.2. Combinations of Laue and Bragg diffraction interferometers, two-, three-,
and multiple-plate interferometers, and monolithic- and polylithic-type interferometers are dis-
cussed in the literature and have been partly tested for X-rays and neutrons (Zeilinger et al. 1983,
Bonse et al. 1994, Massa et al. 2010). The largest perfect crystal interferometers tested have an
enclosed area up to 114 cm2 (Zawisky et al. 2010, Springer et al. 2011a) and interferometers with
an enclosed area of 174 cm2 are in a testing phase. Monolithic interferometers seem to be feasible
up to an enclosed area of about 500 cm2; beyond that, polylithic interferometers may become
superior but much more challenging than monolithic ones.
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obtained with a perfect silicon crystal interferometer.
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1997

Pushin et al. (2009) presented calculations and later on test measurements (Pushin et al. 2011)
which show that a four-plate interferometer with a double-space distance between the second
and third plates (Fig. 2.3, right) may be very robust against low-frequency environmental dis-
turbances. Figure 2.6 shows the influence of 8-Hz vibrations on the contrast of a standard triple
plate and a dephasing-free four-plate interferometer. Vibrations are specifically disturbing in the
case of neutron interferometry since the time-of-flight through the interferometer (about 50 μs)
becomes comparable to the typical time scale of such vibrations. Similar problems exist in atom
interferometry and therefore some related estimates can be used for neutron setups as well. The
most disturbing frequencies lie in the range between 5 and 200 Hz and are caused by excitations
of the setup and the seismic noise spectrum (Jacquey et al. 2006).

As discussed earlier, an interferometer crystal is a monolithic device consisting of two, three,
or more perfect crystal blades cut from a large perfect dislocation-free Si-crystal ingot perpendic-
ular to a set of strongly reflecting Bragg planes (typically 220). Figure 2.7 shows a photograph of
a symmetric LLL interferometer, a skew symmetric LLL interferometer, and multi-blade Laue-
geometry devices. Due to the requirements of the modern semiconductor industry, there is a
very-large-scale production of perfect silicon crystals. Only high purity, float-zone silicon crystals
can be used for the fabrication of neutron interferometers. Crystals grown by the Czochralski tech-
nique (pulling with a seed from the melt) contain too much oxygen, which creates local strain and
density fluctuations; therefore, they are not suitable for neutron interferometers. The most criti-
cal impurity component appearing also in float-zone production is carbon due to its unavoidable
inhomogeneous distribution. This produces slight lattice distortion which destroys the parallelism
of the lattice planes. The carbon distribution can be investigated by infrared absorption spec-
troscopy. This permits a proper selection of appropriate crystal ingots. Crystals purchased from
various companies worldwide have been used to fabricate interferometers. In recent years, crystals
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Figure 2.7 Photograph of an assembly of several perfect crystal interfer-
ometers at the Atominstitut, TU-Vienna. Courtesy E. Seidl

obtained from Wacker Siltronic, GmbH (Germany) have been found to be of the highest quality
for interferometer fabrication. Although the price has increased in recent years, a 10-cm-diameter
ingot, adequate for the interferometers shown in Fig. 2.7 costs about 10,000 Euros.

Machining the interferometer out from a monolithic perfect single crystal ensures that the
respective crystal lattice planes in each blade are aligned to a tolerance of fractions of a lattice
constant. This can be tested by observing the Moiré pattern, which appear when the lattice planes
are slightly non-parallel, where a deviation angle α causes a bright/dark pattern with a rather mac-
roscopic distance of D given by lattice distance divided by α (Hart and Bonse 1970, Bartscher
and Bonse 1998, Amidor 1999). In order to fabricate the interferometer from a perfect Si crys-
tal, the bulk material between the blades is first machined away in the top part of the crystal,
leaving the upright blades attached to the rather thick (∼1 cm) base or backbone of the device.
The machining of the blades is performed using diamond grinding wheels (200 to 600 grit),
mounted on a high-precision spindle on a stable, heavy milling-type machine fitted with optical
encoders to assure that the surfaces of the blades are parallel to within about 1 μm over their
entire area. The distances between the blades and their thickness must be the same to an accuracy
of about 2 μm. This requirement follows from the constraint that the geometry of an interfer-
ometer must be accurate in comparison with the Pendellösung lengths, which are on the order
of 50 μm for most silicon reflections (Eq. 11.54). The surface damage created by the machin-
ing must be etched away with acid, while still maintaining the dimensional accuracy of the original
machining operation. Typically this is done in steps, etching away several micrometers of Si at each
stage, and then checking the interferometer contrast and intensity with neutrons and/or X-rays.
Etching is usually performed by a mixture of hydrofluoric acid and nitric acid. A mixture of one
part hydrofluoric acid in 50 parts of nitric acid produces an etching rate of some 0.2 μm/s. Optical
flatness of the blades has been checked in some laboratories with optical interferometer techniques.
Experimentally, it is found that the surface damage strains the bulk of the crystal inhomoge-
neously. This strain increases the neutron reflectivity of the crystal above its perfect crystal value.
Thus, as the interferometer is etched with acid in steps, the sum of the 0- and H-beam intensities
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decreases, while the contrast or fringe visibility increases. We show in Fig. 2.8 this behavior of
the intensity and contrast as the amount of Si material removed by etching increases for two new
interferometers recently put into operation at NIST and at ILL. Some additional details of the
machining and etching of interferometers can be found in articles of Treimer et al. (1967) and
Zawisky et al. (2010).

The crystal’s own weight results in very small internal strains. This can rotate the crystal plates
by fractions of a lattice constant, which causes inhomogeneous phases across the reflected beam,
thereby forming a Moiré pattern. In order to keep this effect small, a glass plate or glass balls
between the goniometer and the interferometer can reduce thermal strains due to various thermal
expansions and a thin housing around the interferometer can reduce thermal gradients. Adding
an additional weight on the order of several grams at special parts of the base of the interferometer
can balance a pre-existing Moiré strain pattern and increase the contrast of the overall interference
pattern.

The various position-dependent interference properties can be visualized by scanning across
the beam cross-section. As shown in Fig. 2.9 there is a marked variation of the local contrast and
especially a strong variation of the internal phase (φ0 in Eq. 2.5) over the beam cross-section of
6× 4 cm (Lemmel 2000). This indicates that all measured quantities of an interference pattern
are average values over distinct parts in ordinary real space and in momentum space. A slight
non-parallelism of the lattice planes and slight internal strains cause such inhomogeneous Moiré
pattern in the outgoing beams.

The most sensitive quantity of an interference pattern is the internal phase φ0 in Eq. (2.5).
The internal phase shift φ0 may vary due to temperature fluctuations, small drifts of the crystal
orientation, or humidity content of the air. These things are often limiting factors on how accu-
rately phase shifts can be measured. Figure 2.10 shows such a variation for an overnight run. This
limits the accuracy of phase measurements and explains why a sample-in/sample-out method has
been developed, which can reduce this error contribution up to a factor of 10 (Section 3.1.2).
These measurements are also examples of post-selection experiments that will be discussed in
Section 4.5.1.

In order to achieve high contrast it is recommended to avoid narrow slits (<3 mm) within the
interferometer since single-slit diffraction broadens the beam, which changes the reflectivity from
the crystal plates that follow (see Fig. 11.9).
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2.2 Perfect Crystal Interferometer Setups

Most experimental techniques in physics evolve in somewhat different ways in various laboratories.
In addition to certain space constraints in the neutron laboratories (beam halls, reactor halls),
the available neutron beams also have dictated a somewhat different design strategy of neutron
interferometry instrumentation. It was recognized very early that the perfect silicon crystal
neutron interferometer is very sensitive to various deleterious environmental effects, in particular
vibrations, microphonics, and thermal gradients. It was clear that the interferometer needed to
be vibration-isolated from the beam hall floor and would need to be placed within some serious
environmental isolation enclosure. Perfect crystal neutron interferometers have now been used
routinely in Austria, the Czech Republic, France, Germany, India, Japan, and the USA at neutron
sources ranging from 250 kW up to 51 MW. Here we give some examples of rather advanced
setups.

2.2.1 The ILL Setup

The original S18 station at the Institut Laue Langevin (Fig. 2.11) was installed as a joint proj-
ect between the Atominstitut in Vienna and the Universität Dortmund on the H25 curved thermal
guide in the guide hall at the 57-MW high flux (HFR) in Grenoble. In the usual mode of operation

Figure 2.11 Sketch of the ILL interferometer setup
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the 5-cm-high perfect Si monochromator crystal extracts a beam of adjustable wavelength depend-
ent upon the 2θM angle which is used in the non-dispersive (parallel) setting with the neutron
interferometer (Bauspiess et al. 1978). This means that for every incident ray reflected by the
Si monochromator there is a corresponding outgoing ray in the H-beam that is precisely parallel
to it. The resulting rocking curve of the interferometer is therefore very narrow, with FWHM
less than about 3 arcsec. The monochromator crystal and the interferometer crystal with its asso-
ciated goniometer are mounted on a steel bench which serves as a rigid “optical table.” This
table is suspended with a set of three springs from a steel structure that overhangs the appa-
ratus, thereby providing the necessary vibration isolation. The interferometer crystal itself rests on
three sapphire balls which are glued to a silicon crystal mounting plate. Although the alignment
procedure required to find the Bragg condition of the interferometer using the perfect Si crystal
monochromator is tedious, and keeping it aligned requires substantial stability, it provides for a
very low background situation. It also facilitates the rather straightforward production of a polar-
ized beam by simply inserting a wedge-shaped region of magnetic field (of about 1 T) between
the monochromator and the interferometer crystals (Badurek et al. 1979). This region is birefrin-
gent, deflecting the spin-up and spin-down components in opposite senses through small angles
(a few arcseconds). Aligning the interferometer with the spin-up component allows only spin-
up neutrons to traverse the interferometer. Microphonic disturbances, air currents, and thermal
gradients are mitigated by enclosing the entire setup in a sound-proof hut. An additional bicrys-
tal monochromator could be inserted to narrow the wavelength band to �λ/λ0 = 10–3 without

Figure 2.12 Photo of the ILL-S-18 neutron interferometer setup
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deflecting the beam off the axis of the optical bench (Bauspiess et al. 1977). An X-ray tube
is incorporated into the system for calibration and stabilization purposes. The neutrons in the
two interfering beams are counted with well-shielded 3He gas proportional detectors, which are
essentially “black” to thermal neutrons. The nuclear reaction in the 3He detectors is n + 3He →
1H + 3H, where the 770 keV of energy liberated in the reaction is shared between the proton and
the triton. This ionizing energy is very large, thus providing a perfect discrimination in detecting
neutrons against background compared with other forms of radiation. Since the shielding around
these detectors is rather heavy, they are mounted on separate arms that rotate around the interfer-
ometer, and are independent of the vibration isolation system. The actual Bragg angle is measured
from the angle difference between the non-dispersive (antiparallel) and the dispersive (parallel)
position of the monochromator–interferometer arrangement. The wavelength spread is obtained
from the width of the Bragg peak in the dispersive position. Typical counting rates in the I0 inter-
fering beam for an entrance aperture of 1 mm × 10 mm are 5000 counts/min. The entire setup has
been upgraded several times during refurbishments of the high flux reactor in Grenoble. A third
axis has been added behind the interferometer (see Fig. 2.11) and a supermirror guide in front of
the interferometer setup gives a further increase in intensity. An integrated Bonse–Hart (1965b)
neutron small-angle scattering camera provides possibilities for the investigation of sample inho-
mogeneities on the order of a micrometer. The first test measurements gave an intensity behind
the interferometer or small-angle scattering camera of about 7000 cm–2s–1 (Kroupa et al. 2000).
A photo of the central part of the ILL interferometer setup is shown in Fig. 2.12.

2.2.2 The MURR Setup

There were two neutron interferometry stations at the 10-MW MURR reactor in Columbia,
Missouri, in the time frame 1975–2000. We give a brief description here of the beam port B setup,
which is shown in Fig. 2.13. A thermal neutron beam was brought out of the reactor through a
helium-filled beam tube (15 cm diameter at the source end) and monochromated by a double-
crystal monochromator assembly. The distance from the reactor core to the first monochromator
was about 4 m. The double-crystal monochromator assembly used a 10-cm-high flat copper
(220) crystal at the first position and a 7-element, 10-cm-high, focusing copper crystal assembly at
the second position. The incident beam direction was fixed along the local north–south axis of the
Earth, so that the nominally monochromatic beam (�λ/λ ≈ 0.5%) incident upon the interferome-
ter was also directed along the north–south direction. Adjusting the Bragg angles of double-crystal
assembly allowed a variable wavelength beam to be used. The interferometer crystal is ordinarily
mounted in a V-shaped aluminum cradle, and held semi-rigidly to it with double-sticky-back tape
and soft felt strips. The outgoing interfering beams were detected with 1.2-cm-diameter, 20-atm
3He gas-filled proportional detectors which were positioned close to the interferometer crystal
and inside an aluminum box about 25 cm on a side. This aluminum box provided an isothermal
enclosure for the interferometer. It was bolted to a platform which could be rotated about the
incident beam direction, a degree of freedom important for the gravitationally induced quantum
interference experiments. This assembly was mounted inside of a heavy Benelex-70 box, which in
turn rested upon a vibration isolation pad consisting of four Firestone pneumatic “tires.” A plex-
iglass enclosure surrounded this Benelex-70 box. This triple-box strategy provides the necessary
vibration, microphonic, and thermal isolation of the neutron interferometer from its environment
in the reactor hall. Only a small fraction, less than 1/1000, of the neutrons incident upon the
interferometer satisfy the perfect crystal Si (220) Bragg condition. The rocking curve width of
the interferometer was about 1/2

◦, corresponding to the mosaic spreads of the copper monochro-
mator crystals. This arrangement has the advantage of eliminating the alignment and stability
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difficulties of the ILL instrument. It has the disadvantage of allowing many neutrons not utilized
in the interferometer to be in the region of the detectors, thus providing a potential source of excess
background. However, since the detectors are small and well shielded this has proven not to be
a serious drawback. It is clear that the technique to produce polarized neutrons with a magnetic
wedge cannot be used here with such an angularly dispersive incident beam. The counting rate in
the interfering H-beam was of order 1500 counts/min with a 1× 10 mm entrant slit. The back-
ground counting rate was typically a factor of 100 less than this signal. A more detailed description
can be found in an article by Allman et al. (1998).

2.2.3 The NIST Setup

The experience gained with the ILL and MURR has been used for the design and construction of
a new instrument at the 20-MW NBSR reactor at NIST in Gaithersburg, Maryland. A schematic
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Figure 2.14 Schematic diagram of the NIST interferometer setup

diagram of this setup is shown in Fig. 2.14. It utilizes a combination of the experimental strategies
of the ILL and MURR instruments. The instrument is positioned in the guide hall on guide NG7.
The significant advance in technology involves the use of a three-stage vibration isolation system
(see Arif et al. 1997). The lower stage was designed into the building during the planning stage
of the guide hall construction. This level of sophistication in the vibration isolation is anticipated
to be necessary for large-scale (1-m) separated component interferometers of the future. A pyro-
lytic graphite double monochromator with a vertical focusing option provides the possibility of
directing neutrons of different energies onto the interferometer without changing the position of
the interferometer table. Figure 2.5 shows a typical interferogram with a high contrast taken with
a 2 × 8 mm entrance slit.

Early in 2013 a second interferometer setup was installed at NIST using a fixed angle pyrolytic
graphite monochromator and 4.5-Å neutrons from the same cold neutron beam guide as the
original setup.

2.3 Interferometers Based upon Cold and Ultra-Cold
Neutrons

When the neutron wavelength becomes much larger than the interatomic spacings in crys-
tals, Bragg diffraction no longer exists, giving rise to a sharp Bragg cutoff. However, such
long wavelength neutrons can be diffracted from macroscopically structured materials like slits,
gratings, multilayers, or artificially produced lattices.
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The first attempt to make a single-slit interferometer was made byMaier-Leibnitz and Springer
(1962) and later on further developed at the ILL in Grenoble by Gähler et al. (1980). Single-slit
diffraction and biprism deflection have been combined to form a wave-front division interfer-
ometer (Fig. 2.1). Single- and double-slit diffraction patterns are analogous to the related light
and electron diffraction pattern (Zeilinger et al. 1981, 1988). The predicted single-slit diffrac-
tion pattern, in the Fraunhofer (plane wave) limit (e.g., Born and Wolf 1975, Cowley 1981,
Sears 1989, Kaiser and Rauch 1999), can be written as a differential scattering cross-section,
namely
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where D denotes the slit width and � the deflection angle. Rather narrow slits (<100 μm) and a
high angular resolution must be used to separate the diffraction peaks from the much more intense
zero-order peak. According to the wavelength used (3–100 Å), the deflection angles are rather
small except for ultra-cold neutrons where unfortunately the source intensity becomes rather
small. The intensity of the diffraction peaks strongly decreases with increasing diffraction order
which makes this method less attractive for interferometer applications.

Double-slit systems with a slit separation T show more pronounced diffraction peaks (see
Section 1.3, Fig. 1.5, left) which can be understood from the well-known plane wave diffraction
formula. It is the diffraction pattern of a single slit modulated by the slit distance function, namely
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The constraints due to rather narrow slits and high collimation reduce the intensity considerably.
To compensate for the low intensity a rather broad wavelength band δλ must be used which limits
the visibility of the interference pattern to rather low orders (see Section 4.2). A double-slit inter-
ferometer has been used by Klein et al. (1976, 1981a) for the observation of the sign change of
the neutron spinor wave function in the case of a 2π-precession (Section 5.1) and of the neutron
Fizeau effect (Section 8.5).

A more effective use of the available neutron intensity becomes possible if gratings are used as
optical components. The coherent diffraction of neutrons from various gratings has been observed
by Kurz and Rauch (1969), Graf et al. (1979), and Scheckenhofer and Steyerl (1977). In the case
of surface refraction the deflection angles follow from the relation

cos�m – cos�0 =
mλ
a

cosξm – cos�0 =
mλ
a

, (2.10)

where a is the grating constant, n the index of refraction of the material (Eq. 1.26), and m=0,
±1, ±2, etc. See Fig. 2.15a. The intensity depends on the ratio of the reflecting (b) and the
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Figure 2.15 Sketch of various diffraction gratings used for neutron interferometry,
(a, b) ruled gratings, (c) blazed grating, (d) phase grating, (e) layered structure grating,
(f) Fizeau-type resonator

non-reflecting (a, b) parts of the grating (Sprague et al. 1955). When the angle of incidence �0 is
smaller than the critical angle �c (Eq. 1.27) one gets

Rm =

⎡
⎢⎢⎣
sin
(
πm

a – b
a

)
πm

⎤
⎥⎥⎦

2 [
sin�0 – n sin ξm
sin�m + n sin ξm

]2
. (2.11)

For reasonable parameters, the reflectivities for |m|>0 diffraction intensities are on the order of
1% compared to the total reflection part (m=0). The theoretical values of the reflectivity have
been approached for the symmetric grating (b = a/2) by Ioffe et al. (1981). The intensity can be
more concentrated into certain diffraction orders when blazed (echelette) gratings are used (Fig.
2.15c; Wood 1910, 1912; Steyerl et al. 1988). For ultra-cold neutrons and a grating blazed for
first-order diffraction, reflectivities of 14 and 8% for first- and zero-order diffraction are obtained.

Ioffe et al. (1985) succeeded in the construction of a ruled grating interferometer (see Fig. 2.1).
They used flat step diffraction gratings for the beam splitter and combiner with a lattice constant
of 21 μm and a profile depth of 0.l μm and total reflecting mirrors. For 3.15 Å neutrons a beam
separation of about 1 mm has been achieved. The interference in that interferometer is produced
by the superposition of a twice diffracted beam with diffraction orders m = 1 and m = –1. The
observed contrast was 23%.

Phase gratings are other effective optical components for long wavelength interferometers
(Fig. 2.15d). Such gratings are generally used in the transmission geometry, which permits a
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larger beam cross-section to be used. The optimal step heights are determined by calculating the
phase shift difference between the thicker and thinner parts of the grating (see Eq. 2.6). In most
cases phase gratings for phase shifts of multiples of π and π /2 are used, which then determines
the step heights

�h = h(π) – h(π /2) =
π

Nbcλ
. (2.12)

For the plane wave case (Fraunhofer limit) the diffraction cross-section formula is (e.g., Eder et al.
1991)

dσ
d�

= |Na f (�) F(�)|2 , (2.13)

where N is the number of slits and f (�) the ideal grating diffraction function which becomes for
N→∞

f (�) = δ(� –mλ /a). (2.14)

|F(�)|2 represents the grating form factor which is the Fourier transform of the (phase) trans-
mission function. The zero-order diffraction vanishes for h = h(π) and equal widths of the steps
and the grooves, where the first-order contribution is maximized (40%). For an interferometer
application, the first-order diffraction peaks are needed as a beam splitter, beam recombiner, and
a beam deflector. A successful test of such an interferometer was achieved at the ultra-cold neutron
facility at the ILL reactor in Grenoble (Gruber et al. 1989). The lattice constant of the microstruc-
tured grating on SiO2 was a = 2 μm, and the step heights were 0. 75 and 0.35 μm, respectively.
For a flight path of 50 cm and very long wavelength neutrons (102 Å) a beam separation of about
1.2 cm was achieved. The critical adjustment of all lattices to within one lattice constant was done
on a vibration-isolated optical bench using a parallel laser interferometer. A sketch of the experi-
mental arrangement and typical results is shown in Fig. 2.16. The contrast amounts to about 53%
and the total measurement time was about 7 h at the high flux reactor at Grenoble (Weber and
Zeilinger 1997, van der Zouw et al. 2000). Work is now going on to extend such interferometers
to path lengths of 4 m, which makes such interferometers very sensitive to many small interaction
effects. Various aberration-free arrangements are reported in the literature (Ioffe 1986).

When such interferometers—perfect crystal interferometers as well—are moved perpendicu-
larly to the interferometer axis with velocity vm, the neutron velocity in the moving frame changes
to v′ = v + vmot. This introduces a phase shift

�χmot = (2πL/d). tan(v/vmot). (2.15)

This provides the basis for interference in velocity space and for new types of high-resolution
neutron spectrometers (Ioffe 1997).

Another interferometer for long wavelength neutrons is based upon multilayer diffraction and
has been tested by a Japanese group for 12.6-Å neutrons (Funahashi et al. 1996). It has features
similar to those of the Jamin interferometer in classical optics (Born and Wolf 1975) and consists
of two pairs of multilayer mirrors where each pair consists of two multilayer mirrors which are
separated by a thicker intermediate monolayer (Figs. 2.15e and 2.17). The first pair splits the
incident beam into two coherent parts whose phase difference is

�χ = 2πD/d, (2.16)



Figure 2.16 Sketch and typical results of the ILL phase grating interferometers.
Courtesy of M. Weber and A. Zeilinger, Innsbruck (1997)
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Figure 2.17 Principle of the structured multilayer
Jamin-type interferometer. Reprinted with permission
from Funahashi et al. 1996, copyright 1996 by the
American Physical Society.
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where D is the effective thickness of the monolayer and d the lattice constant of the multilayer.
It is assumed that the monolayer has an index of refraction n ∼ 1. Germanium–titanium bi-layers
with a lattice constant of d = 360 Å and an intermediate germanium monolayer with an effective
thickness D = 1 μm have been used.

Fringes of the Brewster type in close analogy to light optics were observed when the second
pair of multilayer mirrors was rotated. The area enclosed by the two coherent beams is rather
small, which reduces the sensitivity in many cases, but the intensity situation is rather reasonable.
The intensity calculation of multilayer diffraction is generally based upon a matrix approach and
dynamical diffraction theory (e.g., Stepanov et al. 1995). Resonance-enhanced standing neutron
waves have been used to observe the simultaneously emitted capture gamma radiation from an
absorbing Gd-157 layer (Zhang et al. 1994). A combination of two structured multilayers was used
to build a Mach–Zehnder-type interferometer based upon multilayer mirror diffraction (Fig. 2.16;
Ebisawa et al. 1994, 1998; Funahashi et al. 1996). A unit for its own—two multilayers and a
gap layer between—turned out to be an effective mini-interferometer with nearly no beam path
separation but a considerable phase shift between the interfering beams. More details are discussed
in connection with Larmor interferometers (Section 2.4, Eq. 2.37). Such Fabry–Perot systems are
the subject of a related review by Maaza and Hamidi (2012).

Other artificially produced lattices which have been tested, or which are capable of interfer-
ometer applications, are based upon light-induced lattices in polymers and on flux line lattices
in superconductors. Light-induced lattices in polymers result from the small density fluctuations
(�ρ/ρ ∼= 10–4 – 10–3) caused by a light intensity-dependent polymerization in standing laser light
fields (Rupp et al. 1990; Matull et al. 1990, 1991). The reflectivity of a lattice with a sinusoidal
density variation can be written as

R1 = Asin2(λbc �N d/2), (2.17)

assuming no correction for extinction effects. A is the usual attenuation factor accounting for
absorption and incoherent scattering, d denotes the thickness of the artificial lattice crystal, and
�N is the maximum density fluctuation. Reflectivity values up to 60% have been reported (Pruner
et al. 2006). Such holographic lattices have been put together to form a Mach–Zehnder inter-
ferometer for 15 Å neutrons (Schellhorn et al. 1997, Pruner et al. 2006). Fringe visibilities up
to 20% have been achieved with a LLL-geometry interferometer having a lattice constant of
a=7980 Å, a slab thickness of 2.5 mm, and a slab separation L =30 mm (Fig. 2.18). Due to
polymerization such lattices can be fixed inside various polymers and used as a static density
variation phase lattice. The separation of the interfering beams (0- and H-beam) from the par-
asitic beams is often not possible due to the rather small Bragg angles involved. Therefore, the
measured intensity oscillations belong to the composed R- and S-beams where the contrast is
reduced due to these parasitic beams. This shows a general difficulty of interferometry based
on artificially produced lattices when they are not used for very long wavelength neutrons. The
separation of the interfering beams from the parasitic ones requires the use of rather narrow
slits.

For cold neutrons the newly developed optical beam splitter based on holographically struc-
tured nanoparticle polymer composites may become powerful new elements in neutron optics
since reflectivities up to 50% for rather thin splitters (∼200 μm) have been reported (Fally et al.
2010, Klepp et al. 2012). This technique can be used for cold neutron interferometers.

Another alternative for long wavelength interferometry may be provided by the flux line lattice
of superconductors in the mixed state. In this case the lattice constant can be varied by an external
magnetic field as (Cribier et al. 1964, Weber et al. 1973)
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Figure 2.18 Sketch and typical results of a light induced
polymer neutron interferometer. Reprinted from Schellhorn
et al. 1997, copyright 1997, with permission from Elsevier.

a =

√
2φ0√
3 B0

, (2.18)

where φ0 denotes the elementary flux quantum (φ0 = h/2|e|). Very regular flux line lattices have
been observed, which provides at least the possibility of use in neutron interferometry.

For ultra-cold neutrons the optical potential (Eq. 1.24) becomes comparable to the kinetic
energy of the neutrons (≤ 100 neV) such that they are totally reflected at all angles of incidence.
Thus, semi-transparent barriers and double and multiple barrier resonators can be built in close
analogy to the light optical Fabry–Perot interferometers (Fig. 2.15f; Fabry and Perot 1899, Born
and Wolf 1975). The reflectivity RS and the transmittance TS of such a system is described by the
Airy relation

RS = 1 – TS –
T2

T2 + 4R sin2 (kd2 + ϕ0)
. (2.19)

T is the transmission coefficient of a single barrier of height V and width d1 given by the standard
formula

T =
{
1 +

V 2

4E(V – E)
sinh κd1

}–1

, (2.20)
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where κ is given by κ2 = 2m(V – E)/h̄2. Resonance transmission of the double-well barrier occurs
if the incident wave vector fulfills the relation

k = km =
mπ – ϕ0
d2

. (2.21)

This corresponds to a strongly enhanced wave field between the potential wells. This can be under-
stood as a size effect resonance where there is a multiple (N) back-and-forth reflection of neutrons
between the potential wells, where

N ∼= d1 + d2
d2

√
R
T

. (2.22)

Related experiments for Cu–Al–Cu barriers with d1 = 240 Å and d2 = 860 Å and another one with
d1 = 180 Å and d2 = 1670 Å have verified the expected behavior for m = 1 and m = 2 resonators
(Steinhauser et al. 1980). Multiple barriers which act as coupled resonators (Cu–Al–Cu–Al–Cu)
have also been investigated (Steyerl et al. 1981). The inherent problem of the rather low intensity
of ultra-cold neutrons limits the application of this technique. Maaza et al. (1996) measured the
trapping time of neutrons in a Ni–V–Ni Fabry–Perot thin film resonator in grazing angle neutron
reflectometry.

2.4 Larmor and Ramsey Interferometers

Beam polarization and its rotation within a region of a magnetic fieldB result from the interference
of the spin-up and the spin-down states. We will see that the classical picture of Larmor precession
of a magnetic dipole moment vector of a point-like particle around a magnetic field is inadequate
to account simultaneously for the Stern–Gerlach effect and for the coupling of kinematical and
spin variables (Mezei 1980b, 1988). Here, we deal with interferences in the forward direction
without spatial beam splitting, but splitting in momentum space. All characteristic interference
effects will be seen to occur. For the calculation, the Schrödinger equation (1.2) must be used in
its two-component form (Pauli equation)

H �=

[
–
h̄2

2m
∇2 – μσ · B(r, t)

]
�( r, t) = ih̄

∂�( r, t)
∂t

(2.23)

with

� =
(
�+

�–

)
= α|+ > + β| – >= f+( r, t) cos

�

2
|+ > +f–( r, t)eiφ sin

�

2
|– > .

Here (�, φ) are the polar angles of the spin vector of a point-like particle and the axis of quanti-
zation is chosen along the direction of the magnetic field. The vector σ = (σx, σy, σz) is composed
of the 2 × 2 Pauli spin matrices (see Eqs. 3.44–3.46) which couple all components of the spin to
the magnetic field B. f ± are the space-time-dependent wave functions.

The beam polarization is defined as

P = Tr(ρσ ) =< ψ |σ |ψ >, (2.24)



Larmor and Ramsey Interferometers 47

where ρ denotes the density matrix. The degree of polarization is usually denoted by |P| ≤ 1.
The equation of motion of an observable A is (e.g., Messiah 1965)

d
dt

<A>=
〈
∂A
∂t

〉
+

1
h̄

〈[H,A]〉. (2.25)

For a stationary magnetic field the Hamiltonian H is time independent (∂H/∂t=0), and the
total energy is conserved, but the kinetic energy and potential energy may be spatially depend-
ent (Zeeman effect). In the case of a purely time-dependent magnetic field (∂H/∂t �=0) the
total energy changes but the kinetic energy remains unchanged if the field is spatially uniform
([∇ ,H ] = 0). The motion of the spin components in a static field follows from the Heisenberg
equation

d
dt

<σ> =
μ

ih̄
〈[σ , σ .B]〉 . (2.26)

This gives the well-known Bloch equation for the neutron Larmor precession according to the
commutation relation of the Pauli spin matrices (Eq. 3.46) (Halpern and Holstein 1941, Williams
1988); that is,

d
dt

<σ >=
2μ
h̄

〈σ ×B〉 = γ 〈σ ×B〉 = γ (P×B). (2.27)

This is formally the equation of motion of a classical magnetic dipole moment inside a mag-
netic field region. In this case the polarization vector P precesses about the magnetic field B with
the Larmor frequency (ωL = |2μB/h̄|) as shown in Fig. 2.19. When a neutron traveling in the
y-direction enters a region of magnetic field B = Bẑ, of length L with polarization P initially along
x̂, we have when it leaves the magnetic field

P =

⎛
⎜⎜⎜⎝

cos
2μB
h̄

L
v

sin
2μB
h̄

L
v

0

⎞
⎟⎟⎟⎠ . (2.28)

This shows that a complete spin-reversal occurs when 2|μ|BL/h̄v = π . This idea is used rou-
tinely for polarization (spin) rotations in DC-spin flipper coils (Mezei 1972, Badurek et al. 1974,
Williams 1988).

For neutrons having an initial, arbitrary polarization P0, the total energy is conserved, but the
kinetic energy is split into two parts (Zeeman splitting)

h̄2k2

2m
=
h̄2k2±
2m

± |μ|B , (2.29)

which shows the coupling of the momentum and spin variables. For motion along the y-axis, this
then causes a small shift of the wave amplitudes and creates a relative phase shift between the
spin-up and spin-down wave packets whose wave functions become

f±( y, t) =
1

(2π)1/2

∫
a±(k∓�k)ei[(k∓�k)y – ωkt]d k , (2.30)
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Figure 2.19 Sketch of the spin-echo spectrometer (interferometer)
and the retrieval of the polarization behind the second precession
field. Reprinted from Mezei 1972, 1988, with permission from
Elsevier.

where

�k ∼= m |μ|B/h̄2k .

One notices that the whole wave function in Eq. (2.23) describes a momentum-spin entangled
quantum state, which cannot be factorized into a product state. In terms of quantum optics it can
be written as

� = |α(k+)>|↑>+|β(k–) >|↓> . (2.31)

This entanglement will be discussed and used in more detail in Chapters 5 and 7.
In most cases the Zeeman shift �k of the wave vector is much smaller than the neutron

momentum widths δki of the momentum distribution functions g±(k) = |a±(k)|2 and, therefore,
|a±(k±�k/2)|∼= |a±(k)|. In this case one gets from Eq. (2.24) the components of the polarization
vector P after the neutron has traversed a distance y:

Px( y) =
∫
g(k) sin�(k) cosφ(k, y)d k

Py( y) =
∫
g(k) sin�(k) sinφ(k, y)d k (2.32)

Pz( y) =
∫
g(k) cos�(k)d k,
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where g(k) = g+(k) + g–(k). Here, the momentum distribution functions g+(k) and g–(k) determine
the fixed polar angle �, namely that

cos�(k) = [|g+(k)|2 – |g–(k)|2]/ |g(k)|2

sin�(k) = 2 |a+(k)||a–(k)| /g(k). (2.33)

The accumulated phase difference between the spin-up and spin-down states is

φ(k, y) = 2y�k , (2.34)

where �k is given by Eq. (2.30). This corresponds to a precession of the polarization vector
around the field axis (z) where the angle of rotation is given by (Larmor angle)

φ( y, k) = φ( y, λ) = γ

y∫
0

B( y′)dy′/v = γBm λ y/h , (2.35)

where the gyromagnetic ratio γ = 2μ/h̄ is used. When the neutron polarization at the entrance
into the field lies in the x-direction (i.e., perpendicular to the field) the degree of polarization in
the x-direction behind a field region of length L becomes reduced by (Mezei 1972, 1980; Gaehler
et al. 1996)

Px(B,L) =
∫
g̃(λ) cos(γBL m λ/h)d λ , (2.36)

where the spectral distribution function for wavelength follows from the relation g̃(λ)dλ = g(k)dk.
This loss of polarization at large BL values is caused by the dispersive action of the Larmor

rotation, and causes the polarization vectors for different wavelengths to point in different direc-
tions within the (x,y)-plane, which results in a vanishing overall polarization of the beam. The
polarization directions are correlated to the related wavelengths and full polarization can still be
restored (Fig. 2.19). This situation is analogous to a spatially split beam interferometer experi-
ment when a magnetic field along one beam path is varied (see Section 3.2.1). The contrast, i.e.,
the coherence function (Section 5.1), of the interference pattern appearing in an interferometer
experiment shows the same behavior even though these measurements are made with unpolarized
neutrons.

The revival of full contrast can be achieved when a second magnetic field is applied in the
opposite direction, or when all individual spins are inverted between two fields in the same direc-
tion. These ideas lead to the well-known spin-echo arrangements (Fig. 2.19; Mezei 1972, 1980),
which are analogous to phase-echo arrangements discussed in Section 4.2.4. In this case BL in Eq.
(2.36) then denotes the difference between the two integrated field values (BL = B1L1 – B2L2)
and the polarization revival matching point occurs when B1L1 = B2L2. This preserves the high
sensitivity of the Larmor precession method and reduces considerably the polarization reduction
effect caused by the wavelength spread of the beam. The fine-tuning of the echo condition can be
achieved by changing the optical path length due to a material inserted in one part of the spin-
echo arrangement (Eq. 2.6; Hino et al. 1995). This fine-tuning of spin-echo spectrometers can be
used to measure the tunneling time of neutrons through thin magnetic films by using the Larmor
precession of the neutrons as a clock (Achiwa et al. 1996, Hino et al. 1998).
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It follows from Eq. (2.30) that the spin-up and the spin-down wave packet components move
inside the precession field with slightly different velocities, thus separating the components by
�x=2|μ|BL/mv2 (i.e., Schrödinger cat-like states are created—Section 4.5.2). They arrive at the
same position behind a precession field of length L with a time delay

�t =
2 |μ|BL
mv3

, (2.37)

which defines the spin-echo time, a characteristic time scale (∼10–100 ns) where dynamical vari-
ations of the system can be measured (Gaehler et al. 1996). In all these cases, the coupling of the
spin space (Larmor precession) and the momentum space (Zeeman splitting) becomes obvious.
This time delay also provides the basis for Larmor clocks with time resolutions on the order of
10–10 s, as tested by Frank et al. (2001).

Equation (2.36) shows clearly that the polarization measured in a certain direction is the
Fourier transform of the wavelength distribution function. This is shown in Fig. 2.19 for a beam
with a rather broad wavelength distribution (�λ/λ0 ∼= 18%). When the energy of the neutrons is
changed between the two precession fields, due to inelastic scattering processes within a sample,
the spin-echo method provides a practicable way of achieving high sensitive neutron Fourier spec-
troscopy (Mezei 1980). Instruments based upon this idea are installed at many advanced neutron
sources. High resolution is achieved at high Larmor precession orders which require rather strong
and very homogeneous precession fields (�B/B0

∼= 10–5).
The spin-echo systems described above cause a longitudinal shift of the wave packets, which

results in the momentum-spin entangled quantum state given by Eq. (2.31). An alternative method
where the two packets become shifted normal to the beam direction has been proposed by Rekveldt
(1996) and realized by Bouwman et al. (2004). They use tilted magnetic fields produced by DC
coils or magnetized foils (Fig. 2.20). In the upper case a longitudinal separation and a transverse
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Figure 2.20 Spin-echo arrangement for a transverse separation of the coherent
states. In both setups (above and below) the polarization of the incident neutrons
is perpendicular to the magnetic field direction. In the lower case a spin flipper is
installed along the diagonal lines. Reprinted from Bouwman et al. 2008, copyright
2008, with permission from Elsevier.
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separation occur. The transverse separation �z is determined by the deflection angles at the
entrance into the tilted fields having a tilt angle �, a length (L), and a magnetic field strength
(B), namely

�z =
2μmλ2BL

h2
tan�. (2.38)

When each unit consists of oppositely oriented magnetic fields as shown in Fig. 2.20 the separation
is�z′ = �z/cos�. This can be varied between 0.1 and 20 μm. The magnetic fields in the first and
second units point in the same direction and those in the third and fourth units in the opposite
direction. Along the diagonal line of each unit a DC-spin flipper changes the direction of spin
rotation. The transverse spatial separation given in Eq. (2.38) plays the same role as the spin-
echo time in the standard spin-echo system. Such systems are used for small-angle scattering
experiments where direct information about the spatial structure of a sample in the micrometer
range can be obtained (Gähler et al. 1996, Bouwman et al. 2004). Figure 2.21 shows a photo of
such an arrangement. A detailed analysis including a sensitivity estimation based on dynamical
diffraction theory has been given by Rana Ashkar et al. (2010, 2011).

A low field version of a spin-echo arrangement has been developed and used as a phase spin-
echo interferometer (Ebisawa et al. 1996, 1998). In this case, the system satisfies the phase-echo
(discussed in Section 4.2.4) and spin-echo condition simultaneously. It is based upon a Jamin-type
interferometer (Fig. 2.17; Funahashi et al. 1996) and a spin-echo system. By this method high-
resolution and rather compact spin-echo spectrometers become feasible. In this case, a magnetic
multilayer mirror on top, followed by a gap layer and a nonmagnetic layer mirror, was used. The
top magnetic mirror reflects one spin eigenstate while the non-magnetic mirror reflects the other
eigenstate. The presence of the gap layer, however, creates a path length difference for the two
eigenstates, which results in a phase shift and, therefore, a quantum precession of the neutron
spin. The related phase shift can be calculated from the geometric situation shown in Fig. 2.15e
(Ebisawa et al. 1998):

φ =
2πD
d

[
1 –

Nbc
π

(
λ

sin�

)2
]1/2

, (2.39)

Figure 2.21 Photo of a spin-echo spectrometer at the research reactor in Delft, Netherlands. Courtesy
W. G. Bouwman
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where� is the incident angle of the neutrons; D,N , and bc are the thickness, density, and coherent
scattering length of the gap layer, respectively; and d is the lattice constant of the magnetic mirrors.
For typical values (d = 100 Å,D = 1 μmGe) one obtains phase shifts on the order of 600 rad. The
equivalence of the related quantum precession with Larmor precession has been demonstrated by
measuring spin-echo profiles with small additional magnetic fields. The whole setup is shown in
Section 4.2.4 (Fig. 4.11) and in Section 5.5 (Fig. 5.9) in connection with spin-echo and spin-
superposition experiments. This equivalence of phase shifts and Larmor rotation also appeared in
interferometric measurements of the spin-superposition law (Summhammer et al. 1983).

The broad-band DC-flippers acting as Larmor rotators (Eq. 2.28) can be replaced by narrow
band flippers when an alternating meander field of strength B1 superposed to a guide field B0 is
used (Fig. 2.22). Such a field structure gives rise to a rotating magnetic field in the rest frame
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Figure 2.22 Meander spin flipper with fea-
tures similar to those of a magnetic wiggler at
an electron synchrotron (Drabkin et al. 1988)
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of the moving neutron. This rotating field flips only those neutrons in a rather narrow velocity
band given by δv/v0 ∼= 1/2N , with N the number of meanders. For a complete spin reversal the
strength of the meander field must fulfill the amplitude condition B1L = π h v0/8μ with L = N ·a.
The characteristic velocity v0 is determined from the equivalence of the time-of-flight through one
meander and the Larmor precession time, namely v0 = 2|μ|B0 a/h, where a denotes the width of
one meander element. This coherent superposition of rotational phases can be used as a neutron
monochromator in combination with a polarizer and analyzer mirror, which has the same features
as that of a magnetic wiggler (Drabkin et al. 1968, Agamalyan et al. 1988, Badurek et al. 2011),
Gösselsberger et al. 2013).

The crucial requirement of strong and homogeneous magnetic fields in spin-echo spectrome-
ters can be circumvented by the so-called zero-field spin-echo method (Gaehler and Golub 1987,
1988), which has several features in common with the well-known double-resonance method
developed for molecular beams (Ramsey 1949, 1956). In this case the spin rotation is achieved by
a neutron magnetic resonance system (Rabi (1937) flipper). When a rotating field B1 is added to
a region having a static guide field B0 such that

B(t) =

⎛
⎝ B1 cosωt
B1 sinωt
B0

⎞
⎠, (2.40)

the Pauli equation (2.23) can be solved for plane waves (Rabi 1937, Ramsey 1956, Krüger 1980,
Golub et al. 1994, Gaehler et al. 1996). For a beam initially polarized in the z-direction the wave
function behind the resonance system can be shown to be

ψ( y, t) =
1

(2π)1/2
exp
[
i
(
ky –

h̄k2

2m
t
)]

•
(
e–i� t/2 0
0 eiωt/2

)
• M, (2.41)

where the matrix M is given as

M =

⎛
⎜⎜⎜⎝

cos
γBefft
2

– i
B0 + ω/γ
Beff

sin
γBefft
2

i
B1

Beff
sin
γBefft
2

i
B1

Beff
sin
γBefft
2

cos
γBefft
2

+ i
B0 + ω/γ Beff sin

γt
2Beff

⎞
⎟⎟⎟⎠

and Beff is

Beff =

√(
B0 +

ω

γ

)2

+ B2
1.

For a spin which starts at t = 0 in the spin-up state ψ↑(0, 0) the probability to reach the spin-down
state at time t is given as

P1,2 =
∣∣ψ↓(t)

∣∣2 = (γB1)
2sin2

[
α

2

√
(ω0 – ω)2 + (γB1)2

]
(ω0 – ω)2 + (γB1)2

, (2.42)

where

α(t) = γ t Beff .
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For strong guide fields (B >> B1) the following conditions for a complete spin-reversal are
obtained, at time t = τ = �/v, namely that

ω = ωr = –γB0 (2.43)

and

–γB1τ = (2n + 1)π.

For strong oscillating fields (B0
∼= B1) the Bloch–Siegert (1940) shift of the resonance conditions

needs to be included.
Such a neutron magnetic resonance system (Rabi flipper) represents a time-dependent inter-

action so that in addition to the spin rotation an energy exchange occurs according to the Zeeman
energy h̄ωr = 2μB2 (Alefeld et al. 1981b). In a zero-field spin-echo experiment a π/2 spin rotation
is applied at the beginning, a π-rotation at the middle, and an additional π/2 spin rotation at the
end (Fig. 2.23). The phases of the flipper fields are synchronized. Thus, a spin-up |↑> and a
spin-down state |↓> with slightly different energies interfere. This results in a Larmor rotation
in the (x, y)-plane even in a zero magnetic field. This effect has been observed in a dedicated
split beam interference experiment (Badurek et al. 1983b; Section 5.3). Equation (2.31) can be
written as

ψ = α |+z>+βeiωrt |–z >, (2.44)

which gives for |α|2 = |β|2 a polarization

P =

⎛
⎝ cosωrt

sinωrt
0

⎞
⎠ . (2.45)

The neutrons also accumulate a velocity-dependent phase (because t = �/v) in the field-free
regions between the first π/2 and the π-flipper (length �1) and the π-flipper and the second
π/2-flipper (length �2). When the phases accumulated in the guide fields in the vicinity of the
flippers match each other, the spin-echo condition is

ωrt1 – ωrt2 =
μB0

h̄v
(�1 – �2) = 0. (2.46)

The confinement of the rather strong guide fields B0 needed in the flipper regions and the trans-
fer of the neutron polarization into and out of that region cause some experimental problems.
On the other hand, the zero-field spin-echo method has distinct advantages compared to the
DC-spin-echo method discussed earlier. Higher order spin-echo signals resulting in higher res-
olution can be realized by long field-free regions, and a bootstrap method which increases the
energy difference by a multiple spin-flip device can be used (Gaehler and Golub 1988, Gaehler
et al. 1992). A prototype zero-field spin-echo spectrometer was tested by Dubbers et al. (1989).
Figure 2.23 shows typical spin-echo signals for various widths of the neutron wavelength band.
Tilted fields which also cause tilted field-free regions have been tested for spectroscopic applica-
tions in the micro-electron volt resolution regime (Keller et al. 1998). The spin-echo signal and
the wavelength spectrum are Fourier related to each other as in the case of the DC-spin-echo
method (Eq. 2.36). The complementarity of split-beam interferences and Larmor interferences
is striking as it has been addressed by Ramsey (1993) and Lamoreaux (1992). Pursuing the
comparison between diffraction in ordinary and spin space one notices that the original Pauli
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Figure 2.23 Sketch of the zero-field spin-echo system showing the equivalence to the
Ramsey-type atom interferometers and the retrieved polarization at the end of the second
field-free region for two different wavelength spreads of the neutrons (below; Gaehler and
Golub 1988). Reprinted from Dubbers et al. 1989, Copyright 1989, with permission
from Elsevier.

single-coil resonance technique resembles the optical single-slit interference experiments, whereas
the more sophisticated Ramsey separated resonance coil method is the analogue of the double-slit
interference experiment (Fig. 1.5).

When four flippers are used and their flipping probability is kept between 0 and 1 many more
interference phenomena can be observed, as is known in Bordè–Ramsey atom interferometry
(Bordè 1989, Kasevich and Chu 1991, Riele et al. 1991). For the neutron case such interferome-
ters have been tested (Grigoriev et al. 2000, Mulder et al. 2000, Kraan et al. 2010) and discussed in
connection with the measurement of higher order correlation functions by Grigoriev et al. (2004).

A comparison of standard Mach–Zehnder (spatial) and Larmor (time) interferometers has
been given by Felber et al. (1999). More details about multi-coil resonance systems are given in
Section 6.7.



3

Neutron Interactions
and the Coherent Scattering Lengths

Scattering lengths are the relevant quantities for the description of the neutron–nuclear interaction
at low energies and they are of substantial interest for the understanding of the basic nucleon–
nucleon interaction. In this connection they are directly connected to the elementary hadron–
hadron interaction, namely neutron–proton, neutron–neutron, and proton–proton scattering and
to the problems of charge dependence and charge symmetry of nuclear forces (Henley 1966, Slaus
et al. 1989, Gardestig 2009). Quantum chromodynamics is the fundamental theory of hadronic
structure and interaction but a rigorous calculation of low-energy neutron–nuclear data is still
not possible. The observed interactions between hadrons are influenced by direct and indirect
electromagnetic effects due to Coulomb interaction, magnetic interaction, effects due to the finite
charge and magnetic moment distribution and due to the mass differences between charged and
neutral pions producing various nuclear forces. Various aspects of fundamental properties of the
neutron and its interaction are summarized in the books of Byrne (1994) and Alexandrov (1992)
and by a review of Dubbers and Schmidt (2011). In the low-energy regime the scattering lengths
are the only parameters necessary to describe the neutron–nuclear interaction, whereas at higher
energies the effective range and the shape parameter must be included to properly account for the
scattering cross-section data. As neutron physics moved more and more toward condensed matter
research, the precise values for scattering lengths of all the elements and many isotopes became
quite important, because they determine the strength of the elastic and inelastic scattering signal
from structurally complex samples. A collection of all measured neutron scattering length data
and recommended values for the elements and most of the isotopes is given in reviews by Koester
et al. (1991), Sears (1992), and Rauch and Waschkowski (1993).

3.1 Nuclear Interaction

3.1.1 General Relations

The range of the neutron–nucleus interaction is much smaller than the wavelength of thermal
neutrons and therefore the scattering is isotropic within the center-of-mass system. This justifies
the use of the Fermi pseudopotential as introduced in Chapter 1, Eq. (1.18) to describe it as a
point-like interaction within the context of the Born approximation (Fermi 1936). For a single
unbound nucleus we have

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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V =
2π h̄2

μ
a δ(r), (3.1)

where μ = mM/(m +M) is the reduced mass between the neutron of mass m and the nucleus of
massM. The scattering length a for a free (unbound) nucleus is related to the forward scattering
amplitude f0 = –a. In the case of spherical scattering a is given in terms of the s-wave phase shift
δ0 or equivalently by the logarithmic derivative of the wave function at the nuclear surface R (e.g.,
Blatt and Weisskopf 1952), that is

a = – lim
k′→0

(
sin δ0
k′

)
∼= –δ0

k′ , (3.2a)

or, more precisely,

–
1
a
=
(
1
ψ

dψ
dr

)
r =R

= k′ctg δ0. (3.2b)

Here k′ is the wave vector in the center-of-mass system which is related to the wave vector and
wavelength in the laboratory system as k = 2π /λ = k′m/μ. For an infinitely repulsive potential the
scattering length becomes equal to the hard core radius. For any other repulsive potential the wave
function in the interior of the nucleus decreases exponentially giving a positive derivative at the
nuclear surface and a scattering length 0 < a < R. In the case of an attractive potential permitting
a bound state the wave function inside the nuclear volume will be oscillatory and exponentially
decreasing outside giving a negative derivative at the nuclear surface and a scattering length a > R.
For an attractive potential without a bound state the wave function is oscillatory for both regions
with a positive curvature at R which results in a scattering length a < 0. The behavior can be quite
different for the two possible spin states I + 1/2 and I – 1/2 between the nucleus of spin I and the
neutron of spin 1/2 due to the spin dependence of nuclear forces.

In terms of the Breit–Wigner formalism for each spin state a separation into a potential and
a resonance scattering length can be written in the form (Breit and Wigner 1936, Koester 1977,
Mughabghab et al. 1981)

a± = R′ +
∑
j

1
2kj ′

�nj[
(E ′ – Ej ) + i�j/2

] , (3.3)

where �nj and �j are the neutron and the total widths at the resonance energy Ej , and R′ is the
potential scattering radius. The summation must be taken over all resonances with the same spin
state, including those below the binding energy (Ej < 0). This equation can be rewritten in terms
of real and imaginary parts as

a± = R′ +
∑
j

�nj(E ′ – Ej)
2k′

j

[
(E ′ – Ej)2 + �2

j /4
] – i∑

j

�nj�j

4k′
j

[
(E ′ – Ej)2 + �2

j /4
] , (3.4)

so that, in general, a± is a complex number ar – iai. The imaginary part is related to the absorption
cross-section σa by the optical theorem (Bacon 1975, Felcher et al. 1975)

ai =
k′σa
4π

=
σa

2λ′ , (3.5)
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which becomes energy independent for 1/v absorbers. For most nuclei ai is much smaller than ar.
Often the neutron resonances are located far away from thermal energies and the relation Ej >> �j
is fulfilled. This simplifies the expression for the scattering length to

a± = R′ –
∑
j

�nj

2k′
j Ej

= R′ – 2.277 × 103

(
m +M
M

)
·
∑
j

�0
nj

Ej
, (3.6)

where the reduced neutron width �0
nj = �nj(1eV /Ej)1/2 is introduced. The potential scattering

radius R′ can be calculated by means of Eq. (3.2) when δ0 is replaced by the real part of the
optical model s-wave phase shift and it can be determined experimentally by the analysis of the
neutron–nuclei cross-section in the resonance region (Feshbach et al. 1954, Seth et al. 1958, Pineo
et al. 1974). Figure 3.1 shows recommended R′ values in comparison with optical model calcu-
lations and with a mean nuclear radius R = 1.35A1/3 fm (Mughabghab et al. 1981). Although a
large number of nuclear level parameters are known for most nuclei, it is not possible to calcu-
late the resonance contribution from these values because often the correct spin assignments and
resonances below the binding energy are often unknown.

A spin-dependent scattering length operator â can be defined to account for the different
scattering lengths belonging to the interaction channels I + 1/2 and I – 1/2 , respectively, that is

â =
I + 1
2I + 1

a+ +
I

2I + 1
a– +

2(a+ – a–)
2I + 1

I · sn, (3.7)

where sn is the neutron spin operator. The statistical weight factors are g+ = (I + 1) / (2I + 1) and
g– = I / (2I + 1) for unpolarized nuclei. For a partially polarized collection of nuclei, we can define
the degree of polarization by f n = <I> / I . Thus, for neutrons with polarization, Pn = 2<sn> the
statistical weight factors are changed to

Figure 3.1 Variation of the potential scattering radius with the mass number and the results of
various model calculations (Mughabghab 1984)
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g+ =
I + 1
2I + 1

(
1 +

I
I + 1

f n · Pn

)
, (3.8)

and

g– =
I

2I + 1
(1 – f n · Pn) .

These relations can also be used to evaluate the scattering lengths and cross-sections for the two
spin states of an unpolarized beam (e.g., Williams 1988).

For neutron optical phenomena, the neutron must be viewed as interacting with many nuclei
simultaneously. From the uncertainty relations �x�k ≥ 1/2 and the fact that in neutron optics
the momentum transfer �k is zero or at least very small, one sees that the region of interaction
�x and the number of interacting nuclei become very large. This justifies averaging the neutron
interaction over many nuclei with different scattering lengths. In Chapter 4 we will relate�x to the
coherence length of the beam. Because there is no energy exchange with the assembly, the nuclei
appear to be fixed within the target and therefore a bound scattering length b should be defined.
The “strongly” bound neutron–nucleus scattering length is defined by

b = a
m +M
M

= a ·m/μ . (3.9)

This is also valid in the scalar and operator forms of Eq. (3.7). There is a discussion in the litera-
ture about the meaning of strongly bound nuclei which was needed in the derivation of Eq. (3.9).
Strongly bound means that the nucleus is embedded elastically to its surrounding nuclei, permit-
ting a purely elastic interaction of the neutron with the medium. That is, the nucleus has a definite
time-averaged position. This situation is not a nucleus with a mass tending to infinity which would
simulate a “rigidly” bound nucleus where the Born approximation becomes violated (Sears 1978).
Within the impulse approximation, the interaction of a neutron with a sample containing many
nuclei at the positions Rj can be written as a sum of δ-functions, that is

V (r) =
2π h̄2

m

∑
j

b jδ(r –Rj). (3.10)

This result enables the definition of a mean interaction potential, or optical potential for a material

<V (r)> =V =
2π h̄2

m
bcN . (3.11)

HereN is the particle density and bc = < b > is the mean coherent scattering length of the collection

of nuclei, which for an unpolarized nuclear system is (
→

< I > = 0, Eqs. 3.7 and 3.8)

bc = < b > =
I + 1
2I + 1

b+ +
I

2I + 1
b–. (3.12)

This can also be understood as an interaction parameter caused by a mean phase shift
<δ0> = –k ·<b> affecting the neutron wave scattering from the different nuclei. The variances
of these quantities <(�δ0)2> = (< δ02> – < δ0>2) define the incoherent scattering length binc

binc
2 = <b2> – <b>2 = g+g–(b+ – b–)2 =

I(I + 1)

(2I + 1)2
(b+ – b–)2. (3.13)
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If various isotopes or elements with abundances pj are present a further averaging procedure must
be done, yielding the coherent scattering length of the sample as whole

bc=
∑
j

pj
(
gj+bj+ + gj–bj–

)
=
∑
j

pjbcj . (3.14)

From Eqs. (3.5) and (3.11) together with the relation between the wave vectors in the laboratory
and center-of-mass system k/k′ = A / (A + 1), it follows that the absorption cross-section of the jth
nucleus is given by the imaginary parts of the scattering lengths

σaj = σ+
aj + σ

–
aj =

4π
k
bcj =

4π
k

(g+b′′
+
)j +

4π
k

(g–b′′–)j , (3.15)

where A is the mass number of this nucleus and the double prime indicates the imaginary part
of the scattering lengths. In many cases, the absorption process is associated with one interaction
channel only (e.g., He3 : J = I – 1/2 = 0).

The index of refraction n is the ratio of the wave vector (K) inside to the wave vector (k) outside
a material (or region of a potential). It can most easily be obtained by solving the Schrödinger
equation for a neutron moving through a potential step of a height V given by the mean interaction
potential (Eq. 3.11). This yields a complex index of refraction (Eq. 1.24)

n =
K
k

=

√
1 –

V
E

∼= 1 –
λ2N
2π

√
b2c –

( σr
2λ

)2
+ i
σrNλ
4π

= nr + ini, (3.16)

which is in agreement with the expression first obtained by Goldberger and Seitz (1947) by
adding the imaginary part (from the absorption cross-section) to the scattering cross-section to
account for the optical theorem of general scattering theory (Sears 1982a, 1988). Thus, σa has
been replaced by σr = σa + σs, which now also fulfills Lambert’s law of beam attenuation

I
I0

= exp[–(σa + σs)ND]. (3.17)

It can be anticipated that the deviation of the index of refraction from unity becomes purely
imaginary for a very strong absorber like Gd-157.

Strictly speaking, the related phase shift χ for a beam traversing a medium is complex and is
given by

χ = k (1 – n) Deff = χ ′ + iχ ′′, (3.18)

whereDeff is the effective path length of the beam in the material medium. The interference pattern
in the 0-beam (Chapter 1) in an interferometer experiment is then given by

I0(χ) =
∣∣ψ I

0 + ψ
II
0

∣∣2 = I0 (0)
2

e–χ
′′
(cosh χ ′′ + cos χ ′). (3.19)

Coherence effects related to the beam attenuation term (χ ′′ = σrND/2) are discussed in Section 4.3.
For thermal neutrons (E >> V ) and low-absorbing materials, the index of refraction and the phase
shift simplify to

n = 1 – λ2
Nbc
2π

and χ ′ = –NbcλD, (3.20)
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which results in the simpler form of the interferogram

I0(χ ′) =
∣∣ψ0

I + ψ0
II
∣∣2 = I0 (0)

2
(1 + cosχ ′). (3.21)

The phase shift is real under these conditions.
General scattering theory which accounts for mutual wave interaction of neighboring scattering

centers also predicts slight changes of the real part of the phase shift. Predicted correction factors
due to the internal structure of the sample material causing such local field effects are on the
order of bc/d, where d is the mean distance between particles (Ekstein 1953, Dietze and Nowak
1981, Nowak 1982, Sears 1982a, Adli and Summerfield 1984). They have not been observed
experimentally up till now (see Section 3.4.4).

The coherent scattering length is directly related to the neutron–nucleus interaction only for
spinless nuclei. Otherwise, one must extract the spin-dependent scattering length a+ and a– (or b+
and b–) from the results of two independent measurements. In addition to the measurement of the
coherent scattering length by neutron interferometry, such an independent measurement can be
the following:

(a) The total scattering cross-section

σs = 4π
(
I + 1
2I + 1

b2+ +
I

2I + 1
b2–

)
, (3.22)

which is strongly influenced by solid state effects in many cases and, therefore, such measurements
must be done with epithermal neutrons (e.g., Koester 1977);

(b) The spin incoherent cross-section (Eq. 3.13) plus a term describing isotope incoherence

σinc = 4πb2inc + σ
isot.
inc , (3.23)

which is also influenced by solid state effects and only applicable for strongly incoherent scattering
materials; or thirdly

(c) The coherent interaction with a nuclear polarized sample, where the coherent scattering
length depends on the neutron polarization Pn =2 < sn > and on the nuclear polarization
f = < I > / I . From Eq. (3.7) one gets (Lushchikov et al. 1970, Williams 1988)

bc(Pn) = bc + bincIPn · f /2. (3.24)

This method is less dependent on solid state effects and well suited for the extraction of spin-
dependent scattering lengths (Abragam 1972, Abragam et al. 1973, Glättli et al. 1979). In a way
similar to the magnetic interaction (Section 3.2.1) the nuclear coherent scattering length depends
on the neutron polarization, thus permitting the definition of a pseudo-magnetic induction which
is proportional to binc and to the nuclear polarization f , namely

B∗ = –
4π h̄2

mγ

√
I

I + 1
Nbinc f . (3.25)
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In this case, the polarization vector rotates around this pseudo-magnetic field like it rotates in the
case of Larmor precession around the magnetic fieldB (Baryshevski and Podgoretskii 1965, Glättli
and Goldman 1987). The degree of nuclear polarization can often be determined by the spin-
dependent absorption cross-section. The pseudo-magnetic field acts like an ordinary magnetic
field when Stren–Gerlach-like experiments are considered (Zimmer et al. 2001). The nuclear
polarization method is used in connection with Bragg scattering measurements, where the relevant
structure factors must be added, and with transmission measurements where the spin dependence
of the absorption cross-section must be taken into account in some cases.

3.1.2 Experimental Results

The format of this chapter places the experimental aspects in the foreground. The results obtained
by neutron interferometry must compete with the results from many other methods such as trans-
mission measurements, mirror reflection, prism reflection, Bragg diffraction, Christiansen filter,
gravity refractometer, etc. (e.g., Koester 1977).

All the measurements with the neutron interferometer are based on the intensity modulation
caused by the phase shift of the sample. This modulation is given by Eqs. (3.18) and (3.21), but
must be modified due to unavoidable imperfections of any experimental setup (see Section 2.1).
In general, an interferogram is of the form

I = A + B cos (χ + φ) . (3.26)

The quantity A is the mean counting rate in one of the interfering beams and includes the non-
interfering background; B is the amplitude of the interfering part, χ is the phase shift of a sample
whose thickness or whose pressure is varied (χ = –NbcλD), and φ is composed of an internal
phase shift φ0 of the empty interferometer, plus the phase shift of any other phase shifter or field
φp, and it is also reduced by the phase shift of air φa displaced along the beam path within the
interferometer by the sample, i.e., φ = φ0 + φp – φa (for discussion of φa see Section 3.4). All the
quantities χ , φ, and B must be determined in such a scattering length measurement, which takes
on a variety of experimental procedures. These are indicated for the case of a skew symmetrically
cut interferometer crystal in Figs. 2.3 and 3.2. The sample in/out option becomes important to
compensate for the drift of the internal phase (see Fig. 2.10).

3.1.2.1 Measurement of Flat Solid and Liquid Samples
Samples are often available in a slab-shaped form or they are in a flat container and they can
be measured quite conveniently by various methods as indicated in Fig. 3.2. In the conventional
method (A) the phase shift can be varied continuously by rotating the sample within the coherent
beams by an angle δ as discussed briefly in Chapter 2. Here the phase shift depends upon the
difference of the optical path lengths of path I and II, namely (Eq. 2.7)

χ = NbcλD0

[
1

cos(θB – δ)
–

1
cos(θB + δ)

]
. (3.27)

The first measurements with this method dealt with Sn, Al, V, Bi, and Nb samples (Bauspiess
et al. 1976, Rauch et al. 1986). The accuracy for the scattering length, namely �bc/bc is typically
on the order of several parts in 1000 and is determined by how accurately the period of oscillation
can be determined from the interference pattern; but also by the errors of the density (�N), of
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the sample thickness (�D), of the mean wavelength determination (�λ), and in the sample ori-
entation (�δ). For several experiments the error due to wavelength uncertainty has been reduced
by the installation of a novel Ge–Simonochromator system which was stabilized by means of an
additional X-ray beam (Section 2.2.1; Bauspiess et al. 1977). An even more economic method
has been developed later on by using the normalized counting rate ratio ((IH – I0)/(IH + I0)) and
by measuring the interferences at high positive and negative orders and interpolating in between
(Bauspiess 1977, Bauspiess et al. 1978). Figure 3.3 shows typical results of different measuring
methods for various samples (Bauspiess 1977). The phase shift of the air displaced by the sample
must be included in precise measurements (see Section 3.4.1). A four-parameter fit according to
Eq. (3.26) was applied to get the optimal mean values and their statistical error bars as listed in
Table 3.1.

Another measuring method (standard sweep) consists of alternately inserting and removing the
sample into one beam (method B in Fig. 3.2). In this case, the interference patterns are taken by
an auxiliary phase shifter in position A in Fig. 3.2. The phase shift of the sample (φs) is obtained
modulo 2π from the interferograms with the sample in and then out of beam path II. In this case
the internal phase drift as shown in Fig. 2.10 is to a large degree compensated. The phase shift
between the two interferograms is given as

�χ = χsample – φa – 2πm, (3.28)

where m is an integer to be found from an approximate value of χsample or a rough measurement
using the standard rotation method. One notices that the air correction φa is more important
in the sweep measuring method than in the standard rotation method. This method has been
adapted from X-ray interferometry (Cusatis and Hart 1975) and it provides the advantage that
small samples can be used and that the total phase shift of the sample can be made larger than
for the standard sample rotation method. It has been used for many neutron scattering length
measurements, where in some cases accuracies better than 1 part in 1000 for the scattering length
bc have been achieved (Hammerschmied et al. 1981; Boeuf_et al. 1982, 1985; Bonse and Kischko
1982, 1985; Freund et al. 1985; Rauch and Tuppinger 1985). This method has also been used
to observe the energy dependence of the scattering length due to resonance effects (Word and
Werner 1982, Arif et al. 1986, Kaiser et al. 1986). They established a negative resonance level of
235U at –1.4 eV. A typical result is shown in Fig. 3.4.

An interesting method was proposed by Scherm (1981) and was first tested by Rauch et al.
(1985). It is a non-dispersive measuring method (position C in Fig. 3.2), where the boundary
of the sample is oriented parallel to the reflecting planes of the interferometer crystal. As the
path length inside the sample is D0/sin θB the whole phase shift becomes independent from the
wavelength, namely (see also Section 4.2.2)

χ = –2Nbcdhkl D0. (3.29)

Here dhkl is the lattice plane spacing of the interferometer crystal. This method permits two vari-
ants: the modified sweep method where the sample is moved in and out, and the modified rotation
method where the sample is rotated around a horizontal axis. The obvious advantages of this
method are the elimination of the necessity of a precise wavelength determination and the use of
an incident beam with a broad wavelength spectrum. This method is discussed in more detail in
Section 4.2. Figure 3.5 shows an example of such a measurement for a Bi sample in compar-
ison with a conventional (dispersive) measurement (Rauch et al. 1987, Tuppinger 1987). The
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Table 3.1 Interferometrically Measured Bound Coherent Scattering Lengths

λ (Å) bc (fm) Methoda Reference

H 2.71266(12) –3.7384(20) SS Schoen et al. (2003)

H 1.898(3) –3.64(3) PV Kaiser et al. (1979)

D 2.71266(12) 6.665(4) SS Black et al. (2003)

Schoen et al. (2003)

D 1.898(3) 6.55(8) PV Kaiser et al. (1979)

T 1.876(5) 5.1(1) SS Hammerschmied et al. (1981)

1.858(3) 4.792(27) SS Rauch et al. (1985)

He 1.898(3) 3.26(3) PV Kaiser et al. (1979)
3He 1.910(2) 6.010(20) SS Ketter et al. (2006)

2.71(1) 5.8572(72) SS Huffman et al. (2006)

1.898(3) 5.74(7) PV Kaiser et al. (1979)

C 1.8389(6) 6.647(5) SS Freund et al. (1985)
13C 1.9233(10) 6.542(3) SS Fischer et al. (2008)

N 1.898(3) 9.30(8) PV Kaiser et al. (1979)

O 1.898(3) 5.83(5) PV Kaiser et al. (1979)
17O 1.9233(10) 5.867(4) SS Zeidler et al. (2011)
18O 1.9233(10) 6.009(5) SS Zeidler et al. (2011)

Ne 1.898(3) 4.63(4) PV Kaiser et al. (1979)

Mg 1.7900(4) 5.375(4) SR Bauspiess et al. (1978)

Al 1.8322(9) 3.447(5) SR Bauspiess et al. (1976)

Al 1.8322(9) 3.449(5) SR Bauspiess et al. (1978)

1.48(3) 3.42(2) SR Tomimitsu et al. (1995)

Si 2.36(2) 4.1479(23) NS Lemmel and Wagh (2010)

Si 1.9225(18) 4.1571(28) CV Tuppinger et al. (1988)

2.7(2) 4.15071(22) NS Ioffe et al. (1998a, 1998b)

Ar 1.898(3) 2.07(2) PV Kaiser et al. (1979)

Ti 1.77632(7) –3.438(2) SR Bauspiess et al. (1978)

V 2.107(2) –0.408(2) SR Rauch et al. (1976)

1.7900(4) 0.3824(12) SR Bauspiess et al. (1978)

Co 1.8558(6) 2.53(5) SS Kischko et al. (1982)

(continued)
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Table 3.1 (continued)

λ (Å) bc (fm) Methoda Reference

Cu 1.5748(3) 7.7093(86) SR Tomimitsu et al. (2000)

1.9085(20) 7.66(4) SS Bonse and Wroblewski
(1985)

1.77632(7) 7.718(4) SR Bauspiess et al. (1978)

63Cu 1.5748(3) 6.477(13) SR Tomimitsu et al. (2000)

65Cu 1.5748(3) 10.204(20) SR Tomimitsu et al. (2000)

Zn 1.77632(7) 5.680(5) SR Bauspiess et al. (1978)

69Ga 1.543(7) 8.053(13) SR Tomimitsu et al. (1999)

71Ga 1.543(7) 6.170(11) SR Tomimitsu et al. (1999)

Kr 1.898(3) 7.52(6) PV Kaiser et al. (1979)

1.81(6) 7.72(33) PV Terburg et al. (1993)

1.81(6) 8.07(026) PV Terburg et al. (1993)

Nb 1.786(2) 7.08(2) SR Rauch et al. (1976)

1.7900(4) 7.054(3) SR Bauspiess et al. (1978)

Ag 1.77632(7) 5.932(6) SR Bauspiess et al. (1978)

1.8742(6) 5.922(7) SS Bonse and Kischko (1982)

107Ag 1.8742(6) 7.555(11) SS Bonse and Kischko (1982)

109Ag 1.8742(6) 4.165(11) SS Bonse and Kischko (1982)

Sn 1.7860(2) 6.220(2) SR Bauspiess et al. (1976)

1.7860(4) 6.228(4) SR Bauspiess et al. (1978)

Te 1.859(2) 5.6(1) CV Rauch and Tuppinger (1985)

1.48(3) 5.49(2) SR Tomimitsu et al. (1995)

1.9330(3) 5.68(2) SR Ioffe and Neov (1997)

Xe 1.898(3) 4.69(4) PV Kaiser et al. (1979)

Sm 1.859(2) 0.7(2) SS Rauch and Tuppinger (1985)

149Sm 1.557(15) 21.17(18) SS Word and Werner (1982)

Eu 1.859(2) 5.3(3) SS Rauch and Tuppinger (1985)

Gd 1.859(2) 5.1(4) SS Rauch and Tuppinger (1985)

Dy 1.859(2) 16.9(3) SS Rauch and Tuppinger (1985)

(continued)
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Table 3.1 (continued)

λ (Å) bc (fm) Methoda Reference

1.9178(10) 17.3(3) SS Tuppinger et al. (1988)

Ho 1.825(1) 8.01(8) SS Boucherle et al. (1985)

W 1.5748(3) 4.755(18) SR Tomimitsu et al. (2000)

Pt 1.859(2) 9.60(1) SS Rauch and Tuppinger (1985)

1.859(2) 9.48(11) NS Rauch and Tuppinger (1985)

Hg 1.5748(3) 12.595(45) SR Tomimitsu et al. (2000)

202Hg 1.5748(3) 11.002(43) SR Tomimitsu et al. (2000)

Pb 1.92(7) 9.4017(20) SS Ioffe et al. (2000)

204Pb 1.92(7) 10.893(78) SS Ioffe et al. (2000)

206Pb 1.92(7) 9.221(69) SS Ioffe et al. (2000)

207Pb 1.92(7) 9.286(16) SS Ioffe et al. (2000)

208Pb 1.92(7) 9.494(30) SS Ioffe et al. (2000)

2.0105(1) 9.494(29) SR Ioffe et al. (1994)

1.085(8) 9.28(13) SR Alexandrov et al. (1989)

1.92(7) 9.518(2) NS Ioffe and Vrana (1997)

Bi 1.8264(5) 8.58(5) SR Bauspiess et al. (1976)

1.7900(4) 8.503(12) SR Bauspiess et al. (1978)

1.9225(24) 8.521(4) NS Rauch et al. (1987)

1.9225(18) 8.508(21) CV Tuppinger et al. (1988)

1.9225(18) 8.5165(62) SS Tuppinger et al. (1988)

Th 1.839(6) 10.53(3) SS Boeuf et al. (1985)

U 1.8389(6) 8.417(5) SS Boeuf et al. (1982)

235U 1.261(1) 10.50(3) SS Kaiser et al. (1986)

1.642(1) 10.47(4) SS Arif et al. (1987)
a SR, standard rotation; SS, standard sweep; NS, nondispersive sweep; CV, contrast variation; PV, pressure variation.

interference pattern to first order does not depend on the wavelength spread of the beam, and,
it remains visible up to very high interference orders. Very high phase sensitivities have been
achieved with this method �χ /χ = 2.2 × 10–5, which certainly can be increased to 10–6 by using
longer measuring periods and more advanced sample orientation methods. At extremely high
orders the parallel shift of the beam causes a defocusing effect (see Section 4.2.2). From simple
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Figure 3.4 Typical results of the sweep measurement technique when the sample is
alternatively inserted and removed from one beam and the interference pattern is meas-
ured with a rotating phase flag Bonse and Kischko 1982, with kind permission from
Springer Science and Business Media.

geometrical consideration it follows that a sample of thicknessD0 and with a λ-thicknessDλ causes
a defocusing of

�t =
D0 · dhkl

Dλ sin θB tan θB
. (3.30)

The defocusing phenomena becomes effective when �t ∼= �0/10, where �0 is the Pendellösung
length of the Si interferometer crystal (see Section 11.7.1). This corresponds to interference orders
up to m ∼= 0.1 × �0tgθB/dhkl ∼ 2 × 104. Before this defocussing factor becomes effective, several
other factors become more dominant. Such factors are the beam attenuation which follows from
the imaginary part of the index of refraction (Eqs. 1.25 and 3.19) or more precisely from the
optical theorem of general diffraction theory (Sears 1985). This gives the imaginary part of the
phase shift as

χ ′′ =
Nσt
2

D0

sin θB
, (3.31)

where σ t is the total attenuation cross-section. Other contrast reduction factors occur due to
the roughness of the surfaces of the sample or due to a misalignment of the sample relative to
the reflecting planes. The effectiveness of the method is demonstrated by the results shown in
Fig. 3.6, which were used to extract the coherent scattering length for Bi with high accuracy
(bc = 8.508(4) fm; Rauch et al. 1987). It should be mentioned that some contrast remains even
up to values where �t equals the width of the Borrmann fan (Section 4.2.2; Petrascheck 1987).
The relation of these measurements to questions of coherence properties of the beam is discussed
in Chapter 4.

Ioffe and Vrana (1997) tested a method to align the surface of the non-dispersive phase shifter
to be precisely parallel to the crystal planes of the interferometer (Fig. 3.6). When a declination ε
of the surface and the crystal planes exists, the effective thickness of the phase shifter becomes
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Figure 3.5 Dispersive and non-dispersive sample arrangement and typical results
obtained around the 250th interference order. The dashed lines indicate the interference
pattern at low order (Rauch et al. 1987)

Deff =
D0

sin(ϑB + ε) cos γ
, (3.32)

where γ denotes the vertical (tilt) misalignment. The basic idea for an optimal adjustment is to
record the interference patterns as a function of ε when the phase shifter is put into beams I and
II alternatively, i.e., for a set of positive and negative values of ε. Expending Eq. (3.32) for small
ε-values one gets a phase difference for the sample placed in beam path I and then translated into
beam path II

�χ(ε, γ ) = χI – χII =
2d Nbc D0

cos γ
[2 + ε2(1 + 2 cot g2ϑB)]. (3.33)

From the minimum of this parabolic function, one gets the scattering length

bc =
(χI – χII)min

4dND0
. (3.34)
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Figure 3.6 Schematic drawing of the double non-dispersive sample arrangement used to adjust the
sample surfaces to be parallel to the reflecting lattice planes (Ioffe and Vrana 1997) and adjustment
curves for horizontal and vertical alignment. Reprinted from Ioffe and Vrana 1997, copyright 1997,
with permission from Elsevier.

The formula (3.33) shows that the phase difference �χ is a symmetric function in ε and γ .
This has been verified experimentally (Fig. 3.6). An auxiliary phase shifter (phase flag) is used to
determine χI and χII . Accuracies of order �bc/bc ∼ 10–5 have been achieved. A test measurement
with a 208Pb sample yielded bc = 9.518(2) fm, where the accuracy limit was mainly determined
by the uncertainty of the sample composition (Ioffe and Vrana 1997). A very high precision
measurement of the coherent scattering length of pure silicon used this method and resulted in a
value bc = 4.15071(22) fm (Ioffe et al. 1998a, 1998b).

The same measuring methods as developed for solid samples can be applied to liquid sub-
stances when they are put into proper flat containers. The influence of the container itself can
easily be subtracted by a separate measurement without the liquid. Related measurements will
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be discussed in the following sections in connection with a phase contrast method and with
measurements on highly absorbing substances.

3.1.2.2 Measurements with Gaseous Samples
In principle, the same measuring methods as described in the previous section for solid and liquid
samples can be applied for measurements on gaseous substances. Since pressure and density are
related, pressure changes make a pressure variation method feasible. In this case the pressure p
(in bars) of the gas inside a flat container is varied. This causes a variation of the particle density
according to the thermodynamical equation of state

N = NA

[
VM.1.01325

p

(
A + Bp +Cp2

) ]–1
, (3.35)

where NA is the Avogadro number, VM is the molar volume and A, B, C are the temperature-
dependent Virial coefficients. The coherent scattering lengths are obtained from the periodicity
of the interference pattern according to Eq. (3.26). Interferograms for several gases are shown
in Fig. 3.7 (Kaiser et al. 1979) and the extracted values for the coherent scattering lengths are
included in Table 3.1. The error bars are mainly due to the purity of the gases and by the precise
determination of the particle density according to Eq. (3.35).

Values of the scattering lengths for light elements can be compared with calculated values
from nucleon few-body theories and, therefore, they are of special interest. The calculations are
based on parameterized advanced nucleon–nucleon potentials and take two- and three-body forces
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Figure 3.7 Typical interferograms obtained in the measurement of scattering lengths of various gases
(Kaiser et al. 1979)
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into account. The absence of a long-range electromagnetic interaction makes them more reliable
than for charged particle interaction, where the inner cutoff radius of the Coulomb part remains
uncertain.

The most relevant fundamental neutron–nucleon scattering lengths are for the pairs neutron–
neutron, proton–proton, and neutron–proton. Due to the lack of neutron targets the neutron–
neutron scattering length bnn is accessible only by indirect measurements (neutron–deuterium,
pion–deuterium, etc.) and the proton–proton scattering length bpp is masked by the strong
Coulomb contribution. In both cases at low energies only the singlet interaction exists due to the
Pauli principle. The related data analysis and necessary approximations cause rather large errors
on these quantities. The world averages are (Gardestig 2009)

bnn = 37.8(8) fm
bpp = 34.6(8) fm.

Their difference indicates charge symmetry breaking.
The neutron–proton scattering length is accessible by several neutron optical methods and

many results have been published in the past. In this case the coherent scattering length is
composed of the singlet bs and triplet bt scattering lengths in the form

bc =
1
4
bs +

3
4
bt. (3.36)

The world average value is bnpc = – 3.7405(9) fm. Neutron interferometric measurements con-
tributed to that value (Kaiser et al. 1979, Schoen et al. 2003). The related singlet scattering length
must be compared with the bnn and bpp values discussed earlier (e.g., Wiringa et al. 1995).

A very elaborate interferometric method has been used by Schoen et al. (2003) to obtain accu-
rate scattering lengths for light gases. Figure 3.8 shows the arrangement of the gas cells within the
interferometer and indicates the sweep method used for these experiments. Many parameters had
to be taken into account to extract an accurate value for the coherent neutron–proton scattering
length, namely temperature, pressure, cell expansion, virial coefficient, internal phase variations,
molecular binding, etc. Finally they got a value of bc = –3.7384 (20) fm.

Black et al. (2003) and Schoen et al. (2003) used the same system they had used for the
hydrogen measurement (Fig. 3.8) for the neutron–deuterium system. Since the deuteron has the
nuclear spin I =1 the coherent scattering length is related to the doublet and quartet scattering
length.

bc =
1
3
bd +

2
3
bq. (3.37)

They got a value of bc(D) = 6.665(4) fm and under the assumption that the quartet scattering
length is bq = 6.346(7) fm they got for the doublet scattering length a value of bd = 0.9680(45) fm.
These values are in very good agreement with theoretical values when three-body forces are taken
into account (b(theory)c = 6.665 fm, Kievsky 1997; b(theory)c = 6.666 fm, Chen et al. 1991). Whether
this can be used as an unique verification of nuclear three-body forces must be taken with care,
but it is one of the strongest indications of the existence of three-body forces in nuclear inter-
action. The quartet scattering length is rather insensitive to the details of the nucleon–nucleon
potential since the three nucleons in this channel exist in a spin-symmetric state and therefore the
scattering is completely determined by the long-range part of the nucleon interaction potential.
On the other hand the doublet scattering length is rather sensitive to the details of the interaction
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Figure 3.8 Schematic view of the interferometer and the gas cells used by Schoen
et al. (2003) in their measurements of the scattering lengths of H and D

potential since the Pauli principle does not enter and short range and three-body contributions
of the potential become important (Schoen et al. 2003). The measured doublet scattering length
bd = 0.9680(45) fm also agrees well with the calculated values Kievsky (1997) and Chen et al.
(1991). Huffman et al. (2007) analyzed the data also in their relation to the triton binding energy
and found reasonable agreement with the so-called Phillips line.

The scattering length of 3He has been measured with the pressure variation method as well.
In this case the index of refraction (Eq. 3.16) must be treated as a complex quantity due to the
rather high absorption cross-section of 3He (σa = 5327b for λ=1.8 Å). This absorption process
takes place in the singlet state only ( J = I – 1/2 = 0) which facilitates the use of polarized 3He targets
as broad band polarization filters (Tasset et al. 1992, Heil et al. 1998). Therefore, the interfer-
ence pattern is influenced by the macroscopic attenuation cross-section ( t

∼= Nσt) which varies
with the gas pressure (see Eqs. 3.20 and 3.35). Using Eq. (3.19) and adding a non-interfering
part of the intensity one must use a fitting procedure involving the more complicated formula in
Eq. (3.19)

I = (C1 –C2)
[
C4 + (1 –C4) e– tD

]
+C2

[(
e– tD + 1

)
/ 2 + e– tD/2 cos (χ +C3)

]
, (3.38)

instead of Eq. (3.26), where the Ci are quantities characterizing the interferometer. The measured
interference pattern is shown in Fig. 3.9 together with the optimal fit curve. A rather precise value
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Figure 3.9 Interference pattern of the highly absorbing 3He gas (Kaiser
et al. 1997)

for the coherent scattering length of bc = 5.74(7) fm has been obtained from these data for this
strongly absorbing nucleus (Kaiser et al. 1977, 1979). In this connection, it has been shown how
the relative sign of the scattering length can be determined by observing the intensity variation as a
function of varying the phase with an auxiliary phase shifter when the sample is alternately moved
in and out of the interferometer.

The neutron-3He scattering length has been re-measured at NIST (Huffman et al. 2004) and
at ILL (Ketter et al. 2006). In both cases a sweep method has been used, but the results are
somehow different, bc = 5.853(7) fm and bc = 6.000(9) fm, respectively.

Substantial efforts have also been made to obtain a reliable value for the coherent scattering
length for tritium which is of similar interest to that in the 3He scattering length for the understand-
ing of the nuclear four-body problem. In the tritium case the radiation hazards of the sample made
the application of the sweep method necessary because it avoids pressure variations. The phase
shift of the tritium gas is a factor of about 100 smaller than that of the tritium vessel. It had to be
extracted from two measuring runs with and without tritium which are separated in time by several
days due to the required tritium handling procedure. Two interferometric measurements whose
error bars, unfortunately, do not overlap have been performed up till now (Hammerschmied et al.
1981, Rauch et al. 1985). Figure 3.10 shows the scheme and the results of the most recent meas-
urement which leads to a value of bc = 4.792(27) fm. The amount of tritium gas used was only
about 65 mg at a pressure of about 20 bars. In combination with results from total cross section
measurements the spin-dependent scattering lengths were also determined.

3.1.2.3 Irregularly Shaped Samples—Christiansen Filter Method
Often it is impossible to get properly flat, slab-shaped samples. Therefore, a different measuring
method which uses a phase-contrast variation method has been developed (Rauch and Tuppinger
1985). It is similar to the Christiansen filter method which uses the small-angle scattering intensity
as a signal for coherent scattering length measurements (Koester and Knopf 1971, Koester 1977).
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Figure 3.10 Interferograms obtained by the sweep method when measuring the
scattering length of tritium (Rauch et al. 1985c)

Here the contrast of the interference pattern (B in Eq. 3.26) is used as a measuring signal. The
contrast peaks when the index of refraction of the irregularly shaped sample (s) matches the index
of refraction of the surrounding liquid (L), which occurs when

(Nbc)s = (Nbc)L. (3.39)
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(Nbc)L can be changed in a known manner by varying the composition of the liquid, e.g., various
H20–D20 mixtures. The typical arrangement and results for measurements with Si powder are
shown in Fig. 3.11 (Tuppinger et al. 1988). Accuracies on the order of 0.1% have been achieved.
The reduction of the contrast for (Nbc)s �= (Nbc)L is partly caused by a non-uniform phase
shift and partly by the resulting small-angle scattering effect. A detailed theoretical treatment of
these phenomena is still missing. The accuracy which can be achieved depends, in addition to the
purity of the materials, on the grain size of the solid sample and on the wetting of the surrounding
liquid.

This method has been extended to powdered samples with various grain sizes whose index
of refraction is matched by a surrounding liquid with variable scattering length density. Instead
of measuring the resulting small-angle scattering intensity, the reduction of the contrast of the
interference pattern is measured. This interferometric Christiansen filter method has its high-
est sensitivity for rather large grain sizes, which is opposite to the sensitivity of the standard
small-angle scattering Christiansen filter method. Figure 3.12 shows a typical result obtained for
an irregularly shaped Te sample whose dimension was on the order of millimeters (Rauch and
Tuppinger 1985).

All interferometric measured coherent scattering lengths are summarized in Table 3.1. The
error bars give an idea of the accuracies which can be achieved by the different methods. Complete
tables of recommended values of coherent scattering lengths can be found in the literature (Koester
et al. 1977, Mughabghab et al. 1981, Mughabghab 1984, Sears 1986, Koester et al. 1991, Rauch
and Waschkowski 1998).

Figure 3.11 Scheme of the interferometric Christiansen filter method and typical results for Si-powder
(Tuppinger et al. 1988)
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Figure 3.12 Christiansen filter interferograms for a large grained Te-sample (Rauch and
Tuppinger 1985)

3.1.2.4 Measurements of Spin-Dependent Scattering Lengths
The strong nuclear interaction is spin-dependent, resulting in spin-dependent scattering lengths
(Section 3.1). The related formulas are shown in Eqs. (3.12)–(3.15). In many cases such
spin-dependent values can be extracted when total scattering cross-sections (Eq. 3.22) or/and
incoherent scattering cross-sections are available

(
σinc = 4πb2inc

)
in combination with coherent

scattering lengths values.
Direct measurements of the spin-dependent scattering lengths require nuclear-oriented tar-

gets and polarized neutrons. Singlet and triplet scattering lengths are the basic quantities for a
comparison with related nuclear few-body calculations. Such spin rotation experiments within a
spin-echo system and with a nuclear-oriented 3He gas target were used to extract spin-dependent
neutron–3He scattering lengths (Zimmer et al. 2002). The related neutron spin rotation angle ϕ of
a nuclear-oriented target with polarization fK of thickness D and particle density N follows from
Eq. (3.24) and is given as

ϕ = γB∗t = γB+D/v =

√
4I
I + 1

λNfKDbinc. (3.40)

This rotation is independent of the magnetic moment of the neutron, indicating that it is caused by
the spin-dependent strong nuclear force. The experiments yielded for 3He an incoherent scattering
length of binc = – 2.365(29) fm.

An interferometric method has also been used to measure the singlet and triplet scattering
of 3He (Huber et al. 2009a, 2009b). Polarized neutrons and a polarized target have been used
(Fig. 3.13). From Eqs. (3.13) and (3.25) one obtains the phase shift �φ between the interference
pattern measured with spin-up and spin-down neutrons respectively, namely
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�φ = –
2I + 1√
I(I + 1)

λNfKbinc; (3.41)

the analysis ideas are similar to the spin-rotation angle of the previous experiment. The incoherent
scattering length binc is defined as being the difference between the singlet and triplet scattering
lengths (see Eq. 3.12). The final result is binc = –2.429 ± 0.012 ± 0.014 fm, where the statistical
and systematical errors are given separately. Amore recent experiment by Huber et al. (2014) gives
a more accurate value of binc = –2.346 ± 0.014 ± 0.017 fm. In combination with independent
measurements of the coherent scattering length the singlet and triplet scattering lengths can be
extracted and compared with values calculated from few-body theories. The present situation of
this extraction and a comparison is given in Fig. 3.14, which shows that sufficient agreement
between experimental and theoretical values and between each of them does not yet exist.

3.2 Electromagnetic Interaction

The magnetic moment of the neutron μ and the internal electromagnetic structure of the neu-
tron gives rise to additional interactions of the neutron with the atomic magnetic and electric
fields arising from the nuclear and electronic charges. The range of this interaction is given by the
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Figure 3.14 Summary of triplet and singlet free neutron scat-
tering length from experimental and theoretical investigations.
The calculated values come from Hofmann and Hale (2003),
the experimental ones from Kaiser et al. (1979), Huffman et al.
(2004), Ketter (2006). Reprinted with permission from Huber
et al. 2009, copyright 2009 by the American Physical Society.

dimensions of the atoms which are comparable to the wavelength of thermal neutrons. Therefore,
the related scattering effects become momentum dependent, which is described by appropriate
wave vector-dependent form factors f(Q) where Q is the momentum transfer given by the scatter-
ing angle θ(Q = 2k · sin θ/2). Various contributions which arise from the magnetic coupling (Vm),
from the intrinsic electromagnetic structure of the neutron (Ve), and from the electric polarizabil-
ity of the neutron (V p) can be distinguished. Various detailed theoretical analyses can be found in
the literature (Sears 1986, Byrne 1994).

3.2.1 Magnetic Terms

The magnetic interaction (Vm) arises from the magnetic dipole moment of the neutron moving in
static or slowly varying electric and magnetic fields within and surrounding the atoms. In the non-
relativistic, low velocity limit of the Dirac equation this results in three leading terms (Schwinger
1948; Foldy 1951, 1958; Byrne 1994):

Vm = –μ · B –
h̄
mc

μ · (E × k) –
h̄μ
2mc

divE = VZ + VS + VF. (3.42)

Here VZ denotes the Zeeman term, V S the Schwinger spin–orbit interaction, and V F the Foldy
interaction. The Zeeman term, or magnetic dipole interaction, is the largest contribution if the
atom or ion carries a permanent magnetic moment. Within the Amperian current loop model for
the electromagnetic origin of the magnetic dipole moment of the neutron, this interaction arises
from three terms: a change in the total field energy, in the induction forces of the field, and of
the particle (Shull et al. 1951; Mezei 1986, 1988). It should be pointed out that the additional
factor of 1/2 that occurs for the electron in the spin–orbit term and also in the Foldy (or Darwin)
term to account for Thomas (1926) precession does not appear for the neutron. The Thomas
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precession occurs for the electron because of its charge and its consequential acceleration eE/m
by the electric fields within the atom. This is clearly discussed in the book on electromagnet-
ics by Feynman (1961). The Zeeman interaction arising from the neutron spin and magnetic
moment is

VZ = –μσ ·B(r), (3.43)

where B(r) is the magnetic induction field caused mainly by the unpaired electrons of a magnetic
atom and σ are the Pauli spin matrices

σx =
(

0 1
1 0

)
σy =

(
0 –i
i 0

)
σz =

(
1 0
0 –1

)
. (3.44)

The components of σ obey the commutation relations

[
σx, σy

]
= 2iσz,

[
σy, σz

]
= 2iσx, [σz, σx] = 2iσy, (3.45)

and the anticommutation relations

σxσy + σyσx = 0, σyσz + σzσy = 0, σzσx + σxσz = 0. (3.46)

.
Experimental verification of these anticommutation relations has been obtained by interferometric
and polarimetric methods as discussed in Section 6.4, Fig. 6.11 (Hasegawa et al. 1997, Wagh et al.
1997, Hasegawa and Badurek 1999). An experimental demonstration of a universally valid error-
disturbance uncertainty relation in spin measurements attacts the standard Heisenberg uncertainty
relation (Erhart et al. 2012). In a neutron optical experiment the error of a spin-component meas-
urement and the disturbance caused on another spin-component are recorded and fulfill a new
error-disturbance relation first formulated by Ozawa (2003, 2005).

These properties of the Pauli spin matrices cause a magnetic field to couple to all components
of the spin, which shows that this interaction does not become zero when the neutron magnetic
moment is perpendicular to the magnetic field, that is

Vz = –μ
[

Bz Bx – iBy
Bx + iBy –Bz

]
. (3.47)

However, when < μ > is perpendicular to B, the expectation (mean) value of the Zeeman energy
taken over the spin-up and spin-down parts of the state < α| becomes zero (<α |–μσ · B|α> =0).

The corresponding magnetic scattering length is obtained from the Fourier transform of the
interaction potential

p(Q) =
m

2π h̄2

∫
eiQ·r V (r) dr, (3.48)

which can be written in terms of the atomic magnetic form factor fm(Q) (Halpern and Johnson
1939, Marshall and Lovesey 1971) as

p (Q) = –
γ e2

mec2
fm(Q) < s > (s · q), (3.49)
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where γ is the magnetic moment of the neutron in units of the nuclear magneton (γ =
–1.91304308(58); Greene et al. 1979). < s > denotes the effective electronic spin of the magnetic
atom,me is the electron mass, and q= ĥ – (ĥ · ê)ê is the magnetic interaction vector given by the unit
vectors ĥ and ê pointing in the direction of the spin < s > and the scattering vector Q, respectively.
The magnetic form factor fm(Q) is determined by the unpaired electrons of the magnetic atoms or
ions and it is the subject of many experimental and theoretical investigations (e.g., Izyumov and
Ozerov 1970). This magnetic form factor is normalized to unity at Q=0,, i.e., fm(0) = 1. It can
be understood as the Fourier transform of the spin density surrounding the magnetic atom or ion.
The factor r0 = e2/mec2 = 2.82 fm is the classical electron radius. It determines the magnitude of
the magnetic scattering length of a magnetic atom. For a spin S = 1/2 magnetic atom (one Bohr
magneton/atom) oriented with its moment perpendicular to the scattering vector Q, the magnetic
scattering length becomes p=2.69 fm atQ = 0, i.e., comparable to nuclear scattering lengths. The
index of refraction n is again easily obtained by taking the mean magnetic potential of the neutron
within a magnetic material to be V = ± μB, where B is the magnetic induction field. Using Eq.
(3.16) and including the nuclear term one obtains

n =

√
1 –

V + Vm

E
∼= 1 – λ2

N (bc ± p(0))
2π

, (3.50)

where the forward magnetic scattering length p(0) is related to the mean magnetization of the
sample and to the total atomic magnetic moment μa as

p(0) = ∓ μmB

2πNh̄2
= ∓2mμ

h̄2
μa. (3.51)

We have used B = 4πM = 4π N μa to relate the magnetization M to the magnetic field B.
The related influence of magnetism on the interference pattern is obtained in a way similar to
that for a pure nuclear interaction. In the case of unpolarized incident neutrons an intensity and
polarization modulation is obtained by an incoherent summation of the effects for spin-up (+) and
spin down (–) incident neutrons. Related calculations for interferometry experiments, including
the nuclear and magnetic interaction have been made by Eder and Zeilinger (1976). Their results
for unpolarized incident neutrons give for the 0-beam interferogram (see Eqs. 5.8 and 5.9)

I =
I0
2

(
1 + cos χ cos

α

2

)
, (3.52)

which has a phase-dependent polarization

P =
< ψ | σ |ψ >
< ψ |ψ >

=
sin χ sin (α/2)

1 + cos χ cos (α/2)
. (3.53)

Here χ is the nuclear phase shift (χ = –NλbcD) and α/2 is the magnetic phase shift. The Larmor
precession angle α = γ

∫
B.ds = 2λp(0)ND. Early measurements using a perfect crystal interfer-

ometer and independent components for the nuclear and the magnetic phase shift were performed
by Badurek et al. (1976). The results have shown the characteristic beat effects of the intensity and
of the polarization as predicted by Eqs. (3.52) and (3.53) (see Fig. 3.15). In the case of a strong
intensity oscillation, the polarization modulation becomes weak and vice versa. The magnetic field
inside a material was used by Klein and Opat (1976) for the measurement of the 4π-symmetry
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Figure 3.16 Intensity modulation of a magnetized sample rotated in both beams (Rauch
1980)

of spinor wave functions (Section 5.1). In both cases the nuclear phase shift was kept constant in
both beams (χ = 0) and only the magnetic phase shift was varied.

The Larmor precession angle α (or p(0) or B) can also be obtained by macroscopic measure-
ments of the sample magnetization and, therefore, only little effort has until now been made for
such measurements. The result of a related test measurement is shown in Fig. 3.16 (Rauch 1980).
A magnetized Mu-metal sheet was rotated within both coherent beams of a perfect crystal inter-
ferometer. Corrections for the effects of stray fields outside the sample must be made carefully
before precise p(0) or B values can be extracted. An accuracy up to 10–3 can be achieved if a
closed magnetic yoke with small stray fields is used. This method has also been used for a pre-
cise measurement of the 4π-symmetry of spinor wave function (Section 5.1, Rauch et al. 1978a).
In this experiment the nuclear phase shift χ was compensated by an opposite rotation of the mag-
netized sheet in both beams. Various permalloy samples have been investigated in a similar way by
Nakatomi et al. (1991, 1996). It should be mentioned that magnetic scattering lengths can also be
obtained by magnetic prism deflection, where Schneider and Shull (1971) found for Fe a value of
p(0) = 5.89(6) fm, corresponding to a magnetic moment of 2.2 Bohr magnetons per iron atom.

Magnetic inhomogeneities (domains) cause an inhomogeneous phase shift which reduces the
contrast of the interference pattern drastically as has been demonstrated in various test measure-
ments (Rauch 1979, 1980). The phase variation is closely related to the neutron depolarization
phenomenon frequently used for magnetic domain investigations (Halpern and Holstein 1941,
Rekveldt 1973). Before using the reduction of the interference contrast as a relevant meas-
ure for domain structure properties, the small-angle scattering effect and the response of the
interferometer crystal must be adequately taken into account (see also Section 9.1).

3.2.2 Electrostatic Interactions

The Schwinger and Foldy interactions given in Eq. (3.42) are smaller than the nuclear and the
Zeeman interaction and generally are less than a few percent of VZ. They depend on the electric
field produced by the charge density of the nucleus and of the electrons. In many cases the charge
distribution can be approximated by a homogeneously charged sphere inside (r < R) and by an
exponentially decreasing charge distribution for the atomic electrons outside the nucleus; that is

ρ(r) = Ze
[

3
4πR3

θ(R – r) –
1

4πRe
2

1
r

exp(–r/Re)
]

(3.54)
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where Re is related to the mean square radius of the atomic charge cloud by R2
e = < r2>c/6, and the

step function θ(R – r) = 1 for r < R, and zero for r > R. From the charge distribution the related
form factors can be found:

f (Q) =
1
eZ

4π
Q

∫
rρ(r) sin(Qr)dr. (3.55a)

For thermal neutrons (QR << 1) the nuclear form factor can be taken to be fN(Q) = 1. For
epithermal neutrons it can be expanded as

fN(Q) = 1 –
1
10

(QR)2 + . . . . (3.55b)

The atomic form factor can often be approximated by

f (Q) = 1 –
[
1 + (QRe)2

] –1
. (3.55c)

From the charge distribution, the electrostatic potential Ve and the electric field E follow from
Poisson’s equation

∇2Ve = –4πρ(r), (3.56a)

and

E(r) = –gradVe(r). (3.56b)

These quantities are needed for the calculation of the Fourier transform of the related interaction
potentials (see Eq. 1.21 for the spin–orbit potential). This procedure yields the related scattering
lengths as (e.g., Marshall and Lovesey 1971, Squires 1978, Byrne 1994) at a wave vector Q and a
scattering angle θ , namely

bs(Q) = –ib0F(σ · n) Z(1 – f (Q)
)
ctg
θ

2
(3.57)

and

bF(Q) = b0F Z(1 – f (Q)) with b0F = γ e2/2mc2. (3.58)

n is a unit vector perpendicular to the scattering plane n=k′ × k / (k2 sin θ) and f (Q) is the total
atomic form factor normalized again to unity at Q = 0 as f (0) = 1. Therefore, there is no contri-
bution in the forward direction Q = 0, which reflects the fact of the electric neutrality of the entire
atom. Both the Schwinger and Foldy contributions are proportional to the Foldy scattering length
b0F = γ e

2 / 2mc2 = –1.4679709(37) × 10–3 fm, which is determined by fundamental constants only.
Thus, the influence of both terms must be considered for measurements at Q �= 0, which is more
important for heavy elements. The Foldy interaction arises due to the “Zitterbewegung,” which
causes the charge of the particle not to be concentrated in a point but to be spread out over a
region of space of a dimension approximately equal to the electron’s reduced Compton wave-
length h̄/mec. For bound electrons in atoms, this spreading corresponds to the classical electron
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radius re = e2/mec2 which permits the definition of an equivalent spherical potential well of depth
VF and radius re with (Fermi and Marshall 1947, Byrne 1994)

V F = –3μ
c6m3

e

e6
= 4072.73 eV. (3.59)

The Schwinger scattering length bs is purely imaginary and reflects a right–left asymmetry
which is a characteristic feature of the spin–orbit interaction. The sign of the scattering length
depends on the direction of the spin and, therefore, polarization effects characteristic of this
interaction are expected (Obermair 1967). Related neutron scattering experiments verified the
Schwinger contribution (Shull 1963, 1967; Felcher and Peterson 1975). A more detailed analysis
including molecular and strong interaction contributions has been given by Gericke et al. (2008).
For non-centrosymmetric crystals it causes additional effects in the dynamical diffraction pattern
from perfect crystals (e.g., α-quartz), a spin-dependent Pendellösung phase shift (Alexeev et al.
1989), and finite spin rotation effects (Forte and Zeyen 1989). The Schwinger term also influ-
ences the scattering of fast (MeV) neutrons at small angles (Benenson et al. 1973, Rimawi and
Benenson 1975, Dyumin et al. 1980, Baryshevskii and Zaitseva 1990).

A static electric field also produces a phase shift due to the spin–orbit interaction. It leads to a
topological phase shift known as the Aharonov–Casher effect (1984) which was first observed by
neutron interferometry (Cimmino et al. 1989) and it is discussed in Section 6.1.

3.2.3 Electrostatic Terms

These terms arise due to the intrinsic electromagnetic structure of the neutron. The non-vanishing
magnetic dipole moment indicates an effective charge density distribution ρ(r) inside the neutron,
which can be understood in terms of the quark model of hadrons (e.g., Gottfried and Weisskopf
1984). By a multipole expansion of the interaction potential one gets (Foldy 1958, Sears 1986)

VE(r) = (q0 + q1 · v + ε∇2) Ve(r), (3.60)

which involves three moments of the charge distribution, namely

with q0 =
∫
ρ(r)dr, q1 =

∫
rρ(r)dr,

and ε= 1
6

∫
r2ρ(r)dr = 1

6 e < r2c > .

Here Ve(r) is the internal electrostatic potential of the neutron which is assumed to be constant
over the dimension of the neutron. Equation (3.60) can be reformulated as

VE = enVe – de σ · E – 4περ(r), (3.61)

where ρ(r) is the charge distribution of the whole atom. The related scattering lengths follow again
from the Fourier transform as

bE =
2mZe
h2

[
en
Q2

– i
de
Q2

σ ·Q – ε
]
(1 – f (Q)), (3.62)

where en is a fictitious electric charge of the neutron whose limit is at present
en ≤ (–0.4± – 1.1)× 10–21 e (Baumann et al. 1988) and de is an assumed static electric dipole
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moment of the neutron whose limit is at present de = < 2.9× 10––26 e.cm with 90% confidence
(see Altarev et al. 1981, Pendlebury et al. 1984, Harris et al. 1999, Dubbers and Schmidt 2011).
The limit of their contributions to the scattering lengths are < 10–11 and < 10–8 fm, respectively,
which will be neglected in our further discussion. Nevertheless, it should be mentioned that any
contribution due to a fictious electric dipole moment would contribute to the imaginary part of
the scattering length only and it becomes zero for the forward direction due to the effective optical
potential seen by the neutron:

bed = –
ideσ̂ (h̄ – h̄′)e
2mh̄2Q2

(1 – f (Q)). (3.63)

Such imaginary parts give rise to spin rotation effects which are measurable by neutron interfer-
ometry (Forte 1982). Various proposals to observe this effect have been given. A non-vanishing
electric dipole moment can in principle be observed by dynamical diffraction effects from
non-centrosymmetric perfect crystals (Fedorov et al. 1995, Zeyen et al. 1996). In such crys-
tals interplanar electric fields up to 109 V/cm can be anticipated. No direct interferometric
measurements along this line exist at the present time.

The remaining third term arises from the internal charge separation within the neutron and can
be formulated as

bE = –
me2

3h̄2
< r2c > Z(1 – f (Q)) = –beZ(1 – f (Q)). (3.64)

Here < r2c > is the mean square charge radius of the neutron. These mean square radii charac-
terizing the distribution of the charge and the magnetization are related to the Sachs form factors
Ge and Gm which in turn are related to the Dirac (F1) and Pauli (F2) form factors (Byrne 1994,
Phillips 2007, Smith 2010):

Ge(Q2) = F1(Q2) +
(
h̄Q
2mc

)2

F2(Q2).

Gm(Q2) = F1(Q2) + F2(Q2)

(3.65)

For small momentum transfers a dipole fit can be used to relate the form factors to the charge (ρe)
and the magnetization (ρm) distributions of the neutrons. The leading terms in the expansion of
the integral are

Ge(Q2) =
∫
ρeeiQrdr = –

1
6

〈
r2e
〉
Q2 + . . . .

F1(Q2) =
1
6

〈
r2i
〉
Q2 + . . . . . .

F2(Q2) = F2(0)
(
1 –

1
6

〈
r2i
〉
Q2 + . . . . .

)
,

(3.66)

where Ge(0) = F1(0) = 0 has been used since the neutron has zero charge and F2(0) = μ/μN
stands for normalization due to the anomalous magnetic moment. From these relations, it follow
that the mean square charge radius of the neutron is

< re2 > = – 6
dGe (0)
dQ2

∼= – 6
dF1 (0)
dQ2

+ 6
(

h̄
2mc

)2

F2 (0) =
〈
r2i
〉
+
〈
r2F
〉
. (3.67)
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The second term arises from the Pauli form factor (Eq. 3.65) due to relativistic corrections asso-
ciated with the magnetic moment of the neutron. It is known as Foldy contribution (Foldy 1958;
Thomas et al. 1981; Byrne 1993a,b; Isgur 1999):

6
(

h̄
2mc

)2

F2 (0) =
h̄2

2me2
bF =

〈
r2F
〉
= – 0.127 fm2. (3.68)

This gives the related scattering lengths by Fourier transformation

be = bi + bF =
me2

3h̄2

(〈
r2i
〉
+
〈
r2F
〉)
. (3.69)

Therefore, any deviation of a measured be value from the Foldy term can be used for an
assessment of an intrinsic charge radius of the neutron. In an experiment, the neutron–electron
contribution must be separated from the neutron–nuclei interaction which manifests itself in
the Q-dependence of the electromagnetic part. Data evaluation of precise epithermal neutron
transmission and scattering and cold neutron total reflection experiments on Pb and Bi yield
be = –1.33(3)× 10–3fm and, therefore, bi = 0.16(3)× 10–3 fm. This results in an intrinsic charge
radius of the neutron of rc = 0.118(13) fm (Koester et al. 1986, 1995; Kopecky et al. 1997), which
is in a fairly good agreement with a Russian estimate based upon measurements on tungsten sam-
ples (Alexandrov et al. 1985). This gives a mean square charge radius of < r2c >= –0.113(3) fm2.
How the results of different measurement procedures compare with each other is discussed by
Leeb and Teichtmeister (1993), Koester et al. (1995), Ioffe et al. (1996), and Kelly (2002).
The mean square charge radius < r2c > is related to the slope of the Sachs form factor of the
neutron at zero four-momentum transfer (q2 = 0) (Foldy 1958, Frauenfelder and Henley 1974),
which can be obtained from form factor measurements on the basis of electron–deuteron scat-
tering (Trubnikov 1981) and, as discussed later, from polarized electron 3He measurements
(Meyerhoff et al. 1994). The values from both methods are consistent but caution seems to be
advisable because uncertainties in the experiments and in the data analysis are still substantial.
Therefore, more precise measurements are needed for an unambiguous identification of the neu-
tron charge radius, which may provide a crucial test for various quark theories. According to
simple quark theories the ratio of the neutron to proton mean square charge radius is predicted
as < r2c>n / < r2c>p = –0.16 (Isgur and Karl 1977, 1978), which gives, with the well-established
value for the proton < r2c>p = 0.862 (12) fm2 (Simon et al. 1980), a value for the neutron
<r2c>n = –0.138 fm2 in fairly good agreement with the experimental value. An extraction of the
mean charge radius from electron–deuteron scattering is not very reliable mainly because of diffi-
culties associated with the structure of the deuteron. The negative sign of the mean square charge
radius may be attributed to an excess of positive charge near the center of the neutron and a neg-
ative charge further out (Smith 2010). The slight difference between the measured and the Foldy
term can be used to extract a non-vanishing derivative of the Dirac form factor (Eqs. 3.65) and to
define a corresponding Dirac charge radius

< r2c>D = –6 dF1(0) / dQ2 = 9.5(2.2)× 10–3 fm2. (3.70)

Although the meaning of this quantity is not completely clear it may reflect relativistic effects of
the internal neutron structure and the impossibility of a general separation of the Foldy and the
Dirac terms (Aleksandrov 1994, Koester et al. 1995). Therefore, it is justified to identify the mean
charge radius directly to the slope of the electric (Sachs) form factor (Eq. 3.67), which gave in a
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recent transmission measurement covering an energy range between 0.1 and 1000 eV with liquid
208Pb a value < r2c > = – 0.119 ± 0.004 ± 0.003 fm3 in good agreement with previous values
(Kopecky et al. 1994, 1995).

Another possible method uses the fine structure of multi-Laue rocking curves for the extrac-
tion of the Q-dependent scattering amplitude. Related experiments for the X-ray case were quite
successful (Bonse and Teworte 1980; Teworte and Bonse 1984; Deutsch and Hart 1985; Lemmel
2007, 2013). The question arises whether similar measurements are feasible using neutron inter-
ferometry. In any case measurements at Q �= 0 must be included, and from the difference to the
scattering length at Q = 0 the neutron–electron contribution can perhaps be separated. There
exists an interferometric attempt for this extraction by rotating a piece of silicon as a phase shifter
within the interferometer through a Bragg reflection (Graeff et al. 1978). In this case the phase
shift changes drastically according to the variation of the dispersion surface (Chapter 11), which,
in principle, enables the extraction of the scattering amplitude at a finite Q value (Fig. 3.17).
If a perfect crystal sample is rotated in the interferometer through a Bragg position, the index
of refraction deviates from its normal value n=1 – δ (Eq. 3.20) to n ∼= 1 – 2δ at the edges of the
Darwin reflection curve at |y| = 1 (see Chapter 11). Related calculations have been done by
Wietfeldt et al. (2005) and Lemmel (2007). The phase shift as a function of the deviation from
the exact Bragg position is shown in Fig. 3.18 for a (220) reflection from a 1-mm-thick silicon
crystal. Whether these curves can be used to extract small Q-dependent phase shifts, like elec-
tromagnetic or gravitational terms, has yet to be proven experimentally (Rauch 1989a). Related
measurements have been reported by Springer et al. (2010b). They achieved qualitative agreement
with theoretical predictions, but the sensitivity was not high enough to extract Q-dependent phase
shifts. The very high angular sensitivity of about 10–6 arcsec may also be used for measurements
of the neutron–electron interaction, and perhaps of short-range gravitational forces and accurate
measurements of the Coriolis force (Zawisky et al. 2011).

When larger rotations are considered the effect of additional Bragg reflections must be taken
into account, which makes the calculations somehow more difficult (see e.g., Lemmel 2013).
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3.2.4 Electrical Polarizability Term

The internal charge distribution of the neutron is caused by its quark structure and it can therefore
be expected that the neutron may be polarized by an electric field E. Measureable effects are
expected only if the interaction with the electric field near to the atomic nucleus is considered. All
laboratory fields give negligible contributions. The induced electric dipole moment is assumed to
be proportional to the electric field strength, that is pInduced = αE. The corresponding interaction
Hamiltonian for this induced polarization (IP) effect is

VIP =
1
2
αE2, (3.71)

where α is the electric polarizability of the neutron. The electric field inside and outside the
nucleus is caused by the nuclear charge and the electron cloud. Because this term is quadratic
in E, the related scattering length does not vanish for Q → 0 and it is evident that the Coulomb
field near to the nucleus gives the dominant contribution. Thus, one sees that the related
scattering length is the Fourier transform of VIP(r) (Thaler 1959, Leeb et al. 1984, Sears 1986,
Schmiedmayer et al. 1988)

bp =
2m

h̄2

∫
VIP(r)

sinQr
Qr

r2dr =
Z2e2

h̄2
mα
R

[
6
5
–
1
4
π QR + . . .

]
, (3.72)

where R is the radius of the nucleus. Only the leading term contributes for thermal neutrons.
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Experimental attempts in the determination of the electrical polarizability are based on
epithermal neutron transmission or scattering experiments. A slight energy (or Q) depend-
ence is expected due to the second term in Eq. (3.72). Aleksandrov (1983), Koester et al.
(1986), and Schmiedmayer et al. (1988, 1991) reported a value definitively different from
0(α = (1.20 ± 0.15 ± 0.20)× 10–3 fm3). A remeasurement with a pure 208Pb target yielded
α = (1.71 ± 0.24 ± 0.43)× 10–3 fm3 (Riehs et al. 1994). Elastic gamma-deuteron Compton
scattering gave a value of α = (1.13 ± 0.07 ± 0.1)× 10–3 fm (Griesshammer et al. 2007), which
is in rather good agreement with the neutron–lead scattering experiment. It should be mentioned
that there are recent measurements and alternative data evaluations which are still in agreement
with α = 0 (Koester et al. 1995, Aleksejevs et al. 1997). Another method uses the analogy to the
proton where from photoabsorption data and the related sum rules, the polarizability term can
be extracted (Bernabeau and Ericson 1972). The most precise measurements and calculations
support values for α of about 1× 10–3 fm3, which is similar to the related value for the proton
and which is in rough agreement with various calculations based on simple quark models (Arnold
1973, Dattoli et al. 1977, Schröder 1980, Weiner and Weise 1985, Schöberl and Leeb 1986).
Lattice gauge theory calculations of the polarizability are improving (Christensen et al. 2005). The
value α =1× 10–3 fm gives a contribution to the measured scattering length of bp = –0.0006 fm
for C and bp = –0.06 fm for U. For heavy elements this contribution is larger than the error bars
of the measured values. Their experimental separation from the nuclear part is not really solved at
present because it behaves in the low-energy limit like the nuclear part.

3.3 Parity Violating Interactions

The beta decay of nuclei and of the neutron itself demonstrate that weak interaction effects exist
between strongly interacting particles as well. This causes additional contributions to the coherent
forward scattering amplitude which can be written as (e.g., Heckel 1989, Byrne 1999):

fpnc = f1σ · k̂ + f2 Î · k̂ + f3σ · (k̂× Î). (3.73)

The various scattering amplitudes f 1, f 2, and f 3 can be extracted through the reversal of the appro-
priate vectors for the neutron polarization <σ>, the nuclear polarization < Î>, or the direction of
the momentum, h̄k.

The f 1 term gives a helicity dependence of the index of refraction (Michel 1964; Stodolsky
1974, 1982; Krupchitsky 1989). This results in a rotation of the neutron polarization vector about
the momentum of the beam

φpnc = –2N λDRe f1. (3.74)

A simple Born approximation estimate gives values of φpnc ∼ 4× 10–6 rad/cm for medium heavy
elements. The imaginary part can be obtained from the transmission asymmetry for the two
helicities

A = (2λ/h̄) Im f1/σt, (3.75)

where σ t denotes the total attenuation cross-section. Neutron spin polarimeters have been used
to measure the rotation effect. The largest effects have been observed in nuclei (117Sn, 139La)
where a narrow p-wave resonance lies in the proximity of a nearby s-wave resonance which causes
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a strong s- and p-wave mixing (Forte et al. 1980, Kolomensky et al. 1981). The enhancement
factors depend on the resonance parameters of these resonances (Bunakov and Gudkov 1981)

f1 =

√
�n
n(Es) �n

p(Ep)

kskp

3

· < s |Hw| p > h̄ k
(E – Es + i�s / 2) (E – Ep + i�p / 2)

. (3.76)

Hw denotes the weak interaction Hamiltonian between these states. For 227Sn a parity violating
rotation of φpnc = –36.7(2.7)× 10–6 rad/cm has been measured (Forte et al. 1980), which corre-
sponds to a matrix element for weak interaction on the order of 1 meV. The enhancement factor
due to level mixing can become 103. The most direct and interesting experiment would be with a
hydrogen target. For a para-hydrogen target of 20 cm length one may expect φpnc ∼ 2.10––7 rad,
which is below the current experimental sensitivities.

The product of the f 2 and f 3 term leads to parity conserving but time reversal symmetry violat-
ing observables. They are expected to be extremely small for thermal neutrons, but enhancement
factors near s- and p-wave resonances are expected as well (Stodolsky 1982).

Direct interferometric investigations concerning parity violating phenomena have not been
carried out yet. The separation of such small effects from effects arising from paramagnetic impu-
rities, residual magnetic fields, or external influences is difficult to achieve. The search for time
symmetry violating terms is difficult mainly due to the requirement of a precise control of the
nuclear polarization. Therefore, most efforts in this direction are still focused on the search for an
electric dipole moment of the neutron (e.g., Byrne 1994, Dubbers and Schmidt 2011).

3.4 External Influences

Quantum systems cannot be completely isolated from the environment and any optical component
of an instrument is influenced by external effects as well. In the case of interaction, the disturbance
of the quantum system increases for large momentum transfers and large coherent separations of
parts of the wave function. These decoherence phenomena are discussed in Section 4.6. But there
are also other more classical influences upon the phase shifts within an interferometer, which will
be discussed here. When they are controlled and a proper feedback mechanism is applied these
effects can be compensated.

3.4.1 Atmospheric Effects

In most cases the phase shifts are measured in comparison with the phase shift of air (φa).
Therefore, the measured phase shifts χm must be corrected for the air displaced by the sample
to obtain the phase shift of the sample in relation to vacuum χs

χs = χm + φa, (3.77)

where

φa = –λDeff

∑
i

Ni bci .

Thus, one needs to know the composition of the air expelled by the sample. The mol-volume
is Vm = 22.4146, which gives the number of air molecules in 1 m3 to NA = L/Vm(L =6.022 ×
1023 mol–1, Loschmidt number). In case of humidity saturation one has NH2O =1.079 mol H2O in
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1 m3. When one defines the mean coherent scattering length of an air molecule, bcA =
∑
i
Nibci /N =

17.07 fm and that of water bcH2O = –1.675 fm, one gets

bc =
NA –NH2Oε

NA
· bcA +

NH2Oε

NA
bcH2O (3.78)

(ε = humidity, 0 ≤ ε ≤ 1)

Air under normal atmospheric conditions can be considered as an ideal gas

pVm = RT , (3.79)

which gives the phase shift of humid air as

φa = –λDeff
L.p
R.T

bc, (3.80)

where R = 8.314 JK–1mol–1. This gives for air under normal atmospheric conditions (in vol%:
N2, 78.084; O2, 20.946; CO2, 0.033; Ar, 0.934) for T = 25◦C and a pressure of 992 mbar and
different humidities (0, 40, and 100%)

φ(0)
a = –0.411 × D [cm] × λ

[
Å
]

φ(40)
a = –0.407 × D [cm] × λ

[
Å
]

(3.81)

φ(100)
a = –0.4005 × D [cm] × λ

[
Å
]
.

The related λ thicknesses are about Dλ ∼= 15.2 cm/λ
[
Å
]
. Figure 3.19 shows typical dependences

of this correction function. This air correction is for most materials on the order of 10–4 compared
to the phase shift of a compact sample but it becomes more important when less dense samples
(gases) are measured or when the sample sweep method is used, where phase differences are
measured (e.g., Hammerschmied et al. 1981). In the non-dispersive sample position the phase
shift due to air becomes wavelength-independent as well. For an interferometer using the (220)-
reflection and for normal atmospheric conditions as mentioned earlier one gets (Eq. 3.29)

φ(40)
a = –2

∑
i

Ni bci dhkl D0 = –1.551× .D0 [cm]. (3.82)

From the numbers shown, it follows that for precision measurements of scattering lengths the
atmospheric conditions must be considered or such measurements must be done in comparison
to vacuum.

3.4.2 Temperature Effect

The atoms in matter are never at rest and their actual positionsRj = Rj
0+uj are distributed over a

thermal cloud with a mean square displacements < u2>T , about equilibrium positionsRj
0 in solids.

These displacements depend on the temperature and can be different for different directions in the
crystal. The interaction of neutrons with the nucleus in the thermal cloud causes a Q-dependent
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Figure 3.19 Phase shift (parameters of the curves) of 1 cm air for 1 Å neutrons as a function of the
temperature and the pressure for two values of the humidity

form factor which is given by the well-known Debye–Waller factor requiring a replacement in all
of our formulas of

bj → bje–Wj . (3.83)

See Debye (1913), Waller (1923), and Marshall and Lovesey (1971).
Wj is related to the mean square displacement of the atoms along the scattering vector, that is

Wj =
1
2
<(Q · nuj) >T , (3.84)

where a thermal average over the equilibrium distribution of phonons at temperature, T , is implied
by the notation < >T. For a harmonic crystal with a cubic Bravais lattice this factor can be written as

W (Q) =
h̄

12M
Q2
∫
g (ω)
ω

coth (h̄ω/2kBT) dω, (3.85)

whereM is the mass of the scattering atom and g(ω) is the lattice-vibrational frequency spectrum.
If this spectrum is approximated by a Debye spectrum (g(ω) =ω2/ω3

D forω ≤ ωD = kBθD/h̄) one
obtains for temperatures far above and below the Debye temperature θD

W (Q) = 3h̄2Q2/8kBθDM , for T << θD, (3.86a)
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and

W (Q) =
(
3h̄2Q2

/
2kBθDM

)
(T /θD) , (3.86b)

respectively.
These formulas show that there is still a contribution of the phonons to the scattering length at

T =0 due to the zero point fluctuations. There is no contribution to bj at Q → 0 where neutron
interferometric measurements are usually made. This factor must be taken into account carefully if
scattering lengths are extracted from measurements at Q �= 0, for example from Bragg diffraction
data, and especially if samples with a low Debye temperature are measured. A simple model for the
calculation of the Debye–Waller factor for elemental crystals was developed by Sears and Shelley
(1991), which gives typical accuracies of 2–3%. A collection of data for cubic crystals and their
relation to bulk properties can be found in the literature (Butt et al. 1988, 1993).

The Debye–Waller factor for an anharmonic crystal can be written as

W (Q) =
1
2
<(Q · u)2>T –

1
6
<(Q · u)3>T –

1
24

[
<(Q · u)4>T – 3 <

(
Q · u)2 >2

T

]
+ . . . , (3.87)

which again goes to zero for Q → 0. Similar situations exist for liquids and gases, where the
effects of thermal motion on the measurement of coherent scattering amplitudes, say by neutron
interferometry, do not play a role (Champenois et al. 2008).

There is a difference to the situation of atoms or molecules interacting with gas atoms or
molecules where the real part of the scattering amplitude exhibits distinct resonances and therefore
a gas does not act as a homogeneous phase shifter; but the atoms also as an individual decoherence
object (Chapman et al. 1995, Hornberger et al. 2003, Cronin et al. 2009). In the neutron case there
is a collective interaction with many gas atoms and the resulting wave function can be described
by the index of refraction formalism. Thus, in the atom–atom case the loss of coherence is more
related to decoherence, whereas in the neutron–atom case the collective interaction described by
an index of refraction is the major effect. Mixtures of both effects are feasible (Champenois et al.
2008, Davidovic et al. 2010).

3.4.3 Magnetic Field Effects of Paramagnetic Substances

The magnetic scattering lengths of magnetic atoms has been discussed in Section 3.2.1. Here
it should be remembered that dia- and paramagnetic atoms cause a magnetic contribution to
the forward scattering length only if a magnetic field H is present. The related spin-dependent
scattering length is

p (0) = ∓ 2μmχmH

Nh̄2
, (3.88)

where χm is the magnetic susceptibility (e.g., Martin 1967). This gives for a field of H =10 kG a
contribution of ∓0.00135 fm for bismuth and ±0.00123 fm for vanadium. For most other para-
and diamagnetic materials the contributions are considerably smaller. Using the polarized neutron
diffraction technique this small polarization can be used to measure the magnetic form factor,
since p(Q) = p(0) f (Q) (Shull and Ferrier 1963, Shull and Wedgwood 1966, Stassis 1970).
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A magnetic field produces an additional effect due to its action on the nuclear polarization (see
Eq. 3.24). In most situations the condition μKH /kBT << 1 is fulfilled and one gets

fK =
< I >
I

=
1
3
μKH
kBT

(I + 1)
I

, (3.89)

which gives for the coherent scattering length according to Eq. (3.24):

(bc)p = bc ± b+ – b–
3

μKH
kBT

I + 1
2I + 1

. (3.90)

The additional term is small at room temperature even for vanadium (0.000062 fm) but it must
be considered for measurements at very low temperatures.

3.4.4 Local Field and Holography Effects

It is known from light optics that the decay properties of an atom depend on the surrounding
environment of the atom (Dexhage 1974, Goy et al. 1983, Grangier et al. 1983, Hulet et al. 1985,
Cook and Milonni 1987). This can be explained by a variation of the available phase space or
the mutual interaction between the atom and the radiation field. In the field of neutron optics a
similar effect exist if the scattering properties of a nucleus is considered together with the effect
of its surrounding. The nucleus sees not only the incident wave but also the waves scattered by
all the other nuclei. Therefore local field effects must be included in a complete description. It is
also generally known that the familiar expression for the index of refraction (Eq. 3.16) does not
fulfill the optical theorem of scattering theory (e.g., Sears 1982a). Several attempts have been
made to solve this problem on the basis of the theory of dispersion (Lax 1951, 1952; Sears 1982a)
or by using Green’s function methods (Ekstein 1953, Edwards 1958, Dietze and Nowak 1981,
Nowak 1982, Warner and Gubernatis 1985). Here we follow the formalism of Sears (1985, 1996),
who also discussed the consequences for interferometric measurements. According to the general
theory of dispersion which includes local field effects the index of refraction must be written as

n2 = 1 –
λ2N
π

b · c, (3.91)

where b also contains an imaginary term, linear in k, besides the usual imaginary part due to
absorption (bc = b′

c – ib
′′
c with b′′

c = σa/2λ). That is,

b = bc – ikb2c – . . . , (3.92)

and c is the local field correction c = (1 – J)–1 with

J = Nbc

∫
eik·r e

ikr

r
[1 – g(r)] dr. (3.93)

This equation simplifies for very slow neutrons (k → 0) to

J = 2πNbc

∞∫
0

[1 – g(r)] dr . (3.94)
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The pair correlation function g(r) can be taken from the literature for various substances (e.g.,
Marshall and Lovesey 1971, Bacon 1975). The values for J depend on the interparticle correlation
and on the coherent scattering length bc in the form J ∼= bc/r0, where r0 denotes the nearest-
neighbor distance in solid and liquid samples and the mean-free path in gaseous samples. Typically
J is on the order of 10–4 (for liquid D2 : J = 1.84× 10–4; for Pb : J = 0.89× 10–4). In neutron
interferometry the real part of the index of refraction determines the intensity modulation. The
phase shift can always be written as

χ = –λNb′
effD. (3.95)

Local field effects are contained in the effective scattering length b′
eff, which is related to the true

scattering length bc by

b′
eff = bc

(
1 + J ′ +

λ2

4π
Nbc

)
. (3.96)

At present in most cases, the correction factors are below the sensitivity limits of the experiments.
No dedicated experiment is known to verify these local field effects whose magnitude has now
been reached in the level of advanced interferometric precision measurements.

A special situation exists if a perfect crystal is inserted in the interferometer as a sample.
In this case, the wave vectors inside the material change according to the dispersion relation of
the dynamical diffraction theory (Fig. 3.17, Chapter 11). At the Bragg position this variation can
be written as

n ∼= 1 –
1
2π

λ2Nb(1 + y) ·
[
1 ±

√
1 –

2
1 + y

]
, (3.97)

where y is the characteristic parameter for dynamical diffraction which is directly proportional to
the deviation from the exact Bragg condition y ∝ (θ – θB). The index of refraction far from the
Bragg position (y → ∞) and that for the edges of the Darwin reflection curve at |y| = 1 vary
according to (see Figs. 3.17 and 3.18)

ny=1 – 1
n∞ – 1

∼= 2. (3.98)

An imaginary part appears for |y| ≤ 1, which must be treated in a way similar to an absorption
term. The strong variation of the index of refraction in the range of the dynamical reflection curve
may be interpreted as an enhanced internal field effect due to the coherence of the scattered waves
(Lemmel 2007). It causes a drastic change of the oscillation frequency of the interference pattern
as demonstrated in the measurements shown in Fig. 3.17. It might be used in the future to extract
Q-dependent scattering lengths where the neutron–electron interaction contributes (Eq. 3.62).

The local field effect can become strong when distinct nuclei are dispersed within the sample.
This provides the basis for neutron holography. Two experimental methods which either put the
radiation source inside and the detector outside the object or vice versa can be utilized. The first
method requires strongly incoherent scattering nuclei (hydrogen) and the second method uses
strongly absorbing nuclei (cadmium) inside an object composed of coherently scattering nuclei.
Under these conditions, the incident wave interferes with the scattered wave and the interference
pattern can be detected with an outside detector; or alternatively the scattered waves produce an
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Figure 3.20 Sketch of the in-source (left) and in-detector (right)
methods for neutron holography. Reprinted from Ioffe and Cser et al.
2004, Copyright 2004, with permission from Elsevier.

interference pattern at the position of the absorbing atoms, which can be detected by the intensity
of the resulting gamma decay radiation (Fig. 3.20). By means of these techniques the position of
atoms near to the scattering or absorbing atoms can be detected (Sur et al. 2001; Cser et al. 2001,
2002, 2004).



4

Coherence and Decoherence

Coherence phenomena play an important role in any kind of interferometry (Gabor 1956; Glauber
1963; Mandel and Wolf 1965, 1995; Born and Wolf 1975; Walls and Milburn 1994; Mandel and
Wolf 1995). In this chapter we summarize some known results, add some new ones obtained
with neutrons, and analyze them in terms of general quantum optics, which can be applied to
photons and matter waves as well. Indeed, neutrons have many well-known particle properties,
but in interference experiments they behave like wave fields which provide the connection to the
quantum optical terminology. Coherence appears as a system property (neutron + apparatus)
which persists as long as it does not become destroyed by statistical or dissipative effects. These
effects are known as decoherence phenomena and are treated in Section 4.6.

In the course of this chapter it will become clear that coherence and interference properties are
closely connected to the phase-space formulation of quantum mechanics which has its roots in the
classic work of Wigner (1932). The main tool of that formalism is the introduction of phase-space
“quasi-probability” distribution functions, from which the Wigner distribution function is the best
known one. The connection to quantum optics has been formulated by Glauber (1963, 1965) and
summarized by Klauder and Skagerstam (1985) and Mandel and Wolf (1995). Various kinds of
phase-space distribution functions can provide useful physical insights providing various practi-
cal advantages. A general review including dynamical features of quantum distribution functions
demonstrates that advantage (Lee 1995). Here, the neutrons within an optical device will, in many
cases, be considered to behave as coherent states, known in quantum optics as states which behave
most similarly to classical states (Lamb 1995). They exhibit Gaussian distribution functions, obey
a minimum uncertainty relation, and show Poissonian counting statistics. Squeezing phenomena
will also be discussed as they demonstrate how non-classical states can be made out of coherent
states. The coherence in the neutron case is limited to the related coherence volume of the beam
and does not concern the whole beam cross-section as it exists for laser beams, and as it more
recently has also been achieved for synchrotron radiation (Abernathy et al. 1998).

One feature of non-classical quantum states is related to the squeezing phenomena. In optics,
squeezing is mainly treated between the self-adjoint canonical operators of the field amplitude
and the phase of the field. Here we deal with the self-adjoint canonical operators of space and
momentum variables which fulfill the Heisenberg commutation relation in the form

[x, p] = ih̄ , (4.1)

where these quantities can be written in terms of creation (a+) and annihilation (a–) operators as

x=

√
h̄

2mω
(a– + a+), (4.2)

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.



Basic Relations 99

and

p = i

√
mh̄ω
2

(a+ – a–).

Here ω represents an arbitrary positive scaling factor often interpreted as the eigen frequency of
a harmonic oscillator. The coherent state feature of a free-moving radiation field has also been
addressed by Lamb (1995) for many optical configurations including the Mach–Zehnder inter-
ferometer setup. In this terminology the spatial and momentum spread of a free particle beam are
related to the uncertainties of a harmonic oscillator as

(δx)2 =
h̄

2mω
,

(δp)2 =
mh̄ω
2

.

(4.3)

These equations can also be obtained in the language of stochastic quantization where a random
force is added to the fundamental Langevin equation of a harmonic oscillator (see Chapter 12,
Namiki and Kanenaga 1998). These basic uncertainties also cause finite coherence properties
associated with all real quantum experiments.

The effect of finite coherence of matter waves was first studied in electron biprism interfer-
ometry, where high-order interferences (above 100,000) are feasible (Möllenstedt and Dücker
1954, Gabor 1956, Lenz and Wohland 1984). Coherence is also the basic feature for any elec-
tron holography application (Tonomura 1987). Many features are connected to coherence lengths
and coherence times which reflect a certain kind of self-consistency of the wave function within
a certain spatial volume or time interval. It will be recognized that the coherence features of
the various kinds of radiation are quite different, resulting in a variation of optical phenomena.
The coherence lengths in neutron optics range from several ångstrom to several micrometers,
whereas the coherence lengths in optical interferometry are many orders of magnitude larger.
Those in atom interferometry are usually considerably smaller (several ångstroms) due to the lim-
ited monochromaticity of atom beams (e.g., Ekstrom et al. 1992, Miniatura et al. 1992, Riehl et al.
1992, Chapman et al. 1995, Berman 1996, Scully and Zubairy 1997). Early comprehensive treat-
ments of coherence property measurements for the neutron case have been given by Petrascheck
(1987) and Rauch et al. (1996).

4.1 Basic Relations

4.1.1 Mach–Zehnder Interferometer in Second Quantization

We begin here by analyzing the Mach–Zehnder interferometer in a formal way (Zeilinger 1981b,
Dunningham and Vedral 2011). A neutron wave function describing a neutron initially in beam
path |1> becomes behind a 50:50 beam splitter (Fig. 4.1)

1√
2

(|1〉2|0〉3 + i|0〉2|1〉3
)
. (4.4)
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Figure 4.1 A beam splitter and a Mach–Zehnder interferometer. Reprinted with permission from
Dunningham and Vedral 2011, © Imperial College Press.

The factor “i” is due to the π /2 phase change in the case of reflection. This can be reformulated
when we write the initial state as

|0〉0|1〉1 = a+1 |0〉|0〉 (4.5)

and Eq. (4.4) can be written in terms of creation and annihilation operators

1√
2

(|1〉2|0〉3 + i|0〉2|1〉3
)
=

1√
2
(a+2 + ia+3 )|0〉|0〉, (4.6)

which gives

a+1 |0〉|0〉 → 1√
2
(a+2 + a+3 ) |0〉|0〉 (4.7)

or

a+1 → 1√
2
(a+2 + ia+3 ). (4.8)

Here we are using the rotation of a forward arrow (→) to mean “evolves into”; generally, the
arrow can be replaced with an equal sign without loss of meaning. Similarly when we start with a
neutron in beam |0>

a+0 → 1√
2
(ia+2 + a+3 ). (4.9)

The mirror crystals in the middle of the interferometer change the operators, such that

a+2 → ia+5 = –a+5

a+3 → ia+4 = –a+4
(4.10)
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and the second beam splitter makes

a+4 → 1√
2
(ia+6 + a+7 )

a+5 → 1√
2
(a+6 + ia+7 ).

(4.11)

This gives

1
2

[
i(a+6 + ia+7 ) – (ia

+
6 + a+7 )

]
= – a+7 . (4.12)

In this case we always find the neutron in outgoing beam |7>, i.e., in the forward direction.
When a phase shifter is introduced into beam |4> we get the operator describing the outgoing

beams:

1
2

[
i(a+6 + ia+7 ) – e

iχ (ia+6 + a+7 )
]
= sin

(χ
2

)
a+6 – cos

(χ
2

)
a+7 . (4.13)

From this operator one immediately gets the well-known intensity relations of the two outgoing
beams:

P6 = sin2
(χ
2

)
=

1
2
(1 – cosχ)

P7 = cos2
(χ
2

)
=

1
2
(1 + cosχ),

(4.14)

where χ is the phase shift introduced by the phase shifter. This result is, of course, iden-
tical to our initial discussion of the Mach–Zehnder interferometer in Chapter 2 (Eq. 2.2).
An interesting matrix formalism to describe the action of beam splitters has been introduced by
Zeilinger (1981b). Input and output channels are connected by Pauli spin matrices which connect
interferometry to quantum q-bits used in quantum communication.

4.1.2 Coherence Function

The concept of coherence follows from the description of field properties by wave functions as
they are used routinely in quantum physics and quantum optics. Here we focus our attention
on first-order coherence phenomena of Schrödinger quantum fields which are described by the
Schrödinger equation (Eq. 1.2)

Hψ( r, t) = ih̄
∂ψ( r, t)
∂t

. (4.15)

The propagation of waves in free space from a source to a detector is described by a wave packet
(Eq. 1.27)

ψ( r, t) =
∫
a(k)ei(k·r–ωkt) d3k. (4.16)

For neutrons such a packet is shown in Fig. 1.1. The amplitude factor a(k) stems from crea-
tion ak+ and annihilation ak– operators which create or annihilate a mode with the corresponding
k-vector. The kth mode of the field is mechanically analogous to a one-dimensional simple
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harmonic oscillator. Thus, k labels a mode, i.e., a degree of freedom equivalent to the wave vector
of the neutrons (Lamb 1995). The quantization steps of the coherent field between the source
and the detector (a distance L apart) are extremely narrow (�k ∼ 2π /L) and, therefore, the inte-
gral form of the wave function can be used (e.g., Walls and Milburn 1994). Such a wave packet
describes a multimode coherent state, which can be seen as a quasi-classical state (e.g., Deutsch
1991).

The first-order, two-point-two-time autocorrelation function relating the physical situation at
( r, t) and (r′, t′) is given by (Glauber 1963)

G (1)( r, t; r′t′) =Tr{ρ̂ψ∗( r, t) ·ψ( r′, t′)}, (4.17)

where the density operator can be written as

ρ̂ =
∫
p( r, t)ψ∗( r, t) ·ψ(r, t)d3rdt. (4.18)

The function p( r, t) describes the classical probability of finding the quantum system at r and t;
that is, p(r, t) describes the beam profile (see Fig. 2.9) and a possible time structure of the beam
and shows that the coherence features are limited to the coherence features of the wave packet. The
whole beam is an incoherent superposition of coherent beams described by the wave function. The
density operator develops according to the von Neumann (1931) equation (quantum Liouville
equation, Eq. 1.51)

ih̄
∂ρ̂

∂t
=
[
H, ρ̂

]
, (4.19)

which gives a constant phase space density when only conservative forces are acting on the system.
For a constant p distribution one obtains ρ∝ ∫ |a(k)|2d3k, where

∣∣a(k)∣∣2 = g(k) is the density of
states in k-space. The auto-correlation function G(1) has the general features

G (1) (r, t; r, t)≥ 0, (4.20)

which represents the intensity and

G (1)(r, t; r, t) ·G (1)( r′, t′; r′, t′) ≥ ∣∣G (1)( r, t; r′, t′)
∣∣ 2. (4.21)

These self-correlation functions can be measured by several interferometric methods where parts
of the wave function can be spatially or temporally shifted compared to a reference beam. For neu-
tron matter waves, this can be accomplished by various interferometers where the wave function
behind the interferometer is composed of a linear superposition of the wave functions originating
from beam paths I and II (Eq. 2.1). In the case of an empty interferometer, these two contribu-
tions to the wave function in the forward direction (0-beam) behind the interferometer are equal in
amplitude and phase. This follows from symmetry considerations because they are transmitted–
reflected–reflected (trr) and reflected–reflected–transmitted (rrt), respectively (Eq. 2.1). Thus, in
the 0-beam

ψ0 = ψ0
I +ψ0

II . (4.22)
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The related intensity at any point R is composed of waves arising from beam paths I and II, which
experience interactions along the optical paths described by the vectors r and r′. In the case of
time-dependent interactions along the beam path they exhibit a different time-of-flight (t and t′)
as well, thus

I0 =Tr {ρψ0
∗(R, t)ψ0(R, t)}

=G (1)(r, t; r, t) +G (1)(r′, t′; r′, t′) + 2Re G (1)(r, t; r′, t′).
(4.23)

If we write the self-correlation function G(1) for ( r, t)�=( r′, t′) as a complex function

G (1)(r, t; r′, t′) =
∣∣G (1)(r, t; r′, t′)

∣∣ eiχ (r,t; r′ ,t′), (4.24)

we then see that, in terms of the phase χ , the intensity is

I =G (1)( r, t; r, t) +G (1)(r′, t′; r′, t′) +2
∣∣G (1)( r, t; r′, t′)

∣∣ · cosχ( r, t; r′, t′). (4.25)

One should note that G (1)( r, t; r, t) and G (1)(r′, t′; r′, t′) denote the intensities originating from
beam paths I and II, respectively (Eq. 4.17). That is, all space-time points on path I are given
by r, t and those along path II by r′, t′. We have suppressed the subscript “0” on the intensity I
because a similar relation holds for the H-beam as well.

The fringe visibility (contrast) of the interference pattern is related to the normalized cor-
relation (coherence) function �(1)(r, t; r′, t′), that is

�(1)( r, t; r′, t′) ≡ G (1)( r, t; r′, t′)[
G (1)( r, t; r, t) · G (1)( r′, t′; r′, t′)

]1/2 . (4.26)

By combining Eqs. (4.16), (4.17), and (4.25), the complex degree of mutual coherence can be
written as

�(1) (r, t; r′, t′) ∝
∫

| a(k)| 2 ei[(r–r′)·k–(t–t′)ωk] d3k . (4.27)

This can be simplified by using the spatial and temporal translation invariances (r – r′ =
�, t – t′ = τ) and the free-space dispersion relation ωk = h̄k2

/
2m +mc2/h̄ (Eq. 1.9), such that

�(1)(�, τ) =
∫
ρ(k)ei(k·�–ωkτ)d3k, (4.28)

which is a special form of the van Cittert (1934)–Zernike (1938) theorem used in light and X-ray
optic for a quantitative description of coherence properties (e.g., Born and Wolf 1980, Paganin
2006). Note, in this context, that partially coherent radiation may be produced by an incoher-
ent source, by the act of free-space propagation. For stationary neutron beams and stationary
interactions (ω=0) one gets the more familiar form

�(1)(�, 0) = �(�) =̂
∫
g(k) eik�dk, (4.29)
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where g(k) denotes the momentum distribution of the beam (g(k) = |a(k)|2). We point out that
the analogy to the van Hove formalism of neutron scattering from condensed matter is striking
(van Hove 1954, Marshall and Lovesey 1971, Squires 1978). We can now write the interference
pattern in the form (Eq. 4.25)

I(�, τ) = I0
(
1 +

∣∣�(1)(�, τ)
∣∣ cos(k · � – ωkτ)

)
. (4.30)

In case that the intensities from the two beam paths are different, the intensity after superposition
can be written more generally as

I(�, τ) = I1 + I2 + 2
√
I1I2

∣∣�(1)(�, τ)
∣∣ cos(k · � – ωkτ). (4.31)

The visibility of the interference pattern becomes

V =
IMax – IMin

IMax + IMin
=

2
√
I1I2

I1 + I2

∣∣�(1)(�, τ)
∣∣. (4.32)

For a completely coherent field,
∣∣�(1)(�, τ)

∣∣ equals unity, whereas this function may become zero
for any � �=0 and τ �=0 for a completely incoherent field. Any real experimental arrangement
provides partially coherent fields where the coherence functions tend toward zero for � → ∞
and τ → ∞. The coherence lengths �c and the coherence time τc are usually defined when the
coherence function has decayed to a value 1/e. It should be mentioned that a damped oscillatory
behavior occurs in certain cases where the more general definition for the coherence length should
be used (e.g., Perina 1973, Mandel and Wolf 1995):

�c
2 =

∫
�2
∣∣�(1)(�)

∣∣ 2d�∫ ∣∣�(1)(�)
∣∣ 2d� . (4.33)

Equations (4.27) and (4.28) show that the space- and time-dependent correlation functions are the
Fourier transforms of the related momentum (wave vector) and energy (frequency) distribution
of the beam (density of states). This will provide the basis for the Fourier spectroscopy method
using coherent beams (Section 10.15).
For a cross-spectrally pure field, i.e., when the temporal structure of the beam varies slowly over
the measurement interval, such that it behaves quasistatically or even is time independent, the
corresponding time (τ) variations of �(1)(�, τ) can be separated from the spatial (�) correlations.
In this case the mutual coherence function �(1) may be written as a product:

�(�, τ) = �(�, 0)�(0, τ) = �(�)�(τ). (4.34)

For Gaussian momentum distributions having widths δki in each of the three orthogonal directions
(i = x, y, z) one obtains a Gaussian coherence function in the form

�(�) =
∏
i=x,y,z

e–
[
(�iδki )

2 /2
]
, (4.35)
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and �(0, τ) is unity for all times. This is the case for continuous wave (cw) experiments. In this
case the coherence lengths �i

c are directly related to δki by the Heisenberg uncertainty relation

�i
c δki =

1
2
. (4.36)

Since we are only concerned with first-order coherence here, we have suppressed the super-
script (1) on the coherence function in Eq. (4.35).

The coherence function is an average (trace in Eq. 4.17) over different beam paths and/or over
varying environment conditions ε(η) along both beam paths. The effect of the environment on
coherence will be discussed in detail in Section 4.6. One should keep in mind that any measured
coherence property is an average over the beam cross-section and the measuring time (Section 2.1,
Fig. 2.9). Here we will give some of the fundamental ideals and concepts of the decoherence the-
ory. If we include a hypothetical wave function of the environment ε depending on the coordinates
η we get for the overlapping wave function (Stern et al. 1990)

ψ =ψ I (r)× εI(η) + ψ II(r)× εII(η) (4.37)

and an interference term

2Re
[∫

drψ I(r)ψ II(r)
∫

dηεI(η)εII(η)
]
. (4.38)

Thus, the interference term reduces to 0 when the environment’s state coupling to one beam path
becomes orthogonal to the one coupling to the other beam path. The disappearance of the inter-
ference term introduces at the same time irreversibility, because the time-reversed Schrödinger
equation cannot reproduce the same beam path probabilities (Gottfried 1966).

In case that only real phase shifts occur, the integral of Eq. (4.38) takes the form equivalent to
an average phase factor

< eiχ >=
∫

dχP(χ) eiχ . (4.39)

Since eiχ is periodic in χ , < eiχ> tends to 0 if the distribution function P(χ) is slowly varying over a
region larger than 2π . Introducing the average phase shift <χ > and the mean squared fluctuation
of phase <δχ2 > according to the standard definitions

<χ >≡
∫
χP(χ)dχ , (4.40)

and

< δχ2 >≡
∫

(χ– <χ >)2P(χ)dχ , (4.41)

one can rewrite the average phase factor as

< eiχ > = ei<χ>
∫

dχ P(χ) ei(χ–<χ>) ∼= ei<χ>–<δχ
2>/2. (4.42)

The last formula is strictly correct for narrow distribution functions only. One notices that
<χ>= (1/h̄)

∮
V (r)dt=–(1/h̄)

∮
δp.ds, which represents the average over the potential energy along

the beam paths (compare Eq. 1.38). A very simple case is a phase-shifting slab with thickness
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variations δD. One then gets <χ>=Nbcλ0D0 and in terms of the λ-thickness of the sample
Dλ =2π /Nbcλ0 a reduction factor exp[ – (2πδD/Dλ)2/2] of the interference contrast. Wavelength
(momentum) or atom density variations can be treated in a similar fashion.

For a diffusion-like behavior of the environment where the distribution function becomes a
normal distribution which decays to 0 with a characteristic time τint much shorter than the duration
of the experiments, one also gets the result given by Eq. (4.42), which agrees with a previous model
developed for the coupling of a quantum system to a heat bath by Feynman and Vernon (1963)
and by Caldeira and Leggett (1983). In many cases one can use a quasistatic approximation
where the phase fluctuation becomes < δχ2>∼= V 2τint

2/h̄2. A rather comprehensive overview of
decoherence and dephasing effects has been given by Guilini et al. (1996) and this topic is treated
in more detail in Section 4.6.

4.2 Coherence Measurements

In neutron interferometry a spatial shift of the wave packets between the two coherent beams can
be provided by a phase-shifting slab which changes the optical path length according to its index
of refraction n and its thickness D0. The boundary condition of quantum mechanics requiring
continuity of the wave function allows only the normal (ŝ) component of the momentum to change
at the slab surface, resulting in a spatial shift of the wave packet (e.g., Born and Wolf 1957, Sears
1989, Lemmel and Wagh 2010):

This results in a phase shift:

χ = D(K⊥ – k⊥) = Dk
(√

n2 – sin2ϕ0 – cosϕ0

)
= K · Δ, (4.43)

where Δ is the spatial shift perpendicular to the slab surface. It is given by

� = –sD
(
k⊥
K⊥

– 1
)
= –sD

(
cosϕ0√
n2 – sin2ϕ0

– 1

)
. (4.44)

Here n denotes the index of refraction n = K /k, k⊥ = k cosφ0 and K⊥ = K cosφ = nk cosφ.
Within a first-order expansion of n around unity, one obtains

χ ≈ –Dk
1 – n
cosϕ0

= –NbcλDeff. (4.45)

The relation of the components of the wave vectors k and K to the spatial shift Δ and the effective
thickness is shown in Fig. 4.2. Here N and bc are the atom density and the coherent scattering
length of the phase shifter material, and Deff = D0/(k̂ · ŝ) is the neutron path length inside the
material slab. Absorption (σa), incoherent scattering (σincoh), small-angle scattering (σSAS) effects,
fluctuations of the thicknesses and of the density of the phase shifter, and imperfections of the
interferometer crystal itself cause the modulation of the interference pattern to be incomplete.
That is, |�(0, 0)| is always less than unity. Thus, the observed interference pattern has the general
form similar to Eq. (2.5)

I(�) = I0 [A + B cos(� · K + ϕ0)] , (4.46)
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Figure 4.2 Angular, momentum, and phase shift relations in case of
planar phase shifters. Reprinted with permission from Lemmel and
Wagh 2010, copyright 2010 by the American Physical Society.

where I0A correspond to I1 + I2 in Eq. (4.31) and I0B to 2
√
I1I2|�(�)|. The relative intensities

arising from both beam paths depend on the beam attenuation cross-section (σt = σa+σincoh+σSAS).
For beam path II we must replace the intensity I2 by

I ′
2(Deff) = I2(0) exp[–NσtDeff] . (4.47)

Variances of the thickness (δD) and density (δN) of the phase-shifting material cause a variance
of phase (< χ>2 – <χ2 >) which gives rise to a damping factor (see Eq. 4.42). These influences
on the coherence factor take the form

|�(�)| = �t(δD)�d(δN)|�(�)|0

= exp

{
–

[(
δD
D0

)2

+
(
δN
N0

)2
]
(�0k0)2/ 2

}
|�(�)|0,

(4.48)

where the subscript “0” indicates the value of the coherence factor when (δD) = 0 and (δN) = 0.
These additional factors do not depend on the overall thickness of the phase shifter but only on
the quality of it. δD scales with the number n of surfaces, i.e., δD =

√
n δD0. In addition the

interferometer crystal also cannot be absolutely perfect in its geometry and its internal structures,
which results in |�(0)|0 �=1. These considerations justify the definition of a normalized degree of
coherence

γ (�, τ) =
|�(�, τ)|
|�(0, 0)| . (4.49)

All parameters entering Eq. (4.46) can be measured separately and they are sensitive to differing
disturbing environmental effects in different ways. Especially ϕ0, the internal phase, is very sen-
sitive as shown in Fig. 2.10. When no phase shifter is inserted (other than a rather perfect phase
flag), one measures |�(0)| and ϕ0; and the average intensity I0A. The internal (empty interferom-
eter) phase ϕ0 can be caused by internal strains or geometry factors of the interferometer crystal
or/and due to fields acting on the neutron sub-beam (gravitation, magnetic, etc.).

The coherence volume vc of the beam is given by the product of coherence lengths
vc =�x�y�z. When it is transformed into the k-space it defines the resolution function in the spec-
trometric use of neutrons (e.g., Felber et al. 1998). The coherence properties of a beam discussed
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Figure 4.3 Sample arrangement used to measure the longitudi-
nal (a), transverse (b), and vertical (c) coherence lengths

here are also of essential interest for the interpretation of any scattering or diffraction experiment
because they determine the region of interaction of the neutron within a sample (Bernhoeft et al.
1998). Various measurement geometries are indicated in Fig. 4.3.

4.2.1 Longitudinal Coherence, x-Direction

In order to measure the coherence length in the x-direction (see Fig. 4.3a), the surface of the phase
shifter is perpendicular to the reflecting lattice planes of the Si-crystal interferometer. The phase
shifter displaces the wave packet in a direction where the perfect crystal does not influence the
original momentum distribution function. The related spatial shift of the wave packets becomes
(Eq. 4.44)
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�x = –Nbcλ2D0/2π , (4.50)

and the corresponding phase shift is

χ =� · K = –NbcλD0/ cos�B, (4.51)

where �B denotes the Bragg angle for the interferometer crystal corresponding to wavelength λ.
Related observations have been carried out since the first neutron interferometry experiments.
They showed a more or less continuous reduction of the fringe visibility at high order (Rauch
1979, Kaiser et al. 1983) which results from the nearly “Gaussian-shaped” momentum distribu-
tion in the incident beam (Fig. 4.4). The calculated values shown in the figure are obtained using
Eqs. (4.35) and (4.48). The related coherence function is obtained when plotting the amplitudes
of the interference pattern as a function of the spatial phase shift �x.
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Figure 4.5 Measured momentum distribution (left) and measured coherence function for the
longitudinal direction (Clothier et al. 1991)

Figure 4.5 shows such results of an experiment carried out at the MURR reactor where the
momentum (wavelength) distribution had a non-Gaussian shape as it was determined separately
by rocking an additional silicon analyzer crystal in the dispersive position through the I0 beam
(Clothier et al. 1991, Kaiser et al. 1992). The full lines are the mutual Fourier transforms as they
are expected from Eq. (4.29).

The interference pattern can even be partly recovered after superposition at the third plate,
when a four- or five-plate interferometer is used (Rauch 1984a, Heinrich et al. 1988a; see
Section 4.5.6). The interference pattern can also be restored if the beam monochromaticity
is increased behind the interferometer by a time-of-flight or a crystal diffraction system (see
Section 4.5.4).

Macroscopic inhomogeneities of the sample can be described by a spatially dependent index
of refraction. This also causes a reduction of the contrast and of the degree of coherence of the
beams since coherence is defined as an average over the whole beam cross-section (Eq. 4.18,
Fig. 2.9). If defined structured objects (such as periodic media) are used, some parts of the beam
become labeled—i.e., carrying beam path information—due to diffraction effects into distinct
orders. Those neutrons are usually lost for contributing to the interference because they are within
a preparatory stage for a possible path identification and detection (see Section 4.3.2). Looking
more closely into this phenomenon by using a position-sensitive detector device one can recover
parts of the contrast and still show the intrinsic coherence properties. A somewhat different situ-
ation exists for statistically distributed inhomogeneities of a sample. These cause rather random
phase shifts which yield the well-known small-angle scattering phenomenon. In this case the coher-
ence cannot be restored due to the statistical nature of the scattering within the sample (Eqs. 4.42
and 4.48). These conclusions are in agreement with a theoretical analysis of Morikawa and Otake
(1990), who showed that a loss of contrast can, but need not be, an indication of a loss of coher-
ence. The measurement of the loss of contrast over the whole beam cross-sections can be used
to obtain information about the inhomogeneous structure of the sample. Related measurements
have been made for porous graphite (Bauspiess et al. 1974), for precipitates in Al–Mg–Zn alloys
(Rauch 1979), in metal-hydrogen systems (Rauch et al. 1978b), and for ferromagnetic domain
structures (Rauch 1980). Within a zero-order approximation these effects can be described by a
statistical fluctuation of the scattering-length density (�Nbc) or by the neutron depolarization for-
malism (e.g., Rekveldt 1973). Besides this smearing effect of the phase, sample inhomogeneities
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can cause a remarkable beam deflection due to small-angle scattering, an effect which must be
included in the calculation of the related wave functions. The measured effect depends in this case
on the acceptance angle of the successive perfect crystals which makes a quantitative analysis dif-
ficult. This effect provides the basis for solid state physics applications of neutron interferometry
and will be discussed in more detail in Section 9.1.

4.2.2 Transverse Coherence, y-Direction

In this case, the surface of the phase shifter is parallel to the reflecting lattice planes where the
momentum distribution becomes strongly influenced due to the dynamical diffraction effects
within the perfect crystal (Rauch and Petrascheck 1978; Chapter 10). The resulting momentum
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Figure 4.6 Comparison of the high-order interference pattern for phase shifts in the longitudinal
(dispersive) and transverse (non-dispersive) directions (Rauch et al. 1987)
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distribution becomes rather narrow (�ky/k0 ∼= 10–5) exhibiting an oscillatory structure. The
related spatial shift of the wave packet becomes (Eq. 4.44, Figs. 4.3b and 4.6)

�y = –Nbcλ2D0/2π , (4.52)

and the phase shift is

χ = –2NbcD0dhkl , (4.53)

where the Bragg relation λ=2dhkl sin�B has been used with the Si interferometer lattice plane
spacing dhkl. Thus we see that the phase shift is independent of the neutron wavelength, which
means an accurate measurement of the wavelength is not necessary. This phase shift behaves non-
dispersively up to rather high interference orders and, therefore, the visibility of the interference
fringes is correspondingly enhanced compared to the case of a longitudinal phase shifter. Related
experiments have been performed at the ILL reactor and have verified this behavior (Rauch et al.
1987); see Fig. 4.6. The contrast is shown around the 250th interference order when the path
length of the neutron beam inside the phase shifter is 33.8 mm and an auxiliary thin Al-phase flag
is rotated inside the interferometer. The reduction of the contrast in the dispersive (longitudinal)
x-direction is mainly caused by the influence of the finite momentum spread on the coherence
function |�(�)|; the effects of beam attenuation and phase shift fluctuations are smaller and are
comparable to their values in the dispersive case (Eq. 4.48). The reduction of the constrast in
the non-dispersive (transverse) y-direction case is caused nearly exclusively by beam attenuation
and phase shift fluctuation effects, but only very little by the coherence function. The coherence
function for the non-dispersive position has been calculated within the framework of spherical
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Figure 4.7 Calculated coherence function in the transverse
direction Bonse and de Kaat 1971, with kind permission
from Springer Science and Business Media. Reprinted from
Petrascheck 1988, copyright 1988, with permission from
Elsevier.
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diffraction theory where the contrast of a defocused interferometer is evaluated (Bonse and de
Kaat 1971, Bauspiess et al. 1976, Petrascheck and Folk 1976). An interpretation in terms of a
mutual coherence function has been given by Holy (1980) and Petrascheck (1987, 1988). There
is a non-vanishing contrast over the whole width of the Borrmann fan as shown in Fig. 4.7. The
plotted results are for a thickness of the perfect crystal Dcryst which is ten times the character-
istic length � = (2d bcN)–1, which amounts to about 10μm for most silicon reflections. The
coherence length must be extracted by using Eq. (4.33) but a distinct influence of the coherence
function appears only upon the ∼ 104 interference order, i.e., at thicknesses where all other damp-
ing factors usually dominate. In many cases variations of the thickness of the interferometer crystal
plates smear out the high-order modulations of the coherence function, and the related coherence
function can be written as

∣∣�(�y)
∣∣ =

∣∣∣∣∣1 +
�t
�

–
5
9

(
�t
�

)2
∣∣∣∣∣exp(–�t/�), (4.54)

with �y =2�t/ tan�B, where �t denotes the defocusing distance. Direct measurements apply-
ing a variable defocusing onto one beam path become feasible (Fig. 2.4). Transverse coherence
lengths up to 175μm have been reported by Wagh et al. (2011) by using Fankuchen-cut crys-
tals to produce a narrow and nearly plane wave of neutrons. An interesting non-defocusing and
non-dispersive sample position will be discussed in Section 4.2.5.

4.2.3 Vertical Coherence, z-Direction

In order to measure the vertical coherence length, a shift �z of the trajectories perpendicular to
the plane of the interferometer is achieved by a phase-shifting slab whose surface is tilted with
respect to the horizontal plane by an angle ϕ, as shown in Fig. 4.3c. This small spatial shift, due to
refraction in the tilted slab is given by the laws of geometrical optics as

�z = –
λ2Nbc
2π

D0 tanϕ, (4.55)

and the corresponding total phase shift becomes

χ = –NbcλD0/ cos ϕ. (4.56)

Such a phase shifter produces phase shifts in other directions too, which must be balanced by a
proper phase shifter put into the reference beam and which compensates for beam attenuation, as
well.

Experiments using phase shifters with different thicknesses and tilt angles were performed at
the MURR reactor (Rauch et al. 1996; Fig. 4.8). At this interferometer setup, a twin focusing
monochromator made up of pyrolytic graphite (PG) crystals was used which produced a dou-
ble humped momentum distribution in the vertical direction as it was measured by scanning a
horizontal slit (1 mm) through the intensity distribution behind a static slit (1 mm) placed at
the interferometer table (Fig. 4.8, top). These measurements were performed at different beam
heights and averaged subsequently. The contrast was extracted from interferograms obtained by
rotating an auxiliary phase shifter around a vertical axis with the various tilted phase shifters and
compensator phase shifter slabs inserted into the two beams of the interferometer. This contrast
(fringe visibility) directly yields the coherence function as it is plotted in Fig. 4.8. The full lines
in this figure correspond to an optimal fit to the data and they are related to each other by their
mutual Fourier transformations, which verifies Eq. (4.29).
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Double prism systems have been used by Pushin et al. (2008) to measure the vertical coherence
function. In one beam the prisms are separated and in the other they are not, which balances the
horizontal phase shift. The principle of this phase shift is shown in Fig. 4.9. The vertical beam
shift can be calculated by means of geometrical optics. When the beam divergences are small
(kz/k << 1) one gets

�z ≈ L(1 – n), (4.57)

and the related phase shift as kz�z. The coherence functions for different vertically focusing
monochromators have been measured and good agreement between the Fourier transform of the
related momentum distributions and the coherence functions has been shown. Analogies to the
situation addressed in the next section are evident.

4.2.4 Phase-Echo and Spin-Echo Experiments

Phase echo is a similar technique to spin echo, which is routinely used in neutron spectroscopy
(Mezei 1972, 1980; Badurek et al. 1980a). A large phase shift (� > �c) can be applied in one
sub-beam of the interferometer, which can be compensated by a negative phase shift acting in
the same sub-beam or by the same phase shift applied to the other beam path (Kaiser et al.
1983, Clothier et al. 1991). According to Eq. (1.38), the phase shift is additive and the coherence
function depends only on the net phase shift. Thus, the interference pattern can be restored as it
is shown schematically and in form of an experimental example in Fig. 4.10. Here, the bismuth
slab presents a positive optical potential, and the titanium presents a negative optical potential to
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the neutron de Broglie wave. Thus, the wave packet is slowed down in traversing the Bi slab, and
speeded up in traversing the Ti slab. This gives the phase-echo condition

χ1 ∼= χ2. (4.58)

The phase-echo method can alternatively also be applied behind the interferometer loop when
multiplate interferometers are used (Heinrich et al. 1988). A peculiar situation exists when the
spin echo and the phase condition are fulfilled simultaneously (see Section 2.4):

B1L1
∼= B2L2

χ1 ∼= χ2 .
(4.59)

This situation has been tested by a Jamin configuration as shown in Fig. 4.11 (Ebisawa et al.
1998a). It should be mentioned that in this case longitudinal and transverse shifts of the packets
are compensated by the echo conditions. Coherence revival experiments are also known from
electron interferometry where Wien filters are used to shift the wave packets without a resultant
deflecting force due to the matched action of an electric and a magnetic field (Möllenstedt and
Wohland 1980, Nicklaus and Hasselbach 1993, Hasselbach 1995).

In Section 4.5 we will discuss the coherence recurrence situation in much more detail. Here we
interpret the situation in perspective. Information first appearing in spatially shifted wave packets
becomes transferred into a momentum modulation, and then can be retrieved again in ordinary
space modulation effects. However, it becomes intrinsically more difficult to restore the original
contrast the wider the separation of the wave packets in ordinary space. These results show that
a vanishing contrast does not intrinsically indicate a loss of coherence, but it is associated with

Figure 4.11 (Left) Arrangement of a phase-spin-echo interferometer using two identical multilayer spin
splitters mounted within precession fields 1 and 2. (Right) Measured spin-echo profile. Reprinted with
permission from Ebisawa et al. 1998b, copyright 1988 by the American Physical Society.
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at least a slight reduction in fringe visibility because unavoidable quantum losses appear. When
one takes into account the physical situation very carefully, one notices that each arrangement
produces different wave functions and that the additive forward part is the leading, but not the
only term (Fig. 4.12). There are always multiple reflections and traversals of the wave function.
This indicates also that a complete retrieval of the wave function becomes impossible. This con-
clusion also follows from the beam attenuation and phase variation factors of Eq. (4.48). Each
phase shifter represents a potential barrier which produces unavoidable and non-revivable sepa-
rations of the whole wave function. A lossless transmission is only possible for an infinitely small
wavelength band near to the resonance, but this then implies zero intensity (see, e.g., Piron 1990).
The situation of polarized neutrons crossing various magnetic potentials has been treated by Barut
et al. (1987). Its consequences for the feasibility or non-feasibility of observing an ideal quantum
Zeno effect has been discussed by Nakazato et al. (1995).

In a more complete and accurate measurement, more and more parts of the complete wave
functions, which contain more and more of the detailed history the quantum system has experi-
enced between the source and the detector, become visible. This indicates a basic irreversibility
process caused not by parasitic effects like absorption or incoherent scattering processes but by
the appearance of an infinite number of additional terms in the wave function. This indicates that
the original state cannot be restored completely by any means. This conclusion was also drawn
by Englert et al. (1988) in connection with the splitting and recombination of a spin-1/2 system in
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a Stern–Gerlach magnet (see also Schwinger et al. 1988). When a quantum system evolves, so
that it returns at least approximately to its initial state, it acquires a memory effect expressed in
terms of additional terms in the wave function, which can be a loss in intensity, the appearance
of a geometric phase, etc. (Section 6.3; Anandan 1992). This subject is also closely connected
to the decoherent histories approach to quantum mechanics (Caldeira and Leggett 1985; Buzek
et al. 1995a,b) and the Weyrl entropy approach (Weyrl 1978). In addition, unavoidable fluctua-
tions (even zero-point fluctuations) cause an irreversibility effect which becomes more significant
for widely separated Schrödinger cat-like states (Paz et al. 1993, Rauch and Suda 1995). It has
been shown that decoherence also occurs at absolute zero temperature (Sinha 1997). In this case,
a harmonic oscillator which is coupled to an environment of harmonic oscillators at zero temper-
ature where a temperature-independent power-law loss of quantum coherence was obtained has
been considered. The off-diagonal density matrix elements die out with time as

ρ(x, x′, t)∼ t–α , (4.60)

where α depends on the mass, the dissipative coefficient (γ ; see Eq. 4.149), and the square of the
spatial separation α = (2/π h̄)mγ (x – x′)2. A more detailed discussion of the decoherence process
is given in Section 4.6. All these effects can be described by an increasing entropy inherently asso-
ciated with any kind of interaction (Lorentz 1927). This also supports the idea that irreversibility
is a fundamental property of nature and reversibility is only an approximation, a conclusion stated
by several authors (e.g., Haag 1990, Prigogine 1991, Cini and Serva 1992, Blanchard and Jadczyk
1993, Venugopalan and Ghosh 1995, Englert 2013). At the same time changes in entropy are
closely connected to the quantum measurement problem (Chapter 12; Giulini et al. 1996, Namiki
et al. 1997). The appearance of entropy associated with decoherencing effects reflects the pres-
ence of an arrow in time in quantum theory, i.e., a fundamental irreversibility in the formalism of
the theory itself. This irreversibility comes into play only through initial and boundary conditions
in our universe.

This shows that irreversibility and, therefore, the measurement process starts with the first
interaction that the quantum system experiences in the experimental setup. The assignment of a
source and a detector region define the direction of increasing entropy. This may be summarized
in the statement “All quasi-classical phenomena, even those representing reversible mechanics,
are based on de facto irreversible decoherence” (Zeh 2001).

4.2.5 Non-dispersive and Non-defocusing Phase Shifters

In the previous sections we dealt with phase shifters placed into only one gap of the interferometer.
There are other possibilities as well which have distinct advantages as pointed out by Lemmel and
Wagh (2010). Figure 4.13 shows the standard and advanced phase-shifter arrangements. The
different arrangements cause different phase shifts and different spatial shifts of the wave packets.
The spatial shift Δ of the neutron wave packet when passing through a homogeneous slab is given
by Eq. (4.44) with a corresponding phase shift χ . When more than one phase shifter is placed in
the interferometer, say one of the dual phase-shifter geometries in Fig. 4.13, various interesting
trajectories which are non-dispersive and also focusing are possible. The total phase accumulation
along each beam path is always given by the line integral of the canonical momentum along the
unperturbed beam paths (see Section 1.2)

�I or II =
∫
k(s) · ds (4.61)
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and the phase difference is (see Eq. 4.43)

�� = �II –�I = D(K⊥ – k⊥) = K · �. (4.62)

In the dual non-dispersive phase-shifter configuration (Fig. 4.13a, right) the equal but opposite
spatial shifts Δ in the two slabs cancel out and yield a focusing geometry. However, since K⊥ also
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reverses sign in the second gap and K · Δ has the same sign in both gaps, the phase shifts add
up. This results in the remarkable situation that there is no spatial shift of the wave packets upon
recombination, but there is a strong non-dispersive phase shift χ . It can be shown that the disper-
sive action of the dual non-dispersive phase shifter is strongly enhanced by orders of magnitude
compared to a single non-dispersive phase shifter (Fig. 4.13a, left). There is also no defocus-
ing. This allows for phase measurements up to very high order and therefore measurements with
extreme sensitivity.

Thus, in the geometry of the dual phase shifter in Fig. 4.13a (right) the wave packets traversing
path I and path II do not experience a net relative spatial shift at the point of recombination.
That is, they wind up right on top of each other. Nevertheless, there is a net large phase shift
of –2χ . In some ways, this is reminiscent of the observation of Aharonov–Bohm effects by various
techniques including neutron interferometry (Werner and Klein 2010). Because of refraction in
the phase-shifting slabs, there is a net path length shortening. One might think that this will cause
an additional phase shift. In fact, it does. However, this phase shift is exactly canceled by a change
in the phase of the de Broglie waves in traversing the middle silicon crystal plate. One is left with
a phase shift of –2χ , coming only from the phase changes due to the optical potential of the
slabs. That is, one should integrate the canonical momentum along the unperturbed beam paths.
This subtlety of calculating the phase shift has been discussed recently by Lemmel (2014). Since
the conclusions reached here are not at all obvious, or for that matter agreed upon by all people
involved in this field of research, a serious experimental test of these ideas and predictions would
appear to be necessary.

4.2.6 Neutronic Coherence Features

The results of the dedicated coherence measurements show that spatial coherence is a basic three-
dimensional phenomena, and that related coherence functions can be obtained from the contrast
of the interference pattern when variously oriented phase-shifting slabs are inserted into the inter-
ferometer. Properly shaped magnetic fields could be used as well. The coherence function in a
certain direction is the Fourier transform of the related momentum distribution in that direction.
Thus, it is determined by the collimation and monochromatization defining the beam. In this
respect, the coherence function represents beam properties rather than single particle proper-
ties. Nevertheless, within quantum mechanics, the related wave function (Eq. 4.16) can also be
attributed to a single neutron, but this quantum system should also always be considered as part of
a certain beam configuration. That is, the wave function contains at the same time properties of the
quantum system and of the apparatus as well, which should be seen as their mutual entanglement
and as a basic feature of quantum mechanics (see Chapter 12). As mentioned at the beginning of
this chapter the coherence areas

(
�x�y

)
as given by the wave functions are much smaller than the

beam cross-section and, therefore, one performs measurements successively with many coherent
beams simultaneously.

The coherence features extracted from neutron experiments are rather analogous to those of
light, X-ray, or electron coherence experiments where the coherence properties are also attributed
to the beam properties (monochromaticity, collimation) even though there is only self-interference
involved (Keller 1961, Mandel and Wolf 1965, Lenz 1972, Francon 1979, Möllenstedt and
Wohland 1980, Tonomura 1987, Ishikawa 1988, Haroche and Raimond 2006). Various theoretical
attempts to introduce Glauber’s definition of quantum coherence into neutron beam experiments
show the analogy between phenomena observed with different radiations (Sears 1979, Klein et al.
1983, Ledinegg and Schachinger 1983, Byrne 1994).
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The coherence experiments with neutrons described above have been performed with perfect
crystal interferometers. For representative values for the collimation and monochromatization, the
measured coherence length in the longitudinal direction is about 100 Å and the vertical direc-
tion about 50 Å. In the transverse, i.e., in perpendicular direction to the reflecting lattice planes,
the coherence length is about 50,000 Å, due to the action of the perfect crystal (Chapter 11;
Bonse and de Kaat 1971, Petrascheck 1988). These values define the phase space volume and
from the measured intensity the related phase space density (a dimensionless quantity) of about
10–14 neutrons can be extracted, which corresponds to the expected phase space density imme-
diately outside of a thermal moderator of a standard neutron source. The size of the coherent
packet describes, in a certain sense, the volume which the neutron “sees” when it interacts with
its environment. This phenomenon has also been elucidated in an experiment where the wave
packet was sent through an absorbing lattice which was oriented in various ways in relation to the
three axes of the packet (Summhammer et al. 1987; see Section 4.3.2). The size of the coherence
volume also influences the scattering properties of a sample when their coherence volume (e.g.,
grain size) become comparable. High-resolution X-ray investigations touch this limit more easily
than neutron investigations but forthcoming improvements of the experimental conditions will
make the inclusion of coherence properties of the beam essential (Bernhoeft et al. 1998, Gaehler
et al. 1998, Sinha et al. 1998).

The question may arise as to whether the coherence vanishes when the absolute value of the
coherence function becomes zero at large phase shifts. The phase echo and certain post-selection
experiments for neutrons and electrons (Kaiser et al. 1983, 1992; Clothier et al. 1991; Nicklaus
and Hasselbach 1993; Jacobson et al. 1994) have shown that this is not the case and that inter-
ference fringes and coherence phenomena can be revived when a proper position, momentum,
or time selection is applied to the beam, even subsequent to the superposition of the two coher-
ent beams in the last crystal of the neutron interferometer. In the case of large spatial separations
of the interfering packets (� >> �c), when |�(�)| becomes zero and the interference fringes
disappear, the coherence phenomena manifest themself in momentum space by an intrinsic mod-
ulation of the momentum distribution (Rauch 1993, Jacobson et al. 1994). This provides the
basis for phase-echo experiments described earlier in Section 4.2.4 and for multiplate interfer-
ometry (Section 4.5.6). All these phenomena indicate that coherence cannot be destroyed by
any Hamiltonian interaction, but only by stochastic and dissipative effects which are related to a
transition from a quantum to a classical world (Chapter 12 and Section 4.6; Walls and Milburn
1985, Schleich et al. 1991, Rauch and Suda 1995). Such effects become more significant the
larger the spatial separation of the (potentially) interfering wave packets, which thereby provides
a natural limit on how far so-called coherent Schrödinger cat-like states can be spatially sepa-
rated. The interaction of the neutron quantum system with the environment, the phase shifter
or the detector must not be of purely statistical nature, but can cause a quantum entangle-
ment between the system and the experimental setup. In this case the random-average model
of coherence loss provides a proper description of the loss of coherence (Wooters and Zurek
1979, Stern et al. 1990, Tan and Walls 1993). In addition, environment-induced decoherence
becomes also more and more accepted in the modern measurement theories (Namiki and Pascazio
1992; Zurek 1993, 1998a) and part of the epistemological interpretation of quantum mechanics
(Chapter 12).

Only the spatial coherence phenomena have been treated so far, but it should be mentioned
that temporal coherence properties can also be elucidated by neutron interferometry. In this
case, energy is exchanged differently in the two beams. This can be achieved by applying a
Zeeman energy exchange between the neutron and a resonator coil (Section 5.3; Badurek et al.
1986) or multiphoton exchange in an oscillating field (Section 4.6.2; Summhammer et al. 1995,



122 Coherence and Decoherence

Sulyok et al. 2012). The related coherence function |�(τ)| depends on the coherence time of
the beam τc = �c/v, which is on the order of nanoseconds in usual cases. It can also be
shown that this quantity is connected to the beam monochromaticity δE by the uncertainty rela-
tion τcδE ∼= h̄ and that the temporal coherence function becomes observable in the contrast
of an interference pattern when the energy transfer (�E) to the beams becomes comparable
to the energy width (δE) of the beam (|�(τ)| ∼= exp[–(�Eτ /h̄)2/2]). Diffraction of neutrons
from fast vibrating mirrors causes a diffraction-in-time phenomenon (Moshinski 1952). In prin-
ciple, this can give the basis for the measurement of the time-dependent coherence function
(Felber et al. 1996).

4.3 Partial Beam Path Detection

4.3.1 Stochastic and Deterministic Beam Attenuation

Here, we consider the influence of the imaginary part of phase shift (Eq. 3.18) which gives
rise to beam attenuation effects and can be attributed to a partial beam path detection. These
measurements are closely related to Einstein’s version of the double-slit experiment where one
retains a surprisingly strong interference pattern by not insisting on a 100% reliable beam path
detection (e.g., Jammer 1974). The interference contrast will become reduced because the inten-
sities arising from both beam paths become different and because the coherence function depends
on how the absorption takes place (Eq. 4.31). Stochastic absorption in this sense means that every
neutron has the chance to be absorbed and thereby detected, whereas deterministic absorption
means that only neutrons in a certain time or space interval become absorbed.

The absorption of neutrons is in any case a measurement of the particle’s location because
a compound nucleus is formed with an excitation energy of about 7 MeV from which the decay
products (mainly gamma rays) can be detected quite easily. Although the total number of absorbed
neutrons can be the same for either a stochastic or a deterministic situation, the effect on the
contrast of the interference pattern can be quite different.

Stochastic absorption exists when an absorber sheet is inserted in one of the beams of the
interferometer which, in addition to causing a phase shift, also causes a beam attenuation due to
the imaginary part of the index of refraction (Eq. 1.24). The related experiments were performed
at low interference order where the reduction of the contrast due to the influence of the coherence
function can be omitted. The change of the wave function must be calculated with a complex
index of refraction (Eqs. 1.25 and 3.18)

ψ ′ = ψ ei(χ
′+iχ ′′) = ψ

√
a eiχ

′
, (4.63)

where χ ′′ = σrND/2 and a = I /I0 = exp(–σrND) denotes the beam attenuation. After superposition
with the undisturbed beam one gets for the 0-beam intensity (compare Eq. 3.19)

I0 =
∣∣∣ψ0

I + ψ0
II
∣∣∣2 ∝

∣∣∣ψ0
I
∣∣∣2 ((a + 1) + 2

√
a cosχ ′

)
. (4.64)

All other factors influencing the contrast as they are discussed in Section 4.2 also exist in this case,
but they do not vary during such measurements. That is, the analysis of data is done according to
Eq. (4.46) where it is shown how the various effects can be isolated. Due to beam attenuation, the
amplitude of the interference fringes 2

√
a is proportional to the square root of the probability that

the particle has passed the absorber region and, therefore, the beam modulation is higher than the
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intensity of the weaker of the two interfering beams. If “absorber-detectors” are inserted in both
beams of the interferometer one gets

I0 ∼=
∣∣∣ψ0

I
∣∣∣2 [(a + b) + 2

√
ab cosχ

]
, (4.65)

which shows an unchanged visibility V =2
√
ab/(a+b) = 1 exists for the case of equal beam attenu-

ation a= b, although the transparency of the whole system decreases as given by T = (a + b)/2.
Scattering lengths measurements with highly absorbing phase shifters actually use this effect
(Rauch and Tuppinger 1985).

A deterministic absorber—for instance a slowly rotating periodic chopper—leaves the beam
unaffected, or absorbs it with an efficiency near to 100%. The on/off ratio of the chopper
determines the transmission probability a = topen/(topen + tclosed). The situation of deterministic
absorption, which is equivalent to a deterministic beam path detection, can also be achieved with
unequal slits introduced into the coherent beams. For a homogeneous beam a is determined in
this case by the ratio of the area of the smaller slit to that of the larger slit. In the quantum
mechanical sense this means an either/or measurement because the beam path is determined,
or not determined, for a certain time or space interval. Thus, in this case the intensity behind
the interferometer is the weighted sum of the open and closed conditions of the chopper (or the
relative areas of slit assemblies) and is given by

I ∝
[
(1 – a)

∣∣ψ0
II
∣∣2 + a∣∣∣ψ0

I + ψ0
II
∣∣∣2] ∝

∣∣∣ψ0
I
∣∣∣2 [(a + 1) + 2a cosχ ′], (4.66)

where the amplitude of the interference fringes 2a now depends linearly on the mean probability
of the neutron to pass the absorber region. The average intensity arising from the deterministic
and stochastic situations can be the same but the contrast and, therefore, the visibility (Eq. 4.32)
can be quite different, especially for very small values of a. The different outcomes are related to
the different amount of information one can deduce in these two different situations. According to
quantum mechanics in the case of the stochastic absorber one can only say that the wave function
of the particle has spread with different amplitudes over both beam paths, whereas in the case of
the deterministic time-dependent absorber the wave function has spread out over both beam paths
with the same amplitude or it was only in one beam path.

The related experiments performed with absorbing phase shifters and a slowly rotating chopper
disk yielded the expected results (Rauch and Summhammer 1984b). These experiments are also
related to delayed choice experiments of the Wheeler type, which are discussed in Section 4.5.5.
They are also closely related to “which way” information in the quantum interference of unsta-
ble particles, for example, the decaying neutron (Krause et al. 2014). The deterministic situation
approaches the stochastic one when the particular history gets lost due to a very fast or very
narrow slit chopper, which approaches the quantum limit to be discussed later. In the lower
part of Fig. 4.14 the normalized amplitudes of the interference pattern are shown (Rauch and
Summhammer 1984b, Summhammer et al. 1987).

The difference between the stochastic (
√
a) and the deterministic (a) behavior of the fringe

visibility becomes especially obvious at very small transmission probabilities—a regime which is
more difficult to access (Rauch 1989, Rauch et al. 1990). The measured values are also shown
in the lower part of Fig. 4.14. In the limit a→ 0 an interference pattern has an oscillation ampli-
tude orders of magnitudes larger than the residual beam intensity coming from the beam path
with the absorber. Namiki and Pascazio (1990) showed that before reaching this limit additional
effects must be considered. In this respect, the amplitude reduction must be calculated, including



Figure 4.14 Various beam attenuation methods. (Above) Absorbing material, slowly
rotating chopper, and absorption lattice; (middle) observed interference pattern for a sto-
chastic and a deterministic absorber and a compilation of the measured contrast as a
function of the transmission probability (below; Summhammer et al. 1987)
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variations due to thickness or density variations of the absorber plate (χ ′′ →χ ′′
0 + δχ ′′). Averaging

the exponential factor exp(–χ ′′
0 + δχ ′′) over a Gaussian distribution with a standard width δχ ′′

yields an amplitude for the stochastic case, which depends upon the square root of the transition
probability, namely

√
a =

√
a0 e(δχ

′′)2/2. (4.67)

For the deterministic case, the absorption factor (exp[–2(χ ′′
0 + δχ ′′)]) must be averaged, giving

a = a0 e2(δχ
′′)2 , (4.68)

since
√
a <

√
a0, the measured values lie below the

√
a curve (see Fig. 4.14). Similar experi-

ments with laser light have been reported by Awaya and Tomita (1997). Hasegawa and Kikuta
(1994) investigated this effect with synchrotron radiation with strong gas absorbers put into
an X-ray interferometer. They observed the

√
a behavior down to a transmission probability

of 2.6(9)× 10–4. Hafner and Summhammer (1997) used such an arrangement to demonstrate
“interaction-free” measurements with neutrons. A strong absorber put into one of the beam paths
produces a measurable output in an interferometer channel (0- or H-beam) even though this
channel has been adjusted to zero intensity in the interferometer mode. In this sense “interaction-
free” means that a negative result of a quantum measurement apparently modifies the wave
function of the non-detected object. Therefore, it is perhaps a triviality to state that some kind
of interaction plays an important role which is a kind of entanglement between the quantum
probe and the object (Geszti 1998, Karlsson et al. 1998). This can, in some sense, be consid-
ered as a modification of the boundary conditions. Interferometry is a proper tool for contrast
enhancement by means of producing dark field images of an object. This leads to the con-
cept of “weak measurements” (Aharonov and Vaidman 1990, Vaidman 2014) where one can
assign definite values to observables when they are correlated (entangled) in a contextual sense
(Chapter 7; Tollkansen 2007). Along these lines quantum Zeno tomography can be estab-
lished where only a few neutrons are needed to achieve high resolution images (Section 10.18;
Facchi et al. 2002).

The above absorber measurements have also been analyzed by de Muynck and Martens
(1990) and Tang et al. (2013) in terms of joint non-ideal measurements of the interference
and path observables. Using the formalism of positive-operator-valued measures, they repro-
duced the results described earlier. They also identified a region of unaccessible joint non-ideal
measurements which is based on the quantum limit of an inaccuracy relation, which is a kind
of a generalized Heisenberg uncertainty relation. It is shown that in stochastic absorption the
absorption process is fundamentally quantum mechanical, hence wiping out phase relations less
effectively. Deterministic absorption represents the consequences of an either/or nature in the
experiment. An analysis based on Barut’s (1988) compatible statistical interpretation of quantum
mechanics which favors de Broglie’s trajectories through the interferometer is given by Bozic and
Maric (1991). A computer simulation based on many-Hilbert-spaces theory also elucidates the
situation (Namiki 1988, Murayama 1990a, de Raedt et al. 2012). Their views show how models
which reveal how the interference pattern builds up event by event can be developed, and then
how individual deviations cause the reduction of the contrast.

The situation of a partially absorbing chopper wheel or of a partial absorbing sheet inserted
partially into one of the sub-beams of the interferometer is described by Hasegawa and Kikuta
(1991). The results show an intermediate behavior where the interference pattern becomes less
pronounced at an intermediate position than in the case of a complete insertion of the par-
tially absorbing sheet. X-ray experiments also verified that prediction. Related experiments with
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photons show a similar behavior independent of whether the mean number of photons inside
the interferometer was smaller (0.4) or considerably larger (400) than unity (Awaya and Tomito
1997). This is because the interference phenomena in the classical wave picture are formally the
same as the case of a single-particle interference state (Loudon 1983).

In this discussion we have used the following semi-classical definitions for stochastic and
deterministic absorption processes:

• An absorber is stochasticwhen the experimenter has no means, not even in principle, to predict
whether the neutron will be absorbed at any given point in the absorber region at any given
instant of time.

• An absorber is deterministic when, in principle, it is known with certainty what will happen at
any point in the absorber region at any instant of time.

These are idealizations defining a homogeneous gray absorber as stochastic and one consisting
of black-and-white sections as deterministic. The transmitted fraction of the beam, a, was derived
as 1 minus the absorbed fraction. While formally this is true, it needs closer inspection in the
quantum limit, as was done by Kaloyerou et al. (1992) and Hussain et al. (1992). When speaking
of the quantum limit we mean either the chopper period becomes smaller than the coherence
time τc or the spatial period of an absorbing lattice becomes shorter than the coherence length �c.
Thus, a reasonably consistent definition of transmission through an absorber leading to a common
picture of stochastic and deterministic absorbers in the quantum limit will be needed (Rauch and
Summhammer 1993). The new attempt must provide a smooth transition from very wide slits
to very narrow ones (atomic distances) and from very slow rotating choppers to very fast ones
(quantum choppers). The results discussed here have also been analyzed by de Raedt et al. (2012)
on the basis of a pure event-based particle model, where they could show good agreement between
calculated and measured values without using any wave equation.

The difference between deterministic and stochastic behavior can be enhanced by using mul-
tiplate interferometers. Similar calculations, as shown in Section 4.5.6, give for a double-loop
interferometer with an absorber (Td = exp(–σaND)) in beam “d” and a phase shifter (χf = �fk0)
in beam “f” for the deterministic case the visibility is

Vdet 2�f =
4Td cos(�fk0/2)

4cos2(�fk0/2) +Td
(4.69)

and for the stochastic case the visibility is

Vsto2�f =
4
√
Td cos(�fk0/2)

4cos2(�fk0/2) + Td
(4.70)

as shown in Fig. 4.15 (Suda et al. 2004). One notices that high visibilities can be achieved even
for small transmission probabilities through the absorber. When Td = 4cos2(χf/2) is chosen the
visibility approaches 1, which indicates a kind of homodyne situation for the measurement of weak
signals (Freyberger et al. 1995, Leonhardt 1997). It can also be considered as a kind of coherence
enhancement due to absorption.

4.3.2 Quantum Limit of Stochastic and Deterministic
Absorption

In order to complete the discussion of the previous section, we propose to take into account the
finite coherence volume associated with a real beam (Section 4.2.6). Plane wave pictures are only a
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Figure 4.15 Double-loop interferometer and visibilities for deterministic (right) and stochastic (left)
absorption (Suda et al. 2004)

limiting case that may result in misleading conclusions. Wave-packet formulations must be used to
account for the finite momentum spreads defining the original momentum space (�kx,�ky,�kz).
For the sake of simplicity we focus on the forward, 0-beam, behind the Mach–Zehnder-type inter-
ferometer used in the experiments. It is a superposition of two beams occupying the same phase
space volume with equal density within the appropriate coherence volume.

Attenuation is achieved either by neutron–nuclear absorption or by coherent or incoherent
scattering. An important distinction is whether scattering occurs within the initial coherence vol-
ume defined by the momentum space volume (�kx,�ky,�kz) or into other differential elements
of the momentum space. Here, we shall consider only the latter case as attenuation of the initial
beam, because in the former case a momentum filter cannot eliminate momentum components
that were changed by the attenuating object. Therefore, the non-removal probability of neutrons
from the initial phase space volume must be considered. This is in contrast to the previous more
semi-classical definition where all neutrons re-emerging from the absorbing region were
considered transmitted, and it implies, for instance, that the attenuation of an absorbing lattice
of given transmission depends on the lattice period and on the coherence volume of the beam and
not only on the open-to-closed ratio. Experimentally, the new definition implies that the detector
must only be sensitive to the phase space volume of the original beam. The purpose is to exclude
from the detector all experimentally accessible path information carried by the beam right behind
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the interferometer. This information can, of course, be picked up by other detectors. Applying
these criteria to the case of an absorbing lattice, the critical quantity is the momentum transfer due
to diffraction: ky(n) = ky(0)+2πn/s, where s is the spatial periodicity of the lattice. Our criterion is
whether ky(n)– ky(0) is larger or smaller than the momentum width�ky. That is, the deterministic
limit applies if

ky(n) – ky(0) = 2πn/s << �ky for n >0, (4.71)

and the stochastic limit applies if

ky(n) – ky(0) = 2πn/s >> �ky . (4.72)

The wave function behind a lattice can be calculated and contains separated diffraction peaks
if the incident momentum width is smaller than the separation of the first diffraction peaks.

The intensity modulation as a function of the phase shift χ is thus solely due to the super-
position of the non-scattered component ky(0) of the two sub-beams of the interferometer upon
recombination. Because of the finite width of the momentum distribution �ky, different momen-
tum states must actually be understood as such distributions, each centered around a different
ky(n) (see Fig. 4.16). In the case of an absorbing grating with a large spacing s in comparison to
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Figure 4.16 Comparison of phase spaces when various absorption lattices or choppers are
inserted into one beam of the interferometer with an undisturbed reference beam
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the coherence length in that direction (Eq. 4.54), the momentum distributions arising from both
beam paths overlap and in a hypothetical momentum measurement it is not possible to distin-
guish between scattered and non-scattered components of the beam. The scattered components
cannot be considered “labelled.” Therefore, only the truly absorbed part of the wave function is
removed from the original phase space volume. This leads to the deterministic behavior of the
interference pattern (Figs. 4.14 and 4.17). In the opposite (quantum) limit of a very small period
of the absorbing grating (Eq. 4.72), the distributions around the different ky(n) are all separate
and can be resolved by a hypothetical momentum measurement. In phase space this means that
at the detector only the momentum distribution around ky(0) still overlaps with the momentum
distribution of the reference beam, resulting in the stochastic behavior of interference (Fig. 4.17).
An interesting situation occurs in the transition region. Here, the momentum distributions around
the different ky(n) partially overlap, but are already partly distinguishable from the original one.
Accordingly, the interference pattern lies between stochastic and deterministic behavior. This sit-
uation is related to unsharp wave–particle measurement (Wooters and Zurek 1979, Mittelstaedt
et al. 1987). This behavior has been observed by rotating an absorbing lattice from the horizontal
(nearly deterministic) to the vertical (nearly stochastic) position (Fig. 4.17). In these lattice experi-
ments (Summhammer et al. 1987, Rauch and Summhammer 1992) the intermediate case between
deterministic and stochastic beam attenuation has been approached, because the coherence length
in the horizontal plane is rather large, as discussed in Section 4.2.2 (∼= 10μm), whereas the coher-
ence lengths for the other directions are considerably smaller (∼100 Å; Petrascheck 1987; Rauch
et al. 1987, 1996). With vertical slits the momentum change due to diffraction becomes com-
parable to the momentum width of the beam. Equivalently, the effective slit width (s = 50μm)
becomes comparable to the coherence length (�y

∼= 10μm) in that direction. This causes an
increased beam attenuation in the n = 0 phase space and an increased visibility of the interference
pattern, thus moving toward the stochastic limit.

From Fig. 4.16 it is also apparent that other phase space situations can be envisioned by manip-
ulating the reference beam properly. For example, if the same lattice is also introduced in the
reference beam, neutron states are shifted out of the phase space volume in the same manner
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Figure 4.17 Contrast as a function of the angle of an absorbing lattice in relation to the vertical and
horizontal coherence lengths of the neutron beam. The results indicate a transition from a deterministic
to a stochastic situation (Rauch and Summhammer 1992)
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in both beams, thus recovering full interference with a concomitant loss of any path informa-
tion contained in the scattered components of the wave function. Similarly an inhomogeneous
phase shifter with a large fluctuation of the phase shift χ causing small-angle scattering represents
a higher phase space removal probability than a homogeneous one. Then, compensation with
another inhomogeneous phase shifter in the other beam is not possible because of the random
mixture of different phase space elements. Thus, dephasing occurs as described in theories on the
measurement process (Section 4.6, Namiki and Pascazio 1991b, Zurek 1991). Computer simula-
tions concerning fluctuations of the number and of the distance between scattering centers and/or
the strength of the individual scattering center interaction with the neutron wave function also
demonstrate a reduction of the fringe visibility (Murayama 1990b). Although these results can-
not be taken literally due to the rather limited number of scattering centers which can be handled
numerically, they do show the increasing loss of contrast with increasing fluctuations.

A fast chopper may be considered in analogy to a narrow absorbing lattice. Such a chopper
produces bursts �t shorter than the coherence time τc (quantum chopping), which is given by the
related coherence length �c and the neutron velocity

τc = �c/v . (4.73)

In cases where �t ≤ τc, “diffraction in time” occurs and the lengths of the k vectors change due
to energy transfer, thereby broadening the spectral width of the beam (Fig. 4.16). Diffraction in
time can be treated in a manner similar to diffraction in real space as discussed earlier (Moshinsky
1952, Gähler and Golub 1984, Nosov and Frank 1991). The first diffraction-in-time effects for
neutrons were seen in the form of sidebands from reflecting surfaces vibrating at a frequency of
700 kHz (Felber et al. 1996), and also with fast mechanical choppers (Hils et al. 1998). These
methods could produce inelastic scattering effects as indicated in Fig. 4.16. In these cases, time-
dependent transmission operators must be used to calculate the wave functions behind the chopper
unit (Hussain et al. 1992, Imoto 1996).

All interferometric experiments performed so far with mechanical choppers have dealt with the
“deterministic” case where �t>>�tc (Heinrich et al. 1989, Rauch et al. 1992). From the exper-
imental point of view it should be mentioned that the quantum limit can be much more easily
reached by fast vibrating surfaces as mentioned earlier, or by means of a high-frequency resonance
spin flipper where the phase of the neutron wave packet can be varied by rapidly changing the reso-
nance magnetic field (phase chopping), i.e.,�tHF = 1/νHF = h/2μB0 < τc (Section 2.4; Alefeld et al.
1981, Badurek et al. 1983). This condition is equivalent to the constraint that the energy shift of
the beam is larger than the energy width �E of the incident beam (δEHF =2μB0 >�E). This also
explains why in the proposed “Einweg” (there is a beam path) experiment of Rauch and Vigier
(1990) the coherence properties become washed out in the case�EHF>�E (see Section 5.3). This
phenomenon can also be elucidated by the temporal coherence of the beam (as briefly discussed
in Section 4.1.2).

In conclusion, the present description of the neutron interferometer partial absorber experi-
ments provides a smooth transition from deterministic behavior in the classical limit (characterized
by scattering within the original phase space volume), to stochastic behavior in the quantum limit.
The key physical ingredient is that the pure transmission probability is replaced by a phase space
non-removal probability. The complementarity principle between interference and beam path
detection is thereby preserved.

In light optics two-slit experiments in the time domain have been reported (Sillitto and Wykes
1972). In this case electro-optical shutters were antiphase-modulated such that an opening occurs
more than once during the coherence time of a low intensity laser beam. Thus, it is to be expected
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that interference effects are likewise possible in a neutron interferometer equipped with an appro-
priate shutter mechanism keeping one beam path closed when the other one is open and vice
versa (Brown et al. 1992). In the plane wave treatment where the coherence time of the incoming
wave is always larger than the open–close period of the chopper (tc = 2π /ωc) a significant beam
modulation is anticipated. That is, an interferogram will take the general form

I∝
(
1 + 2

∝∑
–∝
c2n(–1)

n cos(χ(kn))

)
, (4.74)

with

kn
2 = 2m(ω0 – nωc)/h̄,

cn =
sin(nπ /2)

nπ
,

which indicates the necessity of a phase shifter in a dispersive position (Section 3.1.2). The rather
short longitudinal packet (coherence) length of any practical neutron beam makes the realization
of such a double-slit diffraction in time rather difficult.

4.3.3 Unsharp Wave–Particle Behavior

All the coherence and beam attenuation measurements discussed in Sections 4.2 and 4.3 can
be related to the concept of unsharp wave–particle measurements or equivalently to an unsharp
wave–particle preparation. According to this view, complementary variables can at least be meas-
ured simultaneously in an approximate sense (Wooters and Zurek 1979, Bartell 1980, Busch 1987,
Mittelstaedt et al. 1987, Tang et al. 2013). Thus, for example, a surprisingly strong interference
pattern can be retained although the beam path has been observed to a high degree by putting
an absorber detector into one of the interferometer beams (Fig. 4.14). In some other cases a
preparatory stage is achieved which can be brought to a real measurement with an associated col-
lapse of the wavefield afterwards, but which can also be brought back together coherently (at least
approximately) to interfere by various phase-echo methods. A preparatory stage can be achieved
by coherent diffraction or phase-shift effects which produce states without overlap with the state
of the reference beam of the interferometer. One has different information about the wave- and
particle-like behavior in the various coherence experiments discussed above and, therefore, a for-
mulation within the framework of the Shannon information-theoretic entropy approach seems
likely. Some of the related formulations proposed in the literature will be discussed (Zeilinger
1986a,b; Kraus 1987; Greenberger and Yasin 1988; Rauch 1989b; Englert 1996, 1999).

Here, a general formulation based only on wave function properties is given. For this more
general discussion the interference pattern which delivers information about wave and particle
properties can be written as (Eq. 4.46)

I =<
∣∣∣ψ I + ψ II

∣∣∣2 >= T
[
1 + V cos(�χ)

]
, (4.75)

where T is the generalized transparency of the system which is given by various attenuation and
labeling effects, e.g., by T = (a + b)/2, and V is the generalized visibility (Eq. 4.49). In the case of
statistical absorbers as Vs = 2

√
ab/(a + b) and for deterministic absorption Vd = 2ab/(a + b) (see

Eqs. 4.65 and 4.66). The visibility is also reduced at high order due to the finite coherence length
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of the beams. This effect can be taken into account with Vc = exp[–χ2(�k/k)2/2] (Eq. 4.35). The
transparency and visibility can be influenced by various other deterministic and stochastic effects.

A more general view of the wave–particle dualism appearing in interference experiments can
be given by means of a Poincaré sphere (or circle) representation (Mittelstaedt 1989). In this
case, the accessible area is projected onto a hemisphere of the Poincaré sphere. In this case, the
wave properties are described by the square of the fringe visibility and the path distinguishability in
terms of the diagonal terms of the density operator PD (Wooters and Zurek 1979; Greenberger and
Yasin 1988; Mittelstedt 1989; Mandel 1991; Jaeger et al. 1995; Englert 1996; Ghose 1999, 2009,
Badurek et al. 2000, Tang et al. 2013). This connection is known as the Greenberger–Englert
relation (duality relation)

P2
D + V 2 ≤ 1. (4.76)

Purely coherent (wave-like) states lie at the equator while the pure particle character appears
at the poles (Fig. 4.18). Phase differences can be defined in any equatorial plane but not at
the poles. Mixed states lie inside the sphere which provides also a formal representation of the
background of any interference experiment. The Poincaré representation will also be used in
Section 6.8.4 to describe absorption as a generalized phase phenomenon. A discussion of inter-
ferometric complementarities including two-particle interferences has been given by Jaeger et al.
(1995). Their conclusion is rather similar to that of Mittelstaedt (1989). Englert (1996) formu-
lated Eq. (4.76) as an inequality which describes interferometric duality. In this terminology P
denotes the predictability or distinguishability of the paths through the interferometer. Whether
Eq. (4.76) can be related to the uncertainty principle or to the complementary feature only is
still under discussion (Busch and Gallawy 2006). Dürr and Rempe (2000) showed that explicitly
for some suitably chosen observables. The observation of an interference pattern and the acqui-
sition of which-way information are mutually exclusive, which defines duality in a very general
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Figure 4.18 Presentations of the
particle-like and the wave-like behav-
ior of a quantum system inside the
interferometer
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sense. Experiments performed with atom interferometers support this view (Dürr et al 1998).
Dedicated neutron interferometry measurements have been performed with a double-loop inter-
ferometer where visibility and distinguishability can be controlled by means of phase shifters in
loop I and loop II, respectively (Fig. 4.19). Good agreement between theory and experiment has
been achieved (Zawisky et al. 2002, Zawisky 2004).

The measure for the distinguishability as needed for Eq. (4.76) can also be obtained by an
analog of Pauli’s spin operators (Englert 1996), where the two possible paths through the inter-
ferometer are labeled as +1 (up) and –1 (down) states, respectively. The predictability can be
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related to the likelihood L for each and every event that the particle took the most likely path
(PD = 2L – 1). In this respect a close connection between complementarity, the uncertainty rela-
tion, and the superposition principle has been established (Björk et al. 1999). For orthonormal
states of the two paths through the interferometer we can define L from the probabilities w+

and w–, for the two events (L = (1 + |w+ – w–|)/2;w+ + w– = 1). Holladay (1998) introduced a
“which-value-interference” form of wave–particle complementarity which is claimed to be rooted
only on the formal structure of quantum theory. A connection of the wave–particle behavior with
the quantum erasure features has been shown by Englert and Bergou (2000) and for the neutron
Interferometric case by Badurek et al. (2000).

The smooth transition between wave and particle properties is closely related in any measure-
ment theory. It always involves the question of the wave function collapse and whether a classical
observer is essential as in the Copenhagen interpretation of quantummechanics; or, if it is possible
that a pure state can evolve to a mixed state without resorting to classical concepts (Machida and
Namiki 1980, Guilini et al. 1996). In the latter case, a dephasing process is postulated which causes
increasing decoherence to reach the limit of a complete measurement (Namiki and Pascazio 1991,
Kono et al. 1996). In connection with stochastically and deterministically driven beam splitters of
Mach–Zehnder light interferometers, DeMartini et al. (1992) gave the division between particle-
and wave-like aspects in terms of the Shannon information entropy which can be adapted to the
description given earlier. It has been shown that a stochastic beam splitter results in a decrease of
information entropy related to the particle trajectories and a deterministic beam splitter causes an
increase in information entropy.

Afshar et al. (2007) performed related double-slit experiments with photons and used a
grid placed at the minimum of the interference pattern while measuring which-way information
and concluded a persisting interference pattern remains from the small reduction of the overall
intensity. Thus, visibility has been determined with a minimum wave function perturbation and
afterwards which-way information has been obtained by a destructive measuring process. They
report a violation of the Greenberger–Englert relation (Eq. 4.76) by a factor of 1.35. In this case
the measurement of PD and V happened at different places and different times. Consequently,
one may argue that the particle and the wave are not present simultaneously. Nevertheless, the
authors claim that they are present simultaneously when the photons pass through the pin-
holes. Whether the Englert–Greenberger–Yasin inequality is applicable in this case is still not
settled.

An additional effect arises when the neutron is taken as an unstable particle, where the decay
process acts like the statistical absorption discussed earlier. In this case some “which path” infor-
mation can be obtained and interference can be preserved. Such effects are based on the fact that
the time spent by the neutron in both beams may be different due to gravity or due to a phase
shifter. The expected magnitude of the effect is on the order of the ratio of the coherence time
(τc = �/v, Eq. 4.73) divided by the decay time (τd; Table 1.1), which is extremely small and not
yet accessible (Bonder et al. 2013, Krause et al. 2014).

4.4 Counting Statistics

4.4.1 General Relations

In any neutron interferometer experiment the primary source is a thermal source represented
by the moderator of a reactor or a spallation neutron source. Neutrons are produced in fission or
spallation processes having a broad energy distribution with a mean energy of about 2 MeV. These
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neutrons are successively slowed down by collisions with the moderator atoms where they lose on
average an energy per collision of

�E =
E
2

4A

(A + 1)2
. (4.77)

Here A is the mass ratio of moderator atom/neutron. The moderation in hydrogenous materials
requires on the average about 20 collisions for a slowing down to thermal energies (Eth = kBT = 25
meV) and a time of about 10 μs. The neutrons reach thermal equilibrium with the moderator by
multiple up and down scattering events, finally reaching a Maxwellian energy distribution given by

φ(E) = φth
E

(kBT)2
e–E/kBT

[
neutrons/m2/s/eV

]
. (4.78)

The number of collisions in the thermal regime is determined by the ratio of the mean lifetime
of neutrons within the moderator (�0 = (σaNvth)–1), which is influenced by the leakage and to the
mean-free path length for collisions (�s = (σsNvth)–1). For light water the number of collisions of
thermal neutrons is about 500. The total thermal flux can reach values φth ∼= 1015cm–2s–1. This is
many orders of magnitudes smaller than that of most light or electron sources.

The number of countsN registered in a detector in a certain time interval T obeys a Poissonian
distribution (Glauber 1963, Walls and Milburn 1994)

P(N) =
N

N

N !
e–N , (4.79)

whose variance (�N)2 =N
2
– N

2
=N , where the mean counts is N = I · τ , for an intensity I and

a time τ . This Poissonian distribution is also a signature for a coherent state behavior. The time
sequence of detection of such neutrons is completely random in contrast to other kinds of radi-
ations. It should be mentioned that sub- and super-Poissonian distributions can be achieved by
dead-time effects of the detector or other feedback mechanisms of the system and by various
quantum superposition effects, as well. The conditional probability of detecting a neutron within
a time interval t when another one was detected at t = 0 is given by Mandel (1963) and Glauber
(1968):

W (t) = I e–I t. (4.80)

This is also the expected time-interval distribution function representing the pair-correlation
function of the beam.

A coherent state |φ> is defined as an eigenstate of the annihilation operator â|φ >=α|φ > and
it may be expanded in terms of number (Fock) states |n > as (Glauber 1963, Suderashan 1963)

|φ >= e–|φ|
2/2
∑
n

φn

(n!)1/2
|n > , (4.81)

where |φ|2 =N denotes the mean particle number, interpreted in a time-averaged sense. The num-
ber states are formally created by successive applications of the creation operator on the vacuum
state (Glauber 1963, Walls and Milburn 1994):

|n > =
(a+)n

(n!)1/2
|0 > . (4.82)
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A coherent state can be regarded as a state with the most classical behavior, exhibiting minimum
Gaussian distributions for the conjugate variables and it exhibits Poissonian particle statistics
(e.g., Zurek et al. 1993). Lamb (1995) has also addressed the equivalence of a radiation field
in free space with a system of simple quantum-mechanical oscillators representing a coherent
state. The superposition of coherent states can produce non-classical states exhibiting squeez-
ing phenomena. These squeezed states have been extensively discussed in quantum optics (see
also Section 4.5.2). Properties of coherent states of free particles are built from a continuous
spectrum of states and have additional features similar to harmonic oscillator states (Lamb 1995,
Spiridonov 1995). The analogy between coherent states and free, but coherently coupled parti-
cle motion inside an interferometer needs further justification (see also remarks at the beginning
of this chapter). By weakening the harmonic potential which is generally used to define coherent
states, the characteristic level structure disappears and reaches the limiting case of a momentum
distribution function which characterizes a freely moving particle beam. The non-spreading of
the coherence lengths which are determined by the momentum distributions can be seen as an
analog to the non-spreading wave-packet phenomena in coherent atomic states. In addition, in a
beam experiment a time average must be taken instead of an ensemble average. These averages are
equivalent in any ergodic interpretation of quantum mechanics, which has been tested explicitly
with atoms (Huesmann et al. 1999). Coherent states exist for boson and fermion fields, as well.
However, since the bosonic and fermionic algebras commute, their coherent states can only be
constructed separately (Klauder 1960, Zhang et al. 1990).

4.4.2 Analysis of the Neutron Counting Statistics
in Interferometry

Consider the case where neutrons are registered repetitively many times for a certain fixed time
interval; or better yet for a certain number of incident beam monitor counts, which compensates
for long-term variations of the reactor power. The related histograms for a mean total particle
number N ∼= 2 and N ∼= 50 measured at the maximum and minimum of the interference pattern
of the 0-beam are shown in Fig. 4.20 (Rauch et al. 1990). The agreement with the predicted
Poissonian distribution is excellent (Eq. 4.79).

Similar measurements have been made where the total number of counts in the main detector
was fixed instead of the monitor counts. In this case, the Poissonian distribution changes to a
binominal one due to the constraint of a maximal count number (Nmax) (e.g., Walls 1966)

PB(N) =
Nmax!

N !(Nmax –N)!
f N(1 – f )Nmax–N , (4.83)

where f denotes the average fraction of counts of the detector in the forward (0-beam) direc-
tion where the measurements were made. The agreement between predicted and measured
distributions is again very good.

The measured Poissonian distributions are a fingerprint of coherent states. Non-classical states
can be constructed by quantum superposition of a finite number of coherent states (Walls 1983,
Yurke and Stoler 1986, Loudon and Knight 1987, Schleich et al. 1991). Superposition of such
states can produce squeezed states, which are non-classical states with fluctuations of one quantum
conjugate quantity below the coherent state value. This manifests in several squeezing phenom-
ena as they will be discussed in Section 4.5.2 (see Fig. 4.31). The related distribution functions
can be narrowed or widened or can take an oscillatory structure depending on the mean particle
number and the squeezing factor r, which describes the change of the variance of the squeezed
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and minimum of the interference pattern for different mean particle num-
bers. Poissonian distributions appear when a constant measuring time
is chosen (left) and binomial distribution appears when the number of
counted neutrons is kept constant (right; Rauch et al. 1990)

state compared to the coherent state (Yuen 1976; Buzek and Knight 1991; Dodonov et al. 1994,
1995). In optimal cases, the number fluctuations can be suppressed (s) by squeezing as

(�N)s2 = N e–2r . (4.84)

In this case, the distribution function is more complicated:

P(n) = (n!μ)–1
(
ν

2μ

)n∣∣∣∣
(
Hn

(
β√
2μν

))∣∣∣∣
2

exp
[
–β2 +

ν

2μ
β2 +

ν∗

2μ
β∗2

]
, (4.85)

where

ν = sinh r e2 iφ ,μ = cosh r,

β =μ α + ν α∗,
andHn are the Hermitian polynominals. Even and odd coherent states appear, being characterized
by having zero odd or even particle states, respectively (Buzek and Knight 1995b). The expected
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change of the distribution function (Fig. 4.21) is quite analogous to the observed modulation of
the momentum distribution in the case of Schrödinger cat-like states appearing at high-order inter-
ferences (Section 4.5.2). All these phenomena show characteristic features of non-classical states
which arise from interference in phase space (Schleich and Wheeler 1987). The complementary
situation concerning the phase and number distribution of angular momentum states has been
elucidated by Agarwal and Singh (1996).

4.4.3 Particle Number–Phase Uncertainty Relation

The problem of quantum phase is as old as quantum mechanics itself. Its measurement requires a
continuous spectrum of registered particles. The accuracy of the phase determination is related to
the number of registered particles. The most commonly used particle number–phase uncertainty
relations are given by Carruthers and Nieto (1968).

Here we deal first with a classical statistical analysis of measured interferometry data. We will
focus on the limit of rather small particle numbers where the particle number–phase uncertainty
relation plays an important role. In a realistic experiment, the intensity behind the interferometer
is measured atM different positions j of the phase flag for a certain period of time or a number of
monitor counts. Interferometry theory predicts that
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Nj = N
[
1 + V cos(φj)

]
, (4.86)

as given by Eq. (4.46). Standard statistical theories yield an estimate of φj with an uncertainty�φj.
If the mean counting rate N and the fringe visibility V (V =<|�(�)|/|�(0)|>) are known from
other experiments, then

(�φj)2 =
Nj

N
2
(V 2 – 1) + 2N Nj –Nj

2
, (4.87)

which follows directly from writing (δNj)2 =
(
∂Nj
∂φj

)2
(δφj)2 = Nj . From theM different phase flag

settings one obtains an estimate for the total phase uncertainty �φ by χ2 optimization, namely

(�φ)2 =

⎡
⎣ M∑

j=1

(�φj)–2

⎤
⎦

–1

. (4.88)

Approximating the sum by an integral over a definite number of interference fringes one obtains
a particle number–phase uncertainty relation, namely

(�φ)2(�N)2 =
1

1 –
√
1 – V 2

, (4.89)

which approaches unity as the visibility V → 1. Here �N denotes the standard deviation of the
total counting rate, N , registered at this detector in the 0-beam. The related distribution obeys
Poissonian statistics, so that �N =

√
N , which is a basic feature of the thermal source emission

process.
If one includes the counting rates observed by the other detector (the H-beam), or if one uses

the constraint Nj
0 +Nj

H =NB (binomial scan), one obtains

(�φ)2Nt =

⎡
⎣ f V 2

2π

2π∫
0

sin2α dα
1 – f + V (1 – 2f ) cosα – f V 2cos2α

⎤
⎦

–1

, (4.90)

where f is the average fraction of the counts the first detector (0-beam) receives and Nt =MNB is
the total number of neutrons counted. (�φ)Nt approaches

[
1 +

√
1 – 2f

]–1
as the visibility V → 1;

and furthermore it approaches unity if f = 1/2. Comparison of Eqs. (4.89) and (4.90) shows that
using the counts of both detectors decreases the uncertainty of the phase measurement by a factor
of (N /Nt)1/2. A coupling of the interference counting rate to the monitor counting rate increases
the uncertainty product up to 1% (for a monitor efficiency of 10–4). Similar results have also been
obtained by Yurke (1986) for an ideal Mach–Zehnder interferometer.

If the visibility is considerably smaller than 1 the term
(
1 –

√
1 – V 2

)–1
in Eq. (4.89) can be

approximated by 2/V 2, which yields for monitor scans (Poissonian fluctuations)

(�φ)2N =
2
V 2

(4.91)
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and for binomial scans

(�φ)2Nt =
2N H

N0V 2
. (4.92)

The difference between this result and the exact formula (Eq. 4.88) is of order 5% for V = 0.5.
Related experiments have been performed at the interferometer setup at the 250-kW TRIGA

reactor in Vienna, which certainly is a proper place for the investigation of low counting-rate
phenomena (Rauch et al. 1990). Interference patterns were taken for different fixed times (actually
fixed monitor counts). Figure 4.22 shows some representative results. These measurements were
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repeated manifold and the data points were fit by means of a least squares fit procedure according
to Eq. (4.86). From the repetitive measurements, a set of interferograms yielded values for�N and
�φ. The results obtained are compared with the expected behavior in Fig. 4.21. A least squares fit
procedure which must be completed by a maximum likelihood prescription has been used, because
at rather low particle numbers systematic errors may occur. The agreement with the predictions
of Eqs. (4.89) and (4.80) is again fairly good. At the same time these experiments demonstrate
the build-up of the interference pattern from single-neutron events as has been demonstrated in a
similar fashion for electron interference patterns (Lichte 1988, Tonomura et al. 1989).

The formulation of the particle number–phase uncertainty relation in this chapter is based
on standard probability theory and must be completed in the case of a more rigorous treat-
ment including quantum mechanical effects (Carruthers and Nieto 1968, Nieto 1977, Pegg
and Barnett 1988, Lee 1995). The fermion character of neutrons does not show up directly
because the low intensities involved in any kind of neutron interference experiment make particle–
particle interaction negligible. In this case Fermi–Dirac statistics approach Bose–Einstein statistics
because successive neutrons are generally separated in time, space, and momentum (Ledinegg
and Schachinger 1983). Such systems are generally described by coherent states whose associated
number states are Poissonian distributed (Eq. 4.78) and whose phase difference–particle number
uncertainty relation can be written as (Gerhard et al. 1973, Nieto 1977)

(�φ)2 = 1 – e–N –N2e–4N
[ ∞∑
n=0

Nn

n!
√
n + 1

]4

, (4.93)

which reduces for N >> 1 to the statistical limit discussed earlier (Eqs. 4.75 and 4.78) but which
deviates from that value for N → 0 due to projection states onto the vacuum state. This behavior
has also been verified in the analysis of low counting rate photon experiments (Gerhard et al. 1973,
Nieto 1977). The construction of coherent Fermion states is described by Zhang et al. (1990).

The classical limit (Eq. 4.91, �φ ≥ (�N)–1 = (N)–1/2) corresponds to the so-called shot-noise
limit or the coherent state limit and comes from the Heisenberg uncertainty relation (Dirac 1927).
On the other hand, quantum mechanic does not set any restriction to the fluctuations �N , other
than it cannot exceed the mean number of particles, which sets an upper limit

�φ ≥ 1
<N >

. (4.94)

This Heisenberg limit follows also from general arguments of the complementarity principle, but
it requires non-classical quantum states as discussed in detail by Yurke et al. (1986) and Ou
(1997). The Heisenberg limit (Eq. 4.92) can also be approached by using multipath interfer-
ometer arrangements (Zernike 1950, d’Ariano and Paris 1997). In this case classical (coherent)
radiation can be used and the phase sensitivity increases by the number of available pathsM

φ =
1√
NM

. (4.95)

This technique can be used in case of multiplate interferometers and it should be useful when
measuring small phase shifts. There are no fundamental limits on the accuracy when measuring
small phase shifts but there are technical problems of realizing multipath interferometers.

A comparison between light (laser) and matter wave phase sensitivity is given by Scully and
Dowling (1993), which results in the statement that matter wave interferometers may be superior
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Figure 4.23 Comparison of the Bayes (interval) and maximum likelihood (point)
phase estimation in the case of various mean particle numbers as a function of the
number of measurements made (Zawisky et al. 1998)
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by a factor of 104 when they are used as gyroscopes to detect rotation effects (Sagnac effect—
see Section 8.2). A more detailed analysis of interferometric phase measurements must take into
account the phase distribution functions, which can be obtained by a multiple measurement of
interferograms (Beck et al. 1993, Smithey et al. 1993, Hradil et al. 1996, Zawisky et al. 1998, Theo
et al. 2011). The influence of the phase distribution function becomes stringent for rather small
counting rates where root-mean-square estimations can fail. Particularly, the difference between
measurements with and without accumulation of counted data may appear crucial. Figure 4.23
shows the difference of the phase estimation based on a Bayesian analysis (interval estimation)
and maximum likelihood (point) estimation for a set of interference experiments performed with
rather low mean counting rates, N = 0.25 and N = 3.03, respectively (Zawisky et al. 1998). The
visibility of the actual experiment has been included as well. Such investigations require a much
more complicated measuring and data-handling procedure but they are capable of detecting any
systematic failure of an experiment.

The extraction of the quantum phase from restricted data sets is a long-standing problem. The
operational approach of Noh et al. (1992, 1993) is adapted to a multiport homodyne detection
method. This method can be used for a Mach–Zehnder interferometer situation, when an addi-
tional 0- and π /2-phase shifter is applied. Slight improvements to this operational approach are
feasible when non-Gaussian statistics and phase-sensitive signal and noise exist (Rehacek et al.
1999, Teo et al. 2012). In all interferometer experiments phase distribution functions play an
important role, which indicates that in all pragmatic interpretations of quantum mechanics the
results of measurements depend irreducibly on both the state preparation and the measurement
apparatus.

4.4.4 Intensity Correlation Experiments

In this case one must distinguish between correlations on a time scale much larger than the coher-
ence time τc, and also comparable with the coherence time (Hanbury-Brown and Twiss effect).
First we deal with t >> τc = �c/v. See Eq. (4.71).

Higher order correlations in quantum optics are generalizations of the two-point-two-time
correlation function (Eq. 4.17; Glauber 1963)

G(n)(r1, t1; r2, t2;.....; rn, tn; r ′
1t

′
1;.....r

′
nt

′
n)

= Tr
[
ρψ∗(r1, t1).....ψ∗(rn, tn) • ψ(r ′

1, t
′).....1.....ψ(r ′

nt
′
n)
]
.

(4.96)

Interest in higher correlations (n=2) is mostly connected to the intensity or particle number
correlation, which is given by

G(2)
1,2(R, t) = Tr [ρ I1(0, 0))I2(R, t)] , (4.97)

where R= < (r1 – r′) – (r2 – r2 ′) > and t= < (t1 – t1 ′) – (t2 – t2 ′) >. These times are much larger
than the coherence times τ c defined by the related coherence length (Section 4.1, Eqs. 4.33 and
4.73). These coherence lengths and times are related to the self-correlation function of the neutron
(see Section 4.1). For large times (t >> τc) the pair correlation function can be measured, which
gives the conditioned probability that a neutron arrives in a detector of a time interval t later than
another has arrived at τ = 0. For a Poissonian beam this function is given by Eq. (4.80) as (Mandel
1963, Glauber 1968)

G(2)(0, t) = 〈I1(0, 0) I2(0, t)〉 = I e–It, (4.98)
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which exhibits an exponential behavior depending on the mean intensity I . Thus, in an interfer-
ence experiment it depends on whether this correlation function is measured at the maximum,
minimum, or any other position of the interference pattern (Fig. 4.24). This provides the basis
for post-selection experiments in time, which are described in Section 4.5.4 (Zawisky et al. 1994).
The counting statistics for pairs of neutrons arriving within a time interval (0 ≤ t ≤ τ = 1/I)
and (1.5τ̄ ≤ t ≤=∝) are shown in Fig. 4.25. It is visible by eye that these distributions are more
regular than the Poissonian distribution. This indicates sub-Poissonian and non-classical features.
Related experiments have been performed at the 250-kW TRIGA reactor in Vienna where the
arrival time of each neutron was registered, permitting the identification of time correlation in the
course of data analysis. Related experiments will be discussed in connection with post-selection
experiments (Section 4.5.4; Fig. 4.36).

For times smaller than the coherence time (t < τc) self-correlation effects like the Hanbury-
Brown and Twiss (1956) effect are expected; but they are difficult to approach due to the smallness
of τc (see Eq. (4.7.3) and Section 10.9). In this case coincidence measurements of split beams are
performed with high resolution detectors. The coincidence rate can be written as (Mandel and
Wolf 1995, Klein and Furtak 1996, Fox 2006)

C =

+T /2∫
–T /2

P2(r1, t; r2, t + τ)dτ , (4.99)

where P2 denotes the joint detection probability at position r1 and r2. It depends on the efficiencies
of the detectors ηi , their sizes Si , and the intensities at these positions (I(r1, t1) and I(r2, t2)). Here

P2(r1, t1; r2, t2) = η1η2S1S2 〈I(r1, t1)I(r2, t2)〉 = η1η2S1S2 〈I(r1)〉 〈I(r2)〉�t�τ
[
1 – |γ (r1, r2, τ)|2

]
.

(4.100)
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Figure 4.25 Computed arrival times of a Poissonian
distributed beam (top) and pairs whose arrival times
lie within a short interval (middle) and within a late
interval (bottom; Zawisky et al. 1994)

When a stationary and a cross-spectral pure situation for fermions is considered one gets

γ (r1, r2, τ) =
〈�∗(r1, 0)�(r2, τ)〉√〈I(r1)〉 〈I(r2〉 = γ (r1, r2, 0)γ (τ) (4.101)

and with Eq. (4.98)

C = η1η2S1S2T
[
1 –

τc

T
|γ (r1, r2, 0|2

]
, (4.102)
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Figure 4.26 Experimental setup and results of a Hanbury-Brown and Twiss
experiment demonstrating the fermion anti-bunching effect. Reprinted with per-
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Society.

where it has been assumed that τc ≤ T /2, which gives

T /2∫
–T /2

∣∣γ (τ)∣∣2dτ ≈
∞∫

–∞

∣∣γ (τ)∣∣2dτ = τc. (4.103)

An experiment related to this cross-correlation of detection in time at two positions has been
performed by Iannuzzi et al. (2006) at a neutron back-scattering instrument and with a mosaic
graphite single crystal as beam splitter at the Institute Laue-Langevin in Grenoble. The coherence
time was about τc ≈ 16 ns, the detection time resolution was about T ≈ 1.1μs. A small dip has
been observed when the flight paths to both detectors were equal (Fig. 4.26). It may happen that
the small and perfect mosaic blocks act as coherent 50:50 beam splitters and as a microscopic
source, resulting in a macroscopic coherence area at the position of the detectors. A similar exper-
iment has also been done by the same authors when they used a high-resolution, position-sensitive
detector. They again found a dip structure between neighboring pixels (Iannuzzi et al. 2011).
The observed effect is small and certainly needs more attention for verification in the future.
Some discussion about these measurements can by found in the literature (Varro 2008, Yuasa et a.
2008).

4.5 Post-selection Measurements

Various post-selection measurements in neutron interferometry have shown that interference
fringes can be restored even in cases when the overall beam does not exhibit any interference
fringes due to spatial shifts larger than the coherence lengths of the interfering beams. This
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Figure 4.27 Schematic diagrams for various post-selection
experiments which permit the extraction of additional infor-
mation behind the interferometer after interference and
recombination
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indicates that the simple picture which predicts interference only when wave packets spatially
overlap is not quite true. Thus, the degree of coherence as defined in Eq. (4.49) can be essentially
zero but coherence can actually persist. A rather misleading language has evolved in this field.
Interference actually occurs no matter how large the optical path difference between two sub-
beams or two wave packets may be. From classical optics it has been known for many years that the
coherence properties manifest themselves in a spatial intensity variation for spatial shifts smaller
than the coherence length and in a spectral intensity variation for large phase shifts (Mandel 1962,
1965; Heineger et al. 1983; James and Wolf 1991; Zou et al. 1992; Agarwal and James 1993).
A detailed experimental study of the spectral modification in an optical Mach–Zehnder interfer-
ometer has been reported by Rao and Kumar (1994). This phenomenon becomes more apparent
for less monochromatic beams and can cause overall spectral shifts (Faktis and Morris 1988, Wolf
1989) and even squeezing phenomena (Jansky and Vinogradov 1990, Schleich et al. 1991). The
related phenomena for matter waves have been discussed by Rauch (1993a, 1995b) and investi-
gated experimentally by Jacobson et al. (1994). Various methods of postselection are indicated in
Fig. 4.27. We will see that in all cases of post-selection measurements, more information can be
extracted from the experimentally observed events than is usually done.

4.5.1 Post-selection in Ordinary Space

The intensity, the visibility, and the intrinsic phase (see Eq. 4.46) depend on the position within the
beam cross-section, as shown in Fig. 2.9. The overall parameters of these quantities are mean val-
ues obtained from the local distribution. For the operation of a good interferometer an essentially
flat distributions is desirable, which can be achieved by a well-balanced interferometer operated
under stable environmental conditions.

In any interference experiment, the beam leaving the interferometer is adjusted to obtain max-
imum contrast (i.e., maximum fringe visibility, V ). However, the contrast varies across the beam
cross-section and across the Borrmann fan due to the fundamental dependence of the crystal
reflectivities on the deviation of the individual momentum k from the momentum kB fulfilling the
exact Bragg condition; and also due to unavoidable imperfections of the crystal and different sen-
sitivities against various strains, vibrations, and stray fields (Fig. 2.9). The intensity profile behind
the interferometer can be calculated in detail on the basis of plane wave or spherical wave theory
of dynamical diffraction from perfect crystals. These calculations are summarized in Chapter 11,
where also an overview of the profiles inside and behind the interferometer is shown. Figure 4.28
shows the intensity profile measured by scanning a narrow slit across the Borrmann fan and the
measured contrast at different positions (Bauspiess et al. 1978). One notices that the contrast and
the internal phases (see Eq. 4.46) are spatially dependent, each part contributing differently to the
overall contrast (in this case 42%). Now, modern position-sensitive detectors can be used and the
contrast per pixel Vi can be measured. This provides more information than the overall contrast
( Vi

.Ii /I > V0). Future applications of this feature of a general neutron interferometry experiment
is expected to lead to phase contrast microscopy of density fluctuations in material media. When
testing new interferometers and optimizing them for a high contrast, it is obligatory to scan the
contrast of the exit beam across its cross-section. More detailed measurements dealing with spatial
post-selection are discussed in Chapter 2, Fig. 2.9.

4.5.2 Post-selection in Momentum Space

In the course of several neutron interferometer experiments it has been established that
smoothed out interference properties at high interference order can be restored even behind the
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Figure 4.28 Post-selection experiment in ordinary space by meas-
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(Bauspiess et al. 1978)

interferometer when a proper spectral filtering is applied (Werner et al. 1991, Kaiser et al. 1992,
Rauch et al. 1992, Jacobson et al. 1994). The experimental arrangement with a schematic indi-
cation of the wave packets at different parts of the interference experiment is shown in Fig. 4.27
(middle). An additional post-monochromatization (analyzing filter) is applied behind the interfer-
ometer by means of a single crystal brought into the Bragg reflecting position, thereby defining a
narrower momentum band than the pre-monochromator.

Using Eqs. (4.16) and (4.31) in a time-independent form, the momentum-dependent inten-
sity is

I0(�,k) =
∣∣ψ0

I(r,k) +ψ0
II(r+Δ,k)

∣∣2 ∝ ∣∣a(k)∣∣2 (1+ cos(�(k)·K )), (4.104)

whereas the overall beam intensity is given by an integration over k

I0(Δ0)∝ 1 + |�(Δ0)| cosΔ0 · K 0. (4.105)

Here K = nk and Δ0 is the spatial shift for the central k0-component of the packet due to a phase
shifter (Eq. 4.44, Fig. 4.2). This formula also shows that the overall interference fringes disappear
for spatial shifts larger than the coherence lengths [�i ≥ �c

i =1/(2δki)] (see Eq. 4.35).
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The coherence properties along the interferometer axis (x) were investigated in a dedicated
experiment (Jacobson et al. 1994). In this case, the (transverse) components of the momentum
vectors (and coherence length) do not change due to the Bragg diffraction. According to basic
quantum mechanical laws, the related momentum distribution for the 0-beam follows from Eq.
(4.102) and can be rewritten for Gaussian packets in the form

I0(k) = exp[–(k – k0)2
/
2δk2]

{
1 + cos

(
χ0

k0
k

)}
. (4.106)

Here the mean phase shift is introduced (χ0 = k0�0 = –N bcλ0Deff) . The surprising feature is that
the 0-beam intensity, I0(k), becomes oscillatory in momentum space for large phase shifts where
the interference fringes described by Eq. (4.106) disappear (Rauch 1993a; Fig. 4.29). This indi-
cates that interference in phase space must be considered (Schleich et al. 1978, 1988) rather than
the simple wave function overlap criterion described by the coherence function (Eqs. 1.29 and
4.29). The second beam, the H-beam, behind the interferometer shows the complementary
modulation IH = Itotal – I0, as it must in order to conserve neutron intensity.

The amplitude function of the packets arising from beam paths I and II determines the spatial
shape of the packets behind the interferometer

I0(x) =
∣∣ψ(x) +ψ(x +�)∣∣2 = exp[–x2

/
2δx2] + exp[–(x +�0)2

/
2δx2]

+2 exp[–x2
/
4δx2] exp[–(x +�)2

/
4δx2] · cosχ0.

(4.107)

This result separates for large phase shifts into two peaks. I0(k) and I0(�) are Fourier transform
pairs (e.g., Levy-Leblond 1990); see Fig. 4.28. For Gaussian packets, having a spatial width, δx,
corresponding to the coherence length �c, the minimum uncertainty relation δxδk = 1/2 is ful-
filled. For an appropriately large displacement (� >> �c), the related state can be interpreted as a
superposition state of two macroscopically distinguishable states; that is, a stationary Schrödinger
cat-like state (Leggett 1984, Yurke et al. 1990, Schleich et al. 1991). These states—widely sep-
arated in ordinary space, but oscillating in momentum space—seem to be notoriously fragile
and sensitive to dephasing effects (Zurek 1981, 1991, 1998a; Walls and Milburn 1985; Glauber
1986; Namiki and Pascazio 1991). The detailed structure of these wave packets in ordinary and
momentum space is seen in more detail in Fig. 4.30.

Measurements of the wavelength spectrum behind the interferometer were made with an addi-
tional silicon post-monochromator crystal with a rather narrow mosaic spread which reflects
in the parallel position relative to the pre-monochromator a very narrow band of neutrons
(δk′/k0 ≈ 0.0003). Scanning this analyzer crystal, placed in the 0-beam (see Fig. 4.27, middle),
through the Bragg position gives the wavelength distribution. Scanning the phase shifter (at a
given setting of the analyzer crystal) gives the enhanced visibility of the interference pattern. The
related results are shown in Fig. 4.31 for various phase shifts (Jacobson et al. 1994). This feature
shows that an interference pattern can be restored even behind the interferometer by means of a
proper post-selection procedure. In this case the overall beam does not show interference fringes
anymore and the wave packets originating from the two different beam paths have no substan-
tial overlap. These results clearly demonstrate that the predicted spectral modulation (Eq. 4.106)
appears when the interference fringes of the overall beam essentially disappear. The modulation
is somewhat smeared out due to averaging processes across the beam due to various unavoida-
ble imperfections, existing in any experimental arrangement. Nevertheless, the predicted spectral
modulation is clearly observed. The contrast of the empty interferometer was 60% in this case.

Each peak in the momentum distribution shown in Fig. 4.31 corresponds to a different num-
ber of 2π phase shifts experienced by the neutrons of that wavelength band during its passage
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Figure 4.30 Calculated wave packets in ordinary (left) and momentum (right) appropriate for low
(above) and high (below) interference orders

through the interferometer. In terms of quantum optics this means that different parts of the wave
function obey a different number of 2π phase shifts. In this sense, the peaks represent new quan-
tum entities with distinguishable properties from the other parts of the spectrum. This kind of
labeling shows that constructive interference is restricted to a certain wavelength band. This is a
situation similar to that where new states have been created due to lattice diffraction inside the
interferometer (Section 4.3.2, Fig. 4.16).

The new quantum states created behind the interferometer can be analyzed with regard to
their uncertainty properties. Analogies between a coherent state behavior and a free but coherently
coupled particle motion inside the interferometer have been addressed (Rauch et al. 1990). In such
cases, the dynamical conjugate variables x and k minimize the uncertainty product with identical
uncertainties (�x)2 = (�k)2 = 1/2 (in dimensionless units). Using I0(k) and I0(x) (Eqs. 4.106 and
4.107) as distribution functions we obtain for Gaussian packets (for δk/k0 << 1)

< (�x)2 >=< x2 > – < x>2

= (δx)2
[
1 +

(�0/2δx)2

1 + e–(�0/2δx)
2/2 cos(�0k0)

]
,

(4.108)

and

< (�k)2 >=< k2 > – < k>2

= (δk)2

⎧⎪⎨
⎪⎩1 –

(
�0

2δx

)2 e–(�0/2δx)
2/2 cos(�0k0) + e–(�0/2δx)

2[
1+ e–(�0/2δx)

2/2 cos(�0k0)
]2

⎫⎪⎬
⎪⎭.

(4.109)
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Figure 4.31 Measured interference pattern of the overall (left) and filtered (middle) beam and
measured momentum distribution of the overall beam at different interference orders (from above
to below; Jacobson et al. 1994). The phase shifter were bismuth slabs of various thickness, D

These relations are shown in Fig. 4.32. This indicates that <(�k)2 > values below the coherent
state value, δk2, can be achieved. In quantum optics terminology this can be interpreted as state
squeezing (Walls 1983, Braunstein and McLachlan 1987, Loudon and Knight 1987, Jansky and
Vinogradov 1990, Buzek and Knight 1991, Schleich et al. 1991). One emphasizes here that a sin-
gle coherent state does not exhibit squeezing, but a state created by superposition of two coherent
states can exhibit a considerable amount of squeezing as displayed in Fig. 4.32. Thus, highly non-
classical states are made by the power of the quantum mechanical superposition principle. The
degree of squeezing can be further enhanced by multiplate interferometry (Rauch 1995b, Suda
1995, Suda and Rauch 1996). Such situations have been treated for the optical case by Jansky
and Vinogradov (1990), Adams et al. (1991), Buzek and Knight (1991), and Szabo et al. (1996).
Properly formed squeezed input states can be used in a Mach–Zehnder interferometer to pro-
duce entangled states (Paris 1999). It should be mentioned that the general uncertainty relation
�x�k ≥ 1/2 remains valid for squeezed states as well.

A very similar situation exists in neutron spin-echo systems (Section 2.4). In this case the
spin-up and spin-down states having slightly different momenta due to the longitudinal Zeeman
splitting interfere with each other; this causes the well-known Larmor rotation and a modulation
of the momentum distribution similar to that in split beam interferometry (Eq. 4.106). Figure
4.33 shows a dedicated arrangement for such a measurement and typical results (Badurek et al.
2000). In this setup a magnetic field with a strength of 3.5 mT and of length 0.57 m was used.



154 Coherence and Decoherence

8

6

4<
Δ

k2 >
/δ

k2

<
Δ

x2 >
/δ

x2

x = Δ/2δx

2

1

Squeezed states

0 1 2 3
0

1

2

4

6

8

0

Figure 4.32 Calculated widths of the spatial and momentum dis-
tribution functions indicating squeezing in the momentum domain
Rauch 1995b, with kind permission from Springer Science and
Business Media.

The measurement was done by a time-of-flight analysis. A rather wide neutron spectrum (δλ/λ0 =
0.27) was used. Intuitively one may be forced to believe that individual neutrons with differ-
ent velocities produce such a pattern, but a rigorous quantum optics formulation associates this
behavior with the quantum state itself. In existing spin-echo instruments the magnetic fields and
the length of the fields are much larger and, therefore, the number of Larmor rotations is much
higher, which results in a much finer structured momentum distribution, and it is not easy to
resolve by ordinary means.

4.5.3 The Wigner Function

The persistent coherent coupling of the states in phase space even in the case of spatially, well-
separated, packets can also be visualized by means of the Wigner quasi-distribution function
defined as (Wigner 1932, Walls and Milburn 1994, Buzek and Knight 1995b, Schleich 2001,
Suda 2005)

Ws(k, x) =
1
2π

+∞∫
–∞

eikx
′
ψs

∗(
x +

x′

2

)
ψs

(
x –

x′

2

)
dx′. (4.110)

For the beam behind the interferometer the superposition state from both beam paths must be
considered, namely (Eqs. 2.1 and 4.104)

ψs(x) = ψ(x) +ψ(x +�). (4.111)
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After several steps the calculation of the Wigner function gives the following result (written for
one dimension only):

Ws(x, k,�) =W (x, k) +W (x +�, k) + 2W
(
x +

�

2
, k
)
cos(� · k)

∝ exp
[
–(k – k0)2/2δk2

] {
exp(–x2/2δx2)

+ exp[–(x +�)2/2δx] + 2 exp

[
–
(
x +

�

2

)2

/2δx

]

× cos (� · k)}.

(4.112)
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Figure 4.34 Wigner functions for neutron Schrödinger
cat-like states at zero-order (left) and at high-order inter-
ference (right) and their projections onto the x- and k-
coordinate, respectively (Rauch and Suda 1995)

Several algebraic steps are necessary to derive this result. Thus, the Wigner function of the
coherent Schrödinger cat-like states becomes the sum of the Wigner function of the two spa-
tially shifted wave packets and a cross term oscillating more rapidly in the case of increasing phase
shifts. Typical examples are shown in Fig. 4.34 for zero phase shift and for path shifts comparable
with the coherence length of the beam. More details about the features of such Wigner functions
and other state representations for the neutron case can be found elsewhere (Rauch 1995b, Suda
1995). Schrödinger cat-like neutron states exist not only in split beam interference experiments
but in spin-echo systems as well. Both situations can be described properly by the Wigner function
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formalism (Rauch and Suda 1998). It is important to note that integration over the momentum
variable k gives the spatial density distribution (Eq. 4.107) and integration over the spatial variable
gives the momentum density distribution (Eq. 4.106), that is:∫

Ws(x, k)dk = |ψ(x)|2∫
Ws(x, k)dx = |ψ(k)|2

. (4.113)

This opens the possibility of quantum state tomography because both quantities |ψ(x)|2 and
|ψ(k)|2 can be measured. This permits an interferometric measurement of the Wigner func-
tion which is equivalent to the knowledge of the state wave function (Vogel and Risken 1989,
Freyberger et al. 1997). This can be achieved because a quantum state description represents a set
of potentialities that are revealed by certain appropriate experimental conditions. A single meas-
urement performed on a quantum system reveals a certain aspect of its state, but it will not uncover
this state completely. However, when we know how to determine the whole set of potentialities,
the quantum state can be reconstructed. This is the way to measure the state of a quantum system
by interferometric methods (Iaconis and Walmosley 1996). Thus, the basic assumptions of quan-
tum theory enters into tomographic and endoscopic methods of quantum state reconstructions
that measurements on an infinite ensemble or an infinite number of measurements on a single
particle must be done to uncover the quantum state of such systems. Wigner functions are quasi-
probability distributions symmetrized in x- and k-space. Other visualizations are the Husimi (Q)
and the Glauber–Sudarskan (P) representation (Hillery et al. 1984, Lee 1995). When one explic-
itly takes into account the action of the measuring device, one ends up with operational probability
density distributions which are closely related to the von Neumann, Shannon, and Weyrl entropies
(Wodkiewicz 1984, 1988; Buzek et al. 1995a, 1995b; Schleich 2001).

The same procedure as applied to split beam interferometry can be used for neutron spin-echo
systems (Section 2.4). In that case the spin-up and spin-down components of a state performing
Larmor rotation in an external magnetic field form a superposition state whose Wigner function
can be calculated using Eqs. (2.30), (2.31), and (4.110). That is

ψ =
∫
a+(k)ei(k+�k)xdk |z > +

∫
a–(k)ei(k–�k)x dk |–z >, (4.114)

where �k denotes the related Zeeman momentum shift (�k = μmB/h̄2k, Eq. 2.30). Figure 4.35
shows the behavior of the Wigner function without and with field fluctuations for the case of
unrealistically high magnetic fields or very slow neutrons; �k/k0 = 0.25 (Rauch 1995b, Rauch and
Suda 1998, Suda 2005).mi denotes the number of Larmor rotations of the mean momentum band
around k0 (mi = �k.x/π). In existing spin-echo setups �k/k0 is much smaller but the number of
Larmor rotations is much larger (m ∼= 105). Therefore, the wiggle structure is much finer and the
separation of the Schrödinger cat-like states much larger. It can reach values of about 0.15 μm
which must be compared to the coherence length of the beam, which is about 4 nm (Rauch et al.
1999).

As already mentioned, such Schrödinger cat-like states are highly sensitive to any kind of fluc-
tuation and to dissipation (Zurek 1981, 1991, 2003; Walls and Milburn 1985; Glauber 1986).
Therefore, dedicated calculations have been made for the neutron case where the Wigner func-
tions (Eq. 4.112) are averaged over Gaussian distributions for density and/or thickness fluctuations
(δN , δD) of the phase shifter which causes fluctuations of the spatial delay (δ�). These cal-
culations have shown clearly how sensitive the wiggle structure becomes at high order to such
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Figure 4.35 Wigner function without (left) and with (right) field fluctuations within a
spin-echo instrument (Rauch and Suda 1998)

fluctuations (Rauch and Suda 1995). This is shown in Fig. 4.35 (right-hand side). It demon-
strates again that the coherent separation of a Schrödinger cat-like state becomes progressively
more difficult with increasing spatial separation which will result in an upper limit for the sepa-
ration when zero-point fluctuations are considered. The vanishing of the oscillating structure of
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the Wigner function indicates the transition from a superposed coherent state to a mixed state.
This is equivalent to the disappearance of the off-diagonal terms of the density matrix (Eq. 4.18).
This disappearance can also be understood in terms of the Weyrl (1978) entropy of superposition
states, where the decay rate of quantum coherence is proportional to the “distance” in phase space
between the coherent components of a superposition state. In this respect, the quantum measure-
ment process is described within the framework of quantum mechanics as a dephasing process
(Machida and Namiki 1980; Zurek 1981, 1991, 1998a; Stern et al. 1990; Guilini et al. 1996;
Kono et al. 1996; Scully and Zubairy 1997). A linear spatial dependence of the states in phase
space means a quadratic dependence of the dephasing parameter in real space. Decoherence phe-
nomena of Schrödinger cat-like states in Stern–Gerlach-type experiments show also a quadratic
dependence from the spatial separation of the cat states (Venugopalan 1997). Decoherence phe-
nomena even appear at absolute zero temperature (Sinha 1997). A more detailed discussion of
these decoherence phenomena is given in Section 4.6.

4.5.4 Post-selection in the Time Domain

Instead of measuring the interference pattern by scanning the phase shifter, one can also measure
the time-dependent intensity correlation function defined in Eq. (4.97)

G(2) (�, t) =< I(0, 0) I(�, t)>, (4.115)

giving the probability of registering a neutron at time t, if there was another one registered at t = 0.
The probability of detecting a neutron at a time τ after another neutron has arrived is given for a
stationary beam from a thermal (Poissonian) source as (Glauber 1968; Section 4.4.4; Eq. 4.98)

W (t) = I(�) exp[–t · I(�)]. (4.116)

This probability function exhibits an intensity-dependent “decay time” τ(�) = [I(�)]–1 as shown
in Fig. 4.36 for the case when the overall interference pattern is tuned to its maximum or minimum
values (in this special case, the overall contrast was 41.8%).

One notes that the contrast for neutron pairs arriving within short time intervals τ is higher than
the overall contrast. For larger time separations, the contrast vanishes and appears with an opposite
sign, reaching values of 100% for widely separated pairs in time. This behavior has been verified
experimentally with the arrangement shown in Fig. 4.27 (lower panel) at a low-flux TRIGA reac-
tor (Zawisky et al. 1994). These results show that remarkably higher phase sensitivities can be
achieved by using this new measuring technique. We note here that the change of sign of the con-
trast where it becomes zero in Fig. 4.36 is accompanied by a reversal of 180◦ in phase. Thus phase
jumps appear to be a very general phenomenon (see Section 6.3 and Bhandari 1997).

These results demonstrate that considerably more information can be deduced, even from a
Poissonian beam, if the individual arrival times of the neutrons are also registered to define the
pair correlation function inherent to the quantum system.

The measured quantity is the registered number of pair events within various time intervals
τ1 ≤ t ≤ τ2:

I(χ , τ1, τ2) = I(χ)
[
e–τ1I(χ) – e–τ2I(χ)

]
. (4.117)

This follows from Eq. (4.114) for a given phase shift χ The overall interference pattern and the
interference pattern of the correlated pairs are shown in Fig. 4.36, together with the contrast for
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selected intervals τ1 = 0 ≤ t ≤ τ2 and τ1 ≤ t ≤ T >τ = 1/I . A statistical analysis of the data shows
that in the range 0.5 τ 2 ≤ t ≤ 8 τ 2 the phase sensitivity is increased compared to a non-time-
resolved experiment. This is predicted for cases where the contrast of the overall beam is less than
100%.

These experiments have been repeated with pulsed beams as well (Jacobson et al. 1996). In this
case pair correlations have been measured for the beams behind the interferometer and with semi-
transparent detectors placed inside the interferometer as shown in Fig. 4.37. In all cases the pair
correlation function resulting from Poissonian statistics has been used to verify the data.

4.5.5 Time-of-Flight Post-selection

All experiments described in the previous sections of this chapter, except the last one, were per-
formed with stationary neutron beams where the wave functions inside the interferometer follow
from the solution of the time-independent Schrödinger equation. Regardless of whether plane
waves or wave packets are used for the description, the wave functions of the two separated beam
paths remain connected at the beam splitter and in the region of beam superposition. Therefore,
one could argue that some information can be exchanged via these mesh points. In the case of
pulsed beams with burst lengths shorter than the dimension of the interferometer completely
unconnected wave packets exist inside the interferometer (Fig. 4.38). Such a system also gives
the basis for delayed choice experiments where the decision whether to observe the interference
or the beam path can be made after the wave packet has passed the beam splitter (Wheeler 1978).
More discussion about delayed choice experiments is given in Section 10.5.

Here we will describe experiments which demonstrate how the interference pattern changes in
time-resolved measurements where the momentum distribution within certain time slices can be
made much narrower than the original one and where frame overlap effects of faster and slower
neutrons from neighboring pulses can be observed. The main components of the experimental
setup are shown in Fig. 4.38.

The motion of a wave packet in free space is described by the time-dependent Schrödinger
equations (1.2) and (4.15). In the case of minimum uncertainty packets with Gaussian widths δx
and δk in real and momentum space existing at t=0 (δx (0) δk = 1/2) one expects the quantum
mechanical spreading of the packet as a function of time to follow the formula (e.g., Messiah
1965)

[δx(t)]2 = [δx(0)]2 +
[
(h̄/2m)t
δx(0)

]2
. (4.118)

This minimum uncertainty wave packet is difficult to achieve because δx(0) must approach the
coherence length�x

c ∼ (2δk)–1 as discussed previously (Section 4.5.4). This also means that pulse
lengths on the order of the coherence time τ c=�c/v must be produced, which requires chopper
opening times on the order of nanoseconds. In this case, diffraction in time would play an impor-
tant role, which is quite analogous to the well-known single-slit diffraction phenomena in ordinary
space (Moshinsky 1952, Gaehler and Golub 1984, Nosov and Frank 1991, Brukner and Zeilinger
1997). Thus, Fraunhofer- and Fresnel-like phenomena, which change the energy of the beam
accordingly, are expected to occur. For a triangular slit opening for a time �t one expects in the
Fraunhofer limit for an incident plane wave with an energy E0 and energy spectrum

ρ(E) = |A(E)|2 ∝
[
sin((E – E0)�t/h̄)

(E – E0)/h̄

]2
. (4.119)
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Figure 4.38 Schematic diagram of the experimental arrangement for interfer-
ence experiments with a pulsed incident beams (Rauch et al. 1992)

One sees here that, in this limit, the energy spectrum represents the square of the Fourier transform
of the time signal of how the aperture was opened. In the more general case of matter wave
diffraction in space and in time both phenomena are correlated to each other. As mentioned in
Chapter 1, there is a marked difference to the situation with electromagnetic radiation. The main
reason for this can be seen in the different dispersion relations (Eq. 1.6) and because all wave
components of a light pulse propagate with the same velocity; that is no spatial spreading (Brukner
and Zeilinger 1997).

Various “Gedanken” experiments with very fast choppers causing diffraction-in-time effects
(Eq. 4.119) due to the cutting-off part of the coherent wave packet (�tc ≤ �c/v) were discussed
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at the end of Section 4.3.2. The diffraction-in-time effect was first observed with fast vibrating
surfaces (Felber et al. 1996). This quantum limit is rather difficult to achieve by means of mechan-
ical choppers due to the smallness of the coherence time values �tc in neutron interferometry.
However, Hils et al. (1998) achieved a pulse width of 33 ns and observed the energy transfer
given by Eq. (4.119). However, a combination of these fast pulses with interferometry seems to
be rather difficult to achieve. It might be easier to approach this regime by high-frequency spin-
flipping devices, which then causes a kind of quantum phase chopping (see Sections 5.3 and 5.4).
The diffraction-in-time effect has also been investigated by the diffraction of atoms from pulsed
evanescent laser waves (Steane et al. 1995, Szriftgiser et al.1996). These results can be described
in the Fraunhofer limit, which gives Eq. (4.119).

For long opening times (�t >> �tc) diffraction effects occur only at the edges of the pulse
and can be neglected in most cases. Under these conditions, the phenomena can be described by
classical distribution functions. Their spreading occurs in a manner similar to the quantum case.
For Gaussian pulses, with a velocity spread δv, one gets

[δx(t)]2 = [δx(0)]2 + [δvt]2. (4.120)

One notices the similarity of this equation to Eq. (4.118) if one uses the de Broglie relation and
�x

c = (2δk)–1 = λ2/4πδλ. In terms of the temporal pulse length one obtains

[�t]2 =
[
�tp
]2

+
[
δλ

λ
t0

]2
, (4.121)

where �tp is the opening time of the chopper and t0 = L/v0 is the average time-of-flight of
neutrons between the chopper and the detector at distance L. This describes the standard broad-
ening of a neutron burst in any time-of-flight spectrometer (e.g., Willis and Carlile 2009). In fact,
Eq. (4.120), which describes the broadening of the intensity pulse is identical to the expression
which describes the broadening of a quantum mechanical wave packet (Eq. 4.118), except for the
fact that in Eq. (4.120), δx(0) = v�tp does not fulfill the minimum uncertainty relation.

The mean wavelength of neutrons being measured at time t at a detector with an effective
thickness �d becomes in the classical limit (δx(0) >>�x

c):

< λ(t) >= λ0
[
1 + t0(t – t0)(δλ/λ0)2/(�t′)

2
]
, (4.122)

where (�t′)2 = (�t)2 + (�d/v0)2. Because the phase shift of neutrons traversing a material slab is
proportional to the de Broglie wavelength (Eqs. 3.20 and 4.51), one gets a similar equation for the
phase shift < χ(t) >∝< λ(t) > of those neutrons detected at time t, namely

< χ(t) >= χ0
[
1 + t0(t – t0)(δλ/λ0)2/(�t′)

2
]
. (4.123)

At the detector position at a distance L from the chopper, at a time t, there still exists in a certain
time channel a Gaussian wavelength distribution with a restricted spectral width δλ′ given by

(
δλ′

λ0

)2

=

[(
λ0

δλ

)2

+
( t0
�t′
)2]–1

. (4.124)
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Figure 4.39 Interference pattern of the overall beam (left) and of the intensity within a
narrow time-of-flight channel (middle). The increasing phase shift for later time channels
where the slower neutrons arrive is visible (right; Rauch et al. 1992)

This restricted spectral width δλ′ results in a slower diminution of the interference contrast for
measurements with narrow time channels than for the whole beam. This is because the related
coherence function becomes wider (Eq. 4.35) and the expected 0-beam modulation is

I ∝
[
1 + e–χ0

2(δλ′ /λ0)2/ 2 cosχ0
]
. (4.125)

If one prefers to write these results in terms of wave vector, clearly δλ′/λ0 = δk′/k0.
Measurements using a setup at the high-flux reactor at Grenoble have shown that the contrast

within narrow time channels can exceed the contrast of the overall beam and have shown that
the mean phase shift varies as predicted by Eq. (4.123) (Heinrich et al. 1989; Fig. 4.39). These
measurements have been continued and completed at the MURR reactor in Columbia, Missouri
(Rauch et al. 1992).

At larger distances downstream the edges of each pulse begin to overlap with the preceding and
following ones. Gaussian-shaped neutron pulses produced within a time interval T , corresponding
to wavelength λ1 = λ0 – δλ and λ2 = λ0 + δλ, overlap at a distance Lc = hT /2mδλ downstream
from the chopper. The spectral width at the relevant time interval is given by the spectral widths
around λ1 and λ2. The measured intensity in the related time slice around t = t0c(1 – δλ/λ0) is
given as

I(λ1, λ2) = I(λ1) + I(λ2)

∝ 2+< |�(�1)|> cosχ1+ < |�(�2)|> cosχ2.
(4.126)

In the case when the nuclear phase shifters are arranged perpendicular to the reflecting planes
(dispersive geometry, Fig. 4.3a) and for rather narrow Gaussian wavelength distributions around
λ1 and λ2 one can reformulate this equation in the form

I(λ1, λ2) ∝ {1 + exp
[
–χ02(δλ/λ0)2/2

] · cos(NbcD�λ) · cos(NbcDλ)
}
. (4.127)
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We have used Eq. (4.35) and

< |�(�1)|>≈< |�(�2)|> exp
[
–(�δk)2/2

]
. (4.128)

The mean wavelength λ̄, the mean phase shift χ0, and the difference wavelength �λ in this
equation are defined by

λ̄ ≡ (λ1 + λ2)/2 ,�λ ≡ (λ1 – λ2)/2 ,

χ0 ≡ –NbcDλ0
(4.129)

Thus, the total intensity exhibits a series of “beats,” modified by a decaying exponential. The
contrast of the intensity pattern as a function of the thickness D of the phase shifter is given by

C(D) =
Imax – Imin

Imax + Imin
=
∣∣cos(NbcD�λ)∣∣ exp[–χ02(δλ/λ0)2/2]. (4.130)

The exponential term is due to the wavelength spread and the cosine term represents a contrast
oscillation caused by the overlap of two pulses; i.e., the contrast is expected to vary according to a
damped cosine function going through a series of minima and maxima.

Measurements in the overlap region at larger distances and with a less monochromatic beam
have been made at the MURR reactor (Clothier 1991, Rauch et al. 1992). The variation of the
interference contrast as a function of the phase shift (sample thickness) for the overall pulse and
for time slices with and without pulse overlap is shown in Fig. 4.40. The contrast modulation in
the case of pulse overlap time slices is clearly visible. We note again that where the contrast goes
to 0 in this data, there is a 180◦ phase jump.

The neutron pulses produced by a fast mechanical chopper were significantly shorter than the
dimensions of the perfect crystal interferometer, thus assuring that there is no permanent overlap
of wave functions or of plane wave components of wave packets. This experiment again demon-
strates very clearly the single-particle interference phenomena in neutron interference experiments
because the mean occupation number in a single neutron pulse is much smaller than unity (it is on
the order of 10–4 in this case). The neutron intensity pulses used in this experiment are consider-
ably longer than the coherence length of the beams and, therefore, diffraction-in-time effects are
negligible. Several aspects of neutron wave mechanics have been explored and have been shown to
be in agreement with the theoretical predictions. In particular, the spreading of the neutron pulses
as well as the spectral narrowing in distinct time slices downstream from the interferometer has
been observed.

The excellent agreement between the predicted contrast curves and the measured data, partic-
ularly in Fig. 4.40, shows that formulas (4.125) and (4.130) correctly describe the propagation of
neutron pulses, the separation of the wavelength components, and the various corrections nec-
essary to extract the experimental results. As in other spectral filtering experiments (Clothier
et al. 1991, Kaiser et al. 1991, Werner et al. 1991) these time-resolved experiments show a way
of extracting interference fringes and their contrast from a beam which, on the whole, exhibits
no contrast. Thus, interference and coherence phenomena can be completely hidden due to
general averaging effects but they can be recovered even behind the interferometer if a proper
post-selection measuring procedure is utilized.

The observed beam modulation occurring in the overlap region of successive pulses is another
example how intrinsic coherence phenomena become manifest, in this case when time resolution



166 Coherence and Decoherence

100 Predicted from model
(a)

(b)

(c)

Runs 35–38
Runs 73–8380

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

O
ve

rl
ap

 s
lic

e
N

on
-o

ve
rl

ap
 s

lic
e

R
el

at
iv

e 
co

nt
ra

st
 (

%
) 

in

O
ve

ra
ll 

pu
ls

e

0
0 4 8

Sample thickness D (mm)

12 16 20

Figure 4.40 Measured contrast (coherence) of the
overall (above) and within time-of-flight intervals with-
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is applied. Even when the average intensity remains constant the contrast shows a marked beat-
ing effect (aside from attenuation effects). This behavior is characteristic of the incoherent beam
superposition of two different wavelength bands. Here, it becomes obvious that the contrast of
an interference pattern cannot always be identified with the coherence function as it is defined in
Eqs. (4.29) and (4.49). In this case the time-dependence of the classical probability p(r, t) must
be taken into account (see Eq. 4.18).

4.5.6 Interferometric Post-selection—Multiplate
Interferometers

We now discuss the case where an additional interferometer loop is used to revive coherence
properties that appear hidden behind the first interferometer loop. Such systems engender some
interest because there exist coupled interferometer loops which are partly fed with coherent beams,
instead of incoherent beams as in the case of the standard interferometers. The wave functions and
the intensities can be calculated by extending the methods applied to the triple-plate interferometer
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to a multiplate system (Heinrich et al. 1988, Suda et al. 2004). There are different possibilities for
“focused” four-plate interferometers as shown in Figs. 4.42 and 2.3. The intensity modulation
behind the equidistant arrangement (Fig. 4.41) can be shown to be

IB0(χA,χB) =K2 { 3 + 2 [cos(χA + χB) + cosχA + cosχB]}

IBG(χA,χB) =K1 + 2K3 – 2K2 [cos(χA + χB) + cosχB] + 2K3 cosχA,
(4.131)

where χA and χB denote the net phase shifts of the interferometer loops A and B respectively. The
χA = α1 + β2 – β3 – α2, etc. and the Kn quantities are given as K1 = 417π /2048, K2 = 79π /2048,
and K3 = 65π /2048. Standard plane wave dynamical diffraction theory was used to calculate
these parameters (Chapter 11). Similar formulas apply for ICO and ICG. Only the beam IB0 shows
a maximum theoretical contrast of 100%, whereas the contrast for all other beams remain below
this value. Typical interference patterns are shown in Fig. 4.41 where two phase shifters were
rotated in opposite senses to cause χA = χB (Heinrich et al. 1988). All the results are in good
agreement with theoretical predictions. In the case of absorbing phase shifters one gets, e.g.,

IB0(χA,χB) =K2F
[
A2 + B2 + 1 + 2AB cos(χA + χB) + 2A cosχA + 2B cosχB

]
, (4.132)

with A= e–χA
′′
, B= e–χB

′′
, and F = exp

[
–2(α1 ′′ + β2 ′′ + γ3 ′′)

]
. The double-primed quantities denote

the imaginary parts of the phase shifts which are given by the related reaction (absorption) cross-
section; for example α′′ = σrNd/2 (Eq. 3.19). Beam attenuation is equivalent to a partial beam path
detection and, therefore, its influence is different according to where it occurs (see Section 4.3.1).
The absorption effect in coupled interference loops can also be interpreted as a topological phase
effect, which can be described by a Poincaré sphere representation (see Section 6.8).

Higher order interference maxima become damped due to the wavelength spread of the beam
(Eqs. 4.35 and 4.48)

IB0(χA ,χB) =K2

{
3 + 2

[
e–(�λ/λ0)

2(χA+χB ) 2/2 cos(χA + χB)

+e–(�λ/λ0)
2χA

2/2 cosχA + e–(�λ/λ0)
2χB

2/2 cosχB

]}
,

(4.133)

which shows that a distinct phase echo situation exists for χA = – χB, This permits a determi-
nation of χA even in the case where there is no contrast behind the first interferometer loop A
[(�λ/λ0)χA >>1 or �>>�c]. These formulas also show that a phase shifter, absorbing or not,
placed in a beam with zero intensity has no influence on the interference pattern (e.g., γ if χA = π),
which demonstrates that waves with zero intensity cannot engender physical effects. In laser phys-
ics the same conclusion has been drawn (Mückenheim et al. 1988), which seems to show the
non-reality of the idea of empty waves with a velocity faster than light as they have been postulated
by de Broglie and Einstein (see, e.g., Loschak 1984). A related proposal for an interferometer
experiment was made by Croca et al. (1988) to test this idea for neutrons. A second beam from an
independent source should be fed into an interferometer loop and the residual interference pattern
should be measured in a coincidence mode. It can be shown that due to the incoherent admixture
of this beam and the smallness of the coherence volume no additional information about the role
of empty waves can be drawn from this proposed experiment. A related experiment with photons
verified this conclusion (Wang et al. 1991).

Four-plate interferometer systems can be designed which create two completely modulated
beams (IA0 and IC0; Bonse and Graeff 1977, Suda et al. 2004). In certain cases the total inter-
fering intensity can be higher than in the standard triple-Laue case interferometer. Multiplate
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Figure 4.41 Schematic of a four plate interferometer
and a comparison of measured and calculated interfer-
ence pattern (Heinrich et al. 1988)
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interferometers have demonstrated again the linear superposition principle of quantum mechan-
ics and have stimulated discussion about coherent beam mixing and unsharp particle or wave
property determination (Wooters and Zurek 1979; Mittelstedt et al. 1987; Greenberger and Yasin
1988; Englert 1996, 1999). The formulas for five- and more plate interferometer systems become
lengthy and therefore, they are not given here. Such interferometers provide multiple coherent exit
ports of coherent radiation. A complete revival of the split beams seems to be impossible when
unavoidable loss factors are taken into account.

Mach–Zehnder interferometers can also be used for factoring and Fourier transformation as
has been pointed out by Summhammer (1997). Clauser and Dowling (1996) showed that the
number of peaks behind a N-slit arrangement identifies the factors of this integer N . In an analog
sense a dispersive Mach–Zehnder interferometer can factorize the number N given as the ratio
of the coherence length divided by the neutron wavelength (Fig.4.41). The phase shifts in the
interferometer are χj = 2πkN /n when they are increased in discrete steps 2π /n(k = 1, 2, 3 . . .). So,
at the kth observation the probability of registering the particle at detector A is

p(k) =
1
2

[
1 + cos

(
2πkN
n

)]
. (4.134)
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Only when N is a multiple of n we get p(k) = 1. When we perform n observations with 1 ≤ k ≤ n
we do create an intensity at detector A of

In =
n∑
k=1

p(k) =
n
2
+

1
2

n∑
k=1

cos
(
2πkN
n

)
. (4.135)

This gives In = n when n is a factor of N , whereas In ∼ n/2 when n is not a factor of N .
It is also possible to implement a kind of parallel computation with a multiple interfer-

ometer setup (Fig. 4.42). Here the numbers n1, n2, n3, . . . n7 can almost simultaneously be
checked for being factors of N . Thus, single-particle but multi-interference arrangements can
have useful applications in quantum computation.

4.6 Decoherence and Dephasing

Dephasing and decoherence effects are essential for an understanding of how a classical world
arises out from the quantum features of nature. According to the modern view of this topic,
decoherence means the irreversible formation of quantum entanglements of a system with its
environment. Nevertheless, there is a connection of this topic with measurement theory and the
question of the collapses of the wave function.

An experimenter is fighting continuously against dephasing and decoherencing effects since
a high contrast of an interference pattern signals a high degree of coherence. This is essential
for most experiments. Nevertheless, decoherence is an important topic in the understanding of
quantum physics. Dephasing must be distinguished from decoherence although both terms are
used in the literature synonymously. In an experiment dephasing and decoherence cause a reduc-
tion of the contrast of the interference pattern. In the quantum formalism a disappearance of the
off-diagonal terms of the density operator and a smearing of the wiggle structure of the related
Wigner function occur (see Fig. 4.35). In the first case a retrieval of the contrast can be achieved
by several post-selection methods, whereas in the case of decoherence no reconstruction seems to
be possible. The border between both processes determines the border between the classical and
the quantum world and is of fundamental interest for understanding quantum physics and espe-
cially for understanding the quantum measurement process (e.g., Zeh 1970; Machida and Namiki
1980; Zurek 1981, 2003; Joos and Zeh 1985; Guilini et al. 1996; Scully and Zubairy 1997; Zeh
2001).

Decoherence arises from the entanglement of the quantum object with the environment (Zeh
1970). It does not solve the measurement problem but it tells us why certain objects appear classi-
cal when they are observed. The effect derives from standard quantum theory due to the inclusion
of the coupling to the environment which causes an entanglement between the quantum system
(with states φ) and the environment (with its initial state �0). This coupling can be written by
means of a von Neumann (1932)-type “measurement” equation

(∑
i

ci |φi〉
)
�0 =

∑
n,m

cn,m |φn〉|�m〉 →
∑
i

ci |φi〉|�i〉, (4.136)

where |�i〉 denote the pointer states, telling us the state that the system has been found in. The
last step indicates a diagonalization according to the Schmidt eigenbasis |�i〉 (Schmidt 1907).
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The fact is that there is no totally closed system, except for the whole universe. Decoherence is
thus a non-local and an intrinsic feature of all physical processes. Equation (4.136) follows from
a unitary evolution where the resulting entanglement becomes practically irreversible when many
degrees of freedom are involved. One notices that dephasing and decoherence mean a distortion
of the environment rather than a distortion of the quantum system. Coupling and entanglement
of the quantum system to an environment cause a random variation of the phase shift and, there-
fore, a loss of contrast of the interference pattern. Whereas in the first case the coupling is known
or can be known in principle, in the second case the coupling remains unknown due to random
processes during the interaction. The dynamics of the quantum state in the case of dephasing is
unitary, yet stochastic. A profoundly quantum cause for decoherence is entanglement between the
quantum system and the environment. The distinction between both cases is related to the status
of experimental technique and it is often claimed that a complete decoherence is impossible in
principle. One might intuitively expect that a neutron ensemble suffers a greater loss of coherence
by interacting with an increasingly disordered environment, which should provoke more randomi-
zation of the quantum phase. This is not always true and in some cases the neutron wave function
is more robust, even if it has interacted with a disordered medium (Facchi et al. 2001). The
observed robustness of the geometric phase within a fluctuating environment may be an example
of this stability phenomenon (see Chapter 12; Filipp et al. 2009).

Decoherence must also have been present during the evolution of the universe, where quantum
gravity effects may have played an essential role (Joos 1986, Penrose 1986, Kiefer 2000).

4.6.1 Basic Relations

The simplest situation of dephasing effects is static variation of the phase shiftχ due to variation
of the thickness of the phase shifter, the spread of neutron wavelengths used, or imperfections of
the reflecting crystals. In this case one gets for Gaussian distributions of variations (see Eq. 4.42)

〈
eiχ
〉
=
∫
P(χ)eiχdχ ∼= ei〈χ〉–

〈
δχ2

〉/
2. (4.137)

This behavior has also been discussed in connection with the Wigner presentation of quantum
states in Section 4.5.3, Fig. 4.35. This phenomenon can also be described by the disappearance
of the off-diagonal terms in the density matrix (Eq. 4.18).

In a more general view, it must be stated that no quantum-mechanical system is totally isolated.
Any system interacts with its environment even in cases with a zero-temperature reservoir. In this
case the density operator fulfills a zero-temperature master equation of the Born–Markov type
(Walls and Milburn 1985, Buzek and Knight 1995b, Sinha 1997)

∂ρ̂

∂t
=
γ

2
(2a–ρ̂a+ – a+a–ρ̂ – ρ̂a+a–), (4.138)

where γ describes the coupling to the vacuum states. The results show that the off-diagonal terms
of the density matrix, which are related to the interference terms of the Wigner function, become
rapidly dephased at a rate governed by the energy separation of the coherent states.

Another important model for the description of decoherence phenomena starts with a kind of
quantum Boltzmann equation where a damping term due to random walk processes is added to
the von Neumann equation (Eq. 1.51; Joos and Zeh 1985)

ih̄
∂ρ

∂t
= [H, ρ̂] – i�[x, [x, ρ̂]]. (4.139)
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This gives a damping factor due to the non-unitary dynamics of the system

∂ρ̂(x, x′, t)
∂t

= –�(x – x′)2ρ̂, (4.140)

and, therefore,

ρ̂(x, x′, t) = ρ̂(x, x′, 0) exp[–�t(x – x′)2]. (4.141)

When decoherence is caused by various scattering processes the damping constant � becomes

� =
k2Nvσeff

V
, (4.142)

where Nv/V is the incoming flux and σeff the total cross-section. These results can be adapted by
the Wigner formalism, which gives a diffusion process in momentum space

∂W (x, p, t)
∂t

= �
∂2W
∂p2

, (4.143)

which gives

W (x, p, t) =
1√
4π�t

∫
dp′ W (x, p′, 0) exp

[
–
(p – p′)2

4�t

]
. (4.144)

This also shows the equivalence of the density and Wigner formalism. Other models of deco-
herencing effects are described in the book of Guilini et al. (1996) and of Namiki et al. (1997).
This yields to a measure of robustness of a quantum state which is defined by its linear entropy

Slin = Tr(ρ̂ – ρ̂2), (4.145)

which gives

dSlin

dt
= 2�Tr(ρ̂2x2 – ρ̂xρ̂x). (4.146)

When the system was initially in a pure state the entropy increases proportional to the spatial
separation of the state

dSlin

dt
= 2�(< x2 > – < x>2), (4.147)

which may also be applied to the motion of a free particle where one obtains (Joos 1996)

Slin = 1 –

[
3(δx(0))2

4(�m)2(δx(0))2τ 4 + 2�mτ 3 + 24�m(δx(0))4τ + 3(δx(0))2

]1/2

, (4.148)

where τ = t/m. This gives a valley of robustness at δx(0) = (τ /2
√
3)1/2.
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When a complete positivity, probability conservation, and entropy increase are postulated, the
dynamics of the neutron beam in interferometry experiments can be described by so-called quan-
tum dynamical semigroups (e.g., Spohn 1980). In this case fundamental limits for dissipative
terms can be extracted from the contrast features of an interference pattern. In a related analysis
Benatti and Floreanini (1999) extracted from an existing interference pattern a magnitude of the
dissipative term in Eq. (4.141) as (� = 0.71 ± 0.21)× 10–12 eV (see Section 10.13). More com-
plicated models are on the market under the topic “quantum Brownian motion” (e.g., Caldeira
and Leggett 1983).

As mentioned earlier, decoherence is closely connected to the quantum measurement prob-
lem. The interaction between the quantum system and the environment produces, besides rapidly
decohering states, very robust states (|φt〉), also called preferred, pointer, or einselected states.
In the case of a damped harmonic oscillator (basic frequency�, damping γ ) they obey a nonlinear
evolution equation

δ |φi〉
δt

= –i�a+a |φi〉 – γ2
(
a+a – 〈φi| a+a |φi〉

) |φi〉 , (4.149)

whereas the total product states of the system and environment (|φi〉 |�i〉) are still solutions of
the linear Schrödinger equation. Zurek (1993, 1998b) showed that such einselected pointer states
are rather robust in their interaction with the environment, but they are very fragile against
entanglement between them, which yields to nearly classical states. Einselection means a kind
of environment-induced superselection of states, which singles out robust states in the case of
open quantum systems. In the interaction between the quantum system and the environment
most of the entangled states decohere very rapidly, but these einselected pointer states become
very robust. Such pointer states of an apparatus communicate intensively with the environment,
indicating a repeated measurement process that stabilizes the quantum system in the spirit of the
Zeno phenomenon (Misra and Sudarshan 1977, Joos 2006).

4.6.2 Dephasing and Decoherence Experiments

Static and time-dependent variations within an interferometer can cause dephasing and deco-
herence. In many cases these effects can be compensated by a proper adjustment or/and proper
post-selection procedures (Section 4.5).

Static dephasing in neutron interferometry experiments can be achieved by means of inhomoge-
neous phase shifters with a spatially varying index of refraction or by magnetic domain structures.
In all these cases the interaction Hamiltonian along the beam paths are known or can be measured
separately, at least in principle. Spatial post-selection can provide a sectional interference pattern.
Inhomogeneous phase shifters produce additional small-angle scattering effects which open an
additional access to the features of these inhomogeneities. Some applications of these effects for
condensed matter research are discussed in Section 9.1.

Time-dependent fluctuations of the interaction potential give rise to additional energy exchanges
between the neutron and the potential. In the case of neutrons, time-dependent potentials can
be realized most easily with magnetic fields. Single-mode, multimode, and noise fields can be
applied. When the Larmor resonance frequency is chosen, a complete spin-reversal and a single-
photon exchange takes place as demonstrated by Alefeld et al. (1981a) andWeinfurter et al. (1988)
and in the off-resonance case multiphoton exchange occurs as measured by Summhammer et al.
(1995). In these cases a quantum state is transferred to another one and coherence is preserved,
as discussed in Sections 5.3–5.5.
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Figure 4.43 Interference pattern with (full symbols) and without (open symbols) magnetic noise fields
applied to the beams separately and synchronously (Baron and Rauch 2011)

To model decoherence effects different kinds of noise fields have been applied to the beam
paths and the interference contrast has been measured (Baron 2005, Sulyok et al. 2010, Baron
and Rauch 2011). The loss of contrast depends on the strength and the band width of the noise
signal. When the same noise fields are applied to both beam paths the contrast is recovered, as
shown in Fig. 4.43. The average of the Gaussian noise field strength was 9 G and the frequency
range between 0 and 20 kHz. These results demonstrate that coherence is preserved even in cases
where the phases across the beam become mixed statistically.

At high order the contrast vanishes due to the wavelength spread (Eq. 4.105) and a modulation
of the momentum distribution appears (Fig. 4.31; Jacobson et al. 1994). When a noise field is
applied, the momentum distribution becomes smeared out but the situation remains similar to the
case discussed for low-order interferences (Sulyok et al. 2010, Baron and Rauch 2011).

The dephasing behavior for random phase shifts corresponding to related separations �x of
Schödinger cat-like states can be written as (see Eq. 4.104):

I0(�xkx) =
∣∣ψ I

0

∣∣2∣∣eiϕ(B) + eikx�x ∣∣2. (4.150)

When this equation is averaged over a Gaussian distribution (width �B) of magnetic phases
φ(B) = μBl/h̄v one gets in a quasi-static approximation (Stern et al. 1990, Sulyok et al. 2010):

I0(�x, kx) = I0(�x, kx)
[
1 + e–(μl

2/h̄v)(�B)2/ 2 cos(�xkx)
]
. (4.151)

This behavior describes a reduction of the contrast at low-order interferences and a broadening of
the momentum modulation peaks at high order (Fig. 4.44; Sulyok et al. 2010). The smearing of
the momentum distribution has been measured with equipment similar to that shown in Fig. 4.27
(middle). A more detailed description of the connection between noise fields and decoherence
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(dephasing) effects in the framework of Lindblad master equations (Eq. 4.139) has been given by
Bertlmann et al. (2006).

In the quasi-static approximation the energy exchange between the neutron and the resonator
system is not taken into account. This is justified since the energy change is orders of magnitude
smaller than the separation of the modulation peaks. Remarkably, the dephasing effect is stronger
for low-frequency bands than for high-frequency bands.

Within experimental errors the loss of contrast is independent of the spatial separation of the
Schrödinger cat-like states. This indicates that within the quasi-static approximation the dephasing
effect dominates a possible (irreducible) decoherence effect (Zurek 1991). Although many exper-
iments can be described by a dephasing factor, it should be mentioned that in time-dependent
fields a photon exchange is always associated with a phase shift. When a time-dependent field in
the z-direction acts on the system in a region x = 0 to x = L one must solve the time-dependent
Schrödinger equation (Eq. 1.2). In analogy to a single mode a rectangular-shaped multimode field
is assumed (Haarvig and Reifenstein 1982). See Fig. 4.45. The time dependence is described by

B(r, t) = [B0 + B(t).(�(x) –�(x – L))] ẑ (4.152)

B(t) =
N∑
i=1

Bi cos(ωi t + ϕi). (4.153)

Tacking into account that the kinetic energy of the neutrons (∼20 meV) is much larger than the
maximal potential barrier (μBi ∼ 0.5 neV) one obtains after some analytical efforts the wave field
behind the field region



176 Coherence and Decoherence

B(x)

B0

0 L

IIIIII

x

Overall guide
field B0

Oscillating
magnetic
field B(t)

Phase shifter

ei χ + ei χ

+ ei χ

ψI

ψI
ψI

ψI

ψI

ψI
ψII

ψIII

ψIII

ψIII

ψIII
+ π

Figure 4.45 Oscillating magnetic field in the region x = 0 to x = L (left) and sketch of the
experimental setup (right)

�III(x, t) =
∑
n

Jn1 (β1)........JnN(βN)e
–nηeiknxe–iωnt (4.154)

with
ωn =ω0 + nω k2

n = k
2
0 –

2m

h̄2
μB0 +

2m
h̄
nω

ηi =ϕi +
ωiT + π

2
βi =2αi sin

ωiT
2

αi =
μBi
h̄ωi

T =
L
v0

n = (n1.........nN), ϕ = (ϕ1........ϕN), ω = (ω1........ωN), η = (η1.........ηN),

and where Jni (βi)denote the Bessel functions of order ni determining the transition amplitudes.
From this one gets the interference pattern as

I0(x.t) =
1
2

∣∣�I (x, t) + eiχ�III(x.t)
∣∣2 = 1 + Re

{
eiχ
∑
n
Jn1 .......JnN .e

in(ξi+ωt)

}

with ξi = ηi –
ωix
v0

.
(4.155)

When the fundamental frequency of all frequencies is ωf , the interference pattern can be
expressed in a Fourier series

I0(x, t) =
m=∞∑
m=–∞

cm(x)eimωf t, (4.156)
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where a comparison with Eq. (4.153) gives for unpolarized neutrons where even m-terms remain:
cm = δm0 +

∑
n;nω=mωf∑
i
nieven

Jn1 (β1).......JnN(βN)e
inξ cosχ . (4.157)

This shows that the Fourier coefficient belonging to the frequency mωf contains the same product
of Bessel functions as the transition amplitudes for an energy exchange mh̄ωf. The argument of
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Figure 4.46 Characteristic results for a 2-mode field with frequencies
of 2 and 3 kHz for an amplitude of 30 G. Extracted photon exchange
amplitudes in comparison with the calculated ones (right; Sulyok et al.
2012)
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the Bessel functions also contains a sin(ωt/2) term defining a “resonance” condition. If the time-
of-flight T = L/v through the field region fulfills ωiT = l × 2π (l = 1, 2, 3 . . . ) no resulting energy
exchange occurs.

Related experiments have been done with a time-resolved analysis of the interference pattern,
where the periodicity ωf = 2π ff(ff = 1 kHz) of the interference pattern has been used (Fig. 5.7;
Sulyok et al. 2012). The related energy transfers lie in the range of 1 peV and energy gain and
energy loss processes are equal. The calculated results show good agreement with the measured
values (Fig. 4.46).

To approach the noise limit one must average the results for multimode fields according to a
high number of modes ωi and random phases ϕi . One gets

〈I0〉 = 1
M

M∑
i=1

I0(ti) ≈ 1
Tm

Tm∫
0

I0(ti)dt, (4.158)
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where Tm denotes the measurement time. This corresponds to a contrast of the interference
pattern

C =
1
Tm

∫ Tm

0
cos

(
N∑
i=1

βi sin(ωi t + ξi)dt

)
, (4.159)

which must be calculated numerically. Figure 4.46 shows a comparison between calculated and
measured values, showing again good agreement. It shows that such a high mode field can mimic a
real noise field and can be used to model decoherence processes. In all cases multiphoton exchange
occurs but a simultaneous measurement of the field and a correlation experiment between the field
and neutron counts can restore the interference pattern. Thus, the effect is closer to dephasing
than to decoherence.

An additional comment must be made concerning the interaction of neutrons with gas atoms
or molecules because several experiments with atoms and molecules use the statistical behavior as
a source of decoherence. There is a marked difference between decoherence effects of atoms and
molecules and that of neutrons interacting with gas atoms or molecules. In the first case, individ-
ual scattering processes due to the much better localization occur, whereas in the second case a
collective interaction with many gas atoms occurs, which is described by an index of refraction
(Chapman et al.1995, Cronin et al. 2009). Thus, the wave function of atoms or molecules inter-
acting individually with gas atoms remains unknown, whereas in the case of a collective interaction
the wave function can be calculated by means of a phase shift resulting from the index of refraction
formalism. The first case relates more to decoherence and the second one to dephasing, whereby
mixtures of both processes are feasible (Wiseman et al. 1997, Hornberger et al. 2003, Vacchini
2005, Champain et al. 2009). From the discussion of these experiments one must conclude that a
general distinction between dephasing and decoherence remains uncertain and a question of the
standard of the experiment.



5

Spinor Symmetry and Spin
Superposition

In this chapter some basic features of quantum physics are described and their experimental
verification will be demonstrated. The 4π-symmetry of spinor wave functions demonstrates a
common feature of all spin-1/2 particles, and spin superposition shows this basic quantum effect
on a macroscopic level.

5.1 Spinor Symmetry

The spinor calculus can be regarded as applying a deeper level of structure of space-time than that
described by the standard quantum mechanics. It makes transparent some of the subtle properties
of space-time phenomena. The essential reason is that the basic spin space is two-dimensional
(but complex) rather than the four-dimensional (real) space-time structure. Spinor properties
have profound links with the complex numbers that appear in quantum mechanics (e.g., Penrose
and Rindler 1984, Shapere and Wilczek 1989).

The magnetic moment μ of the neutron couples as a magnetic dipole to the magnetic induction
field B according to the Hamiltonian (Eq. 1.19)

H = –μ · B = –μσ · B. (5.1)

Therefore, the wave function within a magnetic field propagates in time as

ψ(t) = e–iHt/h̄ ψ(0) = e–iμ·Bt/h̄ ψ(0) = e–iσ ·α/2 ψ(0) = ψ(α), (5.2)

where α is numerically equal to the Larmor precession angle (Eq. 2.35)

α =
2μ
h̄

∫
B dt ∼= 2μ

h̄v

∫
B ds. (5.3)

v is the neutron’s velocity and ψ in Eq. (5.2) represents the two components of the spinor wave
function. The operator σ = σxx̂+σyŷ+σzẑ, where σx, σy, σz are the Pauli spin matrices (Eqs. 3.44–
3.46), and

∫
ds denotes the path integral along the neutron’s trajectory. Electrodynamically the

magnetic dipole moment is identical to an infinitesimal Amperian current loop (Mezei 1986) and
not to a permanent magnet with a combination of a north and a south pole separated by a distance
δx. It follows immediately that the wave function (Eq. 5.2) displays a characteristic 4π-symmetry.
That is,

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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ψ(2π) = –ψ(0)

ψ(4π) = ψ(0),
(5.4)

indicating a characteristic –1 phase factor in the case of a 2π rotation. All expectation values
show 2π-symmetry |�(2π)|2 = |�(0)|2. The behavior of the spinor wave function and of its
expectation value (polarization) is visualized in Fig. 5.1. This figure shows that the 4π-symmetry
of spinor wave functions appears for polarized and unpolarized neutrons as well. Another basic
feature of the Pauli spin matrices is that their coupling to the magnetic field remains finite for any
direction of the spin polarization (Eq. 3.43) and there is a momentum–spin entanglement which
we already saw in Fig. 2.31 and the discussion surrounding this figure.

Aharonov and Susskind (1967) and, independently, Bernstein (1967) predicted the observa-
bility of this 4π-symmetry for interferometric experiments and Eder and Zeilinger (1976) gave
the theoretical framework for the neutron interferometric realization. Indeed this 4π-symmetry
was known from the beginning of quantum mechanics (Dirac 1930), but it was mostly treated as
a non-observable property of spinor quantum mechanics. Using Eq. (5.2) the intensity behind the
interferometer becomes

I0 = |ψ0(0) + ψ0(α)|2 = 2
∣∣ψ I

0

∣∣2 (1 + cos
α

2

)
, (5.5)

which appears for polarized and unpolarized neutrons and which indicates again the self-
interference properties involved in this type of experiments. Experimental verification was
achieved in 1975 (Rauch et al. 1975, Werner et al. 1975). The magnetic field was varied and
the path integral

∫
B ds was measured by Hall probes. The observed interference pattern (Fig. 5.2)

showed the expected 4π-symmetry as it has been also shown in Chapter 1 (Fig. 1.3). Further ver-
ification has been provided by a wave-front division interferometer (Klein and Opat 1976), by a
molecular beam system (Klempt 1976), and by an NMR system (Stoll et al. 1978, Mehring et al.
1984), and has been repeated with the perfect crystal interferometer using the well-defined mag-
netic fields within Mu-metal sheets (Rauch et al. 1978a). In the latter experiment the Mu-metal
sheets were magnetized in opposite directions and rotated in a sense that the nuclear phase shift

original

ψ(0) ψ(2π) = –ψ(0) ψ(4π) = ψ(0)

|ψ(0)|2 |ψ(2π)|2 = |ψ(0)|2 |ψ(4π)|2 = |ψ(0)|2

2π - rotation 4π - rotation

classical rotation:

quantum rotation:

Figure 5.1 Visualization of the spinor rotation of an unpolarized beam with
the spin-up component (above) and the spin-down component (below)
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Figure 5.2 Sketch of the experimental arrangement and first results of the 4π-spinor
symmetry experiment (Rauch et al. 1975)

χ remained 0 (Eq. 3.52). The most precise periodicity factor extracted from these measurements
and corrected for up-to-date values of the physical constants is

α0 = (715.87 ± 3.8) deg, (5.6)

which is (within 3σ) in agreement with the predicted 720◦, i.e., the 4π-symmetry. The related
setup is shown in Fig. 5.3. The accuracy is limited by possible stray fields and the magnetization
value of the Mu-metal sheet.

It should be mentioned that Eq. (5.5) can also be obtained by using a different index of refrac-
tion for both spin states describing the unpolarized incident beam (Eq. 3.52). In this case the axis
of quantization is chosen parallel to the magnetic field and at the entrance in the magnetic field a
slight change of the kinetic energy occurs due to the longitudinal Zeeman splitting. This results
from energy conservation and has been observed experimentally as well (Zeilinger and Shull 1979,
Alefeld et al. 1981a, Weinfurter et al. 1988, Otake et al. 1996). Therefore, the velocity of the two
sub-beams (±) within the region of space containing the magnetic field B is slightly different,
which accounts for the ∼= sign in Eq. (5.3) and gives a correction factor on the order of 10–5, i.e.,
the ratio of the Zeeman energy to the kinetic energy of the neutrons (Bernstein 1979, Bernstein
and Zeilinger 1980, Home et al. 2013). Nevertheless, it should be mentioned that the second step
made in Eq. (5.3) is meaningful for rather monochromatic neutrons only (δv/v0 <<1). When the
axis of quantization is chosen perpendicular to the magnetic field the rotational effect of the states
becomes more visible (e.g., Barut and Bozic 1990). In both cases the 4π-symmetry effect is caused
by the action of a Hamiltonian (H = –μ·B). When the axis of quantization is chosen parallel to the
field it is related more closely to a dynamical phase and when it is chosen perpendicular to the field
it is more closely connected to a topological phase, as discussed in Section 6.3. Even here it should
be mentioned that the neutrons not only remember the dynamical phase but also the topological
one, which is related to the axis around which the rotation has taken place. Both views are com-
plementary to each other and also depend on the choice of the axis of quantization (Rauch et al.
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1975, Mezei 1988). In the course of such topological phase measurements, the dynamical phase
has been investigated again by several authors (Allman et al. 1997, Wagh et al. 1997, Werner
2012).

The 4π-symmetry effect measurements have been widely discussed (Byrne 1978, Mezei
1979, Silverman 1980, Bernstein and Phillips 1981, Zeilinger 1981a, Jordan 1983, Anandan and
Stodolsky 1987, Bhandari 1993,Wagh and Rakhecha 1996, Dubbers and Stöckmann 2013, Klepp
et al. 2014). The isomorphism of all two-level system, as has been addressed by Feynman et al.
(1957), has given a large variety of experimental verifications, including spinor interferometry
with polarized light beams (Bhandari 1991, 1993). The 4π-symmetry of the spinor wave func-
tion has been measured for unpolarized and polarized beams, as well. The combination of all
these experiments demonstrates the intrinsic features of such a quantum system in general and
the self-interference property of the neutrons within the interferometer (Badurek et al. 1988).

These experiments also demonstrate the equivalence of spin rotation (spin echo) and inter-
ference measurements because spin rotation around a magnetic guide field is caused by the
space-superposed spin-up and spin-down wave functions and, therefore, it is an interference
experiment itself (Section 2.4; Mezei 1972, 1988; Baryshevskii et al. 1991). Therefore, several
symmetry and topological phenomena can be seen in spin-rotation experiments, for example the
Berry phase (Sections 6.3 and 6.4). The generalization of this rotational phase factor involves the
inclusion of an additional geometrical or topological phase factor, which is geometry dependent,
and it matters how the Hamiltonian (Eq. 5.1) acts along the beam paths (Berry 1984). Aerts and
Reignier (1991) discussed the 4π-symmetry neutron interferometry experiments in terms of the
non-locality aspects of quantum mechanics, and they emphasized the amazing character of the
“de-localization” effect for single neutrons. What seems to be so amazing is that the spin angular
momentum is a quantized quantity h̄/2 but nevertheless the two wave packets within the interfer-
ometer remain connected to the transit of a single neutron and precess separately in each arm of
the interferometer. That is, the precession causes the phase shift of the interference pattern.

There is a discussion in the literature concerning the analogy between symmetry effects of
fermionic and bosonic systems (Byrne 1978, Zeilinger 1981a, Bernstein 1985). The reason for
this analogy may be found in the fact that in certain cases a similar two-dimensional subspace
exists for bosonic systems (e.g., the helicity ±1 for left and right circular polarized light); while
it exists intrinsically for fermions (Bhandari 1997). Bernstein (1985) has shown that magnetic
precession of neutrons represents indeed a rotation due to the well-established proportionality of
the Hamiltonian to the magnetic moment and hence to the spin angular momentum where the
time derivative of the spin, ds/dt, is the torque acting on the neutron.

The phenomenon can also be seen as a tunneling effect of spin-1/2 particles through a magnetic
field where the phase space coupling of space and spin variables becomes obvious. Only in the
low-field limit (2μB << E) can the discussion be based equivalently on a rotation phenomenon of
the spin variables or on the index of refraction formalism acting on the longitudinal k-vector of the
beam. For higher magnetic fields or lower energies of the neutrons the coupling of the space and
spin variables must be taken into account according to the non-relativistic Pauli equation. That
is, the spinor part of the wave function is entangled with its spatial part. The related reflection
and transmission effects at the field boundaries cause the outgoing wave to be composed of a sum
of waves which pass through the barriers once or after several internal reflections (Barut et al.
1987, Frank 1989, Home et al. 2013). The acceleration (deceleration) of the spin-up (spin-down)
neutron wave packet upon entering a magnetic field region has been described in Section 2.4 and
has been measured by Alefeld et al. (1981a) and by Weinfurter et al. (1988) and is discussed in a
recent paper by Cappelletti (2012).

Nuclear phase shifts χ and magnetic spinor rotations α can be applied simultaneously to the
coherent beams such that the wave function becomes (Eqs. 2.23, 3.52, and 5.2)
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ψ(χ ,α) = eiχ e–iσ ·α/2ψ(0, 0). (5.7)

After some algebra, one obtains for the intensity and the polarization of the beam in forward
direction behind the interferometer (Eder and Zeilinger 1976)

I = |ψ(0,0) + ψ(χ ,α)|2 = I0
2

[
1 + cosχ cos

α

2
+ B̂ · P sinχ sin

α

2

]
. (5.8)

The polarization P′of this outgoing beam behind the interferometer becomes

P′ =
[ψ+(0, 0) + ψ+(χ ,α)]σ [ψ(0, 0) + ψ(χ ,α)]

I ′

=
I0
2I ′

{[
cos2

α

2
+ cos

α

2
cosχ

]
P +

[
B̂ · Psin2 α

2
+ sinχ sin

α

2

]
B̂

+
[
cosχ sin

α

2
+ cos

α

2
sin
α

2

]
(B̂× P)

}
, (5.9)

where P denotes the polarization of the incident beam. This formula shows characteristic beat
effects in the outgoing intensity and also in the polarization even for unpolarized incident neu-
trons (P≡ 0). These beat effects have been found experimentally to be in agreement with these
predictions (Badurek et al. 1976; Fig. 3.16). The influence of slightly different rotation angles
with and without material in the beam has also been discussed by Baryshevskii et al. (1991).
This method has been used by Nakatani et al. (1992) to extract information about the magnetic
domain structure of a Fe-3% Si crystal (Section 9.2). In later work Nakatani et al. (1996) used
the combination of nuclear and magnetic phase shifters to control the neutron polarization behind
the interferometer. Using a spin analyzing crystal behind the interferometer they could identify
neutron polarizations in all directions.

5.2 Spin Superposition

Any superposition state which is created by the linear superposition of coherent orthogonal states
exhibits new quantum features which are intrinsically different from the beams before overlap.
This is most clearly demonstrated by the superposition of spin-up and spin-down states as shown
in Fig. 5.4, where a new pure state is created instead of a classical mixture. In this case, polar-
ized incident neutrons are used, where the polarization-dependent parts of Eqs. (5.8) and (5.9)
describe the spin-superposition phenomenon. Special attention has been drawn to the case where

=+

Classical mixture

“up” “down”

Coherent superposition

NOT

Figure 5.4 Coherent superposition of quantum
states (left) and of classical systems (right)
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oppositely oriented coherent sub-beams exit prior to superposition at the third interferometer
plate. In this case, the spin state in one coherent beam path is inverted, which can be achieved
by a static DC flipper (Mezei 1972) or by a resonance flipper (Alvarez and Bloch 1940). Both
are standard devices in polarized neutron physics (Krupchitsky 1987, Williams 1988). First,
we discuss the situation when a static spin flipper turns the spin around the y-axis (Fig. 5.5),
which rotates a beam initially polarized in the 〈z|-direction into the 〈–z|-direction (Mezei 1972,
Zeilinger 1979),

ψ(χ ,π) = eiχ e–iσyπ /2
∣∣z >= eiχ

∣∣–z > (5.10)

and the final polarization after superposition becomes

P′ =

⎛
⎝ cosχ

sinχ
0

⎞
⎠, (5.11)

which lies in the (x, y)-plane, i.e., perpendicular to the two polarization states of the two coherent
sub-beams before superposition. Therefore, a related experiment can demonstrate the quantum-
mechanical spin-superposition law on a macroscopic scale. Wigner (1963) brought attention to
this subject in his famous article on the theory of measurement. It is quite often called the “Wigner
phenomenon.” The general question, whether a complete reconstruction of a pure state is possible,
has been discussed by Schwinger et al. (1988) and by Scully et al. (1989). These papers are known
as the “Humpty-Dumpty” papers, connected to the nursery rhyme “Humpty-Dumpty fell off the
wall, can Humty-Dumpty be put back together at all?” The general answer is that one can come
close enough to recovering spin coherence in a pure state and only realistic field distributions and
the finite dimensions of the neutron wave packet cause some marginal incoherence effects.

The experimental arrangement for producing and analyzing the unique spin states cor-
responding to the Wigner phenomenon was achieved in 1982 using the setup shown in
Fig. 5.6 (Summhammer et al. 1982, 1983). A polarized incident beam is produced by magnetic
prism deflection, which in combination with a non-dispersive perfect crystal monochromator–
interferometer arrangement produces a double-humped rocking curve due to prism deflection,
corresponding to the + and – polarization states of the neutrons (Just et al. 1973, Badurek et al.
1979). The spin inversion in one of the coherent beam is achieved by a properly shaped DC coil
in combination with a weak guide field in the z-direction. The condition for a complete spin inver-
sion requires 2μB�/h̄v = π, where � is the length and B is the effective field strength around which
the neutron spin precesses (see Section 2.4, Eq. 2.28). The main part of the polarization analyzer
system behind the interferometer is the π/2 spin turn coil which rotates the y-polarization com-
ponent into the analyzer (z) direction. The experimental results are in complete agreement with
the theoretical prediction and they indicate that every neutron has information about the physical
situation in both beam paths, because a pure initial state in the z-direction is transferred into a
pure final state having a definite polarization direction within the (x, y)-plane. The coil behind the
interferometer was used to demonstrate the equivalence of a nuclear (scalar) phase shift within the
interferometer and an additional Larmor precession applied to the final polarization vector.

A discussion regarding the non-locality of the quantum state involved in these kinds of exper-
iments can be found in an article by Dewdney et al. (1988). They used a non-local quantum
potential to demonstrate how an initially pure spin state can be transported through a two-path
interferometer, thereby forming a new pure spin state perpendicular to the initial spin state.
These experiments are also connected with complementarity and “which-way” information and
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is seen as a major epistemological breakthrough (Wagh 1999). It can also be seen as a precur-
sor experiment to the Cheshire cat experiment performed much later (Denkmayr et al. 2014;
Section 7.2).

5.3 Time-Dependent Spinor Superposition

When a resonance spin flipper is used instead of a static flipper the physical situation changes in
an essential and interesting way (Fig. 5.5). Here a time-dependent interaction occurs, necessitat-
ing the use of the time-dependent Schrödinger equation to describe the result (Eq. 1.2). In this
case, the spin reversal is accompanied by an exchange of a radio-frequency (rf) photon between
the neutron and the resonator system. The transferred energy is equal to the difference of the
Zeeman energy levels h̄ωr = 2 |μ|B0 of the neutrons within the guide field of strength B0 as pre-
dicted by Drabkin and Zhitnikov (1960), and verified experimentally by Alefeld et al. (1981b)
and Weinfurter et al. (1988). The behavior of the polarization vector within such a resonance
flipper field has been treated by Kendrick et al. (1970) and that of the wave function by Krüger
(1980), Zhang et al. (1994), and Utsuro and Ignatovich (2010). For a complete spin reversal the
frequency of the rotating field must match the resonance conditions h̄ωr = 2|μ|B0 and its ampli-
tude B1 must fulfill the relation 2|μ|B1�/h̄v = π (Eq. 2.43). For experimental reasons—as in the
case of Fig. 5.5—oscillating fields are used instead of rotating ones. Such fields can be seen as two
counter-rotating fields. Therefore, the amplitude B1 must be doubled and a Bloch–Siegert (1940)
shift must be considered, which changes the resonance condition slightly, especially in the case of
weak guide fields where B0 ∼ B1. Due to the energy exchange, the potential energy, and thereby
the total energy change, however, the kinetic energy remains constant as long as the neutron stays
in the guide field. Therefore, the wave function behind the flipper at resonance is described as

ψ(χ ,ωr) = eiχ e–i(ω–ωr )t| –z >. (5.12)

This gives, after superposition with the undisturbed reference wave function of the other beam
path, a final polarization vector in the (x,i)-plane, but now it rotates with the Larmor frequency ωr

synchronous with the flipper field

P′ =

⎛
⎝ cos(χ – ωrt)

sin(χ – ωrt)
0

⎞
⎠. (5.13)

This time-dependent rotation can be detected by a stroboscopic registration of the neutrons
synchronized with the phase of the flipper (Fig. 5.7). The results of this experiment show that
coherence can be preserved even when an energy exchange occurs (Badurek et al. 1983a, 1983b).

The fact that the spin flip is associated with an energy transfer between the neutron and the
resonator system was first verified by Alefeld et al. (1981b) with a high-resolution backscattering
instrument and in more detail by Weinfurter et al. (1988) with a perfect crystal diffraction camera
(Fig. 5.8).

With regard to the discussions of the double-slit experiment (e.g., Feynman et al. 1965) one
might argue that, in addition to the interference pattern, the beam path can be detected by
observing the added or missing photon of the resonance circuit or by measuring the change of
the kinetic energy of the neutron behind the guide field. But, from the particle number–phase
uncertainty relation applied in its most simple form �N�φ ≥ 1/2 (Section 4.4.3; Carruthers
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Figure 5.8 Experimental setup (above)
and verification of an energy transfer
between the neutron and the resonator
system during a Rabi spin-flip (below;
Weinfurter et al. 1988)

and Nieto 1968, Gerhardt et al. 1974), it follows that the presence or absence of a sin-
gle photon �N =1 cannot be detected when the phase of the field �φ is known, thereby
allowing one to observe the interference pattern simultaneously. This also becomes understand-
able when the mean number of photons for the flipper field is considered (N ∼ 1022cm–3,
see comment following Eq. 5.27). Although the phase–number uncertainty relation used in
this context is not correct in a rigorous sense, it can be used as an approximation in this
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limit. Namiki et al. (1987) gave an explanation of this epistemological question on the basis
of the Machida–Namiki (1980, 1986) theory of measurement in a manner that avoids the
use of the not fully accepted particle number–phase uncertainty relations. Similar constraints
arise when one tries to measure the change of velocity behind the guide field of the neu-
trons which have passed through the resonance coil (�vr = 2μB/mv; Alefeld et al. 1981b).
For a spectroscopic measurement, the velocity spread of the beam �v must be smaller than
�vr and when measuring by a time-of-flight method, the time channels must fulfill the condi-
tion �t>��/�vr to accumulate the neutrons with the correct polarization phase in the correct
time channels, which, in turn, must fulfill the condition �t<2π/ωr to allow the observation
of the interference pattern discussed earlier. This is incompatible with the momentum–position
uncertainty relation �k��> 1/2, where �� is the distance of the detector behind the guide
field.

The coupling of the neutron quantum system to micromaser detector systems have been dis-
cussed in detail by Scully and Walther (1989). They found that classical coherent maser states
preserve spin coherence but masers prepared in number states destroy it in agreement with the
discussion above. This result was also obtained by Leggett (1986) when analyzing these exper-
iments in terms of complementarity. Therefore, no mystery concerning a virtual beam path
detection remains. It is shown that a loss of coherence in measurements on quantum systems
can always be traced to correlations between the measuring apparatus and the systems being
observed (Eq. 4.37). Whether there exists an explanation of such complementary experiments
without using the uncertainty relation is still under discussion (Scully et al. 1991, Storey et al.
1994, Wiseman et al. 1995, Wagh 1999c). Similar experiments with atoms use internal degrees of
freedom for beam path labeling which makes the uncertainty-related explanation less straightfor-
ward, but still feasible (Duerr et al. 1998). Erhart et al. (2012) demonstrated in a neutron optic
experiment that an error–disturbance uncertainty relation must be used instead of the standard
Heisenberg uncertainty relation.

5.4 Double-Coil Experiments and the Magnetic
Josephson Effect

The question arises as to whether an energy change is equivalent to a measuring process and what
happens if a resonance spin turn occurs in both beam paths (Dewdney et al. 1984). When reso-
nance coils are placed into both beam paths an energy exchange h̄ωr occurs with certainty and the
polarization of the outgoing beam becomes inverted (Fig. 5.9). According to our previous con-
siderations the change of the wave function for different modes of operation when the resonance
flippers are tuned for resonance can be categorized into four cases. We take the initial state to
be |z>):

(a) Both flippers are operated synchronously without a phase shift between the flipper fields

ψ0 → ei(ω–ωr)t
∣∣–z > + eiχ ei(ω–ωr)t

∣∣ – z >, (5.14)

which gives an intensity modulation of

I0 ∝ 1 + cosχ , (5.15)

independent from the flipper fields.
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Figure 5.9 Experimental arrangement and typical results of the double-coil exper-
iment when both flipper fields are operated synchronously (top), non-synchronously
(middle), and with a distinct phase shift (bottom) (Badurek et al. 1986)

(b) Both flippers are operated with statistically fluctuating phase differences �(t), which
average out during the measuring interval

I0 ∝ const. (5.16)

However, it has been noted that even in this case coherence phenomena can be observed if a
stroboscopic investigation is performed (I0 = I0(�(t)).

(c) Both flippers are operated synchronously with a distinct phase relation �, such that the
wave function in the 0-beam is

ψ0 → e–i(ω–ωr)t
∣∣–z > +e–χei� · ei(ω–ωr)t∣∣ z >. (5.17)

The intensity in the 0-beam is then

I0 ∝ 1 + cos(χ +�), (5.18)

which is dependent on the phase shift � of the resonance fields. The related experiments have
shown this behavior (Fig. 5.9; Badurek et al. 1986). The dependence on the phase difference of



194 Spinor Symmetry and Spin Superposition

the resonance fields indicates that the interference pattern is also sensitive to the longitude line on
the Poincaré sphere on which the neutron spin is rotated from the north pole |z> to the south
pole |– z >. This influence of the topological phase will be discussed in Section 6.3.

(d) Both flippers are operated synchronously but with slightly different resonance frequencies
ωr1, ωr2

ψ → ei(ω–ωr1)t |z > +eiχ ei(ω–ωr2)t |z >. (5.19)

Figure 5.10 Experimental arrangement and typical results of the
double-coil experiment when the resonance frequencies of both flipper
coils are chosen slightly different (�f = 0.02 Hz; Badurek et al.
1986)
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Therefore, the intensity behind the interferometer exhibits a typical quantum beat effect, caused
by an extremely small energy difference between both beams (�E = h̄(ωr1 – ωr2)):

I = 1 + cos[χ + (ωr1 – ωr2)t]. (5.20)

The related experiments have shown complete agreement with this theoretical prediction
(Badurek et al. 1986). The dependence of the interference pattern on the phase shift of the
oscillating resonance fields shows again that the wave function behind the interferometer carries
information about the physical situation of the history along both beam paths and that for defi-
nite phase shifts every neutron “knows” to enter the forward or the deflected beam. This verifies
coherence remains even when an energy exchange occurs with a probability near to unity and that
energy exchange is not automatically a measuring and/or localization process. Certainly, no meas-
uring process has taken place as long as the energy transfer due to the resonance fields is smaller
than the energy width of the beam. In this case, absorption (or emission) of a photon by coil I and
coil II can coexits objectively (Unnerstall 1990).

Here we display the result of the quantum beat measurement (Fig. 5.10) where the inten-
sity behind the interferometer oscillates between the forward beam (0-beam) and deviated beam
(H-beam) without any apparent change inside the interferometer. The time constant of this
modulation can reach a macroscopic scale which is again correlated with an uncertainty rela-
tion �E�t≤ h̄/2. The periodicity of the intensity modulation T = 2π /(ωr1 – ωr2) has a value of
T = 47.90 ± 0.15 s caused by a frequency difference of about 0.02 Hz. This corresponds to a
mean difference of the energy transfer to the two beams of �E = 8.6× 10–17 eV and to an energy
sensitivity of 2.7×10–19 eV, which is many orders of magnitude greater than that of other advanced
spectroscopic methods. This high resolution is essentially independent of the monochromaticity
of the neutron beam. In this case the monochromaticity was �E ∼= 5.5 × 10–4eV centered around
the mean energy of the beam E0 = 0.023 eV.

This experiment gives additional possibilities for a comparison of the Bohr–Heisenberg and the
Einstein–de Broglie view of quantum mechanics (Vigier 1985, 1988). The experimental results
agree with the predicted outcome of the quantum-mechanical formalism and can, therefore, help
for interpretational questions, but only indirectly. An adequate discussion of the above experiment
in terms of a modernized Copenhagen measurement theory has been given by Omnès (1994).

The resonance spin flippers used for the time-dependent spinor superposition (Section 5.3)
and for the double-coil experiment described in this section have been operated with comparable
strengths of the guide field and of the amplitude of the oscillating field (B0 ∼B1). In this case
the Larmor frequency ωL = 2|μ|B0/h̄ deviates from the resonance frequency ωr due to the so-
called Bloch–Siegert shift (Bloch and Siegert 1940, Greene 1978, Pendlebury et al. 2004). For the
case B1 ≤ B0 the frequency shift can be written as ωr = ωL

(
1 + B2

1/16B
2
0

)
—see Eq. (2.42). The

oscillatory field must be considered to consist of two counter-rotating fields where only one is at
resonance while the other contribute to a pseudo-guide field-shifting of the resonance frequency.
The Bloch–Siegert shift can be calculated using the classical description of the rf field and the
Bloch equation (Eq. 2.27), but the dressed atom approach allows a more global analysis to be
made. In this case the rf field is treated as a quantum entity as well. The results show also the
correlation of all the resonance phenomena with the properties of the energy diagram, which is
created by a related Hamiltonian (Cohen-Tannoudji et al. 1992, Pendlebury et al. 2004).

A Japanese group performed such a double-coil resonance experiment with a spin-echo
arrangement (Section 2.4), putting two resonance coils behind each other and operating them with
a frequency difference of 20 μHz. This corresponds to an energy difference of 8.27× 10–20eV and
a sensitivity near to 10–22eV (Ebisawa et al. 1998a, Yamazaki et al. 1998). The arrangement and
typical results are shown in Fig. 5.11. These high sensitivities could be used for the search of new
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effects in the neutron–gravity interaction, an electric dipole moment of the neutron, and perhaps
other exotic phenomena.

The quantum beat effect can also be interpreted as a magnetic analog of the Josephson effect
known for superconducting tunnel junctions (Josephson 1974). In that case, the common boson
phase of the Cooper pairs in both superconductors vary when a voltage V is applied at the tunnel
junction as

∂

∂t
(φ2 – φ1) =

1
h̄
(E1 – E2) =

2e
h̄
V , (5.21)

which yields

φ = φ2 – φ1 =
2 eV
h̄

t. (5.22)

This produces a rapidly oscillating tunnel current

Is = Imax sinφ. (5.23)
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In the neutron case (Eq. 5.19) we can formulate the different energy transfer in both beams as a
time-dependent phase shift (Rauch 1991)

� = �2 –�1 = (ωr2 – ωr1) t =
2μ�B0

h̄
t, (5.24)

which obeys an equation analogous to Eq. (5.21). That is,

∂

∂t
(�2 –�1) = ωr2 – ωr1 =

1
h̄
2μ�B0, (5.25)

which yields again Eq. (5.20) but now in the form

I ∝ (1 + cos�(t)), (5.26)

where �B0 denotes the difference of the strength of the guide fields in both flippers. Whereas
the ordinary Josephson effect is driven by an electrical force, the neutron analog is driven by
a magnetic force. Both are phase-sensitive phenomena and are therefore extremely sensitive to
any additional driving forces. The slowly varying phase difference occurring in that experiment
can also be interpreted as a time-varying geometrical phase (Wagh and Rakhecha 1990; see
Section 6.3).

The more complete treatment of neutrons in a static field, B0, and in an oscillating field,
B1, must start with the second quantized Jaynes–Cummings Hamiltonian (Cohen-Tannoudji and
Haroche 1969, Cohen-Tannoudji et al. 1992)

H = μB0σz + h̄ωa+a– + h̄
B1√
N

(a+σ– + σ+a–), (5.27)

where the first term denotes the Zeeman term, the second one adds the energy ofN photons of the
oscillating field, and the last term describes the coupling between the photons and the particle’s
magnetic moment. Here σ± = σx ± iσy, where σi are the Pauli matrices of the neutrons, a+ and a–

are the creation and annihilation operators and N = a+a– denotes the mean number of photons
in the field, which is related to the amplitude of the oscillating field by Nh̄ω = B2

1V /2μ0 (Cohen-
Tannoudji and Haroche 1969, Schmidt et al. 1993). In the case discussed in Sections 5.3 and 5.4,
N is on the order of 1022cm–3. The Hamiltonian (Eq. 5.27) has been used for the description
of a two-level atom in a radiation field which is homomorphic to a spin-1/2 particle precessing
in a magnetic field (Feynman et al. 1957). It correctly describes the appearance of 1-, 3-, 5-,
etc. quanta in spin resonance transitions. The particle number–phase uncertainty relation in the
symmetrical form reads as

(�N)2
(�S)2 + (�C)2

< S>2+ < C>2
≥ 1/4, (5.28)

where S and C are the Hermitian cosine and sine operators which can be expressed by
C = (a+ + a–)/2(N +1)

1/2 and S = (a+ – a–)/2i(N +1)
1/2 and whose matrix elements couple coher-

ent Glauber states (Carruthers and Nieto 1968). C and S permit the definition of unitary phase
operators Uc = exp(iφc) and Us = exp(iφs) giving the uncertainty of a phase measurement in the
form

(�φ)2 = (�S)2 + (�C)2. (5.29)
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For N → ∞, the uncertainty relation can be simplified to �N�φ ≥ 1/2 where φ is the phase of
the oscillating field, and for a coherent state system, where the number states are Poisson distrib-
uted ((�N)2 = N) one gets �φ = (2N)–1/2—see Section 4.4.3. Although the existence of a phase
operator in quantum mechanics is still under discussion, the relevance of the related uncertainty
relations has been proven in many optical investigations. The definition of the phase operator with
phase-dependent states seems to be a useful concept (e.g., Pegg and Barnett 1988). The coupling
term of the Hamiltonian (Eq. 5.27) causes the appearance of level-crossing and anticrossing in the
related energy-level diagram (Muskat et al. 1987). In analogy to the well-known “dressed-atom”
phenomena (Cohen-Tannoudji and Haroche 1969) these effects can be classified as “dressed-
neutron” phenomena. Related experiments with polarized slow neutrons have demonstrated these
interesting effects (Muskat et al. 1987, Dubbers 1989). The Jaynes–Cummings (1963) model also
describes the dephasing and the later revival of the coherent spin precession which means that the
spin precession in one component vanishes and appears in another component and sweeps back
again. Related experiments have verified this behavior (Schmidt et al. 1993). Spontaneous polar-
ization effects for an unpolarized beam are also predicted but seem to be rather small for feasible
parameters. This kind of “hidden coherence” is another form of interference in phase space as
discussed in Section 5.5 (Gea-Baracloche 1990).

The coupling of a polarized neutron beam to two resonator cavities in series where an ini-
tial spin flip in the first cavity can be undone in the second one is given by Scully et al. (1989).
It is shown again that spin coherence is preserved if the cavities are prepared in coherent state
modes where no measurable correlation is imposed on the resonator system due to the neutron–
resonator interaction. The mutual exclusivity of observing interference and path information has
also been verified for entangled photon pairs when the partner photon of the interfering one
is intended to deliver additional information (Herzog et al. 1995). By Ramsey interferometry
with Rydberg atoms it has been shown that superposition states between atoms and cavity states
can be produced (Brune et al. 1996). But it has also been shown that a classical behavior is
expected even in the case of small quantum number excitations and a dissipative cavity subsystem
(Kim et al. 1999).

Rauch and Vigier (1990) proposed to repeat the double-coil experiment under the condition
of strong magnetic fields causing energy shifts larger than the energy widths of the beam (�Ehf =
2μB0 = h̄ωr > δE). It can be shown that in this case the neutrons become partly labeled because
they are shifted out of the original phase space. It can easily be shown that the phase � now varies
significantly during the coherence time of the beam (�tc =�xc/v= h̄/2δE), causing a kind of phase-
chopping effect, which might be interesting by itself, but it reduces the contrast of the interference
pattern considerably. Thus, the plane wave formalism of Section 5.3 and of this section must be
replaced by a wave packet formalism if �tc approaches �thf = h/2μB0. It can be shown that there
is a smooth transition between the classical situation where the phase shift (total energy change)
can be described by the different Zeeman energy changes the particle experiences at the entrance
and exit of the time-dependent field

E = E0 + μ[B(tex) – B(ten)] (5.30)

and the quantum behavior where the particle ends up in a superposition state

E =
∑

an
∣∣E0 + nh̄ω >, (5.31)

where n are integers, ω is the frequency of the oscillating field, and an are the transition amplitudes
(see Section 5.5). Which of the pictures must be taken depends crucially upon the coherence
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time of the wave packet (Summhammer 1996). This effect is somehow analogous to the (spatial)
lattice diffraction effect or the diffraction-in-time effect from a very fast chopper, as discussed
in Section 4.3.2. For the labeled neutrons (n �= 0) only a beam trajectory can be assigned. These
neutrons do not contribute to the interference pattern, leaving open the Einstein–Bohr controversy
concerning the completeness of quantum mechanics (Unnerstall 1990).

Various schemes have been discussed for simultaneous interference and beam path detec-
tion, such as Einstein’s recoiling slit (Jammer 1974), Feynman’s light microscope (Feynman
et al. 1965), and Scully’s quantum eraser system (Scully et al. 1991). For the understanding
of the phenomenon of interference or which path detection, it is irrelevant whether a momen-
tum (or energy) disturbance occurs locally or non-locally. For a double-slit situation this has
been visualized by means of Wigner functions (Wiseman et al. 1997). Analogies to the non-
locality phenomena in Aharonov–Bohm situations exist as well (Section 6.2). Depending on what
we choose to measure, the nature of the related disturbance can sometimes be interpreted as
a momentum change or a localization of the particle. In the former case, the interference pat-
tern persists but is shifted, whereas in the latter, the interference pattern becomes featureless due
to the coupling with the apparatus. This coupling does not imply that the alteration of the sys-
tem is uncontrolled unless information about the detector state is discarded. Thus, an entangled
state of the system and the path detector exists and the probability density of the detector states
influences the interference pattern causing gradual or complete loss of coherence (Tan and Walls
1993). In the case of a two-level detector model, each subclass of particles which left the detec-
tor in the state |0> or |1> form an interference pattern with unit visibility but with the minima
and maxima interchanged. When all the particles are considered together, however, no interfer-
ence is observed. This brings us back to post-selection experiments as they were discussed in
Section 4.5.

5.5 Multiphoton Exchange Experiments

In the previous section, the strength and the frequency of the time-dependent magnetic field were
tuned to resonance which caused a spin-flip probability near to unity and a photon exchange
probability near to unity, as well. The feature of simultaneous spin flip and energy change has first
been demonstrated by Alefeld et al. (1981b) at a high-resolution backscattering instrument and in
more detail by Weinfurter et al. (1988) with a perfect crystal diffraction camera (Fig. 5.8). In these
cases the energy resolution of the apparatus and the energy change has been measured directly.
Here we will focus on multiphoton exchanges where we will obtain information about the energy
exchanges from the related phase changes.

When the resonance conditions are not fulfilled multiphoton exchange become possible with
different probability amplitudes. Here a close analogy to the dressed neutron phenomenon exists
(Muskat et al. 1987, Dubbers 1989, Dubbers and Ströckmann 2013). Thus for a neutron in the
|+z >-state and with an energy h̄ω0 we expect a wave function beyond the time-dependent field as

|ψf 〉=
+∝∑
j=–∝

[aj |+z 〉 + bj |–z 〉 ]|ωj〉 , (5.32)

where ωj =ω0 + jω. In our case we assume a static and an oscillating magnetic field existing
in a certain region of space where they are taken to be spatially homogeneous. Summhammer
(1993) performed related calculations for various field configurations. In the so-called parallel
field configuration
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B(t) =

⎛
⎝ 0

0
B0 + B1 cosωt

⎞
⎠ . (5.33)

The solution can be taken from the solution for an oscillating step potential (Haarvig and
Reifenberger 1982), because the two spin components are decoupled and no spin flip can occur
(bj ≡ 0). The interaction of neutrons with oscillating surfaces of material slabs is another example
of a time-dependent interaction with a step potential causing the exchange of quanta between the
neutron and the oscillating system (Felber et al. 1966). The situation discussed here is also rather
similar to that used in the measurement of the scalar Aharonov–Bohm effect (Section 6.2; Allman
et al. 1992, Badurek et al. 1993). The transition amplitudes can be written in terms of ordinary
Bessel functions of order j:

aj = Jj(α B1) (5.34)

with

α =
μ

h̄ω
sin(ωτ /2),

and τ is the time-of-flight through the field region. The absorption and emission probabilities of
a given number of photons are the same, independent of whether an even or an odd number of
photons are exchanged. The transition amplitudes do not depend on the static component of the
magnetic field, which contribute only to the phases, in analogy to the 4π-symmetry experiments
(Section 5.1).

In the so-called perpendicular field configuration the magnetic field is

B(t) =

⎛
⎝ B0

0
B1 cosωt

⎞
⎠, (5.35)

which causes a coupling of position and time coordinates in the neutron wave function. When the
time-of-flight through the magnetic field can be assumed to be the same for both spin compo-
nents, a separation of spatial and time coordinates becomes possible (Shirley 1965). For thermal
and cold neutrons and magnetic fields which are not too strong or turned on too long, this is rea-
sonably well satisfied. The exchange of an odd number of quanta will result in a spin flip, whereas
the exchange of an even number of quanta leaves the neutron spin state unaffected. The ampli-
tudes for emission and absorption for odd numbers of photons are in general very different from
each other (Summhammer 1993). This changes the occupation number of different levels. The
resulting transition amplitudes depend on the strength of the static and oscillating field and on
the time-of-flight through the field. Any depolarization of the neutron beam when entering and
leaving the perpendicular fields must be avoided.

Experiments related to the above discussion have been performed at the MURR using a skew-
symmetric perfect crystal interferometer and an oscillating field coil in one of the coherent beams
(Fig. 5.12; Summhammer et al. 1995). A static spin flipper in the second beam was used to
measure the spin-flip amplitudes when the perpendicular field configuration was investigated. The
intensity at detector C3 is given by the overlap of the undisturbed (or spin-flip) wave function of
beam path I and the wave function exposed to the oscillating field (Eq. 5.33),

I ∝ ∣∣|+z〉 + eiχ |ψf〉
∣∣2 = 1 +

∣∣∣∣∣∣
+∞∑
j=–∞

(aj |+z〉 + bj |–z〉 e–ijωt
∣∣∣∣∣∣
2

+ 2
+∞∑
j=–∞

∣∣aj∣∣ cos(φj + χ – j ωt), (5.36)
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Figure 5.12 Experimental arrangement and typical results obtained when an
oscillating magnetic field in one beam path causes multiphoton exchange pro-
cesses. Reprinted with permission from Summhammer et al. 1995, copyright
1995 by the American Physical Society.

where χ is the phase shift induced by the phase shifter plates, and φj are the phases of aj (without
static spin flip) and bj (with static spin flip): The counting rate was stroboscopically measured
with the phase of the oscillating field, whose frequency was chosen as 7534 Hz, corresponding
to a photon energy of 3.24 × 10–11eV. A typical data set is shown in Fig. 5.12. In Fig. 5.13 the
photon exchange amplitudes obtained with the parallel field configuration are shown as a function
of the oscillating field strength. The full lines are a least squares fit of the theoretically expected
Bessel functions. The general consistency between observed and predicted values confirms that
in this configuration an even as well as an odd number of photons can be absorbed or emitted
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Figure 5.13 Measured multiphoton exchange
amplitudes in the parallel field configuration of
an oscillating field. Reprinted with permis-
sion from Summhammer et al. 1995, copyright
1995 by the American Physical Society.

by the neutron, despite the fact that no neutron spin flip occurs. In the case of an odd photon
number exchange, a part of the whole angular momentum must be absorbed by the magnetic
field. Much more experiments with off-resonance magnetic fields have been done in connection
with dephasing (decoherence) experiments described in Section 4.6.2 (Sulyok et al. 2012).

Measurement with the perpendicular field configuration described by Eq. (5.35) has been per-
formed as well (Summhammer et al. 1995). It has been confirmed that in the case of an even
number of exchanged photons (no spin flip) the amplitudes of absorption and emission are equal,
whereas for an odd number of photon exchange (spin-flip processes) the amplitudes for emission
and absorption become different.
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The experiments described in this section can only approximately be explained in a quasi-
static manner without energy exchange by using a time-dependent phase acquired by the two
spin components inside the oscillating field (Eqs. 4.152–4.155). This simplified description relies
on the rotation of the polarization vector in the oscillating field and does not account for the
whole physical situation as discussed by Zhang et al. (1994) and Summhammer (1996). A direct
measurement of the energy change would require oscillation frequencies of the field higher than
100 kHz. These rather large changes of the kinetic energy come into the scope of the sensitivity
of perfect crystal small-angle scattering cameras. On the other hand, this interferometric method
represents an alternative method of measuring small changes of energy without the constraint that
the energy change must be larger than the energy resolution of a spectrometer. This provides the
basis for novel Fourier methods in condensed matter physics, as discussed in Section 9.3 (Rauch
1995b). When oscillating nuclear phase shifters are used, similar multiphoton exchange processes
are expected (Littrell et al. 1996). In this case the phase shifts can be calculated on the basis of
this multiphoton exchange process and it can be related to the neutron interaction in non-inertial
reference frames as discussed in Sections 8.3 and 8.5. How multiphoton exchange contributes also
to dephasing and decoherence effects is discussed in Section 4.6.2, and how this may be used for
beam cooling is described in Section 10.16.



6

Topological and Geometric Phases

Topological and geometrical effects appear in the solution of the Schrödinger equation due to
special geometrical forms of the interaction, or due to interactions which do not result from con-
servative forces acting on the system (see Section 1.2). A conscientious reader may point out that
all these effects could be entirely explained by only using the Schrödinger equation. However, the
geometric phase formalism is conceptually useful, because it often plays a role in understanding
fundamental quantum phenomena. It shows that additional phase factors exist which are eas-
ily overlooked in making the interpretation of measured effects more mysterious than necessary.
Thus, our understanding of quantum mechanics has been deepened since the existence of geo-
metric phases was explicitly revealed. This occurred due to the seminal works of Pancharatnan
(1957) and Berry (1984). Subsequent papers by Anandan (1992), Bhandari (1997), Shapere and
Wilczek (1989), and Manoukin (2006) are important in the history of this subject. It also shows
that a wave function often carries much more information than is usually extracted in a stand-
ard experiment. A typical example is the assumption of adiabaticity where the magnetic moment
of the neutron produces a dynamical phase shift proportional to the path integral

∫
Bds (inside

a slowly varying magnetic field), but when the direction of the field varies slowly an additional,
i.e., a geometric phase appears as well. The back reaction of a quantum measurement can also be
described as a kind of an induced topological phase (Aharonov et al. 1998). A review summarizing
the Aharonov–Casher effect experiment in the next section and the scalar Aharonov–Bohm effect
experiment discussed in Section 6.2 is given by Werner and Klein (2010).

6.1 Aharonov–Casher Topological Phase

Aharonov and Bohm (1959) identified two important effects in their famous paper: the so-called
magnetic (or vector) AB effect and the scalar interaction effect of an electron interacting with
the vector potential and with a purely time-dependent electric potential. Both effects have coun-
terparts for neutrons carrying a magnetic dipole moment moving around an electric line charge
or when they are exposed to a pure time-dependent magnetic field (Fig. 6.1). In both cases the
canonical momentum p changes but the kinematical momentum mv does not. Therefore, these
effects also carry topological features. Both effects have been observed first by neutron interfer-
ometry. The magnetic Aharonov–Bohm effect for electrons found many experimental realizations
using various solenoids and various magnetic shielding including superconductors (Chambers
1960, Boersch et al. 1961, Möllenstedt and Bayh 1962, Tonomura et al. 1986, Hasselbach 2010).
Three of the Aharonov–Bohm effects mentioned earlier have been verified. The scalar Aharonov–
Bohm effect for charged particles (electrons) has not found experimental verification so far.

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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Figure 6.1 Schematic view of the various electron and
neutron Aharonov–Bohm situations. Reprinted with per-
mission from Badurek et al. 1993, copyright 1993 by the
American Physical Society.

The difficulty is the rather high velocity of the electrons inside an electron interferometer which
requires a very fast switching of the electrical potential in one of the Faraday cages, which would
imply temporal fields and other disturbances. A steady state version of the electric Aharonov–
Bohm effect using two oppositely charged metallic plates has been reported by Matteucci and
Pozzi (1985), but it was challenged by Boyer (1987b). A follow-up experiment by Hilbert et al.
(2011) showed indeed a time delay of the packet passing through such a double-wire arrangement
and therefore disproving a forceless interaction for this geometry also. A verification of the electric
Aharonov–Bohm effect has also been achieved by means of a Ramsey–Bordé atom interferome-
ter where the time-dependent interaction has been generated by a pulsed laser field creating an
induced atomic dipole (Mueller et al. 1995).

The interaction of the neutron magnetic moment with an electric field is given by the Schwinger
interaction as formulated in Chapters 1 and 3 (Eqs. 1.21 and 3.42)

Vs =
h̄
mc
μσ · (E×k), (6.1)

which permits the definition of an effective magnetic field since the neutron moves relative to the
electric field:

B′ =
h̄
mc

(E×k). (6.2)

Thus B′ is the residue of the Lorentz transformation of E to the rest frame of the neutron. The
reader will recognize the Schwinger interaction above as nearly identical to the spin–orbit interac-
tion in atomic physics. For atoms there is a factors of 1/2 which comes from Thomas precession
in the accelerated (circular) frame of the electron in an atom. From the analogy of the movement
of a charged particle (electron) around a magnetic flux tube and the movement of a magnetic
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dipole (neutron) around a line of electric charge, Aharonov and Casher (1984) introduced a
gauge-invariant Lagrangian which yields for the two polarization states an additional phase shift.
It can be calculated from a proper time integral or the path integral of the canonical momentum,
namely (Eq. 1.38)

�AC =
∮

μ·B′

h̄
dt =

∮
μ·B′

h̄v
ds = ±2μ

h̄c
E�. (6.3)

The magnetic field B′ appears in the frame of the moving neutron due to the existence of the E
field in the laboratory frame over a distance �. In this case, the canonical momentum is

p = mv +
μ

c
×E , (6.4)

which also yields the same formula for the phase shift of Eq. (6.3). The Aharonov–Casher phase
shift has also been obtained when a mean potential due to spin–orbit coupling is assumed (Rauch
1979, Anandan 1982).

The important experiments related to these topological effects have been carried out at the
University of Missouri Research Reactor with an electrical field applied to the coherent beams of
a perfect crystal interferometer. The field strength was 30 kV/mm and the effective length of this
field was 2.53 cm, which yields for the arrangement shown in Fig. 6.2 an expected phase a shift of
only 1.5 mrad (Kaiser et al. 1988, 1991; Cimmino et al. 1989). It was not necessary to use polar-
ized neutrons if an additional spin-independent phase shift is judiciously introduced and adjusted
(see Eq. 5.8). The authors used the gravitationally induced COW phase shift (Section 8.1) by tilt-
ing the interferometer slightly about the incident beam. In order to achieve the highest sensitivity
an additional magnetic phase shifter was applied and adjusted to the maximum positive or the
maximum negative slope of the interference pattern. In this setting, the relative intensity variations

N
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B–

–

+

M
D

1

2

Figure 6.2 Schematic diagram of the experimental arrangement for
the measurement of the Aharonov–Casher effect (Klein and Werner
1991)
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in the counters behind the interferometer become linearly proportional to the Aharonov–Casher
phase shift as the electric field is switched alternatively into the positive and negative directions.
One finds that

I+ – I –

I+ + I –
∼= V

∣∣�φAC∣∣, (6.5)

where + and – denote the different directions of the electrical field which was changed periodi-
cally and V denotes the visibility of the interference fringes (Eqs. 4.46 and 4.84). In a long-term
experiment extended over 2 years, Cimmino et al. (1989) obtained a value�φAC =2.19(52)mrad,
which for the first time verified this interesting effect. Sangster et al. (1993, 1995) observed the
Aharonov–Casher phase without a spatial beam separation using a Ramsey–Bordé arrangement
for molecular beams (Bordé 1989). Strictly speaking the Sangster experiment did not verify the
essential topological aspect of the Aharonov–Casher effect since their beam did not encircle the
charge. See Ramsey (1993) for a discussion of this point.

The Aharonov–Casher effect can also be interpreted as a kind of a Schwinger spin–orbit term
(Eq. 1.21), where in the semi-classical picture the phase shift is caused by a force acting on the
neutron (Klein 1986, Boyer 1987a). The discussion, whether there is a force acting on the neu-
tron in their experiments, is still continuing (Boyer 1987a, Aharonov et al. 1988, Anandan 1989,
Goldhaber 1989, Casella andWerner 1992, Anandan and Hagen 1994,Wagh and Rakhecha 1997,
Peshkin 1999, Cappelletti 2012). In the frame of the successful current loop model of the neu-
trons’ magnetic dipole moment, the retro-action of an external field on the internal mechanical
momentum must be included to keep the model relativistically invariant (e.g., Mezei 1988). This
appears to cause a force F = μ · ∇(E × v)/c, which would act at the entrance and exit of the field.
This is, in fact, not the case as we now demonstrate for neutrons moving around a line charge of
density � extending along the z-axis, for which the electric field is

E =
2�
r
r̂, (6.6)

which is a radial vector in the xy plane. The Hamiltonian for the moving neutron then consists of
two terms:

H =
p2

2m
–

1
mc

μ · (E xp). (6.7)

The canonical momentum p, as given by Eq. (6.4), is obtained from the first of Hamilton’s
equations

ṙ =
∂H
∂p

=
p
m

–
μ × E
mc

. (6.8)

For neutrons polarized along the z-axis (μ=μσ ẑ, σ =±1), we see that μ×E/c is a solenoidal
vector field (taking the place of eA/c in the canonical momentum for an electron moving around a
tube of magnetic flux). The AC phase shift for the geometry of Fig. 6.1 is given by the line integral

��AC =
1
h̄c

∮
μ × E · ds, (6.9)
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where the line element ds, in cylindrical coordinates (r, ϕ, z), is

ds = dr r̂ + rdϕ ϕ̂ dz ẑ. (6.10)

But

μ×E =
2σμ�
ν

ϕ̂. (6.11)

Thus, carrying out the integral in Eq. (6.9) we have

��AC = σ
4π μ�
h̄c

. (6.12)

This derivation and result clearly display the topological nature of the AC effect in that the phase
shift, ��AC, is independent of where the line change penetrates (threads) the loop of the neutron
beams in the xy plane of the interferometer. The phase shift depends only upon the net charge �
per unit z, thus allowing the use of an extended electrode (sum of many line charges on its surfaces)
as in the experiment of Cimmino et al. (1989). Equation (6.12) is then seen to be identical to
Eq. (6.3) if we use Gauss’ law, from which we obtain

� = 2V�/4πD, (6.13)

where the electric field E =V /D along the beam paths is given by the electric potential difference
V across the gaps of width D (see Fig. 6.2).

We now establish that there is no kinematical effect (to order 1/c) of the electric field on the neu-
tron’s trajectories (classical paths), i.e., that the acceleration, a, is zero. Differentiating Eq. (6.8)
with respect to time, we obtain

ma = ṗ –
1
c
d
dt

(μ × E). (6.14)

But E is a static field here, so that the total derivative is

d
dt

= v · ∇, (6.15)

where v= ṙ is the neutron’s group velocity. The time derivation of the canonical momentum is
given by the second of Hamilton’s equations:

ṗ = –
∂H
∂r

=
1
mc

∇ [(μ × E) ·p]. (6.16)

Therefore, using Eqs. (6.15) and (6.16) in Eq. (6.14) we obtain the equation of motion

ma =
1
mc

{∇[(μ × E) · p] –mv · ∇ (μ × E)}. (6.17)

Using rules of elementary vector analysis, and keeping terms up to order 1/c, we find that

ma = –
1
c
(μ · ∇) . (v× E). (6.18)
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This is the result first clearly derived by Aharonov, Pearle, and Vaidman (1988).
For neutrons polarized along the z-axis, we have

μ · ∇ = σμ
∂

∂z
, (6.19)

but for a line charge (or distribution of line charge, as in the experiment of Cimmino et al. (1989)),
the electric field E = E(x, y) is independent of z; thus Eq. (6.18) requires

ma = 0, (6.20)

as originally stated by Aharonov and Casher (1984). The fact that there is no force on the neutron
upon entering or leaving the region of the electric field has caused a fair amount of skepticism. The
paper by Cappelletti (2012) has addressed these concerns in a transparent and elegant manner but
see also the book by Aharonov and Rohrlich (2005) for further discussions.

There remains a subtlety in applying this result to the experiment of Cimmino et al. (1989)
since the experiment was done with unpolarized neutrons. It was realized during the course of the
experiment that the axis of spin quantization (axis of polarization) must also be the z-axis. In a
somewhat fortuitous way, this quantization axis was provided by the stray magnetic fields from the
DC magnet in path II of the interferometer, used to set the spin-dependent phase, at the location
of the electrode assembly. A discussion of these matters is given in the paper by Kaiser et al.
(1991). The exact equivalence of the Aharonov–Bohm effect and the Aharonov–Casher effect for
relativistic spin-1/2 particles has been shown by an analysis based on the Dirac equation (Hagen
1990). The different views may be linked together and may have their justification if the axis of
quantization is included in the discussion. In any case, it remains an interesting debate because the
force—if existing at all—is a non-conservative one due to its velocity dependence. Zeilinger et al.
(1991) and Peshkin (1999) claimed the Aharonov–Casher effect is purely topological in nature.
A comprehensive discussion of this effect has been given by Aharonov and Rohrlich (2005) and
byWerner and Klein (2010). A crucial test would be whether there is a Zeeman energy shift within
the effective magnetic field B′ given in Eq. (6.2). According to experiments which are related to
a search for an electric dipole moment of the neutron, it is very likely that the effective field B′

acts as a real magnetic field causing an additional energy shift and additional Larmor rotation
(Golub and Pendlebury 1972). The paper by Cappelletti (2012) addresses the question of the
Zeeman splitting in the motional magnetic field B′. He concludes that the field is indeed real in the
frame of the neutron, and that the spin-up and spin-down states are split in energy. The energy
for this splitting comes from the electromagnetic field as the neutron enters the region containing
the E field and gives it back to the field upon leaving the field region. The analogous situation
describing the motion of an electric dipole within a magnetic field has been elucidated by Spavieri
(1999), but seems to be accessible for atom optics only. The Aharonov–Casher effect also must
be considered in accurate electric dipole moment measurements of the neutron (Pendlebury et al.
2004). A new experiment by the Toulouse atom interferometer group has observed the AC effect
using Li atoms in a separated atom interferometer (Gillot et al. 2014). This experiment is very
similar geometrically to the neutron experiment.

6.2 Scalar Aharonov–Bohm Effects

Consider now the case in which a purely time-dependent magnetic field is applied when the neu-
tron is inside a long solenoid, where there is no gradient of the field. The magnetic field pulse gives
rise to a phase shift (Zeilinger 1984)
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�φSAB = ±(μ/h̄)
∫
B(t) dt, (6.21)

which is called the scalar Aharonav–Bohm (SAB) effect. The experiment has been done with
unpolarized neutrons, with a stationary bias coil and a pulsed coil in the coherent beams (Allman
et al. 1992; Fig. 6.3). Neutrons were registered into a multichannel scaler and synchronized with
the pulsed field. Thus, one could select those neutrons which were in the coil when the magnetic
field pulse was turned on. The bias coil was necessary to impose a different dynamical phase shift
(α/2 = ±μB�/h̄v; Section 5.1) to both spin states which make them distinguishable for the data
analysis. The difference counting rate for a positive and a negative magnetic pulse gives the SAB
phase directly:

(I+ – I–) ∝ sin(�φSAB). (6.22)

The related results for both beams behind the interferometer are shown in Fig. 6.3. A special
accuracy estimate based upon a maximum likelihood prescription determined the error bars in
the data analysis (Opat 1991).

An essential feature of the Aharonov–Bohm effects is their non-dispersivity and, therefore,
they show up only as an overall phase factor of the spatially non-shifted wave packet. They are
only observable in interference experiments. Because of non-dispersivity the spatial coherence
function is not affected (Section 3.2.2), and Aharonov–Bohm phase shifts can be much larger than
a phase shift corresponding to the coherence length of the beam can occur. This non-dispersive
feature has been demonstrated by Badurek et al. (1993) on the basis of a time-dependent spin-
echo arrangement using a rather polychromatic beam. A pulsed magnetic field was applied when
the neutrons were inside the precession field and high-order spin rotations, which are washed out
in the case of a static precession field (due to its dispersive action), have been observed.

Figure 6.3 Experimental arrangement for the scalar Aharonov–Bohm (SAB)
experiment using unpolarized neutrons. The time dependence of the magnetic field
is shown at the bottom. The difference counting rate is shown on the right when
positive and negative magnetic fields are applied (Allman et al. 1992)
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In the discussion about the topological nature of this SAB effect it should be remembered that
the relevant interaction is still given by the Hamiltonian

Hm = –μσ ·B(t). (6.23)

Figure 6.4 (a) Experimental setup for observing the scalar AB effect with longitu-
dinally polarized neutrons and characteristic results showing the different counts of
positive and negative field pulses of a duration of 7.2μs (Lee et al. 1998). The incident
neutron beam is split into spin-up and spin-down states with triangular wedge-shaped
fields in the air gaps of Sm-Co permanent magnets by the Stern–Gerlach effect.
A π/2 DC spin flipper turns the neutron polarization into the longitudinal direction
before entering the Si interferometer. Rotating the interferometer against the double-
bounce Si crystal allows one to pick out one of the two incident spin states. (b) Photo of
the crystal interferometer used
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Even for polarized beams there exist interactions along all three axes due to the spinor fea-
tures of the Pauli matrices σ (Eq. 3.44). The mean values of the related torque angle can
become zero for certain directions but the fluctuation does not vanish. This can be described
by spin-autocorrelation functions which give a more local description of the SAB effect
(Peshkin 1995).

In an experiment performed by Lee et al. (1998) longitudinally polarized neutrons were used
to observe the SAB effect (Fig. 6.4). The pulsed magnetic field was used in a fashion similar to
those in Fig. 6.3. In this case neither a classical force nor a classical torque on the neutrons can be
expected. The interference can be explained only by the quantum-mechanical SAB effect, having
no classical analog. But when the spinor properties of the magnetic interaction are accepted, a
semi-classical explanation is possible as discussed above. A rather detailed description of this
experiment and of its quantum-mechanical interpretation is given by Allman et al. (1999) and
by Comay (2000).

An experiment aimed at directly demonstrating the essential non-dispersivity of the SAB effect
has been carried out by van der Zouw et al. (2000) using the cold-neutron phase-grating inter-
ferometer at the ILL (Fig. 2.16). The magnitude of the Aharonov–Bohm phase shift remains
observable far beyond the limit of dispersive phase shifts, which are determined by the coherence
lengths of the interfering beams. A schematic diagram of the experiment is shown in Fig. 6.5a.
Two antiparallel solenoids of rectangular cross-sections are used, which have a length-to-width
ratio of 60:1, thus ensuring a field homogeneity of better than 1% over a large part of their length.
Due to the large wavelength spread of the incident beam (λ = 92 ± 17 Å), the neutrons that were
in the field region during the time width of the pulsed magnetic could not be post-selected as in the
experiments by Allman et al. (1992) and Lee et al. (1998), but had to be pre-selected using a chop-
per placed in front of the solenoids. The magnetic field pulse was applied 0.5ms after the chopper
had opened for 2.6 ms, thus ensuring that the neutrons leaving the chopper had reached the homo-
geneous region of magnetic field within each solenoid. The field pulse was quite short (0.84 ms),
thus ensuring that no neutron left the homogeneous region of pulsed magnetic field before the end
of the pulse. Adequate timing allowed a duty cycle of 0.4 (open-to-closed ratio) of the chopper.
The AB phase shift should be independent of the wavelength of the interfering particles, and
therefore no positional or wave packet spreading effects are observable. Thus, in the case of the
pulsed operation the AB phase shifts remain observable far beyond the limit of dispersive phase
shifts which are determined by the coherence length of the interfering beams (Fig. 6.5c); this
is in contrast to a stationary field within the coils (Fig. 6.5b). Because this experiment (like the
Allman et al. 1992 experiment) was carried out with unpolarized neutrons, the spin-independent
phase had to be adjusted to nπ (n=0, 1, 2, . . .) to make the spin-dependent AB fringes maxi-
mally visible. This was achieved by translating the first grating. Two experiments were carried
out: one with DC current applied to the solenoids (dispersive) and the second with pulsed current
applied to the solenoids (non-dispersive). The results are shown in Fig. 6.5b. When a DC current
is applied, the neutron accelerates when entering the field region and decelerates when leaving
it (or vice versa). The interference pattern is clearly washed out after a few fringes (Fig. 6.5b),
showing the dispersive character of the wave packet associated with the wavelength spectrum of
Fig. 6.5c. In that experiment the magnetic field is pulsed on and off. The counting rate is plot-
ted against the current pulse integral. The interference contrast remains constant over the entire
range. Far more fringes are observed than in the static field case. These two experiments using the
same interferometer beautifully demonstrate the robustness of the non-dispersive character of AB
phase shifts.



(a)
A1 A2

D

C

F

E

B
A3

Figure 6.5 (a) Schematic view of the grating interferometer. The chopper
(D) produces pulses synchronized with the field pulses within the coils (C).
(b) Measured interference pattern in a stationary situation as a function
of the DC coil current, indicating the dispersivity of the phase shift. (c)
The measured intensity as a function of the field pulse internal over time,
demonstrating the non-dispersivity of the phase shift in the case of a pulsed
field operation. Reprinted from van der Zouw et al. 2000, copyright
2000, with permission from Elsevier.
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6.3 Geometric Phases: Theoretical Background

The concepts of geometric and topological phases are related to the concept of anholonomy which
cause global changes without local ones. Consider a vector transported along a geodesic of a
sphere in such a way that the angle between the geodesis and the vector is held constant. Due to
the curvature of the sphere the direction of the vector will be shifted when it returns to the initial
position. The transport of the polarization of light within a fiber bundle can be seen as an example
(Simon 1983, Berry 1988). The general connection of geometric phases to classical phenomena
was given by Hanney (1989).

The quantum analog of a geometric phase was first formulated by Pancharatnan (1957), but
it was implicitly included earlier in many textbooks (e.g., Schiff 1955). Nevertheless, only the
seminal work of Berry (1984) and Simon (1983) made the general character clear and stimulated
a lot of work in this direction (e.g., Anandan 1992, Bhandari 1997). The constraint of adiabaticity
originally used by Berry (1984) was subsequently removed by Aharonov and Anandan (1987)
to include any cyclic evaluation which is governed by the time-dependent Schrödinger equation
(Eq. 1.2). In this case one can write ∣∣∣ψ(t)〉 = ei�(t) |n(R(t))〉 , (6.24)

where |n(R(t))〉 denotes the eigenstate of the instantaneous Hamiltonian H(R(t)) |n(R(t))〉 =
En(t)|n(R(t))〉 and Φ(t) is a generalized phase. Inserting this equation into the time-dependent
Schrödinger equation (Eq. 1.2) and integrating over a closed path C in parameter space such that
|ψ(R(T))〉 = |ψ(R(0))〉 one gets a separation into a dynamical phase (δ) accumulating the energy
(momentum) change along the loop and a geometric phase (γ) which is independent of energy
and is gauge invariant (Berry 1984). For a constant and uniform magnetic field only a dynamical
phase exists, as discussed in the previous sections. The total phase is in general made up of two
parts

�(T) = arg < ψ(T)
∣∣ψ(0) > = –

1
h̄

T∫
0

< ψ(t)|H|ψ(t) > dt + i
∫
< φ(t)|

d
dt

|φ(t) > dt

=

T∫
0

En(R(t))dt+ i
∮
dR < n(R̄)|∇R|n(R)> = δ + γ .

(6.25)

In a constant magnetic field the Hamiltonian is Hmag = –μn B(r) and the spin state can be
written as

|ψ > = cos
θ

2
|↑> + eiφ sin

θ

2
|↓> . (6.26)

Here θ denotes the polar angle and φ the azimuthal angle when plotted on a Bloch sphere. The
states develop as time evolves (t = r/v)

|ψ(t) >= e
iHt

/
h̄|ψ(0) > = e

–iμBt
/
h̄|ψ(0) >, (6.27)

which verifies Eq. (5.2) and shows that the dynamical phase δ is 1/2 the precession angle α, that
is δ = α/2 (Section 5.1). In the case of a slow change of the Hamiltonian (magnetic field) which
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corresponds to an adiabatic evolution the neutron spin which will be pinned to the direction of the
magnetic field

B(t) = Bn(t) = B

⎛
⎜⎝

cosφ(t) sin�(t)

sinφ(t) sin�(t)

cos�(t)

⎞
⎟⎠, (6.28)

with the eigenvectors

∣∣ψ↑(�,φ)
〉
=

⎛
⎜⎝ cos

�(t)
2

eiϕ(t) sin
�(t)
2

⎞
⎟⎠, (6.29)

∣∣ψ↓(�,φ)
〉
=

⎛
⎜⎝ sin

�(t)
2

–eiφ(t) cos
�(t)
2

⎞
⎟⎠. (6.30)

This evolution yields

< ψ↑

∣∣∣∣ ∂∂φ
∣∣∣∣ψ↑ >=

i
2

(
1 – cos�(t)

)
. (6.31)

When we move along a latitude circle ( φ = constant) we obtain the well-known Berry phase,
namely

γ ↑ = i

2π∫
0

i
2
(1 – cos�(t)) dφ = –π

(
1 – cos�

)
= –�/2, (6.32)

i.e., the geometric phase is just half of the solid angle � enclosed by the path. For example, if
θ =π /2, a walk along the equatorial line gives γ ↑ = – π and the encompassed angle as seen from
the degeneracy point B = 0 is half the total solid angle of a sphere, namely� = 2π . Such a rotation
produces a sign change of a fermionic wave function, which is equivalent to a sign change of a
spinor undergoing a SU(2) rotation (Sections 5.1 and 6.2). A neutron interferometric experiment
has been performed by Wagh et al. (1997) with Larmor precession coils directed with opposite
sense in the two coherent beams. This experiment is discussed in the next section. Complete
agreement between theoretical prediction and experiment has been achieved. In an experiment
with ultra-cold neutrons a spin-echo method has been used to compensate the dynamical phase
and to measure the Berry phase rather accurately (Filipp et al. 2009). They obtained a value of
γ ↑ = –0.51(1)� in good agreement with Eq. (6.32).

Aharonov and Anandan (1987) generalized this approach to any cyclic evolution of a quantum
system. In this case we can add additional phases to any point of the curve

|�(T) >= e–if (t)|ψ(t) > (6.33)

with |φ(T) > =|φ(0) > and f (T) – f (0) = �. This shows that any excursion curve (C) in Hilbert
space having the same projections onto P has the same geometric phase modulus 2π (Fig. 6.6).
That is,
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Figure 6.6 Non-adiabatic (left) and a non-adiabatic plus non-cyclic
(right) phase evolution

γ = i

T∫
0

< �(t)|
d
dt

|ψ(t) > dt = 2πn + i

T∫
0

〈ψ(t) ∣∣ d
dt

∣∣ ψ(t)〉dt. (6.34)

Thus, neutrons moving in a magnetic field pick also up a dynamical phase according to
(δ = μBT cos θ /h̄ = (α cos θ)/2) due to its state component parallel to the field and a geometric
phase (γ = π(1 – cos θ)) according to the state rotation around (or with) the field direction.

This shows that the character of the phase shift varies from a dynamical phase when the polar-
ization is parallel (θ = 0) or antiparallel (θ = π) to a geometric phase when the polarization is
perpendicular (θ = π /2) to the magnetic field. The total phase in all cases is φ = α/2, which agrees
with Eq. (5.3) and shows that the 4π-symmetry of spinor wave functions can be measured with
polarized and unpolarized neutrons as well (Section 5.1). Measurements with polarized neutrons
allowed the extraction of the cyclic dynamical phase, although this was not mentioned explicitly in
original paper (Badurek et al. 1988; Fig. 3.15).

The next important generalization of the geometric phase concept was given by Samuel and
Bhandari (1988), who extended the treatment to non-cyclic evolutions, where these evolutions are
geodesically closed to make a comparison of states possible (see also Shapere and Wilczek 1989,
Aitchison and Wanelik 1992, Mukuda and Semion 1993, Bhandari 1997). This circumvented the
closure “trick” and gave a solution for any closed or open path. The starting point is that the
geometric phase is the total phase minus the accumulation of local phase changes. The local phase
changes between |ψ(t)> and |ψ(t + δt)> are given by

δφ ∼= –i < ψ(t)
d
dt

∣∣ψ(t) > δt, (6.35)

which follows from a Taylor series expansion of Eq. (6.25). Thus, one gets a rather general formula
for the geometric phase
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γ = arg(< ψ(0)
∣∣ψ(t)> = + i

t∫
0

< ψ(t′ )
∣∣ d
dt′
∣∣ψ(t′) > dt′, (6.36)

which reduces to Eq. (6.25) in the case of cyclic evolutions. In this connection, it can then be
shown that the dynamical phase takes the general form

δ = –

t∫
0

<ψ(t′)
∣∣ d
dt′
∣∣ψ(t′) > dt′ = –

1
h̄

t∫
0

< ψ(t′)
∣∣H∣∣ψ(t′) > dt′. (6.37)

This equation shows that the dynamical phase is associated with an averaged action of the
Hamiltonian. The dynamical phase approaches zero (when neutrons polarized perpendicular to
a field are considered). Although there exist Zeeman energy shifts +μB for the spin-up state and
–μB for the spin-down state, the net (average) effect becomes zero. Geometric phases in non-
relativistic quantum theory are not Galilean invariant. But because in most of the cases discussed
in this book the spin is involved, the results are immune against Galilean transformations (Sjöqvist
et al. 1997). This is a result of the frame-independent coupling of the spin to the magnetic
field.

Adiabatical or topological and geometric phases are predicted for fermions and bosons as
well. Verifications for photons were accomplished by means of optical fibers (Tomita and Chiao
1986) and by means of various laser interferometers (Bhandari and Samuel 1988, Chiao et al.
1988, Bhandari 1997). Wagh and Rakhecha (1990) interpreted the double-coil resonance experi-
ments discussed in Section 5.4 (Figs. 5.9 and 5.10) as a result of time-varying geometric phases.
Hasegawa and Badurek (1999) demonstrated by spin polarimetry experiments how the non-
commuting behavior of spinor rotations are related to the intrinsic phases of the wave functions
when they are commuted. These phase shifts contain both geometric and dynamical contribu-
tions, yielding the familiar anti-commuting relation of Pauli spin matrices (Eq. 3.44), which we
will discuss in the next section.

The geometric phase is a new signature of a quantum system when it evolves and then returns
to its initial state. In this case it acquires a memory of its motion which has consequences in a
wide range of physical systems and in the interpretation of quantum phenomena (Anandan 1992,
Anandan et al. 1997).

6.4 Interferometric Measurement of the Berry Phase

It has been emphasized that the geometrical phase factor is predicted to occur if the magnetic field
of constant strength varies adiabatically in its direction and the neutron remains in an eigenstate.
The wave function of a neutron in a magnetic field will take the general form (Eqs. 6.27 and 6.33)

ψ → e–i�/ 2e–iσ ·αψ0, (6.38)

where� is the solid angle subtended by the closed curve as seen from the origin of the spin sphere.
One gets immediately an intensity modulation given by

I ∝ 1 + cos
α +�
2

. (6.39)
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The sign of � depends in the same manner on the spin component along the magnetic field
and, therefore, this equation is valid for polarized and unpolarized neutrons as well. In a related
experiment the dynamical phase α (Eq. 5.3) and, therefore,

∫
Bdt taken over both beam paths

should be zero (i.e., α = 0). If the magnetic field is arranged to rotate the spin adiabatically and
it turns back to the z-direction with an apex angle θ of the related excursion curve, the predicted
intensity variation should be independent of |B| and of the magnetic moment of the neutron. It is

I(θ)∝ 1 + cos[π(1 ± cos θ)], (6.40)

where the ± signs depend upon the rotation direction of the helical field B1 and cos

θ =Bz/
(
B2

1 + B
2
z

)1/2, where Bz is the field along the axis of a helix. The topological Berry phase
appeared early in a theoretical treatment of the phase shift of a neutron in a helical field (Eder
and Zeilinger 1976). The adiabaticity condition for neutrons requires a field variation frequency
(νf ∼ v/l) smaller than the Lamor frequency (νL = 2μB/h). For thermal neutrons this condition can
be written as Bl >> 8 (B in millitesla and the length l of the helical coil in meters). This constraint
causes difficulties for the realization of such an experiment with today’s perfect crystal interfer-
ometers. The clear verification was first realized along the lines of a proposal made by Wagh and
Rakhecha (1990). The experiment was carried out at beam port C at MURR. We discuss now the
concept and results of this experiment (Allman et al. 1997, Wagh et al. 1997).

Consider first the idealized experiment with polarized neutrons shown in Fig. 6.7. The interfer-
ometer contains a pair of π spin-flip coils, one in each leg of the interferometer. The interferometer
is situated in the xy plane, and the incident neutrons are polarized in the z-direction.

We envision the coils as having a rectangular cross-section, and producing a magnetic field B
at an angle +�β/2 with respect to the y-axis in the upper path II, and a magnetic field B at an
angle –�β/2 with respect to the y-axis in the lower path I, as shown. The strength of these fields
is just enough to allow the incident neutron to precess from up (along +z-axis) to down (along
the –z-axis); i.e., the coils act as spin flippers. Since the coils are exactly the same, the phase shift
due to the spin flips will be equal in each of the two legs of the interferometer, and cancel each
other in the phase difference, if it were not for the relative angle �β of the magnetic field in path II
with respect to that in path I. Under this condition, the dynamical phase shifts in the two legs of the
interferometer are equal and hence their difference is zero, but the geometric phase difference ��
is equal to �β (Eq. 6.32). This is the Berry phase, given by – 1/2 the solid angle �� subtended by
the enclosed paths on the spin sphere, as also shown in Fig. 6.7.

The neutron spin vector SII on path II precesses from the north (N) pole to the south (S) pole
of the spin sphere along the path shown, while the spin vector SI on path I precesses down along
the other path. One-half the solid angle subtended at the origin of this spin sphere by these paths
is the geometric phase, as mentioned earlier. That is

��geom = –
1
2
�� = –�β. (6.41)

It is only the difference in phases of the neutron wave function accumulated on beam path II
relative to that on beam path I that is physically measurable.

But why is it that there is an additional phase shift given by Eq. (6.41) related to the non-
collinear precession axes? Let’s see. The interaction of a neutron having magnetic dipole moment
μ with a magnetic field B is given by

V = –μ ·B = –μσ ·B = –μ
[

Bz Bx – iBy
Bx + iBy –Bz

]
, (6.42)
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where we have used the Pauli spin matrices given in Eq. (3.44). In case of Bz = 0 one gets

Bx – iBy = B [sin(�β/2) – i cos(�β/2)] = –iBei�β/2

Bx + iBy = B [sin(�β/2) + i cos(�β/2)] = iBe–i�β/2.
(6.43)

Thus, the interaction matrix of a neutron with the spin-flipper coil on path II is

V = –μB
[

0 –iei�β/2

ie–i�β/2 0

]
. (6.44)

So we see that the spin flipper in path II adds a phase of –�β/2 to the spin-flip process. Likewise,
the spin flipper in path I adds a phase +�β/2 to its spin-flip process. Therefore, the interferometric
phase difference is

�� = �I –�II = –�β = –��/2, (6.45)

as stated earlier. Consequently, we understand now that the geometric phase shift comes from
the off-diagonal matrix elements, which arise from the non-collinear precession fields in path II
relative to path I. If Bz were not zero, then we would have an additional phase shift. This would
be a dynamical phase shift. It comes from the diagonal elements in the interaction potential in
Eq. (6.42). One can measure the geometric phase difference as a function of �β by carrying out a
phase flag (phase rotator) scan for each �β. The shift of these interferograms will be �� = –�β.
This geometric phase difference does not depend upon the Hamiltonian, or the rate of precession.
Of course the reason that the spin vectors SI and SII rotate from the north pole to the south pole
of the spin sphere is the torque μ ×B on the neutron’s magnetic dipole moment μ created by the
magnetic fields B in each leg of the interferometer.

This is all quite interesting, of course, but an even more remarkable experimental idea is the one
we will now discuss, involving the construction and use of dual spin flippers, and the direct demar-
cation of the geometric phase from the dynamical phase. The use of dual flippers is necessary
because there is always a z-component of the magnetic field which defines the axis of quantiza-
tion of the incident and transmitted beams in Fig. 6.7. This field must be added vectorially to
the horizontal field within the spin flipper. Thus, to get a perfect spin flip, the horizontal flipper
field should be tipped down to make the total field horizontal. This requirement is inconvenient
experimentally. Furthermore, the use of dual flippers allows us to measure the dynamical phase
separately from the geometric phase as we shall see later.

The single coil flippers shown in Fig. 6.7 were replaced with dual-coil spin flippers as shown
schematically in Fig. 6.8. On path II, the first coil of the pair produces a field B0 in the negative
y′′-direction, and the second coil produces a field B0 in the positive y′′-direction. An identical
dual flipper on path I produces a similar pair of oppositely directed magnetic fields. The angle
between the flipper fields on path II relative to path I is �β, in a manner similar to the situation
shown in Fig. 6.7. A uniform field of magnitude B0 ≈ 30 gauss in the vertical (+z-direction) was
provided over the entire experimental region of the interferometer by a pair of water-cooled and
temperature-stabilized Cu-wire Helmholtz coils.

The field B0 from the Helmholtz pair is in the z-direction, and thus adds vectorially to the
fields created by each of the dual flipper coils such that the net magnetic field that the neutron
feels in its passage through each coil is directed at 45◦ to the horizontal plane and also 45◦ to
the z-axis. It has a magnitude

√
2B0 in the q direction in the first coil and it has the direction
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(Allman et al. 1997)

p in the second coil (see Fig. 6.8). The magnitude of the field B0 was set at 30 gauss, which is
appropriate for the incident neutron polarized in the z-direction to precess down to the horizontal
plane in the first coil and then on down to the south pole of the spin sphere in the second coil.
With the aid of a little bit of spherical trigonometry, one can show that the solid angle �� that this
closed cycle evolution subtends at the origin of the spin sphere is 2�β. The experimental strategy
for measuring the spin-dependent phase shift was to rotate the 1.05-mm-thick aluminum phase
flag with the flippers turned off, and then with the flippers turned on. It is this phase difference
between these two interferograms that is of interest to us here.

To measure the geometric phase, the dual spin flippers were individually rotated in opposite
directions to +�β/2 and to –�β/2. This was done so that the phase shifts acquired in the neutron’s
passage through the flipper materials would cancel out in the difference phase �II –�I. We show
in Fig. 6.9 a series of interferograms taken at various angular settings �β for the flippers on, but
always adjusted in phase angle for the flipper-off condition for each relative rotation angle �β.
A summary of the phase angles of these interferograms plotted versus the relative angles of the
two flippers is shown in Fig. 6.9.

A pure geometric phase can also be obtained without physically rotating the flippers at all,
by simply reversing the current (and hence the magnetic field) in one of the dual flippers. This
is equivalent to producing a 180◦ rotation of the precession axes without any physical motion.
This ensures that the original offset phases remain unchanged. The dual flipper produces two
successive π precessions, first about the p-direction and then about the q-direction shown in
Fig. 6.8. These successive operations bring the |+ z> state into the |– z> state. It is represented
by two successive operations of two orthogonal Pauli spin matrices, first σp and then σq. Reversing
the current in one of the dual flippers reverses the order of this precession to first σq and then
σp, which causes a 180◦ phase shift, since the loop around the enclosed solid angle (�� = 2π)
is reversed. There are four such field reversal conditions. Interferograms obtained under each of
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Figure 6.9 Interferograms when the nuclear phase shifter is rotated according to Fig. 6.7
for different relative angular settings of the two flippers (left) and the measured geometric
phase shift (right, Allman et al. 1997)

these conditions are shown in Fig. 6.10. This result is perhaps the first direct observation of the
anticommutation rule for the orthogonal Pauli spin matrices, namely

σpσq = –σqσp. (6.46)

This sign change manifests itself in phase shifts of the neutron interferograms of approximately
180◦, as shown in Fig. 6.10. The average phase shift from the top plot to the bottom plot is
180◦ ± 2.4◦. It is thus correct to say that the anti-commutation relation of Eq. (6.46) has been
confirmed to an accuracy of 1.3%. A neutron polarimetric proof has been reported by Hasegawa
and Badurek (1999).

Finally, we now discuss the dynamical phase. A linear translation of one of the spin flippers
along its sub-beam path results in the neutron spending more time in one spin orientation than in
the other. The total energy E0 of the neutron is fixed (the Hamiltonian is time independent here).
This requires the neutron to have a slightly greater kinetic energy when its magnetic moment is
pointing up than when it is pointing down (Eq. 2.29):

E0 =
h̄2k20
2m

=
h̄2k2↑
2m

– μB =
h̄2k2↓
2m

+ μB. (6.47)

The phase accumulated along the path depends upon the line integral of the k-vector. Thus, if the
spin flipper coil is translated along its sub-beam by an amount δx, there will be a phase shift of
(k↑ – k↓)δx, which is the dynamical phase shift. It can be written as

��dynam = –2μB0δ x/h̄v0. (6.48)

Here B0 is the magnetic field from the Helmholtz coils (≈30 gauss), and v0 is the mean velocity
(≈ 1700 m/s) for the 2.35 Å neutrons in the incident beam. For each translation position of one
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of the dual flipper coils along the beam path, a phase flag interferogram was taken. A summary
of these dynamical phase shifts is shown in Fig. 6.11 for various translation positions of flipper
F2 along beam path II. The slope of the data in this figure agrees with the formula Eq. (6.48) to
about 3%.

It is probably correct to say that these polarized neutron interferometric data represent the
first and only experiments in physics where a clean and obvious separation and demarcation of the
geometric phase and dynamical phase has been made. The geometric phase comes from a relative
rotation of the spin precession axes of the spin flippers, while the dynamical phase comes from a
translation of the spin flippers relative to the skew symmetric interferometer. A photograph of the
mechanism for rotation and translation of the dual spin flippers within the interferometer is shown
in Fig. 6.12 (Werner 2012).

In another interferometer experiment, Mezei et al. (2000) and Ioffe and Mezei (2001) used
a slowly, but oppositely rotating field in both beam paths, which produces real space geometric



224 Topological and Geometric Phases

O
n 

- 
of

f 
ph

as
e 

di
ff

er
en

ce
, Δ

γ,
 (

de
g)

Φ
D

 (
de

g)

–160
–40

0

40

80

120

160

200

–120

–80

–40

0

40

80

0–2 2 4
δx, Translation of F2 (mm)

Dynamical phase

Slope = 18.9 ± 0.4°/mm

6 8 10

Figure 6.11 A plot of the on–off difference count rate as a function of the
translation of F2 along beam path II, measured relative to a reference position
from the first blade of the interferometer. The right-hand ordinate shows the
equivalent dynamical phase (Allman et al. 1997)

Figure 6.12 Photograph of the precision translation–rotation mechanism and
the water-cooled heat-sink blocks containing the rectangular, aluminum foil dual
flipper coils. This device was fabricated by Mr. Cliff Holmes in the Missouri
Physics Machine Shop (Werner 2012)



Non-cyclic Berry Phases 225

Hcoil

Hs

Hgrad
II

I

Figure 6.13 Sketch of the adiabatic spin rotation by means of a heli-
cal field. Reprinted from Ioffe and Mezei 2001, copyright 2001, with
permission from Elsevier.

rotations and acts as a spin flipper (Fig. 6.13). For a 360◦ rotation they found a spinor phase shift
of γ = α/2 = (180.4 ± 4.0 ± 1.2), where the uncertainties represent systematical and statistical
ones.

6.5 Non-cyclic Berry Phases

In a later experiment Wagh et al. (1998) showed with polarized neutrons that by observing the
phase shifts and the amplitudes of interferograms, that non-cyclic phases are measurable in ded-
icated interference experiments (see Eqs. 6.49 and 6.50). In an interferometer experiment the
phases become apparent due to superposition with a reference beam. When a scalar (nuclear)
phase shift χ is included one gets

I(χ ,α) =
∣∣ψ0(0, 0) + ψ0(χ ,α )

∣∣2 ∝ D+cosχcos
α

2
+sinχsin

α

2
cos� = D+A cos(χ+φ), (6.49)

with the varying amplitude A given by

A =

√
1 – sin2� sin2 α

2
. (6.50)

Here� is the polar angle of the spin on the spin sphere and the azimuthal angle α is the precession
angle. This provided the basis for the observation of a non-cyclic phase by Wagh et al. (1998; see
Section 6.4).

Another experiment verifying non-adiabatic and non-cyclic phases has been performed with
a double-loop interferometer where two phase shifters (PS) and an absorber (A) permit quite
peculiar state excursions (Fig. 6.14; Filipp et al. 2005). The upper beam |ψt0 > of the first loop is
used as a reference beam with adjustable phase η. As the incident wave |p > for loop 2 becomes
attenuated (T = exp(–σtND)) and phase shifted (χ2), the orthogonal beam, |p⊥ > becomes phase
shifted by χ1. This gives an overlap of the reference beam |ψref > and the loop 2 beam |ψ2 >,
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where

∣∣ψref >∝ (
∣∣p > +|p⊥ >) =

∣∣q >, (6.51)

and

∣∣ψ2 >∝ (eiχ1 +
√
T eiχ2)

∣∣q >, (6.52)

such that the phase angle of the interference patterns is

φd = arg < ψref

∣∣ψ2 > =
χ1 + χ2

2
arctg

[
χ2 – χ1

2

(
1 –

√
T

1 +
√
T

)]
. (6.53)

This dynamical phase can be written as

φd =
χ1 + Tχ2
1 + T

, (6.54)

which becomes a constant when

χ1 + T χ2 = const. (6.55)

A proper manipulation of phase shifters and the absorbers permit cyclic and non-cyclic evo-
lutions on the Bloch sphere where the north pole and the south pole correspond to well-defined
paths along the upper, |p⊥>, and the lower, |p >, beam paths within the second interferome-
ter loop. The absorber determines the latitude where the evolution driven by the phase shifter
PS2 takes place. This allows us to write the transmission in the form

T = tan2�

2
. (6.56)
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The geometric phase can be measured when closed cycles at different latitudes are chosen. Non-
cyclic evolutions occur when such a rotation is stopped before a cycle is complete and then this
endpoint must be connected by a geodesis line to the equator. Figure 6.15 shows the results of such
measurements. They clearly define the geometric phase and the non-cyclic phase for situations
shown in Fig. 6.6b. Nearly all excursion on the Bloch sphere can be realized and contain infor-
mation about the history of a quantum system. This experiment also confirms the validity of the
geometric phase concept in the case when spatial degrees of freedom are involved and an absorber
(thus a SU(1) system) is used to define distinct excursion paths on a Bloch sphere. The symmetry
of this system is SU(1). This settles a dispute with Wagh (1999) and Sjöqvist (2001), who denied
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Figure 6.15 Representations of cyclic and non-cyclic evolutions
on the Bloch sphere (above) and results of the non-cyclic phase
experiment according to non-cyclic excursion (below; Filipp et al.
2005)
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the applicability of SU(2) descriptions to spatial evolutions. The SU(2) symmetry appears in the
two beam paths, and also in experiments with unpolarized neutrons.

The results in this section indicate that geometric phases are well defined and clearly measur-
able quantities. They may become even more important in the future since they seem to be less
sensitive to any fluctuation and dissipative effects of external parameters (De Chiara and Palma
2003). The expected robustness of the geometric phase against any kind of disturbances has been
demonstrated recently with bottled ultra-cold neutrons (Filipp et al. 2009). This robustness of
the geometric phase against any kind of fluctuations may become an important aspect for future
quantum communication techniques. Similar results have now been obtained in a solid state qubit
system (Leek et al. 2007).

6.6 Polarization Rotation Experiments

Before the direct interferometric observation of geometric phases described in Section 6.4, Bitter
and Dubbers (1987) found an alternative way to observe Berry’s phase by means of a neutron
spin rotation experiment. It is basically also an interference experiment (Section 2.4; Mezei 1988).
The change of polarization was measured when neutrons pass through a helical magnetic field of
a single turn (Fig. 6.16). From the solution of the Bloch equation

dP
dt

= γ(P×B) (6.57)

(γ = 2μ/h̄ . . . gyromagnetic ratio),
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Dubbers 1987, copyright 1987 by the American Physical Society.
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one gets the motion of the polarization vector within any arbitrary magnetic field. The change of
the y-component within the helical field reads as (e.g., Dubbers 1976)

Gyy = cos
(
2π
√
1 + ζ 2 – 2π

)
, (6.58)

where the extra term –2π ensures that the total rotation angle becomes zero when there is no
field. In Eq. (6.58), ζ denotes the Larmor rotation angle around the helical field of strength
B1 and length L(ζ = γB1L/v). The extra phase (2π) is manifested by a non-equidistant spin
rotation pattern and by a shift of the adiabatic limits for large positive and negative B1 values
(Fig. 6.16). When an additional field Bz is applied along the beam path the geometric phase

becomes � = 2π
(
1 – Bz

/√
B1

2 + Bz2
)
. The expected behavior has also been demonstrated by

measuring the change of the z-component Gzz (Bitter and Dubbers 1987). This result must be
compared to that expected in an interference experiment.

A rather similar demonstration of Berry’s phase has been done with ultra-cold neutrons
by Richardson et al. (1988). The magnetic field inside a neutron storage volume was slowly
(adiabatically) varied as a function of time and the resulting spin rotations were measured
and extrapolated to zero field, thus allowing the Berry phase to be extracted. The effects
of multiple excursions in parameter space and of elliptical paths were also investigated. The
appearance of the topological phase for non-cyclic spinor evolutions has been demonstrated
by Weinfurter and Badurek (1990) using a neutron polarimetric method where neutrons inside
a Rabi flipper were rotated incompletely and the resulting polarization was measured in three
dimensions.

6.7 Spin-Echo Version of the Geometric Phase

An adiabatic resonance spin-echo system inherently produces a geometric phase. Each arm of the
spin-echo system consists of two adiabatic resonance spin flippers as described in Sections 2.4 and
5.4 (Figs. 2.19 and 2.23). As mentioned in the previous sections a polarized neutron beam flying
through a twisted or rotating field accumulates a geometric phase (Bitter and Dubbers 1987,
Richardson et al. 1988, Wagh 1990, Weinfurter and Badurek 1990, Hasegawa et al. 1997).

A resonance spin-echo system as shown in Fig. 6.17 with inclined fields has been used to
measure the geometric phase in an alternative way (Kraan et al. 2010). Wavelength-dependent
measurements become feasible with a chopper and a time-of-flight analysis. The phase shift in
the first arm consists of a wavelength-dependent dynamical phase and a wavelength-independent
geometric phase θ1 = �1λ + θ1g. In general the precession in the second arm will not cancel this
phase shift. Therefore, an auxiliary DC coil which produces a phase shift cDCBDCλ is used. Let
the dynamical phase cancel for a distinct field BDC0, i.e., �1 – �2 + cDCBDC = 0. When one now
varies BDC by an amount �B, one gets a net phase shift of θ1g – θ2g + λ�B = θg + λ�B and a
measurable polarization:

P (�B, λ) = cos
(
θg – cdcλ�B

)
. (6.59)

This then permits an accurate determination of the geometric phase θg. Different rotations
within the resonance flippers produce different geometric phases which are monitored by a phase
and amplitude control of the flippers. The λ and �B maps show good agreement between
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calculated and measured geometric phase values. In addition, a twisted DC flipper was used
to reproduce the results of a previous experiment of Bitter and Dubbers (1987) described in
Section 6.6.

6.8 Absorption Analog

In the previous sections it has been shown that spinor rotation of a fermion in a homogeneous
magnetic field results in a dynamical and a geometric phase (Berry 1984, Aharonov and Anandan
1987). Spin-up and spin-down states in a constant magnetic field are good examples of the cyclic
evolution of a quantum system in which the system can return to the original state by vari-
ous anholonomy transformations. The system returns to the original state with a specific phase
shift φtot when the difference between the phases of the spin-up and spin-down state becomes
equal to an integral multiple of 2π. As is known from the magnetic interaction, the spin-up com-
ponent accumulates a phase φ↑ = μBt/h̄ and the spin-down component φ↓ = –μBt/h̄. This spinor
rotation is periodic with a period φ↑ –φ↓= 2π. Please note that φ↑ and φ↓ denote just half of the
related Larmor precession angle (Eq. 5.3).

Very similar situations exist within a split beam interferometer when phase shifters and beam
attenuators are inserted (Fig. 6.18). The two basic states are given by the two split beams and
represent eigenstates in analogy to the spin-up and spin-down state discussed earlier. According
to Eq. (6.25) the geometric phase is given in a more general notation as

φg = φtot – φd. (6.60)

In the spin-state situation the dynamical phase is given as φd =α/2 =±μBt/h̄. In the split-beam
situation the dynamical phase can be calculated as well. Considering that the normalization of
the wave functions is sometimes altered by a beam attenuator the dynamical phase becomes
(Eqs. 1.33 and 6.25)

Beam from
monochrometer Phase shifter-II

Phase shifter-I

Loop-A

Absorber

O-Beam detector

Loop-B

Figure 6.18 A four-plate interferometer with coupled interference loops A and B.
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φd =

∮
< ψ |�k · ds|ψ >

< ψ
∣∣ψ >

=

∫
<ψI |ψI > �kI dsI

< ψ |ψ >
+

∫
<ψII |ψII > �kII dsII

< ψ |ψ >
, (6.61)

where ψi , dsi , and ki denote the two wave functions, beam paths, and canonical momenta,
respectively, along the two beam paths through the interferometer. In this respect, the experiment
described in this section is related to the partial beam path detection experiments discussed in
Section 4.3. When the real part of the phase shift of the beam attenuator is included in the phase
shift χi of the pure phase shifters, we can re-arrange Eq. (6.61) in the form

φd =
II

II + III
χI +

III
II + III

χII =
(

1
1 + a

)
(χI + a χII), (6.62)

where Ii represents the intensities of the two beams and a the transmission probability of the beam
attenuator which is assumed to be inserted into beam path II (see Section 4.3). From this equation
it becomes obvious that the dynamical phase shift becomes zero when

χI + aχII = 0, (6.63)

which can be controlled by a phase flag inserted into both beams (Fig. 6.15).
The situation can be visualized by means of the Poincaré sphere, which was used earlier to

describe the specific particle and wave features of the neutron inside an interferometer (Fig. 4.15).
The related presentation by means of such Poincaré spheres is shown in Fig. 6.19 for the case of
equal beam intensities (II = III) and for unequal intensities due to the absorber in arm II of the

θ

Interference
(wave)

Path detection
(particle)

Ώ = 2π

θ

Interference
(wave)

Path detection
(particle)

If T = 1/2,
Ώ = 4/3π

Figure 6.19 Poincaré sphere description of a split beam experiment without (left) and
with an absorber providing a = 1/2 (right; Hasegawa et al. 1996)
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interferometer (II > III). The vertical axis represents the relative intensity of the two beams and the
polar points represent situations where either beam path I or II is closed completely and, therefore,
perfect path information exists. This occurs when shifting the relative phase χ and the polar points
represent situations where either beam path I or II is closed completely. When shifting the relative
phase (χ = χI –χII), all possible states trace on the equator or on a latitude circle depending, on the
ratio between the intensities of the two beams. From these spheres the solid angle which subtends
the traced curve seen from the origin is given as

�(C) = π(1 ± cosϑ) = 2ϕg = 2�
(
1 –

1 – a
1 + a

)
= 4π

a
1 + a

. (6.64)

This shows the direct connection of the geometric phase to the transmission probability.
This geometric phase is imparted to the outgoing beam of a standard three-plate interferometer

but does not show up in the intensities because the square of the wave functions determines the
intensities. This geometric phase can only be detected by an additional reference beam which can
be provided by a multiplate interferometer (Section 4.5.6). This method is similar to a homodyne
detection known in laser optics (e.g., Walls and Milburn 1994). The neutronic version of this
method has been used by Hasegawa et al. (1996) to detect the geometric phase caused by the joint
action of a phase shifter and a beam attenuator within interferometer loop A and a reference beam
arising from interferometer loop B (Fig. 6.19). The beam attenuators were gold plates providing
transmission probabilities of a = 0.492(4) and a = 0.212(5), respectively. The phase shifter within
this loop had different thicknesses for the left and the right beam in order to fulfill Eq. (6.55), i.e.,
to make the dynamical phase shift zero during the evolution. These phase shifters were adjusted
to three intensity peaks (peaks 1, 2, 3) counted in the forward (0) detector when a thick absorber
was inserted which blocked the beam with phase shifter II. Then phase shifter II within interfer-
ometer loop B was rotated and the interference pattern shown in Fig. 6.20 was obtained. These
curves show a different shift for the various absorbers. The peak positions were determined as a
function of the phase of the oscillation, which is expected to depend on the solid angle subtended
by the closed curve of the cyclic evolution (Fig. 6.21 and Eq. 6.34). It shows the solid angle cal-
culated according to Eq. (6.32) and the measured geometric phase shift. The agreement between

Figure 6.20 Measured shifts of the interference pattern when phase shifter II was
rotated and phase shifter I was turned to the peak intensity of loop A (Hasegawa et al.
1996)
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Figure 6.21 Experimental results and theoretical predictions of the
geometric phase shift as a function of the solid angle where the state
traces around the axis of the Poincaré sphere (Hasegawa et al. 1996)

measured and calculated values is fairly good, which demonstrates again that the concept of geo-
metric phase is a rather general one. The analogy of the spin rotation experiment as discussed in
Section 6.4 and of the split-beam absorption experiment discussed here is based on the fact that
both situations exhibit SU(2) symmetry. This is also why it is frame independent in analogy to the
spin rotation experiments discussed earlier (Sjöqvist et al. 1997). A Galilean invariant structure
of the geometric phase has been constructed out of the difference between the geometric phases
for two different paths in configuration space which have common initial and final points (de
Polavieja 1997, Sjöqvist 2001). Thus, the two beam paths represent the SU(2) symmetry in the
absorption case, which underlines the basic feature of the geometric phase as a property related to
the configuration space instead of only to the ordinary space.

The analogy between the absorption and the spin rotation experiments which has been shown
in this section has been criticized by Wagh (1999a, 1999b), claiming that geometric phases can
only be associated with SU(2) symmetries and a real ray-space evolution. But the formal analogy
shows that ray-space evolution in phase space is equally relevant. In the analogy discussed here,
the different directions of the coherent beams constitute a geometric-like phase evolution. This
has been verified in a dedicated experiment using a double-loop interferometer (Filipp et al. 2005;
Section 6.4).

6.9 Confinement-Induced Topological Quantum Phase

Another interesting quantum phase appears when neutrons travel inside a tube or channel. In this
case the traverse momentum becomes quantized according to the dimension of the tube and
consequently the longitudinal component also changes. This causes a related phase shift (Lévy-
Leblond 1987, Greenberger 1988). Very narrow tubes or slits must be used, and all parasitic
phenomena must be identified and excluded. The confinement causes a momentum quantization
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Figure 6.22 Sketch of the slit structure and the
confining wall potential

in the transverse direction, which changes the transverse coherence properties and the longitudinal
k-component as well (Section 4.2.2).

A tube of length L causes a phase shift �ϕLL ∼= L�k, where �k results from the trans-
verse momentum quantization. This can be calculated from energy (momentum) quantization
(see Fig. 6.22). For a tube with a square cross-section a× a and infinitely steep walls one gets

E =
k2z h̄

2

2m
+ (n2x + n

2
y)
π2h̄2

2ma2
, (6.65)

where nx and ny are integer quantum numbers. The axis of the tube is along z. The related energy
levels are shown in Table 10.1. Slight changes to smaller values occur when a finite height of the
wall potentials is taken into account (e.g., for the first level from 5.113 to 4.677 × 10–13 eV).
Energy conservation causes the momentum along the tubes to change as well. For the basic mode
(nx = ny = 1) one obtains (Razavy 1989, Griffin et al. 1996)

k′ = k(1 – π2/k2a2) (6.66)

and from that we get the phase shift

�ϕ11 =
Lπ2

k a2
, (6.67)
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where L is the length and a2 the cross-section of the tube. For capillary dimensions of 20 μm and
a length of 30 mm a phase shift of 0.11 rad is expected. This is a measurable effect. However, due
to intensity considerations a multichannel system must be used and a high stability of the internal
interferometer phase is required (Fig. 2.10). A treatment of this phenomenon using the quantum
potential approach is also known (Chapter 12, Kastner 1993). An optical analog experiment of
this idea has been carried out by Allman et al. (1999). The situation is rather similar to the trans-
port of electrons through open ballistic microstructures where periodic and chaotic conductance
fluctuations have been observed (e.g., Ferry et al. 1995, Wirtz et al. 1997). The advantage of
neutrons in this case is that they do not interact via van der Waals or Casimir forces (Casimir and
Polder 1948, Haroche and Raimond 1993, Bordag et al. 2001), which complicates the situation
using atoms.

The experiment described here has been performed with narrow silicon wafer slits with a width
of a = 22.1 μm and a length of L = 2 cm (Rauch et al. 2002; Fig. 6.22). Within the potential there
are about 360 bound states whose excitation probability Pn depends on the angle of incidence α.
For a completely parallel beam the excited energy levels and their excitation probabilities are E0 =
0.4172 peV, p0(0) = 0.406; E2 = 1.669 peV, p0(0) = 0.045; E4 = 6.676 peV, p4(0) = 0.016, etc.
A beam component deviating 18 s from being parallel with the walls excites mainly energy levels
around n = 19. The energy change determines the change of the longitudinal momentum as

k||,n =
√
2m(Ein – En)/h̄2, (6.68)

where E in denotes the energy of the incident neutron beam. The related phase shift due to level n
is given as

�φn = L(k||,in – k||,n) (6.69)

The related experiment has been done with a multislit system using a sweep method as indicated in
Fig. 6.23 (Rauch et al. 2002). The results show a phase shift �φexp = 2.8(4)◦ in rough agreement
with the theory (�φth ∼= 2.5◦). The intensity and the contrast is strongly reduced since the low-
lying levels contribute only to a net phase shift and most of the beam becomes totally reflected from
the walls and falls outside the diffraction width of the interferometer crystals. The experiment has
been repeated several times with various differing setups, and in all cases the experimental values
lie above the theoretical ones. This is not yet understood (see also Section 10.11).



7

Contextuality and Kochen–Specker
Phenomena

The question of whether quantum phenomena can be explained by classical models with hidden
variables is a subject of a long-lasting debate (e.g., Einstein et al. 1935, Bell 1964, Haroche and
Raymond 2006). In 1964, John Bell showed that certain types of classical models can be ruled out
by measuring quantities which determine an inequality, thereby demarcating a classical system
from a quantum system. Bell’s paper demonstrated that non-locality is a basic feature of quantum
mechanics (e.g., Aspect et al. 1982, Weihs et al. 1998, Gröblacher et al. 2007), whereas any intui-
tive feature of a classical system is that a measurement has a value independent of other compatible
measurements, and this predetermined value, perhaps determined by a hidden variable, therefore,
shows local realism. However, a theorem derived by Kochen and Specker (1967) shows that this
classical (non-contextuality) feature is in conflict with quantum mechanics and an event-by-event
description of quantum phenomena is impossible. The proofs of this so-called “no-go theorem”
can be converted into experimentally measurable inequalities. In this respect this idea has become
testable during the past decade with photons, atoms, ions, and especially neutrons when a kind
of entanglement between various degrees of freedom is introduced (Hasegawa et al. 2003, Huang
et al. 2003, Moehring et al. 2004, Bartosik et al. 2009, Kirchmair et al. 2009). It has been shown
that the concept of contextuality is more general than the entanglement issue. Neutrons are con-
venient guinea pigs for the kind of delicate experiments needed to investigate intrinsic aspects of
quantum physics. It should be mentioned that the debate whether all kinds of hidden variables and
even local realism must be aborted is still continuing (e.g., Penrose 1994, 2005; Nieuwenhuizen
et al. 2007; Khrennikov 2009; Allahverdyan et al. 2013).

7.1 Quantum Contextuality

Entangled systems provide a new basis for related investigations and, therefore, many experiments
have started to deal with these questions. Entanglement of pairs of photons or material particles is
a well-known phenomenon, which produces a non-classical quantum state. It means that the state
of two coupled systems cannot be separated into a product state (Einstein et al. 1935; Bell 1964;
Clauser and Shimony 1978; Bertlmann and Zeilinger 2002; see also Gilder’s (2008) book The Age
of Entanglement: When Quantum Physics Was Reborn). Experiments have verified the non-local fea-
ture of quantummechanics (Aspect 1981, 1982;Weihs et al. 1998; Moehring et al. 2004) and have
addressed the question of local realism (Weihs 2007, Scheidl et al. 2009). In a more general sense
entanglement is not restricted to two-particle systems but can be extended to an entanglement

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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of different degrees of freedom where internal and external degrees of freedom can be of con-
cern. The falling cat which always lands on its legs is a macroscopic analog to this effect (e.g.,
Montgomery 1990). Thus, entanglement can also exist between different degrees of freedom of a
single-particle system which yields to quantum contextuality (Kochen and Specker 1967; Mermin
1990, 1993; Peres 1993). A significant development is the formulation of a scheme for testing non-
contextuality models on the basis of the quantum-mechanical violation of an inequality obtained
from the Peres–Mermin proof of the no-go theorem (Cabello et al. 2008). These inequalities can
be considered as generalizations of the well-known Bell inequality and can be observed for any
quantum system and not just for entangled states. Pan and Home (2009) showed how contextu-
ality is manifested within quantum mechanics when the related proofs are based on mean values
obtained from sub-ensembles.

Contextuality implies that the outcome of a measurement depends on the experimental con-
text, i.e., the outcome of a previous or simultaneous experiment of another compatible observable
(Roy and Singh 1993, Basu et al. 2001). In this respect it is a more stringent demand than non-
locality. In related neutron experiments (Hasegawa et al. 2003, 2006) the commuting observables
of the spin path (s) on the Poincaré sphere and the beam path (p) in real space through the inter-
ferometer act as two independent degrees of freedom where the following entangled state can be
produced:

� =
(
|↑>s|I>p – |↓>s|II>p

)
/
√
2, (7.1)

as we have already seen in Chapter 5. The spin state and the beam path state represent two-level
systems. They each can be described by Pauli spin matrices with the commutation relations

[σ s
j , σ

p
k ] = 0 for { j, k} = {x, y},

[σ s
xσ

p
y , σ

s
yσ

p
x ] = 0. (7.2)

When applied to a Bell-like state of Eq. (7.1) the eigenvalue equations become

σ s
i σ

p
i |ψ > = – |ψ >, i = x, y, (7.4)

(σ s
xσ

p
y )(σ

s
yσ

p
x )|ψ> = – |ψ>. (7.5)

The related Bell state can be produced within the interferometer when a polarized incident beam
is split coherently into two beam paths (I and II) and the spin in one beam path is rotated by
Larmor precession to the +y-direction and in the other beam path to the –y-direction (Fig. 7.1).

Then various entangled Bell states can be produced

|ψ > = |→>⊗ |I > ± |←> ⊗|II >, (7.6)

and three others (separable and non-separable ones) can be formulated in a similar fashion. The
notation |→〉 ⊗ |I〉 means +y polarization within a guide field in the z-direction along beam path I
and |←〉⊗ |II〉 means –y polarization along beam path II.

In a separate analysis these Bell-like states have been measured in a quantum tomographi-
cal manner as shown in Fig. 7.2 (Hasegawa et al. 2006). This shows spin–path entanglement
in spin–path joint measurements. In all these cases Bell-like inequalities can be formulated to
demarcate a quantum world from a classical one. The phase shift χ between the beams and the
spin rotation angle α are used as path and spin parameters and Bell-like inequalities can be
formulated (Hasegawa et al. 2003, Klepp et al. 2014) as follows:
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–2 ≤ S ≤ 2 (classical), (7.7)

–2
√
2 ≤ S ≤ 2

√
2 (quantum), (7.8)

S = E(α2,χ2) + E(α1,χ2) – E(α2,χ1) + E(α2,χ2), (7.9)

E(α,χ) =
N(α,χ) +N(α + π ,χ + π) –N(α,χ + π) –N(α + π ,χ)
N(α,χ) +N(α + π ,χ + π) +N(α,χ + π) +N(α + π ,χ)

. (7.10)

This combination of counting rates N(α,χ) depends on the spin rotation angle α and the nuclear
phase shift χ , which occur in each beam path, as it is formulated by analogy to Bell-like states. The
maximal violation of classical predictions, and moving toward the quantum-mechanical descrip-
tion happens for the following parameters: α = 0, α2 = π /2, χ2 = π /4, and χ2 = –π /4. Typical
results are shown in Fig. 7.3.

Careful data analysis gave a value of S = 2.051 ± 0.019, i.e., beyond the classical prediction
of S <2. The reason why this value is considerably below 2

√
2 (the quantum prediction) lies in

imperfections of the setup. The contrast of the interference was about 74%. It was mainly limited
by stray fields of the spin rotator, and the degree of polarization was 95%. Nevertheless, quantum
contextuality has been demonstrated here, indicating an intrinsic correlation between the spin
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and the momentum (path) variables. These results have been commented on by Weihs (2007) in
relation to the general understanding of reality in quantum physics. A more precise value has been
obtained by Hasegawa and Erdösi (2011) who used a Mu-metal tube to vary the path integral,
resulting in opposite polarization states. Their Bell parameter was S = 2.202 ± 0.007, evidently
considerably above 2.

In a continuation of these experiments Hasegawa et al. (2006) dealt with the Kochen–Specker
theorem (Kochen and Specker 1967) and the Mermin inequalities (Mermin 1990, 1993), where
even stronger violations of classical hidden variable theories are predicted. A related test of the
Kochen–Specker theorem was formulated by Simon et al. (2000) and realized for photons by
Huang et al. (2003). For neutron matter-waves a related proposal came from Basu et al. (2001)
and a related experiment has been performed using a setup similar to that shown in Fig. 7.1
but with the additional feature that the beam paths could be closed alternatively by means of an
absorber sheet (Hasegawa et al. 2006). The measurement of the product observable (σ s

xσ
p
y )·(σ s

yσ
p
x )

was done by measuring (σ s
zσ

p
z ) and using a priori the non-contextuality relation. The measurable

quantity is defined by a sum of product observables

C = Î – σ s
xσ

p
x – σ s

yσ
p
y – (σ s

xσ
p
y ) · (σ s

yσ
p
x ). (7.11)

In any experiment only expectation values can be measured, which gives rise to a discussion
whether experimental verifications are feasible at all. For non-contextual models the last term can
be separated as follows:

<(σ s
xσ

p
y )><(σ

s
yσ

p
y )> = <σ s

x ><σ
p
y ><σ

s
y ><σ

p
x >, (7.12)

which gives for non-contextuality theories

Cnon–contextual = ±2, (7.13)

whereas quantum mechanics predicts

Cquantum = 4. (7.14)

The measured value was

Cexp = 3.138 ± 0.0115, (7.15)

which is well above the non-contextuality (classical) limit of 2 and provides an all-versus-nothing
type of contradiction. It provides a Peres–Mermin proof of quantum mechanics against non-
contextual hidden variable theories.

A debate in literature (Simon et al. 2000, Cinelli et al. 2005) criticized the a priori use of the
non-contextuality relation (σ s

xσ
p
y ) · (σ s

yσ
p
x ) = (σ s

zσ
p
z ) and in this connection the use of an absorber

to measure this quantity. A follow-up proposal of Cabello et al. (2008) required the measurement
of this quantity in the same context as the measurement of the other observables. This has been
achieved with a setup shown in Fig. 7.4 (Bartosik et al. 2009).

The maximally entangled state is generated in the first part of the interferometer. The second
part serves together with a phase shifter as a path measurement apparatus and a spin-analysis
system allows the selection of neutrons with certain spin properties. The spin flippers in both
beam paths are required for the measurement of the product observable

〈
σ s
xσ

p
y · σ s

yσ
p
x

〉
(Bartosik
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Figure 7.4 Experimental setup for the loophole-free verification of quantum contextuality (Bartosik
et al. 2009)

et al. 2009). The previous result of Hasegawa et al. (2003) has been verified and a numerically
higher violation factor has been achieved (Cexp = 3.291 ± 0.008). In this case a quantum erasure
method has been used instead of an absorber and, therefore, all quantities required for Eq. (7.11)
could be measured within the same context as required by the theory. Nearly simultaneously an
experimental test of quantum contextuality has been performed with trapped ions which yielded
compatible results (Kirchmair et al. 2009, Zhang et al. 2013) and with single photons (Simon
et al. 2000, Amselem et al. 2009). A series of non-contextuality hidden variable theories (e.g.,
Bell 1987, Gühne et al. 2010) are shown to be non-valuable by these experiments. However, the
discussion whether a loophole-free verification has been achieved is still continuing (e.g., Amselem
et al. 2013).

Years ago it was shown that in the case of neutron resonance the Zeeman energy (h̄ω = 2μB0)
is exchanged between the neutron and a resonance coil coherently (Alefeld et al. 1981). This
provides the basis for triple-entanglement experiments using spin–path–energy as independent
degrees of freedom (Sponar et al. 2008, Hasegawa et al. 2010). These GHZ-like states are a new
tool for basic neutron quantum optics experiments and may entangle new components of quantum
computing elements like NOTNOT gates. The energy states have a geometric nature and may be
rather robust under dissipative effects as shown in Section 4.6.

The production of triply entangled states in a single-neutron system within the neutron interfer-
ometer containing a time-dependent flipper is used to provide an energy exchange of h̄ω1 = 2μB01

(Section 5.3), which gives a rotating spin behind the interferometer whose rotation is stopped
by means of another time-dependent flipper providing half the energy exchange of the first one
(h̄ω2 = 2μB02 with B02 = B01/2; Fig. 7.4). In this case the three subspaces are spanned by
orthogonal two-bases, i.e., two-level systems:
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|ψspin >={|↑ >, |↓ >}

|ψpath >={|I >, |II >}

|ψenergy >={|E0 – h̄ω >, |E0 >}.
(7.16)

In consequence, one can generate the state of neutrons in a triply entangled GHZ-like state
(Greenberger et al. 1989)

|�GHZ
n > = 1/2

{
|↑>⊗|I >⊗|E0 > +|↓>⊗|II >⊗|E0 – h̄� >

}
. (7.17)

Mermin (1990) derived an inequality suitable for experimental tests to distinguish between
predictions by quantum mechanics and by local realism theories:
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e
x ]. (7.18)

Non-contextual theories set a strict limit for a maximum possible value ofM = 2, whereas quan-
tum theory predicts a maximum value of M = 4. The expectation values in Eq. (7.18) can be
measured for certain values of the path phase shift χ , the spin phase α, and the energy phase γ . χ
is manipulated by an auxiliary phase shifter, α by an accelerator DC coil, and γ (= 2ω1L/v) by the
zero-field precession between the two flipper coils located a distance L apart (Golub et al. 1994;
Sponar et al. 2008). The experimental result after a careful data analysis was

M = 2.558 ± 0.004, (7.19)

exhibiting a clear violation ofM = 2 resulting from non-contextual theories (Hasegawa et al. 2010,
Sponar et al. 2010). Even higher degrees of multiple entanglement and higher degrees of fidelity
of such states have been demonstrated by Erdösi et al. (2011) and summarized by Klepp et al.
(2014). The results demonstrate that the sequence (context) of measurements of different sub-
spaces is essential and an intrinsic feature of quantum mechanics, since the energy entanglement
can be extended to multi-entanglements (up to 1000) by an energy manipulation scheme with
multiple frequency systems in serial.

7.2 Quantum Cheshire Cat

All interferometer experiments suggest that a quantum system “feels” the physical situations along
both beam paths and all physical features should be transported in both beams. This is also of rel-
evance for all degrees of freedom which should exist always in both beams. Is it then possible that
one feature is transported in one beam and the other feature in the other beam, respectively? This
yields to a Cheshire cat situation where, i.e., the particle properties are transported in one beam
and the spin becomes transported in the other beam, as indicated in Fig. 7.5. The nomenclature
follows the children’s novel Alice’s Adventures in Wonderland. Actual experiments are related to
pre- and post-selection experiments, as described in Section 4.5, and to absorber experiments, as
described in Section 4.3. In combination this permits “weak measurements” which can visualize
various quantum paradoxes (Aharonov et al. 1988, Aharonov and Vaidman 1991). In this con-
nection the quantum Cheshire cat has attracted attention (Aharonov et al. 2013, Matzkin and Pan
2013, Yu and Oh 2014) and a dedicated neutron experiment has been done by Denkmayr et al.
(2014). In this case the beam splitter not only splits the quantum wave describing the neutron
itself but also its spin, and a special analyzer system selects in both beams separately the neutron
particle features (absorber) and the spin feature (spin rotator) (Fig. 7.5).
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Figure 7.5 Sketch (above) of a Cheshire cat neutron interferometer experiment and its realization
(below). STx are π /2-spin turners and SRx are spin-rotators use for weak measurements and ABS
denotes the absorber (Denkmayr et al. 2014). Reprinted with permission of Denkmayr et al. (2013) and
Nature Publ. Group

In the dark position of the O-detector the insertion of the absorber and the activation of the spin
rotator cause distinct neutron counting rates. These intensities are different when the absorber
is set into beam I or beam II, indicating a weak particle path measurement. In a second step
an additional magnetic field is applied in one or the other beam path which causes also distinct
spin rotations (∼20◦) and distinct neutron counting rates related to a weak spin measurement.
The results indicate significantly higher count rates when the absorber is put into beam path II
and higher count rates when the additional spin rotation is applied to beam I (Na(II)/Na(I) =
6.95 ± 0.52;Ns(II)/Na(I) = 0.17 ± 0.39). The obtained results exhibit the characteristics of a
Cheshire cat in a matter-wave interferometer.

The neutrons behave as if particle and spin properties are spatially separated while travel-
ing through the interferometer. These statements can be given only for the system behind the
analyzer, but such statements are generally questionable because they cannot be proven or dis-
proven. The situation is rather similar to that in the spin-superposition experiment discussed in
Section 5.2 where a post-selected spin-up state after the superposition can or cannot be attributed
to the spin-up state before superposition (Fig. 5.5). The observation of Cheshire cat situations is
another example of paradoxical phenomena found within the framework of quantum mechanics
(see e.g. Klepp et al. 2014).
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Gravitational, Inertial,
and Motional Effects

The fundamental dual nature of neutrons—sometimes a particle (when detected) and sometimes
a wave (when traversing the interferometer)—is wonderfully manifested by the non-local nature
of the neutron interferometry experiments discussed in this chapter. We begin with a discussion
of the series of experiments, called gravitationally induced quantum interference, in Section 8.1.
Then in Section 8.2, the effect of the Earth’s rotation on the phase of a neutron de Broglie wave is
described. This is the quantum-mechanical analog of the Michelson, Gale, Pearson (1925) exper-
iment with light. An experiment in which this Sagnac phase shift was observed due to rotation of
the interferometer on a turntable within the laboratory frame was verified (Atwood et al. 1984).
Such experiments prove the universality of free fall by comparing the acceleration of neutrons to
that of classically freely falling objects (Wolf et al. 2011). In this respect the neutron interferom-
eter can be seen as a quantum gravimeter. An experiment related to the small effective mass of
the neutron propagating in a crystal under Bragg reflecting conditions and its deflection due to
the Coriolis force is discussed in Section 8.2.3 (Raum et al. 1995). Acceleration-induced inter-
ference, which is related to the gravity experiments by the principle of equivalence, is discussed
in Section 8.3 (Bonse and Wroblewski 1983). It is natural to ask about the connection of these
neutron interference experiments to similar ones carried out with photons. Section 8.4 is devoted
to this question. Phase shifts caused by the motion of matter within the interferometer are related
to the optical Fizeau effect. Several neutron Fizeau-type experiments are discussed in Section 8.5.

8.1 Gravitationally Induced Quantum Interference

Neutrons, like all matter, are subject to Newton’s (1686) universal gravitational force. This fact
has been demonstrated by verifying that neutrons fall on a parabolic trajectory in the Earth’s grav-
itational field (Dabbs et al. 1965, Koester 1976). This is a consequence of classical mechanics
and is expected from the principle of equivalence. For a review of the principle of equivalence
see Hughes (1993). However, gravity and quantum mechanics do not simultaneously play an
important role in most phenomena experimentally accessible in terrestrial physics. In this section
we describe a series of neutron interferometry experiments for which the outcome necessarily
depends upon both the gravitational constant G and Planck’s constant h. The first observation
of the phase shift of a neutron de Broglie wave induced by the Earth’s gravity was made in an
experiment carried out at the 2 MW University of Michigan Reactor by Colella, Overhauser,

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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Table 8.1 Contributions to the Earth’s Gravitational
Acceleration.

Effect Oder of magnitude (m/s2)

Earth sphere gravity 10

Ellipsoidal and Sagnac effect 10–3

Landscape 10–4

Local density variations 10–5

Tidal forces 10–7

General relativity theory 10–9

and Werner (1975). A series of increasingly sophisticated and precise experiments, now collec-
tively called COW (Colella–Overhauser–Werner) experiments, were pursued at the University of
Missouri Research Reactor (MURR; Staudenmann et al. 1980;Werner et al. 1988; Jacobson 1993;
Littrell 1996, 1997). For reviews of related experiments with electrons and atoms see Hasselbach
(2010) and Cronin et al. (2009), respectively.

The experiments deal with a measurement of the local acceleration g due to the Earth, which
is determined by the local gravity and small additional effects collected in Table 8.1. The ordinary
gravity and the Sagnac (Coriolis) contributions have been verified with neutrons. A general rel-
ativistic treatment of the COW experiment yields, in first order, the same gravity-induced phase
shifts as those obtained by the Newtonian theory of gravity (Varju and Ryder 2000, Wolf et al.
2011, Greenberger et al. 2012). More details are found in Section 8.5.6.

8.1.1 Geometry of the COW Experiment

A schematic diagram of the overall apparatus used in the experiments carried out at MURR is
shown in Fig. 2.12. The double-crystal monochromator provides a selectable and continuously
variable wavelength (λ ∼ 0.8 to 2.4 Å) incident beam directed along the local north–south axis of
the Earth, a fact which we will see is important in these experiments. In the earlier experiments,
the monochromator crystals were pyrolytic graphite, PG (004); the more recent experiments have
utilized a set of vertically focusing copper, Cu(220), crystals. The nominally monochromatic
(�λ/λ ∼ 0.005), collimated (�θ ∼ 0.4◦) beam is directed through a series of slits, and is incident
upon the interferometer along the horizontal line SA shown in Fig. 8.1. Tilting the interferometer
about this incident beam direction through an angle α, while maintaining the Bragg condition,
requires the neutron wave packets on the sub-beam paths I and II to mix and recombine in the
third crystal plate near point D, which is higher above the Earth by an amount H(α) = H0 sin(α)
than the entrant point A. The phase accumulated along the rising segment AC on path II is equal
to the phase accumulated along the rising segment BD on path I. However, due to conservation
of energy, the momentum, p = h̄k, of the wave packet along the upper, horizontal beam segment
CD is less than the momentum, p0 = h̄k0, along the lower beam segment AB, that is (similar to
Eq. 2.29)

E0 =
h̄2k20
2m

=
h̄2k2

2m
+mgH(α), (8.1)
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Figure 8.1 Schematic diagram of the LLL interferometer used in the gravitationally induced
quantum interference experiments. The interferometer crystal, along with the 1.2-cm-diameter
20-atm 3He neutron detectors is tilted about the incident beamline SA through angles α, while
maintaining the Bragg condition for wavelength λ and Bragg angle θB. It was machined
by Mr. Clifford Holmes in the Physics Department Machine Shop at the University of Missouri

where g is the acceleration due to gravity. Since the gravitational potential energy difference is small
(mg ∼ 1.003 neV/cm) compared to the kinetic energy, E0 ∼ 20 meV, of the incident neutron, the
wave vector difference according to Eq. (8.1) is given approximately by

�k = (k – k0) ∼= –
m2gH

h̄2k0
sinα, (8.2)

where α = 0 corresponds to the horizontally level interferometer situation, with both beam paths
(I and II) parallel to the Earth’s surface. The phase difference of the neutron traversing path II
relative to path I is therefore given by

��COW = �II –�I = �kS, (8.3)

where S is the path length of the segments AB and CD. Writing k0 = 2π /λ we have

��COW = –2πλ
m2

h2
gA0 sinα, (8.4)
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Figure 8.2 Gravitationally induced quantum interferograms taken with
the LLL interferometer shown in Fig. 8.1, for which d= 34.518± 0.002 mm
and a= 2.464 ± 0.002 mm (Staudenmann et al. 1980)

where A0 = H0S is the area of the parallelogram enclosed by beam paths I and II. An alternative
derivation of this formula has been given by Mannheim (1998). Many graduate students study the
derivation of this formula in standard quantum-mechanics textbooks such as the one by Sakurai
(1994). We see that this phase shift is proportional to the neutron wavelength λ and depends
explicitly on Planck’s constant h and the acceleration g due to the Earth’s gravity. The experimental
procedure used to measure this phase shift involves tilting the interferometer about the incident
beam direction through various angles α and observing the variation in counting rates of the two
outgoing interfering beams in the two 3He detectors, labeled C2 (H-beam) and C3 (0-beam)
in Fig. 8.1. An example of such a gravity-induced interferogram (Staudenmann et al. 1980) is
shown in Fig. 8.2. The frequency of the oscillations of this interferogram differs slightly from that
predicted by the formula (8.4), due to subtle dynamical diffraction effects, the Sagnac effect, and
the bending of the interferometric under its own weight. We will discuss these effects in some
detail in Section 8.1.4.

8.1.2 Formal Derivations of the COW and Sagnac Phase Shifts

Since the experiment was carried out in a frame fixed to our rotating Earth, a non-inertial frame
of reference, the Lagrangian L governing the neutron’s motion as it traverses the interferome-
ter involves the Earth’s rotation frequency, �. Transforming the Lagrangian in an inertial frame
(miv2/2 + GmgM/r) to this rotating frame, it is a straightforward matter to show that

L(r, v) =
1
2
miv2 +G

mgM
r

+mi(� × r) · v + 1
2
mi|� × r|2, (8.5)

where G is Newton’s universal gravitational constant, mi and mg are the inertial and gravitational
masses of the neutrons,M is the Earth’s mass, and r and v are the neutron’s position and velocity
in the rotating frame of the interferometer. The Hamiltonian H is obtained from L using the
Legendre transformation (Eq. 1.32), and is found to be (Landau and Lifshitz 1969)



250 Gravitational, Inertial, and Motional Effects

H(r,p) =
p2

2mi
–G

mgM
r

– � · L, (8.6)

where L = r × p is the angular momentum of the neutron’s motion about the center of the Earth
(r = 0). The neutron’s canonical momentum is

p =
∂L
∂v

= miv +mi� × r. (8.7)

Using Hamilton’s equations

ṙ =
∂H
∂p

and ṗ = –
∂H
∂r

, (8.8)

it is easy to obtain the well-known equation of motion for a particle in a rotating frame of reference,
that is

mir̈ = mgg0 –mi� × (� × r) – 2mi� × ṙ. (8.9)

The acceleration due to gravity is

g0(r) = –
GM
r2

r̂. (8.10)

Thus, we see that the term –� ·L in the Hamiltonian gives rise to both the centrifugal force and the
Coriolis force. Since we are only interested in the neutron’s motion over a distance corresponding
to the dimensions of the interferometer, which are very small compared to the Earth’s radius R,
we define an effective gravitational acceleration in the usual manner, namely

g = g0(R) +
(
mi

mg

)
� × (� ×R), (8.11)

which is independent of the neutron’s instantaneous position. Under this assumption, the solution
of the equation of motion (8.9) to leading order in � is

r(t) = r0 + v0t +
1
2
gt2 +

1
3
t3� × g. (8.12)

Based upon a sidereal day of 23 h 56 m, one gets � = 7.29×10–5 s–1. The transit time for thermal
neutrons (v ∼ 2 mm/μs) across a Si-crystal interferometer (l∼ 10 cm) is about 50 μs. Thus, the
term in Eq. (8.12) involving � is smaller than gt2/2 by a factor of about 10–9. Consequently, the
effect of the Coriolis force on the trajectory over these small distances is negligible. However, its
effect on the neutron phase is not negligible, as we shall see in Section 8.2. Between the crystal
blades of the interferometer the neutron wave packets move on a parabola. But over the small
distances involved within the interferometer the curvature of the trajectories is very small. In fact,
the angular deviation from a straight line is only about 0.25 μrad ∼ 0.05 arc sec. This is well
within the Darwin width (∼2 arc sec) for reflection by the Si-crystals (see Chapter 11), which is
necessary (and fortunate) for the neutrons to satisfy the Bragg conditions in the second and third
crystals of the interferometer. For experiments carried out at MURR described in this section,
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the centrifugal acceleration of the neutron was 0.0265 m/s2 and the Coriolis acceleration was
0.41 m/s2 for 1.4-Å neutrons.

The discussion so far in this section has been based upon classical mechanics. In order to cal-
culate the quantum mechanical phase shift �� we must associate with the canonical momentum
p the operator –ih̄∇. In the spirit of the WKB approximation the momentum is then p = h̄k, and
the phase shift is obtained by the integration of the action along the unperturbed (by gravity or
rotation) trajectories according to the Feynman–Dirac prescription, namely

�� =
1
h̄

∫
ACD

p · dr – 1
h̄

∫
ABD

p · dr = 1
h̄

∮
p · dr (8.13)

The momentum appearing in this line integral on the closed path ACDBA along the trajectories
of the neutron within the interferometer is given by Eq. (8.7). Thus, the phase shift involves two
terms,

�� =
mi

h̄

∮
v · dr + mi

h̄

∮
(� × r) · dr. (8.14)

To first order in g, the first term yields ��COW as given by Eq. (8.4), where the area
A0 = (2d2 + 2ad) tan θB. Here the crystal blade thickness is a and the blade separations are d.
However, the square of the neutron mass should be replaced by the product of the neutron’s
inertial and gravitational masses, so that we can write

��COW = –qCOW sin α, (8.15a)

where

qCOW = 2πλ
mimg

h2
gA0. (8.15b)

The neutron wavelength λ is given by its laboratory velocity v(λ = h/miv). Measuring this
phase shift induced by the Earth’s gravity can therefore be regarded as a test of the principle
of equivalence (mi = mg) in the quantum limit.

The second term in Eq. (8.14), which we call ��Sagnac, is due to the Earth’s rotation. Using
vector calculus, it can be written as a surface integral, yielding

��Sagnac =
2mi

h̄
� · A0. (8.16)

This formula was obtained by Page (1975) using wave-optical arguments, and by Anandan
(1977) and Stodolsky (1979, 1979a) within the framework of general relativity. A very reada-
ble general relativistic treatment of these COW and Sagnac effect experiments is given by Varju
and Ryder (2000). An interesting derivation has been given by Dresden and Yang (1979) in which
the phase shift for either a rotating neutron or optical interferometer is derived from the point of
view of the Doppler shift of waves from the moving mirrors (crystals) relative to an inertial frame
of reference. A number of important observations and conclusions are made by Dresden and Yang
(1979). First, the reflection from the moving mirrors also changes the beam displacements in first
order, but these displacements affect the phase shifts in second order because of Fermat’s princi-
ple for reflection. The importance of integrating the wave vector along the classical unperturbed
beam paths enters many other calculations in this book (e.g., Opat 1995). Second, the phase shift
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is calculated at a given instant of time. Therefore, only the k · x term enters the phase shift; the ωt
part of the phase plays no role. This is true of all phase shifts where the Hamiltonian is independ-
ent of time, so that the energy E = h̄ω is a constant of the motion. The Dresden–Yang derivation
is also valid for any optical or atom interferometer. Sakurai (1979) pointed out that this phase
shift can be regarded as a topological effect due to the flux of rotation penetrating the loop of
the neutron wave packet’s motion around the interferometer. This is analogous to the topological
Aharonov–Bohm effect for electrons encircling a long tube of magnetic flux. Sakurai (1994) notes
that the Coriolis force 2mv × � is of the same form as the Lorentz force on a charged particle in
a magnetic field, namely,(e/c) v× B if one identifies (e/c)B with 2m�.

For a horizontally directed incident beam, the dot product in Eq. (8.16) is easily evaluated; the
result is

��Sagnac(α) =
2mi

h̄
�A0(cos θL cosα + sin γ sin θL sinα), (8.17)

where θL is the colatitude angle at the point on the Earth’s surface where the experiment is carried
out, and γ is the angle of the incident neutron beam west of due south. In the experiment at beam
port B at MURR, γ is nearly exactly 0 and θL = 51.37◦. Therefore, the Sagnac phase shift for the
horizontally directed beam experiment can be written as

��Sagnac(α) = qSagnac cosα, (8.18)

where

qSagnac =
4πmi

h
�A0 cos θL. (8.19)

Additional terms which are orders of magnitude smaller than these two leading terms appear when
a relativistic treatment and a spin–gravity coupling is taken into account (Mashhoon 1988, Varju
and Ryder 2000).

An alternative approach to understanding the effect of Earth’s gravity on a phase of matter
waves in terms of a gravitational redshift has been put forward by Müller et al. (2010), who
analyzed previous quantum gravity experiments done with atoms (Peters et al. 1999), while
emphasizing the Compton frequency as an internal clock of particles (ωC = mc2/h̄ ≈ 1025 Hz).
They use this method to claim a very precise determination of the gravitational redshift. The same
type of analysis can be done for the COW neutron interferometer experiment. There is an ongoing
discussion in the literature of whether this view is correct. In any case it shows that interference
experiments provide a pathway to achieve extremely high sensitivities and a deeper understanding
of quantum physics (Hohensee et al. 2011, Sinha and Samuel 2011, Wolf et al. 2011, Greenberger
et al. 2012, Lan et al. 2013). In Section 8.5.6 we discuss the importance of proper time τ and
general relativistic considerations in understanding these inherently non-relativistic matter wave
interference experiments in the gravitational field of our rotating Earth.

8.1.3 The Total Phase Shift Including Bending

As we have already pointed out, there is an additional effect on the measured phase shift ��(α)
resulting from bending (or warping) of the silicon crystal interferometer under its own weight.
Since the interferometer is tilted about the incident beam direction, which is not an axis of elas-
tic symmetry of the device, the effect of bending cannot be reliably modeled and calculated.
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To circumvent this problem the phase shift due to bending has been separately measured with X-
rays. The procedure involves using molybdenum Kα X-rays (λ = 0.71 Å) directed along the same
incident beam direction (SA in Fig. 8.1) and observing the interfering X-ray beams with an X-ray
sensitive proportional argon gas-filled detector as a function of tilt angle α. The effect of grav-
ity (gravitational redshift, see Section 8.5.6) on the X-ray photon is negligible over the distances
involved in the interferometer. It has been found that the phase shift due to bending is propor-
tional to sin α. This is understandable since the path length difference, �L(α) = LII(α) – LI(α), is
expected to increase with increasing interferometer tilt, such that

��bend(α) = –k ·�L(α) = –(2π /λ)�L0 sinα ≡ –qbend sinα, (8.20)

where �L0 depends upon the elastic properties of the Si interferometer and its mounting. The
sign of this phase shift is experimentally found to be the same as that due to gravity.

Thus, the total phase shift is composed of three terms,

��(α) =��grav(α) +��bend(α) +��Sagnac(α)
= –qgrav sinα – qbend sinα + qSagnac cosα
= q sin(α – α0) ,

(8.21)

where the frequency of the interferogram oscillations is given by

q =
[(
qgrav + qbend

)2
+ (qSagnac)2

]1/2
, (8.22)

and

α0 = tan–1

[
qSagnac

qgrav + qbend

]
. (8.23)

Here qgrav differs from qCOW by a small correction factor discussed in the next section. The ratio
qSagnac/qgrav is 0.025 for λ = 1.4 – Å neutrons. Typically, qbend/qgrav is about 0.04. Since qSagnac
enters Eq. (8.22) in quadrature, its contribution to the total frequency of oscillation q is small (of
order 3 parts in 104). It should be noted that the three contributions ��grav, ��bend, and ��Sagnac

to the total phase shift depend upon the neutron wavelength as λ1, λ–1, and λ0, respectively.
This different dependence on wavelength for the three contributions to the total phase shift was
exploited in the “two-wavelength” experiment discussed in Section 8.1.5. When the contribution
of bending to the phase shift is experimentally measured with X-rays, the scaling of qbend with λ–1

is taken into account.

8.1.4 Neutron-X-Ray Difference Experiments

Various techniques for mounting the interferometer in its V-shaped cradle have been utilized.
The method that has proven most successful in minimizing ��bend is to use a type of pliable
double-sided sticky-back tape between the interferometer and the cradle. We show in Fig. 8.3 full
360◦-tilt-interferograms as recorded in the C2 and C3 detectors. The oscillations in the two detec-
tors are 180◦ out of phase with each other, as expected. The loss of contrast as the interferometer
tilt angle approaches 90◦, and then the recovery of contrast as the interferometer is turned up-
side down (α = 180◦), are due to a dynamical diffraction effect, and not to bending of the
interferometer, as first pointed out by Horne (1986). The three-crystal LLL interferometer is
not a simple two-path device, but really an eight-path interferometer, as shown in Fig. 8.4. This
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Figure 8.3 Full-rotation, gravitationally induced quantum interferogram
taken with the interferometer shown in Fig. 8.1. Here the Si-interferometer
is attached to its cradle with double-sticky-back tape. One should note the
180◦ phase difference between the C2 and C3 data (Werner et al. 1986)

fact is discussed in detail in Chapter 11. It has the effect that the single interferometer area A0

appearing in the COW phase shift formula, Eq. (8.15), should be replaced by a dynamical diffrac-
tion intensity-weighted average over three areas: A0, A0 + δA, and A0 – δA, where δA/A0 = |�|a/d,
and |�| is a factor (less than unity) dependent upon the misset angle �θ of a given incident ray
from the exact Bragg angle (see Chapter 11). Since the frequency of oscillation of the gravity-
induced interferogram depends on the interferometer area, this intensity-weighting process over
the spectrum of areas results in a loss of contrast in much the same way as a wave packet is formed
from a spectrum of plane waves of various frequencies. Furthermore, there is a shift of the central
frequency of the interferogram oscillations from qCOW to

qgrav = qcow (1 + ε(α)) , (8.24)

where the correction factor ε(α) ≈ 2a/3d, independent of α to leading order in a/d. For the inter-
ferometer used to obtain the data in Fig. 8.3, ε = 0.0476. These dynamical diffraction corrections
were first noted by Bonse and Wroblewski (1983, 1984) in their analysis of the acceleration-
induced interferometry experiments discussed in Section 8.3. A detailed analysis of these effects
has been given by Littrell et al. (1998).

In the early experiments of Colella, Overhauser, and Werner (1975) and of Staudenmann et al.
(1980) the frequency of oscillation q of the gravity-induced interferogram was obtained by Fourier
transformation of the data. In the more recent experiments ofWerner et al. (1988) and Littrell et al.
(1996, 1997; see Section 8.1.5) the following procedure was used to obtain q, qgrav, and qbend: The
phase shift ��(α) is measured directly by first setting α = 0, and rotating the phase flag (typically,
a 2-mm-thick, polished aluminum plate) through successive angles δ. The phase of the resulting
interferogram is obtained by standard least-squares fitting methods. The interferometer is then
tilted to some other angle α and another phase-rotator interferogram is recorded. The difference
in phase between these two interferograms is ��(α). This phase difference is then plotted versus



Gravitationally Induced Quantum Interference 255

i

1

2
3

4

56

–3

–2

–1

0

1

2

3

3Г

M1

M2

O

Figure 8.4 This diagram shows the 8 beam trajectories in the LLL interferometer. The solid
lines give the “primary” trajectories and the dashed lines are the “maverick” trajectories (see
Section 11.7.2). Reprinted from Horne 1986, copyright 1986, with permission from Elsevier.

sin (α – αo), as shown in Fig. 8.5 (Werner et al. 1988). The slope of these plots is denoted as qexp.
An analogous experiment was then carried out with X-rays, where the phase rotator is a thin plate
of plastic. A plot of the phase ��X–rays versus sin α gives the phase shift due to bending as shown
in Fig. 8.5. The slope of this plot is qbend appropriate to the X-ray wavelength (λ = 0.711 Å).
Scaling this value of qbend to the wavelength of the neutron experiment (λ = 1.417 Å) then gives
the bending correction of the neutron data, that is

qgrav =
(
q2exp – q

2
Sagnac

)1/2
– qbend. (8.25)

In the X-ray experiment, the Si(440) Bragg reflection was used, while in the neutron experiment
the Si(220) Bragg reflection was used. Consequently, the X-rays and neutrons follow the same
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Figure 8.5 Phase shift as a function of the tilt angle α measured with neutrons (left) and
with X-rays (right). The angle α0 = 1.4 ◦ is due to the Sagnac effect (Werner et al. 1988)

trajectories through the interferometer. Numerically Eq. (8.25) reads

qgrav(exp) = (60.122 – 1.452)1/2 – 1.42 = 58.72 ± 0.03 rad, (8.26)

for the data shown in Figs. 8.5 and 8.6. Theory predicts that

qgrav(theory) = (1 + ε)qCOW = 59.2 ± 0.1 rad, (8.27)

where the stated uncertainty is due to the precision in the measured neutron wavelength. Thus,
the observed value of the gravity-induced phase shift from these data is 0.8% lower than theory
predicts.

8.1.5 Neutron Two-Wavelength Difference Experiment

Subsequent to the publication of the above result, Layer and Greene (1991) suggested that the
small discrepancy between theory and experiment might be due to the fact that X-rays interrogate
a somewhat different and smaller region of the interferometer crystal blades than neutrons. This is
the result of the much stronger absorption of X-rays by the Si crystals which leads to an incomplete
filling of the Borrmann fans (see Chapter 11) as the X-rays traverse the interferometer. Since
X-rays experience substantial absorption in silicon, the rays traverse the interferometer via the
anomalous transmission effect and do not spread out very much. This is shown schematically in
Fig. 8.6. Detailed elastic deformation calculations using finite element analysis indicated that such
an effect would lead to an over-correction of the bending contribution to the phase shift of about
the right magnitude. Figure 8.7 shows the type of distortion that the interferometer undergoes.

A series of X-ray experiments were undertaken by Arif et al. (1994) on the same interferometer
used in the gravity experiments, in which the interferometer was translated in small steps across
the incident beam. The phase shifts due to bending were found to be dependent upon the location
in the first crystal blade where the X-rays are Bragg diffracted, and were observed to be a non-
linear function of position. Consequently, it was found to be somewhat difficult to model the
bending phase shifts contributing to the neutron experiments using the X-ray data. Nevertheless,
it was noted that the observed phase shifts with X-rays could be made very small (less than 1% of
��grav) by carefully modifying the interferometer mounting.

Since the phase shift induced by gravity is proportional to λ, and the phase shift due to bending
is proportional to λ–1, a simultaneous measurement with two neutron wavelengths, say λ1 and λ2,
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Neutrons

Neutrons

Lattice
planes

Incident beam

X-rays

Figure 8.6 Schematic diagram showing the spreading of the neutron beam by the Borrmann
fans in each crystal plate and less spreading in the X-ray case

Figure 8.7 This diagram shows the bending or warping of the
interferometer under its own weight. The Si is taken to be elas-
tically isotropic in a finite element calculation. The distortions
are magnified by a factor of 106 Arif et al. 1994, copyright
1994 Society of Photo Optical Instrumentation Engineers.
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Table 8.2 Dimensions of Interferometers

LLL 1 d =35 mm, a=2 mm

LLL 2 d =34.518(2) mm, a=2.464(2) mm

Large symmetric LLL d =50.404(3) mm, a=3.077(3) mm

Skew symmetric d1 = 16.172(3) mm, d2 = 49.449(3) mm, a=2.621(3) mm

can, in principle, be used to determine both contributions. However, it is imperative that the
geometry of the neutron paths, that is the Bragg angles (θB1 and θB2) and the Borrmann fans in all
three crystal plates, for both wavelengths be the same. This requirement is met if λ2 is the perfect
second harmonic of λ1 (i.e., λ2/λ1 = 2/1) and neutrons of wavelength λ1 are diffracted by the
(440) lattice planes, while those of wavelength λ2 are diffracted by the (220) lattice planes in the
silicon interferometer. This idea was pursued by Littrell et al. (1996, 1997) on two interferometers,
a large symmetric interferometer, and a skew symmetric interferometer (see Table 8.2).

The geometry of the beam trajectories for the skew symmetric interferometer experiment is
shown in Fig. 8.8. The wavelength of the neutrons participating in the interference was measured
using a pyrolytic graphite (PG) crystal with the (002) planes nominally parallel to its surface
attached to a shaft perpendicular to the scattering plane of the interferometer in beam path II,

Aluminum
phase flag

H=HOsin α 

ad2

d1

He-3
detectors

Skew symmetric
interferometer

Incident
monochromatic
neutron beam

Si [220] or [440]
bragg planes

I

II

2θBα

δ
C3

C2

Figure 8.8 Schematic diagram of the gravity experiment using a skew symmetric interferom-
eter (Littrell et al. 1997)
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with beam path I blocked with a piece of B4C in epoxy resin. Determination of each wavelength
was obtained by measuring the separation between the sharp transmission minima of the sum of
the C2 and C3 counting rates as the PG crystal was rotated through its first- and second-order
Bragg reflections, and averaging the results. The neutron wavelengths were selected on the basis
of being compatible with the geometry and performance of each interferometer, and accessible
with the double-crystal Cu monochromator assembly. The mean wavelengths used with the skew
symmetric interferometer were λ1 = 1.0780(6) Å and λ2 = 2.1440(4) Å, corresponding to the
Bragg angles θB1 = 34.15◦ and θB2 = 33.94◦ with respect to the Si(440) and Si(220) lattice planes,
respectively. The wavelengths for the experiment with the large symmetric interferometer were
λ1 = 0.9464 (6) Å and λ2 = 1.8796 (3) Å, with corresponding Bragg angles θB1 = 29.504◦

and θB2 = 29.304◦. The fact that these measured /wavelengths were not precise harmonics of each
other was taken into account in the data analysis, but was not important in altering the requirement
that the geometry be the same for both wavelengths.

For each wavelength, the phase difference ��(λ, α) was obtained using the phase rotator
interferogram technique, and referred to the phase shift measured for the level interferometer,
i.e., at α = 0◦. The Sagnac phase differences, taken relative to α = 0◦, namely ��Sagnac(α) =
(mi/h̄)A0(1 – cos α), are very small for the range of tilt angles spanned in the experiments; they
were calculated and subtracted from the phase data. Therefore, for each tilt angle there are two
measured phase shifts, namely

��(λ1,α) = –Ag(λ1 sinα)Fg(λ1,α) – Ab(λ–11 sinα)Fb(λ1), (8.28)

and

��(λ2,α) = –Ag(λ2 sinα)Fg(λ2,α) – Ab(λ–12 sinα)Fb(λ2). (8.29)

Here

Fg(λ,α) = (1 + ε(λ,α)) tan θB(λ), (8.30)

and

Fb(λ) = sin2θB(λ). (8.31)

The dependence of the bending effect on the Bragg angle is inferred from the X-ray data of
Staudenmann et al. (1980). Since λ2/λ1 ≈ 2/1, the Bragg angles for the two wavelengths are
nearly equal as stated already, so that Fb(λ) is essentially a constant, independent of λ. In the
dynamical diffraction theory, the correction factor ε(λ, α) actually depends upon the variables
(a/di) qCOW sin α = (constant)λsin α. For small α, the leading term is 2a/3d for the symmetric
interferometer, and 4a/3(d1 + d2) for the skew symmetric interferometer. The parameters Ag

and Ab characterize the gravity- and the bending-induced phase shift, respectively. We therefore
have two equations (8.28 and 8.29) for these two unknown, for each tilt angle. If the theory
is correct Ag and Ab should be independent of α. Theory predicts that Ag = qCOW/λ tan θB =
2π(mimg/h2)A0/ tan θB, independent of λ.

Figure 8.9 shows a series of phase-rotator interferograms taken with the skew symmetric
interferometer for tilt angle near α = 0◦, for both wavelengths λ1 and λ2. The incident beam
was defined by a circular Cd aperture, 6 mm in diameter, placed immediately in front of the
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Figure 8.9 A series of phase rotator scans taken for various values of the tilt
angle α using wavelengths (a) 2.1440 Å and (b) 1.0780 Å in the skew symmetric
interferometer. The phase advances by almost the same amount with each step and
nearly twice as much for the 2.1440-Å data as for the 1.0780-Å data (Littrell
et al. 1997)

interferometer. Fitting each of the interferograms of this type taken for a wide range of tilt angles
gives a series of phase differences ��(λ, α) which are shown in Fig. 8.10 for both interferome-
ters. The values of Ag and Ab as a function of tilt angle are then obtained from these data. Using
Eqs. (8.28) and (8.29) the mean values of these parameters give the solid lines in Fig. 8.10.
For tilt angles |α| less than about 11◦, these parameters are nearly independent of α as theory
predicts. Clearly, for larger tilt angles, this independence of α is only approximately satisfied, indi-
cating the presence of other effects. Table 8.3 contains the numerical values for qCOW and qbend
for both interferometers. The restricted range data mean |α| = 11◦. Figure 8.11a shows interfer-
ograms obtained directly by tilting the skew symmetric interferometer, using 2.1440-Å neutrons.
A theoretical calculation of these interferograms, taking into account the detailed dynamical
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Data corrected for the sagnac effect and bending
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Figure 8.10 Graphical representation of the phase shift data
using (a) the skew symmetric interferometer and (b) the sym-
metric interferometer with the Sagnac effect phase shift (cal-
culated) subtracted. The solid lines are phase shifts calculated
from theory (Littrell et al. 1997)

diffraction effects discussed earlier (and in Chapter 11), is shown in Fig. 8.11b. It is evident
that the observed loss of contrast as a function of tilt angle is predicted reasonably well.

An historical summary of these gravitationally induced quantum interference experiments
is given in Table 8.3. In all cases, the experimentally determined value of the frequency of
oscillation of the gravity-induced interferogram, qCOW, is less than predicted theoretically using
g = 980.0 cm/s2, which is the proper value for Columbia, Missouri. The latest data of Littrell
et al. (1997) taken with the large symmetric interferometer are probably the most reliable, yet
they still yield a discrepancy with theory of order 1%. The importance of these experiments and
their connection to relativity and gravitation theory is discussed in many papers (e.g., Audretsch
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Figure 8.11 (a) Gravity-induced interferogram obtained with
the skew symmetric interferometer (Werner 1996). (b) Full
dynamical diffraction calculation of the gravity-induced inter-
ferogram for the skew symmetric interferometer (Littrell 1997)
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and Lammerzahl 1983, Fabri and Picasso 1986, Takahashi 1987, Brown 1996, Viola and Onofrio
1997, Camacho and Camacho-Galvin 2007). A proposal of Kaiser et al. (2007) suggests the use
of a floating interferometer crystal to improve the accuracy. Following the first demonstrations
of atom interferometers in the early 1990s (Carnal and Mlynek 1991; Keith et al. 1991; Riehle
et al. 1991; Kasevich and Chu 1991, 1992) interest in repeating or extending some of the funda-
mental physics experiments first carried out by neutron interferometry ensued. Substantial, and
perhaps unexpected, success has been achieved in gravitationally induced quantum interference
by the Stanford group (Peters et al. 1999, 2001). Their technique uses cesium atoms in an atomic
fountain of laser-cooled atoms. Their atom optics is based upon stimulated Raman transitions,
in which transitions are induced between stable hyperfine ground states (F-levels). Upon spatial
separation of the wave packets corresponding to each of the two superposed atomic states follow-
ing the absorption of one unit of momentum (h̄k) from an optical pulse, this phase difference is
affected along a vertical line by the Earth’s gravity. The wave packets are put back together by
an optical pulse of opposite momentum (–h̄k), and the interferometric phase shift is measured by
detecting the number of atoms in, say, the upper state. Accuracies in the measurement of g on the
order of 5 × 10–9 have been achieved.

Metrological applications of neutron interferometry were never an original driving motivation.
However, it is apparent that atom interferometry may become competitive with other techniques,
such as the Michelson interferometer with a falling corner cube, as a high precision gravimeter
(Cronin et al. 2010).

The results of a gravitationally induced quantum interference experiment using the very cold
neutrons (VCN) grating interferometer at the ILL have been reported by van der Zouw et al.
(2000). This interferometer is described in Sections 2.4 and 6.3. It uses VCNs of mean wavelength
λ ≈ 9.5 Å with a wavelength spread of�λ ≈ 3 Å. The incident flux is about 1000 n/cm2/s, yielding
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Figure 8.12 Gravitationally induced interferograms use the VCN grating
interferometer at the ILL. The solid line is the result of a least squares fit to
the data using the measured incident neutron wavelength spectrum and aver-
aging the interferogram over this spectrum. Reprinted from van der Zouw et al.
2000, copyright 2000, with permission from Elsevier.
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typical counting rates in the interfering beams of about 0.6 n/s when the total length of the device
is 102 cm. Even though the beam separation angle is only 5.4 mrad (corresponding to a grating
period of 2 μm), the interferometer is very sensitive to the Earth’s gravity because the �φCOW is
proportional to the wavelength (Eq. 8.4)

The intensity variation of the interfering beams as a function of tilt angle α is shown
in Fig. 8.12. The rapid washing out of the interference oscillation is due to the wavelength
spread I(α) =

〈
I0 [1 + c · cos��COW(α)]

〉
λ
. Using the measured incident spectrum and fitting the

observed interferogram yields the solid line in Fig. 8.12. This fitting procedure gives a mean fre-
quency of oscillations q0 = 4.012(36) × 1013 rad2s2m–4. This is to be compared to the theoretical
value q0 = 2πmimg/h2 = 4.0148 × 1013 rad2s2m–4. The accuracy and level of agreement with
theory is smaller (0.08%) than the perfect Si crystal interferometry measurement of Littrell et al.
(1997), but the correction factor due to the asymmetric wave length distribution is quite large.
Special note should be taken of the very small tilt angles (≈ 2.2 mrad) necessary to cause a 2π

change in the gravity-induced phase in this experiment.

8.2 Sagnac Effect

The French scientist M. G. Sagnac (1913) demonstrated that angular rotation can be detected by
means of an optical interferometer having an enclosed area, such as the Mach–Zehnder interfer-
ometer. This effect is now used routinely in navigation and is the basis of the ring-laser gyroscope.
For an excellent early review of the ideas, instrumentation, and literature of the Sagnac effect the
reader is referred to the paper by Post (1967). A review, including a description of the large-scale
Sagnac gyroscope in Christchurch, New Zealand, is given by Stedman (1997). In 1925Michelson,
Gale, and Pearson carried out a heroic experiment (for that time) in which they constructed an
interferometer in the form of a rectangle of size 2010 ft × 1113 ft, and were able to detect the
retardation of light due to the Earth’s rotation corresponding to about 1/4 of a fringe in agreement
to theory. In view of the inertial and coordinate transformation differences between light waves and
matter waves, it cannot be taken for granted that directly analogous quantum-mechanical phase
shifts should exist for matter waves, especially for neutrons. The first Sagnac effect experiment
with matter waves was carried out with Cooper pairs (Zimmerman and Mercereau 1965) in a
superconducting Josephson junction electron interferometer. It has also been observed with free
electrons (Hasselbach and Nicklaus 1993) and with atoms (Riehle et al. 1991; Lenef et al. 1997;
Gustavson et al. 1997, 2000; Hasselbach 2010).

8.2.1 Earth’s Rotation

Since the gravitationally induced interference experiments discussed in Section 8.1 were carried
out on the surface of our rotating Earth, which is thereby a non-inertial frame, the neutron’s
Hamiltonian involves a third term (–� · L), giving rise to the phase shift (2mi/h̄)� · A (Eq. 8.16).
The effect of this phase shift is quite small for the experiments described in Section 8.1 using
a horizontally directed beam. However, its dependence on the interferometer orientation with
respect to verticality and to the local north–south axis of the Earth is quite different.

In an experiment carried out by Werner et al. (1979), an incident beam directed vertically was
utilized, as shown in Fig. 8.13. The phase shift was measured, using the phase-rotator technique,
as a function of the interferometer orientation angle α about the vertical (plumb-line) axis. From
symmetry, it is clear that there is no α-dependent gravity-induced phase shift in this geometry.
However, the angle between the axis of the Earth’s rotation � and the interferometer’s normal
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Figure 8.13 (a) Schematic diagram of the vertical-beam geometry used in observing the
neutron Sagnac effect. (b) Phase shift due to the Earth’s rotation. The angle α specifies the
orientation of the interferometer normal area vector with respect to the local N–S axes of
the Earth (Werner et al. 1979)

area vector A is varied as the interferometer’s orientation α is changed. In terms of the colatitude
angle θL at the point on the Earth’s surface where the experiment was carried out (Columbia, MO,
USA), and the angle α, the Sagnac phase shift for this geometry is given by

��Sagnac(α) = (2mi/h̄)�A sin θL sinα. (8.32)

The experimental results are shown in Fig. 8.13 as well. The phase shift is zero when the normal
area vector A points west or east, but when it points north or south it is +95◦ and –95◦, respec-
tively. Small deviations can be explained by the action of the Coriolis force on the beam paths
inside the interferometer crystals (Littrell 2007). The results are in reasonable agreement with
Eq. (8.32), which predicts that it should be +92◦ and –92◦ for the north and south orientations,
respectively. It is interesting to note that the results of this experiment depend upon the inertial
mass of the neutron, mi, whereas the results of the gravity experiment depend upon the product
mimg. Consequently, one can interpret the combination of these two experiments as independent
measurements of the inertial and gravitational neutron masses obtained from quantum-mechanical
interference. The energy shift corresponding to the Sagnac phase shift is exceedingly small com-
pared to the neutron energy E ≈ 60 meV. It is h̄� ≈ 6×10–17 meV, corresponding to the Doppler
shift of the moving “mirrors” due to the Earth’s rotation. That is �E/E ≈ 10–18. This high energy
resolution manifests itself also in a correspondingly high angular sensitivity of about 10–6 arc sec,
which may be used for precise measurements of the neutron electron interaction, for the search of
additional gravitational terms at small distances or the precise measurement of the Earth Coriolis
force (Zawisky et al. 2010).

8.2.2 Turnable Rotation

The neutron interferometry analog of Sagnac’s original experiment was carried out by Atwood
et al. (1984). The experiment was done with a two-crystal LL interferometer mounted on a turn-
table. The phase shift was observed as the interferometer was oscillated back and forth through
the Bragg reflecting condition within a somewhat divergent beam. The results of this experi-
ment are shown in Fig. 8.14, in which the phase shift due to rotation is plotted as a function of
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Figure 8.14 Phase shift induced by turntable
rotation of a LL interferometer as a function
of angular velocity. Reprinted with permission
from Atwood et al. 1984, copyright 1984 by the
American Physical Society.

rotation speed. The neutron detection is done in a phase-sensitive manner, such that the neutrons
arriving at the detector leave the interferometer when the angular velocity � of the oscillating
interferometer is maximum (angular acceleration is zero). The linear dependence of the phase
shift on � is nicely observed. The arrow on the abscissa gives the angular rotation velocity of the
Earth (�Earth = 0.727 × 10–4 rad/s).

8.2.3 Effective Mass and the Coriolis Force

Neutrons propagating in a perfect single crystal under Bragg reflecting conditions exhibit many
interesting and unexpected phenomena. Some of these effects are discussed in Section 11.3.
The analogy between the band gaps in the ε versus k spectrum of electrons in metals at the
Brillouin zone boundary caused by Bragg reflection and the two-beam theory of dynamical dif-
fraction of neutrons is indeed very close. In particular, the curvature of the dispersion relation
ε(k) is large near the energy gaps at the Brillouin zone boundaries, and the effective mass m∗ is
inversely proportional to this curvature. If an external force is applied to the neutron, such as
may be implemented by the gravitational field of the Earth (F = mg) or a magnetic field gradient
(F = ∇(μ ·B)), the deflection of a neutron along its trajectory can be quite large. The acceleration
aμ is related to the force Fν by the effective mass tensor

aμ =
(

1
m∗

)
μν

Fν , (8.33)
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where

(
1
m∗

)
μν

=
1

h̄2
∂2ε(k)
∂kμ∂kν

. (8.34)

This is well known from solid state physics. The effective mass of neutrons,m∗, propagating under
diffraction conditions inside a perfect Si crystal is reduced by a factor of more than 105 from its
rest mass. Of course, this effective mass is its inertial mass. The deflection trajectories were studied
in detail by Werner (1980), and these calculations were recast in an effective mass formalism by
Zeilinger et al. (1986).

The experimental verifications of this small effective mass has been demonstrated in three
experiments: (a) deflection of a neutron by a gradient magnetic field (Finkelstein et al. 1986,
Zeilinger et al. 1986), (b) deflection by the gravitational field (Raum et al. 1995), and (c) deflec-
tion by the Coriolis force engendered within a slowly rotating crystal (Raum et al. 1995). The
experimental ideas are similar in these three cases. We discuss here the experiment (c) showing
the deflection of the neutron inside a perfect crystal due to the Coriolis force. A schematic diagram
of the experiment is shown in Fig. 8.15.

Assuming that neutrons are traveling close to the Bragg angle θB for a single set of lattice planes
characterized by the reciprocal lattice vector G (220 in the experiment), it is sufficient to use
the superposition of two plane wave states (the incident beam and the Bragg reflected beam) as
discussed in Chapter 11. Calculation of the probability current leads to an explicit formula for the
effective mass in terms of the periodic crystal potential V (G) for the neutron interacting with the
nuclei. The expression for the acceleration a in terms of the external force F is

a =
F
m

± (1 – �2)3/2
(

h̄2

4m2V (G)

)
(G · F) G, (8.35)

where the dimensionless parameter � = tan �/tan θB (Eq. 11.46) characterizes the slope of the
trajectory at any point inside the crystal relative to the Bragg planes, such that –θB ≤ � ≤ θB
(see Fig. 8.15). This � parameter is related to the deviation of the local wave vector from the
exact Bragg condition; that is, to the y-parameter (Eq. 11.28). The first term in Eq. (8.35) is the
acceleration of a free neutron. It can be neglected for |�| � 1, that is, near the exact Bragg condi-
tion, where � =0. The two possible signs for the acceleration correspond to the two independent
solutions of the Schrödinger equation. The (+) sign corresponds to, say, the α-branch of the dis-
persion relation, and the (–) sign corresponds to the β-branch (see Chapter 11). The two different
effective mass states are precisely analogous to electrons and holes in a semiconductor; that is, to
states above and below the energy gap at the Brillouin zone boundary.

From Eq. (8.35) we see that only the component of force F parallel to G (perpendicular to the
lattice planes) is relevant. The Coriolis force (2m v × ω) acting on a neutron inside of a crystal
rotating around an axis perpendicular to both G and v (i.e., normal to the plane of Fig. 8.15) is
given by

F = 2mvdω, (8.36)

where ω is the angular velocity and vd = v cos θB is the drift velocity of the neutrons inside the
crystal (Shull et al. 1980). The fact that the “effective,” or drift velocity has a cos θB factor in
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it comes about because of the zigzag character of the trajectories on the scale of the unit cell
(Chapter 11, Fig. 11.15). This results in an acceleration for small � given by

a = 2
m
m∗ ωvd, (8.37)
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directed along G as indicated by the arrows in Fig. 8.15, and with

m∗ = ±m
(

2V (G)

h̄2G2/2m

)
. (8.38)

The deflection caused by this force was observed using the two-crystal arrangement shown in
Fig. 8.15. The crystal consists of two sections with a small gap between them and a common base.
The first crystal acts as a collimator that selects only those neutrons which can pass the entrance
and exit slits. When the crystal is at rest, the Coriolis force is zero, and the selected neutrons are
those that pass through the first crystal section parallel to the (220) lattice planes. For a slowly
rotating crystal, F �= 0, and neutrons experience an effective acceleration in the first crystal such
that only those with a slight deviation δθ from the exact Bragg condition will make it through
the second slit, following the curved trajectories shown. The action of the Coriolis force on the
neutron within the second crystal results in a further bending of the trajectories. The separation
of the positive and negative effective mass states when leaving the second crystal section is readily
calculated to be

Z = 4
ωm
vdm∗ cos θB L2

(
1 +

S
L

)
, (8.39)

where L is the length of each crystal section and S is their separation. The factor (1 + S/L) is a
correction factor coming from the fact that the Coriolis force also acts on the neutron within the
gap between the two crystals. This expression is valid not only in the rest frame of the crystal but
also in the laboratory frame.

Figure 8.16 shows the neutron counts as a function of position along the exit face of the second
crystal section for three frequencies, including ω=0, where the peak separation Z = 0. A sum-
mary of the peak separations, Z, as a function of angular velocity ω is shown in Fig. 8.16b. The

(a) (b)

Figure 8.16 (a) Neutron counts as a function of the horizontal position across the exit beams
for different angular velocities. The lines shown result from a Lorentzian fit to the data. (b)
Distance of the peaks to the two effective mass states as a function of angular velocity. The
diagram shows all measured data points at oscillation frequencies of 13 and 20 Hz. The
deflection for counterclockwise rotation of the crystal is defined negative. The dashed line
has the slope predicted by theory and an offset resulting from a linear fit. Reprinted with
permission from Raum et al. 1995, copyright 1995 by the American Physical Society.
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expected linear dependence is observed with a slope (dZ/dω)o = 1.609 ± 0.014 m/rad/s. This
agrees nicely with the predicted slope (slope (dZ/dω)p = 1.614 ± 0.008 m/rad/s. Although the
maximum acceleration of any part of the crystal assembly was only 0.1 m/s2, it was necessary to
take care that there were no effects due to bending of the crystal itself due to this acceleration.

It is truly remarkable that such small angular rotation frequencies utilized in this experiment
can have such enormous amplification effects on the bending of neutron’s trajectories. It is fair to
say that the periodic potential of the crystal lattice creates a violation of the free-space principle of
equivalence by a factor of 105.

8.3 Acceleration-Induced Interference

In order to truly verify the principle of equivalence in the quantum limit for neutrons propagating
in free space, one should carry out two experiments—one in which there is the presence of a
gravitational field g with no acceleration a, and then one in which the effects of gravity are zero but
the entire experimental setup is in a state of uniform acceleration. Bonse and Wroblewski (1983,
1984) carried out this second experiment at the ILL in Grenoble (Section 2.2.1). A schematic
diagram of their experimental setup is shown in Fig. 8.17.

The LLL interferometer was fastened to a specially designed horizontal traverse. This traverse
utilized leaf-spring guidance for smooth and practically frictionless movement under sinusoidal,
forced-oscillation conditions parallel to the three slabs of the LLL interferometer. The sinusoidal
oscillation was facilitated with a pair of standard loudspeaker magnets. The leaf-spring mechanism
was designed in a way to minimize any deleterious rotational motion which would lead to phase
shifts from the Sagnac effect discussed earlier in Section 8.2, and the large effects of the Coriolis
force within the crystal blades as described in Section 8.2.3. This requirement on the mechanical
structure of the traverse was severe indeed.

The intensity of the outgoing 0-beam was monitored stroboscopically in a manner to record
neutrons leaving the interferometer at the inversion points of the oscillation, i.e., when the
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induced phase shift (left). The observed phase shift as a function of the
acceleration (right). Reprinted with permission from Bonse and Wroblewski
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momentary acceleration a± corresponds to ±x0ω2, where x0 is the amplitude and ω is the fre-
quency of the oscillation. A complete array of interference fringes for both a+ and a– was obtained
by repeated measurements at various settings of a stationary aluminum phase shifter, in a manner
analogous to the measurement of the gravity-induced phases described in Section 8.1. The ampli-
tudes of oscillation were in the range of 10 to 45 μm, and frequencies ranging from 3 to 19 Hz
were used. The neutron wavelength was 1.831 Å.

A summary of the results is given in Fig. 8.17 where the phase shift �� is plotted as a function
of the mean acceleration, a = 1/2 (a+–a–). The Schrödinger equation for neutrons in the non-inertial
(accelerating) frame of the interferometer is[

–
h̄2

2mi
∇2 + V (r) +mi a · r

]
ψ(r) = Eψ(r), (8.40)

which can be obtained by transforming the wave equation according to the laws of the macro-
scopic, classical principle of equivalence. The Schrödinger equation in the gravitational field g of
the Earth, but under conditions of zero acceleration, is[

–
h̄2

2mi
∇2 + V (r) –mg g · r

]
ψ(r) = Eψ(r). (8.41)

In these equations V (r) is the crystal potential responsible for the diffraction of neutrons in each
of the crystal plates of the Si interferometer. Here mi and mg are again the inertial and gravitational
masses, respectively. These two Schrödinger equations are equivalent only when a = –g, and the
principle of equivalence mi = mg in the quantum limit is strictly correct. The transformation of
the wave equation into an accelerated frame was placed on firmer theoretical grounds by Klink
(1997).

Effects due to dynamical diffraction, analogous to the gravity experiments, are also important
in these acceleration-induced experiments. The difference between the solid line and the dashed
line in Fig. 8.17b is the result of these dynamical diffraction effects. The final agreement of the
data with theory, after all known corrections are made, is at the 4% level.

8.4 Connections with Photons

Here we make a few comments on the Sagnac effect for light and also on the intriguing possibil-
ity of observing the gravity-induced phase shift for light. Dresden and Yang (1979) derived the
Sagnac phase shift formula in a way that makes it clear that it applies equally well to Schrödinger
matter waves and to Maxwell electromagnetic waves. They write the Sagnac phase shift as

��Sagnac = 2
k
v0

� · A, (8.42)

where k is the wave vector of the radiation and v0 is the group velocity. Since for thermal neutrons
mv0 = h̄k, one sees that k/v0 = m/h̄, and we get the formula we derived by integrating the canon-
ical momentum in a rotating frame around the closed loop of the interferometer (Eq. 8.16). For
light (photons) v0 = c. Thus, using the same Si crystal interferometer, but with X-ray photons
of say λ = 2 Å, we have ��Sagnac (X – rays) = (v/c)��Sagnac (neutrons) ≈ 1.5 × 10–5rad for the
interferometer (area A = 15.6 cm2) used for the original neutron Sagnac experiment. Even for
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an interferometer 10 times larger in linear dimension (100 times larger in area), which appears
feasible today, the Sagnac phase shift for X-rays would only be 1.5 mrad. This would be an exper-
imental challenge to observe. However, if one could devise a method for the X-ray to go around a
ring many times, as in a ring-laser gyroscope, the conclusion would be very different. The perfect
crystal resonant cavities as described by Rostomyan et al. (1989) provide an example of a possible
scheme.

If one replaces the neutron mass by its Compton frequency according mc2 = h̄ω, and uses the
de Broglie relation h̄k = mv, the COW formula (Eq. 8.15) can be written in the form

��COW = –
g0Aω
vc2

sinα. (8.43)

It is interesting to ask what the result of such a COW-type experiment would be with photons.
It was supposed earlier that the gravitational effect on the X-rays used in the measurement of the
bending effect was negligible. The Earth’s gravitational field can be viewed as a region of space
with an index of refraction for photons, namely (see also Section 8.5.5)

n(r) =
k
k∞

= 1 +
2GM
rc2

∼= 1 +
2GM
R0c2

–
2g0z
c2

. (8.44)

Here k∞ is the photon wave vector far from the Earth (see Cheng 2010). The Schwarzschild
radius RS = 2GM/c2 = 8.8 mm for the Earth. For z = H, it is now straight-forward to work out
the phase shift for a COW-type experiment with photons. The result is

��COW(photons) = –
2g0Aω
c3

sinα. (8.45)

One notices that simply replacing the velocity v in Eq. (8.43) by c, the resulting phase shift is 1/2
the correct general relativistic formula (8.45). This result is reminiscent of the factor of 2 in the
correct general relativistic formula for the bending of light by the Sun.

This result was obtained earlier by Cohen and Mashhoon (1993) by deriving the index of
refraction n in the exterior field of a spherically symmetric distribution of matter, in which n is
only a function of the radial coordinate of the exterior Schwarzschild geometry which is asymp-
totically flat. Thus, for X-ray photons of the same wavelength as the neutrons, say 2 Å, we have
��grav (X-rays) = 2(v0/c)

2��grav (neutrons). We have (v0/c)
2 ≈ 0.44 × 10–10, so that observ-

ing the COW effect for X-ray photons would be quite challenging indeed, but not totally out
of the question. Suppose we used 0.1-Å X-rays and had an interferometer 10 × 10 m2, then
��grav (X-rays) = 0.6 mrad. Clearly, such an experiment would be a tour de force, but it would
be a wonderful, laboratory-based, general relativity experiment. A laboratory-based experiment
using an optical fiber interferometer was proposed by Tanaka (1983). The estimated phase shift is
about 1 μrad. The paper by Zych et al. (2012) provides a very useful discussion on the predictions
of general relativity on the effect of gravity on the flow of time in various experiments, including
the Pound–Rebka (1960) and Haferle–Keating (1972) experiments. They give a detailed analysis
of a possible COW experiment with photons and a clear derivation of the phase shift starting with
a Schwarzschild metric (see also Section 8.5.6).

Ahluwalia and Burgard (1996) have investigated the effects of gravity-induced quantum phase
shifts in neutrino oscillations. In the neighborhood of a 1.4 solar-mass neutron star they predict
that the gravity-induced phases are roughly 20% of their kinematical counterparts.
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8.5 Neutron Fizeau Effects

The effect of motion of transparent matter on the phase of transmitted light waves was the subject
of the historic Fizeau 1851 and 1859 experiments. The observation of the “dragging” effect of the
propagating light waves by the moving medium was initially considered to be a triumph of Fizeau’s
ideas of the dragging of the ether by the moving matter. However, Einstein (1905) showed that
the observed effects follow directly from the special theory of relativity. Subsequently, a number
of more precise experiments were carried out by Zeeman (1914, 1915, 1927), and in more detail
by Macek et al. (1964).

Analogous experiments have been carried out with neutrons and have led to some interesting
conclusions. Ordinarily, the phase shift that arises from the motion of a medium introduced into
one leg of a neutron interferometer turns out to depend only on the motion of the boundaries of the
medium and not on the motion of the bulk. This somewhat surprising conclusion, though not at
all obvious, depends upon the specific form of the dispersion relation, ω(k), for neutrons in most
materials. If a slab of material of thickness L is moving with velocityw, as shown in Fig. 8.18, there
will, in general, be a shift of both the wave vector k and the frequency ω of the neutron de Broglie
waves inside the medium. This leads to an accumulated phase shift when the neutron traverses
the moving medium, over and above the phase shift that would occur in the same medium at rest.
To first order in the optical potential, V0, of the medium, this motion-induced phase shift is given
by (see Eq. 8.58)

��Fizeau = –
αβ kxL
2 (1 – α)

, (8.46)

where α is the ratio of the velocity of the boundary (wx = w · x̂) to the x-component of the neutron
velocity and β is the ratio of the optical potential to the x-part of the incident neutron kinetic
energy Ex0 = h̄2k2x /2m, namely
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Figure 8.18 Phase plate of thickness L moving with velocity w
in one beam path of an interferometer. The x–y coordinate system
(frame F) is at rest, but x= 0 coincides with the plate’s entrant surface
at time t= 0
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α≡wx/vx = mwx/h̄kx and ß = V0/Ex0. (8.47)

We will derive this expression for the motion-induced phase shift in Section 8.5.2, following the
arguments of Horne et al. (1983). We begin our discussion with a description of the experiment of
Klein et al. (1981a) in which this effect was first observed using a rotating square quartz rod within
a wave-front division neutron interferometer. We note that if the motion of the medium is parallel
to its boundaries, wx = 0, Eq. (8.46) predicts that there should be no motion-induced phase shift.
An experiment verifying this “null” Fizeau effect was carried out by Arif et al. (1985) using a
flat rotating quartz disk within a perfect silicon crystal LLL interferometer. This experiment is
described in Section 8.5.3. For neutrons having an energy near a nuclear resonance, the optical
potential becomes dependent upon the neutron wave vector, such that V0 = V0 (k), and a motion-
induced phase shift is expected, even if wx = 0. Such an experiment has been carried out by
Arif et al. (1989) using a rotating aluminum disk with Sm metal foils attached to its surface, as
described in Section 8.5.5. Finally, a very difficult experiment, carried out by Bonse and Rumpf
(1986), is described in Section 8.5.4. They were successful in observing the motion-induced phase
shift resulting from an aluminum propeller rotating about an axis perpendicular to the plane of a
square LLL perfect silicon crystal interferometer.

8.5.1 Rotating Quartz Rod Experiment

The experiment of Klein et al. (1981a) was carried out at the optical bench at the ILL, as shown
in Fig. 1.2, where the object was replaced by a rotating quartz rod (Fig. 8.19). The parameters
of the setup were as follows: The incoming neutrons were monochromated by prism refraction
and entered the apparatus through a 20-μm-wide entrance slit. The central diffraction peak of
the slit coherently illuminated a double-slit assembly located 5 m downstream. The double slit
assembly consisted of a single slit of 146 μm width, in the center of which a boron wire of
102 μm diameter was mounted, to form two slits, each of 22 μm nominal width. Downstream
5 m, the diffracted intensity profile was scanned with a 20-μm-wide exit slit, and counted with a

Figure 8.19 (left) Double-slit interference pattern when the quartz rod was at rest (full
lines) and when it was rotated with a frequency of 100 Hz (dashed lines). (right) Shift of
the interference pattern as a function of the rotation frequency. Reprinted with permission
from Klein et al. 1981a, copyright 1981 by the American Physical Society.
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BF3 detector. The neutron mean wavelength was 18.45 Å with a spread of ±1.40 Å as measured
by time-of-flight techniques.

A quartz rod with a square cross-section was placed directly behind the double slit and rotated
about a vertical axis. As the Fizeau phase shift, Eq. (8.46), depends only on the velocity differ-
ence of the phase-shifting material in the two beams of the interferometer, the centering of the
rod relative to the double-slit assembly is not critical. Therefore, the velocity components of the
material traversed by the two beams can be taken to be wx = ±�y, as shown in Fig. 8.19. Here �
is the angular frequency of rotation of the quartz rod and 2y is the slit separation. Thus, there is a
continuous lateral phase gradient introduced by the rotating quartz rod, which manifests itself as
an angular deflection, δθ of the whole interference pattern given by

δθ = k–10 d (��)/dy = (LV0/2E0v0)�, (8.48)

where E0 = h̄2k20
/
2m = mv20

/
2 is the kinetic energy of the incident neutrons and L is the thickness

of the quartz rod. Hence, the rotating rod acts like a refracting wedge. The corners of the rod
were covered with cadmium foil to define the neutron paths. The rod was approximately 10 mm
square made of “optosil” quality quartz and characterized by a neutron index of refraction n =
1 – V0

/
2E0 = 1 – 1.88 × 10–4 for λ = 18.45 Å neutrons. Thus, Eq. (8.48) predicts an expected

fringe displacement of 28.05μm (at 5 m) at 100 Hz.
Figure 8.19 also gives the experimental result of the two-slit diffraction pattern as measured

with the quartz rod at rest together with one obtained with a rotation frequency of 100 Hz. The
displacement of the fringe structure due to the rotation is clearly observed. The solid line is a
straight line fit to the data, giving a slope of 27.8 ± 2.5 mm/100 Hz, which compares nicely with
the theoretically expected value. It is the first experimental verification that the neutron Fizeau
effect comes from the motion of the boundary surfaces of moving matter.

An experiment inducing a time-dependent Fizeau effect is proposed in Section 10.16.

8.5.2 Theoretical Origin of the Neutron Fizeau Phase Shift

Motivated by the motion-induced phase shift experiment discussed above, Horne et al. (1983) car-
ried out a detailed theoretical analysis of neutron de Broglie waves traversing uniformly moving
media. We follow their treatment here.

8.5.2.1 Relativity considerations
Consider again the arrangement shown in Fig. 8.18 where a parallel-faced slab of thickness L and
index of refraction n(k) is inserted into one beam of an interferometer. If the slab is at rest, the
relative phase of the two interfering beams upon recombination is

φ(k) = (Kx – kx)L, (8.49)

where Kx = n(k) kx is the x-component of the wave vector K inside the slab. Since the y-
component of the internal wave vector K must be equal to the y-component of the external wave
vector k due to the phase matching at the entrant boundary, this expression can be rewritten as

φ(k) =
{√

n2(k)k2 – k2y – kx
}
L (8.50)

Now suppose that the slab is set in motion with a laboratory velocity w as shown in Fig. 8.18.
Then, in the rest frame of the slab, the relative phase will be φ(k′), where k′ is the wave vector
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in this (moving) frame, and φ is the function given in Eq. (8.50). Since for uniform motion, the
relative phase is a relativistic invariant quantity, φ(k′) must be the relative phase in all inertial
frames, including the laboratory frame. Therefore, the phase shift induced by the motion of the
slab is

�φ =φ(k′) – φ(k). (8.51)

This is the Fizeau effect phase shift. An evaluation of �φ depends first upon the transformation
k′(k), and secondly upon the specific form of n(k).

From Einstein’s special relativity, the transformation of the momentum–energy four-vector for
a particle of rest mass m0 and momentum p = h̄k in the laboratory frame gives the wave vector in
the frame of the moving slab

k′ =k –

⎧⎨
⎩(1 – γ )

k ·w
w

+ γ
w
c

√
k +

m2
0c2

h̄2

⎫⎬
⎭ w
w
, (8.52)

where γ ≡
√
1 – w2

/
c2. With this transformation rule, Eq. (8.51) applies equally well to photons

(wherem0 = 0) and to neutrons. Of course, the specific form of the index of refraction n(k)
depends upon the type of radiation and the material of the moving slab.

For thermal or cold neutrons, and for low slab velocities (w/c << 1), Eq. (8.52) reduces to the
Galilean transformation, namely

k′ =k – q (8.53)

where the wave vector q = mw/h̄. The appropriate index of refraction for the slab at rest (obtained
from conservation of energy) is

n(k) =
Kx

kx
=

√
1 –

2mV0 (|k|)
h̄2k2

, (8.54)

where V0 (|k|) is the neutron optical potential of the medium for neutrons of kinetic energy E =
h̄2k2

/
2m. It is only the x-part of the momentum and energy that plays a role here. Using the

expressions Eqs. (8.53) and (8.54) in Eqs. (8.50) and (8.51) we get the motion-induced phase
shift for slow neutrons:

�φ =
{√

(1 – α)2 – β ′ + α –
√
1 – β

}
kxL, (8.55)

where α and β are defined by Eq. (8.47), such that β ′ ≡ V0
(∣∣k′∣∣)/(h̄2k2x/2m), which is the ratio

of the optical potential appropriate to the frame of the moving slab to the x-part of the neutron
kinetic energy Ex = mv2x

/
2, in the laboratory frame, and β = V0 (|k|)/Ex.

In the thermal or sub-thermal energy regions, the neutron optical potential for most materials
is independent of k, so that β = β ′. Assuming this to be the case, the Fizeau phase shift �φ to first
order in β is easily obtained from (Eq. 8.57). The result is

�φ = –
αβkxL
2 (1 – α)

= –
wx
vx

(
V0

Ex

)
kL

2 (1 – wx/vx)
. (8.56)
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For very cold neutrons and/or for glancing angles of incidence, the denominator in the expres-
sion can approach zero, making the phase shift extremely sensitive to motion. For the rotating
quartz rod experiment described in Section 8.5.1, this was not the case. The surface velocity,
wx = 3.9 × 10–2m/s at 100 Hz, and the neutron velocity was vx = 214 m/s, such that α = 1.8×10–4.
Likewise, the value of β was small, namely 3.8 × 10–4(V0 = 9.0 × 10–8eV, Ex = 2.4 × 10–4 eV).

8.5.2.2 Neutron Wave Functions in the Laboratory Frame
Since the Schrödinger equation is Galilean invariant, the neutron wave function in the labora-
tory (interferometer) frame, say F , should be related to the neutron wave function in the frame
of the uniformly moving slab, say F ′, by a Galilean (ω,k) 4-vector transformation. We now
explicitly show that this is, in fact, the case. From the discussion in the previous section, this
is fundamentally a one-dimensional problem, involving only the x-component �x of the veloc-
ity of the moving slab. Because of phase matching across the entrant and exit boundaries, the
y-components of the external an internal wave vector are equal in both frames, i.e., ky = Ky

and k′
y = K ′

y. Thus, in the following analysis, we will omit the y-dependence of the wave func-
tion for simplicity. The y-component of the wave vector does matter in obtaining a value for
the optical potential for media in which the incident neutron energy is near a nuclear resonance.
Of course, the relevant neutron energy is its incident kinetic energy in the rest frame of the moving

slab, i.e., εix = h̄2k′2
/
2m = h̄2(k – q)2

/
2m, such that V0 = V0(ε′). The experiment discussed in

Section 8.5.5, involving a rotating disk with Sm metal foils, requires a knowledge of V0(ε′) near
the resonance at ε′ = 97.3 meV in 149Sm.

The calculation of the neutron wave function traversing and being partially reflected by
the moving slab as shown in Fig. 8.18 is therefore identical to the quantum-mechanical one-
dimensional problem of a moving square barrier shown in Fig. 8.20, having three regions. The
solution of the time-dependent Schrödinger equation appropriate to the three regions, labeled 1,
2, and 3, are

�1 (x, t) =Aeikixx–iωixt + Be–ikrxx–iωrxt; x ≤ wxt, (8.57a)

�2 (x, t) =CeiKixx–i�ixt +De–iKrxx–i�rxt; wxt ≤ x ≤ wxt + L, (8.57b)

�3 (x, t) =Feiktxx–iωtxt; wxt + L ≤ x. (8.57c)

Across the entrant boundary at x = wxt, the continuity of the wave function �1 = �2 gives for the
amplitudes

A + B = C +D, (8.58)

provided that the phases match for all times t, which in turn requires that

kixwx – ωix = – krxwx – ωrx =Kixwx –�ix =Krxwx –�rx. (8.59)

In order for the incident and reflected waves in region 1 to satisfy the Schrödinger equation (ih̄�̇ =
H�), we must have

Eix = h̄ωix = h̄2k2ix
/
2m

and

Erx = h̄ωrx = h̄2k2rx
/
2m, (8.60)
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Figure 8.20 One-dimensional moving square
barrier as viewed in the laboratory frame F. The
frame F’ is attached to the moving barrier having a
laboratory velocity Wx in the positive x-direction.
The wave incident on the barrier has a laboratory
wave vector kix. Part of this wave is reflected by the
barrier, and Doppler-shifted down to a wave vector
krx. There is a transmitted wave having a wave
vector ktx equal to kix. Within the barrier there
are waves in the incident and reflected directions,
having wave vectors Kix and Krx, respectively

for the energies, εix and εrx, of the incident and reflected waves, respectively. Using our definition
of the wave vector qx ≡ mwx/h̄ we see that the first part of Eq. (8.59) along with Eq. (8.60)
requires that

kixqix –
1
2
k2ix = – krxqrx –

1
2
k2rx (8.61)

Thus we find that the shift of the wave vector (kix – krx) and the energy (Eix – Erx) due to reflection
from the moving entrant boundary are

kix – krx =2qx (8.62)

and

Eix – Erx = 4
h̄2

2m

(
kixqx – q2x

)
. (8.63)

The last of Eq. (8.59) similarly requires that

h̄2

2m
Kixqix – Eix = –

h̄2

2m
Krxqrx – Erx, (8.64)
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where, the energies of the internal incident and reflected waves are

Eix ≡ h̄�ix =
h̄2K2

ix

2m
+ V0

(|ki – q|) (8.65a)

and

Erx ≡ h̄�rx =
h̄2K2

rx

2m
+ V0

(|ki – q|), (8.65b)

respectively. Thus, Eq. (8.64) requires that the difference of the internal wave vectors and energies
due to motion are

Kix –Krx =2qx (8.66)

and

Eix – Erx =4
h̄2

2m

(
Kixqx – q2x

)
(8.67)

These equations are analogous to those for the external wave vectors and energies given by Eqs.
(8.62) and (8.63). It should be noted that the optical potential is dependent upon the total incident

energy, E ′
i = E ′

ix + E
′
ry =

h̄2k2i
2m in the rest frame of the moving slab (barrier), or equivalently upon

the magnitude of k′
i = ki – q, as already pointed out.

In order to relate the internal wave vector K ix to the external incident wave vector kix, we need
to have the motion-dependent index of refraction n = Kix/kix. From Eq. (8.59) again, we have

h̄2

2m
kixqix – h̄ωix =

h̄2

2m
Kixqix – h̄�ix. (8.68)

Using Eqs. (8.60) and (8.65a) for the energies εix = h̄ωix and Eix = h̄�ix, we have an equation that
relates K ix to kix, namely

h̄2

2m
kixqx –

h̄2

2m
k2ix =

h̄2

2m
Kixqx –

h̄2

2m
K2

ix – V0
(|ki – q|). (8.69)

In terms of α and β this equation is easily solved for the ratio n = Kix/kix. The result is the
motion-independent index of refraction

n [α,β(q)] = α +
√
(1 – α)2 – β(q). (8.70)

Thus, the motion-dependent part of the phase shift of the incident wave traversing the moving
barrier is

�φ = φ(q) – φ(0) =
{
n [α,β(q)] – n [0,β(0)]

}
kiL (8.71)

which is identical to Eq. (8.55), where β ′ = β(q) and β = β(0). From Eq. (8.68) we note that the
energy difference between the incident external wave, εix, and the incident internal wave, Eix, is

εi – Ei = h̄ (ωix –�ix) =
h̄2

2m
qxkix

(
1 – n (α,β)

)
. (8.72)
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Therefore, the fractional energy shift due to motion is

εi – Ei

εi
=
ωix –�ix

ωix
= 2α

(
1 – α –

√
(1 – α)2 – β(q)

)
, (8.73)

which equals αβ(q) for small β(q).
All of the above results, namely the expressions for the wave vectors shifts, the energy shifts,

and the motion-dependent index of refraction, have been obtained from the single condition of
continuity of the wave function in region 1 with the wave function in region 2.We have not yet used
the condition of continuity of the derivative of � across the boundary. At x = wxt, the continuity
of neutron current would seem to require (∂�1/∂x = ∂�2/∂x), which gives

kixA – (kix – 2qx)B = Kix C – (Kix – 2qx)D, (8.74)

where we have used Eqs. (8.62) and (8.66).
At the exit boundary, for which x = wxt + L, we require that �2 = �3, that is,

Cei(Kixwixt+KixL–�ixt) +Dei(–Krxwrxt–KrxL–�rxt) = Fei(ktxwxt+ktxL–ωtxt). (8.75)

For this to be true for all values of time, we must have

Kixwx –�ix = –Krxwx –�rx = ktxwx – ωtx. (8.76)

Together with Eq. (8.59), and the fact that the transmitted wave must satisfy the Schrödinger
equation in free space, we find that

ktx = kix and εtx = εix. (8.77)

That is, the momentum and energy of the transmitted wave are the same as those of the incident
wave. Using Eq. (8.66) we see that the continuity condition (Eq. 8.76) across the exit boundary
requires that

CeiKixL +Dei2qxLe–iKixL = FeikixL . (8.78)

Continuity of the neutron current across the exit boundary requires continuity of the derivative,
∂�2/∂x = ∂�3/∂x, at x = wxt + L. Using Kix – Krx = 2qx again, we see that our final continuity
condition can be written as

KixCeiKixL – (Kix – 2qx)Dei2qxLe–iKixL = kixFeikixL . (8.79)

We now have four equations (Eqs. 8.58, 8.74, 8.78, 8.79) for four unknown amplitude ratios B/A,
C/A, D/A, and F /A. Solving these equations is a bit tedious, but straightforward. The solution for
the transmission coefficient F /A and reflection coefficient B/A are

(
F
A

)
= e–iϕ(1–α)

1

cos θ – i
{ [

(n – α)2 + (1 – α)2
]/[

2(1 – α)(n – α)
]}
sin θ

(8.80)
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and

(
B
A

)
= –i

{ [
(1 – α)2 – (n – α)2

]/[
2(1 – α)(n – α)

]}
sin θ

cos θ – i
{ [

(n – α)2 + (1 – α)2
]/[

2(1 – α)(n – α)
]}
sin θ

, (8.81)

where n = n [α,β(q)] is the motion-dependent index of refraction given by Eq. (8.70), ϕ = kixL
and θ = (n – α)ϕ.

The above expressions for the transmission and reflection coefficients appear to be fairly com-
plicated. The reason for this is that they include all multiple reflection paths for the incident wave
to give rise to a transmitted or reflected wave; that is, they include all Feynman paths. For example,
the transmitted wave arises from the sum of a wave transmitted through the entrant surface then
transmitted through the exit surface, plus a wave transmitted through the entrant surface, reflected
back to the entrant surface, reflected back to the exit surface where it is transmitted, and so on.
However, this is the same physics of waves transmitted through a static barrier, that is, the above
problem when viewed in the moving frame F ′ in which the slab is at rest. Furthermore, since |F |2
and |B|2 are the neutron densities, which are invariant under Galilean transformation the above
results must be the same as those obtained in the frame F . To see that this is in fact the case, we
note that the external and internal wave vectors in F’ are related to those in F by

k′
ix = kix – q = (1 – α)kix (8.82a)

and

K ′
ix = Kix – q = (n – α)kix. (8.82b)

Thus, the transmission coefficient of Eq. (8.80) can be written in terms of the wave vectors in the
moving frame F ′ as

(
F
A

)
= e–ik

′
ixL

1

cos
(
K ·

ixL
)
– i
[
(K ·2

ix + k·2
ix)
/
2k·

ixK
·
ix

]
sin(K ·

ixL)
. (8.83)

And the reflection coefficient of Eq. (8.81) is

(
B
A

)
= –i

[
(k·2

ix –K
·2
ix )
/
2k·

ixK
·
ix

]
sin(K ·

ixL)

cos(K ·
ixL) – i

[
(K ·2

ix + k·
ixK

·
ix)
/
2k·

ixK
·
ix

]
sin(K ·

ixL)
. (8.84)

These are the standard textbook results. Since the velocity of the neutrons in the incident, reflected,
and transmitted beams are all equal in this F ′ frame (i.e., v′

x = h̄k′
ix

/
m = h̄k′

rx

/
m = h̄k′

tx

/
m), the

transmission T ′ and the reflectivity R′ sum to unity. That is

T ′ + R′ =
∣∣∣∣FA
∣∣∣∣
2

+
∣∣∣∣BA
∣∣∣∣
2

= 1, (8.85)

as can be easily verified using the above expressions.
Since energy is conserved in this frame (the Hamiltonian is time independent) we know that

ε′
ix =

h̄2k′
ix
2

2m
=
h̄2K ′

ix
2

2m
+ V0

(|ki|
)
, (8.86)
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and the transmission probability T ′ can then be written in the well-known form (e.g., Born and
Wolf 1975)

T ′ (ε′
ix

)
=

1

1 +
[
V 2

0

/
4ε·

ix(ε
·
ix – V0)

]
sin
(√(

2m
/
h̄2
) (
ε·
ix – V0

)
L2

) . (8.87)

Clearly when α and β are small, B/A ≈ 0, and

(
F
A

)
≈ e–iϕ(1–α)eiθ = ei(n–1)kixL = e–iφ(q), (8.88)

so that the phase shift of the incident wave traversing the moving slab is

φ(q) =
[
α +

√
(1 – α)2 – β(q)

]
kixL, (8.89)

in agreement with Eq. (8.71). However, when α and β are not small the motion-induced phase
shift is the phase of (F /A) given by Eq. (8.83). This regime has not yet been investigated
experimentally.

8.5.2.3 Neutron Currents in the Laboratory Frame
It may appear to the casual reader that the complicated analysis of the previous section could
have been avoided since the results for the transmissivity T ′ and the reflectivity R′ in the frame F ′

attached to the moving slab are fairly easily obtained from standard quantummechanics textbooks.
It would appear that the transmissivity and reflectivity, T and R, in the laboratory frame, F , would
simply be given by

T =
(
ktx
kix

) ∣∣∣∣FA
∣∣∣∣
2

=

∣∣∣∣FA
∣∣∣∣
2

(8.90)

and

R =
(
krx
kix

) ∣∣∣∣BA
∣∣∣∣
2

. (8.91)

Thus, T = T ′, which is correct; but R + T cannot then be equal to unity, since krx/kix =(
k′
ix – q

)/
(k′

ix + q) �= 1. What is the problem here? The answer is that there is an interference
current between the incident wave and the reflected wave in both region 1 and region 2 when
viewed in the laboratory frame, F . We demonstrate this for region 1. The current density in region
1 is given by

J1x (x, t) =
h̄

2mi

[
�∗

1

∂�1

∂x
–�1

∂�∗
1

∂x

]
, (8.92)

where �1 = �1(x, t) is given by Eq. (8.57a). Working this out, one gets

J1x (x, t) =
h̄
m

[
kix|A|2 – krx|B|2] + h̄

m
qx
[
AB∗eiχ(x,t) + A∗Be–iχ(x,t)

]
, (8.93)
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where the phase angle

χ(x, t) = (kix + krx) x – (ωix – ωrx) t. (8.94)

Thus, the current density in region 1 is not simply the incident current density, say JA, minus the
reflected current density, say JB, but it contains an interference current density JAB, such that

J1x = JA + JB + JAB. (8.95)

In the frame F ′, k′
ix = k′

rx (q′
x = 0), the current density J ′

AB vanishes. At the entrant boundary,
x = wxt, the phase angle χ = 0, as can be seen from Eqs. (8.62) and (8.66). Thus the current
which crosses the boundary involves the phase of B = |B| eib relative to the phase of A = |A| eia.
This current density then must be equal to the current density in region 3, namely,

J3x =
h̄ki
m

|F |2, (8.96)

where we have used the fact that kt = ki . Thus,

kix|A|2 – krx|B|2 + 2qx |AB| cos(b – a) = kix|F |2. (8.97)

But since krx = kix – 2qx and |A|2 = |B|2 + |F |2, we have the requirement that

cos(b – a) = –
∣∣∣∣BA
∣∣∣∣ (8.98)

Thus, the interference current term in Eq. (8.97) is –2qx|B|2, precisely accounting for the discrep-
ancy of +2qx|B|2 in the reflected current density JB. We thus see that the result of Eqs. (8.83) and
(8.84) for F /A and B/A are correct aside from a phase factor. The boundary condition of continu-
ity of the derivatives of � at the moving entrant and exit surfaces is consistent with the continuity
of the current density, and is correct only up to a constant phase factor dependent on the velocity
wx = h̄qx/m.

8.5.3 Null Fizeau Effect Experiment

Arif et al. (1985) carried out an experiment designed to verify the prediction that the phase shift
of a neutron wave traversing a slab of matter moving with a velocity w = wyŷ that is parallel to its
boundaries is independent ofwy. The experimental setup is shown in Fig. 8.21. A 5-cm-radius disk
of 1-cm-thick fused quartz was rotated at various speeds within an LLL interferometer. The disk
intercepted both coherent beams. The rotor, supported by gyro-compass bearings, was enclosed
in a partially evacuated box and was driven by integrally mounted turbines supplied with jets of
air from the ambient, thermally controlled enclosure. In order to minimize systematic effects, the
fused quartz disk was sawn off as shown in the diagram. In this manner, sectors of quartz alter-
nated with empty sectors, and the neutron counts were synchronously gated into separate counting
channels, with suitable intervals within the LLL interferometer. In this way, two interleaving sets of
data points were obtained when an aluminum phase plate was scanned in angular position inside
the interferometer, thereby obtaining two neutron interferograms simultaneously for each rotation
speed. Typical interferograms taken at a rotation frequency of 25 Hz are shown in Fig. 8.21B.
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Figure 8.21 Experimental setup (a), typical results (b), and motion-induced phase shift
(c) for the null Fizeau effect experiment (Arif et al. 1985)

The motion-induced phase shift for small α and β is given by Eqs. (8.70) and (8.71),

�φ = φ(w) – φ(0) = –
1
2

(
β(q) – β(0)

)
kixL, (8.99)

where

β(q) = V0

(
h̄2

2m
(k – q)2

)/(
h̄2kix

2

2m

)
. (8.100)

In this case q =
(
mwy

/
h̄
)
ŷ, so

β(q) ≈ V0
(
εi – h̄kiywy

)/
εix, (8.101)

where we have neglected the quadratic term h̄2q2
/
2m in the argument of V 0. The contribution

of the term h̄kiywy to the energy argument is equal in both beams I and II in the interferometer,
but of opposite signs. Furthermore, for the geometry shown in Fig. 8.21 we have εix = εicos2θB.
Expanding V 0 to first order in wy, we have
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V0
(
εi – h̄kiywy

) ≈ V (εi) –
[
∂V0

∂ε

]
εi

· h̄kiywi. (8.102)

We have for the velocity-dependent phase difference

δ(�φ) = �φII –�φI = –2
(
mwy

/
h̄
)
L tan θB

[
∂V0

∂ε

]
εi

. (8.103)

Thus if the optical potential V 0 is independent of the energy, near ε1, this phase shift is expected
to be 0.

A summary of the measurements of δ(�φ) is shown in Fig. 8.21C as a function of frequency
for both clockwise and counterclockwise rotations. In view of the fact that the phase shift of the
λ = 1.268 Å neutrons traversing the L =1-cm-thick quartz slab is about 500 rad, the deviations of
δ(�φ) from 0 are indeed very small. A fit to the data of Fig. 8.21C indicates a variation of δ(�φ)
with a rotation frequency of (0.8 ± 5.9) × 10–4 rad/Hz, which within experimental error agrees
with the theoretical prediction of a null variation of the motion-induced phase shift with wy. This
result places an upper limit of the energy variation of the optical potential V 0 for quartz of∣∣∣∣

(
∂V
∂ε

)∣∣∣∣
εi

≤ 2.1 × 10–8 (8.104)

for εi = 50.8 meV neutrons.

8.5.4 Rotating Aluminum Propeller Experiment

Bonse and Rumpf (1986) carried out a Fizeau effect experiment, using a four-winged propeller
rotating within a specially prepared square interferometer. A diagram of the setup is shown in
Fig. 8.22a. Each of the four 10-mm-thick blades engages the coherent beams simultaneously as
the propeller rotates about an axis normal to the plane of the interferometer. The experiment was
carried out at the S18 neutron interferometer station at the ILL using λ = 1.92 Å (v = 2060m/s)
neutrons (see Section 2.2.1). This wavelength has a Bragg angle θB = π /4 for the (400) reflection
in silicon, thus allowing the fabrication of the square interferometer. The propeller is encapsulated
within a 6.5 cm × 6.5 cm aluminum box fitted with Mylar windows at the entrance and exit points
of the neutron beam.

Having four symmetrically situated blades on the propeller serves two important purposes. The
first is that it provides a balanced rotator, and therefore mitigates the difficulties associated with
transmitting deleterious vibrations or fluctuating rotations to the silicon interferometer crystal.
Secondly, the expected motion-induced phase shifts are multiplied by a factor of 4. The pro-
peller was rotated up to angular speeds of 120 Hz corresponding to motion along the beams of
wx = 240 cm/s (α = 0.00116). A summary of the 147 measured motion-induced phase shifts
is shown in Fig. 8.22b. Each phase shift was obtained from an interferogram using the tantalum
phase flag. The typical contrast was 37%. Data were obtained stroboscopically with a multichannel
analyzer. The pertinent channels correspond to the time slices when each of the propeller wings is
nearly normal to the corresponding beam. For data analysis purposes the collected counts in the
angular interval [–17.6◦, +17.6◦] were used. The measured phase shifts as a function of frequency
were compared to the phase shift obtained for quasi-static rotations (f ≈ 0). The straight line fit
to the data of Fig. 8.22b is shown; it has a slope 0.8102(0.01) rad/[m/s]. This is to be compared
to the theoretical slope of 0.8171 rad/[m/s] based upon values for the neutron optical potential
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Figure 8.22 Experimental setup (a) and typical
results (b) of the rotating propeller experiment.
Reprinted with permission from Bonse and Rumpf
1986, copyright 1986 by the American Physical
Society.

of aluminum, the measured neutron wavelength, the geometry of the propeller, and the proper
averaging over the angular factors for the selected angular interval above. Thus, the agreement
between theory and experiment is slightly better than 1%.

8.5.5 Rotating Samarium Disk Experiment

As we have already discussed in some detail, there should be no motion-induced phase shift in
neutron interferometry if the matter moves parallel to its boundary. This prediction was established
quite accurately in the null Fizeau effect experiment. However, if the neutron–nuclear optical
potential V0 = 2π h̄2Nb

/
m depends upon the incident energy ε′ in the frame F ′ of the moving slab

of matter, there will be a motion-induced phase shift expected as given by Eq. (8.103).
Arif et al. (1989) carried out an experiment with a rotating disk of aluminum upon which were

attached Sm foils of thickness 33 ± 2 μm in sectors, as shown in Fig. 8.23. The isotope 149Sm
has a nuclear absorption resonance at ε′ = 97.3 meV, and occurs with abundance a = 13.9% in
natural samarium. In the vicinity of this resonance the neutron–nuclear scattering length varies
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segments of the disk indicate the Sm foils (Arif et al. 1989)

drastically. For a foil of thickness L mounted on the disk of radius r = 4.6 cm, and rotating with
frequency f , Eq. (8.103) can be written as

δ (�φ) = 8π2h̄2aLrf tan θB cos
�

2

(
∂b
∂ε

)
εi

. (8.105)

Here � is the angle subtended by the two beams, I and II, in the interferometer at the center of
the rotating disk. Using the known resonance parameters of 149Sm, a calculation of the expected
motion-induced phase shift as a function of ε′ is also shown in Fig. 8.23.
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Two simultaneous interferograms (counts versus δ) were obtained stroboscopically for the neu-
trons passing through the pure aluminum sector and then through the Sm-foil–Al composite.
The difference of the phase shift as a function of the frequency was then compared to this
difference obtained quasi-statically (f ≈ 0). The resulting phase shifts obtained at three fre-
quencies, f =3, 170, and 303 Hz, for both clockwise and counterclockwise rotations is shown
in Fig. 8.23C. The incident neutron energy was 95.8 meV (λ=0.924 Å) such that the Bragg
angle θB = 13.92◦ for the (220) reflection in Si. It is noted that these phase shifts are really quite
small, less than a few degrees. A straight line fit to the data yields the derivative (∂b/∂ε)95.8meV =
(1.90 ± 0.34) × 10–10 cm/eV. This is to be compared to the calculated derivative at this energy of
2.39 × 10–10cm/eV.

Successful completion of this experiment required very precise mechanical tolerances in the
apparatus and nearly perfect vibration isolation of the very fast (18,000 rpm) rotating disk from the
interferometer. Furthermore, data collection times were quite long because of the large absorption
cross-section of Sm near the resonance. Clearly, the averaging of the results from many runs was
necessary.

8.5.6 Proper Time and General Relativity Considerations

Shortly after the initial COW experimental result was published, questions about extending the
precision to include general relativistic (GR) effects on the phase were posed (Greenberger 1984;
Anandan 1977; Stodolsky 1979, 1979a). With the precision achievable with modern laser-based
atom interferometry, this question has recently resurfaced regarding the possibility of directly
observing a gravitational redshift via matter wave interferometry techniques (Müller et al. 2010,
Wolf et al. 2010, Greenberger et al. 2012). This suggestion is best characterized as quite controver-
sial at the present time. Here we use the concept of proper time for calculating the gravitationally
induced phase shift in neutron interferometry, thereby connecting time and particle mass (Lan
et al. 2013), i.e., non-relativistic quantum theory to relativity phenomena.

Formally the neutron phase is given by integration over proper time τ (provided by a clock
moving with the neutron):

φ = –
mc2

h̄

∫
dτ = –

mc2

h̄

∫ (
1 +

2U
c2

–
v2

c2

)1/2

dt. (8.106)

Here U = –GM/r is the gravitational potential external to our Earth of massM. We have used the
Schwarzschild metric

dτ =
√
gμνdxμdxν (8.107)

with g00 = 1 + 2U
/
c2and gii = –1. Thus, in the limit of low velocity, and a weak gravitational field,

the phase of the neutron de Broglie wave is

φ ∼= –
mc2

h̄
t +

1
h̄

∫ (
1
2
mv2 –mU

)
dt. (8.108)

The term with the Compton frequency ωc = mc2
/
h̄ gives an overall phase factor in an

interferometer experiment, which is not observable since it appears in both beam paths.
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Thus, we see that the phase shift in the interferometer can be written as integral over the
non-relativistic Lagrangian L =

(
mv2

/
2 –mU

)
, namely

�� =
1
h̄

∫
path II

Ldt –
1
h̄

∫
path I

Ldt. (8.109)

As shown in Chapter 1, these integrals can be transformed to path integrals over the canonical
momentum using a Legendre transformation, namely L = p · v – H (see Eq. 1.32). For a time-
independent Hamiltonian when energy is conserved H = H(p, r), we use

∫
Ldt =

∫
(p · vdt –H)dt =

∫
p · dr – Et (8.110)

and note again that the phase shift comes from a path integral over the canonical momentum p.
Carrying out the integration will give the COW formula Eq. (8.4). The integration must be carried
out over the undisturbed trajectory which follows from the “golden rule” of small perturbations.
It appears as a residue of relativistic effects where proper time shows up as a matter wave phase
(Greenberger et al. 2012).

But what about higher order gravity effects? If one expands the square root in the integrand in
Eq. (8.106) to order 1/c2, we get

��grav = ��COW

(
1 +

v20
2c2

–
RS

2RE
–
3
2
RSH
R2

E

)
. (8.111)

where RS = 2GM/c2 = 8.8 mm is the Schwarzschild radius for the Earth of radius RE = 6.4 ×
106 m. For 2-Å neutrons v02/c2 = 4.4 × 10–11 and RS/RE = 1.4 × 10–9. These corrections to the
COW phase shift formula are indeed very small.

Using a Kerr metric Kuroiwa et al. (1993) calculated the correction to the Sagnac phase due
to the Earth’s rotation. The result is

��rotation = ��Sagnac

{
1 +

2
5
RS

RE

[
1 –

3(R̂ · Â)(�̂ · R̂)
�̂ · Â

]}
. (8.112)

We have taken the Earth to be of uniform mass density to get this simplified formula. R̂ is the
outward radial unit vector, �̂ is the rotation frequency unit vector, and Â is the interferometer
area unit vector. This correction term is smaller than ��Sagnac by about RS/RE, and is due to the
Lense–Thirring frame drag.

Thus, it is clear that the first GR terms are of order 10–9 of the non-relativistic phase shifts
��COW and ��Sagnac. Since the Hamiltonian appropriate to the neutron moving in a laboratory
fixed on the surface of our rotating Earth is time independent, the neutron’s total energy E is a
constant of the motion. Therefore, the frequency ω = E/h̄ of the de Broglie matter wave is a con-
stant of the motion, and is independent of the path within the interferometer. The gravity-induced
phase shift comes entirely from the line integral of the wave vector along the undisturbed trajec-
tory. In the case of the neutron interferometer, one can say that one is indeed seeing the residues of
the redshift and of the twin paradox, even though one cannot prove that it is a general relativistic
observation (Greenberger et al. 2012). The situation with neutrons appears to be quite different to
the situation with the Kasevich–Chu atom interferometers where the atom–laser interaction causes
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the beam splitting and recombination and where momentum and energy changes occur during the
interaction (Schleich et al. 2013a, 2013b). Nevertheless, the Berkeley group continues to believe
that there is a clock directly marking time to the particle’s mass, and the atom interferometer based
upon Raman resonance absorption is sensitive to the atom’s Compton frequency (see Lan et al.
2013).

The paper by Zych et al. (2011) takes a very interesting point of view toward an internal clock
carried by the neutron. They point out that the precessing neutron in a magnetic field is certainly
a clock, and the polarization state of the neutron in either beam path is a “witness” of the proper
time. One might imagine that the entire region of the interferometer could be immersed in a large,
constant, and uniformmagnetic field. The spin precession difference between the upper and lower
path in the COW interferometer would then give the proper time difference. Unfortunately, even
for a 10-T magnetic field the effect is quite small, of order 10–10 of the COW phase.



9

Solid State Physics Applications

Solid state and material science are fields with major applications of neutron physics. Elastic
and inelastic scattering experiments give fundamental information about the static and dynamic
behavior of atoms in condensed matter (van Hove 1954, Marshall and Lovesey 1971, Willis and
Carlile 2009). Rather sophisticated scattering theories are required to understand these experi-
ments. Data from neutron optics, where neutron interferometry belongs, use quantum diffraction
theories based upon the Schrödinger equation directly (e.g., Sears 1989).

Most neutron interferometric experiments carried out until now have dealt with fundamen-
tal physics applications, but it was known from the beginning that the interferometric method
can open new horizons for solid state physics research, as well. Samples with density or mag-
netic fluctuations or with decomposition effects cause inhomogeneous phase shifts which cause
a measurable loss of contrast of the interference pattern. Such experiments give complementary
information to small-angle scattering, critical, and depolarization experiments (Rauch and Seidl
1987). Various phase imaging and phase tomography methods for neutrons have been realized,
which permits inspection of materials without absorbing or scattering neutrons from the object
(Dubus et al. 2005). Various examples of related investigations will be discussed together with
their future perspectives. A general Fourier method for the investigation of condensed matter
correlation functions is under development and is described in Section 10.15.

9.1 Contrast Reduction due to Inhomogeneities

In the context with the discussion of the coherence function (Section 4.1.2), it has been shown
that density (and thickness) variations cause a reduction of the contrast of the interference pattern
(Eq. 4.48). This is caused by different phase shifts across the beam cross-section. This is generally
called a loss of coherence although it is, strictly speaking, a dephasing process. This is also the basic
feature for the Christiansen filter method for measuring coherent scattering lengths of irregularly
shaped samples, as described in Section 3.1.2.3.

The attenuation factor of the interference contrast stems from a variation of the phase shift for
various beam paths through the sample or/and variations across the volume that the neutron wave
feels during its passage through the sample. For a composite material the mean overall phase shift
can be written as

χ = –λDeff

∑
i

Nibci . (9.1)

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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A phase shift of 2π defines the λ-thickness Dλ = 2π/(λ
∑

i Nibci). Whenever inhomogeneities
of the scattering length density

∑
i Nibci reach dimensions δ which are comparable to Dλ, the

interference contrast becomes reduced. In most important cases, the phase shifts within individual
inhomogeneities will be small compared to 2π (or δ << Dλ). When the phase distribution function
of the beam paths through the inhomogeneities is nearly Poissonian, i.e., <δ2>∼=<δ>2, one obtains
from Eqs. (4.42) and (4.48) the damping (dephasing) factor

Dd = exp
[
–(δN /N0)

2

(
< δ >
Deff

)
(�0k0)

2/2
]

= exp
{
– [δ (Nbc) λ0] 2 < δ > Deff /2

}
.

(9.2)

This modifies the expected interference pattern, such that

I = I0

[
A +Dd B cos

(
2π

Deff

Dλ
+ ϕ0

)]
, (9.3)

where A, B, and ϕ are the characteristic parameters for a sample without precipitates (Eq. 2.5). For
differently shaped precipitates <δ> can be taken from the rational approximation where <δ> =
4V /S, where V is the volume and S is the surface of these inhomogeneities. One notices the
close analogy to the well-known neutron depolarization formalism (Halpern and Holstein 1941,
Rekveldt 1973). In the case of magnetic inhomogeneities in the form of a ferromagnetic domain
structure the dephasing factor reads as (γ = 2μ/h̄)

Dm
d = exp

[
–(γBmλ0)2 < δ > Deff/h2

]
, (9.4)

where γ = 2μ/h̄. This equation has basically the same structure as Eq. (9.3). In both cases dephas-
ing (1 – Dd) increases with increasing dimensions of the inhomogeneities. The close connection
between dephasing, decoherence, and depolarization has been addressed by Rauch et al. (1999).
For very large inhomogeneities (δ >> Dλ) the opposite dependence on the dimensions of the inho-
mogeneities is expected. A detailed treatment of the dephasing effect which takes into account the
different coherence properties of the beam in the different directions and the beam deflection due
to small-angle scattering effects is still missing. A smooth transition from the stochastic situation
as discussed here to a deterministic situation is expected where a partial beam path detection due
to beam deflection occurs (see Section 4.3.2). This small-angle scattering effect can be written
down in the Guinier approximation (e.g., Kostorz 1979) as

dσ
d�

∝ [δ (Nbc)] 2 e–Q
2<δ>2/ 3, (9.5)

where the momentum transfer Q is directly related to the scattering angle by Q ∼= k·�. Even very
small beam deflection (parts of seconds of arc) cause a labeling of neutrons which can be measured
by means of a perfect crystal small-angle scattering camera (Bonse and Hart 1965, Miksovsky
et al. 1992). One notices that small-angle scattering is expected when dephasing is small and
vice versa.

Related interferometric measurements have been done for various metal-hydrogen (deute-
rium) systems where at a certain concentration a transition from the homogeneous α-phase to the
inhomogeneous β-phase happens. This is a situation where hydride precipitates coexist with the
α-phase-saturated bulk material. The behavior of hydrogen interstitials in metals is an interesting
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material science problem with considerable technological impacts as has been summarized by
Alefeld and Voelkl (1978) and Wipf (1997). Such systems show incoherent, i.e., phonon-assisted,
tunneling effects and, at rather low temperatures, coherent tunneling effects. Neutron diffraction
and NMR investigations are the major tools for obtaining information about the dynamics of
hydrogen in metals. The knowledge of the hydrogen content and of its distribution is an impor-
tant aspect of such investigations. The following are standard methods for determining hydrogen
content:

• Weighing the sample;

• Volumetric method;

• Electrical resistance;

• X-ray diffraction; and

• Quartz microbalance.

They have their advantages and limitations and, therefore, the development of additional meth-
ods is advised. In this connection, neutron interferometric methods have been tested to show their
capabilities. The experimental results show the variation of the modulation frequency due to the
variation of the λ-thickness of the composed materials (Eq. 9.1) and a reduction of the contrast
when the H(D) concentration approaches the phase boundary (Fig. 9.1; Rauch et al. 1978b).
The observed reduction of the contrast even in the α-phase indicates precursors of hydride
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precipitates. The interferometric method seems to be more sensitive to this phenomenon than the
ultra-small-angle scattering method where a reduction of the peak intensity and a broadening of
the double-crystal rocking curve occur only for H(D) concentrations which belong to the β-phase.
The accuracies achieved for determining H(D) concentration were 0.02–0.06 at.% or 6–12 ppm
by weight. By using the non-dispersive measuring method described in Sections 3.1.2.1 and
4.2.2 at least one order of magnitude in sensitivity can be gained. This may become a useful
method for a non-destructive hydrogen (deuterium) determination in materials.

Similar measurements (Rauch 1979) with non-annealed alloys (Al(Zn Mg2)0.015) showed
stronger dephasing in the case of larger precipitates (annealed sample), which agrees with
observations made by electron microscopy (Skalicky and Oppolzer 1972). Various other test
measurements with samples with a known inhomogeneity structure are reported by Tuppinger
et al. (1988) (Figs. 3.11 and 3.12). A special challenge would be an investigation of the contrast
variation near to critical phase transitions.

The hydrogen content in an evaporated Pd film has been determined by means of a Jamin-
type interferometer (see Fig. 2.16). The gap layer consists of a palladium–hydrogen system which
varies the phase shift depending on the hydrogen content according to Eq. (2.17), whereNbc must
be replaced by (Nbc)Pd + (Nbc)H. The change of the layer thickness or of the layer composition
causes a varying phase shift which can be written as

φ = n�DQ, (9.6)

where n� and D denote the index of refraction and the thickness of the gap layer, respectively,
and Q the transferred momentum Q=4π sin�/λ, which is related to the lattice constant d of the
diffraction layers. As the volume of the layers changes due to the absorption of hydrogen, the
quantities D and N change as well (�V /V = ε·c, where c denotes the ratio H/Pd and ε = 0.19).
The interference layer structure (MINI) was set in a holder and kept at different hydrogen pres-
sures. The related reflection curves are shown in Fig. 9.2 (Tasaki et al. 1995). An accuracy of 5.5%
for the hydrogen content determination has been achieved.

In another experiment the atomic density of a polymer film supported on a silicon substrate
was investigated by means of a perfect crystal interferometer by Wallace et al. (1999). It was found
that the atomic density in thin films can be a strong function of the preparation condition for many
materials. In a non-dispersive arrangement (see Section 3.1.2.1) the phase shift of a deuterated
polystyrene film with a thickness of 0.5210(6) μm was measured as 0.400(2) rad, which gives an
atomic density of 9.339(48)×1022atoms/cm3, which is about 3% below the bulk density of that
material.

The domain structure of ferromagnetic materials causes an inhomogeneous phase shift and
small-angle scattering effects, as well. Both contribute to the reduction of the interference contrast.
Figure 9.3 shows a related result obtained with non-annealed and annealed iron foils (Rauch
1980). The growth of ferromagnetic domains in the annealed sample (5 h at 600◦C) is visible.
The depolarization factor Dn of these samples has been measured separately at a proper polarized
neutron facility. The loss of contrast (Dp

m) must be compared approximatively to the square of the
depolarization factor (Dn

2) because the samples were placed in both beams of the interferometer.
The comparison yields for the non-annealed sample

Dp
m = 0.605 and Dn

2 = 0.593

and for the annealed sample

Dp
m = 0.151 and Dn

2 = 0.16,
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Figure 9.2 Layout of the micro-neutron interferometer (MINI) and
various reflection curves at different hydrogen content of the Pd film.
Reprinted with permission from Tasaki et al. 1995. Copyright 1995,
AIP Publishing LLC.

which corresponds to a domain size 3.5 times larger than that for the non-annealed sample.
Related small-angle scattering experiments showed a similar behavior.

9.2 Phase Imaging Topography and Phase Tomography

The inside of an object can be observed either by measuring the intensity transmitted through the
object or by observing the phase shift caused by the material in the beam. A three-dimensional
pattern of the interior structure can be reconstructed when intensity or phase patterns are taken
for different orientations of the object in relation to the beam. Both techniques are well established
for X-rays (Ando and Hosoya 1972, Hart 1975, Bonse et al. 1986, Kinney and Nicols 1992,
Momose 1995, Momose et al. 1995, Beckmann et al. 1997). The phase contrast X-ray computed
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tomography performed mainly at synchrotron sources has reached a standard which allows its use
for biological and medical investigations (Momose et al. 1996, Bonse et al. 1997). The advent of
high-resolution position-sensitive neutron detectors makes neutron phase tomography and phase
imaging possible. Consequently, in the past years several attempts have been made to detect the
neutron phase variations induced by an object. These methods can be classified into double-crystal
methods (Strobl et al. 2003, Treimer et al. 2003), pinhole methods (Allman et al. 2000), grating
methods (Pfeiffer et al. 2006), and interferometric methods (Zawisky et al. 2004). Their basic
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principles and their applicability for different problems will be discussed. One of the fascinating
features is that images can be produced without beam attenuation; i.e., nearly interaction-free
inspection of matter becomes feasible.

9.2.1 Double-Crystal Method

Podurets et al. (1989) noticed that the rocking curves of a perfect crystal, double-crystal arrange-
ment can be used for the reconstruction of the sample inhomogeneity structure. This method
has been further developed (Chapman et al. 1997, Treimer and Feye-Treimer 1998) and uses a
perfect crystal, double-crystal arrangement and the refraction broadening due to small-angle scat-
tering within the sample (Strobl et al. 2003, Treimer et al. 2003). This broadening � is different
for each beam path and depends on the index of refraction distribution n(x, y). The beam deflec-
tion is in the direction of the gradient of the index of refraction and therefore one gets a point of a
projection when rotating (θ) the sample around a vertical axis as

Pθ(�) =
∫

path

∇n(x, y) · k⊥d s. (9.7)

The total set Pθ (�) can be taken as input for a Radon transformation to obtain n(x, y). Figure 9.4
shows the experimental arrangement with curved perfect crystals, which permit the measurement
of the broadening by means of a position-sensitive detector. A typical image of a test sample is
shown as well. One notices the advantage of the refraction method (b) in comparison with the
standard attenuation method (a).

9.2.2 Pinhole Method

This method has been developed and tested for neutrons by Allman et al. (2000) and uses a
non-interferometric phase recovery method based on the so-called transport of energy equation
(Teague 1983, Gureyev et al. 1996)

2π
λ

∂I(r⊥)
∂z

= ∇x [I(r⊥)∇�(r⊥)], (9.8)

Figure 9.4 Experimental setup and results of reconstruction of a brass sample with holes ranging
from 1 to 4.3 mm. Reprinted with permission from Treimer et al. 2003. Copyright 2003, AIP
Publishing LLC.
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Figure 9.5 Experimental arrangement of the pinhole system used for phase contrast radiography
and typical results for a yellow-jacket wasp: (a) photograph, (b) attenuation radiograph, (c) phase
contrast radiograph. Reprinted from Allman and Nugent 2006, copyright 2006, with permission
from Elsevier.

where a wave with intensity I(r⊥) and phase �(r⊥) is described. ∇ and r⊥ denote the gradient
and the position vector, respectively, in the plane perpendicular to the longitudinal optical axis
behind the aperture and ∂I(r⊥)/∂z denotes the intensity variation along the optical axis. Thus, the
phase can be obtained by measuring at two different distances behind the object (Fig. 9.5). The
phase image obtained is, to a good approximation, described by a convolution of the perfect image
with the intensity distribution of the effective source. A typical phase contrast image taken with a
neutron wavelength of 4.43 Å, a pinhole diameter of 0.4 mm, a pinhole-sample distance of 1.8 m,
and the position-sensitive detector just behind and 1.8 m behind the sample is shown in Fig. 9.5.
The increased visibility of the phase contrast radiograph (c) is visible. More applications of this
technique can be found in a paper by Allman and Nugent (2006).

9.2.3 Grating Method

This is an extended version of the pinhole method and uses instead of a single small pinhole
different gratings, permitting a broad beam and a more effective use of neutrons (Pfeiffer et al.
2006). The setup is shown in Fig. 9.6. An absorbing source grating (G0) creates an array of
individually coherent, but mutually incoherent beams. The coherence is obtained when the lat-
tice constants p of the two lattices G0 and G2 fulfill the condition p0 = p2l/d. The final spatial
resolution depends also on the width w of the beam cross-section (wd/l). The differential phase
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contrast image formation is achieved by the gratings G1 and G2, where G1 acts as a phase grat-
ing with a phase shift of π and as a beam splitter whose beams interfere downstream (Fig. 9.3c).
Neither the period nor the lateral position of the interference fringes depend on the wavelength,
but any perturbation due to a phase object lead to local displacements of the fringes. Scanning
the grating G2 in front of a position-sensitive detector gives an intensity signal I(x, y) which
oscillates as a function of the G2 position. This determines the phases at that position �(x, y),
which relates to the phase of the wave field χ(x) = –NbcλD as �(x, y) = (λd/p2)(δχ /δx). Typical
parameters for such an arrangement are p0 = 1.08 mm, p1 = 7.97 μm, p2 = 4.00 μm, l = 5.23 m,
d =19.4 mm, w=20 mm, λ=4.1(9) Å, and a spatial resolution of the detector of 250μm. The
production technique for proper high-resolution gratings is described by Kim et al. (2013).

9.2.4 Interferometer Method

In this case the perfect crystal interferometer is used as shown in Fig. 9.7 and the different phase
shifts of an inhomogeneous material provide the relevant signals. Inhomogeneities of the scat-
tering length density which are larger than the spatial resolution of the recording system can be
observed similarly to X-ray phase contrast imaging and in neutron Larmor precession mapping
(Schlenker and Shull 1973). A review about standard neutron tomography methods was given
by Schlenker and Baruchel (1986). Phase tomography uses the interference of a coherent signal
and a reference beam and produces two complementary pictures after superposition, as shown
schematically in Fig. 9.7. The spatial resolution �r in the case of phase tomography is given by
the related coherence lengths (�c) and the resolution of the imaging system (�a), which can in

Reference beam

Signal beam Object

Figure 9.7 Schematic diagram of a phase tomography setup based upon an
interferometry method
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most cases be written in the form �r
2 ∼= �c

2 + �a
2. In most cases a much higher resolution

is obtained in the vertical direction where no Borrmann spreading exists. Therefore, the objects
must be rotated around a horizontal axis. The tomographic picture depends on the phase shift only
and, therefore, a picture of inhomogeneities can be obtained without any beam attenuation. The
2π-periodicity of the interference pattern requires a subfringe and fringe scanning analysis before
the data can be used for computer tomography analysis which are based on Radon transformation
methods.

Standard radiography is sensitive to the overall beam attenuation (I = I0 exp[– tD]), whereas
phase topography to the interference term of the interference pattern reads cos(2πD/Dλ). In the
case of maximum sensitivity (D= (n + 1/2)Dλ) and equal intensity phase tomography has an
enhanced sensitivity given by (Rauch 1997, Beckmann 1998)

G ∝ bcλ
σa + σs

, (9.9)

which is for most substances on the order of 1,000 to 10,000. This still remains large even when
the reduced intensity of an interference experiment and an interference contrast smaller than unity
is taken into account.

For the neutron case ferromagnetic domains in Fe-3% Si was investigated by this method
(Schlenker et al. 1980). Typical results are shown in Fig. 9.8 where an auxiliary magnetic field
was applied to the reference beam to distinguish up and down magnetizations of the domains for
unpolarized neutrons. The domain walls appear in the picture not only due to their inhomogene-
ous phase shift but also due to small-angle deflection effects. The resolution of this early phase
tomograph is rather poor and this technique should be developed further before it becomes a
routine method for observing magnetic domains. It contains a large amount of information on
neutron optics.

Nakatami et al. (1992) measured the overall interference pattern when a Fe-3% Si magnet with
180◦ Bloch walls was inserted under different angles additionally to a pure nuclear (Al) phase
shifter. They obtained the expected dependence of the amplitude and of the phase which verified
that saturation of magnetization within the domains has been reached even without external fields.
Data evaluation showed that the correct domain size can be extracted.

Three-dimensional computed tomography investigations are feasible when pictures are taken
at different sample orientations. Contrast-matching methods similar to those discussed in Section
3.1.2.3 can be applied as well.

Figure 9.8 Neutron phase tomography pattern of magnetic domains taken behind a perfect crystal
neutron interferometer (Schlenker et al. 1980)



Phase Imaging Topography and Phase Tomography 303

Neutron Larmor precession transmission tomography experiments of polarized neutrons
through precession coils or magnetic materials yield information about the magnetic field distri-
bution (Rekveldt and Kraan 1987, Kraan et al. 1988, Shitnev 1989, Rosman and Rekveldt 1991,
Rekveldt et al. 2006). In this case the degree of polarization plays a similar role as the coherence
function in interference experiments. Therefore, Fourier spectroscopy methods become feasible
for neutron Larmor precession experiments and neutron interferometer experiments as well.

For a full tomographic inspection where projections P(�, r) must be taken from an object
f (x, y) under different orientations, one has

P(�, r) =
∫
f (x, y)d s

=
∫∫

f (x, y)δ(x cos� + y sin� – r)dxdy,

(9.10)

where r denotes the position at the projection screen (r = x cos�+y sin�). Equation (9.7) denotes
the well-known Radon transform (Radon 1917, Herman 1980) of f (x, y), which can be used more
easily in the frequency domain, that is

F1(�,ω) =
∫
P(�, r)e–iωtd t

F2(μ, u) =
∫∫

f (x, y)e–i(ux+vy)dxdy,
(9.11)

where

P(�, r) = F(ω,�) = F(u, v),

with u = ω cos� and v = ω sin�. From these relations one obtains the object function

f (x, y) =
∫∫

F(ω,�)|ω|eiωtdω d�

=
∫∫

P(�,ω)|ω|ei(x cos�+y sin�)dω d�.

(9.12)

The projection pattern in the case of attenuation tomography is given by the exponential atte-
nuation law

P(�, r) = I0(�, r) exp
[
–
∫ ∑

(x, y, z)dz
]
, (9.13)

where
∑

(x, y, z) =
∑

i Ni(x, y, z)σtot,i . In the case of phase tomography the projection pattern is
given by the interference, namely

V (�, r) = I(x, y) +K(x, y) cos[ϕ(x, y) + ϕ0(x, y)]. (9.14)
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Here, the phase functions are

φ(x, y) =
∫
φ(x, y, z)dz,

with

φ(x, y, z) = –λ
∑
i

Ni(x, y, z)bci .

In most cases the phase pattern of the empty interferometer must be substracted.
A related experiment has been done with a perfect crystal interferometer and a sample con-

sisting of an aluminum matrix and an aluminum–magnesium screw with a small scattering length
density difference only (Dubus et al. 2005). After reconstruction the screw and the air holes
between the matrix and the screw become visible (Fig. 9.9).

Phase
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O beam
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interferometer
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Figure 9.9 Experimental setup and results of an interfer-
ometric phase tomography experiment inspecting a Al–Mg
screw within an Al bulk material (Dubus et al. 2005)



Observation of the Goos–Hänchen Effect 305

9.3 Observation of the Goos–Hänchen Effect

In the case of specular reflection the beam penetrates somehow into the material and the exit
point becomes somewhat shifted compared to the entrance point. This was first suggested for
light by Isaac Newton (1730) and experimentally verified by Goos and Hänchen (1947, 1949).
The situation is shown in Fig. 9.10 where reflection from a magnetic material is considered. In this
case the penetration depths for both spin components are different and the exit beams interfere
with each other, which appears as a polarization variation. The neutron spin-echo reflectometer
(Section 2.4; Fig. 2.20) permits a clear observation of this effect (de Haan et al. 2010). A more
indirect observation has been reported by Pleshanov (1994). The superposition of the incident
wave and spherically reflected waves from the scattering centers in the material can be written as

�±
ky = α

±(ky)
[
eikyy + ρ±(ky)e–ikyy

]
, (9.15)

in the y-direction. The reflection coefficients are given by

ρ±(ky) = (ky – kc,±y )
/
(ky + kc,±y ) (9.16)

with wave vectors

kc,±y =
√
k2y – (k±

c )
2. (9.17)

Figure 9.10 Calculated Goos-Hänchen shift for both spin components (left) and measured polarization
(right) of the exit beam as a function of the perpendicular wave vector ky for a single and a double
reflection from a magnetized Permalloy film. The insert shows the splitting of both exit beams. Reprinted
with permission from de Haan et al. 2010, copyright 2010 by the American Physical Society.
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The critical wave vector is given as (k±
c )

2 = 2m(Vn ∓ μnB)
/
h̄2. From this the spatial displacement,

the Goos–Hänchen shift can be calculated as (e.g., Renard 1964)

ξ± =
k

(k±
c )

2

2ky√
(k±

c )
2 – k2y

, (9.18)

which is shown in Fig. 9.10. Both exit beams experience a different phase shift, which appears as
a ky-dependent polarization (Fig. 9.10). This is an analog to the spin-superposition experiment
described in Section 5.2.
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Forthcoming, Proposed, and More
Speculative Experiments

In this chapter we discuss some interferometric measurements which are intended to prove or
disprove alternative physics theories and to search for extremely small effects where upper limits
can only be anticipated. A general discussion of neutron optical searches for violations of quantum
mechanics has been given by Klein (1988) and by Pokotilovky (2013). There are also experiments
described here which have not been done yet. Thus, a search for speculative effects does not mean
that no measurable effects can be found for all time. On the contrary, some of the phenomena
described are already under investigation and a positive outcome can be expected. Some experi-
ments are included where currently the accuracy is not high enough to make decisive conclusions.
Condensed matter investigations have been done mainly by scattering experiments, but interfero-
metric investigations are still missing. By measuring the neutron coherence function (Section 4.2),
one gets direct access to the condensed matter correlation functions G(r, t) instead of measuring
its Fourier transform S(Q,ω) by spectroscopic methods. The essentials of neutron Fourier spec-
troscopy are formulated. Most experiments described in this chapter deal with basic properties of
the neutron, with its fundamental interactions and partly with novel condensed matter research.

10.1 Non-linearity of the Schrödinger Equation

Various authors have proposed the addition of a non-linear term to the Schrödinger equation
to obtain nonspreading wave packets (Bialynicki-Birula and Mycielski 1976, 1979) or manifold
solutions with just one packet stationary in time (Pearle 1976, 1984a). Shimony (1979) proposed
an interferometric test to observe a non-linear term which fulfills the separability condition and
results in nonspreading wave packets. Such a term must have the form

Fnl = b ln(an|ψ |2), (10.1)

where a and b are constants. b must be small because of the great success of standard quantum
mechanics. An absorbing phase shifter, with an attenuation factor α inserted into the coherent
beam of the interferometer downstream by a distance �, causes a phase shift of

χnl = (2�/vh̄)b ln |α|, (10.2)

in non-linear quantum mechanics. A related experiment was performed by Shull et al. (1980b)
using a two-plate interferometer (Fig. 2.3, middle), placing an absorbing plate at different positions

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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of the Borrmann fan-broadened beam in the interferometer. From the equivalence of the net phase
shifts, the authors concluded that b ≤ 3.4 × 10–13 eV.

Non-linear terms also cause deviations from the standard diffraction pattern, because the
transversal spreading of the wave packet becomes different. This yields an additional shift Y of
the diffraction pattern from macroscopic objects (Fig. 1.4). At a distance Z behind the object the
shift can be written as (Gähler et al. 1981)

Y =
b
E

z∫
0

l
|ψ |

dψ
dy

(Z – z)dz, (10.3)

which yields for the Fresnel diffraction at an absorbing edge

Y =
2b

E
√
λ

·Z3/2·c. (10.4)

Here c is a geometrical constant of the order 1. Y has also been calculated by a numerical method
applied to the time-dependent non-linear Schrödinger equation to avoid various approximations
involved in the closed-form Fresnel formula (Born and Wolf 1975). The numerical method pre-
dicts an effect about half as large as that from the Fresnel approximation (Kamesberger and
Zeilinger 1988). The discrepancy is not yet completely clear and certainly further experimen-
tal effects like a partial transmission of neutrons near to the edge must be accounted for in order
to compare theoretical and experimental results. The result of the related experiment, which was a
diffraction rather than an interferometer experiment, yields for b an upper limit b < 3.3×10–15 eV
(Gähler et al. 1981). Pearle (1984b) extracted from these measurements a mean self-reduction
time τR > 5 s for a dynamical state vector reduction, which is a model for explaining the collapse
of the wave field (see Chapter 12).

10.2 Aharonov–Bohm Analog

Aharonov and Bohm (1959) predicted for charged particles a phase shift due to their coupling
to the electromagnetic vector potential, i.e., in a region where no real force is acting on the parti-
cle. This phase shift is wavelength independent and given by the charge e of the particle and the
magnetic flux φ enclosed by the coherent beam paths χAB = –eφ/h (see Section 6.1 and Fig. 6.1).
The verification of this effect is one of the most outstanding achievements of electron interferom-
etry (Bayh 1962, Boersch and Lischke 1970, Tonomura 1998). For a neutral particle this term
does not exist because the first electromagnetic non-zero coupling term is due to the magnetic
moment which couples directly to the field and not to the potential, and therefore, such a particle
is uneffected by a first-order gauge transformation. Assuming couplings other than the standard
one makes it possible to define upper limits for such contributions. A related experiment was per-
formed by Greenberger et al. (1981) using a two-plate interferometer (Fig. 2.3) and putting a
magnetic loop crystal around one coherent beam. In this case, no magnetic field was acting on the
neutron and no shift of the interference fringes occurred. Within the experimental uncertainty,
no measurable Aharonov–Bohm effect acting on a neutral particle was found. The upper limit of
< 4.9 × 10–12 compared to the charged particle Aharonov–Bohm effect was given.

An Aharonov–Bohm effect of the second kind may occur when modular momentum and
modular energy are exchanged. Aharonov (1984) and Zeilinger (1984) proposed a realization
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by applying a purely time-dependent magnetic interaction to the coherent beams of a two-plate
or a double-slit interferometer. The experimental technique corresponds to that described in
Section 6.2 for the observation of the scalar Aharonov–Bohm effect and some of the expected
results are described there.

In another experiment it was tested whether moving matter placed between the coherent beams
has a similar effect on the neutron phase that a current (moving charge) has on the phase of
electrons in the standard Aharonov–Bohm effect. The analogy exists because moving matter rep-
resents an isospin current which could couple to the neutron system. In this case, a rod of uranium
was rotated between the coherent beams of a three-plate interferometer (Zeilinger et al. 1984).
No influence of the rotation of the sample on the phase of the neutrons was found up to a level
of 0.64◦/100 rpm. Thus, one can conclude that any neutron–neutron interaction is smaller by a
factor of 8.9 × 10–16 than the analogous electron–electron interaction would be in that situation.
This gives also constraints to a possible isospin interaction (Wu and Yang 1975). A gravitational
Aharonov–Bohm effect can be expected when particles are constrained to move in a region where
the Riemann curvature tensor vanishes. It could be observed by flying an interferometer in an
aircraft on a straight and level flight path and in a parabolic flight path. Reasonable phase shifts
are predicted but the feasibility for such an experiment—if existing at all—may be more feasible
with an atom interferometer (Ho and Morgan 1994).

Other non-zero Aharonov–Bohm effects are discussed in Chapter 6 (see Fig. 6.1).

10.3 Quaternions in Quantum Mechanics

Quaternions are hypercomplex numbers and represent a generalization of complex numbers.
They have been discussed in connection with quantum mechanics to enlarge the standard com-
plex to a quaternion number field (e.g., Kaneno 1960, Finkenstein et al. 1962, Adler 1995). Such
contributions can be tested by neutron interferometry when it is assumed that the phase shifts,
which are usually complex numbers (Eq. 3.18), have small quaternion components (Peres 1979).
There exists a universal relationship between the six coherent scattering cross-sections of any
three scatterers, taken singly and then pairwise, and there exists a non-commutativity of the phase
shifts experienced by the neutron inside the interferometer (i.e., χ1 + χ2 �= χ2 + χ1). A related
experiment was performed by Kaiser et al. (1984) by interchanging thick aluminum and tita-
nium phase shifters. They found that |χAI + χTi – (χTi + χAI)|≤ 5 millirad and concluded that
any noncommutative quaternion contribution to the scattering length of these nuclei is less than
1 part in 30,000 of the real part. In connection with the phase-echo experiments as they are
described in Section 4.2.4 it has been discussed that a complete revival of the wave function
behind various interaction regions become impossible in principle due to unavoidable quantum
losses. Thus, more precise measurements will show that small non-commutative phase shifts occur
due to standard quantum mechanics, which relates to an intrinsic irreversibility (see Fig. 4.11).

The interaction with the Al and Ti phase shifter might be collinear in the sense of quaternion
interaction. Therefore, another experiment combining nuclear and gravitational interaction was
started (Allman et al. 1996). In this case alternative phase shifters are introduced and the interfer-
ometer is tilted around a horizontal axis. Tests with nuclear and magnetic fields show a null effect
within present experimental sensitivity.

It should be mentioned that the exchange of phase shifter (1 ↔ 2) results in slightly different
wave functions also in standard quantum mechanics when all back-and-forth reflected waves are
taken into account. This has been discussed in connection with spin-echo experiments and the
question of a complete retrieval of the wave function (Section 4.2.4, Fig. 4.10).
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10.4 Non-ergodic Effects

The probability of having more than one neutron in the interferometer at a given time is extremely
low. Therefore, one repeats the one-particle interference experiment many times to obtain the
interference pattern. One simply assumes that the experimental setup is the same for each particle,
independent of how many particles had already passed the interferometer. In this case the time
average should equal the ensemble average, whereas the non-ergodic interpretation predicts a
difference.

The non-ergodic interpretation of quantum mechanics assumes certain memory effects in a
hypothetical medium through which successive particles would interact indirectly (Buonomano
1980, 1988). The trajectory of a particle would depend on the beam path of the previous particles
and, therefore, on the position of the phase shifter or if one or both beams were open at that time.
In this sense it represents a hidden variable theory. Memory effects on very short time scales are
not yet ruled out by experiment.

Summhammer (1985) performed a related experiment where one arm of the interferometer
could be blocked by a mechanical shutter. A 50:50 probabilistic decision was made after a neutron
was registered at the detector as to whether the shutter changes. The non-ergodic interpreta-
tion expects that the first particle passing the interferometer under changed conditions should
essentially find the same trajectory as the previous one by a hypotized memory effect. The neu-
trons were registered according to their arrival time at the detectors after the shutter changed.
As expected, the interference pattern only depends on the status of the shutter and not on the
previous neutrons. The data analysis showed that one can reject a memory effect at a generous
significance level of 10–6. Thus, neutrons which experienced both beam paths open produced an
interference pattern, whereas those which experienced only one open beam path did not show this
phenomenon. The switching time of the shutter was about 0.15 s, which is much larger than the
time-of-flight through the interferometer. Thus, diffraction in the time domain was negligible (see
Section 4.5.5). A reanalysis of the data came to the same conclusion (Buonomano 1989).

In the framework of axiomatic probabilities Aerts (1986) developed a hidden variable theory
which supposes memory effects inside the detector. In this case the distribution of the arrival
times inside a detector should become non-Poissonian (Durt 1999). Neutron (Section 4.5.4) and
atom (Lawson-Daku et al. 1996) interference experiments rule out such memory effects with
characteristical times longer than 10–6 s.

Non-ergodicity would also mean that repeating measurements with one particle differ from
successive measurements with equally prepared particles, which would indicate a difference
between ensemble and time averages. Dedicated measurements with atom beams and a single
atom show that ergodicity is fulfilled up to a high accuracy level (Huesmann et al. 1999).

10.5 Wheeler Delayed-Choice Experiments

Delayed choice experiments became very popular during the 1980s and 1990s in testing the ques-
tion of locality and separability of quantum mechanics (Wheeler 1978). In such experiments the
experimental settings must be changed quickly during the time-of-flight of the particle through
the apparatus (Bohm and Aharonov 1957). If such settings have an influence on the outcome
of such an experiment, the question of hidden variables would appear in a new light with many
epistemological implications. To date most experiments in this field have used correlated pairs of
photons (Aspect et al. 1982). They were interpreted in terms of the Einstein–Podolsky–Rosen–
Bohm (1935) gedanken experiment and the “realistic local theories” (Clauser and Shimony 1978).
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All the results are in agreement with the standard quantum-mechanical predictions and, therefore,
confirm the quantum limit of the generalized Bell inequalities (Bell 1965). The quantum for-
mulation of delayed-choice experiments in terms of quantum potentials has been given by
Bohm et al. (1985).

Here it should be mentioned that delayed-choice experiments have been performed using an
atomic Stern–Gerlach interferometer operating with metastable hydrogen atoms. It was possible
to modify the operating mode of the interferometer (interference or path detection) while the
atom has already entered the interferometer. The results have not shown any discrepancy between
stationary and delayed-choice operating modes of the interferometer (Lawson-Daku et al. 1996).

The most direct verification of a Wheeler delayed-choice experiment for photons was done by
Jacques et al. (2007), where the interferometer and which-way option was switched by an electro-
optical modulator. In this case relativistically separated random number generators which decide
path or interference behavior are used. For neutrons the time scale would be strongly relaxed due to
the slow velocity of neutrons. Figure 10.1 shows such an arrangement which closely corresponds to
the original idea of Wheeler (1978). A switchable beam splitter of a Mach–Zehnder interferometer
(BSoutput) changes the system from wave detection to a particle detection system. In the neutron
case a pulsed magnetic field can switch the perfect crystal of the interferometer from a diffraction
to a transmission option. This has been tested in connection with a perfect crystal resonator system
(Schuster et al. 1990, Jericha et al. 1996). Such neutron delayed-choice experiments are feasible
because the switching times are rather relaxed (μs instead of ns).

In an experiment with the neutron interferometer, a delayed choice must be made as to whether
the interference pattern is to be observed or the neutron’s route inside the interferometer is to
be chosen for measurement; for example, an interference measurement behind the interferome-
ter or a path measurement by a detector introduced into one of the coherent beams before the
third interferometer plate. Due to the slow velocity of neutrons the decision process could eas-
ily be adapted to the electronic and mechanical part of the system. Various proposals for such
experiments exist in the literature (Greenberger et al. 1984, Zeilinger 1984, Rauch 1984c, Bozic
et al. 2011). The experiment with a time-dependent absorption in one beam as described in
Section 4.3.2 (Fig. 4.15) is directly related to this subject (Rauch and Summhammer 1984b).
Various aspects of delayed choice are also stressed in the spin superposition experiments dis-
cussed in Sections. 5.3 and 5.4, where the beam polarization can be used as a path identifier. The
interferometer experiments with pulsed beams described in Section 4.5.5 can be extended to a
delayed-choice experiment if a neutron detector can be introduced into the beam randomly and
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Mirror

DetectorsD1
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Figure 10.1 Mach–Zehnder interferometer with a switch-
able beam splitter to vary between a wave and a particle
detection system From Jacques et al. 2007. Reprinted with
permission from AAAS.
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rapidly after the wave packet has been split at the first interferometer plate. Kawai et al. (1998a)
developed a fast neutron pulsar on the basis of a Jamin-type interferometer (Fig. 2.17). In this case
a pulsed π-flipper in front of the interferometer and a pulsed magnetic field acting on the second
composite mirror produced the condition of whether one is measuring the interference pattern or
observing the beam path. The results of these measurements show that the interference pattern
can be observed regardless of whether the second composite mirror was put into the interference
mode before or after the beam is split at the first composite mirror (Kawai et al. 1998b). This
is a nice verification of the quantum-mechanical principle that the system evolves simultaneously
in both beam paths and does not choose a priori one of the two possible paths. An experiment
performed with photon pairs produced by parametric down-conversion showed the same results;
i.e., the results are independent of whether the switching process between pathway or phase infor-
mation takes place before or after the photon passes the first beamsplitter of the interferometer
(Baldzuhn et al. 1989, 1991).

From the classical point of view there is some region in the experiment—first interferometer
plate—where the particle must choose between two alternative routes though the interferometer.
Therefore, it appears that by altering the apparatus at a later time one can affect that choice of
routes the particle has made at an earlier time. This would imply hidden variables or a non-local
interaction. According to the quantum-mechanical point of view the wave functions representing
these alternatives do not allow the statement that the particle took one beam path or the other.
Inequalities analogous to Bell’s inequalities can be formulated and, therefore, such experiments
can demarcate quantum theory from certain classes of so-called realistic theories (Greenberger
et al. 1984). The neutron experiments clearly support the quantum mechanics predictions.

10.6 Neutron–Antineutron Oscillations

Neutron–antineutron oscillations are predicted due to the breaking of exact baryon-number con-
servation in unified theories of fundamental gauge interactions (Glashow 1980). The present
experimental limit for this process is obtained from the nonobservation of antineutrons from an
intense beam of reactor-produced neutrons which justifies a neutron–antineutron oscillation time
longer than 107 s (Baldo-Ceolin 1984, Fidecaro et al. 1985, Baldo-Ceolin et al. 1990). This effect
appears in neutron interferometry by causing a minute energy shift of the neutron coming from
a baryon-number nonconservating term in the Hamiltonian (Casella 1984). Interferometers for
ultra-cold neutrons, extremely long storage times, and a perfect compensation of the ordinary
gravity and magnetic field effects would be required to realize such a measurement.

10.7 Non-Newtonian Gravity Effects

There are models that claim that besides the Newtonian contribution there exist additional terms
to the gravitational interaction (Fischbach et al. 1986, Goldman et al. 1986, Dubbers and Schmidt
2011) of the form

V = –G∞
m1m2

r

(
1 + ηe–r/ξ

)
. (10.5)

Experiments with massive bodies on the Earth’s surface gave no conclusive results concern-
ing the existence or non-existence of such an additional term. Such a contribution would have
consequences on baryon number and hypercharge coupling mechanisms and would also be a link
for a unification of gravity, electro-weak, and strong interactions.
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Bertolami (1986) calculated the additional phase shift due to the non-Newtonian term

�φnN =
Rηf (R/ξ)
T sin θB

, (10.6)

where R is the radius of the Earth and T is the distance between the interferometer plates. In the
limit R/ξ >> 1 one gets f (R/ξ) = 3ξ 2/2R. Measurements with phase accuracies higher than 10–10

could at least put upper limits to the parameter of the non-Newtonian part of Eq. (10.5) and to
the masses of hypothetical exchanged particles.

Comprehensive reviews on this topic have been given by Adelberger et al. (2003), Camacho
and Camacho-Galvan (2007), and Antoniadis et al. (2011). They urged new investigations with
neutrons for the gravitational force at small distances (1–10 μm). Neutrons provide the advantage
that their Casimir or van der Waal forces are small or perhaps not existing. Experiments with ultra-
cold neutrons set constraints on the possible magnitudes of η and ζ (Leeb and Schmiedmayer
1992; Abele et al. 2003; Nesvizhevsky et al. 2004, 2008). The optical potential of a material sur-
face and the gravitational potential produce a triangular potential with energy eigenstates in the
picoelectron volt range. Transitions between these states can be induced by oscillating surfaces and
can be observed with ultra-cold neutrons. This has opened the field of picoelectron volt spectros-
copy (Abele et al. 2010, Jenke et al. 2011, 2014). Neutron interference measurements may become
even more sensitive to such additional gravity effects as stated by Greene and Gudkov (2007) and
by Pokotilovski (2013). These authors propose two methods for measuring the additional non-
Newtonian gravity effect. One method is based on the transmission of neutrons through narrow
slits made from heavy materials which change the rectangular optical potential in a way to include
the non-Newtonian term. The other one uses ultra-cold neutrons in the Lloyd mirror interferome-
ter where a direct beam from a narrow slit and a totally reflected beam become superposed (Lloyd
1831, Cavey 2009, Pokotilovsky 2013).

This causes an additional term to be added to the usual Newtonian potential V (z) = mgz above
a surface of a material with a density ρ. One gets an additional term

V ′(z) = 2πmρηζ 2Ge–z/ζ . (10.7)

This term causes a change in the gravitational acceleration on the order of only 10–12g, where
g = 9.8 m/s2.

The second method uses the gravitational interaction between the neutron and atoms of a
perfect single crystal as phase shifter in an interferometer in a mode indicated in Fig. 3.14. The
phase shift depends in this case on the structure factor and changes strongly near to the exact
Bragg direction as shown by Lemmel (2007, 2013). The form of the additional term (Eq. 10.5)
causes a gravitational scattering length (in fm) of

bG ≈ –1.6 × 10–6(ηζ 2), (10.8)

where ζ is in meters. Thus very accurate scattering length measurements (�b/b≈10–6) are required
to observe finite ηζ 2 values. The feasibility and sensitivity of various neutronic methods have been
discussed by Abele (2008), by Abele et al. (2010) and by Jenke et al. (2014).

Neutrons have the distinct advantage compared to atoms that they do not interact via van
der Waals forces, which limits investigations with atoms as done by Perreault and Cronin
(2005). Short-range forces may be spin-dependent as well, which gives a new horizon for such
experiments (Antoniadis et al. 2011).
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10.8 Spin–Rotation Coupling

The Sagnac effect (Section 8.2) may be regarded as a manifestation of the coupling of the orbital
momentum of a particle to rotation (� · L, Eq. 8.6). This may be extended to the total angular
momentum which contains the spin (J = L + S). This yields an additional phase shift (Mashhoon
1988, 1999; Stedman 1997)

�φM =
1
h̄

� · S �t. (10.9)

This coupling reveals the rotational inertia of an intrinsic spin.
A proposed neutron experiment uses longitudinally polarized neutrons passing through a rotat-

ing spin flipper (Mashhoon et al. 1998). An energy change �E = h̄� is predicted, which seems to
be measurable with an arrangement similar to that used for the double-coil experiment described
in Section 5.4 or that of the geometrical phase experiment described in Section 6.4.

10.9 Hanbury-Brown and Twiss Analog

The famous experiment of Hanbury-Brown and Twiss (1956) studied the correlation in the
photo-current fluctuations from two detectors. These experiments showed an enhancement in
the intensity correlation function at short time delays of thermal light due to the large intensity
fluctuations in the thermal source. The effect can be understood in the context of classical optics
(Loudon 1983) and in terms of quantum optics (Glauber 1965). Whereas for bosons a bunching
effect at zero time delay between two detectors is expected, for fermions an anti-bunching effect
is predicted which one understands in connection with the Pauli principle. This prediction has
been verified for ultra-cold fermion (3He) and boson gases (4He) released from a magnetic trap
and measured with a position-sensitive detector (Jeltes et al. 2007) and with Bose–Einstein con-
densates (Perrin et al. 2012). Anti-bunching effects have also been observed for electrons (e.g.,
Kiesel et al. 2002). Both atoms and electrons represent interacting objects, whereas neutrons can
be considered as non-interacting particles, which makes a related neutron Hanbury-Brown and
Twiss effect special.

In the neutron case the most direct measurement would be the determination of a zero-valued
neutron–neutron triplet scattering length. This could be done by a crossed beam experiment with
polarized neutrons, but the intensities at existing neutron sources are far too weak to start such
an experiment today. Even the singlet scattering length (ann = –18.6 ± 0.3 fm) has only been
determined indirectly (Machleidt and Slaus 2001, Gardestig 2009). Thus, other methods must be
exploited.

It has been mentioned in Section 1.3 that for any neutron beam the degeneracy parameter, i.e.,
the mean numbers of neutrons inside the phase space volume, is extremely small (10–15–10–14).
Therefore, any higher order correlation function as defined in Eq. (4.93) becomes very difficult
to observe. This is because the characteristic coherence lengths imposed on the beams are rather
small, at least in some directions (e.g., Section 4.2). This means that for a measurement of the
n = 2 self-correlation function, the sensitive area of the detector should match the transverse
coherence lengths of the beam and the thickness should match the longitudinal coherence length to
keep the detector response time in the order of the coherence time (tc = �c

x/v). These constraints
have not been overcome with the present-day instrumentation. The conditional probability of
fermion arrivals is given by the self-intensity correlation
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G(2)
s (r10, r2�t) =< |ψ (r1, 0)|2 |ψ (r2,�t)|2 >, (10.10)

where ψ is the particle wave function expanded over both beam paths ψ = ψ I +ψ II and r1 and r2
denote the detector positions in each beam path or for one placed behind the interferometer in the
0- and H-beams. This function shows for thermal light a characteristic bunching effect for equal
arrival of photons at both detectors (�t = 0), whereas for neutrons an anti-bunching is expected
due to their fermion character (Fig. 10.2; Boffi and Cagliotti 1966, Silverman 1987). When the
spatial and temporal coherence can be separated (Eq. 4.34) the coincidence count rate fluctuation
in both detectors can be written as (e.g., Mandel and Wolf 1995, Fox 2006)

I1I2 = Ī1 Ī2
(
1 + ε

tc
�T

g12(t)
)
, (10.11)

with

g12(t) =
1
V 2

∫∫
|γ12( r1, r2, t)|2 d r1 d r2.

Here V is the sensitive volume of the detector, γ12 is the coherence function (Eq. 4.26), tc is the
coherence time,�T is the detector resolving time, and t is the delay time of the coincidence circuit.
The parameter ε = 1 for bosons, and ε = –1 for fermions, whereas ε = 0 for classical particles.
The widths of the bunching and anti-bunching phenomena are given by the coherence time which
is on the order of nanoseconds in the neutron case (Section 4.2.6). Buffi and Cagliotti (1966,
1971) discussed the question for neutrons but a feasible experiment has been questioned for a
long time (see also Klein et al. 1983). For the neutron case, a measurement time of 10,000 years
has been estimated (Silverman 1988). Hanbury-Brown–Twiss effects have been observed for light
sources with degeneracy parameters of 10–3. Below these values random coincidences start to wash
out the signal. The experimental difficulties for neutrons due to the low phase space density also
persist in the case of two open entrance ports or other sophisticated proposals (Silverman 1988,
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Figure 10.2 Hanburry-Brown–Twiss arrangement and the expected outcome of a related experi-
ment under ideal conditions
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Figure 10.3 Experimental arrangement (left) and results of the neutron Hanbury-Brown and Twiss
experiment. Reprinted with permission from de Iannuzzi et al. 2006, copyright 2006 by the American
Physical Society.

Dobrynin and Lomorosov 1989). It should be mentioned that the phase space density does not
enter Eq. (10.11), which may have been overlooked by these authors.

A rather clever arrangement has been used by Iannuzzi et al. (2006) to observe the free-fermion
anti-bunching effect (Fig. 10.3). They produced a rather coherent beam by back reflection from
a perfect silicon crystal (coherence time �tc = �c

l

/
v ∼= 17 ns (see Eq. 4.73)) and used a mosaic

graphite crystal as a beam splitter. They measured the coincidence count rate of two neutron
detectors having a time resolution of 1.1 μs and whose distance from the beam splitter could be
varied. They found a small dip when the detectors were equally distant from the beam splitter,
which they interpreted as the fermion anti-bunching effect. In this lucky experiment the thickness
of the graphite crystal had to provide a 50:50 overall beam splitting and the mosaic blocks must
have had a dimension (≈2 μm) to split each wave packet coherently; and the time resolution of
the detector must guarantee that neutrons arriving from all mosaic blocks are within the coinci-
dence window. In this case the mosaic blocks act as very small sources (≈2 μm) producing very
large coherence dimensions (several cm) at the position of the detectors. Since the orientation
of the lattice planes of the different mosaic blocks are slightly different, they act incoherently on
the beam, thereby creating these micro sources. A further experiment in this direction has been
done with a position-sensitive detector and showed again the anti-bunching effect (Iannuzzi et al.
2011). Theoretical discussions of such measurements are given by Yuasa et al. (2008) and Varro
(2008, 2011).

A more indirect but more feasible access to two-neutron correlation function exists by the dou-
ble neutron emission process from nuclei which could, in principle, form the basis for two-particle
neutron interferometry (Boal et al. 1990, Colonna et al. 1995). Neutron–neutron correlations are
independent from the long-range Coulomb interaction which makes such investigations more sen-
sitive to the space-time characteristics of the emitting nucleus. A typical example of such an idea
is the deuteron desintegration by the reactions

n +D → 2n + p and π – +D → 2n + γ . (10.12)
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Figure 10.4 Experimental arrangement for a two-particle neutron
correlation experiment at high energies

A conceptual arrangement is shown in Fig. 10.4. The proton or gamma quantum provides a
start signal in a scintillator. Neutrons are emitted in the singlet state and have an energy of
several megaelectron volts and have nearly the same direction and comparable energies. They
are therefore candidates for such studies (Breunlich et al. 1974). The proper shielding of both
detectors and fast electronic gates are important requirements to avoid cross-talk effects and
to get reliable results (Cronqvist et al. 1992, Kun et al. 1992, De Yong et al. 1996). A pos-
sible anti-correlation has been observed for low relative and low total momentum pairs of
neutrons.

The expected anti-correlation has also been observed in the double neutron decay of the 44Ca
compound nucleus (Dünnweber et al. 1990). The coincidence counting rate shows a marked dip
for equal momenta of the emitted neutrons. The observed width can be associated with the decay
width of 60 keV and can be explained by the overlapping of antisymmetrized wave packets of both
neutrons.

In particle physics the Hanbury-Brown and Twiss phenomenon goes by the acronym GGLP
effect after the authors of the first article in this field (Goldhaber, Goldhaber, Lee, Pais 1960).
The different angular distributions for the like pairs (π+π+ or π –π –) and the unlike pairs (π+π –)
gave rise to developing the time correlation for bosons and fermions (Koonin 1977). Many pair
emission processes (pp, nn, np) in heavy ion collisions show related bunching and anti-bunching
effects (Ghetti and Helgessoson 2005).

10.10 Search for Nuclear Entanglement

From deep inelastic neutron scattering experiments from liquid H2O–D2O mixtures an appar-
ent observation of strong but short-lived entanglement of adjacent protons and deuterons has
been claimed (Chatzidimitriu-Dreismann et al. 1997a). But from condensed matter physics much
shorter relaxation times (coherence times) at room temperatures are expected and quasi-elastic
neutron diffraction experiments confirmed this expectation (e.g., Springer 1972). Nevertheless,
it has been suggested that such entanglement manifests itself as a deviation (up to 10%) from
the scattering length density Nbc, which determines the phase shift inside an interferome-
ter (Chatzidimitriou-Dreismann 1997b). With different mixtures of H2O–D2O high precision
phase shift measurement based on a non-dispersive sample arrangement has been performed as
described in Section 3.1.2.1 (Fig. 3.6). No deviation greater than 0.4% from the conventional
theory of the linearity of scattering length densities has been found (Ioffe et al. 1999). This is in
agreement with the findings discussed in Section 10.3.
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10.11 Confinement–Gravity Coupled Quantum Phase

The confinement-induced topological quantum phase has been described in Section 6.9. The
transverse quantization of the wave function within narrow slits causes a slight delay of the transit
time, as proposed by Levy-Leblond (1987) and Greenberger (1988). This effect appears as a
phase shift as has been verified by the neutron interferometric method (Rauch et al. 2002). In this
case a rectangular potential exists between the material walls. The phase shift of the basic mode is
�ϕ = Lπ2

/
ka2, where L denotes the length and a the width of the slit (Eq. 6.67). An additional

effect is expected when the slits are in the horizontal direction and gravity causes a slightly tilted
potential as shown in Fig. 10.5. In this case the quantization in the vertical direction becomes
changed due to the presence of the gravitational field (Lushikov and Frank 1978). Interferometric
measurements can compete with experiments done with ultra-cold neutrons which also demon-
strate the quantization of neutron states above surfaces (Abele et al. 2003, 2010; Nesvizhevsky
et al. 2004, 2008; Jenke et al. 2011).

The potential that the neutrons experiences in the vertical direction inside the channel becomes
(Fig. 10.5)

Vy = mgy (10.13)

and inside of the walls of the channel

Vy =
2π h̄2

m
bcN +mgy. (10.14)

The energy quantization above a flat surface and an infinitely high potential can be found from
the roots of the Airy function (e.g., Flügge 1971)

A
[
–
(

2

mg2h̄2

)1/3
E
]
= 0. (10.15)

The related energy levels are given in Table 10.1. The solutions become more complicated
when the spatial limitation in the y-direction is taken into account. It shifts the energy levels slightly
up, as shown in Table 10.1 as well. The related wave function for the lowest level is located around
10 μm above the surface and the higher order states show maxima and minima and spread from
nearer distances to the surface to larger distances (Nesvizhevsky 1998). The neutron level popu-
lation increases as E3/2 and, therefore, the mixing of different quantum states must be considered.
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Figure 10.5 Confinement potentials in the
horizontal and vertical directions
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Table 10.1 Neutron Energy Levels Inside Confinement Tubes with a Width of
20 μm (in 10–13 eV)

Level no. (i) 1 2 3

Levels due to the geometry 5.113 20.45 46.01

Levels due to gravity at a→∞ 14.4 25.3 34.2

Levels due to vertical geometry and gravity Ei 14.5 30.9 56.4

It causes a broadening of the density distribution function. Narrow channels (a ∼ E1/mg) increase
the energy levels and act as a kind of filter, permitting the passage of neutrons with only low
“vertical” energy. Pokotilovski (1998) calculated the corresponding energy levels and found for
a = 20μm the values listed in Table 10.1.

For the basic mode (nx = 1, ny = 1), the related phase shift becomes

�ϕLG =
(
Eim a2

π2h̄2
+

1
2

)
Lπ2

ka2
, (10.16)

which is about 90% larger than those calculated without the effect of gravity (Eq. 6.65). Related
experiments are in progress. The main difficulties lie in the high degree of collimation needed
to excite only the low-lying levels. Otherwise, multimode excitation exists with the tendency of a
quantum chaotic behavior. As mentioned in Section 6.4 the advantage of neutrons lies in the fact
that they do not experience van der Waal and Casimir forces (Casimir and Polder 1948, Haroche
and Raimond 1993, Bordag et al. 2001). The level structure may be influenced by speculative
chameleon field as discussed in Section 10.17 and by Brax and Pignol (2011).

10.12 The Anandan Acceleration

In the course of analyzing the dynamics of a neutron’s motion through a region of space containing
both an electric field E and a magnetic field B, Anandan (1989a, 1989b) noticed an interesting
effect. Due to the neutron’s precession in the magnetic field, its translational motion is coupled
to its spin motion. Furthermore, its translational motion is coupled back to its spin motion via
the spin–orbit coupling, which depends upon the electric field E. He found that the classical
mechanics describing this coupling to the EM field results in an acceleration given by the formula

aA = –(γ /mc)(μ × B) × E, (10.17)

where γ is the neutron gyromagnetic ratio. This is a surprising effect since there appears to be an
acceleration of the neutron which is dependent on the product of the electric and magnetic field
strengths, and not dependent upon their gradients. That is, this acceleration persists even if the E
and B fields are time independent and spatially uniform.

We begin by showing that this is, in fact, the case and then discuss whether such an effect is,
at least in principle, observable by neutron interferometry. Consider a neutron moving through
a region of space containing constant and uniform magnetic and electric fields, as shown in
Fig. 10.6.
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Figure 10.6 Diagram showing a neutron
of initial polarization μ0 and velocity v0
traversing a region R containing both an elec-
tric field E and a magnetic field B. After
traversing R its polarization is μ and its
velocity is v

The Hamiltonian for the neutron is therefore

H =
p2

2m
– μ ·B – μ × E · p/mc, (10.18)

where p is the neutron’s canonical momentum

p = mv +
1
c
μ × E. (10.19)

As in our description of the AC effect (see Section 6.1), this expression is obtained from the
velocity v =

.
r, using Hamilton’s equation. That is

.
r =

∂H
∂ p

=
p
m

–
1
mc

μ × E. (10.20)

The second term in Eq. (10.19) is often called the electromagnetic or hidden momentum.
Differentiating Eq. (10.20) with respect to time t, we obtain the acceleration a, or the inertial
force

ma = m
..
r =

.
p –

1
c

d
dt

(μ × E)

=
.
p –

1
c

.
μ×E –

1
c

μ × Ė.
(10.21)

Since we are assuming that the electric field is static, the total time derivative of E is

.
E = (v · ∇) E. (10.22)

The neutron’s magnetic moment precesses in the effective magnetic field B′ = B – v
c × E. Thus,

Bloch’s equation for the precession of μ(t) reads

.
μ = γ μ ×

(
B –

v
c

× E
)
. (10.23)

The quantum mechanical correctness of this formula can be easily checked by evaluating the
expectation value of the commutator [H,μ] = –ih̄

.
μ.
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We now need to obtain an expression for
.
p, which is given by the second of Hamilton’s

equations, namely

.
p = –

∂H
∂ r

=
1
mc

∇ [(μ × E) · p] + ∇(μ ·B). (10.24)

To order 1/c, we can replace p by mv on the right-hand side of this equation. Working out the
gradient of the triple product, (μ ×E) · v, and requiring that ∇ ·E = 0 and that ∇ ×E = 0 in free
space, we find that

.
p =

1
c
[(v · ∇) (μ × E) – (μ · ∇)(v× E)] + ∇(μ ×B). (10.25)

From Eq. (10.21), we see that the first term here is (1/c)μ × .
E, which is identical, but of opposite

sign, to the third term of Eq. (10.19). Thus, inserting the expression for
.
μ from Eq. (10.23), and

this expression for
.
p into Eq. (10.21) we finally obtain the equation of motion:

m
..
r = ∇(μ ·B) –

1
c
(μ · ∇)(v× E) –

γ

c

[
μ ×

(
B –

v
c

× E
)]

× E. (10.26)

The first term is the magnetic field force dependent only upon B, and is zero if B is uniform.
The second term is the force on the neutron due to the electric field E. It is zero in the AC
geometry (see Section 6.1), and also if E is uniform. The last term is due to the Anandan accel-
eration (Eq. 10.17). It is dependent upon the joint presence of both a magnetic field and an
electric field. The mathematical analysis given here was first developed in this form by Casella and
Werner (1992).

This result predicts that a neutron placed in a region of space containing time-independent,
and spatially uniform electric and magnetic fields will begin to accelerate. This is surprising. But
where does the energy come from to alter the neutron’s kinetic energy? One should note also that
.
p = 0 in the region of uniform E and B, and furthermore the neutron’s energy ε is conserved,
since H is independent of time. That is, both the canonical momentum p and the energy ε are
constants of the motion.

We will now explicitly solve the coupled equations of motion (Eqs. 10.23 and 10.26) for the spin
and translational motions. Consider a neutron of initial velocity v0 moving in the x-direction, and
with polarization μ0 in the y-direction. We take the electric and magnetic fields to be collinear, and
pointing along the z-axis, as shown in Fig. 10.7. It is important to realize at the outset that the field
(v/c) × E will, in general, be small in comparison to B. For example, for neutrons of wavelength
λ = 2.5 Å, v = 1.60×105 cm/s, and an electric field of E = 250 kV/cm = 830 statvolts/cm, v0E/c =
0.046 gauss. Furthermore, the Anandan force is weak, giving rise to a maximum acceleration

aA =
γ

mc
μnE B = 3.5 × 10–6E [statvolts/cm] ·B [gauss] = 0.15cm/s

for a magnetic field of 50 gauss. Consequently, the change in the neutron’s velocity will be small
for reasonable flight paths, say 10 cm, obtainable within perfect Si crystal interferometers. These
facts allow us to solve Bloch’s equation (10.23) independently from the equation of translational
motion (Eq. 10.26). That is, we replace v(t) by v0 in Bloch’s equation, and we see that the time
rate of change of the three components of μ are

μ̇x = γ (μyB – μzv0E/c),

μ̇y = γ μxB,
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Figure 10.7 Diagram showing a neutron initially polarized along
the y-axis traversing a region R along the x-axis which contains an
electric field E in the z-direction. There is a uniform magnetic field B
in the z-direction over all the space

and

μ̇z = γ μxv0E/c). (10.27)

To first order in E, the solutions are

μx(t) = μn sin ωLt,

μy(t) = μn cos ωLt,

and

μz(t) = (μnv0E/cB)(1 – cos ωLt), (10.28)

where ωL = γB is the Larmor precession frequency.
We are now in a position to solve Eq. (10.26) for the translational motion. For the geometry

under consideration, the magnetic and electric field forces act only when the neutron enters and
traverses the region of (assumed) uniform E and B. Thus, the equation of motion within the
region R only involves the Anandan acceleration, namely

m
dv
dt

= –
γ

c
(μ ×B) × E =

γ

c
[(E ·B)μ – (E · μ)B]. (10.29)

The second term in the square brackets is of order E2, and can therefore be neglected. The solution
of this equation for the velocity is then given by

v(t) = v0 +
μnE
mc

[x̂(1 – cos ωLt) + y sin ωLt]. (10.30)

Thus, the change in kinetic energy, to first order in E, is

1
2
mv2 –

1
2
mv02 =

μnEv0
c

(1 – cos ωLt). (10.31)
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The Zeeman energy is

–μzB = –
μnEv0
c

(1 – cos ωLt), (10.32)

which is precisely equal, but of opposite sign to the change in the neutron’s kinetic energy. The
total energy

ε =<H>=
1
2
mv2 – μ ·B =

1
2
mv02, (10.33)

is therefore conserved (Anandan and Rohrlich 2005). Consequently, we see that the energy nec-
essary to accelerate the neutron via the Anandan force is extracted from the magnetic potential
energy (–μzB).
As the neutron traverses the region of space containing the E and B fields, it precesses nearly in
the xy-plane about the magnetic field B = Bẑ. However, the motional field – vc × E = (v0E/c)ŷ
requires the plane of precession to be slightly inclined with respect to the xy-plane. This plane
is perpendicular to the vector Bẑ + (v0E/c)ŷ, as we may have anticipated. The precise Larmor
precession frequency is actually ωL = γB(1+v02E2/2c2B2). For the values of E and B used above,
the correction to ωL is of order 10–8.

According to Eq. (10.30), the neutron’s trajectory is along a circle superposed upon a linear
translation. How large is the radius R0 of this circle? Using γ = 2μn/h̄, we find that this radius is

R0 =
1
4π

λc · E/B, (10.34)

where λc = h/mc = 1.32 fm, which is the Compton wavelength for the neutron. Thus, for B = 50
gauss and E = 830 statvolts/cm, we find that R0 = 1.74 fm; indeed, a very small perturbation on
the trajectory. The center of the circle is at

R(t) =
(
v0 +

μn E
mc

)
tx̂ + R0ŷ.

The corresponding maximum change in velocity is �v/v0 = μnE/mcv0 = 10–12.
We now discuss the possibility of measuring the quantum-mechanical phase shift arising from

the Anandan acceleration by neutron interferometry. Since both the canonical momentum p and
the neutron’s energy ε are constants of the motion within R0, the change of phase is given by
dφ = 1/h̄(p · δx – εdt). However, when the neutron leaves the region R (Fig. 10.7) containing both
an electric field E and a magnetic field B there is a jump in canonical momentum given by

�px =
1
mc

μ ·
(
p× �E

�x

)
�t = μnE/c (10.35)

at the exit boundary, which we take to be located at x = D, where ϕL = ωLt = γBD/v0 = π . The
neutron’s velocity is conserved across this boundary and is given by

v = (v0 +�v)x̂ =
(
v0 +

2μnE
mc

)
x̂, (10.36)

according to Eq. (10.30). If the entire interferometer is placed in a uniform magnetic field B, as
shown in Fig. 10.8, the phase of the neutron wave packet traversing path II relative to path I is then
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Figure 10.8 This is a schematic diagram showing a proposed neutron inter-
ferometer experiment designed to measure the phase shift arising from the
Anandan acceleration. The incident beam is polarized along the z-axis (per-
pendicular to the plane of the interferometer). There is a uniform magnetic field
B = Bẑ permeating the entire region of the experiment. The initial |z> polar-
ized state is rotated to a |y> polarized state by the spin rotator, which contains
an additional magnetic field in the y-direction. The neutron wave packets will
process about Bẑ with the Larmor frequency ωL on both paths, I and II, of the
interferometer. The wave packet on path II traverses a region R containing an
electric field E = Eẑ. The distance from the point 0 to the point i along the
trajectory is such that there are integral numbers of Larmor precessions. After
traversing R the polarization is μ = –μ0 and the velocity is increased to v0 +
�v. At a distance L downstream from R the neutron traverses a second region
R′ of electric field identical to R which decelerates the neutron back to its initial
velocity v0. The net effect of the electric field is to cause a phase shift ��A

given by Eq. (10.37)

��A =
1
h̄
m�v · L =

2μnE
h̄c

· L, (10.37)

where L is the distance from the exit point from the region R containing the electric field E to the
entrant point of region R′ containing the same E. This formula is identical to the result for the
AC phase shift, except there, L was the distance traversed by the neutron within the electric field
region. One should note that this phase shift is independent of the neutron wavelength. Taking
E = 830 statvolts/cm again and L = 10 cm, we find that this phase shift is 5.08 mRad = 0.29◦. For
neutrons of wavelength λ = 2.5 Å and B = 50 gauss, the necessary length of the regions of electric
field is D = 0.55 cm. The experimental procedure for observing this phase shift is to measure
the phase difference between two interferograms obtained by rotating the phase flag, one with the
electric field on and one with the electric field off . Such an experiment is currently in the planning
stage at NIST.
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The phase shift given by Eq. (10.37) could be increased by some integer n, simply by having a
number of regions with electric field reversals as shown in the insert to Fig. 10.9, as first suggested
by Anandan (1989b) and described in some detail by Wagh and Rakhecha (1997). As n becomes
large the shift in velocity �v approaches its maximum value

�v = (μnB/2ε0)v0, (10.38)

where ε0 = 1/2 mv02. For B = 50 gauss, and v0 = 1.6 × 105 cm/s, �v/v0 = 1.15 × 10–8. The
trajectory of the neutron’s precession, μ(t), is shown schematically in Fig. 10.9. In the first region
of positive electric field, the neutron spin precesses from point a to point b on the circle in the plane
perpendicular to B′. In the second region having a negative electric field, the neutron precesses
from point b to point c on a circle in the plane perpendicular to B′′. Then in the next region
of positive electric field, the neutron precesses about B′ again from point c to point d and so
on. After traversing each region the z-component of the moment, μz, increases, finally reaching
μz = μ0 asymptotically. The decrease in Zeeman potential energy –μ0B goes into an increase of
the neutron’s kinetic energy and, thus, the increase of its velocity �v given by Eq. (10.38).

B' = B - Vo × E/c

E

e
d

b

a

c

y

x

Vo

B' B B''

z

μo

Ez (x)

x

D

Insert

Figure 10.9 The regions R and R′ of Fig. 10.8 could (in principle)
be replaced by regions containing a staggered electric field as shown in
the insert. The trajectory of the neutron’s magnetic moment μ(t) on
the “spin sphere” is shown schematically here. This evolution of the
neutron’s polarization is explained in the text
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10.13 Search for Basic Dissipative Terms

In a rather general form the Born–Markov and the von Neumann equations (Eq. 4.139) can be
written in the form

ih̄
∂ρ

∂t
= Hρ(t) – ρ(t)H + iL(ρ(t)), (10.39)

with

L(ρ(t)) = Aρ(t)A∗ – A∗Aρ(t) + ρ(t)A∗A.

To assure an entropy increase Amust be taken to be Hermitian. L produces dissipation and transi-
tions from pure states to mixed states. This equation is independent of the microscopic mechanism
responsible for the dissipative effects; it is the result of very basic physical assumptions, like prob-
ability conservation, entropy increase, and complete positivity (Spohn 1980, Scully and Zubairy
1997). This formulation has also been used for a loss of coherence induced by quantum gravity
effects at the Planck’s scale (Ellis et al. 1984; Hawking 1983, 1996). The dissipative term can be
written by a symmetric 4 × 4 matrix acting on the column density vector (ρ0, ρ1, ρ2, ρ3), which
can be written in terms of the Pauli matrices (ρ = ρiσi, σ0 being the identity):

L = –2

⎛
⎜⎜⎝

0 0 0 0
0 a b c
0 b α β

0 c β γ

⎞
⎟⎟⎠ . (10.40)

For generic initial conditions describing the interferometer situation, the time dependence of
the four components of the density can be calculated within first-order perturbative expansion
(Benatti and Floreanini 1999). This gives an intensity behind the interferometer as

I0 ∝
[
1 + e–A�D/h̄v cosχ +

|B|�D
h̄χv

sinχ cos θ ′
]
, (10.41)

where

A = α + a

B = α – a + 2ib = |B| eiθ ′ ,
and �D is the different path lengths within the phase shifter producing a phase shift χ . From
measured interference patterns, the related parameters can be extracted. First attempts in this
direction indicate an agreement with zero which imply γ = α and b = c = β = 0, and which is
compatible with complete positivity. For α a value of (0.71±0.21)×10–12 eV has been determined
(Benatti and Floreanini 1999). This indicates a non-vanishing value for basic dissipative effects of
the right order for a quantum gravity of “stringy” origin, but the results should be treated with care
because many assumptions have been made and no dedicated experiment has yet been performed.

10.14 Proper Time Effects in Gravity Experiments

In Section 8.5.6 we derived a general phase shift for the gravitational measurements in the form
(Eq. 8.108)

φ ∼= –ωct +
1
h̄

∫ (
mv2

2
–mU

)
dt, (10.42)
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Figure 10.10 Gravitation experiment with crystal plates at
different heights in a gravity field and at different tempera-
tures to keep the reflectivities unchanged

where ωc = mc2/h̄ denotes the Compton frequency and U = gH the gravitational potential along
the beam paths at heightH . In this connection it has been stated that the first term causes a general
phase which cancels out over both beam paths. The second term represents energy conservation
and is equivalent to the path integral method, which is used for all interferometer experiments
(Sections 1.2 and 8.1).

The question arises whether the first term can be measured separately. In this context an exper-
iment where the phase sensitivity of the crystal reflectivities at different heights are taken into
account is proposed (Fig. 10.10). The phase sensitivity can be calculated from the dynamical dif-
fraction theory and follows from the widths of the Pendellösung fringes as yH = 2.215/A with
A = π t/�0 (see Eq. 11.51 and Fig. 10.10). For a symmetric (2, 2, 0) silicon interferometer
and a neutron wavelength of λ = 2 Å this corresponds in momentum space to a sensitivity of
δk = 2.215/t, where t denotes the thickness of the interferometer plates. The momentum shift
due to gravity over a height H follows from energy conservation as δkg = m2gH

/
h̄2k0, which

gives a critical height for a phase-sensitive phase shift of Hc = 2.215h̄2k0
/
m2gt ≈ 5.6 mm. The

reflectivity of the crystal plates can be varied by temperature changes which alters the lattice con-
stant according to the linear expansion coefficient α = 4.2 × 10–6/K . For a H = 5-cm-height
interferometer with t = 5-mm-thick crystal plates a temperature difference between the lower and
upper crystal plates of 0.074 K would be adequate to compensate for the momentum change due
to gravity. This can give a method to use the phase-sensitive crystal reflectivities to investigate
different contributions to the overall phase of matter waves. For one spin state such a compensa-
tion and control of the crystal reflectivity can also be achieved by an appropriate magnetic field
corresponding to δkm = ±μBm/h̄2k.
10.15 Neutron Fourier Spectroscopy

In neutron interferometry the phase of the neutron wave becomes an observable which is influ-
enced by any momentum or/and energy change the beam experiences during its interaction with
a sample. Any phase change is measured by a superposition with a coherent reference beam not
being effected by the sample. In many cases a much higher sensitivity than in usual spectrometry
can be achieved because now the usual constraints do not exist. Namely, that the momentum
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Figure 10.11 Comparison of standard spectroscopy (above) and Fourier spec-
troscopy methods (below)

(energy) change �Q(�E) must be larger than the momentum (energy) width δk(δE) of the
beam. The new method shows many similarities to NMR and optical Fourier spectroscopy (e.g.,
Marshall and Verdun 1990). The Fourier spectrometric methods are mainly based on the van
Cittert–Zernike theorem which gives the connection between the coherence function and the
momentum distribution of the beam (see Eqs. 4.29 and 4.30). A schematic comparison of direct
and Fourier spectroscopy is shown in Fig. 10.11.

In Section 4.2 it has been shown that the spatial and time-dependent coherence function is
given by the Fourier transform of the momentum and energy distribution function (Eq. 4.28)

�(1)(�, τ) ∝
∫
ρ(k,ω) ei(k·�–ωt)d3kdω, (10.43)

where
∣∣�(1)(�,T)

∣∣ denotes the contrast of the interference pattern (Eq. 4.30), and the intensity is

I(�, τ) = I0
[
1 +

∣∣�(1)(�, τ)
∣∣ cos (k·� – ωt)

]
. (10.44)
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This function can be measured by applying various spatial phase shifts � or various temporal
delays τ .

The analogies to the van Hove formalism of neutron scattering from condensed matter should
be emphasized (van Hove 1954, Marshall and Lovesey 1971, Squires 1978). In this case, the
space and time-dependent correlation function G(r, t) is obtained as a Fourier transform of the
measured scattering functions S(Q,ω)

G(r, t) ∝
∫
S(Q,ω) ei(Q·r–ωt) d3Qdω. (10.45)

For elastic scattering (ω = 0) one gets

S(Q) ∝
∫
e–iQ·r G(r, 0) d3r, (10.46)

where G(r, 0) denotes the radial pair-correlation function describing the probability of finding an
atom (or a scattering length density element) at r when there is another one at r = 0. For plane
incident waves S(Q) represents the momentum distribution after scattering. The momentum
distributions of the incident beam (g(k)) can also be attributed to an effective correlation function
G0(�, 0) where we get (Q = k – k0)

g(Q)∝
∫
e–iQ·r G0(�, 0) d3r, (10.47)

for a scattering vector Q = k – k0. A comparison with Eq. (10.44) shows the equivalence of the
correlation and the coherence function

�0(�)=̂G0(�, 0). (10.48)

The momentum distribution of the beam after scattering from the sample is given by the
convolution of the scattering function and the momentum distribution of the incident beam:

gs(Q) = S(Q) ∗ g(Q). (10.49)

This shows a close connection between the resolution function of a distinct experiment and the
related beam properties described by their correlation (coherence) function (see Gähler et al.
1996, Rekveldt 1996, Gaehler et al. 1998).

When one considers the transmitted and scattered beam one gets the following momentum
distribution behind the sample

gm(Q) = e– tDg(Q) +
(
1 – e– sD

) (
S(Q) ∗ g(Q)

)
, (10.50)

which yields after some algebraic calculations the coherence functions with and without sample

|�m(�)|
|�0(�)| = e– tD +

(
1 – e– sD

)
G (�, 0) . (10.51)

The effective beam attenuation (exp(– tD)) can be measured from the intensity ratio with and
without the sample. Equation (10.51) shows that the correlation function can be obtained directly
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from the measurable coherence functions. The measurement scheme shown in Fig. 10.12 is a
one-dimensional one. Therefore, the sample must be oriented in all three dimensions in order to
obtain the whole correlation function (Rauch 1995b). A wide beam and a broad incident wave-
length spectrum can be used. A very interesting application may also be a direct measurement of
the surface profile in neutron reflectometry, but other small-angle scattering phenomena and struc-
tural investigations may also profit from this new technique. In this case the scattering function
within the Rayleigh approximation is (Hayter et al. 1976, Lekner 1987)

I(Qz) ∝ S(Qz) ∝ 1

Qz
4

∫
e–iQzz

df
dz

(z)dz, (10.52)

where df /dz denotes the gradient of the scattering length density profile f (z) = N(z)bc(z) of the
layered surface. Applying the van Cittert–Zernike theorem (Eq. 4.28) one obtains

�(�z) =
1

Qz
4

∫
df
dz

(z′) F(z – z′)dz′, (10.53)

where

F(z – z′) ∝
∫

1

Qz
4 e

iQz(z–z′) dQz, (10.54)

for Qz > (4πNb)1/2.
Equation (10.52) is equivalent to the form one gets by the Born approximation (or the Riemann

integral)

I(Qz) ∝ 1
Q2
z

∣∣∣∣
∫
N(z)bc(z) eiQzz dz

∣∣∣∣
2

. (10.55)

In both cases, this gives the well-known 1/Q4
z Fresnel reflectivity of a flat surface of a com-

pact material. Since the square of Fourier transforms is equivalent to the Fourier transform of

Neutron interferometer

Vertical
phase
shifter

Sample

δ kz/k0
δ kz/k0

Neutron
detector

0

Figure 10.12 Scheme of a spatial Fourier spectroscopy
experiment
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Figure 10.13 Scattering length shape function (above) and
its auto-correlation function (below) which relates to the inter-
ferometric coherence function

the auto-correlation function of the scattering profile (Wiener–Khinchine theorem), one obtains
the measurable correlation (coherence) function most easily from the auto-correlation function
of the scattering profile. Figure 10.13 shows the expected reflection profile and the expected
coherence function of a five-layer surface structure. Thus, a unique reconstruction of the surface
structure should become feasible by this phase-sensitive interferometric method. Progress in exact
phase determination in standard neutron reflectometry should be mentioned here (Lipperheide
et al. 1995, Majkrzak and Berk 1995, Majkrzak et al. 1998). In this case the crystallographic
phase problem has been solved by adding known reference layers onto the surface of the layered
structure.

Using an incident beam described by stationary Schrödinger cat-like states may provide another
method. Such states have been identified when the wave trains of the coherent beams inside an
interferometer are shifted more than their coherence lengths (Jacobson et al. 1994; Section 4.5.2,
Fig. 4.31). A similar situation exists in spin-echo spectroscopy (Fig. 4.32). In these cases, spatially
separated coherent packets exit behind the interferometer which exhibit a marked modulation in
momentum space.

In case of a Gaussian-shaped incident beam which equals a Gaussian resolution function, the
neutrons “feel” a spatial region in the sample of about �c ∼= (2δk)–1 around the origin. On the
other hand, a well-separated coherent double-peaked incident beam “feels” the physical situation
in the sample mainly at the origin and at a distance of its separation �, which is adjustable by the
phase shift applied inside the interferometer. In the limit of nearly δ-functions like double peaks
an intensity measurement as a function of � directly gives the radial dependence of the van Hove
correlation function
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I(�)∝G(�, 0). (10.56)

It should be mentioned that this situation can more easily be approached when a rather pol-
ychromatic incident beam is used. This, of course, also increases the intensity considerably.
No momentum scan would be necessary. Spin-echo systems (Section 2.4) have also been pro-
posed for spatial Fourier spectroscopy for small-angle scattering and reflectometry applications
(Rekveldt 1996) and realized by Bouman et al. (2008). This principle is based on the difference in
Larmor precession angles in spin-echo coils when scattering from a sample between the two pre-
cession fields of a spin-echo spectrometer (Fig. 2.19). It can also be explained by the appearance
of a spatially separated coherent beam (Fig. 2.20). When the measurements are performed as a
function of the strength of the precession field, the real space correlation function can be obtained.
All depolarization effects appear as dephasing effects. A comparison between scattering and spin-
echo technique in the case of grating diffraction from a grooved silicon structure has been done
by Trinker et al. (2007). Krouglow et al. (2008) gave a comprehensive description of the phase or
polarization signal and the real-space structure of the sample.

Fourier spectroscopy can be extended to time-dependent phenomena which are associated
with an energy change of the beam (ω �= 0). In this case, a purely energy-dependent phase shift
must be applied inside the interferometer. This can be achieved by means of a neutron magnetic
resonance energy transfer system. This idea has been tested in the past (Badurek et al. 1986;
Section 5.3). A resonance spin flip inside a magnetic field B0 is connected with an exchange of
the Zeeman energy h̄ωr = 2μB0 (Alefeld et al. 1981b, Weinfurter et al. 1988; Fig. 5.8), where ωr

represents the frequency of the oscillating field (Larmor frequency). When a spin flip is applied
to both coherent beams inside the interferometer, the wave function of the forward beam behind
the interferometer is (see Section 5.4, Eqs. 5.14 and 5.19)

ψ→ ei(ω–ωr1)t
∣∣↓> +eiχ ei(ω–ωr2)t

∣∣↓>. (10.57)

In most experimentally feasible situations, the net energy transfer is much smaller than the
energy width δE of the beam h̄�ωr = h̄(ωr1 – ωr2) = 2μ(B01 – B02) << δE. If the energy transfer
become comparable (h̄�ωr

∼= δE) or when the temporal delay time �t = 2μ�B0t/E becomes
comparable with the coherence time (�tc ∼ h̄/2δE ∼= �c/v) a related damping factor appears

I∝1 + |�(�t) | cos(�ωr.t), (10.58)

with

|� (�t)| = exp
[
(–�t.δE/h̄)2/2

]
. (10.59)

This can be interpreted as the Fourier transform of the energy distribution of the beam (e.g.,
Lauterborn et al. 1995). When �ωr.t is replaced by �t.ω, where ω = E/h̄, the full analogy between
spatial and temporal phase shifts according to Eq. (4.30) is recognized. Figure 10.14 shows a
typical arrangement of how this technique can be used.

Analogies to the well-established spin-echo method (Mezei 1972, 1980; Felber et al. 1998)
and to beam chopper Fourier spectroscopy should be mentioned (Colwell et al. 1968, Pöyry
et al. 1975). Spin-echo time (tse = 2μBL/mv3) exactly describes this correlation time appear-
ing in this kind of spectroscopy (see Eq. 2.37). The measured polarization of the beam behind a
spin-echo arrangement (Fig. 2.19) is proportional to the Fourier transform of the energy transfer
spectrum. Thus, the multiphoton exchange experiments within an oscillating field described in
Section 5.5 are typical examples of such time-dependent interferometric Fourier methods. When
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Figure 10.14 Sketch of a feasible space-time interferometric Fourier spectroscopy
experiment

a scattering target is placed between the precession fields of a spin-echo arrangement the measured
polarization of the scattered beam measures the Fourier transform of the scattering function
S(Q,ω) which is the time-dependent density–density correlation function of the scattering system
(van Hove 1954, Gähler et al. 1996)

< σz >=
∫
S(Q,ω) cosωtse dω

= I(Q, tse) =
∫
G(r, tse) eiQ·r dr .

(10.60)

Spatial and temporal Fourier spectroscopy can be done simultaneously when a proper neutron
magnetic resonance system is added to the interferometer and the intensity is registered stereo-
scopically with the phase of the oscillating field. Thus, a measurement of the coherence functions
provides direct access to the spatial and time dependence of the correlation functions describing
the static and dynamic properties of condensed matter. The related experimental technique will
be developed and tested for different simple substances where mainly large-scale structures and
long-time fluctuations are of interest. A comprehensive theoretical treatment which describes the
analogy between the neutron spectroscopic and the Fourier methods is still missing.

Rode and Jex (1999) performed inelastic X-ray interferometer experiments with vibrating cen-
tral crystal plates. Ultra-sound waves of slightly different frequencies around 10 MHz were fed
into the mirrors by quartz crystals attached on the sides of each crystal. Related beat effects have
been observed (see Section 5.4) and an energy sensitivity of 1.56 × 10–20 eV has been achieved.
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Similar experiments with neutrons are feasible and they can be adapted for high sensitivity thermal
phonon and artificially induced phonon spectroscopy.

10.16 Time-Dependent Fizeau Phase Shift

In Chapter 8.5 we described the neutron Fizeau effect for a plane plate and got a phase shift of
(Eq. 8.46; Fig. 8.18)

��Fizeau = –
αβ kxL
2 (1 – α)

, (10.61)

where L is the thickness of the sample and α =wx/vx is the ratio of the velocities of the bou-
ndary in direction perpendicular to the surface and the neutron velocity in this direction.
ß=V0/Ex denotes the ratio of the optical potential to the energy related to the x-component

D

Dλ

L(t)

Vwx

Vn

Vw

ε

Figure 10.15 Moving wedge shaped phase
shifter to produce a time-dependent Fizeau
effect
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of the neutron velocity. When one uses a moving wedge-shaped sample (Fig. 10.15) one
can generalize this formula to include the variable thickness of the sample during motion
(x ≡ L(t) = Dλvwt/D = vwttgε; Dλ = 2π /Nbcλ) giving the time-dependent phase shift

��Fizeau(t) =
V0v2w

h̄(vn – vwtgε)
.t. (10.62)

The phase factor can be written as

ei��(t) = ei�Et/h̄, (10.63)

which gives an energy change of

�E = h̄ω =
V0v2w

vn(vn – vwtgε)
≈ V0

v2w
v2n

(10.64)

and a time-dependent interference pattern as

I0 ∝ [1 + cos(χ + ωt)] . (10.65)

For V0 = 9 × 10–8 eV, vn = 1000 m/s, vw = 10 m/s one expects E = 9 × 10–12 eV = 9 peV. This
may be small but measurable with interferometric methods (see Sections 4.6.2 and 5.4; Sulyok
et al. 2012).

In an experiment a rotating disk can be used with a variable thickness and thickness steps
larger than the lambda thickness Dλ. The situation is analogous to time-dependent phases caused
by oscillating magnetic fields (Sections 5.3 and 4.6.2).

10.17 Search for Chameleon Fields

The accelerating expansion of the universe requires the existence of a long-range scalar interaction
(Khoury et al. 2004). Slow neutron can feel such screening fields when they are near to massive
surfaces or move within evacuated vessels within a neutron interferometer, where the chameleon
produces a bubble-like profile (Brax et al. 2013, Yu and Oh 2014). The whole effect arises from
a hypothetical coupling of matter to dark energy. Within the Ratra–Peeles model the chameleon
field can be written as

V (ϕ) = �4f (ϕ/�) ≈ �4 +
�4+n

ϕn
, (10.66)

with �4 = 3�A0H2
0M

2
Pl ≈ 2.4 × 10–12 GeV, where H0 is the Hubble rate now and MPl is the

reduced Planck mass, and n > 0. This potential yield a phase shift in an interferometer of

δφ =
βm2

kh̄2

∫
ϕ(x)dx, (10.67)

where the chameleon field fulfills within a medium with density ρ the equation

d2ϕ
dx2

= V (ϕ) +
β

MPl
ρ. (10.68)
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This can be calculated for an empty and a gas-filled vessel and related measurements can estimate
the interaction strength β of chameleons to matter.

Other proposals for measuring the scalar chameleon field by means of neutron interference
experiments exist in the literature (e.g., Pokotilovski 2013).

10.18 Quantum Zeno Tomography

In Section 4.3.1 (Fig. 4.14) it has been shown that a surprisingly high-quality interference pattern
can be observed when neutrons in one beam path of an interferometer are absorbed statistically.
On that basis Facchi et al. (2002) proposed a multi-loop interferometer setup where this effect is
multiplied and quantum Zeno tomography becomes feasible. Gain factors of about 100 can be
anticipated.

10.19 Complementarity and Equivalence Tests with
Unstable Particles

An unstable particle, like the neutron, used in a two-path interference experiment may decay
inside the interferometer, leaving “which-path” information and showing still full interference
features. This situation is comparable with the absorber experiments described in Section 4.3.
Complementarity tests are usually based on the Greenberger–Englert relation (Eq. 4.76), where
the path predictability PD depends on the particle decay time τ = 1/�. Related proposals have
been put forward by Bonder et al. (2013) and Krause et al. (2014). The equivalence principle
can be tested in a similar way and in both cases a proper time explanation is possible as well (see
Section 8.5.6). Unstable particles can be characterized by a complex mass

m = m0 – i�/2. (10.69)

The general solution to the unperturbed time-independent wave equation in free space becomes
(Greenberger and Overhauser 1979)

ψ(r) = A0 exp
[
ikr
(
1 + i

m�
2h̄k2

)]
. (10.70)

This adds in the COW experiment (Eq. 8.4) an imaginary phase shift

��
imag
’COW = i

(
g�A0

2v3

)
sinα (10.71)

and an additional reduction of the contrast by

VCOW = V0,COWcosh–1(��imag
COW) = V0,COWcosh–1(�/�d). (10.72)

� denotes the shift of both wave packets (Eq. 4.44) and �d the decay length (∼2000 km; Table
1.1). This indicates that the effect would be very small and very difficult to measure. Short-lived
atoms may be a better choice.
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Perfect Crystal Neutron Optics

The classical Mach–Zehnder and Michelson interferometers operate on the principle of coherent
division of the amplitude of an incident electromagnetic wave by partially reflecting, partially
transmitting objects, called beam splitters. The perfect Si crystals in the neutron interferometer
are the beam splitters and mirrors. Their operation depends upon the dynamical diffraction of
neutrons having a de Broglie wavelength in the range of 1 to 5 Å. Although the results and basic
physics of most of the experiments discussed in this book can be understood without a detailed
knowledge of the wave fields inside the perfect crystal slabs of the interferometer, it has been found
that the successful fabrication and utilization of this device requires a rather advanced analysis
of the dynamical diffraction process occurring within each of the single-crystal elements. The
main goal of this chapter is to provide the reader with a focused description of the physics of
dynamical diffraction in perfect crystal media that is necessary to understand the interferometer in
its essential details. In addition, there are a number of neutron physics experiments that do not use
the interferometer, but are directly based upon the exquisite coherent wave fields accompanying
the diffraction of neutrons in the perfectly periodic structure of silicon. The theoretical description
follows the early development of X-ray dynamical diffraction theory (Darwin 1914; Ewald 1916,
1928; von Laue 1931), which has been adapted to the neutron case by Bonse and Graeff (1977)
and by Rauch and Petrascheck (1978). Here we will also describe the first observation of the
oscillation of the integrated reflectivity of Si crystals as a function of thickness by Sippel et al.
(1965), and the observation of the Pendellösung fringe structure by Shull (1968, 1973). The
related “effective inertial mass” experiments of Zeilinger et al. (1986) and Raum et al. (1995),
which also use dynamical diffraction effects inside perfect crystals, have been discussed already in
Section 8.2.3.

11.1 Transition from the Kinematical
to Dynamical Diffraction

The first Born approximation assumes that the scattered wave is not rescattered within the crystal.
This assumption leads to the kinematical theory of diffraction for X-rays and neutrons, and it
predicts that the intensity of a Bragg reflected beam is proportional to the volume of the diffracting
crystal. It is clear that if this were strictly true, the intensity of the diffracted beam could exceed the
intensity of the incident beam, thus violating Liouville’s theorem. The origin of this difficulty with
the kinematical theory is that it ignores the obvious fact that the scattered waves will be substantially
rescattered in a crystal whose size is larger than some characteristic attenuation length, �p, called

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
© Helmut Rauch and Samuel A. Werner 2015. Published in 2015 by Oxford University Press.
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the primary extinction length. We will find that this length is typically 50 to 100 μm for thermal
neutrons having wavelengths λ = 1 to 2 Å in perfect Si crystals under Bragg reflecting conditions.
Thus, for crystals whose size is greater than �p the differential scattering cross-section dσ /d� will
no longer be proportional to the square of the Fourier transform of the neutron–crystal interaction
potential.

When a monochromatic incident neutron beam of wave vector k satisfies the Bragg condition
for a reciprocal lattice vector H, that is

k′ – k = H, (11.1)

the diffracted beam of wave vector k′ satisfies the Bragg condition for –H, and is rescattered back
into the incident beam. One would expect in general then that there will be a “dynamic” inter-
change of neutron intensity between the incident beam direction and the Bragg diffracted beam
direction inside any crystal medium. This multiple scattering of the incident wave, first into the
diffracted beam, then back again into the incident beam, and so on, represents the central physical
issue in the dynamical theory of diffraction. Beginning with the historic work of Darwin (1914),
von Laue (1931), Ewald (1916, 1928), Zachariasen (1967), and Kato (1974), this theory and its
applications to the X-ray case is highly developed. Excellent reviews such as those by Batterman
and Cole (1964), Jones (1963), and Pinsker (1977) have been written; and for the neutron case
the reader is referred to the papers by Stassis and Oberteuffer (1974), Sears (1979), Rauch and
Petrascheck (1978), and Lemmel (2013). There is a very large and interesting literature on the
various theoretical and experimental aspects of X-ray, neutron, and electron diffraction by perfect
crystals. We make no attempt here to review the entire theory or its experimental consequences.
We will first focus our attention on the dynamical diffraction of neutrons by a perfect crystal
in the symmetric Laue geometry shown in Fig. 11.1, which is the key optical element for our
understanding of the perfect Si-crystal interferometer.
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Figure 11.1 Wave vectors (a) and wave amplitudes of both wave fields inside a perfect crystal (b)
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11.2 Dynamical Diffraction for the Symmetric Laue Case

Consider an incident monochromatic wave A0eik0 ·r with k0 oriented at or near the Bragg condition
for the lattice planes shown in Fig. 11.1a. An incident wave vector that precisely satisfies the Bragg
condition lies on the Brillouin zone (BZ) boundary corresponding to the reciprocal lattice vector
H, which is normal to the lattice planes spaced a distance d = 2π /H apart. From the electron band
theory of metals we know that the BZ boundaries are planes in k-space representing the loci of
energy gaps in the electron energy spectrum. The Fourier components VH of the periodic crystal
potential V (r) mixes the neutron wave of wave vector k0 with the Bragg reflected wave of wave
vector k0 +H forming a coherent state, which is a standing wave along H. There are, in fact, two
solutions, say ψ+ and ψ–, to the one-particle Schrödinger equation for a given k0. The one, ψ–

with an energy ε– below the gap, has nodes between the atomic planes, whereas the other one, ψ+

with energy ε+ above the gap (see Fig. 11.2), corresponds to a standing wave with nodes at the
atomic planes (as shown in Fig. 11.1b). Both wave fields propagate parallel to the reflecting planes
with the velocity v// ∼= v cos θB. The extent of the admixture of the Bragg reflected wave into the
incident waves diminishes as the orientation of k0 moves away from the exact Bragg condition.

When an incident monochromatic neutron beam enters a perfect crystal at the Bragg condition
one would expect a similar splitting of the wave function into two components to occur. However,
in this case the energy of the neutron given by

E0 = h̄2k20/2m (11.2)

is conserved. The tangential component (parallel to the crystal surface) of the wave vector k0

is also conserved as required by phase matching across the boundary. However, the component
of the wave vector normal to the boundary is split into two parts. That is, the consequences of
the energy gap at the BZ boundary in the electron case are manifested in dynamical neutron
diffraction by a splitting of the allowed spectrum of wave vectors, giving rise to two solutions of
the Schrödinger equation. These two solutions are standing waves labeled ψα and ψβ in Fig. 11.1b,
one in phase and one out of phase with the atomic planes.
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Figure 11.2 Sketch of the dispersion
surface of neutrons inside a perfect crystal
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The neutron wave field inside the crystal is a solution of the time-independent Schrödinger
equation, which we write as

(∇2 + k20) ψ(r) = v(r)ψ(r), (11.3)

where

v(r) =
2m

h̄2
V (r), (11.4)

and k0 is determined by the fixed incident energy ε0 of the neutron. The scaled periodic poten-
tial v(r) has dimensions of centimeters–2. It has Fourier components vH ′ corresponding to every
reciprocal lattice vector H ′. That is,

v(r) =
∑
H′
vH′ eiH

′ ·r. (11.5)

But it is only the Fourier components corresponding to the specific reciprocal lattice vectors ±H,
normal to the Bragg reflecting planes of Fig. 11.1a, and the mean potential v0 that have a significant
influence on the reflected waves; thus, we write

v(r) = v0 + vHeiH·r + v–He–iH·r. (11.6)

In terms of the Fermi pseudo-potentials of the assembly of nuclei in the crystal

v(r) =
∑
j

bj δ(r – rj). (11.7)

Equating this expression for v(r) to that in Eq. (11.6), multiplying by eiH·r and integrating over
a unit cell of the crystal, we find a relationship between vH and the crystal structure factors FH ,
namely

vH =
4π
Vcell

FH , (11.8)

where V cell is the volume of a unit cell, and the structure factor is the sum over the n atoms of a
unit cell, namely

FH =
n∑
j=1

bj eiH·rj . (11.9)

The potential v(r) in Eq. (11.6) couples the incident internal wave of wave vector K 0 with the
diffracted wave of wave vector

KH = K 0 +H, (11.10)

such that wave field inside the crystal is of the form

�(r) = ψ0 eiK0·r + ψHeiKH ·r. (11.11)
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The internal wave vector K 0 differs slightly from the external incident wave vector k0 due to the
index of refraction of the crystal medium. Substituting the expression (11.11) for �(r) into the
Schrödinger equation (11.3), and equating coefficients of corresponding Fourier terms, we find
that it is a solution only if the wave vector K0 and the wave amplitude ψ0 and ψH satisfy the
following pair of coupled homogeneous equations:

(K2 –K0
2) ψ0 – v–HψH = 0, (11.12a)

and

–vHψ0 + (K2 –KH
2) ψH = 0, (11.12b)

where the wave vector K is an index of refraction modification of k0, namely

K ≡ k0(1 – V0/ε0)1/2, (11.13)

appropriate to non-Bragg reflecting conditions. Since Eqs. (11.12) are homogeneous, the deter-
minant of the 2 × 2 matrix of the coefficients of ψ0 and ψH must be zero, that is

∣∣∣∣ K2 –K0
2 – v–H

–vH K2 –KH
2

∣∣∣∣ = 0 (11.14)

or

(K2 –K0
2) (K2 –KH

2) = vHv–H . (11.15)

This equation is called the dispersion relation. It should be regarded as an equation for the internal
wave vectorK 0, which differs only slightly from k0. Since the internal wave vector for the diffracted
wave, namelyKH is given by the Bragg condition, Eq. (11.10), we note that Eq. (11.15) is a quartic
equation in K 0. That is, strictly speaking, there are four allowed values for K 0, each characterizing
an eigenfunction of the Schrödinger equation, for a given k0. However, vH is much smaller (by a
factor 1 part in 105) than any one of the wave vectors K , K 0, or KH . Thus, we can write

K +K0 ≈ 2k0 and K +KH ≈ 2k0, (11.16)

such that Eq. (11.15) can be written, to a very good approximation, as

(K –K0) (K –KH ) = (vHv–H)/4k02. (11.17)

This is a quadratic equation having two solutions for K0, which we will call K α
0 and K β

0 .
Equation (11.17) can be understood graphically, as shown in Fig. 11.3, where the loci of allowed
vectors K0 in k-space are shown. The loci are two branches of a hyperbola, and they are
called dispersion surfaces. The separation between the two branches of this dispersion surface is
a characteristic inverse length

κ0 = (vHv–H)1/2/k0 cos θB, (11.18)
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Figure 11.3 Sketch of the dispersion surfaces and the excited wave vectors inside a perfect crys-
tal. The part near to the dispersion hyperbola is enlarged by a factor of about 105 compared to
the length of the wave vectors

which is typically of order 100 cm–1. It is very small compared to the wave vector k0 ∼ 107 cm–1.
Thus, the scale of the region of the hyperbola is greatly expanded in the drawing. Even though
the splitting between the α- and β-branches of the dispersion surface is quite small, and the angle
between the wave vectors, say K α

0 and K β

0 , is tiny compared to the nominal Bragg angle θB, this
small region of k-space is where all the central features of the dynamical diffraction of neutrons
take place.

From the above discussion we therefore conclude that a given external incident plane wave
A0 eik0·r generates two internal waves having wave vectors K α

0 and K β

0 , nearly collinear and equal
to k0, but which differs from k0 by small components Nα

0 and Nβ

0 normal to the crystal surface.
By Bragg’s law, as given in vector form in Eq. (11.10), these two internal incident waves generate
two diffracted waves having wave vectors K α

H and K β

H . Thus, we see that the total wave field inside
the crystal consists of a coherent superposition of four plane waves, namely

�(r) = ψα0 e
iKα0 ·r + ψβ0 e

iKβ0 ·r + ψαH eiK
α
H ·r + ψβH eiK

β
H ·r. (11.19)

Since the wave vectors K α
0 and K

β

0 belonging to the α- and β-branches of the dispersion surface
differ by such small amounts, the neutron wave field will exhibit interesting interference “beats” on
a macroscopic scale (∼ 100 μm), called Pendellösung interference fringes, which we will describe
later. The two points, a and b, on the α- and β-branches of the dispersion surface, respectively,
are picked out by the orientation of the external incident wave vector k0 with respect to the crystal
lattice planes. These tie points move along the hyperbolas as the crystal is rotated through small
angles �θ away from the exact Bragg condition where the tie points are the diameter points of the
hyperbolas. That is, a given incident k0 excites only two tie points. For a given orientation of k0
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with respect to the reciprocal lattice vector H, the ratio of the diffracted wave amplitudes ψαH and
ψ
β

H to the incident wave amplitudes ψα0 and ψβ0 are fixed, and determined by Eqs. (11.12). The
magnitudes of these amplitudes relative to the incident plane wave amplitude A0 are adjusted to
satisfy continuity of the total wave function across the entrant boundary. For the incident wave
amplitudes we must have

ψα0 + ψβ0 = A0. (11.20a)

Since there is no external wave in the diffraction wave vector direction on the entrant surface, we
must have

ψαH + ψβH = 0. (11.20b)

That is, the wave field corresponding to diffraction is zero very near the entrant surface, while
taking a finite crystal depth for this part of �(r) to develop and become finite. It is convenient to
define the small wave vector

vH ≡ vH
2k0

, (11.21)

and write Eqs. (11.12) in matrix form

[
(K –K0) –ν–H

–νH (K –KH )

] (
ψ0

ψH

)
= 0. (11.22)

For a crystal, like Si, that has essentially no absorption νH∗ = ν–H . That is, the wave vectors are
all real (as we have implicitly assumed above) and the ratios of the wave amplitudes are seen to be
given by

ψH
α,β

ψ0
α,β =

K –K0
α,β

ν–H
=

νH

K –KH
α,β . (11.23)

The dispersion relation, with the definition of νH given above, is

(K –K0
α,β) (K –KH

α,β) = |νH | 2. (11.24)

Once the tie points are selected by a given incident k0, the differences (K–K0
α,β) and (K–KH

α,β) are
known. It is a straightforward matter to evaluate these differences from the geometry of Fig. 11.3.
The results are

K –Kα
0 = |νH |

(
–y –

√
y2 + 1

)
, (11.25a)

K –Kβ

0 = |νH |
(
–y +

√
y2 + 1

)
, (11.25b)

K –Kα
H = |νH |

(
y –
√
y2 + 1

)
, (11.25c)

and

K –Kβ

H = |νH |
(
y +

√
y2 + 1

)
, (11.25d)
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where we have defined the so-called “y-parameter,” which is a scaled misset angle �θ , namely

y ≡ �θ (k0 sin 2θB)/2 |νH |. (11.26)

Using Eqs. (11.25) in the expression for the two amplitude ratios given in Eq. (11.23), and the two
equations (11.20a) and (11.20b), satisfying the continuity of wave function boundary condition,
we have four equations for the four unknown wave amplitudes ψ0

α, ψ0
β, ψH

α, and ψH
β. The

solution is straightforward, and the results are

ψα0 =
1
2

[
1 – y(1 + y2)

–1/2
]
A0, (11.27a)

ψ
β

0 =
1
2

[
1 + y(1 + y2)

–1/2
]
A0, (11.27b)

ψαH = –
1
2
(1 + y2)–1/2

(
νH

ν–H

)1/2

A0, (11.27c)

ψ
β

H = +
1
2
(1 + y2)–1/2

(
νH

ν–H

)1/2

A0. (11.27d)

Furthermore, the wave vector Nα,β , giving the difference between k0 and Kα,β
0 , namely

Nα,β = k0 –K
α,β
0 , (11.28)

can now also be written down explicitly in terms of the misset angle �θ, or more conveniently in
terms of our dimensionless y-parameter. The result is

Nα,β =
{

ν0

cos θB
+

|νH |
cos θB

[
–y± (1 + y2)

1/2
]}

n̂, (11.29)

where n̂ is the inward surface normal unit vector at the entrant surface. The negative sign applies
to the α-branch and the positive sign applies to the β-branch of the dispersion surface, as shown in
Fig. 11.3. The phase variation near a Bragg position has been calculated in more detail by Lemmel
(2007) and is shown in his figures.

We now have a complete mathematical description of the wave fields inside the crystal. Our
next task is to extend these solutions to the free space beyond the back face of the crystal. In free
space, the wave vectors must again be of magnitudes |k0| so that the energy is E0 = h̄2k0

2/2m. The
wave function leaving the crystal will consist of two parts, which we write as

χ(r) = χ0eik0 ·r + χH eikH ·r , (11.30)

where |kH | = |k0|. From the geometry of Fig. 11.3, we find that

kH = k0 +H + δ, (11.31)

where

δ = 2k0�θ sin θB n̂. (11.32)
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This additional small wave vector allows the neutron energy to be conserved for misset angles
slightly off the exact Bragg condition. For a divergent beam it cancels out. The amplitudes χ0 and
χH of the outgoing waves are obtained by equating χ(r) as given by Eq. (11.30) to the internal
wave field �(r). This is a relatively easy task to carry out explicitly. The results are

χ0( y) ≡ T( y) · A0 =
[
cos � – i y(1 + y2)

–1/2
sin �

]
ei(φ1–φ0) · A0 (11.33)

and

χH ( y) ≡ R( y) · A0 = –i
(
νH

ν–H

)–1/2

(1 + y2)–1/2 sin � e–i(φ1+φ0) · A0, (11.34)

where the three phases ϕ0, ϕ1, and � are defined by

φ0 = ν0D/ cos θB (11.35a)

φ1 = y |νH |D/ cos θB (11.35b)

and

� = |νH | (1 + y2)1/2D/ cos θB. (11.35c)

Thus, we have explicit expressions for the transmission and reflection coefficients,
T( y) =χ0( y)/A0 and R( y) = χH ( y)/A0, respectively, for a crystal of thickness D. The intensity of
the diffracted beam is

IH = |χH |2 = |A0|2 sin2�/(1 + y2). (11.36)

The intensity of the forward-diffracted beam is

I0 = |χ0|2 = |A0|2
(
cos2� + y2(1 + y2)

–1
sin2�

)
, (11.37)

such that

|χH |2 + |χ0|2 = |A0|2, (11.38)

which is the necessary normalization required by conservation of neutrons passing through a non-
absorbing medium.

The diffracted beam intensity IH is a Lorentzian shaped peak, with rapid oscillations due to the
sin2� factor. A plot of this peak on the y-scale along with the corresponding forward-diffracted
intensity is shown in Fig. 11.4. The rapid oscillations are due to the interference between the α- and
β-branch wave functions which have slightly different wave vectors, KH

α and Kh
β . The oscillation

frequency is determined by the parameter νHD/cosθB = πD/�H , where �H is the Pendellösung
period to be discussed in Section 11.4. Averaging over these Pendellösung interference fringes,
one has

< IH ( y) > = (1/2) |A0|2(1 + y2)–1, (11.39a)

and

< I0( y) > = (1/2)|A0|2
[
1 + y2(1 + y2)

–1
]
. (11.39b)
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Figure 11.4 Intensity profiles of the forward (0) and deflected (H) beam behind a perfect
crystal slab for two different thicknesses. The dashed lines indicate the averaged intensity
profiles

The ratios of wave amplitudes χ0 and χH to the incident plane wave amplitude A0 given in
Eqs. (11.33) and (11.34) are the transmission, T , and reflection, R, coefficients that we will need
to describe the plane wave theory of the three-crystal LLL neutron interferometer. For absorb-
ing crystals, the scattering amplitudes b are complex, as described in Chapters 1 and 3. Thus,
the parameters νG characterizing the dynamical diffraction will also be complex. This creates no
additional mathematical complication, and numerical evaluation of I0 and IH is straightforward.

11.3 Anomalous transmission, Angle Amplification,
and High Collimation Effects

At the exact Bragg condition (�θ = 0, and the y-parameter = 0) the wave fields corresponding to
the α- and β-branches are

�α(r)= ψα0 e
iKα0 ·r + ψαH e

iKH
α ·r

= –A0 ei(K cos θB+κH /2)x sin (Hz/2)
(11.40a)
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and

�β(r) = ψ
β

0 e
iKβ0 ·r + ψβH e

iKβH ·r

= –A0 ei(K cos θB+κH /2)x cos (Hz/2).
(11.40b)

These are travelling waves in the x-direction and standing waves in the z-direction. The density
for the α-branch

|�α|2 = |A0|2 sin2

(
Hz
2

)
= |A0|2 sin2 (πz/d) (11.41a)

has nodes at the atomic planes, spaced a distance d apart, while the density for the β-branch

∣∣�β ∣∣2 = |A0|2 cos2
(
Hz
2

)
= |A0|2 cos2 (πz/d) (11.41b)

has nodes between the atomic planes as shown schematically in Fig. 11.1. (The spatial variables x
and z here should not be confused with the y-parameter of the previous section.)

The phases of the wave functions (Eqs. 11.39 and 11.40) are implicitly been set equal to 0 for
z=0, which corresponds to an atomic plane. This is the correct choice because it is only the
(single) sinusoidal part of the periodic potential V (r), namely

VH eiH·r + V–H e–iH·r = 2 |VH | cos Hz, (11.42)

that gives rise to the particular Bragg reflection on which we are concentrating our attention.
This perfect registry of the neutron standing waves with the atomic planes of the lattice leads
to the anomalous transmission, or Borrmann effect, that is familiar in X-ray dynamical diffrac-
tion. Since the α-branch neutron density is zero at the atomic planes (zn = nd), the absorption of
neutrons by the nuclei will be small for the neutron current carried by this part of the wave func-
tion, while absorption for the β-branch current will be enhanced. This effect was first observed
by Knowles (1959) for the neutron case. He showed that the intensity of neutron-capture γ-rays
varied in a particular way as a nearly perfect CdSO4 crystal was rotated through the Bragg condi-
tion. Anomalous transmission effects have been observed in InSb crystals by Sippel et al. (1962)
and Shilstein (1971). Of course, for Si the absorption cross-section, σa, is essentially zero, and
anomalous transmission effects are not observable.

Using the four-component wave function of Eq. (11.19), we can calculate the current density
J according to the quantum mechanical rule

J = (ih̄/2m) [�∇�∗ –�∗∇�]. (11.43)

There are many interference terms when this is written out in detail. Some of these terms oscillate
on the length scale of the unit cell, while others have a period of 105 to 106 unit cells. We are
interested in these last terms which give rise to the Pendellösung interference effects, to be dis-
cussed later. We average the current density over the unit cell to eliminate the unobservable rapid
oscillations. This averaged current density has three terms:

< J > = < Jα > + < Jβ > + < Jαβ >. (11.44)
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Figure 11.5 Directions of the neutron current inside a perfect crystal

The first term here is the current density carried out by the α-branch part of the wave function,
namely

�α(r) = ψα0 e
iKα0 ·r + ψαH e

iKαH ·r. (11.45)

The second term in Eq. (11.44) is the current density carried by the β-branch part of �(r), and
the third term arises from interference effects between the α- and β-branch wave functions. It is an
interesting and straightforward mathematical exercise to show that <Jα> is normal to the α- branch
dispersion surface and <Jβ> is normal to the β-branch dispersion surface at the tie points a and b
picked out by the orientation of the incident wave vector k0, as shown in Fig. 11.5. The last term
<Jαβ> is directed along H = Hẑ, being positive for certain depths x below the entrant surface and
negative for other depths. The result is that the total current density oscillates between the incident
beam direction and the diffracted beam direction as a function of the depth x in the crystal.

As the misset angle �θ is changed from positive to negative values over a narrow range of only
an arc second or so, the directions of the currents <Jα> and <Jβ> sweep over the angular range
between Ŝ0 and ŜH , encompassing the entire Borrmann triangle ABC of Fig. 11.6. Consequently,
it is seen that there is an enormous angle amplification effect. For a small misset angle �θ of k0
away from the exact Bragg condition, the current < Jα > will propagate across the crystal at an
angle � with respect to the lattice planes while the current <Jβ> will propagate across the crystal
at an angle –�. It is a matter of geometry to relate � to �θ, given the fact that < Jα > and < Jβ >
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Figure 11.6 Sketch of the Borrmann fan where waves become excited
from point A when a slightly divergent beam (arc sec) enters the perfect
crystal

are normal to the dispersion surfaces at the tie points a and b. It is convenient to define

� ≡ tan �/ tan θB (11.46)

to characterize this effect. Using the geometry of Fig. 11.5 and the equation of the dispersion
surface, Eq. (11.17), one finds the relationship between �θ and � to be

�θ = ± |VH |
E0 sin 2θB

[
�

(1 – �2)1/2

]
, (11.47)

where VH is the Fourier component of the neutron–nuclear interaction potential energy corre-
sponding to the reciprocal lattice vector, H, and E0 is the neutron’s incident kinetic energy. Using
Eq. (11.8) for H = (220) in Si, and taking ε0 = 20 meV, we find that |VH /E0| = 2.7 × 10–7. This
ratio sets the scale of the angle amplification. For small �, we can invert Eq. (11.48) to write � in
terms of �θ , namely
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�=

(
2E0 sin2 θB

|VH |

)
�θ . (11.48)

For the (220) reflection in Si for λ = 2 Å (E0 = 20 meV), θB ≈ 31.6◦, which means that the angle
amplification factor (2E0sin2θB/|VH|) in this equation is 2 × 106.

Kikuta et al. (1975) exploited this angle amplification effect to measure the small directional
changes of a neutron beam resulting from refraction by a prism, as shown in Fig. 11.7a. For
thermal neutrons, angles of refraction are typically of order of 1 arc sec. Absorbing slits, one on
the front face of a thick Si crystal and one on the back face, act as a crystal collimator, selecting
only those neutrons which travel across the crystal parallel to the lattice planes. After leaving the
first crystal, these neutrons enter a second thick crystal which is a part of a monolithic 2-crystal
rigid structure. If it were not for the deflection of the wedge placed in the open space between the
two crystals, the neutrons leaving the first crystal would travel straight across the second crystal
parallel to the lattice planes. However, since the neutrons are deflected by the wedge, their paths
split in the second crystal according to Eq. (11.48). The results of Kikuta’s experiment are shown
in Figs. 11.7b and 11.7c where the splitting in the second crystal is observed by scanning a slit
across the back face of the second crystal.

This same technique was used by Zeilinger and Shull (1979) in a measurement of the longitu-
dinal Zeeman effect. The related change of the neutron wavelength in the magnetic field is given
by δλ/λ = ±μB/2E0. The results of this experiment are given in Fig. 11.8. The birefringence of
a region of magnetic field for neutron waves is nicely displayed by these results. The fact that the
energy shift due to the magnetic field was only 10–8 eV demonstrates the sensitivity of the angle
amplification effect in perfect Si crystals. A comparison of Kikuta’s result and that of Zeilinger and
Shull also demonstrates the equivalence of an angular deflection and an energy change, because
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dynamical diffraction effects are sensitive to�θ = θ – θB only. Deflection effects change θ, whereas
an energy change varies θB. When inhomogeneous magnetic fields are applied, a force is acting
on the neutron and a strong bending of the trajectories occur (Zeilinger et al. 1986, Raum et al.
1995). This can be described by an effective mass formalism as shown in Section 8.2.3.

Such systems have also been used for precise measurements of gravitational effects acting on
the particle between and inside the crystal plates (Raum et al. 1995; Section 8.2.3, Fig. 8.16).
According to a proposal of Summhammer (1996), a direct measurement of the multiphoton
exchange in oscillating magnetic fields placed between the plates becomes feasible down to
frequencies of νhf ∼ 100 kHz.

Ray optimal considerations and dynamical diffraction theory show various spatial and angu-
lar focusing effects for various perfect crystal arrangements (Indenbohm et al. 1974, 1976;
Petrascheck 1976, 1986; Bonse and Graeff 1977; Zeilinger et al. 1979). In a spatial scan behind a
double-crystal LL arrangement a marked peak in the center of the Borrmann fan is expected and
has been observed experimentally (Zeilinger et al. 1979). The observation of spatial diffraction
focusing effects requires a narrow entrance slit and a narrow scanning slit behind the interfer-
ometer (or a position-sensitive detector). This spatial focusing is analogous to the central peak
phenomenon discussed in the previous section, where the narrow peak in the angular distribution
has been used. In both cases, a rather broad “background” distribution exists also. The cen-
tral peak follows from a coherent overlap of different wave components and inevitably a correct
description needs a detailed plane (or better spherical) wave diffraction theory, which shows that
the intensity in the focal area arises from neutrons that traveled in the α-branch wave field in the
first crystal and in the β-branch wave field in the second one (or vice versa), which compensates
for the overall phase shift. The diffraction focusing profile is obtained by the method of the sta-
tionary phase. In the Pendellösung-averaged and small absorption case (Petrascheck 1986) the
forward (0-beam) intensity for crystals of thickness t is given by

I =
Aπ
8

[
e–2A|�| +

1
2πA

√
1 –

�2

4
�

(
1 +

|�|
2

)]
, (11.49)
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where � = x/t tan θB and � denotes the step function. The diffraction spot in the center of the
Borrmann fan (x = 0) becomes very small, of order of a few microns but is usually broadened by
the width of the entrance slit. Additional effects are expected for very narrow entrance slits that
are on the order of the diffraction spot, as it is known from the X-ray case (Indenbohm et al. 1976,
Aladzhadzhyan et al. 1977).

The neutrons contributing to the broad background can be partly (50%) focused to the focal
spot by a properly shaped elliptical lens or two cylindrical lenses put into the beam behind the
first and second crystal plates (Zeilinger and Horne 1986). However, in this case, the focusing
condition for the central peak gets lost.

Neutrons crossing the crystal near to � ∼= 0 (Figs. 11.7 and 11.8) are transported through the
crystal by multiple zigzag reflections between the reflecting planes. When the slits are wide open,
this effect still persists but other beam paths contribute too. Thus, instead of measuring beam
deflection in ordinary space, one can do that in momentum space by measuring multiple Laue-
rocking curves. These are given by the convolution of Laue-reflection curves (Fig. 11.4) and show
a very narrow central peak with a half-width given by the lattice constant and the thickness of the
crystals, i.e., �� ∼= dhkl /t, which is on the order of 0.001 are sec (Bonse et al. 1977). This can be
used for highly sensitive angular measurements.

The first measurements have been done using a monolithic two-plate arrangement, where the
half-width of the narrow central peak was determined to be 0.007 arc sec (Bonse et al. 1979).
In these experiments, the parallelism of the lattice planes is guaranteed by the monolithic design
of the crystal and the high angular sensitivity is achieved by rotation of a wedge-shaped material
around the beam axis. The beam deflection δ is controlled by the index of refraction n, the wedge
angle β of the material, and the rotation angle α around the beam axis, namely

δ =
[
2 (1 – n) tg

β

2

]
sinα. (11.50)

Figure 11.9 depicts the experimental setup and typical results for a triple Laue-diffraction arrange-
ment, where the needle structure is even more pronounced than in the two-plate case. The figure
shows the broadening of the central peak due to diffraction effects at a macroscopic slit having a
width of D = 2.5 mm (Rauch et al. 1983). These multiple Laue-rocking curves have also been
calculated analytically (Petrascheck and Rauch 1984b). The narrow central peak, which is to a
first approximation independent from the wavelength spread and other uncertainties, reads for
the two- and three-plate case as

Ic.p
(2) ∼= π

8
J1 (2Ay)
2Ay

Ic.p
(3) ∼= 3π

16

[
2
J2 (4Ay)

(2Ay)2
+
J2 (4Ay)

(4Ay)2

] (11.51)

For a symmetric Laue reflection for Si, it has a full half-width of yH (2) = 2.215/A and
yH (3) = 2.10/A, respectively (where A = Nbcλt/cos θB). These quantities, on the angular scale,
are δθ(2) = 0.7dhkl /t and δθ(3) = 0.67dhkl /t, respectively. Since the half-width can be measured up
to an accuracy of about 1%, one recognizes that this technique reaches an angular sensitivity up
to about 2.5 × 10–5 arc sec, which may have applications for fundamental physics applications.
The capability of this method for lowering the upper limit for an electric charge of the neutron
deserves attention. In the X-ray domain very precise values for the structure factor of Si were
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Figure 11.9 Broadening of the central peak appearing in multiple Laue-
diffractions due to single-slit diffraction of neutrons with a wavelength of 2 Å
from a slit with a width of 5 mm (Rauch et al. 1983a)

obtained with accuracies better than 10–3 from Laue-rocking curves of a polylithic double-crystal
system (Teworte and Bonse 1984, Deutsch and Hart 1985).

The influence of the aperture and of different slit geometries on various diffraction focusing
effect geometries was treated in detail by Teworte and Bonse (1987). They gave analytical expres-
sions for situations where the slit is placed before or between the perfect crystal plates and they
found good agreement with X-ray measurements where not only the broadening was observed
but also a shift of the peak position. The slit diffraction effect also causes the contrast of the
interference pattern to reduce when the slit width is reduced.

As mentioned earlier the neutrons crossing the crystal near a Bragg diffraction position experi-
ence zigzag reflections between the reflecting planes. This causes a time delay in comparison with
a free evolution. The time spent within a crystal of thickness L becomes, according to Eq. (11.1a),

τL =
L

v cos�B
=
dh,k,lm
h̄π

L tan�B. (11.52)

This shows that the delay time increases strongly when the Bragg angle approaches 90◦. Related
measurements have been reported by Voronin et al. (2000). They used a time-of-flight tech-
nique and a glancing incident neutron beam and rotated a perfect crystal around a vertical axis
(Fig. 11.10). The results show good agreement between theory and experiment (Fig. 11.11).

11.4 Pendellösung Interference Effects

Consider an experiment where the incident beam is limited by a slit which is narrow in compari-
son to the thickness D of the crystal. Then, for a given orientation �θ of the incident wave vector
k0, the wave fields �α(r) and �β(r)will only overlap in a small region of the crystal immediately



354 Perfect Crystal Neutron Optics

Incident neutron beam

Rotation axis

4
5

l

2
1

3

Diffracted beam

B

A

g

g

g
g
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adjacent to the slit since the current densities <Jα> and <Jβ> propagate separately across the
crystal at angles ±� to the lattice planes. However, at the exact Bragg angle, �θ=0, the cur-
rent densities < Jα > and < Jβ > are both along the normal to the entrant surface of the crystal.
Consequently, �α and �β overlap and interfere with each other across the entire thickness of the
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crystal. The total current density <J> will oscillate between the incident (Ŝ0) and diffracted (ŜH )
wave directions with a period �H corresponding to the difference in wave vectors

∣∣∣K α
0 – K

β

0

∣∣∣ = ∣∣∣K α
H –Kβ

H

∣∣∣ = κH (11.53)

given by Eq. (11.18). Thus, the period of these Pendellösung oscillations is

�H =
2π
κH

=
2πk0 cos θB

|vH | =
πVcell cos θB
λ |FH | , (11.54)

where we have used Eq. (11.8) to replace vH with the structure factor FH. For thermal neutrons
in Si, �H is typically 105 to 106 Å. At the exit face of the crystal, x = D, the neutron wave

Figure 11.12 Pendellösung oscillations at the center of the Borrmann fan as a
function of the wavelength for three different crystal thicknesses: (a) D = 1 cm,
(b) D = 0.5939 cm, and (c) D = 0.3315 mm. Reprinted with permission from
Shull 1968, copyright 1968 by the American Physical Society.
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function splits up into two waves, a single wave in the incident direction (the 0-beam) and a single
diffracted wave (the H-beam). The relative intensities of these two beams depend upon the phase
of the interference current densities <Jαβ> at x=D. As the crystal thickness is varied, the neutron
current leaving the crystal will first appear mainly in the 0-beam for very thin crystals, and then
entirely in the H-beam at x = �H /2, and subsequently it will oscillate back and forth between these
two beams with a period �D = �H as the crystal thickness is increased. Continuously varying the
crystal thickness is not simple from an experimental point of view. Alternatively, since the period
�H depends upon the neutron wavelength λ, these Pendellösung oscillations can be observed
experimentally by varying λ for a fixed crystal thickness. Such an experiment was carried out by
Shull (1968, 1973), and the results are shown in Fig. 11.12. The selection of only those neutrons
satisfying the exact Bragg condition, and therefore propagating directly across the crystal, was
done by placing a slit on the exit face of the crystal. The diffracted current density oscillates
according to the formula

IH = I0

[
1 – cos

(
2π

D
�H

)]
= I0

[
1 – cos

(
2DFHλ

Vcell cos θB

)]
. (11.55)

The period of the oscillations is predicted to be inversely proportional to the crystal thickness as
observed experimentally and shown in Fig. 11.12. It is seen that these Pendellösung oscillations
provide a very precise value for the structure factor FH and thereby the scattering length b of
Si. It should be noted that the Debye–Waller factor FG enters here, and therefore the value of
the scattering length b can be obtained by this method. The neutron interferometric technique
measures the forward-scattering amplitudes for which the Debye–Waller factor is unity.

The description of the Pendellösung oscillations and fringes given here is somewhat oversim-
plified, and there are a number of important subtleties involved in properly accounting for these
effects quantitatively. First of all, the incident beam is never sufficiently well collimated so as to
generate separate plane-wave solutions inside the crystal. Indeed, the entire dispersion surface is
generally simultaneous excited (illuminated) by the various divergent rays comprising the usual
incident beam. These divergences need only be a few arc seconds to give rise to currents <Jα>
and <Jβ> filling the entire Borrmann triangle. In order to describe these interference effects prop-
erly, it is necessary to specify the precise phase relationships between the various plane-wave
components of the incident beam. With a narrow slit in the incident beam on the entrant face
of the crystal, Shull (1973) carried out scans across the resulting diffracted beam, as shown in
Fig. 11.13. The results are correctly described if one assumes that the incident beam is a mon-
ochromatic spherical wave, for which the amplitudes and phase relationships of the plane wave
decomposition are known. For the X-ray case, spherical wave calculations were first carried out
by Kato (1961, 1968). Subsequent applications of the spherical wave description to the neutron
case and to the LLL interferometer were carried out by Petrascheck (1976), Petrascheck and
Folk (1976), and Bauspiess et al. (1976). An alternative, perhaps more general, approach to this
and other problems involving finite slits, based upon the Takagi–Taupin equations, is given in
Section 11.6.

Pendellösung interference effects are also manifested in the integrated reflectivity of the Bragg
reflected beam. That is, the integral of IG in Eq. (11.36),

Ry =

∞∫
–∞

IH ( y)dy = |A0|2
∞∫

–∞

sin2 �( y)
1 + y2

dy, (11.56)
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Figure 11.13 Intensity profile within the Borrmann fan behind a Si-Laue reflection measured
with a slit width of 0.13 mm. Reprinted with permission from Shull 1968, copyright 1968 by
the American Physical Society.

shows oscillations with a period equal to�H as a function of the crystal thickness D. This is shown
in Fig. 11.13. Difficult and time-consuming measurements of this effect using crystals of various
thicknesses were made by Sippel et al. (1965). Their data are shown in Fig. 11.14. Note that the
integrated reflectivity is linear in the crystal thickness D, i.e., proportional to the crystal volume
illuminated, only up to about 30 μm. For larger D the effects of extinction and Pendellösung
interference become significant. In the next section we give a brief discussion of the primary
extinction length, �p.

11.5 Primary Extinction and the Width of a Bragg Reflection

The diffracted beam intensity, Eq. (11.36), is a function of the misset angle �θ, and is dependent
upon two parameters, the crystal thickness D and the structure factor |FH|. We explicitly display
the dependence on �θ:

IH(�θ) =
|A0|2sin2

[
a(1 + b2(�θ)2)

1/2
]

1 + b2(�θ)2
. (11.57)

The two dimensionless parameters a and b are

a = |νH | D/ cos θB = λ |FH | D/Vcell cos θB (11.58)
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and

b = k0 sin 2θB/2 |νH | = π sin 2θBVcell / λ2 |FH |. (11.59)

This is a symmetric, rapidly oscillating function with a Lorentzian envelope that falls to 1/2 its
maximum value when the y-parameter is unity, or equivalently when the misset angle is

�θ1/2 =
1
b
=

λ2 |FH |
πVcell sin 2θB

. (11.60)

This width is typically less than 1 arc sec. It is sometimes called the Darwin width. From this
formula we can estimate the primary extinction length, �p. The formula for IH(�θ) must go
over to the kinematical diffraction results for sufficiently thin crystals. Just below the crystal sur-

face, the internal wave field is dominated by �0(r) = ψα0 e
iKα0 ·r + ψβ0 e

iKβ0 ·r, which diminishes as

�H (r) = ψαH e
iKαH ·r + ψβH e

iKβH ·r builds up. At depths further below the entrant surface the neu-
tron current oscillates back and forth between the incident beam direction Ŝ0 and the diffracted
beam directionŜH , giving rise to the Pendellösung phenomena discussed in the previous section.
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Therefore, we should expect that the primary extinction length �p is intimately connected to the
period of the Pendellösung oscillations, �H . We can see this from the kinematical diffraction point
of view, since the full effective Bragg reflection is established within a depth �p rather than D.
We know from fundamental diffraction theory that reducing the size of the scattering system
causes a broadening of the diffraction peak. In this case the effect is to cause the reciprocal lattice
pointH to appear broadened along an arc perpendicular toH in k-space by an amount 2π /�p, that
is 2π divided by the dimension of the scattering system. This is equivalent to a spread in crystal
orientations �θ of order 2π /�pH . Using Bragg’s Law H = 2k0 sin θB, this then implies that

�θ1/2 = π /�pk0 sin θB. (11.61)

Equating this expression to the Darwin width given by Eq. (11.58) and solving for �p we obtain

�p = πVcell cos θB/λ |FH |. (11.62)

This is precisely the same expression as the equation for the Pendellösung oscillation period �H

given by Eq. (11.54). Thus, for crystals of thickness D less than say 1/3 of �p, the integrated Bragg
reflection intensity will be proportional to the square of the structure factor and to the volume of
the crystal irradiated. The ratio of the integrated intensity in Eq. (11.52) to the kinematical result
is called the primary extinction factor εp, a number less than unity for all crystals of size greater
than λp ≈ 100 μm.

11.6 The Takagi–Taupin Equations

In most experimental situations the incident neutron beam is shaped by a monochromator crystal
placed some distance away from the neutron source (10–50 m and from the perfect single interfer-
ometer crystal (∼ 2 m). The beam’s spatial extent, angular divergence, and monochromicity are
defined by the overall experimental layout, from the reactor source and a neutron guide to the final
defining slits placed just in front of the first crystal of the interferometer. The beam is always diver-
gent, not monochromatic and always of finite spatial width. Clearly, it cannot be fully described
by a single plane wave, A0eik0·r. The geometry of the apparatus is important in the description of
the coherence properties of the beam as discussed in some detail in Section 4.2.

So far our discussion of the dynamical theory of neutron diffraction has been based upon an
incident monochromatic plane wave. There is an alternative approach to dynamical diffraction
theory, originally developed by Takagi (1962, 1969) and Taupin (1961), to analyze the effects
of strain on X-ray diffraction. Werner (1980) used this approach to calculate the effects of an
external force (magnetic or gravitational) on the dynamical diffraction of neutrons. In this chapter
we derive the Takagi–Taupin (T–T) equations and show how they can be solved in general, and
in particular for an infinitely narrow incident beam defined by a slit.

The equation to be solved is the Schrödinger equation, Eq. (11.3). When the central wave
vector k0 of the incident beam satisfies the Bragg condition for the reciprocal lattice vector H, we
know that the solution of the Schrödinger equation must be of the form

�(r) = ψ0(r) eiK0 ·r + ψH(r)eiKH ·r, (11.63)

where the wave vector KH ≡ K 0 + H, as defined in the plane wave treatment of dynamical
diffraction. However, here we allow the amplitudes ψ0(r) and ψH (r) to be functions of position
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to be determined by the Schrödinger equation and the appropriate boundary conditions. We are
free to fix the internal wave vector K 0 to be equal to k0, and thereby to incorporate all effects of
the index of refraction in the functions ψ0(r) and ψH (r). The magnitude of KH is then seen to
depend upon the crystal misset angle �θ (see Fig. 11.15); it is easy to see that

KH
2 ≈ k0

2(1 – 2�θ sin 2θB). (11.64)

Substituting Eq. (11.63) into the Schrödinger equation, and equating the coefficients of eiK0·r and
eiKH ·r, we obtain a pair of coupled differential equations for the amplitude functions

(k02 – v0 –K0
2) ψ0(r) + 2i K 0 · ∇ψ0(r) – v–HψH(r) = 0, (11.65a)

and

–vHψ0(r) + 2i KH · ∇ψH(r) + (k02 – v0 –KH
2) ψH(r) = 0. (11.65b)

Terms involving ∇2ψ0(r) and ∇2ψH(r) have been neglected since they are small compared to
KH · ∇ψH(r) and K 0 · ∇ψ0(r). As discussed in several ways already, a strongly diffracted beam
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Figure 11.15 Wave vectors used in the Takagi–Taupin theory
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occurs only over a very narrow range of misset angles �θ , which means that the direction of KH

is essentially fixed along ŜH , and K 0 is essentially fixed along Ŝ0. Thus, we can write the second
terms in Eqs. (11.65a) and (11.65b) as

K 0 · ∇ψ0 ≈ k0
∂ψ0

∂S0
and KH · ∇ψH ≈ k0

∂ψH

∂SH
, (11.66)

where the non-orthogonal coordinate frame (S0, SH) is the natural one. Consequently, the ampli-
tudes �0 and �H are most conveniently expressed as functions of S0 and SH, which means that
Eqs. (11.65a) and (11.65b) take the form

–ν0ψ0 + i
∂ψ0

∂S0
– ν–HψH = 0, (11.67a)

and

–νHψ0 + i
∂ψH

∂SH
– (β – ν0)ψH = 0, (11.67b)

where the definition of vH is given by Eq. (11.21), and β is given by the misset angle �θ as

β ≡ k0�θ sin 2θB. (11.68)

The above pair of coupled differential equations can be further simplified by defining

ψ0(S0,SH ) ≡ exp [–iν0(S0 + SH ) + iβSH ] U0(S0,SH ) (11.69a)

and

ψH(S0,SH ) ≡ exp [–iν0(S0 + SH ) + iβSH ]UH(S0,SH ). (11.69b)

Using these expressions in Eqs. (11.67a) and (b) gives the remarkably simple and symmetric pair
of coupled equations for the phase-modified amplitude functions U 0 and UH:

∂U0

∂ S0
+ iν–HUH = 0, (11.70a)

and

∂UH

∂ SH
+ iνHU0 = 0. (11.70b)

These equations are the neutron version of the X-ray Takagi–Taupin equations.
From a physical point of view, the origin of these equations is clear. The first equation shows

that the rate of change of the incident wave amplitude U 0 is proportional to the diffracted wave
amplitude UH; that is, the diffracted wave is being rescattered back into the incident beam direc-
tion. Similarly, the second equation shows that the rate of change of the diffracted wave amplitude
UH is proportional to the incident wave amplitude U 0. This is a mathematical embodiment of
the underlying multiple scattering processes that couples U 0 to UH as schematically illustrated
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in Fig. 11.16. The characteristic length scale of this multiple scattering process is v–1, which is
typically 50 to 100 mm.

Substituting the second of these equations into the first one, yields a second-order partial
differential equation for the diffracted wave amplitude UH(SO, SH), namely

∂2UH

∂S0∂SH
+ ν2UH = 0, (11.71)

where

ν2 ≡ νHν–H =
λ2
∣∣FH ∣∣2
V 2

cell

. (11.72)

An identical equation applies to the incident wave amplitude, U 0(S0, SH). This equation must
be solved subject to the continuity of the wave function and the current density as required by
quantum mechanics. However, we can envisage certain aspects of the solution by inspection from
the drawing of a typical multiple-reflection path. In order for the wave to be a part of the diffracted
beam at the exit face of the crystal, it must have made an odd number (2n + 1) of reflections.
The one shown in Fig. 11.16 is a 5-reflection path. The total diffracted wave is the sum over all
possible (2n + 1) reflection paths. Since v · �S is the probability for reflection in a distance �S,
the mathematical solution for UH must involve v2n+1 for any (2n + 1)-reflection path. We will see
that this physical idea is borne out by the explicit calculation of UH. Furthermore, it is clear that
UH(S0,SH) can only be finite within the Borrmann triangle ABC, since no multiple-reflection path
allows the neutron wave entering the crystal at point A to get into a region outside the Borrmann
triangle.

The general solution to the elliptical differential equation for UH(S0, SH) is (Werner et al.
1986),

Lattice
planes

ko
SH

B

Z

X

H

A
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C

Figure 11.16 Flight paths through the perfect crystal when
local changes of the lattice parameters exist
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UH(S0,SH ) =
∞∑

n=–∞
an

(
S0

SH

)n/2
Jn
(
2ν
√
S0SH

)
, (11.73)

where Jn(Z) are the ordinary Bessel functions of order n, and the an are coefficients to be deter-
mined from the boundary conditions. Suppose now that the incident beam is confined by a very
narrow slit as shown in Fig. 11.16. This incident “pencil” beam can be described by the wave
function

φ0(r) = A0 δ(SH ) eik0 ·r, (11.74)

where δ(SH) is a Dirac delta function. Along the lines AB and AC, the diffracted wave amplitude
remains constant. This is best seen from considering the line AC first, and then using symmetry
arguments for the line AB. This requires all an = 0 to be zero except for a0. We find therefore that

UH(S0,SH ) = –iνH J0
(
2ν
√
S0SH

)
. (11.75)

The incident wave amplitude U 0(S0, SH) is found from Eq. (11.70b) by differentiating
UH(S0, SH) with respect to SH, that is

U0(S0,SH ) = iνH –1 ∂UH(S0,SH )
∂SH

= ν

√
S0

SH
J1
(
2ν

√
S0SH

)
.

(11.76)

Equations (11.72) and (11.73) provide us with a complete description of the wave fields within
and on the boundaries of the Borrmann triangle ABC. It is of interest to calculate the intensities
I0 and IH on the back face of the crystal, that is, along the line BC. The coordinates S0 and SH can
be written in terms of the orthogonal (x, z) coordinates:

S0 =
1
2

(
x

cos θB
+

z
sin θB

)
(11.77a)

and

SH =
1
2

(
x

cos θB
–

z
sin θB

)
. (11.77b)

Using these coordinate transformation equations, we could plot I0 and IH as a function of z at
x = D, the thickness of the crystal. However, it is more convenient to write the argument of the
Bessel functions in terms of the angle parameter � = tan�/ tan�B used in Section 11.3 (Eq.
11.46), namely

2ν
√
S0SH =

νD
cos θB

√
1 – �2 = π

D
�H

√
1 – �2, (11.78)
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where �H is the Pendellösung period, given by Eq. (11.54). Thus, the profile of the diffracted
current density across the back face of the crystal from point B to point C is

IH (�) =
∣∣UG

∣∣2 = ν2∣∣A0

∣∣2J02
(
π
D
�H

√
1 – �2

)
. (11.79)

Similarly, the profile of the beam in the incident direction (the 0-beam) leaving the crystal is
given by

I0(�) = ν2
∣∣A0

∣∣2 ( 1 – �
1 + �

)
J1

2

(
π
D
�H

√
1 – �2

)
. (11.80)

Figure 11.17 Intensity profile across the
Borrmann fan when the incident beam has a
small misset angle. The curves are calculated
for a crystal thickness D/D0 = 10 (Bonse and
Graeff 1977)
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� ranges from +1 at point C to –1 at point B. The amplitude A0 of the incident wave is assumed
to be uniform in the misset angle �θ. When plotting the exit beam profiles versus �, we must
take the Jacobian of transforming �θ or y(�θ to � = �(�θ) into account. This Jacobian requires
replacing |A0|2 by |A0|2/(1 – �2)3/2. This will be discussed in Section 11.7.2. A plot of IH and I0 is
given in Fig. 11.17 for D/�H = 10. These interesting profiles are the result of Pendellösung inter-
ference between the α- and β-branch wave functions, when summed over the angular divergence
of the incident (spherical) wave. We note that IH is symmetric in � and peaks at the two edges
of the Borrmann fan. This can be understood from the fact that < Jα > and < Jβ > are directed
normal to the dispersion surfaces, and there are many points on these surfaces having normals
approaching Ŝ0 and ŜH . At one edge of the Borrmann fan (near point B) the current leading to
a strong diffracted beam is carried by the α-branch, and at the other edge of the Borrmann fan
(near point C) the current is carried by the β-branch. The measured profiles in Shull’s (1973)
experiment discussed in the previous section can be understood as the convolution of the finite slit
resolution with the dynamical diffraction profiles calculated here. The profile of the beam leaving
the crystal in the incident direction (the 0-beam) peaks near point B. The difference in the profiles
of IH(�) and I0(�) are important in understanding the profiles of the beams traversing the neutron
interferometer, which will be discussed in Section 11.8.

It was suggested at the beginning of this section that the contribution of all (2n + 1)-times
reflected waves to UH should involve a coefficient v2n+1. Although we did not derive UH here from
the point of view of summing over all possible paths leading to the (2n+1)-multiple reflection term,
we can identify this term in the result by looking at the series expansion of the Bessel function J0,
namely

UH = –iνH
∞∑
n=0

(–1)n
(
ν
√
S0SH

)2n
/(n!)2. (11.81)

For example, the 5-times reflected term involves vHv–HvHv–HvH or vHv4. That is, the incident
wave is first reflected, say to the right by vH , then to the left by v–H (back into the incident
direction), then again to the right by vH , and so on.

11.7 Theory of the Perfect Silicon Crystal Neutron
Interferometer

A full and complete analysis of the perfect Si-crystal neutron interferometer requires a detailed
description of the coherent wave fields which propagate through the device. The starting point
for this analysis is the plane wave dynamical diffraction theory for a symmetric Laue-geometry
crystal slab, as developed in the previous section. Repeated, sequential application of the transmis-
sion and reflection coefficients for each of the crystals of the interferometer leads to the formulas
describing the 0- and H-beam wave fields and the intensities leaving the interferometer, as shown
in Fig. 11.18. We first pursue this problem in Section 11.7.1 along the lines initially developed
by Rauch and Suda (1974), Petrascheck (1976), and Werner (1976). It is essential that both the
α- and β-branch wave fields for each crystal, and the consequent Pendellösung interferences, are
retained throughout the calculation. It is for this reason that the detailed structure of the wave
fields is considerably more complex in the neutron case for which absorption is zero than in the
X-ray case where absorption is significant (Bonse and Hart 1965).
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For practical reasons, the beam incident upon the interferometer is always restricted in its lateral
extent by apertures and slits. If the entrant slit is sufficiently narrow, a spherical wave description
of the resulting wave fields is necessary. Detailed spherical wave calculations have been carried
out by Petrascheck (1976), Petrascheck and Folk (1976), and Bauspiess et al. (1976). These
calculations are rather complex, but are necessary to analyze defocusing effects due to non-ideal
geometry, such as errors in the dimensionality of the interferometer resulting from its original
fabrication. In Section 11.7.2 we will give a brief discussion of the results of these spherical wave
calculations, with special emphasis on the loss of contrast due to defocusing (Kischko and Bonse
1985). A numerical study of the symmetric LLL X-ray interferometer based upon the Takagi–
Taupin equations has been published by (Accotto et al. 1994). Applications of this method to the
zero absorption neutron case would appear to be a natural extension. This has not yet been done.

11.7.1 Plane Wave Theory of the LLL Interferometer

In this section we use the dynamical diffraction results of Section 11.2 to develop a theory of the
symmetric LLL neutron interferometer. We assume that the interferometer is illuminated by a
plane wave as shown in Fig. 11.18. We denote the wave functions leaving the interferometer by
U0 = u0eik0·r and UH = uHeikH ·r, corresponding to the 0-beam and the H-beam, respectively.

In deriving the formulas for the transmission coefficient T( y) and the reflection coefficient
R( y) in Section 11.2 we implicitly assumed that the origin of coordinates was in the plane cor-
responding to the entrant surface of the symmetric Laue-geometry crystal. In order to use these
results to calculate the diffracted and transmitted waves leaving the middle mirror crystal, labeled
M in Fig. 11.18, and subsequently the waves leaving the analyzer crystal, labeled A, we must take
into account the displacement of the plane containing the origin of coordinates, first by L1 + DS

for the mirror crystals, and the by L1 +L2 +DS +DM for the analyzer crystal. It is easy to show that
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this displacement of the origin of coordinates by a distance l has the effect of adding a phase factor
ei l· δ to the reflection coefficient R( y), but has no effect on the transmission coefficient T( y). Here
δ is defined by Eq. (11.32), and can be rewritten in terms of the Pendellösung length �H given by
Eq. (11.54), and the y-parameter as (Eq. 11.26)

δ =
2πy
�H

n̂ . (11.82)

To obtain the wave functions U0 (r) and UH (r) leaving the interferometer consider paths I and
II separately. For path I we obtain for the amplitude

uI0 = A0TS
H ( y)R

MI
H ( y)RA

–H (–y)e
–iδ(DI

M+LI2) (11.83a)

and

uIH = A0TS
H ( y)R

MI
H ( y)TH (–y)eiδ(DS+L

I
1). (11.83b)

Similarly, for path II the amplitudes of the waves leaving the interferometer are

uII0 = A0RS
H ( y)R

MII
–H (–y)TA

H ( y)e
–iδ(DII

M+LII1 ) ei�β (11.84a)

and

uIIH = A0RS
H ( y)R

MII
–H (–y)RA

H ( y)e
iδ(DII

M+LII2 ) ei�β . (11.84b)

Here we have included the externally adjustable phase �β in beam path II. In the above equations
the superscripts S, MI, MII, and A on the transmission and reflection coefficients indicate the
appropriate crystal elements along each of the paths I or II. The subscripts H or –H on the reflec-
tion coefficients give the sign of the appropriate reciprocal lattice vector giving rise to the Bragg
reflection. We note that for an incoming plane wave with k0 oriented at a positive angle �θ (posi-
tive y) with respect to the nominal (central) k0, the angle of the diffracted wave vector kH when the
wave arrives at the mirror crystal will be –�θ (negative y). Since R( y) and T( y) depend upon the
appropriate crystal thickness D, the superscripts S, MI, MII, and A are necessary. The distances
between the crystal slabs are denoted by L1

I and L2
I on path I and by L1

II and L2
II on path II.

The intensity in the 0-beam is calculated by evaluating

I0( y) =
∣∣uI0( y) + uII0 ( y) ∣∣2, (11.85)

and the H-beam intensity is

IH ( y) =
∣∣uIH ( y) + uIIH ( y) ∣∣2. (11.86)

For an ideally perfect interferometer we take

DS = DI
M +DII

M = D, (11.87a)

and

LII
1 = LII

1 = LI
2 = LII

2 = L. (11.87b)
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Under these conditions, we obtain the following expressions for the intensities:

I0( y) = |A0|2A(y, ε) [1 + cos(�β)], (11.88a)

and

IH ( y) = |A0|2 [B(y, ε) – A(y, ε) cos(�β)], (11.88b)

where the functions A(y, ε) and B(y, ε) are

A(y, ε) =
2sin4(�)

[
y2 + cos2(�)

]
[
1 + y2

]3 , (11.89a)

and

B(y, ε) =
sin2(�)

(1 + y2)3

[
(cos2(�) + y2)

2
+ sin4(�)

]
. (11.89b)

These functions are shown in Fig. 11.19 for selected values of ε. Averaging over the Pendellösung
oscillations, that is over the angle �, one obtains

< A(y, ε) > = (1/8)(6y2 + 1)(1 + y2)–3, (11.90a)

and

< B(y, ε) > = (1/8)(4y4 + 2y2 + 3)(1 + y2)–3. (11.90b)

The angle � is defined by Eq. (11.35c), which we write as

� = ε(1 + y2)1/2. (11.91)

The parameter ε is conveniently written in terms of the Pendellösung length �H as

ε =
|νH |D
cos(θB)

= π
D
�H

. (11.92)

Similarly, the y-parameter can be written as

y = k0�θ sin(2θB)/2 |νH | = �θ �H

dhkl
, (11.93)

where dhkl is the lattice plane spacing for the Bragg reflection Hhkl having Miller indices (hkl).
Since the incident beam always has a divergence much greater than the inherent width of the

reflectivity (the Darwin width), we must integrate the expressions (11.89a) and (11.89b) over �θ,
or equivalently over y, to obtain the experimentally measured integrated intensities which we will
call I0(�β) and IH (�β). That is,

I0(�β) = N0
[
a(ε) + a(ε) cos(�β)

]
, (11.94a)
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Figure 11.19 Intensity profiles behind a symmetric LLL-interferometer for two crystal
thicknesses

and

IH (�β) = N0
[
b(ε) – a(ε) cos(�β)

]
, (11.94b)

where N0 = |A0|2 is the effective incident beam intensity. The coefficients a and b depend upon
the parameter ε and are given by the integrals:

a(ε) =
∫ ∞

–∞
A(y, ε)dy, (11.95a)

and

b(ε) =
∫ ∞

–∞
B(y, ε)dy. (11.95b)

The result of a numerical evaluation of these integrals is shown in Fig. 11.20. For the (220) reflec-
tion in Si, the Pendellösung length�H =64μm, for λ=2-Å neutrons. Thus, for an interferometer
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Figure 11.20 Integral reflectivities of a symmetric LLL-interferometer arrangement

with crystal plate thicknesses D=1 mm, the parameter ε=49. Asymptotically, for large ε,
a(ε)→ 9π /64 and b(ε)→ 23π /64, so that the ratio b/a = 23/9 = 2.55. The oscillations in a(ε)
and b(ε) are a direct consequence of the Pendellösung interferences occurring in each of the three
crystal plates of the interferometer.

We see that the 0-beam interferogram given by Eq. (11.94) is predicted to exhibit 100% con-
trast. The amplitudes of the oscillations of the H-beam are 180◦ out of phase with the 0-beam,
and the contrast is much less. The reason for this is that the wave function UI

H (r) involves two
transmission coefficients and one reflection coefficient, i.e., T2R, while the wave function UII

H (r)
involves three reflections, i.e., R3. As the phase shift �β within the interferometer is varied, the
intensity is swapped back and forth between the 0-beam and the H-beam, thus conserving total
neutron intensity, that is

I0(�β) + IH (�β) = N0[a(ε) + b(ε)]. (11.96)

Even though the predicted 100% contrast for an ideal interferometer is never realized in practice,
this neutron conserving relation is always valid.

11.7.2 Beam Profiles and Ray Tracing through
the Interferometer

In the previous section we developed a theory of the LLL interferometer based upon an incident
plane wave of essentially infinite lateral extent. We now describe the operation of the interferom-
eter from a somewhat different point of view. Consider an interferometer which is illuminated
through an entrant slit which is narrow compared to the thickness D of each of the three crystal
plates as shown in Fig. 11.21. The incident beam can be viewed as a set of divergent rays corre-
sponding to the angles �θ differing from the exact Bragg angle. The phase relationship between
these rays depends upon the coherence properties of the incident beam. If the nominally mono-
chromatic incident beam is produced by a perfect crystal monochromator, and the entrant slit is
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Figure 11.21 Rays through LLL-interferometers of plane waves
incident with slightly different angles of incidence

very narrow, the phase relationships between the various rays is appropriately given by the Fourier
decomposition of a spherical wave. However, if the monochromator is a mosaic crystal and the
incident slit is not so narrow as to cause appreciable diffraction (say greater than 105 Å), then
we may view the incident beam as an incoherent superposition of plane waves, each propagat-
ing separately through the interferometer. That is, interference between rays of differing �θ (or
equivalently, differing values of the y-parameter) is washed out and is not observable. This is the
point of view that is inherent in the construction of the multiple-ray diagram shown in Fig. 11.21.
We will now use this idea to calculate the beam profiles within the interferometer, and more impor-
tantly, the spatial profiles of the beams leaving the third plate of the interferometer. An extension
of the methods developed here have recently been used by Littrell et al. (1998b) to include the
effects of the Earth’s gravitational potential.

The fate of a given incident ray, oriented at a misset angle +�θ, as it propagates through a per-
fect symmetric LLL interferometer is shown in Fig. 11.22. These misset angles are again specified
by the y-parameter (Eq. 11.26). The current density < Jα> corresponding to the α-branch of the
dispersion surface propagates across the first crystal at an angle +�(�θ) as shown in Fig. 11.6,
which is determined by the misset angle �θ. Using the definition of �(�θ given by Eqs. (11.46)
and (11.47), and the definition of y(�θ), we have

� =
tan�
tan θB

=
y

(1 + y2)1/2
. (11.97)
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Multiple paths in the lll neutron interferometer
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The inverse relation between y and � is

y =
�

(1 – �2)1/2
, (11.98)

where the notation we use will generally suppress the dependence of �, �, and y on �θ. The
current density < Jβ > corresponding to the β-branch of the dispersion relation propagates across
the first crystal at an angle –�(�θ). Thus, for a given incident ray, characterized by y(�θ), we see
that the four exit rays from the first “splitter” crystal, labeled S, give rise to eight rays traversing
the second “mirror” crystal, labeled M. It is interesting and important to note that the dynamical
diffraction process gives rise to a focusing effect at the points FI and FII on the exit face of the
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middle crystal. Rays 2 and 3 come together at FII and rays 6 and 7 come together at FI for all
entrant values of the y-parameter. Of the 12 rays leaving the middle crystal, 6 rays combine and
interfere in the third analyzer crystal, labeled A. The other 6 rays miss the analyzer crystal, and
represent non-interfering beams, labeled NI and NII in Fig. 11.22. There are 4 points, labeled a,b,c
and d on the exit face of the third crystal, which give rise to 4 rays contributing to the 0-beam wave
function U0(r), and 4 rays contributing to the H-beam wave function UH (r). As the y-parameter
is varied, the points a and d move across the exit face of the analyzer crystal in the range (–3, 3) for
values of �A = ±3�; whereas, the points b and c move across the exit face in the range (–1, 1) for
values of �A = ±�. Following Horne (1986), we will call the paths leading to the exit points b and
c the primary paths, and the paths leading to the exit points a and d the maverick paths.

With this introduction to the multiple trajectories through the interferometer, it is a straight-
forward bookkeeping matter to calculate the spatial profiles of the beams at various points within
and exiting the interferometer, using the wave amplitudes calculated in Section 11.2 (Eqs. 11.27).
Here we express these amplitudes in terms of � = �( y), namely

ψα0 ( y) =
1
2
(1 – �), (11.99a)

ψ
β

0 ( y) =
1
2
(1 + �), (11.99b)

ψαH ( y) = –
1
2
(1 – �2)1/2(νH /ν–H )

1/2, (11.99c)

ψ
β

H ( y) =
1
2
(1 – �2)1/2(νH /ν–H )1/2. (11.99d)

Since the spatial points where the α- and β-branch currents (for a given y) leave the first crystal
do not coincide (except for y = 0), the continuity condition at the exit face of the first crystal give
exit wave amplitudes separately for the α and β waves. The corresponding amplitudes are given
by the branch-specific transmission and reflection coefficients, namely

Tα( y) = ψα0 ( y)e
–iNα( y)D, (11.100a)

Tβ( y) = ψ
β

0 ( y)e
–iNβ ( y)D, (11.100b)

Rα( y) = ψαH ( y)e
–iNα( y)D–iδ( y)D, (11.100c)

Rβ( y) = ψ
β

H ( y)e
–iNβ ( y)D–iδ( y)D. (11.100d)

Here Nα( y) and Nβ( y) are the normal vectors given by Eq. (11.29), and δ( y) is given by
Eq. (11.32). It is easy to show that they can be expressed in terms of �( y) as

Nα( y) =
π

�0
–
π

�H

(
� + 1

(1 – �2)1/2

)
, (11.101a)

Nβ( y) =
π

�0
–
π

�H

(
� – 1

(1 – �2)1/2

)
, (11.101b)
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and

δ( y) =
2πy
�H

=
2π
�H

(
�

(1 – �2)1/2

)
, (11.102)

where �0 and �H are the Pendellösung lengths defined by Eq. (11.54)

�0 =
π cos θB
ν0

and �H =
π cos θB
νG

. (11.103)

It will be noted in the following derivations that the Pendellösung phases in Eqs. (11.100) will not
enter the expressions for the intensities when the magnitudes of the wave functions are squared.

The contribution of the α-branch current density to the spatial profile of the diffracted beam
leaving the first crystal along path II is given by

Iα,r(�) = |Rα( y) |2 · J =
1
4
(1 – �2)J, (11.104)

where the Jacobian is obtained from Eq. (11.98), namely

J =
dy
d�

= (1 – �2)–3/2. (11.105)

It converts the distribution in misset angle �θ (or y) to a distribution in � which specifies the
spatial positions of the exit rays. For the α-branch current, the exit position on the first crystal is
�S = �. For the β-branch current, �S = –�, and its contribution to the diffracted beam profile is

Iβ,r(�) =
∣∣Rβ( y)∣∣2 · J =

1
4
(1 – �2)–1/2. (11.106)

Thus, the total diffracted (reflected) beam profile on path II after the first crystal is

Ir (�S) = Iα,r(� = �S) + Iβ,r(� = –�S) =
1
2
(1 – �S2)–1/2, (11.107)

which diverges at both edges of the reflected (r) beam, but has an integrated intensity

+1∫
–1

Ir(�S)d�S =
π

2
. (11.108)

The spatial profile of the forward-diffracted (transmitted) beam leaving the first crystal is given by

Iα,t(�) =
∣∣Tα( y) ∣∣2 · J =

1
4
(1 – �)2

(
1 – �2

)–3/2
, (11.109)

and

Iβ,t(�) =
∣∣Tβ( y) ∣∣2 · J =

1
4
(1 + �)2

(
1 – �2

)–3/2
, (11.110)
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where we must substitute � = �S in the expression for Iα ,t(�) for the exit point of the α-branch
current, and � = –�S in the expression for Iβ,t(�) to obtain the spatial profile of the transmitted
(t) beam leaving the first crystal. That is,

It (�S) = Iα,t(� = �S) + Iβ,t (� = –�S) =
1
2
(1 – �S)

2(1 – �S2
)–3/2

, (11.111)

which diverges at the right-hand edge of the beam (�S = –1). The integrated transmitted inten-
sity also diverges. The profiles Ir(�S) and It(�S) shown in Fig. 11.23 are the averages over the
Pendellösung oscillations given by Eqs. (11.79) and (11.80) and shown in Fig. 11.18. The intensi-
ties Ir(�S) and Ir(�S) are identical to the expressions (11.39a) for <IH( y)> and <I0( y)> obtained
earlier if we substitute y= S(1 – �S2)–1/2 and multiply by the Jacobian J = (1 – �S2)–3/2.

We now derive expressions for the beam profiles leaving the middle crystal. The reflected
beam on path II leaves the middle crystal along three rays emanating from the points A, B, and
FII. Similarly, the reflected beam on path I leaves the middle crystal along three rays emanating
from the points C, D, and FI. We note that the focal points FI and FII remain fixed as y(�θ) varies,
while the other four points (A, B, C, D) move in the range (–2, 2) of �M, where the midpoint of
the range is at FI for beam path I and at FII for beam path II. The locations of the A and C are
given by �M = +2�, while the locations of B and D are given by �M = –2�.

The reflected (r) beam intensity leaving the middle crystal from point A is

IA,r (�) =
∣∣Rα( y)Rα(–y) ∣∣2 · J. (11.112)

In writing this equation we have noted that the wave vector of the reflected beam from the first
crystal is given by kH = k0 +H + δ (see Eq. 11.31), where the addition of δ means that the rays
approach the reflecting planes in the middle crystal at a misset angle, –�θ , corresponding to a
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negative y-parameter as indicated in Fig. 11.22. When plotted as a function of �M, this reflected
intensity is

IA,r(�M) =
1
32

(
1 – (�M/2)2

)1/2
. (11.113)

This equation involves an extra factor of 1/2 coming from d�/d�M. Similarly, the reflected intensity
leaving the point B is given by

IB,r (�) =
∣∣Rβ( y)Rβ(–y) ∣∣2 · J, (11.114)

so that

IB,r(�M) =
1
32

(
1 – (�M /2)2

)1/2
. (11.115)

Neutrons can arrive at the focal point FII via two routes, paths 2 and 3 in the middle crystal. The
reflected beam intensity leaving the point FII is therefore

IFII,r(�) =
∣∣Rα( y)Rβ(–y) + Rβ( y)Rα(–y) ∣∣2 · J =

1
4

(
1 – �2

)1/2
. (11.116)

Since this intensity all leaves the middle crystal at the fixed focal point FII, its distribution in the
variable �M is a delta function, namely

IFII,r (�) = (π /8)δ (�M) , (11.117)

where the normalization is given by the integrated intensity

+1∫
–1

IFII,r(�)d� = π /8. (11.118a)

The integrated intensity of the reflected beam leaving the points A is

+1∫
–1

IA,r(�)d� =

+2∫
–2

IA,r(�M)d�M = π /32, (11.118b)

and similarly for points B we have

+1∫
–1

IB,r(�)d� =

+2∫
–2

IB.r(�M)d�M = π /32. (11.118c)

Thus, 2/3 of the integrated reflected intensity on path II leaving the middle crystal comes from the
focal point FII. A plot of the spatial profile of this interfering (reflected) beam on path II is shown
in Fig. 11.24. The numbers in parentheses are the integrated intensities.
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Figure 11.24 Averaged interfering (left) and non-interfering (right) intensities of beam
path II behind the second interferometer plate

The distribution of the intensity of the non-interfering (transmitted) beam, labeled NII in Fig.
11.22, is

IA,t(�M) = IB,t(�M) =
1
32

[1 + (�M/2)]2
[
1 – (�M/2)2

]–1.2
, (11.119)

and

IFII,t(�M) =
π

8
δ (�M) . (11.120)

The normalization of the delta function here is given by the integral

+1∫
–1

IFII,t(�) d� =

+1∫
–1

1
4
�2
(
1 – �2

)–1/2
d� =

π

8
. (11.121)

The integrated non-interfering (transmitted) intensities leaving points A and B are each 3π /32.
Thus, the total integrated intensity in the non-interfering (transmitted) beam is π /8 + 3π /32 +
3π /32 = 5π /16, while the total integrated intensity in the interfering (reflected) beam on path II
is π /8 + π /32 + π /32 = 3π /16 (sum of intensities from points FII, A and B). That is, 3/8 of the
incoming intensity to the middle crystal on path II contributes to the reflected interfering beam
which is directed toward the third crystal to combine and interfere with the beam traversing path
I, while 5/8 of the incoming intensity is lost to the transmitted non-interfering beam, labeled NII.
The spatial distribution of this non-interfering beam is also shown in Fig. 11.24.

We now derive expressions for the beam intensities leaving the middle crystal from points C, D,
and FI on path I. The reflected beam intensity from point C is

IC,r(�) =
∣∣Tα( y)Rα( y)∣∣2 · J =

1
16

(1 – �)2
(
1 – �2

)–1/2
, (11.122)
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and when plotted versus �M = 2�, we have

IC,r(�M) =
1
32

(1 – �M/2)2
(
1 – (�M/2)2

)–1/2
. (11.123)

For point D, the reflected intensity is

ID,r(�) =
∣∣Tβ( y)Rβ( y)∣∣2 · J =

1
16

(1 + �)2
(
1 – �2

)–1/2
. (11.124)

However, at point D we have �M = –2�, such that

ID,r(�M) =
1
32

(1 – �M/2)2
(
1 – (�M/2)2

)–1/2
, (11.125)

which is identical to IC,r(�M). The integrated intensities of IC,r(�M) and ID,r(�M) are each equal
to 3π/32. There are two paths, 6 and 7, which contribute to the reflected beam leaving the focal
point FI. Therefore, we see that the reflected beam intensity from this point is

IFI,r(�) =
∣∣Tα( y)Rβ( y) + Tβ( y)Rα( y)∣∣2 · J =

1
4
�2(1 – �2)–1/2. (11.126)

It has an integrated intensity

+1∫
–1

IFI,r(�)d� =
π

8
, (11.127)

which gives the normalization when plotted versus �M, namely

IFI,r(�M) =
π

8
δ(�M). (11.128)

Thus, we see that 2/5 of the intensity in the reflected beam on path I leaving the middle crystal
comes from the focal point FI. The profile of the interfering beam leaving the middle crystal on
path I is shown in Fig. 11.25.

To complete the calculation of the beam intensities leaving the middle crystal we now evaluate
the intensity of the transmitted non-interfering beam, labeled NI in Fig. 11.22. For point C we have

IC,t(�) =
∣∣Tα( y)Tα( y)∣∣2 · J =

1
16

(1 – �)4
(
1 – �2

)–3/2
. (11.129)

At point C, �M = 2�, so that when plotted versus �M we have

IC,t(�M) =
1
32

(1 – �M/2)4
(
1 – (�M/2)2

)–3/2
. (11.130)

For point D, where �M = –2�, an analogous calculation shows that

ID,t(�M) = IC,t(�M). (11.131)
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Figure 11.25 Averaged interfering (left) and non-interfering (right) intensities of beam
path I behind the second interferometer plate

The integrated intensities of both IC,t and ID,t diverge due to the divergence of their distributions
at the right-hand edge of the beam profiles at �M = –2. The non-interfering transmitted beam,
labeled NI in Fig. 11.22, leaving the focal point FI is

IFI,t(�) =
∣∣Tα( y)Tβ( y) + Tβ( y)Tα( y)∣∣2 · J =

1
4

(
1 – �2

)1/2
. (11.132)

Its integrated intensity is π /8, such that its distribution in �M is a delta function given by

IFI,t(�M) =
π

8
δ(�M). (11.133)

The distribution of the non-interfering beam NI leaving the middle crystal is shown in Fig. 11.25.
It is a straightforward matter to show that the sum of the transmitted (non-interfering) beam

and the reflected (interfering) beam leaving the middle crystal from points A, B, and FII is equal
to the beam incident upon the middle crystal on path II, namely (1/2)(1 – �2)–1/2, for every value
of �(�θ). A similar calculation for path I gives the necessary conservation condition, where the
incident intensity equals the sum of the reflected and transmitted intensities, namely (1/2)(1 + �2)
(1 – �2)–3/2, coming from the points C, D, and FI.

We are now prepared to calculate the spatial profiles of the interfering beams leaving the third
crystal, labeled A in Fig. 11.22. For a given incident wave vector k0 oriented at the misset angle
�θ, the wave function leaving the interferometer is

�(r) = u0eik0·r + uHeikH ·r, (11.134)

where the intensity emanates from the exit face of the analyzer crystal at the points a, b, c, and d.
As �θ is varied, the points a and d move on the exit face in the range (–3, 3) of the parameter �A.
Similarly, the points b and c move in the range (–1, 1) of the parameter �A. We begin with a
calculation of the intensity corresponding to the maverick paths leading to the exit points a and d.
For point a we have for its contribution to the 0-beam
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I a0 (�)=
∣∣ua0∣∣2 · J =

∣∣Rα( y)Rα(–y)Tα( y)ei�β + Tα( y)Rα( y)Rα(–y) ∣∣2 · J
=

1
32

(1 – �)2(1 – �2)1/2(1 + cos�β),
(11.135)

or, when plotted versus �A = 3� we have

I a0 (�A) =
1
96

(1 – �A / 3)2(1 – �A / 3)2) 1/2(1 + cos�β). (11.136)

The additional factor of 1/3 comes from the Jacobian d�A/d�. The phase difference between all
rays on path II and all rays on path I is �β, provided by a phase-shifting flag on path II. The
contribution of point a to the H-beam intensity is given by

I aH (�) =
∣∣uaH ∣∣2 · J =

∣∣Rα( y)Rα(–y)Rα( y)ei�β + Tα( y)Rα( y)Tα(–y) ∣∣2 · J
=

1
32

(1 – �2)3/2(1 + cos�β).
(11.137)

When this part of the H-beam intensity is plotted versus �A = 3�, we have

I aH (�A) =
1
96

(1 – (�A/3)2)3/2(1 + cos�β). (11.138)

We note that the contribution of the point a to the interferograms I0(�A,�β) and IH(�A,�β)
are in-phase, going up and down together as a function of the phase shift �β, but with different
amplitudes of oscillation. The reason for this is that only α-branch currents in each of the three
crystals contribute to the intensity leaving point a on the exit face of the analyzer crystal.

For the secondmaverick path leading to the exit point d, we note that only the β-branch currents
in the three crystals contribute. The resulting intensity profiles are identical to those coming from
point a, namely

I d0 (�A) = I a0 (�A) and I dH (�A) = I aH (�A), (11.139)

where we have used the fact that at point d, �A = –3�.
Calculation of the beam intensities leaving points b and c is somewhat more complicated. The

total wave function for the primary paths on paths I and II involves three terms each. For the
0-beam intensity emanating from point b we have

I b0(�) =
∣∣ub0∣∣2 · J =

∣∣(Rα( y)Rα(–y)Tβ( y) + Rα( y)Rβ(–y)Tα( y) + Rβ( y)Rα(–y)Tα( y)) ei�β
+
(
Tα( y)Rα( y)Rβ(–y) + Tα( y)Rβ( y)Rα(–y) + Tβ( y)Rα( y)Rα(–y)

)∣∣2 · J
=

1
32

(
1 – �2

)1/2
(3� – 1)2(1 + cos�β).

(11.140)
At point b, we note the �A = � since each term in this equation involves two α-branch currents
and one β-branch current. The contribution of the point b to the H-beam is

I bH (�) =
∣∣ubH ∣∣2 · J =

∣∣(Rα( y)Rα(–y)Rβ( y) + Rα( y)Rβ(–y)Rα( y) + Rβ( y)Rα(–y)Rα( y)) ei�β
+
(
Tα( y)Rα( y)Tβ(–y) + Tα( y)Rβ( y)Tα(–y) + Tβ( y)Rα( y)Tα(–y)

)∣∣2 · J

=
1
64

[ 9
(
1 – �2

)3/2
+(3�2 + 1)2(1 – �2)–1/2 – 6(3�2 + 1)(1 – �2)1/2 cos�β

]
.

(11.141)
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The “primary” paths leading to point c involve two β-branch currents and one α-branch cur-
rent. A calculation analogous to the one above for point b gives for the contribution of point c to
the 0-beam intensity

I c0(�) =
1
32

(1 – �2)1/2(3� + 1)2(1 + cos�β), (11.142)

and the H-beam intensity is symmetric in � and identical to that for point b, that is

I cH(�) = I bH(�). (11.143)

For point c, �A = –�; thus, when plotted versus �A we see that the 0-beam intensities from points
b and c are also equal.

We now have a complete mathematical description of the spatial profiles of the 0-beam and
H-beam leaving the third crystal of the interferometer. The spatial profile of the 0-beam is shown
in Fig. 11.26. We note that it is asymmetric about �A = 0, with two peaks occurring at �A = 0.874
and –0.763, coming from the primary paths (points b and c). The spatial profile of the H-beam,
shown in Fig. 11.26, is symmetric about �A = 0, showing singular peaks at �A = ±1. Themaverick
path contributions to both the 0-beam and the H-beam spatial distributions are smooth functions,
going to 0 at �A = ±3. The integrated intensities are the areas under these profiles, and are shown
in the parentheses in Fig. 11.27. We note that for the 0-beam 13/18 of the total intensity is due
to the primary paths and falls in the range (–1,1) of �A; while for the H-beam 43/46 of the total
integrated intensity comes from the primary paths and falls in the range (–1,1) of �A. The phases
of these beams are treated in more detail by Lemmel (2013).

The �-dependent interferograms for both the 0-beam and the H-beam are each composed of
a “maverick” and a “primary” component. The interferograms are of the general forms

I0(�,�β) = a0(�) + b0(�) cos�β, (11.144)

Figure 11.26 Averaged spatial intensity profiles behind the interferometer for the 0- and
H-beams. The primary part indicates the interfering and the maverick part the non-
interfering contributions
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Figure 11.27 Averaged visibility of the H-beam behind the interfer-
ometer (– sign indicates opposite phase to 0-beam)

and

IH(�,�β) = aH(�) + bH(�) cos�β. (11.145)

To conserve neutron flux as the phase �β is varied, bH(�) must be equal to b0(�), but of opposite
sign; and the mean intensities given by aH(�) and a0(�) must sum to give the total intensity
of the two beams on paths I and II incident upon the third crystal for every value of �(�θ).
We now explicitly establish that these requirements are satisfied. From Eqs. (11.136)–(11.140),
we can write down expressions for the mean intensities aH(�) and a0(�), and for the amplitudes
of oscillation bH(�) and b0(�) of the interferograms. The mean intensity of the 0-beam is given by

a0(�) = am0 (�) + a
p
0(p)

=
1
32

(
1 – �2

)1/2 [
(1 – �)2 + (1 + �)2 +(3� – 1)2 + (3� + 1)2

]
=

1
8
(1 – �2)1/2(1 + 5�2),

(11.146)

where the first two terms in the middle equation are for the maverick m paths (points a and d),
and the second two terms are for the primary p paths (points b and c). The mean intensity of the
H-beam is given by



Theory of the Perfect Silicon Crystal Neutron Interferometer 383

aH(�) = amH(�) + a
p
H(p)

=
1
32

(1 – �2)1/2[2(1 – �2)2 + 9(1 – �2)2 + (3�2 + 1)2]

=
1
8
(1 – �2)–1/2(5�4 – 4�2 + 3),

(11.147)

where the first term in the middle equation is for the maverick m paths, and the second and third
terms come from the primary p paths. The sum of these mean intensities of the 0-beam and
H-beam is therefore seen to be

a0(�) + aH(�) =
1
2
(1 – �2)–1/2. (11.148)

In a similar manner, using Eqs. (11.113)–(11.132), we can calculate the total intensity (for a given
�) on paths I and II entering the third crystal. After a small amount of algebra, it is found to be
given by

[IFI (�) + IC(�) + ID(�)] + [IFII (�) + IA(�) + IB(�)] =
1
2
(1 – �2)–1/2, (11.149)

which agrees with the expression (11.148) for the mean intensity leaving the third crystal in the
0-beam plus the H-beam.

The total amplitude of the 0-beam interferogram is the same as its mean value given by
Eq. (11.146). That is,

b0(�) = bm0 (�) + b
p
0(p)

=
1
8
(1 – �2)1/2(1 + 5�2)

. (11.150)

The amplitude of the oscillations of the H-beam interferogram is

bH(�) = bmH(�) + b
p
H(�)

=
1
32

[2(1 – �2)3/2 – 6(3�2 + 1)(1 – �2)1/2]

= –
1
8
(1 – �2)1/2(1 + 5�2).

(11.151)

Thus, bH(�) = –b0(�), as required for conservation of neutron intensity, independent of the
phase shift �β. It should be noted, however, that when plotted versus �A, the profile of the oscil-
lation amplitude bH of the H-beam (Fig. 11.27) is quite different from the profile of the 0-beam
oscillation amplitude, b0.

In most neutron interferometry experiments, the detectors are sufficiently wide open so as
to integrate over the spatial profiles of the beams leaving the interferometer. We are therefore
interested in the integrated intensities

I0(�β) ≡
+1∫

–1

I0(�,�β)d� = A0 + B0 cos�β, (11.152a)
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and

IH(�β) ≡
+1∫

–1

IH(�,�β)d� = AH + BH cos�β, (11.152b)

where the mean integrated intensities are

A0 =

+1∫
–1

a0(�)d� =
1
8

+1∫
–1

(1 – �2)1/2(1 + 5�2)d� =
9π
64

, (11.153a)

and

AH =

+1∫
–1

aH(�)d� =
1
8

+1∫
–1

(1 – �2)–1/2(5�4 – 4�2 + 3)d� =
23π
64

. (11.153b)

Thus, we see that the ratio of the average counting rates in the H-beam detector to that in the
0-beam detector is predicted to be

< IH(�β) >
< I0(�β) >

=
AH

A0
=

23
9

= 2.555, (11.154)

a prediction that is borne out by experiment. The integrated 0-beam amplitude of oscillation of
the interferogram is equal to its mean, i.e., B0 = A0. For the H-beam, the amplitude of oscillation
of the interferogram is given by

BH =

+1∫
–1

bH(�)d� = –
9π
64

, (11.155)

which is equal to B0, but of opposite sign. Therefore, we see that the predicted contrast of the
0-beam is 100%, but the contrast of the H-beam is

IH(max) – IH(min)
IH(max) + IH(min)

=
BH

AH
=

9
23

= 0.391, (11.156)

or 39.1%.
If the detectors are not sufficiently wide open to integrate over the entire widths of the exit

beams, the amplitudes of oscillation of the 0- and H-beam interferograms will not be equal in mag-
nitude. The assumption that the detectors are integrating over the entire beam profiles is not always
easily met, primarily because the maverick paths extend the profiles out to �A = ±3. The profiles
shown in Figs. 11.26 and 11.27 are drawn for an incident beam slit of zero width. For an incident
beam defined by a slit of widthW , the exit beam profiles are all broadened byW . That is, exper-
imentally measured profiles should be compared with distributions obtained after convoluting
the calculated profiles above with a slit transmission function. Furthermore, the incident beam is
always divergence in angle, thus further broadening the spatial profiles of the exit beams calculated
above. Typically, the incident beam divergence is of order 1/2◦. Thus, for an interferometer that is
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Figure 11.28 Schematic view of the averaged
intensity profiles within and behind a symmetric
LLL interferometer

10 cm in size, the beam divergence will contribute a spatial broadening of about 1 mm to the
exit beam profiles. In Fig. 11.28 we schematically summarize the beam profiles within the inter-
ferometer, and the profiles of the average intensities leaving the third crystal in the 0- and the
H-beams.

Various experimental attempts have been made to measure the intensity profiles at least those
behind the interferometer. Figure 4.28 shows such an example where the profile of the 0-beam
has been measured by means of a scanning slit (Bauspiess et al. 1978). The qualitative agree-
ment with the theoretical prediction is visible (Fig. 11.24). A more comprehensive study was
performed by Kischko (1983) who used a photographic film and a Gd-converter to obtain the
profiles behind the interferometer for various thicknesses of the interferometer plates (Fig. 11.29).
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Figure 11.29 Sketch of the step interferometer crystal and a typical
result for the H-beam in the case of equal crystal thicknesses correspond-
ing to the vertical segment labeled 2 above (Kischko 1983)

The uncertainties of the photographic method, the rather poor geometrical accuracies of the
interferometer crystal, and the deconvolution with the slit width of the incident beam make a
quantitative comparison rather difficult. A position-sensitive detector was used by Ioffe et al.
(1995) to measure the interferometer output beams but the resolution was not sufficient to observe
details of the profile. A more detailed study of the intensity and contrast profile has been done by
Lemmel (2010) who used an advanced position sensitive detectorand used these measurements
for adjusting high contrast (see Fig. 2.9).

A futher comment should be made concerning the loss beams at the second crystal plate and
the non-perfect contrst in the H-beam. In this cases the reflection (transmission) function reaches
1 or 0 which means these neutrons exhibit beam path information and, therefore, they do not
contribute to the contrast.
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In the previous chapters we have assumed that the geometry of the interferometer is perfect;
that is, we have assumed that the thicknesses of the crystal blades are all equal, and that the
distance L1 between the first two blades is equal to the distance L2 between the middle blade and
the third blade. These conditions of perfection are never met in practice. The lack of perfection of
the machining of the crystal leads to defocusing effects which reduce the observed interferogram
contrast. These defocusing effects are in addition to the mechanisms of contrast reduction
discussed in detail in Chapter 4. In the next section we will briefly describe these geometrical
defocusing effects.

11.7.3 The Defocused Interferometer

In this case the distances of the crystal plates or the thickness of the plates may be differ-
ent (Fig. 11.30). The wave functions can be calculated in the same manner as before but the
geometrical factors entering Eqs. (11.100) change. For both beam paths one gets another �-factor

�I,II =
y

D tan�B
∓ �t

D
, (11.157)

ГA = –3ГA=3 D

D

L

D

0

L

III

A

M

S

φ0

IH I0

Figure 11.30 Beam path inside a
defocused interferometer. The hatched
regions indicate where the Borrmann
fan from both beam paths overlaps
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where �t denotes the defocus. In Section 4.2.2 it has been shown that defocusing can also occur
due to a non-dispersively arranged phase shifter. If �t << D and thick crystals A >> π one gets
after some lengthy calculations (Bonse and de Kaat 1971, Bauspiess et al. 1976, Petrascheck 1976,
Petrascheck and Folk 1976)

I0(�) ∝ (1 – 3�)2(1 – �2)1/2 cos2
(
A��t/D

(1 – �2)1/2

)

+
1
3

(
1 –

�

3

)2

1 – �2/9)1/2 cos2
(

A��t/D

3(1 – �2/9)1/2

)
for �I, �II, < 1

(11.158)

∝ 1
3
(1 – �/3)2(1 – �2/9)1/2 cos2

(
A��t/D

3(1 – �2/9)1/2

)
for 1 ≤ |�I| , |�II| < 3.

This formula gives typical and nearly equidistant defocusing fringes at (here given on the
y-scale)

yn ∼= 3D�0 tan�B

�t
· n. (11.159)

This feature can be used for precise registration of small motions and they are essential for the
adjustment of split perfect crystal interferometers which exists for X-rays (Deslattes and Henins
1973, Becker et al. 1981). The auto-correlation function of Eqs. (11.158) gives, after some further
simplifications, the transverse coherence function as discussed in Section 4.2.2 (Eq. 4.54; Holy
1980, Petrascheck 1988).

Defocusing may also occur due to distorted crystals. In this case the Takagi–Taupin theory can
be used as well. Applications for high-sensitive internal strain and dislocation studies are known.
An overview has been given by Gronkowski (1991).
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Interpretational Questions
and Conclusions

We have shown many successful applications of quantum mechanics in this book and it would be a
major problem not having the fantastic quantum theory available. Despite its successes, however,
the basic conceptual framework and its interpretation have been considered by many scientists to
be unsatisfactory. We will outline the standard Copenhagen–Göttingen interpretation and some of
the alternative approaches in this chapter. Quantum mechanics must be seen as a major part of
more general theories of physics. Inevitably many of the questions that arise are matters of opinion
rather than facts and, therefore, many physicists consider that they belong more properly to phi-
losophy than to physics. However, the conceptual basis of quantum mechanics is so fundamental
to our understanding of nature that it should surely be important for physicists and philosophers
as well. The conception of determinism differs substantially from classical physics because quan-
tum theory predicts only the relative probabilities of different outcomes, of different events. Thus,
Einstein’s dream that a complete theory should describe the outcome of individual observational
events is still lacking. The feature of non-locality is another new concept of most interpretations
which makes space-like separated events instantaneously entangled. The well-known Einstein–
Bohr debate about the completeness of quantum theory, the question whether the universe behaves
deterministically or non-deterministically, and the meaning of free will are brought into focus in this
chapter (e.g., Schilpp 1949, Bell 1964, Withaker 1995, Groeblacher et al. 2007, Conway and
Kochen 2009, Englert 2013). We must come back to the underlying fundamental motivation of
all thinking people to find the causes for effects, and that causes should always precede effects.

The various kinds of particle optics experiments with electrons, neutrons, atoms, molecules,
and clusters have attracted strong interest on interpretational questions in quantum mechanics.
This is mainly because they demonstrate that massive and composite particles can be described
by wave fields, engendering a unification of massless and massive entities, that is, of light and mat-
ter. In neutron interferometry widely separated beams in ordinary and/or momentum space can
be produced. These situations are well described by quantum mechanics but they elucidate the
wave–particle dualism in a new manner. There are a number of achievements of neutron inter-
ferometry which may contribute new insights to the discussion of the interpretation of quantum
mechanics.

(a) Spatially split-beam interferometry with massive and composite particles is feasible and
high-contrast interference patterns can be obtained. Thus, each neutron having evolved
with a given “split” history joins behind the interferometer in either the 0-beam or
H-beam, depending on the relative phase shift it has experienced in the separated beam

Neutron Interferometry. Second Edition. Helmut Rauch and Samuel A. Werner.
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paths. Thus, it seems that the neutron after superposition carries merger information
about the physical situation in both widely separated beam paths, which have evolved
simultaneously over time (Chapter 2, Fig. 2.1).

(b) All measured results belong to self-interference phenomena where only one neutron
exists at a time within the region of the interferometer (Section 1.3). Experiments with
pulsed beams had a mean occupation number per neutron burst far below unity and the
interference pattern exists there as well (Section 4.5.5).

(c) Post-selection experiments have shown that an interference pattern can be restored even
when at high interference order, where the interference contrast essentially disappears
due to the dispersive action of the phase shifter (Section 4.5.2). At the same time an
interference modulation of the momentum distribution appears. This can be observed by
proper post-selection methods. Various retrieval methods of interference phenomena are
found to be applicable (Section 4.5).

(d) The superposition states behind the interferometer have highly non-classical features and
they are very sensitive to any kind of decoherencing and dephasing effects (Section 4.5.2).
They are Schrödinger cat-like states since the neutron occupies two different regions
in space.

(e) Intrinsic features of the neutron spin-1/2 system leave their fingerprint on the interference
pattern. In this connection the 4π-symmetry of spinor wave functions and the quantum
spin superposition law have been verified (Sections 5.1 and 5.2). Here again, the self-
interference phenomenon becomes very apparent.

(f) Phase shifts can not only be produced by conservative potentials (nuclear, magnetic, grav-
itational), but also by potentials, which do not result in a classical force acting on the
neutron. The actions of an electric field (Aharonov–Casher effect), of a purely time-
dependent magnetic field (scalar Aharonov–Bohm effect), and of a geometrically formed
magnetic field interaction (Berry phase) have been observed and quantitatively measured
(Chapter 6).

(g) Energy sensitivities on the order of 10–19eV have been achieved, which is more than
10 orders of magnitude below the energy width of the beams (∼ 0.2 meV). This indi-
cates how extremely tight energy transfers in both beam paths affect each neutron wave
function (Section 5.4).

(h) Delayed choice experiments with a Jamin multilayer interferometer have shown that the
action of the first beam splitter is not dependent upon whether an interference or a beam
path detection experiment follows (Section 10.5, Kawai et al. 1998b).

(i) Split-beam interference experiments where beams with different directions of their
momenta and spin-echo experiments where beams with different momenta along the same
beam path interfere are thought to be equivalent. This shows that interference effects in
ordinary and momentum space should be seen as a common interference phenomenon in
phase space. This can be visualized by Wigner functions (Section 4.5.3).

(j) In Chapter 7 it has been shown that different degrees of freedom of a single neutron can
be entangled and can be used as a basis for Bell-like inequalities measurements. These
measurements verified quantum contextuality as an additional basic feature of nature.

In all kinds of discussions regarding the epistemological impact of quantum theory, it should
be kept in mind that solutions of the Schrödinger equation only exist when boundary and/or
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initial conditions are defined; and that measurement results are obtained only when a number of
events arising from a similarly prepared ensemble are taken, or when a single system is measured
numerous times. In any case, our knowledge is limited to the knowledge of the wave function
which follows from the Schrödinger equation (Eq. 1.2) when a quantum state � is exposed to
a certain interaction described by a Hamiltonian H and prepared according to certain boundary
conditions. This should be taken as seriously as the Schrödinger equation itself,

ψ(r = R, t = t0) = ψB(R, t0). (12.1)

Therefore, the linear superposition principle which follows from the structure of the Schrödinger
equation is a basic requisite of quantum mechanics. A measurement consists, in general, of a prep-
aration stage, which can be described also by a Hamiltonian, and the irreversible collapse stage
within a detector where the most evident coupling of the quantum and classical worlds happens;
and where a Hamiltonian description cannot be given. Here we focus on interpretational questions
related to quantum mechanics. In a broader view one should be aware of the fact that this theory is
one pillar only of general quantum field theories, bridging general relativity and quantum theory.
Such field theories are often related to superstring theories describing the fundamental compo-
nents of matter (electrons, neutrons, protons, quarks, etc.) as strings, which vibrate in space-time
at a fundamental frequency and its harmonics (Schwarz 1982, Green and Schwarz 1985,
Polchinski 1998). Typical dimensions of strings are 10–35m and it has been found that there is one,
and only one, form of symmetry (SO(32)) in a 32-dimensional space which is free of anomalies
and infinities. In this theory Fermions vibrate in ten dimensions, whereas bosons need 26 dimen-
sions for an adequate description. Various compaction procedures which yield a SU3 ×SU2 ×SU1

symmetrization are feasible, where SU3 describes the symmetry groups associated with the stand-
ard model of quarks and gluons while SU2 × SU1 represents the symmetry group for the
electroweak interaction. In this respect, the discussions of quantum mechanics and especially
on matter wave interferometry may help the discussion of the grand unification perspective
as well.

What might be the open questions in quantum mechanics to be further discussed? The predic-
tions of quantum mechanics derived from wave function consist of probability amplitudes. The
operational significance of the resulting relative frequencies of occurrence has been tested up to an
incredible accuracy. Nevertheless, epistemological questions remain which should be discussed in
order to avoid unnecessary confusion and dispute:

1. What is the meaning of the wave function?

2. How is the measurement process described?

3. How can a classical world appear out of quantum mechanics?

4. How can non-locality and contextuality be explained?

5. Is quantum evolution reversible?

6. Is there a measurement problem?

Since it has always been the goal of physics to give an objective realistic description of the
world, it might seem that this goal is most easily achieved by interpreting any observed quantum
state as an element of reality. Such ideas are very common in the literature, or they appear as
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implicit assumptions. However, the assumption that a quantum state is a property of an individ-
ual physical system and indicates local realism leads to contradictions and must be abandoned.
The lack of separability of the quantum system from the measuring apparatus and even between
two widely separated and noninteracting quantum systems puts the question forward as to whether
the quantum-mechanical description of physical reality can be considered to be complete (Einstein
et al. 1935). In that context Einstein (1949) strongly advocated an underlying ensemble interpre-
tation which may be alleviated by a slightly more general definition of a quantum state that includes
the state preparation procedure. Separability in ordinary space would be a physically more rele-
vant objective criterion, particularly because all known interactions decrease rapidly with distance
in ordinary space. But one may argue that separability in ordinary space is not sufficient to ensure
separability in configuration space where the wave function is defined. We will follow this idea
throughout this chapter.

The predictions of quantum mechanics derived from a wave function consist of probabil-
ities and the operational significance of a probability is the relative frequency of events (i.e.,∣∣ψ(r, t)∣∣2). In Chapter 4 it has been shown that the auto-correlation function (i.e., �(�, t) =
< ψ(r′, t′) ψ(r′′, t′′)>, �= r′ – r′′, t= t′ – t′′), which defines the coherence function, or the Wigner
function, which describes a quasi-distribution function, can be used to connect predictions of the
theory with measurable quantities. Thus, we are bound to invoke an ensemble of similar systems,
regardless of how we originally interpreted the wave function.

Neutrons which are moving in free space represent a pure state |ψ>. It is generally is a coherent
superposition of plane wave solutions (Eq. 1.28). In the ordinary space representation one gets

|ψ > = < r|ψ > = (2π)–3/2
∫
a(k – k0) ei(k·r–ωkt) d3k, (12.2)

where |a(k – k0)|2 ∝ g(k – k0) denotes the momentum distribution of the state with a continuous
set of energy eigenvalues Ek = h̄ωk = h̄2k2/2m. Such a pure state can be a coherent state as well when
the related spatial and momentum distribution functions have Gaussian forms and a Poissonian
particle distribution function. In this case the minimum uncertainty relation (�x�k = 1/2) is ful-
filled and the variance of the particle number is �N =

√
N . The quantum state |ψ> in the

momentum representation is given by

|ψ > = <k|ψ> = (2π)–3/2
∫
e–ik·r<r|ψ> d3r. (12.3)

The question whether |ψ> provides a complete and exhaustive description of an individual system
(variant A), or it describes the statistical properties of an ensemble of similarly prepared systems
(variant B) must be elucidated in more detail. Interpretation A may be the more common one
(e.g., Bohr 1958, Hartle 1968, Aharonov et al. 1993) but interpretation B, originally used by
Einstein et al. (1935), has been consistently adapted over the past decades (e.g., Ballentine 1990).
Interpretation A can be split into two variants. Either each neutron is emitted in a single energy
(plane wave) but the particular energy varies from one neutron to the next (A1) or each neutron is
emitted as a wave packet that has an energy (momentum) spread equal to the energy (momentum)
spread of the beam (A2). In the first case (A1) the state operator which is a solution of the von
Neumann (or quantum Liouville) equation

i h̄
∂ρ

∂t
= [H, ρ], (12.4)
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which reads for one coordinate

ρ(x, x′) = < x
∣∣ρ ∣∣x′> =

∫
ψk(x, t) ψ∗

k (x
′, t) g(k – k0x)d k

=
∫
eik(x–x

′) g(k – k0)d k. (12.5)

This is time-independent and obtained by an averaging procedure. In the second case (A2) one
does not speculate about the individual wave functions ψk but uses the steady-state condition
∂ρ/∂t = 0 (or [H, ρ] = 0), where H = h̄2k2/2m poses a complete set of eigenvectors < x|ψ >=
exp (ikx) and one obtains

ρ(x, x′) =
∫

<x |ψ >< ψ |x′> g(k – k0)d k =
∫
eik(x–x

′)g(k – k0)d k. (12.6)

This is equivalent to Eq. (12.5) and indicates that all observable quantities, including the
interference pattern, are insensitive to the variants A1 or A2.

Although quantum theory is an extremely successful theory with broad consequences in our
understanding of nature, in modern technology and epistemology there is still a lack of unique
interpretation. Jauch et al. (1967) concluded that as long as one accepts the validity of the
superposition principle and the linearity of the Schrödinger equation there is no escape from epis-
temological dilemmas in interpreting quantummechanics. The wave-particle duality was criticized
by Popper (1967) as a non-realistic element in the theory and Feynman et al. (1965) concluded
that it is the only mystery of quantum mechanics. The debate about interpretational questions has
been intensified since experiments with single ions and atoms (Wineland et al. 1984, Meschede
et al. 1985, Walther 1998), with entangled photon states (e.g., Aspect et al. 1982), with molecules
and clusters (Chapman et al. 1995, Schoellkopf and Toennies 1996, Arndt et al. 1999, Cronin
et al. 2009), and last but not least with single neutrons became feasible. Quantum mechanics
challenges our conceptions of reality, objectivity, and separability. Mermin (1987) gave a rather
compelling argument that the predictions of quantum theory are very mysterious if one tries to
deny the existence of superluminal information transfer. Most supporters of the non-locality issue
(e.g., Shimony 1987) tie their analysis to the conclusion that any local hidden-variable reality con-
flicts with the concept of quantum theory. Hence, it is not clear whether the “locality” assumption,
rather than the “reality” assumption fails. An experimental test of non-local realism has been pub-
lished, thus apparently rendering local realistic theories untenable (Groeblacher et al. 2007). The
formalism of quantum theory has the power to predict only the probabilities that events which are
localized in space and time occur (Haag 1990, 2013; Englert 2013).

The measurement problem, i.e., the transition from the quantum to a classical world and the
non-locality feature of the theory, is still a challenging question. Here neutron interference experi-
ments can at least shed some new light to deepen our understanding of nature. A key issue may be
seen on several state superposition experiments where probability amplitudes arising from sepa-
rated beam paths become superposed. Indeed even the initial states must be seen as superposition
states. That is, the wave packet in a beam experiment may describe the neutron state entering the
interferometer (see Eq. 12.3 and the discussion there)

|ψ > =
N∑
n=0

an |ψn > ––––→
N→∞

∞∫
0

a(k)|ψ(k)> d k . (12.7)
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Due to the finite distance (L) between the source and the detector, the limit N → ∞ is some-
what unphysical because the momentum space cannot be divided into elements narrower than
�k = 2π /L. Nevertheless, for most practical purposes the integral form of Eq. (12.7) is adequate.

In the quantum measurement process a superposition state between the quantum object |ψ0 >
and the apparatus |A0 > is produced, which results in an entanglement between the quantum
object and the environment (Zeh 1970). Since quantum mechanics is supposed to be universal,
the evolution of the joint system |ψ> |A > is governed by the linear Schrödinger equation under
the action of a unitary operator U

|ψ0 > |A0 >
U

––––→
N∑
n=0

an|ψn > |An >. (12.8)

This is a state where the measuring apparatus is in a superposition of distinct states corresponding
to all the possible eigenvalues. However, this is not in accordance with experience where we always
find the pointer of the apparatus in one of the possible states, e.g., n = m

∣∣ψ0 >
∣∣A0 >

?
––––→ am |ψm > |Am >. (12.9)

This is the measurement problem of quantum mechanics. It indicates that a measurement does
not reveal a pre-existing value of the measured property. On the contrary, the outcome of a
measurement is brought into being by the act of measurement itself as a joint manifestation
of the state of the probed system and the probing apparatus (Mermin 1993). In Heisenberg’s
terminology a measurement is a transition process from a possible to an actual event. The
statistical distribution of many such encounters is a proper matter for scientific inquiry. Thus, the
basic question is whether properties of individual systems possess values prior to the measurement
that reveals them. Efforts to construct deeper levels of description where individual systems do
have pre-existing values are known as hidden-variable programs and they will be discussed later
on in this chapter.

When calculating the probability density of finding a particle and an apparatus in a certain
state, all interference terms disappear and a classical probability distribution remains. The col-
lapse of the wave field remains the most puzzling and counterintuitive aspect of the interpretation
of quantum mechanics. Possible mechanisms and the boundary between the preparation and the
irreversible collapsed state are debated in the literature. A way out of this dilemma was proposed
by von Neumann (1932), who postulated that whenever a measurement occurs the unitary evo-
lution is replaced by a projection onto the eigenstate associated with the measured value. This
assertion has been widely criticized and the main problem is that nowhere in the formalism is
it found what uniquely characterizes a measurement (see, e.g., Wheeler and Zurek 1983, Bell
1987, Mermin 1993, Namiki et al. 1997). The most well-known criticism was put forward by
Schrödinger (1935) when he proposed his famous “cat paradox,” where the question is raised as
to when and where the instantaneous wave function reduction takes place and what is the role of
the observer. In this connection he introduced so-called entangled states with the property that a
quantum system consisting of more than one particle cannot be separated (factorized) except in
a measurement where the phase relationship between them are destroyed. The simplest case is a
two-particle spin-1/2 system in the singlet state where the entangled state can be written as

ψ
sin glet
α,β ∝ [ |+ >α |– >β – |– >α |+ >β

]
ψαψβ, (12.10)
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where α and β denote the two spin-1/2 particles, and |+ > and |– > are the spin eigenvectors.
The spatial wave functions ψα and ψβ are often considered to be separated when the wave pack-
ets no longer overlap. When thinking about neutron post-selection experiments as described in
Section 4.5, this may be a questionable assumption (see also Rauch 1993). Nevertheless, many
theoretical analyses accept the spatial separation and proceed with the spin part of Eq. (12.10)
alone. Here the warning is expressed to neither neglect the intrinsic coupling (entanglement) of the
quantum system to the apparatus nor the coupling of the quantum features in phase space. Single
particles can exhibit entanglement as well, because general entanglement is defined as the rela-
tion between different degrees of freedom (Englert 1999, 2013). This leads to the phenomenon
of quantum contextuality discussed in Chapter 7. In a neutron interferometer the spatial and the
spin parts of the wave function are, in general, entangled.

The question whether quantum mechanics is complete or some hidden variables may exist
was initiated by Einstein, Podolsky, and Rosen (1935), who at least believed that such a theory is
possible. An “impossibility proof” for such hidden-variable theories was given by von Neumann
(1932), but later on it was shown (e.g., Jammer 1974) that the proof excludes local hidden-variable
theories but keeps a loophole for non-local hidden parameter theories (Bohm 1952a, 1952b; Bell
1966). Experimental tests of various hidden-variable theories became feasible. Bell (1965) formu-
lated inequalities between measurable count rates which demarcate between quantum theory and
a broad class of local hidden-variable theories. The experiments are mainly related to the spin-part
of Eq. (12.10) and register counting rates for different settings of spin analyzers placed at opposite
and widely separated sides of an emitting source. Most experiments have been performed with
correlated photons (Aspect et al. 1981, 1982; Perrie et al. 1985). Reviews of such experiments
are given by Ballantine (1987), Selleri (1990), and Home and Selleri (1991). All results confirm
the quantum-mechanical predictions and eliminate local hidden-variable theories. Greenberger,
Horne, and Zeilinger (1989) formulated an interesting new theorem that considers a system of
three mutually well-separated but correlated particle systems. In this case an even stronger refuta-
tion of local realist theories can be given. Non-locality of quantum mechanics provides the basis
for quantum teleportation. It may also open new horizons for advanced technologies (Bennett
et al. 1993, Bouwmeester et al. 1997). Nevertheless, some critical comments about non-locality
still exist in the literature (Englert 2013).

Typical Bell-type experiments require more than one particle to become and behave entangled.
In the meantime, it has been recognized that behind this phenomenon there is a more general prin-
ciple which is called the Kochen–Specker (1967) phenomenon. In this case different degrees of
freedom of single particles become entangled and show the phenomenon of quantum contextu-
ality. This topic has been addressed for neutrons in Chapter 7. It shows that there are no hidden
variables feasible which determine the outcome of a measurement before the measurement has
been done. Vice versa, the outcome of an experiment may depend upon what was the outcome of
a previously or simultaneously performed experiment on a compatible variable. That is, it depends
upon which context the measurement is done. Thus the question whether local reality exists is
attacked (Groeblacher et al. 2007). In the neutron case an entangled state between spin and beam
path has been produced and the measured observables fulfill a Bell-like inequality, thus signifying
quantum contextuality as an independent feature valid at least for entangled states (Hasegawa et al.
2003, Bartosik et al. 2009). The debate continues whether this conclusion can be extended to all
quantum states (e.g., Nieuwenhuizen et al. 2007). It seems that, as always, quantum mechanics
wants to have the last word: it stubbornly refuses to admit hidden variables even under seem-
ingly innocent conditions. It turns out that neutrons can be prepared in such a way that spin and
momentum measurements, although nominally still independent, are so strongly correlated that
non-contextual hidden variables cannot explain this strong correlation (Weihs 2007). Thus, unless
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one allows the existence of contextual hidden variables with very strange mutual influences, one
must abandon them—and, by extension, “realism” in quantum physics—altogether. By analyzing
the concept of contextuality in terms of pre- and post-selection methods (Section 4.5) it is possible
to assign definite values to observables which by “weak measurements” do not disturb pre- and
post-selection (Aharonov et al. 1988, Tollaksen 2007). In more general terms it can be stated that
just non-locality and contextuality cause stronger correlations than those given by classical theory.
Or as Asher Peres (1993) claims: quantum phenomena are more disciplined than classical ones.

Operational quantum mechanics tries to combine quantum mechanics with general relativity
and explore how action enters the world (Piron 1964, Aerts and Aerts 2004). In this sense the
observer becomes a crucial part of the game and even single observable measurements must be
seen in context with other observables (Khennikov 2009, Allahverdyan et al. 2013).

Before continuing with a general discussion of various interpretations of quantum mechanics
a comment regarding the spatial part of Eq. (12.10) should be made. When a wave packet for-
malism is used for the wave functions ψα and ψβ, the spatial separation occurs for the packets,
but not necessarily for the components of the packets (see Eq. 12.2). By means of proper post-
selection procedures (Section 4.5) additional information about features of the physical system
can be obtained. For example, when one describes a gamma cascade transition between long-lived
nuclear states via a metastable level the width of the packets is given by the lifetime τ of the meta-
stable level δE ∝ δk ∝ τ –1 (Fig. 12.1). When the energy conservation for individual pairs is taken
into account

kα + kβ = k0α + k0β = constant, (12.11)

one obtains for each photon pair a characteristic spatial modulation due to the interference of the
beams (Rauch 1993)

I(kα , kβ , r) ∝ 1 + cos
[
2(kα – kβ)r

]
. (12.12)

These modulations exist far beyond the dimensions of the packets (r > (2δk)–1) and their obser-
vation depends on the momentum resolution of the apparatus. A measurement on one side of the
source of one of the two photons instantaneously reduces the whole wave function to that of the
second photon. This indicates the phase space coupling of both spin and ordinary space variables,
which seems to be an important feature of quantum mechanics.

Within standard quantum physics locality is not the only concept that must be abandoned.
In a more general sense, classical realism also cannot exist and microscopic objects are simply not
the kind of thing that can possess properties independently of the macroscopic apparatus used
to observe them. However, as pointed out by Schrödinger in 1935 there is no good reason to
accept this division of the world into a microscopic regime where quantum mechanics reigns and
a macroscopic one governed by classical physics. Decoherence cannot constitute a resolution to
that problem.

Before briefly describing various alternative interpretations of quantum mechanics it should
be mentioned that the overwhelming majority of physicists today seem to believe that quantum
theory is a complete theory and local realism cannot be associated with it. This can also be under-
stood as a consequence of the general nonseparability feature of any physical system (d’Espagnat
1976, Legett 2008). Nevertheless, a mind-independent realism may be maintained, guaranteeing
the existence of nature even without human consciousness (e.g., d’Espagnat 2011). The whole
mystery of quantum physics and the various efforts to resolve them started with the so-called
Einstein–Bohr debates. This starting point has been elucidated recently by Whitaker (1996, 2012)
and nicely summarized by Greenberger et al. (2009).
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Figure 12.1 Sketch of a correlated atomic photon decay and the expected inten-
sity modulation for distinct pairs of photons with different momentum differences
|k1 – k2|= nδk with n = 0, 0.1, 0.2, 1, 2, 3 (from above to below). The distance
from the source is in units of the packet length 1/δk

12.1 Interpretations and Approaches

12.1.1 Copenhagen–Göttingen interpretation

This is the standard and most pragmatic interpretation of quantum mechanics as it can be found
in most textbooks and review articles (e.g., Jammer 1966, 1974; Stapp 1972; Baggot 1992; Sakurai
1994). It describes facts in the form of the results of physical experiments. It does not ask how
nature is, but how it acts. Basic features are the Heisenberg (1927) uncertainty relation, the
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statistical interpretation of Born (1926), the complementarity principle of Bohr (1928), and the
identification of the wave function with our knowledge of the system (Hartle 1968). The wave
function represents a tendency or potentiality for various events to occur with different probabil-
ities. A measurement does not reveal pre-existing values of the measured system (Omnès 1994).
In Popper’s terminology this means that only “propensities” exist (Popper 1973, 1994). Thus,
nothing can be said about what happens between two observations.

When the complementarity principle is accepted, the quantum system can appear as a particle
or as a wave, depending upon the experimental conditions imposed on the system (Leggett 1986).
This is the basis for wave–particle duality where one can describe an object either as a wave or as
a particle but never both simultaneously in the same experimental setup. There is no ontological
duality in the object itself, its behavior being determined by its inseparable interaction with the
apparatus (Bohr 1934). A particle entering a beam splitter, for example, has a 50% chance of
veering either right or left. If it is a classical particle it would unambiguously take one of the two
paths. A quantum particle, however, is placed in a superposition of both paths until a measurement
is made.

Inside the interferometer the neutron must be considered as a wave and there exists a simple
way to explain the behavior of that wave during the interaction with a crystal lattice (Fig. 12.2).
The action of different phase shifts causes a different position of the wave oscillations peaks and
valleys compared to the crystal lattice which causes different output neutron waves. Whether the

X = 0

X = π/2
X = 3π/2

X = π

Figure 12.2 Interaction of classical waves with a periodic lattice. Notice that
the nodes of the wave field are at different positions in relation to the crystal
lattice, which creates different outgoing waves
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complementarity principle can be considered as a consequence of the Heisenberg uncertainty
relation or as an additional axiom is still an open question (e.g., Scully et al. 1991, Storey et al.
1994, Englert et al. 1995, Wiseman and Harrison 1995, Wiseman et al. 1995). After reading
the Einstein–Bohr debates (see Schilpp 1949, Whitaker 1996) concerning the recoil double-slit
gedanken experiment with electrons, most physicists believe in an intrinsic connection. Some of
the neutron interference experiments which cause a labeling of neutrons along the beam paths
inside the interferometer by spin rotation (Section 5.2) or energy transfer (Section 5.3) can give
the impression that the uncertainty principle is not needed for an appropriate explanation. But
a more detailed analysis shows that following erasure and post-selection the experiment is not
really finished after superposition. Experiments with labeled atoms are also used to push this
interpretational question into a direction relying more on the complementarity principle than on
the uncertainty relation (Duerr et al. 1998, Dürr and Teufel 2009).

The Copenhagen interpretation imposes the collapse of the wave function during the measure-
ment process but does not address the borderline region between the quantum and the classical
worlds which is intrinsically needed to describe the measurement apparatus, always seen as a classi-
cal object (Griffiths 1984). This cut between quantum and classical world is mandatory within this
view and therefore a wave function for the whole universe cannot exist. Nevertheless, nowadays it
becomes respectable and even fashionable to describe the whole universe quantum mechanically
(Weinberg 1978, Hawking 1990). The question of the border line has been discussed in more
detail by Omnès (1994). He also analyzed the magnetic Josephson effect analog as measured by
neutron interferometry and as described in Section 5.4.

Machida and Namiki (1980) and independently Araki (1980) developed a measurement
theory in which they maintain that quantum mechanics can describe the whole process of a
quantum-mechanical measurement when the measuring apparatus and its interaction with the
quantum-mechanical object are properly formulated. This is an improved approach compared to
the von Neumann approach. It is based on the many-Hilbert-space theory and supposes distinct
detector models and introduces so-called decoherence parameters (Joos and Zeh 1984, Namiki
and Pascazio 1993). This gives a direct connection to the decoherence approach to be discussed
later. Stochastic quantization in configuration space is also such an approach making use of hypo-
thetical processes acting in a fictitious time (Namiki 1992). These hypothetical processes are
described by a random force added to the basic classical equations of motion. They consider
the Planck constant as a sort of diffusion constant giving the laws of quantum mechanics in the
thermal equilibrium limit. In the very extreme case Wigner (1970) postulated that the real col-
lapse of the wave function happens when the measured information enters our mind through our
senses and ends up in our consciousness. This is not a physics matter that is subject to physical
investigation, at least at the present time.

12.1.2 The Ensemble or Statistical Interpretation

This is a rather easily defendable interpretation. It starts with a large number of identically pre-
pared systems (the ensemble) for which the wave function provides a deterministic description
(Born 1926; Einstein 1936; Ballentine 1970, 1990). Identically prepared systems mean that the
system has been prepared and limited by some distinct boundary conditions. The measurement
problem is a “non-problem” because we should not ask about the outcome of a single-event
experiment, and the state vector is not itself an element of quantum reality, but is only a means
to calculate the probability distributions for various observables (Penrose 2004). Nevertheless,
several dynamical models for describing the outcome of a single run have been developed
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(Jammer1989, Allahverdyan et al. 2013). Standard quantum statistical mechanics alone appears
sufficient to explain the occurrence of a unique answer in each run.

12.1.3 The Spontaneous Localization Approach

This approach tackles the question of how a superposition state between the object and the
apparatus can suppress all possible terms except one for the macroscopic system needs some
modification of the Schrödinger equation, thus avoiding macroscopic superposition. This line of
thought is called the spontaneous localization program or the Ghirardi–Rimini–Weber concept
(Ghirardi et al. 1986), where the modified Schrödinger equation contains a term for random and
spontaneous wave function collapses. Due to the stochastic character of the additional term the
collapse occurs at randomly distributed times. The parameters for that term should be determined
by experiment but they are not yet found in a reliable form.

A slight modification of this model is the continuous spontaneous localization model in which
a Brownian motion noise term coupled non-linearly to a local mass density is added to the
Schrödinger equation (Ghirardi et al. 1990). The noise is responsible for the spontaneous col-
lapse of the wave function. Feasible parameters for the strength and the spatial correlation length
of the noise field have been discussed by Adler and Bassi (2009). Most estimates show that the
effects are completely camouflaged by environmental decoherence (Tegmark 1993).

12.1.4 The Decoherence Approach

This approach was introduced by Zeh (1970). It has many appealing aspects and has been
addressed several times in this book. It starts with the observation that quantum-mechanical
predictions are different for closed and open systems. There are always influences from the envi-
ronment that destroy the phase relation between the superposed substates of a real quantum state
(Eq. 12.8). Therefore, this dephasing washes out the interference terms and results in a statis-
tical mixture which describes the probabilities for the specific outcomes of an experiment (Zeh
1970; Zurek 1981, 1991, 1998a; Omnès 1994; Giulini et al. 1996; Haroche and Raimond 2008).
The decoherence approach is seen as a rather pragmatic one and it cannot exactly discriminate
microsystems and macrosystems. It deals with the quantum system and the apparatus on an equal
footing, both being described by the same quantum laws. The irreversibility and non-unitary
behavior emerge naturally from the Schrödinger equation, when looking at the evolution of a
small subsystem entangled with a large reservoir, where the emerging irreversibility results from
the cumulative effect of perfectly reversible microscopic events. The observer decides to forget
about the environment and renounce keeping track of its correlation, which transfers a quan-
tum to a classical situation. Zeh (1970) and Zurek (1993, 1998b) showed that special einselected
pointer states are rather robust in their interaction with the environment. That provides the basis
for the so-called existential interpretation, which defines just these einselected states as relatively
objective existing features. Einselection means a kind of environment-induced superselection of
states, which creates properties similar to classical states. In the interaction between the quantum
system and the environment most of the entangled states decohere very rapidly, but some states
(einselected pointer states) become very stable. Such pointer states of an apparatus communicate
intensively with the environment, indicating a repeated measurement process which stabilizes the
quantum system.

It may become possible in the future to observe more andmore interference effects amongmac-
roscopically distinguishable states of the apparatus and to suppress decoherence effects by means
of advanced measuring methods. Therefore, several authors claim that this approach cannot solve
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the fundamental quantum measurement problem (Leggett 1986, 1994; Bell 1990; d’Espagnat
1995; Home 1997; Namiki et al. 1997). Various calculations show that the influence of fluctuation
is minimized for Gaussian (coherent) states, but strongly increases for non-classical states, like
Schrödinger cat-like states (Walls and Milburn 1985, Glauber 1986, Schleich et al. 1991, Rauch
and Suda 1998). It gives a realistic interpretation of the measurement process, it provides a theory
of dissipation, and it introduces an arrow of time with no full reversibility of events at least in
cases where a macroscopic number of particles are involved. Here it has some common grounds
with the event-driven view of quantum physics (Haag 1990, 2013; Englert 2013). In the course
of discussions with the opponents a revised kind of realism which contains non-separability has
been introduced. Epistemological aspects of this view are discussed by Omnès (1999). Thus, the
decoherence approach describes the measuring process in the framework of standard quantum
theory and its unitary dynamics, which may be summarized with the statement as collapse without
a collapse. It should be mentioned that decoherence effects are also expected to appear due to
quantum gravity effects and the corresponding quantization of space-time, which guarantees the
appearance of a classical world during the evolution of the universe (Joos 1986, Penrose 1986,
Kiefer 2000).

12.1.5 The Consistent History Approach

This scheme is basically a decoherence approach but it also makes an attempt to realistically inter-
pret the Copenhagen view (Griffiths 1984, Omnès 1988, Gell-Mann and Hartle 1993). It can be
applied for the whole universe, because it does not need the environment. Here one discusses state
sequences (“histories”) rather than states at a single instant. Measured quantities are always cor-
related to decohering histories, whereas all cross-correlations between micro- and macrophysical
variables remain unobservably small for all times. Therefore, in recent years it attracted in a lot
of attention since it seemed to yield a solution to the conceptual and interpretational problems of
standard quantum mechanics. It supports a realistic interpretation of quantum mechanics where a
measurement reveals what is actually there (Griffiths 1999). Nevertheless, there remain concerns
that all decoherent history theories also do not meet the requirements of a “realistic” description of
the physical world, that is, the very reason for which they have been developed (Bassi and Ghirardi
1999).

The further development of this approach is called consistent stochastic approach (Griffiths
2010), which distinguishes non-locality and instantaneous non-local influences since the last term
violates special relativity (see e.g., Albert and Galchen 2009) and abandons local realism and free
will. In this approach one avoids the use of classical concepts in a quantum context and states
that quantum mechanics is fundamentally stochastic since the world is seen as stochastic as well.
Consistent history formulations imply definite properties to a quantum system even before meas-
urement. The theory (and the quantum state) is still non-local but non-local influences are absent.
There are correlations but no causes. In this approach the de Broglie–Bohm pilot wave (de Broglie
1927) and the Ghirardi–Rimini–Weber approach (Ghirardi et al. 1986) become compatible with
special relativity.

12.1.6 The Transactional Interpretation

This approach provides a description of the wave function (state vector) as an actual wave physi-
cally present in real space and provides a mechanism for the occurrence of non-local correlations
due to the use of advanced waves having negative energy and traveling in the negative time
direction. It is a time-symmetric formulation and considers source and absorber on an equal
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footing, sending “offer waves” and “confirmation waves,” respectively. Confirmation waves are
determined by the complex conjugate of the wave function. The wave collapse occurs as the for-
mation of a transaction, which occurs by the interaction of offer and confirmation waves (Cramer
1986). In its heart it treats the reality of possibilities (Kastner 2012). Advanced or confirma-
tion waves bring with them a number of problems related to causality requiring a hierarchy of
transactions (Boisvert and Marchildon 2013).

12.1.7 The Guide or Pilot Wave Interpretation

This is the fundamental idea of de Broglie (1926, 1960). It can be taken as a kind of prelimi-
nary version of the transactional interpretation, but still rests on local realism by an underlying
mechanism for the interplay of waves and particles. The waves guide the particle but cannot carry
energy or momentum. Schrödinger (1927) also argued for a close analogy between matter waves
and classical waves and claimed a particle character only when it interacts with a target or an
apparatus. This also leads to conceptual problems mainly due to its local character. It got some
renaissance due to the recent discussion on Compton frequency effects (Mueller et al. 2010).

Recent model experiments with liquid droplets bouncing on the surface of an oscillating liq-
uid may couple with the surface waves it generates and thus start to propagate. The resulting
“walker” is a macroscopic object that associates the droplet and its wave, which results in surpris-
ing “quantum-like” effects when such a system passes through single and double slits (Couder
et al. 2005, Eddi et al. 2009, Couder and Fort 2012, Brandy and Anderson 2014). In this descrip-
tion the Planck constant does not show up; the wave is emitted by the particle and propagates at a
fixed velocity on a material medium. Surface waves which guide the droplets are Lorentz covariant
with a characteristic speed. Attraction and repulsion between bouncing pairs of droplets depend
on the relative phase between the droplets. All these macroscopic phenomena can be correlated to
the behavior of quantum-mechanical particles.

12.1.8 The Information Interpretation

This approach interprets the quantum state as a mathematical tool that encodes subjective infor-
mation about potential results of experiments. It sees the collapse as a sudden improvement of
knowledge of the experimenter (Fuchs and Peres 2000, Ferrero 2003). In this respect it also con-
tains elements of subjectivity and does not constitute a reality without observers (Groeblacher
et al. 2007). This interpretation takes into account that our description of the physical world is
represented by propositions, i.e., information gained by classical measuring results. It assumes
the principle of quantization of information. An elementary system can be represented by a single
proposition, i.e., a single bit of information with “true” being identified with the bit “1” and “false”
with the bit “0” (Zeilinger 1999a,b; Paterek et al. 2010). When one uses “spin up” of a particle
as such a single bit, any measurement other than the spin-up direction must contain an element
of randomness and cannot be reduced to unknown hidden properties, since they would then rep-
resent more than a single bit of information. In the case of two spin particles one has two bits of
information available. In this case one can specify the truth of the following two propositions:

• The two spins are different along z;

• The two spins are the same along z.

The corresponding quantum state is uniquely defined; it is an entangled state as given by
Eq. (12.10). Entanglement is therefore a consequence of the fact that the total information is
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used to define joint and not individual properties of the composite system. The individual proper-
ties remain completely undefined, i.e., random. There is a book that tries to popularize this view
(Vedral 2011).

12.1.9 Many-World Interpretation

This is the original idea of Everett (1957). It sticks to pure Schrödinger evolution and denies
that collapse ever happens. Here all superposition states between the system and the apparatus
are ascribed on an equal status and the outcome of the measurement takes different values in
different worlds and even the observer is split into these different worlds (Everett III 1957, De
Witt 1973, Squires 1985). This interpretation is intrinsically connected to hidden variables which
determine which results are observed in which world. It restores individual determinism and solves
the measurement problem by denying the collapse, but uses very abstract arguments. In the many-
world interpretation the wave function provide a complete description of the state of the system but
adds the conscious awareness of an observer at random with postulated weight factors specified
by the standard quantum theory. Thus, it connects quantum theory and consciousness. Through
the interplay of consciousness with the wave function definite outcomes are supposed to emerge.
In the so-called extended Everett concept one derives the main features of consciousness (intuition
and truth) from quantum mechanics (Mensky 2010). It may turn out that we do not know enough
about consciousness and its relation to the physical world to solve the quantum mystery (Squires
1990). An obvious criticism is that the problem is simply moved from pure physics to the more
speculative area of the theory of mind, for which we do not have as yet a sound formulation. The
question how strong the interaction must be to split worlds remain open.

In the following we describe examples of hidden-variable theories using pilot waves (de Broglie
1927) and quantum potentials will be presented (Bohm 1952a, 1952b). According to various
“no hidden-variable proofs” only non-local hidden-variable theories seem to be worthy of further
discussion (von Neumann 1932, Kochen and Specker 1967, Greenberger et al. 1989, Hardy
1993). There are still scientists who believe locality and, therefore, no action at the distance focus
all problems to the randomness and irreversibility of events (Englert 2013, Vaidman 2014).

12.1.10 Bohm’s Quantum Potential

This approach is strictly connected to the Schrödinger quantum mechanics formalism (Bohm
1952a, 1952b). It includes the de Broglie (1927) pilot wave theory to a great extent and it gives a
complete deterministic view of quantum phenomena due to adding a (non-local) quantum poten-
tial to the Schrödinger equation. The de Broglie–Bohm theory treats wave and particle on an equal
footing and therefore it is a kind of a causal interpretation (Selleri 1993, Holland 1999, Dürr and
Teufel 2009). Since this quantum potential is constructed out of the Schrödinger equation the
predictions are equivalent to the solution of the Schrödinger equation, but they nicely show how
an interference pattern is built up by deterministically determined individual trajectories (e.g.,
Philippidis et al. 1979, Bohm and Hiley 1993, Holland 1993). The arrow-of-time is explicitly
recognized and local realism is preserved. The price to pay is that the guiding quantum potential
becomes non-local. Extensions toward special relativity effects failed since the quantum potential
does not disappear for increasing distances from objects.

The time-dependent Schrödinger equation (Eq. 1.2) can be rewritten by means of the
Madelung (1928) transformation as

ψ(r, t) = R(r, t)eiS(r,t)/h̄, (12.13)
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which gives two differential equations for the real functions R(r, t) and S(r, t) as the basis for the
Bohm formulation of quantum physics:

∂R2

∂t
+ ∇

(
R2 ∇S

m

)
= 0, (12.14a)

and

∂S
∂t

+
1
2m

(∇S)2 + V –
h̄2

2m
∇2R
R

= 0. (12.14b)

These equations have known analogs in classical physics and fluid dynamics, aside from the term
describing the quantum potential, namely

Q = –
h̄2

2m
∇2R
R

. (12.15)

Since the density ρ(r, t) =R2(r, t) = |ψ(r, t)|2, Eq. (12.14a) describes the continuity equation of a
particle ensemble traveling with a momentum

mv(r, t) = ∇S(r, t). (12.16)

Equation (12.14b) has the same structure as the classical Hamilton–Jacobi equation, but here
with the additional quantum potential. Whenever the ψ-function is known, the quantum potential
and then the individual trajectories can be calculated. Dewdney (1985) calculated the quantum
potential and the individual trajectories for a Mach–Zehnder interferometer with square poten-
tials describing the beam splitter and the beam combiner and a Gaussian incident wave function
(Fig. 12.3). The non-crossing feature of the trajectories is a characteristic feature of these quantum
trajectories.

The non-local behavior of the quantum potential for different phase shifts is visible. Similar
calculations are known for the double-slit situation (Philippides et al. 1979, Sanz and Miret-Artés
2002) and for the spin-superposition case (Dewdney et al. 1986). The non-local character of
this causal theory has been elucidated in detail by Dewdney et al. (1989), Brown et al. (1995),
and Dürr and Teufel (2009). A direct verification of the quantum potential seems to be impos-
sible because any measuring probe would change this potential substantially. Analogies between
the Wignerian and Bohmian interpretation of the two-slit experiment have been addressed by
Wiseman (1998). Nevertheless, a satisfactory Lorentz invariant Bohmian theory still needs to be
found. Weak measurements may overcome these restrictions (Aharonov et al. 1988). This has
been shown by Kocsis et al. (2011), who performed a weak measurement of the particle momen-
tum in a double-slit experiment. The particle momentum was postulated according to the result
of a strong measurement of the position of the particle. Similar conclusions have been drawn in
a delayed choice experiment by Jasques et al. (2007). A detailed study of the present status and
a proposal for further work can be found by Davidovic and Sanz (2013) and by Braverman and
Simon (2013).

Trajectories can also be obtained on the basis of the Feynman path integral method as done by
Gondran and Gondran (2005). They calculated the individual paths of cold atoms from an atom
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cloud through a double-slit arrangement and found good agreement with experimental results
(Shimizu et al. 1992). In this case the particles are not only represented by their wave function
but also by the motion of their center of mass; and the trajectories result just from this motion
(Holland 1999, Davidovic et al. 2013). The coupling of liquid droplet motions onto a liquid
coupled by means of the waves that they generated themselves is another example of visualizing
the simultaneous trajectory and wave behavior (see Section 12.1.7 and Couder et al. 2005, Eddi
et al. 2009, Couder and Fort 2012).

If two particles are in an entangled (correlated) state, then, because of the quantum field,
guiding the trajectory of the second particle depends upon the trajectory of the first. If now a field
is suddenly turned on in a region where the first particle happens to be, the subsequent motion of
the second particle can be drastically altered in a manner that does not diminish with the distance
between the two particles (Fig. 12.2). Connections with the principle of quantum contextuality,
as discussed in Chapter 7 become visible.

A maximally realistic causal quantum theory avoiding the asymmetrical treatment of position
and momentum as it happens in the de Broglie–Bohm theory has been formulated by Roy and
Singh (1999). In this case a positive definite phase space density reproduces the correct quantum
probabilities as marginal. This theory also defines quantum potentials which guide the particles in
ordinary and momentum space.

12.1.11 Event-Based Models

It should be mentioned that there exist even more causal and “realistic” pictures of quantum
mechanics. Strictly speaking the event-based model is not an interpretation of quantum physics
but it is a new approach to understanding quantum-like phenomena in a new light. Particle-only
models try to describe quantum effects without using the Schrödinger equation. They use com-
puter algorithms to describe individual particles and detection events (De Raedt et al. 2005, Zhao
et al. 2008, Jin et al. 2010, De Raedt et al. 2012, De Raedt and Michielsen 2014). Two beam
interferences of a Fresnel biprism, double-slit diffraction, and interference experiments have been
investigated in detail. The individual particles do not have any direct interaction between them but
indirectly through the common interaction with the source, the detector, the polarizers, the beam
splitters, the collimators, etc. An event-based model for the detectors is assumed where the detec-
tion process involves some kind of memory. The single particles are seen as messengers between
the source and the detector, which carry specific messages, e.g., the time-of-flight between the
specific place of emission at the source and the specific place of arrival at the detector. The time-
of-flight and the spin of a neutron can be encoded in a two-dimensional complex valued vector

y =

(
eiψ

(1)
cos(θ /2)

eiψ(2) sin(θ /2)

)
. (12.17)

As the messenger moves for a certain time T the message changes as

y′ → eivTy, (12.18)

where v denotes a characteristic frequency determined by the intensity of the beam. T may be
different in both beam paths when a phase shifter is applied. The message itself is influenced by the
source, the beam splitter, and the phase shifter. The value of the previous messenger can be stored
within the system and an internal vector x, which depends on random variables, is added, and can
be interpreted as a kind of learning parameter. More details can be found in de Raedt et al. (2012).
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Many interference experiments with various particles have been simulated and good agreement
between simulation and the standard quantum calculation has been achieved. A simulation of the
neutron interference absorber experiments is discussed in Section 4.3.1, where both cases, the
statistical and the deterministic one, are described correctly. This model does not rely on any wave
equation and satisfies Einstein’s criterion of local causality. It is a “cause-and-effect” description
in terms of discrete-event, particle-like processes. Here the question remains how an event-based
detector with memory function can be justified.

A particle-only view is also promoted by Utsuro and Ignatovich (2010), who argue that entan-
gled states can be described by simple product states which means that non-locality is rejected as
well. The momentum and position of a particle are not considered as eigenvalues of their operators
but as expectation values of these operators. They suggest that related EPR experiments should
be re-analyzed including the background and a non-linear system of classical equations should
replace the linear Schrödinger equation.

12.1.12 No-Problem Approach

This view is based upon events and on the probabilities for events. These events are well localized
in space and time (Haag 1990b). Such events are irreversible and leave a mark behind, a definite
trace, and they are randomly realized. This principle of random realization ensures that the events
do happen in accordance with their probabilities of occurrence (Haag 1996, 2013). The random-
ness may be explained by the ignorance of the past of a quantum system. In the neutron case we
do not know from which fission process the neutron comes, in which direction and with which
energy it has been emitted, which moderation process with many collisions it has experienced,
where it has left the moderator, etc. We also do not know the time and position when and where
all these processes happened. We construct the wave function from the little knowledge we have
at the beginning of an experiment. From these known and unknown features one can construct
equations of motion which are intrinsically irreversible, although the related Schrödinger equation
remains time-reversal symmetric (Englert 2013). In the abstract the author declares “Quantum
theory is a well-defined local theory with a clear interpretation. No ‘measurement problem’ or any
other fundamental matters are waiting to be settled.” The description uses the statistical operator,
which tells us our knowledge about the preparation of the system and it does not change until we
acquire additional information. Thus, the statistical operator is not a physical object or a property
of a physical object; it describes the object by encoding what we know about it. The fact that quan-
tum processes are fundamentally probabilistic is sufficient to explain Bell’s theorem and preserving
locality to the quantum system itself. Thus, we have an interplay of local phenomena caused by
local interactions and a mathematical formalism boosted by an epithemological interpretation.

12.2 Conclusions

The numerous experiments performed by neutron interferometry agree well with the predictions
of quantum mechanics. It can be stated that new instruments, like the neutron interferometer,
provide a deeper insight into the curious features of quantum mechanics (see, for example,
Bromberg 2008, Snow 2013, Klepp et al. 2014). From an epistemological point of view they
show the non-local features of that theory and they show how new insights into the nature of
quantum systems depend on the quality and sensitivity of a measurement. Thus, the border
between the micro-world and macro-world seems to be shifting according to the exquisite
standards of measurement technique. Decoherence and dephasing effects play an important role
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in this transition process. From the experimental point of view the results are well described by
the formalism of quantum mechanics, which gives a sound basis for accepting phenomena which
are inherently in a domain outside of our daily experience. Hidden variables are not needed for
the interpretation. However, various experiments have shown that properties of the wave function
can be measured even when they are virtually masked by destructive interactions and fluctuations.
In this respect more extended wave packets than the original one have been observed by various
post-selection experiments (see Section 4.5). This shows that a wave packet can be affected by
its surroundings over distances considerably larger than its spatial extent, thereby indicating a
general non-separability feature of nature. Resonance enhancement effects are feasible in such
situations. A unique distinction between various interpretations of quantum mechanics which are
actually based on the same formalism seems to be impossible, even in principle. Nevertheless, the
intellectual challenge remains to put quantum phenomena more and more onto a macroscopic
scale and thereby make such phenomena more understandable according to the experience of
ordinary people. This probably would mitigate the apparent magic and mystery of quantum
mechanics. No theory can be so robust as not to require some further modification resulting from
new experiments. This challenge remains on the horizon as a challenge to the next generation of
experimentalists. Be guided by theory, but stick with the data.
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