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Preamble

Most physicists and astrophysicists believe that space, time, and all the matter
and radiation in the Universe were formed during the big-bang some 15 billion
years ago. A key challenge is to understand how the Universe we live in today
evolved from the cosmic fireball created in the big-bang. As our understanding
of the laws of physics improves, we are able to look further back in time, and
unravel the structure of the early Universe and its subsequent evolution.

It is widely believed that almost equal amounts of matter and antimatter were
created in the big-bang, and that most of the antimatter, if not all of it, annihilated
on matter after the Universe had cooled and expanded. This annihilation, which
started about 20 µs after the big-bang, occurred after most of the matter we see
in the Universe today was already in the form of neutrons, protons, and other
hadrons made of quarks. Before the Universe hadronized, it existed in a phase
of quarks and gluons in which the matter–antimatter asymmetry which makes
the Universe around us today had been a small and insignificant aberration. We
are attempting to recreate this phase today, and to study it in the laboratory.

This primordial state of hadronic matter called quark–gluon plasma (QGP)
for all purposes an inescapable consequence of our current knowledge about the
fundamental hadronic interactions, which is qualitatively rooted in the SU (3)-
gauge theory, quantum chromodynamics (QCD). We are seeking to verify this
prediction and to understand this novel form of matter. To accomplish this,
we ‘squeeze’ the normal nuclear matter in relativistic nuclear collisions at suf-
ficiently high energy. The individual nucleons dissolve, and we hope and ex-
pect that their constituents will form the sought-after state, the (color-charged)
plasma of freely moving deconfined quarks and gluons.

Pertinent experiments are being carried out today at the European Labora-
tory for Particle Physics, CERN, located on the French–Swiss border 20 km
north of the lake and city of Geneva, and in the USA at the Brookhaven Na-
tional Laboratory, BNL, on Long Island, some 100 km east of New York City.
The most violent central encounters, in which large chunks of projectile–target
matter participate, are of particular interest. Therefore, beams of lead and gold

xi



xii Preamble

ions are made to collide with each other. The available energy in the center-
of-momentum (CM) frame exceeds by far the rest energy of each participating
nucleon. In a press release, in February 2000, the CERN laboratory has formally
announced that it views the collective evidence obtained from seven relativistic
nuclear collision experiments as being conclusive proof that some new form of
matter has been formed:

A common assessment of the collected data leads us to conclude that we now
have compelling evidence that a new state of matter has indeed been created,
at energy densities which had never been reached over appreciable volumes
in laboratory experiments before and which exceed by more than a factor 20
that of normal nuclear matter. The new state of matter found in heavy-ion
collisions at the SPS features many of the characteristics of the theoretically
predicted quark–gluon plasma.

The study of highly excited and dense hadronic matter by means of ultra-
relativistic nuclear collisions has been and remains a multidisciplinary area of
research, which is subject to a rapid experimental and theoretical evolution. This
research field is closely related both to nuclear and to particle physics, and, ac-
cordingly, this book encompasses aspects of these two wide research areas. It
employs extensively methods of statistical physics and kinetic theory. Looking
back at the early days, it was primarily the theoretical work on multiparticle pro-
duction by E. Fermi [121] in the USA, and L. Landau [173, 175] in the USSR,
which paved the way to the development in the early sixties [137, 140] of the
statistical bootstrap model description of hadron production by R. Hagedorn.
This approach was refined as the understanding of hadronic structure advanced,
and ultimately it has been modified to allow for the possibility that individual,
confined hadron-gas particles dissolve into a liquid of quarks and gluons, which
we refer to as the QGP.

The multiparticle-production work was primarily the domain of particle physi-
cists. However, since the early seventies interest in nuclear ‘heavy-ion’ (not
fully stripped heavy atoms) collision experiments at relativistic energies had
been growing within the nuclear-physics community. The initial experimental
program was launched at the Lawrence Berkeley Laboratory, LBL, at Berkeley,
USA, and at the Joint Institute for Nuclear Research, JINR, in Dubna, USSR.

At the LBL, a transport line was built to carry heavy ions from the heavy-
ion accelerator HILAC to the BEVATRON which was made famous by the dis-
covery of antiprotons in the early fifties. This BEVALAC facility permitted
the acceleration of nuclear projectiles to about∗ 1A GeV/c. Lighter projectiles,

∗ We follow the convention of presenting the beam energy or momentum per nucleon in the nu-
cleus thus: 200A GeV implies a projectile with the total energy 200 × A GeV, or momentum
200 × A GeV/c, where A is the number of nucleons in the projectile. We rarely differentiate
between the units of mass [GeV/c2], of momentum [GeV/c], and of energy [GeV], in the rela-
tivistic domain of interest to us in this book. This corresponds to the commonly used convention
which sets the units of time such that c = 1.
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which could be completely ionized and had more favorable charge over mass
ratios, were accelerated to above 2A GeV/c. At the JINR in Dubna, a simi-
lar program of research with an acceleration capability restricted to lighter ions
has been developed. More recently, another heavy-ion accelerator complex, the
SIS (SchwerIonenSynchrotron), of comparable energy to BEVELAC, has been
erected at the Gesellschaft für Schwerionenforschung laboratory, GSI, in Darm-
stadt, Germany. About the time the more modern SIS started up, the BEVELAC
closed down in 1993. The energy scale O(∞) GeV per nucleon yields com-
pressed nuclear matter at few times normal nuclear density, and yields final-
state particle (spectral) ‘temperatures’ at or below 100 MeV, conditions which
are generally considered inadequate for elementary quarks and gluons to begin
to roam freely in the reaction volume.

The success of the initial heavy-ion experimental program, specifically the
demonstration of the possibility of studying the properties of compressed and
excited nuclear matter, gave birth to the research programs at the BNL and
CERN. Much of this interest has been driven by the hope and expectation that,
within the reach of existing elementary-particle-accelerator facilities, one may
find the point of transition from the hadronic gas (HG) phase of locally confined
nucleons and mesons to the new QGP phase in which color-charged quarks and
gluons could propagate.

The first oxygen beam at 60A GeV was extracted from the Super Proton Syn-
chrotron (SPS) accelerator at CERN and met the target in the late autumn of
1986, about the same time as the BNL started its experimental program at the
Alternate Gradient Synchrotron (AGS) accelerator with a 15A-GeV silicon-ion
beam. Very soon thereafter, the energy of the SPS beam could be increased
to 200A GeV and a sulphur-ion source was added. In order to study the rel-
atively large volumes and longer lifetimes expected in dense matter formed in
collisions of the heaviest nuclei, an upgrade of the SPS injector system was ap-
proved, which, as of 1994, allowed one to accelerate lead (208Pb) ions to 158A
GeV. At the BNL, a gold (197Au)-ion beam with energy up to 11A GeV became
available at that time. The smaller beam energy per nucleon of the heavier Pb
ions compared with that for sulphur reflects their smaller ratio of particle charge
to particle mass, given a fixed magnetic field strength used to bend the beam into
a circular orbit in an accelerator.

Today, we are redirecting our efforts toward new experimental facilities. At
the BNL, the Relativistic Heavy Ion Collider (RHIC), completed in 1999 with
colliding nuclear beams at up to 100A GeV, will dominate the experimental
landscape for the foreseeable future. It is allowing the exploration of an entirely
new domain of energy, ten times greater than that of CERN-SPS. The Large
Hadron Collider (LHC) project set in the 27-km CERN-LEP tunnel comprises
an important heavy-ion program at energies about a factor of 30 greater than
those of the RHIC. As this book goes to press, the expectation is that the exper-
imental data from the LHC will become available in 2007.
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In this book, our objective is to offer both an introduction and a perspective on
the recent accomplishments and near-term aims of this rapidly developing field.
The material derives from our research work, including several reviews, summer
courses, and graduate lecture series that we have presented during the past 20
years. The selection of material and emphasis represents our personal experi-
ence in this rather wide interdisciplinary field of research, that today cannot, in
its entirety, fit into a single volume.

We assume that the reader is familiar with quantum mechanics, special rel-
ativity, and statistical physics, and has been introduced both to nuclear and to
particle physics. However, we recapitulate briefly as needed the essential intro-
ductory elements from these fields. We begin with a 70-page overview, followed
by more extensive treatment of the core of our personal research experience, and
mention other domains of research as appropriate.

No book is complete and this book is no exception. We will not address in
depth many interesting areas of active current research. We treat the two particle
intensity interferometry measurements superficially, and have not discussed the
elliptical flow measurements which point to early thermalization. We do not
explore the theoretical models which interpret suppression of charmonium in
terms of QGP, and only key experimental results from this wide research area
are shown. We do not discuss the production of photons and dileptons, since
this goes beyond the scope of this book, and also in consideration of the inherent
difficulties in isolating experimentally these QGP signatures. Instead, we have
put a lot of effort into a detailed introductory presentation of hadron physics, as
the title of this book announces.

We are hoping that our text can serve both as a reference text for those work-
ing in the field and a class text adaptable for a graduate course. One of us (J.
R.) has tried out this presentation in the Spring 2001 semester at the University
of Arizona. This experience further refined our presentation. Doubtless, later
editions will build upon practical experience of how to handle this very diverse
material in a classroom. Rather than conventional homework exercises, we leave
in the text topics for further research, ‘We will not discuss further in this book
. . . ,’ which students can address in class presentations.

We have updated the contents by incorporating advances made up to October
2001, including a selection of run 2000 RHIC results. Most of the material
we present has not yet been covered in any other monograph. Complementary
books and reports that we found useful are the following.

1. The QCD Vacuum, Hadrons and the Superdense Matter. World Scientific,
Singapore (1988). E. V. Shuryak presents an early view of the structure of
the QCD vacuum.

2. Finite-Temperature Field Theory. Cambridge University Press (1989). J.
Kapusta offers a lucid introduction to the theoretical aspects of QCD and
hot quark–gluon matter, an area that has since developed rapidly.
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3. Thermal Field Theory. Cambridge University Press (1996). M. Lebellac
presents a modern introduction which complements and updates the text of
J. Kapusta cited above.

4. Vacuum Structure and QCD Sum Rules. North Holland, Amsterdam (1992).
M. A. Shifman develops a more comprehensive view of the vacuum struc-
ture and presents applications of the sum-rule method.

5. Particle Production in Highly Excited Matter. Plenum Press, New York
(1993), editors H. H. Gutbrod and J. Rafelski. This volume comprises sev-
eral comprehensive introductory and survey articles pertinent to interpreta-
tion of data.

6. Introduction to Relativistic Heavy Ion Collisions. J. Wiley and Sons, New
York (1994). In this text, L. P. Csernai emphasizes the transport phenomena
in the process of collision and presents applications of matter flow mod-
els, including an analysis of the LBL, GSI and Dubna energy ranges, these
subjects are not covered in depth in this book.

7. Introduction to High Energy Heavy-Ion Collisions. World Scientific, Singa-
pore (1994). C.-Y. Wong emphasizes the role of the parton structure in the
collision, considers model dynamics of color strings and the associated pair
production mechanisms, and addresses among physical observables more
comprehensively the electromagnetic probes of dense hadronic matter.

8. Bose–Einstein Correlations and Subatomic Interferometry. John Wiley, Chich-
ester (2000). R. Weiner presents a detailed and technical discussion of the
HBT particle-correlation method used to study the space–time geometry in
heavy-ion collisions and related topics. Our book offers a short introduction
to this monograph.

9. Quark–Gluon Plasma. World Scientific, Singapore, Volumes I and II (1990
and 1995) editor R. Hwa. Useful collections of articles on a variety of topics,
contributed by hand-picked authors.

10. Hot Hadronic Matter: Theory and Experiment. Plenum Press, New York
(1995), editors J. Letessier, H. H. Gutbrod, and J. Rafelski. This volume,
dedicated to Rolf Hagedorn, comprises in particular a comprehensive survey
of the bootstrap model of confined hadronic matter.

11. Proceedings of Quark Matter meetings held about every 18 months have
in recent years been published in Nuclear Physics A. These proceedings
present regular comprehensive updates of the experimental results, speckled
with a mostly random assortment of theoretical contributions.

12. Proceedings of Strangeness in Hadronic Matter have in recent years been
published in Journal of Physics G. These volumes comprise a comprehen-
sive survey of the strongly interacting heavy flavor probes of phases of
hadronic matter.

13. A very useful reference is the bi-annual reissue of the Review of Particle
Physics, published as separate issues of Physical Review D, alternating with
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the European Physical Journal and accessible online.

A closely related area of research is the study of the properties of quantum chro-
modynamics by numerical methods within the lattice-gauge-theory approach.
We can barely touch this huge research field in this book. Some standard texts
are the following.

14. Quarks, Strings, and Lattices. Cambridge University Press (1983), by M.
Creutz.

15. Quantum Fields on the Computer. World Scientific, Singapore (1992), by
M. Creutz.

16. Quantum Fields on a Lattice. Cambridge University Press (1994), by I. Mont-
vay and G. Münster.

17. Proceedings of Lattice meetings, published in Nuclear Physics, are the best
places to find the most recent results.

The publisher has used its best endeavors to ensure that the URLs for external
websites referred to in this book are correct and active at the time of going to
press. However, the publisher has no responsibility for the websites and can
not guarantee that a site will remain live or that the content is or will remain
appropriate.

We would like to thank our friends and colleagues who over the years helped
us reach a better understanding of the material addressed in this book: we
thank in particular Drs Mike Danos (Chicago and Washington, deceased), Hans
Gutbrod (GSI), Rolf Hagedorn (CERN), Berndt Müller (Duke University), and
Emanuele Quercigh (CERN and Padua).

This volume is dedicated to Helga Rafelski. Helga has been a companion
from day one in the field of relativistic heavy-ion collisions; her presence at the
finale will be sorely missed.

Jean Letessier and Johann Rafelski, Paris and Tucson, November 2001.



I
A new phase of matter?

1 Micro-bang and big-bang

1.1 Energy and time scales

When atomic nuclei, generally called heavy-ions, collide at very high en-
ergies, such that the kinetic energy exceeds significantly the rest energy,
dense hadronic∗ matter is produced. We refer to these reactions as (ul-
tra)relativistic heavy-ion, or nuclear, collisions. The energy density of
hadronic matter with which we are concerned has a benchmark value of

ε = 1 GeV fm−3 = 1.8× 1015 g cm−3. (1.1)

The corresponding relativistic matter pressure is

P � 1
3ε = 0.52× 1030 bar. (1.2)

Dense matter with these properties must have existed in the early Uni-
verse about 10 µs after the big-bang. It might have been recreated ex-
tremely rarely in interactions of very-high-energy cosmic-ray particles.
Some astrophysical objects may reach these extreme conditions. It had
been speculated that a catastrophic change in the Universe could ensue
when these conditions are recreated in laboratory experiments, but these
fears have been refuted [85].
Experimental study of the physics of the early Universe requires in

principle a large, practically infinite, volume of matter. For this reason, it
is necessary to study high-energy collisions of the heaviest nuclei, rather
than the more elementary and simpler-to-handle interactions of protons
or leptons. However, we cannot study in the laboratory physical systems

∗ In Greek, barys means strong and heavy; leptos is weak, light; mesos is intermediate,
and hadros is strong. Hadronic (strong) interactions involve baryons and mesons
(heavy and semi-heavy particles) but not leptons, the light and relatively weakly
interacting electrons, muons, the heavy tau, and nearly massless neutrinos.

1



2 A new phase of matter?

larger in volume than lead (Pb) or gold (Au). Hence, it would seem that
we will not be able to explore experimentally the properties of the phase
transition involving the dissolution of hadronic particles, since it is known
that genuine phase transitions cannot develop in finite physical systems.
However, only for non-relativistic finite systems it is impossible to ob-
serve experimentally the discontinuous phase properties. In our case, the
ability to produce particles from energy and the presence of virtual fluctu-
ation effects greatly enhance the number of physical states accessible. We
therefore hope to identify in collisions of relativistic heavy-ions a (nearly)
singular manifestation of a phase transition from the nuclear, hadronic
phase to a matter phase consisting of quarks and gluons.
We use units in which the Boltzmann constant k = 1. In consequence,

the temperature T is discussed in units of energy, which, in this book,
are either MeV � 2mec

2 (me is the electron mass) or GeV= 1000 MeV
� mNc

2 (mN is the mass of a nucleon). The conversion scale of typical
temperature involves ten additional zeros:

100 MeV ≡ 116× 1010 K. (1.3)

To appreciate the magnitude of this temperature, let us recall that the
center of the Sun is believed to be at T = 11 × 106K, and the scale of
temperature of interest to us is in fact 100 000 times greater.
In general, the units in this book are chosen such that the numerical

values � = c = 1, e.g., the mass of particles will also be measured in units
of energy and the energy density can appear as the fourth power of an
energy unit. With the conversion factor �c = 0.197 GeV fm, the reference
energy density in normal nuclei is

mN

VN
= 0.17mN fm−3 � 0.16 GeV fm−3 = 1.27× 10−4GeV4. (1.4)

Experimental results have shown that ultra-relativistic heavy-ion colli-
sions lead to the formation of a dense hadronic fireball, well localized in
space, with an energy density exceeding 1 GeV fm−3. Such a spatially
localized drop of highly excited, hot, and dense elementary matter will be
rapidly evolving, indeed exploding, driven by the high internal pressure.
The fireball has a short life span characterized by the size of the system
τ � 2R/c.
In relativistic heavy-ion reactions, the collision energy is shared among

numerous newly produced hadronic particles. Therefore, in the final state
we observe many soft (low-energy) newly produced hadronic particles,
rather than a few particles of high-energy as is the case in hard, elemen-
tary interactions. An important objective of our research is the under-
standing of the processes that lead to the conversion of kinetic collision
energy into high particle multiplicity. Because of the large numbers of



1 Micro-bang and big-bang 3

Fig. 1.1. Top: Lorentz-contracted nuclei collide in the center-of-momentum
frame and form a region of dense matter, which evolves into a final state of
hadrons. Bottom: two key differences involving baryon number Nb and total
particle number N between the micro-bang and the cosmological big-bang.

particles produced, many thousands in recent experiments, we believe
that this can be accomplished using statistical mechanics. This method
has the advantage that it does not require a complete description of the
microscopic production and dynamics of particles. It will be introduced
in great detail in this book.
A qualitative image of the high-energy nuclear-collision ‘micro-bang’ is

depicted in Fig. 1.1: two nuclei are shown, Lorentz-contracted in the di-
rection of motion, approaching from two sides and colliding in the center-
of-momentum (CM) laboratory frame, forming a region of dense matter
(dark-shaded), the fireball. Subsequently, the collective expansion flow of
fireball matter develops, and evolves in the final state into free streams of
individual particles, indicated by individual arrows.
The temporal evolution of a fireball into a final state comprising a multi-

tude of different hadronic particles is similar to, though much faster than,
the corresponding stage in the evolution of the early Universe. Relativis-
tic heavy-ion collision leads to a rapidly evolving fireball of quark–gluon
plasma (QGP), in which the short time scale involved is probed by the
equilibration of abundance of quark flavors. We can not hope to be able
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to recreate the ‘slow big-bang’ of the Universe in the laboratory in the
last detail. Our objective is to obtain precise information about the physi-
cal processes and parameters which govern the rapidly changing hadronic
phase. Within a theoretical framework, we can hope to unravel what
happened when the Universe hadronized.
The bottom portion of Fig. 1.1 reminds us of the two important dif-

ferences between the two ‘bangs’, the big-bang of the Universe and the
micro-bangs generated in the nuclear-collision experiments.
1. The time scale of the expansion of the Universe is determined by the in-
terplay of the gravitational forces and the radiative and Fermi pressure
of the hot matter, whereas in the micro-bangs there is no gravitation
to slow the expansion, which lasts at most about 10−22 s. The time
scale of the heavy-ion collision, indicated in Fig. 1.1, suggests that the
size and the (local) properties of the exploding nuclear fireball must
change rapidly even on the scale of hadronic interactions, contrary to
the situation in the early Universe. It is convenient to represent the
expansion time constant τU of the Universe in terms of the Newtonian
gravitational constant G and the vacuum energy B:

τU=

√
3c2

32πGB = 36
√

B0
B µs, B0= 0.19GeV fm−3=(195MeV)4.

(1.5)

The range of values of the ‘bag’ constant B found in the literature,
145 MeV < B1/4 < 235 MeV, leads to 66 µs > τU > 25 µs.

2. The early radiative Universe was practically baryonless, whereas in
the laboratory we create a fireball of dense matter with a consider-
able baryon number Nb per total final particle multiplicity N . Thus,
unlike in the early Universe, we expect in a laboratory micro-bang a
significant matter–antimatter asymmetry in particle abundance. The
matter–antimatter symmetry of particle spectra is in turn an important
indicator suggesting that the matter–antimatter symmetry has been re-
stored in other aspects.
The matter–antimatter-abundance asymmetry is easily overcome the-

oretically, since it implies a relatively minor extrapolation of the baryo-
chemical potential µb introduced to fix the baryon density. In fact, RHIC
experiments at CM-energy 130A GeV per pair of nucleons (

√
sNN = 130

GeV) are already much more baryon–antibaryon symmetric than the SPS
condition where

√
sNN ≤ 17.3 GeV, and the highest RHIC and LHC en-

ergies will allow us to extrapolate our understanding from µb/T ≤ 1 to
µb/T 	 1.
More difficult to resolve will be the differences in the physics due to the

different time scales involved. The evolution of the Universe is slow on
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Fig. 1.2. Particle energy (temperature) as a function of time in the early Uni-
verse. Different evolutionary epochs are shown along with the accessible range
of accelerator laboratory experiments.

the hadronic time scale. Given the value of τU, we expect that practically
all unstable hadronic particles decay, all hadronic equilibria are fully at-
tained, and there is potentially time to develop macroscopic structures in
the ‘mixed phase’ of QGP and hadronic gas (HG), and for weak inter-
actions to take place. All this can not occur during the life span of the
dense matter created in nuclear collisions.
The temporal evolution of the Universe is depicted, in Fig. 1.2, as a

function of time. Beginning with decoupling of neutrinos and nucleosyn-
thesis at time O(1) s the evolution of the Universe is well understood
today. In comparison, little work has gone into the detailed understand-
ing of the earlier period when the nearly symmetric matter–antimatter
hadron gas emerged from the quark–gluon phase and evolved into the
baryon Universe in which we find ourselves today. This period spans the
temperature interval 300 MeV < T < 1 MeV, separating the perturbative
QGP epoch from the epoch of decoupling of neutrinos and cosmological
nucleosynthesis.
We see, in Fig. 1.2, that, after about 10µs, the deconfined phase of qu-

arks and gluons is transformed into a hot gas of hadrons, namely mesons,
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baryons, and antibaryons. Just after that, the evolution of our Universe
was marked by a period of baryon–antibaryon annihilation, and, possibly,
separation: although we have not been able to observe antimatter in our
galaxy, or in the neighborhood of our galaxy, it is far from certain that
there is no antimatter in our Universe.
The laboratory study of the formation of the QGP and hadronization

is expected to lead to an understanding of how the hot, baryon- and
antibaryon-rich hadron gas evolved after its formation at T � 170 MeV.
Employing the statistical-physics methods developed in this book, one
finds that the energy fraction of baryons and antibaryons within hadronic-
gas matter is about 25% just after the QGP has hadronized in the early
Universe, and nearly half of this is comprised of the heavier and un-
stable strange baryons and antibaryons. It is believed that this strong
antimatter component disappears from the Universe prior to the era of
nucleosynthesis.

1.2 Quarks and gluons

Both quarks and gluons manifest themselves only for a short instant fol-
lowing a high-energy interaction, and have never been observed as free
objects at macroscopic distances from the space–time volume of the reac-
tion; they are ‘confined’. Gluons interact only through strong interactions
and pose a great experimental challenge regarding the study of their prop-
erties. The measurement of the properties of confined quarks is relatively
easy, since, in addition to the strong-interaction (color) charge, they also
carry the electro-weak charges.
There are six different flavors of quarks, see table 1.1, two practically

stable flavors referred to as up – for the proton-like quark u, and down –
for the neutron-like quark d. We often refer to these two light quarks by
their generic name q. Light quarks q may be viewed as a single entity with
two states, up or down. The semi-heavy strange-flavor s-quark decays
due to electro-weak interaction when it is bound in hadrons, typically
within 10−10 s, whereas the heavier charm c and bottom b flavors have
approximate life spans of 3× 10−13 s and 10−12 s, respectively.
These six flavors of quarks form three doublets:(

u
d

)
,

(
c
s

)
,

(
t
b

)
; Qq =

(
+2
3

−1
3

)
.

The upper component of a doublet has charge Qq = +2
3 , in units of the

proton charge, whereas the lower component has one unit of charge less, as
is also the case for the related lepton doublet comprising the three charged
leptons (electron, muon, and tau) accompanied by their neutrinos. There
is an antiquark for each quark, carrying the opposite electrical charge.
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Table 1.1. Properties of quarks: flavor f symbol, flavor name, electrical charge
Qf (in units of proton charge Qp), and mass mf at energy scale 2 GeV; see the
text for further discussion of strange-quark mass

f Quark Qf [Qp] mf(2 GeV)
u Up +2

3 3.5 ± 2 MeV
d Down −1

3 6 ± 3 MeV
s Strange −1

3 115 ± 55 MeV
c Charm +2

3 1.25 ± 0.15 GeV
b Bottom −1

3 4.25 ± 0.15 GeV
t Top +2

3 174.3 ± 5.1 GeV

Quarks differ from charged leptons (electrons e, muons µ, and taus τ),
and neutrinos (νi, i = e,µ, and τ) by a further internal quantum number
they must carry, in addition to spin. The presence of this additional
quantum number arises even in the simplest quark models. For example,
consider hadronic particles containing three quarks of the same flavor,
such as the spin-3/2 baryons:

∆++ = (uuu), ∆− = (ddd), Ω− = (sss).

The physical properties of these baryons imply that three identical quarks
are present in the same S-wave with the same spin wave function. Since
quarks are fermions, they are subject to the Pauli principle. Thus, there
must be an additional way to distinguish the quarks, aside from spin. This
additional degeneracy factor has been determined to be gc = 3. It became
known as the color of quarks – in analogy to the three fundamental colors:
red, green, and blue.
Color is an internal quantum number, which like the electrical charge, is

thought to be the source of a force [123]. It seems that there is no way to
build an apparatus to distinguish the three fundamental color charges, all
colors must everywhere be exactly equal physically. The theory of color
forces must satisfy the principle of local nonabelian gauge invariance,
e.g., invariance under arbitrary local SU(3) transformations in the three-
dimensional color space. In other aspects, there is considerable formal
similarity with quantum electrodynamics (QED). Therefore, the theory
of strong interactions based on such color forces has been called quantum
chromodynamics (QCD).
The flavor structure and symmetry of quarks and leptons remains a

mystery today. We also do not have a fundamental understanding of the
origin of quark masses. In table 1.1 we see that quarks of various flavors
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differ widely in their ‘current’ mass mf , that is mass which enters the
elementary QCD Lagrangian LQCD. The values presented in table 1.1
are for the momentum scale 2 GeV.
Since quarks are confined inside hadrons, and the zero-point energy of

confinement is much larger than the masses of light quarks, their masses
could not be determined by direct measurement. However, the precise
masses of light u and d quarks do not matter in the study of hadronic in-
teractions, being generally much smaller than the pertinent energy scales,
The mass of the strange quark ms is barely heavy enough to be de-

termined directly in a study of hadronic structure. We adopt, in this
book, the value ms(1GeV) = 200 ± 20 MeV [150]. In the value of
ms reference is made to the scale of energy at which the mass of the
strange quark is measured: akin to the interaction strength, also the
mass of quarks depends on the (energy) scale. This value of ms corre-
sponds to ms(2GeV) � ms(1GeV)/1.30 = 154 ± 15 MeV. A somewhat
smaller value ms(2GeV) = 115 ± 55 MeV, see table 1.1, corresponding
to ms(1GeV) � 150 ± 70 MeV, is the recommended value. The rather
rapid change by 30% of the quark mass between the 1- and 2-GeV scales
is well known, but often not remembered, e.g., the ‘low’ recommended
mass of the charmed quark presented in table 1.1 in fact corresponds to
mc(1GeV) = 1.6 GeV, a rather ‘high’ value.

1.3 The hadronic phase transition in the early Universe

We will now show that the ‘freezing’ of quark–gluon ‘color’ deconfined
degrees of freedom is the essential ingredient in determining the conditions
in a transition between phases that has time to develop into equilibrium.
The following discussion tacitly assumes the presence of latent heat B in
the transition, and a discontinuity in the number of degrees of freedom,
g2 
= g1, where ‘1’ refers to the primeval QGP phase and ‘2’ to the final
hadronic-gas state.
To find the phase-transition point, we determine the (critical) temper-

ature at which the pressures in the two phases are equal. We allow, in
a transition of first order, for a difference in energy density ε1 
= ε2 asso-
ciated with the appearance of latent heat B (the ‘bag constant’), which
also enters the pressure of the deconfined phase. We consider the Stefan–
Boltzmann pressure of a massless photon-like gas with degeneracy gi:

Pc ≡ P1(Tc)=
π2

90
g1T

4
c − B, (1.6)

Pc ≡ P2(Tc)=
π2

90
g2T

4
c . (1.7)
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We obtain

B
T 4c
=

π2

90
∆g, Tc = B 1

4

(
90

π2∆g

)1
4

, ∆g = g1 − g2. (1.8)

The transition temperature, in the early Universe, is slightly higher than
the value seen in laboratory experiments, even though Eq. (1.8) involves
only the difference in the number of degrees of freedom. For the pressure
at the transition we obtain

Pc = B g2
∆g

. (1.9)

The pressure, and therefore the dynamics of the transition in the early
Universe, depends on the presence of non-hadronic degrees of freedom,
which are absent from laboratory experiments with heavy ions.
In summary, the phase-transition dynamics in the early Universe is

determined by

(a) the effective number of confined degrees of freedom, g2, at Tc;
(b) the change in the number of acting degrees of freedom ∆g, which

occurs exclusively in the strong-interaction sector; and
(c) the vacuum pressure (latent heat) B, a property of strong interactions.
In order to understand the early Universe, we need to measure these
quantities in laboratory experiments.
Both phases involved in the hadronization transition contain effectively

massless electro-weak (EW) particles. Even though the critical tempera-
ture does not depend on the background of EW particles not participating
in the transition, the value of the critical pressure, Eq. (1.9), depends on
this, and thus we will briefly digress to consider the active electro-weak
degrees of freedom. These involve photons, γ, and all light fermions, viz.,
e, µ,νe,νµ, and ντ (we exclude the heavy τ-lepton with mτ � T , and
we consider the muon as being effectively a massless particle). Near to
T � 200 MeV, we obtain

gEW=gγ+ 7
4g
EW
F = 14.25, (1.10)

with

gγ=2, 7
4g
EW
F = 7

8 × 2× (2e + 2µ+ 3ν) = 12.25,

where charged, effectively massless fermions enter with spin multiplicity
2, and we have three neutrino flavors – there are only left-handed light
neutrinos and right-handed antineutrinos, and thus only half as many
neutrino degrees of freedom as would naively be expected.
In the deconfined QGP phase of the early Universe, we have

g1 = gEW + gg + 7
4gq. (1.11)
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The number of effectively present strongly interacting degrees of freedom
of quarks and gluons is influenced by their interactions, characterized by
the strong coupling constant αs, and this book will address this topic in
depth,

gg = 2s × 8c
(
1− 15
4π

αs

)
,
7
4
gq =

7
4
2s × 2.5f × 3c

(
1− 50
21π

αs

)
, (1.12)

where the flavor degeneracy factor used is 2.5, allowing in a qualitative
manner for the contribution of more massive strangeness; table 1.1. The
degeneracies of quarks and gluons are indicated by the subscripts s(pin)
and, c(olor), respectively. We obtain

g1 =

 56.5, for αs = 0,
∼37, for αs = 0.5,
∼33, for αs = 0.6.

(1.13)

For the QCD perturbative interactions with αs = 0.5–0.6, we see that
g1 � 35± 2.
We now consider the final HG phase of the early Universe: there is no

light, strongly interacting fermion. Aside from three light bosons (pions
π± and π0), the presence of heavier hadrons contributes at T � 170 MeV,
and one finds for the hadronic degrees of freedom gh2 � 5

g2 ≡ gEW + gh2 � 19. (1.14)

Thus, we find from Eqs. (1.13) and (1.14),

g1 − g2 = ∆g =

 ∼37, for αs = 0,
∼18, for αs = 0.5,
∼14, for αs = 0.6.

(1.15)

For the QCD perturbative interactions with αs = 0.5–0.6, we see that
about half of the degrees of freedom freeze across the transition in the
early Universe.
For the value B1/4 = 190 MeV and αs � 0.5, we obtain from Eq. (1.8)

a transition temperature Tc � 160 MeV. At this temperature, the critical
pressure Eq. (1.9) is found to be Pc � 1.4B, and it includes both hadronic
and electro-weak partial pressure contributions. The hadronic fractional
pressure present in laboratory experiments and seen in lattice simulations
of gauge theories (compare with section 15.5) is P hc � B/4.

1.4 Entropy-conserving (isentropic) expansion

Much of the time dependence of an expanding Universe is related to the
assumption of adiabatic, i.e., entropy-conserving, expansion dynamics:

dE + P dV = T dS = 0, dE = d(εV ),
dV

V
=
3 dR
R

. (1.16)
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Here, as usual, ε is the energy density in the local restframe, and the
three-dimensional volume element dV scales with the third power of the
distance scale R. We obtain

3 dR
R

= − dε

ε+ P
. (1.17)

We will revisit Eq. (1.17) which describes general expansion dynamics of
the micro-bang.
We now relate the expansion dynamics to the velocity of sound, and

use well known relations of thermodynamics which we will discuss in this
book,

dε =
dε

dP

dP

dT
dT =

1
v2s
σ dT =

1
v2s

ε+ P

T
dT. (1.18)

We will revisit the derivation Eq. (1.18) when we study the same physics
occurring in the expansion of the dense-matter phase formed in heavy-ion
collisions in section 6.3. Using Eq. (1.17), we obtain

3 dR
R

= − 1
v2s

dT

T
. (1.19)

This equation allows the integral

RT 1/(3v
2
s ) = constant, (1.20)

which describes exactly how the temperature decreases in an isentropic
expansion once the equation of state P = P (ε), and hence the velocity of
sound is known.
For a relativistic equation of state, v2s =

1
3 and thus

R(t)T (t) = constant, V (t)T 3(t) = constant. (1.21)

While this result applies to a three-dimensional expansion, it is easily
generalized to a one-dimensional expansion, such as is expected to apply
in ultra-high-energy heavy-ion collisions.

1.5 The dynamic Universe

The (0, 0)-component of the Einstein equation,

Rµν − 1
2gµνR+ Λvgµν = 8πGTµν , (1.22)

gives the Friedmann equation which determines the rate of expansion of
the homogeneous Universe,

H2(t) ≡
(
Ṙ

R

)2
=
8πG
3

ε+
Λv
3

− k

R2
. (1.23)
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In the last term, k = 0, 1, and −1 for different geometries of the Universe
(flat, bubble, and hyperbolic-open); this term is negligible in our consid-
erations. Λv is Einstein’s cosmological term, which is playing a similar
dynamic role to B, but, in comparison, it is of irrelevant magnitude dur-
ing the early time period we consider. H is the Hubble ‘constant’ which
varies with time. Its present-day value, H(t0) = H0, is of considerable
interest and is given in the range

H0 = 70± 15 km s−1Mpc−1 =
0.7± 0.15
1010 y

= (2.2± 0.5)×10−17 s−1.

Inserting Eq. (1.17), with V ∝ R3, into Eq. (1.23) and neglecting the last
two terms in Eq. (1.23), we find for ε(t)

ε̇2 = 24πGε(ε+ P (ε))2. (1.24)

We equate the particle energy density and pressure, including the vacuum
term B in the relativistic equation of state for the particle component,

ε− B � π2

30
gT 4 � 3(P + B), ε = 3P + 4B. (1.25)

Thus,

ε̇2 =
128πG
3

ε (ε− B)2, (1.26)

which is valid (approximately) both for QGP and for HG phases, but in
the HG phase B = 0.
Despite its highly nonlinear nature, Eq. (1.26) has an analytical solu-

tion,

ε1 = B coth2(t/τU), (1.27)

where τU is the expansion time constant we have defined in Eq. (1.5) and
the subscript ‘1’ reminds us that Eq. (1.5) describes the evolution in the
quark–gluon phase with B 
= 0. At t < τU, the energy density rises like
1/t2; for t > τU, it would remain constant at the vacuum energy density.
Once the transition to HG phase ‘2’ with B → Λv ∼ 0 has occurred,

the analytical form of the solution changes; we exploit the singularity
cothx → 1/x and obtain the power-law solution

ε2 = B
(τU
t

)2
=

3
32πG

1
t2
=

π2

30
g2T

4. (1.28)

In the middle of Eq. (1.28), we have substituted τU from Eq. (1.5) to show
that, in principle, B does not enter the solution. On the right-hand side
of Eq. (1.28), we show the energy density of the (radiation-dominated; see
Fig. 1.2) Universe, establishing the well-known relation
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(
t2
t

)2
=
(
T

Tc

)4
, T ∝ 1√

t
. (1.29)

Using Eq. (1.8) for Tc, we determine t2, the time when the Universe en-
tered the hadronic phase, which we use below in Eq. (1.33). Similarly we
also obtain the behavior of the size of the Universe with time. By insert-
ing Eqs. (1.27) and (1.28) into Eq. (1.23), we find how the scale R of the
Universe evolves:

R2 ∝ sinh
(

t

τU

) ∣∣∣∣
1

→
(

t

τU

) ∣∣∣∣
2

. (1.30)

To determine when the transition between the two phases occurs, and
how long it takes, we consider the pressure in both phases. In deconfined
phase ‘1’ where B 
= 0, we have, using Eqs. (1.25) and (1.27),

3P1 = B
[
coth2(t/τU)− 4

]
, t ≤ t1, (1.31)

while in the post-transition phase

3P2 = B
(τU
t

)2
, t ≥ t2. (1.32)

Equating these two pressures with the critical pressure, Eq. (1.9), we ob-
tain

3Pc
B =

3g2
∆g

= coth2
(
t1
τU

)
− 4 =

(τU
t2

)2
. (1.33)

Equation (1.33) relates the time t1, when the transition begins, to t2,
when it ends, and the fraction of degrees of freedom which are ‘freezing’
in the transition, in units of the τU, Eq. (1.5).
We show the pressure and temperature in the Universe near hadroniza-

tion in Fig. 1.3. The solid line corresponds to αs = 0.6, and B1/4 = 195
MeV, for which value τU = 36µs. Dotted lines are for B1/4 = 170 MeV
and B1/4=220 MeV; a higher value of B1/4 leads to a shorter time scale,
Eq. (1.5).
It is straightforward to obtain the values of t1 and t2. Using Eq. (1.14),

g2 = 19, and Eq. (1.15), ∆g = 14, we find that the transition is complete
at t2 = 0.5τU. The onset of the transition is found at t1 = 0.37τU, and
the transition lasts 0.13τU in this case – the major uncertainty is related
to the value of g1 − g2 = ∆g. For the central value of B1/4 = 195 MeV
with τU = 36µs, we find that the transition lasts ∆t = (t2 − t1) = 4.7µs.
The duration of the hadronization transition is comparable (35%) to

the prior life span of the Universe in the deconfined phase. This time is
exceedingly long compared with the time scale of hadronic interactions
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µ

Fig. 1.3. Pressure (upper) and temperature (lower part) in the Universe, as
function of time, in the vicinity of the phase transition from the deconfined phase
to the confined phase. Solid lines, B1/4 = 195 MeV; dotted lines, B1/4 = 170
MeV (lower part) and B1/4 = 220 MeV (upper part) all for αs = 0.6.

(10−22 s). It allows the decay of all unstable hadronic particles and, poten-
tially, the development of domain structures. Moreover, the hadroniza-
tion time is also three orders of magnitude longer than the characteristic
time of hadronic weak decays, and is even longer than the decay time for
a muon. What exactly happens to matter in this last phase transition
in our Universe is not yet known. Studying dense matter in relativistic
heavy-ion collisions should help us establish the physical laws governing
this crucial epoch in the development of the Universe.

1.6 Looking for quark–gluon plasma: strangeness

How do we look for the phase transition of the primordial state of the
Universe recreated for a short glimpse of time in the laboratory? How can
we distinguish between the reactions involving confined hadronic particles
only, and those in which we encounter the color-deconfined quarks and
gluons?
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• Is a transient new phase of matter, existing for a brief instant in time,
perhaps for no more than 10−22 s, in principle observable? This can be
possible only if time-reversibility is broken more rapidly in the collision
process. This will be the tacit assumption we make. How this occurs is
one of the great open issues. In some sense on the time scale of 10−23 s
‘measurement’ of the colliding system must be occurring, leading to the
decoherence of the many-body quantum state.

• How can we observe a new phase of matter that exists for a short time,
evolves and ultimately disintegrates (hadronizes) into usual final-state
particles? At first sight, everything will always appear in the data very
much akin to a reaction involving only the HG phase.

Considerable effort must be put into the understanding of the tempo-
ral and spatial evolution of the colliding system. We must identify the
measurable quantities that can depend on the properties of the early and
dense stage of collision, allowing us to penetrate the ‘nebula’ of the final
hadronic state.
One observable is the quark chemical composition of the fireball of

dense matter, which evolves as new quark flavors, such as strangeness, are
cooked up inside the micro-bang fireball. Another observable is the en-
tropy content: when quarks and gluons are liberated, the usually ‘frozen’
color bonds are broken and an entropy-rich state of matter is formed. We
will address these two hadronic observables of QGP in greater detail in
this book, and we offer here a first short overview of the related ideas and
diagnostic methods.
The quarks ‘q’ (up ‘u’ and down ‘d’) from which the stable matter

around us is made are easily produced as quark–antiquark pairs because
they have small masses; see section 1.2. Another abundantly added quark
flavor is strangeness, particularly if the deconfined QGP phase of matter
is formed. Strangeness was one of the first proposed signatures of the
deconfined phase [220]. The mass of strange quarks and antiquarks is of
the same magnitude as the temperature T at which protons, neutrons,
and other hadrons are expected to dissolve into quarks. This means that
the abundance of strange quarks is sensitive to the conditions, structure,
and dynamics of the deconfined-matter phase. The dominant mechanism
for cooking up strangeness in quark–gluon deconfined matter was found
to be the gluon-fusion reaction gg→ ss̄ [226]. We will address this process
in depth in this book. Ultimately the quarks and antiquarks produced in
the fireball of dense matter find their way into a multitude of final-state
particles, with different quark contents, in the process of hadronization.
This situation is illustrated in Fig. 1.4.
Detection of strange particles is facilitated by the fact that the mas-

sive strange quark decays into lighter quarks. Thus, strangeness-carrying
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Fig. 1.4. A qualitative image of processes leading to production of (multi)-
strange particles: in the QGP phase gluon collisions produce pairs of strange
quarks, which are shown to assemble into otherwise rarely made multistrange
baryons (for example Ξ(ssu)) and antibaryons (for example Ω(s̄s̄s̄)).

hadrons are naturally radioactive and decay by weak interactions that
occur, in general, on a time scale that is extremely long compared with
the nuclear-collision times. This makes it relatively easy to detect the
strange particles through the tracks left by their decay products. It is
important to remember that, unlike the light quarks, strange quarks are
not brought into the reaction by the colliding nuclei. Therefore, we know
for sure that any strange quarks or antiquarks observed in experiments
have been made from the kinetic energy of colliding nuclei.
Should the new deconfined phase of matter be formed, we expect that

final abundances of strange particles will be governed by (near) chemi-
cal equilibration of strangeness, i.e., that the yield abundance of QGP
strangeness will saturate all available phase-space cells, making it into a
q–q̄–s–s̄–g liquid. The total strangeness yielded is thus of considerable
interest and is being measured as a function of the collision energy.
The excitation function of strangeness can be qualitatively studied by

evaluating the ratio K+(s̄u)/π+(d̄u) shown in Fig. 1.5. Data obtained at
several experimental facilities is shown: from the KaoS experiment at the
SIS/GSI; from the E917 and E866 experiments at the AGS/BNL, from
NA49 and NA44 experiments at the SPS/CERN, and from the STAR
experiment at the RHIC/BNL. As long as the production of strange an-
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Fig. 1.5. Mid-rapidity K+(s̄u)/π+(d̄u) in reactions of the heaviest nuclei as a
function of the collision energy. See the text for details.

tibaryons is small, the K+(s̄u)/π+(d̄u) ratio characterizes accurately the
relative abundance of strangeness. This is not the case at RHIC energies,
for which the strangeness content found in baryonic degrees of freedom
is not negligible; see section 19.4. Using the estimate presented there, we
find that

K+ + 〈s̄〉Y
π+

� 0.23,

where the second term 〈s̄〉Y is the strangeness content in the baryonic
degrees of freedom.
This shows that the ratio of strangeness to hadron multiplicity con-

tinues to grow as the collision energy is increased. Since this growth is
here seen to occur relative to the hadron multiplicity, measured in terms
of the yield of positively charged pions, this implies that the yield of
strangeness increases faster than the increase in production of entropy.
At low energies the increase in yield of strangeness shown in Fig. 1.5
shows the effect of the energy threshold for production of strangeness.
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The specific yield of strangeness per participating baryon increases much
faster. In fact the specific yield of pions increases by 50% on going
from AGS to CERN energies, which implies that the yield of stran-
geness per baryon continues to grow rapidly in the energy range 5 GeV
< s1/2 < 17 GeV.
The most interesting qualitative signature of strangeness in QGP is the

yield of (multi)strange antibaryons. Given the ready supply of (strange)
quarks and antiquarks, otherwise rarely produced (strange) particles will
be emerging from a deconfined phase. In particular, the formation of
antimatter particles comprising strangeness is of interest [215]. These
particles can be more readily assembled in the high-density deconfined
environment. In Fig. 1.4, we illustrate the sequence of events that leads
to the formation of these particles: microscopic reactions, predominantly
involving fusion of gluons, form pairs of strange quarks, of which clusters
are formed and emitted.
Enhanced production of strange particles has been predicted to occur in

a QGP for each strange particle species, and to increase with the strangen-
ess content of the particle [164, 215]. Such enhancements in the number of
strange particles produced per participating nucleon have now been ob-
served in, e.g., lead–lead (Pb–Pb) collisions, compared with expectations
arising from studies of proton–proton (p–p) and proton–beryllium (p–
Be) collisions, as is shown in Fig. 1.6. The enhancement for a particular
particle is defined as the number of that particle produced per partici-
pating nucleon in Pb–Pb collisions, divided by the number produced per
participating nucleon seen in p–Be interactions [38].
In Fig. 1.6 the h− symbol denotes the yield enhancement of negatively

charged hadrons, mainly negative pions. This result implies an enhance-
ment by a factor 1.3 for all non-strange hadrons. Such an enhancement is
natural if QGP is formed on account of the breaking of the color bonds,
and the associated enhancement in number of accessible degrees of free-
dom compared with reaction scenarios involving confined hadrons. Later
in this book we will discuss in depth the issues related to enhanced pro-
duction of entropy in the deconfined phase.
We further see, in Fig. 1.6, that the production of particles that contain

one strange quark, such as the neutral kaon K0 and the Λ-particle, is
enhanced by a factor of about three; the enhancement factor rises to
about five for the doubly strange Ξ-particle (and its antiparticle, the anti-
Ξ), and more than ten for the yield of (Ω + Ω) particles, which contain
three strange or antistrange quarks. The particles in the right-hand panel
of Fig. 1.6 have no quarks in common with the colliding nucleons.
When one is interpreting these results as significant indicators for the

formation of the deconfined state, it is important to be able to argue
that both matter and antimatter particles were produced by the same
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Fig. 1.6. Enhanced production of (strange) hadrons in Pb–Pb 158A-GeV heavy-
ion collisions. Enhancement is defined with respect to p–Be collisions. Results
were obtained by by the CERN WA97 experiment considering particles emitted
by a source stationary in the CM frame of reference [38].

mechanisms, as would be the case should a deconfined soup of quarks and
antiquarks break up into final-state hadrons [42]. To demonstrate this,
one studies not only the abundances but also the spectra of the parti-
cles produced. In order to reduce the dependence on the flow of matter
along the collision axis, which is related to the collision dynamics, it is
convenient to look only at hadron spectra with momentum components
transverse to the original collision axis.
In Fig. 1.7, we see the spectra of strange baryons (Λ, Ξ, and Ω) and

antibaryons (anti-Λ, anti-Ξ−, and anti-Ω−) as functions of the transverse
energy, m⊥ =

√
m2 + p2⊥. The most significant feature of Fig. 1.7 is that

the slopes of the spectra for a particle and its antiparticle are very similar.
The difference between the particle and antiparticle yields is a result of the
quark–antiquark yield asymmetry present. The shape identity of matter
and antimatter verifies that the mechanism of production is the same,
corroborating the evidence for a common, deconfined source of strange
hadrons.
Much of the material of this book will be devoted to the development

of ideas demonstrating that these results are a natural consequence of the
formation of the deconfined QGP state. It is important to keep in mind
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Fig. 1.7. Transverse mass spectra of strange and multistrange baryons and an-
tibaryons. Results obtained by the CERNWA97 experiment for particles emitted
at mid-rapidity [42].

that further evidence for the deconfinement of quarks in these reactions
is available. The production of charmonium, i.e., particles containing a
heavy charm quark and an antiquark, is another well-studied phenomenon
[188].

1.7 Other probes of quark–gluon plasma

Since the charm quark is about ten times heavier than the strange quark,
at SPS energies pairs of charm quarks can be formed only during the very
early stages of the collision, as the nuclei begin to penetrate each other.
In this early stage the colliding particles have the energy to overcome the
higher energy threshold. If the QGP phase is formed, these charmed qu-
arks have less chance of forming a charmonium state, because the gluons
present within the plasma hinder their binding, or/and break the bound
states. The observed strong suppression of the J/Ψ signal in 158A-GeV
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Fig. 1.8. The CM picture of initial moments of nuclear collision and an illus-
tration of the path traveled by J/Ψ in dense matter.

Pb–Pb reactions is interpreted as being due to interactions with gluons.
We will not develop this interesting topic in this book beyond a brief
introduction, which follows.
Seen in the CM frame, the preformed J/Ψ must subsequently travel

through a fireball of dense matter formed in the collision; see Fig. 1.8.
The path in dense matter varies depending on the impact parameter,
allowing one to evaluate the interaction (absorption) strength. This effect
is particularly strong in most central collisions of nuclei.
The experimental J/Ψ yields, seen in Fig. 1.9, show clearly the unusual

interaction strength of J/Ψ, when the path in dense matter is large as
characterized by large values of the transverse energy generated by parti-
cle interactions. The J/Ψ is observed, in the NA50 experiment, by virtue
of its decay into µ+µ− [12]. In Fig. 1.9, the yield of J/Ψ is obtained with
reference to the yield of the dimuon background, which is believed to scale
just like J/Ψ with the number of participant nuclei. We see, in Fig. 1.9
at E⊥ > 50 GeV, a lesser increase in the suppression up to the last bins
E⊥ > 120 GeV. It is this rapid two-fold increase in the suppression as a
function of E⊥ which makes an interpretation of these results, in terms
of confined matter alone, difficult.
Considering quantitatively only the absorptive effect of the QGP, prac-

tically no J/Ψ should be observed for most central collisions at the higher
energies available at the RHIC. However, representing the absorption of
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Fig. 1.9. Suppression of production of J/Ψ as a function of AA-collision central-
ity, characterized in terms of the transverse energy ET produced in the reaction.
Results of experiment NA50 [12].

the J/Ψ as a result of its interaction with the gluon content of QGP, one
is led to consider the reverse reaction, and both break-up and formation
become possible in the QGP medium:

J/Ψ+ g⇐⇒ c + c̄.

Depending on the absolute abundance of open charm, there could be
considerable in-plasma production of J/Ψ. A quantitative study of this
effect has recently been carried out [257], resulting in the prediction of
an enhancement in production of J/Ψ in central nuclear collisions in the
energy range accessible at the RHIC. Observation of this new mechanism
of J/Ψ formation would constitute proof of the mobility of charmed quarks
in the fireball of dense matter.



1 Micro-bang and big-bang 23

If this changing pattern of J/Ψ suppression turning into enhancement
is confirmed experimentally to be present relative to the directly mea-
sured yield of ‘open’ charm, with the expected energy dependence and
centrality dependence (peripheral interactions agree with extrapolations
from p-induced reactions), this will constitute convincing evidence for the
formation of the deconfined form of matter.
Charmed hadrons, i.e., particles with ‘open’ charm, have not yet been

observed directly, but considerable effort is being made today to prepare
experiments at the SPS, RHIC and LHC that will have the capability
to detect them. The experimental difficulty is the rapid disintegration
of charmed hadrons, requiring an extremely precise tracking of particles
beginning very near to the interaction vertex. The availability of direct
measurements of the abundance of charm would provide a reliable baseline
for understanding the phenomenon of suppression of production of J/Ψ,
and perhaps at higher energies than those at the SPS, enhancement of its
production.
A few further signatures of deconfinement have also been proposed.

Akin to the disappearance of J/Ψ, jets of hadrons produced by hard qu-
arks and gluon arising from initial interactions should disappear due to
the enhanced strength of interaction in the ‘colored’ charge plasma of the
deconfined medium [72]. There is very little doubt that this idea works.
However, this rapid quenching of hard particles is the mechanism of ther-
malization of partons, aside of being a direct signature for a new phase
of matter. This mechanism provides the motivation for the statistical
description of the properties of dense matter. Can the thermalization of
partons be seen as a signature of QGP? We will not address in this book
this rapidly developing subject.
Photons γ and lepton pairs emerging from the decay of virtual photons

γ∗ → e+e− and µ+µ− are, at first sight, the most promising probes of
the dense hadronic matter [120, 154, 244]. Electromagnetic interactions
are strong enough to lead to an initial detectable signal, with secondary
interactions being too weak to alter substantially the shape and yield
of the primary spectra. Direct photons and leptons contain information
about the properties of dense matter in the initial moments of the collision.
Of particular interest would be the possible exploration of the initial time
period leading to the formation of thermal equilibrium.
Therefore, at first, photons and lepton pairs (often also called dileptons)

originating from QGP, produced, e.g., by quark–antiquark annihilation,
were considered to be the primary diagnostic tool, just as photons are
a powerful diagnostic for traditional (electromagnetic) plasmas. How-
ever, thousands of particles are created in high-energy nuclear collisions.
Among those the decay of neutral π0 mesons is known to produce a strong
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background. It is very difficult to extract the direct QGP photon signal,
which is only a small fraction of all photons produced.
Because dilepton formation, compared with formation of photons, re-

quires one additional electromagnetic interaction, the yield of dileptons
is considerably smaller, by a factor 300 or more, than the yield of direct
photons. However, the dilepton background is also much reduced. While
the directly produced photons are present at the level of 5% of the photon
signal observed, the amount of dileptons from formation of dense matter
is believed to exceed the background by a factor as large as 3–5. However,
dileptons have been shown to have other origins related to properties of
confined hadronic matter and the observed pattern of dilepton produc-
tion, given the large systematic experimental error, is difficult to interpret
[22]. We will not dwell on this complex subject in this book.
The diagnostic strength of the strangeness signature, in comparison

with direct photons and dileptons, is that, aside from the overall enhance-
ment of abundance, we also have the pattern of enhancement shown in
Fig. 1.6, and the matter–antimatter symmetry seen in Fig. 1.7. The yield
of strangeness is related to the initial most extreme conditions of the QGP
phase, much like the photon and dilepton yields. However, strangeness
has relatively little background. The source of strangeness, gluons, is by
far more characteristic for the new phase of matter than is the source
of photons and dileptons, which are electrical currents of quarks, present
both in the confined and in the deconfined state of matter.

2 Hadrons

2.1 Baryons and mesons

As the above first and qualitative discussion of signals of QGP formation
has shown, to pursue the subject we next need to understand rather well
the properties of ‘elementary’ particles, and specifically strongly inter-
acting (hadronic) particles. These are complex composites of the more
elementary strongly interacting particles: quarks and gluons. Quark-
composite hadronic particles are final products emerging from heavy-ion
collisions, and play an important role in this book – there are two different
types of colorless quark bound states: baryons, comprising three valence
quarks, and mesons, which are quark–antiquark bound states.
Typically, each type of (composite) hadron has many resonances, i.e.,

states of greater mass but the same quantum number, which are generally
internal structural excitations of the lowest-mass state. Normally the
lowest-mass states of a given quantum number are stable (that is, if they
decay, it occurs very slowly compared with the time scale of hadronic
reactions), but there are notable exceptions, such as the ∆-resonances,
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which are subject to the rapid hadronic decay ∆→ N+ π, which occurs
within a duration less than the life span of a hadronic fireball.
On the other hand, some unstable hadronic resonances can be stable

on this time scale. However, by the time relatively distant experimental
detectors record a particle, all possible hadronic decays and even many
weak decays have occurred. To study particles produced in high-energy
nuclear collisions, we need to understand their decay patterns well.
Because the two light quarks are practically indistinguishable under

strong interactions, their bound states reflect a symmetry, referred to as
isospin I. In addition one is normally quoting the strange-quark content
(strangeness S) of a bound hadron state. Similarly, we refer to more
exotic baryons by quoting the value of their charm content C or bottom
content B. It is believed that the heaviest quark t can not form hadronic
bound states, since its life span is too short for a (quantum) orbit to form.
We keep in mind that, for historical reasons, strange baryons, contain-

ing strange quarks s, have negative strangeness (hyperon number) S, and
that strange mesons, with a strange quark s, are called antikaons K(sq̄)
(we indicate in the parentheses the valence-quark content). Similar con-
ventions were adopted for charm and bottom flavors.

• Baryons
In Fig. 2.1, we present baryons made of the four lightest quarks (u, d, s,
and c). Were all four quark flavors degenerate in mass, we would have
instead of the isospin SU(2) an SU(4) flavor symmetry. In Fig. 2.1,
the vertical hierarchy is generated by the largest symmetry breaking in
the hadron mass spectrum, introduced by the relatively large mass of
the charmed quark. The two ‘foundations’ of the SU(4) flavor-multiplet
‘pyramids’ are the SU(3) flavor multiplets, arising when three quarks (u,
d, and s) are considered: in Fig. 2.1(a) a spin-12 ‘octet’ (eight-fold multi-
plicity); in Fig. 2.1(b) a spin-32 ‘decuplet’ (ten-fold multiplicity). SU(2)
flavor (isospin) particle multiplets are located along straight horizontal
lines within the SU(3) flavor multiplet planes.
The requirement that quarks form antisymmetric bound states leads

to classification in these two spin–flavor configurations of spin 1
2

+ and
3
2

+, respectively, and thus when symbols are repeated, the excited state
is the higher spin state. States with positive intrinsic parity (upper index
‘+’) are shown, since negative parity is associated with intrinsic angular-
momentum excitation, or the presence of an additional particle compo-
nent such as a gluon or, equivalently, a quark–antiquark pair. Therefore,
generally such excited negative-parity states can decay rapidly into the
more stable positive-parity states.
Moving up in the two ‘pyramids’, we replace at each ‘floor’ one of the

strange quarks by a charmed quark, omitting the non-strange baryons.
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Fig. 2.1. Baryons (positive parity, superscript +): (a) generalization of the
spin- 12

+ octet and (b) generalization of the spin-32
+ decuplet classified according

to their valence-quark content.

In the naming convention, the name of the corresponding SU(3) flavor
particles is retained, with the added lower index indicating how many
charmed quarks have been introduced to replace strange quarks. Simi-
larly, when bottom-flavor-involving baryons are considered (not shown in
Fig. 2.1), the lower index ‘b’ is used to indicate how many strange quarks
have been replaced by bottom quarks.

•Mesons
In Fig. 2.2, we present mesons made of the four lightest quark–antiquark
pairs (u, d, s, and c). Now the center-planes of the two SU(4) fla-
vor multiplets are the well-known SU(3) flavor (u, d, and s) multiplets:
Fig. 2.2(a), a spin-0 octet, with the ninth state ηc = cc̄; Fig. 2.2(b), a
spin-1 octet, which now also includes the ninth state J/Ψ = cc̄. We recall
that π0 = (uū− dd̄)/

√
2 and that the heavier η and η′ share the strange-
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Fig. 2.2. Mesons (negative parity, superscript −): (a) pseudoscalar 0− and (b)
vector 1− mesons, classified according to their valence-quark content.

quark component ss̄; there is no pure spin-0 ss̄ state. In the spin-1 octet,
case φ0 = ss̄ is a pure strange-quark pair state. Not considered in Fig. 2.2
are states containing bottom quarks:
B = ±1, bottom mesons: B+ = ub̄, B0 = db̄, B0 = d̄b, and B− = ūb;
B = ±1, S = ±1, bottom strange mesons: B0s = sb̄, and B0s = s̄b; and
B = ±1, C = ±1, bottom charmed mesons: B+c = b̄c and B−

c = bc̄.

2.2 Strange hadrons

For the physics of interest in this book, a particularly important family
of particles consists of those which contain strange quarks. Since we will
address these particles by implying some of their particular properties, we
will summarize in the following their key features, and we comment on
the experimental methods for their detection. A similar comment applies
to heavier flavors (charm and bottom), and we also present a sample of
these particles below.
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π

Λ
p

Fig. 2.3. A schematic representation of the Λ-decay topological structure show-
ing as a dashed line the invisible Λ and the decay ‘V’ of the final-state charged
particles. Tracks of other directly produced charged particles propagating in a
magnetic field normal to the plane of the figure are also shown.

• Hyperons Y(qqs) and Y(q̄q̄s̄)
Sometimes all strange baryons are referred to as hyperons. We prefer to
use this term for singly strange baryons.
— The isospin singlet lambda, Λ(uds), is a neutral particle of mass 1.116
GeV that decays weakly with proper path length cτ = 7.891± 0.006 cm.
The dominant and commonly observed decay is

Λ→ p + π−, 63.9± 0.5%.
The decay of a neutral particle into a pair of charged particles forms a
characteristic ‘V’ structure as shown in Fig. 2.3. The other important
weak decay,

Λ→ n + π0, 35.8± 0.5%,
has only (hard-to-identify) neutral particles in the final state.
In addition to the 1

2

+ ground state (positive parity, spin 1
2 :

1
2

+), we
encounter a 1

2

− resonance Λ∗(1.405) and also a 3
2

− state Λ∗(1.520). There
is no ‘stable’ positive parity 3

2

+ iso-singlet Λ. Λ∗(1.520) has a remarkably
narrow width Γ = 15.6 MeV, even though the hadronic decay into the
NK channel is open. All Λ∗ excited resonance states (13 are presently
known, with mass below 2.4 GeV) decay hadronically into two principal
channels:

Λ∗→Y+meson(s),
Λ∗→N+K.
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Since the hadronic decays have free-space proper decay paths of 1–10 fm
(widths Γ = 16–250 MeV), all these resonances can not be distinguished
from the ground state of corresponding flavor content and contribute to
the abundance of the observed ‘stable’ (on hadronic time scale) strange
particles Λ and K. However, it is possible to measure their yields by
testing whether the momenta of the expected decay products add to the
energy–momentum product of a particle with the ‘invariant’ mass of the
parent resonance.
The practical approach to the observation of Λ is to detect, in a tracking

device, the (dominant) decay channel. The two final-state charged parti-
cles are pointing to a formation vertex remote from the collision vertex of
projectile and target. The ancestor neutral particle should point to the
interaction ‘star’ (see Fig. 2.3) and should have the correct mass and life
span. This approach includes, in a certain kinematic region, the events
which originate from the decay of Ks (see below). A well-established
method of analysis of data allows one to distinguish the hyperon decay
products from kaon decay products [211]. The procedure we describe in
the following is named after Podolanski and Armenteros [208]. It ex-
ploits the difference between the phase-space distributions of the pair of
particles produced.
The invisible neutral particle, reconstructed from the charged tracks

forming the decay ‘V’, has a definitive line of flight, shown by the dashed
line in Fig. 2.3. The magnitude of the transverse momentum q⊥ mea-
sured with reference to this line of flight is by definition the same for
both produced, oppositely charged, particles. The longitudinal momen-
tum p+‖ 
= p−‖ for each particle is dependent on a random angular distri-
bution of decay products of charges + and −. The relative p‖ asymmetry,

a =
p+‖ − p−‖
p+‖ + p−‖

, (2.1)

can span the entire range −1 < a < 1 when the decay products have
the same mass, as is the case for decay of kaons. When a proton is
produced in Λ decay, this massive particle carries the dominant fraction
of p‖ momentum and the event appears near a → 1. Similarly, the Λ
decay populates the domain a → −1. Events appear around the clearly
visible kinematic q⊥(a) lines shown in Fig. 2.4. For each decay of particles
Ks, Λ, and Λ, there is a clear domain where accidental misidentification
of particles is impossible. e+–e−-pair events produce a background found
near to q⊥ = 0. The entire (q⊥, a) plane is filled with events arising
from accidental ‘V’s. Since the physical signal is highly concentrated
along the kinematic lines seen in Fig. 2.4, the signal-to-noise ratio is very
favorable. As a consequence, the measurement of production of neutral
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Fig. 2.4. The Podolanski–Armenteros representation of a particle-decay event:
the transverse momentum qT in a two-particle decay, as a function of the relative
longitudinal momentum asymmetry a, see Eq. (2.1).

strange hadrons using Podolanski–Armenteros analysis is highly reliable.

— The isospin triplet uds, uus, dds, i.e., Σ0(1.193 GeV) and Σ±(1.189
GeV), varies in its properties. There is only one dominant decay channel
for the Σ− decay,

Σ− → n + π−, cτ = 4.43± 0.04 cm.

Because there are two isospin-allowed decay channels of similar strength
for the Σ+,

Σ+→p + π0, 51.6%,
→n + π+, 48.3%,

the decay path is nearly half as long, cτ = 2.4 cm. Σ± have not yet
been studied in the context of QGP studies, since they are more difficult
to observe than Λ – akin to the Ξ decay (see below) there is always
an unobserved neutral particle in the final state of Σ± decay. Unlike
Ξ decay, the kink that is generated by the conversion of one charged
particle into another, accompanied by the emission of a neutral particle,
is not associated with subsequent decay of the invisible neutral particle
accompanied by a ‘V’ pair of charged particles; see Fig. 2.7 below.
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Fig. 2.5. The relative yields of the three dominant contributions to the final
yield of Λ: direct production (solid line), Σ0 contribution (dashed line), and
Σ∗(1385) contribution (chain line), as a function of T , the temperature of the
hot source of these particles.

— The neutral Σ0(uds) undergoes a rapid electromagnetic decay:

Σ0 → Λ + γ+ 76.96± 0.02 MeV, cτ =(2.2± 0.2)× 10−9 cm,
τ =(7.4± 0.7)× 10−20 s.

For the observer in the laboratory, this secondary Λ is practically indis-
tinguishable from the direct production in the interaction vertex. Con-
sequently, all measurements of Λ of interest for this book combine the
abundances of Λ and Σ0, including all the higher resonances that decay
hadronically into these states, in particular Σ∗(1385).
As with Λ, there are several (nine) heavier Σ resonances known at

m ≤ 2.4 GeV. When they are produced, all decay hadronically, producing
K, Λ, and Σ. Particularly important is the strong resonance Σ∗(1385):

Σ∗(1385)→Λ + π, 88± 2%,
→Σ+ π, 12± 2%.

Thus, 92 ± 3% of Σ∗(1385) decays into Λ. Since the spin of Σ∗(1385) is 32 ,
and its isospin is 1, the degeneracy of Σ∗(1385) is six times greater than
that of Λ. For this reason the final yield of Λ is in fact predominantly
derived from decays of Σ∗, as is shown in Fig. 2.5, in which the chain
line describes the partial contribution of Σ∗ to the final yield of Λ. The
solid line is the directly produced component, and the dashed line is the
contribution of Σ0.
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Fig. 2.6. The multiplicative factor allowing one to infer the total yield of qqs
states from the observed yield of Λ as a function of T , the temperature of the
hot source of these particles.

An important practical issue is the determination of the total yield
of singly strange baryons (qqs), considering that we have available the
observed yield of Λ. It is generally assumed that abundances of the three
isospin-1 states Σ+, Σ− and Σ0 produced in relativistic nuclear collisions
are equal. In the first instance, let us ignore the influence of Σ∗(1385),
which we introduce in the next paragraph. Considering the difference in
mass between Λ and Σ, ∆m = 77 MeV, and assuming that the relative
abundance yield is appropriately described by the relation,

YΣi

YΛ
=
(
1 +

∆m
m

)3/2
e−∆m/T , (2.2)

derived from the relative thermal phase-space size, Eq. (10.50c), one finds
for a reasonable range of values T = 160 ± 15 MeV, implied by thermal
hadron production models, that the total yield of hyperons (qqs) is ob-
tained by multiplying the experimentally observed yield of Λ by a factor
FY = 1.8.
This estimate has to be modified in order to allow for the important

role Σ∗(1385) plays as a contributor to the production of Λ. In Fig. 2.6,
we evaluate the yield factor FY allowing for the contributions of Σ0 and
Σ∗(1385) to the yield of Λ, using thermal phase space, Eq. (10.51). There
is very little variation with T in a wide range, 100 MeV < T < 200
MeV, and we conclude that, for all practical purposes, one can use the
yield factor FY = 1.48 ± 0.03 to estimate the yield of singly strange
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Λ

π
π

p
Ξ

Fig. 2.7. A schematic representation of the topological structure of decay of Ξ−

showing as a dashed line the invisible Λ emerging from the decay kink and the
decay ‘V’ of the final-state charged particles. Tracks of other directly produced
charged particles propagating in a magnetic field normal to the plane of the
figure are also shown.

baryons (qqs) from the observed yield of Λ. Naturally, this result holds
for antibaryons as well. In many publications a slightly larger value,
FY = 1.6, is applied.
At a smaller level the decays of multistrange Ξ and Ξ also contribute

to the yield of Λ and Λ, but this contribution is usually separated exper-
imentally.

• Cascades, Ξ(qss) and Ξ(q̄s̄s̄)
The doubly strange cascades, Ξ0(uss) and Ξ−(dss), are below the mass
threshold for hadronic decays into hyperons and kaons, and also just below
the weak-decay threshold for the π+Σ final state. Consequently, we have
one decay in each case:

Ξ−(1321)→Λ + π−, cτ = 4.9 cm,
Ξ0(1315)→Λ + π0, cτ = 8.7 cm.

The first of these reactions can be found in charged-particle tracks since
it involves conversion of the charged Ξ− into the charged π−, with the
invisible Λ carrying the ‘kink’ momentum. For Ξ− to be positively iden-
tified, it is required that the kink combines properly with an observed
‘V’ of two charged particles identifying a Λ decay. This decay topology is
illustrated in Fig. 2.7.
There are also several Ξ∗ resonances known, which normally feed down

in a hadronic decay into the hyperon and kaon abundances:

Ξ∗(qss)→ Y(qqs) + K(q̄s).
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Fig. 2.8. The relative strength of the two dominant contributions to the final
yield of Ξ: direct production (solid line), and Ξ∗(1530) (chain line), as a function
of T , the temperature of the hot source of these particles.

The main exception is the hadronic decay of the spin-32 recurrence of the
spin-12 Ξ ground state:

Ξ∗(1530) → Ξ + π, Γ = 9.5MeV.

This relatively small width corresponds to cτ = 21 fm and this decay
occurs outside of the space–time region of hot matter.
Since the spin-32 state is populated twice as often as is the spin-

1
2 ground

state, its relative suppression due to the greater mass (∆m � 200 MeV)
is by a factor of 0.6, as is shown in Fig. 2.8. Despite this non-negligible
decay contribution, the cascade spectra are, at high transverse momenta,
the most representative among measured hadronic spectra of particles
directly produced by the fireball of hot and dense matter.

• Omegas, Ω−(sss) and Ω−(s̄s̄s̄)
There are several primary weak-interaction decay channels leading to the
relatively short proper decay path, cτ = 2.46 cm:

Ω−(1672)→ Λ +K−, 68%,
→ Ξ0 + π−, 24%,
→ Ξ− + π0, 9%.

The first of these decay channels is akin to the decay of the Ξ−, except that
the pion is replaced by a kaon in the final state. In the other two options,
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after cascading has finished, there is a neutral pion in the final state,
which makes the detection of these channels impractical. The Λ + K−
decay channel is not unique for the Ω−(1672) state; there is a Ξ∗(1690)
that also decays in the same way. However, this is a rapid hadronic decay
that occurs in the interaction vertex and can be easily separated from the
weak decay of the Ω.
The highest known resonance Ω∗(2250) is rather heavy. However, pres-

ent experiments do not exclude the possibility of a light resonance, with
a dominant electromagnetic decay, Ω∗(M∗ < MΩ +mπ) → Ω + γ. The
presence of this resonance would greatly affect the theoretical expecta-
tions regarding the production of Ω and Ω in heavy-ion interactions. The
statistical degeneracy due to the high spin of such resonances could eas-
ily enhance their abundance, akin to the situation with the Ξ∗ state we
described above.

• Kaons, K(qs̄) and K(q̄s)
— Neutral kaons, KS and KL (m = 497.7 MeV)
This is not the place to describe in detail the interesting physics of the
short- and long-lived neutral kaons, except to note that both are orthogo-
nal combinations of the two electrically neutral states (ds̄) and (d̄s). The
short-lived combination KS has cτ = 2.676 cm and can be observed in its
charged decay channel:

KS→π+ + π−, 69%,
→π0 + π0, 31%.

Care must be exercised to separate the KS decay from Λ decay, since in
both cases there are two, a priori unidentified, charged particles in the
final state, making a ‘V’ originating from an invisible neutral particle; see
Fig. 2.4.
The long-lived kaon KL, with cτ = 1551 cm, has not been studied in

relativistic heavy-ion-collision experiments. Since both the KL and the KS
arise from the time evolution of hadronically produced K(ds̄) and K(d̄s)
their abundances are essentially equal.
— Charged kaons, K+(us̄) and K−(ūs) ≡ K+ (m = 493.7 MeV)
Charged kaons can in principle be observed directly, both in charged-
particle-tracking devices and in magnetic spectrometers, since their mass
differs sufficiently from those of the lighter π± and the heavier proton/
antiproton. Also, K±(494) decays with cτ = 371 cm, with three principal
channels:

K+→ µ+ + νµ, 63.5%,
→ π+ + π0, 21.2%,
→ π+ + π+ + π−, 5.6%.
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The last one, with three charged hadrons in the final state, can be used
to identify charged kaons within tracking devices.
Considering the quark content, one sees that the average of the pro-

duction of K+(us̄) and K−(ūs) satisfies 〈KS〉 � 0.5(〈K+〉+ 〈K−〉).
• The φ-meson, φ(ss̄)

The vector (J = 1) meson φ is believed to be a ‘pure’ bound state of the
strange-quark pair φ = ss̄. With mass 1019.4 MeV, it has a relatively
narrow full width Γφ = 4.43 MeV, since the decay into a pair of kaons
is barely possible in free space. There are two open and relatively slow
decay channels leading to the formation of pairs of leptons,

φ→ e+ + e−, 0.03%, Γe+e− = 1.32± 0.05 keV,
→µ+ + µ−, 0.025%, Γµ+µ− = 1.3 ± 0.2 keV,

allowing the determination of the number of φ-mesons emerging from the
hadronic-interaction region. When absolute yields of particles are difficult
to determine, one can compare, using the dilepton decay channel, the
yield of φ with the yield of non-strange partner mesons ρ(770) (Γe+e− =
6.77± 0.32 keV) and ω(782) (Γe+e− = 0.60± 0.02 keV).

2.3 Charm and bottom in hadrons

• Onium-mesons, cc̄, bb̄ and b̄c
A brief summary of the physical properties of the three main onium states
follows; the first three properties, mass (note the substantial systematic
and statistical uncertainty in the mass of the Bc), lifetime and its in-
verse the width, are determined by measurement, followed by the binding
energy with regard to dissociation into mesons, and the average size de-
termined within heavy-quark potential models.

J/Ψ(c̄c) Bc(b̄c) Υ(b̄b)
Mass [MeV] 3097 6400± 390± 130 9460
τ [ps] 7.6× 10−9 0.46± 0.17± 0.03 12.5× 10−9
Γ [keV] 87± 5 1.4× 10−6 52.5± 1.8
Binding energy [MeV] 630 � 840 1100
〈r〉 [fm] 0.42 0.34 0.22

The spin-1 J/Ψ(cc̄) has a partial width of 6% (per channel) projected
into the experimentally observed lepton-pair channels e+ + e−, µ+ + µ−,
i.e., Γc

l̄l
= 5.26 keV; the still narrower bb̄ has Γb

l̄l
= 0.3 keV, which is

2.5% of the total width. We note that J/Ψ is produced very rarely in
heavy-ion collisions, e.g., in Pb–Pb interactions at 158A GeV one J/Ψ is
produced for each 3×106 mesons. Production of open charm has not been
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measured but is at the level of 0.2–0.6 cc̄ pairs per Pb–Pb interaction at
158A GeV. Thus, only one in about 2000 cc̄ pairs produced emerges as a
bound J/Ψ(cc̄) state. The uncertainty in this estimate is at least a factor
of two and depends on the centrality of the interaction. It is hoped that
further experimental information will become available soon, allowing us
to understand this ratio more precisely.
The excited state Ψ′ has a yield five times smaller. There has not yet

been a measurement of production of the other onium states in nuclear
collisions.
In the LHC energy range, one can expect that the bound state of b-

quarks, the upsilonium Υ(b̄b), will assume a similar role to that which is
today being played, at SPS and RHIC energies, by J/Ψ.
The other heavy-quark bound state that is of interest is the Bc(b̄c).

This quarkonium state is so rarely produced that it was not discovered
until very recently [9, 10]. However, it has been studied extensively theo-
retically, and the currently reported mass, M = 6.4 ± 0.39 ± 0.13 GeV,
is in good agreement with the theoretical quark-potential model expecta-
tions. The life span, τ � 0.5 ps, cτ � 150µm, implies that the current
silicon pixel detector technology allows one to distinguish the production
vertex from the Bc(b̄c) decay vertex.
The conventional mechanism for production of Bc(b̄c) requires the for-

mation of two pairs of heavy quarks in one elementary interaction, fol-
lowed by the formation of a bound state. The probability of these three
unlikely events occurring in one interaction is not large and hence nei-
ther is the relative predicted yield, (Bc + B∗

c)/(b, b̄) � (3–10) × 10−5 at√
sNN = 200 GeV [169]. This small value implies that ‘directly’ produced

Bc (both in J = 0 and J = 1 channels B∗
c and B̄

∗
c) cannot be observed

at the RHIC. On the other hand, an enhancement in production of this
state is expected in the QGP-mediated recombination [239], which could
lead to a measurable rate of production in nuclear interactions. Since the
quark-recombination mechanism of production requires mobility of heavy
color-charged quarks, observation of this new mechanism for the forma-
tion of this exotic meson would constitute another good signature of the
deconfined QGP phase.

3 The vacuum as a physical medium

3.1 Confining vacuum in strong interactions

Theoretical interest in the study of relativistic heavy-ion collisions origi-
nates, in part, from the belief that we will be able to explore the vacuum
structure of strong interactions and, in particular, the phenomenon of
quark confinement. The picture of confinement can be summarized as
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follows:

1. all strongly interacting particles are made of quarks and gluons;
2. quarks q and gluons g are color charged [123], but all asymptotic ob-
servable physical states they can form are color neutral;

3. therefore, the true vacuum state |V 〉 abhors color;
4. there is an excited state |P 〉, referred to as perturbative vacuum, in
which colored particles can exist as individual entities and therefore
move freely;

5. |P 〉 differs essentially from |V 〉, the true vacuum, and in particular,
it differs by a considerable amount of energy density in the regions of
space–time in which the |V 〉 structure is dissolved into |P 〉.

In the ‘true vacuum’ (in which we live), color-charged quarks and gluons
are ‘confined’. However, under extreme conditions of density and tem-
perature, we should reach the crossover to the color-conductive phase of
the vacuum. In such a space–time domain, nearly free propagation of
colored quarks and gluons is thought possible. This picture of hadronic
interactions is consistent and indeed justifies the perturbative approach
to quantum-chromodynamics (QCD) interactions. It is the foundation
that allows us to describe hadrons as bags, i.e., confined bound states
of quarks, see section 13.2. We also use these simple, but essential, fea-
tures in the discussion of the physical properties of the QGP state in
section 4.6. The melted color-conductive state |P 〉 is a locally excited
space–time domain in which quarks and gluons can move around. This
state has properties that we would like intuitively to associate with a nor-
mal physical state, since it is simple, structureless. We must keep in mind
that the situation is, however, inverted relative to our expectations. Since
quarks and gluons are not observed individually, they cannot propagate
in the true vacuum state, thus the true physical ‘ground’ state |V 〉 must
be complex and structured, and it is the excited state that is simple and
structureless.
Vacuum structure keeps the colored particles bound and confined. Qu-

ark confinement has not been explained to be a direct result of quark–
quark interaction, generated by the color charge and exchange of gluons.
Rather, this force determines within a domain of perturbative vacuum |P 〉
the structural detail: for the ground state the structure of the hadronic
spectrum; at sufficiently high excitation, the properties of the color plasma
of hot quarks and gluons. To be able to move color charges within a re-
gion of space, one needs to ‘melt’ the confining structure. For a first-order
phase transition, the two phases have a difference in energy density, the
latent heat B, per unit of volume,

B ≡ εQGP(Tcr, Vcr; b)− εHG(Tcr, Vcr; b) ≈ 0.5 GeV fm−3. (3.1)
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We would like to determine, by studying the QGP phase, the magnitude
of B. So far, only relativistic nuclear collisions can deliver (to a large
region of space) the required energy and are the best and only tool we have
today to study the process of melting of the QCD vacuum, see section 5.2.
We will discuss the experimental methods further in chapter 5.
The vacuum properties of strong interactions can be explored only when

the locally deconfined state, the QGP, is experimentally established. In
our opinion, the study of the physical properties of the hadronic vacuum,
in particular ‘confined vacuum melting’, is the fundamental challenge mo-
tivating the high-energy nuclear-collision experimental program. It is rel-
evant to note that the key ideas and concepts underpinning the possibility
of finding the vacuum ‘melting’ are robust against change and evolution
of our knowledge: neither the questions about the existence of a true
(discontinuous) phase transition between the hadronic vacuum states nor
the possible quark substructures will greatly influence these considera-
tions. All we want is to determine that the color-melted state contains
particle-like quark–gluon excitations with established symmetries and in-
teractions.
The most interesting property of the true QCD vacuum |V 〉 is that it

abhors the color charge of quarks and gluons. However, we are interested
in determining and understanding its other physical properties. The ap-
pearance of a glue ‘condensate’ field, i.e., the vacuum expectation value
of the ‘square’ of the gluon field, the so-called field-correlator in the true
vacuum state [242, 243], is of particular relevance for the understanding
of |V 〉. With the glue fields defined as in section 13.4 we have

1
2
F 2 ≡

∑
a

1
2
F aµνF

µν
a =

∑
a

[ /B 2
a − /E 2

a ], (3.2)

where we use Einstein’s summation convention for repeated Greek indices.
The value of F 2 is obtained by studying QCD sum rules [197, 198, 242,

243], and is in agreement with the results obtained numerically using
lattice-gauge-theory methods [100, 101]:

∆F 2 ≡ 〈V |αs
π
F 2|V 〉−〈P |αs

π
F 2|P 〉 � (2.3± 0.3)× 10−2GeV4, (3.3)

= [390± 12 MeV]4.

Here, αs = g2s /(4π) is the coupling constant for the strong interaction.
Since in empty space the vacuum state is field-free, i.e., the vacuum expec-
tation value of the gauge field vanishes, the appearance of a non-vanishing
vacuum expectation value of the square of the gauge field in Eq. (3.3) is
a quantum effect without a classical analog.
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3.2 Ferromagnetic vacuum

We now describe a model and discuss other properties of the vacuum
state that are related to the remarkable result Eq. (3.3). Because of the
non-abelian nature of color charges, the quanta that mediate the color
force, gluons, can themselves interact by means of exchanging gluons.
Since gluons are massless, there is no energy gap that would stabilize
their number. An attractive force between them will induce a major
realignment in the perturbative wave function, i.e., |P 〉, of the many-body
gluon system.
Upon inserting Eq. (3.2) into Eq. (3.3), we see that the color B-field

(magnetic) fluctuations dominate the color E-field (electrical) fluctua-
tions:

∆
∑
a

/B 2
a = ∆

∑
a

/E 2
a + 2[390± 12MeV]4. (3.4)

Here, ∆ is defined as on the left-hand side of Eq. (3.3). The natural
interpretation of this equation is that the true vacuum structure is pre-
dominantly magnetic. Indeed, an instability of the perturbative vacuum
of QCD toward the formation of a ferromagnetic structure, was discov-
ered early on in the development of QCD [56, 187, 236]. This effect has
been shown to arise due to the attractive magnetic spin–spin interaction
of gluons [35, 199, 200]. This spontaneous ferromagnetic instability par-
allels, in many important aspects, the instability in QED vacuum in the
presence of constant electro-magnetic (EM) fields.
In QED, in the presence of a constant electrical field E, there is a

nonvanishing probability of spontaneous particle-pair formation, with the
probability per unit time and volume given by [240]

w =
α/E2

π2

∞∑
n=1

1
n2
exp
(
−nπm

2

|e /E|

)
. (3.5)

The electromagnetic fine-structure constant, α � 1/137, is relatively
small, and the massm of the lepton (electron) produced is large compared
with the laboratory fields available. Thus, in fact, this process has never
been observed. The physical origin of the QED vacuum instability resides
in the fact that, in a constant infinitely extending field, we can always find
a potential difference between two distant points that exceeds the pair
mass, and thus spontaneous pair production can ensue [219]. Schwinger’s
rate Eq. (3.5) is arising in such a description from the process of quantum
tunneling through a barrier that the potential V =

∫
d/x/E implies, and

therefore it can be adapted with ease to the study of QCD [88, 132].
This mechanism is serving as the basis for particle production within the
color string models, in which breaking of the color-electrical-flux tube
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connecting rapidly separating quarks provides the mechanism for particle
production [39].
In the case of QED, the particles produced are screening the field source,

and the vacuum-state energy still has a local minimum around the per-
turbative vacuum-state configuration with vanishing EM fields. In this
regard the situation is different in QCD, in which there is a ferromagnetic
instability. To understand this QCD magnetic instability, recall that, in
a constant magnetic field of magnitude B, a particle with spin projection
σ and orbital momentum l = 1, 2, 3, . . ., with reference to the direction
of B has the Landau energy

E2lσ = m2 + k2‖ + 2gsB(l + σ + 1
2), (3.6)

and the effective degeneracy is

gB =
V 2/3

2π
gsB. (3.7)

For σ = −1
2 (leptons, quarks), the lowest energy level for k‖ = l = 0 is

at E20 = m2, as is seen in Eq. (3.6). However, for spin-1 gluons, states
with σ = −1 display an instability whereby E20 becomes negative for
gB > m2 = gsBcr. For gluons with mg = 0, this occurs for an arbitrarily
small value of B. Therefore, the spectrum of Landau states begins at a
minimum momentum, k‖ >

√
gsB for the relevant case of gluons with

σ = +1 and l = 0. This has a profound impact on the zero-point energy
of the vacuum.
The sum over all (stable) modes of particles (+) and antiparticles (−)

yields the vacuum energy, that is the expectation value of the Hamiltonian
in the perturbative state |B〉 in the presence of the magnetic field B:

〈B|H|B〉 = (−)2σ 1
2

(∫∑
+

E+(B)−
∫∑
−

E−(B)

)
≡ Eσ0 (B)V. (3.8)

The coefficient of the zero-point energy density Eσ0 reflects the spin-statis-
tics relation. The appearance of the lowest-angular-momentum states
of the minimum allowable momentum leads for the gluon fields (after
subtraction of the perturbative state and renormalization) to [35, 199, 200]

EQCD0 (B) =
b0
2
(gsB)2

4π
log
(
(gsB)2

Λ2

)
, (3.9)

where b0 = (1/2π)(11nc/3− 2nf/3) > 0 is as given by Eq. (14.14). Equa-
tion (3.9) proves that the vacuum state acquires an instability in the limit
at B = 0, since the vacuum energy does not exhibit a minimum in this
limit. We find a new minimum of the vacuum energy at a finite value of



42 A new phase of matter?

(gsB)2. The scale of the ‘condensation’ field is determined by the renor-
malization scale Λ.
While these results prove the instability of the perturbative state |P 〉,

given the variational approach the ferromagnetic-vacuum model may be a
very poor approximation to the actual vacuum structure of |V 〉. Though
the energy of the |P 〉 vacuum is lowered, and we find a minimum at a
finite value of the magnetic field B, it cannot be expected that we have,
within this crude model, reached the lowest energy corresponding to the
true state |V 〉. Even so, Eq. (3.9) allows a first estimate of the latent
energy involved in melting the (magnetic) QCD vacuum structure to be
made:

BB ≡ −E(Bmin) =
b0
8π
(gsB)2min <∼ B. (3.10)

BB is seen as the variational approximation to the true value B. The
value at the minimum underestimates the true gain in energy within a
more accurate vacuum structure model. To determine the scale of the
magnetic field near the minimum of the energy density, we take as the
average value of the square of the vacuum magnetic field the vacuum
expectation value of the field operator squared, Eq. (3.3):

1
2π2

(gsB)2min ≡ δ
αs
π
〈V |F aµνFµνa |V 〉. (3.11)

δ is a positive number by definition. It can not be bigger than unity. The
example of the quantum oscillator expression for 〈x2〉 suggests that it is
probably small relative to unity. The nonperturbative energy density of
the vacuum state Eq. (3.10) is then of the magnitude

B >∼
11− 2

3nf

8
〈V |εαs

π
F 2|V 〉 � δ 2.5 GeV fm−3. (3.12)

We also note the Curie-point (the temperature at which the magnetic
ferric structure melts) of the magnetic QCD state at temperature Tcr �
B1/4B , at which one finds a strong first-order phase transition [192].
We infer from this exploration of a magnetic-vacuum model that the

perturbative QCD vacuum |P 〉 is unstable for T < Tcr, and that the tran-
sition to the true vacuum state involves a considerable release of latent
heat. However, the quantitative results discussed here are merely provid-
ing an order-of-magnitude estimate. In fact, many other more complex
semi-analytical models of the QCD vacuum structure were developed, of
which the other most often addressed case is the instanton vacuum. In
this approach, one draws on the (infinite) degeneracy of the unstructured
state. A more thorough discussion of this model is offered in the mono-
graph of Shuryak [245].
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3.3 Chiral symmetry

The light u and d quark masses, which we have considered in table 1.1,
are just slightly different when they are measured on the energy scale
associated with the QCD vacuum structure, which is of the order of a
few hundred MeV. This opens up an interesting interplay between the
effective flavor symmetry of QCD and the vacuum properties. Recall that
up and down quarks satisfy the relativistic Dirac quantum field dynamics,
Eq. (13.79),

(iγµ∂µ −m)Ψ = 0, (3.13)

from which there arise two identities,

∂µj
µ
+≡∂µ(ūγµd) = i(mu −md)ūd, (3.14)

∂µj
5µ
+ ≡∂µ(ūγµγ5d) = i(mu +md)ūγ5d, (3.15)

where u and d are the Dirac spinor-field operators representing the two
light-quark flavor fields of current-quark masses mu and md, respectively.
The subscript ‘+’ reminds us that these currents ‘lift’ the ‘down’ quark
to the ‘up’ quark; in the quantum-field-theory formulation this current is
an iso-raising operator that increases the electrical charge by +|e|.
When the quark masses are equal, the isospin-quark current is con-

served in Eq. (3.14), which implies that the Hamiltonian is symmetric
under transformations that mix equal mass ‘u’ with ‘d’ quarks; this is
an expression of the isospin-SU(2) symmetry of strong interactions; this
symmetry is broken by the electromagnetic and weak interactions, and
by the difference in current-quark masses mu 
= md, as seen in Eq. (3.14).
In case that the light quark masses were to vanish, by virtue of Eq. (3.15),

the pseudo-vector isospin-quark current would also be conserved. Thus,
when we are dealing with physical situations in which the current quark
masses can be neglected, each isospin quark doublet operator q ≡ (u, d)
must be invariant under transformations that comprise two ‘isospin rota-
tions’ associated with the two current-conservation laws.
When we are motivated by the physical properties of weak interactions,

it is common to study the left- and right-handed quark fields

qL,R ≡ 1
2(1± γ5)q.

The reader is reminded that, for the right-handed case, the spin rotates
right-handedly around the propagation axis, that is the spin and momen-
tum vectors are pointing in the same direction; the ‘helicity’ is positive. It
can be shown, on general grounds, that, for massless fermions, the helicity
is conserved.
On forming the sum and difference of Eqs. (3.14) and (3.15), one finds

that both the right- and the left-handed doublets form conserved iso-
currents; thus the overall symmetry is SU(2)L × SU(2)R. This is the
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so-called chiral symmetry, i.e., ‘handedness’ symmetry. It is important to
remember that this symmetry can be exact only if the masses of u and
d quarks vanish exactly, and electro-weak interactions that distinguish
the light quark flavor can be neglected. Since mu +md = 5–15MeV, we
expect this nearly exact chiral symmetry to be manifesting itself strongly
at the hadronic energy scale O(1) GeV, literally wherever we ‘look’. Yet,
there is no sign of the corresponding symmetry in the hadronic spectrum;
there are no double doublets of hadronic parity states, e.g., we know that
there is only one isospin doublet of nucleons (proton–neutron), not two:
the second, chiral-symmetry-motivated opposite-parity, isospin doublet of
nucleons is not observed. It would seem that chiral symmetry is badly
broken by strong interactions, presumably the mass difference of quarks
somehow matters.
However, the Adler–Weisberger sum rules, which relate weak and strong

properties, confirm the presence of the intrinsic SU(2) × SU(2) symme-
try in the elementary Hamiltonian. We refer to the recent discussion of
Weinberg for a more comprehensive introduction to this rather important
matter [268]. Nambu resolved this conflict between weak and strong in-
teractions by proposing that the required symmetry-breaking mechanism
is part of the structure of the strongly interacting vacuum state, and the
physical hadron spectrum can indeed break the intrinsic (almost) chiral
symmetry of the Hamiltonian [195]. Weinberg is of the opinion that the
immediate acceptance of QCD as the dynamic theory of strong inter-
actions was very much the result of a rather natural implementation in
terms of practically massless ‘current’ u and d quarks (see Eqs. (3.14) and
(3.15)) of these contradictory properties of weak and strong interactions.
The Nambu breaking of chiral symmetry in the hadronic spectrum re-

quires that, in the limit that the quark masses vanish exactly, there would
be an exactly massless Goldstone boson, a particle with quantum num-
bers of the broken symmetry, thus spin zero, negative parity, and isospin
I = 1. Since the chiral symmetry of the strong-interaction Hamiltonian
is not exact, the lowest-mass particle with these quantum numbers, the
nearly massless pion state, expresses the properties of the massless Gold-
stone meson of strong interactions.
One could argue that the finite pion mass noticeable on the scale of

hadronic interactions is removing from the hadronic spectrum most of
the signature of chiral symmetry. The missing parity doublets of all
strongly interacting particles are a ‘direct product’ of the Goldstone bo-
son (pion) with all elementary hadron states. This, in turn, implies that
many features of the hadronic spectrum, and possibly of the vacuum
structure, should depend on the small, and seemingly irrelevant, current
quark masses we see in Eqs. (3.14) and (3.15). How this could happen is
not understood.
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We show now that, in the limit of vanishing quark masses, we expect
the pion mass also to vanish. This behavior plays an important role in the
conceptual understanding of the vacuum structure of strong interactions.
We consider matrix elements of the pseudo-scalar and the pseudo-vector
quark currents between the vacuum state and one pion state,

〈π+(p)|ū(x)γµγ5d(x)|V 〉≡−i
√
2pµfπe

ipµxµ
, (3.16)

〈π+(p)|ū(x)γ5d(x)|V 〉≡ i
√
2gπe

ipµxµ
, (3.17)

where pµpµ = m2
π = (139.6 MeV)

2. The form of the right-hand sides of
Eqs. (3.16) and (3.17) arises by virtue of the Lorentz symmetry properties
of the (true) vacuum state |V 〉 and the π+ state |π+(p)〉. We consider
the divergence ∂µ of Eq. (3.16). Using relation Eq. (3.15), the following
well-known result is found:

m2
πfπ = (mu +md)gπ. (3.18)

The matrix element fπ is well known, since it governs the weak-inter-
action decay of pions, see, e.g., Weinberg, and the value gπ is determined
by sum rule methods [242, 243]:

fπ = 93.3MeV, gπ � (350MeV)2. (3.19)

Equation (3.18) implies that

mu +md = 0.1mπ, (3.20)

a somewhat unexpected result in the present context, since the (current)
quark masses are found to be much lighter even than that of the ‘massless’
pion.
Weinberg also presents an in-depth discussion of the exploration of the

Nambu–Goldstone structure of the vacuum, in terms of symmetry rela-
tions between current-matrix elements (current algebra). In our context,
the most important vacuum property involving quarks is the Gell-Mann–
Oakes–Renner (GOR) relation, which, adapted to the quark language (see
section 31 of [280], or [125]), implies a relation with the quark fluctuations
(condensate) in the true vacuum:

m2
πf

2
π = 0.17× 10−3GeV4 � −1

2(mu +md)〈ūu+ d̄d〉+ · · · . (3.21)

On dividing Eq. (3.21) by Eq. (3.18), we obtain

−fπgπ = 1
2〈ūu+ d̄d〉|1GeV ≡ 1

2〈q̄q〉 = −(225± 9 MeV)3, (3.22)

where we have used the values of fπ and gπ given in Eq. (3.19). When
Eq. (3.22) is combined with Eq. (3.21), and some of its generalizations, we
can determine the values of current quark masses [105]. This shows how



46 A new phase of matter?

the use of matrix-element properties and sum rules allows one to establish
the physical values of the light quark masses presented in table 1.1.
We have introduced, in section 3.2, the condensates of glue, and above,

of quark fields as if these were two quite independent physical effects of
strong interactions. There remains an important question: is there a
relation between glue-condensate melting (confinement-to-deconfinement
transformation of the vacuum) and quark-condensate melting (the restora-
tion of chiral symmetry)? One could be tempted to infer that the chiral
symmetry-breaking features in QCD and gluon condensation have little
in common. However, studies of restoration of symmetry of the vacuum
at high temperature [103] have yielded contrary evidence: the two differ-
ent vacuum structures of QCD always disappear together in the numer-
ical studies as, e.g., the temperature is varied [103]. Model calculations
[106, 107, 109, 251] employing mean-field configurations of gauge fields in
the QCD vacuum suggest that it is the presence of the glue-field con-
densate which is the driving force causing the appearance of the quark
condensate.
The mechanism connecting the two structures in the QCD vacuum

(glue condensate, Eq. (3.3), and chiral condensate, Eq. (3.22)) is a major
unsolved theoretical problem of strong-interaction physics. We will not
pursue further in this book this interesting subject, which is undergoing
rapid development.

3.4 Phases of strongly interacting matter

It is expected that, in nuclear collisions at relativistic energies, we at-
tain conditions under which the structured confining vacuum is dissolved,
forming a domain of thermally equilibrated hadronic matter comprising
freely movable quarks and gluons. A qualitative sketch of the phase dia-
gram of dense hadronic matter is shown in Fig. 3.1. The different phases
populate different domains of temperature T and baryon density ρb pre-
sented in units of the normal nuclear density in heavy nuclei, ρ0 � 1

6 nucle-
ons fm−3. For high temperatures and/or high baryon density, we have the
deconfined phase. If deconfinement is reached in the nuclear-collision re-
actions, it ‘freezes’ back into the state containing confined hadrons during
the temporal evolution of the small ‘fireball’, as indicated by the arrows
in Fig. 3.1. Almost the entire ρ–T region can be explored by varying the
collision energy of the colliding nuclei.
The most difficult domain to reach experimentally is the one of low

baryon number density, at high T , corresponding to the conditions per-
taining in the early Universe. This demands extreme collision energies,
which would permit the baryon number to escape from the central rapid-
ity region, where only the collision energy is deposited; see chapter 5.
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Fig. 3.1. The regions of the principal forms of hadronic matter are shown in the
baryon-density–temperature plane. Their exploration with various accelerators
is indicated, as are the domains relevant for cosmology and astrophysics. Also
indicated is the behavior of the quark condensate.

The vertical arrow at the lowest temperatures, in Fig. 3.1, corresponds
to the case of the stellar explosion of a supernova. Rather low-energy
collisions at the AGS lead to such baryon-dense environments, which are
more similar to nova explosions than they are to the early-Universe big-
bang (horizontal arrow), which is better simulated by RHIC and future
LHC experiments. In between these two extremes, we find the SPS con-
ditions. The specific beam capabilities of the various accelerator facilities
are complementary; section 5.1.
There are three regions indicated in Fig. 3.1 by the quark condensate,

the expectation value of the quark fields 〈q̄q〉, see Eq. (3.22), and 〈qq〉.
The attractive quark–quark interaction present in some of the two-particle
channels allows this di-quark color-condensate to form at low tempera-
ture and high quark density. We will not discuss the extensive work
which recently addressed the properties of ‘cold’ quark matter, in which a
‘color–flavor’ locking (pairing) of quarks introduces yet other interesting
structures in the deconfined state [31]. This color-superconductive phase
had already been proposed early on in the study of properties of quark
matter [53].
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Recent studies have confirmed that the temperature at which such a
color–flavor-locked phase of quark matter could exist is too low for an
exploration in present-day laboratory experiments involving relativistic
heavy-ion collisions [207]. At the temperature of interest in our studies,
T > 100 MeV, the quark pairing will be largely dissolved. Work on this
subject is rapidly evolving, for its current status we refer the reader to a
recent review [227].
Where exactly an equilibrium transition between two phases occurs is

determined from Gibbs’ conditions for phase equilibrium. These establish
the boundary between the physical phases considered, for bulk matter
embedded in heat and particle-number ‘baths’. These baths supply energy
and particles to maintain given thermodynamic conditions. Although
the circumstance of a nuclear-collision fireball is very different, the logic
inherent in Gibbs’ conditions will guide our understanding. The first
condition is

P1 = P2, (3.23)

which assures that there is no physical force acting on the phase boundary.
We will momentarily return to discuss what happens when the phase
boundary is in (relativistic) motion, see Eq. (3.28) below. The second
Gibbs condition is

T1 = T2, (3.24)

which assures that there is no radiative transport of energy between the
phases.
How these conditions define the phase boundaries is illustrated in the

P–V diagram in Fig. 3.2. The pressure in two phases (QGP and HG) is
considered at fixed temperature T (and at given conserved baryon num-
ber b) as a function of volume V , at variable baryon density ρb = b/V .
We distinguish three domains in Fig. 3.2:

1. the HG region for V > V2 (corresponding to ρb < ρ2), where the
pressure rises modestly with the reduction of the volume;

2. the QGP region where the hadrons have disappeared at V < V1 (cor-
responding to ρb > ρ1); and

3. the Van der Waals regime in the intermediate region from V1 to V2; a
way to understand this domain is, e.g., that, at V1, the progenitors of
individual hadrons begin to emerge in the QGP phase in the form of a
localized cluster of quarks. Similarly, beginning at V2 and with decreas-
ing volume, one can, e.g., consider clustering of individual hadrons into
quark-drops [220].

Because clustering of hadrons leads naturally to the formation of drops of
the QGP-like phase, we refer to the coexistence region, between V1 and
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Fig. 3.2. The p–V diagram for the QGP–HG system, at fixed temperature
and baryon number; dashed lines indicate unstable domains of overheated and
undercooled phases.

V2, also as the mixed phase, comprising a mixture of hadrons and drops
of QGP or perhaps hadron-like clusters of quarks and free quarks. To find
out at which pressure the transformation between the phases occurs, at
a given temperature T (and fixed baryon number b), we find the value of
the pressure, P1 = P2 ≡ P12, connecting the volumes V1 and V2, requiring
that the work done along the metastable branches vanishes:∫ V2

V1

(P − P12) dV = 0. (3.25)

The integrand is shown shaded in Fig. 3.2.
This Maxwell construction can be repeated for different values of b

and T , and the set of resulting points 1 and 2 forms then two phase-
boundary lines shown on the left-hand side in Fig. 3.3, in the (ρb–T )
plane. The Maxwell-construction line, seen in Fig. 3.2, is the vertical
line connecting at fixed temperature T the two different values of baryon
density found – in general, a jump in baryon density (and energy density
and entropy density) is encountered if a first-order phase transition occurs.
The region of high T , at fixed ρb, is associated with the deconfined QGP
and the region of small T with HG. The shape of the phase boundary
is expressing the fact that a baryonless hadronic-gas phase cannot exist
at a high enough temperature, and that dense compressed cold baryon
matter will transform into the deconfined quark matter phase of quark
matter.
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µ
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AGS

Fig. 3.3. Left: the regions of QGP and HG in the (ρb–T ) plane are separated by
a band in which the phases coexist. The Maxwell-construction line corresponding
to Fig. 3.2 is also shown, as is the path for the evolution of the Universe. Right:
the same in the (µb–T ) plane. The qualitative evolution of fireballs of dense
matter created at the AGS, SPS, and RHIC is shown.

When we conserve the baryon number b on ‘average’ and introduce the
baryochemical potential µb as a variable, the representation of the phase
boundary changes. According to the third Gibbs condition,

µ1 = µ2, (3.26)

the two chemical potentials must have the same value at each given T in
order to assure that no transport of particles across the phase boundary
occurs. Given Eq. (3.26), there is just a simple line separating any two
hadronic phases in the (µb–T ) plane, as is shown on the right-hand side
in Fig. 3.3. There is a discontinuity of the energy density, baryon density,
and entropy density across the phase boundary.

3.5 The expanding fireball and phase transformation

The lines shown on the right-hand side in Fig. 3.3 suggest the possible
evolution of the fireball of dense matter formed in a heavy-ion collision. If
a QGP fireball were indeed formed in the micro-bang, it will not expand
along a fixed-temperature trajectory such as is encountered under the
isothermal conditions of a heat bath. In our case, instead, entropy is the
(nearly) conserved quantity for an isolated system subject to ideal flow.
The evolution at constant entropy per baryon corresponds nearly to a
straight line in the µb–T diagram in the domain of QGP (dark shaded),
since the dimensionless ratio entropy per baryon is a function of other
dimensionless variables – which, in the absence of significant scales other
than µb, and T is µb/T . A considerable change in temperature must occur
during the evolution of a fireball, as is indicated in qualitative terms by
the trajectories shown in the right-hand panel of Fig. 3.3.
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A phase transition that is ‘strong’, i.e., involves significant changes
in physical properties, will be easier to find. As a strong transition, we
understand a case with, e.g., a jump in magnitude of the energy, or baryon
density. Should such a strong phase transition separate the two phases,
the super-cooling effect of a rapidly expanding (exploding) fireball of finite
size could be much more pronounced.
We recall that both the QGP and the HG phases have metastable

phase branches indicated by dashed lines in Fig. 3.2. However, now we
look at these at constant entropy and variable temperature. Therefore,
these domains are referred to as the undercooled plasma (continuation of
1 in Fig. 3.2), or the overheated hadronic-gas states (continuation of 2
in Fig. 3.2). Thus, the pressure of the QGP phase can evolve to be well
below the transition pressure.
In fact, when a fireball of dense quark–gluon matter (phase 1) rapidly

explodes, driven by the high internal temperature and pressure, it is pos-
sible that it continues even beyond P = 0. Namely, the fluid-flow motion
of quarks and gluons expands the domain of deconfinement by exercising
against the vacuum component in the total pressure a force originating
from the collective velocity /vc.
Let P and ε be the pressure and energy density of the deconfined

phase in the local restframe, subject to flow velocity /vc = (v1, v2, v3).
The pressure-tensor component in the energy–momentum tensor (com-
pare with Eq. (6.6)) is

T ij = Pδij + (P + ε)
vivj
1− /v 2

. (3.27)

The rate-of-momentum-flow vector /P at the surface of the fireball is ob-
tained from the energy-stress tensor Tkl:

T̂ · /n = P/n+ (P + ε)
/vc(/vc ·/n)
1− /v 2c

. (3.28)

The pressure and energy comprise particles (subscript p) and the vac-
uum properties:

P = Pp − B, ε = εp + B. (3.29)

Equation (3.28) for the condition T̂ · /n = 0 reads

B/n = Pp/n+ (Pp + εp)
/vc(/vc ·/n)
1− v2c

, (3.30)

and it describes the (equilibrium) condition under which the pressure of
the expanding quark–gluon fluid is just balanced by the external vacuum
pressure. On multiplying by /n, we find
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B = Pp + (Pp + εp)
κv2c
1− v2c

, (3.31)

where we introduced the geometric factor κ:

κ =
(/vc · /n)2

v2c
. (3.32)

κ characterizes the angular relation between the surface-normal vector
and the direction of flow. Under the condition Eq. (3.31), the total QGP-
phase pressure P = Pp−B, Eq. (3.29), is negative, as we set out to show.
Expansion beyond P → 0 is in general not possible. A surface region of

a fireball that reaches condition Eq. (3.31) and continues to flow outward
must be torn apart. This is a collective instability and the ensuing disinte-
gration of the fireball matter should be very rapid. We find that a rapidly
evolving fireball that supercools into the domain of negative pressure is
in general highly unstable, and we expect that a sudden transformation
(hadronization) into confined matter can ensue under such a condition.
It is important to note that the situation we have described could arise
only since the vacuum-pressure term is not subject to flow and always
keeps the same value.

3.6 QGP and confined hadronic-gas phases

We next seek to qualitatively understand the magnitude of the tempera-
ture at which the deconfined quark–gluon phase will freeze into hadrons.
The order of magnitude of this transition temperature (if a phase change
occurs) or transformation temperature (if no phase transition occurs, see
Fig. 3.1) is obtained by evaluating where a benchmark value for the energy
density occurs:

εH � 3PH = 1 GeV fm−3.

The generalized Stefan–Boltzmann law (Eqs. (1.6) and (4.66)) describes
the energy density ε and pressure P as functions of the temperature T of
a massless relativistic gas:

P SB =
1
3
εSB =

π2

90
gT 4. (3.33)

The quantity g is the number of different (relativistic) particle states
available and is often called the ‘number of degrees of freedom’ or ‘degen-
eracy’. In the deconfined phase,

g ≡ gg + 7
4gq, (3.34)
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which comprises the contribution of massless gluons (bosons) and quarks
(fermions). The relative factor 2 × 7

8 =
7
4 expresses the presence of par-

ticles and antiparticles (factor 2) and the smaller fermion phase space,
compared with the boson case, given the exclusion principle (factor 7

8 ,
section 10.5).
We use the degrees of freedom of quarks and gluons many times in

this book. Here, we ignore the role of interactions. Gluons carry color
and spin, and so do quarks, which, in addition, come in two (nf = 2)
flavors u and d; see table 1.1. Since at high temperatures the flavor count
may include the strange quark, we leave nf as a variable. We obtain the
following degeneracy in a QGP:

gluons: gg=2(spin)× (N2
c − 1)(color) = 2× 8 = 16, (3.35a)

quarks: gq=2(spin)×Nc(color)× nf(flavor) = 2× 3× nf. (3.35b)

When the semi-massive strange quarks are present, the effective number
of ‘light’ flavors is �2.5. Thus, g � 40 in Eq. (3.33), to be compared with
just two directions of polarization for photons.
For a massless ideal quark–gluon gas, we find

TH = 160 MeV, for εH = 1.1 GeV fm−3.

Hagedorn introduced this critical temperature in his study of the boil-
ing point of hadronic matter [140]. Numerical simulations obtained by
implementing QCD on a space–time lattice are available for zero baryon
density, and these results confirm that, at approximately TH, there is a
phase transformation between confinement and deconfinement [160]. One
also finds a rapid change in the behavior as the number of quarks and
their masses ms and mq are varied.
The resulting complexity of the phase structure is shown, in Fig. 3.4,

as a function of ms and mq. In this qualitative representation, we look
at the plane spanned by the light-quark mass mq = mu = md and the
strange-quark mass ms. On two boundaries of Fig. 3.4 these masses are
infinite. Only near the origin is the effective number of massless flavors
three, along the diagonal we have three massive flavors. Depending on
the actual values of quark masses, different phase properties emerge [162].
The theoretical finding that a smooth crossover between the confined

and deconfined phases is a possibility raises the question of how to un-
derstand qualitatively the gradual onset of color (quark, gluon) mobil-
ity. A gradual change implies that free quarks can coexist with confined
hadrons. This then also suggests that liberation of quarks is possible
since permanent confinement could be assured only at zero temperature,
a mathematical limit. For any finite excitation of the system, quark mo-
bility remains, akin to the transition of an atomic gas to an electron–ion
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Fig. 3.4. The nature of finite-temperature QCD phase structure as a function
of quark masses mq and ms.

plasma. However, experimental searches for quarks have not succeeded
[186]. The experimental limits which were set suggest that confinement
is a fundamental physical property. This being the case, we are of the
opinion that, in the physical world, the transformation from the confined
to the deconfined phase is a discontinuous phase transition, most likely
of first order. For this reason, we placed the physical quark-mass point
within the region of first-order phase transition in Fig. 3.4. This topical
area is undergoing a rapid evolution.

4 Statistical properties of hadronic matter

4.1 Equidistribution of energy

The physical tools required to describe in further detail the properties of
hot hadronic matter are much like the usual ones of statistical physics,
which we briefly introduce and review. A more detailed analysis will
follow.
Consider a large number N of identical coupled systems, distinguish-

able, e.g., by their energies Ei. To simplify the matter, we assume that
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the energies Ei can assume only discrete values, and that there are K
different ‘macro’ states such that K 	 N . Some of the energies of the
macro states will be equal, i.e., most are occupied more often than once,
and in general ni times. The total energy,

E(N) =
K∑
i=1

niEi, (4.1)

is conserved. Further below, we will introduce also conservation of a
discrete quantum number, e.g., the baryon number. We note another
subsidiary condition arising from the definitions:

K∑
i

ni = N. (4.2)

Without an additional quantum number, systems with the same energy
Ei are equivalent, i.e., in the language of quantum statistics, indistin-
guishable.
The distribution n = {ni} having the same energy Ei can be achieved

in many different ways. To find how many, consider the relation

KN =(x1 + x2 + · · ·+ · · ·xK)N |xi=1

=
∑
n

N !
n1!n2! · · ·nK !

xn11 xn22 · · ·xnK
K |xi=1. (4.3)

The normalized coefficients,

W (n) =
K−NN !∏K
i=1 ni!

, (4.4)

are the relative probabilities of realizing each state in the ensemble n,
with ni equivalent elements. The practical way to find the most probable
distribution n is to seek the maximum of lnW , Eq. (4.4), subject to the
constraints Eqs. (4.1) and (4.2),

A(n1, n2, . . ., nK) = lnW (n)− a
∑
i

ni − β
∑
i

niEi, (4.5)

characterized by two Lagrange multipliers a and β. We differentiate
Eq. (4.5) with respect to the ni:

∂

∂ni
[− ln(ni!)− nia− βniEi]

∣∣∣∣
n̄m

= 0. (4.6)

Insofar as all n̄i � 1, we can use the relation

d

dk
[ln(k!)] ≈ ln(k!)− ln[(k − 1)!]

(k)− (k − 1) = ln k. (4.7)
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One obtains for the maximum of the distribution Eq. (4.4), i.e., for the
statistically most probable distribution n̄ = {n̄i}, the well-known expo-
nential

n̄i = γe−βEi , (4.8)

where the inverse of the slope parameter β is identified below as the
temperature:

T ≡ 1/β. (4.9)

The supplementary condition Eq. (4.2), given the set n̄, now reads

∑
i

n̄i = γ

K∑
i=1

e−βEi = N. (4.10)

The quantity γ,

γ ≡ e−a, (4.11)

as seen in Eq. (4.10), controls the total number of members of the ensemble
N . It is the chemical fugacity introduced in section 1.1. We will meet
both statistical parameters T and γ many times again in this book.
Employing Eq. (4.8), we find for the energy E(N), Eq. (4.1),

E(N) =
∑
i

n̄iEi = γ
∑
i

Eie
−βEi . (4.12)

On dividing E(N) by N , we obtain the average energy of each member of
the ensemble:

E(N)

N
≡ E(N) =

γ
∑
i Ei e

−βEi

γ
∑
i e

−βEi
≡ − d

dβ
lnZ. (4.13)

We introduced here the canonical partition function Z:

Z =
∑
i

γe−βEi . (4.14)

Unlike the microscopic (micro-canonical) approach in which the energy
for each member of the ensemble is fixed, in the statistical ‘canonical’
approach, one studies the most likely distribution of energy and other
physical properties among members of the ensemble. These properties
are controlled solely by the statistical parameters β and γ which are the
Lagrange multipliers related to the conservation of energy, and the num-
ber of members of the ensemble.
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4.2 The grand-canonical ensemble

We will now relax the assumption that only energy is equipartioned as it
is exchanged between macro systems. In the grand-canonical approach,
we seek the most probable statistical distribution allowing for the flow of
a discrete quantum number between the individual members of the statis-
tical ensemble. In passing, we also show how the mathematical framework
of the grand-canonical approach offers a convenient path to the evalua-
tion of the canonical ensemble quantities, when discrete conservation laws
apply.
We proceed in every detail as before, but need to characterize each

macro state by an additional discrete number, and we need to introduce
a further subsidiary condition to assure that this (baryon) number is
conserved:

N∑
i=1

nbibi = b(N) ≡ Nb̄i. (4.15)

Here, b̄i is the average number of baryons in each ensemble member con-
sidered. The condition Eq. (4.15) introduces a further constraining La-
grange parameter into Eq. (4.6), which we write in the form − lnλ. In
this way the generalization of Eq. (4.6) is

∂

∂nbi

[
− ln(nbi !)− nbia− βnbiEi + lnλn

b
ibi

]∣∣∣∣
n̄m

= 0. (4.16)

Proceeding as in section 4.1, we obtain the most probable distribution of
n̄i as

n̄bi = γλbie−βEi , (4.17)

where the number of particles is controlled by the fugacity factor λ and
the factor γ = e−a, see Eq. (4.11). It is common practice to introduce the
chemical potential µ:

µ ≡ T lnλ, λ = eβµ = eµ/T . (4.18)

The chemical potentials shown have physical meaning, and determine the
energy required to add/remove a particle at fixed pressure, energy, and
entropy. Following the method that led us to Eq. (4.13), we obtain

E(N) = γ

∑
i;b Ei λ

bie−βEi

γ
∑
i;b λ

bie−βEi
≡ − d

dβ
lnZ. (4.19)

We have introduced the grand-canonical partition function Z:
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Z(V, β, λ) = γ
∑
i;b

λbie−βEi . (4.20)

Z is in fact also a ‘generating’ function for the canonical partition function
Zb,

Zb(V, β) =
1
2πi

∮
db

1
λb+1

Z(β, λ), (4.21)

where Zb(V, β) describes a system with a fixed baryon number b. The
path of integration in Eq. (4.21) leads around the singularity at λ = 0; it
is often chosen to be the unit circle.
We can also evaluate the average value of b for the grand-canonical

partition function:

b̄=

∑
i;b bi λ

bie−βEi∑
i;b λ

bie−βEi
,

=λ
d

dλ

(
ln
∑
i;b

γλbie−βEi

)
≡ λ

d

dλ
lnZ(β, λ). (4.22)

4.3 Independent quantum (quasi)particles

Elementary quantum physics allows a simple evaluation of the grand-
canonical partition function. The discrete energies Ei of the physical
systems in the statistical ensemble we introduced above are now to be
understood as eigenenergies with eigenstate |i〉 of a quantum Hamiltonian
Ĥ:

Ĥ|i〉 = Ei|i〉. (4.23)

Since the (conserved-baryon-number) operator b̂ commutes with the Ham-
iltonian, [b̂, Ĥ] = 0, the eigenstates can furthermore be characterized by
their baryon number (and strangeness, and other discrete quantum num-
bers that are constants of motion, but we restrict the present discussion
to the baryon number only). We have

b̂|i, b〉 = b|i, b〉. (4.24)

The grand-canonical partition function, Eq. (4.20), can be written as

Z ≡
∑
i,b

〈i, b|γe−β(Ĥ−µb̂)|i, b〉=Tr γ e−β(Ĥ−µb̂), (4.25)

≡
∑
n

〈n|e−β(Ĥ−µb̂−β−1 ln γ)|n〉.
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The great usefulness of this relation is that the trace of a quantum op-
erator is representation-independent; that is, any complete set of micro-
scopic basis states |n〉 may be used to find the (quantum) canonical or
grand-canonical partition function. This allows us to obtain the physi-
cal properties of quantum gases in the, often useful, approximation that
they consist of practically independent (quasi)particles, and, eventually,
to incorporate any remaining interactions by means of a perturbative
expansion.
The reference to quasi-particles is made since, e.g., in a medium, masses

of particle-like objects can be different from masses of ‘elementary’ par-
ticles. Generally there will be collective excitation modes characterized
by a mass spectrum. In this respect, dense hadronic matter behaves
like any dense-matter system. As long as there is a set of well-defined
excitations, it really does not matter whether we are dealing with real
particles or quasi-particles, when we compute the trace of the quantum
partition function Eq. (4.25). Putting it differently, even though we com-
pute the properties of a ‘free’-particle quantum gas, by choosing a suitable
quasi-particle basis, we accommodate much of the effect of the strong in-
teractions between particles.
The ‘single (quasi)particle’ occupation-number basis is the suitable one

for the evaluation of the trace in Eq. (4.25). In this approach, each macro
state |n〉 is characterized by the set of occupation numbers n = {ni} of
the single (quasi)particle states with baryon charge bi of energy εi, and
the state energy is given by En =

∑
i niεi. The sum over all possible

states corresponds to a sum over all allowed sets n: for fermions, each
ni ∈ 0, 1 and for bosons, ni ∈ 0, 1, 2, . . .,∞:

Z=
∑
n

e−
∑∞

i=1 niβ(εi−µbi−β−1 ln γ),

=
∑
n

∏
i

e−niβ(εi−µbi−β−1 ln γ). (4.26)

In this case the sum and product can be interchanged:∑
n

∏
i

e−niβ(εi−µbi−β−1 ln γ) =
∏
i

∑
ni=0,1...

e−niβ(εi−µbi−β−1 ln γ). (4.27)

To show this equality, one considers whether all the terms on the left-
hand side are included on the right-hand side, where the sum is not over
all the sets of occupation numbers n, but over all the allowed values of
occupation numbers ni. For fermions (F, Fermi–Dirac statistics) we can
have only ni = 0, 1, whereas for bosons (B, the Bose–Einstein statistics)
ni = 0, 1, . . .,∞. The resulting sums are easily carried out analytically:

lnZF/B = ln
∏
i

(
1± γe−β(εi−µbi)

)±1
= ±
∑
i

ln(1± γλbie
−βεi). (4.28)
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The plus sign applies to F, and the minus sign to B; fermions have Pauli
occupancy 0, γ, of each distinct single-particle state, and bosons have
occupancy 0, γ1, 2γ2, . . ., ∞. The factor γn arises naturally since we
have not tacitly set the occupancy of each single-particle level to unity as
is commonly done when absolute chemical equilibrium is assumed.
For antiparticles, the eigenvalue of b̂, in Eq. (4.28), is the negative of

the particle value. Consequently, the fugacity λf̄ for antiparticles f̄ is

λf̄ = λ−1f . (4.29)

It is convenient to also introduce this change in sign into the definition
of the chemical potential, see Eq. (4.18), and to introduce particle and
antiparticle chemical potentials such that

µf = −µf̄ . (4.30)

These relations, Eqs. (4.29) and (4.30), will often be implied in what fol-
lows in this book. The microscopic (quasi)particle energy is denoted by
ε in Eq. (4.28). For a homogeneous space–time, it is determined in terms
of the momentum /p in the usual manner:

εi =
√
m2
i + /p 2. (4.31)

In order to make any practical evaluations of Eq. (4.28), we need to
interpret the level sum

∑
i with some precision. If energy is the only

controlling factor then we carry out this summation in terms of the single-
particle level density σ1(ε, V ):∑

i

[. . .] =
∫

dε σ1(ε, V )[. . .]. (4.32)

To obtain σ1, i.e., the number of levels in a box of (infinite) volume V = L3

per unit of energy ε, we note that quantum mechanics does not allow a
continuous range of /p in Eq. (4.31).
We consider a box L3 with periodic boundary conditions and obtain

the complete set of plane-wave states ψ having the required periodicity,

ψ ∝ ei(�pα· �X) = ei�pα( �X+�nL), (4.33)

where /n = (n1, n2, n3) with n = 0, ±1, ±2, . . .. This fixes the allowed /pα
to

L/pα · /n = 2πk, k = 0, ±1, ±2, . . .. (4.34)

This can be satisfied only if

/pα =
2π
L
(k1, k2, k3), with ki = 0, ±1, ±2, . . .. (4.35)
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To sum over all single-particle states, we sum over all ki. The number
of permitted states equals the number of lattice points in the ‘inverse’ or
‘phase-space’ k-lattice. In the limit of large L,

[number of states in d3k] =
(
L

2π

)3
d3p =

V

(2π)3
d3p. (4.36)

Thus, we obtain the single-level density, Eq. (4.32):∑
i

[. . .] =
∫

dε
V d3p

(2π)3 dε
[. . .]. (4.37)

We keep in mind that, in general, the replacement of the discrete-level
sum implies, in the limit of infinite volume of the system the phase-space
integral∑

i

→ g

∫
d3x d3p

(2π)3
. (4.38)

Discrete quantum numbers, such as spin, isospin, and flavor, contribute an
additive component of the same form in the sum over the single-particle
states, which gives rise to the degeneracy coefficient g in Eq. (4.38). Aside
from the volume term shown in Eq. (4.38), there is, in general, also a
correction that has the form of a surface term. The magnitude and sign
of the surface term depend on the physical problem considered. We will
not pursue this topic further in this book; for a general discussion of this
subject see, e.g., [51, 52].

4.4 The Fermi and Bose quantum gases

Allowing for the presence both of particles and of antiparticles, the quant-
um-statistical grand partition function Eq. (4.28) for a particle of mass m
and degeneracy g can be written explicitly as

lnZF/B(V, β, λ, γ) = ±gV
∫

d3p

(2π)3
[
ln(1± γλe−β

√
p2+m2)

+ ln(1± γλ−1e−β
√
p2+m2)

]
. (4.39)

The second term in Eq. (4.39) is due to antiparticles. The well-known
‘classical’ Boltzmann limit arises from expansion of the logarithms, i.e.,
when it is possible to consider the exponential term as small relative to
unity:

lnZcl(V, β, λ, γ) = gV

∫
d3p

(2π)3
γ(λ+ λ−1)e−β

√
p2+m2 . (4.40)
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We will often use the (normalized) particle spectrum, the average rela-
tive probability of finding a particle at the energy Ei, which is the coeffi-
cient of Ei in Eq. (4.13). Using Eqs. (4.8) and (4.10) we obtain

wi ≡
n̄i
N
=

e−βEi∑
j e

−βEj

= − 1
β

∂

∂Ei

ln∑
j

γe−βEj

 = − 1
β

∂

∂Ei
lnZ. (4.41)

The single-particle spectrum that follows from Eq. (4.28) is easily evalu-
ated,

fF/B(ε;β, λ, γ) =
1

γ−1λ−1eβε ± 1 , (4.42)

where the plus sign applies for fermions, and the minus sign for bosons.
For antiparticles, we replace λ by λ−1. The classical Boltzmann approxi-
mation arises again in the limit in which it is possible to neglect the term
±1 in the denominator, i.e., when the phase-space abundance is small,

fF/B → fcl = γλe−βε, (4.43)

where λ → 1/λ for antiparticles. More generally, for γλe−βε < 1, this
Stefan–Boltzmann spectral shape can be written as an infinite series:

fF/B = ±
∞∑
n=1

(
±γλe−βε

)n
. (4.44)

We consider, as an example, the spectra and yield of gluons, a special
case of interest to us among bosons. Their behavior is similar to the case
of photons (gγ = 2) but gluons have an eight-fold greater color degeneracy
(gg = 16). Both photons and gluons do not have an antiparticle partner,
and their number is unrestricted by particle/antiparticle conservation;
hence λ → 1. We obtain

lnZγ,g = −gγ,gV

∫
d3p

(2π)3
ln(1− γe−βε), (4.45)

where ε = ε(/p ) =
√
m2 + /p 2 → |/p |, except when we consider a non-

vanishing thermal gluon mass in the medium. The particle occupation
probability is

fγ,g(ε) =
1

γ−1eβε − 1 =
∞∑
n=1

γne−nβε, γ < eβm. (4.46)
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The gluon (and photon) particle densities are

ργ,g ≡
Nγ,g

V
=
1
V
lim
λ→1

λ
d

dλ
lnZγ,g = gγ,g

∫
d3p

(2π)3
fγ,g. (4.47)

Using the series expansion from Eq. (4.46), we can explicitly evaluate this
integral, substituting np/T for x term by term:

ργ,g =
gγ,g

2π2
T 3

∞∑
n=1

γn

n3

∫ ∞

0
dxx2e−

√
(nm/T )2+x2 . (4.48)

For m → 0 and γ → 1, we obtain the well-known Stefan–Boltzmann
equilibrium limit:

ργ,g =
gγ,g

π2
T 3ζ(3), (4.49)

with the Riemann zeta-function ζ(3) � 1.202; see Eq. (10.66b). Using
Eq. (10.50a), for the general case, to evaluate the integral, we obtain an
infinite sum over terms containing the Bessel function K2 (also called the
McDonald function), which is discussed in section 10.4:

ργ,g =
gγ,g

π2
Tm2

∞∑
n=1

γn

n
K2(nm/T ). (4.50)

Many other properties of the quark–gluon gas are discussed in section 10.5.
The statistical method is a powerful tool to deal with the physics we ad-

dress in this book. Looking back, we recognize that we have assumed the
presence of sufficiently many (weakly) interacting (quasi)particles in this
discussion of basic results of statistical physics. Two important questions
come to mind.

• In our context, the practical question is that of how statistical physics
works when we have a few hundred (at the SPS), or a few thousand (at
the RHIC) particles experiencing a limited number of collisions each. In
this book, we will answer this question by consulting the experimental
results, and our finding is that the thermal particle spectra describe
experimental data very well.

• It seems that, perhaps, we could derive statistical-physics laws for any
type of many-object system – could it be that the statistical partition
function even describes the behavior of investors on Wall Street? Let
us clearly identify what specific tacit physical feature makes a system
of particles so much simpler to understand than a crowd of investors.
An appropriate economical toy model, in our context, would consist of
taking a ‘conserved’ number of Wall Street investors who, in view of
their frequent interactions, should see their investments equipartitioned
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into an exponential wealth distribution, provided that all members of
the same wealth class are, basically, indistinguishable, a hypothesis
many of our colleagues agree with. All the above equations apply, with
Ei being now the wealth range of ni investors. To compute anything
with precision we need, however, to specify the meaning of the discrete
sum,

∑
i; we need to know the number of ‘investors’ per unit of ‘wealth’.

In case of physical particles, this level density Eq. (4.37) is implicit in
our understanding of the many particle phase space, which allows us
to convert the symbolic expressions into quantitative equations. We
are not able to generalize this naively to non-physics applications of
statistical physics.

4.5 Hadron gas

Particularly important in our study is the hadronic ‘gas’ (HG) matter
consisting of individually confined hadronic particles. Although relativis-
tic dynamics is required, we can consider the classical (Boltzmann)-gas
limit Eq. (4.40) since, in a very ‘rich’ multicomponent phase, each parti-
cle species has a rather low ‘non-degenerate’ phase-space abundance. In
other words, at sufficiently high temperature, a high density of hadronic
particles can arise as a consequence of many hadron species contribut-
ing, and does not in general imply a quantum degeneracy of the phase
space. However, even in the HG phase, it is possible to encounter (pion)
quantum degeneracy, which requires full quantum statistics, Eq. (4.39).
To see why the classical Boltzmann distribution almost always suf-

fices in the hadronic gas phase of matter, consider the denominator of
the quantum distribution, Eq. (4.42): even for the least-massive hadronic
particle, the pion, the expansion of the denominator of quantum distribu-
tions makes good sense. For a range of temperatures up to T < 150 MeV
wherein confined hadrons exist, we find exp(−Eπ/T ) < exp(−mπ/T ) < 1.
The limits of the Boltzmann approximation are tested when, e.g., the
phase space is oversaturated, i.e., γπ > 1, or when the baryo-chemical
potential compensates for the mass term which could occur in extremely
dense baryonic systems.
We present next a brief survey of the properties of a hadronic Boltz-

mann gas, and refer to chapter 10 for further developments. We consider
a series expansion of the logarithmic function in Eq. (4.39):

lnZ =
∞∑
n=1

1
n
Zn. (4.51)

Each term comprises contributions from all contributing bosons Bf and
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fermions Ff :

Zn =
∑
Bf

gfγ
n
f (λ

n
f + λ−nf )V

∫
d3p

(2π)3
e−nβεf

+(−)n+1
∑
Ff

gfγ
n
f (λ

n
f + λ−nf )V

∫
d3p

(2π)3
e−nβεf . (4.52)

The single-particle energy εf entering Eq. (4.52) depends on the mass mf

of particle f, Eq. (4.31). Since the mass spectra of hadronic bosons and
fermions are quite different, n > 1 quantum corrections do not cancel out.
In the Boltzmann limit, the first term n = 1 is retained in Eq. (4.51)

and there is no distinction between the Bose and Fermi ideal gases in this
‘classical’ limit, as seen in Eq. (4.40):

lnZcl =
∑
f

gfγ(λf + λ−1f )V
∫

d3p

(2π)3
e−βε(�p) ≡ Z(1). (4.53)

The last definition reminds us that the right-hand side of Eq. (4.53) is the
partition function arising for a single particle enclosed in a given volume.
This is not an entirely ‘classical’ expression. We note that

Zcl =
∞∑
k=0

1
k!
(Z(1))k, (4.54)

which expresses the fact that the partition function comprises the additive
contributions of terms for k microscopic particles. However, the quantum
indistinguishability is retained in the factor 1/k! – only with this quan-
tum factor can one obtain the correct ‘classical’ Maxwell distribution of
atoms in a gas. This issue marked strongly the pre-quantum-mechanics
development of statistical physics in the Boltzmann era since there was
no easy explanation why this factor was needed.
We already know the momentum integral appearing in Eq. (4.53), from

Eq. (4.48),

lnZcl =
β−3V
2π2

∑
f

gfγ(λf + λ−1f )W (βmf), (4.55)

where we used the function W (x) = x2K2(x), shown in Fig. 10.1 on
page 197.
Using Eq. (4.55), we obtain the properties of a hadronic gas in the clas-

sical (Boltzmann) limit. The ‘net’ (particle minus antiparticle) particle
density, Eq. (4.22),

ρf =
T 3

2π2
∑
f

gfγ(λf − λ−1f )(βmf)2K2(βmf), (4.56)
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pressure,

Pcl =
T

V
lnZcl =

T 4

2π2
∑
f

gfγf(λf + λ−1f )(βmf)2K2(βmf), (4.57)

and energy density,

εcl = − 1
V

∂

∂β
lnZcl =

T 4

2π2
∑
f

gfγf(λf + λ−1f )

×
[
3(βmf)2K2(βmf) + (βmf)3K1(βmf)

]
. (4.58)

comprise the sum over all particle fractions. In Eq. (4.56) we obtained the
difference between numbers of particles and antiparticles. The relation
between partition function and pressure which we introduced in Eq. (4.57)
is discussed in section 10.1, see Eq. (10.11). To obtain Eq. (4.58), we used
dx2K2(x)/dx = −x2K1(x).
The relativistic limits of Eqs. (4.57) and (4.58) arise in view of the

properties of the Bessel function, Eqs. (10.47) and (10.50b),K2(x)→ 2/x2

and K1(x)→ 1/x, and only the K2 term contributes:

Pcl→
T 4

π2

∑
f

gfγf(λf + λ−1f ),

εcl→
3T 4

π2

∑
f

gfγf(λf + λ−1f ). (4.59)

In the case of fermions, the Pauli exclusion principle decreases the particle
degeneracy below the classical value. The energy and pressure shown in
Eq. (4.59) are reduced in the relativistic limit by the Riemann η-function
factor η(4) = 7

8π
4/90 = 0.9470. On the other hand, since bosons are

‘attracted’ to each other, one finds a greater than classical degeneracy,
expressed in the relativistic limit by the factor ζ(4) = π4/90 = 1.0823.
For a relativistic hadron gas, comprising a similar number of fermions

and bosons, this quantum effect averages out. Thus, when we speak of an
effective number of degrees of freedom (also effective degeneracy) in HG,
we will use as a basis the classical expression Eq. (4.59):

gPeff ≡ π2
P

T 4
, gεeff ≡

π2

3
ε

T 4
. (4.60)

When T � m for all particles, or, equivalently, when T is the only relevant
energy scale, we have gPeff � gεeff .
We consider, in Fig. 4.1, how gPeff and g

ε
eff look in a simple hadronic gas,

as functions of T . Solid lines correspond to gεeff, and dashed to g
P
eff. The

thin lines are for the classical Boltzmann pion gas (gπ = 3, mπ � 140
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Fig. 4.1. Effective numbers of degrees of freedom from energy density (solid
lines) and pressure (dashed lines), Eq. (4.60), for a Boltzmann pion gas (thin
lines), and gas comprising Boltzmann pions, nucleons, kaons, and ∆(1232) for
γi = 1 and λi = 1, as functions of temperature T .

MeV); thick lines also include the four kaons K, the nucleons N, and the
deltas ∆(1232), and for N and ∆ their antiparticles (gK = 4, mK � 495
MeV; gN = 4, mN � 939 MeV; and g∆ = 16, m∆ � 1232 MeV) evaluated
with all γ = 1, as appropriate for chemical equilibrium, and λ = 1, for
a nearly baryon-free system, as appropriate for the early Universe. We
see for the pion-only case (thin lines) the expected high-T limit, which
is nearly reached already at T � mπ. However, because of the relatively
high hadron masses, the effective number of degrees of freedom keeps
rising even at T � 300 MeV toward its maximum for this example, which
is near 50. We also note that the energy density approaches its relativistic
limit faster than does the pressure, a point to which we shall return in
Eq. (10.58).
We draw two important conclusion from results seen in Fig. 4.1.

• Since pions are several times lighter than the next heavier hadronic
particle, they determine rather exactly the properties of a hadron gas
at ‘low’ temperature below T � (mπ/2) MeV, as is seen in Fig. 4.1
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(the case that the net baryon and strangeness density is zero). Even at
T � mπ, the pion fractional pressure is still the dominant component.

• The influence of the numerous massive hadronic particles rapidly gains
in importance with rising temperature. At low temperature, the quan-
tum corrections (not shown in Fig. 4.1) are in fact more important
than the contributions of heavier particles since 2mπ < mh, h 
= π.
For 2βmπ < 1 in the HG phase, with gπ = 3, (for derivation compare
Eq. (10.62)), we have

Pπ
h � 3T 4

2π2

(
γπλπW (βmπ) +

1
16
γ2πλ

2
πW (2βmπ) + · · ·

)
. (4.61)

As the temperature increases, the small quantum correction remains a
minor effect compared with a rise due to excitation of numerous heavy
hadron states.

4.6 A first look at quark–gluon plasma

We consider next the properties of the QGP, modeled initially as an ideal
chemically equilibrated gas of quarks and gluons, including the effect of
confining vacuum structure. In the study of the quark-and-gluon gas,
our task is considerably simplified by the observation that the gluons and
light u and d quarks are to all intent massless particles, at least on the
scale of energies available in the hot plasma, i.e., T ≈ 200 MeV.
Since the energy density is, in general terms, given by (see Eqs. (10.7)

and (10.11))

ε = − ∂

∂β

1
V
lnZ(β, λ), (4.62)

in the absence of any dimensioned scales,

1
V
lnZ(β, λ) = β−3f(λ), (4.63)

and we find

ε = 3β−4f(λ) = 3
T

V
lnZ(β, λ) = 3P. (4.64)

The presence of masses of quarks, and in general scaled variables, breaks
this perhaps most used relationship of relativistic gases. It applies to
fermions, bosons, and classical gases. Equations (10.58)–(10.60) show how
the presence of masses reduces the pressure below ε/3. Put differently,
massive particles are less mobile at a given temperature, and thus the
pressure they can exercise is smaller than ε/3; the energy density ε is
‘helped’ by the presence of masses, and is closer to the relativistic limit.
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In the limit βm = m/T 	 1, the phase-space integrals of ideal quantum
gases are easily carried out. We can effectively neglect the particle mass
m compared with the high momenta that occur. We also omit, at first,
chemical potentials. We obtain for the energy density

EF,B
V

=
g

2π2

∫ ∞

0
p2 dp

p

eβp ± 1 =
gβ−4

2π2
3!

∞∑
1

(±1)n−1
n4

. (4.65)

The infinite sums are the zeta and eta Riemann sums, see Eqs. (10.66a)–
(10.67b), which for bosons give the well-known Stefan–Boltzmann result:

PB|m=0 =
T

V
lnZB|m=0 =

gπ2

90
T 4 =

1
3
εB ≡ EB

3V
. (4.66)

We have made explicit the result ε = 3P , see Eq. (4.64), which is valid
when the mass of particles is small relative to their energy (massless
particles or ultra-relativistic gas). For fermions, the alternating sum in
Eq. (4.65) introduces a relative reduction factor, which is 78 , see Eq. (10.67b).
However, allowing for the presence of antifermions, the energy density and
pressure have to be multiplied by an extra factor of two, and become in
fact greater by a factor 74 :

εF ≡ EF
V
=

gπ2

30
7
4
T 4 = 3PF. (4.67)

For fermions, the inclusion of a finite chemical potential is of impor-
tance. In the limit m → 0, the Fermi integrals of the relativistic quan-
tum (degenerate) quark gas can be evaluated exactly at finite µ, see
Eq. (10.73):

PF|m=0 =
T

V
lnZF|m=0 =g

(πT )4

90π2

(
7
4
+

15µ2

2(πT )2
+

15µ4

4(πT )4

)
. (4.68)

Since in the domain of freely mobile quarks and gluons the vacuum is
deconfined, a finite vacuum energy density (the latent heat of the vacuum)
arises within the deconfined region, as we have discussed at length in
section 3.1. This also implies that there must be a (negative) associated
pressure acting on the surface of this volume and attempting to reduce
the size of the deconfined region. These two properties of the vacuum
follow consistently from the vacuum partition function:

lnZvac ≡ −BV β. (4.69)

On differentiating Eq. (4.69) as in Eqs. (4.57) and (4.58), we in fact find
that the perturbative vacuum region is subject to the (external) pressure
−B while the internal energy density is +B relative to the outside volume.
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Fig. 4.2. P = 0 in the quark–gluon liquid in the (µb–Tc) plane. Dotted (from
right to left): breakup conditions of the liquid for expansion velocities v2 =
1
10 ,

1
6 ,
1
5 ,
1
4 and

1
3 .

The partition function (i.e., pressure) of the quark–gluon phase is ob-
tained after we combine contributions from quarks, gluons, and vacuum:

T

V
lnZQGP≡PQGP = −B + 8

45π2
c1(πT )4

+
nf
15π2

[
7
4
c2(πT )4 +

15
2
c3

(
µ2q(πT )

2 +
1
2
µ4q

)]
. (4.70)

We have inserted the quark and gluon degeneracies as shown in Eqs. (3.35a)
and (3.35b). The interactions between quarks and gluons manifest their
presence aside from the vacuum-structure effect, in the three coefficients
ci 
= 1, see Eqs. (16.1) and (16.2), [91]:

c1=1−
15αs
4π

+ · · · , (4.71a)

c2=1−
50αs
21π

+ · · · , (4.71b)

c3=1−
2αs
π
+ · · · . (4.71c)
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One can evaluate the pressure Eq. (4.70) by choosing values for B and
αs. It turns out that the value of the running strong-interaction coupling
constant αs changes rather rapidly in the domain of interest to us, and
hence one needs to employ a function αs(T ), see Fig. 14.3 on page 286.
Then, also allowing for the latent heat B, a surprisingly good agreement
with lattice results in section 15.5 is found, this is shown in Fig. 16.2 on
page 307. This comparison hinges strongly on an understanding of αs(T ),
and inclusion of B.
Drawing on these considerations, we show the QGP-phase pressure con-

dition PQGP → 0 in Fig. 4.2. The solid line denotes, in the (µb–Tc) plane,
where PQGP = 0 in a stationary quark–gluon phase. The dotted lines
correspond (from right to left) to the condition Eq. (3.31) for flow veloc-
ities v2 = 1

10 ,
1
6 ,
1
5 ,
1
4 and

1
3 for which an exact spherical expansion with

κ = 1, see Eq. (3.32), was used. The last dotted line to the left cor-
responds to an expansion with the velocity of sound of relativistic (i.e.,
effectively massless) matter. For small baryo-chemical potentials, the
equilibrium phase-transition temperature of a non-dynamically evolving
system is somewhat greater than that shown here at the intercept of the
solid line at µb = 0. The actual value is Tc � 170 MeV, as it occurs at
finite pressure balanced by hadrons, compare with Fig. 3.2. Looking at
the high-flow-velocity curves in Fig. 4.2, we see that an exploding QGP
fireball can supercool to T � 0.9Tc.



II
Experiments and analysis tools

5 Nuclei in collision

5.1 Heavy-ion research programs

The energy content available in the nuclear collision is the main factor in
which experimental facilities differ from each other. The ultra-relativistic
nuclear-collision systems we are considering are identified in table 5.1. For
the maximum possible mass number up to Amax � 200, we show the fixed-
target maximum beam energy per nucleon EmaxP [A GeV]; for colliders, we
present in this line the equivalent projectile energy. Similarly, we show the
CM energy in the nucleon–nucleon system

√
sNN [GeV], which is twice the

nominal beam energy of the RHIC and LHC collider systems. We also
show the total

√
sAA [GeV] energy in the interaction region, allowing

for the maximum mass number A of the beam. The final line refers to
the rapidity ‘gap’ ∆y. We will discuss these variables in the following
sections.
∆y is defined as the difference between the rapidities of projectile and

target. In laboratory fixed-target experiments, yt = 0, and ∆y is the
rapidity of the projectile yp. Using the definition of rapidity Eq. (5.4), we
have

cosh∆y = Ep/mp. (5.1)

For head-on interactions occurring at rest in the laboratory, at the collider
facilities, ∆y/2 is the projectile (target) rapidity of each beam, which is
evaluated using, e.g., Eq. (5.1) again.
A convenient way to represent the data of table 5.1 is shown in Fig. 5.1:

the solid line depicts the CM energy per pair of nucleons,
√
sNN, as

a function of the rapidity y. The horizontal distance between the two
branches of the solid line is the projectile–target rapidity gap ∆y. The
shaded areas correspond to the accessible CM energies,

√
sNN, at ex-

72
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AGS

LHC

RHIC

SPS

Fig. 5.1.
√
sNN (vertical axis) of various accelerators as a function of the projec-

tile and target rapidities seen from the CM frame. Shaded areas: energy ranges
accessible at the various accelerators.

perimental facilities that are in operation and under construction to-
day.
As the energy increases, the rapidity gap ∆y between projectile and

target opens up as we see in Fig. 5.1. In the central rapidity region, we
can study conditions of matter without having to account for particles
spilled from the projectile and target fragments, which are known exper-
imentally to spread over about two units of rapidity. Two extreme cases
are illustrated qualitatively in Fig. 5.2, in which we sketch the distribu-

Table 5.1. Parameters of existing ultra-relativistic heavy-ion beam facilities and
those under construction.

AGS AGS SPS SPS SPS RHIC RHIC LHC

Start year 1986 1992 1986 1994 1999 2000 2001 2006
Amax

28Si 197Au 32S 208Pb 208Pb 197Au 197Au 208Pb
Emax
P [A GeV] 14.6 11 200 158 40 0.91×104 2.1×104 1.9×107√
sNN [GeV] 5.4 4.7 19.2 17.2 8.75 130 200 6000√
sAA [GeV] 151 934 614 3.6×103 1.8×103 2.6×104 4×104 1.2×106

∆y/2 1.72 1.58 2.96 2.91 2.22 4.94 5.37 8.77
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(a)

(b)

dE/dy

dB/dy

y

Fig. 5.2. Rapidity distributions of energy (solid lines) and baryon number
(dashed lines) (in a qualitative representation): (a) for a ‘Transparent’ reaction
mechanism; and (b) for full stopping in the collision.

tions of the energy (solid lines) and baryon number (dashed lines), as
functions of the rapidity.
In the baryon-punch-through case, shown in Fig. 5.2(a), which was in-

vestigated by Bjørken [73], see section 6.4, the colliding nuclei are leaving a
trail of energy between the projectile–target rapidity, but the baryon num-
ber continues to move out of the collision zone, apart from the down-shift
in projectile and target rapidities necessary for conservation of energy.
The stopping limit, implicit in the work of Fermi [121] and described by

Landau [173, 175], is shown in Fig. 5.2(b): both the particle multiplicity
(energy) and the baryon number are centered around the central rapidity
yCM. The projectile and target baryons will, under the most extreme
circumstance of complete stopping, lose all memory about the initial state,
and in this limit there should in particular be little, if any, difference
between the distributions of energy and baryon number in the longitudinal
and transverse directions with respect to the collision axis.
We now survey the nuclear-collision experiments that are currently op-

erating or under development. These include in particular the CERN–
SPS heavy-ion program which continues a 15-year-long tradition in the
so-called North Area (NA) in fixed-target mode with energy range up to
200A GeV for up to A � 100 and dropping to 158A GeV for neutron-rich
projectiles such as Pb. At higher energies, we have the beginning of the
experimental program at the RHIC collider, and in the near future there
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will be one at the LHC. The RHIC allows head-on collisions of two Au
ions, each carrying energy in the range (10–100)A GeV. Results from the
initial 65A-GeV run will be described and a glimpse of first 100A-GeV
results is presented as this book goes to press. Compared with the SPS
energies, the available CM energy per nucleon has been increased by an
order of magnitude and accordingly the densities of matter reached are
more extreme. Since the laboratory frame is also the CM frame in a
collider experiment, the greatly increased particle density is distributed
more evenly in all spatial directions.
We begin with the CERN–SPS research program∗.

• The experiment NA45.2 investigates primarily the production of elec-
tron–positron pairs and of direct photons, continuing the research pro-
gram of NA45 carried out with S-beams. Both experiments observe
dielectron pairs and compare results with expectations based on p–p
reactions. The current experimental set-up consists of a double spec-
trometer covering a region near mid-rapidity with full azimuthal cov-
erage. Electrons are identified in two ring-imaging Čerenkov detectors
(RICH).

• The experiment NA49, which had as its predecessor experiment NA35,
uses several time-projection chambers (TPCs) for large-acceptance track-
ing of charged particles. Its current objective is to explore in greater
detail the excitation function of strangeness near the possible thresh-
old for the formation of the QGP phase. NA49 is at present the only
experiment at the SPS capable of measuring many global observables
required to characterize the nature of heavy-ion collisions as the energy
is varied.

• The experiment NA57 continues the research program of experiments
WA97, WA94, and WA85, all of which studied the production of (multi)
strange hadrons in the central rapidity region, with particular emphasis
on the production of strange antibaryons. NA57 is completely differ-
ently instrumented compared with the WA series and provides an im-
portant cross-check for all the results. It comprises silicon pixel tracking
of hadrons in a magnetic field, and its results are based primarily on
reconstruction of decays of strange hadrons.

• The experiment NA60 attempts detection of charmed hadrons, to com-
plement the earlier study of suppression of production of J/Ψ by its
predecessors NA50 and NA38. The NA50 muon spectrometer is comple-
mented by a completely redesigned target area using radiation-tolerant
silicon pixel detectors. The NA50 experiment studied dimuons pro-

∗ For further details consult the following CERN web pages:
http://greybook.cern.ch/programmes/SPS.html; and see also http://greybook.cern.ch/
programmes/EXP NAM.html, for all CERN experiments, including those completed.
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duced in Pb–Pb and p–A collisions. The muons are measured in the
former NA10 spectrometer, which is shielded from the target region by
a beam stopper and absorber wall. The observed muons traverse 5 m
of BeO and C.

• The completed experiment WA98 will be repeatedly mentioned in that
which follows: WA98, which had as predecessors WA80 and WA87,
which addressed the measurement of photons, but also measured the
global production of charged hadrons. It comprised, in particular, a
10 000-module lead-glass spectrometer, which now is incorporated into
the PHENIX detector (see below), yielding high-precision data on π0

and η at mid-rapidity within a large range of transverse momenta 0.3
GeV/c > P⊥ > 4.5 GeV/c for π0. Detailed comparison of photons with
the production of charged particles allowed also an evaluation of the
photon enrichment potentially due to direct radiance from QGP.
We now turn to review the experimental research program at the BNL.

Four experiments are at present taking data at the RHIC†. They are
designed to allow both a survey of the reactions occurring in this hitherto
unexplored condition of matter and an in-depth study of the properties
of the deconfined QGP phase. We review the first results from the year-
2000 run in section 9.5. The experiments currently under way are the
following.
• BRAHMS (Broad Range Hadron Magnetic Spectrometer)
is designed to measure hadronic particles inclusively (that is, to mea-
sure one particle at a time irrespective of what else is happening, when
the system is triggered), over a wide range of rapidity (0 < η < 4)
and transverse mass (up to 30 GeV). It consists of two (forward and
mid-rapidity), magnetic focusing charged-particle (π±, K±, p, p̄) spec-
trometer arms, which can be set to the desired angular acceptance
window.

• PHENIX (Pioneering High Energy Nuclear Interaction Experiment)
is a detector optimized to observe photons and dilepton pairs (γ, e±
and µ±). It comprises a central detector made of an axial field magnet
and two almost identical arms placed on the left and right of the mag-
net, each covering a window of ±0.35 units of pseudorapidity. Each
arm comprises several detector subsystems: the important goal of the
central detector is observation of dielectrons at high mass resolution, al-
lowing one to detect changes in the properties of decaying vector mesons
(e.g., J/Ψ → e+e−, φ → e+e−). The electro-magnetic calorimeter al-
lows one to measure low-p⊥ photons near y = 0. Hadron detection in
the silicon vertex detector, for −2.65 < η < 2.65, will allow studies of

† For RHIC experiments, see http://www.rhic.bnl.gov.
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the distribution of charged hadrons (without identification of particles)
on an event-by-event basis. First results from this subsystem obtained
in the RHIC 2000 run have recently been published [16].

• PHOBOS, a scaled down ‘satellite’ of MARS (ModularArray forRHIC
Spectra),
is a very small (in comparison) arrangement of silicon-based detec-
tors that will allow one to study low-momentum particles within the
complete (pseudo)rapidity interval −5.4 < η < 5.4, aiming to explore
global event structure. PHOBOS has published the first results from
the RHIC 2000 run on particle multiplicity [49], as well as the RHIC
2001 run [50].

• STAR (Soleonoidal Tracker at RHIC)
is a (large) 4π primarily hadronic-particle detector, with a 4-m-diameter
and 4-m-long solenoidal 0.5-T magnetic-field volume, comprising as the
main charged-particle-tracking device a TPC with inner radius 50 cm
and outer radius 200 cm, with 45 planes of tracking. This allows a
pseudorapidity coverage of −2 ≤ η ≤ +2, and the design allows for a
lower particle-momentum cutoff at 60 MeV/c. In addition, the inner
silicon vertex tracker (SVT) is surrounding the interaction region be-
tween 5 and 15 cm, facilitating observation of the production of stran-
geness. The time-of-flight array, �2.5 m from the primary interac-
tion vertex, will help identify charged particles. The outside electro-
magnetic calorimeter (EMC) aims to measure jets of particles, fluctua-
tions, and high-p⊥ phenomena. The high tracking resolution facilitates
reconstruction of unstable hadronic resonances. First results on central
production of antiprotons [19] and anisotropy of particle multiplicity
(elliptical flow) [15] have been published.
Still much more extreme matter conditions will be reached when the

LHC collider is completed (http://lhc.web.cern.ch/lhc/) and the equiva-
lent laboratory energy of EmaxP � 2×1016A eV reaches into the domain of
highest cosmic-particle energies, where the cosmic flux begins to decrease
unusually rapidly. This ‘knee’ in cosmic flux as a function of the energy
is below the high end of the LHC energy. At the LHC there will be ini-
tially three major detectors, ATLAS, CMS, and ALICE. ALICE is the
dedicated heavy-ion experiment. CMS is intended to measure dilepton
spectra under heavy-ion operation conditions. The ATLAS collaboration
is exploring the potential of its detector in the heavy-ion environment.
• ALICE (A Large Ion Collider Experiment)‡. It comprises a TPC as a
main tracking device of charged particles with an inner radius of 1 m
and an outer radius of 2.5 m, and a length along the beam direction

‡ See for further details the web page http://www1.cern.ch/Alice.
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Fig. 5.3. The square root of the inelastic reaction cross section,
√
σ, as a func-

tion of the geometric size of interacting nuclei, A1/3T +A
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P , for various collision

partners, after [37].

of 5m, covering the pseudorapidity interval −0.9 < η < 0.9. The high-
resolution inner tracking system consists of five concentric cylindrical
layers with radii from 7.5 to 50 cm around the beam pipe and allows the
study of decays of charmed particles. An electro-magnetic calorimeter
and a dilepton arm complement this very large and universal detector.

5.2 Reaction energy and collision geometry

On intuitive grounds, we expect that, for the short-range hadronic inter-
actions, the collision geometry determines the amount of matter partic-
ipating in nuclear collisions. The collision geometry is a very important
and carefully explored subject. For an in-depth discussion of the impor-
tance of collision geometry, we refer the reader to the extensive body of
work for hadron–hadron and hadron–nucleus interactions [184, 190].
The earliest experimental heavy-ion results confirmed the role of this

simple geometric picture of nuclear-collision reaction dynamics [201]. The
reaction radius, defined as the square root of the reaction cross section,
rises linearly with the geometric size of the colliding nuclei, described
by the sum of their radii, which is proportional to A1/3, as is shown in
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a

Fig. 5.4. A geometric illustration of nuclear collision. Left: small sulphur or
aluminium nuclei colliding with much heavier lead or gold targets (correct rela-
tive scale). Right: symmetric collision of large nuclei at impact parameter a.

Fig. 5.3. This result confirms that the colliding nuclei need to ‘touch’
each other for local deposition of energy and baryon number to occur.
We show the central collision of sulphur or aluminium nuclei colliding

with much heavier lead or gold targets in Fig. 5.4 (left-hand side). On
the right-hand side, the symmetric slightly off-center collision with lead
or gold is illustrated using the correct relative scale – we can see how
important it is to assure that, in this system, the collision is geometrically
as central as possible, in order to minimize the number of spectator (non-
interacting, or partially interacting) nucleons. In symmetric collisions,
only in a quite rare situation in which the impact parameter a is very small
do we truly have the benefit of the largest possible region of interaction
of the projectile and target, and do not encounter complications arising
from spectator matter ‘polluting’ the experimental data.
A quantity of considerable importance is the energy content of the col-

liding system, which must be, by virtue of conservation of energy, the
energy content of the final-state many-body system. The Lorentz invari-
ant quantity we can form from the energy and momentum of the colliding
projectile (p) and target (t) is

√
spt ≡

√
(Ep + Et)2 − (/pp + /pt)2. (5.2)

In the CM frame where by definition /pp + /pt = 0, √spt is recognized
as the available energy content of the projectile–target reaction, the CM
energy. The quantity

√
s is thus the available reaction energy. Since it is

an invariant,
√
s can be evaluated in any reference frame. It is natural to

generalize this definition to any number of particles:

√
s(n) ≡

√√√√( n∑
i=1

Ei

)2
−
(

n∑
i=1

/pi

)2
. (5.3)

For n = 1, we see that
√
s is just the mass of a particle, i.e., its energy

content at rest. The conservation of energy assures that, when a particle
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Fig. 5.5. A streamer-chamber picture of a S–Ag collision taken at 200A GeV
(NA35 experiment [115]) showing the multiplicity of charged particles bent up
and down in magnetic fields (with decays of neutral strange particles identified
by superposed dashed lines).

decays, the final state comprising any number of particles n has the same√
s. Conversely,

√
s(n) is also the (Lorentz invariant) mass of the ancestor

system of the final-state n-body system, as determined by the momentum
four vectors pµi = (Ei, /pi) of the particles produced.
This final-state energy described by Eq. (5.3) must be delivered by the

colliding nuclei, see Eq. (5.2).
√
s(n) is also the invariant intrinsic rest

energy (mass) of the fireball of dense matter, measured in terms of the
participating energy and momentum of the colliding nuclei. Both these
measures are jointly used in experiments to characterize a collision in-
teraction: for example, the absence of the forward energy/momentum of
the beam in the so-called zero-degree calorimeter (ZDC) can be corre-
lated to the energy found in particles emitted in a direction transverse
to the collision axis, see section 9.4, in order to define the geometric cen-
trality of the collision. We will not follow these procedures further in
this book, also since each experimental group applies a slightly different
method.
In the fixed-target experiments, the longitudinal momentum is largely

due to the Lorentz transformation from the CM frame to the laboratory
frame. This longitudinal momentum is in general considerably greater
than the transverse momentum component, and particles are focused for-
ward along the collision axis, as seen in Fig. 5.5 [115]. In this streamer-
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Fig. 5.6. The decomposition of particle momentum /p (shown in the CM frame)
into the parallel pL and perpendicular p⊥ components. Note the inclination angle
θ of /p and the azimuthal angle ϕ of p⊥ (this is a qualitative presentation).

chamber picture of a S–Ag collision at 200A-GeV of the NA35 experi-
ment, we see all particles in a cone to the right of the interaction vertex
to which the charged-particle tracks are pointing. We also see that cen-
tral collisions of S–Ag nuclei at 200A-GeV lead to the production of many
secondary particles. Both positive and negative particles are bent in the
applied magnetic field pointing normal to the plane of the picture. Several
simultaneous photographs taken from various directions allowed precise
tracking of charged particles.
Not all particle tracks go through the interaction vertex at the left-hand

edge of Fig. 5.5: a few particle tracks, highlighted by dotted lines, belong
to the V decays of neutral (strange) particles, see Fig. 2.3 on page 28.
Low-momentum particles winding up as spirals in the high (1-T magni-
tude) magnetic field do not originate from the primary high-energy-vertex
interactions.

5.3 Rapidity

We will now introduce the key kinematic variables that relate particle
momentum to the dynamics that is occurring in the heavy-ion reaction.
Each particle momentum decomposes, as shown in Fig. 5.6, into a longi-
tudinal component (pL) and a transverse component (/p⊥) with reference
to the collision axis. We note, in Fig. 5.6, the inclination angle θ of the
particle against the collision axis. Also shown is the azimuthal angle ϕ of
the two-dimensional vector /p⊥.
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The longitudinal momentum of a particle is an inconvenient variable,
since it depends on the velocity of the CM frame with reference to the
laboratory frame, as the appearance of Fig. 5.5 reminds us. For the
analysis and understanding of the experimental results, it is necessary to
be able to view the physical results from the CM frame, e.g., to transform
the coordinate system to the CM frame of reference. The introduction
of the rapidity y, replacing pL, allows one to considerably simplify the
selection and changing of the reference frame. This is due to the fact
that the variable y is defined to be additive under successive Lorentz
transformations along the same direction, as we shall see in Eq. (5.14):
it can be understood as the ‘angle’ of the (hyperbolic) rotation in (3 +
1)-dimensional space. The ‘angle’ y is defined in terms of energy and
momentum by the equations

E = m⊥ cosh y, pL = m⊥ sinh y, (5.4)

where m⊥ is the transverse ‘mass’:

m⊥ =
√
m2 + /p 2⊥. (5.5)

We note that Eqs. (5.4) and (5.5) are consistent with the relativistic
dispersion relation (energy–momentum relation):

E =
√
m2

⊥ + p2L =
√
m2 + /p 2⊥ + p2L. (5.6)

The variable y (and m⊥ ≥ m) replaces pL (and |/p⊥|), which are usually
defining the momentum of a particle. The azimuthal angle ϕ of the vector
/p⊥, see Fig. 5.6, is the third variable required in the complete definition
of /p.
The relation between velocity and rapidity is obtained from Eq. (5.4):

vL ≡ cpL
E
= c tanh y. (5.7)

Thus, in the non-relativistic limit, vL → cy.§ Equation (5.7) also implies
that

cosh y =
1√
1− v2L

≡ γL, sinh y = γL vL, (5.8)

where γL is the (longitudinal) Lorentz contraction factor. Since

tanh−1 z =
1
2
ln
(
1 + z

1− z

)
, (5.9)

§ Even though we like to work with units that do not explicitly introduce the velocity of
light c, whenever the non-relativistic limit is discussed, it is convenient to reintroduce
c explicitly into the equations, as shown above.
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we obtain from Eq. (5.7)

y =
1
2
ln
(
1 + vL
1− vL

)
=
1
2
ln
(
E + pL
E − pL

)
= ln
(
E + pL
m⊥

)
. (5.10)

Lorentz ‘boosts’ are the Lorentz transformations with one of the three
(x, y, z) Cartesian coordinate directions employed as the reference axis for
the transformation. To verify the additivity of rapidity under a sequence
of Lorentz boosts mentioned earlier, we consider the transformation of
the momentum vector under a change of the reference frame along the
collision axis. Under such a transformation, the transverse momentum
and the transverse massm⊥ are not changed. The energy and longitudinal
component of momentum transform according to

E′ = γc(E + vc pL), p′L = γc(pL + vcE). (5.11)

Here and below, the ‘primed’ quantities are seen by an observer in the
laboratory system which moves with the velocity vc with respect to the
CM frame of reference, in which the energy E and momentum pL are
measured. Noting that the rapidity yc of the transformation satisfies
Eq. (5.8), we obtain

cosh yc = γc, sinh yc = γc vc, (5.12)

and, upon introducing Eq. (5.4), we find for Eq. (5.11)

E′ = m⊥ cosh(y + yc), p′L = m⊥ sinh(y + yc). (5.13)

It is now evident that the rapidity y′ seen in the laboratory system is
given in terms of the CM rapidity y by

y′ = y + yc. (5.14)

It is this simple result which gives the rapidity variable its importance as
a tool in the analysis of particle-production data. For example, in fixed-
target experiments, we can study particle spectra using y as a variable
without an explicit transformation to the CM frame of reference, and
deduce from the rapidity spectra the point of symmetry corresponding to
the CM rapidity. In symmetric collisions with fixed targets, the CM frame
has to be in the middle between the rapidities of projectile and target;
the CM rapidity is half of the rapidity of the projectile yCM = yp/2. In
this case, the particle-rapidity spectrum must be symmetric around yCM.
This allows one to complement measured particle spectra: if these are
available for, e.g., y ≥ yCM, a reflection at the symmetry point yCM gives
us the part of the spectrum with y ≤ yCM, or vice-versa.
Understanding the actual value of yCM is of particular interest in ‘asym-

metric’ collisions of heavy ions, i.e., those involving two different nuclei,
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which we continue calling ‘projectile and target’, though such a distinction
is irrelevant in our following argument, since the result will be symmet-
ric between the two colliding nuclei. We recollect that, considering the
definition Eq. (5.4), we also have

E ± pL = m⊥e±y. (5.15)

The total energy and momentum of the colliding system is obtained
from the total energy and momentum of colliding nuclei:

E = Ep + Et, pL = pp + pt. (5.16)

Using Eq. (5.10) for these values of E and pL, we obtain the rapidity
of the frame of reference in which the combined longitudinal momentum
vanishes. For collinear collisions, the transverse momentum also vanishes,
and this is the rapidity of the CM frame. Using Eq. (5.10),

yCM =
1
2
ln
(

Ep + Et + pp + pt

Ep + Et − (pp + pt)

)
. (5.17)

We use now Eq. (5.15) for the rapidities of projectile and target and obtain
a manifestly projectile–target-symmetric expression:

yCM =
1
2
ln
(
mpe

+yp +mte
+yt

mpe−yp +mte−yt

)
. (5.18)

We now consider the asymmetric collisions both for collider and for
fixed-target experiments: another way to write Eq. (5.18) offers immediate
understanding of the physics involved. We take the factor eyp in the
numerator and the factor e−yt in the denominator out of the logarithm
and obtain

yCM =
yp + yt
2

+
1
2
ln

(
mp +mte

−(yp−yt)

mt +mpe−(yp−yt)

)
. (5.19)

In most cases of interest, we have yp − yt � 0 and thus

yCM � yp + yt
2

− 1
2
ln
(
mt

mp

)
+
m2
t −m2

p

2mpmt
e−(yp−yt) + · · · . (5.20)

In general, the first two terms largely suffice. In the way we wrote
Eq. (5.20), we chose the usual convention to call the more massive nucleus
the ‘target’. Two cases of explicit interest in Eq. (5.20) are the collider
mode yp = −yt, and a stationary target yt = 0 (up to Fermi motion in
the stationary target nucleus).
For asymmetric collisions, the precise magnitude of mt is determined

in part by the value of the impact parameter, see Fig. 5.4. Hence the
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CM rapidity, Eq. (5.20), becomes dependent on the impact parameter.
The magnitude of the shift in asymmetry of rapidity arising can be easily
estimated: in collisions in which the projectile with AP emerges fully in
the target AT, all of the projectile nucleons participate: Ap = AP < AT,
while the number of target participants At is

At ∝ A2/3p A
1/3
T . (5.21)

Thus,

yCM � yp + yt
2

− 1
6
ln
(
AT
AP

)
. (5.22)

For light-on-heavy-ion collisions such as of S on Pb, the expected and
observed shift in mass asymmetry of rapidity (the last term in Eq. (5.22))
is noticeable (0.3 units).

5.4 Pseudorapidity and quasirapidity

In the study of production of charged hadrons, e.g., in section 9.2, we will
see that observed particles are often not identified, and hence we do not
know their masses, which are required in order to determine the rapidity
of particles Eq. (5.10), given the momentum measured by deflection of
particles within a magnetic field. On the other hand, mass can be negligi-
ble compared with the momenta carried by the particles, especially so in
fixed-target experiments. Consequently, we now consider what happens
with the rapidity spectra when the mass of a particle is small relative
to the momentum, and the momentum alone determines the energy of a
particle, e.g.,

E =
√
p2 +m2 → p. (5.23)

In analogy to Eq. (5.4), a simpler variable, the ‘pseudorapidity’ η of a
particle is introduced,

p = p⊥ cosh η, pL = p⊥ sinh η, (5.24)

which, with Eq. (5.10), leads to

η =
1
2
ln
(
p+ pL
p− pL

)
=
1
2
ln
(
1 + cos θ
1− cos θ

)
= ln
(
cot

θ

2

)
. (5.25)

Here, θ is the particle-emission angle relative to the beam axis, see Fig. 5.6.
In Fig. 5.7, we see for the range of pseudorapidity of interest to us (up

to η = 9, the maximum value seen in Fig. 5.1) how the angle θ varies with
the pseudorapidity. A massless particle emitted transversely at η = y = 0
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Fig. 5.7. The emission angle θ in radians as a function of the pseudorapidity η.

has θ = π/2; η = 3 corresponds to θ = 0.1 rad, (≡0.1 × 180o/π = 5.7o).
The projectile–target fragmentation region at the LHC, where η � 8.5,
corresponds to θ = ±4.5× 10−4 rad (≡ ±0.025o).
From Eqs. (5.4) and (5.24), we obtain the implicit relations between

pseudorapidity and rapidity:

m⊥ sinh y = p⊥ sinh η, E tanh y = p tanh η. (5.26)

We see from these relations that the pseudorapidity is always greater than
the rapidity:

sinh η
sinh y

=
m⊥
p⊥

=

√
1+

m2

p2⊥
> 1,

tanh η
tanh y

=
E

p
=

√
1+

m2

p2
> 1. (5.27)

More massive particles that have not been identified appear in a pseu-
dorapidity particle spectrum at greater values of η than do the lighter
pions.
In order to establish a precise relation between pseudorapidity and

rapidity, we replace in Eq. (5.25) the (longitudinal) momentum using
Eqs. (5.4) and (5.6) to obtain

η =
1
2
ln


√
m2

⊥ cosh
2 y −m2 +m⊥ sinh y√

m2
⊥ cosh

2 y −m2 −m⊥ sinh y

. (5.28)



5 Nuclei in collision 87

Similarly, to determine rapidity in terms of pseudorapidity, we simply re-
place the momenta in the definition of rapidity, Eq. (5.10), using definition
Eq. (5.24):

y =
1
2
ln


√
m2 + p2⊥ cosh

2 η + p⊥ sinh η√
m2 + p2⊥ cosh

2 η − p⊥ sinh η

. (5.29)

Taking the logarithm of the first expression in Eq. (5.27), we obtain the
shift in pseudorapidity relative to rapidity:

δη ≡ η − y =
1
2
ln
(
1 +

m2

p2⊥

)
+ ln
(
1− e−2y

1− e−2η

)
. (5.30)

The leading term is the only term remaining for large η and it establishes
an upper limit for the shift δη. The difference δη = η − y between the
pseudorapidity and the rapidity, as a function of pseudorapidity, is shown
in Fig. 5.8, which was obtained by inserting Eq. (5.29) into Eq. (5.30).
Thick lines are for p⊥ = 0.3 GeV, thin lines for p⊥ = 0.5 GeV; solid
lines are for nucleons, chain lines for kaons, and dashed lines for pions.
We see that, when η ≥ 3, the first term in Eq. (5.30) in fact suffices
to approximate the ‘shift’ in pseudorapidity which approaches a fixed
maximum.
For sufficiently large p⊥ > m, when a particle’s rest mass can be ne-

glected, the shift δη becomes negligible. For pions the error associated
with considering the pseudorapidity instead of rapidity in hadronic re-
actions can often be ignored since the mass is usually smaller than the
typical momentum cut – and thus δη < 0.1 is seen at pseudorapidity η = 3
for p⊥ > 0.3 GeV. Moreover, the use of pion-quasirapidity yπ, which we
discuss next, eliminates this shift completely. On the other hand, use of
pseudorapidity seems not to be advisable for situations in which contribu-
tions from more massive particles are of importance, unless, as Eq. (5.30)
suggests, the p⊥ cut is well above the mass of the particle. We see, in
Fig. 5.8, that, for nucleons, taking the transverse momentum cut at 0.3
GeV, one encounters a shift of more than one rapidity unit at η = 3, the
SPS value.
Since, in the upper SPS energy range (see table 5.1), the pion abun-

dance dominates the hadron abundance, it has become common practice
to show the distribution of hadrons as a function of pion-quasirapidity yπ,
presuming that all hadrons observed are pions, as is done in Fig. 9.6 on
page 166. One assumes, in lieu of the correct definition for each particle,
the expression as if this particle had the mass of a pion:

pL = p⊥ sinh η → pL =
√
p2⊥ +m2

π sinh yπ. (5.31)
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Fig. 5.8. The difference between pseudorapidity and pion-quasirapidity π

(dashed lines), kaons K (chain lines), and nucleons N (solid lines) as a func-
tion of pseudorapidity η, for p⊥= 0.3 GeV (thick lines) and p⊥= 0.5 GeV (thin
lines).

Following the derivation of Eq. (5.30), we obtain

δy ≡ yπ − y =
1
2
ln
(
1 +

m2 −m2
π

p2⊥ +m2
π

)
+ ln
(
1− e−2y

1− e−2yπ

)
. (5.32)

In Fig. 5.9, we see the solution of the above equation as a function of
the pion-quasirapidity. Lines are for p⊥ = 0.5 GeV(bottom line, smallest
shift), p⊥ = 0.3 GeV (middle line), and for p⊥ = 0.1 GeV(top, largest
shift); solid lines are for nucleons and chain lines for kaons. Again, when
δy ≥ 3, the first term in Eq. (5.32) nearly suffices to approximate the
‘shift’ in rapidity for pions as shown in Fig. 5.9 for increasing yπ, it ap-
proaches a fixed value, which for p⊥ < mπ is significant. The quasirapid-
ity distribution for nucleons experiences a widening by ±1.9, and that for
kaons widens by ±1.3 units of rapidity.
As we see in Figs. 5.8 and 5.9 and Eqs. (5.30) and (5.32), the error in

measurement of rapidity grows with decreasing p⊥ of the particle. For
kaons and nucleons, in the range of p⊥ within which the pseudorapidity is
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Fig. 5.9. The difference between pion-quasirapidity and rapidity as a function
of quasirapidity yπ for kaons K (chain lines), and nucleons N (solid lines), from
bottom to top for p⊥ = 0.5 GeV, p⊥ = 0.3 GeV, and p⊥ = 0.1 GeV.

failing to be a good variable, the number of particles produced increases
with decreasing p⊥. Thus, in fact, use of pseudorapidity or quasirapidity
can be significantly misleading when one wants to understand both the
spectral shape and the hadron yield.
In this context, we recall that a study of the distribution of heavy

particles (nucleons and kaons) can be based on the difference between
the distributions of positively and negatively charged particles, which is
relatively easy to measure:

d(N+ −N−)
dyπ

=
d(π+ − π−)

dyπ
+
d(p− p̄)
dyπ

+
d(K+ −K−)

dyπ
. (5.33)

The physics, in Eq. (5.33), is that the yield of pions is nearly charge sym-
metric (this has been observed at the SPS for p⊥ > 0.3 GeV [77]) and
the first term cancels out. In the remainder, we have an initial measure
of the quasirapidity distribution of protons and kaons. At the SPS, both
protons and kaons contribute in Eq. (5.33). At the RHIC, the abundance
of charged kaons is the dominating contribution, but only at the level of
1%–3% of all charged particles. As noted above, at the SPS, the canceling
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out of charged-pion yield is not exact at low p⊥ < 0.25 GeV, as a direct
measurement has shown [77]: in the Pb–Pb collision system, we have 20%
(n− p)/(n + p) asymmetry in the number of protons and neutrons. This
charge asymmetry translates into a relatively strong π+/π− asymmetry
at small p⊥, but disappears for p⊥ > 0.2 GeV.

5.5 Stages of evolution of dense matter

Since hadronic interactions are strong, we can hope and expect that local
equilibrium conditions can be approached in experiments involving heavy
ions. This is in particular the case if we characterize the essential physical
properties of elementary matter in term of local, position-dependent pa-
rameters. The local average energy of each particle characterizes the local
temperature T . (Local) chemical potentials µi need to be introduced in
order to regulate the average particle and/or quark-flavor density.
These parameters express different equilibration processes in the fire-

ball, and in general there is a considerable difference between thermal and
chemical equilibrium.

• In order to establish thermal equilibrium, equipartition of energy among
the different particles present has to occur in the collisional processes
which lead to the statistical energy distribution. It is important to
note that (local) thermal equilibrium can be achieved solely by elastic
scattering. We will call the time scale on which these processes occur
τth. The use of temperature T as a parameter presupposes that thermal
equilibrium has (nearly) been established.

• Chemical equilibration requires reactions that change numbers of par-
ticles, and it is more difficult and thus slower to become established.
There are also two quite different types of chemical equilibria.

— Relative chemical equilibration, just like the commonly known case
in chemistry, involves reactions that distribute a certain already exis-
tent element/property among different accessible compounds. Use of
chemical potentials µi presupposes, in general, that the particular rela-
tive chemical equilibrium is being considered. We call the relevant time
scale τ relchem.
— In relativistic reactions, particles can be made as energy is converted
into matter. Therefore, we can expect to approach (more slowly) the
absolute chemical equilibrium. We call the relevant time scale τabschem.
We characterize the approach to absolute chemical equilibrium by a
fugacity factor γi for particle ‘i’. We often study the evolution of γi in
the collision as a function of time, since absolute chemical equilibrium
cannot generally be assumed to occur.
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Some authors introduce separate chemical potentials for particles and
antiparticles, µ±

i = ±µi + T ln γi, [188, 189]. This is equivalent to our
approach. However, it is still common to see in the literature that a equi-
librium is assumed, γi = 1, with particles ‘instantaneously’ reaching their
absolute chemical-equilibrium abundances. Such an approach cannot in
general be justified. We see this on considering the relation between the
relaxation times,

10−22 s > τ exp � τabschem > τ relchem > τth, (5.34)

where τ exp is the life span of the expanding fireball of dense matter, which
is of the same magnitude as the time light needs to traverse the largest
nuclei. In such a rapidly evolving system, we cannot assume that absolute
chemical equilibrium, γi = 1, has been attained.
In order to illustrate the difference between absolute and relative chem-

ical equilibrium better, let us consider some examples.
• We consider the baryon number, the globally conserved property of
dense hadronic matter. Locally, the global conservation implies a balance
of inflow against outflow, viz., there are no sources or sinks of baryon
number. Generally, one always associates a conserved quantity with the
presence of a chemical potential, here the chemical potential µb which con-
trols the difference in number of all baryons and antibaryons. A change
in the energy of the system, according to the first law of thermodynamics,
is then given by

dE = −P dV + T dS + µb db. (5.35)

However, the addition of a baryon–antibaryon pair to the system will not
be noted in Eq. (5.35), since the baryon number b remains unchanged!
At this point, we are not at liberty to add or remove a pair: in writing

down Eq. (5.35), we implicitly assumed what we have above called abso-
lute chemical equilibrium – there is a bath of baryon number in which
our system is immersed, and hence a full phase-space occupancy of all
available phase-space cells, and there is no place for an extra pair. By
changing the chemical potential µb, we can regulate the difference in
number of baryons and antibaryons present in the system, but densities
of baryons and antibaryons move together, absolute equilibrium is as-
sumed while relative chemical equilibrium controls the relative number of
particles by virtue of the value of the chemical potential. If we change
the baryon number by one at fixed volume and entropy, then according
to Eq. (5.35), there is a change in energy by µb.
• Next, we look at the abundance of strangeness in the baryon-rich HG
phase. There is no strangeness ‘bath’ and, initially, we have no stran-
geness, therefore we will be making pairs of s and s̄ quarks; there is
plenty of phase space available to fill, and we are far from absolute
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chemical-strangeness equilibrium. To make ss̄ pairs in a HG, there are
many possible reactions, section 18.2, classified usually as the direct- and
associate-production processes. In the associate-production process, a
pair of strange quarks is shared between two existent hadrons, of which
one is a baryon, typically a nucleon N, which becomes a hyperon Y:

π+N↔ K+Y.

In a direct-production process, a pair of strangeness-carrying particles is
formed directly via annihilation of two mesons, akin to our Gedankenex-
periment in which we are adding a pair to the system:

π+ π ↔ K+K.

Here, a pair of strange particles is made in the form of a pair of kaons,
K+K−. With these two reaction types alone it could be that popula-
tions of strange mesons and baryons evolve differently. However, the
meson carrier of the s quark, K−, can exchange this quark rather fast, via
exothermic reaction with a nucleon, forming a hyperon:

K− +N↔ π+Y.

This reaction establishes relative chemical equilibrium by being able to
move the strange quark between the two different carriers, sq̄ mesons and
sqq baryons.
Reactions establishing the redistribution of existent flavor, or the abun-

dance of some other conserved quantity, play a different role from the
reactions that actually contribute to the formation of this flavor, or other
quantum number, and facilitate the approach to absolute chemical equi-
librium. Accordingly, the time constants for relaxation are different, since
different types of reaction are involved.
Apart from the different relaxation times associated with the different

types of thermal and chemical equilibria, there are different time scales
associated with the different fundamental interactions involved. For ex-
ample, the electro-magnetic interactions are considerably slower at reach-
ing equilibrium than are the strong interactions governing the evolution of
dense hadronic fireballs created in ultra-relativistic heavy-ion collisions.
All the important time constants for relaxation in heavy-ion collisions
arise from differences in mechanisms operating within the realm of strong
interactions. Therefore, the separation of time scales is not as sharp as
that between the different interactions, though a clear hierarchy arises,
as we noted in Eq. (5.34).
Under weak interactions, there is, in comparison, an extremely slow

transmutation of quark (and lepton) flavors, involving a much longer
electro-weak equilibration time. Such long times are not available in the
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micro-bang process, in contrast to the big-bang case. We considered these
electro-weak degrees of freedom in section 1.3, since the life span of the
Universe at the time of the hadronic phase transition exceeds all typical
relaxation times for the weak interaction.
The chemical equilibration, and hence the chemical composition of the

fireball, evolve along with the temperature of the fireball. The following
stages occur in heavy-ion collision.
1. The initial quantum stage.
The formation of a thermalized state within τth is most difficult to
understand, and is subject to intense current theoretical investigation.
During the pre-thermal time, 0 ≤ t < τth, the properties of the collision
system require the study both of quantum transport and of decoher-
ence phenomena, a subject reaching today far beyond the scope of this
volume. We assume, in this book, that the thermal shape of a (qu-
ark, gluon) particle-momentum distribution is reached instantaneously
compared with the time scales for chemical equilibration in Eq. (5.34).
This allows us to sidestep questions regarding the dynamics occurring
in the first moments of the heavy-ion interactions, and we explore pri-
marily what happens after a time¶ τ0 ≡ τth � 0.25–1 fm/c. The value
of τ0 decreases as the density of the pre-thermal initial state increases,
e.g., as the collision energy increases. At τ0 gluons g are, due to their
greater reactivity, at or near to the local chemical equilibrium.

2. The subsequent chemical equilibration time.
During the inter-penetration of the projectile and the target lasting no
less than ∼1.5 fm/c, diverse particle-production reactions occur, allow-
ing the approach to chemical equilibrium by light non-strange quarks
q = u, d. As the energy is redistributed among an increasing number
of accessed degrees of freedom, the temperature drops rapidly.

3. The strangeness chemical equilibration.
A third time period, lasting up to�5 fm/c, during which the production
and chemical equilibration of strange quarks takes place. There is a
reduction of temperature now mainly due to the expansion flow, though
the excitation of the strange quark degree of freedom also introduces a
non-negligible cooling effect.

4. The hadronization/freeze-out.
The fireball of dense matter expands and decomposes into the final-
state hadrons, possibly in an (explosive) process that does not allow
re-equilibration of the final-state particles. The dynamics is strongly
dependent on the size of the initial state and on the nature of the
equations of state.

¶ The time τth is often called τ0 in the literature, and we will use this notation as well,
though the subscript ‘th’ is more specific about the evolution step considered.
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Throughout these stages, a local thermal equilibrium is rapidly estab-
lished and, as noted, the local temperature evolves in time to accom-
modate change in the internal structure as is appropriate for an isolated
physical system. We have a temperature evolution that passes through
these series of stages:

Tth the temperature associated with the initial thermal equilibrium,
↓ evolution dominated mainly by production of q and q̄;
Tch chemical equilibrium of non-strange quarks and gluons,
↓ evolution dominated by expansion and production of s and s̄;
Ts condition of chemical equilibrium of u,d and s quark flavors,
↓ expansion, dissociation by particle radiation;
Tf temperature at hadron-abundance freeze-out,
↓ hadron rescattering, reequilibration; and
Ttf temperature at thermal freeze-out, T = T (τ exp).

We encounter a considerable decrease in temperature. The entropy con-
tent of an evolving isolated system must increase, and this is initially
related to the increase in the number of particles within the fireball and
later also due to the increase in volume. However, in the later stages
dominated by flow, the practical absence of viscosities in the quark–gluon
fluid implies that there is little additional production of entropy. The final
entropy content is close to the entropy content established in the earliest
thermal stage of the collision at t < τ0, despite a drop in temperature by
as much as a factor of two (under current experimental RHIC conditions)
during the evolution of the fireball.
Except for the unlikely scenario of a fireball not expanding, but sud-

denly disintegrating, none of the temperatures discussed above corre-
sponds to the temperature one would read off the (inverse) slopes of
particle spectra. In principle, the freeze-out temperature determines the
shape of emission and multiplicity of emitted particles. However, the
freeze-out occurs within a local flow field of expanding matter and the
thermal spectrum is to be folded with the flow which imposes a Doppler-
like shift of Ttf : we observe a higher temperature than is actually locally
present when particles decouple from flowing matter (kinetic or thermal
freeze-out). The observable temperature T⊥ is related to the intrinsic
temperature of the source:

T⊥ � 1 + /n · /vtf√
1− /v 2f

Ttf →
√
1 + vtf
1− vtf

Ttf . (5.36)

This relation must be used with caution, since it does not apply in the
same fashion to all particles and has a precision rarely better than ±10%.
We study the shape of m⊥-spectra in section 8.5.
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5.6 Approach to local kinetic equilibrium

In the above discussion, the formation of a space–time-localized fireball
of dense matter is the first key physics input. The question we wish to
address now is that of how this fireball can possibly arise from a rather
short sequence of individual reactions that occur when two, rather small,
gas clouds of partons, clustered in nucleons, bound in the nucleus, collide.
Indeed, at first sight, one would be led to believe that the small clouds
comprising point-like objects would mutually disperse in the collision,
and no localized, dense state of hadronic matter should be formed. At
best, it was suggested in some early work, the two colliding ‘eggs’ should
emerge from the high-energy interaction slightly ‘warmed’, but still largely
‘unbroken’.
Two remarkable properties of hadronic interactions are responsible for

just the opposite, deeply inelastic, behavior:
• the multiparticle production in hadron–hadron collisions; and
• the effective size of all hadrons expressed in term of their reaction cross
sections.

What appears to be a thin system of point-like constituents is effectively
already a volume-filling nucleon liquid, which will undergo, in a colli-
sion, a rapid self-multiplication with particle density rising and individ-
ual scattering times becoming progressively much shorter than the overall
collision time.
Ultimately, as the energy available in collision is increased, the hadron

particle/energy density will reach values at which the dissolution of the
hadronic constituents into a common deconfined domain will become pos-
sible, and indeed must occur according to our knowledge about strong
interactions. While we do not really know whether deconfinement of had-
rons is not a general mechanism operating already at AGS energies, see
table 5.1, there is today no experimental evidence that this low-energy
range suffices. In contradistinction, a significant number of results ob-
tained at the SPS energy range can be most naturally interpreted in
terms of the formation of a deconfined space–time domain, section 1.6.
We note that, per participant, there are as many as 7–10 further hadrons
produced at SPS energies. This implies that there are thousands of quarks
and gluons in the space–time domain of interest, and hence consideration
of a ‘local’ (in space–time) equilibrium makes good sense.
There are many ways to estimate the particle number. We can use the

number of final-state hadrons and evaluate the numbers of constituent
quarks and antiquarks, or we can take the available energy content and
divide it by the estimated energy per particle (quark, gluon). Both pro-
cedures give O(10 000) particles for the case of Pb–Pb collisions at 158A-
GeV (

√
sNN = 17.2 GeV). Of these, not all particles can be causally
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connected, i.e., not all these particles can influence each other in classical
dynamics, and local equilibrium is a feature obviously involving a causally
connected region only.
A suitable measure of the causally connected size is offered by the initial

decoherence time τ0, which also determines the size of the decoherence
volume, R0 � τ0. This has to be scaled up by the ensuing expansion
factor, see the discussion below Eq. (6.35). For τ0 = 0.5 fm, we can expect
about 5%–10% of all particles (500–1000) to be causally connected, which
implies that the causal ‘range’ of rapidity is an interval ∆y � 1. ∆y arises
on considering the final-state rapidity distribution, see Fig. 9.6 on page 166
and Fig. 9.19 on page 184. In any case, the concept of a local equilibrium
makes good sense.
When we are talking about thermal equilibria, we must first establish

more precisely what these words mean. We will implicitly always refer to
‘local’ equilibrium. The thermalization of the momentum distributions is
driven by all scattering processes, elastic as well as inelastic, because all
of them are associated with transfer of momentum and energy between
particles. The scattering time scale, for particles of species i, is given in
terms of the collision length l by

τi,scatt =
〈
l

v

〉
i

=
1∑

j〈σijvij〉ρj
, (5.37)

where the sum in the denominator is over all particle species (with den-
sities ρj) available, σij and vij are the (energy-dependent) total cross
sections and relative velocities, for a process scattering particles i and j,
and the average is to be taken over the momentum distributions of the
particle considered.
It is not hard to ‘guestimate’ the time scale governing the kinetic equi-

libration in the QGP. The typical particle-collision time (the inverse of
the collision frequency) is obtained from Eq. (5.37) above. Given the par-
ticle densities and soft reaction cross sections, with the relative velocity
of these essentially massless components being the velocity of light c, we
find for the QGP scattering time,

τQGPi = 0.2–2 fm, with ρi = 2–10 fm−3, σi = 2–5mb, (5.38)

as a range for different particles of type i, with the shorter time applying
to the early high-density stage. This is about an order of magnitude
shorter than the time scale for evolution of the fireball, which is derived
from the spatial size of the colliding system: for the largest nuclei, in
particular the Pb–Pb or Au–Au collisions, over a wide range of energy,
we expect

τ exp � RA
c

� 5–8 fm/c. (5.39)
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The achievement of kinetic equilibrium must be visible in the energy
spectra of the particles produced, as we shall discuss below in section 8.1.
This behavior, as we argue, can be understood in qualitative terms for
the case of nuclear collisions. However, it remains to date a mystery
why in some important aspects thermal models succeed for the case of
p–p reactions. In particular, the exponential fall off of particle spectra,
suggesting thermal equilibrium, has been noted with trepidation for a
considerable time.
Hagedorn evaluated this behavior in the experimental data some 35

years ago [140, 145] and he developed the statistical bootstrap model
(chapter 12), which assumes a statistical phase-space distribution (sec-
tion 12.2). Hagedorn called it preestablished or preformed equilibrium:
particles are produced in an elementary interaction with a probability
characterized by a universal temperature. We can today only speculate
about the physical mechanisms.
For example, it has been proposed that vacuum-structure fluctuations

lead to color-string tension fluctuation, and thus the resulting string-
breaking produces thermal hadrons [65]. Another informally discussed
possibility is the presence of intrinsic chaotic dynamics capable of rapidly
establishing kinetic equilibrium. We cannot pursue further in this book
these ideas about the process of initial thermal equilibration.
Sometimes, the fact that we do not fully understand thermalization in

the p–p case is raised as an argument against the possibility of conven-
tional equilibration in nuclear collisions. We do not think so. In fact, if
the p–p case leads to thermal hadrons, we should have a yet better ther-
malization in the A–A case. Thus, a microscopic model that is adopted
to extrapolate from p–p to A–A collisions should respect the concept of
the hadronic preestablished equilibrium, else it is not going to be fully
successful, see section 6.1.

5.7 The approach to chemical equilibrium

The approach to chemical equilibrium is, in comparison with the thermal
case, better understood. Firstly, we must consider which particles can be
expected to have reached equilibrium and which not, and this requires
a kinetic description. Though, in general, one is tempted to think of a
build-up of chemical abundance of different quark flavors, the approach to
absolute chemical equilibrium need not always occur from ‘below’, and/or
the measured quark yields can be in excess of chemical equilibrium; sec-
tion 19.4.
At the collision energies available at the RHIC and LHC, the more

massive charm c and bottom b quarks (see table 1.1) are produced in
the initial interaction, reaching and even exceeding the yield expected in
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absolute chemical equilibrium in thermalized deconfined matter. In QGP
the chemical equilibration of these flavors occurs exceedingly slowly, and
a significant excess of abundance is expected. A similar situation can
arise with strangeness in presence of rapid cooling, from T > 250 MeV
to T � 150 MeV, which preserves the high initial thermal yield. In
the early Universe, the well-known example of chemical nonequilibrium
occurring, despite thermal equilibrium being established, is the freeze-out
of abundances of light nuclear isotopes.
Of particular interest, in the physics of QGP, is that the saturation

(‘absolute’ chemical equilibration) of the phase space of strange particles
requires just the life span of the QGP. This is, in part, due to the rela-
tively large threshold for the production of strange quarks and, in part,
because for practical purposes most strangeness needs to be produced in
thermal energy collisions – direct initial-state production of strangeness
is of course quite prevalent but at the level of 10%–30% of the final-state
equilibrium yield of strangeness, as long as only the normal processes of
hadron collisions contribute to direct production of strangeness.
In the QGP phase, there is no need to redistribute strange quarks

among different carriers and relative chemical equilibrium is automati-
cally established. More generally, in the HG phase the relative chemical
equilibrium is more easily attained than is the ‘absolute’ chemical equi-
librium, due to the strangeness-exchange cross sections being greater than
cross sections for its production.
The population master equation,

2τ ichem
ρeqi

dρi
dt
= 1−

(
ρi
ρeqi

)2
, (5.40)

describes the population evolution of strangeness (and charm, etc.) within
the scattering theory; chapter 17. τ ichem is the time constant for chemical
relaxation. The quadratic term on the right-hand side, in Eq. (5.40),
arises from, e.g., annihilation of strangeness, ss̄ → XX, which rate is
established by detailed balance consideration of two-body reactions. In
the first instance, one has not ρ2i but ρiρ̄i, where ρ̄i is the s̄ density.
However, since in heavy-ion collisions only hadronic reactions produce
strangeness, we maintain the condition ρi = ρ̄i and Eq. (5.40) follows. The
solution of Eq. (5.40) approaches equilibrium exponentially for t → ∞:

ρi = ρeqi tanh[t/(2τ ichem)]→ (1− e−t/τ
i
chem)ρeqi . (5.41)

The chemical equilibration (relaxation) time constant τ ichem, for particle
species i, is computed as an inverse of the invariant reaction rate per unit
volume Ri:

τ ichem =
ρeqi
2Ri

. (5.42)
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In Eq. (5.42), ρeqi is the chemical-equilibrium density. Ri is the rate at
which the system ‘chases’ ρeqi ; the ratio is a characteristic time when
the chase is over. The factor 2 in Eq. (5.42) is introduced to assure that
the approach to equilibrium due to two-body reactions is governed by an
exponential function with the time-decay parameter τ ichem, as is seen on
the right-hand side of Eq. (5.41).
In terms of the reaction cross section, the invariant reaction rate per

unit of time and volume is obtained from (see section 17.1)

Ri(x)=
∑
a,b,X

∫ ∞

(mi+mX)2
2λ2(s) ds

∫
d3ka

(2π)32Ea

∫
d3kb

(2π)32Eb

× fa(ka, x)fb(kb, x) σ̄ab→iX(
√
s) δ[s− (ka + kb)2]. (5.43)

where, see Eq. (17.10),

λ2(s) =
[
s− (ma +mb)2

][
s− (ma −mb)2

]
.

In Eq. (5.43), we are neglecting Pauli or Bose quantum effects (suppression
or stimulated-emission factors) in the initial and final states. Considered
here, is the inelastic production process a + b → i + X. fa(ka, x) and
fb(kb, x) are the phase-space distributions of the colliding particles, and
σ̄ab→iX(

√
s) is the energy-dependent cross section for this inelastic chan-

nel. The ‘bar’ indicates that the dependence on transfer of momentum
(scattering angle) is averaged over.
We will further study this integral for thermal distributions in sec-

tion 17.1. However, given the importance of the final result Eq. (17.16),
we record it here for the simplest case of a relativistic Boltzmann momen-
tum distribution,

Ri(x) =

∑
a,b,X

∫∞
w0

dw λ2σ̄ab→iX(w)K1(w/T )

4Tm2
am

2
bK2(ma/T )K2(mb/T )

, (5.44)

where w =
√
s is the CM energy and w0 = mi + mX is the reaction

threshold. This formula is presented in this form in [164], Eq. (5.7); it is
stated there for the special case in which the reacting particles a and b
are identical bosons, which, to avoid double counting of indistinguishable
pairs of particles, requires an extra factor 1

2 , which is not included in
Eq. (5.44). The interesting ma,b → 0 limit follows considering Fig. 10.1
and Eq. (10.47). It is implemented with a replacement of each factor
m2K2(m/T ) by 2T 2 in Eq. (5.44), and λ2 → s, which reduces Eq. (5.44)
to the result presented in [226], Eq. (2); [67] lacks the factor 1/T .
We see explicitly, in Eq. (5.44), the mass threshold in the s-integration

occurring for inelastic (particle-producing) rates. A high threshold com-
bines with the exponentially small K1 Bessel function, see Eq. (8.7), to
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reduce the strength of inelastic hadronic particle-production rates, which
are usually much smaller than the total rates of reaction (scattering).
For this reason, the time scale of chemical equilibration is, in general,
considerably longer than the thermal one.

6 Understanding collision dynamics

6.1 Cascades of particles

The principal shortcomings of the near-statistical-equilibrium method,
combined with ideal flow of hadronic fluid in the study of heavy-ion col-
lisions, are the following:
• we do not have a long-lived, large region of hot hadronic matter to look
at, and some features of the collision are certainly not well equilibrated;

• we need to establish the physical conditions at the initial time τ0; and
• the system considered is subject to rapid evolution and all thermal
properties are actually fields, i.e., we have a position-dependent local
temperature T (/x), etc.

Hence, a lot of effort continues to be committed to the development of
a better understanding of the initial interaction dynamics, and its sub-
sequent description within microscopic kinetic-scattering models. The
research field of the study of computer-code ‘event generators’ is vast and
undergoing development. Consequently, in this book, we will enter into
discussion of kinetic models only as matters of example and/or principle.
We survey the rapidly developing field in order to offer an entry point for
further study.
For a novice in this very rapidly changing panorama, the best next step

is to look at the progress of the working group which has been monitor-
ing the development of the computer codes with the objective of ensuring
that reasonable quality control is attained.

OSCAR (Open Standard Codes and Routines)‖. OSCAR begun in June
1997 to resolve the lack of common standards, documentation, version
control, and accessibility in many transport codes. These transport codes
for relativistic heavy-ion collisions differ from computer codes in other
areas of physics, where numerical methods are only technical tools used
to solve specific equations that define the physics. The source code of
a nuclear-collision transport model often implements extra physical as-
sumptions and dynamic mechanisms that go beyond the equations used
to motivate its design. These algorithms often undergo evolution with
time, and the very large number of phenomenological parameters also

‖ See: http://www-cunuke.phys.columbia.edu/people/molnard/mirror-OSCAR/oscar.

http://www-cunuke.phys.columbia.edu/people/molnard/mirror-OSCAR/oscar
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makes it difficult to pinpoint the relevant physical input controlling the
observed computational result. Since the code itself defines the physical
content of the model, it is essential to be able to closely scrutinize the
actual algorithms used.
The list of codes currently either maintained or/and accessible, with

the meaning of the acronyms, and principal authors is as follows∗∗.

Correlation builders
CRAB – Correlation After Burner, by S. Prat.

Hydrodynamics
BJ-HYDRO – Relativistic Hydrodynamics with Bjørken Geometry, by A.
Dumitru and D. H. Rischke.

Partonic/string transport
HIJING – Heavy Ion Jet INteraction Generator, by M. Gyulassy and X.-
N. Wang [266].
HIJING/B-anti-B – HIJING/Baryon Junction, by S. Vance and M. Gyu-
lassy.
MPC – Molnar’s Parton Cascade, by D. Molnár.
neXus – by H.-J. Drescher and K. Werner.
PCPC – Poincaré Covariant PartonCascade, by V.Boerchers, S.Gieseke,
G. Martens, J. Meyer, R. Kammering and C. C. Noack.
VENUS – by K. Werner.
VNI – by K. Geiger, R. Longacre and D. Srivastava [130, 131].
VNIb – by S. A. Bass.
ZPC – Zipping Parton Cascade, by B. Zhang.

String/hadronic transport
ART – Another Relativistic Transport, by B.-A. Li and C.-M. Ko.
BEM – Boltzmann Equation Model, by P. Danielewicz.
BNC – Burn and Crash, by S. Pratt.
HSD – Hadron String Dynamics, by W. Cassing.
JAM –Jet AA Microscopic Transport Model, by Y. Nara.
JPCIAE – Jetset Pythia CIAE (China Institute of Atomic Energy), by
B.-H. Sa and A. Tai.
LEXUS – Linear Extrapolation of ultra-relativistic Nucleon–Nucleon
Scattering, by S. Jeon.
LUCIAE – Lund CIAE,, by A. Tai and B.-H. Sa.
RQMD – Relativistic Quantum Molecular Dynamics, by H. Sorge [250].
UrQMD – Ultra-relativistic Quantum Molecular Dynamics, by S. A. Bass
[274].

∗∗ For more details see http://www-cunuke.phys.columbia.edu/people/molnard/mirror-
OSCAR/oscar/models/list.html.

http://www-cunuke.phys.columbia.edu/people/molnard/mirror-OSCAR/oscar/models/list.html
http://www-cunuke.phys.columbia.edu/people/molnard/mirror-OSCAR/oscar/models/list.html
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Transport tools
GCP – General Cascade Program, by Y. Pang.

PYTHIA, JETSET, and LUND, mentioned above, are programs for
the generation of high-energy-physics events, i.e., for the description of
collisions at high energies between elementary particles such as e+, e−, p,
and p̄ in various combinations. Together, they contain theory and models
for a number of aspects of physics, including hard and soft interactions,
parton distributions, initial- and final-state parton showers, multiple in-
teractions, fragmentation, and decay.
Development of JETSET, the first member of the ‘Lund Monte-Carlo’

family, was begun in 1978. The most extensive of these programs is
PYTHIA. Over the years, these two programs have more and more come
to be maintained in common. In the most recent version, they have there-
fore been merged into one, under the PYTHIA label. The current version
is PYTHIA 6.1, by T. Sjöstrand.††

The common feature within transport-cascade models is that they pic-
ture a multiscattering process as a succession of binary collisions and
decays, each well separated in space–time. For such an approach to have
a chance of success, we must be in a physical situation dominated by well-
separated collisions, the so-called collision regime. It is rather easy to see
where this collision regime will occur in nuclear collisions: the de Broglie
wavelength of one of the incident particles, and its (classical) mean free
path in the medium, have to be compared with each other in order to
identify the collision partners.
For example, at low energy, the de Broglie wavelength can be as large as

the radius of the nucleus, so the dynamics will be dominated by the scat-
tering of all nucleons, not by two-body collisions. As the energy increases,
the resolving power increases and one also crosses particle-production
thresholds and enters the multiple-scattering process involving elastic and
inelastic nucleon–nucleon collisions, as well as collisions between the had-
rons produced. We call this energy region the ‘hadronic-cascade’ region;
as extensive studies of the data show, at AGS energies, (10–15)A GeV,
this is the dominant reaction mechanism. At higher energies, the de
Broglie wavelength of the projectile becomes smaller than even a fraction
of the size of a nucleon. The interaction will therefore involve the parton
substructures – we reach the ‘partonic-cascade’ region.
In microscopic transport models describing the collision event (event

generators), two primary mechanisms are used in order to describe evo-
lution dynamics including production of particles: the nonperturbative
production involving strong fields with field string-breaking, see Eq. (3.5),

†† For more information, see http://www.thep.lu.se/torbjorn/Pythia.html.

http://www.thep.lu.se/torbjorn/Pythia.html
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and the production due to reactions caused by collisions of individual par-
ticles:

• Programs using primarily measured and extrapolated hadronic cross
sections, e.g., RQMD [250], ARC [202, 203], QGSM [83], and UrQMD
[274].

• Programs using perturbative QCD reactions, e.g., VNI [130, 131] and
HIJING [266]; the main differences between these two models are the
following: VNI is a Monte-Carlo implementation of a parton-cascade
model (PCM) in which the time evolution of heavy-ion collisions is sim-
ulated by the parton cascading, whereas HIJING assumes the Glauber
theory in the description of A–A collisions and handles the soft process
on the basis of the string model.

• There are also hybrid models such as the PHC [196], a parton–hadron-
cascade model, which is an extension of the hadronic-cascade model in-
corporating hard partonic scattering based on HIJING. However, prac-
tically all generators mentioned have, in some ways, taken the hybrid
approach.

The hadronic-event generators are more suitable for lower AGS ener-
gies, and can be extended to SPS energies by introducing novel reaction
mechanisms. The partonic generators are more geared to RHIC and LHC
energies, but again, with some fine tuning, can be applied to the SPS
energies. The SPS energy range is so difficult to cover, since p-QCD
seems not to be well defined at such ‘soft’ energies, but the hadron cas-
cade alone clearly cannot describe this energy range properly. The hybrid
model (PHC [196]) is therefore more able to handle that energy domain.
There are major uncertainties in the hadronic-cascade models related

to the impossibility of measuring reaction all relevant cross sections, sec-
tion 18.2, and the necessity to introduce particle-production mechanisms
well beyond the scope of the model (color ropes, for example, in RQMD).
The perturbative QCD reactions in the deconfined phase are, on other
hand, well determined in terms of elementary processes. The major uncer-
tainty arises from the soft-QCD properties: for small transfers of energy,
the QCD processes become very strong, and the issue of what physical
mechanism is indeed responsible for the soft cutoff arises. This is rem-
iniscent of the fact that we do not understand, in terms of QCD, the
(inelastic) low-energy processes: e.g., the inelastic N–N cross section. It
is for this reason that considerable attention was given to the color-string
mechanism of particle production, which can be tuned to describe very
well the nucleon–nucleon inelastic interactions within the LUND family
adaptation (see below) to nuclear collisions, the FRITIOF model [40, 205].
Unfortunately, both the scope and the extent of this introductory book

do not allow us to pursue in detail how these approaches differ. The
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above remarks can, however, serve as an entry point to further reading,
for an up-to-date report, see [271]. The reader should be aware that a
book could be written just on the subject touched on the surface in this
section.
In closing this discussion, we wish to note that it is of course of interest

to check how far the microscopic dynamic models are leading to near-
equilibrium thermal and chemical conditions. Several studies exploring
particle production and momentum distributions have revealed a very
good approach to chemical and thermal equilibrium [80, 249]. This result
really confirms that the large nuclear-reaction system, at the energies
considered, disposes of sufficiently many degrees of freedom, and that
statistical near-equilibrium methods are able to characterize the final state
reached in the reaction. These results do not imply that the conditions
created in the event generator are those observed experimentally.

6.2 Relativistic hydrodynamics

In the hydrodynamic description of the evolution of matter, rather than
individual particles, one considers the flow of particles in a volume ele-
ment. Therefore, we consider as one of the dynamic equations the conser-
vation of (e.g., baryon) number-density current, along with the conserva-
tion of energy–momentum flow. These flows are described in terms of the
local flow field /v(/x, t), or equivalently in terms of the 4-velocity vector of
the flow uµ:

dxµ

dτ
≡ uµ(x) = γ(1, /v),

dt

dτ
≡ γ =

1√
1− /v 2

. (6.1)

We see that, in general,

uµu
µ ≡ u2 = 1, uµ = gµνuν . (6.2)

We use Einstein’s summation convention for repeated Greek indices (im-
plied summation over time ‘0’ and space ‘1, 2, 3’), and work in flat space–
time gµν = gµν , with the metric convention gµν ≡ diag(1,−1,−1,−1).
There is a simple relation between the 4-divergence of the 4-velocity and

the 4-divergence of the density arising from the conservation of current.
We write a conserved current jµ in terms of the local density ρ:

∂µ(ρuµ) = ρ∂µu
µ + uµ∂µρ = 0, ∂µ =

∂

∂xµ
. (6.3)

The proper time τ coordinate of the local volume element and laboratory
frame coordinates are related by the Euler relation:

d

dτ
= uµ∂µ = γ

(
∂

∂t
+ /v · /∇

)
, ∂µ =

{
∂

∂t
, /∇
}
. (6.4)
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We divide Eq. (6.3) by ρ and obtain, using Eq. (6.4),

∂µu
µ = − 1

ρi

dρi
dτ

≡ 1
τ exp

. (6.5)

We suggest, at the end of condition Eq. (6.5), that it is a suitable def-
inition of the expansion life span of the system, Eq. (5.34). In fact, as
Eq. (6.32) below is showing, this is exactly true (taking freeze-out proper
time) for the case of longitudinal flow in one spatial dimension.
Aside from the baryon number also, the flow of energy is considered in

the hydrodynamic description of the time evolution. The hydrodynamic
energy–momentum-flow equation, is

fν ≡ ∂Tµν

∂xµ
, Tµν = (ε+ P )uµuν − gµνP. (6.6)

The form of Tµν we present is suitable for adiabatic (entropy-conserving)
flow of matter when the external force density vanishes, fν → 0, a point
to which we will return momentarily.
The condition for energy–momentum conservation, Eq. (6.6), involves

four equations. One of the equations can be made to look like the conser-
vation equation Eq. (6.5): multiplication by uν of Eq. (6.6) yields, using
Eq. (6.2),

uµ∂µε+ (ε+ P )∂µuµ = 0. (6.7)

If the pressure P = 0, this is the continuity equation Eq. (6.5) for the
energy density. To make this obvious, we write

ε+ P

ε
∂µu

µ = −1
ε

dε

dτ
. (6.8)

For P 
= 0, the energy flow (uµε) is not conserved. For P > 0, there is a
transfer of the energy content of matter to the kinetic energy of the flow
of matter. The expanding matter cools. In the rare situation that P < 0
(see section 3.5), the transfer of energy goes from kinetic energy of flow
back to the intrinsic energy density ε.
Equation (6.7) is equivalent to Eq. (1.17), which we recognize using

Eq. (6.5),

1
ε+ P

dε

dτ
=
1
ρi

dρi
dτ

,
dε

ε+ P
= d(ln ρi) = −3Ṙ

R
, (6.9)

noticing that the local density scales with ρ ∝ 1/V ∝ 1/R3.
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The other three equations which follow from Eq. (6.6) determine the
velocity field /v(/x, t), Eq. (6.1),

∂/v

∂t
+ (/v · /∇)/v = −1− v2

ε+ P

(
/∇P + /v

∂P

∂t

)
, (6.10)

which form is obtained for the three spatial components i = 1, 2 and 3
in Eq. (6.6). Naturally, a solution of the hydrodynamic equations can be
obtained only when the equation of state P (ε) is known, or equivalently,
ε(T ) and P (T ) are given.
As we have noted, the hydrodynamic-flow equation Eq. (6.6) conserves

entropy. To show this, we consider again a contraction with uν of the
hydrodynamic equations, but this time, we proceed in a different fashion.
In the following the sum over the repeated index i is implied, which de-
notes more than one conserved particle number; in the simplest case, it
is the baryon number,

uν(∂µTµν)=∂µu
µ(P + ε)− uµ∂µP

=∂µu
µ(Tσ + µiρi)− uµ∂µP, (6.11)

where we have used the Gibbs–Duham relation, see Eq. (10.26). After
some reordering of Eq. (6.11), we obtain

0 = T∂µ(σuµ) + µi∂µ(ρiuµ) + σuµ∂µT + ρiu
µ∂µµi − uµ∂µP. (6.12)

The first term is the conservation of entropy flow which we are looking
for,

∂σµ

∂xµ
= 0, σµ = σuµ, (6.13)

and thus other remaining terms in Eq. (6.11) should cancel out. The
second term is the conservation of current flow, Eq. (6.3); it vanishes
naturally.
The last three terms in Eq. (6.11) all contain the total proper time local

derivative, Eq. (6.4). After multiplication with dτ , we see that, for them
to cancel out, we must have

0 = σ dT − dP + ρi dµi → 0 = S dT − V dP + bi dµi. (6.14)

On multiplying by the volume V , we find the relation on the right-hand
side. A more convenient way to consider Eq. (6.14) is

0 = d(TS − PV + biµi)− (T dS − P dV + µi dbi), (6.15)

where, according to the Gibbs–Duham relation Eq. (10.26), the left paren-
thesis is just dE; hence, we recognize Eq. (6.15) as the first law of ther-
modynamics, Eq. (10.12), which proves Eq. (6.13).
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For a more complete discussion of the relativistic hydrodynamics, we
refer the reader to the monograph by Csernai [98], as well as introductory
sections in Gravitation and Cosmology by Weinberg [267], who consid-
ers generalization of Tµν with dissipative terms. A generalization of the
adiabatic hydrodynamic expansion to include production of entropy has
recently been proposed [114].

6.3 The evolution of matter and temperature

In our following discussion, we consider a reduction of Eq. (6.8). Intro-
ducing the velocity of sound,

1
v2s

≡ dε

dP

∣∣∣∣
S=constant

, (6.16)

we obtain
dε

dτ
=

dε

dP

dP

dT

dT

dτ
=
1
v2s
σ
dT

dτ
, (6.17)

where we have used, in the limit of an extensive system at fixed chemical
potential (here zero), for the entropy density, σ,

σ ≡ S

V
=

dP

dT
, (6.18)

which follows from Eq. (10.16). On substituting Eq. (6.17) into Eq. (6.8),
we find

∂µu
µ = − Tσ

ε+ P

1
v2s

1
T

dT

dτ
. (6.19)

The Gibbs–Duham relation, Eq. (10.26), allows us to write Eq. (6.19)
in the form

∂µu
µ = − 1

1 + (µb/T )b/S
1
v2s

1
T

dT

dτ
. (6.20)

We have introduced b/S = νb/σ, the inverse of the entropy per baryon,
which is a constant of motion in ideal fluid dynamics: ideal flow conserves
the entropy content and, of course, the baryon number is also conserved.
Moreover, in an ideal gas of quarks and gluons, without a significant in-
trinsic dimensional scale, the ratio µb/T of the two-dimensional statistical
variables is also not evolving with proper time. In this case, the velocity
of sound, v2s =

1
3 , is also exactly constant.

Using the conservation of baryon flow (ρi → νb in Eq. (6.5)) on the
left-hand side of Eq. (6.20), we obtain:

1
νb

dνb
dτ

=
1

1 + (µb/T )b/S
1
v2s

1
T

dT

dτ
. (6.21)
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Equation (6.21) allows an exact integer for 1/v2s = constant. Considering
the relativistic quark matter 1/v2s = 3,

νb
ν0b
=
(
T

T0

)3/(1+µb
T

b
S )
. (6.22)

Some readers may wonder how it is possible that T , rather than µb,
controls the evolution of the baryon density. This, of course, is just an
optical illusion. Namely,

T

T0
=

T

µb

µb
µ0b

µ0b
T0
=

µb
µ0b

,

where the last equality arises since T/µb does not change during the
isentropic evolution of the ideal quark–gluon gas. In this case a more
palatable way of writing Eq. (6.22) is

νb
ν0b
=
(
µb
µ0b

)3/(1+µb
T

b
S )

. (6.23)

It is interesting to observe that, for a baryon-dense fireball of quark
matter, possibly formed in 10–40A-GeV fixed-target heavy-ion collisions,
the deviations from the νb ∝ µ3b law are quite significant. However, at
the SPS and RHIC, the initial conditions established assure that this
relationship is valid: S/b > 35 (the SPS value; it is certainly larger at the
RHIC) is seen to be relatively large compared with µb/T (�1.4 at the
SPS and <0.1 at the RHIC).
Although we were able to extract the behavior of the baryon density

from ideal-flow equations in the case of a relativistic gas of particles, the
actual objective, namely the determination of the proper time variation
of any of the quantities involved, has not been accomplished. We will
obtain T (τ) in a very special, but interesting case, in the next section.

6.4 Longitudinal flow of matter

A special case of interest is the reaction picture invoking a rapid flow of
matter along the collision axis, the so-called Bjørken scenario [73]. For
this simple picture of the reaction to apply, we need to assume that

1. the colliding particles had so much energy that the flow of energy and
matter after the collision remains unidirectional along the original col-
lision axis; and

2. the transverse extent of the system is so large that the existence of the
edge of matter in a direction transverse to the collision axis is of little
relevance.
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An interesting aspect of this ‘punch’-through limit, seen in Fig. 5.2(a), is
that the baryon number which is attached to the colliding valence quarks
will also be leaving the interaction region, continuing to travel along the
collision axis. Even though a trail of energy is deposited in the central
rapidity region, the hope is that, at the highest energies, we should be
able to recreate the baryon-free conditions of the early Universe.
After the time τ0 = 0.25–1 fm/c has passed since the initial contact

between the Lorentz-contracted nuclear pancakes (the laboratory-frame
view), the thermalized matter begins its evolution as indicated in figure
Fig. 6.1. Each particle involved in the reaction has at its later freeze-out
a ‘proper’ age τf since ‘birth’:

τf =
∫ f

0
dτ, dτ2 = dt2 − d/x 2. (6.24)

If all particles move with a constant velocity (e.g., c) along a common
longitudinal direction z, and assuming that all particles have the same
proper time at freeze-out, in laboratory coordinates the freeze-out time,
tf , and the freeze-out space coordinates, zf , form a hyperbola,

tf =
τf√
1− v2f

, zf = vf
τf√
1− v2f

, τ2f = t2f − z2f , (6.25)

as shown in the body of Fig. 6.1. The trajectory of each particle is a
straight line z = vt, leading from the interaction point to the freeze-out
location on the hyperbolic, τf = constant, surface.
The Minkowski space–time evolution of the ultra-relativistic collision is

then rather simple: soon after the collision has occurred (see the CM-time
snapshots to the left, beginning at the bottom in Fig. 6.1), the baryon
number of the nuclei begins to separate (black lines along the light cone
in Fig. 6.1), leaving in the intermediate region a trail of energy, presumed
to be in the baryon-number-free QGP phase. The nuclei are trailed to
right and left by the expansion of the energy they deposited at the instant
of collision.
As the distance between the projectile and the target increases, the

continued longitudinal expansion of every volume element reduces the
local energy density/temperature until it is so low that individual had-
rons can emerge (the chemical-freeze-out condition). As we shall see, the
temperature will depend only on the proper time, Eq. (6.33), not on the
rapidity. Therefore, a phase transition or transformation, as the case may
be, and particle freeze-out occurs along given τ = constant space–time
hyperbolas. In the graphic representation in Fig. 6.1, it is assumed that
most of the time the QGP phase prevails, with a short period of freeze-
out and hadronization, before final-state hadrons free-stream out of the
interaction region.
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Space

Time

QGP

Freeze-out

Fig. 6.1. A space–time-image illustration of a heavy-ion collision in the ultra-
relativistic (Bjørken) collision limit. Left: Lorentz-contracted nuclei collide and
separate as a function of the laboratory time (vertical axis). Right: the light cone
establishes the causality limit for the flow of energy, which fills the space–time
domain between the separating nuclei.

The spatially central region is obviously at rest in the symmetric CM
frame and will emit particles around yc = 0. As we go away from the
spatial center, the velocity of the local energy flow under the freeze-out
condition increases, reaching the speed of the baryonic matter at the
matter-trailing edge (upper right/left-hand edges of the light cone). We
see that the rapidity of particles emitted and the relative position in space
are correlated. Also, in laboratory time, the earliest particles to be emit-
ted emerge at central rapidity, the latest at projectile–target rapidities,
as can be seen in Fig. 6.1.
This discussion suggests that the natural variables in the study of the

dynamics of longitudinally expanding matter are the proper time τ(t, z)
which characterizes the parabolas in Fig. 6.1, and the space–time rapid-
ity‡‡ y(t, z),

τ = (t2 − z2)1/2, y =
1
2
ln
(
t+ z

t− z

)
, (6.26)

with the inverse relation

‡‡ The reader is reminded that the variable y is not the spatial coordinate, but the
space–time rapidity variable, and that only the spatial coordinate z enters into that
which follows.



6 Understanding collision dynamics 111

t = τ cosh y, z = τ sinh y. (6.27)

We also record that

∂y

∂t
= − z

t2 − z2
,

∂y

∂z
=

t

t2 − z2
,

∂τ

∂t
=

t

(t2 − z2)1/2
,

∂τ

∂z
=

−z
(t2 − z2)1/2

, (6.28)

and

∂t

∂y
= τ sinh y,

∂t

∂τ
= cosh y,

∂z

∂y
= τ cosh y,

∂z

∂τ
= sinh y. (6.29)

These transformations imply for the volume element that

dt dz = τ dτ dy. (6.30)

The 4-velocity field of some volume element at proper time τ is

uµ ≡ dxµ

dτ
= (cosh y, 0, 0, sinh y), u2 = 1. (6.31)

Equation (6.31) implies that

∂µu
µ =

∂u0

∂t
+
∂u3

∂z
=

∂y

∂t

∂cosh y
∂y

+
∂y

∂z

∂sinh y
∂y

=
1
τ
. (6.32)

All these relations become considerably more complex when one allows for
flow in the transverse direction. For a velocity field including transverse
cylindrical flow see Eq. (8.20).
We will now describe the Bjørken ‘scaling’ solution for the (1 + 1)-

dimensional hydrodynamics [73]. The discussion above Eq. (6.26) sug-
gests that one ought to use space–time rapidity and proper time as vari-
ables when one is considering a one-dimensional relativistic hydrodynamic
model. We substitute Eq. (6.32) into Eq. (6.20) and obtain (µb � 0)

v2s
τ
= − 1

T

dT

dτ
. (6.33)

This important result allows us to understand how fast the temperature
is changing during the ‘scaling’ one-dimensional hydrodynamic evolution
described. We encountered a related result in the study of the adiabatic
(isentropic) expansion, see section 1.4.
Perhaps the most cited equation of (1+1)-dimensional hydrodynamics

arises when, in Eq. (6.8), we use Eq. (6.32) (see Eq. (21) in [73]):
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ε+ P

τ
+

dε

dτ
= 0. (6.34)

For ε(T ) and P (T ), this implies that T is a function of τ , but not of
y. This important result originates from the assumption that the proper
time τ of a fluid volume element is as given in Eq. (6.26), and it is in
particular independent of the transverse coordinates.
For a (nearly) relativistic gas v2s � 1

3 , and the decrease of the temper-
ature is slow. Explicitly, integrating Eq. (6.20), we obtain, assuming that
the velocity of sound changes slowly,

T = T0

(τ0
τ

)v2s
, (6.35)

where the initial temperature T0 is established at an initial (proper) time
τ0, at which local thermal equilibrium has been established and the isen-
tropic hydrodynamic expansion begins. In order to decrease the temper-
ature by a factor two, we need the time τ � 8τ0.
In a more realistic evolution of a fireball, which allows for transverse

expansion, the expansion cooling is faster [58, 163]; see section 6.2. On
the other hand, one also must allow for a less than fully relativistic sound
velocity. The properties of the equation of state obtained on the lattice
suggest that, in the vicinity of the phase transition, i.e., for T < 2Tc,
there are significant deviations from ideal-gas behavior. A seemingly small
change in vs matters: we note that, when vs � 0.5 (recall that 1/

√
3 �

0.58), for the scaling solution Eq. (6.35), the time needed to decrease the
temperature by a factor of two increases two-fold to τ � 16τ0.

7 Entropy and its relevance in heavy-ion collisions

7.1 Entropy and the approach to chemical equilibrium

Entropy is a quantity characterizing the arrow of time in the evolution
of a physical system – in every irreversible process the entropy increases.
In elementary interactions, and in particular those involving relativistic
collisions of two large atomic nuclei, there is considerable production of
particles and hence of entropy. A number of questions arise naturally in
this context:

1.When and how is entropy produced in a quantum process, such as a
nuclear collision?

2. How is production of hadronic particles related to production of en-
tropy?

3. How does one measure the entropy produced in the reaction?
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In the deconfined phase the color degree of freedom is ‘melted’. There-
fore, the specific entropy content per baryon (S/b), evaluated at some
given (measured) values of statistical parameters, is generally greater in
the deconfined state than it is in to the confined state. Entropy can only
increase, and thus, once an entropy-rich state has formed, we have an
opportunity, by measurement of the entropy created in the heavy-ion col-
lision, to determine whether the color bonds of valence quarks present in
the collision have been broken.
The final entropy content of the hadronic particles emerging has to

exceed the initial entropy of the thermal state. In fact, quantitative stud-
ies show that very little additional entropy is produced during the entire
evolution of a fireball, after the initial thermalization stage. For this rea-
son, the final hadronic state conveys key information about the initial
thermal state of dense and hot hadronic matter. For example, in the
expanding quark–glue fireball the quasi-entropy-conserving evolution has
been confirmed within a model study involving parton cascade [129]. The
final-state entropy is largely produced in the first instant of heavy-ion
collision.
The entropy can be obtained using the momentum-distribution function

fB,F:

SB,F =
∫

d3x

∫
d3p

(2π)3
[±(1± fB,F) ln(1± fB,F)− fB,F ln fB,F] . (7.1)

The upper sign + is for bosons (B) and the lower sign − is for fermions
(F), which is somewhat counterintuitive, but in fact in agreement with
Fermi and Bose statistics. We are reminded of this change by the change
in the usual sequence of letters ‘F, B’ in the subscript.
There are two well-known ways to obtain Eq. (7.1). It follows (up to

normalization) from Boltzmann’s H-function in the study of momentum
equilibration. It also arises naturally on rewriting Eq. (10.25) in terms of
the single-particle distribution function Eq. (4.42). Since in this approach
the statistical definition of entropy, which corresponds to the thermal
definition, is used, the normalization is fixed by the laws of thermody-
namics.
Entropies of different particles add, and the entropy of particles and

antiparticles adds as well. The entropy of fermions, in Eq. (7.1), vanishes
in the pure quantum-state limit for T → 0, since the value of the particle-
occupancy probability is either unity or zero. The ‘classical’ Boltzmann
limit arises when fB,F 	 1. In this case, with fB,F → f ,

Scl ≡
∫
dωf ln

(
e

f

)
=
∫
dω(f − f ln f),

∫
dω ≡

∫
d3x

∫
d3p

(2π)3
. (7.2)
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Generally, expression Eq. (7.1) is presented as the generalization of the
well-known classical micro-canonical definition Eq. (7.2) to quantum gases;
however, this language leads to the (frequent) omission of the first term on
the right-hand side, which is the number of particles present, and which
comprises 25% of the total entropy of the relativistic gas.
We will study the entropy of a statistical gas in more detail in sec-

tion 10.6. We note that, for massless particles (quarks, gluons), the en-
tropy per particle following from Eq. (7.1) and Eq. (7.2) is

S

N

∣∣∣∣B
m=0

= 3.61,
S

N

∣∣∣∣cl
m=0

= 4,
S

N

∣∣∣∣F
m=0

= 4.20. (7.3)

The effect of the finite pion mass is to increase the entropy per particle,
see Eq. (10.79) and Fig. 10.4 on page 206. Each pion (a boson) emerging
carries away just about 4 units of entropy from the source as long as the
temperature is T � mπ. These results are for a chemically equilibrated
system. In general, below equilibrium at a given fixed temperature, the
entropy density is lower, but the entropy per particle is higher than that in
Eq. (7.3), and the opposite is true for a system above chemical equilibrium,
γ > 1; section 7.5.
For an isolated system, like our hadronic fireball, a very important

physical property is that relatively little entropy is generated in the ap-
proach to chemical equilibrium, both from above and from below. This
happens since the change in number of particles consumes or releases ther-
mal energy and this changes the temperature. Thus, even after chemical
equilibration, the final-state entropy content is closely related to the initial
entropy of the thermal state generated in the collision.
To demonstrate this, we obtain the shape of the particle-occupancy

probability f of particles in the isolated fireball from the Boltzmann H-
theorem result, i.e., the principle that a physical system evolves toward
maximum entropy for a given energy and number of particles in the sys-
tem. We seek to maximize the entropy Eq. (7.1) subject to these con-
straints, i.e.,

T (f) =
∫
dω [±(1± f) ln(1± f)− f ln f − (αf + βεf )f ] , (7.4)

as a functional of the distribution shape {f}. Here, dω is the phase-space
integral seen in Eqs. (7.1) and (7.2).
The results are the standard Fermi and Bose distributions Eq. (4.42),

including the chemical nonequilibrium factor γ = e−α which allows that
the particle number is fixed independently from the temperature,

fF,B =
1

eβε+α ± 1 . (7.5)
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This demonstrates that an isolated system in the presence of suitable
internal dynamics, e.g., two-body elastic collisions, will evolve toward
the kinetic-equilibrium statistical Bose/Fermi distributions, which may
be in chemical nonequilibrium expressed by γ 
= 1, depending on the
initial energy and number of particles. When inelastic particle-production
processes are occurring, we further expect that also chemical equilibrium
should be reached, but on a slower time scale; see section 5.5.
Now, we are ready to show that the entropy content of a chemically

not fully equilibrated system is nearly the same as the entropy content
of a system in equilibrium. For the Boltzmann approximation, we can
show this analytically. The factor γ becomes a normalization factor that
describes the average occupancy of the phase space relative to the equi-
librium value; the additive term describes how the entropy per particle
changes as the occupancy changes. We find in the Boltzmann limit

N = γN|eq, (7.6)
E = γE|eq, (7.7)
S = γS|eq + ln

(
γ−1
)
γN|eq. (7.8)

For massless particles, the phase-space integrals are easily performed and
one obtains, see chapter 4,

N 0 = aV γT 3, (7.9)
E0 = 3aV γT 4, (7.10)
S0 = 4aV γT 3 + ln

(
γ−1
)
aV γT 3, (7.11)

where a = g/π2 and g is the degeneracy. One easily finds how, for E0 =
constant, the entropy varies as a function of γ,

S ∝ γ1/4(4− ln γ). (7.12)

This functional has a very weak maximum at γ = 1. For example, at
γ = 2 the entropy is 98.3% of the value at γ = 1.
One could imagine that an important change in number of particles is

required when γ increases by say a factor of ten from 0.1 to 1. However,
since the total energy and volume of the system (and hence the energy
density) do not vary, we obtain a result that contradicts our intuition.
Namely, at a high initial temperature the phase space is much greater
and, in the Boltzmann approximation, the number of particles scales with
γT 3, Eq. (7.6). Since E/V ∝ γT 4, we obtain

N|E/V ∝ γ1/4. (7.13)

Thus, a ten-fold increase in γ is accompanied by a 1.8-fold increase in
number of particles.
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At this point, it is perhaps wise to briefly review the more familiar
case of a fixed-temperature environment (a heat bath) in order to un-
derstand better the difference from the isolated-fireball system. Consider
the ‘black-body’ radiator: a thermally insulated box with a small emis-
sion hole, for which the loss of energy due to radiation through the hole is
externally compensated by keeping the temperature constant: the spec-
trum of the emitted radiation displays the Planck shape which minimizes
the free-energy content F of the photon gas, at a fixed temperature of
the walls – this spectrum is arising from interaction of the photons with
the walls, with the spectrum and number of photons changing due to ab-
sorption and re-emission by the walls. Recalling now that F = E − TS,
we can combine Eqs. (7.6) and (7.8), which gives, in the Boltzmann limit,

F = −aV T 4γ
[
1 + ln

(
γ−1
)]
, (7.14)

with a minimum at γ = 1. However, now a change by a factor of two in
γ, at fixed T , leads to a change by 35% in the value of the free energy and
an even greater change in entropy. Clearly, at fixed T , the equilibrium
point γ → 1 is much better defined than it is at fixed E .
The lack of sensitivity of entropy to chemical equilibration for an iso-

lated fireball assures that there is ample room to generate nonequilibrium
particle yields during the dynamic evolution of the system. Given that the
system we are considering is actually subject to a dynamic evolution, with
expanding volume V , it is natural to expect that chemical equilibrium is
an exception rather than a rule.

7.2 Entropy in a glue-ball

We are now ready to examine in detail the simplest system of dynamic
interest to us. We consider an initially thermal glue–parton ball far from
particle-abundance equilibrium. There are glue interactions that are pro-
ducing particles, driving the system to chemical equilibrium while the
temperature decreases, due to sharing of a fixed available amount of ther-
mal energy by an ever larger number of constituents. We assume, in the
example below, that, when chemical equilibrium is reached, the glue-gas
state is at T = 250 MeV.
The intuitive expectation is that a lot of entropy is produced while

this system evolves toward the particle-abundance equilibrium. However,
this is not so [179]. The reason is that, as the equilibrium in particle-
number abundance is approached, we must adjust the temperature of the
system. There is a subtle balance between the different effects, and the
result is that we find considerable constancy of the entropy of the isolated
particle-producing system.
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Fig. 7.1. The entropy density S/V (units fm−3), at a fixed energy density
E/V = 2.66 GeV fm−3, for mg = 0 (solid line), and at E/V = 1.89 GeV fm−3

for mg = 0.450 GeV (dashed line), for a (gluon) Bose gas, as a function of the
chemical occupancy γ, with T (γ = 1) = 250 MeV.

We consider both the massless-gluon case and the case of thermally
massive gluons, choosing for the thermal gluon mass mth

g = 0.450 GeV,
see Fig. 16.3 on page 308. A massless-gluon (Bose) gas, with g = 16,
has an energy density E/V = 2.66 GeV fm−3, at T = 250 MeV, at the
chemical-equilibrium point γ = 1. The massive gas, at the chemical-
equilibrium point γ = 1 at T = 250 MeV, has E/V = 1.89 GeV fm−3.
In Fig. 7.1, we see the entropy density S/V (units fm−3) as a func-

tion of γ; the solid line is for massless gluons and the dashed line is for
massive gluons. The maximum in entropy at γ = 1 is shallower than
would be the case for a Boltzmann gas. The curves end at the singu-
larity of the Bose distribution function, γ = 1 for massless gluons, and
γc = emg/T ∼ 2.7 (beyond the range shown in Fig. 7.1), which values
cannot be exceeded.
The vertical line, to the left in Fig. 7.1, shows that the entropy content

of the hot-glue system at γ = 0.1 is already nearly 90% of the chemical-
equilibrium entropy. The ‘hot’ glue is at this point at T � 453 MeV for
mg = 0, and at T = 426 MeV for mg = 0.450 GeV.
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Fig. 7.2. The temperature T as a function of the chemical occupancy γ for
massless gluons with E/V = 2.66 GeV fm−3 (solid line) and mthg = 0.450 GeV,
E/V = 1.89 GeV fm−3 (dashed line). The equilibrium point γ = 1 has been
chosen to occur at T = 250 MeV.

In order to maintain a fixed value of E/V , the temperature T and
phase-space occupancy γ are not independent, and, as a function of γ,
the temperature T drops rapidly, which is shown in Fig. 7.2. The dashed
line, corresponding to the case of massive gluons, coincides with the solid
line (massless gluons) at γ = 1, T = 250 MeV, by token of the judicious
choice of E/V . As Fig. 7.2 shows, the temperature can drop rapidly in
the process of chemical equilibration of the gluon gas.
It is interesting to note that, when the chemical cooling, seen for small

γ in Fig. 7.2, is fastest at small γ, the collective flow of the QGP fireball
should not yet be established. Therefore, it is probable that the initial-
state cooling is due to chemical processes. The mechanism for a chemical
equilibration of the hot initial glue phase which is faster than the volume
expansion has been proposed to be inherent in the multi-glue-production
reactions [247], gg→ ggg, gggg, . . ..
The number of gluons changes relatively slowly, in particular consider-

ing massive (thermal) gluons, as can be seen in Fig. 7.3. In the case of
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Fig. 7.3. The particle density N/V (units fm−3) as a function of the chemical
occupancy γ. Lines are as in Fig. 7.1.

massless gluons (solid line), when γ increases by a factor of ten from 0.1
to 1, the number of gluons increases five times slower. This increase is
considerably more modest for mth

g = 0.450 GeV (dashed line in Fig. 7.3).
To understand the greater change seen in Fig. 7.3 compared to Fig. 7.1 it
is important to know that the entropy per particle is noticeably greater
than four for a system far from chemical equilibrium, Fig. 7.8.
The process of chemical equilibration of glue involves, apart from an

increase in the number of gluons, a change in the momentum distribution.
In Fig. 7.4, we compare the spectra of gluons initially at γ = 0.1 with
equilibrium γ = 1. At equilibrium, the temperature is T = 250 MeV
and we see that the massless- (solid line) and massive-gluon (dashed line)
spectra coincide (lines ending at E � 3.5 GeV). The ‘missing’ gluons, at
low energies, contribute to the difference in energy density (2.66 versus
1.89 GeV fm−3 for massless and massive, mg = 450 MeV, gluons, respec-
tively). The relatively slowly falling spectra are for the early hot-glue
nonequilibrium stage at γ = 0.1, at which for massless gluons T = 453
MeV and for massive gluons T = 426 MeV (values determined for fixed
volume and energy of the fireball).
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Fig. 7.4. Spectra of massless (solid lines) and mg = 450 MeV (dashed lines),
gluons prior to (γ = 0.1, lines reaching to right lower corner) and at (γ = 1, T =
250 MeV) chemical equilibrium.

We have shown that the dynamics of chemical equilibration is often
counterintuitive. In particular, when one is considering the dynamics of
an isolated fireball, we learned that the entropy varies little if chemi-
cal equilibrium is not maintained. We infer that in a rapid evolution,
an isolated system can evolve away from chemical equilibrium, even if
this means that the chemical entropy is not at its maximum. On the
other hand, since the entropy content is not a sensitive probe of chemical-
equilibrium properties we can, in the following study of the experimental
entropy production, proceed as if chemical equilibrium were maintained,
without loss of generality.

7.3 Measurement of entropy in heavy-ion collisions

The final-state entropy content is visible in the multiplicity of particles
produced. In the HG and QGP phases of dense hadronic matter, the
entropy content is in general different. The entropy content per partici-
pant (specific entropy) offers a method to distinguish these two different



7 Entropy and its relevance in heavy-ion collisions 121

hadronic phases. At a temperature T > Tc � 160MeV, the QGP is
the phase with the higher specific entropy; this difference occurs because
of the liberation of the color degrees of freedom in the color-deconfined
QGP phase. The question of whether it is possible to measure the en-
tropy per baryon in the fireball arises. A measure of entropy must count
the total production of particles, while the number of participants can
be measured using the positive-hadron multiplicity, which comprises, in
particular, protons participating in the reaction.
It has been argued that, in the SPS energy range, the ratio of net charge

multiplicity to the total charged multiplicity comprises information about
the specific entropy content of the matter phase in the fireball [182, 183]:

DQ ≡ N+ −N−

N+ +N− . (7.15)

DQ is understood to be a function of rapidity when considering particle
distribution in rapidity, rather than the total abundance number. In gen-
eral, DQ can be measured, it is an easy task if particles are not identified.
The sum of positive and negative hadron multiplicity can be identified by
the sign of the curvature in a magnetic field, and the emission angle; see
Fig. 5.5 and Eq. (5.25).
A first estimate of this ratio is

Dns
Q ≈ Af

Nπ

0.75
1 + 0.75 (Af/Nπ)

, (7.16)

where Af is the number of baryons in the fireball. We have considered
only non-strange particles ‘ns’, i.e., pions and nucleons, and assumed that
the system is symmetric in isospin, that is half of the participants in the
fireball Af are protons, and all yields of pions are equal: Nπ+ = Nπ− =
Nπ0 = Nπ/3.
As we see in Eq. (7.16), DQ is indeed a measure of the baryon-to-pion ra-

tio and thus of entropy per participant. However, this estimate Eq. (7.16)
is wrong by two partially compensating factors of order 2: both higher-
mass non-strange resonances and charged strange particles must also be
considered. We recall the significant kaon contribution seen in Eq. (5.33).
Theoretically, such calculations require knowledge of the relative abun-

dances of particles for higher-mass resonances as well as for strange parti-
cles. This can be determined in a statistical model of chemical freeze-out
as a function of a few parameters, in particular T . Similarly, the entropy
per baryon in the fireball is given as a function of the same statistical
variables. Both the charge-multiplicity ratio DQ and the specific entropy
S/Af are known functions of the statistical parameters.
As Eq. (7.16) suggests, the quantity

CQ ≡ DQ
S
Af

∝ DQ
Nπ

Af
(7.17)
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C
Q disintegration

HG–resonance

Fig. 7.5. The product CQ = DQ(S/b) before (upper curves) and after (lower
curves) resonance disintegration, as a function of λq, for fixed λs = 1 ± 0.05 and
conserved zero strangeness in an equilibrated HG.

should be a structure constant that depends somewhat on the mixture
of hadronic flavors, mass spectrum and similar general hadron-spectrum
properties, but should be largely independent from the statistical prop-
erties of the system. Once the value of CQ has been established within
a theoretical model, it should then apply in general – a value, CQ � 4.5,
was found [182] for a chemically equilibrated system, see the upper line in
Fig. 7.5. There is in addition the effect of hadron-resonance decays, and
this increases the final-state multiplicity of charged hadrons. According
to Eq. (7.15), the value of DQ diminishes. In consequence, the observable
value of CQ � 3 is seen to apply to the lower lines in Fig. 7.5.

7.4 The entropy content in 200A-GeV S–Pb interactions

Since DQ is generally a small number, it has not been studied extensively.
Experiment EMU05 at CERN–SPS has exposed a lead target located in
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Fig. 7.6. Emulsion data for the charged-particle-multiplicity ratio DQ obtained
in central S–Pb collisions at 200A GeV as a function of pseudorapidity η. The
bold black line is drawn to guide the eye.

front of a photographic emulsion to a 200A-GeV beam of sulphur atoms.
Since a magnetic field was present, the charge of particles produced was
determined and thus the experimental value of DQ, as a function of pseu-
dorapidity η, could be determined by evaluation of the angle of emission of
charged hadrons from the interaction vertex, which fixes η, see Eq. (5.25),
and the polarity of charged particles.
Selecting the most central events with charge multiplicity N+ +N− >

300, corresponding to a total central hadron multiplicity in the range
450–1000, in the central (pseudo)rapidity region, the value

DQ = 0.088± 0.007, η � 2.5± 0.5,

is found [104, 117]. The distribution DQ(η) is shown in Fig. 7.6. The
pseudorapidity distribution is flat in the central region, ∆η = (η− 2.6) ±
1.5. This suggests partial transparency and the presence of longitudinal
flow in the rapidity distributions of protons and K+; see section 8.3.
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Inspecting Fig. 7.5 and Fig. 7.6 we arrive at a first estimate of the
entropy content of a fireball formed in these interactions:

S

b
=

3± 0.1
0.088± 0.007 = 34± 4.

The sources of systematic error involved in the use ofDQ to fix the entropy
include the difference in the distribution between rapidity and pseudora-
pidity, and the uncertainty about yields of strange charged hadrons, which
vary with the degree of chemical equilibration of strangeness.
This high value of specific-entropy content in highly central S–Pb 200A-

GeV interactions, 40% higher than expected, suggests that an entropy-
rich (deconfined) state has been created [182]. Since a high specific-
entropy content can be found in the HG phase at smaller values of λq,
i.e., smaller baryon density, it is important in comparison to the HG to
have a good understanding of the baryochemical potential. The value of
µb = 3µq, see Eq. (4.18), needs to be reduced by nearly a factor of two,
to about µb = 100–120MeV, before the entropy content of HG becomes
consistent with these experimental data. Such a small baryochemical po-
tential is not in agreement with many measured yields of hadrons [176]. As
this simple case shows it is the simultaneous consideration of several ob-
servables (charged-particle asymmetry combined with specific (strange)
particle ratios) which allows understanding of the physics of heavy-ion
collisions.

7.5 Supersaturated pion gas

The excess of hadron multiplicity (entropy) is a consistently observed phe-
nomenon: the data obtained for Pb–Pb collisions supports this strongly.
We have seen in Fig. 1.6 a significant excess of hadron multiplicity in
high-energy A–A reactions compared to p–p and low-energy A–A reac-
tions. An important question is how this excess of abundance can be
theoretically described in terms of the final-state hadron phase space.
During hadronization, hadrons need to acquire the excess entropy aris-

ing from broken color bonds of QGP. We now look for the most entropy-
rich hadron gas and consider the super-saturated massive (pion) Bose
gas, in which the chemical potential, i.e., the abundance fugacity γ, is
nearly compensating for the suppressing effect of the mass, which occurs
at γe−m/T → 1.
For pions, composed of a light-quark–antiquark pair, it is convenient to

use as the abundance fugacity

γπ = γ2q. (7.18)
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Fig. 7.7. Pion-gas properties N/V for particles, E/V for energy, and S/V for
entropy density, as functions of γq at T = 142MeV.

This allows one to express, in terms of the abundance of pions, the relation
to the abundance of quarks at hadronization, see chapter 19. We study
the momentum-space distribution for pions of the form

fπ(E) =
1

γ−2q eEπ/T − 1
, Eπ =

√
m2

π+ p2. (7.19)

The range of values for γq is bounded from above by the Bose singularity
γcq:

γq < γcq = emπ/(2T ). (7.20)

For γq → γcq, we encounter condensation of pions, the lowest-energy state
will acquire macroscopic occupation. Formation of such a condensate
‘consumes’ energy without consuming entropy of the primordial high-
entropy QGP phase, and thus is not likely to occur.
In Fig. 7.7, we show the physical properties of a pion gas as functions

of γq, for a gas temperature T = 142MeV [181]. We see (solid line) that
a large range of entropy density can be accommodated by varying the
parameter γq. A super-saturated pion gas has an entropy density rivaling
that of the QGP at the point of transformation into hadrons, as we see
on comparing it with Fig. 16.7 on page 315, for T = 140–160MeV.
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Fig. 7.8. Specific pion-gas properties E/N for energy, S/N for entropy per
particle, and E/S for energy per unit of entropy, as functions of γq at T =
142MeV.

The presence of chemical nonequilibrium reduces and potentially elim-
inates discontinuities at the phase transition, promulgating rapid evolu-
tion. This implies that, in particular, the sudden hadronization of an
entropy-rich QGP should lead to the limiting value γq → γcq, since other
ways of increasing the entropy content involve secondary processes with
relatively slow dynamics amongst hadron degrees of freedom. In fact, in
an adiabatic equilibrium transformation, one allows an increase in V T 3,
characterizing the entropy content, either by expanding the volume V , or
invoking a rise of T (reheating), or both. Another remarkable feature of
the chemical-nonequilibrium mechanism is that a first order phase tran-
sition may appear in other observables more like a phase transformation
without large fluctuations.
It is important to remember that, in the hadronization of a quark–gluon

phase, it is relatively easy to ‘consume’ excess energy density, simply by
producing a few extra heavy hadrons. However, such particles, being in
fact non-relativistic at the temperature considered, are not effective con-
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Fig. 7.9. Pion-gas properties (N , number of particles; E, energy; and S, en-
tropy) relative to chemical equilibrium as functions of γq for T = 142MeV.

tributors to pressure and entropy. As we see now, the super-saturated pion
gas is just the missing element needed in order to allow rapid hadroniza-
tion.
The specific properties (E/N , S/N , and E/S) of the pion gas are shown

in Fig. 7.8, as functions of γq. We see a monotonic decrease of energy
and entropy per particle while the energy per unit of entropy increases
reaching the condition E/S > T , which plays an important role in sec-
tion 19.1. We see that the entropy per pion drops as γq increases, and, at
the condensation point γq → γcq, we can add pions without an increase in
entropy. Figure 7.8 can be better understood by considering the relative
(to chemical equilibrium) physical properties shown in Fig. 7.9. There
is, in particular, a large growth in the number of pions, which yield is
enhanced at fixed temperature by a factor 3.6 at the condensation point
– it is this feature that allows one to hadronize the QGP into a super-
saturated pion gas at low, supercooled temperature, accompanied by the
experimentally observed excess of pions. We also see, using the energy as
an example, that the Boltzmann approximation, i.e., simply a yield factor
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γ2q is not producing qualitatively wrong results, even though the increase
in number of particles is underestimated by 50%.

7.6 Entropy in a longitudinally scaling solution

We now study the relationship between hadron multiplicity and initial
conditions reached for the case of very-high-energy collisions, for which
the scaling hydrodynamic solutions can be used to understand the flow
of matter. The hydrodynamic expansion of an ideal fluid is entropy-
conserving, Eq. (6.13). What this means, in case of the longitudinal ex-
pansion, is best seen by considering, in Eq. (6.3), the entropy current
σµ = σuµ, and using Eq. (6.32) and the Euler relation Eq. (6.4):

0 =
∂σµ
∂xµ

=
σ

τ
+
dσ

dτ
=
1
τ

d(τσ)
dτ

. (7.21)

We have

τσ(τ) = σ(τ0)τ0 = σ(τf )τf = constant, (7.22)

where τσ is a constant of evolution independent of rapidity y.
The physical meaning of conservation of entropy, and thus conservation

of τσ(τ), becomes clear on remembering the volume element Eq. (6.30).
In the locally at rest frame of the fluid (the comoving frame) we have

∆S = σ dz dt = στ dy dτ, (7.23)

whence,

d

dτ

(
dS

dy

)
=

d

dτ
(τσ) = 0,

dS

dy
= constant, (7.24)

where, in the last equality, we have used the result Eq. (7.22). dS/dy is
independent of y and not a function of τ , i.e., it is independent of the
freeze-out condition.
Since entropy is characteristic of the particle yield, Eq. (7.24) implies

that the particle multiplicity is flat in rapidity, and is not evolving, i.e., it
will not depend on the (uncertain) freeze-out condition. It is established
during the initial period of time when the entropy density is built up
as the system approaches local thermal equilibrium. Qualitatively, this
result is shown in Fig. 5.2; baryons punch through and in between there
is a flat distribution in y of particle abundance, since the entropy density
per unit rapidity is constant.
It is important to appreciate that, as a matter of principle, the initial en-

tropy density reached in A–A collisions remains naturally undetermined,
it arises from microscopic-entropy-producing reactions occurring prior to
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the onset of the entropy-conserving hydrodynamic expansion. One can
try (and the diverse codes we described in section 6.1 do this) to model
the A–A collisions on the basis of the behavior of p–p reactions, but it is
far from certain that such an approach will be successful. In other words,
we cannot use scaling arguments, Eq. (7.24), to understand how big a
value of particle rapidity density we can expect to find. The microscopic
physics we introduce explicitly (or sometimes implicitly) into the dynamic
model determines the final-state particle multiplicity.
We now relate the observed final-state particle multiplicity to the initial

entropy density. Employing the volume element shown in Eq. (7.23), and
using the conservation law Eq. (7.24), we obtain

σ0 ≡
dS0
dV0

=
1
F⊥

1
τ0

dS0
dy0

=
1

F⊥τ0
dS

dy

∣∣∣∣
f

. (7.25)

The transverse surface is

F⊥ = π(1.2 fm)2A2/3, (7.26)

as given by the geometry of the collision, at zero impact parameter.
From Eq. (7.25), we obtain, for the initial-state entropy density,

σ0 =
1

π(1.2 fm)2A2/3τ0
4
3
2
dNch
dy

, (7.27)

where we have assumed that a final-state particle consumes on average 4
units of entropy (see Fig. 10.5), and that the charged-particle multiplicity
is two thirds of the total.



III
Particle production

8 Particle spectra

8.1 A thermal particle source: a fireball at rest

The longitudinally scaling limit in production of hadrons, section 6.4,
applies at the RHIC and at higher collision energies. At the SPS and AGS
energy ranges, table 5.1, it is natural to explore the other reaction picture,
the full-stopping limit. In this case all matter and energy available in the
collision of two nuclei is dumped into a localized fireball of hot matter.
Even at the highest SPS energies many experimental results suggest that
such a reaction picture is more appropriate than the (1 + 1)-dimensional-
flow picture.
The m⊥ spectra we have seen in Fig. 1.7 on page 20 provide a strong

encouragement to analyze the collision region in terms of the formation
of a thermalized fireball of dense hadronic matter. The high slopes seen
strongly suggest that the dynamic development in the transverse direc-
tion is very important. The pattern of similarity seen for very different
particles is what would be expected to occur in hadronization of a nearly
static fireball, and thus this case will be the first one we explore. However,
we note that this is solely an academic exercise since SPS results provide
ample evidence for rather rapid v � 0.5c transverse expansion. One can
recognize this important physical phenomenon only once the properties
of the stationary fireball matter are fully understood.
We consider a space–time-localized region of thermal hadronic matter

acting as a source of particles, yielding naturally a Boltzmann spectral
distribution. The thermal equilibrium is strictly a local property, with
different temperatures possible in different space–time domains. The ne-
cessity that there is also a local thermal pressure implies that a fireball is
in general a dynamically evolving object with local flows of matter, which
we shall study further below. The virtue of this model is that the spectra

130
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and abundances of particles can be described in terms of a few parameters
that can be measured.
The thermal analysis of the experimental results differs in many key as-

pects from the microscopic-transport methods introduced in section 6.1.
These contain as inputs detailed reaction data and their extrapolations,
including often enough hypothetical reaction cross sections and novel
mechanisms without which the experimental results cannot be described
completely. The attainment of thermal equilibrium is, in these calcula-
tions, a result of many complex reactions. For the N–N collisions the
appearance of the thermal particle distributions in the final state is still
inexplicable in terms of such dynamic microscopic models. For this reason
alone, a microscopic dynamic approach cannot lead to an understanding
of the thermalization of fireball matter. Moreover, since the physical
thermalization processes are faster than those operating in present-day
numerical transport codes, microscopic transport theory delays the ther-
malization of collision energy available in heavy ion reactions and thus
will in general fail at predicting observables of interest which depend
on (early and rapid) thermalization. As long as these issues are being
studied, an empirical thermal model allowing for flow of matter and non-
equilibrium abundances of particles offers considerable advantages for the
understanding of experimental data.
We first aim to relate the experimental rapidity and transverse-mass

spectra to the particle distribution of the fireball. We consider the dif-
ferential particle-momentum distribution, e.g., near the surface of the
fireball,

E
d3N

d3p
≡ f(E, pL), (8.1)

where the presence of pL in the argument reminds us that an emitted
particle could remember the collision axis; the distribution need not be
intrinsically spherically symmetric as is implied when only the energy of
the particle is considered. The coefficient E is introduced in Eq. (8.1)
for convenience, it assures that the quantity f is invariant under Lorentz
transformations. This is understood on reexpressing the left-hand side of
Eq. (8.1) in terms of the invariant variables m⊥ and y. Given Eq. (5.4),
at constant p⊥, we find

dy =
dpL
E

. (8.2)

Since p⊥ dp⊥ = m⊥ dm⊥, considering Eq. (5.5) the Lorentz-invariant mo-
mentum-space volume element is

d3p

E
= dym⊥ dm⊥ dϕ. (8.3)
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It is important to remember, looking at the spectra, that, while p⊥ > 0,
we have m⊥ > m.
We consider at first as the intrinsic distribution the simplest exponential

Boltzmann-type thermal shape:

f(E, pL)→ CEe−βE = Cm⊥ cosh y e−βm⊥ cosh y, (8.4)

with C = gV/(2π3) and Eq. (5.4) is used on the right-hand side to replace
the particle energy by transverse mass and rapidity. Since we have a
Lorentz-invariant distribution, a change of the frame of reference along
the pL axis, e.g., from the laboratory frame to the CM frame, is amounting
to a shift along the rapidity y axis of the particle spectrum considered
to be centered around the CM rapidity yCM = 0, see section 5.3. The
differential particle spectrum which we obtain is

d2N(y,m⊥)
m2

⊥ dm⊥ dy
= C

∫
dϕ cosh y e−βm⊥ cosh y. (8.5)

To obtain the transverse-mass spectra, we need to integrate Eq. (8.5)
over the applicable rapidity acceptance (often referred to as ‘rapidity win-
dow’):

1
m⊥

dN(y,m⊥)
dm⊥

= C

∫
dϕ

∫ y+

y−
dym⊥ cosh y e−βm⊥ cosh y. (8.6)

For a wide (see below) rapidity window, we can extend the limit of the
integration to infinity, since the argument is a rapidly decreasing expo-
nential function. We use Eqs. (10.44) and (10.45) and obtain

K1(z) =
∫ ∞

0
dt e−z cosh t cosh t,

→
( π
2z

)1/2
e−z
(
1 +

3
8z

− 15
128z2

. . .

)
. (8.7)

We obtain for the full rapidity coverage

1

m
3/2
⊥

dN(y,m⊥)
dm⊥

∝ e−βm⊥
(
1 +

3
8βm⊥

. . .

)
. (8.8)

For a narrow rapidity window, δy = y+−y−, surrounding yCM, one simply
substitutes, in the integral Eq. (8.6), cosh(δy/2) by 1 and the result is

1
m⊥

dN(y,m⊥)
dm⊥

∝ e−βm⊥ . (8.9)

In both cases, Eqs. (8.8) and (8.9), we have a (nearly) exponential transverse-
mass spectrum, provided that the preexponential factors in the spectra
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Fig. 8.1. The saturation of particle yield for a fireball at rest within a rapidity
window: dashed line, y± = yCM± 0.5 and solid line y± = yCM± 1, as a function
of βm⊥; see the text for details.

are properly chosen. The result is not at all what one is naively tempted
to use when one is fitting invariant cross sections, i.e., to simply take an
exponential fit of the cross-section data: the choice is either to include the
factor 1/m1/2

⊥ (compare with Fig. 8.9 and also Fig. 8.8), or to multiply by
1/m⊥ for a truly narrow rapidity window, as we see in Fig. 1.7 on page 20.
The question thus is that of how narrow the ‘narrow’ rapidity window

must be for the factor to be as given in Eq. (8.9). We note that, in addi-
tion to the width of the typical experimental acceptance of 0.5–1 rapidity
unit, one has to keep in mind that there is, in principle, a superposi-
tion of contributions to the spectra occurring due to longitudinal flow in
the source, which effectively widens the rapidity acceptance domain. We
show, in Fig. 8.1, the ratio

RI ≡
∫ y+
y−dy cosh(y − yCM) e−βm⊥ cosh(y−yCM)∫ +∞
−∞dy cosh(y − yCM) e−βm⊥ cosh(y−yCM)

, (8.10)

of the rapidity integral Eq. (8.6) with the full rapidity coverage, as a func-
tion of βm⊥. Results shown are for a rapidity window of one unit (dashed
line, y± = yCM±0.5) and two units (solid line, y± = yCM±1) of rapidity,
centered around yCM.
We see that, for an experimental rapidity window of one unit (e.g.,

−0.5 < y − yCM < 0.5) (dashed line) and for a typical ‘high’ transverse
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mass m⊥ � 1.5 GeV at T → T⊥ = 1/β = 230–300 MeV, we would
have reached nearly 80%–90% of the full rapidity integral, justifying use
of a result with a full rapidity window coverage – note that adding in
smearing of flow (the solid line) means that more than 99% of the spectral
strength will be effectively included. Consequently, we find that the test
for applicability of Eq. (8.8) is βm⊥ cosh(δy/2) > 8, with δy/2 comprising
an estimate of the flow.
We next consider the thermal rapidity spectra. We now integrate

Eq. (8.4) over the full range of transverse mass,

dN(y,m⊥)
dy

= C

∫
dϕ

∫ ∞

m
dm⊥m2

⊥ cosh y e−βm⊥ cosh y, (8.11)

to obtain the rapidity distribution shown in the top portion of Fig. 8.2,
for the case mπ

<∼ β−1 < mK (here β−1 ≡ T = 160 MeV).
The thin lines in Fig. 8.2 apply to spectra of massless particles, dashed

lines are for pions (m = 138 MeV), chain lines are for kaons (m = 497
MeV), and the thick solid line depicts data for nucleons (m = 938 MeV).
Since the experimental acceptance in p⊥ cannot, for practical reasons,
begin with p⊥ = 0, we have also shown in Fig. 8.2 what happens to these
spectra when only particles with p⊥ > pmin⊥ are included, with minimum
momentum cutoffs shown at pmin⊥ = 0.3, 0.5, and 1 GeV. We notice that,
when pmin⊥ < 0.5 GeV, the maximum peak for massless particles is nearly
half as high as that for nucleons, and, correspondingly, the widths of the
distributions vary considerably with particle mass.
This change in relative abundance of the different particles increases

with pmin⊥ (we changed the scale of the drawing by a factor of three to
make the small remaining particle abundance more visible for pmin⊥ =
1 GeV). The lighter particles disappear more rapidly and the relative
abundance of the heavier ones is increased in the sample. Moreover, all
shapes become increasingly more similar, resembling more and more the
nucleon spectrum. We note that for pmin⊥ = 0.3, the half-width parameter,
for most particles, is within the range 0.6 < σ < 0.7.
We see that, in the ideal situation of a thermal Boltzmann-like emitter,

the rapidity spectra of identified particles are very narrowly distributed
around the ‘central’ rapidity, with the distribution of the massive parti-
cles being narrower than that of lighter particles when all p⊥ are included,
which difference disappears when the minimum m⊥ for the different par-
ticles are (nearly) the same. Since the width of the rapidity spectra is
just half as large as was seen for the width for negative hadrons, h−, see
Fig. 9.6, there must be some other contribution to the width, that is in
general believed to be the flow: the small source is not stationary, and its
size and all other properties evolve rapidly in time, an effect we address
in section 8.4.
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Fig. 8.2. Normalized thermal rapidity particle spectra (quantitative) for a
Boltzmann (exponential) energy distribution with β−1 = 160 MeV and set-
ting yCM = 2.92 as appropriate for the highest SPS energy: massless particles
(thin lines), pions (dashed lines), kaons (chain lines), and nucleons (solid lines).
The effect of the minimum transverse-momentum cutoff on particle yield and
shape of distribution is illustrated: we show pmin⊥ > 0, > 0.3, > 0.5, and > 1
GeV. Note the change of scale for the last (bottom) case.

Even though the above example of a thermal source is no more than
a case study, we have learned much about the possible shape of the ra-
pidity spectra of a well-defined, localized thermal source. This leads to
the practical question of what spectral shape arises when identification of
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particles is not possible. In such a case, one generally studies pseudorapid-
ity distributions. We keep in mind that the relatively easily measurable
pseudorapidity, Eqs. (5.24) and (5.25), arises from the rapidity, Eqs. (5.4)
and (5.10), in the limit m → 0, and thus, in cases when an appreciable
yield of nucleons and even kaons is present, significant distortions in the
spectra occur.
We now discuss this quantitatively and evaluate the shape of the ther-

mal pseudorapidity distribution. Since η is not a good Lorentz variable,
we study the specific example of the spectra in the laboratory frame in
which the target is at rest and the projectile had 158A GeV. We take
as the input spectrum the rapidity shape of the thermal source defined
above in Eq. (8.11). To proceed with the change of variables, we need to
express the CM energy and momentum of the distributions in terms of
the laboratory pseudorapidity. Using Eq. (5.4),

E = m⊥ cosh(y′ − yCM) = E′ cosh yCM − p′L sinh yCM, (8.12a)

pL = m⊥ sinh(y′ − yCM) = p′L cosh yCM − E′ sinh yCM. (8.12b)

With the help of Eq. (5.24), we eliminate E′ and p′L, using the pseudora-
pidity η′ with reference to the laboratory frame, and p⊥,

E =
√
m2 + p2⊥ cosh

2 η′ cosh yCM − p⊥ sinh η′ sinh yCM, (8.13a)

pL = p⊥ sinh η′ cosh yCM −
√
m2 + p2⊥ cosh

2 η′ sinh yCM. (8.13b)

We also obtain
1
p⊥

dpL
dη′

= cosh η′ cosh yCM − p⊥ sinh η′ sinh yCM cosh η′√
m2 + p2⊥ cosh

2 η′
, (8.14)

for the (frame-of-reference-dependent) integration Jacobian relating the
CM longitudinal momentum and laboratory pseudorapidity (see Eq. (8.2)
for comparison).
We now are ready to evaluate the pseudorapidity particle distribution.

Proceeding in the same way as when we obtained Eq. (8.11), i.e., integrat-
ing over the azimuthal angle and the transverse momentum, and effecting
the change of the integration variable from longitudinal momentum to
pseudorapidity, we obtain, in the laboratory frame, the pseudorapidity
distribution

dN

dη′
≡ 2π

∫
dp⊥ p2⊥

(
dp′L
p⊥ dη′

)
f(E, pL)

E
. (8.15)

The arguments of the distribution are as given in Eqs. (8.13a) and (8.13b)
and the volume element is given by Eq. (8.14).
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Equipped with this result, we can explore quantitatively the case of
the exponential, thermal-like distribution, Eq. (8.4). The explicit form of
the laboratory pseudorapidity distribution, including a necessary Lorentz
contraction factor (cosh yCM)−1 arising from the Lorentz transformation
of the volume V of the source, takes the form

dN

dη′
=2πC

∫ ∞

pmin⊥
dp⊥ p2⊥e

−β
[
cosh yCM

√
m2+p2⊥cosh

2 η′−p⊥ sinh yCM sinh η′
]

× cosh yCM

cosh η′− tanh yCM sinh η′ p⊥ cosh η′√
m2+ p2⊥ cosh

2 η′

. (8.16)
A simple test of this not-so-simple expression is its normalization, which
is easily (numerically) verified by integrating over η′ at given m and β,
for various values of yCM.
This distribution is shown in Fig. 8.3, which parallels Fig. 8.2 with the

same conventions and parameters. On comparing Figs. 8.2 and 8.3, we see
that the rapidity and pseudorapidity spectra agree exactly for massless
particles, since the pseudorapidity is the rapidity, in this case. The nearly
massless pions are visibly little changed in spectral shape. With progres-
sively increasing mass, the pseudorapidity spectra differ more from the
rapidity spectra and, in particular, their center shifts to higher pseudora-
pidity.
There is a notable deformation of the symmetric shape accompanied

by considerable widening – the peak is only 60% of the height of the orig-
inal rapidity spectrum for pmin⊥ = 0. In practical situations, the small-p⊥
particles are eliminated, which we allow for by means of a cutoff in pmin⊥ .
We see that now the spectral shapes appear progressively less shifted
from their rapidity form; the pseudorapidity and rapidity shapes become
more similar, although a residual shift remains for the heaviest parti-
cles (nucleons). Thus the pseudorapidity–rapidity difference is primarily
a low-momentum phenomenon. As the p⊥ cutoff increases, the relative
strength of the particle spectra changes and, in particular, there is con-
siderable relative enrichment of the contributions of the heaviest particles
compared with those of light particles.

8.2 A dynamic fireball

Naturally, a fireball at rest is not what we are likely to encounter in the
highly dynamic situation of colliding nuclei. We now look at the modifi-
cations introduced by the presence of a local flow of matter. As before a
volume element in a fireball is the particle source, but now this volume is
in motion, typically due to a local flow originating from a (hydrodynamic)
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Fig. 8.3. Particle spectra as a function of laboratory pseudorapidity η′, for
β−1 = 160 MeV, yCM = 2.92; massless particles (thin lines), π (dashed lines),
K (chain lines), and N (solid lines). Results for various minimum transverse-
momentum cutoffs are shown: pmin⊥ > 0, > 0.3, > 0.5, and > 1 GeV. Note the
change of scale for the last (bottom) case.

expansion. We will refer to this collective flow velocity below simply as
/v. We would like to know how the statistical distribution appears to a
laboratory observer. However, when we refer to a statistical phase-space
distribution, we always imply an observer at rest in the local ‘intrinsic’
frame of reference. The ‘intrinsic i’ particle energy Ei and momentum
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/p i are measured in the local non-flowing frame of reference of a moving
volume element of the fireball.
We determine now how the intrinsic thermal spectrum appears to an

arbitrary Lorentz observer, such as a laboratory observer is. The physical
idea is to express the intrinsic thermal phase space in terms of Lorentz co-
variant quantities, and than to use variables associated with any observer,
e.g., a laboratory-frame observer. There are several approaches possible,
and we proceed in the first instance to consider as in section 12.3 the
Touschek invariant phase-space measure [143, 261]:

V0 d
3pi

(2π)3
e−E

i/T → Vµp
µ

(2π)3
d4p 2δ0(p2 −m2)e−pµuµ/T . (8.17)

The flowing volume element Vµ = V0uµ is as observed in the laboratory
frame. V0 is the comoving volume element in the local rest frame. δ0 is
the Dirac delta function for the positive (energy) roots only, . It is an
invariant function for all proper Lorentz transformations. The left-hand
side of Eq. (8.17), is written in terms of the intrinsic variables, but the
right-hand side is not frame-dependent and we can read it in the frame
of reference of the laboratory observer.
We see the invariant measure introduced in Eq. (8.3):

2δ0(p2 −m2) d4p =
d3p

E
= m⊥ dm⊥ dy dφp = p⊥ dp⊥ dy dφp. (8.18)

The particle momentum defined with reference to the collision axis has
the explicit form

pµ = (m⊥ cosh y, p⊥ cosφp, p⊥ sinφp, m⊥ sinh y), (8.19)

(in cylindrical coordinates) where we omit superscript p for the variables

y and m⊥ =
√
m2 + p2⊥, which, as usual, are understood to refer to the

observed particle. We recall the usual relations,
m⊥
m

= γ⊥ = cosh y⊥,
p⊥
m
= v⊥γ⊥ = sinh y⊥,

which allow us to write Eq. (8.19) in the form

pµ

m
= (cosh y⊥ cosh y, sinh y⊥ cosφp, sinh y⊥ sinφp, cosh y⊥ sinh y).

This suggests that we introduce such a cylindrical representation of the
velocity field as well,

uµ=(cosh yv⊥ cosh y
v
‖ , sinh y

v
⊥ cosφ

v, sinh yv⊥ sinφ
v, cosh yv⊥ sinh y

v
‖),

u2=1. (8.20)
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It is straightforward, in these coordinates, to obtain uµp
µ required to

construct the spectra in Eq. (8.17),

uµp
µ = γv⊥

[
m⊥ cosh(y − yv‖)− p⊥v⊥ cosφ

]
, (8.21)

where γv⊥ = cosh y
v
⊥ = 1/

√
1− v2⊥, φ = φp−φv, and the variables y, m⊥,

and p⊥ refer to the rapidity, the transverse momentum, and the transverse
mass of the observed particle.
The explicit form of the invariant spectrum which generalizes Eq. (8.5),

is

d2N

m2
⊥ dm⊥ dy

=
∫

dφ γv⊥
(2π)3

(
cosh(y − y‖)−

p⊥
m⊥

v⊥ cosφ
)

× exp
{
−γv⊥
[
m⊥ cosh(y − y‖)− p⊥v⊥ cosφ

]
/T
}
. (8.22)

For a suitable choice of the coordinate system in which the x axis is
pointing in the direction of the transverse flow vector, φv = 0, the particle-
emission angle is the azimuthal angle of integration φ = φp. We use the
range 0 < φ ≤ π, which has to be counted twice to include the part
π < φ ≤ 2π. The φ integrals we encounter are analytical:

1
π

∫ π

0
e±a cosφ dφ = I0(a),

1
π

∫ π

0
e±a cosφ cosφdφ = ±I1(a). (8.23)

It is helpful to remember that I0 ‘looks like’ a cosh function, and I1 like
a sinh function, and the analogy goes further with

I1(a) =
∂I0(a)
∂a

. (8.24)

However,

cosh a= I0(a) + 2I2(a) + 2I4(a) + 2I6(a) + · · · , (8.25)
sinh a=2I1(a) + 2I3(a) + 2I5(a) + · · · , (8.26)

where

In(a) =
1
π

∫ π

0
ea cosφ cosnφdφ =

∞∑
k=0

(a/2)2k+n

k!(n+ k)!
. (8.27)
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Using Eq. (8.23) in Eq. (8.22), we obtain

d2N

m2
⊥ dm⊥ dy

=
γv⊥
(2π)2

(
cosh(y−y‖) I0(p⊥v⊥/T )−

p⊥
m⊥

v⊥I1(p⊥v⊥/T )
)

× exp
[
−γv⊥m⊥ cosh(y − y‖)/T

]
. (8.28)

This is the statistical particle spectrum seen in the laboratory frame and
originating in a volume element of a fireball having two velocity compo-
nents y‖ and v⊥, and emitting particles at the local temperature T . If
the laboratory frame is not the CM frame, we need to shift the rapidity
y → y − yCM. This is the particle spectrum of final-state hadrons arising
if the matter in the entire volume of the fireball froze out suddenly.
This volume-style statistical phase-space hadronization based on work

carried out by Touschek [261], differs from the approach of Cooper and
Frye [96], which allows for the dynamics of the particle-emitting surface.
One imagines an opaque fireball, and each surface element is the parti-
cle source. The physical idea is thus to couple the intrinsic (statistical)
particle spectrum to the Lorentz-covariant surface dynamics. The de-
velopments till 1993 are well documented in [238]. It was subsequently
discovered that the radiation formula was non-positive definite and a gen-
eralization was proposed [119].
The particle phase space is written using a covariant surface in 4−1 = 3

space–time dimensions. Consequently, apart from the flow, there is yet
another velocity that describes how the hadronization surface moves, e.g.,
the surface may be flowing outward, but a rapid ‘peeling’ of matter may
move the boundary of the particle-producing volume inward. Moreover,
over the history of the particle production (freeze-out from the surface),
the surface may have both positive and negative velocities, and thus it
can be difficult to make sure that a particle is actually emitted rather
than absorbed in the fireball.
We now illustrate the difficulty inherent in dealing with the problem

of emission of particles, which continues to be actively studied. First, we
recall how, in the Touschek approach, the particle density in phase space
has been written in a Lorentz-invariant way as

d6N

d3x d3p
=

g

(2π)3
e−uµp

µ
i /T , (8.29)

where uµ is the 4-flow velocity. In the volume-hadronization approach,
we have made the following qualitative steps:

E
d3N

d3p
=

dN

dφdym⊥ dm⊥

=
g

(2π)3
e−uµp

µ
i /T

[
Ei d

3x → pµi Vµ ∝ pµi uµ

]
. (8.30)
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When surface emission dominates the particle spectra, the other way
to proceed is

E
d3N

d3p
=

g

(2π)3
e−uµp

µ
i /T

[
Ei d

3x →∫
dτ d3Σµf pµ i δ

(
dτ−
√
dt2f −d/x 2f

)]
, (8.31)

where xµf = (tf , /xf) are the freeze-out surface coordinates, and Σ
µ
f is the

three-dimensional hypersurface of the Minkowski volume element, char-
acterized by a unit 4-vector normal to the surface uµf , i.e., the 4-velocity
of the freeze-out surface:

nµs =
dxµf
dτ

=
dtf
dτ

(
1,
d/xf
dtf

)
. (8.32)

Equation (8.31) arises since we wish to sum the emission spectrum over
the contributions made by each surface element d3Σ over its (proper time
τ) history. For a fireball at rest, we have nµf = (1, 0, 0, 0), d

3Σµf = dtf d
2xf ,

and /vf = d/xf/dtf = 0. Noting that the δ-function simply sets the proper
time to the freeze-out time, we obtain

E
d3N

d3p
=

g

(2π)3
e−Ei/TEiSf ∆tf , (8.33)

where ∆tf is the length of (proper) time during which the emission of
particles occurs, and Sf is the size of the surface.
For simple geometries, we can use

dτ δ

(
dτ − dtf

√
1− d/x 2f /dt

2
f

)
= δ

(
1− dtf

dτ

√
1− d/x 2f /dt

2
f

)
→ 1,

and we find the conventional Cooper–Frye formula:

E
d3N

d3p
=

dN

dφdym⊥ dm⊥
=

g

(2π)3

∫
Σf

e−E
i/T piµ d

3Σµ. (8.34)

d3Σµ is the normal surface vector for the four-dimensional space–time
volume boundary, from which the emission of particles occurs,

d3Σµ ≡ εµνλρ
∂Σν

∂u

∂Σλ

∂v

∂Σρ

∂w
du dv dw, (8.35)

where u, v, w is a suitable set of three locally orthogonal coordinates. In
cylindrical coordinates (u, v, w) = (rf , φf , zf) and

Σµf = (tf , rf cosφf , rf sinφf , zf). (8.36)
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The freeze-out time tf is independent of the angle φf due to the assump-
tion of cylindrical symmetry and thus we have tf(rf , zf). The covariant
volume element is

d3Σcylµ =
(
1,−∂tf

∂rf
cosφf ,−

∂tf
∂rf

sinφf ,−
∂tf
∂zf

)
rf drf dφf dzf . (8.37)

We use the momentum vector of a particle pµi in cylindrical coordinates,
Eq. (8.19), and obtain

dτ

dtf
pµ d3Σcylµ = rf drf dφf dzf

[
m⊥

(
1
u0f
cosh y − 1

u
‖
f

sinh y

)

− 1
u⊥f

p⊥ cosφ

]
, (8.38)

where as before φ = φf − φp.
The 4-velocity of the freeze-out surface is

dxµ/dτ = uµf = (u
0
f , u

⊥
f cosφf , u

⊥
f sinφf , u

‖
f ).

This additional surface dynamics influences the observed spectra, even
though we are dealing with a preexponential factor only. The transverse-
mass spectra contain an additional factor, compared to Eq. (8.22),

d2N

m⊥ dm⊥ dy
→
∫

dφ γv⊥
(2π)3

(
1− /v−1

fr · /p
E

)

×
(
cosh(y − y‖)−

p⊥
m⊥

v⊥ cosφ
)

(8.39)

× exp
{
−γv⊥
[
m⊥ cosh(y − y‖)− p⊥v⊥ cosφ

]
/T
}
,

where

/v−1
fr · /p ≡ ∂tf

∂rf
p⊥ cosφ+

∂tf
∂zf

pz. (8.40)

Particles are emitted from the surface of fireball volume, and thus
the phase space is (2 + 2)-dimensional when the number of particles
is counted. For this dimensional reason there is one power of m⊥ less
in Eq. (8.39), than there is in Eq. (8.22). When vfr → c the prefactor
in Eq. (8.39) is able to compensate for this effect and both methods can
describe the experimental hadron spectra with similar precision.
We proceed to show how the longitudinal flow, and, in section 8.4, the

transverse flow, influence particle spectra. Numerical study shows that
the two flows are practically independent from each other, and it has



144 Particle production

y

dn
/d

y

y

dn
/d

y

Fig. 8.4. On the left, the abundance of Λ in S–S collisions at 200A GeV, as
a function of rapidity. The squares are the results for N–N collisions scaled
up by the pion-multiplicity ratio. On the right, corresponding results for the
abundance of Λ. Data produced by the NA35 collaboration [24].

become commonplace to study particle spectra as if either only parallel
or only transverse flows were present: in a study of rapidity spectra,
only y‖ is considered, while v⊥ is ignored; in a study of m⊥ spectra, the
longitudinal flow y‖ is not considered.

8.3 Incomplete stopping

Considering that, at very high collision energies, the longitudinal scaling
behavior is expected, see section 6.3, whereas in collisions of large nuclei at
moderate energies a central fireball is more appropriate, it is natural that
the real world is observed to be much more complex than these simple
‘asymptotic’ models.
A nice example of the case in which the baryon number just does not

punch through is seen in the central 200A-GeV S–S collisions at the
SPS. We show, in Fig. 8.4, the production yields of Λ (left-hand side)
and Λ (right-hand side) hyperons as functions of rapidity. The open
circles in Fig. 8.4 are the directly measured data. The particle spec-
tra must be symmetric around the CM rapidity, since this is a symmet-
ric collision system. For this reason the open black circles are obtained
by reflecting the measured data points (solid black circles) at the value
y = 2.96.
The spectra arising from N–N interactions at the same energy are

shown in Fig. 8.4 (open squares). These N–N-interaction comparison
data have been multiplied by the rapidity-dependent pion-multiplicity-
enhancement factor, which accounts for the increase in production of
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Fig. 8.5. Rapidity spectra of massless QGP quanta with flow: dotted, no flow
y‖ = 0; short-dashed, y‖ = 0.5; long-dashed y‖ = 1; and solid, y‖ = 1.5 [178].

pions per nucleon observed on comparing S–S with N–N reactions. In
the target (y = 0.75 ± 0.25) and projectile (y = 5.25 ± 0.25) fragmen-
tation regions, this procedure gives a good agreement between yields of
Λ particles in S–S and N–N scaled by the pion multiplicity. This sug-
gests that, in the target/projectile fragmentation regions, the production
of Λ has the same origin in both cases, presumably from individual N–N
interactions.
However, in the central rapidity region in Fig. 8.4, new mechanisms

of production of Λ and Λ are clearly visible. Inspecting the yield of Λ,
we see considerable localization at central rapidity of a particle made
entirely from constituents not brought into reaction, Λ(ūd̄s̄). Naturally,
there must have been associated localization of the energy. The Λ rapidity
spectrum is, in contrast, relatively flat. Λ(uds) contains, aside from the
strange quark made in the reaction, constituent quarks brought into the
collision region by the projectile and target. Were the punch through of
the light (u, d) quark content complete, we should see for Λ a distribution
similar to Λ, both in shape and in yield.
We consider now the rapidity spectra in the presence of a longitudinal

flow y‖, evaluating the m⊥ integral in Eq. (8.22). The challenge is to
describe a diversity of rapidity spectra of observed hadrons, which are
very strongly varying between certain particles. The different behaviors
are shown schematically in Fig. 8.5. We see how the thermal rapidity
spectra of massless quanta in the deconfined phase, with m = 0, (and
with T = 145 MeV, and v⊥ = 0.52, which values matter little), vary.
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Fig. 8.6. Rapidity spectra of baryons 〈b− b̄〉 observed by experiment NA49 [43]
in central (5%) Pb–Pb interactions at

√
sNN = 17.2 GeV (solid circles, direct

measurement; open circles, reflection at yCM). Stars are rapidity spectra of
baryons for S–S interactions obtained by NA35 at

√
sNN = 18.4 GeV, for the 3%

most central events, scaled with participant number 352/52.

These gradually ‘flow’ apart as y‖ is increased from y‖ = 0 (dotted line)
to y‖ = 1.5 (solid line) in steps of 0.5.
Comparing with Fig. 8.4, we see that both limits (the central production

of Λ and the flat distribution of Λ) are seen in Fig. 8.5. How can this be
happening in the same reaction? In order to obtain different types of flow
for different particles, we presume in the following illustrative example
that hadrons arise from a mix of three quark fluids. The incoming valence
quarks of colliding nuclei are retaining some (vvalence‖ 
= 0) memory of the
original motion along the collision axis, and constitute the projectile and
target fluids. However, all newly made pairs of quarks have practically no
memory (vpair‖ � 0) of the initial condition of colliding matter, they are
formed near yCM and are constituents of the third fluid. In particular,
pairs of strange quarks made in the plasma do not flow in the longitudinal
direction.
For the protons produced, this model implies that all three quarks

remember the incoming flow and their distribution should follow the solid
or long-dashed line (depending on y‖). For Λ, with one strange quark, we
consider a mix of two thirds weight in the spectrum with flow and one
thirds without. For particles like K+(us̄), we take a 50%–50% mix, and,
for all newly made particles like Λ and Φ, we assume that only no-flow
components contribute. To describe baryon rapidity spectra in Pb–Pb
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Fig. 8.7. Schematic representations of rapidity particle spectra within a thermal
model with flow, parameters chosen for

√
sNN = 17.2 GeV [178].

collisions at
√
sNN = 17.2 GeV, reported by NA49 [43], see Fig. 8.6,

we assume that the longitudinal flow is y‖ � ±1, and choose this value
without attempting to fit the spectra.
The proton rapidity spectrum is shown in the bottom panel in Fig. 8.7.

We usedmq = 0, T = 145 MeV, and v⊥ = 0.52c, which parameters hardly
matter and could be chosen very differently; these values were taken in
view of the m⊥ spectra we discuss below in section 8.4. We average over
positive and negative flows y‖ = ±1, since the collision in the CM frame
involves both. The strange-quark content of the Λ which contributes with
relative strength 33% suffices to yield a flat distribution – see the second
panel from the bottom in Fig. 8.7. The shape of the central rapidity
plateau is in agreement with the results seen in NA49 data, as well as
with those shown above in Fig. 8.4 for the NA35 S–S collisions.
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In the third panel from the bottom, corresponding to the 50%–50% flow
mix such as would be appropriate for K+(us̄), the resulting rapidity shape
is already peaked at the central rapidity. Finally, in the top panel, we
show a prototype of the rapidity distribution arising for all hadrons made
from completely newly made particles such as Λ and Φ. The measured Φ
spectrum is again in qualitative agreement with this result [21].
A comparison of the baryon distributions between Pb–Pb and S–S colli-

sion, seen in Fig. 8.6, suggests that y‖ is about 0.4 units of rapidity larger
in the lighter collision system. Even though it is seemingly a small change,
this opens by 50% the gap between the fluids, as we saw in Fig. 8.5, and
a more pronounced central-rapidity reduction in abundances of certain
particles is present for S–S compared with Pb–Pb collision systems.

8.4 Transverse-mass fireball spectra

The experimental study of the rapidity spectra is complemented by stud-
ies of particle-abundance distributions in the direction transverse to the
collision axis. Under a Lorentz transformation along the collision axis, p⊥
remains unchanged and thus

m⊥ =
√
m2 + /p 2⊥

is invariant. Transverse-mass m⊥-particle spectra are therefore not di-
rectly distorted by flow motion of the fireball matter along the collision
axis, and also no further consideration of the CM frame of reference is nec-
essary, which in fixed target experiments is rapidly moving with respect
to a laboratory observer.
There is also a great difference in the physics when we evaluate rapid-

ity and transverse-mass spectra. As discussed in section 8.3, the rapidity
spectra help us understand the degree of stopping and transparency of
matter in collision, whereas the m⊥ spectra offer insights into thermal-
ization of matter after collision, and evolution of flow. In that sense m⊥
spectra are often more interesting and also a greater challenge to describe
in an ab initio study. Within the statistical model the focus in studying
m⊥ spectra is on determining the local temperature and transverse flow
of the evolving fireball matter.
One could consider the particle spectra as functions of transverse-

momentum p⊥, but the regularities occurring for transverse-mass spectra
for different particles suggest that the spectra have a thermal character.
Therefore m⊥ is a better variable to use in heavy-ion collisions, at least
when m⊥ is not too big: particles with high values of m⊥ > 4 GeV, at
the temperatures we consider, are potentially produced in initial hard
scattering of partons. These decay in yield as a power law, and hence
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dominate the exponentially decaying thermal particle yields at high m⊥.
Since hard parton scattering knows nothing about the mass of the final
hadron observed, a better variable to look at to evaluate these processes is
p⊥. However, for m⊥ � m, there is little difference between p⊥ and m⊥,
so we conclude that m⊥ is overall the more suitable variable to consider
in heavy-ion collisions. One of the surprising early results obtained at
RHIC is the absence of high-p⊥ particles in central interactions [17]. This
suggests an effective parton thermalization mechanism.
In order to study the thermal properties in the fireball as ‘reported’

by the emitted particles, we analyze m⊥ spectra of many different had-
rons. The range of m⊥, on the one hand, should not reach very large
values, at which hadrons originating in hard parton scattering are rele-
vant. On the other hand, we do need relatively small m⊥, in order for the
non-exponential structure associated with transverse flow and resonance
decays to emerge.
The transverse-mass spectra of hyperons, which we have seen in Fig. 1.7

on page 20, are potentially very important in understanding and in mod-
eling of the exploding QGP fireball. We have already in the S–Au 200A-
GeV collisions the appearance of the exponential thermal spectra. The
central-rapidity high-transverse-mass spectra of strange particles, K0s , Λ,
and Λ, given by the CERN–SPS WA85 collaboration, m−3/2

⊥ dNi/dm⊥,
are shown in Fig. 8.8. The factor m−3/2

⊥ is introduced in view of the form
of Eq. (8.8). The resulting shape, shown in Fig. 8.8 on a semi-logarithmic
display, can be fitted with a straight line. This exactly exponential behav-
ior is initially surprising, considering that Eq. (8.8) required summation
over the entire range of rapidity, given the rapidity acceptance range of
WA85 limited to central ∆y < 1 interval. However, effective summation
over a wider range of y occurs, given the presence of collective longitu-
dinal flow of matter. Similar results were also reported from the related
work of the WA94 collaboration for S–S interactions [8].
We see, in Fig. 8.8, in the region of transverse masses presented, 1.5

GeV < m⊥ < 2.6 GeV, not only that the particle spectra are exponential,
∝ exp(−m⊥/T⊥), but also that the behaviors of all three different parti-
cles feature the same inverse slope, T⊥ = 232 ± 5 MeV. This is not the
actual temperature of the fireball, as noted earlier. The lower emission
temperature of these particles, Ttf , is blue-shifted by the flow as is seen in
Eq. (8.39), and can be approximately understood in terms of the Doppler
factor in Eq. (5.36).
The same shape of m⊥ spectrum appears in results from the WA80 col-

laboration results, for the neutral hadrons π0 and η. In Fig. 8.9, we show
the S–Au and S–S WA80 results at 200A GeV [28, 29, 234, 235], multiply-
ing the invariant cross sections by the power m−1/2

⊥ in order to establish
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Fig. 8.8. Strange-particle spectra for Λ, Λ, and KS [225]. The line connecting
the Λ and Λ spectra, denoted R−1

Λ , shows how at fixed m⊥ the ratio RΛ of
abundances of these particles can be extracted. Experimental WA85 results at
200A GeV [104, 116, 117].

a direct correspondence between the representations of the data of ex-
periments WA85 and WA80. To determine the required multiplicative
factor, we note that the particle-production cross section dσ is controlled
by the geometry of the collision, see section 5.2, and thus is the geometric
interaction surface, σinel, multiplied by the yield of particles dN . Using
Eq. (8.3) we obtain

m
−1/2
⊥ E

d3σ

d3p
= σinel

dN

2πm3/2
⊥ dm⊥ dy

. (8.41)

Like WA85, the WA80 experiment also presented data for the central
region in rapidity, 2.1 < y < 2.9, and no further adjustment is needed in
order to make the results exactly comparable.
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Fig. 8.9. Neutral-particle π0 and η spectra (invariant cross sections divided by
m
1/2
⊥ ) in the central-rapidity interval 2.1 < y < 2.9 [225]. Upper solid line, S–Au

thermal spectrum with temperature T = 232 MeV; lower solid line, S–S, T = 210
MeV. Experimental data at 200A GeV courtesy of the WA80 collaboration [28,
29, 234, 235].

The upper straight line (S–Au collisions) in Fig. 8.9 is the same expo-
nential as we saw in Fig. 8.8, for the three different WA85 strange-particle
spectra. While the WA85 data covered the interval 1.5 GeV < m⊥ < 2.5
GeV, the thermal exponential shape continues, in the WA80 data, through
the highest data point at m⊥ = 4GeV. The lower solid line in Fig. 8.9
is for S–S 200A-GeV interactions and is drawn with T = 210 MeV. The
choice of S–S temperature is based on the WA94 results obtained from
their spectra of strange antibaryons [8]. It is noteworthy that the WA80
particle spectra shown in Fig. 8.9 span seven decades, and that over 5–
6 decades the thermal spectral shape for neutral hadrons is in excellent
agreement with the strange-particle spectral shape. We note that the rise
in the yield of neutral mesons at low m⊥ � 0.5 GeV is expected. It is due
to secondary contributions to the yield of particles by decay of hadronic
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Table 8.1. Inverse (net) proton slopes T⊥ for various reaction systems at 200A
GeV (158A GeV for Pb–Pb), increasing in size from left to right

Reaction p–S p–Au d–Au O–Au

T⊥ 154± 114 163± 5 172± 5 219± 5
y interval 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0

Reaction S–S S–Ag S–Au Pb–Pb

T⊥ 235± 9 238± 2 276± 48 308± 15
y interval 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0 3.0 ≤ y ≤ 5.0 y � 3

resonances. While at high m⊥ pion, kaon, and hyperon slopes agree, at
small m⊥ < 0.8 GeV the pion spectrum is much steeper. Since most
pions are produced at these m⊥, a global fit to the pion data yields an
inverse slope parameter which is much smaller than the value we can see
in Fig. 8.9.
There is a clear difference between T⊥ inverse slopes pertinent to differ-

ent collision systems, and a systematic trend is visible: T⊥ increases with
the volume of the reaction zone. We show, in table 8.1, the m⊥ inverse
slopes of participating (net) protons for a number of collision systems
studied by the NA35/NA49 collaboration [26, 43]. The shape of the m⊥
spectra has been fitted to the simple form

dN

dm⊥ dy
∼ mα

⊥ exp(−m⊥/T ). (8.42)

The results presented in table 8.1 were obtained with α = 1. Several
effects contribute to an increase of T⊥ with increasing size of the collid-
ing system. With increasing number of participants in the collision, the
fireball of dense matter becomes less transparent and thus colliding mat-
ter can be compressed more at a given collision energy. Moreover, larger
systems have more time to develop the outward flow under the (higher)
internal pressure, acquiring a greater collective velocity. Thus, what we
see is that the initial fireball of the collision system is getting hotter
and denser with increasing collision volume, which leads to a longer, and
more violent explosion. This in turn enhances the transverse velocity at
the time of production of particles. An in-depth analysis, which requires
consideration of other particles apart from the (net) production of pro-
tons, confirms that the systematic increase of the inverse m⊥ slope with
increasing size of the system is associated with an increasing velocity of
expansion of the source. The intrinsic temperature of emission from the
fireball remains at the level of T � 160 MeV [59, 60, 176, 259].
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Table 8.2. Inverse slopes T⊥ for various strange hadrons

Λ Λ Ξ− Ξ+ Ω− +Ω+ φ

Pb–Pb 289± 2 287± 4 286± 9 284± 17 251± 19 305± 15
S–W 233± 3 232± 7 244± 12 238± 16

To reach the most extreme conditions, collisions of the heaviest nuclei
are required, and thus much of the experimental effort has gone into study-
ing the Pb–Pb collision system. The highest inverse slopes are reported
for several strange baryons and antibaryons by the WA97 collaboration
[42]. Results presented in table 8.2 were obtained using, in Eq. (8.42),
α = 1 for Pb–Pb, and α = 3

2 for the S–W collision system. The corre-
sponding spectra are shown in Fig. 1.7 on page 20. The most interesting
result seen in table 8.2 is that there is practically the same inverse slope
for baryons and antibaryons of the same type. This confirms the result
reported by the WA85 collaboration for S–W interactions [6, 118], as is
also shown in table 8.2.
The data point in table 8.2 for the φ(ss̄), in Pb–Pb collisions, is from the

evaluation of the kaon-decay channel by the NA49 collaboration [21]. This
data point disagrees with a preliminary result Tµµ = 227 MeV, which was
reported by the NA50 collaboration and obtained in the dimuon-decay
channel [212].
If strange baryons and antibaryons were to be produced in an envi-

ronment of baryon-rich confined matter, the difference in interactions of
antibaryons, which have a large annihilation cross section at small mo-
menta, should be visible as a baryon–antibaryon difference in the spectral
shape, in particular at small m⊥. The absence, to a very high precision,
of any transverse-mass spectral asymmetry between strange baryons and
antibaryons is a very important item of experimental evidence for a com-
mon mechanism of production of strange baryons and antibaryons by a
source such as a QGP fireball which treats matter and antimatter in the
same way. In order to suppress interactions within a hadronic-matter
phase possibly formed after the QGP state hadronizes, either a sudden
breakup of the fireball, arising after considerable super-cooling, or se-
quential evaporation of hadrons in time, without formation of a hadron
phase, is required. This symmetry between matter and antimatter has not
been reproduced in transport models, in which confined hadron degrees
of freedom appear.
In Fig. 8.10, we see, for Pb–Pb collisions at 158A GeV, results shown

in table 8.2 along with other inverse slopes T⊥ ordered as functions of
particle mass. Several different results are shown for pions, which arise
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Fig. 8.10. Mass dependences of inverse slopes observed in Pb–Pb interactions
at 158A GeV; symbols indicate the experiment from which data is drawn, as
coded in the figure.

for different (low) m⊥, y windows considered in different experiments.
Even so, there is some unresolved variance between different pion results.
Ten different hadronic particles with 0.9 GeV < m < 1.5 GeV exhibit
a common inverse slope indicated by the horizontal dashed line. There
is general agreement that the increase in the slope seen on comparing
pions, kaons, and baryons (obtained within an overlapping range of p⊥,
not of m⊥) is due to the presence of a strong transverse flow of matter
from which these particles originate [59]. The observation of a thermal
charmonium spectrum (the point at m = 3.1 GeV) both in S- and Pb-
induced reactions [11, 14], with m⊥ slopes similar to those for the other
heavy hadrons, suggests that thermalization of hadrons is a universal
phenomenon in heavy-ion collisions. The thermal shape of the observed
charmonium spectra is somewhat surprising considering the ‘standard-
model’ reaction picture of suppression of charmonium, see section 1.6.
The highest value of T in Fig. 8.10, at m = 1.9 GeV, for the deuteron,

confirms that these particles are not produced thermally. Production of
deuterons is believed to arise predominantly from the final-state interac-
tion between nearly free-streaming nucleons. The inverse slope for Ω and
Ω (at m = 1.6 GeV) seems to be about two standard deviations below
expectation. It is understood to be due to excess production of Ω and Ω
at low p⊥; see Fig. 8.11.
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Fig. 8.11. Thermal analysis of Λ (left) and Ω+Ω (right)m⊥ spectra for various
centralities of collision [259].

8.5 Centrality dependence of m⊥-spectra

A study of transverse-mass spectra [259] has been performed for the pre-
cisely known strange-hadron spectra of the experiment WA97 [42], re-
ported for several centrality bins; this data, with all centrality bins com-
bined, is shown in Fig. 1.7 on page 20. The shapes of the various particle
spectra depend in a complex, nonlinear, but unique, way, on the temper-
ature used, and on the velocity of transverse flow, and these parameters
are determined universally for all particles considered in each collision
centrality.
In an early study of hadron spectra it was suggested that spectra alone

could not separate Ttf and vtf , as these quantities are highly correlated;
see the Doppler formula Eq. (5.36). As we will see, these two parame-
ters can be determined without any need for other experimental input,
when precise experimental data are available for m⊥ spectra reaching
down to relatively low values of p⊥. This is possible for the following
reason: it is assumed that, after hadronic resonances have decayed, their
decay products do not rescatter from surrounding matter, thus the non-
thermal spectrum is combined with the primary thermal spectrum to
form the final observed spectrum. By choosing the yield of resonances
to be determined by the temperature seen in the spectrum, the shape
of the computed spectrum becomes a highly nonlinear function of tem-
perature and velocity. Since there is a minimum transverse momentum
required in order to observe a particle, the yields above pmin⊥ depend also
on the transverse-flow velocity. This method assumes that the chemical
(particle-production) freeze-out temperature Tf is assumed to be nearly
equal to the thermal (spectrum-shaping) freeze-out temperature Ttf . The
results obtained are consistent with this assumption.
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The finalm⊥ distribution for particles is composed of directly produced
particles and decay products originating in the ‘root’ particle R decaying
to the observed particle X and any Z, with variables R(M,MT, Y ) →
X(m,m⊥, y) + Z [238]:

dNX
dm⊥

=
dNX
dm⊥

∣∣∣∣
direct

+
∑

∀R→X+Z

dNX
dm⊥

∣∣∣∣
R→X+2+···

. (8.43)

Only first-generation, and only two-body, decays were considered, as is
appropriate for the hyperons and kaons. The decay contribution to the
yield of X is

dNX
dm2

⊥ dy

∣∣∣∣
R

=
gRbRX
4πp∗

∫ Y+

Y−
dY

∫ MT+

MT−

dM2
T J d2NR

dM2
TdY

. (8.44)

Here, gR and bRX are the R-degeneracy and branching into X, and p∗ =√
E∗2 −m2 with E∗ = (M2 −m2 −m2

2)/(2M), are the energy and mo-
mentum of the decay product X in the restframe of its parent R. The
limits on the integration are the maximum values accessible to the decay
product X:

Y± = y ± sinh−1
(
p∗

m⊥

)
,

MT± =M
E∗m⊥ cosh∆Y ± p⊥

√
p∗2 −m2

⊥ sinh
2∆Y

m2
⊥ sinh

2∆Y +m2
,

and

J =
M√

P 2Tp
2
⊥ − (ME∗ −MTm⊥ cosh∆Y )2

,

where ∆Y = Y − y.
The primary particle spectra (both those directly produced and parents

of decay products) are derived from the thermal Boltzmann distribution.
As discussed earlier in this chapter, in general the longitudinal flow does
not significantly influence m⊥ spectra. Thus it is possible, in order to
simplify the evaluation of integrals, to disregard longitudinal flow and to
allow spherical symmetry of the transverse flow. A second hadronization-
surface ‘velocity’ seen in Eq. (8.39), v−1

f ≡ dtf/dxf , was considered. Thus
the thermal distribution of directly produced and parent particles R had
the form

d2N

dm⊥ dy
∝
(
1−/v−1

f · /p
E

)
γm⊥ cosh y exp

[
−γE

T

(
1−/v · /p

E

)]
, (8.45)

where γ = 1/
√
1− v2.
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Fig. 8.12. The thermal freeze-out temperature T (left), flow velocity v (bottom
right), and breakup (hadronization hyper-surface-propagation) velocity vf (top
right) for various collision-centrality bins. The upper limit vf = 1 (dashed line)
and chemical-freeze-out-analysis limits for v (solid lines) are also shown. For
the temperature, results obtained with increased error for kaon spectra are also
shown.

Simultaneous analysis of the spectra of Λ, Λ, Ξ, Ξ, Ω + Ω, and KS =
(K0 + K0)/2 in four centrality bins was performed. In each centrality
bin pronounced minima in T, vf and v plane are observed for the total
statistical error:

χ2 =
∑
i

(
F theoryi − Fi

∆Fi

)2
,

evaluated relative to the experimental precision of measurement ∆Fi of
the result Fi. The chemical parameters, which are not well determined
by a momentum-distribution fit, are not varied. Since the statistics of
kaons was very high, and thus the statistical precision of data potentially
was significantly greater than systematic error, also a global fit with a
five-fold-increased kaon error was performed [259].
Some of the resulting m⊥ spectra for particles are shown, in Fig. 8.11,

in each part for the four bins separately. On the left-hand side, we see
as an example the Λ spectrum. The description of the shape, in all four
centrality cases, is very satisfactory, also for all other particles consid-
ered, except for Ω + Ω in the right-hand panel in Fig. 8.11. In all four
centrality bins for the sum Ω+Ω, the two lowest m⊥ data points are un-
derpredicted. This low-m⊥ excess explains why the inverse m⊥ slopes
for Ω and Ω are reported to be smaller than the values seen for all
other strange (anti)hyperons in Fig. 8.10. This behavior suggests that
soft Ω and Ω are produced in a significant manner by mechanisms be-
yond the statistical model, which we discuss further at the end of sec-
tion 19.3.
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The parameters shaping the spectral form, which arise in this descrip-
tion of hyperon m⊥ spectra, are shown in Fig. 8.12, on the left-hand side
the thermal freeze-out temperature Ttf , and on the right-hand side the
transverse velocity v (bottom) and the breakup (hadronization) speed pa-
rameter vf (top). The value of vf is near to the velocity of light, which is
consistent with the picture of a sudden breakup of the fireball. The hor-
izontal lines delineate the ranges of the result of chemical particle-yield
analysis, and are similar to those presented in table 19.3 on page 360. The
range of values of T seen in this table is slightly different as the results
presented were updated. The m⊥-spectral-shape analysis is found to be
consistent with the purely chemical analysis of strange and non-strange
hadron production.
An important objective of this complex analysis is to see whether differ-

ent centrality bins yield results consistent with the same physics. There
is no indication, in the left-hand panel of Fig. 8.12, of a significant or
systematic change of T with centrality, or dominance of the result by
the kaon spectrum alone. The resulting temperature, here dominated by
the thermal shape, agrees with the temperature obtained from analysis
of particle yields alone, table 19.3, which is dominated by the chemical
freeze-out temperature.
The flow (expansion) velocity v (lower part of the right-hand panel of

Fig. 8.12), even though it is flat to within the experimental error, reveals a
slight but systematic increase with centrality, and thus size of the system.
This is expected, since the more central events involve a greater volume
of matter, which allows more time for the development of the flow.
For all four centralities these results show that there is no need to in-

troduce a two-staged freeze-out; in fact, we can conclude that Ttf � Tf .
The myth of unequal thermal and chemical freeze-out temperatures is
rooted in the high temperature obtained in chemical-equilibrium anal-
ysis of hadron yields. However, results of such an analysis of the ex-
perimental data lack the required statistical confidence, even though the
systematic behavior of the particle production data is well reproduced,
as we shall discuss at the end of section 9.2. Specifically, once a fully
descriptive set of parameters is introduced, allowing for precise data de-
scription, thermal and chemical freeze-out conditions are found to be the
same.
The results of the analysis described in this section are consistent with

strange hadrons being produced by the new state of matter at CERN
in all centrality bins explored by the experiment WA97, i.e., for num-
bers of participants greater than �100. The low-centrality fifth bin, now
being studied by experiment WA57, see Fig. 9.5 [87], exhibits different
characteristics, with less enhancement of the production of multistrange
hadrons.
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Fig. 9.1. The abundance of 1.6Λ + 4KS + 1.6Λ as a function of rapidity. On
the left, S–S; on the right, S–Ag (open circles are the directly measured data).
The triangles are reflected data points for S–S and reflected interpolated data
employing S–S and S–Ag. The squares in the S–S case are the results for N–N
collisions scaled up by the pion-multiplicity ratio; for S–Ag these are the scaled-
up p–S results. Data courtesy of the NA35 collaboration [128].

9 Highlights of hadron production

9.1 The production of strangeness

Strangeness is a valuable tool for understanding the reaction mechanism,
since it has to be made during the collision. The question is that of
how it is produced. In terms of experimental information, the first thing
we would like to establish is whether the mechanism producing stran-
geness involves a hot fireball at central rapidity, or whether perhaps a
lot of strangeness originates from the projectile/target-fragmentation re-
gion.
Results of the experiment NA35 [128] are shown in Fig. 9.1 as functions

of rapidity for the case of S–S 200A-GeV collisions. We consider the over-
all abundance of 〈s + s̄〉. The open circles are the measured data points,
the open triangles are the symmetrically reflected data points, and squares
on the left-hand side are the results of N–N (isospin-symmetric nucleon–
nucleon) collisions scaled up by the ratio in pion multiplicity, whereas on
the right-hand side the p–S results are scaled up. We show the rapidity
yield obtained by integrating the transverse-mass m⊥ distribution for the
total yield of strangeness:

d〈s + s̄〉
dy

= 1.6
dΛ
dy
+ 4

dKS
dy

+ 1.6
dΛ
dy

. (9.1)

We note that, on doubling the KS yield, we include KL, and, on doubling
again, we add both K+ and K−, which explains the factor 4.



160 Particle production

−

WA94

Ξ  + Ξ 
Λ + Λ

+

UA5 AFS

A
R

G
U

S
C

L
E

O
H

R
S

M
A

R
K

 I
I

TA
SS

O
T

C
P

p  p−+

0.2

0.1

0

+Ξ /Λ

−e   e− p  p−

Ξ /Λ+ Ξ /Λ−Ξ /Λ+ Ξ /Λ−

S  W− S  S−

WA85
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abundances, measured in the central rapidity region for 200A-GeV S–S/W col-
lisions, compared with ratios obtained in lepton- and nucleon-induced reactions.
Data assembled by the WA85/94 collaboration [1–5, 7].

In Fig. 2.6 on page 32, we saw that a factor 1.5 allows one to extrapolate
the yields of Λ and Λ to include all singly strange hyperons. However,
there is also strong production of multistrange Ξ and Ξ, with Ξ−/Λ �
0.1 and Ξ+/Λ � 0.2, as is seen in Fig. 9.2. Assuming similar rapidity
distributions for Ξ− and Λ and Ξ+ and Λ, and remembering that, for
each charged Ξ, there is its neutral isospin partner, this implies that the
coefficient of Λ should have been 1.9, and that of Λ 2.3, in order to account
for the production of multistrange hyperons. Thus the enhancement in
production of strange particles seen in Fig. 9.1 is slightly (by � 6%)
understated.
The difference between scaled N–N and S–S data is most pronounced

at central rapidity (yCM = 2.97), and it disappears within one unit of the
projectile- and target-fragmentation regions. At central rapidity y � 3,
a new source of strangeness not present in the N–N-collision system con-
tributes. The S–S system is relatively small, thus stopping is small, and it
is quite impressive that the enhancement in production of strangeness is
observed only at central rapidity. Since other SPS experiments involved
heavier nuclei and/or lower energy, and thus certainly involved more stop-
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ping, we can be sure that the excess of strangeness at the SPS originates
at central rapidity.
We show, in the right-hand panel of Fig. 9.1, similar results for S–Ag

collisions: the open circles are the measured points, open triangles are
estimates based on S–S and the ‘reflected’ S–Ag results, and the open
squares are pion-multiplicity-scaled p–S results. An enhancement in pro-
duction of strangeness is also seen here, though the asymmetry of the
collision system makes it more difficult to understand the effect quantita-
tively.
The abundant strangeness, in the central rapidity region, is at the origin

of the effective production of multistrange antibaryons. The WA85 and
WA94 collaborations [1–5, 7] explored the relative abundances at central
rapidity of the various strange baryons and antibaryons produced in S–W
and S–S reactions. The central-rapidity particle ratios have been obtained
at p⊥ ≥ 1GeV. The results for relative abundances are reported when
yields of particles of unequal masses are compared, both with p⊥ ≥ 1
GeV and using as cutoff a fixed value of m⊥ ≥ 1.7GeV. The results
at fixed p⊥ are shown in Fig. 9.2. In the left-hand panel, we see the
annihilation and production results from e+–e− and p–p̄ reactions, in the
middle panel, we see the ISR–AFS p–p measurement of Ξ/Λ, which is a
factor of five below the S–W and S–S result, even though the ISR energy√
sNN was nearly four times higher than is available at the SPS. In S–S

and S–W interactions a clear enhancement of the Ξ+/Λ ratio is observed,
which has been predicted as a signature of the QGP [215, 226].
A more extreme picture of the enhancement is found when we compare

the yields of various hyperons at fixed m⊥, as would be done in a thermal
model considering coalescence of quarks to give hadrons. This means
that, on comparing, e.g., Ξ with Λ, we are looking at particles at different
p⊥. The experimental results reported by the WA85 collaboration, for
S–W interactions at 200A GeV, are at ‘fixed m⊥’:

Ξ−

Λ + Σ0

∣∣∣∣∣
m⊥

= 0.4± 0.04 , Ξ−

Λ + Σ0

∣∣∣∣
m⊥

= 0.19± 0.01. (9.2)

We introduce the average singly strange hyperon yield Y(qqs), which at
fixed m⊥ is the same for all components:

Y = Λ = Σ0 = Σ+ = Σ−. (9.3)

Thus, the actual antihadron ratio is indeed twice as large as that mea-
sured:

Ξ−

Y

∣∣∣∣∣
m⊥

� 0.8± 0.1 . (9.4)
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collaboration [46, 47, 138].

We now consider the quark content:

Ξ
Y

∣∣∣∣
m⊥

=
s̄s̄q̄
s̄q̄q̄

∣∣∣∣
m⊥

=
s̄
q̄

∣∣∣∣
m⊥

� 0.8. (9.5)

We see that, at the time of production of antihyperons, there has been
comparable availability of antiquarks at high momentum, ū = d̄ = 1.2s̄.
This result is hard to explain other than in terms of QGP, for which,
at the values of statistical parameters applicable here, near to chemical
equilibrium all three antiquark flavors are at nearly equal abundances.
Since the abundance of light quarks comprises valence quarks, it is twice
as large, as can be seen in Fig. 10.3 on page 203, u = d � 2.5s, consistent
with the half as large baryon ratio seen on the right-hand side of Eq. (9.2).
These results involving the abundances of multistrange antibaryons have
not been explained in terms of hadron-cascade models.
Consistent with this result is the observation of the NA35 collaboration

[24, 25, 54] regarding the Λ/p̄ ratio. In Fig. 9.3, we show this ratio as a
function of the negative-hadron rapidity density dn/dy|h− at central y.
The p–p and p–A reactions are at small values of dn/dy|h− , whereas
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the S–S, S–Ag, and S–Au reactions are accompanied by a relatively high
dn/dy|h− . We observe that there is an increase in this ratio by nearly a
factor five, and, even more significantly, the abundance of the heavier and
strange Λ is similar to if not greater than the abundance of p̄.
The enhancement in production of strange hyperons and antihyperons

can be studied by comparing it directly with the yield seen in p–A inter-
actions. For this purpose, one obtains specific yields of strange particles
‘sp’, normalized with respect to the yield of negative hadrons h−. These
can be compared with such yields in proton-induced interactions, i.e., we
look at the enhancement Eis in production of a strange particle i defined
as

Eis ≡
Y isp(S–A)
Y isp(p–A)

, (9.6)

where i = (Λ,Λ,Ξ,Ξ). The results are presented in Fig. 9.4 [41]. We see
an enhancement of this specific yield in nuclear interactions, compared
with p–A collisions, and this enhancement increases with increasing stran-
geness content. The stronger enhancement in production of multistrange
hadrons is expected for hadronization involving enhancements in yield
and density of strangeness compared with p–A interactions.
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Fig. 9.5. Yields Y per wounded nucleon 〈N〉 in Pb–Pb relative to p–Be collisions
from WA97 [41] (solid data points), and from NA57 for Ξ− and Ξ

−
[108] (open

data points).

This presentation of enhancement in production of strange hadrons
understates the magnitude of the effect since it is diluted by the overall
enhancement of the yield of h−, which is also expected to arise due to
the enhancement of entropy in QGP, see section 7.1. Therefore a method
to extrapolate the yields from p–A interactions to A–A interactions was
devised, by scaling with the number of participating (wounded) nucleons
〈N〉 [41]. The Pb–Pb 158A GeV results of the WA97 collaboration are
shown in Fig. 9.5, using the p–Be interaction results as reference. Solid
points are the four centrality bins considered. We have presented some
of these results in Fig. 1.6 on page 19. The absolute enhancement in
production of strange particles compared to the p–Be extrapolated yields
increases strongly with the strangeness content.
In order to understand whether there is a threshold for the enhance-

ment to occur, the experiment NA57 has repeated the measurement of
the experiment WA97, and has extended the reach by studying more pe-
ripheral collisions. In the most peripheral fifth data bin the number of
participants is 60. At this time, only the Ξ− and Ξ− NA57 data for Pb–
Pb are available, as is seen in Fig. 9.5. The rapid drop in enhancement of
the production of Ξ− is most remarkable, and, if it is confirmed in, e.g.,
Ω results, this can be seen as definitive evidence for a rather sudden onset
of the formation of QGP as a function of the size of the system.
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We do not yet have a similar measurement for the onset of the enhance-
ment as a function of energy. The specific production of strangeness per
hadron is shown in Fig. 1.5 on page 17. However, there is a rapid change
in hadron yield with energy, thus this result, as we have discussed in sec-
tion 1.6, is not fully representative of the energy dependence of strangeness
production. Another complication with the study of the energy depen-
dence is the presence of the energy threshold for antibaryon production.
Thus the energy dependence of the enhancement in production of strange
antibaryons has to be evaluated, not with reference to the p–A reaction
system, but entirely within the A–A system. The low-energy measure-
ment, presumably under pre-QGP conditions, can be used to establish a
basis against which the production at higher energy can be studied. In
such a measurement, we can hope and expect to see a sudden onset with
energy of the yield of multistrange (anti)baryons, if indeed a new state of
matter is being created.
Another important topic in the production of strange hadrons, is the

symmetry of particle and antiparticle spectra seen in Fig. 1.7 on page 20.
As discussed, see table 8.2, the fitted inverse-slope parameters agree at
the level of 1%, when statistics is good enough: TΛ = 289 ± 3 MeV, to
be compared with TΛ = 287± 4 MeV [42]. There is no evidence for any
difference at small momenta, for which the annihilation reaction would
be most significant. Thus we can literally ‘see’, in Fig. 1.7, that these
particles are escaping from the central fireball without further interaction
with hadronic gas.

9.2 Hadron abundances

Despite the relative smallness of the S–S collision system, and the highest
available fixed-target heavy-ion energy, the remarkable difference between
Λ and Λ rapidity distributions, shown in Fig. 8.4, proves that neither is
the baryon-punch-through Bjørken reaction picture applicable, nor do we
see stopping of the valence quarks in the central region, as we discussed
in section 8.3. How does the situation look for nonstrange hadrons? In
Fig. 9.6, we see the rapidity distribution of negative particles h−, which
comprise π−, K−, and p̄, shown per collision event for the 5% most central
Pb–Pb 158A-GeV collisions (full triangles), 3% most central S–S 200A-
GeV collisions (stars, multiplied by factor 6.5), and the N–N interactions
(full dots, multiplied by a factor 176) [43]. Detailed study of the chemical
composition of hadrons produced in these experiments, section 19.3, leads
to an estimate that the π− make up 92% of these particles, K− make
up 6.6%, and p̄ contribute 1.1% in Pb–Pb fixed target interactions at
159A GeV.
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The abundance of h− produced in the Pb–Pb reactions can be obtained
from Fig. 9.6. On fitting the h− distribution to a Gaussian shape,

dn

dη
= n0e

−(y−yCM)2/Γ,
σ2

2
= Γ, (9.7)

one finds σ � 1.4 (half width at half maximum). The integral of the
distribution gives the total multiplicity of all negative hadrons, after an
additional minor correction [43]: 〈h−〉 = 695± 30. Thus, in geometrically
central Pb–Pb 158A-GeV interactions, the total hadron multiplicity is
nearly 2400 per event, when we allow for positively charged and neutral
hadrons. Since the maximum negative-hadron abundance at y = 0 is
dh−/dy|max � 200, we also have dnh/dy|max � 680 in these events.
To compare with Pb–Pb data, the S–S yields have been scaled up by a

factor 6.5, this factor arising from the ratio of participants, which are in
Pb–Pb measured to be 352± 12, and in S–S 52± 3. A further factor 0.96
is introduced by the NA49 collaboration to account for the difference in
collision energy, which is somewhat higher in the S–S system. However,
no correction for the fact that S–S is proton–neutron symmetric and Pb–
Pb asymmetric was made. This correction may be significant since π− is
the carrier of the excess in valence d quarks, and there are 80 more d–d̄
present than u–ū. Given that 〈h−〉 � 700, an enrichment of π− by valence
quarks of projectile and target could reach a non-negligible level of 10%.
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Were this ‘isospin’ correction introduced, it would perhaps be difficult to
distinguish the Pb–Pb from S–S results in Fig. 9.6, and both are notably
greater than the N–N-based expectations: the observed yields have been
scaled by the factor 176 which is the ratio of Pb–Pb to N–N participants.
We conclude that, both in Pb–Pb and in S–S collisions, we observe a
similar per participant central rapidity excess in hadron multiplicity, and
thus also an excess in production of entropy; see chapter 7.
The relevance of the 40% excess in production of h− in A–A collisions

at SPS energies is amplified by the opposite behavior seen at the lower
AGS energies, for which there is a 20% suppression compared with the
scaled nucleon–nucleon results. One can qualitatively argue about the
AGS result obtained at much lower energies as follows: whereas in N–
N reactions all pions produced reach the detectors, pions produced in a
series of N–N collisions at the AGS are deposited in dense baryonic matter,
where some can be absorbed. Moreover, a notable amount of the available
collision energy is used to do work to compress colliding nuclear matter,
and this energy is not available to produce pions, a point already noted
in early work with relativistic heavy ions [233]. We will not pursue the
implications of the suppression of pion production at fixed-target collision
energies below 15A GeV, for the study of the nuclear-matter equations of
state.
Since there is a change in pattern of behavior of pion production as

a function of the collision energy, we consider in a more systematic way
whether this can be understood in terms of a general change in pattern
of behavior as a function of collision energy. Gaździcki [126] proposed to
explore this effect as a function of the Fermi-energy variable [121, 172, 174]

F ≡ (
√
sNN − 2mN)3/4

(
√
sNN)1/4

, (9.8)

where
√
sNN is the CM energy for a nucleon–nucleon pair and mN is the

nucleon mass. There are several advantages in using F as an energy
variable. The measured mean multiplicity of pions in N–N interactions
is approximately proportional to F [127]. In the Landau model [172,
174], both the entropy and the initial temperature of the matter (for√
sNN � 2mN) are also proportional to F .
In Fig. 9.7, we see the average yield of all pions 〈π〉 per average par-

ticipating nucleon 〈Np〉. The data is from [127], with the most recent
results presented in [254]. The lower straight line follows open diamonds,
which are results from N-N interactions, whereas the upper line follows
the high-energy SPS (squares) and RHIC (open crosses) results. The
cross over from the one behavior to the other is seen at the lower range of
SPS energies, whereas the AGS results (triangles) indeed fall below the
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Fig. 9.7. The per-participant average yield of pions 〈π〉/〈Np〉 as a function of
the Fermi-energy variable F , results from A–A and N–N interactions.

N–N results. Both high-energy SPS and RHIC results are seen to follow
the ‘high-entropy’ branch (see chapter 7), which differs clearly from the
low-entropy reactions at the AGS and in N–N collisions.
Not only the yield of pions harbors a mystery. The shape of the SPS

rapidity distribution for hadrons, see Fig. 9.6, is not fully understood
today, and we can not convincingly explain why there is so little differ-
ence in shape among the three reactions shown. Generally, one would
expect the h− yield in S–S reactions to be ‘wider’ in rapidity than that
for Pb–Pb collisions. Instead, what we see in Fig. 9.6 is that the rapid-
ity shape of h− produced in N–N reactions is the same as that observed
in Pb–Pb reactions, apart from an additional central-rapidity contribu-
tion. However, we recall the qualitative study seen in Fig. 8.5, along
with the observation that about half of all pions observed are actually
decay products of hadronic resonances. The dilemma in understanding
this distribution is in fact one of the reasons that encourages us to focus
on the study of particle spectra that are fully made of newly created mat-
ter, such as Λ, see Fig. 8.4. These are clearly a more sensitive, and less
model-dependent, probe of novel physics occurring in the central rapidity
region.
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Fig. 9.8. Particle ratios (experimental dots) seen in A–A 200A-GeV reactions
for various particle species (shown in horizontal order), compared with the pre-
diction of the thermal model for two different freeze-out temperatures and quark
fugacity λq = 1.42 [82].

Further below, we will return to consider, in Fig. 9.19, the rapidity dis-
tribution of all charged hadrons observed at the nearly eight-fold higher
RHIC energy. There is some spreading of the distribution, which need
not be entirely due to the rapidity-versus-pseudorapidity effect we dis-
cussed in Fig. 8.3, originating most probably from the expected onset of
transparency and outflow of baryon number from the central region.
The spectra of many identified hadronic particles have been measured

over sufficiently large ranges of rapidity and transverse mass to allow ex-
trapolation to cover all of the relevant kinematic domain, and the total
particle-production yield can be established. The total yields of parti-
cles are not dependent on the deformation of the spectra arising from the
collective flow motion within the source. Consideration of relative abun-
dance ratios eliminates biases from the various experimental set-ups, in
particular the event trigger bias cancels out.
We show the compilation of CERN (200A-GeV) and AGS (14A-GeV)

data in Figs. 9.8 and 9.9, in a procedure in which chemical-yield equi-
librium of hadron abundances is assumed in a statistical model. In some
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Fig. 9.9. Particle ratios seen in A–A 14A-GeV reactions (solid lines) for vari-
ous particle species compared with the prediction of the thermal model for two
different freeze-out temperatures and quark fugacity λq = 4 [82].

cases seen in these figures, the experimental errors are smaller than the
size of the experimental ‘dot’.
We see that the particle ratios span typically several decades, yet the

systematic pattern of theoretical and experimental results coincides. Thus,
the production of hadronic particles occurs, without doubt, near to the
chemical equilibrium. We note that the two chemical freeze-out (particle-
production) source temperatures used were T = 160 and 170 MeV for
200A-GeV data and T = 120 and 140 MeV for the AGS 14A-GeV results.
Other parameters used in Figs. 9.8 and 9.9 include, for 200-GeV data, the
quark fugacity λq = 1.42 and, for 14-GeV data, λq = 4. Conservation of
strangeness is imposed as a constraint, i.e., the number of strange quarks
and antistrange quarks, in different hadrons, balances exactly. We will
discuss how to perform this calculation in chapter 11.
The first impression we have is that we see a rather good system-

atic agreement in the behavior of the particle yields with this statisti-
cal equilibrium-abundance model: almost all gross features of the data,
for both sets, are well reproduced. Before we proceed, let us therefore
pause to wonder if we should abandon the kinetic, i.e., collisional theory
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of particle production, and focus solely on the experimental fact that the
observed hadronic multiplicities are the result of a preestablished statis-
tical distribution, which works so well. In a sense, this finding confirms
a 15 year-old prediction that such a result can be naturally explained in
terms of a dynamic theory of a transient deconfined state hadronizing in
a coalescence model [166]. Only a detailed study of the subtle deviations
in hadron yields from precise statistical equilibrium yields allows one to
understand the hadronization mechanism [69], and therefore ultimately
also to explore the properties of the hadronizing QGP state.
Indeed, looking closer at Figures 9.8 and 9.9, we see systematic devia-

tions involving, in particular, (multi)strange particles: in the 200A-GeV
data the yield anomalies mostly involve strange antibaryons. The net
deviations in the total hadron yields are in fact greater – for example,
were the chemical freeze-out condition set to reproduce, in the 200A-GeV
case, the ratio Λ/(p − p̄) exactly, we would have enhanced the disagree-
ment in the ratio Λ/p̄ further. There is clear evidence, in these two
figures, that yields of strange particles require greater attention, beyond
chemical-equilibrium mode, and we devote much of our effort in this book
to understanding the physics behind this phenomenon.
Figures 9.8 and 9.9 demonstrate that the yields of strange antibaryons

compared to non-strange hadrons in general vary between 50%–150% of
the chemical-equilibrium yield. This strangeness ‘fine structure’ yield
variation is one of the reasons that the measurement of abundances of
rarely produced (strange)antibaryons is an excellent diagnostic tool in
the study of the properties of the dense hadronic matter, as we have
discussed above and in section 2.2. For this reason, we will discuss the
production of strangeness and strange antibaryons as signature of QGP
in considerably more detail in part VI.

9.3 Measurement of the size of a dense-matter fireball

An important aspect of hadron-production studies is the measurement
of two-particle Bose–Einstein correlations, which permits one to evaluate
the size of the space–time region. Also Fermi–Dirac correlations can be
considered, but practical considerations have favored the measurement of
the positive-boson interference. The two-particle intensity interferometry
originates from the ambiguity in the path between the source and the de-
tector for indistinguishable quantum particles. The two-particle intensity
method was developed by Hanburry-Brown and Twiss as means of deter-
mining the dimensions of distant astronomical objects, and is referred to
in short hand as ‘HBT’; see [75] and references therein.
HBT analysis is today a wide subject of specialization, which could fill

this book. We will briefly introduce the method of analysis and present
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Fig. 9.10. HBT interference: detectors A and B see quantum waves emitted
from different source locations 1 and 2 differently.

some recent results. In Fig. 9.10, we illustrate an uncorrelated source
of particles π1 and π2, with momentum p1 and p2, emitted from some
points 1 and 2, respectively, within an emission region (the shadowed
region in Fig. 9.10). Particles are counted at points A and B. When two
observed quantum particles are identical, two indistinguishable histories
are possible, drawn with full and dashed lines, respectively, in Fig. 9.10.
The intensity-interference pattern is observed as an enhancement in

the number of like-particle (boson) pairs originating from a single source,
normalized with respect to a random sample of particles from two different
interactions. This enhancement is studied by means of the two-particle
correlation function,

C2(pA, pB) =
ρ(A,B)

ρ(A) ∗ ρ(B) , (9.9)

where the numerator represents events with particles registering in both
detectors, and the denominator the number of pairs of uncorrelated par-
ticles. If no correlation in particle intensity exists, the counts in both
detectors are independent, which means that ρ(A,B)→ ρ(A) ∗ ρ(B).
The correlation function is in principle dependent on the momenta of

both particles observed. A first simple measure of the size of the source
is obtained by considering C2 for similar transverse momenta of both
particles. Summing over all other variables (‘projecting’), one finds that,
as a function of the difference in transverse momenta /q⊥ = /pA,⊥ − /pB,⊥,
C2(pA, pB) exhibits a clear correlation peak near q⊥ = 0.
More generally, the shape of the enhancement as a function of the avail-

able momentum variables contains information on the geometric source
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parameters and thus both the size and the shape of the source, and, when
models are considered, also its dynamic evolution. The difference in mo-
mentum for pions /q = /pA − /pB, can be decomposed using as a reference
vector the sum of the pion momenta (the pair momentum) /p = /pA + /pB,
as well as the collision axis of nuclei. The ‘longitudinal’ direction ‘l’ with
corresponding difference in momentum ql is also referred to as the ‘beam’
direction, as is appropriate for fixed-target experiments.
The ‘out’ component of the transverse-momentum-difference vector /q⊥

(as before, transverse with respect to the beam axis) is the projection
onto the pion-momentum axis of /q⊥:

qo =
/q⊥ · /p⊥
|/p⊥|

. (9.10)

The ‘side’ component qs is the remaining second component of /q⊥ and its
magnitude is

qs =
√
/q 2⊥ − q2o. (9.11)

In the fits of the correlation functions, one likes to sharpen the definition
of the longitudinal (beam) component, considering that /p is in general
not normal to the axis,

q2l = q2z − q2o +
poqo − pzqz
p2o − p2z

, (9.12)

where qz is the magnitude of the difference in momenta for the pair along
the longitudinal (beam) axis, and pz is the same component of the sum
of momenta of the pair.
The correlation C2 is fitted to the form comprising three source-shape

parameters Ri:

C2 = D
(
1 + λe−(q

2
oR

2
o+q

2
sR

2
s+q

2
l R

2
l )
)
. (9.13)

Here∗, 0 ≤ λ ≤ 1, and, for the ideal HBT situation, λ = 1. Other
geometric parametrizations have been considered, and also further inter-
ference terms between the geometric parameters in Eq. (9.13) have been
introduced [272].
The interpretational situation in heavy-ion collisions is complicated

by the finite lifetime, and the strong dynamic evolution of the particle-
emitting source. Thus detailed interpretation of the observed correlations
between the particles produced requires development of model-dependent
understanding, and a considerable amount of effort continues to be de-
voted to the interpretation of the data. Generally, the following hypothe-
ses are made regarding the source of particles:

∗ In this section λ is not a fugacity.
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1. emission of particles is chaotic;
2. correlated particles do not arise primarily from decay of resonances,
though a strong resonance input is expected for pion correlations;

3. particles do not interact subsequent to strong-interaction freeze-out –
corrections for Coulomb effects are often applied; and

4. kinematic correlations, e.g., conservation of energy–momentum, are of
no relevance.
A considerable wealth of available experimental results leads to a few

conclusions of relevance to the understanding of the reaction mechanisms
operating in relativistic nuclear collisions.
• No evidence is found for a major expansion of the hadronic fireball,
which would be required, e.g., for a (long-lived) mixed (HG/QGP) in-
termediate phase. The nuclear-collision geometry determines the size
of the source for pions and kaons.

• The size of the particle source is similar though a bit smaller for strange
(kaons) than it is for non-strange particles (pions). Thus the conditions
for production of these rather different particles are surprisingly similar.

• There is a proportionality of the central hadron multiplicity yield to
the geometric volume of the source.

• Evidence for the occurrence of transverse flow of the particle source is
seen.

These results are consistent with a reaction picture in which the (de-
confined) fireball expands and then rather suddenly disintegrates and
hadronizes. In such a process even the momentum freeze-out of final-
state particles occurs at a relatively early stage of the evolution of strongly
interacting matter.
Figure 9.11, compiled by the STAR collaboration [18], shows the exper-

imental results, i.e., parameters introduced in Eq. (9.13), as functions of
the collision energy

√
sNN for pion-intensity interferometry. These results

of diverse experimental groups (see the top of the figure) are only com-
patible with a compact pion source being present at all reaction energies.
While this is expected for the lower AGS energies, at which the fireball
of nuclear matter is expected to have nuclear size, the actual slight de-
crease in size seen at the RHIC with

√
sNN = 130 GeV and CERN–SPS

with
√
sNN = 17 GeV implies that, despite a rapid observed expansion of

the fireball, there is even more sudden production of hadrons without an
extended period of hadronization.
As a function of collision energy, we see in Fig. 9.11 that the parameter

λ ≤ 1 falls smoothly and rapidly from unity (the ideal expected value for
an incoherent source) to about 0.5 at the RHIC; this decrease is attributed
partially to an increase in the fraction of pions arising from hadron reso-
nances at higher energies. λ is also affected by several experiment-specific
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Fig. 9.11. Sizes of fireballs of excited nuclear matter derived from pion-
correlation analysis, compilation and RHIC result by the STAR collaboration
[18].

background effects and thus the physics of this behavior is not explored
in depth.
The two parameters Rs and Ro correlate most directly to the geometry

of the emitting source. This is illustrated in Fig. 9.12. The source of pions
is here presumed to be a shallow surface structure; the ‘out’ direction is
toward the eye of the observer. If the source is longitudinally deformed,
and the observer is at a more transverse location, the effect is amplified
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Fig. 9.12. Surface hadronization offers a possible explanation for why the HBT
‘side’ radius Rs can be larger than the radius measured out toward the eye of
the observer, Ro.

by the geometry of the source. In contrast to this situation, simulations
involving a long-lived phase of pion matter with pions originating from the
volume of the fireball of dilute matter lead to Ro/Rs > 1. Experimental
results, seen at the bottom of Fig. 9.11, deviate from this expectation
most clearly at RHIC energies.
Ro/Rs � 1 signals a rather short duration of pion production: one can

show that, when spatio-temporal correlations vanish, δ ≡
√
R2o −R2s is

a measure of the life span of the emitting source, which, as can also be
seen in Fig. 9.11, is not as large as the equilibrium hadronization models
require. The source volume R2sRl is found to increase along with the
total produced multiplicity of particles, as the centrality of the collision
is varied at RHIC energies.
In addition to the overall behavior shown in Fig. 9.11, the STAR col-

laboration notes that the size parameters decrease significantly with in-
creasing m⊥ of particles. In that regard, the m⊥ dependence at the RHIC
is similar to, but stronger than that observed in central Pb–Pb collisions
at the CERN–SPS facility. This suggests that the emission of hadrons at
the RHIC is occurring from a more rapidly expanding surface source than
is the emission at the SPS.

9.4 Production of transverse energy

So far, we have been describing production of hadronic particles and par-
ticle spectra. However, it is almost always simpler to measure the total
‘flow’ of energy contained in the various particles, rather than abundances
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of the many kinds of particles. The energy distribution can be used to
determine the extent to which energy from the longitudinal motion of
the colliding nuclei participates in the nuclear interaction. This is most
easily done by considering the energy emitted in the transverse direc-
tion.
Since fragments of projectile and target contaminate the longitudinal

flow, it is the transverse to the beam axis component of energy which is
considered as a suitable measure of the amount of CM energy, Eq. (5.2),
made available in the reaction for production of particles. Therefore, one
studies the distribution of the energies of the particles, weighted by the
sine of their angle θi with the beam axis (see Fig. 5.6), which is called the
transverse energy,

E⊥ =
∑
i

Ei sin θi. (9.14)

The resulting distribution of transverse energy produced, dE⊥/dθ, as a
function of the angle θ, can be converted into a distribution in pseudora-
pidity η by employing Eq. (5.25).
Experimentally, dE⊥/dη is determined with the help of a segmented

calorimeter: particles entering a segment, covering a range of θ, deposit
their energy, which is determined by exploiting various mechanisms of
interaction of particles in matter – hence the name ‘calorimeter’ which
derives from the name of a common heat measuring device. In fixed-target
experiments, the laboratory-frame angle is not very large, see Fig. 5.7, and
thus the calorimeter is typically located relatively far away, in front of the
beam axis.
We show the transverse-energy-distribution data reported by the exper-

iments WA98 [191] and NA49 [27], for 158A-GeV Pb–Pb (fixed-target)
CERN experiments in Fig. 9.13. The key feature of this result is that
there is a pronounced peak in the transverse energy distribution, slightly
forward of the rapidity value y = 2.9. The shift in pseudorapidity distribu-
tion is a result of the definition of pseudorapidity; see Fig. 5.8 on page 88.
This well-peaked distribution is consistent with the expectations based
on the observed negative-particle distribution shown in Fig. 9.6.
The study of the transverse energy spectra has systematically been

carried out for many systems and collision impact parameters, by nu-
merous groups. It is worth noting that, for relatively small projectiles,
doubling the mass of the projectile increases the geometric number of
participants, in small-impact-parameter collisions, by approximately a
factor 22/3 � 1.59, corresponding to the increase in area of the impact
surface on a large target. For example, an increase in E⊥ by about a
factor 1.6 was observed for the S–Au reactions relative to the O–Au re-
actions [201].
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Fig. 9.13. The transverse energy distribution as a function of pseudorapidity
for Pb–Pb fixed-target collisions at 158A GeV, with a central collision trigger.
Combination of NA49 results [27] and WA98 results [191].

The three main trends observed on the SPS energy scale are
• the increase in the transverse energy with increasing mass of the col-
liding system,

• the increase in transverse energy with increasing energy, and
• the increase in the transverse energy with the number of participating
nucleons, derived from the geometric centrality of the colliding nuclei;
see section 5.2.

The measurement of transverse energy at the RHIC has produced a rather
unexpected result, which we will discuss next.

9.5 RHIC results

With the first physics run at the RHIC, in 2000, a new domain of collision
energy has been reached. These results were obtained at

√
sNN = 130 GeV

and have produced some surprises when one compares them with SPS
results. One is the discovery that the size of the fireball is barely different
from that at the SPS, section 9.3, the other addresses the suppression
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Fig. 9.14. The transverse energy per charged particle (solid dots) as a function
of the number of participants at RHIC (PHENIX, 130 GeV) and at SPS (WA98,
Pb–Pb fixed-target collisions at 158A GeV).

of hard parton production noted in section 8.4. In Fig. 9.14 we see the
constancy of the transverse-energy yield per charged hadron produced.
Once the number of participants exceeds 100, there is no difference from

the results we presented in Fig. 9.13 for the most central collisions, when
results are expressed per participant, both PHENIX and WA98 results
are shown in Fig. 9.14. This agreement between two different energy
regimes is natural should the hadron-production mechanism at the RHIC
and SPS be the same, as would be expected if a new state of matter
were formed, hadronizing in both cases under similar conditions. The
difference between the SPS and the RHIC is in the hadron-multiplicity
yield, which is related to the total entropy available to hadronize.
There is more total transverse energy produced at the RHIC at cen-

tral rapidity, than there is at the SPS, and this is seen on considering
the pseudorapidity density of transverse energy per pair of participants,
shown in Fig. 9.15. We note that the number of colliding pairs is half of
all participants, i.e., in case of p–p reaction, there are two participants
and one pair, and thus in this case the experimental data can be shown
as measured.
We thus conclude that the extra deposition of energy per unit of rapidity

at the RHIC is converted into extra hadronic particles, which explains
the remarkable result we saw in Fig. 9.14. It will be most interesting to
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Fig. 9.15. The transverse-energy pseudorapidity density per pair of participants
as a function of the number of participants, obtained at RHIC (PHENIX) and
at SPS (WA98) [16].

see whether this trend continues in the near future; that is, whether, at
the highest RHIC energy,

√
sNN = 200 GeV, the transverse energy per

hadron produced will remain constant and only an increase in production
of hadronic particles will be observed.
We now turn to the excitation function of hadron production (de-

pendence on
√
sNN), and we include the first results at 200 GeV from

RHIC. The central-rapidity charged-hadron yield per pair of participants
is shown as a function of the collision energy

√
sNN (on a logarithmic scale)

in Fig. 9.16. We see three experimental heavy-ion-multiplicity yields at
the RHIC: Au–Au results at

√
sNN = 56, 130, and 200 GeV (filled black

data points) [50], CERN–SPS NA49 Pb–Pb results at
√
sNN = 17.2 =

2× 8.6 GeV and 4.3 GeV (open circles), and the low-energy AGS results.
This is compared with p–p̄ inelastic-collision results of UA5 (CERN) and
CDF (Fermilab). The interpolation line for the p–p̄ results defines refer-
ence yields used in Fig. 9.17. The importance of the RHIC results is clear,
since without these one could argue that the top-energy SPS point is in
agreement with the p–p̄ line, which, given RHIC results, we recognize to
be near a crossing point of two very different types of behavior. We recall
that some of these data are also shown in Fig. 9.7.
The maximum-energy result from the RHIC (

√
sNN = 200 GeV) falls

on a nearly straight line, which begins near the intercept
√
sNN = 1 GeV,
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results (open diamonds), along with the high-energy p–p̄ data (open squares and
triangles), which are fitted to an empirical formula [50].

and follows within error all other experimental heavy-ion points. Thus,
to a remarkable accuracy, the central-rapidity multiplicity in heavy-ion
collisions is described by the empirical relation

dNch
dη

= (1.6± 0.1)1
2
Npart log

(√
sNN
GeV

)
. (9.15)

The overall yield of particles produced is increasing faster than linearly
with log

√
sNN. However, the decrease in stopping just compensates for

the increase in rapidity density, distributing the increase in particle yield
over a wider range of (pseudo)rapidity. If this simple scaling, Eq. (9.15),
were to continue to the LHC energy range, the rapidity density per par-
ticipant would be ‘only’ 6–7 per pair of participants. For the 6% most
central events, corresponding to Npart = 365 in Pb–Pb interactions at the
LHC, a relatively low dNch/dη � 2500 charged particles yield per unit of
pseudorapidity is thus expected, based on this simple extrapolation.
We now consider the charged particle yield at central rapidity, per par-

ticipant pair. The dependence on the number of participants Npart, shown
in Fig. 9.17, (from the PHENIX collaboration) agrees with the results ob-
tained by the PHOBOS collaborations [48, 281]. In Fig. 9.17, we also see
to the left the UA5 p–p̄ (

√
s = 130 GeV) interpolated value. The periph-
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Fig. 9.17. Production of charged hadrons at central rapidity in Au–Au collisions
at

√
sNN = 130A GeV, obtained at various collision centralities, and presented

per pair of participants as a function of the number of participants (solid circles,
the uncertainty is shaded) [281]. The solid square is the interpolated result from
UA5 p–p̄.

eral yield in Au–Au interactions for 50–100 participants extrapolates well
to this point. A slight increase in the specific yield of charged hadrons is
noted for the most central collision. Overall, an increase of 50% in spe-
cific yield of hadrons per participant is observed on comparing N–N with
p–p̄ reactions. This very characteristic behavior allows discrimination be-
tween models of hadron production. This is a topic in rapid evolution
which we will not further pursue at this time.
The primary reason to move to the highest accessible nuclear collision

energies is the desire to create a matter–antimatter-symmetric state of
dense matter akin to the conditions present in the early Universe. A
baryon-free QGP state should be accessible in LHC experiments. How-
ever, at

√
s = 130A GeV at the RHIC, considerable matter–antimatter

asymmetry is still observed. A measure of the baryon content is ob-
tained by inspecting the central-rapidity antiproton-to-proton ratio p̄/p.
In Fig. 9.18, devised by the STAR collaboration [19], to the right, we see
that, in the mid-rapidity region, this ratio is appreciably different from
unity. In view of the systematic behavior seen in the p–p interactions
(open symbols), this is not unexpected, though there was some hope that
a rapid onset of longitudinal expansion of matter could precipitate the
creation of the baryon-free region at the RHIC.
The low-energy ‘AGS’ point is showing the production threshold, the

observed small ratio is not visible on the scale of the figure. We note
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Fig. 9.18. The mid-rapidity antiproton-to-proton ratio (p̄/p) measured in cen-
tral heavy-ion collisions (filled symbols) and p–p collisions (open symbols).

a marked increase of the antimatter-to-matter ratio on going from SPS
to RHIC energies. As expected, the conversion of kinetic energy avail-
able in the interaction into hadron multiplicity, and here specifically an-
tibaryons, is more effective in A–A reactions at RHIC energies than it is
in p–p and even matter–antimatter p–p̄ interactions, as can be seen in
Fig. 9.16.
The (pseudo)rapidity shape of the charged-particle distribution, see

Fig. 9.19, as measured by the PHOBOS collaboration, displays a flat
top, as could be expected in the punch-through case, see Fig. 5.2 on
page 74. The presence of a slight central dip could be in part due
to pseudorapidity being used as a variable, see section 8.1. For the
most central 3% collisions one finds a charged-hadron multiplicity of
〈h+ + h−〉 = 4100 ± 100 (statistical)± 400 (systematic), within the in-
terval |η| ≤ 5.4 [230]. This is nearly a 3-fold increase compared with the
SPS yield (for h− see Fig. 9.6), while the collision CM energy is 7.5-fold
higher. This implies that a high fraction of the collision energy is available
for production of particles at RHIC energies. This fraction is less than
for the SPS due to greater transparency at higher energy.
The charged-hadron rapidity distributions, shown in Fig. 9.19, are seen

to fall within the rapidity gap between projectile and target rapidities. We
see again the physics motivation to desire a rapidity separation, which is
available at the RHIC collider: particles produced at central rapidity can-
not be confounded with contributions from fragmentation of the projectile
and target.
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Fig. 9.19. The rapidity distribution of charged hadrons in Au–Au collisions at√
sNN = 130A GeV obtained at various collision centralities implying numbers

of participants 〈N〉 =102, 216, and 354 for open circles, squares, and diamonds,
respectively. Phobos collaboration [230].

Turning briefly to strangeness we note that the STAR experiment re-
ported the result

dNK+

dy

∣∣∣∣
y=0

= 35± 3.5, dNK−

dy

∣∣∣∣
y=0

= 30± 3.

Allowing for strangeness in neutral kaons and hyperons

ds̄

dy

∣∣∣∣
y=0

=
ds

dy

∣∣∣∣
y=0

> 100.

This very large abundance of strangeness has to be compared with the
yield of non-strange hadrons:

dπ+

dy
� dπ−

dy
� 235.

The primary number of mesons is �175, considering resonance cascading,
see section 7.3. Strangeness is thus reaching near symmetry with light
flavors. We will return to a full analysis of this interesting subject in
section 19.4.
It is quite clear, given the RHIC results, that the nucleus–nucleus colli-

sions differ substantially from elementary hadronic collisions such as p–p
and p–p̄ in their hadron-production efficiency. The conditions reached at
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the RHIC are clearly more extreme than at SPS. The
√
sNN = 130 GeV,

RHIC central-rapidity hadron yield is about 40% higher at 7.5-fold higher
CM collision energy than that seen at SPS, as can be seen in Fig. 9.16.
Inspecting Eq. (7.27) and noting that τ0, the initial thermal equilibration
time, is most likely shorter at the RHIC than it is at the SPS, we con-
clude that the initial entropy density is at least 40%, and probably more
than that, greater than that at the SPS. Along with the entropy density,
given that the energy per particle seen at the RHIC is similar to results
observed at CERN, see Fig. 9.14, we expect a similar enhancement of
initial energy density reached during the 2000 RHIC run at 130A GeV,
compared with CERN top-energy results.
Can we estimate more precisely the initial energy density produced at

the RHIC? In order to convert Eq. (7.27) into a relation for the initial
energy density, we can use E/S = ε/σ, the energy per unit entropy avail-
able. For a relativistic (massless) gas with P = ε/3 at negligible baryon
density, the Gibbs–Duham relation, Eq. (10.30), implies that ε0 = 3

4T0σ0.
Thus, Eq. (7.27) also means that

ε0 =
A1/3

π(1.2 fm)2
T0
τ0

9
4
dNch/(0.5A)

dy
. (9.16)

This slightly unusual form Eq. (9.16), as stated here, shows that the
initial energy density, apart from an increase due to an enhancement
in multiplicity density, also increases at RHIC compared to SPS due to
two likely changes in the initial condition: a shortening of the initial
thermalization time τ0 for the more dense initial state formed at the higher
RHIC energy, and also an associated increase of the initial temperature
T0 at which thermalization has occurred. Of course, it is very difficult to
pin down quantitatively these two contributions to the initial increase in
energy density. On the other hand, combined they could be as important
as the increase in the energy density due to an increase in the final state
particle multiplicity.
In order to arrive at an estimate for ε0, we take T0 = 300 MeV and τ0 =

1 fm, and, for A = 350, we use the result seen in Fig. 9.17, dNch/(0.5A) =
3.5. We obtain ε0 = 16 GeV fm−3. Lattice calculations seen in Fig. 15.3
on page 300 suggest [159]: ε0 � 11T 40 , which yields for ε0 = 16 GeV fm−3
a temperature T0 = 325 MeV. Given our ignorance of the value of τ0 and
remaining uncertainties in lattice studies of QGP equations of state, we
estimate that the energy density and temperature reached at the RHIC
are ε0 � 15–20 GeV fm−3 and T0 � 320–330 MeV ≥ 2Tc, where Tc, the
critical temperature for deconfinement, is estimated to be about 160 MeV
[159]; section 15.5.
The ‘Bjørken energy formula’ used often in such estimates arises from

Eq. (9.16) by the substitution 3T0Nch/(0.5A) → 〈E〉. 〈E〉 is the mean
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energy per pair of participants,

ε0 �
A1/3

π(1.2 fm)2τ0
d〈E⊥〉
dη

. (9.17)

This expression leads to a lower energy-density estimate, since it does not
account for the factor T0/Tf implicitly present in Eq. (9.16) and omitted
in Eq. (9.17).



IV
Hot hadronic matter

10 Relativistic gas

10.1 Relation of statistical and thermodynamic quantities

The first law of thermodynamics describes the change in energy dE of a
system in terms of a change in volume dV and entropy dS:

dE(V, S)=−P dV + T dS, (10.1)

T =
(
∂E

∂S

)
V

, P = −
(
∂E

∂V

)
S

. (10.2)

The coefficients of the first law are the temperature T and the pressure P .
Both can be introduced as the partial derivatives of the energy E(V, S). E
is a function of the extensive variables V and S, i.e., variables that increase
with the size of the system. Below, we include into this consideration the
baryon number, see Eq. (10.12), which is also an extensive variable.
The free energy,

F (V, T ) ≡ E − TS, (10.3)

is the quantity in which, as indicated, the dependence on the entropy is
replaced by the dependence on temperature, an intensive variable that
does not change with the size of the system. Namely,

dF (V, T ) = dE − T dS − S dT = −P dV − S dT, (10.4)

and, as a consequence of the transformation Eq. (10.3), we obtain in anal-
ogy to Eq. (10.2)

S = −
(
∂F

∂T

)
V

, P = −
(
∂F

∂V

)
T

. (10.5)

For an extensive system with F ∝ V , a very useful relation for the entropy
density σ follows from Eq. (10.5):

187
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σ ≡ S

V
=

∂P

∂T
. (10.6)

Since the free energy F depends on T = 1/β, we relate it to the sta-
tistical functions introduced in chapter 4. To establish the connection in
a more quantitative manner, we obtain the energy E in terms of the free
energy F . We substitute S into Eq. (10.4), in order to arrive at a relation
for E(V, T ):∗

E = F (V, T ) + TS(V, T ),

= F (V, T )− T
∂

∂T
F (V, T ) ≡ − ∂

∂(1/T )

(
−F
T

)
. (10.7)

This relation has the same form as Eq. (4.13), and we deduce that

F (V, T ) = −β−1[lnZ(V, β) + f ]. (10.8)

The integration constant f could be a function of V . However, by defini-
tion of P , Eq. (10.5), and using Eq. (10.8),

P =
∂

∂V

(
β−1 lnZ

)
+ T

∂f

∂V
. (10.9)

In the definition of the partition function Eq. (4.14), the individual ener-
gies Ei depend on the volume V . We obtain

P =
−
∑
i(∂Ei/∂V )e

−βEi∑
i e

−βEi
+ T

∂f

∂V
= −
〈
∂Ei
∂V

〉
+ T

∂f

∂V
. (10.10)

Only if ∂f/∂V vanishes does the proper relation between work and pres-
sure arise: the work done on the system, when the volume V is decreased
by dV (dV is negative), is equivalent to the mean value of the change of
all the energy levels brought about by a change of the volume. A con-
stant f is a physically irrelevant ambiguity in the relationship Eq. (10.8)
between the free energy F and the canonical partition function Z, and
can be discarded. Thus, Eqs. (10.8) and (10.9) read

F (V, T ) = −β−1 lnZ(V, β), βP =
∂ lnZ
∂V

, β−1 = T. (10.11)

This well-known equation establishes the bridge between the thermal
(T, F, and P ) and statistical (β and lnZ) quantities. The volume V
is present in both formulations, but, in fact, since lnZ and F are exten-
sive in V for infinite volumes, V in general disappears from many further
considerations.

∗ Clearly E(V, S) is not the same function as E(V, T ), which is indicated by stating
the variables on which E depends, rather than introducing a new symbol.
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We now allow for the presence of a conserved (baryon) number b,
i.e., we consider E(V, S, b). This necessitates the introduction of the
(baryo)chemical potential µ. µ is the incremental energy cost required
to change the baryon number at fixed pressure and entropy:

dE(V, S, b) = −P dV + T dS + µdb, (10.12)

P = −
(
∂E

∂V

)
S,b

, T =
(
∂E

∂S

)
V,b

, µ =
(
∂E

∂b

)
V,S

. (10.13)

The coefficients P, T, and µ are, as before, fixed in terms of the partial
differentials of E(V, S, b) with respect to its three variables.
The familiar generalization of the free energy Eq. (10.4), often called the

thermodynamic potential, F(V, T, µ), is defined by the transformation
F(V, T, µ) ≡ E(V, S, b)− ST − µb. (10.14)

On evaluating the differentials as in Eq. (10.4), we indeed see that, as sug-
gested on the left-hand side of Eq. (10.14), the thermodynamic potential
is a function of V, T , and µ,

dF = −P dV − S dT − b dµ, (10.15)

where

P = −
(
∂F
∂V

)
T,µ

, S = −
(
∂F
∂T

)
V,µ

, b = −
(
∂F
∂µ

)
V,T

. (10.16)

A series of arguments that has allowed us to establish Eq. (10.11) fixes a
relation between F(V, T, µ) and the grand partition function Z(V, T, λ):

F(V, T, µ) = −β−1 lnZ(V, β, λ), β = 1/T, λ = eµ/T . (10.17)

The thermodynamic pair of variables (T, µ) is often used for describing
the properties of F , instead of the grand-canonical statistical quantities
(β and λ). To do this, it is quite important that appropriate attention be
paid to the simple relation

µ = µ(λ, β) = β−1 lnλ. (10.18)

Consider, for example, the expression for the energy. With

Z(V, β, λ) = Z̃(V, T, µ), (10.19)

we obtain

E = − d

dβ
lnZ(V, β, λ), (10.20)

= T 2
d

dT
ln Z̃(V, T, µ) + d

dµ
ln Z̃(V, T, µ) dµ(λ, β)

dβ

∣∣∣∣
β=T−1

. (10.21)
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The second form is clearly much different from the simple statistical
relation Eq. (10.20). However, given Eq. (10.18), we have

dµ(λ, β)
dβ

∣∣∣∣
β=T−1

= −Tµ, (10.22)

and thus the last term in Eq. (10.21) is µdF/dµ. We hence obtain a form
of the the important Gibbs–Duham relation, see Eq. (10.26) below,

E(V, T, µ) = F(V, T, µ) + TS(V, T, µ) + µb(V, T, µ), (10.23)

where the baryon number and entropy are

F(V, T, µ) = −P (T, µ)V, (10.24a)

b = − d

dµ
F(V, T, µ) = λ

d

dλ
lnZ(V, β, λ), (10.24b)

S = − d

dT
F(V, T, µ) = d

dT
T ln Z̃(V, T, µ). (10.24c)

The expression for the entropy, Eq. (10.24c), takes a much more com-
plex form in terms of statistical variables. Namely, Eq. (10.23) implies
that

S =
1
T
(E −F − µb) = lnZ − β

∂ lnZ
∂β

− (lnλ)λ ∂ lnZ
∂λ

. (10.25)

In an extensive system, we can greatly simplify Eq. (10.23). We replace
F by −PV , Eq. (10.16), and obtain the usual form of the Gibbs–Duham
relation:

P = Tσ + µν − ε, σ =
S

V
, ν =

b

V
, ε =

E

V
. (10.26)

For completeness of the discussion, we mention now two more quan-
tities, the enthalpy H(P, S, b) and the Gibbs free energy G(P, T, b). To
obtain these two quantities with a new mix of variables, we continue the
process of replacement of variables. We recall that, at first, we moved
from E(V, S) → F (V, T ) and subsequently from E(V, S, b) → F(V, T, µ),
i.e., we replaced the extensive variables by the intensive variables. The
one extensive variable left is the volume itself. Since we address in this
book an isolated system (a fireball) that can expand its volume with en-
tropy and baryon number remaining nearly constant, elimination of V in
favor of P would seem a logical step and indeed the statistical (partition-
function) analog to G(P, T, b) is the recently proposed generalization of
the (grand) canonical partition function to the pressure partition function
Π(P, β, b) [142]. We will not pursue this interesting subject further in this
book.
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However, we note that, for a given pressure, entropy, and baryon num-
ber, it should be convenient to introduce the enthalpy,

H(P, S, b) ≡ E(V, S, b) + PV . (10.27)

The volume occupied by the system is obtained as the change of H with
respect to pressure at fixed S and b:

dH = V dP + T dS + µdb. (10.28)

In thermal physics, a quantity often considered in the study of a freely
expanding isolated system is the specific enthalpy per particle, the so-
called heat function h,

H

b
≡ h =

ε

ν
+
P

ν
. (10.29)

The Gibbs free energy G is introduced to facilitate consideration of evo-
lution, not at a constant entropy, but in a ‘heat bath’, i.e., at a given
temperature, though at a fixed baryon number (not in a ‘baryon bath’):

G(P, T, b) ≡ E + PV − TS = µ(P, T, b) b. (10.30)

Both the enthalpy H(P, S, b) and the Gibbs free energy G(P, T, b) have
not yet been used much in the study of heavy-ion-fireball dynamics.

10.2 Statistical ensembles and fireballs of hadronic matter

We extend the discussion of physical ensembles introduced in chapter 4.
The concept of an ensemble consisting of weakly coupled physical systems,
M = {Mi, i = 1, . . ., N}, was introduced by Gibbs and Boltzmann.
It helped to establish a conceptual foundation of statistical physics. A
large number, N → ∞, of such systems is normally considered. The
otherwise negligible interactions between individual systems Mi are such
that both energy and (conserved) quantum numbers (such as, e.g., the
baryon number) can be exchanged between the systems. This establishes
a ‘bath’ of energy and baryon number, in which each individual system
is immersed, and with which it can equilibrate its properties.
When we examine the microscopic properties in the ensemble, such as

energies of individual members, we speak of a micro-canonical ensem-
ble. Furthermore, we distinguish between the canonical ensemble and
the grand-canonical ensemble: in both cases, we have adopted a statisti-
cal distribution in energy. However, in the canonical ensemble, we still
treat discrete quantum numbers (particle number, baryon number, etc.)
microscopically, whereas in the grand-canonical ensemble, we have also
adapted the statistical-ensemble distribution for the discrete properties
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such as baryon number. Of course, when we have more than one con-
served discrete quantum number, any of these properties can be treated
in ‘canonical’ or ‘grand-canonical’ way.
A colloquial way to explain the difference between the ensembles is

to say that, in the micro-canonical ensemble, we consider each individual
systemMi as being decoupled from the others. In the canonical ensemble,
we allow only for coupling of energy, and in the grand-canonical ensemble,
we allow for exchange of energy and quantum number (particle number).
Practically, we maintain the picture of an ensemble of many weakly cou-
pled systems M in place, but, for describing physical properties within
micro-canonical, canonical, or grand-canonical ensembles, we use different
physical variables.
Said differently, in a theoretical description, it is our choice how we

characterize the properties of the system as long as there is a precise
mathematical transformation we can use to make a transition between
the different descriptions of the same physical situation, and the descrip-
tion of choice is what is most convenient. There is an exception to this
‘convenience principle’: the color-confining nature of strong interactions
imposes color neutrality on all ‘drops’ of QGP we consider, thus, in prin-
ciple, we may not use a color-grand-canonical ensemble, and, if it is used,
the question to consider is that of whether results obtained in this way
make good physical sense.
What is, in our context, the individual ensemble element Mi? Can

we view it as a single hadron, or do we have to take the entire drop of
highly excited hadronic matter formed in the nuclear collision as being the
element in the Gibbs ensemble? In chapter 4, we have wondered if a single
particle can be seen as the element of the ensemble. This is motivated
by the fact that, in our physical environment, the number of particles is
not fixed, and their variable number is an expression of the sharing of the
total energy and baryon number (or other conserved number). In support
of this point of view, we will next show in section 10.3 that, allowing
for a change in numbers of particles, the state of maximum entropy at
fixed energy and baryon number is the conventional statistical-equilibrium
distribution.
We know that there are physical processes of particle production that

allow conversion of energy into particles, such that their yields reach
(chemical) equilibrium. The well-known Boltzmann collision dynamics
assures that the momentum distributions are equilibrated in (binary) col-
lisions. Microscopic processes of particle production and interaction can
establish, in a particle ensemble Mi, a distribution that is normally asso-
ciated with ensemble elements consisting of larger drops of matter.
Each high-energy heavy-ion reaction forms a many-body system, a fire-

ball, which evolves into a final state with thousands of particles. The
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study of the average rather than individual microscopic properties of such
a large system makes sense, if the distribution of individual properties of
the sub-components has a ‘peaked’ shape. What this means is that most
individual objects considered should be found near to their common av-
erage, just a few may be far from it. On intuitive grounds, it seems
that otherwise many-body systems equilibrate exceedingly slowly, if at
all. Since there are many examples of dynamic systems that do not sat-
isfy this criterion, we see that in general there is a priori no guarantee
that strongly interacting confined matter will ever equilibrate. However,
experimental results suggest that strongly interacting particle systems of
practically any size approach statistical equilibrium very rapidly. Why
this is the case remains today an open issue, see section 5.6.
In the following, we develop further the physical properties of ideal

relativistic gases introduced in section 4.4. We assemble useful formulas,
including in the discussion chemically nonequilibrated gases, which have
been treated only sparingly before.

10.3 The ideal gas revisited

The additivity of different gas fractions (i.e., flavors) ‘f’ originates from the
additive property of the logarithm of the partition functions Eq. (4.19):

Z =
∏
f

Zf , lnZ =
∑
f

lnZf . (10.31)

For an ideal Fermi gas, such as a quark gas in the deconfined phase, we
have for each flavor, as seen in Eqs. (4.38) and (4.39),

lnZF = gFV

∫
d3p

(2π)3
[ln(1 + γλe−βε) + ln(1 + γλ−1e−βε)], (10.32)

where the degeneracy factor is, e.g., gF = gsgc and comprises gs = 2 for
spin-12 degeneracy and gc = 3 for color. For bosons with degeneracy gB, in
principle, we must allow for the possibility of condensation (macroscopic
occupancy) in the lowest energy state ε0:

lnZB = −gBV
∫

d3p

(2π)3
[ln(1− γλe−βε) + ln(1− γλ−1e−βε)]

− gB[ln(1− γλe−βε0) + ln(1− γλ−1e−βε0)]. (10.33)

We will not address further in this book the condensation phenomena and
will not pursue further the last term in Eq. (10.33).
Differentiating with respect to the energy of the particle, see Eq. (4.41),

we obtain the single-particle distribution functions. For the fermions and



194 Hot hadronic matter

antifermions seen in Eq. (4.42), respectively, we have

fF(ε, µ) =
1

γ−1eβ(ε−µ) + 1
, (10.34a)

f̄F(ε, µ) =
1

γ−1eβ(ε+µ) + 1
, (10.34b)

and similarly for bosons and antibosons:

fB(ε, µ) =
1

γ−1eβ(ε−µ) − 1
, (10.35a)

f̄B(ε, µ) =
1

γ−1eβ(ε+µ) − 1
. (10.35b)

We will also use the short-hand notation

f±F,B = fF,B ± f̄F,B, (10.36)

since these combinations occur in evaluations of statistical properties of
gases.
The particle densities are

ρF ≡ NF
V
=
1
V
λ
d

dλ
lnZF = gF

∫
d3p

(2π)3
f−F , (10.37a)

ρB ≡ NB
V
=
1
V
λ
d

dλ
lnZB = gB

∫
d3p

(2π)3
f−B . (10.37b)

These distributions determine the local equilibrium particle densities, for
example, the local density of quarks and antiquarks given by the integral
of the Fermi distribution, Eqs. (10.34a) and (10.34b):

nq =
∫

d3p

(2π)3
1

1 + γ−1i λ−1i eε(p)/T
→ γiλi

∫
d3p

(2π)3
eε(p)/T , (10.38a)

nq̄ =
∫

d3p

(2π)3
1

1 + γ−1i λieε(p)/T
→ γiλ

−1
i

∫
d3p

(2π)3
eε(p)/T . (10.38b)

The Boltzmann limit, which is applicable when the phase-space cells have
small overall occupancy, is also indicated in Eqs. (10.38a) and (10.38b).
In this limit, the chemical-abundance factors enter as coefficients of the
distributions. We note that, while the chemical potential enhances the
abundance of particles, it suppresses the abundance of antiparticles.
In order to obtain other statistical properties, such as, e.g., the en-

ergy content of the system, one can also apply the rule that the occu-
pation functions Eqs. (10.34a)–(10.35b) and Eq. (4.46) can be folded with
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the quantity of interest. To obtain the energy density, we fold with the
single-particle energy ε the sum of particle and antiparticle spectra. The
correctness of this prescription is seen on evaluating the derivative of lnZ
with respect to β, Eq. (10.20):

εB = gB

∫
d3p

(2π)3
εf+B , (10.39a)

εF = gF

∫
d3p

(2π)3
εf+F , (10.39b)

εg = gg

∫
d3p

(2π)3
εfg. (10.39c)

The gluon distribution fg is seen in Eq. (4.46). The total energy density
is the sum of all contributing terms:

ε =
∑
i

εi. (10.40)

10.4 The relativistic phase-space integral

To evaluate the properties of ideal relativistic gases, we need to evalu-
ate the relativistic momentum integral, which appears in all phase-space
integrals in a similar form. To do this we consider the definition of the
Bessel function Kν ,

Kν(z) =
√
π(z/2)ν

Γ(ν + 1
2)

∫ ∞

1
e−zt(t2 − 1)ν− 1

2 dt, - ν > −1
2 , (10.41)

valid for |arg z| < π/2. We used before the case ν = 1, Eq. (8.7), which
arises on substituting in Eq. (10.41) t → cosh t. The connection to the
class of integrals which we now require is obtained by recognizing that
z = βm and substituting into Eq. (10.41):

t →
√
p2 +m2/m. (10.42)

With ε =
√
p2 +m2, we obtain

Kν(βm) =
√
π

Γ(ν + 1
2)

(
β

2m

)ν ∫ ∞

0

p2ν

ε
e−βε dp. (10.43)

On integrating by parts with the relation

∂

∂p
e−βε = −β p

ε
e−βε,
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we obtain (ν > 1
2)

Kν(βm) =
√
π

Γ(ν − 1/2)
1
m

(
β

2m

)ν−1 ∫ ∞

0
p2ν−2e−βε dp. (10.44)

We recall that

Γ(12) =
√
π; Γ(32) =

√
π/2; Γ(52) =

3
2Γ(

3
2); . . ..

Two interesting limits arise from the well known series expansion of the
Bessel function Eq. (10.41).

• The non-relativistic limit in which we use p/m as the small parameter:

Kν(z)→
√

π

2z
e−z
(
1 +

4ν2 − 1
8z

+
(4ν2− 1)(4ν2− 9)

2!(8z)2

+
(4ν2− 1)(4ν2− 9)(4ν2− 25)

3!(8z)3
+ · · ·

)
. (10.45)

We note that this expansion is rather slowly convergent. The special
case of interest to us is

K1(z)
K2(z)

= 1− 3
2
1
z
+
15
8
1
z2

− 15
8
1
z3
+
135
128

1
z4
+O(z−5). (10.46)

• The relativistic limit, in which the mass is negligible relative to the
typical energies, and thus effectively m � 0. For the relevant two cases,
we have, for z → 0,

K1(z)=
1
z
+
[
ln
(z
2

)
+ γE

]z
2
+
[
ln
(z
2

)
+ γE − 5

4

]
z3

16
+ · · ·,

K2(z)=
2
z2

− 1
2
−
[
ln
(z
2

)
+ γE − 3

4

]
z2

8

−
[
ln
(z
2

)
+ γE − 17

12

]
z4

96
+ · · ·,

leading to

K1(z)
K2(z)

=
z

2
+
[
ln
(z
2

)
+ γE

]z3
4
+ · · ·. (10.47)

We recall that

γE = lim
n→∞

n∑
k=1

1
k
− lnn = 0.577 215 664 9 . . .

is the Euler constant.
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Fig. 10.1. The relativistic distribution function W (x) = x2K2.

With this preparation, we are now in a position to study properties of
relativistic gases. Let us first look at the classical limit, the first, ‘classical’
term in the expansion of the partition function Eq. (4.51). For n = 1, we
obtain, from Eq. (4.53),

lnZcl = Z(1) =
∑
f

γf(λf + λ−1f )Z
(1)
f , (10.48)

with

Z
(1)
f = gfV

∫
d3p

(2π)3
e−βε(p) ≡ gf

β−3V
2π2

W (βmf). (10.49)

The sum, in Eq. (10.48), includes all Fermi and Bose particles.
We encounter in Eq. (10.49) the function Eq. (10.44), with ν = 2,

W (βm) ≡ β3
∫
e−βεp2 dp = (βm)2K2(βm), (10.50a)

→ 2, for m → 0, (10.50b)

→
√
πm3

2T 3
e−m/T , for m � T, (10.50c)

where, in the last limit, we exploited the large-argument limit shown in
Eq. (10.45). As can be seen from Fig. 10.1, the change between the two
asymptotic limits occurs near βm = 1.
In the classical (Boltzmann) limit indicated by superscript ‘cl’ the num-

ber of particles of each species, Eq. (4.56), is given by



198 Hot hadronic matter

N |cl = λ
∂

∂λ
lnZcl = λZ(1) = gλ

β−3V
2π2

W (βm), (10.51)

where we have combined the factors γ±1λ → λ, since, when only one par-
ticle species is considered, one fugacity suffices. The most useful and often
quoted property of a relativistic gas is the average energy per particle:

E

N

∣∣∣∣cl = −(∂/∂β) lnZcl
λ(∂/∂λ)∂lnZcl

= 3T +m
K1(βm)
K2(βm)

. (10.52)

The fugacity coefficients λ for the particles cancel out. To obtain Eq. (10.52),
we exploited the property of the function W = x2K2,

d

dx
W (x) = −x2K1(x), (10.53)

arising from the recursion relation of the K-functions,

d

dx
Kν(x) = −Kν−1(x)−

ν

x
Kν(x), (10.54a)

written in the form

d

dx
(xνKν(x)) = −xνKν−1(x). (10.54b)

• In the relativistic limit βm → 0, we can use Eq. (10.47) and obtain

E

N

∣∣∣∣cl
m=0

= 3T. (10.55)

Equation (10.55) can be improved; see Eq. (10.68). However, further re-
finement in the limit m/T → 0 requires that quantum statistics be con-
sidered.
• In the non-relativistic limit βm � 1, the ratio appearing in Eq. (10.52)
is as given in Eq. (10.46), and we obtain

E

N

∣∣∣∣cl
nr

= m+
3
2
T

(
1 +

5
4
T

m
− 5
4
T 2

m2
+
45
64

T 3

m3
· · ·
)
,
m

T
> 1. (10.56)

Note that, to obtain the correct first 3T/2 term in the non-relativistic
limit, the next-to-leading term in Eq. (10.46) needs to be considered. The
slow convergence of the series, Eq. (10.56), is also to be remembered,
i.e., the non-relativistic limit requires a truly a non-relativistic m � T
condition. For m � T , the relativistic limit offers a better approximation.
We continue with a more thorough discussion of the energy per baryon

in the next subsection, addressing there, in particular, the differences
arising for bosons and fermions.
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10.5 Quark and gluon quantum gases

In the deconfined QGP phase, we have to consider the quantum nature
of the effectively massless, relativistic quark and gluon gases. Many of
the results for quantum gases that we require arise in terms of a series
expansion of which the Boltzmann approximation is the first term. We
are, in particular, interested in the properties of the equation of state, i.e.,
the relation between the energy density ε, Eq. (10.40), and the pressure
P , Eq. (10.11).
Integrating by parts Eqs. (10.32) and (10.33),

±
∫

d3p

(2π)3
ln(1± γλe−βε) =

β

3

∫
d3p

(2π)3
|/p | ∂ε

∂|/p | fF,B (10.57)

=
β

3

∫
d3p

(2π)3
/p2

ε
fF,B,

where the factor 1
3 arises from the p2 dp momentum integral. We have

used the (relativistic-dispersion) relation Eq. (4.31) in the last equality.
We obtain for the pressure Eq. (10.11), noting Eqs. (10.32), (10.33), and
(10.36), and using Eq. (4.31) to eliminate the momentum,

3P = gF

∫
d3p

(2π)3

(
ε−m2

ε

)
f+F + gB

∫
d3p

(2π)3

(
ε−m2

ε

)
f+B ≤ ε. (10.58)

Since the particle-occupation probabilities f+B,F are always positive, the
terms proportional to m2 in Eq. (10.58) always reduce the pressure. For
this reason the maximum absolute value of the ideal-gas pressure, for
given thermal parameters, is subject to the relativistic bound

ε− 3P = gFm

∫
d3p

(2π)3
(m
ε

)
f+F + gBm

∫
d3p

(2π)3
(m
ε

)
f+B ≥ 0. (10.59)

The right-hand side of Eq. (10.59) is cast into the form which is natural
considering the trace of the energy–momentum tensor of quantum fields.
It can be evaluated using Eq. (10.43), when the series expansion of quan-
tum distributions exists. The leading (Boltzmann) term is

ε− 3P = gT 4

2π2
x3K1(x), x = m/T. (10.60)

For high temperatures relative to (vanishingly small) mass, we find the
relativistic equation of state,

3P → ε, for β m → 0, (10.61)

corresponding to the maximum mobility of particles. Massive particles
move slowly relative to the velocity of light and are far away from this
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limit. In fact, the pressure in the normal world around us is vanishingly
small, seen on the scale of energy density comprising the rest mass. This
is expressed in the power of 30 arising in Eq. (1.2), which separates the
pressure on Earth from that in the QGP.
We turn now to consider the energy per particle in relativistic quan-

tum gases in more detail. We employ the series expansion appearing in
Eq. (4.51), and obtain, by expanding Eqs. (10.32) and (10.33) for each
particle species,

lnZ = β−3V
2π2

∞∑
n=1

gn
λn

n4
(nβm)2K2(nβm). (10.62)

We have combined the factor (−)n+1 for fermions with the degeneracy
g to form the factor gn. This expansion Eq. (10.62) can not be used if
the condition m − µ < 0 arises. This happens, in particular, for mass-
less quarks at finite baryon density. We will be able to deal with this
interesting case exactly for m → 0; see Eq. (10.74). In the HG phase,
for a very narrow parameter range, allowing in particular condensation
of kaons, the expression Eq. (10.62) is also not valid. Apart from these
exceptions, Eq. (10.62) can be used as the basis for the evaluation of the
properties of hot, strongly interacting matter.
Using the series expansion Eq. (10.62), the quantum generalization of

the classical particle number, Eq. (10.51), is

N = λ
∂

∂λ
lnZ = β−3V

2π2

∞∑
n=1

gn
λn

n3
(nβm)2K2(nβm). (10.63)

As noted, the masses and fugacities are such that m− µ > 0, so that the
series expansion exists. The relativistic limit m → 0 is now

N

V

∣∣∣∣B
m=0

=
gT 3

π2
ζ(3), (10.64)

N

V

∣∣∣∣F
m=0

=
gT 3

π2
η(3). (10.65)

We have introduced the Riemann zeta function

ζ(k) =
∞∑
n=1

1
nk

. (10.66a)

We note that

ζ(2) =
π2

6
, ζ(3) � 1.202, ζ(4) =

π4

90
. (10.66b)
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For a Fermi occupation function, the signs of the terms in the sums in
Eq. (10.63) are alternating, which leads to the eta function

η(k) =
∞∑
n=1

(−1)n−1 1
nk
= (1− 21−k)ζ(k), (10.67a)

and thus

η(3) =
3
4
ζ(3) = 0.901 5, η(4) =

7
8
ζ(4) =

7
720

π4. (10.67b)

The generalization of the energy per particle, Eq. (10.52), to quantum
statistics yields

E

N
= 3T

∞∑
n=1

gn
λn

n4

(
(nx)2K2(nx) +

1
3
(nx)3K1(nx)

)
∞∑
n=1

gn
λn

n3
(nx)2K2(nx)

, (10.68)

where x = mβ. For the non-relativistic limit, the Boltzmann approx-
imation Eq. (10.56) is quite appropriate, resulting in Eq. (10.56). The
ultra-relativistic limit with m → 0 yields

E

N

∣∣∣∣B
m=0

= 3T
ζ(4)
ζ(3)

= 2.70T, (10.69)

E

N

∣∣∣∣F
m=0

= 3T
η(4)
η(3)

= 3.15T. (10.70)

The factor 7
8 seen in Eq. (10.67b) enters Eq. (10.70) and is the source of

the reduction of the number of fermionic degrees of freedom in a Fermi
gas compared with that in a Bose gas. However, we have to allow for the
presence both of quarks and of antiquarks; thus the radiation term in the
quark gas is actually 7

4 times as large as that in the gluon gas, apart from
the other statistical flavor and color multiplication factors.
In Fig. 10.2, we show the variation of the energy per particle in units of

m, as a function of T/m. The solid line depicts the Boltzmann limit; the
long-dashed line, fermions with λ = 1; and the short-dashed line, bosons.
Asymptotic conditions are indicated by dotted lines corresponding to the
limits Eqs. (10.55), (10.69), and (10.70). For finite mass, we see at T → 0
the non-relativistic linear rise common to all three cases, Eq. (10.56). The
transition from non-relativistic to relativistic behavior occurs within the
entire temperature domain shown in Fig. 10.2.
Our discussion of the properties of gases of relativistic particles cannot

be complete without a review of the particularly interesting case of a free
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Fig. 10.2. The energy per particle in units of m, as a function of T/m. Solid
line: Boltzmann limit; long-dashed line: fermions; short-dashed lines: bosons.
Asymptotic conditions are indicated by dotted lines. Quantum gases are evalu-
ated with fugacities γ, λ = 1.

gas of massless quarks. In particular, at finite baryon density, for which we
cannot expand the Fermi distribution function in the presence of strong
quantum degeneracy, this analytically soluble case offers the only practical
method for studying the behavior of an ideal gas of quarks. To see this,
let us assume that we are at a finite positive chemical potential, which
means that there is a net number of quarks present. Fermi distributions
as functions of ε/T both for particles, Eq. (10.34a), and for antiparticles
(dashed), Eq. (10.34b), are shown in Fig. 10.3, for a typical situation of
µ/T = 0.5 (that is, λ = 1.65).
Let us restate the mathematical problem more precisely. The grand

partition function of the Fermi system, Eq. (10.32), can be written, using
Eq. (10.57), in the form

3
T

V
lnZF = gF

∫
d3p

(2π)3
/p 2

ε

(
1

eβ(ε−µ) + 1
+

1
eβ(ε+µ) + 1

)
. (10.71)

Our usual series expansion would work for the momentum range such that
ε > µ. For the massless case, we would have to split the integral into two,
and expand in a slightly different fashion. On approaching this problem
in this way, one actually discovers that, for m = 0, the partition function
can be exactly integrated.
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Fig. 10.3. A comparison of particle (solid) and antiparticle (dashed) Fermi dis-
tribution functions, as functions of ε/T for µ/T = 0.5.

We substitute the arguments of fF and f̄F with x = β(ε± µ):

3
T

V
lnZF=

gF
2π2

T 4
(∫ ∞

β(m−µ)
dx
[(x+ µ/T )2 − (m/T )2]3/2

ex + 1

+
∫ ∞

β(m+µ)
dx
[(x− (µ/T ))2 − (m/T )2]3/2

ex + 1

)
. (10.72)

A systematic expansion in m/T was carried out in [113]. We consider the
leading term for m = 0. For what follows it is important to note that, in
Eq. (10.72), one of the factors under the integral is, for m → 0,

[(x± µ/T )2 − (m/T )2]3/2 → (|x± βµ|)3.

The range of the integrals is now split to be from ±βµ → 0 and from
0→ ∞. The final-range integrals can be recombined to give an elementary
polynomial integral,∫ 0

−βµ
dx

|x+ βµ|3
1 + ex

−
∫ βµ

0
dx
(x− βµ)3

1 + ex

=
∫ βµ

0
dx
(βµ− x)3

1 + e−x
+
∫ βµ

0
dx
(βµ− x)3

1 + ex
,

=
∫ βµ

0
dx (βµ− x)3 =

(βµ)4

4
, (10.73)
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where we have changed variable from x to −x in the first integrand.
This term is the usual Fermi-integral contribution remaining in the limit
T → 0. The remaining infinite-range integral is evaluated by expansion
in power series along the lines of the method shown in section 10.5, and it
leads, in a straightforward way, to the first two terms in large parentheses
in the following final result:

lnZF|m=0 =
gFV β

−3

6π2

(
7π4

60
+
π2

2
ln2 λ+

1
4
ln4 λ
)
. (10.74)

The net quark density follows immediately from Eq. (10.74):

ρq ≡ nq − nq = 3ρq
1
V
λ

∂

∂λ
lnZF|m=0,

ρq =
gFβ

−3

6π2
(
π2 lnλ+ ln3 λ

)
=

gF
6

(
µT 2 +

µ3

π2

)
. (10.75)

At zero temperature, the second term is the well-known expression for the
degenerate Fermi gas. However, already at a modestly high temperature
T > µ/π, the first term dominates. In the range of parameters of interest
to us, when λq � 1.2–2.5 and T > 140 MeV this is always the case. The
resulting proportionality of the quark (i.e., baryon) density to the chemi-
cal potential, and the accompanying quadratic temperature dependence,
offer a very counterintuitive environment for a reader used to working
with cold Fermi gases.
We refer to section 4.6 for the energy and pressure of the quark and

gluon gases, and a more thorough discussion the properties of a QGP is
given in chapter 16.

10.6 Entropy of classical and quantum gases

We consider next the single-particle entropy associated with hadrons.
We recall the expressions for entropy presented in section 7.1, Eq. (7.1)
for a Fermi–Bose gases and Eq. (7.2) for a Boltzmann gas. We use the
Gibbs–Duham relation Eq. (10.26) as well as the statistical-physics ana-
log, Eq. (10.25) and obtain

S

N
=

PV + E

TN
− µ

T
=
lnZ − β

∂

∂β
lnZ

λ
∂

∂λ
lnZ

− lnλ. (10.76)

We will consider several cases of physical interest and note that, for
pions, even at a temperature m/T � 1, the relativistic Boltzmann limit
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is of interest, while the non-relativistic limit is of interest primarily for
understanding the entropy of the baryon contribution.
• The classical-gas case: the partition function is, in the Boltzmann ap-
proximation, proportional to the fugacity; see, e.g., Eq. (4.40). Thus
Eq. (10.76) simplifies to

S

N

∣∣∣∣cl = 1 + E

TN
− µ

T
= 1−

β
∂

∂β
lnZ

λ
∂

∂λ
lnZ

− lnλ. (10.77)

Here, lnλ = µ/T , with the understanding that λ, in the present context,
is synonymous with the abundance fugacity γ, and in what follows for the
pion gas µ ≡ T ln γ.
By inserting Eq. (10.52) into Eq. (10.77), we obtain

S

N

∣∣∣∣cl= 4 + βm
K1

K2
− µ

T
. (10.78)

We consider first the limit m/T → 0, Eq. (10.47):

S

N

∣∣∣∣cl� 4 + m2

2T 2
+
[
ln
( m
2T

)
+ γE

) m4

4T 4
− µ

T
+ · · ·, m

T
→ 0. (10.79)

An expansion suitable for the non-relativistic case, m/T � 1, can also be
obtained using Eq. (10.46):

S

N

∣∣∣∣cl� 5
2
+
m

T
+
15
8
T

m
− 15
8
T 2

m2
+
135
128

T 3

m3
− µ

T
+ · · ·, m

T
�1. (10.80)

Numerical calculation shows that the Boltzmann specific entropy is
monotonically falling, as shown in Fig. 10.4 by the solid line, toward
the asymptotic value S/N = 4 (dashed line), Eq. (10.78). The two ap-
proximants, Eqs. (10.79) and (10.80), are depicted as dotted lines. Both
fourth-order approximants describe the exact result well in general, except
near to the physically interesting case m/T � 1, for which the entropy
per particle is S/N = 4.4, in the absence of a chemical potential, i.e., for
a chemically equilibrated classical (Boltzmann) gas.
• The low-density nucleon gas case: we consider the non-relativistic ex-
pansion, m/T > 1, but we need to retain in our consideration the baryon
number fugacity. Moreover, it is the entropy per baryon rather than the
entropy per particle which is of interest. Recalling that in the Boltzmann
approximation lnZcl ∝ (λ+λ−1) = 2 cosh(µ/T ), and b = λ(d/dλ) lnZcl ∝
(λ− λ−1) = 2 sinh(µ/T ), Eq. (10.77) now implies that

S

b

∣∣∣∣cl
N

=
(
4 + βm

K1(βm)
K2(βm)

)
coth
(µ
T

)
− µ

T
. (10.81)
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Fig. 10.4. The entropy per particle of a classical (Boltzmann) gas. Dashed line,
asymptotic value S/N = 4; dotted line, fourth-order approximants, Eqs. (10.79)
and (10.80).

Using the asymptotic expansion Eq. (10.46), we obtain

S

b

∣∣∣∣cl
N

=
5
2

(
1 +

3
4
T

m
− 3
4
T 2

m2
+
27
64

T 3

m3
+ · · ·

)
coth
(µ
T

)
−µ−m coth(µ/T )

T
. (10.82)

•We find the entropy for quantum quark and gluon gases using the Gibbs–
Duham relation in the form Eq. (10.76) and the relativistic equation of
state Eq. (10.61). The entropy is

S|m=0 =
4PV
T

−
∑
f

µf
T
Nf =

4E
3T

−
∑
f

µf
T
Nf , (10.83)

where the sum over different kinds of component f is implied, E =
∑
f Ef ,

etc. For each component, we obtain in the relativistic limit m/T 	 1,
and, for µ = 0, dividing by N , and using Eqs. (10.69) and (10.70),

S

N

∣∣∣∣B
m=0

= 4
ζ(4)
ζ(3)

= 3.61, (10.84)

S

N

∣∣∣∣F
m=0

= 4
η(4)
η(3)

= 4.20. (10.85)
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To obtain the complete dependence on m/T , we use Eq. (10.68). For
each particle species, subject to the existence of the series representation
of the integral, as addressed earlier, the result is

S

N
= 4

∞∑
n=1

(uλ)n

n4

(
(nx)2K2(nx) +

1
4
(nx)3K1(nx)

)
∞∑
n=1

(uλ)n

n3
(nx)2K2(nx),

− lnλ, (10.86)

where x = mβ. u = −1 for fermions and u = 1 otherwise. For the non-
relativistic limit x > 1, one can use Eq. (10.46) in Eq. (10.86) to obtain

S

N
=

∞∑
n=1

(uλ)n

n4
(nx)2K2(nx)I(nx)

∞∑
n=1

(uλ)n

n3
(nx)2K2(nx)

− lnλ, (10.87)

I(nx) =
5
2
+ nx+

15
8
1
nx

− 15
8

1
(nx)2

+
135
128

1
(nx)3

+ · · · , (10.88)

which, for n = 1, yields the result Eq. (10.82), once we rearrange terms of
two components to include particles and antiparticles and divide by the
baryon number (particle–antiparticle difference).
For the case of a vanishing chemical potential, the non-relativistic Boltz-

mann approximation, Eq. (10.80), is quite appropriate. In Fig. 10.5, we
compare the entropy per particle, evaluated at zero chemical potential
(λ = 1), for the Fermi (long-dashed line), Bose (short-dashed line) and
Boltzmann (solid line, see Fig. 10.4) particles.

11 Hadronic gas

11.1 Pressure and energy density in a hadronic resonance gas

We now consider the physical properties of a hadronic, confined phase,
such as energy density, pressure, and abundances of various particles,
assuming that we have a locally thermally and chemically equilibrated
phase. Although full chemical equilibrium is most certainly not attain-
able in the short time of the nuclear-collision interaction, see chapter 5,
this study provides very useful guidance and a reference point for under-
standing the properties of hadronic matter out of chemical equilibrium.
There are two ways to look at a hadronic gas: the first is that we can

study its properties using the known hadronic states. This approach will
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Fig. 10.5. Comparison of entropy per particle for Fermi and Bose gases, their
classical Boltzmann limit, as a function of T/m: long-dashed Fermi gas, short-
dashed Bose gas, solid line Boltzmann classical limit.

lead to difficulties when and if the temperature is high, since the contribu-
tion of high-mass resonances is apparently not convergent. Even though
the population of each such state is suppressed exponentially by the Boltz-
mann factor e−m/T , the number of states rises exponentially with mass,
and compensates for this effect. This phenomenon was noticed almost 40
years ago. This led to the development of the statistical-bootstrap model
(SBM) and the Hagedorn-gas model, which we will address in chapter 12.
In the physically most relevant hadron-gas domain, 70 MeV > T > 170

MeV, each distinguishable hadron distribution is far from quantum de-
generacy. Therefore, we can use the Boltzmann approximation. The
only exceptional case is the pion, which, when necessary and appropri-
ate, will be considered as a Bose particle. Each of the hadronic states is
considered as a separate contributing fraction in the thermal and chem-
ically equilibrated gas phase, with all fugacities set at λ = 1 (no net
quantum numbers, e.g., b = 0 etc.). The result is shown in Fig. 11.1.
We included 4627 (counting spin and isospin degeneracy) hadronic states
listed by the particle data group (PDG) [136]. No doubt many more
hadronic resonances exist. However, as the mass of the new resonances
increases, they become more difficult to characterize, given the dense
background of the neighboring resonances, and normally increasing decay
width, both of which effects are reducing the signal-to-noise ratio in the
experiment.
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Fig. 11.1. The energy density (solid line) and pressure (dashed line) in units of
T 4 for all known hadrons (on a logarithmic scale) as functions of temperature
T . All fugacities are set to unity.

The worrying fact is that the energy and pressure seem to grow well
beyond the values spanned by the lattice calculations; see section 15.5.
This happens since we have allowed very many hadrons to be present in
the same volume. Even though each kind is relatively rare, the large num-
ber of resonances implies a considerable total particle density. However,
hadrons are not point-like, and in some sense the presence of particles fills
the space available. In the context of the statistical bootstrap, we will
argue in section 12.3 that each hadron occupies a fraction of the spacial
volume. This qualitative argument leads to a correction that relates the
physically observable P and ε to the point-particle result (subscript ‘pt’)
we have so far studied [144]:

P =
Ppt

1 + εpt/(4B)
, ε =

εpt
1 + εpt/(4B)

. (11.1)

The energy density of a hadron is assumed to be 4B, where, as before,
B is the bag constant, and we recall the benchmark value, B1/4 = 171
MeV, corresponding to 4B = 0.45 GeV fm−3. This excluded volume
modifies and limits the growth both of ε and of P with temperature.
The magnitude of the effect depends on details of the implementation
and on the parameters used. However, ε/P is little influenced by this
phenomenological uncertainty.
The dynamics of HG matter described in, e.g., the hydrodynamic ap-

proach in section 6.2 depends in a critical way on the ratio of the inertia
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Fig. 11.2. The ratio of energy density and pressure for a hadronic gas as a
function of the temperature T . Dotted line: pure pion gas; solid lines: gas
comprising pions, nucleons, kaons, and ∆(1232), from bottom to top for λq =
1, 1.2, 1.4, 1.6, 1.8, and 2.

(energy density) to force (pressure) . In Fig. 11.2 for several simple cases,
we show the HG ratio ε/P , as a function of temperature. The dotted
curve is for the pure pion gas, and we see how the relativistic equation of
state is approached for T > 100 MeV. Remarkably, a very different result
is seen once heavy hadrons are introduced. The solid lines include, apart
from pions, a few more massive states: nucleons, kaons, and ∆(1232). The
solid lines from bottom to top are for λq = 1, 1.2, 1.4, 1.6, 1.8, and 2. We
recognize that increasing λq (i.e. increasing the massive-baryon compo-
nent) leads to a greater ratio of inertia to force. This result is clearly
independent of the (schematic) finite-volume correction we introduced in
Eq. (11.1). A fully realistic calculation of this situation is presented in
Fig. 11.3, for the case λs = 1.1 and γs/γq = 0.8 for λq = 1 to 2 in steps of
0.2 from bottom to top, and γq = 1 (dashed lines), or γq = emπ/(2T ) (full
lines). Imagine that a hadron phase is formed from a deconfined QGP at
some temperature T > 140 MeV. In view of these results, we then expect
an accelerating flow of matter as the ratio of inertia to force decreases,
until a minimum is reached at T = 90 MeV. At this point, the HG phase
most likely ceased to exist, in the sense that the distance particles travel
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Fig. 11.3. The energy density over pressure for a hadronic gas with statistical
parameters λs = 1.1 and γs/γq = 0.8, with λq = 1 to 2 in steps of 0.2 from
bottom to top, and γq = 1 (dashed lines), or γq = emπ/(2T ) (full lines).

between scattering had become too large. At the time of writing this
book, it is not clear whether the hadronic phase is present at all, since
in the sudden breakup of a QGP a direct transition to free-streaming
hadrons produced sequentially in time can be imagined. However, these
results apply certainly to the case in which no QGP is formed, namely at
sufficiently low collision energy.

11.2 Counting hadronic particles

There are several discrete quantum numbers of a hadron gas that are con-
served and require introduction of independent chemical potentials. The
chemical potentials for conservation of baryon number and strangeness,
µB and µS, are the best known. Alternatively, and more conveniently
for our purposes, one can use the quark chemical potentials µq and µs for
light and strange quarks, respectively. We will often differentiate between
the u and d quarks, and use µu and µd.
This choice of quark chemical potentials is a matter of convenience and

is made in order to facilitate the translation of QGP-phase variables into
HG-phase variables; in no way does it assume deconfinement of quarks.
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The relationship between the two sets of chemical potentials, quark-based
and traditional hadron-conserved-quantum-number based, is given by the
natural relations

µb = 3µq, µb = 3T lnλq, (11.2a)
µS = µq − µs, µs = µb/3− µS, (11.2b)

where the minus signs are due to the conventional assignment of stran-
geness −1 to the strange quark. Expressed in term of the fugacities we
have:

λb = λ3q, λS = λq/λs. (11.3)

Bh and Sh are the baryon number and strangeness of hadron ‘h’, and
its chemical potential can be written either in terms of µb and µS, or in
terms of µq and µs:

µh = Bhµb + ShµS, (11.4a)
µh = νqhµq + νshµs, (11.4b)

where νqh and νsh count the numbers of light and strange valence quarks
inside the hadron, respectively, with antiquarks counted with a minus
sign. By adapting the quark-based chemical potentials for hadrons, we
recognize the fact that, in the quark model, the quantum numbers of
hadrons are obtained by adding the quantum numbers of their constituent
quarks.
The particle numbers are more directly addressed in the partition func-

tion in terms of fugacities. Since the fugacities are obtained by exponen-
tiating the chemical potentials, Eq. (4.18), the fugacity of each hadronic
species is simply the product of the fugacities of the valence quarks. We
view a hadron as simply a carrier of the valence quarks, which determine
the fugacity and chemical potential of each particle. For example, we have

p : µp = 2µu + µd, λp = λ2uλd ;
n : µn = µu + 2µd, λn = λuλ

2
d ;

Λ : µΛ = µu + µd + µs, λΛ = λuλdλs ; etc.

We distinguish between the up and down quarks by introducing sepa-
rate chemical potentials µu and µd, which is tantamount to introduction of
the chemical potential µQ related to the conservation of electrical charge.
In view of the quark baryon number 13 and the quark charges −

1
3 and +

2
3 ,

the relations between the chemical potentials are

µu ≡ 1
3µb +

2
3µQ, µd ≡ 1

3µb −
1
3µQ. (11.5)
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The average of µu and µd is the quark chemical potential µq:

µq ≡
µu + µd
2

. (11.6)

The definitions Eqs. (11.5) and (11.6) imply a modification of Eq. (11.2a),

µq → µq = 1
3µb +

1
6µQ, (11.7)

which is rarely considered. It arises from the fact that a quark system
containing (nearly) equal numbers of u and d quarks would still have a
net (positive) charge of a sixth the total number of u and d quarks, arising
from the electrical charge of the proton in the initial state formed by the
colliding nuclei.
The asymmetry in the number of u and d quarks is best described by

the quantity

δµ = µd − µu = −µQ, (11.8)

where the negative sign in the last equality reminds us that the d quark
has negative charge. Inverting Eq. (11.7), we obtain

µb = 3µq

(
1 +

1
6

δµ

µq

)
. (11.9)

In a free-quark gas with µq < πT , we have, in view of Eq. (10.75),

µd ∝ 〈d− d̄〉, µu ∝ 〈u− ū〉, (11.10)

where the net number (number of quarks minus that of antiquarks) of
light quarks enters. In a QGP, we find the remarkably simple relation
[216]

1
6

δµ

µq
=
1
3
µd − µu
µd + µu

=
1
3
〈d− d̄〉 − 〈u− ū〉
〈d− d̄〉+ 〈u− ū〉

=
n− p
A

, (11.11)

with A = n + p, and n and p are the neutron and proton contents of the
matter which formed the QGP phase.
For the case of greatest asymmetry available, in Pb–Pb collisions, we

have δµ/(6µq) = 0.21. In the HG phase a similarly sized effect for
δµ/(6µq) to that in a QGP is found, considering this issue numerically;
see figure 1 in [183]. Especially in studying yields of individual particles,
the specific quark u and d content can play a noticeable role. To see this,
let us compare the u and d fugacities:

λd
λu
= eδµ/T = λ

δµ/µq
q . (11.12)

For Pb–Pb interactions under baryon-rich conditions, a λd/λu ratio sig-
nificantly different from unity results. Some dilution of this phenomenon
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will occur if a QGP is formed due to the contribution of hadronizing
gluons, which do not differentiate between the two light u and d flavor
states. We conclude that the u–d asymmetry can not be completely ig-
nored when one is considering the abundances of hadronic particles in
baryon-rich fireballs.
Flavor-changing weak interactions are too slow to matter on the time

scale of heavy-ion collisions. The strong and electro-magnetic interactions
do not mix the quark flavors u, d, and s. These are separately conserved on
the time scale of hadronic collisions. Only the number of quark–antiquark
pairs of the same flavor changes; that is, pairs can be produced or annihi-
lated. The fugacities we call γq and γs serve to count the number of pairs
of light and strange quark, respectively, at any given time. In general,
these pair-abundance fugacities are rapidly evolving in time, in contrast
to the fugacities λq and λs. In fact, for entropy-conserving evolution of a
fireball of QGP, the fugacity λq is nearly constant, and, as we now shall
address, as long as local conservation of strangeness is maintained, λs � 1.
Comparing the QGP with the HG phase, the value of the strangeness

fugacity λs is in a subtle and important way different. Given the mobility
of individual quarks in the QGP phase, and ignoring the influence of
electrical charge in this qualitative discussion, the phase space of both s
and s̄ quarks must be the same, irrespective of the baryon content. To
balance the s and s̄ distributions, we have λs = 1, irrespective of the
value of λq, see, e.g., Eq. (4.42). It is instructive to check the phase-
space integral describing the density of strangeness in order to appreciate
these remarks, and to recall the precise physical difference between the
fugacities λs and γs:

〈ns〉 − 〈ns̄〉 =
∫

d3p

(2π)3

 1

γ−1s λ−1s exp
(√

p2+m2s
T

)
+ 1

− 1

γ−1s λs exp
(√

p2+m2s
T

)
+ 1

. (11.13)

We note the change in the power of λs between these two terms, and
recognize that this integral can vanish only for λs → 1. We discuss
in the following section the small but significant asymmetry in λs due
to the Coulomb charge present in baryon-rich quark matter: long-range
electro-magnetic interactions influence strange and antistrange particles
differently, and a slight deviation λs > 1 is needed in order to compensate
for this effect in the QGP phase.
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Now, let us look at the HG phase. Strange quarks are bound in states
comprising also light quarks. The presence of a net baryon number as-
sures that there is an asymmetry in abundance of light quarks and an-
tiquarks, and thus also, e.g., of strange baryons and antibaryons, with
more hyperons than antihyperons being present. Owing to this asym-
metry, strangeness cannot be balanced in the HG with the value λs = 1,
unless the baryon density vanishes locally. We will address this important
issue in a more quantitative manner in section 11.4. We have learned that
a determination of λs = 1 in the hadron-abundance analysis is indicating
production of these hadrons directly in a breakup of a QGP phase, since
a value different from unity is expected when a HG phase breaks up.

11.3 Distortion by the Coulomb force

It has been recognized for a long time that the Coulomb force can be of
considerable importance in the study of relativistic heavy-ion collisions.
It plays an important role in the HBT interferometry method of analysis
of the structure of the particle source [57, 209]; section 9.3. The analysis
of chemical properties is also subject to this perturbing force, and in con-
sideration of the precision reached experimentally in the study of particle
ratios, one has to keep this effect in mind.
We consider a Fermi gas of strange and antistrange quarks allowing

that the Coulomb potential VC is established by the excess charge of
the colliding nuclei. Within a relativistic Thomas–Fermi phase-space oc-
cupancy model [193], and for finite temperature in a QGP, we have as
generalization of Eq. (11.13) [177]

〈Ns〉 − 〈Ns̄〉 =
∫
Rf

gs
d3r d3p

(2π)3

(
1

1 + γ−1s λ−1s e(E(p)−
1
3
VC(r))/T

− 1

1 + γ−1s λse
(E(p)+ 1

3
VC(r))/T

)
, (11.14)

which clearly cannot vanish for VC 
= 0, in the limit λs → 1.
In Eq. (11.14), the subscript Rf on the spatial integral reminds us that

only the classically allowed region within the fireball is covered in the
integration over the level density; E =

√
m2 + /p 2, and, for a uniform

charge distribution within a radius Rf of charge Zf ,

VC =


−3
2
Zfe

2

Rf

[
1− 1

3

(
r

Rf

)2]
, for r < Rf ;

−Zfe
2

r
, for r > Rf .

(11.15)
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One obtains a rather precise result, for the range of parameters of
interest to us, using the Boltzmann approximation:

〈NB
s 〉 − 〈NB

s̄ 〉 = γs

(∫
gs

d3p

(2π)3
e−E/T

)
×
∫
Rf

d3r
(
λse

VC/3T − λ−1s e−VC/3T
)
. (11.16)

The Boltzmann limit allows us also to verify and confirm the signs: the
Coulomb potential is negative for the negatively charged s quarks with
charge 1

3 , which is made explicit in the potential terms in all expressions
above. We have

λ̃s ≡ λsO
1/3
C = 1, OC ≡

∫
Rf
d3r eV/T∫
Rf
d3r

. (11.17)

OC < 1 expresses the Coulomb deformation of strange quark phase space.
OC is not a fugacity that can be adjusted to satisfy a chemical condi-
tion, since consideration of λi, i = u, d, s, exhausts all available chemical
balance conditions for the abundances of hadronic particles, and allows
introduction of the fugacity associated with the Coulomb charge of quarks
and hadrons; see section 11.2. Instead, OC characterizes the distortion of
the phase space by the long-range Coulomb interaction. This Coulomb
distortion of the quark phase space is naturally also present for u and d
quarks, but appears less significant given that λu and λq are empirically
determined. On the other hand this effect compensates in part the u–d
abundance asymmetry effect we have discussed in Eqs. (11.5)–(11.12).
Choosing T = 140 MeV and ms = 200 MeV, and noting that the

value of γs is practically irrelevant since this factor cancels out in the
Boltzmann approximation, see Eq. (11.16), we find for Zf = 150 that the
value λs = 1.10 is needed for Rf = 7.9 fm in order to balance the Coulomb
distortion. One should remember that the dimensionless quantities ms/T
and RfT determine the magnitude of the effect we study. Chemical freeze-
out at higher temperature, e.g., T = 170 MeV, leads for λs = 1.10 to
somewhat smaller radii, which is consistent with the higher temperature
used.
The influence of the Coulomb force on chemical freeze-out is relevant in

central Pb–Pb interactions, wheras for S–Au/W/Pb reactions, a similar
analysis leads to a value λs = 1.01, which is little different from the
value λs = 1 expected in the absence of the Coulomb deformation of
phase space. Another way to understand the varying importance of the
Coulomb effect is to note that, while the Coulomb potential acquires in
the Pb–Pb case a magnitude comparable to the quark chemical potential,
it remains small on this scale for S–Au/W/Pb reactions.
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11.4 Strangeness in hadronic gas

We now describe the abundance of strange particles in the hadronic-gas
phase. This is, compared with the QGP, a very complicated case, since
there are many particles which are carriers of ‘open’ strangeness. More-
over, strong interactions result in the presence of numerous hadronic reso-
nances with open strangeness. The postulate of the dominance by hadron
resonance formation of hadron–hadron interactions [140] allows a vast
simplification of the theoretical treatment. Regarding the hadronic-gas
phase as a mixture of various non-interacting hadronic-resonance gases,
all information about the interaction is contained in the mass spectrum
τ(m2, b) which describes the number of hadrons of baryon number b in
a mass interval dm2. We will address this postulate in more detail in
chapter 12. Within this approach to strong interactions, the logarithm
of the total partition function is additive in its strange and not strange
sectors, so long as the various gas fractions interact mainly via formation
of hadronic resonances. We then have

lnZ = lnZnon-strange + lnZstrange. (11.18)

In the grand-canonical description, one finds that the non-strange had-
rons influence the strange ones by providing a background value of sta-
tistical parameters, such as the baryochemical potential µb, which are
accessible to direct measurement. We conclude that, in order to under-
stand abundances of strange particles, it is sufficient to consider lnZstrange.
In the Boltzmann approximation, it is easy to write down the partition
function for the strange-particle fraction of the hadronic gas, Zs. In-
cluding the possibility of an only partially saturated strange phase space
through the factor γs, and similarly γq for light quarks, but suppressing
for simplicity the isospin asymmetry δµ, Eq. (11.8), we have

lnZHG
s =

V T 3

2π2
[
(λsλ−1q + λ−1s λq)γsγqFK + (λsλ2q + λ−1s λ−2q )γsγ

2
qFY

+(λ2sλq + λ−2s λ−1q )γ
2
s γqFΞ + (λ

3
s + λ−3s )γ

3
sFΩ

]
. (11.19)

In the phase-space function Fi all kaon (K), hyperon (Y), cascade (Ξ),
and omega (Ω) resonances plus their antiparticles are taken into account:

FK =
∑
j

gKjW (mKj/T ); Kj = K,K
∗,K∗

2, . . ., m ≤ 1780 MeV ,

FY =
∑
j

gYjW (mYj/T ); Yj = Λ,Σ,Σ(1385), . . ., m ≤ 1940 MeV ,

FΞ =
∑
j

gΞjW (mΞj/T ); Ξj = Ξ,Ξ(1530), . . ., m ≤ 1950 MeV ,
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FΩ =
∑
j

gΩjW (mΩj/T ); Ωj = Ω,Ω(2250) . (11.20)

The gi are the spin–isospin degeneracy factors, W (x) = x2K2(x), see
Eq. (10.50a) and Fig. 10.1, where K2 is the modified Bessel function,
Eq. (10.44).
We need to understand, in terms of experimental observables, the chem-

ical properties of the fireball at the time of hadron production. The
method of choice is the study of particle ratios [167, 216]; section 9.1. In
order to obtain the mean abundances of various strange particles, we in-
troduce for each species its own dummy fugacity (which we subsequently
will set equal to unity). The explicit expressions for these ratios turn out
to be very simple, and one quickly deduces from the following examples
the principles which allow one to construct any ratio:

〈nΛ̄〉
〈nΛ〉

= λ−4q λ−2s ; (11.21a)

〈nΞ̄〉
〈nΞ〉

= λ−2q λ−4s ; (11.21b)

〈nΩ̄〉
〈nΩ〉

= λ−6s ; (11.21c)

〈nK+〉
〈nK−〉 = λ−2s λ2q ; (11.21d)

〈nK〉
〈nΛ〉

= λ−2s λ−1q γ−1q
FK
FΛ

. (11.21e)

In a more colloquial notation found also in this book, one omits 〈n〉, using
as the symbol for the particle considered the subscript only.
The baryochemical potential, or more simply, the quark fugacity λq,

can be deduced from the above stated ratios. Best for this purpose is
to consider the ratios not involving quark-pair fugacities γq and γs. Any
two ratios containing only λq and λs can be combined to evaluate these
quantities. Since many more than two ratios are available, a check of the
procedure is possible. This, in fact, constitutes a strong confirmation of
the validity of phase-space characterization of particle yields. Postponing
detailed discussion to chapter 19, we note that all groups that applied
this method to study the chemical properties have found extremely good
consistency. This implies that the production of particles as different as
kaons K and anticascades Ξ occurs by a similar mechanism, and nearly at
the same instance in the evolution of the fireball; these particles know of
each other, either due to processes of rescattering in the HG phase, or sim-
ply because they have been produced directly with yields corresponding
to the relative size of the phase space.



11 Hadronic gas 219

An example of the consistency relation can be obtained by combining
the ratios of cascades, lambdas, and kaons,

Ξ/Ξ
Λ/Λ

=
K+

K− , (11.22)

which is very well satisfied in all measurements of which we are aware.
It is important to note that Eq. (11.22) applies a full ‘4π’ yield. For the
central-rapidity particle yield ratio, a correction containing the influence
of the velocity of expansion of the fireball has to be applied.
Although the proper determination of the chemical properties is best

achieved in a global fit of hadron yields, it is important that we see how
the physics of this determination works. It can be seen that the multitude
of strange hadrons allows us to determine the value of λs in many different
ways, for example,

Λ/Λ
(Ξ/Ξ)2

= λ6s (11.23)

and similarly

Ξ/Ξ
(Λ/Λ)2

= λ6q. (11.24)

This estimate produces an answer for the value of these parameters that
very accurately agrees with results of global fits.
It is equally easy to fix the ratio γs/γq since comparison of hyperons

of unequal strangeness content always yields this pair fugacity ratio. The
difficulty is that we have to understand the ratio of phase spaces of the
various baryons, which is controlled by the temperature, when we consider
the full yield. A first estimate is obtained by comparing in the same m⊥
range, e.g., Λ and Ξ. How this is done is shown in Fig. 8.8 on page 150.
Even then, the feed from higher resonances is important and temperature
remains an input into the determination of γi.

11.5 The grand-canonical conservation of strangeness

Using the partition function Eq. (11.19), we can calculate the net stran-
geness by evaluating

〈Ns〉 − 〈Ns̄〉 = λs
∂

∂λs
lnZHG

s . (11.25)

We find

〈ns〉 − 〈ns̄〉 =
T 3

2π2
[
(λsλ−1q − λ−1s λq)γsγqFK
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+(λsλ2q − λ−1s λ−2q )γsγ
2
qFY

+2(λ2sλq − λ−2s λ−1q )γ
2
s γqFΞ

+3(λ3s − λ−3s )γ
3
sFΩ

]
. (11.26)

In general, Eq. (11.25) must be equal to zero since strangeness is a
conserved quantum number with respect to the strong interactions, and
no strangeness is brought into the reaction. The possible exception is
dynamic evolution with asymmetric emission of strange and antistrange
hadrons. The grand-canonical condition,

〈ns〉 − 〈ns̄〉 = 0, (11.27)

introduces an important constraint, i.e., it fixes λs in terms of λb (and
charge λQ when the later is considered).
Equation (11.25) can be solved analytically when the contribution of

multistrange particles is small:

λs|0 = λq

√
FK + γqλ

−3
q FY

FK + γqλ3qFY
. (11.28)

This relation between the strange chemical potential µs|0 = T lnλs|0 and
the baryochemical potential µb = 3T lnλq is shown for γq = γs = 1 in
Fig. 11.4. To understand Fig. 11.4, we note that the term with λ−3q =
e−µb/T in Eq. (11.28) will tend to zero as µb gets larger and the term with
λb will dominate in denominator. Thus, λs ∝ λ

−2/3
b , i.e., µs ∝ −2

3µb for
large µb. At small µb, in particular, for relatively small temperatures, the
hyperon contribution is small and we see µs ∝ 1

3µb. Putting it differently,
Eq. (11.28) knows that, in a baryon-rich HG phase, qs̄ (K+,K0) kaons are
the dominant carriers of s̄ quarks, whereas qqs (Λ,Σ) hyperon states are
the main carriers of s quarks at finite baryon density. We see that the
competition between strangeness content in the four classes of strangen-
ess carriers determines, at each temperature T , the location where one
obtains a nontrivial µs = 0 at finite µb, and the QGP property λs = 1 is
accidentally present in the HG phase. There is no such nontrivial solution
at sufficiently high temperature. For T > 200 MeV and γq = γs = 1, only
negative strangeness chemical potential is seen in Fig. 11.4.
The line in the (µb–T ) plane corresponding to µs = 0 is the divide be-

tween positive and negative values of the strangeness chemical potential
in a strangeness-balanced hadronic gas. The relation between µb and T
corresponding to µs = 0, i.e., λs = 1, arising from Eq. (11.26) when net
strangeness vanishes, can be solved analytically allowing for the effect of
multistrange baryons and antibaryons. First, we note that for λs = 1,
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Fig. 11.4. The strange-quark chemical potential µs versus the baryon chemical
potential µb in a strangeness-neutral grand-canonical chemically equilibrated
HG. The long-dashed line corresponds to T = 150 MeV, the solid line to T = 200
MeV, and the short-dashed line to T = 300 MeV. The dotted line is the limiting
curve for large T , computed here at T = 1000 MeV.

there is always an exact balance between Ω and Ω and this term disap-
pears. The coefficient of the hyperon FY contribution, when it is written
in the form

λ−2q − λ2q =
(
λ−1q − λq

) (
λ−1q + λq

)
,

allows us to cancel out a common factor λ−1q − λq present in all terms,
along with γqγs. We obtain

µb = 3T ln(x+
√
x2 − 1), 1 ≤ x =

FK − 2γsFΞ
2γqFY

. (11.29)

This result is shown in Fig. 11.5. We have chosen to consider the nonequi-
librium condition γq = emπ/(2T ) corresponding to the maximum entropy
content in a hadronic gas, as could be emerging from hadronization of an
entropy-rich QGP phase. The solid line is for γs = γq, while the dashed
lines span the range γs = 0.8–2.8 in steps of 0.2, from right to left.
Below and to the left of this separation line in Fig. 11.5, we have posi-

tive strangeness chemical potential in a strangeness-balanced HG phase,
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Fig. 11.5. The condition of vanishing strangeness at λs = 1 in a hadronic gas,
evaluated for its maximum entropy content, i.e., with γq = emπ/(2T ). Solid line,
γs = γq; dashed lines from left to right are for γs = 0.8–2.8 in steps of 0.2.

whereas above and to the right we have negative strangeness potential.
The importance of this observation is that the relative yield RΩ ≡ Ω/Ω,
Eq. (11.21c), is strongly sensitive to the sign of µs. At present, we know
that, at the SPS top energy, both in S–W and in Pb–Pb interactions,
RΩ ≥ 1 and thus λs ≥ 1 and µs ≥ 0; the allowed range of T–µb is below
and to the left in Fig. 11.5. Indeed, all analyses of the abundances of
particles of which we are aware have yielded results in this domain of T
and µb.

We further denote, in Fig. 11.5, the area below and to the left as s < s̄,
whereas the domain above and to the right is denoted as s > s̄. What we
indicate is that, for λs = 1, the resulting phase space of strange particles
would add up to satisfy these conditions within these domains of T and
µb. To recognize the importance of this condition consider that a QGP is
evaporating hadrons. Below and to the left, with s < s̄, the evaporation
favors emission of antistrangeness and this allows the accumulation of an
excess of strangeness in the evaporation remnant; this is the process called
‘strangeness distillation’ [134, 135].
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The result of the distillation is the production of strangelets, drops
of quark matter with an unusually high abundance of s quarks. Since
strange quarks are negatively charged, such states would have unusually
small charge relative to their mass; indeed in the limit of equal abundance
of u, d, and s, a strangelet would be neutral. Many searches for long-lived
(on the scale of strong interactions) strangelets have been performed,
without success [44, 45, 232], suggesting that such states are not stable
with respect to strong interactions. If they are produced, strangelets are
dissociating into strange hadrons rather rapidly. One will note that, in the
decay of hadronic strangelets, production of multistrange baryons, and in
particular Ω, would be well above the normal expectations. Since the
statistical yield of Ω is very small, even a small yield of strangelets could
lead to visible distortions of the otherwise rarely produced Ω. An excess
of Ω over the statistical-model expectations is seen at the top energy of
the SPS; see section 19.3 and Fig. 8.11.

11.6 Exact conservation of flavor quantum numbers

We now consider, in more detail, what effect the exact conservation of
quantum numbers, such as strangeness or baryon number, has on the size
of the available particle phase space. As is intuitively clear, only when
the yield numbers are small, can this lead to a noticeable effect. In the
grand-canonical approach, flavor conservation, expressed by Eq. (11.27),
is not exact. In other words, strangeness, even baryon number, is con-
served on average but not exactly. We will focus our interest on the case
of newly-produced flavors (strangeness and charm) since the number of
pairs of quarks produced can be sufficiently small to warrant this. The
exact conservation of the baryon number (or the light-quark flavors) is of
particular interest in the study of the small collision systems.
When the number of strange-quark pairs is relatively small, Eq. (11.27)

has to be replaced by the sharper ‘canonical’ conservation condition,

〈ns − ns̄〉 = 0. (11.30)

According to Eq. (11.30), the net strangeness vanishes exactly in each
physical system we study. This introduces a correlation between the phase
space of particles and of antiparticles and thus, in general, the chemical
equilibrium yield of, e.g., the pairs of strange quarks evaluated under
constraint Eq. (11.30), is smaller when compared with that expected when
Eq. (11.27) is considered.
We are, in particular, interested in understanding under which condi-

tions the canonical and grand-canonical yields are equal, and how the
grand-canonical yields are altered by the physical constraint Eq. (11.30)
[218]. For strangeness, this amounts to finding the yield for which we can
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study the colliding system as if it had infinite size. In the context of the
production of charm, the yields (almost) always remain relatively small,
and use of the canonical formulation is necessary in order to evaluate
the expected chemical-equilibrium yields, even when the grand-canonical
approach applies for all the other observables.
The grand partition function, Eq. (10.48), in the Boltzmann limit, can

be written as a power series:

Zcl = eZ
(1)
f =

∞∑
n=0

1
n!

(
Z
(1)
f

)n
. (11.31)

To emphasize that any flavor (in particular s, c, and b) is under con-
sideration here, we generalize slightly the notation s → f. The flavor
and antiflavor terms within Z

(1)
f are additive, and we consider at first

only singly flavored particles in Eq. (11.19), adopting a simplified and
self-explanatory notation:

Z
(1)
f = γ(λf F̃f + λ−1f F̃f̄), F̃i =

V T 3

2π2
Fi. (11.32)

Combining Eq. (11.32) with Eq. (11.31), we obtain

Zcl =
∞∑

n,k=0

γn+k

n!k!
λn−kf F̃nf F̃

k
f̄ . (11.33)

When n 
= k, the sum in Eq. (11.33) contains contributions with un-
equal numbers of f and f̄ terms. Only when n = k do we have contribu-
tions with exactly equal number of f and f̄ terms. We recognize that only
n = k terms contribute to the canonical partition function:

Zf=0cl =
∞∑
n=0

γ2n

n!n!
(F̃f F̃f̄)

n = I0

(
2γ
√
F̃f F̃f̄

)
. (11.34)

The modified Bessel function I0 is well known, see Eqs. (8.23) and (8.27).
The argument of I0 has a physical meaning, it is the yield of flavor pairs

NGC
pair in the grand-canonical ensemble, evaluated with grand-canonical

conservation of flavor, Eq. (11.27). To see this, we evaluate

〈Nf〉 − 〈Nf̄〉 = λf
∂

∂λf
lnZ f

cl = γ(λf F̃f − λ−1f F̃f̄) = 0. (11.35)

We obtain, see Eq. (11.28),

λf |0 =
√
F̃f̄/F̃f , (11.36)
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and thus

lnZ f
cl

∣∣∣
λf=λf |0

= 〈Nf〉+ 〈Nf̄〉 = 2γ
√
F̃f F̃f̄ ≡ 2NGC

pair, (11.37)

which is just the argument of the I0 function in Eq. (11.34). In the grand-
canonical-ensemble approach the (average) number of pairs NGC

pair is ex-
tensive in volume, since F̃i ∝ V .
In order to evaluate, using Eq. (11.34), the number of flavor pairs in

the canonical-ensemble, we need to average the number n over all the
contributions to the sum in Eq. (11.34). To obtain the extra factor n, we
perform the differentiation with respect to γ2 and obtain the canonical
ensemble f-pair yield,

〈NCE
f 〉 ≡ γ2

d

dγ2
lnZ f=0cl = γ

√
F̃f F̃f̄

I1

(
2γ
√
F̃f F̃f̄

)
I0

(
2γ
√
F̃f F̃f̄

)
= NGC

pair

I1(2NGC
pair)

I0(2NGC
pair)

. (11.38)

where we have used Eq. (8.24). The first term is identical to the result
we obtained in the grand-canonical formulation, Eq. (11.37). The second
term is the effect of exact conservation of flavor.
The intuitive derivation of the canonical constraint we have presented

follows the approach of [218]. This can be generalized to more com-
plex systems using the projection method [229, 262]. This method can be
applied to solve more complex situations, for example inclusion of mul-
tistrange hadrons, conservation of several ‘Abelian’ quantum numbers
[61, 102] (such as strangeness, baryon number, and electrical charge), and
the problem of particular relevance in this field, the exact conservation
of color: all hadronic states, including QGP, must be exactly color ‘neu-
tral’ [111, 112]. The solution of this ‘nonabelian-charge’ problem is most
interesting but reaches well beyond the scope of this book.
For the case of ‘Abelian’ quantum numbers, e.g., flavor or baryon num-

ber, the projection method arises from the general relation between the
grand-canonical and canonical partition functions implicit in Eq. (4.20):

Z(β, λ, V )cl =
∞∑

nf=−∞
λnfZf(β, V ;nf). (11.39)

In the canonical partition function Zf , some discrete (flavor, baryon)
quantum number has the value nf ≡ f. The inverse of this expansion



226 Hot hadronic matter

is given in Eq. (4.21). On making the substitution λ = eiϕ we obtain

Zf(β, V ;nf) =
∫ 2π

0

dϕ

2π
e−infϕZ(β, λ = eiϕ, V ). (11.40)

In the case of the Boltzmann limit, and including singly charged parti-
cles only, we obtain for the net flavor nf from Eq. (11.33)

Zf(β, V ;nf) =
∞∑

n,k=0

γn+k

n!k!

∫ 2π

0

dϕ

2π
ei(n−k−nf)ϕF̃nf F̃

k
f̄ . (11.41)

The integration over ϕ yields the δ(n − k − nf) function. Replacing n =
k + nf , we obtain

Zf(β, V ;nf) =
∞∑
k=0

γ2k+nf

k!(k + nf)!
F̃ k+nff F̃ kf̄ . (11.42)

The power-series definition of the modified Bessel function If is

Inf (z) =
∞∑
k=0

(z/2)2k+nf

k!(k + nf)!
. (11.43)

Thus we obtain

Zf(β, V ;nf) =

(
F̃f

F̃f̄

)nf/2
Inf

(
2γ
√
F̃f F̃f̄

)
. (11.44)

The case of nf = 0 which we considered earlier, Eq. (11.34), is reproduced.
We note that, for integer nf , we have Inf = I−nf , as is also evident in the
integral representation Eq. (8.27). We used nf as we would count the
baryon number, thus, in flavor counting, nf counts the flavored quark
content, with quarks counted positively and antiquarks negatively. This
remark is relevant when the factors F̃f and F̃f̄ contain baryochemical
potential.
When the baryon number is treated in the grand-canonical approach,

and strangeness in the canonical approach, there is potential for math-
ematical difficulties. These can usually be avoided by considering the
meromorphic expansion of the partition function Eq. (11.39). Inserting
the explicit form Eq. (11.32) we obtain

Zcl � eγ(λf F̃f+λ
−1
f F̃f̄) =

∞∑
nf=−∞

λnff

(
F̃f

F̃f̄

)nf/2
Inf

(
2γ
√
F̃f F̃f̄

)
. (11.45)

Multistrange particles can be introduced as additive terms in the expo-
nent in Eq. (11.45). This allows us to evaluate their yields [148]. However,
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the canonical partition function is dominated by singly strange particles
and we will assume, in the following, that considering only these suffices
to obtain the effect of canonical conservation of flavor. In order to find
yields of rarely produced particles such as, e.g., Ω(sss), we show the omega
term explicitly:

Zf(β, V ;nf = 0) =
∫ 2π

0

dϕ

2π
eF̃fe

iϕ+F̃f̄e
−iϕ+λΩe

3iϕF̃Ω+···. (11.46)

The unstated terms in the exponent are the other small abundances of
multiflavored particles. The fugacities not associated with strangeness,
as well as the yield fugacity γs, are incorporated in Eq. (11.46) into the
phase-space factors F̃i for simplicity of notation.
The number of Ω is obtained by differentiating lnZf(β, V ) with respect

to λΩ, and subsequently neglecting the subdominant terms in the expo-
nent,

〈nΩ〉 �
F̃Ω
I0

∫ 2π

0

dϕ

2π
e3iϕeF̃fe

iϕ+F̃f̄e
−iϕ

. (11.47)

The result of the integration is easily read off the meromorphic expansion,
Eq. (11.45), to be Zf(β, V ;nf = −3), Eq. (11.44). This result is easily
understood, the three strange quarks in the particle observed are balanced
by the background of singly strange particles (kaons and antihyperons),

〈nΩ〉 � F̃Ω

(
F̃f

F̃f̄

)−3/2
I3(2NGC

pair)

I0(2NGC
pair)

. (11.48)

We recall that, according to Eq. (11.36), the middle term is just the fu-
gacity factor λ3s . The first two factors in Eq. (11.48) constitute the grand-
canonical yield, while the last term is the canonical Ω-suppression factor.
A full treatment of the canonical suppression of multistrange particle
abundances in small volumes has been used to obtain particle yields in
elementary interactions [60].
Similarly, one finds that the suppression of Ξ abundance has the factor

I2/I0, whereas, as discussed for the general example of the flavor-pair
yield, the yield of single strange particles is suppressed by the factor I1/I0.
The yield of all flavored hadrons in the canonical approach (superscript
‘C’) can be written as a function of the yield expected in the grand-
canonical approach in the general form

〈sκ〉C = F̃κ

(
F̃f

F̃f̄

)κ/2
I|κ|(2NGC

pair)

I0(2NGC
pair)

= 〈sκ〉GC
I|κ|(2NGC

pair)

I0(2NGC
pair)

, (11.49)

with κ = ±3, ±2, and ±1 for Ω, Ξ, and Y and K, respectively. On the
left-hand side in Eq. (11.49) the power indicates the flavor content in the
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particle considered, with negative numbers counting antiquarks. We note,
on inspecting the final form of Eq. (11.49), that the canonical suppression
of particle and antiparticle abundances is the same, certainly so when we
study systems with several pairs present. In very small systems, one may
need to evaluate the quantum distributions including multistrange parti-
cles in order to obtain precise results. A particle/antiparticle asymmetry
can occur if baryon/antibaryon asymmetry applies.
The simplicity of Eq. (11.49) originates from the assumption that the

contributions of singly strange particles to conservation of strangeness
are dominant. This assumption is consistent with the neglect of quantum
statistics. In fact, on expanding the Bose distribution for kaons, one finds
that the next-to-leading-order contribution, which behaves as strangeness
ns = ±2 hadrons, is dominating the influence of all multistrange hadrons.
Our study is consistent with the Boltzmann statistics assumed here; more
complex evaluation taking multistrange hadrons into account, but consid-
ering kaons as Boltzmann particles, is theoretically inconsistent.

11.7 Canonical suppression of strangeness and charm

The canonical flavor yield suppression factor,

η ≡
I1

(
2γ
√
F̃f F̃f̄

)
I0

(
2γ
√
F̃f F̃f̄

) = I1(2NGC
pair)

I0(2NGC
pair)

< 1, (11.50)

depends in a complex way on the volume of the system, or, express-
ing it alternatively, on the grand-canonical number of pairs, NGC

pair. The
suppression function η(N) ≡ I1(2N)/I0(2N) is shown in Fig. 11.6 as a
function of N . For N > 1, we see (dotted lines) that the approach to the
grand-canonical limit is relatively slow; it follows the asymptotic form

η � 1− 1
4N

− 1
128N2

+ · · · , (11.51)

whereas for N 	 1, we see a nearly linear rise:

η = N − N3

2
+ · · ·. (11.52)

Overall, when the the yield of particles is small, we have, using Eq. (11.52),

NCE
pair = (N

GC
f )2. (11.53)

Hagedorn was puzzled by this quadratic behavior of the particle yield,
being concerned about rarely occurring astrophysical processes of pair
production. In his 1970/71 CERN lectures [141], he asked how the yield
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Fig. 11.6. Solid line: the canonical yield-suppression factor as a function of the
grand-canonical yield of particles N . Dotted lines: asymptotic expansion forms
presented in the text.

of particles can be Y ∝ e−2m/T , when the threshold for production of a
pair is relevant, and another time Y ∝ e−m/T , when the statistical yield
is evaluated. This is the grand-canonical yield for m > T , as seen in
section 10.4,

NGC =
gf
2π2

T 3V

√
πm3

2T 3
e−m/T , (11.54)

whereas when the yield of particles is small, e.g., when m � T , the
canonical result applies:

NCE =
g2f
8π3

T 3m3V 2e−2m/T . (11.55)

We see that the Hagedorn puzzle has been resolved. The reaction volume
is an important factor controlling which of the two results Eqs. (11.54)
and (11.55) should be considered in a given physical situation.
We next consider whether there is any effect of QGP compared with

HG in the study of canonical conservation of strangeness. The possible
difference would arise from the different sizes of the phase space for stran-
geness in these two phases of matter. In the Boltzmann limit, the flavor
and antiflavor phase space in the symmetric QGP is:

F̃f = F̃f̄ = gfV

∫
d3p

(2π)3
e

√
p2+m2

f
T =

3V Tm2
f

π2
K2(mf/T ). (11.56)
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Fig. 11.7. Volume needed for one strange quark pair using grand-canonical
counting as function of λq for T = 160 MeV, γq = 1, γs = 1, Vh = (4π/3) 1 fm3.
Solid line: hadron gas phase space, dashed line: quark phase space withms = 160
MeV.

For the hadronic phase, it is derived from Eqs. (11.19) and (11.20). We
have, counting strange-quark content as positively ‘flavor charged’ as be-
fore,

F̃f = λ−1q F̃K + λ2qF̃Y, (11.57)

F̃f̄ = λqF̃K + λ−2q F̃Y. (11.58)

All these quantities F̃i are proportional to the reaction volume.
The interesting result, seen in Fig. 11.6, is that the suppression of yield

is at the level of 30% when one pair of particles would be expected to be
present in grand-canonical chemical equilibrium; the suppression means
that instead we find that the true phase-space yield is 0.7 pairs. Actually,
in p–p interactions at 158 GeV/c projectile momentum, the analysis of
experimental results yields 0.66± 0.07 strange pairs [277].
Pursuing this line of thought, but also to obtain a reference regarding

the magnitudes involved for strangeness, we consider how big a volume
we need in order to find (using grand-canonical-ensemble counting) one
pair of strange particles. In the hadronic phase space, with λs chosen to
conserve strangeness, we have

V

Vh
=

2π2

VhT 3γqγs

√
(FK + λ3qFY)(FK + λ−3q FY)

. (11.59)
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Fig. 11.8. Canonical yield enhancement at large volumes compared with the
case of unit hadron volume Vh = 4

3π fm
−3. Solid line, QGP phase; dashed line,

HG.

For p–p interactions, we consider T = 160 MeV, and the elementary
hadronic volume is chosen to be Vh = 4

3π fm
3. The applicable value of λq,

if statistical methods are used, is close to unity. The result is shown as
the solid line in Fig. 11.7, as a function of λq, for γq = 1 and γs = 1. The
dashed line is the corresponding result for the QGP strange-quark phase
space, which naturally does not depend on λq, and has been obtained
by choosing ms = 160 MeV. Just a little less than one hadronic volume
suffices; one finds one pair in Vh for ms = 200 MeV.
We show in Fig. 11.8 the canonical strangeness-suppression factor

Eq. (11.50), both for a QGP (solid line) and for a HG (dashed line). We
have converted the suppression η into an enhancement by normalizing at
η(V = Vh). For the QGP, we take ms = 160 MeV, whereas, for a HG,
we take µb = 210 MeV. Both phases are considered at T = 145 MeV.
Since the strangeness content in QGP is greater than that in HG, there
is less ‘catching up’ to do and the overall yield is increased by factor 1.8,
whereas for HG, we find an increase by a factor of three. Practically all
of this enhancement occurs when the reaction volume increases to five,
i.e., for rather small reaction systems.
We now look at the suppression of multistrange particle abundances by

the factors η3(N) = I3(2N)/I0(2N), for Ω, and η2(N) = I2(2N)/I0(2N),
for Ξ. For small values of N , we obtain

ηκ ≡ Iκ(2N)
I0(2N)

→ Nκ 1
κ!

(
1− κ

κ+ 1
N2

)
. (11.60)
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Fig. 11.9. Canonical yield-suppression factors Iκ/I0 as function of the grand-
canonical particle yield N . Short-dashed line: the suppression of triply-flavored
hadrons; long-dashed line: the suppression of doubly-flavored hadrons; and solid
line, the suppression of singly-flavored hadrons.

This result is easily understood on physical grounds: for example, when
the expected grand-canonical yield is three strangeness-containing pairs,
it is quite rare that all three strange quarks go into an Ω. This is seen
in Fig. 11.9 (short-dashed curve), and in fact this will occur about a
tenth as often as we would expect from computing the yield of Ω, ig-
noring the canonical conservation of strangeness. The other lines in
Fig. 11.9 correspond to the other suppression factors; the long-dashed line
is η2(N) = I2(2N)/I0(2N) and the solid line is η(N) = I1(2N)/I0(2N).
They are shown to be dependent on the number of strange pairs expected
in the grand-canonical equilibrium, denoted in Fig. 11.9 as N .
It has been proposed to exploit the canonical suppression which grows

with strangeness content to explain the increase in production of strange
hadrons seen in Fig. 1.6 on page 19, when the per-participant yield in
A–A interactions is compared with that from p–Be interactions [228]. A
direct comparison of the reduction factors ηκ is possible. Choosing as
the reference point the yield N � 1, the claim is that one can come
close to explaining the enhancement in production of three out of five
strange hadrons seen in Fig. 1.6. The reader should notice that the en-
hancement effect is derived from the suppression of the base yield in the
small reference system. We obtain this effect by rebasing the results
shown in Fig. 11.9 to the strangeness yield observed in p–p reactions
evaluated within canonical formulation; see Fig. 11.10. The three cases
studied in Fig. 11.9 are seen, where the dotted lines are derived from
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Fig. 11.10. Canonical yield-suppression factor of Fig. 11.9 expressed as enhance-
ment factors Ei, i = 1, 2, 3 as functions of the canonical-pair-particle yield NCE.
Solid line: E1, the enhancement of singly-flavored hadrons, relative to the yield
0.66± 0.07, expected in p–p reactions. Similarly, long-dashed line: E2, enhance-
ment of doubly-flavored hadrons; and short-dashed line: E3, enhancement of
triply-flavored hadrons. Dotted lines correspond to the errors arising from the
error in the strangeness yield, to which the results are normalized.

the error in the reference yield of production of strangeness in p–p reac-
tions.
We see, in quantitative terms, the strength of the canonical effect, espe-

cially for multistrange hadrons, and its rapid rise with the yield of stran-
geness [223]. The canonical-enhancement effect rises rapidly but smoothly
and saturates at the grand-canonical yield in rather small systems. The
grand-canonical chemical-equilibrium yield is reached for systems com-
prising ten strangeness pairs and for reaction systems about six times
greater than the p–p system, considering that the yield of singly-strange
particles is enhanced by a factor three, as is seen in Fig. 11.10. This result
is inconsistent with the experimental results from the NA52 experiment
[153], which reveal an abrupt threshold for enhancement of production
of strangeness at �50 participants, just where the WA57 team recently
reported a sudden onset of enhancement in yield of Ξ [108]. Given the
sensitivity of the results shown in Fig. 11.10 to the strangeness reference
yield, it is natural to conclude that the explanation of strange-hadron
enhancement offered in [228] is based on a fine tuned p–Be strangeness
yield, not cross-checked with the (at-present-unavailable) experimental
yield.
We addressed, with such a great precision, the canonical chemical-

equilibrium yields of strange particles expected to originate from small
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Fig. 11.11. The canonical yield of pairs of open charm quarks 〈nc〉pair per unit
volume as a function of volume, in units of Vh = 4

3π fm
3. Solid line, QGP with

mc = 1.3 GeV; dashed line, HG at µb = 210 MeV, both phases at T = 145 MeV.

systems, since hadron yields observed in p–p and p–p̄ interactions, and
even in hadron jets produced in LEP e+–e− reactions are remarkably close
to the expectations for chemical equilibrium [62], allowing in the analysis
for the canonical suppression and including the effects of quantum degen-
eracy. This thorough analysis results in a not completely satisfactory χ2

per degree of freedom (= 61/21). Yet a reader of this thorough report
will have the impression that a modern-day Maxwell’s demon must be at
work, generating canonical chemical equilibria for hadrons in all these el-
ementary interactions, and abundances of strange quarks within a factor
of two of absolute chemical equilibrium.
On the other hand, a demon that works for strangeness should also work

for charm. The yield of charm in Pb–Pb interactions is estimated from
the lepton background at 0.5 pairs per central collision [13]. We can use
the small-N expansion, Eq. (11.60). The corresponding A–A canonical
enhancement factor, compared with p–A, is NAA/NpA � 100A. (Here N
is now the yield of ‘open’ charm rather than strangeness.) The measured
open-charm cross sections, however, scale with the number of participants,
and there is no space for a large canonical enhancement/suppression of
production of charm. To be more specific, we show, in Fig. 11.11, the spe-
cific yield of charm 〈nc〉pair per unit volume as a function of the volume.
The canonical effect is the deviation from a constant value and it is sig-
nificant, O(100). Even at V = 500Vh the infinite-volume grand-canonical
limit is not yet attained, for the case of the larger phase space of QGP
(solid line), the total yield of charm is just one charm pair. The absolute
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yield in both phases is strongly dependent on the temperature used, here
T = 145 MeV. In QGP, we took mc = 1.3 GeV. The phase space of a
HG includes all known charmed mesons and baryons, with abundances of
light quarks controlled by µb = 210 MeV and µs = 0.
Although, by choosing a slightly higher value of T , we can easily in-

crease the equilibrium yield of charm in a HG to the QGP level [133],
this does not eliminate the effect of canonical suppression of production
of charm if chemical equilibrium is assumed for charm in the elementary
interactions. We are simply so deep in the ‘quadratic’ domain of the yield,
see Eq. (11.60), that playing with parameters changes nothing, since we
are constrained in Pb–Pb interactions by experiment to have a yield of
charm of less than one pair.
It is natural to argue that the very heavy charm quarks are not in chem-

ical equilibrium, and that their production has to be studied in kinetic
theory of collision processes of partons. However, this means that there
is no twenty-first-century Maxwell’s demon with control of charm, and,
of course, also not of strangeness. The production and enhancement of
charm and strangeness in heavy-ion collisions is in our opinion a kinetic
phenomenon. To study it, we should explore a wide range of collision
volume and energy. The objective is to determine boundaries of the high,
possibly QGP-generated, yields.

12 Hagedorn gas

12.1 The experimental hadronic mass spectrum

One of the most striking features of hadronic interactions, which was
discovered by Hagedorn [140], is the growth of the hadronic mass spectrum
with the hadron mass. With the 4627 different hadronic states we have
used in the study of properties of HG in section 11.1 [136], it is reasonable
to evaluate the mass spectrum of hadronic states ρ(m), defined as the
number of states in the mass interval (m, m + dm). We represent each
particle by a Gaussian, and obtain ρ(m) by summing the contributions of
individual hadronic particles:

ρ(m) =
∑

m∗=mπ,mρ,...

gm∗√
2πσm∗

exp
(
−(m−m∗)2

2σ2m∗

)
. (12.1)

Here, gm∗ is the degeneracy of the hadron of mass m∗ including, in partic-
ular, spin and isospin degeneracy, and σ = Γ/2, Γ = O(200) MeV being
the width of the resonance. The pion, with mπ � σ is a special case, and
is set aside in such smoothing of the mass spectrum. Downward modifi-
cation of its mass has a great impact on properties of HG and is thus not
allowed.
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Fig. 12.1. Dashed lines are the smoothed hadronic mass spectrum. The solid
line represents the fit Eq. (12.2) with k = −3, m0 = 0.66 GeV, and T0 = 0.158
GeV. Long-dashed line: 1411 states of 1967. Short-dashed line: 4627 states of
1996.

We compare the logarithm of the resulting smoothed mass spectrum
for the hadronic particles known in 1967 (long-dashed line) with that for
those known in 1996 (short-dashed line) in Fig. 12.1. We see that, in the
20 years following Hagedorn’s last study of the phenomenon, the newly
classified hadron resonances have improved the exponential behavior. We
refer to a hadronic gas with an exponential mass spectrum as a Hagedorn
gas. The solid line in Fig. 12.1 represents a fit using the empirical shape

ρ(m) ≈ c(m2
0 +m2)k/2 exp(m/T0) (12.2)

with k = −3. This value is preferred in the statistical-bootstrap model,
section 12.2. However, many other values of k fit the mass spectrum well.
The inverse slope T0 and the preexponential power k are correlated in a
fit of the mass-spectrum data and we present, in table 12.1, the results
for several choices of k. We shall show that the value of k determines
the behavior of the thermodynamic quantities of a gas of hadrons when
T → T0 and its value is of some relevance.
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Table 12.1. Fitted parameters of Eq. (12.2) for given k

k c m0 T0

−2.5 0.83479 0.6346 0.16536
−3.0 0.69885 0.66068 0.15760
−3.5 0.58627 0.68006 0.15055
−4.0 0.49266 0.69512 0.14411
−5.0 0.34968 0.71738 0.13279
−6.0 0.24601 0.73668 0.12341
−7.0 0.17978 0.74585 0.11489

The mass spectra for fermions ρF(m) and bosons ρB(m) can differ, and,
using these two functions, the generalization of Eq. (10.62) reads

lnZHG =
β−3V
2π2

∞∑
n=1

ρn(m)
1
n4
(nβm)2K2(nβm) , (12.3)

where

ρn(m) ≡ ρB(m)− (−1)nρF(m) , (12.4)

The Boltzmann approximation amounts to keeping in Eq. (12.3) the term
with n = 1, in which case

ρ(m) ≡ ρ1(m) = ρB(m) + ρF(m). (12.5)

To understand how the parameter k influences the behavior of the Hage-
dorn gas, we now introduce the asymptotic form Eq. (10.45) with the first
term only, and consider the (classical, ‘cl’) Boltzmann limit,

lnZcl
HG = cV

(
T0
2π

)3/2∫ ∞

M0

mk+3/2e(m/T0−m/T ) dm+D(T,M0), (12.6)

where M0 > m0 is a mass above which the asymptotic form of K2 holds,
and where D(T,M0) is finite. Because of the exponential factor, the
integral is divergent for T > T0, and the partition function is singular at
T0 for a range of k.
The pressure and the energy density for T → T0 are

P (T )→



(
1
T

− 1
T0

)−(k+5/2)
, for k > −5

2 ,

ln
(
1
T

− 1
T0

)
, for k = −5

2 ,

constant, for k < −5
2 ;

(12.7)
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and

ε →



(
1
T

− 1
T0

)−(k+7/2)
, for k > −7

2 ,

ln
(
1
T

− 1
T0

)
, for k = −7

2 ,

constant, for k < −7
2 .

(12.8)

The energy density goes to infinity for k ≥ −7
2 , when T → T0, and in

this range falls the result of the statistical-bootstrap model with point
hadrons, Eq. (12.35). Therefore T0 appears as a limiting temperature for
such a hadronic system [140].
Interestingly, the partition function and its derivatives may be singular

at T = T0 even when the volume of the system is finite, unlike the more
conventional situation, with a true singularity expected only if the volume
is infinite. However what is actually needed is an infinite number of
participating particles, which in the conventional situation can occur only
for V → ∞. In relativistic statistical physics, particles are produced, and,
for an exponential mass spectrum, an infinite number of particles arises
already in a finite volume, for a sufficiently singular value of k and point-
like hadrons, and T → T0. When hadrons of finite volume are considered,
we find in section 12.3 that the energy density remains finite at T = T0,
independently of the value of the mass power k in the hadronic mass
spectrum Eq. (12.2).
The reader will wonder whether the seemingly small difference between

the exponential mass spectrum, and the so-far-known hadron mass spec-
trum, seen in Fig. 12.1 for m > 1.5 GeV, matters. We now compare
the energy and pressure of HG evaluated using individual hadrons, thin
lines in Fig. 12.2 (see also Fig. 11.1), with the results obtained using the
analytical mass spectrum defined by Eq. (12.2), with parameters given in
table 12.1. The vertical dotted line shows the limiting temperature for
k = −3. Comparing the thick lines (exponential mass spectrum) with
the results including known hadrons only (thin lines), we see in Fig. 12.2
significant differences both for ε/T 4 (a factor of four for k = −3) and
P/T 4 (a factor of two for k = −3) in the physically relevant domain
T � 150 MeV. The various thick lines correspond to values of k listed in
table 12.1 and can be assigned by noting at which value of temperature
T0 the singular behavior arises.
One would be tempted to conclude that, without full knowledge of

the hadronic spectrum, we cannot use individual hadrons in the study of
the properties of the HG, and hence evaluation of the total multiplicity
of hadronic particles, as, e.g., is required in order to obtain Fig. 9.8 on
page 169. There is, however, another effect, which counterbalances the
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Fig. 12.2. The energy density ε/T 4 (solid lines) and pressure P/T 4 (dashed
lines) (on a logarithmic scale) for a hadronic gas with a smoothed exponential
mass spectrum, with values of k = −2.5 (the most divergent thick line) to k = −7
in steps of 0.5. The thin lines were obtained by using the currently known
experimental mass spectrum. All fugacities γ and λ = 1.

effect of missing hadron resonances. When the finite size of a hadron is in-
troduced, e.g., according to Eq. (11.1), significant decreases in magnitude
of energy density, pressure, and number of particles at a given tempera-
ture ensue. For the value B1/4 = 190MeV, corresponding to 4B = 0.68
GeV fm−3, a value we introduce to reproduce lattice QCD results in sec-
tion 16.2, we show in Fig. 12.3 that there is practical agreement between
the exponential mass-spectrum properties with finite-volume correction
(thick lines) and the point hadron gas evaluated using known hadrons
(long-dashed thin line for ε/T 4 and dotted thin line for P/T 4). Consid-
ering that the population of very massive resonances is not going to rise
to full chemical equilibrium in nuclear collisions, along with the uncer-
tainties in the finite-volume correction, (e.g., choice of B) the remaining
15%–20% difference between the resonance gas with finite-volume correc-
tion and the point gas of known hadrons is not physically relevant. On
the other hand, this clearly is the level of precision (theoretical system-
atic error) of the current computation of abundances of hadrons using



240 Hot hadronic matter

Fig. 12.3. The same as Fig. 12.2 but thick lines now show the gas of hadrons
with an exponential mass spectrum including the finite-volume correction with
B = (190MeV)4.

the known hadron spectrum. Most of this remaining systematic error
disappears when hadron-abundance ratios are evaluated.
A cross check of the validity of the energy density and pressure obtained

either by summing the physically known spectrum of point hadrons, or by
employing the exponentially extrapolated spectrum of finitely sized had-
rons is obtained by comparing them with lattice-gauge results. Results
presented in section 15.5, in Fig. 15.3, show that, at the critical temper-
ature, ε/T 4c � 6.5. On comparing this with results shown in Fig. 12.3,
we see that this result is consistent with the exponentially extrapolated
results for −3.5 ≤ k ≤ −2.5 corrected for finite hadron volume, with
150 MeV � Tc � 165 MeV, the center of the range of lattice simulations.
Using only the known point hadrons, a slightly larger value of Tc � 171
MeV is found. Comparison of pressure, shown in Fig. 12.3, with the lat-
tice result in Fig. 16.2 is more difficult but clearly the results are also in
qualitative agreement.
We have learned that the use in the field of heavy-ion collisions of a gas

of point hadrons is justified because the contributions of probably still
unknown hadronic resonances and the excluded-volume effect approxi-
mately cancel out. These remarks apply to all values of k we considered,
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though clearly the values k = −3.5,−3, and −2.5 are privileged by the
comparison with lattice-gauge-theory results, and the value k = −3 is
also central to the statistical-bootstrap model. We will now address this
theoretical framework which leads to the exponential mass spectrum. We
stress that our measure of singularity k refers in this book always to the
point-particle theory; consideration of the finite hadronic volume removes
the singular behavior of the hadronic energy density.

12.2 The hadronic bootstrap

To study interacting hadrons in a volume V , we first consider the N -
particle level density σN (E, V ), a generalization of Eq. (4.37). σN gener-
ates the N -particle partition function,

ZN (β, V ) =
∫

σN (E, V )e−βEdE. (12.9)

For the non-interacting case, the number of states σN of N particles is
obtained by carrying out the momentum integration Eq. (4.36) for each
particle, keeping the total momentum /P = 0 and the energy E fixed. We
divide by N ! for indistinguishable particles of degeneracy g and obtain

σN (E, V ) =
gNV N

(2π)3NN !

N∏
i=1

∫
δ

( N∑
i=1

εi − E

)
δ3
( N∑
i=1

/pi

)
d3pi, (12.10)

where the single-particle energy Eq. (4.31) is εi =
√
p2i +m2.

If an interaction between these particles is such that they form a bound
state with mass m∗ and nothing else happens, then the level density of
this new system, including the effect of interaction, would be described
as a mixture of ideal gases, one of mass m and the other of mass m∗. The
logarithm of the partition function of such a system is additive, and the
interaction in the gas of the mass m is accounted for by allowing for the
presence of the second gas of mass m∗.
Beth and Uhlenbeck [64] formulated this argument more precisely for

the case in which the interaction leads to the formation of a resonance in
a scattering process, e.g.,

π+N→ ∆→ π+N.

In such a case, the Oth partial wave will be at large distances,

ψ<(r, p) ∼
1
pr
sin
(
pr − Oπ

2
+ η<(p)

)
, (12.11)

where η<(p) is the phase shift due to scattering.
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To simplify, we argue in a manner similar to the study of the level
density above Eq. (4.37). We consider a large sphere of radius R. The
wave function Eq. (12.11) should vanish at r = R:

pR− Oπ

2
+ η<(p) = n<π ; n< = 0, 1, 2, . . .. (12.12)

n< labels the allowed two-body spherical momentum states {p0, p1, . . .}.
The density of states of angular momentum O at p is ∆n</∆p and

dn<
dp

=
R

π
+
1
π

d

dp
η<(p). (12.13)

Without interaction, η<(p) ≡ 0, and we recognize that the interaction
changes the two-particle density of states by (1/π) dη</dp.
We recall that the presence of a resonance leads to a rapid phase shift

by π over the width of the resonance. In what follows, we shall assume
that hadronic resonances are narrow, thus

1
π

dη<(p′)
dp

≈
∑
∗
δ(p′ − p∗). (12.14)

Such a δ-function appearing in the density of states Eq. (12.13) is exactly
equivalent to the introduction of additional particles with masses m∗,
which can be obtained from the masses of scattered particles and the
relative momentum of the resonance p∗.
Consider now the probability for an N -body final state in a collision,

P (E,N)=
∫

|〈f |S|i〉|2δ
(
E −

N∑
i=1

Ei

)
δ3
( N∑
i=1

/pi

) n∏
i=1

d3pi

≡
∫

|S|2 dRN
(
E,m1,m2, . . . ,mN

)
, (12.15)

where the second expression introduces a short-hand notation for the N -
particle phase-space volume element dRN . Note that, in the Fermi model
[121], the S-matrix element |〈f |S|i〉|2 is taken to be constant. Now we use
Eq. (12.13) with Eq. (12.14) assuming that there is just one resonance.
Then

P (E,N)=
∫

|S′|2 dRN
(
E,m1,m2, . . . ,mN

)
+
∫

|S′|2 dRN−1
(
E,m∗,m3, . . . ,mN

)
. (12.16)

The first term comes from R/π in Eq. (12.13) and the second term from
(1/π) dη<(p′)/dp′ as given by Eq. (12.14) when there is a resonance in the
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Oth partial wave. We write S′ instead of S to indicate that the part of the
interaction responsible for the existence of a resonance between particles
1 and 2 is eliminated from S [63].
This manipulation was first done by Belenkij [63], but, until the work

of Hagedorn [140], it was not pushed to its full consequences, involv-
ing many resonances, and the observation that the hadronic interactions
are completely dominated by resonances. In that case, one can continue
the process that led from Eq. (12.15) to Eq. (12.16) and the final hadronic
state produced in any interaction is described by the sum over all possible
N -particle phase spaces involving all possible hadronic states character-
ized by the mass spectrum ρ(m), Eqs. (12.1) and (12.2).
Knowledge of all phase shifts in all channels, including, 2, 3, . . ., n-body

phase shifts, is equivalent to the definition of the full S-matrix. If hadronic
resonances characterize the phase shifts, then one can say that knowledge
of the resonance spectrum determines the physics considered, or in re-
verse, hadronic interactions manifest themselves solely by the formation
of resonances.
Can ρ(m) be estimated in some way from the hypothesis that reso-

nances dominate strong interactions? We follow the arguments of Hage-
dorn of 1965 [140], the statistical-bootstrap hypothesis. Consider the
partition function given by Eq. (12.3) in the classical Boltzmann limit:

ZclHG(V, T ) = exp
[
V T

2π2

∫ ∞

0
ρ(m)m2K2

(m
T

)
dm

]
. (12.17)

This equation expresses the partition function of the hadronic system
of volume V at temperature T in terms of the hadrons whose hadronic
mass spectrum is ρ(m). Since we are looking for the asymptotic form of
ρ(m), we can replace the Bessel function K2(m/T ) in Eq. (12.17) by its
asymptotic form, Eq. (10.45), to obtain

ZclHG(V, T ) � exp
[∫ ∞

0

(
mT

2π

)3/2
ρ(m)e−m/T dm

]
. (12.18)

The Boltzmann factor e−m/T in the partition function shows that, with
rising temperature, the contribution of resonance states of higher masses
becomes more and more important.
On the other hand, the partition function of the same hadronic system

can be written in terms of the density of all single-particle hadronic levels
σ1(E, V ):

ZclHG(V, T ) = exp

(∑
i

e−Ei/T

)
= exp

(∫ ∞

0
σ1(E, V )e−E/TdE

)
. (12.19)
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Macroscopic volume                                     V

COMPRESS

Natural cluster 

volume     (      )             V   m,b     c

Fig. 12.4. The statistical-bootstrap idea: a system compressed to the ‘natural
cluster volume’ becomes itself a cluster (consisting of clusters (consisting of . . . )).

The partition function ZclHG(V, T ) for the same hadronic system is ex-
pressed in two different ways, once in term of the mass spectrum of its
constituents and once in term of the density of states of the system as
a whole. The physical meanings of σ(E, V ) and of ρ(m) must be clearly
understood:

• σ1(E, V )dE is the number of states between E and E+dE of an inter-
acting system enclosed in an externally given volume V ; and

• ρ(m) dm is the number of different hadronic resonance states between
m and m+dm of an interacting system confined to its ‘natural volume’
Vc, i.e., to the volume resulting from the forces keeping interacting
hadrons together as resonances.

Now, if we could compress a macroscopic hadron system to that small
volume which would be the natural volume Vc(E) corresponding to the
energy E, it would itself become another hadron, just one among the
infinite number counted by the mass spectrum ρ(m). This bootstrap idea
is represented in Fig. 12.4. This hypothesis implies that Eq. (12.10) can
now be written as an equation for the hadronic mass spectrum, which
we cast into relativistically covariant form, akin to the form we discuss
below, Eq. (12.63), including finite volume and baryon number

Hρ(p2) = Hδ0(m2 −m2
in)

+
∞∑
N=2

1
N !

∫
δ4
(
p−

N∑
i=1

pi

) N∏
i=2

Hρ(p2i )d
4pi, (12.20)

whereH ∝ Vc, and we have separated out the first ‘input’ term. As before,
δ0(p2 − m2) = Θ(p0)δ(p2 − m2). Eq. (12.20) is the statistical-bootstrap
equation for the hadronic mass spectrum. There are two input constants
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entering, namely H and the mass min in the single-particle term. All
other hadrons are clusters in their respective volumes, generated by this
single particle of mass min.
Interestingly, a semi-analytical solution of Eq. (12.20) is available. We

consider the relativistic four-dimensional Laplace transform of Eq. (12.20),

∫
e−β·pHρ(p2) d4p = ϕ(β)+

∞∑
N=2

1
N !

×
N∏
i=1

∫
e−β·pi Hρ(p2i ) d

4pi, (12.21)

where there appears on the right-hand side, because of the δ-function in
Eq. (12.20), the product of N identical independent integrals. Defining ϕ
and G by

ϕ(β) =
∫

e−β·pHδ0(p2 −m2
in)d

4p = H2πm2
in

K1(βmin)
βmin

, (12.22)

and

G =
∫

e−β·pHρ(p2) d4p (12.23)

we see that Eq. (12.21) becomes,

G(ϕ) = ϕ+ eG(ϕ) −G(ϕ)− 1, (12.24)

or,

ϕ = 2G(ϕ)− eG(ϕ) + 1. (12.25)

Given the Laplace transform of the hadronic mass spectrum G(ϕ),
Eq. (12.23), one can use an inverse Laplace transform to obtain ρ(m)
or, at least, to determine its asymptotic behavior, in which we are inter-
ested. How one can proceed to solve Eq. (12.25) is shown in Fig. 12.5.
We draw on the left in Fig. 12.5(a) the curve G(ϕ) and then invert it,
here ‘graphically’ on the right in Fig. 12.5(b). We see that this solution
branch satisfies

G(ϕ) ≤ ln 2 = G0, (12.26)

and increases as a function of

ϕ ≤ ϕ0 = ln(4/e), (12.27)

up to the point where it has a root singularity. We have for ϕ → ϕ0:

G(ϕ) ≈ G0 ± constant×
√
ϕ0 − ϕ+ · · · . (12.28)
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Fig. 12.5. (a) G(ϕ) according to Eq. (12.25); (b) the graphical solution of Eq.
(12.24).

For ϕ ≥ ϕ0, G(ϕ) becomes complex and there are non-physical branches
of the solution.
It is the square-root singularity of G(ϕ) which determines that the mass

power k of the hadronic mass spectrum cmk exp(m/T0) is k = −3. We
recall that ϕ is actually itself defined in terms of β by Eq. (12.22), and
it is monotonically decreasing with β: there is a minimum value of β0
corresponding to a maximum value T0 = 1/β0 such that

ϕ0 = ln(4/e) = H2πm2
in

K1(β0min)
β0min

. (12.29)

This implies, because of Eq. (12.28), that the physical branch of G(ϕ)
behaves like

G(β � β0) = G0 − constant×
√
β − β0 (12.30)

near β0.
However, G(ϕ), Eq. (12.23), can have a singularity at β0 only if

ρ(m2)→ cmkeβ0m, m → ∞. (12.31)

The behavior of G(β) can be made more explicit by introducing 1 =∫
δ0(p2 −m2)dm2 in Eq. (12.23) followed by a change of the sequence of

integrals,

G = H
∫

ρ(m2)2πm2K1(βm)
βm

dm2. (12.32)

Combining Eq. (12.31) with Eq. (12.32) we find that, for β → β0,

G(β � β0) ≈ G0 + constant×
∫ ∞

min

e−m(β−β0)m3/2+k dm, (12.33)
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which yields

G(β → β0) ≈ G(β0) + constant

×
(

1
β − β0

)k+5/2
Γ(k + 5

2 , (β − β0)min) , (12.34)

where Γ is the incomplete gamma function. To obtain a square-root
singularity in Eq. (12.34), consistent with Eq. (12.30), one needs k = −3.
In summary, the statistical-bootstrap approach assumes that hadrons

are clusters consisting of hadrons and that, for large mass, the compound
hadrons have the same mass spectrum as that of the constituent hadrons,
which leads to a hadronic mass spectrum of the asymptotic form

ρ(m2) ∝ m−3em/T0 . (12.35)

This spectrum, as we have seen in Fig. 12.1, describes the known part of
the experimental hadronic mass spectrum. For point hadrons, this leads
to a singularity of the partition function at T0, which appears, in view of
Eq. (12.8), as a limiting temperature, at which infinite energy density is
reached, since k = −3 > −7

2 .

12.3 Hadrons of finite size

In the first presentation of the SBM results and methods, we have consid-
ered point-like hadrons in an arbitrary volume V . For a dilute gas, this
is a good approximation. However, when we formulated the bootstrap
hypothesis, we dealt with a system that has the density of the ‘inside’
of a hadron. We now generalize this approach and introduce the volume
of the constituent cluster in the spirit of the quark model of hadrons,
and confinement; see section 13.1. In the following we will also allow for
clusters of finite baryon number.
The natural volume V (m) of a hadron cluster is to be proportional to

the cluster mass,

V (m) =
m

4B , (12.36)

where B, which has the dimension of energy density, is the bag constant;
see Eq. (13.9). This equation is valid in the restframe of the cluster. For
a cluster with 4-momentum pµ, Eq. (12.36) takes the form

V µ(m) =
pµ

4B , (12.37)

which defines the proper 4-volume V µ of the particle. In the cluster
restframe, Eq. (12.37) reduces to Eq. (12.36) and therefore is its unique
generalization. Each object of 4-momentum pi can be given a volume
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V µ
i . All clusters have the same proper energy density ε0 = 4B. In a
relativistically covariant formulation, we also consider the energy, and
the inverse temperature in terms of 4-vectors [261]:

E → pµ = (p0, /p) ; pµp
µ = p · p = m2, (12.38)

1
T

→ βµ = (β0, /β) ; βµβ
µ = β · β = β2 =

1
T 2

. (12.39)

Note that the four-dimensional vector product p · p = (p0)2 − (/p)2 is
recognized by the absence of the vector arrow. In this notation,

Z(V, T ) =
∫ ∞

0
σe−E/T dE →

∫ ∞

0
σe−β·pd4p. (12.40)

We now need to obtain the covariant form of the N -finite-sized-particle
level density σN (p, V, b) Eq. (12.10). These particles occupy ‘available 4-
volume’

∆µ = V µ −
N∑
i=1

V µ
i . (12.41)

∆ is the volume in which the particles move as if they were point-like,
while in reality they have finite proper volumes and move in V . The level
density of extended particles in the volume V must be identical to that of
the point-like particles in the available volume ∆. This means that, for a
system with baryon number b and 4-momentum p,

σN (p, V, b) ≡ σNpt(p,∆, b), (12.42)

where ‘pt’ refers to point-like particles. Equation (12.42) is, in spirit, a
Van der Waals correction, which introduces a new repulsive interaction
into the system of hadronic resonances.
The generalization to an invariant phase-space volume is

V d3p

(2π)3
⇒ 2Vµpµ

(2π)3
δ0(p2 −m2) d4p. (12.43)

To go back from the invariant form to the restframe we need

δ0(p2 −m2) d4p =
d3p

2p0
. (12.44)

Then, in the restframe of the volume V , Eq. (8.17),

2Vµpµ

(2π)3
δ0(p2 −m2) d4p = 2V p0

d3p

2p0
=

V

(2π)3
d3p. (12.45)
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Therefore, in the Boltzmann approximation, and assigning to each clus-
ter the degeneracy g → τ(m2

i , bi)dm
2
i with intrinsic baryon content bi,

Eq. (12.10) generalizes to [143]

σN (p, V, b)=
1
N !

∫
δ4

(
p−

N∑
i=1

pi

)
δK

(
b−

N∑
i=1

bi

)

×
N∏
i=1

2∆ · pi
(2π)3

τ(m2
i , bi)δ0(p

2
i −m2

i ) d
4pi dm

2
i . (12.46)

τ(m2
i , bi) is the mass spectrum of a cluster with baryon number bi in the

mass interval [m2
i , dm

2
i ]. It is the analog of ρ(m

2
i ) in Eq. (12.20). The

discreet conservation of baryon number is assured by the Kronecker-δK
function.
The micro-canonical Lorentz-invariant density of states of a system

made of any number of clusters, each cluster having any baryon number
bi, with −∞ < bi < ∞, reads

σ(p, V, b)=
∞∑
N=1

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)∑
{bi}

δK

(
b−

N∑
i=1

bi

)

×
N∏
i=1

2∆ · pi
(2π)3

τ(m2
i , bi)δ0(p

2
i −m2

i ) d
4pi dm

2
i . (12.47)

In Eq. (12.47), the contributing states are subdivided into any number of
subsets corresponding to any partition of the total 4-momentum pµ and
the total baryon number b.
The canonical partition function, for a fixed baryon number b, is the

Laplace transform of the level density given by Eq. (12.47),

Z(T, V, b)=
∫
e−β·p d4p

∞∑
N=1

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)∑
{bi}

δK

(
b−

N∑
i=1

bi

)

×
N∏
i=1

2∆ · pi
(2π)3

τ(m2
i , bi)δ0(p

2
i −m2

i ) d
4pi dm

2
i , (12.48)

from which we obtain the grand-canonical partition function, Eq. (4.20),
defined by

Z(T, V, λ) =
∞∑
b

λbZ(T, V, b) =
∞∑

b=−∞
λb
∫
e−β·pσ(p, V, b) d4p, (12.49)

where λ is the baryon-number fugacity corresponding to the baryonic
chemical potential µ: λ = expµ/T .
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To implement Eq. (12.42), we postulate

Z(T, V, λ)→ Z(T, 〈V 〉, λ) = Zpt(T,∆, λ). (12.50)

Equation (12.50) permits us to calculate everything for fictitious point
particles in ∆ and afterwards obtain the correct quantities by eliminating
∆ in favor of a computed, average value 〈V 〉. Use of 〈V 〉 instead of V
constitutes an approximation, and a lot of effort over the years, since this
approach was first proposed [143], has gone into remedying this step in
a consistent statistical-physics approach, and into generalizing the idea
contained in Eq. (12.42). A state-of-the-art calculation is given, e.g., in
[170]. However, the original and physically simple model presented here
offers all the required understanding without the ballast of mathematical
complexity, and yields sufficiently precise results.

Zpt(T,∆, λ) can be written in the form

Zpt(T,∆, λ)=
∞∑
N=1

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)
e−β·p d4p (12.51)

×
∞∑

b=−∞
λb
∑
{bi}

δK

(
b−

N∑
i=1

bi

)
N∏
i=1

2∆ · pi
(2π)3

τ(p2i , bi) d
4pi.

The momentum δ4 function permits us to do the d4p integration and the
δK permits the summation over b. The integrand thereafter splits into N
independent identical integrals, and the sum over N yields an exponential
function. Taking its logarithm, we obtain

lnZpt(T,∆, λ) ≡ lnZ(T, 〈V 〉, λ) = Z1(T,∆, λ), (12.52)

where

Z1(T,∆, λ) ≡
∫
2∆ · p
(2π)3

τ(p2, λ)e−β·p d4p, (12.53)

with

τ(p2, λ) =
∞∑

b=−∞
λbτ(p2, b). (12.54)

All information about the interaction is contained in the ‘grand-canonical’
hadronic mass spectrum τ(m2, λ).
We obtain now the relation between 〈V 〉 and ∆ in the restframe. We

use Eq. (12.37) to find the expectation value of the volume:

〈V µ〉 = ∆µ + pµ

4B → ∆+
〈E〉
4B

∣∣∣∣
restframe

. (12.55)
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The energy density ε(β, λ) can be obtained from Eq. (12.52), for the en-
ergy:

〈E〉 = − ∂

∂β
lnZ(β, 〈V 〉, λ) = − ∂

∂β
lnZpt(β,∆, λ). (12.56)

Since lnZpt is linear in ∆, the last term is equal to ∆εpt(β, λ); hence,

ε(β, λ) =
∆εpt(β, λ)

〈V 〉 . (12.57)

Inserting Eq. (12.55) into Eq. (12.57) and solving for 〈E〉, we find

ε(β, λ) =
εpt(β, λ)

1 + εpt(β, λ)/(4B)
, (12.58)

which we have used in Eq. (11.1).
We can use Eq. (12.58) in Eq. (12.55) to obtain a more explicit relation-

ship between the volume V and the available volume ∆:

〈V 〉=∆
(
1 +

εpt(β, λ)
4B

)
, (12.59a)

∆= 〈V 〉
(
1− ε(β, λ)

4B

)
. (12.59b)

This procedure can be followed for the baryon density, pressure and, in
principle, other statistical quantities:

ν(β, λ) ≡ 〈b〉
〈V 〉 =

νpt(β, λ)
1 + εpt(β, λ)/(4B)

, (12.60)

P (β, λ) =
Ppt(β, λ)

1 + εpt(β, λ)/(4B)
. (12.61)

12.4 Bootstrap with hadrons of finite size and baryon number

As explained in section 12.2 a system of total mass m, when it is com-
pressed to its natural volume Vc(m), becomes one of the particles counted
in the hadronic mass spectrum (see Fig. 12.4). By the same token, a
nuclear cluster with baryon number b compressed to its natural volume
Vc(m, b) becomes a cluster appearing in the mass spectrum τ(m2, b). The
bootstrap hypothesis can now be expressed by writing

σ(p,∆, b)|〈v〉→vc(m,b) ⇐⇒ τ(p2, b), (12.62)
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where ⇐⇒ means ‘corresponds to’ in a way to be specified.
With the condition Eq. (12.62), the statistical-bootstrap-model equa-

tion for τ arises from Eq. (12.47):

Hτ(p2, b)=Hgbδ0(p2 −m2
b) +

∞∑
N=2

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)

×
∑
{bi}

δK

(
b−

N∑
i=1

bi

)
N∏
i=1

Hτ(p2i , bi) d
4pi, (12.63)

where

H ≡ 2m2
0

(2π)34B . (12.64)

This equation is obtained, by first separating the ‘input particle’ (cor-
responding to N = 1) in Eq. (12.47), and then making the following re-
placement, where Eq. (12.37) is used:

σ(p, Vc, b)⇒
2Vc(m, b) · p
(2π)3

τ(p2, b)⇒ 2m2
0

(2π)34B τ(p
2, b), (12.65a)

2∆ · pi
(2π)3

τ(p2i , bi)⇒
2m2

0

(2π)34B τ(p
2
i , bi). (12.65b)

The factors m2 and m2
i have been absorbed into the definition of τ(p

2
i , bi).

Either H or m0 may be taken as the new free parameter of the model.
The first term in Eq. (12.63), the ‘input-particle’ term, comes from the

cluster structure: if clusters consist of clusters, which consist of clusters,
and so on, this should end at some ‘elementary’ particles, here a hadron
of baryon number b and of mass mb. Typically, the input consists of the
pion for the b = 0 term and the nucleon for b = ±1. The similarity of
Eq. (12.63) to Eq. (12.20) allows us to repeat all the steps we made in
solving Eq. (12.20), to obtain from Eq. (12.63) the asymptotic form of the
hadronic mass spectrum. We introduce two functions ϕ(β, λ) and Φ:

ϕ(β, λ)≡
∫

e−β·p
∞∑

b=−∞
λbHgbδ0(p2 −m2

b) d
4p,

=2πH
∞∑

b=−∞
λbgbm

2
b

K1(mbβ)
mbβ

, (12.66)

and

Φ(β, λ) ≡
∫

e−β·p
∞∑

b=−∞
λbHτ(p2, b) d4p. (12.67)
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Once the set of ‘input particles’ is introduced, ϕ(β, λ) is a known function,
while Φ(β, λ) is unknown. By applying the double Laplace transform
(integration over p and summation over b) used in the definition of ϕ(β, λ)
and Φ(β, λ) to the Eq. (12.63), we obtain

Φ(β, λ) = ϕ(β, λ) + eΦ(β,λ) − Φ(β, λ)− 1. (12.68)

This implicit equation for Φ can be solved again without regard to the
actual dependence on β and λ. Writing

G(ϕ) ≡ Φ(β, λ), (12.69)

we obtain

ϕ = 2G(ϕ)− exp[G(ϕ)] + 1, (12.70)

which is Eq. (12.25). The graphical solution found in section 12.2 shows
that G(ϕ, λ) has a square-root singularity at

ϕ(β, λ)→ ϕ0 = ln(4/e), (12.71)

which defines a critical curve βcr(λ) in the (β, λ) plane. In the vicinity of
this curve,

G(ϕ) ≈ G0 + constant×
√
ϕ0 − ϕ, (12.72)

and, therefore,

Φ(λ, β � βcr) = Φ0 − C(λ)
√
β − βcr. (12.73)

As we have shown in section 12.2, this square-root singularity fixes the
power k of m in the hadronic mass spectrum at k = −3 and we obtain

τ(m2, λ) ∝ m−3eβcr(λ)m. (12.74)

For λ = 1, βcr = β0 and we recover the usual form of the hadronic mass
spectrum. However, the generalization obtained gives a solution for any
value of λ.
Given the mass spectrum in Eq. (12.52), we can calculate all the usual

thermodynamic quantities. For this, we need to write down lnZpt. The
formal similarity of Eq. (12.53) and Eq. (12.67) yields a relation between
lnZpt and Φ that is best expressed in the restframe of ∆ and β:

lnZpt(T,∆, λ) = − 2∆
(2π)3H

∂

∂β
Φ(β, λ). (12.75)
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The point-like quantities are derived from lnZpt as given by Eq. (12.75):

εpt(β, λ) =
2

(2π)3H
∂2

∂β2
Φ(β, λ), (12.76)

νpt(β, λ) ≡
λ

∆
∂

∂λ
lnZpt(β,∆, λ) = − 2λ

(2π)3H
∂

∂λ

∂

∂β
Φ(β, λ), (12.77)

Ppt(β, λ) ≡
T

∆
lnZpt(β,∆, λ) = − 2T

(2π)3H
∂

∂β
Φ(β, λ). (12.78)

All the above point-particle quantities involve derivatives of Φ(β, λ);
they become singular at ϕ = ϕ0. Explicitly, using Eq. (12.72), which
contains a square-root singularity, we have:

∂

∂β
Φ(β, λ) =

dG

dϕ

∂ϕ

∂β
→ constant× ∂ϕ

∂β

1√
ϕ0 − ϕ

. (12.79)

Therefore, ϕ → ϕ0 implies point-particle infinities for all of the above
quantities, with the second derivative required in εpt being the most sin-
gular. On comparing the degrees of divergence of the numerator and
denominator in Eqs. (12.58), (12.60), and (12.61), we see that the energy
density and the baryon density are finite, while the pressure vanishes, on
the critical curve. The overcompensation of the pressure is seen already
in Fig. 12.3, which was evaluated with a model hadron mass spectrum.
This behavior of the pressure reflects the fact that we have counted

only the pressure generated by the clusters and, as we shall see in the
following subsection, all clusters coalesce on the critical curve, and hence
the pressure of a single large cluster vanishes. This of course is an artifact,
since at that point we should have included the internal cluster pressure,
since the single cluster we find is in the QGP-type state. We will not
introduce in this book the required generalization which can be found in
[213].

12.5 The phase boundary in the SBM model

We have seen that the singular point of the solution to the bootstrap
equation is located at the value ϕ0 = ln(4/e) and that the critical curve
in the (β, λ) plane is defined by

ϕ(β, λ) = ϕ0 = ln(4/e). (12.80)

Its position depends, of course, on the actual content of ϕ(β, λ), i.e., on the
fundamental set of ‘elementary particles’ {mb, gb} and the value of the
constant H, Eq. (12.64). In the case of three elementary pions (π+π0π−)
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Fig. 12.6. The SBM critical curve in the (µb, T ) plane. In the shaded region,
the theory is not valid because we have neglected Bose–Einstein and Fermi–Dirac
statistics.

and four elementary nucleons (spin ⊗ isospin) and four antinucleons, we
obtain, from Eq. (12.66), the relation

ϕ0(βcr, λcr) = 2πHTcr

[
3mπK1

(
mπ

Tcr

)
+ 4
(
λcr +

1
λcr

)
mNK1

(
mN

Tcr

)]
. (12.81)

The condition of Eq. (12.81), written in Tcr = 1/βcr and µcr = Tcr lnλcr,
yields the critical curve shown in Fig. 12.6, drawn for H = 0.724 GeV−2.
For µ = 0, the curve ends at T = T0, which becomes the maximum phase
transition temperature instead of a limiting temperature.
Our system consists, for small T and µ, of nucleons and nuclei. For

increasing T , creation of pions sets in and finally also creation of baryon–
antibaryon pairs, as well as (not included here) creation of strange had-
rons. If the latter is taken into account, the input set of ‘elementary par-
ticles’ has to be enlarged. This changes slightly the position of the critical
curve and the equations of state of hadron matter, since T0 is of the order
of the pion mass, while the other particles have larger masses and make lit-
tle contribution to ϕ(β, λ). More precisely, each new conserved quantum
number (strangeness, charm, . . . ) gives rise to another corresponding fu-
gacity λ; hence the singularity is defined by ϕ(β, λ1, λ2, λ3, . . ., λn) = ϕ0
as a hypersurface in an (n + 1)-dimensional space. Since, however, in
physical situations, generally only the baryon number is different from
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zero, we have to consider only the intersection of this hypersurface with
the (T , µb) plane. That procedure yields the curve which was said to be
little different from the one shown in Fig. 12.6.
What does the SBM hadron gas do when it approaches the critical

curve? As the point-particle quantities εpt, νpt, and ppt diverge, one sees
(by comparing degrees of divergence when ϕ → ϕ0) that

ε(βcr, λcr) → 4B, (12.82a)
ν(βcr, λcr) → νcr(βcr, λcr) 
= 0, (12.82b)
P (βcr, λcr) → 0, (12.82c)
∆(βcr, λcr) → 0, if 〈V 〉 
= 0, (12.82d)

〈V (βcr, λcr)〉 → ∞, if ∆ 
= 0, (12.82e)

where βcr and λcr are the values along the critical curve.
As noted already, see Eq. (12.36), the energy density of our clusters was

constant and always equal to 4B. Equation (12.82a) suggests that, on the
critical curve, the whole hadron system has condensed into one giant clus-
ter, witnessed by the vanishing of the pressure; one can explicitly see that,
for any given external volume 〈V 〉, the number 〈N〉 of particles (clusters)
contained in it goes to zero on the critical curve: indeed, introducing the
fugacity ξ relative to the number of clusters, Eq. (12.52) can be written:

Zpt(β,∆, λ) = Z(ξ)
pt (β,∆, λ, ξ)|ξ=1 ≡

∞∑
N=0

1
N !
(ξ lnZpt)N . (12.83)

Hence, with Eq. (12.75),

〈N〉 = ξ
∂

∂ξ
lnZ(ξ)

pt

∣∣∣∣
ξ=1

= lnZpt = − 2∆
(2π)3H

∂

∂β
Φ(β, λ), (12.84)

and, with Eq. (12.59a),

〈N〉
〈V 〉 =

B
π3H

∂Φ(β, λ)/∂β
1 + εpt(β, λ)

=⇒
critical curve

0, (12.85)

because εpt contains a second derivative of Φ(β, λ). It follows that, from
Eqs. (12.61), (12.78), and (12.85),

P 〈V 〉 = 〈N〉T, (12.86)

that is, our hadron gas obeys, formally, the ideal-gas equation of state for
the average number of clusters 〈N〉; 〈N〉 is not a constant, but a function
of β and λ.
In the bootstrap model of hadronic gas, our finding is that the critical

curve limits the HG phase; approaching it, all hadrons dissolve into a giant
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Fig. 12.7. The physical interpretation of the different regions of the (T, µ) plane
according to the statistical-bootstrap model of hadronic matter.

cluster. The gradual change in the structure of hot hadronic matter is
illustrated in Fig. 12.7; at low T, µ we have a dilute pion gas of essentially
point-like pions. With an increase in T and/or µ, progressively denser
hadron matter is formed, and hadron proper volume becomes relevant.
Near the phase boundary hadrons coalesce into large clusters comprising
drops of QGP.
In SBM the singular curve is reached with finite energy density 4B. In

the hadron phase, ε(β, λ) < 4B and β ≤ βcr. For ε > 4B, we enter into
a region that cannot be described by the thermodynamics of the SBM.
Indeed in this region, β ≥ βcr and the partition function Zpt(β,∆, λ) and
all densities become complex. This region cannot be described without
making assumptions about the inner structure and dynamics of the ‘el-
ementary particles’ {mb, gb} – here pions and nucleons – entering into
the input function ϕ(β, λ). In other words, to continue, we need to con-
sider the hot hadron interior made of quarks and gluons. Assuming that
we have a phase transition between a HG and a QGP, the evolution of
the system in the P–V diagram is qualitatively illustrated in Fig. 3.2 on
page 49. In order to make this picture quantitative we need to explore,
within the realm of quantum chromodynamics, the hadron structure and
the behavior of a gas of quarks and gluons with color interactions.



V
QCD, hadronic structure and high

temperature

13 Hadronic structure and quantum chromodynamics

13.1 Confined quarks in a cavity

A hadronic particle, according to section 3.1, is a quark-filled bubble, a
‘swiss-cheese’ hole, in the structured vacuum. The highly excited drop
of QGP is indeed much akin to the picture of an individual, colorless
hadron, except that it is the thermal pressure that acts against the vac-
uum pressure, not the quantum pressure. As a first step in a more detailed
discussion of the QGP phase, we briefly discuss how this approach allows
us to understand properties of individual hadrons.
In the quark-bag model of hadronic structure, colorless qqq baryons or

q̄q mesons are embedded in the structured vacuum sea. In a calculational
framework proposed by Bogoliubov [78], independent quarks confined by
a static Lorentz-scalar potential with infinite walls were considered. This
is ensuring permanent ‘confinement’ of the constituents within a given
volume. The interest in this approach grew only after it was understood
that the confining potential is not to be derived from quark–quark in-
teractions, but that it arises from the repulsion of colored quarks by the
structured QCD vacuum state.
The structure of hadrons emerges on considering a static spherical

state in which residual quark–quark interactions are introduced. This
MIT-bag model is able to capture most features of the hadron spectrum
[92, 93, 99, 151]. Our limited objective is to extract from a study of the
hadronic spectrum information about the latent heat of the vacuum B,
and the mass of the strange quark ms. To accomplish this we will not
need to introduce in this book improvements addressing the restoration
of translational invariance, and the absence of chiral symmetry; see sec-
tion 3.3. For further details on chiral symmetry and the bag model, we
refer the interested reader to [94, 256, 258].

258
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Assuming that quarks are moving independently inside a region of
space, the mass Mh of the bound-state system of quarks (bag) comprises
the kinetic energy of confined quarks, as well as the volume energy of the
disturbance in the vacuum,

Mh(Rh) =
∑
i εi
Rh

+
4π
3
R3hB + δEV +∆Mmag, (13.1)

where εi is the (dimensionless) eigenvalue energy coefficient of the ith
quark in a static cavity of radius Rh. Since we are considering the lowest
possible hadronic states, this term becomes proportional to the number
n = 2 or 3 of valence quarks and antiquarks in mesons or baryons, re-
spectively:∑

i εi
Rh

→ n
ε0
Rh

. (13.2)

We have further introduced, in Eq. (13.1), the finite-volume correction
to the vacuum energy

δEV =
z0
Rh

(13.3)

in Mh(Rh). Since this is a term independent of the number of quarks in
the bag, not requiring a dimensioned constant, a judicious choice of the
number z0 allows for many other effects.
A residual interaction must be introduced in order to describe the en-

ergy splitting between the baryon octet with j = 1
2

+ and the decuplet
with j = 3

2

+, see Fig. 2.1, and similarly between the nonets of pseudo-
scalar j = 0− and the vector mesons j = 1−; see Fig. 2.2 on page 27. A
Coulomb-like interaction could not accomplish this, since it can not distin-
guish among the different angular-state multiplets. Akin to the magnetic
field which splits the spin states, an interaction of magnetic (hyperfine)
type is needed,

∆Mmag =
∑
i>j

〈
αs
rij

tai t
a
j/σi · /σj

〉
=
1
Rh

∑
i>j

cijhij . (13.4)

This is the usual form with the spin-Pauli matrices /σi, Eq. (13.27), and
specific to the color interaction, SU(3) generators ta, Eq. (13.58). The
important feature of this color-magnetic hyperfine interaction is that it
does reflect correctly the signs, and even the magnitude, of the splittings
between various hadronic multiplets.
The coefficients cij , in Eq. (13.4), are found by evaluating

cij = 〈h |(ta/σ)i · (ta/σ)j |h〉 . (13.5)
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This is done by methods developed in the study of hyperfine QED inter-
actions, and we defer this discussion. hij , in Eq. (13.4), are the transition-
matrix elements of magnetic moments, which incorporate the coupling αs,
but where we have taken out the dominant dimensional factor 1/Rh.
The mass of the hadronic state is dependent on the size parameter Rh.

In the absence of any other dimensioned constants (such as quark masses),
but with a constant ah containing quark and interaction contributions
specific to each hadron state, we have

Mh(Rh) =
4π
3
R3hB +

ah
Rh

. (13.6)

There is a clearly defined minimum in Eq. (13.1) as a function of Rh, at
which the forces associated with the vacuum and quarks balance. The
physical state has a mass associated with this minimum:

∂Mh

∂Rh
= 0 . (13.7)

This condition,
ah
4πR4h

− B = 0, (13.8)

is equivalent to the pressure equilibrium point between the internal Fermi
pressure and the exterior vacuum pressure (negative pressure seen from
the interior).
Reinserting the result of Eq. (13.7) into Eq. (13.6), we find that the

volume and mass of a quark-bound state are related:

Mh = 4BVh, RhMh = 4
3ah, Mh = 4

3a
3/4
h (4πB)1/4. (13.9)

Aside from the bag constant, B, the hadron-state-specific value of ah
determines the value of each hadron mass. To determine ah in the study
of hadronic spectra based on quark-cavity states, section 13.2, the five
parameters εq and εs (the energies of light and strange quarks), and hqq,
hqs, and hss (the (transition) magnetic moments seen in Eq. (13.1)) are set
to the values expected from the structure of the unperturbed bag model,
and the values of the elementary parameters αs and ms are fitted, along
with z0; thus one looks at four parameters. However, much more precise
information on the magnitude of the bag constant, B, is obtained in an
approach in which one takes Eq. (13.1) as the starting point. In Eq. (13.1),
aside from B, six more parameters enter: z0, εq, and εs; and hqq, hqs, and
hss. One of the results of such an approach is the verification of how well
hadronic structure is described by quark-cavity states.
Owing to the coincidence that the strange-quark mass and hadron ra-

dius have the same scale msRh � 1, there is considerable sensitivity to
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the exact value of the strange quark ms, which determines the energy of
the strange quark:

εfits =

√
m2
s +

x2s
R2h

. (13.10)

Considering the running of the mass of the strange quark predicted by
QCD, see Fig. 17.4 on page 328, the effective mass of the strange quark
should vary with the hadronic size, e.g., according to

ms(Rh) ≡ m0
s ln(πRhΛh). (13.11)

The variation of the mass of the strange quark with the quark momentum
introduces the eighth parameter Λh.
These considerations are quite successful at describing the hadronic

spectrum [20]. Aside from the effect of the quark mass in the strange
hadrons, the differences in mass between the various hadronic multiplets
arise from the differences in the quantum numbers which influence the
value of cij , Eq. (13.5). Thus, the value of ah, Eq. (13.6), depends both on
the quantum numbers of the multiplet and on the quark-flavor content.
A unique fit with a significant confidence level arises, yielding

εfitq = 1.97± 0.02. (13.12)

The value of εfitq is close to the massless-quark value x0 = 2.04 derived
from solution of the Dirac equation in a cavity, see section 13.2. This
result is thus providing an empirical foundation for the bag model of
hadrons.
The values m0

s = 234± 14MeV and Λh = 240± 20MeV are found [20].
The effective mass of the strange quark ms(Rh) varies between 170 MeV
in kaons, which are relatively small (RK = 0.5 fm), and about 320 MeV in
strange baryons. Using a fixed mass for the strange quark, ms = 280MeV
[99], was obtained. The QCD-motivated variability with hadron size of
ms in each hadron leads to a much better fit to the hadronic spectrum,
and yields for the value of the vacuum energy B

B = (171MeV)4, 4B = 0.45GeV fm−3. (13.13)

The bag constant is larger than the original MIT result, BMIT = (145
MeV)4. The main reason for the difference from the MIT fit arises from
the allowed variation in mass of the strange quark with the size of the
hadron. There is a remaining systematic dependence of the results for
B on the here assumed behavior, Eq. (13.11). However, Eq. (13.13) is
in much better agreement with the value of B required to describe the
lattice-pressure results, for which we need a still larger value of B, see
Eq. (16.12).
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Since the matrix elements hqq, hqs, and hss comprise αs, a value for αs
is not determined within this procedure. We note that in the cavity bag
model, αs = 0.55 is found.∗

13.2 Confined quark quantum states

Since the short-range interactions among quarks can be ignored in the
first instance, the ‘independent’ quark wavefunction ψq obeys the Dirac
equation,

iγµ∂µψq −Mψq + (M −m)ΘVψq = 0, (13.14)

where ΘV = 1 inside the quark bag and ΘV = 0 outside. Inside the
volume, the dynamics of quarks is governed by the (small) mass m, while
outside it is subject to the mass M . Since, despite a great effort, we have
not discovered free quarks, M must be very large, and the idea of color
confinement indeed requires M → ∞, in order to have quarks confined
forever.
However, that limit is not trivial as it turned out. In a series of pub-

lications in 1974–75, the MIT-bag model was developed [92, 93, 151] in
a way that creates the framework for quark dynamics with confinement,
M → ∞. Novel physical concepts were introduced since the confinement
condition broke conservation of energy–momentum at the confinement
boundary. Namely, in the limit M → ∞, there is no quark quantum
wave outside of the hadron volume, and, in order to have a stable phys-
ical state, the internal quantum pressure of the confined quarks must be
balanced at the confinement boundary by some new external pressure
pointing inward.
In a Lorentz-covariant formulation, along with pressure, there is also

energy density, which had to be lower outside of the bag than inside,
in order to have the inward-pointing pressure. The improvement of the
energy–momentum tensor inside the volume region occupied by quarks
includes the covariant bag term:

Tµν = Tµνfields + gµνB. (13.15)

On comparing this with, e.g., Eq. (6.6), we indeed see that the bag term
increases the energy density, and decreases the pressure within the volume
occupied by quantum particles.
On physical grounds, the size of the system is determined by balancing

the internal pressure against the external pressure, and thus B has to
enter into the dynamics of quark fields. We follow, in the next few lines,

∗ In some literature, a four-fold greater value of αs = 2.2 is quoted; the difference arises
from the factor 1

2
which relates λa to the generator ta in Eq. (13.56).
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the summary of the situation presented in [256]. We will need the surface
∆S-function, which arises from the volume function in a familiar way,

∆S = −nµ∂µΘV, (13.16)

where nµ is the outward space-like normal to the surface of the bag. The
static spherical cavity, in spherical coordinates, reads as usual:

δ(Rh − r) =
dΘ(Rh − r)

dr
. (13.17)

The action which fully accounts for all physical aspects is

S =
∫
d4x
[(∑

q
1
2ψqiγ

µ
↔
∂ µψq − B

)
ΘV − 1

2

(∑
q ψqψq

)
∆S
]
, (13.18)

where ψq = ψ†
qγ0, and γµ are Dirac matrices, Eq. (13.26).

To obtain the dynamic equations, we perform variation of the action
seeking its stationary point:

ψq → ψq + δψq, ψq → ψq + δψq. (13.19)

Furthermore, the geometry-defining volume ΘV and surface ∆S functions
change under variation,

ΘV → ΘV + ε∆S, ∆S → ∆S − εnµ∂
µ∆S. (13.20)

For a spherical cavity with nµ = (0, r̂), the following three equations of
motion give the stationary point of the action:
the Dirac equation,

iγµ∂µψq(x) = 0, x ∈ V; (13.21)

the linear boundary condition,

iγµnµψq(x) = ψq(x), x ∈ S; (13.22)

the quadratic boundary condition,

1
2n

µ∂µ

(∑
q

ψq(x)ψq(x)

)
− B = 0, x ∈ S. (13.23)

A solution satisfying the boundary condition, Eq. (13.22), satisfies the
requirement that the normal flow of quark current through the surface
of the bag vanishes. To see this, we write this condition, along with the
adjoint form:

iγµnµψq |S= ψ |S, −iψqγµnµ |S= ψ |S . (13.24)
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To obtain the adjoint form, we used γµ † = γ0γµγ0. We construct the
outward current at the surface:

nµj
µ |S= nµ(ψγµψ) |S= ±ψψ |S= 0. (13.25)

Since the right-hand side of Eq. (13.25) is both positive and negative of
the same value, as can be seen by using one of the two forms of Eq. (13.24),
it must be zero.
Since there is no flow of probability through the surface, the linear

boundary condition guarantees confinement of quarks. Moreover, this
boundary condition allows us to determine the eigenenergies of quarks in
a cavity of a given size Rh, as we shall discuss. On the other hand, the
quadratic boundary condition Eq. (13.23) allows us to find the size of the
system, establishing a balance of forces at the surface; see Eq. (13.8).
We now proceed to obtain examples of solutions of the bag-model dy-

namic Eq. (13.21), in the static-cavity approximation. γµ are the usual
covariant Dirac matrices and we use the Bjørken–Drell conventions [74]:

γ0 ≡ β ≡
[
I2 0
0 −I2

]
, γi ≡ βαi ≡

[
0 σi

−σi 0

]
. (13.26)

Here, I2 is a unit 2 × 2 matrix, and /σ = (σ1, σ2, σ3) are Pauli’s spin
matrices:

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (13.27)

We are interested in the lowest-energy solution of the Dirac equation,
Eq. (13.14), for a stationary spherical cavity. We consider the wave func-
tion

ψq(/r, t) = qn(/r)e−iωntτq. (13.28)

τq is the flavor (e.g., isospin or SUf(3)) part of the independent parti-
cle wave function, and ωn is the nth-state eigenenergy. The stationary
quark 4-spinor wave function q(/r) satisfies the equation (suppressing the
quantum number(s) subscript ‘n’)

(/α · /p+ βm− ω)q=0,(
(m− ω)I2 /σ · /p

/σ · /p (m+ ω)I2

)(
qu

qd

)
=0, (13.29)

where qu are the upper and qd the lower quark 2-spinor components.
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When there is no potential inside the bag, each of the four components
‘k’ of the spinor q has to satisfy the energy–momentum condition obtained
by ‘squaring’ the Dirac equation, i.e., the Klein–Gordon equation:

[ω2 −m2
q − (i /∇)2]qk = 0. (13.30)

We recall the spherical decompositions

/∇ = r̂
∂

∂r
− i

r̂

r
× /L, /L = /r × i/∇, (13.31)

/∇ 2 =
d2

dr2
+
2
r

d

dr
−

/L2

r2
, (13.32)

and recognize that the components of the Dirac cavity solution have the
form

qk = Njl(x r/Rh)
l∑

µ=−l
clµjjz(k)Ylµ(Ω), (13.33)

where x is obtained from an eigenvalue condition, and Ylµ(Ω) are the usual
spherical functions of fixed angular momentum l, µ. The Clebsch–Gordan
coefficients clµjjz are fixed by construction of a spinor spherical wave of
good total angular momentum j and its z-axis projection, j ≤ jz ≤ −j.
Equation (13.30) now implies that

ω ≡ ε

Rh
=

√
x2

R2h
+m2

q. (13.34)

The no-node, lowest-energy quark-cavity solution is

qu0 = N0j0(x r/Rh)χs, j0(z) =
sin z
z

. (13.35)

We use the 2-spinor χs, s = ± 1
2 for spin-up and -down quarks:

χ1/2 =
(
1
0

)
, χ−1/2 =

(
0
1

)
. (13.36)

To obtain the corresponding lower components of the Dirac spinor, we
use Eq. (13.29):

qd =
1

ω +m
/σ · i /∇qu. (13.37)

The spherical decomposition Eq. (13.31), along with /Lqu0 = 0, and the
spherical-Bessel-function property,

j1 = − d

dz
j0 =

sin z
z2

− cos z
z

, (13.38)
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yields the lowest angular (j = 1
2) quark wavefunction Eq. (13.28):

ψq(/r, t) = N

 j0(xr/Rh)χs
x

Rh(ω +mq)
j1(xr/Rh)iσrχs

e−iωtτq. (13.39)

The radial spin matrix has been introduced:

σr = r̂ · /σ, σ2r = I. (13.40)

Equation (13.39) can easily be cast into the form Eq. (13.33), with the
lower components qd having l = 1.
The linear boundary condition, Eq. (13.22), at the surface of the bag,

that is at a given radius Rh of the bag, takes the form

−i(/γ · /n)ψ |s= ψ |s, (13.41)

which eigenvalue condition will now be used to fix the value of x. The
surface-normal vector for a spherical bag is /n = r̂. The boundary condi-
tion reads

−iσrqdχs |r=Rh= quχs |r=Rh , iσrq
uχs |r=Rh= qdχs |r=Rh . (13.42)

Using Eq. (13.39), we obtain

j0(x) =
x√

x2 + (mqRh)2 +mqRh
j1(x), (13.43)

which takes the explicit form [93]

1− x cotx =
√
x2 + (mqRh)2 +mqRh. (13.44)

WhenmqRh → 0, the lowest eigenvalue is x0 = 2.04. The (kinetic) energy
of a massless quark in the confining radius Rh is

ωbag(mq = 0) =
2.04
Rh

. (13.45)

The first radial excitation found, on solving Eq. (13.44) for the second-
lowest eigenvalue, is relatively high, with x1 = 5.40, more than doubling
the kinetic energy.
For massive quarks we have

ωbag =

√
x20 + (mqRh)2

Rh
, 2.04 < x0 < π. (13.46)

As indicated in Eq. (13.46), with increasing mqRh, x0 increases, never
reaching the singularity of cotx at x0(mqRh → ∞) = π.
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The quark-wave-function normalization N , in Eq. (13.39), is easily ob-
tained:∫

d3r ψqγ0ψq = 4πN2R3h

∫ 1

0
dz z2

(
j20(xz) +

x

1− x cotx
j21(xz)

)
.

We have used the eigenvalue condition Eq. (13.44) and substituted z =
r/Rh. The quadratic boundary condition Eq. (13.23) is

B = 1
2
d

dr

(∑
q

ψqψq)

)∣∣∣∣∣
Rh

. (13.47)

We leave it to the reader as an exercise to show that Eq. (13.47) is indeed
equivalent to the intuitive requirement that the total energy contained in
the bag volume be at a minimum with respect to the radius of the bag,
Eq. (13.7).

13.3 Nonabelian gauge invariance

The color hyperfine magnetic interaction, Eq. (13.4), is the residual force
between quarks in the perturbative vacuum. It defines the hadron spec-
trum. To understand this force properly, we need to understand quantum
chromodynamics and, in particular, the quark–quark interaction better.
Akin to spin, the color charge of quarks is an internal quantum number,
but it resembles in its properties more the electrical charge, so much so
that one also speaks of ‘color charge’: like electrical charge, color charge
is thought to be the source of a force field. Since we have so far not been
able to build an apparatus to distinguish among the three fundamental
colors, akin to the way electro-magnetic fields differentiate the spin and
charge states, all colors must appear on an exactly equal footing.
Therefore, the theory of color forces, i.e., quantum chromodynamics

(QCD), is based on the principle of gauge invariance extended to include
invariance under arbitrary rotations (redefinition of color-principal ‘axis’)
in the three-component color space. The resulting theory of strong inter-
actions based on color forces has been called quantum chromodynamics
in order to underline its formal similarity to quantum electrodynamics
(QED). The form of the QCD Lagrangian is the generalization of QED
required when one is considering invariance under local gauge color trans-
formations.
Before introducing QCD, let us recall how, within QED, the princi-

ple of gauge invariance operates. It allows for changes in the electro-
magnetic potential, leaving the electro-magnetic fields Fµν , i.e., /E and
/B, unchanged. The electro-magnetic potential Aµ = (A0, /A) is thus not
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defined uniquely. We further recall that a measurement, in general, does
not allow one to observe the phase factor of a quantum wave.
We now show how a change in the choice of the quantum phase is

related to the change in gauge of the potential Aµ. The effect of a local
change in the phase of the wave function,

ψ → ψ′ = e−iαψ, (13.48)

∂µψ → ∂µ(e−iαψ) = e−iα[∂µψ − (i∂µα)ψ], (13.49)

can be compensated for by the simultaneous gauge transformation of the
electro-magnetic potential Aµ:

Aµ(x)→ A′
µ(x) = Aµ(x) +

1
e
(∂µα). (13.50)

This occurs if the quantum fields and potential are ‘minimally coupled’:

[(∂µ + ieAµ)ψ]′ = (∂µ + ieA′
µ)ψ

′ = e−iα(∂µ + ieAµ)ψ. (13.51)

We see that the generalized covariant derivative,

∂ν → Dν = ∂ν + ieAν , (13.52)

remains gauge invariant, up to an overall phase factor e−iα.
We will now generalize the principle of gauge invariance to the case of

QCD. The additional difficulty is the non-commutative, i.e., nonabelian,
aspect of the transformation, which is associated with the fact that there
is not just one but several charges, i.e., colors. which a particle can carry:
the usual 4-spinor wave function of a spin-12 particle, ψ, becomes in our
case a component of a 12-spinor in color space:

Ψ =

 ψr

ψg

ψb

. (13.53)

As long as the RGB (red, green, blue) ‘color’ is not observable, the color-
gauge transformation generalizing Eq. (13.48) can, apart from introducing
a phase, also rotate (mix) the color components of the wave function. The
arbitrariness of the quantum wave is now expressed by the transformation

Ψ→ Ψ′ = VΨ, V † = V −1, det(V ) = 1. (13.54)

Since the complex rotations of a three-dimensional spinor-vector are de-
scribed by unitary 3 × 3 matrices V = (vik) of unit determinant, the
symmetry group of the gauge transformations is SUc(3), where the sub-
script reminds us of color, and will be omitted where confusion with flavor
symmetry SUf(3) is unlikely.
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The flavor SUf(3) symmetry arising from the near degeneracy in energy
of the three ‘light’ u, d, and s quarks is quite different in its nature. The
color symmetry permits us to rename locally the color of quarks. The
flavor symmetry is a global symmetry: once a definition of flavor has been
chosen at CERN it applies at the BNL, as long as both laboratories belong
to a region of the Universe occupying the same vacuum state. However,
even this situation has an exception, namely when, after chiral symmetry
has locally been restored in a high-energy heavy-ion collision, the chiral-
symmetry-breaking vacuum is reformed, and the dynamic processes that
are occurring could lead to a physical vacuum state in which the definition
of flavor is different from that already established in the remainder of the
world. We will not further discuss in this book these disoriented chiral
states, which are a current topic of research.
Any unitary matrix V with det(V ) = 1, Eq. (13.54), can be written as

the imaginary exponential of a hermitian traceless matrix L:

V = exp(iL), L† = L, tr(L) = 0. (13.55)

All traceless hermitian 3 × 3 matrices can be expressed as linear combi-
nations of the eight generators ta of the Lie group SU(3), using eight real
variables θa:

L =
1
2

8∑
a=1

θaλa, ta ≡
1
2
λa. (13.56)

The ‘fundamental’ (Gell-Mann) 3× 3-matrix representation of the SU(3)
algebra is well known. There are n2c − 1 = 8, with nc = 3 for SUc(3),
λa, a = 1, . . ., 8, matrices:

λ1 =

(
0 1 0
1 0 0
0 0 0

)
, λ2 =

(
0 −i 0
i 0 0
0 0 0

)
, λ3 =

(
1 0 0
0 −1 0
0 0 0

)
,

λ4 =

(
0 0 1
0 0 0
1 0 0

)
, λ5 =

(
0 0 −i
0 0 0
i 0 0

)
, λ6 =

(
0 0 0
0 0 1
0 1 0

)
,

λ7 =

(
0 0 0
0 0 −i
0 i 0

)
, λ8 =

1√
3

(
1 0 0
0 1 0
0 0 −2

)
. (13.57)

The λa have been constructed in close analogy to the Pauli matrices σi,
Eq. (13.27), and the ta are analogous to the spin matrices si = σi/2. The
first three λa correspond (up to the added third trivial row and column)
to the Pauli matrices. While λ8 is the second traceless diagonal 3 × 3
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matrix we can construct, the pairs λ4, λ5 and λ6, λ7 are generalizations
of the SU(2) σ1 and σ2 matrices, which are similar to λ1 and λ2.
The following commutation and anticommutation relations can be used

to define the algebra of the SU(3) group:

[ta, tb] = i
∑
c

fabctc, (13.58)

{ta, tb} = (1/3)δabI3 +
∑
c

dabctc, (13.59)

where I3 is the 3 × 3 unit matrix. fabc and dabc are the antisymmetric
and symmetric ‘structure constants’, respectively, of the Lie group SU(3),
which can be determined in a straightforward fashion from Eqs. (13.58)
and (13.59). One of their frequently used properties is

n2c−1∑
k,l=1

fiklfjkl = ncδij . (13.60)

Another important relation, which is related to the definition of the color
charge, is found by considering the trace of Eq. (13.59):

tr(tatb) = 1
2δab. (13.61)

A second frequently needed representation of the SU(3) algebra in
terms of the 8 × 8 matrices is called ‘adjoint’ representation. This rep-
resentation plays with regard to the eight-component glue field a similar
role to that which the fundamental representation plays with regard to
the quark field. Pushing the analogy to the spin, we are looking for the
equivalent of spin-1 representation. The matrix representation of genera-
tors in the adjoint representation is

(Ta)bc = −ifabc, a, b, c = 1, . . ., 8. (13.62)

Ta satisfy the same algebra as the generators ta of the fundamental rep-
resentation, Eqs. (13.58) and (13.59). The trace of the product of two
Ta, an analogous result to Eq. (13.61), follows from Eq. (13.60) in view of
Eq. (13.62):

tr(TaTb) = ncδab. (13.63)

We now make the color-rotation matrix V space-dependent, V → V (x),
allowing that the eight real parameters ϑa, in Eq. (13.56), depend on x,

V (x) = e−iϑa(x)ta , (13.64)
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with summation over a repeated group index such as a being implicitly
understood henceforth. In analogy to Eqs. (13.48) and (13.49), the local
nonabelian gauge transformation of matter fields is

Ψ→ Ψ′ = VΨ, (13.65)

∂µΨ→ ∂µΨ′ = V [∂µΨ+ V †(∂µV )Ψ], (13.66)

where we have used Eq. (13.54). Since V †V =1, we have

(∂µV †)V =−V †(∂µV ). (13.67)

Instead of the term (i∂µα), in Eq. (13.49), we have now a matrix term
V †(∂µV ); the entire expression is multiplied by a matrix V , Eq. (13.64),
rather than a phase factor eiα.

13.4 Gluons

We introduce now the dynamic color-potential field Aµ. To proceed in
analogy to QED, we have to couple the color potential to a product of
quark–antiquark spinors. Thus, Aµ must be a 3×3 matrix, given the color
structure of the spinor Ψ. The three-component quark wave function
forms a triplet (fundamental) representation of the color group SU(3),
while the wave function of an antiquark forms an antitriplet. From the
product of a triplet and an antitriplet, intuitively, we can understand
that one can form an SU(3) singlet; what remains is an octet of states.
In analogy to spin, for which the product of two spin-12 particles can be
a singlet (S = 0) or a triplet (S = 1) state, we write

3c × 3̄c = 8c ⊕ 1c. (13.68)

Since the color-gauge-field quantum must have the same quantum num-
bers as a quark–antiquark pair, if it is to be able to be the product of
their annihilation, it must contain at least eight non-matrix fields; the
ninth singlet field corresponds to the colorless case. In analogy to the real
field Aµ in QED, we now choose a hermitian matrix Aµ to represent the
massless gluons, in the form of a linear combination of eight Gell-Mann
matrices with eight real Yang–Mills fields Aaµ(x):

Aµ(x) = 1
2A

a
µ(x)λa = Aaµ(x)ta. (13.69)

We proceed in analogy to Eq. (13.50): if the potential Aµ changes under
a local color-gauge transformation according to

Aµ → A′ = VAµV † +
1
g
V (∂µV †), (13.70)
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the minimally coupled derivative, ∂µ + igAµ, remains invariant in form
under the gauge transformation, up to the nonabelian phase factor

(∂µ + igA′
µ)Ψ′ = V (∂µ + igAµ)Ψ. (13.71)

To show this, we have to use Eq. (13.66) and remember Eq. (13.67).
It is often helpful to check the form of equations, and in particular rel-

ative signs, by remembering that the transition from QED to QCD equa-
tions can be effected with the introduction of a gauge-covariant derivative,
both for quark and glue fields, defined by

Dν = ∂ν + igtaA
a
ν = ∂ν + igAν . (13.72)

In view of Eqs. (13.66) and (13.71), we have shown that this covariant
derivative transforms under nonabelian gauge transformations as

Dν → D′
ν = VDνV †. (13.73)

Similarly, the eight-component field-strength tensor,

Fµν = taF
a
µν , (13.74)

defined as,

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ] , (13.75)

or equivalently,

F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν , (13.76)

remains up to a phase form-invariant under a local color-gauge transfor-
mation, i.e.,

Fµν → F′
µν = V FµνV †. (13.77)

This transformation property is most easily proved once we realize that we
can define the field-strength tensor using the commutator of the covariant
derivative, Eq. (13.72),

[Dµ,Dν ] ≡ igFµν , (13.78)

which verifies Eq. (13.77) in view of Eq. (13.73), remembering properties
of V , Eq. (13.54).
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13.5 The Lagrangian of quarks and gluons

The complete gauge-invariant Lagrangian of quantum chromodynamics
is then

LQCD =
∑
f

Ψfγµ(i∂µ − gAµ)Ψf −mfΨfΨf − 1
2 tr(FµνF

µν). (13.79)

Here, the summation over the different quark flavors f has been made
explicit. The form similarity to the Lagrangian of QED,

LQED = ψγµ(i∂µ − eAµ)ψ −mψψ − 1
4F

µνFµν , (13.80)

is evident.
In view of Eq. (13.61), we have an exact correspondence between the

gluon and photon terms:

1
4
FµνFµν =

1
2
(B2 − E2)

∣∣∣∣
QED

,

1
2
tr(FµνFµν) =

1
4

∑
a

Fµνa F aµν =
1
2

∑
a

(BaBa − EaE
a)

∣∣∣∣∣
QCD

. (13.81)

The key difference is in the nonlinear term entering into the definition
Eq. (13.76) of F aµν , which is quadratic in the color potentials A

a
µ.

The analog of the Maxwell equations may be derived for the color field
from the QCD Lagrangian, Eq. (13.79):

[Dν ,Fµν ] = gjµ. (13.82)

The color indices of the matter fields Ψ define the matrix current jµ ob-
tained from LQCD,

jaµ = Ψγ
µtaΨ. (13.83)

We can write Eq. (13.82) in the more conventional form

∂νF
µν
a = gjµa + gJµa , (13.84)

where we encounter the gluon current Jµa :

Jµa = fabcA
b
νF

µν
c , Jµ = −i[Aν ,Fµν ]. (13.85)

The nonlinear term, Eq. (13.85), placed on the right-hand side of
Eq. (13.84), shows that the color field acts also as its own source. In other
words, the quanta of the color field, gluons, carry color charge themselves.
This is the source of the substantial physical difference between QCD and
QED. From Eq. (13.84), one can further see that jaµ does not obey a con-
tinuity equation, which means that the color charge of quarks alone is not
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conserved. This is not surprising since quarks can emit or absorb gluons,
which carry color. Only if we add the color charge of the gluon field,
represented by the second term on the right-hand side of Eq. (13.84), is a
conserved color current obtained.
In view of the similarity in form of LQCD to LQED, many of the well-

known other formal properties carry over. We refrain from systematically
developing this here, even though we will call upon these similarities as
needed in further developments.

14 Perturbative QCD

14.1 Feynman rules

The nonabelian gauge theory of quarks and gluons, proposed in sec-
tion 13.5 and called QCD, has widely been accepted as the fundamental
theory of strong interactions, with both quarks and gluons being the car-
riers of the strong-interaction charge [123]. The evidence for the validity
of QCD as a dynamic theory governing hadronic reactions is overwhelm-
ing, and this is not the place where this matter should be argued. Rather,
we will show how QGP-related practical results can be derived from the
complex theoretical framework. There are many books dealing with more
applications of QCD and the interested reader should consult these for
further developments [110, 194, 280].
Akin to QED, QCD is a ‘good’ renormalizable theory. QCD is known

to be also an asymptotically free theory, viz., the running coupling con-
stant αs, see Eq. (14.12), is a diminishing function as the energy scale
increases. Therefore, the high-energy, or, equivalently, the short-distance
behavior is amenable to a perturbative expansion. On the other hand,
perturbative QCD has ‘fatal’ defects at large distances, which are signaled
by the growth and the ultimate divergence of αs as the scale of energy
diminishes (infrared ‘slavery’). Consequently, at any reasonable physical
distance of relevance to the ‘macroscopic’ QGP, we have to deal with an
intrinsically strongly coupled, nonperturbative physical system. A per-
turbative treatment ignores this, and, in principle, must be unreliable in
problems in which the confinement scale becomes relevant. The question
of when exactly this occurs will be one of the important issues we will
aim to resolve, using as criterion αs ≤ 1.
The perturbative approach, which applies to short-distance phenomena,

has been tested extensively in high-energy processes. When the ‘short dis-
tance’ grows and approaches 0.5 fm, the perturbative expansion of QCD
may still apply insofar as its results are restricted to the physics occur-
ring in the deconfined, viz., QGP, phase. The rules of perturbative QCD
follow the well-known Feynman rules of QED, allowing for the glue–glue
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interactions. However, unlike QED, in which the expansion parameter
is α/π = O(10−3), we must deal in case of QCD with ‘strong’ coupling,
which is nearly 30–100 times greater than that in QED. Therefore, even
when a perturbative description is suitable, some effort to reach the re-
quired precision is often necessary, involving the inclusion of higher-order
Feynman diagrams.
The quadratic terms ‘ψ2’ and ‘A2’ in the Lagrangian LQCD define free

quark and gluon fields which are described by propagators of the same
form as those for electrons and photons in QED. The terms of third
and fourth order in LQCD give rise to interaction vertices among the
free propagators of quarks and gluons. There is a quark–gluon vertex,
and three-gluon and four-gluon vertices. Propagators and vertices can be
combined to generate Feynman diagrams in all possible ways.
One technical difference arises between QED and QCD, which is asso-

ciated with the difficulties of gauge theories with regard to gauge fixing.
To ensure gauge invariance of QCD, it is convenient to introduce into the
perturbative expansion fictitious (virtual) particles called Fadeev–Popov
(FP) ghosts, which never appear in physical states, but are to be in-
cluded in all virtual processes. FP fields carry color, and satisfy Fermi
statistics even though they propagate like spin-zero particles – hence the
name ‘ghost’. The complete Lagrangian in a Lorentz-covariant gauge
reads

LQCD=−1
4
(Fµνa F aµν)

2 + ξ(∂µAaµ)
2 + φ̄(∂µδab + gfasbAsµ)∂

µφb

+
∑
f

Ψf
[
γµ(∂µ + gAsµ)−mf

]
Ψf , (14.1)

where the summation over color indices is implied and the second term
in Eq. (14.1) is the gauge-fixing term and the third term formed with
the scalar fields φ introduces the Fadeev–Popov ghosts. We note that
it is possible to work in a non-Lorentz-covariant gauge and to obtain
results without introducing ghosts, instead using longitudinal and trans-
verse gluons as identifiable degrees of freedom, with longitudinal gluons
not present in any asymptotic physical states. For further discussion, we
refer to relevant textbooks [110, 194, 280].
We skip the technical details regarding the development of the pertur-

bative QCD, and only collect for the convenience of the reader and further
reference the building blocks of the perturbative expansion required for
evaluation of Feynman diagrams, i.e., propagators and vertices of QCD,
presented in a self-explanatory notation. Latin indices refer to color de-
grees of freedom, Greek indices to space, q to quarks, g to gluons, and
FP to the ghost field.
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We have
the quark propagator,

(Sαβ(p))ab =
(

δab
γp−m+ iε

)
αβ

, (14.2)

the gluon propagator,

i(Dµν(k))ab =
δabgµν
k2 + iε

, (14.3)

the quark–antiquark–gluon vertex,

(Γµ,cqqg)
ab
αβ = g(tc)ab(γµ)αβ , (14.4)

the three-gluon vertex,

(Γµνσ
g3
)abc = gfabc[gµν(k − p)σ + cyclic permutations], (14.5)

the four-gluon vertex,

(Γµσντ
g4

)abcd = g2fiabficd[(gµσgντ − gµτgνσ) + cyclic permutations],

(14.6)

the ghost propagator,

(GFP(k))ab =
δab

k2 + iε
, (14.7)

and the gluon–ghost–ghost vertex,

(ΓµgFP)abc = −gfabcpµ. (14.8)
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For any given process, for which a Feynman diagram is drawn using
the lines and vertices as illustrated above, the above list allows one to
compose the mathematical expression for the amplitude of the process.
Very few additional rules need to be remembered, such as integration over
the ‘spare’ momentum variables in the diagram, an overall coefficient (−1)
for each fermion and ghost loop, and the absence of ghost propagators that
do not begin and end in a vertex.
While the forms of the above-stated propagators and vertices change

in a finite-temperature environment, which is mainly being addressed in
this book, the structure of the perturbative expansion generated by these
quantities remains the same. The construction of a matrix element and
cross section requires wave-function-normalization factors, and flux fac-
tors that are all quite standard in this context, and available in numerous
introductory textbooks. In these aspects, there is no difference between
QCD and any other theoretical framework, such as QED. However, we re-
call that, in order to obtain a cross section, we average over initial states,
and sum over final states, which now will include, in particular, the color
degree of freedom.

14.2 The running coupling constant

The free-gluon propagator, which, like in QED, is proportional to 1/q2,
implies that the ‘free’ color force falls off like 1/r. The gluon propagator
is, even in the perturbative vacuum, modified by scattering from virtual
quark–gluon fluctuations. This ‘dressing’ of the propagator leads to the
running, q2-dependent coupling constant, and the dressed physical gluon
propagator is expected to significantly differ from the free one. In order to
see how this comes about, we consider the loop diagrams corresponding
to the virtual and momentary creation of a pair of colored particles in the
vacuum. For the contribution of fermions to the polarization loop, this
process is very similar to the case of QED.
There are two more elementary processes that contribute to the covari-

ant form of perturbative QCD, namely the gluon loop and the ghost loop,
The vacuum-polarization loop Π(q2) comprises these three terms:

It is customary to sum the chain of higher-order diagrams, containing
series of all different loops,

D(q2) = D0 + D0ΠD0 + D0ΠD0ΠD0 + · · ·
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D(q2) =
D0(q2)

1−Π(q2)D0(q2)
, (14.9)

such that the gluon is dressed by the consecutive interactions with the vac-
uum polarization. The effect of the quark, glue, and ghost loops combines
in the coefficient b0, Eq. (14.14), of the vacuum-polarization function. In-
troducing a high momentum (ultraviolet) cutoff to secure the convergence,
for massless quarks and gluons, Π(q2) takes the form

Π(q2) =
g2b0
8π

(−q2) ln
(
−q2
µ2

)
, (14.10)

where µ is a reference momentum absorbing the cutoff, and defined by
the renormalization condition: Π(q2 = −µ2) = 0.
The value of µ2 introduces, in general, a dependence on renormaliza-

tion. In this order, this dependence can be absorbed into the choice of
the value of the coupling constant at a given transfer of momentum; see
Eq. (14.13) below. The overall sign of Π, Eq. (14.10), is related to the
sign of b0, and is opposite to that of the polarization function of fermions
alone (QED) as long as the flavor number nf < (11/2)nc. The sign of the
polarization function is quite important, as we shall see.
With the help of Eq. (14.10), we obtain

g2iD(q2) =
1
q2

g2

1 +
g2b0
8π

ln
(
−q2
µ2

) . (14.11)

The last factor acts as a momentum-dependent modification of the strong
coupling constant g2. It is therefore convenient to introduce the ‘running’
coupling constant αs(q2),

αs(q2) =
2

b0 ln(−q2/Λ2)
, (14.12)

with

Λ2 = µ2 exp
(
− 8π
b0g2

)
, αs =

g2

4π
. (14.13)

The above expression applies for positive b0, and, in this case, we see that,
for an increasing q2, the physical coupling constant αs(q2) decreases; QCD
is asymptotically free.
In the case of QED, the sign of b0 is opposite, and the effective coupling

constant is finite at large distances, i.e., at small q2, and increases with
q2. The reference scale µ2 in Eq. (14.11) can be chosen to be at zero
momentum (infinite distance) and this corresponds to the usual definition
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of the electron charge. This choice is not possible in case of QCD, since
the interaction strength becomes infinite for µ2 → 0.
Λ is the dimensional parameter which emerges in perturbative QCD.

The original dimensionless coupling constant g2 has been absorbed in
the scale Λ governing the change of the running coupling constant αs, in
the process of transition from Eq. (14.11) to Eq. (14.12). This so-called
‘transmutation’ of the dimensionless scale of strength into a dimensioned
strength parameter of the interaction also absorbs the scale dependence
introduced by the choice of µ2.
In the limit that all quark masses vanish, mi → 0, Λ is the only dimen-

sional parameter of the theory of strong interactions. It is believed that
the world of hadrons (except the pion) is not decisively dependent on the
scale of the quark mass. Thus, it seems that Λ alone controls the mass and
the size of the massive hadrons (nucleons and heavy non-strange mesons).
To understand this, we would need to express the vacuum structure in
terms of Λ, a problem which has not been resolved.
The measurable dimensioned parameter Λ2 determines the strength of

the interaction at a given momentum scale. This approach applies quite
accurately for energy–momentum scales above the mass of the b quark, as
we shall see later in Fig. 14.1, where the value of Λ � 90±15 MeV applies.
At small q2, i.e., at ‘large’ distances, the coupling constant Eq. (14.12)
diverges within the perturbative approach. The magnitude of the strong
charge must be defined at some finite momentum scale, which has in recent
years, been chosen to be the mass of the Z0 boson, µ ≡ MZ0 � 91.19 GeV.
Since we have more than one quark, the important coefficient b0 is

composed of a term proportional to the number of ‘active’ flavors nf , i.e.,
those with |q2| > 4m2

f . The number of colors nc = 3 enters the glue
loop: in the gluon loop diagram, each external leg requires the triple-
glue vertex, Eq. (14.5), which invokes relation Eq. (13.63) or equivalently
Eq. (13.60) for two external gluon legs. b0 for SUc(3) assumes the form

b0 =
1
2π

(
11
3
nc −

2
3
nf

)
. (14.14)

The spin s of particles contributing to the vacuum polarization is found
to be the key ingredient controlling the sign of b0 [149],

bs0 =
(−)2s
2π

(
(2s)2 − 1

3

)
, (14.15)

which leads to Eq. (14.14), introducing s = 1 for gluons and s = 1
2 for

quarks. Equation (14.15) shows why for s = 0, 12 the same (negative) sign
appears, whereas for gluons with s = 1 there is a change of sign. Photons
do not interact with photons and hence this issue did not arise in QED.
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14.3 The renormalization group

The question of what happens as we carry out the same procedures in
higher orders in perturbation theory now arises. A considerable amount
of effort went into designing a scheme for computing the observable ef-
fects in QED, and this experience has been generalized to the more com-
plex case of QCD. We will restrict ourselves to a few elements of the
renormalization-group approach relevant to our presentation, sidestep-
ping many interesting and intricate questions, which are addressed in,
e.g., [110, 194, 280].
The renormalization-group approach allows us to understand the vari-

ation of the physical observables in terms of the momentum dependence
of the coupling constant αs. A functional dependence is found demanding
that the result of a physical measurement (say a cross section σ) be in-
variant with respect to the process of renormalization, and, in particular,
the observable (cross section) can not depend explicitly on the choice of
the ‘(re)normalization’ point µ2,

µ
d

dµ
σ(pi;αs,m;µ) = 0. (14.16)

Accounting for both a direct and an indirect dependence on µ in
Eq. (14.16),(

µ
∂

∂µ
+ µ

∂αs
∂µ

∂

∂αs
+ µ

∂m

∂µ

∂

∂m
+ · · ·

)
σ = 0. (14.17)

It is convenient to define

µ
∂α

∂µ
≡ β(αs) (14.18)

and

− µ

m

∂m

∂µ
≡ γ(αs), (14.19)

and thus:(
µ

∂

∂µ
+ β(αs)

∂

∂αs
− γ(α)m

∂

∂m
+ · · ·

)
σ = 0. (14.20)

Equation (14.20) allows us to understand the behavior of the observable
σ, and it establishes the behavior of σ under simultaneous changes of
reference scale µ, coupling constant, and mass.
Equations (14.18) and (14.19) establish how the parameters of QCD

vary once they are known at some given scale. Therefore, precise knowl-
edge of the renormalization functions β and γ is, to a large degree, equiv-
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alent to finding a practical ‘solution’ of QCD. For this reason, these quan-
tities have attracted a lot of attention. We will look at the perturbative
results only, in terms of a power expansion in αs [255]:

βpert =−α2s
[
b0 + b1αs + b2α

2
s + · · ·

]
, (14.21)

γpertm = αs
[
w0 + w1αs + w2α

2
s + · · ·

]
. (14.22)

For the SU(3) gauge theory with nf fermions only, the first two terms
(two ‘loop’ orders) are renormalization-scheme-independent. When a de-
pendence on the renormalization scheme arises, this means that compen-
sating terms, which remove scheme dependence, are obtained on evaluat-
ing in the same scheme the physical process considered. For what follows
in this book, this so-called two-loop level of perturbative expansion for
βpert and γpertm is sufficient.
We have

b0=
1
2π

(
11− 2

3
nf

)
, b1 =

1
4π2

(
51− 19

3
nf

)
, (14.23)

w0=
2
π
, w1 =

1
12π2

(
101− 10

3
nf

)
. (14.24)

The number nf of ‘active’ fermions depends on the scale µ. Assuming
that the two lightest quarks are effectively massless,

nf(µ) = 2 +
∑

i=s,c,b,t

√
1− 4m2

i

µ2

(
1 +

2m2
i

µ

)
Θ(µ− 2mi), (14.25)

with values of mi evaluated, in principle, for the energy scale being con-
sidered. There is a very minimal impact of the values of quark-mass
thresholds in Eq. (14.25), on the running behaviors of the coupling con-
stant and quark masses.

14.4 Running parameters of QCD

For the purpose of QGP studies, we are interested in understanding how
the strength of the QCD interaction and the quark mass change with
the energy scale. The simplest way to obtain this result is to integrate
the first-order differential equation, Eqs. (14.18) and (14.19), given ini-
tial values of αs(M) and mi(M), using the perturbative definition of the
functions β and γ, Eqs. (14.21) and (14.22), in terms of the perturbative
expansion Eqs. (14.23) and (14.24).
For the determination of the coupling constant, it has become common

to refer to the value of αs(MZ = 91.19GeV). We use, in Fig. 14.1, the
value [136] αs(MZ) = 0.1182 ± 0.002 (thick solid lines). The thin solid



282 QCD, hadronic structure and high temperature

Fig. 14.1. αs(µ) (top section), the equivalent parameter Λ0 (middle section),
and mr(µ) = m(µ)/m(MZ) (bottom section) as functions of the energy scale µ.
The initial values are αs(MZ) = 0.118 (thick solid lines) and αs(MZ) = 0.115
(thin solid lines). In the bottom section, the dots indicate the strangeness-pair-
production thresholds for ms(MZ) = 90MeV, while crosses indicate charm-pair-
production thresholds for mc(MZ) = 700MeV.

lines are for αs(MZ) = 0.115 arising from analysis of decays of heavy
quarkonium (bb̄), and addressing an energy scale closer to our direct
interest in this book.
As can be seen in the top portion of Fig. 14.1, the variation of α(2)s < 1

(the upper index indicates the level of perturbative expansion used; see
Eq. (14.21)) with the energy scale is substantial. We note the rapid change
in αs(µ) at, and below, µ = 1 GeV. This is not an unexpected result.
However, the fact that a solution with αs ≤ 1 governs the energy scale
1 GeV is important, since the formation of the strange quark flavor occurs
in a hot QGP phase formed in experiments at 160–200A GeV (SPS–
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CERN) at around 1 GeV. We can thus use the methods of perturbative
QCD to study this process.
Among the parameters in Eq. (14.25), only the mass of the bottom

quark plays a (hardly) noticeable role; the results shown were obtained
for ms = 0.16GeV, mc = 1.5GeV, and mb = 4.8GeV [225]. When mb is
changed by 10%, the error on a low energy scale is barely visible. Other
quark masses have less significance since the error has less opportunity
to ‘accumulate’ in the solution of the differential equation as the energy
scale decreases in the integration of Eq. (14.18).
As expected and seen in the top portion of Fig. 14.1, in the soft QGP

domain 0.8 GeV < µ < 3 GeV, it is impossible to use a constant value of
αs. More surprisingly, the frequently used approximate inverse-logarithm
form Eq. (14.12) for αs is nearly equally inappropriate. To see this, we
define a quantity Λ0(µ),

αs(µ) ≡
2b−10 (nf)
lnµ2/Λ20(µ)

, Λ0(µ) = µ exp
(
− 1
b0αs(µ)

)
, (14.26)

where αs(µ) is obtained in two-loop or higher-order perturbation expan-
sion of the β-function using Eq. (14.18). The form of Eq. (14.26) is chosen
to be identical to the one-loop form, compare with Eq. (14.13). Using the
result for αs shown in the top portion of Fig. 14.1, we obtain Λ0(µ) seen
in the middle section of the figure.
If the one-loop form Eq. (14.12) with a constant Λ0 were a good approx-

imation to αs, we should see a sequence of step functions, dropping at each
heavy-quark threshold. In fact, above the bottom threshold, for µ > 2mb,
this is nearly the case. However, below the charm threshold, for µ < 2.5
GeV, where practically all QGP action is occurring, we see a rather rapid
change in Λ0(µ), which drops from a value near Λ0(1GeV) � 300 MeV
toward Λ0(3GeV) � 200 MeV.
It is common to refer to the number of active quarks by using an upper

index on Λ0(µ), thus Λ
(3)
0 refers to the range 1 GeV < µ < 2mc, and Λ

(5)
0

refers to µ > 2mb, and below the top threshold. We also see, in Fig. 14.1,
that Λ(5)0 � 90 ± 15 MeV. This value of Λ(5)0 derived from a comparison
with the one-loop solution should not be mixed up with Λ(5) = 205± 25
MeV, which is the value required to describe αs in the analytical two-loop
solution, Eq. (14.28) [136].
To understand how quark masses depend on the energy scale, given αs,

we integrate Eq. (14.19). Substituting m(µ) = mr(µ)m(MZ), we recog-
nize that mr(µ) is a multiplicative factor applicable to all quark masses.
mr(µ) is shown in the bottom portion of Fig. 14.1. All quark masses
‘run’ according to this result. A quark mass given at the scale µ = MZ

increases by factor 2.2 at scale µ = 1 GeV, as the dotted lines drawn to
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guide the eye show. Near to µ � 1GeV, the quark-mass factor mr(µ)
is driven by the rapid change of αs. For each of the different functional
dependences αs(µ), a different function mr is found, and two results are
presented, corresponding to the two cases considered in the top section
of Fig. 14.1.
Since αs refers to the scale of µ0 =MZ, it is a convenient reference point

also for quark masses. The value ms(MZ) = 90 ± 18MeV corresponds
to strange-quark mass ms(1GeV) � 195 ± 40MeV, i.e., ms(2GeV) �
150±30MeV, at the upper limit of the established range seen in table 1.1
on page 7. Similarly, we consider mc(MZ) = 700 ± 50MeV, for which
value we find the low-energy mass mc(1GeV) � 1550 ± 110MeV, i.e.,
mc(2GeV) � 1200 ± 85MeV, which is also at the upper limit of the
accepted range, table 1.1.
For quark-pair production, the intuitive energy scale to consider is a

range near to twice the (running) quark mass. Since, below
√
s = 1 GeV,

the mass of the strange quark increases rapidly, the pair-production thresh-
old is considerably greater than 2ms(1GeV) � 400 MeV. The dots in the
bottom portion of Fig. 14.1 show where the strangeness threshold is found,
and this is at 2mr(2ms)ms = 611MeV for αs(MZ) = 0.118. The stran-
geness threshold is where αs � 1 and we can expect, considering that the
phase space for pair production opens up at about 3m, that strangeness is
produced predominantly in an energy domain accessible to perturbative
treatment.
For charm, the threshold shift due to running mass occurs in the oppo-

site direction: since the mass of charmed quarks for µ = 1GeV is above
1GeV, the production-threshold mass is smaller than 2mc(1GeV) � 3.1
GeV; the production threshold is found at ∼2mth

c � 2.3 GeV, and the cor-
responding values of mr are indicated by crosses in the bottom portion of
Fig. 14.1. In other words, we expect that, near the threshold, there is a
slight enhancement in production of charm related to a reduction of the
threshold, while the coupling strength is at αs(2mc) � 0.3.
The inclusion of higher-order terms in the perturbative expansion

Eq. (14.21) does not influence the behavior of αs. This is shown in
Fig. 14.2, in which a study of αs is shown. To obtain the solid line,
the full current ‘scheme-dependent’ knowledge about the perturbative β-
function is employed. The four-loop β-function obtained in the modi-
fied minimum-subtraction scheme (MS) was used [136]. On the other
hand, Eq. (14.21) demonstrates that there is a considerable sensitivity to
the initial value αs(MZ). If αs(MZ) were to increase, the evaluation of
the coupling strength in the ‘low’-energy domain µ � 1 GeV of interest
here would become impossible, or at best unreliable, see the dotted lines
in Fig. 14.2 above the solid line. In fact, we do not present many re-
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Fig. 14.2. α
(4)
s (µ) as a function of the energy scale µ for a variety of initial

conditions. Solid line, αs(MZ) = 0.1182 (see the experimental point, which
includes the error bar at µ = MZ); dotted lines, sensitivity to variation of the
initial condition.

sults in this domain since the renormalization-group-evolution equation,
Eq. (14.18), becomes numerically unstable when the four-loop perturba-
tive β-function is used.
Interestingly, a 20% reduction in αs(MZ) leads to a ‘good’ αs(0.1GeV).

The distance scale 1/µ at which QCD becomes unstable is not just 1 fm,
but, as this study shows, an intricate functional of the strength of the
fundamental interaction, which has reliably been established only in re-
cent years. An essential prerequirement for the perturbative theory of the
production of strangeness in QGP, which we will develop in section 17.3,
is the relatively small value αs(MZ) � 0.118.
For studying thermal processes in QGP at temperature T , the proposed

interaction scale is, see Eq. (16.11),

µ ≡ 2πT � 1GeV T/Tc,

for Tc � 160MeV. We can expect considerable sensitivity in this low
range of µ to the exactness of the functional form of αs(µ), and it is
necessary to use the precise function αs(µ). In Fig. 14.3, the solid line
bounded by error lines corresponds to the exactly computed two-loop αs
with physical quark thresholds, Eq. (14.25), and with αs(MZ) = 0.1181±
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Fig. 14.3. αs(2πT ) for Tc = 0.160GeV. Dashed line, αs(MZ) = 0.119; solid line
= 0.1181; chain line = 0.1156. Dotted line, approximate two-loop solution, given
in Eq. (14.28), with the choice Λ = 150 MeV.

0.002, evaluated for the thermal scale, and expressed in terms of T/Tc.
The range of experimental uncertainty in αs(T ), due to uncertainty in
αs(MZ), is delimited by dashed and chain lines bordering the solid line
in Fig. 14.3. A good approximation is obtained fitting αs(T ) with a
logarithmic form,

αs(T ) �
αs(Tc)

1 + C ln(T/Tc)
, C = 0.760± 0.002, for T < 5Tc. (14.27)

The value αs(Tc) = 0.50−0.05+0.03 applies in the two-loop description with
µ = 2πT and Tc = 0.16 GeV (see Fig. 14.3).
A popular approximation of αs, which incorporates the next term be-

yond the one-loop logarithmic term Eq. (14.26), is

α(2)s (µ) �
2
b0L̄

(
1− 2b1

b20

ln L̄
L̄

)
, L̄ ≡ ln(µ2/Λ2). (14.28)

α
(2)
s agrees, using the standard value Λ(5) = 205±25 MeV, with the exact
solution shown at the top of Fig. 14.1, but only for µ > 2mb. On the
other hand, when one is studying thermal properties of a QGP at a low
energy scale the use of Eq. (14.28) below µ = 2mb introduces consider-
able error, as can be seen in Fig. 14.3. Equation (14.28) is represented
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by the dotted line, and misses the exact result by a factor of two, for
Tc < T < 1.75Tc, the effective range of observables emerging from SPS
and RHIC experiments. The experimental error in determination of αs is
today considerably smaller. This large difference between exact and ap-
proximate result arises, in part, because the value of Λ(5) used to obtain
the thermal behavior was adjusted to be Λ(4) = 0.95Tc � 0.15 GeV. This
value would be correct if Tc were indeed around 210 MeV, as has been
thought for some time.
The high sensitivity of physical observables to αs, makes it imperative

that we do not rely on this approximation. Yet a fixed value αs = 0.25
(instead of αs = 0.5) derived from this approximation is still often used in
studies of the phase properties of QGP, loss of energy by jets of partons,
thermalization of charmed quarks, thermal production of strange quarks,
etc. Such a treatment of thermal QCD interaction underestimates by
as much as a factor of four the interaction with the QGP phase, and
thus the speed of these processes. In most cases, this mundane factor
matters, and we see that an accurate evaluation of αs at the appropriate
physical scale is required in order to establish the correct magnitude of
these results.

15 Lattice quantum chromodynamics

15.1 The numerical approach

The perturbative approach to QCD lacks the capability to describe the
long-distance behavior, which is essential for understanding the QGP–HG
transformation. We need a more rigorous approach in order to charac-
terize the physical mechanisms at the origin of color confinement, and
the transition to the deconfined state of hadronic matter. A suitable
nonperturbative approach is the numerical study of QCD on a lattice
(L-QCD).
L-QCD is a vast field that is evolving very actively. We will limit

our presentation to a pedestrian guide to the language used in this field,
along with a report on a few key results of greatest importance to us. We
will not be embarking on a thorough introduction to the theoretical and
numerical methods. For a survey of the historical developments until the
early eighties we refer to the monograph by Creutz [97], and for a summary
of recent theoretical advances, and many numerical results addressing hot
QCD, we refer the reader to the recent survey by Karsch [159].
The particular usefulness of the lattice-gauge-theory formulation is that

it allows one to numerically carry out Feynman path integrals which rep-
resent expectation values of quantum-field-theory operators. Specifically,
the expectation value of an operator O, including both glue and quark
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fields, is

〈O〉 =
∫ [
dAµ dψ̄ dψ

]
Oe−i

∫L(A,ψ̄,ψ) d4x∫ [
dAµ dψ̄ dψ

]
e−i
∫L(A,ψ̄,ψ) d4x . (15.1)

These integrals are over all values of the gluon and quark fields at all points
in space and time. However, most parts of the domain of the integral
are unimportant – in ‘weak coupling’ (i.e., when perturbative expansion
makes good sense), only paths close to the classical paths (classical-field
solutions) are important. In order to do a path integral efficiently, it is es-
sential to sample more densely the domains that give large contributions,
see Eq. (15.2) below, and this obviously then poses a practical challenge.
The integration measure of the path integral is indicated by

[
dAµ dψ̄ dψ

]
.

The goal of computations, in lattice QCD, is to evaluate Eq. (15.1) numer-
ically by evaluating the integrand at selected lattice points representing
its domain.
The functional integral in Eq. (15.1), expressed on the lattice, means

that we are integrating the fields at each lattice site and lattice link, and
the domain of the integral has accordingly a very high dimensionality.
The method of choice for doing such integrals numerically is the Monte-
Carlo (random-choice) method. However, a considerable complication in
applying this method arises since e−i

∫L d4x is not in general a positive
real number: aside from the i factor in the exponent, it is a functional
of quark fields, which have to be represented by anticommuting numbers:
ψxψy = −ψyψx. This problem can be solved since the dependence on
ψ and ψ̄ of Eq. (15.1) has the form of a polynomial times a Gaussian.
Therefore, the quark portion of the path integral can be done analytically.
This integral yields a ‘Fermi determinant’ FD, which changes for each
configuration of the gauge (gluon) fields considered. We will address the
form of FD in section 15.4.
In order to allow a Monte-Carlo integration procedure for the gauge

fields, the explicit i in the exponent in Eq. (15.1) is combined with dt,
and the integral is considered in ‘imaginary’ time, or, as it is usually said,
Euclidian space. It is generally believed that some, if not all, physical
results can be analytically continued from the real- to the imaginary-time
axis. Even so, the Fermi determinant remains real only for zero chemical
potential, and we can use as a probability for sampling the Monte-Carlo
integral

ρ(A) = FDIe
− ∫La d4xI . (15.2)

La is the gluon part of the Lagrangian in imaginary time and subscript
I indicates that the quantities have been suitably modified by the trans-
formation t → it.
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The physical system is restricted to a finitely sized box, which intro-
duces an infrared (long-distance) cutoff at the size of the box, L. The
continuous space and time is represented by a lattice, which introduces
an ultraviolet cutoff (i.e., distance) at the lattice spacing† O. In going
from the continuum to the lattice, derivatives are replaced by finite dif-
ferences. This replacement must be done in a gauge-invariant way, and
hence one often refers to lattice gauge theory (LGT) or, in our context,
lattice quantum chromodynamics (L-QCD).
In what follows, we will describe how to deal with dynamic gluons and

quarks. Since the presence of quarks requires that the Fermi determinant
FD be evaluated, this imposes a need for much more computational ef-
fort than in the case of the ‘pure-gauge’ lattice which comprises gluons
only. In an intermediate step we can study quark operators in a non-
fluctuating gauge-field background; this is the ‘quenched’-quark approx-
imation, which excludes the contributions of particle–antiparticle pairs.
The full calculation then has ‘dynamic’ quarks.

15.2 Gluon fields on the lattice

Replacement of continuous space–time xµ by a lattice xµ = Onµ must
be accomplished in a gauge-invariant manner, and, as with any other
regulator, in order to be able to interpret the results, the regulator, i.e.,
lattice spacing, must be removed (O → 0) after a finite result has been
obtained. In other words, contact with the real physical world exists only,
in the continuum limit, when the lattice spacing is taken to zero; this limit
must be reached in natural fashion in any formulation. Moreover, we must
always be aware that, on the lattice, we sacrifice Lorentz invariance, and
have to be vigilant about the fates of all internal symmetries, which we
desire to preserve. A suitable approach was devised by Wilson [273].
The action, an integral over the Lagrangian, is replaced by a sum over

sites:

βS =
∫

dxL → O4
∑
n

Ln. (15.3)

β reminds us that all calculations are carried out in a four-dimensional
Euclidian world, and β corresponds to the time dimension, or, as we shall
see for equilibrium thermodynamics, the usual relation β = 1/T applies.
The generating functional used to obtain many of the results implied by

† It is common to call the lattice spacing a. To avoid conflicts of notation with the
color indices of QCD, we chose the symbol �, which is not used as often, though it
should not be confounded with the angular-momentum eigenvalue employed earlier.
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Eq. (15.1) is now an ordinary integral over all lattice fields and sites φin:

Z =
∫ (∏

i

∏
n

dφin

)
e−βS . (15.4)

In the specific case of interest to us, quantum chromodynamics, this
integral does not comprise the gauge fields Aaµ; these are represented by
fundamental variables Uµ(n), which live on the links connecting point xn
and xn + Oµ of a d = 4 dimensional space [273],

Uµ(n) ≡ eig<t
aAa

µ(n), (15.5)

which form arises from Eqs. (13.64) and (13.69). We have Uµ(xn+ Oµ)† ≡
Uµ(n + µ)† = Uµ(xn) ≡ Uµ(n). ta are generators of the SUc(3) gauge
group, Uµ(n) are elements of this group. The quark fields Ψ(n) remain
‘attached’ to the lattice sites xn; see below. Under the gauge trans-
formation, the site variables (quark fields) transform as in Eq. (13.65)
and link variables, which, as we will see, represent a generalization of
field strengths, transform under gauge transformations in generalization
of Eq. (13.77),

Uµ(x)→ V (x)Uµ(x)V †(x+ µ̂). (15.6)

An action for gauge fields involves a gauge-invariant product of Uµ’s
around some closed contour, a ‘plaquette’. Since, for almost any closed
contour, the leading term in the expansion is proportional to F 2µν in the
continuum limit, there is considerable arbitrariness in the definition of
gluon lattice action. The simplest contour has a perimeter of four links.
In SU(N)

βSW ≡ 2N
g2

∑
n

∑
µ>ν

Re tr {1− Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n)}. (15.7)

βSW is called the ‘Wilson action’. The volume element in Eq. (15.4) is
simply an integral over the group elements:[∏

i

∏
n

dφin

]
→
[∏
n

dUn

]
. (15.8)

Summation over all group elements amounts to a projection of the argu-
ment in the integral onto its color-singlet component.

15.3 Quarks on the lattice

The Euclidian fermion action in the continuum (in four dimensions) is

S =
∫

d4x [ψ̄(x)γµ∂µψ(x) +mψ̄(x)ψ(x)] . (15.9)



15 Lattice quantum chromodynamics 291

A ‘naive’ lattice formulation is obtained by replacing the derivatives by
symmetric differences:

SnaiveL =
1
2O

∑
n,µ

ψ̄nγ
µ(ψn+µ − ψn−µ) +m

∑
n

ψ̄nψn . (15.10)

The elementary solution of the associated dynamic equations, i.e., the
propagator, is

G(p) =
O

iγµ sin(pµO) +mO

=
−iγµO sin(pµO) +mO2∑

µ sin
2(pµO) +m2O2

→ 1
iγµpµ +m

. (15.11)

We identify the physical spectrum through the poles in the propagator at
p0 = iE:

sinh2(EO) =
∑
j

sin2(pjO) +m2O2. (15.12)

The lowest-energy solutions, as expected yielded for p = (0, 0, 0) the usual
E � ±m, but there are many other degenerate solutions yielding this
value of E, at Op = (π, 0, 0), (0, π, 0, ), . . ., (π, π, π). This is a model for 16
light fermions, not one. More generally, when fermions are discretized in
this way on a d-dimensional lattice, they double and produce 2d species.
Initially, two ways to deal with this problem were developed. The

‘Wilson fermions’ [273], and the ‘Kogut–Suskind (staggered) fermions’
[168]; more recently, also a five-dimensional formulation with ‘domain-wall
fermions’ [155] has been considered. Wilson fermions are implemented by
adding a second-derivative-like term,

SW = − r

2O

∑
n,µ

ψ̄n(ψn+µ − 2ψn + ψn−µ), (15.13)

to Snaive, Eq. (15.10). The parameter r must lie between 0 and 1; r = 1
is almost always used and ‘r = 1’ is implied when one speaks of using
‘Wilson fermions’. The propagator is

G(p) =
−iγµ sin(pµO) +mO− r

∑
µ[cos(pµO)− 1]∑

µ sin
2(pµO) +

{
mO− r

∑
µ[cos(pµO)− 1]

}2 . (15.14)

It has one pair of ‘low-energy’ poles at pµ � (±im, 0, 0, 0). The other poles
are at p � r/O. In the continuum limit, these states become infinitely
massive.
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This makes all but one of the fermion species heavy (with heavy masses
close to the cutoff 1/O), and we have, in principle, the required discretiza-
tion method. However, for the nf flavor QCD addition of SW, Eq. (15.13)
breaks the SU(nf)L × SU(nf)R chiral symmetry; see section 3.3. The
size of the symmetry breaking is proportional to the lattice spacing and
only close to the continuum limit O → 0 does the explicit chiral-symmetry
breaking become small. At any finite lattice spacing a proper represen-
tation of the chiral symmetry of the massless theory becomes a subtle
fine-tuning process.
Despite the computational problems related to implementation of chi-

ral symmetry, there is also some advantage with this formulation. Wil-
son fermions are closest to the continuum formulation – there is a four-
component spinor on every lattice site for every color and/or flavor of
quark. Therefore, the usual rules apply to the formulation of currents,
and states. Explicitly, the Wilson-fermion action for an interacting theory
is

OSW=
∑
n

Ψ̄nΨn−κ
∑
nµ

(
Ψ̄n(r−γµ)Uµ(n)Ψn+µ+Ψ̄n(r+γµ)U †

µΨn−µ
)
.

(15.15)

We have rescaled the fields ψ =
√
2κΨ, and have introduced the ‘hopping

parameter’ κ−1 = 2(mO+ 4r).
In studies of properties of QGP, another description of quarks on a

lattice has been used more extensively. In the staggered-fermion method,
a one-component staggered-fermion field rather than the four-component
Dirac spinors is used. The name staggered is used since Dirac spinors and
quark flavors are constructed by combining appropriate single-component
fields from different lattice sites. Staggered fermions also break the chiral
symmetry, but there remains a U(1) × U(1) symmetry, which comprises
much of the physics of chiral symmetry. Moreover, explicit chiral sym-
metry is present for mq → 0, even for finite lattice spacing, as long as all
flavor masses are degenerate. On the other hand, flavor symmetry and
translational symmetry are mixed together, which poses problems, since
in the real world, the flavor symmetry is broken.
Since exact chiral symmetry and broken flavor symmetry are important

physical phenomena influencing the physics of high-temperature QCD, see
Fig. 3.4 on page 54, a third approach to place quarks on a lattice is cur-
rently being developed. The domain-wall formulation of lattice fermions
is expected to support accurate chiral symmetry, even at finite lattice
spacing. In this new fermion formulation, it seems that it will be possi-
ble to more easily simulate two-flavor, finite-temperature QCD near the
chiral phase transition. For further theoretical details, we refer to [265],
and the first exploratory hot-QCD calculations are reported in [90].
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Another area of rapid development is the search for a most appropriate
‘improved’ action for each of the important applications of L-QCD. The
original Wilson action for the gauge fields is not unique, since the prin-
ciple of gauge invariance leads to the building block, the plaquette, but
not to the actual form of the action made from plaquettes. Consequently,
the form of Wilson-fermion action can also be ‘improved’. Improvements
can perform better in one area than in another, since they address the
problems encountered in extracting physics from extensive numerical cal-
culations.

15.4 From action to results

Once we have quark fields on the lattice, as noted at the end of sec-
tion 15.1, we must deal with their anticommuting nature. We carry out
the integral over the Fermi fields in the path integral Eq. (15.4). For nf
degenerate flavors of staggered fermions

Z=
∫
[dU ][dψ][dψ̄] exp

(
− βS(U)−

nf∑
i=1

ψ̄M(U)ψ

)
(15.16)

=
∫
[dU ]
(
detM(U)

)nf/2
exp(−βS(U)). (15.17)

In order to make explicit the positive-definite nature of the Fermi deter-
minant FD appearing as the preexponential factor in Eq. (15.17), we will
be writing it as

FD = det(M †M)nf/4.

Recalling that a determinant is a product of eigenvalues, we can express
its logarithm as a sum of logarithms of eigenvalues, i.e., a trace, and we
write

Z =
∫
[dU ] exp

(
−βS(U)− nf

4
tr ln(M †M)

)
. (15.18)

The major computational problem dynamic fermion simulations face
is inverting the fermion matrix M for any change in any of the gluon-
link fields U . M has eigenvalues with a very large range – from 2π to
mq O – and, in the physically interesting limit of small mq, the matrix
becomes ill-conditioned. Just a few years ago, it had been possible only
to study quenched fermions, i.e., to proceed ignoring the second term in
the exponent in Eq. (15.18). Today, it is possible to compute at relatively
heavy values of the quark mass and to extrapolate to mq = 0.
We will not enter further into practical discussion of how to do the

high-dimensional Monte-Carlo integrals; neither shall we discuss the many
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ingenious algorithms that are in use. This is clearly a field of its own
merit, and would fill more than this volume. However, even if somebody
did provide all numerical answers, we still would need to take a few further
steps. Perhaps the most important physical consideration is the approach
to the continuum limit, O → 0. Any calculation by necessity will be done
with a finite lattice spacing O. The lattice spacing O is an ultraviolet cutoff,
and it is the variable which now provides the scale to the QCD coupling
constant g and quark masses mi.
The continuum limit, in which we are interested, requires the limit

O → 0, holding physical quantities fixed, not the input (‘bare’) action pa-
rameters. In section 14.3, we have shown that the input parameter g, the
bare coupling of quantum chromodynamics, is replaced by the running
coupling constant αs measured at some given scale (typicallyMZ). When
only one dimensioned parameter is present, in the absence of quarks or
when all quark masses are set to zero, the situation is simple. For exam-
ple, in order to evaluate hadron masses on the lattice, one computes the
dimensionless combination Om(O). One can determine the physical mean-
ing of the lattice spacing by fixing one hadron mass from experiment.
Then other dimensional quantities can be predicted.
Consider, as an example, the ratio of two hadron masses:

Om1(O)
Om2(O)

=
m1(0)
m2(0)

+O(O) + · · · . (15.19)

The leading term does not depend on the value of the ultraviolet-cutoff.
One of the goals of a lattice calculation aiming to obtain the physical
properties is to separate an ultraviolet-cutoff-distance scale-dependent
remainder from the physical observable. One says that the calculation
‘scales’ if the O-dependent terms in Eq. (15.19) are zero or small enough
that one can extrapolate to O = 0. All the O-dependent terms are ‘scale
violations’. To be able to make extrapolations, the results for several
values of lattice spacing O are required.
The precision with which we can extract the physics will obviously de-

pend on how small the lattice cutoff is. However, the lattice must cover
a sufficiently large region of space–time for the physical question we are
addressing. We cannot study the proton of size R = 1 fm without having
a few lattice distances within its radius, and a lattice of a few fermis.
Repeating this basic cell domain infinitely using periodic boundary con-
ditions helps, but cannot much reduce these requirements.
A summary of the lattice-gauge-theory conditions and procedures which

we have introduced is presented in table 15.1.
For the study of hadron masses, as long as fundamental symmetries are

respected, the physical size of the lattice should be O � 0.1–0.2 fm, and the
repeating cell ought to have the size �5 fm. The computer power of today
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Table 15.1. A summary of the procedure for L-QCD simulations

Do the path integral:
quark integrals analytically
gluon + Fermi-determinant integrals numerically

Restrictions:
Imaginary time
Chemical potential = 0
quark–antiquark symmetry makes the determinant real

Approximations:
Restrict volume L 	 ∞ (infrared cutoff)
Introduce lattice O ≥ 0 (ultraviolet cutoff)
Need: O 	 ltypical 	 L
limit: scale O → 0

Need low quark masses,
Difficulty: tcomputer ∼ (mq)−2
limit: scale mq → 0

allows 323 × 16, or 243 × 48, lattices. In view of the physical difference
between time and space, the time, i.e., inverse-temperature, dimension
of the lattice can be chosen to be smaller than the spatial extent of the
lattice. On such lattices, the hadron spectra that emerge nowadays are
quite realistic; see section 15.5 below.
However, such lattices may not be large enough to describe precisely

many of the interesting properties of the QGP. We need to describe two
different quark mass scales (u and d, and s) while maintaining chiral
symmetry in the light-quark sector, and treating an odd number of qu-
ark flavors (both staggered and Wilson quarks favor the presence of an
even number of flavors). This task has not been resolved completely, and
the properties of QGP we will discuss retain a systematic uncertainty.
Moreover, a many-body system such as QGP should have many collec-
tive modes of excitation. Given the size of the physical lattices studied,
collective oscillations with wave lengths greater than a few fermis are
not incorporated. Although this does not influence in a critical way the
properties of the equations of state, such long-range oscillations are often
carriers of flows, e.g., of heat. Therefore, the study of transport properties
of the QGP phase on the lattice is not yet possible.
The euclidian lattice is indeed ideal for simulating high-temperature

QCD since, in this case, there is a direct correspondence between the
imaginary time and temperature – the path-integral weight is, in fact,
the partition function with ONt = 1/T = β. The statistical-physics prop-
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erties are the operators which are fairly simple, e.g., the energy density
involves only one point in space–time. One has to remember that other
lattice studies of the hadron mass spectrum involve two point functions,
whereas weak-interaction matrix-element computations typically involve
three point functions since we have to create a hadron from the vacuum
at t = 0, act on the state with an operator at t = t1, and then annihilate
the hadron at t = t2.
Among the quantities which are studied in high-temperature QCD are

the Polyakov loop [273], the chiral condensate ψ̄ψ, Eq. (3.22), the energy
and pressure, screening lengths of color-singlet sources, the potential be-
tween static test quarks, and the response of the quark density to an
infinitesimal chemical potential. Of these, the Polyakov loop and ψ̄ψ are
the most intensively studied. ψ̄ψ is the order parameter for chiral sym-
metry breaking. It is nonzero under ordinary conditions T → 0, and we
expect it to vanish when chiral symmetry is restored for T > Tc. Loosely
speaking, the Polyakov loop has the value e−F/T , where F is the free en-
ergy of a static test quark. In pure SUc(3) gauge QCD, the Polyakov loop
is zero at low temperatures, indicating confinement of the test quark, and
nonzero at high temperature.
It is understood today that dynamic quarks make a big difference

in high-temperature QCD, and the ‘quenched’ approximation has been
found to be in general unsuitable. Looking at the energy of free quarks
and gluons (the Stefan–Boltzmann law, see section 4.6) even with nf = 2
flavors of light quarks, we find that the 16 = 8c × 2s gluon degrees of
freedom are dominated by 21 = 2f × 3c × 2s × 7

4 equivalent quark degrees
of freedom. The thermal properties of quarks dominate those of glu-
ons. Quenched quarks are known to exclude the particle–antiparticle-pair
fluctuations in the vacuum. Thus, if quenched quarks are used, some im-
portant physical processes are forbidden. For example, consider a quark–
antiquark pair connected by a string of color flux. With quenched quarks,
when the distance grows, we encounter an ever-growing linear potential –
if pair fluctuations are excluded, this string never breaks. In the presence
of dynamic quarks, when the string is long enough, there is enough energy
to create a quark–antiquark pair, which breaks the string, forming two
mesons.
It is easy to find, in the numerical Monte-Carlo integration, the tran-

sition (crossover) to some novel high-temperature behavior in a lattice
simulation, though it is very difficult to ascertain the nature of the tran-
sition. To vary the temperature with a fixed number of lattice spac-
ings in the time direction, the lattice spacing O is changed by varying
the coupling g. This works because g is the coupling constant defined
on the scale of the lattice spacing. In an asymptotically free theory,
the coupling decreases for shorter length scales. Therefore, decreasing
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Fig. 15.1. Deconfinement and restoration of chiral symmetry in two-flavor L-
QCD. Open circles: on the left-hand side the Polyakov loop L, which is the
order parameter for deconfinement in the pure gauge limit (mq → ∞); and on
the right-hand side quark chiral condensate ψ̄ψ, which is the order parameter
for chiral-symmetry breaking in the chiral limit (mq → 0), shown as a function
of the coupling β = 6/g2. Also shown are the corresponding susceptibilities
χL ∝

(
〈L2〉 − 〈L〉2

)
(left) and χm = ∂〈ψ̄ψ〉/∂m (right) which peak at the same

value of the coupling [159].

g, or increasing 6/g2 (6 = 2nc), makes O smaller and the temperature,
T = (NtO(g))

−1, higher. As the temperature is increased through the
crossover, ψ̄ψ drops and the Polyakov loop increases, see Fig. 15.1. The
Polyakov loop and ψ̄ψ change at the same temperature, indicating that
‘deconfinement’, and restoration of chiral symmetry are happening at the
same temperature.
Little is known with certainty about the nature of the crossover between

the confined (frozen) phase and the new phase suggested by Fig. 15.1. In
particular, we cannot yet be sure what kind of phase transition or trans-
formation is encountered, see Fig. 3.4 on page 54 and the related discus-
sion. It is fairly well established, from lattice simulations, that there is a
first-order phase transition in the pure gauge limit, and for three-massless
quarks. As a quark mass is lowered from infinity this transition disap-
pears, and there may be a continuous crossover from the low-temperature
regime to the high-temperature regime. But even if there is no phase
transition, the crossover is fairly sharp. This can be seen by considering
the inverse screening lengths for qq̄ sources with the quantum numbers
of the pion π and its opposite-parity partner σ. At high temperatures,
they become very close, with the remaining small difference being due to
the explicit breaking of symmetry originating from the quark mass. This
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and other quantities show that the high-temperature regime does indeed
have the expected characteristics of the QGP.
Only recently have calculations progressed far enough to lead to firm

results about properties of the QGP. To find the temperature of the
crossover in physical units, the lattice spacing must be determined by
computing some physical quantity, such as the ρ-meson or the nucleon
masses. The π mass is not a good choice of scale, since it can be made
arbitrarily small by making the quark mass small, as we have seen in sec-
tion 3.3. Though the value of the crossover temperature one finds is still
in doubt for real-life quarks, at present the opinion of experts we shall
discuss in the next section is biased toward a value of 160MeV [160], near
the Hagedorn temperature; see chapter 12.

15.5 A survey of selected lattice results

There are many lattice results related to QCD properties we study, ad-
dressing diverse questions such as hadronic masses, matrix elements, and
physical properties of hot QCD. Given the rapid development of the field
which promises to render any presentation quite rapidly obsolete, we fo-
cus our attention on ‘stable’ results that are most relevant in the context
of this book and, in particular, the study of equations of state of QGP.
We will not further discuss in this section the intricate extrapolations
(continuum limit, massless-quark limit) which form part of the process of
evaluation of the bare numerical results, and which we described above
in section 15.4.
The running of the gauge coupling constant has now been tested for

the case of two massless Wilson fermions [76]. The lattice results com-
pare very well with the renormalization-group result, as can be seen in
Fig. 15.2. These results are, at present, still mainly of academic interest
and are different in detail from Fig. 14.1, since, in the range αs < 0.4,
we actually have to include s, c, and b quarks, in order to compare with
experiment. On the other hand, the fact that the running is seen as ex-
pected in the theoretical evaluation of two-light-flavor QCD reassures us
regarding the validity of the findings we presented in Fig. 14.1.
The study of hadronic masses allows one to draw conclusions about

the input quark masses. The CP-PACS collaboration has recently com-
pleted an extensive evaluation using its dedicated (peak) 614-GFLOPS
(giga-floating-point-operations) computer [33]. The lattice action and
simulation parameters were chosen with a view to carrying out a pre-
cise extrapolation to the continuum limit, as well as scaling in the chiral
mq → 0 limit for dynamic up- and down-quark masses. However, the
strange quarks were considered in a quenched approximation, which en-
tails an ‘uncontrolled’ error.
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Fig. 15.2. Dots, lattice-gauge theory with two light fermions for αs(µ), com-
pared with the perturbative three-loop result (line); parameters are chosen such
that, for Λ = 1 GeV, αs(MZ) = 0.118; results of the ALPHA collaboration [76].

Evaluation of the masses of kaons and/or φ allows one to determine
the mass of the strange quark. The results found using dynamic u and
d quarks are mMS

s (2GeV) = 88+4−6 MeV (K input) and mMS
s (2GeV) =

90+5−11 MeV (φ input), which are about 25% lower than the values found
with quenched u and d quarks. The low value for the mass of the strange
quark is well within the accepted range; see table 1.1 on page 7. The
consistency of these two results is quite remarkable. Moreover, using the
mass of the K meson to fix the strange-quark mass, the difference from
experiment for the mass of the K∗ meson is 0.7+1.1−1.7%, and that for the φ

meson 1.3+1.8−2.5%. When the φ meson is used as input, the difference in
the mass of the K∗ meson is less than 1%, and that for the mass of the
K meson is 1.3± 5.3%. The masses of (multi)strange baryons are, within
much larger computational error, also in agreement with the experimental
values.
Should this relatively low mass for the strange quark be confirmed

when dynamic strange quarks are introduced, the speed of production of
strangeness at low temperatures T � Tc in QGP as perhaps formed at in-
termediate SPS energies would dramatically increase. Strangeness could
develop into a highly sensitive ‘low energy’ probe of formation of QGP,
even when the initial conditions reached are near to the critical tempera-
ture. In this context, it is interesting to note the steep rise and threshold
of the strangeness-excitation function shown in Fig. 1.5 on page 17.
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Fig. 15.3. The energy density of hadrons obtained with staggered fermions di-
vided by T 4, as a function of T/Tc. Stefan–Boltzmann limits of a non-interacting
gas of quark and gluons are indicated with arrows for each case considered.

In our context, an even more important recent lattice advance has been
the extensive study of 2, 2 + 1 and 3 flavors in hot QCD [159–161]. The
behavior of the energy density ε/T 4 is presented in Fig. 15.3 as a function
of temperature T/Tc, obtained with staggered fermions. The Stefan–
Boltzmann values expected for asymptotically (high-T ) free quarks and
gluons are shown by arrows to the right, coded to the shades of the three
results presented: two and three light flavors (up and down, respectively),
for which the quark mass is mq = 0.4T and a third case (dark line), in
which, in addition to the two light flavors, a heavier flavor ms = T is
introduced. The temperature scale is expressed in units of the critical
temperature Tc, as appropriate for each case (Tc changes with the num-
ber of flavors). The value of Tc is where one observes a rapid change
in the behavior of the quark condensate/susceptibility and, at the same
location, one sees also the onset of deconfinement in the Polyakov loop;
see Fig. 15.1.
We see that, around T/Tc = 1, the number of active degrees of freedom

rapidly rises, and the energy density attains as early as T = 1.2Tc the
behavior characteristic of an ideal gas of quarks and gluons, but with
a somewhat reduced number of active degrees of freedom. The energy
density in the deconfined phase can be well approximated by

εQGP � (11–12)T 4. (15.20)
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Fig. 15.4. The pressure of hadrons obtained with staggered fermions in units
of T 4 as a function of T .

The critical temperature Tc has the value

Tc
mρ

= 0.20± 0.01, Tc = 154± 8 MeV, for nf = 3, (15.21)

where, in addition to the statistical error quoted above, a systematic
error at a similar level, associated with uncertainties in the scaling be-
havior, is expected. In case of two flavors, the value Tc = 173 ± 8 MeV
is found. These results are consistent with calculations performed with
clover-shape-improved Wilson action (see section 15.3) by the CP-PACS
collaboration [32] for two flavors. In Fig. 15.4, we present the behavior of
P/T 4 as a function of temperature, with the temperature scale derived
from Eq. (15.21). The expected Stefan–Boltzmann limits are shown by
arrows. Apart from the cases of 2, 2 + 1 and 3 flavors, we see also the
‘pure gauge’ case with zero flavors.
The conclusion we draw from these results is that the lattice-QCD

evaluation has matured to the level of being able to offer information
directly relevant to the physical properties of hot QCD. These results,
in particular, show that there is a rapid phase transformation or even a
first-order phase transition at Tc = 163± 15 MeV.
We see, in Fig. 15.4, that the phase-transition temperature decreases

significantly with increasing number of flavors. However, the shapes of all
curves scale similarly. This is shown in Fig. 15.5, in which the temperature
scale is expressed in units of Tc and the pressure in terms of the ideal
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Fig. 15.5. The pressure of hadrons obtained with staggered fermions divided
by the appropriate Stefan–Boltzmann limit, as a function of T/Tc.

Stefan–Boltzmann pressure. The zero-flavor pure gauge case is fastest
growing toward the limiting value, but still at a considerably slower rate
than that for the energy density we have seen in Fig. 15.3.
An ideal massless relativistic gas should satisfy the relation ε−3P = 0,

Eq. (4.64). The difference in behavior, comparing Fig. 15.3 with Fig. 15.5,
must originate from the presence of variables with dimensioned scales. We
encountered two such (related) variables, the vacuum property B and the
parameter Λ controlling the magnitude of the running variables (αs and
mi). The deviations of pressure from the Stefan–Boltzmann ideal-gas
behavior seen in lattice results, in particular ε− 3P 
= 0, are in direct or
indirect fashion related to these quantities. We will quantify this in the
following section.
We note that, using the Gibbs–Duham relation, Eq. (10.26), we can

relate the change in the pressure, seen in Fig. 15.4, to the difference
ε− 3P . We generalize slightly the argument presented in Eqs. (4.62) and
(4.64). We consider the free-energy density

f = −T

V
lnZ(T, V ). (15.22)

P = −f for an infinite system. Moreover, the entropy density σ = ∂/∂Tf ,
see Eq. (10.6). We find, employing Eq. (10.26) at zero baryon density,

ε− 3P
T 4

= T
d

dT

(
P

T 4

)
. (15.23)
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As soon as we understand the gentle slope of pressure P in Fig. 15.4,
i.e., the right-hand side of Eq. (15.23), we will also understand the differ-
ence between the behaviors of energy and pressure, the left-hand side of
Eq. (15.23), noted on comparing Fig. 15.3 with Fig. 15.5.
We will show, in section 16.2, that this non-ideal-gas behavior can be

interpreted as resulting from perturbative quark–gluon interactions and
the presence of the latent heat of the vacuum B. An equivalent expla-
nation invoking the presence of quasi-particles with mass, and quantum
numbers of quarks and gluons, will also be considered.

16 Perturbative quark–gluon plasma

16.1 An interacting quark–gluon gas

As explained in section 14.1, the interactions between quarks and gluons
are contained in the QCD Lagrangian Eq. (13.79), improved by gauge-
fixing and FP-ghost terms Eq. (14.1). Strictly considered, the rules for
Feynman diagrams we presented in Eqs. (14.2)–(14.8) are applicable to
processes in perturbative vacuum, whereas to compute thermal proper-
ties of interacting quark and gluons, we are working in matter at finite
temperature T and chemical potential µ. The generalization required is
discussed in detail in the textbook by Kapusta [157].
A lot of effort in the past few decades has gone into the development of

the perturbative expansion of the partition function. The series expan-
sion, in terms of the QCD coupling constant g, has been carried out to or-
der [(g/(4π)]5 = (αs/π)5/2/32 [282]. This series expansion, which was de-
veloped using as reference the perturbative vacuum in empty space, does
not appear to lead to a convergent result for the range of temperatures of
interest to us [36]: the thermodynamic properties vary widely from order
to order, oscillating quite strongly around the Stefan–Boltzmann limit. It
has therefore been claimed that the perturbative QCD thermal expansion
has a zero-range convergence radius in αs.
Our following considerations will be limited to the lowest-order pertur-

bative term combined with the vacuum energy B and allow an excellent
reproduction of the key features of lattice results. It remains to be un-
derstood why this is the case. It is not uncommon to encounter in a
perturbative expansion a semi-convergent series. The issue then is how
to establish a workable scheme. It is, for example, possible that a differ-
ent scheme of perturbative approach, in which the QCD parameters (αs
and masses) are made nonperturbative functions of the medium using an
in-medium renormalization group, would yield a better converging series
in αs.
Considering the inconclusive and rapidly evolving landscape of thermal
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Fig. 16.1. Feynman diagrams contributing to the equation of state of the QGP
in order αs. Wavy lines represent gluons, solid lines represent quarks, and dashed
lines denote the ghost subtractions of non-physical degrees of freedom.

QCD, we will in this book not explore the subject beyond the study of the
consequences of the lowest-order thermal corrections. The lowest-order
contributions are obtained by evaluating the graphs shown in Fig. 16.1.
Evaluation of these diagrams at high temperature for massless quarks and
gluons is possible analytically [91]. For massless quarks and antiquarks
one finds the following two terms in the partition function:

lnZq(β, λ)=
gV

6π2
β−3
[(
1− 2αs

π

)(
1
4
ln4 λq +

π2

2
ln2 λq

)
+
(
1− 50αs

21π

)
7π4

60

]
, (16.1)

where g = nsncnf = 12, for ns = 2s+1 = 2, nc = 3, and nf = 3. The first
term in parentheses is c3, Eq. (4.71c), and the second is c2, Eq. (4.71b).
The quark fugacity λq is related to the baryon-number fugacity, as dis-
cussed in Eq. (11.3). The glue contribution is

lnZg(β, λ) =
8π2

45
β−3
(
1− 15αs

4π

)
, (16.2)

where the last term in parentheses is c1, Eq. (4.71a). Finally, the vacuum
contribution can be added in the form

lnZvac(β) = −βBV. (16.3)

This term insures that the energy density, inside the bag, is positive and
simultaneously that the pressure exerted on the surface of the bag is
negative. The total grand partition function is

lnZQGP = lnZq + lnZg + lnZvac. (16.4)

This equation was presented explicitly in section 4.6, Eq. (4.70). The re-
sulting perturbative interactions between quarks and gluons are obtained
by differentiating Eq. (16.4) with respect to V , β, and λq; see section 10.1.
Another important consequence of interactions in a conductive color

plasma is the change in location of poles of particle propagators. Rather
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than of particles, one than speaks of quasi-particles, in our instance ther-
mal quarks and gluons. The idea of quasi-particle thermal gluon and
thermal quark masses is rooted in the desire to characterize, in a simple
way, the behavior of quark and gluon correlators (propagators) evaluated
inside the color-conductive medium. The monograph by Kapusta [157]
offers an excellent early introduction to this still rapidly evolving subject,
and we will restate here a few results of immediate interest.
Allowing for interaction to lowest order in αs, a relation between the

energy E and momentum p = |/p| (a dispersion relation) of quasi-quarks is
fixed by the location of the pole of the quark propagator Eq. (14.2) [270]:

E2 = /p 2 + (mT
q )
2

[
E + p

2p
− E2 − p2

4p2
ln
(
E + p

E − p

)]
. (16.5)

For p → ∞, with E → p+m2/(2p), we recognize the quantity

(mT
q )
2 =

4π
3
αsT

2 (16.6)

as the mass parameter, establishing the relation with the momentum and
controlling the quasi-quark phase space.
Near to p = 0, the long-range oscillations described by Eq. (16.6) require

more attention. They have the energy

Eq(p → 0) =
m(/p → 0, ω;T )√

2
+
p

3

√
2p2

3m(/p → 0, ω;T )
+ · · ·. (16.7)

It is evident from the above that the ‘thermal’ mass of the quark in a
medium may be defined also by considering this zero-momentum limit
[270], rather than the high-momentum limit Eq. (16.6) adopted here.
However, the domain p → 0 is not important in the counting of states in
the phase space, considering the momentum-volume factor d3p = 4πp2 dp.
We conclude that, in the study of the phase space of light thermal quarks
in plasma, we should use for the light-quark energy the high momentum
limit

Eq �
√
p2 + (mT

q )2, q = u,d.

A similar discussion arises for the behavior of gluons. The collective
oscillations in the plasma with the quantum numbers of gluons behave,
at high momentum, according to

Eg �
√
p2 + (mT

g )2,

where

(mT
g )

2 = 2παsT 2
(
1 +

nf
6

)
, (16.8)
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whereas near p → 0

Eg(p → 0) =

√
2
3
mT
g . (16.9)

The thermal mass of gluons introduced in Eq. (16.8) is not the Debye
screening mass limiting the effective range of interactions in plasma. This
quantity corresponds to the static limit in the behavior of the longitudinal
gluon-like plasma oscillations [269]:

(mD
g )
2 = 4παsT 2

(
1 +

nf
6

)
. (16.10)

16.2 The quark–gluon liquid

We consider the properties of the QGP allowing for the lowest-order inter-
actions with a temperature-dependent interaction strength, and vacuum
pressure B. We refer to this model as the quark–gluon liquid [147]. Nat-
urally, we hope and expect to reproduce lattice-QCD results [160]. There
is considerable sensitivity to the value of αs(µ) and it is necessary to use
its precise form; see section 14.2.
Along with many other authors, we adopt the relation

µ � 2πT (16.11)

between the scale of the QCD coupling constant and the temperature of
the thermal bath. On the one hand, the right-hand side is close to the
average collision energy of two massless quanta at T , and on the other,
the relation Eq. (16.11) makes the thermal-QCD expansion least sensitive
to the renormalization scale [283].
In Fig. 16.2, the ‘experimental’ values are the numerical lattice simu-

lations [160], see section 15.5, for 2 (diamonds), 3 (triangles), and 2 +
1 (squares) flavors. The non-interacting Stefan–Boltzmann quark–gluon
gas, Eq. (4.70), with ci = 1 and with the bag constant

B = 0.19GeVfm−3 (16.12)

is shown as thin lines, dotted for the case of three flavors and dashed
for the case of two flavors. We see that the effect of vacuum pressure
disappears as T → 2Tc, and that the lattice results differ significantly
from those for the free gas, even at T = 4Tc.
To obtain agreement with the lattice results, it is necessary to intro-

duce perturbative coefficients ci, Eqs. (4.71a)–(4.71c), with numerically
computed αs(µ = 2πT ) [147]. The thick lines seen in Fig. 16.2 were ob-
tained allowing for αs(2πT ) shown in Fig. 14.3 with Tc = 160MeV. To
find the behavior near to T = Tc, the only ‘free’ choice we can make is
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Fig. 16.2. Lattice-QCD results [160] for P/T 4 at λq = 1 (for 2 (diamonds),
3 (triangles), and 2 + 1 (squares) flavors) compared with free quark–gluon gas
with bag pressure B = 0.19GeV fm−3, thin dotted (three flavors) and dashed
(two flavors) lines. Thick lines (agreeing with lattice data) are derived from the
quark–gluon liquid model: dotted line, 3 flavors; solid line, 2 + 1 flavors; and
dashed line, 2 flavors.

the value of B, and this is the reason why that particular number was
selected in Eq. (16.12). To achieve the agreement with lattice results seen
in Fig. 16.2, the relevant relation is

B
T 4c
= 2.2, B1/4 = 1.22Tc. (16.13)

The precise relationship between the scale µ and T has negligible impact
on the result shown, as long as the natural order of magnitude seen in
Eq. (16.11) is maintained. Within the simple model we introduced in
section 1.3 to describe the phase transition, Eq. (16.13) implies nearly the
correct number of degrees of freedom freezing in the transition, ∆g � 20.
It has been shown that it is also possible to reproduce the lattice results

using fine-tuned thermal masses (see table I in [204]). In Fig. 16.3, we
show the light-quark (solid thick line) and gluon (dashed thick line) ther-
mal masses which were used to fit the lattice data. The actual thermal
quark and gluon masses, defined in Eqs. (16.6) and (16.8), are also shown
in Fig. 16.3, as thin lines (dashed for gluons) obtained using αs(µ = 2πT ),
from Fig. 14.3. We conclude that the thermal masses required to de-
scribe the reduction of the number of degrees of freedom for T > 2Tc are
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Fig. 16.3. Thermal masses fitted to reproduce lattice-QCD results for nf = 2
[204], thick solid line for quarks, and thick dashed line for gluons. Thin lines,
perturbative QCD result for αs(µ = 2πT ).

just the perturbative QCD result. Importantly, this means that thermal
masses express, in a different way, the effect of perturbative quantum-
chromodynamics, and thus, for T > 2Tc, we have the option of using
Eq. (16.1), or the more complex thermal-mass approach.
However, in the temperature domain T < 2Tc, in which the vacuum

pressure B is relevant, see Fig. 16.2, the thermal mass required to fit lattice
results, as can be seen in Fig. 16.3, is quite different from the perturbative
QCD result, and we believe that the interpretation of lattice results in
this phenomenologically important domain is much less natural than the
quark–gluon-liquid approach. The introduction of thermal masses, in
order to describe the behavior seen in Fig. 15.5, is expressing just the
same fact that the pressure must be some function of the parameter Λ
which is controlling the magnitude of the running αs, and that additional
physics, such as the vacuum pressure B, is required in order to understand
the behavior of the QGP, for T < 2Tc.
We have seen that the suppression of the number of degrees of freedom,

seen in the QGP pressure can be well described by a first-order thermal
QCD result, either using thermal masses, or more directly using the first-
order corrections seen in Eqs. (16.1) and (16.2). However, to describe the
behavior for T → Tc, we should invoke nonperturbative properties of the
vacuum. As discussed at the end of section 15.5, once the variation of
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P/T 4 with T has been described, the deviation of lattice results from the
ideal-gas law, ε− 3P → 0, is also understood.

16.3 Finite baryon density

It is in the consideration of the finite baryon density that the issues re-
garding how to model the lattice results we raised in the last section are
most relevant. We believe that it is appropriate to obtain the properties
of QGP in a manner allowing the magnitude of the color interaction to
be controlled by the energy scale which depends on the baryon-chemical
potential. The dependence of the scale µ of αs on the fugacity we adopt
is [264]

µ = 2
√
(πT )2 + µ2q = 2πβ

−1
√
1 +

1
π2
ln2 λq. (16.14)

Like with Eq. (16.11), there is no exact mathematical rationale for this ex-
pression; it is entirely based on intuition and the particle-energy behavior
seen in studies of thermal QCD.
We note that Eq. (16.14) implies that

−β ∂αs(β, λq)
∂β

= µ
∂αs
∂µ

,

λq
∂αs(β, λq)

∂λq
=

lnλq
π2 + ln2 λq

µ
∂αs
∂µ

, (16.15)

T
∂αs(T, µq)

∂T
=

π2T 2

(πT )2 + µ2q
µ
∂αs
∂µ

.

The derivative of the QCD coupling constant can be expressed as, Eqs. (14.18)
and (14.21),

µ
∂αs
∂µ

= −b0α2s − b1α
3
s + · · · ≡ βpert2 . (16.16)

βpert2 is the beta-function of the renormalization group in the two-loop ap-
proximation, with bi defined in Eq. (14.23). β

pert
2 does not depend on the

renormalization scheme, and solutions of Eq. (16.16) differ from higher-
order results by less than the error introduced by the experimental un-
certainty in the measured value of αs(MZ); see section 14.3.
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We are now prepared to study physical properties of the quark–gluon
liquid. The energy density is obtained from Eq. (4.70):

εQGP = −∂lnZQGP(β, λ)
V ∂β

,

= 4B + 3PQGP − β
∂αs
∂β

3∑
i=1

∂ci
∂α

PQGP
∂ci

. (16.17)

We find that

εQGP − 3PQGP = A+ 4B, (16.18)

where

A = (b0α2s + b1α
3
s )
[
2π
3
T 4+

nf5π
18

T 4+
nf
π

(
µ2qT

2+
1
2π2

µ4q

)]
, (16.19)

and PQGP is stated explicitly in Eq. (4.70). We see in Eq. (16.18) the
interesting property

εQGP − 3PQGP
T 4

→ π

18
(12 + 5nf)(b0α2s + b1α

3
s ) + 4

B
T 4

, µq → 0, (16.20)

where the thermal interaction (the first term) is determining the behavior
at T � 2Tc, Fig. 16.2.
A convenient way to obtain the entropy and baryon density uses the

thermodynamic potential F ; see Eq. (4.70) and chapter 10. For the quark–
gluon liquid, we have

F(T, µq, V )
V

= −T

V
lnZ(β, λq, V )QGP = −PQGP(T, µq), (16.21)

with entropy density sQGP and baryon density ρb, which is a third of the
quark density:

sQGP = − dF
V dT

, ρb = −1
3

dF
V dµq

. (16.22)

The entropy density is

sQGP =
32π2

45
c1T

3 + nf

(
7π2

15
c2T

3+c3µ2qT
)
+A π2T

π2T 2 + µ2q
. (16.23)

The coefficients ci are defined in Eq. (4.71a) and are the same as in
Eqs. (16.1), (16.2), and (4.70). The baryon density is

ρb =
nf
3
c3

(
µqT

2 +
1
π2

µ3q

)
+
1
3
A µq
π2T 2 + µ2q

. (16.24)
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16.4 Properties of a quark–gluon liquid

The behavior of the quark–gluon liquid is of particular interest in the
study of

• initial conditions corresponding to an early instant in time during the
heavy-ion collision when the light quarks and gluons are in approximate
chemical equilibrium, but strange quarks have not yet been produced,
thus nf = 2; and

• properties of the fireball of quarks and gluons at the time of its breakup
near to T = Tc, at which strangeness is practically equilibrated, and
nf = 2.5.

Given the good agreement with the lattice results for vanishing chemical
potential, the following study offers a quantitative description of the rela-
tionship between the temperature and physical properties reached in the
deconfined phase, but with an unknown systematic error when properties
involving baryon density are physically relevant (e.g., in the AGS energy
range).
In the left-hand panels of Fig. 16.4, we show the physical properties at

fixed energy per baryon, in the range 2 GeV≤ E/b ≤ 15 GeV, as functions
of temperature, while in the right-hand panels we study the behavior at
fixed value of the (dimensionless) entropy per baryon 10 ≤ S/b ≤ 60. In
panels (a) and (b) of Fig. 16.4, as we step from line to line from left to
right, the energy per baryon is incremented by 1 GeV; in panels (d) and
(e) the entropy per baryon is incremented by 5 units; in panel (c) we step
from bottom to top incrementing by 1 GeV; and in panel (f) from bottom
to top by 5 entropy units. The light-dashed boundaries are obtained from
the conditions

• on energy density εq,g ≥ 0.5GeV fm−3 (excluding here the latent heat
of the vacuum B � 0.19GeV fm−3), and/or

• baryochemical potential, µb ≤ 1GeV.
We highlight the result for E/b = 8.5GeV by using a thick dashed line
on the left in Fig. 16.4, and that for S/b = 40 by using a thick solid line
on the right.
This systematic exploration should allow one to assess the behavior

of the quark–gluon liquid possibly created in collisions performed in the
energy range between those of the AGS and SPS accelerators, and com-
prising chemically equilibrated u and d quarks and gluons. The particle
multiplicity in the final state tells us that the entropy per baryon is at the
level of 40 units for the high-energy range of the SPS; see section 7.4. The
corresponding temperature which we read from panel (c) for E/b < 8.5
GeV is T < 280 MeV. Evaluation of properties of the final abundances of
particles, section 19.3, shows that it is easier to deposit baryon number
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Fig. 16.4. Left: lines corresponding to fixed energy per baryon E/b = 2 to
15 GeV in steps of 1 GeV: (a) baryo-chemical potential µb (highest E/b at the
bottom), (b) baryon density n/n0 in units of equilibrium nuclear density (highest
E/b at the bottom), and (c) S/b, the entropy per baryon (highest E/b at the
top). Right: lines corresponding to fixed entropy per baryon S/b = 10 to 60 in
steps of 5, from top to bottom: (d) µb, (e) n/n0, and (f) E/b; see the text for
further details.

than energy in the fireball, and, in general, the initial energy per baryon
is smaller than the collisional kinematic limit. Taking E/b � 7 GeV, we
obtain Tch � 220. Before the light-quark flavor has been equilibrated, the
temperature of gluons could be as high as Tth � 250 MeV, for the SPS
top energy.
We see in Fig. 16.4 panels (a) and (d) the appropriate ranges of the

baryo-chemical potential; and in panels (b) and (e) the baryon density in
units of equilibrium nuclear density, n0 = 0.16 fm−3. The dotted lines
in panels (c) and (d) show where Pq,g − B = 0: there, the entropy per
baryon at fixed energy per baryon reaches its maximum as a function
of temperature, and the energy per baryon at fixed entropy per baryon
reaches its minimum. In an equilibrium transition, the QGP transforms
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Fig. 16.5. The analog of Fig. 16.4 for the RHIC energy domain. Left, lines at
fixed energy per baryon E/b = 10 to 190GeV in steps of 20GeV. Right, lines at
fixed entropy per baryon S/b = 50 to 500 in steps of 50; see the text for more
details.

for T above this condition, since the ‘external’ hadron pressure needs to
be balanced. In an exploding system, the breakup occurs at T below this
condition, since the flow of the quark–gluon liquid adds to the pressure
working against the vacuum; see section 3.5.
In Fig. 16.5, a similar discussion of the RHIC physical conditions is

shown, following the same pattern as Fig. 16.4, except for the use of
logarithmic scales. On the left-hand side, the energy range is now 10
GeV ≤ E/b ≤ 190 GeV, and lines are in steps of 20GeV. On the right-
hand side, the specific entropy range is 50 ≤ S/b ≤ 500, in step of 50
units. The lines become denser toward higher energy or entropy. The
dotted lines in panels (c) and (f) indicate where the particle pressure is
balanced by the vacuum pressure.
In the RHIC run at

√
sNN = 130 GeV, the final hadron phase space at

central rapidity, the intrinsic local-rest-frame energy per baryon is E/b �
25 GeV, while the entropy content is S/b � 150, the uncertainties in both
values are of 10%–15%, compare with table 19.4 on page 367. The exact
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Fig. 16.6. The energy density as a function of temperature for a quark–gluon
liquid. Top, at fixed E/b; bottom, at fixed S/b; left for the SPS and right for
the RHIC energy domain. Limits are energy density ε = 0.5 GeV fm−3 and
baryo-chemical potential µb = 1GeV. Lines: left top for fixed E/b = 2 to 15
GeV in steps of 1 GeV; left bottom, at fixed S/b = 10 to 60 in steps of 5; right
top, at fixed E/b = 10 to 190 GeV in steps of 20 GeV; and right bottom, at fixed
S/b = 50 to 500 in steps of 50.

values of E/b and S/b depend on the way one accounts for the influence
on the yield analysis of unresolved (at the time of writing) weak decays
of hyperons and assumptions made about chemical equilibria. Despite
this substantial increase compared to the energy and entropy content
seen at the SPS, the value of Tch consistent with this result is only 30–
40 MeV higher than that at the SPS. For this reason, the increases in
the particle multiplicity we have discussed in section 9.5 are relatively
modest.
The rise of energy density with temperature at fixed E/b and S/b is

shown in Fig. 16.6, for the expected domain of parameters at the SPS
on the left and for the domain of RHIC parameters on the right; the
lines follow the same key as that used in Figs. 16.4 and 16.5. We see
the expected rise with T 4, but the narrow band of values associated with
baryon content is quite striking. In fact, in the right-hand panel the
different lines coalesce, energy density is effectively solely a function of T
for E/b > 10 GeV and S/b > 50.
These results indicate clearly how the presence of baryon-rich quark

matter possibly formed at lower collision energies augments the entropy
and energy content. At large baryon density these results depend strongly
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Fig. 16.7. The entropy density in chemically equilibrated QGP at λq = 1 as
a function of temperature: solid line, nf = 2; long-dashed line, nf = 2.5; and
short-dashed line, ‘pure glue’ nf = 0.

on the validity of the extrapolation made from µb = 0 of the quark–gluon
liquid and there is no way to estimate the associated systematic error
until lattice results of comparable quality for µb 
= 0 become available.
However, it would appear that at above E/b > 3 GeV, conditions suitable
for formation of deconfined state are present.
Entropy plays a very important role in the study of scaling one dimen-

sional hydrodynamic expansion, and the hadron yield in the final state
offers a reliable measure of the product σ0τ0, Eq. (7.27). In Fig. 16.7, the
entropy density σ is shown as a function of temperature. The solid line is
for the case of an equilibrated light-quark–glue system in the limit of van-
ishing chemical potential. We note that initially the entropy rises faster
than the asymptotic T 3 behavior, since the quantum chromodynamics
interactions weaken, and there is an increase in the effective number of
acting quark and gluon degrees of freedom. Thus, the drop in entropy
density on going toward the hadronization condition is considerable. In
order to preserve the entropy content in the fireball when the QGP fire-
ball expands, from T � 300 MeV toward 150 MeV, a volume growth by
a factor of nine must occur.
The ‘pure-glue’ case (short-dashed line) contains as expected about half

of the entropy when one makes a comparison at equal temperature. The
addition of strangeness expressed by increasing nf = 2 to 2.5 adds about
10% to the entropy content.



VI
Strangeness

17 Thermal production of flavor in a deconfined phase

17.1 The kinetic theory of chemical equilibration

Strangeness, and more generally heavy-flavor quarks, can be produced
either in the first interactions of colliding matter, or in the many ensuing
less-energetic collisions. The mass of the strange quark ms is comparable
in magnitude to the typical temperatures reached in heavy-ion interac-
tions, and the numerous ‘soft’ collisions of secondary partons dominate
the production of strangeness, and naturally, of the light flavors u and d.
The masses of charm and bottom quarks are well above typical tem-

peratures; these quarks are predominantly produced in the hard initial
scattering. This process remains today a topic of current intense study
both for the elementary and for the nuclear collisions [124]. We will not
discuss it further in this book.
At the time at which the strange flavor approaches chemical equi-

librium in soft collisions, the back reaction is also relevant. The quantum-
mechanical matrix element driving a two-body reaction must be, channel
by channel, the same for forward- and backward-going reactions. The
actual rates of reaction differ since there are usually considerable differ-
ences in statistical and phase-space factors. However, the forward and
backward reactions will balance when equilibrium yields of particles are
established. This principle of detailed balance can sometimes be used to
evaluate reaction rates.
The net change in yield of flavors f and f̄ is given by the difference

between the rates of production and annihilation. The evolution in the
density of heavy quarks in QGP can be described by the master equation

dNf(t)
d3x dt

=
dN(gg, qq̄→ f f̄)

d3x dt
− dN(f f̄ → gg, qq̄)

d3x dt
. (17.1)
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When locally at a point in space there is exact balance between the two
terms on the right-hand side of Eq. (17.1), chemical equilibrium has been
established, which, as we recall, is the state of maximum entropy; see
section 7.1.
Each of the terms in Eq. (17.1) expresses a change in number of particles

per unit of 4-volume and it is a Lorentz-invariant quantity. We take
advantage of this to write

∂µj
µ
f ≡ ∂ρf

∂t
+
∂/v ρf
∂/x

= ρ2g(t)〈σv〉gg→f f̄
p + ρq(t)ρq̄(t)〈σv〉qq̄→f f̄

p

− ρf(t)ρf̄(t)〈σv〉f f̄→gg,qq̄
p . (17.2)

The left-hand side describes the change in the local particle density in-
cluding the effect of flow; the right-hand side is another way to express
the change in number of particles in terms of individual reactions, as we
shall show, see Eq. (17.7).
The momentum-averaged cross section of reacting particles is

〈σvrel〉p ≡
1

1 + I12

∫
d3p1
∫
d3p2 σ12v12f(/p1)f(/p2)∫

d3p1
∫
d3p2 f(/p1)f(/p2)

. (17.3)

The factor 1/(1 + I12) is introduced to avoid double counting of indis-
tinguishable pairs of particles, I12 = 1 for an identical pair of bosons
(gluons, pions), otherwise I12 = 0. Some authors introduce this factor
into the kinetic equation Eq. (17.2). Considering that the cross section is
obtained as an average over all reaction channels, the implicit sums over
spin, color, and any other discrete quantum numbers can be combined in
the particle density,

ρ =
∫

d3p

(2π)3
f(/p) =

∫
d3p

(2π)3
∑

i=s,c,...

fi(/p). (17.4)

We have suppressed, in the above discussion, the dependence of the phase-
space distributions f(/p, /x, t) on the spatial coordinates, as well as their
evolution with time.
In general terms, we need to obtain f(/p, /x, t) for gluons and light qu-

arks from a solution of a transport master equation such as the Boltzmann
equation. However, this introduces a large uncertainty due to our great
ignorance of the early collision (quantum) dynamics. Moreover, a seven
dimensional evolution equation for f(/p, /x, t) cannot yet be handled with
the available computing power without simplifying assumptions invoking
spherical symmetry. Moreover, the uncertainty about the initial temper-
ature, initial yield of strangeness from pre-equilibrium reactions, and the
poorly known mass of the strange quark ms introduce significant uncer-



318 Strangeness

tainties into calculations of the yield of strangeness, and limit the need
for very precise methods.
We proceed to simplify by the use of two assumptions, which follow

from the discussion we presented in section 5.5.

• The kinetic (momentum-distribution) equilibrium is approached faster
than the chemical (abundance) equilibrium [23, 231, 246]. This allows
us to study only the chemical abundances, rather than the full momen-
tum distribution of the (strange) quark flavor.

• Gluons equilibrate chemically significantly faster than does strangeness
[276]. We consider the evolution of the population of strangeness only
after gluons have (nearly) reached chemical equilibrium.

In view of these assumptions, the phase-space distribution fs can be
characterized by a local temperature T (/x, t) of a (Boltzmann) equilibrium
distribution reached for t → ∞, f∞s , with normalization set by a phase-
space-occupancy factor:

fs(/p, /x; t) � γs(T )fTs (p), fTs (p) = e−
√
m2s+p

2/T , (17.5)

where fTs is the equilibrium Boltzmann momentum distribution. Equa-
tion (17.5) invokes in the momentum independence of γs the first assump-
tion. The factor γs allows the local density of strange quarks to evolve
independently of the local temperature.
Using the Boltzmann momentum distribution Eq. (17.5) in Eq. (17.3),

we are performing a thermal average of the cross section and relative
velocity, and the result is a thermally averaged cross section, a function
that depends on T instead of

√
s. Some books refer to this as thermal

reactivity; we will often call it the thermal cross section:

〈σvrel〉T ≡ 1
1 + I12

∫
d3p1
∫
d3p2 σ12v12f

T
1 (p)f

T
2 (p)∫

d3p1
∫
d3p2 fT1 (p)f

T
2 (p)

. (17.6)

This thermal cross section is dependent on T , and on the masses of re-
acting particles, and its physical dimension is volume per time. We will
often drop the subscripts T and rel, since the only average to which we
refer in a cross section is ‘thermal’, and, in this context, the velocity is
always relative.
The thermal reaction rate per unit time and volume, R12(T ), is ob-

tained as follows: consider that a single particle ‘1’ enters at velocity v12
a medium of particles ‘2’; the rate of reactions is 〈σvrel〉Tρ2. If per unit
volume there are N1 particles, i.e., we have a density ρ1, then

R12(T ) ≡ 〈σvrel〉Tρ1ρ2. (17.7)
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The densities ρ1 and ρ2 arise from the momentum integration of the Boltz-
mann distributions f1 and f2, Eq. (17.4), and contain the degeneracy fac-
tors g1 and g2. This rate Eq. (17.7) is Lorentz invariant, i.e., all observers
agree by how much the number of particles changes per (invariant) unit
volume in space–time.
The following evaluation of R12 applies to reactions occurring in con-

fined and deconfined matter. However, for almost all particles (except
pions) in the hadronic gas, it is sufficient to use the Boltzmann momen-
tum distribution function, since the phase-space cells are nearly empty,
while the density of particles arises from the numerous resonances en-
countered (see section 12.1). In QGP, we must in general use the Bose
and Fermi distributions, as appropriate, which will complicate the results
slightly.
We recall here the (Mandelstam) variables s, t, and u characterizing,

in an invariant way, the two-particle reaction 1 + 2→ 3 + 4,

s = (p1 + p2)2 = (p3 + p4)2, (17.8a)
t = (p1 − p3)2, (17.8b)
u = (p2 − p3)2, (17.8c)

s + t+ u =
4∑
i=1

m2
i , (17.8d)

where the 4-momenta pµ = (Ep, /p) are used with Ep =
√
/p2 +m2.

√
s is

as usual the total CM energy and t is the invariant generalization of the
scattering angle.
The cross section for reaction of two particles to give n final-state par-

ticles is computed according to

σ12v12E1E2 =
∫ n+2∏

i=3

d4pi δ(p2i −m2
i )Θ(p

0
i )

× δ4

(
p1 + p2 −

n+2∑
i=3

pi

)
|M|2. (17.9)

|M(s, t)|2 is the reaction-matrix element obtainable, for perturbative pro-
cesses, using the Feynman rules described in section 14.1. The relative
velocity of two collinear particles, which is used in the definition of the
cross section, is∗

v122E12E2 ≡ 2λ1/22 (s),

= 2
√
s− (m1 +m2)2

√
s− (m1 −m2)2. (17.10)

∗ λ
1/2
2 (s) has nothing to do with a fugacity.
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The invariant reaction rate, Eq. (17.7), thus is

R12 =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

f1 f2
1 + I12

σ12v12 × 2E1 × 2E2 (17.11)

=
g1g2
(2π)6

∫ ∞

sth

ds
2λ1/22 σ12
1 + I12

(∫
d3p1
2E1

d3p2
2E2

e−E1/T e−E2/T δ(s−(p1+p2)2)
)
,

where we have inserted a (dummy) integration over s. The lower limit
sth of the integration over s is the threshold for the reaction, usually
sth = (

∑
imi)2, the sum of masses of the final state created.

We are also interested in understanding at which values of
√
s the pro-

duction processes occur. We will evaluate the p1 and p2 momentum inte-
grals first, which will leave us with a final integral over

√
s in Eq. (17.11).

We can present the rate of production as an integral over the differential
rate dRi/ds, where i refers to the reaction channel considered:

R ≡
∑
i

∫ ∞

sth

ds
dRi
ds

≡
∑
i

∫ ∞

sth

ds σi(s)Pi(s). (17.12)

σi(s) is the cross section of the channel. The factor Pi(s), which has the
same dimension as the invariant rate R, is interpreted as the number of
collisions per unit volume and time, and corresponds to the expression
in the second line in Eq. (17.11), with the channel i corresponding to the
collision of particles {1, 2}.
In order to evaluate the p1 and p2 momentum integrals in Eq. (17.11), it

is convenient to introduce, for the Boltzmann distributions, the 4-vector
of temperature, Eq. (12.39), in the local restframe β = (1/T, 0) and to
write the (invariant) factor in large brackets in Eq. (17.11),

[· · ·]=
∫

d4p1 d
4p2 δ

4(p− p1− p2)δ0(p21−m2
1)δ0(p

2
2−m2

2)

×
∫

d4p e−β·pδ(p2− s), (17.13)

with δ0 being the δ-function restricted to positive roots of the argument
only (compare with Eq. (12.45)). A dummy integration over p = pA + pB
allows one to rearrange the terms in a way that separates the expres-
sion into the two factor integrals. The first is known as the two particle
invariant phase-space integral ‘IMS2’ [86]:∫

d4p1 d
4p2 δ

4(p− p1 − p2)δ0(p21 −m2
1)δ0(p

2
2 −m2

2) =
π

2

√
λ2
s

. (17.14)
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λ
1/2
2 (s) is as defined in Eq. (17.10). The second integral can be obtained
by evaluating Eq. (10.43), it appeared previously in Eq. (12.22):∫

d4pe−βpδ0(p2 − s) =
2π
β

√
sK1(β

√
s). (17.15)

The invariant reaction rate, Eq. (17.7), is

R12 =
g1g2
32π4

T

1 + I12

∫ ∞

sth

ds σ(s)
λ2(s)√

s
K1(

√
s/T ). (17.16)

So far, we have not addressed the quantum nature of colliding particles.
The difficult case is that of a pair of light quarks reacting at finite baryon
density, for which one of the distributions cannot be expanded. Since, in
this case, the mass of the light quark is negligible, one of the integrals
can be done analytically. The integral of interest, which is obtained after
performing the angular integrals in Eq. (17.11), is

K1(
√
s/T )→ 1

T
√
s

∫ ∞

0
dp1

∫ ∞

0
dp2Θ(4p1p2 − s)fq(p1)fq̄(p2), (17.17)

with (compare with Eqs. (10.34a) and (10.34b))

fq(p) =
1

γ−1q λ−1q ep/T + 1
, fq̄(p) =

1
γ−1q λqep/T + 1

.

Assuming that γq/λq < 1 (baryon-rich matter), we can expand the distri-
butions for antiquarks and obtain the generalization of K1 in Eq. (17.16):

K1(
√
s/T )→

∞∑
l=1

(−)l+1
γlq
lλlq

∫ ∞

0

dp1√
s

exp
(
−l s

4Tp1

)
γ−1q λ−1q ep1/T + 1

, (17.18)

which has to be evaluated numerically.
In the special case that all chemical factors are unity (or otherwise allow

the expansion), we expand Eq. (17.18) again to obtain

K1(
√
s/T )→

∞∑
l,n=1

(±)l+n√
s l

∫ ∞

0
dp1 exp

(
−l s

4Tp1
− np1

T

)
. (17.19)

We have allowed for Fermi and Bose distributions, recalling the expansion

1
eE/T ∓ 1

= ±
∞∑
n=1

(±)ne−nE/T .
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The upper sign in Eq. (17.19) is for bosons and the lower for fermions.
We now use∫ ∞

0
dx e−a/(4x)−bx =

√
a

b
K1(

√
ab), (17.20)

and obtain in the case γq = λq = 1 the generalization of K1 in Eq. (17.16):

K1(
√
s/T )→

∞∑
l,n=1

(±)l+nK1(
√
lns/T )√
ln

. (17.21)

We see how the powers of
√
s cancel out, leaving only the slowly converg-

ing pre-factor. It turns out that many terms in the sum of l and n are
required in order to arrive at a precise result.

17.2 Evolution toward chemical equilibrium in QGP

The conservation of current used in Eq. (17.2) applies to the laboratory
‘Eulerian’ formulation. This can also be written with reference to the in-
dividual particle dynamics in the so-called ‘Lagrangian’ description: con-
sider ρs as the inverse of the small volume available to each particle. Such
a volume is defined in the local frame of reference (subscript ‘l’) for which
the local flow vector vanishes, /v(/x, t)|local = 0. For the considered volume
δVl being occupied by a small number of particles δN (e.g., δN = 1), we
have

δNs ≡ ρs δVl. (17.22)

The left-hand side of Eq. (17.2) can be now written as

∂ρs
∂t
+
∂/v ρs
∂/x

≡ 1
δVl

dδNs
dt

=
dρs
dt
+ ρs

1
δVl

dδVl
dt

. (17.23)

Since δN and δVl dt are Lorentz-invariant quantities, the actual choice
of the frame of reference in which the right-hand side of Eq. (17.23) is
studied is irrelevant and, in particular, it can be considered in the local
rest frame. The last term in Eq. (17.23) describes the effect of volume
dilution due to the dynamic expansion of matter. The other term on the
right-hand side is then interpreted as the evolution of the local density in
proper time of the volume element.
We continue to use the first form of Eq. (17.23) and evaluate the lo-

cal change in number of particles. We introduce ρ∞s (T ) as the (local)
chemical-equilibrium abundance of strange quarks which arises at t → ∞,
thus ρs = γs(t)ρ∞s . We use the Boltzmann equilibrium abundance, sec-
tion 10.4,

δNs = δV γsρ
∞
s = [T

3 δV ]γs
3
π2

z2K2(z). z =
ms

T
, (17.24)
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In an entropy-conserving evolution, e.g., subject to (ideal) hydrodynamic
flow, section 6.2, the first factor on the right-hand side in Eq. (17.24) (in
square brackets) is a constant in time, δV T 3 = δV0 T

3
0 = constant. We

now substitute in Eq. (17.23) and obtain, using Eq. (10.54b),

∂ρs
∂t
+
∂/v ρs
∂/x

= Ṫ ρ∞s

(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
, (17.25)

where Ṫ = dT/dt. Only a part of the usual flow-dilution term is left, since
we implemented the adiabatic volume expansion, and study the evolution
of the phase-space occupancy in lieu of the particle density.
We include the collision term seen in Eq. (17.2) and two channels, the

fusion of gluons and light-quark–antiquark fusion into a pair of strange
(or equivalently charm) quarks:

Ṫ ρ∞s

(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
= γ2g(τ)R

gg→ss̄ + γq(τ)γq̄(τ)Rqq̄→ss̄

−γs(τ)γs̄(τ)(Rss̄→gg +Rss̄→qq̄). (17.26)

Similar equations can be formulated for the evolution of γg and γq. Knowl-
edge of the dynamics of the local temperature, along with the required
invariant rate of production R(T ), allows one to evaluate the dynamic
behavior of occupancy fugacities γi(t).
Since only weak interactions convert quark flavors, on the hadronic time

scale we have γs,q(τ) = γs̄,q̄(τ). Moreover, detailed balance, arising from
the time-reversal symmetry of the microscopic reactions, assures that the
invariant rates for forward/backward reactions are the same, specifically

R12→34 = R34→12, (17.27)

and thus

Ṫ ρ∞s

(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
= γ2g(τ)R

gg→ss̄

(
1− γ2s (τ)

γ2g(τ)

)
+ γ2q(τ)R

qq̄→ss̄

(
1− γ2s (τ)

γ2q(τ)

)
. (17.28)

When all γi → 1, the right-hand side vanishes; chemical equilibrium is
established.
In order to be able to evolve the population of (strange) quarks we need

to understand the population of gluons, i.e., γg. Several workers have
considered the glue approach to equilibrium in perturbative processes
such as gluon splitting, e.g., gg→ ggg [71, 252, 253, 275]. They find that,
in the thermal environment, there is not enough production of gluons
to reach chemical equilibrium. Accordingly, there are too few gluons to
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derive the approach to chemical equilibrium of light quarks, and, even
more so, of strange quarks. The initial conditions for such a full-kinetic-
evolution study are relatively unreliable, but can not alter this conclusion.
We pursue an entirely different point of view in this book, based on the
belief that strong multigluon processes gg → ng, n > 3 can equilibrate
the abundance of gluons faster [278]. Therefore, we assume that gluon
chemical equilibrium is reached rapidly, O(1 fm), on a scale not much
longer than the time required to reach thermal equilibrium. Our choice
of an initial condition for consideration of strange flavor equilibration is
γg = 1. In the study of evolution of strange (and charm) quarks we also
take γq = 1. A large error, in this last assumption, is without significance
for what follows, since gluons dominate the thermal production of strange
quarks.
Given the chemical equilibrium of gluons and light quarks, we obtain

the dynamic equation describing the evolution of the local phase-space
occupancy of strangeness (and, in analogy, charm),

2τsṪ
(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
= 1− γ2s . (17.29)

As discussed at the end of section 5.7, we introduce the relaxation time
τs of chemical (strangeness) equilibration as the ratio of the equilibrium
density that is being approached and the rate at which this occurs,

τs ≡
1
2

ρ∞s
(Rgg→ss̄ +Rqq̄→ss̄ + · · ·) . (17.30)

The factor 12 is introduced by convention, in order for the quantity τs(T )
to describe an exponential approach to equilibrium, Eq. (5.41).
One generally expects that γs → 1 monotonically as a function of time.

However, Eq. (17.29) allows the range γs > 1, for it incorporates the
physics of a rapidly expanding high yield of strangeness created in the
early stage at high T . At a high background temperature, the evolution
γs(t) → 1 produces a high yield of particles, which corresponds, at the
lower temperature established after expansion of the system, to γs > 1.
One finds that thermal annihilation of flavor cannot keep up with the
rapid evolution of a fireball of QGP, and an overabundance will generally
result. Annihilation is slow, since the density of strange and antistrange
quarks is about four times smaller than the density of gluons (an effect of
color and mass) and the rate of annihilation for strange quarks is 16 times
slower. With a relaxation time for the production of strangeness of 1.5–10
fm (depending on temperature), see Fig. 17.11 below, the relaxation time
for ss̄ annihilation is 20–150 fm, so practically all strangeness is preserved
on the time scale of 5 fm of a QGP fireball. For charm this argument
is much stronger, given the greater effect of mass. Once it has been
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Fig. 17.1. The statistical equilibrium densities of strange or antistrange quarks
with ms = 160MeV (solid line) and of charmed or anticharmed quarks with
mc = 1500MeV (dashed line), as functions of temperature T .

produced, heavy flavor has no time to annihilate and reequilibrate. This
is a very important feature that makes the yield of strangeness a ‘deep’
probe of the deconfined phase.
Said differently, the high abundance of strangeness (or charm) formed

in the high-temperature QGP stage over-populates the available phase
space at lower temperature, when the equilibration rate cannot keep up
with the cooling due to expansion. We will quantify this effect in more
detail in section 17.5. In the kinetic equation Eq. (17.29), this is seen
most clearly by considering the case T < ms. In this limit, 1/τs becomes
small, the dilution term (second term on the left-hand side in Eq. (17.29))
dominates the evolution of γs. For the massive charm quarks T 	 mc, so
expansion dilution can generate a very large phase-space overabundance,
compared with the equilibrium yields expected in hadronization.
To grasp the sensitivity of these remarks to the early QGP stage,

we look at the equilibrium densities of strange (ms = 160MeV) and
charmed (mc = 1500MeV) quarks, shown in Fig. 17.1. We note that, for
T � 250MeV, the equilibrium abundance of strangeness exceeds one s̄ qu-
ark for each fm3 of matter, and that charm reaches this for T ≥ 450MeV.
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Fig. 17.2. Leading order Feynman diagrams for production of ss̄ (and similarly
cc̄) by fusion of gluons and pairs of quarks (q = u,d).

Looking at charm, we note that, when the system expands and cools
rapidly from T = 450 to 150 MeV, the volume grows by less than a factor
of 70, see the entropy density in Fig. 16.7, while the equilibrium density
of charm declines by factor 10 000 and the charm saturation factor γc in-
creases by the factor 150, to preserve the yield of charm. This abundance
of charm is a product of the first interactions, not of thermal processes,
except possibly at the LHC in a very-high-T scenario.

17.3 Production cross sections for strangeness and charm

The production processes involving quark and gluon degrees of freedom
in QGP are

u + ū→ s + s̄, d + d̄→ s + s̄, (17.31a)
g + g→ s + s̄. (17.31b)

These three processes describing perturbative production of pairs of
strange quarks are represented to lowest order in Fig. 17.2, and have to
be summed incoherently. These lowest-order diagrams were studied in
the early eighties, for the quark process [68] and for the gluon process
[226], employing fixed values of αs = 0.6 and ms = 160–180MeV.
The evaluation of the lowest-order Feynman diagrams shown in Fig. 17.2

yields the cross sections [95]:

σqq̄→f f̄(s)=
8πα2s
27s

(
1+
2m2

f

s

)
w(s), w(s) =

√
1− 4m

2
f

s
, (17.32a)



17 Thermal production of flavor in a deconfined phase 327

Fig. 17.3. Production cross sections for strangeness in leading order: (a) for
αs = 0.6 and ms = 200MeV; (b) for running αs(

√
s) and ms(

√
s), with αs =

0.118. Solid lines, qq̄→ ss̄; dashed lines, gg→ ss̄.

σgg→f f̄(s)=
πα2s
3s

[(
1 +

4m2
f

s
+
m4
f

s2

)
ln
(
1 + w(s)
1− w(s)

)

−
(
7
4
+
31m2

f

4s

)
w(s)
]
. (17.32b)

Inspecting Fig. 17.3(a), we see that the magnitudes (up to 0.4mb) of both
types of reactions considered, quark fusion and gluon fusion, are similar.
At this stage, it is not immediately apparent that gluons dominate the
production of flavor.
The magnitude of the cross section of interest is normalized by αs. To

obtain Fig. 17.3(a), we took αs = 0.6. While the value seems reasonable, a
value of αs = 0.3 would lengthen the relaxation time of strangeness, τs ∝
α−2
s , by a factor of four, nearly beyond the expected life span of the QGP
fireball. Thus, we must improve the determination of αs. There are two
natural ways to do this; the easier one is to adopt the functional αs(T ) seen
in Fig. 14.3. However, in such an approach, two-body collisions occurring
at very different

√
s but in a thermal bath at the same temperature T are

evaluated with the same value of αs. Only for the thermal production of
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Fig. 17.4. Running masses for αs = 0.118: (a) the mass of the strange quark
ms, for which the dot indicates the production thresholds for pairs of strange
quarks for ms(MZ) = 90 MeV; (b) the mass of the charmed quark mc, for
which the cross indicates production thresholds for pairs of charmed quarks for
mc(MZ) = 700 MeV.

charm does this approach turn out to yield the same result as does the
more complex, but more precise, consideration of an appropriate value
of αs for each collision, governed by the applicable αs(µ), Fig. 14.1, with
µ �

√
s.

This second method, in which for each collision in the thermal bath
an appropriate coupling strength is selected, is necessary for studying
the production of strangeness in order to account for the growth of the
cross section for soft scattering. The increase of cross section in soft
collisions is, however, largely balanced by the concurrent suppression of
the cross section due to the increase in mass of the strange quark ms

on the soft momentum scale. We adopt the running-mass and coupling-
constant results presented in chapter 14, for αs(MZ) = 0.118. In Fig. 17.4,
the running masses of the strange and charm quarks mi(µ), i = s, c, for
ms(MZ) = 90MeV and mc(MZ) = 700MeV, derived from Fig. 14.1, are
shown. These values imply that ms(1GeV) � 200MeV and mc(1GeV) �
1.55 GeV.
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µ

Fig. 17.5. Cross sections for leading order production of charm for the running
αs and running mass of the charmed quark with mc(MZ) = 0.7GeV: the solid
line is for fusion of pairs of light quarks, whereas the dashed line is for gg→ cc̄.

The energy scale of greatest interest for studying the production of
strangeness is certainly µ = 2πT � 1–2 GeV, which is precisely the region
of rapid change of the value of ms. Below

√
s = 1GeV, the mass of the

strange quark increases rapidly and the threshold for producing pairs
of strange quarks increases to above 2ms(1GeV). Half of the threshold
energy is indicated by the black dot in Fig. 17.4(a). The pair-production
threshold is, section 14.4,

2mth
s (µ = 2m

th
s ) = 611MeV, ms(MZ) = 90MeV, αs(MZ) = 0.118.

For charm, the running-mass effect plays differently, since the naive
threshold for production of charmed quarks 2mc(2GeV) > 2GeV. The
running of the mass has the effect of reducing the effective threshold. For
mc(MZ) = 700MeV, the production threshold is found, rather than at
3.1GeV, at

2mth
c (µ = 2m

th
c ) = 2.3GeV, mc(MZ) = 700MeV, αs(MZ) = 0.118.

The cross, in Fig. 17.4(b), indicates the position of half of the threshold
energy. Even this small reduction in threshold enhances the production
of charm at low energy and especially so in the thermal environment we
are considering.
In Fig. 17.3(b), we have presented the cross sections for production

of strangeness Eqs. (17.32a) and (17.32b), evaluated using the running
QCD parameters obtained in sections 14.3 and 14.4, identifying µ →

√
s.
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On comparing this with the ‘conventional’ result seen in Fig. 17.3(a), a
greater threshold and more rapid decline of the cross sections are noted.
Near

√
s = 1 GeV, in both cases, the fusion of gluons (dashed line)

dominates, even though at lower energy the quark-pair fusion reaction
(solid line) has a stronger peak. Similarly, for production of charm, we see
in Fig. 17.5 the cross sections for fusion of gluons (dashed line) and pairs
of quarks (solid line), for production cross sections which were computed
for the running αs(MZ) = 0.118 and running charmed-quark mass with
mc(MZ) = 700 MeV. These cross sections are a factor 100 smaller than
those for strangeness, at the level 1–2 µb. This is due to the fact that
an eight-fold greater

√
s is required, given that σ ∝ 1/s, and a reduction

in the effective coupling strength. The smallness of the cross section
for production of charm is the reason why thermal production of charm
becomes relevant only at T → 1 GeV. Inspecting Fig. 17.5, we can also
clearly understand the great sensitivity of the direct production of charm
in non-thermal parton collisions to the value, and running, of the mass of
the charmed quark: using a production threshold at 3 GeV, we cut 40%
of the available strength of the cross section.
The use of scale dependent QCD parameters, αs and mf , f = s, c, with

µ ∝
√
s amounts to a re-summation of many QCD diagrams comprising

vertex, and self energy corrections. A remaining shortcoming of thermal
production evaluation is that up to day, there has not been a study of the
next to leading order final state accompanying gluon emission in thermal
processes, e.g., gg→ ss̄ + g. In direct parton induced reactions, this next
to leading order effect enhances the production rate by a factor K = 1.5–
3. This causes a corresponding increase in the rate of production, and
a reduction in the thermally computed chemical equilibration time of
strangeness and charm.

17.4 Thermal production of flavor

The thermal production processes occur over a wide range of
√
s. There

are two factors determining this. Aside from the cross section, the collision
frequency is the determining factor. We have introduced the thermal col-
lision frequency per unit time and volume Pi(s) in channel i, Eq. (17.12).
Employing the result Eq. (17.16) and the discussion of quantum correc-
tions which followed, we obtain, setting g1 = g2 = 16, I12 = 1 and λ2 = s2

(for massless gluons)

Pg =
4Ts3/2

π4

∞∑
l,n=1

1√
nl
K1

(√
nl s

T

)
. (17.33)
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Fig. 17.6. The collision distribution functions as functions of
√
s: (a) for quarks

and (b) for gluons, computed for temperature T = 260MeV, λq = 1.5 (dotted
lines, amplified by a factor of eight); T = 320MeV, λq = 1.6 (dashed lines,
amplified by a factor of four); and T = 500MeV, λq = 1.05 (solid lines). In all
cases γq, γg = 1.

For quark processes, using Eq. (17.18) for γq/λq < 1, and setting g1 =
g2 = 6, I12 = 0 and λ2 = s2 (for massless quarks), and taking the result
twice to allow for the two quark flavors which can undergo incoherent
reactions,

Pq|µq=0 =
9Ts3/2

4π4

∞∑
l=1

(−)l+1
γlq
lλlq

∫ ∞

0

dp1√
s

exp
(
−l s

4Tp1

)
γ−1q λ−1q ep1/T + 1

. (17.34)

In Fig. 17.6, the distribution functions for the collision frequency
Eqs. (17.33) and (17.34) are presented as functions of

√
s for gluons (b),

and a qq̄ pair of light quarks (a). The temperatures correspond to a range
of possible initial fireball temperatures at the SPS and RHIC: T = 260
MeV (dotted, λq = 1.5), 320 MeV (dashed, λq = 1.6), and 500 MeV
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Fig. 17.7. The differential thermal production rate for strangeness dRs/ds, with
T = 250, λq = 1.5 for gluons (dashed line), and qq̄→ ss̄ (solid line, includes two
interacting flavors), for the running αs(MZ) = 0.118 and running mass of the
strange quark ms(MZ) = 90 MeV ± 20% (thin lines).

(solid λq = 1.05). Gluons and light quarks are assumed to be in chemical
equilibrium, γq, γg = 1.
There is a shift in the maximum of the distribution of Pq,g to higher

√
s

with increasing temperature. The collision frequency for gluons is about
five times greater, Pg � 5Pq, than that for a pair of quarks, and this is
the origin of the glue dominance of thermal production of strangeness.
Moreover, the peak in the gluon collision frequency Pg is more coincident
with the peak in the cross section, as a function of

√
s, Fig. 17.3(b). This

further amplifies the gluon dominance. This combined enhancement effect
can be seen in the thermal differential production rates,

dRf
ds

=
∑
i=q,g

σif(s)Pi(s), f = s, c, (17.35)

shown for thermal production of strangeness, in Fig. 17.7 for T = 250
MeV, and for thermal production of charm, in Fig. 17.8 for T = 500
MeV. Gluons (dashed lines) dominate quark-pair processes (solid lines),
which are contributing at the level of 15%. The uncertainty in mass of the
strange quark has significant impact; thin lines bordering thick lines show
the effect of 20% variation in the value of the quark mass considered.
Since formation of charm occurs in the domain T 	 mc, near to the

threshold, where the cross section for fusion of a pair of quarks domi-
nates gluon fusion, the gluon dominance of the production rate is not
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Fig. 17.8. The differential thermal production rate for charm dRc/ds, with T
= 500MeV, λq = 1 for gluons (dashed lines) and qq̄ → cc̄ (solid line, includes
three interacting flavors), for the running αs(MZ) = 0.118 and running mass of
the charmed quark mc(MZ) = 700 MeV ± 7% (thin lines).

as pronounced as it is for strangeness. Only for T ≥ 500MeV does the
glue fusion pick up strength and clearly dominate the thermal production
of charm. Yet, even at T = 500 MeV, the rates for charm are a factor
100 smaller than those for strangeness at T = 250 MeV, and thermal
production of charm is expected to be irrelevant at the RHIC.
The differential production rate can easily be integrated, and we show

the results in Fig. 17.9 for strangeness, and in Fig. 17.10 for charm. In
Fig. 17.9, we see that the early results (dotted line) [226] are found within
the uncertainty in mass of the strange quark (a smaller mass leads to a
bigger value of R). A yet greater value of R should result after the K-
factor has been introduced, describing the next-to-leading-order effects.
The rate of production of strangeness per unit volume and time is at the
level of unity at temperatures reached at the RHIC, and production of
strangeness is very abundant.
The thermal production of charm could be significant at the LHC rel-

ative to the direct first-parton-collision production, if temperatures well
above T = 500 MeV are reached. We see, in Fig. 17.10, that the produc-
tion rate for charm changes by six orders of magnitude as the temperature
varies between 200 and 600MeV. This sensitivity to the initial tempera-
ture is due to the exponential suppression with m/T > 1. In turn, this
implies that the thermal production of charm can become important at
sufficiently high temperature.
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Fig. 17.9. Thermal production rates for strangeness Rs in QGP (thick solid
line), calculated for λq = 1.5, αs(MZ) = 0.118, and ms(MZ) = 90 MeV, as a
function of temperature. Chain lines show the effect of variation of the mass of
the strange quark by 20%. The dotted line shows comparison results for fixed
αs = 0.6 and ms = 200MeV.

Fig. 17.10. Thermal production rates for charm Rc in QGP (solid line), calcu-
lated for λq = 1.05, αs(MZ) = 0.118, and mc(MZ) = 0.7GeV, as a function of
temperature. Chain lines show the effect of variation of mass of the charmed
quark by 7%. Dotted lines are comparison results for fixed αs = 0.35 and
mc = 0.9GeV (upper) and αs = 0.4 and mc = 1.5GeV (lower).
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Insertion of the rates Ri into Eq. (17.30) allows us to obtain the time
constants for chemical relaxation τs and τc. It should be stressed that,
in an actual kinetic evaluation of the production of flavor, the relaxation
time τf enters only when we relate the actual yield of flavor to the ex-
pected yield ρ∞f . Namely, the back reaction, f f̄ → gg, qq̄, is driven by the
actual density of strangeness, whereas the forward rate, ignoring Pauli
blocking, is not affected by the equilibrium yield at all. Which mf is used
in Eq. (17.30) to define ρ∞f is physically irrelevant, as long as the same
values of mf and ρ∞f are used both in the definition of τf , Eq. (17.30), and
in γf(t) = ρf/ρ

∞
f . In Fig. 17.11, we see τs evaluated with ms(1GeV) = 200

MeV. The range of the assumed 20% uncertainty in ms(MZ) is indicated
by the hatched areas. The initial predictions obtained 20 years ago [226]
at fixed values αs = 0.6 and ms = 200 MeV (the dotted line in Fig. 17.11)
are well within the band of values related to the uncertainty in mass of
the strange quark. The approximate formula obtained in [226],

τf =
1.6

α2sγ
2
gT

mf/T emf/T

[1 + (99/56)T/mf + · · ·] , (17.36)

allows a quick estimate of the expected relaxation time in all the en-
vironments discussed in this subsection. We have added the pre-factor
γ−2g relevant in case the dominant source of heavy flavor, gluons, is not
in chemical equilibrium. We see that the equilibration time lengthens
accordingly.
Thermal nonperturbative effects on the relaxation of strangeness were

studied by introducing thermal, temperature-dependent, particle masses
[70]. After the new production rates, including the now possible gluon de-
cay, were added up, the total rate of production of strangeness was found
to be little changed compared with the free-space rate. This finding was
challenged [34], but a further reevaluation [66] confirmed that the rates
obtained with perturbative glue-fusion processes are describing precisely
the rates of production of strangeness in QGP, for the relevant tempera-
ture range T > 200 MeV. We can thus assume today that the ‘prototype’
strangeness-production processes seen in Fig. 17.2, re-summed using the
renormalization-group method, are dominating the rates of production of
strangeness in QGP.
The poor knowledge about the mass of the strange quark makes it

possible that the actual relaxation time for strangeness is even smaller.
In quenched-lattice calculations, see section 15.5, a much smaller value
ms(MZ) � 50 MeV is found. The thin-dotted line in Fig. 17.11 gives the
corresponding result for ms(MZ) = 50 MeV. We see that the relaxation
time is already small enough to allow chemical equilibration at T < 200
MeV. Moreover, next-to-leading-order effects (the K-factor) should fur-
ther reduce the chemical relaxation constant.
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Fig. 17.11. The QGP chemical relaxation time for strangeness τs, for αs(MZ) =
0.118 with ms(MZ) = 90 MeV and ρ∞s (ms � 200MeV) (thick line). Hatched
areas show the effect of variation of the mass of the strange quark by 20%. The
fat-dotted line shows comparison results for fixed αs = 0.6 and ms = 200MeV.
The thin-dotted line shows the result for ms(MZ) = 50 MeV.

While precise evaluation of the production of strangeness at tempera-
tures as low as Tc � 160 MeV is not reliable within the scheme we have
presented, it is highly probable that the combined effect of lowms and the
K-factor would ensure that near-chemical equilibrium for strangeness can
develop as soon as the QGP phase can be formed. As a result, the stran-
geness energy excitation function, seen in Fig. 1.5 on page 17, can then
be interpreted as due to the onset of deconfinement already in collisions
below SPS energies. We see that, despite 20 years’ work on strangeness,
we still have many new, interesting insights to gain.
In Fig. 17.12, the chemical relaxation time for charm is shown in the ex-

tended interval through T = 1000 MeV. Since charm is considerably more
massive than strangeness, there is less uncertainty in the extrapolation of
the running QCD coupling constant. There is also less relative uncertainty
in the value of the mass of the charmed quark, shown by the hatched area.
We also see (dotted lines) the results for fixed mc and αs with parameters
selected to border high- and low-T limits of the results presented. In the
high-T limit, the choice (upper dotted line) mc = 1.5GeV, αs = 0.4 is
appropriate, whereas to follow the result at small T (lower dotted line),
we take a much smaller mass mc = 0.9GeV, with αs = 0.35.
The important result, see Fig. 17.12, is that, above T = 700 MeV,

the relaxation time drops below to 10 fm; the curves flatten. At gluon
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Fig. 17.12. Solid lines show the thermal relaxation constant for charm in QGP,
calculated for running αs(MZ) = 0.118, mc(MZ) = 0.7GeV and ρ∞c (mc �
1.5GeV). Lower dotted line, for fixed mc = 0.9GeV and αs = 0.35; upper
dotted line, for fixed mc = 1.5GeV and αs = 0.4. The hatched area shows the
effect of variation mc(MZ) = 0.7 GeV ± 7%.

collision energies of several GeV, it is quite natural to expect that the
next-to-leading-order effects enhance the cross section for production of
charm by a factor of two, and this reevaluated relaxation time would
correspond to a true value of a few fermis only. At this juncture in time,
it is quite impossible to be sure how important the thermal component
is in the production of charm at the LHC. On the other hand, even the
first parton collisions are expected to produce 200 ± 50% cc̄ pairs, and
thus, in one way or another, charm certainly will be the novel-physics
frontier at LHC energies, replacing strangeness as the flavor signature of
new physics.

17.5 Equilibration of strangeness at the RHIC and SPS

Given the relaxation constant τs, we evaluate the thermal yield of stran-
geness in the QGP which arises on integrating the kinetic equation
Eq. (17.29). Since this requires as input initial conditions the temporal
evolution of the fireball, results are somewhat model-dependent. Indeed,
there is considerable difference of opinion among groups regarding the
well-studied RHIC system [71, 221, 252, 253, 275], since the experimental
data which would narrow down the models is only now being obtained.
The most important issue on which the various groups differ is the directly
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(or indirectly) assumed gluon content. In this book, we assume rapid
chemical equilibration of gluons, which is not reached in studies relying
on kinetic evolution by implementing the lowest-order gg → ggg gluon
fragmentation.
For the RHIC conditions, we present a qualitative model with a cylin-

drical longitudinal flow, and transverse expansion [221]. We assume that
the transverse flow of matter occurs at the velocity of sound for relativis-
tic matter v⊥ � c/

√
3 = 0.58c. For a purely longitudinal expansion, the

local entropy density scales according to S ∝ T 3 ∝ 1/τ ; see Eqs. (6.35)
and (7.22). The transverse flow of matter accelerates the drop in entropy
density. To model this behavior without too great a numerical effort, con-
sidering the other uncertainties, the following temporal-evolution function
of the temperature was proposed:

T (τ) = T0

(
1

(1 + 2τc/d)(1 + τv⊥/R⊥)2

)1/3
. (17.37)

Considering various values of T0, the temperature at which the gluon
equilibrium is reached, the longitudinal dimension is scaled according to

d(T0) = (0.5GeV/T0)3 × 1.5 fm. (17.38)

This adjustment of the initial volume V0 assures that the different evolu-
tion cases refer to a fireball with a similar entropy content. The following
results are thus a study of one and the same collision system, and the
curves reflect the uncertainty associated with unknown initial conditions
of a fireball of QGP with identical, (but large by current standards) en-
tropy content.
The numerical integration of Eq. (17.29) is started at τ0 = 1 fm/c, the

time at which thermal initial conditions are reached. A range of initial
temperatures 300 MeV ≤ T0 ≤ 600 MeV, varying in steps of 50 MeV,
is considered. Since the initial p–p collisions also produce strangeness,
to estimate the initial abundance a common initial value γs(T0) = 0.15
is used. For T0 = 0.5GeV, the thickness of the initial collision region
is d(T0 = 0.5)/2 = 0.75 fm. The initial transverse dimension in nearly
central Au–Au collisions is taken to be R⊥ = 4.5 fm. The initial volume
of QGP is 190 fm3, which, at the temperature of T0 = 0.5GeV, implies,
according to results seen in Fig. 16.7, a total entropy content of S =
38 000. We divide this by the specific entropy content per hadron in the
final state, S/N = 4; see section 10.6. We see that the primary final-
state hadron multiplicity has implicitly been assumed to be 9500. This
is somewhat above results seen even during the RHIC run at

√
sN = 200

GeV, for which we estimate, for the 3% most central events, a total hadron
multiplicity, after resonance cascading, of 8000.
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Fig. 17.13. The evolution of QGP phase-space occupancy for strangeness γs:
(a) as a function of time and (b) as a function of temperature for ms(1GeV) =
200MeV; see the text for details.

The evolution with time in the plasma phase is followed up to the
breakup of the QGP at a temperature TRHICf � 150 ± 5 MeV. The nu-
merical solution of Eq. (17.29) for γs is shown as a function both of time
t, in Fig. 17.13(a), and of temperature T , in Fig. 17.13(b). This evolu-
tion is physically meaningful until it reaches the QGP breakup condition.
Since the results for higher temperatures are also displayed, the reader
who prefers hadronization at T = 170 ± 5 MeV can easily draw his own
conclusions.
We see in Fig. 17.13 the following phenomena.

• A steep rise at early times, showing actual production of strangeness,
which is followed by a dilution-driven increase of γs near the breakup
temperature.

• Widely different initial conditions (but with similar initial entropy con-
tents) lead to rather similar chemical conditions at chemical freeze-out
of strangeness.

• Despite the use of a high mass of ms = 200 MeV, we find that strange-
ness nearly equilibrates chemically, and that the dilution effect allows in
certain cases a small over-population of the strange-quark phase space
even in the strangeness-dense QGP.

• For a wide range of initial conditions and final freeze-out temperature
a narrow band of final result is seen, 1.10 > γs(Tf) > 0.9.

Since strangeness is more easily made in the ‘hot’ era in glue–glue inter-
actions, we can estimate that, if the abundance of glue had been at the
time 70% chemically equilibrated, then γs � 0.5. This high sensitivity to
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the glue density is at the origin of the claim that measuring the yield of
strangeness probes the presence and abundance of glue, which is a specific
property of QGP.
In the model calculations presented, the fireball begins to expand in

the transverse direction instantly at the full velocity. For this reason,
the initial drop in temperature is very rapid. This defect also makes the
transverse size at the end of the expansion too large, R⊥ � R0+tf/

√
3 � 9

fm, compared with the results of HBT analysis, Fig. 9.11. This can easily
be fixed by introducing a more refined model of the transverse velocity,
which needs time to build up. The yield of strangeness may slightly
increase in such a refinement, since the fireball will spend more time near
to the high initial temperature.
The RHIC results presented are typical for all collision systems. In the

top SPS energy range, the initial temperature reached is certainly less (by
10%–20%) than that in the RHIC 130-GeV run, and the baryon number in
the fireball is considerably greater; however, the latter difference matters
little for production of strangeness, which is driven by gluons. A model
similar to the above yields γQGPs � 0.6–0.7, the upper index reminds
us that in this section the strangeness occupancy factor γs refers to the
property of the deconfined phase. The experimental observable directly
related to γQGPs is the total yield of strangeness per participating baryon.
We will return to discuss the significance of these results in section 19.4.

18 The strangeness background

18.1 The suppression of strange hadrons

Since the matter around us does not contain valence strange quarks, all
strange hadrons produced must contain newly made strange and antis-
trange quarks. If strangeness is to be used as a diagnostic tool for inves-
tigating QGP, we need to understand this background rate of production
of strange hadrons. In that context, we are interested in measuring how
often, compared with pairs of light quarks, strange quarks are made. One
defines for this purpose the strangeness-suppression factor†

Ws =
2〈ss̄〉

〈uū〉+ 〈dd̄〉
. (18.1)

In Ws, all newly made ss̄, uū, and dd̄ quark pairs are counted.
If strangeness were to be as easily produced as light u and d quarks,

we would find Ws → 1. To obtain the experimental value for Ws, a care-
ful study of produced hadron yields is required [277]. Results shown in

† We chose Ws in lieu of the usual symbol λs, which clashes with the strangeness
fugacity.
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Fig. 18.1 were obtained using a semi-theoretical method [61], in which
numerous particle yields are described within the framework of a statisti-
cal model, and the computed hadron yields are analyzed in terms of the
Wróblewski procedure [277].
We see in Fig. 18.1 that, in elementary p–p, p–p̄, and e+–e− collisions,

the value Ws � 0.22 is obtained. In order to estimate the possible influ-
ence of the annihilation process on p–p̄ reactions, two values of Ws are
shown per energy, calculated with initial valence quarks and antiquarks
(lower points) and without (upper points). For e+–e− interactions, the
leading s quarks in e+e− → ss̄ have been subtracted [61]. Strangeness is
thus relatively strongly suppressed. On the other hand, we also see that,
in nuclear A–A′ collisions, Ws more than doubles compared with that in
p–p interactions considered at the same energy.
To explain the two-fold increase in yield of strangeness a kinetic model

of particle production requires a shift toward production of strangeness
in all particle-formation processes. In other words, for modeling the en-
hanced yields of strangeness within a variety of approaches, see section 6.1,
in each model a new reaction mechanism that favors production of stran-
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geness must be introduced. Even at this relatively elementary level of
counting abundances of hadrons, new physics is evident. In a model with
the deconfined phase this new reaction mechanism is due to the presence
of mobile gluons, which, as we have seen, are most effective at making
pairs of strange quarks. Moreover, because the conditions created in the
QGP become more extreme with increasing collision energy, e.g., the ini-
tial temperature exceeding substantially the mass of the strange quark,
we expect an increase in Ws.
Several among the cascade models we listed in section 6.1 have been

tuned to produce not only enough strangeness, but also the observed
antinucleons and Λ. However, once this has been done, these hadronic
models predict wrong abundances of the rarely produced particles such as
Ξ and Ω. We are not aware of any kinetic hadron model with or without
‘new physics’ that is capable of reproducing the pattern of production
of rare hadrons, along with the enhancement in production of strange-
ness and hadron multiplicity. Moreover, if rapidity spectra are modeled,
usually the transverse momentum spectra are incorrect, or vice-versa. It
seems impossible, in a collision model based on confined hadron inter-
actions, to find sufficiently many hadron–hadron collisions to occupy by
hadrons the large phase space (high p⊥, high y) filled by products of
nuclear collision. If indeed a non-QGP reaction picture to explain heavy-
ion-collision data exists, the current situation suggests that some essen-
tial reaction mechanism has been overlooked for 20 years. In short, a lot
more effort needs to be expended on hadron models in order to reach sat-
isfactory agreement with the experimental results, even regarding rather
simple observables such as hadron multiplicities, transverse-energy pro-
duction, and yield of strangeness.
Another way within the kinetic approach, and within the realm of quite

conventional physics, to acquire an excess of strangeness in heavy-ion
collisions compared with elementary reactions is to cook dense hadronic
matter for a long time. In hadronic gas, strangeness can be produced
in unusual (but not novel) reactions such as π + π → K + K. Even
in the presence of an abundant yield of pions, the high-mass threshold,
compared with the temperatures we are studying here, suggests that their
reaction is ‘slow’. Thus, an important piece in the puzzle is to know how
long it takes for enhancement of strangeness to be created in a kinetic HG
fireball. Otherwise, the fact that the final state in all reaction scenarios
looks more or less the same will make the argument that the enhancement
in production of strangeness is a signature of new physics difficult.
We therefore will consider, in the following section, the dynamics of

production of strangeness in thermal processes in HG [164, 165], and we
establish the time scales involved. Since the strange quarks are produced
as constituents (‘valence quarks’) of the usual hadronic states, the direct
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mechanisms of production will not populate all hadronic states as the
phase-space distribution would demand, and therefore, aside from the
production, we will also encounter the (relatively rapid) process of stran-
geness exchange (redistribution) in hadronic quark-exchange reactions.
In general, the observed abundances of strange hadrons, and especially of
the rarely produced ones, will be the result of multi-step processes.

18.2 Thermal hadronic strangeness production

In a thermally equilibrated central HG fireball the standard

N + N→ N+Y+K (18.2)

nucleon-based reactions for production of strangeness are, surprisingly,
not very important. The hyperon Y = qqs may be either the iso-scalar
Λ = uds or the iso-triplet Σ = (uus,uds,dds), and the kaon K may be
either K+ = s̄u or K0 = s̄d, which are found experimentally in one of the
(almost) CP eigenstates KS and KL.
There are three reasons for the relative unimportance of the reaction

Eq. (18.2):

1. The energy threshold, viz.,
√
sth = mN +mY +mK − 2mN ∼ 670MeV, (18.3)

is considerably higher than, e.g., the energy threshold for production
of strangeness in reactions between a pion and a baryon:

π+N→ K+Y,
√
sth ∼ 540MeV . (18.4)

2. Pions are the most abundant fireball particles, with the pion-to-baryon
ratio of the central-rapidity region considerably exceeding unity in all
central collisions at above 10GeV per nucleon. It is for this reason that
the reaction

π+ π̄ → K+ K̄,
√
sππ
th = 710MeV, (18.5)

between two pions, which has also a rather high threshold, is found to
be important at temperature T > 100 MeV, as we shall discuss.

3. The final-state phase space of the two-particle reaction system above
is more favorable than that of the three-body final state required in
Eq. (18.2).

The common reaction feature of the hadronic production of strangeness
is the qq̄→ ss̄ reaction, illustrated for the case of Eq. (18.4) in Fig. 18.2.
Note that three of the five (light) quarks are spectators, a qq̄ pair is
annihilated, and an ss̄ pair is formed. The experimental value of this
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π

Y

K

P 

Fig. 18.2. The production of strangeness in reactions of the type π + N →
K + Y in the HG phase. Solid lines indicate the flow of light quarks and the
disappearance of one q̄q pair, the dashed line is for the added s̄s pair.

so-called Okubo–Zweig–Izuka-rule forbidden cross section is about 0.1–
0.5 mb in the energy region of interest here (just above the threshold),
thus of a magnitude comparable to the cross section for the QGP processes
– but the threshold is considerably lower in the QGP processes, and most
of the thermal collisions occur in this lower-energy region, as we have
shown in Fig. 17.6.
Apart from production of strangeness, we also have ‘strangeness-ex-

change’ reactions, as depicted in Fig. 18.3: we see that, in the process, the
already existent strange quark can be moved from one particle ‘carrier’
to another, but the number of strange quarks remains unchanged. We
show, in Fig. 18.3, the most relevant class of exchange reactions:

K̄ + N→ π+Y. (18.6)

In an exchange reaction, new hadrons that are difficult to make in direct
reactions can be produced. For example, the reaction

Λ + K̄→ π+ Ξ (18.7)

produces the doubly strange particles Ξ(ssq). More generally, exchange
reactions distribute strangeness into all accessible particle ‘carriers’, and
help establish the relative chemical equilibrium.
For every strangeness-reaction, there is the same type back-reaction,

and one of the two has to be exothermic. Thus 50% of strangeness-
exchange reactions are exothermic. Exothermic cross sections do not
vanish at small collision energies, and the thermal average is actually
nearly a constant O(1 mb), which is related to the geometric size and
structure of hadrons. Consequently, thermally averaged reaction rates for
exchange of strangeness are, especially at low temperatures, much greater
than rates of production of strangeness. This assures that strange quarks
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Fig. 18.3. An example of a strangeness-exchange reaction in the HG phase:
K− + p→ Λ + π0. Solid lines, flow of u and d quarks; dashed line, exchange of
an s quark between two hadrons.

produced in HG are rapidly distributed among many hadronic states, even
if the absolute chemical equilibrium is not reached.
On the other hand, the cross section for production of strangeness in

HG is relatively (to QGP) slow, being suppressed by smaller particle den-
sities and the higher threshold of the production process. Some authors,
pursuing explanation of the enhancement in production of strangeness
within a HG scenario, try to overcome this in terms of partial restoration
of chiral symmetry, which allows hadron masses to melt in part, lowering
thresholds for production of strangeness; see [241] for the current status
of the search for this effect. We will not pursue further in this book these
interesting developments.
In the study of the evolution with time of the production of strange

hadrons in the HG fireball, similarly to the case of QGP, only the total
numbers of particles will be considered. We are assuming that the ther-
malization (kinetic equilibration) is a rapid process, in comparison with
the relaxation time constant for strange hadrons, and also in comparison
with the lifetime of the fireball. To quantitatively develop the kinetic evo-
lution abundances of strange hadrons in the HG, we need to use a large
number of hadronic cross sections.
Only limited experimental information on cross sections is available,

since it is often impossible to study in the laboratory some of the pro-
cesses which involve relatively short-lived particles (which of course are
quite infinitely long-lived on the scale of hadronic collisions). There is no
reliable theoretical framework allowing one to evaluate cross sections not
accessible to direct measurement, since our understanding of the hadronic
structure is incomplete. Consequently, we consider a method facilitating
use of the accessible experimental information, in order to be able to
estimate required reaction cross sections.
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The cross section times the flux factor (velocity) for two-body reactions
1+2→ n, in which n particles are produced in the exit channel, takes the
form Eq. (17.9). The generalization of the thermally averaged production
cross section Eq. (17.16) to n final-state particles, can be cast into the
form

Rn = ρ1ρ2〈σ12v12〉=
g1g2
(2π)5

T
|M(1 + 2→ n)|2

(2π)3n−3

×
∫ ∞

sth

ds
√
s IMS(s; 2)IMS(s;n)K1(

√
s/T ), (18.8)

where the n-particle invariant phase space is a generalization of the two
particle invariant phase space Eq. (17.14):

IMS(s;n) =
∫ n∏

i=1

d4pi δ0(p2i −m2
i )δ

4

(
p1 + p2 −

n∑
i

pi

)
. (18.9)

IMS is implicitly a function of the masses of the particles.
Many studies have shown that the hadronic-reaction matrix element

|M(1 + 2 → n)|2 for hadronic processes is insensitive to the relatively
slow changes of

√
s in the region of interest to us, and it can be assumed

to be constant. For this reason, it is outside of the integral over s in
Eq. (18.8). This is the crucial detail which permits us to relate many
thermal cross sections to each other: Eq. (18.8) allows us to infer, from
an example known experimentally, the thermal average of a family of
cross sections. All we need do is adjust the applicable threshold and
particle masses. Given the high range of temperatures we are considering,
the isospin-breaking effects are relatively unimportant, and one does not
distinguish between the u and d quarks. Consequently, one can study
isospin-averaged cross sections. Appendix B of [164] gives a useful listing
of relevant reactions.
We show now how the method works: the isospin-averaged, thermally

averaged associate rate of production of strangeness, 〈σ(πN→ K)vπN〉,
can be determined from experimentally known cross sections. It allows
us to infer the strength of other associate production processes,

〈σ(πY → KΞ)vπY〉= 〈σ(πN→ KY)vπN〉P1, (18.10a)

P1=
〈σ(πY → KΞ)vπY〉
〈σ(πN→ KY)vπN〉

, (18.10b)

where P1 in Eq. (18.10b), with the assumption of constant |M|2, depends
on T and µb only through its dependence on the particle phase space.
The thermal averages of cross sections falling under the categories

‘strangeness exchange’ and ‘baryon annihilation’ can also be dealt with
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Fig. 18.4. The thermally averaged ππ → KK̄ reaction cross section: the solid
line is for a constant matrix element (see the text); the dashed line is for a
constant value of the reaction cross section, σ = 3 mb [164].

in this way. The various strangeness-exchange cross sections are related
to 〈σ(K̄N → Yπ)vK̄N〉 and diverse baryon-annihilation cross sections to
〈σ(pp̄→ 5π)vpp̄〉, which are known experimentally. Similarly, the matrix
element |M|2 for reactions in which particles and antiparticles are inter-
changed is the same, and the average thermal cross sections of the reverse
reactions are given by those of the forward reactions times appropriate
phase-space factors.
This method leaves us with one important channel, Eq. (18.5), for pro-

duction of strangeness in the thermally equilibrated hadronic gas, which
can neither be measured nor be related to known reactions. Its strength
has been derived from the reactions pp → ppππ, ppKK̄ with the help
of dispersion relations. Protopopescu et al. [210] have found that, above
the threshold, pion-based production of strangeness has an approximately
constant cross section of 3± 1 mb. The thermally averaged cross section
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Fig. 18.5. Thermally averaged cross sections for formation and exchange of
strangeness in HG 〈σv〉/c, based on the assumption of universal invariant matrix
elements [164].

using as input a constant cross section of 3 mb is shown in Fig. 18.4 by
the dashed line, as a function of temperature. In comparison, the solid
line describes the result of an evaluation in which a constant matrix ele-
ment |M|2 was used with the strength equal to the associate reaction for
production of strangeness π+N→ K+Y.
In Fig. 18.5, we show the thermally averaged cross sections for forma-

tion and exchange of strangeness obtained by Koch et al. [164] within the
framework outlined above. Note that the thermally averaged strangeness-
exchange reactions which are capable of building up multiply strange had-
rons are O(1 mb) at all temperatures. This is consistent with the intuition
that this value should be at the level of a third of the geometric cross sec-
tion, multiplied by the probability of exchanging one of the quarks, which
is at the level of 10%, certainly not 100%, as is sometimes assumed by
some authors. Even though (by coincidence) reactions 5 and 6 agree in
strength, reaction 7, which is important for understanding the formation
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of Ω, is considerably smaller. This strongly breaks the SU(3) flavor sym-
metry, and slows down the formation of the all-strange Ω and Ω in HG,
compared with the formation of other strange baryons and antibaryons.
We further see in Fig. 18.5 that strangeness-formation reactions in HG

are dominated at high temperature by the ππ → KK̄ reaction. Up to
temperatures near T = 150MeV, strangeness-exchange reactions 5 and
6 are more than an order of magnitude faster than is the production
of strangeness. Thus, relative chemical equilibrium can be established
‘instantaneously’ in singly and doubly strange hadrons, but not for Ω and
Ω, during the growth in abundance of strangeness in the fireball. For the
same reason, it makes good sense to expect relative chemical equilibrium
among strange hadrons to occur in an equilibrium model of hadronization
of QGP, except for Ω and Ω.

18.3 The evolution of strangeness in hadronic phase

To address the issue of equilibration of strangeness in HG in a quantitative
manner, we study the temporal evolution in the framework of a master
equation. We consider all two-body reactions, which are predominant,

dρi(t)
dt

=
∑
AB

〈σvAB→i〉TρAρB −
∑
C

〈σviC→X〉Tρi(t)ρC, (18.11)

where the collision of particles A + B leads to production of the strange
particle i, and i can be annihilated in collisions with (strange) parti-
cles C. Assuming the thermal momentum distribution of all particles
Eq. (17.16) permits one to compute the evolution of particle populations
using Eq. (18.11), once the thermal cross sections of the reaction are
known; see section 18.2. Appendix A of [164] gives the explicit form
of the master equation Eq. (18.11).
In HG antibaryons are difficult to produce, considering that the direct

pair-production thermal cross section for π + π → N + N̄ is suppressed
by a high threshold. Intermediate steps are necessary in order to build
up heavy mesons, e.g., ρ and ω resonances, which are more capable of
producing a baryon–antibaryon pair, and which also benefit from a larger
elementary cross section. A recent kinetic-theory study of reactions in-
volving fusion of three mesons into antibaryons suggests that this channel
may be the dominant source of antibaryons [89].
In order to establish an upper limit for the abundance of multistrange

baryons in HG, the results shown below were obtained assuming that
the non-strange antibaryons are at the chemical HG equilibrium yield at
the initial time, at which the evolution of the master equation is con-
sidered. In this approach, the build-up of strange antibaryons is a func-
tion of the developing abundance of strangeness, and the effectiveness
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of strangeness-exchange reactions, which as we have seen is particularly
weak for the formation of the most enhanced Ω. Even allowing full oc-
cupancy of non-strange-antibaryon phase space, the relaxation time for
yields of strange antibaryons in HG turns out to be much too long to
be relevant in a dynamic heavy-ion-collision environment. In fact, the
discovery of abundant yields of strange antimatter that sometimes exceed
chemical equilibrium in heavy-ion collisions is proof that collective for-
mation mechanisms akin to those operating in quark-soup hadronization
have been operational.
Somewhat surprised by the high yield of (strange) antibaryons observed

in heavy-ion collisions, some authors have proposed to use detailed bal-
ance considerations to infer an effective rate of five-hadron collisional
production of a baryon–antibaryon pair, using as reference in detailed-
balance analysis the reverse reaction N + N̄ → 5π. In our opinion,
use of detailed-balance arguments to infer a five-body collisional reac-
tion rate is wrong physics. Certainly five-particle collisions occur more
rarely than do four-particle collisions, which occur more rarely than do
three-particle collisions, etc. One has first to establish the dominant for-
ward and backward channels (if such exist, for equilibrium could be the
result of multistep processes) when one is using the detailed-balance ar-
gument to estimate a rate. For the case of baryon–antibaryon formation
and annihilation in HG, depending on temperature and density, two- and
three-body reactions among mesons should dominate higher many-body
processes.
We shall now review a few properties of the solutions of the master

equations Eq. (18.11). To maximize the yield of strangeness that can
be obtained, and to maximize the production of strange antibaryons, we
assume that, after τ0 � 1 fm, the densities both of pions and of antinu-
cleons should have reached approximately their chemical-equilibrium val-
ues, and, at this point in time, the thermal processes for production of
strangeness are turned on in HG. First, we turn our attention to the evo-
lution of the total yield of strangeness in the HG phase assuming that
the initial densities of strange particles are zero. Then, we consider the
evolution of the yields of individual strange hadrons, including strange
antibaryons.
We study the total strangeness in HG, to determine the time required

for the total abundance of strangeness to reach the chemical equilibrium.
In Fig. 18.6, the evolution of the total abundance of strangeness is shown,
and we see that the production of strangeness in HG is roughly 100 times
slower than the time for chemical relaxation in QGP, see Fig. 17.11, for
the example of temperature T = 160MeV. The considered range of the
baryo-chemical potential µb ∈ [0, 450]MeV covers all regions of interest
and, as we see, has a negligible impact on this result.
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Fig. 18.6. The thermal production of strangeness as a function of time in a
confined hadron gas at T = 160MeV. Results for two values of baryo-chemical
potential (µb = 0 and 450MeV) are shown [164].

The yield of strangeness observed in experiments at the SPS and RHIC
can not be produced by thermal HG processes. This becomes even clearer
on considering individual particles with higher strangeness content such
as (multi)strange antibaryons, shown in Fig. 18.7. For reasons we dis-
cussed above, strange antibaryons remain more distant from the equi-
librium distribution than do strange mesons and strange baryons. In
fact, to arrive within the time scale shown at a measurable yield, the
result presented benefits from the rather optimistic assumptions of equi-
librium abundances for the non-strange antibaryons. As expected, we
see in Fig. 18.7 that kaons, K = s̄q, antikaons, K̄ = sq̄, and hyperons,
Y = qqs, are the first to reach equilibrium abundance – the other s̄ car-
riers are delayed by another factor of 3–5 in getting to their HG limits,
with Ω = s̄s̄s̄ trailing far behind. We expect that the HG-based produc-
tion of multistrange antibaryons generates negligible background. This is
one of the important reasons allowing multistrange antibaryons to signal
the formation and hadronization of a deconfined quark–gluon phase in
heavy-ion collisions.
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Fig. 18.7. The approach to chemical equilibrium by strange hadrons in hot
hadronic matter at temperature T = 160, µb = 450MeV – s̄ hadrons are shown
in (a), whereas s hadrons are shown in (b) [164].

19 Hadron-freeze-out analysis

19.1 Chemical nonequilibrium in hadronization

In the final state, we invariably see many hadronic particles, and naturally
we observe their spectra and yields only in restricted domains of phase
space. An extra reaction step of ‘hadronization’ is required in order to
connect the properties of the fireball of deconfined quark–gluon matter,
and the experimental apparatus. In this process, the quark and gluon
content of the fireball is transferred into ultimately free-flowing hadronic
particles. In hadronization, gluons fragment into quarks, and quarks co-
alesce into hadrons.
Hadronization of course occurs in all reactions in which final-state had-

rons are observed: for example, in high-energy e+e− → qq̄ reactions, we
see jets of final-state hadrons carrying the energy and momentum of the
two quarks produced. It is not yet clear whether there is a fundamental
difference between the hadronization of a thermal fireball and that of a
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fast-moving quark. We refer to the process in which a thermal fireball of
quarks and gluons turns into hadrons as statistical hadronization. This
is an area of nonperturbative strong-interaction physics in rapid develop-
ment, and this interesting topic could nearly fill a review of the size of
this book.
The question we address is that of whether chemical-equilibrium hadron

phase space (the so-called ‘hadronic gas’) can be used consistently to
describe the physics of thermal hadronization. We first note that the
production of entropy is small, or even null, in hadronization of thermal
QGP. Color ‘freezes’, and the excess entropy of QGP has to find a way
to get away, so any additional production is hindered. We consider the
Gibbs–Duham relation for a unit volume, Eq. (10.26), and combine it
with the instability condition of dynamic expansion, Eq. (3.31), cast in
the form

0 = P |h + (P |h + ε|h)
κv2c
1− v2c

. (19.1)

The result is

ε

σ

∣∣∣
h
=
(
T |h +

µbνb
σ

∣∣∣
h

)(
1 +

κv2c
1− v2c

)
. (19.2)

Using the energy, E, the entropy S, and the baryon number b as variables,
we obtain [222]

E

S

∣∣∣∣
h

= (T |h + δT |h)
(
1 +

κv2c
1− v2c

)
, δT = µb

νb
σ
=

µb
S/b

. (19.3)

For the RHIC, we have δT |h < 0.4 MeV, considering that µb < 40 MeV
and S/b > 100, whereas at the top SPS energy we have µb � 200–250
MeV and S/b � 25–45, and thus δT |h � 5–8 MeV. Eq. (19.3) shows that

E

S

∣∣∣∣
h

> T |h (19.4)

when super-cooling occurs prior to hadronization. Since all three quanti-
ties, E|h , S|h , T |h can be obtained from particle abundances, this condi-
tion can be verified. More generally, we can transcribe the Gibbs–Duham
relation, Eq. (10.26), to obtain the relation

E

S
+
PV

S
= T + δT > T. (19.5)

Solving for P/ε, we obtain

P

ε
=

T + δT − E/S

E/S
. (19.6)
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The study of hadron production, which will follow, allows an evalu-
ation of both the freeze-out temperature and the energy per entropy
E/S. The Gibbs–Duham relation in the form Eq. (19.6) determines a
key property of the equation of state, the ratio of the pressure to the
energy density. We expect to find P/ε negative and small in magnitude,
in nonequilibrium-sudden hadronization. In an equilibrium transforma-
tion, the range 1

3 < P/ε < 1
7 , see Fig. 11.3 on page 211, is expected,

which spans the domain of highly relativistic matter and realistic hadronic
gas.
Chemical nonequilibrium is naturally connected to the sudden (statis-

tical) hadronization, which is the favored reaction mechanism in view of
the results seen at the RHIC, and also has been applied successfully to ex-
plain the results obtained at the top energy at the SPS. The reader should
keep in mind that, as the collision energy is reduced, the transverse ex-
pansion of the fireball of dense matter diminishes, and, at a sufficiently
low collision energy, a more adiabatic hadronization has to occur. In this
‘AGS limit’, some of the signatures of the QGP phase we are discussing
in this chapter may be erased.
The word sudden refers to the time hadrons have available, following

their formation, to rescatter from other hadrons. The observed high abun-
dances of short-lived hadronic resonances such as K∗(892) [279], which
has a natural half life of τK∗ � ln 2/ΓK∗ = 2.8 fm, implies that the decay
occurs mostly outside of the hadronic environment. Had the decay prod-
ucts undergone rescattering, reconstruction of the K∗(892) would in most
cases be impossible. Conversely, reconstruction of abundant K∗(892) im-
plies that the two decay products (π and K) did not propagate through
dense hadron matter [224, 260]. The HBT results, section 9.3, also place
a very severe constraint on the size and life span of the pion source. The
source is smaller than one would expect if the prolonged expanding HG
phase were to exist. Finally, the hadron spectra are described in terms of
a source breaking up at T = 165±7 MeV and expanding with v⊥ = 0.52c
[84], with chemical and thermal freeze-outs coinciding.
It has been proposed that a mechanical instability associated with

super-cooling of QGP is at the origin of the sudden-breakup mechanism.
In section 3.5, we have seen that the motion of the quark–gluon fluid
adds to the pressure exercised against the vacuum. Equation (3.31) de-
scribes the balance condition when the dynamic expansion has run out
of ‘speed’. The normal stable case is that vc = 0. However, if the initial
condition generated by the great collisional compression produces a fast
expansion with a finite velocity vc 
= 0 when the condition Eq. (3.31) is
satisfied, this means that the outward flowing QGP matter is at a pres-
sure P = Pp − B < 0, a highly unstable situation, in the (locally at
rest) frame of reference. The fireball matter reaching this super-cooled
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condition breaks up into smaller clusters. These drops of QGP separate
and hadronize into free-streaming hadrons. A HG phase is never formed.
However, production of particles occurs as dictated by the phase space
available. Their yields are controlled by abundances of quarks in the
hadronizing phase.

19.2 Phase space and parameters

Before proceeding with this section, the reader should refresh his memory
about the role chemical potentials play in counting hadrons (sections 11.2
and 11.4). The approach we present is in its spirit a generalization of
Fermi’s statistical model of hadron production [121, 122], in that the yield
of hadrons is solely dictated by the study of the magnitude of the phase
space available.
The relative number of final-state hadronic particles freezing out from,

e.g., a thermal quark–gluon source, is obtained by noting that the fugacity
fi of the ith emitted composite hadronic particle containing k components
is derived from fugacities λk and phase-space occupancies γk:

Ni ∝ e−Ei/Tffi = e−Ei/Tf
∏
k∈i

γkλk. (19.7)

In most cases, we study chemical properties of the light quarks u and
d jointly, though, on occasion, we will introduce the isospin asymmetry,
Eq. (11.11). As seen in Eq. (19.7), we study particle production in terms of
five statistical parameters, T, λq, λs, γq, and γs. In addition, to describe
the shape of spectra, one needs matter-flow-velocity parameters; these
become irrelevant when only total abundances of particles are studied;
these are obtained by integrating over all of phase space, or equivalently
in the presence of strong longitudinal flow, when we are looking at a yield
per unit rapidity.
Assuming a QGP source, several of the statistical parameters have nat-

ural values.
1. λs. The fugacity of the strange quark λs can be obtained from the
requirement that strangeness balances, 〈ns〉 − 〈ns̄〉 = 0, which, for a
source in which all s and s̄ quarks are unbound and have symmetric
phase space, Eq. (11.13), implies λs = 1. However, the Coulomb dis-
tortion of the strange-quark phase space plays an important role in the
understanding of this constraint for Pb–Pb collisions, leading to the
Coulomb-deformed value λs � 1.1; see section 11.3.

2. γs. The strange-quark phase-space occupancy γs can be computed, sec-
tion 17.5, within the framework of kinetic theory and γs � 1. Recall
that the difference between the two different types of chemical param-
eters λi and γi is that the phase-space-occupancy factor γi regulates
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the number of pairs of flavor ‘i’, and hence applies in the same manner
to particles and antiparticles, whereas the fugacity λi applies only to
particles, while λ−1i is the antiparticle fugacity.

3. λq. The light-quark fugacity λq, or, equivalently, the baryo-chemical
potential, Eq. (11.2a), regulates the baryon density of the fireball and
hadron freeze-out. This density can vary depending on the energy and
size of colliding nuclei, and the value of λq is not easily predicted. How-
ever, it turns out that this is the most precisely measurable parameter,
with everybody obtaining the same model-independent answer, for it
directly enters all highly abundant hadrons. Since T differs depending
on the strategy of analysis, the value of µb is not so well determined.

4. γq. The equilibrium phase-space occupancy of light quarks γq is ex-
pected to significantly exceed unity in order to accommodate the ex-
cess entropy content in the plasma phase. There is an upper limit,
Eq. (7.20). We addressed this in section 7.5.

5. Tf . The freeze-out temperature Tf is expected to be within 10% of
the Hagedorn temperature TH � 160MeV, which characterized the
production of particles in proton–proton reactions; see chapter 12.

6. vc. The collective-expansion velocity vc is expected to remain near to
the relativistic velocity of sound,

vc ≤ 1/
√
3,

the natural speed of flow of information in the QGP phase. There is
a longitudinal velocity, which is needed in order to describe rapidity
spectra, section 8.3, and there is a motion of the hadronization surface,
aside from many further parameters one may wish to use to model the
velocity profile of flowing matter.

The resulting yields of final-state hadronic particles are most conve-
niently characterized by taking the Laplace transform of the accessible
phase space. This approach generates a function that, in terms of its
mathematical properties, is identical to the partition function. For exam-
ple, for the open-strangeness sector, we find (with no flow)

L
(
e−Ei/Tf

∏
k∈i

γkλk

)
∝ lnZHG

s , (19.8)

with lnZHG
s given in Eq. (11.19).

It is important to keep in mind that

• Eq. (19.8) does not require formation of a phase comprising a gas of
hadrons, but is not inconsistent with such a step in the evolution of the
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matter; Eq. (19.8) describes not a partition function, but just a look-
alike object arising from the Laplace transform of the accessible phase
space;

• the final abundances of particles measured in an experiment are ob-
tained after all unstable hadronic resonances ‘j’ have been allowed to
disintegrate, contributing to the yields of stable hadrons; and

• in some experimental data, it is important to distinguish between the
two light-quark flavors, for example experiments are sensitive only to
Ξ−, not to Ξ0, and averaging over isospin does not occur.

The unnormalized particle multiplicities arising are obtained by differ-
entiating Eq. (19.8) with respect to the particle fugacity. The relative
particle yields are simply given by ratios of corresponding chemical fac-
tors, weighted by the size of the momentum phase space accepted by
the experiment. The ratios of strange antibaryons to strange baryons of
the same type of particles are, in our approach, simple functions of the
quark fugacities; see Eqs. (11.21a)–(11.21e). When particles of unequal
mass are considered, and are fed by decay of other hadrons, considerable
numerical effort is required to evaluate yield ratios for particles, in partic-
ular, if these are available in a fraction of phase space only. To the best
of our knowledge, the numerical results of various groups working with
the statistical-hadronization method are consistent, though the physics
content can vary widely, depending on assumptions introduced.

19.3 SPS hadron yields

We have argued that, in general, we must expect γq 
= 1, section 19.1,
i.e., chemical nonequilibrium at hadron freeze-out is an expected ingre-
dient in a precise interpretation of the experimental results on particle
ratios obtained in the SPS energy range. For strangeness, it has been
expected and was seen early on in experimental data [216]. Full chemical
nonequilibrium was first noted in the study of the S–Au/W/Pb collisions
at 200A GeV [176]. On fitting the yields of hadrons observed, it was
noted that the statistical significance increased when chemical nonequi-
librium was introduced. The statistical significance is derived from the
total statistical error:

χ2 ≡
∑
j(R

j
th −Rjexp)2

(∆Rjexp)2
. (19.9)

It is common to normalize χ2 by the difference between the number of
data points and parameters used, the so-called ‘dof’ (degrees-of-freedom)
quantity.
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Table 19.1. Statistical parameters obtained from fits of data for S–Au/W/Pb
collisions at 200A GeV, without enforcing conservation of strangeness [176]

Tf [MeV] λq λs γs γq χ2/dof

145 ± 3 1.52 ± 0.02 1∗ 1∗ 1∗ 17
144 ± 2 1.52 ± 0.02 0.97 ± 0.02 1∗ 1∗ 18
147 ± 2 1.48 ± 0.02 1.01 ± 0.02 0.62 ± 0.02 1∗ 2.4
144 ± 3 1.49 ± 0.02 1.00 ± 0.02 0.73 ± 0.02 1.22 ± 0.06 0.90
∗ denotes fixed (input) values

We show the resulting statistical parameters obtained in hadron-yield
fits in table 19.1, for S–Au/W/Pb collisions at 200A GeV. Asterisks (∗)
mark fixed (input) values, thus the first column assumes not only chemical
equilibrium, but also the symmetric value λs = 1 for the QGP phase
space. Interestingly, little is gained by allowing λs to vary, and all different
fitting strategies point to λs = 1. However, allowing for strange γs 
= 1
and then light-quark γq 
= 1, nonequilibrium brings the result of the fit
progressively to statistical significance. For systems we study, with a few
degrees of freedom (typically 5–15), a statistically significant fit requires
that χ2/dof < 1. For just a few ‘dof’, the error should be as small as
χ2/dof < 0.5. The usual requirement χ2 → 1 applies only for infinitely
large ‘dof’. We learn from these results that the chemical nonequilibrium
factor γi for both strange and light quarks is a required ingredient in the
statistical hadronization model.
Turning now to the Pb–Pb system at collision energy 158A GeV, we

consider the particles listed in the top section of table 19.2 from the exper-
iment WA97, for p⊥ > 0.7GeV, within a narrow central-rapidity window
∆y = 0.5. Further below are shown results from the large-acceptance
experiment NA49, extrapolated by the collaboration to full 4π coverage
of phase space. The total error χ2 for the two columns of results is shown
at the bottom of this table along with the number of data points ‘N ’
and parameters ‘p’ used, and the number of (algebraic) redundancies ‘r’
connecting the experimental results. For r 
= 0, it is more appropriate
to quote the total χ2, since the condition for statistical relevance is more
difficult to establish given the constraints, but since χ2/(N−p−r) < 0.5,
we are certain to have a valid description of hadron multiplicities. We
will return to discuss the yields of Ω and Ω at the end of this section.
In table 19.2 second from last column, the superscript ‘s’ means that

λs is fixed by strangeness balance. The superscript ‘γq’, in the two last
columns means that γq = γcq = emπ/(2Tf) is fixed in such a way as to
maximize the entropy content in the hadronic phase space. The fits pre-
sented were obtained with the updated NA49 experimental results, i.e.,
they include the updated h−/b, newly published yield of φ [43], and pre-
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Table 19.2. WA97 (top) and NA49 (bottom) Pb–Pb 158A-GeV-collision hadron
ratios compared with phase-space fits

Ratios Reference Experimental data Pb|s,γq Pb|γq
Ξ/Λ [171] 0.099 ± 0.008 0.096 0.095
Ξ/Λ̄ [171] 0.203 ± 0.024 0.197 0.199
Λ̄/Λ [171] 0.124 ± 0.013 0.123 0.122
Ξ/Ξ [171] 0.255 ± 0.025 0.251 0.255
K+/K− [79] 1.800 ± 0.100 1.746 1.771
K−/π− [248] 0.082 ± 0.012 0.082 0.080
K0s/b [152] 0.183 ± 0.027 0.192 0.195
h−/b [43] 1.970 ± 0.100 1.786 1.818
φ/K− [21] 0.145 ± 0.024 0.164 0.163
Λ̄/p̄ y = 0 0.565 0.568
p̄/π− All y 0.017 0.016

χ2 1.6 1.15
N ; p; r 9; 4; 1 9; 5; 1

dict the Λ̄/p̄ ratio. b is here the number of baryon participants, and
h− = π−+K−+ p̄ is the yield of stable negative hadrons, which includes
pions, kaons, and antiprotons. We see, on comparing the two columns,
that conservation of strangeness (which is enforced in the second from
last column) is consistent with the experimental data shown; enforcing it
does not change much the results for particle multiplicities.
The six parameters (T, vc, λq, λs, γq and γs) describing the abundances

of particles are shown in the top section of table 19.3. Since the results
of the WA97 experiment do not cover the full phase space, one finds
a reasonably precise value for one velocity parameter, taken to be the
spherical surface-flow velocity vc of the fireball hadron source.
As in S-induced reactions in which λs = 1 [176], so also in Pb-induced

reactions, a value λPbs � 1.1 characteristic of a source of freely movable
strange quarks with balancing strangeness, i.e., with λ̃s = 1, is obtained;
see Eq. (11.17). Since all chemical-nonequilibrium studies of the Pb–Pb
system converge to the case of maximum entropy, see Fig. 7.7 on page 125,
we have presented the results with fixed γq = γcq = emπ/(2Tf). The large
values of γq > 1 seen in table 19.3 confirm the need to hadronize the
excess entropy of the QGP that possibly is formed. This value is derived
both from the specific abundance of negative hadrons h−/b and from the
relative yields of strange hadrons.
The results shown in table 19.3 allow us to evaluate P/ε, section 19.1.

Using Eq. (19.6) with δT = 8 MeV (see Eq. (19.3)), T = 148 MeV, and
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Table 19.3. Upper section; the statistical model parameters which best describe
the experimental results for Pb–Pb data seen in table 19.2; bottom section, en-
ergy per entropy, antistrangeness, and net strangeness of the full hadron phase
space characterized by these statistical parameters. In column two, we fix λs by
the requirement of conservation of strangeness

Pb|s,γqv Pb|γqv
T [MeV] 151 ± 3 147.7 ± 5.6
vc 0.55 ± 0.05 0.52 ± 0.29
λq 1.617 ± 0.028 1.624 ± 0.029
λs 1.10∗ 1.094 ± 0.02
γq γcq

∗ = emπ/(2Tf) = 1.6 γcq
∗ = emπ/(2Tf) = 1.6

γs/γq 1.00 ± 0.06 1.00 ± 0.06
E/b [GeV] 4.0 4.1
s/b 0.70 ± 0.05 0.71 ± 0.05
E/S [MeV] 163 ± 1 160 ± 1
(s̄− s)/b 0∗ 0.04 ± 0.05
∗ indicates values resulting from constraints.

E/S = 160 MeV, we obtain P/ε ∼ −1/40. This negative and small value
is consistent with the super-cooling hypothesis. One other interesting
quantitative results of this analysis is shown in the bottom section of
table 19.3: the yield of strangeness per baryon, s/b � 0.7. We see, in
the lower portion of table 19.3, that near strangeness balance is obtained
without constraint.
The most rarely produced hadrons are the triply strange Ω(sss) and

Ω(s̄s̄s̄), which are the heaviest stable hadrons, MΩ = 1672MeV. The
phase space for Ω is ten times smaller than that for Ξ under the conditions
of chemical freeze-out we have obtained, and any contribution from non-
statistical hadronization would be visible first in the pattern of production
of Ω and Ω . For the parameters in table 19.3, the yields of Ω reported
for the experiment WA97 are underpredicted by nearly a factor of two.
This excess yield originates at the lowest m⊥, as can be seen in Fig. 8.11
on page 155. The ‘failure’ of a statistical-hadronization model to describe
yields of Ω (and, by 30%, Ω) has several possible explanations.
One is the possibility that an enhancement in production of Ω and Ω

is caused by pre-clustering of strangeness in the deconfined phase [215].
This would enhance the production of all multistrange hadrons, but most
prominently the phase-space-suppressed yields of Ω and Ω. This mech-
anism would work only if pairing of strange quarks near to the phase
transition were significant. Current models of ‘color superconductivity’
support such a clustering mechanism [30, 185, 206, 237]. We have men-
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tioned, at the end of section 11.5, the possibility that distillation of stran-
geness followed by breakup of strangelets could contribute to production
of Ω and Ω. The decay of disoriented chiral condensates has also been
proposed as a source of soft Ω and Ω [158].
A more conventional explanation for the excess production of Ω and Ω

is obtained by noting that, due to the low reaction cross section, Ω and Ω
could decouple from the HG background somewhat sooner than do all the
other hadrons [55, 263]. To augment the yields by factor k, it is sufficient
to take an incrementally δTΩ higher freeze-out temperature, determined
from studying the Ω phase space:

δTΩ � T
ln k

MΩ/T
. (19.10)

In order to increase the yield by a factor of two, the freeze-out of Ω
would need to occur at TΩ = 160MeV rather than at T = 150MeV.
Since the temperature drops as the expansion of the fireball develops, a
higher freeze-out temperature means freeze-out occurring slightly earlier
in time. Even though the required staging in time of hadron production
is apparently small, a consistent picture requires fine-tuning and it seems
unnatural, considering that yields of all the other particles are perfectly
consistent with just one sudden chemical-freeze-out condition.
In view of these pre- and post-dictions of the anomalous yield of Ω and

Ω, one should abstain from introducing these particles into statistical-
hadronization-model fits. We note that the early statistical descriptions
of yields of Ω and Ω have not been sensitive to the problems we described
[61, 180]. In fact, as long as the parameter γq is not considered, it is not
possible to describe the experimental data at the level of precision that
would allow recognition of the excess yield of Ω and Ω within statisti-
cal hadronization model. For example, a chemical-equilibrium fit, which
includes the yield of Ω and Ω has for 18 fitted data points with two pa-
rameters a χ2/dof = 37.8/16 [80]. Such a fit is quite unlikely to contain
all the physics even if its appearance to the untrained eye suggests that
a very good description of experimental data as been achieved.

19.4 Strangeness as a signature of deconfinement

We have found that the rate of production of strangeness in QGP is
sensitive to the temperature achieved at the time gluons reach chemi-
cal and thermal equilibrium. There is considerable uncertainty regarding
how short the time required to relax the strangeness flavor in the thermal
gluon medium is, with the upper limit being the hatched area in Fig. 17.11.
Consideration of the small mass for strangeness found in lattice studies
of strange hadrons has yielded much smaller τs (the thin-dotted line in
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Fig. 17.11). There is also the probable further reduction due to the next-
to-leading-order effects (the K-factor). In view of this, we now establish
a benchmark yield of strangeness, assuming that the equilibration pro-
cess leads to near-chemical-equilibrium conditions for hadronizing QGP.
Specifically, the abundance of light quarks in the QGP phase may be
considered near to the equilibrium yield, γQGPq → 1, whereas the yield of
strange quarks characterized by the QGP phase-space occupancy before
hadronization, γQGPs , may differ appreciably from equilibrium.
We consider the ratio of the equilibrium density of strangeness, arising

in the Boltzmann-gas limit, Eq. (10.51), to the baryon density in a fireball
of QGP given in Eq. (10.75):

ρs
ρb
=

s

b
=

s

q/3
=

γQGPs

γQGPq

(3/π2)T 3W (ms/T )
2
3

(
µqT 2 + µ3q/π

2
) . (19.11)

W is as defined in Eq. (10.50a) and shown in Fig. 10.1. The equilibrium
strange-quark density Eq. (10.51), with gs = 6, is the first term in the
expansion Eq. (10.63). Higher-order quantum-statistics correction terms
are negligible, givenms/T = O(1). To a first approximation, perturbative
thermal QCD corrections, see Eq. (16.24), cancel out in the ratio. For
ms = 200 MeV and T = 150 MeV, we have

s

b
� γQGPs

γQGPq

0.7
lnλq + (lnλq)3/π2

. (19.12)

The relative yield s/b is mainly dependent on the value of λq. In the
approximation considered, it is nearly temperature-independent. This
light-quark fugacity pertinent to the final-state hadrons is well determined
and does not vary depending on the strategy used for analysis of data.
We show in Fig. 19.1, as a function of λq − 1 (the variable chosen to

enlarge the interesting region λq → 1), the expected relative yield per
baryon originating from the QGP, defined in Eq. (19.12) with γQGPs =
γQGPq = 1. At the top SPS energy, we see that the equilibrium yield
is 1.5 pairs of strange quarks per participating baryon (for λq � 1.5–
1.6). Considering the experimental yield in table 19.3, γQGPs ∼ 0.5. The
explanation of this is that, if formed, the QGP system did not become hot
enough for long enough. In p–p collisions at the corresponding energy,
the yield is below 0.3 pairs of strange quarks per participant [277], which
is 40% of the Pb–Pb yield.
For the RHIC 130-GeV run, the value λq = 1.09 allows one to under-

stand many particle yields at central rapidity. We see, in Fig. 19.1, that
the specific yield of strangeness in a fireball of QGP at equilibrium is an
order of magnitude greater than that currently observed at the SPS top
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Fig. 19.1. The yield of strangeness per baryon as a function of λq in equilibrated
QGP.

energy. This remarkable increase is due to the expected chemical equili-
bration (γs → 1) at the RHIC, see section 17.5, as well as to a substantial
reduction of baryon density at central rapidity. In comparison with the
general hadron multiplicity, only a modest enhancement of production
of strangeness at most can be expected at the RHIC, compared to SPS;
the remarkable feature of the RHIC situation is that this enhancement
is found in the abundance of (multistrange) baryons. Given the large
strangeness-per-baryon ratio, baryons and antibaryons produced at the
RHIC are mostly strange [221]. We are not aware of any reaction model
other than formation of QGP and its hadronization that could produce
this type of yield anomaly.
While the specific yield of strangeness s/b is a clear indicator for the

extreme conditions reached in heavy-ion collisions, a more directly acces-
sible observable is the occupancy of the hadron-strangeness phase space,
γHGs . Due to the need to hadronize into a strangeness-poor phase, γHGs
can be appreciably greater than unity. To understand this, we compare
the phase space of strangeness in QGP with that of the resulting HG.
The absolute yields must be the same in both phases. This hadroniza-
tion condition allows us to relate the two phase-space occupancies in HG
and QGP, by equating the strangeness content in the two phases. On
canceling out the common normalization factor T 3/(2π2), Eq. (11.26), we
obtain

γQGPs V QGPgsW
( ms

TQGP

)
� γHGs V HG

(
γqλq
λs

FK+
γ2q
λ2qλs

FY

)
. (19.13)
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Fig. 19.2. The HG/QGP strangeness-occupancy γs ratio in sudden hadroniza-
tion as a function of λq. Solid lines, γHGq = 1; long-dashed lines, γHGq = 1.3; and
short-dashed lines, γHGq = 1.6. Thin lines are for T = 170 and thick lines for
T = 150 MeV, for both phases.

Here we have, without loss of generality, followed the s̄-carrying hadrons in
the HG phase space, and we have omitted the contribution of multistrange
antibaryons for simplicity. We now use the condition that strangeness is
conserved, Eq. (11.28), to eliminate λs from Eq. (19.13), and obtain

γHGs

γQGPs

V HG

V QGP
=

gsW (ms/T
QGP)√

(γqFK + γ2qλ
−3
q FY)(γqFK + γ2qλ

3
qFY)

. (19.14)

In sudden hadronization, V HG/V QGP � 1, the growth of volume is neg-
ligible, TQGP � THG, the temperature is maintained across the hadroniza-
tion front, and the chemical occupancy factors in both states of matter
accommodate the different magnitude of the particle phase space. In this
case, the ‘squeezing’ of the strangeness of the QGP into the smaller HG
phase space results in γHGs /γQGPs > 1. We show, in Fig. 19.2, the enhance-
ment of phase-space occupancy expected in sudden hadronization of the
QGP. The temperature ranges T = 150 MeV (thick lines) and T = 170
MeV (thin lines) span the ranges being considered today at the SPS and
RHIC. The value of γq is in the range of the chemical equilibrium in HG,
γq = 1 (solid lines), to the expected excess in sudden hadronization, see
section 7.5, γq = 1.6 (short-dashed lines), with the intermediate value
γq = 1.3 (long-dashed lines).
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Fig. 19.3. The HG/QGP strangeness-occupancy γs ratio in sudden hadroniza-
tion, as a function of T for λq = 1. Solid line, γHGq = 1; long-dashed line,
γHGq = 1.3; and short-dashed line, γHGq = 1.6.

We note that, for the top SPS energy range, for which λq = 1.5–1.6,
sudden-hadronization analysis of data implies T � 150MeV and γq � 1.6,
and the value of γs increases across hadronization by factor 2.7. Since the
yield of strangeness seen at the SPS implies that γQGPs � 0.6, this in turn
implies that γHGs � 1.6 � γHGq , as is indeed found in hadron-production
analysis in the sudden-hadronization picture; see table 19.3.
Because γHGs /γHGq � 1, one can also model the hadronization at the

SPS energy in terms of an equilibrium-hadronization model. The en-
hancement in production of pions associated with the high-entropy phase
can be accommodated by use of two temperatures, one for the determi-
nation of absolute yields of particles, and another for determination of
the spectral shape. Such an approach has a similar number of param-
eters, and comparable predictive power. However, the SPS condition,
γHGs /γHGq � 1, does not hold for the RHIC energy range. We therefore
expect that a much clearer picture about the dynamics of hadronization
of QGP should emerge from the study of yields of strange particles at the
RHIC.
As can be seen in Fig. 19.2, near λq → 1 (the condition at the RHIC)

there is practically no variation in the ratio γHGs /γHGq . Therefore, we
consider, in Fig. 19.3 for λq = 1, the dependence on the hadronization
temperature of γHGs /γHGq , with the three cases shown: solid line, γq = 1;
long-dashed line, γq = 1.3; and short-dashed line, γq = 1.6. We now
compare the hadronization conditions for the RHIC in the range between
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T = 180 MeV and γq = 1 and T = 155 MeV and γq = 1.6. Across this
domain, we see that the phase space of strangeness in the HG is three
times smaller than that in QGP, or, as shown in Fig. 19.3, there is this
large increase in occupancy of the strange-quark phase space.
In the likely event that the QGP formed at the RHIC evolves toward

the chemical-equilibrium abundance of strangeness, or possibly even ex-
ceeds it, section 17.5, we should expect a noticeable over-occupancy of
strangeness to be measured in terms of the chemical-equilibrium abun-
dance of final-state hadrons. This high phase-space occupancy is one
of the requirements for the enhancement of production of multistrange
(anti)baryons, which is an important hadronic signal of QGP phenomena
[213–215, 226]. In particular, we hope that hadrons produced in phase
space with a small probability, such as Ω and Ω, will be observed with
yields above expectations, continuing the trend seen at the SPS. Because
much of the strangeness is in the baryonic degrees of freedom, the kaon-
to-pion ratio appears suppressed, in Fig. 1.5 on page 17, relative to SPS
results, however we will show below that this is not the case.
Many results from the RHIC run at

√
sNN = 130 GeV are still prelim-

inary and the following quantitative discussion is probably not the final
word on this matter. However, the results we find are very interesting,
and in qualitative agreement with the sudden-breakup reaction picture of
QGP predominantly presented in this book. The data is mainly obtained
in the central-rapidity region, where, due to approximate longitudinal
scaling, the effects of flow cancel out and we can evaluate the full phase-
space yields in order to obtain particle ratios. We do not explore trivial
results such as π+/π− = 1, since the large hadron yield combined with
the flow of baryon isospin asymmetry toward the fragmentation rapidity
region assures us that this result will occur to within a great precision.
We also do not use the results for K∗ and K̄∗ since these yields depend
on the degree of rescattering of resonance decay products [224, 259]. The
data we use has been reported in conference reports of the STAR collabo-
ration of summer 2001, which has been combined with data of PHENIX,
BRAHMS, and PHOBOS; for more discussion of the origin of data, see
[81]. We assume, in our fit in table 19.4, that the multistrange weak-
interaction cascading Ξ → Λ, in the STAR result we consider, is cut by
vertex discrimination and thus we use these uncorrected yields.
We first look at the last column in table 19.4, the chemical-equilibrium

fit. Its large χ2 originates from the inability to account for production of
multistrange Ξ and Ξ. Similar results are presented in [81], in an equi-
librium fit that does not include multistrange hadrons. The equilibrium
fit yields E/S = 159MeV < T = 183 MeV. With a negligible contribu-
tion from δT , Eq. (19.6) implies that P/ε � 1/6.6 as is expected for the
high-freeze-out temperature.
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Table 19.4. Fits of central-rapidity hadron ratios for the RHIC run at
√
sNN =

130 GeV. Top section: experimental results, followed by chemical parameters,
physical properties of the phase space, and the fitting error. Columns: data,
the full nonequilibrium fit, the nonequilibrium fit constrained by conservation of
strangeness and supersaturation of pion phase space, and, in the last column, the
equilibrium fit constrained by conservation of strangeness, superscript ∗ indicates
quantities fixed by these considerations

Fit Fiteq

Data Fit s− s̄ = 0 s− s̄ = 0
p̄/p 0.64 ± 0.07 0.637 0.640 0.587

p̄/h− 0.068 0.068 0.075

Λ/Λ 0.77 ± 0.07 0.719 0.718 0.679
Λ/h− 0.059 ± 0.001 0.059 0.059 0.059

Λ/h− 0.042 ± 0.001 0.042 0.042 0.040

Ξ/Ξ 0.83 ± 0.08 0.817 0.813 0.790
Ξ−/Λ 0.195 ± 0.015 0.176 0.176 0.130

Ξ−/Λ 0.210 ± 0.015 0.200 0.200 0.152
K−/K+ 0.88 ± 0.05 0.896 0.900 0.891
K−/π− 0.149 ± 0.020 0.152 0.152 0.145
KS/h

− 0.130 ± 0.001 0.130 0.130 0.124
Ω/Ξ− 0.222 0.223 0.208

Ω/Ξ− 0.257 0.256 0.247

Ω/Ω 0.943 0.934 0.935

T 158 ± 1 158 ± 1 183 ± 1

γq 1.55 ± 0.01 1.58 ± 0.08 1∗

λq 1.082 ± 0.010 1.081 ± 0.006 1.097 ± 0.006
γs 2.09 ± 0.03 2.1 ± 0.1 1∗

λs 1.0097 ± 0.015 1.0114∗ 1.011∗

E/b [GeV] 24.6 24.7 21

s/b 6.1 6.2 4.2
S/b 151 152 131
E/S [MeV] 163 163 159

χ2/dof 2.95/(10− 5) 2.96/(10− 4) 73/(10− 2)

The chemical-nonequilibrium fit appears more internally consistent.
The value of the hadronization temperature T = 158 MeV is below the
central expected equilibrium phase-transition temperature for the case of
2 + 1 flavors, section 15.5. This is also near to the P = 0 condition for the
quark–gluon-liquid model developed in chapter 16, see Fig. 4.2 on page 70,
and, as is appropriate, a little above the temperatures seen for the SPS
baryon-rich freeze-out; see table 19.3. We find, Eq. (19.6) P/ε � −1/33, a
value consistent with super-cooling and sudden QGP hadronization. This
reaction picture is in agreement with the relatively large γs and γq > 1
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obtained. Comparing the two types of results, we conclude that it is the
inclusion of the yields of the multistrange antibaryons in the RHIC data
analysis, along with the hypothesis of chemical nonequilibrium, which
allows us to discriminate between the different scenarios of reaction.
We look next at the strangeness content, s/b = 6, in table 19.4: the

full QGP phase space would have yielded 8.6 pairs of strange quarks per
baryon at λq = 1.085, as is seen in Fig. 19.1, and γQGPs = 6/8.6 =
0.7. With this value, and using the fitted value γHGs = 2.1, we compute
γHGs /γQGPs = 2.1/0.7 = 3 and, as we see in Fig. 19.3, this is, for T = 158
MeV and γq = 1.55, the expected condition for hadronization of QGP.
The fact that the inferred strangeness phase space in QGP is not fully

saturated is, on a second careful look, in qualitative agreement with pre-
dictions of kinetic theory, Fig. 17.13. Namely, particle multiplicities ob-
served and the shape of particle spectra suggest that the initial conditions
are near T = 300 MeV in the RHIC run at

√
sNN = 130 GeV, which

pushes the value of γQGPs , shown in Fig. 17.13, toward 0.9.
A further reduction in this prediction, more applicable to the highest

RHIC energy range, arises since the initial volume of the fireball assumed
in order to obtain the result in Fig. 17.13 is up to twice as large as that
implied by the RHIC 130A-GeV results. This is understood by consid-
ering the total experimental hadron multiplicity entropy, which we can
derive from the fitted entropy per baryon, S/b � 150. We cannot multiply
this by the total number of participants, since many of the 350 partic-
ipating nucleons are found in the fragmentation regions. If we assume
that the central-rapidity fraction is 100 baryons, the central entropy con-
tent is 15 000, while the calculations for Fig. 17.13 are based on 38 000
entropy units. Thus, the initial volume of the fireball populating the par-
ticle yields in the central-rapidity region is about half that used to obtain
the results in Fig. 17.13. A smaller system lives for a shorter time, and,
since we are not yet in the regime of full equilibration of strangeness, a
smaller value of γQGPs than that seen in Fig. 17.13 is expected. Also, the
smaller volume of the system is more consistent with the HBT results.
The value of the thermal energy content, E/b = 25 GeV, seen in the

bottom portion of table 19.4 is also in very good agreement with expec-
tations once we allow for the kinetic-energy content associated with lon-
gitudinal and transverse motion. The energy of each particle is ‘boosted’
by the factor γv⊥ cosh y‖, see, e.g., Eq. (8.39). For v⊥ = c/

√
3, we have

γv⊥ = 1.22. The range of longitudinal flow is about ±2.3 rapidity units; see
Fig. 9.19. To obtain the the increase in energy due to longitudinal flow, we
have to multiply by the average,

∫
dy‖ cosh y‖/y‖ → sinh(2.3)/2.3 = 2.15,

for a total average increase in energy by factor 2.62, which takes the full
energy content to Ev/b � 65 GeV as expected.
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We now consider what these results imply about the total yield of stran-
geness in the RHIC fireball. First, we sum up the yield of strange quarks
contained in hyperons. Recalling Fig. 2.6 on page 32, we have in singly
strange hyperons 1.5 times the yield observed in Λ. Also, accounting for
the doubly strange Ξ−, which are half of all the Ξ, we have

〈s〉Y
h−

= 1.5× 0.059 + 2× 2× 0.195× 0.059 = 0.133.

Allowing for the unobserved Ω at the theoretical rate, this number in-
creases to 〈s〉Y/h− = 0.14. Repeating the same argument for antihyper-
ons, the result is 0.10. The s and s̄ content in kaons is four times that in
KS and thus

〈s + s̄〉
h−

= 0.76,

with 32% of this yield contained in hyperons and antihyperons. Up to
this point, the analysis is practically solely based on direct measurements
and established yields of particles.
We now estimate the increase in the ‘strangeness-suppression’ factor

Ws, Eq. (18.1). Correcting for the presence of K− among negatively
charged hadrons, and assuming that all three pions are equally abundant,
we find

〈s + s̄〉
π− + π+ + π0

� 0.30.

The total number of pions produced comprises pions arising from reso-
nance decays and from fragments of the projectile and target. Thus, as
few as half of the pions originate from the newly made qq̄ pairs. In the
RHIC run at

√
sNN = 130 GeV, we estimateWs � 0.6. The increase com-

pared with the SPS energy is largely due to the strangeness content in
hyperons. Considering that γQGPs � 0.7 at √sNN = 130 GeV, there is still
space for a further rise in yield of strangeness at the highest RHIC energy,
and we hope and expect that Ws → 1 when the initial temperature rises
to well above the mass of the strange quark for a sufficient length of time.
We have learned to appreciate, in this last part, how the deconfined

thermal phase, through its gluon content, manifests itself as a strange-
ness signature of QGP. The presence of gluons is essential for rapid ther-
mal production of strangeness. The SPS strangeness results decisively
show interesting new physics, with a significant excess of strangeness and
strange antibaryons. We see, at the SPS and at the RHIC, considerable
convergence of the understanding of the production of hadrons around
properties of suddenly hadronizing entropy and strangeness-rich QGP.
We see hadronization into pions, at γq → γcq = emπ/(2Tf) � 1.6, which is
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an effective way to convert the excess of entropy in the deconfined state
into hadrons. We have seen that strange-particle signatures of hadroniza-
tion of QGP become more extreme and clearer at the RHIC.
It is important to remember that it is not only at the RHIC, and in

the near future at the LHC, that QGP can be studied. An alternative
energy domain for investigating QGP is the phase-transition region at
high baryon density. It is very probable that the onset of deconfinement
occurs at modest collision energies, perhaps in collisions of 20–40A-GeV
Pb projectiles with a laboratory target. The formation of the QGP phase
is an endothermic process. In experiments near to the condition for phase
transformation, energy balance, lack of explosive flow, and the onset of
abundant production of entropy and strangeness as a function of the en-
ergy and reaction volume should provide good global signatures of new
physics. Anomalous production of multistrange baryons and antibaryons
should help to pinpoint the deconfined phase.
We hear sometimes the following question: “Where is the ‘smoking

gun’ signature of QGP?”. The disappearance of the suppression of the
production of strangeness is surely one such observation. However, we
must remember that the discovery of QGP, unlike the discovery of a
new particle, requires a change in our understanding of the fundamental
hadronic degrees of freedom. This is a deductive process, and requires a
global cross check of consistency at each step in its development. It is
unlikely that our detailed arguments will persuade the skeptic, however,
we hope to show the new way to the uninitiated.
QGP discovery is similar to the slow and painful path to the under-

standing of electricity. The reader is invited to think through how he/she
would proceed without the plug in the wall, the instrument in the lab-
oratory, and the battery in the drawer, and without comprehension of
the principles of conductivity, to introduce in a lecture the discovery of
the existence of electricity. The challenge of understanding the ‘ionized’
quark–gluon form of matter is certainly more complex than the unraveling
of electricity.
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[79] C. Bormann, et al., NA49 collaboration, 1997. Kaon, lambda and anti-
lambda production in Pb + Pb collisions at 158 GeV per nucleon. J. Phys.
G, 23, 1817.

[80] P. Braun-Munzinger, I. Heppe, and J. Stachel, 1999. Chemical equilibra-
tion in Pb+Pb collisions at the SPS. Phys. Lett. B, 465, 15.

[81] P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, 2001.
Hadron production in Au–Au collisions at RHIC. Phys. Lett. B, 518,
41.

[82] P. Braun-Munzinger and J. Stachel, 1996. Probing the phase boundary
between hadronic matter and the quark–gluon plasma in relativistic heavy
ion collisions. Nucl. Phys. A, 606, 320.

[83] L. Bravina, L. P. Csernai, P. Levai, and D. Strottman, 1994. Collective
global dynamics in Au + Au collisions at the BNL AGS. Phys. Rev. C,
50, 2161.

[84] W. Broniowski and W. Florkowski, 2001. Description of the RHIC pT-
spectra in a thermal model with expansion. Phys. Rev. Lett., 87, 272302.

[85] W. Busza, R. L. Jaffe, J. Sandweiss, and F. Wilczek, 2000. Review of
speculative ‘disaster scenarios’ at RHIC. Rev. Mod. Phys., 72, 1125.

[86] E. Byckling and K. Kajantie. Particle Kinematics. J. Wiley, New York,
1973.

[87] N. Carrer, NA57 collaboration, 2001. First results on strange baryon pro-
duction from the NA47 experiment. In [146].

[88] A. Casher, H. Neuberger, and S. Nussinov, 1979. Chromoelectric-flux-tube
model of particle production. Phys. Rev. D, 20, 179.

[89] W. Cassing, 2001. Antibaryon production in hot and dense nuclear matter.
Nucl. Phys. A, Nucl-th/0105069.

[90] P. Chen, N. Christ, G. Fleming, A. Kaehler, C. Malureanu, R. Mawhinney,
G. Siegert, C. Sui, L. Wu, Y. Zhestkov, and P. Vranas, 2001. The finite
temperature QCD phase transition with domain wall fermions. Phys. Rev.
D, 64, 14503.



References 377

[91] S. A. Chin, 1978. Transition to hot quark matter in relativistic heavy-ion
collision. Phys. Lett. B, 78, 552.

[92] A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, 1974. Baryon
structure in the bag theory. Phys. Rev. D, 10, 2599.

[93] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf,
1974. New extended model of hadrons. Phys. Rev. D, 9, 3471.

[94] A. Chodos and C. B. Thorn, 1975. Chiral invariance in a bag theory. Phys.
Rev. D, 12, 2733.

[95] B. Combridge, 1979. Associated production of heavy flavour states in pp
and pp interactions: Some QCD estimates. Nucl. Phys. B, 151, 429.

[96] F. Cooper and G. Frye, 1974. Single-particle distribution in the hydrody-
namic and statistical thermodynamic models of multiparticle production.
Phys. Rev. D, 10, 186.

[97] M. Creutz. Quarks, Gluons and Lattices. Cambridge University Press,
Cambridge, 1983.

[98] L. P. Csernai. Introduction to Relativistic Heavy Ion Collisions. J. Wiley
and Sons, New York, 1994.

[99] T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, 1975. Masses and
other parameters of the light hadrons. Phys. Rev. D, 12, 2060.

[100] M. D’Elia, A. Di Giacomo, and E. Meggiolaro, 1997. Field strength corre-
lators in full QCD. Phys. Lett. B, 408, 315.

[101] M. D’Elia, A. Di Giacomo, and E. Meggiolaro, 1999. Gauge invariant
quark–anti-quark nonlocal condensates in lattice QCD. Phys. Rev. D, 59,
54503.

[102] C. Derreth, W. Greiner, H.-Th. Elze, and J. Rafelski, 1985. Strangeness
abundances in p–nucleus annihilations. Phys. Rev. C, 31, 1360.

[103] C. DeTar. Quark gluon plasma in numerical simulations of lattice QCD.
In R. C. Hwa, editor, Quark Gluon Plasma, volume II, page 1. World
Scientific, Singapore, 1995.

[104] D. Di Bari et al., WA85 collaboration, 1995. Results on the production
of baryons with |s| = 1, 2, 3 and strange mesons in S–W collisions at 200
GeV/c per nucleon. Nucl. Phys. A, 590, 307c.

[105] H. G. Dosch and S. Narison, 1998. Direct extraction of the chiral quark
condensate and bounds on the light quark masses. Phys. Lett. B, 417, 173.

[106] M. S. Dubovikov and A. V. Smilga, 1981. Analytical properties of the
quark polarization operator in an external selfdual field. Nucl. Phys. B,
185, 109.

[107] G. V. Efimov and S. N. Nedelko, 1998. (Anti-)selfdual homogeneous vac-
uum gluon field as an origin of confinement and SUL(NF) × SUR(NF)
symmetry breaking in QCD. Eur. Phys. J. C, 1, 343.



378 References

[108] D. Elia et al., NA57 collaboration. Results on cascade production in Pb–Pb
interactions from the NA57 experiment. In 36th Rencontres de Moriond on
QCD and Hadronic Interactions, Les Arcs, France, 2001. Hep-ex/0105049.

[109] E. Elizalde and J. Soto, 1986. A field configuration closer to the true QCD
vacuum. Z. Phys. C, 31, 237.

[110] R. K. Ellis, W. J. Stirling, and B. R. Webber. QCD and Collider Physics.
Cambridge University Press, New York, 1996.

[111] H.-Th. Elze, W. Greiner, and J. Rafelski, 1983. On the color-singlet quark–
gluon plasma. Phys. Lett. B, 124, 515.

[112] H.-Th. Elze, W. Greiner, and J. Rafelski, 1984. Color degrees of freedom
in a quark–gluon plasma at finite baryon density. Z. Phys. C, 24, 361.

[113] H.-Th. Elze, J. Rafelski, and W. Greiner, 1980. The relativistic ideal Fermi
gas revisited. J. Phys. G, 6, L149.

[114] H.-Th. Elze, J. Rafelski, and L. Turko, 2001. Entropy production in rela-
tivistic hydrodynamics collisions. Phys. Lett. B, 506, 123.

[115] J. Eshke, 1996. Strangeness enhancement in sulphur–nucleus collisions at
200 GeV/N. Heavy Ion Phys., 4, 105.

[116] D. Evans et al., WA85 collaboration, 1994. New results from WA85 on
multistrange hyperon production in 200A GeV S–W interactions. Nucl.
Phys. A, 566, 225c.

[117] D. Evans et al., WA85 collaboration, 1995. Review of strange particle
production from the WA85 collaboration. In [217], page 234.

[118] D. Evans et al., WA85 collaboration, 1996. Strangeness production in p–W
and S–W interactions at 200A GeV. Heavy Ion Phys., 4, 79.

[119] Y. Hama, F. Grassi, and T. Kodama, 1996. Particle emission in the hy-
drodynamical description of relativistic nuclear collisions. Z. Phys. C, 73,
153.

[120] E. L. Feinberg, 1976. Direct production of photons and dileptons in ther-
modynamical models of multiple hadron production. Nuovo Cimento A,
34, 39.

[121] E. Fermi, 1950. High-energy nuclear events. Prog. Theor. Phys., 5, 570.

[122] E. Fermi, 1953. Multiple production of pions in nucleon–nucleon collisions
at cosmotron energies. Phys. Rev., 92, 452.

[123] H. Fritzsch, M. Gell-Mann, and H. Leutwyler, 1973. Advantages of the
color octet gluon picture. Phys. Lett. B, 47, 365.

[124] S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, 1998. Heavy quark
production. Adv. Ser. Direct. High Energy Phys., 15, 609.

[125] J. Gasser and H. Leutwyler, 1982. Quark masses. Phys. Rep., 87, 77.
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